Erbium implanted silicon for solid-state quantum technologies

Mark A. Hughes¹, Naitik A. Panjwani²,³, Matias Urdampilleta²,⁴, Ilana Wisby⁵,⁶,⁷, Kevin P. Homewood⁸,⁹, Ben Murdin⁸, Tobias Lindström⁵ and J. David Carey⁸,¹⁰

¹Joule Physics Laboratory, School of Computing Science and Engineering, University of Salford, M5 4WT, UK
²University College London, London Centre for Nanotechnology, Gower Place, WC1E 6BT, London, UK
³Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany
⁴Institut Néel-CNRS-UJF-INPG, UPR2940 25 rue des Martyrs BP 166, 38042 Grenoble cedex 9, France
⁵National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
⁶Royal Holloway, University of London, Egham TW20 0EX, UK
⁷Oxford Quantum Circuits Ltd. King Charles House 2nd Floor, Park End Street, Oxford, Oxfordshire, OX1 1JD, UK
⁸Advanced Technology Institute, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
⁹School of Materials Science and Engineering, Hubei University, Wuhan, 430062, People’s Republic of China
¹⁰Department of Electrical and Electronic Engineering, University of Surrey, Guildford, GU2 7XH, UK

*Correspondence should be addressed to: M.A.H (m.a.hughes@salford.ac.uk)
Abstract

Quantum technology (QT) platforms with telecommunications and integrated circuit (IC) processing compatibility have important implications for the long-distance transfer of quantum information, and QT platforms based on ion implantation are inherently scalable. Here we establish the potential of Er implanted Si as a scalable QT platform with telecommunications and IC processing compatibility through coherence and superconducting resonator coupling measurements. The electron spin coherence time of Er implanted Si with an Er concentration of \(3 \times 10^{17} \text{ cm}^{-3}\) is \(\sim 10 \mu\text{s}\) at 5 K. The spin echo decay profile displays strong modulation due to super-hyperfine interaction with \(^{29}\text{Si}\) nuclei beyond the first coordination sphere; this interaction could be utilised for the telecommunications wavelength addressing of \(^{29}\text{Si}\) qubits. The collective coupling strength between a superconducting NbN lumped-element microresonator and Er implanted Si with an Er concentration of \(10^{17} \text{ cm}^{-3}\) at 20 mK was \(\sim 1\text{MHz}\).
Introduction

The field of QTs is receiving a surge in interest and has the potential to revolutionise computing, communication, metrology and our understanding of quantum physics. The optical fibre telecommunications network makes telecoms wavelength photons at 1.5 μm by far the best candidates for transferring quantum information over distance. However, there are currently no QT platforms with both long coherence times (T2) and telecommunications compatibility. Er transitions can be optically addressed at telecoms wavelengths which allows transfer of quantum information over distance. Rare earth (RE) ions are well suited to overcome a paradox of QT platform requirements: sufficient decoupling from the environment to avoid decoherence, but a strong enough interaction with the environment to allow addressing, readout and gating. This is because they possess a partially filled 4f shell which is shielded from the environment by the outer 5s and 5p shells, leading to extraordinary coherence times of 6 hours1 and 4.4 ms2 for optically detected nuclear spin and electron dipole transitions, respectively; however, even with their atomic scale shielding, long lived entanglement between RE dopants in a solid matrix has been observed,3, 4 and entanglement between internal degrees of freedom of single RE ions can still exist up to thousands of K, making this one of the most stable known entanglements.5

A practical quantum computing architecture developed in Si will move from a one-off device to production far quicker than for any other material, and features can be patterned in Si on the scale required for many quantum device architectures. Ion implantation of Si is a well understood technology in IC fabrication, and history has shown that commercial adoption of new technologies favours those based on established fabrication platforms and techniques. Recently, increases in coherence times by several orders of magnitude have been demonstrated in donor impurities in silicon by using isotopically pure 28Si.6 However, donor impurities do not interact with light at telecommunications wavelengths, which is critical for many quantum communication schemes. Given expected improvements in T2 by using 28Si, optimising processing for the appropriate Er-related centre7 and reducing Er concentration, Er implanted Si is potentially the only known QT platform with telecoms addressability, long T2 and IC tooling compatibility. The spin state of a single Er ion implanted into a silicon single electron transistor has been optically addressed and electrically
readout;8 whereas, the spin state of a single Er ion in Y\textsubscript{2}SiO\textsubscript{5}, coupled to a silicon nanophotonic cavity, can be readout optically with a single shot.9 This demonstrates that Er implantation is compatible with a potential quantum computing architecture and that Er could be integrated in to quantum communication and information processing schemes.

Nuclear spins in solid-state platforms are also useful systems on which to implement qubits because their isolation from the environment can lead to extremely long coherence times, usually significantly longer than electron spin coherence times.10 The 29Si isotope of Si has been proposed as the qubit of an all Si quantum computer,11 but this also lacks telecoms addressability.

