The Association Between Body Mass Index, Emotional Eating and Perceived Stress during COVID-19 Partial Quarantine in Healthy Adults

Barcın-Güzeldere HK¹,², Devrim-Lanpir A¹

¹İstanbul Medeniyet University, Faculty of Health Science, Department of Nutrition and Dietetics, 34692, Istanbul
²İstanbul Medipol University, Institute of Health Science, Department of Nutrition and Dietetics, 34810, Istanbul

Corresponding author: Hatice Kübra Barcın Güzeldere, İstanbul Medeniyet University, 44 Şehit Hakan Kurban street, 34692, Kartal/Istanbul, +902162803333, haticekubra.guzeldere@medeniyet.edu.tr

Running Title: Emotional Eating and Stress During COVID-19

Acknowledgements
The authors thank all participants included this study.

Financial Support
No financial support was received for this article.

Conflict of Interest
No conflicts of interest between authors.
Authorship
The authors’ responsibilities were as follows—HKBG and ADL: designed the research, analyzed data and conducted the statistical analysis, wrote paper; HKBG: had primary responsibility for final content; and all authors: were involved in critical revisions and read and approved the final manuscript.

Ethical Standards Disclosure
This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving research study participants were approved by the Istanbul Medeniyet University Social and Humanities Research and Publication Ethics Committee. Written informed consent was obtained from all subjects/patients.

Abbreviation List
BMI: Body Mass Index, CoV: Coronaviruses, MERS: Middle East Respiratory Syndrome, SARS: Severe Acute Respiratory Syndrome, WHO: World Health Organization, 2019-nCoV: New Coronavirus, PSS-14: Perceived Stress Scale, EEQ: Emotional Eating Questionnaire
Abstract

Objective: We investigated emotional eating behaviours and perceived stress during COVID-19 partial quarantine according to BMI levels in healthy adults.

Design: Cross-sectional study.

Setting: An online survey included demographic variables, eating attitude-related questions, Emotional Eater Questionnaire (EEQ), and Perceived Stress Score-14 (PSS-14) was sent via online data collection platform. Self-reported weight, height and weight changes during the quarantine were also collected.

Participants: A total of 506 people age between 20-65 years who were partially quarantined due to COVID-19 participated in this study.

Results: Body mass index (BMI) was positively correlated with EEQ (r= 0.205, p=0.001). However, BMI was negatively linked with PSS-14 during COVID-19 (r= -0.125, p=0.001), indicating that participants with lower BMI had higher perceived stress during COVID-19. Participants gained weight during the lockdown situation (+1.20 ± 1.70 kg in men; +0.91 ± 1.40 kg in women). EEQ and PSS-14 scores of women found to be significantly higher than men (9.39 ± 5.37 in men vs. 11.17 ± 5.85 in women for EEQ; 24.67 ± 8.32 in men, vs. 27.99 ± 7.34 in women for PSS-14. Obese participants consumed sweetened and carbonated drinks two-fold more in those compared to other participants.

Conclusion: These findings suggest that partial quarantine may be closely related to emotional eating and weight gain, and participants with higher BMI showed more emotional eating behaviours. Therefore, certain precautions should be considered beforehand in order not to cause long-term eating disorder problems.

Keywords: Emotional Eating, Body Mass Index, Perceived Stress, COVID-19, Quarantine
1. Introduction

Coronaviruses (CoV) is a large family of viruses that can cause not only mild infections seemed in common cold but also more serious infection symptoms such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)\(^{(1)}\). On December 31, 2019, the World Health Organization (WHO) China Country Office reported pneumonia cases of unknown aetiology in Wuhan, China's Hubei province\(^{(1,2)}\). On January 7, 2020, the causative agent was identified as a new coronavirus (2019-nCoV) that has not previously been detected in humans. Later, the name of 2019-nCoV disease was accepted as COVID-19, and the virus was named as SARS-CoV-2 due to its close resemblance to SARS-CoV\(^{(3)}\). COVID-19 causes deaths on a global scale with the number of patients increasing day by day. The number of daily cases shared by the Ministry of Health in Turkey is 5,016,141 in total, 18052 on May 8\(^{(4)}\).

