Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America

George Gehrels and Mark Pecha
Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

ABSTRACT

U-Pb geochronologic and Hf isotopic analyses have been conducted on detrital zircons extracted from 36 samples of Neoproterozoic through Triassic passive margin strata from western North America. The data serve as an improved reference for comparison with inboard strata that accumulated on the North American craton and outboard strata belonging to potentially displaced Cordilleran terranes. As expected, this reference documents significant variations in ages and Hf isotope compositions both north-south and also through time. The data also provide insights into the provenance of Cordilleran passive margin strata. During Neoproterozoic, Cambrian, and Early-Middle Devonian time, most grains were shed from relatively local basement rocks and from Mesoproterozoic clastic strata containing 1.2–1.0 Ga zircons that originated in the Grenville orogen. This pattern was interrupted during Ordovician time, when much of the Cordilleran margin was blanketed by detritus shed from the northern Canadian Shield. Beginning in Late Devonian time, and continuing through late Paleozoic and Triassic time, most regions were dominated by locally derived detritus (largely recycled from underlying strata), but also received 0.7–0.4 Ga grains that were shed from the Franklinian, Caledonian, Appalachian, and Ouachita-Marathon orogens. This pattern is complicated in southern transects as a result of mid-Paleozoic emplacement of off-shelf assemblages onto the continental margin (e.g., Antler orogeny) and construction of Permo-Triassic magmatic arcs along the margin. Our data also provide a robust record of the crustal evolution of western North America, with significant production of juvenile crust during late Archean (3.0–2.5 Ga) and Paleoproterozoic (1.78–1.6 Ga) time and phases of mainly crustal reworking between 2.2 and 1.78 Ga and 0.3–0.2 Ga.

This history is somewhat different from that of other continents, with western Laurentia comprising a greater overall proportion of juvenile crust, punctuated by greater degrees of crustal reworking between 2.2 and 1.78 Ga and 0.3–0.2 Ga.

INTRODUCTION

U-Pb ages of detrital zircon grains are typically used to determine provenance, constrain the maximum depositional age of the host strata, characterize the source from which zircons were shed, and/or characterize the host strata for comparison with other units (Gehrels, 2000; Fedo et al., 2003). The latter comparisons can provide information on a range of scales, from establishing local stratigraphic correlation to reconstructing plate configurations. Characterizing the detrital zircon age distribution of a sedimentary unit is commonly referred to as establishing a detrital zircon fingerprint (Ross and Parrish, 1991), reference (Gehrels et al., 1995), barcode (Sircoube, 2000; Link et al., 2005), or chrono-facies (Lawton et al., 2010).

This study attempts to characterize the ages and Hf isotope compositions of detrital zircons that accumulated along the western margin of North America from Neoproterozoic through Triassic time (Fig. 1). A similar detrital zircon reference was originally reported by Gehrels et al. (1995), based on U-Pb analysis by isotope-dilution thermal ionization mass spectrometry (ID-TIMS), and has been used in many subsequent analyses to constrain provenance, paleogeography, and displacement of outboard terranes. The original data set is significantly enhanced herein by analysis of a larger number of grains per sample, random selection of analyzed grains, and addition of Hf isotope data.

We have re-analyzed the original 23 samples reported by Gehrels et al. (1995), and an additional 13 samples that were analyzed in subsequent studies, utilizing laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and updated analytical methods. Primary improvements in methodology are that (1) ~200 grains were analyzed for U-Pb age for most samples, (2) zircon grains were selected at random from a representative split of all available grains, and (3) cathodoluminescence (CL) images were used to optimize analysis locations.

We have also conducted Hf isotopic measurements on ~50 representative grains per sample in an effort to complement the geochronologic data with petrogenetic information. Collectively, 6461 new U-Pb ages and 1665 Hf isotope analyses are reported.

SAMPLES ANALYZED

Thirty-six samples have been studied, as shown schematically on Figure 2 and described below. Location information for each sample is provided in Supplemental Tables 1–6 in the Supplemental Table File1, and detailed sample descriptions are provided in the references cited in these tables.

Two samples were analyzed from eastern Alaska, including the Lower Cambrian Adams Argillite and the Upper Devonian Nation River Formation. Both samples clearly accumulated on the cratonic margin of North America, although the Nation River Formation also received detritus from a peri-cratonic source terrane to the north (Gehrels et al., 1999; Beranek et al., 2010; Anfinson et al., 2011).

1Supplemental Table File. Zipped file containing 13 Excel table files. Table 1: Alaska U-Pb data. Table 2: Northern British Columbia U-Pb data. Table 3: Southern British Columbia U-Pb data. Table 4: Nevada-Utah U-Pb data. Table 5: Southern California U-Pb data. Table 6: Sonora U-Pb data. Table 7: Hf standard data. Table 8: Alaska Hf data. Table 9: Northern British Columbia Hf data. Table 10: Southern British Columbia Hf data. Table 11: Nevada-Utah Hf data. Table 12: Southern California Hf data. Table 13: Sonora Hf data. If you are viewing the PDF of this paper or reading it offline, please visit http://dx.doi.org/10.1130/GES00889.1 or the full-text article on www.gsapubs.org to view the Supplemental Table File.

Geosphere: February 2014; v. 10; no. 1; p. 49–65; doi:10.1130/GES00889.1; 22 figures; 3 supplemental files.
Received 3 December 2012 ♦ Revision received 13 October 2013 ♦ Accepted 13 November 2013 ♦ Published online 19 December 2013

For permission to copy, contact editing@geosociety.org © 2014 Geological Society of America
Figure 1. Location of sample transects (stars) relative to first-order crustal provinces (Prov) of North America (adapted from Hoffman [1989], Whitmeyer and Karlstrom [2007], Gehrels et al., [2011]). PRA—Peace River Arch region; Mo—Mojave province; Wy—Wyoming province; Ra—Rae province; TH—Trans-Hudson province; Su—Superior province; Wo—Wopmay province.

Figure 2. Schematic diagram showing stratigraphic units studied and approximate ages. Valmy, Vinini, and Aliso belong to off-shelf assemblages. N River—Nation River; M Wilson—Mount Wilson; HT Creek—Horsethief Creek; Wd Cnyn—Wood Canyon; Mina Mex—Mina Mexico.
zoic off-shelf strata in proximity to the Triassic magmatic arc built along the Cordilleran margin (Gehrels and Stewart, 1988). We have also re-analyzed two samples reported by Poole et al. (2008), including deep-water strata of the Upper Devonian Los Pozos Formation and Lower Permian strata of the Mina Mexico Formation. A final sample is from the Upper Triassic Antimonio Formation, which accumulated in a basinal setting outboard of the Triassic magmatic arc (González-León et al., 2005).

METHODS

Analyses reported herein were conducted by LA-ICPMS at the Arizona LaserChron Center (Tucson, Arizona). Data were collected during several different sessions from 2006 to 2011, first utilizing a GVI Isoprobe connected to a New Wave UP193 HE laser, second with a Nu Plasma HR multicollector ICPMS connected to a New Wave UP193 HE laser, and finally with the Nu ICPMS connected to a Photon Machines Analyte G2 excimer laser. Details of our procedures for collecting, analyzing, and interpreting the data are described in Supplemental File 1.

U-Pb Geochronology

U-Pb ages from each transect are shown on normalized probability density plots (PDPs) in Figures 3–10. The geochronologic data, Pb/U concordia diagrams, PDPs, and lists of age groups and peak ages are all provided in Supplemental Tables 1–6 in the Supplemental Table File (see footnote 1).

Figures 3 and 4 provide a comparison between the ID-TIMS data originally presented for these samples and our LA-ICPMS ages. Figure 3 shows data for Cambrian, Devonian, late Paleozoic, and Triassic age. Figure 4 shows ages for Ordovician strata, which commonly differ from ages in older and younger strata. Age data from the two different methods are highly compatible, with the main age groups apparent in both data sets. There are also significant differences, however, as outlined below.

