Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: A critical review

Waqar Ali¹,², Hua Zhang³, Muhammad Junaid⁴, Kang Mao³, Nan Xu⁴, Chuanyu Chang¹,², Atta Rasool⁵, Muhammad Wajahat Aslam¹,², Jamshed Ali¹,², and Zhugen Yang⁶

¹State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; ²University of Chinese Academy of Sciences, Beijing, China; ³Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China; ⁴Department of Environmental Sciences, COMSATS University, Islamabad (CUI), Vehari, Pakistan; ⁵Cranfield Water Science Institute, Cranfield University, Cranfield, UK

ABSTRACT
This review highlights arsenic (As) and selenium (Se) sources in the environment, their uptake in the soil-plant system, interactions between these metals and the associated toxicity in major biological compartments, which may assist in addressing the hazardous impacts associated with As and Se contamination. The interaction between As and Se is a critical factor for a detailed systematic understanding of the transportation, environmental fate, and associated toxicological effects of these metalloids in plants, animals, and humans. Arsenic and Se induce cytotoxicity and genotoxicity through the generation of reactive oxygen species (ROS). Compared to arsenite (As³⁺), methylated arsenu,cals, including methylarsonous acid (MAs³⁺) and dimethylarsinous acids (DMAs³⁺), exhibit more cytotoxic and genotoxic potential to inhibit more potent enzymes and activate the protein AP-1, which is a critical marker of genetic stability. Methylated As³⁺ and its associated metabolites are well-known potential carcinogens that induce toxicity by blocking Se metabolism pathway. The imbalance of Se compounds can lead to the generation of ROS, which can inhibit or decrease genomic stability. The As and Se nexus also affect cellular signaling through activation of transcription factors such as NFκB and AP-1.

KEYWORDS Arsenic-selenium; complex-interactions; toxicity
1. Introduction

Previous cutting-edge studies have suggested that the understanding of mechanistic interactions between As and Se is critical to unveil their environmental fate and health-related consequences in animals and humans. Arsenic is the 20th most abundant element in the earth’s crust and is a well-known human carcinogen that exists as only one isotope in nature (Ali, Aslam, et al., 2019; Ma et al., 2001). Two main species of As exist in the terrestrial environment, arsenate (AsV) and arsenite (AsIII), which are dominant under oxidizing and reducing environmental conditions, respectively (Sun et al., 2014). Arsenic could present the different modes of toxicity in biological system (owing to its difference in chemical speciation). For instance, the final metabolic products of As, monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) are moderately less toxic than inorganic As, albeit the toxicity of the intermediate metabolites such as, monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) is considerably higher than inorganic AsV such as MMAV, DMAV, and AsIII. In major biological systems (plants, animals, and humans), the toxicity behavior of different As species increases in the order of AsV < MMAV < DMAV < AsIII < MMAIII \approx DMAIII (Bastias & Beldarrain, 2016; Sun et al., 2014).

Selenium is a metalloid that was first discovered in 1817 by the Swedish chemist Jons Jacob Berzelius and exists in the earth’s crust at the level of 50 to 90 µg/kg (Shahid et al., 2018; Sneddon, 2012). Selenium has various valance states, including selenide (Se2−), selenium (Se0), thioselenate (SSeO\textsubscript{3}^{2−}), selenite (SeIV), and selenate (SeVI) (Chauhan et al., 2019; Schiavon & Pilon-Smits, 2017). Similar to As, where AsV is less toxic than AsIII, SeVI is less toxic than SeIV in both eukaryotes and prokaryotes (Sun et al., 2014). However, different studies have suggested that SeIV and SeVI are not only the most abundant forms of Se but also the only forms available for plant uptake (Shahid et al., 2018). Abbreviations used in the current review are listed in Table 1.

Selenium is also an essential element for microbes, animals, and humans at a certain level. For example, the Se recommended dietary allowance (RDA) limit is 55 µg/day for adults (Sun et al., 2014; Zeng, Uthus, & Combs, 2005; Zwolak & Zaporowska, 2012). Selenium acts as a critical component in different selenoproteins, including glutathione peroxidases (GPx), a family of antioxidant enzymes in animals and humans (Savitha, 2014). Selenium occurs in numerous oxidation states that permit the production of organoselenium and selenoamino acid complexes (Tinggi, 2003). In the plant system, Se is also considered a beneficial element, acts as an antioxidant at low and acceptable doses, and protects plants from various types of abiotic stresses. However, an excessive amount of Se in the plant system behaves like a pro-oxidant and causes toxicity (Shahid et al., 2018).
Selenite is commonly used as a feed additive in different commercial animal diets with a recognized Se dose of 0.5 mg/kg for the whole feed (Zwolak, 2019). In humans, Se intake varies across various countries. Overall, Se consumption for adults ranges from 93 to 134 μg/day in North America; the optimal Se consumption ranges from 52 to 64 μg/day in Western Europe; low levels of Se consumption range from 30 to 40 μg/day in Eastern Europe (Zwolak, 2019). This metalloid is also known as a cancer chemopreventive compound, which is indispensable for cells to function properly (Zeng et al., 2005). Several mechanisms have been reported on the chemoprotective effects of Se, such as antioxidant protection, reduction in the carcinogenic metabolic effects, enhancement of the immune surveillance system, and inhibition of the angiogenesis process and cell cycle (Lu & Jiang, 2001; Zeng, 2009).

Several mechanisms have been proposed to elucidate the interaction between As and Se. However, the biological interactions between As and Se depend on specific biochemical forms because As and Se are metalloids with similar chemical properties that are intensely alike with different biological effects (Sun et al., 2014). However, the antagonistic effects or natural
detoxification between As and Se have been confirmed in several animal species, as well as in humans (Zwolak & Zaporowska, 2012). Due to their chemical similarity, As and Se both play dual roles in cancer. Arsenic is known for its carcinogenicity; however, it has also been used in treating certain cancers. Likewise, Se is known as an anticarcinogen that also causes cancer. To date, substantial research has been done to elucidate insights into their carcinogenic mechanisms and interactions between their double roles of carcinogens and anticarcinogens (Sun et al., 2014).

Historically, Mexon first introduced and used As as a treatment in 1938 to reduce the toxicity of Se in animals (Rosen & Liu, 2009). Elevated concentrations of both As and Se in animals and humans cause the release, relocation, and removal of essential or non-essential metals via biliary, urinary, and expiratory pathways (Gaxiola-Robles et al., 2014). Several recent studies have elucidated the protective competence of Se from SeIV in contrast to AsIII and its renal toxicity, immunotoxicity, and/or cardiovascular injury in animals and humans (Zwolak, 2019). Mechanistic interactions between As and Se signify the protective effects of Se on As methylation efficiency, such as the elevated concentration of urinary Se mainly related to an increased percentage of DMAV and a reduced percentage of inorganic As in the urine of As-exposed pregnant women in Chile and Taiwan (Christian, Hopenhayn, Centeno, & Todorov, 2006; Hsueh et al., 2003). However, findings from another study on As-exposed adults suggested that the plasma Se level was inversely related to the percentage of total As concentration in blood and urine and the percentage of MMAV is related to the percentage of DMAV in blood; moreover, plasma Se did not affect As metabolites in the urine of the studied population (Pilsner et al., 2010).

Recently, a study on unexposed preschool children in Taiwan confirmed that elevated concentrations of Se in plasma were related to a decreased percentage of MMAV and an increased percentage of DMAV (Su et al., 2019). However, contrary results were reported by Skrøder Löveborn et al., who revealed a positive interaction between increasing erythrocyte levels of Se and increasing percentages of As and MMAV in urine samples collected from children, implying that Se contributed to the methylation of As in children (Skrøder Löveborn et al., 2016). Furthermore, Styblo and Thomas (2001) reported that SeIV at a 2 μM dose could inhibit the AsIII methylation process and increase the cellular retention of As-induced toxicity mediated by MMAIII, DMAIII, and AsIII in rat hepatocytes (Styblo & Thomas, 2001). To date, these contradictory results have been stated in the reviewed literature as both antagonistic and synergistic interactions, and toxicity exists between As and Se (Sun et al., 2014).

Considering all of this background information on the significance of As and Se in biological systems and most importantly their interaction (which...
1. Introduction

Arsenic (As) and selenium (Se) are naturally occurring elements that have been implicated in environmental health issues worldwide. While As is predominantly found in soil and water, Se is more common in various food sources. The widespread occurrence of As and Se in the environment, particularly in volcanic and geothermal regions, has led to concerns regarding their potential toxic effects on human health. This review aims to address these concerns by highlighting the following three main objectives: 1) to explain the possible mechanisms of As and Se uptake in the soil-plant system and plant toxicity; 2) the As and Se interactions in animals and humans; and 3) the physiological significance of the metabolic process of Se to understand the toxicity and exposure routes of As.

2. Arsenic and selenium fate in the environment and their associated effects

Anthropogenic sources of As and Se include mining, smelting, metal ore processing, and municipal, industrial and domestic waste disposal, while natural sources comprise volcanic eruption and rock weathering (Figure 1) (Ali, Aslam, et al., 2019; Wen & Carignan, 2007; Zeng et al., 2015). In the past, As and arsenical compounds were widely used for the preparation of insecticides, pesticides, herbicides, and fungicides (Ali, Mushtaq, et al., 2019).

Arsenic naturally occurs in over 200 numerous forms of minerals, of which approximately 60% are arsenates, 20% are sulfides and sulfosalts, and 20% are oxides, arsenide, arsenite, silicates, and elemental As (Ali, Aslam, et al., 2019). Naturally, there are four processes, i.e., reductive dissolution, sulfide oxidation, alkali desorption, and geothermal activities, that are usually involved in releasing As into different environmental compartments, such as the air, soil, and groundwater (Bhattacharya, Mukherjee, Bundschuh, Zevenhoven, & Loeppert, 2007). Arsenic can also be derived from natural sources, presumably from detrital chlorite (Hering, Burris, Reisinger, & O'Day, 2008). The oxidation-reduction potential (Eh) and pH are two primary significant factors that control As speciation and solubility,
both in soil and groundwater (Frohne, Rinklebe, Diaz-Bone, & Du Laing, 2011). At neutral and slightly acidic pH values, AsIII compounds exist as non-dissociated salts, while at pH > 8, they exist as anionic species (Ali, Aslam, et al., 2019).

Moreover, microbial activities influence As behavior in the soil environment and increase As availability in the soil-plant system (Khalid et al., 2017; Liu et al., 2019). Arsenic is mainly adsorbed by iron oxyhydroxides in sediment from which it is released into the soil, air, and groundwater by microbial degradation (Brammer & Ravenscroft, 2009). Microbes primarily degrade organic matter and reduce ferric iron to the soluble form of ferrous iron and, consequently, As is released into the soil system (Huang, 2014). Various microbes, such as \textit{Bacillus arsenicoselenatis}, \textit{Crysogenes arsenates}, and \textit{Geospirillum arsenophilus}, play a significant role in the redox transformation of AsV to AsIII through reduction by using AsV as a terminal electron acceptor (Khalid et al., 2017). However, As methylation also takes place under oxidizing or reducing environmental conditions by a variety of microbes. During the As microbial methylation process, AsV is converted to AsIII followed by several steps to form several organic As compounds, such as MMAV, DMAV, and trimethyl arsine (TMA) (Khalid et al., 2017; Rahman et al., 2014).

Arsenite is sixty times more poisonous and cancer-causing to humans than AsV (Hughes, Beck, Chen, Lewis, & Thomas, 2011). Arsenite can bind to tissues for an extended period through specific groups of proteins that distress ATP synthesis (Brown & Ross, 2002; Chandrakar, Pandey, & Keshavkant, 2018). Long-lasting As exposure damages the human cardiovascular, dermal, neurological, hepatic, respiratory, and reproductive systems (Ali, Mushtaq, et al., 2019).

 Selenium is also a well-known toxic element, and Se and Se compounds are widely used as feed additives (Navarro-Alarcon & Cabrera-Vique, 2008), which exhibit adverse effects on the environment and food chain and have been discussed comprehensively during the recent past (Chauhan et al., 2019). Similar to As, Se can also be biologically transformed through redox methylation reactions mediated by a variety of microbes. In the soil system, microbes can reduce SeVI and SeIV to elemental Se directly or by changing the pH and Eh, which makes SeIV comparatively more available to plants than Se. However, this transformation process can also occur in both oxidizing and reducing soil conditions (Saha, Fayiga, & Sonon, 2017). Microbes can make use of both SeVI and SeIV as terminal electron acceptors during respiration under reducing soil conditions (Saha et al., 2017). However, both organic and inorganic forms of Se are actively transformed into volatile methylated organic complexes such as dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe) by fungi, bacteria and plant roots (Winkel
et al., 2015). DMSe is a critical compound produced through respiration by plants and microbes (Stolz, Basu, Santini, & Oremland, 2006).

Selenium plays a vital role in the scavenging and regulation of free radicals (Hartikainen, 2005). At physiological pH, Se complexes (selenols) readily dissociate and participate in catalytic reactions (Tinggi, 2003). In the human body, excessive Se changes to selenocysteine (SeCys), which is known as the 21st proteogenic amino acid, an essential component of 25 various selenoproteins (Chauhan et al., 2019; Constantinescu-Aruxandei, Frîncu, Capră, & Oancea, 2018). Integration of SeCys instead of cysteine at the active sites of enzymes such as methionine-R-sulfoxide reductase can change their catalytic activity and electron donor specificity, which is considered to be Se toxicity in humans (Gromer, Eubel, Lee, & Jacob, 2005; Stadtman, 2005). The occurrence of SeCys in the active sites of antioxidant enzymes produces maximum catalytic activity because of the stronger nucleophilic influence of SeCys in contrast to cysteine (Cys) (Snider, Ruggles, Khan, & Hondal, 2013). This causes an alteration in SeCys biosynthesis or precise integration into Se-requiring proteins, which can lead to neurological and several other disorders (Chauhan et al., 2019).

Approximately 0.5 to 1 billion people worldwide suffer from Se deficiency (Jones et al., 2017), which makes them prone to several diseases, such as white muscle and Keshan disease (Shahid et al., 2018). Selenium deficiency occurs in humans when Se intake is <40 μg/d (Navarro-Alarcon & Cabrera-Vique, 2008; Winkel et al., 2011), which can cause reduced bone metabolism, growth obstruction, irregularities in thyroid function, reduced fertility, a weakened immune system, and even induce cancer (Chang et al., 2019; Gupta & Gupta, 2017; Navarro-Alarcon & Cabrera-Vique, 2008). Inorganic Se is 40 times more toxic than organic Se (Vinceti, Maraldi, Bergomi, & Malagoli, 2009). However, an intake of Se that is >400 μg/d (Winkel et al., 2011) can lead to severe toxicological effects in humans, such as skin lesions, nail and hair loss, cancer, nervous disorders, amyotrophic lateral sclerosis, diabetes, and paralytic symptoms (Chauhan et al., 2019; Fordyce, 2013).

3. Arsenic and selenium uptake, translocation, accumulation, and toxicity in plant systems

3.1. Arsenic

Arsenic uptake, translocation, accumulation, and toxicity in plants and food crops depend on environmental conditions, plant species, and the bioavailability of As species (Bhattacharya et al., 2012). Arsenate is a major As species in aerobic soil systems because AsV has a strong affinity to bind to iron oxide or to undergo hydrolysis; therefore, the AsV level ranged from
<2.3 to 53 μM in uncontaminated or moderately to highly contaminated soil solutions, respectively (Wilson, Lockwood, Ashley, & Tighe, 2010; Zhao, Ma, Meharg, & McGrath, 2009). Arsenite is predominately observed in reducing environmental conditions, such as in flooded paddy soil (Zhao et al., 2009). Thermodynamically, the reduction of AsV to AsIII takes place in between redox potential, leading to the mobilization of AsIII into the soil solution, which causes an increase in As availability to plants (Chen et al., 2017). In paddy flooded soil, the concentration of AsIII ranges from 0.01 to 3 μM, a concentration that is much higher than that in AsV-contaminated soils (Zhao et al., 2009).

