Title: Temperature and O₂, but not CO₂, interact to affect aerobic performance of European sea bass (*Dicentrarchus labrax*)

Running title: Temperature & O₂, not CO₂, affect bass

Daniel W. Montgomery⁹, Stephen D. Simpson⁹, William Davison⁹, Harriet R. Goodrich⁹b, Georg H. Engelhard⁹cd, Silvana N.R. Birchenough⁹c, Rod W. Wilson⁹a

*co-corresponding authors – danwmont@gmail.com (+44 (0)7939598464), R.W.Wilson@exeter.ac.uk (+44 (0) 1392 724652)

⁹a Biosciences Department, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, UK

⁹b School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia

⁹c Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK

⁹d School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Abstract

Climate change causes warming, decreased O\textsubscript{2}, and increased CO\textsubscript{2} in marine systems and responses of organisms will depend on interactive effects between these factors. We provide the first experimental assessment of the interactive effects of warming (14 to 22°C), reduced O\textsubscript{2} (~3 – 21 kPa O\textsubscript{2}), and increased CO\textsubscript{2} (~400 or ~1000 µatm ambient CO\textsubscript{2}) on four indicators of aerobic performance (standard metabolic rate, SMR, maximum metabolic rate, MMR, aerobic scope, and hypoxia tolerance, O\textsubscript{2crit}), blood chemistry, and O\textsubscript{2} transport (P\textsubscript{50}) of a marine fish, the European sea bass (\textit{Dicentrarchus labrax}). Warming increased SMR and O\textsubscript{2crit} (i.e. reduced hypoxia tolerance) as well as MMR in normoxia but there was an interactive effect with O\textsubscript{2} so that hypoxia caused larger reductions in MMR and aerobic scope at higher temperatures. Increasing CO\textsubscript{2} had minimal effects on SMR, MMR and O\textsubscript{2crit} and did not show interactive effects with temperature or O\textsubscript{2} for any measured variables. Aerobic performance was not linked to changes in blood chemistry or P\textsubscript{50}. Despite lack of effects of CO\textsubscript{2} on aerobic performance, increased CO\textsubscript{2} induced 30% mortality of fish exercised in low O\textsubscript{2} at 22°C indicating important threshold effects independent of aerobic performance. Overall, our results show temperature and O\textsubscript{2}, but not CO\textsubscript{2}, interact to affect aerobic performance of sea bass, disagreeing with predictions of the oxygen- and capacity-limited thermal tolerance hypothesis.

1. Introduction

Atmospheric CO\textsubscript{2} levels are increasing and could reach ~1000 µatm by the end of the century (IPCC, 2014). Rising atmospheric greenhouse gases increase ocean temperatures (Bopp et al., 2013), which reduces oceanic O\textsubscript{2} content and exacerbates the frequency and severity of hypoxic (low O\textsubscript{2}) events (Breitburg et al.,
2018; Diaz & Rosenberg, 2008). As atmospheric CO$_2$ levels continue to rise so too does the concentration of CO$_2$ in marine systems (Caldeira & Wickett, 2003). Therefore, responses of marine organisms to climate change will be a result of simultaneous changes in temperature, O$_2$, and CO$_2$.

Changes in temperature, O$_2$, and CO$_2$ can individually impact physiological performance of fish. Concern has been raised that interactions between these three may occur in a non-linear manner, so that their combined impact cannot be predicted from responses to an individual variable (Côté et al., 2016; Crain et al., 2008; McBryan et al., 2013; Todgham & Stillman, 2013). As such, we need to understand how temperature, O$_2$, and CO$_2$ interact to affect the physiology of fish to enable accurate predictions of how climate change will influence fish species (Hollowed et al., 2013; Pörtner & Peck, 2010; Wernberg et al., 2012). One approach is to examine how these environmental factors affect the fish’s range of aerobic metabolism (aerobic scope), defined as the difference between an animal’s maximum rate of O$_2$ consumption (maximum metabolic rate, MMR) and the minimum rate needed to meet basal energy demands (standard metabolic rate, SMR) (Fry, 1971).

It has been proposed that aerobic scope provides a single metric of whole-animal performance in a particular environment. Therefore, aerobic scope can be directly linked to processes such as growth and reproduction and in turn overall organism fitness, through the concept of oxygen- and capacity- limited thermal tolerance, OCLTT (Pörtner, 2012; Pörtner et al., 2017). The OCLTT hypothesis assumes that an organism’s overall fitness is maximised at an optimal temperature at which aerobic scope peaks. As such, anything that reduces aerobic scope will also diminish fitness, potentially changing the distribution of populations (Pörtner & Farrell, 2008). Hypoxia affects aerobic scope by limiting environmental O$_2$ availability.
and, therefore, the maximum O_2 uptake rate possible by fish. Increased CO_2 has been proposed to affect aerobic scope both by increasing the SMR of fish (e.g. through increased cost of acid-base regulation) and by decreasing MMR (potentially because subsequent changes in internal acid-base chemistry can reduce O_2 transport capacity of the blood or impair tissue functioning). The OCLTT hypothesis therefore predicts that reduced O_2 and increased CO_2 will interact to reduce aerobic scope across the thermal performance curve of a species. This would result in a lower optimal temperature (where peak aerobic scope occurs) and reduced thermal tolerance. While this concept has been successfully used to explain changes in habitat suitability and population distributions of some fish species (Cucco et al., 2012; Del Raye & Weng, 2015), the assertion that it represents a universal framework to predict effects of climate change on all fish populations (Farrell, 2016) has been challenged (Jutfelt et al., 2018; Lefevre, 2016).

The proposal of the OCLTT hypothesis has led to numerous studies examining how O_2 or CO_2 interact with temperature to affect aerobic performance (for examples see Chabot and Claireaux, 2008; Rummer et al., 2013; Grans et al., 2014). However, to date no experimental work has sought to investigate how combined changes in all three factors (temperature, O_2, and CO_2) interact to affect aerobic performance in fish. Combining all three environmental variables is vital to accurately assess potential interactive effects for three reasons. Firstly, meta-analysis of multi-factor studies indicates that the prevalence of non-linear effects doubles when moving from studies that combine two factors to three factors (Crain et al., 2008). Secondly, the role of CO_2 as a limiting factor of aerobic scope was originally suggested to occur primarily in combination with hypoxia (Fry, 1971). Thirdly, low O_2 conditions in the environment always co-occur with increased CO_2 (Melzner et al., 2013). As such,
experiments investigating effects of O\textsubscript{2} or CO\textsubscript{2} and temperature on aerobic performance may not accurately reflect interactive effects caused by all three environmental factors.

In this study we investigated how temperature, O\textsubscript{2}, and CO\textsubscript{2} interact to affect aerobic performance of European sea bass (\textit{Dicentrarchus labrax}), a species showing recent northward range expansions thought to be related to warming (Pawson et al., 2007). Two separate populations exist (Souche et al., 2015) and, although the physiological responses of this species to environmental change have been regularly examined, to date only one study has used fish from the Atlantic population. As such, our experiment had three aims:

i. to assess how aerobic performance of sea bass from the Atlantic population will respond to predicted future environmental changes;

ii. to determine whether combinations of hypoxia and increased CO\textsubscript{2} interact with temperature to affect aerobic scope, as predicted by the OCLTT hypothesis;

iii. to determine whether changes in aerobic performance are linked to blood chemistry and O\textsubscript{2} transport capacity.

2. Results

2.1. Standard metabolic rate and hypoxia tolerance

The best supported model for SMR included both temperature and CO\textsubscript{2} as fixed effects (Linear Mixed-Effects Model, marginal $R^2 = 0.70$, conditional $R^2 = 0.70$, Table S6). Standard metabolic rate approximately doubled between 14 and 22\textdegree{}C, exhibiting a Q\textsubscript{10} temperature coefficient of 2.09 (Figure 1). The best model indicated
that CO$_2$ had a small effect on SMR - reducing SMR by 7.4 mgO$_2$ kg$^{-1}$ h$^{-1}$, ~10 % of the smallest SMR, (95 % CI = -1.65 to 16.43 mgO$_2$ kg$^{-1}$ h$^{-1}$) across all temperatures at ~1000 µatm CO$_2$ (Figure 1). However, the model including temperature but not CO$_2$ had a ΔAICc <2 indicating that including the effect of CO$_2$ in the best model did not lead to a large improvement in model fit (Table S5). There was no evidence of an interactive effect between increasing temperatures and increasing CO$_2$.

Figure 1: Impact of temperature and CO$_2$ on standard metabolic rates (SMR) of juvenile sea bass. The best supported model (marginal R2 = 0.70, conditional R2 = 0.70) to explain variation in SMR included temperature and CO$_2$ as explanatory variables but not their interaction. Points represent calculated SMR for individual fish, lines represented predicted SMR at two CO$_2$ levels (blue = present day ~400 µatm CO$_2$, orange = end of century ~ 1000 µatm CO$_2$) from the best supported model, and shaded areas represent bootstrapped 95 % CI of predictions (n = 1000).
The best supported model of $O_{2\text{crit}}$ included the effects of temperature, CO$_2$ and SMR but no interactions (Linear Mixed-Effects Model, marginal $R^2 = 0.72$, conditional $R^2 = 0.77$, Table S7). A doubling in SMR from 60 to 120 mgO$_2$ kg$^{-1}$ h$^{-1}$ is predicted to increase $O_{2\text{crit}}$ by 2.16 kPa O$_2$ (95 % CI = 1.66 to 2.66 kPa O$_2$). Independent of their effects on SMR, both temperature and CO$_2$ were included in the best model of $O_{2\text{crit}}$. The effect of temperature meant that for a given value of SMR $O_{2\text{crit}}$ would reduce as temperature increased. For instance, a fish at 14 °C is predicted to have an $O_{2\text{crit}}$ of 0.50 kPa O$_2$ (95 % CI = 0.13 to 0.87 kPa O$_2$) higher than a fish with the same SMR at 18 °C (Figure 2A). Combined the effects of SMR and temperature mean warming from 14 to 22 °C will increase $O_{2\text{crit}}$ by 0.91 kPa O$_2$ (95 % CI = 0.53 to 1.29 kPa O$_2$, Figure 2B). The additional effect of CO$_2$ is predicted to increase $O_{2\text{crit}}$. Despite this, when taking into account the effect of CO$_2$ on SMR from the best model of SMR (Figure 1), and the effect of SMR and temperature on $O_{2\text{crit}}$, the resulting effect of CO$_2$ causes an increase in $O_{2\text{crit}}$ of only 0.04 kPa O$_2$ (95 % CI = -0.32 to 0.40 kPa O$_2$, Figure 2B).
Figure 2: Combined impacts of SMR, temperature and CO₂ on hypoxia tolerance (O₂crit) of juvenile European sea bass. A. The best supported model (marginal R² = 0.72, conditional R² = 0.77) predicted a positive effect of increasing SMR on O₂crit with the effect of increased temperature resulting in lower O₂crit for a given value of SMR. B. Combined effects of SMR and temperature result in an increase in O₂crit between 14 °C and 22 °C. The predicted positive effect of increased CO₂ on O₂crit is small compared to changes in SMR and temperature. Points represent calculated O₂crit for individual fish, lines represented predicted O₂crit from the best supported model, and shaded areas represent bootstrapped 95% CI of predictions (n = 1000).