One of the significant differences in the two data sets is that the ID-TIMS analyses yield more restricted age ranges than the LA-ICPMS analyses. This is due largely to the higher precision of ID-TIMS, with average uncertainties of 0.4% (1σ) for all ID-TIMS ages compared with 1.9% (1σ) for all LA-ICPMS ages. A second factor is the greater number of LA-ICPMS ages per sample (~7x, on average), which results in a broader range of observed ages.

A second difference is the variation in proportions of age groups, which results mainly from differing grain-selection procedures. For ID-TIMS, crystals were selected from each color and morphology group, regardless of the abundance of grains composing each group. For LA-ICPMS, grains were selected at random from the full population of grains. The procedure used for LA-ICPMS analyses generates a more representative age distribution given that grains are selected at random; the following discussions accordingly rely entirely on LA-ICPMS ages.

Supplemental File 1. Analytical methods file (32 pages, 20 figures). If you are viewing the PDF of this paper or reading it offline, please visit http://dx.doi.org/10.1130/GEOS00889.S2 or the full-text article on www.gsapubs.org to view Supplemental File 1.
HF Isotope Analysis

Thirty-three of the 36 samples have been analyzed for HF isotopes; three contained grains that were too small for analysis even with a 30 µm beam diameter. An average of 50 analyses were conducted per sample, with grains selected to represent each of the main age groups and to avoid crystals with discordant or imprecise ages. CL images were utilized (see Supplemental File 2) to determine pit locations for all analyses. HF analyses were conducted on top of the U-Pb analysis pits in most cases to ensure that at least the initial HF isotopic data were determined from the same domain as the U-Pb age. Supplemental Table 7 in the Supplemental Table File (see footnote 1) reports all analyses of HF standards, whereas Supplemental Tables 8–13 in the Supplemental Table File (see footnote 1) present HF isotopic data and HF-evolution plots for each sample.

HF data are presented on HF-evolution diagrams (Figs. 5–10) that show εHf(t) values at the time of crystallization. Measurement precision is shown as the average uncertainty for all analyses presented on each diagram, expressed at 2σ. External precision is estimated at ±2 epsilon units given that nearly all session averages of zircon standards are within ±2 epsilon units of the reported values (Bahルburg et al., 2009). Reproducibility is estimated at ±3.1 epsilon units based on the standard deviation (expressed at 2σ) of each set of standard analyses. Following Bahルburg et al. (2011), εHf(t) values that are within 5 units of depleted mantle (DM) are referred to as juvenile in composition, values between 5 and 12 units below DM are considered intermediate, and values >12 units below DM are considered evolved.

To assist with interpretation, Figures 5–10 show arrows that indicate the HF isotopic evolution of typical felsic crust, assuming a 176Lu/177Hf ratio of 0.0093 (Verooroit and Patchett, 1996; Amelin et al., 1999; Bahルburg et al., 2011). Analyses that lie along a HF-evolution trajectory are interpreted to record successive melting events of crust that may have been extracted from the mantle at the time of intersection with DM. Depleted mantle model ages for individual analyses are not presented, however, because of uncertainties in HF isotopic evolution prior to zircon crystallization, as well as uncertainties in the evolution of CHUR (chondritic uniform reservoir) and DM (e.g., Verooroit, 2011). Yellow vertical bands on Figures 5–10 enclose analyses of approximately similar age that have a range of HF isotopic composition. Such arrays are interpreted as mixtures of crustal components of variable HF isotope composition, with involvement of juvenile (more radiogenic, mantle-derived) material indicated by analyses with juvenile εHf(t) values.

It should be noted that the HF data presented herein are not of ideal precision due to three different factors. First is the small size of zircon grains in many samples, which required analysis of all grains in such samples (and of standards on the same mounts) with a small (30 µm) laser beam. Second, data acquired with our first laser system had large measurement uncertainties due to uneven energy distribution and irregular pit geometry. Data collected with our second laser system, used toward the end of the study, has significantly better internal precision. Third are several aspects of our analytical methodology that sacrifice internal precision to improve accuracy:

1. HF analysis pits are located on top of U-Pb analysis pits so that at least the initial HF measurements are likely from the same domain as the U-Pb age. This ensures that the HF age and the initial HF isotope data are measured simultaneous.

2. Uncertainties are calculated using all data acquired during an acquisition, rather than only a portion of the analysis analysis, thereby providing a more comprehensive view of the isotopic evolution.

3. Our mass spectrometer is tuned (by adjusting gas flows and beam focusing) such that the measured HF isotope data are corrected for any measured mass-dependent fractionation and isotopic interference. These tune settings commonly yield slightly lower sensitivity, which results in lower precision, but alleviates the need to apply any additional correction factors.

U-Pb AGES AND HF ISOTOPIC INFORMATION

Eastern Alaska

Our two samples from eastern Alaska yield similar sets of ages (PDPs on Fig. 5; Supplemental Table 1 in the Supplemental Table File [see footnote 1]), with dominant age groups of 1.97–1.76, 1.72–1.60, 1.48–1.30, and 1.26–0.98 Ga. There are also subordinate groups of Achean age, 2.10–2.03 Ga, and 0.72–0.50 Ga. In addition, 0.47–0.40 Ga grains are present in the Nation River Formation.

The HF data from these two samples are also similar, with mostly intermediate and evolved εHf(t) values for >1.3 Ga grains and mostly intermediate and juvenile compositions for <1.3 Ga grains (Fig. 5; Supplemental Table 8 in the Supplemental Table File [see footnote 1]). One set of 1.8–1.3 Ga grains is interpreted to lie along a HF-evolution trajectory (gray band on Fig. 5) that records episodic remelting of crust that originated during Paleoproterozoic time. Vertical arrays (yellow bands) are interpreted to record reworking of mainly evolved and intermediate crust at 2.1–1.8 Ga, and mixing of mainly intermediate and juvenile crust at 1.3–1.0 Ga and 0.7–0.4 Ga.

Northern British Columbia

Samples from northern British Columbia record two very different age distributions (PDPs of Fig. 6; Supplemental Table 2 in the Supplemental Table File [see footnote 1]). Cambrian though Devonian samples yield dominantly 2.12–1.76 Ga grains and subordinate age groups of 2.73–2.54 and 2.42–2.27 Ga. The Ordovician Monkman Formation also contains several grains of 1.12–1.01 Ga. The Cambrian Pettinean and Liard (Triassic) Formations exhibit age grains that are quite different from underlying strata, with primary age groups of 2.85–2.64, 2.03–1.60, 1.54–1.37, 1.20–1.02, and 0.48–0.38 Ga (Fig. 6). HF isotopic data for >1.3 Ga grains are similar to those from the samples from eastern Alaska, with mostly intermediate and evolved compositions (Fig. 6; Supplemental Table 9 in the Supplemental Table File [see footnote 1]). εHf(t) values for <1.3 Ga grains are also mostly intermediate to evolved, in contrast to the more juvenile values from young grains in eastern Alaska. One set of 1.7–1.0 Ga grains is interpreted to lie along a HF-evolution trajectory (gray band on Fig. 6) that records episodic remelting of Paleoproterozoic crust. Vertical arrays are interpreted to record reworking of evolved, intermediate, and possibly juvenile crust at 2.1–1.8 Ga, mixing of juvenile to moderately evolved crust at 1.8–1.6 Ga, and mixing of intermediate and evolved (some highly evolved) crust at 1.2–1.0 Ga and 0.60–0.40 Ga (Fig. 6; Supplemental Table 9 in the Supplemental Table File [see footnote 1]).

