ON THE DEGREE OF GLOBAL SMOOTHING MAPPINGS FOR SUBANALYTIC SETS

ENRICO SAVI

ABSTRACT. Let $X \subset \mathbb{R}^n$ be a subanalytic set of dimension k, let U be an open subset of the smooth part of X of dimension k and let W be a connected component of U. In this work we present a criterion for any global smoothing section $\Gamma := (X', \varphi, U)$ of X to have even degree over W.

1. Introduction

In [BP18] Bierstone and Parusiński proved the following two remarkable global smoothing results for subanalytic sets. The term ‘analytic’ means ‘real analytic’. Let V be an analytic manifold of dimension n, and let X be a closed subanalytic subset of V of dimension k.

Theorem A ([BP18, Thm. 1.1] Non-embedded global smoothing). There exist an analytic manifold X' of pure dimension k, a proper analytic mapping $\varphi : X' \to V$, and a smooth open subanalytic subset U of X such that:

1. $\varphi(X') \subset X$.
2. $\dim(X' \setminus U) < k$ and $\varphi^{-1}(X' \setminus U)$ is a simple normal crossings hypersurface B' of X'.
3. For each connected component W of U, $\varphi^{-1}(W)$ is a finite union of subsets open and closed in $\varphi^{-1}(U)$, each mapped isomorphically onto W by φ.

Theorem B ([BP18, Thm. 1.2] Embedded global smoothing). There exist an analytic manifold V', a smooth closed analytic subset $X' \subset V'$ of dimension k, a simple normal crossings hypersurface $B' \subset V'$ transverse to X', and a proper analytic mapping $\varphi : V' \to V$ such that:

1. $\dim(\varphi(B')) < k$.
2. The restriction $\varphi|_{V' \setminus B'}$ is finite-to-one and of constant rank n;
3. φ induces an isomorphism from a union of connected components of $X' \setminus B'$ to a smooth open subanalytic subset $U \subset X$ such that $\dim(X' \setminus U) < k$.

We give a couple of remarks motivating our study. Although the previous results are global, the techniques involved in their prove are local. Indeed, in [BP18, Sec. 2.3] the authors provide a partition of the analytic manifold V into a countable number of semianalytic cells in general position with respect to X and then they develop explicit desingularization techniques for these cells with respect to the global behaviour of V. More in detail, in [BP18, Sec. 2.2] the authors develop a desingularizing procedure for a semianalytic n-cell C of V by explicitly finding an analytic subset Z_C of $V \times \mathbb{R}^m$, for some $m \in \mathbb{N}$ depending on the number of inequalities defining C, a map $\varphi_C : Z_C \to C$ and an open semianalytic subset U_C of C such that $\varphi_C^{-1}(U_C)$ is a 2^m covering of U_C and $\dim(C \setminus U_C) < k$. Then the authors apply desingularization techniques in the sense of [BM97] to Z_C finding a smoothing of the cell C. Thus, we see that the smoothing map φ_C of a single cell C of V is even-to-one over U_C. Since the global maps φ in Theorem A and Theorem B are constructed in terms of the local maps φ_C, we deduce that φ is even-to-one over each open set U_C, hence, in particular, φ is even-to-one over each intersection $U_C \cap X$.

Date: 13th October, 2022.

2010 Mathematics Subject Classification. Primary 32B20; Secondary 32S45, 14E15, 14P10, 14P15, 32C05.

Key words and phrases. Global smoothing, uniformizations, subanalytic sets, semialgebraic sets.

The author is supported by GNSAGA of INDAM.
Let us give a definition.

Definition 1.1. Let X', φ, U and W be as in the previous Theorem A, that is, X' is an analytic manifold of pure dimension k, $\varphi : X' \to V$ is a proper analytic mapping, U is an open subset of the smooth part of X of dimension k and W is a connected component of U such that $\varphi(X') \subset X$, $\dim(X' \setminus U) \leq k$, $\varphi^{-1}(X' \setminus U)$ is a simple normal crossings hypersurface of X' and $\varphi^{-1}(W)$ is a finite union of subsets open and closed in $\varphi^{-1}(U)$, each mapped isomorphically onto W by φ. We call the triple $\Gamma := (X', \varphi, U)$ global smoothing section of $X \subset V$ and the finite positive number of subsets open and closed in $\varphi^{-1}(U)$, each mapped isomorphically onto W by φ, as the degree of Γ over W.

Theorem A asserts that global smoothing sections of $X \subset V$ always exist.

Thanks to [BP18, Rmk. 2.6], if $V = \mathbb{R}^n$ and X is a closed semialgebraic subset of \mathbb{R}^n, then Theorem B can be strengthened by requiring the mapping in (2) to be injective. On the other hand, in the setting of Theorem A, it is not possible in general to choose a global smoothing section (X', φ, U) of $X \subset \mathbb{R}^n$ whose degree in each connected component of U is equal to 1, as it happens in the case of Hironaka’s resolution of singularities, see Example 2.5 below.

