Skew spectra of oriented bipartite graphs

A. Anuradha R. Balakrishnan
Department of Mathematics
Bharathidasan University
Tiruchirappalli 620024, India
radha.anu.am@gmail.com mathbala@sify.com

Xiaolin Chen Xueliang Li Huishu Lian
Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, P. R. China
chxlknk@163.com lxl@nankai.edu.cn lhs6803@126.com

Wasin So
Department of Mathematics
San Jose State University
San Jose, California 95192–0103, U.S.A.
wasin.so@sjsu.edu

Submitted: April 30, 2013; Accepted: Oct 28, 2013; Published: Nov 15, 2013
Mathematics Subject Classifications: 05C20, 05C50, 05C75

Abstract
A graph G is said to have a parity-linked orientation ϕ if every even cycle C_{2k} in
G^ϕ is evenly (resp. oddly) oriented whenever k is even (resp. odd). In this paper,
this concept is used to provide an affirmative answer to the following conjecture of
D. Cui and Y. Hou [D. Cui, Y. Hou, On the skew spectra of Cartesian products
of graphs, The Electronic J. Combin. 20(2):#P19, 2013]: Let $G = G(X,Y)$ be
a bipartite graph. Call the $X \rightarrow Y$ orientation of G, the canonical orientation.
Let ϕ be any orientation of G and let $Sp_S(G^\phi)$ and $Sp(G)$ denote respectively
the skew spectrum of G^ϕ and the spectrum of G. Then $Sp_S(G^\phi) = iSp(G)$ if and only
if ϕ is switching-equivalent to the canonical orientation of G. Using this result,
we determine the switch for a special family of oriented hypercubes Q_d^ϕ, $d \geq 1$.
Moreover, we give an orientation of the Cartesian product of a bipartite graph and
a graph, and then determine the skew spectrum of the resulting oriented product
graph, which generalizes a result of Cui and Hou. Further this can be used to
construct new families of oriented graphs with maximum skew energy.

Keywords: oriented bipartite graphs; skew energy; skew spectrum; canonical ori-
tentation; parity-linked orientation; switching-equivalence

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(4) (2013), #P18
1 Introduction

Let $G = (V, E)$ be a finite simple undirected graph of order n with $V = \{v_1, v_2, \ldots, v_n\}$ as its vertex set and E as its edge set. An orientation ϕ of E results in the oriented graph $G^\phi = (V, \Gamma)$, where Γ is the arc set of G^ϕ. The adjacency matrix of G is the $n \times n$ matrix $A = (a_{ij})$, where $a_{ij} = 1$ if $(v_i, v_j) \in E$ and $a_{ij} = 0$ otherwise. As the matrix A is real and symmetric, all its eigenvalues are real. The spectrum of G, denoted by $Sp(G)$, is the spectrum of A. The energy $\mathcal{E}(G)$ of a graph G of order n, introduced by Ivan Gutman [8] in 1978, is defined as the sum of the absolute values of its eigenvalues. The skew adjacency matrix of the oriented graph G^ϕ is the $n \times n$ matrix $S(G^\phi) = (s_{ij})$, where $s_{ij} = 1 = -s_{ji}$ whenever $(v_i, v_j) \in \Gamma(G^\phi)$ and $s_{ij} = 0$ otherwise. As the matrix $S(G^\phi)$ is real and skew symmetric, its eigenvalues are all pure imaginary. The skew spectrum of G^ϕ is the spectrum of $S(G^\phi)$. The concept of graph energy was recently generalized to oriented graphs as skew energy by Adiga, Balakrishnan and Wasin So in [1]. The skew energy $\mathcal{E}_s(G^\phi)$ of an oriented graph G^ϕ is defined as the sum of the absolute values of all the eigenvalues of $S(G^\phi)$. For the properties of the energy and spectrum of a graph, the reader may refer to [3, 9, 12], and for skew energy and skew spectrum of an oriented graph, to [1, 4, 10, 11, 13]. We follow [3] for standard graph theoretic notation.

By a cycle in G^ϕ, we refer to not necessarily a directed cycle. An oriented even cycle is classified into two types based on its structure. An even cycle is defined to be a parity-linked orientation if it is evenly oriented whenever k is even and oddly oriented whenever k is odd. If every even cycle in G^ϕ is a parity-linked orientation, the orientation ϕ is defined to be a parity-linked orientation of G. (The parity-linked orientation is termed as uniform orientation in [6].)

