Measurement of the branching fraction and decay rate asymmetry of $B^- \to D_{\pi^+\pi^-}\pi^-K^-$

B. Aubert, R. Barate, D. Boutigny, F. Couderc, Y. Karyotakis, J. P. Lees, V. Poireau, V. Tisserand, A. Zghiche, E. Grauges, A. Palano, M. Pappal ngo, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofte, B. Stugu, G. S. Abrams, M. Battaglia, A. W. Borland, A. B. Broen, D. N. Brown, J. Button-Safer, R. N. Call, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groyseman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Roman, W. A. Wenzel, M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson, M. Frisch, K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizaeus, K. Peters, T. Schroeder, M. Steink, J. T. Boyd, J. P. Burke, N. Chevalier, W. N. Cottingham, M. P. Kelly, T. Cuhadar-Donszelmann, C. Heart, T. Held, K. Wang, L. Zhang, D. del Re, H. K. Hadavand, E. J. Hill, D. B. MacFarlane, H. P. Paar, S. Rahatlou, V. Sharma, J. W. Berryhill, C. Campagnari, A. Cunha, B. Dahmes, T. M. Hong, A. L., M. Mazur, J. D. Richman, W. Verkerke, T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumann, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson, J. Albert, E. Chen, G. P. Dubois-Felmmann, A. Dvoretski, D. G. Hitlin, I. Narsky, T. Pientko, F. C. Porter, A. Ryd, A. Samuel, R. Andreassen, S. Jayatilleke, G. Mancinelli, B. T. Meadows, M. D. Sokoloff, F. Blanc, P. Bloom, S. Chen, W. T. Ford, U. Nauenberg, A. Olivas, P. Rankin, W. O. Ruddick, J. G. Smith, K. A. Ulmer, S. R. Wagner, J. Zhang, A. Chen, E. A. Eckhart, A. Soffer, W. H. Toki, R. J. Wilson, Q. Zeng, F. Iftersi, A. Hauke, B. Spaan, D. Altenburg, T. Brod, J. Brose, M. Dickopp, V. Klose, H. M. Lacker, R. Nogowski, S. Otto, A. Petzold, G. Schott, J. Schubert, K. R. Schubert, R. Schwierz, J. E. Sundermann, D. Bernard, G. R. Bonneau, P. Grenier, S. Schrenk, Ch. Thiebaux, G. Vasileiadis, M. Verderi, D. J. Bard, P. J. Clark, W. Gradl, F. Muheim, S. Playfer, Y. Xie, M. Andreotti, V. Azzolini, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Lupp, M. Negrini, L. Piemontese, F. Anulli, R. Baldini-Ferroli, A. Calcatera, R. de Sangro, G. Finocchiaro, P. Patteri, I. M. Peruzzi, M. Piccolo, A. Zallo, A. Buzzo, R. Capra, R. Contri, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, S. Bailey, G. Brandenburg, K. S. Chaisangunthan, M. Morii, E. Won, R. S. Dubitzky, U. Langenegger, J. Marks, S. Schenk, U. Uwer, W. Blumii, D. A. Bowerman, P. D. Dauncey, U. Egede, R. L. Flack, J. R. Gaillard, G. W. Morton, J. A. Nash, M. B. Nikolich, G. P. Taylor, M. J. Charles, W. F. Mader, U. Mallick, A. K. Mohapatra, J. Cochran, H. B. Crawford, V. Eyges, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, J. Yi, N. Arnaud, M. Davier, X. Giroux, G. Grosdidier, A. Höcker, F. Le Diberder, V. Lepeltier, A. M. Lutz, A. Oyanguren, T. C. Petersen, M. Pierini, S. Plasczynski, S. Rodier, P. Roudoue, M. H. Schune, A. Stocchi, G. Wormser, C. H. Cheng, D. J. Lange, M. C. Simani, D. M. Wright, A. J. Bevan, C. A. Chavez, J. P. Coleman, J. I. Forster, J. R. Fry, E. Gabathuler, R. Gamet, K. A. George, D. E. Hutchcroft, R. J. Parry, D. J. Payne, K. C. Schofield, C. Touramanis, C. M. Cormack, F. Di Lodovico, R. Sacco, C. L. Brown, G. Cowan, H. U. Fleaecher, M. G. Green, D. A. Hopkins, P. S. Jackson, T. R. McMahon, S. Riccardi, F. Salvatore, D. Brown, C. L. Davis, J. Allison, N. R. Barlow, R. J. Barlow, M. C. Hodgkinson, G. D. Lafferty, M. T. Naishbit, J. C. Williams, C. Chen, A. Farbin, W. D. Hulsbergen, A. Jawahery, D. Kovalskyi, C. K. Lai, V. Lillard, D. A. Roberts, G. Simi, G. Blaylock, C. Dallapiccola, S. S. Hertzbach, R. Koffler.
We report the observation of the decay $B^- \rightarrow D_{s+} \pi^- s\pi^0 K^-$, where $D_{s+} \pi^- s\pi^0$ indicates a neutral D meson detected in the final state $\pi^+ \pi^- \pi^0$, excluding $K^0\pi^0\pi^0$. This doubly Cabibbo-suppressed decay chain can be used to measure the CKM phase γ. Using about 229 million $e^+e^- \rightarrow B\bar{B}$ events recorded by the BABAR experiment at the PEP-II e^+e^- storage ring, we measure the branching fraction $\mathcal{B}(B^- \rightarrow D_{s+} \pi^- s\pi^0 K^-) = (5.5\pm1.0 \text{ (stat.)}\pm0.7 \text{ (syst.)}) \times 10^{-5}$ and the decay rate asymmetry $A = 0.02 \pm 0.16 \text{ (stat.)} \pm 0.03 \text{ (syst.)}$ for the full decay chain.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

