SEMI-INARIANT ξ^\perp-SUBMANIFOLDS OF GENERALIZED QUASI-SASAKIAN MANIFOLDS

CONSTANTIN CĂLIN, MIRCEA CRĂŞMAREANU, MARIAN IOAN MUNTEANU, AND VINCENZO SALTArellI

Dedicated to the memory of Prof. Stere Ianuș (1939 – 2010)

Abstract. A structure on an almost contact metric manifold is defined as a generalization of well-known cases: Sasakian, quasi-Sasakian, Kenmotsu and cosymplectic. Then we consider a semi-invariant ξ^\perp-submanifold of a manifold endowed with such a structure and two topics are studied: the integrability of distributions defined by this submanifold and characterizations for the totally umbilical case. In particular we recover results of Kenmotsu [8], Eum [9] and Papaghiuc [12].

1. Preliminaries and basic formulae

An interesting topic in the differential geometry is the theory of submanifolds in spaces endowed with additional structures. In 1978, A. Bejancu (in [2]) studied CR-submanifolds in Kähler manifolds. Starting from it, several papers have been appeared in this field. Let us mention only few of them: a series of papers of B.Y. Chen (e.g. [5]), of A. Bejancu and N. Papaghiuc (e.g. [3] in which the authors studied semi-invariant submanifolds in Sasakian manifolds). See also [10]. The study was extended also to other ambient spaces, for example A. Bejancu in [4] also studied QR-submanifolds in quaternionic manifolds and M. Barros in [11] investigated CR-submanifolds in quaternionic manifolds. Several important results above CR-submanifolds are being brought together in [4], [5], [9], [10], [11] and the corresponding references. The purpose of the present paper is to investigate the semi-invariant ξ^\perp-submanifolds in a generalized Quasi-Sasakian manifold.

Let \tilde{M} be a real $(2n + 1)$-dimensional smooth manifold endowed with an almost contact metric structure $(\phi, \xi, \eta, \tilde{g})$:

\[
\begin{align*}
\phi^2 &= -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \quad \phi \xi = 0 \\
\eta(X) &= \tilde{g}(X, \xi), \quad \tilde{g}(\phi X, Y) + \tilde{g}(X, \phi Y) = 0
\end{align*}
\]

for any vector fields X, Y tangent to \tilde{M} where I is the identity on sections of the tangent bundle TM, ϕ is a tensor field of type $(1,1)$, η is a 1-form, ξ is a vector field and \tilde{g} is a Riemannian metric on \tilde{M}. Throughout the paper all manifolds and vectors fields are smooth.
maps are smooth. We denote by $\mathcal{F}(\tilde{M})$ the algebra of the smooth functions on \tilde{M} and by $\Gamma(E)$ the $\mathcal{F}(\tilde{M})$-module of the sections of a vector bundle E over \tilde{M}.

The almost contact manifold $\tilde{M}(\phi, \xi, \eta)$ is said to be normal if

$$N_\phi(X, Y) + 2d\eta(X, Y)\xi = 0$$

where

$$N_\phi(X, Y) = [\phi X, \phi Y] + \phi^2 [X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y], \quad X, Y \in \Gamma(T\tilde{M})$$

is the Nijenhuis tensor field corresponding of the tensor field ϕ.

The fundamental 2-form Φ on \tilde{M} is defined by $\Phi(X, Y) = \tilde{g}(X, \phi Y)$.

In [8], the author studied hypersurfaces of an almost contact metric manifold \tilde{M} whose structure tensor fields satisfy the following relation

$$(\tilde{\nabla}_X \phi) Y = \tilde{g}(\tilde{\nabla}_X \phi Y, Y)\xi - \eta(Y)\tilde{\nabla}_X \xi$$

(1)

where $\tilde{\nabla}$ is the Levi-Civita connection of the metric tensor \tilde{g}. See also [6, 7]. For the sake of simplicity we say that a manifold \tilde{M} endowed with an almost contact metric structure satisfying (1) is a generalized Quasi-Sasakian manifold, in short G.Q.S. Define a $(1, 1)$ type tensor field F by

$$FX = -\tilde{\nabla}_X \xi.$$ (2)

Proposition 1. If \tilde{M} is a G.Q.S manifold then any integral curve of the structure vector field ξ is a geodesic i.e. $\tilde{\nabla}_\xi \xi = 0$. Moreover $d\Phi = 0$ if and only if ξ is a Killing vector field.

