Impact of the Feeding With the Black Soldier Fly (*Hermetia Illucens*) on Egg Physical Quality, Egg Chemical Quality and Lipid Metabolism of Laying Hens

Andri Cahya Irawan¹, Dewi Apri Astuti², I Wayan Teguh Wibawan³, Widya Hermana²

¹ Study Program of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University,
² Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University,
³ Department of Parasitology and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University
Jl. Agatis, Kampus IPB Dramaga Bogor 16680, Indonesia
andricahyairawan91@gmail.com

Abstract. BSF larvae have a high growth rate and optimal feed conversion and can be well utilized of various types of material as a food source including decomposed organic matter. BSF larvae have amino acid compositions that resemble the amino acid composition of soybean meal or fish meal so that they can function as (antibiotic growth promoters-AGP). AGP aims to maintain the health of the digestive tract of poultry so that feed conversion becomes more efficient and growth performance can be optimal. This study aims to obtain the best type of BSF protein to improve egg quality physically and chemically and the effect of BSF on lipid metabolism. The results of this study indicated that treatment of T3 was the best physically egg quality and chemically egg quality of-laying hens with the use of BSF because it contained protein extract was quite high compared to other treatments. The results of the analysis of blood lipid metabolism that the treatment of live BSF (T1) has the lowest average value, this proved that live BSF was able to reduce the fat content in the blood of laying hens.

1. Introduction
AGP (antibiotic growth promoter) improves chicken performance. It is estimated that the use of AGP increases chicken growth by 4-8% and feed conversion by 2-5%. The role of AGP can kill pathogenic bacteria in the digestion of chickens, such as. *Salmonella* sp., *Campylobacter* sp., *Enterococci* sp. and *Escherichia coli*. An uncontrolled and inappropriate use of antibiotics leads to a microbial resistance to these antibiotics. This problem requires a solution in the form of a product that can boost livestock growth without causing resistance. AGP problems are also associated with local Indonesian fishmeal whose quality does not meet the standards of quality fish meal requirements for animal feed ingredients and whose price is expensive. Alternative solutions for animal protein are needed at affordable prices and as a replacement for AGP, namely Black Soldier Fly (BSF). BSF larvae (Black Soldier Fly) have a relatively high protein content of 40-50% and a fat content of 29-32% [8]. According to [35], BSF flour has the potential role to replace fishmeal up to 100% for
broiler feeds, without affecting the digestibility of the dry matter (57.96-60.42%), energy (62.03% - 64.77%) and protein (64.59-75.32%). Calcium minerals contained in BSF flour by 88% [16]. Another advantage is having antimicrobial and antifungal properties so that it can increase the body's resistance from bacterial and fungal diseases. The supply of high quality animal feed is one of the critical success factors in the poultry industry, which is 50-70% [22]. Protein is the most expensive feed component compared to other feed components. The impact, economically, farmers or businesses in meeting the source of protein can burden production costs. According to [7] stated that the protein component has an important role in an animal feed formula because it is actively involved in the process of body tissue formation and vital metabolism such as enzymes, hormones, antibodies and so on. The current feed study is focused on finding alternative sources of protein by utilizing insects. The substitution of soy flour in whole or in whole with BSF flour does not affect feed intake, egg performance, egg weight and feed efficiency in laying hens when compared with standard feeding of [30].

2. Methodology

The method of this treatment used an overall system of self-mixing, all feed ingredients were divided into rations according to the nutrient requirements of the laying hens. The composition of the feed ingredients consisted of corn, rice bran, coconut oil, fish meal, soybean meal, CaCO3, salt, premix, methionine and lysine uniformly mixed in the base ration for the control treatment, while for the composition of the feed ingredients the percentage of fishmeal consumption was reduced to 5% and 8% fresh BSF. Fresh BSF was administered after the preparation of the basal ration has been spread on the ration (topping).

