Association Between Media Use and Poor Sleep Quality Among Senior High School Students in Ratchaburi Province, Thailand: A Cross-Sectional Study

Wisit Chaveepojnkamjorn (wiziz.cha@mahidol.ac.th)
Mahidol University, Faculty of Public Health  https://orcid.org/0000-0002-3593-7544

Jutiporn Srikaew
Department of Health, Health Promotion Region 5, Ratchaburi

Pratana Satitvipawee
Department of Biostatistics, Faculty of Public Health, Mahidol University

Supachai Pitikultang
Department of Family Health, Faculty of Public Health, Mahidol University

Soontaree Khampeng
Boromarajonani College of Nursing Phraphutthabat, Saraburi

Research article

Keywords: Media use, Poor sleep quality, Senior high school students

DOI: https://doi.org/10.21203/rs.3.rs-81395/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

**Background:** Poor sleep quality (PSQ) is an increasing health problem and adolescents also constitute risk groups. Portable mobile and media devices have become a part of children's lives and may affect their sleep duration and quality. This study aimed to explore the prevalence of PSQ and identify the association between media use and PSQ among adolescents studying in high school grades 10-12.

**Methods:** This cross-sectional study was conducted in Ratchaburi Province. A multi-stage sampling technique was used to enroll 777 adolescents from 8 schools from August-October 2016. The research instruments comprised factors of demographics and consumption behaviors and the questionnaire of Pittsburgh Sleep Quality Index. Multivariable logistic regression was used to calculate adjusted odds ratios (OR_{adj}) and 95% Confidence Intervals (CI).

**Results:** Prevalence of PSQ was 56.24%. The study subjects were mostly 16-17 years old (67.82%) and female (70.39%). Multivariable logistic regression, after controlling for possible confounders, there was an increased odds of PSQ in those who used a social media device (OR=1.34, 95%CI=0.97-1.87), and it showed a higher proportion of social media use among PSQ group.

**Conclusions:** The surveillance system of media use and PSQ should be conducted accompanied by knowledge sharing on media use among parents, teachers and adolescents. To determine causal relationships, further longitudinal studies will be required to test for the association between media users and PSQ. This study may also provide some implications for health promotion on sleep quality of senior high school students.

Introduction

Sleep is an essential part of life and plays roles in physical and mental health [1, 2]. Adolescents experience significant changes including to body and mind associated with sex hormones [3]. Insufficient sleep has been one of the most important public health problems among adolescents. Concerning the aspect of sleep, a few of studies have found that PSQ was associated with the amount of daytime sleep, exhaustion, weight gain, obesity, impaired memory and motor vehicle accidents [4–6]. PSQ is currently a widespread issue in most societies. The prevalence of PSQ among adolescents was reported as ranging from 32 to 62% [7–11] reflecting a wider range of PSQ prevalence. In Thailand, the prevalence of PSQ among adolescents was reportedly 32 to 48% [7, 8]. Sleep insufficient not only has impacts on the personal level, but also can cause major impact on a larger scale through a high burden of non-communicable diseases [12], many events such as motor vehicle crashes [13], workplace accidents, increased mortality and reduced quality of life [14]. Media use such as watching TV and using electronic devices are activities that affect poor sleep quality in children and adolescents. Especially among school age group, such as having a TV in the bedroom can disturb sleep as a result decreasing of sleep duration and insufficient sleep. Some studies showed the association of media use related to PSQ [15–17].
Hence, the aims of the present study were to seek the prevalence of PSQ and determine its association with media use among senior high school students in Ratchaburi Province. The author selected Ratchaburi Province as the area of study because of its characteristics as a proxy of western provinces of Thailand. Ratchaburi is one of the western provinces of Thailand with an area of about 5,196 sq km. It lies 80 km west of Bangkok, the capital of Thailand and borders Myanmar to the west with the Tenasserim Hills as a natural border containing a population of 871,714 and density 170/km$^2$ in 2017 [18, 19].

**Methodology**

**Study design and setting**

A cross-sectional study was conducted during August-October 2016 to explore PSQ and identify the association between media use and PSQ occurrence among senior high school students in Ratchaburi Province, Thailand.

