Staphylococcus epidermidis Prevails

Staphylococcus aureus in Multispecies Biofilm under Gentamicin Stress

Noor Jabbar Karam¹, Harith Jabbar Fahad Al-Mathkhury²

Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq

Abstract: Out of 60 staphylococcal isolates isolated from different sources, the results revealed that 20 and 10 were identified as *S. aureus* and *S. epidermidis*, respectively. These results were confirmed by detecting 16S RNA gene. Remarkably, 80% of *S. aureus* and 80% of *S. epidermidis* isolates developed Methicillin resistance. Findings of the current work demonstrated that most of methicillin resistant *S. aureus* (MRSA) and methicillin resistant *S. epidermidis* (MRSE) formed weak biofilm. The competition between *S. aureus* and *S. epidermidis* in multispecies biofilm were tested at several conditions encompassed temperature, pH, and starvation. Results showed that the numbers of biofilm cells have intensely decrease to undetectable limits in the presence of Gentamicin, approximately, at all tested conditions. With few exceptions, *S. epidermidis* showed a noticeable dominance in all species combinations.

1. **Introduction**

Staphylococci defined as a diverse group of bacteria that cause different types of diseases which could be minor skin infections up to life-threatening bacteraemia. Staphylococci still the major cause of both hospital and community acquired infections worldwide even the high continued efforts to control their spread. *Staphylococcus aureus* and *Staphylococcus epidermidis* considered as the two major opportunistic pathogens of this genus [1].

Fifty years ago, Methicillin and different semisynthetic penicillins were commonly used which led to the appearance of Methicillin Resistance *Staphylococcus aureus* (MRSA) and *S. epidermidis* (MRSE), and that continue to persevere in both the healthcare and community environments. Currently, the results revealed that 80% (16/20) of *S. aureus*, 80% (8/10) *S. epidermidis*, and 86.6% (26/30) other CONS isolates developed Methicillin resistance.

Biofilm formation may be determined to detect the ability of staphylococci to colonize the biomedical devices. The microtiter plate (MTP) test devised by Christensen et al. [2], were most commonly used as the phenotypically methods for slime and/or biofilm production.

The organization of the biofilm into complex structures is regulated by the exchange of chemical signals between cells in a process known as quorum sensing. Quorum sensing is a strategy of cell-cell communication benefiting the biofilm community by controlling unnecessary overpopulation and competition for nutrients with important implications for the infectious process [3].

This study was designed to achieve the following aims; 1) studying the competence between isolates (resistant vs sensitive) to environmental conditions (pH, temperature, and starvation). 2) detecting the role of Gentamicin on competition at the same environmental conditions and 3) investigating the competence capacity between the two species in vivo using murine model.

2. **Materials and Methods**

Specimen's collection

Sixty clinical specimens referring to Flow Catheter, Burn, Indwelling Devices, Midstream Urine, Wounds Swabs, and Sputum, were collected from patients attending several hospitals in Baghdad (AL Karama Hospital, Teaching Laboratories of Medical City) for the period from October 2015 to January 2016.

Isolation and identification of staphylococci

All specimens were streaked on mannitol salt agar and Blood Agar. Thereafter, all plates were incubated aerobically for 24 h at 37°C. The grown colonies were identified according to Bergey’s Manual [4] depending on the morphological features on culture media and biochemical tests [5, 6] as follows:

Detection of MRSA by Cefoxitin Disk Diffusion method

All the isolates were subjected to cefoxitin disk diffusion test using a 30 µg disk. A 0.5 McFarland standard suspension of the isolate was made and lawn culture was done on Mueller-Hinton agar plate. Plates were incubated at 37°C for 18 hr. and zone diameters were measured. An inhibition zone diameter of ≤ 19 mm was reported as Methicillin resistance and ≥20 mm was considered as methicillin-sensitive *S. aureus*, and an inhibition zone diameter of ≤ 24 mm was reported as Methicillin resistance and ≥25 mm was considered as methicillin-sensitive *S. epidermidis* [7].

Extracting and purifying of genomic DNA

Genomic DNA from all isolates (n = 60) was extracted and purified by using Genomic DNA Extraction (Geneaid, USA), using manufacturer protocol, which can be summarized as follows:

Multiplex PCR

The presence of 16sRNA for *S. aureus*. 16sRNA for *S. epidermidis* genes and mecA in both species were detected by amplifying them as described by Arciola et al. [8].

Volume 6 Issue 7, July 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 20061703

DOI: 10.21275/20061703

528
mecA and 16sRNA for *S. aureus* and 16sRNA for *S. epidermidis* primers (Table 1) were provided in lyophilized form (Bioneer, Korea), dissolved in DNaSe free distilled water to give a final concentration of 100 pmol/µl as recommended by provider and stored in a freezer until use.

