LIMITING BEHAVIOUR OF MOVING AVERAGE PROCESSES
GENERATED BY NEGATIVELY DEPENDENT RANDOM
VARIABLES UNDER SUB-LINEAR EXPECTATIONS

Mingzhou Xu 1 Kun Cheng 2 Wangke Yu 3
School of Information Engineering, Jingdezhen Ceramic University
Jingdezhen 333403, China

Abstract. Let \(\{Y_i, -\infty < i < \infty\} \) be a doubly infinite sequence of identically distributed, negatively dependent random variables under sub-linear expectations, \(\{a_i, -\infty < i < \infty\} \) be an absolutely summable sequence of real numbers. In this article, we study complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the partial sums of moving average processes \(\{X_n = \sum_{i=-\infty}^{\infty} a_i Y_{i+n}, n \geq 1\} \) based on the sequence \(\{Y_i, -\infty < i < \infty\} \) of identically distributed, negatively dependent random variables under sub-linear expectations, complementing the result of [Chen, et al., 2009. Limiting behaviour of moving average processes under \(\varphi \)-mixing assumption. Statist. Probab. Lett. 79, 105-111].

1. INTRODUCTION

[Peng(2007), Peng(2010), Peng(2019)] firstly introduced the important concepts of the sub-linear expectations space to study the uncertainty in probability. Inspired by the seminal works of [Peng(2007), Peng(2010), Peng(2019)], many scholars try to study the results under sub-linear expectations space, generalizing the corresponding ones in classic probability space. [Zhang(2015), Zhang(2016a), Zhang (2016b)] established Donsker’s invariance principle, exponential inequalities and Rosenthal’s inequality under sub-linear expectations. [Wu(2020)] obtained precise asymptotics for complete integral convergence under sub-linear expectations. Under sub-linear expectations, [Xu and Cheng(2022a)] investigated how small the increments of \(G \)-Brownian motion are. For more limit theorems under sub-linear expectations, the interested readers could refer to [Xu and Zhang(2019), Xu and Zhang(2020), Wu and Jiang(2018), Zhang and Lin(2018), Zhong and Wu(2017), Hu and Yang(2017), Chen(2016), Chen and Wu(2022), Zhang(2016c), Hu et al.(2014)Hu, Chen, and Zhang

2000 Mathematics Subject Classification. 60F15; 60F05.

Key words and phrases. Negatively dependent random variables; Complete convergence; Complete moment convergence; Sub-linear expectations.

Project supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (Nos.102/01003002001), Natural Science Foundation Program of Jiangxi Province 20202AB1211005, and National Natural Science Foundation of China (Nos. 61662037), Jiangxi Province Key S&T Cooperation Project (Nos. 2021BDH800021).

1Email: mingzhouxu@whu.edu.cn

2Email: chengkun0010@126.com

3Email: ywkyyyy@163.com
In classic probability space, \cite{Zhang and Ding(2017)} studied the complete moment convergence of the partial sums of moving average processes under some proper assumptions, \cite{Chen et al.(2009)} proved complete convergence of moving average processes under φ-mixing assumption. For references on complete convergence and complete moment convergence in linear expectation space, the interested reader could refer to \cite{Ko(2015)}, \cite{Meng et al.(2021)}, \cite{Hosseini and Nezakati(2019)}, \cite{Meng et al.(2022)} and references therein. Inspired by the work of \cite{Chen et al.(2009)}, we try to study complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the partial sums of moving average processes generated by negatively dependent random variables under sub-linear expectations, which complements the corresponding results in \cite{Meng et al.(2022)}.

We organize the rest of this paper as follows. We give necessary basic notions, concepts and relevant properties, and cite necessary lemmas under sub-linear expectations in the next section. In Section 3, we give our main results, Theorems 3.1-3.2, the proofs of which are presented in Section 4.

2. Preliminaries

As in \cite{Xu and Cheng(2021a)}, we use similar notations as in the work by \cite{Peng(2010)}, \cite{Peng(2019)}, \cite{Chen(2016)}, \cite{Zhang(2016b)}. Assume that (Ω, \mathcal{F}) is a given measurable space. Suppose that \mathcal{H} is a subset of all random variables on (Ω, \mathcal{F}) such that $X_1, \ldots, X_n \in \mathcal{H}$ implies $\varphi(X_1, \ldots, X_n) \in \mathcal{H}$ for each $\varphi \in C_{l\text{-Lip}}(\mathbb{R}^n)$, where $C_{l\text{-Lip}}(\mathbb{R}^n)$ represents the linear space of (local lipschitz) function φ fulfilling

$$|\varphi(x) - \varphi(y)| \leq C(1 + |x|^m + |y|^m)(|x - y|), \forall x, y \in \mathbb{R}^n$$

for some $C > 0$, $m \in \mathbb{N}$ depending on φ.

Definition 2.1. A sub-linear expectation \mathbb{E} on \mathcal{H} is a functional $\mathbb{E} : \mathcal{H} \mapsto \bar{\mathbb{R}} := [-\infty, \infty]$ satisfying the following properties: for all $X, Y \in \mathcal{H}$, we have

(a): Monotonicity: If $X \geq Y$, then $\mathbb{E}[X] \geq \mathbb{E}[Y]$;
(b): Constant preserving: $\mathbb{E}[c] = c, \forall c \in \mathbb{R}$;
(c): Positive homogeneity: $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X], \forall \lambda \geq 0$;
(d): Sub-additivity: $\mathbb{E}[X + Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$ whenever $\mathbb{E}[X] + \mathbb{E}[Y]$ is not of the form $\infty - \infty$ or $-\infty + \infty$.

