Spin polarization ratios of resistivity and density of states estimated from anisotropic magnetoresistance ratio for nearly half-metallic ferromagnets

Satoshi Kokado1,*, Yuya Sakuraba2, and Masakiyo Tsunoda3

1Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
2National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
3Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

We derive a simple relational expression between the spin polarization ratio of resistivity, P_{ρ}, and the anisotropic magnetoresistance ratio $\Delta \rho/\rho$, and that between the spin polarization ratio of the density of states at the Fermi energy, P_{DOS}, and $\Delta \rho/\rho$ for nearly half-metallic ferromagnets. We find that P_{ρ} and P_{DOS} increase with increasing $|\Delta \rho/\rho|$ from 0 to a maximum value. In addition, we roughly estimate P_{ρ} and P_{DOS} for a Co$_2$FeGa$_{0.5}$Ge$_{0.5}$ Heusler alloy by substituting its experimentally observed $\Delta \rho/\rho$ into the respective expressions.

The anisotropic magnetoresistance (AMR) effect1-10 in which the electrical resistivity depends on the magnetization direction, has been investigated using relatively easy experimental techniques for the last 160 years. The efficiency of the effect “AMR ratio” is generally defined by

$$\Delta \rho/\rho = (\rho_\parallel - \rho_\perp)/\rho_\perp,$$

where ρ_\parallel (ρ_\perp) is the resistivity in the case of the electrical current parallel (perpendicular) to the magnetization. We recently derived the general expression of $\Delta \rho/\rho$ and found that $\Delta \rho/\rho<0$ is a necessary condition for a half-metallic ferromagnet (HMF).8,9 The HMF is defined as having a finite density of states (DOS) at the Fermi energy E_F in one spin channel and zero DOS at E_F in the other spin channel [see Fig. 1(c)]. Namely, the magnitude of the spin polarization ratio of the DOS at E_F, $|P_{\text{DOS}}|$, is 1, where P_{DOS} is

$$P_{\text{DOS}} = (D_\uparrow - D_\downarrow)/(D_\uparrow + D_\downarrow),$$

with D_\uparrow (D_\downarrow) being the DOS of the up spin (down spin) at E_F. The above condition has been
On the other hand, in recent years, a current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) effect for ferromagnet/nonmagnetic-metal/ferromagnet pseudo spin valves has been actively studied for application to read sensors of future ultrahigh-density magnetic recording. In particular, studies to enhance the magnitude of the GMR effect are being carried out intensively. Here, the magnitude of this effect is represented by the resistance change area product ΔRA, with $\Delta R=R_P-R_AP$, where R_P (R_AP) is the resistance of the parallel (antiparallel) magnetization and A is the area of the sample. According to the CPP-GMR theory by Valet and Fert, ΔRA is expressed by the spin polarization ratio of the resistivity of ferromagnets (the so-called bulk spin asymmetry coefficient), P_ρ, and so on. Here, P_ρ is defined as

$$P_\rho = (\rho_\uparrow - \rho_\downarrow)/(\rho_\uparrow + \rho_\downarrow),$$

(3)

where ρ_\uparrow (ρ_\downarrow) is the resistivity of the up spin (down spin) of ferromagnets. The increase in P_ρ tends to increase ΔRA. For example, when ferromagnets are Heusler alloys, ΔRA becomes relatively large.

Recently, Sakuraba et al. have experimentally observed the positive correlation between $|\Delta \rho/\rho|$ of the Co$_2$FeGa$_{0.5}$Ge$_{0.5}$ (CFGG) Heusler alloy and ΔRA of CFGG/Ag/CFGG pseudo spin valves. Here, this CFGG was regarded as a nearly HMF, in which there is a low DOS of the down spin at E_F [see Fig. 1(c)]. The correlation was considered on the basis of the relation between $\Delta \rho/\rho$ and P_ρ mediated by D_\downarrow/D_\uparrow. A relational expression between $\Delta \rho/\rho$ and P_ρ and that between $\Delta \rho/\rho$ and P_{DOS}, however, have scarcely been derived. Such expressions may make it possible to estimate P_ρ and P_{DOS} from the relatively easy AMR measurements.