Arguably the most sophisticated quantum computers to-date use superconducting (SC) circuits, with 72 qubit machines demonstrated to-date,12 but they are limited by short coherence times compared to dopant-ion based qubits. SC circuits can be readily coupled to spin ensembles with longer coherence times which can then act as a quantum memory.13 Using Er spin ensembles can also provide a telecommunications interface for SC resonator qubits,14 and a single ensemble could be used to store many qubits by using holographic encoding.15

Here we report the first coherence measurements of Er implanted Si, or, in fact, any implanted Er, in the form of spin echo measurements. We also report the strong superhyperfine interaction between Er and 29Si, which could give telecoms addressability to a 29Si based quantum device. In addition, we demonstrate the first of coupling between Er implanted in Si and a superconducting resonator. This represents the first integration of REs in a scalable QT platform and demonstrates the potential of Er implanted Si as a platform for future QTs.

Results

1. Spin Echo Measurements

We used three different annealing recipes- \(a\), \(b\) and \(c\) (see Methods for details) and isotopically selective implantation of 166Er to fabricate samples with Er concentrations between \(10^{17}\) and \(10^{19}\) cm-3 for electron spin resonance (ESR), spin echo and SC resonator coupling measurements. When implanted into Si, Er exists in its usual 3+ oxidation state.16 Oxygen was co-implanted to a
concentration of 10^{20} cm$^{-3}$ for all samples and is required to generate narrow Er-related ESR17 and photoluminescence (PL)18 lines. Previous measurements of the angular dependence of the Er-related ESR lines in Er implanted Si have identified a number of different centres: three monoclinic centres labelled OEr-1, OEr-1’ and OEr-3, and three trigonal centres labelled OEr-2, OEr-2’ and OEr-417,19,20,21. The g tensors of these centres are given in supplementary Table S1. By comparison to these angular dependencies we can attribute the CW ESR line at 963 G from 10^{19} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O with annealing recipe a (sample 1), shown in Figure 1a, to the OEr-1’ monoclinic centre illustrated in the inset. These Er-related ESR lines have been attributed to an Er centre based on similar g tensors to Er doped Y$_2$O$_3$, which has the same crystal structure as Er$_2$O$_3$, and EXAFS measurements of Er and O implanted Si which found a similar Er-O bond length to that in Er$_2$O$_3$.17,21 We recently reported22 using a tuneable 1.5 μm laser to modulate an ESR resonance of the OEr-1’ monoclinic centre from sample 1. The optical spectrum of this modulation agreed with the characteristic Er PL measurements of Er implanted Si, showing beyond any reasonable doubt that the ESR resonance from the OEr-1’ monoclinic centre originates from an Er centre.22 Figure 1a also shows that the spin echo peaks at the same magnetic field (B_0) as the Er-related ESR resonance at 963 G, which has a full width at half maximum (FWHM) of 8 G. However, the majority of the spin echo signal was also present off-resonance, we refer to the extra echo signal present at resonance as the intrinsic on-resonance and is calculated by treating the off-resonance echo as a background and subtracting it. Figure 1b shows the spin echo intensity as a function of B_0 for a delay time, between the $\pi/2$ and π pulses (t_{12}), of between 130 and 270 ns for a sample with 10^{19} cm$^{-3}$ Er. The intrinsic on-resonance echo intensity was ~30% of the off-resonance echo at the shortest delay time. Figure 1c shows the integrated intensity of the intrinsic on-resonance echo peak, and the off-resonance echo as a function of t_{12}. The echo decays were analysed using the empirical Mims equation,23

$$I = I_0 e^{-(\frac{2t_{12}}{T_2})^x},$$

(1)

where T_2 is the coherence time, and x is an exponential stretch factor which is determined by spin dynamics, and was found to be 1 in the decay profiles in Figure 2 a, c and e. Fits to Eq. 1, with $x = 1,$
give an estimated T_2 of 180 ± 80 and 800 ± 40 ns for on- and off-resonance echoes, respectively, for sample 1.

Figure 1d shows the CW ESR and field dependent echo for 3×10^{17} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O with annealing recipe b (sample 2). There are two main resonances (peaks 1 and 2) at 867 and 934 G, respectively; similarly to sample 1, these resonances are attributed to the OEr-1’ centre, with the shift and splitting of the resonance attributed to a small angular deviation compared to sample 1. There are also satellite resonances at 892 and 964 G, which are attributed to a small vertical misalignment of the sample in the magnetic field. All of these resonances are visible in the echo spectrum. Like sample 1, the majority of the spin echo signal was also present off-resonance, with the on-resonance echo intensity being ~20% of the off-resonance echo signal at the shortest delay time. Figure 1e shows the echo intensity as a function of B_0 for various t_{12} between 0.14 and 2.24 μs for sample 2.