The aim of this note is to give a criterion for the evenness of the degree of global smoothing sections on the connected components over an arbitrary open subset U of the smooth part of X of dimension k. This criterion aims to be useful, somehow, in producing counterexamples about the existence of a global smoothing section with U to be the entire smooth part of X of dimension k, as Bierstone and Parusiński assert to believe in [BP18, p. 3117] without explicit examples.

2. **The evenness criterion, consequences and examples**

By Whitney’s embedding theorem we can assume that the analytic manifold V coincides with \mathbb{R}^n. Let X be a subanalytic subset of \mathbb{R}^n and let $k \in \mathbb{N}$. Recall that a point $x \in X$ is smooth of dimension k if there exists an open neighborhood N of x in \mathbb{R}^n such that $X \cap N$ is an analytic submanifold of \mathbb{R}^n of dimension k, see [BM88, Def. 3.3]. The set of all points of X of dimension k is an open subset of X and an analytic submanifold of \mathbb{R}^n of pure dimension k.

Let us introduce the concept of nonbounding equator for subanalytic sets.

Definition 2.1. Let X be a closed subanalytic subset of \mathbb{R}^n of dimension k, let W be an open subset of the smooth part of X of dimension k and let Y be a subset of W. We say that Y is a nonbounding equator of W in X if it satisfies the following properties:

(i) Y is a compact C^∞ submanifold of \mathbb{R}^n of dimension $k - 1$.

(ii) Y does not bound, that is, it is not the boundary of a compact C^∞ manifold with boundary.

(iii) Y has a collar in W, that is, there exists a C^∞ map $\psi : Y \times (-1, 1) \to W$ such that the image $T := \psi(Y \times (-1, 1))$ of ψ is an open neighborhood of Y in W, the restriction $\psi : Y \times (-1, 1) \to T$ is a C^∞ diffeomorphism and $\psi(Y \times \{0\}) = Y$.

(iv) There exists a relatively compact open subset K of X such that $\partial K := \overline{K} \setminus K = Y$ and $\overline{K} \cap T = \psi(Y \times (-1, 0))$. Here \overline{K} denotes the closure of K in X.

If such a Y exists, we say that W has a nonbounding equator in X.

The next lemma gives an alternative description of the notion of nonbounding equator. We keep the notations of Definition 2.1.

Lemma 2.2. The set Y is a nonbounding equator of W in X if and only if there exists a continuous function $h : X \to \mathbb{R}$ with the following properties:

(1) There exist an open neighborhood Z of Y in W and $\epsilon > 0$ such that the restriction $h' := h|_Z : Z \to \mathbb{R}$ is a C^∞ function, $h^{-1}([-\epsilon, \epsilon])$ is a compact neighborhood of Y in Z containing no critical points of h' and $h^{-1}(0) = Y$.

(2) Y does not bound.
(3) The subset $h^{-1}((-\infty, 0])$ of X is compact.

Proof. Let X, k, W, Y, $\psi : Y \times (-1,1) \to W$ and K be as in Definition 2.1 and let $\pi : Y \times (-1,1) \to (-1,1)$ be the projection onto the second factor. Let us prove that (1)-(3) of Lemma 2.2 are satisfied. Define $Z := \psi(Y \times (-1/2, 1/2))$ and $h' : Z \to \mathbb{R}$ as $h'(x) := (\pi \circ \psi)^{-1}(x)$. Then extend h' to the whole X as follows: define $h : X \to \mathbb{R}$ as $h(x) := -1/2$ if $x \in K \setminus Z$, $h(x) := h'(x)$ if $x \in Z$ and $h(x) := 1/2$ otherwise. Fix $\epsilon > 0$. Observe that $h|_Z = (\pi \circ \psi^{-1})|_Z$, thus $h|_Z$ has no critical points, $h^{-1}([-1/4, 1/4]) = \psi(Y \times [-1/4, 1/4])$, which is compact and contains Y, and $h^{-1}((-\infty, 0]) = K \cup Y = \overline{K}$.

On the other hand, assume that X, Y, W, Z and h satisfy conditions (1)-(3) of Lemma 2.2. By (1) of Lemma 2.2 and [Hir76, Cor. 2.3, p. 154], $h|_{h^{-1}([-\epsilon, \epsilon])}$ induces the existence of a collar of Y in W, as in (iii) of Definition 2.1. Moreover, by (1) and (3) of Lemma 2.2, $K := h^{-1}((-\infty, 0))$ satisfies (iv).

Our evenness criterion reads as follows.

