Pharmacological effects of gallic acid in health and diseases: A mechanistic review

Niloo Farahkeshani 1, 2, Fatemeh Farzaei 3, Maryam Fotouhi 4, Seyedeh Shaghayegh Alavi 5, Roodabeh Bahramsooltani 6, Rozita Naseri 7, Saeideh Montaz 8, 9, Zahra Abbaspnadi 3, Roja Rahimi 6, Mohammad Hosein Farzaei 3, 10*, Anupam Bishayee 11

1 Department of Pharmacognosy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
2 Phytopharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
3 Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
4 Student Research Committee, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
5 Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
6 Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
7 Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
8 Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
9 Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
10 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
11 Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA

Objective(s): Gallic acid is a natural phenolic compound found in several fruits and medicinal plants. It is reported to have several health-promoting effects. This review aims to summarize the pharmacological and biological activities of gallic acid in vitro and animal models to depict the pharmacological status of this compound for future studies.

Materials and Methods: All relevant papers in the English language were collected up to June 2018. The keywords of gallic acid, antioxidant, anticancer, antimicrobial, gastrointestinal-, cardiovascular-, metabolic-, and miscellaneous- diseases were searched in Google Scholar, PubMed, and Scopus.

Results: Several beneficial effects are reported for gallic acid, including antioxidant, anti-inflammatory, and antineoplastic properties. This compound has been reported to have therapeutic activities in gastrointestinal, neuropsychological, metabolic, and cardiovascular disorders.

Conclusion: Current evidence confirms the pharmacological and therapeutic interventions of gallic acid in multiple health complications; however, available data are limited to just cellular and animal studies. Future investigations are essential to further define the safety and therapeutic efficacy of gallic acid in humans.

Introduction

The term “phytochemical” points to a vast range of biologically active natural compounds with valuable pharmaceutical and nutritional properties. Phenolic compounds are a group of phytochemicals with at least one hydroxylated benzene ring. The members of this large and diverse group of chemical compounds are usually classified based on the number of carbon atoms in their structures. Simple phenolics, phenolic acids, acetophenones, cinnamic acid derivatives, coumarins, chromones, chalcones, aurones, flavonoids, anthocyanins, betacyanins, benzophenones, xanthones, stilbenes, quinones, lignans, lignins, tannins, and phlobaphenes are the main subgroups of natural phenolic compounds (1).

Phenolic acids are an important and abundant subgroup of phenolic compounds with the basic chemical structure of C₆-C₃ (hydroxybenzoic acids) or C₆-C₄ (hydroxycinnamic acids), consisting of a phenolic ring and a carboxyl substituent. The shikimic acid or phenylpropanoid pathway of plant metabolism usually regulate the biosynthesis of phenolic acids. In some cases, phenolic acids are the precursor of other important phytochemicals, such as tannins, coumarins, benzoquinones, and naphthoquinones. Caffeic acid, ferulic acid, p-hydroxybenzoic acid, protocatechuic acid, vanillic acid, salicylic acid, and gallic acid are the most common members of phenolic acids (1, 2).

Today, foodstuffs containing phenolic compounds and their metabolites are of the main interest due to their favorable effects on human health. In this case, the positive effect of red wine polyphenols on cardiac health or the protective role of flavonoids against various types of cancer and age-related diseases are important examples (2).

Gallic acid and its derivatives: from chemistry to medicine

Gallic acid or 3,4,5-trihydroxybenzoic acid (CAS No 149-91-7) is one of the most abundant phenolic acids...
in the plant kingdom. It is a colorless or slightly yellow crystalline compound, with extensive application in the food and pharmaceutical industries. Gallic acid has been isolated from different plant species such as *Quercus* spp. and *Punica* spp., via various chromatographical methods; however, from the industrial point of view, gallic acid is produced through the hydrolytic breakdown of tannic acid using a glycoprotein esterase, namely tannase (EC 3.1.1.20) (3).

Gallic acid and its derivatives such as lauryl gallate, propyl gallate, octyl gallate, tetradecyl gallate, and hexadecyl gallate, can inhibit the oxidation and rancidity of oils and fats ascribed to their free radical scavenging and antioxidant nature. Therefore, they can be useful as additives in the food industry (4).

Besides the edible uses of gallic acid and its ester derivatives as flavoring agents and preservatives in the food industry, there are diverse scientific reports on biological and pharmacological activities of these phytochemicals, with emphasis on antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective, gastroprotective, and neuroprotective effects (4). This paper reviews the pertinent biological and pharmacological activities of gallic acid in order to provide a clear view of the therapeutic aspects of this valuable phenolic acid.

Therapeutic effects of gallic acid and its derivatives

Figure 1 represents the most relevant pharmacological activities of gallic acid and related compounds.

Antimicrobial activity

Structure-activity relationship studies of phenolic acids show that some parameters such as the basic chemical structure, the position, and the number of hydroxyl groups as well as their substituents on the phenolic ring, and the esterification of the carboxyl group, can affect the antimicrobial activity. Generally, hydroxycinnamic acids have higher antibacterial activity compared with hydroxybenzoic acids (5). Hydroxybenzoic acids with a lower degree of hydroxylation in phenol compared with hydroxybenzoic acids (5). Hydroxybenzoic hydroxycinnamic acids have higher antibacterial activity group, can affect the antimicrobial activity. Generally, phenolic ring, and the esterification of the carboxyl hydroxyl groups as well as their substituents on the chemical structure, the position, and the number of parameters such as the basic antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective, gastroprotective, and neuroprotective effects (4). This paper reviews the pertinent biological and pharmacological activities of gallic acid in order to provide a clear view of the therapeutic aspects of this valuable phenolic acid.

Therapeutic effects of gallic acid and its derivatives

Figure 1 represents the most relevant pharmacological activities of gallic acid and related compounds.

Antimicrobial activity

Structure-activity relationship studies of phenolic acids show that some parameters such as the basic chemical structure, the position, and the number of hydroxyl groups as well as their substituents on the phenolic ring, and the esterification of the carboxyl group, can affect the antimicrobial activity. Generally, hydroxycinnamic acids have higher antibacterial activity compared with hydroxybenzoic acids (5). Hydroxybenzoic acids with a lower degree of hydroxylation in phenol groups, highly methoxylated phenol groups, highly oxidized phenol groups, or ester derivatives with long alkyl chains showed higher antibacterial activities in comparison with their parent structures (5). On the other hand, hydroxybenzoic acids with more free –OH groups on the phenol ring were found more potent against the human immunodeficiency virus (HIV) and hepatitis C virus (HCV) (5-9).

From the mechanistic point of view, gallic acid can inhibit motility, adherence and biofilm formation of *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Streptococcus mutans*, *Chromobacterium violaceum*, and *Listeria monocytogenes* (10-12). The compound can also disrupt the integrity of the cell membrane in Gram-positive and Gram-negative bacteria and change the charge, hydrophobicity, and permeability of the membrane surface (13). Gallic acid can interfere with the membrane permeability of *Campylobacter jejuni* and elevate the antibiotic accumulation in the microorganism (14). Moreover, it can disintegrate the outer membrane of Gram-negative bacteria via chelation of divalent cations (15).

In addition to its effects on the bacterial cell membrane, there are some reports on the inhibitory activity of gallic acid against bacterial dihydrofolate reductase and its excitatory activity on topoisomerase IV-mediated DNA cleavage in different bacteria (16). Alkyl gallates can also penetrate the bacterial cell membrane and interfere with the electron transport chain and cellular respiration (17).

Some ester derivatives of gallic acid, i.e., octyl gallate, use the hydrophilic catechol part as a hook to bind to the polar surface of the cell membrane and enter the lipid bilayer using the hydrophobic alkyl part. Subsequently, they act as a nonionic surfactant and interfere with the selective permeability of cell membrane in fungi (17).

Gallic acid can inhibit HIV-1 integrase, HIV-1 transcriptase, HIV-1 protease dimerization (18-22), HCV attachment and penetration, HCV replication, HCV serine protease (23-26), the herpes simplex virus (HSV)-1 and HSV-2 attachment and penetration (22). It also causes disruption in *Haemophilus influenza* A and B particles (27).

In connection with protozoa, gallic acid can bind to the glutamate-gated chloride channels in the nervous system of *Caenorhabditis elegans* and initiates the hyperpolarization of the cell membranes and excitation of muscles. These events finally result in worm paralysis and death (28).

Gallic acid, alkyl gallates and chitosan-based formulations of gallic acid can potentiate the antimicrobial activity of other antibiotics, including erythromycin, gentamicin, norfl Roxacin, ciprofloxacin, ampicillin, penicillin, and oxacillin via synergism (29-34) (Table 1).

![Figure 1](image-url)
Figure 1. An overview of the pharmacological activities of gallic acid based on in vitro and in vivo studies
Anticancer activity

In normal physiological conditions, the cells of a healthy organism are programmed for collaboration and coordination, thereby disruption in cells can evoke different life-threatening diseases, such as cancer. At the cellular level, cancer is defined as an unusual increase of cell division, the resistance of the produced cells to death, and their tendency to invade and metastasize.