describes an analysis procedure with which to extract the $B^- \rightarrow D_{s+} \pi^- s\pi^0 K^-$ signal for later use in a Dalitz plot analysis measurement of γ, and report the measured branching fraction and decay rate asymmetry of this decay chain. Our result excludes the decay mode $D \rightarrow K^0\pi^0\pi^0$, which is a previously-studied CP-eigenstate not related to the method of Ref. [7].

The decay rate asymmetry $A = (N^+ - N^-)/(N^+ + N^-)$, where $N^+ (N^-)$ is the number of signal $B^+ (B^-)$ decays, depends on the weak and strong phases of the B decay, as well as the D^0 and \overline{D}^0 decay rate and phase variation over the Dalitz plot. Its magnitude is at most of order $2r_B$, where r_B, estimated to be about 0.1 [3], is the ratio between the magnitudes of the interfering $b \rightarrow u\pi s$ and $b \rightarrow c\pi s$ amplitudes. Due to interference, the branching fraction $\mathcal{B}(B^- \rightarrow D_{s+} \pi^- s\pi^0 K^-)$ may differ from the product $\mathcal{B}_{\text{prod}} \equiv \mathcal{B}(B^- \rightarrow D^0 K^-) \times \mathcal{B}(D^0 \rightarrow \pi^+ \pi^- \pi^0) = (4.1\pm1.0) \times 10^{-6}$ [7] by up to about $2r_B \mathcal{B}_{\text{prod}}$.

The data used in this analysis were collected with the BABAR detector at the PEP-II energy-asymmetric e^+e^- storage ring. The data consist of 207 fb$^{-1}$ collected on the $T(4S)$ resonance (on-resonance sample), and 21 fb$^{-1}$ collected at an e^+e^- center-of-mass (CM) energy approximately 40 MeV below the resonance peak (off-resonance sample). Samples of simulated events were analyzed with the same reconstruction and analysis procedure. These include an $e^+e^- \rightarrow B\overline{B}$ sample about three times larger than the data; a continuum $e^+e^- \rightarrow q\overline{q}$ sample, where q represents a u, d, s, or c quark, with equivalent luminosity similar to that of the data; and a signal sample about 200 times larger than what is expected in the data. The BABAR detector, as well as the methods used for charged and neutral particle reconstruction and identification are described in detail in Ref. [7].

We select events using criteria designed to maximize the signal branching fraction sensitivity and the reliability of the maximum likelihood fit procedure described below. To suppress the continuum background, we require the ratio H_2/H_0 of the 2nd to the 0th Fox-Wolfram moments [11], computed from the momenta of all charged

1 We use the symbol D to indicate any linear combination of a D^0 and a \overline{D}^0 meson state.
particles and photon candidates not matched to tracks, to be less than 0.50. Charged kaon candidates are required to have a high quality particle identification measurement and be identified using kaon selection criteria that reduce the pion background to less than 3%. The measured energy of photon candidates is required to be at least 30 MeV. Photon candidate pairs whose invariant mass is within 25 MeV/c^2 of the nominal π^0 mass are combined to make π^0 candidates, to which we perform a constrained-mass fit in order to improve the π^0 energy and momentum resolutions. Throughout this article, we use the symbol γ_s to denote the softer (lower-energy) photon.

