Fermi Large Area Telescope Observations of the Dark Accelerator HESS J1745-303

Paul Yeung†
Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan

Reviewing the two MeV-GeV investigations in the field of the HESS J1745-303 performed using Fermi Large Area Telescope data, we confirmed that the emission peak comfortably coincides with ‘Region A’ in the TeV regime, which is the brightest part of this feature. The MeV–TeV spectrum can be precisely described by a single power-law. Also, recent investigation has shown that the MeV-GeV feature is elongated from ‘Region A’ toward the north-west, which is similar to the case of large-scale atomic/molecular gas distribution.

Keywords: gamma-rays, cosmic-rays, dark accelerators, Galactic center

1. INTRODUCTION

Within the Galactic latitude of ± 1°, a number of very-high-energy (VHE) sources have been discovered by imaging Cherenkov telescope arrays (e.g. Aharonian et al. 2005), among which more than 30 are unidentified TeV sources referred to as dark accelerators (according to TeVCat). The word “dark” here means that their emission mechanisms and/or cosmic-ray (CR) origins have not yet been confirmed. To reveal the nature of a dark accelerator, we can investigate its morphology, spectrum and long-term temporal behavior in γ-ray.

Two dark accelerators, HESS J1745-303 and HESS J1741-302, are separated by ≲ 1°. Their TeV-to-X-ray flux ratios are both > 4 (Bamba et al. 2009; Matsumoto et al. 2010), making them unlikely to be associated with any supernova remnant (SNR) or pulsar wind nebula (PWN), as the typical TeV-to-X-ray flux ratio of an SNR or a PWN is < 2. Tibolla et al. (2008) created a brightness profile of these objects using a background-subtracted count-map in HESS. A double Gaussian is required to describe the data. And, therefore, these two sources are considered to be distinct.

Through a review of our two papers on Fermi observations of HESS J1745-303 (Hui et al. 2011, 2016), we concluded that this object is a molecular cloud hit by hadronic CRs accelerated in our Galactic center. If this is true, its spectrum in 30 MeV - 10 TeV should be well described by a single power-law (PL) without any spectral break (cf. Cheng et al. 2011). Therefore, comparing the spectra in the Fermi and HESS bands is an important part of the investigation.

Compared with Hui et al. (2011), Hui et al. (2016) is based on analyses with the following improvements: (1) updated instrumental response (Pass8), (2) updated Galactic diffuse background model (gll_iem_v06.fits), (3) Fermi Large Area Telescope (LAT) 4-Year Point Source Catalog (3FGL), (4) photon statistics accumulated over more than double the time-length (< 6.9 yr), and (5) refined Fermi science tools (v10r0p5).

2. MORPHOLOGY

Aharonian et al. (2008) reported that HESS J1745-303 has three emission regions in TeV, among which region A is the brightest. Both the objects 12CO J = 2-1 and HI line emissions were observed to peak at region A and to have extensions toward the northwest (Hayakawa et al. 2012).

Hui et al. (2011) reported that the 1-20 GeV emission of
HESS J1745-303 in the first < 2.5 yr of Fermi LAT observations peaked on the edge of region A defined in TeV. With the aforementioned improvements, Hui et al. (2016) confirmed that the peak of this object’s 0.65-25 GeV emission in the first < 6.9 yr of Fermi LAT observations is comfortably within region A. Hui et al. (2016) also serendipitously discovered a northwest clump separated from region A by ~1.3°. This extension has the same orientation as those observed in radio line emissions. According to their brightness profiles, instead of being a single point source, region A and the northwest clump are either an extended source or a mixture of two distinct point sources (cf. Fig. 3 of Hui et al. 2016).

3. SPECTRUM

Hui et al. (2011) suggested that the 1 GeV - 10 TeV spectrum of HESS J1745-303 at region A is well fit by a PL with a photon index of 2.63 ± 0.03. With the aforementioned improvements, Hui et al. (2016) found that the 0.65 GeV - 10 TeV spectrum is well fit by a PL with a photon index of 2.49 ± 0.02; the extra parameters of the power-law with exponential cutoff (PLE) and the broken power-law (BKPL) are not strongly required.

Unlike region A, the northwest clump has a spectral shape of PLE or BKPL. The best-fit PLE has a cutoff energy of 1.90 ± 0.67 GeV; the best-fit BKPL, with the break energy fixed at 2 GeV, has a photon index of 3.66 ± 0.29 at energy greater than the break (Hui et al. 2016). Such spectral steepening is consistent with the non-detection by HESS of this clump in TeV.

4. TEMPORAL BEHAVIOR

Both Hui et al. (2011) and Hui et al. (2016) claimed no strong evidence for the long-term time-variability of flux at region A or the northwest clump. The relevant light-curves, obtained from the analyses with recent improvements, are shown in Fig. 1.

