Prognostic impact of acute pulmonary triggers in patients with takotsubo syndrome: new insights from the International Takotsubo Registry

Ken Kato1, Victoria L. Cammann1, L. Christian Napp2, Konrad A. Szwaw3, Jozef Micek1, Sara Dreiding4, Rena A. Levinson1, Vanya Petkova1, Michael Würdinger1, Alexandru Patrascu1, Rafael Sumaling1, Sebastiano Gilli3, Christian F. Clarenbach9, Malcolm Kohler9, Manfred Wischnewsky5, Rodolfo Citro5, Carmine Vecchione6, Eduardo Bossone7, Michael Neuhaus10, Jennifer Franke9, Benjamin Meder9, Milosz Jaguszewski10, Michel Noutsias11, Maiko Knorr12, Susanne Heiner12, Fabrizio D’Ascenzo13, Wolfgang Dichtl14, Christof Burgdorf15, Behrouz Kherad16, Carsten Tschöpe16, Annahita Sarcon17, Jerold Shinbane18, Lawrence Rajan19, Guido Michel6,20, Roman Pfister20, Alessandro Cuneo21, Claudioius Jacobshagen22, Mahir Karakas23,24, Wolfgang Koenig25,26, Alexander Pott27, Philippe Meyer28, Marco Roffi28, Adrian Banning29, Mathias Wolfrum30, Florim Cuculi30, Richard Kobza30, Thomas A. Fischer31, Tujia Vasankari32, K.E. Juhanai Airaksinen32, Monika Budnik33, Rafal Dworakowski34, Philip MacCarthy34, Christoph Kaiser35, Stefan Oswal36, Leonarda Galiuto37, Christina Chan37, Paul Bridgman37, Daniel Beug38,39, Clément Delmas40, Olivier Lairez40, Ekaterina Gilyarova41, Alexandra Shilova42, Mikhail Gilyarov41, Ibrahim El-Battrawy42,43, Ibrahim Akin42,43, Martin Kozel44, Petr Tousek44, David E. Winchester45, Jan Galusza46, Michael Ukena47, Gregor Pogla48, Pedro Carrilho-Ferreira49, Christian Hauck50, Carla Paolini51, Claudio Bilato51, Masiori Sano52, Iwao Ishibashi52, Masayuki Takahara53, Toshiharu Himi53, Yosho Kobayashi54, Abhimr Prasad55, Charanjit S. Rihal55, Kan Liu56, P. Christian Schulze57, Matteo Bianco58, Lucas Jörg59, Hans Rickl59, Gonçalo Pestana60, Than H. Nguyen61, Michael Böhm62, Lars S. Maier62, Fausto J. Pinto62, Petr Widimsky64, Stephan B. Felix64, Grzegorz Opolski63, Ruediger C. Braun-Dullaeus64, Wolfgang Rottbauer64, Gerd Hasenfuß65, Burkert M. Pieske66, Herbert Schunkert65,26, Martin Borggrefe42,43, Holger Thiele63, Johann Bauersachs62, Hugo A. Katus6, John D. Horowitz61, Carlo Di Mario64, Thomas Münzel6, Filippo Crea6, Jeroen J. Bax65, Thomas F. Lüscher66,67, Frank Ruschitzka68, Jenia R. Ghadri1 and Christian Templin1