The steps for producing the dried BSF production was to separate pupa from the cocoon layer by washing and steaming at 90°C for 10 minutes. The larvae were then heated to 55°C for 24 hours to remove the water. Then the larva was ground to flour with a blender and put in airtight plastic. The steps for producing the BSF extract were carried out according to the modified method of [13]. BSF larvae were washed and steamed for 10 minutes at 90°C, then the larvae were heated at 55°C for 24 hours to remove water, then the larvae were ground to flour with a blender and then with a denanol ratio of 1:10 (b/v) for 24 hours at room temperature, then the solution was filtered out twice with Whatman paper. The extract was then evaporated using an evaporator rotary vacuum at 40°C.

The physical quality of the eggs was checked once a week. From each of four eggs egg samples were taken per repeated treatment. Egg weight was measured by daily weighing during the study and then averaged according to treatment and replication. Egg yolk was separated from egg whites with a spatula and weighed. The calculation was made according to the following formula: Egg Yolk percentage = (egg yolk weight (g) / Weight of whole eggs (g)) x 100%. Egg white weight is the difference from the weight of whole eggs with eggshell weight and egg yolk, can be calculated by the formula: Percentage of egg white = (egg white weight (g) / weight of whole eggs (g)) x 100%. Eggshell was separated from egg white using a spatula, then weighed, can be calculated using the formula: Weight percentage of eggshell = (eggshell weight (g) / weight of whole eggs (g)) x 100%. To get the Haugh Unit (HU) value, the height of egg white (mm) was transformed into the correction value of the egg weight function, namely: HU = Log 100 (H - 1.7 W^{0.37} + 7.57). Information : H = protein height (mm), W = egg weight (g egg^{-1}) Results of the HU value: > 72 = AA quality, 60-72 = quality A, 31-60 = quality B, <31 = quality C. Egg yolks were measured in color by comparing the yolk color to the standard fan color egg roche yolk color fan on a scale of 7 to 14.

Chemical quality of laying hens: egg yolk cholesterol content was analyzed using the Liebermann Burchard Color Reaction method [26], egg yolk fat was analyzed using the Sochlet method AOAC 2005 [2] and MDA (Malondialdehyde) was analyzed using the method [10]. The metabolism of blood lipids (cholesterol, triglycerides and HDL) were analyzed using the Kit method AOAC 2005 [2] and serum LDL were analyzed using a calculation method known as the Friedwald method [17].
3. Results and Discussion

Based on Table 1, the data showed that the provision of fish meal containing different types of BSF larvae had a significant effect on the average weight of the egg yolk. The highest egg yolk weight value in T1 was 17.65 g (Table 8). The average value of egg yolk weight in this study ranged from 17.26 – 17.65 g (28.69 – 31.62%), higher than the [11] study of 14.60 - 15.20 g (24.30 - 25.00%), higher than of [36] amounted to (23.19%) and was within the normal range compared to the standard percentage of egg yolk which was 25 - 33% [32]. The quality of egg yolk is determined by the color, texture, suppleness and odor of the yolk [5].

The highest egg white weight value at T3 was 36.65 g (Table 1). The average value of egg white weight in this study ranged from 36.31 - 36.65 g (60.94 - 65.16%), which was below the [11] research of 38.70 - 40.30 g (63.10 - 64.60%), which is lower than [36] research, amounted to (64.63%) and was within the normal range compared to the standard percentage of egg whites ie 57 - 65% [32]. Egg white weight is influenced by egg white protein content, age, genetic and hormones [46], while the percentage of egg white is influenced by the protein content of the feed [36].

The average weight value of eggshell in this study ranged from 7.62 - 7.82 g (12.94 - 13.65%), was above the [11] research of 6.63 g (11.00%), below that of [20]. The brown color of the eggshell is influenced by pigments which are the result of transportation through the blood from the liver to the uterus, namely pigment phorphyrin, composed of protophorphyrin, coprophorphyrin, pentacarboxyl phorphyrin, urophorphyrin and several types of phorphyrin that have not been identified, pigment, genetic, stress level, age, and infectious bronchitis [4].

