BPAG1n4 is essential for retrograde axonal transport in sensory neurons

Jia-Jia Liu, Jianqing Ding, Anthony S. Kowal, Elizabeth Allen, Jean-Dominique Delcroix, Chengbiao Wu, William Mobley, Elaine Fuchs, and Yanmin Yang

1Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
2Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10021

Disruption of the BPAG1 (bullous pemphigoid antigen 1) gene results in progressive deterioration in motor function and devastating sensory neurodegeneration in the null mice. We have previously demonstrated that BPAG1n1 and BPAG1n3 play important roles in organizing cytoskeletal networks in vivo. Here, we characterize functions of a novel BPAG1 neuronal isoform, BPAG1n4. Results obtained from yeast two-hybrid screening, blot overlay binding assays, and communoprecipitations demonstrate that BPAG1n4 interacts directly with dynactin p150Glued through its unique ezrin/radixin/moesin domain. Studies using double immunofluorescent microscopy and ultrastructural analysis reveal physiological colocalization of BPAG1n4 with dynactin/dynein. Disruption of the interaction between BPAG1n4 and dynactin results in severe defects in retrograde axonal transport. We conclude that BPAG1n4 plays an essential role in retrograde axonal transport in sensory neurons. These findings might advance our understanding of pathogenesis of axonal degeneration and neuronal death.

Introduction

The BPAG1 (bullous pemphigoid antigen 1) null mouse has a fascinating and complex phenotype, displaying sensory ataxia and devastating sensory neurodegeneration (Guo et al., 1995). This degeneration is characterized by neurofilament disorganization, microtubule network abnormality, and intermittent accumulation of membranous organelles along sensory axons. The BPAG1 gene encodes multiple isoforms with BPAG1e expressed in the epidermis and the others (BPAG1n1, BPAG1n2, and BPAG1n3) expressed in neurons. Throughout normal development, mRNAs of BPAG1 neuronal isoforms are present in a variety of neurons. Postnataally, this expression is absent or reduced in motor neurons and restricted to sensory neurons (Brown et al., 1995; Dowling et al., 1997). It has been demonstrated that BPAG1n1 links intermediate filaments to actin microfilaments and that BPAG1n3 can stabilize microtubules (Yang et al., 1996, 1999). However, the mechanisms underlying the devastating sensory neuron degeneration in BPAG1 null mice await further characterization.

Impaired axonal transport in neurons has long been implicated as a mechanism underlying axonal degeneration. In neurons, motor protein of kinesin superfamily drives anterograde transport, whereas cytoplasmic dynactin/dynein powers retrograde transport. The mutations discovered in critical components of transport pathways provide evidence for the notion that axonal transport is essential for neuronal survival. Transgenic mice carrying mutant superoxide dismutase-1, mouse models of amyotrophic lateral sclerosis, show deficits in slow axonal transport early in the disease course (Williamson and Cleveland, 1999). Additionally, in some superoxide dismutase-1 mutant lines, an early up-regulation of the kinesin superfamily motor protein KIF1A was detected in spinal motor neurons (Dupuis et al., 2000). Mutations in the gene encoding KIF1BB cause an axonal form of a hereditary neuropathy (Zhao et al., 2001). A recent work has linked mutations in cytoplasmic dynein heavy chain with defects in retrograde transport that lead to motor neuron degeneration (Hafezparast et al., 2003). Furthermore, a mutation in the p150Glued subunit of dynactin has been identified in a family with a slowly progressive, autosomal-dominant form of lower motor neuron disease in which sensory symptoms are absent (Puls et al., 2003).
In this work, we analyze the functions of BPAG1n4, the fourth neuronal isoform of the BPAG1 gene family. BPAG1n4, referred to as BPAG1a by Leung et al. (2001), harbors a structurally and functionally unique ezrin/radixin/moesin (ERM) domain (Burridge and Mangeat, 1984; Anderson and Marchesi, 1985; Lankes and Furthmayr, 1991). We provide biochemical evidence that the ERM domain of BPAG1n4 directly interacts with dynactin, and show that this isoform physiologically colocalizes with the dynactin–dynein complex in vivo in sensory axons. Finally, we demonstrate that disruption of the interaction between p150Glued and BPAG1n4 leads to a failure of retrograde axonal transport in sensory neurons.

