There is no magic bullet: The importance of testing reference gene stability in RT-qPCR experiments across multiple closely related species

Bert Foquet Corresp.1, Hojun Song 1

1 Department of Entomology, Texas A&M University, College station, Texas, United States of America

Corresponding Author: Bert Foquet
Email address: bertfoquet@tamu.edu

Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR) is the current gold standard tool for the study of gene expression. This technique is highly dependent on the validation of reference genes, which exhibit stable expression levels among experimental conditions. Often, reference genes are assumed to be stable a priori without a rigorous test of gene stability. However, such an oversight can easily lead to misinterpreting expression levels of target genes if the references genes are in fact not stable across experimental conditions. Even though most gene expression studies focus on just one species, comparative studies of gene expression among closely related species can be very informative from an evolutionary perspective. In our study, we have attempted to find stable reference genes for four closely related species of grasshoppers (Orthoptera: Acrididae) that together exhibit a spectrum of density-dependent phenotypic plasticity. Gene stability was assessed for eight reference genes in two tissues, two experimental conditions and all four species. We observed clear differences in the stability ranking of these reference genes, both between tissues and between species. Additionally, the choice of reference genes clearly influenced the results of a gene expression experiment. We offer suggestions for the use of reference genes in further studies using these four species, which should be taken as a cautionary tale for future studies involving RT-qPCR in a comparative framework.
There is no magic bullet: the importance of testing reference
gene stability in RT-qPCR experiments across multiple
closely related species

Bert Foquet¹, Hojun Song¹

¹ Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA

Corresponding Author:
Bert Foquet
Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA

Email address: bertfoquet@tamu.edu
Abstract
Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR) is the current gold standard tool for the study of gene expression. This technique is highly dependent on the validation of reference genes, which exhibit stable expression levels among experimental conditions. Often, reference genes are assumed to be stable a priori without a rigorous test of gene stability. However, such an oversight can easily lead to misinterpreting expression levels of target genes if the references genes are in fact not stable across experimental conditions. Even though most gene expression studies focus on just one species, comparative studies of gene expression among closely related species can be very informative from an evolutionary perspective. In our study, we have attempted to find stable reference genes for four closely related species of grasshoppers (Orthoptera: Acrididae) that together exhibit a spectrum of density-dependent phenotypic plasticity. Gene stability was assessed for eight reference genes in two tissues, two experimental conditions and all four species. We observed clear differences in the stability ranking of these reference genes, both between tissues and between species. Additionally, the choice of reference genes clearly influenced the results of a gene expression experiment. We offer suggestions for the use of reference genes in further studies using these four species, which should be taken as a cautionary tale for future studies involving RT-qPCR in a comparative framework.

Introduction
The current gold standard tool for studying gene expression at the RNA level is Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR or simply qPCR), due to its high sensitivity and speed of analysis (Gachon et al. 2004; Thellin et al. 2009). Nonetheless, qPCR accuracy is highly dependent upon the normalization of target gene expression with reference genes. An optimal reference gene should show minimal variability in its expression level between tissues, be unaffected by tested experimental factors, and exhibit similar expression levels as target genes (Vandesompele et al. 2002). Often those genes that are critical for maintaining basic cellular functions and expressed in all cell types, commonly referred to as housekeeping genes, are used as reference genes for qPCR experiments. Although qPCR is one of the basic tools employed in functional genetic research, mistakes in the experimental setup for qPCR experiments are surprisingly common, including the use of an inappropriate number of reference genes or the lack of accurate testing of reference gene performance under specific experimental conditions (Bustin et al. 2013; Gutierrez et al. 2008; Kozera & Rapacz 2013). It is often the case that certain reference genes are selected for a particular qPCR experiment simply because they have been used previously, either for other experimental conditions or even in other tissues and species. This type of blind adoption of reference genes can result in inaccurate normalization of target gene expression, and ultimately in an incorrect interpretation of the results (Bustin et al. 2013; Dheda et al. 2004; Gutierrez et al. 2008; Nicot et al. 2005; Tricarico et al. 2002; Vandesompele et al. 2002). In response to these issues, the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE)-guidelines, aiming to enhance the consistency of performing, interpreting, and reporting qPCR data, were formulated (Bustin et
al. 2009). Additionally, several statistical algorithms have been developed to identify the best
reference genes to use under certain experimental conditions (Andersen et al. 2004; Hellemans et
al. 2007; Pfaffl et al. 2004; Vandesompele et al. 2002). Therefore, it is critical that a thorough
investigation of reference gene stability is needed prior to setting up any qPCR experiment.

While a vast majority of qPCR-based studies focus on gene expressions on a single
species, there is a recognition that a comparative gene expression study across multiple closely
related species that may have distinct biological or ecological differences can reveal important
insights into the evolution of gene functions (e.g. Salazar-Jaramillo et al. 2017; Sørensen et al.
2019; Wittkopp et al. 2002). However, one of the assumptions in this type of comparative studies
is that the reference genes that work well for one species must also work well for another closely
related species. Although the reference genes are supposed to be stable within a species
(Vandesompele et al. 2002), there is no a priori reason to believe that the same pattern is found
in another species. If this assumption does not hold true, the subsequent inferences about the
expression level of the gene of interest can be incorrect. Nevertheless, this assumption is rarely
tested.

In this study, we explore the merit of this assumption by testing reference gene stability
in qPCR experiments in four closely related species of grasshoppers in the genus Schistocerca
(Orthoptera: Acrididae). Our initial motivation for this work comes from our long-term interest
in understanding the molecular basis of density-dependent phenotypic plasticity in locusts. In
short, locusts are grasshoppers that show an extreme form of density-dependent phenotypic
plasticity in which relatively inactive and solitary individuals can transform into highly active
and gregarious individuals in response to change in local population density (Cullen et al. 2017;
Pener 1983; Pener & Simpson 2009; Uvarov 1921). When the high density persists, locusts
exhibit collective movements, which can lead to locust plagues (Pener & Simpson 2009). These
two density-dependent phenotypes are called the solitarious and gregarious phases (Pener &
Simpson 2009; Uvarov 1921), and understanding the molecular basis of this phenomenon has
been considered the last frontier in locust research (Cullen et al. 2017; Pener & Simpson 2009).
We have been studying the Central American locust, Schistocerca piceifrons Walker, an
important swarming locust species affecting Mexico and Central America (Barrientos Lozano et
al. 1992; Bredo 1963; Harvey 1983), as a model system, which shows behavioral,
morphological, physiological, ecological, and molecular plasticity in response to change in
density, similar to its more well-studied congener, the desert locust S. gregaria (Forskål). Our
research has shown that the Central American locust is more closely related to non-swarming
grasshoppers than to other locust species within the genus (Song et al. 2017), and that these non-
swarming relatives also show density-dependent phenotypic plasticity, reminiscent of the
swarming locusts (Gotham & Song 2013; Song et al. 2017). Therefore, over the past several
years, we have been investigating the evolution of density-dependent phenotypic plasticity in a
comparative framework by comparing transcriptomes of S. piceifrons and three other closely
related Schistocerca species, which have led to the identification of some candidate genes that
might be relevant for the expression of density-dependent phenotypes. It is in this context that we
ask a question about the suitability of using the same reference genes for qPCR experiments
across the four closely related species. In this study, we have designed and analyzed the stability
of eight potential reference genes across the four species reared in two density conditions
(isolated vs. crowded), and we demonstrate that the assumption of reference gene stability is not
supported in our study system. We also validate our choice of reference genes with a set of four
candidate genes in S. piceifrons by performing qPCR experiments. Finally, we provide a set of
recommendations for selecting appropriate reference genes in a comparative analysis involving multiple closely related species.

