δ¹³C-CH₄ reveals CH₄ variations over oceans from mid-latitudes to the Arctic

Juan Yu¹, Zhouqing Xie¹, Liguang Sun¹, Hui Kang¹, Pengzhen He¹ & Guangxi Xing²

The biogeochemical cycles of CH₄ over oceans are poorly understood, especially over the Arctic Ocean. Here we report atmospheric CH₄ levels together with δ¹³C-CH₄ from offshore China (31°N) to the central Arctic Ocean (up to 87°N) from July to September 2012. CH₄ concentrations and δ¹³C-CH₄ displayed temporal and spatial variation ranging from 1.65 to 2.63 ppm, and from −50.34% to −44.94% (mean value: −48.55 ± 0.84%), respectively. Changes in CH₄ with latitude were linked to the decreasing input of enriched δ¹³C and chemical oxidation by both OH and Cl radicals as indicated by variation of δ¹³C. There were complex mixing sources outside and inside the Arctic Ocean. A keeling plot showed the dominant influence by hydrate gas in the Nordic Sea region, while the long range transport of wetland emissions were one of potentially important sources in the central Arctic Ocean. Experiments comparing sunlight and darkness indicate that microbes may also play an important role in regional variations.

Methane (CH₄) is an important long-lived greenhouse gas¹, which contributes directly and indirectly to radiative forcing that affects the climate². Methane is also a significant reactive gas that plays an important role in tropospheric and stratospheric chemistry³. The oxidation of CH₄ by hydroxyl radicals (OHs) in the troposphere can lead to the formation of formaldehyde (CH₂O), ozone (O₃), carbon monoxide (CO), and water vapour. In conjunction with CO, CH₄ can control the amount of OH in the troposphere. It also reacts with Cl radicals in the stratosphere, preventing them from reducing O₃. CH₄ levels have more than doubled since the industrial revolution and the global average concentration was estimated as 1.808 ppm in 2012⁴. This increase is attributed to an excess of sources, both natural and anthropogenic, compared to sinks. Most parts of the ocean are supersaturated in CH₄ in relation to its partial pressure in the atmosphere⁵. Oceans cover roughly 70% of the earth's surface, play a critical role in controlling global temperature, and serve as a source or a sink for many atmospheric trace gases⁶. Because of the isotopic fractionation effect, CH₄ from different sources have different isotopic characteristics. The most commonly measured isotope of CH₄ is ¹³C. Depleted-δ¹³C is derived from bacterial sources and enriched-δ¹³C is derived from non-bacterial sources such as natural gas and biomass burning⁷. Isotopic determination of δ¹³C-CH₄ in the atmosphere, in conjunction with measurements of concentrations, provides a better understanding of CH₄ sources and sinks.

Ehnhalt first determined a budget of sources and sinks of CH₄ related to the total atmospheric burden⁸. Since then, extensive CH₄ concentration and δ¹³C-CH₄ measurements have been performed at sites in the Northern and Southern hemispheres⁹⁻¹⁰. These have provided information on the seasonal cycling of CH₄ and δ¹³C-CH₄ sources and sinks, and long-term trends⁹,¹¹. However, the observations have been land-based measurements that are subject to local contamination error. Contamination risk is reduced over ocean surfaces. The earliest measurements of atmospheric CH₄ over the North Atlantic and the Pacific oceans showed a weak decrease beginning at 30°N and extending to 20°S¹². In contrast, the distribution of CH₄ determined by shipboard air-grab sampling in the South Atlantic region did not reveal clear latitudinal trends¹³. Another study on atmospheric δ¹³C-CH₄ measurements investigated the

