used telemedicine. Screening for COVID-19 for clinic visits was done by telephone, in-person questionnaires and/or temperature checks.

Table 1. Characteristics of Transplant Centers

Characteristic	No. (%)
No. of participating centers	65
Country	
Canada	3 (5%)
France	3 (5%)
Japan	11 (17%)
Malaysia	4 (6%)
Switzerland	2 (3%)
Turkey	2 (3%)
US	28 (43%)

Others 12 (18%)

Type of transplant

Kidney	Pancreas	Liver	Lung	Heart
24 (37%)	25 (38%)	40 (62%)	21 (32%)	24 (37%)

Transplants performed in 2019

- Decedent donor kidney transplant (n=55)
 - <50: 28 (51%)
 - 50-100: 9 (16%)
 - 100-200: 12 (22%)
 - 200-300: 4 (7%)
 - >300: 2 (4%)

- Living donor kidney transplant (n=56)
 - <50: 37 (66%)
 - 50-100: 12 (21%)
 - 100-200: 6 (11%)
 - 200-300: 1 (2%)

- Decedent donor liver transplant (n=42)
 - <50: 20 (48%)
 - 50-100: 12 (29%)
 - 100-200: 9 (21%)
 - 200-300: 1 (2%)

- Living donor liver transplant (n=43)
 - <50: 39 (91%)
 - 50-100: 2 (5%)
 - 100-200: 1 (2%)
 - >300: 0

- Lung transplant (n=42)
 - 0: 33 (79%)
 - 1-30: 12 (27%)
 - >30: 4 (9%)
 - >300: 6 (13%)

- Heart transplant (n=42)
 - 0: 17 (40%)
 - 1-30: 14 (33%)
 - >30: 10 (24%)
 - >300: 1 (2%)

Table 2. Countermeasures and Disruption of Transplant Services

Measure	No. (%)
Outpatient clinic visit	
Canceled pre-transplant clinic visits	
Yes	36 (56%)
No	28 (44%)
Canceled post-transplant clinic visits	
Yes	17 (26%)
No	44 (74%)
Telemedicine use (n=64)	
Year	
Yes	54 (84%)
No	10 (16%)
Postponing clinic appointments (n=65)	
Yes	59 (89%)
No	8 (14%)
Postponing living donor kidney transplant (n=58)	
Yes	50 (86%)
No	8 (14%)
Postponing deceased donor kidney transplant (n=57)	
Yes	20 (35%)
No	37 (65%)
Postponing living donor liver transplant (n=42)	
Yes, only for stable patients	10 (24%)
Yes, all patients	32 (76%)
Postponing deceased donor liver transplant (n=41)	
Yes, only for stable patients	24 (59%)
Yes, all patients	17 (41%)
Postponing lung transplant (n=31)	
Yes, only for stable patients	11 (33%)
Yes, all patients	8 (26%)
Postponing heart transplant in LVAD patients (n=33)	
Yes, only for stable patients	11 (33%)
Yes, all patients	12 (37%)
Postponing heart transplant in nLVAD patients (n=33)	
Yes, only for stable patients	15 (46%)
Yes, all patients	9 (27%)

There was a significant increase in number of new patients diagnosed with PFAPA between June through August 2020 compared to similar months in 2018 and 2019. Monthly Distribution Summary for New PFAPA Diagnosis
4.8. SARS-CoV-2 Infection in Hospitalized Children: An Elevated Body Mass Index is a Marker of Increased Risk of Acute Respiratory Failure

Session: P-23. COVID-19 Special populations (e.g. pregnant women, children, immunocompromised, etc)

Background. SARS-CoV-2 infection is typically a mild illness in children. Multisystem inflammatory syndrome in children (MIS-C) is a rare, post-infectious, hyperinflammatory condition associated with SARS-CoV-2 infection. The presentation of MIS-C is nonspecific and diagnostic criteria is broad. The Centers for Disease Control (CDC) defines MIS-C as a hospitalized patient < 21 years presenting with fever, laboratory evidence of inflammation, no alternative plausible diagnosis, and with positive exposure history or testing for current or recent SARS-CoV-2 infection. Since there is no single diagnostic test for MIS-C, there are other disease processes that can mimic its presentation and delay prompt diagnosis and management.

Methods. Between March 2020 and February 2021, we reviewed 282 charts of patients admitted for evaluation of MIS-C at our institution. The most common final diagnoses were viral infection, urinary tract infection, and acute SARS-CoV-2 infection. Other diagnoses included rickettsial infections, pneumonia, rheumatologic conditions, and bloodstream infection. Rhinovirus/enterovirus, adenovirus, Epstein-Barr virus (EBV), and Herpes Simplex Virus (HSV) were the most common viruses other than SARS-CoV-2 identified.

Results. Of the 282 patients, 129 were ruled out, the most common final diagnoses were viral infection, urinary tract infection, and acute SARS-CoV-2 infection. Other diagnoses included rickettsial infections, pneumonia, rheumatologic conditions, and bloodstream infection. Rhinovirus/enterovirus, adenovirus, Epstein-Barr virus (EBV), and Herpes Simplex Virus (HSV) were the most common viruses other than SARS-CoV-2 identified.

Conclusions. These findings highlight the importance of maintaining a broad differential when evaluating a patient for MIS-C, especially as community seroprevalence rises, making antibody presence less predictive of MIS-C.