Mutations linked to loss of cell cycle control can render cells responsive to local differentiation cues

Kara L Cerveny1, Hannah Bronstein1, Olivia Hagen1, Dayna B Lamb1, Grace Martin1, Ingrid Tower1, Avery Van Duzer1, Evan Welch1, Máté Varga2
1Reed College
2Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
§To whom correspondence should be addressed: cervenyk@reed.edu

Abstract

Cell behaviors such as survival, proliferation, and death are governed by a multitude of cues, both intrinsic and extrinsic. To test whether a wild-type environment could encourage the survival and/or differentiation of neuronal progenitor cells with impaired cell cycle progression, we transplanted cells from cdk1, dtl, slbp, fbxo5, ahctf1, gins2, hdac1, mcm5, ssrp1a, and rbbp6 mutant zebrafish embryos into wild-type embryos, creating chimeric zebrafish with mutant cells in the developing eye. We found that when cells from cdk1, dtl, slbp, gins2, mcm5, or rbbp6 mutants were transplanted into wild-type hosts, survival and/or differentiation was almost always compromised in a manner consistent with cell-autonomous cell death. Interestingly, we observed that fbxo5, ahctf1, hdac1, or ssrp1a mutant cells survived and sometimes exhibited signs of differentiation when grafted into wild-type eyes.

Figure 1. Survival and/or differentiation of ahctf1, ssrp1a, and fbxo5 mutant cells can be altered by a wild-type developing retinal environment:

A-F Representative images of frontal cryosections of 3 dpf chimeric wild-type (wt) retinae containing GFP-labelled wild-type (A), hdac1 mutant (B), ahctf1 mutant (C), ssrp1a mutant (D) or fbxo5 mutant (E-F) cells immunostained for GFP (green cells from donor embryo) and beta-catenin (red cell boundaries and plexiform layers).

G-H Lateral views of single 2µm-thick z-plane of whole-mount 3 dpf chimeric wild-type retinae containing wild-type (G) or gins2 morphant (H) cells labeled with membrane-targeted RFP. H‘ shows 3x enlargement of boxed region in H.

I-J Lateral maximum intensity projection of ~50 hpf retinae from Tg[atoh7:GFP] embryos showing neurogenic gene expression in wild-type (I) or fbxo5 mutant (J) retinae.

Description

Cell behaviors such as survival, proliferation, and death are governed by a bevy of cues, both from within the cells themselves and from the local tissue environment. To test whether a wild-type environment could encourage the survival and/or differentiation of neuronal progenitor cells with impaired cell cycle progression, we created chimeric zebrafish embryos containing mutant cells in wild-type retinae. We transplanted 10-20 cells from blastula stage donors into the region of early gastrula stage wild-type hosts fated to be eye field. Donor and host embryo pairs were cultured together; donors were genotyped when possible at 1 day post fertilization (dpf). We screened all transplants at 1 dpf for survival and location of clones. Hosts that contained labeled clones in their eyes were fixed at 3 dpf and either cryosectioned before immunostaining or
subjected to immunostaining as wholemounts. All embryos analyzed in this study were imaged with epifluorescence and/or confocal microscopy. Consistent with previous reports, we found that cdk1, dtl, slbp, fbxo5, ahctf1, gins2, hdac1, mcm5, ssrp1a, and rbp6 mutant retinae contained dying cells with pyknotic nuclei throughout the developing retinal neuroepithelium at 3 dpf. Moreover, all of these mutant embryos had eyes that were noticeably smaller than their wild-type siblings (Table 1; references therein). When cells from mutant embryos were transplanted into wild-type hosts, survival and/or differentiation was almost always compromised in a manner consistent with cell-autonomous cell death. In particular, wild-type hosts that contained clones of cdk1, dtl, mcm5, and rbp6 mutant cells at 1 dpf rarely contained visible clones by 3 dpf (see Table 1 for numbers of chimeras analyzed and how many clones survived until 3 dpf). For those clones that were visible, they were small (e.g., compare Fig 1A and 1F) and/or exhibited signs of apoptosis (e.g., Fig 1H). For example, by transplanting gins2 morphant cells labeled with a membrane-targeted red fluorescent protein into wild-type embryos, we observed mutant cells blebbing and/or fragmenting when integrated into wild-type retinae (Fig 1H) whereas wild-type sibling cells integrated fully into the host environment, highlighting typical retinal neuronal morphologies (Fig 1G).

