Self-Reported Psychological Problems and Coping Strategies: A Web-Based Study in Peruvian Population During the COVID-19 Pandemic.

Rita Judith Arne Guerrero (rames@ucsm.edu.pe)
Catholic University of Santa María https://orcid.org/0000-0001-7318-4857

Victoria Aymé Barreda Parra
Universidad Nacional de San Agustin de Arequipa

Julio Cesar Huamani Cahua
Universidad Catolica San Pablo

Jane Banaszak Holl
Monash University Department of Epidemiology and Preventive Medicine

Research article

Keywords: Mental health, Psychological morbidities, Coping Strategies, Public health, Primary prevention

DOI: https://doi.org/10.21203/rs.3.rs-42462/v1

License: © ☰ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

BACKGROUND: The Coronavirus pandemic has disrupted health systems across the world and led to major shifts in individual behavior by forcing people into isolation in home settings. Its rapid spread has overwhelmed populations in all corners of Latin-American countries resulting in individual psychological reactions that may aggravate the health crisis.

OBJECTIVE: this study reports on demographics, self-reported psychological morbidities and associated coping styles during the COVID-19 pandemic for the Peruvian population. METHODS: This cross-sectional study uses an online survey with snowball sampling that was conducted after the state of emergency was declared in Perú (on April 23rd). The General Health Questionnaire (GHQ-28) was used to identify somatic symptoms, incidence of anxiety/insomnia, social dysfunction and depression and the Coping Strategy Questionnaire (COPE-28) mapped personal strategies to address recent stress.

RESULTS: 434 self-selected participants ranging in age from 18 to 68 years old (ME =33.87) completed the survey. The majority of participants were women (61.3%), aged between 18 and 28 (41.7%), well-educated (>=85.0 %), Peruvian (94.2%), employed (57.4%) and single (71.20 %). 40.8% reported psychological problems, expressing fear of coronavirus infection (71.43%). Regression analysis shows that women developed more somatic symptoms (p<=0.001*, C.I: -2.75 to - .99) and greater anxiety/insomnia (p=0.00*, C.I: -2.98 to 0.84) than men. Depression and social dysfunction were equally likely at any age. Educational status was protective against developing psychological disorders (p>0.05). While active responses (acceptance and social support) are scarcely used by individuals with psychological problems; passive strategies (such as denial, self-distraction, self-blame, disconnection, and emotional discharge) are more commonly reported.

CONCLUSION: This study provides a better understanding of psychological disorders occurring during the COVID-19 pandemic in the Peruvian population. About half of the respondents reported psychological morbidity and poor coping responses. This evidence informs the need for broader promotional health policies focused on strengthening individual’s active strategies to improve mental health, especially in underprivileged groups during and after the Covid-19 pandemic.

1. Introduction

To date (June 10th, 2020), more than 400,000 deaths worldwide have been attributed to the coronavirus (1). Despite the deployment of several public health strategies to prevent continued transmission of the virus at the global level (1–3), the subjective perception of risk within the population represents a latent threat that may potentially trigger a wide variety of individual behavioral and emotional responses. Therefore, during this pandemic complex morbidities are highly likely to occur (4–6) and recent research has found a significant association between the current COVI-19 pandemic and the emergence of mental disorders (7–9).

Early reports from multiple studies during the epidemic phase in China confirm moderate to severe psychological impact, described as severe states of distress and deteriorated general health self-assessments in numerous samples in China (10–13). In a cross-sectional nation-wide study, with nearly 52 730 participants, psychological distress was identified among the one-third of the sample (35%) (11). Another study performed in Australia including 5070 participants drawn randomly from the general population, 78% of respondents had worsened their mental conditions since the beginning of the quarantine; this study found that vulnerable groups comprising those unemployed, student, retired and stay-at-home parents were highly susceptible to develop depression (14). Other studies have reported the emergence of emotionally disturbance patterns (15), anxiety disorders, depression, sleep problems, (8–10), and increased risk behaviors, such as substance use and smoking (14, 16). As financial instability resulting from job loss and massive social isolation became more prevalent, these clinical conditions worsen their status (16).