Variable	T0	T1	T2	T3
egg weight (g)	54.82±4.15a	53.56±4.76b	54.76±4.41a	57.17±3.76a
egg yolk weight (g)	17.59±0.13a	17.65±0.15a	17.48±0.07ab	17.26±0.08b
egg yolk weight (%)	30.63±0.02a	31.62±0.03b	30.56±0.03a	28.69±0.02a
egg white weight (g)	36.31±0.09b	36.41±0.13b	36.45±0.07ab	36.65±0.10ab
egg white weight (%)	63.29±0.05a	65.16±0.06b	63.70±0.05ab	60.94±0.04a
egg Shell Weight (g)	7.82±0.05a	7.62±0.05c	7.72±0.05c	7.78±0.03abc
egg Shell Weight (%)	13.64±0.01a	13.65±0.01ab	13.48±0.01a	12.94±0.01ab
Haugh Unit (HU)	80.53±1.75a	80.05±1.55a	80.16±0.65a	79.15±1.09a
egg index (%)	0.77±0.002a	0.77±0.002a	0.77±0.003a	0.77±0.001a
egg yolk index	0.40±0.004c	0.41±0.006b	0.42±0.004b	0.43±0.006b
egg white index	0.13±0.004ab	0.13±0.005b	0.14±0.005a	0.13±0.005ab
egg yolk color score	4.86±0.51ab	5.43±0.58ab	4.71±0.56b	4.14±0.51b

Note: Different superscripts on the same row showed significant differences (P <0.05); T0: Ration contains 8% fish meal; T1: Ration containing 5% fish meal + 8% fresh BSF; T2: Ration containing 5% fish meal + 8% dried BSF; T3: Ration containing 5% fish meal + 8% BSF extract.

The highest haugh unit value at T0 was 80.53 (Table 1). The average value of haugh units in this study ranged from 79.15 - 80.53, which was lower than [37] of 88.3 - 90.8, in the same range as the research of [14] to 79.3 - 80.8, which was lower than of [1] amounted to 94.80, and that was lower than of [33] amounting to 91.40. The HU value in this study was within the normal range according to the United States Department of Agriculture Standards [42], namely the AA-quality egg category HU value: > 72, A-quality egg HU value: 60-72, B-quality egg HU value: 51-60 and C quality eggs HU value: <31. The HU value was an indicator of egg quality, the higher the albumen value the better the egg quality [37], the high HU value indicates the level of freshness of the egg [21]. The average of egg index value was 0.77 %, the average of egg yolk index value was 0.42, and the average of egg white
index value was 0.13. The average egg index results were higher than the results of research by [37] in the amount of 74.1 - 76.7. The egg index test aims to determine the egg’s quality physically, because it affects the egg’s shape and reproductive function. The shape of the egg is determined by the diameter of the isthmus [45]. The index value yolk is determined by the content of protein in the ration, because protein serves to membrane formation of vitelin and khalaza, while the index value of the egg white is determined by the level of viscosity egg whites, because the content of CO₂ and H₂O in the eggs can evaporate when the longer the eggs are stored [34]. A low egg white index value indicates ovomucin has been damaged [19]. Some factors that influence the color of egg yolk are the ratio of eggs and ration, where the rate of egg production causes the diversity of the color of the yolk [3], β-carotene, xantopil [18].

Based on Table 2, the average of egg yolk cholesterol of this study ranged from 5.61-7.10 μg/g (Table 2). The aim of the analysis test of malondialdehyde content on egg yolk was to see the antioxidant activity of [12]. The malondialdehyde content test measured the lipid peroxidation process due to an increase in free radicals resulting in oxidative stress [44]. Malondialdehyde was a free radical product from lipid peroxidation [15]. The average of egg yolk fat was lower than [23] in quail of 31.30-32.30% and below the standard according to [11], that was 31.48-32.33%. Some factors that influence the quality of egg chemistry are the type of feed, types of livestock, genetic and hormone [32].