Results and discussion

BPAG1n4 localizes to vesicle-like structures

Although BPAG1n4 and BPAG1n1 share a conserved NH$_2$-terminal actin-binding domain, BPAG1n4’s COOH terminus harbors a distinctive functional microtubule-binding domain (Leung et al., 1999; unpublished data). This domain features two EF-hand Ca$^{2+}$-binding motifs (Ikura, 1996) immediately upstream of a short stretch of GAS2 motif (EF-hand/GAS2; Schneider et al., 1988). Furthermore, a central ERM domain (Burridge and Mangeat, 1984; Anderson and Marchesi, 1985; Lankes and Furthmayr, 1991) is flanked by two functional cytoskeleton-binding domains (Yang et al., 1996; Leung et al., 1999; Fig. 1 A). Human BPAG1n4 shares \sim82% sequence identity with a recently published mouse form, BPAG1a (Leung et al., 2001). The expression of BPAG1n4 was detected at both the mRNA and protein levels in wild type (WT), but not in null tissues (Fig. 1 B and C). The specificity of anti-BPiso4 was confirmed in cells transiently expressing a FLAG epitope-tagged BPAG1n4 NH$_2$-terminal segment (Fig. 1 C, lanes 3 and 4) that was also recognized by anti-FLAG (not depicted). Immunohistological studies using anti-BPiso4 antibody recapitulated our previously published staining pattern charac-
BPAG1n4's role in transport | Liu et al. 225

...which recognizes all isoforms (Yang et al., 1996; Dowling et al., 1997). No significant staining was found in motor neurons of postnatal animals (Yang et al., 1996).

As a first step toward understanding the function of this new isoform, anti-BPiso4 antibody was used to determine the subcellular localization of BPAG1n4 in the spinal cord dorsal column by immunoelectron microscopy (immunoEM). Intriguingly, ∼72% of BPAG1n4-associated particles localized to vesicle-like structures associated with microtubules (Fig. 1 D, gold particles). No significant labeling was detected in negative controls using secondary antibodies only (Fig. 1 E).

BPAG1n4 interacts directly with dynactin p150Glued

ERM domain containing proteins are known to modify the interaction of cytoskeletal and integral membrane proteins (Burridge and Mangeat, 1984; Anderson and Marchesi, 1985; Lankes and Furthmayr, 1991). We used the ERM domain of BPAG1n4 as bait in a yeast two-hybrid screen (Ding et al., 2002) of a human brain cDNA library. 28 putative positive clones exclusively identified the COOH-terminal region of dynactin p150Glued (Gill et al., 1991) as the binding partner for BPAG1n4. Consistent with our two-hybrid results, HA-tagged ERM could be coimmunoprecipitated with anti-p150Glued and antigigaxonin (Gig, control), (lys) total brain lysates, p150Glued (lane 3), but not gigaxonin (lane 6), binds to full-length BPAG1n4 (arrows). (C) Co-IP of ERM domain and p150Glued in COS-7 cells. (WB) Western blotting; (IP) immunoprecipitation. Cell lysates of COS-7 transfected with pHA-ERM (lanes 2 and 3), or pFLAG-p150Glued (lane 1), or both (lane 4) were incubated with anti-FLAG M2 affinity gel. Protein samples were analyzed by immunoblotting with anti-HA antibody. (D–E) co-IP of BPAG1n4 and the dynactin–dynein complex from mouse nerve tissue extracts. A rabbit anti-p150Glued (Santa Cruz Biotechnology, Inc.) antibody, but not the sham antibody, was able to coimmunoprecipitate BPAG1n4 (D, lane 3). Conversely, anti-BPiso4 but not the sham antibody was able to coimmunoprecipitate the dynactin complex (E, lane 2). Antibodies against BPAG1n4, p150Glued, p50, DIC, and control protein (sham) were used for immunoblotting. (F) Neither anti-p150Glued nor anti-BPiso4 could coimmunoprecipitate other BPAG1 neuronal isoforms (BPAG1n1–3). Immunoblot was probed with rabbit antibody against the common rod domain shared by BPAG1n1–3 (anti-BProd).
Neuronal isoforms BPAG1n1–3 were detected in total lysates (Fig. 2 F, lane 1) using anti-BPiso4/anti-p150_{Glued} (BD Biosciences) in A–C and anti-BPiso4/anti-DIC (Chemicon) in D. AlexaFluor-conjugated secondary antibodies (Molecular Probes) were used for detection. Insets show colocalizations at higher magnification. (E) Double ImmunoeM labeling of mouse sciatic nerve sections with anti-BPiso4 (18 nm) and anti-DIC (6 nm). Arrows indicate colocalization of BPAG1n4 and dynein. (F) Negative control with secondary antibodies only. (G) RT-PCR analysis of DRG mRNAs. Multiplex gene-specific primers (lanes 1 and 2) were used on cDNAs from WT and null DRG. Lanes 3–6 indicate each individually amplified primer pair product from WT: p150_{Glued} (410 bp), microtubule associated protein 1B light chain (MAP1B-LC; 850 bp), gigaxonin (Gig, 780 bp), and actin (560 bp). Arrowhead indicates up-regulation of p150_{Glued} in BPAG1 null (lane 2) versus WT (lane 1). (H) Protein analysis on mouse spinal cord and sciatic nerve lysates using antibodies to p150_{Glued}, DIC, and p50 (BD Biosciences). Antitubulin served as loading control. Bars: (A–D) 10 μm; (E and F) 400 nm.

