Ultraviolet A protective potential of plant extracts and phytochemicals

Denisa Skarupova, Jitka Vostalova, Alena Rajnochova Svobodova

Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers.

In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L, Vaccinium myrtillus L, Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f, Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.

Key words: UVA radiation, ROS, skin, photoprotection, natural compounds, extract

INTRODUCTION

Solar radiation is electromagnetic radiation produced by the Sun, ranging from about 0.25 to 4.5 μm in wavelength including infrared, visible, and ultraviolet (UV) light. Sunlight is an inseparable part of human life. It is a key factor in plant photosynthesis as well as in vitamin D3 synthesis in human skin. However, it also has several negative effects on human health. The harmful effects are mainly associated with the UV waveband. The amount of UV radiation reaching the earth’s surface has been increasing over the last few decades. Human lifestyle has changed as well, especially time spent in outdoor activities (sports, sunbathing, or sunbed tanning). As a result, our body, particularly our skin, receives higher doses of UV radiation than before, which is linked with a more frequent incidence of various acute and chronic detrimental cutaneous effects, including skin cancer. Originally, it was thought that only the high energetic photons of the UVB waveband (280–315 nm) are responsible for the adverse effects of solar light. As a result, the photoprotection of human skin was focused on protection against UVB rays for many years. More recently, an increasing number of independent studies indicated that UVA radiation (315–400 nm) also induces damage to skin cells. It is therefore essential to have effective protection against UVA radiation as well. This review summarises studies on pure compounds or extracts derived from natural sources that have demonstrated protective potential against UVA radiation in skin cells and/or tissue.

UVA RADIATION

The sun is primarily a UVA source, as UVA amounts to over 90% of the UV radiation reaching the earth’s surface. UVA radiation is further subdivided into UVA1 (340–400 nm) and UVA2 (315–340 nm). UVA photons penetrate deep into the epidermis and dermis of the skin. About 80% of UVA radiation reaches the dermo-epidermal junction and penetrates into the papillary dermis. In this way UVA may affect most of the skin cells, especially keratinocytes, melanocytes, fibroblasts and endothelial cells in blood vessels. UVA-induced responses in cells occur...
predominantly via the activation of oxidative processes initiated by endogenous photosensitization. UVA photons primarily initialize the production of reactive oxygen and nitrogen species (ROS, RNS) through interacting with endogenous chromophores (photosensitizers). In particular superoxide and singlet oxygen is produced. The latter can be dismutated to hydrogen peroxide, which in turn can produce hydroxyl radicals after reacting with metal ions. RNS include nitric oxide and peroxynitrite. The cellular photosensitizers have not been fully characterized, but candidates include bases of nucleic acids, aromatic amino acids, NAD(P)H, heme, quinones, flavins, porphyrins, 7-dehydrocholesterol, eumelanin, urocanic acid etc. ROS/RNS can oxidize cellular proteins, lipids, and saccharides. The oxidized products of lipids include alkoxyl radicals, aldehydes, alkanes, lipid (hydro)peroxides and epoxides. These highly reactive compounds may further provoke oxidative damage to biomolecules. As for proteins, all amino acid side chains can be oxidized to generate protein carbonyl groups. The sulphydryl groups of methionine and cysteine are particularly susceptible to oxidation. Several DNA replication and repair proteins have been shown to be targets of reactive compounds that arise upon UVA exposure. ROS/RNS can also induce various types of oxidative DNA lesions such as single-strand breaks and DNA-protein crosslinks, but mainly altered DNA bases. Due to their lowest ionisation potential, guanine bases are the most susceptible to oxidation, and 8-hydroxydeoxyguanine (8-OH-dG) is a characteristic oxidative product. UVA was also found to produce a significant yield of cyclobutane-pyrimidine dimers (CPD). ROS/RNS, unstable oxidised products as well as DNA lesions can affect various cellular pathways and the expression of numerous genes such as inflammatory cytokines, transcription factors, matrix metalloproteinases (MMP), mitogen-activated protein kinases (MAPK), or pro- and anti-apoptotic genes. These signalling molecules initiate the development of pathological changes in skin tissue such as altered epidermal cell proliferation and differentiation, decrease in collagen synthesis, upregulation of extracellular matrix-degrading enzymes such as collagenase (MMP-1), stromelysin (MMP-3), gelatinase (MMP-9) or elastase. On the other hand, increased levels of oxidatively modified molecules stimulate the activity, activation or synthesis of protective molecules such as nuclear factor erythroid-2 related factor 2 (Nrf2), phase 2 detoxifying enzymes (e.g., glutathione S-transferase (GST), NADPH quinone oxidoreductase-1 (NQO1), γ-glutamate-L-cysteine ligase (γ-GCL) or heme oxygenase-1 (HO-1)), DNA repair enzymes and others that aim to suppress the adverse biological effects of UVA radiation. However, intensive exposure to UVA light can exceed protective mechanisms, and chronic exposure to UVA radiation leads to the step-by-step accumulation of oxidatively modified molecules and loss of the vascular network, all of which may result in skin inflammation, immunosuppression, photodermatosis, premature skin aging (photoaging) and/or carcinogenesis (Fig. 1).
Table 1. Plants with UVA protective potential.

Botanical name	Local name	Family	Used parts	Method	Active phytochemicals
Aloe vera (L.) Burm.f.	Aloe	Liliaceae	leaves	*In vitro*	phenolic compounds, anthracene hydroxyl derivatives, enzymes
Amaranthus cruentus L.	Blood amaranth, red amaranth, Purple amaranth, Prince's feather, Mexican grain amaranth	Amaranthaceae	seeds	*In vitro*	flavonoids, phenolic acids, vitamins, minerals, amino acids, bioactive peptides
Camellia sinensis (L.) Kuntze	Tea	Theaceae	leaves	*In vitro, In vivo*	catechins
Cola acuminata Schott & Endl.	Cola nut	Malvaceae	seeds	*In vivo*	catechins, procyanidin, tannins, caffeine, theobromine
Theobroma cacao L.	Cocoa tree, Cacao tree	Malvaceae	beans	*In vivo*	flavonoids, catechins, epicatechins, procyanidins, caffeine, theobromine
Galinsoga parviflora Cav.	Guasca, Mielcilla galinsoga, Gallant soldier, Quickweed	Asteraceae	whole plant,	*In vitro*	flavonoids and their glycosides, phenolic acids, depsides
Galinsoga quadriradiata Ruiz et Pavón	Shaggy soldier, Hairy galinsoga	Asteraceae	whole plant,	*In vitro*	flavonoids and their glycosides, phenolic acids, depsides
Hippophae rhamnoides L.	Sea buckthorn	Elaeagnaceae	soft parts, seeds	*In vitro*	polyphenols, carotenoids, sterols, minerals, amino acids, fatty acids
Lonicera caerulea L.	Honeyberry	Caprifoliaceae	fruits	*In vitro, In vivo*	anthocyanins, flavonoids, phenolic acids
Morinda citrifolia L.	Noni, Pain bush, Hog apple	Rubiaceae	leaves, fruits, roots, bark	*In vivo*	terpenoids, flavonoids and their glycosides, alkaloids
Oenothera paradoxa Hudziok	Evening primrose	Oenotheraceae	seeds, whole plant	*In vitro*	flavonoids, phenolic acids, hydrolysable tannins
Opuntia ficus-indica L. Mill.	Nopal cactus, Prickly pear	Cactaceae	cladodes	*In vitro*	flavonoids, phenolic acids
Polypodium aureum L.	Calaguala	Polypodiaceae	whole plant	*In vitro, In vivo*	benzoate and cinnamate derivatives
Punica granatum L.	Grenade, Granat	Lythraceae	fruits	*In vitro, In vivo*	phenolic acid, anthocyanins, anthocyanidins, flavanols, flavanes
Silybum marianum L. Gaertner	Milk thistle	Asteraceae	seeds	*In vitro*	flavonolignans
Thymus vulgaris L.	Thyme	Lamiaceae	leaves, flowers	*In vitro, Ex vivo human skin*	terpenes
Vaccinium myrtillus L.	Bilberry	Ericaceae	fruits	*In vitro*	anthocyanins
PLANT EXTRACTS AND PHYTOCHEMICALS WITH UVA PROTECTIVE POTENTIAL

In response to the environment, many living organisms produce specific secondary metabolites that help them to grow successfully and continue their lineage. Some of these secondary metabolites have been found to provide UV protective properties, even though they probably have other physiological roles. These compounds with UV protective activities are widely distributed across the microbial, plant and animal kingdoms, and share some common chemical features. They act as UV absorbers (blockers) including phenolic acids, flavonoids, non-flavonoids and terpenoids. These compounds can prevent or diminish the penetration of UV photons into the skin tissue, resulting in a reduction in the interaction of UV photons with endogenous chromophores, oxidative stress, DNA damage and inflammation. Besides these abilities, some phytochemicals were also found to modulate multiple signalling pathways. Therefore, these naturally occurring compounds have gained considerable attention for their potential use as effective agents for preventing or reducing the UV-induced oxidative modification of biomolecules and subsequent events involved in skin pathology such as photoaging and skin cancer. This review makes an attempt to summarize the results of research on the protective properties of various phytochemicals or extracts, with the focus on UVA radiation. Only papers with well characterized phytochemicals or extracts and experimental conditions were selected for the review.

Plant extracts

Camellia sinensis

Tea (Camellia sinensis (L.) Kuntze) is a plant of the Theaceae family. A hot water infusion of tea leaves is one of the most consumed beverages in the world. Tea is divided into subtypes based on its processing. White tea consists of minimally processed young leaves. Green tea originates from minimally processed mature leaves, while oolong tea is semi-fermented and black tea is fully fermented. Green tea is an abundant source of polyphenols known as catechins. They generally account for 30–42% of the dry solids in brewed green tea. The major catechins found in green tea include (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG).

EGCG is the most abundant and forms 50–80% of the total amount of catechins. The polyphenol content of black tea is different from that of green tea due to the degree of oxidation during processing. It mainly contains the following polyphenols: thearubigins, theaflavins, flavonols, and catechins. Among the tea polyphenols, EGCG has been shown to be the most effective chemoprotective agent against cutaneous inflammatory or carcinogenic responses. The potential of tea polyphenols against UVB-induced DNA damage, inflammation, oxidative stress, alterations in cell signalling pathways, and epigenetics changes that play a pivotal role in photocarcinogenesis are summarized in a recent review. EGCG is also the most commonly evaluated green tea component in terms of UVA protection. The EGCG pre-treatment of a spontaneously transformed aneuploid immortal human skin keratinocyte cell line (HaCaT) reduced UVA-induced ROS generation, DNA single-strand breaks and alkali-labile site formation, hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutant frequency as well as nuclear factor kappa B (NF-κB) nuclear translocation and interleukin-6 (IL-6) secretion. EGCG protected normal human dermal fibroblasts (NHDF) against UVA damage by downregulating the transcription activity of Jun protein and the mRNA and protein level of MMP-1. The treatment of human infant skin fibroblasts with EGCG decreased beta-galactosidase positive cell number and the frequency of the HPRT gene mutation in UVA-irradiated cells. EGCG inhibited the UVA-induced cell death of ARPE19 human adult human retinal pigment epithelial cells. In addition, EGCG suppressed intracellular hydrogen peroxide generation, extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase 1/2 (JNK) and p38 kinase activation as well as cyclooxygenase 2 (COX-2) protein expression in the irradiated cells. The pre-treatment of male Wistar albino rats with EGCG in a hydrophilic ointment resulted in a significant reduction in sunburn cell count and degeneration and disintegration in the dermo-epidermal junction in UVA-exposed animals. Pre-treatment with EGCG reduced wrinkles in the dorsal trunk and also prevented the reduction of collagen synthesis in the skin of UVA-irradiated hairless mice.

The UVA protection of less abundant green tea polyphenols was also evaluated in several in vitro studies. The pre-treatment of a FEK4 human skin fibroblast cell line with EGC caused a strong reduction in UVA-induced HO-1, but MMP-1 and COX-2 mRNA expression was stimulated. On the other hand, in a KB human oral carcinoma cell line, UVA-stimulated COX-2 mRNA was strongly reduced with EGC (ref.10). In UVA-irradiated HaCaT, EGCG pre-treatment increased viability, and reduced hydrogen peroxide production and ERK activation. The pre-treatment of FEK4 fibroblasts with EC and its metabolite 3’-O-methyl epicatechin (MeOEC) increased cell viability and reduced the number of necrotic cells. EC further prevented the suppression of HO-1 transcription. EC and MeOEC also suppressed the UVA-mediated release of chelatable iron and the mRNA expression of MMP-1 in FEK4 fibroblasts. EC treatment also protected the lysosomal membrane against UVA-induced damage. In both studies, EC was more effective than its metabolite. The application of a nano-gel formulation of catechin to the skin of male Wistar rats reduced the oxidative stress induced by UVA, most significantly improving the level of cutaneous antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)), and reducing the level of thiobarbituric acid reactive substances (TBARS).

