TIF1γ Protein Regulates Epithelial-Mesenchymal Transition by Operating as a Small Ubiquitin-like Modifier (SUMO) E3 Ligase for the Transcriptional Regulator SnoN1*

Received for publication, April 23, 2014, and in revised form, July 23, 2014 Published, JBC Papers in Press, July 23, 2014 DOI 10.1074/jbc.M114.575878

Yoshiho Ikeuchi1,2, Shorafidinikuwa Dadakhuaevn1, Amrita S. Chandhoke3, Mai Anh Huynh4, Anna Oldenborg5, Mikako Ikeuchi6, Lili Deng6, Eric J. Bennett6, J. Wade Harper6, Azad Bonni5,6, and Shirin Bonni5,6

From the 6Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, the Departments of 3Neurobiology and 1Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and the 5Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada

Epithelial-mesenchymal transition (EMT) is a fundamental cellular process that contributes to epithelial tissue morphogenesis during normal development and in tumor invasiveness and metastasis. The transcriptional regulator SnoN robustly influences EMT in response to the cytokine TGFβ, but the mechanisms that regulate the fundamental role of SnoN in TGFβ-induced EMT are not completely understood. Here we employ interaction proteomics to uncover the signaling protein TIF1γ as a specific interactor of SnoN1 but not the closely related isoform SnoN2. A 16-amino acid peptide within a unique region of SnoN1 mediates the interaction of SnoN1 with TIF1γ. Strikingly, although TIF1γ is thought to act as a ubiquitin E3 ligase, we find that TIF1γ operates as a small ubiquitin-like modifier (SUMO) E3 ligase that promotes the sumoylation of SnoN1 at distinct lysine residues. Importantly, TIF1γ-induced sumoylation is required for the ability of SnoN1 to suppress TGFβ-induced EMT, as assayed by the disruption of the morphogenesis of acini in a physiologically relevant three-dimensional model of normal murine mammary gland (NMuMG) epithelial cells. Collectively, our findings define a novel TIF1γ-SnoN1 sumoylation pathway that plays a critical role in EMT and has important implications for our understanding of TGFβ signaling and diverse biological processes in normal development and cancer biology.

Control of epithelial-mesenchymal transition (EMT)6 is essential in normal development and homeostasis (1). The cellular morphogenetic events of EMT are comprised of the loss of epithelial cuboidal morphology, loss of cell-cell contact, and the establishment of a fibroblastic mesenchymal shape (2, 3). Attendant with these morphogenetic changes in cells undergoing EMT, markers of epithelial cells such as E-cadherin are down-regulated, and mesenchymal proteins such as N-cadherin are up-regulated (4). EMT of malignant cells in epithelial tumors is thought to portend cancer invasiveness and metastasis (5). Therefore, elucidation of the molecular basis of EMT will advance our understanding of tissue development and cancer.

The cellular and molecular mechanisms that control EMT have been the subject of intense investigation. Much of what we have learned about EMT has come from standard tissue culture studies of epithelial cells. However, three-dimensional models of epithelial cells such as NMuMG mammary epithelial cells provide a more physiologically relevant system in which EMT manifests in the disruption of the normal morphogenesis of tubular acini (6–9).

An essential role for the cytokine TGFβ has been established in EMT, which provides the basis for the ability of TGFβ to promote the progression of epithelial tumors (1–3, 10). Progress has been achieved in our understanding of the signaling mechanisms by which TGFβ regulates cellular responses,
A TIF1γ-SnoN1 Sumoylation Pathway Regulates EMT

including EMT. The TGFβ receptor activates the Smad signaling pathway, which leads to Smad-dependent alterations in gene expression and consequent cellular responses (11). The transcriptional regulator SnoN, which interacts with the transcription factors Smad2, Smad3, and Smad4, suppresses TGFβ-induced EMT (12, 13). Although SnoN robustly influences EMT, the mechanisms that regulate the fundamental role of SnoN in EMT are not completely understood.

Posttranslational modifications impact SnoN function in diverse biological settings in proliferating and postmitotic cells. Several ubiquitin ligases, including Cdh1-anaphase-promoting complex (Cdh1-APC), Smurf2, and Arkadia induce the ubiquitination and consequent proteasome-dependent degradation of SnoN (14–17). Ubiquitin-dependent degradation of SnoN influences cell cycle progression in proliferating cells and axon growth in postmitotic neurons (18, 19). SnoN also undergoes sumoylation at the distinct sites lysine 50 and lysine 383, which plays a critical role in the control of EMT. Using an affinity capture mass spectrometry-based approach, we uncovered the sumoylation pathway that plays a critical role in EMT. Our study bears significant implications for our understanding of EMT.

Recent studies suggest that SnoN exerts distinct biological functions in an isoform-specific manner (21). SnoN is the product of the Sno (Ski-related novel) gene. SnoN1 and SnoN2 represent the two major alternatively spliced isoforms of SnoN that are nearly identical except for a 46-amino acid region that is present in SnoN1 and absent in SnoN2 (22). In the nervous system, SnoN1 and SnoN2 play opposing roles in the control of neuronal migration (21), a biological process with parallels to EMT (23, 24). These studies have raised the fundamental question of whether SnoN might be regulated in an isoform-specific manner and whether such regulation might be of general significance, including in EMT.

