Possible links have been investigated between activation of protein kinase C (PKC) and endothelin (ET) production by small blood vessels. Perfusion pressures were recorded from rat isolated mesenteric artery, with or without the small intestine attached, before and after addition to the perfusate of either ET-1, ET-3 or the PKC activator 12-deoxyphorbol 13-phenylacetate (DOPPA). Rises in perfusion pressure in response to ET-1 (10^{-6} M) or DOPPA (10^{-6} M) were reduced significantly by pre-treatment with either the ET_{A} receptor antagonist PD151242 (10^{-6} M) or the PKC inhibitor Ro 31-8220 (10^{-6} M). ET-3 (10^{-6} M) had a significant, albeit small, effect only when the gut was still attached to the mesentery. In this latter preparation ET-1 and DOPPA increased the permeability of villi microvessels to colloidal carbon in the perfusate. This effect of DOPPA was reduced by pre-treatment with either PD151242 or Ro 31-8220, but the effects of ET-1 were reduced significantly only by Ro 31-8220. ET-3 (10^{-6} M) was without effect. The results suggest a possible bi-directional link between ET_{A} receptors and PKC in the intestinal vasculature.

Key words: Colloidal carbon, 12-Deoxyphorbol 13-phenylacetate, Endothelins, Microvascular permeability, PD151242, Protein kinase C, Ro 31-8220, Vasoconstriction

Methods

The two techniques used in the present experiments have been described in detail elsewhere.\cite{7,8,16} For both preparations rats weighing 350–500 g were killed by inhalation of chloroform vapour, and the anterior mesenteric artery then cannulated. Subsequently, the mesentery, with or without the small intestine attached to it, was removed to an organ bath containing 50 ml of a physiological salt solution (PSS) at 37°C. The blood vessels were flushed with fresh PSS from a reservoir at 37°C via a roller pump until free of visible blood, and then one or other of the following two procedures was used.

Isolated mesentery: The rate of flow of perfusate was set to give a perfusion pressure of approximately 35 mmHg. The volumes of PSS in the organ bath and in the reservoir were then adjusted to 50 ml in each case, and re-circulation of PSS commenced. When appropriate, PD151242 or Ro 31-8220 was added to the reservoir to give the required concentration. After 10 min of perfusion in this way, the perfusion pressure was noted and then ET-1 or ET-3 or DOPPA was added to the reservoir. Perfusion pressures were recorded at 1 min intervals for the next 15 min. Taking the perfusion pressure at time zero as 0, the rises during the 15 min agonist treatment were calculated. The PSS had the following composition (mM): NaCl 138, KCl 5, NaHCO_{3} 10.1, MgCl_{2} 1.06, Na_{2}HPO_{4} 1.2, glucose 5, CaCl_{2} 0.5, EDTA 0.05.
0.416, CaCl₂ 2, glucose 10 and pH 7.4, and was gassed throughout with 95% O₂ and 5% CO₂.

Mesentery with small intestine attached: The method was similar to that described above except that the rate of flow of perfusate was set at 10 ml/min before re-circulation of perfusate began, and gelatin (2%) was present in the PSS throughout to reduce oedema formation in the gut. After 10 min of re-circulation of the gelatin-containing perfusate (GPSS), with or without added PD151242 or Ro 31-8220, the perfusion pressure was noted and either ET-1 or ET-3 or DOPPA was added. Perfusion pressures at 1 min intervals were recorded for 5 min, after which fresh GPSS was perfused for 1 min, followed by a bolus of 0.5 ml colloidal carbon suspension injected near the cannula. After a further 5 min period of perfusion with GPSS, 2 ml rat washed red blood cells were injected to provide a visual check that vessels in the gut wall were patent. Then the preparation was removed from the organ bath and six pieces of small intestine, each about 4 cm long, were cut, starting from the caecal end. Each was flushed with normal saline, opened lengthways and stapled to a xylene-resistant coverslip. After fixing in formal saline, dehydrating in graded alcohols and clearing in xylene overnight, the specimens were mounted, mucosal surface uppermost, in DPX mountant. Five areas per coverslip were photographed using Ilford FP4 black and white film at x100 magnification. Negative micrographs were then subjected to image analysis, using a Seescan system (Cambridge, UK), to assess the amount of colloidal carbon trapped in the villi microvessels, as described in detail earlier. A mean value for each piece of small intestine was calculated and used to give a mean value for each animal. Mean values for each treatment group were then compared statistically. The mean rise in perfusion pressure recorded at the end of the 5 min period of ET-1, ET-3 or DOPPA treatment (taking that at time zero as 0) were also compared.