Theorem 2.3. Let X be a closed subanalytic subset of \mathbb{R}^n, let $\Gamma := (X', \varphi, U)$ be a global smoothing section of $X \subset \mathbb{R}^n$ and let W be a connected component of U. If W has a nonbounding equator in X then the degree of Γ over W is even.

Proof. Let $Y \subset W$ be a nonbounding equator of W in X. By Definition 2.1, there is an open neighborhood T of Y in W, a diffeomorphism $\psi : Y \times (-1,1) \to T$ such that $\psi(Y \times \{0\}) = Y$ and a relatively compact open subset K of X such that $\partial K = Y$ and $K \cap T = \psi(Y \times (-1,0))$. Since Γ is a global smoothing section, $\varphi^{-1}(W)$ consists of a finite disjoint union of open and closed subsets of $\varphi^{-1}(U)$, each mapped isomorphically onto W. Hence, each connected component of $\varphi^{-1}(W)$ contains a copy of Y and a copy of the collar T of Y in W. By Definition 1.1, the map φ is proper, hence $\varphi^{-1}(K)$ is a compact subset of X'. Moreover, since $\partial K = Y$, $K \cap T = \psi(Y \times (-1,0))$ and φ is a diffeomorphism when restricted to each connected component of $\varphi^{-1}(W)$, we have that $\varphi^{-1}(K)$ is a manifold with boundary whose boundary is the disjoint union of d copies of Y, where d denotes the degree of Γ over W. Since Y is nonbounding, we deduce that d is even since the Stiefel-Whitney numbers of $\bigcup Y$ must be all zero [MS74, Theorem 4.9, p. 52].

As a consequence, the nonexistence of nonbounding equators of the smooth part of X of dimension k is a necessary condition to have global one-to-one smoothings similar to Hironaka’s resolution of singularities.

Corollary 2.4. Let X be a closed subanalytic subset of \mathbb{R}^n. If the degree of a global smoothing section of $X \subset \mathbb{R}^n$ over W is 1, then W does not have any nonbounding equator in X.

Here we present some examples of semialgebraic sets concerning our Theorem 2.3.

Example 2.5. Let $X := \mathbb{R}_{\geq 0} := \{x \in \mathbb{R} | x \geq 0\}$. There is a global smoothing section of the whole smooth part of X, that is $\Gamma := (X', \varphi, U)$ with $U := \mathbb{R}_{> 0} = \{x \in \mathbb{R} | x > 0\}$, $X' := \{(x,y) \in \mathbb{R}^2 | x = y^2\}$ and $\varphi : X' \to X$ defined as the projection onto the first factor. According to our Theorem 2.3, the degree of the above smoothing section over the whole smooth part of X is 2. But our result says something more, indeed any global smoothing section $\Gamma := (X', \varphi, U)$ of X, with U any open subset of the smooth part of X, has even degree over any connected component of U. Indeed, since U is an open subset of $\mathbb{R}_{> 0}$, every connected component of U has a nonbounding equator Y consisting of a singleton $\{p\}$, with $K := [0, p)$ and the collar $(p - \epsilon, p + \epsilon) \subset U$ of p in W, for $\epsilon > 0$ sufficiently small.

Examples 2.6. Let M be a connected compact C^∞ manifold of dimension $k - 1$, which does not bound (so $k - 1 \geq 2$): for instance, the real projective plane $\mathbb{P}^2(\mathbb{R})$. By the Nash-Tognoli theorem, [Nas52] and [Tog73], we can assume that M is a compact nonsingular real algebraic subset of some \mathbb{R}^n.

ON THE DEGREE OF GLOBAL SMOOTHING MAPPINGS FOR SUBANALYTIC SETS 3
(1) Consider the standard circumference $S^1 := \{(a, b) \in \mathbb{R}^2 : a^2 + b^2 = 1\}$, the compact nonsingular real algebraic set $X' := M \times S^1 \subset \mathbb{R}^{n+2}$, and the polynomial maps $\pi_1 : X' \to \mathbb{R}^{n+2}$ and $\pi_2 : \mathbb{R}^{n+2} \to \mathbb{R}^{n+2}$ defined as follows:

$$\pi_1(x, a, b) := (bx, a, b) \quad \text{and} \quad \pi_2(x, a, b) := (x, a, b^2),$$