Clear evidence of mutant cell survival and/or differentiation was found in chimeric retinae containing ahctf1, ssrp1a, or fbxo5 homozygous mutant cells in wild-type host retinae (Fig. 1C-E, Table 1). As we previously reported, we confirmed that ahctf1 mutant cells transplanted into wild-type eyes appeared to survive and differentiate (Fig 1C, n = 19 transplants; (Cerveny et al. 2010)). The protein encoded by the ahctf1 gene (also known as elys) has been implicated in a number of cell-cycle related functions including kinetochore assembly and nuclear pore assembly (e.g., (Rasala et al. 2006)). We reasoned that mutations in other ancillary cell-cycle proteins may also be susceptible to survival and/or differentiation cues in the wild-type retinal environment. To test this hypothesis, we examined the effects of a wild-type retinal environment on ssrp1a mutant cells. The ssrp1a gene encodes a component of the conserved facilitates chromatin transcription (FACT) complex and has been implicated in cell cycle control at the level of nucleosome remodeling necessary for DNA transcription, DNA replication, and DNA repair (Liu et al. 2020). Interestingly, we observed that ssrp1a mutant cells transplanted into wild-type embryos were rarely found in the differentiated retina and almost always in the ciliary marginal zone (CMZ), a region of the retina that contains a source of stem and progenitor cells throughout the life (Fig 1D, n=10 transplants).

The fbxo5 gene encodes a protein that is both a substrate for and inhibitor of anaphase-promoting complex/cyclosome (APC/C), regulating the re-replication block, an essential step in the cell cycle (Cappell et al. 2018). Previous studies in zebrafish indicated that fbxo5 can function both cell-autonomously and non-autonomously (Riley et al. 2010) and that fbxo5 regulates genomic integrity and proliferation (Rhodes et al. 2009). We observed cell survival and differentiation in approximately one-third of fbxo5-wild-type chimeras. For instance, fbxo5 mutant cells survived and appeared to differentiate in 10/34 transplants (Fig 1E). Interestingly, the majority (8/10) of chimeric retinae with surviving and differentiating fbxo5 mutant cells were located in the ventral retina. In the remaining approximately two-thirds of our sample, however, fbxo5 mutant clones appeared to be lost by cell death and/or not differentiate in wild-type environments (Fig 1F). These data suggest that these mutant cells might be especially sensitive to slight differences in age of the donor embryo at time of transplantation, differences in location of transplanted cells, or stochastic fluctuations in gene expression (e.g.,(Trimarchi et al. 2008)) in the transplanted cells or host embryos. Because multiple people performed these transplants, it is also possible that some of the variability we observe is due to batch effects and individual technique.

Previous reports have shown that zebrafish embryos carrying homozygous mutations in fbxo5 (also known as emiI) still exhibit some neuronal differentiation (Zhang et al. 2008; Riley et al. 2010). We found that a small, but notable fraction of fbxo5 mutant retinal progenitor cells still express the neurogenic gene atoh7, as observed with the atoh7:GFP transgene (Poggi et al. 2005) and form some retinal ganglion cells (compare Fig 1I-J). The same has been shown for ahctf1 mutants (Davuluri et al. 2008; Cerveny et al. 2010) and ssrp1a mutants (Koltowska et al. 2013). It is possible, therefore, that the effects of the wild-type environment on fbxo5, ahctf1, or ssrp1a deficient cells result from stochastic expression of some early neurogenic genes that prime cells for survival and/or differentiation in the neural retina.

