Development and characterization of microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla

Nicole M. Kollars, Stacy A. Krueger-Hadfield, James E Byers, Thomas W Greig, Allan E Strand, Florian Weinberger, Erik Sotka

Microsatellite loci are popular molecular markers due to their resolution in distinguishing individual genotypes. However, they have rarely been used to explore the population dynamics in species with biphasic life cycles in which both haploid and diploid stages develop into independent, functional organisms. We developed microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla, a widespread non-native species in coastal estuaries of the Northern hemisphere. Forty-two loci were screened for amplification and polymorphism. Nine of these loci were polymorphic across four populations of the extant range with two to eleven alleles observed. Mean observed and expected heterozygosities ranged from 0.265 to 0.527 and 0.317 to 0.387, respectively. Overall, these markers will aid in the study the invasive history of this seaweed and further studies on the population dynamics of this important haploid-diploid primary producer.
Authors:

Nicole M. Kollars¹,†,*
Stacy A. Krueger-Hadfield¹*
James E. Byers²
Thomas W. Greig³
Allan E. Strand¹
Florian Weinberger⁴
Erik E. Sotka¹

¹ Grice Marine Laboratory and the Department of Biology, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina 29412 USA
² Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, Georgia 30602 USA
³ Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, 219 Fort Johnson Road, Charleston, South Carolina 29412 USA
⁴ Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Dufennebrooker Weg 20, D-24105 Kiel, Germany

† Present address: Center for Population Biology, 2320 Storer Hall, University of California, Davis, One Shields Avenue, Davis, California 95616 USA

* Authors contributed equally to this work

Corresponding author:

Erik E. Sotka
Grice Marine Laboratory and the Department of Biology
College of Charleston
205 Fort Johnson Rd
Charleston, SC 29412 USA
E-mail: sotkae@cofc.edu
Phone: (843) 953-9191
INTRODUCTION

In the last decade, genetic approaches to answering evolutionary and ecological questions have become less expensive and more easily applied to non-model species (Allendorf et al. 2010; Guichoux et al. 2011). Microsatellites, or tandem repeats of two to six nucleotides, are popular molecular markers due to their resolution in distinguishing individual genotypes (Selkoe & Toonen 2006) and their ability to describe patterns of population connectivity across landscapes (Manel et al. 2003) and seascapes (Galindo et al. 2006). Much of the literature focuses on organisms with single free-living diploid stages (i.e., animals and higher plants). Yet, there are many species with both haploid and diploid stages in the same life cycle in which both ploidies undergo somatic development and live as independent, functional organisms.

While theory predicts that selection should favor either diploidy or haploidy (Mable & Otto 1998), Hughes and Otto (1999) demonstrated the maintenance of both haploid and diploid stages when the two stages occupy different ecological niches. However, there are relatively few empirical tests of these alternative hypotheses (but see Destombe et al. 1992; Thornber & Gaines 2004; Guillemin et al. 2013), and for isomorphic species in which ploidy is not easily identified through morphological traits, molecular markers will be essential to advance research in this field. These same markers can additionally be used to understand connectivity and demographic history in haploid-diploid populations. Among marine haploid-diploid macroalgae, relatively few microsatellites have been developed to address any of these issues (but see Table 1).

Understanding the consequences of biphasic life cycles and land- or seascape features on population structure is particularly relevant in light of the increasing frequency of biological introductions. There are numerous examples of widespread, and putatively invasive species, that have free-living haploid and diploid stages, including macroalgae (e.g., Asparagopsis spp.;
Andreakis et al. 2007), ferns (e.g., Lygodium spp.; Lott et al. 2003) and mosses (e.g., Campylopus introflexus; Schirmel et al. 2010). Macroalgae, or seaweeds, account for approximately 20% of the world’s introduced marine species (Andreakis & Schaffelke 2012) and a subset of these invasions are by species that are exploited in their native range, either for the phycocolloid industry or as food products (Williams & Smith 2007).

