Stress in captive Blue-fronted parrots (*Amazona aestiva*): the animalists’ tale

Alan Chesna Vidal, Mar Roldan*, Maurício Durante Christofoletti, Yuki Tanaka, David Javier Galindo and José Maurício Barbanti Duarte

São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Deer Research and Conservation Center (NUPECCE), Jaboticabal, São Paulo 14884-900, Brazil.

*Corresponding author: Deer Research and Conservation Centre (NUPECCE, Núcleo de Pesquisa e Conservação de Cervídeos), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Deer Research and Conservation Center (NUPECCE), Jaboticabal, São Paulo 14884-900, Brazil. Tel: +34 722866794. Email: roldan.romero.m@gmail.com; mauricio.barbanti@unesp.br

Understanding stress physiology is crucial for species management because high levels of stress can reduce reproduction and the individual’s ability to face threats to survive. One of the most popular methods for non-invasive monitoring of animal endocrine status is the glucocorticoid (GC) metabolite measurements, which can provide important information about how animals are affected by their surrounding environment. Here, we carried out the biological validation of corticosterone enzyme immunoassays (EIAs), which together with a cortisol EIA was used to quantify the concentrations of urofaecal GC metabolites (uGCMs) in wild and captive Blue-fronted amazon parrots (*Amazona aestiva*). Urofaecal GC concentrations were significantly higher ($P < 0.05$) in free-living parrots (157.9 ± 18.5 ng cortisol/g and 61.14 ± 23.5 ng corticosterone/g dry urofaecal sample) than in those kept in captivity, which showed the comparable levels of GC metabolites independently of the management system applied. The higher uGCM levels obtained in the wild population point to an adaptive response for survival and species propagation in a more challenging environment, in comparison with captive animals. Furthermore, the lower uGCM concentrations in captive parrots may indicate an adaptive capacity of the species *A. aestiva* to captivity and its potential as a legal pet. The corticosterone EIA applied in this study proved to be an effective technique for the adrenocortical activity monitoring in this species. We discuss our findings considering the management and destiny given to wild-caught birds that are kept in confinement or returned to nature.

Key words: Psittacidae, cortisol, captivity, corticosterone, urofaecal glucocorticoid metabolites

Editor: Steven Cooke

Received 20 March 2019; Revised 28 September 2019; Editorial Decision 3 November 2019; Accepted 11 November 2019

Cite as: Vidal AC, Roldan M, Christofoletti MD, Tanaka Y, Galindo DJ, Duarte JMB (2019) Stress in captive Blue-fronted parrots (*Amazona aestiva*): the animalists’ tale. *Conserv Physiol* 7(1): coz097; doi:10.1093/conphys/coz097.

Introduction

The Psittacidae family represents one of the most challenging avian groups to be studied currently, since one-third of all known parrot species are considered at risk (Berkunsky et al., 2017). Brazil is home to the largest number (87) of Psittacidae species in the world (Forshaw, 1989), although approximately half of these species are under a category of threat in the Red List of Threatened Species of the International Union for Conservation of Nature and Natural Resources (IUCN) (IUCN, 2018). Among Brazilian parrots, the Blue-fronted amazon (*Amazona aestiva*), also known as Blue-fronted
parrot, Turquoise-fronted amazon or Turquoise-fronted parrot, is of particular interest for being one of the most popular parrot species kept in captivity (Seixas and Mourão, 2002). It has a wide range of distribution, from northeast Brazil to Bolivia, Paraguay and northern Argentina, and a large variety of habitats, mainly forested and Cerrado areas (Juniper and Parr, 1998), although they can also be found practically throughout the country flying in flocks or couples.

Despite its current classification as Least Concern by the IUCN, this is one of the most common illegal traded parrots in Brazil and other Latin American countries (Pires, 2012). It is widely prized as a pet because of its sociability, intelligence, striking plumage and ability to copy different sounds and imitate the human voice (Tella and Hiraldo, 2014). Accurate data on the annual number of parrots taken from their natural habitat to supply the illegal pet trade are unknown, but the extensive trade pressure has justified its inclusion in the ‘National Action Plan for the Conservation of Threatened Parrots of the Atlantic Forest’ in Brazil (Lopes et al., 2018). Chick poaching from nests for the pet trade and habitat destruction by direct human activities are causing an alarming decline in this and other Amazonia species populations (Juniper and Parr, 1998; Wright et al., 2001; Berkunsky et al., 2017). In Argentina, where the practice of removing wild animals from nature in quotas was legal, the number of Blue-fronted parrots authorized for export as part of the pet trade by Argentinean provinces between 1983 and 1991 was over 360 000 individuals (Beissinger and Bucher, 1992), revealing the strong presence of this species as a pet. In Brazil, besides private households, the Blue-fronted amazon is also very frequently found in zoos and in rescue government centres such as Centres of Rehabilitation of Wild Animals or Wild Animals Selection Centres. In addition, these birds are among the most common species kept in captivity in this country (Kuhnen et al., 2012), although their adaptation to the artificial habitats does not always happen. Unlike dogs and cats, which have been under human selection for thousands of years to become permanent pet companions, parrots are only in the very early stages of domestication and are genetically comparable to their wild ancestors, presenting, therefore, similar needs in captivity (Meehan et al., 2003; Williams et al., 2017). In this sense, when basic requirements are not provided, captive psittacines have a high predisposition to develop behavioural disorders associated with chronic stress (Ferreira et al., 2015).