5. INTERPRETATION

Multi-wavelength (including MeV-GeV γ-ray, X-ray & radio lines) emissions of HESS J1745-303 originate from region A. The 0.65 GeV - 10 TeV spectrum at region A can be well described by a PL without any spectral break. A NW clump discovered at ~1.3° from region A has a GeV spectrum of PLE shape, and hence we speculate on possible spectral steepening along the extended feature. Synthesizing all these things, we confirmed that an energetically hadronic process is the major mechanism of γ-ray emission at region A.

It has been suggested that the mixed-morphology (MM) SNR G359.1-0.5, which is just next to region A (cf. Fig. 1 of Hui et al. 2016), is the counterpart of HESS J1745-303. However, the 0.1-100 GeV luminosity at region A of 1.1 × 10³⁶ erg s⁻¹ (Hui et al. 2016) is marginally consistent with the MM SNR range of ~10³⁵ - 10³⁶ erg s⁻¹, as determined by Bamba.
et al. (2016). More importantly, HESS J1745-303 has no spectral break from hundreds of MeV to several TeV, making this object totally different from many GeV-detected SNRs which have BKPL spectra with breaks at a few GeV (Acero et al. 2016). Therefore, we have no evidence that SNR G359.1-0.5 is the counterpart of HESS J1745-303.

The comparable emissivities of HESS J1745-303 and Sgr B2 (Yang et al. 2015; Hui et al. 2016), another cloud next to our Galactic center, suggest that they have the same CR origin: our Galactic center. However, what makes them different is that Sgr B2 has a spectral break between the GeV and TeV bands (Yang et al. 2015).

ACKNOWLEDGMENTS

This research is supported by a General Research Fund (GRF) grant from the Hong Kong Special Administrative Region Government (17302315).

REFERENCES

Acero F, Ackermann M, Ajello M, Baldini L, Ballet J, et al., The first Fermi LAT supernova remnant catalog, Astrophys. J. Suppl. Ser. 224, 8-57 (2016). http://dx.doi.org/10.3847/0067-0049/224/1/8

Aharonian F, Akhperjanian AG, Aye KM, Bazer-Bachi AR, Belilicke M, et al., A new population of very high energy gamma-ray sources in the Milky Way, Science 307, 1938-1942 (2005). http://dx.doi.org/10.1126/science.1108643

Aharonian F, Akhperjanian AG, Barres de Almeida U, Bazer-Bachi AR, Behera B, et al., Exploring a SNR/molecular cloud association within HESS J1745-303, Astron. Astrophys. 483, 509-517 (2008). http://dx.doi.org/10.1051/0004-6361:20079230

Bamba A, Yamazaki R, Kohri K, Matsumoto H, Wagner S, et al., X-ray observation of very high energy gamma-ray source, HESS J1745-303, with Suzaku, Astrophys. J. 691, 1854-1861 (2009). http://dx.doi.org/10.1088/0004-637X/691/2/1854

Bamba A, Sawada M, Nakano Y, Terada Y, Hewitt J, et al., New identification of the mixed-morphology supernova remnant G298.6-0.0 with possible gamma-ray association, Publ. Astron. Soc. Jpn. 68, S5 (2016). http://dx.doi.org/10.1093/pasj/psw096

Cheng KS, Chernyshov DO, Dogiel VA, Ko CM, Ip WH, Origin of the Fermi bubble, Astrophys. J. 731, L17 (2011). http://dx.doi.org/10.1088/2041-8205/731/1/L17

Hayakawa T, Torii K, Enokiya R, Amano T, Fukui Y, Molecular and atomic gas toward HESS J1745-303 in the Galactic center: further support for the hadronic scenario, Publ. Astron. Soc. Jpn. 64, 8 (2012). http://dx.doi.org/10.1093/pasj/64.1.8

Hui CY, Wu EMH, Wu JHK, Huang RHH, Cheng KS, et al., Exploring the dark accelerator HESS J1745-303 with Fermi Large Area Telescope, Astrophys. J. 735, 115-119 (2011). http://dx.doi.org/10.1088/0004-637X/735/2/115

Hui CY, Yeung PKH, Ng CW, Lin LCC, Tam PHT, et al., Observing two dark accelerators around the Galactic centre with Fermi Large Area Telescope, Mon. Not. Roy. Astron. Soc. 457, 4262-4271 (2016). http://dx.doi.org/10.1093/mnras/stw209

Matsumoto H, Uchiyama H, Tsuru TG, Koyama T, Tibolla O, Discovery of the X-ray emission from the unidentified TeV object HESS J1741-302, in the energetic cosmos: from Suzaku to ASTRO-H, ed. Makishima K (JAXA, Tokyo, 2010), 154-155.

Tibolla O, Komin N, Kosack K, Naumann-Godo M, H.E.S.S. Collaboration, A new source discovered close to the Galactic center: HESS J1741-302, in 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 7-11 Jul 2008.

Yang RZ, Jones DI, Aharonian F, Fermi-LAT observations of the Sagittarius B complex, Astron. Astrophys. 580, A90 (2015). http://dx.doi.org/10.1051/0004-6361/201425233