A 75-year-old male with a cardiopulmonary history presented with chest pain and dyspnea. He was hypertensive. An electrocardiogram showed paced rhythm. A high-sensitivity test showed his troponin T level was minimally elevated. Coronary angiography results were unremarkable. Chest radiography revealed an elevated cardiac apex, previously attributed to cardiomegaly. Echocardiography revealed a teardrop shaped heart in a nonstandard apical window. Computed tomography confirmed congenital absence of the left pericardium. Challenges of recognizing a rare condition are highlighted. Congenital absence of the pericardium, an often benign but rarely catastrophic condition, can masquerade for decades before diagnosis, underlining the importance of clinical vigilance in evaluating common cardiac complaints.

Case

A 75-year-old male with hypertension, a pacemaker, and chronic obstructive pulmonary disease (COPD) presented with atypical chest pain and dyspnea. There were no congestive symptoms or palpitations. He was hypertensive (161/72 mm Hg), similar bilaterally. There were scant crackles. An electrocardiogram demonstrated an atrial-sensed ventricular-paced rhythm. High-sensitivity measurements showed troponin T to be minimally elevated, 18 ng/L (>15 ng/L).

Chest radiography demonstrated an elevated cardiac apex with an indistinct right heart border (Fig. 1A), interpreted as cardiomegaly on prior films. A transthoracic echocardiogram was performed, with apical views obtained supine in the left posterior axillary line. The left ventricle was bulbous with elongated atria in a “teardrop” shape (Fig. 1B; view Videos 1 and 2 online). Abnormal septal motion was noted during a paced rhythm. Biventricular size and systolic function were normal. Congenital absence of the pericardium (CAP) was suspected, though not noted on prior studies.

Computed tomography of the chest revealed leftward deviation of the long axis of the heart (Fig. 2A) and lung parenchyma interposition between the ascending aorta and the main pulmonary artery without cardiac herniation (Fig. 2B), consistent with complete left CAP.

Coronary angiography results were unremarkable. Diuretic therapy did not impact symptoms. His blood pressure and symptoms improved. He was discharged with follow-up for COPD and CAP. He is stable at 1 year.

Discussion

CAP is rare, with an estimated prevalence of 0.007%—0.044%. The pericardium may be completely (left, right, or both) or partially (left or right) absent. During embryogenesis, the pleuropericardial folds fail to fuse, possibly due to an atrophic left common cardiac vein or cardiac enlargement before fusion completion.

Consistent with our case, left complete CAP is most common with a male predominance. However, the median age at diagnosis is much younger (21 years’ and 48 years’ in 2
Most patients are asymptomatic, with CAP being detected incidentally during imaging or surgery. Symptoms are nonspecific, including chest pain (most commonly), palpitations, syncope, or dyspnea and can have confounders, such as COPD as in our case. Symptoms may be due to the absence of normal pericardial cardiac cushioning, torsion of great vessels, and vascular compression of coronary arteries or pulmonary veins with hemodynamic collapse.

Associated congenital anomalies are present in a third of cases. Although some lesions present early (eg, tetralogy of Fallot), others may continue undetected until adulthood (eg, atrial septal defects, bicuspid aortic valve, and ventricular non-compaction).

Underrecognized chest radiograph clues include leftward cardiac displacement, loss of the right heart border, and straightening/elongation of the left heart border ("Snoopy’s sign, Fig. 1A).

On echocardiography, the sonographer reported challenging imaging windows, even for a COPD patient, an early common observation in CAP. The teardrop shaped heart (elongated atria and bulbous ventricles) within a displaced apical window flagged the suspicion for CAP. Additional echocardiographic features include paradoxical septal motion (present but confounded by paced rhythm), cardiac hypermobility, and apparent right ventricular enlargement (due to leftward shifting of the cardiac chambers) with tricuspid regurgitation. The latter can be confused for right ventricular cardiomyopathy or trigger searches for intracardiac shunts, leading to potential unnecessary tests or treatment. Reduced systolic superior vena cava flow and systolic to diastolic pulmonary vein flow ratios are specific Doppler findings.

Advanced imaging (computed tomography/magnetic resonance imaging) is warranted for both diagnosis (demonstrating interposition of lung tissue between the aorta and pulmonary artery) and prognosis (to exclude high-risk anatomy).

Figure 1. (A) Elevated cardiac apex and indistinct cardiac border (yellow arrow); loss of the right heart border (red arrow). (B) Bulbous left ventricle (LV) and elongated atria (A).
catastrophic consequences. It may also be confounded with other structural heart disease, leading to potentially erroneous treatment. Clinical vigilance and reviewing old data through new lenses are highly recommended when evaluating chronic cardiac complaints.

Funding Sources

Funding was provided through an Educational Grant through the Cardiology Division Educational Fund at Sunnybrook Health Sciences Centre.

Disclosures

The authors have no conflicts of interest to disclose.

References

1. Ignazewski M, Baturin B, Waldman B, Peters P. Cardiac eclipse: congenital absence of the pericardium manifesting as atypical chest pain. CASE 2019;4:59-62.

2. Klein A, Abbara S, Agler D, et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2013;26:965-1012.

3. Khayata M, Alkharabsheh S, Shah N, et al. Case series, contemporary review and imaging guided diagnostic and management approach of congenital pericardial defects. Open Heart 2020;7:e001103.

4. Gatzoulis MA, Munk MD, Merchant N, et al. Isolated congenital absence of the pericardium: clinical presentation, diagnosis and management. Ann Thorac Surg 2000;69:1209-15.

5. Bouchard M, Hoschtitzky A, Gatzoulis M. Diagnosis and management of congenital absence of pericardium: a case report. EHJ Case Rep 2019;3:1-5.

Supplementary Material

To access the supplementary material accompanying this article, visit CJC Open at https://www.cjcopen.ca/ and at https://doi.org/10.1016/j.cjco.2020.06.017.