2.2. Maximum metabolic rate and aerobic scope

Maximum metabolic rate of sea bass was affected by temperature, O₂, and CO₂ level. Warming from 14 to 22 °C, in normoxia combined with normocapnia, caused a
50% increase in MMR from 293.5 ± 10.4 to 435.9 ± 18.9 mgO$_2$ kg$^{-1}$ h$^{-1}$, with a Q$_{10}$ of 1.64. In high CO$_2$ the temperature effect on MMR was very similar (Q$_{10} = 1.60$). The best supported model predicted that O$_2$ had a non-linear quadratic effect on MMR, so that a given reduction in O$_2$ caused a larger reduction in MMR at lower O$_2$ levels, as well as interactive effects between O$_2$ and temperature (Figure 3; Linear Mixed Model, marginal R$^2 = 0.91$, conditional R$^2 = 0.96$, Table S8). For example a 5 kPa reduction in O$_2$ at 18 °C (in normal CO$_2$) from air saturated levels (~20 to ~15 kPa O$_2$) results in a predicted decrease in MMR of 8.0 mgO$_2$ kg$^{-1}$ h$^{-1}$ (95% CI = -7.2 to 23.2 mgO$_2$ kg$^{-1}$ h$^{-1}$) whereas the same reduction in O$_2$ from 10 to 5 kPa resulted in a 15-fold larger predicted decrease in MMR of 123.8 mgO$_2$ kg$^{-1}$ h$^{-1}$ (95% CI = 115.1 to 132.5 mgO$_2$ kg$^{-1}$ h$^{-1}$). In addition, the non-linear O$_2$ effect interacted with the temperature effect so that the same reduction in O$_2$ caused a larger reduction in MMR as temperature increased (Figure 3A & B). This was particularly noticeable between 15 and 10 kPa O$_2$ where fish at 22 °C (in normal CO$_2$) exhibited a predicted decline in MMR that was 60% larger than fish at 14 °C, 80.9 mgO$_2$ kg$^{-1}$ h$^{-1}$ (95% CI = 63.2 to 98.6 mgO$_2$ kg$^{-1}$ h$^{-1}$) versus 50.8 mgO$_2$ kg$^{-1}$ h$^{-1}$ (95% CI = 35.9 to 65.7 mgO$_2$ kg$^{-1}$ h$^{-1}$). Finally, environmental CO$_2$ level had a small, negative effect independent of interactions between temperature and O$_2$. As a result, an increase in CO$_2$ of 1000 µatm is predicted to reduce MMR by 8.5 mgO$_2$ kg$^{-1}$ h$^{-1}$ (95% CI = -18.2 to 35.3 mgO$_2$ kg$^{-1}$ h$^{-1}$) irrespective of temperature and O$_2$ (Figure 3C, D, & E).
Figure 3: Effects of combinations of temperature, O$_2$, and CO$_2$ on the maximum metabolic rate (MMR) of European sea bass. There was a synergistic interactive effect of temperature and O$_2$ on MMR for sea bass exposed to both A. present day CO$_2$ conditions (present day CO$_2$ = 400 µatm at ~20 kPa O$_2$) and B. end of century CO$_2$ conditions (end of century CO$_2$ = 1000 µatm at ~ 20 kPa O$_2$). The additive effects of reduced O$_2$ and increased CO$_2$ levels are displayed for sea bass at A. 14 °C B. 18 °C and C. 22 °C. Points represent calculated MMR for individual fish, lines represent predicted MMR from the best supported model, and shaded areas represent bootstrapped 95% confidence intervals (n = 1000).

We predicted the impacts of temperature, O$_2$, and CO$_2$ on aerobic scope from the best supported models fitted to measurements of SMR and MMR (Figure 4). At normoxia (~20 kPa O$_2$) aerobic scope is predicted to increase by 80.2 mgO$_2$ kg$^{-1}$ h$^{-1}$ (95% CI = 24.8 to 135.7 mgO$_2$ kg$^{-1}$ h$^{-1}$) as temperature increases from 14 to 22 °C.
independent of changes in CO\textsubscript{2} level (Figure 4A & B). Interactive effects between temperature and O\textsubscript{2} on MMR are reflected in predictions of aerobic scope (Figure 4A &B). As increasing CO\textsubscript{2} has the same direction of effect on both SMR and MMR the impact of CO\textsubscript{2} on aerobic scope is minimal (Figure 4C, D, & E).

Figure 4: Effects of combinations of temperature, O\textsubscript{2}, and CO\textsubscript{2} on the aerobic scope (AS) of European sea bass. There was a non-linear interactive effect of temperature and O\textsubscript{2} on aerobic scope for sea bass exposed to both A. present day CO\textsubscript{2} conditions (present day CO\textsubscript{2} = 400 µatm at ~20 kPa O\textsubscript{2}) and B. end of century CO\textsubscript{2} conditions (end of century CO\textsubscript{2} = 1000 µatm at ~20 kPa O\textsubscript{2}). The additive effects of reduced O\textsubscript{2} and increased CO\textsubscript{2} levels are displayed for sea bass at A. 14 °C B. 18 °C and C. 22 °C. Points represent aerobic scope of individual fish derived from calculated RMR and MMR of that individual, lines represent predicted aerobic scope calculated by subtracting model predictions of RMR and MMR and shaded areas
2.3. Blood chemistry & Hb-O$_2$ affinity

Increasing ambient CO$_2$ from ~400 to ~1000 µatm increased plasma pCO$_2$ (Two-way ANOVA, F = 15.84, df = 1, p < 0.001) whereas warming from 14 to 22 °C did not (F = 0.772, df = 2, p = 0.468), and there was no interactive effect noted (F = 2.067, df = 2, p = 0.138). Despite the significant overall effect of increased CO$_2$ on plasma pCO$_2$ pairwise comparisons (Figure 5) only revealed a significant increase in plasma pCO$_2$ in bass at 18 °C exposed to ~1000 µatm (0.53 ± 0.05 kPa pCO$_2$) compared to ambient conditions (0.29 ± 0.05 kPa pCO$_2$) (Pairwise comparisons of least square means, t = 3.688, df = 1, p = 0.008).

To compensate for increased plasma pCO$_2$ in ~1000 µatm CO$_2$ treatments sea bass accumulated ~3 mM extra HCO$_3^-$ (Two-way ANOVA, F = 44.34, df = 1, p << 0.001) (Figure 5), compared to fish in ambient CO$_2$ conditions at 14 and 18 °C. Fish exposed to ~1000 µatm CO$_2$ at 22 °C showed a non-significant increase in HCO$_3^-$ of just under 2 mM (95 % CI = 0.60 to 2.84 mM) when compared to fish at ~400 µatm CO$_2$ (t = 2.66, df = 1, p = 0.103). There was no temperature effect on plasma HCO$_3^-$ (F = 2.538, df = 2, p = 0.0903) and no interactive effect between temperature and CO$_2$ (F = 0.969, df = 2, p = 0.387).

As a result of compensatory accumulation of HCO$_3^-$, blood extracellular pH (pHe) was regulated in response to high CO$_2$ (F = 3.56, df = 1, p = 0.066) and sea bass did not show significant effects of temperature on pHe (Two way ANOVA, F = 1.425, df = 2, p = 0.251). However, there was a significant interactive effect between temperature and CO$_2$ (F = 3.952, df = 2, p = 0.026). This interactive effect was
caused by a significant reduction in pH in sea bass exposed to ~1000 µatm CO₂ at 18 °C (7.80 ± 0.03) when compared to fish at ambient CO₂ levels (7.97 ± 0.04) (pairwise comparisons of least square means, t = 3.242, df = 1, p = 0.026). We did not find significant differences between pH across all other treatment groups. Additionally, intracellular pH of red blood cells (pHₐ) showed no significant differences between all treatments (Kruskal-Wallis test, χ² = 6.79, df = 5, p = 0.237) (Figure 5).

There were no significant differences in plasma lactate levels across all treatments (Kruskal-Wallis, χ² = 6.40, df = 5, p = 0.269), with mean lactate for all fish of 0.42 ± 0.06 mM (± S.E.). Plasma glucose levels (mean for all fish of 4.30 ± 0.14 mM, ± S.E.) were not significantly affected by temperature (Two-way ANOVA, F = 0.864, df = 2, p = 0.429), CO₂ (F = 0.0138, df = 1, p = 0.907) or the interaction between temperature and CO₂ (F = 1.052, df = 2, p = 0.358).
Figure 5: Impact of temperature and CO$_2$ on blood acid-base characteristics of European sea bass. Significant differences in pairwise comparisons of least square means between treatments are indicated by different letters (a,b,c). No significant differences between any treatments were noted for measurements of pH$_i$.

Our measurements of blood O$_2$ transport showed no consistent impacts of temperature or CO$_2$. Haemoglobin-O$_2$ binding affinity (P$_{50}$) (Kruskal-Wallis, $\chi^2 = 6.503$, df = 4, p = 0.165) and Hills’ number (One-way ANOVA, $F = 0.878$, df = 4, p = 0.487) were not significantly different between any treatments (Figure S1). Haematocrit (Hct) was not affected by temperature (Two-way ANOVA, $F = 0.832$, df = 2, p = 0.442) or CO$_2$ ($F = 2.945$, df = 1, p = 0.093) and no interactive effects were evident ($F = 0.069$, df = 2, p = 0.934). Haemoglobin (Hb) levels were affected by temperature (Two-way ANOVA, $F = 7.094$, df = 2, p = 0.002) with fish sampled at 22 $^\circ$C having Hb levels 0.20 and 0.24 mM higher than fish sampled at 18 and 14 $^\circ$C.
respectively. Haemoglobin levels were not affected by CO₂ (F = 0.690, df = 1, p = 0.411) and there were no interactive effects (F = 3.067, df = 2, p = 0.057) (Figure S2).

2.4. Mortality

Three fish (30 %) died ~1 hour post-chase after exposure to ~6 kPa O₂ at 22 °C in the high CO₂ treatment. No fish died post-chase in any other treatment combinations.

3. Discussion

Our results demonstrate, for the first time, the interactive effects of temperature, O₂, and CO₂ on aerobic performance of an active predatory marine fish. We show that temperature and O₂ have a non-linear interactive effect on aerobic performance of European sea bass but CO₂’s impact is minor and independent. Both SMR and MMR increased with temperature from 14 to 22 °C, but changes in MMR were greater leading to positive effects on absolute aerobic scope. These results suggest that European sea bass populations in the North-East Atlantic (typical temperatures are < 22 °C) could physiologically benefit from global warming. However, hypoxia tolerance reduced at higher temperatures, and hypoxia reduced MMR and aerobic scope by a greater amount at high temperatures, indicating that in warmer waters European sea bass will be more susceptible to hypoxia.