Variables	T0	T1	T2	T3
Malondialdehyde (µg g⁻¹)	7.10±0.02ᵃ	6.71±0.05ᵇ	5.61±0.07ᶜ	6.43±0.18ᶜ
Cholesterol (mg g⁻¹)	5.20±0.14ᵃ	5.90±0.07ᵃ	5.59±0.05ᵇ	5.40±0.16ᵇ
Fat (%)	22.67±0.04ᵇ	23.71±0.05ᵃ	22.49±0.06ᶜ	22.38±0.07ᶜ

Note: Different superscripts on the same row showed significant differences (P<0.05); T0: Ration contains 8% fish meal; T1: Ration containing 5% fish meal + 8% fresh BSF; T2: Ration containing 5% fish meal + 8% dried BSF; T3: Ration containing 5% fish meal + 8% BSF extract.

The average cholesterol of this study ranged from 5.20-5.90 mg/g (Table 2). The average of egg yolk cholesterol in this study was lower than the results of the study of [11] that the egg yolk cholesterol was 8.34-9.24 mg/g, [20] in the amount of 12.05-14.54 mg/g and [43] in the amount of 10.25-12.86 mg/g. The cholesterol ester content in the ration was positively correlated with the egg yolk cholesterol content and the VLDL (very low density lipoprotein) concentration in the blood plasma of laying hens. The content of cholesterol and LDL in the blood can affect cholesterol levels in egg yolks [32].

Variables	T0	T1	T2	T3
Triglycerides (mg/dl)	424.44±48.22ᵃ	409.73±67.62ᵃ	421.40±103.88ᵃ	412.04±34.69ᵃ
Cholesterol (mg/dl)	134.78±11.09ᵃ	133.02±7.55ᵃ	135.05±19.32ᵃ	133.56±5.68ᵃ
HDL (mg/dl)	13.84±6.27ᵃ	15.96±3.92ᵃ	16.30±7.11ᵃ	16.03±2.37ᵃ
LDL (mg/dl)	36.06±11.13ᵃ	35.11±12.54ᵃ	34.47±12.11ⁿ	35.12±11.45ᵃ

Note: Different superscripts on the same row showed significant differences (P<0.05); T0: Ration contains 8% fish meal; T1: Ration containing 5% fish meal + 8% fresh BSF; T2: Ration containing 5% fish meal + 8% dried BSF; T3: Ration containing 5% fish meal + 8% BSF extract.
The average triglyceride values in this study ranged from 409.73 - 424.44 mg/dl, it was lower than [36] amounting to 522.63-753.09 mg/dl. The normal standard for laying hen triglycerides is <150 mg/dl [6]. The cause of high triglyceride values is the amount of excess fatty acids then converted to triglycerides to be transported and stored. Endogenous lipid metabolism formed by the mechanism of lipogenesis, lipid export, synthesis and oxidation of fatty acids that occur in the liver [24], is an important mechanism for controlling the accumulation of triglycerides in the liver [45].

The average of cholesterol value of this study ranged from 133.02-135.05 mg/dl, it was lower than the study of [38] amounting to 152.00 mg/dl with laying hens treatment at heat stress temperatures and higher on laying hens treatment at thermoneutral zone temperatures of 104.20 mg/dl. The normal standard for laying chicken cholesterol values is 52-148 mg/dl [6]. Data in this study indicated that the causes of high cholesterol values were low HDL values and high triglyceride values in the blood of laying hens [25]. The intestine has the capacity to absorb cholesterol derived from food nutrients, but the intestine does not have the ability to absorb the total amount of cholesterol in the lumen [28].