The cancerous cells disturb the normal functions of other cells by invasion or metastasis. No matter where the origin of the problem is, the overall quality of life is overshadowed by cancer. According to the official reports of health- and wellness-related organizations, the magnitude of personal and social consequences of cancer is very significant and the investigation of new drugs to control this problem continues (35-38).

Gallic acid can exert its cytotoxic and antitumor effect via modulation of antioxidant/pro-oxidant balance. In some cases, the compound can control the reactive oxygen species (ROS)-induced carcinogenesis through increasing the activity of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) and/or by reducing the lipid peroxidation and ROS production. In other cases, gallic acid can induce the cell cycle arrest, autophagy, and apoptosis via activating the caspases pathway and ROS generation. In addition, it can inhibit the invasion and metastasis by decreasing the matrix metalloproteinase expression and activity (39-43).

Moreover, some derivatives of gallic acid, such as isobutyl gallate-3,5-dimethyl ether and methyl gallate-3,5-dimethyl ether, are able to reduce the tumor size and increase the survival rate in in vivo models of cancer (44). Gallic acid regulates the cell-cycle-related proteins such as cyclin A, cyclin D1, and cyclin E, and slow down the cell division by induction of the p27KIP enzyme and inhibition of CDK activity (45). In the case of hepatocellular carcinoma, gallic acid decreased the tumor size and the serum level of tumor marker enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) by inhibiting the proliferation of hepatic cells (46) (Table 1).

Gastrointestinal diseases

Gallic acid protects the mucosal layer of the gastrointestinal tract from ulcer via different mechanisms by reducing the acid secretion, inducing the release of endogenous antioxidant agents and defensive factors (i.e., SOD, CAT, endothelial nitric oxide synthase (e-NOS) and prostaglandin E2 (PGE2)), as well as decreasing oxidative stress and lipid peroxidation. In addition, gallic acid has been associated with several other beneficial pathways including reduction of the expression of pro-inflammatory mediators (i.e., tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (i-NOS)), up-regulation of the pro-angiogenesis factors (i.e., Von Willebrand factor (vWF) VIII, mucosal hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF)), promotion of angiogenesis, and inhibition of the expression of apoptosis parameters (i.e., caspase-3 and caspase-9) (47-49) (Table 1).

Gallic acid interferes with various intra-cellular inflammatory pathways that induce ulcerative colitis. The compound inhibits the expression of nuclear transcription factors, such as nuclear factor (NF)-κB and signal transducer and activator of transcription 3 (STAT3), and down-regulates their inflammatory downstream targets (50). It also reduces the expression and/or activity of pro-inflammatory cytokines and inflammatory proteins, including TNF-α, interferon-γ (INF-γ), interleukin (IL)-1β, IL-6, IL-17, IL-21, IL-23, cyclooxygenase (COX)-2, and i-NOS, and decreases the expression and infiltration of neutrophils and CD68+ macrophages into the colon (50-51).

Gallic acid inhibits the lipid peroxidation and malondialdehyde production by inducing transcription factors (i.e., NR12) and its cytoprotective downstream targets including NAD(P)H quinone dehydrogenase 1 (NQO1) and UDP-glucuronosyltransferase (UDT-GT) (50-51).

Beside the gastroprotective activity, gallic acid ameliorates the hepatotoxic effects of xenobiotic agents by acting as an antioxidant compound that scavenges free radicals, such as ROS, and improves the capacity of antioxidant defense systems including SOD, GST, GPx, CAT, GSH, and cytochrome P450-dependent detoxifying enzymes (52-57) (Table 1).

Cardiovascular diseases

Myocardial ischemia is defined as a condition that is caused by an imbalance between oxygen supply and demand of the myocardium, of which coronary artery atherosclerosis is known to be the main cause. To decrease the risk of myocardial infarction, the ischemia can be treated using different surgical methods and/or pharmacological agents.

Gallic acid pretreatment decreases the harmful oxidative consequences of myocardial infarction in the context of its antioxidant potency (58), either by increasing the activity of antioxidant enzymes, such as SOD, CAT, GST, and GPx (58) and/or by elevation of the level of non-enzymatic antioxidant agents, such as GSH, vitamin C, and vitamin E (58). All of these activities can inhibit the detrimental effects of free radicals on the integrity and function of myocytes membranes, and consequently, the concentration of serum cardiac biomarkers, including cardiac troponin T (cTnT) and creatine kinase-MB (CK-MB) decreases after infarction (35, 58) (Table 1).

Metabolic diseases

Obesity, diabetes mellitus, and hyperlipidemia are the most prevalent metabolic disorders among adults.

The ability to store the excess energy in adipocytes and release it in the future is vital for survival. However, genetic susceptibility, excessive energy intake and sedentary lifestyle may provoke increased adipose storage and further cause metabolic disorders.

In metabolic disorders, gallic acid inhibits diet-induced hyperglycemia and hypertriglyceridemia, reduces the size of adipocytes, and protects pancreatic β-cells by inducing the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a nuclear transcription factor that induces differentiation and insulin sensitivity in adipocytes (59). Gallic acid also increases the cellular glucose uptake via stimulation...
of the phosphatidylinositol 3-kinase (PI3K)/p-Akt signaling pathway and translocation of insulin-stimulated glucose transporters, such as GLUT4, GLUT2, and GLUT1 (59). The compound prevents the diet-induced oxidative stress by stimulating various enzymatic and non-enzymatic antioxidant defenses (60). Gallic acid can up-regulate the hepatic glycolysis enzymes, such as hexokinase, aldolase, and phosphofructokinase, and down-regulate the hepatic gluconeogenesis enzyme, named fructose-1,6-bisphosphatase, in rodents fed a high fructose diet (59-63) (Table 1).

Neuropsychological diseases

Alzheimer's disease is a cognitive neurodegenerative problem (35), which commonly results in dementia in elderly individuals. Insidious memory loss and progressive dementia over the years are the major clinical presentations of patients. In this disease, the atrophy of the brain starts from the temporal lobe and spreads to the parietal and frontal lobes. In the microscopic scale, plaques of amyloid-β (Aβ) molecules and fibrillary tangles of hyperphosphorylated tau filaments are visible in the nervous system (35).

The protective effect of gallic acid on nerve cells is a controversial issue. On the one hand, gallic acid decreases the Aβ-induced toxicity in cultured cortical neurons of rats via inhibiting Ca2+ release from the endoplasmic reticulum into the cytoplasm or Ca2+ influx, inhibiting ROS generation and apoptosis (64). The compound restores the streptozotocin (STZ)-induced cerebellar oxidative stress and cognitive impairment in rats by scavenging free radical molecules such as ROS, inhibiting lipid peroxidation, and stimulating the activity of endogenous antioxidant agents, such as SOD, CAT, and GPx (65). Gallic acid is also able to reverse the scopolamine-induced amnesia in mice, probably through inhibiting oxidative stress and decreasing acetylcholinesterase (AChE) enzyme activity in the brain (66).

On the other hand, gallic acid decreases the viability of PC-12 rat pheochromocytoma cells in the H2O2-induced toxicity model (67). In this manner, gallic acid increases the rate of apoptosis via stimulation of the c-Jun N-terminal kinase (JNK) protein, down-regulation of Bcl-2 protein, inducing poly (ADP-ribose) polymerase cleavage, or even increasing intracellular Ca2+ and ROS generation (67) (Table 1).

Miscellaneous diseases

As shown in Figure 2, gallic acid can extinguish the flames of inflammation via different mechanisms. It decreases the expression and release of pro-inflammatory and inflammatory mediators, such as bradykinin, substance P, COX-2, NF-κB, IL-2, IL-4, IL-5, IFN-γ, and TNF-α. The compound also inhibits the phagocyte- or polymorphonuclear (PMN)-mediated inflammatory responses by scavenging ROS and decreasing the myeloperoxidase (MPO) activity (69-73).

As mentioned earlier, gallic acid can partially neutralize the substance-induced toxicity in the liver and neural system. The beneficial and protective effects of gallic acid on substance- or radiation-induced toxicity in connective tissue, especially bone marrow, renal, reproductive, and respiratory systems have been proven. Almost all of the above-mentioned effects are linked to the antioxidant activity of gallic acid (74-82).

Topical application of gallic acid prevents the UV-B induced hyperpigmentation and photoaging of mice skin via down-regulating the melanogenic genes such as tyrosinase, increasing the skin hydration and transforming growth factor (TGF)-β1 induced production of procollagen type I and elastin, and decreasing ROS activation, wrinkle formation, and epidermal thickening (83, 84) (Table 1).

Conclusion

Studies presented here showed that the most important pharmacological properties of gallic acid are attributed to its antioxidant and anti-inflammatory potentials. In addition, gallic acid is involved in various signaling pathways that regulate the wide range of biological functions including pro- and inflammatory pathways, NO signaling pathway, intrinsic and extrinsic pathways of apoptosis, and NF-κB signaling pathway. Gallic acid and its derivatives demonstrated a broad range of beneficial effects in prevention and/or management of several disorders, also their acceptable safety and stability profiles, make them significant options to be introduced as dietary supplements.

