Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash

Guorui Liua, Jiayu Zhanb, Yuyang Zhaoa, Li Li a, Xiaoxu Jianga, Jianjie Fu a, Chunping Lib, Minghui Zhenga, c, *

a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
b State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
c Institute of Environment and Health, Jianghan University, Wuhan 430056, China

HIGHLIGHTS

- Major process stages of PCN formation in the cement kilns were identified.
- Lower chlorinated naphthalenes were the dominant homologs formed in cement kilns.
- Chlorination was suggested to be an important formation mechanism of PCNs.
- Mass balance indicated 50% reduction of PCNs from input to output in cement kilns.

ARTICLE INFO

Article history:
Received 20 January 2016
Received in revised form 29 March 2016
Accepted 19 April 2016

Handling Editor: Caroline Gaus

Keywords:
Cement kiln
Persistent organic pollutants
Polychlorinated naphthalenes
Stockholm Convention
Municipal solid waste fly ash

ABSTRACT

Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m⁻³. The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g⁻¹. Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Polychlorinated naphthalenes (PCNs) are persistent organic pollutants (POPs) that are toxic and have adverse effects on biota and human health (Venny et al., 2012). PCNs are ubiquitous in various environmental matrices worldwide (Kannan et al., 2000a,
The much more important sources of PCNs than before. The con-
Yamashita et al., 2000; Noma et al., 2004; Falandysz et al., 2008; Liu
been presented and summarized (Falandysz, 1998; Ba et al., 2010;
waste incineration and metallurgical processes, have previously
duced during a range of industrial thermal processes, including
congeners pro
ed. It is important for further investigations to
y ash. The aim was to characterize the PCN
samples from the stack were collected using an automatic iso-
ber thimble connected to a gas pump. Each sample was
filter box equipped with a silica glass microfiber
thimble (25 mm i.d., 90 mm length; Whatman International Ltd.,
whatman, UK), a water-cooled Amberlite XAD-2 adsorbent trap
(Supleco International Ltd., Varina, USA), an Isotack Basic (TCR
Tecora, Italy) pump and an Isofrost cooler (TCR Tecora, Italy). There
suitable field sampling platform and sampling hole with
proper size for other locations of the cement kiln lines. Thus, col-
lections of gas samples from other sampling locations using the
automatic isokinetic sampling equipment were not performed.
Particulate samples were collected from various process sites in
the kilns to allow the major PCN formation sites to be identified and
to determine the PCN distributions. Samples of the particulates
produced at each sampling point were collected after the cement
kilns had been operating continuously and stably for more than
48 h. Stable operation of the kilns for 48 h allowed sufficient par-
ticulate to be produced at each sampling point for samples to be
taken. Each particulate sample was therefore a good representative
of the particulate produced in each part of the cement-making
process. The particulate samples from clinker and raw mill were
collected by using stainless steel spoon. The particulate samples
from C1 outlet and other sites were captured by the quartz mi-
crofiber thimble connected to a gas pump. Each sample was
wrapped tightly in aluminum foil to minimize contamination and
patterns were determined, and the main stages in which PCNs were
unintentionally formed in the cement kiln systems were identified.
This information will help in the development of techniques to
decrease PCN emissions. Possible PCN formation mechanisms in
cement kilns were identified from the PCN congener profiles that
were found, and thermodynamic parameters and charge densities
for the PCNs formed were calculated. This information will help in
the development of techniques to prevent PCNs being formed and
emitted from cement kilns.

2. Materials and methods

2.1. Cement kilns and sample collection

Samples were collected from a cement plant with two cement
kilns. The two cement kilns that were used in this pilot study were
both advanced dry-process rotary kilns. More than 95% of the
cement produced in China is made using this technique, so the kilns
that were studied were representative of the main current cement-
making techniques. The scheme of the cement kilns are presented
in Fig. 1, and were described in detail in a previous publication (Liu
et al., 2015b). The daily clinker outputs of cement lines 1 and 2 were
about 2000 and 2500 t, respectively. The line 1 cement kiln had
been continuously used to co-process MSWI fly ash for about 300
days, at a typical rate of 20 t d⁻¹ (about 1% of the amount of cement
clinker produced). Memory effects from the long-term treatment of
MSWI fly ash on PCN formation and distributions were attempted
to be identified by also studying the line 2 cement kiln, in which
MSWI fly ash had not previously been used. The MSWI fly ash was
washed three times with water before being co-combusted in the
kilns to decrease the chloride, sodium, and potassium contents.
High chloride, sodium, and potassium contents in the feedstock
could cause the cement kiln equipment to deteriorate and nega-
tively affect the cement quality. Washing with water decreased the
chloride content of the ash from 9–26% to <1% and the sodium and
potassium contents from 8% to <3% (Liu et al., 2015b).

Stack gas samples were collected using an automatic isokinetic
sampling method that has been described in detail in previous
publications (Ba et al., 2010; Liu et al., 2010; Lv et al., 2011). The gas
samples from the stack were collected using an automatic iso-
kinetic sampling system. The sampling point was set downstream
of air pollution control devices. Briefly, the sampling train consisted
of a heated probe, a filter box equipped with a silica glass microfiber
thimble (25 mm i.d., 90 mm length; Whatman International Ltd.,
Whatman, UK), a water-cooled Amberlite XAD-2 adsorbent trap
(Supleco International Ltd., Varina, USA), an Isotack Basic (TCR
Tecora, Italy) pump and an Isofrost cooler (TCR Tecora, Italy). There
is no suitable field sampling platform and sampling hole with
proper size for other locations of the cement kiln lines. Thus, col-
lections of gas samples from other sampling locations using the
automatic isokinetic sampling equipment were not performed.