The crucial and frightening feature of COVID-19 is that it can be transmitted from person to person quickly and the infection can be fatal\(^{(5)}\). Therefore, WHO has underlined that the best way to decrease the spread rate of the virus is to implement some precautions including physical and social distancing, partial or full quarantining\(^{(6)}\). Turkish Government has taken various precautions to block virus spread and reduce the number of the patients. Some of these measures in Turkey are the closure of public or crowded places such as schools, universities, cafes, gyms, mosques, quarantine for the elderly and youth, weekend quarantine for everyone and working from home\(^{(7)}\). With this pandemic, it has been reported that the time spent at home was consistently increased\(^{(8,9)}\). Parallel to the increase in the time spent at home, psychological and behavioural alterations may be observed\(^{(8,10–14)}\). Studies on COVID-19 have reported that the prevalence of anxiety disorder, depressive symptoms, perceived stress and post-traumatic stress disorder have increased with the COVID-19 pandemic\(^{(15–20)}\). In addition, studies on COVID-19 have indicated that psychological factors and increased stress due to the COVID-19 pandemic may alter eating behaviours and trigger eating disorder symptoms. Changes in eating behaviours have also been associated with increased anxiety about loss of income, restrictive orders to stay at home, fear of catching the virus, and fear of losing loved ones\(^{(21–24)}\). With this in mind, the psychological changes observed during the COVID-19 pandemic may lead to eating behaviour disorders that may persist after the pandemic.

Emotional eating refers to the eating behaviour triggered by various emotions. Eating behaviours are easily affected by changes in regards to negative or positive situations\(^{(25)}\). It is
well-documented that humans can consume more food than usual when they are angry or feel under pressure. Likewise, the fact that food restriction during excited or extremely stressful situations also shows the effect of emotional states on eating \(^{(26,27)}\). Studies have stated that body mass index (BMI) is closely associated with high stress levels and emotional eating \(^{(28–31)}\). Several studies have shown that predominantly negative emotions trigger overeating to high-fat and sugary foods, in contrary to less consumption of healthy foods, thus not complying with a healthy eating attitude (vegetables and fruits, not having breakfast, skip daily meals, more caloric food consumption) \(^{(26,32–34)}\). People struggling with emotional eating can suppress intense emotions by eating, and in this case, they often prefer appetizing foods high in fat and sugar \(^{(30,32,34,35)}\). Long-term excessive consumption of foods high in fat or sugar can lead to weight gain, resulting in increased BMI and many health risks such as oxidative stress, inflammation and obesity \(^{(36–38)}\).

Stress is considered to be another key factor affecting dietary intake \(^{(30,39)}\). Stressful situations can affect diet quality scores in different ways by triggering emotional eating, increasing the consumption of high-fat and sweetened food/beverages, and causing uncontrolled eating behaviour. These situations can also trigger emotional eating attacks. Studies have shown that non-obese people use coping mechanisms such as cognitive strategies to cope with psychological problems, while obese individuals may respond to these problems by overeating \(^{(40,41)}\). Thus, increased stress level can lead to weight gain, overweight and obesity, leading to an increased BMI levels \(^{(42)}\).

Perceived stress appears to be increasing during the COVID-19 pandemic, and most importantly, it seems that perceived stress may be associated with changes in BMI \(^{(21,23,24)}\). This situation may affect emotional eating behaviours as well. This research aims to examine perceived stress and emotional eating behaviours during the COVID-19 pandemic partial quarantine based on BMI levels of healthy adults.
2. Methods

2.1. Participants

The data was collected using an online questionnaire created on Google Forms. The questionnaire was randomly distributed among the individuals using social media channels such as Instagram, Twitter and WhatsApp and via e-mail. Participants informed about the purpose of the research to adults in accordance with the inclusion criteria. Individuals between the ages of 20 and 65 who were partially quarantined (in quarantine all weekend for at least three months) due to COVID-19 were included in the study. Individuals from thirty-one different cities participated in the study. Seven participants were not included in the study because they were under the age of 18. The online survey data was collected between June and September 2020.

The sample size was calculated by G * power analysis (based on 95% confidence and 80% power) according to the report by the American Psychological Association on Stress and Nutrition. This report noted that 38% of adults developed stress-related binge eating or unhealthy eating behaviour. Assuming this rate to be 60% in our study, it was determined that at least 282 people should be included in the study.

2.2. Data Collection

The questionnaire consists of 4 parts and a total of 40 questions. The first part includes 11 questions about demographic variables such as age, weight, height, gender, education level, employment status and smoking status. The second part consists of 11 questions that examine nutritional behaviours such as mealtime, food and beverage consumption, and changes in meal preparation during quarantine. Food consumption was measured with the question: "Which foods did you consume more after COVID-19?". This question had several responses including whole grains (e.g.; whole wheat bread, rye, oats), vegetable and fruits, nuts, meat, fish, dairy, processed foods, milky deserts, chocolate, biscuits and chips that they could chose multiple options. We asked a similar question for beverage consumption. Multiple response options included water, tea, coffee, carbonated drinks, fresh fruit juice, fruit juice, herbal tea, soda water, ayran, kefir, and turnip juice. We questioned the tendency of unhealthy food consumption during the partial quarantine period with the following question: "Did your consumption of unhealthy foods such as chips, cookies, cakes, sugary cereals and fast food change during your stay at home?". Participants were categorized as having a tendency to unhealthy foods if they responded, “I increased unhealthy food consumption”. The third part
includes the Perceived Stress Scale-14 (PSS-14) and the last part includes the Emotional Eater Questionnaire (EEQ). Body weight, height, and change in body weight during the partial quarantine period were collected based on the declaration. BMI was calculated using the weight and height obtained from the survey. BMI classification is: < 18.5 kg/m² underweight, 18.5-24.9 kg/m² normal, 25.0-29.9 kg/m² overweight, > 30.0 kg/m² obesity (44).