We select $D \rightarrow \pi^+\pi^-\pi^0$ candidate decays by requiring the $\pi^+\pi^-\pi^0$ invariant mass m_D to be between 1.830 GeV/c^2 and 1.895 GeV/c^2. The m_D resolution is about 14 MeV/c^2. The D candidate energy and momentum resolutions are then improved by performing a constrained mass fit. The charged pion candidates are required to fail kaon selection criteria. The decay $D \rightarrow K_s^0\pi^0$ is rejected by excluding $\pi^+\pi^-$ candidate pairs whose invariant mass is between 0.489 GeV/c^2 and 0.508 GeV/c^2. We note that this last requirement will not be needed when measuring γ with an analysis of the $\pi^+\pi^-\pi^0$ Dalitz plot, where the $K_s^0\pi^0$ final state can be included as an incoherent term, as done in Ref. 3.

Candidate $B^- \rightarrow D_{s+}\pi^-\pi^-K^-$ decays are constructed by combining a $D \rightarrow \pi^+\pi^-\pi^0$ candidate with a charged kaon candidate. Additional continuum suppression is obtained by requiring $|\cos\theta_{T}| < 0.8$, where θ_T is the angle between the thrust axis calculated in the CM frame with the daughters of the B candidate and the thrust axis of the rest of the event (ROE). For each B candidate we calculate the beam-energy substituted mass $m_{ES} \equiv \sqrt{E_{ES}^2 + m_B^2 - [p_B]^2}$, where the total CM energy E_{CM} is continuously determined from the measured PEP-II beam energies, and p_B is the momentum of the B candidate in the CM frame. Signal events have a Gaussian m_{ES} distribution that peaks at the nominal B mass with a width of about 2.7 MeV/c^2, while background is distributed more broadly than signal. We require $5.272 < m_{ES} < 5.300$ GeV/c^2. The energy difference $\Delta E = E_B - E_{CM}/2$, where E_B is the CM energy of the B candidate, is required to be between -70 MeV and 60 MeV. The ΔE distribution of signal events peaks around 0 MeV with a width of 21 MeV.

About 25% of the events selected have more than one B candidate. In these events, we select one B candidate at random. Random selection allows consistent studies of background suppression variables, and degrades the signal sensitivity by only a few percent relative to the best possible selection method.

Studying the simulated event sample selected by the above criteria, we identify seven event types, one signal and nine background. We list these types with the labels used to refer to them throughout the article:

- **DK_{R}$** : $B^- \rightarrow D_{s+}\pi^-\pi^-K^-$ events that were correctly reconstructed. These are the only events considered to be signal.
- **DK_{P}$** : $B^- \rightarrow D_{s+}\pi^-\pi^-0K^-$ events in which the D candidate is misreconstructed, namely, some of the particles used to form the final state $\pi^+\pi^-\pi^0$ do not originate in the decay of the D meson.
- **D_{K}\pi$** : $B^- \rightarrow D_{s+}\pi^-\pi^-0K^-$ events, where the decay $D_{s+}\pi^-\pi^-0$ is correctly reconstructed and the remaining π^- is mistaken to be the kaon.
- **DH_{\pi}$** : $B^- \rightarrow D_{s+}\pi^-\pi^-0K^-$ events, where the D candidate is misreconstructed. The kaon candidate may be either the remaining π^- or a particle from the other B meson in the event.
- **BBC_{D}$** : All other $B\bar{B}$ events with a misreconstructed D candidate.
- **BBC_{D}$** : Other $B\bar{B}$ events with a correctly reconstructed $D \rightarrow \pi^+\pi^-\pi^0$ decay.
- **qq_{P}$** : Continuum $e^+e^- \rightarrow q\bar{q}$ events with a misreconstructed D candidate.
- **qq_{D}$** : Continuum $e^+e^- \rightarrow q\bar{q}$ events with a correctly reconstructed $D \rightarrow \pi^+\pi^-\pi^0$ decay.