In plants, various protein transporters assist the uptake of As in its inorganic form, and this process usually depends on the As concentration gradient between the source and sink (Abbas et al., 2018). Arsenic uptake in plant cells depends on As species such as AsV and uses different phosphate (Pi) transporters that belong to the PHT1 family because phosphate is chemically similar to AsV (Moreno-Jiménez, Esteban, & Peñalosa, 2012). However, AsIII uses silicon (Si) transporters due to its resemblance to Si (Bastías & Beldarrain, 2016). Arsenite is facilitated by aquaglyceroprotein nodulin-like essential proteins (NIPs) (Bastías & Beldarrain, 2016). Under Si deficiency, the expression of influx Si transporters (Lsi1 and Lsi2) increases (Ma & Yamaji, 2008). The accumulation of Si in plant cells is controlled by the Lsi1 and Lsi2 transporters, which are contained at the proximal or distal flanks of epidermal and endodermal cells, which help in the transportation of As across the plant’s cells and tissues (Abbas et al., 2018). However, traces of methylated As species, well known as MMA and DMA, are also found in some As-contaminated soils (Zhao et al., 2009).

Monomethylarsenic acid and DMA have mainly originated from the past use of arsenical compounds such as herbicides or insecticides or may also be synthesized by algae or soil microorganisms (Zhao et al., 2009). Monomethylarsenic acid and DMA are absorbed by aquaporins using the same uptake mechanisms as glycerol in plant cells (Bastías & Beldarrain, 2016). Once the As species mobilize from soil to plant root cells (Figure 2), AsV is mainly reduced by As-reductase (AR) to AsIII, which can cause the transformation of glutathione (GSH) to its oxidized form GSSG (Abbas et al., 2018). Arsenite is transformed into trimethyl arsenic oxide (TMAOV) or trimethyl arsine oxide (TMAOIII), and the end product of As methylation is released into the environment (Bastías & Beldarrain, 2016). The alternative route of As detoxification happens by phytochelatin (PC) synthesis due to the condensation of amino acids such as glutamate (Glu), glycine (Gly), and cysteine (Gupta & Khan, 2015). Within the vacuole, the appropriation of AsIII-PC compounds occurs through the activation of different unknown transporters (Awasthi, Chauhan, Srivastava, & Tripathi,
Arsenic causes more toxicity than AsV and can bind with various proteins or peptides, which contain thiol groups known as metallothionein, glutathione, and phytochelatins, making them inactive compounds that protect cell components from As-induced toxicity (Ali, Isayenkov, Zhao, & Maathuis, 2009; Bastías & Beldarrain, 2016).

Previous studies have suggested that the reduction of As occurs mainly in root cells before transport to the xylem and the remaining parts of the plants (Zhao et al., 2009). Arsenite and AsV are the predominant As species primarily found in the xylem sap of plants (Finnegan & Chen, 2012). A small concentration of total As is absorbed through the plant root, and only a minute quantity is sequestered in the leaf, shoot, and grain vacuoles because As reduction and sequestration mechanisms are similar to those of the roots (Bastías & Beldarrain, 2016). Hence, the occurrence of AsIII and AsV in the phloem is a requirement for its distribution to other parts of the plant (Chen et al., 2017). Elevated As concentrations in the soil causes disruption of normal plant function and metabolism, leading to stunted plant growth as well as low productivity (Moreno-Jiménez et al., 2012).

Arsenic disrupts plant biochemical and metabolic pathways, such as delayed nutrient absorption, effects on the plant photosynthetic system, interruptions in plant water uptake status, interactions with different functional groups of plant enzymes, and the exchange of essential ions from ATP in plants growing in As-polluted soils (Abbas et al., 2018). Once As is absorbed by plants, the plant light-harvesting system might be affected by a decrease in chlorophyll levels and photosynthetic activity (Sharma, 2012).
notable decrease in the chlorophyll content and pigment synthesis was described due to deficiency in the adaptive adjustment of plant photosystems I and II due to elevated As (Garg & Singla, 2011). Correspondingly, a reduction in chlorophyll synthesis was observed in different plants, such as *Trifolium pratense* L., *Zea mays*, and *Lactuca sativa* (Abbas et al., 2018).

Arsenic causes severe damage to the chloroplast membrane, which leads to disturbed functioning of essential plant photosynthetic processes, such as the rate of carbon dioxide (CO₂) fixation, and significantly reduces the functionality of PS-II (Asati, Pichhode, & Nikhil, 2016; Garg & Singla, 2011; Stoeva & Bineva, 2003). Arsenic affects photochemical proficiency and plant heat dissipation competence, which is responsible for the exchange rate of gases as well as plant fluorescence release (Chandrakar, Naithani, & Keshavkant, 2016). Arsenic also causes a reduction in both leaf and root growth, which leads to the wilting and bluish-purple coloring of leaves (Chandrakar et al., 2018). The elevated concentration of As in plant-growing soil may also inhibit the plant metabolic system, affect plant micro- and macronutrient uptake, and compete with the uptake of essential plant nutrients such as phosphate (Finnegan & Chen, 2012). Plant membranes are susceptible targets of As stress-induced toxicity that cause cellular damage and leads to reduced plant stomatal conductance, unstable and reduced nutrient uptake and disruption of the plant transpiration process (Kofroňová, Mašková, & Lipavská, 2018).

As induces molecular and biochemical effects in plant systems in two ways: 1) through the direct inactivation of essential enzymes through sulfhydryl group interactions or the replacement of compulsory ions from enzyme active sites and 2) the consequent indirect increase in ROS in a cascade of irreversible damage in plants (Chandrakar et al., 2016). Reactive oxygen species are chemically reactive and highly unbalanced molecules that contain unpaired valence electrons with short survival times (Balakhnina & Nadezhkina, 2017; Yang, Cao, & Rui, 2017). Different metabolic pathways function in different cellular compartments, such as mitochondria, chloroplasts, and peroxisomes, by continuously generating ROS as a byproduct in the typical plant metabolism process (Das & Roychoudhury, 2014). The imbalanced generation of ROS is well known to cause oxidation to nonspecific proteins, carbohydrates, and lipids, cell membrane leakage, DNA damage, and essential enzyme inactivation in plants (Hasanuzzaman, Nahar, & Fujita, 2013).

3.2. Selenium

Selenium uptake, translocation, accumulation, and toxicity depend on plant species, plant development phases, Se level, the activity of membrane
transporters, the translocation mechanisms of the plant, and soil physiological conditions (pH & salinity) (Chang et al., 2019; Gupta & Gupta, 2017). Compared with Se IV, Se VI is more frequently bioavailable and water-soluble in agricultural soils (Fernández-Martínez & Charlet, 2009). Selenium translocation in plant shoots, leaves, and grains depends on the rate of transpiration and the rate of xylem loading (Gupta & Gupta, 2017; Renkema et al., 2012). In soil, the occurrence of contending ions, mainly sulfate and phosphate, might be affected by Se uptake in plants (Golob et al., 2016; Gupta & Gupta, 2017). Due to chemical similarities between Se and sulfate, both elements share common metabolic pathways in plants throughout the translocation process. Selenite and Se VI are available forms of Se that vigorously compete with sulfur, sulfite, thiosulfate, and sulfate in plant systems (Shahid et al., 2018).

Selenium uptake in plant systems is facilitated by transporters, whereas Se IV and Se VI are transported through sulfate and phosphate channels, respectively (Shahid et al., 2018). Selenate enters the plasma membrane of plant root cells by sulfate transporters (Lin et al., 2012). It is well known that the addition of sulfate to acidic soil can decrease Se uptake by plants (De Temmerman et al., 2014); however, the effects are reversed in alkaline soil (Huang, Hu, & Liu, 2007). Selenate and phosphate compete and enter into the plasma membrane of plant root cells through phosphate transporters (Winkel et al., 2015). The presence of phosphate raises the Se bioavailability most likely through the exchange of Se in sorption sites, therefore increasing Se mobility and uptake in plants (Shahid et al., 2018). Usually, younger plant leaves contain higher Se concentrations than older leaves through the seeding growth phase (Cappa et al., 2014).

Selenium naturally accumulates in plant cell vacuoles and effluxes through sulfate transporters existing in tonoplasts (Hawkesford & De Kok, 2006; Mazej, Osvald, & Stibilj, 2008). Based on the Se accumulation inside plant cells, plants are classified as non-accumulators, secondary accumulators, and hyperaccumulators (Schiavon, Pilon, Malagoli, & Pilon-Smits, 2015). Hyper-accumulator plants can accumulate more Se, >1000 mg/kg DW in plant cells. The methylated form of Se, such as SeMet and SeCys, deliberates Se tolerance in hyperaccumulator plants, which further vaporizes to DMDSe. However, secondary and non-accumulator plants can accumulate Se at concentrations ranging from 100 to 1000 and <100 mg/kg DW, respectively, showing that there are no signs of toxic effects on plants (Gupta & Gupta, 2017). After entrance into the plant cell with the help of sulfate transporters, selenium translocates into other parts of the plant, i.e., the shoots, leaves, and grain cells (Bitterli, Bañuelos, & Schulin, 2010) and is metabolized in plastids through the sulfate integration pathway to SeMet or SeCys, while the sulfur chemical analog of Se can undergo additional
methylation and evaporation into the atmosphere in a nontoxic form (Pilon-Smits & Quinn, 2010).

The first step of Se metabolism inside plant leaves or shoot cells is initiated by sulfate integrating enzymes through the conversion of Se to SeIV via two enzymes, i.e., ATP sulfurylase (APS) and APS reductase (APR) (Gupta & Gupta, 2017; Shahid et al., 2018). Sulfurylase catalyzes the hydrolysis of ATP to couple ATP with SeVI and form adenosine phosphoselenate (APSe), which is further reduced to SeIV by the enzyme APR (Figure 2) (Pilon-Smits & Quinn, 2010; Shahid et al., 2018). In summary, SeIV is changed to Se2− by the enzyme sulfite reductase, and this metabolic step may also be reduced through glutaredoxins (Grxs) or GSH (Wallenberg, Olm, Hebert, Björnstedt, & Fernandes, 2010). The reduction of SeVI to APSe can increase plant tolerance to SeIV-induced stress (Shahid et al., 2018). In the next metabolic step, Se2− is transformed into SeCys through coupling with O-acetyl serine (OAS) in the presence of the enzyme cysteine synthase (CS). The enzyme CS has a greater affinity for Se2− than sulfide (S2−), which depends on environmental conditions and plant species (Pilon-Smits & Quinn, 2010).

The SeCys transforms into Se in the presence of the enzyme SeCys lyase or might be methylated to Me-SeCys through selenocysteine methyltransferase (SMT) or be changed into selenomethionine (SeMet) through a sequence of enzymes (Gupta & Gupta, 2017; Shahid et al., 2018). The imbalanced incorporation of SeMet/SeCys in plant proteins can cause damage to the structure and function of the protein, which leads to Se toxicity in plants (Gupta & Gupta, 2017; Pilon-Smits & Quinn, 2010). Moreover, SeMet can further be methylated to methyl-SeMet. Me-SeCys or Me-SeMet can be volatilized into the atmosphere as nontoxic dimethyl selenide (DMSe) or dimethyl diselenide (DMDSe) in non-accumulator and hyperaccumulator plants, respectively (Pilon-Smits & Quinn, 2010; Shahid et al., 2018).

Selenium toxicity or selenosis ensues in plants by two mechanisms: 1) malformed selenoprotein-induced toxicity and 2) oxidative stress-induced Se toxicity. Malformed selenoprotein toxicity in plants occurs in the protein chain by the replacement of SeCys or SeMet with Cys or Met (Gupta & Gupta, 2017). In the plant protein chain, Cys residues play an essential role in the synthesis of protein structure and function, as well as aid in the synthesis of metal-binding sites, metal catalysis, and disulfide linkages. Hence, the replacement of Cys with SeCys causes damage to protein structure and function because SeCys has an exceptional reactivity that can be quickly deprotonated compared with Cys (Gupta & Gupta, 2017; Hondal, Marino, & Gladyshev, 2013). The replacement of Cys with SeCys leads to the dysfunction of methionine sulfoxide reductase because of the considerable
diselenide linkage and altered redox potential, which disrupts the enzyme kinetics of the plant (Châtelain et al., 2013; Hondal et al., 2013). Selenium-induced toxicity is caused by disturbance and disparity between the production and scavenging of ROS (Shahid et al., 2018). At elevated doses, Se stress causes a decrease in the level of GSH, and Se behaves as a pro-oxidant and produces ROS, which may cause oxidative stress in plants (Feng, Wei, & Tu, 2013; Hugouvieux et al., 2009).

Additionally, several nanoparticles (NPs) released into environmental compartments from different manufacturing and commercial sectors can induce toxicity in plants (Rai et al., 2018; Yang et al., 2017). Arsenic- and Se-based NPs also cause an imbalance in the generation of ROS, induce oxidative stress, and pose severe toxic effects on photosynthesis and growth in plants, which can even lead to plant death (Sarkar et al., 2015; Yang et al., 2017). However, several studies have reached consensus on the environmental behaviors, interactions, ecological effects, and toxicity of As- and Se-based NPs in plant systems, but many controversies and problems remain to be further studied.

4. Arsenic and selenium metabolic processes in animals and humans

4.1. Arsenic metabolic processes

Arsenite has an analogs structure to glycerol and is transported in cells through aquaglyceroporins, which are very small proteins that move small organic compounds similar to urea and glycerol (Liu et al., 2002). Nevertheless, AsV uses diverse pathways both in animals and human cells with similarities to physiological phosphate with the following analogs detachment constants: pKa values of As-acid: 2.26, 6.76, and 11.3 and pKa values of phosphoric acid: 2.16, 7.21, and 12.3 (Villa-Bellosta & Sorribas, 2008). Arsenite (LD\textsubscript{50} of NaAsO\textsubscript{2}: 41 mg/kg) is considered more toxic and carcinogenic than AsV and more toxic than the organic As species dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) (Harper, Antony, & Bayse, 2014; Jain & Ali, 2000). Total As is analogs to phosphate, and the AsV oxyanion is present in solution, such as H\textsubscript{2}AsO\textsubscript{4} and HAsO\textsubscript{4}2-, at pH values ranging from 5 to 7; due to chemical similarity, the AsV oxyanion competes with and enters through phosphate transporters (Plant, Kinniburgh, Smedley, Fordyce, & Klinck, 2004). In humans, inorganic As, once inside the body, is heavily methylated before execution in the urine. Consumed inorganic As is methylated into MMA and DMA. MMA has more significant toxicity than inorganic As, and MMA can increase the risk of the carcinogenic potential of As (Burgess et al., 2014).

After entering an animal or human cell, AsV rapidly reduced to AsIII. Next, AsIII undergoes multistep-based methylation through AsIII methyltransferase
(AsIIIMT) by using an S-adenosylmethionine (SAM) methyl donor to produce several As-methylated compounds, such as MMAIII, DMAIII, MMAV, and DMAV (Kojima et al., 2009). Challenger in 1945 was the first to introduce arsenic-methylation in \textit{Scopulariopsis brevicaulis}, which is the classical pathway of methylation (Figure 3a), and suggested that the As methylation process included a series of oxidation and reduction processes (Challenger, 1945). Another process suggested that AsIII can also undergo a non-enzymatic methylation process in rat livers (Figure 3b) in the presence of methylcobalamin and GSH (Zakharyan & Aposhian, 1999). After that, Hayakawa, Kobayashi, Cui, and Hirano (2005) found that enzymes played a crucial role in As methylation and proposed a new enzymatic metabolic pathway (Figure 3c). In the As methylation enzymatic metabolic pathway, the -OH group of As(OH)\textsubscript{3} is substituted by glutathionyl moieties and forms the GSH conjugates As(GS)\textsubscript{2}-OH and As-triglutathione As(GS)\textsubscript{3} (Hayakawa et al., 2005). After the addition of a critical substrate, AsIIIMT and arsenite-glutathione (AsIIIGSH) are more methylated to monomethylarsonic-diglutathione (MMA(GS)\textsubscript{2}) and then to dimethylarsinic-glutathione (DMA(GS)) (Sun et al., 2014).