A set function $V : \mathcal{F} \mapsto [0, 1]$ is named to be a capacity if

(a): $V(\emptyset) = 0, V(\Omega) = 1$;
(b): $V(A) \leq V(B), A \subset B, A, B \in \mathcal{F}$.

Moreover, if V is continuous, then V should obey

(c): $V(A_n) \uparrow V(A)$, if $A_n \uparrow A$.
(d): $V(A_n) \downarrow V(A)$, if $A_n \downarrow A$.

Gao and Xu(2011), Kuczmaszewska(2020), Xu and Cheng(2021c), Xu and Cheng(2021b), Xu and Cheng(2021a), Xu and Cheng(2022a), Xu and Cheng(2022 b) and references therein.
A capacity V is called to be sub-additive if $V(A + B) \leq V(A) + V(B)$, $A, B \in \mathcal{F}$.

In this article, given a sub-linear expectation space $(\Omega, \mathcal{H}, \mathbb{E})$, set $\mathbb{V}(A) := \inf\{\mathbb{E}[\xi] : I_A \leq \xi, \xi \in \mathcal{H}\}$, $\forall A \in \mathcal{F}$ (see (2.3) and the definitions of \mathbb{V} above (2.3) in [Zhang(2016a)]. \mathbb{V} is a sub-additive capacity. Define

$$C_V(X) := \int_{0}^{\infty} V(X > x)dx + \int_{-\infty}^{0} (V(X > x) - 1)dx.$$

Suppose that $X = (X_1, \cdots, X_m)$, $X_i \in \mathcal{H}$ and $Y = (Y_1, \cdots, Y_n)$, $Y_i \in \mathcal{H}$ are two random vectors on $(\Omega, \mathcal{H}, \mathbb{E})$. Y is named to be negatively dependent to X, if for each Borel-measurable function ψ_1 on \mathbb{R}^m, ψ_2 on \mathbb{R}^n, we have $\mathbb{E}[\psi_1(X)\psi_2(Y)] \leq \mathbb{E}[\psi_1(X)]\mathbb{E}[\psi_2(Y)]$ whenever $\psi_1(X) \geq 0$, $\mathbb{E}[\psi_2(Y)] \geq 0$, $\mathbb{E}[\psi_1(X)\psi_2(Y)] < \infty$, $\mathbb{E}[\psi_1(X)] < \infty$, $\mathbb{E}[\psi_2(Y)] < \infty$, and either ψ_1 and ψ_2 are coordinatewise nondecreasing or ψ_1 and ψ_2 are coordinatewise nonincreasing (see Definition 2.3 of [Zhang(2016a)], Definition 1.5 of [Zhang(2016b)], Definition 2.5 in [Chen(2016)]). $\{X_n\}_{n=1}^{\infty}$ is called a sequence of negatively dependent random variables, if X_{n+1} is negatively dependent to (X_1, \cdots, X_n) for each $n \geq 1$.

Assume that X_1 and X_2 are two n-dimensional random vectors defined, respectively, in sub-linear expectation spaces $(\Omega_1, \mathcal{H}_1, \mathbb{E}_1)$ and $(\Omega_2, \mathcal{H}_2, \mathbb{E}_2)$. They are named identically distributed if for every Borel-measurable function ψ such that $\psi(X_1) \in \mathcal{H}_1, \psi(X_2) \in \mathcal{H}_2$,

$$\mathbb{E}_1[\psi(X_1)] = \mathbb{E}_2[\psi(X_2)],$$

whenever the sub-linear expectations are finite. $\{X_n\}_{n=1}^{\infty}$ is called to be identically distributed if for each $i \geq 1$, X_i and X_1 are identically distributed.

In this article we suppose that \mathbb{E} is countably sub-additive, i.e., $\mathbb{E}(X) \leq \sum_{n=1}^{\infty} \mathbb{E}(X_n)$, whenever $X \leq \sum_{n=1}^{\infty} X_n$, $X, X_n \in \mathcal{H}$, and $X \geq 0$, $X_n \geq 0$, $n = 1, 2, \ldots$. Write $S_n = \sum_{i=1}^{n} X_i$, $n \geq 1$. Let C represent a positive constant which may differ from place to place. $I(A)$ or I_A stand for the indicator function of A.

As discussed in [Zhang(2016b)], by the definition of negative dependence, if X_1, X_2, \ldots, X_n are negatively dependent random variables and f_1, f_2, \ldots, f_n are all non increasing (or non decreasing) functions, then $f_1(X_1), f_2(X_2), \ldots, f_n(X_n)$ are still negatively dependent random variables.

We cite the following inequalities under sub-linear expectations.

Lemma 2.2. (See Lemma 4.5 (iii) of [Zhang(2016a)]) If \mathbb{E} is countably sub-additive under sub-linear expectation space $(\Omega, \mathcal{H}, \mathbb{E})$, then for $X \in \mathcal{H}$,

$$\mathbb{E}|X| \leq C_V(|X|).$$

Lemma 2.3. (See Theorem 2.1 of [Zhang(2016b)]) Assume that $p > 1$ and $\{Y_n; n \geq 1\}$ is a sequence of negatively dependent random variables under sub-linear expectation space $(\Omega, \mathcal{H}, \mathbb{E})$. Then for each $n \geq 1$, there exists a positive constant $C = C(p)$ depending on p
such that for $p \geq 2$,
\[
E \left[\max_{0 \leq i \leq n} \left| \sum_{j=1}^{i} Y_j \right|^p \right]
\leq C \left\{ \sum_{i=1}^{n} E|Y_i|^p + \left(\sum_{i=1}^{n} EY_i^2 \right)^{p/2} + \left(\sum_{i=1}^{n} \left[(-E(-Y_i))^+ + (E(Y_i))^+ \right] \right)^p \right\}. \tag{1}
\]

3. Main Results

Our main results are the following.

