BOUNDDED MARTIN’S MAXIMUM WITH MANY WITNESSES

STUART ZOBLE
DECEMBER 6, 2008

Abstract. We study a strengthening of Bounded Martin’s Maximum which asserts that if a \(\Sigma_1\) fact holds of \(\omega_2^V\) in a stationary set preserving extension then it holds in \(V\) for a stationary set of ordinals less than \(\omega_2\). We show that this principle implies Global Projective Determinacy, and therefore does not hold in the \(P_{\text{max}}\) model for \(\text{BMM}\), but that the restriction of this principle to forcings which render \(\omega_2^V\) countably cofinal does hold in the \(\text{BMM}\) model, though it is not a consequence of \(\text{BMM}\).

Introduction

Bounded Martin’s Maximum, denoted \(\text{BMM}\), is the assertion that

\[
(H(\omega_2), \in) \prec_{\Sigma_1} (H(\omega_2), \in)^{V^P}
\]

whenever \(P\) is stationary set preserving. Because \(\Sigma_1\) facts are upward absolute and \(\text{Col}(\omega_1, \omega_2)\) can be appended to a given stationary set preserving forcing, the formulation below is equivalent.

\(\text{BMM}\) denotes the following assertion. Suppose \(a \in H(\omega_2), \varphi(x,a)\) is a \(\Sigma_1\) formula, \(P\) is stationary set preserving forcing notion and whenever \(G \subset P\) is generic

\[
(H(\omega_2), \in)^{V[G]} \models \varphi(\omega_2^V, a).
\]

Then

\[
(H(\omega_2), \in)^V \models \varphi(\delta, a)
\]

for some ordinal \(\delta < \omega_2\).

In this paper we will study a strengthening of \(\text{BMM}\) which asserts that if a \(\Sigma_1\) fact holds of \(\omega_2^V\) in a stationary set preserving extension then it holds in \(V\) for a stationary set of ordinals less than \(\omega_2\). In other words, we will strengthen \(\text{BMM}\) as above by replacing the phrase ”some ordinal \(\delta < \omega_2\)” with ”a stationary set of ordinals \(\delta < \omega_2\)”.

2000 Mathematics Subject Classification. Primary 03E45; Secondary 03E35.

Key words and phrases. Bounded Martin’s Maximum, Nonstationary Ideal, Projective Determinacy.
BMMs denotes the following assertion. Suppose $a \in H(\omega_2)$, $\varphi(x,a)$ is a Σ_1 formula, \mathbb{P} is stationary set preserving forcing notion and whenever $G \subset \mathbb{P}$ is generic

$$(H(\omega_2), \in)^{V[G]} \models \varphi(\omega_2^V, a).$$

Then

$$(H(\omega_2), \in)^V \models \varphi(\delta, a)$$

for a stationary set of ordinals $\delta < \omega_2$.

A definition of BMM$^{s,++}$ is obtained by replacing the occurrences of the structure $(H(\omega_2), \in)$ with the structure $(H(\omega_2), \in, \text{NS})$ in the definition above, and regarding φ as Σ_1 in the expanded language.

Our main theorem is that BMM$^{s,+++}$ implies that Projective Determinacy holds in all set-generic extensions. To put this in perspective, it is open whether BMM implies Δ_3^1 determinacy, and known that BMM does not imply Δ_3^1 determinacy in the universe after ω_2 is collapsed as Theorem 10.99 of [18] shows that

$$L^{M^\#_1}(\mathbb{R})|G] \models \text{BMM}^{++}$$

where $N = L^{M^\#_1}(\mathbb{R})$ is the minimal inner model closed under the $M^\#_1$ operation and containing \mathbb{R}, N satisfies AD, and $G \subset \mathbb{P}_{max}$ is N-generic. Thus, it seems that BMM$^{s,+++}$ is a bit stronger than BMM and in particular does not hold in the model described above. We are not able to prove PD from BMMs alone, but we can if we assume in addition that the nonstationary ideal is saturated, and the proof produces for example a set of ordinals E for which $M^\#_2(E)$ exists and

$$P(\omega_1) \subset M^\#_2(E),$$

which is enough to conclude that BMMs fails in the BMM model. We are able to show, however, that a special case of this forcing axiom does hold in the BMM model, namely BMMs_0, which will denote the restriction of BMMs to stationary set preserving forcings \mathbb{P} for which

$$V[G] \models cf(\omega_2^V) = \omega$$

whenever $G \subset \mathbb{P}$ is V-generic.

Theorem 1.

1. BMM$^{s,+++}$ implies PD in all generic extensions.
2. BMMs fails in the BMM model.
3. BMM$^{s_0,++}$ holds in the BMM model.
The proof of the theorem makes essential use of the well ordering of \(P(\omega_1) \) given under BPFA by Caicedo and Velickovic in [4]. Once one understands why their well-ordering is \(\Delta_1 \) over \(H(\omega_2) \) it is easy to construct from it a bijection

\[
W : \omega_2 \to P(\omega_1)
\]

whose initial segments are uniformly \(\Sigma_1 \) definable over \(H(\omega_2) \). That is, \(W \) is a bijection and there is a \(\Sigma_1 \) formula \(\psi \) and a parameter \(a \in H(\omega_2) \) such that for every \(x \in H(\omega_2) \) and \(\beta < \omega_2 \),

\[
(H(\omega_2), \epsilon) \models \psi(x, \beta, a) \text{ iff } x = W \upharpoonright \beta.
\]

Well-orderings due to Moore and Todorcevic do not seem to suit our purposes, though Woodin’s well-ordering from \(\psi_{AC} \) does give such a set \(W \) which is uniformly \(\Sigma_1 \) definable over the structure \((H(\omega_2), \epsilon, NS) \). The reader curious about how the well-ordering is used to increase the expressive power of the \(\Sigma_1 \) formula in the definition of \(\text{BMM}^* \) could skip directly to Lemma 9 below.

We now give some further background information. \(\text{BMM} \) implies a bounded version of the strong reflection principle which we denote by \(\text{BSRP}(\omega_2) \), and which asserts that any projective stationary subset \(S \) of \([\omega_2]^{\omega} \) which is \(\Sigma_1 \)-definable over the structure \((H(\omega_2), \epsilon) \) reflects to a club in \([\gamma]^{\omega} \) for some, equivalently unboundedly many, ordinals \(\gamma < \omega_2 \). The nucleus of this paper, now essentially the base case of the PD induction, was the observation that some open questions regarding \(\text{BMM} \) could be solved assuming in addition the following enhanced version of \(\text{BSRP}(\omega_2) \) giving a stationary set of club reflection points. The axiom \(\text{BMM}^* \) is the natural generalization of \(\text{BMM} \) which implies this stronger reflection principle.

\(\text{BSRP}^*(\omega_2) \) denotes the assertion that any projective stationary set \(S \subset [\omega_2]^{\omega} \) which is \(\Sigma_1 \)-definable in \(H(\omega_2) \) reflects to a club stationarily often in the sense that \(S \cap [\gamma]^{\omega} \) contains a club in \([\gamma]^{\omega} \) for a stationary set of \(\gamma < \omega_2 \).

The particular questions which interest us ask whether certain consequences of Martin’s Maximum in fact follow from \(\text{BMM} \), for example those on the following list.