1Department of Cardiology, University Heart Center, University Hospital of Zurich, Rämistrasse 100, Zurich, 8091, Switzerland; 2Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; 3Centro Cardiologico Monza, IRCCS, Milan, Italy; 4Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland; 5FB Mathematics and Computer Science, University of Bremen, Bremen, Germany; 6Heart Department, University Hospital ‘San Giovanni di Dio F Uggi R d’Arzano’, Salerno, Italy; 7Division of Cardiology, Antonio Cardarelli Hospital, Naples, Italy; 8Department of Cardiology, Kantonsspital Frauenfeld, Frauenfeld, Switzerland; 9Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany; 10First Department of Cardiology, Medical University of Gdansk, Gdansk, Poland; 11Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany; 12Center for Cardiology, University Hospital Zuerich, Mainz, Mainz, Germany; 13Division of Cardiology, Department of Medical Sciences, AOU Città della Scienza e della Scienza, University of Turin, Turin, Italy; 14Division of Cardiology, Internal Medicine III (Cardiology and Angiology), Medical University Innsbruck, Innsbruck, Austria; 15Heart and Vascular Centre Bad Bevensen, Bad Bevensen, Germany; 16Department of Cardiology, Charité, Campus Rudolf Virchow, Berlin, Germany; 17Section of Cardiac Electrophysiology, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA; 18Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 19TJ Health Partners Heart and Vascular, Glasgow, KY, USA; 20Department of Internal Medicine III, Heart Center University of Cologne, Cologne, Germany; 21Krankenhaus ‘Maria Hilf’ Medizinische Klinik, Stadllohn, Germany; 22Clinic for Cardiology and Pneumology, Georg August University of Goettingen, Goettingen, Germany; 23Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; 24DHfK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany; 25Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; 26DHfK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany; 27Department of Internal Medicine II - Cardiology, University of Ulm, Medical Center, Ulm, Germany; 28Service de Cardiologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland; 29Department of Cardiology, John Radcliffe Hospital, Oxford, UK; 30Department of Cardiology, Kantonsspital Winterthur, Winterthur, Switzerland; 31Heart Center, Turk University Hospital, University of Turk, Turk, Finland; 32Department of Cardiology, Medical University of Warsaw, Warsaw, Poland; 33Department of Cardiology, King’s College Hospital, London, UK; 34Department of Cardiology, University Hospital of Basel, Basel, Switzerland; 35Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; 36Department of Cardiology, Christchurch Hospital, Christchurch, New Zealand; 37Department of Internal Medicine II, University Medicine Greifswald, Greifswald, Germany; 38DHfK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; 39Department of Cardiology and Cardiac Imaging Center, University Hospital of Rangueil, Toulouse, France; 40Intensive Coronary Care Unit, Moscow City Hospital #1 named after N. Pirogov, Moscow, Russia; 41Fast Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany; 42DHfK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany; 43Cardiocenter, Third Faculty of Medicine, Charles University in Prague, University Hospital Kralovske Vinohrady, Prague, Czech Republic; 44Division of Cardiovascular Medicine, Department of

© 2021 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Abstract

Aims Acute pulmonary disorders are known physical triggers of takotsubo syndrome (TTS). This study aimed to investigate prevalence of acute pulmonary triggers in patients with TTS and their impact on outcomes.

Methods and results Patients with TTS were enrolled from the International Takotsubo Registry and screened for triggering factors and comorbidities. Patients were categorized into three groups (acute pulmonary trigger, chronic lung disease, and no lung disease) to compare clinical characteristics and outcomes.

Of the 1670 included patients with TTS, 123 (7%) were identified with an acute pulmonary trigger, and 194 (12%) had a known history of chronic lung disease. The incidence of cardiogenic shock was highest in patients with an acute pulmonary trigger compared with those with chronic lung disease or without lung disease (17% vs. 10% vs. 9%, P = 0.017). In-hospital mortality was also higher in patients with an acute pulmonary trigger than in the other two groups, although not significantly (5.7% vs. 1.5% vs. 4.2%, P = 0.13). Survival analysis demonstrated that patients with an acute pulmonary trigger had the worst long-term outcome (P = 0.002). The presence of an acute pulmonary trigger was independently associated with worse long-term mortality (hazard ratio 2.12, 95% confidence interval 1.33–3.38; P = 0.002).

Conclusions The present study demonstrates that TTS is related to acute pulmonary triggers in 7% of all TTS patients, which accounts for 21% of patients with physical triggers. The presence of acute pulmonary trigger is associated with a severe in-hospital course and a worse long-term outcome.

Keywords Takotsubo syndrome; Broken heart syndrome; Outcome; Acute respiratory insufficiency; Chronic obstructive pulmonary disease; InterTAK Registry

Received: 27 October 2020; Revised: 20 November 2020; Accepted: 24 November 2020

Introduction

Takotsubo syndrome (TTS) is characterized by acute left ventricular dysfunction and mainly occurs in postmenopausal women.1–4 In addition, TTS is often associated with antecedent emotional or physical stressors.4–6 Recent data indicate approximately one-third of patients show identifiable physical stressful triggers, including a wide spectrum of medical conditions, such as respiratory disorders.7,8 However, there is scarce information on the relationship between antecedent acute respiratory disorders and TTS.

Hypoxia during acute pulmonary decompensation may activate sympathetic drive and provoke catecholamine surge, which can trigger TTS. Acute respiratory disorders have been identified as a physical trigger for TTS in numerous case reports and systematic reviews.9–11 Due to the effects of the cardio-respiratory systems on haemodynamic status, such respiratory disorders may also affect the prognosis of TTS.12

The aim of the present study was to investigate the prevalence of acute pulmonary triggers and history of chronic lung disease in patients with TTS and their clinical impact on in-hospital and long-term outcomes using the International Takotsubo Registry (InterTAK Registry; www.takotsubo-registry.com) cohort.