The red seaweed Gracilaria vermiculophylla (Omhi) Papenfuss is native to the northwest Pacific and, in the last 30-40 years, has spread throughout high to medium salinity estuaries of the eastern North Pacific (Saunders 2009), the western North Atlantic (Byers et al. 2012) and the eastern North Atlantic (Weinberger et al. 2008; Guillemin et al. 2008a). G. vermiculophylla transforms the ecosystems into which it is introduced through negative impacts on native species (e.g., direct competition, Hammann et al. 2013), the addition of structural complexity to soft-bottom systems (e.g., Nyberg et al. 2009, Wright et al. 2014) and the alteration of community structure, species interactions and detrital pathways (e.g., Byers et al. 2012). Previous studies of the population genetics of G. vermiculophylla focused on the mitochondrial gene cytochrome b oxidase I (Kim et al. 2010, Gulbransen et al. 2012), but mitochondrial genetics do not necessarily predict the population genetics of the nuclear genome and cannot assess patterns of ploidy and mating system. Thus, we developed nine polymorphic microsatellite loci for G. vermiculophylla.

MATERIALS AND METHODS

A library of contigs for G. vermiculophylla was generated using the 454 next-generation sequencing platform (Cornell University Life Sciences Core Laboratory Center) from a single individual collected from Charleston, SC, USA. For library preparation, DNA was extracted
using CTAB (Eichenberger et al. 2000) and library construction followed Hamilton et al. (1999).

Dimeric to hexameric microsatellite repeats were identified with the program MSATCOMMANDER, ver 1.0.8 (Faircloth 2008) and primers were designed using PRIMER 3 (Rozen and Skalest 2000) for contigs with at least four sequences present in the library. Bioinformatics of these sequences was facilitated by the APE package (Paradis et al. 2004) in R (R Core Team 2014).

Total genomic DNA was isolated using 120 µL of a 10% Chelex solution (BioRad Laboratories, Hercules, CA, USA) in which approximately 1 cm of dried algal tissue was heated at 95°C for 30 minutes and vortexed intermittently (Walsh et al. 1991). Loci were amplified on a thermocycler (BioRad) as follows: 10 µL final volume, 2 µL of stock DNA template, 0.5 units of GoTAQ Flexi-DNA Polymerase (Promega), 1X buffer, 250 µM of each dNTP, 1.5 nM of MgCl₂, 150 nM of fluorescently-labeled forward primer, 100 nM of unlabeled forward primer and 250 nM of unlabeled reverse primer. The PCR program included 2 min at 95°C, 30 cycles of 30 sec at 95°C, 30 sec at 55°C and 30 sec at 72°C, and a final 5 min at 72°C. One µL of each PCR product was added to 10 µL of loading buffer containing 0.35 µL of size standard (GeneScan500 Liz; Applied Biosystems, Foster City, CA, USA). Samples were electrophoresed on an ABI 3130xL genetic analyzer equipped with 36 cm capillaries (Applied Biosystems). Alleles were scored manually using GENEMAPPER ver. 4 (Applied Biosystems) and allele sizes were binned with TANDEM ver. 1.08 software (Matschner & Saltzburger 2009; Krueger-Hadfield et al. 2013).

We screened a total of 42 primer pairs for amplification and polymorphism in *G. vermiculophylla* (Table 2, Supplemental Table 1). For the amplifiable loci that also showed polymorphism (nine total, see Results and Discussion), we verified single locus genetic
determinism (SGLD). Locci were in SLGD if known haploids produced a single allele and
diploids produced either one or two alleles in their homozygous or heterozygous state,
respectively. We verified SGLD in a subset of known haploid gametophytes (n = 28) and diploid
tetrasporophytes (n = 30) collected at Elkhorn Slough, CA, USA (Table 3, Supplemental Figure
1). Elkhorn Slough was the only population for which ploidy was determined by reproductive
structures and for which we had known haploids and diploids for genotyping.