Theorem 3.1. Assume that h is a function slowly varying at infinity, $1 \leq p < 2$, and $r > 1$. Let $\{X_n, n \geq 1\}$ be a moving average process based on a sequence of $\{Y_i, -\infty < i < \infty\}$ of negatively dependent random variables, identically distributed as Y under sub-linear expectation space (Ω, \mathcal{H}, E). Suppose that $E(Y) = E(-Y) = 0$ and $C_V(|Y|^p h(|Y|^p)) < \infty$. Then
(i) $\sum_{n=1}^{\infty} n^{-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| \geq \varepsilon n^{1/p} \right\} < \infty$, for all $\varepsilon > 0$,
and
(ii) $\sum_{n=1}^{\infty} n^{-2} h(n) \mathbb{V} \left\{ \sup_{k \geq n} |S_k/k^{1/p}| \geq \varepsilon \right\} < \infty$, for all $\varepsilon > 0$.

The following theorem investigates the case $r = 1$.

Theorem 3.2. Assume that h is a function slowly varying at infinity and $1 \leq p < 2$. Suppose that $\sum_{i=-\infty}^{\infty} |a_i|^{1/\theta} < \infty$, where $\theta \in (0, 1)$ if $p = 1$ and $\theta = 1$ if $1 < p < 2$. Assume that $\{X_n, n \geq 1\}$ is a moving average process based on a sequence of $\{Y_i, -\infty < i < \infty\}$ of negatively dependent random variables, identically distributed as Y under sub-linear expectation space (Ω, \mathcal{H}, E). Suppose that $E(Y) = E(-Y) = 0$ and $C_V(|Y|^p h(|Y|^p)) < \infty$.

Then
\[
\sum_{n=1}^{\infty} \frac{h(n)}{n} \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| \geq \varepsilon n^{1/p} \right\} < \infty, \text{ for all } \varepsilon > 0.
\]

In particular, the conditions that $EY = E(-Y) = 0$, $C_V(|Y|^p) < \infty$ and \mathbb{V} is continuous imply the following Marcinkiewicz-Zygmund strong law of large numbers, $S_n/n^{1/p} \to 0$ a.s. \mathbb{V}, i.e.,
\[
\mathbb{V} \left\{ \Omega \setminus \left\{ \lim_{n \to \infty} S_n/n^{1/p} = 0 \right\} \right\} = 0.
\]

Remark 3.3. Theorem 3.2 complements Theorem 1 for independent, identically distributed random variables under sub-linear expectations in [Zhang and Lin(2018)].

4. Proofs of Main Results

We first present some lemmas.

Lemma 4.1. Suppose $r > 1$, and $1 \leq p < 2$. Then for any $\varepsilon > 0$,
\[
\sum_{n=1}^{\infty} n^{-2} h(n) \mathbb{V} \left\{ \sup_{k \geq n} |S_k/k^{1/p}| \geq \varepsilon \right\} \leq \sum_{n=1}^{\infty} n^{-2} h(n) \mathbb{V} \left\{ \sup_{k \geq n} |S_k| \geq \left(\varepsilon/2^{2/p} \right) n^{1/p} \right\}.
\]
Proof. We see that
\[\sum_{n=1}^{\infty} n^{r-2} h(n) \mathbb{V} \left\{ \sup_{k \geq n} \left| S_k/k^{1/p} \right| \geq \varepsilon \right\} = \sum_{m=1}^{\infty} \sum_{n=2^{m-1}}^{2^{m-1}} n^{r-2} h(n) \mathbb{V} \left\{ \sup_{k \geq n} \left| S_k/k^{1/p} \right| \geq \varepsilon \right\} \]
\[\leq C \sum_{m=1}^{\infty} \mathbb{V} \left\{ \sup_{k \geq 2^{m-1}} \left| S_k/k^{1/p} \right| \geq \varepsilon \right\} \sum_{n=2^{m-1}}^{2^{m-1}} 2^{m(r-2)} h(2^m) \]
\[\leq C \sum_{m=1}^{\infty} 2^{m(r-1)} h(2^m) \mathbb{V} \left\{ \sup_{k \geq 2^{m-1}} \left| S_k/k^{1/p} \right| \geq \varepsilon \right\} \]
\[= C \sum_{m=1}^{\infty} 2^{m(r-1)} h(2^m) \mathbb{V} \left\{ \max_{1 \leq k < 2^l} |S_k| \geq \varepsilon 2^{(l-1)/p} \right\} \]
\[\leq C \sum_{l=1}^{\infty} 2^{l(r-1)} h(2^l) \mathbb{V} \left\{ \max_{1 \leq k < 2^l} |S_k| \geq \varepsilon 2^{(l-1)/p} \right\} \]
\[\leq C \sum_{l=1}^{\infty} \sum_{n=2^l}^{2^{l+1}-1} n^{r-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| \geq \varepsilon / 2^{2/p} n^{1/p} \right\} \]
\[\leq C \sum_{n=1}^{\infty} n^{r-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| \geq \varepsilon / 2^{2/p} n^{1/p} \right\} . \]

Lemma 4.2. Let \(Y \) be a random variable with \(C_V (|Y|^p h(|Y|^p)) < \infty \), where \(r \geq 1 \), and \(p \geq 1 \). Write \(Y' = -n^{-1/p} I \{ Y < -n^{-1/p} \} + Y I \{ Y \leq n^{1/p} \} + n^{1/p} I \{ Y > n^{1/p} \} \). If \(q > rp \), then
\[\sum_{n=1}^{\infty} n^{r-1-q/p} h(n) \mathbb{E} |Y'|^q \leq C C_V (|Y|^p h(|Y|^p)) . \]