Considering that coping mechanisms are multifaceted in the face of stress (17), a strong link has been demonstrated between physical health, psychological well-being, and the use of active coping styles (18). Previous reviews have extensively documented the impact on psychological health during life-threatening events (19, 20), whose prediction may be feasible through coping strategies. For instance, Li et al. analyzed the emotional and cognitive responses published in the Chinese social network Weibo, the results showed an intensification of negative emotions (anxiety, depression and indignation) and coping behaviors mostly related to increased leisure activity and religion-based responses (9). In this context, the starting point of our research is the conceptual analysis given by Lazarus, who explains the stress mechanism suggesting two types of responses (17). While some individuals may proactively explore options for assistance, others remain in the space of their own loneliness, worsening the burden of their illness. Both either passive or active behavior-related strategies would predict the evolution of disease symptoms. Thus, there is a critical demand to identify coping mechanisms to reduce the risk of coronavirus spreading within the population.

What is worth noting is that pandemics can create confusion, sense of urgency, fear and perplexity, which may threaten emotional stability of entire families (21–23), lead alarmingly to some sort of “collective hysteria” (24) and to increased perceived health vulnerability during quarantine due to the unknown nature of the disease and its treatment (25). Together these reports demonstrate the possible emergence of mental problems in general population, along with unadjusted behaviors as suggested from previous pandemics (26).

This project provides valuable evidence on how the ongoing pandemic impacts psychological health in the general population. It is worth mentioning the limited studies capturing the perspective directly from the affected population and their mental health during global crises, data is particularly scarce in Latin American context. There is an increased susceptibility to develop disease (23, 27, 28) within the poorest and most vulnerable groups in society due to lack of coping response and poor awareness and control measures (10). This justifies the urgent need to better understand the mental health problems caused by unexpected events such as the COVID-19 pandemic in the Spanish-speaking community.
Particularly, Peru has been significantly affected by the COVID-19 pandemic, causing significant national alarm (29). Although exposure to the virus outbreak has already been shown to be related to adverse effects, the role of coping strategies that regulate emotional responses to stressing situations is discussed (17). Therefore, this study aims at investigating psychological health and how it is linked to the deployment of active or passive coping strategies in the general population exposed to the COVID-19 pandemic.

2. Study Design And Methods

A cross-sectional survey was administered in March-April, during the Covid-19 pandemic and through anonymous online questionnaires. Exclusively individuals (≥18 years) able to provide informed consent were recruited using a convenient snowball sampling process. Respondents were required to reside in any department in Peru. No monetary compensation was given for completing the questionnaire. The study protocol was approved by the ethics committee of “Catolica de Santa Maria” University (ref. no. 167–2020). The instruments were considered valid when fully completed; participants under 18 years old and those whose responses were biased by acquiescence or social desirability were excluded, based on the questionnaire's protocol.

2.1 General Health Questionnaire- Goldberg (GHQ-28)

The survey comprised the (GHQ-28) Questionnaire, a population-based, self-administered tool for screening and determining mental disorders. Participants were asked about symptoms and/or discomfort they had experienced recently (in recent weeks) during the coronavirus pandemic. Each item is scored based on a 4-point scale containing 4 subscales of depression, anxiety, social dysfunction, and physical symptoms, ranging from “better/healthier than normal” option, through a “same as usual” and a “worse/more than usual” to a “much worse/more than usual” option (30). For this study, Cronbach's alpha coefficient was calculated as a high reliability estimator, corresponding to $\alpha = 0.934$ (IC95%, 0.925–0.943).

2.2 Coping Strategies Questionnaire (COPE-28)

The survey also included the (COPE-28) Brief version (28 items), which measures behaviors and cognitive responses to stressors related to Covid-19. We used the Spanish version (31), which has 14 subscales (asking about self-distraction, active coping, denial, substance use, use of emotional support, use of instrumental support, behavioral disengagement, relief, positive reframing, planning, humor, acceptance, religion, self-blame). The tool identified active and passive strategies asking 4-point values (1: "I haven't been doing this at all"; 4 "I've been doing this a lot") (32). For the present study the calculation of Cronbach's alpha coefficient as a reliability estimator was $\alpha = 0.858$ (IC = 95%, 0.838–0.876).

2.3 Data analysis

Respondents were asked to identify categorically key demographic information, which is subsequently analyzed using Stata Statistical Software 15.0 for Windows (33) as proportions. Linear regression was used to calculate whether there were univariate associations between sociodemographic data, the GHQ scale and COPE-28 questionnaire.

