Temperature Sensitivity Analysis of Extended Source Double Gate Tunnel Field Effect Transistor

Dharmender · Kaushal Nigam · Satyendra Kumar

Received: date / Accepted: date

Abstract Temperature-induced performance variation is one of the main concerns of the conventional stack gate oxide double gate tunnel field-effect transistor (SGO-DG-TFET). In this regard, we investigate the temperature sensitivity of extended source double gate tunnel-field-effect transistor (ESDG-TFET). For this, we have analyzed the effect of temperature variations on the transfer characteristics, analog/RF, linearity and distortion figure of merits (FOMs) using technology computer aided design (TCAD) simulations. Further, the temperature sensitivity performance is compared with conventional SGO-DG-TFET. The comparative analysis shows that ESDG-TFET is less sensitive to temperature variations compared to the conventional SGO-DG-TFET. Therefore, this indicates that ESDG-TFET is more reliable for low-power, high-frequency applications at a higher temperature compared to conventional SGO-DG-TFET.

Keywords Extended source · Linearity · stacked gate-oxide · Temperature sensitivity

1 Introduction

Conventional MOSFET scaling offers several advantages like high packing density, low-cost, and improved analog/RF performance. However, the continuous scaling of transistor size in the nanoscale regime deteriorates the performance of the device due to subthreshold slope limitation of 60 mV/decade, higher power dissipation, lower switching ratio (I_{ON}/I_{OFF}) and short-channel effects [1-4]. TFET, which operates on the mechanism of quantum tunneling, has emerged as an alternative device to solve the above issues of conventional MOSFET [5-8]. However, the major limitation of TFETs include ambipolarity and lower ON-state current (I_{ON}) [9]. Therefore, in order to overcome these issues, various methods have been reported by the researchers, such as TFET double-gate, hetero-dielectric, work-function engineering, stacked gate structure, electrically doped (ED), pocket doping, dielectric pocket, dual material and gate over source overlap [9-26]. In addition to the above issues, temperature-induced performance variation is also one of the major causes of concern in TFETs. Few works of literature [28-31] have reported the temperature sensitivity of different TFETs in terms of various performance parameters. Since the temperature induced performance variation in the device depends on the design, therefore, to improve the device reliability, a stack gate oxide (SiO_2+HfO_2) is applied, which makes the device less sensitive to various interface trap charges [32]. Further, to enhance the performance of conventional stack gate oxide double gate tunnel field-effect transistor (SGO-DG-TFET), the source is extended into the channel, and the device is named extended source double gate tunnel-field-effect transistor (ESDG-TFET) [24]. In this work, we investigate the temperature sensitivity in conventional SGO-DG-TFET and ESDG-TFET in terms of $I_{DS} - V_{GS}$ characteristics, analog/RF FOMs such as transconductance (g_m), cutoff frequency (f_T), gain-bandwidth product (GBP), maximum oscillating frequency (f_{max}), and linearity distortion FOMs such as g_{m3}, VIP3, IIP3 and IMD3 performance parameters using TCAD simulations.

The remaining part of this work is organised as follows. Section 2 presents the structural and simula-
tion details of the device. Section 3 describes the simulation results in three parts. The first part compares the $I_{DS} - V_{GS}$ characteristics of SGO-DG-TFET and ESDG-TFET. Second part investigates the analog/RF FOMs, and the third part presents the linearity and distortion FOMs at different temperatures. Finally, the key findings of this paper is presented in Section 4.

2 Device structure, parameters and simulation setup

The structural views of conventional SGO-DG-TFET and ESDG-TFET for the parameters listed in Table 1 are illustrated in Fig. 1(a) and Fig. 1(b), respectively. The ESDG-TFET device structure comprised of silicon film thickness (t_{Si}) of 15 nm and P^+ source with a doping concentration of $1 \times 10^{20} \text{ cm}^{-3}$ extended into the channel, which has a doping concentration of $1 \times 10^{17} \text{ cm}^{-3}$. The N^+ drain region has a doping concentration of $1 \times 10^{19} \text{ cm}^{-3}$. The source width and height are denoted by S_W and S_H, respectively. Similarly, C_W and C_H are the width and height of the channel. Moreover, a stack gate oxide (1-nm SiO_2 and 2-nm HfO_2) is used, with a gate material work-function of 4.2 eV. The dimensions S_H and C_H are considered as 5 nm [24]. The gate is extended over the channel towards the drain side, acting as a gate field plate (GFP). This enhances the performance of the ESDG-TFET as the tunneling point (TP) path under the GFP is shorter than the tunneling line (TL) path under the gate, leading to earlier band-to-band tunneling under the GFP [27].