Statistical analysis: Bonferroni's test for comparing more than one treatment group with a single control group was used.

Chemicals used: ET-1 and ET-3 were obtained from Sigma Chemical Co., Poole, UK; DOPPA was obtained from Calbiochem-Novachem, Nottingham, UK; PD151242 was a gift from Dr A. Doherty, Parke Davis, Ann Arbor, MI, USA; Ro 31-8220 was a gift from Dr G. Lawton, Roche Products, Welwyn Garden City, UK; DPX mountant was obtained from BDH, Poole, UK; gelatin was obtained from Thornton Ross, Huddersfield, UK; Thermaxon® xylene-resistant coverslips were obtained from Nunc Inc., Naperville, IL, USA; and colloidal carbon (Gunther Wagner, batch C11/1431a) was obtained from Pelikan Inks, Hanover, Germany. DOPPA and Ro 31-8220 were dissolved in dimethyl sulphoxide, which, in the concentration used, was biologically inert; ET-1, ET-3 and PD151242 were dissolved in water, the latter with the aid of a little Na₂CO₃. The dose volume used was 0.2 ml.

Results
In the isolated mesentery without small intestine ET-1 (10⁻⁸ M) caused a very marked, but slow rise in perfusion pressure, which reached a peak after 13 min of perfusion (Fig. 1). The response was completely abolished by pre-treatment with PD151242 (10⁻⁴ M) and significantly reduced by pre-treatment with Ro 31-8220 (10⁻⁴ M). DOPPA(10⁻⁴ M) also caused a gradual rise in perfusion pressure, confirming results from earlier work. This response was significantly reduced by pre-treatment with PD151242, whereas pre-treatment with Ro 31-8220 was shown previously to abolish the effect. Perfusion of the mesenteric arterioles with ET-1 (10⁻⁹ M) generated a maximum rise of only 6.5 ± 2.6 mmHg. Perfusion with PSS alone (controls), or ET-3 (10⁻⁸ M), PD151242 alone or Ro 31-8220 alone had no effect on perfusion pressure over a 15 min period.

Perfusion of the vasculature in the isolated mesentery with its small intestine still attached
yielded results which were somewhat different from those obtained with the mesentery alone. Perfusion with GSPS containing either ET-1 (10⁻⁶M) or DOPPA (10⁻⁶M) resulted in modest but highly significant rises in perfusion pressure (Table 1). ET-3 (10⁻⁴M) also evoked a significant although much smaller pressor effect. ET-1 (10⁻²M) was again inactive in this respect (Table 1). Pre-treatment with either PD151242 or Ro 31-8220 significantly reduced the effects of both ET-1 (10⁻⁴M) and DOPPA (10⁻⁶M).

ET-1 (10⁻⁶M) was found to be less active than DOPPA when assessed for its ability to induce colloidal carbon leakage in villi microvessels (Table 2), although both compounds induced effects that were significantly greater than control values. Pre-treatment with Ro 31-8220 significantly reduced the effects of both ET-1 and DOPPA, but PD151242, while tending to reduce the effects of ET-1, only significantly reduced the effects of DOPPA (Table 2). ET-1 (10⁻⁶M) and ET-3 (10⁻⁴M) did not significantly affect the leakage of colloidal carbon (Table 2).