¹Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026. ²Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008. Correspondence and requests for materials should be addressed to Z.Q.X. (email: zqxie@ustc.edu.cn)
Pacific Ocean and revealed three distinct latitudinal bands of δ^{13}C-CH$_4$. The latitudinal variations of CH$_4$ and δ^{13}C-CH$_4$ are important for understanding the chemical and dynamic processes that control their distributions. Although there were reports on CH$_4$ distributions from 85°N to 67°S, the sources and influencing factors are still poorly understood, especially in the Arctic region. Since 2007, the CH$_4$ concentrations had stabilized but increased again. Systematic observations of CH$_4$ and δ^{13}C-CH$_4$ over oceans remain limited. The present knowledge of atmospheric CH$_4$ is insufficient for describing all the variations affected by regional influencing. At high latitudes, methane is supersaturated in the surface waters of the Arctic Ocean and European coastal areas. Spatial and temporal observation of CH$_4$ is essential to identify and quantify the CH$_4$ sources. However, the direct atmospheric CH$_4$ concentration data and δ^{13}C-CH$_4$ measurements are meagre over oceans from the mid- to high latitudes of the North Hemisphere, especially over the Arctic Ocean where the physical and chemical characteristics of the oceans waters have changed in response to climatic warming.

In this study, we describe new shipboard determinations of atmospheric CH$_4$ concentrations and δ^{13}C-CH$_4$ measurements conducted from offshore China to the central Arctic Ocean, covering the latitudes and longitudes of 31.1°N–87.4°N and 22.8°W–90°E–166.4°W, during the 5th Chinese National Arctic Research Expedition (CHINARE 2012). This study is the first to report the temporal and spatial distributions of atmospheric CH$_4$ concentrations, combined with δ^{13}C-CH$_4$ measurements, over an extensive spatial scale. The δ^{13}C-CH$_4$ measurements revealed factors that affect CH$_4$ variation.

Results

Trends of atmospheric CH$_4$ concentrations and δ^{13}C-CH$_4$. The spatial and latitudinal distributions of CH$_4$ concentrations determined during CHINARE 2012 are shown in Figs 1a and 2a, respectively. The CH$_4$ concentrations varied between 1.65 and 2.63 ppm. By the statistic analysis approximately 79% of the data ranged from 1.80 ppm to 2.00 ppm, with a median concentration of 1.88 ppm (mean: 1.88 ± 0.12 ppm), indicating that local episode influences were minimal (Fig. 2b). Based on evaluation using the Kolmogorov–Smirnov test, the CH$_4$ concentrations were revealed to be distributed inhomogeneously along the cruise track (p < 0.05), even when the four highest values were excluded. The distribution of CH$_4$ concentrations showed no obvious relationship with latitude outside the Arctic Ocean, which was consistent with observations from the South Atlantic. However, the CH$_4$ concentrations in the Arctic Ocean (> 66.5°N) fluctuated in a more consistent manner, especially in the central Arctic Ocean (> 80°N), where concentrations increased with latitude (r = 0.44, p < 0.01).

Atmospheric δ^{13}C-CH$_4$ varied from −50.34% to −44.94% with a median value of −48.63% (mean: −48.55 ± 0.84%) (Fig. 2c). The mean value was lower than the mean δ^{13}C-CH$_4$ (−47.44%) reported for the northern hemisphere. The higher frequencies ranged from −49.5% to −48% (Fig. 2d). A Kolmogorov–Smirnov test indicated heterogeneous distribution of δ^{13}C-CH$_4$ along the cruise track (p < 0.05). From mid- to high latitudes, the δ^{13}C-CH$_4$ measurements showed a slight decreasing trend with latitude (r = −0.23, p < 0.01). A similar decreasing trend with northern latitude was also observed between 65°S and 50°N during the Pacific Ocean cruise.

Regional variations of atmospheric CH$_4$ concentrations and δ^{13}C-CH$_4$. Atmospheric CH$_4$ and δ^{13}C-CH$_4$ samples from the entire cruise were separated into eight groups based on geographical locations and ice-coverage characteristics: Offshore China (OC), Japanese Sea (JS), Sea of Okhotsk (SO), Northwest Pacific Ocean (NPO), Bering Sea (BS), Chukchi Sea (CS), central Arctic Ocean (CAO), and Nordic Seas (NS) (Table 1). For the sample regions outside the Arctic Ocean, the mean (±SD) CH$_4$ leves in the OC, JS, SO and BS areas were 1.90 ± 0.05 ppm, 2.00 ± 0.21 ppm, 1.90 ± 0.05 ppm and
Figure 2. (a) Latitudinal distributions of atmospheric CH$_4$ during CHINARE 2012; (b) The frequency distribution of atmospheric CH$_4$; (c) Latitudinal distributions of δ13C-CH$_4$ during CHINARE 2012; (d) The frequency distribution of δ13C-CH$_4$. Red colour and black colour refer to samples collected at day and night, respectively.

