Structural and Surface morphology of Lead Selenide (PbSe) thin films

K Ravi1,3 and V Chitra2,4
1Dept of Physics, Coimbatore Institute of Engineering and Technology, Coimbatore
2Dept of Physics, Sri Ramakrishna Institute of Technology, Coimbatore
3ravirajphy@gmail.com,
4chitrasrit22@gmail.com

Abstract. Lead Selenide (PbSe) thin films are deposited by chemical bath deposition for 2 hours in different temperature. The precursors used are 0.2M of Lead (II) nitrate, 0.5M of Sodium Selenosulfate, 2.0M of Sodium hydroxide and 4ml of Triethanolamine. The film deposition is carried out at 50˚C, 60˚C, 70˚C, and 80˚C for 2 hours. The thickness of the film varied in the range from 1400 to 5200Å. The structural characterization of these films is carried out by X-ray diffractometer (JEOL-Japan, JDX 8030 model). The XRD pattern of PbSe films deposited at different temperature exhibit the polycrystalline structure. In the present study, Scanning Electron Microscope (JOEL 840 SEM/EDAX) is employed to analyze the surface morphology of the films. In addition, the compositions of the films are estimated from EDAX Spectrum. Therefore, it is observed that the films deposited in this work, possess strong peaks for Pb and Se and no other impurities are detected through the EDAX Spectrum, confirming high purity of the PbSe thin film.

1. Introduction
The thin film systems have gained considerable interest over the years, due to their special properties. The properties of any solid-state substance and bulk or thin-film rely on the compositions of the atoms. In addition, the existence of the chemicals connections and simple excitations exist inside the structure. On three fundamentals, thin film production is focused viz., fabrication, usability and applications. Substantially, the dependent on a large number of repositioning parameters may also depend on thickness [1, 2], the structural, chemical, methodological and physical properties of such material. There are other benefits of chemical bath deposition, such as easy operation which does not need any specialized tools or heat facilities, zero waste content, cost-effective methods for any wide-range deposition. For this current element, the substrate is submerged directly in the reaction bath for a specific temperature deposition at 2 hours, whether metallic or nonmetallic [3,4]. In this research study, for the deposition of PbSe films, the chemical depositing technique is used. Moreover, this examination presents the structural and surface morphology of these films.

2. Experimental methods
In 100 ml glass beaker strength, 10 mL of Pb (NO₃)₂ solutions is taken, gradually 4 ml of TEA is added with continuous stirring. In the beginning, the solution becomes milky turbid. Further, 7 ml NaOH is used to transform lead nitrate into lead hydroxide, it should be dissolved in sodium hydroxide before a stable solution is achieved. 10ml of freshly formulated solution Na₂SeSO₃ is applied gradually with a constant stirring to sustain an alkaline pH media of approximately 10. For a few minutes, using a magnetic stirrer the final solution is separated from the substrates are then
washed, tilt vertically at 20° to the beaker surface. The bath water is left open and the deposition is allowed for 2 hours without stirring at various deposition temperatures. For about (50°C, 60°C, 70°C and 80°C) the different deposition is carried out at 2 hours in session.

3. Results and discussion

The research examination employs an accurate electronic balance for weight measurements to decide film thickness, the SHIMADZU-ADY220 digital electronic balance. The mass difference between the slides before and after the film is the m' mass. The deposition area is determined in the knowledge of the length (l) and width (b) of the deposited film. When μ is the density of the film content, then the film’s thickness (t) is as shown by Table 1.

\[
t = \frac{\text{mass of the deposited film}}{\text{area of the film}} \times \text{density of the film}
\]

\[
t = \frac{m}{\text{Density of PbSe}} \quad \text{[the density of PbSe is 8.10 g/cm}^3]\]

Different deposition Temperature(˚C) at 2hours	Thickness (Å)
50	1400
60	2600
70	4100
80	5200

A ray diffractometer (JEOLJapan JDX 8030) conducted the structural characterization of these films. Figure1.1 illustrates the XRD pattern in chemically deposited films PbSe at various deposition temperatures (50°C, 60°C, 70°C and 80°C) for 2 hours. The thin films of Lead selenide are observed to be polycrystalline in nature, with a preferred direction around (200) the point. The amplitude of the peak (200) rises considerably and more rapidly than the other peaks (111), (220), (311), (222), (400), (420) and (422). Likewise, CuInSe2 and CdS thin films are previously recorded [5-8].