1. The nonstationary ideal is precipitous
2. Woodin’s principle \(\psi_{AC} \)
3. Canonical function bounding
4. \(\delta_2^1 = \omega_2 \)
5. \(\Delta_2^1 \) determinacy
Of course, the determinacy question is really just a question of consistency strength. The best result to date is due to Schindler who shows in [13] that BMM implies the existence of an inner model with a strong cardinal. Regarding $\delta_2^1 = \omega_2$, Woodin gets this from NS saturated with a measurable cardinal in [18], and hence from BMM together with a Woodin cardinal and a measurable above using a theorem of Shelah. Schindler and Claverie have recently proved $\delta_2^1 = \omega_2$ from BMM together with NS precipitous. Canonical function bounding follows outright from ψ_{AC} by an argument of Aspero in [2], and Woodin obtains ψ_{AC} as a consequence of BMM with either a measurable cardinal or NS precipitous assumed in addition (see [18]). Our initial observation went as follows.

Theorem 2. Assume BMM and BSRPS(ω_2). Then Δ^1_2 determinacy, $\delta_2^1 = \omega_2$, and canonical function bounding holds.

The theorem is proved by showing that

\[W^\ast \models \text{NS saturated} \]

where NS denotes the nonstationary ideal on ω_1. This suggests a new entry for the above list of possible consequences of BMM.

Does BMM++ imply NS saturated in $L(P(\omega_1))$?

As one would suspect, BSRPS(ω_2) is not a consequence of BMM, and we establish this by way of the Tilde operation. Recall that T, for a subset T of ω_1, is defined to be the set of $\alpha < \omega_2$ for which there is a club of $\sigma \in [\alpha]^{\omega}$ whose order type belongs to T. We show that in a forcing extension of a model satisfying Martin’s Maximum, BMM holds and the nonstationary ideal is saturated, yet there exists a stationary set $T \subset \omega_1$ for which T is nonstationary in ω_2. An argument of Larson from [10] shows that such a set T must be stationary under BSRPS(ω_2) together with NS saturated, and so BSRPS(ω_2) must fail in this model.

Theorem 3. BSRPS(ω_2) is not a consequence of BMM++ together with the saturation of the nonstationary ideal.

In a similar vein, arguments of Larson from [10] coupled with a Theorem of Woodin from [18] will produce models in which BMM^s fails but BMM as well as other hypotheses hold. Finally, we give an application of BMM^s which does not seem to have anything to do with stationary reflection but involves rather the notion of a disjoint club sequence on ω_2, an invention of Krueger from [8] who derives one from MM(c). We observe here that BMM^s implies the existence of such a sequence, and this will allow us to separate BMM and some consequences of BMM^s used in the proof of Theorem 1, from BMM^s itself.
This paper is organized as follows. We start with a brief discussion of the Σ_1 well-ordering and then prove the two results (Theorems 2 and 3) concerning $\text{BSRP}^s(\omega_2)$. We then give the PD proofs, followed by the P_{max} argument, and close with the other separation result. We would like to thank Paul Larson for directing us to the relevant results in [10], and for many enlightening conversations.

1. Results

We need that the wellordering of [4] gives rise to a uniformly Σ_1 enumeration of $P(\omega_1)$ as described in the introduction. For the reader’s convenience we describe how this is obtained.

Lemma 4. (Caicedo, Velickovic [4]) Assume BPFA. Then there is a bijection

$$W : \omega_2 \to P(\omega_1)$$

whose initial segments are uniformly Σ_1 definable over $H(\omega_2)$.

Proof. The parameter involved in the definition is a certain subset $c \subset \omega_1$. This parameter gives rise to an ω_1-sequence d of pairwise almost disjoint elements of $[\omega]^\omega$ which will be used as well. The authors of [4] define a notion of a triple $\alpha < \beta < \gamma < \omega_2$ coding a real r which is a Σ_1 notion in the parameter c. Fixing a reasonable way of coding a triple by a single ordinal and composing, we thus have a Σ_1 formula which says that an ordinal $\delta < \omega_2$ codes a real r, and they prove that every real is so coded. Every subset a of ω_1 is coded by a real $r \subset \omega_1$ via d in the standard way since MA_{ω_1} holds. Let T be the theory described in [4] which includes the sentence asserting that every real is coded by an ordinal, as well as MA_{ω_1}, among other axioms. Then $H(\omega_2) \models T$ and for transitive models M, N of T

1. If $M \cap \omega_2 = N \cap \omega_2$ then $M = N$
2. If $M \cap \omega_2 < N \cap \omega_2$ then $M \in N$.

For a real r let N_r be the least model of T with $r \in N_r$. Then a well-ordering of the reals is given by $r < s$ if $N_r \in N_s$ or $N_r = N_s = N$ and the least ordinal which codes r in the sense of N is less than the least ordinal which codes s in the sense of N. Let $\{r_\delta \mid \delta < \omega_2\}$ be the enumeration of the reals according to this ordering, and set $W_0(\delta) = a$ if r_δ codes a via d. Then W_0 is a uniformly Σ_1 definable surjection therefore gives rise to such a uniformly definable bijection W in the obvious way. \qed

We now show how $\text{BSRP}^s(\omega_2)$ can be used to prove that NS is saturated in an inner model with a measurable cardinal which contains $P(\omega_1)$. We
use Schindler’s theorem from [13] to produce the measurable, although this can be avoided if BPFA++ is assumed in place of BMM.

Theorem 5. Assume either BMM or BPFA++. Assume that BSRP^s(ω_2) holds in addition. Then

1. \(\Delta^2_2 \) determinacy holds
2. Every function from \(\omega_1 \) to \(\omega_1 \) is bounded by a canonical function
3. \(\delta^1_2 = \omega_2 \).

Proof. Since BPFA holds we can let \(W \) denote the uniformly \(\Sigma^1_1 \) enumeration of \(P(\omega_1) \) given by Lemma 4. For convenience we will think of \(W \) as a subset of \(\omega_2 \times \omega_1 \) with the property that \(P(\omega_1) = \{ W_\alpha \mid \alpha < \omega_2 \} \) where \(W_\alpha \) denotes the set \(\{ \gamma \mid (\alpha, \gamma) \in W \} \). Thus there is a \(\Sigma^1_1 \) formula \(\phi(x, y, z) \) and a parameter \(a \in H(\omega_2) \) such that for every \(x \in H(\omega_2) \) and \(\beta < \omega_2 \)

\[
(H(\omega_2), \in) \models \psi(x, \beta, a) \text{ iff } x = W \cap (\beta \times \omega_1).
\]

First assume BMM and BSRP^s(ω_2). Schindler has shown (see [12] and [13]) that \(X^\dagger \) exists for every set \(X \) under BMM so in particular \(W^\dagger \) exists. For any set \(X \) we let \(\mathcal{M}(X) \) denote \(X^\dagger \). We will use BSRP^s(ω_2) to seal a putative least bad antichain in \(\mathcal{M}(W) \) thereby showing that \(\mathcal{M}(W) \models NS \) is saturated.