Silybum marianum

Silymarin (SM) is a standardized polyphenol fraction from the seeds of Silybum marianum L. Gaertner (syn. Cardus marianus L. or milk thistle) from the Asteraceae family. S. marianum is one of the oldest known plants, and
has been widely used in traditional European medicine since ancient times. The plant as well as SM is rich in polyphenols. SM contains approximately 70–80% flavonolignans, and 20–30% is a chemically undefined fraction, mostly comprised of polymeric and oxidised polyphenolic compounds. The main polyphenolic component of SM is the flavonolignan silybin (SB). Other less abundant components are the flavonolignans isosilybin (ISB), silychristin (SC), silydianin (SD) and the flavonoid taxifolin. A minor component but with a significant biological potential is the flavonolignan 2,3-dehydrosilybin (DHSB) (ref.26). SM has been primarily used in the treatment of liver disorders including hepatitis, alcoholic liver diseases, and cirrhosis, and is also useful against toxin-induced liver toxicity. Laboratory studies suggest that there is no significant difference between SM and its major component SB in terms of biological activities. Research results showed antioxidant activity, modulation of the immune system and various signalling pathways for both SM and SB (ref.27). Several reports documented the ability of SM and SB to reduce chemically- and UVB-stimulated skin damage, including carcinogenesis21,22.

The pre-treatment of NHDF with SM and SB resulted in a reduction in UVA-stimulated ROS and the production of DNA single-strand breaks, as well as in the prevention of glutathione (GSH) depletion, a decrease in the activation of caspase-3 and MMP-1 protein. SM also moderately increased HO-1 and reduced the level of heat shock protein 70 (HSP 70) (ref.31). Also, less abundant flavonolignans in silymarin, ISB, SD, SC and DHSB demonstrated the ability to reduce UVA-induced damage in NHDF (ref.28). The post-treatment of UVA-irradiated HaCaT with SM (ref.27) and SB (ref.28) resulted in the diminution of UVA-caused ROS production, caspase-3 activation, GSH and ATP depletion as well as lipid peroxidation and the formation of DNA single-strand breaks. However, besides many reports on the photoprotection of SM and its main congener SB, there are also controversial studies demonstrating an in vitro phototoxic activity of SM (ref.27) and SB (ref.28). The phototoxic potential of the minor flavonolignan DHSB, a dihydroxy derivative of SB, was recently also described in skin cells24-29. DHSB is very potent antioxidant with a moiety that is structurally similar to quercetin, which has also been shown to be a phototoxic compound. The phototoxic potential of DHSB and perhaps SM needs be confirmed in vivo or in clinical trials.

Punica granatum

Pomegranate also known as grenade, granats, and punica apple, is a fruit of the *Punica granatum* L. tree from the family Lythraceae. It is indigenous to the Himalayas in northern India through to Iran, parts of Southeast Asia, the East Indies, and tropical Africa, and grows in almost all parts of the Mediterranean region. Pomegranate is rich in phenolic acids, flavanols, flavones, flavonones, anthocyanidins, and anthocyanins30. The fruit and its pericarp contain two main polyphenol groups, anthocyanins (cyanidin and delphinidin) and hydrolysable tannins (punicalin, pedunculagin, punicalagin, and gallagic and elagic esters of glucose). Pomegranate has been recognized since antiquity for its healing properties. Pomegranate fruit extract exhibits antioxidant and anti-inflammatory properties. Many *in vitro* and *in vivo* studies demonstrated a photoprotective effect of pomegranate against UVA radiation22.

UVA-induced ROS generation and the cell death of SKU-1064 human skin fibroblasts were reduced by pomegranate extract pre-treatment in a dose-dependent fashion31. A concentrated pomegranate solution decreased UVA-induced MMP-1 activity in neonatal NHDF (ref.32). The pre-treatment of normal human epidermal keratinocytes (NHEK) with pomegranate fruit extract resulted in a dose-dependent inhibition of the UVA-mediated phosphorylation of signal transducer and activator of transcription 3 at Tyr705, AKT at Ser473 and ERK1/2. The extract also inhibited the UVA-mediated phosphorylation of mTOR (a serine-threonine kinase involved in cell growth), an increase in Ki-67 (a protein associated with cellular proliferation and ribosomal RNA transcription) and proliferating cell nuclear antigen (PCNA), an essential factor in DNA replication. Pre-treatment with the extract also increased UVA-induced cell-cycle arrest in the G1 phase and the expression of pro-apoptotic proteins Bax and Bad, with downregulation of the expression of the anti-apoptotic protein Bel-xL (ref.33).

Polypodium leucotomos

The tropical fern *Polypodium leucotomos* (syn. *Phlebodium aureum* L. or *Polypodium aureum* L.) from the Polypodiaceae family is native to Central and South America. *P. leucotomos* is rich in phenolic compounds, especially benzoate and cinnamate derivatives. Chlorogenic, p-coumaric, vanillic, cinnamic, caffeic and ferulic acid are the most abundant of them, and these compounds are known for their photoprotective potential (see part Phytochemicals with UVA protective potential). *P. leucotomos* has been traditionally used for treating various skin disorders (e.g., psoriasis and atopic dermatitis) in its areas of origin34. Clinical scientific evidence suggests that *P. leucotomos* is also beneficial for the treatment of vitiligo and the prevention of polymorphic light eruption. Photoprotective activity has been assessed in animals, healthy volunteers as well as in patients suffering from several cutaneous diseases such as vitiligo, psoriasis, idiopathic photodermatosis or melasma35-36.

A hydrophilic extract of *P. leucotomos* efficiently protected NHDF and HaCaT survival and restored their proliferative capability when the cells were exposed to UVA radiation. The extract also prevented UVA-induced morphological changes in NHDF, especially the disorganisation of F-actin-based cytoskeletal structures, coalescence of the tubulin cytoskeleton and mislocalization of adhesion molecules such as cadherins and integrins37. *P. leucotomos* extract inhibited the protein expression of MMP-1 and MMP-2 and stimulated the levels of the tissue inhibitors of MMP-1 and -2 (TIMP-1 and TIMP-2) in UVA-irradiated NHDF and CRL-1619 melanoma cells. The extract pre-treatment also stimulated the protein levels of collagen I and V in UVA-radiated fibroblasts38.
Oral pre-treatment of male hairless rats with *P. leucotomos* extract significantly reduced GSH oxidation and the formation of oxidized GSH (GSSG) in both erythrocytes and plasma stimulated with UVB/UVA radiation (9:10). The extract also significantly increased CAT activity and the GSH/GSSG ratio, and reduced the depletion of Langerhans cells in the epidermis of irradiated animals. The oral administration of *P. leucotomos* extract to human volunteers (phototypes II to III) reduced negative clinical signs of PUVA therapy, in particular phototoxic reaction and pigmentation. In the skin of individuals treated with the extract, a significant reduction in sunburn cells, preservation of Langerhans cells, decrease in mast cells infiltration, and decrease in vasodilation were found.

Vaccinium myrtillus

Bilberry (*Vaccinium myrtillus* L.), is a well-known small shrub, also called blueberry, huckleberry or whortleberry that grows wildly in Northern Europe, North America, and Asia. Bilberry belongs to the Ericaceae family. The fruit is a blue-coloured, fleshy berry, which contains several bioactive secondary metabolites, including flavonoids, vitamins, sugars, and pectin. In terms of flavonoids, anthocyanins are the most widely studied class of bioactive compounds of this plant. Multiple pharmacological activities (related to the anthocyanidin fraction) include antioxidant, anti-inflammatory, anti-atherosclerosis, or wound healing. Some studies showed the beneficial effects of bilberry on skin. For example anthocyanins from bilberry have been found to alleviate pruritus in a mouse model of chronic allergic contact dermatitis or to protect HaCaT against UVA radiation, particularly UVB-caused damage to NHDF and hairless mice skin. The pre- and post-treatment of HaCaT with the polyphenolic fraction of *L. caerulea* significantly increased cell viability and suppressed UVA-induced ROS production, lipid peroxidation and the depletion of reduced GSH (REF.49). Consuming *L. caerulea* berries reduced MDA production and increased CAT activity and GSH level in the skin and erythrocytes of hairless mice. The protein levels of NQO-1 and γ-GCL were reduced, while HO-1 level was increased in the skin of UVA-exposed mice fed *L. caerulea* berries. The plasma level of IL-17 was increased and of IL-12 was reduced in the mice consuming the berries exposed to UVA light. Histological changes in the nuclei of basal cells induced by UVA exposure were reduced in the animals consuming *L. caerulea* berries.

Thymus vulgaris

A flowering, aromatic perennial herb from the Lamiaceae family, *Thymus vulgaris* L. is commonly known as thyme. *T. vulgaris* is native to southern Europe from the western Mediterranean to southern Italy. Abundant constituents of *T. vulgaris* include the terpenes thymol (2-isopropyl-5-methylphenol), carvacrol and borneol. Essential oils extracted from fresh leaves and flowers are used as aroma additives in food, pharmaceuticals and cosmetics. Thyme possesses various beneficial effects such as antioxidant, anti-septic, antimicrobial, carminative, antitussive, or spasmylic. *T. vulgaris* extracts were reported to be immunomodulatory, anti-inflammatory or hepatoprotective agents. An ethanolic extract of *T. vulgaris* seeds reduced UVB-caused damage to NHDF and hairless mice skin. *T. vulgaris* leaf water extract was demonstrated to reduce UVB-induced damage in *ex vivo* human skin.

A leaf extract from *T. vulgaris* and thymol protected the low differentiated keratinocyte cell line NCTC 2544 against UVA-induced damage, and especially reduced ROS level, lipid peroxidation and DNA damage.

Opuntia ficus-indica

Opuntia ficus-indica L. Mill., commonly called prickly pear or nopal cactus, belongs to the dicotyledonous angiosperm Cactaceae family. *O. ficus-indica* is a tropical and subtropical plant that grows in arid and semi-arid areas in Mexico, Latin America, South Africa and Mediterranean countries. The cactus cladodes contain vitamins and various phenolic acids and flavonoids, especially quercetin 3-methyl ether, a highly efficient radical scavenger. Extracts of *O. ficus-indica* have antioxidant and anti-inflammatory activity and remarkably improve wound healing.

Water extract from *O. ficus-indica* cladodes was shown to protect HaCaT against UVA radiation, particularly against UVA-induced ROS production, lipid peroxidation and GSH depletion. Moreover, the cleavage of caspase-3 and caspase-7 and the phosphorylation of p38 and MAPK-activated protein kinase 2 (proteins directly involved in stress signalling pathways induced by UVA radiation) were reduced in irradiated cells pre-treated with the extract.
Morinda citrifolia

Morinda citrifolia L. is a tropical tree with a distinctive, ovoid, “grape-like” yellow fruit. *M. citrifolia*, commonly known as noni (other names include Pain bush, Pain killer tree, Cheese fruit, Forbidden fruit, Headache tree, Nino, Pinuela, Hog apple or Wild pine), belongs to the Rubiaceae family. *M. citrifolia* is widely distributed in areas of Micronesia, Hawaii, Tahiti, Australia, and Southeast Asia. Various compounds were identified in its leaves, fruits and roots, such as vitamin C and A, carotene terpenoids, alkaldoids, anthraquinones, flavonoids and their glycosides. The fruits, roots, bark and leaves of *M. citrifolia* have been used throughout Polynesia as a folk medicine for the treatment of many diseases including various cancers, burns, skin inflammation and wounds. *M. citrifolia* leaf extract was also shown to reduce UVB-induced erythema in human volunteers.

An ethanolic extract of *M. citrifolia* seeds exhibited an inhibitory effect on MMP-1 secretion in UVA-irradiated NHDF. A constituent of the extract, 3,3-bisdemethylpinocarveol, inhibited this MMP-1 secretion as well. The compound also reduced the phosphorylation of p38 and JNK (ref.60).

Aloe vera

Aloe vera (L.). Burm. f. (syn. *Aloe barbadensis* Mill.) is a perennial plant with thick, succulent, and long leaves that belongs to the Liliaceae family. *A. vera* grows easily in hot and arid regions. The *A. vera* plant contains phenolic compounds, anthracene hydroxyl derivatives (namely aloin A and B (collectively known as barbaloin) emodin, anthranol), enzymes (e.g., amylase, lipase, COX, SOD and CAT) and also pro-vitamin β-carotene, vitamins (B1, B2, B6, C, α-tocopherol, and folic acid). The bioactive components in *A. vera* have been reported to have anti-fungal, anti-septic, anti-viral, anti-bacterial, anti-inflammatory, anti-oxidant, immuno-modulatory and wound healing properties of antioxidant activity. Several studies also demonstrated beneficial effects of *A. vera* on UVB-induced damage (ref.65).

