Dielectric function and plasmons of doped three-dimensional Luttinger semimetals

Achille Mauri1,* and Marco Polini2

1Scuola Normale Superiore, I-56126 Pisa, Italy
2Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy

Luttinger semimetals are three-dimensional electron systems with a parabolic band touching and an effective total spin \(J = 3/2 \). In this Article we present an analytical theory of dielectric screening of Luttinger semimetals with an arbitrary carrier density and conduction-valence effective mass asymmetry. The dielectric screening function is reported in a compact form, for arbitrary values of the wave vector and frequency, the latter in the complex plane. We use this precious analytical expressions to calculate the dispersion relation and Landau damping of the collective modes in the charge sector (i.e. plasmons).

\section{INTRODUCTION}

Several three-dimensional (3D) solids are known to present quadratic band touchings at the Fermi energy or in its neighbourhood. Grey tin (\(\alpha \)-Sn) and mercury telluride (HgTe) were the first materials in which a crossing between parabolic valence and conduction bands was recognized and their rich phenomenology has attracted extensive theoretical and experimental interest for decades1–4.

In these solids, the parabolic bands which come into contact are akin to the heavy- and light-hole bands in diamond or zinc-blende semiconductors5, with the difference that one of the two bands has positive concavity due to the presence of strong spin-orbit coupling6,7. A parabolic band touching occurs at the center of the Brillouin zone, is not protected by topology, but, rather, by the cubic symmetry of the crystal. At \(k = 0 \), four Bloch wavefunctions are degenerate and transform under the symmetry group operations as the four spin states of a particle with \(J = 3/2 \). The conduction and valence electron states in the proximity of the band touching point are described, up to the second order in degenerate \(k \cdot p \) perturbation theory, by the Luttinger Hamiltonian5,7. For this reason, 3D semimetals with a parabolic band touching are often referred to as “Luttinger semimetals” (LSMs).

When the Fermi level lies at the band touching point, electron-electron interactions play an essential role. They have been demonstrated theoretically to drive LSMs either into a strong coupling regime, characterized by scale invariant correlation functions with anomalous exponents for momenta and energies smaller than the effective Bohr scale8–11, or into broken symmetry phases12–17.

The recent experimental discovery that the pyrochlore iridate \(\text{Pr}_2\text{Ir}_2\text{O}_7 \) hosts a parabolic band touching point18,19 has posed new questions about the role of electron-electron interactions and raised the possibility to observe experimentally signatures of the strong-coupling regime of LSMs.

This work focuses on the density-density linear response function \(\chi_{nn}(q,\omega) \) and dynamical screening function \(\epsilon(q,\omega) \) of a LSM. Screening and dielectric properties of LSMs have been the subject of several studies, which explored the dependence of \(\epsilon(q,\omega) \) on wave vector \(q \), frequency \(\omega \), temperature \(T \), and magnetic field21–26. The static wave vector-dependent dielectric function \(\epsilon(q,0) \) was calculated within the celebrated Random Phase Approximation (RPA)20 in Refs. 21–24, and 26. These results were applied to the description of transport properties in presence of scattering by charged impurities27–29. The dynamic dielectric function, relevant for optical properties, was calculated in the long-wavelength \(q \to 0 \) limit in Refs. 30 and 31. In particular, in Ref. 31, the frequency dependence of the dielectric function was studied at finite \(T \) and in presence of lifetime broadening. These results were recently used in the interpretation of experiments on pyrochlore iridates19.

In Ref. 26, the RPA dielectric function was calculated at \(T = 0 \) for arbitrary \(\omega \) and \(q \), and for arbitrary values of the conduction \(m_c \) and valence \(m_v \) effective masses, assuming a spherical approximation. The results in Ref. 26, however, present some inconsistencies. Indeed, the imaginary part of the intra-band dielectric function—Eq. (23) of Ref. 26—and the real part of the dielectric function in Figs. 4 and 5 of Ref. 26 exhibit a finite difference with respect to the Lindhard function of a 3D non-interacting electron gas with a parabolic band, in the limit \(q \to 0 \). This contrasts with the results presented in this Article, where the two functions are shown to coincide up to leading order in the long-wavelength \(q \to 0 \) limit.

Several studies were also devoted to the calculation of the screening and dielectric properties of diamond and zincblende semiconductors32–35, materials in which light- and heavy-hole band states in the neighbourhood of the \(\Gamma \) point are described by the Luttinger Hamiltonian.

In passing, we note that the dielectric properties of doped LSMs were very recently addressed in Ref. 36, where the wave vector- and frequency-dependent RPA dielectric function was calculated at \(T = 0 \), under the assumption of equal conduction and valence band masses, i.e. \(m_c = m_v \). The resulting dynamically-screened effective electron-electron interaction was then used to calculate the electron self energy.

In this Article, we calculate the density-density response function and the dielectric function of doped LSMs in the normal Fermi liquid state. Following Ref. 26, we work within the so-called spherical approximation of the full Luttinger Hamiltonian (2), see Eq. (3).
A weak-coupling treatment of electron-electron interactions within the RPA20 is justified in the Fermi liquid regime when the Fermi energy E_F is sufficiently shifted from the quadratic band touching point, i.e. when the dimensionless coupling constant r_s controlling the relative importance of electron-electron interactions is20

$$r_s \equiv \left(\frac{9\pi}{32} \right)^{\frac{1}{2}} \frac{e^2 k_F}{\epsilon_h} \frac{\epsilon_h}{\hbar^2 k_F^2/(2m)} = \left(\frac{9\pi}{4} \right)^{\frac{1}{2}} \frac{k_F a_B}{m^*} < 1.$$ \hspace{1em} (1)

In Eq. (1), k_F is the Fermi wave number, $m = m_e$ (m_v) for an n-doped (p-doped) LSM, a_B = $\epsilon_h h^2/\{m e^2\}$ is the material Bohr radius, and ϵ_h is a background dielectric constant, which arises from the polarization of the bands which are not included in the low-energy model.

We calculate the non-interacting density-density response function $\chi^{(0)}_{nn}(q,z)$ and the resulting RPA response function $\chi_{nn}(q,z)$ and dielectric function $\epsilon(q,z)$ analytically at $T = 0$, for arbitrary values of the wave vector q and complex frequency z, allowing $m_e \neq m_v$. In this sense, the results of this Article for $\chi^{(0)}_{nn}(q,z)$, $\chi_{nn}(q,z)$, and $\epsilon(q,z)$ are more general than those reported in Ref. 36. However, contrary to Ref. 36, we do not present here any calculation of the one-body self-energy and spectral function.

The complete dielectric function constitutes an important tool to describe the properties of the electron system20, because it encodes screening of Coulomb interactions, which is relevant for resistivity calculations and quasiparticle properties, and the dispersion relation of plasmons, which is determined by the zeros of the dielectric function. We derive expressions in a form in which the analytic properties of $\chi^{(0)}_{nn}(q,\omega)$ in the complex frequency plane are manifest. These expressions are particularly convenient, for example, in diagrammatic calculations, because they can be immediately continued to the Matsubara axis. The knowledge of the dielectric function at arbitrary wave vectors and frequencies allows the determination of the plasmon dispersion relation. We find that a doped LSM supports long-lived plasma excitations, Landau damping setting in, as usual, only at a finite critical wave vector q_c. The dispersion relation for arbitrary values of q is found numerically, by identifying the maxima of the loss function $\mathcal{L}(q,\omega) \equiv -\text{Im}[1/\epsilon(q,\omega)]$, which can be measured in electron energy loss spectroscopy37. Plasmons of an undoped LSM ($E_F = 0$, i.e. Fermi energy located at the quadratic band touching point) at finite T have been recently calculated in Ref. 38.

This Article is organized as following. In Sect. II we first introduce the continuum-model Hamiltonian we have used to describe LSMS and then introduce the RPA approximation for the density-density response function and the dynamical dielectric screening function. This is the most important Section of the paper, as the reader can find in it analytical expressions for the density-density response function of a non-interacting LSM at arbitrary wave vectors q and complex frequencies z, electron doping n, and mass imbalance $\alpha = m_v/m_e$ between valence and conduction bands. In Sect. III we report our results for plasmons and Landau damping. A brief summary of our main results is presented in Sect. IV. Finally, useful technical details on the calculation of the density-density response function of non-interacting LSMS are reported in Appendix A, while in Appendix B we discuss the case of hole doping.

