The β-function in duality-covariant noncommutative ϕ^4-theory

Harald GROSSE1 and Raimar WULKENHAAR2

1 Institut für Theoretische Physik, Universität Wien
Boltzmanngasse 5, A-1090 Wien, Austria

2 Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstraße 22-26, D-04103 Leipzig, Germany

Abstract

We compute the one-loop β-functions describing the renormalisation of the coupling constant λ and the frequency parameter Ω for the real four-dimensional duality-covariant noncommutative ϕ^4-model, which is renormalisable to all orders. The contribution from the one-loop four-point function is reduced by the one-loop wavefunction renormalisation, but the β_λ-function remains non-negative. Both β_λ and β_Ω vanish at the one-loop level for the duality-invariant model characterised by $\Omega = 1$. Moreover, β_Ω also vanishes in the limit $\Omega \to 0$, which defines the standard noncommutative ϕ^4-quantum field theory. Thus, the limit $\Omega \to 0$ exists at least at the one-loop level.
1 Introduction

For many years, the renormalisation of quantum field theories on noncommutative \mathbb{R}^4 has been an open problem [1]. Recently, we have proven in [2] that the real duality-covariant ϕ^4-model on noncommutative \mathbb{R}^4 is renormalisable to all orders. The duality transformation exchanges positions and momenta [3],

$$\hat{\phi}(p) \leftrightarrow \pi^2 \sqrt{|\det \theta|} \phi(x), \quad p_\mu \leftrightarrow \tilde{x}_\mu := 2(\theta^{-1})_{\mu
u}x^\nu,$$ \hspace{1cm} (1)

where $\hat{\phi}(p_a) = \int d^4x \ e^{(-1)^{a\mu} p_a, \mu \phi(x_a)}$. The subscript a refers to the cyclic order in the \star-product. The duality-covariant noncommutative ϕ^4-action is given by

$$S[\phi; \mu_0, \lambda, \Omega] := \int d^4x \ (\frac{1}{2}(\partial_\mu \phi) \star (\partial^\mu \phi) + \frac{\Omega^2}{2}(\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2}\phi \star \phi$$
$$\quad \quad \quad

Under the transformation (1) one has

$$S[\phi; \mu_0, \lambda, \Omega] \mapsto S[\hat{\phi}; \mu_0, \lambda, \Omega] = \Omega^2 S[\phi; \frac{\mu_0}{\Omega}, \frac{\lambda}{\Omega^2}, \frac{1}{\Omega}].$$ \hspace{1cm} (3)

In the special case $\Omega = 1$ the action $S[\phi; \mu_0, \lambda, 1]$ is invariant under the duality (1). Moreover, $S[\phi; \mu_0, \lambda, 1]$ can be written as a standard matrix model which is closely related to an exactly solvable model [4].

Knowing that the action (2) gives rise to a renormalisable quantum field theory [2], it is interesting to compute the β_λ and β_Ω functions which describe the renormalisation of the coupling constant λ and of the oscillator frequency Ω. Whereas we have proven the renormalisability in the Wilson-Polchinski approach [5, 6] adapted to non-local matrix models [7], we compute the one-loop β_λ and β_Ω functions by standard Feynman graph calculations. Of course, these are Feynman graphs parametrised by matrix indices instead of momenta. We rely heavily on the power-counting behaviour proven in [2], which allows us to ignore in the β-functions all non-planar graphs and the detailed index dependence of the planar two- and four-point graphs. Thus, only the lowest-order (discrete) Taylor expansion of the planar two- and four-point graphs can contribute to the β-functions. This means that we cannot refer to the usual symmetry factors of commutative ϕ^4-theory so that we have to carefully recompute the graphs.

We obtain interesting consequences for the limiting cases $\Omega = 1$ and $\Omega = 0$ as discussed in Section 3.

2 Definition of the model

The noncommutative \mathbb{R}^4 is defined as the algebra \mathbb{R}_n^4 which as a vector space is given by the space $\mathcal{S}(\mathbb{R}^4)$ of (complex-valued) Schwartz class functions of rapid decay, equipped
with the multiplication rule

$$(a * b)(x) = \int \frac{d^4k}{(2\pi)^4} \int d^4y \ a(x+\frac{1}{2} \theta \cdot k) b(x+y) e^{ik \cdot y} ,$$ \hspace{1cm} (4)

$$\theta \cdot k = \theta^\mu k_\mu , \quad k \cdot y = k_\mu y^\mu , \quad \theta^{\mu\nu} = -\theta^{\nu\mu} .$$

