Spontaneous, anecdotal, retrospective, open-label study on the efficacy, safety and tolerability of cannabis galenical preparation (Bedrocan)

Beniamino Palmieria,b, Carmen Laurinoa,b and Maria Vadalaa,b

aDepartment of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, and bSecond Opinion Medical Network, Modena, Italy

Keywords
Bedrocan; cannabis; cannabinoid; galenical; preparation

Correspondence
Dr Maria Vadala, Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Via del Pozzo, 71, 41124 Modena, Italy.
E-mail: mary.vadala@gmail.com

Received January 22, 2018
Accepted December 18, 2018
doi: 10.1111/ijpp.12514

Abstract

Objectives Our main aim was to investigate the short-term therapeutic effects, safety/tolerability and potential side effects of the cannabis galenical preparation (Bedrocan) in patients with a range of chronic conditions unresponsive to other treatments.

Methods In this retrospective, ‘compassionate use’, observational, open-label study, 20 patients (age 18–80 years) who had appealed to our 'Second Opinion Medical Consulting Network' (Modena, Italy), were instructed to take sublingually the galenical oil twice a day for 3 months of treatment. The usual starting dose was low (0.5 ml/day) and gradually titrated upward to the highest recommended dose (1 ml/day). Tolerability and adverse effects were assessed at baseline and monthly thereafter during the treatment period through direct contact (email or telephone) or visit if required. Patients’ quality of life was evaluated at baseline and 3 months using the medical outcome short-form health survey questionnaire (SF-36).

Key findings From baseline to 6 months post-treatment, SF-36 scores showed: reductions in total pain ($P < 0.03$); improvements in the physical component ($P < 0.02$); vitality ($P < 0.03$); social role functioning ($P < 0.02$); and general health state ($P < 0.02$). No changes in role limitations ($P = 0.02$) due to emotional state (e.g. panic, depression, mood alteration) were reported. Monthly reports of psychoactive adverse effects showed significant insomnia reduction ($P < 0.03$) and improvement in mood ($P < 0.03$) and concentration ($P < 0.01$).

Conclusions These data suggest that a cannabis galenical preparation may be therapeutically effective and safe for the symptomatic treatment of some chronic diseases. Further studies on the efficacy of cannabis as well as cannabinoid system involvement in the pathophysiology are warranted.

Introduction

In 2011, cannabis-based treatments are approved in many European countries and represent an alternative therapeutic strategy for a wide range of chronic diseases, including spasticity associated with multiple sclerosis (MS), neuropathic pain,[1–3] pain resistant to corticosteroids or opioids[3] and side effects related to chemotherapy (e.g. nausea, vomiting, cachexia and anorexia) in oncologic or acquired immunodeficiency syndrome (AIDS) patients,[4–5] glaucoma resistant to conventional therapies,[6] facial and body movements in Gilles de la Tourette Syndrome.[7]

Cannabis contains more than 60 endogenous and exogenous compounds defined as cannabinoids (CBs) that act primarily through specific cannabinoid receptors: CB\textsubscript{1} and CB\textsubscript{2} receptors. The CB\textsubscript{1} are distributed in the central nervous system and involved in learning, memory and cognitive processes, while the CB\textsubscript{2} receptors are
located in the peripheral nervous system, including brainstem, cerebellum, microglia and the immune system. In the past decade, preclinical studies and case reports have shown the therapeutic potential of two main CBs, delta-9-tetrahydrocannabinol acid (Δ9-THCA) and cannabidiol (CBD) against a range of pathologies. Δ9-THCA is the main constituent in raw cannabis, it converts to Δ9-THC when heated over a certain temperature, binding at both CB receptors. It is responsible for the psychoactive effects, such as impaired memory and cognitive processing (mediated by CB1), but acts also on other targets, such as ion channels and enzymes with potential analgesic, anti-emetic and anti-inflammatory properties, stimulating muscle relaxation, appetite and acting as an intraocular hypotensive agent. CBD is not psychoactive as it has lower CB1 and CB2 receptor affinity compared to Δ9-THC and has anti-epileptic, anti-inflammatory, anti-emetic, muscle relaxing, anxiolytic, neuroprotective and antipsychotic activity and (when co-administered) may reduce the psychoactive effects of Δ9-THC (euphoria, anxiety), antagonizing CB1 receptor at low nanomolar concentrations. There are several commercially available cannabis galenical products (Table 1) and synthetic cannabinoids (Table 2), approved by European Pharmacopeia and/or US Food and Drug Administration.