II. MODEL HAMILTONIAN, DENSITY-DENSITY RESPONSE FUNCTION, AND DYNAMICAL DIELECTRIC SCREENING FUNCTION

LSMs display a fourfold degenerate band crossing at the center Γ of the Brillouin zone. In the proximity of the crossing point, the single-particle states are described by the effective Luttinger Hamiltonian5,7

$$\mathcal{H}^{(L)}(k) = \frac{\hbar^2}{2m_e} \left[\left(\gamma_1 + \frac{3}{2} \gamma_2 \right) k^2 - 2\gamma_3 (k \cdot j)^2 \right.$$

$$+ 2 (\gamma_3 - \gamma_2) \left(k_x^2 j_z^2 + k_y^2 j_y^2 + k_z^2 j_z^2 \right) \bigg].$$ \hspace{1em} (2)

Here, k is the crystal momentum, which, in the spirit of a continuum-model description, will be upgraded to real momentum below, j denotes the angular momentum operator in the $J = 3/2$ representation, m_e is the bare electron mass in vacuum, and $\gamma_1, \gamma_2, \gamma_3$ are the so-called Luttinger parameters.

The effective Luttinger Hamiltonian describes the heavy- and light-hole valence bands in semiconductors with diamond lattice structure, such as silicon and germanium5. Its form is dictated by symmetry and it is, therefore, very general. The occurrence of a fourfold degenerate set of Bloch wavefunctions at $k = 0$ is related to the existence of four-dimensional irreducible representations of cubic point groups6. Eq. (2) is the most general form of perturbative $k \cdot p$ Hamiltonian, allowed by cubic symmetry, inversion symmetry and time-reversal invariance5,7.

The effective Luttinger Hamiltonian $\mathcal{H}^{(L)}(k)$ can also be applied to LSMS such as α-Sn, HgTe, and Pr$_2$Ir$_2$O$_7$ but with parameters γ_1, γ_2, and γ_3 such that the band structure displays a parabolic node between a valence and a conduction band.

In the following, we will carry out calculations only in the spherically-symmetric limit, where the last term in the Luttinger Hamiltonian (2), which violates full rotational invariance (but respects cubic symmetry), is neglected. In this limit, $\gamma_2 = \gamma_3 = \gamma$ and the Luttinger Hamiltonian reduces to

$$\mathcal{H}^{(LS)}(k) = \frac{\hbar^2}{2m_e} \left[\left(\gamma_1 + \frac{3}{2} \gamma \right) k^2 - 2\gamma (k \cdot j)^2 \right].$$ \hspace{1em} (3)

The single-particle eigenstates of $\mathcal{H}^{(LS)}(k)$ are characterized by definite values of the helicity, i.e. the projection
of j along k.

States with helicity $\pm 3/2$ have energy $(\gamma_1 - 2\gamma_k^2/2m_e)$, while states with helicity $\pm 1/2$ have energy $(\gamma_1 + 2\gamma_k^2/2m_e)$. Eq. (2) describes the spectrum of a LSM if $|\gamma_1| < 2|\gamma|$. We assume, without loss of generality, that $\gamma > 0$. The conduction states then correspond to helicity $\pm 1/2$ and the valence states to helicity $\pm 3/2$.

The second-quantized Hamiltonian of a spherically-symmetric LSM in the presence of Coulomb interactions is

$$\hat{H} = \sum_{k,\alpha,\beta} \hat{H}^{(LS)}_{\alpha\beta}(k) \hat{a}^\dagger_{k,\alpha} \hat{a}_{k,\beta} + \hat{H}^{(ee)} ,$$

where

$$\hat{H}^{(ee)} = \frac{1}{2} \sum_{q \neq 0, k, k', \alpha, \beta} v_q \hat{a}^\dagger_{k+q,\alpha} \hat{a}^\dagger_{k-q,\beta} \hat{a}_{k',\beta} \hat{a}_{k,\alpha} .$$

Here, $\hat{a}^\dagger_{k,\alpha}$ ($a_{k,\alpha}$) creates (annihilates) an electron with momentum k and spin projection $\alpha = -3/2, -1/2, 1/2, 3/2$ along a fixed quantization axis, independent of k, and

$$v_q = \frac{4\pi e^2}{\epsilon_0 q^2} ,$$

is the 3D Fourier transform of the Coulomb potential.

The non-interacting density-density response function at zero temperature is given, for complex values of the frequency γ, by:

$$\chi^{(0)}_{nn}(q, z) = \frac{1}{V} \sum_{k,\nu,\nu'} \frac{n_{k,\nu} - n_{k+q,\nu'}}{hz + \epsilon_{k,\nu} - \epsilon_{k+q,\nu'}} F_{\nu,\nu'}(k, k+q) .$$

Here, V is the 3D electron system volume, $\nu, \nu' = \pm 1/2, \pm 3/2$ are band indices, $n_{k,\nu}$ denote the usual Fermi-step occupation numbers at zero temperature, and $\epsilon_{k,\nu}$ are the single-particle energies, i.e. $\epsilon_{k,\pm 1/2} = h^2 k^2/(2m_e)$ for the conduction band and $\epsilon_{k,\pm 3/2} = -h^2 k^2/(2m_e)$ for the valence band. Here, $m_e = m_e/(2\gamma - \gamma_1) > 0$ and $m_c = m_c/(2\gamma + \gamma_1) > 0$, where γ_1 and γ have been introduced in Eq. (3). Finally,

$$F_{\nu,\nu'}(k, k+q) = \left| \langle k, \nu | e^{-i q \cdot r} | k+q, \nu' \rangle \right|^2 ,$$

where $|k, \nu\rangle$ denote single-particle eigenstates with momentum hk and spin projection ν along the direction of propagation k, and $D^{(2)}_{\nu,\nu'}(\theta_{k+q})$ denotes the unitary rotation matrix of angle θ_{k+q} between the vectors k and $k+q$, in the $J = 3/2$ representation. Explicitly, the matrix elements are:

$$D^{(2)}_{\nu,\mu}(\theta) = \begin{bmatrix} c^6 & 3s^2c^4 & 3c^2s^4 & 3s^6 \\ 3s^2c^4 & (1 - 3s^2)c^2 & (1 - 3s^2)s^2 & 3c^2s^4 \\ 3c^2s^4 & (1 - 3s^2)c^2 & (1 - 3s^2)s^2 & 3c^2s^4 \\ s^6 & 3c^2s^4 & 3s^2c^4 & c^6 \end{bmatrix} ,$$

where $c = \cos(\theta/2)$ and $s = \sin(\theta/2)$. Summing over pairs of states with equal and opposite helicity, we obtain

$$A_{\text{intra}}(\theta) = \sum_{\nu = \pm \frac{3}{2}} \sum_{\nu' = \pm \frac{3}{2}} \left| D^{(2)}_{\nu,\nu'}(\theta) \right|^2 ,$$

for the intra-band form factor, and

$$A_{\text{inter}}(\theta) = \sum_{\nu = \pm \frac{1}{2}} \sum_{\nu' = \pm \frac{1}{2}} \left| D^{(2)}_{\nu,\nu'}(\theta) \right|^2 = \frac{3}{2} \cos^2(\theta) + \frac{1}{2} ,$$

for the inter-band one. It is useful to notice that, due to the equality of the terms in the first and second line of Eq. (10), the form factor $A_{\text{intra}}(\theta)$ does not depend on the helicity doublet ($\pm 3/2$ or $\pm 1/2$) of the band. As a consequence, results obtained for positive values of the parameter γ in Eq. (3) can be generalized in a straightforward manner to the case $\gamma < 0$, in which conduction states have helicity $\pm 3/2$ and valence states have helicity $\pm 1/2$. In the following, we will consider the case of an n-doped LSM, in which the Fermi energy $E_F > 0$ lies in conduction band. As discussed in Appendix B, the results apply with minor changes to the case of p-doped samples with $E_F < 0$.

It is useful to split Eq. (7) into the sum of intra- and inter-band contributions:

$$\chi^{(0)}_{nn}(q, z) = \chi^{(0)}_{\text{intra}}(q, z) + \chi^{(0)}_{\text{inter}}(q, z) ,$$

where

$$\chi^{(0)}_{\text{intra}}(q, z) \equiv \frac{1}{V} \sum_k A_{\text{intra}}(\theta_{k+q}) \frac{n_{k,c} - n_{k+q,c}}{hz + \epsilon_{k,c} - \epsilon_{k+q,c}}$$

and

$$\chi^{(0)}_{\text{inter}}(q, z) \equiv \frac{1}{V} \sum_k A_{\text{inter}}(\theta_{k-q,k}) \frac{1 - n_{k,c}}{hz + \epsilon_{k+q,c} - \epsilon_{k,c}} + \frac{[z \to -z]} .$$

Here, $n_{k,c} = \theta(k_F - k)$, where $\theta(x)$ is the usual Heaviside step function, $n_{k,v} = 1$, $\epsilon_{k,c} = h^2 k^2/(2m_e)$, and $\epsilon_{k,v} = -h^2 k^2/(2m_e)$. Throughout this Article, the symbol $[z \to -z]$ denotes the expression obtained by reversing the sign of the variable z in all terms preceding it. In the thermodynamic $V \to \infty$ limit, one can replace as usual $V^{-1} \sum_k \to \int d^3k/(2\pi)^3$. Expressions equivalent to Eqs. (13) and (14) have been used in Refs. 21, 24, and 26.