**Sample size and sampling technique**

The sample size was calculated using a formula to estimate the population proportion with specified absolute precision [20] according to the following assumption: 32% of PSQ among adolescents (P) [7], with 95% confidence interval and 5% specified absolute precision (d). As a multistage sampling technique was employed to identify study subjects, a design effect of 2 was used. The calculated sample size was 709. Also, approximately 10% was added to adjust for nonresponses. Thus, the final sample size was at least 777.

A multi-stage stratified sampling technique was used to identify study subjects from senior high schools in Ratchaburi Province. Schools were stratified by student numbers, namely, extra large (>2,500), large (1,500-2,499) and medium (500-1,499). We randomly selected at least one school from the list of three school categories: urban and rural public schools and private schools. The selection of schools was based on a list of schools obtained from the Provincial Education Offices and willingness of school administrators to participate in the study. For each of the schools, the student sample size was calculated proportional to the size of the schools.

**Measures**

Information was collected using a self-administered, anonymous questionnaire comprising three parts, namely, demographics, consumption behaviors relating to sleep quality, sleep quality assessment and media-used evaluation. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI) translated to Thai with a cutoff point of scores greater than five and classified as poor sleepers [21-23], reliability was tested revealing a Cronbach’s alpha of 0.86.

**Data analysis**
Categorical variables were given as frequency and percentage, crude odds ratio (OR\textsubscript{c}), 95% CI of OR and p-value. Moreover, numerical variables were expressed as mean, median, minimum and maximum, standard deviation and quartile deviation. Univariate analysis was performed using univariable logistic regression to differentiate proportional exposures between poor and good sleepers for categorical variables. Adjusted odds ratio (OR\textsubscript{adj}) and 95% CI of OR were calculated from multivariable logistic regression to examine associations between media use and PSQ occurrence, adjusted for potential confounders. All statistics were performed using two-sided tests, and a criteria of p < 0.05 was judged to be statistically significant.

**Results**

**Demographic characteristics**

Seven hundred seventy-seven students were selected for the present study. The majority were female (70.39%), aged 16–17 years (67.82%) mean age was 16.51 (SD = 0.96) years, studying in Grades 12 (35.39%), GPA 3.01–3.50 (40.14%), monthly family income ≤ 10,000 baht (44.67%), no smoking (98.33%) and no alcohol consumption (85.33%), as shown in Table 1.
Table 1
Demographic characteristics of senior high school students

| Variables                                      | No. (%)       |
|------------------------------------------------|---------------|
| Sex (n = 777)                                  |               |
| Female                                         | 547 (70.39)   |
| Male                                           | 230 (29.61)   |
| Age (yr) (n = 777)                             |               |
| <16                                            | 123 (15.83)   |
| 16–17                                          | 527 (67.82)   |
| >17                                            | 127 (16.35)   |
| Mean (SD)                                      | 16.51 (0.96)  |
| Min - Max                                      | 14–19         |
| Education level (Grade) (n = 777)              |               |
| 10                                             | 247 (31.79)   |
| 11                                             | 255 (32.82)   |
| 12                                             | 275 (35.39)   |
| Parental marital status (n = 777)              |               |
| Married                                        | 517 (66.54)   |
| Widowed, divorced, separated                   | 260 (33.46)   |
| Monthly family income (THB) (n = 647)          |               |
| ≤10,000                                        | 289 (44.67)   |
| 10,001–30,000                                  | 280 (43.28)   |
| 30,001–50,000                                  | 47 (7.26)     |
| 50,001–70,000                                  | 9 (1.39)      |
| >70,000                                        | 22 (3.40)     |
| Median                                         | 10,000        |
| Min-Max                                        | 1,800 – 300,000|
| Grade point average (n = 715)                  |               |
| Variables                      | No. (%)          |
|-------------------------------|------------------|
| <2.50                         | 58 (8.11)        |
| 2.51–3.00                     | 242 (33.85)      |
| 3.01–3.50                     | 287 (40.14)      |
| ≥3.50                         | 128 (17.90)      |
| Mean (SD)                     | 3.09 (0.42)      |
| Median (QD)                   | 3.10 (0.29)      |
| Min-Max                       | 1.33–3.99        |
| Underlying diseases (n = 777) |                  |
| No                            | 668 (85.97)      |
| Yes                           | 109 (14.03)      |
| Smoking (n = 774)             |                  |
| No                            | 764 (98.33)      |
| Yes                           | 10 (1.67)        |
| Alcohol consumption (n = 777) |                  |
| No                            | 663 (85.33)      |
| Yes                           | 114 (14.67)      |
| Illness history during last month (n = 777) | |
| No                            | 537 (69.11)      |
| Yes                           | 240 (30.89)      |