The frequency of null alleles was estimated in the haploid subpopulation from Elkhorn
Slough as well as diploid tetrasporophytes for each of the four populations (Table 3). It is
possible to calculate the null allele frequency directly in the haploids based on the number of
non-amplification events, after discounting technical errors. For diploid tetrasporophytes, we
used a maximum likelihood estimator (ML-NullFreq: Kalinowski & Taper 2006).

Next, we screened loci for short allele dominance (Wattier et al. 1998). The presence of
short allele dominance is rarely tested during microsatellite development, even though it can
result in artificial heterozygote deficiencies. In contrast to null alleles, primer binding is
successful, but the larger allele is not amplified due to the preferential amplification of the
smaller allele. Wattier et al. (1998) demonstrated an analytical method to detect short allele
dominance using linear models. If a regression of allele-specific F_{is} (inbreeding coefficient)
statistics on allele size reveals a significant negative slope, then short allele dominance may be
expected. We determined three to four allele size classes per locus and performed linear
regressions using the STATS package in R (R Core Team 2014).

To provide preliminary assessment of the genotypic and genetic diversity one can gain
from these loci, we genotyped diploid tetrasporophytes from one native and three non-native
populations of *G. vermiculophylla* (Table 3). Diploids were identified based either on
reproductive phenology (Elkhorn) or microsatellite genotype (after assuring SGLD) if at least one locus was heterozygous (Akkeshi, Fort Johnson and Nordstrand, Table 3).

We calculated expected allelic richness using rarefaction in order to account for differences in sample size (HP-Rare; Kalinowski 2005). Observed (H_O) and expected heterozygosities (H_E) were calculated using GenAlEx, ver. 6.501 (Peakall & Smouse 2006; Peakall & Smouse 2012). Tests for Hardy-Weinberg equilibrium and F-statistics were performed in FSTAT, ver. 2.9.3.2 (Goudet 1995). F_{is} was calculated for each locus and over all loci according to (Weir & Cockerham 1984) and significance (at the adjusted nominal level of 0.001) was tested by running 1000 permutations of alleles among individuals within samples. We also tested for linkage disequilibrium in each population using GENEPOP, ver. 4.2.2 (Rousset 2008), with 1000 permutations followed by Bonferroni correction for multiple comparisons (Sokal & Rohlf 1995).

RESULTS AND DISCUSSION

Of the 42 loci screened, 16 did not amplify for *G. vermiculophylla* even after several PCR modifications (Supplemental Table 1). Of the remaining 26 loci, four loci exhibited multi-peak profiles and were discarded from further use, 13 loci were considered monomorphic (Supplemental Table 1), and nine loci showed polymorphism (Table 2). The nine polymorphic loci exhibited SLGD in which known haploids always exhibited one allele. The low number of polymorphic loci revealed from this screening process is consistent with previous efforts to develop microsatellite loci for some seaweeds (e.g., Varela-Alvarez *et al.* 2011, Arnoud-Haond *et al.* 2013).
The frequency of null alleles was zero at all loci except Gverm_1803 and Gverm_2790 in which the frequencies were both 0.019 in the haploids at Elkhorn Slough (Supplemental Table 2). The only evidence of null alleles in the diploids from Elkhorn Slough was at locus Gverm_1803, with a maximum likelihood estimated frequency of 0.115. The discrepancy between the haploid and diploid estimates is likely due to assumptions underlying the maximum likelihood estimators implemented in software like HP-Rare (Kalinowski 2005), such as random mating. Krueger-Hadfield et al. (2013) demonstrated a strong bias in the estimates of null allele frequency when using these maximum likelihood estimators in macroalgal populations that have undergone non-random mating. The higher frequencies of null alleles (0.115-0.207) in the Akkeshi diploid subpopulation were most likely driven by a violation of these assumptions as well, though empirical estimates in haploid subpopulations are warranted. Nevertheless, the low frequency of null alleles and lack of evidence for short-allele dominance (all regression p-values were > 0.2, Supplemental Table 3), suggest that observed heterozygote deficiencies using these loci will be due to the mating system or spatial substructuring (Guillemin et al. 2008b; Krueger-Hadfield et al. 2011; 2013).