We immediately notice that, in the long-wavelength $q \to 0$ limit $\chi^{(0)}_{\text{inter}}(q, z)$ vanishes and $\chi^{(0)}_{\text{intra}}(q, z)$ reduces to the well-known density-density response function of a non-interacting parabolic-band 3D electron gas, i.e. to the so-called Lindhard function $\chi_{L}(q, z)$.
In the RPA, the density-density response function \(\chi_{nn}(q, z) \) of the interacting electron system reads as following \(^{20}\)

\[
\chi_{nn}(q, z) = \frac{\chi_{nn}^{(0)}(q, z)}{1 - v_q \chi_{nn}^{(0)}(q, z)}. \tag{15}
\]

In the same approximation, the wave vector- and frequency-dependent dielectric function is \(^{20}\)

\[
\epsilon(q, z) = \epsilon_0 \left[1 - v_q \chi_{nn}^{(0)}(q, z) \right]. \tag{16}
\]

The density-density response functions defined in Eqs. (7) and (15) and the dielectric function in Eq. (16) display branch-cut singularities for real values of the complex frequency \(z \), which correspond to electron-hole excitations. The retarded (i.e. causal) response functions and the dielectric function for real values of the frequency can be obtained \(^{20}\) by replacing \(z = \omega + i\eta \) and taking the limit \(\eta \to 0^+ \).

A. Intra-band contribution to the response function

We first consider the intra-band contribution (13). It is qualitatively similar to the Lindhard function \(^{20}\) \(\chi_L(q, z) \), which can be obtained by setting \(A_{\text{intra}}(\theta_{k,k+q}) = 1 \) in Eq. (13).

We start by calculating the imaginary part of the retarded density response function \(\chi_{R,\text{intra}}^{(0)}(q, \omega) \equiv \chi_{\text{intra}}^{(0)}(q, \omega + i0^+) \), for real values of \(\omega \). This reads as following

\[
\text{Im}[\chi_{R,\text{intra}}^{(0)}(q, \omega)] = -\pi \int \frac{d^3k}{(2\pi)^3} \left[2 - \frac{3}{2} \frac{(k \times q)^2}{(k + q)^2} \right] (n_{k,c} - n_{k+q,c}) \delta (\hbar \omega + \epsilon_{k,c} - \epsilon_{k+q,c})
\]

\[
= -\frac{\pi}{8} N(E_F) \frac{1}{q} \Theta (1 - \nu^2) \left[2(1 - \nu^2) - \frac{3}{2} \nu^2 \frac{q^2}{(\nu^2 - \nu_+^2)} \ln \left(\frac{1 - \nu^2 + \nu_+^2}{\nu^2} \right) - \frac{3}{2} \nu^2 \frac{q^2}{(\nu^2 - \nu_-^2)} \ln \left(\frac{1 - \nu^2 + \nu_-^2}{\nu^2} \right) \right]
\]

\[
(17)
\]

Here

\[
\nu_\pm = \frac{m_e}{\hbar k_F} \frac{\omega}{q} \pm \frac{q}{2k_F}, \tag{18}
\]

\(N(E_F) \equiv m_e k_F / (\pi^2 \hbar^2) \) is the density of states at the Fermi energy, and \(q \equiv q/k_F \). Here, \(k_F = \sqrt{3}\pi^2 n \) is the Fermi wave number, written in terms of the electron density \(n \).

Note that \(\text{Im}[\chi_{R,\text{intra}}^{(0)}(q, \omega)] \) is non-zero only in the regions of the \((q, \omega) \) plane where \(-1 < \nu_- < 1\) and \(-1 < \nu_+ < 1\). Physically, these regions represent the continuum of intra-band electron-hole excitations.

The complete intra-band contribution to the density-density response function can be calculated from Eq. (17) through the Kramers-Kronig relation \(^{20}\):

\[
\chi_{\text{intra}}^{(0)}(q, z) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\omega' \text{Im}[\chi_{R,\text{intra}}^{(0)}(q, \omega')]/\omega' - z, \tag{19}
\]

where the integral over \(\omega' \) runs over the real frequency axis.

The function \(\chi_{\text{intra}}^{(0)}(q, z) \) presents branch cuts on the intervals of the real axis in which \(\text{Im}[\chi_{R,\text{intra}}^{(0)}(q, \omega)] \) is non-zero. For arbitrary complex values of the frequency \(z \), away from the branch-cut singularity we get:

\[
\chi_{\text{intra}}^{(0)}(q, z) = \chi_L(q, z) + \frac{3N(E_F)}{32} \left\{ \frac{1 - \frac{q^2}{\bar{q}}}{q} \ln \left(\frac{1 + \frac{q^2}{\bar{q}}}{1 - \frac{q^2}{\bar{q}}} \right) - 4 + \frac{2\nu_+^2}{\nu_+ + \nu_-} f(0, \nu_+) - \frac{2\nu_-^2}{\nu_+ + \nu_-} f(0, -\nu_-) \right\}
\]

\[
- \frac{2\nu_+^2}{\nu_+ + \nu_-} [f(q, \nu_+) - g(q, \nu_+)] + \frac{2\nu_-^2}{\nu_+ + \nu_-} [f(q, -\nu_-) - g(q, -\nu_-)] \right\}, \tag{20}
\]

where \(\chi_L(q, z) \) is the ordinary Lindhard function \(^{20}\)

\[
\chi_L(q, z) = -N(E_F) \left\{ \frac{1}{2} \frac{1 - \nu_-^2}{4q} \ln \left[\frac{\nu_-}{\nu_- + 1} \right] - \frac{(1 - \nu_-^2)}{4q} \ln \left[1 + \frac{\nu_-}{\nu_- + 1} \right] \right\}. \tag{21}
\]
The functions f and g are defined by:

$$f(q,t) \equiv \int_{-1}^{1} \frac{dt'}{t'-t} \ln[(q-t')^2] = \ln[(1-q)^2] \ln \left(\frac{t-1}{t-q} \right) - \ln[(1+q)^2] \ln \left(\frac{t+1}{t+q} \right) + 2Li_2 \left[\frac{1-q}{t-q} \right]$$

and

$$g(q,t) \equiv \int_{-1}^{1} \frac{dt'}{t'-t} \ln \left(1+q^2-2qt' \right) = \ln \left(1+q^2-2qt \right) \ln \left(\frac{t-1}{t+1} \right) + Li_2 \left[-2q(1+t) \right] - Li_2 \left[-2q(1-t) \right]$$

where $Li_2[z]$ is the dilogarithm function, i.e.

$$Li_2[z] \equiv -\int_{0}^{z} \frac{\ln(1-u)}{u} \, du \ . \quad (24)$$

In Eqs. (20)-(21), ν_{\pm} are promoted to complex quantities:

$$\nu_{\pm} \equiv \frac{m_c}{\hbar^{2}k_F} \frac{z}{q} \pm \frac{q}{2k_F} \ . \quad (25)$$

The logarithm is defined in a standard way, with a branch cut on the negative real axis and argument ranging from $-\pi$ to $+\pi$. Accordingly, the dilogarithm function presents a branch cut on the interval $[1, +\infty)$ of the real axis. The auxiliary functions f and g are analytic functions of the complex variable t, with branch cuts on the interval of the real axis defined by $-1 < t < 1$. As a result, $\chi^{(0)}_{\text{intra}}(q,z)$ displays the analytic structure which is expected from the Lehmann (or exact eigenstate) representation. It is regular in the whole complex plane z, except for the intervals $-1 < \nu_+ < 1$ and $-1 < \nu_- < 1$ on the real axis, which correspond to the range of energies for which intraband particle-hole pair excitations of momentum q exist. As the cut is crossed, the real part of $\chi^{(0)}_{\text{intra}}$ changes continuously but its imaginary part presents a discontinuous change in sign. The retarded response function is obtained by calculating $\lim_{\nu_{\pm} \to 0^+} \chi^{(0)}_{\text{intra}}(q,\omega + i\nu)$, in such a way that singularities are avoided from above in the complex plane. Taking this limit generates both the real and imaginary parts of the intra-band density response function and it is therefore unnecessary to keep track of the latter separately through Eq. (17).