In this study, we discovered a novel link between the signaling protein TIF1γ and the transcriptional regulator SnoN1 that plays a critical role in the control of EMT. Using an affinity capture mass spectrometry-based approach, we uncovered the protein TIF1γ as a specific high confidence interactor of SnoN1, but not SnoN2, in cells. In structure-function analyses, we identified a 16-amino acid, TIF1γ-interacting peptide (TIP) motif that resides within the unique 46-amino acid region in SnoN1. Strikingly, although TIF1γ reportedly acts as an E3 monoubiquitin ligase for the signaling protein Smad4 (25), we discovered that TIF1γ operates as a SUMO E3 ligase that triggers the sumoylation of SnoN1 at lysines 50 and 383. Importantly, TIF1γ-induced sumoylation of SnoN1 plays a critical role in the ability of SnoN1 to suppress TGFβ-induced EMT assayed by the disruption of the morphogenesis of acini in the three-dimensional model of NMuMG mammary epithelial cells. Collectively, our findings define a novel TIF1γ-SnoN1 sumoylation pathway that plays a critical role in EMT. Our study bears significant implications for our understanding of TGFβ signaling and diverse biological processes in normal development and cancer biology.

EXPERIMENTAL PROCEDURES

Plasmids and Antibodies—The TIF1γ, SnoN1, and SnoN2 RNAi plasmids were generated to target the sequences GGA-CAGATAATGTGAAAC, AAGCACAGGAGATACTT-CAGTT, and AAGGGCAGACAAATTCCATCAAT, respectively, as described previously (21, 26, 27). The FLAG-TIF1γ expression plasmid was provided by Dr. Frank J. Rauscher III. The HA- and GFP-TIF1γ expression plasmids were generated by cloning full-length human TIF1γ into pcDNA3 or pEGFP-C1, respectively. The SnoN1/2, SnoN1KdR, and SUMO-SnoN1 expression plasmids have been described previously (20, 21, 28, 29). The mutant TIF1γ and SnoN expression plasmids were generated by site-directed PCR mutagenesis. Rabbit TIF1γ (Bethyl and Santa Cruz Biotechnology), rabbit SnoN (Santa Cruz Biotechnology), rat HA (Roche), mouse FLAG (Sigma), rabbit GFP (Invitrogen), mouse GFP (NeuroMab), rabbit ERK1/2 (Cell Signaling Technology), mouse Cdc27 (Santa Cruz Biotechnology), and rabbit E-cadherin (Cell Signaling Technology) antibodies were used.

Proteomic Analysis of SnoN Complexes—293T cells expressing HA-FLAG-SnoN1 or SnoN2 were lysed in lysis buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40, and protease inhibitors) and processed for proteome analysis as described previously (30–32). Briefly, cell lysates were subjected to immunoprecipitation with HA antibody resin (Sigma), and proteins were eluted with HA peptide (Sigma). Eluted proteins were precipitated with trichloroacetic acid and digested with trypsin at 37 °C for 4 h. Digested peptides were desalted with C18 resin (Empore, 3 m), and analyzed with LC-MS/MS using an LTQ linear ion trap mass spectrometer (Thermo Scientific). The resulting spectra were searched using SEQUEST, and the resulting list of identifications was loaded into CompPASS to facilitate a determination of the WD and Z scores (30).

Analysis of Sumoylation—Analysis of sumoylation was performed as described previously (28, 29), with modifications. Briefly, 293T cells cotransfected with expression plasmids for FLAG-TIF1γ, HA-SUMO1, and GFP-SnoN, as indicated, were lysed in 150 µl of denaturing buffer (150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 1% Nonidet P-40, 1% SDS, 1 mM PMSF, 10 mM N-ethylmaleimide, 10 µg/ml aprtinin, 10 µg/ml pepstatin, 10 µg/ml leupeptin, 1 mM dithiothreitol, 50 mM NaF, and 1 mM Na3VO4) and sonicated. The lysate was diluted with 1350 µl of lysis buffer (150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 1% Nonidet P-40, 1 mM PMSF, 10 mM N-ethylmaleimide, 10 µg/ml aprtinin, 10 µg/ml pepstatin, 10 µg/ml leupeptin, 1 mM dithiothreitol, 50 mM NaF, and 1 mM Na3VO4) and subjected to immunoprecipitation with GFP or SnoN antibodies at 4 °C. Immunoprecipitated protein and input samples were subjected to SDS-PAGE, transferred to nitrocellulose membranes, and probed with the indicated antibodies. Analysis of sumoylation was also performed using HepG2 cells or TIF1γ shRNA-expressing HepG2 cells that were prepared with blasticidin selection after transfection with the TIF1γ or control RNAi plasmid together with a blasticidin-resistant plasmid using Lipofectamine 2000 (Invitrogen).

Quantitative RT-PCR—DNase-treated TRIzol-extracted (Invitrogen) RNA from NMuMG cells was reverse-transcribed using SuperScript II transcriptase (Invitrogen) and oligo(dT)12–18 (Amersham Biosciences) (12, 26, 33, 34). The cDNAs were subjected to quantitative PCR of the following genes: Zeb1, 5′ TCAGAGACAGAGATGAATG3′ (forward) and 5′CCTTTAACCCTGTTGCTATATT3′ (reverse);
RESULTS

Identification of TIF1γ as an Interaction Partner of SnoN1—Recent studies suggest that the two isoforms of SnoN, SnoN1 and SnoN2, regulate cellular responses in an isoform-specific manner (21). To determine how SnoN might be regulated isoform-specifically, we performed affinity capture followed by mass spectrometry to identify specific SnoN1- and SnoN2-interacting proteins. We immunopurified SnoN1 or SnoN2 from 293T cells and subjected purified protein complexes to LC-MS/MS analyses to identify associated proteins. We next used the software platform Comparative Proteomics Analysis Software Suite (CompPASS) to compare the SnoN immunoprecipitation/MS dataset against a large number of unrelated parallel immunoprecipitation/MS datasets to distinguish high confidence interacting proteins (HCIPs) from the background (Fig. 1A) (30). CompPASS identifies HCIPs on the basis of the WD score, which incorporates the frequency with which they are identified within the stats table, the abundance as represented by total spectral counts when found, and the reproducibility of technical replicates (30). Proteins with WD scores of approximately >30 were considered as HCIPs (30). We identified the transcriptional regulatory proteins Smad2, Smad4, and Ski as HCIPs of both SnoN1 and SnoN2 (Fig. 1A), validating our proteomics approach because these proteins are known to interact with SnoN (13, 35). Strikingly, we uncovered the protein TIF1γ (also referred to as Trim33) as a robust and specific interactor of SnoN1 but not SnoN2 (Fig. 1A). TIF1γ was also of particular interest because, similar to SnoN, TIF1γ suppresses TGFβ-induced EMT (12, 36). These observations raised the fundamental question of whether TIF1γ and SnoN1 might represent components of a novel signaling link that regulates EMT.

