TRIMMING A GORENSTEIN IDEAL

LARS WINther CHRISTENSEN, OANA VELICHE, AND JERZY WEYMAN

Abstract. Let Q be a regular local ring of dimension 3. We show how to trim a Gorenstein ideal in Q to obtain an ideal that defines a quotient ring that is close to Gorenstein in the sense that its Koszul homology algebra is a Poincaré duality algebra P padded with a non-zero graded vector space on which $P_{≥1}$ acts trivially. We explicitly construct an infinite family of such rings.

1. Introduction

Let Q be a regular local ring with maximal ideal n. Quotient rings of Q that have projective dimension at most 3 as Q-modules have been classified based on the multiplicative structure of their Koszul homology algebras. To be precise, let $a \subseteq n^2$ be an ideal such that the minimal free resolution of $R = Q/a$ over Q has length at most 3. By a result of Buchsbaum and Eisenbud [4], the resolution carries a structure of an associative differential graded commutative algebra, and based on that structure Avramov, Kustin, and Miller [3] and Weyman [9] established a classification in terms of the induced multiplicative structure on $\operatorname{Tor}^Q_*(R, k)$, where k is the residue field of Q. Finally, as graded k-algebras, the Koszul homology algebra of R and $\operatorname{Tor}^Q_*(R, k)$ are isomorphic; see Avramov [1] for an in-depth treatment.

An ideal $a \subseteq Q$ is called Gorenstein if the quotient $R = Q/a$ is a Gorenstein ring. By a classic result of Avramov and Golod [2], a Gorenstein ring is characterized by the fact that its Koszul homology algebra $\tilde{A} = \operatorname{H}(K^R)$ has Poincaré duality. In the classification mentioned above, a Gorenstein ring that is not complete intersection belongs to a parametrized family $G(r)$, where r is the rank of the canonical map

$$\delta : A_2 \rightarrow \operatorname{Hom}_k(A_1, A_3);$$

see [1, 1.4.2]. It was conjectured in [1] that all rings of class $G(r)$ are Gorenstein, but Christensen and Veliche [5] gave sporadic examples of rings of class $G(r)$ that are not Gorenstein. In this paper we present a systematic construction and achieve:

(1.1) Theorem. Let Q be the power series algebra in three variables over a field. For every $r \geq 3$ there is quotient ring of Q that is of class $G(r)$ and not Gorenstein.

The quotient rings in Theorem (1.1) are obtained as follows: Let n be the maximal ideal of Q and start with a graded Gorenstein ideal $g \subseteq n^2$ generated by $2m + 1$
elements. Trim \(\mathfrak{g} \) by replacing one minimal generator \(g \) by \(ng\): this removes a 1-dimensional subspace from \(\mathfrak{g} \). The quotient of \(Q \) by the resulting ideal is a ring of type 2; in particular, it is not Gorenstein, and for \(m \geq 3 \) it is of class \(G(r) \). Theorem 1.1 is consequence of Proposition 3.5, which builds on a more general but slightly less precise statement about local rings, Theorem 2.4.

2. Local rings

Let \(Q \) be a \(d \)-dimensional regular local ring with maximal ideal \(\mathfrak{n} \) and residue field \(\mathbb{k} \). For an ideal \(\mathfrak{a} \) in \(Q \), we denote by \(\mu(\mathfrak{a}) \) the minimal number of generators of \(\mathfrak{a} \). Let \(\mathfrak{a} \subseteq \mathfrak{n}^2 \) be an ideal and set \(R = Q/\mathfrak{a} \). We denote by \(K^R \) the Koszul complex on a minimal set of generators for the maximal ideal \(\mathfrak{n}/\mathfrak{a} \) of \(R \); one has \(K^R = R \otimes_Q K^Q \).

The Koszul complex is an exterior algebra, and the homology algebra \(A = H(K^R) \) is a graded-commutative \(\mathbb{k} \)-algebra. Denote by \(c \) the projective dimension of \(R \) as a \(Q \)-module; by the Auslander–Buchsbaum Formula and depth sensitivity of the Koszul complex one has \(c = \text{max}\{i \mid \mathcal{A}_i \neq 0\} \). The number \(\text{rank}_k(A_c) \) is called the type of \(R \). If the ideal \(\mathfrak{a} \) is \(\mathfrak{n} \)-primary, then one has \(c = d \) and the type of \(R \) is the socle rank, i.e. \(\text{type}(R) = \text{rank}_k(0 :_R \mathfrak{n}/\mathfrak{a}) \).

(2.1) Classification. Let \(Q \) be as above, and let \(\mathfrak{a} \subseteq \mathfrak{n}^2 \) be an ideal such that \(R = Q/\mathfrak{a} \) has projective dimension 3 as a \(Q \)-module. The possible multiplicative structures on the graded-commutative \(\mathbb{k} \)-algebra \(A = H(K^R) \cong \text{Tor}^Q_2(R, \mathbb{k}) \) were identified in [3]. By assumption one has \(A_{\geq 4} = 0 \), and the possible structures are described by the invariants

\[
p = \text{rank}_k(A_1 \cdot A_1), \quad q = \text{rank}_k(A_1 \cdot A_2), \quad \text{and} \quad r = \text{rank}_k(A_2 \xrightarrow{\delta} \text{Hom}_\mathbb{k}(A_1, A_3)).
\]

From [1] thm. 3.1 one extracts the following description of all the possible classes of rings that are not Gorenstein.