For simulations, a nonlocal band-to-band tunneling model is used to calculate the tunneling current in the device. SRH and auger recombination models are considered to observe the minority carrier recombination in the device. The bandgap narrowing model is activated because of high doping concentration in source and drain, concentration-dependent mobility model is used for concentration-dependent carrier transport.

3 Results and discussion

This section presents the impact of temperature variations in conventional SGO-DG-TFET and ESDG-TFET in terms of $I_{DS} - V_{GS}$ characteristics, analog/RF, and linearity performance parameters for temperature ranging from 300K to 480K

3.1 Temperature sensitivity analysis of $I_{DS} - V_{GS}$ characteristics

Fig. 2(a) and Fig. 2(b) illustrate the effect of temperature variations on $I_{DS} - V_{GS}$ characteristics for conven-
ional SGO-DG-TFET and ESDG-TFET in logarithmic scale at $V_{DS} = 1.0\, V$. From these figures, smaller I_{ON} variations with temperature are noted for both devices because I_{ON} depends mainly on the band-to-band tunneling instead of temperature. However, OFF-state current (I_{OFF}) varies significantly with temperature because of its dependency on minority carrier concentration, which increases with temperature. These results demonstrate that the temperature dependence of ESDG-TFET provides 0.30%/K change in I_{ON}, whereas it provides 0.44%/K change for SGO-DG-TFET. Hence, the I_{ON} variation with temperature ranging from 300K to 480K is 0.14%/K lesser for the ESDG-TFET in comparison with SGO-DG-TFET. Also, due to the extended source, higher I_{ON} is observed for ESDG-TFET as compared to SGO-DG-TFET.

3.2 Temperature sensitivity analysis of analog/RF figure of merits

This section compares the temperature sensitivity for SGO-DG-TFET and ESDG-TFET in terms of analog/RF FOMs such as g_m, f_T, GBP, and f_{max}. Parasitic capacitances (C_{gs} and C_{gd}) are crucial parameters to analyze the analog/RF and linearity performance of the device. The plots for variations in C_{gs} with V_{GS} at the temperature range from 300K to 480K are shown in Fig. 3(a) and Fig. 3(b). The C_{gd} variation with temperature for both the device are illustrated in Fig. 3(c) and Fig. 3(d), respectively. From these figures, temperature variations in C_{gs} and C_{gd} for both the devices are noted smaller at lower V_{GS} as compared with higher V_{GS}. Further, the C_{gs} and C_{gd} for ESDG-TFET is noted to be larger than that of SGO-DG-TFET. Transconductance (g_m) is one of the critical parameters in the analog/RF and linearity performance analysis. Higher g_m is required to achieve higher gain, f_T and GBP in the design of analog circuits [33]. Fig. 4(a) and Fig. 4(b) illustrate the g_m variations with temperature for SGO-DG-TFET and ESDG-TFET. These results demonstrate that in the subthreshold region g_m of both the devices are very small, and it starts increasing due to steep rise in the ON-state current. However, it starts decreasing after a particular value of V_{GS} because of mobility degradation [33]. Further, noted that g_m of ESDG-TFET is larger as compared to SGO-DG-TFET. Moreover, these results demonstrate that ESDG-TFET shows 0.21%/K variations in g_m for temperature ranging from 300K to 480K whereas, at the same biasing and temperature range, 0.37 %/K variation is noted for SGO-DG-TFET.

Another critical parameter for RF performance assessment of the device is cutoff frequency (f_T). It is defined as the frequency at which current gain becomes unity [31]. It is formulated as follows

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})}$$

(1)

It means f_T depends on the parasitic capacitances and g_m of the device. Fig. 5(a) and Fig. 5(b) depict the variation in f_T with V_{GS} at the temperature ranging from 300K to 480K for SGO-DG-TFET and ESDG-TFET. As seen from Fig. 5(a) and Fig. 5(b), f_T initially increases with V_{GS} due to an increase in g_m and then decreases after a certain value of V_{GS} due to the increased parasitic capacitances and reduced g_m because of mobility degradation. These results demonstrate that ESDG-TFET exhibits 0.22%/K variation in f_T for temperature range from 300K to 480K, whereas for the same biasing conditions and temperature range SGO-DG-TFET exhibits 0.41 %/K variation. Moreover, from these results, it is noted that f_T for ESDG-TFET is higher than the conventional SGO-DG-TFET.
GBP is another crucial parameter for RF performance assessment of the device. It is defined as follows:

\[GBP = \frac{g_m}{20\pi C_{gd}} \]

(2)

The GBP variations for conventional SGO-DG-TFET and ESDG-TFET with \(V_{GS} \) at the temperature range from 300K to 480K are shown in Fig. 5(c) and Fig. 5(d), respectively. Simulation results demonstrate that maximum GBP is obtained for ESDG-TFET compared to the conventional SGO-DG-TFET due to the same
Temperature Sensitivity Analysis of Extended Source Double Gate Tunnel Field Effect Transistor

Fig. 5 f_T variation with temperature for (a) conventional SGO-DG-TFET (b) ESDG-TFET; gain bandwidth product (GBP) variation with temperature for (c) conventional SGO-DG-TFET (d) ESDG-TFET.