A procedure is employed to determine the magnitude of the preferred orientation factor 'f' in relation to certain planes (peaks) of material [7]. The preferred orientation factor f(200) of (200) in PbSe thin films is measured using this tool by measuring a fraction of (200) the level amplitude over the cumulative intensities of all peaks inside that specific plane. Similarly, all other peaks for the four films are assessed. In PbSe films are prepared at 50°C (Figure 1.1.a) f (111) =0.3042, f (200) =0.7869, f (220) =0.1748, f (311) =0.0649, f (222) =0.0769, f (400) =0.0474. In PbSe films prepared at 80°C (Figure 1.1.d) f (111) = 0.3190, f (200) = 0.8305, f (220)=0.1573, f (311)=0.0331, f (222)=0.0675, f (400)=0.0266, f (420)=0.0283,f(422)=0.0201. As f (200) is higher than other orientations in all four films, PbSe thin films have the preferred (200) orientation. Increased crystallinity and the bath deposition temperature are exceptional for the change of (200) the design and switch on, independent of chemical environment. The predicted peaks of the thin PbSe films are recorded by many researchers [5]. In the Figure 1.1(a) broad peaks at 2θ ≈ 20° and 34° is given as the quantity of unreacted precursor oil plants [9]. PbSe thin films are identified as peaks of the character of the PbSe thin films by many researchers [5]. Table 2. displays measured and normal values 'a' and 'd' for dominant peak diffraction angles and the values are seen to be in accordance with PbSe normal values. Table 3 measured the
volume of grain, strain and dislocation rate. As a result of the greater mobility of atoms at high temperatures, it is found that the rising grain size depends on the deposition temperature. Therefore, the abundance of nuclear centers is reduced, and a smaller number of centers continue to rise under the circumstances [10].

![Figure 1 (a)](image1)

![Figure 1 (b)](image2)

![Figure 1 (c)](image3)

![Figure 1 (d)](image4)

Figure 1. XRD pattern of PbSe thin film at Different deposition temperature (50°C, 60°C, 70°C, and 80°C) for 2 hours time period.

The declining diffusion intensity suggests the creation of high-quality films at a temperature 70 degrees Celsius [11], subsequently the substrate is kept at a temperature around 70 degrees Celsius. It is mainly because of the dislocalisation, which absorbs more thermal energy and has better mobility. The additional increase in temperature by 80 °C is also observed as a consequence of an increased stress and dislocation density due to the re-evaporation of certain Pb atoms [6].
Table 2. Comparison of calculated and standard ‘d’ and ‘2θ’ values for PbSe thin films for different deposition temperature at 2 hours.