Table 1. Summary of atmospheric CH$_4$ and δ13C-CH$_4$ along the cruise during CHINARE 2012.
1.93 ± 0.17 ppm, respectively. By use of non-parametric tests, the BS and JS values were significantly higher than the CH4 value of the NPO (1.84 ± 0.07 ppm) (p < 0.05). For the Arctic Ocean, the mean values of the CS, CAO, and NS areas were 1.89 ± 0.05, 1.86 ± 0.13, and 1.87 ± 0.10 ppm, respectively. Although the averages over CS, CAO, and NS were similar, some relatively higher values were found in the CAO, potentially indicating the possible presence of a CH4 source.

The mean measurement of δ13C-CH4 in the OC region was −47.49 ± 1.24%, which was similar to the mean δ13C-CH4 (−47.44%) for the Northern Hemisphere8. The maximum value of δ13C-CH4 was −44.04%. However, the δ13C-CH4 values for the other regions (JS: −48.10 ± 0.70%, SO: −48.07 ± 0.92%, NPO: −49.06 ± 0.92%, BS: −48.50 ± 0.85%, CS: −48.78 ± 0.90%, CAO: −48.93 ± 0.59%, and NS: −48.30 ± 0.54%) were all lower than the mean value in the Northern Hemisphere and the closest land-based observation.

Temporal variations of atmospheric CH4 concentrations and δ13C-CH4. The CH4 concentrations in July and September for the same sampling regions are shown in Fig. 3a. Non-parametric tests indicated that the values in July and September were not significantly different. Figure 3b also shows no significant differences between the measurements of δ13C-CH4 in July and September in the OC, JS, and BS areas. However, the δ13C-CH4 values in NPO and CS regions were greater in July than in September.

The diurnal and nocturnal CH4 concentrations and δ13C-CH4 measurements for the same sampling regions are shown in Fig. 4. Non-parametric tests revealed no significant differences between day and night CH4 concentrations and δ13C-CH4 measurements.
Discussion

Atmospheric CH$_4$ concentrations and δ13C-CH$_4$ over the oceans might be influenced by sources and sinks, e.g., long-range transport of anthropogenic emissions or natural sources emitted from the ocean, and by oxidation by Cl and OH radicals or microbes. Although oceanic CH$_4$ was not measured simultaneously in this study, environmental parameters were recorded for further analysis.