Table 1: DNA primers used in the present study [8]

Id	Primers	Target gene	Amplicon size (pb)
1	SA1 (5′-AATCTTTTGTCCGTAACGATATTCTTC ACG-3′) SA2 (5′-CGT AATGAGATTTGCTATGAT AATACAACA-3′)	16sRNA of *S. aureus*	108
2	SE1 (5′-ATCAAAAAAGTTGGCAACCTTCTT CTA-3′) SE2 (5′-CAAAAGAGCCTGGAAGAATG ATCA-3′)	16sRNA of *S. epidermidis*	124
3	MRS1 (5′-TAG AAA TGACTGAACGTCCG-3′) MRS2 (5′-TTG CGA TCAATGTTCAGGTAG-3′)	mecA	154

PCR mixture was set up in a total volume of 20 µl included 2 µl of each primer (10 micromole/µl) and 6 µl of template DNA (50 ng/µl) have been used. The rest volume was completed with free nuclease water. Negative control contained all material except DNA, in which D.W. was added instead of template DNA. Program of DNA amplification was as follows: initial denaturation at 92°C for 3 min., 30 cycle at 92°C for 1 min., 56°C for 1 min., 72°C for 1 min. and a final extension at 72°C for 3 min.

Determination of Gentamicin minimal inhibitory concentration (MIC).

Depending on microdilution method described by CLSI[9], different concentrations of Gentamicin (2 – 1024 µg/ml) were dissolved in Mueller-Hinton broth. The microtiter plate was incubated overnight at 37°C. Thereafter, the lowest concentration that inhibits bacterial growth was considered as the MIC.

Biofilm formation assay

Quantification of biofilm formation by *S. aureus* and *S. epidermidis* on abiotic surfaces was assessed as previously described by Nakao *et al.*[10]. In brief; The wells of sterile 96-well U shaped-bottomed polystyrene microplates were filled with 200 µl of an overnight nutrient broth (bacterial concentration was adjusted to be equivalent to McFarland standard no. 0.5) before the plates were covered and incubated aerobically at 37°C for 24 h. Each bacterial isolate was tested in triplicate. Control wells were performed by adding bacteria-free nutrient broth. To visualize biofilms, the contents of the wells were aspirated and the wells washed three times with distilled water to remove loosely adherent cells. The remaining attached bacteria were fixed with 200 µl methanol for 30 min. After drying in air, the wells were stained with 200 µl 0.1% crystal violet solution for 20 min at room temperature. Excess stain was rinsed off by placing the plate under running tap water. Thereafter, the plates were dried in a 37°C incubator for approximately 30 min to ensure they were completely dry. Subsequently, the adherent cells were resolubilized with 200 µl absolute ethanol for 10 minute. Finally, the optical density of each well was obtained at 630 nm using microplate reader.

Statistical analysis

Means were compared to each other via ANOVA and T test. Differences were considered significant when P ≤ 0.05.

3. Results and Discussion

Bacterial isolation and identification

In accordance to biochemical, morphological, and cultural as well as 16sRNA,20 coagulate producers and mannitol fermenters were identified as *S. aureus*; whereas the other 40...
non-mannitol fermenters, non-hemolytic (gamma haemolysis), and coagulase negative were comprised as \textit{S. epidermidis} (n= 10) and other \textit{Staphylococcus} species (n=30).

Numerous studies have investigated the isolation of staphylococci from diverse clinical specimens. Onanuga and Temedie [12] stated that nearly 33.3\% of \textit{S. aureus} isolates were isolated from 120 nares swabs. Babakir-Mina et al. [13] reported that \textit{S. aureus} was isolated from 22\% of patients attending Sulaimania burn hospital, and formed about 36\% from burn specimens. In another work carried out by Vaez et al. [14] recorded nearly 30.8\%, 26.5\%, 22.7\%, 10.8 and 9.2\% of \textit{S. aureus} isolates were isolated from urine, wound, blood, sputum, and abscess, respectively.

Concerning \textit{S. epidermidis}, Eftekhar and Mirmohamadi [15] reported that 40\% of isolates were isolated from blood; while 14\% of isolates were recovered from urine specimens and another 14\% from wound specimens. Nevertheless, similar percentages (8\%) were recorded from intravascular catheter and exudate, and other unknown sources (16\%). On the contrary, a study conducted by Diembed-Hernandez et al. [16], showed that 79.5\% of \textit{S. aureus} and 73.77\% of CONS were detected in different sources.

Likewise, Gad et al. [17] found that out of 292 bacterial isolates collected from urine and catheter specimens, \textit{S. aureus} and \textit{S. epidermidis} represented 6.2\%, 12\%, respectively.

Whilst, Adesida et al. [18] reported that 14.0\% \textit{S. aureus} nasal colonization in medical students in Lagos, Nigeria. Chopra et al. [19] found that \textit{S. aureus} comprised 31.1\%; while CONS covered 13.33\%. In spite of that, Rabelo et al. [20] collected 404 samples of 202 health professionals, in which 14.6\% (59/404) were \textit{S. aureus} isolates and 6.2\% (25/404) were classified as \textit{S. epidermidis}; while Onanuga and Onalapo [21] and Al-Geobory [22] declared that about 36\% of 150 urine sample was identified as \textit{S. aureus}. Pant and Rai’s [23] findings revealed higher \textit{S. aureus} nasal colonization rate (43.8\%) in staffs of teaching hospital in Nepal.

These variations may be attributed to the characteristics of the population under study. A population with medication with antibiotics as at the time of sampling may yield a much lower prevalence of \textit{S. aureus} while a population deal with hospital settings may yield a much higher prevalence because of the high number of infectious patients in that environment.