The Cabibbo-favored decay chain $B^- \rightarrow D_{s+}\pi^-\pi^0$, $D_{s+}\pi^-\pi^0 \rightarrow K^-\pi^+\pi^0$, which has the same final state particles as our signal decay, does not contribute significantly to the background, since it is suppressed by the particle identification and m_D cuts.

The majority of background events are of the qq_{P} type. The combination of $D_{s+}X$, DK_X, and BBC_{D} events constitutes the second largest background. In order to suppress these backgrounds, we have developed two neural networks, each of which combines several input variables that provide separation between signal and background. The first neural network variable q is computed from input variables that provide separation between continuum and $B\bar{B}$ events. The second variable d combines input variables that separate correctly reconstructed π^0 and D_{s+} candidates from misreconstructed ones. It provides separation between signal and all misreconstructed-D background.

The input variables for q are (1) the cosine of the CM angle between p_B and the beams; (2) $|\cos\theta_T|$; (3-4) the zeroth and second Legendre moments of the momentum
flow of the ROE about the CM thrust axis of the B candidate daughters; (5) log of the distance along the beam direction between the reconstructed B vertex and the vertex of the ROE, computed as in Ref. [11]; (6) log of the distance of closest approach between the kaon track and the D decay vertex, which is calculated from the π^+ and π^- track parameters; (7) an integer variable calculated from the probability that the ROE contains a B^0, determined using the lepton flavor tagging algorithm of Ref. [11].

The input variables for d are (1) the invariant mass of the π^0 candidate; (2) the π^0 momentum in the lab frame; (3) cosine of the π^0 decay angle θ_{π^0}, defined as the angle between the γ_h momentum and the momentum of the CM frame, calculated in the π^0 rest frame; (4) the invariant mass m_h of π^0_h, where π^0_h is the π^0 candidate reconstructed from the γ_h and any additional photon in the event except γ_s, chosen such that m_h is closest to the nominal π^0 mass; (5) m_{π^0}, calculated analogously to m_h, but with γ_h instead of γ_s; (6-7) cosines of the decay angles of the π^0_h and π^0_0, calculated analogously to θ_{π^0}; (8) cosine of the angle between P_B and the thrust axis of the $\pi^+\pi^-\pi^0$ final state, calculated in the $\pi^+\pi^-\pi^0$ rest frame; (9) cosine of the angle between the D candidate momentum and the line connecting the B and D decay vertices.

The q and d distributions of simulated signal and background events are shown in Fig. 1. All events are required to satisfy the conditions $q > 0.1$, $d > 0.1$, in order to reduce the background and suppress correlations between the variables used in the fit described below. The final signal reconstruction efficiency is 10.5%.

![FIG. 1: (a) Distribution of the neural network variable q for continuum (hatched) and signal simulated events. The $B\bar{B}$ background distribution is similar to that of signal. (b) Distribution of the neural network variable d for $B\bar{B}$ background (hatched) and signal simulated events. The continuum background distribution is similar to that of the $B\bar{B}$ background. All histograms are normalized to unit area.](image)

We perform a maximum likelihood fit to measure the number and the decay rate asymmetry of signal events in the on-resonance data sample, using the variables ΔE, q, and d. The variable m_{ES}, which is commonly used as a fit variable in B decay analyses, is not included in the fit. Studies with simulated events indicate that correlations of m_{ES} with other fit variables in the distributions of $D\pi X$, $DK X$, and BBC_B background events lead to a bias in the measured signal yield, unless the correlations are modeled correctly. Such modeling complicates the analysis procedure, increases the dependence on the simulation, and incurs additional systematic errors. By excluding m_{ES} from the fit, we give up some statistical precision in order to make the analysis more robust.

Correlations between the ΔE, q, and d distributions for the different event types are at the few percent level in the worst cases, and ignoring them in fits to simulated events does not result in significant biases.

