Supporting Information for
Temperature and Nuclear Quantum Effects on the Stretching Modes of the Water Hexamer

Nagaprasad Reddy Samala, Noam Agmon
The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem 91904, Israel.

Contents:

Item	Description	Pages
Table S1	Comparison of experimental book isomer frequencies with theoretical predictions from various MB-PES	S2
Table S2	Comparison of the above with frequencies calculated from various quantum chemistry theories	S3
Table S3	Comparison with experiment of the MB-pol frequencies when shifted to best-fit the various quantum chemistry theories of Table S2	S4
Figure S1	All H-atom and partial VACF vibrational spectra of the cage isomer at 10K	S5
Figure S2	Same at 30K	S6
Figure S3	Same at 50K	S7
Figure S4	Same at 70K	S8
Figure S5	All H-atom and partial VACF vibrational spectra of ring isomer at 10K	S9
Figure S6	All H-atom and partial VACF vibrational spectra of prism isomer at 10K	S10
Table S1. Comparison with experiment of the book-isomer OH-stretch spectrum calculated on various MB-PESs (no scaling factors apply here). The correlation between theoretically calculated and experimentally determined frequencies used for the error estimates in HBed-OH frequencies is explained in the footnotes.

mode	Exper.\(^{a}\)	WHBB\(^{b}\)	E3B2\(^{c}\)	shifted E3B2\(^{d}\)	MB-pol/LM\(^{e}\)	shifted MB-pol/VACF\(^{f}\)
1-4\(^{g}\)	3711	3712	3746	3720	3707	
5		3716	3713	3693		
6	3572	3551	3560	3620	3572	3584
7	3464	3436	3421	3481	3434.5	3467
8		3380	3440	3431.7	3452	
9	3423	3397	3309	3369	3416.2	3410
10	3327	3336	3276	3336	3285.1	3327
11	3287	3313	3170	3230	3268	3278
12	3201	3276	3105	3165	3246.4	3218
bend**2	3169	3170			3147	
meanD\(^{b}\)	0	5	–60	35	–6.1	0.5
MAD\(^{b}\)	0	27	70	35	22	9.2
maxD\(^{b}\)	0	75	117	57	45	17

\(^{a}\)Gas-phase, Table 1 of Diken et al.\(^{13}\) Band 5 merges with 1-4, bands 7-8 merge into a single band.

\(^{b}\)Digitized from Figure 1 of Wang and Bowman.\(^{27}\) Bands 5 and 8 not seen here (see above).

\(^{c}\)From Figure 7 of Kananenka et al.\(^{24}\) No bend overtone (bend**2) seen in classical MD.

\(^{d}\)E3B2 HBed OH frequencies shifted by \(\text{meanD} = 60 \text{ cm}^{-1}\), to best fit experiment.

\(^{e}\)MB-pol with the Local Monomer (LM) approximation. From Table S4 of Brown et al.\(^{29}\) Bend overtones and combinations were not assigned there, so we cite here the average of the two strongest bands below 3200 cm\(^{-1}\) as the bend overtone. A weak band at 3251.8 cm\(^{-1}\) is not assigned.

\(^{f}\)Our results, shifted by 208 cm\(^{-1}\). No bend overtone seen in classical MD.

\(^{g}\)Bands 1-4 are averaged together.

\(^{h}\)Errors with respect to experiment for modes 6,7, 9-12 (i.e., all available HBed-OH stretching modes). Whenever modes 7 and 8 are resolved, they are averaged together for this comparison.
Table S2. Comparison with experiment of the book-isomer OH-stretch spectrum calculated by scaled-harmonic quantum chemistry methods.