Particulate samples were collected from various process sites in
the kilns to allow the major PCN formation sites to be identified and
to determine the PCN distributions. Samples of the particulates
produced at each sampling point were collected after the cement
kilns had been operating continuously and stably for more than
48 h. Stable operation of the kilns for 48 h allowed sufficient par-
ticulate to be produced at each sampling point for samples to be
taken. Each particulate sample was therefore a good representative
of the particulate produced in each part of the cement-making
process. The particulate samples from clinker and raw mill were
collected by using stainless steel spoon. The particulate samples
from C1 outlet and other sites were captured by the quartz mi-
crofiber thimble connected to a gas pump. Each sample was
wrapped tightly in aluminum foil to minimize contamination and

2000b; Domingo, 2004; Harner et al., 2006). The United Nations
Economic Commission for Europe (UN-ECE) initiatives on POPs
began in 1992 with the establishment of a Task Force on POPs under
the framework of the Convention on Long-Range Transboundary
Air Pollution (UN-ECE POP Protocol, 1998; Lerche et al., 2002). It has
been suggested that PCNs should be classed as POPs in the UN-ECE
POP Protocol (Lerche et al., 2002). Stockholm Convention on POPs is
an international environmental treaty, signed in 2001 and effective
from May 2004, with the aims to eliminate POPs. PCNs were
recently added to Annexes A and C of the Stockholm Convention, so
the intentional production of PCNs is forbidden and unintentional
emissions of PCNs during various industrial processes must be
controlled and regulated in the 179 signatory countries or regions
(UNEP, 2015).

Major sources of PCNs to the environment are PCN technical
products, polychlorinated biphenyls (PCBs) technical mixtures
containing PCNs as impurities, and industrial thermal processes
that release unintentionally produced PCNs (Falandysz et al., 2000;
Yamashita et al., 2000; Noma et al., 2004; Falandysz et al., 2008; Liu
et al., 2012; Weidemann and Lundin, 2015). Since 1980s, the tech-
nical mixtures of PCNs are no longer produced in most countries,
unintentional releases from industrial thermal processes become
the much more important sources of PCNs than before. The con-
centrations, emission profiles, and emission factors of PCNs pro-
duced during a range of industrial thermal processes, including
waste incineration and metallurgical processes, have previously
been presented and summarized (Falandysz, 1998; Ba et al., 2010;
Liu et al., 2010, 2014a, 2015a). Waste incineration is an important
source of PCNs because solid waste is often incompletely com-
busted (Abad et al., 1999; Sakai et al., 2006; Jansson et al., 2008;
Jansson and Andersson, 2012). Fly ash produced in waste in-
cinerators is an important source of PCNs. PCN concentrations of up
to 470, 370, and 1400 ng g⁻¹ have been found in fly ash from waste
incinerators under start-up, steady operation, and shutdown con-
ditions, respectively (Takasuga et al., 2004). Fly ash from waste
incinerators can, therefore, contain high PCN concentrations.
Fly ash produced in waste incinerators is classed as a hazardous
material because it contains toxic inorganic and organic pollutants
(McKay, 2002; Weidemann and Lundin, 2015). Fly ash should there-
fore be treated before being disposed of. The amount of municipal
solid waste incinerator (MSWI) fly ash produced in China
increased from between 431,000 and 718,000 t in 2007 to between
1,390,000 and 2,317,000 t in 2013 (Liu et al., 2015b). It is therefore
challenging to dispose of the fly ash produced in waste incinerators
in China. Cement kilns can be used to destroy solid waste because
they operate at high temperatures (normally around 1200 °C). The
amounts and distributions of polychlorinated dibenzo-p-dioxins
and polychlorinated dibenzofurans (PCDDs and PCDFs, together
called PCDD/Fs) emitted by cement kilns co-processing contami-
nated soil or refuse-derived fuel have been studied (Conesa et al.,
2011; Yang et al., 2012). We previously studied PCDD/F formation
in cement kilns co-processing MSWI fly ash (Liu et al., 2015b).
However, the distributions within kiln systems, homolog and
congener profiles, and formation mechanisms of dioxin-like com-
pounds, such as PCNs, in cement kilns co-processing MSWI fly ash
have not been clarified. It is important for further investigations
to be performed so that emissions of dioxin-like compounds during
the destruction of MSWI fly ash in cement kilns can be controlled.
We performed a pilot study in the field using two cement kilns
co-processing MSWI fly ash. The aim was to characterize the PCN
distributions and homolog and congener profiles in cement kiln
systems. Stack gas and particulate samples from different stages
of the cement production process were analyzed by isotope dilution
high resolution gas chromatography combined with high resolu-
tion mass spectrometry (HRGC/HRMS). The PCN distribution
patterns were determined, and the main stages in which PCNs were
unintentionally formed in the cement kiln systems were identified.
This information will help in the development of techniques to
decrease PCN emissions. Possible PCN formation mechanisms in
cement kilns were identified from the PCN congener profiles that
were found, and thermodynamic parameters and charge densities
for the PCNs formed were calculated. This information will help in
the development of techniques to prevent PCNs being formed and
emitted from cement kilns.
losses. After the sampling work was complete, the samples were stored in a refrigerator until they were analyzed. Sample information and the labels used are shown in Fig. 1.

2.2. Sample extraction, cleanup, and instrumental analysis

The PCN concentrations in the samples were determined by isotope dilution HRGC/HRMS. The sample extraction, cleanup, and instrumental analysis procedures have been described in detail previously (Liu et al., 2009, 2010, 2012, 2013a, 2013b). Briefly, each sample was spiked with known amounts of $^{13}$C$_{10}$-labeled PCN internal standards (ECN-5102; Cambridge Isotope Laboratories). The sample was then Soxhlet extracted for about 24 h, then the extract was concentrated under decreased pressure. The extract was then passed through silica gel treated with 44% (mass fraction) sulfuric acid, a multilayer silica gel column, and a basic alumina column. The cleaned extract was then evaporated to about 20 μL at a decreased pressure and then under a gentle stream of nitrogen. $^{13}$C$_{10}$-1,2,3,4,5,7-hexachloronaphthalene (ECN-5260; Cambridge Isotope Laboratories), also an injection standard, were then added to allow the internal standard recoveries to be determined.

The PCNs in the extract were determined using a HRGC/HRMS instrument, using the $M^+$ or $(M+2)^+$ ions or the most abundant ions in the molecular ion cluster. A DB-5ms fused-silica column (60 m long, 0.25 mm i.d., 0.25 μm film thickness; Agilent Technologies, Santa Clara, CA, USA) was used to separate the analytes. The HRMS was operated at a resolution of around 10,000 in selected ion monitoring mode.