To establish the relationship between psychological health and both active and passive coping strategies, structural equation models (SEM) were used. Path analysis (34) was done with comparative adjustment index (CFI), with values ≥ .90 (35) the root mean square error of approach (RMSEA), with values ≤ .80 (36) and the goodness-of-fit Index (GFI > .8 or > .9) was used to evaluate how well the models fit (37). From the correlations, the final model was elaborated with path analysis, using the data on participants who presented with psychological problems to determine the active and passive coping strategies most frequently used within this group. The presence of psychological problems was identified using the GHQ scale with a cut-off point 23/24 (38).

3. Results

3.1 Participant characteristics (Table 1)
Table 1

Association between socio-demographic variables and indicators of general health status at covid-19

Variables	N(%)	Somatic Symptom	Anxiety/Insomnia	Social Disfunction	Severe Depression								
R-Squared													
Adjusted R-Squared													
R^2 (AR2)	p(95% CI)												
R^2 (AR2)	p(95% CI)												
Gender													
Men	168 (38.7)	0.039	0.0368	Reference	0.028	0.026	Reference	0.001	-0.002	Reference	0.005	0.005	Ref
Women	266 (61.3)	0.00*	(-2.75 to -9.9)	0.00*	(2.98 to 0.84)	0.59 (-1.04 to 0.59)	0.1 to C						
Age													
18–28	181 (41.7)	Reference	Reference	Reference	Reference	Ref							
29–38	124 (28.6)	0.013	0.004	-0.34	(-1.57 to 0.54)	0.022	0.013	0.02*	(-2.73 to -0.19)	0.034	0.025	0.05*	(-1.89 to 0.01)
39–48	51 (11.8)	0.94	(-1.39 to 1.49)	0.45	(1.07 to 2.39)	0.23 (-2.08 to 0.50)	0.042	0.033	0.00	(-3.2 to -0.0)			
49–58	54 (12.4)	0.74	(-1.17 to 1.64)	0.24	(2.70 to 0.67)	0.03*	(2.61 to -0.08)	0.01	(-0.7)				
59–68	24 (5.5)	0.04*	(-4.06 to 0.13)	0.08	(4.45 to 0.28)	0.00*	(-4.88 to -1.34)	0.01	(-0.7)				
Most recent study													
Secondary	64 (14.75)	Reference	Reference	Reference	Reference	Ref							
University	174 (40.09)	0.876	0.875	0.001*	(2.55 to 3.48)	0.502	0.489	0.006*	(0.47 to 2.74)	0.312	0.307	0.001*	(1.01 to 3.01)
Degree	116 (26.73)	0.001*	(6.83 to 7.82)	0.001*	(5.24 to 6.76)	0.001*	(3.88 to 6.01)	0.01	(3.6)				
Postgraduate	80 (18.43)	0.001*	(12.6 to 13.7)	0.001*	(9.87 to 12.5)	0.001*	(5.82 to 8.13)	0.01	(5.6)				
Nationality													
Peruvian	409 (94.2)	0.001	-0.001	Reference	0.001	-0.002	Reference	0.000	-0.002	Reference	0.007	0.005	Ref
Foreign	25 (5.8)	0.51	(1.24 to 2.50)	0.66	(1.75 to 2.78)	0.67	(1.34 to 2.06)	0.00	(3.4 to 5)				
Work													
No	185 (42.6)	0.000	-0.002	Reference	0.000	-0.002	Reference	0.000	-0.002	Referencia	0.005	0.003	Ref
Yes	249 (57.4)	0.93	(-0.84 to 0.92)	0.92	(-1.12 to 1.01)	0.91	(-0.85 to 0.76)	0.1	(0.7 to 1)				
Marital status													
Co-habitant	19 (4.38)	0.004	-0.003	Reference	Reference	Reference	Ref						
Single	309 (71.20)	0.44	(-1.31 to 2.98)	0.97	(2.64 to 2.54)	0.34	(-1.01 to 2.89)	0.81	(0.8 to 1)				

* p < 0.05; ** p < 0.01; *** p < 0.001.
Regarding social factors, a great number were afraid of contracting coronavirus (71.43%), 47.7% were worried about limited access to cleaning products, and 38.94% about social distancing, followed by 27.88% worried about not being able to work. Regarding employment, 42.6% were not working due to quarantine period, and 40.09% were university students.

3.2 General health status based on socio-economic profile (Table 1)

We standardized the sampling, adjusting it to ±1.5 threshold (39) where 40.8% (n = 177) of respondents reported psychological disorders in contrast to non-cases (59.2%), with a cut-off point of 23/24 (38).