Let us assume toward a contradiction that in \(\mathcal{M}(W) \) there is a maximal antichain in \(P(\omega_1)/NS \) of size \(\omega_2^{\mathcal{M}(W)} = \omega_2 \). Let \(A \) denote the least antichain in the canonical well-ordering of \(\mathcal{M}(W) \). Using \(W \) we may code \(A \) as a subset \(A \) of \(\omega_2 \) given by

\[
A = \{ \alpha < \omega_2 \mid W_\alpha \in A \}.
\]

For \(\sigma \in [\omega_2]^\omega \) let \(\pi_\sigma : \sigma \to otp(\sigma) \) be the collapse of \(\sigma \), let \(W_\sigma \) denote the image \(\pi_\sigma[W \cap \sigma] \), noting that \(\pi_\sigma \) acts on pairs in the obvious way, and let \(A_\sigma = \pi_\sigma[A \cap \sigma] \). For a club of \(\sigma \) it will be true that the code of the least antichain of \(\mathcal{M}(W_\sigma) \) is \(A_\sigma \). In every case, let us use \(A_\sigma \) to denote the code of the least maximal antichain of length \(\omega_2 \) in the sense of \(\mathcal{M}(W_\sigma) \) if it exists. Define the set \(S \subset [\omega_2]^\omega \) to consist of all \(\sigma \) satisfying

1. \(\mathcal{M}(W_\sigma) \) thinks that \(W_\sigma \subset \omega_2 \times \omega_1 \) enumerates \(P(\omega_1) \) in length \(\omega_2 \)
2. \(\mathcal{M}(W_\sigma) \) thinks that the least \(NS \) antichain exists and is coded as above by some \(A_\sigma \subset otp(\sigma) \)
3. There exists \(\alpha \in \sigma \) such that \(\pi_\sigma(\alpha) \in A_\sigma \) and \(\sigma \cap \omega_1 \in W_\alpha \).
This set is Σ_1^1 definable over $(H(\omega_2), \in)$. To verify $\sigma \in S$ it suffices to find an ordinal $\delta > \omega_1$ with $\text{sup}(\sigma) \subset \delta$ and a transitive set N with $\delta \subset N$ which satisfies enough set theory, computes $W \cap \delta \times \omega$ correctly, contains σ, contains a W_σ premouse M, thinks that $M = M(W_\sigma)$ and that the conditions above are satisfied. Note that any such structure is correct about $M = M(W_\sigma)$ since it is a Π_1^1 condition. We claim that S is projective stationary. Since $P(\omega_1) \subset M(W)$ the antichain coded by A is truly a maximal antichain in $P(\omega_1)/\text{NS}$. It is well known that the set of $\sigma \in [\omega_2]^\omega$ such that $\sigma \cap \omega_1 \in \bigcup_{\alpha \in \sigma \cap A} W_\alpha$ is projective stationary. Our set S differs from this set on a nonstationary subset of $[\omega_2]^\omega$. Let θ be large enough and let $(H_\xi | \xi < \omega_2)$ be an increasing sequence of elementary submodels of $H(\theta)$, each of size ω_1, so that $M(W) \in H_\xi$ and $H_\xi \cap \omega_2 \in \omega_2$ for each ξ. We may assume that the sequence $H_\xi \cap \omega_2$ is strictly increasing, continuous, and converges to ω_2. Let $C \subset \omega_2$ be a club so that $H_\xi \cap \omega_2 = \xi$ for $\xi \in C$. Thus there exists a $\delta < \omega_2$ such that

(a) $\delta \in C$ and
(b) S contains a club in $[\delta]^\omega$.

Let $\pi : H_\delta \to H$ be the transitive collapse. Thus

$$\pi(M(W)) = M(W \cap (\delta \times \omega_1))$$

so that the least antichain of $M(W \cap (\delta \times \omega_1))$ is coded by $\pi(A) = A \cap \delta$. Now we may let $(N_\gamma | \gamma < \omega_1)$ be an increasing sequence of countable, elementary submodels of $H(\theta)$ which contain δ so that $(\sigma_\gamma | \gamma < \omega_1)$ is continuous and exhaustive in $[\delta]^\omega$, where $\sigma_\gamma = N_\gamma \cap \delta$. It follows by (b) that there is a club $D \subset \omega_1$ so that $\sigma_\gamma \in S$ for $\gamma \in D$. This implies that the diagonal union of the sets coded in $A \cap \delta$ contains D, which is a contradiction. Thus in $M(W)$ there is a measurable cardinal and NS is saturated. It follows Δ^1_2-determinacy and $\delta^1_2 = \omega_2$ hold in $M(W)$ by 7.1 of [14] and 3.17 of [18] respectively. They therefore hold in V as $P(\omega_1) \subset M(W)$. Canonical function bounding is a consequence of NS saturated so it holds in $M(W)$ and hence in V. Now we assume BPFA^{++} in place of BMM. Thus, we have to do without Schindler’s theorem. The argument above shows that

$L[W] \models \text{NS}$ is saturated

using only BPFA and $\text{BSRP}^*(\omega_2)$. This is because if $L[W]$ thinks that there is a maximal antichain A of size ω_2 then we can define an operation $M(x)$ which associates to a set of ordinals x the least level
of $L[x]$ which satisfies a sufficient fragment of set theory, thinks that $x \subset \omega_2 \times \omega_1$ codes $P(\omega_1)$ and that such an antichain exists. Virtually the same argument yields a contradiction. Working inside $L[W]$ we can argue that x^\dagger exists for every bounded subset x of ω_1 and use the generic ultrapower to conclude that $P(\omega_1)$ is closed under daggers. We may now simply quote 10.108 of [18] to conclude that W^\dagger exists, and in fact that every set has a dagger, but we will elaborate on this point as a generalization of this argument will play a role in the PD proof. Assume toward a contradiction that there is a set of ordinals A so that A^\dagger does not exist. Let θ be a cardinal containing A and let $g \subset \text{Col}(\omega_1, \theta)$ be V-generic. In $V[g]$ let $a \subset \omega_1$ be such that $A \in L[a]$.

By standard arguments we must have that $V[g] \models a^\dagger$ does not exist, but that $V[g] \models (a \cap \alpha)^\dagger$ does exist for every $\alpha < \omega_1$ as no new reals were added. Thus in $V[g]$ there are stationary sets S, T and p such that $\alpha \in S$ implies $p \in (a \cap \alpha)^\dagger$ and $\alpha \in T$ implies $p \notin (a \cap \alpha)^\dagger$. This can be reformulated as a Σ_1 fact in the language of set theory together with a predicate for NS. Since $\text{Col}(\omega_1, \theta)$ is proper there are such sets $\bar{a}, \bar{S}, \bar{T}, \bar{p}$ in V which implies that \bar{a}^\dagger cannot exist in V, a contradiction. Another application of the sealing argument gives the saturation of NS in W^\dagger from which the result follows. □

From BSRP$^s(\omega_2)$ together with a uniformly Σ_1 enumeration of $P(\omega_1)$ the argument above shows that $L(P(\omega_1))$ is a model of ZFC together with NS saturated, and hence bounding holds and there is an inner model with a Woodin cardinal by a recent result from [19]. We conjecture that BSRP$^s(\omega_2)$ alone implies an inner model with a Woodin cardinal. Before moving on to global principles we demonstrate that BSRP$^s(\omega_2)$ is not a consequence of BMM. Recall that \tilde{T} is the set of $\alpha < \omega_2$ for which there is a club of $\sigma \in [\alpha]^{\omega_2}$ with $\text{otp}(\alpha) \in T$. Paul Larson pointed out to us that in the presence of NS saturated, the principle BSRP$^s(\omega_2)$ would imply that \tilde{S} is stationary for every stationary set $S \subset \omega_1$ (see 3.9 of [10]), and that a model of his from [10] could be modified to produce a model of BMM$^{++}$ together with a stationary set \tilde{S} so that

$$\{\alpha \in \tilde{S} \mid \text{cf}(\alpha) = \omega\}$$
is nonstationary. A subtle point, however, is that \(\text{MM}(c) \) holds in this model, and so \(\text{BSRP}^s(\omega_2) \) doesn’t always give a stationary set of cofinality \(\omega \) reflection points. It turns out that, assuming \(\text{MM} \), we can shoot a club through some \(\tilde{T} \) without adding subsets of \(\omega_1 \) while preserving the saturation of NS. This will be enough to separate \(\text{BMM} \) from \(\text{BSRP}^s(\omega_2) \).