We confirm similar findings from previous research investigating effects of temperature and O₂ on European sea bass. For example, the increase in SMR with temperature we observed closely follows results from aquaculture sourced European sea bass (Claireaux & Lagardère, 1999). That is the Q₁₀ temperature coefficient dropped from 2.33 between 14 and 18 °C to 1.82 between 18 and 22 °C. This drop in
Q_{10} as temperature increases provides further evidence that SMR does not increase exponentially after chronic vs acute exposure (Sandblom et al., 2014; Schulte et al., 2011). Responses of MMR to temperature showed similar Q_{10}'s indicating a linear increase in MMR between 14 and 22 °C. This also closely corresponds with observations from Claireaux and Lagardère (1999) who found that MMR increased approximately linearly between 14 and 22 °C, before peaking between 22 and 24 °C and declining at higher temperatures. Further work with sea bass from Mediterranean stock has shown that specific growth rate and feed conversion efficiency peak at ~25 °C and decline at higher temperatures (Person-Le Ruyet et al., 2004), similar to changes in metabolic scope shown by Claireaux and Lagardère (1999). Finally, aquaculture-produced sea bass display an Arrhenius break point of heart rate at ~21.5 °C and developed arrhythmia at ~26 °C (Crespel et al., 2019).

The consistency in temperature of peak performance in sea bass from distinct sub-populations with vastly different environmental experiences supports the idea that fish face ceilings to physiological performance in the face of environmental change (Sandblom et al., 2016). Despite these similarities with previous research, SMR of fish in our study was higher at a given temperature than for fish from Mediterranean stocks (Claireaux & Lagardère, 1999). This may support the theory of metabolic cold adaptation, that basal energy demand in fish from warmer environments will be lower than in fish from cold environments when measured at the same temperature (Krogh, 1916). This has recently been supported by evidence from wild populations of three-spine stickleback (Gasterosteus aculeatus) (Pilakouta et al., 2020).

Declining O_2 caused a decrease in MMR along a limiting oxygen curve, similar to that seen previously in sea bass (Claireaux & Lagardère, 1999; Lagardère et al., 1998) and other fish species (Chabot & Claireaux, 2008; Claireaux et al., 2000;
This result questions recent predictions made by Seibel and Deutsch (2020) that MMR of fish should decrease linearly from ~21 kPa O$_2$ to O$_{2\text{crit}}$ values. The curved, rather than linear, response of MMR we observed may occur as a result of compensatory mechanisms (e.g. increased ventilation, cardiac output, gill lamellar perfusion and surface area, and haematocrit) to maintain O$_2$ delivery (Farrell & Richards, 2009). While these adjustments may limit reductions in MMR during mild to moderate hypoxia they may reach their performance limits as O$_2$ approaches critical levels, resulting in a steeper decline in MMR. For example, in moderate hypoxia rainbow trout (*Oncorhynchus mykiss*) increase cardiac output via increased stroke volume but in severe hypoxia cardiac output cannot be increased further leading to bradycardia (Sandblom & Axelsson, 2005).

Temperature and O$_2$ interacted to affect metabolism of sea bass so that impacts of hypoxia on MMR increased with temperature (Figure 3). This result supports previous research by Claireaux & Lagardère (1999). However, sea bass in our study displayed higher MMR at similar temperature and pO$_2$ when compared to bass from Claireaux and Lagardère (1999). In addition, the O$_{2\text{crit}}$ (the point at which SMR = MMR) of our sea bass increased between 14 °C and 22 °C (Figure 2) whereas results from previous work suggested that O$_{2\text{crit}}$ increases or remains constant across this temperature range (Claireaux & Lagardère, 1999). The reduction in hypoxia tolerance of sea bass with warming was primarily a result of strong positive correlation between O$_{2\text{crit}}$ and SMR (Figure 1). This relationship has been shown for numerous fish species, and most recently in work with black sea bass (*Centropristus striata*) (Slesinger et al., 2019). However, our results also indicate that temperature had a secondary effect which resulted in lower O$_{2\text{crit}}$ at higher temperatures for a
given SMR. This suggests that temperature affects \(O_{2\text{crit}}\) via another mechanism (or mechanisms) independent of SMR. This is unlikely to be related to \(O_2\) transport capacity of the blood as there were few consistent effects of temperature on Hct, Hb or \(P_{50}\) of sea bass (Figure 5, S1 and S2). It has previously been observed that improved hypoxia tolerance of fish after acclimation to increased temperature correlates to increased gill lamellar surface area (McBryan et al., 2016) or changes to heart structure (Anttila et al., 2015). Gomez Isaza et al. (2021) demonstrated that both of these cardiorespiratory responses can improve \(O_2\) supply capacity.

Combined, these results suggest that thermal acclimation can cause structural changes to the gills and the heart, improving performance in low \(O_2\) conditions and mitigating the negative effect of temperature induced increases in SMR on hypoxia tolerance.

The independent effect of rising \(CO_2\) reduced MMR. Previous research has not shown consistent effects of \(CO_2\) on MMR or SMR of fish species, with the majority showing no effects of \(CO_2\) (Lefevre, 2016, 2019). Interestingly the most recent research with European sea bass found that long term exposure to elevated \(CO_2\) increased MMR. This may indicate that negative effects of short term exposures used in our study (i.e. weeks) can be overcome in the long term (i.e. years) (Crespel et al., 2019). As such, future work needs to determine whether interactions between \(CO_2\) and temperature or \(O_2\) occur over longer time scales. The effect of \(CO_2\) on metabolic rate in our study was only identifiable by including the rise in \(CO_2\) which co-occurs when environmental \(O_2\) declines. Without the additional data from increased \(CO_2\) exposures at lower \(O_2\) levels the effect of ambient \(CO_2\) on MMR at normoxia was not significant. Although the best model of SMR also included a negative effect of \(CO_2\) this was predicted to be small with confidence intervals
overlapping zero (Figure 1). Additionally, removal of CO₂ as an explanatory variable from the model of SMR did not greatly impair model fit (ΔAICc < 2) which indicates that the effect of CO₂ on SMR was not critically important for overall model performance.

As CO₂ increases in the environment when O₂ declines the negative effect of CO₂ has a greater impact on MMR at lower O₂ levels (Figure 3 C, D, and E). Decreased MMR when fish are exposed to acutely increased CO₂ is usually thought to be a result of an internal acidosis causing a decrease in Hb-O₂ binding affinity, reducing the capacity of O₂ transport in the blood (Heuer & Grosell, 2016). However, fish have well developed acid-base regulatory mechanisms and blood sampling showed that sea bass in normoxia had fully compensated for the effects of increased environmental CO₂ on blood pH by compensatory accumulation of extra HCO₃⁻, resulting in no changes in Hb-O₂ binding affinity (Figure 5 and S1). Additionally, we have recently shown that sea bass are able regulate blood pH when exposed to concurrent progressive hypercapnia during progressive hypoxia over the course of several hours and have higher Hb-O₂ binding affinity in these conditions when compared to fish exposed to progressive hypoxia with no concurrent hypercapnia (Montgomery et al., 2019). In addition, we did not see significant changes in Hb levels or Hct between CO₂ treatments (Figure 7). We conclude that the negative effect of increased CO₂ on MMR is unlikely to be related to changes in O₂ transport capacity in the blood. Whilst beyond the scope of the present study we can speculate that instead CO₂ may affect MMR via changes in mitochondrial metabolism (Leo et al., 2017; Strobel et al., 2012, 2013), cardiac performance (Crespel et al., 2019; Perry & Abdallah, 2012) or via shifts from aerobic to anaerobic metabolic pathways (Michaelidis et al., 2007). Indeed, recent results show that CO₂
impacts mitochondrial function of sea bass from the Atlantic population in combination with acute warming (Howald et al., 2019)

While the effect of CO$_2$ on MMR was part of the best supported model it is uncertain whether it would cause biologically relevant impacts. Previous research has linked declines in MMR caused by increased CO$_2$ with decreased swimming performance (Lefevre, 2019) but it is unknown if the relatively small changes in MMR shown in the present study would translate to other aspects of whole animal performance. This is especially the case as predictions of aerobic scope from the combined best supported models of MMR and SMR essentially show no effect of CO$_2$ on aerobic scope at O$_2$ levels $>$10 kPa (Figure 4 C, D, and E). This occurs because predicted effects of CO$_2$ act in the same direction for both SMR and MMR. As changes in aerobic scope typically predict environmental impacts on processes such as growth and reproduction (Clark et al., 2013; Pörtner et al., 2017) we would predict that climate change relevant CO$_2$ increases have negligible effects on these endpoints. However, the effect of CO$_2$ may have important consequences not reflected in changes in aerobic scope. In our most extreme treatment (22 ºC, ~30 % air saturation, end of century CO$_2$) we observed 30 % mortality of sea bass after exhaustive exercise. Fish exercised at the same temperature and O$_2$ levels in ambient CO$_2$ conditions showed no mortality (and no mortality was observed in any other treatment combinations) – consequently it appears the elevated CO$_2$ during hypoxia in a future ocean scenario (which was approximately 1100 µatm higher than in the present day CO$_2$ scenario) may impair recovery from exercise when O$_2$ is limiting. Mortality in fish post-exercise has been theorised to result from intracellular acidosis generated during anaerobic respiration (Wood et al., 1983). Therefore, the greater increase in CO$_2$ during hypoxia in the future ocean CO$_2$ scenario may either
exacerbate the intracellular acidosis caused by anaerobic activity or impair the ability of fish to process anaerobic end products.

3.1. Evidence to support OCLTT?

The OCLTT hypothesis suggests climate change will affect fish because combined effects of reduced O_2 and increasing CO_2 will synergistically interact, lowering aerobic scope across its thermal performance curve (Pörtner & Peck, 2010), and that changes in aerobic scope can be used as a single metric for predicting whole animal performance (Pörtner, 2012). Our data provides some support for the OCLTT hypothesis as the observed interactions between increased temperature and reduced O_2 on aerobic scope would be expected to result in changes to the thermal performance curve as predicted by Pörtner and Farrell (2008). However, our highest temperature treatment did not decrease MMR or aerobic scope and so we cannot confirm whether interactive effects between temperature and hypoxia would follow predictions of the OCLTT above the optimum temperature of aerobic scope. In contrast to hypoxia, the effects of CO_2 did not follow predictions from the OCLTT as CO_2 did not interact with either temperature or hypoxia and had minimal impacts on aerobic scope.

