Research Paper
The Effect of an 8-Week Selected Theraband Training on Balance and Motor Performance in Young Wrestlers

*Milad Sadeghi1, Reza Mahdavi Nejad2

1. Department of Corrective Exercise and Sport Injury, Faculty of Physical Education and Sport Sciences, Khorasgan Branch, Islamic Azad University, Esfehan, Iran.
2. Department of Sport Injuries & Corrective Exercise, Faculty of Physical Education and Sport Sciences, Esfehan University, Esfehan, Iran.

Objective
Due to the recurrent and relatively high frequency of injuries in wrestling, identifying preventing strategies for such damages is of significant importance. The present study investigated the effect of 8 weeks of selected Thera-band exercises on the balance and functional movement of adolescent wrestlers.

Methods
The study subjects included 30 athlete male wrestlers from Baft City, Iran, who were selected randomly and divided into two groups of exercise (age: 17.27 y, height: 1.72 m, weight: 71.53 kg, & body mass index: 24.01 kg/m²) and control (age: 17.07 y, height: 1.74 m, weight: 72.46 kg, and body mass index: 23.88 kg/m²). A questionnaire was used to collect the study samples' demographic information and the history of sports. Moreover, to measure static and dynamic balance and functional movement, the stork test, Y balance test, and functional movement screen test were used, respectively. Independent Samples t-test, Paired Samples t-test, Mann–Whitney U-test, and Wilcoxon test were used to compare the mean score differences at P<0.05.

Results
The present study results suggested a significant difference in the static balance (P<0.001) and the total dynamic balance (P<0.001) between the two study groups.

Conclusion
The collected data revealed that running a low-cost program could effectively improve balance and performance in the study samples. Furthermore, sports athletes, professional wrestlers, and freestyle wrestlers could use Thera-band training to enhance the motor pattern; such a measure could help to reduce the severity of damage and improve their movement patterns.

Key words: wrestling, Thera-band, functional movement screen, Static Balance, Dynamic Balance

Extended Abstract

1. Introduction

Wrestling is among the most popular sports in Iran. The aggressive nature of wrestling results in >9 injuries per 1000 athletes [1]. In a study conducted at the Beijing Olympics, the overall prevalence of injuries was estimated to be 9.30 per 100 athletes and 7.88 per 100 competitions; of which, 84.4% of all cases were reported as mild injuries [2].

Due to the high incidence of injury in this sport, it is essential for these athletes to perform proper and regular training. Accordingly, all of their muscles will be involved to enhance their strength and endurance. Elastic band exercises
are considered as a safe tool. They are effective strategies for improving the neuromuscular system, muscle strength, and the ability to perform functional and balance tasks [8].

Han et al. performed a 4-week Theraband training among individuals with and without ankle sprains. Their collected results revealed that 4 weeks of balance training yielded significant improvements in both study groups [9]. Accordingly, this study aimed to investigate the effect of 8 weeks of Theraband selected exercises on balance and motor performance of young wrestlers in Baft City, Iran.

2. Participants and Methods

The statistical population of the present study consisted of all juvenile wrestlers in Baft City of Kerman Province, Iran. Like similar research literature, the athletes had ≥3 years of experience and exercised ≥3 sessions per week. Among them, 30 athletes (15 in the control group and 15 in the training group) were selected. To perform the dynamic balance test to explore the actual leg length, we measured the anterior-upper lumbar spine down to the medial ankle. This helped us to normalize the obtained data and gain a better comparison of the study subjects. We used the Y Balance Test to evaluate dynamic balance and Stork Balance Stand Test to assess static balance [11]. The Functional Movement Screen (FMS) was also used to evaluate the basic movement pattern in the study subjects.

These inventories included 7 tests of deep squat, obstacle step, lunge, shoulder mobility, active leg lifting, trunk stability swimming, and rotational stability. The scoring method is that if a person made the correct move without compensatory movement, he/she would gain 3 points and if failed to make the compensatory movements or were unable to move, would obtain 2 and 1 points, respectively. Besides, if one felt pain during the movement, he/she would gain no points for that movement [7]. The training protocol of this study consisted of 8 weeks of Theraband exercises [13,10].