Another metabolic pathway of As was investigated by (Naranmandura, Suzuki, & Suzuki, 2006) via intravenous injection of As in rats that metabolized As in renal and hepatic regions (Figure 3d). Furthermore, As metabolites such as trivalent (inorganic) and pentavalent (organic) arsenicals were detected in As-spiked human urine samples, as well as in \textit{in vitro} cell
lysates and cell culture medium after chronic exposure to As (Devesa et al., 2004). Recently, another insight into the As metabolic pathway was reported in wild-type rats by (Wang, Thomas, & Naranmandura, 2015), and this study identified novel As metabolites. The arsenicals (As-S bond) are structurally very similar to oxo-arsenicals (As-O bond), in which oxygen atoms bind with As atoms as a substitute for sulfur atoms. However, thioarsenate (OH)$_3$-As(=S) and arsenate (OH)$_3$-As(=O), which are thioarsenical-oxoarsenical, are analogs. The study further considered the origin and process that converted inorganic As into methylated oxoarsenical species and further converted oxoarsenicals into thioarsenicals (Figure 3e).

Inorganic AsIII is absorbed in the intestinal lumen and then enzymatically changed into MMAIII, after which the compound is further changed into the diglutathione complex MMA(GS)$_2$ that is secreted in bile. In the intestinal lumen, MMA(GS)$_2$ is further converted to monomethyl-monothioarsenic (MMMTAV) through microbiota, MMMTAV is further absorbed across the intestinal wall, and then symmetrically dispersed and converted to another thiolate metabolite, monomethyl-dithioarsenic (MMDTAV) (Wang et al., 2015).

4.2. Selenium metabolic processes

The two major species of inorganic Se, SeIV, and SeVI, are significant in the biological and biochemical cycles of Se; nevertheless, Se species exhibit different biochemical properties, such as their energy consumption and differences in their toxicity during uptake and metabolism (Sun et al., 2014). Sodium sulfate cotransporters are primarily responsible for transporting SeVI (Bergeron, Clémençon, Hediger, & Markovich, 2013). However, SeIV is primarily absorbed into cells through passive diffusion (Skalickova et al., 2017). Different studies have verified that both organic and inorganic Se could exchange their roles in the intracellular environment through a series of reactions (Figure 4a). Organic Se metabolic processes in animals and human cells through different pathways form Se$^{2-}$ (Shini, Sultan, & Bryden, 2015). Inorganic SeVI with high redox potential entering human or animal cells first undergoes enzymatic reduction to SeIV and then is rapidly reduced enzymatically to Se$^{2-}$ by GSH (Ogra & Anan, 2009).

Selenate is intracellularly reduced to Se$^{2-}$ through different pathways, and SeVI reacts with reduced GSH to form selenodiglutathione (Se(GS)$_2$). Furthermore, Se(GS)$_2$ is converted to selenopersulfide (GSSeH), and GSSeH decays spontaneously or enzymatically under anaerobic conditions and is converted into hydrogen selenide (H$_2$Se) (Weiller, Latta, Kresse, Lucas, & Wendel, 2004). Moreover, a typical intermediate of Se$^{2-}$ is used either for selenoprotein biosynthesis or biomethylation to methylselenol (CH$_3$SeH),
dimethyl selenide (CH$_3$)$_2$Se, or the trimethyl selenonium cation (CH$_3$)$_2$Se$^+$. Subsequently, they can extrude from extracellular spaces with (CH$_3$)$_2$Se released through breath and (CH$_3$)$_3$Se$^+$ in the urine (Gailer, 2002, 2007).

Thiol reduction of SeIV was defined by Harper et al. (2014), who reported that SeIV reacted with four glutathiones (thiol, RSH) or with another thiol (Figure 4b) to produce selenotrisulfide (RSSeSR). RSSeSR can further reduce Se$_2^-$ with thiols, such as thioredoxin or GSH reductase (Björnstedt, Kumar, & Holmgren, 1992; Harper et al., 2014; Jornstedt, Kumar, & Holmgren, 1995).

Several seleno-compounds are metabolized into Se$_2^-$ by different metabolic pathways, such as the C-Se bond in seleno amino acids, one of the leading organic Se compounds that are cleaved and transformed into Se$_2^-$ by lyase reactions (Schrauzer, 2000; Suzuki, Kurasaki, & Suzuki, 2007). Selenocysteine is transformed by and forms Se$_2^-$ through a β-lyase reaction, and Se-Met transforms into Se$_2^-$ by a β-lyase reaction after a complete transselenation reaction to SeCys or via a γ-lyase reaction (Suzuki et al., 2007). The product of Se methyl metabolism is methyl selenide, which is further demethylated and forms Se$_2^-$ (Ohta & Suzuki, 2008).
Arsenic and selenium epidemiological effects, cytotoxicity, and genotoxicity in animals and humans

Arsenic is a well-known carcinogen causing liver, bladder, lung, and skin cancers (Ali, Aslam, et al., 2019). Arsenic exposure produces excessive ROS that can cause diverse types of malformations, including both lethal and non-lethal malformations (Sun et al., 2014). The acute and chronic minimal lethal doses of As in adults have been estimated to range from 100 to 300 mg/kg/day and 0.05 to 0.1 mg/kg/day, respectively (ATSDR, 2007; Ratnaike, 2003). Moreover, As exposure causes arsenicosis, Blackfoot disease, skin lesions, and peripheral vascular disease (Naujokas et al., 2013); as far as concern for Se exposure, various studies have reported that a low Se level is useful and acts as an anticarcinogen. However, a high level of Se exposure induces carcinogenic epidemiological effects, cytotoxicity (Figure 5), and genotoxicity (Sun et al., 2014; Valdiglesias, Pásaro, Méndez, & Laffon, 2010).

Several recent studies have suggested that As and Se can induce similar toxicity in animals and humans through diverse pathways (Sun et al.,

Figure 5. Arsenic and selenium epidemiological effects, cytotoxicity, and genotoxicity in animals and humans.

5. Arsenic and selenium epidemiological effects, cytotoxicity, and genotoxicity in animals and humans
Therefore, for this review, we focused on common mechanisms of As and Se interactions and their associated toxicity in animals and humans.

5.1. Epidemiological effects

Different studies have demonstrated that As interferes with the series of genes associated with cellular proliferation processes, DNA repair and damage, and cell cycle differentiation (Maiti, 2015). Arsenic may also alter cell signal transduction pathways, such as 53 protein signaling pathways, the MAPK pathway, and the Nrf2 cell signaling pathway (Ghosh & Sil, 2015). Reactive oxygen species activating cancer and methylated metabolites of As are known as potential carcinogens, such as the carcinogen DMA causing cancer in the urinary bladder of rats (Salnikow & Zhitkovich, 2008; Shi et al., 2004). Arsenic has caused non-carcinogenic diseases, including hypertension, diabetes mellitus, cardiovascular diseases, and dermal diseases (Shakir et al., 2016). Trivalent arsenicals As\(^{III}\), MMA\(^{III}\), and DMA\(^{III}\) induced diabetes by disrupting glucose metabolism, as investigated in intact pancreatic islets from mice (Douillet et al., 2013). Arsenite-induced inhibition of pyruvate and \(\alpha\)-ketoglutarate dehydrogenases are among the leading causes of diabetes (Navas-Acien et al., 2006). Most cardiovascular diseases are closely related to hypertension, and thus far, different pathways have been investigated for As-induced hypertension that increases inflammatory activity and endothelial dysfunction and alters the vascular tone in blood vessels (Abhyankar, Jones, Guallar, & Navas-Acien, 2012; Flora, 2011). Arsenic induces ROS to inhibit cell signaling, takes part in pathogenesis, increases cytokine production, and leads to inflammation that causes further enhanced ROS generation and mutagenesis (Jomova et al., 2011).

Selenium is an essential nutrient that plays a vital role, such as that of an antioxidant in humans; however, Se deficiency in humans and animals can induce many diseases (Surai, 2006). The daily recommended dietary intake for a healthy adult is 30 to 50 µg/d in the USA, while the Chinese Nutrition Society (CNS) and Europe have set the recommended dietary intake for a healthy adult as 50 to 250 µg/d (Whanger, 2004). Daily intake of Se ranging from 100 to 200 µg/d can induce genetic and cellular damage; however, excessive dosages of Se ≥ 400 µg/d can cause cancer in humans (Brigelius-Flohé, 2008; Zeng & Combs, 2008).

Long-lasting Se exposure-induced diseases include amyotrophic lateral disease, cardiovascular disease, and sclerosis. However, in humans, elevated levels of Se can cause diabetes because Se activates critical cellular metabolic enzymes that control insulin signal transduction pathways, albeit regulating various metabolic processes and pathways (pentose pathways, fatty
acid synthesis, gluconeogenesis, and glycolysis pathways) (Bleys et al., 2009; Vinceti et al., 2009).

In the 1980s, intensive research investigations failed to realize that there was any correlation between Se and cardiovascular diseases (Rayman, 2000). However, recent scientific studies and observations verified that a possible U-shaped strong correlation exists between Se level and cardiovascular disease (Joseph & Loscalzo, 2013; Rees et al., 2013). Selenium-induced neurodegenerative effects through the damage of motor neurons and activated proteins 38 to 53 induce amyotrophic lateral sclerosis (Chen, Wang, Xiong, Zou, & Liu, 2010; Vinceti et al., 2013). Different studies have suggested that oxidative stress induces Se toxicity, such as the impaired synthesis of thyroid hormones and growth hormones and the disruption of endocrine function (Letavayova, Vlčková, & Brozmanova, 2006; Maritim, Sanders, & Watkins, 2003; Valdiglesias et al., 2010). Reactive oxygen species play a significant role in the epidemiological outcomes of both As- and Se-mediated toxicity in humans as well as in mammals (Sun et al., 2014). Excessive Se produces excessive ROS, and this can affect similar pathways that induce cancer after As exposure (Klaunig & Kamendulis, 2004; Valko, Rhodes, Moncol, Izakovic, & Mazur, 2006). The imbalanced generation of ROS acts as an inner mechanism for As- and Se-associated adverse effects in mammals; however, associated adverse outcome pathways (AOPs) for cancer and cardiovascular defects have not yet been explained. Therefore, more attention should be paid to conducting studies for a mechanistic understanding of As- and Se-associated causes of cancer and epidemiological effects.

5.2. Cytotoxicity

Abnormalities within the cell are caused by toxic contaminants and is known as cytotoxicity. Several studies have reported that As and Se both induce ROS that can cause cytotoxicity within cells by different pathways (Park et al., 2012; Selvaraj, Tomblin, Armistead, & Murray, 2013). Cells exposed to high doses of As and Se exhibited elevated levels of ROS. When As is produced, ROS induce NADPH oxidase, and Se is produced when Se^{2-} reacts with thiols (Chou et al., 2004). Reactive oxygen species not only destroy protein and lipid functions but also activate mitochondrial damage by inducing oxidative stress on mitochondrial-dependent apoptotic pathways (Fleury, Mignotte, & Vayssière, 2002; Kim et al., 2007; Kim, Jeong, Yun, & Kim, 2002). Furthermore, ROS produces cytotoxicity via activation of the protein JNK, which is one of the relevant subgroups of the mitogen-activated protein kinases that mediates critical cellular functions such as cell apoptosis, differentiation, and proliferation (Shen & Liu, 2006), and
also stimulates JNK tumor necrosis factor (Ventura, Cogswell, Flavell, Baldwin, & Davis, 2004).

Arsenic and Se induce cytotoxicity by different pathways, and As affects tumor suppressor protein 53, causing cytotoxicity. Protein 53 plays an essential role in cellular functions through cell growth regulation, cell cycle control, repair, DNA synthesis differentiation, and apoptosis (Andrew et al., 2006). In human fibroblast cells, As induced protein 53 accumulation, which may cause cell apoptosis by facilitating Bax translocation from the cytosol toward the mitochondria and release cytochrome activating caspase-9 by Apaf-1 and apoptosomes (Kircelli, Akay, & Gazitt, 2007; Shankar & Shanker, 2014). Protein 53 induces cell cycle arrest at the G2/M phase through transcriptional activation of protein 21, inhibiting cyclin-dependent kinase and inducing autophagy in a damage-regulated autophagy modulator (DRAM)-dependent manner (Akay, Thomas, & Gazitt, 2004; Crighton et al., 2006; Lozano & Elledge, 2000; Vogelstein, Lane, & Levine, 2000).

Selenium is a component of selenoproteins that exhibit a close relationship with redox reactions. Nevertheless, the enzyme thioredoxin reductase (TrxR), along with thioredoxin (Trx), produces an active di-thiol-di-sulfide and oxidoreductase complex, which further increases cytotoxicity (McKenzie, Arthur, & Beckett, 2002; Sun et al., 2014). The system controls cell growth by binding to cell signaling molecules, such as thioredoxin-interacting protein and apoptosis signal-regulating kinase-1, which are essential compounds responsible for cell growth and cell survival (Wallenberg et al., 2010; Yoshioka, Schreiter, & Lee, 2006). Selenium controls or modulates cell signaling pathways via a thiol redox mechanism and participates in cytotoxicity by reducing intracellular Cys. Arsenic and Se not only generate cytotoxicity through ROS but also affect the corresponding genes and proteins (Carlin et al., 2016; Hettick, Canas-Carrell, French, & Klein, 2015; Whanger, 2004).

5.3. Genotoxicity

Genotoxicity is defined as changes or damage to genetic information that can cause mutations in cellular information (Valdiglesias et al., 2010). Arsenic and Se induce genotoxicity, similar to cytotoxicity, by generating ROS. Higher ROS concentrations inside cells affected the cellular components of DNA resulting from the base lesions and strand breaks that induce genotoxicity. Higher levels of ROS are dangerous for gene stability, affecting DNA repair, DNA oxidation, and gene regulation (Deavall, Martin, Horner, & Roberts, 2012). However, As and Se both interact with DNA repair proteins that contain functional zinc finger motifs, and these involved essential functions are reported as DNA transcriptional factors,
DNA-protein, protein-protein and DNA-repair proteins (Hartwig, 2001; Zeng et al., 2005; Zhou et al., 2011). Selenium reacts with metallothionein and releases Zn, which damages the DNA-binding capacity and genomic stability (Blessing, Kraus, Heindl, Bal, & Hartwig, 2004; Larabee, Hocker, & Hanas, 2009; Zeng et al., 2005). Arsenic induces genotoxicity by directly impacting the DNA repair capacity resulting in the downregulated expression of ERCC1, which is an essential member of the repair and nucleotide expression excision repair pathways (Andrew et al., 2006; Andrew, Karagas, & Hamilton, 2003). Long-term exposure of As to cells can induce genotoxicity by SAM depletion in the cell, DNA hypomethylation causing genomic instability, and the global loss of DNA methylation (Bhattacharjee, Banerjee, & Giri, 2013; Ren et al., 2011). Arsenic and trivalent methylated As compounds efficiently interact with the synthetic pathways of the enzyme SAM (Tseng, 2009; Vahter, 2007).

Several researchers have confirmed that AsIII and its metabolites also change the activity of DNA methyltransferase, resulting in the inhibition or stimulation of SAM enzymatic synthesis pathways (Hughes, 2002; Reichard & Puga, 2010; Zhong & Mass, 2001). Interestingly, As induces genotoxicity by affecting the status of protein 53, while similar mechanisms have been reported for cytotoxicity induction (Chowdhury, Chowdhury, Roychoudhury, Mandal, & Chaudhuri, 2009; Shankar & Shanker, 2014). Nevertheless, Se induced genotoxicity by generating ROS and interacting with the thiol group (Letavayova et al., 2006; Ramoutar & Brumaghim, 2007; Valko et al., 2006). Selenium can also induce genotoxicity by inhibiting the cellular DNA repair ability, directly affecting protein 53 and the ataxia-telangiectasia mutation (ATM) (Abul-Hassan, Lehnert, Guant, & Walmsley, 2004; Wei et al., 2001; Zeng & Combs, 2008; Zhou, Xiao, Li, Nur-E-Kamal, & Liu, 2003). Arsenic and Se genotoxicity-induced mechanisms have not yet been clarified; however, most studies have attributed their genotoxicity to their capability to induce oxidative stress (Sun et al., 2014).