Let $G = (X, Y)$ be a bipartite graph with bipartition (X, Y). The canonical orientation of G is that orientation which orients all the edges from one partite set to the other. It is immaterial if it is from X to Y or from Y to X. Shader and So [13] have shown that for the canonical orientation σ of $G(X, Y)$,

$$Sp_S(G^\sigma) = iSp(G).$$ \hspace{1cm} (1)

From this point onward, σ stands for the canonical orientation with respect to a bipartite graph G with a fixed bipartition (X, Y).

Let G^ϕ be an oriented graph of order n. An even cycle C_{2k} of length $2k$ in G^ϕ is said have a parity-linked orientation if it is evenly oriented whenever k is even and oddly oriented whenever k is odd. If every even cycle in G^ϕ has a parity-linked orientation, then the orientation ϕ is defined to be a parity-linked orientation of G. (The parity-linked orientation is termed as uniform orientation in [6].)
In [6], Cui and Hou have given a characterization of oriented graphs G^ϕ that satisfy Equation (1) by using the parity-linked orientation of graphs.

Theorem 2 ([6]). Suppose G^ϕ is an oriented bipartite graph with G as its underlying graph. Then $Sp_S(G^\phi) = iSp(G)$ if and only if the orientation ϕ of G is parity-linked.

Let U be any proper subset of $V(G)$ of an oriented graph G^ϕ_1 and let $\overline{U} = V(G) \setminus U$ be its complement. Reversing the orientations of all the arcs between U and \overline{U} results in another oriented graph G^ϕ_2. This process is called the *switch* of G^ϕ_1 with respect to U. The oriented graph got by two successive switches with respect to U_1 and U_2 is just the oriented graph obtained from G by the switch with respect to the set $U_1 \Delta U_2$, the symmetric difference of U_1 and U_2.

Suppose ϕ_1 and ϕ_2 are two orientations of a graph G. Then G^ϕ_1 and G^ϕ_2 are said to be *switching-equivalent* if G^ϕ_2 can be obtained from G^ϕ_1 by a switch. It is clear that switching-equivalence among the set \mathcal{G} of all orientations of a graph G is indeed an equivalence relation on \mathcal{G}. The following result is proved in [1].

Theorem 3 ([1]). Let ϕ_1 and ϕ_2 be two orientations of a graph G. If G^ϕ_1 and G^ϕ_2 are switching-equivalent, then $Sp_S(G^\phi_1) = Sp_S(G^\phi_2)$.

We mention that the converse of Theorem 3 is not true for non-bipartite graphs.

Example 4. Consider the two orientations ϕ_1 and ϕ_2 of the cycle graph C_5 as given in Figure 1.

![Figure 1: Two orientations of the cycle graph C_5](image)

Since $C_5 \in \mathcal{G}$, the family of graphs without even cycles, by Theorem 1,

$$Sp_S(C_5^{\phi_1}) = Sp_S(C_5^{\phi_2}).$$

The oriented cycle $C_5^{\phi_1}$ has 5 arcs in one direction (clockwise) while $C_5^{\phi_2}$ has 4 arcs in the same direction for the given labeling. Any switch in $C_5^{\phi_1}$ will cause an even number of changes in the number of arcs in both the directions. Hence the 5 arcs in the clockwise direction can only become either 3 arcs or 1 arc in the clockwise direction after any switch but never 4 arcs in the clockwise direction. Therefore ϕ_1 and ϕ_2 are not switching-equivalent in C_5.
In [6], Cui and Hou conjectured that for an oriented bipartite graph \(G^\phi \), \(Sp_S(G^\phi) = iSp(G) \) if and only if \(G^\phi \) is switching-equivalent to \(G^\sigma \), where \(\sigma \) is the canonical orientation of \(G \). In this paper, we settle the above conjecture in the affirmative and present it as the following theorem.

Theorem 5 (Conjectured in [6]). Suppose \(\phi \) is an orientation of a bipartite graph \(G = G(X,Y) \). Then \(Sp_S(G^\phi) = iSp(G) \) if and only if \(G^\phi \) is switching-equivalent to \(G^\sigma \), where \(\sigma \) is the canonical orientation of \(G \).

Proof. Without loss of generality, we may assume that \(G \) is a connected graph.

Sufficiency. If \(G^\phi \) and \(G^\sigma \) are switching-equivalent, then by Theorem 3, \(Sp_S(G^\phi) = iSp(G) \) (where the second equality follows from (1)).