A whole-leaf extract of *A. vera* reduced UV-induced photodamage to HaCaT. The extract increased cell viability, membrane integrity and lysosomal stability and reduced ROS generation and morphological changes (cell size, granularity) (ref.66).

Oenothera paradoxa

Evening primrose (*Oenothera paradoxa* Hudziok) is a biennial herb originating from Mexico and Central America, belonging to the Oenotheraceae family. Today, it is also cultivated in Europe and parts of Asia for the production of seeds that are a great source of γ-linolenic acid. Defatted seeds represent a prominent source of polyphenolic compounds (flavonoids, phenolic acids, and hydrolyzable tannins). In traditional medicine, the whole plant or leaf juice is used for its analgesic and wound healing properties, especially as topical remedies to alleviate cutaneous inflammation. A number of studies demonstrated the antioxidant activity of *O. paradoxa* defatted seed extract (ref.68). *O. paradoxa* defatted seed extract exhibited an antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cells. An anticancer activity of *O. paradoxa* defatted seeds extract was also found on skin melanoma cells.

The pre-treatment of NHDF with an aqueous extract of *O. paradoxa* defatted seeds increased the number of viable cells, decreased the release of lactate dehydrogenase (LDH), ROS production, lipid peroxidation and the number of cells in late apoptosis after UVA exposure (ref.71).

Galinsoga parviflora and **Galinsoga quadriradiata**

Galinsoga parviflora Cav. and *G. quadriradiata* Ruiz et Pavón are annual herbs belonging to the Asteraceae family originating from the Andes region. The chemical composition of Galinsoga herbes is similar. They contain flavonoids and their glycosides (patuletin-7-O-β-D-glucoside), quercimertirin (quercetin-7-O-β-D-glucoside), quercetetargin (quercetetargin-7-O-β-D-glucoside), luteolin 7-β-D-glucopyranoside, apigenin 7-β-D-glucoside, galisnose A (5′-hydroxy-7-methoxyflavanone 2′-O-β-D-glucopyranoside), galisnose B (3′,4′-di-hydroxy-7-methoxyflavanone 5-O-β-D-glucopyranoside), 7,3′,4′-trihydroxyflavanone and 3,5,7,3′,4′-pentahydroxyflavanone, and phenolic acids and depsides (vanillic, isovanillic, p-coumaric, p-hydroxybenzoic, o-hydroxyphenylacetic, caffeic, chlorogenic acid and caffeoylglycyclic acids and other compounds. The topical application of *Galinsoga* species extract is used to treat dermatological diseases, such as eczemas, lichens and poorly healing wounds, and also to treat snakebites.

The aqueous extracts of both herbs decrease ROS production and apoptosis in UVA- or UVB-treated NHDF (ref.73). Two isolated caffeic derivatives from *G. parviflora*, 2,3,5(2,4,5)-tricaffeoylaltraric and 2,4(3,5)-dicaffeoylglycaric acid, decreased LDH release, intracellular ROS formation and the number of apoptotic cells, and increased GSH level and membrane integrity in UVA-exposed NHDF. Both compounds activated transcription factor Nrf2 and HO-1 expression in non- and/or UVA-exposed NHDF (ref.75).

Hippophae rhamnoides

Sea buckthorn (*Hippophae rhamnoides* L.) is a spiny deciduous flowering shrub in the Elaeagnaceae family. It is native to the cold-temperate regions of Europe and Asia. It is used in the food and cosmetics industries. The oil prepared from soft parts and from the seeds is rich in vitamins (C, E and K), polyphenols, carotenoids, sterols, minerals, amino acids, saturated and unsaturated fatty acids. The *H. rhamnoides* seed oil protected a UVA- and UVB-treated CDD 1102 KERTr human fibroblasts. The oil pre-treatment prevents the UVA-stimulated production of ROS and depletion of non-enzymatic antioxidants (thioredoxin (Trx), GSH and vitamins A and E) and enzymatic antioxidants (SOD, glutathione reductase (GSR), GPx, Trx reductase (TrxR)) and stimulated the Nrf2 dependent enzymatic antioxidant HO-1. Sea buckthorn oil also inhibited UVA- or UVB-stimulated phospholipase A2 activity.
unsaturated fatty acids, tocopherols, tocotrienols, phytochemicals related to stress-related diseases (diabetes, obesity, cardiovascular diseases), anti-inflammatory activity, in lowering risk of the oxidative stress caused by UV radiation and skin cells.

Cola acuminata

Cola nut (Cola acuminata Schott & Endl. or Sterculia acuminata) also called "kola nut" is a popular edible plant native to West Africa. The seed of this large tree has been used in African folk medicine for its anti-inflammatory, anti-allergic, anticarcinogenic, antimicrobial, antiviral, hepatoprotective, vasodilatory or antithrombotic effects. Its structure (Fig. 2) is similar to tyrosine and thus FA inhibits melanin formation through competitive inhibition with tyrosine. FA is a strong UV absorber. FA alone or in combination with vitamin C and E (ref.86,87) exhibited a considerable protection against UVB-induced skin damage, including UVB-induced carcinogenesis.

Relative to UVA light, the FA pre-treatment of the B16F10 mouse melanoma cell line led to the inhibition of UVA-induced melanin synthesis as well as tyrosinase activity and its protein expression. FA also reduced UVA-induced ROS and 8-OH-dG formation and GSH depletion. In HaCaT, FA pre-treatment reduced the UVA-induced decrease in cell viability, ROS formation and the induction of MMP-1 activity and mRNA expression. Moreover, FA was able to upregulate GSH content, γ-GCL mRNA level as well as the activities and mRNA expression of CAT and GPx in UVA-irradiated cells. The pre-treatment of NHDF with FA increased cell viability after exposure to various UVA doses. UVA-stimulated G1-phase arrest in NHDF was also reduced by FA in a dose-dependent manner. Cells pre-treated with FA exhibited its effect on nucleotide excision repair with a significant increase in the expression of the genes of xeroderma pigmentosum complementation group A and C. FA reduced the UVA-induced ROS formation and increased the levels of SOD, CAT and GPx in UVA-irradiated cells. The in vivo application of FA in the form of a nanogel significantly increased the level of SOD, GPx and CAT and reduced the MDA level in UVA-irradiated rat skin.

Theobroma cacao

Theobroma cacao L., also called cocoa tree and cacao tree is an evergreen tree in the family Malvaceae, native to tropical regions Central and South America. Cacao beans have been traditionally used to treat the pain of pregnancy, fever, and cough in Central America. Cacao beans contain flavonoids, catechins, epicatechins, procyanidins and xanthine derivatives (caffeine and theobromine). Cacao has been reported to have anti-inflammatory effect, modulates NF-κB and redox sensitive signalling pathways, stimulates immune response, influence insulin resistance and has positive effect on cardiovascular system. Moreover, FA was able to upregulate GSH content, γ-GCL mRNA level as well as the activities and mRNA expression of CAT and GPx in UVA-irradiated cells. The pre-treatment of NHDF with FA increased cell viability after exposure to various UVA doses. UVA-stimulated G1-phase arrest in NHDF was also reduced by FA in a dose-dependent manner. Cells pre-treated with FA exhibited its effect on nucleotide excision repair with a significant increase in the expression of the genes of xeroderma pigmentosum complementation group A and C. FA reduced the UVA-induced ROS formation and increased the levels of SOD-1 and CAT mRNA. FA also inhibits cellular senescence by reducing senescence-related markers, especially β-galactosidase activity and the mRNA expression of tumour suppressor protein p16, MMP-1 and MMP-3 (ref.90). The in vivo application of FA in the form of a nanogel significantly increased the level of SOD, GPx and CAT and reduced the MDA level in UVA-irradiated rat skin.

Amaranthus cruentus

Amaranthus cruentus L. is an annual plant with dark pink flowers. Its grains known as amaranth seeds are used as cereal, rich in flavonoids, phenolic acids, essential amino acids, bioactive peptides, micro- and macronutrients including minerals and vitamins. Amaranth seeds contain hydrophilic and hydrophobic antioxidants that contribute to anti-inflammatory activity, in lowering risk of the oxidative stress related diseases (diabetes, obesity, cardiovascular disease) and improving gut health. Oil obtained by cold-pressing the grain is valuable due to the presence of unsaturated fatty acids, tocopherols, tocotrienols, phytosterols, and squalene. A recent study evaluated effect of pre- and post-treatment with amaranth oil on UVA-irradiated human skin fibroblasts. The amaranth oil activity was rather poor and its use in combination with other sunscreens is recommended.
Fig. 2. Structures of phytochemicals with UVA protective potential.

static effects of CA (ref.93). Several papers documented a UVB protective potential of CA (ref.93-96).

In a B16F10 mouse melanoma cell line, CA pre-treatment reduced UVA-induced melanin synthesis and tyrosinase activity and the protein’s expression. CA also reduced UVA-induced ROS and 8-OH-dG production and GSH depletion. CA further inhibited the UVA-mediated downregulation of the nuclear level of Nrf-2, the mRNA level of the γ-GCL catalytic and modifier subunit, GST and NQO1, and the protein level and activity of γ-GCL, GST and NQO1 (ref.88). In HaCaT, CA reduced UVA-induced cytotoxicity, ROS formation and the induction of MMP-1 activity and mRNA expression. Moreover, CA upregulated GSH content, γ-GCL mRNA level as well as the activities and mRNA level of CAT and GPx in UVA-exposed cells89. The topical and oral treatment of hairless mice suppressed intrinsic and UVA-induced ROS generation in skin tissue97.

Cinnamic acid

Cinnamic acid (CIN, 3-phenylacrylic acid) is a phenolic acid generally obtained from cinnamon (Cinnamomum cassia (L.) J. Presl). Other sources include citrus fruits, grapes (Vitis vinifera L.), tea (Camellia sinensis (L.) Kuntze), cocoa (Theobroma cacao L.), spinach, celery and brassica vegetables98. CIN processes several pharmacological activities, including antioxidant, antimicrobial, anticancer and anti-inflammatory. CIN exists in trans- or cis-form. The trans-CIN (t-CIN, Fig. 2) is the predominant form in nature due to its high stability99. CIN was demonstrated to be a potent inhibitor of tyrosinase activity, it also inhibited tyrosinase expression and
melanin production in vitro, and exhibited a depigmenting activity on a UVB-induced hyper-pigmentation model in vivo.

The pre-treatment of Hs68 human foreskin fibroblast-derived cells with T-CIN reduced UVA-induced cytotoxicity, ROS generation, MMP-1 and MMP-3 over-expression and procollagen type I degradation. T-CIN also inhibited UVA-induced photoaging via the suppression of activator protein 1 activation. T-CIN enhanced the nuclear translocation of Nrf2 as well as inducing HO-1 and γ-GCL protein expression. T-CIN-induced Nrf2 translocation was mediated through protein kinase C (PKC), AMP-activated protein kinase, casein kinase II or ROS signalling cascades. Topically applied T-CIN significantly suppressed MMP-1 and MMP-3 activation and maintained sufficient type I procollagen levels in the skin of repeatedly UVA-irradiated female athymic nude mice (BALB/c-nu) (ref.107).

Rosmarinic acid

Rosmarinic acid (RA), a phenolic acid, is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid (Fig. 2). It got its name according to its initial isolation from rosemary (Rosmarinus officinalis). RA is commonly found in species of the Lamiaceae family. However, it is also found in species of other higher plant families and in some fern and hornwort species. RA occurs in species used commonly as culinary and/or medicinal plants such as Ocimum basilicum (basil), Melissa officinalis (lemon balm), Origanum majorana (marjoram), Salvia officinalis (sage), Thymus vulgaris (thyme), Mentha piperita (peppermint) or Prunella vulgaris (self-heal) (ref.108). RA has a number of interesting biological activities, e.g., antioxidant, anti-inflammatory, antiviral or antibacterial109. Several studies found RA to possess the ability to reduce UVB-induced damage to HaCaT (ref.109-111). Topically applied RA exhibited a concentration-dependent suppressive effect on intrinsic and UV-A-induced ROS generation in the skin of hairless mice112. The oral administration of RA to female albino Swiss mice led to a reduction in cutaneous dysplasia provoked by chronic UV-A exposure113. The pre-treatment of Hs68 human foreskin fibroblast-derived cells with t-CIN reduced UVA-induced cytotoxicity, ROS generation, MMP-1 and MMP-3 over-expression and procollagen type I degradation. t-CIN also inhibited UVA-induced photoaging via the suppression of activator protein 1 activation. t-CIN enhanced the nuclear translocation of Nrf2 as well as inducing HO-1 and γ-GCL protein expression. t-CIN-induced Nrf2 translocation was mediated through protein kinase C (PKC), AMP-activated protein kinase, casein kinase II or ROS signalling cascades. Topically applied t-CIN significantly suppressed MMP-1 and MMP-3 activation and maintained sufficient type I procollagen levels in the skin of repeatedly UVA-irradiated female athymic nude mice (BALB/c-nu) (ref.109).