We first validated the interaction of TIF1γ with SnoN1 in cells. In communoprecipitation analyses, SnoN1, but not SnoN2, formed a complex with TIF1γ in 293T cells (Fig. 1B). Like SnoN2, the SnoN-related protein Ski also failed to interact with TIF1γ (Fig. 1B). We also found that endogenous TIF1γ interacted with endogenous SnoN in cells (Fig. 1C). Together, these results confirm that TIF1γ and SnoN1 form a complex in cells.

TIF1γ has been suggested to associate with the SnoN1-interacting transcription factors Smad2 and Smad3 (37), raising the question of whether SnoN1 regulates TIF1γ-Smad2/3 association. To address this question, we examined the communoprecipitation of TIF1γ by Smad2 or Smad3 in the absence or presence of expressed SnoN1. Interestingly, we found that, in the absence of SnoN1, TIF1γ failed to interact with Smad2/3 (Fig. 1D). These results suggest that SnoN1 may play a key role in assembling a protein complex containing Smad2 or Smad3 and TIF1γ, with potential functional implications for the TGFβ-Smad signaling pathway.

A 16-Amino Acid Region of SnoN1 Interacts with TIF1γ—We next performed structure-function analyses to determine the regions of SnoN1 that mediate the TIF1γ-SnoN1 interaction. SnoN1 and SnoN2 are nearly identical, except for a 46-amino acid insert present in SnoN1. The 46-amino acid region of SnoN1 (432–477) includes amino acid residues conserved across different species (Fig. 2A). The finding that SnoN1 selec-
A TIF1γ-SnoN1 Sumoylation Pathway Regulates EMT

Tables and Figures:

	SnoN1	SnoN2				
	WD score	Z score	TSC	WD score	Z score	TSC
SnoN	-	-	76	-	-	86
TIF1γ	59.1	6.53	16	-		-
Smad4	69.6	5.13	10	62.2	4.06	8
Ski	53.9	4.62	6	53.9	4.62	6
Smad2	31.1	2.82	2	44.0	5.85	4
Smad8	31.1	4.66	2	31.1	4.66	2

FIGURE 1. Identification of TIF1γ as an interaction partner of SnoN1. A, lysates of 293T cells stably expressing HA-SnoN1 or SnoN2 were immunoprecipitated with HA antibody and subjected to proteomic analysis using LC-MS/MS and CompPASS. TSC, total spectral count. B, lysates of 293T cells transfected with the GFP-TIF1γ expression plasmid together with an expression plasmid encoding FLAG-SnoN1, FLAG-SnoN2, or FLAG-Ski were immunoprecipitated (IP) using the FLAG antibody. WB, Western blot. C, lysates of HepG2 cells were immunoprecipitated with the TIF1γ antibody or control IgG. Endogenous SnoN formed a complex with endogenous TIF1γ in cells. Treatment of the cells with TGFβ (2 ng/ml, 1.5 h) did not affect the TIF1γ-SnoN1 interaction. D, lysates of 293T cells transfected with expression plasmids encoding HA-TIF1γ and GFP-SnoN1 or a control vector and FLAG-Smad2, FLAG-Smad3, or a control vector together with a plasmid encoding constitutively active TGFβRI were immunoprecipitated with the FLAG antibody.

Remarkably, we found that TIF1γ interacted with SnoN1. Consistent with these results, mutation of the RING domain blocked the ability of SnoN1 co-transfected with expression plasmids encoding HA-TIF1γ and GFP-SnoN1 or a control vector and FLAG-Smad2, FLAG-Smad3, or a control vector together with a plasmid encoding constitutively active TGFβRI to interact with SnoN1 (Fig. 2A). However, deletions that encroached on the C-terminal region of SnoN1 might play a key role in specifying the TIF1γ-SnoN1 interaction. In deletion analyses of the 46-amino acid region of SnoN1, we found that the C-terminal region is critical for the ability of TIF1γ to induce the sumoylation of SnoN1 (Fig. 3A). Consistent with the specific interaction of TIF1γ with SnoN1, but not SnoN2, TIF1γ failed to induce the sumoylation of SnoN2 (Fig. 3A). Notably, SnoN1 undergoes sumoylation at lysines 50 and 383 (12, 20). Consistent with a key role for these lysines in TIF1γ-induced sumoylation, TIF1γ failed to induce the sumoylation of a SnoN1 mutant protein in which lysines 50 and 383 were replaced with arginine (SnoN1KdR) (Fig. 3A). Because lysines 50 and 383 are present in both SnoN1 and SnoN2, our results suggest that TIF1γ specifically stimulates the sumoylation of SnoN1 in cells, because of its specific interaction with SnoN1.