The prevalence of PSQ was 56.24%. Using a univariable logistic regression analysis, associated demographic factors of PSQ among adolescents included illness history during the last month, coffee and tea consumption, reading, annoyance, poor ventilation, stress depression and sleep duration (p < 0.05), as shown in Table 2. In case of media use, we found the association between social media use and PSQ (OR = 1.53, 95%CI = 1.13–2.08), as shown in Table 3. Multivariable logistic regression analysis, association between social media use and PSQ among adolescents (adjusted for potential confounders), social media users were 1.34 times at risk compared with those of non-users (OR = 1.34, 95%CI = 0.97–1.87) but it did not reach significance, as shown in Table 4. Comparing between PSQ group and GSQ group, most commonly activities before bedtime was social media (44.56%, 37.38%) and television watching (20.78%, 30.29%) respectively, and we found a higher proportion of social media use among PSQ group, as shown in Table 5.
Table 2
Univariable logistic regression analysis of factors associated with PSQ among senior high school students

| Variables                                      | Poor sleep quality/total | %     | ORc   | 95%CI     | p-value |
|------------------------------------------------|--------------------------|-------|-------|-----------|---------|
| Age group (yr) (n = 777)                       |                          |       |       |           |         |
| <16                                            | 59/123                   | 47.97 | 1     | 0.99–2.18 | 0.056   |
| 16–17                                          | 303/527                  | 57.49 | 1.47  | 0.95–2.58 | 0.079   |
| >17                                            | 75/127                   | 59.06 | 1.57  |           |         |
| Sex (n = 777)                                  |                          |       |       |           |         |
| Female                                         | 308/547                  | 56.31 | 1     | 0.72–1.37 | 0.982   |
| Male                                           |                          |       |       |           |         |
| Male                                           | 129/230                  | 56.09 | 0.99  |           |         |
| Education level (Grade) (n = 777)              |                          |       |       |           |         |
| 10                                             | 131/247                  | 53.04 | 1     | 0.59–1.19 | 0.323   |
| 11                                             | 148/255                  | 58.04 | 0.84  | 0.73–1.45 | 0.873   |
| 12                                             | 156/275                  | 56.73 | 1.03  |           |         |
| Parental marital status (n = 774)              |                          |       |       |           |         |
| Married                                        | 284/517                  | 54.93 | 1     | 0.62–1.17 | 0.351   |
| Widowed, divorced, Separated                   | 151/257                  | 58.75 | 0.86  |           |         |
| Family members (n = 629)                       |                          |       |       |           |         |
| Father and mother                              | 271/346                  | 78.32 | 1     | 0.87–1.56 | 0.319   |
| Father or mother only                          | 166/283                  | 58.66 | 1.16  |           |         |
| Relative/Friend                                |                          |       |       |           |         |
| Monthly family income (THB) (n = 647)          |                          |       |       |           |         |
| ≤10,000                                        | 171/289                  | 59.17 | 1     | 0.52–1.05 | 0.091   |
| 10,001–30,000                                  | 145/280                  | 51.79 | 0.74  | 0.52–2.00 | 0.914   |
| 30,001–50,000                                  | 28/47                    | 59.57 | 1.02  |           | 0.942   |
| >50,000                                        | 18/31                    | 58.06 | 0.96  | 0.43–2.16 |         |