Detection of methicillin resistance

Cefoxitin (30 μg/disk) disk diffusion method was adopted to investigate the methicillin resistance to all staphylococcal isolates (n = 60). Markedly, variable methicillin resistance was noticed among \textit{Staphylococcus} sp. The results revealed that 80\% (16/20) of \textit{S. aureus}, 80 \% (8/10) \textit{S. epidermidis}, and 86.6\% (26/30) other CONS isolates developed Methicillin resistance.

Infections because of MRSA are globally expanding problematic issue either inside or outside clinical settings. Therefore, it is very important for laboratories at epidemiological and clinical levels to distinguish MRSA from MSSA. The reason lying behind such distinguishing in not limited to picking suitable and efficient antibiotic treatment policy for the individual patient, but correspondingly to keep the transmission of MRSA under control [24].

It has been reported in literature that the results of cefoxitin disk diffusion methods highly compatible with PCR technique that detect the presence of \textit{mecA} more than do the results of oxacillin disk diffusion method. Given that, the specificity and sensitivity for detecting methicillin resistance for both methods (Ca. cefoxitin disk and PCR) are 100\% [7, 25, 26].

Resistance to methicillin in \textit{Staphylococcus} sp. is primarily mediated by the presence of penicillin-binding protein 2a, encoded by the \textit{mecA} gene. In certain MRSA strains, the \textit{mecA} gene is heterogeneously expressed in vitro [27].

A lot of local studies dealt with MRSA isolation. Among them a study done by Al-Hasani [28] demonstrated that 41/49 (83.7\%) were MRSA and 30/37 (81\%) were identified as Methicillin resistance coagulase negative staphylococci (MRCONS). Another local study reported that MRSE covered 84\% [29]. Likewise, Babakir-Mina et al. [13] stated that among \textit{S. aureus} positive cases, 88\% were MRSA. Upon the results of Al-Dahbi and Al-Mathkhury [30] MRSA constitutes about 94.3\% among \textit{S. aureus isolates}. Muhammad [31] revealed that 68\% (49/72), 93\% (26/28), and 92\% (34/37) of \textit{S. aureus}, \textit{S. epidermidis}, and other CONS isolates developed Methicillin resistance.

Studies in Iran also paid attention to MRSA isolation, it has been noticed that the incidence MRSAin burn patients was ranging between 60 - 80\% [32, 33, 34]. Similarly, in Isfahan, Iran, Khorvash [35] demonstrated that the prevalence of MRSA in nosocomial infections reached 67.2\%. Diverse epidemiological factors like geographical location, health system proficiency in administrating infection control programs have crucial role in such noticed variability of MRSA prevalence. MRSA isolates were mostly isolated form wound infections (43\%). For instant, [36] reported that MRSA covered around 33\% in a burn center in USA [36].

The results of Al-Hasani [37] (using Methicillin disks (5μg/disk) revealed that from all 49 isolates, 41 isolates (83.7\%) showed resistant to the Methicillin while 5 isolates (10.2\%) were sensitive to the Methicillin and only 3 isolates (6.1\%) were intermediate resistance. A study carried out by Al-Maliki [38] who showed that the rate of MRSA was 80.3\% and the Methicillin sensitive \textit{S. aureus} was 16.4\% while the intermediate resistance covered 3.3\%. Additionally, the same author demonstrated that the rate of MRSE was 86.6\% and the Methicillin sensitive \textit{S. epidermidis} was 4.4\% and \textit{S. epidermidis} that intermediate resistance to the Methicillin was 8.8\%.

When this study compared with the present study two important findings could be observed; the first one is the emergence increased in the Methicillin resistance...
staphylococci (both COPS and CONS) strains and decreased of sensitive strains in the very short period of time in our country (Iraq). Additionally, this finding is agreed with many other studies and reports in the world that suggested over the last few decades, there has been an enormous increase and emergence in the prevalence of Methicillin resistance both COPS and CONS strains all over the world and such strains are prone to cause serious outbreaks [39, 40,41]. For instance, CA-MRSA infections have been reported in North America, Europe, Australia, New Zealand, United States and South Korea [42, 43].

The second important finding concluded from the present results, is that the rate of coagulase-negative staphylococci isolates that resistant to Methicillin were higher than the rate of Methicillin resistance coagulase-positive and this finding is agreed with many other studies that mention that S. epidermidis is more often resistant to antimicrobial drugs than S. aureus and resistance to Methicillin occurs in about 35% of S. aureus while occurs in approximately 75% of S. epidermidis isolates [44, 45]. Some studies mention that 90% of coagulase-negative staphylococci, mostly S. epidermidis, being Methicillin resistant [46, 47].

The variations are due to differences of local conditions, such as climate or microbial prevalence, but others are likely to be caused by differing prevention protocols, topical and systemic treatment of burn wounds, sampling regimens as well as study lengths [48].

Methicillin resistance of S. aureus remains to be a significant problem. Rapid and accurate determination of Methicillin resistance is vital for the establishment of successful treatment policy. Misdiagnosing this resistance leads to treatment failures and spread of infections with these resistant strains. This means that disk diffusion testing by using cefoxitin disk is far superior to most of the currently recommended phenotypic methods and is now an accepted method for the determination of MRSA by many authors and related centers including CLSI [49].