Curcumin

Curcumin (CUR, diferuloylmethane, Fig. 2) is a yellow-coloured compound extracted from the rhizome of Curcuma longa L. (turmeric). CUR has been employed as a culinary spice and for the treatment of various diseases, including skin disorders and wound healing, dating back to 4000 years ago114. CUR decreased UVB-induced oxidative stress, inflammation and DNA damage in vitro115 and in vivo116.

In UVA-exposed NHDF, CUR reduced the formation of ROS, endoplasmic reticulum stress, inflammation and apoptosis, and increased the activity of antioxidant defence enzymes (SOD and CAT). CUR also influenced collagen metabolism by decreasing MMP-1 and MMP-3 expression and promoted the reparation of cells by increasing the expression of transforming growth factor-β (TGF-β) and the protein Smad2/3, and decreased the expression of Smad7, a TGF-β inhibitor117.

Quercetin

The flavonol quercetin (QE, 3,3’,4’,5,7-pentahydroxyflavone: 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, Fig. 2) is one of the most abundant naturally occurring polyphenols. It is present, primarily in the form of glycosides, in many fruits (e.g., apples, cranberries, cherries, grapes, lemon), vegetables (e.g., onion, peppers, asparagus, lettuce, tomato, broccoli, kale), herbs (e.g., Gingko biloba, Apocynum venetum, Poacynum hendorsonii, Opuntia ficus-indica), olive oil, bee propolis or beverages such as wine and black or green tea118,119. Numerous biological effects of QE have been published in a great number of in vitro and in vivo studies. Specifically, QE exhibits antioxidant, anti-inflammatory, immunoprotective, and anticarcinogenic effects120. QE also possesses UVB protective activity118,119.

QE pre-treatment was found to reduce UVB-induced ROS and 8-OH-dG production, GSH depletion, melanin synthesis as well as tyrosinase activity and the protein’s expression in B16F10 melanoma cells. QE also inhibited the UVA-mediated downregulation of nuclear Nrf2 level and Nrf2-antioxidant responsible element (ARE) transcriptional activity in cells. QE prevented the UVA-mediated mRNA downregulation of GST, NQO1 and γ-GCL catalytic and modifier subunit as well as the decrease in protein expression and activity of the Nrf2 target antioxidant enzymes (particularly GST, NQO1 and γ-GCL) (ref.118). Further, QE pre-treatment suppressed UVB-mediated ROS production, GSH depletion and apoptosis in HaCaT (ref.117). QE pre-treatment significantly decreased UVA-induced DNA damage to C3H10T1/2 mouse embryo fibroblasts) (ref.119) and inhibited UVA-stimulated collagenase protein and mRNA level in NHDF (ref.119). In the Epiderm™ model, QE significantly decreased UVA-induced MMP-1 and tumour necrosis factor alpha (TNF-α) secretion120. The intraperitoneal application of QE before repeated UVA exposure resulted in a reduced MDA level and increased activities of GPx, GSR, CAT and SOD in the skin121, liver tissue122 and skin fibroblasts123 of female Spraque-Dawley rats. QE was also found to enhance the photostability (UVA+UVB) of the two UV filters, butyl methoxydibenzoylmethane and octyl methoxycinnamate in oil-in-water emulsions124.

On the other hand, QE was shown to undergo slow decomposition to a mixture of C-ring-opened products. The presence of a triplet sensitizer greatly increases UV radiation-mediated QE decomposition. Thus the presence of endogenous photosensitizers in the skin could potentially affect the UV stability of QE, suggesting that the further study of QE for both its photoprotective properties and photostability in skin is warranted125. Besides a dose-dependent photodegradation in aqueous and organic environments, QE exhibited a phototoxic effect on fibroblasts (Balb/c 3T3 cells and NHDF) and keratinocytes (HaCaT and NHEK). QE pre-treatment and subsequent UVA ex-
Apigenin
Apigenin (AP, 4′,5,7-trihydroxyflavone; 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, Fig. 2) is a abundantly distributed plant flavone occurring in herbs (e.g., endive, clove, chamomile), fruits (e.g., apples, grapefruit, oranges, cherries, grapes), vegetables (e.g., beans, broccoli, celery, leeks, onions, barley, parsley, tomatoes) and beverages (e.g., tea, wine). In nature AP also exists as a dimer, biapigenin, mainly isolated from the buds and flowers of Hypericum perforatum127. In numerous mammalian systems in vitro as well as in vivo, AP demonstrated antioxidant, anti-inflammatory, antiviral and anticancer properties127. AP increased dermal density and elasticity and reduced fine wrinkle length as well as improving skin evenness, moisture content and transepidermal water loss (TEWL) in human volunteers128. Several studies also documented its UVB photoprotective potential129.

The AP pre-treatment of NHDF reduced MMP-1 protein and mRNA level in UVA-exposed cells119. AP further increased cell viability and inhibited ROS production in UVA-irradiated HaCaT. AP also decreased UVA-stimulated mRNA expression and activity of MMP-1 as well as the protein and mRNA expression of transcription factors c-Jun and c-Fos and the phosphorylation of MAPK, particularly ERK1/2, JNK1/2 and p38 MAPK. AP further decreased the UVA-induced influx of Ca2+ into HaCaT and the phosphorylation of Ca2+/calmodulin-dependent kinases130. Pre-treatment with AP also protected NHDF against UVA-induced senescence. The AP post-treatment of UVA-exposed NHDF increased cell viability and decreased the expression of MMP-1 (ref.129). A photosafety study found AP photostability in the UVA and VIS range and no phototoxic potential in the 3T3 neutral red uptake phototoxicity test after UVA/VIS exposure131.

Luteolin
Luteolin (LU, 3′,4′,5,7-tetrahydroxyflavone; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone, Fig. 2) is a flavone abundantly present in several plants including spices, vegetables, fruits and medicinal herbs, e.g., broccoli, pepper, thyme, peppermint, rosemary, oregano, parsley, celery, carrot, cabbage, artichoke, tea, celery, citrus fruits (especially oranges) and apples. Literary sources show that LU possesses antioxidant, anticancer, anti-inflammatory or neuroprotective effects132.

LU exhibited an inhibitory effect on the MMP-1 protein and mRNA level in NHDF (ref.128). Pre-treatment of HaCaT with LU increased cell viability and reduced ROS generation after UVA exposure. LU also inhibited UVA-induced mRNA expression and the activity of MMP-1 as well as the protein and mRNA expression of transcription factors c-Jun and c-Fos and the phosphorylation of kinases (ERK1/2, JNK1/2 and p38 MAPK). LU further decreased the UVA-induced influx of Ca2+ into HaCaT and the phosphorylation of Ca2+/calmodulin-dependent kinases130. The application of LU to UVA-exposed NHDF decreased ROS production and non-apoptotic programmed cell death (autophagy). In addition, the protein expression of hypoxia inducible factor-1α and the classical autophagy-associated proteins, microtubule-associated protein light chain 3 and beclin 1 were decreased in the UVA-irradiated NHDF (ref.133).

Rutin
Rutin (RU, 3,3′,4′,5,7-pentahydroxyflavone-3-rhamnoglucoside) also known as rutoside, quercetin 3-rutinoside, and sophorin, is a flavon glycoside composed of quercetin and the disaccharide rutinose (Fig. 2). RU is abundantly found in plants, such as passion flower, buckwheat, tea, apples, lemons, and onions. RU exhibits several pharmacological properties including antioxidant, anticarcinogenic, cytoprotective, antiplatelet, anti thrombotic, vasoprotective, cardioprotective and neuroprotective134. As for the skin, RU was shown to increase skin elasticity and decrease signs of skin aging, especially the length, area and number of wrinkles in human volunteers. RU also increased the mRNA expression of collagen I and decreased the mRNA expression of collagenase in NHDF (ref.135). The UVB protection of RU is also quite well documented in vitro and in vivo134,136-139.

The RU pre-treatment of NHDF strongly protected against the UVA-induced increase in expression of proteins involved in antioxidant (such as SOD, TrxR, and peroxiredoxins 1/2) and inflammatory (e.g., IL-17, serine/threonine-protein kinase 2, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta) response136. RU also reduced the UVA-induced oxidative modification of the membrane of CCD 1112Sk human fibroblasts, specifically the negative charge on the membrane surface, sialic acid concentration and level of lipid peroxidation137. In another study on CCD 1112Sk human fibroblasts, RU application also counteracted ROS generation and prevented UVA- and UVB-induced changes in the composition of membrane phospholipids and free fatty acids content, the oxidation of phospholipids and biomembrane destruction, depletion of the GSH/GSSG ratio, GPx activity and levels of vitamins E and C (ref.140). RU further reduced UVA-induced pro-inflammatory response and ROS generation, and enhanced the activity/level of antioxidants (SOD, GPx, vitamin E, GSH, and Trx). RU also normalized UVA-induced Nrf2 expression and prevented changes in the levels of the lipid peroxidation markers MDA and 4-HNE. RU pre-treatment prevented the protein modifications (particularly tyrosine derivatives formation) and decreased the levels of the pro-apoptotic markers caspase-3 and cytochrome c (ref.141). The pre-treatment of B16F10 cells with RU lead to the inhibition of UVA-induced melanin synthesis as well as the activity and protein expression of tyrosinase, a reduction in UVA-induced ROS and 8-OH-dG formation and GSH depletion88. The pre-treatment of C3H10T1/2 fibroblasts with RU significantly decreased UVA-induced DNA damage18. RU also reduced UVA-stimulated damage to a CDD 1102 KERTr immortalized keratinocyte cell line and CCD 1112Sk human fibroblasts. RU especially stimu-
lated antioxidant enzyme activity (CAT, SOD, TrxR) and reduced ROS generation. The effect of RU was increased by its combination with ascorbic acid, which besides other effects stimulated the UV-induced activity of the transmembrane transporter bilitranslocase, responsible for the transport of RU into cells.

Chrysin
Chrysin (CH, 5,7-dihydroxyflavone; 5,7-dihydroxy-2-phenyl-4H-chromen-4-one, Fig. 2), is a natural flavone occurring in honey, propolis, the mushroom Pleurotus ostreatus and many plants, e.g., chamomile or blue passion flower (Passiflora caerulea), which is used for commercial CH preparation. CH exhibits many biological activities such as antioxidant, anti-inflammatory, anti-aging, antibacterial, anti-angiogenic and anticarcinogenic. CH demonstrated an inhibitory effect on the protein and mRNA expression of MMP-1 in NHDF (ref.119). CH pre-treatment attenuated UVA-induced damage to HaCaT, especially the reduction of cell viability, ROS production, caspase-3 activation and COX-2 protein level. CH also inhibited JNK phosphorylation and mildly attenuated p38 and ERK1/2 phosphorylation. Although CH was photostable in the UVA and VIS range, it exhibited phototoxic potential in the 3T3 neutral red uptake phototoxicity test.

Dihydromyricetin
The flavanonol dihydromyricetin (DHM, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one) is also known as ampelopsin (Fig. 2). It is found in the Ampelopsis species, and Chinese vine tea (Ampelopsis grossedentata) is used for DHM isolation. DHM possesses numerous pharmacological activities, including antioxidant, anticancer, antimicrobial and hepatoprotective. The consumption of DHM was found to reduce UBV-induced phototoxins in mice.

The DHM pre-treatment of HaCaT attenuated UVA-induced ROS generation, mitochondrial membrane potential decrease, lipid peroxidation, GPx protein decrease and the phosphorylation of histone γ-H2AX, a sensitive biomarker for DNA damage. DHM also reduced the mRNA level of IL-1β, IL-6, COX-2 and Bax, increased the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL, and decreased the expression of the pro-apoptotic protein Bax as well as the activation of caspase-3. Additionally, DHM treatment also prevented the nuclear translocation of NF-κB/p65 and phosphorylation of c-Jun (ref.146).

Genistein
The isoflavone genistein (GE, 5,7,4′-trihydroxyisoflavone; 5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one, Fig. 2) is abundantly found in soy and other legumes. GE also exists in the glycosylated form genistin. GE acts as a selective estrogen receptor modulator. Several in vitro and in vivo studies demonstrated the beneficial effects of GE on skin, e.g., for the treatment of keloid scars, stimulation of collagen biosynthesis, acceleration of wound healing or protection of UBV-induced photodamage.

As for UVA light, GE suppressed 8-OH-dG formation in purified UVA-irradiated DNA (ref.148). The application of GE significantly decreased psoralen and UVA-induced (PUVA) photodamage in hairless mice, especially skin thickening, cutaneous erythema and ulceration, inflammatory changes throughout the epidermis and PCNA-positive cells, and completely inhibited the cleavage of poly (ADP-ribose) polymerase and caspase-3 (ref.149).