Perceived Stress Scale: PSS-14 consists of 14 items aimed at determining the perceived stress levels of individuals. PSS-14 is a scale developed by Cohen et al (45), which has been validated in Turkish for use in individuals over the age of 18 (46), and is widely applied to determine perceived helplessness and self-efficacy. This scale is prepared in a 5-point Likert type (0 no, 1, 2, 3, 4 very often), where three items are scored negatively (Items 4, 5, 6). The scale is evaluated on the total score (0-32) and a high total score means higher perceived stress level (45,46).

Emotional Eater Questionnaire: Emotional Eater Questionnaire consists of 10 items and three sub-dimensions. The three subdimensions of the EEQ are entitled as (1) not being able to prevent eating desire-disinhibition (item 4,5,6,8,9,10), (2) types of food-type of food (item 2,3), and (3) feeling guilty-guilt (item 1,7). The EEQ is scored with a 4-point Likert Scale (“0” Never, “1” Sometimes, “2” is generally answered and “3” is always). The EEQ was used to assess emotional eating behaviour in individuals. The questionnaire developed by Garaulet et al. (47) has been proven to be valid in Turkish for individuals over 20 years of age (48). With the highest score obtained from the scale is "30", higher scores indicate higher emotional eating behaviours (47,48).

2.3. Statistical analyses

The data collected were evaluated using the SPSS 25 statistics software (IBM, NY, USA). Data were tested to investigate whether they were normally dispersed using visual (probability plots and histograms) and analytical methods (Kolmogorov-Smirnov/ Shapiro-Wilk test). Demographic variables and eating habits analysed with Pearson chi-square and independent-t-test. Pearson correlation coefficients were calculated to examine the interaction between BMI, EEQ, and PSS-14. After checking the assumptions of the multiple linear regression analysis (linearity, covariance, independence, and normality) to ensure its fit, a multiple linear regression analysis model was run to determine whether weight gain during the partial quarantine period was associated with EEQ, PSS-14, overeating, and unhealthy
food consumption during this period. Model fit was determined using appropriate residual and goodness of fit statistics. p<0.05 was accepted as statistically significant.

3. Results

Descriptive characteristics of the participants was presented in Table 1. A total of 506 participants, including 119 men (mean age: 38.59 ± 11.75 y, mean BMI: 27.28 ± 3.76 kg/ m²) and 387 women (age: 30.64 ± 10.75 y, mean BMI: 23.28 ± 4.12 kg/ m²) volunteered to participate in the study. Mean weight gain during COVID-19 was reported as 1.20 ± 1.70 kg in men, and 0.91 ± 1.40 kg in women. Investigating the weight gain according to BMI, it was founded that obese participants had more weight gain than normal and overweight participants (1.76 ± 2.06 kg vs. 1.14 ± 1.52 kg and 0.88 ± 1.48 kg in men; p=0.006, 1.47 ± 1.97 kg vs. 0.83 ± 1.27 kg and 1.10 ± 1.53 kg in women; p=0.004, respectively). The EEQ and PSS-14 scores were indicated that women had significantly higher scores than men (men vs. women; mean EEQ: 9.39 ± 5.37 vs. 11.17± 5.85; mean PSS-14: 24.67 ± 8.32 vs. 27.99 ± 7.34).

Table 2 shows the EEQ and PSS-14 scores according to BMI. The findings revealed that participants with higher BMI had higher EEQ and lower PSS-14 scores. Correlation analysis between BMI results, EEQ, and PSS-14 scores revealed that BMI was positively correlated EEQ (r=0.205, p=0.001) and negatively correlated with PSS-14 (-0.125, p=0.001) (Table 3).

Food consumption according to the BMI during the COVID-19 pandemic are represented in Figure 1. Data showed that people mostly preferred to consume vegetables and fruits (56.1 %), pastries (42.9 %), and nuts (37.1 %) in all BMI groups.