We place ourselves into a coordinate system in which the only non-vanishing components \(\theta_{\mu\nu}\) are \(\theta_{12} = -\theta_{21} = \theta_{34} = -\theta_{43} = \theta\). We use an adapted base

$$b_{mn}(x) = f_{m^1n^1}(x^1, x^2) f_{m^2n^2}(x^3, x^4) , \quad m = \frac{m^1}{m^2} \in \mathbb{N}^2 , \quad n = \frac{n^1}{n^2} \in \mathbb{N}^2 ,$$ \hspace{1cm} (5)

where the base \(f_{m^1n^1}(x^1, x^2) \in \mathbb{R}_f^2\) is given in [8]. This base satisfies

$$(b_{mn} \ast b_{kl})(x) = \delta_{nk} b_{ml}(x) , \quad \int d^4x \ b_{mn}(x) = 4\pi^2 \theta^2 \delta_{mn} .$$ \hspace{1cm} (6)

According to [2], the duality-covariant \(\phi^4\)-action (2) expands as follows in the matrix base (1):

$$S[\phi; \mu_0, \lambda, \Omega] = 4\pi^2 \theta^2 \sum_{m,n,k,l \in \mathbb{N}^2} \left(\frac{1}{2} G_{mn;kl} \phi_{mn} \phi_{kl} + \frac{\lambda}{4!} \phi_{mn} \phi_{nk} \phi_{kl} \phi_{lm} \right) ,$$ \hspace{1cm} (7)

where \(\phi(x) = \sum_{m,n,} \phi_{mn} b_{mn}(x)\) and

$$G_{mn;kl} = \left(\mu_0^2 + \frac{2}{\theta} (1+\Omega^2)(m^1+n^1+m^2+n^2+2) \right) \delta_{n^1,k^1} \delta_{m^1+l^1} \delta_{n^2,k^2} \delta_{m^2+l^2}$$

$$- \frac{2}{\theta} (1-\Omega^2) \left((\sqrt{(n^1+1)(m^1+1)} \delta_{n^1+1,k^1} \delta_{m^1+1,l^1} + \sqrt{n^1m^1} \delta_{n^1-1,k^1} \delta_{m^1-1,l^1}) \delta_{n^2,k^2} \delta_{m^2+l^2} + (\sqrt{(n^2+1)(m^2+1)} \delta_{n^2+1,k^2} \delta_{m^2+1,l^2} + \sqrt{n^2m^2} \delta_{n^2-1,k^2} \delta_{m^2-1,l^2}) \delta_{n^1,k^1} \delta_{m^1+l^1} \right) .$$ \hspace{1cm} (8)

The quantum field theory is defined by the partition function

$$Z[J] = \int \left(\prod_{a,b \in \mathbb{N}^2} d\phi_{ab} \right) \exp \left(- S[\phi] - 4\pi^2 \theta^2 \sum_{m,n,} \phi_{mn} J_{mn} \right) .$$ \hspace{1cm} (9)

For the free theory defined by \(\lambda = 0\) in (7), the solution of (8) is given by

$$Z[J]_{|\lambda=0} = Z[0] \exp \left(4\pi^2 \theta^2 \sum_{m,n,k,l} \frac{1}{2} J_{mn} \Delta_{mn;kl} J_{kl} \right) ,$$ \hspace{1cm} (10)

where the propagator \(\Delta\) is defined as the inverse of the kinetic matrix \(G\):

$$\sum_{k,l \in \mathbb{N}^2} G_{mn;kl} \Delta_{lk;sr} = \sum_{r \in \mathbb{N}^2} \Delta_{nm;lk} G_{kl;rs} = \delta_{mr} \delta_{ns} .$$ \hspace{1cm} (11)
We have derived the propagator in [4]:

\[
\Delta_{m_1, n_1, k_1, l_1}^{m_2, n_2, k_2, l_2} = \frac{\theta}{2(1+\Omega)^2} \delta^{m_1+k_1, n_1+l_1} \delta^{m_2+k_2, n_2+l_2} \times \sum_{v^1 = \frac{|m_1 - i|}{2}} \sum_{v^2 = \frac{|n_2 - |v^1|}{2}} B \left(1 + \frac{\nu^2 \theta}{8 \Omega} + \frac{1}{2} (m^1 + m^2 + k^1 + k^2) - v^1 - v^2, 1 + 2v^1 + 2v^2 \right)
\]

\[
\times \, _2F_1 \left(\begin{array}{c} 1 + 2v^1 + 2v^2, \frac{\nu^2 \theta}{8 \Omega} - \frac{1}{2} (m^1 + m^2 + k^1 + k^2) + v^1 + v^2 \end{array} ; \frac{(1-\Omega)^2}{(1+\Omega)^2} \right)
\times \prod_{i=1}^{2} \sqrt{\frac{n^i}{v^i + n^i - k^i}} \left(v^i + k^i - n^i \right) \left(v^i + m^i - l^i \right) \left(v^i + l^i - m^i \right) \left(\frac{(1-\Omega)^2}{(1+\Omega)^2} \right)^{v^i} . \tag{12}
\]