Discussion

The three ET isopeptides that have been described,² act upon two ET receptors, ETₐ and ETₜ.¹⁷ ETₐ receptors have a higher affinity for ET-1 and ET-2 than for ET-3, whereas ETₜ receptors have a similar affinity for all three isopeptides. In arterial blood vessels activation of ETₐ receptors is associated with smooth muscle contraction, whereas activation of ETₜ receptors sometimes produces smooth muscle relaxation, the latter possibly via the release of nitric oxide.¹⁸ Coupling of both types of ET receptor to phospholipase C via a G protein has been demonstrated.¹⁹ However, in human and rabbit saphenous veins, stimulation of both ETₐ and ETₜ receptors is associated with smooth muscle contraction.²⁰,²¹ The ETₜ-mediated response being PKC-dependent and the ETₐ-mediated response being PKC-independent.²²

The present results, using the mesenteric vessels, confirm other reports that ET-1 is a more potent vasoconstrictor than ET-3,²³ and suggest that in isolated mesenteric arterioles the constrictor effect of ET-1 is mediated via ETₐ receptors, since it is abolished by pre-treatment with the specific ETₐ receptor antagonist PD151242, and significantly reduced by pre-treatment with the specific PKC inhibitor Ro 31-8220. The virtual lack of effect of the same concentration of ET-3 in this situation also suggests the absence of functionally important ETₜ receptors in mesenteric arterioles. Evidence from other workers indicates that ETₐ receptors are located mainly on the arterial side of the circulation and ETₜ receptors on the venous side,²⁴ although there are variations between species and organs.²²,²³

When the small intestine remains attached to the mesentery, capillaries and venules, as well as arterioles, are involved in the perfusion. In the light of work cited above this would provide an opportunity for stimulation of ETₜ receptors, which might

Table 1. Effects of ET-1, ET-3 and DOPPA on perfusion pressures in rat isolated mesenteric and small intestinal vessels in the presence and absence of PD151242 (10⁻⁶M) or Ro 31-8220 (10⁻⁶ M)

Treatment	Alterations in perfusion pressure (mmHg) after 5 min perfusion^a						
	Concentration (M)	n	GPSS	GPSS + PD151242	n	GPSS + Ro 31-8220	
Control		10	-2.70 ± 0.90	3	-3.33 ± 0.33	4	-0.5 ± 1.19
ET-1	10⁻⁶	7	32.71 ± 2.50^c	4	6.75 ± 3.33^d	4	3.75 ± 0.75^d
ET-1	10⁻⁹	4	0.25 ± 0.85	-	-	-	-
ET-3	10⁻⁶	5	2.80 ± 0.58	-	-	-	-
DOPPA	10⁻⁶	8	36.75 ± 7.34^c	5	14.90 ± 2.96^d	5	13.2 ± 2.69^{de}

^aPerfusion pressure at the beginning of the 5 min perfusion period was taken as 0.Results are given as mean ± S.E.M. *p < 0.05 (Bonferroni's test) compared with control values. †p < 0.05 (Bonferroni's test) compared with agonist alone. ‡Value taken from Reference 8.

Table 2. Leakage of colloidal carbon in microvessels of villi in the rat small intestine in vitro in response to ET-1, ET-3 or DOPPA, and the effects of pre-treatment with PD151242 (10⁻⁶M) or Ro 31-8220 (10⁻⁶ M)

Treatment	Amount of CC, determined by image analysis, assessed as % of frame area^{ab}						
	Concentration (M)	n	GPSS	GPSS + PD151242	n	GPSS + Ro 31-8220	
Control		10	1.05 ± 0.16	3	1.20 ± 0.08	4	0.83 ± 0.10
ET-1	10⁻⁶	7	2.05 ± 0.28^p	4	1.39 ± 0.38	4	0.80 ± 0.11^d
ET-1	10⁻⁹	4	1.82 ± 0.49	-	-	-	-
ET-3	10⁻⁶	5	0.65 ± 0.11	-	-	-	-
DOPPA	10⁻⁶	8	3.74 ± 0.54^p	5	2.18 ± 0.24^d	5	0.90 ± 0.12^{de}