To further define the role of TIF1γ in SnoN1 sumoylation, we performed structure-function analyses of TIF1γ. Mutation of two conserved cysteines within the RING domain of TIF1γ (RING CS) disrupted the interaction of TIF1γ with SnoN1 (Fig. 3B). In contrast, deletion of the middle (∆mid) or the C-terminal region (∆C-term) of TIF1γ did not impair its interaction with SnoN1 (Fig. 3B). These results suggest that the RING domain of TIF1γ interacts with SnoN1. Consistent with these results, mutation of the RING domain blocked the ability of TIF1γ to induce the sumoylation of SnoN1 (Fig. 3C). In contrast, deletion of the middle region of TIF1γ had little or no effect on TIF1γ-induced sumoylation of SnoN1 (Fig. 3C). Notably, removal of the C-terminal region also blocked the ability of TIF1γ to induce the sumoylation of SnoN1 (Fig. 3C), suggesting that the C-terminal region is critical for the ability of TIF1γ to promote sumoylation independently of its association with SnoN1. In other experiments, we found that TIF1γ interacted
with a recombinant form of the SUMO E2 enzyme Ubc9 (Fig. 3D), suggesting that TIF1γ may act as a SUMO E3 ligase. Finally, knockdown of TIF1γ substantially reduced the sumoylation of exogenously expressed SnoN1 or endogenous SnoN in cells (Fig. 3, E and F). Collectively, our data suggest that TIF1γ-induced SnoN1 sumoylation might play a critical role in the regulation of EMT. To address this question, we employed three-dimensional cultures of non-transformed NMuMG mammary epithelial cells in these analyses because these cultures provide a more physiologically relevant system for the study of biological processes, including EMT (6–8).

Subjecting NMuMG cells in which SnoN1 shRNAs or SnoN2 shRNAs were expressed to immunoblotting with the SnoN antibody confirmed that NMuMG cells expressed the two isoforms SnoN1 and SnoN2 (Fig. 4A) (21). In the three-dimensional cultures transfected with expression plasmids encoding HA-TIF1γ and wild-type GFP-SnoN1 or deletion mutants of GFP-SnoN1 were immunoprecipitated (IP) with the GFP antibody. WB, Western blot. C, lysates of 293T cells transfected with expression plasmids encoding HA-TIF1γ and wild-type GFP-SnoN1, GFP-TIPtide, or GFP were immunoprecipitated with the GFP antibody.

The TIF1γ-SnoN1 Sumoylation Pathway Regulates EMT—The identification of a function for TIF1γ in the sumoylation of SnoN led us next to determine the biological implications of the novel TIF1γ-SnoN1 signaling link. TIF1γ and sumoylated SnoN have been implicated in the suppression of TGFβ-induced EMT in standard two-dimensional cultures of epithelial cells (12, 36). These observations suggested that TIF1γ-induced SnoN1 sumoylation might play a critical role in the regulation of EMT. To address this question, we employed three-dimensional cultures of non-transformed NMuMG mammary epithelial cells in these analyses because these cultures provide a more physiologically relevant system for the study of biological processes, including EMT (6–8). Subjecting NMuMG cells in which SnoN1 shRNAs or SnoN2 shRNAs were expressed to immunoblotting with the SnoN antibody confirmed that NMuMG cells expressed the two isoforms SnoN1 and SnoN2 (Fig. 4A) (21). In the three-dimen-
A TIF1γ-SnoN1 Sumoylation Pathway Regulates EMT

FIGURE 3. TIF1γ acts as a novel SnoN1 SUMO E3 ligase. A, lysates of 293T cells transfected with the FLAG-TIF1γ expression plasmid or control vector together with the HA-SUMO1 and GFP-SnoN1, SnoN2, or SnoN1KdR expression plasmid were immunoprecipitated (IP) with the GFP antibody. WB, Western blot. B, lysates of 293T cells transfected with expression plasmids encoding GFP-SnoN1 and wild-type FLAG-TIF1γ or deletion mutants of FLAG-TIF1γ were immunoprecipitated with the FLAG antibody. Vec, vector. C, lysates of 293T cells transfected with the FLAG-TIF1γ expression plasmid, deletion mutants of FLAG-TIF1γ, or control vector together with the HA-SUMO1 expression plasmid and GFP-SnoN1 were sonicated and immunoprecipitated with the GFP antibody. D, lysates of 293T cells transfected with FLAG-TIF1γ were subjected to a pulldown assay with GST-UBC9 or GST and immunoblotted with FLAG antibody or stained with Ponceau S dye. E, lysates of HepG2 cells stably transfected with an RNAi plasmid expressing shRNAs targeting TIF1γ or the control U6 plasmid and transiently transfected with the GFP-SnoN1 or GFP-SnoN1KdR expression plasmid together with the HA-SUMO1 expression plasmid or a control vector were sonicated and immunoprecipitated with the GFP antibody. F, lysates of HepG2 cells stably expressing shRNAs targeting TIF1γ or control cells were sonicated and immunoprecipitated with the IgG control or SnoN antibody, followed by immunoblotting with the SnoN and TIF1γ antibodies (bottom panel). Lysates (top panel) were immunoblotted with the TIF1γ or Cdc27 antibody, the latter serving as a loading control.