Here, \(B(a, b) \) is the Beta-function and \(_2F_1(a, b \mid z) \) the hypergeometric function.

As usual we solve the interacting theory perturbatively:

\[
Z[J] = Z[0] \exp \left(- V \left[\frac{\partial}{\partial J} \right] \right) \exp \left(4\pi^2 \theta^2 \sum_{m,n,k,l \in \mathbb{N}^2} \frac{1}{2} J_{mn} \Delta_{mn; kl} J_{kl} \right) ,
\]

\[
V \left[\frac{\partial}{\partial J} \right] := \frac{\lambda}{4! (4\pi^2 \theta^2)^3} \sum_{m,n,k,l \in \mathbb{N}^2} \partial^4 \frac{\partial J_{ml} \partial J_{lk} \partial J_{kn} \partial J_{nm}}{\partial J_{mn}} . \tag{13}
\]

It is convenient to pass to the generating functional of connected Green’s functions, \(W[J] = \ln Z[J] \):

\[
W[J] = \ln Z[0] + W_{\text{free}}[J] + \ln \left(1 + e^{-W_{\text{free}}[J]} \left(\exp \left(- V \left[\frac{\partial}{\partial J} \right] \right) - 1 \right) e^{W_{\text{free}}[J]} \right) ,
\]

\[
W_{\text{free}}[J] := 4\pi^2 \theta^2 \sum_{m,n,k,l \in \mathbb{N}^2} \frac{1}{2} J_{mn} \Delta_{mn; kl} J_{kl} . \tag{14}
\]

In order to obtain the expansion in \(\lambda \) one has to expand \(\ln(1+x) \) as a power series in \(x \) and \(\exp(-V) \) as a power series in \(V \). By Legendre transformation we pass to the generating functional of one-particle irreducible (1PI) Green’s functions:

\[
\Gamma[\phi^{\text{cl}}] := 4\pi^2 \theta^2 \sum_{m,n \in \mathbb{N}^2} \phi^{\text{cl}}_{mn} J_{mn} - W[J] , \tag{15}
\]

where \(J \) has to be replaced by the inverse solution of

\[
\phi^{\text{cl}}_{mn} := \frac{1}{4\pi^2 \theta^2} \frac{\partial W[J]}{\partial J_{nm}} . \tag{16}
\]
3 Renormalisation group equation

The computation of the expansion coefficients

\[\Gamma_{m_1n_1;\ldots;m_Nn_N} := \frac{1}{N!} \frac{\partial^N \Gamma[\phi^{cf}]}{\partial \phi^{cf}_{m_1n_1} \ldots \partial \phi^{cf}_{m_Nn_N}} \]

of the effective action involves possibly divergent sums over undetermined loop indices. Therefore, we have to introduce a cut-off \(\mathcal{N} \) for all loop indices. According to \(\text{[2]} \), the expansion coefficients (17) can be decomposed into a relevant/marginal and an irrelevant piece. As a result of the renormalisation proof, the relevant/marginal parts have—after a rescaling of the field amplitude—the same form as the initial action (2), (7) and (8), now parametrised by the “physical” mass, coupling constant and oscillator frequency:

\[\Gamma_{\text{rel/marg}}[Z\phi^{cf}] = S[\phi^{cf}; \mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}] . \]

In the renormalisation process, the physical quantities \(\mu^2_{\text{phys}}, \lambda_{\text{phys}} \) and \(\Omega_{\text{phys}} \) are kept constant with respect to the cut-off \(\mathcal{N} \). This is achieved by starting from a carefully adjusted initial action \(S[Z[\mathcal{N}]\phi, \mu_0[\mathcal{N}], \lambda[\mathcal{N}], \Omega[\mathcal{N}]] \), which gives rise to the bare effective action \(\Gamma[\phi^{cf}; \mu_0[\mathcal{N}], \lambda[\mathcal{N}], \Omega[\mathcal{N}], \mathcal{N}] \). Expressing the bare parameters \(\mu_0, \lambda, \Omega \) as a function of the physical quantities and the cut-off, the expansion coefficients of the renormalised effective action

