Retrospective Analysis of Mortality Cases in Advanced and Metastatic Solid Tumors With Concurrent Prerenal Azotemia

TZU-YAO LIAO and CHUANG-CHI LIAW

Division of Hemato-Oncology, Department of Internal Medicine, Chang-Gung Memorial Hospital and Chang-Gung University College of Medicine, Taoyuan, Taiwan, R.O.C.

Abstract. Background/Aim: A retrospective study of cases with metastatic or advanced solid tumors complicated with AKI (acute kidney injury) with prerenal azotemia. Patients and Methods: Criteria included: (1) advanced or metastatic solid tumors that led to mortality; (2) prerenal azotemia identified upon renal function evaluation and (3) BUN to Cr ratio (BCR)>15. We also compared the outcomes of patients with BCR>20 with those of patients with BCR=15-20. Results: A total of 218 patients with solid tumors were enrolled. One hundred and forty (64%) and 78 (36%) patients had BCR>20 and 15-20, respectively. Before AKI occurrence, 136 (62%) had thromboembolic complications and 96 (44%) paraneoplastic syndromes. Median survival time was 1 week in all patients. Median survival time was statistically different between the groups with BCR15-20 and BCR>20 (p<0.005, log-rank test). Conclusion: Cancer patients with concurrent AKI and prerenal azotemia carry a very poor prognosis.

Acute kidney injury (AKI) is defined as abrupt kidney damage resulting in the impairment of renal function within a few hours or days (1, 2). Understanding the pathogenesis of AKI during critical illness and developing therapeutic strategies for AKI based on the different possible etiologies are necessary (3). During AKI, cytokines are released from leukocytes and renal tubular cells in the injured kidney (4), and an inflammatory response occurs within the kidney after an episode of AKI (5). Prerenal azotemia, one of the causes of AKI, is defined as an increase in the blood concentration of nitrogen metabolism products, such as urea and creatinine (Cr) (6).

A blood urea nitrogen (BUN) to Cr ratio (BCR)>20 is used to distinguish prerenal azotemia and acute tubular necrosis, and high BCR patients have a higher hospital mortality (7). However, BCR is reported to have poor discriminatory ability in distinguishing prerenal AKI from intrinsic AKI (8). AKI is an important cause of morbidity and mortality in cancer patients, resulting in further complications (9, 10). Hence, AKI should be rapidly diagnosed and managed.

We designed a retrospective study including patients with metastatic or advanced solid tumors and with concurrent AKI with prerenal azotemia. We studied the clinical outcomes between two groups: one with a BCR 15-20 and the other with a BCR>20.

Patients and Methods

Patients. This retrospective case series was conducted between June 2008 and December 2019. Data were collected from 947 patients hospitalized in the oncology Department of the Chang-Gung Memorial Hospital. Because the data was mainly sourced from a single physician with expertise in urological cancers, most of these patients had urothelial carcinomas. Of these patients, 218 (23%) were documented to have prerenal azotemia.

The selection criteria included the following: 1) advanced or metastatic solid tumors resulting in mortality; 2) prerenal azotemia, as identified by renal function examination with the elevation of serum BUN and Cr levels; and 3) a BCR>15.

Ethics approval and consent to participate. The institutional review board/ethics committee determined that informed consent was not required. This study was approved by the Institutional Review Board (the "IRB") of Chang Gung Medical Foundation on 2020/02/09. IRB No.: 202000126B0.

Clinical and laboratory investigations. The patients often had thromboembolic complications and paraneoplastic syndromes. Common thromboembolism-associated complications included loss of consciousness and mental change, pulmonary venous obstructive syndrome, and iliofemoral venous obstruction or thrombosis. Due
A squared test was used to detect differences between subgroups, and survival curves were measured using the log-rank test. The Chi-range of 32 to 93 years. population consisted of 137 men and 81 women, with an age