Methods

Patients and inclusion criteria

Takotsubo syndrome patients were enrolled from the InterTAK Registry as previously described.13 Data were que-
ried from the University Hospital Zurich and 25 collaborating hospitals in nine countries (Austria, Finland, France, Germany, Italy, Poland, Switzerland, UK, and the USA) from 1 January 2011 to 31 December 2014. TTS was diagnosed according to the modified Mayo Clinic Diagnostic Criteria13,14: (i) a transient wall motion abnormality in the left ventricle beyond a single coronary artery territory; (ii) the absence of obstructive coronary artery disease or angiographic evidence of acute plaque rupture, explaining the wall motion abnormality; (iii) new electrocardiographic abnormalities or elevation in cardiac troponin values; and (iv) the absence of myocarditis. Patients matching all other criteria, in whom the wall-motion abnormality was identical to a single coronary artery territory coincidentally, were included. TTS patients who died during the acute phase before complete recovery of wall motion were not excluded. When eligibility for inclusion was uncertain, patient charts were reviewed by several core members at the University Hospital Zurich to reach an agreement.

The investigation conforms with the principles outlined in the Declaration of Helsinki. The study protocol was reviewed by the respective local ethics committees or investigational review boards at each collaborating site. Due to the partly retrospective nature of the study, ethics committees of most study centres waived the need for informed consent. At centres in which the ethics committees or investigational review boards required informed consent or in which patients were included prospectively, formal written consent was obtained from patients or surrogates.

We screened for TTS triggering factors and comorbidities in all patients. The definition of an acute pulmonary trigger included acute exacerbation of chronic obstructive pulmonary disease (COPD) or asthma, acute respiratory infection including bacterial/viral pneumonia, bronchitis, aspiration, acute respiratory distress syndrome (ARDS), pneumothorax and acute respiratory failure from other pulmonary conditions except for apparent cardiogenic pulmonary oedema secondary to TTS. A history of chronic lung disease was defined as a clear diagnosis of COPD/asthma characterized by persistent respiratory symptoms and airflow limitation in patient charts. Follow-up data were collected through clinical visits, clinical charts, or phone calls.

We categorized all patients with TTS into three groups: (i) those triggered by an acute pulmonary process (‘acute pulmonary trigger’), (ii) those with a known history of chronic lung disease without an acute pulmonary trigger (‘chronic lung disease’), and (iii) patients with neither an acute respiratory trigger nor a chronic lung disease (‘no lung disease’). We compared clinical characteristics, hospital course (including intensive care treatment and complications), and 5 year outcomes between the three groups.

Statistical analysis

Continuous data are presented as mean ± standard deviation, and laboratory values are given as medians and interquartile ranges. Categorical variables are provided as numbers and percentages. Comparisons of patient characteristics between different groups were performed with one-way analysis of variance or Kruskal–Wallis test for continuous data and Pearson χ^2 test for categorical variables.

Outcome analysis was performed using Kaplan–Meier estimates and log-rank tests. Cox-regression analysis was conducted to determine the hazard ratio and 95% confidence intervals of an acute pulmonary trigger and past history of chronic lung disease using the no lung disease group as a reference. To adjust for potential differences between groups, a multivariable analysis (including variables that had shown a significant difference in the baseline comparison and were likely correlates of long-term mortality) was performed via Cox-regression analysis. Missing data on covariates were completed with multiple imputations prior to multivariable Cox-regression. All tests were two-sided and statistical significance was defined as $P < 0.05$. Statistical analyses were performed using IBM SPSS Statistics, Version 25.0 (IBM Corp., Armonk, NY, USA). Graphs were compiled with Prism 7 (GraphPad, La Jolla, CA, USA).

Results

From the InterTAK Registry, 1670 patients with complete information on triggering factors and history of lung disorders were analysed. Of these patients, TTS triggered by an acute pulmonary disease was identified in 123 patients (7%), Figure 1), consisting of acute exacerbation of COPD ($n = 59$, 48%) or asthma ($n = 14$, 11%), acute respiratory infection ($n = 30$, 24%), ARDS ($n = 8$, 7%), pneumothorax ($n = 3$, 2%), and acute respiratory failure from other pulmonary conditions ($n = 9$, 7%). A total of 194 patients (12%) had a known history of chronic lung disease that did not trigger TTS, including COPD ($n = 151$, 78%) and asthma ($n = 43$, 22%). The remaining 1353 patients (81%) were without an acute pulmonary disease process or known history of chronic lung disease.