In birds, like in mammals, the secretion of adrenal-derived glucocorticoid (GC) hormones is an important mechanism for dealing with stressors so that they are widely used as biomarkers to examine welfare and the adrenocortical status in a variety of taxa (Millsbaugh and Washburn, 2004). Whereas cortisol is the major endogenous GC released in fish and most mammals, corticosterone is primarily secreted in birds, reptiles, amphibians and some rodents (Romero, 2004). These stress hormones are physiologically secreted at relatively low levels in undisturbed animals (baseline thereafter), fluctuating with circadian and seasonal rhythms in accordance with predictable metabolic demands to maintain the animal homeostasis (Reeder and Kramer, 2005). Although an acutely short-term secretion in response to unexpected perturbations in the environment, such as storms or predation, allows animals to cope with emergency situations, elevated GC levels over a prolonged period (chronic stress) may negatively influence their fitness, even leading to failure in reproductive function (Landys et al., 2006; Thierry et al., 2013). Unfortunately, it is currently difficult to differentiate whether elevated GC levels are secreted in response to unhealthy chronic stress or a healthy coping response. Knowing the baseline GC levels is, in many cases, the only way to answer important questions about stress physiology in wild birds, but this approach presents some limitations. For example, obtaining adequate and repeated blood samples in wild and/or small animals, such as many bird species, is particularly challenging, and the procedure itself may raise doubts about the interpretation of the adrenocortical responses because GC levels can increase in response to the handling stress (Touma and Palme, 2005; Palme, 2019). In fact, researchers have considered that only samples collected in less than 3 min after capture will allow for accurate measurements of the baseline GC concentrations (Romero and Reed, 2005). To tackle all these drawbacks, non-invasive methods have been extensively developed in the last decades, being the measurement of faecal GC metabolites one of the most used procedures for stress assessment in domestic and wild vertebrates (Millsbaugh and Washburn, 2004). In parrots, different studies have also applied such methods to non-invasively monitor increased adrenocortical activity in different species (e.g. Owen and Lane, 2006; Ferreira et al., 2015; Costa et al., 2016). And, although only some of them use fully validated methods, this approach seems to offer a very attractive sampling alternative for this group of birds (Young and Hallford, 2013; Ferreira et al., 2015; de Almeida et al., 2018). Understanding how the physiology of parrot changes with their environment becomes crucial for their conservation. Therefore, we aimed at investigating the influence of different management systems on the urofaecal glucocorticoid metabolites (uGCM) excretion of free-living and captive individuals of A. aestiva. Our work will also promote a discussion about the need to return captive animals to nature and encourage more studies directed to the welfare of species in captivity.

Material and methods

Animal study and sample collection

This study was approved by the Animal Ethics and Welfare Committee (Comitê de Ética e Bem-estar Animal) of the School of Agricultural and Veterinarian Sciences (Faculdade de Ciências Agrárias e Veterinárias, FCAV) UNESP, Jaboticabal, SP, Brazil (protocol number 009350/11).

In avian species, faeces and urine are mixed in the cloaca and both portions are usually excreted together in form of
droppings (Möstl et al., 2005). Although in some occasions it is possible to separate these two fractions, using them together as a single sample has been recommended to achieve a more integrated estimate of the total hormones (Millsbaugh and Washburn, 2004). Therefore, we collected complete droppings (also referred as urofaecal samples) of 86 Blue-fronted parrots of different origins (wild, commercial breeder, zoo and pets) in Brazil between July and August 2011 (see Fig. 1). Most samples were collected between 12:00 and 18:00 p.m. for all groups, thereby attenuating any circadian influence in hormone levels. All droppings were placed in individually labelled plastic microtubes and kept frozen at −20°C until further analysis.

Wild animals

Urofaecal samples of 24 animals from a free-living population of the Pantanal region in the State of Mato Grosso do Sul, specifically from the Fazenda San Francisco, were collected from collective feeders set for tourist observation of different psitacid species. Defecations were observed from a distance not to disturb the animals, and droppings were collected immediately after defecation to avoid sample mixing, in plastic sheets previously placed under the feeders.

Commercial breeder animals

Ten males and 10 females of Blue-fronted parrots from the Brisa commercial breeder, located in Jaboticabal, State of São Paulo, Southeastern Brazil (21°16′46″S, 48°13′43″W; Licenses IBAMA CTF: 263703, AM: 00024/2008-SP and SMA AM:118748/2015), were sampled. Adult animals (≥4 years old) were pair-housed in suspended breeding aviaries (1 m high × 1 m wide × 2 m deep) with visual sidebars, equipped with external vertical wooden nest boxes (45 cm high × 20 cm wide × 20 cm deep) and located one meter above the ground. Some animals came from rescue centres (i.e. seized from illegal parrot traders) and others were born at the breeder, but all...
Table 1: Information about the Blue-fronted parrots’ management maintained as pets in private houses (Jaboticabal/SP)