Proof. Since \(r - q/p < 0 \), by Lemma 2.2 and similar proof of Lemma 2.2 in Zhong and Wu (2017), we see that
\[\sum_{n=1}^{\infty} n^{r-1-q/p} h(n) \mathbb{E} |Y'|^q \leq \sum_{n=1}^{\infty} n^{r-1-q/p} h(n) C_V \{|Y'|^q\} \]
\[\leq \sum_{n=1}^{\infty} n^{r-1-q/p} h(n) \int_0^{n^{1/p}} \mathbb{V} \{|Y'|^q > x^q\} q x^{q-1} dx \]
\[\leq C \int_1^{\infty} y^{r-1-q/p} h(y) \left[\int_0^{y^{1/p}} \mathbb{V} \{|Y'|^q > x^q\} x^{q-1} dx \right] dy \]
\[\leq C \int_0^{1} \mathbb{V} \{|Y'| > x\} dx \int_1^{\infty} y^{r-1-q/p} h(y) dy . \]
\begin{align*}
&+ C \int_1^\infty \mathbb{V} \{ |Y| > x \} x^{q-1} \int_x^\infty y^{r-1-q/p} h(y) dy dx \\
&\leq C + C \int_1^\infty \mathbb{V} \{ |Y| > x \} h(x^p) x^{r_p-1} dx \\
&\leq CC_V (|Y|^p h(|Y|^p)) < \infty.
\end{align*}

\[\square \]

In the rest of this paper, let \(\frac{1}{2} < \mu < 1 \), \(g(y) \in C_{l,Lip}(\mathbb{R}) \), such that \(0 \leq g(y) \leq 1 \) for all \(y \) and \(g(y) = 1 \) if \(|y| \leq \mu \), \(g(y) = 0 \), if \(|y| > 1 \). And \(g(y) \) is a decreasing function for \(y \geq 0 \). The next lemma presents an important fact in the proofs of Theorems 3.1 and 3.2.

Lemma 4.3. Assume that \(h \) is a function slowly varying at infinity and \(p \geq 1 \). Assume that \(\{X_n, n \geq 1\} \) is a moving average process based on a sequence of \(\{Y_i, -\infty < i < \infty\} \) of negatively dependent random variables, identically distributed as \(Y \) with \(\mathbb{E}(Y) = \mathbb{E}(-Y) = 0 \), \(C_V (|X|^p) < \infty \) under sub-linear expectation space \((\Omega, \mathcal{H}, \mathbb{E}) \). For any \(\varepsilon > 0 \), write

\[I := \sum_{n=1}^\infty n^{-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{i=k} a_i \sum_{j=i+1}^{i+k} Y_j'' \right| \geq \varepsilon n^{1/p}/2 \right\}, \]

and

\[II := \sum_{n=1}^\infty n^{-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{i=k} a_i \sum_{j=i+1}^{i+k} (Y_j' - \mathbb{E}[Y_j']) \right| \geq \varepsilon n^{1/p}/4 \right\}, \]

where

\[Y_j' = -n^{1/p} I \{ Y_j < -n^{-1/p} \} + |Y_j| I \{ |Y_j| \leq n^{1/p} \} + n^{1/p} I \{ Y_j > n^{1/p} \}, \]

\[Y_j'' = Y_j - Y_j' = (Y_j + n^{1/p}) I \{ Y_j < -n^{1/p} \} + (Y_j - n^{1/p}) I \{ Y_j > n^{1/p} \}. \]

If \(I < \infty \) and \(II < \infty \), then

\[\sum_{n=1}^\infty n^{-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| \geq \varepsilon n^{1/p} \right\} \leq I + II < \infty. \]

Proof. Observe that

\[\sum_{k=1}^n X_k = \sum_{k=1}^n \sum_{i=-\infty}^n a_i Y_{i+k} = \sum_{i=-\infty}^n a_i \sum_{j=i+1}^{i+n} Y_j. \]

By \(\sum_{i=-\infty}^\infty |a_i| < \infty \), \(\mathbb{E}(Y_j) = \mathbb{E}(-Y_j) = 0 \), and Proposition 1.3.7 of [Peng(2019)], Lemma 2.2, we have

\[n^{-1/p} \left| \sum_{i=-\infty}^\infty a_i \sum_{j=i+1}^{i+n} \mathbb{E} Y_j' \right| = n^{-1/p} \left| \sum_{i=-\infty}^\infty a_i \sum_{j=i+1}^{i+n} \mathbb{E} [Y_j' - Y_j] \right| \]

\[\leq n^{-1/p} \sum_{i=-\infty}^\infty |a_i| \sum_{j=i+1}^{i+n} \mathbb{E} |Y_j - Y_j'| \leq C n^{-1/p} \mathbb{E} |Y_1'| \leq C n^{-1/p} \mathbb{E}(n^{-1/p} Y_1'' | Y_1'|)^{p-1} |Y_1'|^p \]

\[\leq C n^{-1/p} \mathbb{E}(Y_1'| Y_1'|^p \left(1 - g \left(\frac{|Y_1|}{n^{1/p}} \right) \right) \leq CC_V \left\{ |Y_1|^p \left(1 - g \left(\frac{|Y_1|}{n^{1/p}} \right) \right) \right\} \]

\[\leq CC_V \left\{ |Y_1|^p I \{ |Y_1| \geq \mu n^{1/p} \} \right\} \to 0, \ n \to 0. \]
Therefore for \(n \) sufficiently large, we see that

\[
n^{-1/p} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+n} \mathbb{E} Y_j' \right| < \varepsilon/4.
\]

Then

\[
\sum_{n=1}^{\infty} n^{-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| \geq \varepsilon n^{1/p} \right\}
\leq C \sum_{n=1}^{\infty} n^{-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_j'' \right| \geq \varepsilon n^{1/p}/2 \right\}
\]

\[
+ \sum_{n=1}^{\infty} n^{-2} h(n) \mathbb{V} \left\{ \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} (Y_j' - \mathbb{E} Y_j') \right| \geq \varepsilon n^{1/p}/4 \right\}
\]

\[=: I + II.\]

Proof of Theorem 3.1. According to Lemma 4.1, it is enough to establish that (i) holds. By Lemma 4.3, we only need to establish that \(I < \infty \) and \(II < \infty \).