Italian physicians can legally prescribe different cannabis galenical products including oral products (infusion, sublingual oil, capsule), inhalations (vaporizing) or oromucosal preparations (spray) to users registered on a Ministry of Health database ‘when other available medications have proven to be ineffective or inadequate to the therapeutic needs of the patient’. Eligible indications include chronic pain conditions, neuropathic pain, as well as spasticity, cachexia and anorexia among AIDS and cancer patients, ocular hypertension in glaucoma, spasms in Tourette syndrome, some types of epilepsy, fibromyalgia and other severe diseases (Official journal n.279, 30-11-2015, Rome, Italy). The most prescribed preparations are FM2 and Bedrocan (Table 1).

Several studies have shown that cannabinoids pharmacokinetics differ and are dependent on the dose and administration schedule. An oral Δ9-THC bioavailability has a lower bioavailability (10–20%), compared with intravenous administration, probably due to several factors, including low hydrosolubility of the molecule, degradation by stomach acid and/or bio-transformation to metabolites during first passage through the liver. Δ9-THC is converted in the liver to its equipotent and longer-acting active metabolite 11-Hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC). After oral ingestion, these metabolites are present in the plasma at approximately equal concentrations.

The safety and efficacy of cannabis therapy has not been completely explored, and this is a barrier to its therapeutic use. Several randomized controlled trials of smoked cannabis have shown efficacy in chronic pain and spasticity, but with the bias of short-term treatment period (1–3 weeks) and small sample sizes (n = 20–60 participants); safety and effectiveness of oral galenical products have been studied with a follow-up to 1 year in patients with MS.

However, despite the growing interest in the medicinal use of cannabis, there is a paucity of preclinical and clinical trials data. Thus, we conducted a prospective analysis of a case series of patients in Italy treated with a cannabis galenical preparation (Bedrocan) in accordance with the above regulations. Our main aim was to evaluate the therapeutic effect, determine the correct dosage, assess safety/tolerance and identify side effects.

Methods

We enrolled 20 patients, from Northern Italy, with variable pattern of persistent, severe and chronic symptoms,
who had successfully appealed to our ‘Second Opinion Medical Consulting Network’, to receive galenical cannabis. The Second Opinion Medical Network is a consultation referral web and Medical Office System comprising a panel of specialists, to whom any patient affected by any disease or syndrome and not adequately satisfied by the diagnosis or therapy can apply for an individual clinical audit. [39–43]

Inclusion criteria were as follows: (1) aged 18 years or older, (2) prescribed a cannabis galenical preparation and (3) suffering from severe/chronic symptoms for at least 6 months and seeking an effective, adequate therapy. Exclusion criteria were as follows: (1) current treatment with antidepressant and anxiolytic therapy, (2) history of psychotic disorder, (3) presence of significant cardiac or pulmonary disease and (4) pregnant or breastfeeding women.

Following the Italian law (N.38 of 15 March 2010) on the medical use of cannabis, all participants were identified by alphanumeric code and registered in a database to evaluate specific clinical data.[44] The patients were recruited by a researcher, visited and informed during a personal interview, gave their permission, signed an informed consent previously approved by the Local Institutional Review Board under the Helsinki Declaration (Table 3). The Second Opinion Medical Centre confirmed that formal ethical approval for this ‘anecdotal, retrospective study “compassionate use” observational study’ was not required.