ORc = crude odds ratio, CI = confidence interval

*Statistically significant (p < 0.05)
| Variables                                      | Poor sleep quality/total | %   | ORc | 95%CI      | p-value |
|-----------------------------------------------|--------------------------|-----|-----|------------|---------|
| Grade point average (n = 715)                 |                          |     |     |            |         |
| ≥3.50                                         | 76/128                   | 59.38 | 1 | 0.89–1.78  | 0.188   |
| 3.01–3.50                                     | 146/287                  | 50.87 | 1.26| 0.72–2.25  | 0.403   |
| 2.51–3.00                                     | 137/242                  | 19.01 | 1.24| 0.93–2.15  | 0.109   |
| <2.50                                         | 33/58                    | 50.00 | 1.41|            |         |
| Underlying diseases (n = 777)                 |                          |     |     |            |         |
| No                                            | 370/668                  | 55.39 | 1 | 0.85–1.95  | 0.279   |
| Yes                                           | 67/109                   | 61.47 | 1.29|            |         |
| Smoking (n = 774)                              |                          |     |     |            |         |
| No                                            | 430/764                  | 56.28 | 1 | 0.47–7.06  | 0.527   |
| Yes                                           | 7/10                     | 70.00 | 1.81|            |         |
| Alcohol consumption (n = 777)                 |                          |     |     |            |         |
| No                                            | 368/663                  | 55.51 | 1 | 0.82–1.84  | 0.318   |
| Yes                                           | 69/114                   | 60.53 | 1.23|            |         |
| Illness history during the last month (n = 777)|                          |     |     |            |         |
| No                                            | 283/537                  | 52.70 | 1 | 1.18–2.20  | <0.001* |
| Yes                                           | 154/240                  | 64.17 | 1.61|            |         |
| Coffee consumption (n = 777)                  |                          |     |     |            |         |
| No                                            | 385/702                  | 54.84 | 1 | 1.12–3.10  | 0.022*  |
| Yes                                           | 52/75                    | 69.33 | 1.86|            |         |
| Tea consumption (n = 777)                     |                          |     |     |            |         |
| No                                            | 216/412                  | 52.43 | 1 | 1.05–1.85  | 0.027*  |
| Yes                                           | 221/365                  | 60.55 | 1.39|            |         |

ORc = crude odds ratio, CI = confidence interval

*Statistically significant (p < 0.05)
| Variables               | Poor sleep quality/total | %   | ORc  | 95%CI       | p-value |
|------------------------|--------------------------|-----|------|-------------|---------|
| Reading (n = 777)      | 428/751                  | 56.99 | 1   | 0.18–0.91  | 0.024*  |
| No                     | 9/26                     | 34.62 | 0.40 |             |         |
| Yes                    |                          |      |      |             |         |
| Annoyance (n = 777)    | 352/658                  | 53.49 | 1   | 1.39–3.41  | < 0.001*|
| No                     | 85/119                   | 71.43 | 2.17 |             |         |
| Yes                    |                          |      |      |             |         |
| Poor ventilation (n = 777) | 393/719                | 54.66 | 1   | 1.36–5.08  | 0.002*  |
| No                     | 44/58                    | 75.86 | 2.61 |             |         |
| Yes                    |                          |      |      |             |         |
| Stress (n = 777)       | 69/195                   | 35.38 | 1   | 2.24–4.41  | < 0.001*|
| No                     | 368/582                  | 63.23 | 3.14 |             |         |
| Yes                    |                          |      |      |             |         |
| Depression (n = 777)   | 276/565                  | 35.38 | 1   | 2.32–4.72  | < 0.001*|
| No                     | 161/212                  | 63.23 | 3.31 |             |         |
| Yes                    |                          |      |      |             |         |
| Sleep duration (hrs) (n = 777) | 54/254             | 21.26 | 1   | 5.21–169.49 | < 0.001*|
| >7                     | 297/435                  | 68.28 | 19.98 |             |         |
| 6–7                    | 86/88                    | 97.73 | 159.26 |             |         |
| <6                     |                          |      |      |             |         |