Being female was associated with increased somatic symptoms (P = 0.001; 95% CI = -2.75 to -3.74) and indicators of anxiety and insomnia (P = 0.001; 95% CI = -2.98 to 0.84). Being within the age group between 59–68 years was negatively and significantly associated with somatic symptoms (P = 0.04; 95% CI = -4.06 to -0.13). While the 29 to 38-year-old group scored significantly higher on questions about anxiety/insomnia (P = 0.02; 95% CI = -2.73 to -0.19). The social dysfunction indicator is present at all ages except for the 39 to 48-year-old group. Negative association score is found for severe depression regardless of

Table 1: General health status based on socio-economic profile

Variables	N(#)	Somatic symptom	Anxiety/Insomnia	Social Disfunction	Severe Depression
Married	98 (22.58)	0.77 (-1.94 to 2.61)	0.005	0.76 (-2.32 to 3.18)	0.003 (-0.004)
Widower	8 (1.84)	0.95 (-3.94 to 3.71)	I	0.33 (-6.90 to 2.35)	0.97 (-3.42 to 3.55)

Fear of coronavirus (family)

No	124 (28.57)	0.005	0.002 Reference	0.003 Reference	0.001 Reference	0.001 Reference
Yes	310 (71.43)	0.16 (-1.66 a 0.27)	0.27 (-1.81 a 0.51)	0.62 (-1.09 a 0.66)		

Product Concern

Little or nothing	211 (48.62)	0.009	0.004 Reference	0.004 Reference	0.006 Reference	0.001 Reference
Moderated	207 (47.70)	0.05* (-1.77 a -0.001)	0.38 (-1.55 a 0.59)	0.21 (-1.32 a 0.29)		
Severe	16 (3.69)	0.77 (-2.69 a 2.004)	0.30 (-4.35 a 1.33)	0.22 (-3.47 a 0.81)		

Cause of concern

Children and family care	44 (10.14)	Reference	Reference	Reference	Reference
Domestic work	18 (4.15)	0.69 (-3.05 a 2.04)	0.38 (-1.69 a 4.45)	0.10 (-0.38 a 4.24)	
Social isolation	169 (38.94)	0.82 (-1.73 a 1.36)	0.60 (-1.31 a 2.41)	0.48 (-0.89 a 1.90)	
Not being able to work	121 (27.88)	0.73 (-1.88 a 1.32)	0.23 (-0.74 a 3.12)	0.84 (-1.31 a 1.60)	
Working without family	16 (3.69)	0.76 (-3.07 a 2.24)	0.86 (-3.48 a 2.93)	0.61 (-1.78 a 3.04)	
Teleworking	66 (15.21)	0.33 (-2.65 a 0.89)	0.91 (-2.27 a 2.01)	0.91 (-1.52 a 1.70)	

* p < 0.05; ** p < 0.01; *** p < 0.001.
Concern about the absence of hygiene products (including personal protection, antibacterial gel, chinstraps and others) is negatively associated at a moderate level ($P = 0.05; 95\% \text{ CI} = -1.77 \text{ to } -0.001$) with somatic symptoms.

3.3 Association between sociodemographic variables and subscales of active and passive coping strategies in covid-19

Positive reassessment subscale is strongly associated with being females ($p = 0.03^*, \text{ CI: } -0.63, -0.04$) and older ages (the exception is for 29–38 years old). Likewise, a significantly negative association exists with the Acceptance subscale ($p = 0.06, \text{ CI: } -0.53 \text{ a } 0.01$). Those with graduate ($P = 0.01; 95\% \text{ CI} = -1.13 \text{ to } -0.18$) and doctoral degrees ($P = 0.04; 95\% \text{ CI} = -1.04 \text{ to } -0.03$) are less likely to engage on planning activities as a coping strategy. People with higher education ($P = 0.01; 95\% \text{ CI} = 0.18 \text{ to } -1.05$) are more likely to use positive reassessment as a coping strategy. Moreover, positive reassessment behaviors punctuated negatively lower among married respondents ($P = 0.02; 95\% \text{ CI} = -1.63 \text{ to } -0.12$), and with concern, at moderate level, about shortage of personal toiletries, protection and other items ($P = 0.01; 95\% \text{ CI} = -0.70 \text{ to } -0.12$) (Table 2).
Table 2
Association between sociodemographic variables and subscales of active coping strategies in covid-19