The on-resonance echo signal disappears below the detection limit then reappears with increasing t_{12}, indicating the presence of very strong electron spin echo envelope modulation (ESEEM). Figure 1f shows the integrated intensity of the intrinsic on-resonance echo from peaks 1 and 2, and the off-resonance echo, as a function of increasing delay time. Fits to Eq. 1 give estimated T_2 values of 11 ± 5, 7 ± 4 and 3.5 ± 1 μs for intrinsic on-resonance peaks 1 and 2, and off-resonance echoes, respectively. In contrast to the 10^{19} cm$^{-3}$ Er sample, the intrinsic on-resonance T_2 is now longer than the off-resonance T_2.
Figure 1 Field dependant spin echo. a, CW ESR and echo signals with various t_{12} for 10^{19} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O with annealing recipe a (sample 1); limitations of the measurement system meant that delays shorter than 130 ns could not be used. The inset, after ref 21, illustrates the monoclinic ESR centre. b, Contour plot showing the echo intensity as a function of magnetic field at various t_{12} for sample 1. c, Integrated intensity of the intrinsic on- and off-resonance echo signals as a function of delay time for sample 1. The on-resonance echo contains both off-resonance and an intrinsic on-resonance echo. The intrinsic on-resonance echo was separated from the off-resonance echo by interpolating a baseline for the on-resonance echo from the off-resonance echo. d, CW ESR and echo signals with various t_{12} for 3×10^{17} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O with annealing recipe b (sample 2). e, Contour plot showing the echo intensity as a function of magnetic field at various t_{12} for sample 2. f, Integrated intensity of the intrinsic on- and off-resonance echo signals as a function of delay time for sample 2. All CW ESR measurements were made at 10 K, all echo measurements at 5 K, and the microwave frequency was 9.61 GHz.
The B_0 dependent measurements in Figure 1a,b,d and e allowed us to separate the on and off resonance components of the echo, but with limited temporal resolution. In Figure 2 we show the echo decay profiles, at fixed B_0, which give much better resolution of temporal features. The echo decays, shown in Figure 2a,c and e, display strong superimposed oscillations from the ESEEM effect\cite{24} caused by superhyperfine coupling with neighbouring nuclear spins; similar oscillations were observed in Er:CaWO$_4$, but were significantly weaker.\cite{25} Since the 4f wavefunction is highly localised, the superhyperfine coupling between a RE and a neighbouring nuclear spin is usually regarded as magnetic dipole-dipole only.\cite{26,27} The echo decay of an isolated Er$^{3+}$ ion (effective electron spin $S = \frac{1}{2}$) in proximity to a ^{29}Si nuclei (nuclear spin $I = \frac{1}{2}$) can be described as follows,\cite{24}

$$I(t_{12}) = I_0 e^{-\left(\frac{2\pi t_{12}}{\tau_2}\right)^2} \left[1 - 2k\sin^2\left(\frac{2\pi v_\alpha t_{12}}{2}\right)\sin^2\left(\frac{2\pi v_\beta t_{12}}{2}\right)\right].$$

The first term is Eq. 1, which describes the echo decay in the absence of nuclear coupling. k is the modulation index, v_α and v_β are the ^{29}Si nuclear resonance frequencies for the two possible Er$^{3+}$ electron spin orientations ($S = \pm\frac{1}{2}$).

Figure 2a shows the off-resonance echo decay fitted to Eq. 2 at a B_0 of 850 G. The fitting indicates v_α and v_β of 0.63 and 0.58 MHz, respectively, the τ_2 of 4 μs from the fit is consistent with Figure 1f. Figure 2b shows the fast Fourier transform (FFT) of both the measured and fitted off-resonance decay. The measured decay has a single resolvable frequency peak at 0.69 MHz, which is close to the Larmor frequency (v_L) of 0.72 MHz for ^{29}Si at this magnetic field, and which we assign to the superposition of v_α and v_β. The similar frequencies for v_α, v_β and v_L indicate weak coupling to ^{29}Si nuclear spins. Eq. 2 contains weaker sum ($v_+ = v_\alpha + v_\beta$) and difference ($v_ - v_\beta$) frequency components; the FFT of the fitted decay show the v_+ component, which cannot be resolved on the FFT of the measured decay because of insufficient signal-to-noise.