Individual	Age (year)	Handling	Feeding
1	1	Animal contained within the cage only at night	Ration, fruits
2	30	Animal contained within the cage only at night	Sunflower seeds, rice, cookies, fruits, potatoes
3	10	Animal contained within the cage only at night	Sunflower seeds, rice, cookies, fruits, potatoes
4	15	Animal contained within the cage only at night	Fruits, sunflower seeds, bread with coffee, lettuce
5	8	Animal contained within the cage only at night	Seed mix, fruits, bread with coffee, cookies
6	6	Animal contained within the cage only at night	Seed mix, fruits, bread with coffee, cookies
7	20	Animal contained within the cage only at night	Sunflower seeds, corn, peanuts, fruits
8	12	Animal on the loose all day	Fruits, seed mix
9	2	Animal contained within the cage only at night	Sunflower seeds, apple, bread
10	1	Animal contained within the cage only at night	Sunflower seeds, cornmeal, cookies, fruits
11	1	Animal held in the cage most of the day	Ration, Sunflower seeds, seed mix, fruits
12	5	Animal held in the cage most of the day	Sunflower seeds, fruits, popcorn, bread
13	5	Animal held in the cage most of the day	Sunflower seeds, fruits, popcorn, bread
14	30	Animal contained within the cage only at night	Sunflower seeds, home-cooked food, bread
15	17	Animal held in the cage all day	Sunflower seeds, corn, fruits, vegetables
16	17	Animal held in the cage all day	Sunflower seeds, corn, fruits, vegetables
17	2	Animal contained within the cage only at night	Fruits, Sunflower seeds, cake, bread with milk
18	3	Animal held in the cage most of the day	Pelleted ration, fruits, sunflower seeds
19	*	Animal contained within the cage only at night	Fruits, seed mix, bread
20	*	Animal held in the cage most of the day	Sunflower seeds, fruits

*The age of parrots was considered as the period between the moment they arrived at the private house and the experiment time.

Urophaecal samples of 22 individuals were collected at the Municipal Zoo of Piracicaba, in the State of São Paulo. All animals were housed in a collective enclosure and came to the zoo as chicks, being in confinement for a longer period prior to the onset of the study. Samples were collected as described for the wild animals, except that the plastic tarpaulins were placed underneath two of the main perches in the enclosure.

Zoo animals

Urophaecal samples of 22 individuals were collected at the Municipal Zoo of Piracicaba, in the State of São Paulo. All animals were housed in a collective enclosure and came to the zoo as chicks, being in confinement for a longer period prior to the onset of the study. Samples were collected as described for the wild animals, except that the plastic tarpaulins were placed underneath two of the main perches in the enclosure.

Pets

Twenty parrots living as pets in individual cages in family houses were used. Type of feed and handling were documented to identify possible variations among these samples (Table 1). The urophaecal samples were collected 1 h after the cages were cleaned, and these were considered as a single sample.

Biological validation of the corticosterone enzyme immunoassay

The validation procedure was conducted on a male and a female maintained in individual cages in our research centre where they spent 30 days to adapt to their new environment before starting the biological validation procedure. The animals were physically immobilized and held in the hands for 30 min to provoke a stressful stimulus. The urophaecal collection started just after the end of the restraint period (time 0), and it continued at 2-h intervals for a period of 38 h. Droppings from both individuals were available at all collection intervals, except at 24 h in the case of the female, and presented no abnormal characteristics during all the experiment. The samples were treated in the same way as those from the other groups. Some urophaecal samples were also collected prior to the validation procedure to establish natural concentrations of GCM. The corticosterone enzyme immunoassay (EIA) successfully detected the expected increase in corticosterone metabolites (CMs) following...
the physical restraint (Fig. 2). Such a procedure caused a very comparable adrenocortical response in both sexes achieving values of 40 ng/g in the male after 6 h and 41 ng/g in the females after 4 h. A second CM rise can be observed after 24 and 30 h in the male and female, respectively.

Extraction of uGCM

Urofaecal samples were first dried in an oven (Mod. 320-SE, Fanem Ltda., São Paulo, Brazil) at 56°C for ~72 h according to the method previously described by Hamasaki et al. (2001). The extraction procedure was based on the protocol described previously by Touma et al. (2003). Briefly, 1 ml of 80% methanol was added to 0.05 g (±0.002) of pulverized samples placed into 5 ml centrifuge tubes, and the mixture was agitated in a vortex for 30 min. Samples weighing less than 0.05 g received a proportional volume of methanol, and those weighing less than 0.01 g were excluded from the analysis. The samples were then shaken for 12 h on a mechanical shaker (Mod. AP22, Phoenix Ltda, Araraquara, Brazil), and the extracts were subjected to ‘centrifugation’ at 1500 rpm for 20 min, with the resulting supernatant stored in a −20°C freezer until further analysis.

Enzyme immunoassays

Urofaecal cortisol concentrations were determined using a previously validated cortisol EIA for this species (Fujihara et al., 2014). Polyclonal cortisol antiserum (R4866) and horseradish peroxidase (HRP) ligands were supplied by Dra. Coralie Munro (Clinical Endocrinology Laboratory, University of California, Davis, CA, USA) and used at 1:8500 and 1:20 000 dilutions, respectively, with cortisol standards varying from 3.9 to 1000 pg/well. The antiserum presented the following cross-reactivities (provided by the laboratory): 100% cortisol, 58.3% prednisolone, 10.9% prednisone, 7.0% cortisone, 5.7% 11-deoxycortisol, 1.9% 21-deoxycortisol, 0.9% 17α-hydroxyprogesterone, 0.9% dexamethasone, 0.4% triamcinolone and <0.004% corticosterone, progesterone and DHEA. Urofaecal corticosterone levels were determined using the same EIA for cortisol with some modifications: 33.3 μl of corticosterone CJM06
antibody (also supplied by Dra. C. Munro) were initially pipetted onto micro plates for incubation, and the polyclonal anticorticosterone antiserum and the HRP conjugated corticosterone label were diluted to 1:15 000. Cross-reactivity of the CJM06 anti-corticosterone antiserum was reported as 100% with corticosterone, 14.25% with deoxycorticosterone and 0.9% with tetrahydrocorticosterone (provided by the laboratory).