Materials & Methods

Study insects and rearing regime

We used four closely related species in the genus *Schistocerca*, maintained as laboratory colonies in the Department of Entomology at Texas A&M University. The four species were: Central American locust, *S. piceifrons*, and three sedentary species, *S. americana* (Drury), *S. serialis cubense* (Saussure), and *S. nitens* (Thunberg). For conciseness, we use the species epithet (*piceifrons*, *americana*, *cubense*, and *nitens*) throughout the paper. The *piceifrons* colony was established from an outbreak population in Yucatan, Mexico collected in October 2015, and imported under a USDA permit (USDA APHIS PPQ P526P-15-03851). The *americana* colony was established from a population in Brooksville, Florida, collected in September 2010. The *cubense* colony was established from a population in Islamorada in the Florida Keys collected in January 2011. Finally, the *nitens* colony was established from a population in Terlingua, Texas, collected in May, 2015. For this study, the colonies of these four species were reared under crowded and isolated conditions. For the isolated condition, nymphs were isolated as hatchlings and reared in separate plastic cages (10.16 x 10.16 x 25.4 cm) with one transparent side and connected to a filtered positive airflow. For the crowded condition, both cage size and the number of specimens depended on the species. For *piceifrons*, about 200 nymphs were kept in a large cage (40.64 x 34.29 x 52.07 cm) in a USDA approved quarantine facility. For *americana* and *cubense*, 150-200 nymphs were kept in larger cages (30.48 x 35.56 x 50.8 cm). For *nitens*, over 50 individuals were kept together in a small cage (30.48 x 35.56 x 50.8 cm) because we observed that the insects would die in the density used for other species. In both density conditions, the insects were reared at 12 hours of light and 12 hours of darkness at 30°C, and were fed daily Romaine lettuce and wheat bran. We reared the insects until they molted to the last nymphal instars to conduct qPCR experiments.

RNA extraction and cDNA synthesis

Sample collection, RNA extraction and RNA quality assessment were performed as previously described (Wang et al. 2020). Briefly, crowded-reared and isolated-reared female nymphs were marked with a ceramic marker on the abdomen after molting to their last nymphal instar, and were dissected around 72 hours later. Only specimens that molted before 10 AM were used, and all dissections occurred between 8 and 9 AM. After removing gut tissues, head and thorax were dissected using sterilized dissection scissors. Both tissues were preserved in RNAlater (ThermoFisher Scientific) at -20°C, following the manufacturer’s guideline. A total of 10 nymphs/density/species were dissected. Half of these was used for RNA sequencing, and the other half was used for the qPCR experiment. Tissues were placed in MagNA Lyser Green Beads (Roche) sample tubes and were homogenized for 30 s in 1 mL of Trizol (ThermoFisher Scientific) using a MagNa Lyser instrument (Roche) at 6,500 rounds per minute. Whole-tissue RNA was extracted using a Trizol-chloroform extraction, followed by clean-up with a RNeasy mini kit (Qiagen) using an on-column DNAse treatment with a RNase-free DNAse set (Qiagen). RNA concentrations were measured with a Denovix DS-11 spectrophotometer; 260/280 and 260/230 values were above 2.0 for all samples. Additionally, microcapillary electrophoresis with
a Fragment Analyzer (Agilent Technologies RNA) was used to analyze RNA integrity of samples destined for RNA sequencing. Only those samples with a RNA Quality Number (RQN) over 3.9 were used. Due to differences in 28S ribosomal RNA structure compared to other eukaryotic species, RQN values for insects are often lower than what is generally considered a valid threshold in mammalian samples (Escobar & Hunt 2017, Macharia et al. 2015, Winnebeck et al. 2010). Samples used for qPCR were diluted to a concentration of 100ng*ml\(^{-1}\) and subsequently used to synthesize cDNA using the iScript cDNA synthesis kit (Bio-Rad) following the manufacturer’s guideline.

RNA sequencing and transcriptome assembly

Both RNA sequencing and transcriptome assembly used for the present study were previously described in detail in Wang et al. (2020). Briefly, we generated RNA-seq data by performing paired-end sequencing (150 bp) on 8.5 lanes on an Illumina HiSeq4000 (San Diego, CA). Library preparation, sequencing, and read formatting was performed at Texas A&M’s AgriLife Research Genomics and Bioinformatics Service. After initial processing of raw data, raw reads were imported into a personalized Galaxy environment (Afgan et al. 2018) on a supercomputing cluster of the High-Performance Research Computing group of Texas A&M University (Ada, https://hprc.tamu.edu) for further processing, trimming, and quality control. FastQ Screen (Wingett & Andrews 2018) was used to filter out sequences from the following potential contamination sources: (UniVec core (June 6, 2015), PhiX (NC_001422.1), Illumina adapters, Gregarina niphandrodes genome (GN13), Encephalitozoon romaleae genome (ASM28003v2), Escherichia coli genome (K12), Methylobacterium sp., Bosea sp., Bradyrhizobium sp., Klebsiella pneumoniae, Sphingomonas sp., Rhodopseudomonas sp. and Propionibacterium acnes). We used Trinity (Grabherr et al. 2011) for de novo assembly, which was performed separately for each species and tissue. We further filtered the resulting assemblies using CD-hit-EST (Fu et al. 2012; Li & Godzik 2006) and Transrate (Smith-Unna et al. 2016). We assessed transcriptome quality using Trinitystats (Grabherr et al. 2011), BUSCO (Benchmarking Universal Single-Copy Orthologs; Simão et al. 2015), and by calculating the fraction of reads mapping back to the transcriptome with a combination of bowtie2 (Langmead & Salzberg 2012; Langmead et al. 2009) and flagstat (Li 2011a; Li 2011b; Li et al. 2009).

Sequence assembly and expression analysis

All eight transcriptomes were imported into Geneious (R10.2.6; BioMatters, Ltd.). We selected nine potential reference genes: actin5C (Act5C), a-tubulin (Tub), succinate dehydrogenase (SDH), elongation factor 2 (EF2), ribosomal protein L5 (RIBL5), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), annexin IX (Ann), armadillo (Arm) and heat shock protein 70 (Hsp70). We also selected four target genes: pacifastin-related peptide 4, pacifastin-related peptide 5, allatostatin (ast), and allatotropin (at). For consistency, we followed suggestions by Simonet et al. (2004) for naming pacifastin-related peptides and named the Schistocerca gregaria sequences SPPP-4 and SPPP-5. We obtained nucleotide sequences for all 13 genes from other orthopteran insects from Genbank (https://www.ncbi.nlm.nih.gov/genbank/) and used Megablast or tblastx with default settings in Geneious to find related sequences in our four species. For each gene, sequences of all four species were aligned using MUSCLE version 3.8.24 (Edgar 2004) in Geneious, with a maximum of nine iterations and default settings. Subsequently, sequences were manually curated, resulting in full-length coding sequences for each species. The identity of each gene was confirmed using the standard nucleotide Basic Local Alignment Search
Tool (blastn) at the NCBI website, using the nr/nt database as reference (Altschul et al. 1990; Johnson et al. 2008). Sequence information can be found in Table 1. Additionally, mapping reads were counted as previously described (Wang et al., 2020), using bowtie2 (very sensitive end-to-end, disable no-mixed and no-discordant behavior) and SAMtools’ idxstats (Li et al. 2009) in Galaxy. Differential expression analysis was performed with DEseq2 (Love et al. 2014) within SARTools 1.7.1 (Varet et al. 2016), using R 3.5.3 (R Core Team 2017). All settings were kept at their defaults; the expression in crowded-reared individuals was compared to that of conspecific isolated-reared individuals.

Primer design
Primers for reference genes (Table 2) were designed using Primer3 (Koressaar & Remm 2007; Untergasser et al. 2012), based on conserved regions, identified using the nucleotide alignment in Geneious. In this way, we aimed to generate primers that would work in all four species. Standard settings were altered to an optimal melting temperature set at 60°C, and the amplicon length at 150-200 bp. For the four target genes, primers were designed for just piceifrons, with identical settings in Primer3 as described above (Table 2). We designed three primer pairs for each gene. All sequences were ordered from Integrated DNA Technologies.