Hesperidin
Hesperidin (HE, 3′,5,7-trihydroxy-4′-methoxyflavanone-7-rutinoside) is a flavanone glycoside, comprised of the aglycone hesperetin and the disaccharide rutinose (Fig. 2). HE is isolated in large amounts from the rinds of the ordinary orange Citrus aurantium L., Citrus sinensis, Citrus unshiu and other species of the genus Citrus (family Rutaceae). It has been reported to occur in many plants other than Citrus, such as in the families Fabaceae, Betulaceae, Lamiaceae and Papilionaceae. HE has been reported to possess significant antioxidant, anti-inflammatory, analgesic, immunomodulatory and wound healing effects. Several reports also demonstrated a UVB-protective potential of HE in vitro and in vivo.

HE significantly prevented UVA-induced oxidative damage, in particular increased cell viability and SOD activity and reduced MDA level in HaCaT. Also a decrease in TNF-α, IL-1β and IL-6 protein and mRNA was observed.

Chrysanthemin
Chrysanthemin is one of the most common anthocyanins, also known as kuromanin or cyanidin-3-O-glucoside and cyanidin-3-O-β-glucopyranoside (CG; Fig. 2) is a polyphenol belonging to the stilbenoid class. It is a phytoalexin synthesized mainly in grapes, with higher quantities in the red varieties. Other plant sources include peanuts, hops, cacao and berries (blueberries, bilberries, raspberries, cherries, pomegranate, pigmented oranges, red cabbage, black rice, black beans or purple sweet potatoes). CG is a potent antioxidant and protects against oxidative damage. CG was also reported to reduce UVB-induced damage in vitro and in vivo.

The CG pretreatment of HaCaT cells inhibited the UVA-induced formation of apoptotic cells and DNA fragmentation as well as hydrogen peroxide production. CG increased cell viability, Bcl-2 expression, Bcl-2/Bax ratio and ERK phosphorylation and decreased ROS production and the levels of caspase-3 and phosphorylated p38 in UVA-irradiated NHDF (ref.151).

Resveratrol
Resveratrol (RE, trans-3,5,4′-trihydroxystilbene, Fig. 2) is a polyphenol belonging to the stilbenoid class. It is a phytoalexin synthesized mainly in grapes, with higher quantities in the red varieties. Other plant sources include peanuts, hops, cacao and berries (blueberries, bilberries, and cranberries) (ref.144). RE is an effective antioxidant and anti-inflammatory agent. In vitro studies demonstrated its antiproliferative activity in various skin cancer cells.
Several in vitro and in vivo studies have also demonstrated the UVB photoprotective activity of RE (ref.164,165).

In retinal pigment epithelial (RPE) cells, RE reduced the UVA-provoked decrease in cell viability, the generation of intracellular hydrogen peroxide and COX-2 expression. RE also lowered the UVA-induced activation of ERK. JNK and p38 kinase in RPE cells166. The pre- and post-treatment of HaCaT cells with RE resulted in an increase in cell viability; and a reduction in lipid peroxidation and ROS production. Moreover, RE facilitated Nrf2 accumulation in the nucleus; as a result, the activities of the antioxidant enzymes GST and SOD were also enhanced. Kelch-like ECH-associated protein 1 (Keap1), a repressor of Nrf2 in the cytoplasm, was clearly reduced by RE treatment while the level of Keap1 mRNA was still increased167. A derivative of RE, oxyresveratrol (oxyRE), increased cell viability and suppressed intracellular ROS when cells were pre-treated before UVA exposure. Post-treatment with oxyRE reduced nitrosotriying, 8-OH-dG and CPDs formation and stimulated p53 expression168.

On the other hand, the pre-treatment of HaCaT and NHEK with RE caused a massive increase in oxidative stress in mitochondria, leading to a decrease in the mitochondrial membrane potential and consequently to apoptosis of the keratinocytes169. Another study showed that RE potentiates the production of 8-OH-dG in UVA-irradiated genomic DNA. Moreover, the combination of RE with UVA significantly enhanced the production of DNA strand breaks and the cell death of HaCaT (ref.170). In NHEK, RE enhanced the response stimulated by UVA+UVB (10:1), as it had a synergistic effect on the activation of the aryl hydrocarbon receptor pathway, cytochrome P450 1A1 transcription and IL-8 expression, as well as on NFκB activation and the nuclear translocation of the epidermal growth factor receptor172. These suggest that RE might have a potentially hazardous effect when topically applied to the skin, especially on regions exposed to sunlight.

Ellagic acid

Ellagic acid (EA, 2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]-chromene-5,10-dione; 4, 4′, 5, 5′, 6, 6′-hexahydroxydiphenic acid 2,6,2′,6′-dilactone, Fig. 2) is a polyphenol, present in several fruits, vegetables, nuts, and a wide variety of berries, including blackberries, raspberries, strawberries, cranberries and pomegranates. EA was demonstrated to eliminate ROS, activate specific endogenous antioxidant enzymes and suppresses specific genes responsible for inflammation. It also possesses antimutagenic and anticancer properties172. EA was shown to reduce UVB-induced damage in terms of inflammatory response104.

EA pre-treatment markedly increased HaCaT cell viability and suppressed UVA-induced ROS generation and lipid peroxidation. Moreover, EA pre-treatment reduced single-strand break formation and apoptosis by reducing DNA fragmentation, mitochondria dysfunction, endoplasmic reticulum stress, caspase-3 activation, and Bcl-2/Bax deregulation in irradiated cells. The antioxidant potential of EA was demonstrated as the downregulation of Keap1 and the augmented nuclear translocation and transcriptional activation of Nrf2 both with and without UVA irradiation, and increased the expression of HO-1 and SOD (ref.177).

Carnosic acid

Carnosic acid (CAR, (4αR,10αS)-5,6-dihydroxy-1,1-dimethyl-7-propan-2-yl-3,4,9,10,10a-hexahydrophenanthrene-4a-carboxylic acid) also called salvia or sage, is a phenolic diterpene (Fig. 2) found mainly in salvia (Salvia officinalis L.) and rosemary (Rosmarinus officinalis L.) from the Lamiaceae family. Several studies have demonstrated diverse biological effects of CAR that include anti-inflammatory, anticancer, hepatoprotective and anti-adipogenic activities. CAR is also widely used as a cosmetic and dental hygiene ingredient due to its strong antioxidant and antimicrobial properties174. CAR also has UVB protective potential175.

The pre-treatment of NHDF with CAR suppressed the MMP-1 mRNA elevation stimulated by UVA irradiation176. In UVA-exposed Hs68 human skin fibroblasts, CAR not only reduced the mRNA expression of MMP-1, but also of MMP-3 and MMP-9 (ref.175).

Ursolic acid

Ursolic acid (UA, 3β-hydroxyurs-12-en-28-oic acid) is a lipophilic pentacyclic triterpenoid carboxylic acid (Fig. 2). UA is the major component of some fruits and traditional medicinal herbs e.g., apple peels, blueberry (Vaccinium spp.), cranberry (Vaccinium macrocarpon), heather flower (Calluna vulgaris), labrador tea (Ledum groenlandicum Retzius), olive (Olea europaea), pear (Prunus pyrifolia), basil (Ocimum basilicum), thyme (Thymus), oregano (Origanum vulgare), sage (Salvia officinalis L.) or rosemary (Rosmarinus officinalis L.). UA exerts various biological effects, including anti-inflammatory, anti-atherosclerosis and anticancer. UA also reduces ROS level and increases the activity of antioxidant enzymes177.

The pre-treatment of HaCaT with UA decreased UVA-induced ROS production, lipid peroxidation, activity and the protein level of MMP-2 and p53 (ref.178).

Asiatic acid

Asiatic acid (AA, 2α,23-dihydroxyursolic acid), also known as dammarolic acid, is a pentacyclic triterpenoid (Fig. 2). It is abundantly present in many edible and medicinal plants including Centella asiatica, which is a renowned herb in many traditional medicine formulations179. The herb grows in the tropical regions of Asia, Oceania, Africa and America. In traditional Asian medicine, the herb has been used for hundreds of years to improve the healing of small wounds, scratches, burns, and hypertrophic wounds. Previous studies demonstrated that AA could be also used for wound healing and various dermal applications180,181. AA exhibited numerous pharmacological activities such as antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, neuroprotective, and anticancer properties179. The pre-treatment of HaCaT
with AA decreased UVA-induced ROS production, lipid peroxidation, MMP-2 activity and protein level and p53 protein expression\(^{191}\).

Zerumbone

Zerumbone (ZER, (2E,6E,10E)-2,6,9,9-tetramethyl-2,6,10-cycloundecatrien-1-one), a monocyclic sesquiterpene with three double bonds (Fig. 2), is obtained from *Zingiber zerumbet* Smith (Zingiberaceae). Its rhizomes are the richest in ZER, followed by the leaves. ZER has various biomedical properties. Several studies have shown its selective anti-proliferative effect on various cancer cells (e.g., colon, breast, cervix, and liver). ZER also exhibits antioxidant, anti-inflammatory, immunomodulatory or antimicrobial activity\(^{182}\). ZER was also demonstrated to prevent chemically-induced tumour initiation and promotion in mouse skin\(^{183}\).

ZER pre-treatment substantially suppressed UVA-induced HaCaT cell death and LDH release, ROS production, DNA single-strand breaks, DNA fragmentation and a dysregulated Bax/Bcl-2 ratio. ZER cytotoxic properties were associated with an increased nuclear translocation of Nrf2 and elevated ARE luciferase activity. The activation of Nrf2/ARE signalling was accompanied by the induction of HO-1 and γ-GCL catalytic subunit genes. ZER-induced Nrf2 transcriptional activation was mediated by the p38 MAPK, phosphoinositide 3-kinase/protein kinase B (AKT) and PKC signalling cascades. In the UVA-treated skin of nude mice, ZER pre-treatment significantly ameliorated UVA cytotoxicity via increased nuclear Nrf2 translocation and Nrf2-dependent antioxidant gene expression (HO-1 and γ-GCL catalytic subunit) (ref.\(^{184}\)).

Beta-Carotene

β-Carotene (β-CAR) is a tetraterpenoid that consists of eight isoprene units (40 carbon atoms) in a core structure of conjugated double bonds substituted with two β-ionone rings (Fig. 2). β-CAR is a strongly red-orange pigment that occurs in many different fruits and vegetables such as mango, papaya, orange, apricot, watermelon, cantaloupe, pumpkin, carrot, red pepper, tomato and sweet potato. β-CAR is a pigment with three double bonds (Fig. 2). β-CAR pre-treatment strongly enhanced HO-1 mRNA and protein expression. The level of this oxidative stress marker was suppressed by the concomitant addition of vitamin E, but only moderately by vitamin C (ref.\(^{195}\)). These effects may be associated with the photodecomposition of β-CAR stimulated by UVA radiation that was shown in *vitro*. The rapid decomposition of β-CAR was further accelerated by sulphide and reduced by radical scavengers (dimethytheritol, thiourea) (ref.\(^{196}\)).

Astaxanthin

Astaxanthin (AST, 3',3'-dihydroxy-β,β-carotene-4,4'-dione) is a red-orange lipophilic xanthophyll carotenoid, which is structurally similar to β-CAR but possesses an additional hydroxyl and ketone group on each β-ionone ring (Fig. 2). AST is a ubiquitous secondary metabolite naturally synthesized by a number of plants as well as bacteria, yeasts, microalgae crustaceans and salmonids. The commercial production of AST has traditionally been by chemical synthesis, but the microalga *Haematococcus pluvialis* seems to be the most promising source for its industrial biological production. AST has several essential biological functions in marine animals, including pigmentation, stress tolerance, reproductive capacity, protection against UV light effects, immune response and protection against the oxidation of macromolecules. From several studies including clinical trials, beneficial effects of AST on skin physiology and pathology are well documented including antioxidant, anti-inflammatory and UVB photoprotective action\(^{197}\).