For \(I \), by Markov inequality under sub-linear expectations, Lemma 2.2 and similar proof of Lemma 2.2 in [Zhong and Wu(2017)], we obtain

\[
I \leq C \sum_{n=1}^{\infty} n^{-1-1/p} h(n) \mathbb{E} |Y''_1|
\leq C \sum_{n=1}^{\infty} n^{-1-1/p} h(n) C_Y \{ |Y''_1| \}
\leq C \sum_{n=1}^{\infty} n^{-1-1/p} h(n) \int_{0}^{\infty} \mathbb{V} \{ |Y''_1| > x \} \, dx
\leq C \sum_{n=1}^{\infty} n^{-1-1/p} h(n) \left[\mathbb{V} \{ |Y| > n^{1/p} \} n^{1/p} + \int_{n^{1/p}}^{\infty} \mathbb{V} \{ |Y| > x \} \, dx \right]
\leq C \int_{1}^{\infty} x^{-1} h(x) \mathbb{V} \{ |Y| > x^{1/p} \} \, dx + C \int_{1}^{\infty} \mathbb{V} \{ |Y| > x \} \, dx \int_{1}^{x^{p}} y^{-1-1/p} h(y) \, dy
\leq C \int_{1}^{\infty} \mathbb{V} \{ |Y|^p h(|Y|^p) > x^p h(x) \} \, dx + C \int_{1}^{\infty} \mathbb{V} \{ |Y| > x \} \, dx \int_{1}^{x^{p}} \mathbb{V} \{ |Y| > x \} \, dx \int_{1}^{x^{p}} y^{-1-1/p} h(y) \, dy
\leq CC_V \{ |Y|^p h(|Y|^p) \} + C \int_{1}^{\infty} \mathbb{V} \{ |Y| > x \} \, dx \int_{1}^{x^{p}} y^{-1-1/p} h(x^{p}) \, dx
\leq CC_V \{ |Y|^p h(|Y|^p) \} < \infty.
\]
For II, by Markov inequality under sub-linear expectations, Hölder inequality, Lemma \ref{lem:holder}, we see that for any $q > 2$,

\[
II \leq C \sum_{n=1}^{\infty} n^{r-2} h(n) n^{-q/p} E \max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} (Y'_j - E[Y'_j]) \right|^q
\]

\[
\leq C \sum_{n=1}^{\infty} n^{r-2} h(n) n^{-q/p} E \left[\sum_{i=-\infty}^{\infty} |a_i|^{1/q} \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} (Y'_j - E[Y'_j]) \right| \right]^q
\]

\[
\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} h(n) \left(\sum_{i=-\infty}^{\infty} |a_i| \right)^{q-1} \sum_{i=-\infty}^{\infty} |a_i| E \max_{1 \leq k \leq n} \left| \sum_{j=i+1}^{i+k} (Y'_j - E[Y'_j]) \right|^q
\]

\[
\leq C \sum_{n=1}^{\infty} n^{r-2-q/p} h(n) \left[n \left(|E[-Y'_1]| + |E[Y'_1]| \right) \right]^q
\]

\[
+ C \sum_{n=1}^{\infty} n^{r-2-q/p} h(n) \left(nE|Y'_1|^2 \right)^{q/2}
\]

\[
+ C \sum_{n=1}^{\infty} n^{r-1-q/p} h(n) E|Y'_1|^q
\]

\[= II_1 + II_2 + II_3.\]

To establish $II_1 < \infty$, in view of $E(-Y) = E(Y) = 0$, and $|E(X) - E(Y)| \leq E|X - Y|$, by Lemma \ref{lem:koenig}, we see that

\[
\left[n \left(|E[-Y'_1]| + |E[Y'_1]| \right) \right]^q
\]

\[
\leq \left[n \left(|E[-Y'_1] - E[-Y_1]| + |E[Y'_1] - E[Y_1]| \right) \right]^q
\]

\[
\leq C n^q \left(|E[Y'_1]| \left(1 - g \left(\frac{|Y_1|}{n^{1/p}} \right) \right) \right)^q
\]

\[
\leq C n^q \left(C_V \left\{ |Y_1| \left(1 - g \left(\frac{|Y_1|}{n^{1/p}} \right) \right) \right\} \right)^q
\]

\[
\leq C n^q \left(C_V \left\{ |Y_1| I\{|Y_1| > \mu n^{1/p} \} \right\} \right)^q
\]

\[
\leq C n^q \left(\int_0^\infty \mathbb{P}\left\{ |Y|^p h(|Y|^p) I\{|Y| > \mu n^{1/p} \} > x \mu n^{(r-1)/ph(n)} \right\} dx \right)^q
\]

\[
\leq C n^q \left(\frac{C_V \left\{ |Y|^p h(|Y|^p) \right\}}{n^{(r-1)/ph(n)}} \right)^q \ll C n^{q-qr+q/p} / h(n)^q.
\]