Class	\(p \)	\(q \)	\(r \)	Restrictions
B	1	1	2	2 \leq r \leq \mu(\mathfrak{a}) - 2
G(r)	0	1	\(r \)	\(q \leq \text{type}(R) \)
H(p, q)	\(p \)	\(q \)	\(q \)	\(q \leq \text{type}(R) \)
T	3	0	0	\(p = \text{rank}_k(A_1 \cdot A_1) \), \(q = \text{rank}_k(A_1 \cdot A_2) \), \(r = \text{rank}_k(A_2 \xrightarrow{\delta} \text{Hom}_\mathbb{k}(A_1, A_3)) \).

In [3] the multiplication tables for the different structures are given. In particular, if \(R = Q/\mathfrak{a} \) is a ring of class \(G(r) \), then with \(m = \mu(\mathfrak{a}) \) and \(t = \text{type}(R) \) there exist bases for \(A_1, A_2, \) and \(A_3 \):

\[
e_1, \ldots, e_m, \quad f_1, \ldots, f_{m+t-1}, \quad \text{and} \quad g_1, \ldots, g_t
\]

such that the only non-zero products are \(e_i f_i = g_1 = -f_i e_i \) for \(1 \leq i \leq r \). That is, the subalgebra \(P \) of \(A \) spanned by \(e_1, \ldots, e_r, f_1, \ldots, f_r, \) and \(g_1 \) is a pure Poincaré duality algebra, in the sense that the only non-trivial products are those from the perfect pairing. Moreover, \(P_{\geq 1} \) acts trivially on the rest of \(A \).

The next result is proved in [6]; the argument is based on linkage theory and cannot be reproduced here without significant overhead.

(2.2) Proposition. Let \((Q, \mathfrak{n})\) be a regular local ring and let \(\mathfrak{a} \subseteq \mathfrak{n}^2 \) be a perfect ideal of grade 3 that is minimally generated by 5 elements and not Gorenstein. If, with the notation above, the ring \(Q/\mathfrak{a} \) has \(p = 0 \), then it has \(r \leq 1 \).
(2.3) Lemma. Let \((Q, n)\) be a regular local ring and consider an \(n\)-primary ideal \(g \subseteq n^2\), minimally generated by elements \(g_0, \ldots, g_k\). Let \(s_1, \ldots, s_t\) be elements of \(Q\) whose classes in \(Q/g\) form a basis for the socle. The ideal \(a = ng_0 + (g_1, \ldots, g_k)\) is \(n\)-primary, and if \(ns_i \subseteq a\) holds for all \(i = 1, \ldots, t\), then the classes of \(g_0, s_1, \ldots, s_t\) in \(Q/a\) form a basis for the socle; in particular one has \(\text{type}(Q/a) = \text{type}(Q/g) + 1\).

Proof. As \(g\) is \(n\)-primary, it follows from the containment \(ng \subseteq a\) that \(a\) is \(n\)-primary. Consider the rings \(R = Q/a\) and \(S = Q/g\); there is an exact sequence

\[0 \rightarrow g/a \rightarrow R \rightarrow S \rightarrow 0,\]

and an isomorphism of \(Q\)-modules \(g/a \cong k\), where \(k\) is the residue field of \(Q\). Tensoring with the Koszul complex \(K^Q\) one gets an exact sequence of \(Q\)-complexes,

\[0 \rightarrow k \otimes_Q K^Q \xrightarrow{\alpha} K^R \xrightarrow{\beta} K^S \rightarrow 0.
\]

Let \(d\) be the dimension of \(Q\). From the sequence in homology associated to \((\ast)\) one gets the following exact sequence

\[0 \rightarrow k \xrightarrow{H_d(\alpha)} H_d(K^R) \xrightarrow{H_d(\beta)} H_d(K^S).
\]

The rings \(R\) and \(S\) are artinian, and a rank count yields

\[\text{type}(R) = \text{rank}_k(H_d(K^R)) \leq \text{rank}_k(H_d(K^S)) + 1 = \text{type}(S) + 1.
\]

It is clear that the residue classes \([g_0]\) and \([s_1], \ldots, [s_t]\) in \(R\) are non-zero socle elements. Moreover, they are \(k\)-linearly independent. Indeed, the elements \([s_1], \ldots, [s_t]\) are \(k\)-linearly independent, because of the inclusion \(a \subseteq g\). Further, suppose one has \([g_0] = \sum_{i=1}^t [u_i][s_i]\) where the elements \(u_i\) are units in \(Q\). It follows that \(g_0 - \sum_{i=1}^t u_is_i\) is in \(a \subseteq g\), and as \(g_0 \in g\) one gets \(\sum_{i=1}^t u_is_i \in g\), a contradiction. Thus, there are \(t + 1\) \(k\)-linearly independent elements in the socle of \(R\).

For the next result, recall from work of J. Watanabe that a grade 3 Gorenstein ideal in a regular ring is minimally generated by an odd number of elements.

