Abstract. Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexion. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.

Contents

1. Introduction
2. Melanogenesis
3. Core signaling pathways in the regulation of melanogenesis
4. Naturally occurring skin-whitening agents for inhibiting melanogenesis
5. Conclusions

1. Introduction

Lighter skin tone has long been associated with youth and beauty among a variety of Asian cultures. Investment in skin-whitening agents, boosted by markets in Asian countries, especially those in China, India and Japan, is increasing annually (1). Skin color is influenced by a number of intrinsic factors, including skin types and genetic background, and extrinsic factors, including the degree of sunlight exposure and environmental pollution (2-4). Skin color is determined by the quantity of melanosomes and their extent of dispersion in the skin (5). Under physiological conditions, pigmentation can protect the skin against harmful UV injury. However, excessive generation of melanin can result in extensive aesthetic problems, including melasma, pigmentation of ephelides and post-inflammatory hyperpigmentation (1,6). Traditional pharmacological agents, including corticosteroids, hydroquinone and aminomercuric chloride, lighten skin tone through the inhibition of either melanocyte maturation or interference with the process of melanogenesis. However, most if not all of the aforementioned agents are closely associated with adverse effects including prickling sensation, contact dermatitis, irritation, high toxicity and sensitivity (7-10). Therefore, recent research by cosmetic companies and research institutions has been focusing on the development of novel whitening agents that selectively suppress the activity of tyrosinase (TYR) to reduce hyperpigmentation whilst avoiding cytotoxicity to normal, healthy melanocytes. As a result, natural skin whitening compounds are currently garnering significant attention in the cosmetic and medical industry (11,12).

The present review summarizes the biosynthetic process of melanogenesis and the associated core regulatory signaling pathways. It also reviews natural skin-whitening agents in terms of their compound classification and discusses their efficacy based on their mechanism of action on melanogenesis. In addition, an overview of the current research methodology applied for the evaluation of compound bioactivity is provided. The aim of the present review is to provide informative guidance for the development of safe and effective depigmenting agents for use in the cosmetic industry.

2. Melanogenesis

Melanin is mainly produced by melanocytes that are localized in the epidermis, the outermost layer of the skin; it is also this layer that determines skin color in humans (4). Melanin is primarily synthesized in melanosomes, which function as specialized organelles in melanocytes. Melanogenesis
is a complex process that involves a series of enzymatic and chemical reactions inside the melanosomes, resulting in the production of two types of melanin: Eumelanin and pheomelanin. Eumelanin is an insoluble polymer that is dark brown-black in color, whereas pheomelanin is a soluble polymer light red-yellow in color that also contain sulfur (13). Both eumelanin and pheomelanin are formed by the conjugation of cysteine or glutathione (14-16). To gain an understanding of the mechanism of whitening agents, a summary of the signaling pathways associated with skin melanogenesis is presented in Fig. 1. The pigmentation process starts with the oxidation of L-tyrosine to L-dopaquinone (DQ) in the presence of the rate-limiting enzyme TYR. Following DQ formation, the resulting quinone undergoes intramolecular cyclization and oxidation, where it serves as a substrate for the synthesis of eumelanin and pheomelanin (17,18). During the process of melanogenesis, hydroxylation of L-tyrosine to form L-3,4-dihydroxyphenylalanine (L-DOPA) is the rate-limiting step of the whole process, which is catalyzed by TYR.

3. Core signaling pathways in the regulation of melanogenesis

Melanogenesis is a complex process that is modulated by a network of pivotal signaling cascades and transcription factors, which is controlled at different levels. In particular, modulation of TYR activity is the most commonly applied strategy for the clinical intervention of pigmentary disorders. Since naturally occurring inhibitors of melanogenesis usually garner more attention compared with chemically synthesized compounds due to the cosmetic demands of consumers, the present review focuses on natural compounds that have been documented to exhibit skin-whitening effects through the inhibition of TYR activity. The three core signal pathways involved in the regulation of melanogenesis are: i) melanocortin-1 receptor (MC1R) signaling; ii) the Wnt/β-catenin signaling pathway; and iii) the tyrosine kinase receptor KIT/stem cell factor (SCF) pathway, all of which converge downstream to activate the master regulator-microphthalmia-associated transcription factor (MITF) (Fig. 2) (19). The following sections will describe the genetic and molecular modulators that are involved in the control of melanogenesis by these three key pathways.

α-melanocyte-stimulating hormone (α-MSH)-MC1R signaling pathway. α-MSH is a precursor polypeptide derived from pro-opiomelanocortin that can modulate pigmentation through paracrine action, whilst MC1R is a member of the G-protein-coupled receptor family (20). α-MSH binding to MC1R results in the activation of adenyl cyclase, increasing the intracellular levels of cAMP and subsequently upregulating TYR, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) expression. The biological effects downstream of cAMP elevation have been previously demonstrated to be predominately mediated by cAMP-dependent protein kinase (PKA), which phosphorylates cAMP-response element (CRE) binding protein (CREB) (21). However, it has also been suggested that neither TRP-1 nor TRP-2 have cAMP response elements in their respective promoter regions. Evidence has indicated that regulating the gene expression of TRP-1 and TRP-2 by cAMP is directly associated with MITF, which binds to the M-box sequence (AGTCATGTGCT) located in the tyrosinase distal elements (TDEs) after its activation (22). Since the promoter region of MITF contains the consensus CRE sequence, the expression of MITF can also be increased by α-MSH stimulation in a cAMP-dependent manner (23). This demonstrated that the α-MSH-MC1R signaling pathway induces melanin production predominantly by elevating intracellular cAMP levels, and the inhibition of which can exert inhibitory effects on melanogenesis.

Wnt signaling pathway. The Wnt signaling pathway has been previously reported to serve an important role in melanogenesis (24,25). Wnt ligands bind to Frizzled receptors on the cell surface, resulting in the increased stability of cytoplasmic β-catenin, and its subsequent translocation into the nucleus, where it activates the transcription of MITF by interplay with lymphoid enhancer-binding factor 1 (LEF1)/T-cell factor (LEF1/TCF) (26). Previous studies on melanocytes suggest that β-catenin and LEF1 synergistically regulate the M promoter activity of MITF via LEF1 binding sites, which upregulate MITF expression in melanoma (27,28). By regulating MITF transcription, the Wnt/β-catenin signaling pathway can control the expression of TYR and other pigmentation enzymes.