In this paper, we derived a simple relational expression between P_ρ and $|\Delta \rho/\rho|$ and that between P_{DOS} and $\Delta \rho/\rho$ for nearly HMFs using the two-current model. We found that P_ρ and P_{DOS} increased with increasing $|\Delta \rho/\rho|$. We also estimated P_ρ and P_{DOS} for CFGG by substituting its experimentally observed $|\Delta \rho/\rho|$ into the respective expressions.

We first report the general expression of $\Delta \rho/\rho$, which was previously derived by using the two-current model with the s-s and s-d scatterings. Here, s denotes the conduction state of s, p, and conductive d states, and d represents localized d states. The localized d states were obtained from a Hamiltonian with a spin–orbit interaction and an exchange field H_{ex}. The AMR ratio $\Delta \rho/\rho$ was finally expressed as

$$\Delta \rho/\rho = -c(1 - x_d) \left[1 - Z beta_1 x_s/(beta_1 r_m^4) \right] / \left[1 + Z beta_1 x_s/r_m^4 \right],$$

(4)

where $c=\gamma/[(beta_1 y_\uparrow)^{-1} + 1] (>0)$, $Z=(1 + beta_1 y_\uparrow)/[1 + (x_d/x_s) beta_1 y_\uparrow]$, $\gamma=(3/4)(\lambda/H_{ex})^2$, $r_m=m_\uparrow^*/m_\downarrow^*$,
\[x_s = D_{s1}/D_{s\uparrow}, x_d = D_{d\uparrow}/D_{d\uparrow}, y_1 = D_{d\uparrow}/D_{s1}, \beta_0 = n_{imp} N_n V_{\sigma \rightarrow d\sigma}^\downarrow/(n_{imp} |V_s^{imp}|^2 + |V_s^{ph}|^2), \text{ and } \sigma = \uparrow \text{ or } \downarrow. \]

Here, \(\lambda \) is the spin–orbit coupling constant, \(n_{imp} \) is the impurity density, \(N_n \) is the number of nearest-neighbor host atoms around the impurity, \(V_{\sigma \rightarrow d\sigma} \) is the matrix element for the \(s-d \) scattering due to nonmagnetic impurities, \(V_s^{imp} \) is that for the \(s-s \) scattering due to the impurities, and \(V_s^{ph} \) is that for the \(s-s \) scattering due to phonons.\(^{15}\)

The quantity \(D_{s\sigma} \) is the partial DOS of the conduction state of the \(\sigma \) spin at \(E_F \) and \(D_{d\sigma} \) (\(\zeta = \uparrow \) or \(\downarrow \)) is the partial DOS of the localized \(d \) state of the magnetic quantum number \(M \) and the \(\zeta \) spin at \(E_F \) [see Fig. 1(a)].\(^{8}\)

In addition, \(m^* \) is an effective mass of electrons in the conduction band of the \(\sigma \) spin, which is expressed as \(h^2(d^2 E_\sigma/dk_\sigma^2)^{-1} \), where \(E_\sigma \) is the energy of the conduction state of the \(\sigma \) spin, \(k_\sigma \) is the wave vector of the \(\sigma \) spin in the current direction [see Fig. 1(b)], and \(h \) is the Planck constant \(h \) divided by \(2\pi \).\(^{16}\)

Note that Eq. (4) was derived under the assumption that the \(s-s \) scattering rate is proportional to \(D_{s\sigma} \) (i.e., the magnitude of the Fermi wave vector of the \(\sigma \) spin).\(^{8}\)

In the metallic case of Fig. 1(a), therefore, Eq. (4) is effective at 0 K and in the temperature \(T \) range of the \(T \)-linear resistivity including 300 K.\(^{15}\)

On the other hand, in the HMF case of Fig. 1(c), Eq. (4) is effective at 0 K and for \(k_B T \ll E_c - E_F \) and \(k_B T \ll E_F - E_v \), where \(E_c \) (\(E_v \)) is the energy at the bottom of the conduction band (at the top of the valence band) of the down spin and \(k_B \) is the Boltzmann constant. This restriction reflects that Eq. (4) does not take into account the thermal excitation of carriers.