Lemma 6. (Larson) Assume \(\text{BSRP}^s(\omega_2) \) holds and that the nonstationary ideal is saturated. Then \(\tilde{T} \subset \omega_2 \) is stationary for every stationary set \(T \subset \omega_1 \).

Proof. Fix stationary sets \(S, T \subset \omega_1 \). Fix a function \(f : [\omega_2]^\omega \to \omega_2 \) and let \(j : V \to M \subset V[G] \) be the NS generic ultrapower. Let \(H \subset j(P(\omega_1)/NS) \) be \(M \)-generic with ultrapower map \(k : M \to N \). We assume that \(S \in G \) and \(j(T) \in H \). Let \(\sigma \) denote \((k \circ j)(\omega_2^S) \). Then \(\sigma \) is a countable subset of \((k \circ j)(\omega_2) \) with the property that \(\sigma \cap \omega_1^N \in k \circ j(S) \) and \(\text{otp}(\sigma) \in k \circ j(S) \). Further, \(\sigma \) is closed under \((k \circ j)(f) \). \(N \) must see such a countable set with these properties and so by elementarity and the fact that \(S \) was arbitrary we conclude that

\[
\{ \sigma \in [\omega_2]^\omega \mid \text{otp}(\sigma) \in T \}
\]

is projective stationary in \(V \). Since this set is \(\Sigma_1 \) definable from \(T \) as a parameter, we get the desired conclusion. \(\square \)

Theorem 7. Assume \(\text{MM} \). Then there is a forcing notion \(\mathbb{P} \) of size \(\omega_2 \) such that whenever \(G \subset \mathbb{P} \) is \(V \)-generic then \(V[G] \) satisfies

1. \(\text{BMM}^{++} \),
2. the nonstationary ideal is saturated, and
3. there is a stationary set \(T \subset \omega_1 \) with \(\tilde{T} \) nonstationary.

Thus \(\text{BSRP}^s(\omega_2) \) must fail in \(V[G] \).

Proof. Fix a stationary and costationary set \(T \subset \omega_1 \) and assume \(\text{MM} \). Let \(\mathbb{P} \) be the poset for shooting a club through \(\tilde{T} \). \(\mathbb{P} \) consists of closed subsets of \(\tilde{T} \) of size \(\omega_1 \) ordered by end extension. We first show that \(\mathbb{P} \) does not add new subsets of \(\omega_1 \). Let \(S \) denote

\[
\{ \sigma \in [\omega_2]^\omega \mid \sup(\sigma) \in \tilde{T} \text{ and } \text{otp}(\sigma) \in T \}
\]

Claim 8. \(S \) is projective stationary.

Proof. Fix a stationary set \(S \subset \omega_1 \). Let \(G \subset P(\omega_1)/NS \) be \(V \)-generic with \(S \in G \). Let \(\pi : V \to M \subset V[G] \) be the generic embedding with \(G \subset P(\omega_1)/NS \). Let \(f : [\omega_2]^{<\omega} \to \omega \) be arbitrary. Let \(C \) denote the set of \(\delta < \omega_2 \) with \(f([\delta]^{<\omega}) \subset \delta \). By Lemma 5.8 of [18],

\[
\{ \alpha \in \tilde{T} \mid \text{cf}(\alpha) = \omega \}
\]
is a stationary subset of ω_2, and so there is $\delta \in \bar{T} \cap C$ such that δ has countable cofinality. Let $\sigma = \pi[\delta]$. Then σ has the following properties in $V[G]$.

(1) $\delta = \text{otp}(\sigma) \in \pi(T)$
(2) $\sup(\sigma) = \pi(\delta)$ belongs to the tilde of $\pi(T)$
(3) $\sigma \cap \omega_1 \in \pi(S)$.
(4) σ is closed under $\pi(f)$

Since σ is countable in $V[G]$ we have $\sigma \in M$ and so by elementarity we find in V such a set σ in S which is closed under f and with $\sigma \cap \omega_1 \in S$ as desired. □

Let θ be large and let S^* denote the set of countable elementary submodels $X \prec H(\theta)$ with $P \in X$ and $X \cap \omega_2 \in S$. Let τ be a term for a subset of ω_1. Using MM let

$$\{X_\alpha \mid \alpha < \omega_1\}$$

be an increasing, continuous \in chain with each

$$X_\alpha \cap \omega_2 \in S^*,$$

and $\tau \in X_0$. Inductively define a decreasing sequence of conditions p_α so that $p_\alpha \in X_{\alpha+1}$,

$$p_\alpha = q \cup \{\sup(X_\alpha \cap \omega_2)\}$$

where q is an X-generic filter. We can assume that

$$\bigcup_{\alpha < \omega_1} X_\alpha \cap \omega_2 = \delta$$

for some $\delta < \omega_2$ and so $\delta \in \bar{T}$. It follows that

$$p = (\bigcup_{\alpha < \omega_1} p_\alpha) \cup \{\delta\}$$

decides τ. Thus P does not add new subsets of ω_1. Now let τ be a term and p_0 a condition such that p forces that τ is a function from ω_2 to $P(\omega_1)/NS$ whose range is a maximal antichain. We suppress p_0. Let S^{**} consist of all $X \in [H(\omega_2)]^{\omega}$ satisfying

(1) $X \prec H(\omega_2)$
(2) $X \cap \omega_2 \in S^*$
(3) For a dense set of $q \in P \cap X$ there is an ordinal $\gamma \in X$ so that

$$q \Vdash^Y_{P} X \cap \omega_1 \in \tau(\gamma).$$
We claim that S^{**} is projective stationary. Otherwise by pressing down we find a condition q_0 and a stationary set T of $X \prec H(\omega_2)$ with $X \cap \omega_2 \in S^*$ such that for all $q \in P \cap X$ with $q \leq q_0$ and all $\gamma \in X$,

$$\neg (q \Vdash^P X \cap \omega_1 \in \tau(\gamma)).$$

Since NS is saturated the set T must be A-projective stationary for some stationary set $A \subset \omega_1$. Let q_1 be a condition below q, $\gamma < \omega_2$ and $B \subset A$ so that q_1 forces $\tau(\gamma) \cap A = B$. There are stationary many $X \in T$ such that $X \cap \omega_1 \in B$, $\gamma \in X$, and $q_1 \in X$. Any such X gives the desired contradiction. Now let $G \subset P$ be V-generic. We have shown that BMM^{++} holds and NS is saturated in $V[G]$. Moreover, \tilde{T} contains a club so that

$$\tilde{S} \subset \omega_2 \setminus \tilde{T}$$

must be nonstationary where $S = \omega_1 \setminus T$. Since S is stationary, $\text{BSRP}^s(\omega_2)$ must fail by Lemma 6.