The role of oxidation. The phase of δ13C-CH$_4$ in the seasonal cycle is consistent with the kinetic isotope effect (KIE), which is due to OH and/or Cl radicals oxidizing δ12C-CH$_4$ faster than δ13C-CH$_4$, resulting in atmospheric methane enriched in δ13C-CH$_4$. From mid- to high latitudes, the δ13C-CH$_4$ showed a slight decreasing trend with latitude in sunlight. The latitudinal loss of δ13C-CH$_4$ may be due to decreasing enriched input of δ13C or chemical oxidation. Considering the potential fuel source influences, the variation of CO with latitude and the air masses of all the samples are shown in Figure S1. The CO concentrations showed a decreasing trend up to about 50°N, indicating a decrease in local contribution by anthropogenic sources, such as fossil fuels, north of 50°N. The back-trajectories of the air masses further confirmed the influence of continental sources of CO in the OC and JS areas (<50°N). However, the latitudinal decreasing trend of δ13C-CH$_4$ remained under background air, suggesting the potential role of oxidation. It has been reported that OH radicals in the troposphere are the primary sink for global atmospheric CH$_4$. Cl radicals may also contribute to CH$_4$ loss over oceans. To determine the potential reactive process for CH$_4$, the contributions of the OH and Cl radicals were calculated as follows. The average concentrations of the OH and Cl radicals in the marine boundary layer are about 7 × 10$^{-8}$–2.9 × 106 molecules·cm$^{-3}$ and 1.8 × 104 molecules·cm$^{-3}$, respectively. Assuming the reactive height is 25 m, based on the sampling height, the CH$_4$ consumption for OH and Cl radicals is 8.72 × 10$^{-2}$–3.61 × 10$^{-2}$ mg·m$^{-2}$·d$^{-1}$ and 3.85 × 10$^{-2}$ mg·m$^{-2}$·d$^{-1}$, respectively. The effect of Cl radicals on CH$_4$ is similar to that of the OH radicals. It is unclear if the level of Cl radicals varies with latitude. However, OH radicals can decrease from low to high latitudes. In addition, sunlight intensity at the high latitudes is lower than in the mid-latitudes. Thus, reduced oxidation in the high-latitude region might result in depleted δ13C-CH$_4$. A similar principle could explain higher values of δ13C-CH$_4$ in July compared to September over the CS area. The significantly higher sunlight intensity over the CS area in July compared with September indicated stronger oxidation potential (Fig. 5). However, the variations between July and September over the OC, JS, BS and NPO regions were not consistent with oxidation results. Most regions outside the Arctic Ocean were influenced by continental sources, and complex sources inputs may influence the oxidation results (Figure S1).

The role of sources and atmospheric transport. To determine the potential role of sources or sinks, the variations of δ13C-CH$_4$ versus mixing ratio changes were calculated using the approach proposed by Allen et al. (2001). Assuming that the removal of δ13C-CH$_4$ is by OH radicals in a closed well-mixed box, the effective rate coefficient for δ12C and δ13C removal by OH radicals are referred to as k_{12} and k_{13}. We adopted the value $k_{13}/k_{12}=0.9946^{24}$, for which $\epsilon = k_{13}/k_{12} - 1$ is defined as the KIE. The relationship between changes in δ13C-CH$_4$ and changes in mixing ratio can be expressed as $\Delta \delta \approx \epsilon (1 + \delta) \Delta C/C_0$, which relates the δ13C-CH$_4$ variations ($\Delta \delta$) around the mean δ13C-CH$_4$ value (δ_0) to relative mixing ratio variations ($\Delta C/C_0$), where C is the mean mixing ratio over the cruise track. If we plot $\Delta \delta$ versus $\Delta C/C_0$, the KIE line of slope can be obtained. The details about the expression were presented in a previous report. We can also obtain the variations of δ13C-CH$_4$ and mixing ratio changes in different regions (Fig. 6a). The values over the OC, JS, SO, NS, and BS areas were above the KIE line (OH oxidation line), representing enriched δ13C-CH$_4$. Enriched δ13C-CH$_4$ may mean more oxidation by OH radicals. If the...
enriched δ^{13}C-CH$_4$ was influenced by other forms of oxidation such as by Cl radicals, the CH$_4$ concentration should be lower. The higher values signified an anthropogenic source, especially for the samples over the OC and JS regions that were far from the KIE line, suggesting that anthropogenic sources might play a major role. The values from the CAO, CS, and NPO areas were below the KIE line and the depleted δ^{13}C-CH$_4$ might indicate a natural source or less oxidation. If the lower values over the CAO, CS, and NPO areas were a reflection of reduced oxidation only, the concentrations would be higher and thus, the low values signify natural sources.