The probability density function (PDF) for the fit is

$$P = \frac{1}{\eta} \sum_t N_t P_t(\Delta E, q, d),$$

where the subscript t corresponds to one of the ten event types listed above, N_t is the number of events of type t, and $\eta = \sum_t N_t$. The PDF P_t for events of type t is a product of the form

$$P_t(\Delta E, q, d) = E_t(\Delta E) Q_t(q) D_t(d).$$

The functions $E_{BBC_B}(\Delta E)$, $E_{q}(\Delta E)$, and $E_{q}(\Delta E)$ are parameterized as second order polynomials, and all other $E_t(\Delta E)$ functions are the sum of a Gaussian and a second order polynomial. The parameters of these functions are obtained from fits to simulated events. The PDFs $Q_t(q)$ and $D_t(d)$ are 15-bin histograms obtained from simulated events.

To extract the signal yield and asymmetry, we minimize the log of the extended likelihood

$$L = \eta^N e^{-\eta} \prod_{i=1}^N P(i).$$

Six parameters are floating in the fit. These are the event yields N_{DKB}, $N_{D\pi B}$, N_{qBPP}, and $N_{BBB} = N_{DKX} + N_{D\pi X} + N_{BBC_B}$, the ratio $R_{D\pi X} = N_{D\pi X}/N_{BBB}$, and the decay rate asymmetry $A \equiv (N_{DKB} - N_{DBK})/(N_{DKB} + N_{DBK})$, where the superscript indicates the charge of the kaon. Five ratios of event yields are obtained from the simulation and are not varied in the fit. From these ratios we obtain the five parameters $N_{DKX} = 0.21 N_{D\pi X}$, $N_{D\pi B} = 0.171 N_{D\pi B}$, $N_{BBC_B} = 0.0089 N_{BBB}$, $N_{qBPP} = 0.0136 N_{qBPP}$, and $N_{DBK} = 0.1614 N_{DBK}$. All fixed parameters are later varied to evaluate systematic errors, as described below.

The results of the fit are summarized in Table I. We observe $N_{DKB} = 133 \pm 23$ signal events and the decay rate asymmetry $A = 0.02 \pm 0.16$, where the errors are statistical only. The corresponding branching fraction is $B(B^- \rightarrow D_{\pi^+\pi^-\pi^0}K^-) = (5.5 \pm 1.0) \times 10^{-6}$. The statistical significance of the signal observation, obtained
from a scan of the likelihood as a function of the signal yield, is 5.7 standard deviations.

The fit parameter most correlated with the signal yield is N_{BBp}, with correlation matrix element $\rho(N_{DKD}, N_{BBp}) = -0.33$. The largest correlation matrix element for the asymmetry is $\rho(A, N_{DKD}) = -0.036$. Projections of the data and the fit function onto the fit variables are shown in Fig. 2 for events with a high likelihood of being signal and for the entire data sample.

TABLE I: Results of the data fit. Errors are statistical only.

Parameter	Value
N_{DKD}	133 ± 23
A	0.02 ± 0.16
$N_{DπD}$	43 ± 16
N_{qD}	1454 ± 53
N_{BBp}	806 ± 54
R_{DKA}	0.82 ± 0.11

The systematic uncertainties in the signal branching fraction and asymmetry measurements are summarized in Table II. We describe briefly the procedures used for their evaluation: (1) The statistical errors in the simulated samples used to obtain the shapes of $E_i(\Delta E)$, $Q_i(q)$, and $D_i(d)$ are propagated to the final fit. (2) The value of N_{DKX} is varied by ±25%, determined from the uncertainties on the decay modes contributing to the DKX background. The parameters $N_{DπB}$, N_{BBCD}, N_{qD}, and N_{DKp} are varied by ±50%, which is estimated to be very conservative, given the level of data-simulation agreement. (3) We evaluate the effect of possible differences between the event distributions in the data and the simulation by studying events in the m_{ES} sideband 5.23 < m_{ES} < 5.26 GeV/c^2, as well as events produced in the copious decay mode $B^- \rightarrow D^0\pi^-$, $D^0 \rightarrow K^-\pi^+\pi^-\pi^0$. (4) The ΔE and d distributions of DKD events are slightly correlated, and this correlation is ignored in the PDF. To evaluate the uncertainty due to this, we repeat the fit with $D_{DKD}(d)$ taken from simulated DKD events in different ΔE bins. (5) We consider the effect of a possible contribution of charmed $B^- \rightarrow K^-\pi^+\pi^-\pi^0$ events, assuming a branching fraction of 6×10^{-5}. (6) The uncertainty in the contribution of a non-resonant component to the $D \rightarrow \pi^+\pi^-\pi^0$ decay is propagated to the signal efficiency. (7) We account for the possibility of charge-dependence in the track reconstruction efficiency. (8-9) We assign a reconstruction efficiency uncertainty of 1.4% per charged track and 3.5% for the π^0. (10) We account for the uncertainty in the number of BB events produced by PEP-II and (11) the uncertainty in the efficiency of the particle identification requirements applied to the data sample.