SCF-KIT signaling pathway. Recent studies have verified the important roles of the SCF-KIT signaling pathway in melanocyte proliferation and differentiation, and the process of melanogenesis (29,30). SCF is a paracrine factor that is secreted by fibroblasts, whereas c-KIT, its receptor, is expressed on melanocytes (31). When SCF binding to its receptor-c-KIT, it stimulates tyrosine kinase activity, resulting in receptor auto-phosphorylation to initiate signal transduction (32,33). c-KIT phosphorylation directly activates p38 mitogen-activated protein kinase (MAPK), a member of the MAP kinase family, which in turn phosphorylates CREB and subsequently activates MITF to promote TYR transcription (34). c-KIT can also activate ERK. c-KIT-mediated ERK signaling pathway can induces CREB phosphorylation to activate melanin synthesis on one hand, and on the other hand, the activation of ERK signaling has been demonstrated to phosphorylate MITF at the serine 73 residue, which leads to the ubiquitination and degradation of MITF, this is the feedback mechanism of the ERK pathway to regulate melanin production (35). In addition to p38 MAPK and ERK, c-KIT activation is associated with the phosphoinositide 3-kinase (PI3K) signaling pathway, which not only regulates cell survival but also causes pigmentation by activating the serine/threonine-specific protein kinase AKT. Downstream, PI3K activation leads to the phosphorylation of glycogen synthase kinase 3β (GSK-3β) to increase MITF activity (36). Therefore, inhibitors of the SCF-KIT signaling pathway can potentially exhibit anti-melanogenesis activity.

MITF. MITF serves as the central hub of the regulatory network of melanin synthesis that is comprised of numerous transcription factors and signaling pathways that modulate the survival, proliferation and differentiation of melanoblasts and melanocytes (37). The MITF gene contains multiple promoters, the M promoter is one of such promoters, which is located adjacent to the common downstream exons and is targeted by several transcriptional factors, including CREB, paired box gene 3.
(PAX3), LEF1/TCF, SRY-related HMG-box 10 (SOX10), SOX9 and MITF itself (38). In melanocytes, these transcription factors bind to the promoter of MITF-M to regulate MITF expression whilst controlling the transcription of several important genes. These genes are not only related to the production of melanin, including TYR, TRP-1 and TRP-2, but are also linked to the regulation of melanocyte differentiation, proliferation and cell cycle progression. Cyclin-dependent kinase 2 (CDK2), B-cell lymphoma-2 (BCL-2) and Hypoxia-inducible factor 1-alpha (HIF-1α) are such genes that are regulated by MITF. In addition, MAPK, ribosomal S6 kinase (RSK), glycogen synthase kinase-3β (GSK-3β) and p38 can all phosphorylate MITF and simultaneously modulate its transcriptional activity in response to specific environmental cues (39‑43).

4. Naturally occurring skin-whitening agents for inhibiting melanogenesis

Naturally occurring skin-whitening agents exert their effects by regulating melanin production through a number of mechanisms, including inhibiting the expression and activity of TYR and suppressing the uptake and distribution of melanosomes. In the cosmetics industry, since skin-whitening compounds from natural sources are usually more appealing to consumers, a greater demand exists for inhibitors of melanogenesis derived from herbal plants that prevent hyperpigmentary disorders. Naturally occurring bioactive compounds, including flavonoids, terpenoids, polysaccharides and coumarin derivatives, all of which have been previously demonstrated to exhibit antioxidant and anti-inflammatory properties, are now becoming increasingly recognized to possess anti-melanogenesis functions (44,45). Therefore, this section focuses on the natural active skin-whitening agents that are currently known based on their compound classification along with their mechanism of action on melanogenesis.

Transcriptional control of TYR expression via MITF. MITF serves an indispensable role in melanogenesis as it controls the transcription of TYR and other pigmentation-associated enzymes (46-48). Naturally occurring bioactive compounds...
have now been reported to exert an anti-melanogenesis function by interfering with signaling pathways to downregulate MITF expression. Among them, phenolic compounds, including [6]-Shogaol (49), derived from *Heracleum moellendorffii* Hance extracts (50), the ethyl acetate fraction of *Licorice* roots (51) and 2-[(4-hydroxyporphyl)-2-methoxyphenox]-1,3-propanediol (35) from *Juglans mandshurica* plants, inhibit melanogenesis by mediating the degradation of MITF in a manner that is associated with ERK signaling. By contrast, other phenolic compounds (52-55) exert anti-melanogenic properties by downregulating the cAMP/CREB signaling pathway and/or activating related caspases to trigger apoptosis of melanocyte cells (Table I). Flavonoids, including isoorientin, catechin, coumaric acid and kaempferol-7-O-D-glucuronide, derived from *Gentiana* (56), *Phyllostachys nigra* (57), *Cryptotaenia japonica* (57) and dried pomegranate concentrate powder (58) exhibit skin-whitening effects by downregulating PKA/CREB-mediated MITF expression. A list of other bioactive compounds, including terpenoids, polysaccharides and lignanoids, and their respective molecular mechanism of action on the melanogenesis pathway is provided in Table I (49,59-72). It can be observed that bioactive compounds are able to suppress MITF or TYR activity by either binding to transcription factors directly or by inhibiting melanogenic pathways upstream, including that of cAMP/PKA, ERK, Wnt/β-catenin and MAPK. Therefore, these aforementioned compounds represent promising skin-whitening agents, but those targeting TYR gene expression are not recommended for clinical use mainly for their non-specific effects through intracellular signaling cascades (73).

TYR modulation. TYR is a popular target for the development of skin-whitening agents due to its position at the rate-limiting step of the melanogenesis pathway. Additionally, TYR inhibitors have highly specificity for targeting melanogenesis, reducing the risk of side effects. Therefore, TYR inhibitors remain as the most successful and commonly applied skin-whitening agents. The majority of the naturally occurring compounds currently applied are botanical inhibitors of TYR, where their mechanism of action mainly entails two processes.

Inhibition of TYR catalytic activity. A number of studies have reported TYR inhibitors from natural sources, most of which are originate from Asia. Table II provides a summary of studies that have previously applied such types of TYR inhibitors. In a substantial number of these studies, mushroom TYR has been used as the protein model, and the IC₅₀ values of the prospective TYR inhibitor were compared with those of other established inhibitors, including kojic acid and arbutin. TYR is a multi-functional type-3 copper-containing glycoprotein that is located on the membrane of the melanosome (1,74). Structurally, the active site of TYR consists two copper ions surrounded by three histidine residues (75). Anthraquinones, flavonoids and phenylpropanoids can serve as competitive inhibitors of TYR due chemical structures similar to those of L-tyrosine or L-DOPA (76,77).