The chloride contents of the particulate samples were determined following the Chinese standard method for the chemical analysis of cement (GB/T 176-2008) as described in our previous study (Liu et al., 2015b).

2.3. Quality assurance and quality control

The analysis of all 75 PCN congeners at trace concentrations in complex matrix is challenging. In this study, all of the 75 congeners were quantified. Within them 37 congeners were completely resolved. However, there are still 38 congeners were co-eluted in spite of the advance technique of HRGC/HRMS was adopted. Analyte peaks were identified by comparing their retention times with the retention times of individual analyte standards (taking the elution order of the analytes from a DB-5 column into consideration) and from the target/qualifier ion ratios. A peak was quantified if the target/qualifier ion ratio was within 15% of the theoretical value. The accuracy of the quantification by the isotope-dilution method could be achieved by calibrating the loss of the target compounds by the isotope-labeled compounds. The $^{13}$C$_{10}$-labeled PCN internal standard recoveries, determined using the labeled injection standards were 35–130%. The PCN congener detection limits were 0.03–5.3 pg g$^{-1}$ for particulate samples and 0.08–5.2 pg m$^{-3}$ for stack gas samples. Laboratory blanks were analyzed with each batch of samples (six samples for one batch). One field blank sample was also analyzed. A few congeners, including the PCN congeners CN-1 and CN-2 were found in the blanks at concentrations higher than their limits of detection but at less than 5% of the amounts found in the samples. The concentrations of the other congeners in the blanks were lower than the limits of detection. The PCN concentrations in the samples were therefore not corrected for the concentrations in the blanks. The cost of PCN analysis by isotope-diluted HRGC/HRMS method is high. In order to save the analytical cost, triplicate analysis for one particulate sample were performed to assess the variations of PCN analysis. The relative standard deviations (RSDs) for the PCN concentrations ranged from 5% to 25% (16% for MoCN, 21% for DiCN, 23% for TrCN, 14% for TeCN, 5% for PeCN, 7% for HxCN, 9% for HpCN and 25% for OCN). These parameters met the requirements for the trace analysis of POPs in complex matrices by isotope dilution HRGC/HRMS.
2.4. Calculation of thermodynamic parameters and charge densities of PCN congeners

Molecular geometries were optimized using the density functional theory method MPWB1K/6-31 + G(d,p) (Hehre et al., 1972; Kohn, 1995; Zhao and Truhlar, 2004), and vibrational frequencies were calculated to check that each geometry gave the potential energy surface minimum. MPWB1K is one of the hybrid density functionals, and has been successfully used to study the thermodynamics and kinetics for the formation and degradation of chlorinated polycyclic aromatic hydrocarbons (Zhang et al., 2014; Dang et al., 2015; Shi et al., 2015; Xu et al., 2015). Isodesmic reactions were designed to allow the relative thermal energies ($\Delta E$, standard enthalpies of formation), and standard free energies of formation ($\Delta G$) of the PCN congeners used in our study to be calculated (Frisch et al., 2010; Yang et al., 2010). $\Delta E$, $\Delta H$, and $\Delta G$ were calculated with the following equations, and the formation energies of PCN congeners are researched:

\[ \Delta E = E(c) + n E(d) - E(a) - n E(b) \]
\[ \Delta H = H(c) + n H(d) - H(a) - n H(b) \]
\[ \Delta G = G(c) + n G(d) - G(a) - n G(b) \]

All the theoretical calculations were carried out with the software package Gaussian 09 (Frisch et al., 2010).

The $\Delta E$ values for the chlorination processes were calculated at the MPWB1K/6-311 + G(3df,2p)//MPWB1K/6-31 + G(d,p) level with zero-point vibrational energy correction, and the values were corrected using a factor of 0.9335 to eliminate known systematic errors in the calculated frequencies. The relative energies were calculated for the isodesmic reactions. The absolute enthalpies ($H$) and Gibbs free energies ($G$) used to calculate $\Delta H$ and $\Delta G$ were obtained directly from density functional theory calculations. The charge densities of the carbon atoms in the PCN molecules were calculated using Natural Bond Orbital (version 3.1) software, using established methods (Glendening et al.; Foster and Weinhold, 1980; Reed and Weinhold, 1983; Reed et al., 1985, 1988).

3. Results and discussion

3.1. Concentrations and profiles of PCNs in cement kiln stack gases

Quantifying PCN emissions in stack gases could help in the evaluation of the influences of PCNs on the environment surrounding a cement kiln. The PCN concentrations in the stack gas samples were 436–1054 ng m$^{-3}$ (mean 710 ng m$^{-3}$, RSD 44.4%). The standard deviations of total PCN concentrations of three stack gas samples were 44.4%. However, for several specific congeners, such as CN-59 and CN-75, the standard deviations were large. The concentrations of the PCN congeners in the stack gas samples are shown in detail in Table S2 in the Supplementary data. The PCN TEQs were also calculated using previously reported PCN toxic equivalency factors (TEFs) (Van den Berg et al., 1998; Blankenship et al., 2000; Villeneuve et al., 2000; Noma et al., 2004; Falandysz et al., 2013). The PCN TEQs were 8.15–17.83 pg TEQ m$^{-3}$ (mean 12.33 pg TEQ m$^{-3}$, RSD 40.3%). We found a mean PCDD/F concentration of 44.1 pg TEQ m$^{-3}$ (range 31.5–55.6 pg TEQ m$^{-3}$, RSD 27.4%) in stack gas samples in a previous study (Liu et al., 2015b). Therefore, the TEQ concentrations show the levels of PCN were lower than those of PCDD/Fs.

