Gut-associated Lactic Acid Bacteria (LAB) in *Apis nigrocincta* (Smith)

C A Lombogia¹,², M Tulung¹, J Posangi¹,³ and T E Tallei¹,⁴,*

¹ Entomology Study Program, Postgraduate Program, Sam Ratulangi University, North Sulawesi, Indonesia
² Nursing Study Program, Halmahera College of Health Sciences, North Maluku, Indonesia
³ Public Health Study Program, Faculty of Public Health, Sam Ratulangi University, North Sulawesi, Indonesia
⁴ Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University

*Corresponding author. Email: trina_tallei@unsrat.ac.id

**ABSTRACT**

Honeybees are the world's most important pollinator of food crops. Besides, they also produce honey, which is very beneficial for human health. Therefore the health of honeybees is essential to note. One aspect that contributes to the health of honeybees is the balance of the gut microbiota. Lactic acid bacteria (LAB) are known to give importance to intestinal health in their hosts. This study aimed to study gut-associated LAB in *Apis nigrocincta* (Smith), a species of a cavity-nesting honeybee endemic to Sulawesi and Mindanao islands. The method used to obtain information about the presence of lactic acid bacteria was metagenomic profiling of the honeybee gut microbiome by targeting the V3-V4 region of 16S rRNA genes using the Illumina MiSeq. In total, 83,018 reads of the microbiome comprising 749 bacterial operational taxonomic units (OTUs). Some genera belong to lactic acid bacteria, among others are *Bifidobacterium, Enterococcus, Fructobacillus, Lactobacillus, Lactococcus, Leuconostoc,* and *Vagococcus.* These LAB may pose beneficial properties, which are essential not only for the honeybee itself, but also the food and health industries.

**Keywords:** Honeybee, *Apis nigrocincta,* Metagenomic profile, Lactic acid bacteria, Gut.

**1. INTRODUCTION**

Honeybees are one of the vital insects for the pollination of most of the crop plants in the world. However, their existence is declining due to habitat degradation, anthropogenic disturbance, and other factors such as pathogens, pesticides, lack of flowers, and climate change [1, 2]. Like other insects, honeybees have symbiotic and pathogenic interactions with microbes in the digestive tract. It is assumed that the microbes in their digestive tract are influenced by their environment where they forage for food. Moreover, these gut symbionts were proved to affect the foraging behavior of insects [3].

To explore host-microbe interactions, high-throughput sequencing techniques have been developed. This technique has opened up the opportunities to study the impact of the microbiome on insect health. Several studies have shown that lactic acid (LAB) bacteria play vital roles in the health of the host, as well as providing nutritional benefits such as the improved nutritional value of food and gut infection control [4]. LAB have been shown to have a symbiotic relationship with several *Apis* species [5]. Three different species of *Lactobacillus* was found to be associated with *A. florea* in different regions of Iran [5]. *Lactobacillus kunkeei* was indicated as the dominant LAB member in the gut of bees [6].

One of the endemic *Apis* species recorded in Mindanao island (the Philippines), Sangihe islands (North Sulawesi, Indonesia), and the mainland of Sulawesi (Indonesia) was *Apis nigrocincta* [7]. This species is a generalist and nests in cavities such as holes in trunks and caves [8]. Considering the importance of knowing what lactic acid bacteria are present in *A. nigrocincta,* this study was carried out.
2. MATERIAL AND METHODS

2.1. Extraction and Amplification of Gut Bacterial gDNA of A. nigrocincta

The gut was dissected out from surface-sterile honeybee [9] and homogenized using a FastPrep-24 instrument at 4 m/s for 25 sec. ZymoBiomics DNA Mini Kit (Zymo Research) was used to extract the gut bacterial gDNA (genomic DNA). MyTaq™ HS Red Mix (Bioline, BIO-25044) was used to amplify hypervariable V3-V4 regions of the 16S rRNA gene. The following reaction condition was performed in Agilent SureCycler 8800 Thermal Cycler: initial denaturation at 95°C for 3 min, followed by 35 cycles of denaturation at 95°C for 15 sec, annealing at 52°C for 30 sec, and extension at 72°C for 45 sec, then followed by a final extension at 72°C for 3 min.

2.2. 16S rRNA Library Preparation and Bioinformatics Analysis

The preparation of the 16S rRNA library and analysis of bioinformatics was conducted following previous research [10, 11, 12].

3. RESULT AND DISCUSSION

Using the Illumina sequence technique, 83,018 reads of V3-V4 regions of 16S rRNA were produced after removing chimera and singleton. Some genera associated with LAB were found (see Figure 1), among others are from phylum Actinobacteria such as Bifidobacterium (7.96%), and Firmicutes such as Lactococcus (13.45%), Lactobacillus (8.19%), Enterococcus (4.47%), Vagococcus (3.76%), Leuconostoc (0.12%), and Fructobacillus (0.06%). LAB are Gram-positive bacteria that are capable of fermentation in anaerobic conditions. These bacteria are unable to produce catalase and spores [13]. They have been used in food/drink fermentation, as biocontrol agents, or as probiotics [14].