Estimation of Minimal Inhibitory Concentration (MIC)

This estimation was performed for four isolates, two S. aureus (MRSA and MSSA) isolates and two S. epidermidis (MRSE and MSSE) isolates. Different concentrations of Gentamicin (2 – 1024 μg/ml) were used, the break point of Gentamicin is ≥ 4μg/ml depending on CLSI[7].

Findings of this work revealed that all isolates were Gentamicin resistance (≥ 64 μg/ml), hence sub-MIC (32 μg/ml) was used for further experiments.

Biofilm assay

The ability of S. aureus, S.epidermidis and other staphylococcus spp.biofilm producing isolates were evaluated using pre-sterilized 96-well polystyrene microtiter plates. In order to estimate biofilm degree, absorbance was determined at 630 nm by an aid of microtiter plate reader. Given that, absorbance values represented the degree of the biofilm thickness that formed by the studied isolates on the surface of the microtiter well. Obtained results were categorized into four groups based on limits summarized in Table 3.

Table 3: Biofilm degree based on estimated cut off value of this study

Id	Biofilm degree	OD₅₃₀ limits
1	Non adherent	< 0.043
2	Weak adherent	0.043 – 0.086
3	Moderate adherent	0.086 – 0.17
4	Strong adherent	≥ 0.17

*cut off value= Mean of controlOD₅₃₀ + 3*Standard deviation= 0.036 + 3*0.0025= 0.043

Regarding limits stated in Table 3, results of the present study revealed that out of 16 MRSA, 12 formed weak biofilm while 4 isolates formed mild biofilm. However, 2 MSSA produced weak biofilm and another two formed mild biofilm. Concerning S. epidermidis, two MRSE isolates formed weak biofilm; while six and two MSSE formed weak and mild biofilms, respectively. In regard to MRCONS, seven isolates formed weak biofilm and another seven also made mild biofilm. Additionally, one MSCONS formed mild biofilm. Noticeably, 11 MRCONS isolates and one MSCONS were unable to form biofilm. Nevertheless, no isolate has the ability to produce strong biofilm Table 4.

Table 4: Biofilm forming degree of S. aureus, S. epidermidis and other CONS

Id	Isolate sp.	Methicillin susceptibility	Biofilm degree		
		No Biofilm	Weak Biofilm	Mild Biofilm	Strong Biofilm
1	S. aureus	MRSA	12	4	0
		MSSA	2	2	0
2	S. epidermidis	MRSE	0	2	0
		MSSE	0	6	2
3	Other CONS	MRCONS	11	7	7
		MSCONS	1	0	4
Total			12	29	19

*CONS; coagulase negative staphylococci

A study performed by Muhammad [31] showed that 100% MRSA isolates were able to form weak biofilm; whereas, MRSE isolates couldn't develop strong biofilm. Nevertheless, 96% and 4% of MRSE isolates formed weak and moderate biofilm, respectively.

In the study of Al-Dahbi [50], the biofilm-forming ability of S. aureus was evaluated for all isolates (106 isolates) by microtiter plates and the result revealed that 31%, 45%, and 22% of isolates were weakmild, and strong producers, respectively. Noticeably, 2% of the tested isolates were highly-strong producers.

Gad et al. [17] reported that the biofilm producing in both S. aureus and S. epidermidis produce high, moderate and weak biofilm for S. aureus (66.7%, 16.7 %, and 16.7%, respectively) and S. epidermidis (51.4%, 37.1%, and 11.4%, respectively).

The findings of this study was incompatible with a study achieved byGad et al. [51], that they stated the biofilm production assessed by microtiter plates MIP revealed 30 (90.9%) strains of S. aureus were biofilm positive and 19 strains (95%) of CONS were biofilm former. Quantitative biofilm production demonstrated that 22 (76.7%) of strains
were strong biofilm producers, 8 (24.2%) strains were moderate biofilm producer, and 3 (9.1%) strains were non-biofilm producers. In CONS, 13 (65%) strains were strong biofilm producers, 6 (30%) moderate biofilm producers and one (5%) strain was non-biofilm producer.

Liduma et al. [52] suggested that the percentage of the biofilm producing strains was 47.6%. It is very close to the results that what was observed by Arciola et al. [8], who revealed that 46% of isolates were biofilm producers. Furthermore, in a study of Oliveira and Cunha [53] among 100 isolates studied, 35 (35%) of them were classified as weakly adherent and 46 (46%) as strongly adherent, for a total of 81 (81%) positive isolates and 19 (19%) negative isolates.

Detection of mecA gene and 16sRNA for S. aureus and 16sRNA for S. epidermidis

Results depicted in Figure 1 revealed that 20 isolates of S. aureus and 10 isolates of S. epidermidis were confirmed by 16srRNA amplification. Nearly 80% (16/20) of S. aureus isolates, 80% (8/10) of S. epidermidis, and 86.6% (26/30) of other CONS isolates were mecA positive. Noticeably, the result of PCR completely matched those resulted from cefoxitin disk diffusion method.