The BPFA^{++} part of the Δ^1_2 determinacy proof illustrates the two main elements, **sealing** and **lifting**, of the proof of PD from BMM^s^{++}. This proof is modeled on Woodin’s proof of PD from $\text{MM}(c)$ in which the saturation of NS is the key hypothesis used in contradicting the existence of the core model. While it is unlikely that $\text{BMM}^s^{++,+}$ implies the saturation of NS, it will imply saturation inside the various inner models of interest as we proceed through the PD induction. The other element of the $\text{MM}(c)$ proof involves lifting closure under fine structural operations from $P(\omega_1)$ to $P(\omega_2)$ using simultaneous reflection as in 9.78 of [18]. With $\text{BMM}^s^{++,+}$ we can lift closure from $P(\omega_1)$ to V by an argument which is more in the spirit of 10.108 of [18], and this is where the ”++” seems unavoidable. We can however get by with BMM^s in this connection if NS is saturated in addition, though we can only lift closure from $P(\omega_1)$ to definable subsets of ω_2. This is enough to get PD and is how we will show that BMM^s fails in the BMM model.

We first derive the following definable version of $\text{MM}(c)$ to illustrate how the definable wellordering is used to increase the expressive power of the Σ_1 formula appearing in the definition of BMM^s. As a corollary we get a version of $\text{BSRP}^s(\omega_2)$ for all definable projective stationary sets which will be used in Theorem 11 below.

Lemma 9. Assume BMM^s. Suppose P and D are first order definable over $H(\omega_2, \in)$, P is a poset, and D is a partial map from $H(\omega_2)$ to $H(\omega_2)$ with the property that $D(a) \subset P$ is dense where defined. Then there is a stationary set of $\delta < H(\omega_2)$ such that there exists X and G satisfying

$$\neg (q \Vdash^P X \cap \omega_1 \in \tau(\gamma)).$$
(1) X is a transitive and fully elementary submodel of $H(\omega_2)$
(2) $X \cap \omega_2 = \delta$
(3) G is a filter on $\mathbb{P} \cap X$
(4) $D(a) \cap G \neq \emptyset$ for any $a \in X \cap \text{dom}(D)$.

Proof. Let \mathbb{P} and D be as above. Let $G \subset \mathbb{P}$ be V-generic. Let $\psi(x, y)$ be the formula (with parameter suppressed) which defines the initial segments of W uniformly over $H(\omega_2)$. Note that for any $\beta < \omega^V_{\omega_2}$ the set $W \upharpoonright \beta$ is the unique witness to $\psi(x, \beta)$ in V as well as $V[G]$. Thus in $V[G]$, the set W is the unique witness to the formula $\chi(w, \omega^V_{\omega_2})$ which asserts that there exists an increasing sequence $(\beta_\xi \mid \xi < \omega_1)$, which is cofinal in $\omega^V_{\omega_2}$, and a sequence $(w_\xi \mid \xi < \omega_1)$ with each w_ξ satisfying $\psi(w_\xi, \beta_\xi)$ and

$$w = \bigcup_{\xi < \omega_1} w_\xi.$$

With a Σ_1 formula involving $\omega^V_{\omega_2}$ as a parameter we can therefore identify $H(\omega_2)^V$ as

$$H = L_{\omega^V_{\omega_2}}[W],$$

and using the definitions of \mathbb{P} and D assert the existence of a filter G on \mathbb{P} which meets $D(a)$ for every $a \in H$. Indeed, all of this can be verified by a transitive structure N of a sufficient fragment of set theory containing G and H which satisfied a formula involving $\omega^V_{\omega_2}$. Thus in V, by intersecting with the appropriate club, we get a stationary set of δ such that

$$L_\delta[W \upharpoonright \delta] \prec L_{\omega_2}[W] = H(\omega_2)$$

and a filter \bar{G} on $\mathbb{P} \cap X$ where $X = L_\delta[W \upharpoonright \delta]$ which has the desired properties. \qed

Theorem 10. BMM^{s++} implies PD in all generic extensions.

Proof. Recall that $M^*_n(a)$ is the minimal sound a-mouse with active top extender which is closed under the M^*_n operation. We show that $M^*_n(a)$ exists for every transitive set a by induction on $n < \omega$. The base case is already accomplished by Theorem 5 so we just assume the induction hypothesis holds for some $n < \omega$. We need to see that

$$M^*_n(W) \models NS \text{ saturated}.$$

Suppose toward a contradiction that there is a maximal antichain in $P(\omega_1)/NS$ which belongs to $M^*_n(W)$ and has size ω_2. We assume that A is the least such in the definable wellordering of $M^*_n(W)$. Since $P(\omega_1) \subset N$, the notion of being a maximal antichain is absolute. Let
\mathbb{P} be the standard poset for sealing \mathcal{A}. Thus if $G \subset \mathbb{P}$ is V-generic then in $V[G]$ there is an enumeration
\[\mathcal{A} = \{ A_\alpha \mid \alpha < \omega_1 \} \]
whose diagonal union contains a club C. Inside $V[G]$ let N denote
the transitive collapse of an elementary submodel X of a large enough
$H(\theta)$ so that X contains $M^*_n(W)$ as well as the enumeration of \mathcal{A} and
the club C. Then N reflects the relevant properties of these objects
mentioned above. Under our closure assumptions, there is a formula χ so that for any countable and transitive set a and countable structure
M,
\[M = M^*_n(a) \iff (H(\omega_1), \in) \models \chi(a, M). \]
Since \mathbb{P} does not add countable sets we know that
\[H(\omega_1)^V = H(\omega_1)^{V[G]} = H(\omega_1)^{L[W]}. \]
Hence, inside N there is a continuous sequence of substructures
\[\{ X_\alpha \mid \alpha < \omega_1 \} \]
of some $H(\kappa)$, each of which contain $M^*_n(W)$ so that letting M_ξ and w_ξ be the image of $M^*_n(W)$ and W respectively under the map which collapses X_ξ, the fact that $M_\xi = M^*_n(w_\xi)$ is certified by the formula χ and the structure $H(\omega_1)^{L[W]}$. Back in V we get a model \bar{N} as above whose version of W is W_δ where δ is such that $M^*_n(W_\delta)$ is fully elementary in $M^*_n(W)$. It follows that the version of $M^*_n(W_\delta)$ that \bar{N} sees is the true version, since it collapsed correctly on a club. Moreover, \bar{N} sees that the least antichain A_δ of $M^*_n(W_\delta)$ is sealed. Since this antichain is a subset of \mathcal{A} this gives a contradiction. Now, under these conditions, the argument of Lemmas 16 and 17 of [15] immediately give closure of $P(\omega_1)$ under the $M^*_{\# n+1}$ operation, and we turn toward the lifting portion of the induction step. This is modeled on 10.108 of [18] which shows that BMM^+^+ lifts closure under sharps from $P(\omega_1)$ to all of V. We claim that $M^*_{\# n+1}(a)$ exists for every set a. Otherwise we may pass to $V[g]$ where $g \subset \text{Col}(\omega, \kappa)$ is V-generic for a sufficiently large κ and find a subset b of ω_1, a term t, and stationary sets S, T such that
\[\beta \in S \Rightarrow t \in M^*_{\# n+1}(b \cap \beta) \]
and
\[\beta \in T \Rightarrow t \notin M^*_{\# n+1}(b \cap \beta). \]
Using the same trick as above to certify each $M^*_{\# n+1}(b \cap \beta)$, we find in sets $\bar{b}, \bar{S}, \bar{T}$ back in V with the property above. This contradicts
the existence of $M_{n+1}^*(\bar{b})$. Repeating the two arguments finishes the proof. □

Theorem 11. BMM$^\#(c)$ fails in the \mathbb{P}_{max} model for BMM.