The pre-treatment of NHDF with AST reduced the disruption of cell membrane integrity, level of intracellular ROS, amount of TBARS, number of apoptotic cells as well as the activity of caspase-3. AST also counteracted the decrease in CAT and SOD activity and reduced the mRNA and protein level of HO-1. The application of AST to rat kidney fibroblasts before UVA irradiation increased the activities of CAT and SOD and reduced the level of TBARS. AST was much more effective than the other carotenoids (β-CAR and lutein) (ref.\(^{193}\)). AST also reduced oxidative DNA damage to human neuroblastoma and rat trachea epithelial cells exposed to UVA radiation\(^{198}\). Synthetic AST and an algal extract (14% of AST)
creased UVA-induced DNA alterations to 1BR-3 human skin fibroblasts, a human melanocyte cell line and human intestinal CaCo-2 cells. The algal extract exhibited a comparable UVA protection to 10 μM AST on all three of the above cell types. Further, in 1BR-3 cells, the synthetic AST and algal extract prevented UVA-induced alterations to SOD activity and GSH content. Similarly, AST and the extract prevented the depletion of GSH in CaCo-2 cells209. The addition of AST to NHDF immediately after UVA exposure significantly attenuated the induction of MMP-1 and neutral endopeptidase expression at the gene and protein level as well as reducing MMP-1 and skin fibroblast elastase activity and IL-6 secretion200. Dietary AST reduced features of chronic UVA exposure such as TEWL and wrinkle formation in female hairless mice. AST treatment also reduced the mRNA level of epidermal (lympho-epithelial Kazal-type related inhibitor, steroid sulfatase and aquaporin 3) and dermal (MMP-13) markers increased by chronic UVA irradiation201.

Lycopene

Lycopene (LY, (6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E)-2,6,10,14,18,22,24,26,30-tridecaene) is a bright red linear unsaturated tetraterpene composed of eight isoprene units (Fig. 2). The major sources for LY are tomato and tomato products, although red carrot, apricot, papaya, pink grapefruit, guava and watermelon also contain LY in considerable amounts202. The pharmacological properties of LY are linked mainly to its antioxidant activity that was demonstrated in many in vitro, ex vivo and in vivo studies198.

In a placebo-controlled, double-blind, randomized crossover study, the oral treatment of healthy volunteers with LY-rich tomato nutrient complex inhibited UVA1 (340-400 nm) and UVB induced the upregulation of HO-1, ICAM-1 and MMP-1 mRNA levels203.

On the other hand, LY enrichment enhanced UVA-induced HO-1 expression and strongly reduced DNA damage in UVA-irradiated C3H10T1/2 mouse embryo fibroblasts204. Similarly, LY pre-treatment of NHDF potentiated the UVA-induced elevation of MMP-1 and HO-1 mRNA levels176.

Lutein

Lutein (LT, 4-[18-(4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl)-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonae nyl]-3,5,5-trimethyl-cyclohex-3-en-1-ol or (3R,3'R)-4,5-didehydro-5,6-dihydro-β,β-carotene-3,3'-diol) is a member of the xanthophyll family of carotenoids containing hydroxyl groups that make LT more polar than carotenoids, such as LY and β-CAR (Fig. 2). LT is widespread in nature, abundantly present in leafy green vegetables such as spinach, lettuce and kale, but also in apricot, cucumber or red pepper188. LT is highly concentrated in the human retina and is responsible for central vision and high visual acuity. LT is the second most prevalent carotenoid in human serum. LT is also found in significant quantities in human skin205. The biological effects of LT are linked to its ability to filter the high-energy wavelengths of visible light and to protect against ROS formation. Animal studies have provided evidence of significant efficacy against light-induced skin damage206. The oral and topical administration of LT provides multiple benefits to the human skin207.

The application of LT to rat kidney fibroblasts prior to UVA exposure protected the cells against UVA-induced decrease in CAT and SOD and increase in TBARS level191. LT also reduced oxidative DNA damage in human neuroblastoma and rat trachea epithelial cells exposed to UVA radiation199. In a placebo-controlled, double-blind, randomized crossover study, the oral treatment of healthy volunteers with LT completely inhibited UVA1 (340-400 nm) and UVB induced the mRNA upregulation of HO-1, ICAM-1 and MMP-1 (ref.203).

Zeaxanthin

Zeaxantin (ZEA, 4-[18-(4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl)-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-ol or (3R,3'R)-β,β-carotene-3,3'-diol) is another member of the xanthophyll family of carotenoids. ZEA is isomeric with LT, differing only in the localization of one double bond (Fig. 2). ZEA is present in high concentrations in green leafy vegetables such as spinach and kale, but also in others e.g., green pepper, corn or wolfberries. Like LT, ZEA is also highly concentrated in the human retina. ZEA is also found in significant quantities in human skin. ZEA works as a filter of the blue light wavelengths and as an antioxidant186,206. Topical and oral treatment with ZEA provides multiple benefits to the human skin207,208. Dietary ZEA supplementation also protects the skin against UVB-induced photoaging and photocarcinogenesis in mice209.

The application of ZEA reduced oxidative DNA damage in human neuroblastoma and rat trachea epithelial cells exposed to UVA radiation199.

On the other hand, the rapid decomposition of ZEA stimulated by UVA radiation was demonstrated in vitro. The photodecomposition of ZEA was more rapid than that of β-CAR due to the presence of hydroxyl groups. The decomposition was accelerated by sulphide and reduced in the presence of dithiothreitol or thiourea198.

L-Ergothionine

L-Ergothionine (EGT, 2-mercaptophistidinetrimethyl-betaine) is a derivative of the amino acid histidine. EGT has two functional groups: an L-thiol (SH) group and a quaternary ammonium group N+–(CH3)3 (Fig. 2). Despite apparently being exclusively synthesized in fungi, cyanobacteria and mycobacteria, EGT is ubiquitously present in most cells and the tissues of plants and mammals. Some foods were found to possess particularly high levels of EGT, for example certain species of mushrooms, black and red beans, red meat, liver, kidney and grains. Numerous in vitro assays have demonstrated the anti-
dant and cytoprotective capabilities of EGT against a wide range of cellular stressors, including UV and gamma radiation120.

In UVA-exposed NHDF, EGT reduced the protein and mRNA level of MMP-1 (ref.211). The EGT treatment of HaCaT prior to UVA exposure significantly prevented LDH leakage into the medium. UVA-induced ROS formation and DNA oxidative damage was remarkably suppressed by EGT, with a parallel inhibition of apoptosis. Furthermore, EGT alleviated UVA-induced mitochondrial dysfunction. A dose-dependent increase in the antioxidant proteins HO-1, NQO-1 and γ-GCL, and reduced GSH dysfunction. EGT enhanced the level of reduced GSH and protected NHDF from the induction of photoaging-associated mtDNA damage (mutation and deletion) (ref.212).

CONCLUSION

The exposure of human skin to solar radiation intensifies skin aging commonly known as photoaging and escalates the probability of developing skin cancer. Although skin protection against solar radiation has been studied for decades, research was focused on UVB, and UVA was mostly ignored. The plant kingdom represents the main conventional source of new candidates with photoprotective activity. In this review, phytochemicals and plant extracts with UVA-protective potency are summarized. As documented, there is a range of phytochemicals that possess UVA protective properties, many of them also protect against UVB photons and thus may be useful in the protection and treatment of UV light-caused damage; alone or in combination with traditional UV filters. However, most of the compounds and extracts listed in this review were only tested in very simple \textit{in vitro} or possibly \textit{ex vivo} systems. This fact results from the prohibition of animal use for this purpose in many countries around the world. The safety of new photoprotective phytochemicals may be based on their long-term use in traditional medicine. However, clinical trials are needed to validate the effectiveness of new candidates for photoprotective preparations. The demanding nature and ethical limits of studies on human volunteers is most likely the most restrictive step in the rapid introduction of new photoprotective agents for practical use.

Search strategy and selection criteria

The aim of our research strategy was to evaluate well documented studies on the UVA photoprotective properties of phytochemicals and plant extracts. The articles from 1998 to 2019 were searched using the PubMed and Web of Science databases. All searches were up-to-date since January 2020. The search terms used included "UVA photoprotection", "UVA protection", "plant and UVA protection", "polyphenols and UVA protection". Only articles in English were reviewed.

ABBREVIATIONS

AA, Asiatic acid; AKT, Protein kinase B; AP, Apigenin; ARE, Antioxidant responsible element; AST, Aspartate transaminase; ATP, Adenosine triphosphate; BCA, Bovine serum albumin; BSA, Bovine serum albumin; BHR, Bronchial hyperreactive; BPE, Bilberry extract; BSA, Bovine serum albumin; BRAF, Protein tyrosine kinase; BVD, Basaloid cells; BVD, Basaloid cells; C, Carbon; CPA, 12-epi-12,13-didehydroepiandrosterone; CYP, Cytochrome P450; D, Dihydroxyacetone; DHE, DHEA; DNP, Diphenylnitrosol; DOPA, Dopamine; DPPH, 2,2-Diphenyl-1-picrylhydrazyl; E, ERK, Extracellular signal-regulated kinases; EGT, L-Ergothioneine; FA, Ferulic acid; γ-GCL, γ-Glutamate-L-cysteine ligase; GC, Gas chromatography; G, Glutathione; GSH, Glutathione; GSR, Glutathione reductase; GSSG, Glutathione disulfide; GSH, Glutathione; GPx, Glutathione peroxidase; H, Heme oxygenase; HPS, Human pigmented skin; HSP, Heat shock protein; I, Interleukin; ICAM-1, Intercellular adhesion molecule 1; IL-1β, Interleukin-1β; IL-10, Interleukin-10; IL-6, Interleukin-6; ISB, Isosilybin; JNK, c-Jun N-terminal kinase 1/2; Keap1, Kelch-like ECH-associated protein 1; Ki-67, Protein associated with cellular proliferation and ribosomal RNA transcription; LDH, Lactate dehydrogenase; LT, Lutein; LU, Luteolin; LY, Lycopene; MMP, Matrix metalloproteinases; MAF, Mitogen-activated protein kinases; MDA, Malondialdehyde; MeOEC, 3'-O-Methyl epicatechin; MMP-1, Collagenase; MMP-3, Stromelysin; MMP-9, Gelatinase; mTOR, Serine-threonine kinase involved in cell growth; NF-κB, Nuclear factor kappa B; NQO1, NADPH quinone oxidoreductase-1; NHEK, Normal human epidermal keratinocytes; Nrf2, Nuclear factor erythroid-2 related factor 2; 8-OH-dG, 8-Hydroxydeoxyguanine; oxyRE, Oxygen free radicals; PCNA, Proliferating cell nuclear antigen; PKC, Protein kinase C; QE, Quercetin; RA, Rosmarinic acid; RE, Resveratrol; RNS, Reactive nitrogen species; ROS, Reactive oxygen species; RPE, Retinal pigment epithelial cells; RU, Rutin; SB, Silybin; SC, Silychristin; SD, Silydianin; SM, Silymarin; SOD, Superoxide dismutase; TBARS, Thiobarbituric acid reactive substances; Trx, Thioredoxin; TWEAL, Transepidermal water loss; TIMP-1, Tissue inhibitors of MMP-1; TIMP-2, Tissue inhibitors of MMP-2; TNF-α, Tumour necrosis factor alpha; TrxR, Trx reductase; UA, Ursolic acid; UV, Ultraviolet; ZEA, Zeaxanthin; ZER, Zerumbone.

Acknowledgements: This work was financially supported by the grant IGA_LF_2019_015, IGA_LF_2020_022 and the Institutional Support of Palacky University in Olomouc - RVO 61989592.

Author contributions: ARS, DS: literature search and manuscript writing; JV, ARS: critical reading and manuscript revision.

Conflict of interest statement: The authors state that there are no conflicts of interest regarding the publication of this article.
REFERENCES

1. Svobodová A, Vostálová J. Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 2010;86(12):999-1030. doi: 10.1080/09553002.2010.501842

2. McDaniel D, Farris P, Valacchi G. Atmospheric skin aging-Contributors and inhibitors. J Cosmet Dermatol 2018;17(2):124-37. doi: 10.1111/jocd.12518

3. Karran P, Brem R. Protein oxidation, UVA and human DNA repair. DNA Repair (Amst) 2016;44:178-85. doi: 10.1016/j.dnarep.2015.05.024

4. McMillan TJ, Leatherman E, Ridley A, Sharrocks J, Tobi SE, Whiteside JR. Cellular effects of long wavelength UV light (UVA) in mammalian cells. J Pharm Pharmacol 2008;60:969-76. doi: 10.1211/jpp.60.8.0004

5. Cockell CS, Knowland J. Ultraviolet radiation screening compounds. Biol Rev Camb Philos Soc 1999;74(3):311-45.

6. Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 2010;302(1):71-83. doi: 10.1007/s00403-009-1001-3

7. Sharma P, Montes de Oca MK, Alkeswani AR, McClees SF, Das Cockell CS, Knowland J. Ultraviolet radiation screening compounds. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020 Mar; 164(1):1-22.

8. Tobi SE, Gilbert M, Paul N, McMillan TJ. The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int J Cancer 2002;102(5):439-44.

9. Xia J, Song X, Bi Z, Chu W, Wan Y. UV-induced NF-kappaB activation and expression of IL-6 is attenuated by (-)-epigallocatechin-3-gallate in cultured human keratinocytes in vitro. J I Mol Med 2005;16(5):943-50.

