MINIMAL NON-ODD-TRANSVERSAL HYPERGRAPHS AND MINIMAL NON-ODD-BIPARTITE HYPERGRAPHS

YI-ZHENG FAN*, YI WANG, AND JIANG-CHAO WANG

Abstract. Among all uniform hypergraphs with even uniformity, the odd-transversal or odd-bipartite hypergraphs are more close to bipartite simple graphs from the viewpoint of both structure and spectrum. A hypergraph is called minimal non-odd-transversal if it is non-odd-transversal but deleting any edge results in an odd-transversal hypergraph. In this paper we give an equivalent characterization of the minimal non-odd-transversal hypergraphs by the degrees and the rank of its incidence matrix over \mathbb{Z}_2. If a minimal non-odd-transversal hypergraph is uniform, then it has even uniformity, and hence is minimal non-odd-bipartite. We characterize 2-regular uniform minimal non-odd-bipartite hypergraphs, and give some examples of d-regular uniform hypergraphs which are minimal non-odd-bipartite. Finally we give upper bounds for the least H-eigenvalue of the adjacency tensor of minimal non-odd-bipartite hypergraphs.

1. Introduction

Let $G = (V, E)$ be a hypergraph, where $V =: V(G)$ is the vertex set, and $E =: E(G)$ is the edge set whose elements $e \subseteq V$. If for each edge e of G, $|e| = k$, then G is called a k-uniform hypergraph. The degree $d(v)$ of a vertex v of G is defined to be the number of edges of G containing v. If $d(v) = d$ for all vertices v of G, then G is called d-regular.

A hypergraph G is called 2-colorable if there exists a 2-coloring of the vertices of $V(G)$ such that G contains no monochromatic edges; and it is called minimal non-2-colorable if it is non-2-colorable but deleting any edge from $E(G)$ results in a 2-colorable hypergraph. Seymour [25] proved that if G is minimal non-2-colorable and $V(G) = \bigcup \{e \in E(G)\}$, then $|E(G)| \geq |V(G)|$. Aharoni and Linial [1] presented an infinite version of Seymour’s result. Alon and Bregman [3] proved that if $k \geq 8$ then every k-regular k-uniform hypergraph is 2-colorable. Henninga and Yeo [14] showed that Alon-Bergman result is true for $k \geq 4$.

A subset U of $V(G)$ is called a transversal (also called vertex cover or hitting set) of G if each edge of G has a nonempty intersection with U. The transversal number of G is the minimum size of transversals in G, which was well studied by Alon [2], Chvátal and McDiarmid [6], Henninga and Yeo [15]. G is called bipartite if for some nonempty proper subset $U \subseteq V(G)$, U and its complement U^c are both transversal; or equivalently the vertex set $V(G)$ has a bipartition into two parts such that every edge of $E(G)$ intersects both parts. Surely, G is bipartite if and only if G is 2-colorable.

A subset U of $V(G)$ is called an odd transversal of G if each edge of G intersects U in an odd number of vertices [8, 24]. A hypergraph G is called odd-transversal if it...
has an odd transversal. Nikiforov [21] firstly uses odd transversal to investigate the spectral symmetry of tensors and hypergraphs. Hu and Qi [16] introduce the notion of odd-bipartite hypergraph to study the zero eigenvalue of the signless Laplacian tensor.

Definition 1.1 ([16]). Let G be a k-uniform hypergraph, where k is even. If there exists a bipartition $\{U, U^c\}$ of $V(G)$ has such that each edge of G intersects U (and also U^c) in an odd number of vertices, then G is called *odd-bipartite*, and $\{U, U^c\}$ is an *odd-bipartition* of G.

So, odd-bipartite hypergraphs are surely odd-transversal hypergraphs and bipartite hypergraphs. For the uniform hypergraphs with even uniformity, the notion of odd-bipartite hypergraphs is equivalent to that of odd-transversal hypergraphs.

From the viewpoint of spectrum, a simple graph is bipartite if and only if its adjacency matrix has a symmetric spectrum. However, the adjacency tensor of a bipartite uniform hypergraph does not possess such property. We note that the hypergraphs under consideration are uniform when discussing their spectra. Shao et al. [26] proved that the adjacency tensor of a k-uniform hypergraph G has a symmetric H-spectrum if and only if k is even and G is odd-bipartite. So, the odd-bipartite hypergraphs are more close to bipartite simple graphs than the bipartite hypergraphs based on the following two reasons. First they both have a structural property, namely, there exists a bipartition of the vertex set such that every edge intersects the each part of the bipartition in an odd number of vertices. Second they both have a symmetric H-spectrum.

There are some examples of odd-bipartite hypergraphs, e.g. power of simple graphs and cored hypergraphs [17], hm-hypergraphs [16], m-partite m-uniform hypergraphs [7]. Nikiforov [21] gives two classes of non-odd-transversal hypergraphs. Fan et al. [18] construct non-odd-bipartite generalized power hypergraphs from non-bipartite simple graphs. It is known that a connected bipartite simple graph has a unique bipartition up to isomorphism. However, an odd-bipartite hypergraph can have more than one odd-bipartition. Fan et al. [11] given a explicit formula for the number of odd-bipartition of a hypergraph by the rank of its incidence matrix over \mathbb{Z}_2. So, it seems hard to give examples of non-odd-bipartite hypergraphs.

To our knowledge, there is no characterization of non-odd-transversal or non-odd-bipartite hypergraphs. We observe that non-odd-transversal hypergraphs have a hereditary property, that is, if G contains a non-odd-transversal sub-hypergraph, then G is non-odd-transversal. G is called *minimal non-odd-transversal*, if G is non-odd-transversal but deleting any edge from G results in an odd-transversal hypergraph, or equivalently, any nonempty proper edge-induced sub-hypergraph of G is odd-transversal. In this paper we give an equivalent characterizaton of the minimal non-odd-transversal hypergraphs by the degrees and the rank of its incidence matrix over \mathbb{Z}_2. If a minimal non-odd-transversal hypergraph is uniform, then it has even uniformity, and hence is minimal non-odd-bipartite. We characterized 2-regular uniform minimal non-odd-bipartite hypergraphs, and give some examples of d-regular uniform hypergraphs which are minimal non-odd-bipartite. Finally we give upper bounds for the least H-eigenvalue of the adjacency tensor of minimal non-odd-bipartite hypergraphs.

2. Basic notions

Unless specified somewhere, all hypergraphs in this paper contain no multiple edges or isolated vertices, where vertex is called *isolated* if it is not contained in any edge of the hypergraph. Let $G = (V, E)$ be a hypergraph. G is called *square* if $|V| = |E|$. A *walk* of length t in G is a sequence of alternate vertices and
edges: \(e_{i_1}e_{i_2} \ldots e_{i_t}, \) where \(\{v_i, v_{i+1}\} \subseteq e_i \) for \(i = 0, 1, \ldots, t - 1. \) \(G \) is said to be connected if every two vertices are connected by a walk.

The vertex-induced sub-hypergraph of \(G \) by the a subset \(U \subseteq V(G), \) denoted by \(G[U], \) is a hypergraph with vertex set \(U \) and edge set \(\{e \cap U : e \in E(G), e \cap U \neq \emptyset\}. \) For a connected hypergraph \(G, \) a vertex \(v \) is called a cut vertex of \(G \) if \(G[V(G) \setminus \{v\}] \) is disconnected. The edge-induced sub-hypergraph of \(G \) by a subset \(F \subseteq E(G), \) denoted by \(G[F], \) is a hypergraph with vertex set \(\cup_{e \in F} e \) and edge set \(F. \)

Let \(G \) be a hypergraph and let \(e \) be an edge of \(G. \) Denote by \(G - e \) the hypergraph obtained from \(G \) by deleting the edge \(e \) from \(E(G). \) For a connected hypergraph \(G, \) an edge \(e \) is called a cut edge of \(G \) if \(G - e \) is disconnected.