Beverage consumption according to BMI during COVID-19 was shown in Figure 2. Water (in underweight: 59.30 %, in normal: 66.80 %, in overweight: 62.80 % in obese: 77.30%), tea and coffee were found to be the most preferred drinks in all BMI groups (in underweight: 70.40 %, in normal: 78.50 %, in overweight: 86.10 %, in obese: 75.80 %). While consumption of tea, coffee, fresh fruit juice and carbonated beverages increased, consumption of water, ayran, kefir, fruit juice and sugary beverage decreased in underweight participants. In overweight individuals, while consumption of water, carbonated drinks, fresh fruit juice, fruit juice, sweetened drinks, soda, and ayran increased, tea and coffee consumption decreased. The consumption of sweetened and carbonated drinks increased twice in obese participants in those compared to other BMI groups.
We ran a regression analysis to identify whether weight gain during the partial quarantine period could be predicted using data on EEQ, PSS-14, overeating and unhealthy food choice during this period (Table 4). The regression model showed that 29% of weight gain during the partial quarantine period could be explained by emotional eating, eating more while at home, and unhealthy eating behaviours at home. In contrast, perceived stress was not associated with weight gain.

4. Discussion

In this paper we present the changes related to eating behaviours, weight-gain patterns and perceived stress according to BMI during the COVID-19 pandemic lockdown. Our main findings were that BMI was positively associated with EEQ scores, suggesting that people with higher BMI are more prone to emotional eating. Additionally, weight gain during quarantine was associated with increased eating tendency and consumption of unhealthy foods at home. However, the hypothesis that people with higher BMI during quarantine would have higher stress levels was rejected due to findings suggesting that BMI was negatively correlated with PSS-14 scores.

We observed a positive correlation between BMI and EEQ scores. Several studies have reported that obese individuals tend to eat emotionally and BMI is positively associated with EEQ scores (27,34,49–52). The researchers argued that certain strong emotions, such as anxiety, restlessness, anger, fear, joy, and sadness, can cause significant changes in eating behaviours by increasing the motivation to eat and the amount of food consumed, and changing food choices towards unhealthy foods. People with emotional eating symptoms often react to overwhelming conditions by increasing their food intake and altering food choices with high in fat and sugar, while others do not alter or reduce their food consumption in these situations. Increased food consumption can also increase the tendency to binge-eating (29,30,54–57,31,33–35,42,43,50,53). Because we know that COVID-19 creates enormous stress and pressure in our lives and changes almost the entire lifestyle, it is inevitable to affect eating behaviours, especially for individuals who already tend to eat a lot. For this reason, obese people, especially those who notice an increase in food consumption or emotional eating attacks during the COVID-19 quarantine, should consider seeking professional support in order to endure this negative and uncertain process and prevent unwanted weight gain.

Consistent with other COVID-19 studies, weight gain during home quarantine was observed in both men and women (39.5 % and 39.3 %, respectively). Men reported an average weight
gain of 1.20 kg, whereas women stated about 0.91 kg of increase in weight. A study by Górnicka et al.(58) showed that staying at home during COVID-19 decreased physical activity levels and resulted in undesirable eating behaviours such as snacking and overeating, thus causing a disruption in energy balance, and weight gain. Another study conducted in Obesity Unit examined the weight changes and BMI before and after COVID-19 lockdown(8). They found that after the COVID-19 lockdown, weight gain and BMI increased by about + 1.51 kg and + 0.58 kg/m2, respectively(8). It was stated that 43.7 % of women and 30.3 % of men were changed their daily eating habits and the time spent in the kitchen increased. Additionally, Di Renzo et al.(10) investigated the lockdown impact on eating habits and lifestyle changes throughout four different parts of Italy. Researchers stated that 48.6 % of the participants reported weight gain. The frequency and habits of meals changed and the time they spent in the kitchen increased in 57.8 % of the participants. However, unlike other studies, no change was observed in the mealtime in our study(10). This is probably due to differences in lockdown. While several countries such as Italy applied a full-time lockdown strategy, the lockdown in Turkey was limited by weekends. Therefore, it is an expectable situation that there is no change in mealtime as people continue their normal work schedule on weekdays.

We found that PSS-14 scores negatively correlated with BMI. This result is probably due to the different stress responses of individuals(59). Although the stress response varies according to the severity and duration of the stress, it can be quite challenging(60). While mild stress creates positive results by increasing the attention of individuals(61), chronic stress can lead to serious physiological and psychological consequences(60,62). It is very frustrating not knowing when the COVID pandemic will end and what the definitive treatment is, which can lead to chronic stress in individuals. In addition, although it is well known that stress can affect eating habits, how it affects it is controversial. Some people respond to high-stress situations by reducing their food intake, while others increase their food consumption to suppress undesirable emotions(30,53). The fact that perceived stress was higher in participants with low BMI suggests that COVID stress may also lead to shut down appetite.