Finally, our transplant studies also confirmed previous reports that mutations in histone deacetylase 1, hdac1, are linked to cell autonomous hyperproliferation in the retina (Stadler et al. 2005; Yamaguchi et al. 2005, Fig 1B). When we examined hdac1 mutant cells that had integrated into wild-type chimeric retinae at 3 dpf, a point at which apoptotic cells are found scattered throughout the hdac1 mutant retinae (Yamaguchi et al., 2005), we did not observe pyknotic nuclei or cell blebbing, two key hallmarks of apoptosis. Instead, we observed large clones that interrupted retinal lamination and did not exhibit neuronal morphologies (e.g., Fig 1B). This finding raises the possibility that a wild-type retinal environment supports the survival of these proliferative cells but does not promote their cell cycle exit and/or differentiation.

The difference in susceptibility of mutant cells to the wild-type environment may be explained, in part, by the distinct functions of the mutated genes. Of note, the only mutant cells that significantly survived and/or differentiated in a wild-type environment (ahctf1, ssrp1a, and hdac1) carry mutations in genes that impact cell cycle progression but are not part of the
canonical cell cycle machinery. We speculate that mutations in genes that are not directly linked to the cell cycle but nonetheless exhibit cell cycle defects may be part of a redundant regulatory network and therefore are more likely to respond to survival and differentiation factors in a wild-type environment.

Methods

Zebrafish lines

Eggs were collected by natural spawning, raised at either 25°C or 28.5°C in E3 embryo medium (Nüsslein-Volhard, C. and Dahm, R. 2002) and staged according to Kimmel et al., 1995. After gastrulation and before 24 hours post-fertilization, embryos were cultured in 0.003% phenylthiourea (PTU, Sigma) in E3 to prevent pigment formation. Lines used in this study and associated references are listed in Table 1. Adult zebrafish were cared for with protocols approved by the Reed College IACUC.

Cell transplants

Similar to previously published studies (e.g., (Cerveny et al. 2010; Turner et al. 2019), donor embryos were injected at the 1-cell stage with ~20 ng of GFP mRNA synthesized from linearized pCS2-GFP or membrane-targeted RFP mRNA synthesized from linearized pCS2-membrane-targeted mCherry with the T7 mMessage mMachine kit (Ambion) according to manufacturer’s instructions. Host and donor embryos were grown at 28.5°C until sphere stage (approximately 4 hours post-fertilization) and then 10-20 fluorescently labelled cells were removed from donor embryos and transplanted into the animal pole of unlabeled host embryos. Donor and host embryos were incubated overnight at 28.5°C. All embryos were screened and E3 was exchanged for PTU in E3. Donors were identified by visual inspection and by PCR and restriction digest mediated genotyping. Genotyping protocols for each line can be found at Zebrafish International Resource Center (ZIRC; http://zebrafish.org/home/guide.php) and in relevant references (see Reagents; Table 1). For gins2 experiments, 1-cell stage embryos were first injected with ~1 nl of 1 mM gins2 morpholino (Gene Tools, Philomath, OR; 5’-GGGGTGAGTCAATTTATAATCTAC-3’), a dose that phenocopies gins2−/− mutants (Varga et al. 2020) and then injected with ~10 ng of membrane-targeted RFP mRNA.

Immunohistochemistry, imaging, and analysis

After fixation, wholemount embryos were either subjected to immunohistochemistry as previously described (Cerveny et al. 2010) or were cryoprotected in 15% and then 30% sucrose before being embedded in Optimal Cutting Temperature (OCT) resin and cut into 30 µm thick sections that were collected on charged glass slides (Polysciences, cat number: 24216) and stained with the following antibodies: beta-catenin (mouse, 1:250 dilution; Sigma, C7207); GFP (chicken, 1:250 dilution, Abcam, ab139709); RFP (rabbit, 1:500 dilution, MBL, PM005). Nuclei were counterstained with DAPI (1 µg/ml from a 1 mg/ml stock in DMSO; Sigma) or sytox orange (1:10,000 dilution, Invitrogen). All images pictured were captured on a Nikon A1+ confocal with a long working distance 25X, 1.1 NA water immersion lens or a Leica SP8 confocal with a 20x 0.8NA water immersion lens.