Real time quantitative PCR and statistics
For each qPCR reaction, 5 µl of cDNA was added to 10 µl of SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad #1725275) and 5 µl of primers at a final concentration of 500 nM. Every reaction was performed in duplicate or triplicate. To determine primer efficiency for reference genes, a dilution series of one sample was generated for each species by performing serial 10-fold dilutions ranging from dilutions of 1/1 to 1/10,000. For the target genes, a 5-fold dilution series from 1/1 to 1/3,125 was used instead for determining primer efficiency. Based on these data, the most efficient primer pair was used in all further analyses. All other reactions were run on 96-well plates, with 10 samples (five isolated-reared individuals and five crowded-reared individuals) run on the same plate for a particular gene following the sample maximization method (Hellemans et al. 2007). Reactions were run on a CFX connect real time system (Bio-Rad) using the following thermal cycling profile: 3 minutes at 95°C, 40 cycles of (1) 15 seconds at 95°C and (2) 45 s at 60°C, and a melting curve from 65°C to 95°C. C\textsubscript{q} values were exported from the Bio-Rad CFX manager using the default threshold.
For the analysis of reference gene stability, a total of five crowded-reared and five isolated-reared individuals per species were used for both head and thorax tissues. Gene stability was analyzed using three different programs: geNorm in qbase+ (Mestdagh et al. 2009; Vandesompele et al. 2002), Normfinder (Andersen et al. 2004), and Bestkeeper (Pfaffl et al. 2004). Raw C\textsubscript{q} values were used as input for BestKeeper and geNorm, while they were transformed to a linear scale for NormFinder. Gene efficiencies were assumed to be 100 % for all tested genes (see Table 2 for actual gene efficiencies). To obtain a non-arbitrary ranking of reference genes, they were first ranked for each program separately, and subsequently the geometric mean of these scores was calculated as an accurate estimate of which reference genes were the most stable (Chen et al. 2011, Chen et al. 2013, Gong et al. 2016, Pereira-Fantini et al. 2016). The amount of reference genes needed to standardize gene expression was assessed using geNorm. Normalization factors were calculated in a stepwise manner, starting by taking the two most stable reference genes into account and adding another reference gene one by one. Subsequently, the variation between these normalization factors were compared. If the difference
in variation is lower than 0.15, the addition of an additional reference gene was deemed
unnecessary (Mestdagh et al. 2009; Vandesompele et al. 2002).

For the quantification of target gene expression, we used thorax tissues of five isolated-reared
and five crowded-reared individuals of piceifrons. Relative expression of target genes (ast, at,
SPPP-4, and SPPP-5) for thorax tissue in piceifrons was calculated with the ΔΔCq-method
(Livak & Schmittgen 2001), using different sets of reference genes to normalize gene expression.
P-values were calculated with a two-tailed student t-test in R (version 3.6.2) based on non-
transformed ΔCq-values. All raw qPCR data can be found in Supplemental data S1-3, and the
code for the student t-test is present in Supplemental code S1.

Results

Selection of potential reference genes
A total of 9 potential reference genes were initially selected based on previous studies using
qPCR for locust gene expression research (Chapuis et al. 2011; Van Hiel et al. 2009; Yang et al.
2014). All of these genes were members of different functional categories (Table 1), with the
exception of the cytoskeleton genes, Tub and Act5C, which are both commonly used as reference
genes in insect gene expression studies (Lü et al. 2018). We chose EF2 and RIBL5 over
elongation factor 1α and other ribosomal genes, respectively, based on the low amount of
variation for these genes in our transcriptome data. For 7 out of 9 genes, primer efficiencies for
the selected primer pairs varied between 96 and 106 % (Table 2). Two exceptions were Arm with
an efficiency of 109.8 % for piceifrons and 92.1 % for nitens, and SDH for which we were
unable to find primers with sufficient efficiency values in all four species. We attribute this to a
surprisingly high amount of sequence differences among the four species for SDH, effectively
restricting the sequence regions that were conserved enough for primer design. As a result, SDH
was removed from all further analyses, and thus, only eight reference genes were used in further
analyses. All included primer pairs showed melt curves with a single peak, suggesting the
absence of aspecific amplification and contamination. Cq values varied between 17.5 and 28.5,
with GAPDH and Hsp70 having the lowest values and Arm having the highest.

Comparing reference gene stability
We subsequently compared the stability of these eight potential reference genes by performing
qPCR reactions in five isolated-reared and five crowded-reared individuals for head and thorax
tissues in all four species (Fig. 1). In americana, cubense, and nitens, all eight genes showed
similar expression levels under the tested rearing conditions. However, in piceifrons, several
genes showed a trend towards differential expression between the two density conditions.
Specifically, Ann, Act5C, Tub, and Hsp70 showed a trend towards lower expression in the
isolated condition for both tissues, while Arm and EF2 showed this trend only in the thorax
tissue. RIBL5 was the only gene showing no difference between the two density conditions. We
were able to confirm most of these observed trends with our transcriptome data (Table 3). The
only discrepancies between our transcriptome data and the qPCR data were found for Hsp70 in
head tissue, GAPDH for thorax tissue, and Tub for both tissues. For thorax tissue, Act5C and Ann
were even found to be significantly upregulated in crowded-reared individuals compared to
isolated-reared individuals.
Normfinder (Andersen et al. 2004) calculates both intra- and inter-group variations of gene expression, and combines these into a stability value, and thus, genes with a lower rank are considered to be more stably expressed. geNorm (Mestdagh et al. 2009; Vandesompele et al. 2002), the most popular algorithm, assumes that expression values of real reference genes are perfectly correlated with each other in all tested samples. Based on this correlation, genes get a stability value (M value), with genes with M < 1.5 considered to be stable and the most stable gene obtaining the lowest score. BestKeeper (Pfaffl et al. 2004), on the other hand, outputs the standard deviation for each reference gene, expected to be lower than 1, and a correlation coefficient for each gene with the so-called BestKeeper-index, which is essentially the geometric mean of all stable reference genes. Before comparing the stability values, we estimated the amount of necessary reference genes for each species and tissue using geNorm’s V-values. For *H. americana*, *H. cubense*, and *H. nitens*, geNorm suggested that using two reference genes was sufficient as its values for $V_{2/3}$ were below 0.15 (Fig. 2). However, for *H. piceifrons*, the difference in variation between using two or three reference genes was higher than 0.15 for the head tissue and very close to 0.15 for the thorax tissue (Fig. 2). Thus, the use of three reference genes is suggested for this species. Overall, the three programs listed genes in a similar fashion, with only a few exceptions (Table 4, 5). Tub and GAPDH were the two least stable genes, and both were listed as the last in 3 out of the 8 tested species/tissue combinations. Act5C was to be the most stable reference gene overall, as it was generally listed in the top half of stability values by all three programs. Arm was also often listed in the top three of most stable genes, but was even listed as the seventh most stable gene in some cases (Normfinder, Bestkeeper in *H. piceifrons* head; Normfinder in *H. nitens* head).