^aEach frame represents one negative micrograph magnified approximately 20 times. *Results are given as mean ± S.E.M. †p < 0.05 (Bonferroni's test) compared with control value. ‡p < 0.05 (Bonferroni's test) compared with agonist alone. ‡Value taken from Reference 8.
then have a relaxant effect in addition to the contracting effect brought about via arterial ETA receptors. Activation of two such opposing effects might explain the smaller rise in perfusion pressure brought about by ET-1 (32.75 ± 2.50 mmHg after 5 min of perfusion in the mesentery plus small intestine, compared with 85.80 ± 11.60 mmHg after 5 min perfusion in the mesentery alone). Alternatively, or in addition, differences in perfusion pressure rises in the two preparations may reflect differences in the flow rates of perfusate used.

PKC-dependent actions of ETs in native vascular smooth muscle and in cultured vascular smooth muscle cells have been demonstrated, as has a release of ETs by activation of PKC by phorbol esters. Therefore, since the effects of DOPPA were reduced in both preparations used in the present work, by pre-treatment with either the ETA receptor antagonist or the PKC inhibitor, the possibility of a bi-directional link between these two processes arises. On the basis of present evidence, however, it is not possible to distinguish between mediation by ET-1 or ET-2, or by a mixture of ET-1 and ET-2, in these situations.

A similar link may also be involved in the DOPPA-and the ET-1 induced increases in vascular permeability that were manifest as a leakage of colloidial carbon into microvessel walls in small intestinal villi (Table 2). However, while ET-3 (10^{-8} M) did not increase colloidal carbon leakage in the present experiments, other workers have shown that an application of ET-3 (10^{-10} M) in conjunction with an ETA receptor antagonist increased mesovascular permeability to FITC-labelled albumin in rat mesentery. In vivo, the ET-1 induced increase in vascular permeability to Evans Blue dye appeared to be mediated via release of platelet-activating factor but we have no information at the moment as to whether this also operated in our experimental situation. We have, in fact, shown that DOPPA-induced colloidal carbon leakage was enhanced by pre-treatment with indomethacin suggesting a possible inhibitory effect of prostanooids.

Increases in microvascular permeability in response to various inflammatory agonists have been attributed to an increase in cytoplasmic Ca^{2+} levels in Ecs, either as a result of influx from the extracellular medium or by release from intracellular stores. Such increases in Ca^{2+} levels have been demonstrated in response to bradykinin, to platelet activating factor and, more recently, to ET-1, and are thought to lead to EC contraction. This results from an actomyosin shortening, brought about by phosphorylation of myosin light chains via myosin light chain kinase, which is a Ca^{2+}-calmodulin-dependent process. Myosin light chains can also be phosphorylated by PKC as can the thin-filament regulatory protein caldesmon. Therefore, previous reports showing that stimulation of ET-1 receptors induces a phosphorylation of myosin light chains and of caldesmon in arterial smooth muscle are important in the present context, and support the suggested bi-directional link between activation of ET receptors and activation of PKC.