6. Antagonistic and synergetic interactions between arsenic and selenium and the associated toxicity in animals and humans

Researchers have started taking a keen interest in the interaction between As and Se after the findings reported that the chronic and acute toxicities of Se might be minimized through the administration of AsIII and some arsenic compounds (Zeng et al., 2005). Arsenic increases the elimination of Se via the gastrointestinal tract when AsIII and SeIV were mutually injected at subacute doses (Zeng et al., 2005). In addition, in various experiments, it was observed that As also promoted the removal of Se from the gut (Sun et al., 2014). Likewise, As can decrease the Se level in the carcass, blood,
and exhaled breath; however, the administration of a massive dose of the organic arsenical sodium arsanilate can further decrease the removal of Se from the gastrointestinal contents and increase the Se level into the exhaled breath, and the combined effect causes a small decrease in the Se level retained in the carcass (Sun et al., 2014). Arsenic stimulates the excretion of Se into the gastrointestinal tract, while SeIV can stimulate the excretion of As. Previous studies have demonstrated that as As increases, the level of Se excreted into rat bile reacts in the liver to form conjugates and is then excreted into the bile (Gailer, 2007).

6.1. Antagonistic

Several in vivo studies have suggested an antagonistic relation between As and Se and the associated toxicity effects on animals and humans. Once As and Se enter the human body, they are transported to the liver (principal detoxification organ) and rapidly reduced (Rosen & Liu, 2009). Under elevated concentrations of GSH in intracellular hepatocytes, the -OH group of As(OH)3 is sometimes replaced with glutathionyl moieties to form (GS)2AsOH, and SeIV undergoes a spontaneous reaction with GSH to make HSe− (La Porte, 2011; Rosen & Liu, 2009). In rats and mice, the concentrations of As and Se decreased during the antagonistic toxicity of As and Se (Messarah et al., 2012; Weiller et al., 2004).

The antagonistic interaction between AsIII and SeIV resulted in inhibition of gastrointestinal absorption of SeIV through AsIII (Rosen & Liu, 2009; Zwolak & Zaporowska, 2012). Immediate administration of AsIII, along with SeIV, inhibited the excretion of pulmonary (CH3)2Se in rats and hamsters (Rosen & Liu, 2009). Arsenite also affects the distribution of Se in internal body organs and transports Se as SeIV toward the liver through the bloodstream (Gailer, 2007). Acute AsIII exposure (3–24 hours) decreased the retention of Se in rat livers (Naranmandura et al., 2006). However, chronic AsIII exposure (2–18 months) did not decrease the Se level in rat livers (Zwolak & Zaporowska, 2012). In vivo, antagonistic interactions between AsIII and SeIV at the molecular level resulted in the generation of the novel As and Se compounds, such as seleno-bis (S-glutathionyl) and arsinium ions (Gs)2AsSe, which were then excreted in the bile (Gailer, George, Pickering, et al., 2002; Gailer, Ruprecht, Reitmeir, Benker, & Schramel, 2004). This study further found that As and Se first enter the cell and then simultaneously react with hydrogen Se2− to form (GS)2AsSe (Gailer, George, Pickering, et al., 2002) (Eq. 1).

\[
\begin{align*}
(GS)^2 AsOH + HSe^- & \rightarrow (GS)_2 AsSe^- + H_2O \\
(CH_3) AsOH + HSe^- & \rightarrow (CH_3)_2As(Se^-)_2 + H_2O
\end{align*}
\]
\[(\text{GS})_2\text{AsSe}^- + \text{SAM} \rightarrow (\text{CH}_3)_2\text{As}(\text{Se}^-)_2 + \text{H}_2\text{O}\] (3)

In the above pathway, nucleophilic HSe\(^-\) attacks the As atom and transfers its -OH group, and finally (Gs)\(_2\)AsSe\(^-\) and water are excreted out of the cell. A similar type of pathway was defined by (Manley et al., 2006) and specified (Gs)\(_2\)AsSe\(^-\) formation in erythrocytes and excretion through the blood. Moreover, Se\(^{IV}\) mediated the inhibition and reduction of methemoglobin by As\(^{III}\) in the presence of GSH, which indicated that erythrocytes are involved in facilitating this antagonistic interaction between As\(^{III}\) and Se (Zeng et al., 2005).

Arsenic suppressed the formation of H\(_2\)Se from Se\(^{IV}\) in a biological system that contained GSH reductase in bovine serum albumin (Shibata, Morita, & Fuwa, 1992). Biochemical interactions between As\(^{III}\) and Se\(^{IV}\) mostly occur in blood and liver cells (Buchet & Lauwerys, 1985; Gailer, 2007). Moreover, As and Se interaction pathways have been demonstrated by Gailer, George, Harris, et al. (2002). Arsenic and Se compounds were detected as (CH\(_3\))\(_2\)As(Se)\(_2\), and it was speculated that DMA\(^V\) was first reduced by GSH and then converted to DMA\(^{III}\). After that, HSe\(^-\) attacked the As atom and relocated the -OH group, yielding the compound (CH\(_3\))\(_2\)As(Se)\(_2\) (Eq. 2). In another pathway (Eq. 3), the SAM provided a methyl group to transform (GS)\(_2\)AsSe\(^-\) into (CH\(_3\))\(_2\)AsSe\(^-\) with methyltransferase as a substrate (Figure 6a).

6.2. Synergistic

Synergistic interactions between As and Se generate Se metabolites such as trimethyl Se ions and dimethyl Se\(^{2-}\), which increase As toxicity (Levander, 1977; Zeng et al., 2005). Methylated As\(^{III}\) caused adverse effects on Se metabolism and increased toxicity by blocking its metabolic pathways, mainly in rats (Sun et al., 2014). Furthermore, the synergetic effects and toxicity of the As and Se nexus inhibited the formation of methylated metabolites and, therefore, retained inorganic, monomethyl As and Se in tissues (Figure 6b) (Styblo & Thomas, 2001; Walton et al., 2003). Arsenic and Se undergo a similar type of metabolic change, linked through supplies such as GSH and SAM. However, GSH is one of the essential reductants in organisms during the metabolism of As and Se, as GSH provides electrons for the intended reduction reaction (Hayakawa et al., 2005; Sun et al., 2014; Yang, Kuo, Chen, & Chen, 1999). SAM is a versatile molecule in several biological reactions and is involved in the detoxification process of methyl As and Se. Once organisms are exposed to high doses of As and Se, they mutually inhibit the formation of methylated metabolites by competing with limited SAM (Styblo & Thomas, 2001; Sun et al., 2014).
Furthermore, a summary of studies elucidating insights into the antagonistic and synergetic supplementation interactions between As and Se and their toxicity in animal/rat and human cell culture models are described in Table 2.

7. Arsenic and selenium effects on zinc finger proteins/nucleases (ZFNs) and cellular functions

Selenium chemically and qualitatively resembles sulfur, albeit when Se combines with the zinc protein, it has more oxidoreductive potential (Zeng et al., 2005). Zinc, similar to finger structures abundant in motifs in the eukaryotic genome, performs various biological functions not only in transcription but also in various kinds of proteins that take part in maintaining genomic stability, DNA repair, and cell cycle control (Klug, 2010). It has been estimated that
Table 2. Summary of studies elucidating antagonistic and synergetic supplementation interactions between arsenic and selenium and the associated toxicity in animal/rat and human cell culture models.

Experimental duration	Arsenic & selenium form & (dose)	Biomarker & (target)	Arsenic - selenium interactions, effects in animals & humans	References
6 to 14 days	Sodium selenite (Na$_2$SeO$_3$) = Na$_2$SeO$_3$ = (0.025 mg/kg) BW oral drinking water	Pregnant Syrian hamster and (fetus)	Increases As methylation index in urine, tissues of dams in the whole fetus, the activity of glutathione peroxidase (GPx), and a viable fetus	Zwolak (2020); Sampayo-Reyes et al. (2017)
			Reduced the As concentration in kidney, liver bladder, brain, the skin of pregnant animals, accumulation in the placenta, and fetus	
3 weeks	Na$_2$SeO$_3$ = (3 mg/kg) BW oral intubation	Wistar rat (liver)	Increases glutathione (GSH) level and GPx activity	Messarah et al. (2012); Zwolak (2020)
			Reduces aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activity in plasma compared with As-treated animals	
			Reduces the lipid peroxidation, glutathione S-transferase activity, and cytoplasmic As-induced histological changes	
3 weeks	Na$_2$SeO$_3$ = (3 mg/kg) BW oral intubation	Sprague Dawley (SD) Rat (liver)	Increases liver weight and partly protects against As-induction	Zwolak (2020); Shafik and El Batsh (2016)
			Increases mRNA gene expression of nuclear factor erythroid 2 related factors (Nrf2), thioredoxin reductase (TxnR), and total antioxidant capacity (TAC) activity, which is decreased by As	
			Decreases ALT and AST activity in blood serum, malondialdehyde (MDA) and nitric oxide (NO) advanced oxidation protein products, and serum interleukin-6 (IL-6) levels, which are increased by As	
20 weeks	Na$_2$SeO$_3$ = (17.0 mg/L) Oral	SD Rat (liver)	Increases mRNA expression of GPx and superoxide dismutase (SOD) and TxnRd and TxnR protein expression levels, which are reduced by As	Zwolak (2020); Xu et al. (2013)
			Reduces the ALT and AST activities in blood and As-induced haeme oxygenase-1 (OH-1) protein expression, which are increased by As	
14 weeks	Not specified Se rich lentils Se deficient = (<0.01 mg), and Se high oral = (0.3 mg)	Wistar rat (blood, kidney & liver)	Increases As concentration in the urine and faces and GSH level in the blood, mitigated liver lipid peroxidation and partly recovers the antibody response, which are reduced in Se-deficient animals	Zwolak (2020); Sah, Vandenberg, and Smits (2013)
			Selenium high intake reduced the As the level in kidney	
24 hours	Selenomethionine (SeMet) = (100 μm)	Human embryonic kidney cell line (HEK-293)	Reduces As-induced cytotoxicity and reactive oxygen species (ROS) levels	Zwolak (2020); Chitta, Figueroa, Caruso, and Merino (2013)
Time	Treatment Details	Cells/Species	Results	
--------	-------------------	---------------	--	
1 hour	Selenium nanoparticles (SeNPs) = (0.01 μg/L)	Human lymphocytes	- Increases the phosphorylation of the protein, which is involved in ROS antitumor activity, cell growth, and detoxification	
48 hours	Sodium arsenite (NaAsO₂) = (2.5 μM) Na₂SeO₃ = (10 μM)	Human osteosarcoma (Cells-TE85)	- Nano selenium reduced As-induced toxicity and DNA damage	
			- Increases the level of selenite (Se⁴⁺) and SeMet	
			- Partly decreases the arsenite (As³⁺) cytotoxicity	
			- Selenium compound-like organoselenium treatment blocks As species (As³⁺-dependent) accumulation of mutants in cultures after six weeks of growth	
Not defined	NaAsO₂ = (6.25 μM) Na₂SeO₃ = (2.5 μM)	Human hepatocellular carcinoma (Cells-HepG2)	- Selenium species Se⁴⁺ reduces the lipid peroxidation (LPO) and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels	
			- No effects on the inhibition of 8-oxoguanine DNA glucosylase-1 expressions in cells exposed to arsenous acid (H₃AsO₃)	
24 hours	NaAsO₂ (2 to 10 μM) ⁷⁵Se- Se⁴⁺ = (10 nM)	Human keratinocyte (Cells-HaCat)	- Immunoblot As³⁺ treatment increased the TrxR1 proteins level and reduced the GPx proteins	
			- Reduces radiolabeled TrxR1, GPx, and overall selenoprotein levels	
24 hours	NaAsO₂ = (2 to 10 μM) ⁷⁵Se- Se⁴⁺ = (10 nM)	Human lung adenocarcinoma (Cells-A549)	- Treatment of cells with As³⁺ reduces radiolabeled TrxR1 and overall selenoprotein levels	
3 weeks	NaAsO₂ = (5.5 mg/kg) Na₂SeO₃ = (3 mg/kg) oral	Wistar rat	- Se⁴⁺ increases the activity of GSH and GPx activity	
			- Reduces LPO, glutathione S-transferase, and transaminases activity, and alkaline phosphatase in the plasma of As³⁺-exposed rats	
approximately 3% of the known genes that encrypt proteins in various cellular processes include Zn finger protein domains (Laity, Lee, & Wright, 2001; Maret, 2003; Zeng et al., 2005). Selenium can replace the sulfur of Cys and change the stability of oxidation states in the course of the catalytic cycle and redox potential (Jacob, Giles, Giles, & Sies, 2003). Under reducing conditions, Se can oxidize thiols, mainly found in the cytosol (Moriarty-Craige & Jones, 2004).

At low concentrations of Se compounds and under reducing conditions, selenocystamine (diselenide) can oxidize thiol groups and release Zn ions from the metallothionein (Chen & Maret, 2001). Moreover, the low concentration of Se compounds under reducing conditions inhibits DNA regulation due to the inactivation of DNA repair proteins (Letavayova et al., 2006). The reducible Se compounds, including phenylseleninic acid (C₆H₆O₂Se), phenylselenyl chloride (C₆H₅ClSe), selenocysteine (C₆H₁₂N₂O₄Se₂), 2-nitrophenselenocyanate (C₃H₇N₂O₂Se), and ebselen (C₁₃H₉NOSe), can also inhibit the activity of Fpg, a Zn finger protein that is involved in DNA repair (Blessing et al., 2004; Hartwig, Blessing, Schwerdtle, & Walter, 2003; Witkiewicz-Kucharczyk & Bal, 2006; Zeng et al., 2005). However, no inhibition was detected in selenomethionine methyl selenocysteine or some sulfur-containing analogs (Blessing et al., 2004; Zeng et al., 2005).

Low concentrations of Se compounds can also inhibit the Zn finger protein that binds to DNA, leading to the release of Zn from the motif of the Zn finger (Woo Youn, Fiala, & Soon Sohn, 2001). The cellular pathways are mostly dependent on Zn finger proteins, so redox responses are essential for the regulation of Zn finger proteins (Blessing et al., 2004; Zeng et al., 2005). The inequality overdose or deficiency in Se compounds inhibits or decreases genomic stability (Blessing et al., 2004; Zeng et al., 2005). Zinc finger proteins are also susceptible to intracellular targets for As III at a preliminary low micromolar level of all As III compounds triggered, and Zn is released from the Zn finger protein domains and develops a disease known as xeroderma pigmentosum (XPA) (Zeng et al., 2005). Based on previous findings, MMA V and DMA V are more reactive than As III (Blessing et al., 2004; Hartwig et al., 2003; Zeng et al., 2005). During the upholding genomic stability process, Zn finger proteins are usually required in almost every intracellular reaction; therefore, the inactivation or inhibition of these proteins may enhance genomic instability (Hamilton, 2004).

Several studies have been conducted to elucidate the effects of As and Se on cellular transduction signals (Qian, Castranova, & Shi, 2003; Yang & Frenkel, 2002; Zeng, 2001). Arsenic is activated in different cellular signaling pathways, such as the mitogen-activated protein kinase (MAPK), ROS, and nuclear factor-κB (NFκB) signaling pathways (Blessing et al., 2004; Zeng, 2001). Activation protein-1 (AP-1) and NFκB are illustrative members of two diverse families of heterodimeric transcriptional complexes that
induce changes in gene expression (Zeng et al., 2005). Several studies have demonstrated that AsIII and AsV induced protein expression and increased AP-1 and NFκB DNA binding sites (Arita & Costa, 2009; Flora, 2011). However, various studies also demonstrated that Se- and Se-containing compounds reduced oxidation-related JNK AP-1 and NFκB in the cellular activation process (Chauke, 2013; József & Filep, 2003). It has been proven globally that AsIII is more toxic and carcinogenic than AsV (Ali, Aslam, et al., 2019). However, several studies have reported that methylated arsenicals such as MAsIII and DMAsIII have more potential than AsIII on the activation of AP-1 (Drobná, Jaspers, Thomas, & Stýblo, 2003; Wang et al., 2015).