3. Results

Comparing the pre-test scores of the two study groups indicated a significant difference between static balance (t=-1.10, P=0.27), anterior directions (t=0.35, P=0.72), internal posterior (t=-0.84, P=0.40), external posterior (t=-0.80, P=0.42), and total dynamic balance score (t=-0.57, P=0.56). Furthermore, there was no significant difference in motor function screening test values (P=0.21, Z=-1.25).

Table 1. Independent Samples t-test results for comparing the two groups at post-test phase

Variables	Group	df	Mean Difference	t	P	Lower	Upper
Stork test	Control	28	-6.21	-5.11	0.001*	-8.69	-3.72
	Experimental						
Anterior direction of the Y Balance Test (% of lower limb length)	Control	28	-5.92	-2.35	0.02	-11.07	-0.76
	Experimental						
The internal posterior direction of the Y Balance Test (% of lower limb length)	Control	28	-7.37	-4.80	0.001*	-10.52	-4.23
	Experimental						
External posterior direction of the Y Balance Test (% of lower limb length)	Control	28	-4.46	-2.14	0.04	-8.74	-0.19
	Experimental						
The Y Balance Test overall score (% of length)	Control	28	-6.16	-4.71	0.001*	-8.84	-3.48
	Experimental						

Variable	Group	No.	U	Z	P
Total score of Motor Performance Test (FMS)	Control	15	27	3.60	0.001
	Experimental	15			

* Significant at the 0.01 level.
in the control and experimental groups. As per Table 1, the Theraband exercise protocol significantly impacted balance and motor performance in the studied samples.

According to Table 1, in the post-test, there was a significant difference between the control and experimental groups. This finding reflects the effect of exercise on balance and motor performance.

4. Discussion

that the obtained data revealed the selected exercises of Theraband were associated with improved static and dynamic balance in the investigated wrestlers; thus, the collected results were consistent with those of research studies in different sports fields and different groups with and without injury. Khodabakhshi et al. reported the positive impact of these exercises on the dynamic balance of young footballers [14]. Han et al. also emphasized the positive effect of 4 weeks of Theraband resistance training on improving dynamic balance in both groups of with and without chronic ankle instability [9]. The current study results were in line with those of other research studies regarding the effect of Theraband resistance training on balance.

The increased balance is essentially essential in the lower limbs, deep receptor activity, and neuromuscular control. It also leads to maintaining balance in the course of action and gaining the most scores. Therefore, one of the reasons for the improvement of balance as a result of resistance training in this study can be related to the increase in strength of lower extremities of the study subjects after participating in resistance training protocol.

5. Conclusion

The current study results suggested that the selected Theraband resistance training program could improve the static and dynamic balance in the studied wrestlers. The intervention also increased the scores of those who are susceptible to impaired functional movement screening. Therefore, it seems that athletes in this field, along with specialized wrestling and free weights-lifting training, could also use Theraband training to improve the movement pattern and activate muscles throughout the range of motion. This helps to reduce injury and improve their movement patterns.

Ethical Considerations

Compliance with ethical guidelines

Informed consent was obtained from the all participants and they were informed of the study method and objectives. They also were assured of the confidentiality of their personal information and were free to leave the study at any time.

Funding

This study was extracted from the PhD. thesis of the first author approved by the Department of Corrective Exercise and Sport Injury at Islamic Azad University of Khorasgan branch, and received no financial support from any organization.

Authors' contributions

Conceptualization, methodology, original draft preparation, editing & review: Milad Sadeghi and Reza Mahdavi Nejad; Resources: Milad Sadeghi; Visualization, supervision, project administration: Reza Mahdavi Nejad.

Conflicts of interest

The authors declare no conflict of interest.
تأثیر هشت هفته تمرینات مناسب تراباند بر تعادل و عملکرد حرکتی کشتی‌گیران نوجوان شهرستان

پیام آموزشی

* نویسنده مسئول

میلاد صادقی

اصفهان، دانشگاه آزاد اسلامی، واحد خوراسگان، دانشکده تربیت بدنی و علوم ورزشی، گروه گزارش و محاسباتی اسلامی

مقدمه

بدون شک کشتی از پرطرفدارترین و مردمی ترین رشته‌های ورزشی در ایران به شمار می‌رود. ملیه رهایی‌ای این رشته در سطح بین‌المللی هم به‌طور گسترده بازی می‌کند. از کنار این مسئولیت و مسئولیت، ترکیبی از عواملی می‌تواند این رشته را از لحاظ نیروی ورزشی به‌صورت مثبت و نیز منجر به وقوع آسیب‌های زیاد در این رشته کند.