Illustrative results on the real frequency axis are shown in Fig. 1, where the intraband contribution to the retarded density-density response function is compared with the ordinary Lindhard function of a 3D system of parabolic-band electrons with mass m_c. Because the dispersion relation is identical in the two cases, the response functions are qualitatively similar. The imaginary part is nonvanishing in precisely the same regions of the (q,ω) plane. Differences arise only from the spin $3/2$ structure of the low-energy Luttinger states and these grow with increasing q. On the contrary, in the $q \to 0$ limit, $\chi^{(0)}_{\text{intra}}(q,z)$ and $\chi_L(q,z = \omega + i0^+)$ coincide up to leading order in an expansion in powers of q^2, both at zero frequency, where they approach the famous constant $-N(E_F)$, and at finite frequency, where they vanish as $nq^2/(m_c\omega^2)$, n being the electron density.

In the static case, note that both the Lindhard function and the intra-band response function of a LSM present a singular derivative at $q = 2k_F$. This singularity gives rise to Friedel oscillations of period π/k_F in the density profile induced by a static point-like charge introduced in the 3D electron system.

B. Inter-band contribution to the response function

The inter-band density-density response $\chi^{(0)}_{\text{inter}}(q,z)$ is particularly interesting because it displays the peculiar behaviour associated with the absence of a gap between the valence and conduction bands.

Technical details on the calculation of $\chi^{(0)}_{\text{inter}}(q,z)$ are reported in Appendix A. Here, we report only the final results. It is convenient to decompose the inter-band density response function as:

$$\chi^{(0)}_{\text{inter}}(q,z) = \chi^{(0)}_{\text{u}}(q,z) + \delta \chi^{(0)}_{\text{inter}}(q,z) \ , \quad (26)$$

where $\chi^{(0)}_{\text{u}}(q,z)$ is the density-density response of an undoped LSM, in which the Fermi energy lies at the parabolic band touching point, while $\delta \chi^{(0)}_{\text{inter}}(q,z)$ represents the contribution arising from the presence of a finite electron concentration in the conduction band.

For arbitrary wave vectors and complex frequencies, and arbitrary values of the mass imbalance $\alpha = m_c/m_v$ we find

$$\chi^{(0)}_{\text{u}}(q,z) = -\frac{3i}{16\pi} \frac{m_c+m_v}{\hbar^2} r + \frac{3(\alpha+1)}{32\pi \hbar k_0 z} \left[(r^2-k_0^2)^2 \arctan \left(\frac{ik_0}{r} \right) + \alpha^2 \frac{r^2}{(\alpha^2-k_0^2)^2} \arctan \left(\frac{i\alpha k_0}{r} \right) \right]$$

$$+ [z \to -z] \quad (27)$$
FIG. 1. (Color online) The intra-band contribution to the non-interacting density-density response function of a Luttinger semimetal (solid line) is compared with the Lindhard response function of a 3D system of parabolic-band electrons with mass m_c (dashed line). Blue (red) refers to the real (imaginary) part of $\chi^{(0)}_{\text{intra}}(\mathbf{q},\omega)$. All quantities are normalized to the negative of the density of states at the Fermi energy, i.e. $-N(E_F)$. Panels (a) and (b) show the dependence of the dynamical response function on the real frequency ω (in units of E_F/\hbar) for $q = 2k_F/5$ and $4k_F/5$, respectively. Panel (c) shows the dependence of the static response function on q (in units of k_F). Results in this figure have been obtained by calculating $\chi^{(0)}_{\text{intra}}(\mathbf{q},\omega + i0^+)$.
Fig. 2. (Color online) The inter-band particle-hole continuum of a Luttinger semimetal in the \((q, \omega)\) plane. In region IV, \(\omega < \hbar q^2/[2(m_c + m_v)]\) \((r^2 < 0)\), the existence of inter-band particle-hole pairs is kinematically forbidden. In region III, \(r^2 > 0\) but inter-band transitions are Pauli blocked. This happens for \(k_0 + r < k_F\), when the spherical surface of electron momenta lies inside the Fermi sphere. In region II, \(k_0 + r > k_F\) and \((k_0 - r)^2 < k_F^2\), implying that the spherical surface overlaps partially with the Fermi sphere. In this region, a fraction of inter-band transitions is blocked by Pauli exclusion principle. In the high-energy or high-momentum regions I_a and I_b, Pauli blocking has no effect and \(k_0 - r > k_F\) or \(k_0 - r < -k_F\).

While in the \((k_0, r)\) parametrization one can distinguish different regions of the inter-band electron-hole continuum without specifying the mass imbalance \(\alpha\), in the \((q, \omega)\) plane the boundaries depend on \(\alpha\). Results in this figure refer to \(\alpha = 1\).

and

\[
\delta \chi_{\text{inter}}^{(0)}(q, z) = \frac{3m_c k_F}{32\pi^2\hbar^2} \left\{ \frac{1}{2k_0} \left[4\alpha k_0 + \frac{1 - q^2}{\alpha + 1} \ln \left(\frac{1 + \bar{q}}{1 - \bar{q}} \right) \right] + \frac{\alpha + 1}{2k_0} \left[((\bar{r} - \bar{k}_0)^2 - 1) \ln \frac{\bar{r} - \bar{k}_0 + 1}{\bar{r} - \bar{k}_0 - 1} \right]
- \left((\bar{r} + \bar{k}_0)^2 - 1 \right) \ln \frac{\bar{r} + \bar{k}_0 + 1}{\bar{r} + \bar{k}_0 - 1} \right] - \frac{(\bar{z} - \bar{q}^2)^2}{2q\bar{z}} \left[f(-\bar{q}, \bar{r} - \bar{k}_0) + f(-\bar{q}, -\bar{r} - \bar{k}_0) - g \left(-\bar{q}, \frac{\bar{r}^2 - 1 - \bar{k}_0^2}{2k_0} \right) \right] + \frac{(\alpha \bar{z} - \bar{q}^2)^2}{2q\bar{z}} \left[f(0, \bar{r} - \bar{k}_0) + f(0, -\bar{r} - \bar{k}_0) \right] \right\}
\]

Here, \(\bar{z} = \hbar z/E_F\) is the frequency in units of the Fermi energy, and

\[
k_0 = \frac{q}{1 + \alpha}
\]

and

\[
r = i \sqrt{\frac{\alpha}{\alpha + 1} \left(\frac{q^2}{\alpha + 1} - \frac{2m_c z}{\hbar} \right)}
\]
are auxiliary variables, \(\tilde{r} \equiv r/k_F \), and \(\tilde{k}_0 \equiv k_0/k_F \). (For example, the parameter \(\alpha \) is on the order of 10 for grey tin and mercury telluride.) In Eq. (30), the square root is defined in a standard way, with a branch cut on the negative real axis and a branch choice such that \(\text{Re}[\sqrt{x}] \geq 0 \) for complex \(x \). The function \(\arctan(x) \) in Eq. (27) is defined in the complex plane as:

\[
\arctan(x) \equiv \frac{i}{2} \ln \left(\frac{i + x}{i - x} \right),
\]

with the standard choice of branch cut for the logarithm. The auxiliary variables \(r \) and \(k_0 \) can be ascribed a physical meaning. Indeed, it is easy to check that the possible electron momenta of inter-band particle-hole pairs span a spherical region of the momentum space centered in \(k_0 \) and of radius \(r \).

Eqs. (27) and (28) define analytic functions in the complex frequency plane. They exhibit branch cuts only on the intervals of the real frequency axis which correspond to the energy of inter-band particle-hole pairs (or its negative). The retarded response function has a finite imaginary part only in these regions and is purely real in the other intervals of the real frequency axis.

The quantity \(\chi^{(0)}_{u}(q, z) \) is singular for \(r^2 > 0 \), which corresponds to the kinematic threshold for excitation of pairs of momentum \(q \). The variable \(r \) is not well defined, because Eq. (30) presents a branch cut. The ambiguity in the sign of the square root is resolved by the \(i\eta \) prescription. In the case of the retarded response function, \(r \) is a positive quantity for \(\omega \) real and greater than the threshold set by \(r^2 > 0 \). In presence of a finite density \(n \) of conduction electrons, low-energy inter-band transitions are Pauli blocked. Therefore, the inter-band contribution \(\chi_{\text{inter}}^{(0)}(q, z) \) to the density-density response function presents a finite imaginary part and branch-cut singularities only when \(r^2 > 0 \) and \((k_0 + r) > k_F \). The inter-band electron-hole continuum in the \((q, \omega)\) plane is illustrated in Fig. 2 for the case \(m_e = m_c \).