Additional cross-checks are performed to verify the validity of our results. We compare the fit variable distributions of the data with those of simulated events in the

TABLE II: Fractional systematic error in the signal branching fraction B and absolute error in the asymmetry A.

No.	Source	Error (%)
	σ_B/B	7.9
	σ_A	1.5
	σ_B/B	6.2
	σ_A	0.25
	σ_B/B	5.8
	σ_A	1.6
	σ_B/B	1.9
	σ_A	0.39
	σ_B/B	0.85
	σ_A	0.003
	σ_B/B	0.33
	σ_A	-
	σ_B/B	-
	σ_A	-
	σ_B/B	4.2
	σ_A	-
	σ_B/B	3.5
	σ_A	-
	σ_B/B	1.1
	σ_A	-
	σ_B/B	1.0
	σ_A	-
	σ_B/B	13
	σ_A	2.6
ΔE sideband $90 < \Delta E < 140$ MeV. The fit variable distributions of simulated continuum events are validated against the off-resonance data. The simulated distributions of $B^- \to D^0\pi^-$, $D^0 \to \pi^+\pi^-\pi^0$ events are compared with their distributions in the data. We verify the signal efficiency by measuring the branching fraction $B(B^- \to D^0\pi^-)$ using D^0 decays to $D^0 \to K^+\pi^-\pi^0$ and $D^0 \to \pi^+\pi^-\pi^0$. The simulated distributions of the q and d input variables are compared with the distributions in the data. In all cases, good agreement between simulation and data is observed. No significant excess of signal events is found in a fit to data events between simulation and data. In all cases, good agreement between simulation and data is observed. No significant excess of signal events is found in a fit to data events in the m_D sidebands $1.775 < m_D < 1.800$ GeV/c^2 and $1.920 < m_D < 1.955$ GeV/c^2. We conduct fits to event samples containing simulated signal and background events and find no significant biases in all the fit variables. Fits to parameterized experiments generated with the parameter values obtained in the data fit are unbiased, and their distributions of fit parameter errors and maximum likelihood are consistent with those of the data fit.

In summary, using a sample of 229 ± 2.5 million $e^+e^- \to B\bar{B}$ events we observe 133 ± 23 events in the decay chain $B^- \to D_{\pi^+\pi^-\pi^0}K^-$, where the $\pi^+\pi^-\pi^0$ final state excludes the CP-eigenstate $K^0\pi^0$. We extract the branching fraction and decay rate asymmetry

$$B(B^- \to D_{\pi^+\pi^-\pi^0}K^-) = (5.5 \pm 1.0 \pm 0.7) \times 10^{-6},$$

$$A = 0.02 \pm 0.16 \pm 0.03,$$ \hspace{0.5cm} (4)

where the first errors are statistical and the second are systematic. The level of background suppression we achieve is critical for using this mode to measure γ. The remaining background doubles the statistical error on γ with respect to the no-background case.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

\[\text{arXiv:hep-ex/0308043} \quad \text{arXiv:hep-ex/0408088}\]

\[\text{arXiv:hep-ex/0306048} \quad \text{arXiv:hep-ex/0309014}\]

\[\text{arXiv:hep-ex/0306048}\]

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theoret. Phys. 49, 652 (1973).
[2] M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991).
[3] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).
[4] The Belle Collaboration, K. Abe et al., Phys. Rev. D 70, 072003 (2004).
[5] The BABAR Collaboration, B. Aubert et al., arXiv:hep-ex/0308043
[6] Y. Grossman, Z. Ligeti, and A. Soffer, Phys. Rev. D 67, 071301(R) (2003).
[7] The Particle Data Group Collaboration, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[8] The CLEO Collaboration, V. V. Frolov et al., arXiv:hep-ex/0306048
[9] The BABAR collaboration, B. Aubert et al., Nucl. Instrum. Meth. A 479, 1 (2002).
[10] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[11] The BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002).