Acknowledgment

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of Interest

All authors declare no potential conflicts of interest.
Table 1. Pharmacological activities of gallic acid and its derivatives in different diseases

Disease category	Compound name	Model	Effects	References	
Anti-inflammatory	Gallic acid	In vitro: LPS-induced inflammation in A549 lung cancer cells	In vitro: JHAT, iNOS & COX-2 inhibition, p38 & JNK mediated iNOS dephosphorylation	(107)	
	Gallic acid	In vivo: LPS-induced inflammation in mice	In vivo: interleukin-1β, IL-1β & IL-6 production, IL-6 & TNF-α, IL-6 & IL-8 expression	(71)	
	Gallic acid ethyl ester	Acetic acid-induced abdominal constriction, formalin-induced nociception, rat paw hyperalgesia induced by substance-P, bradykinin, PGE2 or carrageenan	Acetic acid-induced abdominal constriction, formalin-induced nociception,	(70)	
	Bergeonin (C-glycoside of 4-O-methylgallic acid)	Mycobacterium tuberculosis-induced inflammatory arthritis in mice	Inflammatory arthritis, IL-2, IFN-γ, TNF-α, IL-4 & IL-5	(69)	
	Gallic acid	In vitro: AEGs-treated rabbit chondrocytes	In vitro: iNOS, collagen II & aggrecan degradation, NO, i-NOS, COX-2, PGE2, TGFβ, SOD	(73)	
			In vivo: collagen-induced knee osteoarthritis in rabbit		
			In vivo: 50% Mankin’s score		
	Gallic acid	ISO-induced myocardial infarction in rats	Myocardial infarction, ITC, TG, LDL-C, HDL-C, MDA, TBA, L-C, CAT & GSH, TNFα, TNFβ, β2M, IL-6	(85)	
	Gallic acid	ISO-induced cardiotoxicity in rats	LCK-MB & LDH, βlysosomal membrane damage, LPO, TSH	(86)	
	Gallic acid	Lindane-induced cardiotoxicity	LCK, LDH & LPO, 5HT, SOD, GSH & GST, TNFα, TNFβ, β2M, IL-6, TSH	(87)	
	Gallic acid	Evaluation of antioxidant enzymes in the heart of male Sprague-Dawley rats	Cardiac SOD, GSH, CoQ10, CAT, SHH, GSH/GSSG ratio, heart oxygenase-I & Nrf2	(88)	
	Gallic acid	AEGs-induced cardiac remodeling in rats	Cardiac fibrosis, LTNF-α, TGF-β, MMP-2 & MMP-9	(89)	
	Gallic acid	STZ-induced myocardial dysfunction in diabetic rats	LCK-MB, LIDH, LPO, LDL-C & VLDL-C, JMBP, SEBP & bradycardia, collagen content,	(90)	
	Gallic acid	Isoproterenol-induced myocardial infarction in rats	LCK-MB, TCO, CAT, GSH, HDL, GSH, Fc & E, iNOS, TNFα, TSH	(58)	
	Gallic acid	Fructose-enriched-diet-induced cardiac fibrosis	LIP, HOMA-IR, INAPDH oxidase subunits gp91 phox & p22 phox, icotilase I & iNOS	(91)	
	Gallic acid	AL(OH)3-induced myocardial injury	LLDH, CPK, CK-MB, TG, LDL, TNF-α & MDA, THBD, GSH, SOD & CAT	(92)	
	Gallic acid	Allsace-induced diabetes & endothelial dysfunction	LMDA, TTAC & histamine vasodilatory response of mesenteric vascular bed	(93)	
	Gallic acid	L-NAME-induced hypertension	LSRP, LV wall thickness & cardiac fibrosis, hypotrophy markers,	(94)	
	Gallic acid	Cyclophosphamide-induced cardiac dysfunction	LMDA & H2O2, TCGT, GST, GSH & GSH	(95)	
Cardiovascular	Gallic acid	Cyclophosphamide-induced hypertension	Cyclophosphamide-induced hypertension	(53)	
	Gallic acid	CCL4-induced hepatotoxicity in Charles Foster rats & Swiss albino mice	Sleep time & paralysis time, ILPO, Thapatic amyloidoprotein-N-Demythlated,	(57)	
	Gallic acid	Hepatic ischemia & repension injury in rats	ALT, AST & LDH activities, TCA & GPs, IMDA	(86)	
	Gallic acid	n-propyl gallate	L moreover, p53, Bax & Bak, LPO	(96)	
	Gallic acid	Brush border disaccharidases inhibition in rat, LACA/L mice, 3 d induces & rabbit	Sicerase, malate, trehalase & lactate activity	(97)	
	Gallic acid	Primary HSC & hepatocytes	Cytotoxicity to HCS but not hepatocytes,	(98)	
	Gallic acid	Ethanol-induced neuroprotection in rats	Citrulline α-Cα & p-coumaric acid	(99)	
	Gallic acid	Ethanol-induced liver damage in rats	JNK, TAK1, LCK-MB, LPO, LDL-C & VLDL-C, JMBP, SEBP & bradycardia,	(54)	
	Gallic acid	Gastric mucosal lesions caused by ischemia-reperfusion injury in rats	Total area of gastric lesions, iNOS-2 & i-NOS	(47)	
	Gallic acid	In vitro: rat gastric epithelial cells	In vitro: iNOS & CYP2J2 expression, iNOS & CYP2J2 expression	(48)	
	Tryptamine-gallic acid	In vivo: indomethacin & diclofenac-induced gastropathy	In vivo: iNOS activity, iNOS, COX-2, p55NF-kB & IL-6/p-STAT3/705 activation	(108)	
		In vitro: rat gastric epithelial cells	In vivo: iNOS activity, iNOS, COX-2, p55NF-kB & IL-6/p-STAT3/705 activation	(50)	
	Gallic acid	DSS-induced experimental colitis in mice	JDAI & colon shortening, IL-11, IL-23, MDA, TCO, GSH, CAT, GSH, GSH, GSH	(51)	
Table 1, Continued