\[\Gamma^R[\phi^{cf}; \mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}] := \Gamma[Z[\mathcal{N}]\phi^{cf}, \mu_0[\mathcal{N}], \lambda[\mathcal{N}], \Omega[\mathcal{N}], \mathcal{N}]}|_{\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}=\text{const}} \]

are finite and convergent in the limit \(\mathcal{N} \to \infty \). In other words,

\[\lim_{\mathcal{N} \to \infty} \mathcal{N} \frac{d}{d\mathcal{N}} \left(Z^N[\mathcal{N}] \Gamma_{m_1n_1;\ldots;m_Nn_N}[\mu_0[\mathcal{N}], \lambda[\mathcal{N}], \Omega[\mathcal{N}], \mathcal{N}] \right) = 0 . \]

This implies the renormalisation group equation

\[\lim_{\mathcal{N} \to \infty} \left(N \frac{\partial}{\partial \mathcal{N}} + N \gamma + \mu_0^2 \beta_{\mu_0} \frac{\partial}{\partial \mu_0} + \beta_\lambda \frac{\partial}{\partial \lambda} + \beta_\Omega \frac{\partial}{\partial \Omega} \right) \Gamma_{m_1n_1;\ldots;m_Nn_N}[\mu_0, \lambda, \Omega, \mathcal{N}] = 0 , \]

where

\[\beta_{\mu_0} = \frac{1}{\mu_0^2} \mathcal{N} \frac{\partial}{\partial \mathcal{N}} \left(\mu_0^2[\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}, \mathcal{N}] \right) , \]

\[\beta_\lambda = \mathcal{N} \frac{\partial}{\partial \mathcal{N}} \left(\lambda[\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}, \mathcal{N}] \right) , \]

\[\beta_\Omega = \mathcal{N} \frac{\partial}{\partial \mathcal{N}} \left(\Omega[\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}, \mathcal{N}] \right) , \]

\[\gamma = \mathcal{N} \frac{\partial}{\partial \mathcal{N}} \left(\ln Z[\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}, \mathcal{N}] \right) . \]
4 One-loop computations

Defining \((\Delta J)_{mn} := \sum_{p,q \in \mathbb{N}^2} \Delta_{mn;pq} J_{pq}\) we write (parts of) the generating functional of connected Green’s functions up to second order in \(\lambda\):

\[
W[J] = \ln Z[0] + 4\pi^2 \theta^2 \sum_{m,n,k,l \in \mathbb{N}^2} \frac{1}{2} J_{mn} \Delta_{mn,kl} J_{kl} - (4\pi^2 \theta^2)^\frac{\lambda}{4} \sum_{m,n,k,l \in \mathbb{N}^2} \left\{ (\Delta J)_{ml}(\Delta J)_{lk}(\Delta J)_{kn}(\Delta J)_{nm} + \frac{1}{4\pi^2 \theta^2} \left((\Delta_{nm;kn}(\Delta J)_{ml}(\Delta J)_{lk} + \Delta_{kn;lk}(\Delta J)_{nm}(\Delta J)_{ml} \\
+ \Delta_{nm;ml}(\Delta J)_{lk}(\Delta J)_{kn} + \Delta_{lk;mn}(\Delta J)_{kn}(\Delta J)_{nm} \right) + \frac{1}{4\pi^2 \theta^2} \left((\Delta_{nm;lk}(\Delta J)_{kn}(\Delta J)_{ml} + \Delta_{kn;ml}(\Delta J)_{nm}(\Delta J)_{lk} \right) + \frac{1}{2(4\pi^2 \theta^2)^2} \left\{ \left((\Delta_{nm;kn}(\Delta J)_{ml} + \Delta_{lk;mn}(\Delta J)_{kl} \right) \right. \\
\left. \times (\Delta J)_{ru}(\Delta J)_{ut} \right\} + 5 \text{ permutations of}_{ts, sr, ru, ut} \right\} + \mathcal{O}(\lambda^3) \tag{26}
\]

In second order in \(\lambda\) we get a huge number of terms so that we display only the 1PI contribution with four \(J\)'s.