Proof. Assume otherwise. Thus we have BMM$^\#(c)$, BMM and NS saturated at our disposal. We will prove PD from these assumptions and the proof will yield the desired contradiction. We first claim that if $S \subset [\omega_2]^\omega$ is projective stationary and first order definable over the structure $(H(\omega_2), \in)$. Then $S \cap [\delta]^\omega$ contains a club in $[\delta]^\omega$ for a stationary set of $\delta < \omega_2$. This principle, denote DSRP$^\#(\omega_2)$, can be deduced from Lemma 9 as follows. Suppose S is such a set and let \mathbb{P} be the standard poset for shooting a club through S. Thus elements of \mathbb{P} are countable continuous increasing sequences

$$p = (\sigma_\xi \mid \xi \leq \gamma)$$

from S. For $\alpha < \omega_2$ let $D(\alpha)$ denote the set of conditions p as above for which $\alpha \in \sigma_\xi$ for some ξ in the domain of p. Lemma 9 gives the desired stationary set of club reflection points. We now claim that if $S, T \subset [\omega_2]^\omega$ are stationary and first order definable over the structure $(H(\omega_2), \in)$. Then

$$S \cap [\delta]^\omega \text{ and } T \cap [\delta]^\omega$$

are both stationary in $[\delta]^\omega$ for a stationary set of $\delta < \omega_2$. Given such a pair S, T it follows from NS saturated that there are stationary sets $A_S, A_T \subset \omega_1$ such that S is A_S-projective stationary, T is A_T-projective stationary, and

$$A_S \cap A_T = \emptyset.$$

The set

$$P(S, T) = \{\sigma \mid (\sigma \cap \omega_1 \in A_S \rightarrow \sigma \in S) \land (\sigma \cap \omega_1 \in A_T \rightarrow \sigma \in T)\}$$

is projective stationary and so reflects to a club in $[\delta]^\omega$ for a stationary set of $\delta < \omega_2$ by DSRP$^\#(\omega_2)$, and this proves the claim. Woodin’s proof of PD from MM$^\#(c)$ only uses NS saturated and the simultaneous reflection principle WRP$^{(2)}(\omega_2)$. The definable version of this principle that we now have at our disposal suffices with the caveat that one can only show that $M_n^*(W)$ exists by induction on $n < \omega$, as opposed to closure of $P(\omega_2)$ under the M_n^* operation. This however, is enough to implement the argument, and we refer the reader to [15] for more details. Since $M_1^*(W)$ does not exist in the BMM model we get the desired contradiction. □
Theorem 12. Let N be the minimal inner model containing \mathbb{R} and closed under the $M_1^\#$ operation, and assume $N \models \text{AD}$. Then

$$N[G] \models \text{BMM}^{\text{so}++}$$

whenever $G \subset P_{\text{max}}$ is N-generic.

Proof. Suppose $G \subset P_{\text{max}}$ is N-generic and Q is a poset in $N[G]$ such that

$$\models_{N[G]} \phi(\omega_2^V, a^*)$$

holds where $\phi(x, a)$ is Σ_1 in the appropriate language with parameter $a^* \subset \omega_1$. We may assume that $a^* = a_G$. We also assume that

$$\models_{N[G]} \text{cf}(\omega_2^V) = \omega.$$

Fix a condition $\mathcal{M}_0 = ((M_0, I_0), a_0) \in G$ which forces this as well as that \dot{C} is a club subset of ω_2. Note that

$$H(\omega_1)^N = H(\omega_2)^{N[G]}.$$

Working in $N[G]$ we are going to produce a condition \mathcal{M}_1 below \mathcal{M}_0 so that $\mathcal{M}_1 \in N$ and

$$\mathcal{M}_1 \models_{N[P_{\text{max}}]} \exists \gamma \in \dot{C} \land \phi(\gamma, a_G).$$

This will prove the theorem. First let us introduce some notation. We think of $x^#$ for a real x as an x-mouse $(L_\alpha[x], \mu)$. Let κ be the critical point of the measure μ, and j the map obtained by iterating the measure ω_1 times. We say that a pair $c = (x^#, \beta)$ with $\kappa < \beta < \alpha$ is a code for an ordinal γ if $j(\beta) = \gamma$. We let γ_c denote the ordinal just described. In our present situation, every ordinal less than ω_2^V has a code because $u_2 = \delta_2 = \omega_2$

in $N[G]$. Now, let $H \subset Q$ be $N[G]$ generic. Using our closure hypothesis, we can create a condition $\mathcal{M} = ((M, I), a^*)$ in a sufficiently large collapse over $N[G][H]$ with an ordinal $\delta \in M$ satisfying the following conditions. Note that \mathcal{M}_0 is iterable in all generic extensions as $N[G]$ is sufficiently correct.

(1) $((M, I), a^*) < ((M_0, I_0), a_0)$

(2) $M \models \phi(\delta, a^*)$

(3) $M \models f : \omega \to \delta$ is a cofinal

(4) for every $n < \omega$ there is a condition $\mathcal{P}_n = ((P_n, J_n), b_n)$ which is greater than $((M, I), a^*)$ and a code $c(n)$ such that

(a) \mathcal{P}_n and $c(n)$ belong to M and $M < \mathcal{P}_n$

(b) $\mathcal{P}_n \models_{N[P_{\text{max}}]} \gamma_c(n) \in \dot{C}$

(c) $M \models f(n) < \gamma_c(n) < \delta$
By < we mean of course the \mathbb{P}_{max} ordering. To construct the condition let $f : \omega \to \delta$ be any cofinal map where $\delta = \omega^V_2$ and let θ be sufficiently large. Note that

$$H(\theta) \models \phi(\delta, a^*).$$

Let E be set of ordinals so that $H(\theta) \in L[E]$. Let

$$Y = M^H_1(E)$$

and let g be generic over $N[G][H]$ so that Y is countable in $N[G][H][g]$. Let $\hat{g} \in N[G][H][g]$ be Y generic for making NS presaturated and then forcing MA, and let

$$\mathcal{M} = ((Y[\hat{g}], NS^Y[\hat{g}]), a^*).$$

We claim that \mathcal{M} satisfies the conditions above. Since $P(\omega_1)^{N[G][H]} \subset Y$ and H is generic over $N[G]$ for stationary set preserving forcing we know that

$$NS^Y \cap N[G] = NS^{N[G][H]} \cap N[G] = NS^{N[G]},$$

and since \hat{g} preserves stationary sets we have

$$NS^Y[\hat{g}] \cap N[G] = NS^{N[G]}.$$

It follows that (1) holds as witnessed by the iteration of \mathcal{M}_0 determined by the generic G. The next two conditions hold as they are upward absolute. For $n < \omega$ there will be a condition $P_n \in G \cap H(\theta)^{N[G][H]}$ and a code $c(n)$ with the properties above because \dot{C}_G is cofinal in $\delta = \omega^V_2$, and by the reasoning used to establish (1). Now let us go back to $N[G]$. Let X be an elementary submodel of a large enough rank initial segment of $N[G]$ which contains everything relevant and let $\pi : X \to N$ denote the transitivization map. Let $\bar{H} \subset \pi(\mathbb{Q})$ be \mathcal{N} generic for the collapse of \mathbb{Q} and let \bar{g} be $\mathcal{N}[\bar{H}]$ generic for the sufficiently large collapse in the sense of \mathcal{N}. Then $\mathcal{N}[\bar{H}][\bar{g}]$ thinks there is a condition