بدون شک کشتی از پرطرفدارترین و مردمی ترین رشته‌های ورزشی در ایران به شمار می‌رود. ملیه رهایی‌ای این رشته در سطح بین‌المللی هم به‌طور گسترده بازی می‌کند. از کنار این مسئولیت و مسئولیت، ترکیبی از عواملی می‌تواند این رشته را از لحاظ نیروی ورزشی به‌صورت مثبت و نیز منجر به وقوع آسیب‌های زیاد در این رشته کند.

در پژوهش حاضر به بررسی تاثیر هشت هفته تمرینات تراباند بر تعادل و عملکرد حرکتی کشتی‌گیران نوجوان شهرستان بافت پرداخته شد.

مرد کشتی‌گیر بودند که به صورت غیرتصادفی هدف دار انتخاب و به دو گروه آزمون و کنترل تقسیم شدند. برای جمع‌آوری اطلاعات جمعیت شناختی و سابقه ورزشی از پرسش‌نامه استفاده شد.

متر، 1/74:

سال، قد 17/07:

روش‌ها

به ترتیب از آزمون‌های تعادلی لک لک، وای و آزمون عملکرد حرکتی استفاده شد.

نتایج پژوهش نشان داد که تفاوت معنی‌داری بین تعادل ایستا و تعادل پویا در دو گروه وجود دارد.

گفتمان

کشتی، تراباند، آزمون عملکرد حرکتی، تعادل ایستا، تعادل پویا

کلیدواژه‌ها:

پژوهش‌های کشوری مشابه این موضوع در تحقیقاتی انجام گرفته که نشان داده که اجرای برنامه‌ای کم‌هزینه در بهبود تعادل و عملکرد مؤثر باشد. با توجه به نتایج به نظر می‌رسد ورزشکاران این رشته به‌علاوه تمرینات تخصصی و کار با وزنه‌ها، از تمرینات با تراباند نیز استفاده کنند تا با بهبود الگوی حرکتی میزان آسیب را کاهش دهند و الگوهای حرکتی خود را بهبود بخشند.

1. Functional Movement Screening Test (FMS)
درصد)، هفته سوم
روز در هفته انجام شد. در هفته پنجم و پروتکل تمرینی تحقیق حاضر شامل هشت هفته تمرینات تراباند
حرکتی از حرکت کسب می کند؛ همچنین اگر فرد حرکت را با
امتیاز دهی آن به این صورت است که اگر فرد حرکت صحیح را بدون
بالا آوردن فعال پا، شنای پایداری تنه و پایداری چرخشی است. نحوه
تحرک پذیری شانه، حرکات عملکردی استفاده شد. این آزمون شامل هفت آزمون
غربالگری حرکت دادن پا و یا جدا شدن دست ها از کمر حفظ
کند. آزمون سه بار انگشتان یک پای خود ایستاده بود، تلاش می
کرد تعادل خود را بدون زانوی پای مسلط گذاشت. سپس آزمودنی با
فرمان "حاضر" و در حالی که دست ها روی کمر بود، انگشتان پای دیگر را روی
آن به این صورت بود که آزمودنی روی پای مسلط (برتر) می ایستاد
برای ارزیابی تعادل ایستایی از آزمون لک لک استفاده شد. نحوه
اجرای آزمون ورزشکار را درگیر کند و موجب بهبود قدرت و استقامت
به نظر می رسد در برنامه های مرتبط با بهبود عملکرد
می تواند در توان بخشی آسیب های اندام فوقانی و کمر درد اثرگذار
باشد. این آزمون شامل دو آزمون از جمله کمردرد و یا آسیبی را نداشتند. در این پژوهش قد آزمودنی ها با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگین محاسبه شده به عنوان اطلاعات
پا استفاده شد. همچنین با استفاده از این اطلاعات که آزمودنی با
میانگین گرفته شد، سپس میانگی
تجربه بررسی تأثیر هشت هفته تمرینات تراباند بر تعادل و عملکرد حرکتی