For the *H. americana* head tissue, Act5C and EF2 were the two most stable genes overall, with Act5C rated the most stable gene by each program, and EF2 obtaining a second place for both geNorm and NormFinder. RIBL5 and Arm, which were also consistently ranked as stable reference genes, obtained a third and a fourth place. For the *H. americana* thorax tissue, RIBL5 and EF2 were our two reference genes of choice, as they obtained a first and a second place overall. Additionally, Arm and Act5C were ranked as third and fourth overall, but obtained very similar stability scores to EF2 and were ranked in the first half by all three programs. For the *H. cubense* head tissue, both Act5C and Hsp70 were ranked within the top 3 most stable reference genes by all three programs and as a result, obtained top overall rankings. For the *H. cubense* thorax tissue, Hsp70 obtained the best ranking, followed by Ann ranked second. Nonetheless, it should be noted that for this species and tissue combination, several reference genes obtained very similar scores for both NormFinder and geNorm, resulting in low rankings for some genes that were actually quite stable. For instance, Act5C was ranked as only fifth overall even though it performed very similar to Ann, which was ranked second. For the *H. nitens* head tissue, the rankings suggested by the three different programs disagreed strongly with each other, as Ann and Act5C were ranked first and second by geNorm and NormFinder, but fifth and fourth by BestKeeper, while Arm was ranked first by BestKeeper and sixth and seventh by the other two programs. Overall, Ann and Act5C were ranked first and second, and Hsp70, which was the only gene ranked within the first half by all three programs, was ranked as third. For the *H. nitens* thorax tissue, Ann and Arm were clearly the preferred reference genes as they were consistently ranked as the two most stable genes by all three programs. Finally, for both tissue of *H. piceifrons*, Act5C and Ann were ranked in the top 4 of most stable genes by all programs. RIBL5 and Arm were also ranked in the top 4 for head and thorax tissue respectively.
Validation of reference genes

To explore how the choice of reference genes would affect the outcome of qPCR experiments, we quantified and compared the expression levels of the four target genes (ast, at, SPPP-4, and SPPP-5) using different reference genes in the thorax tissue of *piceifrons* reared in two density conditions. As *Tub* was the least stable reference gene, it was not included for this analysis. Our data showed the choice of reference genes strongly affected the qPCR results (Fig. 3). Regardless of the reference genes used, *ast* showed a significantly higher expression level in isolated-reared individuals compared to crowded-reared individuals, and *SPPP-5* never came close to reaching significant differences. When all of the reference genes (except *Tub*) were chosen, *at* and *SPPP-4* showed trends toward decreased and increased expression, respectively, in crowded-reared individuals (*p* = 0.068 and *p* = 0.061, respectively). We subsequently removed *RIBL5* from the analysis and thus only used reference genes of which the expression varied between both rearing conditions. As a result, the p-value for *at* dropped below 0.05, while the trend observed for *SPPP-4* partially disappeared. Lastly, we included just *Hsp70*, *RIBL5* and *GAPDH* as reference genes, which was our preferred set of reference genes based on the earlier data. As a result, *SPPP-4* showed a significantly higher expression level in the crowded-reared condition, while no significant difference was observed for *at* anymore (*p* = 0.19). Three out of the four of these qPCR results agreed with our transcriptome data (Table 6).

Discussion

The overall goal of this study is to address the suitability of using the same reference genes for qPCR experiments across multiple closely related species. So far, only a handful of studies have compared reference gene stability between different species (e.g. Axtner & Sommer 2009; Bonnet et al. 2013; Giménez et al. 2011; Lin et al. 2009; Weyrich et al. 2010). Many qPCR-based studies have simply used the reference genes designed and optimized for one species in a study involving another species without specifically testing for their gene stability (Bustin et al. 2013; Lin et al. 2009; Lü et al. 2018). In this study, we have compared the stability of eight potential reference genes across four *Schistocerca* species reared in two density conditions, and demonstrated that the reference gene stability cannot be assumed *a priori* in a comparative analysis across multiple species.

The choice of reference genes used in qPCR experiments is often guided by the genes used in prior studies, rather than by a comprehensive assessment of all available candidates. Lü et al. (2018) performed a meta-analysis on the selection of reference genes in insect qPCR experiments based on 90 papers published between 2013-2017, and showed that the same 10 reference genes were repeatedly used across 78 insects belonging to 10 different orders. There are certainly more than 10 reference genes available and we think that there could be hundreds or even thousands of potential reference genes in any given species. For example, there are over 3,800 genes that are expressed uniformly across tissues in humans (Eisenberg & Levanon 2013), and hundreds of reference genes have been utilized in human gene expression studies. The reason why only a small number of reference genes are used in insect gene expression studies is probably because we do not fully understand gene contents and their expression patterns in most insects. Therefore, when designing qPCR experiments for non-model insect species, one has no other option but to rely on the previous studies to identify well-known reference genes. Our study was no exception. We selected our reference genes based on studies performed in other locust species, including the desert locust *Schistocerca gregaria* (Van Hiel et al. 2009), the migratory locust *Locusta migratoria* (Yang et al. 2014), and the Australian plague locust...
Chortoicetes terminifera (Chapuis et al. 2011). However, only one of these (Chapuis et al. 2011) included rearing density as an experimental factor, and found Arm and Elongation Factor 1α as the most stable reference genes, while GAPDH and SDH were found to be the least stable. Even though we did not test exactly the same genes, GAPDH is overall also one of the least stable reference genes, while Arm is often found within the top 3 of most stable genes in our study. This suggest that, to a certain degree, stable reference genes in one species can be expected to be stable in a related species, even though there is a clear need for scrutiny as the reference gene stability varied widely across both species and tissues in our study.

We have designed primers for eight reference genes that can be used across four species of Schistocerca. In doing so, we observed an interesting trend when comparing primer efficiencies between different species. As the four Schistocerca species used in our study are closely related, we designed and tested a single primer pair per each gene that would work for all four species. We consistently selected conserved gene regions for the primer design, and made sure that the selected regions did not overlap with sites showing single nucleotide polymorphisms. Nonetheless, the primer efficiencies for some primer pairs varied widely (Table 2). As such, it seems that a base pair difference in the amplicon, or maybe even upstream or downstream of it, can influence the primer efficiency. This indicates that primer efficiencies should always be tested for every species (or even subspecies/populations) included in a comparative study, even if those species are very closely related to each other.

After designing the primers for the reference genes and testing their efficiencies, we assayed their gene stability using three commonly used programs (NormFinder, geNorm, and BestKeeper). Interestingly, we found that different programs selected different genes as their top choices, and the results also depended on both tissue types and species (Tables 4 and 5). This discrepancy is probably due to the different algorithms employed by these programs.

We have also identified additional issues when these reference genes are used for a species exhibiting an extreme form of phenotypic plasticity. Of the four species analyzed in this study, piceifrons is the only swarming locust species, and can be expected to exhibit larger molecular differences between both density conditions than the other three species. It is thus feasible that several of the tested reference genes could also be influenced by the extreme form of density-dependent phenotypic plasticity. In fact, we report that several reference genes in piceifrons showed a trend towards differential expression. Additionally, geNorm predicted that the use of two reference genes would not be sufficient to perform a qPCR experiment for piceifrons, in contrast to what the program suggested for the other three species. All of the samples were given exactly the same treatment independent of rearing condition and were all diluted to 100 ng/µl before the cDNA synthesis. As such, we consider it unlikely that all isolated-reared samples somehow had lower RNA concentrations than the crowded-reared samples. Given the extreme form of density-dependent phenotypic plasticity in piceifrons, it is conceivable that some of the tested reference genes actually respond differentially to the rearing conditions. This idea was supported by our transcriptome data, where most genes exhibited a similar trend towards differential expression as found in our qPCR, and two genes even were significantly different between both rearing conditions (Table 3). These observations make the selection of suitable reference genes for piceifrons a lot more complicated compared to that for the other three species. To make the situation even worse, the algorithms used to select the most stable reference genes failed to select the right reference genes. This was especially evident for the thorax tissue in piceifrons, as the only gene not exhibiting different expression levels between both rearing conditions, RIBL5, was ranked as the 8th most stable reference gene. Both
geNorm and BestKeeper assume that perfect reference genes are strongly correlated to each other, and as a result they are susceptible to errors when the majority of the tested genes is actually influenced by the tested experimental conditions. Likewise, even though NormFinder takes both inter- and intra-group variation into account and should thus perform better under such conditions, this program ranked several genes showing a clear trend towards differential expression between rearing conditions as the most stable in *piceifrons*. Therefore, it is clearly not sufficient to only consider the overall stability values in selecting reference genes, but it is also important to take the actual C_q values into account. Additionally, these findings suggest that we cannot simply use the same set of reference genes blindly across the species, but we must carefully consider the type of reference genes to be used for each species.