Proof. The first assertion follows immediately from (1) with $X = Y = \xi$, and taking into account that $\eta(\tilde{\nabla}_\xi \xi) = 0$. Next, we deduce

$$3d\Phi(X, Y, Z) = \tilde{g}(\tilde{\nabla}_X \phi Z, Y) + \tilde{g}(\tilde{\nabla}_Z \phi Y, X) + \tilde{g}(\tilde{\nabla}_Y \phi X, Z) + \eta(X)\left(\tilde{g}(Y, \tilde{\nabla}_{\phi Z} \xi) + \tilde{g}(\phi Z, \tilde{\nabla}_Y \xi)\right) + \eta(Y)\left(\tilde{g}(Z, \tilde{\nabla}_{\phi X} \xi) + \tilde{g}(\phi X, \tilde{\nabla}_Z \xi)\right) + \eta(Z)\left(\tilde{g}(X, \tilde{\nabla}_{\phi Y} \xi) + \tilde{g}(\phi Y, \tilde{\nabla}_X \xi)\right).$$

If we suppose that ξ is Killing then, from the last equation, we obtain $d\Phi = 0$.

Conversely, suppose that $d\Phi = 0$. Taking into account the first part of the statement, for $X = \xi, \eta(Y) = \eta(Z) = 0$, the last relation implies

$$\tilde{g}(Y, \tilde{\nabla}_{\phi Z} \xi) + \tilde{g}(\phi Z, \tilde{\nabla}_Y \xi) = 0.$$

Finally, by replacing Z with ϕZ and Y by $Y - \eta(Y)\xi$ we deduce that ξ is a Killing vector field. \qed

The next result can be obtained by direct calculation:

Proposition 2. A G.Q.S manifold \tilde{M} is normal and

$$\phi \circ F = F \circ \phi, \quad F\xi = 0, \quad \eta \circ F = 0, \quad \tilde{\nabla}_\xi \phi = 0.$$ (3)

Remark 1.

a) It is easy to see that on such manifold \tilde{M} the structure vector field ξ is not necessarily a Killing vector field i.e. \tilde{M} is not necessarily a K-contact manifold.

b) It is also interesting to pointed out that the following particular situations hold

1) $FX = -\phi X$ then \tilde{M} is Sasakian.
2) \(FX = -X + \eta(X)\xi \) then \(\tilde{M} \) is Kenmotsu
3) \(FX = 0 \) then \(\tilde{M} \) is cosymplectic
4) if \(\xi \) is a Killing vector field then \(\tilde{M} \) is a quasi-Sasakian manifold.

Now, let \(\tilde{M} \) be a G.Q.S manifold and consider an \(m \)-dimensional submanifold \(M \), isometrically immersed in \(\tilde{M} \). Denote by \(g \) the induced metric on \(M \) and by \(\nabla \) its Levi-Civita connection. Let \(\nabla^{\perp} \) and \(h \) be the normal connection induced by \(\tilde{\nabla} \) on the normal bundle \(TM^{\perp} \) and the second fundamental form of \(M \), respectively. Then one has the direct sum decomposition \(T\tilde{M} = TM \oplus TM^{\perp} \). Recall the Gauss and Weingarten formulae

\[
\begin{align*}
(G) & \quad \tilde{\nabla}_X Y = \nabla_X Y + h(X, Y) \\
(W) & \quad \tilde{\nabla}_X N = -A_N X + \nabla^{\perp}_X N, \quad X, Y \in \Gamma(TM)
\end{align*}
\]

where \(A_N \) is the shape operator with respect to the normal section \(N \) and satisfies

\[
\tilde{g}(h(X, Y), N) = g(A_N X, Y), \quad X, Y \in \Gamma(TM), \quad N \in \Gamma(TM^{\perp}).
\]