Analytical expressions for Im[\(\chi^{(0)}_{u}(q, \omega) \)] and Im[\(\delta \chi^{(0)}_{\text{inter}}(q, \omega) \)] on the real frequency axis are reported in Appendix A, see Eqs. (A4) and (A11).

Results for the inter-band contribution

\[
\epsilon_{\text{inter}}(q, \omega) \equiv -e_B v_q \chi_{\text{inter}}^{(0)}(q, \omega + i0^+) \tag{32}
\]

to the RPA dielectric function (16) are shown in Fig. 3 for undoped and doped LSMs. Note that rescaling \(q \) with \(k_F \), \(\omega \) with \(E_F/h \), and \(\epsilon_{\text{inter}}(q, \omega) \) with \(e_B/(k_F e_B) \), the plots shown in Fig. 3 are universal, in the sense that they are independent of density.

III. PLASMON DISPERSION RELATION AND LANDAU DAMPING

In this Section we use the results on the density-density response function to look at plasmons of doped LSMs.

The dispersion relation of plasmons is determined by the poles of the density response function, or equivalently, by the zeros of the dielectric function

\[
\epsilon(q, \Omega(q)) = 0 \tag{33}
\]
located infinitesimally below the real-frequency axis.

We begin by addressing the evaluation of the plasma frequency, i.e. the value of \(\Omega(q) \) at \(q = 0 \), which we denote by \(\Omega_0 \). The real and imaginary parts of the RPA dielectric function in the \(q \to 0 \) limit (and \(\omega > 0 \)) have the form:

\[
\text{Re}[\epsilon(0,\omega)] = \epsilon_b \left\{ 1 - \frac{\omega_p^2}{\omega^2} + \frac{3}{4} \frac{\alpha}{\alpha + 1} \frac{\hbar^2 \omega_p^2}{E_F^2} \right\} \times \frac{1}{r} \left[\frac{1}{4} \ln \frac{(1 + r)^2}{(1 - r)^2} + \arctan(r) \right],
\]

and

\[
\text{Im}[\epsilon(0,\omega)] = \frac{3\pi}{8} \epsilon_b \frac{\hbar^2 \omega_p^2}{E_F^2} \frac{\theta(r-1)}{r},
\]

where \(\omega_p^2 = 4\pi ne^2/(\epsilon_b m_e) \) is the square of the standard plasma frequency for a 3D systems of electrons with a single parabolic band of mass \(m_e \), \(r \) is the variable introduced previously in Eq. (30), evaluated at zero momentum, i.e.

\[
r = \frac{1}{k_F} \sqrt{\frac{\alpha}{\alpha + 1} \frac{2m_e \omega}{\hbar}},
\]

and \(\theta(x) \) is the usual step function. These expressions were first obtained in Ref. 31. The three terms in the right-hand side of Eq. (34) correspond to the background, intra-band, and inter-band contributions to the \(q = 0 \) frequency-dependent dielectric function, respectively. Only inter-band transitions contribute to the imaginary part, Eq. (35). These lead to singularities in the dielectric function\(^{19,30,31} \) for \(r = 1 \). The imaginary part presents a finite jump and the real part a logarithmic divergence\(^{19,30,31} \). Such singularities disappear at finite temperature\(^{41} \). The frequency dependence of \(\text{Re}[\epsilon(0,\omega)] \) and \(\text{Im}[\epsilon(0,\omega)] \) is shown in Fig. 3(a).

In the limit \(r_s \ll 1 \), the plasma frequency is given by\(^{40} \)

\[
\Omega_0^2 = \frac{\omega_p^2}{1 + \epsilon_{\text{inter}}(0,0)/\epsilon_b},
\]

where

\[
\epsilon_{\text{inter}}(0,0) = \frac{3}{2} \epsilon_b \frac{\alpha}{\alpha + 1} \frac{\hbar^2 \omega_p^2}{E_F^2}.
\]

In the limit \(r_s \ll 1 \), indeed, the inter-band contribution is small, because \(\hbar^2 \omega_p^2/E_F^2 \approx r_s \) and \(r \approx \sqrt{\hbar \omega_p/E_F} \approx r_s^{1/4} \), and gives a contribution of order \(r_s \). When the electron density is lowered, the frequency dependence of the dynamical inter-band dielectric function plays a role and the plasma frequency is significantly modified\(^{40} \) with respect to Eqs. (37)-(38). We remind the reader that, however, the RPA is not reliable in the low-density limit\(^{40} \) and we will therefore mainly stick to discussing the weak-coupling \(r_s \ll 1 \) regime.

In order to address the plasmon dispersion relation at finite momenta, transcending the analytical result (37), we seek for plasmons numerically by plotting the loss function

\[
\mathcal{L}(q,\omega) = -\text{Im} \left[\frac{1}{\epsilon(q,\omega + i0^+)} \right],
\]

which portrays the spectral density of particle-hole excitations and presents sharp peaks in correspondence of plasmons. This quantity, which can be measured experimentally by electron-energy loss spectroscopy (EELS)\(^{37} \), is shown in Fig. 4(a). For illustration purposes, we have chosen the following parameters for the calculations: \(m_e = 0.024 m_0, m_e = 10 m_c, \epsilon_b = 24 \), and a conduction electron density \(n = 10^{16} \text{ cm}^{-3} \)—corresponding to an effective value of the coupling constant (1) \(r_s \approx 0.55 \). Here, \(m_e \) is the bare electron mass in vacuum.

Numerical results for the plasmon dispersion are shown in Fig. 4(b), where the dispersion relation \(\Omega = \Omega(q) \) is shown for values of the electron density between \(10^{18} \text{ cm}^{-3} \) and \(10^{14} \text{ cm}^{-3} \), which correspond to values of \(r_s \) between \(\approx 0.12 \) and \(\approx 2.5 \). In the RPA, the plasmon lives in the region III of Fig. 2, where the spectral density of particle-hole pairs is zero, until a finite critical wave vector, after which it merges with the particle-hole continuum and ceases to exist as a sharply defined excitation because Landau damping kicks in. Now, this occurs\(^{40} \) for arbitrarily low values of \(n \), for a finite range of wave vectors \(q \), which shrinks in size as \(n \to 0 \). Indeed, for arbitrary values of \(n \), the dynamic dielectric function at \(q = 0 \)—Eq. (34)—diverges to \(-\infty \) for \(\omega \to 0 \) due to the intra-band contribution and to \(+\infty \) for \(r \to 1 \) due to the inter-band contribution. Therefore, the zero of \(\epsilon(0,\omega) \), which yields the plasmon pole \(\Omega(0) \) at \(q = 0 \), must occur for \(r < 1 \), where \(\epsilon \) is purely real and Landau damping does not occur. By continuity, if the plasmon mode lies outside the phase-space boundaries of single-particle-hole excitations at \(q = 0 \), its dispersion must persist in region III of Fig. 2 for a finite range of wave vectors\(^{40} \).

Such a simple picture is valid as long as beyond-RPA effects are neglected. In reality, intrinsic plasmon damping due to the excitation of double particle-hole pairs with opposite momenta persists down to \(q = 0 \) and can be calculated by diagrammatic perturbation theory applied to the proper density-density response function\(^{20,41} \).

IV. SUMMARY AND CONCLUSIONS

In summary, in this Article we have presented analytical formulae for the non-interacting density-density response function \(\chi_{nn}^{(0)}(q,z) \) of a doped Luttinger semimetal. Our results are valid for arbitrary values of the wave vector \(q \), complex frequency \(z \), and conduction-valence effective mass asymmetry \(\alpha \).

The intra-band contribution can be found in Eq. (20). The inter-band contribution can be found in Eqs. (27)-(28). These precious results have been employed as in-
components for the calculation of the interacting density-density response function $\chi_{nn}(q, \omega)$ and dynamical dielectric function $\epsilon(q, \omega)$ in the celebrated Random Phase Approximation20, Eqs. (15) and (16), respectively. Plasmons at the level of RPA have been discussed in Sect. III.