Immunooassays were validated for Blue-fronted parrot droppings by demonstrating parallelism between serial dilutions of urofaecal extracts (diluted to 1:2-1:2048) and the respective standard curve (20 ng/ml). The sensitivity of the assays was calculated as the value 2 SD from the mean response of the zero (Bo) tube, being 0.60 ng/g (n = 15) and 1.96 ng/g (n = 10) for cortisol EIA and corticosterone EIA, respectively. Inter-assay coefficients of variation (CV) for low (∼30%) and high (∼70%) value quality controls were 3.1 and 7.4% for the corticosterone EIA and 11.8 and 15.7% for the cortisol EIA, respectively. All samples were re-analysed if the duplicate CV was >10%; therefore, intra-assay CV were <10% for both EIA. All urofaecal GC concentrations were expressed as ng/g dry matter.

Data analysis

The data sets were presented as mean ± SEM and were analysed using GraphPad Prism software version 6.0 (GraphPad Prism Statistical Software, Inc., CA, USA). The uGCM data were normally distributed and were ln-transformed prior to analysis to normalize errors and graphical representation. A one-way analysis of variance with Tukey’s Multiple Comparison (Post hoc) Test was performed to compute simple associations and comparisons between the different parameters and the four experimental groups. Differences of P < 0.05 were taken as significant for all statistical tests.

Results

uGCM concentrations of free-ranging and captive Blue-fronted parrots under different management systems were compared and the results are shown in Fig. 3. GC levels in droppings from wild parrots ranged from 61- to 303-ng/g urofaecal sample, with a mean of 174 ng/g for cortisol, and from 33- to 87-ng/g urofaecal sample, with a mean of 61 ng/g for corticosterone. In captive parrots, urofaecal cortisol and CM concentrations varied, respectively, between 31 and 112, and 11- and 54-ng/g urofaecal sample, with means of 72- and 33-ng/g urofaecal sample. Free-living parrots presented significantly higher uGCM concentrations in comparison with those kept in captivity. In addition, all captive groups showed comparable levels of urofaecal cortisol metabolites independently of the management system applied, whereas CM levels were slightly but significantly higher for the parrots from the commercial breeder, compared with the animals kept in the zoo or living as pets. These results point to a marked effect (P < 0.05) of the environment on the adrenal activity.

Discussion

We aimed to investigate the influence of different management systems on excreted GC levels from wild and captive Blue-fronted parrots using a cortisol and corticosterone EIA. Results of the physical restraint showed that the corticosterone EIA can be used for quantifying CM in urofaecal samples of Blue-fronted amazon and, consequently, for monitoring adrenocortical response in captive and free-ranging individuals. Moreover, different studies have already demonstrated the possibility of using other validated EIA to evaluate the hypothalamic-pituitary-adrenal (HPA) axis in this species (Fujihara et al., 2014; Ferreira et al., 2015). As shown in Fig. 2, the restraint was stressful enough to provoke urofaecal CM peaks. The first peaks appeared only a few hours after the procedure in both sexes, between 4 and 6 h, in agreement with the reported gut-passage delay times (2.1–5.5 h) in Amazon parrots (McMillan, 1994). In this same species, Ferreira et al. (2015) obtained similar results using a cortisone assay reporting peaks 3–9 h after stimulation by Adrenocorticotropic hormone (ACTH) challenge in both sexes, whereas Fujihara et al. (2014), using a cortisol assay, obtained more diverse results with peaks between 2 and 4 h after the ACTH administration for males and 10 h after in females. Furthermore, these results are comparable with those reported by de Almeida et al. (2018) in blue-and-yellow macaws (Ara ararauna) or by Sinhorini (2013) in golden parakeets (Guaruba guarouba), who reported a second peak 20 h and between 11 and 15 h after the Adrenocorticotropic hormone (ACTH) challenge, respectively.

Although non-invasive methods have already been used to measure stress response in captive Blue-fronted parrots
with a potential beneficial effect, increases in GC baseline disturbances (McEwen and Wingfield, 2003). However, even that allow animals to deal with unpredictable environmental inferred that these differences in GC values among wild and cap-
available for this species in their natural environment, we can infer their chances of finding food (van Zeeland et al., 2013), are therefore supposed to have higher GC levels than those with more limited activity.

This study was carried out at the onset of the reproductive period of this species, a very energetically demanding period that typically results in an elevation of the GC basal levels (Romero, 2002). This energy demand, however, seems to be lower in animals under captivity compared with their wild counterparts, probably because it is associated with their lower foraging requirements (Speakman, 2005). These findings are in agreement with those reported by Gardiner and Hall (1997) who observed that reproductive free-living harbour seals (Phoca vitulina) presented higher cortisol levels than those kept in captivity, likely triggered by a stronger dispute for food and mates. Therefore, reproduction may be responsible, in part, for the higher stress hormone levels in free-ranging parrots. This is supported by the fact that CM concentrations in the commercial breeder parrots are increased when compared with other captive animals in the zoo or living as pets, which were not reproducing. However, such an increase in GC levels during reproduction can be considered normal and even necessary to increase the chances of reproductive success in birds (Pereira et al., 2018). For example, in the breeding period, increased GC concentrations were essential for promoting the foraging activity to achieve a good body condition (Stearns, 1992; Descamps et al., 2011; Hennin et al., 2016) and for enhancing the parental reproductive effort (Romero, 2002; Love et al., 2004; Thierry et al., 2013). Although no additional data on stress hormone levels are available for this species in their natural environment, we can infer that these differences in GC values among wild and captive parrots are attributed to non-stressful adaptive strategies that allow animals to deal with unpredictable environmental disturbances (McEwen and Wingfield, 2003). However, even with a potential beneficial effect, increases in GC baseline have been traditionally considered as pernicious, placing these physiological responses at the same level as those that occur in reactions to unexpected and life-threatening stimuli, in which energetic demand increases and corticoids are acutely released (Scheuerlein et al., 2001). The breeding success and the lack of abnormal behaviours and the population stability observed since 1997 (Seixas, 2009) in our free-living group seem to suggest that the higher uGCM concentrations obtained in this individuals are normal physiological levels for them.