However, this box model only provided potential sources due to it requiring knowledge of how the out of the box values changing. We therefore applied Keeling plot approach to further investigate the regional variations. If the CH$_4$ is emitted into the atmosphere from a single source, the isotopic ratio of the source can be inferred as an end-member for the baseline on the Keeling plot29,30. It was reported that biogenic sources were dominant at Spitsbergen29. Figure 6b shows examples of δ^{13}C-CH$_4$ plotted against the reciprocal of CH$_4$ for the regions over NS and CAO regions, both of them close to Spitsbergen, and the OC region influenced by anthropogenic sources. NS was divided into east NS (NSE) close to Spitsbergen and west NS (NSW) close to Iceland, based on the geographical location. The Keeling plot can be used to understand the processes controlling isotope discrimination and to estimate the isotopic ratio of a source31. The CH$_4$ collected in NSE gave a source with -52.46% ($r = 0.33$, $p < 0.05$), which is similar to the observations at Zeppelin station during Arctic springtime29. The main source in the NSE was gas field emissions as few air masses over this were from known emission areas. In contrast, the δ^{13}C-CH$_4$ of -44.75% ($r = 0.35$, $p < 0.05$) signature in NSW indicated enriched δ^{13}C inputs. Iceland is a geothermal country. Air masses close to Iceland with heavier δ^{13}C may have contributed to the increment in NSW. However, in CAO we collected CH$_4$ data in a scale from 1.8 to 2.0 ppm, the highest frequency range. This indicated a source with -62.45% ($r = 0.50$, $p < 0.01$) suggesting that the wetlands dominated. The isotope data was consistent with the Siberian railroad and the Ob river with -62.9%32. The main air masses in CAO move across the west Siberian coast, also confirming the wetlands emission (Figure S2). But there were some enriched and depleted sources inputs, indicating CAO was influenced by complex mixing sources. It has been demonstrated that extra sources may change seasonal variation25. One example outside the Arctic Ocean is the OC region which has complex mixing sources (Fig. 5b). Complex mixing sources may influence the results of seasonal variation outside the Arctic Ocean.

The role of microbes. The δ^{13}C-CH$_4$ should be enriched in sunlight and depleted in darkness in the same region because of the higher photochemical oxidation rate in sunlight. However, we found no significant differences in the CH$_4$ concentrations and δ^{13}C-CH$_4$ measurements between sunlight and darkness in this study. This might be due to microbes producing more CH$_4$, which can be deduced based on the case study of CH$_4$ variation in sunlight and darkness over the central Arctic Ocean. The CH$_4$ fluxes on sea ice in sunlight and darkness are shown in Fig. 7. CH$_4$ fluxes on sea ice had positive (emission) or negative (absorption) values19. Methanogenic bacteria and methanotrophic bacteria can occur in cold marine waters and in sea ice33,34. Thus, the CH$_4$ emissions might come from the CH$_4$ in the water18 and from CH$_4$ production by microorganisms in the sea ice15. During CHINARE 2010, we suggested that negative fluxes could be associated with both photochemical and biochemical oxidation19. However, photochemical oxidation cannot explain why lower CH$_4$ fluxes were observed in the dark.

Figure 6. (a) Variations of CH$_4$ mixing ratio and δ^{13}C-CH$_4$ in different regions. The dashed line is the KIE line. (b) Examples of corresponding Keeling plot over NS, CAO and OC.
than in sunlight. The negative fluxes could be attributed to the role of methanotrophs. Light inhibits the growth and activity of methanotrophic bacteria, which could result in the reduced loss of CH$_4$ in sunlight compared with darkness. Additionally, temperatures are higher in sunlight than in darkness and methanogenic bacteria can increase CH$_4$ production at higher temperatures. Archaeal populations of methanogenic and methanotrophic bacteria can be abundant in cold and temperate environments. In temperate environments, the depleted δ^{13}C-CH$_4$ produced by microbes in the sunlight might offset the sink of chemical oxidation.