(2.4) Theorem. Let \((Q, n)\) be a regular local ring of dimension 3 and let \(g \subseteq n^2\) be an \(n\)-primary Gorenstein ideal minimally generated by elements \(g_0, \ldots, g_{2m}\). The ideal \(a = ng_0 + (g_1, \ldots, g_{2m})\) is \(n\)-primary, one has \(\text{type}(Q/a) = 2\) and:

(a) If \(m = 1\), then \(\mu(a) = 5\) and \(Q/a\) is of class \(\text{B}\).
(b) If \(m = 2\), then one of the following holds:
 • \(\mu(a) = 4\) and \(Q/a\) is of class \(\text{H}(3, 2)\).
 • \(\mu(a) = 5\) and \(Q/a\) is of class \(\text{B}\).
 • \(\mu(a) \in \{6, 7\}\) and \(Q/a\) is of class \(\text{G}(r)\) with \(\mu(a) - 2 \geq r \geq \mu(a) - 3\).
(c) If \(m \geq 3\), then \(Q/a\) is of class \(\text{G}(r)\) with \(\mu(a) - 2 \geq r \geq \mu(a) - 3\).

Proof. As \(g\) defines a Gorenstein ring, one has \(g : (g : b) = b\) for every ideal \(b\) in \(Q\) that contains \(g\). Let \(s \in Q\) be a representative of the socle of \(Q/g\); in \(Q\) one has

\[g \subseteq (a : n) \subseteq (g : n) = g + (s).
\]

Forming colon ideals one gets \(g : (a : n) \supseteq g : (g : n) = n\) and hence \(g : (a : n) = n\). Forming colon ideals a second time now yields \((a : n) = (g : n) = g + (s)\); in particular, one has \(na \subseteq a\), so it follows from Lemma (2.3) that \(a\) is \(n\)-primary and \(R = Q/a\) has type 2; in particular, \(R\) is not Gorenstein.
Note that one has
\[2m \leq \mu(a) \leq 2m + 3. \]
Set \(S = Q/\mathfrak{g}; \) there is an exact sequence of \(Q \)-modules
\[0 \to \mathfrak{g}/\mathfrak{a} \to R \to S \to 0 \]
and an isomorphism \(\mathfrak{g}/\mathfrak{a} \cong \mathbb{k}. \) Tensor with the Koszul complex \(K^Q \) to get an exact sequence of \(Q \)-complexes,
\[0 \to k \otimes_Q K^Q \xrightarrow{\alpha} K^R \xrightarrow{\beta} K^S \to 0, \]
where \(\beta \) is a morphism of DG \(Q \)-algebras. Set \(A = H(K^R) \) and \(G = H(K^S) \), one has
\[
\begin{align*}
\text{rank}_k(G_0) &= 1 = \text{rank}_k(G_3) \quad \text{and} \quad \text{rank}_k(G_1) = 2m + 1 = \text{rank}_k(G_2) \\
\text{rank}_k(A_0) &= 1, \quad \text{rank}_k(A_1) = \mu(a), \quad \text{rank}_k(A_2) = \mu(a) + 1, \quad \text{and} \quad \text{rank}_k(A_3) = 2,
\end{align*}
\]
and consider the exact sequence in homology associated to \((*)\)
\[
\begin{array}{cccccccc}
& 0 & \to & k & \to & H_3(\alpha) & \to & A_3 & \to & H_3(\beta) & \to & G_3 & & \\
& & & & & \downarrow & & \downarrow & & \downarrow & & \\
& & & k^3 & \to & H_2(\alpha) & \to & A_2 & \to & H_2(\beta) & \to & G_2 & & \\
& & & & & \downarrow & & \downarrow & & \downarrow & & \\
& & & & & k^3 & \to & H_1(\alpha) & \to & A_1 & \to & H_1(\beta) & \to & G_1 & & \\
& & & & & & & \downarrow & & \downarrow & & \downarrow & & \\
& & & & & k & \to & H_0(\alpha) & \to & A_0 & \to & H_0(\beta) & \to & G_0 & \to & 0
\end{array}
\]
where the numbers below the arrows indicate the ranks of the maps. As \(H(\beta) \) is a homomorphism of graded \(k \)-algebras, there is a commutative diagram
\[
\begin{array}{ccc}
G_2 & \xrightarrow{\delta_G} & \text{Hom}_k(G_1, G_3) \\
\downarrow & & \downarrow \\
H_2(\beta) & \xrightarrow{\mu(a)-2} & \text{Hom}_k(H_1(\beta), G_3) \\
\downarrow & & \downarrow \\
A_2 & \xrightarrow{\varepsilon} & \text{Hom}_k(A_1, G_3) \\
\downarrow & & \downarrow \\
A_2 & \xrightarrow{\delta_A} & \text{Hom}_k(A_1, A_3)
\end{array}
\]
The rank of \(\delta_A \) is at least the rank of \(\varepsilon = \text{Hom}_k(A_1, H_3(\beta)) \circ \delta_A \). The rank of \(\varepsilon \) is at least \((\mu(a) - 2) - 1 = \mu(a) \) as \(\delta_G \) is an isomorphism, see [1, 1.4.2], and the kernel of \(\text{Hom}_k(H_1(\beta), G_3) \) has rank 1. Thus, one has \(r = \text{rank}(\delta_A) \geq \mu(a) - 3 \).