Gallic acid	Pharmacological effects of gallic acid and human health
Paracetamol-induced liver damage in mice	lALT, AST, ALP, & JTNF-α, TSD, CAT, GSH, GPs & GST (101)
CCl4-induced liver damage in rats	lVacuole formation, inflammation & necrosis, JAST, ALT, TG, TC, LPO & JTNF-α, TSD, CAT & GSH (102)
Aspirin + pycnogenol-induced gastric ulcer in rats	lUlcer index, gastric juice volume, free & total acidity, total protein, carboxydrates concentration, TSD, CAT, GSH, GPs, GR & glucose-6-phosphate dehydrogenase (103)
Bromobenzene-induced liver injury in rat	lHistidine hydrolase & AMMD activity, ILPO, Tepoxide hydrolase activity (52)
CCL4-induced liver fibrosis in mice	lLiver fibrosis, NA, MDA, ALT, AST & GSH (104)
Beryllium-induced hepatoprotective dysfunction in rats	lBilirubin, Cr, LDH, GGT, LPO, AST, ALT, ALP, TSHG, SOD & CAT (105)
Lead-induced toxicity in blood, liver & kidney of rats	lLPO & carbonyl, prevention of body weight loss, TALA-D activity, TSD, CAT & GSH (56)
CCl4-induced chronic liver injury in rats	lALT, AST & MDA, TSD, CAT, GSH, GR, GPs & GSH/GIST (107)
Lindane-induced hepatoprotective toxicity in rats	lALT, AST, ALP, LPO, creatinine & urea, TSHG, CAT, SOD, GPs & GGT (108)
Beryllium-induced hepatoprotective toxicity	lALT, ALP, LPO, AMMD, TSHG, CAT, SOD, GPs & GST, ICR & urea (109)
Cyclophosphamide-induced hepatotoxicity in rats	lACT, ALT, MDA, TSHG, CAT, SOD & GST (55)
Indomethacin-induced gastric ulcer in Swiss albino mice	↑Ulcer healing, JPE2 synthesis, 1e-NOS/i-NOS ratio (49)
Diet-induced obesity in mice	lITAG & FBS, adipocyte size in the epidymidal white adipose tissue, TPAAR + expression, 1Akt signaling pathway activity, glucose tolerance & lipid metabolism (59)
High-fat-diet- & STZ-induced type 2 diabetes in rats	lBody weight gain, PBS & FPI, adipose tissue insulin sensitivity, Cytoprotective action on pancreatic β-cell, TPAAR expression in treated tissue, liver & skeletal muscle, Tissulin-dependent glucose transport, Interactions with the GLUT4, GLUT1, PTK & P-Akt, Lipoxygenase (60)
High-fat-diet-induced dyslipidemia, hepatosteatosis & oxidative stress in rats	lObesity, liver weight, percental & epididymidal adipose tissue weights, Insulin TAG, phospholipid, TC, LDL-C, insulin & leptin, lipid droplets size, iNOS/TAG & cholestrol, loadisive stress & GES, TSHG, GPs, GR & GST (61)
High-fructose-diet-induced diabetes	↑Glucose uptake, JALDOG, M & HOMA-IR, 1C-peptide, fructosamine & cardiovascular risk index, TH, IR-1, PTK, Akt/protein kinase B & GLUT-2, JF-1, J-6, JBP, Thomsokinin, PFK & aldolase (62)
STZ-induced diabetic rats	l1αCet, GSH, ILPO, Three radical scavenging property, Fe2+, chelating ability & Fe3+ reducing property, TCAT, GST, 3-aminolevulinic acid dehydratase & LDL, ippotremic enzymes (56)
STZ-induced diabetic Wistar rats	l1BSF, regeneration of β-cells, JTC, TAG, LDH-C, urea, uric acid, creatinine, TPFI, C-peptide & glucose tolerance restored the total protein, albumin & body weight (110)
Fructose-induced metabolic syndrome & cardiac fibrosis in rats	↓Insulin resistance, ROS & NADPH overproduction, collagen I & osteopontins (98)
In vitro: porcine pancreatic lipase kit	In vitro: lipase activity (111)
In vivo: high-fat-diet-induced obesity in mice	↑Glucose uptake, JALDOG, M & HOMA-IR, 1C-peptide, fructosamine & cardiovascular risk index, TH, IR-1, PTK, Akt/protein kinase B & GLUT-2, JF-1, J-6, JBP, Thomsokinin, PFK & aldolase (62)
STZ-induced diabetes in rats	TPPI, hepatic hexokinase activity, CAT, SOD, GPs, lFBF, HBA1C, Gelβp & fructose-1, 6-biophosphatase, LPO (112)
STZ-induced diabetes in rats	lFBF, HBA1C, LPO, TPPI, Vit C, SOD, CAT, GSH, GR, GST, GPs, HMG-Coa reductase activity (113)
Alloxan-induced diabetes in rats	lFBF, TPPI, GSH, GPs, CAT, SOD & osmotic fragility of RBCs (114)
STZ-induced diabetes in rats	lFBF, brain LPO, SOD, CAT, GR, GST, GPs, brain lipids (37)
Chromium-induced thyroid dysfunction	lSOD & GST up-regulation, JNO, i-NOS, TNF-α, IL-6 & COX-2 (115)
In vitro: high glucose toxicity in NBE 52E rat proximal tubular epithelial cells	In vitro: FP38 MAPK, NF-κB activation (116)
In vivo: high fat diet/STZ-induced diabetes in rats	In vivo: weight gain, Triceps neutral fat (117)
STZ-induced diabetes in rats	TPPI, hepatic hexokinase activity, CAT, SOD, GPs, lFBF, HBA1C, Gelβp & fructose-1, 6-biophosphatase, LPO (112)
6-Hydroxydopamine induced oxidative stress in rats	↑Passive avoidance memory, TTM, GPs, lMDA (165)
STZ-induced memory deficits & oxidative stress in rats	↑Passive avoidance & spatial memory, performance, TTM, SOD, GPs & CAT, lMDA (118)
EPM in rats	↑Time spent & entries in the open arms of EPM, locomotor activity, involvement of 5-HT1A receptors, ILPO, TSDO & GSH (119)
Sodium-fluoride-induced oxidative stress in rat brain	↑Body weight & body weight, Cr, Cr clearance, BUN, IL-1β, IL-6, TNF-α & iMDA, Irenal p38 MAPK, NF-κB activation, TGF-β, fibroectin, TSHG, GIST, GST/GSH/GST ratio, GR, CAT, SOD & GPs (117)
STZ-induced oxidative damage in rat brain	↑R05 & lipid peroxidation, TSDO & 6-ALA-D, CAT, GSH & vit C (117)
Spinal cord injury-induced oxidative stress in rat	↑Passive avoidance memory, TTM, GPs, lMDA (165)
Neuropsychological	↑Time spent & entries in the open arms of EPM, locomotor activity, involvement of 5-HT1A receptors, ILPO, TSDO & GSH (119)
EPM in rats	↑Passive avoidance memory, TTM, GPs, lMDA (118)
Sodium-fluoride-induced oxidative stress in rat brain	↑Time spent & entries in the open arms of EPM, locomotor activity, involvement of 5-HT1A receptors, ILPO, TSDO & GSH (119)
STZ-induced oxidative damage in rat brain	↑Body weight & body weight, Cr, Cr clearance, BUN, IL-1β, IL-6, TNF-α & iMDA, Irenal p38 MAPK, NF-κB activation, TGF-β, fibroectin, TSHG, GIST, GST/GSH/GST ratio, GR, CAT, SOD & GPs (117)
Spinal cord injury-induced oxidative stress in rat	↑Passive avoidance memory, TTM, GPs, lMDA (165)
Gallic acid (as chitosan nanoparticles)	↑Transfer latency in the EPM test, Spatial learning & memory in MWM, LACHe activity, (66)
6-Hydroxydopamine induced oxidative stress in rat brain	↑Time spent & entries in the open arms of EPM, locomotor activity, involvement of 5-HT1A receptors, ILPO, TSDO & GSH (119)
STZ-induced oxidative damage in rat brain	↑Body weight & body weight, Cr, Cr clearance, BUN, IL-1β, IL-6, TNF-α & iMDA, Irenal p38 MAPK, NF-κB activation, TGF-β, fibroectin, TSHG, GIST, GST/GSH/GST ratio, GR, CAT, SOD & GPs (117)
Spinal cord injury-induced oxidative stress in rat	↑Passive avoidance memory, TTM, GPs, lMDA (165)
Gallic acid (as chitosan nanoparticles)	↑Transfer latency in the EPM test, Spatial learning & memory in MWM, LACHe activity, (66)

230

Iran J Basic Med Sci, Vol. 22, No. 3, Mar 2019
Gallic acid	Tyrosin hydroxylase Gal/THAS-X	in vivo: locomotor activity, protection of dopaminergic neurons, Tâle span & climbing abilities	(123)
Gallic acid	BDNF, Drosophila melanogaster model of Parkinson’s disease Neurotoxicity in rats	Neurotoxicity, cerebellar & cerebral MDA & nitrite, TAT, GST & SOD	(55)
Gallic acid	Reserpine-induced vacuous chewing movements in rats	Various chewing movements	(124)
Gallic acid	Lead-induced locomotor damage & brain oxidative stress in rats	Locomotor & exploratory activities by attenuating crossing & rearing time, brain levels of PB, TSD & TGH	(125)
Gallic acid	Sodium nitroprusside oxidative stress-induced mitochondrial impairment	↓NO level, mitochondrial protein tyrosine nitrification, ILP0, ↓protein carbonyl, TSGH & iMP7	(126)
Gallic acid	In vitro: medium hydroxyltate-induced mitochondrial dysfunctions in SH-SYST cells	In vitro: protects against cytotoxicity of SH-SYST cells, mitochondrial dysfunction, level of mitochondrial ROS by \({\text{HCHO}} \)-fluorescence intensity, intracellular DCF fluorescence intensity, intracellular MDA, by modulating mitochondrial dysfunctions by \({\text{Co}} \) oxygen consumption	(127)
Gallic acid (as chitosan nanoparticles)	Oral health	In vivo: total infant volume	
Gallic acid	Aβ-induced toxicity in cultured rat cortical neurons	Immunobility in FST & TST, JMAO-A activity & MDA, TSHG & CAT	(64)
Gallic acid	In vitro: cerebral ischemia/reperfusion induced by middle cerebral artery occlusion	Increased serum retinol binding protein, increased serum vitamin E, increased serum vitamin C	
Gallic acid	H2O2-induced apoptosis in rat pheochromocyta PC12 cells	Methyl gallate: T cell viability; mitochondrial depolarization, caspase-9 activation & DNA degradation	(68)
Gallic acid	Immobilization-induced Swiss male albino mice	iPLasma nitrite in both unstressed & stressed mice, iplasma corticosterone, In-90S activity, lastancy in behavioral tests	(129)
Gallic acid	Global ischemia/reperfusion in Wistar rats	TGlut performance, serinotomor disorders, & hypoglyesia	(130)
Gallic acid	Experimental sciatic nerve crush in rats	Improved motor coordination & SMOY sciatic nerve conduction velocity, Tailayed foot lifting	(131)
Gallic acid	Aβ-induced AD in rats	Improved LTP amplitude & area under the curve, TPS Amp, LTP plaque	(132)
Gallic acid	H2O2-induced apoptosis in rat pheochromocyta PC12 cells	iCell viability, TPARP cleavage, TTNK phosphorylation, Tβc-2	(67)
Gallic acid	STZ-induced cerebral oxidative stress in rats	Weight loss, ↓hyperglycemia, HbA1C, LPO, ACHE & purinergic enzymes, Tradiical scavenging & P2+ chelating ability, Vit C, GSH, CAT, GST, cerebral LDH & Na+K+ATFase activity	(133)
Gallic acid	In vitro: Aβ-induced neurotoxicity in murine microglial BV-2 cells & neuroblastoma Neuro-2A cells	In vitro: ↓MDA acylation & cytokine production, cell death, ↓viability of Neuro-2A, inmemory deficits in Ab peptide-induced mice	(134)
Gallic acid	In vivo: Aβ-induced AD in ICR mice	In vivo: Lysyten production, neuronal cell death, nuclear NF-xB & IL-1β	(135)
Gallic acid	Chronic cerebral hypoperfusion-induced cognitive deficit & brain oxidative damage in rats	↓Neurotoxicity, TSGH, iGSSG, Lelievan in (Cat) αJ	(136)
Gallic acid & its derivatives	6-OHD-induced toxicity in human SH-SYST neuroblastoma cells	Reminalization of enamel caries lesions, residual first molar enamel volume & mineral density values, liewerity of molar enamel caries	(137)
Oral health	Streptococcus sobrinus 6715- induced enamel caries in rats	Rate of DNA repair process in peripheral blood leucocytes, bone marrow cells, & splenocytes, TGx, GSH, inmotability, weight loss & LPO	(82)
Radiation-induced toxicity	Whole body γ-radiation exposure in mice	↑Survival (IGDE>MGDE), NK cells cytotoxicity & in vivo Radiosensitization	
Gallic acid	In vitro: rat liver microsomes & placid pBR322 DNA exposed to γ-irradiation	In vivo: ILPO in rat liver microsomes, ↓DNA damage in plasmid	(81)
Respiratory	In vitro: whole body γ-irradiation in mice	In vivo: ↓DNA damage in leucocytes	
Gallic acid	Blonycin-induced pulmonary fibrosis in rats	↓Lesions & fibrosis, collagen content, hydroxyproline accumulation, LPO, JTNF-α & IL-1β, TGF activity & TTM	(80)
Gallic acid	Desorubcint-induced chronic kidney disease in rats	TAlbumin, JAST, IALT, JTG, cholesterol, ILPO, IBUN	(79)
Gallic acid	Glyoxal-induced renal fibrosis in rats	↓Renal fibrosis, IBUN, ALP, collagen I & III, MMP-2 & -9, Nox & ROS, TSD	(78)
Gallic acid	Ferric nitrolic acid-induced renal toxicity in rats	↑Renal toxicity & cell proliferation, BUN, H2O2, renal microsomal LPO & quinone reductase, TAT, xantine oxidase, GPx, GSH & G6PD	(77)
Gallic acid	Cisplatin-induced nephrotoxicity in rats	↓ILPO, ROS, Cu, ura, uric acid, arginine, TAT, TSD, CAT, GSH & GPs	(75)
Gallic acid	Experimental renal ischemia-reperfusion in rats	TAlbumin, Cr, MDA	(74)
Urogenital	Cyclophosphamide-induced toxicity in tests & epididymis of rats	↓Reproductive toxicity, nitrite, H2O2, & MDA TSD, FSH, LH & testosterone	(55)
Gallic acid	Cyclophosphamide-induced toxicity in tests & epididymis of rats	↓MDMA, NO, H2O2, TSHG, GPS, SOD, CAT & testosterone	(76)
Gallic acid	STZ-induced oxidative stress in tests of rats	↑SOD & CAT, ↓MDA, TSD, FSH, LH & testosterone	(138)
Dermal	In vitro: normal human dermal fibroblasts exposed to UVB	In vitro: transcription factor activation protein 1 activity	(84)
Table 1, Continued