10. Tobi SE, Gilbert M, Paul N, McMillan TJ. Protective effects of (-)-epigallocatechin-3-gallate on aging and gene mutation of human skin fibroblasts caused by ultraviolet radiation: an in vitro experiment. Zhonghua Yi Xue Za Zhi 2007;87(20):1398-401.

11. Chan CM, Huang JH, Lin HH, Chiang HS, Chen BH, Hong JY, Hung CF. Protective effects of (-)-epigallocatechin gallate on UVA-induced damage in ARPE19 cells. Mol Vis 2008;14:2528-34.

12. Sevin A, Oztaz P, Senen D, Han U, Karaman C, Tarimci N, Kartal M, Erdogan B. Effects of polyphenols on skin damage due to ultraviolet A rays: an experimental study on rats. J Eur Acad Dermatol Venereol 2007;21(5):650-6.

13. Kim J, Hwang JS, Cho YK, Han Y, Jeon YJ, Yang KH. Protective effects of (-)-epigallocatechin-3-gallate on UVA and UVB-induced skin damage. Skin Pharmacol Physiol 2007;20(1):1-9.

14. Kevorkian E, Darwish AK, Sullivan DJ, Ingle BM, Satarian K, Cartlidge N, Kavanagh K, Koethe R, Petitet PG. Protective effects of (-)-epigallocatechin gallate on human skin fibroblasts. J Invest Dermatol 1998;13(3):253-7.

15. Huang CC, Fang JY, Wu WB, Chiang HS, Wei YJ, Hung CF. Protective effects of (-)-epicatechin-3-gallate on UVA-induced damage in HaCaT keratinocytes. Arch Dermatol Res 2005;296(10):473-81.

16. Basu-Madak S, Gordon MJ, Dobson LH, Spencer JP, Rice-Evans C, Tyrrell RM. Protection of human fibroblasts from UVA and UVB radiation by (-)-epigallocatechin gallate. J Photochem Photobiol B 2003;70(1):31-7.

17. Kevorkian E, Darwish AK, Sullivan DJ, Ingle BM, Satarian K, Cartlidge N, Kavanagh K, Koethe R, Petitet PG. Protective effects of (-)-epigallocatechin gallate on human skin fibroblasts. J Invest Dermatol 1998;13(3):253-7.

18. Harwansh RK, Mujeeberje PK, Kar A, Bahadur S, Al-Dhabi NA, Durapadiyan V. Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress. J Photochem Photobiol B 2016;160:318-39. doi: 10.1016/j.jphotobiol.2016.03.026

19. Silka V, Katiyar SK. Molecular mechanisms of inhibition of photocarcinogenesis by silimarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn). (Review). Int J Oncol 2010;36(5):1053-60.

20. Montes de Oca MK, Pearlman RL, McClees SF, Strickland R, Afag F. Phytochemicals for the Prevention of Photocarcinogenesis. Photochem Photobiol 2017;93(4):956-74. doi: 10.1111/jpp.12711

21. Raječová Svobodová A, Gabriélová E, Michaelides L, Kosina P, Ryllává A, Ulrichová J, Zálešák B, Vostálová J. UVA-photoprotective potential of silimarins and silybin. Arch Dermatol Res 2018;310(3):413-24. doi: 10.1007/s00403-018-1828-6

22. Raječová Svobodová A, Gabriélová E, Ulrichová J, Zálešák B, Biedermann D, Vostálová J. A pilot study of the UVA-protective potential of dehydroisilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Arch Dermatol Res 2019;311(6):477-490. doi: 10.1007/s00403-019-01928-7

23. Svobodová A, Zálešák B, Málková J, Mikulíková H, Walterová D, Vostálová J. Attenuation of UVA-induced damage to human keratocytes by silymarin. J Dermatol Sci 2007;46(1):21-30.

24. Svobodová A, Zálešák B, Walterová D, Vostálová J. Flavonolignans from Silibum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. J Dermatol Sci 2007;48(3):213-24.

25. Tobi SE, Gilbert M, Paul N, McMillan TJ. Protective effects of (-)-epigallocatechin-3-gallate on aging and gene mutation of human skin fibroblasts caused by ultraviolet radiation: an in vitro experiment. Zhonghua Yi Xue Za Zhi 2007;87(20):1398-401.

26. Biedermann D, Vostálová J. A pilot study of the UVA-photoprotective effects of standardized pomegranate (Punica granatum L.) polyphenolic extract in ultraviolet-irradiated human skin fibroblasts. J Agric Food Chem 2008;56(18):8434-41. doi: 10.1021/jf0800307

27. Kevorkian E, Darwish AK, Sullivan DJ, Ingle BM, Satarian K, Cartlidge N, Kavanagh K, Koethe R, Petitet PG. Protective effects of (-)-epigallocatechin gallate on human skin fibroblasts. J Invest Dermatol 1998;13(3):253-7.

28. Kevorkian E, Darwish AK, Sullivan DJ, Ingle BM, Satarian K, Cartlidge N, Kavanagh K, Koethe R, Petitet PG. Protective effects of (-)-epigallocatechin gallate on UVA-induced oxidative damage to human skin fibroblasts. Free Radic Res 2018;52(8):839-48. doi: 10.1080/10715762.2018.1454996

29. Kevorkian E, Darwish AK, Sullivan DJ, Ingle BM, Satarian K, Cartlidge N, Kavanagh K, Koethe R, Petitet PG. Protective effects of (-)-epigallocatechin gallate on UVA-induced oxidative damage in HaCaT keratinocytes. Arch Dermatol Res 2005;296(10):473-81.

30. Svobodová A, Vostálová J. Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 2010;86(12):999-1030. doi: 10.1080/09553002.2010.501842
Polypodium leucotomos extract decreases psoralen-UVA-induced phototoxicity, pigmentation, and damage of human skin. J Am Acad Dermatol 2004;50(1):41-9.

1. Smeriglio A, Monteleone D, Trombetta D. Health effects of Vaccinium myrtillus L.: evaluation of efficacy and technological strategies for preservation of active ingredients. Miniv Rev Med Chem 2014;14(7):567-84.

2. Yamamura K, Shimada M, Ueno K. Antioxidants from bilberry (Vaccinium myrtillus L.) alleviate pruritus in a mouse model of chronic allergic contact dermatitis. Pharmacognosy Res 2011;3(3):173-7. doi:10.4103/0974-8490.85002

3. Svobodová A, Zdrálová A, Vostálová J. Loniceracaeulae and Vaccinium myrtillus fruit polyphenols protect HaCaT keratinocytes against UVA-induced phototoxic stress and DNA damage. J Dermatol Sci 2009;56(3):196-204. doi:10.1016/j.jdermsci.2009.08.004

4. Svobodová A, Rambousková J, Walterová J, Vostálová J. Bilberry extract reduces UVA-induced oxidative stress in HaCaT keratinocytes: a pilot study. Biofactors 2008;33(4):249-66.

5. Calò R, Marabini L. Protective effect of Vaccinium myrtillus extract against UVA- and UBV-induced damage in a human keratinocyte cell line (HaCaT). J Photochem Photobiol B 2014;132:27-35. doi:10.1016/j.jphotobiol.2014.01.013

6. Bucco P, Pietro M, Zilla L, Calierii MN, Martinez L, Rivalo V, Alonso S, Montanari J. Skin penetration and UVA damage prevention by nanoberris. J Cosmet Dermatol 2018;17(5):889-99. doi:10.1111/jcd.12436

7. Śwarecków, J, Heinrich J, Valetlová K. Berry fruits as a source of biologically active compounds: the case of Loniceracaeula. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007;151(2):163-74.

8. Rajnohořová Svobodová A, Galádánková A, Paškůvá I, Doležal D, Kýharová D, Ulrichová J. Vostálová J. Effects of oral administration of Loniceracaeulae berries on UBV-induced damage in SKH1 mice. A pilot study. Photochem Photobiol Sci 2013;12(10):1830-40. doi:10.1039/c3pp50120e

9. Svobodová A, Rambousková J, Walterová J, Doležal V, Vostálová J. Protective effects of phenolic fraction of blue honeysuckle fruits against UVA-induced damage to human keratinocytes. Arch Dermatol Res 2008;300(5):225-33. doi:10.1007/s00403-008-0850-5

10. Vostálová J, Galádánková A, Paškůvá I, Ulrichová J, Doležal D, Lichnovská R, Vrbková J, Rajnohořová Svobodová A. Loniceracaeulae fruits reduce UVA-induced damage in hairless mice. J Photochem Photobiol B 2013;128:1-11. doi:10.1016/j.jphotochem.2013.07.024

11. Shabnum S, Wagay MG. Essential oil composition of Thymus Vulgaris L. and their uses. J. Research & Development 2011;1:83-94.

12. El-Newary SA, Shaffie NM, Omer EA. The protection of Thymus vulgaris berries against UVB-induced skin damage via inhibition of MAPK/AP-1 and activation of Nrf2-ARE antioxidant system. J Cell Physiol 2015;231(2):336-48. doi:10.1002/jcc.27198

13. Corrigho L, Margioliwi R, Palu AK, Jensen CJ. Morinda citrifolia Linn. (Rubiacaeae) leaf extracts mitigate UVA-induced erythema. J Nat Med 2009;63(3):351-4. doi:10.1011/1418-009-0327-7

14. Masuda M, Murata K, Naruto S, Uwaya A, Isami F, Matsuda H. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts. Biol Pharm Bull 2012;35(2):210-5.

15. Hashemi SA, Madani SA, Abediankenari S. The Review on Properties of Aloe Vera in Healing of Cutaneous Wounds. Biomed Res Int 2015;2015:714216. doi:10.1155/2015/714216

16. Rahman S, Carter P, Bhattachar N, Aloe Vera for Tissue Engineering Applications. J Funct Biomater 2017;8(1). pii: E6. doi:10.3390/jfb8010006

17. Saito M, Tanaka M, Misawa E, Yao R, Nabheshima K, Yamauchi K, Abe F, Yamamoto Y, Furukawa F. Oral administration of Aloe vera gel powder prevents UBV-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice. Biosci Biotechnol Biochem 2016;80(7):1416-24. doi:10.1080/09186451.2016.1156480

18. Yao R, Tanaka M, Misawa E, Saito M, Nabheshima K, Yamauchi K, Abe F, Yamamoto Y, Furukawa F. Dermal inflammation and collagen synthesis in hairless mice treated with Aloe vera Gel Powder containing Aloe Sterols Protects Skin Photoaging in OVX Hairless Mice. J Food Sci 2016;81(11):H2849-H2857. doi:10.1111/1750-3841.13527

19. Misawa E, Tanaka M, Saito M, Nabheshima K, Yao R, Yamauchi K, Abe F, Yamamoto Y, Furukawa F. Protective effects of Aloe sterols against UBV-induced photaging in hairless mice. Photodermatol Photomed Photobiol Photomed 2017;33(2):101-11. doi:10.1111/1pph.12286

20. Rodríguez D, Viottto AC, Checchia R, Gomide A, Severino D, Itri R, Baptista MS, Martins WK. Mechanism of Aloe Vera extract protection against UVA: shelter of lysosomal membrane and apoptosis. Photochem Photobiol Sci 2016;15(3):334-50. doi:10.1039/c5pp00409h

21. Salaga A, Lewandowska U, Sosnowska D, Zakrzewski PK, Cygankiewicz AI, Piechoła-Palarczyk A, Sobczak M, Mospinis P, Chen C, Krajewska WM, Fichna J. Polyphenol extract from evening primrose pommace alleviates experimental colitis after intracolonic and oral administration in mice. Naunyn Schmiedebergs Arch Pharmacol 2014;387(11):1069-78. doi:10.1007/s00210-014-1025-x

22. Kiss AK, Derwińska M, Davidowski A, Naruszewicz M. Novel biological properties of Oenothera paradoxa defatted seed extracts: effects on metalloproteinase activity. J Agric Food Chem 2008;56(17):7845-52.