Reagents

| Table 1. Cell cycle mutants examined for responsiveness to a wild-type environment by chimeric analysis in zebrafish retinae. |
Mutant	Molecular function of mutated gene according to literature	Phenotype linked to cell cycle defect as reported in literature	Phenotypes of mutant cells when transplanted into WT retinae as examined by cell morphology	References
cdk1hi3235Tg	binds various cyclins promoting entry into S-phase and mitosis	stall in G1, G1/S, S phases, apoptosis	apoptosis (12 chimeras analyzed; only 5/12 chimeras contained small clones (1-3 cells) by 3 dpf)	(Amsterdam et al. 2004); this study
ssrp1a s819	component of FACT complex, remodels chromatin, functions during transcription, DNA replication and repair	arrest in S phase, apoptosis	survival in the CMZ and RPE but some quiescence and apoptosis in neural retina (10 chimeras analyzed; 10/10 chimeras contained clones by 3 dpf)	(Koltowska et al. 2013); this study
Tg	Function	Phenotype	References	
------------	--	---	---	
dtl\texttt{hi3627Tg}	E3-ubiquitin ligase, regulates cyclin-dependent kinase inhibitors	arrest in late S/early G2, apoptosis	(Sansam et al. 2010); this study	
slbp1\texttt{ty77e}	binds stem-loop structure of histone mRNAs, stabilizes pre-mRNA-snRNP interactions	stall in G1/S, apoptosis	(Turner et al. 2019); this study	
fbxo5\texttt{hi2648Tg}	APC/C inhibitor, known to block replication	primarily arrest in G2/M, apoptosis	(Rhodes et al. 2009; Riley et al. 2010; Zhang et al. 2008); this study	
ahcf1\texttt{ti262c}	kinetochore protein also required for nuclear pore assembly	cycle slowly, stalling in either G1/S or G2/M	(Cerveny et al. 2010; Davuluri et al. 2008); this study	
gins2u\texttt{773}	DNA replication initiation and progression	Delayed/prolonged S phase, apoptosis	(Varga et al. 2020); this study	
hdac1\texttt{hi1618Tg}	removes acetyl groups linked to lysine residues typically found on histones	unable to exit the cell cycle; slowly proliferate and do not differentiate	(Yamaguchi et al. 2005; Zhou et al. 2011); this study	
mcm5\texttt{m850}	component of a DNA helicase, required during S-phase	prolonged S phase, apoptosis	(Ryu et al. 2005); this study	
rbbp6\texttt{hi2993Tg}	E3-ubiquitin ligase with functions linked to DNA replication and DNA repair	predicted to arrest in G1/S, apoptosis	(Amsterdam et al. 2004); this study	
Tg[atoh7:GFP]\texttt{rw021Tg}	labels progenitors as they are being specified as retinal ganglion cells		(Poggi et al. 2005)	

Acknowledgements: The authors would like to thank Steve Wilson and current and former members of the Wilson lab who provided critical input when this study was being conceptualized.

References

Cappell SD, Mark KG, Garbett D, Pack LR, Rape M, Meyer T. 2018. EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle. Nature 558: 313–317. PubMed ID: 29875408

Cerveny KL, Cavodeassi F, Turner KJ, de Jong-Curtain TA, Heath JK, Wilson SW. 2010. The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche. Development 137: 2107–2115. PubMed ID: 20504962

Davuluri G, Gong W, Yusuff S, Lorent K, Muthumani M, Dolan AC, Pack M. 2008. Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress. PLoS Genet. 4: e1000240. PubMed ID: 18974873
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253–310. PubMed ID: 8589427

Koltowska K, Apitz H, Stamataki D, Hirst EM, Verkade H, Salecker I, Ober EA. 2013. Ssrp1a controls organogenesis by promoting cell cycle progression and RNA synthesis. Development 140: 1912–1918. PubMed ID: 23515471

Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, Carragher B, Potter CA, D'Arcy S, Lugner K. 2020. FACT caught in the act of manipulating the nucleosome. Nature 577: 426–431. PubMed ID: 31775157

Nüsslein-Volhard C, Dahm R. 2002 Zebrafish: A practical approach. Oxford University Press, Oxford, UK.

