Long-term effects of dietary supplementation with olive oil and hydrogenated vegetable oil on the rumen microbiome of dairy cows

Nathaly Cancino-Padilla¹, Natalia Catalán², Karen Siu-Ting³, Christopher J. Creevey³, Sharon A. Huws³, Jaime Romero² and Einar Vargas-Bello-Pérez⁴.¹*

¹Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago 6904411, Chile; nathaly.cancino@gmail.com

²Laboratorio de Biotecnología de Alimentos, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; nataliabcatalan@gmail.com

³Institute for Global Food Security, School of Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; agalychnica@gmail.com (K.S.-T.); chris.creevey@qub.ac.uk (C.J.C.); s.huws@qub.ac.uk (S.A.H.)

⁴Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark

*Correspondence: jromero@inta.uchile.cl (J.R.); evargasb@sund.ku.dk (E.V.-B.-P.)
Supplementary material

Table S1. Most Prevalent Taxa: Phylum level.
Mean relative abundance (%) at different time point of the most prevalent phylum from cows fed with control, HVO and OO treatments

Phylum	Treatments	Control¹	HVO²	OO³	SEM⁴	P-value
21 days						
Firmicutes		60.16	82.75	72.83	6.54	0.10
Bacteroidetes		37.84	15.03	23.78	6.64	0.10
Actinobacteria		0.80	0.76	2.20	0.47	0.13
Proteobacteria		0.29	0.40	0.52	0.07	0.25
Others		0.91	1.06	0.67	0.12	0.37
42 days						
Firmicutes		65.97	74.68	64.82	3.11	0.63
Bacteroidetes		31.60	22.25	32.05	3.19	0.54
Actinobacteria		1.02	1.44	1.71	0.20	0.82
Proteobacteria		0.75	0.99	1.03	0.09	0.56
Others		0.66	0.63	0.39	0.08	0.54
63 days						
Firmicutes		81.19	84.92	87.42	1.81	0.59
Bacteroidetes		16.39	12.61	9.612	1.96	0.51
Actinobacteria		1.56	1.15	2.19	0.30	0.35
Proteobacteria		0.29	0.35	0.44	0.05	0.35
Others		0.57	0.97	0.34	0.18	0.07

¹Control, no fat supplement; ²HVO, supplemented with 3% DM hydrogenated vegetable oil; ³OO, supplemented with 3% DM olive oil; ⁴SEM: standard error of the mean and values are LSM and pooled SEM; ⁵Others, less abundant Phylum (relative abundance ≤ 0.5%). Data were analyzed by one-way ANOVA and means were compared by Kruskal-Wallis test. Results were declared significant at P<0.05.
Table S2. Most Prevalent Taxa: Family level.
Mean relative abundance (%) at different time point of the most prevalent families from cows fed with control, HVO and OO treatments

Family	Treatments	Control³	HVO²	OO¹	SEM⁴	P-value
21 days						
Ruminococcaceae	21.15	25.31	25.52	1.42	0.58	
Lachnospiraceae	29.12	23.96	35.39	3.30	0.15	
Prevotellaceae	12.37	8.93	7.58	1.43	0.54	
Acidaminococcaceae	14.70	16.88	12.69	1.21	0.71	
Others	22.67	24.92	18.82	1.78	0.05	
42 days						
Ruminococcaceae	17.59	21.90	16.86	1.57	0.63	
Lachnospiraceae	19.05	22.35	21.39	0.98	0.84	
Prevotellaceae	26.80	18.15	28.66	3.24	0.54	
Acidaminococcaceae	17.01	16.99	13.14	1.29	0.63	
Others	19.55	20.62	19.95	0.31	0.99	
63 days						
Ruminococcaceae	17.42	29.60	22.84	3.52	0.06	
Lachnospiraceae	12.74	19.05	23.09	3.01	0.15	
Prevotellaceae	30.30	9.78	18.54	5.95	0.12	
Acidaminococcaceae	16.24	18.41	10.41	2.39	0.40	
Others	23.29	23.17	25.13	0.63	0.75	

³Control, no fat supplement; ²HVO, supplemented with 3% DM hydrogenated vegetable oil; ¹OO, supplemented with 3% DM olive oil; ⁴SEM: standard error of the mean standard error of the mean and values are LSM and pooled SEM. ⁵Others' refers to the less abundant Phylum (relative abundance ≤ 0.5%). Data were analyzed by one-way ANOVA and means were compared by Kruskal-Wallis test. Results were declared significant at P<0.05.