Variables	N(%)	Active Planication	Planification	Positive reevaluation	Acceptation			
		R2 (AR2)	P(95% CI) R2	P(95% CI) R2	P(95% CI) R2			
R-Squared (Adjusted R-Squared)								
Gender								
Man	168 (38.7)	0.006 0.004	Reference 0.000 -0.002	Reference 0.011 0.001	Reference 0.008 0.006			
Woman	266 (61.3)	0.11(-0.51 0.05)	0.73 (-0.25 0.35)	0.03* (-0.63 0.04)	Reference			
Age (years)								
18–28	181 (41.7)	Reference	Reference	Reference	Reference			
29–38	124 (28.6)	0.009 -0.000	0.70 (-0.40 0.27)	0.51 (-0.23 0.47)	0.063 0.054	Reference		
39–48	51 (11.8)	0.97 (-0.44 0.46)	0.19 (-0.79 0.16)	0.01* (-1.05 -0.12)	0.043 0.034	Reference		
49–58	54 (12.4)	0.09 (-0.82 0.07)	0.10 (-0.85 0.08)	0.001*(-1.44 -0.53)	Reference			
59–68	24 (5.5)	0.26 (-0.97 0.26)	0.02* (1.46 -0.16)	0.001*(-1.78 -0.51)	Reference			
Most recent study								
Secondary	64 (14.75)	Reference	Reference	Reference	Reference			
University	174 (40.09)	0.008 0.002	0.06 (-0.01 0.82)	0.020 0.013	0.027 0.020	0.01* (0.18 1.05)	0.013 0.006	0.80 (0.35 0.45)
Degree	116 (26.73)	0.27 (-0.19 0.69)	0.01* (-1.13 -0.18)	0.63 (-0.35 0.58)	0.48 (0.58 0.27)			
Postgraduate	80 (18.43)	0.19 (-0.16 0.79)	0.04* (-1.04 -0.03)	0.11 (-0.09 0.91)	0.12 (0.82 0.09)			
Nationality								
Peruvian	409 (94.2)	0.003	Reference 0.005 0.003	Reference 0.000 -0.002	Reference 0.002 -0.000			
Foreign	25 (5.8)	0.001	0.24 (-0.94 0.23)	0.15 (-1.08 0.16)	0.74 (-0.72 0.52)	0.34 (0.84 0.29)		
Work								
No	185 (42.6)	0.002 -0.000	Reference 0.001 -0.001	Reference 0.001 -0.001	Reference 0.003 0.000			
Yes	249 (57.4)	0.34 (-0.41 0.14)	0.55 (-0.38 0.20)	0.51 (-0.38 0.19)	0.29 (0.41 0.12)			
Marital status								
Co-habitant	19 (4.38)	Reference	Reference	Reference	Reference			
Single	309 (71.20)	0.011 0.003	0.31 (-1.02 0.32)	0.012 0.005	0.016 0.009	0.09 (-1.31 0.11)	0.014 0.007	0.47 (-0.88 0.40)

*p < 0.05; **p < 0.01; ***p < 0.001.
Conversely, passive coping strategies (Table 3) are more likely among individuals aged 39–48 years, this group scored higher in religion-related responses to deal with the stress ($P = 0.01; 95\% CI = 0.16$ to 1.31). Strategies such as self-distraction and self-incrimination responses (except in the age range 59–68 years) are commonly used at any age. Senior group (59 to 68 years) is associated negatively with relief-seeking behaviors ($P = 0.02; 95\% CI = -1.23$ to -0.09). Finally, while being a college student is strongly associated with higher rates of religion-based responses as a coping strategy ($P = 0.03; 95\% CI = 0.07$ to 1.14), postgraduate respondents ($P < 0.001$) tend to use greater self-distraction, self-blame and emotional release strategies compared to high school students.
Table 3

Association between sociodemographic variables and subscales of passive coping during COVID-19

Variables	N(%)	Religion	Selfdistraction	Self-incrimination	Desahogo
			R2 (AR2)	R2 (AR2)	R2 (AR2)
			p(95% CI)	p(95% CI)	p(95% CI)
R2 (AR2)					
Gender					
Men	168	0.049	0.010	0.007	0.016
Women	266	0.047	0.008	0.004	0.014
Age (year)					
18–28	181	0.021	0.075	0.038	0.015
29–38	124	0.012	0.057	0.003	0.02
39–48	51	0.012	0.011	0.01*	0.01*
49–58	54	0.07	0.001	0.001*	0.001*
59–68	24	0.07	0.001*	0.001*	0.001*
Education level					
High school					
College	174	0.012	0.025	0.063	0.038
Bachelor	116	0.005	0.018	0.056	0.031
Posgrade	80	0.004*	0.004*	0.004*	0.001*
Nationality					
Peruvian	409	0.000	-0.002	0.004	0.000
Foreigner(living in Peru)	25 (5.8)	0.93	0.82	0.21	0.9
Work					
No	185	0.000	-0.002	0.001	0.000
Yes	249	0.81	0.51	0.48	0.91
Marital status					
Co-habitant	19		Reference	Reference	Reference
Single	309	0.008	0.004	0.009	0.011