ORc = crude odds ratio, CI = confidence interval

*Statistically significant (p < 0.05)
Table 3
Univariable logistic regression analysis of media use associated with PSQ among senior high school students

| Variables                 | Poor sleep quality/total | %   | ORc  | 95%CI     | p-value |
|---------------------------|--------------------------|-----|------|-----------|---------|
| Video gaming (n = 777)    |                          |     |      |           |         |
| No                        | 386/690                  | 55.94 | 1    | 0.71–1.75 | 0.635   |
| Yes                       | 51/87                    | 58.62 | 1.12 |           |         |
| Phone calling (n = 777)   |                          |     |      |           |         |
| No                        | 402/724                  | 55.52 | 1    | 0.87–2.80 | 0.139   |
| Yes                       | 35/53                    | 66.04 | 1.56 |           |         |
| Music listening (n = 777) |                          |     |      |           |         |
| No                        | 396/707                  | 56.01 | 1    | 0.67–1.83 | 0.681   |
| Yes                       | 41/70                    | 58.57 | 1.11 |           |         |
| Social media use (n = 777)|                          |     |      |           |         |
| No                        | 274/519                  | 52.79 | 1    | 1.13–2.08 | 0.006*  |
| Yes                       | 163/258                  | 63.18 | 1.53 |           |         |
| Television watching (n = 777)|                        |     |      |           |         |
| No                        | 361/624                  | 57.85 | 1    | 0.50–1.03 | 0.068   |
| Yes                       | 76/153                   | 49.67 | 0.72 |           |         |

ORc = crude odds ratio, CI = confidence interval

*Statistically significant (p < 0.05)

Table 4
Multivariable logistic regression of social media use associated with PSQ among senior high school students

| Variables       | ORc | 95%CI     | ORadj | 95%Cl      | p-value |
|-----------------|-----|-----------|-------|------------|---------|
| Social media use| 1   | 1.13–2.08 | 1     | 0.97–1.87  | 0.079   |
| No              | 1.53|           | 1.34  |            |         |
| Yes             |     |           |       |            |         |

ORc = crude odds ratio, ORadj = adjusted odds ratio for illness history during the last month, coffee consumption, tea consumption, reading, annoyance, poor ventilation, stress and depression
Table 5
Percent of media use before bed time

| Variables           | PSQ (%) | GSQ (%) |
|---------------------|---------|---------|
| Social media use    | 44.56   | 37.38   |
| Television watching | 20.78   | 30.29   |
| Video Gaming        | 13.94   | 14.17   |
| Music listening     | 11.20   | 11.41   |
| Phone calling       | 9.52    | 6.75    |

PSQ = poor sleep quality, GSQ = good sleep quality

Discussion

Our findings demonstrated that the prevalence rate of PSQ was about 56% higher than related studies conducted in Thailand [7, 8]. Evidence from related studies on PSQ among college students showed the prevalence of PSQ was approximately from 32 to 62% [7–11]. The difference of PSQ occurrence might have stemmed from various factors, namely, environment, lifestyle, household characteristics, social media and activities, and health behaviors etc. Univariable analysis showed that social media use played a critical role in the development of PSQ among adolescents (OR = 1.53, p = 0.006). However multivariable logistic regression analysis didn't reach significant difference (OR = 1.34, 95%CI = 0.97–1.87). Some studies indicated adolescents who had social media use before bed time had lower sleep efficiency [15–17, 24, 26, 27]. Use of mobile phones among young students for daily calling and text messaging were associated with short sleep duration, PSQ, excessive daytime sleepiness and having insomnia symptom [15]. Concerning on higher frequency and volume of social media use had significantly greater odds of having sleep disturbance among young adults [24], while a study showed a better sleep quality among users [25]. The present study showed the prevalence of social media use before bed among PSQ group was approximately 44.56%. Half of social media users spent time over 2 hours/day. On the average time for social media use was 3.58 hours/day, it might be affected on sleep pattern. A previous study showed users who spent time 0.5-2 hours on social media were more likely to have poor sleep than those of spent time less than 0.5 hours [27]. In addition, a meta-analysis study reported social media users before bed were more likely to have insufficient sleep and tend to have PSQ [26]. Some previous studies suggested blue light emitted from smart phone might be disturb sleep [28, 29]. Therefore, monitoring social media use among adolescents, and cooperating with parents, caregivers, teachers and also the adolescents themselves is recommended to reduce PSQ problem.