Southern British Columbia

Strata from southern British Columbia display three different age distributions (Fig. 7; Supplemental Table 3 in the Supplemental Table File [see footnote 1]). The Horsethief Creek and Hamill Groups yield grains that are mainly 1.94–1.65 Ga, with a subordinate population of 3.01–2.50 Ga grains. The Ord-
Western North America detrital zircons

Nevada and Utah

Strata from Nevada and Utah yield several different age distributions, as shown in Figure 8 (Supplemental Table 4 in the Supplemental Table File [see footnote 1]). Neoproterozoic samples yield primarily 1.24–0.99 Ga ages, with subordinate groups at 2.85–2.59, 1.99–1.74, and 1.47–1.32 Ga. Cambrian (and perhaps latest Neoproterozoic) samples have a dominant age group of 1.89–1.70 Ga and less abundant groups at 2.80–2.53, 1.50–1.36, and 1.24–1.00 Ga. The next set of similar samples includes Ordovician shelf-facies strata (Eureka Quartzite), Ordovician off-shelf-facies strata (Valmy Formation), and Mississippian (Tonka Formation) and Pennsylvanian (Battle Formation) strata of the Antler overlap assemblage. This set is characterized by a single dominant group of 1.98–1.75 Ga grains and subordinate populations at 2.78–2.57 and 2.12–2.05 Ga. An additional sample of Ordovician off-shelf strata (Vinini Formation) yields a very different age distribution from the other Ordovician strata, with dominant age groups of 1.86–1.68 and 0.52–0.46 Ga. The Devonian Oxyoke Formation yields an age distribution that is similar to Cambrian strata, with main age groups of 1.82–1.60 and 1.52–1.38 Ga. Finally, the two Triassic samples (Chinle and Osobb Formations) yield age groups of 1.85–1.62, 1.49–1.39, 1.20–0.97, 0.58–0.49, and 0.33–0.21 Ga.

Samples from Nevada and Utah yield a broad range of ε_{Hf(t)} values from juvenile to highly evolved (Fig. 8; Supplemental Table 11 in the Supplemental Table File [see footnote 1]). First-order patterns are that >2.5 Ga and 1.8–1.0 Ga grains are mostly juvenile and intermediate, whereas 2.3–2.0 and <1.0 Ga grains are mostly intermediate and evolved. Vertical arrays are interpreted to record mixing of juvenile and highly evolved crust between 2.1 and 1.78 Ga, and with less evolved crust after 1.78 Ga. Exceptions to this are 1.1–1.0 Ga grains in the Eureka, Valmy, and Battle formations and 0.3–0.2 Ga grains in the Chinle Formation that also incorporated highly evolved crust.

Southern California

The three samples from southern California yield two different age distributions (Fig. 9; Supplemental Table 5 in the Supplemental Table File [see footnote 1]). One of the samples from the Wood Canyon Formation is dominated by zircons that are 1.2–1.0 Ga, whereas the other sample of Wood Canyon Formation and the Zabriskie Quartzite yield three prominent age groups of 1.92–1.60, 1.51–1.36, and 1.27–1.05 Ga.

ε_{Hf(t)} isotope compositions from these samples are almost entirely juvenile and intermediate (Fig. 9; Supplemental Table 12 in the Supplemental Table File [see footnote 1]). Three vertical arrays are interpreted to record mixing of juvenile and intermediate crustal components. Wooden et al. (2013) reported very similar U-Pb ages and Hf isotopic compositions from the Wood Canyon and Zabriskie formations in southern California (Fig. 9).

Sonora

Five different age groups are apparent in the age distributions from Sonoran samples (Fig. 10; Supplemental Table 6 in the Supplemental Table File [see footnote 1]). First-order patterns are that >2.5 Ga and 1.8–1.0 Ga grains are mostly juvenile and intermediate, whereas 2.3–2.0 and <1.0 Ga grains are mostly intermediate and evolved. Vertical arrays are interpreted to record mixing of juvenile and highly evolved crust between 2.1 and 1.78 Ga, and with less evolved crust after 1.78 Ga. Exceptions to this are 1.1–1.0 Ga grains in the Eureka, Valmy, and Battle formations and 0.3–0.2 Ga grains in the Chinle Formation that also incorporated highly evolved crust.

Figure 5. U-Pb and Hf data and interpretations for samples from eastern Alaska. Lower curves are probability density plots of U-Pb ages, normalized such that each curve contains the same area. Analyses (with number of U-Pb analyses) are from the Lower Cambrian Adams Argillite (n = 198) and the Upper Devonian Nation River Formation (n = 187). Upper plot shows ε_{Hf(t)} values for each sample. The average measurement uncertainty for all analyses (upper right) is shown at the 2σ level. Reference lines on the Hf plot are as follows: DM—depleted mantle, calculated using 176Hf/177Hf0 = 0.283225 and 176Lu/177Hf0 = 0.038512 (Vervoort and Blichert-Toft, 1999); CHUR—chondritic uniform reservoir, calculated using 176Hf/177Hf0 = 0.282785 and 176Lu/177Hf0 = 0.0336 (Bouvier et al., 2008); gray dashed lines separate fields described as juvenile (0–5 epsilon units below DM), intermediate (5–12 epsilon units below DM), and evolved (>12 epsilon units below DM) following Bahlburg et al. (2011). Gray arrows show interpreted crustal evolution trajectories assuming present-day 176Lu/177Hf0 = 0.0093 (Vervoort and Patchett, 1996; Vervoort et al., 1999; Bahlburg et al., 2011). Yellow vertical bands indicate interpreted mixing of materials with different Hf isotope composition.
Oldest is the Proveedora Quartzite, which yields three dominant age groups of 1.81–1.61, 1.51–1.37, and 1.30–1.00 Ga. Two Ordovician samples yield mainly older grains, with dominant ages of 2.79–2.65 and 1.95–1.77 Ga. Two Devonian samples yield age groups of 1.87–1.59 and 1.50–1.32 Ga, with a subordinate set of 1.26–1.04 Ga grains and a few younger grains at 0.52–0.48 Ga. Age distributions from Permian strata are more varied, with age groups at 2.85–2.54, 1.93–1.60, 1.51–1.36, 1.16–0.99, and 0.63–0.31 Ga. Triassic strata are dominated by young grains, 0.29–0.21 Ga, and also have three older age groups at 1.78–1.63, 1.50–1.39, and 1.13–1.06 Ga.

HF isotope compositions from these samples are juvenile to intermediate for Archean, 1.78–1.6, 1.5–1.4, and 1.3–1.0 Ga grains, evolved for 0.70–0.55 and 0.30–0.20 Ga grains, and highly variable from juvenile to evolved for 2.0–1.78 and 1.3–1.0 Ga grains (Fig. 10; Supplemental Table 13 in the Supplemental Table File [see footnote 1]). Vertical arrays are interpreted to record mixing of juvenile and highly evolved crust at 2.0–1.78 and 1.3–1.0 Ga, juvenile and mostly intermediate crust during 1.78–1.6 and 1.5–1.4 Ga, and evolved to intermediate crust, with little evidence of juvenile input, during 0.70–0.55 and 0.30–0.20 Ga.

PROVENANCE IMPLICATIONS

The data from this study can be used to reconstruct provenance by comparison of the observed U-Pb ages and Hf isotope data with known values from relevant basement and igneous provinces.

Comparison with Existing U-Pb Age and Hf Data

Figure 11 provides a comparison of our detrital zircon ages (PDP curves) with the general age ranges of basement provinces and younger igneous suites of North America (vertical shaded bands; Hoffman, 1989; Whitmeyer and Karlstrom, 2007). The use of Hf isotopes for reconstructing provenance is challenging because few HF isotopic analyses are available for Precambrian basement provinces and younger igneous suites of North America. The available information is shown on Figure 12, with clusters of analyses enclosed in summary fields.

Paleogeographic Framework

The following sections explore provenance implications that derive from comparisons between these previously published data sets and our U-Pb and Hf isotope results. The discussion is organized by age of deposition, and is keyed to a series of reconstructions (from Ron Blakey, maps available from http://jan.ucc.nau.edu/rcb7/nam.html) that provide a paleogeographic framework for the preferred provenance interpretations (Fig. 13).

