A new species of Octaspidiotus (Hemiptera, Diaspididae) from China

Jiufeng Wei¹, Qing Zhao¹

¹ College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China

Corresponding author: Qing Zhao (zhaoqing86623@163.com)

Academic editor: R. Blackman | Received 20 April 2016 | Accepted 29 June 2016 | Published 14 July 2016

http://zoobank.org/00A43EB3-3482-42C5-8073-9364D2C4D33A

Citation: Wei J, Zhao Q (2016) A new species of Octaspidiotus (Hemiptera, Diaspididae) from China. ZooKeys 605: 83–89. doi: 10.3897/zookeys.605.8944

Abstract

Adult females of a new species of armored scale insect, Octaspidiotus shanghaiensis sp. n. are described and illustrated from specimens collected in China. A key is provided for the all described species of Octaspidiotus.

Keywords

Taxonomy, Sternorrhyncha, armored scale insect, China

Introduction

Scale insects (Hemiptera: Coccoidea) are sap-sucking parasites which are small (generally less than 5 mm) and cryptic in their habitats (Gullan 1997), with at least 30 families and approximately 8000 species (García et al. 2016). Containing more than 2500 described species, Diaspididae is the largest species-rich family in the Coccoidea (García et al. 2016). Adult diaspidid females are sessile and permanently reside on their host plants (Gullan 1997). Adult females have the complete loss of the legs, the reduction of the antennae to a single segment and the modification of the abdomen into a specialized pygidium for forming the test, and these characteristics are the primary recognition features for these insects (Andersen 2010; Balachowsky 1948). Armored scale insects are important agricultural pests and have colonized a diverse set of plant species. They are distributed on every continent except Antarctica (Andersen 2010).
Although the family classification is controversial, the Aspidiotinae and the Diaspidinae are the two major subfamilies. The genus Octaspidiotus was established as a member of the former subfamily by MacGillivray (1921), with Aspidiotus subrubescens Maskell as its type species. However, two species that he transferred from Aspidiotus are not now included in this genus. Since then, many additional species were described and added to Octaspidiotus by other authors (Borchsenius 1966; Tang 1984; Tang and Chu 1983; Takagi 1984).

Takagi (1984) showed that O. corticoides (Green) was not a member of Octaspidiotus because the distinguishing characteristics were invalid. Currently, this genus is comprised of 14 valid species, eight of which are known to occur in China (García et al. 2015; Tang 1984; Takagi 1984). There are only two species recorded from Oceania, the other 12 species being distributed throughout East Asia.

Recently, one new species of Octaspidiotus was discovered from China. It was described and illustrated in this paper, bringing the number of recognized species in the genus to 15, of which nine species are recorded from China. A key to all known species of Octaspidiotus is provided.

Materials and methods

In this paper, the terminology described by Henderson (2011) has been used. This publication also includes illustrations for most of the species treated herein. All measurements are presented in micrometers (μm). Measurements were made using NIT-Elements D tools.

The abbreviations L₁, L₂ and L₃ are short for the median, second, and third pygidial lobes, respectively.

All specimens have been deposited in the Entomological Museum, Northwest A & F University, Yangling, Shaanxi, China (NWAFU).

Taxonomy

Genus Octaspidiotus MacGillivray, 1921

Metaspidiotus Takagi, 1957: 35. Junior synonym.

Type species. Aspidiotus subrubescens Maskel, 1892.

Generic diagnosis. Adult female. Body is oval to rounded; derm membranous except pygidium. Cephalothorax. Antennae with 1 seta. No trilocular pores associated to the spiracles. Pygidium. With 3–4 pairs of lobes, never bilobed. Median lobes (L₁) well-developed, with notches on both margins or only present on the outer margin. Second lobes (L₂) smaller than L₁, with notches on both laterals or only present on the outer lateral. Third lobes (L₃) similar to L₂. Fourth lobes (L₄) small and pointed
A new species of *Octaspidiotus* (*Hemiptera, Diaspididae*) from China

Apically, only present in *O. subrubescens*. Marginal setae occurring on dorsal bases of *L*₂ and *L*₃, lanceolate, broadened and flattened. Plates are well-developed, fimbriate on the outer margin in most species, occurring laterally and even extended to the abdominal segment IV. Paraphyses absent on pygidial margin. **Ducts.** Dorsum has one-barred type macroducts, that are aligned in some species. Ventral microducts are scattered. **Anal opening** is toward the apex of the pygidium, more or less elongate. Vulvar opening situated anterior to anal opening. **Perivulvar pores** are quinquelocular, present or absent, if present, in four groups.

Remarks. This genus is very close to *Aspidiotus* Bouché, 1833 and *Oceanaspidiotus* Takagi, 1984 in terms of pygidial lobes and pygidium, but can be distinguished by the form of the dorsal marginal setae occurring on *L*₁ and *L*₂ which are lanceolate, broadened and flattened, while these setae in the other two genera are simply thickened.