In case \(\mu(a) \geq 6 \), one has \(r \geq 3 \), and since the type of \(R \) is 2, this implies that \(R \) is of class \(\mathbb{G}(r); \) see [2, 2.1]. This proves part (c) and the last case of part (b). For \(m = 2 \) one has \(4 \leq \mu(a) \leq 7 \). If \(\mu(a) = 5 \) it follows from Proposition [2, 2.2] and [2, 2.1] that \(R \) is of class \(\mathbb{B} \). If \(\mu(a) = 4 \), then \(R \) is of class \(\mathbb{H}(3, 2) \) by [1, 3.4.2.(a)]. Finally, part (a) is a result of Faucett [7]. ∎
3. A family of graded local rings of class $G(r)$

A grade 3 Gorenstein ideal of a local ring is by a result of Buchsbaum and Eisenbud [4, thm. 2.1] minimally generated by the sub-maximal Pfaffians of a $(2m + 1) \times (2m + 1)$ skew-symmetric matrix. Thus, skew-symmetric matrices are a source of Gorenstein rings and, via Theorem (2.4), also a source of rings of class $G(r)$ that are not Gorenstein. In this section, we construct an infinite family of such rings.

(3.1) Let k be a field and set $Q = k[x, y, z]$; let m be a positive integer.

Denote by U_m the $m \times m$ matrix over Q whose ith row has entries

\[u_{i,m-i} = x, \quad u_{i,m-i+1} = z, \quad \text{and} \quad u_{i,m-i+2} = y \]

and 0 elsewhere; set $d_{-1} = 0, \ d_0 = 1,$ and $d_m = \det(U_m)$.

That is,

\[U_1 = [z], \quad U_2 = \begin{bmatrix} x & z \\ z & y \end{bmatrix}, \quad U_3 = \begin{bmatrix} 0 & x & z \\ x & z & y \\ z & y & 0 \end{bmatrix}, \quad U_4 = \begin{bmatrix} 0 & 0 & x & z \\ 0 & x & z & y \\ x & z & y & 0 \\ z & y & 0 & 0 \end{bmatrix}, \quad \ldots \]

\[d_1 = z, \quad d_2 = xy - z^2, \quad d_3 = 2xyz - z^3, \quad d_4 = -3xyz^2 + x^2y^2 + z^4, \quad \ldots \]

Notice that for every i in the range $2, \ldots, m$ one has,

\[U_m = \begin{bmatrix} O_x & U_{i-1} \\ U_{m-i+1} & yO \end{bmatrix}, \]

where O_x is the appropriately sized matrix with x in the lower right corner and 0 elsewhere, and yO is the matrix with y in the top left corner and 0 elsewhere.

Let V_m be the $(2m + 1) \times (2m + 1)$ skew-symmetric matrix given by

\[V_m = \begin{bmatrix} O & \begin{bmatrix} O_x \\ & 0 \\ & & yO \end{bmatrix} \\ \begin{bmatrix} -O_x & 0 \\ -O & -yO \end{bmatrix} & U_m \end{bmatrix}, \]

where O is the $m \times m$ zero-matrix and, as above, O_x and yO are appropriately sized matrices with 0 everywhere but in the lower left and upper right corner, respectively. That is,

\[V_1 = \begin{bmatrix} 0 & x & z \\ -x & 0 & y \\ -z & -y & 0 \end{bmatrix}, \quad V_2 = \begin{bmatrix} 0 & 0 & 0 & x & z \\ 0 & 0 & x & z & y \\ 0 & -x & 0 & y & 0 \\ -x & -z & -y & 0 & 0 \\ -z & -y & 0 & 0 & 0 \end{bmatrix}, \quad \ldots \]

The sub-maximal Pfaffians of V_m are determined (up to a sign) by minors,

\[\operatorname{pf}_i(V_m)^2 = \det((V_m)_{ii}). \]

Consider the ideal of Q generated by these Pfaffians,

\[\mathfrak{g}_m = (\operatorname{pf}_1(V_m), \ldots, \operatorname{pf}_{2m+1}(V_m)) \].
(3.2) Lemma. In the notation from (3.1) the next equalities hold for every $m \geq 1$.

\[d_m = (-1)^{m-1}zd_{m-1} + xyd_{m-2} \quad \text{and} \quad \]

\[d_m = \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} \binom{m-j}{j} (-1)^{\frac{m-2j}{2}} xy^j z^{m-2j}. \]

Proof. Per (3.1.1) with $i = 2$, expansion of the determinant of U_m along the first row yields

\[d_m = (-1)^m x \det((U_m)_{1,m-1}) + (-1)^{m+1} z \det(U_{m-1}). \]

From (3.1.1) with $i = 3$ it follows that expansion along the last column yields

\[\det((U_m)_{1,m-1}) = (-1)^m y \det(U_{m-2}). \]

Combining these two expressions, one gets the first equality. The second equality now follows by induction. \hfill \square

Evidently, the ideal g_m from (3.1.4) is contained in n^m; in fact, one has $g_1 = n$. One can check that, though the generating matrices are different, the family of ideals $\{g_m\}_{m \geq 2}$ is the same as that provided by [4, prop. 6.2]. To understand what happens when one trims these ideals, we provide a more detailed description.