Necessity. We prove by induction on the number of edges \(m \) of the bipartite graph \(G \). The result is trivial for \(m = 1 \).

Assume that the result is true for all bipartite graphs with at most \(m - 1 \) (\(m \geq 2 \)) arcs. Let \(G \) be a bipartite graph with \(m \) edges and \((X,Y) \) be the bipartition of the vertex set of \(G \). Suppose that \(\phi \) is an orientation of \(G \) such that \(Sp_S(G^\phi) = iSp(G) \). We have to prove that \(\phi \) is switching-equivalent to \(\sigma \). Let \(e \) be any edge of \(G \). By Theorem 2, \(\phi \) is a parity-linked orientation of \(G^\phi \) and hence of \((G - e)^\phi \). Consequently, \((G - e)^\phi_e \) has a parity-linked orientation, where \(\phi_e \) is the restriction of \(\phi \) to the graph \(G - e \). So again by Theorem 2,

\[
Sp_S((G - e)^\phi_e) = iSp(G - e).
\]

Consequently, by induction hypothesis, \((G - e)^\phi_e \) is switching-equivalent to \((G - e)^\sigma_e \), where \(\sigma_e \) is the restriction of \(\sigma \) to the graph \(G - e \).

Let \(\alpha \) be the switch that takes \((G - e)^\phi_e \) to \((G - e)^\sigma_e \) effected by the subset \(U \) of \(V(G - e) = V(G) \). We claim that \(\alpha \) takes \(\phi \) to \(\sigma \) in \(G \). If not, then the resulting oriented graph \(G^\phi \) will be of the following type: All the arcs of \(G - e \) will be oriented from one partite set (say, \(X \)) to the other (namely, \(Y \)) while the arc \(e \) will be oriented in the reverse direction, that is, from \(Y \) to \(X \) (See Figure 2).

![Figure 2: The oriented bipartite graph \(G^{\phi'} \) in Theorem 5](image)

Consider first the case when \(e \) is a cut edge of \(G \). The subgraph \(G - e \) will then consist of two components with vertex sets, say, \(S_1 \) and \(S_2 \). Now switch with respect to \(S_1 \). This will change the orientation of the only arc \(e \) and the resulting orientation is \(\sigma \). Consequently, \(\phi \) is switching-equivalent to \(\sigma \).
Note that the above argument also takes care of the case when G is a tree since each edge of G will then be a cut edge. Hence we now assume that G contains an even cycle C_{2k} containing the arc e and complete the proof. But then any such C_{2k} has $k - 1$ arcs in one direction and $k + 1$ arcs in the opposite direction (see Figure 3) thereby not admitting a parity-linked orientation. Hence this case can not arise. Consequently, ϕ is switching-equivalent to σ in G.

![Figure 3](https://example.com/figure3.png)

Figure 3: Cycle C_{2k} for $k = 3, 4$ in G^ϕ

Theorem 2 provides a nice characterization for an oriented bipartite graph G^ϕ to have the property that $Sp_S(G^\phi) = iSp(G)$. But it requires to check if every cycle in G^ϕ possesses a parity-linked orientation. A natural question is the following: Is it possible to reduce the number of checks to determine whether an oriented graph G^ϕ has a parity-linked orientation? Our next result provides an answer in this direction.

Theorem 6. Let G be a bipartite graph and ϕ be an orientation of G. If ϕ induces a parity-linked orientation on every chordless (even) cycle of G, then $Sp_S(G^\phi) = iSp(G)$.

Proof. By virtue of Theorem 2, it suffices to show that if ϕ induces a parity-linked orientation on every chordless (even) cycle of G, then ϕ induces a parity-linked orientation on every cycle of G. If the result were not true, then there exists a cycle $C_{2\ell}$ in G^ϕ of least length 2ℓ such that ϕ does not induce a parity-linked orientation on $C_{2\ell}$. This of course means that $C_{2\ell}$ is evenly (resp. oddly) oriented if l is odd (resp. even). By hypothesis, $C_{2\ell}$ contains a chord $x_1 y_1$. Suppose that $C_{2\ell} = x_1 x_2 \ldots x_{\ell_1} y_1 y_2 \ldots y_{2\ell - \ell_1} x_1$ in clockwise direction. Consider the two cycles $C_1 = x_1 x_2 \ldots x_{\ell_1} y_1 x_1$ and $C_2 = x_1 y_1 y_2 \ldots y_{2\ell - \ell_1} x_1$ with respective lengths $\ell_1 + 1$ and $2\ell - \ell_1 + 1$ in clockwise direction. Note that C_1 and C_2 are also even (G being bipartite). Suppose that C_1 and C_2 contain respectively r_1 and r_2 arcs in the clockwise direction. By the choice of $C_{2\ell}$, C_1 and C_2 possess the parity-linked orientation. Hence