Gallic acid	In vitro: murine melanoma B16F10 cells	In vitro: melanin production & tyrosinase activity, melanogenesis regulatory genes, activation of ERK pathway, involvement of AKT/GSK3β & PKA/CREB signaling	(83)	
Malignancy	Gallic acid	DMM-induced colon carcinogenesis in male Wistar rats	TSD, GSH, GR, GPs, & CAT activity, LPO modification	(39)
Gallic acid	DMH-induced colon carcinogenesis in mice	Activity of phase I enzymes (cyt. P450 & cyt. b5), lacticity of phase II enzymes (GST, DTT & GGT)	(139)	
Gallic acid	in vitro: EAT & LLC1 cells	in vitro: no significant cytotoxic effects	(44)	
Gallic acid	in vitro: EAT cells /BALB/c mice & LLC1 cells (J57/6) mice	in vitro: EAT cells Survival (IGDE>MGDE), NK cells cytotoxicity	(140)	
Gallic acid	in vivo: IL-6 human promyelocytic leukemia	in vivo: Tumor progression	(46)	
Gallic acid	in vivo: human NCSLC NCI-H648 cells	in vivo: viability	(141)	
Gallic acid	in vivo: mouse NCI-H648 xenograft model	in vivo: tumor size	(142)	
Gallic acid	in vivo: LL-2 lung cancer cells	in vivo: tumor size, Tumor or apoptotic cells in tumor, synergistic effects in combination with cisplatin	(143)	
Gallic acid & methyl gallate	in vivo: two-stage skin carcinogenesis in ICR mice	in vitro: induction of G2/M phase cell cycle arrest, 11nuclearar Ca++, CDK1 activity, caspase-3, caspase-8 & caspase-9 activation, IAP	(40)	
Gallic acid	in vitro: cell-free kinases, primary HUVECs, primary human dermal LECs, human HT29 colon carcinoma cells & MT-450 rat mammary carcinoma cells	in vitro: slight inhibition of RTKs, LVEGF-induced autophosphorylation of VEGFR-2 in H9T2 cells, iproliferation & Taperogenesis in all cell lines	(45)	
Pyrogallol	in vivo: MT-450 tumor-bearing rats	in vitro: induction of S phase cell cycle arrest	(43)	
Pyrogallol	in vivo: xenograft mouse model of MCF10DICS.com cells	in vitro: induction of S phase cell cycle arrest	(46)	

Malignancy

Gallic acid: Pyrogallol

i-NOS: nitric oxide synthase; IL-2: interleukin-2; IFN-γ: interferon-γ; TNF-α: tumour necrosis factor-α; IL-4: interleukin-4; IL-5: interleukin-5; IL-1β: interleukin-1β; COX-2: cyclooxygenase-2; IL-6: interleukin-6, NO: nitric oxide; SOD: superoxide dismutase; GPx: glutathione peroxidase; UVB: ultraviolet B; TAC: total antioxidant capacity; L-NAME: NG-nitro-L-argininemethyl ester; MB: malignant melanoma; UMR-106: murine osteosarcoma cell line; HUVECs: human umbilical vein endothelial cells; H9T2: human small intestine carcinoma cell line; L-arginine: nitrogen donor and substrate of NO synthesis; AEGs: advanced glycation end products; AMPK: AMP-activated protein kinase; AKT/GSK3β & P38 pathway: AKT/GSK3β & P38 MAPK signaling; VEGF: vascular endothelial growth factor; HSCs: hepatic stellate cells; UVB: ultraviolet B; TAC: total antioxidant capacity; L-NAME: NG-nitro-L-argininemethyl ester; SBP: systolic blood pressure; LV: left ventricle; HDAC: histone deacetylase; VEGF: vascular endothelial growth factor
Pharmacological effects of gallic acid and human health

Kahkeshani et al.

References

1. Pengelly A. The Constituents of Medicinal Plants: An Introduction to the Chemistry and Therapeutics of Herbal Medicine. 2nd ed. CAB, 2004.

2. Siah M, Farzaei M, Ashrafi-Kooshk M, Adibi H, Arab S, Rashidi M, Khodarahimi R. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: an in vitro study. Bioorg Chem 2016; 64:74-84.

3. Fernandes F, Salgado H. Gallic acid: review of the methods of determination and quantification. Crit Rev Anal Chem 2016; 46:257-265.

4. Choubey S, Varughese L, Kumar V, Benival V. Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm Pat Anal 2015; 4:305-315.

5. Borges A, Ferreira C, Saavedra M, Simoes M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 2013; 19:256-265.

6. Cueva C, Moreno-Arribas M, Martín-Alvarez P, Bills G, Francisco Vicente M, Basilio A, et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol 2010; 161:372-382.

7. Farag M, Al-Mahdy D, Salah El Dine R, Fahmy S, Yassin A, Porzel A, et al. Structure activity relationships of antimicrobial gallic acid derivatives from pomegranate and acacia fruit extracts against potato bacterial wilt pathogen. Chem Biodivers 2015; 12:955-962.

8. Rivero-Buceta E, Carrero P, Doyagüez E, Madrona A, Quesada E, Camarasa M, et al. Linear and branched alkyl-esters and amides of gallic acid and other (mono-, di- and tri-) hydroxy benzyl derivatives as promising anti-HCV inhibitors. Eur J Med Chem 2015; 92:656-671.

9. Sanchez-Maldonado A, Schieber A, Ganzle M. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 2011; 111:1176-1184.

10. Shao D, Li J, Li J, Tang R, Liu L, Shi J, et al. Inhibition of gallic acid on the growth and biofilm formation of Escherichia coli and Streptococcus mutans. J Food Sci 2015; 80: 1299-1305.

11. Borges A, Saavedra MJ, Simoes M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 2012; 28:755-767.

12. Kang M, Oh J, Kang I, Hong S, Choi C. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol 2008; 46:744-750.

13. Teodoro G, Ellepola K, Seneviratne C. Potential use of phenolic acids as anti-candida agents-a review. Front Microbiol 2015; 6:1420. doi: 10.3389/fmicb.2015.01420. eCollection 2015.

14. Oh B, Jeon E. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front Microbiol 2015; 13:1129. doi: 10.3389/fmicb.2015.01129. eCollection 2015.

15. Nohynck L, Alakomi H, Kahkonen M, Heinonen M, Heleran I, Oksman-Caldentey K, et al. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 2006; 54:18-32.

16. Godstine C, Felix O, Augustina O, Christopher O. Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens. J Pharm Chem Biol Sci 2014; 2:77-85.

17. Kudo I, Fujita K, Nihei K, Masuoka N. Non-antibiotic antibacterial activity of dodecyl gallate. Bioorg Med Chem 2003; 11:573-580.