Neoproterozoic Time

The paleogeography of Laurentia was relatively straightforward during Neoproterozoic time, with passive-margin sequences accumulating...
lating around most of the continent (Stewart, 1976) and, at least by Early Cambrian time, emergence of the Transcontinental Arch (Sloss, 1988; Fig. 13A). Much of the craton was covered by Mesoproterozoic strata of the Grenville clastic wedge (Rainbird et al., 1992, 2012), with reworking of these strata in uplifted regions. Samples from southern California are dominated by 1.2–1.0 Ga grains that generally over- lap in age and εHf(t) values with coeval grains in other parts of North America (Fig. 14). Most grains appear to have originated in the Grenville orogen of eastern or southern North America, with transcontinental dispersal during Mesoproterozoic time and reworking from local exposures of clastic strata during Neoproterozoic time (Rainbird et al., 1992, 2012). Grains of 1.8–1.6 and 1.48–1.34 Ga yield Hf data consistent with derivation from the Mojav-Yavapai-Mazatzal provinces (Bickford et al., 2008; Wooden et al., 2013) and 1.48–1.34 Ga granitoids of the U.S. midcontinent (Ross, 1991, 2002). The lack of Hf isotopic data from the Wopmay orogen prevents a direct comparison, but our Hf data suggest that these grains have ages that match well with the northwestern Canadian Shield and/or nearby Wyoming province. Mueller et al. (2007) reported similar ages and εHf(t) values from Neoproterozoic strata of the Uinta Mountain Group of northeastern Utah.

Cambrian Time

The paleogeography of Laurentia remained relatively simple during Cambrian time, with the Transcontinental Arch dominating the cratonic interior and passive-margin sequences accumulating around the margins (Sloss, 1988; Fig. 13B).

Our southernmost samples, from southern California and Sonora, yield ages and Hf iso- tope compositions that overlap signatures for the Mojave-Yavapai-Mazatzal provinces, 1.48–1.34 Ga midcontinent igneous rocks, and poten- tially overlying Mesoproterozoic strata derived from the Grenville orogen, suggesting derivation mainly from local sources (Fig. 15). Wooden et al. (2013) reached similar provenance conclusions based on U-Pb and Hf data from Cambrian strata in southern California.

Cambrian strata in Nevada have similar 1.48–1.34 Ga and 1.2–1.0 Ga components, but only minor input from the Yavapai-Mazatzal provinces. Grains with >1.8 Ga ages have Hf isotope compositions representative of the Canadian Shield and/or nearby Wyoming province. Strata in southern British Columbia are dominated by >1.8 Ga grains derived from the Canadian Shield (perhaps nearby Medicine Hat and/or Hearne provinces; Fig. 1).

Cambrian strata in northern British Columbia have ages that match well with the northwestern Canadian Shield, especially the Wopmay orogen (Ross, 1991, 2002). The lack of Hf isotopic data from the Wopmay orogen prevents a direct comparison, but our Hf data suggest that these grains were derived from mixing of evolved (Archean) and intermediate (Paleoproterozoic) crust.
Cambrian strata in eastern Alaska yield 1.8–1.3 Ga ages that are lacking in strata of British Columbia and from igneous rocks in the Wopmay orogen (Ross, 1991, 2002; White-meyer and Karlstrom, 2007; Fig. 1). Similar ages occur, however, in nearby Mesoprotero-zoi c and Neoproterozoic sedimentary assem-bblages (Furlanetto et al., 2009; L. Lane, 2013, personal commun.), some Cambrian strata that accumulated along the northern Canadian pas-sive margin (Hadlari et al., 2012), a broad range of circum-Arctic strata (Amato et al., 2009; Miller et al., 2006, 2010), and the Franklinian clastic wedge (Berenke et al., 2010; Anfinson et al., 2011) (Fig. 11). Our preferred interpretation is that these 1.8–1.3 Ga grains were shed from an as-yet-uncertain Precambrian basement province located along or outboard of Laurentia’s Arctic margin (Fig. 13B).

Or dovician Time

Ordovician paleogeography became more complex with the onset of Caledonian tec-tonism along Laurentia’s northeastern margin (McKerrow et al., 2000). Sea level was generally high, with Ordovician marine strata blanket ing much of Laurentia (Sloss, 1988; Haq and Schutter, 2008).

Ordovician strata record a dramatic change in provenance (Kettner, 1968), with strata all along the Cordilleran margin dominated by >1.8 Ga grains (Fig. 16; Gehrels et al., 1995). The Peace River Arch (Figs. 1 and 13C) was a likely source given that it was emergent during this time, and also contains rocks of the appropriate age to have sourced relatively uncommon 2.1–2.0 Ga grains. The presence of 1.2–1.0 Ga grains with highly variable εHf(t) values suggests that some sediment may have been shed from northeastern Laurentia, where Grenville-age igneous rocks are in proximity to Archean crustal provinces (Hoffman, 1989). This shift in provenance, with possible influx of detritus from northeastern Laurentia, coincides with a ca. 0.45 Ga shift in provenance recorded by Nd isotopes, which is attributed by Patchett et al. (1999) to the onset of Caledonian-Appalachian tectonism.

These unique U-Pb age and Hf isotope character-istics are also found in off-shelf Ordovician strata in Nevada and Sonora, which is interpreted to link the off-shelf assemblages with the northern Cordilleran margin (cf. Wright and Wyld, 2006). Mississippian–Pennsylvanian strata in Nevada yield similar ages and Hf iso-topes, which is consistent with recycling from off-shelf assemblages that were emplaced onto the Cordilleran margin during the Devonian–Mississippian Antler orogeny (Burchfield et al., 1992; Gehrels and Dickinson, 2000).

Southward transport of sediment on the continental shelf during Ordovician time likely occurred due to longshore transport (Kettner, 1968, 1986; Gehrels et al., 1995). The occurrence of off-shelf assemblages with similar age and Hf isotope characteristics cannot be explained by simple westward spilling of sediment into deeper-water settings because the off-shelf sandstones are less mature and coarser grained than their on-shelf counterparts (Kettner, 1968). Possible explanations include: (1) transport of sediment southward along the margin in deep-water settings, perhaps in a trench (Gehrels et al., 1995, 2000b); (2) southward transport of the off-shelf assemblages by tectonic processes, e.g., sinistral transform faults (Wallin et al., 2000; Colpron and Nelson, 2009); (3) derivation from basement rocks exposed outboard of the Cordilleran margin (Kettner, 1968); and (4) derivation from regions other than western Laurentia, for example southeast Laurentia (Wright and Wyld, 2006).

One of the important constraints in considering these models is that the Vinini Formation, which is part of the off-shelf assemblage in Nevada, is dominated by grains that indicate derivation from the nearby Yavapai-Mazatzal and 1.48–1.34 Ga igneous provinces (Fig. 8). This would favor sedimentary transport models (1 and 3 above) rather than tectonic transport models (2 and 4), although proponents of tec-tonic transport (e.g., Wright and Wyld, 2006) raise the possibility that the Vinini Formation is in tectonic (rather than sedimentary) contact with other members of the off-shelf assemblage.

Devonian Time

Two major changes in provenance are recorded along the Cordilleran margin during mid-Paleozoic time (Figs. 13D, 17). The first is indicated by a return to U-Pb ages and εHf values that suggest ultimate derivation from nearby basement provinces (with likely recycling through underlying Cambrian and Neo-proterozoic strata) (yellow arrows on Fig. 13D). This change is recorded in Lower and Middle Devonian strata in northern British Columbia, Nevada, and Sonora.