Hence

\[
II_1 \leq C \sum_{n=1}^{\infty} n^{r-2-q/p} h(n) n^{q-qr+q/p} / h(n)^q
\]

\[
\leq C \sum_{n=1}^{\infty} n^{r-2-q(r-1)} h(n)^{1-q} < \infty.
\]
To prove $II_2 < \infty$, we study two cases. If $rp < 2$, take $q > 2$, observe that in this case $r - 2 + q/2 - r q/2 < -1$. By Lemma \[2.2\] we see that

$$II_2 = C \sum_{n=1}^{\infty} n^{r-2-q/p} h(n) n^{q/2} (\mathbb{E}|Y_1|^2)^{q/2}$$

$$\leq C \sum_{n=1}^{\infty} n^{r-2-q/p+q/2} h(n) (\mathbb{E}|Y_1|^p|Y_1|^2)^{q/2}$$

$$\leq C \sum_{n=1}^{\infty} n^{r-2-q/p+q/2} h(n) (C_V (|Y|^p))^{q/2} n^{2 \frac{2-p}{p-q}}$$

$$\leq C \sum_{n=1}^{\infty} n^{r-2+q/2-r q/2} h(n) < \infty.$$

If $rp \geq 2$, take $q > pr$. Note in this case $\mathbb{E}|Y|^2 < C_V(|Y|^2) < \infty$. We see that

$$II_2 = C \sum_{n=1}^{\infty} n^{r-1-q/p} h(n) (\mathbb{E}|Y_1|^2)^{q/2}$$

$$\leq C \sum_{n=1}^{\infty} n^{r-1-q/p} h(n) < \infty.$$

By Lemma \[4.2\] we conclude that $II_3 < \infty$. The proof of Theorem \[3.1\] is complete.

Proof of Theorem \[3.2\] By Lemma \[4.3\] we only need to establish that $I < \infty$ and $II < \infty$ with $r = 1$. For I, by Markov inequality under sub-linear expectations, C_r inequality, Lemma \[2.2\] and the proof of Lemma 2.2 of \[Zhong and Wu(2017)\] (observe that $\theta < 1$), we see that

$$I \leq \sum_{n=1}^{\infty} n^{-1} h(n) n^{-\theta/p} \mathbb{E} \max_{1 \leq k \leq n} \sum_{i=-\infty}^{\infty} a_i \sum_{j=i+1}^{i+k} Y_j^\theta$$

$$\leq C \sum_{n=1}^{\infty} h(n) n^{-\theta/p} \mathbb{E}|Y_1|^\theta$$

$$\leq C \sum_{n=1}^{\infty} h(n) n^{-\theta/p} C_V \left(|Y_1|^\theta \right)$$

$$\leq C \sum_{n=1}^{\infty} h(n) n^{-\theta/p} C_V \left(|Y|^\theta \mathbb{I}\{|Y| > n^{1/p}\} \right)$$

$$\leq C \sum_{n=1}^{\infty} n^{-\theta/p} h(n) \int_{0}^{\infty} \mathbb{V}\left\{|Y|^\theta \mathbb{I}\{|Y| > n^{1/p}\} > x \right\} dx$$

$$\leq C \int_{0}^{\infty} y^{-\theta/p} h(y) \int_{0}^{\infty} \mathbb{V}\left\{|Y|^\theta \mathbb{I}\{|Y| > y^{1/p}\} > x \right\} dxdy$$

$$\leq C \int_{0}^{\infty} y^{-\theta/p} h(y) \left[\int_{0}^{y^{1/p}} + \int_{y^{1/p}}^{\infty} \right] \mathbb{V}\left\{|Y|^\theta \mathbb{I}\{|Y| > y^{1/p}\} > x \right\} dxdy$$
\[
\begin{align*}
\leq C \int_{1}^{\infty} \mathbb{V} \{ |Y| > y^{1/p} \} h(y) dy \\
+ C \int_{1}^{\infty} \mathbb{V} \{ |Y| > x \} \int_{1}^{x^{p/\theta}} y^{-\theta/p} h(y) dy dx \\
\leq CC_{\mathbb{V}} (|Y|^{p} h(|Y|^p)) + C \int_{1}^{\infty} \mathbb{V} \{ |Y| > x \} x^{p/\theta-1} h(x^{p/\theta}) dx
\end{align*}
\]

For \(II \), by Markov inequality under sub-linear expectations, H"{o}lder inequality, and Lemma 2.2, we see that

\[
II \leq C \sum_{n=1}^{\infty} n^{-1/2} h(n) n^{-2/p} \mathbb{E} \left[\max_{1 \leq k \leq n} \left| \sum_{i=-\infty}^{\infty} a_i (Y'_i - \mathbb{E}[Y'_i]) \right| \right]^{2}
\]

\[
\leq C \sum_{n=1}^{\infty} n^{-1/2} h(n) n^{-2/p} \mathbb{E} \left[\left(\sum_{i=-\infty}^{\infty} |a_i|^{1/2} \left(\left| \sum_{k=i+1}^{n} (Y'_k - \mathbb{E}[Y'_k]) \right| \right) \right)^2 \right]
\]

\[
\leq C \sum_{n=1}^{\infty} n^{-1/2} h(n) \left[\mathbb{E}[|Y'_1|^2] + \left(\sum_{j=1}^{n} |\mathbb{E}(-Y'_j) + |\mathbb{E}(Y'_j)| \right) \right]^{2}
\]

\[
= C \sum_{n=1}^{\infty} n^{-2/p} h(n) \mathbb{E}[|Y'_1|^2] + C \sum_{n=1}^{\infty} n^{-1/2} h(n) \left(\sum_{j=1}^{n} |\mathbb{E}(-Y'_j) + |\mathbb{E}(Y'_j)| \right)^2
\]

\[
=: II_{1} + II_{2}.
\]