The interactive effects of O_2 and temperature on the MMR of sea bass in this study closely resemble predictions of the metabolic niche framework which Ern (2019) proposed as an update to the OCLTT hypothesis. In particular the concept of aerobic scope isopleths (where aerobic scope remains constant across a range of temperatures as a result of changes in O_2 or vice versa) is supported by our data, showing that aerobic scope of sea bass would be expected to remain constant across an 8 °C temperature range at an O_2 level of ~6 kPa (Figure 3 A and B). As
such, we would support Ern’s suggestion to experimentally assess how aerobic scope affects important processes, such as growth, independently of changes in temperature and O_2 by utilising these isopleths. Although increased aerobic scope has long been linked to improved individual fitness there is a still a lack of evidence to confirm this relationship occurs – as such the assumption that peak physiological fitness occurs when aerobic scope peaks (central to the OCLTT) may be erroneous.

Alternatively, Deutsch *et al.* (2015) have suggested a framework which aims to predict impacts of climate change on the physiological suitability of a habitat for a species via a metabolic index, relating the ratio of O_2 supply to resting metabolic demand (i.e. SMR), rather than aerobic scope. This metabolic index appears to provide a tool for predicting the biogeographical distributions of species with the biogeographical distribution limits of many marine species corresponding to a metabolic index of \sim2-5 (Deutsch *et al*., 2015). This approach has been supported by experimental work with black sea bass, *Centropristis striata*, (Slesinger *et al*., 2019) and Roman sea bream, *Chrysoblephus laticeps*, (Duncan *et al*., 2020) which showed that the metabolic index can accurately predict changes in population distributions of these species. Applying the principle of the metabolic index to our data suggests that temperatures of $22 \, ^\circ C$ are close to the upper temperature limits of European sea bass from the North-East Atlantic sub-population (metabolic index at $22 \, ^\circ C$ and 20 kPa O_2 was \sim5).

4. Conclusion

In summary, our research shows that aerobic scope of European sea bass will increase with expected warming in the North-East Atlantic, and that even extreme summer temperatures ($\sim 22 \, ^\circ C$) at the end of the century will positively impact on the
absolute aerobic performance of sea bass. However, synergistic interactions
between warming and reduced O$_2$ indicate that hypoxic conditions will have greater
impacts on sea bass in future oceans. Increased CO$_2$ levels showed no interactions
with either temperature or O$_2$ changes but were predicted to cause a small decline in
MMR – although this had little impact on aerobic scope because increased CO$_2$
caused a trend for decreased SMR. Sea bass fully compensated blood pH for
increased CO$_2$ levels and increases in SMR and reductions in MMR with
temperature were not linked to changes in O$_2$ transport. Despite end of century CO$_2$
levels having minimal effects on aerobic scope, they did cause increased mortality of
fish recovering from exercise in the more extreme hypoxic scenario (~30 % air
saturation) at 22 °C. This effect would not have been observed without including
expected increases in CO$_2$ as O$_2$ declines in hypoxia treatments. Thus,
environmentally relevant changes in CO$_2$ during hypoxia may lead to important
threshold effects which could be missed if experiments only consider changes in
CO$_2$ related to atmospheric concentrations. Interactive effects of temperature and O$_2$
support predictions from the oxygen-and temperature-limited metabolic niche
framework proposed as an update to the OCLTT hypothesis by Ern (2019), however
the effect of CO$_2$ did not support predictions of the OCLTT (Pörtner & Farrell, 2008).
Changes in the metabolic index proposed as a physiological constraint by Deutsch et
al. (2015) suggest that despite increases in MMR and aerobic scope future climate
change may result in conditions which will begin to constrain growth and
reproduction of sea bass in areas where temperatures increase above 22 °C.
However, there is a vital need for increased research to link changes in aerobic
scope to population relevant metrics such as growth and reproduction to better
assess what environmental impacts on aerobic performance may mean for wider populations.

5. Materials & Methods

5.1. Animal Collection and Husbandry

We collected juvenile sea bass from estuaries and coastal lagoons on the south Dorset coast and Isle of Wight in June 2017. Fish were held in a marine recirculating aquaculture system (RAS) at the University of Exeter for 332 days before experimental work began (see water chemistry data in Table 1). Sea bass were fed a diet of commercial pellet (Horizon 80, Skretting) at a ration of ~1-2 % body mass three times per week and supplemented with ~1 % body mass of chopped mussel (*Mytilus edulis*) once per week. All experimental procedures were carried out under a UK Home Office licence (P88687E07) and approved by the University of Exeter’s Animal Welfare and Ethical Review Board.

Table 1: Water chemistry parameters of the recirculating aquaculture system in which sea bass were held prior to experimental work beginning (means ± S.D. shown). Fish were initially held at 15 °C before stock systems were raised to 18 °C approximately 6 months prior to experimental work beginning. The temperature shown in the table represents the mean temperature for the entire time fish were held in the RAS prior to experimental trials beginning.

Time in system (days)	Temperature (°C)	pH (NBS scale)	Salinity	Total Alkalinity (µM)	Total pCO2 (µatm)
332	17.1 ± 1.4	8.02 ± 0.05	32.98 ±	2072.0 ±	534.0 ±
5.2. Treatment conditions

Sea bass were transferred to an experimental RAS, in a temperature-controlled room for a minimum of 14 days acclimation to treatment conditions (Figure 6). Six treatment conditions were used combining three temperatures and two CO₂ levels in a three x two factorial design (Table 2). Temperature treatments (14, 18 and 22 °C) were chosen to reflect temperature ranges in coastal UK waters from spring to autumn as well as potential future summer temperatures at the end of the century (IPCC, 2014; Tinker et al., 2020). CO₂ treatments (~400 & ~1000 µatm) were chosen to reflect annual average ambient atmospheric CO₂ levels currently and possible end-of-century ambient atmospheric levels according to an RCP 8.5 scenario (IPCC, 2014). Sea bass were transferred to the experimental RAS at 18 °C before temperatures were adjusted at a rate of 2 °C per day to reach treatment conditions (i.e. 14 or 22 °C). A header tank (~500 L) in the experimental RAS was used to adjust CO₂ to the desired level for each treatment before entering the treatment tank which contained the sea bass. For present day CO₂ treatments (~400 µatm) the header tank was aerated using CO₂ scrubbed air to remove excess CO₂ added to the RAS by the biological filters. For end of century CO₂ treatments (~1000 µatm) an Aqua Medic pH computer was used to adjust RAS water to an appropriate pH (7.8). Additionally, treatment tanks were aerated with a gas mix with the appropriate CO₂ content for each treatment.

Measurements of treatment tank pH (NBS scale), salinity, temperature, and a 12 mL water sample to measure Dissolved Inorganic Carbon (DIC) were taken every 2-
3 days. Seawater DIC analysis was conducted using a custom built system described in detail by Lewis et al. (2013). Data for pH, salinity, temperature and DIC were then input into the seawater carbon calculator programme, CO2SYS (Pierrot et al., 2006) to calculate pCO_2 based on the equilibration constants refitted by Dickson and Millero (1987), and KSO₄ dissociation constants from Dickson (1990) (Table 2).

Table 2: Mean ± S.D. of water chemistry parameters in treatment tanks during treatments at 3 temperature (14, 18, and 22 °C) and 2 CO₂ levels (~400 and ~1000 µatm). Treatment order represents time course of treatments (i.e. treatment 1 was conducted first and treatment 6 last). Total Alkalinity (TA) varied somewhat over time as a result of biological activity and so was adjusted periodically by addition of 1.0 M NaHCO₃ to restore TA levels back to >2000 µM.

Parameter	1	2	3	4	5	6
Temperature (°C)	17.9 ± 0.0	22.0 ± 0.0	13.9 ± 0.1	21.7 ± 0.5	13.9 ± 0.1	18.0 ± 0.1
pCO_2 (µatm)	460 ± 34	375 ± 28	333 ± 38	1065 ± 172	1057 ± 65	973 ± 114
pH (NBS)	8.06 ± 0.03	8.12 ± 0.02	8.14 ± 0.04	7.79 ± 0.03	7.81 ± 0.04	7.83 ± 0.05
Salinity	32.9 ± 0.6	32.5 ± 2.9	33.3 ± 0.3	32.6 ± 0.3	34.6 ± 0.5	33.8 ± 0.6
TA (µM)	1935 ± 93	1745 ± 26	1861 ± 88	2147 ± 292	2393 ± 188	2170 ± 20
5.3. **Respirometry measurements (SMR, MMR, and O_2crit)**

Rates of oxygen consumption ($\dot{M}O_2$) were made as a proxy of metabolic rate using an intermittent-flow respirometer system, details of which can be found in Montgomery *et al.* (2019), set-up following recommendations by Svendsen *et al.* (2016). Sea bass were starved for 72 hours prior to the start of measurements to ensure that metabolism was not affected by the specific dynamic action of digestion (Chabot *et al.*, 2016). Individual sea bass were then transferred to respirometer chambers and left to acclimate for a minimum of 12 hours overnight before measurements of $\dot{M}O_2$ began. For each treatment all respirometry measurements were conducted in two groups (hereafter referred to as respirometry group), with five fish being measured simultaneously for each group. Following the 12 hour acclimation period we measured $\dot{M}O_2$ of each sea bass for ~3-4 hours (from ~6 am to ~10 am) before hypoxia tolerance was assessed using a critical O_2 tension (O_2crit) trial (Figure 6), following protocols set out in Montgomery *et al.* (2019). Carbon dioxide levels in the water were simultaneously increased as O_2 declined during O_2crit trials to reflect the natural rise in CO$_2$ during hypoxic events in aquatic systems (Melzner *et al.*, 2013; Montgomery *et al.*, 2019). During O_2crit trials water pH, temperature, salinity, and DIC were measured every hour to calculate water carbonate chemistry. Changes in system pCO$_2$ and pH during O_2crit trials for each treatment are given in supplementary materials (Table S1).

O_2crit trials were stopped once a minimum of three consecutive $\dot{M}O_2$ measurements showed a transition from an oxy-regulating to oxy-conforming state for each fish. Following completion of O_2crit trials the respirometer system was aerated with ambient air (CO$_2$ ~400 µatm) or a 0.1 % CO$_2$ in air gas mix (CO$_2$ ~1000 µatm) to rapidly restore O_2 levels to normoxia and CO$_2$ to the appropriate treatment.
Sea bass were left to recover in respirometers, for a minimum of one hour post-trial, until O\textsubscript{2} levels reached \(~21\) kPa O\textsubscript{2} (\(~100\%\) air saturation) before removing the fish and measuring background respiration for a minimum of one hour (six measurement cycles) for all respirometers immediately post trial. Each sea bass was then placed in an individual \(~10\) L isolation tank which was subsequently fed by the respirometry system sump (at a rate of \(~4\) L min-1) to maintain treatment conditions (with overflowing water from the isolation tanks recirculating back to the sump).