FIGURE 4. Three-dimensional acini formation of NMuMG cells. A, lysates of NMuMG cells transfected with a plasmid expressing shRNA against SnoN1 or SnoN2 were immunoblotted with the SnoN antibody. Ctrl, control. *a non-specific immunoreactive band. B, representative DIC images (left panel) and quantification of acini or filled colony morphology (right panel, mean ± S.E., n = 3) of NMuMG cells left untreated or incubated with 100 pm TGFβ for 10 days. TGFβ reversed the proportion of acini with hollow centers (ANOVA, p < 0.001). The TGFβ-specific receptor kinase inhibitor SB-431542 (KI) reversed the effect of TGFβ. C, three-dimensional NMuMG cultures as in B were subjected to immunocytochemistry using the E-cadherin (E-cad, red) antibody and Hoechst 33258 (blue). B and C, scale bar = 50 μm.
sional cultures, NMuMG cells underwent cell proliferation and cell-cell attachment and organized into acini with hollow centers (Fig. 4B), reflecting the apical-basal polarity nature of these structures and, thus, phenocopying the in vivo acinar nature of glandular epithelial tissue (6–8). Supporting this idea, immunofluorescence analyses of three-dimensional NMuMG cell cultures showed basolateral localization of the epithelial marker E-cadherin (Fig. 4C). Exposure of the three-dimensional NMuMG cell culture to TGFβ induced acinar lumen filling, outward protrusions at the basal surface, and deformation of the acinar structures (Fig. 4, B and C). The alterations in acinar morphology were accompanied by the down-regulation and loss of the basolateral localization of E-cadherin (Fig. 4C). Inhibition of the TGFβ-activated protein kinase rescued normal acini morphology and E-cadherin abundance and localization in TGFβ-treated NMuMG cells (Fig. 4, B and C), suggesting that the canonical TGFβ pathway plays a critical role in the ability of TGFβ to induce dysregulation of acinar morphology and associated loss of E-cadherin in NMuMG cells. Collectively, these findings show that NMuMG cells form organized acini in three-dimensional cultures and that TGFβ triggers stereotypic alterations in acinar morphogenesis reflecting EMT.

We compared the effect of wild-type SnoN1, a sumoylation gain-of-function SnoN1 in which SUMO is fused to SnoN1 (SUMO-SnoN1), or the SnoN1KdR loss of sumoylation mutant on the ability of TGFβ to disrupt the morphogenesis of acini in three-dimensional cultures of NMuMG cells. We found that SnoN1 and SUMO-SnoN1 suppressed the ability of TGFβ to induce lumen filling and disorganization of NMuMG cell acini (Fig. 5A). In contrast, expression of SnoN1KdR enhanced lumen filling of NMuMG acini (Fig. 5A). Immunocytochemical analyses showed that SnoN1 and SUMO-SnoN1 blocked, whereas SnoN1KdR promoted, the ability of TGFβ to downregulate and disrupt the basolateral localization of E-cadherin (Fig. 5B). These data suggest that sumoylation of SnoN1 suppresses the ability of TGFβ to induce EMT in NMuMG cell acini.

We next asked whether TIF1γ regulates TGFβ-induced EMT in three-dimensional cultures of NMuMG cells in a SnoN1 sumoylation-dependent manner. Like SnoN1 and SUMO-SnoN1, TIF1γ antagonized the ability of TGFβ to induce the lumen filling and loss and mislocalization of E-cadherin in NMuMG cell acini (Fig. 5, C and D). Importantly, the TIF1γ RING CS mutant, which failed to interact with SnoN1 and induce its sumoylation (Fig. 3, B and C), failed to suppress and, instead, promoted the ability of TGFβ to disrupt acinar morphogenesis and to down-regulate E-cadherin (Fig. 5, C and D). Likewise, the TIF1γ ΔC-term mutant, which failed to induce SnoN1 sumoylation (Fig. 3C), failed to suppress and, instead, promoted the ability of TGFβ to disrupt acinar morphogenesis and to down-regulate E-cadherin in three-dimensional cultures of NMuMG cells (Fig. 5, C and D). Therefore, the phenotypes induced by the expression of the RING CS or ΔC-term TIF1γ mutant mimicked the phenotypes induced by SnoN1KdR in NMuMG cell acini. Interestingly, the RING CS and ΔC-term TIF1γ mutants and SnoN1KdR induced EMT-like alterations in NMuMG cell acini even in the absence of exogenous TGFβ (Fig. 5), suggesting that these mutants interfere dominantly with the function of endogenous TIF1γ. Consistent with these results, knockdown of endogenous TIF1γ in NMuMG cells triggered lumen filling and loss of E-cadherin in NMuMG cell acini in the absence of TGFβ (Figs. 6, A and B). These results suggest that endogenous TIF1γ regulates EMT in mammary cell acini.

We also performed epistasis analyses to determine the relationship of TIF1γ and SnoN1 sumoylation in the control of EMT in mammary cell acini. Expression of SUMO-SnoN1 suppressed the ability of TIF1γ knockdown to induce the phenotype of lumen filling and loss of E-cadherin in NMuMG cell acini in the presence or absence of TGFβ (Fig. 6, A and B). In other experiments, we found that expression of the sumoylation-deficient SnoN1KdR mutant or knockdown of SnoN1 suppressed the ability of TIF1γ to inhibit TGFβ-induced acini filling and loss of E-cadherin in the three-dimensional cultures of NMuMG cells (Figs. 6, C and D, and 7, A and B). These data suggest that TIF1γ acts via sumoylation of SnoN1 to suppress EMT and the consequent disruption of acinar morphogenesis.

TGFβ induces the expression of a number of transcription factors, including Zeb1, Zeb2, and snail, which, in turn, lead to repression of E-cadherin, a hallmark of EMT (1, 42). To gain further insight into the potential mechanism by which the TIF1γ-SnoN1 sumoylation axis controls EMT, we characterized the role of the TIF1γ-SnoN1 sumoylation pathway in TGFβ–up-regulation of Zeb1, Zeb2, and snail. In quantitative RT-PCR analyses, expression of the SUMO gain-of-function SnoN1, SUMO-SnoN1, or TIF1γ significantly suppressed the expression of Zeb1, Zeb2, and snail in TGFβ-treated NMuMG cells (Fig. 8, A and B). MMP9 and PAI-1 are extracellular genes that are induced by TGFβ and contribute to EMT (43, 44). Just as in the case of TGFβ-regulated transcription factors, SUMO-SnoN1 and TIF1γ suppressed the expression of MMP9 and PAI1 in TGFβ-treated NMuMG cells (Fig. 8, C and D). Collectively, our data define TIF1γ-SnoN1 sumoylation as a novel signaling link in the control of TGFβ-regulation of epithelial tissue morphogenesis.