By Lemma 4.2, we conclude that \(II_{1} < \infty \). By \(\mathbb{E}(Y'_j) = \mathbb{E}(-Y'_j) = 0, |\mathbb{E}(X) - \mathbb{E}(Y)| \leq \mathbb{E}|X - Y|, C_p \) inequality, and Lemma 2.2 we obtain

\[
II_{2} \leq C \sum_{n=1}^{\infty} n^{-1/2} h(n) \left[\sum_{j=1}^{n} |\mathbb{E}(-Y'_j) + |\mathbb{E}(Y'_j)| \right]^{2}
\]

\[
\leq C \sum_{n=1}^{\infty} n^{-1/2} h(n) \left[\sum_{j=1}^{n} |\mathbb{E}[Y'_j - Y'_j]| \right]^{2}
\]

\[
\leq C \sum_{n=1}^{\infty} n^{-1/2} h(n) \left[\sum_{i=1}^{n} C_{\mathbb{V}} \left\{ |Y'_i|^2 \right\} \right]^{2}
\]

\[
\leq C \sum_{n=1}^{\infty} n^{-2/p} h(n) \left[\int_{0}^{n^{1/p}} \mathbb{V} \{ |Y| > n^{1/p} \} dy + \int_{n^{1/p}}^{\infty} \mathbb{V} \{ |Y| > y \} dy \right]^{2}
\]

\[
\leq C \sum_{n=1}^{\infty} n^{1} h(n) \left[\mathbb{V} \{ |Y| > n^{1/p} \} \right]^{2} + C \sum_{n=1}^{\infty} n^{-2/p} h(n) \left[\int_{n^{1/p}}^{\infty} \mathbb{V} \{ |Y| > y \} dy \right]^{2}
\]
Therefore,

\[
\begin{align*}
&\leq C \int_1^\infty x h(x) \mathbb{V}^2 \left\{ |Y| > x^{1/p} \right\} \, dx \\
&+ C \int_1^\infty x^{1-2/p} h(x) \, dx \int_y^\infty \mathbb{V} \left\{ |Y| > y \right\} \, dy \int_y^\infty \mathbb{V} \left\{ |Y| > z \right\} \, dz \\
&\leq C \int_1^\infty (x \mathbb{V} \{ |Y|^p h(|Y|^p) > x h(x) \}) \mathbb{V} \{ |Y|^p h(|Y|^p) > x h(x) \} \, dx \\
&+ C \int_1^\infty \mathbb{V} \left\{ |Y| > y \right\} dy \int_y^\infty \mathbb{V} \left\{ |Y| > z \right\} \, dz \int_1^\infty x^{1-2/p} h(x) \, dx \\
&\leq C \int_1^\infty \mathbb{V} \{ |Y|^p h(|Y|^p) > x h(x) \} \, dx \\
&+ C \int_1^\infty \mathbb{V} \left\{ |Y| > y \right\} dy \int_y^\infty \mathbb{V} \left\{ |Y| > z \right\} z^{2p-2} h(z) \, dz \\
&\leq CC_V (|Y|^p h(|Y|^p)) + C \int_1^\infty \mathbb{V} \left\{ |Y| > y \right\} dy \int_1^\infty \mathbb{E} \left\{ \frac{|Y|^p}{z^p} \right\} z^{2p-2} h(z) \, dz \\
&\leq CC_V (|Y|^p h(|Y|^p)) + C \int_1^\infty \mathbb{V} \left\{ |Y| > y \right\} C_V(|Y|^p) y^{p-1} h(y^p) \, dy \\
&\leq CC_V (|Y|^p h(|Y|^p)) + C \int_1^\infty \mathbb{V} \{ |Y|^p h(|Y|^p) > y^p h(y^p) \} \, dy y^p h(y^p) \\
&\leq CC_V (|Y|^p h(|Y|^p)) < \infty.
\end{align*}
\]

Now we will establish almost sure convergence under \mathbb{V}. By $\mathbb{E}(Y_1) = \mathbb{E}(-Y_1) = 0$ and $C_V(|Y|^p) < \infty$, we see that

\[
\sum_{n=1}^\infty n^{-1} \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| > \varepsilon n^{1/p} \right\} < \infty, \text{ for all } \varepsilon > 0.
\]

Therefore,

\[
\begin{align*}
\infty > \sum_{n=1}^\infty n^{-1} \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| > \varepsilon n^{1/p} \right\} \\
= \sum_{k=1}^\infty \sum_{n=2^{k-1}}^{2^k-1} n^{-1} \mathbb{V} \left\{ \max_{1 \leq k \leq n} |S_k| > \varepsilon n^{1/p} \right\} \\
\geq \frac{1}{2} \left\{ \max_{1 \leq m \leq 2^{k-1}} |S_m| > \varepsilon 2^{k/p} \right\}.
\end{align*}
\]

By Borel-Cantell lemma under sub-linear expectations (cf. [Chen et al.(2013)Chen, Wu, and Li] or Lemma 1 of [Zhang and Lin(2018)]), we see that

\[
2^{-k/p} \max_{1 \leq m \leq 2^k} |S_m| \to 0, \ \text{a. s. } \mathbb{V},
\]

which results in $S_n/n^{1/p} \to 0$, a. s. \mathbb{V}. \qed

References

[Chen et al.(2009)Chen, Hu, and Volodin] Chen, P., Hu, T.-c., Volodin, A., 2009. Limiting behaviour of moving average processes under φ-mixing aassumption. Statistics & Probability Letters 79, 105–111.
[Chen and Wu(2022)] Chen, X., Wu, Q., 2022. Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Mathematics 7 (6), 9694–9715.