Most of staphylococcal isolates (83.3%) of the present study appeared to be resistant to cefoxitin (alternative to methicillin). Such findings are in agreement with Fey et al. [54] who stated that 81% of S. aureus were MRSA, while Al-Geobory [22] found that 90.9% of S. aureus isolates were resistant to methicillin. Additionally, Jain et al. [55] observed about 75.3% of isolates were methicillin resistant. Yet, these observed differences might be due to the variation in the geographic area, sources of clinical specimens, genetic background and the collection site of isolates. The reason behind continuous increasing in resistant to β-lactam antibiotics is caused by the overuse or misuse of these antibiotics and by the use of poor quality antibiotics. It also results from natural genetic changes, or mutations, within the organisms that cause diseases.

Bockstael and van Aerschot [56] have been describe four major mechanisms of resistance; Target site alterations, such as changes to the penicillin-binding protein, are common, inactivation of antimicrobials, as by penicillinases or the new carbapenemases, is often seen, Prevention of antimicrobial access to their targets by changing the cell wall permeability that denies access to antimicrobials during the course of therapy and Finally, newly described efflux mechanisms pump the antimicrobial out of the cell before it can reach its target site.

Nevertheless, several studies have shown that resistance in bacteria also acquired by a mutation and acquisition. Acquisition may be passed vertically by selection to daughter cells or horizontally by transfer of resistance genes between strains and species. Exchange of genes is possible by transformation, transduction or conjugation [57].
dominance (P < 0.05) in all species combinations at all tested conditions.

Table 5: Effect of Gentamicin* on Biofilm cell viability at pH 7 and 10°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)		
	S. aureus	S. epidermidis	S. aureus	S. epidermidis
MRSA and MRSE	984	12406	Undetectable	Undetectable
MRSA and MSSE	30	181	Undetectable	Undetectable
MSSA and MRSE	63	123	Undetectable	Undetectable
MSSA and MSSE	42	1294	Undetectable	Undetectable

*Gentamicin was added 32µg/ml (subMIC)

Markedly, biofilm degree was highly affected (P ≤ 0.05) by Gentamicin (Figure 2).

Table 6: Effect of Gentamicin* on Biofilm cell viability at pH 7 and 37°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)		
	S. aureus	S. epidermidis	S. aureus	S. epidermidis
MRSA and MRSE	2015	885	Undetectable	Undetectable
MRSA and MSSE	565	1018	Undetectable	Undetectable
MSSA and MRSE	25724	2868	Undetectable	Undetectable
MSSA and MSSE	571	805	Undetectable	Undetectable

*Gentamicin was added 32µg/ml (subMIC)

Given that the numbers of biofilm cells have dramatically decreased to undetectable limits nearly at all tested conditions (Tables 5 to 11), it can be concluded that Gentamicin has a significant (P < 0.05) impact on viability of cells inside the biofilm. In general, S. epidermidis showed a noticeable

Competition experiments

Nevertheless, at 37°C, MRSA and MSSA outnumbered MRSE and MSSE, respectively (Tables 6). However, Gentamicin has decreased the biofilm thickness (P ≤ 0.05) in exception for MRSA and MSSE coexistence, in which biofilm thickness increased insignificantly (P ≥ 0.05) as it is depicted in Figure 3.

Table 6: Effect of Gentamicin* on Biofilm cell viability at pH 7 and 37°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)		
	S. aureus	S. epidermidis	S. aureus	S. epidermidis
MRSA and MRSE	2015	885	Undetectable	Undetectable
MRSA and MSSE	565	1018	Undetectable	Undetectable
MSSA and MRSE	25724	2868	Undetectable	Undetectable
MSSA and MSSE	571	805	Undetectable	Undetectable

*Gentamicin was added 32µg/ml (subMIC)
At 45°C, a marked dominance of *S. epidermidis* over *S. aureus* was noticed (Table 7). Moreover, biofilm thickness was affected (P ≤ 0.05) by the presence of Gentamicin as it is depicted in Figure 4.

Table 7: Effect of Gentamicin* on Biofilm cell viability at pH 7 and 45°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)
S. aureus	**S. epidermidis**	
MRSA and MRSE	20	31
MRSA and MSSE	24	34
MSSA and MRSE	31	39
MSSA and MSSE	19	28
MRSA and MSSSE	Undetectable	Undetectable
MSSA and MRSE	Undetectable	Undetectable
MSSA and MSSE	Undetectable	Undetectable

Gentamicin was added 32µg/ml (subMIC)

In Gentamicin free medium, MRSA and MSSA overnumbered (P < 0.05) MSSE when they incubated at pH. Whereas, when Gentamicin was added, MRSA overnumbered MRSE in addition to numbers of cells is highly reduced post Gentamicin addition (Table 8). Evidently, biofilms formed by all combinations were highly influenced (P < 0.05) by the presence of Genamicin as it is illustrated in Figure 5.

Table 8: Effect of Gentamicin* on Biofilm cell viability at pH 6 and 37°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)
S. aureus	**S. epidermidis**	
MRSA and MRSE	682	800
MRSA and MSSE	112	84
MSSA and MRSE	469	812
MSSA and MSSE	1056	397
MRSA and MSSSE	Undetectable	Undetectable
MSSA and MRSE	Undetectable	Undetectable
MSSA and MSSE	Undetectable	Undetectable

Gentamicin was added 32µg/ml (subMIC)
Once again, at pH 8, *S. epidermidis* had a superiority (P ≤ 0.05) in biofilm over *S. aureus* with and without Gentamicin addition (Table 9). However, Gentamicin highly affected (P ≤ 0.05) biofilm thickness as shown in Figure 6 and cell numbers (Table 9).