Octaspidiotus shanghaiensis sp. n.

http://zoobank.org/07E3AD76-AF7A-4130-92CC-0C7895FF0A0F

Figures 1–7

Material examined. Holotype: 1 adult female: CHINA: Changfeng Park, Shanghai City, 11. IV. 2015, Hongliang Li (NWAFU).

Paratypes. 3 adult females: same data as the holotype (NWAFU).

Diagnosis. Description, n = 4. Adult females. **Field characters:** adult female scale nearly oval, flat, dark greyish in colour; exuviae nearly central.

Slide-mounted: Adult female not pupillarial, 810–952 μm long (holotype 905 μm long); 756–883 μm wide (holotype is 881 μm in the widest part of the body). Body outline oval, derm membranous except for pygidium (Figure 1). **Cephalothorax.** Antennae each with 1 seta (Figure 2), distance between antennae is 164.3 μm. Prespiracular pores absent (Figure 3). **Pygidium** (Figure 5). The pygidium has three pairs of lobes: *L*₁ are well-developed, a small mesal notch is present on or near the apex, and a relative larger notch is present on or near the apex of the outer margin. *L*₂ is 6.7–7.2 μm wide and the distance of two lobes of *L*₁ is 1.5–2.1 μm wide. Median lobes separated by a space 0.2–0.3 times the width of *L*₁. *L*₂ smaller than *L*₁, with one notch on the outer margin. *L*₃ similar to *L*₂, but smaller. Lanceolate setae on *L*₂ and *L*₃ shorter than these lobes themselves. **Plates** (Figure 5 and 7) one pair of pointed plates between *L*₁, not extending to the apex of the lobe; 2 pairs of plates between *L*₁ and *L*₂, apically fringed with few fine bifurcated; with 3 pairs of plates similar in size and shape between *L*₂ and *L*₃; with 6–7 pairs of plates lateral to *L*₃. **Ducts** (Figure 4 and 5). Dorsal macroducts 1-barred-shaped. No marginal macroduct between median lobes. One marginal macroduct between *L*₁ and *L*₂, two between *L*₂ and *L*₃, and 3–4 present between *L*₃. Dorsal submarginal macroducts about the same size as marginal macroducts which are 30–35 μm long. Total dorsal macroducts on dorsum in submarginal and marginal areas of pygidium on each side of body 32–44 (44 in holotype). Dorsal macroducts on abdomen segment IV shorter than on pygidium, with 5–6 macroducts on margin...
Figure 1–7. Octaspidiotus shanghaensis sp. n. adult female: 1 habitus 2 detail of antenna 3 detail of anterior spiracle 4 dorsal 1-barred duct 5 pygidium 6 quinquelocular pores 7 detail of the end of pygidium margin.

of abdomen segment IV. Ventral microducts are fewer and more scattered than the dorsal macroducts. Anal opening (Figure 5) 22.4–25.5 μm long in diameter, located 46.2–48.7 μm between the base of the anal opening and the base of L₁. Perivulvar
pores (Figure 5 and 6) present in an arc, divided in four groups, 9–12 anterolaterally and 8–9 posterolaterally.

Remarks. This species is similar to *O. cymbidii* Tang, 1984 in the body shape and the pygidal lobes, but can be distinguished by the following characters (those for *O. cymbidii* in parentheses): 1) without marginal macroduct on abdomen segment III (with 3–4); 2) the three plates between L₄ and L₃ all equally shaped (the third plate is narrower than the first and the second plates); 3) L₁ is separated by a space 0.2–0.3 times the width of each median lobe (by a space 0.5 times the width of each L₁); 4) without marginal macroducts between L₁ (present).

Host. *Echinochloa crusgalli* (L.)

Etymology. The specific epithet is named after Shanghai, the type locality.

Distribution. China (Shanghai).

Key to the adult females Octaspidoitus MacGillivray

*denotes Chinese species

1 With 3 pairs lobes on pygidium, L₄ absent..2
– With 4 pairs lobes on pygidium, L₄ present as small, pointed, sclerotized processes .. *O. subrubescens* (Takahashi)

2 Lanceolate marginal setae occurring on dorsal bases of L₂ and L₃ not extending to the apex of L₂ and L₃, respectively..3
– Lanceolate marginal setae occurring on dorsal bases of L₂ and L₃ more-or-less extending to the apex of L₂ and L₃, respectively ..13

3 All lobes hippocrepiform, without notches on margin of L₁..........................

............... .. *O. bituberculatus* Tang
– Lobes normal, with notches on margin of L₁..4

4 With notches on outer margin of L₁... *O. australiensis* Kuwana
– Notches present on both margins of L₁..5

5 Three plates occurring between L₂ and L₃ are not equal in width........6
– Three plates occurring between L₂ and L₃ are equal in width..............10

6 Plates between L₁ bifurcate or pointed apically; distance between L₁ narrower than 1/2 of each lobe of L₁; with 6 plates occurring lateral to L₃..............