(3.3) Proposition. Adopt the notation from (3.1) and let n denote the maximal ideal of Q. For every $m \geq 2$ the ideal $g_m \subseteq n^2$ is an n-primary Gorenstein ideal minimally generated by the elements

\[x^{m-i}d_i \text{ and } y^{m-i}d_i \text{ for } 0 \leq i \leq m-1 \quad \text{and} \quad d_m. \]

The ring Q/g_m has socle generated by the class of $x^{m-1}y^{m-1}$ and Hilbert series

\[\text{Hilb}_{Q/g_m}(t) = \sum_{i=0}^{m-2} \binom{i+2}{2} (t^i + t^{2m-2-i}) + \binom{m+1}{2} t^{m-1}. \]

Proof. Per (3.1.3) the Pfaffians of V_1 are, up to signs,

\[\text{pf}_1(V_1) = y = yd_0, \quad \text{pf}_2(V_1) = z = d_1, \quad \text{and} \quad \text{pf}_3(V_1) = x = xd_0. \]

For $m \geq 2$ we argue that, up to signs, one has

\[\text{pf}_i(V_m) = y^{m-i+1}d_{i-1} \text{ for } 1 \leq i \leq m, \]

\[\text{pf}_{m+1}(V_m) = d_m, \quad \text{and} \quad \]

\[\text{pf}_{2m+i-2}(V_m) = x^{m-i+1}d_{i-1} \text{ for } 1 \leq i \leq m. \]

First notice that the equality $\text{pf}_{m+1}(V_m) = d_m$ is immediate from (3.1.2). Further, note that by symmetry in x and y it is sufficient to prove that $\text{pf}_i(V_m) = y^{m-i+1}d_{i-1}$ holds for $1 \leq i \leq m$. To compute $\text{pf}_1(V_m)$ notice that the matrix $(V_m)_{11}$ is a $2m \times 2m$-matrix with $\pm y$ on the anti-diagonal and zeros below it. Thus, one has $\text{pf}_1(V_m) = y^m = y^{m}d_0$. Now, for i in the range $2, \ldots, m$ consider the matrix $(V_m)_{ii}$ as 2×2 block matrix with blocks of size $m \times m$,

\[(V_m)_{ii} = \begin{bmatrix} X & W_i \\ -W_i^T & O \end{bmatrix}, \]
where O is as in (3.1.2), i.e. it is zero. Thus, one has

$$\det((V_m)_{ii}) = \begin{vmatrix} X & W_i \\ -W_i^T & O \end{vmatrix} = (-1)^m \begin{vmatrix} W_i & X \\ O & -W_i^T \end{vmatrix} = (\det(W_i))^2.$$

Next, notice that W_i is obtained from U_m by removing row i and adding a row yO at the bottom. Thus, per (3.1.1) it has the form

$$W_i = \begin{bmatrix} O_r & U_{i-1} \\ Y & O \end{bmatrix},$$

where Y is the matrix obtained from U_{m-i+1} by removing the first row and adding a row yO at the bottom. In particular, it is a $(m - i + 1) \times (m - i + 1)$-matrix with $\pm y$ on the anti-diagonal and zeros below it. Thus, computing the determinant of W_i by successive expansion on the last $m - i + 1$ rows one gets, up to a sign, $pf_i(V_m) = y^{m-i+1}d_{i-1}$. It follows that g_m is generated by the listed elements.

The elements x^m, y^m, d_m form a Q-regular sequence in g_m, so it follows from (3.1.1) that g_m is a Gorenstein ideal minimally generated by the listed elements. In particular, g_m is n-primary. In fact, in this case it is elementary to see that the generating set is minimal: Notice from Lemma (3.1.2) that d_i is a linear combination of monomials of the form $x^iy^jz^{i-j}$. Hence, each generator $x^{m-i}d_i$ is a linear combination of monomials of the form $x^{m-i+j}y^jz^{i-j}$ while the generators $y^{m-i}d_i$ are linear combinations of monomials $x^iy^{m-i+j}z^{i-j}$. Thus the generators are linear combinations of disjoint sets of degree m monomials and hence linearly independent.

The Hilbert series of the power series ring Q is $\text{Hilb}_Q(t) = \sum_{j=0}^\infty \left(\frac{t^j}{j!}\right)^2$. Since g_m is Gorenstein and minimally generated by $2m + 1$ elements of degree m, the Hilbert series of the ring $S_m = Q/g_m$ is symmetric and given by

$$\text{Hilb}_{S_m}(t) = \sum_{i=0}^{m-2} \left(\frac{i+2}{2}\right) (t^i + t^{2m-2-i}) + \left(\frac{m+1}{2}\right) t^{m-1}.$$

In particular, the socle degree of S_m is $2m - 2$. Evidently, one has $(x^{m-1}y^{m-1})n \subseteq g_m$, so it is sufficient to show that the element $x^{m-1}y^{m-1}$ is not in g_m, i.e. that it yields a non-zero socle element in S_m. If it were in g_m, then one would have $x(x^{m-2}y^{m-1}) = \text{socle}(x) = y(x^{m-2}y^{m-1}) = z(x^{m-2}y^{m-1})$. Thus, $x^{m-2}y^{m-1}$ would yield a socle element in S_m of degree $2m - 3$, whence it must be 0; i.e. one would have $x^{m-2}y^{m-1} \in g_m$. Reiterating this argument, one arrives at the conclusion that y^{m-1} is in g_m, which is absurd as the generators of g_m have degree m.