For all species, we followed the suggestions of the GeNorm analysis for determining the amount of reference genes. For *piceifrons*, we thus suggest three genes should be used, while for the other species, two reference genes should be sufficient. In *piceifrons*, Ann, Arm and Act5C should not be selected as the reference genes when studying differential gene expression between isolated-reared and crowded-reared individuals. For such a study, we suggest the use of RIBL5, Hsp70 and EF2 for the head tissue, and RIBL5, Hsp70 and GAPDH for the thorax tissue instead. Even though RIBL5 was listed as the last-ranked reference gene by all three programs for the thorax tissue, we consider its inclusion is still valid for two reasons. First, it is the only gene that shows no differential expression between the density conditions. Second, the standard deviation on this gene, reported by BestKeeper, is also one of the lowest, even though this variable was not included in our ranking. After selecting the reference genes according to what is presented above to normalize gene expression of the four target genes, our results matched well with the results of RNA-seq experiments. For the other three species, the choice of reference genes is more straightforward, as there was no discrepancy between the stability values and the C_q values. Thus, we suggest the use of the two genes with the best overall stability ranking as reference genes in further studies. Our suggestions for each species are summarized in Table 7.

Two of the selected target genes for validation were pacifastins (*SPPP-4* and *SPPP-5*), which are members of a family of peptidase inhibitors that exhibit differential expression between isolated-reared and crowded-reared individuals in *S. gregaria* (Badisco et al. 2011; Breugelmans et al. 2008; Breugelmans et al. 2009; Simonet et al. 2005; Simonet et al. 2004). We show that *SPPP-4* expression in the thorax tissue from crowded-reared individuals is higher compared to isolated-reared individuals, and *SPPP-5* shows a similar but a non-significant trend, consistent with earlier studies in *S. gregaria* (Badisco et al. 2011; Breugelmans et al. 2008; Simonet et al. 2005). The other two target genes were allatotropin, a pleiotropic hormone that is best known as a stimulator of juvenile hormone (JH) production and a myostimulatory peptide (Kataoka et al. 1989; Lismont et al. 2015), and allatostatin, known to repress JH production in insects even though this function could not be confirmed in *S. gregaria* (Stay et al. 1995; Verlinden et al. 2009). We report that *ast* is significantly downregulated in crowded-reared locusts, and observed a similar but non-significant trend for *at*. We also note that these observations were not confirmed by our RNA sequencing data, where no significant differences were obtained for either of these two genes. Both ast and at exhibited very low expression levels, and the difference between both techniques might thus represent a difference in sensitivity between both techniques. Other differences between both technique (e.g RNA sequencing being more prone to PCR artefacts and positional bias) might play an additional role in the observed
differences. An earlier study in *S. gregaria* reported no significant difference between isolated-reared and crowded-reared individuals for *at* (Lismont et al. 2015), even though the data were not shown. Together, our data might suggest differences in JH regulation between isolated-reared and crowded-reared locusts.

Conclusions

Our study is one of only a few studies testing the stability of reference genes for qPCR in multiple species. When ranking reference genes based on their stability, we found clear differences between the four tested species. Additionally, all three used algorithms, geNorm, BestKeeper, and NormFinder, seemed to struggle when the majority of tested reference genes showed a trend towards differential expression in the tested experimental conditions. As such, stability values obtained by these algorithms should always be analyzed side by side with the raw C_q values. Additionally, our study suggests that both qPCR primer efficiency and reference gene stability should always be tested separately for each species of interest. Not doing so might result in differences in amplification efficiencies and incorrect interpretation of the results.

Acknowledgements

We thank Mario Poot-Pech and the rest of the locust control team of the Comité Estatal de Sanidad Vegetal de Yucatán (CESVY), Mexico for their help in collecting *piceifrons* nymphs to establish our lab colony. We thank Ryan Selking, Charmelle Williams, and Sam Franklin for help with colony care, RNA extractions, and RT-qPCR. We thank Texas A&M AgriLife Genomics and Bioinformatics Service for data generation and Michael Dickens at Texas A&M High Performance Research Computing for installing all used tools into the Galaxy environment.

References

Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, and Grüning BA. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. *Nucleic acids research* 46:W537-W544.

Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. 1990. Basic local alignment search tool. *Journal of molecular biology* 215:403-410.
Andersen CL, Jensen JL, and Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer research* 64:5245-5250.

Axtner J, and Sommer S. 2009. Validation of internal reference genes for quantitative real-time PCR in a non-model organism, the yellow-necked mouse, *Apodemus flavicollis*. *BMC research notes* 2:264.

Badisco L, Ott SR, Rogers SM, Matheson T, Knapen D, Vergauwen L, Verlinden H, Marchal E, Sheehy MR, and Burrows M. 2011. Microarray-based transcriptomic analysis of differences between long-term gregarious and solitary desert locusts. *PloS one* 6:e28110.

Barrientos Lozano L, Astacio Cabrera L, Alvarez Bonilla O, and Poot Martínez F. 1992. Manual técnico sobre la langosta voladora (*Schistocerca piceifrons piceifrons* Walker, 1870) y otros Acridoideos de Centro América y Sureste de México. Food and Agriculture Organization (FAO), San Salvador (El Salvador)/Organismo Internacional Regional de Sanidad Agropecuaria (OIRSA), San Salvador (El Salvador).

Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, and Galaxy Team. 2010. Manipulation of FASTQ data with Galaxy. *Bioinformatics* 26:1783-1785.

Bolger AM, Lohse M, and Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30:2114-2120.

Bonnet M, Bernard L, Bes S, and Leroux C. 2013. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. *Animal* 7:1344-1353.

Bredo H. 1963. Rapport de mission relatif a l’etude du *Schistocerca paranensis* Burm. en Amerique Centrale, Panama et Mexique. Food and Agriculture Organization (FAO), Rome (Italy).

Breugelmans B, Simonet G, Van Hoef V, Claeys I, Van Soest S, and Vanden Broeck J. 2008. Quantitative RT-PCR analysis of pacifastin-related precursor transcripts during the reproductive cycle of solitary and gregarious desert locusts. *Insect molecular biology* 17:137-145.

Breugelmans B, Simonet G, van Hoef V, Van Soest S, and Vanden Broeck J. 2009. Pacifastin-related peptides: structural and functional characteristics of a family of serine peptidase inhibitors. *Peptides* 30:622-632.

Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, and Shipley GL. 2009. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. *Clinical Chemistry* 55:611-622.

Chapuis M-P, Tohidi-Esfahani D, Dodgson T, Blondin L, Ponton F, Cullen D, Simpson SJ, and Sword GA. 2011. Assessment and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plague locust. *BMC molecular biology* 12:7.

Chen D, Pan X, Xiao P, Farwell MA, and Zhang B. 2011. Evaluation and identification of reliable reference genes for pharmacogenomics, toxicogenomics, and small RNA expression analysis. *Journal of cellular physiology* 226:2469-2477.

Chen G, Zhao L, Feng J, You G, Sun Q, Li P, Han D, and Zhou H. 2013. Validation of reliable reference genes for real-time PCR in human umbilical vein endothelial cells on substrates with different stiffness. *PloS one* 8.

Cullen DA, Cease AJ, Latchininsky AV, Ayali A, Berry K, Buhl J, De Keyser R, Foquet B, Hadrich JC, Matheson T, Ott SR, Poot-Pech MA, Robinson BE, Smith JM, Song H, Sword GA, Vanden Broeck J, Verdonck R, Verlinden H, and Rogers SM. 2017. From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism. *Advances in Insect Physiology* 53:167-285.

Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, and Zumla A. 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. *Biotechniques* 37:112-119.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic acids research* 32:1792-1797.

Eisenberg E, and Levanon EY. 2013. Human housekeeping genes, revisited. *TRENDS in Genetics* 29:569-574.

Escobar MD, and Hunt JL. 2017. A cost-effective RNA extraction technique from animal cells and tissue using silica columns. *Journal of biological methods* 4. Fu L, Niu B, Zhu Z, Wu S, and Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. *Bioinformatics* 28:3150-3152.