In this study, EEQ scores were positively correlated with PSS-14 scores (r = 0.275 in males, r = 0.279 in females) regardless of BMI levels (p <0.001). With the prolonged COVID-19 outbreak, people feel more stressed out of an increased fear of infection, the loss of loved ones or financial loss(15–17,19,63,64). Increased stress can change food and beverage consumption in individuals. A longitudinal study evaluating the effect of natural disasters on
emotional eating stated that the tendency of unhealthy foods increases during stressful periods (55). In present study, vegetables, fruits and pastries were found to be mostly preferred foods. While vegetables and fruits are considered beneficial foods with their specialties rich in phytochemicals, vitamins, minerals and fiber for maintaining health and boosting the immune system during the pandemic, increased consumption of pastries can create undesirable consequences such as weight gain. Further, sweetened beverage consumption has doubled in obese individuals. These findings show that eating habits change towards unhealthy foods, especially in obese patients, during COVID-19 pandemic. This finding is supported by another study that showed that during the COVID-19 outbreak, the consumption of sweetened and carbonated drink decreased while the consumption of homemade desserts, pizza and bread increased (8). Cohort studies in the Netherlands, Finland, France, USA, and Korea reported that weight gain as a consequence of emotional eating is a crucial risk factor for obesity (65–69). Therefore, there is an urgent need to develop some public health strategies to reduce obesity risks, attenuate perceived stress and improve well-being during COVID-19.

In good agreement with several studies, the regression analyses of this study indicated that increased weight gain during the COVID-19 lockdown significantly increased the risk of emotional eating behaviours, including eating more at home and consuming unhealthy foods at home. However, no association was found between weight gain and perceived stress during COVID-19. One possible explanation is that stress can cause hypophagia that restricts eating behaviour for some people.

This study had some limitations. First, we were unable to evaluate food and beverage consumption prior to the COVID-19 outbreak. Second, emotional eating and perceived stress were studied using self-reported survey data. Third, although we tried to reach more male participants, sex distribution is not balanced. In addition, anthropometric measurements and weight gain were taken according to the declaration. On the other hand, the strength of this study is that, to our knowledge, this is the first study to evaluate the interaction of emotional eating and perceived stress to BMI during the COVID-19 pandemic. With the study, we highlighted that the COVID-19 lockdown does not only affect physical health but also influences psychological well-being, which can pose a greater burden on public health, such as increased obesity and obesity-related disorders.
5. Conclusion

Our results suggest that staying home during the COVID-19 pandemic may cause emotional eating, snacking, and overeating, and therefore lead to weight gain. Additionally, individuals with higher BMI have been associated with a higher propensity to emotional eating. For this reason, the change in eating behaviour and the increase in the time spent at home may create a huge burden, especially for obese individuals.

The lockdown is a good precaution to stop the spread of the virus, but there are some health risks associated with physical inactivity, weight gain, behavioural changes, and social isolation. Further studies should focus on the impact of the COVID-19 outbreak on eating behaviour and perceived stress. As we know that the lockdown process will continue for a while, some public health strategies focusing on healthy eating and physical activity at home should be developed to eliminate the health risks associated with increased obesity during the lockdown.
6. References

1. Huang C, Wang Y, Li X, et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* **395**, 497–506.

2. Johnson M (2020) Wuhan 2019 Novel Coronavirus - 2019-nCoV. *Mater. Methods* **10**, 1–5.

3. Türkiye Cumhuriyeti Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğü (2020) COVID-19 Rehberi. *2 Nisan* **20**, 25.

4. T.C. Sağlık Bakanlığı (2021) Türkiye Genel Koronavirüs Tablosu. *COVID-19 Bilgilendirme Platformu*. https://covid19.saglik.gov.tr/TR-66935/genel-koronavirus-tablosu.html.

5. Pitlik SD (2020) Covid-19 compared to other pandemic diseases. *Rambam Maimonides Med. J.* **11**, 1–17.

6. World Health Organization (WHO) COVID-19: physical distancing. https://www.who.int/westernpacific/emergencies/covid-19/information/physical-distancing.

7. TC Sağlık Bakanlığı (2020) Covid-19 salgın yönetimi ve çalışma rehberi. 1–459.

8. Pellegrini M, Ponzo V, Rosato R, et al. (2020) Changes in weight and nutritional habits in adults with obesity during the “lockdown” period caused by the COVID-19 virus emergency. *Nutrients* **12**, 1–11.

9. Ryan DH, Ravussin E & Heymsfield S (2020) COVID 19 and the Patient with Obesity – The Editors Speak Out. *Obesity* **28**, 847.