Table 9: Effect of Gentamicin* on Biofilm cell viability at pH 8 and 37°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)
	S. aureus	*S. epidermidis*
MRSA and MRSE	620	82
MRSA and MSSE	363	25
MSSA and MRSE	607	77
MSSA and MSSE	80	80

Gentamicin was added 32µg/ml (subMIC)

Figure 6: Effect of Gentamicin (32µg/ml) on Biofilm at pH 8 and 37°C

When biofilm was starved (1:100), MRSA was in greater number (P < 0.05) than MRSE in Gentamicin free medium; however, in the presence of Gentamicin, *S. epidermidis* numbers were more than those of *S. aureus* (Table 10). Gentamicin reduced the biofilm thickness in all species combination (Figure 7).

Table 10: Effect of Gentamicin* on starved** Biofilm cell viability at pH 7 and 37°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)
	S. aureus	*S. epidermidis*
MRSA and MRSE	602	197
MRSA and MSSE	16	12
MSSA and MRSE	488	85
MSSA and MSSE	66	570

*Gentamicin was added 32µg/ml (subMIC);**Brain Heart Infusion at 1:100 dilution.*
But when biofilm was starved at 1:1000, *S. epidermidis* exceeded *S. aureus* in all species combinations except for MSSA; which hadtopped (P < 0.05) MRSE in the presence of Gentamicin (Table 11). In regard to biofilm thickness, Gentamicin reduced thickness of all biofilms in exception for MRSA and MRSE (Figure 8).

Table 11: Effect of Gentamicin* on starved Biofilm cell viability at pH 7 and 37°C

Species combinations	Without Gentamicin (× 10 CFU/ml)	With Gentamicin (× 10 CFU/ml)
	S. aureus	S. epidermidis
MRSA and MRSE	45	142
MRSA and MSSE	81	183
MSSA and MRSE	117	208
MSSA and MSSE	173	1062
	S. aureus	S. epidermidis
MRSA and MRSE	674	867
MRSA and MSSE	163	1336
MSSA and MRSE	135	90
MSSA and MSSE	453	847

*Gentamicin was added 32µg/ml (subMIC);**Brain Heart Infusion at 1:1000 dilution.

The dominance of *S. epidermidis* over *S. aureus* reflects the ability of *S. epidermidis* to adapt and overcome the adverse conditions on the expense of *S. aureus*. Perhaps, it possesses colonizing factors or other determinants enable them to compete successfully other microorganisms which might found in vicinity.

Sato *et al.*, [58]stated that MRSA displayed a lowered surface electronegativity alongside with a shortage in teichoic acids amount. Even though the physicochemical features of such surfaces could hypothetically affect adhesion.

Iwase *et al.*, [59] reported that the serine protease Esp secreted by *S. epidermidis* have inhibited the biofilm formation of *S. aureus* as well as nasal colonization. Moreover, purified Esp has the ability to destroy the pre-existing *S. aureus* biofilms. Sugimoto *et al.* [60] demonstrated that Esp degraded certain proteins found in the biofilm matrix and cell wall of *S. aureus*. Additionally Esp developed an ability to degrade colonization factors, such as fibronectin-binding protein A and protein A. Furthermore, Esp selectively degraded many host receptors of *S. aureus* (e.g., vitronectin, fibrinogen, and fibronectin).

Burmolle *et al.*[61] demonstrated that synergistic increases in biofilm mass in mixed- versus single-species biofilms. However, Macleod and Stickler [62] specifically investigated a mixed culture of *Proteus mirabilis* and *P. aeruginosa* in catheter biofilms, and they found minimal antagonism between the two species.

In a study achieved by Varposhi *et al.* [63], *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, and *Stenotrophomonas maltophilia* were investigated togetherand inter-species communication among them, comprising some secreted factors (e.g., proteins, quorum-sensing molecules, secondarymetabolites, and...
carbohydrates), which affect gene expression, physiological contact, the production of antimicrobials, metabolic cooperation and competition, may lead to improved biofilm formation. The precise mechanism of synergism among these species is unknown. However, one or more of the interactions stated above may have occurred.

Lehman and Donlan [64] stated that the numbers of biofilm-associated *P. aeruginosa* and *P. mirabilis* were not affected by the presence of the other species at the 2-h, 24-h, and 48-h time points. The elimination of *P. aeruginosa* by 72 h in the two-species catheter reactors, regardless of phage treatment, was likely driven by the high pH that developed between 48 and 72 h due to *P. mirabilis* urease activity, as evidenced by *P. aeruginosa* growth inhibition in medium with pH 10. However, the high pH did not appear to inhibit lytic activities for either the *P. mirabilis* or *P. aeruginosa* phages in our catheter model, suggesting that phage application in indwelling urinary catheters with high pH conditions might be feasible.