Intriguingly, quantitative multiplex RT-PCR analysis on DRG extracts from WT and BPAG1 null mice revealed a specific up-regulation of p150_{Glued} mRNA expression in null mice (Fig. 3 G, lane 2). Actin, gigaxonin (Bomont et al., 2000; Ding et al., 2002), and MAP1B-LC were used as controls and showed no corresponding up-regulation (Fig. 3 G, lane 2). Similarly, analysis of protein extracts from spinal cord and sciatic nerves revealed a substantial increase of p150_{Glued} expression (but not of p50 or DIC) in BPAG1 null mice (Fig. 3 H). Specific up-regulation of p150_{Glued} expression in the null mice might represent a compensatory response for loss of BPAG1n4 as an interaction partner.

BPAG1n4 is required for retrograde axonal transport in sensory neurons

At the ultrastructural level, vesicles, multivesicular bodies, mitochondria, and other membranous organelles were found to accumulate in BPAG1 null sensory axons, a phenotype characteristic of impaired axonal transport (Fig. 4 A). In contrast, WT axons displayed no such accumulations (Fig. 4 B). We analyzed axonal transport by double-ligation
of sciatic nerves (Fig. 4 C), monitoring a sensory neuron protein, p75NTR (Raivich et al., 1991), for any subsequent accumulation. Immunofluorescence staining revealed that in BPAG1 null mice p75NTR failed to accumulate at distal sites 6 h after ligation (Fig. 4 D, bottom, distal), but exhibited proximal accumulations (Fig. 4 D, bottom, proximal) surprisingly similar to those observed in WT (Fig. 4 D, top). Quantitative biochemical assays were conducted on ~3-mm segments proximal and distal to the double ligatures at 3- and 6-h time points. In WT mice, a substantial accumulation of p75NTR was observed bidirectionally at both time points (Fig. 4 E, lanes 1 and 5, and lanes 3 and 7, respectively). In contrast, in the null mice, the accumulation of p75NTR was barely detectable at both directions 3 h after ligation (Fig. 4 E, lanes 2 and 4). Interestingly, at the 6-h time point the retrograde accumulation remained undetectable in the null mice (Fig. 4 E, lane 8), but at anterograde direction the difference appears less marked (Fig. 4 E, lane 6). These results suggest that, whereas the axonal transport in BPAG1 null mice is bidirectionally impaired, the retrograde direction is apparently more severely affected.