mode	Exper.\(^a\)	MP2\(^b\) 6-311+G**	MP2\(^c\) aug-cc-pVDZ	VPT2\(^d\)
1-4\(^e\)	3711	3711	3763	3693
5	--	3696	3755	3686
6	3572	3594	3617	3546
7	3464	3472	3473	3415
8		3450	3458	3398
9	3423	3406	3405	3356
10	3327	3324	3307	3265
11	3287	3274	3256	3170
12	3201	3211	3182	3068
meanD\(^f,g\)	0	-0.6	1.5	-1.4
MAD\(^g\)	0	9.8	26	68
maxD\(^g\)	0	22	45	133

\(^a\)Gas-phase, Table 1 of Diken et al.\(^{13}\)
\(^b\)Table V of Kim & Kim, scaled by 0.938.\(^{17}\)
\(^c\)Table S7 of Temelso et al., harmonic, scaled by 0.9685.\(^{19}\)
\(^d\)Table S7 of Temelso et al. (anharmonic).\(^{19}\) Unscaled (i.e., scaled by 1.0).
\(^e\)Bands 1-4 are averaged together.
\(^f\)Mean deviation (calculated minus experiment).
\(^g\)Calculated with respect to experiment for modes 6,7, 9-12 (i.e., all available HBed-OH stretching modes). Whenever modes 7 and 8 are resolved, they are averaged for making this comparison.
Table S3. Comparison with experiment of the MB-pol book-isomer OH-stretch spectrum when the shift is determined to generate best agreement with the optimally-scaled quantum chemistry methods of Table S2.

mode	Exper.	MB-pol/MP2^b 6-311+G**	MB-pol/MP2^c aug-cc-pVDZ	MB-pol/VPT2^d
1-4^e	3711	3707	3709	3706
5		3693	3695	3695
6	3572	3584	3586	3583
7	3464	3460	3462	3459
8		3452	3454	3451
9	3423	3410	3412	3409
10	3327	3327	3329	3326
11	3287	3278	3280	3277
12	3201	3218	3220	3217
	MAD^f	8.4	8.1	8.9
	maxD^f	0	17	19

^aGas-phase, Table 1 of Diken et al.¹³
^bMB-pol shifted by 208 cm⁻¹, to obtain best agreement with Table V of Kim & Kim.¹⁷ scaled by 0.938.
^cMB-pol shifted by 206 cm⁻¹, to obtain best agreement with Table S7 of Temelso et al., harmonic frequencies, scaled by 0.9685.¹⁹
^dMB-pol shifted by 209 cm⁻¹, to obtain best agreement with Table S7 of Temelso et al. (anharmonic),¹⁹ scaled by 1.02.
^eBands 1-4 are averaged together.
^fMAD and maxD with respect to experiment for modes 6, 7, 9-12 (i.e., all available HBed-OH stretching modes). Whenever modes 7 and 8 are resolved, they are averaged for making this comparison.
Figure S1: VACF vibrational spectrum of the cage isomer at 10K and a 10 ns length of trajectory, (a) All H-atom VACF and (b) Partial VACF for the OH distances color coded in panel (a). The LMA of the HBed OH stretches can be read from this figure as follows (low to high) O6H6 (DAA), O4H4 (DAA), O2H2 (DA), O5H5 (DA), O1H1 (DDA), O3H3 (DDA), O1H1’ (DDA), O3H3’ (DDA).
Figure S2: Same as Figure S1 at 30K.
Figure S3: Same as Figure S1 at 50K.
Figure S4: Same as Figure S1 at 70K.
Figure S5: VACF vibrational spectrum of the ring isomer at 10K and a 10 ns length of trajectory, (a) All H-atom VACF and (b) Partial VACF for the OH distances color coded in panel (a).
Figure S6: VACF vibrational spectrum of the prism isomer at 10K and a 10 ns length of trajectory, (a) All H-atom VACF and (b) Partial VACF for the OH distances color coded in panel (a). The LMA of the HBed OH stretches can be read from this figure as follows (low to high) O5H5 (DAA), O2H2 (DAA), O6H6 (DDA), O4H4 (DAA), O1H1’ (DDA), O3H3’ (DDA), O6H6’ (DDA), O1H1 (DDA), O3H3 (DDA).