$$\frac{\ell_1 + 1}{2} \equiv r_1 (\text{mod } 2) \quad \text{and} \quad \frac{2\ell - \ell_1 + 1}{2} \equiv r_2 (\text{mod } 2).$$
It follows that $\ell + 1 \equiv (r_1 + r_2)(\mod 2)$. Observe that if the arc corresponding to x_1y_1 is clockwise in C_1, then it must be anticlockwise in C_2 and vice versa. This of course means that $C_{2\ell}$ also admits the parity-linked orientation. This contradiction proves the result. \hfill \Box

Combining Theorem 2 and Theorem 6, we obtain immediately the following corollary.

Corollary 7. Let G be a bipartite graph and ϕ, an orientation of G. Then $Sp_S(G^\phi) = iSp(G)$ if and only if ϕ induces a parity-linked orientation on all the chordless cycles of G.

Remark 8. Let C denote the set of all cycles of a bipartite graph G. A subset \mathcal{S} of C is called a generating set of C if for any cycle C of C either $C \in \mathcal{S}$ or there is a sequence of cycles C_1, C_2, \ldots, C_k in \mathcal{S} such that $C = (\Delta C_1 \Delta C_2) \ldots \Delta C_k$ and for $2 \leq p \leq k - 1$, $((\Delta C_1 \Delta C_2) \Delta C_3) \ldots \Delta C_p$ are all cycles of G. With this notation, one can prove that for any oriented bipartite graph G^ϕ, $Sp_S(G^\phi) = iSp(G)$ if and only if ϕ induces a parity-linked orientation for every cycle in a generating set \mathcal{S} of C in G. Actually, the set of all chordless cycles of a graph G is a generating set of the set of all cycles of G.

3 Switching-equivalence in oriented hypercubes

We present below an illustration for Theorem 5. In [2], Amuradha and Balakrishnan have constructed an oriented hypercube Q_d^ϕ for which $Sp_S(Q_d^\phi) = iSp(Q_d)$, $d \geq 1$.

By Theorem 5, ϕ must be switching-equivalent to the canonical orientation σ of Q_d. We now determine a switching set U_d in Q_d^ϕ that takes ϕ to σ.

We first recall the algorithm given in [2] by means of which Q_d^ϕ, $d \geq 1$, is constructed.

Algorithm 9. The hypercube Q_d, $d \geq 2$, can be constructed by taking two copies of Q_{d-1} and making the corresponding vertices in the two copies adjacent. Let $V(Q_d) = \{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_d) : \varepsilon_i = 0 \text{ or } 1\}$ be the vertex set of Q_d.

1. For $Q_1 = K_2$, $V(Q_1) = \{(0), (1)\}$. Set $(1, 0) \in \Gamma(Q_1^\phi)$.

2. Assume that for $i = 1, 2, \ldots, k(< d)$, the oriented hypercube Q_k^ϕ has been constructed. For $i = k + 1$, the oriented hypercube Q_{k+1}^ϕ is formed as follows:

 (a). Take two copies $C_0^{(k)}$ and $C_1^{(k)}$ of Q_k^ϕ. Reverse the orientation of all the arcs in $C_1^{(k)}$.

 (b). For $j = 0, 1$, relabel the vertices of $C_j^{(k)}$ by adding j as the first coordinate, that is, if $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in Q_k$, then the vertex $(0, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in C_0^{(k)}$ and the vertex $(1, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in C_1^{(k)}$.

 (c). Let (X_0, Y_0) be the bipartition of $V(Q_k)$ in $C_0^{(k)}$ such that the vertex labeled $(0, 0, \ldots, 0)$ is in X_0. Set the corresponding bipartition in $C_1^{(k)}$ as (X_1, Y_1). (Note that the vertex labeled $(1, 0, 0, \ldots, 0) \in X_1$.) Consequently $X = X_0 \cup Y_1$ and $Y = X_1 \cup Y_0$ form the bipartition of $V(Q_{k+1})$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(4) (2013), #P18
(d). Add an edge between the vertices of $C_0^{(k)}$ and $C_1^{(k)}$ that differ in exactly the first coordinate. For each such edge, assign the orientation from X_0 to X_1 and from Y_1 to Y_0 (see Figure 4). This yields the oriented hypercube Q_3^{ϕ}. (See Figure 5.)