Cellular stress proteins are well known, as a C-Jun N-terminal kinase (JNK) is a member of a stress-activated protein kinase family activated through cellular stress. Arsenic activated AP-1 activity by inhibiting the JNK tyrosine phosphate protein (Figure 7), resulting in the activation of

![Figure 7. Arsenic and selenium effects on zinc finger protein/nuclease (ZFN) cellular function pathways. The arrows indicate induction, the single green-capped line indicates inhibition of cellular pathways, and the double capped red line indicates mutual inhibition of As/Se bioactivity by an increase in Se/As biliary execration, the formation of As-Se precipitation and modification of As/Se methylation in the cellular pathway.](image-url)
JNK/AP-1, which was defective in the turning off of activated JNK (Cowan & Storey, 2003; Zarubin & Jiahuai, 2005). Therefore, As$^{\text{III}}$ and As$^{\text{V}}$ induced apoptosis via the JNK pathway (Eguchi et al., 2011). Potent antagonistic effects between As and Se at the cellular level can cause cell apoptosis as well as cell necrosis in human leukemia cells (HL-60) through incubation with Na$_2$SeO$_3$ and NaASO$_2$/Na$_2$-HASO$_4$ (Zeng, 2001; Zeng et al., 2005). The presence of minerals induced HL-60 cell apoptosis when the concentration of Se$^{\text{IV}}$ (3 μM) > As$^{\text{III}}$ (50 μM) > As$^{\text{V}}$ (50 μM) was higher than that required for cell apoptosis, causing cell necrosis (Drobná et al., 2003). However, the elevated concentration of Se$^{\text{IV}}$, causing toxic necrotic effects and these effects, may have been suppressed or neutralized by As$^{\text{III}}$ or As$^{\text{V}}$ (Zeng, 2001).

Selenium compounds such as methylene(1,4-phenylene bis), selenocyanate (p-XSC), selenocysteine, selenomethionine, and ebselen inhibit or suppress the DNA binding activities of the transcription factors NFkB and AP-1 (József & Filep, 2003; Woo Youn et al., 2001). Arsenic activates NFkB and AP-1 inhibitors or suppresses Se, while As inhibits or suppresses the toxic necrotic effect of Se (Sun et al., 2014). These scientific insights demonstrated that Se plays an essential function as an endogenous “stop cellular signal” for As-induced cancer-causing cell signaling (Zeng et al., 2005).

8. Arsenic and selenium remediation/phytoremediation and handling of harvested biomass

Arsenic induces plant, animal, and human toxicity, whereas Se exhibits dual roles (essential and toxic), and both Se deficiency and toxicity are considered severe problems worldwide (Bastías & Beldarrain, 2016; Shahid et al., 2018). In the case of Se-deficient soils, the application of Se-amended fertilizers is a common and the best conceivable management strategy that has been adopted in different Se in soil-deficient countries (Shahid et al., 2018). Several studies have reported As- and Se-contaminated soils, especially in various regions of China and the USA (Khanam et al., 2019). With the advancement of science, technology, and research, several techniques based on diverse mechanisms or processes have been developed to remediate these metals from environmental matrices (Shahid et al., 2018; Tanmoy & Saha, 2019).

Phytoremediation is a plant-based green technology that has been widely adopted and has received cumulative consideration worldwide. Afterward, the discovery of hyperaccumulating plants was significant progress, in which plants can uptake, accumulate, and translocate the elevated concentrations of various toxic metals into their harvestable biomass (Rahman &
Hyperaccumulator plants are reported as a very efficient, economical, and eco-friendly technique to remediate metals from contaminated soils (Ali, Khan, & Sajad, 2013; Rizwan et al., 2018). Phytoremediation includes several consecutive steps, such as phytoextraction, phytodegradation, rhizofiltration, phytostabilization, and phytovolatilization. Both aquatic and terrestrial plants have been confirmed to remediate metal-contaminated waters and soils, respectively (Rahman & Hasegawa, 2011).

In an As contamination case, the use of hyperaccumulator plants such as the fern *Pteris vittata* has been suggested (Bastias & Beldarrain, 2016). However, the significant limitation of this method is that the plants absorb As without using it and transfer it back into the food chain system (Singh, Singh, Parihar, Singh, & Prasad, 2015). Fungi can also offset As toxicity by transforming the organic form with reduced toxicity (Bastias & Beldarrain, 2016). The basic behaviors of *Glomus geosporum* (Gg), *G. versiforme* (Gv), and *G. mosseae* (Gm) are considered to decrease As absorption mainly by rice plants; it was reported that these species, taken distinctly or diverse, might be used because the concentration of As decreases in all conditions (Chan, Li, Wu, Wu, & Wong, 2013).

Similar to As, nearly 30 different kinds of plant species of the Fabaceae, Brassicaceae, and Asteraceae families have been reported to hyperaccumulate and tolerate high concentrations of Se from the soil system (Shahid et al., 2018; Winkel et al., 2015). Several studies have reported that the use of genetically modified plants efficiently increases Se uptake, accumulation, tolerance, and volatilization (Pilon-Smits & LeDuc, 2009; Shahid et al., 2018). Different remediation technologies have suggested that the application of hybrid plants, which are genetically modified with remediation characteristics, are efficiently used to remediate specific or miscellaneous metals from polluted soil (Shahid et al., 2017). Some studies, particularly in urban agricultural soil systems, purposed the wise use of plants by adopting various crop rotation systems (Shahid et al., 2018; Xiong et al., 2016). Genetically modified plants increase Se uptake and accumulation by plants, which has been significantly reviewed earlier in some studies (Pilon-Smits & LeDuc, 2009; Terry, Zayed, De Souza, & Tarun, 2000).

Phytoremediation of metals, such as As and Se, from contaminated soil, is likely to decrease the concentrations of metals in the soil system and reduce environmental risks (Wu et al., 2015; Ye, Khan, McGrath, & Zhao, 2011). Metals are secluded in plant aboveground biomass and are classified as hazardous waste, leading to wide-ranging ecological risks (Rizwan et al., 2017, 2018). Hence, appropriate handling of biomass, either recycled or disposed of, is crucial to avoid secondary contamination and prevent potential risks (Rizwan et al., 2018). Depending on the defined regulations and existing metal concentrations in plants, the contaminated biomass needs to be
placed into a landfill or have the metals reclaimed by smelting, pyrolysis of biomass, and extraction (Da Conceição Gomes, Hauser-Davis, de Souza, & Vitória, 2016). If plants are first incinerated (i.e., combustion & gasification), the subsequent ash must be disposed of in hazardous waste landfills, although the ash volume is approximately <10% of the total volume that might be created if the polluted soil itself is excavated for treatment, which is still beneficial in this regard (Da Conceição Gomes et al., 2016).

Combustion technology for biomass disposal is generally used for energy production at both the domestic and industrial levels, but the burning of metal-polluted biomass in conventional firing systems is not appropriate because it may pose a severe environmental risk (Rizwan et al., 2018). Pyrolyzed metal-contaminated biomass underwent the phytoremediation process afterward. Pyrolysis stabilizes potentially toxic metals, and the pyrolyzed material could adsorb the dye, such as methylene blue. Several researchers have suggested that biomass obtained from contaminated sites might be further utilized for the adsorption of dyes after pyrolysis. Overall, the biomass of plants after harvesting obtained from As- and Se-polluted soil might be treated to avoid secondary pollution and energy. In addition, the substance obtained from this process can be further utilized.

9. Conclusion and future research perspectives

The current review highlighted the critical biogeochemical mechanisms of As and Se in the soil-plant system and focused on insights into the interaction between As and Se and their mechanisms of inducing toxicity in animals and humans.

The reduction of AsV to AsIII can occur in-between redox potential, which leads to the mobilization of AsIII into the soil and increases its availability to plants. Arsenic uptake in plant cells depends on As species, such as AsV, which uses phosphate as a transporter since phosphate is chemically similar to AsV, whereas AsIII uses Si transporters. The molecular and biochemical effects of As in plant systems occur in two ways: 1) the direct inactivation of essential enzymes, either through sulphydryl group interactions or replacement of compulsory ions from the enzyme active sites, and 2) the consequential, indirect increase of ROS in a cascade of irretrievable damage.

SeIV and SeVI are transported through phosphate and sulfate channels, respectively. Selenosis takes place in plants by two mechanisms: 1) malformed selenoprotein induced plant toxicity and 2) ROS induced Se toxicity. Malformed selenoprotein toxicity in plants occurs in the protein chain by replacement of Cys or Met with that of SeCys or SeMet.

Arsenic and Se induce cytotoxicity and genotoxicity in animals and humans through ROS generation, which ultimately affects DNA repair and
gene regulation. Under reducible conditions, a low Se concentration inhibits the DNA regulation process because it inactivates DNA repair proteins. Arsenite and SeIV did not wholly transfer through aquaglyceroporins, albeit both are very toxic due to their metabolic processes associated with GSH and SAM. Likewise, low levels of Se compounds can constrain the Zn finger protein that binds to and releases Zn from the motif of the zinc finger.

Inhibition of SeIV by AsIII during gastrointestinal absorption results from the antagonistic interaction between AsIII and SeIV. Immediate AsIII contamination inhibits the excretion of pulmonary (CH\textsubscript{3})\textsubscript{2}Se in animals/rats and hamsters. At low concentrations, Se forms complexes with As such as ((GS\textsubscript{3})\textsubscript{2}AsSe) due to insufficient Se interaction with AsIIIMT. The elevated concentration of As in the forms of MMAV and DMAV can form incomplete complexes ((GS\textsubscript{3})\textsubscript{2}AsSe)) and retain more As and MMA in a biological system, which can cause severe toxicity to animals and humans.

Although a large number of efforts have been made to understand the interaction mechanisms between As and Se and the associated toxicity in plants, animals, and humans, further research should be carried out to save crop production and reduce animal and human toxicity. This should include the following research perspectives:

- Pilot studies are required to investigate As and Se detoxification mechanisms in the soil-plant system, animals, and humans.
- The long-term stability of toxicity and insights into the interactions between As and Se in the soil-plant system, animals, and humans still need to be further studied.
- Insights into the interaction mechanisms between As and Se in aquatic ecosystems can cause extended ecological risks and genotoxicity for aquatic life; therefore, further investigations are warranted.
- The scientific community should pay more attention to insights into the mechanisms involved in As and Se interactions in various biological matrices and the associated outcomes to further normalize the rational use and potential intake of these elements.

Acknowledgment

The authors would like to thank seven anonymous reviewers for their constructive comments that significantly improved the quality of the manuscript.

Conflict of interest

The authors have no conflict of interest.
Funding

This work is supported by National Key Research and Development Program of China (No. 2019 YFC1803600, and No. 2017YFD0800302), the National Science Foundation of China-Project of Karst Science Research Center (U1612442), and Science and Technology program of Guizhou Province [Grant No. (2019)5618/2019(2963)/(2019)4428], and ZY thanks UK NERC Fellowship grant (NE/R013349/2) and Royal Academy of Engineering seed grant (FoDSF\1819\1\8).

References

Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N., Khan, M., ... Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. *International Journal of Environmental Research and Public Health*, 15(1), 59. doi:10.3390/ijerph15010059

Abhyankar, L. N., Jones, M. R., Guallar, E., & Navas-Acien, A. (2012). Arsenic exposure and hypertension: A systematic review. *Environmental Health Perspectives*, 120(4), 494–500. doi:10.1289/ehp.1103988

Abul-Hassan, K. S., Lehnert, B. E., Guant, L., & Walmsley, R. (2004). Abnormal DNA repair in selenium-treated human cells. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*, 565(1), 45–51. doi:10.1016/j.mrgentox.2004.09.004

Agency for Toxic Substances and Disease Registry (ATSDR). (2007). *Toxicological profile for arsenic*. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Akay, C., Thomas, C., III, & Gazitt, Y. (2004). Arsenic trioxide and paclitaxel induce apoptosis by different mechanism. *Cell Cycle*, 3(3), 322–332. doi:10.4161/cc.3.3.657

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. *Chemosphere*, 91(7), 869–881. doi:10.1016/j.chemosphere.2013.01.075

Ali, W., Aslam, M. W., Feng, C., Junaid, M., Ali, K., Li, S., ... Zhang, H. (2019). Unraveling prevalence and public health risks of arsenic, uranium and co-occurring trace metals in groundwater along riverine ecosystem in Sindh and Punjab, Pakistan. *Environmental Geochemistry and Health*, 41(5), 2223–2238. doi:10.1007/s10653-019-00278-7

Ali, W., Isayenkov, S. V., Zhao, F.-J., & Maathuis, F. J. (2009). Arsenite transport in plants. *Cell Cycle*, 36(1)(4), 2329–2339. doi:10.1007/s10653-019-00278-7

Ali, W., Mushtaq, N., Javed, T., Zhang, H., Ali, K., Rasool, A., & Farooqi, A. (2019). Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. *Environmental Pollution*, 245, 77–88. doi:10.1016/j.envpol.2018.10.103

Andrew, A. S., Burgess, J. L., Meza, M. M., Demidenko, E., Waugh, M. G., Hamilton, J. W., & Karagas, M. R. (2006). Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. *Environmental Health Perspectives*, 114(8), 1193–1198. doi:10.1289/ehp.9008

Andrew, A. S., Karagas, M. R., & Hamilton, J. W. (2003). Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. *International Journal of Cancer*, 104(3), 263–268. doi:10.1002/ijc.10968

Arita, A., & Costa, M. (2009). Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. *Metallomics*, 1(3), 222–228. doi:10.1039/b903049b

Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: An overview. *International Journal of Applied Engineering and Management*, 5, 2319–4847.
Awasthi, S., Chauhan, R., Srivastava, S., & Tripathi, R. D. (2017). The journey of arsenic from soil to grain in rice. *Frontiers in Plant Science*, 8, 1007. doi:10.3389/fpls.2017.01007

Balakhnina, T., & Nadezhkina, E. (2017). Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. *Russian Journal of Plant Physiology*, 64(2), 215–223. doi:10.1134/S1021443717010022

Bastías, J. M., & Beldarrain, T. (2016). Arsenic translocation in rice cultivation and its implication for human health. *Chilean Journal of Agricultural Research*, 76(1), 114–122. doi:10.4067/S0718-58392016000100016

Bergeron, M., Clémençon, B., Hediger, M., & Markovich, D. (2013). SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. *Molecular Aspects of Medicine*, 34(2–3), 299–312. doi:10.1016/j.mam.2012.12.001

Bhattacharjee, P., Banerjee, M., & Giri, A. K. (2013). Role of genomic instability in arsenic-induced carcinogenicity. A review. *Environment International*, 53, 29–40. doi:10.1016/j.envint.2012.12.004

Bhattacharya, P., Mukherjee, A. B., Bundschuh, J., Zevenhoven, R., & Loeppert, R. H. (2007). *Arsenic in soil and groundwater environment: Biogeochemical interactions, health effects and remediation*. Oxford: Elsevier.

Bhattacharya, S., Gupta, K., Debnath, S., Ghosh, U. C., Chattopadhyay, D., & Mukhopadhyay, A. (2012). Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: A review of the perspectives for environmental health. *Toxicological & Environmental Chemistry*, 94, 429–441. doi:10.1080/02772248.2012.657200

Bitterli, C., Bañuelos, G., & Schulin, R. (2010). Use of transfer factors to characterize uptake of selenium by plants. *Journal of Geochemical Exploration*, 107(2), 206–216. doi:10.1016/j.jgeol.2010.09.009

Björnstedt, M., Kumar, S., & Holmgren, A. (1992). Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. *Journal of Biological Chemistry*, 267, 8030–8034. doi:10.1074/jbc.M206452200

Blessing, H., Kraus, S., Heindl, P., Bal, W., & Hartwig, A. (2004). Interaction of selenium compounds with zinc finger proteins involved in DNA repair. *European Journal of Biochemistry*, 271(15), 3190–3199. doi:10.1111/j.1432-1033.2004.04251.x

Bleys, J., Navas-Acien, A., Laclaustra, M., Pastor-Barriuso, R., Menke, A., Ordovas, J., ... Guallar, E. (2009). Serum selenium and peripheral arterial disease: Results from the national health and nutrition examination survey, 2003–2004. *American Journal of Epidemiology*, 169(8), 996–1003. doi:10.1093/aje/kwn414

Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. *Environment International*, 35(3), 647–654. doi:10.1016/j.envint.2008.10.004

Brigelius-Flohé, R. (2008). Selenium compounds and selenoproteins in cancer. *Chemistry & Biodiversity*, 5, 389–395.