Within the quinone family of compounds, the most frequently applied skin-whitening agents are hydroquinone (HQ) (78,79) and arbutin (80,81). Although HQ can function as an alternative substrate for TYR, the subsequent enzymatic reaction results in the production of reactive oxygen species (ROS), which is thought to be responsible for its skin-lightening properties, with possible associated side effects including leukoderma and exogenous ochronosis (82,83). Therefore, HQ has been banned in the EU, USA and a number of African and Asian countries (5). By contrast, arbutin is an effective agent for treating for hyperpigmentation in the cosmetics industry, which is also commonly applied as a positive control for melanogenesis studies.

Flavonoid compounds, including epigallocatechin gallate (84), quercetin (85), aloesin (86,87), hydroxystilbene derivate and licorice extracts are used for hyperpigmentation due to the ability to remove ROS and to chelate metals ions at the active sites of metalloenzymes (88). The hydroxystilbene family of compounds, which includes resveratrol as a well-known example, is the most efficient at alleviating hyperpigmentation compared with other families of flavonoid compounds. Resveratrol, which is found in a wide variety of plants such as grapes, exhibits potent inhibitory effects towards TYR (89,90). Regarding other flavonoid compounds, licorice-glabiridin (91), the main component found in the hydrophobic fraction of licorice extracts (92), has previously been demonstrated to exhibit inhibitory activity against TYR.
Structure type	Source	Mechanism of action	(Refs.)
Phenolic compounds			
2-[4-(3-Hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol	*Juglans mandshurica*	ERK-associated pathway resulting in the downregulation of MITF	(34)
Protocatechuic acid	Pear fruits	Downregulation of the cAMP/CREB signaling pathway	(49)
Ethyl acetate fraction of *Oroxylum indicum*	*Oroxylum indicum*	Activation p38, ERK1/2 and JNK phosphorylation and suppression of MITF expression	(47)
Vent. seeds	*Phellinus linteus*	Downregulation of MITF and activation of caspase-3, -8 and -9	(51)
Hispolon	*Heracleum moellendorffii*	Activation of ERK1/2 and subsequent degradation of MITF	(46)
[6]-Shogaol	Ginger rhizome	Acceleration of ERK and PI3K/Akt-mediated MITF degradation	(45)
Sesamol	Sesame	Regulation of melanin-related signal transduction	(48)
Phenolic extracts	Rape bee pollen	Inhibition of the cAMP/MITF/TYR pathway	(50)
Flavonoids			
Isoorientin	*Gentiana veitchiorum* Hemsl. flowers	Suppression of MITF through CREB	(52)
Hesperidin	Rutaceae citrus species	Activation of ERK1/2 and downregulation of MITF	(56)
Gallic acid	Gallnut, lacquer tree, tea	Inhibition of PI3K/AKT, MEK/ERK and Wnt/β-Catenin signaling to downregulate MITF	(58)
Ethyl acetate fraction of bamboo stems	*Phyllostachys nigra f. henosis*	PKA/CREB-mediated MITF downregulation	(53)
Kaempferol-7-O-D-glucuronide (K7G) and tilianin	*Cryptotaenia japonica*	CREB- and MAPK-associated signaling pathways	(54)
Flavonoids and polyphenolic compounds			
Pomegranate concentrate powder	Pomegranates	Inactivation of p38 and PKA signaling pathways to reduce the phosphorylation of CREB and MITF	(55)
Sorghum ethanolic extract	Sorghum	Suppression of PAX3-mediated MITF gene promoter activity	(59)
Terpenoids			
Zerumbone	*Zingiber officinale*	Increased phosphorylation of ERK1/2 to downregulate MITF	(69)
Ganodermanondiol	*Ganoderma lucidum*	Inhibition of the MAPK cascade and cAMP-dependent signal pathway	(68)
N-hexane fraction rich in methyl linoleate and methyl linolenate	*Sageretia thea*	Suppression of the AKT/GSK3β signaling pathway	(61)
Hinokitiol	Cupressaceous plants	Inhibition of the AKT/mTOR signaling pathway	(60)
Ginsenoside Rg3	*Panax ginseng*	Activation of ERK to downregulate MITF	(62)
Polysaccharides			
Ganoderma lucidum polysaccharide	*Ganoderma lucidum*	Inhibition of cAMP/PKA and ROS/MAPK signaling pathways	(65)
S. japonicus extracts	*Stichopus japonicus*	Inhibition of ERK activation and reduction of the expression of MITF	(66)
Alkaloids			
Betaine	Crustacea, beetroot	Inhibition of cAMP/PKA/CREB signaling and activation of AKT-GSK3β signaling, leading to the degradation of MITF	(63)

Table I. Bioactive, naturally occurring compounds and their respective mechanism of action on tyrosinase and MITF expression.
Phenylpropanoids and olefinic unsaturated compounds, which include ferulic acid, benzoaldehyde (105), astaxanthin, curcumin and cinnamic acid esters (106), have been revealed to exert inhibitory effects on TYR. According to a study by Park et al (107), ferulic acid, one of the main phenolic components found in *Tetragonia tetragonioides*, suppressed melanin synthesis by reducing the expression of TYR and MITF in B16-F10 cells at concentrations of between 5 and 20 µM. Additionally, Rao et al (108), Niwano et al (109) and Tu et al (110) demonstrated that astaxanthin and curcumin exhibit suppressive properties on melanin synthesis and cellular TYR activity. Other typical agents with reported inhibitory activities on TYR include kojic acid (111,112), methyl gentisate (113,114), ganoderanondiol (71,115), 10-hydroxy-2-decenoic acid (116), *Stichopus japonicus* extracts (69) and bis (4-hydroxybenzyl)sulphide (117). Information on their specific respective mechanisms of action are shown in Table II.