The gene targeting strategy in BPAG1 null mice ablated all isoforms (Guo et al., 1995), all of which could collectively play important roles bidirectionally in axonal transport. However, the specific interaction of BPAG1n4 and dynactin/dynein in vivo pointed to a potential role for the BPAG1n4 isoform in retrograde axonal transport. To test this hypothesis, we overexpressed an ERM-GFP fusion protein in cultured mouse DRG neurons. ERM-GFP and GFP proteins were efficiently transported to the neurite tips in transfected neurons (Fig. 5 A–B). To examine retrograde transport, the neurons were incubated for 2 h with media containing the tracer transferrin conjugated with Texas red (Tf-TR). The media were replaced with tracer-free media, and retrograde transport of Tf-TR was subsequently monitored at 2-h time points. In the first 2 h after removing Tf-TR, no significant differences were observed in the cultured neurons (Fig. 5, E–H). However, after 4–6 h, the WT and GFP-expressing neurons had begun to accumulate Tf-TR in their cell bodies (Fig. 5, K and J, respectively). After 12–14 h, ~94% of these neurons had completed retrograde transport of the Tf-TR pulse (Fig. 5, N and O). In contrast, in three independent experiments, 82% of the ERM-GFP–overexpressing neurons showed severe defects identical to those seen in 91% of BPAG1 null neurons, namely, a nearly complete failure to transport Tf-TR to the cell bodies (Fig. 5, I and M, and L and P, respectively). Together, these results demonstrate that the isolated ERM is sufficient to disrupt BPAG1n4’s function in sensory neurons in a dominant-negative fashion, leading to a failure of retrograde axonal transport that could account for the impaired retrograde transport found in the BPAG1 null mouse. We conclude that BPAG1n4 is essential for retrograde axonal transport in sensory neurons. Because the postnatal expression of BPAG1 neuronal isoforms is restricted to sensory neurons (Yang et al., 1996), it is likely that a related molecule ex-
pressed in motor neurons, such as ACF7 (Byers et al., 1995; Karakesisoglou et al., 2000), may play a corresponding role in axonal transport in those cells. Alternatively, motor neurons may rely on different mechanisms for such a process.

Defects in axonal transport have been implicated in many human neurodegenerative disorders (Williamson and Cleveland, 1999; Hafezparast et al., 2003; Puls et al., 2003). The extraordinary length of axons and unique features of neurons may require a more complex system to meet the unusual transport challenges that are far beyond those of non-neuronal cells. Our findings pertaining to BPAG1n4 may contribute to a better understanding of relations between neurodegeneration and axonal transport. The next challenge will be to understand how the interactions of BPAG1n4 with dynactin/dynein and cytoskeletons facilitate retrograde axonal transport in sensory neurons.

Materials and methods

Molecular cloning of BPAG1n4

Complementary DNAs of BPAG1n4 were amplified by rapid amplification of cDNA ends–PCR in human brain Marathon-Ready cDNA (CLONTECH Laboratories, Inc.). Sequencing information from three overlapping clones of long-range PCR products (A, 8.1 kb; B, 7.2 kb; and C, 7.8 kb) confirmed that we obtained the full-length cDNA sequence of BPAG1n4.

Blot overlay binding assays and co-IPs

Nerve tissues (spinal cord and sciatic nerves) were homogenized in PBS with protease inhibitors (Roche), and then briefly centrifuged at 2,300 g for 30 s to remove tissue debris and any particulate materials. The supernatants were divided into two portions, one for further centrifugation at 109,000 g to collect pellets, and two for directly serving as total lysate for overlay and immunoprecipitations. Pellets were resolved on 5% SDS-PAGE and transferred on polyvinylidene fluoride membranes to immobilize the full-length BPAG1n4. The blots were incubated with the total lysates overnight, followed by immunoblot analyses using the indicated antibodies. For co-IP, the rabbit anti-dynactin (H-300; Santa Cruz Biotechnology, Inc.) was used to coimmunoprecipitate BPAG1n4, and anti-BPiso4 was used to coimmunoprecipitate p150Glued. The lysates were incubated with different antibodies and protein A–Sepharose 4B beads (Zymed Laboratories) at 4°C overnight. Beads were washed a few times with PBS. Bound proteins were eluted with SDS sample buffer. Protein samples were resolved through 4–15% gradient SDS-PAGE (Bio-Rad Laboratories) and analyzed by immunoblotting.

ImmunoEM

WT animals were killed by intravenous perfusion with 2% PFA and 0.05% glutaraldehyde. The dissected samples of dorsal roots and sciatic nerves were postembedded as described previously (Yang et al., 1999). The antibody incorporations on ultrathin sections were visualized with 12 nm anti–rabbit for single labeling or 18 nm anti–rabbit and 6 nm anti–mouse gold-conjugated particles (Jackson ImmunoResearch Laboratories). After staining with uranyl acetate, followed by lead citrate, the sections were analyzed under an electron microscope (model CM10; Philips).