There were 218 patients with solid tumors enrolled. The CRP. The survival time was calculated from the occurrence of weight loss of >5% within six months, with reduced food intake and muscle wasting), neoplastic fever (tumor-related fever that responds to the naproxen test) and hypercalcemia (11-13). Paraneoplastic syndromes included cachexia syndrome (a well to the naproxen test) and hypercalcemia (11-13). Laboratory examinations included complete blood counts (CBC), renal function test, D-dimer and C-reactive protein (CRP). D-dimer was defined as hemoglobin (Hb) levels less than 8 g/dl. Leukocytosis was defined as leucocyte counts less than 2,000/μl and/or neutrophil counts greater than 12,000/μl. Leukopenia was defined as leucocyte counts less than 100,000/μl and/or neutrophil counts less than 1,000/μl. Thrombocytosis was defined as platelet counts greater than 400,000/μl. Thrombocytopenia was defined as platelet counts less than 100,000/μl. Presence of blast or immature myeloid cells was obtained from the differential counts of WBC. The elevation of BUN, Cr levels was defined as hemoglobin (Hb) levels less than 8 g/dl. Leukocytosis was defined as leucocyte counts less than 2,000/μl and/or neutrophil counts greater than 12,000/μl. Leukopenia was defined as leucocyte counts less than 2,000/μl and/or neutrophil counts less than 1,000/μl. Thrombocytosis was defined as platelet counts greater than 400,000/μl. Thrombocytopenia was defined as platelet counts less than 100,000/μl. Presence of blast or immature myeloid cells was obtained from the differential counts of WBC. The elevation of BUN, Cr levels and BCR greater than 20 were 64±36 mg/dl (30 mg/dl to 266 mg/dl). 70% of the total cases, in 39% of cases with a BCR>20 and in 31% of cases with a BCR of 15-20. Thrombocytopenia (n=94), hypercalcemia (n=6), and neoplastic fever (n=4).

The laboratory findings of the whole cohort and the BCR>20 and BCR=15-20 groups are shown in Table II. D-dimer was tested for 188 patients. The mean values were 6630±4128 ng/ml (170 mg/dl to >10,000 mg/dl) for all patients, 3267±2107 mg/ml (170 mg/dl to >10,000 mg/dl) for the group with a BCR>20 and 3402±1874 mg/ml (445 mg/dl to >10,000 mg/dl) for the group with a BCR=15-20. High D-dimer levels (>5,000 mg/ml) were found in 36% of the total cases, in 39% of cases with a BCR>20 and in 31% of cases with a BCR of 15-20. The CRP was assessed in 167 patients. The mean values were 229±173 mg/l (1 mg/dl to 403 mg/dl) for all of the patients, 110±80 mg/l (1 mg/dl to 362 mg/dl) for the subgroup with BCR>20, and 132±111 mg/l (1 mg/dl to 403 mg/dl) for the subgroup with a BCR 15-20. High CRP (>50 mg/l) was found in 70% of the total cases, in 71% of cases with a BCR>20, and in 70% of cases with a BCR 15-20. The CBC was tested in all patients. Severe anemia (Hb <8 g/dl) was detected in 38% of cases with a BCR>20 and in 54% of cases with a BCR of 15-20. Leukocytosis or neutrophilia (leukocytes >15,000/μl, neutrophil count >12,000/μl) was detected in 38% of cases with a BCR>20 and in 35% of cases with a BCR of 15-20. Leucopenia or neutropenia (leucocytes <2,000/μl, neutrophil count <1,000/μl) was found in 13% of cases with BCR>20 and in 15% of cases with a BCR of 15-20. Thrombocytopenia

Characteristics	No. of patients (%)
Age (years)	68 (32-93)
Gender	Male/Female 137/81
Primary tumor sites (N=218)	
Urothelial cancer	123 (56)
Non-urothelial cancer	95 (44)
BUN to Cr ratio (BCR)	218 (100)
>20	140 (64)
15-20	78 (36)
Associated with thromboembolic complications	136 (62)
Associated with paraneoplastic syndrome	96 (44)