Post-translational regulation of TYR

Substances that can regulate melanin synthesis by affecting protein levels of the melanogenic enzymes without any changes in mRNA levels likely regulate the activity of melanogenic enzymes at post-translational levels. Post-translational modification of components in this pathway primarily lead to the inhibition of melanin synthesis. Currently, two main pathways are known for the degradation of TYR, namely proteasomal and lysosomal degradation (118,119). Unsaturated fatty acids, including oleic acid (C18:1), linoleic acid (C18:2) and α-linolenic acid (C18:3), have been demonstrated to accelerate the protein degradation of TYR by activating one of these two pathways, leading to anti-melanogenesis activity (120). These agents downregulate intracellular TYR protein levels by promoting ubiquitin-dependent degradation, inhibiting melanin synthesis and suppressing hyperpigmentation. According to previous studies by Park et al (121) and Lee et al (122), terrein, a novel fungal metabolite reduces TYR expression by downregulating MITF in a manner that is dependent on ERK activation, with its inhibitory effects on melanin synthesis prolonged by ubiquitin-mediated proteasomal degradation. By contrast, lysosomes can also target TYR for degradation. Geoditin A, an isomalabaricane triterpene compound derived from the South China Sea Sponge *Geodia japonica*, has been previously found to suppress melanogenesis by post-translational regulation in the endoplasmic reticulum and the degradation of TYR in the lysosome (123). Resveratrol, a promising pigment-lightening flavonoid found in red wine, was recently found to suppress TYR expression not via the inhibition of MITF expression, but by directly inhibiting TYR activity by a post-translational modification that reduces the levels of fully mature TYR protein (119). Retention of misfolded TYR proteins in the endoplasmic reticulum results in the loss of pigmentation, which has also been proposed to be one of the major post-translational mechanisms responsible for the effects of resveratrol.

Inhibition of melanin dispersion

Following melanin synthesis, one key step of melanogenesis in the skin is the translocation

Structure type	Source	Mechanism of action	Refs.
Lignanoids	Gomisin N	Inactivation of the PI3K/AKT and MAPK/ERK signaling pathways	(57)
Quinolines	3,8-Dihydroxyquinoline (jineol)	Activation of ERK1/2 and p38 MAPK signaling, leading to the proteolytic degradation of MITF	(64)
Fatty acids	Linoleic acid and oleic acid	Downregulation of cAMP/PKA, PI3K/AKT and MAPK signaling pathways	(67)

In B16 murine melanoma cells (93,94). A list of other recently discovered flavonoids that have been reported to inhibit the activity of TYR is shown in Table II (95-104).

Post-translational regulation of TYR. Substances that can regulate melanin synthesis by affecting protein levels of the melanogenic enzymes without any changes in mRNA levels likely regulate the activity of melanogenic enzymes at post-translational levels. Post-translational modification of components in this pathway primarily lead to the inhibition of melanin synthesis. Currently, two main pathways are known for the degradation of TYR, namely proteasomal and lysosomal degradation (118,119). Unsaturated fatty acids, including oleic acid (C18:1), linoleic acid (C18:2) and α-linolenic acid (C18:3), have been demonstrated to accelerate the protein degradation of TYR by activating one of these two pathways, leading to anti-melanogenesis activity (120). These agents downregulate intracellular TYR protein levels by promoting ubiquitin-dependent degradation, inhibiting melanin synthesis and suppressing hyperpigmentation. According to previous studies by Park et al (121) and Lee et al (122), terrein, a novel fungal metabolite reduces TYR expression by downregulating MITF in a manner that is dependent on ERK activation, with its inhibitory effects on melanin synthesis prolonged by ubiquitin-mediated proteasomal degradation. By contrast, lysosomes can also target TYR for degradation. Geoditin A, an isomalabaricane triterpene compound derived from the South China Sea Sponge *Geodia japonica*, has been previously found to suppress melanogenesis by post-translational regulation in the endoplasmic reticulum and the degradation of TYR in the lysosome (123). Resveratrol, a promising pigment-lightening flavonoid found in red wine, was recently found to suppress TYR expression not via the inhibition of MITF expression, but by directly inhibiting TYR activity by a post-translational modification that reduces the levels of fully mature TYR protein (119). Retention of misfolded TYR proteins in the endoplasmic reticulum results in the loss of pigmentation, which has also been proposed to be one of the major post-translational mechanisms responsible for the effects of resveratrol.

Inhibition of melanin dispersion

Following melanin synthesis, one key step of melanogenesis in the skin is the translocation

Source	Structure type	Mechanism of action	Refs.
Schisandra chinensis	Lignanoids	Inactivation of the PI3K/AKT and MAPK/ERK signaling pathways	(57)
Scolopendra subspinipes mutilans	Quinolines	Activation of ERK1/2 and p38 MAPK signaling, leading to the proteolytic degradation of MITF	(64)
Spent coffee grounds	Fatty acids	Downregulation of cAMP/PKA, PI3K/AKT and MAPK signaling pathways	(67)

Information on their specific respective mechanisms of action are shown in Table II.
Table II. Tyrosinase inhibitors from natural sources and characterization of the active compounds.

Structure type	Source	Mechanism	IC$_{50}$	(Refs.)
Anthraquinones				
Hydroquinone	Coffee, cranberries and blueberries.	Alternative substrate	75 µMa	(74,75)
Arbutin	Cranberries, blueberries, wheat and pears	Alternative substrate	0.17 µMa; 4.0 µMb	(76,77)
Flavonoids				
Epigallocatechin gallate	Tea	Copper chelation	-	(80)
Quercetin	*Sophora japonica*	Competitive inhibition	30.8 µMa	(81)
Aloesin	*Aloe vera*	Competitive inhibition, Dopa oxidation	0.17 mMa	(82,83)
Glabridin, semilicoisoflavone B, allolicoisoflavone B	*Glycyrrhiza*	****	0.43 µMa; 0.25 µMb; 0.80 µMb	(87,88)
Anthocyanosides	Black soya bean, red grapes	Scavenging free radicals	-	(96)
Flavonoid compounds and ferulic acid	*Spiranthes sinensis*	Copper chelation	0.21 mg/mla	(95)
2,4,2',4'-Hydroxycalcone	*Morus australis*	Competitive inhibition	0.21 µMa	(93)
Fleminchalones A-C	*Flemingia philippinensis*	Competitive inhibition	1.28 µMa	(92)
Baicalin	*Scutellaria baicalensis*	Inhibition of tyrosinase expression and activity	-	(97)
Soybean extracts	Soybean	Inhibition of tyrosinase expression and activity	-	(91)
Carathamus yellow	*Carthamus tinctorius*	Competitive inhibition	1.01 mg/mlb	(94,100)
Coumestrol	*Medicago sativa*	Inhibition of tyrosinase expression	-	(98)
Resveratrol analogs	Resveratrol	Alternative substrate	54 µMa; 250 µMb	(85,86)
Phenylpropanoids				
Ferulic acid	*Tetragonia tetragonoides, Angelicae*	Inhibition of tyrosinase expression	-	(103)
Cinnamic acid esters	*Origanum vulgare*	-	16.13 µMa	(102)
Benzaldehyde	Cinnamon oil, bitter almond oil	Partial noncompetitive inhibition	31.0 mMa	(101)
Olefinic unsaturated compounds	*Haematococcus pluvialis*	Inhibition of tyrosinase expression	-	(104,105)
Curcumin	*Curcuma aromatica Salisb.*	Inhibition of tyrosinase expression	0.18 mMa	(106)
Others				
Kojic acid	*Aspergillus* solid culture	Copper chelation	6.2 µMa; 250 µMb	(107,108)
Bis(4-hydroxybenzyl)sulfide	*Gastrodia elata*	Copper chelation	0.53 µMa	(114)
Methyl gentisate	*Radix gentianae*	Copper chelation	11.2 µMa; 30.9 µMb	(109,110)
Ganodermanondiol	*Ganoderma lucidum*	Inhibition of tyrosinase expression	-	(111,112)
of mature melanosomes into keratinocytes, which are then transported up to the epidermis where the melanin is dispersed. Therefore, agents that can inhibit the transfer of melanosomes and/or accelerate epidermal turnover can result in the whitening of the skin.