Experimental Methods

Sampling gas. During CHINARE 2012 (July-September 2012) air samples were collected from the marine boundary layer using 17.5-ml vacuum vials (manufactured by the Institute of Japanese Agricultural Environment) and 0.5-l Tedlar gas bags to determine the CH$_4$ concentrations and values of δ^{13}C-CH$_4$, respectively. The samples in the gas vacuum vials were sealed with a butyl-rubber septum and a plastic cap, following the same sampling method used in the research on Antarctica. The cruise covered the eight geographical areas shown in Fig. 1a. The sampling location was the fifth deck of the icebreaker Xuelong, which was about 25 m above sea level. To avoid contamination by ship emissions and anthropogenic factors the samples were collected upwind. The gas vacuum vial was equilibrated in the air for about 1 min using a two-way needle above the head. Samples were collected two or three times each day. The sampling times after 06:00 and 18:00 (local time) were considered as day (sunlight) and night (darkness), respectively. Ancillary data including sunlight intensity and CO concentrations analysed using an EC9830 monitor were also recorded along the cruise track. CH$_4$ fluxes on sea ice in sunlight and darkness (simulating day and night) were determined using a static chamber technique. The inner diameter of the cylindrical chamber was 0.4 \times 0.3 m. The open-bottomed acrylic resin chambers were placed on collars installed at the measurement sites. The use of the collars allowed the same spot to be measured repetitively, ensures that the chamber is well sealed, and minimizes site disturbance. One chamber allowed sunlight transmission and the other did not permit sunlight. Once the chamber was set up, the head-space samples were immediately transferred into the vacuum vial using a two-way needle. The sampling procedures were repeated at 20- or 30-min intervals for about 2 h at each site. All collected samples were analysed in the laboratory of the Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.

Determination of CH$_4$ concentrations and fluxes. An Agilent 7890A gas chromatograph (GC) with a flame ionization detector (FID) was used to determine the CH$_4$ concentrations. The GC-FID was equipped with an auto-injection system controlled by a computer program and a back-flushed system of 10-port valves. The chromatographic column was a 2-m stainless steel column filled with high-performance Molecular Sieve 13X. The column and detector temperatures were 85 and 250°C, respectively. The flow rates of N$_2$, H$_2$, and air were 25, 60, and 380 ml/min, respectively. CH$_4$ standard gas at 10ppm was produced by the National Institute of Metrology, China (NIMC). The GC analysis and calibration were according to GB/T 8984–2008 (NIMC). The calibration scale had a range of 0.95–49.8 ppm. The GC instrument was calibrated using CH$_4$ standard gas every twelve samples. The variance coefficient (CV) for each measured sample and each time was <1%. CH$_4$ fluxes were calculated using the following equation: $P(\text{CH}_4) = \rho \cdot H \cdot \frac{\Delta C}{\Delta t} \cdot \frac{273}{273 + t} \cdot 24$, where $P(\text{CH}_4)$ is the CH$_4$ flux (mg·m$^{-2}$·d$^{-1}$), ρ is the density of CH$_4$ gas under standard conditions (0.714 kg·m$^{-3}$), H is the height of the chamber (m), and t is the average temperature (°C) in the chamber.
Determination of $\delta^{13}C$-CH$_4$. The $\delta^{13}C$-CH$_4$ value was measured using a Thermo Finnigan Mat-253 Isotopic Mass Spectrometer. The Mat-253 mass spectrometer has a fully automated interface for the pre-GC and pre-concentration of trace gases. Full details of the method were described by Cas4 and a brief description is given here. In this study, 100 ml gas samples were injected into vacuum glass bottles. If the gas sample was <100 ml, inert gases without CH$_4$ was added to the bottle and the bottle was adjusted to normal pressure. The air-sampling bottles were installed into pre-concentration. After their thresholds were blown by He gas, the valves at either end of the sampling bottles were opened and the samples blown into the cold trap by He. At the temperature of $-196\,^\circ\text{C}$, only the volatile components (N$_2$, O$_2$, Ar, and CH$_4$) can enter the 1000$^\circ$C burning furnace via the cold trap and an aluminous oxidative pipe filled with three 0.13-mm nickel wires. During the test period, CH$_4$ is oxidized into CO$_2$ and H$_2$O. The CO$_2$ produced from the CH$_4$ combustion was collected by another cold trap and transported into a third cold trap. Then, CO$_2$ was passed into the GC for further separation. The calibrated standard CO$_2$ was injected into the ionic source three times continuously every 30 s. The ionic flows of m/z 2v–3v. The No. 2 peak was set as the standard sample peak. The CH$_4$ peak occurred at about 870 s and the ratio line was positive. According to the ratios of the No. 2 CO$_2$ peak and the sample peak, the pressure nine times. The standard deviation for $\delta^{13}C$-CH$_4$ in the compressed air was 0.196% based on ^{13}CVPDB. \[\frac{[\text{CH}_4]}{[\text{CO}_2]} = \frac{[\text{CO}_2]}{[\text{CH}_4]} \times 1000[\%], \] where $\delta^{13}C$ is the δ value of the carbon isotope and R is the ratio of the heavy isotope to the light isotope.