10. Di Renzo L, Gualtieri P, Pivari F, et al. (2020) Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. *J. Transl. Med.* **18**, 1–15. BioMed Central.

11. Banerjee S & Samaddar B (2020) Impact of COVID-19 Lockdown on Overweight Typically Managed by easy diet Planning-A Mini Review. **10**, 1.

12. Lippi G, Henry BM, Bovo C, et al. (2020) Health risks and potential remedies during prolonged lockdowns for coronavirus disease 2019 (COVID-19). *Diagnosis (Berlin, Ger.)* **7**, 85–90.

13. Matsungo TM & Chopera P (2020) The effect of the COVID-19 induced lockdown on nutrition, health and lifestyle patterns among adults in Zimbabwe. *medRxiv*.

14. Sandhu K, Kaur B & Author C-A (2020) Impact of COVID-19 lockdown on the Dietary Pattern and Physical Activity of People Article history. *Horiz. J. Hum. Soc. Sci* **2**, 205–216.
15. Sønderskov KM, Dinesen PT, Santini ZI, et al. (2020) The depressive state of Denmark during the COVID-19 pandemic. *Acta Neuropsychiatr.*, 17–19.

16. Huang Y & Zhao N (2020) Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey. *Psychiatry Res.* **288**, 112954. Elsevier Ireland Ltd.

17. Liang L, Ren H, Cao R, et al. (2020) The Effect of COVID-19 on Youth Mental Health. *Psychiatr. Q.*, 3–5. Psychiatric Quarterly.

18. Cao W, Fang Z, Hou G, et al. (2020) The psychological impact of the COVID-19 epidemic on college students in China. *Psychiatry Res.* **287**, 112934. Elsevier Ireland Ltd.

19. Serafini G, Parmigiani B, Amerio A, et al. (2020) The psychological impact of COVID-19 on the mental health in the general population. *Qjm* **113**, 229–235.

20. Moccia L, Janiri D, Pepe M, et al. (2020) Affective temperament, attachment style, and the psychological impact of the COVID-19 outbreak: an early report on the Italian general population. *Brain. Behav. Immun.* **87**, 75–79. Elsevier.

21. Shen W, Long LM, Shih CH, et al. (2020) A humanities-based explanation for the effects of emotional eating and perceived stress on food choice motives during the COVID-19 pandemic. *Nutrients* **12**, 1–18.

22. Elmacloğu F, Emiroğlu E, Ülker MT, et al. (2021) Evaluation of nutritional behaviour related to COVID-19. *Public Health Nutr.* **24**, 512–518.

23. Cecchetto C, Aiello M, Gentili C, et al. (2021) Increased emotional eating during COVID-19 associated with lockdown, psychological and social distress. *Appetite* **160**, 105122. Elsevier Ltd.

24. Al-Musharaf S (2020) Prevalence awend predictors of emotional eating among healthy young saudi women during the COVID-19 pandemic. *Nutrients* **12**, 1–17.

25. Serin Y (2018) Emotional eating, the factors which affect food intake and basic approaches of nursing care. *J. Psychiatr. Nurs.* **9**, 135–146.

26. Van Strien T, Cebolla A, Etchemendy E, et al. (2013) Emotional eating and food intake after sadness and joy. *Appetite* **66**, 20–25. Elsevier Ltd.

27. van Strien T, Herman CP & Verheijden MW (2009) Eating style, overeating, and overweight in a representative Dutch sample. Does external eating play a role? *Appetite* **52**, 380–387.

28. Yamamoto K, Okazaki A & Ohmori S (2011) The relationship between psychosocial stress, age, BMI, CRP, lifestyle, and the metabolic syndrome in apparently healthy
Accepted manuscript

subjects. *J. Physiol. Anthropol.* **30**, 15–22.

29. Järvelä-Reijonen E, Karhunen L, Sairanen E, et al. (2016) High perceived stress is associated with unfavorable eating behavior in overweight and obese Finns of working age. *Appetite* **103**, 249–258.

30. Tan CC & Chow CM (2014) Stress and emotional eating: The mediating role of eating dysregulation. *Pers. Individ. Dif.* **66**, 1–4. Elsevier Ltd.

31. Torres SJ & Nowson CA (2007) Relationship between stress, eating behavior, and obesity. *Nutrition* **23**, 887–894.

32. Konttinen H (2012) *Dietary habits and obesity: the role of emotional and cognitive factors*.

33. Konttinen H (2020) Emotional eating and obesity in adults: The role of depression, sleep and genes. *Proc. Nutr. Soc.* **79**, 283–289.

34. Lazarevich I, Irigoyen Camacho ME, Velázquez-Alva M del C, et al. (2016) Relationship among obesity, depression, and emotional eating in young adults. *Appetite* **107**, 639–644.