The range of applicability of these results is however much wider. For example, $\chi_{nn}^{(0)}(q, z)$ is the key ingredient of any calculation of normal Fermi liquid properties20, with particular reference to the spectral function $A(k, \omega)$—see Ref. 36 for calculations at $\alpha = 1$—and Landau parameters $F_{\ell}^{(s,a)}$. Indeed, these calculations usually rely on the dynamically-screened electron-electron interaction

$$W(q, z) = \frac{v_q}{\epsilon(q, z)}.$$ \hfill (40)

For example, all calculations of the quasiparticle self-energy $\Sigma(k, \omega)$ based on the so-called “GW” approximation rely on Eq. (40). In general, any diagrammatic calculation aimed at transcending the RPA—by relaxing the brutal approximation of the proper density-density response function $\hat{\chi}_{nn}(q, z)$ with $\chi_{nn}^{(0)}(q, z)$—requires the analytical formulae reported in this Article.

ACKNOWLEDGMENTS

This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 785219-GrapheneCore2. We wish to thank A. Tomadin, M. Beconcini, and G.M. Andolina for useful discussions.

Appendix A: Calculation of the inter-band contribution

The calculation of the inter-band contribution to the density-density response function starts from the usual Kubo formula, Eq. 14. As in the case of the intra-band term, we first calculate the imaginary part of the retarded density-density response function $\chi_{R,\text{inter}}^{(0)}(q, \omega) = \chi_{\text{inter}}^{(0)}(q, \omega + i\delta)$. We then retrieve the complete analytic expression for $\chi_{\text{inter}}^{(0)}(q, z)$ as an analytic function in the complex frequency plane from the Kramers-Kronig relation20.

For the sake of simplicity, in this Appendix we set $\hbar = 2m_e = k_F = 1$. Final results are presented in ordinary units in the main text. We remind the reader of the definition of the effective mass imbalance $\alpha = m_c/m_e$.

The undoped response function is obtained by setting $n_{k,c} = 0$ in Eq. (14):

$$\text{Im}[\chi_{R,u}^{(0)}(q, \omega)] = \text{Im}[\chi_{u}^{(0)}(q, \omega + i\delta)] = -\pi \int \frac{d^3k}{(2\pi)^3} \frac{3}{2} \frac{(q \times k)^2}{k^2 (k - q)^2} \delta(\omega - \epsilon_{k,c} + \epsilon_{k-q,c}) - [\omega \to -\omega]$$ \hfill (A1)

$\text{Im}[\chi_{R,u}^{(0)}(\omega)]$ is non-zero only in the region of the (q, ω) plane where inter-band particle-hole excitations are possible.
sible according to the conservation of energy and momentum. This region corresponds to \(\omega > q^2/(1 + \alpha) \). (We can restrict our attention to the case of positive \(\omega \), because of the antisymmetry of the imaginary part of the response function.)

When this condition is fulfilled, the integral in Eq. (A1), restricted by the energy conserving \(\delta \) function, must be carried out over the locus of all final momenta \(k \) available to electrons being promoted from the valence to the conduction band with an energy transfer \(\omega \) and a momentum transfer \(q \). This is a sphere, whose center is located at

\[
k_0 = \frac{q}{\alpha + 1}
\]

and whose radius is

\[
\rho = \sqrt{\frac{\alpha}{\alpha + 1} \left(\omega - \frac{q^2}{\alpha + 1} \right)}.
\]

The integral in Eq. (A1) can be calculated analytically and conveniently expressed in terms of the variables \(\rho \) and \(k_0 \):

\[
\text{Im} \chi_R^{(0)}(q, \omega) = -\frac{3}{64\pi} \Theta(\rho^2) \left[2(\alpha + 1) \rho + \frac{1}{2\alpha k_0} \frac{(\rho^2 - \alpha^2 k_0^2)^2}{\rho^2 + \alpha k_0^2} \ln \left(\frac{\rho - \alpha k_0}{\rho + \alpha k_0} \right) - \frac{\alpha}{2k_0} \frac{(\rho^2 - k_0^2)^2}{\rho^2 + \alpha k_0^2} \ln \left(\frac{\rho + k_0}{\rho - k_0} \right) \right] \quad \text{Im} \left(\frac{\rho}{\rho - k_0} \right) .
\]

In the following we will make use of the variable

\[
r = i \sqrt{\frac{\alpha}{\alpha + 1} \left(\frac{q^2}{\alpha + 1} - z \right)}, \tag{A5}
\]

which is very similar to \(\rho \), but for the presence of a branch cut in the expected region, i.e. for real frequencies \(z \) such that \(z > q^2/(1 + \alpha) \). In Eq. (A5), as in the main text, the square root is intended to have a branch cut for negative values of its argument and a positive real part. In the following calculations, advantages in using \(r \) arise from the fact that, for every complex value of \(z \) (apart from \(z = \frac{q^2}{\alpha + 1} \)), the imaginary part of \(r \) is strictly positive.

We now calculate the density response function \(\chi_R^{(0)}(q, z) \) from the Kramers-Kronig relation. Changing variables from \(\omega \) to \(\rho' \) and making use of the antisymmetry of the expression in the first line of Eq. (A4) under the exchange \(\rho \rightarrow -\rho \) yields:

\[
\chi_R^{(0)}(q, z) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\omega' \frac{\text{Im} \chi_R^{(0)}(q, \omega')}{\omega' - z} = -\frac{3}{64\pi^2} \int_{-\infty}^{\infty} \frac{d\rho'}{\rho' - r} \left[2(\alpha + 1) \rho' + \frac{1}{2\alpha k_0} \frac{(\rho'^2 - \alpha^2 k_0^2)^2}{\rho'^2 + \alpha k_0^2} \ln \left(\frac{\rho' - \alpha k_0}{\rho' + \alpha k_0} \right) - \frac{\alpha}{2k_0} \frac{(\rho'^2 - k_0^2)^2}{\rho'^2 + \alpha k_0^2} \ln \left(\frac{\rho' + k_0}{\rho' - k_0} \right) \right] + [z \rightarrow -z] .
\]

The integral in Eq. (A6) can be calculated with the aid of the relation

\[
\int_{-\infty}^{+\infty} \frac{dx}{x - z} \ln \left(\frac{x + 1}{x - 1} \right)^2 = 2\pi i \text{sgn} \left[\text{Im} (z) \right] \ln \left(\frac{z + 1}{z - 1} \right) = 4\pi \text{sgn} \left[\text{Im} (z) \right] \arctan \left(\frac{i}{z} \right) . \tag{A6}
\]

The final result is:

\[
\chi_R^{(0)}(q, z) = -\frac{3i}{32\pi} (\alpha + 1) r + \frac{3}{32\pi k_0} \frac{\alpha}{r^2 + \alpha k_0^2} \left[-\frac{\pi}{2} k_0^4 (\alpha + 1)^2 + (r^2 - k_0^2)^2 \arctan \left(\frac{i k_0}{r} \right) \right] + [z \rightarrow -z] . \tag{A7}
\]

Symmetrizing with respect to \(z \propto r^2 + \alpha k_0^2 \) we find

\[
\chi_R^{(0)}(q, z) = -\frac{3i}{32\pi} (\alpha + 1) r + \frac{3}{32\pi k_0} \frac{\alpha}{r^2 + \alpha k_0^2} \left[(r^2 - k_0^2)^2 \arctan \left(\frac{i k_0}{r} \right) + \alpha^2 \left(\frac{r^2 - k_0^2}{\alpha^2} \right)^2 \arctan \left(\frac{i \alpha k_0}{r} \right) \right] + [z \rightarrow -z] ,
\]
which, after using Eqs. (30) and (29), yields Eq. (27) in the main text.