Previous studies have used microsatellite loci to distinguish among individual clones and to describe the genetic diversity and the mating systems of seaweed populations despite low levels of polymorphism (e.g., Guillemin et al. 2008, Arnaud-Haond et al. 2013). In the current study, the nine polymorphic markers described genetic variability in four populations sampled across the extant distribution of *G. vermiculophylla*. Overall, there was little evidence for linkage disequilibrium after Bonferroni correction (Supplemental Table 4). Additionally, allelic diversity was comparable among the one native and three non-native sites we sampled, but F_{is} varied considerably (summary in Table 4; per locus statistics in Supplemental Table 5). Together, these
results suggest that unique demographic and evolutionary processes could be operating between
native and non-native ranges and within each population, but more detailed sampling is needed
to address these patterns.

In summary, we have developed and characterized microsatellite markers for the haploid-
diploid red seaweed *G. vermiculophylla*. These loci have the resolution to distinguish individual
thalli and will aid studies on the invasive history of *G. vermiculophylla*, as well as the
evolutionary ecology of rapidly spreading populations and mating system shifts in organisms that
have biphasic life cycles with free-living haploid and diploid stages (i.e., macroalgae, ferns,
mosses and some fungi).

ACKNOWLEDGMENTS

Thanks to T. M. Bell, E. Buchanan, C. E. Gerstenmaier, M. Hammann, K. Honda, B. Hughes, B.
F. Krueger, T. D. Krueger, K. Momota, M. Nakaoka, A. Pansch, T. Roth and M. Sato for field
and laboratory support.

REFERENCES

Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation
genetics. *Nature Reviews Genetics* 11:697–709.

Alström-Rapaport C, Leskinen E, Pamilo P (2010) Seasonal variation in the mode of
reproduction of *Ulva intestinalis* in a brackish water environment. *Aquatic Botany* 93:244–
249.
Andreakis N, Schaffelke B (2012) Invasive marine seaweeds: Pest or prize? In: *Ecological Studies* pp. 235–262. Springer Berlin Heidelberg, Berlin, Heidelberg.

Andreakis N, Procaccini G, Maggs C, Kooistra WHCF (2007) Phylogeography of the invasive seaweed *Asparagopsis* (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. *Molecular Ecology* **16**:2285–2299.

Arnaud-Haond, S, Candeias, R, Serrão, Teixeira, SJL (2013) Microsatellite markers developed through pyrosequencing allow clonal discrimination in the invasive alga *Caulerpa taxifolia*. *Conservation Genetics* **5**: 667-669.

Byers JE, Gribben PE, Yeager C, Sotka EE (2012) Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. *Biological Invasions* **149**:2587–2600.

Couceiro L, Le Gac M, Hunsperger HM, Mauger S, Destombe C, Cock JM, Ahmed S, Coelho SM, Valero M, Peters AF (2015) Evolution and maintenance of haploid-diploid life cycles in natural populations: the case of the marine brown alga *Ecotcarpus*. *Evolution in press* DOI: 10.1111/evo.12702.

Destombe C, Godin J, Lefèvre CM, Dehorter O, Vernet P (1992) Differences in dispersal abilities of haploid and diploid spores of *Gracilaria verrucosa* (Gracilariales, Rhodophyta). *Botanica Marina* **35**:93–98.

Eichenberger K. Gugerli F, Schneller JJ (2000) Morphological and molecular diversity of Swiss common bean cultivars (*Phaseolus vulgaris* L., Fabaceae) and their origin. *Botanica Helvetica* **110**:61–77.