Double ligation and immunostaining of sciatic nerves

WT control and BPAG1 null mice (13–17 postnatal days) were anesthetized with a mixture of xylazine/ketamine. On the right sciatic nerve of each mouse, two ligatures 5 mm apart were placed at mid-thigh. For immunostaining, 6 h after ligation, mice were perfused with 10 ml of 0.1 M phosphate buffer, pH 7.4, and 40 ml of fixation solution (4% PFA in PB). Sciatic nerves were postfixed for 2 h and placed overnight in a cryoprotective solution (PB with 15% sucrose). After cryoprotection, sciatic nerves were
were embedded in OTC and frozen at −80°C. 8–10-μm sections were cut in a cryostat at −20°C, mounted on glass slides, and stained with anti-
75[NTR](Promega), followed by fluorescent dye-conjugated secondary anti-
bodies (Jackson ImmunoResearch Laboratories). Samples were analyzed
and images were captured using a confocal microscope (model Radi-
ance200; Bio-Rad Laboratories).

Primary sensory neuron transfection and transferrin transport

DRG neurons from newborn WT mice were transfected with
peGFP-ERM-N1 or the control construct pEGFP-N1. Transfection was performed using the Mouse
Neuron Nucleofector™ kit and the Nucleofector™ device
(Amaxa). Transfection rates were ~20%. Cells were cultured in Neu-
robasal™ complete medium (Invitrogen) on collagen-coated glass cover-
slips. For the transferrin transport assay, cells were incubated with medium
containing 50 μg/ml of human transferrin conjugated with Texas red
(Ti-TR; Molecular Probes) for 2 h at 37°C to allow for uptake. After removal of
the transferrin-containing medium, cover slips were rinsed with PBS and in-
cubated with Ti-TR-free medium at 37°C. Confocal fluorescent images
were taken every 2 h with a confocal laser scanning microscope (model
LSM 510; Carl Zeiss MicroImaging, Inc.) to monitor the transport of Ti-TR.

J.-J. Liu is supported by Dean’s, McCormick, and Berry fellowships from
Stanford Medical School. This work was supported by Basil O’Connor
Starter Scholar Research Award (March of Dimes) and National Institutes
of Health grants NS42791 and NS43281 to Y. Yang; AR27883 to E.V.
Fuchs; and NS24054, NS38869, and AG16999 to W. Mobley. E.V. Fuchs is an investigator of Howard Hughes Medical Institute.

Submitted: 13 June 2003
Accepted: 15 September 2003

References

Anderson, R.A., and V.T. Marchesi. 1985. Regulation of the association of mem-
brane skeletal protein 4.1 with glycophrin by a polyphosphoinositide.
Nature 318:295–298.

Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E.
Demir, H. Topaloglu, R. Koerinnerberg, B. Tayyuz, et al. 2000. The gene
encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat
family, is mutated in giant axonal neuropathy. *Nat. Genet.* 26:370–374.

Brown, A., G. Dalpe, M. Mathieu, and R. Kothary. 1995. Cloning and character-
zation of the neural isoforms of human dystonin. *Genomics* 29:777–780.

Burridge, K., and P. Mangeat. 1984. An interaction between vinculin and talin. *Nature* 308:744–746.

Byers, T.J., A.H. Beggs, E.M. McNally, and L.M. Kunkel. 1995. Novel actin
crosslinker superfamily member identified by a two step degenerate PCR
procedure. *FEBS Lett.* 368:500–504.

Deacon, S.W., A.S. Serpinskaya, P.S. Vaughan, M. Lopez Fanaraja, I. Vernos,
K.T. Vaughan, and V.I. Gelfand. 2003. Dynactin is required for bidirec-
tional organelle transport. *J. Cell Biol.* 160:297–301.

Ding, J., J.J. Liu, A.S. Kowal, T. Nardine, P. Bhattacharya, A. Lee, and Y. Yang.
2002. Microtubule-associated protein 1B: a neuronal binding partner for

gigaxonin. *J. Cell Biol.* 158:427–433.

Dowling, J., Y. Yang, R. Wollmann, I.F. Reichardt, and E. Fuchs. 1997. Develop-
mental expression of BPAG1-n: insights into the spastic ataxia and gross neu-
rologic degeneration in dystonia muscularum mice. *Dev. Biol.* 187:131–142.

Dupuis, L., M. de Tapia, F. Rene, B. Lutz-Bucher, J.W. Gordon, L. Mereken,
L. Pradier, and J.P. Leofluer. 2000. Differential screening of mutated SOD1
transgenic mice reveals early up-regulation of a fast axonal transport compo-
nent in spinal cord motor neurons. *Neurobiol. Dis.* 7:274–285.