Inhibition of melanosome transfer. A number of studies have previously proposed regulatory mechanisms of melanosome movement in dendrites and interplay between keratinocytes and melanocytes during the transfer process (124,125). In this regard, early skin-whitening compounds, including niacinamide and soybean extracts, are reported to interfere with this process. Niacinamide is has been shown to reduce pigmentation by inhibiting melanosome transfer using a skin-co-culture model (126), whilst soymilk and soybean extracts have been previously suggested to inhibit protease-activated receptor 2 activation in the skin, which may enhance pigment transfer that results in skin whitening (127,128). In addition, it was recently reported that ginsenoside F1 exhibited skin lightening effects by disrupting melanin transfer from the basal layer of melanocytes to the upper layer of keratinocytes (129). Further microscopic research revealed that melanosome transport between cells requires a number of steps, including bidirectional long-range transfer to the apical surface on microtubules, transfer to actin filaments, irreversible short-range transfer by actin dynamics followed by binding to the cell membrane (130). A number of important molecules, including Rab27A, melanophilin (MLPH) /SLP homolog lacking C2 domains-A, synaptotagmin-like protein (SLP) 2A/synaptotagmin 2 and myosin Va are involved in the regulation of melanosome transport (130,131). Kudo et al (132) reported that O-methylated flavones extracted from *Scutellaria baicalensis* Georgi, such as wogonin, can inhibit the transport of intracellular melanosomes by degrading melanophilin (MLPH), a carrier protein associated with melanosome transport on actin filaments. Additionally, gagunin D, a highly oxygenated diterpenoid from the marine sponge *Phorbas* sp., was also found to exhibit anti-melanogenic properties by downregulating the expression of proteins associated with melanosome transfer, including Rab27A, MLPH and myosin Va (133). Therefore, these observations suggest that downregulating the expression and activity of the aforementioned proteins associated with melanosome transport may be useful for reversing the process of skin hyperpigmentation.

Inhibition of melanin dispersion and acceleration of epidermal turnover. A number of compounds have been documented to possess the capacity to inhibit the dispersion of melanin granules and accelerate skin turnover, which can result in a lighter skin tone. Topical application of these compounds to the skin has been demonstrated to effectively reduce the visibility of skin spots without affecting their size or quantity, which can be used for treating melasma. Examples of these compounds include α-hydroxy acids, salicylic acid, linoleic acid and retinoic acids, which can promote cellular renewal and facilitate the elimination of melanized keratinocytes, leading to the loss of melanin pigmentation (134,135). However, the application of those acids is associated with side effects including erythema, scaling and increased risk of sunburn (136-138). Therefore, current research efforts are mainly focused on the
discovery of novel components of natural compounds with minimal off-target effects. Liquiritin, a flavonoid glycoside of liquorice, has previously been shown to significantly reduce hyperpigmentation in 20 women with a clinical diagnosis of melasma. The mechanism was proposed to be associated with melanin dispersion mediated by the pyran ring of the flavonoid chemical structure and the acceleration of epidermal turnover (139). This suggest flavonoids to be promising candidates for the development of safe and effective interventions for hyperpigmentation.

5. Conclusions

Over the past few years, significant progress has been made on the understanding of melanocyte biology and its underlying mechanism, opening up new research avenues for the discovery of novel melanogenesis inhibitors. In addition to the direct suppression of TYR catalytic activity, other methods for the disruption of melanogenesis include the post-transcriptional control of TYR, regulation of melanosome transfer and the suppression TYR transcription by suppressing upstream signaling pathways. These mainly involve the inhibition of the master regulator MITF, resulting from the reduction of intracellular cAMP levels, increases in cytoplasmic β-catenin and/or the activation of ERK signaling. Therefore, a large number of inhibitors acting through these aforementioned alternative mechanisms have been successfully identified (73).

Among these inhibitors, a mild, stable, safe and effective compound is sought from natural extracts as a raw material for the development of skin-whitening and skin care products. For such prospective melanogenesis inhibitors, further in vitro/in vivo studies and clinical trials are required to evaluate efficacy and safety. To accelerate the process of drug discovery, a variety of models and methodologies should be applied to assess their potential hypopigmentation activity. From a methodological perspective (140,141), a multi-step process should be adopted for these investigations (Fig. 3). Initial evaluation of whitening properties in vitro should be conducted on purified TYR and/or other melanogenic proteins, followed by the use of melanocyte cultures to examine potential cytotoxic and melanin synthetic effects. For further biological evaluation, co-culture systems and reconstructed skin models should be adopted to screen for the ability of the novel compounds to interfere with the melanogenesis process, especially following stimuli including UV irradiation, exposure to a-MSH or proinflammatory cytokines. In addition, investigation into the regulatory mechanism involved in melanogenesis should be performed. Finally, the in vivo activity of the prospective agents should be evaluated using non-invasive techniques such as UV light photography or spectrophotometry to obtain comparable results (12,142). It is expected that the aforementioned research methodology can provide better opportunities for the development of novel lightening agents that are effective and safe for use in the clinical and cosmetic industries.

Although promising, the use of skin-lightening compounds requires further research due to diverse modes of action or off-target effects (77). Kojic acid and arbutin remain the classic compounds that can be topically used as skin-lightening agents in a clinical setting due to proven efficacy. Additional natural skin-lightening compounds, including mulberry, licorice and lemon extract, are regularly supplemented into skin care products, to strengthen the effect of arbutin or kojic acid (143,144). The ideal skin-lightening cosmetic product should include a formulation that comprises compounds acting on different pathways during the melanogenesis process. This future combination should contain multiple targets and layers, including the control of TYR expression on transcription and protein levels, inhibition of enzymatic activity in the melanogenesis pathway, suppression of melanocyte proliferation and the transport of melanosomes on a cellular level. Although the mechanisms of these inhibitors have been well characterized in vitro, they have not been topically applied in cosmetics and cosmeceuticals. Therefore, further evaluation of their skin-whitening activity in vivo or in parallel human clinical trials are required. In summary, from a clinical point of view, additional mechanistic investigations of the novel natural modulators on melanogenesis are urgently required.