23. Lewandowska U, Owczarek K, Szwczuk K, Podszęuk A, Kozliakiewicz M, Hrabec E. Influence of polyphenol extract from evening primrose (Oenothera paradoxa) seeds on human prostate and breast cancer cell lines. Postepy Hig Med Dosw (Online) 2014;68:110-8. doi:10.5604/17322693.1088036

24. Jaszewska E, Kosimier A, Kiss AK, Naruszewicz M. Pro-oxidative and pro-apoptotic action of defatted seeds of Oenothera paradoxa on human skin melanoma cells. J Agric Food Chem 2009;57(18):8282-9. doi:10.1021/jf901395t

25. Jaszewska E, Soin M, Filipk A, Naruszewicz M. UVA-induced ROS generation inhibition by Oenothera paradoxa defatted seeds extract and subsequent cell death in human dermal fibroblasts. J Photochem Photobiol B 2013;126:42-6. doi:10.1016/j.jphotobiol.2013.07.001

26. Bazylo A, Borzym J, Parzonko A. Determination of in vitro antiinflammatory activity of aqueous and ethanolic extracts from Galinsoga parviflora and Galinsoga quadriradiata herb. J Photochem Photobiol B 2015;149:189-95. doi:10.1016/j.jphotobiol.2015.06.010

27. Parzonko A, Kiss AK. Caffeic acid derivatives isolated from Galinsoga parviflora leaf extracts mitigate UVB-induced erythema in hairless mice. J Photochem Photobiol B 2016;164:1-22. doi:10.1016/j.jphotobiol.2016.05.010

28. Parzonko A, Kiss AK. Caffeic acid derivatives isolated from Galinsoga parviflora leaf extracts mitigate UVB-induced erythema in hairless mice. J Photochem Photobiol B 2016;164:1-22. doi:10.1016/j.jphotobiol.2016.05.010
93. Prasad NR, Jeyanthimala K, Ramachandran S. Caffeic acid modulates
UVB-radiation-induced expression of interleukin-10 and activation of
mitogen-activated protein kinases in mouse. Carcinogenesis 2006;27(9):1803-11.
94. Agilan B, Rajendra Prasad N, Kanimoji G, Karthikeyan R, Ganesan
M, Mohana S, Velmurugan D, Ananthakrishnan D. Caffeic Acid
Inhibits Chronic UVB-Induced Cellular Proliferation Through
JAK-STAT3 Signaling in Mouse Skin. Photochem Photobiol
2016;92(3):467-74. doi: 10.1111/php.12588
95. Staniforth V, Chiu LT, Yang NS. Caffeic acid suppresses UVB ra-
diation-induced expression of interleukin-10 and activation of
mitogen-activated protein kinases in mouse. Carcinogenesis 2006;27(9):1803-11.
96. Agilan B, Rajendra Prasad N, Kanimoji G, Karthikeyan R, Ganesan
M, Mohana S, Velmurugan D, Ananthakrishnan D. Caffeic Acid
Inhibits Chronic UVB-Induced Cellular Proliferation Through
JAK-STAT3 Signaling in Mouse Skin. Photochem Photobiol
2016;92(3):467-74. doi: 10.1111/php.12588
97. Yamada Y, Yasaki H, Sakurai H. Suppressive effect of caffeic acid and
its derivatives on UVB-induced oxidative stress in human skin. J Photochem
Photobiol B 2015;141:202-11. doi: 10.1016/j.jphotobiol.2015.08.009
98. Ahmad Z, Amoah K, Jeyanthimala K. Caffeic acid and its derivatives
modulate the Nrf2-mediated antioxidant response in human skin.
Diетический Пап Мед Фас Унив Палакы Оломоуц Чех. Реп. 2020 Мар: 164(1):1-22.
152. Santhanam RK, Fukazumi S, Ahmad S, Abas F, Ismail IS, Rukayadi Y, Akhtar MT, Shaari K. Inhibition of UVB-induced pro-inflammatory cytokines and MPP expression by Zanthoxylum rheta bark extract and its active constituent hesperidin. Phytother Res 2018;32(9):1608-14. doi: 10.1002/ptr.6092

153. Petrova A, Davidés LM, Rautenbach F, Marnewick JL. Photoprotection by honeybush extracts, hesperidin and mangiferin against UVB-induced skin damage in SKH-1 mice. J Photochem Photobiol B 2011;103(2):126-39. doi: 10.1016/j.jphotobiol.2011.02.020

154. Lee HJ, Im AR, Kim SM, Kang HS, Lee JD, Chae S. The flavonoid hesperidin protects anti-photaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen-activated protein kinase (MAPK)-dependent signaling pathways. BMC Complement Altern Med 2016;18(1):39. doi: 10.1186/s12906-017-2058-8

155. Li M, Lin XF, Lu J, Zhou BR, Luo D. Hesperidin ameliorates UV radiation-induced skin damage by abrogation of oxidative stress and inflammatory in HaCaT cells. J Photochem Photobiol B 2016;165:240-5. doi: 10.1016/j.jphotobiol.2016.10.037

156. Olivas-Aguirre FJ, Rodrigo-Garcia J, Martinez-Ruiz ND, Cárdenas-Robles AI, Mendoza-Diaz SO, Alvarez-Parrilla E, Gonzalez-Aguilar GA, de la Rosa LA, Ramos-Jimenez A, Wall-Medrano A. Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects. Molecules 2016;21(9). pii: E1264

157. Taronzi A, Marchesi A, Hrelia S, Angeloni C, Andrisano V, Fiori J, Cantelli-Forti G, Hrelia P. Protective effects of cyanidin-3-O-beta-glucofuranoside against UV-induced oxidative stress in human keratinocytes. Photochem Photobiol 2005;81(3):623-9.

158. Cimino A, Ambra R, Canali R, Salja A, Virgili F. Effect of cyanidin-3-O-glucoside on UVB-induced response in human keratinocytes. J Agric Food Chem 2006;54(11):4041-7.

159. Silván JM, Reguero M, de Pascual-Teresa S. A protective effect of anachrophin and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food Funct 2016;7(2):1067-76. doi: 10.1039/c5fo01368b

160. He Y, Hu Y, Jiang X, Chen T, Ma Y, Wu S, Sun J, Jiao R, Li X, Deng L, Bai W. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells. J Photochem Photobiol B 2017;177:24-31. doi: 10.1016/j.jphotobiol.2017.10.006

161. Pratheeshkumar P, Son YO, Wang X, Divya SP, Joseph B, Hitron JA, He Y, Hu Y, Jiang X, Chen T, Ma Y, Wu S, Sun J, Jiao R, Li X, Deng L, Bai W. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-kB signaling pathways in SKH-1 hairless mice skin. Toxicol Appl Pharmacol 2014;280(1):127-37. doi: 10.1016/j.taap.2014.06.028

162. Liu Z, Hu Y, Li X, Mei Z, Wu S, He Y, Jiang X, Sun J, Xiao J, Deng L, Bai W. Nanoencapsulation of Cyanidin-3-O-Glucoside Enhances Protection Against UVB-Induced Epidermal Damage through Regulation of p53-Mediated Apoptosis in ICR mice. J Agric Food Chem 2018;66(21):5359-67. doi: 10.1021/acs.jafc.8b01002

163. W. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT human keratinocytes. Eur J Pharmacol 2003;56(2):251-8. doi: 10.1016/S0014-2999(03)00038-3

164. Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M. Carnosic acid. A modulated signaling pathways by asiatic acid and ursolic acid in CaHt human keratinocytes. Eur J Pharmacol 2013;701C(3):173-8.

165. Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol 2018;9:892. doi: 10.3389/fphar.2018.00892

166. Yuan Y, Zhang H, Sun F, Sun S, Zhu Z, Chai Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC-MS method. J Ethnopharmacol 2015;163:31-8. doi: 10.1016/j.jep.2015.01.006

167. Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M. Centella asiatica in cosmetology. Postepy Dermatol Alergor 2013;30(1):6-9. doi: 10.11691/pdi.2013.33.737

168. Calantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim RB, Biratc S, Dussort P, Pierre FX, Bily AC, Roller M. Carnosic acid. A flavone with a potential anti-inflammatory activity. Phytochemistry 2015;115:9-19.

169. Birici S, Dussort P, Pierre FX, Bily AC, Roller M. Car nosic acid. Phytochemistry 2015;115:9-19.
and 10 expression in keratinocytes by a singlet oxygen-dependent mechanism. Free Radic Biol Med 2004;37(5):654-70.

189. Wertz K, Hunziker PB, Seifert N, Riss G, Neeb M, Steiner G, Hunziker W, Goralczyk R. beta-Carotene interferes with ultraviolet light A-induced gene expression by multiple pathways. J Invest Dermatol 2005;124(2):428-34.

190. Eicker J, Kurten V, Wild S, Riss G, Goralczyk R, Kruttmann J, Berneburg M. Beta-carotene supplementation protects from photaging-associated mitochondrial DNA mutation. Photochem Photobiol Sci 2003;2(6):655-9.

191. Santocono M, Zurria M, Berrettini M, Fedeli D, Falcioni G. Influence of dietary astaxanthin on UVA-induced skin photoaging in human dermal fibroblasts. J Cosmet Sci 2010;58(2):136-42. doi: 10.1016/j.jdermsci.2010.02.009

192. Obermüller-Jevic UC, Schlegel B, Flaccus A, Biesalski HK. The effect of beta-carotene on the expression of interleukin-6 and heme oxygenase-1 in UV-irradiated human skin fibroblasts in vitro. FEBS Lett 2001;509(2):186-90.

193. O'Connor I, O'Brien N. Modulation of UVA light-induced oxidative stress by beta-carotene, lutein and astaxanthin in cultured fibroblasts. J Dermatol Sci 1998;16(3):226-30.

194. Camera E, Mastrofrancesco A, Fabbri C, Daubrawa F, Picardo M, Sies H, Stahl W. Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp Dermatol 2009;18(3):222-31. doi: 10.1111/j.1600-0625.2008.00790.x

195. Obermüller-Jevic UC, Francz P, Frank J, Flaccus A, Biesalski HK. Enhancement of the UVA induction of haem oxygenase-1 expression by beta-carotene in human skin fibroblasts. FEBS Lett 1999;460(2):212-16.

196. Zhang G, Zhu B, Nakamura Y, Shimoishi Y, Murata Y. Structure-dependent photodegradation of carotenoids accelerated by dimethyl tetrasulfide under UVA irradiation. Biosci Biotechnol Biochem 2008;72(8):2176-83.

197. Davinelli S, Nielsen ME, Scapagnini G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients 2018;10(4). pii: E522. doi: 10.3390/nu10040522

198. Santoco M, Zurria M, Berrettini M, Fedeli D, Falciogu I. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J Photochem Photobiol B 2006;85(3):205-15.

199. Lyons NM, O'Brien NM. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J Dermatol Sci 2002;30(1):73-84.

200. Suga K, Nakajima H, Ohtsuki M, Imokawa G. Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. J Dermatol Sci 2010;58(2):136-42. doi: 10.1016/j.jdermsci.2010.02.009

201. Komatsu T, Sasaki S, Mabane Y, Hirata T, Sugawara T. Preventive effect of dietary astaxanthin on UVA-induced skin photaging in hairless mice. PLoS One 2017;12(2):e0171178. doi: 10.1371/journal.pone.0171178

202. Stahl W, Heinrich U, Aust O, Tornier H, Sies H. Lycopene-rich products and dietary photoprotection. Photochem Photobiol Sci 2006;5(2):238-42.

203. Grether-Beck S, Marin H, Jaenicke T, Stahl W, Kruttmann J. Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: results from a double-blind, placebo-controlled, crossover study. Br J Dermatol 2017;176(5):1231-40. doi: 10.1111/bjd.15080

204. Yeh SL, Huang CS, Hu ML. Lycopene enhances UVA-induced DNA damage and expression of heme oxygenase-1 in cultured mouse embryo fibroblasts. Eur J Nutr 2005;44(6):365-70.

205. Alves-Rodrigues A, Shao A. The science behind lutein. Toxicol Lett 2004;150(1):57-83.

206. Roberts RL, Green J, Lewis B. Lutein and zeaxanthin in eye and skin health. Clin Dermatol 2009;27(2):195-201. doi: 10.1016/j.clindermatol.2008.01.011

207. Palombo P, Fabrizi G, Ruocco V, Ruocco E, Fluhr J, Roberts R, Morganti P. Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: a double-blind, placebo-controlled study. Skin Pharmacol Physiol 2007;20(4):199-210.

208. Schwartz S, Frank E, Gierhart D, Simpson P, Frumento R. Zeaxanthin-based dietary supplement and topical serum improve hydration and reduce wrinkle count in female subjects. J Cosmet Dermatol 2016;15(4):e13-e20. doi: 10.1111/jocd.12226

209. Astner S, Wu A, Chen J, Phillips N, Rius-Diaz F, Parrado C, Mihm MC, Goukassian D, Pathak MA, Gonzalez S. Dietary lutein/zeaxanthin partially reduces photaging and photocarcinogenesis in chronically UVB-irradiated Skh-1 hairless mice. Skin Pharmacol Physiol 2007;20(6):283-91.

210. Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta 2012;1822(5):784-93. doi: 10.1016/j.bbadis.2011.09.017

211. Obayashi K, Kurihara K, Okano Y, Masaki H, Yarosh DB. L-Ergothioneine scavenges superoxide and singlet oxygen and suppresses TNF-alpha and MMP-1 expression in UV-irradiated human skin fibroblasts. Eur J Dermatol 2015;25(4):154-60. doi: 10.1161/j.ergothioneine.2014.08.027

212. Hseu YC, Lo HW, Korivi M, Tsai YC, Tang MJ, Yang HL. Dermato-ergothioneine; Preliminary Study. Cosmetics 2014; 1:51-60; doi:10.3390/cosmetics1010051