Study Limitations

This study encountered a few limitations that need to be addressed. First, cross-sectional survey reduced the ability of the study to make direct causal inferences. Second, these data apply only to those aged 14
to 19 years as the study subjects; therefore, they could not represent all adolescents. Moreover, data collection might have excluded subjects absent from schools. Finally, all data were based on a self-report method.

**Conclusion**

The surveillance system of PSQ should be established along with a knowledge sharing program about associated factors of PSQ among adolescents with their parents and teachers.

**Abbreviations**

CMB
- the China Medical Board, GPA: grade point average, OR_{adj}: adjusted odds ratio, OR_{c}: crude odds ratio,
PSQ: Poor Sleep Quality, GSQ: Good Sleep Quality, PSQI: the Pittsburgh Sleep Quality Index

**Declarations**

**Acknowledgements**

All authors would like to express sincere thanks for their valuable contributions in the study provided by the high school students and staff of participating high schools. We also thank those who were not mentioned for their kindness and encouragement.

**Authors’ contributions**

WC and JS collected the data, searched the literature and drafted the manuscript. PS, SP and SK participated in the design of the study, and performed the statistical analysis. All authors conceived of the study, and participated in its design, and coordinated and helped to draft the manuscript. All authors read and approved the final manuscript.

**Funding**

This study was partial supported for publication by the Faculty of Public Health, Mahidol University, Bangkok, Thailand and the Mahidol University, Bhudhamonthon, Nakhon Pathom, Thailand.

**Availability of data and materials**

Authors present the data on the main paper.

**Ethics approval and consent to participate**

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was reviewed and approved by the Ethics Committee for Research in Human Subjects of the Faculty of Public Health, Mahidol University (COA. No. MUPH 2016-097). The purpose of this study was explained to school
principals and teachers of the target schools. Permission was obtained from these schools and students, eligible to participate, informed consent was provided or consent was obtained from their parents or legal guardians after informing the study details. Parents or legal guardians were told that participation in the survey was voluntary and the survey would remain anonymous. Confidentiality was maintained throughout the study using anonymous technique (schools and respondents were identified by code numbers to ensure confidentiality and the results were analyzed as a whole group).

**Consent for publication**

All authors consent to publish the manuscript.

**Competing interests**

The authors declare no conflict of interest.

**Author details**

1 Department of Epidemiology, Faculty of Public Health, Ratchathewi, Mahidol University, Bangkok, Thailand. 2 Ratchaburi Provincial Public Health Office, Ratchaburi, Thailand. 3 Department of Biostatistics, Faculty of Public Health, Ratchathewi, Mahidol University, Ratchathewi, Bangkok, Thailand. 4 Department of Family Health, Faculty of Public Health, Ratchathewi, Mahidol University, Ratchathewi, Bangkok, Thailand. 5 Boromarajonani College of Nursing Phraphutthhabat, Saraburi, Thailand.

**References**

1. Zhang Z, Chen T, Jin X, Yan C, Shen X, Li S. Sleep patterns, sleep problems and associations with reported sleep quality in Chinese school-aged children. Am J Public Health Res. 2013; 1: 93-100.
2. Mindell JA, Meltzer LJ. Behavioral sleep disorders in children and adolescents. Ann Acad Med. 2008; 37: 722-8.
3. McDermott B, Baigent M, Chanen A, Graetz B, Hayman N, Newman N, et al. Clinical practice guidelines: depression in adolescents and young adults. Melbourne (Australia): beyond blue: the national depression initiative; 2011.
4. Malhotra S, Kushida CA. Primary hypersomnias of central origin. Continuum (Minn, MN). 2013; 19(1): 67-85.
5. Giannotti F, Cortesi F. Family and cultural influences on sleep development. Child Adolesc Psychiatr Clin N Am. 2009; 18(4): 849-61.
6. Ohayon MM, Smirne S. Prevalence and consequences of insomnia disorders in the general population of Italy. Sleep Med. 2002; 3(2): 115-20.
7. Hounnaklang, N, Lertmaharit S, Lohsoonthorn V, Rattananupong T. Prevalence of poor sleep quality and its correlates among high school students in Bangkok, Thailand. J Health Res. 2016; 30: 91-8.
8. Lhoomthorn V, Khidir H, Casillas G, Lertmaharit S, Tadesse MG, Pensuksan WC, et al. Sleep quality and sleep patterns in relation to consumption of energy drinks, caffeinated beverages, and other stimulants among Thai college students. Sleep Breath. 2013; 17(3): 1017-28.