A matching \(M \) of \(G \) is a set of pairwise disjoint edges of \(G. \) In particular, if \(G \) is a bipartite graph with a bipartition \(\{V_1, V_2\}, \) a vertex subset \(U_1 \subseteq V_1 \) is matched to \(U_2 \subseteq V_2 \) in \(M, \) if there exists a bijection \(f : U_1 \rightarrow U_2 \) such that \(\{\{v, f(v)\} : v \in U_1\} \subseteq M. \) A subset \(U_1 \subseteq V_1 \) (or \(V_2 \)) is matched by \(M \) if every vertex of \(U \) is incident with an edge of \(M. \) \(M \) is called a perfect matching if \(V_1 \) and \(V_2 \) are both matched by \(M. \)

The incidence bipartite graph \(\Gamma_G \) of \(G \) is a bipartite simple graph with two parts \(V(G) \) and \(E(G) \) such that \(\{v, e\} \in E(\Gamma_G) \) if and only if \(v \in e. \)

The edge-vertex incidence matrix of \(G, \) denoted by \(B_G = (b_{e,v}), \) is a matrix of size \(|E(G)| \times |V(G)|, \) whose entries \(b_{e,v} = 1 \) if \(v \in e, \) and \(b_{e,v} = 0 \) otherwise.

The dual of \(G, \) denoted by \(G^*, \) is the hypergraph whose vertex set is \(E(G) \) and edge set is \(\{\{e \in E(G) : v \in e\} : v \in V(G)\}. \) If no two vertices of \(G \) are contained in precisely the same edges of \(G, \) then \((G^*)^* \) is isomorphic to \(G. \) In this situation, the incidence bipartite graph \(\Gamma_{G^*} \cong \Gamma_G^*, \) and the incidence matrix \(B_{G^*} = B_{G^*}^T, \) where the latter denotes the transpose of \(B_{G^*}. \)

Let \(G \) be a simple graph, and let \(k \) be an even integer greater than \(2. \) Denote by \(G^{k, 2} \) the hypergraph obtained from \(G \) whose vertex set is \(\cup_{e \in V(G)} v \) and edge set \(\{u \cup v : \{u, v\} \in E(G)\}, \) where \(v \) denotes an \(\frac{k}{2} \)-set corresponding to \(v, \) and all those sets are pairwise disjoint; intuitively \(G^{k, 2} \) is obtained from \(G \) by blowing up each vertex into a \(\frac{k}{2} \)-set and preserving the adjacency relation \([15]. \) It is proved that \(G^{k, 2} \) is non-odd-bipartite if and only if \(G \) is non-bipartite \([13].\)

Next we will introduce some knowledge of eigenvalues of a tensor. For integers \(k \geq 2 \) and \(n \geq 2, \) a tensor (also called hypermatrix) \(T = (t_{i_1i_2 \ldots i_k}) \) of order \(k \) and dimension \(n \) refers to a multidimensional array \(t_{i_1i_2 \ldots i_k} \in \mathbb{C} \) for all \(i_1, i_2, \ldots, i_k \in [n] := \{1, 2, \ldots, n\} \) and \(j \in [k]. \) \(T \) is called symmetric if its entries are invariant under any permutation of their indices.

Given a vector \(x \in \mathbb{C}^n, \) \(Tx^k \in \mathbb{C}^n, \) and \(Tx^{k-1} \in \mathbb{C}^n, \) which are defined as follows:

\[
T x^k = \sum_{i_1, i_2, \ldots, i_k \in [n]} t_{i_1i_2 \ldots i_k} x_{i_1} x_{i_2} \cdots x_{i_k},
\]

\[
(T x^{k-1})_i = \sum_{i_2, \ldots, i_k \in [n]} t_{i_2i_3 \ldots i_k} x_{i_2} x_{i_3} \cdots x_{i_k}, \quad \text{for } i \in [n].
\]

Let \(I \) be the identity tensor of order \(k \) and dimension \(n, \) that is, \(t_{i_1i_2 \ldots i_k} = 1 \) if and only if \(i_1 = i_2 = \cdots = i_k \in [n] \) and zero otherwise.

Definition 2.1. \([19, 23]\) Let \(T \) be a \(k \)-th order \(n \)-dimensional real tensor. For some \(\lambda \in \mathbb{C}, \) if the polynomial system \((\lambda I - T)x^{k-1} = 0, \) or equivalently \(T x^{k-1} = \lambda x^{k-1}, \) has a solution \(x \in \mathbb{C}^n \setminus \{0\}, \) then \(\lambda \) is called an eigenvalue of \(T \) and \(x \) is an eigenvector of \(T \) associated with \(\lambda, \) where \(x^{k-1} := (x_1^{k-1}, x_2^{k-1}, \ldots, x_n^{k-1}) \in \mathbb{C}^n. \)

The characteristic polynomial \(\varphi_T(\lambda) \) of \(T \) is defined as the resultant of the polynomials \((\lambda I - T)x^{k-1}; \) see \([23, 15, 13]. \) It is known that \(\lambda \) is an eigenvalue of \(T \)
if and only if it is a root of $\varphi_T(\lambda)$. The spectrum of T is the multi-set of the roots of $\varphi_T(\lambda)$.

Suppose that T is real. If x is a real eigenvector of T, surely the corresponding eigenvalue λ is real. In this case, x is called an H-eigenvalue and λ is called an H-eigenvalue. The H-spectrum of T is the set of all H-eigenvalues of T, denoted by $\text{HSpec}(T)$. The spectral radius of T is defined as the maximum modulus of the eigenvalues of T, denoted by $\rho(T)$. Denote by $\lambda_{\max}(T), \lambda_{\min}(T)$ the largest H-eigenvalue and the least H-eigenvalue of T, respectively.

For a symmetric tensor, we have the following result.

Lemma 2.2. Let T be a real symmetric tensor of order k and dimension n. Then

1. [30, Theorem 3.6] If T is also nonnegative, then

$$\lambda_{\max}(T) = \min\{T x^k : x \in \mathbb{R}^n, x \geq 0, \|x\|_k = 1\},$$

where $\|x\|_k = \left(\sum_{i=1}^n |x_i^k| \right)^{\frac{1}{k}}$. Furthermore, x is an optimal solution of the above optimization if and only if it is an eigenvector of T associated with $\lambda_{\max}(T)$.

2. [23, Theorem 5] If k is also even, then

$$\lambda_{\min}(T) = \min\{T x^k : x \in \mathbb{R}^n, \|x\|_k = 1\},$$

and x is an optimal solution of the above optimization if and only if it is an eigenvector of T associated with $\lambda_{\min}(T)$.

Let G be a k-uniform hypergraph on n vertices v_1, v_2, \ldots, v_n. The adjacency tensor of G [7] is defined as $A(G) = (a_{i_1i_2\ldots i_k})$, an order k dimensional n tensor, where

$$a_{i_1i_2\ldots i_k} = \begin{cases} \frac{1}{\binom{n}{k}} & \text{if } \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\} \in E(G); \\ 0, & \text{otherwise.} \end{cases}$$

The spectral radius, the least H-eigenvalue of G are referring to its adjacency tensor $A(G)$, denoted by $\rho(G), \lambda_{\min}(G)$ respectively. The H-spectrum of $A(G)$ is denoted by $\text{HSpec}(G)$.

