Supplementary Information

Iron from a submarine source impacts the productive layer of the Western Tropical South Pacific (WTSP)

Authors: C. Guieu1, S. Bonnet1, A. Petrenko2, C. Menkes3, V. Chavagnac4, K. Desboeufs5, C. Maes6, T. Moutin1

1 Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
2 Center for Prototype Climate Modeling, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
3 Aix Marseille Université, Toulon Université, CNRS, Institut de Recherche pour le Développement (IRD), Observatoire des Sciences de l'Univers Pythéas, Mediterranean Institute of Oceanography (MIO), Unité Mixte 110, 98848 Noumea, New Caledonia
4 Aix Marseille Université, CNRS/Institut National des Sciences de l’Univers, Université de Toulon, Institut de Recherche pour le Développement, Observatoire des Sciences de l’Univers Pythéas, Mediterranean Institute of Oceanography (MIO), Unité Mixte 110, 13288 Marseille, France
5 LOCEAN (Université Sorbonne - Pierre et Marie Curie, IRD/CNRS/MNHN), IRD, BP A5, 98848 Nouméa Cedex, New Caledonia
6 Géosciences Environnement Toulouse, GET UMR5563, CNRS/UPS/IRD/CNES, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
7 Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), IPSL, UMR CNRS 7583, Université Paris Est Créteil (UPEC), Université Paris Diderot (UPD), Créteil, France
8 IRD/LOPS, IFREMER, CNRS, IUEM, University of Brest, Brest, France, orcid.org/0000-0001-6532-7141

correspondence to: guieu@obs-vlfr.fr
Supplementary Figure 1. Segments of transect corresponding to the different aerosols sampled during the OUTPACE cruise. (The ocean color satellite products are produced by CLS. Figure courtesy of A. De Verneil)
Supplementary Figure 2. Vertical sections of salinity for the ARGO float (along the red segment in Fig. 2A) (left) and reference model outputs averaged for February 2015 to May 2015 (right). Diamonds on the X-axis represent the position of the ARGO profiles along that section; the x-axis being the orthodromic distance in kilometers (0 = profile 57 to 500 = profile 2). The model reproduces the major features and typical range of values observed in that region.
Supplementary Figure 3. Time mean section of the January 2015 to May 2015 simulations to characterize spatial and temporal plume impacts taking Volcano 8 as a source location that emitted throughout December 2014 and January 2015 (same conditions as in Fig. 2C: salinity of the source = 5, temperature = 300°, duration of the emission = 2 months, flux = 10 000 Ls\(^{-1}\)). Monthly mean snapshots of the region from January to May 2015 (from left to right and top to bottom), the last panel representing the mean of February to May 2015. On each panel, salinity anomalies (model with volcano 8 plume minus model without) are shaded and horizontal currents are represented as vectors. These snapshots are represented at 400 m (a), 300 m (b), 100 m (c) and 50 m (d). On each panel, the position of the ARGO float section of Fig. 2A is represented by a black line and...
the positions of Volcano1 and 8 are noted as crossed diamonds. IDL version 6.4, Mac OSX (Darwin), (c) 2007 ITT Visual Information Solutions URL link: http://www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx was used to generate the maps.

Supplementary Figure 4. Differences of the average salinity section over the Jan-May period between 2015 and 2014 along 22°S from the ISAS13 Argo atlas. The quite similar depth of the 26.5 kg/m3 isopycnal surface for 2015 (thin line) and 2014 (dash line) indicates that this salt anomaly is compensated by a cold anomaly of (0.2°C) during the same period.
Supplementary Figure 5. Earthquakes (magnitude > 4 and above 100 km)
recorded during the period 01/12/2014 to 01/06/2015, in our study area (black
box; red stars: volcano 1 and 8). (this map was generated using
https://earthquake.usgs.gov/).

2. Supplementary Tables 1 to 2

Supplementary Table 1. Aerosols results: total iron concentrations and fluxes; soluble
iron concentrations and fluxes. The segments where aerosols were sampled are indicated
Supplementary Figure 1.

Aerosol samples labels	Fe concentrations	Total Fe flux	DFe concentrations	DFe fluxes
	nM.m-3	nM.m-2.d-1	nM.m-3	mg.m-2.yr-1
AERO 1	1.375	1663	nd	
AERO 2	0.041	49	nd	
AERO 3	0.013	15	nd	
Supplementary Table 2. Dissolved iron, nM measured between 0-500m during the OUTPACE cruise.

Station	DFe nM	Depth (m)	Latitude	Longitude	
AERO 4	0.064	78	0.0012	1.42	0.029
AERO 5	nd	nd			
AERO 6	0.162	196	0.0027	3.25	0.066
AERO 7	nd	0.0020	2.46	0.050	
AERO 8	0.085	102	0.0402	48.7	0.992
AERO 9	nd	0.0007	0.85	0.017	
AERO 10	1.96	2371	0.0104	12.6	0.256