3. If $k + 1 = d$, stop; else take $k \leftarrow k + 1$, return to Step 2. □

Figure 4: Example for Step 2(d) in Algorithm 9

Let (X, Y) be the bipartition of $V(Q_d^{\phi})$ for $d \geq 1$ such that the vertex $(0, 0, \ldots, 0)$ is
in X. It is then easy to observe from the construction of Q^ϕ_d that the indegree, $\deg^+ (u)$, of each vertex $u \in X$ is 1 while the outdegree $\deg^- (v)$ of each vertex $v \in Y$ is 1 in Q^ϕ_d.

For each $d \geq 1$, we now define a set $U_d \subset V(Q^\phi_d)$ recursively as follows: For the oriented hypercube Q^ϕ_1, set $U_1 = \{(0)\}$. For $k \geq 1$ ($k < d$), assume that the set U_k has been determined. Form the set U_{k+1} of the oriented hypercube Q^ϕ_{k+1} by taking, for each vertex $v = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in U_k$ of the hypercube Q^ϕ_k, the vertices $v_0 = (0, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k)$ and $v_1 = (1, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k)$. Note that in the oriented hypercube Q^ϕ_{k+1}, if U^0_k and U^1_k are the two sets corresponding to U_k in the two copies $C^{(k)}_0$ and $C^{(k)}_1$ of Q^ϕ_k then $U_{k+1} = U^0_k \cup U^1_k$ and $|U_{k+1}| = 2^k$.

We now show that for each $d \geq 1$, a switch with respect to the set U_d in the oriented hypercube Q^ϕ_d results in the canonical orientation σ of Q_d.

Theorem 10. Suppose Q^ϕ_d is the oriented hypercube obtained by Algorithm 9. Let $U_d \subset V(Q^\phi_d)$ be determined as above. Then a switch with respect to the set U_d, for $d = 1, 2, \ldots$, yields the canonical orientation σ of Q_d.

Proof. Proof by induction on d. It is obvious for $d = 1, 2$. (For $d = 1, 2$, $U_1 = \{(0)\}$ and $U_2 = \{(0,0), (1,0)\}$.)

Suppose that a switch with respect to the set U_k ($k < d$), yields the canonical orientation in the oriented hypercube Q^ϕ_k. Consider the set U_{k+1} of the oriented hypercube Q^ϕ_{k+1}, clearly Q^ϕ_{k+1} consists of two copies $C^{(k)}_0$ and $C^{(k)}_1$ of Q^ϕ_k. For $i = 0, 1$, let U^i_k be the switch in the corresponding copy $C^{(k)}_i$. It is then easy to observe that

$$U_{k+1} = U^0_k \cup U^1_k.$$

This shows that the copies $C^{(k)}_0$ and $C^{(k)}_1$ in Q^ϕ_{k+1} exhibit canonical orientation after the switch with respect to U_{k+1}. Further any arc between the two copies agrees with the canonical orientation (see Step 2(d) of Algorithm 9). Hence the switch with respect to U_{k+1} results in Q^ϕ_{k+1}. Applying induction, the result follows.

\[\Box\]

4 The skew spectrum of $H \Box G$ with H bipartite

In [1], Adiga et al. have shown that the skew energy of any oriented graph G^ϕ of order n, for which the underlying undirected graph G is k-regular, is bounded above by $n \sqrt{k}$ and posed the following problem:

Problem 11. Which k-regular graphs G on n vertices have orientations ϕ with $\mathcal{E}_S(G^\phi) = n \sqrt{k}$, or equivalently, $S(G^\phi)^T S(G^\phi) = kI_n$?