Acknowledgements

Not applicable.

Funding

This project was supported by the National Natural Science Foundation of China (grant no. 31671026), the Research Project of Nanjing General Hospital (grant no. 2015056).

Availability of data and materials

Not applicable.
The authors declare that they have no competing interests.

Competing interests

The authors declare that they have no competing interests.

References

1. Pillaiyar T, Manickam M and Namasiyavam V: Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32: 403-425, 2017.

2. Videira IF, Moura DF and Magina S: Mechanisms regulating melanogenesis. An Bras Dermatol 88: 76-83, 2013.

3. D’Mello SA, Finlay GJ, Baguley BC and Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol Sci 17: pii: E1144, 2016.

4. Gillbro JM and Olsson MJ: The melanogenesis and mechanisms of skin-lightening agents—existing and new approaches. Int J Cosmet Sci 33: 210-221, 2011.

5. Desmedt B, Courselle P, De Beer JO, Rogiers V, Grosber M, Deconinck E and De Paepe K: Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J Eur Acad Dermatol Venereol 30: 943-950, 2016.

6. Costin GE and Hearing VJ: Human skin pigmentation: Melanocytes modulate skin color in response to stress. Faseb J 21: 976-994, 2007.

7. Takizawa I, Imai T, Onose J, Ueda M, Tamura T, Mitsumori K, Izumi K and Hirose M: Enhancement of hepatocarcinogenesis by koi juice in rat two-stage models after initiation with N-bis (2-hydroxypropyl)nitrosamine or N-diethylnitrosamine. Toxicol Sci 81: 43-49, 2004.

8. Garcia-Gavin J, Gonzalez-Vilas D, Fernandez-Redondo V and Toribio J: Pigmented contact dermatitis due to koi juice. A paradoxical side effect of a skin lighter. Contact Dermatitiss 62: 63-64, 2010.

9. Chung KW, Jeong HO, Jang EJ, Choi YJ, Kim DH, Kim SR, Lee KJ, Lee JJ, Chan P, Byun Y, et al: Characterization of a small molecule inhibitor of melanogenesis that inhibits tyrosinases activity and scavenges nitric oxide (NO). Biochim Biophys Acta 1830: 4752-4761, 2013.

10. Hong YH, Jung EY, Noh DO and Suh HJ: Physiological effects of formulation containing tannase-converted green tea extract on skin care: Physical stability, collagenase, elastase and tyrosinase activities. Integra Med Res 3: 25-33, 2014.

11. Chiang HM, Chien YC, Wu CH, Hsu YC, Wu WC, Pan YY, Su YH and Wen KC: Melanocytes modulate skin color in response to stress. Faseb J 21: 976-994, 2007.

12. Lajas AFB and Ariff AB: Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro studio. J Cosmet Dermatol 18: 703-727, 2019.

13. Ito S and Wakamatsu K: Quantitative analysis of eumelanin and pheomelanin in humans, mice and other animals: A comparative review. Pigment Cell Res 16: 523-531, 2003.

14. Slominski A, Tobin DJ, Shibahara S and Wortsman J: Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84: 1155-1228, 2004.

15. Schiaffino MV: Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol 42: 1094-1104, 2010.

16. Pillaiyar T, Manickam M and Jung SH: Inhibitors of melanogenesis: A patent review (2009 - 2014). Expert Opin Ther Pat 25: 775-788, 2015.

17. Ichikawa VJ and Jimenez M: Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int J Biochem 19: 1141-1147, 1987.

18. Halaban R, Patton RS, Cheng E, Svedine S, Trombeta ES, Wahl ML, Ariyana S and Hebert DN: Abnormal acidification of melanoma cells induces tyrosinase retention in the early secretory pathway. J Biol Chem 277: 14821-14828, 2002.

19. Hou L, Pantzer JJ and Arnhette H: Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: Interactions between KIT and MITF. Development 127: 5379-5389, 2000.

20. Ruy S, Johnson A, Park Y, Kim B, Norris D, Armstrong CA and Song PI: The alpha-melanocyte-stimulating hormone suppresses TLR2-mediated functional responses through IRAK-M in normal human keratinocytes. PLoS One 10: e0136887, 2015.

21. Edelman AM, Blumenthal DK and Krebs EG: Protein serine/threonine kinases. Annu Rev Biochem 56: 567-613, 1987.

22. Yasumoto K, Yokoyama K, Shibata K, Tomita Y and Shibahara S: Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol 14: 827-835, 1994.

23. Bertolotto C, Abbe P, Hemeshat TJ, Bille K, Fisher DE, Ortonne JP and Ballotti R: Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142: 827-835, 1998.

24. Zhu YY, Yin WH, Wang MR, Dang YY and Ye XY: Andrographolide suppresses melanin synthesis through Akt/MEK/ERK-catenin signal pathway. J Dermatol Sci 79: 74-83, 2015.

25. Hwang I, Park JH, Park HS, Choi KA, Seol KC, Oh SI, Kang S and Hong S: Neural stem cells inhibit melanin production by activation of Wnt inhibitors. J Dermatol Sci 72: 274-283, 2013.

26. Steingrimsson E, Copeland NG and Jenkins NA: Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38: 365-411, 2004.

27. Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K and Shibahara S: Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem 275: 14013-14016, 2000.

28. Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X and Fisher DE: Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 158: 1079-1087, 2002.

29. Martinez-Anton A, Gars D, Bourdia A, Dubreuil P and Chanez P: KIT as a therapeutic target for non-oncological diseases. Pharmacol Ther 197: 11-37, 2019.

30. Niwano T, Terazawa S, Nakajima H and Imokawa G: The stem cell factor-stimulated melanogenesis in human melanocytes can be abrogated by interfering with the phosphorylation of MSK1: Evidence for involvement of the p38/MSK1/CREB/MITF axis. Arch Dermatol Res 310: 187-196, 2018.

31. Li PH, Liu LH, Chang CC, Gao R, Leung CH, Ma DL and David Wang HM: Silencing stem cell factor gene in fibroblasts to regulate paracrine factor productions and enhance c-kit expression in melanocytes on melanogenesis. Int J Mol Sci 19: pii: E14755, 2018.

32. Flaherty KT, Hodi FS and Fisher DE: From genes to drugs: Targeted therapies for melanoma. Nat Rev Cancer 12: 349-361, 2012.