Figure 2c shows the on-resonance echo decay, which has significantly stronger ESEEM modulation than the off-resonance decay. Fitting to the data required the sum of two sets of Eq. 2 because this decay profile contains the decay profile of both the off-resonance and the intrinsic on-
resonance decays, with the two sets of adjustable parameters given the subscripts a and b respectively, as shown in Eq. 3.

$$I(t_{12}) = I_{0a} e^{-\frac{2\pi t \nu_{\alpha} t_{12}}{T_2^a}} \left[1 - 2k_a \sin^2 \left(\frac{2\pi \nu_{\alpha} t_{12}}{2} \right) \sin^2 \left(\frac{2\pi \nu_{\beta} t_{12}}{2} \right) \right]$$

$$+ I_{0b} e^{-\frac{2\pi t \nu_{\beta} t_{12}}{T_2^b}} \left[1 - 2k_b \sin^2 \left(\frac{2\pi \nu_{\alpha} t_{12}}{2} \right) \sin^2 \left(\frac{2\pi \nu_{\beta} t_{12}}{2} \right) \right]$$

Fitting indicates one of the components had stronger modulation ($k_a=0.43$) than the other ($k_b=0.2$). Figure 2d shows the FFT of the measured on-resonance decay in which two peaks at 0.73 and 1.64 MHz can be resolved and are assigned to ν_{α} and ν_{β}, respectively; these peak positions and their intensities correspond well to those from the FFT of the fit. The intrinsic on-resonance decay, obtained by taking the difference between on- and off-resonance decay profiles, is shown in Figure 2e; the fitting to Eq. 2 yields ν_{α} and ν_{β} of 0.70 and 1.63 MHz, respectively, these frequencies and ν_+ can be clearly seen in the FFT in Figure 2f. The deviation of ν_{β} from ν_L indicates stronger superhyperfine coupling between Er electron spins and 29Si nuclear spins. The modulation of the intrinsic on-resonance decay is very strong with fitting yielding $k = 0.45$. The fit also yielded a T_2 of $9 \pm 3 \mu s$ which is consistent with Figure 1f. Our T_2 of $\sim 10 \mu s$ at 5 K compares to $\sim 5 \mu s$ at 5 K ($\sim 50 \mu s$ at 2.5 K) for $\sim 10^{16}$ cm$^{-3}$ Er doped CaWO$_4$. It is notable that Er implanted Si has double the T_2 of an Er doped crystal with 30x lower Er concentration. It is also notable that the Er was implanted, whereas the Er in the CaWO$_4$ crystal was introduced during crystal growth, since recrystallization after implantation can often leave lattice defects that lead to decoherence. Further optimisation of the recrystallization process, reductions in Er concentration and isotopic purification of the Si may lead to coherence times applicable to quantum communication and computation.

We also measured the spin relaxation time, T_1, at 5 K, see supplementary Figure S1, to be ~ 0.5 ms off-resonance and ~ 1 ms on-resonance. This further illustrates the different nature of the on- and off-resonance centres. Given that $T_1 >> T_2$ at both on- and off-resonance, T_2 is limited by local field fluctuations in both cases. For both donors in silicon and RE doped transparent crystals, the ESEEM effect is thought to be caused largely by nuclear spins in very close vicinity to the echo.
producing centre. For example in both 28,29P and 30Bi doped Si, the ESEEM effect is attributed to the four nearest Si lattice positions, in $^{3+}$Ce doped CaWO$_4$, the ESEEM of Ce$^{3+}$ can be accurately modelled using the closest ten lattice positions of surrounding W atoms. 24 Spectral diffusion can be caused by various electron31 and nuclear32 spin flip-flop process; in Er implanted Si, nuclear induced spectral diffusion is most likely since 29Si nuclear spins are present and electron spin $T_1 >> T_2$. The nuclear spins involved in ESEEM, which experience large hyperfine fields, cannot flip flop their spins and contribute to spectral diffusion due to conservation of energy, whereas the nuclear spins involved in spectral diffusion must experience very weak hyperfine fields to allow flip-flops, and therefore consist of a separate, larger, group of nuclei that are further from the echo producing centre. 28 The observation that $x \sim 1$ in Figure 2 a, c and e for the on and off-resonance decay profiles is somewhat unexpected and indicates no significant spectral diffusion occurs. 2 Due to our isotope specific implantation, the only nuclear spins in our sample are from 29Si. The OEr-1’ centre responsible for the intrinsic on-resonance echo is attributed to an O coordinated Er centre, so coupled 29Si nuclei must lie outside at least the first coordination sphere. The observation of strong ESEEM indicates that the OEr-1’ centre can couple to nuclear spins significantly further away than previously investigated Er centres; the lack of spectral diffusion is consistent with this hypothesis since a hyperfine field extending further from the Er centre would push the nuclear spins capable of inducing flip-flops, and therefore spectral diffusion, further from the Er centre.