میانگین و انحراف استاندارد مشخصات فردی آزمودنی‌ها شامل سن، قد، وزن و شاخص توده بدنی در جدول شماره 1 ارائه شده است که هر گروه شامل 15 کشتی‌گیر بود. با توجه به نرمال بودن داده‌های تعادل ایستا و پویا که با آزمون شاپیرو-ویلک مشخص شد، از آزمون‌های تی مستقل و تی هم بسته (جدول‌های P=0/27، t=-1/10، P=0/40، t=-0/84) برای مقایسه دو گروه استفاده شد. مقایسه دو گروه در پیش آزمون نشان داد که تفاوت معنی‌داری بین تعادل ایستا (P=0/57)، خلفی داخلی (P=0/35) و نیز ورزشگری عملکرد حرکتی (P=0/21) دو گروه کنترل و آزمایش وجود ندارد. همچنین جدولهای نتایج و اطلاعات جمع‌آوری شده از روشهایی شده در جدول‌های اصلی و ضرایبی مناسبی بین نتایج آزمودنی‌ها و استانداردهای آزمون‌های مربوطه وجود ندارد (تصویر شماره 1).
در این پژوهش مشخص شد که تمرینات انتخابی تراباند با بهبود تعادل و عملکرد حرکتی همراه بوده‌اند.

بی‌اعتمادی‌ها و عملکرد حرکتی را در دو گروه کنترل و آزمایش بررسی کردند. نتایج نشان داد که تفاوت معنی‌داری در عملکرد حرکتی و تعادل بین دو گروه وجود نداشت.

جدول 1: نتایج مطالعه بر اساس پیش‌آزمون و پس‌آزمون.

آزمایش	کنترل		
پیش‌آزمون	پس‌آزمون	پیش‌آزمون	پس‌آزمون
میانگین	مقیاس استاندارد	میانگین	مقیاس استاندارد
گروه	سین (سال)	ارتفاع	شبکه ورزشی (سال)
گروه	1398	1398	
گروه	689	689	
گروه	76	76	
گروه	54	54	
گروه	32	32	
گروه	20	20	
گروه	8	8	
گروه	6	6	
گروه	4	4	
گروه	2	2	
گروه	1	1	
گروه	0	0	

جدول 2: نتایج مطالعه بر اساس پیش‌آزمون و پس‌آزمون.

آزمایش	کنترل		
پیش‌آزمون	پس‌آزمون	پیش‌آزمون	پس‌آزمون
میانگین	مقیاس استاندارد	میانگین	مقیاس استاندارد
گروه	سین (سال)	ارتفاع	شبکه ورزشی (سال)
گروه	1398	1398	
گروه	689	689	
گروه	76	76	
گروه	54	54	
گروه	32	32	
گروه	20	20	
گروه	8	8	
گروه	6	6	
گروه	4	4	
گروه	2	2	
گروه	1	1	
گروه	0	0	

جدول 3: نتایج مطالعه بر اساس پیش‌آزمون و پس‌آزمون.

آزمایش	کنترل		
پیش‌آزمون	پس‌آزمون	پیش‌آزمون	پس‌آزمون
میانگین	مقیاس استاندارد	میانگین	مقیاس استاندارد
گروه	سین (سال)	ارتفاع	شبکه ورزشی (سال)
گروه	1398	1398	
گروه	689	689	
گروه	76	76	
گروه	54	54	
گروه	32	32	
گروه	20	20	
گروه	8	8	
گروه	6	6	
گروه	4	4	
گروه	2	2	
گروه	1	1	
گروه	0	0	
مجله بیومکانیک ورزشی

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات الکترومیوگرافی بر تعادل و عملکرد حرکتی

جدول ۳. نتایج آزمون مسیرپیمایی تمرینی مسابقه‌ای که در پرسنل‌های تمرینی است

متغیر	گروه	df	اختلاف میانگین	t	P	Lower	Upper	df	اختلاف میانگین	t	P	Lower	Upper
آزمون لک لک	کنترل	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72
آزمون لک لک	آزمایش	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72
آزمون لک لک	کنترل	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72
آزمون لک لک	آزمایش	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72
آزمون لک لک	کنترل	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72
آزمون لک لک	آزمایش	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72
آزمون لک لک	کنترل	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72
آزمون لک لک	آزمایش	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72	28	-6/44 - 6/36	-2/72	.001	-8/74	-3/72

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات الکترومیوگرافی بر تعادل و عملکرد حرکتی