The average HDL value of this study was around 13.84-16.30 mg/dl, lower than study from [40] amounting to 40.5-50.4 mg/dl and being in the same interval as [36] in the amount of 14.00-17.58 mg/dl. The normal standard of HDL in laying hens is> 22 mg/dl [6]. The low value of HDL content is caused by the use of HDL for the synthesis of steroid compounds such as hormones or bile salts in the liver and cholesterol entering HDL into the cell membrane [31]. HDL is a lipoprotein that functions to maintain and manage the balance of cholesterol so it does not accumulate in cells, by transporting sterols from the membrane at the same level as the amount of cholesterol synthesized to the liver [41]. High levels of HDL can prevent LDL oxidation, HDL molecule size is smaller than other lipoproteins so that HDL can transport cholesterol collected in macrophages by passing through vascular endothelial cells and into intestinal tunica [9].

The average LDL value of this study ranged from 34.47-36.06 mg/dl. A low LDL value is positively correlated with a low value of triglycerides in plasma, caused by the residual hydrolysis of triglycerides to be metabolized in the liver which will become LDL [45]. According to [29], LDL and chylomicrons are transported in the bloodstream, aiming to metabolize lipids and hydrolyze triglycerides with the help of lipoprotein lipases and provide free fatty acids for absorption by tissues for storage or oxidation.

4. Conclusion
BSF extract (T3) has amino acid content close to fish meal so that it can improve the physical and chemical quality of eggs. BSF extract has the lowest average of chemical test value compared to other treatments, this proved that BSF extract can reduce fat content in egg yolks. The results of the analysis of blood lipid metabolism that the treatment of live BSF (T1) has the lowest average value, this proved that live BSF was able to reduce the fat content in the blood of laying hens.

Acknowledgement
The authors gratefully acknowledge Prof. Dewi Apri Astuti, Prof. I Wayan Teguh Wibawan and Dr. Widya Hermana for technical support, and PT. Biocycle Indo Bogor for the provision of the Hermetia illucens.

References
[1] Ahammed M, Chae B J, Lohakare B, Keohavong, Lee M H, Lee S J, Kim D M, Lee1 J Y and Ohh S J 2014 Comparison of Aviary, Barn and Conventional Cage Raising of Chickens on Laying Performance and Egg Quality Asian Australasian Journal of Animal Sciences (27) 1196-1203
[2] [AOAC] Association of Official Analytical Chemists 2005 Official Methods of Analysis of AOAC International 18th ed Assoc Off Anal Chem Arlington
[3] Astriana Y, Widiyaningrum P and Susanti R 2013 Yellow color intensity and omega-3 levels of quail eggs due to sea retreats USU Journal of Legal Studies 2(2) 105-110
[4] Aygun A 2014 The relationship between eggshell colour and egg quality traits in table eggs *Indian J Anim Res* **48**(3) 290-294

[5] Bain M M, Nys Y and Dunn I C 2016 Increasing persistency in lay and stabilizing egg quality in longer laying cycles What are the challenges? *British Poult Sci* **57**(3) 330-338

[6] Basmacioglu H and Ergul M 2005 Research on the factor affecting cholesterol content and some other characteristics of eggs in laying hens *Turk J Vet Anim Sci* **29** 157-164

[7] Beski S S M, Swick R A and Iji P A 2015 Specialised protein products in broiler chicken nutrition: A review *Anim Nutr* (1) 47-53

[8] Bosch G, Zhang S, Dennis GABO and Wouter H H 2014 Protein quality of insects as potential ingredients for dog and cat foods *Journal Nutr Sci* (3) 1-4

[9] Buyse J and Decuyper E 2015 Chapter 19 - Adipose Tissue and Lipid Metabolism. *Sturkie's Avian Physiology* 6th Ed Editor: C G Scanes San Diego (US) Academic Pr

[10] Capeyron M F M, Julie C, Eric B, Jean P, Jean M R and Piere B 2002 A diet cholesterol and deficient in vitamin E induces lipid peroxidation but does not enhance antioxidant enzyme expression in rat liver *J NutrBiochem* (13) 296-301