The purpose of the present paper is to investigate the semi-invariant \(\xi^{\perp}\)-submanifolds in a G.Q.S manifold. More precisely, we suppose that the structure vector field \(\xi \) is orthogonal to the submanifold \(M \). According to Bejancu [4] we say that \(M \) is a semi-invariant \(\xi^{\perp}\)-submanifold if there exist two orthogonal distributions, \(D \) and \(D^{\perp} \), in \(TM \) such that:

\[
TM = D \oplus D^{\perp}, \quad \phi D = D, \quad \phi D^{\perp} \subseteq TM^{\perp}
\]

(4)

where \(\oplus \) denotes the orthogonal sum. If \(D^{\perp} = \{0\} \) then \(M \) is an invariant \(\xi^{\perp}\)-submanifold. The normal bundle can also be decomposed as \(TM^{\perp} = \phi D^{\perp} \oplus \mu \), where \(\phi \mu \subseteq \mu \). Hence \(\mu \) contains \(\xi \).

2. Integrability of Distributions on a Semi-invariant \(\xi^{\perp}\)-Submanifold

Let \(M \) be a semi-invariant \(\xi^{\perp}\)-submanifold of a G.Q.S manifold \(\tilde{M} \). Denote by \(P \) and \(Q \) the projections of \(TM \) on \(D \) and \(D^{\perp} \) respectively, namely for any \(X \in \Gamma(TM) \)

\[
X = PX + QX.
\]

(5)

Moreover, for any \(X \in \Gamma(TM) \) and \(N \in \Gamma(TM^{\perp}) \) we put

\[
\phi X = tX + \omega X
\]

(6)

\[
\phi N = BN + CN
\]

(7)

with \(tX \in \Gamma(D) \), \(BN \in \Gamma(TM) \) and \(\omega X, CN \in \Gamma(TM^{\perp}) \). We also consider, for \(X \in \Gamma(TM) \), the decomposition

\[
FX = \alpha X + \beta X, \quad \alpha X \in \Gamma(D), \quad \beta X \in \Gamma(TM^{\perp}).
\]

(8)

The purpose of this section is to study the integrability of both distributions \(D \) and \(D^{\perp} \). With this scope in mind, we state first the following result.

Proposition 3. Let \(M \) be a semi-invariant \(\xi^{\perp}\)-submanifold of a G.Q.S manifold \(\tilde{M} \). Then we have

a) \((\nabla_X t)Y = A_{\omega Y} X + Bh(X, Y) \),

b) \((\nabla_X \omega)Y = Ch(X, Y) - h(X, tY) + g(FX, \phi Y)\xi, \quad X, Y \in \Gamma(TM) \).
Proof. The statement follows immediately from (6)–(8).

Taking into consideration the decomposition of TM^\perp, it can be easily proved:

Proposition 4. Let M be a semi-invariant ξ^\perp-submanifold of a G.Q.S manifold \tilde{M}. Then for any $N \in \Gamma(TM^\perp)$ one has:

a) $BN \in D^\perp$,

b) $CN \in \mu$.

Proposition 5. If M is a semi-invariant ξ^\perp-submanifold of a G.Q.S manifold \tilde{M} then

$$A_\omega Z W = A_\omega W Z$$

for any $Z, W \in \Gamma(D^\perp)$.

The following two results give necessary and sufficient conditions for the integrability of the two distributions.

Theorem 1. Let M be a semi-invariant ξ^\perp-submanifold of a G.Q.S manifold \tilde{M}. Then the distribution D^\perp is integrable.

Proof. Let $Z, W \in \Gamma(D^\perp)$. Then from (6), (9) and (10) we deduce that

$$t[Z, W] = A_\omega Z W - A_\omega W Z = 0.$$

Hence the conclusion.

Theorem 2. If M is a semi-invariant ξ^\perp-submanifold of a G.Q.S manifold \tilde{M} then the distribution D^\perp is integrable if and only if

$$h(tX, Y) - h(X, tY) = (L_\xi\tilde{g})(X, \phi Y) \xi, \quad X, Y \in \Gamma(D).$$

Proof. The statement yields directly from (6) and (9)

$$\omega([X, Y]) = h(X, tY) - h(tX, Y) + (L_\xi\tilde{g})(X, \phi Y) \xi.$$

Notice that the two results above are analogue those obtained in the Kenmotsu case in [12] and for the cosymplectic case in [14]. See also [10] when the submanifold is tangent to the structure vector field of the Sasakian manifold.