Emission patterns of unintentionally produced POPs to the atmosphere for specific industrial sources are useful when attempting to identify the specific sources of those POPs to the environment (Meijer et al., 2001; Schuhmacher et al., 2004). The PCN patterns in the stack gases in the cement kilns co-processing MSWI fly ash are shown in Fig. S1, in Supplementary data. Mono-chlorinated naphthalene (MoCN) was the dominant homolog, followed by di-chlorinated naphthalene (DiCN) and tri-chlorinated naphthalene (TrCN). The CN-1 and CN-2 congeners were dominant for the PCNs. For the various homologs, the following congeners were dominant: CN-11/8 for DiCN; CN-24/14 for TrCN; CN-33/34/37 and CN-27/30 for tetra-chlorinated (TeCN); CN-52/60, CN-51 and CN-54 for penta-chlorinated (PeCN); CN-66/67 for hexa-chlorinated (HxCN); and CN-73 for hepta-chlorinated (HpCN).

The PCN congener profiles were distinctly different from the profiles in technical PCN mixtures and the profiles of waste incineration sources. We compared the PCN congener patterns found in the stack gases analyzed in this study with those from previous studies and in technical PCN mixtures (Noma et al., 2004; Takasuga et al., 2004). CN-2 was the dominant MoCN congener in the stack gases analyzed in this study, but CN-1 was dominant in Halowax mixtures and CN-1 and CN-2 were found at similar concentrations in MSWI fly gases. CN-5/7 and CN-11/8 were the dominant DiCN congeners in this study, but CN-4 was dominant in MSWI fly gases and CN-5/7 were dominant in Halowax mixtures. CN-24/14 were the dominant TriCN congeners in this study, and in Halowax mixtures, CN-13/22 were dominant in MSWI fly gases. CN-27/30 and CN-33/34/37 were the dominant TetraCN congeners in this study, but CN-36/45 were dominant in MSWI fly gases, and CN-38/40 and CN-33/34/37 were dominant in Halowax mixtures. CN-51, CN-52/60, and CN-54 were the dominant PeCN congeners in this study, but CN-59 was dominant in Halowax mixtures and CN-52/60 were dominant in MSWI fly gases. CN-66/67 were the dominant HxCN congeners in this study and in MSWI fly gases, but CN-71/72 were dominant in Halowax mixtures. CN-73 was the dominant HpCN congener in this study and in MSWI fly gases, but CN-74 was dominant in Halowax mixtures. The PCN patterns in the cement kiln stack gases might be useful for apportioning the sources of unintentionally formed POPs found in the environment, including in biota.

3.2. Distributions and homolog patterns of PCNs in particulate samples from different parts of the cement kilns

Particles (e.g., fly ash) are widely considered to play important roles in the catalysis of the heterogeneous reactions that dominate the formation pathways of unintentionally produced POPs during thermal processes (Tuppurainen et al., 2003; Liu et al., 2013a; Jiang et al., 2015). PCN concentrations in particulates produced during different stages of the cement production process could be used to identify the major sites in which PCNs are formed in cement kilns and industrial sources of those POPs to the atmosphere for speciﬁc industrial sources are useful when attempting to identify the specific sources of those POPs to the environment (Meijer et al., 2001; Schuhmacher et al., 2004). The PCN patterns in the stack gases in the cement kilns co-processing MSWI fly ash are shown in Fig. S1, in Supplementary data. Mono-chlorinated naphthalene (MoCN) was the dominant homolog, followed by di-chlorinated naphthalene (DiCN) and tri-chlorinated naphthalene (TrCN). The CN-1 and CN-2 congeners were dominant for the PCNs. For the various homologs, the following congeners were dominant: CN-11/8 for DiCN; CN-24/14 for TrCN; CN-33/34/37 and CN-27/30 for tetra-chlorinated (TeCN); CN-52/60, CN-51 and CN-54 for penta-chlorinated (PeCN); CN-66/67 for hexa-chlorinated (HxCN); and CN-73 for hepta-chlorinated (HpCN).

The PCN congener profiles were distinctly different from the profiles in technical PCN mixtures and the profiles of waste incineration sources. We compared the PCN congener patterns found in the stack gases analyzed in this study with those from previous studies and in technical PCN mixtures (Noma et al., 2004; Takasuga et al., 2004). CN-2 was the dominant MoCN congener in the stack gases analyzed in this study, but CN-1 was dominant in Halowax mixtures and CN-1 and CN-2 were found at similar concentrations in MSWI fly gases. CN-5/7 and CN-11/8 were the dominant DiCN congeners in this study, but CN-4 was dominant in MSWI fly gases and CN-5/7 were dominant in Halowax mixtures. CN-24/14 were the dominant TriCN congeners in this study, and in Halowax mixtures, CN-13/22 were dominant in MSWI fly gases. CN-27/30 and CN-33/34/37 were the dominant TetraCN congeners in this study, but CN-36/45 were dominant in MSWI fly gases, and CN-38/40 and CN-33/34/37 were dominant in Halowax mixtures. CN-51, CN-52/60, and CN-54 were the dominant PeCN congeners in this study, but CN-59 was dominant in Halowax mixtures and CN-52/60 were dominant in MSWI fly gases. CN-66/67 were the dominant HxCN congeners in this study and in MSWI fly gases, but CN-71/72 were dominant in Halowax mixtures. CN-73 was the dominant HpCN congener in this study and in MSWI fly gases, but CN-74 was dominant in Halowax mixtures. The PCN patterns in the cement kiln stack gases might be useful for apportioning the sources of unintentionally formed POPs found in the environment, including in biota.
the other parts of the kilns. The PCN concentrations were higher in the particulate samples from the suspension pre-heater boiler, humidifier tower, and bag filter at the kiln back-end (i.e., at sampling points Ck-p2, Ck-p3, and Ck-p5) than in the samples from the other parts of the kilns, which indicating that suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter might be the dominant formation sites of PCNs in the cement kiln system. The temperature is an important factor in the formation and emission of unintentionally produced POPs. The temperatures of the different parts of cement kiln 1 are shown in Fig. 1. The temperatures in the cyclone preheater outlet (C1 in Fig. 1) and the suspension pre-heater boiler (SP in Fig. 1) ranged from 233 to 396 °C. This is widely recognized as being a suitable temperature range for the formation of unintentionally produced POPs, including PCNs and PCDD/Fs. The temperatures in these parts of cement kilns could be important factors in the formation of PCNs. This information will help in the development of techniques for controlling the formation and emission of PCNs in the key parts of cement kilns co-processing of MSWI fly ash. The PCN distributions throughout the cement process line found in this study were similar to PCDD/F distributions that we previously found in cement kilns (Liu et al., 2015b). Therefore, it is indicated that it is possible to achieve the simultaneous control of those pollutants because the major formation stages of those pollutants throughout the cement kiln process line were same.