$$\mathcal{M}_1 = ((M_1, I_1), a_1)$$

which satisfies the conditions above. Since \mathcal{N} is closed under sharps, this condition is truly iterable in $N[G]$. Of course $a_1 = a^* \cap \mathcal{N}$ but the rest of the properties are upward absolute. The second clause of condition (4) holds by elementarity of π and the fact that the conditions P_n are countable. Moreover, this condition is in the ground model as \mathbb{P}_{max} does not add reals, and has the properties there as well. Let us check that

$$\mathcal{M}_1 \models N[\mathbb{P}_{\text{max}}] \exists \gamma \in \dot{C} \land \phi(\gamma, \dot{a}_G).$$

Let $G \subset \mathbb{P}_{\text{max}}$ be N generic below \mathcal{M}_1 and let

$$j : M_1 \rightarrow M^*$$
be the iteration determined by \(G \), and let \(\delta \) and \(f \) be as in the conditions enumerated above. Thus \(M^* \models \phi(j(\delta), a_G) \) and hence
\[
(H(\omega_2), \in, NS) \models \phi(j(\delta), a_G).
\]
Let \(C = \dot{C}_G \). For each \(n < \omega \) we have \(M_1 < \mathcal{P}_n \) and so \(\mathcal{P}_n \in G \) as well. Thus \(\gamma_{c(n)} \in C \) for each \(n < \omega \). Now, we may assume that the sequence
\[
(\mathcal{P}_n \mid n < \omega)
\]
is an element of \(M_1 \) although this is not necessary. Thus
\[
M_1 \models \delta = \bigcup_{n<\omega} \gamma_{c(n)}
\]
where each \(\gamma_{c(n)} \) is computed in \(M_1 \), and so
\[
M^* \models j(\delta) = \bigcup_{n<\omega} \gamma_{c(n)}
\]
and we conclude that \(j(\delta) \in C \) as desired. \(\square \)

The proof given above, with the extra moves required for the \(s_0 \) clause suitable excised, constitutes a reorganization of the proof of the following equivalent formulation of the consistency result for BMM from \[18\].

Assume \((*)\) and that \(M_1^\#(X) \) exists for every set. Suppose \(N \) is an inner model of ZFC containing \(P(\omega_1) \) and closed under the \(M_1^\# \) operation. Then \(N \models \text{BMM}^{++} \).

(10.99 of \[18\])

However, even though \(\text{BMM}^{s_0} \) holds in the BMM model, it is not a consequence of \((*)\) together with global closure under the \(M_1^\# \) operation. This phenomenon is well preceded in \[18\], for example in the case of the saturation of the nonstationary ideal, which holds in the \(P_{\max} \) extension of \(L(\mathbb{R}) \) but is not a consequence of the \(P_{\max} \) axiom \((*)\). Recall that \(\tilde{T} \), for a set \(T \subset \omega_1 \), is the set of \(\alpha < \omega_2 \) for which there is a club of \(\sigma \in [\alpha]^{\omega} \) with the order type of \(\sigma \) in \(T \). Theorem 5.8 of \[18\], which was used in the proof of Theorem 7, shows that under MM the set
\[
\tilde{T}^0 = \{ \alpha \in \tilde{T} \mid cf(\alpha) = \omega \},
\]
is stationary for every stationary set \(T \subset \omega_1 \). It is straightforward to check that \(\text{BMM}^{s_0} \) together with the saturation of the nonstationary

\[1\]If \(\omega_2^{s_0} \) were not countably cofinal in \(N[G][H] \) we could choose \(f : \omega_1 \to \delta \) to be a bijection and use conditions \(\mathcal{P}_\xi \) for \(\xi < \omega_1 \) as above. The problem occurs at the end of the argument as \(\delta \) is not a continuity point of the embedding \(j \).
ideal suffice for this result. Arguments of Larson from [10] can be used to show that the poset \mathbb{P} for shooting an ω-club through \check{T}^0 over the BMM model does not add new subsets of ω_1 and hence preserves (*) together with global closure under the $M_1^#$ operation. Assuming \mathcal{T} is costationary this yields the desired separation. Moreover, his arguments show that $\text{MM}^{++}(c)$ could be preserved as well if the ground model were taken to be the richer \mathbb{P}_{max} model for $\text{MM}(c)$ together with BMM. For a proof that BMM^+ is not implied by BMM^{++} the interested reader could just check that \mathbb{P} does not add ω_1 sequences under the assumption that MM holds in the ground model.

Finally, we prove another separation result which does not seem to involve the consequences of BMM^+ for projective stationary sets. It involves rather the concept of a disjoint club sequence on ω_2, which is a sequence

$$(C_\alpha \mid \alpha \in A)$$

of pairwise disjoint sets, with each C_α a club subset of $[\alpha]^\omega$ and A a stationary subset of ω_2 consisting of ordinals of uncountable cofinality. This is an invention of Krieger from [8] who derives one from $\text{MM}(c)$.

Theorem 13. BMM^+ implies the existence of a disjoint club sequence on ω_2.

Proof. Let us fix a canonical way of coding sets like C_α above as subsets of ω_1. Define $A_W \subset \omega_2$ and $\vec{C} = \{C_\alpha \mid \alpha \in A_W\}$ by induction as follows. Given $\vec{C} \upharpoonright \alpha$ and $A_W \cap \alpha$, for an ordinal α of uncountable cofinality, if

$$C = \bigcup_{\beta < \alpha} C_\beta \subset [\alpha]^\omega$$

is nonstationary in $[\alpha]^\omega$ then let C_α be a club disjoint from C with the earliest index according to W, and put α in A_W. We need to see that A_W is stationary. Theorem 4.4 of [8] shows that there is a stationary set preserving notion of forcing \mathbb{P} such that whenever $G \subset \mathbb{P}$ is V-generic ω_2^V has uncountable cofinality and there is in $V[G]$ a club C in $[\omega_2^V]^\omega$ which is disjoint from

$$D = \bigcup_{\beta < \omega_2^V} C_\beta \subset [\alpha]^\omega.$$

The key point is that for any $\sigma \in C$ it can be verifies that $\sigma \notin D$ by consulting $H = L_{\omega_2^{\alpha+1}}[W]$ of which \vec{C} is an element. The existence of club C and the structure H witnessing that $C \cap D = \emptyset$ is a Σ_1 property of ω_2^V so we get a stationary set of witnesses $\delta < \omega_2$ in V, each of which such that

$$L_{\delta+1}[W] \prec L_{\omega_2+1}[W],$$
and each of these ordinals must therefore belong to A_W as desired. □

The argument of 3.4 of [8] which shows that

$$A \cup \{ \gamma < \omega_2 \mid cf(\gamma) = \omega \}$$

does not contain a club whenever A indexes a disjoint club sequence is used to show that any disjoint club sequence can be killed with a forcing that leaves $H(\omega_2)$ undisturbed. We are sure this would be known to the authors of [8] but we prove it here so we can observe that in the extension the analogue of $\text{BSRP}_s(\omega_2)$ from Theorem 11, which we denote by $\text{DSRP}_s(\omega_2)$, persists while the set A_W becomes nonstationary so that $\text{BMM}^s(c)$ fails.