Moreover, from (8) we deduce

Proposition 6. Let M be a ξ^\perp-semi-invariant submanifold of a G.Q.S manifold \tilde{M}. Then

$$A_\xi X = \alpha X, \quad \nabla_\xi^\perp \xi = -\beta X, \quad X \in \Gamma(TM).$$

Let now $\{e_i, \phi e_i, e_{2p+j}\}$, $i \in \{1, \ldots, p\}$, $j \in \{1, \ldots, q\}$ be an adapted orthonormal local frame on M, where $q = \dim D^\perp$ and $2p = \dim D$. One can state the following

Theorem 3. If M is a ξ^\perp-semi-invariant submanifold of a G.Q.S manifold \tilde{M} one has

$$\eta(H) = \frac{1}{m} \text{trace}(A_\xi), \quad m = 2p + q.$$
Proof. Using a general formula for the mean curvature, e.g. \(H = \frac{1}{m} \sum_{a=1}^{q} \text{trace}(A_{\xi_a}) \xi_a \), where \(\{\xi_1, \ldots, \xi_q\} \) is an orthonormal basis in \(TM^\perp \), the conclusion holds by straightforward computations. □

In the case when the ambient space is a Kenmotsu manifold we retrieve the known result from [12, p. 614].

Corollary 1. There does not exist a minimal semi-invariant \(\xi^\perp \)-submanifold of a Kenmotsu manifold.

Also it is not difficult to prove:

Theorem 4. Let \(M \) be a semi-invariant \(\xi^\perp \)-submanifold of a G.Q.S manifold \(\widetilde{M} \). Then

1. the distribution \(D \) is integrable and its leaves are totally geodesic in \(M \) if and only if \(h(X, Y) \in \Gamma(\mu) \) where \(X, Y \) belong to \(D \);
2. any leaf of the integrable distribution \(D^\perp \) is totally geodesic in \(M \) if and only if \(h(X, Z) \in \Gamma(\mu) \) if \(X \in \Gamma(D) \) and \(Z \in \Gamma(D^\perp) \).

Proof. Let us prove only the first statement. For any \(Z \in D^\perp \) we have
\[
g(h(X, Y), \phi Z) = \tilde{g}(\tilde{\nabla}X Y, \phi Z) = -\tilde{g}(Y, \tilde{\nabla}X(\phi Z)) =
\]
\[
= -\tilde{g}(Y, (\tilde{\nabla}X \phi) Z) - \tilde{g}(\phi Y, \tilde{\nabla}X Z) = g(\tilde{\nabla}X(\phi Y), Z).
\]
Let \(M^* \) be a leaf of the integrable distribution \(D \) and \(h^* \) the second fundamental form of \(M^* \) in \(M \).

For any \(Z \in \Gamma(D^\perp) \) we have:
\[
g(h^*(X, Y), Z) = \tilde{g}(\tilde{\nabla}X tY, Z) = \tilde{g}((\tilde{\nabla}X \varphi) Y + \varphi(\tilde{\nabla}X Y), Z) = -\tilde{g}(h(X, Y), \varphi Z)
\]
which proves that the leaf \(M^* \) of the integrable \(D \) is totally geodesic in \(M \) if and only if \(h(X, Y) \in \Gamma(\mu) \).

Notice that the part (2) of the previous Theorem was obtained in the Kenmotsu case by Papaghiuc in [13, p. 115]. □

We end this section with the following

Corollary 2. If the leaves of the integrable distribution \(D \) are totally geodesic in \(M \) then the structure vector field \(\xi \) is \(D \)-Killing, that is \((L_\xi g)(X, Y) = 0, X, Y \in \Gamma(D)\).