After fish had rested overnight in isolation tanks, MMR was measured for each fish (using an exhaustive chase protocol; Norin and Clark, 2016) on three consecutive days (with overnight recovery in between) at three different levels of O\textsubscript{2} (100, 60 and 30 % air saturation) with increasing CO\textsubscript{2} levels for each O\textsubscript{2} level as detailed for O\textsubscript{2}\textsubscript{crit} trials (Figure 6). The appropriate O\textsubscript{2} and CO\textsubscript{2} level was achieved by aerating isolation boxes with a mix of N\textsubscript{2}, O\textsubscript{2} and CO\textsubscript{2} (G400 Gas mixing system, Qubit Biology Inc.) at a rate of \(5\) L min-1. Fish were exposed to the new O\textsubscript{2} and CO\textsubscript{2} conditions for \(~2\) hours before chase protocols were conducted. Chase protocols and subsequent respirometry measurements were conducted at the appropriate temperature, O\textsubscript{2}, and CO\textsubscript{2} conditions for each treatment. Measurements of water pH, temperature, salinity, and DIC were taken for each isolation tank, the chase tank (after all fish were chased) and the respirometer system (during \(\dot{M}\)O\textsubscript{2} measurements) to calculate water carbonate chemistry. Temperature, O\textsubscript{2}, and CO\textsubscript{2} conditions for all MMR trials are given in Table S2.

For all \(\dot{M}\)O\textsubscript{2} measurements dissolved O\textsubscript{2} concentration (% air saturation) was measured continuously (frequency \(~1\) Hz) in respirometer chambers using a fibre optic O\textsubscript{2} optode mounted in the recirculation loop of the respirometer chamber.
These optodes were linked to two Firesting Optical Oxygen Meters (Pyro Science, Aachen, Germany) which were connected to a PC running AquaResp 3 software which automatically logged all measurements.

\[\dot{M}O_2 \] was automatically calculated by the AquaResp3 software by fitting a linear regression to the \(O_2 \) versus time data for each measurement period. The slope (s) of this regression (kPa \(O_2 \) h\(^{-1}\)) was then used to calculate \(\dot{M}O_2 \) (mg \(O_2 \) kg\(^{-1}\) h\(^{-1}\)) using the equation outlined by Svendsen et al. (2016):

\[
\dot{M}O_2 = s \cdot V_{\text{resp}} \cdot \alpha \cdot m^{-1}
\]

where \(V_{\text{resp}} \) is the respirometer volume minus the volume of the fish (L), \(\alpha \) is the solubility of \(O_2 \) in water (mg\(O_2 \) L\(^{-1}\) kPa\(^{-1}\)) for the relevant salinity and temperature, and \(m \) is the mass of the fish (kg). For the purpose of establishing the impacts of reduced \(O_2 \) on MMR and determining \(O_{2\text{crit}} \) values, the \(O_2 \) level of each measurement period was defined as the mean dissolved \(O_2 \) measurement over the measurement period. The mean background respiration for each respirometer over the 1 hour post-trial measuring period (average was < 2 % of fish \(\dot{M}O_2 \)) was subtracted from \(\dot{M}O_2 \) measurements. Background corrected \(\dot{M}O_2 \) was then scaled to an average individual mass of 120 g using a mass exponent of 0.89 prior to subsequent analysis (Jerde et al., 2019).

We calculated SMR of each fish as the mean of the lowest 10 \(\dot{M}O_2 \) measurements from the ~3-4 hour period prior to \(O_{2\text{crit}} \) trials in which mean dissolved \(O_2 \) saturation was >80 % air saturation. The critical \(O_2 \) tension (\(O_{2\text{crit}} \)) of each individual fish was then calculated using \(\dot{M}O_2 \) measurements from \(O_{2\text{crit}} \) trials with
function ‘calcO2crit’ from package ‘fishMO2’ (Chabot et al. 2016) in R v.3.6.3 (R Core Team, 2020), using the estimated SMR of each individual, as detailed in the supplementary material of Claireaux & Chabot (2016). Finally, we defined MMR as the single highest measurement of $\dot{M}O_2$ in the one hour period immediately following exercise to exhaustion (Norin & Clark, 2016). This point usually occurred during the first measurement period immediately after each fish was moved to the respirometer chamber i.e. ~ 2-5 minutes after the cessation of the chase protocol. However, for some fish in normoxia spontaneous activity inside the respirometer chamber during SMR or $O_{2\text{crit}}$ trials resulted in instantaneous measurements of $\dot{M}O_2$ higher than those noted following chase protocols. In these occasions this higher value of $\dot{M}O_2$ was used as the estimated MMR for that fish (n = 2 out of 65 fish).

5.4. Blood chemistry and Hb-O_2 affinity measurements

Following MMR measurements, sea bass were left overnight in the isolation boxes before blood samples were taken (Figure 6), following methods outlined in Montgomery et al. (2019), from each fish in normoxic conditions and at the relevant treatment temperature and CO$_2$ level (Table S3). We then measured extracellular pH (pH_e), haematocrit (Hct), TCO$_2$, haemoglobin content (Hb), plasma glucose, and plasma lactate and calculated pCO$_2$ and HCO$_3^-$ following methods detailed in Montgomery et al. (2019). We also followed the freeze-and-thaw method to measure intracellular pH of RBCs (pH_i) as described by Zeidler and Kim (1977), and validated by Baker et al. (2009). All measurements or storage of blood for subsequent analysis occurred within 10 minutes of blood sampling. Finally, we measured Hb-O_2 affinity using a Blood Oxygen Binding System (BOBS, Loligo systems), detailed in general in Oellermann et al. (2014) and specifically for fish blood in Montgomery et al. (2019).
Figure 6: Summary of the timeline over which experimental end points were measured. Sea bass were acclimated for a minimum of 14 days to a temperature (14, 18, 22 °C) and CO₂ (~400 µatm or ~1000 µatm ambient CO₂) treatment before measurements of SMR/O₂crit, MMR (at ~21 kPa, ~12 kPa, and ~6 kPa O₂), and blood chemistry/Hb-O₂ affinity were obtained on consecutive days for each individual.

5.5. Statistical Analysis

5.5.1. Respirometry data analysis

We conducted all statistical analysis in R v3.6.3 (R Core Team, 2020). Results are reported as mean ± S.E unless otherwise stated. Sample sizes for respirometry data can be seen in Table S4. The effects of temperature, O₂, and CO₂ on individual physiological performance metrics (SMR, MMR, and O₂crit) were analysed using separate general linear mixed-effects models (GLMM) in package ‘lme4’ (Bates et al., 2015; Pinheiro et al., 2018). All models included respirometry group as a random intercept term to account for potential tank effects introduced during respirometry measurements. For each physiological metric the best supported model was determined as the model with the lowest corrected Akaike’s information criterion, AICc (Burnham & Anderson, 1998; Hurvich & Tsai, 1989). Residual diagnostic plots
of each GLMM were then assessed using package ‘DHARMa’ to confirm validity of model fit (Hartig, 2020). Once the best supported model for each physiological parameter was identified (see Table S5 for model comparisons) predictions were made across a range of temperatures, O$_2$ levels, and CO$_2$ levels to visualise combined effects of these variables on the physiology of seabass. We then used function bootMer from lme4 (Pinheiro et al., 2018) to calculate 95 % confidence intervals of model predictions.

5.5.2. Blood chemistry and Hb-O$_2$ affinity data analysis

Measurements of blood chemistry parameters (pH$_e$, pH$_i$, pCO$_2$, HCO$_3^-$, P$_{50}$, Hills’ number, Hct, Hb, lactate, and glucose) were analysed using the ambient water temperature of the treatment and using a categorical CO$_2$ level of low (i.e. ~400 µatm treatment) or high (i.e. ~1000 µatm treatment). Measurements were analysed using a type III sum of squares two-way ANOVA (to account for unequal sample sizes). Post hoc-tests were then conducted on least-square means generated by package ‘emmeans’ (Lenth, 2020), with Tukey adjusted p-values for multiple comparisons.

Model residuals from analysis of plasma lactate and glucose measurements did not meet the assumptions of normality or equal variances required by two-way ANOVA, as such this data was analysed using the alternative non-parametric Kruskal-Wallis test.

Blood-oxygen binding parameters (P$_{50}$ and Hills’ number) could not be obtained for fish in the 14 °C and high CO$_2$ treatment as a result of an equipment failure. As such these data were analysed using a one-way ANOVA. If statistical assumptions of one-way ANOVA were not met then data were analysed using the non-parametric Kruskal-Wallis test. Sample sizes for blood chemistry data can be seen in Table S4.
Acknowledgements

This work was supported by a NERC GW4+ Doctoral Training Partnership studentship from the Natural Environment Research Council [NE/L002434/1] with additional funding from CASE partner, The Centre of Fisheries and Aquaculture Science (Cefas) to D.W.M., and from the Biotechnology and Biological Sciences Research Council (BB/D005108/1 and BB/J00913X/1) and NERC (NE/H017402/1) to R.W.W. The authors would like to thank the Marine Management Organisation and Natural England for granting permits (Marine Management Organisation permit #030/17 & Natural England permit #OLD1002654) to collect wild sea bass for use in this study, and Simon Pengelly and the Southern Inshore Fisheries and Conservation Authority for assistance with fish collections. We would also like to thank the aquarium staff, particularly Steven Cooper, Alice Walpole and Rebecca Turner, of the Aquatic Resource Centre at the University of Exeter for assistance with fish husbandry and system water chemistry, and finally Dr Cosima Porteus for assistance with blood chemistry measurements.

Competing Interests

The authors declare no competing interests.

Data availability

Data will be made publicly available via the University of Exeter’s online repository if the manuscript is accepted: https://ore.exeter.ac.uk/repository/

References

Anttila, K., Lewis, M., Prokkola, J. M., Kanerva, M., Seppänen, E., Kolari, I., & Nikinmaa, M. (2015). Warm acclimation and oxygen depletion induce species-
specific responses in salmonids. *The Journal of Experimental Biology, 218*(10), 699–1471 LP – 1477. https://doi.org/10.1242/jeb.119115

Baker, D. W., May, C., & Brauner, C. J. (2009). A validation of intracellular pH measurements in fish exposed to hypercarbia: the effect of duration of tissue storage and efficacy of the metabolic inhibitor tissue homogenate method. *Journal of Fish Biology, 75*(1), 268–275. https://doi.org/10.1111/j.1095-8649.2009.02261.x

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. *Journal of Statistical Software; Vol 1, Issue 1 (2015)*.

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., & Vichi, M. (2013). Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. *Biogeosciences, 10*(10), 6225–6245. https://doi.org/10.5194/bg-10-6225-2013

Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., … Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. *Science, 359*(6371). https://doi.org/10.1126/science.aam7240

Burnham, K. P., & Anderson, D. R. (1998). Practical use of the information-theoretic approach. In *Model selection and inference* (pp. 75–117). Springer.