Gachon C, Mingam A, and Charrier B. 2004. Real-time PCR: what relevance to plant studies? *Journal of experimental botany* 55:1445-1454.

Giménez MJ, Pistón F, and Atienza SG. 2011. Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. *Planta* 233:163-173.

Gong H, Sun L, Chen B, Han Y, Pang J, Wu W, Qi R, and Zhang T-M. 2016. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. *Scientific reports* 6:1-12.

Gotham S, and Song H. 2013. Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming locusts. *Journal of Insect Physiology* 59:1151-1159.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, and Zeng Q. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature biotechnology* 29:644-652.

Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, and Bellini C. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. *Plant biotechnology journal* 6:609-618.

Harvey A. 1983. *Schistocerca piceifrons* (Walker)(Orthoptera: Acrididae), the swarming locust of tropical America: a review. *Bulletin of entomological Research* 73:171-184.

Hellemans J, Mortier G, De Paepe A, Speleman F, and Vandesompele J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. *Genome biology* 8:R19.

Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, and Kramer SJ. 1989. Identification of an allatotropin from adult *Manduca sexta*. *Science* 243:1481-1483.

Koressaar T, and Remm M. 2007. Enhancements and modifications of primer design program Primer3. *Bioinformatics* 23:1289-1291.

Kozera B, and Rapacz M. 2013. Reference genes in real-time PCR. *Journal of applied genetics* 54:391-406.

Langmead B, and Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nature methods* 9:357-359.

Langmead B, Trapnell C, Pop M, and Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome biology* 10:R25.

Li H. 2011a. Improving SNP discovery by base alignment quality. *Bioinformatics* 27:1157-1158.

Li H. 2011b. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* 27:2987-2993.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, and Durbin R. 2009. The sequence alignment/map format and SAMtools. *Bioinformatics* 25:2078-2079.

Li W, and Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22:1658-1659.

Lin L, Liu S, Brockway H, Seok J, Jiang P, Wong WH, and Xing Y. 2009. Using high-density exon arrays to profile gene expression in closely related species. *Nucleic acids research* 37:e90.
Lismont E, Vleugels R, Marchal E, Badisco L, Van Wielendaele P, Lenaerts C, Zels S, Tobe SS, Vanden Broeck J, and Verlinden H. 2015. Molecular cloning and characterization of the allatotropin precursor and receptor in the desert locust, Schistocerca gregaria. *Frontiers in neuroscience* 9:84.

Livak KJ, and Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2^{−ΔΔC_T} method. *Methods* 25:402-408.

Love MI, Huber W, and Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* 15:550.

Lü J, Yang C, Zhang Y, and Pan H. 2018. Selection of reference genes for the normalization of RT-qPCR data in gene expression studies in insects: a systematic review. *Frontiers in physiology* 9:1560.

Macharia RW, Ombura FL, and Aroko EO. 2015. Insects’ RNA profiling reveals absence of “hidden break” in 28S ribosomal RNA molecule of onion thrips, Thrips tabaci. *Journal of nucleic acids* 2015.

Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, and Vandesompele J. 2009. A novel and universal method for microRNA RT-qPCR data normalization. *Genome biology* 10:R64.

Nicot N, Hausman J-F, Hoffmann L, and Evers D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. *Journal of experimental botany* 56:2907-2914.

Pener M. 1983. Endocrine aspects of phase polymorphism in locusts. *Invertebrate Endocrinology* 1:379-394.

Pener MP, and Simpson SJ. 2009. Locust phase polyphenism: an update. *Advances in Insect Physiology* 36:1-272.

Pereira-Fantini PM, Rajapaksa AE, Oakley R, and Tingay DG. 2016. Selection of reference genes for gene expression studies related to lung injury in a preterm lamb model. *Scientific reports* 6:26476.

Pfaffl MW, Tichopad A, Pržomet C, and Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. *Biotechnology letters* 26:509-515.

Pener M. 2015. *Invertebrate Endocrinology* 1:379-394.

Pener MP, and Simpson SJ. 2009. Locust phase polyphenism: an update. *Advances in Insect Physiology* 36:1-272.

Pereira-Fantini PM, Rajapaksa AE, Oakley R, and Tingay DG. 2016. Selection of reference genes for gene expression studies related to lung injury in a preterm lamb model. *Scientific reports* 6:26476.

Pfaffl MW, Tichopad A, Pržomet C, and Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. *Biotechnology letters* 26:509-515.

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/.

Salazar-Jaramillo L, Jalvingh KM, de Haan A, Kraaijeveld K, Buermans H, and Wertheim B. 2017. Inter- and intra-species variation in genome-wide gene expression of *Drosophila* in response to parasitoid wasp attack. *BMC genomics* 18:331.

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, and Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31:3210-3212.

Simonet G, Breugelmans B, Proost P, Claesys I, Van Damme J, Arnold D, and Vanden Broeck J. 2005. Characterization of two novel pacifastin-like peptide precursor isoforms in the desert locust (*Schistocerca gregaria*): cDNA cloning, functional analysis and real-time RT-PCR gene expression studies. *Biochemical Journal* 388:200-207.

Simonet G, Breugelmans B, Proost P, Claesys I, Van Damme J, Arnold D, and Vanden Broeck J. 2005. Characterization of two novel pacifastin-like peptide precursor isoforms in the desert locust (*Schistocerca gregaria*): cDNA cloning, functional analysis and real-time RT-PCR gene expression studies. *Biochemical Journal* 388:200-207.

Smith-Unna R, Boursnell C, Patro R, Hibberd JM, and Kelly S. 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. *Genome research* 26:1134-1144.

Song H, Foquet B, Mariño-Pérez R, and Woller DA. 2017. Phylogeny of locusts and grasshoppers reveals complex evolution of density-dependent phenotypic plasticity. *Scientific reports* 7:6606.

Sørensen JG, Giribets MP, Tarrío R, Rodríguez-Trelles F, Schou MF, and Loeschcke V. 2019. Expression of thermal tolerance genes in two *Drosophila* species with different acclimation capacities. *Journal of thermal biology* 84:200-207.

Stay B, Tobe SS, and Bendena WG. 1995. Allatostatins: identification, primary structures, functions and distribution. *Advances in Insect Physiology* Elsevier, 267-337.

Thellin O, ElMoualij B, Heinen E, and Zorzi W. 2009. A decade of improvements in quantification of gene expression and internal standard selection. *Biotechnology advances* 27:323-333.
Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzaglì M, Bustin SA, and Orlando C. 2002. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. *Analytical biochemistry* 309:293-300.

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, and Rozen SG. 2012. Primer3-new capabilities and interfaces. *Nucleic acids research* 40:e115.

Uvarov B. 1921. A revision of the genus *Locusta*, L. (= *Pachytius*, Fieb.), with a new theory as to the periodicity and migrations of locusts. *Bulletin of entomological Research* 12:135-163.

Van Hiel MB, Van Wielendaele P, Temmerman L, Van Soest S, Vuerinckx K, Huybrechts R, Vanden Broeck J, and Simonet G. 2009. Identification and validation of housekeeping genes in brains of the desert locust *Schistocerca gregaria* under different developmental conditions. *BMC molecular biology* 10:56.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, and Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome biology* 3:research0034.1.

Varet H, Brillet-Guéguen L, Coppée J-Y, and Dillies M-A. 2016. SARTools: a DESeq2-and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. *PloS one* 11:e0157022.

Verlinden H, Badisco L, Marchal E, Van Wielendaele P, and Vanden Broeck J. 2009. Endocrinology of reproduction and phase transition in locusts. *General and comparative endocrinology* 162:79-92.

Wang H, Foquet B, Dewell RB, Song H, Dierick HA, and Gabbiani F. 2020. Molecular characterization and distribution of the voltage-gated sodium channel, Para, in the brain of the grasshopper and vinegar fly. *Journal of Comparative Physiology* A:1-19.