The analytic expression in Eq. (A8) presents a single branch cut in the expected region \((r^2 > 0)\) in which interband electron-hole excitations exist. The arctan functions produce branch cut singularities only in the same region, \(r^2 > 0\). Note that the density response function does not present a pole at \(z \propto r^2 + \alpha k_0^2 = 0\) because it is symmetric under exchange \(z \rightarrow -z\). The imaginary part of \(\chi^{(0)}_{\text{inter}}(q, \omega)\)—Eq. (A4)—can be obtained from Eq. (A8) by taking the limit \(\lim_{\eta \rightarrow 0} \chi^{(0)}_{\text{inter}}(q, \omega + i\eta)\) and therefore does not need to be considered separately.

\[
\text{Im}[\delta \chi^{(0)}_{\text{inter}}(q, \omega)] = \text{Im}[\delta \chi^{(0)}_{\text{inter}}(q, \omega + i\theta)] = -\pi \int \frac{d^3k}{(2\pi)^3} \frac{3}{2} k^2 (k \cdot q)^2 \left(-n_{k,c} \right) \delta (\omega - \epsilon_{k,c} - \epsilon_{k-q,v})
\]

(A10)

We now turn to the contribution \(\delta \chi^{(0)}_{\text{inter}}(q, z)\), which arises from the presence of a finite density of conduction-band electrons. According to Eq. (14) it is given by:

\[
\delta \chi^{(0)}_{\text{inter}}(q, z) = \frac{1}{V} \sum_{k} \frac{3}{2} \sin^2(\theta_{k-q,k}) \frac{\epsilon_{-n_{k,c}}}{h_z + \epsilon_{k-q,v} - \epsilon_{k,c}} + [z \rightarrow -z].
\]

(A9)

The imaginary part on the real frequency axis is therefore given by:

\[
\text{Im}[\delta \chi^{(0)}_{\text{inter}}(q, \omega)] = \text{Im}[\delta \chi^{(0)}_{\text{inter}}(q, \omega + i\theta)] = -\pi \int \frac{d^3k}{(2\pi)^3} \frac{3}{2} k^2 (k \cdot q)^2 \left(-n_{k,c} \right) \delta (\omega - \epsilon_{k,c} - \epsilon_{k-q,v})
\]

(A10)

We can again limit our attention to \(\omega > 0\), because of the antisymmetry of the previous response function. As in the calculation of the density-density response function in the undoped case, the integral over \(k\) (constrained by the energy conserving \(\delta\) function) spans a sphere with center \(k_0\) and radius \(\rho\). The quantity \(\text{Im}[\delta \chi^{(0)}_{\text{inter}}(q, \omega)]\) acts to subtract from \(\chi^{(0)}_{\text{inter}}(q, \omega)\)—Eq. (A4)—those transitions whose final momentum \(k\) would lie inside the occupied Fermi sphere. Depending on \(q\) and \(\omega\) (and therefore on \(k_0\) and \(\rho\)) the Pauli principle can block all of the transitions, a part, or none of them. The integral in Eq. (A10) can be calculated in cylindrical coordinates, with the axis oriented along \(q\). Contracting the \(\delta\) function with the integration over the radial cylindrical coordinate \(k_\perp\) yields:

\[
\text{Im}[\delta \chi^{(0)}_{\text{inter}}(q, \omega)] = \frac{3}{16\pi} \frac{\alpha}{\alpha + 1} \theta (\rho^2) \theta \left(1 - (k_0 - \rho)^2 \right) \int_{k_0 - \rho}^{\min(k_0 - \rho, \sqrt{\rho^2 + k_0^2})} \frac{q^2 k_\perp^2}{k_\parallel^2 + k_\perp^2} \left[\frac{1}{k_\parallel^2 + k_\perp^2} + \frac{k_\parallel^2}{k_\parallel^2 + k_\perp^2} \right] \text{d}k_\parallel
\]

(A11)

where \(k_\perp^2 = \rho^2 - (k_\parallel - k_0)^2\). The final result is:

\[
\text{Im}[\delta \chi^{(0)}_{\text{inter}}(q, \omega)] = \frac{3}{64\pi} \theta (\rho^2) \left[\theta \left(1 - (\rho - k_0)^2 \right) \left[(\alpha + 1) \frac{1}{2k_0} \frac{(\rho^2 - \alpha^2 k_0^2)^2}{\rho^2 + \alpha k_0^2} \ln (\rho - k_0)^2 \right.
ight.

\]

\[
- \frac{1}{2\alpha k_0} \frac{(\rho^2 - \alpha^2 k_0^2)^2}{\rho^2 + \alpha k_0^2} \ln (\rho + k_0)^2 \right] - \theta \left(1 - (\rho + k_0)^2 \right) \left[\ldots \right]_{\rho \rightarrow -\rho}
\]

\[
\left. + \left[\theta \left(1 - (\rho - k_0)^2 \right) - \theta \left(1 - (\rho + k_0)^2 \right) \right] \frac{1}{2\alpha k_0} \frac{(\rho^2 - \alpha^2 k_0^2)^2}{\rho^2 + \alpha k_0^2} \ln \left[(\alpha + 1) \left(\rho^2 + \alpha k_0^2 \right) - \alpha \right] \right] \text{d}k_\parallel - [\omega \rightarrow -\omega].
\]

(A12)

Here, the symbol “\(\ldots\)_{\rho \rightarrow -\rho}” denotes the expression obtained by changing the sign of \(\rho\) in all terms in the first three lines. The same notation will be used in Eq. (A13). The boundaries set by the Heaviside step functions in Eq. (A12) have a transparent physical inter-
pertation. The electron momenta of interband electron-hole excitations of energy ω and momentum q lie on a spherical surface. If $-1 < k_0 - \rho < 1$, this surface intersects the Fermi sphere and some of the transitions will be denied by the Pauli principle. If furthermore $k_0 + \rho < 1$, the surface lies entirely inside the Fermi sphere and all of the transitions are Pauli blocked. In this case, $\text{Im}[\delta \chi_{\text{inter}}^{(0)}(q, \omega)]$ becomes equal and opposite to $\text{Im}[\chi_{\text{R,a}}^{(0)}(q, \omega)]$, as can be seen by comparing Eq. (A12) and Eq. (A4).

It remains to use the Kramers-Kronig relation to calculate $\delta \chi_{\text{inter}}^{(0)}(q, z)$ from the knowledge of its imaginary part on the real frequency axis. As in the case of $\chi_n(q, z)$, the calculation is simplified by the antisymmetry of the expressions defined by the first three lines of Eq. (A12) under the exchange $\rho \rightarrow -\rho$. We have

$$\delta \chi_{\text{inter}}^{(0)}(q, z) = \frac{1}{\pi} \int_{-\infty}^{\infty} dq' \frac{\text{Im} \delta \chi_{\text{inter}}^{(0)}(q', \omega')}{\omega' - z}$$

$$= \left\{ \frac{3}{64\pi^2} \int_{-1+k_0}^{1+k_0} \frac{d\rho'}{\rho' - r} \left[(\alpha + 1) \frac{1 - (\rho' - k_0)^2}{2k_0} + \frac{\alpha}{2k_0} \frac{(\rho'^2 - k_0^2)^2}{\rho'^2 + \alpha k_0^2} \ln (\rho' - k_0)^2 \right] - \frac{1}{2\alpha k_0} \frac{(\rho'^2 - \alpha^2k_0^2)^2}{\rho'^2 + \alpha k_0^2} \ln (\rho' + \alpha k_0)^2 \right\} + \{ \ldots \} \bigg|_{r \to -r}$$

$$+ \frac{3}{64\pi^2} \int_{(1-k_0)^2}^{(1+k_0)^2} \frac{d(\rho^2)}{\rho^2 - r^2} \frac{1}{2\alpha k_0} \frac{(\rho^2 - \alpha^2k_0^2)^2}{\rho^2 + \alpha k_0^2} \ln \left[(\alpha + 1)(\rho^2 + \alpha k_0^2) - \alpha \right] + [z \to -z].$$

The final result is:

$$\delta \chi_{\text{inter}}^{(0)}(q, z) = \frac{3}{64\pi^2} \left\{ - \frac{1}{2k_0} \left[4\alpha k_0 + \frac{1 - (\alpha + 1)^2k_0^2}{\alpha + 1} \ln \left(\frac{1 + (\alpha + 1)k_0^2}{1 - (\alpha + 1)k_0^2} \right) \right] + \frac{\alpha + 1}{2k_0} \left[((r - k_0)^2 - 1) \ln \frac{r - k_0 + 1}{r - k_0 - 1} \right. \right.$$

$$- ((r + k_0)^2 - 1) \ln \frac{r + k_0 + 1}{r + k_0 - 1} - \frac{1}{2\alpha k_0} \frac{(r^2 - \alpha^2k_0^2)^2}{r^2 + \alpha k_0^2} \left. f\left(-(\alpha + 1)k_0, r - k_0\right) \right. \right.$$

$$+ f\left(0, r - k_0\right) - g\left(-(\alpha + 1)k_0, \frac{r^2 - k_0^2}{2k_0}\right) \right] + \frac{\alpha}{2k_0} \frac{(r^2 - k_0^2)^2}{r^2 + \alpha k_0^2} f(0, r - k_0)$$

$$+ [z \to -z].$$

(A14)

where the functions $f(q, t)$ and $g(q, t)$ have been defined in Eqs. (22) and (23). Combining Eq. (A14) with the definitions of r and k_0, Eqs. (30) and (29), we finally obtain Eq. (28) in the main text.