As part of the standard regimen, patients were instructed to take 5 g Bedrocan in 50 ml of olive oil, dispensed by the galenical pharmacy (Pharmacy Dr. Ternelli, Via GB Venturi, Bibbiano, Reggio Emilia, Italy), sublingually twice a day for 3 months, beginning with 0.5 ml/day (15 drops) and titrating upwards to the recommended maximum dose of 1 ml/day (30 drops) followed by a reduction down to 0.5 ml/day (15 drops) at week 12 (Table 4). The tolerability and safety of this dosage had been previously confirmed.[45]

Tolerability and adverse effects (including hypertension, palpitation or tachycardia, weight loss or gain, etc.) were assessed monthly during the treatment period through email, telephone or visit if required. Quality of life (QOL) assessment was performed using the Short Form-36 (SF-36). It measures health-related QOL in eight dimensions: vitality, general health perceptions, physical functioning, physical role functioning, emotional role functioning, social role functioning, bodily pain and mental health (Figure S1). Each scale is scored using norm-based methods, with percentage scores ranging from 0% (lowest or worst response) to 100% (highest or best possible response).[46]

These scores were compared, for each patient, at baseline and monthly during the 3-month treatment period and at a 6-month follow-up for cannabis use behaviours, symptoms worsening and neurocognitive performance.
We evaluated the onset of ‘serious adverse event’, defined as ‘any untoward medical occurrence that requires admission to hospital, causes congenital malformation, results in persistent or significant disability or incapacity, that is life-threatening or that results in death’, according to the definitions recommended by the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (1994, Geneva, Switzerland). [47]

Data were entered into an HQCD database by a researcher and analysed using the R software, version 3.1.2 (2015, Vienna, Austria). [48] Statistical tests included the Mann–Whitney test (continuous variables not normally distributed) and the chi-squared test (categorical variables). A commonly used measure of linear correlation, the Pearson correlation coefficient, denoted by \(r \), was reported. Statistical significance was set at a \(P \) value < 0.05.

Results

The demography of the participating patients is shown in Table 3 who were of average age 40 years and suffered from a range of chronic conditions. The Bedrocan was administered concomitantly with other therapy for five patients (Table 5).

All the patients completed the study. The main efficacy endpoints, as assessed by the monthly SF-36 questionnaire administered at the end of every month treatment, are reduction in bodily pain \((P < 0.03) \), significant improvements in the physical role functioning score \((P < 0.02) \), in vitality \((P < 0.03) \), in social role functioning \((P < 0.02) \) and in general health perceptions (Figures S1–S6). No changes in role limitations \((P = 0.02) \) or emotional state (including anxiety, panic, paranoia, depression, mood alteration and altered perceptions etc.) between the first month of treatment and 6 months post-treatment were found (Figures S7 and S8). No adverse effects were reported. The patient with the Rett syndrome reported significant improvement in the control of epileptic seizures, reducing the number from 5 to 2 seizures weekly. Monthly reports on potential psychoactive adverse effects confirmed significant insomnia reduction \((P < 0.03) \), mood improvement \((P < 0.03) \) and concentration improvement \((P < 0.01) \) (Figures S9–S11). At 3 months, a quarter of the participants self-reported an improvement in mental concentration.

Somnolence was the sole self-reported adverse event in three patients during the first month of treatment, but noticed a complete resolution of this symptom over time. During the study period, no serious adverse effects, including respiratory and thoracic disorders (dyspnoea, pneumonia), gastrointestinal disorders (vomiting, diarrhoea, abdominal pain), nervous system disorders (convulsions, dizziness), renal and urinary disorders (urinary tract infection, haematuria) and psychiatric disorders occurred.

Discussion

The findings show that short-term Bedrocan administration was well tolerated and effective in reducing symptoms including pain, stiffness and muscle spasms, when administered concomitantly with or without other therapy.

Participants reported an improvement of cognitive function and no psychoactive adverse events potentially connected to cannabinoids, such as euphoria, sleepiness, confusion, short-term memory or concentration loss. Indeed, significant improvements in sleep quality and mood scores are noted in the majority of patients (80%).

A strength of this study is a well-defined and standardized treatment protocol and the inclusion of ‘real-world’ patients. Limitations include the uncontrolled and retrospective design study, the small clinically heterogeneous cohort and use of the self-administered subjective SF-36 as the main outcome measure.