18. Modl M, Goel T, Das T, Malik S, Suri S, Rawat AK, et al. Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection in inhibition of HIV-1 protease & reverse transcriptase activity. Indian J Med Res 2013; 137:540-548.

19. Singh A, Pal T. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors. Int J Bioinform Res Appl 2015; 11:540-546.

20. Ahn C, Jung W, Park S, Kim Y, Kim W, Je J. Gallic acid-galactosan modulates inflammatory responses in LPS-stimulated RAW264.7 cells via NF-kappaB, AP-1, and MAPK pathways. Inflammation 2016; 39:366-374.

21. Flausino O, Dufau L, Regasini L, Petronio M, Silva D, Rose T, et al. Alkyl hydroxybenzoic acid derivatives that inhibit HIV-1 protease dimerization. Curr Med Chem 2012; 19:4534-4540.

22. Kratz J, Andrighetti-Frohner C, Kolling D, Leal P, Cirne-Santos C, Yunes R, et al. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem Inst Oswaldo Cruz 2008; 103:437-442.

23. Zuo G, Li Z, Chen L, Xu X. In vitro anti-HCV activities of Saxifraga malacocentra and its related polyphenolic compounds. Antivir Chem Chemother 2005; 16:393-398.

24. Govea Salas M, Rivas Estilla A, Morlett Chávez J, Lozano Sepulveda S, Rodriguez Herrera R, Aguilar González C. P420 gallic acid has antiviral effect against hepatitis C virus (HCV), which is mediated by its antioxidant activity. J Hepatol 2014; 60:5200.

25. Govea-Salas M, Rivas-Estilla A, Rodriguez-Herrera R, Lozano-Sepulveda S, Aguilar-Gonzalez C, Zugasti-Cruz A, et al. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity. Exp Ther Med 2016; 11:619-624.

26. Hsu W, Chang S, Lin L, Li C, Richardson C, Lin C, et al. Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral Res 2015; 118:139-147.

27. Lee J, Oh M, Seok J, Kim S, Lee D, Bae G, et al. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses 2016; 8: pii: E157. doi: 10.3390/v8060157.

28. Ndjonka D, Abladam E, Djafsia B, Ajonina-Ekoti I, Achukwi M, Liebau E. Anthelmintic activity of phenolic acids from the Onchocerca ochengi seed and its gallic acid derivatives. Res Microbiol 2014; 165:294-301.

29. Abouelhassan Y, Garrison A, Bai F, Norwood V, Nguyen M, Jin S, et al. A Phytochemical-halogenated quinoline combination therapy strategy for the treatment of pathogenic bacteria. Chem Med Chem 2015; 10:1157-1162.

30. Li D, Liu Z, Yuan Y, Liu Y, Niu F. Green synthesis of gallic acid and pyrogallol. Microb Pathog 2016; 99:56-61.

31. Lima V, Oliveira-Tintino C, Santos E, Morais L, Tintino E157. doi: 10.3390/v8060157.

32. Lee D, Eom S, Kim Y, Kim W, Yim M, Lee S, et al. Antimicrobial activity and low cytotoxicity to normal cells. Process Biochem 2015; 50:357-366.

33. Lima V, Oliveira-Tintino C, Santos E, Morais L, Tintino E157. doi: 10.3390/v8060157.

34. Hsu W, Chang S, Lin L, Li C, Richardson C, Lin C, et al. Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral Res 2015; 118:139-147.

35. Lee J, Oh M, Seok J, Kim S, Lee D, Bae G, et al. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses 2016; 8: pii: E157. doi: 10.3390/v8060157.

36. Ndjonka D, Abladam E, Djafsia B, Ajonina-Ekoti I, Achukwi M, Liebau E. Anthelmintic activity of phenolic acids from the Onchocerca ochengi seed and its gallic acid derivatives. Res Microbiol 2014; 165:294-301.

37. Abouelhassan Y, Garrison A, Bai F, Norwood V, Nguyen M, Jin S, et al. A Phytochemical-halogenated quinoline combination therapy strategy for the treatment of pathogenic bacteria. Chem Med Chem 2015; 10:1157-1162.

38. Li D, Liu Z, Yuan Y, Liu Y, Niu F. Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells. Process Biochem 2015; 50:357-366.

39. Abouelhassan Y, Garrison A, Bai F, Norwood V, Nguyen M, Jin S, et al. A Phytochemical-halogenated quinoline combination therapy strategy for the treatment of pathogenic bacteria. Chem Med Chem 2015; 10:1157-1162.

40. Li D, Liu Z, Yuan Y, Liu Y, Niu F. Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells. Process Biochem 2015; 50:357-366.

41. Lima V, Oliveira-Tintino C, Santos E, Morais L, Tintino E157. doi: 10.3390/v8060157.
Kahkeshani et al. Pharmacological effects of gallic acid and human health

36. Farzaei M, Bahramsolani R, Rahimi R. Phytochemicals as adjunctive with conventional anticancer therapies. Curr Pharm Des 2016; 22:24201-4218.

37. Shokohinia Y, Jafari F, Mohammadi Z, Bazvandi L, Hosseinizadeh L, Chow N, et al. Potential anticancer properties of osthole: a comprehensive mechanistic review. Nutrients 2018; 10:36.

38. Ahmadin J, Freddie B, Melissa M, Jaques F, Elizabeth W, David F. Global cancer statistics. Cancer J Clin 2011; 61:69-90.

39. Gilson J, Jayanti S, Nalin N. Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against I, 2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs 2010; 28:251-259.

40. Subramanian V, Venkatesan B, Tumala A, Vellaichamy E. Topical application of gallic acid suppresses the July-12DMBA/croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem Toxicol 2014; 66:44-55.

41. Balch C, Gershwnald J, Soong S, Thompson J, Atkins M, Byrd D, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27:6199-6206.

42. Liao C, Lai K, Huang A, Yang J, Lin J, Wu S, et al. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol 2012; 50:1734-1740.

43. Nemec M, Kim H, Marciant E, Barnes R, Talcott S, Mertens-Talcott S. Pyrogallol, an absorbable microbial gallotannins-metabolite and mango polyphenols (Mangifera Indica L.) prevent proliferation of thyroid cancer cell lines: in vitro. Food Funct 2016; 7:3825-3833.

44. Da Silva S, Chaar J, Yano T. Chemotherapeutic potential of two gallic acid derivative compounds from leaves of Casearia sylvestris Sw (Flacourtiaceae). Eur J Pharmaco 2009; 608:76-89.

45. Huang P, Hseu Y, Lee M, Kumar K, Wu C, Hsu L, et al. In vitro and in vivo activity of gallic acid and Toona sinensis leaf extracts against HL-60 human promyelocytic leukemia. Food Chem Toxicol 2012; 50:3489-3497.

46. Jagan S, Ramakrishnan G, Anandakumar P, Kamaraj S, Devaki T. Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol Cell Biochem 2008; 319:51-59.

47. Mardi S, Mojadami S, Farhood Y, Gharib Naseri M. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucusal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats. Vet Res Forum 2015; 6:305-311.

48. Pal C, Bindu S, Dey S, Alam A, Goyal M, Iqbal MS, et al. Gallic acid prevents non-steroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radicals Biol Med 2010; 49:258-267.

49. Chatterjee A, Chatterjee S, Biswas A, Bhattacharya S, Chattopadhyay S, Bandyopadhyay SK. Gallic acid enriched fraction of Phyllanthus emblica potentiates indomethacin-induced gastric ulcer healing via e-NOS-dependent pathway. Evid Based Complement Alternat Med 2012; 2012:487380.

50. Pandurangan A, Mohabali N, Norhaizan M, Looi C. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Res Dev Ther 2015b; 9:3923-3934.

51. Pandurangan A, Mohabali N, Mohd. Esa N, Mohd. Elsaleem M, and Cham M. Gallic acid suppresses inflammation in dextran sulfate sodium-induced colitis in mice: possible mechanisms. Int Immunopharmacol 2015a; 28:1034-1043.

52. Park J, Han W, Park J, Choi S, Choi J. Changes in hepatic drug metabolizing enzymes and lipid peroxidation by methanol extract and major compound of Orostachys japonicus. J Ethnopharmacol 2005; 102:313-318.

53. Anand K, Singh B, Saxena A, Chandan B, Gupta V, Bhardwaj V. 3,4,5-trihydroxy benzoic acid (gallic acid), the hepatoprotective principle in the fruits ofTerminalia belerica-bioassay guided activity. Pharmacol Res 1997; 36:315-321.

54. Kartkaya K, Ogilacik A, Senturk H, Bayramoglu G, Canbek M, Kanbak G. Investigation of the possible protective role of gallic acid on paraoxanase and arylesterase activities in livers of rats with acute alcohol intoxication. Cell Biochem Funct 2013; 31:208-213.

55. Oyagbemi A, Omobowale O, Asenuga E, Akinleye A, Ogunsanwo R, Saba A. Cyclophosphamide-induced hepatotoxicity in wistar rats: the modulatory role of gallic acid as a hepatoprotective and chemopreventive phytochemical. Int J Prev Med 2016; 7:51. doi:10.4103/2008-7802.177989.