Weyrich A, Axtner J, and Sommer S. 2010. Selection and validation of reference genes for real-time RT-PCR studies in the non-model species *Delomyys sublimeatus*, an endemic Brazilian rodent. *Biochemical and biophysical research communications* 392:145-149.

Wingett SW, and Andrews S. 2018. FastQ Screen: A tool for multi-genome mapping and quality control. *F1000Research* 7:1338.

Winnebeck EC, Millar CD, and Warman GR. 2010. Why does insect RNA look degraded? *Journal of Insect Science* 10:159.

Wittkopp PJ, Vaccaro K, and Carroll SB. 2002. Evolution of yellow gene regulation and pigmentation in *Drosophila*. *Current Biology* 12:1547-1556.

Yang Q, Li Z, Cao J, Zhang S, Zhang H, Wu X, Zhang Q, and Liu X. 2014. Selection and assessment of reference genes for quantitative PCR normalization in migratory locust *Locusta migratoria* (Orthoptera: Acrididae). *PloS one* 9:e98164.
Figure 1

Mean C_T values of reference genes for qPCR study.

C_T values were obtained by qPCR for all tested reference genes for all tissue, rearing condition and species combinations. Boxes and error bars represent the mean ± standard error of mean of C_T values. Each group contained five biological replicates. Graphs represent observations for **A. piceifrons**, **B. americana**, **C. cubense** and **D. nitens**.
Figure 2

Pairwise variation analysis for qPCR reference genes.

All data were generated in qbase+ using the GeNorm algorithm, based on five biological replicates per group. Values represent the pairwise variation analysis between normalization factors NF_n and NF_{n+1}, or the decrease in variation when adding an additional reference gene. Using 0.15 as a threshold, the optimal number of reference genes required for accurate normalization can be determined. Graphs are shown for A. head and B. thorax tissues for each species.
Figure 3

Influence of selected reference genes on target gene expression in qPCR.

Relative concentrations were calculated with the $\Delta\Delta C_t$-method, with values shown in the graph representing the exponentialized values. Error bars represent the standard error of mean, calculated on exponentialized values. p-values were calculated based on the ΔC_t values. All data is based on the expression in five isolated-reared and five crowded-reared individuals. Significant differences between isolated-reared and crowded-reared individuals were marked for $p < 0.05$ (*) or $p<0.01$ (**).

A. all available reference genes were used; Act5C, Ann, Arm, Hsp70, EF2, GAPDH and RIBL5, B. only suggested reference genes were used; RIBL5, GAPDH and Hsp70, C. All reference genes showing a trend towards differential expression in thorax were used; every reference gene except RIBL5.
Table 1 (on next page)

Reference genes and target genes used in this study and their known functions, with Genbank accession numbers.
Gene	Full name	Associated Genbank accession number	Function
		piceifrons americana cubense nitens	
Act5C	Actin 5C	MT498271 MT498272 MT498273 MT498274	Structural constituent of cytoskeleton
Tub	Tubulin	MT498316 MT498313 MT498314 MT498315	Structural constituent of cytoskeleton
Hsp70	Heat shock protein 70	MT498304 MT498301 MT498302 MT498303	Stress response, protein folding
RIBL5	Ribosomal protein L5	MT498312 MT498310 MT498311 MT498309	Structural component of ribosome, protein translation
EF2	Elongation factor 2	MT498294 MT498295 MT498296 MT498293	Protein synthesis
GAPDH	Glyceraldehyde phosphate dehydrogenase	MT498297 MT498299 MT498300 MT498298	Oxidoreductase in glycolysis & gluconeogenesis
Ann	Annexin IX	MT498288 MT498285 MT498286 MT498287	Formation of membrane scaffolds, actin binding
Arm	Armadillo	MT498292 MT498289 MT498290 MT498291	Wnt signal transduction pathway
ast	allatostatin	MT498275	Pleiotropic neuropeptide, downregulation of JH production
at	allatotropin	MT498280	Pleiotropic neuropeptide, upregulation of JH production
SPPP-4	pacifastin-related peptide 4	MT498307	Peptidase inhibitor
SPPP-5	pacifastin-related peptide 5	MT498308	Peptidase inhibitor
Table 2 (on next page)

Primer information for qPCR experiment.

Primer sequences, amplicon melt temperature and primer efficiencies are given. Primer efficiencies were obtained with a 10-fold dilution series ranging from 1/1 to 1/1,000,000.
Table 2: Primer information for qPCR experiment.
Primer sequences, amplicon melt temperature and primer efficiencies are given. Primer efficiencies were obtained with either a 10-fold dilution series ranging from 1/1 to 1/10,000 or a 5-fold dilution series ranging from 1/1 to 1/3,125.

Gene code	Primer sequences	picelfrons	americana	cubense	nitens				
	Tm (°C)	E (%)	Tm (°C)	E (%)	Tm (°C)	E (%)			
Act5C	F: AACTTTCAACACCCACGGCA R: AAGGCCATCCACCAAGATCCA	82.5	102.13	82.5	105.84	82.0	104.21		
	Tub	81.5	103.15	81.5	100.30	81.5	104.90	82.0	96.18
	Hsp70	80.5	100.18	80.3	105.06	80.3	102.16	80.0	104.14
	RIBL5	83.7	99.83	83.7	101.20	83.5	96.78	84.0	102.11
	EF2	79.3	100.00	79.0	102.73	79.3	101.33	79.3	98.98
	GAPDH	84.0	102.28	84.0	97.74	83.7	98.57	83.3	98.53
	Ann	79.7	100.10	79.7	102.39	79.5	99.47	79.5	104.14
	Arm	82.3	109.85	82.7	101.41	82.5	99.27	82.5	92.12
	ast	81.3	96.84						
	at	85.0	91.26						
	SPPP-4	83.5	91.19						

Tm: melt temperature of the PCR amplicon. E: primer efficiency.
Fold changes of reference genes in *piceifrons* obtained from RNA-Seq experiment.

Fold changes were calculated by Deseq2 in SARTools. The isolated-reared condition was taken as reference. Five isolated-reared and five crowded-reared last instar nymphs were used. Adjusted p-values were obtained using default settings.
Table 3: Fold changes of reference genes in *piceifrons* obtained from RNA-Seq experiment.

Fold changes were calculated by Deseq2 in SARTools. The isolated-reared condition was taken as reference. Five isolated-reared and five crowded-reared last instar nymphs were used. Adjusted *p*-values were obtained using default settings.

Gene	Head	Thorax		
	Fold change	Adjusted *p*-value	Fold change	Adjusted *p*-value
Act5c	1.255	0.865	1.602	0.037
Ann	1.420	0.815	1.654	0.033
Arm	1.081	0.973	1.270	0.293
EF2	0.983	0.997	1.189	0.598
GAPDH	1.050	0.988	0.995	0.993
Hsp70	0.966	0.993	1.201	0.501
RIBL5	0.910	0.972	1.134	0.796
Tub	0.878	0.954	0.897	0.832
Stability values for reference genes in *piceifrons* and *americana*.

Stability values for eight reference genes were obtained using three different algorithms: geNorm, NormFinder and BestKeeper. Stability values and ranking from most stable to least stable are given for each gene. A comprehensive ranking was calculated by taking the geometric mean of rankings obtained by the different algorithms. Head and thorax tissue were investigated separately. For each group, five isolated-reared and five crowded-reared last instar nymphs were used.
Table 4:
Stability values for reference genes in *piceifrons* and *americana*.
Stability values for eight reference genes were obtained using three different algorithms:
geNorm, NormFinder and BestKeeper. Stability values and ranking from most stable to least stable are given for each gene. A comprehensive ranking was calculated by taking the geometric mean of rankings obtained by the different algorithms. Head and thorax tissue were investigated separately. For each group, five isolated-reared and five crowded-reared last instar nymphs were used.