Although the intrinsic on-resonance echo signal can be confidently assigned to the OEr-1’ monoclinic Er-related centre, the origin of the off-resonance echo signal is less clear, but relative similarities in T_1, T_2 and ESEEM to the intrinsic on-resonance echo signal, and that its T_2 increases with decreasing Er concentration, suggest another, as yet unidentified, Er-related centre.
Figure 2 Spin echo decay profiles for 3×10^{17} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O. a, Off-resonance echo decay profile at a B_0 of 850 G fitted to Eq. 2. b, FFT of measured and fitted off-resonance decay profile. c On-resonance echo decay profile at a B_0 of 867 G fitted to Eq. 3. d, FFT of measured and fitted on-resonance decay profile. e, Intrinsic on-resonance decay profile, extracted by taking the difference between on- and off-resonance decay profiles, fitted to Eq. 2. f, FFT of measured and fitted the intrinsic on-resonance decay profile. All measurements were on sample 2 (3×10^{17} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O, with annealing recipe b) at 5 K, and the microwave frequency was 9.61 GHz. The on-resonance decay corresponds to peak 1.
2. Superconducting resonator coupling

In order to determine the suitability of Er implanted Si for hybrid solid-state qubits, we placed the implanted face of sample 3 (10^{17} Er cm$^{-3}$ and 10^{20} O cm$^{-3}$, annealing recipe c) in contact with the superconducting NbN lumped-element microresonator on R-cut Al$_2$O$_3$ shown in Figure 3a, which had a centre frequency $\omega_r/2\pi = 3.04$ GHz, see Methods. Figure 3b shows the loss tangents due to coupling to Er ions ($\tan \delta_{\text{ions}}$) as function of B_0 and orientation. There is a single narrow resonance, with a FWHM of 50±10 G, that varies smoothly between 740 and 870 G depending on the B_0 orientation. By fitting this angular dependence for a trigonal centre we obtain $g_{\|} = 1.02$ and $g_{\perp} = 2.95$. There is also a very broad resonance centred at 500 G and at $B_0 \parallel [001]$ (0° orientation) which shifts to 600 G at 50° B_0 orientation; we simulated the angular dependence of the six ESR centres (three trigonal, three monoclinic) previously identified Er and O implanted Si system17, see supplementary Table S1, but found no correspondence with this broad resonance. The narrow resonance had a remarkable correspondence with the trigonal OEr-2' centre identified in ref. 17 with $g_{\|} = 0.69$ and $g_{\perp} = 3.24$, which is shown in the simulation in Figure 3c. The two other resonances are also visible in this B_0 range but are significantly weaker, which explains why only one resonance is observed in the microresonator measurement. A higher B_0 range shows the positions of all three expected ESR resonances with trigonal symmetry in the simulation in Figure 3d. Only one previously identified Er centre is evident in the hybrid measurements. This could be due to preferential coupling of the trigonal centre, or the trigonal centre has a shorter T_1 than the other centres at 20 mK, which prevented saturation.

The Q factor of a resonator coupled to an ensemble of spins can be modelled as a single mode harmonic oscillator according to

$$Q_{\text{tot}} = \frac{\Delta^2 + \gamma^2}{2g_{\text{col}}^2\gamma + \kappa(\Delta^2 + \gamma^2)\omega_r}, \tag{4}$$

where Δ is the detuning from the spin resonance peak, γ is the spin linewidth, κ is the cavity linewidth $= 2\pi\omega_r/Q_{\text{tot}} = 0.56$ MHz for the 0° orientation and was independently measured away from the resonance for each B_0 orientation, Q_{tot} is the total measured cavity Q, and g_{col} is the collective coupling strength. Supplementary Figure S2 shows the fitting of Eq. 4 to the Q_{tot} for the 0° orientation which gave $g_{\text{col}}/2\pi = 1$ MHz and $\gamma/2\pi = 80$ MHz. The average for all B_0 orientations was $g_{\text{col}}/2\pi = 1.1 \pm 0.3$.
MHz and $\gamma/2\pi = 85 \pm 25$ MHz. The coupling strength of an individual spin to the SC resonator is $g_i = g_{\text{col}}/\sqrt{N}$, where N is the number of spins coupled to the resonator; using the number of Er ions above the microresonator ($\sim 3.7 \times 10^{10}$) gives $g_i \sim 6$ Hz. This compares to $g_i \sim 2$ Hz for Gd implanted Al$_2$O$_3$ \cite{33} and ~ 70 Hz for Er implanted Y$_2$SiO$_5$ crystal.\cite{14} We observed no change in ω_r as B_0 was swept through the Er spin resonance, indicating the system is operating in the weak coupling regime. The number of Er ions observed in our measurement was certainly less than N, since we only observed the trigonal centre with $g_{||} = 1.02$ and $g_{\perp} = 2.95$, which is one of six ESR and three PL centres in the Er and O coimplanted Si system.\cite{22}

Our micro-resonator measurement represents the first reported coupling of a SC resonator to a RE ensemble implanted in Si. The strong coupling regime could be attained by optimization of the annealing recipe to produce only one ESR centre and by operating at higher centre frequencies.
Figure 3 Superconducting resonator coupling. **a,** Image of the superconducting micro-resonator that was coupled to sample 3 (1017 Er cm$^{-3}$ and 1020 O cm$^{-3}$, annealing recipe c). **b,** Angular dependent micro-resonator ESR measurement of sample 3 at 20 mK. **c,** simulated angular dependent ESR spectrum using EASYSPIN numerical modelling for the trigonal OEr-2' centre identified by Carey et al. with $g_// = 0.69$ and $g_\perp = 3.24$. **d,** Simulated angular dependent ESR extended to higher B_0 to show the positions of the three expected ESR resonances with trigonal symmetry. The microwave frequency was 3.04 GHz for all micro-resonator measurements and simulations.