Caldeira, K., & Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. *Nature, 425*, 365. https://doi.org/10.1038/425365a

Chabot, D., & Claireaux, G. (2008). Environmental hypoxia as a metabolic constraint on fish: The case of Atlantic cod, Gadus morhua. *Marine Pollution Bulletin, 57*(6–12), 287–294. https://doi.org/http://dx.doi.org/10.1016/j.marpolbul.2008.04.001

Chabot, D., Steffensen, J. F., & Farrell, A. P. (2016). The determination of standard metabolic rate in fishes. *Journal of Fish Biology, 88*(1), 81–121.
Claireaux, G., & Chabot, D. (2016). Responses by fishes to environmental hypoxia: integration through Fry’s concept of aerobic metabolic scope. *Journal of Fish Biology, 88*(1), 232–251. https://doi.org/10.1111/jfb.12833

Claireaux, G., & Lagardère, J. P. (1999). Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. *Journal of Sea Research, 42*(2), 157–168. https://doi.org/http://dx.doi.org/10.1016/S1385-1101(99)00019-2

Claireaux, G., Webber, D. M., Lagardère, J. P., & Kerr, S. R. (2000). Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (*Gadus morhua*). *Journal of Sea Research, 44*(3–4), 257–265. https://doi.org/http://dx.doi.org/10.1016/S1385-1101(00)00053-8

Clark, T. D., Sandblom, E., & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. *The Journal of Experimental Biology, 216*(15), 2771.

Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. *Proceedings of the Royal Society B: Biological Sciences, 283*(1824). https://doi.org/10.1098/rspb.2015.2592

Crain, C. M., Kroeker, K., & Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. *Ecology Letters, 11*(12), 1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x

Crespel, A., Anttila, K., Lelièvre, P., Quazuguel, P., Le Bayon, N., Zambonino-Infante, J.-L., Chabot, D., & Claireaux, G. (2019). Long-term effects of ocean acidification upon energetics and oxygen transport in the European sea bass (*Dicentrarchus labrax*, Linnaeus). *Marine Biology, 166*(9), 116. https://doi.org/10.1007/s00227-019-3562-9

Cucco, A., Sinerchia, M., Lefrançois, C., Magni, P., Ghezzo, M., Umgiesser, G., Perilli, A., & Domenici, P. (2012). A metabolic scope based model of fish response to environmental changes. *Ecological Modelling, 237–238*, 132–141. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2012.04.019
Del Raye, G., & Weng, K. C. (2015). An aerobic scope-based habitat suitability index for predicting the effects of multi-dimensional climate change stressors on marine teleosts. *Deep Sea Research Part II: Topical Studies in Oceanography*, 113, 280–290. https://doi.org/10.1016/j.dsr2.2015.01.014

Deutsch, C., Ferrel, A., Seibel, B., Poertner, H.-O., & Huey, R. B. (2015). Climate change tightens a metabolic constraint on marine habitats. *Science*, 348(6239), 1132–1135. https://doi.org/10.1126/science.aaa1605

Diaz, R. J., & Rosenberg, R. (2008). Spreading Dead Zones and Consequences for Marine Ecosystems. *Science*, 321(5891), 926.

Dickson, A G, & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. *Deep Sea Research Part A: Oceanographic Research Papers*, 34(10), 1733–1743. https://doi.org/10.1016/0198-0149(87)90021-5

Dickson, Andrew G. (1990). Standard potential of the reaction: $\text{AgCl(s)} + 12\text{H}_2(\text{g}) = \text{Ag(s)} + \text{HCl(aq)}$, and the standard acidity constant of the ion HSO_4^- in synthetic sea water from 273.15 to 318.15 K. *The Journal of Chemical Thermodynamics*, 22(2), 113–127. https://doi.org/10.1016/0021-9614(90)90074-Z

Duncan, M. I., James, N. C., Potts, W. M., & Bates, A. E. (2020). Different drivers, common mechanism; the distribution of a reef fish is restricted by local-scale oxygen and temperature constraints on aerobic metabolism. *Conservation Physiology*, 8(1). https://doi.org/10.1093/conphys/coaa090

Ern, R. (2019). A mechanistic oxygen- and temperature-limited metabolic niche framework. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 374(1778), 20180540. https://doi.org/10.1098/rstb.2018.0540

Farrell, A P. (2016). Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. *Journal of Fish Biology*, 88(1), 322–343. https://doi.org/10.1111/jfb.12789

Farrell, Anthony P, & Richards, J. G. (2009). Chapter 11 Defining Hypoxia: An Integrative Synthesis of the Responses of Fish to Hypoxia. In A. P. F. and C. J.
Fry, F. E. J. (1971). 1 - The Effect of Environmental Factors on the Physiology of Fish. In W. S. H. and D. J. Randall (Ed.), Fish Physiology: Vol. Volume 6 (pp. 1–98). Academic Press. https://doi.org/10.1016/S1546-5098(08)60146-6

Gomez Isaza, D. F., Cramp, R. L., & Franklin, C. E. (2021). Thermal plasticity of the cardiorespiratory system provides cross-tolerance protection to fish exposed to elevated nitrate. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 240, 108920. https://doi.org/10.1016/j.cbpc.2020.108920

Grans, A., Jutfelt, F., Sandblom, E., Jonsson, E., Wiklander, K., Seth, H., Olsson, C., Dupont, S., Ortega-Martinez, O., Einarsdottir, I., Bjornsson, B. T., Sundell, K., & Axelsson, M. (2014). Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO$_2$ in Atlantic halibut. J Exp Biol, 217(Pt 5), 711–717. https://doi.org/10.1242/jeb.096743

Hartig, F. (2020). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package version 0.3.0.

Heuer, R. M., & Grosell, M. (2016). Elevated CO2 increases energetic cost and ion movement in the marine fish intestine. Scientific Reports, 6, 34480. https://doi.org/10.1038/srep34480

Hollowed, A. B., Barange, M., Beamish, R. J., Brander, K., Cochrane, K., Drinkwater, K., Foreman, M. G. G., Hare, J. A., Holt, J., Ito, S., Kim, S., King, J. R., Loeng, H., MacKenzie, B. R., Mueter, F. J., Okey, T. A., Peck, M. A., Radchenko, V. I., Rice, J. C., … Yamanaka, Y. (2013). Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science: Journal Du Conseil, 70(5), 1023–1037. https://doi.org/10.1093/icesjms/fst081

Howald, S., Cominassi, L., LeBayon, N., Claireaux, G., & Mark, F. C. (2019). Future ocean warming may prove beneficial for the northern population of European
seabass, but ocean acidification will not. The Journal of Experimental Biology, 222(21), jeb213017. https://doi.org/10.1242/jeb.213017

Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307. https://doi.org/10.1093/biomet/76.2.297

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Jerde, C. L., Kraskura, K., Eliason, E. J., Csik, S. R., Stier, A. C., & Taper, M. L. (2019). Strong Evidence for an Intraspecific Metabolic Scaling Coefficient Near 0.89 in Fish. In Frontiers in Physiology (Vol. 10, p. 1166).

Jutfelt, F., Norin, T., Ern, R., Overgaard, J., Wang, T., McKenzie, D. J., Lefevre, S., Nilsson, G. E., Metcalfe, N. B., Hickey, A. J. R., Brijs, J., Speers-Roesch, B., Roche, D. G., Gamperl, A. K., Raby, G. D., Morgan, R., Esbaugh, A. J., Gräns, A., Axelsson, M., … Clark, T. D. (2018). Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. The Journal of Experimental Biology, 221(1). https://doi.org/10.1242/jeb.169615

Krogh, A. (1916). The respiratory exchange of animals and man (Vol. 13). Longmans, Green.

Lagardère, J.-P., Begout-Anras, M. L., & Claireaux, G. (1998). Advances in invertebrate and fish telemetry. Hydrobiologia, 371, 372.

Lefevre, S. (2016). Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO\(_2\) and their interaction. Conservation Physiology, 4(1). https://doi.org/10.1093/conphys/cow009

Lefevre, S. (2019). 6 - Effects of high CO2 on oxygen consumption rates, aerobic scope and swimming performance. In M. Grosell, P. L. Munday, A. P. Farrell, & C. J. B. T.-F. P. Brauner (Eds.), Carbon Dioxide (Vol. 37, pp. 195–244). Academic Press. https://doi.org/https://doi.org/10.1016/bs.fp.2019.08.001
Lefrancois, C., & Claireaux, G. (2003). Influence of ambient oxygenation and temperature on metabolic scope and scope for heart rate in the common sole Solea solea. Marine Ecology Progress Series, 259, 273–284.

Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.6.

Leo, E., Kunz, K. L., Schmidt, M., Storch, D., Portner, H. O., & Mark, F. C. (2017). Mitochondrial acclimation potential to ocean acidification and warming of Polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua). Frontiers in Zoology, 14, 12. https://doi.org/10.1186/s12983-017-0205-1

Lewis, C., Clemow, K., & Holt, W. V. (2013). Metal contamination increases the sensitivity of larvae but not gametes to ocean acidification in the polychaete Pomatoceros lamarckii (Quatrefages). Marine Biology, 160(8), 2089–2101. https://doi.org/10.1007/s00227-012-2081-8

Mallekh, R., & Lagardère, J. P. (2002). Effect of temperature and dissolved oxygen concentration on the metabolic rate of the turbot and the relationship between metabolic scope and feeding demand. Journal of Fish Biology, 60(5), 1105–1115. https://doi.org/10.1111/j.1095-8649.2002.tb01707.x

McBryan, T. L., Anttila, K., Healy, T. M., & Schulte, P. M. (2013). Responses to Temperature and Hypoxia as Interacting Stressors in Fish: Implications for Adaptation to Environmental Change. Integrative and Comparative Biology, 53(4), 648–659. https://doi.org/10.1093/icb/ict066

McBryan, T. L., Healy, T. M., Haakons, K. L., & Schulte, P. M. (2016). Warm acclimation improves hypoxia tolerance in Fundulus heteroclitus. The Journal of Experimental Biology, 219(4), 474–484. https://doi.org/10.1242/jeb.133413

Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., Hansen, H. P., & Körtzinger, A. (2013). Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology, 160(8), 1875–1888. https://doi.org/10.1007/s00227-012-1954-1
Michaelidis, B., Spring, A., & Pörtner, H. O. (2007). Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Marine Biology, 150(6), 1417–1429.

Montgomery, D. W., Simpson, S. D., Engelhard, G. H., Birchenough, S. N. R., & Wilson, R. W. (2019). Rising CO₂ enhances hypoxia tolerance in a marine fish. Scientific Reports, 9(1), 15152. https://doi.org/10.1038/s41598-019-51572-4

Norin, T., & Clark, T. D. (2016). Measurement and relevance of maximum metabolic rate in fishes. Journal of Fish Biology, 88(1), 122–151. https://doi.org/10.1111/jfb.12796

Oellermann, M., Pörtner, H. O., & Mark, F. C. (2014). Simultaneous high-resolution pH and spectrophotometric recordings of oxygen binding in blood microvolumes. The Journal of Experimental Biology, 217(9), 1430 LP – 1436. https://doi.org/10.1242/jeb.092726

Pawson, M. G., Pickett, G. D., Leballeur, J., Brown, M., & Fritsch, M. (2007). Migrations, fishery interactions, and management units of sea bass (Dicentrarchus labrax) in Northwest Europe. ICES Journal of Marine Science, 64(2), 332–345. https://doi.org/10.1093/icesjms/fsl035

Perry, S. F., & Abdallah, S. (2012). Mechanisms and consequences of carbon dioxide sensing in fish. Respiratory Physiology & Neurobiology, 184(3), 309–315. https://doi.org/https://doi.org/10.1016/j.resp.2012.06.013

Person-Le Ruyet, J., Mahé, K., Le Bayon, N., & Le Delliou, H. (2004). Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture, 237(1), 269–280. https://doi.org/https://doi.org/10.1016/j.aquaculture.2004.04.021

Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). CO2SYS DOS Program developed for CO2 system calculations. In ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.
Pilakouta, N., Killen, S. S., Kristjánsson, B. K., Skúlason, S., Lindström, J., Metcalfe, N. B., & Parsons, K. J. (2020). Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild. *Functional Ecology, 34*(6), 1205–1214. https://doi.org/10.1111/1365-2435.13538

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2018). *nlme: Linear and Nonlinear Mixed Effects Models* (3.1-137).