Deposition Temperature (°C)	hkl planes	2θ values (degree)	d- spacing values (Å)	Lattice constant (Å)	FWHM (β)		
		JCPDS	Expt				
50	111	25.125	25.114	3.5414	3.5430	6.1366	0.2481
	200	29.092	29.076	3.0670	3.0685	6.1370	0.1856
	220	41.610	41.604	2.1687	2.1689	6.1345	0.3137
	311	49.227	49.237	1.8494	1.8491	6.1327	0.5987
	222	51.573	51.628	1.7707	1.7689	6.1276	1.9507
	400	60.307	60.468	1.5335	1.5297	6.1188	1.1535
60	111	25.125	25.129	3.5414	3.5409	6.1330	0.1774
	200	29.092	29.103	3.0670	3.0658	6.1316	0.1164
	220	41.610	41.642	2.1687	2.1671	6.1294	0.2268
	311	49.227	49.270	1.8494	1.8479	6.1287	0.2282
	222	51.573	51.644	1.7707	1.7684	6.1259	0.3871
	420	68.334	68.398	1.3716	1.3704	6.1286	1.9900
70	111	25.125	25.219	3.5414	3.5284	6.1113	0.1229
	200	29.092	29.184	3.0670	3.0575	6.1150	0.1101
	220	41.610	41.739	2.1687	2.1623	6.1159	0.1326
	311	49.227	49.360	1.8494	1.8448	6.1185	0.1300
	222	51.573	51.723	1.7707	1.7659	6.1172	0.1589
	400	60.307	60.448	1.5335	1.5302	6.1208	0.1160
	420	68.334	68.505	1.3716	1.3685	6.1201	0.1637
	422	75.934	76.135	1.2521	1.2492	6.1198	0.2100
80	111	25.125	25.124	3.5414	3.5416	6.1342	0.1662
	200	29.092	29.093	3.0670	3.0668	6.1336	0.1606
	220	41.610	41.629	2.1687	2.1677	6.1311	0.2792
	311	49.227	49.248	1.8494	1.8487	6.1314	0.4310
	222	51.573	51.608	1.7707	1.7696	6.1300	0.3414
	400	60.307	60.336	1.5335	1.5328	6.1312	0.6570
	420	68.334	68.406	1.3716	1.3703	6.1281	0.5694
	422	75.934	76.055	1.2521	1.2503	6.1251	0.6369
Table 3. Structural parameters of PbSe thin films for different deposition temperatures

Deposition Temperature (°C)	20 values (degree)	Grain Size (D) (nm)	Strain 10^{-2} (ε) (Lin2.m$^{-4}$)	Dislocation Density 10^{15} (Lines/m2)
50	25.114	34.2632	1.0566	0.8518
	29.076	46.1844	0.7839	0.4688
	41.604	28.2945	2.1275	1.2490
	49.237	15.2447	2.3748	4.3029
	51.628	4.7250	7.6621	44.7915
	60.468	8.3257	4.3484	14.4264
60	25.129	47.9197	0.7555	0.4354
	29.103	73.6410	0.4915	0.1843
	41.642	39.1357	0.9249	0.6529
	49.270	39.9956	0.9050	0.6251
	51.644	23.8107	1.5203	1.7638
	68.398	4.8259	7.1816	4.2938
70	25.219	69.1818	0.5234	0.2089
	29.184	77.8740	0.4650	0.1648
	41.739	66.9679	0.5408	0.2229
	49.360	70.2422	0.5156	0.2026
	51.723	58.0291	0.6241	0.2969
	60.448	82.7821	0.4375	0.1459
	68.505	61.3220	0.5907	0.2659
	76.135	50.1867	0.7217	0.3970
80	25.124	51.1484	0.7078	0.3822
	29.093	53.3758	0.6782	0.3510
	41.629	31.7933	1.1387	0.9893
	49.248	21.1772	1.7095	0.2297
	51.608	26.9957	1.3411	0.1372
	60.336	14.6077	2.5784	4.6863
	68.406	17.6193	2.0547	3.2212
	76.055	16.5387	2.1890	3.6559

The thinly deposited PbSe film SEM representation (60 ° C, 70 ° C & 80 ° C) is seen in Figure 2. From Figure 2(a), the SEM micrograph is studied at a resolution at a particular magnification with a film deposition temperature of 60 ° C. The vacuity between the molecules indicates that PbSe molecules are loosely bundled at a resolution.

For Figure 2, Figure b) the grain is distinctly outlined and the variation in the intergrain is decreased to a more crystalline film, the flat and consistent surface indicator. It could be the product of the (200) plane's extremely favorite concentration.

The secondary development on the surface is apparent from Figure 2(c). Due to the dislocation, density is decreased and the crystalline size is increased. It is necessary to remember the strong change of the crystallite size in the SEM micrograph due to the rise in the film deposition temperature.
Figure 2. SEM of PbSe thin films deposited for a different deposition temperature at 2hrs time period (a) 60°C X 25000 (b) 70°C X 25000 (c) 80°C X 25000