The homolog pattern of a class of organic compounds with similar molecular structures normally reflects the underlying formation mechanism for that class of compounds (Weber and Hagenmaier, 1999; Weber and Sakurai, 2001). The PCNs were dominated by the MoCNs, followed by the DiCNs and TriCNs. The less chlorinated homologs were dominant in the particulate samples collected from most parts of the kilns. The PCN homolog patterns in the different particulate samples were similar, with the contribution to the total concentration decreasing as the chlorination level increased.

It has previously been found that memory effects can promote the formation and emission of POPs during industrial thermal processes (Weber et al., 2002; Cunliffe and Williams, 2009). PCN concentrations in different parts of the line 2 cement kiln, which had not previously been used to co-combust MSWI fly ash, were determined so that any effects of the long-term thermal treatment of MSWI fly ash on the formation of PCNs in the line 1 cement kiln could be identified. The line 1 and line 2 kilns were both dry-process rotary kilns, and were very similar in operational conditions. The same batch of MSWI fly ash produced by a single waste incinerator was used in the line 1 and line 2 kilns. The PCN concentrations in the samples from the different parts of the line 1 and line 2 kilns are shown in Fig. S2 (Supplementary data). The PCN mass concentrations and TEQs were higher in the line 1 kiln samples than in the line 2 kiln samples. The differences between the concentrations in the samples from the line 1 and line 2 kilns were higher for the samples from sites Ck-p2, Ck-p3, and Ck-p5 than for the samples from the other sampling sites. This further showed that PCNs were predominantly formed at sampling sites Ck-p2, Ck-p3, and Ck-p5 in the kilns. Periodically cleaning solid residues from these areas could therefore decrease the amounts of POPs that will be unintentionally formed.

3.3. Mass balance calculation of PCNs from input to output

A mass balance would help understand PCN inputs, outputs, and net emissions from a cement kiln co-processing MSWI fly ash (Liu et al., 2015b). We calculated mass balances based on the PCN concentrations in the feedstocks, stack gases, and clinker, and using the parameters for the cement production activities. The raw meal and coal powder feed rates were 176.9 t h\(^{-1}\) and 15.6 t h\(^{-1}\), respectively. The clinker output rate was about 120.3 t h\(^{-1}\). The mean stack gas flow rate was 23 3599 m\(^3\) h\(^{-1}\) (Liu et al., 2015b). The PCN concentrations were 603 pg g\(^{-1}\) in the raw meal and 324 pg g\(^{-1}\) in the coal powder. The hot air produced in the cyclone preheater outlet was cooled to about 200 °C and then introduced to the coal mill to dry the coal powder. The cyclone preheater outlet in each kiln was found to be an important site for the formation of PCNs. Introducing air from the cyclone preheater outlet to the coal mill could, therefore, increase the PCN contents of the coal powder used as fuel. We found similar results for PCDD/Fs in a previous study.
study (Liu et al., 2015b). The PCN concentrations in the MSWI fly ash added to the cement kilns were 279,793 pg g$^{-1}$. Particulates collected by the air pollution control devices at the kiln head and back end are normally recycled by adding them to the raw materials, so no PCNs would have been released in the particulates collected by the air pollution control devices (Liu et al., 2015b). The PCN mass balances are shown in Table S4 (Supplementary data). The net amounts of PCNs emitted by the cement kilns were ~196 mg h$^{-1}$. The PCN outputs were about 50% lower than the inputs.

### 3.4. Congener profiles of the PCNs in particulate samples from different parts of the kilns

The congener profiles of unintentionally produced POPs could be used to identify the POP formation mechanisms (Iino et al., 2001). The concentrations of $\sum_{i=1}^{8}$PCNs in the original MSWI fly ash were 280 ng g$^{-1}$. The PCN congener profiles in the MSWI fly ash and particulate samples from cement kilns are presented in Fig. 3. The PCN congener profiles in the MSWI fly ash were generally similar to that of the particulate samples from the cement kilns. However, for several congeners, such as CN-11/8, CN-9 and CN-18, the fractions were obviously different in MSWI fly ash from that in particulate samples from the cement kilns. Further simulation studies on lab scale might be need for clarifying the underlying reason.

The concentration of each congener was expressed as a fraction of the corresponding homolog concentration to minimize the influences of the concentrations of different PCN homologs and to allow the PCN congener profiles to be compared. The PCN congener profiles in the particulate samples from different parts of the kilns are shown in Fig. 3. The fractions of CN-1 were similar to that of CN-2 in particulate samples from different parts of the kilns, indicating that CN-1 and CN-2 were formed to the similar extent. The values for the DiCNs CN-5/7 were lower for the samples from the five kiln-back-end parts than for the samples from the kiln head boiler, the clinker area, and the kiln head bag filter. The CN-11/8 values were higher for the samples from the five kiln-back-end parts than for the samples from the kiln head boiler, the clinker area, and the kiln head bag filter. This pattern suggested that CN-11/8 were the major congeners formed at the back end of the kilns and that CN-5/7 formation was not favored there. The TriCN congener values were all relatively similar. It appeared that the formation of CN-13, CN-16, CN-17, CN-19, and CN-21 was favored at the back end of the kilns but that the formation of CN-23 and CN-24/14 was favored less than the formation of the other TriCN congeners.

The dominant TetracNs were CN-27/30, CN-29, CN-33/34/37, CN-39, CN-44/47, and CN-45/36. Differences between the congener patterns in samples from different parts of the kilns suggested that CN-29, CN-33/34/37, and CN-39 were likely to form at the back ends of the cement kilns. CN-52/60 was the dominant PeCN, followed by CN-50, CN-51, and CN-54. Differences between the congener profiles in samples from different parts of the kilns suggested that CN-50, CN-51, and CN-54 were much more likely than the other PeCNs to form at the back ends of the kilns. The HxCNs were strongly dominated by CN-66/67. Differences between the congener patterns in samples from different parts of the kilns indicated that CN-66/67 formation was favored more than the formation of other HxCN congeners at the back ends of the kilns. CN-73 contributed more than 90% of the HpCNs, which was much more than CN-74 contributed. No obvious differences were found in the HpCN patterns in samples from different parts of the kilns.