............................ .. *O. cymbidii* Tang
– Plates between L₁ fringed; distance between L₁ no less than 1/2 of each lobe of L₁; with no less than 7 plates occurring on the outer lateral to L₃........7

7 With notches on both margins of L₃; both second and third plates between L₂ and L₃ narrower than first plates between L₂ and L₃..........................

.. *O. rhododendronii* (Tang)
– With notches on outer margin of L₃, without notches on mesal margin of L₃; Second or third plates between L₂ and L₃ narrower than first plates between L₂ and L₃..8
Second plates between L₂ and L₃ narrower than first and third plates between L₁ and L₃........................... 9
– Third plates between L₂ and L₃ narrower than first and second plates between L₁ and L₃.............................. O. yunnanensis (Tang & Chu)

With 22–24 perivulvar pores and 35–42 dorsal macroducts on pygidium O. tamarindi (Green)
– With 43–60 perivulvar pores and 54–65 dorsal macroducts on pygidium O. tripurensis Takagi

With notches on mesal margin of L₂; distance between L₂ and L₃ equal to 1/5 of each lobe of L1; plates between L₁ bifurcate or pointed apically.............................. O. shanghaiensis sp. n.
– With notches on both margins of L₂; distance between L₂ and L₃ more than 1/3 of each lobe of L₁; plates between L₁ fringed.. 11

Body strongly sclerotized at maturity .. O. nothopanacis (Ferris)
– Body remaining membranous.. O. stauntoniae (Takahashi)

Number of perivulvar pores less than 30; with 7 plates occurring on the outer side of L₃.............................. O. calophylli (Green)
– Number of perivulvar pores more than 30; with 8 plates occurring on the outer side of L₃ O. pinicola (Tang)

With notches on outer margin of L₂ and L₃; with no more than 7 plates occurring on the outer side of L₃ ... O. multipori (Takahashi)
– With notches on both margin of L₂ and L₃; with no less than 8 plates occurring on the outer side of L₃ .. 14

With more than 80 dorsal macroducts and 32–47 perivulvar pores O. machili (Takahashi)
– With less than 80 dorsal macroducts and 23–29 perivulvar pores O. machili (Takahashi)

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Grant No. 31301899 and No. 31501876) and Shanxi Agricultural University of Science and Technology innovation fund projects (2015YJ03).

References

Andersen JC, Wu J, Gruwell ME, Morse GE, Santana S, Feliciano N, Gwiazdowski RA, Normark BB (2010) A phylogenetic analysis of armored scale insects, based upon nuclear, mitochondrial, and endosymbiont gene sequences. Molecular Phylogenetics and Evolution 57: 992–1003. doi: 10.1016/j.ympev.2010.05.002
A new species of Octaspidiotus (Hemiptera, Diaspididae) from China

Balachowsky AS (1948) Les cochenilles de France, d’Europe, du nord de l’Afrique et du basin Méditerranéen. IV. Monographie des Coccoidea, classification-Diaspidinae (Première Partie). Actualités Scientifiques et Industrielles 1054: 243–394.

Borchsenius NS (1966) [A catalogue of the armoured scale insects (Diaspididea) of the world]. Nauka, Moscow & Leningrad, 449 pp. [In Russian]

García M, Denno B, Miller DR, Miller GL, Ben-Dov Y, Hardy NB (2015) ScaleNet: A Literature-based model of scale insect biology and systematics. http://scalenet.info [accessed: 2015]

Gullan PJ, Kosztarab M (1997) Adaptions in scale insects. Annual Review of Entomology 42: 23–50. doi: 10.1146/annurev.ento.42.1.23

MacGillivray AD (1921) The Coccidae. Tables for the Identification of the Subfamilies and Some of the More Important Genera and Species, Together with Discussions of Their Anatomy and Life History. Scarab, Urbana, 502 pp. doi: 10.5962/bhl.title.21115

Tang FT (1984) The scale insects of horticulture and forests of China. Shanxi Agricultural University Press Research Publication 2: 1–115. [In Chinese]

Tang FT, Chu CY (1983) Three new species of Diaspididae from Keteleeria evelyniana in vicinity of Kunming, Yunnan. Acta Zootaxonomica Sinica 8: 301–306. [In Chinese]

Takagi S (1984) Some aspidiotine scale insects with enlarged setae on the pygidial lobes (Homoptera: Coccoidea: Diaspididae). Insecta Matsumurana (New Series) 28: 1–69.