In this section, we give an orientation of the Cartesian product $H \Box G$, where H is bipartite, by extending the orientation of $P_m \Box G$ in [6], and we calculate its skew spectrum. As an application of this orientation, we construct new families of oriented graphs with maximum skew energy, which generalizes the construction in [6].
Let H and G be graphs with p and n vertices, respectively. Recall that the Cartesian product $H \Box G$ of H and G is the graph with vertex set $V(H) \times V(G)$ and the vertices (u_1, v_1) and (u_2, v_2) are adjacent in $H \Box G$ if and only if $u_1 = u_2$ and $v_1 v_2$ is an edge of G, or if $v_1 = v_2$ and $u_1 u_2$ is an edge of H. Assume that τ is any orientation of H and ϕ is any orientation of G. There is a natural way to define the oriented Cartesian product $H^\tau \Box G^\phi$ of H^τ and G^ϕ whose underlying undirected graph is $H \Box G$. There is an arc from (u_1, v_1) to (u_2, v_2) if and only if $u_1 = u_2$ and (v_1, v_2) is an arc of G^ϕ, or if $v_1 = v_2$ and (u_1, u_2) is an arc of H^τ. The skew spectrum of $H^\tau \Box G^\phi$ has been determined in [6]. Some interesting results on the skew spectrum of the product $H^\tau \Box G^\phi$, where H^τ is an oriented hypercube are obtained in [2].

When H is a bipartite graph with bipartition X and Y, we modify the above definition of $H^\tau \Box G^\phi$ to obtain a new product graph $(H^\tau \Box G^\phi)^o$ with the following condition: If $u \in Y$ and $(v_1, v_2) \in (G^\phi)^o$, then we make $(u, v_2)(u, v_1)$ an arc of $H^\tau \Box G^\phi$ (instead of $(u, v_1)(u, v_2)$); the other arcs of $H^\tau \Box G^\phi$ remain unchanged.

Theorem 12. Let H^τ be an oriented bipartite graph of order p and let the skew eigenvalues of H^τ be the nonzero complex numbers $\pm i\mu_1, \pm i\mu_2, \ldots, \pm i\mu_p$, and $p - 2r$ 0’s. Let G^ϕ be an oriented graph of order n and let the skew eigenvalues of G^ϕ be the nonzero complex numbers $\pm i\lambda_1, \pm i\lambda_2, \ldots, \pm i\lambda_t$, and $n - 2t$ 0’s. Then the skew eigenvalues of the oriented graph $(H^\tau \Box G^\phi)^o$ are $\pm i\sqrt{\mu_j^2 + \lambda_k^2}$, $j = 1, \ldots, r$, $k = 1, \ldots, t$, each with multiplicity 2; $\pm i\mu_j, j = 1, \ldots, r$, each with multiplicity $n - 2t$; $\pm i\lambda_j, k = 1, \ldots, t$, each with multiplicity $p - 2r$ and 0 with multiplicity $(p - 2r)(n - 2t)$.

Proof. Let $H = H(X, Y)$ with $|X| = p_1$ and $|Y| = p_2$. With suitable labeling of the vertices of $H \Box G$, the skew adjacency matrix $S = S((H^\tau \Box G^\phi)^o)$ can be chosen as follows:

$$S = I_{p_1 + p_2} \otimes S(G^\phi) + S(H^\tau) \otimes I_n,$$

where $I_{p_1 + p_2} = I_p \otimes (a_{ij})$, $a_{ii} = 1$ if $1 \leq i \leq p_1$, $a_{ii} = -1$ if $p_1 + 1 \leq i \leq p$ and $a_{ij} = 0$ otherwise; $S(H^\tau)$ is the partitioned matrix

$$\begin{pmatrix} 0 & B \\ -BT & 0 \end{pmatrix},$$

where B is a $p_1 \times p_2$ matrix. Further, \otimes stands for the Kronecker product of two matrices [3].

We first determine the singular values of S. Note that the matrices S, $S(H^\tau)$ and $S(G^\phi)$ are all skew symmetric. By calculation, we have

$$SS^T = [I_p \otimes S(G^\phi) + S(H^\tau) \otimes I_n][I_p \otimes (-S(G^\phi)) + (-S(H^\tau)) \otimes I_n]$$

$$= -[I_p \otimes S^2(G^\phi) + S^2(H^\tau) \otimes I_n] + (I_p \otimes S(G^\phi))(S(H^\tau) \otimes I_n)$$

