12α-hydroxy-N-demethyl-sauroxine, a Lycodane type alkaloid from *Phlegmariurus saururus*

Mariana G. Vallejo, Marcos E. Corzo, María Gabriela Ortega and Alicia Mariel Agnese*

*IMBIV-CONICET and Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Córdoba X5000HUA, Argentina.

Alicia Mariel Agnese magnese@fcq.unc.edu.ar

12α-hydroxy-N-demethyl-sauroxine (1), another new Lycopodium alkaloid from the Lycodane group, was isolated from *Phlegmariurus saururus* (Lam.) B. Øllg. (Lycopodiaceae). Elucidation of the chemical structure and relative stereochemistry were stated by spectroscopic data and chemical correlation. In addition, the inhibitory activity on acetylcholinesterase for 1 was determined as well as for N-methyllycodine (2), a derivative with the same nucleus, previously identified in *P. saururus* (IC$_{50}$ = 33.8 ± 0.8 μM and 547.5 ± 0.5 μM, respectively) and N-demethylsauroxine (3) whose inhibition in the actual conditions was better than the previously informed.

Keywords: *Phlegmariurus saururus*; 12α-hydroxy-N-demethyl-sauroxine; Lycopodium alkaloids; Acetylcholinesterase inhibition
Content

Table S1. NMR data of 12α-hydroxy-N-demethyl-sauroxine (1).................. 3
Figure S1. Sauroxine... 4
Figure S2. Selected 2D NMR correlations for 1... 5
Figure S3. Selected NOESY correlations for 1.. 6
Figure S4.A NMR 1H spectrum of 1 (400 MHz, CDCl$_3$).......................... 7
Figure S4.B NMR 1H spectrum of 1 (enlargement).................................. 8
Figure S5.A. NMR 13C spectrum of 1 (100 MHz, CDCl$_3$)....................... 9
Figure S5.B. NMR 13C spectrum of 1 (enlargement)............................... 10
Figure S6. COSY spectrum of 1 (400 MHz, CDCl$_3$)................................. 11
Figure S7. HSQC spectrum of 1 (400 MHz, CDCl$_3$)................................. 12
Figure S8.A. HMBC spectrum of 1 (400 MHz, CDCl$_3$)............................. 13
Figure S8.B. HMBC spectrum of 1 (400 MHz, CDCl$_3$)............................. 14
Figure S9. NOESY spectrum of 1 (400 MHz, CDCl$_3$)............................... 15
Figure S10. ESIMS spectrum of 1.. 16
Figure S11. MS spectrum of 1.. 17
Figure S12. IR spectrum of 1.. 18
Table S1. NMR data of 12α-hydroxy-N-demethyl-sauroxine (1).

position	δ^a	δ^b* (multi, J in Hz)
1	170.8 (C)	---
2	31.1 (CH$_2$)	2.50 (2H, m)
3a	19.3 (CH$_2$)	2.24 (1H, m)
3b		2.51 (1H, br d, 5.3)
4	112.4 (C)	---
5	131.1 (C)	---
6a	32.4 (CH$_2$)	1.87 (1H, m)
6b		2.48 (1H, dd, 19.3, 6.2)
7	37.4 (CH)	1.94 (1H, m)
8a	38.7 (CH$_2$)	1.10 (1H, dd, 12.8, 3.9)
8b		1.42 (1H, br d, 12.5)
9a	42.0 (CH$_2$)	2.53 (1H, t, 11.4)
9b		2.82 (1H, br d, 11.2)
10a	31.0 (CH$_2$)	1.41 (1H, m)
10b		1.87 (1H, m)
11a	32.0 (CH$_2$)	1.87 (1H, m)
11b		2.48 (1H, br d, 9.3)
12	69.1 (C)	---
13	59.1 (C)	---
14a	37.2 (CH$_2$)	1.35 (1H, d, 14.2)
14b		1.82 (1H, t, 13.5)
15	25.6 (CH)	1.66 (1H, m)
16	23.6 (CH$_3$)	0.95 (3H, d, 6.4)

*a 100 MHz, CDCl$_3$

*b 400 MHz, CDCl$_3$
Figure S1. Sauroxine.
Figure S2. Selected 2D NMR correlations for 1.
Figure S3. Selected NOESY correlations for 1.
Figure S4.A. NMR 1H spectrum (400 MHz, CDCl$_3$).
Figure S4.B. NMR 1H spectrum (enlargement).
Figure S5.A. NMR 13C spectrum.
Figure S5.B. NMR 13C spectrum (enlargement). C-7 and C-14, C-2 and C-10, and C6 with C11 signals are overlapped.
Figure S6. COSY spectrum (400 MHz, CDCl₃).
Figure S7. HSQC spectrum (400 MHz, CDCl$_3$).
Figure S8.A. HMBC spectrum (400 MHz, CDCl$_3$).
Figure S8.B. HMBC spectrum (400 MHz, CDCl₃).
Figure S9. NOESY spectrum (400 MHz, CDCl₃). Selected signals are marked; other correlations have been developed by COSY as well.
Figure S10. ESIMS spectrum.

Meas. m/z	#	Formula	m/z	err [ppm]	Mean err [ppm]	rdb	N-Rule	e⁻	Conf	mSigma
277.19191	1	C₁₆H₂₅N₂O₂	277.19105	-3.07	0.42	5.5	ok	even	25.8	
Figure S11. MS spectrum.
Figure S12. IR spectrum.