Table 1 shows the summary of LAB genera found in some Apis species. There are three phylotypes of the honeybee microbiota. Two of them belong to the genus Lactobacillus in the phylum Firmicutes (Firm-4 and Firm-5) [15]. These bacteria are considered as the core gut of A. mellifera [16]. The third phylotype was called Bifido and belonged to the genus Bifidobacterium in the phylum Actinobacteria [15]. Hence, Lactobacilli and Bifidobacteria are the two dominant phylotypes in the honeybee gut. One of the species of Lactobacillus, which is commonly isolated from the honeybees is L. kunkeei. This bacterium is a Gram-positive fructophilic LAB (FLAB) with a weak catalase activity [17], and produces antibacterial compound type II bacteriocins [18].

Bifidobacterium was found in A. nigrocincta and A. mellifera. This bacterium was found in this research as the third predominant genus in the gut of A. nigrocincta after Lactococcus and Lactobacillus. This genus commonly inhabits the gastrointestinal tract of various animals and insects [28, 29], and are known as anaerobic fermentative bacteria. It produces antimicrobial peptide (AMP), which is able to inhibit the growth of both antibiotic sensitive and resistant Helicobacter pylori strains [30]. The AMP is known as the potential alternative of the safe antimicrobial agents [31].

Lactococcus is a common inhabitant of the gut and associated with food [22]. It has been found in the stomach of A. cerana indica. It produces an AMP called nisin [32] with activity against Gram-negative pathogenic Escherichia coli and Salmonella [33]. It also produces another AMP called lactococcin [34]. Apart from being a potential alternative for antibiotics, nisin also shows a pharmacological effect, including cytotoxic and anti-tumor activity [35].

Enterococcus was detected in A. nigrocincta and A. mellifera. This genus produces enterocin, which shows antibacterial activity against a wide range of Gram-positive bacteria of enterococcal strains. This AMP was presumed to have amphiphilic α-helices, like in lactococcin G [35]. This genus has many benefits to health, including cholesterol assimilation ability, improve the immune system, and produce many kinds of AMPs [36]. Leuconostoc was found in A. nigrocincta and A. cerana indica. Fructobacillus was isolated from A. nigrocincta and A. mellifera. A probiotic Leuconostoc mesenteroides has a capability to remove Pb(II) toxicity [37] and produces leucocyclicin, a cyclic bacteriocin [38].

This research shows that several LAB associated with the gut of A. nigrocincta are also commonly found in other Apis species. The insignificant amount of

![Figure 1](image-url)
Leuconostoc and Fructobacillus was detected using high-throughput sequencing methods. This discovery needs to be studied further to obtain LAB, which have the potential to be developed as the next generation probiotics. Some strain of LAB has been shown to have antibacterial compounds as well as the capability of lowering cholesterol levels in vitro.

4. CONCLUSION

It can be concluded from this research that there are several LAB found in A. nigrocincta, which also commonly found in other Apis species. Leuconostoc, Lactobacillus, and Bifidobacterium are proposed here as the core gut LAB of A. nigrocincta.

REFERENCES

[1] Winfree R, Aguilar R, Vázquez DP, LeBuhn G and Aizen MA 2009 Ecology 90 2068-2076 doi:10.1890/08-1245.1
[2] Goulson D, Nicholls E, Botias C and Rothe EL 2015 Science 347 1255957 doi:10.1126/science.1255957
[3] Akami M, Andongma AA, Zhengzhong C, Nan J, Khaeso K, Jurkevitch E, et al. 2019 PloS one 14(1) e0210109 doi:10.1371/journal.pone.0210109
[4] Gilliland SE 1990 FEMS Microbiol. Rev. 7(1-2) 175-88 doi:10.1111/j.1574-6968.1990.tb04887.x
[5] Parichelreh S, Tahmasbi G, Saraefazi A, et al. 2018 Apidologie 49 430 doi:10.1007/s13592-018-0569-z
[6] Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szkely L and Olofsson TC 2012 PloS one 7(3) e33188 doi:10.1371/journal.pone.0033188
[7] Lombogia CA, Posangi J, Pollo HN, Tulung M and Tallei TE 2020a Scientifica Article ID 1609473, 8pp doi:10.1155/2020/1609473
[8] Hadisoesilo S 2001 Biodiversitas 2(1) 123-128 doi:10.13057/biodiv/d020107.
[9] Lombogia CA, Tulung M, Posangi J and Tallei TE 2020b Open Micro J. 14 72-76 doi: 10.2174/1874285802014010072
[10] Tallei TE, Fatimawali, Pelealu JJ 2019 Data in Brief 25 104190
[11] Kusumawat DY, SurtiKanti HK, Hernawati and Tallei TE 2020 Data in Brief 29 105299
[12] Fatimawali, Kepel BJ, Gani MA and Tallei TE 2020 Int. J. Microb. Article ID 1858732, 8pp doi: 10.1155/2020/1858732
[13] Lü X, Yi L, Dang J, Dang Y and Liu B 2014 Food Control 46 264-271
[14] Mazzolia R, BoscoF F, MizrahiC I, Bayer EA and Pessione 2014 Biotech. Adv. 32(7) 1216-1236 doi:10.1016/j.biotechadv.2014.07.005
[15] Ellegaard KM, Tamarin D, Javelind E, Olofsson TC, Andersson SG and Vásquez A 2015 BMC genomics 16(1) 284 doi:10.1186/s12864-015-1476-6
[16] Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tinkge S, Moran NA 2011 Mol. Ecol. 20 619-628
[17] Asenjo F, Olmos A, Henríquez-Piskulich P, Polanco V, Aldea P, Ugalde JA and Trombert AN 2016 PeerJ 4 e1950 doi:10.7717/peerj.1950