$$+ (S(H^\tau) \otimes I_n)(I_p \otimes S(G^\phi))].$$

Define $\omega_i = 1$ for $i = 1, 2, \ldots, p_1$ and $\omega_i = -1$ for $i = p_1 + 1, p_1 + 2, \ldots, p$. Denote $P^{(1)} = (I_{p_1 + p_2} \otimes S(G^\phi))(S(H^\tau) \otimes I_n)$ and $P^{(2)} = (S(H^\tau) \otimes I_n)(I_{p_1 + p_2} \otimes S(G^\phi))$. Note that $P^{(1)}$ and $P^{(2)}$ are both partitioned matrices each of order $p_1 \times p_2$ in which each entry is an $n \times n$ submatrix. The $(i, j)^{th}$ block in the matrix $P^{(1)} + P^{(2)}$ is given by

$$P^{(1)}_{ij} + P^{(2)}_{ij} = S(H^\tau)_{ij}S(G^\phi)(\omega_i + \omega_j).$$
For any \(1 \leq i, j \leq p\), if \(S(H^r)_{ij} = 0\), then \(P^{(1)}_{ij} + P^{(2)}_{ij} = 0\). Otherwise the vertices corresponding to \(i\) and \(j\) in \(H^r\) are in different parts of the bipartition. That is, \(1 \leq i \leq p_1\), \(p_1 + 1 \leq j \leq p\) or \(1 \leq j \leq p_1\), \(p_1 + 1 \leq i \leq p\). Then \(\omega_i + \omega_j = 0\). Thus it follows that \(P^{(1)} + P^{(2)} = 0\). Hence

\[
SS^T = -(I_{p_1 + p_2} \otimes S^2(G^\phi) + S^2(H^r) \otimes I_n).
\]

Therefore (cf. [3]), the eigenvalues of \(SS^T\) are \(\mu(H^r)^2 + \lambda(G^\phi)^2\), where \(\mu(H^r) \in Sp_S(H^r)\) and \(\lambda(G^\phi) \in Sp_S(G^\phi)\) and hence the eigenvalues of \(S\) are of the form \(\pm i\sqrt{\mu(H^r)^2 + \lambda(G^\phi)^2}\). Thus the skew spectrum of \((H^r \square G^\phi)^o\) is as given in the statement of the theorem. The proof is thus complete. \(\square\)

As an application of Theorem 12, we now construct a new family of oriented graphs with maximum skew energy.

Theorem 13. Let \(H^r\) be an oriented \(\ell\)-regular bipartite graph on \(p\) vertices with maximum skew energy \(E_S(H^r) = p\sqrt{\ell}\) and \(G^\phi\) be an oriented \(k\)-regular bipartite graph on \(n\) vertices with maximum skew energy \(E_S(G^\phi) = n\sqrt{k}\). Then the oriented graph \((H^r \square G^\phi)^o\) of \(H \square G\) has the maximum skew energy \(E_S((H^r \square G^\phi)^o) = np\sqrt{\ell} + k\).

Proof. Since \(H^r\) and \(G^\phi\) have maximum skew energy, \(S(H^r)S(H^r)^T = \ell I_p\) and \(S(G^\phi)S(G^\phi)^T = k I_n\). Then the skew eigenvalues of \(H^r\) are all \(\pm i\sqrt{\ell}\) and the skew eigenvalues of \(G^\phi\) are all \(\pm i\sqrt{k}\). By Theorem 12, all the skew eigenvalues of \((H^r \square G^\phi)^o\) are of the form \(\pm i\sqrt{\ell} + k\) and hence its skew energy is \(np\sqrt{\ell} + k\), the maximum possible skew energy that an \((\ell + k)\)-regular graph on \(np\) vertices can have. \(\square\)

An immediate corollary of Theorem 13 is the following result of Cui and Hou [6].

Corollary 14. Let \(G^\phi\) be an oriented \(k\)-regular graph on \(n\) vertices with maximum skew energy \(E_S(G^\phi) = n\sqrt{k}\). Then the oriented graph \((P_2 \square G^\phi)^o\) of \(P_2 \square G\) has maximum skew energy \(E_S((P_2 \square G^\phi)^o) = 2n\sqrt{k} + 1\).

Adiga et al. [1] showed that a 1-regular connected graph that has an orientation with maximum skew energy is \(K_2\); while a 2-regular connected graph has an orientation with maximum skew energy if and only if it is an oddly oriented cycle \(C_4\). Tian [14] proved that there exists a \(k\)-regular graph with \(n = 2^k\) vertices having an orientation \(\psi\) with maximum skew energy. Cui and Hou [6] constructed a \(k\)-regular graph of order \(n = 2^{k-1}\) having an orientation \(\varphi\) with maximum skew energy. The following examples provide new families of oriented graphs with fewer vertices that have maximum skew energy.