DISCUSSION

In this study, we discovered a novel TIF1γ-SnoN1 sumoylation signaling mechanism that regulates EMT. Utilizing the CompPASS interaction proteomics platform (30), we identified the signaling protein TIF1γ as a novel and specific interactor of the transcriptional regulator protein SnoN1 but not the closely related isoform SnoN2. Structure-function analyses further revealed that a 16-amino acid peptide motif within a unique region of SnoN1 mediates its interaction with TIF1γ. Strikingly, whereas TIF1γ is thought to stimulate the ubiquitination of the transcription factor Smad4, we found that TIF1γ stimulates the sumoylation of SnoN1. Importantly, TIF1γ-induced SnoN1 sumoylation suppresses EMT, as assayed by disruption of the morphogenesis of acini in three-dimensional cultures of NMuMG mammary epithelial cells. Collectively, our findings define an intimate link between TIF1γ and SnoN1 that controls epithelial tissue morphogenesis.

The identification of a TIF1γ-SnoN1 sumoylation signaling link advances our understanding of the mechanisms that con-
A TIF1γ-SnoN1 Sumoylation Pathway Regulates EMT

FIGURE 5. TIF1γ and SnoN1 control epithelial morphogenesis. A, representative DIC images (left panel) and quantification of acini or filled colony morphology (right panel, mean ± S.E., n = 3 or 4) of NMuMG cells transfected with vector control, wild-type SnoN1, SnoN1KdR, or SUMO-SnoN1-expressing plasmids that were left untreated or incubated with 20 pM or 100 pM TGFβ for 10 days. Wild-type SnoN1 and SUMO-SnoN1 significantly suppressed the ability of TGFβ to reduce the proportion of hollow acini (p < 0.05). SnoN1KdR decreased the proportion of hollow acini even in untreated three-dimensional cultures (p < 0.001). B, three-dimensional NMuMG cultures as in A were analyzed as in Fig. 4C. E-cad, E-cadherin. C, representative DIC images (left panel) and quantification of colony morphology (right panel) of NMuMG cells transfected with expression plasmids encoding GFP and wild-type FLAG-TIF1γ, FLAG-TIF1γ RING CS, or FLAG-TIF1γ ΔC-term that were left untreated or incubated with 20 pM or 100 pM TGFβ for 10 days. Wild-type TIF1γ significantly suppressed the ability of TGFβ to reduce the proportion of hollow acini (ANOVA, p < 0.001). Both TIF1γ mutants decreased the proportion of acini with hollow centers even in the absence of TGFβ addition (ANOVA, p < 0.001). D, three-dimensional NMuMG cultures as in C were analyzed as in Fig. 4C. A–C, scale bar = 50 μm.
FIGURE 6. TIF1γ acts via SnoN1 sumoylation to control epithelial morphogenesis. A, representative DIC images (left panel) and quantification of colony morphology (right panel, mean ± S.E., n = 3 or 4) of NMuMG cells transfected with vector control, the RNAi plasmid encoding TIF1γ shRNAs, SUMO-SnoN1 expression plasmid, or the RNAi plasmid encoding TIF1γ shRNAs together with the SUMO-SnoN1 expression plasmid that were left untreated or incubated with 20 pm or 100 pm TGFβ for 10 days. TIF1γ RNAi decreased the proportion of acini with hollow centers even in the absence of TGFβ addition (ANOVA, p < 0.01). SUMO-SnoN1 reversed the ability of TIF1γ RNAi to reduce hollow acini under all three conditions (ANOVA, p < 0.05). B, three-dimensional NMuMG cultures as in A were analyzed as in Fig. 4C. E-cadherin. C, representative DIC images (left panel) and quantification of colony morphology (right panel) of NMuMG cells transfected with the vector control, expression plasmid encoding wild type TIF1γ, SnoN1KdR, or TIF1γ together with SnoN1KdR that were left untreated or incubated with 20 pm or 100 pm TGFβ for 10 days. SnoN1KdR suppressed the ability of wild-type TIF1γ to maintain the proportion of hollow acini in the absence and presence of 20 pm TGFβ (ANOVA, p < 0.05). D, three-dimensional NMuMG cultures as in C were analyzed as in Fig. 4C. A–C, scale bar = 50 μm.
control epithelial tissue morphogenesis with implications for normal development and cancer biology. TGFβ-induced EMT plays a critical role in tissue morphogenesis in diverse systems during normal embryogenesis as well as during cancer invasiveness and metastasis (1–3). The finding that TIF1γ-induced sumoylation of SnoN suppresses TGFβ-induced EMT suggests that it will be interesting to determine whether the novel TIF1γ-induced SnoN sumoylation link might regulate normal epithelial tissue morphogenesis and the invasiveness and metastatic potential of epithelial tumors.

Our data suggest that the canonical Smad2/3 pathway contributes significantly to the ability of TGFβ to induce EMT, as evidenced by a complete reversal of TGFβ-induced acinar dysregulation by specific inhibition of the TGFβ type I receptor kinase. Other reports have suggested that TGFβ activation of other signaling proteins, such as Smad1/5/8 or ERK, may also contribute to EMT (42, 45). We found that TGFβ modestly and only transiently induced Smad1 phosphorylation and did not induce ERK phosphorylation in NMuMG cells (data not shown). Therefore, our data suggest that the TIF1γ-SnoN sumoylation axis suppresses EMT by disruption of the canonical TGFβ pathway.