From Eq. (4), we next obtain a simple expression of \(\Delta \rho/\rho \) with \(x_s = x_d = x \) to clearly show the effect of the DOS on \(\Delta \rho/\rho \). Here, \(x \) is assumed to be \(0 \leq x < 1 \), where \(x=0 \) (\(x\neq0 \)) corresponds to the HMF (non-HMF) [see Fig. 1(c)]. In addition, we set \(\beta_1 = \beta_\downarrow = \beta \) for simplicity. Such simplifications permit only a rough estimation of \(\Delta \rho/\rho \). Equation (4) then becomes

\[
\Delta \rho/\rho = -c(1-x)(r_m^4 - x)/(r_m^4 + x^2).
\]

Figure 1(d) shows the \(x \) dependence of \(\Delta \rho/\rho \) of Eq. (5), with \(r_m = 0.3, 0.5, 0.7, \) and 1. Each \(\Delta \rho/\rho \) takes \(-c\) at \(x=0 \) and a positive maximum value at \(x=r_m^4 \) (\(r_m \neq 1 \)) and becomes closer to 0 as \(x \) approaches 1. This behavior indicates that \(\Delta \rho/\rho < 0 \) is the necessary condition for HMFs.

For Eq. (5), we now focus on nearly HMF cases with \(\Delta \rho/\rho < 0;\)\(^{17}\) that is, \(\Delta \rho/\rho \) is set to be \(-|\Delta \rho/\rho| \). Utilizing Eq. (5) with \(\Delta \rho/\rho = -|\Delta \rho/\rho| \), we derive the relational expression between \(P_{\text{DOS}} \) and \(\Delta \rho/\rho \), and that between \(P_{\rho} \) and \(\Delta \rho/\rho \). The details are written as (i)–(iii):

(i) The quantity \(x \) is obtained as solutions of Eq. (5), i.e.,

\[
x = 0, \text{ for } |\Delta \rho/\rho|/c = 1,
\]

\[
x = a - b \neq 0, \text{ for } 0 < |\Delta \rho/\rho|/c < 1,
\]

\[
x = 0, \text{ for } |\Delta \rho/\rho|/c = 1.
\]
where \(a = (1/2)(r_m^4 + 1)/(1 - |\Delta \rho/\rho|/c) \), \(b = (1/2) \sqrt{d} \), and \(d = [(r_m^4 + 1)/(1 - |\Delta \rho/\rho|/c)]^2 - 4r_m^4 \).

Equations (6) and (7) correspond to the HMF and nearly HMF\(^{17}\) cases, respectively. As to Eq. (7), we originally obtain \(x = a \pm b \), where \(0 < x < 1 \) and \(x > 1 \). From the assumption of \(0 \leq x < 1 \), we choose \(x \), i.e., Eq. (7). The range \(0 < |\Delta \rho/\rho|/c < 1 \) of Eq. (7) is determined by considering \(d \geq 0 \) for \(0 \leq |\Delta \rho/\rho|/c \leq 1 + (r_m^4 + 1)/(2r_m^4) \) and \(x > 0 \) for \(0 < |\Delta \rho/\rho|/c < 1 \), where \(|a| > b|\).

(ii) The spin polarization ratio \(P_{\text{DOS}} \) of Eq. (2) is written as
\[
P_{\text{DOS}} = (1 - x)/(1 + x),
\]
with \(D_{\uparrow \downarrow(\downarrow \uparrow)} = D_{\uparrow \downarrow(\downarrow \uparrow)} + \sum_{m=-2}^2 D_{d \uparrow(\downarrow)} \) and \(x = x_d = x \). In the HFM case of Eq. (6), \(P_{\text{DOS}} \) becomes 1. In the nearly HMF case of Eq. (7), \(P_{\text{DOS}} \) is obtained by substituting \(x \) of Eq. (7) into Eq. (8):
\[
P_{\text{DOS}} = \left[(r_m^4 + 1)(2 - |\Delta \rho/\rho|/c) \right]^{-1} \left(1 - |\Delta \rho/\rho|/c \right)(1 - r_m^4) + \sqrt{(r_m^4 + 1)^2 - 4r_m^4(1 - |\Delta \rho/\rho|/c)^2}.
\]