Table 4

Bedrocan dosage	1st week	15 drops/day
2nd week	15 drops/day	
3rd week	23 drops/day	
4th week	23 drops/day	
5th week	30 drops/day	
6th week	30 drops/day	
7th week	30 drops/day	
8th week	30 drops/day	
9th week	23 drops/day	
10th week	23 drops/day	
11th week	15 drops/day	
12th week	15 drops/day	

Table 5

No patients	Disease	Pharmacological therapy
2	Rett and epilepsy syndrome	Anti-epileptic drugs: Lamotrigine
2	Cancer	Palliative care: Tramodol, Enalapril (for hypertension treatment) Pantoprazole
1	Alzheimer syndrome	Palliative care: Donepezil
The safety and tolerability of Bedrocan may be due to oral administration route and type of galenical preparation that contains lower levels of Δ⁹-THC (0.18–0.2 mg/ml) and higher levels of Δ⁹-THCA (0.26–0.3 mg/ml) (with no psychoactive activity).[49] However, the high concentration of CBG (16 mg/g), a phytocannabinoid known to be an α-2 adrenoreceptor and the serotonin 1A receptor (5-HT1A) agonist, and terpenoid myrcene (5 mg/g) in this formulation could explain the analgesic and myorelaxant effect recorded in most patients (75%).

Also, the improvement of neurologic symptoms (improvement in mood and concentration) might be due to this selected formula containing Δ⁹-THC and CBD at the ratio of 22:1 that could mitigate the beta-amyloid peptide (Aβ) level-evoked neuroinflammatory and neurodegenerative responses.[50] A recent study in vitro evidenced that low doses of Δ⁹-THC solution (100 μl at 2× concentrations in each well) added in mouse neuroblastoma cell line (N2a/AβPPsw cells) lowed the Aβ level, the total and phosphorylated GSK-3β levels (protein kinase that has a key role in the pathogenesis of both sporadic and familial AD).[51] Additionally, low doses of Δ⁹-THC, when combined with melatonin, could enhance mitochondria function, not inhibiting melatonin’s action that is a potential therapeutic for AD.

The significant reduction in pain and stiffness in FM patient could be due to the modulating action of CB receptors in the dysfunctions of the stress system and, particularly, the hypothalamic–pituitary–adrenal axis (HPA axis).[52]

Furthermore the relief of muscle spams and insomnia, common symptoms related to MS could be associated to anti-inflammatory activity of CBD by decreasing transmigration of blood leucocytes and by downregulating expression of VCAM-1, chemokines (CCL2 and CCL5) and pro-inflammatory cytokine IL-1β, as well as by attenuating activation of microglia.[53]

Several vitro/vivo studies showed that CBD in tumour cell lines (e.g. MM cells and A549, H460 lung cancer cells) xenografted in nude mice, inhibited the cell proliferation by blocking cell cycle and inducing apoptotic cell death, and it enhanced the activity of pharmacological therapy.[54,55] For instance, Ward et al.[56] evidenced the efficacy of CBD, in breast cancer cells, to downregulate the expression of inhibitor differentiation/DNA binding 1 (Id1), that has a critical role in breast cancer lung metastasis, and to enhance the activity of paclitaxel (Taxol), well-known chemotherapeutic drug.

Conclusions

The findings suggested that patients affected by chronic long-standing (months or years) advanced disease, who had not responded to standard treatment, had improved symptoms when they were treated with Bedrocan. The galenical treatment contributed not only to decreased pain but also to restored physical function in this cohort after 3 months and improvement in overall QOL. There is now a need to confirm these findings in a robust double-blind standardized clinical trials, with a more homogenous clinical group such as cancer or fibromyalgia.

Declarations

Conflict of interest

The authors declared that they have no competing interests and certified that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript. The authors contributed equally to this work.

Funding

This article was not supported by grants.

Author contributions

The authors have adhered to the ICMJE definition of authorship. The specific contribution is described as following: BP design study, conclusions. CL data collection. MV data elaboration, description of results. All Authors authorship. The specific contribution is described as following: BP design study, conclusions. CL data collection. MV data elaboration, description of results. All Authors state that they had complete access to the study data that support the publication.