35. Conner M, Fitter M & Fletcher W (1999) Stress and snacking: A diary study of daily hassles and between-meal snacking. *Psychol. Heal.* **14**, 51–63.

36. Bray GA (2013) Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. *Adv. Nutr.* **4**, 220–225.

37. Manna P & Jain SK (2015) Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. *Metab. Syndr. Relat. Disord.* **13**, 423–444.

38. Stanhope KL (2016) Sugar consumption, metabolic disease and obesity: The state of the controversy. *Crit. Rev. Clin. Lab. Sci.* **53**, 52–67.

39. Jayne JM, Ayala R, Karl JP, et al. (2020) Body weight status, perceived stress, and emotional eating among US Army Soldiers: A mediator model. *Eat. Behav.* **36**, 101367. Elsevier.

40. Roberts C, Troop N, Connan F, et al. (2007) The effects of stress on body weight: Biological and psychological predictors of change in BMI. *Obesity* **15**, 3045–3055.

41. Lingswiler VM, Crowther JH & Stephens MAP (1989) Emotional and somatic consequences of binge episodes. *Addict. Behav.* **14**, 503–511.

42. Richardson AS, Arsenault JE, Cates SC, et al. (2015) Perceived stress, unhealthy eating behaviors, and severe obesity in low-income women. *Nutr. J.* **14**, 1–10. Nutrition Journal.
43. American Psychological Association (2013) Stress and Eating. https://www.apa.org/news/press/releases/stress/2013/eating.
44. World Health Organization (WHO) Body mass index - BMI. https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi.
45. Cohen S, Kamarck T & Mermelstein R (1983) A global measure of perceived stress. J. Health Soc. Behav. 24, 385–396.
46. Eskin M; Harlak H; Demirkiran F; Dereboy Ç (2013) Algılanan Stres Ölçüğünün Türkçe'ye Uyarlanması: Güvenirlik ve Geçerlik Analizi. Yeni Symp. 51, 132–140.
47. Garaulet M, Canteras M, Morales E, et al. (2012) Validación de un cuestionario de comedores emocionales para uso en casos de obesidad; cuestionario de comedor emocional (CCE). Nutr. Hosp. 27, 645–651.
48. Arslantaş H, Dereboy F, Yüksel R, et al. (2019) Duygusal Yeme Ölçeği’nin Türkçe Çevirisinin Geçerlilik ve Güvenilirlik Çalışması. Türk Psikiyatr. Derg. 30, 1–10.
49. Nolan LJ, Halperin LB & Geliebter A (2010) Emotional Appetite Questionnaire. Construct validity and relationship with BMI. Appetite 54, 314–319. Elsevier Ltd.
50. Diggins A, Woods-Giscombe C & Waters S (2015) The association of perceived stress, contextualized stress, and emotional eating with body mass index in college-aged Black women. Eat. Behav. 19, 188–192. Elsevier B.V.
51. Konttinen H, Silventoinen K, Sarlio-Lähteenkorva S, et al. (2010) Emotional eating and physical activity self-efficacy as pathways in the association between depressive symptoms and adiposity indicators. Am. J. Clin. Nutr. 92, 1031–1039.
52. Pénéau S, Ménard E, Méjean C, et al. (2013) Sex and dieting modify the association between emotional eating and weight status. Am. J. Clin. Nutr. 97, 1307–1313.
53. Leigh Gibson E (2006) Emotional influences on food choice: Sensory, physiological and psychological pathways. Physiol. Behav. 89, 53–61.
54. Allison KC, Lundgren JD, Reardon JPO, et al. (2008) The Night Eating Questionnaire (NEQ): Psychometric properties of a measure of severity of the Night Eating Syndrome. 9, 62–72.
55. Kuijer RG & Boyce JA (2012) Emotional eating and its effect on eating behaviour after a natural disaster. Appetite 58, 936–939. Elsevier Ltd.
56. Sproesser G, Schupp HT & Renner B (2014) The Bright Side of Stress-Induced Eating: Eating More When Stressed but Less When Pleased. Psychol. Sci. 25, 58–65.
57. Sproesser G, Schupp HT & Renner B (2014) The Bright Side of Stress-Induced Eating:
Eating More When Stressed but Less When Pleased. *Psychol. Sci.* **25**, 58–65.

58. Górnicka M, Drywień ME, Zielinska MA, et al. (2020) Dietary and lifestyle changes during covid-19 and the subsequent lockdowns among polish adults: A cross-sectional online survey plifecovid-19 study. *Nutrients* **12**, 1–23.