Gill, S.R., T.A. Schroer, I. Szilak, E.R. Steuer, M.P. Sheetz, and D.W. Cleveland. 1991.
Dynactin, a conserved, ubiquitously expressed component of an activ-
or of vesicle motility mediated by cytoplasmic dynein. *J. Cell Biol.* 115:
1639–1650.

Guo, L., L. Degenstein, J. Dowling, Q.C. Yu, R. Wollmann, B. Perman, and E.
Fuchs. 1995. Gene targeting of BPAG1: abnormalities in mechanical
strength and cell migration in stratified epithelia and neurologic degenera-
tion. *Cell* 81:233–243.

Hafnerparat, M., R. Kloccke, C. Rubirberg, A. Marquardt, A. Ahmad-Annau,
S. Bowen, G. Lalli, A.S. Witherden, H. Hummerich, S. Nicholson, et al. 2003.
Mutations in dynine link motor neuron degeneration to defects in retro-
grade transport. *Science*. 300:808–812.

Holleran, E.A., S. Karki, and E.L. Holzbaur. 1998. The role of the dynactin com-
plex in intracellular motility. *Int. Rev. Cytol.* 182:69–109.

Ikura, M. 1996. Calcium binding and conformational response in EF-hand pro-
teins. *Trends Biochem. Sci.* 21:14–17.

Karakesisoglou, I., Y. Yang, and E. Fuchs. 2000. An epidermal plakin that inte-
grates actin and microtubule networks at cellular junctions. *J. Cell Biol.* 149:
195–208.

King, S.J., and T.A. Schroer. 2000. Dynactin increases the processivity of the cyto-
plasmic dynein motor. *Nat. Cell Biol.* 2:20–24.

Lankes, W.T., and H. Furthmayr. 1991. Moesin: a member of the protein 4.1-
talin-erin family of proteins. *Proc. Natl. Acad. Sci. USA*. 88:8297–8301.

Leung, C.L., D. Sun, M. Zheng, D.R. Knowles, and R.K. Liem. 1999. Microtu-
rebbe actin cross-linking factor (MACE); a hybrid of dystonin and dystrophin
that can interact with the actin and microtubule cytoskeletons. *J. Cell Biol.*
147:1275–1286.

Leung, C.L., M. Zheng, S.M. Prater, and R.K. Liem. 2001. The BPAG1 locus: alter-
native splicing produces multiple isoforms with distinct cytoskeletal linker
domains, including predominant isoforms in neurons and muscles. *J. Cell
Biol.* 154:691–697.

Puls, L., C. Jannakutry, B.H. LaMonte, E.L. Holzbaur, M. Tokito, E. Mann, M.K.
Floeter, K. Bidus, D. Drayna, S.J. Oh, et al. 2003. Mutant dynactin in mo-
tor neuron disease. *Nat. Genet.* 33:455–456.

Raivich, G., R. Hellweg, and G.W. Kreutzberg. 1991. NGF receptor-mediated re-
duction in axonal NGF uptake and retrograde transport following sciatic
nerve injury and during regeneration. *Neuron* 7:151–164.

Schneider, C., R.M. King, and L. Philipson. 1988. Genes specifically expressed at
growth arrest of mammalian cells. *Cell* 54:787–793.

Waterman-Storer, C.M., S.B. Karki, S.A. Kuznetsov, J.S. Tabb, D.G. Weiss, G.M.
Langford, and E.L. Holzbaur. 1997. The interaction between cytoplasmic
dynein and dynactin is required for fast axonal transport. *Proc. Natl. Acad.
Sci. USA*. 94:12180–12185.

Williamson, T.L., and D.W. Cleveland. 1999. Slowing of axonal transport is a very
early event in the toxicity of ALS-linked SOD1 mutants to motor neurons.
Nat. Neurosci. 2:50–56.

Yang, Y., J. Dowling, Q.C. Yu, P. Kouklis, D.W. Cleveland, and E. Fuchs. 1996.
An essential cytoskeletal linker protein connecting actin microfilaments to
intermediate filaments. *Cell* 86:655–665.

Yang, Y., C. Bauer, G. Strasser, R. Wollmann, J.P. Julien, and E. Fuchs. 1999. Inte-
grates of the cytoskeleton that stabilize microtubules. *Cell* 98:229–238.

Zhao, C., J. Takina, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H.W. Yang,
S. Terada, T. Nakata, Y. Takei, et al. 2001. Charcot-Marie-Tooth disease
type 2A caused by mutation in a microtubule motor KIF1Bbeta. *Cell* 105:
587–597.