(iii) The spin polarization ratio \(P_{\rho} \) of Eq. (3) is obtained by using \(\rho_\uparrow = \rho_{\sigma \uparrow} + \rho_{s \downarrow \rightarrow d \uparrow} \) and \(\rho_\downarrow = \rho_{\sigma \downarrow} + \rho_{s \uparrow \rightarrow d \downarrow} \) in the two-current model,\(^8\) where \(\rho_{\sigma \sigma'} \) (\(\rho_{s \sigma d} \)) is the resistivity due to the \(s-s \) scattering (\(s-d \) scattering).\(^{15}\) In \(\rho_\uparrow \) and \(\rho_\downarrow \), terms with \(\gamma \) are ignored because the effect of \(\gamma \) on \(P_{\rho} \) is negligibly small.\(^{18}\) As a result, \(P_{\rho} \) is written as
\[
P_{\rho} = \frac{r_m^4(1 + \beta_\uparrow y_\uparrow) - x_\uparrow^2(1 + \beta_\downarrow y_\downarrow)}{r_m^4(1 + \beta_\downarrow y_\downarrow) + x_\uparrow^2(1 + \beta_\uparrow y_\uparrow)},
\]
where \(y_\uparrow = D_{d \uparrow}/D_{d \downarrow} \), \(\rho_{\sigma \uparrow}/\rho_{\sigma \downarrow} = r_m^4/x_\uparrow^2 \), \(\rho_{\sigma \sigma'}/\rho_{s \sigma d} = \beta_\sigma (D_{d \sigma}/D_{\sigma \sigma'}) \), \(\rho_{s \sigma \sigma'}/\rho_{s \sigma d} = \beta_{\sigma \sigma'} (D_{d \sigma'}/D_{\sigma \sigma'}) \) in Ref. 8, with \(\sigma, \sigma' \), and \(s = \uparrow \) or \(\downarrow \). When \(x = x_d = x \) (i.e., \(y_\uparrow = y_\downarrow \)) and \(\beta_\uparrow = \beta_\downarrow = \beta \), Eq. (10) is rewritten as
\[
P_{\rho} = (r_m^4 - x^2)/(r_m^4 + x^2).
\]
In the HMF case of Eq. (6), \(P_{\rho} \) becomes 1.\(^{19}\) In the nearly HMF case of Eq. (7) (i.e., metallic case), \(P_{\rho} \) is obtained by substituting \(x \) of Eq. (7) into Eq. (11):
\[
P_{\rho} = (r_m^4 + 1)^{-1} \sqrt{(r_m^4 + 1)^2 - 4r_m^4(1 - |\Delta \rho/\rho|/c)^2}.
\]

In Figs. 2(a) and 2(b), we show the \(|\Delta \rho/\rho|/c \) dependences of \(P_{\rho} \) of Eq. (12) and \(P_{\text{DOS}} \) of Eq. (9), respectively, where \(r_m = 0.3, 0.5, 0.7, \) and 1. We find the positive correlation between \(P_{\rho} \) and \(|\Delta \rho/\rho|/c \), and that between \(P_{\text{DOS}} \) and \(|\Delta \rho/\rho|/c \). Namely, \(P_{\rho} \) and \(P_{\text{DOS}} \) increase to 1 with increasing \(|\Delta \rho/\rho|/c \) from 0 to 1 (maximum value). The reason for this is that the increase in \(|\Delta \rho/\rho|/c \) decreases \(x \) [see Fig. 2(c)] and then the decrease in \(x \) increases \(P_{\rho} \) and \(P_{\text{DOS}} \) [see Fig. 2(d)]. Furthermore, \(P_{\rho} \) and \(P_{\text{DOS}} \) increase with decreasing \(r_m \). The reason for this is that
the decrease in \(r_m \) reduces the maximum value of \(x \) [see Fig. 2(c)] and narrows the range of \(x \), and then that feature of \(x \) increases \(P_\rho \) and \(P_{\text{DOS}} \) [see Fig. 2(d)].