For the classical field \((16)\) we get \(\phi_{\text{cl}} = \sum_{p,q \in \mathbb{N}^2} \Delta_{nm;pq} J_{pq} + \mathcal{O}(\lambda)\) so that

\[
J_{pq} = \sum_{r,s \in \mathbb{N}^2} G_{qp;rs} \phi_{\text{cl}}^{rs} + \mathcal{O}(\lambda) \tag{27}
\]

The remaining part not displayed in \((27)\) removes the 1PR-contributions when passing to
\[\Gamma[\phi^{cl}] \]. We thus obtain

\[\Gamma[\phi^{cl}] = \Gamma[0] \]

\[+ 4\pi^2 \theta^2 \sum_{m,n,k,l \in \mathbb{N}^2} \frac{1}{2} \left\{ G_{mn;kl} + \frac{\lambda}{6(4\pi^2 \theta^2)} \left(\delta_{ml} \sum_{p \in \mathbb{N}^2} \Delta_{pn;kp} + \delta_{kn} \sum_{p \in \mathbb{N}^2} \Delta_{mp;pl} \right) \right\} \] (28a)

\[+ \frac{\lambda}{6(4\pi^2 \theta^2)} \Delta_{ml;kn} + O(\lambda^2) \} \phi_{mn}^{cl} \phi_{kl}^{cl} \] (28b)

\[+ 4\pi^2 \theta^2 \sum_{m,n,k,l,r,s,t,u \in \mathbb{N}^2} \frac{\lambda}{4!} \left\{ \delta_{nk} \delta_{lr} \delta_{st} \delta_{um} \right\} \] (28c)

\[- \frac{\lambda}{2(4\pi^2 \theta^2)} \sum_{p,q \in \mathbb{N}^2} \left(4\Delta_{mp;qs} \Delta_{pl;rq} \delta_{kn} \delta_{ur} + 4\Delta_{kp;qs} \Delta_{pm;rq} \delta_{ml} \delta_{st} \right) \] (28d)

\[+ \sum_{p \in \mathbb{N}^2} \left(4\Delta_{ml;ps} \Delta_{kn;tp} \delta_{ur} + 4\Delta_{kn;ps} \Delta_{ml;tp} \delta_{ur} + 4\Delta_{mp;ts} \Delta_{pl;ru} \delta_{nk} \right) \] (28e)

\[+ \sum_{p,q \in \mathbb{N}^2} \left(4\Delta_{pl;qs} \Delta_{mp;rq} \delta_{nk} \delta_{ur} + 4\Delta_{kp;qs} \Delta_{mp;rq} \delta_{ml} \delta_{st} \right) \] (28f)

\[+ 4\Delta_{ml;ts} \Delta_{kn;ru} + 4\Delta_{kn;ts} \Delta_{ml;ru} \right) + O(\lambda^2) \} \phi_{mn}^{cl} \phi_{kl}^{cl} \phi_{st}^{cl} \phi_{tu}^{cl} \] (28g)

\[+ O(\lambda^2) \] .

Here, (28a) contains the contribution to the planar two-point function and (28b) the contribution to the non-planar two-point function. Next, (28c) and (28d) contribute to the planar four-point function, whereas (28e), (28f) and (28g) constitute three different types of non-planar four-point functions.

Introducing the cut-off \(p, q \in \mathbb{N}^2 \) in the internal sums over \(p, q \), we split the effective action according to [2] as follows into a relevant/marginal and an irrelevant piece (\(\Gamma[0] \) can be ignored):

\[\Gamma[\phi^{cl}] \equiv \Gamma_{\text{rel/marg}}[\phi^{cl}] + \Gamma_{\text{irrel}}[\phi^{cl}] \] (29)

\[\Gamma_{\text{rel/marg}}[\phi^{cl}] = 4\pi^2 \theta^2 \sum_{m,n,k,l \in \mathbb{N}^2} \frac{1}{2} \left\{ G_{mn;kl} + \frac{\lambda}{6(4\pi^2 \theta^2)} \delta_{ml} \delta_{kn} \left(2 \sum_{p^1,p^2 = 0}^{N} \Delta_{0 p^1, p^2 0} \right) \right\} \phi_{mn}^{cl} \phi_{kl}^{cl} \]

\[+ \frac{\lambda}{4!} \left(1 + m^1 + m^2 + n^2 \right) \sum_{p^1,p^2 = 0}^{N} \left(\Delta_{0 p^1, p^2 0} \delta_{p^1, 0}^1 \delta_{p^2, 0}^1 - \Delta_{0 p^1, p^2 0} \right) + O(\lambda^2) \} \phi_{mn}^{cl} \phi_{kl}^{cl} \]

\[+ 4\pi^2 \theta^2 \sum_{m,n,k,l \in \mathbb{N}^2} \frac{\lambda}{4!} \left\{ 1 - \frac{\lambda}{3(4\pi^2 \theta^2)} \sum_{p^1,p^2 = 0}^{N} \left(\Delta_{0 p^1, p^2 0} \right)^2 \right\} + O(\lambda^2) \} \phi_{mn}^{cl} \phi_{nk}^{cl} \phi_{kl}^{cl} \phi_{lm}^{cl} \] (30)
To the marginal four-point function and the relevant two-point function there contribute only the projections to planar graphs with vanishing external indices. The marginal two-point function is given by the next-to-leading term in the discrete Taylor expansion around vanishing external indices.