Engel CR, Destombe C, Valero M (2004) Mating system and gene flow in the red seaweed *Gracilaria gracilis*: effect of haploid–diploid life history and intertidal rocky shore landscape on fine-scale genetic structure. *Heredity* **92**:289–298.
Engel CR, Wattier RA, Destombe C, Valero M (1999) Performance of non-motile male gametes in the sea: analysis of paternity and fertilization success in a natural population of a red seaweed, *Gracilaria gracilis*. *Proceedings of the Royal Society B: Biological Sciences* **266**:1879–1886.

Faircloth BC (2008) MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. *Molecular Ecology Resources* **8**:92–94.

Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: A coupled oceanographic-genetic model predicts population structure of Caribbean corals. *Current Biology* **16**:1622–1626.

Goudet J (1995) FSTAT (version 1.2): A computer program to calculate F-Statistics. *Journal of Heredity* **86**:485–486.

Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. *Molecular Ecology Resources* **11**:591–611.

Guillemin ML, Akki SA, Givernaud T, Mouradi A, Valero M, Destombe C (2008a) Molecular characterisation and development of rapid molecular methods to identify species of Gracilariaceae from the Atlantic coast of Morocco. *Aquatic Botany* **89**: 324–330.

Guillemin ML, Faugeron S, Destombe C. Viard F, Correa JA, Valero M (2008b) Genetic variation in wild and cultivated populations of the haploid-diploid red alga *Gracilaria chiensis*: how farming practices favor asexual reproduction and heterozygosity. *Evolution* **62**:1500–1519.

Guillemin ML, Sepúlveda RD, Correa JA, Destombe C (2013) Differential ecological responses to environmental stress in the life history phases of the isomorphic red alga *Gracilaria*
chilensis (Rhodophyta). *Journal of Applied Phycology* 25:215–224.

Gulbransen DJ, McGlathery KJ, Marklund M, Norris JN, Gurgel CFD (2012) *Gracilaria vermiculophylla* (Rhodophyta, Gracilariales) in the Virginia coastal bays, USA: COX1 analysis reveals high genetic richness of an introduced macroalga. *Journal of Phycology* 48:1278–1283.

Hamilton MB, Pincus EL, Di-Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. *Biotechniques* 27:500–507.

Hammann M, Buchholz B, Karez R, Weinberger F (2013) Direct and indirect effects of *Gracilaria vermiculophylla* on native *Fucus vesiculosus*. *Aquatic Invasions* 8:121–132.

Hughes JS, Otto SP (1999) Ecology and the evolution of biphasic life cycles. *The American Naturalist* 154:306–320.

Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. *Molecular Ecology Notes* 5:187–189.

Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. *Conservation Genetics* 7:991–995.

Kim SY, Weinberger F, Boo SM (2010) Genetic data hint at a common donor region for invasive Atlantic and Pacific populations of *Gracilaria vermiculophylla* (Gracilariales, Rhodophyta). *Journal of Phycology* 46:1346–1349.

Krueger-Hadfield SA, Collen J, Daguin-Thiébaut C, Valero M (2011) Genetic population structure and mating system in *Chondrus crispus* (Rhodophyta). *Journal of Phycology* 47:440–450.

Krueger-Hadfield SA, Roze D, Correa JA, Destombe C, Valero M (2015) O father where art
Paternity analyses in a natural population of the haploid–diploid seaweed *Chondrus crispus*. *Heredity* **114**:185–194.

Krueger-Hadfield SA, Roze D, Mauger S, Valero M (2013) Intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed *Chondrus crispus*. *Molecular Ecology* **22**:3242–3260.

Lott MS, Volin JC, Pemberton JM, Austin DF (2003) The reproductive biology of the invasive ferns *Lygodium microphyllum* and *L. japonicum* (Schizaeaceae): Implications for invasive potential. *American Journal of Botany* **90**:1144–1152.