59. Yau YHC & Potenza MN (2013) Stress and eating behaviors. *Minerva Endocrinol.* **38**, 255–267.

60. McEwen BS (2004) Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. *Ann. N. Y. Acad. Sci.* **1032**, 1–7.

61. Selye H (1976) *The Stress of Life*. McGraw-Hill, New York.

62. Pasquali R (2012) The hypothalamic-pituitary-adrenal axis and sex hormones in chronic stress and obesity: Pathophysiological and clinical aspects. *Ann. N. Y. Acad. Sci.* **1264**, 20–35.

63. CSTS (2020) Psychological Effects of Quarantine During the Coronavirus Outbreak: What Healthcare Providers Need to Know. 1–2.

64. Cullen W, Gulati G & Kelly BD (2020) Mental health in the COVID-19 pandemic. *QJM* **113**, 311–312.

65. Koenders PG & Van Strien T (2011) Emotional eating, rather than lifestyle behavior, drives weight gain in a prospective study in 1562 employees. *J. Occup. Environ. Med.* **53**, 1287–1293.

66. Song YM, Lee K, Sung J, et al. (2013) Changes in eating behaviors and body weight in Koreans: The Healthy Twin Study. *Nutrition* **29**, 66–70. Elsevier Inc.

67. van Strien T, Konttinen H, Homberg JR, et al. (2016) Emotional eating as a mediator between depression and weight gain. *Appetite* **100**, 216–224. Elsevier Ltd.

68. Bénard M, Bellisle F, Etilé F, et al. (2018) Impulsivity and consideration of future consequences as moderators of the association between emotional eating and body weight status. *Int. J. Behav. Nutr. Phys. Act.* **15**, 1–11. International Journal of Behavioral Nutrition and Physical Activity.

69. Vittengl JR (2018) Mediation of the bidirectional relations between obesity and depression among women. *Psychiatry Res.* **264**, 254–259. Elsevier B.V.
Table 1. Descriptive characteristics of the participants

	Men (n=119)	Women (n=387)	p
Age (year)	38.59 ± 11.75	30.64 ± 10.75	0.001**
Weight (kg)	85.39 ± 12.79	62.99 ± 12.20	0.001**
Weight gain Yes	47 (39.5 %)	152 (39.3 %)	0.966¶
Weight gain No	72 (60.5 %)	235 (60.7 %)	
Weight gain during COVID-19 (kg)	1.20 ± 1.70	0.91 ± 1.40	0.089°
Height (cm)	1.77 ± 0.07	1.65 ± 0.07	0.001**
BMI (kg/m²)	27.28 ± 3.76	23.28 ± 4.12	0.001**
Changing meal times during quarantine Yes	36 (30.3 %)	169 (43.7 %)	0.009¶
Changing meal times during quarantine No	83 (69.7 %)	218 (56.3 %)	
Increasing time spent in the kitchen during quarantine Yes	61 (51.3 %)	302 (78.0 %)	0.001**¶
Increasing time spent in the kitchen during quarantine No	58 (48.7 %)	85 (22.0 %)	
EEQ	9.39 ± 5.37	11.17 ± 5.85	0.001**
PSS-14	24.67 ± 8.32	27.99 ± 7.34	0.001**

° independent-t-test ¶ Pearson chi-square test.
*p<0.05, **p<0.001.
Table 2. Perceived stress and emotional eating score change according to BMI

	BMI < 25.00 kg/m² (n=303)	BMI > 25.00 kg/m² (n=203)	p
EEQ	10.27 ± 5.83	11.48 ± 5.66	0.021*
PSS-14	28.35 ± 8.20	25.50 ± 7.38	0.001**

EEQ: Emotional Eater Questionnaire, PSS-14: Perceived Stress Scale 14.

*Independent t test. *p<0.05. **p<0.001.
Table 3. Pearson correlation analyses of EEQ and PSS-14 scores with BMI

	BMI (kg/m²)		
		r	p
EEQ		0.205	0.001*
PSS-14		-0.125	0.001*

EEQ: Emotional Eater Questionnaire, PSS-14: Perceived Stress Scale 14, BMI: Body Mass Index.*p<0.05.
Table 4. Multiple linear regression analyses of the variables associated with weight gain during COVID-19

Variable	Weight gain during COVID-19	β	p	%95 CI
PSS-14		0.054	0.207	-0.006
				0.026
EEQ		0.173	0.001*	0.001
				0.015
Eating more while at home		0.171	0.001*	0.338
				0.505
Consuming unhealthy foods while at home		0.224	0.001*	0.037
				0.199

*p<0.001. PSS-14: Perceived Stress Scale-14. EEQ- Emotional Eater Questionnaire.
Figure 1. Food consumption according to BMI during COVID-19.
Figure 2. Beverage consumption according to BMI during the COVID-19.