References

[1] Gill, S.R., Fouts, D.E., Archer,G.L., Mongodin, E.F., DeBoy, R.T., Ravel, J., Paulsen, I.T., Kolonay, J.F., rinkac,L., Beanan, M., Dodson, R.J., Daugherty, S.C., Madupu, R., Angiuoli, S.V., Durkin, A.S., Haft, D.H., Vamathevan, J., Khouri, H., Utterback, T., Lee, C., Dimitrov, G., Jiang, L., Qin, H., Weidman, J., Tran, K., Kang, K., Hance, I.R., Nelson, K.E. and Fraser, C.M.(2005). Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant *Staphylococcus aureus* Strain and a Biofilm Producing Methicillin Resistant *Staphylococcus epidermidis* Strain. J. Bacteriol. 187:2426-2438.

[2] Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M. and Beachey, E.H. (1985). Adherence of coagulase negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22:996-1006

[3] Jabra-Rizk, M.A.; T.F. Meiller; C.E. James; and M.E. Shirliff. 2006. Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility. Antimicrob. Agents Chemother. 50(4):1463-1469.

[4] Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. and Williams, S. T.(1994). Bergey's manual of determinative bacteriology. 9th edn. Williams and Wilkins, Baltimore, MD.

[5] Kloos, W.E., and Schleifer, K.H.(1975). Simplified Scheme for Routine Identification of Human *Staphylococcus* Species. J. Clin. Microbiol.1: 82-88.

[6] MacFaddin, J.F.(2000). Biochemical Tests for Identification of Medical Bacteria. 3rd ed. Lippincott Williams &Wilkins, USA, P.555-565.

[7] Clinical and Laboratory Standards Institute (CLSI) (2015). Performance Standards for Antimicrobial Susceptibility testing, 20th supplement, CLSI document M 100-S23. 29(3). CLSI, Wayne, Pennsylvania, USA.

[8] Arciola, C. R., Baldassarri, L. and Montanaro, L.(2001). Presence of icaA and icaD Genes and Slime Production Collection of Staphylococcal Strains from Catheter-Associated Infections. J. Clin. Microbiol. 39: 2151-2156.

[9] Clinical and Laboratory Standards Institute (CLSI) (2016). Performance Standards for Antimicrobial Susceptibility testing, 26th Edition, CLSI document M 02-A12, M07-A10, andM11-A8. CLSI, Wayne, Pennsylvania, USA.

[10] Nakao, R., Ramstedt, t. M., Wai, S.N. and Uhlin, B.E. (2012). Enhanced Biofilm Formation by *Escherichia coli* LPS Mutants Defective in Hep Biosynthesis. PLoS One. 7(12):e51241.

[11] Atshan, S. S., Lung L.T. T., Ali A. M., Shamsudin M. N., Hamat R. A., Ghaznavi-Rad, E., Seng J. S. C., Sekawi, Z., Karunanidhi A., Ghasezmzadeh-Mohgaddam, H., Nathan, J.J., and Pei C.P.(2012). Prevalence of Adhesion and Regulation of Biofilm-Related Genes in Different Clones of *Staphylococcus aureus*. J. BioMed. Bioc.

[12] Onanuga, A. and Temedie, T.C.(2011). Nasal carriage of multi-drug resistant *Staphylococcus aureus* in healthy inhabitants of Amassoma in Niger delta region of Nigeria. Afr. Health Sci.11(2):176-81.

[13] Babakir-Mina, M., Othman N. , Najmuldeen, H. H., Noori, C. K ., Fatah C.F. , Perno, C. and Ciotti, M.(2012). Antibiotic susceptibility of vancomycin and nitrofurantoin in *Staphylococcus aureus* isolated from burnt patients in Sulaimaniyah, Iraqi Kurdistan . New Micro. 35:439-446.

[14] Vaez H., Tabaraei A., Moradi A. and Ghemi E. A. (2011).Evaluation of methicillin resistance *Staphylococcus aureus* isolated from patients in Golestan province-north of Iran . African J. Microbiol. Res. 5: 432-436.

[15] Eftekhar F. and Mirmohamadi Z. (2009).Evaluation of biofilm production by *Staphylococcus epidermidis* isolates from nosocomial infections and skin of healthy volunteers . Intern.J. Med. and Med. Sci. 1: 438-441.

[16] Diemond-Hernandez, B., Sor zano-Santos, F., Leoc os-Miranda, B., rzano Peregrino-Bejarano, L., Miranda-Novales, G. (2010).Production of icaADBC-encoded polysaccharide intercellular adhesin and therapeutic failure in pediatric patients with staphylococcal device-related infections. B.M.C. Infec.Dise.10:68

[17] Gad, G. F. M., El-Feky M.A., El-Rehewy M. S., Amin M., Hassan, Aboellla, H. and Abd El-Baky, R.M. (2009). Detection of icaA, icaD genes and biofilm production by *Staphylococcus aureus* and *Staphylococcus epidermidis* isolated from urinary tract catheterized patients . J. Infect. Dev. Ctries. 3:342-351.

[18] Adesida, S.A., Abioye, O.A., Bamiro, B.S., Brai, B.I.C., Smith, S.I., Amisu, K.O., Ehiichoaya, D.U., Ogunsola, F.T. and Coker, A.O. (2007). Associated risk factors and pulsed field gel electrophoresis of nasal isolates of *Staphylococcus aureus* from medical students in a tertiary hospital in Lagos, Nigeria. Braz. J. Infect. Dis. 11(1): 63-69.