Pörtner, H. O. (2012). Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. *Marine Ecology Progress Series, 470*, 273–290.

Pörtner, H. O., Bock, C., & Mark, F. C. (2017). Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. *The Journal of Experimental Biology, 220*(15), 2685–2696. https://doi.org/10.1242/jeb.134585

Pörtner, H. O., & Farrell, A. P. (2008). Physiology and Climate Change. *Science, 322*(5902), 690.

Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. *Journal of Fish Biology, 77*(8), 1745–1779. https://doi.org/10.1111/j.1095-8649.2010.02783.x

R Core Team. (2020). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing.

Rummer, J. L., Stecyk, J. A. W., Couturier, C. S., Watson, S.-A., Nilsson, G. E., & Munday, P. L. (2013). Elevated CO₂ enhances aerobic scope of a coral reef fish. *Conservation Physiology, 1*(1). https://doi.org/10.1093/conphys/cot023

Sandblom, E, & Axelsson, M. (2005). Effects of hypoxia on the venous circulation in rainbow trout (Oncorhynchus mykiss). *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140*(2), 233–239. https://doi.org/10.1016/j.cbpb.2005.01.005

Sandblom, Erik, Clark, T. D., Gräns, A., Ekström, A., Brijs, J., Sundström, L. F., Odelström, A., Adill, A., Aho, T., & Jutfelt, F. (2016). Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. *Nature Communications, 7*(1), 11447. https://doi.org/10.1038/ncomms11447
Sandblom, Erik, Gräns, A., Axelsson, M., & Seth, H. (2014). Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. *Proceedings of the Royal Society B: Biological Sciences*, 281(1794), 20141490. https://doi.org/10.1098/rspb.2014.1490

Schulte, P. M., Healy, T. M., & Fangue, N. A. (2011). Thermal Performance Curves, Phenotypic Plasticity, and the Time Scales of Temperature Exposure. *Integrative and Comparative Biology, 51*(5), 691–702. https://doi.org/10.1093/icb/icr097

Seibel, B. A., & Deutsch, C. (2020). Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature. *The Journal of Experimental Biology*, jeb.210492. https://doi.org/10.1242/jeb.210492

Slesinger, E., Andres, A., Young, R., Seibel, B., Saba, V., Phelan, B., Rosendale, J., Wieczorek, D., & Saba, G. (2019). The effect of ocean warming on black sea bass (*Centropristis striata*) aerobic scope and hypoxia tolerance. *PLOS ONE*, 14(6), e0218390.

Souche, E. L., Hellemans, B., Babbucci, M., MacAoidh, E., Guinand, B., Bargelloni, L., Chistiakov, D. A., Patarnello, T., Bonhomme, F., Martinsohn, J. T., & Volckaert, F. A. M. (2015). Range-wide population structure of European sea bass *Dicentrarchus labrax*. *Biological Journal of the Linnean Society, 116*(1), 86–105. https://doi.org/10.1111/bij.12572

Strobel, A., Bennecke, S., Leo, E., Mintenbeck, K., Pörtner, H. O., & Mark, F. C. (2012). Metabolic shifts in the Antarctic fish *Nototthenia rossii* in response to rising temperature and P CO2. *Frontiers in Zoology*, 9. https://doi.org/http://dx.doi.org/10.1186/1742-9994-9-28

Strobel, A., Leo, E., Pörtner, H. O., & Mark, F. C. (2013). Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of *Nototthenia rossii*. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 166(1), 48–57. https://doi.org/http://dx.doi.org/10.1016/j.cbpb.2013.06.006
Svendsen, M. B. S., Bushnell, P. G., & Steffensen, J. F. (2016a). Design and setup of intermittent-flow respirometry system for aquatic organisms. *Journal of Fish Biology, 88*(1), 26–50. https://doi.org/10.1111/jfb.12797

Svendsen, M. B. S., Bushnell, P. G., & Steffensen, J. F. (2016b). Design and setup of intermittent-flow respirometry system for aquatic organisms. *Journal of Fish Biology, 88*(1), 26–50. https://doi.org/10.1111/jfb.12797

Tinker, J. P., Howes, E. L., Wakelin, S., Menary, M., Kent, E., Berry, D., Hindson, J., Ribeiro, J., Dye, S., Andres, O., Lyons, K., & Smyth, T. (2020). The impacts of climate change on temperature (air and sea) relevant to the coastal and marine environment around the UK. *MCCIP Science Review 2020*, 1–30. https://doi.org/10.14465/2020.arc01.tem

Todgham, A. E., & Stillman, J. H. (2013). Physiological Responses to Shifts in Multiple Environmental Stressors: Relevance in a Changing World. *Integrative and Comparative Biology, 53*(4), 539–544.

Wernberg, T., Smale, D. A., & Thomsen, M. S. (2012). A decade of climate change experiments on marine organisms: procedures, patterns and problems. *Global Change Biology, 18*(5), 1491–1498. https://doi.org/10.1111/j.1365-2486.2012.02656.x

Wood, C. M., Turner, J. D., & Graham, M. S. (1983). Why do fish die after severe exercise? *Journal of Fish Biology, 22*(2), 189–201. https://doi.org/10.1111/j.1095-8649.1983.tb04739.x

Zeidler, R., & Kim, H. D. (1977). Preferential hemolysis of postnatal calf red cells induced by internal alkalinization. *The Journal of General Physiology, 70*(3), 385–401. https://doi.org/10.1085/jgp.70.3.385
Supplementary materials

Table S1: Measurements of pCO$_2$ (µatm, top row) and pH (NBS scale, bottom row) as O$_2$ declined during O$_{2\text{crit}}$ trials for each treatment. All values are mean ± S.D. apart from for Treatment 3 at ~30% dissolved O$_2$ where only one measurement of pCO$_2$ and pH was made and calculations of mean and S.D. were not possible.

~Dissolved O$_2$	14 °C Present CO$_2$	18 °C Present CO$_2$	22 °C Present CO$_2$	14 °C Future CO$_2$	18 °C Future CO$_2$	22 °C Future CO$_2$
100	377 ± 23	483 ± 20	455 ± 35	1019 ± 50	1070 ± 10	1172 ± 89
	8.14 ± 0.02	8.09 ± 0.02	8.10 ± 0.04	7.79 ± 0.01	7.78 ± 0.00	7.80 ± 0.03
80	418 ± 9	508 ± 10	486 ± 47	1149 ± 2	1156 ± 86	1209 ± 18
	8.10 ± 0.01	8.07 ± 0.01	8.07 ± 0.04	7.74 ± 0.01	7.75 ± 0.02	7.79 ± 0.02
60	477 ± 25	613 ± 90	497 ± 23	1383 ± 125	1315 ± 73	1335 ± 92
	8.05 ± 0.02	7.99 ± 0.01	8.07 ± 0.02	7.67 ± 0.02	7.69 ± 0.02	7.75 ± 0.03
40	625 ± 44	746 ± 40	577 ± 46	1637 ± 83	1488 ± 24	1658 ± 237
	7.94 ± 0.03	7.92 ± 0.02	8.01 ± 0.04	7.59 ± 0.01	7.64 ± 0.00	7.66 ± 0.05
30	822	1104 ± 155	647 ± 18	1973 ± 159	1964 ± 134	2179 ± 63
	7.83	7.76 ± 0.06	7.96 ± 0.01	7.51 ± 0.04	7.53 ± 0.02	7.55 ± 0.01
20	1162 ± 2	2103 ± 79	808 ± 35	2491 ± 238	2416 ± 265	2547 ± 266
	7.69 ± 0.00	7.50 ± 0.02	7.88 ± 0.02	7.42 ± 0.05	7.45 ± 0.03	7.48 ± 0.06
15	1734 ± 92	2431 ± 663	1318 ± 108	3099 ± 448	2579 ± 4	3380 ± 354
	7.53 ± 0.02	7.45 ± 0.11	7.68 ± 0.04	7.32 ± 0.07	7.41 ± 0.00	7.36 ± 0.06
Table S2: Temperature (°C), \(p\text{CO}_2\) (µatm), and \(O_2\) (kPa) conditions sea bass were exposed to pre-chase, during chase, and when recovering from exercise during measurements of MMR. All values are presented as mean ± S.E. - indicates measurements for which data was not collected. For the 14 °C present day \(CO_2\) treatment missing pre-chase values would be expected to be extremely similar to values recorded during chase as shown by values for all other treatments.