Brown, K. G., & Ross, G. L. (2002). Arsenic, drinking water, and health: A position paper of the American Council on Science and Health. *Regulatory Toxicology and Pharmacology*, 36(2), 162–174. doi:10.1006/rtph.2002.1573

Buchet, J. P., & Lauwerys, R. (1985). Study of inorganic arsenic methylation by rat liver in vitro: Relevance for the interpretation of observations in man. *Archives of Toxicology*, 57(2), 125–129. doi:10.1007/BF00343122

Burgess, J. L., Kurzius-Spencer, M., Poplin, G. S., Littau, S. R., Kopplin, M. J., Stürup, S., ... Lantz, R. C. (2014). Environmental arsenic exposure, selenium and sputum alpha-1
antitrypsin. *Journal of Exposure Science & Environmental Epidemiology*, 24, 150. doi:10.1038/jes.2013.35

Cappa, J. J., Cappa, P. J., El Mehdawi, A. F., McAleer, J. M., Simmons, M. P., & Pilon-Smists, E. A. (2014). Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): A field survey and common-garden experiment. *American Journal of Botany*, 101(5), 830–839. doi:10.3732/ajb.1400041

Carlin, D. J., Naujokas, M. F., Bradham, K. D., Cowden, J., Heaccock, M., Henry, H. F., … Tokar, E. J. (2016). Arsenic and environmental health: State of the science and future research opportunities. *Environmental Health Perspectives*, 124(7), 890–899. doi:10.1289/ehp.1510209

Challenger, F. (1945). Biological methylation. *Chemical Reviews*, 36(3), 315–361. doi:10.1021/cr60115a003

Chan, W., Li, H., Wu, F., Wu, S., & Wong, M. H. (2013). Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. *Journal of Hazardous Materials*, 262, 1116–1122. doi:10.1016/j.jhazmat.2012.08.020

Chandrakar, V., Naithani, S. C., & Keshavkant, S. (2016). Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. *Biologia*, 71(4), 367–377. doi:10.1515/biolog-2016-0052

Chandrakar, V., Pandey, N., & Keshavkant, S. (2018). Plant responses to arsenic toxicity: Morphology and physiology. In M. Hasanuzzaman, K. Nahar, & M. Fujita (Eds.), *Mechanisms of arsenic toxicity and tolerance in plants* (pp. 27–48). Singapore: Springer.

Chang, C., Yin, R., Wang, X., Shao, S., Chen, C., & Zhang, H. (2019). Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. *Science of the Total Environment*, 669, 83–90. doi:10.1016/j.scitotenv.2019.02.451

Châtelain, E., Satour, P., Laugier, E., Vu, B. L., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. *Proceedings of the National Academy of Sciences*, 110(9), 3633–3638. doi:10.1073/pnas.1220589110

Chauhan, R., Awasthi, S., Srivastava, S., Dwivedi, S., Pilon-Smists, E. A., Dhankher, O. P., & Tripathi, R. D. (2019). Understanding selenium metabolism in plants and its role as a beneficial element. *Critical Reviews in Environmental Science and Technology*, 49(21), 1937–1958. doi:10.1080/10643389.2019.1598240

Chauke, T. L. (2013). *Evaluating the efficacy, safety and possible mechanism of action of potassium humate with selenium*. Pretoria: University of Pretoria.

Chen, Q., Wang, Z., Xiong, Y., Zou, X., & Liu, Z. (2010). Comparative study of p38 MAPK signal transduction pathway of peripheral blood mononuclear cells from patients with coal-combustion-type fluorosis with and without high hair selenium levels. *International Journal of Hygiene and Environmental Health*, 213(5), 381–386. doi:10.1016/j.ijheh.2010.06.002

Chen, Y., Han, Y.-H., Cao, Y., Zhu, Y.-G., Rathinasabapathi, B., & Ma, L. Q. (2017). Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. *Frontiers in Plant Science*, 8, 268. doi:10.3389/fpls.2017.00268

Chen, Y., & Maret, W. (2001). Catalytic oxidation of zinc/sulfur coordination sites in proteins by selenium compounds. *Antioxidants & Redox Signaling*, 3(4), 651–656. doi:10.1089/15230860152542998

Chitta, K. R., Figueroa, J. A. L., Caruso, J. A., & Merino, E. J. (2013). Selenium mediated arsenic toxicity modifies cytotoxicity, reactive oxygen species and phosphorylated proteins. *Metallomics*, 5(6), 673–685. doi:10.1039/c3mt20213e
Chou, W.-C., Jie, C., Kenedy, A. A., Jones, R. J., Trush, M. A., & Dang, C. V. (2004). Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. *Proceedings of the National Academy of Sciences, 101*(13), 4578–4583. doi:10.1073/pnas.0306687101

Chowdhury, R., Chowdhury, S., Roychoudhury, P., Mandal, C., & Chaudhuri, K. (2009). Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. *Apoptosis, 14*(1), 108–123. doi:10.1007/s10495-008-0284-8

Christian, W. J., Hopenhayn, C., Centeno, J. A., & Todorov, T. (2006). Distribution of urinary selenium and arsenic among pregnant women exposed to arsenic in drinking water. *Environmental Research, 100*, 115–122. doi:10.1016/j.envrres.2005.03.009

Constantinescu-Aruxandei, D., Frincu, R., Capră, L., & Oancea, F. (2018). Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. *Nutrients, 10*(10), 1466. doi:10.3390/nu10101466

Cowan, K. J., & Storey, K. B. (2003). Mitogen-activated protein kinases: New signaling pathways functioning in cellular responses to environmental stress. *Journal of Experimental Biology, 206*(7), 1107–1115. doi:10.1242/jeb.00220

Crighton, D., Wilkinson, S., O’Prey, J., Syed, N., Smith, P., Harrison, P. R., … Ryan, K. M. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. *Cell, 126*(1), 121–134. doi:10.1016/j.cell.2006.05.034

Da Conceição Gomes, M. A., Hauser-Davis, R. A., de Souza, A. N., & Vitória, A. P. (2016). Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. *Ecotoxicology and Environmental Safety, 134*, 133–147. doi:10.1016/j.ecoenv.2016.08.024

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. *Frontiers in Environmental Science, 2*, 53. doi:10.3389/fenvs.2014.00053

De Temmerman, L., Waegeneers, N., Thiry, C., Du Laing, G., Tack, F., & Rutten, A. (2014). Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. *Science of the Total Environment, 468*, 77–82. doi:10.1016/j.scitotenv.2013.08.016

Deavall, D. G., Martin, E. A., Horner, J. M., & Roberts, R. (2012). Drug-induced oxidative stress and toxicity. *Journal of Toxicology, 2012*, 1–13. doi:10.1155/2012/645460

Devesa, V., Del Razo, L. M., Adair, B., Drobná, Z., Waters, S. B., Hughes, M. F., … Thomas, D. J. (2004). Comprehensive analysis of arsenic metabolites by pH-specific hydride generation atomic absorption spectrometry. *Journal of Analytical Atomic Spectrometry, 19*(11), 1460–1467. doi:10.1039/B407388F

Douillet, C., Currier, J., Saunders, J., Bodnar, W. M., Matoušek, T., & Styblo, M. (2013). Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. *Toxicology and Applied Pharmacology, 267*(1), 11–15. doi:10.1016/j.taap.2012.12.007

Drobná, Z., Jaspers, I., Thomas, D. J., & Styblo, M. (2003). Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals. *The FASEB Journal, 17*(1), 67–69. doi:10.1096/fj.02-0287fje

Eguchi, R., Fujimori, Y., Takeda, H., Tabata, C., Ohta, T., Kuribayashi, K., … Nakano, T. (2011). Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells. *Journal of Cellular Physiology, 226*(3), 762–768. doi:10.1002/jcp.22397

Feng, R., Wei, C., & Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. *Environmental and Experimental Botany, 87*, 58–68. doi:10.1016/j.envexpbot.2012.09.002
Fernández-Martínez, A., & Charlet, L. (2009). Selenium environmental cycling and bioavailability: A structural chemist point of view. *Reviews in Environmental Science and Bio/Technology, 8*(1), 81–110. doi:10.1007/s11157-009-9145-3

Finnegan, P., & Chen, W. (2012). Arsenic toxicity: The effects on plant metabolism. *Frontiers in Physiology, 3*, 182. doi:10.3389/fphys.2012.00182

Fleury, C., Mignotte, B., & Vayssière, J.-L. (2002). Mitochondrial reactive oxygen species in cell death signaling. *Biochimie, 84*(2–3), 131–141. doi:10.1016/S0300-9084(02)01369-X

Flora, S. J. (2011). Arsenic-induced oxidative stress and its reversibility. *Free Radical Biology and Medicine, 51*(2), 257–281. doi:10.1016/j.freeradbiomed.2011.04.008

Fordyce, F. M. (2013). Selenium deficiency and toxicity in the environment. In O. Selinus (Ed.), *Essentials of medical geology* (pp. 375–416). Berlin, Heidelberg: Springer.

Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. *Geoderma, 160*(3–4), 414–424. doi:10.1016/j.geoderma.2010.10.012

Gailer, J. (2002). Review: Reactive selenium metabolites as targets of toxic metals/metalloids in mammals: A molecular toxicological perspective. *Applied Organometallic Chemistry, 16*(12), 701–707. doi:10.1002/aoc.376

Gailer, J. (2007). Arsenic–selenium and mercury–selenium bonds in biology. *Coordination Chemistry Reviews, 251*(1–2), 234–254. doi:10.1016/j.ccr.2006.07.018

Gailer, J., George, G. N., Harris, H. H., Pickering, I. J., Prince, R. C., Somogyi, A., … Denton, M. B. (2002). Synthesis, purification, and structural characterization of the dimethylselenoarsinate anion. *Inorganic Chemistry, 41*(21), 5426–5432. doi:10.1021/ic0113146

Gailer, J., George, G. N., Pickering, I. J., Prince, R. C., Younis, H. S., & Winzerling, J. (2002). Biliary excretion of [(GS)2AsSe]—after intravenous injection of rabbits with arsenite and selenate. *Chemical Research in Toxicology, 15*(11), 1466–1471. doi:10.1021/tx025538s

Gailer, J., Ruprecht, L., Reitmeir, P., Benker, B., & Schramel, P. (2004). Mobilization of exogenous and endogenous selenium to bile after the intravenous administration of environmentally relevant doses of arsenite to rabbits. *Applied Organometallic Chemistry, 18*(12), 670–675. doi:10.1002/aoc.655

Ganyc, D., Talbot, S., Konate, F., Jackson, S., Schanen, B., Cullen, W., & Self, W. T. (2007). Impact of trivalent arsenicals on selenoprotein synthesis. *Environmental Health Perspectives, 115*(3), 346–353. doi:10.1289/ehp.9440

Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. *Environmental Chemistry Letters, 9*(3), 303–321. doi:10.1007/s10311-011-0313-7

Gaxiola-Robles, R., Labrada-Martagón, V., Celis de la Rosa, A. D J., Acosta-Vargas, B., Méndez-Rodriguez, L. C., & Zenteno-Savin, T. (2014). Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and shellfish intake. *Nutricion Hospitalleria, 30*(2), 436–446. doi:10.3305/nh.2014.30.2.7441

Ghosh, J., & Sil, P. C. (2015). Mechanism for arsenic-induced toxic effects. In S. J. S. Flora (Ed.), *Handbook of arsenic toxicology* (pp. 203–231). London: Elsevier.

Golob, A., Gadžo, D., Stibilj, V., Djikić, M., Gavrić, T., Kreft, I., & Germ, M. (2016). Sulphur interferes with selenium accumulation in Tartary buckwheat plants. *Plant Physiology and Biochemistry, 108*, 32–36. doi:10.1016/j.plaphy.2016.07.001

Gromer, S., Eubel, J., Lee, B., & Jacob, J. (2005). Human selenoproteins at a glance. *Cellular and Molecular Life Sciences CMLS, 62*(21), 2414–2437. doi:10.1007/s00018-005-5143-y
Gupta, M., & Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. *Frontiers in Plant Science*, 7, 2074. doi:10.3389/fpls.2016.02074

Gupta, M., & Khan, E. (2015). Mechanism of arsenic toxicity and tolerance in plants: Role of silicon and signalling molecules. In B. Tripathi & M. Müller (Eds.), *Stress responses in plants* (pp. 143–157). Cham: Springer.

Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. *Science of the Total Environment*, 326(1–3), 1–31. doi:10.1016/j.scitotenv.2004.01.019

Harper, L. K., Antony, S., & Bayse, C. A. (2014). Thiol reduction of arsenite and selenite: DFT modeling of the pathways to an As–Se bond. *Chemical Research in Toxicology*, 27(12), 2119–2127. doi:10.1021/tx500384h

Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. *Journal of Trace Elements in Medicine and Biology*, 18(4), 309–318. doi:10.1016/j.jtemb.2005.02.009

Hartwig, A. (2001). Zinc finger proteins as potential targets for toxic metal ions: Differential effects on structure and function. *Antioxidants & Redox Signaling*, 3(4), 625–634. doi:10.1089/15230860152542970

Hartwig, A., Blessing, H., Schwerdtle, T., & Walter, I. (2003). Modulation of DNA repair processes by arsenic and selenium compounds. *Toxicology*, 193(1–2), 161–169. doi:10.1016/j.tox.2003.08.004

Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. In K. Vahdati (Ed.), *Abiotic stress - Plant responses and applications in agriculture* (pp. 169–205). London: InTech.

Hawkesford, M. J., & De Kok, L. J. (2006). Managing sulphur metabolism in plants. *Plant, Cell & Environment*, 29(3), 382–395. doi:10.1111/j.1365-3040.2005.01470.x

Hayakawa, T., Kobayashi, Y., Cui, X., & Hirano, S. (2005). A new metabolic pathway of arsenite: Arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. *Archives of Toxicology*, 79(4), 183–191. doi:10.1007/s00204-004-0620-x

Hering, J. G., Burris, D., Reisinger, H., & O’Day, P. (2008). Environmental fate and exposure assessment for Arsenic in Groundwater. SERDP Project ER-1374.

Hettick, B. E., Canas-Carrell, J. E., French, A. D., & Klein, D. M. (2015). Arsenic: A review of the element’s toxicity, plant interactions, and potential methods of remediation. *Journal of Agricultural and Food Chemistry*, 63(32), 7097–7107. doi:10.1021/acs.jafc.5b02487

Hondal, R. J., Marino, S. M., & Gladyshev, V. N. (2013). Selenocysteine in thiol/disulfide-like exchange reactions. *Antioxidants & Redox Signaling*, 18, 1675–1689. doi:10.1089/ars.2012.5013

Hsueh, Y.-M., Ko, Y.-F., Huang, Y.-K., Chen, H.-W., Chiou, H.-Y., Huang, Y.-L., ... Chen, C.-J. (2003). Determinants of inorganic arsenic methylation capability among residents of the Lanyang Basin, Taiwan: Arsenic and selenium exposure and alcohol consumption. *Toxicology Letters*, 137(1–2), 49–63. doi:10.1016/S0378-4274(02)00380-6

Huang, J.-H. (2014). Impact of microorganisms on arsenic biogeochemistry: A review. *Water, Air, & Soil Pollution*, 225, 1848. doi:10.1007/s11270-013-1848-y

Huang, Y.-Z., Hu, Y., & Liu, Y.-X. (2007). Interactions between sulfur and selenium uptake by corn in solution culture. *Journal of Plant Nutrition*, 31(1), 43–54. doi:10.1080/01904160701741826

Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. *Toxicology Letters*, 133(1), 1–16. doi:10.1016/S0378-4274(02)00084-X

Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: A historical perspective. *Toxicological Sciences*, 123(2), 305–332. doi:10.1093/toxsci/kfr184
Hugouvieux, V., Dutilleul, C., Jourdain, A., Reynaud, F., Lopez, V., & Bourguignon, J. (2009). Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. *Plant Physiology*, 151(2), 768–781. doi:10.1104/pp.109.144808

Jacob, C., Giles, G. I., Giles, N. M., & Sies, H. (2003). Sulfur and selenium: The role of oxidation state in protein structure and function. *Angewandte Chemie International Edition*, 42(39), 4742–4758. doi:10.1002/anie.200300573

Jain, C., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. *Water Research*, 34(17), 4304–4312. doi:10.1016/S0043-1354(00)00182-2

Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., … Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease. *Journal of Applied Toxicology*, 31, 95–107. doi:10.1002/jat.1649

Jones, G. D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S. P., … Winkel, L. H. (2017). Selenium deficiency risk predicted to increase under future climate change. *Proceedings of the National Academy of Sciences*, 114(11), 2848–2853. doi:10.1073/pnas.1611576114

Jornstedt, M. B., Kumar, S., & Holmgren, A. (1995). Selenite and selenodiglutathione: Reactions with thioredoxin systems. *Methods in Enzymology*, 252(22), 209–219.