[19] Chopra, S., Kaur, J., Sheevani, Mahajan (2013)
Staphylococcus epidermidis biofilm forming capacity in Methicillin Resistant Staphylococcus aureus and species of coagulase negative Staphylococci isolated from various clinical specimens. Pak. J. Med. Sci. 24: 115-7.

Khorvash, F., Mostafavizadeh, K. and Mobasherizadeh, S. (2008). Frequency of meca Gene and Borderline Oxacillin Resistant Staphylococcus aureus in Nosocomial Acquired Methicillin Resistance Staphylococcus aureus Infections. Pak. J. Biol. Sci. 11:1282-1285.

Hodle, A.E., Richter, K.P. and Thompson, R.M.(2006). Infec. control practices in US burn units. Mol. Biol. Rep. 27:142-51.

Al-Hasani, H. M. (2011). Comparative Study between Methicillin-Resistant Coagulase Positive and Negative Staphylococci. M.Sc. Thesis College of Science, University of Baghdad, Iraq.

Al-Maliki, A.A.A. (2009). A Study of some Methicillin-Resistant Staphylococci (MRSA) and (MRSE) isolated from Baghdad hospital patients. M.Sc. Thesis College of Science, AL-Mustansiria University.

Mehrotra, M.; G. Wang; and W. M. Johnson. (2000). Multiplex PCR for Detection of Genes for Staphylococcus aureus Enterotoxins, Exfoliative Toxins, Toxic Shock Syndrome Toxin 1, and Methicillin Resistance. J. Clin. Microbiol. 38(3):1032-1035.

Strommenger, B.; C. Kettlitz; G. Werner; and W. Witte. (2003). Multiplex PCR Assay for Simultaneous Detection of Nine Clinically Relevant Antibiotic Resistance Genes in Staphylococcus aureus. J. Clin. Microbiol.41(9):4089-4094.

Kurazono, M.; T. Ida; K. Yamada; Y. Hirai; T. Maruyama; E. Shitara; and M. Yonezawa. (2004). In Vitro Activities of ME1036 (CP5609), a Novel Parenteral Carbapenem, against Methicillin-Resistant Staphylococci. Antimicrob. Agents Chemother. 48(8):2831-2837.

Vandenesh, F.; T. Naimi; M.C. Enright; G. Lina; G.R. Nimmo; H. Heffernan; N. Liassine; M. Bes; T. Greenland; M.E. Reverdy; and J. Etienne. (2003). Community-Acquired Methicillin-Resistant Staphylococcus aureus Carrying Panton-Valentine Leukocidin Genes: Worldwide Emergence. Emerg. Infect. Dis. 9(8):978-984.

Chung, H.; H. Jeon; H. Sung; M. Kim; and S. Hong.(2008). Epidemiological Characteristics of Methicillin-Resistant Staphylococcus aureus Isolates from Children with Eczematous Atopic Dermatitis Lesions. J. Clin. Microbiol.46(3):991-995.

York, M.K.; L. Gibbs; F. Chehab; and G.F. Brooks. (1996). Comparison of PCR Detection of mecA with Standard Susceptibility Testing Methods To Determine Methicillin Resistance in Coagulase-Negative Staphylococci. J. Clin. Microbiol. 34(2):249-253.

Brooks, G.F.; K.C. Carroll; J.S. Butel; and S.A. Morse. (2007).Jawetz, Melnick and Adelbergs.
Staphylococcus aureus and the potential of antimicrobial drug discovery and the potential of nucleoside antibiotics, Curr. Med. Chem. 11: 775.

Antimicrobial resistance in bacteria. Cent. Eur. J. Med. 47(5):649-652.

Formation of Biofilm Resistance by Methicillin-Resistant Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction. J. Bacteriol. 195: 1645-1655.

Changes in bacterial isolates from burn wounds and their antibiograms: A 20-year study (1986-2005). Burns 35: 553-560.

Evaluation of a cefoxitin 30 μg disc on IsoSensitest agar for detection of meticillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 52:204-7.

Comparative study between Meticillin Resistant Staphylococcus aureus (MRSA) agr + isolates and MRSA agr - isolates. M.Sc. thesis. College of Science, University of Baghdad, Iraq.

In-vitro adhesion of Staphylococcus spp. To certain orthopedic biomaterials and expression of adhesion genes. J. Appl. Phar. Sci. 02:145-149

Phenotypic and genetic analysis of Biofilm Formation by Staphylococcus epidermidis. Medicina. (Kaunas) 48:305-9

Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. Oliveira and Cunha BMC Res. Notes.3:260.

Comparative molecular analysis of community or hospital-Acquired Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47(1):196-203.

Cefoxitin disc diffusion test for detection of meticillin-resistant staphylococci. J. Med. Microbiol. 57:957-961.

Antimicrobial resistance in bacteria. Cent. Eur. J. Med. 4(2):141-155.

Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics, Curr. Med. Chem. 11: 775-793.

Coaggregation of meticillin-sensitive and-resistant Staphylococcus aureus with oral microorganisms. Jpn. J. Oral Biol., 36: 520-525.

Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 465: 346-349

Sugimoto, S., Iwamoto, T., Takada, K., Okuda, K., Tajima, A., Iwase, T., and Mizunoe, Y. 2013. Staphylococcus epidermidis Esp Degradates Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction. J. Bacteriol. 195: 1645-1655.

Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother 59:1127–1137