In a regime where $\lambda[\mathcal{N}]$ is so small that the perturbative expansion is valid in $\mathcal{O}(\theta)$, the irrelevant part Γ_{irrel} can be completely ignored. Comparing (30) with the initial action according to (32), (33) and (34), we have $\Gamma_{\text{rel/marg}}[\mathcal{Z}\phi^c]\mathcal{Z} = S[\phi^c, \mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}]$ with

$$Z = 1 - \frac{\lambda}{192\pi^2\theta} \sum_{p^1, p^2=0}^N (\Delta_{0, p^1, p^1 0} - \Delta_{0, p^1, p^1 0}) + \mathcal{O}(\lambda^2), \quad (31)$$

$$\mu^2_{\text{phys}} = \mu^2_0 \left(1 + \frac{\lambda}{12\pi^2\theta^2 \mu_{\text{phys}}} \sum_{p^1, p^2=0}^N (2\Delta_{0, p^1, p^1 0} - \Delta_{0, p^1, p^1 0}), \quad (32)$$

$$\lambda_{\text{phys}} = \lambda \left(1 - \frac{\lambda}{12\pi^2\theta^2} \sum_{p^1, p^2=0}^N (\Delta_{0, p^1, p^1 0})^2 \right.$$\n
$$\quad - \frac{\lambda}{48\pi^2\theta} \sum_{p^1, p^2=0}^N (\Delta_{0, p^1, p^1 0}) + \mathcal{O}(\lambda^2)), \quad (33)$$

$$\Omega_{\text{phys}} = \Omega \left(1 + \frac{\lambda(1-\Omega^2)}{192\pi^2\theta^2} \sum_{p^1, p^2=0}^N (\Delta_{0, p^1, p^1 0}) + \mathcal{O}(\lambda^2) \right). \quad (34)$$

Solving (32), (33) and (34) for the bare quantities, we obtain to one-loop order

$$\mu^2_0[\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}, \mathcal{N}]$$

$$= \mu^2_{\text{phys}} \left(1 - \frac{\lambda_{\text{phys}}}{12\pi^2\theta^2 \mu_{\text{phys}}} \sum_{p^1, p^2=0}^N \Delta_{0, p^1, p^1 0} \right.$$\n
$$\quad + \frac{\lambda_{\text{phys}}}{96\pi^2\theta} \left(1 + \frac{8}{\theta \mu_{\text{phys}}} \sum_{p^1, p^2=0}^N (\Delta_{0, p^1, p^1 0})^2 \quad (35)$$

$$\lambda[\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}, \mathcal{N}]$$

$$= \lambda_{\text{phys}} \left(1 + \frac{\lambda_{\text{phys}}}{12\pi^2\theta^2} \sum_{p^1, p^2=0}^N (\Delta_{0, p^1, p^1 0})^2 \quad (36)$$

$$\quad + \mathcal{O}(\lambda_{\text{phys}}^2) \right).$$
\[\Omega[\mu_{\text{phys}}, \lambda_{\text{phys}}, \Omega_{\text{phys}}, \mathcal{N}] = \Omega_{\text{phys}} \left(1 - \frac{\lambda_{\text{phys}}(1-\Omega_{\text{phys}}^2)}{192\pi^2 \theta \Omega_{\text{phys}}^2} \sum_{p^1, p^2 = 0}^{N} \left(\Delta_{p^1_{\mu} p^2_{\nu}} - \Delta_{p^2_{\mu} p^1_{\nu}}\right) + \mathcal{O}(\lambda_{\text{phys}}^2)\right).\] (37)