The chloride contents of the particle samples from the back ends of the kilns (52.6–92.1 pmol g$^{-1}$) were much higher than the chloride contents of the samples from the heads of the kilns (5.5–24.8 pmol g$^{-1}$). It has been suggested, from theoretical calculations and experimental studies, that chlorination occurs much more easily at the $\beta$ positions than at the $\alpha$ positions of a PCN molecule (Luijk et al., 1994; Zhai and Wang, 2005; Jansson et al., 2008). The main difference between the PCN congener patterns found in samples from the head and back ends of the kilns was that PCNs with $\beta$-position chlorines contributed much higher proportions of the PCNs in the back end samples than in the kiln head samples. We therefore speculated that the higher chloride contents of the back end samples than in the kiln head samples contributed to the different PCN congener patterns that were found in the head and back end samples. The different PCN congener patterns in the head and back end samples suggested that chlorination reactions at the $\beta$ positions of PCNs occurred more frequently at the back ends of the kilns than at the kiln heads. Chlorination reactions would have occurred less readily at the kiln heads than at the back ends because the chloride contents were much lower at the kiln heads than at the back ends.

### 3.5. Potential PCN formation mechanisms in cement kilns

In 2015, PCNs were added, as new POPs, to Annex C of the Stockholm Convention. It then became obligatory for the signatory countries or regions to control and regulate unintentional emissions of PCNs. An understanding of PCN formation mechanisms could be useful when attempting to decrease unintentional emissions of PCNs. We identified the dominant PCNs in the back end samples, which were from the suspension pre-heater boiler, humidifier tower, back end bag filter, as mentioned above. The kiln heads were not considered to be major PCN formation sites. The congeners found at higher proportions in the back end samples than in the head end samples were considered to be the main compounds that were formed in the cement kilns. The PCN homolog and congener patterns presented in Fig. 3 were inspected, and we found that a chlorination mechanism was probably responsible for PCNs forming in cement kilns co-processing MSWI fly ash. The mechanism is presented in Fig. 4. The thick black arrows are the proposed major chlorination reaction pathways, whereas the thin blue arrows are minor chlorination pathways. Thermodynamic parameters were calculated to verify these proposed chlorination pathways, and the results are presented in Table S5 (Supplementary data).

The thermodynamic results showed that the proposed formation pathways were favorable. For example, for the DiCNs, $\Delta E$ and $\Delta G$ were higher for CN-4 and CN-5 than for CN-7, CN-8, and CN-11. For the TriCNs, $\Delta E$ and $\Delta G$ were higher for CN-23 than for the other dominant congeners. For the TetracNs, $\Delta E$ and $\Delta G$ were higher for CN-46 than for the other congeners. As is shown in Fig. 4, CN-4, CN-5, CN-23, and CN-46 would have been formed through minor pathways. For the PeCNs, HxCNs, and HpCNs, $\Delta E$ and $\Delta G$ were higher for CN-59, CN-63, and CN-74, respectively. These congeners would also have been formed through minor pathways, as shown in Fig. 4. The thermodynamic calculation results therefore theoretically supported our proposed PCN formation pathways.

The chlorination of a PCN is widely thought to occur via the electrophilic substitution of hydrogen with chlorine. The charge density of the PCN molecule is very important to such an electrophilic substitution reaction. The charge densities of the PCNs (shown in Table S6 in the Supplementary data) were therefore calculated to improve our understanding of the chlorination processes. The charge density results generally agreed with our proposed chlorination pathways. For example, the chlorination of CN-16 at the 3\(\beta\), 4\(\alpha\), 7\(\beta\), or 8\(\alpha\) position would give CN-29, CN-33, CN-39, or CN-40, respectively. The charge density was much lower for the carbon atom at 8\(\alpha\) ($-0.205$) than for the carbon atoms at 3\(\beta\)
(−0.242), 4α (−0.206), and 7β (−0.246), so the chlorination of CN-16 to give CN-29, CN-33, and CN-39 could occur more readily than the chlorination of CN-16 to give CN-40. The charge densities at the 4x, 7β, and 8α positions of CN-51 were found to be −0.213, −0.237, and −0.233, respectively. We therefore speculated that CN-51 would be more readily chlorinated at the 7β and 8α positions.
than at the 4α position, which would mean that more CN-67 and CN-68 than CN-63 would be produced. This agreed with the proposed pathways for the transformation of CN-51 to give CN-63, CN-67, and CN-68, shown in Fig. 4. Chlorination of CN-68 at the 4α and 7β positions would give CN-74 and CN-73, respectively. The charge density was higher at the 7β position than the 4α position of CN-68, which could be an important underlying reason for CN-73 being more dominant than CN-74, as can be seen in the congener profiles for our samples and in the proposed formation mechanisms.

Generally, there are three kinds of mechanisms for PCN formation: (i) chlorination mechanism, (ii) formation by the degradation of polycyclic aromatic hydrocarbons and successive chlorination
(iii) formation by chlorinated phenols as precursor (Weber et al., 2001; Kim and Mulholland, 2005; Liu et al., 2014b). Chlorination was one of the formation mechanisms and we considered the chlorination mechanism because we have observed the decreasing trends in fractions from less chlorinated homologues to more chlorinated homologues in the cement kiln process. Further simulation studies in lab scale will be needed to give a comprehensive mechanism for PCN formation.

4. Conclusions

In this study, a field pilot study on two cement kilns co-processing MSWI fly ash were performed to characterize the distributions and congener profiles of PCNs in cement kiln systems. Suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the dominant formation sites of PCNs in the cement kiln systems. Lower chlorinated homologues were much more dominant over higher chlorinated homologues of PCNs. Chlorination was suggested to be one of important formation mechanisms for PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. The mass balance calculations of PCNs indicated a 50% of PCN reduction from the input to the output by the cement kilns.