Discussion

A promising scheme to develop a hybrid quantum computer is to link the long coherence time of silicon-based qubits with the ability to entangle superconducting qubits, which tend to have shorter coherence times. This requires the coupling of silicon and superconducting qubits which can be achieved by the exchange of a microwave photon. These hybrid quantum circuits would exhibit long coherence times while allowing quantum state manipulation, and a quantum transducer could be developed using the ability of REs coupled to superconducting resonators to coherently convert optical photons to microwave photons using RE microwave Zeeman transitions as intermediaries.
This would have applications in networking quantum signal processors, quantum key distribution and quantum metrology.

We envisage a quantum network consisting of nodes of superconducting qubits, for quantum information processing, which are coupled to Er implanted Si for quantum information storage and transfer over the fibre optic network. Such a scheme would have major advantages over similar schemes using Er doped Y$_2$SiO$_5$ in that it could utilise IC tooling for fabrication.

For qubits based on donor impurities in Si, the coupling of donors to 29Si nuclei, as observed in the ESEEM effect, would be deleterious to qubit operations; however, the engineering challenges for donor and RE qubits are rather different. The wavefunction of the excited Rydberg states of the P impurity in Si can extend several nm beyond the atomic radius, making the control of the quantum state of other atoms a possibility. However, in REs the wavefunction of the f-orbital is strongly confined, giving an intrinsic barrier to decoherence, but making control of the states of surrounding atoms significantly more difficult. The superhyperfine interaction is an efficient method of accessing nuclear spins; in Er$^{3+}$:Y$_2$SiO$_5$ the superhyperfine interaction between Er$^{3+}$ and an 89Y ion in its first coordination sphere was used to optically address the 89Y nuclear spin. The strong superhyperfine interaction between the OEr-1’ centre and 29Si which extends at least beyond the first coordination sphere could be used for the optical addressing of 29Si nuclear spins through the Er telecommunications transition.

Conclusions

Er implanted Si is shown to be promising platform for the development of QTs and is potentially highly scalable since it can utilise the silicon and ion implantation technology used in the IC industry. Er implanted Si can also exploit the atomic scale barrier to decoherence that is intrinsic to REs, and the recently developed ultra-low spin environment of isopically purified 28Si. Whereas the Er component itself is compatible with telecommunications wavelength photons and could be utilised for quantum communications schemes. We report the first coherence measurement of implanted Er in the form of a spin coherence time of ~ 10 μs at 5 K for 3×10^{17} cm$^{-3}$ Er, which is similar to $\sim 10^{16}$ cm$^{-3}$ Er doped CaWO$_4$ at 5 K, but with 30× higher Er concentration. The origin of this echo is an Er centre
surrounded by six O atoms with monoclinic site symmetry. The spin echo decay profile had superimposed modulations due strong superhyperfine coupling with 29Si nuclei extending at least beyond the first coordination sphere. This coupling could be exploited for the telecommunication wavelength addressing of 29Si nuclear spins.

We observed the first coupling between a superconducting resonator and Er implanted Si with $g_{\text{col}} \sim 1\text{MHz}$ and $g_i \sim 6\text{ Hz}$, which provides a basis for future networks of hybrid quantum processors that exchange quantum information over the telecommunication network. Out of six known Er-related ESR centres, only one trigonal centre coupled to the SC resonator at 20 mK.

Methods

Sample preparation

Sample 1, with 10^{19} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O, was prepared by implanting Er with a total areal dose of 2.6×10^{15} cm$^{-2}$ and O with a total areal dose of 1.3×10^{16} cm$^{-2}$ at 77 K into one face of $<100>$ 5000-9999 Ωcm 500 µm thick Si wafer supplied by Topsil, then annealing with recipe a, which consisted of a 450°C for 30 min anneal to smooth the crystalline-amorphous interface, a 620°C for 180 min anneal to recrystallize the amorphised region and a 850°C for 30 s anneal was to activate the Er. It was found that annealing at 850°C significantly increased the ESR signal strength.22 Sample 2, with 3×10^{17} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O, and sample 3, with 10^{17} cm$^{-3}$ Er and 10^{20} cm$^{-3}$ O, were prepared by implanting at room temperature into both faces of $<100>$ 5000-9999 Ωcm 50 µm thick Si wafer supplied by Si-Mat. Samples 2 and 3 were annealed with recipe b (750°C for 2 min) and recipe c (600°C for 167 min, then 850°C for 30 s), respectively. For all samples, O and Er were implanted at a range of energies to give a flat concentration profile down to a depth of around 1.5 µm, see supplementary Figure S3. Isotope specific implantation was used so that only the zero nuclear spin 166Er was implanted.