Joseph, J., & Loscalzo, J. (2013). Selenistasia: Epistatic effects of selenium on cardiovascular phenotype. *Nutrients*, 5(2), 340–358. doi:10.3390/nu5020340

Jöősef, L., & Filep, J. G. (2003). Selenium-containing compounds attenuate peroxynitrite-mediated NF-κB and AP-1 activation and interleukin-8 gene and protein expression in human leukocytes. *Free Radical Biology and Medicine*, 35(9), 1018–1027. doi:10.1016/S0891-5849(03)00439-8

Khalid, S., Shahid, M., Niazi, N. K., Rafiq, M., Bakhat, H. F., Imran, M., … Dumat, C. (2017). Arsenic behaviour in soil-plant system: Biogeochemical reactions and chemical speciation influences. In N. A. Anjum, S. S. Gill, & N. Tuteja (Eds.), *Enhancing cleanup of environmental pollutants* (pp. 97–140). Cham: Springer.

Khanam, R., Kumar, A., Nayak, A., Shahid, M., Tripathi, R., Vijayakumar, S., … Panneerselvam, P. (2019). Metal (loid) s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. *Science of the Total Environment*, 134330. doi:10.1016/j.scitotenv.2019.134330

Kim, E. H., Sohn, S., Kwon, H. J., Kim, S. U., Kim, M.-J., Lee, S.-J., & Choi, K. S. (2007). Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. *Cancer Research*, 67(13), 6314–6324. doi:10.1158/0008-5472.CAN-06-4217

Kim, T.-S., Jeong, D.-W., Yun, B. Y., & Kim, I. Y. (2002). Dysfunction of rat liver mitochondria by selenite: Induction of mitochondrial permeability transition through thiol-oxidation. *Biochemical and Biophysical Research Communications*, 294(5), 1130–1137. doi:10.1016/S0006-291X(02)00612-5

Kircelli, F., Akay, C., & Gazitt, Y. (2007). Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNA-silenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. *International Journal of Oncology*, 30, 993–1001. doi:10.3892/ijo.30.4.993

Klaunig, J. E., & Kamendulis, L. M. (2004). The role of oxidative stress in carcinogenesis. *Annual Review of Pharmacology and Toxicology*, 44(1), 239–267. doi:10.1146/annurev.pharmtox.44.101802.121851
Klug, A. (2010). The discovery of zinc fingers and their applications in gene regulation and genome manipulation. *Annual Review of Biochemistry, 79*(1), 213–231. doi:10.1146/annurev-biochem-010909-095056

Kofronová, M., Mašková, P., & Lipavská, H. (2018). Two facets of world arsenic problem solution: Crop poisoning restriction and enforcement of phytoremediation. *Planta, 248*(1), 19–35. doi:10.1007/s00425-018-2906-x

Kojima, C., Ramirez, D. C., Tokar, E. J., Himeno, S., Drobná, Z., Stýblo, M., … Waalkes, M. P. (2009). Requirement of arsenic biomethylation for oxidative DNA damage. *Journal of the National Cancer Institute, La Porte, P. F. (2011). Selenium in the detoxification of arsenic: Mechanisms and clinical efficacy. Chicago: The University of Chicago.

Lai, R., Wang, Y., Li, X., & Yu, R. (2008). Effect of selenium and arsenic on oxidative stress, DNA oxidative damage and repair in HepG2 cells. *Wei sheng yan jiu = Journal of Hygiene Research, 37*(6), 645–648.

Laity, J. H., Lee, B. M., & Wright, P. E. (2001). Zinc finger proteins: New insights into structural and functional diversity. *Current Opinion in Structural Biology, 11*(1), 39–46. doi:10.1016/S0959-440X(00)00167-6

Larabee, J. L., Hocker, J. R., & Hanas, J. S. (2009). Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite. *Journal of Inorganic Biochemistry, 103*(3), 419–426. doi:10.1016/j.jinorgbio.2008.12.007

Letavayova, L., Vlčková, V., & Brozmanova, J. (2006). Selenium: From cancer prevention to DNA damage. *Toxicology, 227*, 1–14. doi:10.1016/j.tox.2006.07.017

Levander, O. A. (1977). Metabolic interrelationships between arsenic and selenium. *Environmental Health Perspectives, 19*, 159–164. doi:10.1289/ehp.7719159

Lin, L., Zhou, W., Dai, H., Cao, F., Zhang, G., & Wu, F. (2012). Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. *Journal of Hazardous Materials, 235*, 343–351. doi:10.1016/j.jhazmat.2012.08.012

Liu, J., Yin, M., Zhang, W., Tsang, D. C., Wei, X., Zhou, Y., … Sun, Y. (2019). Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. *Environmental Pollution, 248*, 916–928. doi:10.1016/j.envpol.2019.02.089

Liu, Z., Shen, J., Carbrey, J. M., Mukhopadhyay, R., Agre, P., & Rosen, B. P. (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. *Proceedings of the National Academy of Sciences, 99*(9), 6053–6058. doi:10.1073/pnas.092131899

Lozano, G., & Elledge, S. J. (2000). Cancer: P 53 sends nucleotides to repair DNA. *Nature, 404*(6773), 24–25. doi:10.1038/35003670

Lu, J., & Jiang, C. (2001). Antiangiogenic activity of selenium in cancer chemoprevention: Metabolite-specific effects. *Nutrition and Cancer, 40*(1), 64–73. doi:10.1207/S15327914NC401_12

Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. *Cellular and Molecular Life Sciences, 65*(19), 3049–3057. doi:10.1007/s00018-008-7580-x

Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. *Nature, 409*(6820), 579–579. doi:10.1038/35054664

Maiti, S. (2015). Arsenic-induced mutagenesis and carcinogenesis: A possible mechanism. In S. J. S. Flora (Ed.), *Handbook of arsenic toxicology* (pp. 233–279). London: Elsevier.

Manley, S. A., George, G. N., Pickering, I. J., Glass, R. S., Prenner, E. J., Yamdagni, R., … Gailer, J. (2006). The seleno bis (S-glutathionyl) arsinium ion is assembled in erythrocyte lysate. *Chemical Research in Toxicology, 19*(4), 601–607. doi:10.1021/tx0503505
Maret, W. (2003). Cellular zinc and redox states converge in the metallothionein/thionein pair. *The Journal of Nutrition, 133*(5), 1460S–1462S. doi:10.1093/jn/133.5.1460S

Maritim, A., Sanders, A., & Watkins, R. J. (2003). Diabetes, oxidative stress, and antioxidants: A review. *Journal of Biochemical and Molecular Toxicology, 17*(1), 24–38. doi:10.1002/jbt.10058

Mazej, D., Osvald, J., & Stibilj, V. (2008). Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. *Food Chemistry, 107*(1), 75–83. doi:10.1016/j.foodchem.2007.07.036

McKenzie, R. C., Arthur, J. R., & Beckett, G. J. (2002). Selenium and the regulation of cell signaling, growth, and survival: Molecular and mechanistic aspects. *Antioxidants & Redox Signaling, 4*(2), 339–351. doi:10.1089/152308602753666398

Messarah, M., Klibet, F., Boumendjel, A., Abdennour, C., Bouzerna, N., Boulakoud, M. S., & El Feki, A. (2012). Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. *Experimental and Toxicologic Pathology, 64*(3), 167–174. doi:10.1016/j.etp.2010.08.002

Moreno-Jiménez, E., Esteban, E., & Peñalosa, J. M. (2012). The fate of arsenic in soil-plant systems. In D. M. Whitacre (Ed.), *Reviews of environmental contamination and toxicology* (pp. 1–37). New York: Springer.

Moriarty-Craige, S. E., & Jones, D. P. (2004). Extracellular thiols and thiol/disulfide redox in metabolism. *Annual Review of Nutrition, 24*(1), 481–509. doi:10.1146/annurev.nutr.24.012003.132208

Naranmandura, H., Suzuki, N., & Suzuki, K. T. (2006). Trivalent arsenicals are bound to proteins during reductive methylation. *Chemical Research in Toxicology, 19*(8), 1010–1018. doi:10.1021/tr060053f

Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. *Environmental Health Perspectives, 121*(3), 295–302. doi:10.1289/ehp.1205875

Navarro-Alarcon, M., & Cabrera-Vique, C. (2008). Selenium in food and the human body: A review. *Science of the Total Environment, 400*(1–3), 115–141. doi:10.1016/j.scitotenv.2008.06.024

Navas-Acien, A., Silbergeld, E. K., Streeter, R. A., Clark, J. M., Burke, T. A., & Guallar, E. (2006). Arsenic exposure and type 2 diabetes: A systematic review of the experimental and epidemiologic evidence. *Environmental Health Perspectives, 114*(5), 641–648. doi:10.1289/ehp.8551

Ogra, Y., & Anan, Y. (2009). Selenometabolomics: Identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. *Journal of Analytical Atomic Spectrometry, 24*(11), 1477–1488. doi:10.1039/b910235c

Ohta, Y., & Suzuki, K. T. (2008). Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. *Toxicology and Applied Pharmacology, 226*(2), 169–177. doi:10.1016/j.taap.2007.09.011

Park, S.-H., Kim, J.-H., Chi, G. Y., Kim, G.-Y., Chang, Y.-C., Moon, S.-K., … Choi, Y. H. (2012). Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. *Toxicology Letters, 212*(3), 252–261. doi:10.1016/j.toxlet.2012.06.007

Pilon-Smits, E. A., & LeDuc, D. L. (2009). Phytoremediation of selenium using transgenic plants. *Current Opinion in Biotechnology, 20*(2), 207–212. doi:10.1016/j.copbio.2009.02.001
Pilon-Smits, E. A., & Quinn, C. F. (2010). Selenium metabolism in plants. In R. Hell & R.-R. Mendel (Eds.), *Cell biology of metals and nutrients* (pp. 225–241). Berlin, Heidelberg: Springer.

Pilsner, J. R., Hall, M. N., Liu, X., Ahsan, H., Ilievski, V., Slavkovich, V., ... Gamble, M. V. (2010). Associations of plasma selenium with arsenic and genomic methylation of leukocyte DNA in Bangladesh. *Environmental Health Perspectives, 119*(1), 113–118. doi:10.1289/ehp.1001973

Plant, J., Kinniburgh, D., Smedley, P., Fordyce, F., & Klinck, B. (2004). Arsenic and selenium.

Prasad, K. S., & Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. *Biological Trace Element Research, 157*(3), 275–283. doi:10.1007/s12011-014-9891-0

Qian, Y., Castranova, V., & Shi, X. (2003). New perspectives in arsenic-induced cell signal transduction. *Journal of Inorganic Biochemistry, 96*(2–3), 271–278. doi:10.1016/S0162-0144(03)00235-6

Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: Phytoremediation using floating macrophytes. *Chemosphere, 83*(5), 633–646. doi:10.1016/j.chemosphere.2011.02.045

Rahman, M. A., Hogan, B., Duncan, E., Doyle, C., Krassoi, R., Rahman, M. M., ... Hassler, C. (2014). Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (*Chlorella* sp. CE-35). *Ecotoxicology and Environmental Safety, 106*, 126–135. doi:10.1016/j.ecoenv.2014.03.004

Rai, P. K., Kumar, V., Lee, S., Raza, N., Kim, K.-H., Ok, Y. S., & Tsang, D. C. (2018). Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. *Environment International, 119*, 1–19. doi:10.1016/j.envint.2018.06.012

Ramoutar, R. R., & Brumaghim, J. L. (2007). Effects of inorganic selenium compounds on oxidative DNA damage. *Journal of Inorganic Biochemistry, 101*(7), 1028–1035. doi:10.1016/j.jinorgbio.2007.03.016

Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. *Postgraduate Medical Journal, 79*(933), 391–396. doi:10.1136/pmj.79.933.391

Rayman, M. P. (2000). The importance of selenium to human health. *The Lancet, 356*(9225), 233–241. doi:10.1016/S0140-6736(00)02490-9

Rees, K., Hartley, L., Day, C., Flowers, N., Clarke, A., & Stranges, S. (2013). Selenium supplementation for the primary prevention of cardiovascular disease. *Cochrane Database of Systematic Reviews, (1)*, CD009671.

Reichard, J. F., & Puga, A. (2010). Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. *Epigenomics, 2*(1):87–104.

Ren, X., McHale, C. M., Skibola, C. F., Smith, A. H., Smith, M. T., & Zhang, L. (2011). An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. *Environmental Health Perspectives, 119*(1), 11–19. doi:10.1289/ehp.1002114

Renkema, H., Koopmans, A., Kersbergen, L., Kikkert, J., Hale, B., & Berkelaar, E. (2012). The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. *Plant and Soil, 354*(1–2), 239–250. doi:10.1007/s11104-011-1069-3

Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C., Zia-Ur-Rehman, M., ... Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. *Chemosphere, 182*, 90–105. doi:10.1016/j.chemosphere.2017.05.013

Rizwan, M., Ali, S., Ur Rehman, M. Z., Rinklebe, J., Tsang, D. C., Bashir, A., ... Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: A review. *Science of the Total Environment, 631*, 1175–1191. doi:10.1016/j.scitotenv.2018.03.104
Rosen, B. P., & Liu, Z. (2009). Transport pathways for arsenic and selenium: A minireview. *Environment International, 35*(3), 512–515. doi:10.1016/j.envint.2008.07.023

Rossman, T. G., & Uddin, A. N. (2004). Selenium prevents spontaneous and arsenite-induced mutagenesis. In *International congress series* (pp. 173–179). New York: Elsevier. doi:10.1016/j.ics.2004.09.038

Sah, S., Vandenberge, A., & Smits, J. (2013). Treating chronic arsenic toxicity with high selenium lentil diets. *Toxicology and Applied Pharmacology, 272*(1), 256–262. doi:10.1016/j.taap.2013.06.008

Saha, U., Fayiga, A., & Sonon, L. (2017). Selenium in the soil-plant environment: A review. *International Journal of Applied Agricultural Sciences, 3*(1), 1–18. doi:10.11648/j.ijaas.20170301.11

Salnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. *Chemical Research in Toxicology, 21*(1), 28–44. doi:10.1021/tr700198a

Sampayo-Reyes, A., Taméz-Guerra, R. S., de León, M. B., Vargas-Villarreal, J., Lozano-Garza, H. G., Rodríguez-Padilla, C., … Hernández, A. (2017). Tocopherol and selenite modulate the transplacental effects induced by sodium arsenite in hamsters. *Reproductive Toxicology, 74*, 204–211. doi:10.1016/j.reprotox.2017.10.003

Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K., & Minhas, P. (2015). Selenium nanoparticles for stress-resilient fish and livestock. *Nanoscale Research Letters, 10*(1), 371. doi:10.1186/s11671-015-1073-2

Savitha, P. (2014). Role of selenium. *Journal of Pharmaceutical Sciences and Research, 6*, 56.