Example 15. Let \(G_1 = K_{4,4}\). For each \(r \geq 2\), set \(G_r = K_{4,4} \square G_{r-1}\). As there is an orientation of \(K_{4,4}\) with maximum skew energy 16 (see [5]), for each \(r \geq 1\), there exists an orientation of \(G_r\) that yields the maximum skew energy \(2^{3r}\sqrt{4r}\). This provides a family of \(4r\)-regular graphs of order \(n = 2^{3r}\) each having an orientation with skew energy \(2^{3r}\sqrt{4r}\), \(r \geq 1\).
Example 16. Let $G_1 = K_4$. For each $r \geq 2$, set $G_r = K_{4,4} \square G_{r-1}$. Since there exist orientations for K_4 with maximum skew energy $4\sqrt{3}$ (see [1, 7]), the skew energy of G_r, $r \geq 1$, is $2^{3r-1} \sqrt{4r - 1}$ and it is maximum. This provides a family of $4r - 1$-regular graphs of order 2^{3r-1} each having an orientation with maximum skew energy $2^{3r-1} \sqrt{4r - 1}$, $r \geq 1$.

Example 17. A new family of $4r - 2$-regular oriented graphs of order 2^{3r-1} with maximum skew energy $2^{3r-1} \sqrt{4r - 2}$, $r \geq 1$ is obtained when we set $G_1 = C_4$ in place of K_4 in Example 16.

Example 18. A new family of $4r - 3$-regular oriented graphs of order 2^{3r-2} with maximum skew energy $2^{3r-2} \sqrt{4r - 3}$, $r \geq 1$ is obtained when we set $G_1 = P_2$ in place of K_4 in Example 16.

Acknowledgement

For the first two authors, this research was supported by the Department of Science and Technology, Government of India grant DST:SR/S4/MS:492, dated April 16, 2009. For the third, fourth and fifth authors, this research was supported by NSFC and the “973” program.

References

[1] C. Adiga, R. Balakrishnan, and Wasin So. The skew energy of a digraph. *Linear Algebra Appl.*, 432:1825–1835, 2010.

[2] A. Anuradha, and R. Balakrishnan. Skew spectrum of the Cartesian product of an oriented graph with an oriented hypercube. In *Combinatorial Matrix Theory and Generalized Inverses of Matrices*, Eds. R. B. Bapat, S. J. Kirkland, K. M. Prasad, S. Puntanen, pages 1–12. Springer, 2013.

[3] R. Balakrishnan, and K. Ranganathan. *A Textbook of Graph Theory*. Second Edition, Springer, New York (2012).

[4] M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald, and M. Tsatsomeros. Skew-adjacency matrices of graphs. *Linear Algebra Appl.*, 436:4512–4529, 2012.

[5] X. Chen, X. Li, and H. Lian. 4-Regular oriented graphs with optimum skew energy. *Linear Algebra Appl.*, 439(10):2948–2960, 2013.

[6] D. Cui, and Y. Hou. On the skew spectra of Cartesian products of graphs. *The Electronic J. Combin.*, 20(2):#P19, 2013.

[7] S. Gong, and G. Xu. 3-Regular digraphs with optimum skew energy. *Linear Algebra Appl.*, 436:465–471, 2012.

[8] I. Gutman. The energy of a graph. *Ber. Math. Statist. sekt. Forschungsz. Graz.*, 103:1–22, 1978.
[9] I. Gutman, X. Li, and J. Zhang. Graph Energy. In Analysis of Complex Network: From Biology to Linguistics, Eds. M. Dehmer, and F. Emmert-Streib, pages 145–174. Wiley-VCH Verlag, Weinheim, 2009.

[10] Y. Hou, and T. Lei. Characteristic polynomials of skew-adjacency matrices of oriented graphs. The Electronic J. Combin., 18:#156, 2011.

[11] X. Li, and H. Lian. A survey on the skew energy of oriented graphs. Available at arXiv:1304.5707

[12] X. Li, Y. Shi, and I. Gutman. Graph Energy. Springer, New York, 2012.

[13] B. Shader, and Wasin So. Skew spectra of oriented graphs. The Electronic J. Combin., 16:1–6, 2009.

[14] G-X. Tian. On the skew energy of orientations of hypercubes. Linear Algebra Appl., 435:2140–2149, 2011.