* p < 0.05; ** p < 0.01; *** p < 0.001.
Variables

N(%)	Religion	Selfdistraction	Self-incrimination	Desahogo	
Married	98 (22.58)	0.59 (-1.16 to 0.67)	0.27 (-1.23 to 0.35)	0.24 (-0.28 to 1.12)	0.3' (-0.1) 0.3i
Widower	8 (1.84)	0.71 (-1.83 to 1.25)	0.27 (-2.07 to 0.60)	0.45 (-1.63 to 0.72)	0.5i (-0.1) 1.4'

Fear of contracting coronavirus (or family member)

No	124 (28.57)	0.000 -0.002	Reference 0.003	Reference 0.000 -0.002	Reference 0.000 -0.002
Si	310 (71.43)	0.78 (-0.33 to 0.44)	0.25 (-0.14 to 0.53)	0.92 (-0.31 0.28)	0.8i (-0.1) 0.3i

Fear of products

Little or nothing	211 (48.62)	Reference 0.002 -0.002	Reference 0.004 -0.000	Reference 0.003 -0.002	Reference 0.009 0.004 0.1i
Moderate	207 (47.70)	0.64 (-0.44 to 0.27)	0.42 (-0.43 to 0.18)	0.55 (-0.35 0.19)	0.8i (-0.1) 0.3i
Severe	16 (3.69)	0.35 (-1.40 a 0.50)	0.20 (-1.35 a 0.28)	0.33 (-1.08 a 0.36)	0.1i (-0.1) 0.3i

Causes of concern

Children and family care	44 (10.14)	Reference 0.009 -0.002	Reference 0.007 -0.004	Reference 0.008 -0.003	Reference 0.014 0.002 0.5i
Domestic work	18 (4.15)	0.56 (-1.33 a 0.72)	0.94 (0.85 a 0.92)	0.29 (-1.21 a 0.36)	0.14 (-0.1 0.4i)
Social isolation	169 (38.94)	0.28 (-0.94 a 0.28)	0.87 (0.58 a 0.49)	0.98 (0.47 a 0.48)	0.7i (-0.1) 0.5i
Not being able to work	121 (27.88)	0.12 (-1.16 a 0.13)	0.34 (-0.82 a 0.29)	0.73 (0.57 a 0.41)	0.5i (-0.1) 0.5i
Working without family	16 (3.69)	0.74 (-0.89 a 1.25)	0.21 (-1.51 a 0.34)	0.25 (-1.29 a 0.34)	0.3i (-0.1) 0.4i
Teleworking	66 (15.21)	0.64 (-0.88 a 0.54)	0.64 (-0.76 a 0.47)	0.76 (-0.46 a 0.63)	0.1i (-0.1) 0.8i

*p < 0.05; ** p < 0.01; *** p < 0.001.

3.4 Pearson's correlations between general health and coping strategies scale (Table 4)
4. Discussion

Commercial support strategy correlates significantly positive with somatic symptoms (r = 0.20**), anxiety/insomnia (r = 0.13**) and social dysfunction (r = 0.15**). The planning strategy correlates inversely with severe depression (r = -0.19**). It is clear that the greater the social support response, the lesser the anxiety/insomnia (r = 0.16**) and social dysfunction (r = 0.13**). The situation-acceptance strategy is a protective factor against indicators of somatic symptoms, anxiety/insomnia and severe depression (*p < 0.05). It is also evident that the active strategies of positive re-evaluation and humor do not correlate with any indicator measured with the general health scale (GHQ). On the contrary, passive coping styles (denial, self-distraction, self-blame, disconnection, withdrawal and substance use) correlate significantly with general health indicators.