Schiavon, M., Pilon, M., Malagoli, M., & Pilon-Smits, E. A. (2015). Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation—A comparison of Stanleya pinnata and *Brassica juncea* (Brassicaceae). *Frontiers in Plant Science, 6*, 2. doi:10.3389/fpls.2015.00002

Schiavon, M., & Pilon-Smits, E. A. (2017). Selenium biofortification and phytoremediation phytotechnologies: A review. *Journal of Environmental Quality, 46*(1), 10–19. doi:10.2134/jeq2016.09.0342

Schrauzer, G. N. (2000). Selenomethionine: A review of its nutritional significance, metabolism and toxicity. *The Journal of Nutrition, 130*(7), 1653–1656. doi:10.1093/jn/130.7.1653

Selvaraj, V., Tomblin, J., Armistead, M. Y., & Murray, E. (2013). Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage. *Ecotoxicology and Environmental Safety, 87*, 80–88. doi:10.1016/j.ecoenv.2012.09.028

Shafik, N. M., & El Batsh, M. M. (2016). Protective effects of combined selenium and *Punica granatum* treatment on some inflammatory and oxidative stress markers in arsenic-induced hepatotoxicity in rats. *Biological Trace Element Research, 169*(1), 121–128. doi:10.1007/s12111-015-0397-1

Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. *Journal of Hazardous Materials, 325*, 36–58. doi:10.1016/j.jhazmat.2016.11.063

Shahid, M., Niazi, N. K., Khalid, S., Murtaza, B., Bibi, I., & Rashid, M. I. (2018). A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. *Environmental Pollution, 234*, 915–934. doi:10.1016/j.envpol.2017.12.019

Shakir, S. K., Azizullah, A., Murad, W., Daud, M. K., Nabeela, F., Rahman, H., … Häder, D.-P. (2016). Toxic metal pollution in Pakistan and its possible risks to public health. In
D. M. Whitacre (Ed.), *Reviews of environmental contamination and toxicology* (pp. 1–60). New York: Springer.

Shankar, S., & Shanker, U. (2014). Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. *The Scientific World Journal, 2014* doi:10.1155/2014/304524

Sharma, I. (2012). Arsenic induced oxidative stress in plants. *Biologia, 67*(3), 447–453. doi: 10.2478/s11756-012-0024-y

Shen, H.-M., & Liu, Z-G. (2006). JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. *Free Radical Biology and Medicine, 40*(6), 928–939. doi:10.1016/j.freeradbiomed.2005.10.056

Shi, H., Hudson, L. G., Ding, W., Wang, S., Cooper, K. L., Liu, S., … Liu, K. J. (2004). Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. *Chemical Research in Toxicology, 17*(7), 871–878. doi:10.1021/tx049939e

Shibata, Y., Morita, M., & Fuwa, K. (1992). Selenium and arsenic in biology: Their chemical forms and biological functions. *Advances in Biophysics, 28*, 31–80. doi:10.1016/0065-227X(92)90022-J

Shini, S., Sultan, A., & Bryden, W. (2015). Selenium biochemistry and bioavailability: Implications for animal agriculture. *Agriculture, 5*(4), 1277–1288. doi:10.3390/agriculture5041277

Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. *Ecotoxicology and Environmental Safety, 112*, 247–270. doi:10.1016/j.ecoenv.2014.10.009

Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. *Nutrition, 33*, 83–90. doi:10.1016/j.nut.2016.05.001

Skröder Löveborn, H., Kippler, M., Lu, Y., Ahmed, S., Kuehnelt, D., Raqib, R., & Vahter, M. (2016). Arsenic metabolism in children differs from that in adults. *Toxicological Sciences, 152*(1), 29–39. doi:10.1093/toxsci/kfw060

Sneddon, A. (2012). Selenium nutrition and its impact on health. *Journal of Food & Health Innovation Service, 6*, 104–108.

Snider, G. W., Ruggles, E., Khan, N., & Hondal, R. J. (2013). Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: Comparison of selenium and sulfur enzymes. *Biochemistry, 52*(32), 5472–5481. doi:10.1021/bi400462j

Stadtman, T. C. (2005). Selenoproteins—Tracing the role of a trace element in protein function. *PLoS Biology, 3*(12), e421. doi:10.1371/journal.pbio.0030421

Stoeva, N., & Bineva, T. (2003). Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. *Bulgarian Journal of Plant Physiology, 29*, 87–95.

Stolz, J. F., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and selenium in microbial metabolism. *Annual Review of Microbiology, 60*(1), 107–130. doi:10.1146/annurev.micro.60.080805.142053

Styblo, M., & Thomas, D. J. (2001). Selenium modifies the metabolism and toxicity of arsenic in primary rat hepatocytes. *Toxicology and Applied Pharmacology, 172*(1), 52–61. doi:10.1006/taap.2001.9134

Su, C.-T., Hsieh, R.-L., Chung, C.-J., Huang, P.-T., Lin, Y.-C., Ao, P.-L., … Lin, M.-I. (2019). Plasma selenium influences arsenic methylation capacity and developmental delays in preschool children in Taiwan. *Environmental Research, 171*, 52–59. doi:10.1016/j.envres.2019.01.003

Sun, H.-J., Rathinasabapathi, B., Wu, B., Luo, J., Pu, L.-P., & Ma, L. Q. (2014). Arsenic and selenium toxicity and their interactive effects in humans. *Environment International, 69*, 148–158. doi:10.1016/j.envint.2014.04.019
Surai, P. F. (2006). *Selenium in nutrition and health*. Nottingham: Nottingham University Press.

Suzuki, K. T., Kurasaki, K., & Suzuki, N. (2007). Selenocysteine β-lyase and methylselenol demethylease in the metabolism of Se-methylated selenocompounds into selenide. *Biochimica et Biophysica Acta (BBA) - General Subjects*, 1770(7), 1053–1061. doi:10.1016/j.bbagen.2007.03.007

Talbot, S., Nelson, R., & Self, W. (2008). Arsenic trioxide and auranofin inhibit selenoprotein synthesis: Implications for chemotherapy for acute promyelocytic leukaemia. *British Journal of Pharmacology*, 154(5), 940–948. doi:10.1038/bjp.2008.161

Tanmoy, P., & Saha, N. C. (2019). Environmental arsenic and selenium contamination and approaches towards its bioremediation through the exploration of microbial adaptations: A review. *Pedosphere*, 29, 554–568. doi:10.1016/S1002-0160(19)60829-5

Terry, N., Zayed, A., De Souza, M., & Tarun, A. (2000). Selenium in higher plants. *Annual Review of Plant Physiology and Plant Molecular Biology*, 51(1), 401–432. doi:10.1146/annurev.arplant.51.1.401

Tinggi, U. (2003). Essentiality and toxicity of selenium and its status in Australia: A review. *Toxicology Letters*, 137(1–2), 103–110. doi:10.1016/S0378-4274(02)00384-3

Tseng, C.-H. (2009). A review on environmental factors regulating arsenic methylation in humans. *Toxicology and Applied Pharmacology*, 235(3), 338–350. doi:10.1016/j.taap.2008.12.016

Vahter, M. E. (2007). Interactions between arsenic-induced toxicity and nutrition in early life. *The Journal of Nutrition*, 137(12), 2798–2804. doi:10.1093/jn/137.12.2798

Valko, M., Rhodes, C., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. *Chemico-Biological Interactions*, 160(1), 1–40. doi:10.1016/j.cbi.2005.12.009

Ventura, J.-J., Cogswell, P., Flavell, R. A., Baldwin, A. S., & Davis, R. J. (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. *Genes & Development*, 18, 2905–2915. doi:10.1101/gad.1223004

Villa-Belostoa, R., & Sorribas, V. (2008). Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. *Toxicology and Applied Pharmacology*, 232(1), 125–134. doi:10.1016/j.taap.2008.05.026

Vinceti, M., Maraldi, T., Bergomi, M., & Malagoli, C. (2009). Risk of chronic low-dose selenium overexposure in humans: Insights from epidemiology and biochemistry. *Reviews on Environmental Health*, 24(3), 231–248. doi:10.1515/REVEH.2009.24.3.231

Vinceti, M., Soloyev, N., Mandrioli, J., Crespi, C. M., Bonvicini, F., Arcolin, E., ... Michalke, B. (2013). Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. *NeuroToxicology*, 38, 25–32. doi:10.1016/j.neuro.2013.05.016

Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. *Nature*, 408(6810), 307–310. doi:10.1038/35042675

Wallenberg, M., Olm, E., Hebert, C., Björnstedt, M., & Fernandes, A. P. (2010). Selenium compounds are substrates for glutaredoxins: A novel pathway for selenium metabolism and a potential mechanism for selenium-mediated cytotoxicity. *Biochemical Journal*, 429(1), 85–93. doi:10.1042/BJ20100368

Walton, F. S., Waters, S. B., Jolley, S. L., LeCluyse, E. L., Thomas, D. J., & Styblo, M. (2003). Selenium compounds modulate the activity of recombinant rat AsIII-
methyltransferase and the methylation of arsenite by rat and human hepatocytes. *Chemical Research in Toxicology*, 16(3), 261–265. doi:10.1021/tx025649r

Wang, Q. Q., Thomas, D. J., & Naranmandura, H. (2015). Importance of being thiomethylated: formation, fate, and effects of methylated thioarsenicals. *Chemical Research in Toxicology*, 28(3), 281–289. doi:10.1021/tx500464t

Wei, Y., Cao, X., Ou, Y., Lu, J., Xing, C., & Zheng, R. (2001). SeO₂ induces apoptosis with down-regulation of Bcl-2 and up-regulation of P53 expression in both immortal human hepatic cell line and hepatoma cell line. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*, 490(2), 113–121. doi:10.1016/S1383-5718(00)00149-2

Weiller, M., Latta, M., Kresse, M., Lucas, R., & Wendel, A. (2004). Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes. *Toxicology*, 201(1–3), 21–30. doi:10.1016/j.tox.2004.03.026

Wen, H., & Carignan, J. (2007). Reviews on atmospheric selenium: Emissions, speciation and fate. *Atmospheric Environment*, 41(34), 7151–7165. doi:10.1016/j.atmosenv.2007.07.035

Whanger, P. (2004). Selenium and its relationship to cancer: An update. *British Journal of Nutrition*, 91(1), 11–28. doi:10.1079/BJN20031015

Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. *Environmental Pollution*, 158(5), 1169–1181. doi:10.1016/j.envpol.2009.10.045

Winkel, L. H., Johnson, C. A., Lenz, M., Grundl, T., Leupin, O. X., Amini, M., & Charlet, L. (2011). *Environmental selenium research: From microscopic processes to global understanding*. Washington, DC: ACS Publications.

Winkel, L. H., Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E., & Bañuelos, G. S. (2015). Selenium cycling across soil-plant-atmosphere interfaces: A critical review. *Nutrients*, 7(6), 4199–4239. doi:10.3390/nu7064199

Witkiewicz-Kucharczyk, A., & Bal, W. (2006). Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. *Toxicology Letters*, 162, 29–42. doi:10.1016/j.toxlet.2005.10.018

Woo Youn, B., Fiala, E. S., & Soon Sohn, O. (2001). Mechanisms of organoselenium compounds in chemoprevention: Effects on transcription factor-DNA binding. *Nutrition and Cancer*, 40(1), 28–33. doi:10.1207/S15327914NC401_7

Wu, Z., Bañuelos, G. S., Lin, Z.-Q., Liu, Y., Yuan, L., Yin, X., & Li, M. (2015). Biofortification and phytoremediation of selenium in China. *Frontiers in Plant Science*, 6, 136. doi:10.3389/fpls.2015.00136

Xiong, T., Austruy, A., Pierart, A., Shahid, M., Schreck, E., Mombo, S., & Dumat, C. (2016). Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. *Journal of Environmental Sciences*, 46, 16–27. doi:10.1016/j.jes.2015.08.029

Xu, Z., Wang, Z., Li, J-J., Chen, C., Zhang, P-C., Dong, L., … Wang, Z-L. (2013). Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. *Food and Chemical Toxicology*, 58, 1–7. doi:10.1016/j.fct.2013.03.048

Yang, C., & Frenkel, K. (2002). Arsenic-mediated cellular signal transduction, transcription factor activation, and aberrant gene expression: Implications in carcinogenesis. *Journal of Environmental Pathology, Toxicology and Oncology*, 21. doi:10.1615/JEnvironPatholToxicolOncol.v21.i4.20

Yang, C., Kuo, M., Chen, J., & Chen, Y. (1999). Arsenic trioxide sensitivity is associated with low level of glutathione in cancer cells. *British Journal of Cancer*, 81(5), 796–799. doi:10.1038/sj.bjc.6690766
Yang, J., Cao, W., & Rui, Y. (2017). Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. *Journal of Plant Interactions, 12*(1), 158–169. doi: 10.1080/17429145.2017.1310944

Ye, W.-L., Khan, M. A., McGrath, S. P., & Zhao, F.-J. (2011). Phytoremediation of arsenic contaminated paddy soils with *Pteris vittata* markedly reduces arsenic uptake by rice. *Environmental Pollution, 159*(12), 3739-3743. doi: 10.1016/j.envpol.2011.07.024

Yoshioka, J., Schreiter, E. R., & Lee, R. T. (2006). Role of thioredoxin in cell growth through interactions with signaling molecules. *Antioxidants & Redox Signaling, 8*, 2143–2151. doi: 10.1089/ars.2006.8.2143

Zakharyan, R. A., & Aposhian, H. V. (1999). Arsenite methylation by methylvitamin B 12 and glutathione does not require an enzyme. *Toxicology and Applied Pharmacology, 154*(3), 287–291. doi: 10.1006/taap.1998.8587

Zarubin, T., & Jiahuai, H. (2005). Activation and signaling of the p38 MAP kinase pathway. *Cell Research, 15*(1), 11–18. doi:10.1038/sj.cr.7290257

Zeng, G., Wu, H., Liang, J., Guo, S., Huang, L., Xu, P., … He, Y. (2015). Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. *RSC Advances, 5*(44), 34541–34548. doi:10.1039/C5RA04834F

Zeng, H. (2001). Arsenic suppresses necrosis induced by selenite in human leukemia HL-60 cells. *Biological Trace Element Research, 83*(1), 01–15. doi:10.1385/BTER:83:1:01

Zeng, H. (2009). Selenium as an essential micronutrient: Roles in cell cycle and apoptosis. *Molecules, 14*(3), 1263–1278. doi:10.3390/molecules14031263

Zeng, H., & Combs, G. F. (2008). Selenium as an anticancer nutrient: Roles in cell proliferation and tumor cell invasion. *The Journal of Nutritional Biochemistry, 19*(1), 1–7. doi: 10.1016/j.jnutbio.2007.02.005

Zhao, F. J., Ma, J. F., Meharg, A., & McGrath, S. (2009). Arsenic uptake and metabolism in plants. *New Phytologist, 181*(4), 777–794. doi:10.1111/j.1469-8137.2008.02716.x

Zhong, C. X., & Mass, M. J. (2001). Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. *Toxicology Letters, 122*(3), 223–234. doi:10.1016/S0378-4274(01)00365-4

Zhou, N., Xiao, H., Li, T.-K., Nur-E-Kamal, A., & Liu, L. F. (2003). DNA damage-mediated apoptosis induced by selenium compounds. *Journal of Biological Chemistry, 278*(32), 29532–29537. doi:10.1074/jbc.M301877200

Zhou, X., Sun, X., Cooper, K. L., Wang, F., Liu, K. J., & Hudson, L. G. (2011). Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. *Journal of Biological Chemistry, 286*(26), 22855–22863. doi:10.1074/jbc.M111.232926

Zwolak, I. (2019). The role of selenium in arsenic and cadmium toxicity: An updated review of scientific literature. *Biological Trace Element Research, 1*, 20. doi:10.1007/s12011-019-01691-w

Zwolak, I. (2020). The role of selenium in arsenic and cadmium toxicity: An updated review of scientific literature. *Biological Trace Element Research, 193*(1), 44–63. doi:10.1007/s12011-019-01691-w

Zwolak, I., & Zaporowska, H. (2012). Selenium interactions and toxicity: A review. *Cell Biology and Toxicology, 28*(1), 31–46. doi:10.1007/s10565-011-9203-9