3. Totally umbilical semi-invariant \(\xi^\perp \)-submanifolds

The main purpose of this section is to obtain a complete characterization of a totally umbilical semi-invariant \(\xi^\perp \)-submanifold of a G.Q.S manifold \(\widetilde{M} \). Recall that for a totally umbilical submanifold we have
\[
h(X, Y) = g(X, Y)H, \quad X, Y \in \Gamma(TM).
\]

First we state:
Theorem 5. An invariant ξ^\perp-submanifold M of a G.Q.S manifold is totally umbilical if and only if
$$h(X, Y) = \frac{1}{m}g(X, Y)\text{trace}(A_\xi).$$

Proof. If M is an invariant ξ^\perp-submanifold then for any $X, Y \in \Gamma(TM)$ we have $h(X, \phi Y) = \phi h(X, Y) - g(A_\xi \phi X, Y)$. Let us consider an orthonormal frame $\{e_i, e_{p+i}\}, i = 1, \ldots, p$ on M; from the above relation one obtains that $\phi H = 0$. Again, since M is an invariant submanifold:
$$H = g(H, \xi)\xi = \frac{1}{m} \sum_{i=1}^{m} g(h(e_i, e_i), \xi)\xi = \frac{1}{m}\text{trace}(A_\xi)\xi$$
and the proof is complete. \Box

Corollary 3. A semi-invariant ξ^\perp-submanifold of a quasi-Sasakian manifold is minimal.

The case of a semi-invariant ξ^\perp-submanifold in a G.Q.S manifold \tilde{M} is solved in the next Theorem.

Theorem 6. Let M be a semi-invariant ξ^\perp-submanifold of a G.Q.S manifold \tilde{M} with $\text{dim}D^\perp > 1$. Then M is totally umbilical if and only if (13) holds.

Proof. Let $X \in \Gamma(D)$ be a unit vector field and $N \in \Gamma(\mu) \setminus \text{span}\{\xi\}$. By direct calculation it results that:
$$g(H, N) = g(h(X, X), N) = g(\nabla_X \phi X - (\nabla_X \phi)X, \phi N) = g(h(X, \phi X), \phi N) = 0$$
which proves that $H \in \phi D^\perp \oplus \text{span}\{\xi\}$.

For $Z, W \in \Gamma(D^\perp)$, from (9) we derive $QA_{\phi Z}W = -g(Z, W)\phi H$ i.e.
$$g(Z, \phi H)g(W, \phi H) = g(Z, W)g(\phi H, \phi H).$$
(15)

If we take $Z = W$ orthogonal to ϕH, since $\text{dim}D^\perp > 1$, from the above relation we infer $\phi H = 0 \Rightarrow H \in \text{span}\{\xi\}$. At this point the conclusion is straightforward.

Conversely, if (13) is supposed to be true, then we get (14) which together with (13) we deduce that M is totally umbilical. \Box

Let us remark that when \tilde{M} is a Kenmotsu manifold the result of the Theorem 6 was proved in [12].

Corollary 4. Every ξ^\perp-hypersurface of a G.Q.S manifold \tilde{M} is totally umbilical.

Proof. If M is a hypersurface then $TM^\perp = \text{span}\{\xi\}$ that is $h(X, Y) \in \text{span}\{\xi\}$. Next, from (14) it follows (13). \Box

In the particular case of a Kenmotsu manifold this result was obtained by Papaghiuc in [12] p. 617.

As a consequence of Theorem 6 we obtain

Theorem 7. If M is a totally umbilical semi-invariant ξ^\perp-submanifold of a G.Q.S manifold \tilde{M} with $\text{dim}D^\perp > 1$, then M is a semi-invariant product.
Here, by a semi-invariant product we mean a semi-invariant ξ^\perp-submanifold of \tilde{M} which can be locally written as a Riemannian product of a ϕ-invariant submanifold and a ϕ-anti-invariant submanifold of \tilde{M}, both of them orthogonal to ξ.

Proof. From the definition of totally umbilical submanifold we have $h(X, Z) = 0$ for any $X \in \Gamma(D)$ and $Z \in \Gamma(D^\perp)$, so that, by b) of Theorem 4, the leaves of D^\perp are totally geodesic submanifolds of M. By Theorem 6 we have $h(X, Y) \in \text{span}\{\xi\} \subset \mu$ for any $X, Y \in D$. By virtue of a) of Theorem 1, this implies that the invariant distribution D is integrable and its integral manifolds are totally geodesic submanifolds of M. Therefore, we conclude that M is a semi-invariant product. □

Without any restriction on the dimension of D^\perp, we have the following

Theorem 8. Let M be a totally umbilical semi-invariant ξ^\perp-submanifold of a G.Q.S manifold \tilde{M}. If D is integrable, then each leaf of D is a totally geodesic submanifold of M.