[18] Ming L, Zhang Q, Yang L and Huang JA 2015 Int. J. Clinical Exp. Med. 8(4) 5806-5811

[19] Linjordet MT 2016 A Comparative Analysis of Lactic Acid Bacteria Isolated from Honeybee Gut and Flowers, with focus on Phylogeny and Plasmid. Master’s theses Norwegian: Norwegian University of Life Sciences

[20] Filannino P, Di Cagno R, Addante R, Pontonio E and Gobbetti M 2016 Appl. Environ. Microbiol. 82(23) 6899-6911 doi:10.1128/AEM.02194-16.

[21] Carina Audisio M, Torres MJ, Sabaté DC, Ibarguren C and Apella MC 2011 Microbiol. Res. 166(1) 1-13 doi:10.1016/j.micres.2010.01.003

[22] Mathialagan M, Edward YSJT, David PMM, Senthilkumar M, Srinivasan MR and Mohankuma S 2018 Int. J. Curr. Microbiol. App. Sci 7(4) 894-906

[23] Wang C, Huang Y, Li L, Guo J, Wu Z, Deng Y et al. 2018 Int. J. Syst. Evol. Microbiol. 68(3) 703-708 doi:10.1099/ijs.0.002538

[24] Olofsson TC, Butler E, Markowicz P, Lindholm C, Larsson L and Vásquez A 2014 Int. Wound J. 668-679 doi: 10.1111/iwj.12345

[25] Honey Chandran C and Keerthi TR 2018 FEMS Microbiol. Lett. 365(4) doi:10.1093/femsle/fnx285.

[26] Tajabadi N, Mardan M, Manap MYA, Shumaimi M, Meimandipour A and Nateghi L 2011 Apidologie 42 642-649

[27] Parichehreh S, Tahmasbi G, Sarafrazi A, Imani S and Tajabadi 2018 Apidologie 49:3 430-438

[28] Bottacini F, Milani C, Turrioni F, Sánchez B, Foroni E, Duranti S et al. 2012 PloS one 7(9) e44229 doi:10.1371/journal.pone.0044229

[29] Nomoto R, Takano S, Tsujikawa Y, Kusunoki H and Osawa R 2017 Biosci. Microb. Food Health 36(3) 91-99 doi:10.12938/bmfh.16-027

[30] Collado MC, González A, González R, Hernández M, Ferrús MA and Sanz Y 2005 Int. J. Antimicrob. Agents 25(5) 385-91

[31] Tanhaieiana A, Hadi M, Farajollah S, Ahmadia S and Mamarabadia M 2018 Microbial Pathogenesis 125 51-59

[32] Shin JM, Gwak JW, Kamarajan P, Fenko JC, Rickard AH and Kapila YL 2016 J. App. Microbiol. 120(6) 1449-1465 doi:10.1111/jam.13033

[33] Volzing K, Borrero J, Sadowsky MJ and Kaznesses YN 2013 ACS Synth. Biol. 2(11) 643-650. doi:10.1021/sb400367

[34] Zendo T, Koga S, Shigeri Y, Nakayama J and Sonomoto K 2006 App. Env. Microb. 72(5) 3383-3389 doi:10.1128/AEM.72.5.3383-3389.2006

[35] Avand A, Akbari V and Shafizadegan S 2018 Iranian J. Biotech. 16(3) e1867 doi:10.21859/ijjb.1867

[36] Tallei TE, Fatimawali, Sumual AM, Gani MA, Pollo GAV, Adam AA and Pelealu JJ 2020 IOP Conf. Ser. Mater. Sci. Eng.

[37] Yi YJ, Lim JM, Gu S, Lee WK, Oh E, Lee SM and Oh BT 2017 J. Microbiol 55(4) 296-303 doi:10.1007/s12275-017-6642-x

[38] Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N, Zendo T and Sonomoto K 2011 App. Microbiol. 77(22) 8164-8170 doi:10.1128/AEM.06348-11