References

1. Noyes R Jr et al. Analgesic effect of delta-9-tetrahydrocannabinol. J Clin Pharmacol 1975; 15: 139–143.
2. Bestard JA, Toth CC. An open-label comparison of nabulone and gabapentin as adjuvant therapy or monotherapy in the management of neuropathic pain in patients with peripheral neuropathy. Pain Pract 2010; 11: 353–368.
3. Aggarwal SK, Blinderman CD. Cannabinoids for symptom control. J Palliat Med 2014; 17: 612–614.
4. Smith LA et al. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy. Cochrane Database Syst Rev 2015; (11): CD009464.
5. Beal JE et al. Long-term efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. J Pain Symptom Manage 1997; 14: 7–14.
6. Tomida I et al. Effect of sublingual application of cannabinoids on intraocular pressure: a pilot study. J Glaucoma 2006; 15: 349–353.
7. Muller-Vahl KR. Treatment of Tourette syndrome with cannabinoids. Behav Neurol 2012; 27: 119–124.
8. Demuth D, Molleman A. Cannabinoid signaling. Life Sci 2006; 78: 549–563.
9. Riedel G, Davies SN. Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol. 2005; (168): 445–477.
10. Van Sickle MD et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005; 310: 329–332.
11. Ashton JC et al. Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett 2006; 396: 113–116.
12. Nunez E et al. Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 2004; 53: 208–213.
13. Niu J et al. Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y12 and P2Y13 receptors in neuropathic pain rats. J Neuroinflammation 2017; 14: 185.
14. Meng H, Johnston B, Englesakis M. Selective cannabinoids for chronic neuropathic pain: a systematic review and meta-analysis. Anest Analg 2017; 125: 1638–1652.
15. Naveen N. Unraveling the mystery of THC: cannabinoids and neuropathic pain. Anest Analg 2017; 125: 1428–1430.
16. House of Lords Select Committee on Science and Technology. Cannabis: the scientific and medical evidence, 9th Report. Session 1997-98. London, UK: House of Lords, 1998.
17. GW Pharma Ltd. Product monograph: Sativex®. Ottawa, Canada: Health Canada, 2007.
18. Perez-Reyes M et al. The pharmacologic effects of daily marijuana smoking in humans. Pharmacol Biochem Behav 1991; 40: 691–694.
19. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 2008; 153: 199–215.
20. Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74: 129–180.
21. Iversen L. The Science of Marijuana, 2nd edn. Oxford: Oxford University Press Inc., 2008.
22. Pertwee RG. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 2009; 156: 397–411.
23. Russo E, Guy GW. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 2006; 66: 234–246.
24. Grotenhermen F, Berger M, Gebhardt K. Cannabidiol. Solothurn: Nachtschatten, 2015.
25. Bridgeman MB, Abazia DT. Medicinal cannabis: History, pharmacology, and implications for the acute care. P T. 2017; 42(3): 180–188.
26. Scheepers H. Pharmacy Preparations European quality standards and regulation, Maastricht: Datawyse | Universitaire Pers Maastricht, 2017; 1–186
27. Zaami S et al. Medical use of cannabis: Italian and European legislation. Eur Rev Med Pharmacol Sci 2018; 22: 1161–1167.
28. Law: Decreto 9 novembre 2015. GU Serie Generale n.279 del 30-11-2015.
29. Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers 2007; 4: 1770–1804.
30. Grotenhermen F. Clinical pharmacokinetics of cannabinoids. J Can bis Ther 2003; 3: 2–50.
31. Wall ME et al. Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin Pharmacol Ther 1983; 34: 352–363.
32. Goodwin RS et al. Δ9-Tetrahydrocannabinol, 11-Hydroxy-Δ9-Tetrahydrocannabinol and 11-Nor-9-Carboxy-Δ9-Tetrahydrocannabinol in human plasma after controlled oral administration of cannabinoids. Ther Drug Monit 2006; 28: 545–551.
33. Schatman ME. Medical marijuana: the state of the science. New York: Medscape LLC, 2015: 1–29.
34. Corey-Bloom J et al. Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial. CMAJ 2012; 184: 1143–1150.
35. Ware MA et al. Smoked cannabis for chronic neuropathic pain: a randomized controlled trial. CMAJ 2010; 182: E694–E701.
36. Wilsey B et al. A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J Pain 2008; 9: 506–521.
37. Wade DT et al. Long-term use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Mult Scler 2006; 12: 639–645.
38. Zajicek JP et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry 2005; 76: 1664–1669.
39. Wunsch A, Palmieri B. The role of second opinion in oncology: an update. Eur J Oncol 2013; 18: 3–10.
40. Palmieri B, Laurino C, Vadalà M. The “Second Opinion Medical Network”. Int J Pathol Clin Res 2017; 3: 1–7.
41. Palmieri B et al. Second opinion clinic: is the Web Babel Syndrome treatable? Clin Ter 2011; 162: 575–583.
42. Palmieri B, Iannitti T. The Web Babel syndrome. Patient Educ Couns 2011; 85: 331–333.
43. Di Cerbo A, Palmieri B. Economic impact of second opinion in pathology. Saudi Med J 2012; 33: 1051–1052.
44. Law: Decreto 15 Marzo 2010. GU Serie Generale n.38 del 15.03.2010 describing the dispositions on palliative therapy access and pain therapy.
45. Palmieri B, Laurino C, Vadalà M. Short-term efficacy of CBD-enriched hemp oil in girls with dysautonomic syndrome after human papillomavirus vaccination. Isr Med Assoc J 2017; 19: 79–84.
46. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). *Med Care* 1992; 30: 473–483.