As an application, we investigate \(P_\rho \) and \(P_{\text{DOS}} \) for CFGG. Regarding parameters, we first set \(\gamma = 0.01 \) as a typical value.\(^8\) The quantity \(y_\uparrow \) is roughly estimated to be 10 from the partial DOSs of similar Heusler alloys.\(^20\) Next, we consider the uncertain parameter \(\beta \), which includes information on impurities and phonons. Although \(\beta \) actually depends on materials, we determine \(\beta \) from the \(\beta \) dependence of \(\Delta \rho/\rho \) for Fe, Co, Ni, and Fe\(_4\)N in Fig. 1(e), where the respective parameters are noted in Table I. By comparing the calculation results of Eq. (4) with the experimental results of \(\Delta \rho/\rho \) at 300 K in Table I, \(\beta \) is roughly evaluated to be 0.1 [see Fig. 1(e)]. This \(\beta = 0.1 \) is used for the present systems. The constant \(c \) is thus determined to be 0.005; that is, \(|\Delta \rho/\rho| \) can take \(c = 0.005 \) at 300 K for the HMF of \(x = 0.24 \).\(^24\) This \(c \) increases with decreasing \(T \) due to the decrease in \(|V_{\uparrow}^{\text{ph}}|^2 \). Judging from the experimental result of \(\Delta \rho/\rho \sim -0.003 \) at 10 K in Ref. 6 (i.e., \(|\Delta \rho/\rho| < 0.005 \)), the present CFGG appears to be a nearly HMF at 10 K. Under the assumption that the CFGG is a nearly HMF at 300 K as well as at 10 K, we roughly estimate the annealing temperature \(T_{\text{ann}} \) dependences of \(P_\rho \) and \(P_{\text{DOS}} \) for CFGG by substituting its experimental result of \(\Delta \rho/\rho \) at 300 K [see triangles in Fig. 3(a)] into Eqs. (12) and (9), respectively. The white circles in Figs. 3(a) and 3(b) indicate the \(T_{\text{ann}} \) dependences of \(P_\rho \) and \(P_{\text{DOS}} \), respectively, where \(r_m = 0.3, 0.5, 0.7, \) and 0.87.\(^25\) We find that \(P_\rho \) and \(P_{\text{DOS}} \) increase with increasing \(|\Delta \rho/\rho| \) and decreasing \(r_m \) in the same trend as the results in Fig. 2. Such \(P_\rho \) is compared with the previous values at \(T_{\text{ann}} = 500 \) and 600 °C in Table II [see black dots in Fig. 3(a)], which were evaluated by fitting Valet–Fert’s expression\(^11\) to the experimental results of the CFGG thickness dependence of \(\Delta \text{RA} \) at 300 K.\(^12,13\) Since \(P_\rho \) at \(r_m = 0.87 \) agrees with the previous values, we choose \(r_m = 0.87 \) for the present system (see Fig. 3 and Table II).\(^25,26\) Table II also shows \(P_{\text{DOS}} \) (≠1) at \(r_m = 0.87 \). In general, \(P_{\text{DOS}} \neq 1 \) is considered to originate from atomic disorders,\(^7\) the decrease in \(|H_{\text{ex}}| \),\(^8\) and so on. The origin of the present \(P_{\text{DOS}} \neq 1 \), however, has not yet been identified.

In summary, we derived the simple relational expression between \(P_\rho \) and \(\Delta \rho/\rho \), and that between \(P_{\text{DOS}} \) and \(\Delta \rho/\rho \) for nearly HMFs. In these expressions, \(P_\rho \) and \(P_{\text{DOS}} \) increased to 1 with increasing \(|\Delta \rho/\rho|/c \) from 0 to 1 (maximum value). In addition, we roughly estimated \(P_\rho \) and \(P_{\text{DOS}} \) for CFGG using the respective expressions.
References