For the confirmation of the composition of fine films as shown in Figure 3 (a, b, c) an energy dispersive X-ray analysis (EDAX) is applied. The energy scattering X-ray analyses (EDAX) show the numerous peaks, which suit the present elements concurrently. The concentration of the elements found in the environment is therefore calculated. PbSe shows thin films with various deposition (60 °C, 70 °C and 80 °C), EDAX scale, 2 hours duration. The large peaks for BP and Se are observed in spectrum and the EDAX signal complies with the elevated pureness of the thin film. PbSe is not identified with any contaminations. Table 4 displays the atomic and weight percentage of Pb & Se components. It shows varying temperature cycles and elemental analysis. The average nuclear percentage of Pb is observed. Almost, the stoichimetric composition is present in every case without the inclusion of other impurities.
Figure 3. EDAX of PbSe thin film for different deposition temperature periods a) 60°C b) 70°C c) 80°C.

Table 4. Weight and Atomic percentage of Pb & Se for PbSe thin films prepared at 2hours for different deposition temperature

Deposition Temperature (°C)	Element	Weight %	Atomic %
60	PbL	75.16	53.56
	SeK	24.84	46.44
70	PbL	74.87	53.16
	SeK	25.13	46.84
80	PbL	74.29	52.41
	SeK	25.71	47.59

4. Conclusion
The XRD design of PbSe films deposited at different time period reveals the polycrystalline structure. The thickness of the film varied in the range of 1400 Å to 5200Å. It is prominent that the rise of the film deposition is due to temperature and the crystallite element in the SEM micrograph which naturally increases. The composition of EDAX Spectrum is determined to have good picks for Pb and Se and the EDAX Spectrum which is no more impurities to validate the PbSe films that are extremely clean.
5. References

[1] Streltsov S V, YuManakov A, Vokhmyanin A P, Ovsyannikov SV, Shchennikov V V, Crystal lattice and band structure of the intermediate highpressure phase of PbSe, 2009 J. Phys. Condens. Matter 21

[2] Shandalov M, Golan Y, Microstructure and morphology evolution in chemical solution deposited PbSe films on GaAs(100), 2003 EurPhysJApplPhys 24 13-20

[3] Jadhav S R, Khairnar U P, Study of optical properties of co-evaporated PbSe thin films 2012 Arch Appl Sci Res 4 169-177

[4] Yucel E Y, Beleli B, Process optimization of deposition conditions of PbS thin films grown by successive ionic layer absorption and reaction [SILAR] method using response surface methodology 2015 J. Cryst. Growth 42 1-7

[5] Martucci A, Fick J, Leblane S E, Locascio M, Hache A, Optical properties of PbS quantum dot doped sol-gel films 2004 J.Non-Cryst.Solids 345

[6] Rumianowski R T, Dygdala R S, Jung W, Bala W, 2003 J.Crystal Growth 252 230

[7] Zhu J, Aruna ST, Koltypin Y, Gedanken A, A novel method for the preparation of lead selenide pulse sonoelectrochemical synthesis of lead selenide nano-particles 2000 Chem Mater 12 143

[8] Sarkar SK, Kababya S, Vega S, Cohen H, Woicik J C, Frenkel A I, etal.Effects of solution ph and surface chemistry on the post deposition growth of chemical bath deposited PbSe nanocrystalline films 2007 ChemMater19 879

[9] Hankare P P, Delekhar S D, Bhuse V M, Garadkar K M, Sabane S D, Gavali L V, Synthesis and characterization of chemically deposited lead selenide thin films 2003 Mater Chem Phys 82 505

[10] Suresh Sagadevan1, Jiban Podder and Isha Das, Structural and morphological electrical properties of PbSe thin films grown by chemical bath deposition.2016 Adv. Mater.lett.7 410-413

[11] Fekadu GashawHone, FrancisKofi Ampong, TizazuAbza, Isaac Nkrumah, Mark Paal, Robert Kwame Nkum, Francis Boakye, The effect of deposition time on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method 2015 Materials Letters 155 58

[12] Umesh Kumar, Shailesh N. Sharma, Sukhvir Singh, M. Kar, V N. SinghR. Mehta and Rita Kakkar. Size and shape controlled synthesis and properties of colloidal PbSe nanocrystals, 2009 Material chemistry and physics 113 107