The spectral hypergraph theory has been an active topic in algebraic graph theory recently; see e.g. [6, 9, 10, 21, 22]. By the Perron-Frobenius theorem for non-negative tensors [4, 12, 27, 28, 29], $\rho(G)$ is exactly the largest H-eigenvalue of $A(G)$. If G is connected, there exists a unique positive eigenvector up to scales associated with $\rho(G)$, called the Perron vector of G. Noting that the adjacency tensor $A(G)$ is nonnegative and symmetric, so $\rho(G)$ holds (1) of Lemma 2.2 and $\lambda_{\min}(G)$ holds (2) of Lemma 2.2 if k is even. By Perron-Frobenius theorem, $\lambda_{\min}(G) \geq -\rho(G)$. By the following lemma, if G is connected and non-odd-bipartite, then $\lambda_{\min}(G) > -\rho(G)$.

Lemma 2.3. [21, 20, 29, 11] Let G be a k-uniform connected hypergraph. Then the following results are equivalent.

1. k is even and G is odd-bipartite.
2. $\lambda_{\min}(G) = -\rho(G)$.
3. $\text{HSpec}(G) = -\text{HSpec}(G)$.

Finally, we introduce some notations used throughout out the paper. Denote by C_n a cycle of length n as a simple graph. Denote by $\mathbb{1}$ an all-one vector whose size can be implicated by the context, $\text{rank}A$ the rank of a matrix A over \mathbb{Z}_2, and \mathbb{F}_q a field of order q.

3. Characterization of minimal non-odd-transversal hypergraphs

In this section we will give some equivalent conditions in terms of degrees and rank of the incidence matrix over \mathbb{Z}_2 for a hypergraph to be minimal non-odd-transversal.
Lemma 3.1. If G is a minimal non-odd-transversal hypergraph, then G is connected and contains no cut vertices.

Proof. If G contains more than one connected component, then at least one of them is non-odd-transversal, a contradiction to the definition. So G itself is connected. Suppose G contains a cut vertex. Then G is obtained from two connected nontrivial sub-hypergraphs G_1, G_2 sharing exactly one vertex (the cut vertex). So, at least one of G_1, G_2 is non-odd-transversal, also a contradiction. \hfill \Box

Lemma 3.2. Let G be a connected hypergraph, and B_G be the edge-vertex incidence matrix of G. Then G is odd-transversal if and only if the equation

\begin{equation}
B_Gx = \mathbb{1} \text{ over } \mathbb{Z}_2
\end{equation}

has a solution, or equivalently

\begin{equation}
\text{rank } B_G = \text{rank}(B_G, \mathbb{1}) \text{ over } \mathbb{Z}_2.
\end{equation}

Proof. If G is odd-transversal, then there is an odd-transversal U of G. Define a vector $x \in \mathbb{Z}_2^{V(G)}$ such that $x_v = 1$ if $v \in U$, and $x_v = 0$ otherwise. By the definition, it is easy to verify that x is a solution of the equation (3.1). On the other hand, if x is a solution of the equation (3.1), define $U = \{v : x_v = 1\}$. Then $U \neq \emptyset$, and for each edge e of G, $|e \cap U|$ is odd, implying that G is odd-transversal. \hfill \Box

For each edge $e \in E(G)$, define an indicator vector $\chi_e \in \mathbb{Z}_2^{V(G)}$ such that $\chi_e(v) = 1$ if $v \in e$ and $\chi_e(v) = 0$ otherwise. Then B_G consists of those χ_e as row vectors for all $e \in E(G)$.

Lemma 3.3. Let G be a connected hypergraph with m edges. If m is odd, and each vertex has an even degree, or equivalently $\sum_{e \in E(G)} \chi_e = 0$ over \mathbb{Z}_2, then G is non-odd-transversal.

Proof. Let e_1, \ldots, e_m be edges of G. Write $(B_G, \mathbb{1})$ as the following form:

\begin{equation}
(B_G, \mathbb{1}) = \begin{pmatrix}
\chi_{e_1} & 1 \\
\chi_{e_2} & 1 \\
\vdots & \vdots \\
\chi_{e_m} & 1
\end{pmatrix}
\end{equation}

Adding the first row to all other rows over \mathbb{Z}_2, we will have

\begin{equation}
\begin{pmatrix}
\chi_{e_1} \\
\chi_{e_2} + \chi_{e_1} \\
\vdots \\
\chi_{e_m} + \chi_{e_1}
\end{pmatrix} = \begin{pmatrix}
\chi_{e_1} & 1 \\
C & O
\end{pmatrix}.
\end{equation}

So, $\text{rank}(B_G, \mathbb{1}) = 1 + \text{rank} C$. As m is odd and $\sum_{e \in E(G)} \chi_e = 0$,

\begin{equation}
\chi_{e_1} = \sum_{i=2}^{m} (\chi_{e_i} + \chi_{e_1}),
\end{equation}

implying that $\text{rank} B_G = \text{rank} C$. By Lemma 3.2, G is non-odd-transversal. \hfill \Box

Theorem 3.4. Let G be a connected hypergraph with m edges. The following are equivalent.

1. G is minimal non-odd-transversal.
2. m is odd, $\sum_{e \in E(G)} \chi_e = 0$ over \mathbb{Z}_2, and $\sum_{e \in F} \chi_e \neq 0$ over \mathbb{Z}_2 for any nonempty proper subset F of $E(G)$.
3. m is odd, $\sum_{e \in E(G)} \chi_e = 0$ over \mathbb{Z}_2, and $\text{rank } B_G = m - 1$ over \mathbb{Z}_2.

\begin{align*}
& \text{(1) } G \text{ is minimal non-odd-transversal.} \\
& \text{(2) } m \text{ is odd, } \sum_{e \in E(G)} \chi_e = 0 \text{ over } \mathbb{Z}_2, \text{ and } \sum_{e \in F} \chi_e \neq 0 \text{ over } \mathbb{Z}_2 \text{ for any nonempty proper subset } F \text{ of } E(G). \\
& \text{(3) } m \text{ is odd, } \sum_{e \in E(G)} \chi_e = 0 \text{ over } \mathbb{Z}_2, \text{ and } \text{rank } B_G = m - 1 \text{ over } \mathbb{Z}_2.
\end{align*}
(4) m is odd, each vertex of G has an even degree, and any nonempty proper edge-induced sub-hypergraph of G contains vertices of odd degrees.

Proof. (1) \Rightarrow (2). Suppose that G is minimal non-odd-transversal. By Eq. 3.3 and Eq. 3.4, as $\text{rank}_{\mathbb{Z}} G \neq \text{rank}_{\mathbb{Z}} (B_G, \mathbb{I})$ over \mathbb{Z}_2 by Lemma 3.2, χ_e is a linear combination of $\chi_{e_i} + \chi_{e_j}$ for $i = 2, \ldots, m$. So there exist $a_i \in \mathbb{Z}_2$ for $i = 2, \ldots, m$ such that

$$
\chi_{e_1} = \sum_{i=2}^{m} a_i (\chi_{e_1} + \chi_{e_2}) = \left(\sum_{i=2}^{m} a_i \right) e_1 + \sum_{i=2}^{m} a_i \chi_{e_i}.
$$

We assert that $a_1 = 1$ for $i = 2, \ldots, m$. Otherwise, there exists a j, $2 \leq j \leq m$, such that $a_j = 0$. Then χ_{e_j} is a linear combination of $\chi_{e_i} + \chi_{e_j}$ for $i = 2, \ldots, m$ and $i \neq j$. So, $\text{rank}_{\mathbb{Z}} (B_{G-e_j}, \mathbb{I}) = \text{rank}_{\mathbb{Z}} (B_{G-e_j})$, implying that $G - e_j$ is odd-transversal by Lemma 3.2, a contradiction to the definition.