56. Reckziegel P, Dias V, Benvegnú D, Bouleaur N, Barcelos R, Segat H, et al. Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicol Rep 2016; 3:351-356.

57. Bayramoglu G, Kurt H, Bayramoglu A, Gunes H, Degermenci I, Colak S. Preventive role of gallic acid on hepatic ischemia and reperfusion injury in rats. Cytochemistry 2015; 67:845-849.

58. Priscilla D, Prince P. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in wistar rats. Chem Biol Interact 2009; 179:118-124.

59. Gandhi G, Jothi G, Antony Pj, Balakrishana K, Paulraj M, Ignacimuthu S, et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARgamma in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in P3K/p-Akt signaling pathway. Eur J Pharmacol 2014; 745:201-216.

60. Kade I, Oguboluode Y, Kamdem J, Rocha J. Influence of gallic acid on oxidative stress-linked streptozotocin-induced pancreatic dysfunction in diabetic rats. J Basic Clin Physiol Pharmacol 2014; 25:35-45.

61. Bak E, Kim J, Jang S, Woo G, Yoon H, Yoo Y, et al. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand J Clin Lab Invest 2013; 73:607-614.

62. Hsu C, Yen G. Effect of gallic acid on high fat diet-induced dyslipidemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 2007; 98:727-735.

63. Huang D, Chang W, Wu J, Shih R, Shen S. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res 2016; 36:150-160.

64. Ban J, Nguyen H, Lee H, Cho S, Ju H, Kim J. Neuroprotective properties of gallic acid from Sanguisorba radix on amyloid beta protein (25-35)-induced toxicity in cultured rat cortical neurons. Bioll Pharm Bull 2008; 31:149-153.

65. Mansouri M, Farhood Y, Sameri M, Sarkaki A, Naghizadeh B, Rafeiad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food chem 2013; 138:1028-1033.

66. Nappol K, Singh S, Mishra D. Nanoparticle mediated brain targeted delivery of gallic acid: in vivo behavioral and biochemical studies for protection against scopolamine-induced amnesia. Drug Deliv 2013; 20:112-119.

67. Kang M, Kang N, Jang Y, Lee K, Lee H. Gallic acid induces neuronal cell death through activation of c-Jun N-terminal kinase and downregulation of Bcl-2. Ann NY Acad Sci 2009; 1171:514-520.

68. Crispo J, Piche M, Ansell D, Eihl J, Tai I, Kumar A. Protective effects of methyl gallate on H2O2-induced apoptosis in PC12...
cells. Biochem Biophys Res Commun 2010; 393:773-778.
69. Nazir N, Koul S, Qurishi M, Tanjea S, Ahmad S, Bani S, et al. Immunomodulatory effect of bergenin and norbergenin against adjuvant-induced arthritis—a flowcytometric study. J Ethnopharmacol 2007; 112:401-405.
70. Santos A, De Campos R, Miguel O, Cechinel-Filho V, Yunes R, Calixto J. The involvement of K+ channels and Gi/o protein in the antinociceptive action of the gallic acid ethyl ester. Eur J Pharmacol 1999; 379:7-17.
71. Kroes B, van den Berg A, Quarles van Ufford H, van Dijk L, Labadie R. Anti-inflammatory activity of gallic acid. Planta Med 1992; 58:499-504.
72. Choi K, Lee Y, Jung M, Kwon S, Kim M, Jun W, et al. Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kB signaling by preventing RelA acetylation in A549 lung cancer cells. Mol Cancer Res 2009; 7:2011-2021.
73. Wen L, Qu T, Zhai K, Ding J, Hai Y, Zhou J. Gallic acid can play a chondroprotective role against AGE-induced osteoarthrosis progression. J Orthop Sci 2015; 20:734-741.
74. Canbek M, Bayramoglu G, Senturk H, Oztopcu Vatan A, Uyanoglu M, Ceyhan E, et al. The examination of protective effects of gallic acid against damage of oxidative stress during induced experimental renal ischemia-reperfusion in experiment. Bratsil Lek Listy 2014; 115:557-562.
75. Akomolafe S, Akinyiemi A, Anadozie S. Phenolic acids (gallic and tannic acids) modulate antioxidant status and cisplatin induced nephrotoxicity in rats. Int Sch Res Notices 2014; 2014:984709.
76. Oluosoji M, Oyeyemi O, Asenuga E, Omowole T, Ajayi I, Oyagbemi A. Protective effect of gallic acid on doxorubicin-induced testicular and epididymal toxicity. Andrologia 2016; 49: doi: 10.1111/and.12635.
77. Prasad L, Khan T, Jahangir T, Sultana S. Effect of gallic acid on renal biochemical alterations in male Wistar rats induced by ferric nitroliacetic acid. Hum Exp Toxicol 2006; 25:523-529.
78. Yousuf M, Vellaichamy E. Protective activity of gallic acid against glyoxal-induced renal fibrosis in experimental rats. Toxicol Rep 2015; 2:1246-1254.
79. Peng C, Hsieh C, Wang H, Chung J, Chen K, Peng R. Ferulic acid is nephrodamaging while gallic acid is renal protective in long term treatment of chronic kidney disease. Clin Nutr 2012; 31:405-414.
80. Nikhakht J, Hemmati A, Arzi A, Mansouri M, Rezaei A, Ghafourian M. Protective effect of gallic acid against bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep 2015; 67:1061-1067.
81. Gandhi N, Nair C. Protection of DNA and membrane from gamma radiation induced damage by gallic acid. Mol Cell Biochem 2005; 278:111-117.
82. Nair G, Nair C. Radioprotective effects of gallic acid in mice. Biomed Res Int 2013; 2013:953079. doi: 10.1155/2013/953079.
83. Kumar K, Vani M, Wang S, Liao J, Hsu L, Yang H, et al. In vitro and in vivo studies disproved the depigmenting effects of gallic acid: a novel skin lightening agent for hyperpigmentary skin diseases. Biofactors 2013; 39:259-270.
84. Hwang E, Park S, Lee H, Lee T, Sun Z, Yi T. Gallic acid regulates skin photaging in UVB-exposed fibroblast and hairless mice. Phytother Res 2014; 28:1778-1788.
85. Shaik A, Rasool S, Reddy A, Kareem M, Saayi Krushna G, Lakshmi Devi K. Cardioprotective effect of HPLC standardized ethanolic extract of Terminalia pallida fruits against isoproterenol-induced myocardial infarction in albino rats. J Ethnopharmacol 2012; 141:33-40.
86. Prince P, Priscilla H, Devika P. Gallic acid prevents lysosomal damage in isoproterenol induced cardiotoxicity in wistar rats. Eur J Pharmacol 2009; 615:139-143.
87. Padma V, Poornima P, Prakash C, Bhavani R. Oral treatment with gallic acid and quercetin alleviates lindane-induced cardiotoxicity in rats. Can J Physiol Pharmacol 2013; 91:134-140.
88. Yeh C, Ching L, Yen G. Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. J Nutr Biochem 2009; 20:153-161.
89. Umadevi S, Gopi V, Elangovan V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chem Biol Interact 2014; 208:28-36.
90. Patel S, Goyal R. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res 2011; 3:239-245.
91. Sutra T, Oiry C, Azay-Milhaui J, Youl E, Magours T, Teissedre PL, et al. Preventive effects of nutritional doses of polyphenolic molecules on cardiac fibrosis associated with metabolic syndrome: involvement of osteopontin and oxidative stress. J Agric Food Chem 2008; 56:11683-11687.
92. El-Husainy E, Hussein A, Abdel-Aziz E, El-Mehasseb I. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: possible cardioprotective effect of gallic acid. Can J Physiol Pharmacol 2016; 94:868-878.
93. Badavi M, Sadeghi N, Dianat M, Samarabzadeh A. Effects of gallic acid and cyclosporine a on antioxidant capacity and cardiac markers of rat isolated heart after ischemia/ reperfusion. Iran Red Crescent Med J 2014; 16:e16424. doi:10.5812/ircmj.16424.
94. Jin L, Lin M, Piao Z, Cho J, Kim G, Choi S, et al. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2. J Hypertens 2017; 35:1502-1512.
95. Ogunsanwo O, Oyagbemi A, Omowole T, Asenuga E, Saha A. Biochemical and electrocardiographic studies on the beneficial effects of gallic acid in cyclophosphamide-induced cardioirenal dysfunction. J Complement Med Int 2017; 144. doi: 10.1515/jcim-2016-0161.
96. Elser G, Peralta R, Bracht A. The action of n-propyl gallate on glucogenesisis and oxygen uptake in the rat liver. Chem Bio Interact 2009; 181:390-399.
97. Gupta N, Gupta S, Mahmood A. Gallic acid inhibits brush border disaccharidases in mammalian intestine. Nutr Res 2007; 27:230-235.
98. Hsieh S, Wu C, Wu C, Yen J, Liu M, Hseueh C. Gallic acid selectively induces the necrosis of activated hepatic stellate cells via a calcium-dependent calpain I activation pathway. Life Sci 2014; 102:55-64.
99. Kanbak G, Canbek M, Ogakci A, Kartlaya K, Senturk H, Bayramoglu G, et al. Preventive role of gallic acid on alcohol dependent and cysteine protease-mediated pancreas injury. Mol Biol Rep 2012; 39:1029-1035.
100. Pal C, Bindu S, Dey S, Alam A, Goyal M, Iqbal M, et al. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells. J Biol Chem 2012; 287:3495-3509.
101. Raso M, Sabina E, Ramya S, Preetty P, Patel S, Mandal N, et al. Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. J Pharm Pharmacol 2010; 62:638-643.
102. Sachdeva M, Chadha R, Kumar A, Karan M, Singh T, Dhingra A, et al. Hepatoprotective effect of trimethylgallic acid esters against carbon tetrachloride-induced liver injury in rats. Indian J Exp Biol 2015; 53:803-809.
103. Sen S, De B, Devanna N, Chakraborty R. Total phenolic,
total flavonoid content, and antioxidant capacity of the leaves of *Myrta spinoso* Roxb., an Indian medicinal plant. Chin J Nat Med 2013; 11:149-157.