9. Cheng SH, Shih CC, Lee IH, Hou YW, Chen KC, Chen KT, et al. A study on the sleep quality of incoming university students. Psychiatry Res. 2012; 197(3): 270-4.

10. Rocha CR, Rossini S, Reimao R. Sleep disorders in high school and pre-university students. Arq Neuropsiquiatr. 2010; 68(6): 903-7.

11. Suen LK, Hon KL, Tam WW. Association between sleep behavior and sleep-related factors among university students in Hong Kong. Chronobiol Int. 2008; 25(5):760-75.

12. Quist JS, Sjodin A, Chaput JP, Hjorth MF. Sleep and cardiometabolic risk in children and adolescents. Sleep Med Rev. 2016; 29:76-100.

13. Pizza F, Contardi S, Antognini AB, Zagoraiou M, Borrotti M, Mostacci B, et al. Sleep quality and motor vehicle crashes in adolescents. J Clin Sleep Med. 2010; 6:41–5.

14. Hillman DR, Lack LC. Public health implications of sleep loss: the community burden. Med J Australia. 2013;199(8):7-10.

15. Munezawa T, Kaneita Y, Osaki Y, Kanda H, Minowa M, Suzuki K, et al. The association between use of mobile phones after lights out and sleep disturbances among Japanese adolescents: a nationwide cross-sectional survey. Sleep. 2011;34(8):1013-20.

16. Arora T, Broglia E, Thomas GN, Taheri S. Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias. Sleep Med. 2014; 15:240-7.

17. Tynjälä J, Kannas L, Levälahti E. Perceived tiredness among adolescents and its association with sleep habits and use of psychoactive substances. J Sleep Res. 1997;6(3):189-98. doi:10.1046/j.1365-2869.1997.00048.x

18. Geography of Ratchaburi Province. Available at https://en.wikipedia.org/wiki/Ratchaburi_Province

19. Map of Ratchaburi Province. Available at http://www.mapsofworld.com

20. Lwanga SK, Lemeshow S. Sample size determination in health studies: a practical manual. Geneva: World Health Organization; 1991.

21. Jirapramukpitak T, Waran Tanchaiswad W. Sleep disturbances among nurses of Songklanagarind Hospital. J Psychiatr Assoc Thailand. 1997; 42: 123-132.

22. Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989; 28: 193-213.

23. Sitasuwan T, Bussaratid S, Ruttanaumpawan P, Chotinaiwattarakul W. Reliability and validity of the Thai version of the Pittsburgh Sleep Quality Index. J Medical Assoc Thai. 2014; 97 Suppl 3: s57-67.

24. Levenson JC, Shensa A, Sidani JE, Colditz JB, Primack BA. The Association between social media use and sleep disturbance among young adults. Prev Med. 2016; 85: 36-41.

25. Xu X, Lin Q, Zhang Y, Zhu R, Sharma M, Zhao Y. Influence of WeChat on sleep quality among undergraduates in Chongqing, China: a cross-sectional study. SpringerPlus.
26. Carter B, Hale L, Paradkar MA. A meta-analysis of the effect of media devices on sleep outcomes. AMA Pediatr. 2016;170(12):1202–08.

27. Polos PG, Bhat S, Gupta D, O'Malley RJ, DeBari VA, Upadhyay H, et al. The impact of Sleep Time-Related Information and Communication Technology (STRICT) on sleep patterns and daytime functioning in American adolescents. J. Adolesc. 2015;44:232-44.

28. Liu Z, Zhao Z. Effects of light interruption on sleep and viability of Drosophila melanogaster. PloS One. 9(8): e105678. https://doi.org/10.1371/journal.pone.0105678

29. Rangtell FH, Ekstrand E, Rapp L, Lagermalm A, Liethof L, Bucaro MO, et al. Two hours of evening reading on a self-luminous tablet vs reading a physical book does not alter sleep after daytime bright light exposure. Sleep Med. 2016; 23:111-8.