References
1. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411-415.
2. Itoh Y, Yanagisawa M, Oishiho S, et al. Cloning and required analysis of cDNA encoding the precursor of a human endothelium-derived vasoconstrictor peptide, endothelin: identity of human and porcine endothelin. FEBS Lett 1988; 251: 440-444.
3. Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 1988; 85: 111:4-6.
4. Emori T, Hirata Y, Ohba K, et al. Cellular mechanism of endothelin-1 release by angiotensin and vasopressin. Hypertension 1991; 18: 165-170.
5. Kuchman MJ, Pfrogner JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 1995; 269: H150-H156.
6. Wang DL, Tang CC, Wang BS, Chen HHL, Hung MS, Wang JJ. Cyclical strain increases endothelin-1 secretion and gene expression in human endothelial cells. Biochem Biophys Res Commun 1993; 195: 1050-1056.
7. Northover AM, Northover BJ. Rapamycin A and phorbol 12,13-dibutyrate: two phorbol derivatives with contrasting effects on rat blood vessels in vivo. J Pharm Pharmacol (in press).
8. Northover AM, Northover BJ. Vasoreactivity in rat isolated mesentery and small intestine in response to various activators of protein kinase C. Agents Actions (in press).
9. Kikkawa U, Takai Y, Tanaka Y, Miyake R, Nishikawa Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 1983; 258: 11442-11445.
10. Abdel-Latif AA. Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev 1986; 38: 227-272.
11. Yanagisawa M, Inoue A, Takayama Y, Misui T, Kobayashi M, Masaki T. The human preproendothelin-1 gene: possible regulation by endothelial phosphoinositide turnover signaling. J Cardiovasc Pharmacol 1989; 13 (Suppl S): 513-517.
12. Inoue A, Yanagisawa M, Takayama Y, Misui T, Kobayashi M, Masaki T. Human preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression. J Biol Chem 1989; 264: 14954-14959.
13. Northover AM, Northover BJ. Stimulation of protein kinase C activity may increase microvascular permeability to colloidial carbon via α1-agonist. Inflammation 1994; 18: 481-487.
14. Davenport AP, Kiee RE, Fitzgerald F, Maguire J, Berryman K, Doberty AH. [3H]-Prostaglandin E2: a selective radioligand for human ET receptors. Br J Pharmacol 1994; 111: 4-6.
15. Davis PD, Hill CH, Keech E, et al. Selective inhibitors of protein kinase C. FEBS Lett 1988; 259: 61-65.
16. Northover AM. An in vitro method for assessing the effects of pro-inflammatory and anti-inflammatory compounds on microvascular permeability in the rat small intestine. J Cardiovasc Pharmacol 1995; 227: 232-232.
17. Sobohal T, Yanagisawa M, Takayama Y, et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 1994; 373: 732-735.
18. Sougouro A, Horii M, Kashi K. Effect of endothelin-1 on cytosolic calcium level in vascular endothelium and on smooth muscle contraction. Br J Pharmacol 1992; 105: 457-462.
19. Masaki T, Vane JR, Vanhoutte PM. International union of pharmacology nomenclature of endothelin receptors. Pharmacol Rev 1994; 46: 137-142.
20. Gray GA, Löffler B-M, Chong M. Characterization of endothelin receptors mediating contraction of rabbit saphenous vein. Am J Physiol 1994; 266: H150-H156.
21. White DG, Garratt H, Mundin JW, Sumner MJ, Vallance PJ, Watts JS. Human saphenous vein contains both endothelin ET1 and ET2, contractile receptors. Br J Pharmacol 1994; 97: 307-310.
22. Wallace JL, Koenan CM, Machaun entitled KW, McNicholl GW. Comparison of the effects of endothelin-1 and endothelin-3 on the rat stomach. Br J Pharmacol 1989; 167: 41-47.
23. Maguire JJ, Koc RE, O'Beirley G, Davenport AP. Vasococontractor endothelin receptor characterized in human renal artery and vein in vitro. Br J Pharmacol 1994; 113: 49-54.
24. Koolun J, McMillen D, Abboud A, Seymour A. Evidence for a differential location of vasococontractor endothelin receptors in the vasculature. Br J Pharmacol 1994; 112: 704-708.
25. Auguet M, Delafontaine S, Chabrier PE, Bouchet P. Comparative effects of endothelin and phorbol 12,13-dibutyrate in rat sota. Life Sci 1989; 45: 2051-2059.
26. Nishimura J, Moreland S, Ahn HY, Kawase T, Moreland BS, van Breemen E. Endothelin increases myocardial cell sensitivity to α1-adrenoceptor-mediated rabbit mesenteric artery. Circ Res 1992; 71: 951-959.
27. Greiling KG, Taka T, Alexander RW. Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J Biol Chem 1989; 264: 8237-8240.
ET_α receptors and protein kinase C