مجله بیومکانیک ورزشی

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات الکترومیوگرافی بر تعادل و عملکرد حرکتی

مجله بیومکانیک ورزشی

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات الکترومیوگرافی بر تعادل و عملکرد حرکتی

مجله بیومکانیک ورزشی

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات الکترومیوگرافی بر تعادل و عملکرد حرکتی

مجله بیومکانیک ورزشی

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات الکترومیوگرافی بر تعادل و عملکرد حرکتی

مجله بیومکانیک ورزشی

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات الکترومیوگرافی بر تعادل و عملکرد حرکتی
نتیجه‌گیری‌های نهایی

به‌طور کلی نتایج این مطالعه نشان داد که برنامه تمرینی منبجوم آزمون‌های مقاومتی می‌تواند تعادل ایستا و پویا و نیز ایستا و یا توسط افرادی که بهبود آماده‌اند را بهبود بخشند.

کلاusal: ممکن است افرادی که بهبود آماده‌اند از تمرین‌های منبجوم آزمون‌های مقاومتی بهتر استفاده کنند.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

تمامی آزمودنی‌های تحقیق حاضر با رضایت کامل در پژوهش شرکت کردند و در تمامی مراحل تحقیق آگاه بودند. همچنین با آگاهی از محرمانه بودن اطلاعات شخصی شان، اختیار کامل برای خروج در هر یک از مراحل تحقیق را داشتند.

مطالعات مرتبط

پژوهش‌های قبلی نشان داده‌اند که تمرین‌های منبجوم آزمون‌های مقاومتی می‌توانند بهبود تعادل ایستا و پویا و نیز ایستا و یا توسط افرادی که بهبود آماده‌اند را بهبود بخشند.

نتایج تحقیق حاضر در زمینه عملکرد حرکتی نشان داده که تمرین‌های منبجوم آزمون‌های مقاومتی می‌توانند بهبود تعادل ایستا و پویا و نیز ایستا و یا توسط افرادی که بهبود آماده‌اند را بهبود بخشند.

تأثیرات افزایشی بر عملکرد حرکتی

نتایج به دست آمده در زمینه نمره کل عملکرد حرکتی با نتایج تحقیقات نعمتی و همکاران، سانگ 20، کوون و همکاران 21، هفته تمرینات 12 و همکاران نیز در پژوهشی که به بررسی تأثیر منبجوم آزمون‌های مقاومتی بر تغییرات نمرات آزمون عملکرد حرکتی (قدرت و انعطاف‌پذیری) پرداخته بودند به تأثیر این تمرینات بازیکن بیسبال اشاره کرده‌اند.

تعارض منافع

بنا به اظهار تیم‌سازگاری، این مقاله هیچ تعارض منافعی وجود ندارد.

میلاد صادقی و رضا مهدوی نژاد. تأثیر هشت هفته تمرینات منبجوم آزمون‌های مقاومتی بر تعادل و عملکرد حرکتی
References

[1] Hewett TE, Pasque C, Heyl R, Wroble R. Wrestling injuries. Medicine and Sport Science. 2005; 48:152-78. [DOI:10.1159/000084288] [PMID]

[2] Junge A, Ergebretsen L, Mountjoy ML, Alonso JM, Renström PA, Aubry M, et al. Sports injuries during the Summer Olympic Games 2008. The American Journal of Sports Medicine. 2009; 37(11):2165-72. [DOI:10.1177/0363546509339357] [PMID]

[3] Lin ZP, Chen YH, Chia F, Wu HJ, Lan LW, Lin JG. Episodes of injuries and frequent usage of traditional Chinese medicine for Taiwanese elite wrestling athletes. The American Journal of Chinese Medicine. 2011; 39(2):233-41. [DOI:10.1142/S0192415X11008774] [PMID]

[4] Bahr R, Kroshaug T. Understanding injury mechanisms: A key component of preventing injuries in sport. British Journal of Sports Medicine. 2005; 39(6):324-9. [DOI:10.1136/bjsm.2005.018341] [PMID] [PMCID]

[5] Cook G, Burton L, Hoogenboom B. Pre-participation screening: The use of fundamental movements as an assessment of function - part 1. North American Journal of Sports Physical Therapy. 2006; 1(2):62-72. [PMID] [PMCID]