33. Bonaventure J, Domingues MJ and Larue L: Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res 26: 316-325, 2013.

34. Ahn JH, Jin SH and Kang HY: LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Arch Dermatol Res 300: 325-329, 2008.

35. Kim JY, Lee EJ, Ahn Y, Park S, Kim SH and Oh SH: A chemical compound from fruit extract of Juglans mandshurica inhibits microphthalmia-associated transcription factor. J Cell Biol 142: 827-835, 1998.

36. Flaherty KT, Hodi FS and Fisher DE: From genes to drugs: Targeted strategies for melanoma. Nat Rev Cancer 12: 349-361, 2012.
38. Seberg HE, Van Oterloo E and Cornell RA: Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell Melanoma Res 30: 454-466, 2017.

39. Price ER, Horstmann MA, Wells AG, Weilbacher KN, Takemoto CM, Landis MW and Fisher DE: alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem 272: 32330-32337, 1997.

40. Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M and Goossens M: Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 9: 1907-1917, 2000.

41. Jacquetin P, Lannoy VJ, O'Sullivan J, Read A, Lemaigre FP and Roubinian H: The transcription factor ezrin-2 controls the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun 285: 1200-1205, 2001.

42. Saito H, Yasumoto K, Takeda K, Takahashi K, Fukuzaki A, Orikasa S and Shibahara S: Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancing factor 1. J Biol Chem 277: 28787-28794, 2002.

43. Hsiao JJ and Fisher DE: The roles of microphthalmia-associated transcription factor and pigmentmentation in melanoma. Arch Biochem Biophys 532: 28-34, 2014.

44. Hasegawa T, Tákanó F, Takata T, Niyama M and Ohta T: Bisacoustic monoperoxidase conjugated with gallic acid from the leaves of Eucalyptus globulus. Phytochemistry 69: 752-756, 2008.

45. Cho MH, Jo HG, Yang JH, Ki SH and Shin HJ: Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety hensonia) via PKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. Int J Mol Sci 19: pii: E409, 2018.

46. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y and Shibahara S: Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem 272: 503-509, 1997.

47. Tachibana M: MITF: A stream flowing for pigment cells. Pigment Cell Melanoma Res 30: 454-466, 2017.

48. Huang HC, Chang SJ, Wu CY, Ke HJ and Chang TM: 6- α-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation. Biomed Res Int 2014: 842569, 2014.

49. Alam MB, Seo BJ, Zhao P and Lee SH: Anti-melanogenic activities of heracleum moellendorffii via ERK1/2-mediated cAMP/PKA and ROS/MAPK signaling pathways. J Med Sci Biotechnol 26: 1391-1397, 2017.

50. Zhao P, Alam MB, An H, Choi HJ, Cha YH, Yoo CY, Kim HH and Lee SH: Antimelanogenic effect of an oroxylum indicum terpene of zingiber officinale roscoe, attenuates cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol 234: 7330-7340, 2019.

51. Oh CT, Kwon TR, Jang YJ, Yoo KH, Kim BJ and Kim H: Inhibitory effects of Stichopus japonicus extract on melanogenesis of mouse cells via ERK phosphorylation. Mol Med Rep 16: 1079-1086, 2017.

52. Huang HC, Wei CM, Siao JH, Tsai TC, Ko WP, Chang KJ, Hii CH and Chang TM: Supercritical fluid extract of spent coffee grounds attenuates melanogenesis through downregulation of the PI3K/Akt and MAPK signaling pathways. Evid Based Complement Alternat Med 2016: 5680296, 2016.

53. Kim W, Kim HJ, Kim KH, Kwon OC, Son ES, Lee CS and Park YJ: Effects of galneucan, a new melanogenesis inhibitor from the medicinal mushroom ganoderma lucidum. Int J Mol Sci 17: pii: E1978, 2016.

54. Sánchez-Ferrer A, Rodríguez-López JN, García-Cánovas F and García-Carmona F: Tyrosinase: A comprehensive review of its structure, function, and inhibition. Biochim Biophys Acta 1247: 1-11, 1995.

55. Matoba Y, Kumaegi T, Yamamoto A, Yoshitsu H and Shimazawa M: Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281: 8981-8990, 2006.
76. Menter JM, Etemadi AA, Chapman W, Hollins TD and Willis I: In vivo depigmentation by hydroxybenzene derivatives. Melanoma Res 3: 443-449, 1993.

77. Briganti S, Calvaro E and Piccardo M: Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 16: 101-110, 2003.

78. Kang WH, Chun SC and Lee S: Intermittent therapy for melasma in Asian patients with combined topical agents (retinoic acid, hydroquinone and hydrocortisone). Clinical and histological aspects. J Dermatol 25: 587-596, 1998.

79. Guevara IL and Pandya AG: Melasma treated with hydroquinone, tretinoin and a fluorinated steroid. Int J Dermatol 40: 212-215, 2001.

80. Badreshia-Bansal S and Draelos ZD: Insight into skin lightening cosmeceuticals for women of color. J Drugs Dermatol 6: 32-39, 2007.

81. Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK and Bae H: Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20: 921-934, 2006.

82. Haddad AL, Matos LF, Brunstein F, Ferreira LM, Silva A and Costa D Jr: A clinical, prospective, randomized, double-blind trial comparing skin whitening complex with hydroquinone vs. placebo in the treatment of melasma. Int J Dermatol 42: 153-156, 2003.

83. Gupta AK, Gover MD, Nouri K and Taylor S: The treatment of melasma: A review of clinical trials. J Am Acad Dermatol 55: 1048-1065, 2006.

84. Kim DS, Park SH, Kwon SB, Li K, Youn SW and Park KC: (-)-Epigallocatechin-3-gallate and hникoitol reduce melanin synthesis via decreased MITF production. Arch Pharm Res 27: 334-340, 2004.

85. Fan M, Zhang G, Hu X, Xu X and Gong D: Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int 100: 226-233, 2017.

86. Jones K, Hughes J, Hong M, Jia Q and Orndorff S: Modulation of melanogenesis by aloesin: A competitive inhibitor of tyrosinase. Pigment Cell Res 15: 370-373, 2002.

87. Solano F, Briganti S, Piccardo M and Ghanem H: Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res 19: 550-571, 2006.

88. Satooka H and Kubo I: Resveratrol as a kcat type inhibitor for tyrosinase: Potentiated melanogenesis inhibitor. Bioorg Med Chem 20: 1090-1099, 2012.

89. Lee TH, Seo JO, Baek SH and Kim SY: Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Bioimol Ther (Seoul) 22: 35-41, 2014.