A second change is recorded in Upper Devonian strata from eastern Alaska and southern British Columbia (red arrows on Fig. 13D), which record the influx of 0.70–0.40 Ga grains (Fig. 17) derived from circum-Laurentian magmatic and orogenic belts (e.g., Franklinian, Cale-donian, Appalachian orogens; Fig. 1). Hf data for the young grains in eastern Alaska are quite distinctive, with juvenile to intermediate values that overlap εHf values from the Franklinian clastic wedge (Anfinson et al., 2011). The Hf data also overlap with εHf values from juvenile igneous rocks (Cecil et al., 2011) and detrital zircon grains (C. Tochilin, 2013, personal commun.) of the Alexander terrane, which may
have been located along the paleo-Arctic margin during Devonian time (Soja, 1994; Gehrels et al., 1996; Colpron and Nelson, 2007, 2009).

Similar changes in provenance are also recorded by U-Pb ages from strata along the Arctic and northern Cordilleran margins (Beranek et al., 2010; Lemieux et al., 2011), with 0.70–0.40 Ga grains appearing in Middle Devonian strata and becoming dominant in Upper Devonian through Mississippian strata. A similar shift is also recorded in Paleozoic strata of the Grand Canyon in southwestern North America, where <0.70 Ga grains first appear in Middle and Upper Devonian conglomeratic strata of the Temple Butte Formation (Gehrels et al., 2011).

Mississippian–Pennsylvanian–Permian Time

Provenance patterns during Mississippian–Pennsylvanian–Permian time are complex due to orogenic activity along all margins of Laurentia, evolving paleogeographic patterns within Laurentia due to uplift of the Ancestral Rocky Mountains.
Finally, two ca. 0.40 Ga grains with intermediate \(\varepsilon_{\text{Hf}}(t) \) values may have been shed from the Appalachian orogen, as has been suggested for coeval strata in the Grand Canyon (Gehrels et al., 2011).

As described above, Mississippian and Pennsylvanian strata in Nevada were derived from the Antler highlands to the west. This expression of circum-Laurentia tectonism is similar in timing with the other changes noted, but the presence of mainly >1.8 Ga grains in upper Paleozoic strata of Nevada-Utah is quite different from the occurrence of Neoproterozoic–Paleozoic grains in other regions.

Our Pennsylvanian sample from southern British Columbia (Spray Lakes Group) records several different source regions. The dominant grains with ages between 2.0 and 1.0 Ga have a range of juvenile to evolved \(\varepsilon_{\text{Hf}}(t) \) values that are somewhat more evolved than most data from the Yavapai-Mazatzal and 1.48–1.34 Ga igneous provinces to the south. This suggests that they may have been shed from the enigmatic northwestern Laurentian basement province noted above. Grains of 0.60–0.40 Ga were apparently shed from two different source regions, one with more evolved compositions (perhaps the Caledonides) and a second comprising more juvenile crust (perhaps juvenile arc terranes in the Arctic basin) (Fig. 18).

Triassic Time

In Nevada-Utah, sedimentary provenance has been reconstructed in considerable detail by U-Pb geochronologic analysis of many Triassic samples (Riggs et al., 1996, 2012; Dickinson and Gehrels, 2008). The main conclusion from these studies is that Triassic sandstones of the southwest were derived largely from local basement rocks, the Ouachita-Marathon orogenic system along the southern Laurentian margin, and Permo-Triassic igneous rocks that formed in Cordilleran magmatic arcs.

Our U-Pb and Hf data generally support these provenance interpretations (Fig. 13F). For Nevada-Utah, derivation of zircons from basement rocks of the southwest U.S. is indicated by Hf data that overlap with summary fields for the Yavapai-Mazatzal and 1.48–1.34 Ga provinces (Fig. 19). Grains of 1.2–1.0 Ga and 0.60–0.40 Ga age may have been shed from the Ouachita-Marathon orogen. The large range of \(\varepsilon_{\text{Hf}}(t) \) values for 0.30–0.20 Ga grains suggests that these Cordilleran-margin arcs consist largely of relatively juvenile Yavapai-Mazatzal and 1.48–1.34 Ga crust as well as crust of Archean heritage. The presence of such old crustal components in the southwest has previously been recognized in Precambrian basement of Colorado (Bickford et al., 2008).

(Tochilin, 2013, personal commun.)

Our data from Permian units in Sonora record the presence of several different source regions. Most obvious are 1.8–1.6 Ga and 1.48–1.34 Ga grains that yield ages and Hf isotope signatures similar to the Mojave-Yavapai-Mazatzal and 1.48–1.34 Ga igneous provinces, suggesting ultimate derivation from local basement rocks. These units also have abundant 1.2–1.0 Ga grains that could have been shed directly from the Grenville orogen, or perhaps recycled from underlying Devonian and older units. Archean grains and 2.0–1.8 Ga grains with intermediate to evolved \(\varepsilon_{\text{Hf}}(t) \) values are also abundant. These old components could have been recycled from Ordovician strata or shed from older components within the local basement (e.g., Bickford et al., 2008; Shufeldt et al., 2010; Tochilin, 2013). Yet another source is recorded by ca. 0.60 Ga grains with more evolved \(\varepsilon_{\text{Hf}}(t) \) values. These grains were presumably shed from an outboard source given the scarcity of ca. 0.60 Ga igneous rocks emplaced into Precambrian basement in southwestern North America.
U-Pb and Hf data for zircons in Triassic strata of Sonora are quite similar to the values from Nevada-Utah, and provenance interpretations are accordingly similar. Significant differences are the lack of 0.6–0.4 Ga grains and the presence of 0.3–0.2 Ga grains with even more evolved $\varepsilon_{\text{Hf}}(t)$ values. A likely scenario is that these ancient crustal components are associated with the Mojave province (Wooden et al., 2013), offset from southern California along the Mojave-Sonora megashear during Mesozoic time (Anderson et al., 2005).

Triassic strata in the northern Cordillera contain abundant detritus from >1.8 Ga rocks of the Canadian Shield, little material from juvenile provinces to the south, abundant 1.2–1.0 Ga material ultimately derived from the Grenville province, and abundant 0.60–0.40 Ga grains with intermediate to slightly evolved Hf values (Fig. 19). The latter grains are more negative than would be expected from the Franklinian system to the north, but are consistent with derivation from the Caledonian-Appalachian system in eastern Laurentia. These grains may have been reworked from the Caledonian-Appalachian clastic wedge that blanketed northern Laurentia during late Paleozoic time (Patchett et al., 1999), or perhaps carried across Laurentia in Triassic river and/or aeolian systems (Fig. 13F).

DETRITAL ZIRCON U-Pb AND Hf REFERENCE DATA

The U-Pb ages and $\varepsilon_{\text{Hf}}(t)$ values described above provide a relatively robust characterization of zircon grains that accumulated along the western Laurentian margin during Neoproterozoic through Triassic time. These data also help constrain the Hf characteristics and evolution of Laurentian basement provinces for which little
or no Hf isotopic information is available. The main patterns in space and time are summarized below and in Figures 16, 20, and 21.

1. The U-Pb ages and Hf isotope compositions of detrital zircon grains in Neoproterozoic, Cambrian, and Lower–Middle Devonian strata vary considerably along strike (Fig. 20). Southern and northern British Columbia yield major peaks between 2.0 and 1.7 Ga, with younger age groups of 2.8–2.5 Ga, and scattered ages between 2.5 and 2.0 Ga. The Hf data record significant influence of Archean crustal materials. Strata from southern and northern British Columbia yield major peaks between 2.0 and 1.7 Ga, a lesser age group at 2.8–2.5 Ga, and scattered ages between 2.5 and 2.0 Ga. The Hf data record significant influence of Archean crustal materials of the Canadian Shield, with mostly evolved and intermediate εHf(t) values in the dominant 1.84–1.78 Ga grains. Strata from Alaska yield dominantly Archean and Paleoproterozoic ages, and also have younger age peaks at 1.7–1.6, 1.45–1.35, and 1.25–1.0 Ga. εHf(t) values for these grains are generally more evolved than from coeval grains to the south (e.g., from the Yavapai–Mazatzal and 1.48–1.34 Ga igneous provinces), suggesting derivation from northern source regions containing more evolved crust.