The comparison of clinical characteristics between groups is summarized in Table 1. The proportion of female patients was significantly higher in patients with no lung disease than in the other groups (84% vs. 85% vs. 91%; $P = 0.003$). There was no difference in age between groups. The highest creatinine kinase level on admission was shown in patients with no lung disease (factor increase of the upper limit of normal, 0.71 vs. 0.75 vs. 0.87; $P = 0.016$), while there was no difference in troponin or brain natriuretic peptide. White blood cell count on admission was highest in patients with an acute
Acute pulmonary triggers and chronic lung diseases. Acute pulmonary triggers were identified in 7% of patients. In the other patients, 12% had a past history of chronic lung diseases including chronic obstructive pulmonary disease and asthma. Patients without an acute pulmonary trigger or chronic lung disease were classified into the no lung disease group (81%). ARDS, acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease.

Discussion

The principal findings of this study were as follows: (i) acute pulmonary disorders accounted for 21% of all patients with physical triggers in the InterTAK Registry; (ii) the presence of an acute pulmonary trigger in TTS was independently associated with worse long-term outcome; (ii) the coexistence of COPD or asthma in patients who had non-pulmonary triggers for TTS had no effects on long-term mortality outcomes.

Although emotional stress was classically recognized a typical feature of TTS, previous studies showed that more than one-third of patients with TTS were provoked by physical stressors.\(^7,^{13}\) Recently, significant diversity of physical stressors has been reported to trigger TTS, including acute respiratory disorders.\(^13\) Furthermore, respiratory disorders such as ARDS may trigger a transient decrease in global systolic dysfunction, which might represent a form of TTS. Indeed, in the present study, acute pulmonary triggers were identified in 7% of all TTS patients.

While the exact role of acute pulmonary triggers in TTS has not been established, multiple factors may be involved. Hypoxia during acute respiratory dysfunction may activate sympathetic drive and cause a chemo-reflex response that triggers TTS.\(^10\) Moreover, hypercapnia and associated respiratory acidosis have been reported to be strong stimuli for noradrenaline and adrenaline synthesis in animal models and humans.\(^15,\)\(^16\) There may be potential additional effects of CO\(_2\) on catecholamine stimulation beyond systemic acidosis.\(^17\) These cascades involve an enhanced sympathetic drive that results in elevated catecholamine levels, which is thought to have a central role in the pathophysiology of TTS.\(^18\)
Table 1 Characteristics of takotsubo patients