[11] Cayan H and Erener G 2015 Effect of Olive Leaf (*Olea europaea*) Powder on Laying Hens Performance, Egg Quality and Egg Yolk Cholesterol Levels *Asian-Aust J Anim Sci* **28**(4) 538-543

[12] Chen P, Wang A Q and Shan A S 2009 Effects of *Ligustrum lucidum* Fruits on Growth Performance, Antioxidation and Meat Quality in Arbor Acres Broilers *Asian-Aust J Anim Sci* **22**(5) 700-705

[13] Choi W H, Yun J H, Chu J P and Chu K B 2012 Antibacterial effects of extract of *Hermetia illucens* (Diptera: *Stratiomyidae*) larvae against Gram-negative bacteria *Entomological Research* (42) 219-226

[14] Choi Y, Lee E C, Na Y and Lee S R 2018 Effects of dietary supplementation with fermented and non-fermented brown algae by-products on laying performance, egg quality, and blood profile in laying hens *Asian Australas J Anim Sci* **31**(10) 1654-1659

[15] Clarkson P M and Thomson H S 2000 Antioxidants: What role do they play in physical activity and health Am J Clin Nutr (729) 637-346

[16] Finke M D 2013 Complete nutrient content of four species of feeder insects *Zoo Biology* **32**(1) 27-36

[17] Friedewald N T, Levy R I and Frieddericson R I 1972 Estimation of the concentration of low density lipoprotein cholesterol plasma without Use of the prepatagive ultracentrifugation *Clin Chem* **18**(6) 499-502

[18] Hermana W, Toharmat C, Sumiati and Manalu W 2014 Performances and egg quality of quail offered feed containing sterol from katuk (*Sauropus androgyynus*) and mulberry (*morus alba*) leaf meal *Iranian Journal of Pharmaceutical Sciences* (3) 168-172

[19] Hiroko S P, Kurtini T and Rianty 2014 The effect of storage duration and eggshell color of purebred-chicken egg to the albumen index, yolk index, and egg’s pH *Jurnal Ilmu dan Teknologi Peternakan* **2**(3) 108-114

[20] Hu C H, Zhao A Y, Wang D G, Pan H Y, Zheng W B, Qian Z C and Zou X T 2011 Effects of broccoli stems and leaves meal on production performance and egg quality of laying hens *J Anim Feed Sci Tech* **170**(1-2) 117-121

[21] Jezil N, Hintono A and Mulyani S 2013 Declining quality of broiler eggs with different intensities of brown shell during storage *A Food Technology Application* **2**(1) 43-47

[22] Katayane A F, Wotayan F R and Imbar M R 2014 Production and Protein Content of Maggot (*Hermetia illucens*) Using Different Growth Medium *J Zootek* (34) 27-36

[23] Kayatun K K S, Mulyono and Wahyono F 2012 The use of crotalaria usaramoensis at quail rations layer period on abdominal and egg fat *Animal Agriculture Journal* **1**(1) 499-505