Acknowledgments

We gratefully acknowledge support from the National 973 program (2015CB453100), National Natural Science Foundation of China (91543108), Strategic Priority Research Program of the CAS (XDB14020102) and Youth Innovation Promotion Association CAS (2016038).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.chemosphere.2016.04.069.

References

Abad, E., Caixach, J., Rivera, J., 1999. Dioxin like compounds from municipal waste incinerator emissions: assessment of the presence of polychlorinated naphthalenes. Chemosphere 38, 100–120.
Ba, T., Zheng, M.H., Zhang, B., Liu, W.B., Su, G.J., Liu, G.R., Xiao, K., 2010. Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metalurgical facilities in China. Environ. Sci. Technol. 44, 2441–2446.
Blankenship, A.L., Kannan, K., Villalobos, S.A., Villeneuve, D.L., Falanysz, J., Imagawa, T., Jakobsson, E., Giesy, J.P., 2000. Relative potencies of individual polychlorinated naphthalenes and haloxaz mixtures to induce Ah receptor-mediated responses. Environ. Sci. Technol. 34, 3153–3158.
Conesa, J.A., Rey, L., Egea, S., Rey, M.D., 2011. Pollutant formation and emissions from cement kiln stack using a solid recovered fuel from municipal solid waste. Environ. Sci. Technol. 45, 5878–5884.
Curliffe, A.M., Williams, P.T., 2009. De novo formation of dioxins and furans and the memory effect in waste incineration fly gases. Waste Manage. (Oxford) 29, 739–748.
Dang, J., Shi, X.L., Zhang, Q.Z., Hu, J.T., Wang, W.X., 2015. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichloro phenanthrene. Sci. Total Environ. 505, 787–794.
Domingo, J.L., 2004. Polychlorinated naphthalenes in animal aquatic species and assessments spatial trends and contribution inputs using PUF disk passive air samples. Environ. Sci. Technol. 40, 5333–5339.
Hehre, W.J., Ditchfield, R., Pople, J.A., 1972. Self-consistent molecular orbital Methods. XII. Further extensions of Gaussian — type basis sets for use in molecular orbital studies of organics, J. Chem. Phys. 56, 2257–2261.
Ino, F., Tsuchiya, K., Imagawa, T., Gullett, B.K., 2001. An isomer prediction model for PCNs, PCDD/Fs, and PCBs from municipal waste incinerators. Environ. Sci. Technol. 35, 3175–3181.
Jansson, S., Andersson, P.L., 2012. Relationships between congener distribution patterns of PCDDs, PCDFs, PCBs, PCBzfs and PCPs formed during flue gas cooling. Sci. Total Environ. 416, 269–275.
Jansson, S., Fick, J., Marklund, S., 2008. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion. Chemosphere 72, 1138–1144.
Jiang, X.X., Liu, G.R., Wang, M., Zheng, M.H., 2015. Fly ash-mediated formation of polychlorinated naphthalenes during secondary copper smelting and mechanism aspects. Chemosphere 119, 1091–1098.
Kannan, K., Villeneuve, D.L., Yamashita, N., Imagawa, T., Hashimoto, S., Miyazaki, A., Giesy, J.P., 2000a. Vertical profiles of dioxin-like and estrogenic activities associated with a sediment core from Tokyo Bay, Japan. Environ. Sci. Technol. 34, 3570–3573.
Kannan, K., Yamashita, N., Imagawa, T., Decoen, W., Kim, J.S., Day, R.M., Summer, C.L., Giesy, J.P., 2000b. Polychlorinated naphthalenes and polychlorinated biphenyls in fishes from Michigan waters including the Great Lakes. Environ. Sci. Technol. 34, 566–572.
Kim, D.H, Mulholland, J.A., 2005. Temperature-dependent formation of polychlorinated naphthalenes and dibenzofurans from chlorophenols. Environ. Sci. Technol. 39, 5831–5836.
Kohn, W. (Ed.), 1995. Overview of density functional theory, In: Gross, E.K.U., Dreizler, R.M. (Eds.), Density Functional Theory. Plenum Press, New York.
Lerche, D., van de Plasche, E., Schweiger, A., Balk, F., 2002. Selecting chemical substances for the UN-ICTP POP protocol. Chemosphere 47, 617–630.
Liu, G., Cai, Z., Zheng, M.H., 2014a. Sources of unintentionally produced polychlorinated naphthalenes. Chemosphere 94, 1–12.
Liu, G., Cai, Z., Zheng, M., Jiang, X., Nie, Z., Wang, M., 2015a. Identification of indicator congeners and evaluation of chlorination emission pattern of polychlorinated naphthalenes in industrial stack gas emissions by statistical analyses. Chemosphere 118, 194–200.
Liu, G.R., Cai, Z.W., Zheng, M.H., 2014b. Sources of unintentionally produced polychlorinated naphthalenes. Chemosphere 94, 1–12.
Liu, G.R., Liu, W.B., Cai, Z.W., Zheng, M.H., 2013a. Concentrations, profiles, and emission factors of unintentionally produced persistent organic pollutants in fly ash from coking processes. J. Hazard. Mater. 261, 421–426.
Liu, G.R., Zhao, J.V., Zheng, M.H., Li, L., Li, C.P., Jiang, X.X., Wang, M., Zhao, Y.Y., Jin, R., 2015b. Field pilot study on emissions, formations and distributions of PCDF/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. J. Hazard. Mater. 298, 471–478.
Lv, P., 2009. Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry. Environ. Sci. Technol. 43, 1996–2001.
Lv, G.R., Zheng, M.H., Liu, W.B., Wang, C.Z., Zhang, B., Gao, L.R., Su, G.J., Xiao, K., Lu, P., 2009. Atmospheric emission of PCDF/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry. Environ. Sci. Technol. 44, 8156–8161.
Luijk, R., Dorland, C., Smit, P., Jansen, J., Govers, H.A.J., 1994. The role of bromine in the de novo synthesis in a model fly-ash system. Chemosphere 28, 1299–1309.
Lv, P., 2004. Sources of PCNs, PCDFs, and PCBs from industrial stack gas emissions, and characterization of polychlorinated dibenzofurans from iron ore smelting processes. Chemosphere 89, 467–472.
Lv, G.R., Zheng, M.H., Liu, W.B., Wang, C.Z., Zhang, B., Gao, L.R., Su, G.J., Xiao, K., 2010. Estimation and characterization of polychlorinated naphthalene emission from coking industries. Environ. Sci. Technol. 44, 8156–8161.
Meier, S.N., Harner, T., Helm, P.A., Halsall, C.J., Johnston, A.E., Jones, K.C., 2001. Polychlorinated naphthalenes in UK soils: time trends, markers of source, and equilibrium status. Environ. Sci. Technol. 35, 4205–4213.
Noma, Y., Yamamoto, T., Sakai, S.Y., 2004. Congener-specific composition of polychlorinated naphthalenes, chloranil PCBs, dibenz-p-dioxins, and dibenzofurans in the halowax series. Environ. Sci. Technol. 38, 1675–1680.
Reed, A.E., Curtiss, L.A., Weinhold, F., 1988. Intermolecular interactions from a natural bond orbital, donicity receptor viewpoint. Chem. Rev. 88, 959–986.
Reed, A.E., Weinhold, F., 1983. Natural Bond orbital analysis of near-Hartree-Fock water dimer. J. Chem. Phys. 78, 4066–4073.
Reed, A.E., Weinstock, R.B., Weinhold, F., 1985. Natural-population analysis. J. Chem. Phys. 83, 735–746.
Weber, R., Hagenmaier, H., 1999. Mechanism of the formation of polychlorinated compounds during incineration of wastes containing polychlorinated naphthalenes. Environ. Sci. Technol. 40, 2247–2253.