Inserting (12) into (34) we can now compute the \(\beta_{\lambda} \)-function (23) up to one-loop order, omitting the index \(\text{phys} \) on \(\mu^2 \) and \(\Omega \) for simplicity:

\[\beta_{\lambda} = \frac{\lambda_{\text{phys}}^2}{48\pi^2} \mathcal{N} \frac{\partial}{\partial \mathcal{N}} \sum_{p^1, p^2 = 0}^{N} \left\{ \left(2 F_1 \frac{1}{(1+\Omega)^2(1 + \frac{\mu_{\text{phys}}^2}{8\Omega_{\text{phys}}} + \frac{1}{2}(p^1+p^2))} \right)^2 \right.\]
\[\left. + \frac{p^1(1-\Omega)^2}{(1+\Omega)^4(\frac{1}{2} + \frac{\mu_{\text{phys}}^2}{8\Omega_{\text{phys}}} + \frac{1}{2}(p^1+p^2))} \left(\frac{3}{2} + \frac{\mu_{\text{phys}}^2}{8\Omega_{\text{phys}}} + \frac{1}{2}(p^1+p^2)\right) \frac{(5 \frac{1}{2} + \mu_{\text{phys}}^2 + \frac{1}{2}(p^1+p^2))}{2(1+\Omega)^2(1 + \frac{\mu_{\text{phys}}^2}{8\Omega_{\text{phys}}} + \frac{1}{2}(p^1+p^2))} \right\} + \mathcal{O}(\lambda_{\text{phys}})\right\}.\] (38)

Symmetrising the numerator in the second line \(p^1 \mapsto \frac{1}{2}(p^1+p^2) \) and using the expansions

\[2 F_1 \left(1, \frac{a-p}{b+p} \bigg| z\right) = \frac{1}{1+z} + \frac{z(a+b) + z^2(a+b-2)}{p(1+z)^3} + \mathcal{O}(p^{-2}),\]
\[2 F_1 \left(3, \frac{a-p}{b+p} \bigg| z\right) = \frac{1}{(1+z)^3} + \mathcal{O}(p^{-1}),\] (39)

which are valid for large \(p \), we obtain up to irrelevant contributions vanishing in the limit \(N \to \infty \)

\[\beta_{\lambda} = \frac{\lambda_{\text{phys}}^2}{48\pi^2} \mathcal{N} \frac{\partial}{\partial \mathcal{N}} \sum_{p^1, p^2 = 0}^{N} \left\{ \frac{1}{(1+\Omega_{\text{phys}}^2)^2} \frac{1}{1 + p^1+p^2} \left(1 + \frac{(1-\Omega_{\text{phys}}^2)^2}{2(1+\Omega_{\text{phys}}^2)^2} - \frac{(1+\Omega_{\text{phys}}^2)}{2}\right) \right.\]
\[\left. + \mathcal{O}(\lambda_{\text{phys}}^3) + \mathcal{O}(\mathcal{N}^{-1})\right\} + \mathcal{O}(\mathcal{N}^{-1}),\] (40)

Similarly, one obtains

\[\beta_{\Omega} = \frac{\lambda_{\text{phys}}}{96\pi^2} \Omega_{\text{phys}} \left(1 - \frac{\Omega_{\text{phys}}^2}{1+\Omega_{\text{phys}}^2}\right) + \mathcal{O}(\lambda_{\text{phys}}^3) + \mathcal{O}(\mathcal{N}^{-1}),\] (41)

\[\beta_{\mu_0} = -\frac{\lambda_{\text{phys}}}{48\pi^2 \theta \mu_{\text{phys}}^2} \left(4 \mathcal{N} \log(2) + \frac{(8+\theta \mu_{\text{phys}}^2) \Omega_{\text{phys}}^2}{(1+\Omega_{\text{phys}}^2)^2}\right) + \mathcal{O}(\lambda_{\text{phys}}^3) + \mathcal{O}(\mathcal{N}^{-1}),\] (42)
\[\gamma = \frac{\lambda_{\text{phys}}^2}{96\pi^2} \frac{\Omega_{\text{phys}}^2}{(1+\Omega_{\text{phys}}^2)^3} + \mathcal{O}(\lambda_{\text{phys}}^2) + \mathcal{O}(\mathcal{N}^{-1}) \]

5 Discussion

We have computed the one-loop \(\beta \)- and \(\gamma \)-functions in real four-dimensional duality-covariant noncommutative \(\phi^4 \)-theory. Remarkably, this model has a one-loop contribution to the wavefunction renormalisation which compensates partly the contribution from the planar one-loop four-point function to the \(\beta_\lambda \)-function. The one-loop \(\beta_\lambda \)-function is non-negative and vanishes in the distinguished case \(\Omega = 1 \) of the duality-invariant model, see (3). At \(\Omega = 1 \) also the \(\beta_\Omega \)-function vanishes. This is of course expected (to all orders), because for \(\Omega = 1 \) the propagator (12) is diagonal, \(\Delta_{m_1 n_1, k_1 l_1}^{m_2 n_2, k_2 l_2} |_{\Omega=1} = \delta_{m_1 k_1} \delta_{n_1 l_1} \delta_{m_2 k_2} \delta_{n_2 l_2} \), so that the Feynman graphs never generate terms with \(|m_i - l_i| = |n_i - k_i| = 1\) in (8).