If m is even, then $\sum_{i=2}^{m} a_i = 0$ by Eq. 3.5, implying the vertices of $V(G)$ all have even degrees in $G - e_1$. So the vertices of e_1 all have odd degrees in G. By the arbitrariness of e_1, each vertex has an odd degree in G. However, there exists a vertex $v \notin e_1$ so that $d_G(v) = d_{G-e_1}(v)$, which is an even number, a contradiction.

So, m is odd, and $\sum_{e \in E(G)} \chi_e = 0$ by Eq. 3.5. Assume to the contrary there exists a nonempty proper subset F of $E(G)$. $\sum_{e \in F} \chi_e = 0$ over \mathbb{Z}_2. If $|F|$ is odd, then by Lemma 3.3, the sub-hypergraph $G|_{E(G) \setminus F}$ induced by the edges of F is non-odd-transversal, a contradiction to the definition. Otherwise, $|F|$ is even, then $\text{rank}_{\mathbb{Z}} (B_{G \setminus e_1}, \mathbb{I})$ is odd as m is odd, and the sub-hypergraph $G|_{E(G) \setminus F}$ is non-odd-transversal, also a contradiction.

(2) \Rightarrow (3). As $\sum_{e \in E(G)} \chi_e = 0$, $\text{rank}_{\mathbb{Z}} G \leq m - 1$ over \mathbb{Z}_2. If $\text{rank}_{\mathbb{Z}} G \leq m - 2$ over \mathbb{Z}_2, then $\chi_{e_1}, \ldots, \chi_{e_{m-1}}$ are linear dependent. So there exists $a_1, \ldots, a_{m-1} \in \mathbb{Z}_2$, not all being zero, such that $\sum_{i=1}^{m-1} a_i \chi_{e_i} = 0$. Taking $F = \{ e_i : a_i = 1, 1 \leq i \leq m - 1 \}$, then $\sum_{e \in F} \chi_e = \sum_{i=1}^{m-1} a_i \chi_{e_i} = 0$, a contradiction to (2). So $\text{rank}_{\mathbb{Z}} G = m - 1$ over \mathbb{Z}_2.

(3) \Rightarrow (1). By Lemma 3.3, G is non-odd-transversal. Let e be an arbitrary edge of G. Adding all rows χ_f for $f \neq e$ to the row χ_e will yield a zero row as $\sum_{e \in E(G)} \chi_e = 0$. So $\text{rank}_{\mathbb{Z}_2} G - e = \text{rank}_{\mathbb{Z}_2} G = m - 1$ over \mathbb{Z}_2, implying that $G - e$ has full rank over \mathbb{Z}_2 with respect to rows. Hence, $\text{rank}_{\mathbb{Z}_2} G - e \geq \text{rank}_{\mathbb{Z}_2} (B_{G-e}, \mathbb{I})$ over \mathbb{Z}_2, and $G - e$ is odd-transversal by Lemma 3.2. So G is minimal non-odd-transversal.

Of course (2) is equivalent to (4). \qed

Remark 3.5. From the proof of (3) \Rightarrow (1) in Theorem 3.4 if G is minimal non-odd-transversal hypergraphs with m edges, then any $m - 1$ rows of B_G are linear independent over \mathbb{Z}_2.

Example 3.6. The following are minimal non-odd-transversal hypergraphs by verifying the degrees and the rank of incidence matrix over \mathbb{Z}_2 according to Theorem 3.4, where the last two hypergraphs are square.

$$(1) \{1, 2, 3, 4\}, \{2, 3, 4, 5\}, \{1, 5\}.$$

$$(2) \{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}, \{1, 4, 5\}, \{3, 4\}.$$

$$(3) \{1, 2, 3\}, \{1, 3, 4, 5\}, \{1, 2, 4, 6\}, \{1, 5, 6, 7\}, \{2, 4, 7\}, \{2, 5, 6, 7\}, \{4, 5, 6, 7\}.$$

From Example 3.6 we know a minimal non-odd-transversal hypergraph can contain both even-sized edges and odd-sized edges. In the following we will discuss minimal non-odd-transversal hypergraphs only with even-sized edges.

Corollary 3.7. Let G be an minimal non-odd-transversal hypergraph only with even-sized edges, which has n vertices and m edges. Then the following results hold.
(1) \(n \geq m \).
(2) For \(1 \leq t \leq m - 1 \), any \(t \) edges intersect at least \(t + 1 \) vertices.
(3) The incidence bipartite graph \(\Gamma_G \) has a matching \(M \) such that \(E(G) \) is matched by \(M \), namely, there exists an injection \(f : E(G) \to V(G) \) such that \(f(e) \in e \) for each \(e \in E(G) \).

Proof. Consider the incidence matrix \(B_G \) of \(G \). As \(G \) contains only even-sized edges, each row sum of \(B_G \) is zero over \(\mathbb{Z}_2 \), which implies \(\text{rank} B_G \leq n - 1 \). By Theorem 3.4(3), \(\text{rank} B_G = m - 1 \), yielding the result (1).

Let \(e_1, \ldots, e_t \) be \(t \) edges of \(G \), where \(1 \leq t \leq m - 1 \). Let \(U = \bigcup_{i=1}^t e_i \). Let \(B_G[e_1, \ldots, e_t|U] \) be the sub-matrix of \(B_G \) with rows indexed \(e_1, \ldots, e_t \) and columns indexed by the vertices of \(U \). By Remark 3.5, \(\text{rank} B_G[e_1, \ldots, e_t|U] = t \leq |U| - 1 \), as each row sum of the sub-matrix is zero. So we have \(|U| \geq t + 1 \), yielding the result (2).

The result (3) follows from Hall’s Theorem. □

Corollary 3.8. Let \(G \) be a square minimal non-odd-transversal hypergraph only with even-sized edges. Then

(1) The incidence bipartite graph \(\Gamma_G \) has a perfect matching, namely, there exists a bijection \(f : E(G) \to V(G) \) such that \(f(e) \in e \) for each \(e \in E(G) \).
(2) For each nonempty proper subset \(U \) of \(V(G) \), \(G|U \) contains at least \(|U| + 1 \) edges, and also contains odd-sized edges.

Proof. Surely (1) comes from (3) of Corollary 3.7 as \(G \) is square. Now let \(U \) be a nonempty proper subset of \(V(G) \). Let \(F \) be the set of edges that intersect \(U \) so that \(G|U \) has edges \(e \cap U \) for all \(e \in F \). If \(F = E(G) \), then \(|F| = |V(G)| \geq |U| + 1 \) as \(G \) is square. Otherwise, we consider the submatrix \(B_G[F^c|U^c] \), which has rank \(|F^c| \) from the its rows by Remark 3.5. So, \(|F^c| = n - |F| \leq n - |U| - 1 \) as each row sum of \(B_G[F^c|U^c] \) is zero over \(\mathbb{Z}_2 \), implying that \(|F| \geq |U| + 1 \).

Assume to the contrary that each edge of \(G|U \) has even size. Then \(B_G[E(G)|U] \), and \(B_G[E(G)|U^c] \) as well, has zero row sums. So

\[
\text{rank} B_G \leq \text{rank} B_G[E(G)|U] + \text{rank} B_G[E(G)|U^c] \\
\leq |U| - 1 + |U^c| - 1 = |V(G)| - 2 = |E(G)| - 2,
\]

a contradiction to Theorem 3.4(3). □

Corollary 3.9. Let \(G \) be a square hypergraph only with even-sized edges and even-degree vertices. Then \(G \) is minimal non-odd-transversal if and only if its dual \(G^* \) is minimal non-odd-transversal.