Lack of food has been closely associated with higher GC secretion in wild birds (Kitaysky et al., 1999, 2001; Lendvai et al., 2014). In the case of the free-living Blue-fronted amazon parrots, the urofaecal samples were collected in July, at the onset of the dry season, when food availability is at its highest for these animals in the Pantanal region (Seixas, 2009). But, in addition to natural resources, these animals received an extra supplementation of food provided by the Fazenda San Francisco staff to bring these parrots closer to tourists, thus helping to meet part of their daily energy demand. This situation of abundant food is another reason why we hold the opinion that the uGCM levels obtained from this group of parrots in the Pantanal region are normal. Therefore, the use of these values as a baseline for this species would allow evaluating the effect of different captive management systems on the GC secretion and, consequently, the appearance of stress.

In general, captive animals do not have to deal with the stress-inducing factors that normally exist in natural environments such as predation, lack of food, or adverse weather conditions. This more protective environment could help animals to keep low GC profiles such as those observed in all captive parrots used in this report independently of the husbandry system. These results are in agreement with those reported in Siberian tigers, where the exposure to severe environmental conditions resulted in a significantly higher HPA axis activity in free-living tigers compared with captive tigers, more sheltered by the zoo facilities (Naidenko et al., 2011). However, captivity by itself is a limiting factor for animals, and in some occasions, they are unable to adapt with a consequent increase in their GC levels, as reported in a study comparing faecal cortisol metabolites levels between captive and wild cheetah (Acinonyx jubatus) (Terio et al., 2004). In such case, however, the poor genetic variability of this species is suggested as one of the reasons for chronic stress in these animals. Unlike cheetahs, the Blue-fronted amazon has a high genetic diversity (Caparroz et al., 2000), allowing its populations to adapt better to challenging environments.

Acclimatisation appears to be an important aspect of stress in captivity. Unacclimated wild-caught sparrows also presented higher corticosterone values in comparison to their wild, free-living counterparts (Marra et al., 1995). For Gray wolves (Canis lupus), corticosteroid-induced alkaline phosphatase activity, an isoenzyme commonly used to quantify stress in canids (Ochi et al., 2013), was detected in some of the free-ranging wolves but not in long-term captive animals (Constable et al., 1998). In our study, all the captive parrots were under captivity for years before the faecal sample collection, having already been habituated to the confinement conditions and, consequently, showing a lower stress response. Although chronic stress has also been associated with low GC levels in birds (Rich and Romero, 2005; Cyr et al., 2014; Ferreira et al., 2015; Queiroz et al., 2016; Matos et al., 2017), this is the first study to quantify GC concentrations in a wild population of this species. Significantly higher GC levels were obtained in free-living parrots, which may be associated with a more challenging and, consequently, a more energetically demanding living environments compared with those provided to captive parrots. Activities such as foraging, immune responses or thermoregulation entail a doubtless expenditure of energy that is reflected in a higher GC baseline (Goymann et al., 2017; Jimeno et al., 2017). Wild parrots, which spend a significant part of the day in foraging activities, flying even kilometres to increase their chances of finding food (van Zeeland et al., 2013), are therefore supposed to have higher GC levels than those with more limited activity.
and Romero, 2007) and could account for our findings with captive parrots, this is unlikely to be the case, especially for the favourable reproductive outcomes obtained by the breeding animals, suggestive of absence of chronic stress (Möstl and Palme, 2002). Moreover, it is well known that chronic stress plays a very important role in the development of behaviour disorders in captive parrots, such as the feather damaging behaviour (van Zeeland et al., 2009; Ferreira et al., 2015; Costa et al., 2016). This abnormal behaviour is commonly used to measure welfare in both production and zoo animals (Dixon, 2008), and it is also very frequently observed in Psittacidae species (see review Van Zeeland et al., 2013), including Amazona spp. parrots (Garner et al., 2006), maintained in suboptimal environment conditions (Costa et al., 2016). We can thus infer that the low GC levels in these animals may not be attributed to chronic stress but to the good captive conditions provided to the animals in all husbandry systems studied. Although not statistically significant, parrots from private houses, which probably received more attention and loving care by the owners, showed the lowest levels of uGCM, supporting the idea of good living conditions provided to these animals. In this context, the parrots kept as pets frequently share a similar life story, being illegally captured in the wild as chicks and hand-rearing to encourage imprinting. In this way, the owners manage to maintain a close and loving relationship with their companion animals (Low, 1985). Hundreds of parrot chicks are annually seized from the illegal wildlife trade in Brazil and sent to rehabilitation centres where they receive care until they are ready to fly and return to the wild, preferentially (Santos and Lopes, 2006). However, the indiscriminate release of hundreds of hand-reared animals can result in serious problems for natural populations such as diseases (Raso et al., 2004; Ecco et al., 2009; Godoy and Matushima, 2010; Saidenberg et al., 2012), behavioural disorders (Chapple et al., 2012) or exogamic depression (Banes et al., 2016). In fact, during our sample collection, we witnessed the release of a captive group of Blue-fronted parrots in the Fazenda São Francisco area, which showed behavioural disorders a few months later. The sudden change of habitat could have lead them to an allostatic overload of their regulatory systems, preventing the development of an adequate adrenocortical response by the HPA axis (Matos et al., 2017) and causing a maladaptation of these animals in the wild (Santos and Lopes, 2006). This unsatisfactory stress response has been already further underlined by some studies that associated low GCM levels in domesticated or captive animals has been already further underlined by some studies that associated low GCM levels in domesticated or captive animals with poor welfare or disease (Dorsey et al., 2010; Pawluski et al., 2017). Therefore, in a situation where captive Blue-fronted parrots show no signs of chronic stress, the real biological value of their release in nature is questionable. Once adapted to captivity, these individuals might be better suited to other purposes, such as environmental education in zoos, or as breeding animals in registered breeders to produce parrots destined to the pet legal market (Alves et al., 2013).