1) W. Thomson, Proc. R. Soc. London 8, 546 (1856-1857).
2) T. R. McGuire, J. A. Aboaf, and E. Klokholm, IEEE Trans. Magn. 20, 972 (1984).
3) T. Miyazaki and H. Jin, The Physics of Ferromagnetism (Springer, New York, 2012) Sect. 11.4.
4) M. Tsunoda, H. Takahashi, S. Kokado, Y. Komadoski, A. Sakuma, and M. Takahashi, Appl. Phys. Express 3, 113003 (2010).
5) F. Yang, Y. Sakuraba, S. Kokado, Y. Kota, A. Sakuma, and K. Takanashi, Phys. Rev. B 86, 020409 (2012).
6) Y. Sakuraba, S. Kokado, Y. Hirayama, T. Furubayashi, H. Sukegawa, S. Li, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 104, 172407 (2014).
7) S. Li, Y. K. Takahashi, Y. Sakuraba, N. Tsuji, H. Tajiri, Y. Miura, J. Chen, T. Furubayashi, and K. Hono, Appl. Phys. Lett. 108, 122404 (2016).
8) S. Kokado, M. Tsunoda, K. Harigaya, and A. Sakuma, J. Phys. Soc. Jpn. 81, 024705 (2012).
9) S. Kokado and M. Tsunoda, Adv. Mater. Res. 750-752, 978 (2013).
10) S. Kokado and M. Tsunoda, J. Phys. Soc. Jpn. 84, 094710 (2015).
11) T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
12) H. S. Goripati, T. Furubayashi, Y. K. Takahashi, and K. Hono, J. Appl. Phys. 113, 043901 (2013).
13) S. Li, Y. K. Takahashi, T. Furubayashi, and K. Hono, Appl. Phys. Lett. 103, 042405 (2013).
14) B. S. D. C. S. Varaprasad, A. Srinivasan, Y. K. Takahashi, M. Hayashi, A. Rajanikanth, and K. Hono, Acta Mater. 60, 6257 (2012).
15) The s–s scattering rate due to phonons is proportional to \(D_{so} T \) in the high temperature range including 300 K, with \(T \) being the temperature. We here have \(|V_{ph}^s|^2 \propto T \). As to the scattering rate due to phonons, see H. Nishimura, KisoKotaiDenshiRon (Basic Electron Theory of Solids) (Gihodo Shuppan, Tokyo, 2003) p. 137 [in Japanese].
16) C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986) 6th ed., p. 193.
17) As seen from Fig. 1(d), systems with \(r_m < 1 \) and \(\Delta \rho / \rho < 0 \) can have \(x \ll 1 \), which corresponds to nearly HMFs. In contrast, systems with \(r_m \sim 1 \) and \(\Delta \rho / \rho \sim 0 \) take a relatively large \(x \). Only these systems should actually be called non-HMFs.
18) Note that \(x \), in Eq. (10) [i.e., \(x \) of Eq. (7)] contains not \(\gamma \) but \(|\Delta \rho / \rho| / c \) with
\[0 < |\Delta \rho / \rho| / c < 1. \]

19) Note that real HMFs may exhibit \(P_\rho \lesssim 1 \) at finite \(T \) because the down-spin electrons are thermally excited from the valence band to the conduction band. Therefore, in the HMF case of \(x=0 \), Eq. (11) is valid at 0 K and appropriate for \(k_B T \ll E_c - E_F \) and \(k_B T \ll E_E - E_v \).

20) S. Sharma and S. K. Pandey, J. Phys.: Condens. Matter 26, 215501 (2014).

21) D. A. Papaconstantopoulos, *Handbook of the Band Structure of Elemental Solids* (Plenum, New York, 1986) p. 95 and 111.

22) We utilize the same \(y^\uparrow \) as that of the fcc Ni because of the same crystal structure and the small difference in the number of electrons.

23) A. Sakuma, J. Phys. Soc. Jpn. 60, 2007 (1991).

24) The CFGG with the \(L2_1 \) structure has \(E_c - E_E \sim 0.5 \text{ eV} \) and \(E_E - E_v \sim 0.2 \text{ eV,}^{14} \) which are much larger than \(k_B T = 0.026 \text{ eV} \), with \(T = 300 \text{ K}. \)

25) In this study, we consider the case of \(r_m \leq 1 \) because \(P_{\text{DOS}} \) with \(r_m > 1 \) tends to be very small. Although \(P_\rho \) with \(r_m = 1.15 \) agrees with the previous value at \(T_{\text{ann}} = 600 \text{ °C} \), \(P_{\text{DOS}} \) with \(r_m = 1.15 \) becomes 0.42, which is less than \(|P_{\text{DOS}}| \sim 0.5 \) of Co. This \(P_{\text{DOS}} = 0.42 \) appears to be inappropriate for the present CFGG,\(^6\) which is regarded as the nearly HMF.