where $x = (x_1, x_2, \ldots, x_n)$. The set $\pi_1(X')$ is equal to X' with $M \times \{-1, 0\}$ crushed to the point $p := (0, \ldots, 0, -1, 0)$ and $M \times \{1, 0\}$ crushed to the point $q := (0, \ldots, 0, 1, 0)$. The set $X := \pi_2(\pi_1(X'))$ is a semialgebraic subset of \mathbb{R}^{n+2} homeomorphic to the suspension of M. Define $X'_\pm := X' \cap \{\pm b > 0\}$ and the polynomial map $\varphi : X' \to \mathbb{R}^{n+2}$ by $\varphi(x, a, b) := \pi_2(\pi_1(x, a, b))$. Observe that $\varphi(X') = X$, $\varphi^{-1}(p) = M \times \{-1, 0\}$, $\varphi^{-1}(q) = M \times \{1, 0\}$, and the restriction of φ from X'_\pm to $U := X \setminus \{p, q\}$, namely to the whole smooth part of X, is a Nash diffeomorphism between connected Nash manifolds. For more details about Nash functions and Nash manifolds we refer to [BCR98, Sec. 8]. The triple $\Gamma := (X', \varphi, U)$ is a global smoothing section of $X \subset \mathbb{R}^{n+2}$ and $\varphi(M \times \{0, 1\})$ is a nonbounding equator of $W := U$ in X. The degree of Γ over W is two, in accordance with our Theorem 2.3.

(2) Let $Z' := M \times [-1, 1] \subset \mathbb{R}^{n+1}$, let $\phi : Z' \to \mathbb{R}^{n+1}$ be the polynomial map

$$\phi(x, a) := (x(1 - a^2), a)$$

and let X be the semialgebraic subset $\phi(Z')$ of \mathbb{R}^{n+1}. Observe that X is homeomorphic to the suspension of M, $\phi^{-1}(z_\pm) = M \times \{\pm 1\}$, where $z_\pm := (0, \ldots, 0, \pm 1)$, the restriction of ϕ from $Z'(M \times \{-1, 1\}) = M \times (-1, 1)$ to $U := X \setminus \{z_-, z_+\}$ is a Nash diffeomorphism between connected Nash manifolds (so ϕ has degree one over U), and $\phi(M \times \{0\})$ is a nonbounding equator of $W := U$ in X. However, the triple (Z', ϕ, U) is not a global smoothing section of $X \subset \mathbb{R}^{n+1}$, because Z' is not an analytic manifold: it has the nonempty boundary $M \times \{-1, 1\}$.

Nevertheless, the previous construction arises as an explicit case of Theorem B. Let $V := \mathbb{R}^{n+1}$. By [AK92, Cor. 2.5.14, p. 50] we may assume in addition that M is projectively closed, that is M is the zero set $Z_{\mathbb{R}^n}(p)$ in \mathbb{R}^n of some overt polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$. Write p as follows: $p = \sum_{i=0}^d p_i$, where p_i is an homogeneous polynomial of degree i. Recall that $Z_{\mathbb{R}^n}(p_d) = \{0\}$ as p is overt. Thus, if $\varphi : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is the polynomial map $(x, a) \mapsto ((1 - a^2)x, a)$, $Z := \varphi(M \times \mathbb{R})$ and $q(x, a) \in \mathbb{R}[x_1, \ldots, x_n, a]$ is the polynomial $q(x, a) := \sum_{i=0}^d (1 - a^2)^d i p_i(x)$, then $M \times \mathbb{R} = Z_{\mathbb{R}^{n+1}}(p_d)$ and $\varphi(q(x, a)) = (1 - a^2)^d p(x) = 0$ for all $(x, a) \in M \times \mathbb{R}$. It follows that

$$Z = Z_{\mathbb{R}^{n+1}}(q).$$

This proves that Z is algebraic and irreducible, so Z is the Zariski closure of X in \mathbb{R}^{n+1}. Thus, we deduce that $X, Z, Y := \{z_-, z_+\}, U, Z'$ and X' constitute an explicit embedded global smoothing as in [BP18, Rmk. 2.6].

Acknowledgments

I would like to thank Riccardo Ghiloni for suggesting to investigate the topics of this article and for valuable discussions during the drafting process.

References

[AK92] Selman Akbulut and Henry King, Topology of real algebraic sets, Mathematical Sciences Research Institute Publications, vol. 25, Springer-Verlag, New York, 1992. MR1225577 74

[BM88] Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR972342 12

[BM97] , Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302, DOI 10.1007/s002220050041. MR1440306 11

[BP18] Edward Bierstone and Adam Parusiński, Global smoothing of a subanalytic set, Duke Math. J. 167 (2018), no. 16, 3115–3128, DOI 10.1215/00127094-2018-0032. MR3870082 11, 2, 4
[BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR1659509

[Hir76] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR0448362

[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR0440554

[Nas52] John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421, DOI 10.2307/1969649. MR50928

[Tog73] Alberto Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 167-185. MR396571

Dipartimento di Matematica, Via Sommarive, 14, Università di Trento, 38123 Povo (ITALY)

Email address: enrico.savi@unitn.it