Proof. Suppose \(G \) is minimal non-odd-transversal with \(n \) vertices (edges). By Corollary 3.2, no two vertices of \(G \) lie in precisely the same edges of \(G \). So \(G^* \) is also square, and \(B_{G^*} = B_G^T \). As each edge of \(G \) is even sized, each vertex of \(G^* \) has even degree. So \(G^* \) is minimal non-odd-transversal by Theorem 3.4. As \(G \) is isomorphic to \((G^*)^* \), \(G \) is minimal non-odd-transversal if \(G^* \) is. □

4. MINIMAL NON-ODD-BIPARTITE REGULAR HYPERGRAPHS

In this section we mainly discuss minimal non-odd-transversal \(k \)-uniform hypergraphs \(G \). By the following lemma, \(k \) is necessarily even. So the minimal non-odd-transversal uniform hypergraphs are exactly the minimal non-odd-bipartite hypergraphs.

Lemma 4.1. Let \(G \) be a minimal non-odd-transversal \(k \)-uniform hypergraphs \(G \), which has \(n \) vertices and \(m \) edges. Then \(k \) is even. If \(G \) is further \(d \)-regular, then \(d \) is even and \(d \leq k \).
As a simple generalization, the generalized power hypergraph \(G^n \) is a minimal non-bipartite simple graph if an odd cycle is constructed as in Construction 4.3, where

\[k \geq 2. \]

Let \(H \) be a nonempty proper edge-induced sub-hypergraph of \(G \). As \(G \) is connected, \(H \) contains a vertex \(v \), which is also contained in some edge not in \(H \). So \(v \) has degree 1 in \(H \). The result follows by Theorem 3.4(4).

Next we give a construction of 2-regular \(k \)-uniform hypergraphs, where \(k \) is an even integer greater than 2.

Construction 4.3. Let \(k \) be an even integer greater than 2, and let \(n, m \) be positive integers such that \(n = \frac{km}{2} \). Let \(K_{n,m} \) be a complete bipartite simple graph with two parts \(U_1 \) and \(U_2 \), where \(U_1 = [n] \) and \(U_2 = \cup_{t=1}^m \{ e_t^1, \ldots, e_t^k \} \). Let \(K_{n,m} \) be obtained from \(K_{n,m} \) by deleting the edges between the vertices of \(V_t := \{ \frac{k}{2}(t-1) + 1, \ldots, \frac{k}{2}t \} \) and the vertices of \(E_t := \{ e_t^1, \ldots, e_t^k \} \) for \(t \in [m] \).

Let \(M \) be a perfect matching of \(K_{n,m} \) such that \(W_t := \{ i_{1t}, \ldots, i_{kt} \} \) are matched to \(E_t \) respectively for \(t \in [m] \), and if \(W_t = V_s \) for some \(s \neq t \), then \(W_s = V_t \).

Define a hypergraph \(G \) with vertex set \([n]\), whose edges are

\[e_t = V_t \cup W_t, \quad \text{for } t \in [m]. \]

Lemma 4.4. The hypergraph \(G \) defined in Construction 4.3 is a 2-regular \(k \)-uniform hypergraph on \(n \) vertices.

Proof. As there is no edge between \(V_t \) and \(E_t \) in \(K_{n,m} \), \(W_t \cap V_t = \emptyset \) for each \(t \in [m] \). So each edge \(e_t \) contains exactly \(k \) vertices. Note that \(\{ V_1, \ldots, V_t \} \) and \(\{ W_1, \ldots, W_t \} \) both form a \(t \)-partition of \([n]\). For each vertex \(v \) of \(G \), \(v \in V_s \) for a unique \(s \in [m] \) and \(v \in W_t \) for a unique \(t \in [m] \), where \(t \neq s \) as \(V_s \cap W_t = \emptyset \). So \(v \) contained in exactly two edges \(e_s \) and \(e_t \), implying \(v \) has degree 2. Finally we note that \(G \) contains no multiple edges; otherwise, if \(e_s = e_t \) for \(s \neq t \), then \(V_s \cup W_t = V_t \cup W_s \), which implies that \(V_s = W_t \) and \(V_t = W_s \), as \(V_s \cup V_t = \emptyset \) and \(W_s \cup W_t = \emptyset \), contradicting the assumption. The result follows.

Corollary 4.5. Any 2-regular \(k \)-uniform hypergraph on \(n \) vertices can be constructed as in Construction 4.3, where \(k \) is even integer greater than 2.

Proof. Let \(G \) be a 2-regular \(k \)-uniform hypergraph with \(V(G) = [n] \) and \(E(G) = \{ e_1, \ldots, e_m \} \). Surely, \(n = \frac{km}{2} \). Let \(G := \frac{k}{2} \) be a \(k \)-uniform hypergraph with vertex set \(V(G) \) and edge set \(\frac{k}{2} \) \(E(G) := \{ \frac{k}{2} e : e \in E(G) \} \), where \(\frac{k}{2} e \) means the \(\frac{k}{2} \) copies
of \(e\), written as \(e^1, \ldots, e^\ell\). Then \(G\) is a \(k\)-uniform \(k\)-regular multi-hypergraph on \(n\) vertices. The incidence bipartite graph \(\Gamma_G\) of \(G\) is \(k\)-regular.

Let \(K_G\) be a complete bipartite graph with two parts \(V(G)\) and \(E(G)\). Let \(\hat{K}_G\) be obtained from \(K_G\) by deleting the edges between the vertices of \(V_t := \{\frac{k}{2}(t-1) + 1, \ldots, \frac{k}{2}t\}\) and the vertices of \(E_t := \{e^1_t, \ldots, e^\ell_t\}\) for \(t \in [m]\). Then \(\hat{K}_G\) is an \((n, m, k, \frac{k}{2})\)-regular bipartite graph.

Considering the \(k\)-regular bipartite graph \(\Gamma_G\), it contains a perfect matching \(M\). By a possible relabeling of the vertices, we may assume that for \(t \in [m]\), \(V_t := \{\frac{k}{2}(t-1) + 1, \ldots, \frac{k}{2}t\}\) is matched to \(E_t := \{e^1_t, \ldots, e^\ell_t\}\) in \(M\). By the construction of \(\hat{G}\), returning to \(G\), \(V_t \subseteq e_t\) for \(t \in [m]\).

Now deleting the edges between the vertices of \(V_t\) and the vertices of \(E_t\) from \(\Gamma_G\) for \(t \in [m]\), we arrive at a \(\frac{k}{2}\)-regular bipartite graph denoted by \(\hat{\Gamma}_G\), which is a subgraph of \(\hat{K}_G\). Now \(\hat{\Gamma}_G\) and hence \(\hat{K}_G\) has a perfect matching \(\hat{M}\), where, for \(t \in [m]\), \(W_t := \{i_1, \ldots, i_{\ell_t}\}\) is matched to \(E_t\) in \(\hat{M}\). So, returning to \(G\), \(W_t \subseteq e_t\) for \(t \in [m]\). As there is no edge between \(V_t\) and \(E_t\) in \(\hat{\Gamma}_G\), \(W_t \cap V_t = \emptyset\) for each \(t \in [m]\), which implies that \(e_t \cap V_t\) for \(t \in [m]\).

As \(G\) contains no multiple edges, if \(W_t = V_s\) for some \(s \neq t\), surely \(W_s \neq V_t\); otherwise \(e_t = e_s = V_t \cup V_s\), a contradiction.