26) As a different method from the present one, we note that \(r_m \) may be roughly evaluated from the above-mentioned equation,

\[m_{\sigma} = h^2 (d^2 E_\sigma / dk^2_\sigma)^{-1} \]

where \(E_\sigma \) is obtained by, for example, first-principles calculation.
Fig. 1. (Color online) (a) Partial DOSs of the s, p, and d states for the usual ferromagnets. (b) $E_{\uparrow}\text{ or } E_{\downarrow}$ curve of the s and p states in (a). (c) Partial DOSs of the s, p, and d states for half-metallic Heusler alloys. In the case of the nearly HMF, there is a low DOS of the down spin at E_F. (d) x dependence of $\Delta \rho/\rho/c$ of Eq. (5) with $x_s=x_d=x$, $\beta_{\uparrow}=\beta_{\downarrow}$, and $r_m=0.3$, 0.5, 0.7, and 1. (e) β dependence of $\Delta \rho/\rho$ of Eq. (4) for Fe, Co, Ni, and Fe$_4$N is shown by solid curves. Here, we set $r_m=1$ and use parameters in Table I. The black, blue, red, and purple dots show experimental results of $\Delta \rho/\rho$ at 300 K for Ni, Co, Fe, and Fe$_4$N, respectively (see Table I).
Fig. 2. (Color online) (a) $|\Delta \rho/\rho|/c$ dependence of P_ρ of Eq. (12). (b) $|\Delta \rho/\rho|/c$ dependence of P_{DOS} of Eq. (9). (c) $|\Delta \rho/\rho|/c$ dependence of x of Eq. (7). (d) x dependences of P_ρ of Eq. (11) and P_{DOS} of Eq. (8). Here, we set $r_m=0.3, 0.5, 0.7, \text{and } 1$, and $x_s=x_d=x$.

Fig. 3. (Color online) (a) The white circles show the T_{ann} dependence of P_ρ of Eq. (12) for CFGG, where $r_m=0.3, 0.5, 0.7, \text{and } 0.87$. The respective black dots denote the previously evaluated P_ρ at $T_{\text{ann}}=500^{12}$ and $600^{13} \degree C$ in Table II. The triangles show the experimental result of the T_{ann} dependence of $\Delta \rho/\rho$ at 300 K for CFGG.9 (b) The T_{ann} dependence of P_{DOS} of Eq. (9) for CFGG with $r_m=0.3, 0.5, 0.7, \text{and } 0.87$.
Table I. Parameters x_s, x_d, and y_\uparrow, and experimental values of $\Delta \rho/\rho$ at 300 K for bcc Fe, fcc Co, fcc Ni, and Fe$_4$N. Each x_s is evaluated from the values of $\rho_{s\downarrow}/\rho_{s\uparrow}$ and $\rho_{s\downarrow}/\rho_{s\uparrow}=r_m^4(D_{s\uparrow}/D_{s\downarrow})^2$ (Ref. 8) with $r_m=1$.

Material	x_s	x_d	y_\uparrow	$\Delta \rho/\rho$ (experiment)
bcc Fe	1.6	0.50	25 (Ref. 21)	0.0030 (Ref. 2)
fcc Co	0.37	10	3.5 (Ref. 22)	0.020 (Ref. 2)
fcc Ni	0.32	10	3.5 (Ref. 21)	0.022 (Ref. 2)
Fe$_4$N	25	5.0	20 (Ref. 23)	-0.0021 (Ref. 4)

Table II. Spin polarization ratios P_{DOS} of Eq. (9) and P_ρ of Eq. (12) at $T_{\text{ann}}=500$ and 600 °C for CFGG. They are the respective values at $r_m=0.87$ in Figs. 3(a) and 3(b). The previous values of P_ρ, which were evaluated on the basis of ΔRA at 300 K, are also noted.

T_{ann} (°C)	P_{DOS} of Eq. (9)	P_ρ of Eq. (12)	P_ρ (previous values)
500	0.54	0.73	0.73±0.02 (Ref. 12)
600	0.62	0.83	0.83±0.02 (Ref. 13)