Finally, we apply the trimming procedure from Theorem (3.4) to the ideals g_m.

(3.4) Adopt the notation from (3.1.1). By Proposition (3.3) one has

$$g_2 = (x^2, xz, xy - z^2, yz, y^2).$$

Trimming the generators xz and yz one gets the following ideals of Q,

$$\begin{align*}
(x, y, z) &= (x^2, xy - z^2, yz, y^2) = (x^2, xy - z^2, yz, y^2) \quad \text{and} \\
(x, y, z) &= (x^2, xz, xy - z^2, y^2) = (x^2, xz, xy - z^2, y^2).
\end{align*}$$
They are both minimally generated by 4 elements, so they define quotient rings of class $\text{H}(3, 2)$; see Theorem (2.4) (b). Moreover, one has
\[
(x, y, z)x^2 + (x, xy - z^2, yz, y^2) = (x^3, xz, xy - z^2, yz, y^2),
\]
\[
(x, y, z)y^2 + (x^2, xz, xy - z^2, yz) = (x^2, xz, xy - z^2, yz, y^3),
\]
and
\[
(x, y, z)(xy - z^2) + (x^2, xz, yz, y^2) = (x^2, xz, z^3, yz, y^2),
\]
so by Theorem (2.4) (b) these ideals define rings of class B.

From the next result one immediately gets the statement of Theorem (1.1) about existence of infinite families of rings of class $\text{G}(r)$ that are not Gorenstein.

(3.5) **Proposition.** Adopt the notation from (3.1) and let \mathfrak{n} denote the maximal ideal of Q. Let \mathfrak{g} be one of the generators of \mathfrak{g}_m listed in (3.3), let \mathfrak{b} be the ideal generated by the remaining $2m$ generators of \mathfrak{g}_m, and set $\mathfrak{a} = \mathfrak{n} \mathfrak{g} + \mathfrak{b}$. For $m \geq 3$ the ring $R = Q/\mathfrak{a}$ has the following properties.

(a) R is an artinian local ring of type 2 with socle generated by the classes of the elements \mathfrak{g} and $x^{m-1}y^{m-1}$.

(b) If \mathfrak{g} is $x^{m-i}d_i$ or $y^{m-i}d_i$ for some $i \in \{1, \ldots, m-1\}$, then \mathfrak{a} is minimally generated by $2m$ elements and R is of class $\text{G}(2m-3)$.

(c) If \mathfrak{g} is x^m, y^m, or d_m, then \mathfrak{a} is minimally generated by $2m + 1$ elements and R is of class $\text{G}(2m-2)$.

Proof. Fix $m \geq 3$; for brevity the class in R or $S = Q/\mathfrak{g}_m$ of an element u in Q is also written u.

Part (a) is immediate from Lemma (2.3). We prove parts (b) and (c) together. First we describe the generators of \mathfrak{a} using the recurrence formula from Lemma (3.2).

For $1 \leq i \leq m$ one has
\[
x(x^{m-i}d_i) = x^{m-(i-1)}((-1)^{i-1}z_{d_{i-1}} + xyd_{i-2})
\]
\[
= (-1)^{i-1}z(x^{m-(i-1)}d_{i-1}) + y(x^{m-(i-2)}d_{i-2}).
\]

For $0 \leq i \leq m - 2$ one has
\[
y(x^{m-i}d_i) = x^{m-(i+1)}(xyd_i)
\]
\[
= x^{m-(i+1)}(d_{i+2} - (-1)^{i+1}z_{d_{i+1}})
\]
\[
= x(x^{m-(i+2)}d_{i+2}) + (-1)^iz(x^{m-(i+1)}d_{i+1})
\]
and moreover
\[
y(xd_{m-1}) = x(yd_{m-1}).
\]

For $0 \leq i \leq m - 1$ one has
\[
z(x^{m-i}d_i) = x^{m-i}(-1)^i(d_{i+1} - xyd_{i-1})
\]
\[
= (-1)^iz(x(x^{m-(i+1)}d_{i+1}) - (-1)^iy(x^{m-(i-1)}d_{i-1}).
\]

For $g = x^{m-i}d_i$ with $1 \leq i \leq m - 1$ it follows immediately from (1) – (3) that $\mathfrak{n} \mathfrak{g}$ is contained in \mathfrak{a}, so \mathfrak{a} is minimally generated by $2m$ elements. By symmetry the same is true for $g = y^{m-i}d_i$ with $1 \leq i \leq m - 1$.

For $g = x^m$ one has $yg \in \mathfrak{b}$ and $zg \in \mathfrak{b}$ by (2) and (3), so \mathfrak{a} is generated by the $2m$ generators of \mathfrak{b} and x^{m+1}. To see that this is a minimal set of generators, note that the generators of \mathfrak{b} have degree m and none of them includes the term x^m.