[6] Chorbos RS, Chorbos DJ, Bouillon LE, Overmyer CA, Landis JA. Use of a functional movement screening tool to determine injury risk in female collegiate athletes. North American Journal of Sports Physical Therapy. 2010; 5(2):47-54. [PMID] [PMCID]

[7] Okada T, Huex KC, Nessar TW. Relationship between core stability, functional movement, and performance. The Journal of Strength & Conditioning Research. 2011; 25(1):252-61. [DOI:10.1519/JSC.0b013e3181b22b3e] [PMID]

[8] Ciocac E, Garcez-Leme L, Greve J. Resistance exercise intensity progression in older men. International Journal of Sports Medicine. 2010; 31(6):433-8. [DOI:10.1055/s-0030-1249087] [PMID]

[9] Han K, Ricard MD, Fellingham GW. Effects of a 4-week exercise program on balance using elastic tubing as a perturbation force for individuals with a history of ankle sprains. Journal of Orthopaedic & Sports Physical Therapy. 2009; 39(4):246-55. [DOI:10.2519/jospt.2009.2958] [PMID]

[10] Dashti P, Shabani M, Moazzami M. [Comparison of the effects of two selected exercises of Theraband and Pilates on the balance and strength of lower limb in elderly women (Persian)]. The Iranian Journal of Obstetrics, Gynecology and Infertility. 2015; 18(153):1-9.

[11] Jelilek HF, Khalaf K, Poiket J, Khandoker AH, Heale L, Donnan LA. The effect of ankle support on lower limb kinematics during the Y-balance test using nonlinear dynamic measures. Frontiers in Physiology. 2019; 10:935. [DOI:10.3389/fphys.2019.00935] [PMID] [PMCID]

[12] Reiman MP, Manske RC. Functional testing in human performance. Champaign: Human Kinetics; 2009.

[13] Erfanian Zorufi F, Moazzami M, Mohamadi MR. [The effect of resistance training on static balance and pain in elderly women with varus knee and osteoarthritis by using elastic band (Persian)]. Journal of Paramedical Sciences & Rehabilitation. 2016; 5(2):14-24. [DOI:10.22038/JPsr.2016.6907]

[14] Khodabakhshi M, Hashemi Javaheri SAA, Ebrahimi Atri A, Ebadi Fara M. [Effects of 8 weeks of resistance training with traband on dynamic balance in young soccer players (Persian)]. Journal of Sport Biomechanics. 2016; 2(2):43-53.

[15] Wikstrom EA, Powers ME, Tillman MD. Dynamic stabilization time after isokinetic and functional fatigue. Journal of Athletic Training. 2004; 39(3):247-53. [PMID] [PMCID]

[16] Nechev L, Lundborg G, Friden J. Hand muscle weakness in long-term vibration exposure. Journal of Hand Surgery. 2002; 27(6):520-5. [DOI:10.1054/jhsb.2002.0810] [PMID]

[17] Mok NW, Yeung EW, Cho JC, Hui SC, Liu KC, Pang CH. Core muscle activity during suspension exercises. Journal of Science and Medicine in Sport. 2015; 18(2):189-94. [DOI:10.1016/j.jsams.2014.01.002] [PMID]

[18] Mahieu NN, Witvrouw E, Van de Voorde D, Michilsens D, Arbyn V, Van den Broeck W. Improving strength and postural control in young skiers. Whole-body vibration versus equivalent resistance training. Journal of Athletic Training. 2006; 41(3):286-93. [PMID] [PMCID]

[19] Nemati N, Norasteh AA, Alizadeh MH. The effect of FIFA+ 11 program on functional movement screen scores of junior soccer players. Annals of Applied Sport Science. 2017; 5(3):23-9. [DOI:10.29252/acadpub.aassjournal.5.3.23]

[20] Cowen VS. Functional fitness improvements after a worksite-based yoga initiative. Journal of Bodywork and Movement Therapies. 2010; 14(1):50-4. [DOI:10.1016/j.jbmt.2009.02.006] [PMID]

[21] Song HS, Woo SS, So WY, Kim KJ, Lee J, Kim KY. Effects of 16-week functional movement screen training program on strength and flexibility of elite high school baseball players. Journal of Exercise Rehabilitation. 2014; 10(2):124-30. [DOI:10.12965/jer.140101] [PMID] [PMCID]