In addition to TIF1γ, the SUMO E3 ligase PIAS1 acts as a SUMO E3 ligase for SnoN that regulates EMT (12). Therefore, TIF1γ and PIAS1 may cooperate in cells to stimulate the sumoylation of SnoN and, thereby, regulate EMT. In future studies, it will be important to determine whether PIAS1 stimulates sumoylation of both SnoN1 and SnoN2. In that scenario, it will be interesting to determine whether TIF1γ and PIAS1 have differential biological effects of SnoN.

The identification of a novel interaction between TIF1γ and SnoN also bears significant implications for our understanding of TGFβ-regulated signaling pathways. Intriguingly, TIF1γ is thought to regulate hematopoietic cell differentiation through formation of a complex with the SnoN1-interacting transcription factor Smad2/3 (37). TIF1γ also appears to induce the ubiquitination of Smad4, another SnoN1-interacting transcription factor (25, 37, 40). In our analyses, we identified a specific 16-amino acid peptide (TIPtide) within a unique region of SnoN1 that mediates the interaction of SnoN1 with TIF1γ-Smad proteins. In our experiments, TIF1γ failed to interact with Smad proteins in cells in the absence of SnoN1. Therefore, SnoN1 might facilitate the biological consequences attributed to TIF1γ-Smad interactions, such as the control of hematopoietic cell differentiation and germ layer specification during embryogenesis. Our findings may shed further light on the role of TIF1γ in regulating TGFβ signaling and biological responses.

Our findings also have implications for our understanding of SnoN1 functions beyond the control of EMT in epithelial tissues. In the nervous system, SnoN1 forms, isoform-specifically, a transcriptional repressor complex with the transcription fac-
A TIF1γ-SnoN1 Sumoylation Pathway Regulates EMT

扭 FOXO1 and, thereby, regulates neuronal branching and migration in the developing mammalian brain (21). In addition, SnoN1 and SnoN2 promote axon growth in the developing brain (14, 18, 19). In future studies, it will be interesting to determine whether and how TIF1γ-induced sumoylation of SnoN1 might impact the key developmental events of axon growth, branching, and neuronal migration in the brain.

In summary, we identified a novel function for the signaling protein TIF1γ as a SnoN1 SUMO E3 ligase. The TIF1γ-SnoN1 sumoylation link plays a critical role in epithelial tissue morphogenesis. In addition to advancing our understanding of normal development, our findings may suggest potential new druggable targets for the treatment of malignant epithelial tumors.

Acknowledgments—We thank the members of the Bonni laboratory for helpful discussions and critical reading of the manuscript and Frank J. Rauscher III for the FLAG-TIF1γ plasmid.

REFERENCES
1. Thiery, J. P., Acloque, H., Huang, R. Y., and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890
2. Jakowlew, S. B. (2006) Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev. 25, 435–457
3. Kang, Y., and Massagué, J. (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279
4. Thiery, J. P., and Sleeman, J. P. (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142
5. Thiery, J. P. (2002) Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454
6. Shaw, K. R., Wrobel, C. N., and Brugge, J. S. (2004) Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammalian epithelial morphogenesis. J. Mammary Gland Biol. Neoplasia 9, 297–310
7. Godde, N. J., Galea, R. C., Elsun, I. A., and Humbert, P. O. (2010) Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J. Mammary Gland Biol. Neoplasia 15, 149–168
8. Debnath, J., and Brugge, J. S. (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675–688
9. Moreno-Bueno, G., Peinado, H., Molina, P., Olmeda, D., Cubilló, E., Santos, V., Palacios, J., Portillo, F., and Cano, A. (2009) The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat. Protoc. 4, 1591–1613
10. Zavadil, J., and Böttinger, E. P. (2005) TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774
11. Shi, Y., and Massagué, J. (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700
12. Netherton, S. J., and Bonni, S. (2010) Suppression of TGF-β-induced epithelial-mesenchymal transition like phenotype by a PIAS1 regulated sumoylation pathway in NMuMG epithelial cells. PLoS ONE 5, e13971
13. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q., and Luo, K. (1999) Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286, 771–774
14. Shaw, K. R., Wrobel, C. N., and Brugge, J. S. (2004) Use of three-dimensional cultures.
15. Levy, L., Howell, M., Das, D., Harkin, S., Episkopou, V., and Hill, C. S. (2007) Arkadisa activates Smad3/4-Smad4-dependent transcription by triggering signal-induced SnoN degradation. Nat. Cell Biol. 9, 387–395
16. Nagano, Y., Mavracis, K. J., Lee, K. L., Fujii, T., Koinuma, D., Sase, H., Yuki, K., Isogaya, K., Saitoh, M., Imamura, T., Episkopou, V., Miyazono, K., and Miyazawa, K. (2007) Arkadisa induces degradation of SnoN and c-Ski to enhance transforming growth factor-β signaling. J. Biol. Chem. 282, 20492–20501
17. Ikeuchi, Y., Stegmüller, J., Netherton, S., Huyh, M. A., Masu, M., Frank, D., Bonni, S., and Bonni, A. (2009) A SnoN-Cdcl pathway promotes axonal morphogenesis in the mammalian brain. J. Neurosci. 29, 4312–4321
18. Stegmüller, J., Konishi, Y., Huyh, M. A., Yuan, Z., Dibacco, S., and Bonni, A. (2006) Cell-intrinsic regulation of axonal morphology by the Cdh1-APC target SnoN. Neuron 50, 389–400
19. Huynh, M. A., Ikeuchi, Y., Netherton, S., de la Torre-Ubieta, L., Kanadia, R., Stegmüller, J., Cepko, C., Bonni, S., and Bonni, A. (2011) An isoform-specific SnoN-FOXO1 repressor complex controls neuronal morphology and positioning in the mammalian brain. Neuron 69, 930–944
20. Pearson-White, S., and Crittenden, R. (1997) Proto-oncogene Sno expression in EMT and cell polarity transitions. J. Cell Biol. 203, 835–847
21. Dupont, S., Mamidi, A., Cordenonsi, M., Montagner, M., Zacchigna, L., Adorno, M., Martello, G., Stinchfield, M. J., Soligo, S., Morsut, L., Inui, M.,
A TIF1γ-SnoN1 Sumoylation Pathway Regulates EMT