From the above discussion, \(K_G\) and \(\hat{K}_G\) are respectively isomorphic to \(K_{n,n}\) and \(\hat{K}_{n,n}\). A perfect matching \(M\) in \(\hat{K}_{n,n}\) is isomorphic to a perfect matching in \(K_{n,n}\). So \(G\) can be constructed as in Construction \([4.3]\) \(\Box\)

Theorem 4.6. Let \(G\) be a 2-regular \(k\)-uniform hypergraphs with \(n\) vertices and \(m\) edges, where \(m\) is odd and \(k\) is even. Then \(G\) is a minimal non-odd-bipartite hypergraph if and only if \(G\) can be constructed as in Construction \([4.3]\) and \(G\) is connected.

Proof. The sufficiency follows from Lemmas \([4.3]\) and \([4.2]\) and the necessity follows from Corollary \([4.6]\) and Lemma \([5.1]\) \(\Box\)

Remark 4.7. The hypergraph constructed as in Construction \([4.3]\) may not be connected. However, by Lemma \([4.2]\) at least one component is minimal non-odd-bipartite as the total number of edges is odd. For example, the following 4-uniform hypergraph \(G\) on 18 vertices with edges
\[
e_t = \{2t - 1, 2t, 2t + 5, 2t + 6\}, t \in [9],
\]
where the labels of the vertices are modulo 18. \(G\) has 3 connected components \(G_1, G_2, G_3\) with edge sets listed below, each of which is isomorphic to \(C^4_{12}\) (a minimal non-odd-bipartite hypergraph).

\[
E(G_1) := \{1, 2, 7, 8\}, \quad \{7, 8, 13, 14\}, \quad \{13, 14, 1, 2\}.
\]
\[
E(G_2) := \{3, 4, 9, 10\}, \quad \{9, 10, 15, 16\}, \quad \{15, 16, 3, 4\}.
\]
\[
E(G_3) := \{5, 6, 11, 12\}, \quad \{11, 12, 17, 0\}, \quad \{17, 0, 5, 6\}.
\]

In Fig. \([4.4]\) we give an illustration of \(G\) constructed as in the way of Construction \([4.3]\) where the dotted lines indicate a perfect matching in \(K_{18,18}\), and the solid lines indicate a perfect matching in \(K_{18,18}\).

4.2. Examples of \(d\)-regular minimal non-odd-bipartite hypergraphs

We first give an example of \(k\)-regular \(k\)-uniform minimal non-odd-bipartite hypergraph by using Cayley hypergraph. Let \(G = (\mathbb{Z}_n; \{1, 2, \ldots, k-1\})\) be a Cayley hypergraph, where \(V(G) = \mathbb{Z}_n\), and \(E(G)\) consists of edges \(\{i, i+1, \ldots, i+k\}\) for \(i \in \mathbb{Z}_n\). Then \(G\) is connected, \(k\)-uniform and \(k\)-regular, with \(n\) vertices and \(n\) edges.
Theorem 4.8. Let k be an even integer greater than 2, and n be an odd integer greater than k. The $G = (\mathbb{Z}_n; \{1, 2, \ldots, k-1\})$ is minimal non-odd-bipartite if and only if $\gcd(k, n) = 1$.

Proof. By Theorem 3.3, it suffices to show that $\text{rank}B_G = n-1$ over \mathbb{Z}_2 if and only if $\gcd(k, n) = 1$. Consider the equation $B_Gx = 0$ over \mathbb{Z}_2. For each $i \in \mathbb{Z}_n$, as $\{i, \ldots, i+k-1\}$ and $\{i+1, \ldots, k\}$ are edges of G, by the above equation we have

$$x_i + \cdots + x_{i+k-1} = x_{i+1} + \cdots + x_{i+k} = 0.$$

So $x_i = x_{i+k}$ for each $i \in \mathbb{Z}_n$. Let $t := \gcd(k, n)$. Then there exist integers p, q such that $pk + qn = t$. Note that t is odd as n is odd, and if writing $k = st$, then s is even as k is even.

For each $i \in \mathbb{Z}_n$,

$$x_i = x_{i+k} = \cdots = x_{i+pk} = x_{i+tqn} = x_{i+t},$$

As s is even, for any $x_1, \ldots, x_t \in \mathbb{Z}_2$, and any edge

$$x_1 + \cdots + x_k = (x_1 + \cdots + x_t) + \cdots + (x_{(s-1)t+1} + \cdots + x_{st}) = s(x_1 + \cdots + x_t) = 0.$$

So, the solution space of $B_Gx = 0$ over \mathbb{Z}_2 has dimension t, which implies that $\text{rank}B_G = n-t$ over \mathbb{Z}_2. The result now follows.

Let G be a k-uniform hypergraph with n vertices and m edges. Let G^1, G^2, \ldots, G^t be t disjoint copies of G. For each vertex v (or each edge e) of G, it has t copies v^1, \ldots, v^t (or e^1, \ldots, e^t) in G^1, \ldots, G^t respectively. Let $t\circ G$ be a hypergraph whose vertex set is $\bigcup_{i=1}^t V(G^i)$, and edge set is $\{e^1 \cup \cdots \cup e^t : e \in E(G)\}$. Then $t \circ G$ is tk-uniform hypergraph with tn vertices and m edges, and the degree of v^i in $t \circ G$ is same as the degree of v in G for each $v \in V(G)$ and $i \in [t]$. If further G is d-regular, then $t \circ G$ is also d-regular.

Lemma 4.9. Let G be a k-uniform hypergraph. Then G is minimal non-odd-bipartite if and only if $t \circ G$ is minimal non-odd-bipartite.

Proof. By a suitable labeling of the vertices of $t \circ G$, we have $B_{t\circ G} = (B_G, B_G, \ldots, B_G)$, where B_G occurs t times in the latter matrix. As $\text{rank}B_G = \text{rank}B_{t\circ G}$, the result follows by Theorem 3.3.

Next we give an example of d-regular k-uniform minimal non-odd-bipartite hypergraph G with n vertices and m edges, where m is odd and d is even such that $\gcd(d, m) = 1$. Obviously $nd = km$, and $d|k$ as $\gcd(d, m) = 1$. Suppose $k = td$, where $t > 1$. By Theorem 1.8, the hypergraph $H = (\mathbb{Z}_m; \{1, 2, \ldots, d-1\})$ is minimal non-odd-bipartite, which is d-regular, d-uniform, with m edges. By Lemma 4.9, $t \circ H$ is minimal non-odd-bipartite with m edges, which is d-regular and $td(= k)$-uniform.
Corollary 4.10. Let $H = (\mathbb{Z}_m; \{1, 2, \ldots, d-1\}$, where m is odd and d is even such that $\gcd(d, m) = 1$. Then $t \circ H$ is minimal non-odd-bipartite with m edges, which is d-regular and td-uniform.

Note that in Corollary 4.10 if $d = 2$, then H is an odd cycle C_m, and $t \circ C_m = C_m^{2t}$ (a generalized power hypergraph), both of which are minimal non-odd-bipartite.

Thirdly we use a projective plane (X, B) of order q to construct a regular minimal non-odd-bipartite hypergraph. Recall a projective plane of order q consists of a set X of $q^2 + q + 1$ elements called points, and a set B of $(q + 1)$-subsets of X called lines, such that any two points lie on a unique line. It can be derived from the definition that any points lies on $q + 1$ lines, and two lines meet in a unique point, and there are $q^2 + q + 1$ lines. Now define a hypergraph based on (X, B), denoted by $G = (X, B)$, whose vertices are the points of X and edges are the lines of B. Then $G = (X, B)$ is a $(q + 1)$-regular $(q + 1)$-uniform hypergraph with $q^2 + q + 1$ vertices.