Table S3. Most Prevalent Taxa: Genus level.
Mean relative abundance (%) at different time point of the most prevalent genus from cows fed with control, HVO and OO treatments

Treatments	Genus	1Control	2HVO	3OO	SEM	P-value
21 days	Prevotella_1	29.15	8.63	17.97	5.93	0.20
	Succiniclasticum	19.13	21.44	13.12	2.48	0.45
	Ruminococcaceae_NK4A214_group	9.16	13.65	11.65	1.30	0.20
	Christensenellaceae_R-7_group	7.83	10.46	6.57	1.15	0.27
	Ruminococcaceae_UCG-014	5.31	9.26	6.19	1.20	0.25
	Lachnospiraceae_NK3A20_group	3.03	4.86	6.12	0.89	0.33
	Others	0.262	0.315	0.382	0.035	0.001
42 days	Prevotella_1	24.95	16.28	27.10	3.31	0.54
	Succiniclasticum	21.07	20.87	16.23	1.58	0.54
	Ruminococcaceae_NK4A214_group	7.89	10.11	8.28	0.69	0.77
	Christensenellaceae_R-7_group	7.25	8.00	4.95	0.92	0.71
	Ruminococcaceae_UCG-014	4.08	8.55	4.30	1.46	0.45
	Lachnospiraceae_NK3A20_group	4.61	6.28	5.25	0.49	0.91
	Others	0.298	0.298	0.338	0.013	0.82
63 days	Prevotella_1	12.09	8.42	6.99	1.52	0.54
	Succiniclasticum	18.74	21.09	17.14	1.15	0.59
	Ruminococcaceae_NK4A214_group	11.35	12.04	15.74	1.36	0.51
	Christensenellaceae_R-7_group	10.95	12.12	6.43	1.73	0.09
	Ruminococcaceae_UCG-014	4.66	4.75	5.41	0.24	0.91
	Lachnospiraceae_NK3A20_group	7.82	6.25	11.56	1.58	0.23
	Others	0.343	0.350	0.364	0.006	0.63

1Control, no fat supplement; 2HVO, supplemented with 3% DM hydrogenated vegetable oil; 3OO, supplemented with 3% DM olive oil; 4SEM: standard error of the mean standard error of the mean and values are LSM and pooled SEM. 5Others’ refers to the less abundant Phylum (relative abundance ≤ 0.5%). Data were analyzed by one-way ANOVA and means were compared by Kruskal-Wallis test. Results were declared significant at P<0.05.

Table S4. PERMANOVA (Weighted) results.
PERMANOVA (Weighted) analysis of the effect of dietary treatments on rumen bacterial diversity.
Table S5. PERMANOVA (Weighted) results.
PERMANOVA (UnWeighted) analysis of the effect of dietary treatments on rumen bacterial diversity

Treatment	Period	SumsOfSqS	MeanSqs	F.Model	R2	Pr(>F)
Control vs. HVO	21 days	0.063	0.063	2.812	0.319	0.052
Control vs. HVO	42 days	0.023	0.023	0.450	0.069	0.760
Control vs. HVO	63 days	0.006	0.006	0.598	0.091	0.658
Control vs. OO	21 days	0.022	0.022	1.717	0.222	0.229
Control vs. OO	42 days	0.017	0.018	1.247	0.172	0.320
Control vs. OO	63 days	0.015	0.015	1.505	0.200	0.255

SumOfSqs, sum of squares; MeanSqs, mean sum of squares; F, F value by permutation; Statistical significance was declared at P<0.05; P-value based on 999 permutations.

Table S6. Predicted Functions in Control Diet.
Predicted functions with significant variations in control diet

Predicted functions	P-value		
	21 days	42 days	63 days
ABC transporters	0.81	0.99	< 0.01
DNA repair and recombination proteins	< 0.01	0.99	< 0.01
Pores ion channels	0.74	0.25	< 0.01
Protein kinases	0.24	0.04	0.39
Purine metabolism	0.01	0.97	0.12
Pyrimidine metabolism	0.04	0.83	0.99
Ribosome	0.03	0.77	0.73
Transcription factors	0.96	0.88	< 0.01
Transporters	0.99	0.46	< 0.01
Two-component system	< 0.01	< 0.01	< 0.01

Data were analyzed by multiple group ANOVA and Dunnett's multiple comparisons test. Results were declared significant at P<0.01.