ESR and spin echo measurements

CW and pulsed ESR measurements were performed in a Brucker E580 ESR spectrometer. All ESR measurements were recorded with the magnetic field, B_0, parallel to the [001] direction of the Er
implanted Si sample with an uncertainty of ±5°. When using Er concentrations ≤ 10^{18} \text{ cm}^{-3} and recipe \textit{a}, no spin echo could be observed. We then tried two different recrystallization strategies: shorter time, higher temperature and longer time, lower temperature. These were 750°C for 2 min (recipe \textit{b}) and 550°C for 335 min (recipe \textit{d}), with no activation anneal; recipe \textit{d} resulted in no measurable ESR resonances. However, recipe \textit{b} resulted in strong, narrow ESR resonance lines, and a measurable echo signal. With samples 1 and 2, the Q factor of the ESR resonator was ~600 and ~9000, respectively, due to metallic doping at the high Er concentrations in sample 1. For pulsed measurements the Q factor was detuned to ~100 for both samples.

Superconducting resonator coupling

Superconducting resonator coupling measurements were performed in a dilution refrigerator, fitted with a vector magnet, at 20 mK. A superconducting lumped element micro-resonator was fabricated by sputtering 200 nm of NbN, patterned by standard e-beam lithography, onto an R-cut sapphire substrate. Sample 3 was placed face down on the microresonator. The microresonator was placed in a magnetic field that was stepped from zero to 93 mT. At each magnetic field the microwave transmission coefficient, S_{21}, was measured using a vector network analyser (VNA). This was repeated for magnetic field orientations between 0° and 160° in steps of 5°, with 0° corresponding to B_0 parallel to the face of the resonator and sample. The magnetic field was rotated around the [110] crystal axis of the sample. Numerical fitting of the S_{21} response of the microresonator was used to extract the total measured loss tangent $\tan\delta_{\text{tot}} = 1/Q_{\text{tot}}$, where Q_{tot} is the total measured Q factor. $\tan\delta_{\text{tot}}$ = $\tan\delta_c + \tan\delta_{\text{d}} + \tan\delta_B + \tan\delta_{\text{ions}}$, which are the loss tangents due to coupling to the transmission line, dielectric losses, the external magnetic field and the Er ions, respectively. Numerical fitting was then used to extract $\tan\delta_{\text{ions}}$.
References

1. Zhong M, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. *Nature* **517**, 177-180 (2015).

2. Böttger T, Thiel CW, Cone RL, Sun Y. Effects of magnetic field orientation on optical decoherence in Er$^{3+}$:Y$_2$SiO$_5$. *Phys Rev B* **79**, 115104 (2009).

3. Bartolomé J, Luis F, Fernández JF. *Molecular Magnets: Physics and Applications pg 47*. Springer (2013).

4. Ghosh S, Rosenbaum T, Aeppli G, Coppersmith S. Entangled quantum state of magnetic dipoles. *Nature* **425**, 48 (2003).

5. Duarte O, Castro C, Soares-Pinto D, Reis M. Witnessing spin-orbit thermal entanglement in rare-earth ions. *Europhysics Letters* **103**, 40002 (2013).

6. Saeedi K, et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. *Science* **342**, 830-833 (2013).

7. Hughes MA, Lourenço MA, Carey JD, Murdin B, Homewood KP. Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies. *Opt Express* **22**, 29292–29303 (2014).

8. Yin CM, et al. Optical addressing of an individual erbium ion in silicon. *Nature* **497**, 91 (2013).

9. Raha M, Chen S, Phenicie CM, Ourari S, Dibos AM, Thompson JD. Optical quantum nondemolition measurement of a single rare earth ion qubit. *Nat Commun* **11**, 1605 (2020).

10. Morton JJ, et al. Solid-state quantum memory using the 31P nuclear spin. *Nature* **455**, 1085 (2008).

11. Ladd TD, Goldman J, Yamaguchi F, Yamamoto Y, Abe E, Itoh KM. All-silicon quantum computer. *Phys Rev Lett* **89**, 017901 (2002).

12. Savage N. Quantum computers compete for “supremacy”. *Scientific American* **27**, 108-111 (2018).

13. Julsgaard B, Grezes C, Bertet P, Mølmer K. Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble. *Phys Rev Lett* **110**, 250503 (2013).
14. Probst S, et al. Hybrid quantum circuit with implanted erbium ions. *Appl Phys Lett* **105**, 162404 (2014).