Species/Tissue	Gene	geNorm Rank	M	NormFinder Rank	Stability value	BestKeeper Rank	std. dev.	r	Comprehensive ranking
piceifrons head	Act5C	1	0.506	1	0.117	1	0.630	0.993	1
	Ann	3	0.579	3	0.265	5	0.576	0.894	3
	Arm	6	0.669	7	0.341	7	0.581	0.742	8
	EF2	4	0.648	6	0.333	6	0.597	0.761	6
	GAPDH	7	0.706	5	0.303	8	0.463	0.725	7
	Hsp70	5	0.668	4	0.295	4	0.710	0.895	4
	RIBL5	2	0.562	2	0.207	3	0.427	0.911	2
	Tub	8	0.719	8	0.375	2	0.855	0.931	5
piceifrons thorax	Act5C	2	0.560	2	0.148	4	0.533	0.925	2
	Ann	1	0.500	1	0.131	1	0.615	0.972	1
	Arm	3	0.592	4	0.241	2	0.747	0.941	3
	EF2	4	0.671	5	0.251	7	0.444	0.676	5
	GAPDH	6	0.749	6	0.262	6	0.527	0.694	7
	Hsp70	5	0.720	3	0.219	5	0.696	0.851	4
	RIBL5	8	0.782	8	0.405	8	0.337	0.477	8
	Tub	7	0.757	7	0.344	3	0.865	0.937	6
americana head	Act5C	1	0.402	1	0.053	1	0.383	0.944	1
	Ann	5	0.525	6	0.223	3	0.499	0.868	5
	Arm	4	0.497	4	0.166	2	0.525	0.906	3
	EF2	2	0.450	2	0.136	4	0.438	0.856	2
	GAPDH	8	0.788	8	0.280	7	0.569	0.556	8
	Hsp70	6	0.579	7	0.263	8	0.328	0.553	7
	RIBL5	3	0.456	3	0.158	5	0.289	0.826	4
	Tub	7	0.613	5	0.223	6	0.411	0.715	6
americana thorax	Act5C	2	0.578	3	0.174	4	0.358	0.820	4
	Ann	7	0.799	7	0.250	5	0.679	0.784	7
	Arm	4	0.627	2	0.111	2	0.559	0.850	3
	EF2	3	0.601	4	0.176	1	0.485	0.853	2
	GAPDH	8	1.435	8	0.432	8	0.855	0.416	8
	Hsp70	5	0.634	6	0.189	7	0.287	0.522	6
	RIBL5	1	0.548	1	0.098	3	0.284	0.837	1
	Tub	6	0.712	5	0.182	6	0.566	0.700	5

M: stability value calculated by geNorm. Std. dev.: standard deviation on C_T values of reference gene. r: correlation coefficient of reference gene with BestKeeper-index.
Table 5 (on next page)

Stability values for reference genes in *cubense* and *nitens*.

Stability values for eight reference genes were obtained using three different algorithms: geNorm, NormFinder and BestKeeper. Stability values and ranking from most stable to least stable are given for each gene. A comprehensive ranking was calculated by taking the geometric mean of rankings obtained by the different algorithms. Head and thorax tissue were investigated separately. For each group, five isolated-reared and five crowded-reared last instar nymphs were used.
Table 5: Stability values for reference genes in *cubense* and *nitens*.

Stability values for eight reference genes were obtained using three different algorithms: geNorm, NormFinder and BestKeeper. Stability values and ranking from most stable to least stable are given for each gene. A comprehensive ranking was calculated by taking the geometric mean of rankings obtained by the different algorithms. Head and thorax tissue were investigated separately. For each group, five isolated-reared and five crowded-reared last instar nymphs were used.

Species/Tissue	Gene	geNorm	NormFinder	BestKeeper	Comprehensive ranking			
	Rank	M	Stability	Rank	std. dev.	r	rank	
			value					
cubense head	Act5C	1	0.385	2	0.097	0.332	0.896	1
	Ann	6	0.540	7	0.225	0.457	0.707	7
	Arm	5	0.421	3	0.111	0.415	0.905	3
	EF2	3	0.410	5	0.145	0.279	0.815	4
	GAPDH	8	0.590	8	0.238	0.418	0.539	8
	Hsp70	2	0.400	1	0.095	0.305	0.872	2
	RIBL5	4	0.413	4	0.118	0.263	0.733	5
	Tub	7	0.548	6	0.169	0.542	0.841	6
cubense thorax	Act5C	6	0.390	5	0.101	0.390	0.840	5
	Ann	4	0.383	2	0.091	0.414	0.861	2
	Arm	2	0.368	4	0.098	0.360	0.814	3
	EF2	7	0.397	7	0.111	0.384	0.788	7
	GAPDH	3	0.378	3	0.097	0.263	0.721	4
	Hsp70	1	0.350	1	0.075	0.337	0.893	1
	RIBL5	5	0.387	6	0.110	0.273	0.708	6
	Tub	8	0.458	8	0.129	0.406	0.752	8
nitens head	Act5C	2	0.529	2	0.158	0.453	0.916	2
	Ann	1	0.528	1	0.139	0.282	0.867	1
	Arm	6	0.714	7	0.248	0.601	0.935	4
	EF2	5	0.621	6	0.214	0.646	0.933	5
	GAPDH	7	0.721	5	0.199	0.482	0.584	7
	Hsp70	4	0.578	3	0.178	0.539	0.924	3
	RIBL5	3	0.567	4	0.198	0.439	0.792	6
	Tub	8	0.749	8	0.277	0.266	0.074	8
nitens thorax	Act5C	4	0.517	3	0.101	0.281	0.778	4
	Ann	1	0.448	1	0.020	0.270	0.934	1
	Arm	3	0.499	2	0.057	0.433	0.868	2
	EF2	6	0.656	5	0.157	0.526	0.727	6
	GAPDH	7	0.710	4	0.135	0.595	0.703	7
	Hsp70	5	0.549	6	0.164	0.449	0.866	5
	RIBL5	2	0.471	7	0.170	0.300	0.819	3
	Tub	8	0.736	8	1.628	0.610	0.691	8

M: stability value calculated by geNorm. Std. dev.: standard deviation on C_T values of reference gene. r: correlation coefficient of reference gene with BestKeeper-index.
Table 6 (on next page)

Comparison of target gene expression using RNA-Seq and using RT-qPCR.

Fold changes for RNA sequencing study were obtained with Deseq2 in SARTools, adjusted p-values were obtained using default settings. Fold changes for RT-qPCR study were obtained using ΔΔCₜ method, p-values were obtained with a student t-test in R. For each analysis, five isolated-reared and five crowded-reared last instar nymphs were used. For both analyses, the isolated-reared condition was used as reference.
Table 6: Comparison of target gene expression using RNA-Seq and using RT-qPCR.

Fold changes for RNA sequencing study were obtained with Deseq2 in SARTools, adjusted p-values were obtained using default settings. Fold changes for RT-qPCR study were obtained using ΔΔC_T method, p-values were obtained with a student t-test in R. For each analysis, five isolated-reared and five crowded-reared last instar nymphs were used. For both analyses, the isolated-reared condition was used as reference.

Gene	RNA sequencing	RT-qPCR		
	Fold change	Adjusted p-value	Fold change	p-value
ast	0.83	0.865	0.48	0.018
AT	1.06	0.974	0.63	0.195
SPPP-4	2.09	0.029	2.68	0.032
SPPP-5	0.69	0.713	1.53	0.156
Table 7 (on next page)

Suggestion for the use of reference genes in future RT-qPCR experiments for four Schistocerca species.
Table 7:
Suggestion for the use of reference genes in future RT-qPCR experiments for four *Schistocerca* species.

Species	Tissue	Suggested reference genes
piceifrons	head	RIBL5, Hsp70, EF2
	thorax	RIBL5, Hsp70, GAPDH
americana	head	Act5C, EF2
	thorax	RIBL5, EF2
cubense	head	Act5C, Hsp70
	thorax	Hsp70, Ann
nitens	head	Ann, Act5C
	thorax	Ann, Arm

PeerJ reviewing PDF | (2020:05:49192:1:1:NEW 24 Jun 2020)