In conclusion, the biological validation carried out in this study shows that this corticosterone EIA is capable of monitoring biologically relevant changes in uGCM in the captive and free-living Blue-fronted parrots. To our knowledge, this is the first study to measure stress hormone levels in a natural population of this species. The higher uGCM levels obtained in the wild population point to an adaptive response for their survival and the species propagation in a more challenging environment, in comparison to captive animals with lower concentrations. This study showed how appropriate captive conditions may contribute to reducing uGCM levels in parrots. However, low GC concentrations cannot be considered per se as a welfare indicator, but they must be complemented with the determination of other parameters such as breeding success and/or the absence of abnormal behaviours, frequently observed in this group of birds. The results obtained from captive parrots should help to spread a more adequate idea about captivity, showing that it is not a stressful habitat for wildlife despite being frequently labelled as such. A good understanding about the biology of the species, including the ‘basal’ levels of the stress hormones in captive and free-living animals, could also help to prevent the development of chronic stress or to apply corrective measures to improve the welfare and conservation both in situ and ex-situ. Overall, we hope to highlight the high capacity of the Blue-fronted amazon parrot to adapt to captivity conditions and its potential as a legalized pet, thus encouraging a higher presence of this species in private houses and in registered breeders. As the pet market grows, legal reproduction of Psittaciiformes in captivity could become an important tool for the conservation of natural populations. However, professional breeding and further research to improve the reproductive outcomes of this species in captivity are extremely necessary.

Acknowledgements

The authors are grateful to the authorities and staff from the Municipal Zoo of Piracicaba, the Fazenda São Francisco and the Brisa commercial breeder, as well as the owners of the parrots from private houses for all their provided support. We thank the São Paulo Research Foundation for the financial support of this research (FAPESP Process N. 2010/20412-3). The first author carried out the samples collection and performed part of the hormone analyses at the lab. The second performed some of the hormone analyses at the lab, helped with the data analysis and led the manuscript writing with support from the fourth author. The third helped plan and supervise the project, helped with the sample collection and analysed the data. The fourth and the fifth authors conducted the biological validation procedure. The sixth author conceived the study and was in charge of overall direction and planning. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Funding

This work was supported by the São Paulo Research Foundation (FAPESP Process N. 2010/20412-3 to A.C.V.) and
the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

Alves RRN, Lima JRF, Araujo HFP (2013) The live bird trade in Brazil and its conservation implications: an overview. Bird Conserv Int 23: 1–13.

Banes GL, Galdikas BMF, Vigilant L (2016) Reintroduction of confiscated and displaced mammals risks outbreeding and introgression in natural populations, as evidenced by orangutans of divergent subspecies. Sci Rep 6: 1–9.

Beissinger SR, Bucher EH (1992) Can parrots be conserved through sustainable harvesting? Bioscience 42: 164–173.

Berkunsky I, Segura LN, Ruggera RA, Faegre SIK, Trofino-Falasco C, López FG, Velasco MA, Kacoliris FP, Aramburu RM, Reboreda JC (2017) Reproductive parameters of the turquoise-fronted parrot (Amazona aestiva) in the dry Chaco forest. Avian Conserv Ecol 12. doi: 10.5751/ace-01071-120206.

Caparroz R, Martuscelli P, Yamashita C, Scherer-Neto P, Guedes N, Bianchi C, Miyaki C, Wajntal A (2000) Análise da vulnerabilidade de populações silvestres de psitacideos neotropicais: enfoque na diversidade genética. In FC Straube, MM Argel-de-Oliveira, JF Cândido Jr, eds. Ornitologia Brasileira No Século XX, Universidade do Sul de Santa Catarina (UNISUL): Sociedade Brasileira de Ornitologia (SBO). Curitiba, pp. 301–302

Chapple DG, Simmonds SM, Wong BBM (2012) Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol Evol 27: 57–64.

Constante P, Hinchcliff K, Demma N, Callahan M, Dale B, Fox K, Adams L, Wack R, Kramer L (1998) Serum biochemistry of captive and free-ranging gray wolves (Canis lupus). J Zoo Wildl Med 29: 435–440.

Costa P, Macchi E, Valle E, De Marco M, Nucera DM, Gasco L, Schiavone A (2016) An association between feather damaging behavior and corticosterone metabolism in captive African grey parrots (Psittacus erithacus). PeerJ 4:e2462.

Cyr NE, Romero LM (2007) Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen Comp Endocrinol 151: 82–89.

de Almeida AC, Palme R, Moreira N (2018) How environmental enrichment affects behavioral and glucocorticoid responses in captive blue-and-yellow macaws (Ara ararauna). Appl Anim Behav Sci 201: 125–135.

Descamps S, Béty J, Love OP, Gilchrist HG (2011) Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. Funct Ecol 25: 671–681.

Dixon LM (2008) Feather pecking behaviour and associated welfare issues in laying hens. Avian Biol Res 1: 73–87.

Dorsey C, Dennis P, Guagnano G, Wood T, Brown JL (2010) Decreased baseline Fecal glucocorticoid concentrations associated with skin and oral lesions in black rhinoceroses (Diceros bicornis). J Zoo Wildl Med 41: 616–625.