[24] Kersten S 2011 Mechanisms of nutritional and hormonal regulation of lipogenesis *European Molecular Biology Organization Reports* (2) 282-286
[25] Khoirul A and Lubis E M 2017 The Addition of betel leaf juice (Piper betle linn) to the laying hens ration to decrease egg cholesterol J Aves 11(1) 47-52
[26] Kleiner I S and Dotti L B 1962 Laboratory Instruction in Biochemistry 6th ed New York: The CV. Mosby Company
[27] Lalande C, Diener S, Magri M E, Zurbrugg C, Lindstrom A and Vinneras B 2013 Faecal sludge management with the larvae of the Black Soldier Fly (Hermetia illucens)-from a hygiene aspect Sci Total Environment (458-460) 312-318
[28] Leance C C, Nunes V S, Nakandakare E R, de Faria E C and Quintao E C R 2013 Does plasma HDL-C concentration interact with whole-body cholesterol metabolism? Nutr Metab & Cardio Dis (23) 279-284
[29] Li H, Liji J, Feifei W, Philip T, Xiaoyu L, Shuying L and Yongping X 2012 Effect of Red Pepper (Capsicum frutescens) Powder or Red Pepper Pigment on the Performance and Egg Yolk Color of Laying Hens Asian-Aust J Anim Sci (25) 1605-1610
[30] Maurer V, Holinger M, Amsler Z, Fruh B, Wohlfahrt J, Stamer A and Leiber F 2016 Replacement of soybean cake by Hermetia illucens meal in diets for layers J Insect Food Feed (2) 83-90
[31] Murray R K, Bender D A, Bothan K M, Kennelly P J, Weil P A and Rodwell V W 2012 Harper’s illustrated biochemistry The Mc Graw-Hill Companies Inc USA
[32] Nys Y and Guyot N 2011 Egg Formation and Chemistry Nys Y, Bain M, Immerseel FV, editor Cambridge (UK): Woodhead Pub Ltd
[33] Park S I, Kim J W and Yoe S M 2015 Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae Dev Comp Immunology (52) 98-106
[34] Pribadi A, Kurtini T and Sumardi 2015 Effect of Probiotic Local Microbial to Quality of Albumen Index, Yolk Index, and Yolk Color on Ten Days Eggs Storage Time Jurnal Ilmu dan Teknologi Peternakan 3(3) 180-184
[35] Rambet V, Umboh J F, Tulung Y L R and Kowel Y H S 2016 Protein digestibility and energy of broiler ration using maggots flour (Hermetia illucens) instead of fish meal Zootech J (36) 13-22
[36] Rusli R K, Wirаяwan K G, Toharmat T, Jakarta and Mutia R 2015 Supplementation of mangosteen pericarp meal and vitamin E on egg quality and blood profile of laying hens Media Peternakan 38(3) 198-203
[37] Selim S, Hussein E and Abou-Elkhair R 2018 Effect of spirulina platensis as a feed additive on laying performance, eggquality and hepatoprotective activity of laying hens Europ Poult Sci (82) 1-13
[38] Sohail M U, Hume M E, Byrd J A, Nisbet D J, Ijaz A, Sohail A, Shabbir M Z and Rehman H 2012 Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress Poult Sci (91) 2235-2240
[39] Steel R G D and Torrie J H 1995 Statistics principles and procedures, a biometric approach translation 5th ed Jakarta (ID): PT Gramedia Pustaka Utama
[40] Suryo H, Yudianto T and Isroli 2012 The Effect of Probiotic on HDL (High Density Lipoprotein), LDL (Low Density Lipoprotein) and Cholesterol Concentration in Blood of Indigenous Chicken Anim Agricult J 1(2) 228-237
[41] Thrall M A, Weiser G, Allison R and Campbell T W 2012 Veterinary hematology and clinical chemistry: John Wiley & Sons
[42] [USDA] United States Departement of Agriculture 2000 Egg Grading Manual United State Departement of Agriculture, United State
[43] Uunganbayar, D, Bae I H, Choi K S, Shin I S, Firman J D and Yang C J 2005 Effects of green tea powder on laying performance and egg quality in laying hens Asian-Aust J Anim Sci 18(12) 1769-1774
[44] Valko M, Rhodes C J, Moncola J, Izakovic M and Mazur M 2006 Free radical, metals and antioxidants in oxidative stress-induced cancer J ChemicoBiological Interaction (160) 1-40

[45] Yang X, Zhang B, Guo Y, Jiao P and Long F 2010 Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens Poul Sci (89) 254–260

[46] Yumna M H, Zakaria A and Nurgiartiningsih V M A 2013 Kuantitas dan kualitas telur ayam arah (Gallus turcicus) silver dan gold Jurnal Ilmu-Ilmu Peternakan 23 (2) 19-24

[47] Zita L, Ledvinka Z, Klesalová L, Ledvinka Z, Klesalová L and Japanese T 2013 The effect of the age of Japanese quails on certain egg quality traits and their relationships Vet Archiv 83(2) 223-232