Results

The patients’ clinical characteristics are shown in Table I. There were 218 patients with solid tumors enrolled. The population consisted of 137 men and 81 women, with an age range of 32 to 93 years.
(platelet count <100,000/μl) was detected in 39% of cases with a BCR>20 and in 40% of cases with a BCR 15-20. Thrombocytosis (platelet count>400,000/μl) was found in 13% of cases with a BCR>20 and in 8% of cases with a BCR of 15-20. The presence of blasts or immature myeloid cells was detected in 49% of cases with BCR>20 and in 65% of cases with a BCR of 15-20. Urothelial cancers were present in 54% of cases with a BCR>20 and in 62% of cases with a BCR 15-20. By comparison, there was significantly more severe anemia (p=0.028) and a greater number of blasts or immature myeloid cells in cases with a BCR of 15-20 than in patients with a BCR>20 (p=0.031).

The median survival time for all patients was one week (range=<1-37 weeks). The median survival time was two...
weeks (range=1-37 weeks) in cases with a BCR 15-20 (range=1-27 weeks) and one week (range=1-36 weeks) in cases with a BCR >20. Survival time was statistically different between the two groups (p<0.005, log-rank test; Figure 1). There were 111 patients (51%), comprising 71 (51%) cases with a BCR >20 and 40 (51%) cases with a BCR 15-20, that had septicemia or infections as complications. The pre-death status identified in cases with BCR >20 and BCR=15-20 were predominantly a loss of consciousness [132 (94%), 8 (6%)] or respiratory failure [71 (91%), 7 (9%)], respectively.

Discussion

Cancer patients are at high risk for the development of AKI (14-19), which is related to the production of inflammatory cytokines and results in an increased mortality rate (19). In this study, the cancer patients that had concurrent AKI died in a very short time, and the mean survival time was only one week. Production of inflammatory cytokines can be due to cancer itself or to responses of the patients to invasive procedures, therapies, or infections (11, 20). Similarly, AKI in cancer patients can be secondary to cancer itself, driven by reactions of patients to bacterial infection, chemotherapy, or surgery (14-16). Half of our cases developed AKI due to other complications, such as septicemia or infection. As recurrent AKI is common in patients who have already been hospitalized with AKI, and because AKI is associated with an increased rate of death (21, 22), there is a need for clinicians to quickly identify risk factors and generate appropriate management plans (18).

Increased production of inflammatory cytokines can result in thromboembolic complications, cancer cachexia, and tumor progression, which result in poor prognoses (11, 12). In our study, before the onset of AKI, over 60% of patients had thromboembolic complications; of these, cerebral thrombosis and pulmonary venous obstructive syndrome were the most common (11, 12). Over 40% of patients had paraneoplastic syndromes, of which cancer cachexia was the most common. The levels of D-dimer were more than 5000 ng/ml in 36% of patients, and the CRP values were over 50 mg/l in 70% of patients. Elevated D-dimers and CRP values are indicators of venous thrombosis, which can be related to inflammatory cytokines and thromboembolic complications of the treatment of cancer patients (26-31). In our study, a more severe anemia and an increased number of blasts and immature myeloid cells characterized cases with BCR 15-20. We suspect that these symptoms were not related to the onset of AKI. However, we suggest that high BCR is related to an increased production of inflammatory cytokines and can promote cancer mortality.

Our study has several limitations. First, the data was collected retrospectively from cases in a single center. Second, cytokine levels were not measured in these patients. Finally, mental status changes and altered consciousness related to thromboembolic complications were seldom proved by imaging studies. All of these factors contributed to a limitation in data analysis.

Conclusion

Cancer patients with new-onset AKI with prerenal azotemia have a poor prognosis. The prevention of the acute inflammatory process and minimization of the risk of thrombosis and thromboembolic complications due to the response of patients to invasive procedures, therapies, or infections, are needed in therapeutic management.

Conflicts of Interest

The Authors declare that they have no competing interests in regard to this study.

Authors’ Contributions

LT-Y collected and analyzed data and wrote the manuscript, LC-C offered the case, collected and analyzed data and wrote the manuscript.

Acknowledgements

The Authors wish to thank the oncology nursing staff for providing the best possible care for the patients of this study. The Authors would like to thank Uni-edit (www.uni-edit.net) for editing and proofreading this manuscript.