References

1. Dickinson, R. E. & Cicerone, R. J. Future global warming from atmospheric trace gases. Nature 319, 109–115 (1986).
2. Forster, P. et al. Changes in atmospheric constituents and in radiative forcing. 135–136 (Cambridge University Press, 2007).
3. Cicerone, R. J. & Oremland, R. S. Biochemical aspects of atmospheric methane. Glob. Biogeochem. Cycle 2, 299–327 (1988).
4. Blunden, J., Arndt, D. S. & Achberger, C. State of the Climate in 2012. Bull. Amer. Meteor. Soc. 94, S1–S238 (2013).
5. Anderson, B. et al. Methane and Nitrous Oxide Emissions From Natural Sources. (U.S. Environmental Protection Agency, 2010).
6. Wuebbles, D. J. & Hayhoe, K. Atmospheric methane and global change. Earth-Sci. Rev. 57, 177–210 (2002).
7. Ehnhalt, D. The atmospheric cycle of methane. Tellus 26, 58–70 (1974).
8. Dlugokencz, E. J., Steele, L. P., Lang, P. M. & Masarie, K. A. Atmospheric methane at Mauna Loa and Barrow observatories: Presentation and analysis of in situ measurements. J. Geophys. Res. 100, 23103–23113 (1995).
9. Quay, P. et al. The isotopic composition of atmospheric methane. Glob. Biogeochem. Cycle 13, 445–461 (1999).
10. Dlugokencz, E., Steele, L., Lang, P. & Masarie, K. The growth rate and distribution of atmospheric methane. J. Geophys. Res. 99, 17021–17043 (1994).
11. Tyler, S. C., Rice, A. L. & Ajie, H. O. Stable isotope ratios in atmospheric CH$_4$: Implications for seasonal sources and sinks. J. Geophys. Res. 112, D03303 (2007).
12. Ehnhalt, D. The CH$_4$ concentration over the ocean and its possible variation with latitude. Tellus 30, 169–176 (1978).
13. Alvala, P. C., Boian, C. & Kirchhoff, V. Measurements of CH$_4$ and CO during ship cruises in the South Atlantic. Atmos. Environ. 38, 4583–4588 (2004).
14. Lowe, D. C. et al. Shipboard determinations of the distribution of ^{13}C in atmospheric methane in the Pacific. J. Geophys. Res. 104, 26125–26135 (1999).
15. Wofsy, S. HAPPE POLE-OBSERVATIONS (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Phil. Trans. R. Soc. A 369, 2073–2086 (2011).
16. Dlugokencz, E. et al. Observational constraints on recent increases in the atmospheric CH$_4$ burden. Geophys. Res. Lett. 36, L18803 (2009).
17. Nisbet, E. G., Dlugokencz, E. J. & Fourrey, P. Methane on the rise—again. Science 343, 493–495 (2014).
18. Kort, E. et al. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. Nat. Geosci. 5, 318–321 (2012).
19. He, X. et al. Sea ice in the Arctic Ocean: Role of shielding and consumption of methane. Atmos. Environ. 67, 8–13 (2013).
20. Bange, H. W. Nitrous oxide and methane in European coastal waters. Estuar. Coast. Shelf Sci. 70, 361–374 (2006).
21. Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
22. Cooper, D. J. Estimation of hydroxyl radical concentrations in the marine atmospheric boundary layer using a reactive atmospheric tracer. J. Atmos. Chem. 25, 97–113 (1996).
23. Baham, K. & Khalil, M. A new model of tropospheric hydroxyl radical concentrations. Geompheres 54, 143–166 (2004).
24. Allan, W. et al. Struthers, H. & Lowe, D. Methane carbon isotope effects caused by methyl chloride in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. J. Geophys. Res. 112, D04306 (2007).
25. Allan, W., Manning, M., Lassey, K., Lowe, D. & Gomez, A. Modeling the variation of ^{13}C in atmospheric methane: Phase ellipses and the kinetic isotope effect. Glob. Biogeochem. Cycle 15, 467–481 (2001).