Fig. 6 Maximum oscillating frequency (f_{max}) variation with temperature for (a) conventional SGO-DG-TFET (b) ESDG-TFET.

reasons discussed earlier for the f_T. From the comparative analysis of both the devices, 0.19 %/K more variations in conventional SGO-DG-TFET is observed as compared with the ESDG-TFET. Another important parameter for RF performance analysis of the device is maximum oscillating frequency (f_{max}). Which is formulated as follows [28]

$$f_{\text{max}} = \sqrt{\frac{f_T}{8\pi C_{gd} R_{gd}}}$$ \hspace{1cm} (3)
The f_{max} variation for SGO-DG-TFET and ESDG-TFET with V_{GS} at the temperature ranges from 300K to 480K is illustrated in Fig. 6(a) and Fig. 6(b), respectively. These simulation results demonstrate that f_{max} of ESDG-TFET is higher than the conventional SGO-DG-TFET due to the higher f_T. From the comparative analysis of both the devices, for the temperature ranging from 300K to 480K, 0.09 %/K more variations for conventional SGO-DG-TFET is observed as compared with the ESDG-TFET.

3.3 Temperature sensitivity analysis of linearity and distortion figure of merits

Modern high-speed communication system needs a device with maximum linearity and minimal distortion [33]. To attain better linearity, g_m of the device should remain constant with V_{GS}. However, g_m of MOSFET and TFET shows the variation with V_{GS} and temperature. In this context, this paper examines the temperature sensitivity for linearity and distortion parameters i.e g_{m2}, g_{m3}, VIP3, IIP3, and IMD3 for conventional SGO-DG-TFET and ESDG-TFET. Where these parameters are defined as follows [33]

$$\text{VIP3} = \sqrt{24 \times \left(\frac{g_{m1}}{g_{m3}} \right)}$$

$$\text{IIP3} = \frac{2}{3} \times \left(\frac{g_{m1}}{g_{m2} \times R_S} \right)$$

$$\text{IMD3} = \left[\frac{9}{2} \times (\text{VIP3})^2 \times (g_{m3})^2 \times R_S \right]$$

Where R_S is assumed to be 50 Ω for most RF applications. To achieve better linearity and lower distortion of the device, VIP3 and IIP3 should be higher, while IMD3 must be lower [28]. Fig. 7(a) and Fig. 7(b) depict the impact of temperature variations on g_{m2} with V_{GS} for conventional SGO-DG-TFET and ESDG-TFET, respectively. Results demonstrate that g_{m2} increases with temperature for both the devices, while the variation is lower for ESDG-TFET as compared to SGO-DG-TFET. Fig. 7(c) and Fig. 7(d) depict the impact of temperature variations ranging from 300K to 480K on g_{m3} with V_{GS} for conventional SGO-DG-TFET and
ESDG-TFET, respectively. Results demonstrate that g_m variation is negligible at lower V_{GS} for both devices. Further, it is also observed that ESDG-TFET is less sensitive to temperature variation compared to conventional SGO-DG-TFET.

Fig. 8(a) and Fig. 8(b) show variation of VIP3 with V_{GS} at different temperatures from 300K to 480K for conventional SGO-DG-TFET and ESDG-TFET. A device with a higher value of VIP3 indicates better linearity. Therefore, the VIP3 results demonstrate that ESDG-TFET shows better linearity compared to SGO-DG-TFET. Further, it is also observed that noted that both the devices are temperature sensitive for lower side and higher side of V_{GS}.
Table 2 Temperature sensitivity in % per kelvin of various parameters for conventional SGO-DG-TFET and ESDG-TFET.