Moros, N., Modena, N., Argenton, F., Newfeld, S. J., and Piccolo, S. (2009) FAM154B, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 138, 133–136
26. Sarker, K. P., Wilson, S. M., and Bonni, S. (2005) SnoN is a cell type-specific mediator of transforming growth factor-β responses. J. Biol. Chem. 280, 13037–13046
27. Gaudilliere, B., Shi, Y., and Bonni, A. (2002) RNA interference reveals a postsynaptic dendritic morphogenesis. J. Neurosci. 27, 10037–10046
28. Shah, A., Blimoria, P. M., Stegmüller, J., Yang, Y., Shuai, K., and Bonni, A. (2007) PIAx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J. Neurosci. 27, 10037–10046
29. Shah, A., Gaudilliere, B., Yuan, Z., Stegmüller, J., Shirogane, T., Ge, Q., Tan, Y., Schulman, B., Harper, J. W., and Bonni, A. (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017
30. Sowa, M. E., Bennett, E. J., Gygi, S. P., and Harper, J. W. (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403
31. Litterman, N., Ikeuchi, Y., Gallardo, G., O’Connell, B. C., Sowa, M. E., Gygi, S. P., Harper, J. W., and Bonni, A. (2011) An OBSL1-Cul7Fbxw8 ubiquitin ligase signaling mechanism regulates Golgi morphology and dendrite patterning. PLoS Biol. 9, e1001060
32. Zhang, C., Mejia, L. A., Huang, J., Valnegrí, P., Bennett, E. J., Anckar, J., Jahani-Asl, A., Gallardo, G., Ikeuchi, Y., Yamada, T., Rudnicki, M., Harper, J. W., and Bonni, A. (2013) The X-linked intellectual disability protein PHF6 associates with the PAF1 complex and regulates neuronal migration in the mammalian brain. Neuron 78, 986–993
33. Eapen, S. A., Netherton, S. J., Sarker, K. P., Deng, L., Chan, A., Riazewol, K., and Bonni, S. (2012) Identification of a novel function for the chromatin remodeling protein ING2 in muscle differentiation. PLoS ONE 7, e40684
34. Pot, I., Patel, S., Deng, L., Chandhoke, A. S., Zhang, C., Bonni, A., and Bonni, S. (2013) Identification of a novel link between the protein kinase NDR1 and TGFβ signaling in epithelial cells. PLoS ONE 8, e67178
35. Cohen, S. B., Zheng, G., Heyman, H. C., and Stavnezer, E. (1999) Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents. Nucleic Acids Res. 27, 1006–1014
36. Hesling, C., Fattet, L., Teyle, G., Jury, D., Gonzalez, A., Lopez, J., Vanbelle, C., Morel, A. P., Gillet, G., Mikaelian, I., and Rimokh, R. (2011) Antagonistic regulation of EMT by TIF1γ and Smad4 in mammalian epithelial cells. EMBO Rep. 12, 665–672
37. He, W., Dorn, D. C., Erdjument-Bromage, H., Tempst, P., Moore, M. A., and Massagué, J. (2006) Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 125, 929–941
38. Xi, Q., Wang, Z., Zaromytidou, A. I., Zhang, X. H., Chow-Tsang, L. F., Liu, J. X., Kim, H., Barlas, A., Manova-Todorova, K., Kaartinen, V., Studer, L., Mark, W., Patel, D. J., and Massagué, J. (2011) A poised chromatin platform for TGF-β access to master regulators. Cell 147, 1511–1524
39. Peng, H., Feldman, L., and Rauscher, F. J., 3rd. (2002) Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between co-activation and corepression. J. Mol. Biol. 320, 629–644
40. Dupont, S., Zacchigna, L., Cordenonsi, M., Soligo, S., Adorno, M., Rugge, M., and Piccolo, S. (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121, 87–99
41. Liang, Q., Deng, H., Wu, X., Tang, Q., Chang, T. H., Peng, H., Rauscher, F. J., 3rd, Ozato, K., and Zhu, F. (2011) Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J. Biol. Chem. 286, 13037–13046
42. Xu, J., Lamouille, S., and Derynck, R. (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172
43. Gordon, G. M., Ledee, D. R., Feuer, W. J., and Fini, M. E. (2009) Cytokines and signaling pathways regulating matrix metalloproteinase-9 (MMP-9) expression in corneal epithelial cells. J. Cell Physiol. 221, 402–411
44. Gerwin, B. I., Keski-Oja, J., Seddon, M., Lechner, J. F., and Harris, C. C. (1990) TGF-β1 modulation of urokinase and PAI-1 expression in human bronchial epithelial cells. Am. J. Physiol. 259, L262–L269
45. Chaudhury, A., and Howe, P. H. (2009) The tale of transforming growth factor-β (TGFβ) signaling: a soigné enigma. IUBMB Life 61, 929–939
46. Pot, I., Ikeuchi, Y., Bonni, A., and Bonni, S. (2010) SnoN: bridging neurobiology and cancer biology. Curr. Mol. Med. 10, 667–673