Proof. By using b) of Proposition 3 for any $X \in \Gamma(D)$, we have

$$\omega(\nabla_X X) = -g(X, X)CH - g(FX, \phi Y)\xi.$$

Since $CH \in \mu$ by b) of Lemma 3 and $\omega U \in \phi D^\perp$ for any $U \in \Gamma(TM)$, from the above equation we deduce that $\omega(\nabla_X X) = 0$, or equivalently

$$\nabla_X X \in D, \quad \forall X \in \Gamma(D).$$

Replacing X by $X + Y$, we get $\nabla_X Y + \nabla_Y X \in \Gamma(D)$ for all $X, Y \in \Gamma(D)$. This condition, together with the integrability of D, implies

$$\nabla_X Y \in D, \quad \forall X, Y \in \Gamma(D). \quad (16)$$

As D is integrable, Frobenius theorem ensures that M is foliated by leaves of D. Combining this fact with (16), we conclude that the leaves of D are totally geodesic submanifolds of M. □

References

[1] M. Barros, B.Y. Chen, F. Urbano, *Quaternionic CR-submanifolds of quaternionic manifolds*, Kodai Math. J., 4 (1981), 399–418.

[2] A. Bejancu, *CR-submanifolds of a Kähler manifold I.*, Proc. Amer. Math. Soc., 69 (1978), 135–142.

[3] A. Bejancu, N. Papaghiuc, *Semi-invariant submanifolds of a Sasakian manifold*, An. Științ. Univ. ‘Al. I. Cuza’ Iași, Sect. I a Math., 27 (1981) 1, 163–170.

[4] A. Bejancu, *Geometry of CR-submanifolds*, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1986.

[5] B.Y. Chen, *Geometry of submanifolds*, Pure and Applied Mathematics, No. 22, Marcel Dekker Inc., New York, 1973.

[6] S.S. Eum, *On Kählerian hypersurfaces in almost contact metric spaces*, Tensor (N.S.), 20 (1969), 37–44.

[7] S.S. Eum, *A Kaehlerian hypersurface with parallel Ricci tensor in an almost contact metric space of constant C-holomorphic sectional curvature*, Tensor (N.S.), 21 (1970), 315–318.

[8] K. Kenmotsu, *A class of almost contact Riemannian manifolds*, Tôhoku Math. J. (2), 24 (1972), 93–103.

[9] V. Mangione, *On submanifolds of a cosymplectic space form*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47 (95) (2004), 1-2, 85–95.

[10] M.I. Munteanu, *Warped Product Contact CR-Submanifolds of Sasakian Space Forms*, Publ. Math. Debrecen 66 (2005) 1-2, 75-120.
[11] L. Ornea, *CR-submanifolds. A class of examples*, Rev. Roumaine Math. Pures Appl. 51 (2006) 1, 77–85.

[12] N. Papaghiuc, *Semi-invariant submanifolds in a Kenmotsu manifold*, Rend. Mat. (7), 3(1983) 4, 607–622.

[13] N. Papaghiuc, *On the geometry of leaves on a semi-invariant \(\xi^\perp \)-submanifold in a Kenmotsu manifold*, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat., 38 (1992), no. 1, 111–119.

[14] Mohd. Shoeb, Mohd. Hasan Shahid, A. Sharfuddin, *On submanifolds of a cosymplectic manifold*, Soochow J. Math., 27 (2001) 2, 161–174.

(C. Călin) Technical University Gh. Asachi, Department of Mathematics, Iasi, 700049 Romania

E-mail address: constc (at) yahoo.com

(M. Crăsmareanu, M. I. Munteanu) ‘Al.I.Cuza’ University of Iasi, Bd. Carol I, nr. 11, Iasi, 700506, Romania, http://www.math.uaic.ro/~mcrasm, http://www.math.uaic.ro/~munteanu

E-mail address: mcrasm (at) uaic.ro, marian.ioan.munteanu (at) gmail.com

(V. Saltarelli) Department of Mathematics, University of Study of Bari, Via E. Orabona 4, 70125 - Bari, Italy

E-mail address: saltarelli (at) dm.uniba.it