2. Ordovician strata all along the Cordilleran margin yield mainly >1.78 Ga grains with U-Pb ages and Hf isotope compositions that are similar along strike (Fig. 16). This precludes the use of Ordovician strata to reconstruct the latitudinal position of terranes along the margin. An additional complexity arises from the occurrence of similar ages and εHf(t) values in upper Paleozoic strata of Nevada–Utah and Sonora, which complicates the use of these strata for reconstructing paleolatitude.

3. Upper Paleozoic and Triassic strata generally yield >1.0 Ga zircon grains with ages and εHf(t) patterns that suggest ultimate derivation from relatively local bedrock sources (Fig. 21). These strata also have abundant <1.0 Ga grains, with main age groups of 0.70–0.35 Ga and, in southern transects, 0.30–0.22 Ga (Fig. 21). The Hf isotopic composition of 0.70–0.35 Ga grains changes along strike, with juvenile to intermediate values in Alaska, evolved compositions in British Columbia, and intermediate compositions in Nevada–Utah. This variation is interpreted to reflect the influence of juvenile magmatic arc systems (e.g., Alexander terrane) in Alaska, derivation from the Caledonides in British Columbia (e.g., Patchett et al., 1999), and derivation from the Appalachian orogen (and possibly the Ouachita-Marathon system) in Nevada–Utah and Sonora (e.g., Gehrels et al., 2011). Grains of 0.30–0.22 Ga in the southern transects have variable Hf isotope compositions that are interpreted to reflect the presence of Archean crustal components within Paleoproterozoic basement provinces of the southwest (Bickford et al., 2008; Shufeldt et al., 2010; Wooden et al., 2013).

COMPARISON WITH GLOBAL HF DATA

An interesting view of our western North American Hf data is provided by comparison with global Hf data for detrital zircons (Fig. 22), as compiled by Belousova et al. (2010). The latter data set (gray crosses for individual analyses, black line for running average) consists of U-Pb and εHf(t) values determined on 13,844 zircons recovered mainly from modern rivers in Australia, Asia, and South America, with lesser contributions from North America, Africa, and Antarctica.

Western North America records a somewhat different Precambrian magmatic history from the global average, with greater proportions of 2.0–1.8, 1.5–1.4, and 1.2–1.0 Ga grains, and reduced proportions of 2.3–2.0, 1.7–1.5, and 0.9–0.7 Ga grains (Fig. 22). The Hf data show even greater differences, with North American zircons recording greater proportions of juvenile magmatism during Archean (3.0–2.5 Ga), late Paleoproterozoic–Mesoproterozoic (1.8–1.0 Ga), and Neoproterozoic–early Paleozoic (0.7–0.4 Ga) time, and greater degrees of interaction with Archean crust during Paleoproterozoic (2.2–1.8 Ga) and late Paleozoic–early Mesozoic (0.30–0.22 Ga) time. The overall greater abundance of juvenile crust in western North America may be due to the concentration of juvenile terranes by transform tectonics (e.g., Patchett and Chase, 2002).

Figure 14. U-Pb and Hf isotope data from Neoproterozoic strata. Diagrams and symbols are defined in Figure 5; reference fields are defined in Figure 12. BC—British Columbia.

Figure 15. U-Pb and Hf isotope data from Cambrian strata. Diagrams and symbols are defined in Figure 5; reference fields are defined in Figure 12. BC—British Columbia.
Although our western North American data differ from the global data set as noted above, the overall patterns of crustal growth versus rerecycling inferred from our data are highly compatible with the global patterns reported by Condie et al. (2011), Belousova et al. (2010), Hawkesworth et al. (2010), Roberts (2012), and Cawood et al. (2012). These first-order patterns include (1) significant juvenile crustal growth during Archean (3.2–2.6 Ga) time, (2) profound rerecycling of Archean crust during Paleoproterozoic (2.0–1.8 Ga) assembly of the Nuna/Columbia supercontinent, (3) renewed growth of juvenile crust, presumably by plate tectonic processes operating in an oceanic accretionary orogen, between 1.78 and 1.2 Ga, (4) rerecycling mainly of this 1.78–1.2 Ga crust during 1.2–1.0 Ga assembly of the Rodinia supercontinent, and (5) processes of Phanerozoic crustal growth and recycling that are globally variable depending on local tectonic settings and the availability of ancient crustal materials.

CONCLUSIONS

U-Pb geochronology and Hf isotope geochemistry of detrital zircons from sandstones of the Cordilleran margin yield four primary contributions to understanding the sediment dispersal patterns and crustal evolution of western North America.

First is the generation of a robust reference for the ages and Hf isotopic compositions of detrital zircon grains that accumulated along Laurentia’s western margin during Cambrian (locally Neoproterozoic) through Triassic time (Figs. 16, 20, 21). This reference is useful for comparison with inboard sandstones that accumulated on the North American craton and with outboard strata in potentially displaced Cordilleran terranes.

Second is enhanced characterization of the age and Hf isotopic composition of western Laurentian basement provinces and magmatic assemblages (Figs. 20 and 21). In southern transects, abundant 1.8–1.3 Ga grains with juvenile to intermediate εHf(t) values provide an excellent reference for the Hf isotopic composition of the Mojave, Yavapai, Mazatzal, and 1.48–1.34 igneous provinces, complementing the Hf data available from igneous rocks (Goodge and Vervoort, 2006; Bickford et al., 2008; Wooden et al., 2013). The presence of abundant >1.8 Ga grains and evolved εHf(t) values in <1.0 Ga grains also demonstrates the existence of older crustal components in the southwest (e.g., Bickford et al., 2008; Shufeldt et al., 2010; Wooden et al., 2013). In northern transects, abundant >2.5 Ga and 2.0–1.8 Ga grains yield a rich record of the ages and Hf isotope compositions of the western Canadian Shield (Figs. 20 and 21). Some grains were also shed from as-yet-unrecognized 1.7–1.3 Ga basement rocks that may be located in northwestern Laurentia or elsewhere within the Arctic realm.

Third are better constraints on the provenance of Cordilleran passive-margin sandstones, which yield new insights into connections between sediment dispersal and changes in tectonism, paleogeography, and sea level. First-order provenance patterns are as follows:

1. Neoproterozoic and Cambrian strata were derived mainly from nearby basement rocks, with addition of 1.2–1.0 Ga grains recycled from the Mesoproterozoic Grenville clastic wedge. This relatively simple provenance pattern reflects Neoproterozoic emergence of the Transcontinental Arch in the continental interior and accumulation of passive-margin sequences along Laurentia’s rifted margins (Figs. 13A, 13B).

2. Ordovician strata all along the Cordilleran margin record derivation from the northern Canadian Shield, with sediment carried southward in on-shelf settings by longshore currents and in off-shelf environments by either bathymetrically channeled submarine fans or coastwise tectonic transport. This unusual provenance pattern is interpreted to have resulted mainly from high sea level during Ordovician time, perhaps leaving the northwestern Canadian Shield (specifically the Peace River Arch) as the only emergent region along the Cordilleran margin (Fig. 13C).
Figure 18. U-Pb and Hf isotope data from Mississippian, Pennsylvanian, and Permian strata. Diagrams and symbols are defined in Figure 5; reference fields are defined in Figure 12. BC—British Columbia.

Figure 19. U-Pb and Hf isotope data from Triassic strata. Diagrams and symbols are defined in Figure 5; reference fields are defined in Figure 12. BC—British Columbia.

Figure 20. Summary of U-Pb and Hf isotopic data for grains in Neo-proterozoic, Cambrian, and Lower or Middle Devonian strata from each transect. Diagrams and symbols are defined in Figure 5. BC—British Columbia.