26. Sander, S. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies (NASA, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, 2006).
27. Naik, V. et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 5277–5298 (2013).
28. Cantrell, C. A. et al. Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical. J. Geophys. Res. 95, 22455–22462 (1990).
29. Fisher, R. E. et al. Arctic methane sources: Isotopic evidence for atmospheric inputs. Geophys. Res. Lett. 38 (2011).
30. Dlugokencz, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Phil. Trans. R. Soc. A 369, 2058–2072 (2011).
31. Pataki, D. et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob. Biogeochem. Cycle 17 (2003).
32. Tarasova, O. et al. Atmospheric CH₄ along the Trans-Siberian railroad (TROICA) and river Ob: Source identification using stable isotope analysis. *Atmos. Environ.* **40**, 5617–5628 (2006).
33. Cavicchioli, R. Cold-adapted archaea. *Nat. Rev. Microbiol.* **4**, 331–343 (2006).
34. Trotsenko, Y. A. & Khmelenina, V. N. Aerobic methanotrophic bacteria of cold ecosystems. *FEMS Microbiol. Ecol.* **53**, 15–26 (2005).
35. Rohde, R. A. & Price, P. B. Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. *Proc. Natl. Acad. Sci. USA* **104**, 16592–16597 (2007).
36. Dumestre, J. et al. Influence of Light Intensity on Methanotrophic Bacterial Activity in Petit Saut Reservoir, French Guiana. *Appl. Environ. Microbiol.* **65**, 534–539 (1999).
37. Hoj, L., Olsen, R. A. & Torsvik, V. L. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. *ISME J.* **2**, 37–48 (2008).
38. Liu, Y., Zhu, R., Li, X., Xu, H. & Sun, L. Temporal and spatial variations of atmospheric methane concentration and δ¹³C-CH₄ near the surface on the Millor Peninsula, East Antarctica. *Chinese Journal of Polar Science* **20**, 22–31 (2009).
39. Yu, J. et al. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean. *Sci. Rep.* **4**, 6091 (2014).
40. Zhu, R. & Sun, L. Methane fluxes from tundra soils and snowpack in the maritime Antarctic. *Chemosphere* **59**, 1583–1593 (2005).
41. Cao, Y., Sun, G., Han, Y., Sun, D. & Wang, X. Determination of nitrogen, carbon and oxygen stable isotope ratios in N₂O, CH₄ and CO₂ at natural abundance levels. *Acta Pedologica Sinica* **45**, 249–258 (2008).

Acknowledgments
This research was supported by grants from the National Natural Science Foundation of China (Project Nos. 41025020, 41176170), the Program of China Polar Environment Investigation and Assessment (Project No. CHINARE2011–2015) and the Fundamental Research Funds for the Central Universities. The authors acknowledge the NOAA Air Resources Laboratory (ARL) for making the HYSPLIT transport and dispersion model available on the Internet (http://www.arl.noaa.gov/ready.html).

Author Contributions
Z.Q.X. and L.G. Sun initiated the study. Z.Q.X. designed and supervised the study. J.Y. and H.K. performed the experiment. J.Y. and Z.Q.X. wrote the manuscript. G.X.X. contributed to the samples preparation and analysis. L.G.S. and P.Z.H. contributed to the discussion of results.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yu, J. et al. δ¹³C-CH₄ reveals CH₄ variations over oceans from mid-latitudes to the Arctic. *Sci. Rep.* **5**, 13760; doi: 10.1038/srep13760 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/