References

1 Makris K and Spanou L: Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev 37: 85-98, 2016. PMID: 28303073.
Liao and Liaw: Prerenal Azotemia in Malignancies

13 Liao TY, Hsu HC, Wen MS, Juan YH, Hung YH and Liaw CC: Acute kidney injury: what's the prognosis? Nat Rev Nephrol 7: 209-217, 2011. PMID: 21343898. DOI: 10.1038/nrneph.2011.13

14 Lee DW, Faubel S and Edelstein CL: Cytokines in acute kidney injury (AKI). Clin Nephrol 76: 165-173, 2011. PMID: 21888852. DOI: 10.5414/cn106921

15 Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, Kellum JA and Ronco C: Acute dialysis quality initiative consensus XIII Work Group. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27: 371-379, 2016. PMID: 26561643. DOI: 10.1681/ASN.2015030261

16 Bellomo R, Bagshaw S, Langenberg C and Ronco C: Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol 156: 1-9, 2007. PMID: 17464109. DOI: 10.1159/000102008

17 Uchino S, Bellomo R and Goldsmith D: The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J 3: 187-191, 2012. PMID: 2949752. DOI: 10.1093/ckj/sfs013

18 Gallieni M, Cosmai L and Porta C: Acute kidney injury in cancer patients. Case Rep Oncol 9: 760-771, 2016. PMID: 27900113. DOI: 10.1159/000452943

19 Lameire N, Vanholder R, Van Biesen W and Benoit D: Acute kidney injury in critically ill cancer patients: an update. Crit Care 20: 209, 2016. PMID: 2748025. DOI: 10.1186/s13054-016-1388-6

20 Rosner MH and Perazella MA: Acute kidney injury in the patient with cancer. Kidney Res Clin Pract 38: 295-308, 2019. PMID: 3128436. DOI: 10.23876/j.krcp.19.042

21 Faigl A, Marchetti M and Vignoli A: Coagulation and fibrinogen in digestive cancer: A systematic review and meta-analysis. Eur J Surg Oncol 44: 1494-1503, 2018. PMID: 30100361. DOI: 10.1016/j.ejso.2018.07.052

22 Hounkpatin HO, Fraser SDS, Glibedewell L, Blakeman T, Lewington A and Roderick PJ: Predicting risk of recurrent acute kidney injury: a systematic review. Nephron 142: 83-90, 2017. PMID: 30897569. DOI: 10.1159/000497385

23 Uchino S, Bellomo R and Goldsmith D: The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J 3: 187-191, 2012. PMID: 2949752. DOI: 10.1093/ckj/sfs013

24 Manoeuvrier G, Bach-Ngohou K, Batard E, Masson D and Trewick D: Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC Nephrol 18: 173, 2017. PMID: 28545421. DOI: 10.1186/s12882-017-0591-9

25 Bellomo R, Bagshaw S, Langenberg C and Ronco C: Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol 156: 1-9, 2007. PMID: 17464109. DOI: 10.1159/000102008

26 Manoeuvrier G, Bach-Ngohou K, Batard E, Masson D and Trewick D: Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC Nephrol 18: 173, 2017. PMID: 28545421. DOI: 10.1186/s12882-017-0591-9

27 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

28 Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S and Lorton C: C-Reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: A systematic review. PLoS One 10: e0143080, 2015. PMID: 26717416. DOI: 10.1371/journal.pone.0143080

29 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

30 Connolly KY, Khorana AA, Kuderer NM, Culakova E, Francis CW and Lyman GH: Anemia of inflammation. J Clin Oncol 27: 2090-2099, 2009. PMID: 19270024. DOI: 10.1200/jco.2008.21.6323

31 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

32 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

33 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

34 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

35 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

36 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159

37 Weiss G, Ganz T and Goodnough LT: Anemia of inflammation/malignancy: mechanisms and management. Hematology Am Soc Hematol Educ Program 2008: 159-165, 2008. PMID: 19074075. DOI: 10.1182/asheducation-2008.1.159