Appendix B: Density-density response in the case of p-doping

Till now, all the results have been specified to the case of n doping, when the Fermi energy $E_F > 0$ lies in conduction band. The response functions for the p-doped case ($E_F < 0$), however, can be obtained by slightly modifying the results which have been presented so far.

In this Appendix, we show that the density response function of a p-doped LSM with Fermi wave vector k_F is equal to the response function of an n-doped LSM with the same Fermi wave number, provided, however, that one exchanges m_c with m_v. This sounds natural, but it is not evident because of the different helicities of the valence- and conduction-band single-particle states. However, Eq. (10), Eq. (11) and the fact that the matrix $|D^{(2)}_{\nu}\rangle$ is symmetric, imply that the form factors $A_{\text{inter}}(\theta)$ and $A_{\text{int}}(\theta)$ which enter Eqs. (13) and (14), would be the same if the helicity doublets ($\pm 1/2$ or $\pm 3/2$) corresponding to conduction and valence bands were exchanged. This property can be expressed more syntheti-
cally by introducing the notation:

$$A_{\sigma,\sigma'}(\theta) \equiv \sum_{\nu,\nu'} \sum_{\nu,\nu'} \left| D_{\nu,\nu'}^{(\frac{1}{2})}(\theta) \right|^2 ,$$ \hspace{1cm} (B1)

where σ and σ' label bands (+1 corresponds to the conduction band and -1 to the valence band) and the sums run over helicity states ν and ν' belonging to the bands σ and σ'. We have:

$$A_{\sigma,\sigma'}(\theta) = \frac{1}{2} \left\{ 2 + \sigma\sigma' \left[3\cos^2(\theta) - 1 \right] \right\} = A_{-\sigma,-\sigma'}(\theta) .$$ \hspace{1cm} (B2)

An equivalent expression was obtained, with a different derivation, in Ref. 36. The complete expression for the density-density response function of a non-interacting LSM, valid both in the n-doped and p-doped cases, reads as following:

$$\chi^{(0)}_{nn}(q,\theta) = \frac{1}{V} \sum_{k,\sigma,\sigma'} \frac{n_{k,\sigma} - n_{k+q,\sigma'}}{\hbar^2 + \epsilon_{k,\sigma} - \epsilon_{k+q,\sigma'}} A_{\sigma,\sigma'}(\theta_{k,k+q}) ,$$ \hspace{1cm} (B3)

where $n_{k,\sigma}$ denotes the Fermi occupation number at $T = 0$ associated with a single-particle state with wave vector k and band index σ, and $\epsilon_{k,\sigma}$ is the single-particle energy

$$\epsilon_{k,\sigma} = \begin{cases} h^2 k^2/2m_c & \text{for } \sigma = +1 \\ -h^2 k^2/2m_v & \text{for } \sigma = -1 \end{cases} .$$ \hspace{1cm} (B4)

Let us now consider a p-doped LSM with Fermi wave number k_F, single-particle energies $\epsilon_{k,\sigma}$, and occupation numbers

$$n_{k,\sigma} = \begin{cases} 0 & \text{for } \sigma = +1 \\ 1 - \theta (k_F - k) & \text{for } \sigma = -1 \end{cases} ,$$ \hspace{1cm} (B5)

whose density response function is given by Eq. (B3). Let us now look at an n-doped non-interacting LSM with the same Fermi wave number and exchanged valence and conduction effective masses. It would have single-particle energies $\tilde{\epsilon}_{k,\sigma}$ and occupation numbers $\tilde{n}_{k,\sigma}$, related to $\epsilon_{k,\sigma}$ and $n_{k,\sigma}$ by:

$$\tilde{\epsilon}_{k,\sigma} = -\epsilon_{k,-\sigma} ,$$

$$\tilde{n}_{k,\sigma} = 1 - n_{k,-\sigma} .$$ \hspace{1cm} (B6)

Its density-density response function would be:

$$\tilde{\chi}^{(0)}_{nn}(q,\theta) = \frac{1}{V} \sum_{k,\sigma,\sigma'} \frac{\tilde{n}_{k,\sigma} - \tilde{n}_{k+q,\sigma'}}{\hbar^2 + \tilde{\epsilon}_{k,\sigma} - \epsilon_{k+q,\sigma'}} A_{\sigma,\sigma'}(\theta_{k,k+q}) .$$ \hspace{1cm} (B7)

Using Eq. (B6) and relabeling dummy variables, we can rewrite Eq. (B7) as:

$$\tilde{\chi}^{(0)}_{nn}(q,\theta) = \frac{1}{V} \sum_{\tilde{k},\sigma,\sigma'} \left[\frac{n_{k,\sigma} - n_{k+q,\sigma'}}{\hbar^2 + \epsilon_{k,\sigma} - \epsilon_{k+q,\sigma'}} \right] \times A_{-\sigma',-\sigma} \left(\theta_{-k-q,-k} \right) .$$ \hspace{1cm} (B8)

We finally observe that the form factors obey the following relations: $A_{-\sigma',-\sigma} \left(\theta_{-k-q,-k} \right) = A_{\sigma',\sigma} \left(\theta_{-k-q,-k} \right) = A_{\sigma,\sigma'} \left(\theta_{k,k+q} \right)$. Replacing this result in Eq. (B9) yields

$$\tilde{\chi}^{(0)}_{nn}(q,\theta) = \tilde{\chi}^{(0)}_{nn}(q,\theta)$$

and completes the proof.

1. A.Mauri@science.ru.nl
2. Present address: Radboud University, Institute for Molecules and Materials, NL-6525 AJ Nijmegen, The Netherlands
3. I.M. Tsiflikovski, Electron Spectrum ofGapless Semiconductors (Springer Series in Solid-State Sciences, Springer-Verlag Berlin Heidelberg, 1997).
4. N.N. Berchenko and M.V. Pashkovskii, Sov. Phys. Usp. 19, 462 (1976).
5. M. Averous, Phys. Stat. Sol. (b) 95, 9 (1979).
6. B.L. Gel’mont, V.I. Ivanov-Omskii and I.M. Tsiflikovski, Sov. Phys. Usp. 19, 879 (1976).
7. J.M. Luttinger, Phys. Rev. 102, 1030 (1956).
8. S. Groves and W. Paul, Phys. Rev. Lett. 11, 194 (1963).
9. A.A. Abrikosov and S.D. Beneslavskii, JETP 32, 699 (1971).
10. G.F. Giuliani and G. Vignale, Quantum Theory of the
Electron Liquid (Cambridge University Press, Cambridge, 2005).

21. L. Liu and D. Brust, Phys. Rev. Lett. 20, 651 (1968).
22. L. Liu and E. Tosatti, Phys. Rev. B 2, 1926 (1970).
23. J.G. Broerman, Phys. Rev. B 1, 4568 (1970).
24. J.G. Broerman, L. Liu, and K.N. Pathak, Phys. Rev. B 4, 664 (1971).
25. M. Bailyn and L. Liu, Phys. Rev. B 10, 759 (1974).
26. W. Bardyszewski, J. Phys. Chem. Solids 44, 813 (1983).
27. L. Liu and E. Tosatti, Phys. Rev. Lett. 23, 772 (1969).
28. S.L. Lehoczky, J.G. Broerman, D.A. Nelson and C.R. Whitsett, Phys. Rev. B 9, 1598 (1974).
29. W. Szymańska, P. Bogulawski, and W. Zawadzki, Phys. Stat. Sol. (b) 65, 641 (1974).
30. D. Sherrington and W. Kohn, Phys. Rev. Lett. 21, 153 (1968).
31. J.G. Broerman, Phys. Rev. B 5, 397 (1972).
32. W. Bardyszewski, Solid State Commun. 57, 873 (1986).
33. D. Yevick and W. Bardyszewski, Phys. Rev. B 39, 8605 (1989).
34. T. Kernreiter, M. Governale, and U. Zülicke, New J. Phys. 12, 093002 (2010).
35. J. Schliemann, Europhys. Lett. 91, 67004 (2010).
36. S. Tchoumakov and W. Witczak-Krempa, arXiv:1904.00090.
37. R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).
38. I. Mandal, arXiv:1810.06574.
39. L. R. González, J. Krupski and T. Szwacka, Phys. Rev. B 39, 8435 (1989).
40. S. Goettig, Phys. Stat. Sol. (b) 72, 91 (1975).
41. A. Principi, G. Vignale, M. Carrega, and M. Polini, Phys. Rev. B 88, 195405 (2013).