90. Chen J, Yu X and Huang Y: Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 168: 111-117, 2016.

91. Lin Y, Kuang Y, Li K, Wang S, Song W, Qiao X, Sabir G and Ye M: Screening for bioactive natural products from licorice roots. J Agric Food Chem 51: 1201-1207, 2003.

92. Badreshia-Bansal S and Draelos ZD: Insight into skin lightening cosmeceuticals for women of color. J Drugs Dermatol 6: 32‑39, 2007.

93. Cabanes J, Chazarra S and Garcia-Carmona F: Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharmacol Sci 120: 174-179, 2012.

94. Curto EV , Kwong C, Hermersdörfer H, Glatt H, Santis C, Dooley TP, Gadwood RC, Kilgore K and Thomasco LM: Kojic acid from Tetragonia tetragonioides in B16F10 melanoma and CCD-986k fibroblast cells. J Nat Med 72: 127-135, 2018.

95. Rau AR, Sinha RN, Dharmshe M, Sankar KU, Saras R and Ravishankar GA: Effective inhibition of skin cancer, tyrosinase and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Hacamatiscus pluvialis. J Agric Food Chem 61: 3842-3851, 2013.

96. Nwazorga A, Terazawa S, Nakanuma Y, Hida Y and Imokawa G: Astaxanthin and withaferin A block paracrine cytokine interactions between UVB-exposed human keratinocytes and human melanocytes via the attenuation of endothelin-1 secretion and its downstream intracellular signaling. Cytokine 73: 184-197, 2015.

97. Melo JC, Slavin MB, Leis JW, McCauley LJ, Bohlen PJ and Sullivan MH: Evaluation of tyrosinase inhibitory activity of withaferin A and astaxanthin isolated from black soya-bean. Food Chem 61: 3842-3851, 2013.

98. Satooka H and Kato I: Resveratrol as a kcat type inhibitor for tyrosinase: Potentiated melanogenesis inhibitor. Bioorg Med Chem 20: 1090-1099, 2012.

99. Li R, Huang S, Pan G, Zhang L, Li G, Li W, Zhang Y, Wang Y and Gu X: A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J Oleo Sci 61: 585-592, 2012.

100. Rob BH, Han SH, Kim DH, Kang IK and Cho YJ: Whitening and anti-wrinkle activities of ferulic acid isolated from Spiranthes sinensis (Pers.) Ames. Molecules 19: 10289-10298, 2014.

101. Menter JM, Etemadi AA, Chapman W, Hollins TD and Willis I: In vivo depigmentation by hydroxybenzene derivatives. Melanoma Res 3: 443-449, 1993.

102. Li W, Li H, Wang X, Wang J, Sun H, Qiu Y, Wang L, Gu Y, Zeng J, Lu Y and Wu Q: Antioxidant and anti-inflammatory activities of carthamus yellow isolated from Carthamus tinctorius L. J Ethnopharmacol 1809-1816, 2019.

103. Park HY, Cho JH, Hong SH, Kim DH, Jung HY, Kang IK and Cho YJ: Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986k fibroblast cells. J Nat Med 72: 127-135, 2018.

104. Kim DS, Park SH, Kwon SB, Li K, Youn SW and Park KC: (-)-Epigallocatechin-3-gallate and hникoitol reduce melanin synthesis via decreased MITF production. Arch Pharm Res 27: 334-340, 2004.

105. Fan M, Zhang G, Hu X, Xu X and Gong D: Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int 100: 226-233, 2017.

106. Jones K, Hughes J, Hong M, Jia Q and Orndorff S: Modulation of melanogenesis by aloesin: A competitive inhibitor of tyrosinase. Pigment Cell Res 15: 335-340, 2002.

107. Lin Y, Kuang Y, Li K, Wang S, Song W, Qiao X, Sabir G and Ye M: Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Biomed Med Chem 25: 3706-3713, 2017.

108. Fu B, Li H, Wang X, Lee FS and Cui S: Isolation and identification and antitumor activity of withaferin A from Withania somnifera whole plant. Int J Tryptophan Res 16: 101-103, 2019.

109. Shen G, Li H, Wang X, Lee FS and Cui S: Coumestrol down-regulates melanin production in B16F10 melanoma cells via the downregulation of MITF production. Pigment Cell Res 27: 1976-1978, 2004.
117. Chen WC, Tseng HS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Lee YC, Lin HH and Tsai KC: Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep 5: 7995, 2015.

118. Chang TS and Chen CT: Inhibitory effect of homoclorocylinezine on melanogenesis in α-melanocyte stimulating hormone-stimulated mouse B16 melanoma cells. Arch Pharm Res 35: 119-127, 2012.

119. Newton RA, Cook AL, Roberts DW, Leonard JH and Sturm RA: Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J Invest Dermatol 127: 2216-2227, 2007.

120. Ando H, Wen ZM, Kim HY, Valencia JC, Costin GE, Watabe H, Yasumoto K, Niki Y, Kondoh H, Ichihashi M, et al: Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J 394: 43-50, 2006.

121. Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, Huh CH, Youn SW, Yoo ID and Park KC: Terrein: A new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 61: 2878-2885, 2004.

122. Lee S, Kim WG, Kim E, Ryoo IJ, Lee HK, Kim JN, Jung SH and Yoo ID: Synthesis and melanin biosynthesis inhibitory activity of (+/-)-terrein produced by Penicillium sp. 20135. Bioorg Med Chem Lett 15: 471-473, 2005.

123. Cheung FW, Guo J, Ling YH, Che CT and Liu WK: Anti-melanogenic property of geodinin A in murine B16 melanoma cells. Mar Drugs 10: 465-476, 2012.

124. Minwalla L, Zhao Y, Cornelius J, Babcock GF, Wickett RR, Le Poole IC and Boissy RE: Inhibition of melanosomes transfer from melanocytes to keratinocytes by lectins and neoglycoproteins in an in vitro model system. Pigment Cell Res 14: 185-194, 2001.

125. Seiberg M: Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res 14: 236-242, 2001.

126. Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K, Greatens A, Hillebrand GG, Bissett DL and Seiberg M: Melanosome transfer. Pigment Cell Res 14: 236-242, 2001.

127. Paine C, Sharlow E, Liebel F, Eisinger M, Shapiro S and Seiberg M: An alternative approach to depigmentation by soybean extracts via inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent. J Ginseng Res 43: 300-304, 2019.

128. Kuroda TS and Fukuda M: Rab27A-bonding protein Sip2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol 6: 1195-1203, 2004.

129. Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA and Hammer JA III: Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4: 271-278, 2002.