Ecco R, Preis IS, Martins NRS, Vilela DAR, Shivaprasad LH (2009) An outbreak of chlamydiosis in captive psittacines. Brazilian J Vet Pathol 2: 85–90.

Ferreira JCP, Fujihara CJ, Fruhvald E, Trevisol E, Destro FC, Teixeira CR, Pantoja JCF, Schmidt EMS, Palme R (2015) Non-invasive measurement of adrenocortical activity in Blue-fronted parrots (Amazona aestiva, Linnaeus, 1758). PLoS One 10: 1–14.

Forshaw JM (1989) Parrots of the World. Lansdowne Editions, Sidney, p. 573.

Fujihara CJ, Filho WCM, Monteiro ALR, Bittencourt RF, Queiroz CM, Pereira RUG, Ferreira JCP (2014) Measurement of glucocorticoid and progesterone metabolites in feces of blue fronted parrot (Amazona aestiva). Cién Anim Bras 15: 277–288.

Gardiner KJ, Hall AJ (1997) Diet and annual variation in plasma cortisol concentrations among wild and captive harbor seals (Phoca vitulina). Can J Zool 75: 1773–1780.

Garner JP, Meehan CL, Famula TR, Mench JA (2006) Genetic, environmental, and neighbor effects on the severity of stereotypies and feather picking in Orange-winged Amazon parrots (Amazona amazonica): an epidemiological study. Appl Anim Behav Sci 96: 153–168.

Godoy SN, Matushima ER (2010) A survey of diseases in passeriform birds obtained from illegal wildlife trade in São Paulo City, Brazil. J Avian Med Surg 24: 199–209.

Goymann W, Trappschuh M, Urasa F (2017) Corticosterone concentrations reflect parental expenditure in contrasting mating systems of two coucal species. Front Ecol Evol 5: 15.

Hamasaki S, Yamauchi K, Ohki T, Murakami M, Takahara Y, Takeuchi Y, Mori Y (2001) Comparison of various reproductive status in Sika Deer (Cervus nippon) using fecal steroid analysis. J Vet Med Sci 63: 195–198.

Hennin HL, Wells-Berlin AM, Love OP (2016) Baseline glucocorticoids are drivers of body mass gain in a diving seabird. Ecol Evol 6: 1702–1711.

IUCN (2018) The IUCN Red List of Threatened Species. Version 2018 1. http://www.iucnredlist.org (last accessed 15 January 2018).

Jimeno B, Hau M, Verhulst S (2017) Strong association between corticosterone levels and temperature-dependent metabolic rate in individual zebra finches. J Exp Biol 220: 4426–4431.

Juniper T, Parr M (1998) Parrots. A Guide to Parrots of the World. Yale University Press, Connecticut.

Kitaysky AS, Wingfield JC, Piatt JF (1999) Dynamics of food availability, body condition and physiological stress response in breeding black-legged kitiwakes. Funct Ecol 13: 577–584.

Kitaysky AS, Wingfield JC, Piatt JF (2001) Corticosterone facilitates begging and affects resource allocation in the black-legged kittiwake. Behav Ecol 12: 619–625.

Kuhnen V, Remor J, Lima R (2012) Breeding and trade of wildlife in Santa Catarina state. Brazil B J Biol 72: 59–64.
Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148: 132–149.

Lendvai AZ, Ouyang QJ, Schoenle LA, Fasanello V, Haussmann MF, Bonier F, Moore IT (2014) Experimental food restriction reveals individual differences in corticosterone reaction norms with no oxidative costs. PLoS One 9: e105564.

Lopes ARS, Rocha MS, Mesquita WU, Drumond T, Ferreira NF, Camargos RAL, Vieira DAR, Azevedo CS (2018) Translocation and post-release monitoring of captive-raised Blue-fronted amazons (Amazona aestiva). Acta Ornithol 53: 37–48.

Love OP, Breuner CW, Vézina F, Williams TD (2004) Mediation of a corticosterone-induced reproductive conflict. Horm Behav 46: 59–65.

Low R (1985) A Criação de Papagaios. Presença, Lisboa.

Marra PP, Lampe KT, Tedford BL (1995) Plasma corticosterone levels in two species of Zonotrichia sparrow under captive and free-living conditions. Wilson Bull 107: 296–305.

Matos LSS, Palme R, Silva Vasconcellos A (2017) Behavioural and hormonal effects of member replacement in captive groups of blue-fronted amazon parrots (Amazona aestiva). Behav Processes 138: 160–169.

McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43: 2–15.

McMillan MC (1994) Imaging Techniques. In BW Ritchie, GJ Harrison, LR Harrison, eds, Avian Medicine, Principles and Application. Wingers Publishing Inc., Lake Worth, FL, pp. 256–259.

Meehan CL, Garner JP, Ménch JA (2003) Isosexual pair housing improves the welfare of young Amazon parrots. Appl Anim Behav Sci 81: 73–88.

Millsbaugh JJ, Washburn BE (2004) Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138: 189–199.

Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23: 67–74.

Möstl E, Rettenbacher S, Palme R (2005) Measurement of corticosterone metabolites in birds’ droppings: an analytical approach. Ann NY Acad Sci 1046: 17–34.

Naidenko SV, Ivanov EA, Lukarevskii VS, Hernandez-Blanko JA, Sorokin PA, Litvinov MN, Kotliar AK, Rozhnow VV (2011) Activity of the hypothalamo-pituitary-adrenals axis in the Siberian tiger (Panthera tigris altaica) in captivity and in the wild, and their dynamics throughout the year. Biol Bull 358–363.