Schuhmacher, M., Nadal, M., Domingo, J.L., 2004. Levels of PCDD/Fs, PCBs, and PCNs in soils and vegetation in an area with chemical and petrochemical industries. Environ. Sci. Technol. 38, 1960–1965.

Shi, X.L., Zhang, R.M., Zhang, H.J., Xu, F., Zhang, Q.Z., Wang, W.X., 2015. Influence of water on the homogeneous gas-phase formation mechanism of polyhalogenated dioxins/furans from chlorinated/brominated phenols as precursors. Chemosphere 137, 142–148.

Takaesu, T., Inoue, T., Ohi, E., Kumar, K.S., 2004. Formation of polychlorinated naphthalenes, dibenzo-p-dioxins, dibenzofurans, biphenyls, and organochlorine pesticides in thermal processes and their occurrence in ambient air. Arch. Environ. Contam. Toxicol. 46, 419–431.

Tuppurainen, K., Askainen, A., Ruokojärvi, P., Ruuskanen, J., 2003. Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes. Acc. Chem. Res. 36, 652–658.

UN-ECE POP Protocol, 1998. http://www.unece.org/env/lrtap/pops_h1.html.

UNEP, 2015. Stockholm Convention on Persistent Organic Pollutants. http://www.pops.int/.

Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F., Zacharewski, T., 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106, 775–781.

Venny, Gan, S.Y, Ng, N.K., 2012. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chem. Eng. J. 213, 295–317.

Villeneuve, D.L., Kannan, K., Khim, J.S., Falandysz, J., Nikšić, V.A., Blankenship, A.L., Giesy, J.P., 2000. Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays. Arch. Environ. Contam. Toxicol. 39, 273–281.

Weber, R., Hagenmaier, H., 1999. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions. Chemosphere 38, 529–549.

Weber, R., Iino, F., Imagawa, T., Takeuchi, M., Sakurai, T., Sadakata, M., 2001. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 42, 1429–1438.

Weber, R., Sakurai, T., 2001. Formation characteristics of PCDD and PCDF during pyrolysis processes. Chemosphere 45, 1111–1117.

Weber, R., Sakurai, T., Ueno, S., Nishino, J., 2002. Correlation of PCDD/PCDF and CO values in a MSW incinerator — indication of memory effects in the high temperature/cooling section. Chemosphere 49, 127–134.

Wendemuth, E., Lundin, L., 2015. Behavior of PCDF, PCDD, PCN and PCB during low temperature thermal treatment of MSW incineration fly ash. Chem. Eng. J. 279, 180–187.

Xu, F., Shi, X.L., Zhang, Q.Z., 2015. Quantum chemical and kinetic study on polychlorinated naphthalene formation from 3-Chlorophenol precursor. Int. J. Mol. Sci. 16, 20620–20640.

Yamashita, N., Kannan, K., Imagawa, T., Miyazaki, A., Giesy, J.P., 2000. Concentrations and profiles of polychlorinated naphthalene congeners in eighteen technical polychlorinated biphenyl preparations. Environ. Sci. Technol. 34, 4236–4241.

Yang, X., Liu, H., Hou, H., Flamm, A., Zhang, X., Wang, Z., 2010. Studies of thermodynamic properties and relative stability of a series of polylabeled dibenzo-p-dioxins by density functional theory. J. Hazard. Mater. 181, 969–974.

Yang, Y.F., Huang, Q.F., Tang, Z.W., Wang, Q., Zhu, X.H., Liu, W.B., 2012. Deca-brominated diphenyl ether destruction and PBDD/F and PCDD/F emissions from coprocessing deca-BDE mixture-contaminated soils in cement kilns. Environ. Sci. Technol. 46, 13409–13416.

Zhai, Z.C., Wang, Z.Y., 2005. Computational study on the relative stability and formation distribution of 76 polychlorinated naphthalene by density functional theory. J. Mol. Structure — Theocem 724, 221–227.

Zhang, Q.Z., Gao, R., Xu, F., Zhou, Q., Jiang, G.B., Wang, T., Chen, J.R., Hu, J.T., Jiang, W., Wang, W.X., 2014. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: a computational study. Environ. Sci. Technol. 48, 5051–5057.

Zhao, Y., Truhlar, D.G., 2004. Hybrid meta density functional theory methods for thermochemistry, thermochemical Kinetics, and noncovalent Interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Phys. Chem. A 108, 6908–6918.