3.5 Path analysis results related to active and passive coping strategies (Fig. 1)

4. Discussion
Our findings suggest that during the period of social isolation (April-May), respondents experienced psychosomatic symptoms, anxiety, social dysfunction and severe depression as assessed by GHQ-28. Gender, age, education level, and having moderate concerns about purchasing protective products influenced the mental health of respondents; other variables, including nationality, employment and marital status, and being afraid of the coronavirus disease were not significantly associated with the presence of psychological symptoms. In our sample, educational status is a protective factor against mental health disturbances. In similar research, studies in China at the beginning of the pandemic found that education, employment and marital status are protective factors of mental health (12) (40).

Our data suggests that women experience higher levels of somatic symptoms and anxiety/insomnia. These findings are consistent with previous studies reporting greater levels of anxiety (12), fear within women (13), and older adults exposed to public health messages in the context of European quarantined countries, such as Italy (41). Being female and a young adult (29–38) increases risk of anxiety; while older are more likely to report depression, these findings are similar to Newby’s (14) who found that students were at greater risk for depression than older adults.

Regarding sources of concern, we found that participants reported little concern respect to some changes in circumstances, such as working without family (3.69%), doing domestic work (4.15%) and maintaining children and family care (10.14%). A higher percentage was worried because of social isolation (38.94%), and not being able to work (27.88%). Drawing from another studies we notice that people report higher rates of anxiety due to concern for themselves and their family (42). The distinctive distribution of work and responsibilities across Peruvian families seems to be driving varied behavioral responses (somatic symptoms, anxiety/insomnia, social dysfunction and severe depression) supported by the last national report. In here, a great number of families were classified as nuclear households (53.9%) made up of a couple with or without children or at least one, followed by extended families (20.6%) and single person households (16.8%) (43). The changes of working circumstances due to the current social distancing are perceived differently among single respondents (71.2%) who are less likely to report concern for others or to work without being with the family. Nearly half of respondent (47.70%) also reported significant higher somatic symptoms due to shortage of protective products (personal toiletries). The use of tonics and medicines to not get sick or prevent physical discomfort are also reported in similar studies regarding massive purchases of cleaning supplies and food upon higher alarm among the population (7).

Coping Strategies

Interestingly, sociodemographic such as gender, age, educational status and the likelihood of being married influence a person’s likelihood of using active coping style. In our study self-distraction and self-blame, both passive strategies, were significantly informed. Self-distraction was used by individuals of all ages except among those 18 to 28 years old. Analyzing religion-related coping beliefs, we found that university students and groups from 39 to 48 years old increases in praying as a strategy, which corresponds with the country culture according to national records (76.0% of Peruvians profess being Catholic) (43). A great deal of women respondent (61.3%) reported using religion-based strategies probably to mitigate stress, those results are also supported by previous recent Chinese studies during the pandemic (74.77%) (9).

Psychological problems and use of coping strategies

Coping strategies are mediated by cultural factors and gender differences. This study confirms that women tend to use more passive strategies, except for positive re-evaluation as an active strategy. Contrastingly, Asian-based studies reported the deployment of active styles focusing on problem solving (active, social support and planning) are analyzed and can significantly predict responses of anxiety (3.4%), anger (2.2%) and sadness (0.9%). With that said, women may be more likely to use proactive, problem-centered coping in the face of the pandemic and less likely to use passive strategies than men. (13). This has some minor fluctuations in North America, where women are more likely to report strategies that focus on passive behaviors such as distraction, religion, and less humor (44). We found that women with psychological problems use religion, self-distraction and venting possibly to alleviate the distress they feel about the pandemic, has not been reported in other studies.

People with psychological problems use adaptive strategies based on acceptance and the support-seeking behaviors to face the crisis. In contrast, the sample of participants without psychological problems had a predominance of cognitive coping with planning and disconnecting from activities, followed by less seeking social support, most likely due to the higher educational status of the respondents; self-distraction was the only passive or blocking coping strategy that ranked high in this group. Interestingly, in Singapore, in late 2002, in the face of severe acute respiratory syndrome (SARS) two coping strategies, denial and planning, were associated with post-traumatic morbidity. Both, lack of planning and denial are ways of reducing powerlessness in the face of stress but at the same time they are maladaptive strategies leading to psychological problems (5). We found that the use of passive responses (denial, self-distraction, self-blame, venting, and religion) may respond to the unprecedented impact of the COVID-19 pandemic on a country and global scale; metaphorically, it is understood as a chain of misadjusted responses that begins with rejecting the deadly consequences of the disease, not accepting reality, resorting to various activities to avoid thinking about the crisis, and avoiding confronting the problem.