Figure 21. Summary of U-Pb and Hf isotopic data for grains in Upper Devonian, Mississippian, Pennsylvanian, Permian, and Triassic strata from each transect. Diagrams and symbols are defined in Figure 5. BC—British Columbia.
in the Ouachita-Marathon orogen. Orogenic igneous rocks in the Caledonides, moderately south, from mainly juvenile arc terranes along young grains reflect contributions, from north to 13D, 13E). Hf isotope compositions of these from circum-Laurentian orogenic systems (Fig. 22), western North America records a somewhat different record of crustal genesis and reworking, with greater amounts of juvenile crust during Archean time and between 1.80–1.2–1.0 Ga; reworking of mainly Mesoproterozoic–Paleozoic evolution of the Arctic Alaska–Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions: Geological Society of America Bulletin, v. 121, p. 1219–1235, doi:10.1130/B26510.1.

Armstrong, T., 2007, Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites and gneisses in Telemark, southern Norway: Lithos, v. 93, p. 273–287, doi:10.1016/j.lithos.2006.03.068.

Anderson, T., Saeed, A., Gabrielsen, R.H., and Olaussen, S., 2011, Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U-Pb, Lu-Hf and trace element analyses of detrital zircons by laser ablation ICPMS: Norwegian Journal of Geology, v. 91, p. 1–19.

Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., 2005, The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Boulder, Colorado, Geological Society of America, Special Paper 393, 693 p.

Andersson, U.B., Begg, G.C., Griffin, W.L., and Högdahl, K., 2011, Ancient and juvenile components in the continental crust and mantle: Hf isotopes in zircons from Sveconorwegian magmatic rocks and rapakivi granites in Sweden: Lithosphere, v. 3, p. 409–419, doi:10.1130/L162.1.

Antinsoo, O.A., Leier, A.L., Embry, A.F., and Dewing, K., 2012, Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands: Geological Society of America Bulletin, v. 124, p. 415–430, doi:10.1130/B30093.1.

Antinsoo, O.A., Leier, A.L., Gaschnig, R., Embry, A.F., and Dewing, K., 2011, Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands: Geological Society of America Bulletin, v. 124, p. 415–430, doi:10.1130/B30093.1.

Amelin, Y., Lee, D.-C., Halliday, A.N., and Pidgeon, R.T., 1999, Nature of the Earth’s earliest crust from hafnium isotopes in single detrital grains: Nature, v. 399, p. 252–255, doi:10.1038/20426.

Appleby, S.K., Gillespie, M.R., Graham, C.M., Hinton, R.W., Oliver, G.J.H., and Kelly, N.M., 2010, Do S-type
granites commonly sample infractural sources? New results from an integrated O-U-Pb and Hf isotope study of zircon provenance: Contributions to Stratigraphy and Mineralogy, Petrology, v. 160, p. 115–132, doi:10.1007/60410_009-0460-3.

Bahlburg, H., Vervoort, J.D., DuFrane, S.A., Bock, B., Augustsson, C., 2009, Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America: Earth-Science Reviews, v. 97, p. 215–241.

Bahlburg, H., Vervoort, J.D., DuFrane, S.A., Carlotto, V., Reimann, C., and Cardenas, J. 2011, The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Orlovka and granulite facies of southern Peru and northern Bolivia: Journal of South American Earth Sciences, v. 32, p. 196–209, doi:10.1016/j.jsames.2011.07.002.

Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O’Reilly, S.Y., and Pearson, N.J., 2010, The growth of continental crust: Constraints from zircon Hf-isotope data: Lithos, v. 119, p. 457–466, doi:10.1016/j.lithos.2010.07.006.

Beranek, L.P., Mortensen, J.K., Lane, L.S., Allen, T.L., Fraser, T.A., Hadlari, T., and Zantvoort, W.G., 2011, Detrital zircon geochronology of the western margin of South America: The Geology of North America, v. G-3, p. 19–42, doi: 10.1130/0-8137-2347-7.19.

Bickford, M.E., McKelland, J.M., Mueller, P.A., Kamienov, G.D., and Neadle, M., 2010, Hafnium isotopic composition of zircons from Adirondack AMCQ suites: Implications for the petrogenesis of anorthesis, gabbros, and gabbroic member of the suites: Canadian Mineralogist, v. 48, p. 751–761, doi:10.3744/canmin.48.2.751.

Bouvier, A., Vervoort, J.D., and Patchett, J.D., 2008, The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequivocal chemistries and implications for the bulk composition of terrestrial planets: Earth and Planetary Science Letters, v. 273, p. 48–57, doi:10.1016/j.epsl.2008.06.010.

Brander, L., Soderlund, U., and Bingen, B., 2011, Tracing the 1271–1246 Ma Central Scandinavian dolerite in NW Ireland? Evidence from zircon Hf isotopic data: Lithos, v. 119, p. 457–466, doi: 10.1016/j.lithos.2010.07.024.

Burchfield, B.C., Cowan, D.S., and Davis, G.A., 1992, Tectonic setting and origin of eugeoclinal strata in Nevada, in: Tectonics of Western Nevada and Northern California, Boulder, Colorado, Geological Society of America, Special Paper 347, p. 19–71, doi:10.1130/0-8137-2347-7.1.

Burchfield, B.C., and Davis, G.A., 1996, Petrology of the Cordilleran miogeocline: Geological Society of America Bulletin, v. 108, p. 722–734, doi: 10.1130/0016-7606(1996)108<0831:DZRFCT>2.3.CO;2.

Burland, S., Ketner, K.B., 1986, Eureka Quartzite in Mexico?—Tectonic setting and origin of eugeoclinal strata in the Cordilleran miogeocline: Geological Society of America, Special Paper 347, p. 103–121, doi:10.1130/0-8137-2347-7.7.

Butler, H., and Lewis L.L., eds., Yukon Exploration and Geology: Geological Survey of Canada, Geological Survey of Canada, Ottawa, 2010, 287 p.

Cecil, R., Gehrels, G., Patchett, J., and Ducele, M., 2011, U-Pb-Hf characterization of the central Continental Massifs: Implications for petrogenesis and crustal architecture: Lithosphere, v. 3, p. 247–260, doi:10.1130/L134.1.

Colpron, M., and Nelson, J., 2007, Northern Cordilleran terranes and their interactions through time: GSA Today, v. 17, no. 6, p. 28–33, doi: 10.1130/2007t0183(04).

Colpron, M., and Nelson, J., 2009, A Paleozone North-west Passage: Incursion of Caledonian, Baltic and Siberian elements along the Cordilleran margin and the early evolution of the Northern Cordilleran Terrulia, in: Cawood, P.A. and Kroner, A., eds., Earth Accretionary Systems in Space and Time: Geological Society of London Special Publication 318, p. 273–297.

Condie, K.C., Bickle, R.A., Belousova, E., and Scholl, D.W., 2011, Episodic zircon ages, Hf iso-

Gehrels, G., Blakey, R., Karlstrom, K., Timmons, M., Dickson, W., and Pecha, M., 2011, Detrital zircon U-Pb geochronology of Paleozoic Cordilleran basement: Lithosphere, v. 3, p. 183–200, doi:10.1130/2011GL049329.

González-León, C.M., Stanley, G.D., Gehrels, G.E., and Centeno, E., 2009, New data on the lithostratigraphic, detrital zircon, and Nd isotopic provenance of the geologic setting of the El Antimonio Group, Sonora, Mexico, in: Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., 2005, The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Boulder, Colorado, Geological Society of America, Special Paper, p. 259–282, doi:10.1130/2005GL049329.

Goodyear, C., and Vervoort, J.D., 2006, Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotopic evidence: Earth and Planetary Science Letters, v. 243, p. 711–731, doi:10.1016/j.epsl.2006.01.040.

Hancock, E., 1992, Hafnium isotopic composition of CHUR: Constraints from unequivocal chemistries and implications for the bulk composition of terrestrial planets: Earth and Planetary Science Letters, v. 273, p. 48–57, doi:10.1016/j.epsl.2008.06.010.