Mable BK, Otto SP (1998) The evolution of life cycles with haploid and diploid phases. *BioEssays* **20**:453–462.

Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. *Trends in Ecology & Evolution* **18**:189–197.

Matschiner M, Saltzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. 1–3.

Nyberg CD, Thomsen MS, Wallentinus I (2009) Flora and fauna associated with the introduced red alga *Gracilaria vermiculophylla*. *European Journal of Phycology* **44**: 395–403.

Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. *Bioinformatics* **20**:289-290.

Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* **6**:288–295.

Peakall R, Smouse PE (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research--an update. *Bioinformatics Applications Note* **28**:2537–2539.
R Development Core Team. 2014. R version 2.15.1. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* 8:103-106.

Rozen S, Skalesty HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In Krawetz SMS (ed) Bioinformatics methods and protocols: methods ins molecular biology. Human Press, Totowa, pp. 365–386

Saunders GW (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species *Gracilaria vermiculophylla* in British Columbia. *Molecular Ecology Resources* 9:140–150.

Schirmel J, Timler L, Buchholz S (2010) Impact of the invasive moss *Campylocus introflexus* on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic Sea. *Biological Invasions* 13:605–620.

Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. *Ecology Letters* 9:615–629.

Sokal RR, Rohlf FJ (1995) *Biometry*. W H Freeman and Company.

Sosa PA, Valero M, Batista F, Gonzalez-Perez MA (1998) Genetic variation and genetic structure of natural populations of Gelidium species: A re-evaluation of results. *Journal of phycology* 10:279–284.

Szövényi P, Ricca M, Shaw AJ (2009) Multiple paternity and sporophytic inbreeding depression in a dioicous moss species. *Heredity* 103:394–403.

Thornber CS, Gaines S (2004) Population demographics in species with biphasic life cycles. *Ecology and Evolution* 85:1661–1674.
van der Strate HJ, van de Zande L, Stam WT, Olsen JL (2002) The contribution of haploids, diploids and clones to fine-scale population structure in the seaweed Cladophoropsis membranacea (Chlorophyta). Molecular Ecology 11:329–345.

van der Velde M, During HJ, van de Zande L, Bijlsma RK (2001) The reproductive biology of Polytrichum formosum: clonal structure and paternity revealed by microsatellites. Molecular Ecology 10:2423–2434.

Varlea-Álvarez, E, Glenn, TC, Serrão, EA, Duarte, CM, Martinez-Daranas, B, Valero, M, Marbá, N (2011) Dinucleotide microsatellite markers in the genus Caulerpa. Journal of Applied Phycology 23:715-719.

Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513.

Wattier RA, Engel CR, Saumitou-Laprade P, Valero M (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Molecular Ecology 7:1569–1573.

Weinberger F, Buchholz B, Karez R, Wahl M (2008) The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquatic Biology 3:251–264.

Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358–1370.

Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology, Evolution, and Systematics 38:327–359.

Wright JT, Byers JE, DeVore JL, Sotka EE (2014) Engineering or food? Mechanisms of
facilitation by a habitat-forming invasive seaweed. *Ecology* 95: 2699-2706.
Table 1 (on next page)

Studies in which both the haploid and diploid stages of seaweeds and mosses were investigated to reveal patterns in genetic structure and mating system.
Table 1. Studies in which both the haploid and diploid stages of seaweeds and mosses were investigated to reveal patterns in genetic structure and mating system.