Table S7. Predicted Functions in OO Diet.
Predicted functions with significant variations in olive oil diet

Predicted functions	21 days	42 days	63 days
ABC transporters	0.93	< 0.01	0.86
Alanine, aspartate and glutamate metabolism	0.99	0.01	0.21
Amino acid related enzymes	0.92	< 0.01	0.05
Amino sugar and nucleotide sugar metabolism	0.99	< 0.01	0.25
Aminoacyl-tRNA biosynthesis	0.88	0.01	0.29
Arginine and proline metabolism	0.98	0.02	0.28
Bacterial motility proteins	0.97	0.01	0.35
Carbon fixation pathways in prokaryotes	> 0.99	0.04	0.34
Chaperones and folding catalysts	0.99	0.02	0.15
Chromosome	0.79	< 0.01	0.22
DNA repair and recombination proteins	0.34	< 0.01	0.02
General function prediction only	0.77	< 0.01	0.15
Glycine, serine and threonine metabolism	0.97	0.04	0.22
Methane metabolism	0.99	< 0.01	0.26
Other ion-coupled transporters	0.70	0.01	0.72
Peptidases	0.89	< 0.01	0.04
Pores ion channels	0.84	0.24	< 0.01
Protein kinases	0.37	< 0.01	0.03
Purine metabolism	0.61	< 0.01	0.02
Pyrimidine metabolism	0.89	< 0.01	0.01
Pyruvate metabolism	0.98	0.03	0.46
Ribosome	0.84	< 0.01	0.01
Ribosome Biogenesis	0.95	< 0.01	0.06
Starch and sucrose metabolism	0.99	< 0.01	0.29
Transcription factors	0.99	< 0.01	0.92
Transcription machinery	0.97	< 0.01	0.03
Transporters	0.97	< 0.01	0.14
Two-component system	0.015	< 0.01	< 0.01

Data were analyzed by multiple group ANOVA and Dunnett’s multiple comparisons test. Results were declared significant at P<0.01.

Table S8. Predicted Functions in HVO Diet.
Predicted functions with significant variations in hydrogenated vegetable oil diet

Predicted functions	21 days	42 days	63 days
ABC transporters	0.44	< 0.01	0.22
Alanine, aspartate and glutamate metabolism	0.09	0.02	0.06
Amino acid related enzymes	< 0.01	< 0.01	< 0.01
Amino sugar and nucleotide sugar metabolism	0.02	< 0.01	0.01
Aminoacyl-tRNA biosynthesis	0.09	0.01	0.05
Arginine and proline metabolism	0.19	0.03	0.13
Chaperones and folding catalysts	0.05	0.02	0.03
Chromosome	0.040	< 0.01	0.02
DNA repair and recombination proteins	< 0.01	< 0.01	< 0.01
DNA replication proteins	0.22	0.05	0.12
General function prediction only	0.04	< 0.01	0.01
Methane metabolism	0.17	0.022	0.12
Other ion-coupled transporters	0.17	0.02	0.09
Peptidases	< 0.01	< 0.01	< 0.01
Pores ion channels	< 0.01	0.02	< 0.01
Protein kinases	0.03	< 0.01	0.01
Purine metabolism	< 0.01	< 0.01	< 0.01
Pyrimidine metabolism	< 0.01	< 0.01	< 0.01
Ribosome	< 0.01	< 0.01	< 0.01
Ribosome Biogenesis	< 0.01	< 0.01	< 0.01
Starch and sucrose metabolism	0.02	< 0.01	0.01
Transcription factors	0.18	< 0.01	0.19
Transcription machinery	0.02	0.01	0.01
Transporters	< 0.01	< 0.01	< 0.01
Two-component system	< 0.01	< 0.01	< 0.01

Data were analyzed by multiple group ANOVA and Dunnett’s multiple comparisons test. Results were declared significant at P<0.01.
Level 1	Level 2	Level 3	Database
Environmental Information Processing	Membrane transport	ABC transporters	PATHWAY
Signal transduction	Two-component system		PATHWAY
Genetic Information Processing	Translation	Aminoacyl-tRNA biosynthesis	PATHWAY
	Ribosome		PATHWAY
	Transcription	Transcription factors	PATHWAY
Metabolism	Amino Acid Metabolism	Alanine, aspartate and glutamate metabolism	PATHWAY
		Glycine, serine and threonine metabolism	PATHWAY
		Arginine and proline metabolism	PATHWAY
Carbohydrate Metabolism	Amino sugar and nucleotide sugar metabolism		PATHWAY
Energy Metabolism	Pyruvate metabolism		PATHWAY
	Starch and sucrose metabolism		PATHWAY
Nucleotide Metabolism	Carbon fixation pathways in prokaryotes		PATHWAY
	Methane metabolism		PATHWAY
Genes and proteins	DNA repair and recombination proteins		BRITE
	Chaperones and folding catalysts		BRITE
	Chromosome		BRITE
	Ribosome Biogenesis		BRITE
	Transcription machinery		BRITE
	DNA replication proteins		BRITE
Signaling and Cellular Processes	Transports		BRITE
	Bacterial motility proteins		BRITE
Metabolism	Protein kinases		BRITE
	Amino acid related enzymes		BRITE
	Peptidases		BRITE
Unclassified	Pores ion channels		BRITE
	Other ion-coupled transporters		BRITE
Poorly Characterized	General function prediction only		BRITE