47. ICH Steering Committee. ICH harmonised tripartite guideline. Clinical safety data management: definitions and standards for expedited reporting E2A. Step 4 version. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; 1994.

48. R Core Team. *A Language and Environment for Statistical Computing* [Internet]. Vienna, Austria: R Foundation for Statistical Computing, 2015.

49. Carcieri C et al. Cannabinoids concentration variability in cannabis olive oil galenic preparations. *J Pharm Pharmacol* 2018; 70: 143–149.

50. Fiz J et al. Cannabis use in patients with fibromyalgia: effect on symptoms relief and health-related quality of life. *PLoS One* 2011; 6: e18440.

51. Cao C et al. The potential therapeutic effects of THC on Alzheimer’s disease. *J Alzheimers Dis* 2014; 42: 973–984.

52. Dragicevic N et al. Melatonin treatment restores mitochondrial function in Alzheimer’s mice: mitochondrial protective role of melatonin membrane receptor signaling. *J Pineal Res* 2011; 51: 75–86.

53. Mecha M et al. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. *Neurobiol Dis* 2013; 59: 141–150.

54. Velasco G, Sánchez C, Guzmán M. Towards the use of cannabinoids as antitumour agents. *Nat Rev Cancer* 2012; 12: 436–444.

55. McAllister SD, Soroceanu L, Desprez PY. The antitumour activity of plant-derived non-psychoactive cannabinoids. *J Neuroimmune Pharmacol* 2015; 10: 255–267.

56. Ward SJ et al. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. *Br J Pharmacol* 2014; 171: 636–645.

57. Romano L, Hazekamp A. Cannabis oil: chemical evaluation of an upcoming cannabis-based medicine. *Cannabinoids* 2013; 1: 1–11.

58. Bifulco M, Pisanti S. Medicinal use of cannabis in Europe. *EMBO Rep* 2015; 16: 130–132.

59. Fischledick J, Van Der Kooy F, Verpoorte R. Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor. *Chem Pharm Bull (Tokyo)* 2010; 58: 201–207.

60. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. *Br J Pharmacol* 2011; 163: 1344–1364.

61. Calhoun SR, Galloway GP, Smith DE. Abuse potential of dronabinol (Marinol). *J Psychoactive Drugs* 1998; 30: 187–196.

62. Berlach DM, Shir Y, Ware MA. Experience with the synthetic cannabinoid nabilone in chronic noncancer pain. *Pain Med* 2006; 7: 25–29.

63. Russo E. Cannabinoids in the management of difficult to treat pain. *Ther Clin Risk Manag* 2008; 4: 245–259.

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. Pain scores before and after galenical preparation’ treatment.

Figure S2. Physical functioning level scores before and after galenical preparation’ treatment.

Figure S3. Role limitations due to physical health scores before and after galenical preparation’ treatment.

Figure S4. Energy scores before and after galenical preparation’ treatment.

Figure S5. Social functioning scores before and after galenical preparation’ treatment.

Figure S6. General health scores before and after galenical preparation’ treatment.

Figure S7. Role limitations due to emotional problems scores before and after galenical preparation’ treatment.

Figure S8. Emotional well-being scores before and after galenical preparation’ treatment.

Figure S9. Insomnia scores before and after galenical preparation’ treatment.

Figure S10. Mood improvement scores before and after galenical preparation’ treatment.

Figure S11. Concentrations improvement scores before and after galenical preparation’ treatment.