Phylum	Species	Marker	Type of study
Rhodophyta	*Gelidium arbuscula*	Isozymes	Genetic structure and mating system
Rhodophyta	*Gelidium canariensis*	Isozymes	Genetic structure and mating system
Rhodophyta	*Gracilaria gracilis*	Microsatellites	Paternity analyses and dispersal
Bryophyta	*Polytrichum formosum*	Microsatellites	Paternity analyses and dispersal
Chlorophyta	*Cladophoropsis membranacea*	Microsatellites	Shorescape structure and mating system
Rhodophyta	*Gracilaria gracilis*	Microsatellites	Shorescape structure and mating system
Rhodophyta	*Gracilaria chilensis*	Microsatellites	Genetic structure, mating system and comparisons between natural and farmed populations
Bryophyta	*Sphagnum lescurii*	Microsatellites	Paternity analyses and dispersal
Chlorophyta	*Ulva intestinalis*	Microsatellites	Genetic structure and mating system
Rhodophyta	*Chondrus crispus*	Microsatellites	Genetic structure and mating system
Rhodophyta	*Chondrus crispus*	Microsatellites	Shorescape structure and mating system
Ochrophyta	*Ectocarpus crouanitorum*	Microsatellites	Genetic structure and mating system
Ochrophyta	*Ectocarpus siliculosus*	Microsatellites	Genetic structure and mating system
Rhodophyta	*Chondrus crispus*	Microsatellites	Paternity analyses and dispersal
Characteristics of nine polymorphic microsatellite loci developed for *Gracilaria vermiculosphylla*

Acc. No. = genbank accession number; locus; motif; primer sequences; allele range; avg.
error: TANDEM (Matschiner & Saltzburger 2009) rounding errors for each microsatellite locus
(the authors of TANDEM suggest that good loci have an average rounding error which is
below 10% of the repeat size); N_{tall} = total number of alleles. All loci showed one-locus
 genetic determinism.
Table 3. Location of the four populations used to test for polymorphism in newly characterized microsatellite loci in *Gracilaria vermiculophylla*. The region, range (native or non-native), latitude, longitude, sampling date, collector* and ploidy determination (using reproductive phenology or microsatellite genotype) is provided.

Population	Region	Range	Latitude	Longitude	Date	Collector	Ploidy determination
Akkeshi, Japan	NW Pacific	Native	43.04774	144.9498	25Aug10, 31Jul12	NMK, KH, KM, AP, MS	genotype
Elkhorn Slough, CA	NE Pacific	Non-native	36.50447	-121.4513	3Nov13	SAKH, BFK, TDK, BH	genotype, phenology
Fort Johnson, SC	NW Atlantic	Non-native	32.7513	-79.900	11Dec13	CEG	genotype
Nordstrand, Germany	North Sea	Non-native	54.454571	8.874846	24Mar10	MH	genotype

* Collector abbreviations: AP: A. Pansch, NMK: N. M. Kollars, KH: K. Honda, KM: K. Momota, MS: M. Sato, SAKH: S. A. Krueger-Hadfield, BFK: B. F. Krueger, TDK: T. D. Krueger, BH: B. Hughes, CEG: C. E. Gerstenmaier, MH: M. Hammann
Table 3 (on next page)

Location of the four populations used to test for polymorphism in newly characterized microsatellite loci in *Gracilaria vermiculophylla*.

The region, range (native or non-native), latitude, longitude, sampling date, collector* and ploidy determination (using reproductive phenology or microsatellite genotype) is provided.
Table 2. Characteristics of nine polymorphic microsatellite loci developed for *Gracilaria vermiculophylla*: Acc. No. = genbank accession number; locus; motif; primer sequences; allele range; avg. error: TANDEM (Matschiner & Saltzburger 2009) rounding errors for each microsatellite locus (the authors of TANDEM suggest that good loci have an average rounding error which is below 10% of the repeat size); N_{tall} = total number of alleles. All loci showed one-locus genetic determinism.