Parameters	SGO-DG-TFET	ESDG-TFET
I_{ON}	0.44 %/K	0.30 %/K
I_{OFF}	1.1×10^3 %/K	8.8×10^3 %/K
g_m	0.37 %/K	0.21 %/K
f_T	0.41 %/K	0.22 %/K
GBP	0.41 %/K	0.21 %/K
f_{max}	0.19 %/K	0.098 %/K

IIP3 variation with V_{GS} at different temperature ranges from 300K to 480K for conventional SGO-DG-TFET and ESDG-TFET is shown in Fig. 8(c) and Fig. 8(d). Again, an increase in IIP3 indicates improvement in the linearity performance of the device. Therefore, the simulation results demonstrate that ESDG-TFET exhibits better linearity compared to SGO-DG-TFET. It was further noted that both devices are temperature sensitive at lower and higher V_{GS}.

A device with lower IMD3 indicates that the device can withstand with higher distortions. Fig. 8(e) and Fig. 8(f) illustrate the variations in IMD3 with V_{GS} for conventional SGO-DG-TFET and ESDG-TFET at different temperature range from 300K to 480K. Therefore, these results demonstrate that ESDG-TFET exhibits 0.10%/K variation in IMD3 for temperature range from 300K to 480K at V_{GS} = 1.6 V and V_{DS} = 1.0 V, whereas for the same biasing conditions and temperature range, conventional SGO-DG-TFET exhibits 0.41%/K variation. This indicates that ESDG-TFET shows better inter modulation distortion performance as compared to conventional SGO-DG-TFET. Finally, the temperature sensitivity in % per kelvin of various device parameters for SGO-DG-TFET and ESDG-TFET are presented in Table 2.

4 Conclusions

The actual performance of the device at the operating temperature may differ from the room temperature. Therefore, in this work, we have performed a comparative temperature sensitivity analysis for conventional SGO-DG-TFET and ES-DG-TFET. It has been observed that ESDG-TFET shows 0.14%/K less sensitivity for ON-state current to temperature variation ranging from 300K to 480K, while 0.16%/K less sensitivity for transconductance and 0.15%/K less sensitivity for cut-off frequency than for SGO-DG-TFET. Therefore, it can be stated that ESDG-TFET is more reliable at higher temperatures than conventional SGO-DG-TFET.

Acknowledgement:
The authors would like to thank the Department of Electronics and Communication Engineering, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India, for providing necessary infrastructure to carry out this work.

Declarations:

Funding: Not applicable.
Conflict of Interests/Competing interests: No conflicts of interest.
Availability of Data and Material: The data and material concerned to the manuscript may be made available on request.
Code availability: Code may be made available on request.

Authors’ contributions:
1. Kaushal Nigam - Concept and methodology.
2. Satyendra Kumar- Concept, simulation.
3. Dharmender - Resource, paper writing.

Ethics approval: Not applicable.
Consent to participate: Not applicable.
Consent for publication: Not applicable.

References
1. Kilchytska V, Neve A, Vancaillie L, et al. (2003) Influence of device engineering on the analog and RF performances of SOI MOSFETs. *IEEE Transactions on Electron Devices* 50(3):577-588
2. Mohankumar N, Syamal B, Sarkar CK (2010) Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. *IEEE Transactions on Electron Devices* 57(4):820-826
3. Young KK (1989) Short-channel effect in fully-depleted SOI MOSFETs. *IEEE Transactions on Electron Devices* 36(2):399-402
4. Bangsaruntip S, Cohen GM, Majumdar A, Sleight JW (2010) Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. *IEEE Transactions on Electron Devices* 57(4):829-826
5. Choi WY, Park B, Lee JD, Liu TK (2007) Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/dec. *IEEE Electron Device Letters* 28(8):743-745
6. Pal A, Sachid AB, Gossner H, Rao VR (2011) Insights into the design and optimization of tunnel-FET devices and circuits. *IEEE Transactions on Electron Devices* 58(4):1045-1053
7. Lee MJ, Choi WY (2012) Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. *IEEE Electron Device Letters* 33(10):1459-1461
Temperature Sensitivity Analysis of Extended Source Double Gate Tunnel Field Effect Transistor

8. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373):329-337
9. Boucart K, Ionescu AM (2007) Double gate tunnel FET with high k gate dielectric. IEEE Transactions on Electron Devices 54(7):1725-1733
10. Vijayvargiya V, Vishvakarma SK (2014) Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Transactions on Nanotechnology 13(5):974-981
11. Kumar S, Nigam K, Chaturvedi S, et al (2021) Performance Improvement of Double-Gate TFET Using Metal Strip Technique. Silicon https://doi.org/10.1007/s12633-021-00982-z
12. Raad BR, Nigam K, Sharma D, Kondekar P (2016) Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electronics Letters 52(9):770-772
13. Nigam K, Kondekar PN, Sharma D (2016) DC characteristics and analog/RF performance of novel polarity control GaAs-Ge based tunnel field effect of transistor. Superlattices and Microstructures 92:224-231
14. Priyadarshani KN, Singh S, Naugarhiya A (2021) Dual Metal Double Gate Ge-Pocket TFET (DMG-DG-Ge-Pocket TFET) with Hetero Dielectric: DC & Analog Performance Projections. Silicon https://doi.org/10.1007/s12633-021-00955-2
15. Raj A, Singh S, Priyadarshani KN, Naugarhiya A (2020) Vertically Extended Drain Double Gate $S_{1-\text{p}}/Ge_{2}$ Source Tunnel FET : Proposal & Investigation For Optimized Device Performance. Silicon https://doi.org/10.1007/s12633-020-00603-1
16. Nigam K, Pandey S, Kondekar P, Sharma D, Parte PK (2017) A Barrier Controlled Charge Plasma-Based TFET With Gate Engineering for Ambipolar Suppression and RF/Linearity Performance Improvement. IEEE Transactions on Electron Devices 64(6):2751-2757
17. Kumar S, Singh S, Nigam K, Tikkwal VA (2019) Dual material dual-oxide dual gate TFET for improvement in DC characteristics, analog/RF and linearity performance. Applied Physics A 125(5):3531-3538
18. Kumar S, Goel E, Singh K, Singh B, Singh PK, Baral K, Jit S (2017) 2-D Analytical Modeling of the Electrical Characteristics of Dual-Material Double-Gate TFETs with a SiO$_2$/HfO$_2$ Stacked Gate-Oxide Structure. IEEE Transactions on Electron Devices 64(3):960-968
19. Singh S, Goel E, Singh K, et al. (2018) A Compact 2-D Analytical Model for Electrical Characteristics of Double-Gate Tunnel Field-Effect Transistors With a SiO$_2$/High-k Stacked Gate-Oxide Structure IEEE Transactions on Electron Devices 63(8):3291-3299
20. Nigam K, Kondekar, Chandan BV, et al (2021) Performance and Analysis of Stack Junction-less Tunnel Field Effect Transistor. Silicon https://doi.org/10.1007/s12633-021-00958-z
21. Kondekar PN, Nigam K, Pandey S, Sharma D (2017) Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Transactions on Electron Devices 64(2):412-418
22. Dharmender, Nigam K (2020) Low-K Dielectric Pocket and Workfunction Engineering for DC and Analog/RF Performance Improvement in Dual Material Stack Gate Oxide Double Gate TFET. Silicon https://doi.org/10.1007/s12633-020-00822-6
23. Ashita, Loan SA, Rafat M (2018) A high-performance inverted- C tunnel junction FET with source-channel overlap pockets. IEEE Transactions on Electron Devices 65(2):763-768
24. Joshi T, Singh Y, Singh B (2020) Extended-Source Double-Gate Tunnel FET With Improved DC and Analog/RF Performance. IEEE Transactions on Electron Devices 67(4):1873-1879
25. Kumar S, Singh KS, Nigam K, et al (2020) Ambipolarity Suppressed Dual-Material Double-Source T-Shaped Tunnel Field-Effect Transistor. Silicon https://doi.org/10.1007/s12633-020-00601-3
26. Talukdar J, Rawat G, Mummaneni K (2020) A Novel Extended Source TFET with δp - SiGe Layer. Silicon 12: 2273–2281
27. Wang X, Tang Z, Cao L, Li L, Liu Y (2019) Gate Field Plate Structure for Subthreshold Swing Improvement of Si Line-Tunneling FETs. IEEE Access 7:100675-100683
28. Nigam K, Kumar S, Singh KS, Bhardwaj E, Choubey S, Chaturvedi S (2020) Temperature sensitivity analysis of SGO metal strip JL TFET. IET Circuits Devices & Systems 14:444-449
29. Kumar S (2021) Temperature dependence of analogue/RF performance, linearity and harmonic distortion for dual-material gate-oxide-stack double-gate TFET. IET Circuits Devices & Systems https://doi.org/10.1049/cds2.12049
30. Paras N, Chauhan SS (2019) Temperature sensitivity analysis of vertical tunneling based dual metal Gate TFET on analog/RF FOMs. Applied Physics A 125: 316
31. Nigam K, Pandey S, Kondekar PN, Sharma D, Parte PK (2016) Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor. Superlattices and Microstructures 97:598-605
32. Venkatesh P, Nigam K, Pandey S, Sharma D, Kondekar PN (2017) Impact of interface trap charges on performance of electrically doped tunnel FET with heterogeneous gate dielectric. IEEE Transactions on Electron Devices 17(1):245-252
33. Ghosh P, Haldar S, Gupta RS, Gupta M (2012) An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Transactions on Electron Devices 59(12):3263-3268