The similarity of the duality-invariant theory with the exactly solvable models discussed in [4] suggests that also the \(\beta_\lambda \)-function vanishes to all orders for \(\Omega = 1 \). The crucial differences between our model with \(\Omega = 1 \) and [4] is that we are using real fields, for which it is not so clear that the construction of [4] can be applied. But the planar graphs of a real and a complex \(\phi^4 \)-model are very similar so that we expect identical \(\beta_\lambda \)-functions (possibly up to a global factor) for the complex and the real model. Since a main feature of [4] was the independence on the dimension of the space, the model with \(\Omega = 1 \) and matrix cut-off \(\mathcal{N} \) should be (more or less) equivalent to a two-dimensional model, which has a mass renormalisation only [8]. Therefore, we conjecture a vanishing \(\beta_\lambda \)-function in four-dimensional duality-invariant noncommutative \(\phi^4 \)-theory to all orders.

The most surprising result is that the one-loop \(\beta_\Omega \)-function also vanishes for \(\Omega \to 0 \). We cannot directly set \(\Omega = 0 \), because the hypergeometric functions in (38) become singular and the expansions (39) are not valid. Moreover, the power-counting theorems of [2], which we used to project to the relevant/marginal part of the effective action (30), also require \(\Omega > 0 \). However, in the same way as in the renormalisation of two-dimensional noncommutative \(\phi^4 \)-theory [8], it is possible to switch off \(\Omega \) very weakly with the cut-off \(\mathcal{N} \), e.g. with

\[\Omega = e^{-\left(\ln(1+\ln(1+\mathcal{N}))\right)^2}. \]

The decay (44) for large \(\mathcal{N} \) over-compensates the growth of any polynomial in \(\ln \mathcal{N} \), which according to [2] is the bound for the graphs contributing to a renormalisation of \(\Omega \). On the other hand, (14) does not modify the expansions (13). Thus, in the limit \(\mathcal{N} \to \infty \), we have constructed the usual noncommutative \(\phi^4 \)-theory given by \(\Omega = 0 \) in (2) at the one-loop level. It would be very interesting to know whether this construction of the noncommutative \(\phi^4 \)-theory as the limit of a sequence (14) of duality-covariant \(\phi^4 \)-models can be extended to higher loop order.

We also notice that the one-loop \(\beta_\lambda \)- and \(\beta_\Omega \)-functions are independent of the noncommutativity scale \(\theta \). There is, however a contribution to the one-loop mass renormalisation via the dimensionless quantity \(\mu_{\text{phys}}^2 \theta \), see (12).
Acknowledgement

We thank Helmut Neufeld for interesting discussions about the calculation of β-functions.

References

[1] S. Minwalla, M. Van Raamsdonk and N. Seiberg, “Noncommutative perturbative dynamics,” JHEP 0002 (2000) 020 [arXiv:hep-th/9912072].

[2] H. Grosse and R. Wulkenhaar, “Renormalisation of ϕ^4 theory on noncommutative \mathbb{R}^4 in the matrix base,” arXiv:hep-th/0401128.

[3] E. Langmann and R. J. Szabo, “Duality in scalar field theory on noncommutative phase spaces,” Phys. Lett. B 533 (2002) 168 [arXiv:hep-th/0202039].

[4] E. Langmann, R. J. Szabo and K. Zarembo, “Exact solution of quantum field theory on noncommutative phase spaces,” JHEP 0401 (2004) 017 [arXiv:hep-th/0308043].

[5] K. G. Wilson and J. B. Kogut, “The Renormalization Group And The Epsilon Expansion,” Phys. Rept. 12 (1974) 75.

[6] J. Polchinski, “Renormalization And Effective Lagrangians,” Nucl. Phys. B 231 (1984) 269.

[7] H. Grosse and R. Wulkenhaar, “Power-counting theorem for non-local matrix models and renormalisation,” arXiv:hep-th/0305066.

[8] H. Grosse and R. Wulkenhaar, “Renormalisation of ϕ^4 theory on noncommutative \mathbb{R}^2 in the matrix base,” JHEP 0312 (2003) 019 [arXiv:hep-th/0307017].