Locus	Acc. No.	Motif	Primer sequence	Allele Range	Avg. Error	N_{tall}
Gverm_5276	KT232089	(AC)$_{10}$	F: GGAGAGCAGCACGTTTTTAGG R: CTGCTTAGTTCCACGATCGAC	282-316	0.14	11
Gverm_6311	KT232090	(AG)$_{9}$	F: GCGTCATTCCACTGAATGTG R: GATGAACCTCAATGCCTCGT	203-223	0.17	6
Gverm_8036	KT232091	(AC)$_{12}$	F: GCCCTTTTAAGGATGCAACA R: GGGGTAAACGACCACAGAGA	213-251	0.14	5
Gverm_3003	KT232092	(AG)$_{11}$	F: CATCTTGCTTCTCTGCTCC R: TTGAAAGCCGAATTTATCG	198-230	0.11	4
Gverm_1203	KT232093	(AAG)$_{8}$	F: CTCTTGTGCAACAAGCAATA R: ACATTCTGCGCACCTTTCCT	284-308	0.12	4
Gverm_1803	KT232094	(AC)$_{11}$	F: GCGTGACAGTGCTACACT R: GACAGCAACAAGTGGGTTT	352-356	0.07	3
Gverm_804	KT232095	(AAG)$_{8}$	F: TGTAGGATTGCTCTCTGGTG R: CAGGCTGGCCAAAATAACAT	182-188	0.16	3
Gverm_10367	KT232096	(AG)$_{8}$	F: GCTGAGAAATGAAGCGAAGG R: GCAAACCTGCCTGTGGTT	198-200	0.07	2
Gverm_2790	KT232097	(AATGC)$_{5}$	F: GAAATAATGGGGAAAACATT R: GGAAGAGGCTCAAAAAGCAGA	262-267	0.16	2
Table 4 (on next page)

Genetic features of four populations of *Gracilaria vermiculophylla*.

These include the sample size, N; the diploid genotypic richness, N_{A_r} + standard error (SE); mean allelic richness, A_E, based on the smallest sample size of 46 alleles (23 diploid individuals) + SE; mean observed heterozygosity, H_O, + SE; mean expected heterozygosity, H_E, + SE; inbreeding coefficient, F_{IS}, multilocus and per locus estimates (*, $p < 0.001$, adjusted nominal value).
Table 4. Genetic features of four populations of *Gracilaria vermiculophylla*, including: the sample size, *N*; the diploid genotypic richness, *N_A*, ± standard error (SE); mean allelic richness, *A_E*, based on the smallest sample size of 46 alleles (23 diploid individuals) ± SE; mean observed heterozygosity, *H_O*, ± SE; mean expected heterozygosity, *H_E*, ± SE; inbreeding coefficient, *F_is*, multilocus and per locus estimates (*, *p* < 0.001, adjusted nominal value).

Statistics	Akkeshi	Elkhorn Slough	Fort Johnson	Nordstrand
N	31	30	38	23
N_A	3.2 ± 0.5	2.2 ± 0.4	2.0 ± 0.2	1.9 ± 0.2
A_E	3.1 ± 0.4	2.2 ± 0.3	2.0 ± 0.2	1.9 ± 0.2
H_O	0.265 ± 0.060	0.311 ± 0.089	0.520 ± 0.110	0.527 ± 0.125
H_E	0.374 ± 0.079	0.317 ± 0.084	0.387 ± 0.077	0.352 ± 0.079
F_is	0.294 *	0.017	-0.350 *	-0.512 *

F_is per locus

	Akkeshi	Elkhorn Slough	Fort Johnson	Nordstrand
Gverm_5276	0.484 *	0.120	-0.209	-0.492
Gverm_6311	0.435 *	0.140	-0.267	-0.048
Gverm_8036	0.334	NA	-0.445 *	-0.217
Gverm_3003	0.529	-0.121	-0.138	-0.553
Gverm_1203	-0.15	-0.206	-0.310	-0.508
Gverm_1803	0.569 *	0.460	-0.696 *	NA
Gverm_804	-0.278	-0.206	-0.310	-0.508
Gverm_10367	-0.017	NA	NA	NA
Gverm_2790	NA	NA	NA	-0.913 *