Theorem 4.11. Let (X, B) be a projective plane of order q, and let $G = (X, B)$ be a hypergraph defined as in the above. If q is odd, then $G = (X, B)$ is minimal non-odd-bipartite.

Proof. Let e be an edge of $G = (X, B)$ or a line of (X, B). Then $B_{G-e}B^T_{G-e} = qI + J,$

where I is the identity matrix, and J is an all-ones matrix, both of size $q^2 + q$. So $\det B_{G-e}B^T_{G-e} = \det(qI + J) = (q^2 + 2q)q^{q^2+q-1} \equiv 1 \mod 2,$

implying that $\text{rank} B_G = m - 1$ over \mathbb{Z}_2. The result follows by Theorem 3.3(3). \hfill \Box

It is known that if q is an odd prime power, then there always exists a projective plane of order q by using the vector space \mathbb{F}_q^3. By Lemma 3.9 and Theorem 4.11, we easily get the following result.

Corollary 4.12. Let q be an odd prime power. There exists a $(q + 1)$-regular $(q + 1)$-uniform minimal non-odd-bipartite hypergraph G with $q^2 + q + 1$ edges. For any positive integer $t > 1$, there exists a $(q + 1)$-regular $(t(q + 1))$-uniform minimal non-odd-bipartite hypergraph with $q^2 + q + 1$ edges.

Remark 4.13. From Corollaries 4.8 and 4.12, the minimal non-odd-bipartite hypergraphs G have degree d and edge number m such that $\gcd(d, m) = 1$. (Note that $\gcd(q + 1, q^2 + q + 1) = 1$.) As $\gcd(d, m) = 1$, from the equality $nd = mk$, we have $d \mid k$, where n, k are the number of vertices and the uniformity of G respectively.

In fact, there exist d-regular minimal non-odd-bipartite hypergraphs with m edges such that $\gcd(d, m) > 1$. For example, let G be a 6-uniform 6-regular hypergraph with 9 edges below:

$\{1, 2, 3, 4, 5, 6, 7, 8\}, \quad \{1, 4, 5, 6, 7, 9\}, \quad \{1, 3, 5, 6, 7, 8\}, \quad \{1, 2, 4, 6, 7, 8\}, \quad \{1, 3, 5, 7, 8, 9\},

\{1, 2, 6, 7, 8, 9\}, \quad \{2, 3, 4, 5, 7, 9\}, \quad \{2, 3, 4, 5, 8, 9\}, \quad \{2, 3, 4, 6, 8, 9\}.$

By Theorem 3.3, it is also easy to verify that G is minimal non-odd-bipartite.

There also exist d-regular k-uniform minimal non-odd-bipartite hypergraphs such that $d \nmid k$. For example, let G be a 6-regular 8-uniform hypergraph with 9 edges below:

$\{1, 2, 3, 4, 5, 6, 7, 8\}, \quad \{1, 3, 4, 5, 6, 7, 9, 11\}, \quad \{1, 4, 5, 6, 7, 8, 9, 10\},

\{1, 5, 7, 8, 9, 10, 11, 12\}, \quad \{1, 2, 3, 6, 7, 9, 10, 12\}, \quad \{1, 2, 4, 5, 8, 10, 11, 12\},

\{2, 3, 4, 6, 8, 10, 11, 12\}, \quad \{2, 3, 4, 5, 8, 9, 11, 12\}, \quad \{2, 3, 6, 7, 9, 10, 11, 12\}.$

By Theorem 3.3, it is easy to verify that G is minimal non-odd-bipartite.
Example 4.14. The minimal non-odd-bipartite uniform hypergraphs with fewest edges. By Theorem 3.3 if G is a k-uniform minimal non-odd-bipartite hypergraph with n vertices and m edges, then m is odd. If $m = 1$, G is surely odd-bipartite. So, $m \geq 3$, and hence the maximum degree is at most 3 if $m = 3$. Assume that $m = 3$. By Theorem 3.4 each vertex has an even degree, implying that G is 2-regular. So $2n = 3k$, and $3|n$. Letting $n = 3l$, we have $k = 2l$. So $G = C_{2l}$, which is the unique example of minimal non-odd-bipartite hypergraph with 3 edges. It is consistent with the fact that C_{3} is the unique minimal non-bipartite simple graph with 3 edges by taking $k = 2$.

Example 4.15. The minimal non-odd-bipartite uniform hypergraphs with fewest vertices. If G is a k-uniform minimal non-odd-bipartite hypergraph with n vertices and m edges. Then $n \geq k + 1$, as an edge is odd-bipartite. Assume that $n = k + 1$. Then $m \leq \binom{k+1}{k} = k + 1$, with equality if and only if G is a $(k + 1)$-simplex [7], i.e. any k vertices of G forms an edge. Let Δ be the maximum degree of G, which is even by Theorem 3.4. As m is odd by Theorem 3.4 we have

$$m - 1 \geq \Delta \geq \frac{km}{k+1} = m - \frac{m}{k+1} \geq m - 1,$$

which implies that $m = k + 1$ and k is even. So, the $(k + 1)$-simplex is the unique example of k-uniform minimal non-odd-bipartite hypergraph with $k + 1$ vertices by Theorem 3.4. If taking $k = 2$, then C_{3} is the the unique minimal non-bipartite simple graph with 3 vertices.

Example 4.16. Example of non-regular minimal non-odd-bipartite hypergraph. Let G be a 4-uniform hypergraph on vertices $1, \ldots, 9$ with edges

$$\{1, 2, 3, 4\}, \{1, 2, 4, 5\}, \{1, 3, 6, 7\}, \{1, 5, 8, 9\}, \{6, 7, 8, 9\}.$$

It is easy to verify that G is non-regular minimal non-odd-bipartite by Theorem 3.4

Remark 4.17. A minimal non-odd-bipartite hypergraph may contain cut edges. For example, the following 4-uniform hypergraph G with vertex set $[18]$ and 9 edges:

$$\{1, 3, 4, 5\}, \{2, 3, 4, 6\}, \{5, 7, 8, 9\}, \{6, 7, 8, 9\}, \{1, 2, 10, 11\}, \{10, 12, 13, 14\}, \{11, 12, 13, 15\}, \{14, 16, 17, 18\}, \{15, 16, 17, 18\},$$

where $\{1, 2, 10, 11\}$ is a cut edge of G. By Theorem 3.4 G is minimal non-odd-bipartite.

5. Least H-eigenvalue of minimal non-odd-bipartite hypergraphs

Let G be a k-uniform minimal hypergraph. Let $x \in \mathbb{C}^{V(G)}$ whose entries are indexed by the vertices of G. For a subset U of $V(G)$, denote $x^{U} := \Pi_{u \in U} x_{u}$. Then we have

$$\mathcal{A}(G) x^{k} = \sum_{e \in E(G)} k x^{e}, \quad (5.1)$$

Theorem 5.1. Let G be k-uniform minimal non-odd-bipartite hypergraph with n vertices and m edges, where k is even. Then

(1) $\lambda_{\text{min}}(G) \leq -\rho(G) + \frac{2k}{m}$

(2) $\lambda_{\text{min}}(G) \leq -(1 - \frac{2}{m}) \rho(G)$

Proof. As G is connected by Lemma 3.4 by Perron-Frobenius theorem, there exists a positive eigenvector x of $\mathcal{A}(G)$ associated with the spectral radius $\rho(G)$. We may assume $\|x\|_{k} = 1$. Then

$$\rho(G) = \mathcal{A}(G) x^{k} = \sum_{e \in E(G)} k x^{e}. \quad (5.2)$$
Define a vector \(y \) otherwise. Note that \(\bar{e} \) is odd-bipartite with an odd-bipartition \(\{U, U^c\} \). Now define a vector \(y \) on the vertices of \(G - \bar{e} \) such that \(y_v = x_v \) if \(v \in U \) and \(y_v = -x_v \) otherwise. Note that \(\bar{e} \) intersects \(U^c \) in an even number of vertices as \(G \) is non-odd-bipartite, which implies that \(y^e = x^e > 0 \). By a similar discussion as the above, we have

\[
\lambda_{\min}(G) \leq A(G)y^k = -A(G)x^k - 2kx^\bar{e} \leq -\rho(G) + \frac{2k}{m}.
\]