Characteristic	Acute pulmonary trigger	Chronic lung disease	No lung disease	P value
Demographics				
Female sex—no./total no. (%)	103/123 (83.7)	165/194 (85.1)	1230/1353 (90.9)	0.003
Age (years)	67.3 ± 11.5 (N = 123)	66.6 ± 11.5 (N = 194)	66.4 ± 13.3 (N = 1353)	0.76
Triggers—no./total no. (%)	References	References	References	
Physical	123/123 (100.0)	67/194 (34.5)	407/1353 (30.1)	<0.001
Emotional	0/123 (0.0)	40/194 (20.6)	432/1353 (31.9)	<0.001
No evident trigger	0/123 (0.0)	62/194 (32.0)	410/1353 (30.3)	<0.001
Takotsubo type—no./total no. (%)	92/123 (74.8)	157/194 (80.9)	1110/1353 (82.0)	0.14
Symptoms on admission—no./total no. (%)	References	References	References	
Chest pain	56/107 (52.3)	127/177 (71.8)	1002/1274 (78.6)	<0.001
Dyspnoea	100/115 (87.0)	110/177 (62.1)	523/1265 (41.3)	<0.001
Cardiac biomarkers—median (IQR)	References	References	References	
Troponin on admission—factor increase in ULN*	8.67 (2.07–24.86)	4.90 (1.80–19.90)	8.00 (2.36–23.43)	0.18
Creatine kinase on admission—factor increase in ULN	0.71 (0.39–1.13)	0.75 (0.46–1.44)	0.87 (0.54–1.51)	0.016
Inflammatory markers—median (IQR)	4.73 (1.68–18.20)	6.29 (2.38–16.24)	6.64 (2.16–16.16)	0.74
CRP on admission (mg/L)	5.80 (1.65–21.13)	4.00 (1.40–9.60)	3.80 (1.40–11.30)	0.33
WBC on admission (10⁹/μL)	11.58 (8.68–15.78)	10.04 (8.00–12.88)	9.60 (7.30–12.30)	<0.001
ECG on admission—no./total no. (%)	References	References	References	
ST-segment elevation	40/106 (37.7)	74/172 (43.0)	548/1328 (44.3)	0.42
T-wave inversion	47/106 (44.3)	69/172 (40.1)	509/1328 (41.1)	0.77
QTc (ms)	453.1 ± 50.5 (N = 83)	460.4 ± 52.9 (N = 140)	457.4 ± 49.3 (N = 882)	0.58
Haemodynamics—mean ± SD (N)	98.3 ± 22.9 (N = 99)	91.4 ± 20.6 (N = 160)	86.1 ± 21.7 (N = 1137)	<0.001
Heart rate (beats per minute)	129.3 ± 27.1 (N = 96)	132.2 ± 31.1 (N = 165)	130.8 ± 28.7 (N = 1139)	0.73
Systolic blood pressure (mmHg)	77.2 ± 19.0 (N = 94)	76.4 ± 17.0 (N = 163)	76.8 ± 16.9 (N = 1122)	0.92
Diastolic blood pressure (mm Hg)	38.1 ± 12.1 (N = 110)	39.8 ± 11.6 (N = 182)	41.4 ± 11.7 (N = 1241)	0.005
Left ventricular ejection fraction (%)	Reference	Reference	Reference	
Hypertension	85/123 (69.1)	129/193 (66.8)	869/1343 (64.7)	0.55
Diabetes mellitus	17/122 (13.9)	32/193 (16.6)	191/1348 (14.2)	0.66
Current smoking	38/120 (31.7)	68/190 (35.8)	222/1309 (17.0)	<0.001
Hypercholesterola	42/122 (34.4)	59/192 (30.7)	420/1342 (31.3)	0.76
Cancer—no./total no. (%)	16/118 (13.6)	45/185 (24.3)	199/1289 (15.4)	0.007
Respiratory tract	5/118 (4.2)	12/185 (6.5)	22/1289 (1.7)	<0.001
Medication at discharge—no. (%)	Reference	Reference	Reference	
ACE-inhibitor or ARB	82/109 (75.2)	142/178 (79.8)	952/1189 (80.1)	0.49
Beta-blocker	76/109 (69.7)	124/178 (69.7)	948/1189 (79.7)	0.001
Calcium-channel antagonist	13/109 (11.9)	12/178 (6.7)	101/1189 (8.5)	0.31
Statin	54/109 (49.5)	89/178 (50.0)	616/1189 (51.8)	0.83
Aspirin	71/109 (65.1)	125/178 (70.2)	794/1189 (66.8)	0.60
P2Y12 antagonist	15/109 (13.8)	24/178 (13.5)	128/1189 (10.8)	0.40
Coumarin	9/109 (8.3)	8/178 (4.5)	104/1189 (8.7)	0.16
Other intensive care treatment—no./total no. (%)	55/122 (45.1)	48/193 (24.9)	235/1349 (17.4)	<0.001
Intra-aortic balloon pump	4/122 (3.3)	4/193 (2.1)	36/1349 (2.7)	0.80
Invasive or non-invasive ventilation	55/122 (45.1)	41/193 (21.2)	183/1349 (13.6)	<0.001
Cardiopulmonary resuscitation	12/122 (9.8)	11/193 (5.7)	117/1349 (8.7)	0.32

DOI: 10.1002/hf2.13165

(Continues)
In the present study, the most common pulmonary trigger for TTS was exacerbation of COPD/asthma (59%), followed by acute respiratory infections and ARDS. This strongly supports the close relationship between acute and/or chronic respiratory inflammation and cardiac diseases shown in other studies. Patients with COPD/asthma have chronically increased systemic inflammation, and additional inflammatory responses are observed during acute exacerbations.\(^{19}\) Moreover, respiratory infections have been shown to increase the risk of myocardial infarction in the general population.\(^{20}\) Donaldson et al. demonstrated an increased risk of secondary myocardial infarction and stroke in patients with acute exacerbations of COPD in relation to elevated inflammatory markers such as fibrinogen and C-reactive protein.\(^{21}\) Indeed, a recent experimental study revealed the importance of myocardial inflammatory activation in the pathogenesis of TTS.\(^{22}\)

Given that oxidative stress-mediated inflammatory responses play a key role in pulmonary conditions such as asthma, COPD, and pneumonia, it is conceivable that the same inflammatory response may also increase the risk of developing TTS.\(^{23,24}\) Previous observational studies imply that \(\beta_2\)-adrenergic agonists, which are often used as a daily treatment for obstructive lung disease, can provoke TTS.\(^{25}\) Manfredini et al. reported that 72% of TTS patients with COPD/asthma were taking \(\beta_2\)-agonists.\(^{9}\) Tornvall et al. revealed that \(\beta_2\)-agonist use before admission was more common in patients with TTS compared with control subjects.\(^{26}\) It is difficult to determine whether acute respiratory disorders or \(\beta_2\)-agonist use is the primary cause of TTS in patients with exacerbation of COPD/asthma. Indeed, various factors (including hypoxia/hypercapnia, inflammation, and/or \(\beta_2\)-agonist use) likely have synergistic effects on the development of TTS. For example, the increased mechanical work of breathing in acute pulmonary processes based on airway resistance, lung/chest elasticity, diaphragmatic and accessory muscles use, tidal volume, and respiratory rate may all play a role in triggering TTS.\(^{27-29}\) The catecholaminergic surge related to the psychological stress of an acute respiratory dysfunction is another important factor in TTS.\(^{30}\)