The statement for $g = y^m$ follows by symmetry.
For $g = d_m$ one has $xg \in b$ by (1) and $yg \in b$ by symmetry. Thus a is generated by the $2m$ generators of b and zd_m. To see that this is a minimal set of generators, note from Lemma (3.2) that zd_m has a z^{m+1} term, while the generators of b have degree m and none of them has a z^m term.

To determine the multiplicative structure on $A = H(K^R)$ we first describe a basis for A_1. The Koszul complex K^R is the exterior algebra of the free R-module with basis $\{\varepsilon_x, \varepsilon_y, \varepsilon_z\}$ endowed with the differential given by $\partial(\varepsilon_x) = x$, $\partial(\varepsilon_y) = y$, and $\partial(\varepsilon_z) = z$. We suppress the wedge in products on K^R and adopt the following shorthands

$$\varepsilon_{xy} = \varepsilon_x \varepsilon_y, \quad \varepsilon_{xz} = \varepsilon_x \varepsilon_z, \quad \varepsilon_{yz} = \varepsilon_y \varepsilon_z, \quad \text{and} \quad \varepsilon_{xyz} = \varepsilon_x \varepsilon_y \varepsilon_z.$$

Because of the symmetry in x and y we only consider $g = x^{m-i}d_i$. Given the minimal generating set of a described above, one gets:

If $g = x^m$ then the following cycles in K_1^R yield a basis for A_1

$$x^m \varepsilon_x \quad \text{and} \quad x^{m-j-1}d_j \varepsilon_x \quad \text{for} \quad 1 \leq j \leq m - 1,$$

$$y^{m-j-1}d_j \varepsilon_y \quad \text{for} \quad 0 \leq j \leq m - 1, \quad \text{and} \quad (-1)^{m-1}z^{m-1}d_{m-1} \varepsilon_z + xd_{m-2} \varepsilon_y .$$

If $g = x^{m-i}d_i$ for some i in the range $1, \ldots , m - 1$, then the following cycles in K_1^R yield a basis for A_1

$$x^{m-j-1}d_j \varepsilon_x \quad \text{for} \quad 0 \leq j \leq m - 1, \quad j \neq i$$

$$y^{m-j-1}d_j \varepsilon_y \quad \text{for} \quad 0 \leq j \leq m - 1, \quad \text{and} \quad (-1)^{m-1}z^{m-1}d_{m-1} \varepsilon_z + xd_{m-2} \varepsilon_y .$$

If $g = d_m$ then the following cycles in K_1^R yield a basis for A_1

$$x^{m-j-1}d_j \varepsilon_x \quad \text{for} \quad 0 \leq j \leq m - 1,$$

$$y^{m-j-1}d_j \varepsilon_y \quad \text{for} \quad 0 \leq j \leq m - 1, \quad \text{and} \quad d_m \varepsilon_z .$$

From Theorem (2.4) it is known that R is of class $G(r)$ with $\mu(a) - 3 \leq r$. To prove that equality holds, which is the claim in (b) and (c), it suffices to show that the kernel of δ has rank at least $(\mu(a) + 1) - (\mu(a) - 3) = 4$; see (2.1). To this end we first notice that the cycles $g\varepsilon_{xy}$, $g\varepsilon_{xz}$, and $g\varepsilon_{yz}$ yield linearly independent elements of A_2. Assume towards a contradiction that they are not, then there exists an element $h\varepsilon_{xy}$ in K_3^Q and elements q_1, q_2, and q_3 in Q and not all in n with

$$\partial(h\varepsilon_{xy}) - (q_1g\varepsilon_{xy} + q_2g\varepsilon_{xz} + q_3g\varepsilon_{yz}) \in aK_2^Q .$$

That is, one has $zh - q_1g \in a$, $yh + q_2g \in a$, and $xh - q_3g \in a$, and hence $h \notin n^m$ as $g \notin a + n^{m+1}$. Furthermore, the class of h is a socle element in S as one has $nh \subseteq a + Qg = g_m$. Thus, $h \in g_m$ or $h = qx^{m-1}y^{m-1}$ for some $q \in Q \setminus n$. In either case one has $h \in n^m$, which is a contradiction. Thus $g\varepsilon_{xy}$, $g\varepsilon_{xz}$, and $g\varepsilon_{yz}$ yield linearly independent elements in A_2 that clearly belong to the kernel of δ.

Finally we produce a fourth element in the kernel. For $g = x^n$ the element

$$f = y^{m-1}\varepsilon_{yz}$$

is clearly a cycle in K_2^R, and it is not a boundary. Indeed, if one had $f = \partial(h\varepsilon_{yz}) = hx\varepsilon_{yz} - hy\varepsilon_{xz} + hz\varepsilon_{xy}$ for some homogeneous element $h \in R$, then
it would have degree \(m - 2 \) and one would have \(hy = 0 = hz \) in \(R \), which is impossible as a has generators of degree at least \(m \). The products \((y^{m-j-1}d_j \varepsilon_y) \cdot f\) and \((-(1)^{m-1}z^{m-1}\varepsilon_z + xd_{m-2} \varepsilon_y) \cdot f\) in \(K^R \) vanish by graded commutativity. Moreover, one has

\[
(x^m \varepsilon_x) \cdot f = x(x^{m-1}y^{m-1})\varepsilon_{xyz} = 0 \quad \text{and} \quad (x^{m-j-1}d_j \varepsilon_x) \cdot f = x^{m-j-1}y^{j-1}(y^{m-j}) \varepsilon_{xyz} = 0.
\]

Thus the homology class of \(f \) annihilates \(A_1 \).