Latitude: -18, -18.6
Longitude: 159.9, 162.1
Station: 1, 2
Depth (m): 50, 100, 30, 350, 400, 500, 80, 150, 200, 250, 300, 350, 400, 500
-18.6	162.1	2	50	0.99	
-18.6	162.1	2	30	0.41	
-18.6	162.1	2	10	0.36	
-19.2	164.7	LD_A	500	0.50	
-19.2	164.7	LD_A	450		
-19.2	164.7	LD_A	350	0.50	
-19.2	164.7	LD_A	300	0.48	
-19.2	164.7	LD_A	250	0.49	
-19.2	164.7	LD_A	200	0.51	
-19.2	164.7	LD_A	80	0.52	
-19.2	164.7	LD_A	50	0.50	
-19.2	164.7	LD_A	30	0.85	
-19	165	3	500	0.43	
-19	165	3	400	0.31	
-19	165	3	350	0.58	
-19	165	3	300	0.44	
-19	165	3	250	0.42	
-19	165	3	200	0.62	
-19	165	3	150	0.21	
-19	165	3	100	0.85	
-19	165	3	70	0.37	
-19	165	3	50	0.48	
-19	165	3	30	0.32	
-19	165	3	10	0.38	
-20	168	4	500	0.60	
-20	168	4	400	0.85	
-20	168	4	350	0.67	
-20	168	4	300	0.82	
-20	168	4	250	0.63	
-20	168	4	200	0.56	
-20	168	4	150	0.78	
-20	168	4	100	0.41	
-20	168	4	70	0.54	
-20	168	4	50	1.16	
-20	168	4	30	0.55	
Value 1	Value 2	Value 3	Value 4		
---------	---------	---------	---------		
-20.7	176.4	8	30	1.35	
-20.7	176.4	8	10	0.38	
-21	178.6	9	500	0.39	
-21	178.6	9	398	1.90	
-21	178.6	9	350	0.42	
-21	178.6	9	300	1.60	
-21	178.6	9	250	5.50	
-21	178.6	9	200	6.62	
-21	178.6	9	150	12.10	
-21	178.6	9	100	63.00	
-21	178.6	9	70	0.76	
-21	178.6	9	50	0.25	
-21	178.6	9	30	0.22	
-21	178.6	9	10	0.22	
-20.5	181.5	10	500	2.15	
-20.5	181.5	10	400	1.55	
-20.5	181.5	10	350	7.80	
-20.5	181.5	10	300	0.87	
-20.5	181.5	10	250	4.80	
-20.5	181.5	10	200	1.17	
-20.5	181.5	10	150	0.16	
-20.5	181.5	10	120	5.17	
-20.5	181.5	10	70	11.32	
-20.5	181.5	10	50	0.94	
-20.5	181.5	10	30	0.43	
-20.5	181.5	10	10	0.97	
-19.98	184.33	11	500	0.42	
-19.98	184.33	11	400	0.47	
-19.98	184.33	11	350	0.51	
-19.98	184.33	11	300	1.08	
-19.98	184.33	11	250	0.63	
-19.98	184.33	11	200	0.59	
-19.98	184.33	11	150	0.64	
-19.98	184.33	11	100	0.72	
-19.98	184.33	11	70	0.65	
Value	Unit	Parameter 1	Parameter 2	Parameter 3	
--------	------	-------------	-------------	-------------	
-19.98		184.33	11	45	0.54
-19.98		184.33	11	30	0.84
-19.98		184.33	11	10	1.16
-19.5		187.2	12	500	0.66
-19.5		187.2	12	300	0.47
-19.5		187.2	12	250	1.10
-19.5		187.2	12	200	0.33
-19.5		187.2	12	150	0.36
-19.5		187.2	12	100	0.48
-19.5		187.2	12	70	0.45
-19.5		187.2	12	50	0.50
-19.5		187.2	12	30	0.94
-18.2		189.1	LD_B	500	0.34
-18.2		189.1	LD_B	450	0.23
-18.2		189.1	LD_B	400	0.41
-18.2		189.1	LD_B	350	0.28
-18.2		189.1	LD_B	300	0.43
-18.2		189.1	LD_B	200	0.30
-18.2		189.1	LD_B	150	0.38
-18.2		189.1	LD_B	100	0.71
-18.2		189.1	LD_B	80	0.39
-18.2		189.1	LD_B	50	0.30
-18.2		189.1	LD_B	30	0.52
-18.2		189.1	LD_B	10	0.59
-18.2		189.1	LD_B	5	0.71
-18.4		194.1	LD_C	500	0.29
-18.4		194.1	LD_C	450	0.29
-18.4		194.1	LD_C	400	
-18.4		194.1	LD_C	350	0.25
-18.4		194.1	LD_C	300	
-18.4		194.1	LD_C	250	0.16
-18.4		194.1	LD_C	200	0.35
-18.4		194.1	LD_C	150	0.24
-18.4		194.1	LD_C	100	0.17
-18.4		194.1	LD_C	50	0.16
Temp	RH	LD	LD	0.39	
------	----	----	----	------	
-18.4	194.1	LD_C	10	0.35	
-18.4	194.1	LD_C	5	0.39	
-18.42	197	14	500	0.59	
-18.42	197	14	450	0.28	
-18.42	197	14	400	0.34	
-18.42	197	14	350	0.29	
-18.42	197	14	300	0.27	
-18.42	197	14	250	0.49	
-18.42	197	14	200	0.27	
-18.42	197	14	150	0.31	
-18.42	197	14	100	0.32	
-18.42	197	14	80	0.31	
-18.42	197	14	30	0.21	
-18.42	197	14	5	0.46	
-18.27	200	15	500	0.48	
-18.27	200	15	450	0.40	
-18.27	200	15	400	0.26	
-18.27	200	15	250	0.25	
-18.27	200	15	200	0.40	
-18.27	200	15	150	0.47	
-18.27	200	15	100	0.28	
-18.27	200	15	80	0.37	
-18.27	200	15	50	0.34	
-18.27	200	15	30	0.20	
-18.27	200	15	10	0.31	
-18.27	200	15	5	0.31	