Exacerbation of COPD is a known precipitant of cardiac dysfunction and/or acute heart failure.\(^{31}\) About 74% of patients admitted with exacerbation of COPD had elevated troponin,\(^{32}\) with another study showing 23% of these patients had reduced left ventricular ejection fraction.\(^{33}\) In addition, a systematic review by Hawkins et al. demonstrated that 16–60% of patients with exacerbation of COPD had elevated brain natriuretic peptide, which also predicted early adverse outcomes.\(^{34}\) Therefore, COPD exacerbation may be a more common trigger for TTS than expected, particularly among intubated/sedated patients who cannot communicate their symptoms. As such, early cardiac investigation should be considered in patients admitted with exacerbated COPD/asthma, as concurrent cardiac comorbidity may significantly affect prognosis.
This is the first report demonstrating the clinical impact of acute pulmonary triggers on in-hospital and long-term outcomes in TTS patients. Intensive care treatment during the acute phase was more frequently required in patients with an acute pulmonary trigger than in other groups. In addition, cardiogenic shock was more often observed in patients with an acute pulmonary trigger. These results might be related to a lower left ventricular ejection fraction in patients with acute pulmonary trigger. Furthermore, multivariate analysis revealed that having an acute pulmonary trigger was independently associated with worse long-term outcome. TTS patients with a history of COPD/asthma needed invasive or non-invasive ventilation more frequently during the acute phase than those without lung disease, while no difference was observed in regard to long-term mortality. These findings suggest that TTS development might reflect or affect the severity of pulmonary disorders.

Study limitations

First, differentiating primary respiratory failure triggering TTS from respiratory failure secondary to TTS is challenging. To avoid different approaches between centres, a core member
of the leading hospital collected the data from every hospital that is included in this registry. All available information were carefully reviewed, and we reach the final decision by a comprehensive approach. Second, as chronically increased systemic inflammation may be related to developing TTS, it is possible that corticosteroids use has an important role for preventing TTS. However, in our registry, data on corticosteroids were only available in a minority of patients. Third, we cannot determine whether the excess of 5 year mortality is a direct consequence of acute pulmonary causes and not related to TTS. Fourth, respiratory function of patients with acute pulmonary triggers or chronic lung disease during follow-up was not reassessed.

Conclusions

Acute respiratory disorders have previously been recognized as a possible triggering factor of TTS. However, the relationship between acute pulmonary triggers and TTS had not been evaluated until now. The present study demonstrates TTS is related to acute pulmonary triggers in 7% of all TTS patients, which accounts for 21% of patients with physical triggers. These patients more often develop cardiogenic shock and have an increased need for mechanical ventilation and catecholamine support. In addition, the presence of an acute pulmonary trigger is independently associated with worse long-term outcome. Further research is warranted for identification of mechanisms that may be targets for prevention and management of TTS in acute pulmonary illness.

Conflict of interest

The authors declare that they have no competing interests.