Harland, W.B., and Soper, R.J.A., 1991, A chronology of Neoproterozoic to Permian miogeoclinal and passive margin of northern Laurentia highlighted by new U-Pb results from northern Canada: Geological Society of America Bulletin, v. 124, p. 1155–1168, doi:10.1130/B30530.1.

Haq, B.U., and Schrutter, S.R., 2008, A chronology of Paleozoic sea-level changes: Science, v. 322, p. 64–68, doi:10.1126/science.1161648.

Hawksworth, C.J., Dhruine, B., Pietranek, A.B., Cawood, P.A., Kemp, A.I.S., and Storey, C.D., 2010, The generation and evolution of the continental crust: Journal of the Geological Society, v. 167, p. 229–248, doi:10.1144/0016-7613(2009)079<0230:GESCAS>2.3.CO;2.

Hoffman, P.F., 1989, Precambrian geology and tectonic history of North America, in: Bally, A.W., and Palmer, J.W., A.R., eds., The Geology of North America: An Overview: Boulder, Colorado, Geological Society of America, The Geology of North America, v. A, p. 447–512.

Ketner, K.B., 1968, Origin of Ordovician Quartzite in the Cordilleran miogeocline, in: Geological Survey Research 1968 Chapter B: U.S. Geological Survey Professional Paper 600-B, p. 169–177.

Ketner, K.B., 1986, Eureka Quartzite in Mexico?—Tectonic setting and origin of eugeoclinal strata in British Columbia and Alberta: Canadian Journal of Earth Sciences, v. 39, p. 1380–1401, doi:10.1139/89-071.

Ketner, K.B., and Timmons, M., 1988, Detrital zircon geochronology and provenance of Devonian rocks in the southern Cordilleran miogeocline: Canadian Journal of Earth Sciences, v. 45, p. 407–408.

Lawton, T.F., Hunt, J.G., and Gehrels, G.E., 2010, Detrital zircon record of thrust belt unroofing in Lower Cretaceous foreland orogenic in the central Alaska: Journal of Sedimentary Research, v. 80, p. 103–116, doi:10.2110/jsar.2009.004.

Lemieux, Y., Hadlari, T., and Simonetti, A., 2011, Detrital zircon geochronology and provenance of Devonian rocks in the southern Cordilleran miogeocline: Canadian Journal of Earth Sciences, v. 48, p. 515–541.

Link, P.K., Fanning, C.M., and Beraneck, L.P., 2005, Reti-

Western North America detrital zircons

Mountain Group: Implications of the Grenville flood in southwestern Laurentia: Geology, v. 35, p. 431–434, doi:10.1130/0091-7613(2007)35<431:MGIOGF>2.0.CO;2.

Mueller, P.A., Kameno, G.D., Heatherton, A.L., and Richards, J., 2008, Crustal evolution in the southern Appalachian orogen: Evidence from Hf isotopes in detrital zircons: The Journal of Geology, v. 116, p. 414–422, doi:10.1086/589311.

Patchett, P.J., and Chase, C.G., 2002, Role of transform continental margins in major crustal growth episodes: Geology, v. 30, p. 39–42, doi:10.1130/0091-7613(2002)30<0039:ROTCM>2.0.CO;2.

Patchett, P.J., Ross, G.M., and Parrish, R.R., 1991, Detrital zircon geochronology: Boulder, Colorado, Geological Society of America, Special Paper 442, p. 121–131.

Rainbird, R.H., Heaman, L.M., and Young, G., 1992, Sampling Laurentia: Detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen: Geology, v. 20, p. 351–354, doi:10.1130/0091-7613(1992)20<0351:SGLDZG>2.0.CO;2.

Rainbird, R., Cawood, P., and Gehrels, G., 2012, The great Grenvillian sedimentation episode: Record of supercontinent Rodinia's assembly, in Busby, C., and Azor, A., eds., Tectonics of Sedimentary Basins: Recent Advances: Chichester, West Sussex, UK, Wiley-Blackwell Publishing, p. 583–601.

Riggs, N.R., Lehman, T.M., Gehrels, G.E., and Dickinson, W.R., 1996, Detrital zircon link between headwaters and forelimbus of the Upper Triassic Chinle-Dockum paleoriver system: Science, v. 273, p. 97–100, doi:10.1126/science.273.5271.97.

Riggs, N.R., Barth, A.P., Gonzalez-Leon, C.M., Jacobson, C.E., Wooden, J.L., Howell, E.R., and Walker, J.D., 2012, Provenance of Upper Triassic strata in southwestern North America as suggested by isotopic analysis and chemistry of zircon crystals, in Rasbury, E.T., and Soreghan, M.J., eds., Tectonic and Geochemical Approaches to Provenance: Boulder, Colorado, Geological Society of America, Special Paper 487, p. 13–36, doi:10.1130/2012.2487(02).

Robert, N.M.W., 2012, Increased loss of continental crust during supercontinent amalgamation: Gondwana Research, v. 21, p. 994–1000, doi:10.1016/j.gr.2011.08.001.

Rohr, T.S., Andersen, T., and Dyvik, H., 2008, Provenance of Lower Cretaceous sediments in the Wandel Sea Basin, North Greenland: Journal of the Geological Society, v. 165, p. 755–767, doi:10.1144/0016 -76492007T02.

Stewart, J.H., 1979, Late Precambrian evolution of North America: Plate tectonics explanation: Geology, v. 4, p. 11–15, doi:10.1130/0091-7613(1979)4<0011:LPETOC>2.0.CO;2.

Stewart, J.H., Gehrels, G.E., Barth, A.P., Link, P.K., Christie-Blick, N., and Wurcke, C.T., 2001, Detrital zircon provenance of Mesoproterozoic to Cambrian anelites in the western United States and northwestern Mexico: Geological Society of America Bulletin, v. 113, p. 1344–1356, doi:10.1130/0016 -7606(2001)113<1344:DZPMTS>2.0.CO;2.

Vervoort, J., 2011, The caveats in the use of Hf model ages in provenance (and other) studies: Geological Society of America Abstracts with Programs, v. 43, no. 5, p. 206.

Vervoort, J.D., and Blichert-Toft, J., 1999, Evolution of the depleted mantle: Hf iso state evidence from juvenile rocks through time: Geochimica et Cosmochimica Acta, v. 63, p. 533–556, doi:10.1016/S0012 -0168 (98)00274-9.

Wallin, E.T., Noto, R.C., and Gehrels, G.E., 2000, Provenance of the Anetolpe Mountain Quartzite, Yreka Terrace, California: Evidence for large-scale late Paleozoic sinistral displacement along the North American Cordilleran margin and implications for the mid-Paleozoic fringing-arc model, in Soreghan, M.J., and Gehrels, G.E., eds., Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California: Boulder, Colorado, Geological Society of America, Special Paper 347, p. 119–132, doi:10.1130/0813 -2347 -7.119.

Whitnney, S.J., and Karlstrom, K.E., 2007, Tectonic model for the Proterozoic growth of North America: Geo sphere, v. 3, p. 220–259, doi:10.1130/GSSE00055.1.

Wooden, J.L., Barth, A.P., and Mueller, P.A., 2013, Crustal growth and tectonic evolution of the Mojave crustal province: Insights from hafnium isotope systematics in zircons: Lithosphere, v. 5, p. 17–28, doi:10.1130/L1218.1.

Wyld, J., and Wyld, S., 2006, Gondwana, Iapetan, Cordilleran interactions: A geodynamic model for the Paleo- zoeic tectonic evolution of the North American Cordi llera, in Haggart, J., Enkin, R., and Monger, J., eds., Paleogeography of the North American Cordiller: Evidence For and Against Large-Scale Displacements: Geologic Association of Canada Special Paper 46, p. 377–408.