[Chen(2016)] Chen, Z., 2016. Strong laws of large numbers for sub-linear expectations. Science China Mathematics 59 (5), 945–954.

[Chen et al.(2013)Chen, Wu, and Li] Chen, Z., Wu, P., Li, B., 2013. A strong law of large numbers for non-additive probabilities. International Journal of Approximate Reasoning 54 (3), 365–377.

[Gao and Xu(2011)] Gao, F., Xu, M., 2011. Large deviations and moderate deviations for independent random variables under sublinear expectations. Science China Mathematics (in Chinese) 41 (4), 337–352.

[Hosseini and Nezakati(2019)] Hosseini, S. M., Nezakati, A., 2019. Complete moment convergence for the dependent linear processes with random coefficients. Acta Mathematica Sinica, English Series 35 (8), 1321–1333.

[Hu et al.(2014)Hu, Chen, and Zhang] Hu, F., Chen, Z., Zhang, D., 2014. How big are the increments of g-brownian motion? Science China Mathematics 57 (8), 1687–1700.

[Hu and Yang(2017)] Hu, Z.-C., Yang, Y.-Z., 2017. Some inequalities and limit theorems under sublinear expectations. Acta Mathematicae Applicatae Sinica, English Series 33 (2), 451–462.

[Ko(2015)] Ko, M.-H., 2015. Complete moment convergence of moving average process generated by a class of random variables. Journal of Inequalities and Applications 2015 (1), 1–9.

[Kuczmaszewska(2020)] Kuczmaszewska, A., 2020. Complete convergence for widely acceptable random variables under the sublinear expectations. Journal of Mathematical Analysis and Applications 484 (1), 123662.

[Meng et al.(2021)Meng, Wang, and Wu] Meng, B., Wang, D., Wu, Q., 2021. Convergence of asymptotically almost negatively associated random variables with random coefficients. Communications in Statistics-Theory and Methods, 1–15.

[Meng et al.(2022)Meng, Wang, and Wu] Meng, B., Wang, D., Wu, Q., 2022. Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables. Communications in Statistics-Theory and Methods 51 (12), 3847–3863.

[Peng(2007)] Peng, S., 2007. G-expectation, g-brownian motion and related stochastic calculus of itô type. In: Stochastic analysis and applications. Vol. 2. Springer, USA, pp. 541–567.

[Peng(2010)] Peng, S., 2010. Nonlinear expectations and stochastic calculus under uncertainty. arXiv preprint arXiv:1002.4546 24.

[Peng(2019)] Peng, S., 2019. Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and G-Brownian motion. Vol. 95. Springer Nature, Berlin, Germany.

[Wu(2020)] Wu, Q., 2020. Precise asymptotics for complete integral convergence under sublinear expectations. Mathematical Problems in Engineering 2020.

[Wu and Jiang(2018)] Wu, Q., Jiang, Y., 2018. Strong law of large numbers and chover’s law of the iterated logarithm under sub-linear expectations. Journal of Mathematical Analysis and Applications 460 (1), 252–270.

[Xu and Zhang(2019)] Xu, J. P., Zhang, L. X., 2019. Three series theorem for independent random variables under sub-linear expectations with applications. Acta Mathematica Sinica, English Series 35 (2), 172–184.

[Xu and Zhang(2020)] Xu, J.-p., Zhang, L.-x., 2020. The law of logarithm for arrays of random variables under sub-linear expectations. Acta Mathematicae Applicatae Sinica, English Series 36 (3), 670–688.

[Xu and Cheng(2021a)] Xu, M., Cheng, K., 2021a. Convergence for sums of iid random variables under sublinear expectations. Journal of Inequalities and Applications 2021 (1), 1–14.

[Xu and Cheng(2021b)] Xu, M., Cheng, K., 2021b. Equivalent conditions of complete th moment convergence for weighted sums of iid random variables under sublinear expectations. Discrete Dynamics in Nature and Society 2021.
[Xu and Cheng(2021c)] Xu, M., Cheng, K., 2021c. Precise asymptotics in the law of the iterated logarithm under sublinear expectations. Mathematical Problems in Engineering 2021.

[Xu and Cheng(2022a)] Xu, M., Cheng, K., 2022a. How small are the increments of g-Brownian motion. Statistics & Probability Letters 186, 1–9.

[Xu and Cheng(2022b)] Xu, M., Cheng, K., 2022b. Note on precise asymptotics in the law of the iterated logarithm under sublinear expectations. Mathematical Problems in Engineering 2022.

[Zhang(2016a)] Zhang, L., 2016a. Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm. Science China Mathematics 59 (12), 2503–2526.

[Zhang(2016b)] Zhang, L., 2016b. Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications. Science China Mathematics 59 (4), 751–768.

[Zhang and Lin(2018)] Zhang, L., Lin, J., 2018. Marcinkiewicz strong law of large numbers for nonlinear expectations. Statistics & Probability Letters 137, 269–276.

[Zhang(2015)] Zhang, L.-X., 2015. Donsker’s invariance principle under the sub-linear expectation with an application to Chung’s law of the iterated logarithm. Communications in Mathematics and Statistics 3 (2), 187–214.

[Zhang(2016c)] Zhang, L.-X., 2016c. Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations. arXiv preprint arXiv:1608.00710.

[Zhang and Ding(2017)] Zhang, Y., Ding, X., 2017. Further research on complete moment convergence for moving average process of a class of random variables. Journal of Inequalities and Applications 2017 (1), 1–11.

[Zhong and Wu(2017)] Zhong, H., Wu, Q., 2017. Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation. Journal of Inequalities and Applications 2017 (1), 1–14.