Ochi T et al. (2013) Effects of transport stress on serum alkaline phosphatase activity in beagle dogs. Exp Anim 62: 329–332.

Owen DJ, Lane JM (2006) High levels of corticosterone in feather-plucking parrots (Psittacus erithacus). Vet Rec 158: 804–805.

Palme R (2019) Non-invasive measurement of glucocorticoids: advances and problems. Physiol Behav 199: 229–243.

Pawluski J, Jego P, Henry S, Bruchet A, Palme R, Coste C, Hausberger M (2017) Low plasma cortisol and fecal cortisol metabolite measures as indicators of compromised welfare in domestic horses (Equus caballus). PLoS One 12: e0182257.

Pereira RUG, Christofoletti MD, Blank MH, Duarte JMB (2018) Urofetal steroid profiles of captive Blue-fronted parrots (Amazona aestiva) with different reproductive outcomes. Gen Comp Endocrinol 260: 1–8.

Pires SP (2012) The illegal parrot trade: a literature review. Glob Crime 13: 176–190.

Queiroz CM, Santos GJ, Destro FC, Teixeira CR, Pantoja JC, Schmidt EMS, Palme R, Ferreira JCP (2016) Endocrine response to physical restraint and isolation in blue-fronted parrots. Pesqui Vet Bras 36: 41–45.

Raso TF, Godoy SN, Milanelo L, de Souza CAI, Matuschima ER, Araújo JP, Pinto AA (2004) An outbreak of chlamydiosis in captive Blue-fronted Amazon parrots (Amazona aestiva) in Brazil. J Zoo Wildl Med 35: 94–96.

Reeder DM, Kramer KM (2005) Stress in free-ranging mammals: integrating physiology, ecology, and natural history. J Mammal 86: 225–235.

Rich EL, Romero LM (2005) Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am J Physiol Regul Integr Comp Physiol 288: R1628–R1636.

Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128: 1–24.

Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19: 249–255.

Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol Part A Mol Integr Physiol 140: 73–79.

Saidenberg AB, Teixeira RH, Guedes NMR, Allgayer MC, Melville PA, Benites NR (2012) Molecular detection of enteropathogenic Escherichia coli in asymptomatic captive psittacines. Pesqui Vet Bras 32: 922–926.

Santos EB, Lopes VA (2006) Centro de reabilitação de animais – CRAS. Resultados de soltura de aves silvestres em fazendas no Mato Grosso do Sul. In Relatório de Atividades Das ASM—Áreas de Soltura e Monitoreamento de Animais Silvestres Organizado Pelo IBAMA—SP. São Paulo, pp. 11–14.

Scheuerlein A, Hof TJV, Gwinner E (2001) Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata alexandri). Proc A Soc B Biol Sci 268: 1575–1582.

Seixas GHF (2009) Ecologia Alimentar, Abundância Em Dormitórios e Sucesso Reproductivo Do Papagajo-Verdadeiro (Linnæus, 1758) (Aves: Psittacidae), Em Um Mosaico de Ambientes No Pantanal de Miranda, Mato Grosso Do Sul, Brasil PhD thesis. Universidade Federal de Mato Grosso do Sul.

Seixas GHF, Mourão GM (2002) Nesting success and hatching survival of the Blue-fronted Amazon (Amazona aestiva) in the Pantanal of Mato Grosso do Sul, Brazil. J F Ornithol 73: 399–409.
Sinhorini JA (2013) Estudo Endócrino-Reprodutivo, Não Invasivo de Arara-jubas, Guaruba guarouba (Gmelin, 1788), Mantidas Em Cativeiro PhD thesis. Universidade de São Paulo.

Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208: 1717–1730.

Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, Oxford.

Tella JL, Hiraldo F (2014) Illegal and legal parrot trade shows a long-term, cross-cultural preference for the most attractive species increasing their risk of extinction. PLoS One 9: e107546.

Terio KA, Marker L, Munson L (2004) Evidence for chronic stress in captive but not free-ranging cheetahs (Acinonyx jubatus) based on adrenal morphology and function. J Wildl Dis 40: 259–266.

Thierry AM, Ropert-Coudert Y, Raclot T (2013) Elevated corticosterone levels decrease reproductive output of chick-rearing Adélie penguins but do not affect chick mass at fledging. Conserv Physiol 1: cot007.

Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann N Y Acad Sci 1046: 54–74.

Touma C, Sachser N, Möstl E, Palme R (2003) Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130: 267–278.

van Zeeland YRA, Schoemaker NJ, Ravesteijn MM, Mol M, Lumeij JT (2013) Efficacy of foraging enrichments to increase foraging time in Grey parrots (Psittacus enthacus enthacus). Appl Anim Behav Sci 149: 87–102.

van Zeeland YRA, Spruit BM, Rodenburg TB, Riedstra B, van Hierden YM, Buitenhus B, Korte SM, Lumeij JT (2009) Feather damaging behaviour in parrots: a review with consideration of comparative aspects. Appl Anim Behav Sci 121: 75–95.

Williams I, Hoppitt W, Grant R (2017) The effect of auditory enrichment, rearing method and social environment on the behavior of zoo-housed psittacines (Aves: Psittaciformes); implications for welfare. Appl Anim Behav Sci 186: 85–92.

Wright TF et al. (2001) Nest poaching in Neotropical parrots. Conserv Biol 15: 710–720.

Young AM, Halford DM (2013) Validation of a fecal glucocorticoid metabolite assay to assess stress in the budgerigar (Melopsittacus undulatus). Zoo Biol 32: 112–116.