For \(g = x^{m-i}d_i \) and \(1 \leq i \leq m - 1 \) the element

\[
f = y^{m-i}d_{i-1} \varepsilon_{xy} + (-1)^{i-1}y^{m-i-1}d_i \varepsilon_{yz}
\]

is a cycle in \(K^R_d \); indeed one has

\[
\partial(f) = xy^{m-i}d_{i-1} \varepsilon_y - y^{m-(i-1)}d_{i-1} \varepsilon_x + (-1)^{i-1}y^{m-i}d_i \varepsilon_z + (-1)^iy^{m-i-1}zd_i \varepsilon_y
\]

\[
= y^{m-i-1}((-1)^{i}zd_i + xyd_{i-1}) \varepsilon_y
\]

\[
= y^{m-(i+1)}d_{i+1}
\]

\[
= 0,
\]

where the third equality follows from Lemma \((2.3)\). An argument similar to the one above shows that \(f \) is not a boundary. The products \((y^{m-j-1}d_j \varepsilon_y) \cdot f\) in \(K^R \) vanish by graded commutativity. Moreover, one has

\[
(x^{m-j-1}d_j \varepsilon_x) \cdot f = (-1)^{i-1}x^{m-j-1}d_j y^{m-i-1}d_i \varepsilon_{xyz}.
\]

If \(i > j \) holds, then the element \(x^{m-j-1}d_j y^{m-i-1}d_i \) is 0 in \(R \) because it is divisible by \(g \), which is a socle element in \(R \). If one has \(i < j \), then the element \(x^{m-j-1}d_j y^{m-i-1}d_i \) is zero in \(R \) because it is divisible in \(Q \) by the generator \(y^{m-j}d_j \) of \(a \). Finally, one has

\[
((-1)^{m-1}z^{m-1}d_{m-1} \varepsilon_z + xd_{m-2} \varepsilon_y) \cdot f = (-1)^{m-1}y^{m-i}d_{i-1}z^{m-1}d_{m-1} \varepsilon_{xyz}
\]

\[
= (-1)^{m-1}y^{m-i-1}d_{i-1}z^{m-1}(yd_{m-1}) \varepsilon_{xyz}
\]

\[
= 0
\]

in \(K^R \), so the homology class of \(f \) annihilates \(A_1 \).

For \(g = d_m \) the element

\[
f = d_{m-1} \varepsilon_{xy}
\]

is evidently a cycle in \(K^R_d \), and as above it is not a boundary. The products \((x^{m-j-1}d_j \varepsilon_x) \cdot f\) and \((y^{m-j-1}d_j \varepsilon_y) \cdot f\) in \(K^R \) vanish by graded commutativity. Finally one has

\[
(d_m \varepsilon_z) \cdot f = d_{m-1}d_m \varepsilon_{xyz} = 0,
\]

as \(g = d_m \) is a socle element of \(R \).

\[\square\]

Acknowledgments

We thank Parangama Sarkar for alerting us to a flaw in a previous version of Lemma \((2.3)\).
References

1. Luchezar L. Avramov, *A cohomological study of local rings of embedding codepth 3*, J. Pure Appl. Algebra 216 (2012), no. 11, 2489–2506. MR2927181
2. Luchezar L. Avramov and Evgeniy S. Golod, *On the homology algebra of the Koszul complex of a local Gorenstein ring*, Mat. Zametki 9 (1971), 53–58. MR029157
3. Luchezar L. Avramov, Andrew R. Kustin, and Matthew Miller, *Poincaré series of modules over local rings of small embedding codepth or small linking number*, J. Algebra 118 (1988), no. 1, 162–204. MR09061334
4. David A. Buchsbaum and David Eisenbud, *Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3*, Amer. J. Math. 99 (1977), no. 3, 447–485. MR0453723
5. Lars Winther Christensen and Oana Veliche, *Local rings of embedding codepth 3. Examples*, Algebr. Represent. Theory 17 (2014), no. 1, 121–135. MR3160716
6. Lars Winther Christensen, Oana Veliche, and Jerzy Weyman, *Linkage classes of grade three perfect ideals*, in preparation.
7. Jessica Ann Faucett, *Expanding the socle of a codimension 3 complete intersection*, Rocky Mountain J. Math. 46 (2016), no. 5, 1489–1498. 1580796
8. Junzo Watanabe, *A note on Gorenstein rings of embedding codimension three*, Nagoya Math. J. 50 (1973), 227–232. MR0319985
9. Jerzy Weyman, *On the structure of free resolutions of length 3*, J. Algebra 126 (1989), no. 1, 1–33. MR1023284

Texas Tech University, Lubbock, TX 79409, U.S.A.
E-mail address: lars.w.christensen@ttu.edu
URL: http://www.math.ttu.edu/~lchriste

Northeastern University, Boston, MA 02115, U.S.A.
E-mail address: o.veliche@neu.edu

University of Connecticut, Storrs, CT 06269, U.S.A.
E-mail address: jerzy.weyman@uconn.edu
URL: http://www.math.uconn.edu/~weyman