Among the strengths, this study was one of the first to investigate the impact of COVID-19 on mental health and coping strategies in the face of the crisis. It was conducted two weeks after the declaration of the state of emergency by the Peruvian government.

Future research could follow participants in the aftermath of the pandemic and examine the evolution of psychological problems after the state of emergency. Other studies on low-income populations with educational and health needs and restricted access to the Internet provided insight into their coping strategies and the effects on their mental health.

5. Conclusions
Recognizing the compelling need to minimize the risk of transmission and the severity of the epidemic, mental health disorders need to be addressed early by strengthening active strategies within the population to prevent disease progression.

This study found moderate scores for psychological problems in response to the COVID-19 pandemic. The association of female gender, higher education and all age groups except the youngest (18 to 28 years) allows for detection of high-risk groups. The occurrence of psychological problems is better captured through the analysis of participants' coping mechanisms when confronted with critical situations. The findings inform of timely intervention programs to minimize long-term problems, which may potentially arise after quarantine particularly in the vulnerable population.

Limitations

An Internet-based survey method was used to avoid possible coronavirus infection. We used a snowball sampling in a voluntary manner and conducted through an online system. Therefore, some selection bias is considered. Only people who had access to the Internet connection were able to participate in the study via computer or mobile phone, which limited the participation of people who did not have these technological devices. In the absence of low-income people, we will have constraints in understanding their psychological responses to the pandemic. The sample size was neutralized by extensive data analysis using linear regression and structural equation modeling.

Declarations

Ethics approval and consent to participate

This study involves human participants, whose written consent was retrieved at start of the study. The study protocol was approved by the ethics committee of "Catolica de Santa Maria" University (ref. no. 167-2020).

Consent for publication

The authors utilized a research form to ask the participants their consent to publish their clinical results.

Availability of data and materials

The datasets generated and/or analysed during the current study are available at the OFS repository, available at: https://osf.io/zs8um/?view_only=48a6dd4bb5be41c2a5050d093f6bc0

Competing interests

The authors declare that they have no competing interests

Funding:

Not applicable

Author contribution

RAG and ABP made considerable contributions to conception and drafting. RAG and JHC worked in the analysis and interpretation of data. JBH reviewed the concluding edition. All authors contributed writing, editing, and reviewing the final manuscript.

Acknowledgements

Not applicable

References

1. WHO. Coronavirus Disease 2019 (COVID-19) Situation Reports. April 1 2020. Vol. 2019, WHO Situation report. 2020.
2. Adhikari SP, Meng S, Wu Y, Mao Y, Ye R, Wang Q, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. 2020;1–12.
3. Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg [Internet]. 2020;76:71–6. Available from: https://doi.org/10.1016/j.ijsu.2020.02.034
4. Mao Y, Lin W, Wen J, Chen G. Clinical and pathological characteristics of 2019 novel coronavirus disease (COVID-19): a systematic reviews. 2020;1–31.
5. Sim K, Huak Chan Y, Chong PN, Chua HC, Wen Soon S. Psychosocial and coping responses within the community health care setting towards a national outbreak of an infectious disease. J Psychosom Res [Internet]. 2010;68(2):195–202. Available from: http://dx.doi.org/10.1016/j.jpsychores.2009.04.004
6. Torales J, O’Higgins M, Castaldelli-Maia JM, Ventriglio A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int J Soc Psychiatry. 2020;20764020915212.
7. Öğütü H. Turkey’s Response to COVID-19 In terms of Mental Health. Ir J Psychol Med. 2020;1–11.
8. Lu W, Wang H, Lin Y, Li L. Psychological status of medical workforce during the COVID-19 pandemic: A cross-sectional study. Psychiatry Res [Internet]. 2020;288(April):112936. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32276196
42. Erceg N, Ružojić M, Galić Z. Misbehaving in the Corona Crisis: The Role of Anxiety and Unfounded Beliefs. 2020;(April).

43. Instituto Nacional de Estadística e Informática. Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas. 2017;641.

44. Park CL, Russell BS, Fendrich M, Finkelstein-Fox L, Hutchison M, Becker J. Americans’ COVID-19 Stress, Coping, and Adherence to CDC Guidelines. J Gen Intern Med. 2020;

Figures

Figure 1

Report of the path analysis. Standardized coefficients of active and passive coping strategies in participants with psychological problems (N = 177; *p < .05).
Figure 2

Report of the path analysis. Standardized coefficients of active and passive coping strategies in participants without psychological problems (N = 257; *p < .05).