104. Wang Y, Chong F, Lee S, Dykes G. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res Notes 2013; 6:143. https://doi.org/10.1186/1756-0500-6-143.

105. Zhao X, Wang Y, Sun Y. Quantitative and qualitative determination of Liuwei Dihuang tablets by HPLC-UV-MS-MS. J Chromatogr Sci 2007; 45:549-552.

106. Sugimoto K, Sakamoto S, Nakagawa K, Hayashi S, Harada N, Yamaji R, et al. Suppression of inducible nitric oxide synthase expression and amelioration of lipopolysaccharide-induced liver injury by polyphenolic compounds in *Eucalyptus globulus* leaf extract. Food Chem 2011; 125:442-446.

107. Tung Y, Wu J, Hsieh C, Chen P, Chang S. Free radical-scavenging phytochemicals of hot water extracts of *Acacia confusa* leaves detected by an on-line screening method. Food Chem 2009; 115:1019-1024.

108. Padma V, Sowmya P, Felix T, Baskaran R, Poornima P. Protective effect of gallic acid against lindane induced toxicity in experimental rats. Food Chem Toxicol 2011; 49:991-998.

109. Nirala S, Li P, Bhadauria M, Guo G. Combined effects of gallic acid and propolis on beryllium-induced hepatorenal toxicity. Int J Zool 2008; 3:194-207.

110. Latha R, Dais P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from *Terminalia bellirica* Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interac 2011; 189: 112-118.

111. Oi Y, Hou I, Fujita H, Yazawa K. Antibiessity effects of Chinese black tea (*Pu-erh* tea) extract and gallic acid. Phytother Res 2012; 26:475-481.

112. Punithavathi V, Prince P, Kumar R, Selvakumari J. Anti-hyperglycaemic, antiperoxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic wistar rats. Eur J Pharmacol 2011; 650:465-471.

113. Punithavathi V, Prince P, Kumar R, Selvakumari C. Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic wistar rats. J Biochem Mol Toxicol 2011; 25:68-76.

114. Ramkumar K, Vijayakumar R, Vanitha P, Suganya N, Manjula C, Rajaguru P, et al. Protective effect of gallic acid on alloxan-induced oxidative stress and osmotic fragility in rats. Hum Exp Toxicol 2014; 33:638-649.

115. Mohammed A, Koorbanally N, Islam M. Phytochemistry, antioxidative activity and inhibition of key enzymes linked to alloxan-induced oxidative stress and osmotic fragility in rats. Acta Pol Pharm 2016; 73:403-417.

116. Ahad A, Ahsan H, Mujeeb M, Siddiqui W. Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells. Chem Bio Interact 2015; 240:292-303.

117. de Oliveira L, de Oliveira T, da Costa R, de Souza Gil E, Costa E, Passaglia C, et al. The vasorelaxant effect of gallic acid on isometric tension in human coronary arterial strips. Int J Pharm 2013; 455:76-82.

118. Mansouri M, Naghizadeh B, Ghorbanzadeh B, Farbood Y, Sarkaki A, Bavarsad K. Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacol Biochem Behav 2013; 111:90-96.

119. Mansouri M, Soltani M, Naghizadeh B, Farbood Y, Mashak A, Sarkaki A. A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol Biochem Behav 2014; 117:40-46.

120. Nabavi S, Hantemarami S, Jafari M, Sureda A, Nabavi S. Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull Environ Contam Toxicol 2012; 89:73-77.

121. Naghizadeh B, Mansouri M. Protective effects of gallic acid against streptozotocin-induced oxidative damage in rat striatum. Drug Res (Stuttg) 2015; 65:515-520.

122. Yang Y, Wang Z, Zheng J, Wang R. Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol Med Rep 2015; 12:3017-3024.

123. Ortega-Arellano H, Jimenez-Del-Rio M, Velez-Pardo C. Dmp53, basket and dRICE gene knockdown and polyphenol gallic acid increase life span and locomotor activity in a Drosophila Parkinson’s disease model. Genet Mol Biol 2013; 36:608-615.

124. Reckeziegel P, Peroza L, Schaffer LF, Ferrari M, de Freitas C, Burger M, et al. Gallic acid decreases vacuous chewing movements induced by reserpine in rats. Pharmacol Biochem Behav 2013; 104:132-137.

125. Reckeziegel P, Dias VT, Benvegnu B, Boulefr N, Barcelos R, Segat H, et al. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment. Toxicol Lett 2011; 203:74-81.

126. Parihar P, Jat D, Ghafourifar P, Parihar M. Efficiency of mitochondrially targeted gallic acid in reducing brain mitochondrial oxidative damage. Cell Mol Biol 2014; 60:35-41.

127. Sun H, Zhang Y, Xie X, Che Y. Biochemical studies for improved antioxidant and antidepressant-like activity. Drug Deliv 2012; 19:378-391.

128. Dhirngra D, Chhillar R, Gupta A. Antiaxinxiety-like activity of gallic acid in unstressed and stressed mice: possible involvement of nitrergic system. Neurochem Res 2012; 37:487-494.

129. Farbood Y, Sarkaki A, Hashemi S, Mansouri M, Dianat M. The effects of gallic acid on pain and memory following transient global ischemia/reperfusion in wistar rats. Avicenna J Phytomed 2013; 3:329-340.

130. Hajmoradi M, Faziliati M, Gharib-Naseri M, Sarkaki A. Gallic acid and exercise training improve motor function, nerve conduction velocity but not pain sense reflex after experimental sciatic nerve crush in male rats. Avicenna J Phytomed 2015; 5:288-297.

131. Hajpour S, Sarkaki A, Farbood Y, Eidi A, Mortazavi P, Valizadeh Z. Effect of gallic acid on dementia type of Alzheimer disease in rats: electrophysiological and histological studies. Basic Clin Neurosci 2016; 7:97-106.

132. Kade I, Rocha J. Gallic acid modulates cerebrovascular oxidative stress conditions and activities of enzyme-dependent signaling systems in streptozotocin-treated rats. Neurochem Res 2013; 38:761-771.

133. Kim M, Seong A, Yoo J, Jin C, Lee Y, Kim Y, et al. Gallic acid, a histone acetyltransferase inhibitor, suppresses beta-amylloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 2011; 55:1798-1808.

134. Korani M, Farbood Y, Sarkaki A, Fathi Moghaddam H, Mansouri M. Protective effects of gallic acid against chronic cerebral hyperpufusion-induced cognitive deficit and brain oxidative damage in rats. Eur J Pharmacol 2014; 733:62-67.

135. Lu Z, Nie G, Belton P, Tang H, Zhao B. Structure–activity relationship analysis of antioxid activity and neuroprotective effect of gallic acid derivatives. Neurochem Int 2006; 49:263-274.

136. Zhang Q, Chen W, Zhao J, Li W. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem 2016; 200:230-236.

137. Yigit Turk G, Acara A, Erbas O, Oltulu E, Yavasoglu N, Uysal A, et al. The antioxidant role of agomelatine and gallic acid
on oxidative stress in STZ induced type I diabetic rat testes. Biomed Pharmacother 2017; 87:240-246.
139. Giftson Senapathy J, Jayanthi S, Viswanathan P, Umadevi P, Nalini N. Effect of gallic acid on xenobiotic metabolizing enzymes in 1,2-dimethyl hydrazine induced colon carcinogenesis in Wistar rats – a chemopreventive approach. Food Chem Toxicol 2011; 49:887-892.
140. Ji B, Hsu W, Yang J, Hsia T, Lu C, Chiang J, et al. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem 2009; 57:7596-7604.
141. Kawada M, Ohno Y, Ri Y, Ikoma T, Yugetu H, Asai T, et al. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anticancer Drugs 2001; 12:847-852.
142. Nakamura E, Kurosaki F, Arisawa M, Mukainaka T, Takayasu J, Okuda M, et al. Cancer chemopreventive effects of a Brazilian folk medicine, Juca, on in vivo two-stage skin carcinogenesis. J Ethnopharmacol 2002; 81:135-137.
143. Thiele W, Rothley M, Teller N, Jung N, Bulat B, Plaumann D, et al. Delphinidin is a novel inhibitor of lymphangiogenesis but promotes mammary tumor growth and metastasis formation in syngeneic experimental rats. Carcinogenesis 2013; 34:2804-2813.