28. Dartnall NR, Broek TA. Endothelin receptor-coupling mechanisms in vascular smooth muscle: a role for protein kinase C. *J Pharmacol Exp Ther* 1990; 254: 393-399.

29. Kuruse I, Miura S, Fukumura D, Tsuchiya M. Mechanisms of endothelin-induced intramembrane vesicle release in microvascular beds of rat mesentery. *Br J Pharmacol* 1992; 106: 85-94.

30. Filep JG, Sirois MG, Rousseau A, Fournier A, Sirois P. Effects of endothelin-1 on vascular permeability in the conscious rat: interactions with platelet-activating factor. *Br J Pharmacol* 1991; 104: 797-804.

31. Northover AM. Action of histamine on endothelial cells of guinea-pig isolated hepatic portal vein and its modification by indomethacin or removal of calcium. *Br J Exp Path* 1975; 56: 52-61.

32. Northover AM. The effects of TMB-8 on the shape changes of vascular endothelial cells resulting from exposure to various inflammatory agents. *Agents Actions* 1989; 26: 367-371.

33. Colden-Stanfield M, Schilling WP, Ritchie AK, Eskin SG, Navarro LT, Kunze DL. Bradykinin-induced increases in cytosolic calcium and calcium currents in cultured bovine aortic endothelial cells. *Circ Res* 1987; 64: 632-640.

34. Morgan-Boyd R, Stewart JM, Varek RJ, Hassid A. Effects of bradykinin and angiotensin II on intracellular calcium dynamics in endothelial cells. *Am J Physiol* 1987; 253: C568-C598.

35. Hiraoka M, Miyama K, Watanabe T, Ogura Y. Transient increase of cytosolic free calcium in cultured human vascular endothelial cells by platelet-activating factor. *Biochem Biophys Res Comm* 1988; 154: 910-917.

36. Yokokawa K, Kobori M, Minakawa K, Yamaura K, Takada T. Effect of endothelin-1 on cytosolic calcium ions in cultured human endothelial cells. *J Hypertension* 1990; 8: 843-849.

37. Aoki H, Kobayashi S, Nakamura J, Kanaide H. Sensitivity of G-proteins involved in endothelin-1-induced Ca²⁺ influx to pertussis toxin in porcine endothelial cells in situ. *Br J Pharmacol* 1994; 111: 989-996.

38. Kamm KE, Stull JT. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. *Am Rev Pharmacol Toxicol* 1995; 28: 593-620.

39. Ikeda M, Inagaki M, Kanamaru K, Hidaka H. Phosphorylation of smooth muscle myosin heavy chain kinase by Ca²⁺-activated, phospholipid-dependent protein kinase. *J Biol Chem* 1985; 260: 4447-4450.

40. Umeda K, Hida H. Phosphorylation of caldesmon by protein kinase C. *Biochem Biophys Res Comm* 1985; 53: 56-62.

41. Adam JP, Millo I, Stengle B, Hathaway DR. Myosin light chain and caldesmon phosphorylation in arterial muscle stimulated with endothelin-1. *J Mol Cell Cardiol* 1995; 22: 1017-1023.

42. Abe Y, Kanaya Y, Kudo M, et al. Endothelin-1-induced phosphorylation of the 20-kDa myosin light chain and caldesmon in porcine coronary artery smooth muscle. *Japan J Pharmacol* 1991; 57: 431-435.

Received 7 September 1994; accepted in revised form 14 October 1994