15. Wesenberg JH, Mølmer K, Rippe L, Kröll S. Scalable designs for quantum computing with rare-earth-ion-doped crystals. *Phys Rev A* **75**, 012304 (2007).

16. Kenyon AJ. Erbium in silicon. *Semicond Sci Technol* **20**, R65 (2005).

17. Carey JD, Barklie RC, Donegan JF, Priolo F, Franzò G, Coffa S. Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si. *Phys Rev B* **59**, 2773-2782 (1999).

18. Przybylinska H, et al. Optically active erbium centers in silicon. *Phys Rev B* **54**, 2532-2547 (1996).

19. Carey JD, Donegan JF, Barklie RC, Priolo F, Franzò G, Coffa S. Electron paramagnetic resonance of erbium doped silicon. *Appl Phys Lett* **69**, 3854-3856 (1996).

20. Carey JD, Barklie RC, Donegan JF, Priolo F, Franzò G, Coffa S. EPR study of erbium-impurity complexes in silicon. *J Lumines* **80**, 297-301 (1998).

21. Carey JD. Structure of multi-oxygen-related defects in erbium-implanted silicon. *J Phys-Condes Matter* **14**, 8537 (2002).

22. Hughes MA, Li H, Theodoropoulou N, Carey JD. Optically modulated magnetic resonance of erbium implanted silicon. *Sci Rep* **9**, 19031 (2019).

23. Mims WB. Phase Memory in Electron Spin Echoes, Lattice Relaxation Effects in CaWO₄ :Er, Ce, Mn. *PhysRev* **168**, 370-389 (1968).

24. Rowan LG, Hahn EL, Mims WB. Electron-Spin-Echo Envelope Modulation. *PhysRev* **137**, A61-A71 (1965).

25. Bertaina S, et al. Rare-earth solid-state qubits. *Nat Nanotechnol* **2**, 39-42 (2007).

26. Guillot-Noël O, et al. Direct observation of rare-earth-host interactions in Er:Y₂SiO₅. *Phys Rev B* **76**, 180408 (2007).

27. Car B, Veissier L, Louchet-Chauvet A, Le Gouët J-L, Chanelière T. Selective optical addressing of nuclear spins through superhyperfine interaction in rare-earth doped solids. *Phys Rev Lett* **120**, 197401 (2018).
28. Abe E, et al. Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei. *Phys Rev B* **82**, 121201 (2010).

29. Abe E, Itoh KM, Isoya J, Yamasaki S. Electron-spin phase relaxation of phosphorus donors in nuclear-spin-enriched silicon. *Phys Rev B* **70**, 033204 (2004).

30. Belli M, Fanciulli M, Abrosimov N. Pulse electron spin resonance investigation of bismuth-doped silicon: Relaxation and electron spin echo envelope modulation. *Phys Rev B* **83**, 235204 (2011).

31. Tyryshkin AM, et al. Electron spin coherence exceeding seconds in high-purity silicon. *Nat Mater* **11**, 143-147 (2012).

32. Thiel CW, Sinclair N, Tittel W, Cone RL. Optical decoherence studies of Tm³⁺:Y₃Ga₅O₁₂. *Phys Rev B* **90**, 214301 (2014).

33. Wisby I, et al. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator. *Appl Phys Lett* **105**, 102601 (2014).

34. Morton JYL, McCamey DR, Eriksson MA, Lyon SA. Embracing the quantum limit in silicon computing. *Nature* **479**, 345-353 (2011).

35. O’Brien C, Lauk N, Blum S, Morigi G, Fleischhauer M. Interfacing Superconducting Qubits and Telecom Photons via a Rare-Earth-Doped Crystal. *Phys Rev Lett* **113**, 063603 (2014).

36. Witzel W, Hu X, Sarma SD. Decoherence induced by anisotropic hyperfine interaction in Si spin qubits. *Phys Rev B* **76**, 035212 (2007).

37. Greenland P, et al. Coherent control of Rydberg states in silicon. *Nature* **465**, 1057 (2010).
Acknowledgements

This work was supported by the UK EPSRC grants EP/R011885/1 and EP/H026622/1. We acknowledge the European Research Council for financial support under the FP7 for the award of the ERC Advanced Investigator Grant SILAMPS 226470. We would like to thank Prof John Morton for helpful discussions.

Author Contributions

The concept was developed by MAH. Experimental work was performed by M.A.H., N. A. P., M. U. and I. W. with input from J. D. C. and T. L. The manuscript was written by M.A.H. with editorial input from J. D.C, K. P. H. and B. M. All authors contributed to analyzing the results and commented on the paper.

Data availability

The datasets generated during the current study are available in the Mendely Data repository http://dx.doi.org/10.17632/s73x8nb8dn.1

Additional information: Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interest