For the second result, from Eq. (5.2), there exists one edge \(\hat{e} \) such that \(kx^\hat{e} \) is not greater than the average of the summands \(kx^e \) over all \(m \) edges \(e \) of \(G \), that is,

\[
kx^\hat{e} \leq \frac{\rho(G)}{m}.
\]

Note that \(G - \hat{e} \) is also odd-bipartite with an odd-bipartition say \(\{W, W^c\} \). Now define a vector \(z \) on the vertices of \(G - \hat{e} \) such that \(z_v = x_v \) if \(v \in W \) and \(z_v = -x_v \) otherwise. By a similar discussion as the above, we have

\[
\lambda_{\min}(G) \leq A(G)z^k = -A(G)x^k - 2kx^\hat{e} \leq -(1 - \frac{2}{m})\rho(G).
\]

\[\square\]

Corollary 5.2. Let \(k \) be a positive even integer. For any \(\epsilon > 0 \), for any \(k \)-uniform minimal non-odd-bipartite hypergraph \(G \) with sufficiently larger number of vertices or edges,

1. \(-\rho(G) < \lambda_{\min}(G) < -\rho(G) + \epsilon\),
2. \(-1 < \lambda_{\min}(G)/\rho(G) < -1 + \epsilon\).

For a connected \(k \)-uniform hypergraph \(G \), where \(k \) is even, if we denote

\[
\alpha(G) := \rho(G) + \lambda_{\min}(G), \quad \beta(G) := -\lambda_{\min}(G)/\rho(G),
\]

then by Lemma 2.3 \(\alpha(G) \geq 0 \), with equality if \(G \) is odd-bipartite; and \(0 < \beta(G) \leq 1 \), with right equality if and only if \(G \) is odd-bipartite. So we can use \(\alpha(G) \) and \(\beta(G) \) to measure the non-odd-bipartiteness of an even uniform hypergraph.

Furthermore, by Theorem 5.1 and Corollary 5.2 if \(G \) is minimal non-odd-bipartite hypergraph, then \(\alpha(G) \to 0 \) and \(\beta(G) \to 1 \) when the number of vertices or edges of \(G \) goes to infinity. So, the minimal non-odd-bipartite hypergraphs are very close to be odd-bipartite in this sense.

References

[1] R. Aharoni, N. Linial, Minimal Non-two-colorable hypergraphs and minimal unsatisfiable formulas, *J. Combin. Theory, Ser. A*, 43(1986), 196-204.

[2] N. Alon, Transversal numbers of uniform hypergraphs, *Graphs Combin.*, 6(1990), 1-4.

[3] N. Alon, Z. Bregman, Every 8-uniform 8-regular hypergraph is 2-colorable, *Graphs Combin.*, 4(1988), 303-306.

[4] K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, *Commun. Math. Sci.*, 6(2008), 507-520.

[5] K. C. Chang, K. Pearson, T. Zhang, On eigenvalue problems of real symmetric tensors, *J. Math. Anal. Appl.*, 350(2009), 416-422.

[6] V. Chvátal, C. McDiarmid, Small transversals in hypergraphs, *Combinatorica*, 12(1992), 19-26.

[7] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, *Linear Algebra Appl.*, 436(9)(2012), 3268-3292.

[8] R. Cowen, S. H. Hechler, J. W. Kennedy, A. Steinberg, Odd neighborhood transversals on grid graphs, *Discrete Math.*, 307(2007), 2200-2208.
[9] Y.-Z. Fan, Y.-H. Bao, T. Huang, Eigenvariety of nonnegative symmetric weakly irreducible tensors associated with spectral radius and its application to hypergraphs, *Linear Algebra Appl.*, 564(2019), 72-94.

[10] Y.-Z. Fan, T. Huang, Y.-H. Bao, C.-L. Zhuang-Sun, Y.-P. Li, The spectral symmetry of weakly irreducible nonnegative tensors and connected hypergraphs, *Trans. Amer. Math. Soc.*, 372(3)2019, 2213-2233.

[11] Y.-Z. Fan, Y. Wang, Y.-H. Bao, J.-C. Wan, M. Li, Z. Zhu, Eigenvectors of Laplacian or signless Laplacian of hypergraphs associated with zero eigenvalue, *Linear Algebra Appl.*, 579(2019), 244-261.

[12] S. Friedland, S. Gaubert, L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, *Linear Algebra Appl.*, 438(2013), 738-749.

[13] R. Hartshorne, *Algebraic Geometry*, Springer-Verlag, New York, 1977.

[14] M. A. Henninga, A. Yeo, 2-colorings in k-regular k-uniform hypergraphs, *European J. Combin.*, 34(2013), 1192-1202.

[15] M. A. Henninga, A. Yeo, Hypergraphs with large transversal number, *Discrete Math.*, 313(2013), 959-966.

[16] S. Hu, L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, *Discrete Appl. Math.*, 169(2014), 140-151.

[17] S. Hu, L. Qi, J. Y. Shao, Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues, *Linear Algebra Appl.*, 439(2013), 2980-2998.

[18] M. Khan, Y.-Z. Fan, On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, *Linear Algebra Appl.*, 480(2015), 93-106.

[19] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, *Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing*, 2005, pp. 129-132.

[20] V. Nikiforov, Analytic methods for uniform hypergraphs, *Linear Algebra Appl.*, 457(2014), 455-535.

[21] V. Nikiforov, Hypergraphs and hypermatrices with symmetric spectrum, *Linear Algebra Appl.*, 519(2017), 1-18.

[22] K. Pearson, T. Zhang, On spectral hypergraph theory of the adjacency tensor, *Graphs Combin.*, 30(5)(2014), 1233-1248.

[23] L. Qi, Eigenvalues of a real supersymmetric tensor, *J. Symbolic Comput.*, 40(6)(2005), 1302-1324.

[24] D. Rautenbach, Z. Szigeti, Greedy colorings of words, *Discrete Appl. Math.*, 160(2012), 1872-1874.

[25] P. D. Seymour, On the two-coloring of hypergraphs, *Quart. J. Math. Oxford*, 25(3)(1974), 303-312.

[26] J.-Y. Shao, H.-Y. Shan and B.-F. Wu, Some spectral properties and characterizations of connected odd-bipartite uniform hypergraphs, *Linear Multilinear Algebra*, 63(2015), 2359-2372.

[27] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, *SIAM J Matrix Anal. Appl.*, 31(5)(2010), 2517-2530.

[28] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II, *SIAM J Matrix Anal. Appl.*, 32(4)(2011), 1236-1250.

[29] Y. Yang, Q. Yang, On some properties of nonnegative weakly irreducible tensors, Available at arXiv: 1111.0713v2.

[30] Guanglu Zhou, Liqun Qi, Soon-Yi Wu, On the largest eigenvalue of a symmetric nonnegative tensor, *Numer. Linear Algebra Appl.*, 20(6)(2013), 913-928.

School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China

E-mail address: fanyz@ahu.edu.cn

School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China

E-mail address: wangy@ahu.edu.cn

School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China

E-mail address: wanjc@stu.ahu.edu.cn