References

1. Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I. Angina pectoris-myocardial infarction investigations in Japan: transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. J Am Coll Cardiol 2001; 38: 11–18.
2. Lyon AR, Bossone E, Schneider B, Sechtem U, Citro R, Underwood SR, Sheppard MN, Figtree GA, Parodi G, Akashi YJ, Musha H, Kida K, Itoh K, Kato K, Lyon AR, Ghadri JR, Templin C. Prediction of mechanisms that may be targets for prevention and management of TTS in acute pulmonary illness. Eur J Heart Fail 2016; 18: 9–27.
3. Akashi YJ, Musha H, Kida K, Itoh K, Inoue K, Kawasaki K, Hashimoto N, Miyake F. Reversible ventricular dysfunction takotsubo cardiomyopathy. Eur J Heart Fail 2005; 7: 1171–1176.
4. Citro R, Radano I, Parodi G, Di Vece D, Zito C, Novo G, Provenza G, Bellino M, Prota C, Silverio A, Antonacci-Canterin F, Rigo F, Vriz O, Galasso G, Bossone E, Salerno-Uriarte J, Piscione F. Long-term outcome in patients with takotsubo syndrome presenting with severely reduced left ventricular ejection fraction. Eur J Heart Fail 2019; 21: 781–789.
5. Kato K, Lyon AR, Ghadri JR, Templin C. Takotsubo syndrome: etiology, presentation and treatment. Heart 2017; 103: 1461–1469.
6. Wischnewsky MB, Candreva A, Bacchi B, Cammann VL, Kato K, Szawan KA, Gil S, D’Ascenzo F, Dichit W, Citro R, Bossone E, Neuhaus M, Franke J, Sorci-Barb I, Jaguszewski M, Noutsias M, Knorr M, Heiner S, Burgdorf C, Kherad B, Tschopke C, Sarcon A, Shinbane J, Rajan L,Michels G, Pfister R, Cuneo A, Jacobshagen C, Karakas M, Koenig W, Pott A, Meyer P, Arroja JD, Banning A, Cuculi F, Kobza R, Fischer TA, Vasankari T, Airaksinen KEJ, Napp LC, Budnik M, Dworakowski R, MacCarthy P, Kaiser C, Louis S, Galiuto L, Chan C, Bridgman P, Beug D, Delmas C, Lairez O, El-Battrawy I, Akin I, Gilyarov E, Shilova A, Gilyarov M, Kozel M, Toupek P, Winchester DE, Galuszka J, Ukena C, Poglajen G, Carrilho-Ferreira P, Hauck C, Paolini C, Bilato C, Prasad A, Rihal CS, Liu K, Schulze PC, Bianco M, Jorg L, Rickli H, Nguyen TH, Kobayashi Y, Bohm M, Maier LS, Pinto FJ, Widimsky P, Borggrefe M, Felix SB, Opolski G, Braun-Dullaers RC, Rottbauer W, Hasenfuss G, Pieske BM, Schunkert H, Thiele H, Baurerssach J, Katus HA, Horowitz J, Monto D, Munzel T, Crea F, Bax JJ, Luscher TF, Ruschitzka F, Ghadri JR, Templin C. Prediction of short- and long-term mortality in takotsubo syndrome: the InterTAK Prognostic Score. Eur J Heart Fail 2019; 21: 1469–1472.
7. Sharkey SW, Windenburg DC, Lesser JR, Maron MS, Hauser RG, Lesser JN, Haas TS, Hodges JS, Maron BJ. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol 2010; 55: 333–341.
8. Pelliccia F, Parodi G, Greco C, Antonucci D, Brenner R, Bossone E, Cacciotti L, Capucchi A, Citro R, Delmas C, Guerra F, Ionescu GN, Lairez O, Larrauri-Reyes M, Lee PH, Mansencal N, Marazzi G, Mihos CG, Morel O, Nef HM, Nunez Gil LI, Passaseo I, Pineda AM, Rosano G, Santana O, Schneck F, Song BG, Song JK, Teh AW, Ungprasert P, Valbusa A, Wahl A, Yoshida T, Gaudio C, Kaski JC. Comorbidities frequency in takotsubo syndrome: an international collaborative systematic review including 1109 patients. Am J Med 2015; 128: 654 e11–654 e19.
9. Manfredini R, Fabbian F, Giorgi AD, Pala M, Menegatti AM, Parisi C, Misurati E, Tiseo R, Gallerani M, Salmi R, Bossone E. Heart and lung, a dangerous liaison–Tako-tsubo cardiomyopathy and respiratory diseases: a systematic review. World J Cardiol 2014; 6: 338–344.
10. Ghadri JR, Bataisou RD, Diekmann J, Luscher TF, Templin C. First case of atypical takotsubo cardiomyopathy in a bilateral lung-transplanted patient due to...
Acute respiratory triggers in takotsubo syndrome

11. Landefeld K, Saleh Q, Sander GE. Stress cardiomyopathy in the setting of COPD exacerbation. J Invest Med High Impact Case Rep 2015; 3: 232470615612847.

12. Hawkins NM, Petrie MC, Macdonald MR, Jhund PS, Fabbri LI, Wikstrand J, McMurray JJ. Heart failure and chronic obstructive pulmonary disease: the quandary of beta-blockers and beta-agonists. J Am Coll Cardiol 2011; 57: 2127–2138.

13. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataisou DR, Jaguszewski M, Cammann VI, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzmer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschope C, Schultheiss HP, Laney CA, Rajan L, Michelis G, Pfister R, Ukena C, Bohm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculli F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawluk M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galuoto L, Crei F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Laiore O, Erne P, Sax JJ, Ford I, Ruschitzka F, Prasad A, Clinical Features of the ESC. Outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med 2015; 373: 929–938.

14. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J 2008; 155: 408–417.

15. Leinzer LM. Dopamine metabolism in the rabbit carotid body in vitro: effect of hypoxia and hypercapnia. Adv Exp Med Biol 1993; 337: 183–190.

16. Low JM, Gin T, Lee TW, Fung K. Effect of respiratory acidosis and alkalosis on plasma catecholamine concentrations in anaesthetized man. Clin Sci (Lond) 1993; 84: 69–72.

17. Offner B, Czachurski J, Konig SA, Seller H. Different effects of respiratory and metabolic acidosis on preganglionic sympathetic nerve activity. J Appl Physiol (1985) 1994; 77: 173–178.

18. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005; 352: 539–548.

19. Bhowmik A, Seemungal TA, Sapsford R, Airaksinen KE, Fijalkowski R, MacCarthy P, Kaiser C, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculli F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawluk M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galuoto L, Crei F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Laiore O, Erne P, Sax JJ, Ford I, Ruschitzka F, Prasad A, Clinical Features of the ESC. Outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med 2015; 373: 929–938.

20. Smelt L, Thomas SL, Hall AJ, Hubbard R, Farrington P, Vallance P. Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 2004; 351: 2611–2618.

21. Donaldson GC, Hurst JR, Smith CJ, Hubbard RB, Wedzicha JA. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest 2010; 137: 1091–1097.

22. Surikow SY, Nguyen TH, Stafford I, Chapman M, Chacko S, Singh K, Licari G, Raman B, Kelly DJ, Zhang Y, Waddingham MT, Ngo DT, Bate AP, Chua SJ, Frenneaux MP, Horowitz JD. Nitrosative stress as a modulator of inflammatory change in a model of takotsubo syndrome. JACC Basic Transl Sci 2018; 3: 213–226.

23. Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol Ther 2018; 181: 169–182.

24. Marginean C, Popescu MS, Vladaia M, Tudorascu D, Pirvu DC, Petrescu F. Involvement of oxidative stress in COPD. Curr Health Sci J 2018; 44: 48–55.

25. Salemie VM, Atik E, Kairalla RA, Queiroz EL, Rosa IV, Kalil Filho R. Takotsubo cardiomyopathy triggered by [beta(2)] adrenergic agonist. J Bras Pneumol 2011; 37: 560–562.

26. Tornvall P, Collste O, Ehrenborg E, Winkvist A, Hauksson E, Almqvist C, Hulander M, Wiklund J, van der Meer J, Kallio K, Raunaste M, Ruschitzka F, Rutten FH, van der Meer P, Task Force M. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–2200.

27. Hoiseth AD, Neukamm A, Karlsson BD, Omland T, Brekke PH, Soyseth V. Elevated high-sensitivity cardiac troponin T is associated with increased mortality after acute exacerbation of chronic obstructive pulmonary disease. Thorax 2011; 66: 775–781.

28. Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care 2014; 20: 352–358.

29. Kallet RH, Hemphill JC 3rd, Dicker RA, Alonso JA, Campbell AR, Mackerie RC, Katz JA. The spontaneous breathing pattern and work of breathing of patients with acute respiratory distress syndrome and acute lung injury. Respir Care 2007; 52: 989–995.

30. Gift AG, Plaut SM, Jacox A. Psychologic and physiologic factors related to dyspnea in subjects with chronic obstructive pulmonary disease. Heart Lung 1986; 15: 595–601.

31. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieke B, Riley JP, Rosano GM, Rulope LM, Ruschitzka F, Rutten FH, van der Meer P, Task Force M. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–2200.

32. Leinzer LM. Dopamine metabolism in the rabbit carotid body in vitro: effect of hypoxia and hypercapnia. Adv Exp Med Biol 1993; 337: 183–190.

33. Low JM, Gin T, Lee TW, Fung K. Effect of respiratory acidosis and alkalosis on plasma catecholamine concentrations in anaesthetized man. Clin Sci (Lond) 1993; 84: 69–72.

34. Offner B, Czachurski J, Konig SA, Seller H. Different effects of respiratory and metabolic acidosis on preganglionic sympathetic nerve activity. J Appl Physiol (1985) 1994; 77: 173–178.

35. Leinzer LM. Dopamine metabolism in the rabbit carotid body in vitro: effect of hypoxia and hypercapnia. Adv Exp Med Biol 1993; 337: 183–190.

36. Low JM, Gin T, Lee TW, Fung K. Effect of respiratory acidosis and alkalosis on plasma catecholamine concentrations in anaesthetized man. Clin Sci (Lond) 1993; 84: 69–72.