Theorem 14. Assume MM. Then there is a forcing notion \mathbb{P} of size ω_2 such that whenever $G \subset \mathbb{P}$ is V-generic,

$$V[G] \models \text{BMM}^{++} \land \text{DSRP}^s(\omega_2) \land \neg \text{BMM}^s(c).$$

Proof. Let $\{C_\alpha \mid \alpha \in A_W\}$ be the set produced in Theorem 7. Let \mathbb{P} consist of closed subsets of $\omega_2 \setminus A_W$ of size ω_1, ordered by end extension. We claim that forcing with \mathbb{P} does not introduce new subsets of ω_1. Note that \mathbb{P} is σ-closed. Let τ be a \mathbb{P} term which is forced by a condition p to be a subset of ω_1. Fix a large enough θ, and consider sequences

$$((N_\gamma, p_\gamma, s_\gamma) \mid \gamma < \omega_1)$$

satisfying the following conditions:

1. $N_\gamma \prec H(\theta)$ and $N_\gamma \in N_{\gamma+1}$
2. $(N_\gamma \mid \gamma < \omega_1)$ is increasing and continuous
3. $p_0 = p$ and each $p_\gamma \in \mathbb{P} \cap N_\gamma$
4. $(p_\gamma \mid \gamma < \omega_1)$ is $<_{\mathbb{P}}$-decreasing
5. $p_\gamma \Vdash_{\mathbb{P}} \tau \cap \gamma = s_\gamma$
6. $\{N_\gamma \cap \omega_2 \mid \gamma < \omega_1\}$ is club in $[\alpha]^{\omega}$ for some $\alpha < \omega_2$.

We need find such a sequence with $\alpha \notin A_W$, for then

$$q = (\bigcup_{\gamma < \omega_1} p_\gamma) \cup \{ \alpha \} \in \mathbb{P}$$

and

$$q \Vdash_{\mathbb{P}} \tau = f$$

where $f = \bigcup_{\gamma < \omega_1} f_\gamma$.

Define B to be the set of α for which there exists a sequence as above. It is easy to see that B is stationary. So suppose toward a contradiction that $B \subset A_W$ and for $\alpha \in B$ and let $(N_\gamma^\alpha \mid \gamma < \omega_1)$ be the sequence as above. As in 3.4 of [8], let $c_\alpha \subset \omega_1$ be club so that

$$\{N_\gamma^\alpha \cap \omega_2 \mid \gamma \in c_\alpha\}$$
is club in \([\alpha]^{\omega}\) and contained in \(C_\alpha\). Let \(i_\alpha\) be the minimum element of \(c_\alpha\) and let \(d_\alpha = c_\alpha \setminus \{i_\alpha\}\). Let
\[
S = \{N_\gamma^\alpha \cap H(\omega_2) \mid \alpha \in B \land \gamma \in d_\alpha\}.
\]
Then \(S\) is stationary in \([H(\omega_2)]^{\omega}\) and by pressing down we get \(\alpha < \beta\) such that
\[
N_{i_\alpha}^\alpha \cap \omega_2 = N_{i_\beta}^\beta \cap \omega_2,
\]
a contradiction as \(C_\alpha \cap C_\beta\) is empty. Now let \(G \subset \mathbb{P}\) be \(V\)-generic. We have that
\[
H(\omega_2)^{V[G]} = H(\omega_2)^V
\]
and so \(V[G] \models \text{BMM}^{++}\) and
\[
(A_W)^{V[G]} = (A_W)^{V[G]}
\]
so \(\text{BMM}^{++(c)}\) must fail in \(V[G]\). Now fix a projective stationary set \(S \subset [\omega_2]^{\omega}\) which is first order definable over \(H(\omega_2)^{V[G]}\). Thus \(S\) is projective stationary in \(V\). Let \(C\) be a term for a club subset of \(\omega_2\). Note that the proof above shows that \(B^* = B \setminus A_W\) is stationary. We may assume that we have required that the condition produced at the end forces that \(\alpha \in C\). Using \(\text{MM}\) we can then find such an \(\alpha \in B^*\) which is a club reflection point for \(S\). Thus \(\text{DSRP}^*(\omega_2)\) continues to hold.
\[\square\]

References

[1] Aspero, D., *Bounded forcing axioms and the size of the continuum*, Logic Colloquium 2000, Lecture Notes Logic 19, Assoc. Symbol. Logic, Urbana, IL, 2005, 211-227

[2] Aspero, D., Welch, P., *Bounded Martin’s Maximum, Weak Erdős Cardinals, and \(\psi_{AC}\)*, Journal of Symbolic Logic 67, 2002, no. 3, 1141-1152

[3] Bagaria, J., *Bounded Forcing Axioms and Principles of Generic Absolute-*ness, Archive for Mathematical Logic 39, 2000, pp. 393-401

[4] Caicedo, A., Velickovic, B., *The Bounded Proper Forcing Axiom and Well Orderings of the Reals*, Mathematical Research Letters 12, 2005, 10001-10018

[5] Claverie, B., Schindler, R., *Increasing \(u_2\) by a stationary set preserving forcing*, Journal of Symb. Logic, to appear

[6] Feng, Q., Jech, T., *Projective stationary sets and a strong reflection principle*, J. London Math. Soc. (2) 58 (1998), no. 2, 271–283

[7] Foreman, M., Magidor, M., Shelah, S., *Martin’s Maximum, Saturated Ideals, and Nonregular Ultrafilters*, Annals of Mathematics 127 (1998), 1-47

[8] Friedman, S., Krueger, J., *Thin stationary sets and disjoint club sequences*, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2407–2420

[9] Jensen, R., Steel, J., *K without the measurable*, in preparation

[10] Larson, P., *The size of \(\check{T}\)*, Archive for Mathematical Logic 39, 2000, 541-568

[11] Moore, J., *Set mapping reflection*, J. Math. Log. 5 (2005), no. 1, 87–97.
[12] Schindler, R., *Semi-Proper Forcing, Remarkable Cardinals, and Bounded Martin’s Maximum*, Math. Logic Quarterly 50, No. 6, 2004, pp. 527-532
[13] Schindler, R., *Bounded Martin’s Maximum and Strong Cardinals*, Set theory. Centre de recerca Matematica, Barcelona 2003-4 (Bagaria, Todorcevic, eds.), Basel 2006, pp. 401-406.
[14] Steel, J., *The core model iterability problem*, Lecture Notes in Logic, 8, Springer-Verlag, Berlin, 1996
[15] Steel, J., Zoble, S., *Determinacy from Strong Reflection*, forthcoming
[16] Todorcevic, S. *Generic absoluteness and the continuum*, Math. Res. Lett. 9 (2002), no. 4, 465–471
[17] Todorcevic, S. *Localized reflection and fragments of PFA*, Set theory (Piscataway, NJ, 1999), 135–148, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., Providence, RI, 2002
[18] Woodin, H., *The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal*, de Gruyter Series in Logic and its Applications 1, 1999

Department of Mathematics, Wesleyan University
E-mail address: azoble@wesleyan.edu