Poggi L, Vitorino M, Masai I, Harris WA. 2005. Influences on neural lineage and mode of division in the zebrafish retina in vivo. J Cell Biol 171: 991–999. PubMed ID: 16365165

Rasala BA, Orjalo AV, Shen Z, Briggs WA, Forbes DJ. 2006. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl. Acad. Sci. U.S.A. 103: 17801–17806. PubMed ID: 17098863

Rhodes J, Amsterdam A, Senda T, Moreau LA, McKenna K, et al. 2009. Emi1 maintains genomic integrity during zebrafish embryogenesis and cooperates with p53 in tumor suppression. Mol. Cell. Biol. 29: 5911–5922. PubMed ID: 19704007

Riley BB, Sweet EM, Heck R, Evans A, McFarland KN, Warga RM, Kane DA. 2010. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division. Dev. Dyn. 239: 828–843. PubMed ID: 20146251

Stadler JA, Shkumatava A, Norton WH, Rau MJ, Geisler R, Fischer S, Neumann CJ. 2005. Histone deacetylase 1 is required for cell cycle exit and differentiation in the zebrafish retina. Dev. Dyn. 233: 883–889. PubMed ID: 15895391

Trimarchi JM, Stadler MB, Cepko CL. 2008. Individual Retinal Progenitor Cells Display Extensive Heterogeneity of Gene Expression. PLOS ONE 3: e1588. PubMed ID: 18270576

Turner KJ, Hoyle J, Valdivia LE, Cerveny KL, Hart W, Mangoli M, Geisler R, Rees M, Hourat C, Poole RJ, Wilson SW, Gestri G. 2019. Abrogation of Stem Loop Binding Protein (Sbp) function leads to a failure of cells to transition from proliferation to differentiation, retinal coloboma and midline axon guidance deficits. PLoS ONE 14: e0211073. PubMed ID: 30695021

Varga M, Csályi K, Bertyák I, Menyhárd DK, Poole RJ, Cerveny KL, Kövesdi D, Barátki B, Rouse H, Vad Z, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Young RM, Wilson SW. 2020. Tissue-Specific Requirement for the GINS Complex During Zebrafish Development. Front Cell Dev Biol 8: 373. PubMed ID: 32548116

Yamaguchi M, Tonou-Fujimori N, Komori A, Maeda R, Nojima Y, Li H, Okamoto H, Masai I. 2005. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132: 3027–3043. PubMed ID: 15944187

Zhang L, Kendrick C, Jülich D, Holley SA. 2008. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function. Development 135: 2065–2070. PubMed ID: 18480162

Funding: NIH grant 1R15EY023745-01 to KLC, an instrumentation grant to KLC from the MJ Murdock Trust, and start-up funds from Reed College. MV was supported by the ELTE Institutional Excellence Program (1783-3/2018/FEKUTSRAT) sponsored by the Hungarian Ministry of Human Capabilities.

Author Contributions: Kara L Cerveny: conceptualization, data curation, funding acquisition, investigation, project administration, supervision, writing - original draft. Hannah Bronstein: investigation, writing - review and editing. Olivia Hagen: investigation, writing - review and editing, visualization. Dayna B Lamb: investigation. Grace Martin: investigation. Ingrid Tower: investigation, writing - review and editing. Avery Van Duizer: investigation, writing - review and editing. Evan Welch: investigation. Máté Varga: resources, writing - review and editing.

Reviewed By: Anonymous

Nomenclature Validated By: Anonymous

History: Received June 26, 2021 Revision Received September 22, 2021 Accepted September 22, 2021 Published October 1, 2021

Copyright: © 2021 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation: Cerveny, KL; Bronstein, H; Hagen, O; Lamb, DB; Martin, G; Tower, I; et al.; Varga, M (2021). Mutations linked to loss of cell cycle control can render cells responsive to local differentiation cues. microPublication Biology. 10.17912/micropub.biology.000481