Treatment	14 °C Present \(CO_2\)	18 °C Present \(CO_2\)	22 °C Present \(CO_2\)	14 °C Future \(CO_2\)	18 °C Future \(CO_2\)	22 °C Future \(CO_2\)															
	Pre-chase	During	Recovery																		
Temp (°C)																					
13.9 ± 0.1	13.9 ± 0.1	-	18.3 ± 0.5	18.3 ± 0.5	22.0 ± 0.0	21.8 ± 0.0	13.9 ± 0.1	14.2 ± 0.1	13.9 ± 0.1	18.0 ± 0.0	18.5 ± 0.0	18.0 ± 0.0	21.6 ± 0.1	22.3 ± 1.1	21.9 ± 0.1						
- 18.3 ± 0.5	20.8 ± 0.7	19.3 ± 0.2	18.8 ± 0.2	20.0 ± 0.3	20.7 ± 0.3	19.2 ± 0.6	20.8 ± 0.2	20.4 ± 0.7	19.1 ± 0.7	20.5 ± 0.3	20.3 ± 0.3	19.2 ± 0.9									
	13.9 ± 0.1	18.0 ± 0.0	13.9 ± 0.1	18.0 ± 0.0	18.5 ± 0.0	18.0 ± 0.0	21.6 ± 0.1	22.3 ± 1.1	21.9 ± 0.1												
13.6 ± 0.1	13.9 ± 0.1	-	17.7 ± 0.1	18.7 ± 0.1	20.5 ± 0.1	21.4 ± 0.1	13.7 ± 0.2	13.8 ± 0.1	14.0 ± 0.2	17.5 ± 0.2	17.7 ± 0.2	18.0 ± 0.2	21.2 ± 0.4	21.2 ± 0.3	21.9 ± 0.1						
- 17.7 ± 0.1	20.8 ± 0.7	19.3 ± 0.2	18.8 ± 0.2	20.0 ± 0.3	20.7 ± 0.3	19.2 ± 0.6	20.8 ± 0.2	20.4 ± 0.7	19.1 ± 0.7	20.5 ± 0.3	20.3 ± 0.3	19.2 ± 0.9									
14.5 ± 0.6	14.3 ± 0.6	14.3 ± 0.6	11.6 ± 0.2	14.5 ± 0.4	14.4 ± 0.4	14.4 ± 0.2	14.5 ± 0.2	14.5 ± 0.2	11.9 ± 0.9	14.5 ± 0.2	14.5 ± 0.2	11.5 ± 0.1									
14.5 ± 0.2	12.0 ± 0.2	14.3 ± 0.2	14.3 ± 0.6	11.6 ± 0.2	14.5 ± 0.4	14.4 ± 0.4	14.5 ± 0.2	14.5 ± 0.2	11.9 ± 0.9	14.5 ± 0.2	14.5 ± 0.2	11.5 ± 0.1									
14.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	11.5 ± 0.1	14.5 ± 0.1	14.5 ± 0.1	11.5 ± 0.1									
13.1 ± 0.2	13.4 ± 0.0	13.8 ± 0.1	17.6 ± 0.5	18.7 ± 0.1	20.5 ± 0.1	21.4 ± 0.1	12.9 ± 0.3	13.1 ± 0.1	13.9 ± 0.1	17.6 ± 0.1	17.6 ± 0.1	18.3 ± 0.1	20.9 ± 0.1	20.9 ± 0.1	21.9 ± 0.1						
- 17.6 ± 0.5	20.8 ± 0.7	19.3 ± 0.2	18.8 ± 0.2	20.0 ± 0.3	20.7 ± 0.3	19.2 ± 0.6	20.8 ± 0.2	20.4 ± 0.7	19.1 ± 0.7	20.5 ± 0.3	20.3 ± 0.3	19.2 ± 0.9									
14.8 ± 0.0	14.8 ± 0.0	14.8 ± 0.0	14.8 ± 0.0	14.8 ± 0.0	14.8 ± 0.0	14.8 ± 0.0	14.8 ± 0.0	14.8 ± 0.0	11.9 ± 0.9	14.5 ± 0.2	14.5 ± 0.2	11.5 ± 0.1									
14.8 ± 0.1	14.8 ± 0.1	14.8 ± 0.1	14.8 ± 0.1	14.8 ± 0.1	14.8 ± 0.1	14.8 ± 0.1	14.8 ± 0.1	14.8 ± 0.1	11.9 ± 0.9	14.5 ± 0.2	14.5 ± 0.2	11.5 ± 0.1									
13.1 ± 0.1	13.4 ± 0.0	13.8 ± 0.1	17.6 ± 0.5	18.7 ± 0.1	20.5 ± 0.1	21.4 ± 0.1	12.9 ± 0.3	13.1 ± 0.1	13.9 ± 0.1	17.6 ± 0.1	17.6 ± 0.1	18.3 ± 0.1	20.9 ± 0.1	20.9 ± 0.1	21.9 ± 0.1						
Table S3: Temperature and pCO$_2$ levels fish were exposed to when they were anaesthetised immediately prior to blood sampling. All measures are given as mean ± S.D.

Treatment	Temperature (°C)	pCO$_2$ (µatm)
14 °C Present CO$_2$	13.1 ± 0.1	350 ± 13
18 °C Present CO$_2$	17.4 ± 0.1	445 ± 52
22 °C Present CO$_2$	21.2 ± 0.3	398 ± 28
14 °C Future CO$_2$	13.3 ± 0.3	1130 ± 33
18 °C Future CO$_2$	17.8 ± 0.1	1103 ± 47
22 °C Future CO$_2$	21.3 ± 0.2	1221 ± 35

Table S4: Samples sizes for each measurement in all treatments. We were unable to make measurements of P_{50} or Hills number for the 14 °C future CO$_2$ scenario due to an equipment failure.

Measurement	14 °C Present CO$_2$	18 °C Present CO$_2$	22 °C Present CO$_2$	14 °C Future CO$_2$	18 °C Future CO$_2$	22 °C Future CO$_2$
SMR	10	10	10	10	10	10
$O_{2\text{crit}}$	10	10	10	10	10	10
MMR at ~21 kPa O$_2$	9	10	10	12	10	10
MMR at ~12 kPa O$_2$	10	7	10	10	10	10
MMR at ~6 kPa O$_2$	10	7	10	10	10	10
Blood pH$_e$	10	6	9	10	9	7
Plasma pCO$_2$	10	6	9	10	9	7
Plasma HCO$_3^-$	10	6	9	10	9	7
RBC pH$_i$	10	6	8	9	9	7
P_{50}	10	6	9	NA	8	7
Hills number	10	6	9	NA	8	7
Haematocrit	10	6	9	10	9	7
Haemoglobin	7	6	9	10	9	7
Plasma lactate	9	6	9	7	8	7
Plasma glucose	9	6	10	7	8	7
Table S5: Structure of models and model comparison results explaining variation in SMR, O$_{2\text{crit}}$, and MMR of sea bass exposed to differing combinations of temperature, O$_2$, and CO$_2$. The best supported model for each response variable is highlighted in bold.

Response Variable	Explanatory Variables Structure	AICc	ΔAICc	d.f.		
SMR	Temperature + CO$_2$	546.3	0	5		
	Temperature	548.2	1.9	4		
	Temperature*CO$_2$	548.7	2.4	6		
	CO$_2$	578.4	32.1	4		
O$_{2\text{crit}}$	Temperature + CO$_2$ + SMR	72.7	0	6		
	Temperature * SMR + CO$_2$	75.2	2.5	7		
	Temperature * CO$_2$ + SMR	75.2	2.5	7		
	Temperature + CO$_2$ * SMR	75.3	2.6	7		
	Temperature + SMR	76.2	3.5	5		
	Temperature*SMR	78.6	5.9	6		
	Temperature * CO$_2$ * SMR	83.0	10.3	10		
	SMR	84.0	11.3	4		
	SMR + CO$_2$	84.8	12.1	5		
	SMR*CO$_2$	87.2	14.5	6		
	Temperature	134.2	61.5	4		
	Temperature + CO$_2$	136.4	63.7	5		
	Temperature*CO$_2$	138.8	66.1	6		
	CO$_2$	144.0	71.3	4		
MMR	CO$_2$ + Temperature*O$_2$ + Temperature*(O$_2$)2	2240.8	0	12		
	CO$_2$ + Temperature*O$_2$ + Temperature*(O$_2$)2	2243.0	2.2	15		
	CO$_2$ + Temperature*O$_2$ + (O$_2$)2	2247.5	6.7	11		
	CO$_2$ + Temperature*O$_2$ + (O$_2$)2	2248.8	8.0	14		
	Temperature + CO$_2$*O$_2$ + CO$_2$*(O$_2$)2	2280.1	39.3	12		
	Temperature*CO$_2$	2349.8	109.0	13		
	Temperature + CO$_2$*O$_2$	2360.7	119.9	10		
	CO$_2$ + Temperature*O$_2$	2362.8	122.0	10		
	CO$_2$*O$_2$	2365.1	124.3	9		
	Temperature*CO$_2$ + O$_2$	2371.4	130.6	10		
	Temperature + CO$_2$ + O$_2$	2379.7	138.9	9		
	Temperature + CO$_2$	2464.3	223.5	8		
	Temperature + O$_2$	2464.7	223.9	8		
	Temperature *CO$_2$	2465.4	224.6	9		
	Temperature*O$_2$	2467.0	226.2	9		
Parameter	Estimate	Standard Error	Confidence Interval (95%)	t-value	Variance	Standard Deviation
-----------	----------	----------------	---------------------------	---------	----------	--------------------
Intercept	2.174	0.421	1.401 – 2.945	5.16	0.0	0.0

Table S6: General linear mixed-effects model outputs for analysis of standard metabolic rate. The best supported model was fitted using a Gaussian distribution and included the parameters temperature and CO\(_2\) as explanatory variables and group ID as a random intercept term. Parameter effects are compared against a reference level where temperature and CO\(_2\) are 0. Marginal R\(^2\) = 0.70, Condition R\(^2\) = 0.70. Confidence intervals for each parameter were determined from function confint in package lme4. Marginal and conditional R\(^2\) of the model were determined using function r.squaredGLMM from package MuMIn.

Table S7: General linear mixed-effects model outputs for analysis of O\(_2\)crit. The best supported model was fitted using a Gaussian distribution and included the parameters temperature, CO\(_2\), and SMR as explanatory variables and group ID as a random intercept term. Parameter effects are compared against a reference level where temperature, CO\(_2\), and SMR are 0. Marginal R\(^2\) = 0.72, Condition R\(^2\) = 0.77. Confidence intervals for each parameter were determined from function confint in package lme4. Marginal and conditional R\(^2\) of the model were determined using function r.squaredGLMM from package MuMIn.
Table S8: General linear mixed model outputs for analysis of maximum metabolic rate. The best supported model was fitted using a Gaussian distribution and included the parameters temperature and CO$_2$ as explanatory variables and group ID as a random intercept term. Parameter effects are compared against a reference level where temperature and CO$_2$ are 0. Marginal $R^2 = 0.91$, Condition $R^2 = 0.96$. Confidence intervals for each parameter were determined from function confint in package lme4. Marginal and conditional R^2 of the model were determined using function r.squaredGLMM from package MuMIn.

Parameter	Estimate	Standard Error	Confidence Interval (95%)	t-value	Variance	Standard Deviation
Intercept	231.99	2.58	227.01 – 236.98	89.96		
scale(Temperature)	32.53	2.55	27.60 – 37.46	12.76		
scale(O$_2$)	240.35	9.50	221.92 – 258.74	25.31		
scale(Temperature*O$_2$)	41.95	8.60	25.26 – 58.62	4.88		
scale(O$_2^2$)	-157.69	8.68	-174.50 – -140.85	-18.17		
scale(Temperature*O$_2^2$)	-25.10	8.36	-41.31 – -8.86	-3.00		
scale(CO$_2$)	-7.52	2.58	-12.08 – -2.97	-3.20		
Fish ID (Intercept)			90.02	9.49		
Fish ID (O$_2$)		6.53	2.56			
Group		4.78 x 10^-8	0.00			
Figure S1: No impacts of temperature and CO$_2$ were observed for measurements of haemoglobin-O$_2$ binding affinity (measured using P_{50}) and Hills’ number. Due to an equipment failure no measurements were possible during the original experimental period for fish at 14 °C exposed to ~1000 µatm CO$_2$.
Figure S2: Impact of temperature and CO$_2$ on haematological parameters of sea bass. No significant difference in haematocrit were observed between any treatments. Significant difference in haemoglobin content were noted between fish sampled at different temperature and CO$_2$ treatments and are represented by different lower case letters.