ФИТОПАТОГЕННЫЕ ГРИБЫ РОДА *FUSARIUM* LINK: ВЗАИМООТНОШЕНИЯ С АКТИНОМИЦЕТАМИ РОДА *STREPTOMYCES*

Сидорова С.Г.
Белорусский государственный университет, Минск,
Sidorova @bsu.by

Грибы рода *Fusarium* – полифаги, которые вызывают корневые гнили и увядание культурных растений. Экологизация системы защиты от фитопатогенов строится на применении биологических методов, основанных на использовании микроорганизмов-антагонистов. В этой связи мицелиальные прокариоты могут выступать в качестве естественной защиты от патогенов т.к. они обладают способностью синтезировать антибиотики (в первую очередь, аминогликозиды, макролиды, новые антибиотики макваримициды), а так же другие биологически активные вещества [3]. Кроме того, актиномицеты являются продуцентами хитиназ [9] и глюканаз [8]. В ряде работ [1–2, 5–7] показана принципиальная возможность использования актиномицетов в качестве основы для препаратов комплексного действия, применяемых на различных культурах. Эти биопестициды проявляют антагонизм к фитопатогенным грибам и бактериям, обладают избирательностью действия, безопасны для здоровья животных и человека. В этой связи целью настоящего исследования явилось выявление антагонистов некоторых видов рода *Fusarium* Link среди почвенных актиномицетов рода *Streptomyces*. Материалом исследований служили 3 вида фузариума: *Fusarium oxysporum* (Sacc.) Snyderand Hansen, *Fusarium culmorum* (Wm. G. Sm.) Sacc., *Fusarium sulphureum* Schltdl., полученные из коллекций чистых культур кафедры ботаники, а так же штаммы (17с, 35, 45, 84) актиномицета р. *Streptomyces* – из коллекции микроорганизмов кафедры микробиологии БГУ. Показатель ингибирования (ПИ) фитопатогена актиномицетами в условиях чистой культуры, а также интенсивность спорообразования (ИС) патогена рассчитывали по методикам, изложенным в руководстве [4]. Повторность опыта (*n*) – восемикратная. Статистическая обработка данных, представленных в виде «среднее ± ошибка среднего» проведена с использованием программы *Statistica* 6.0.

Результаты оценки активности штаммов р. *Streptomyces* показали неоднозначную реакцию воздействия их на исследуемые виды р. *Fusarium*. Так, для *F. oxysporum* показатель ингибирования его ростовой активности на 4-е сутки наблюдения в вариантах культивирования со штаммами 17с и 84 был равен, соответственно, 44,5% и 51,4% (табл. 1). Все остальные изучаемые штаммы не оказали сильного антифунгального воздействия. Учитываемый параметр колебался в пределах 24,1-24,6%. С увеличением длительности культивирования отмечалось дальнейшее усиление (до 67%) ингибирующего
воздействия штаммов 17с и 84. Для остальных штаммов сохранялась аналогичная с предыдущим периодом наблюдения тенденция.

Таблица 1 – Развитие микромицета *F. oxysporum* в присутствии штаммов актиномицета р. *Streptomyces*.

Вариант опыта	ПИ, %	ИС, ×10⁶ шт/см²	Время расчета, сут	Место измерения ИС
			4	Центр колонии
			8	Край колонии
F. oxysporum+А 17с	44,5	67,2	7,9±0,15*	3,7±0,9*
F. oxysporum+А 84	51,4	66,9	2,6±0,23*	–
F. oxysporum+А 45	24,1	21,9	17,8±0,55	6,3±0,11
F. oxysporum+А 35	24,6	22,31	33,8±0,97*	21,4±0,78*
Контроль (*F. oxysporum*)	0	0	18,3±0,16	6,8±0,9

Примечание: *– достоверно (*P* ≤ 0,05) по сравнению с контролем для одноимённого места измерения (центр или край колонии); знак «→» означает отсутствие спороношения.

Анализ интенсивности спорообразования показал снижение этого показателя от центра колонии к ее краю практически во всех опытных вариантах. При совместном культивировании *F. oxysporum* штаммов 17с и 84 наблюдалось уменьшение, соответственно, в 2 и 7 раз количества спор на единиц спороносящей поверхности в центре колонии по сравнению с контролем. Продукты метаболизма штамма 35, выделяемые в искусственную питательную среду, вызывали стимулирование (на 84%) процесса спорообразования у *F. oxysporum*. В варианте культивирования гриба *F. oxysporum* и штамма 45 этот показатель находился на уровне контроля (табл. 1). Спорообразование *F. oxysporum* у края колонии описывается аналогичным образом (табл. 1).

Анализ ростовой активности *F. culmorum* показал, что наиболее сильный угнетающий эффект отмечен также при его совместном культивировании со штаммами 17с и 84. Показатель ингибирования после 4-х суток наблюдения составил, соответственно, 44,8% и 46,9%. Штаммы 35 и 45 существенно не повлияли на рост гриба, показатель ингибирования составил порядка 20%. По прошествии 8-ми суток культивирования фузариума со штаммами 17с и 84 наблюдалось усиление (до 64-66 %) ингибирования роста фитопатогена. В то же время, степень угнетения роста гриба штаммами 45 и 35, в сравнении с предыдущим периодом, оказалась слабее (соответственно, 10,5% и 16,2%).

Подсчет количества спор, формирующихся у *F. culmorum* на единице спороносящей поверхности, выявил тенденцию к уменьшению способности продуцирования спор практически во всех опытных вариантах. Исключение составил вариант культивирования со штаммом 35, который оказал стимулирующее воздействие на этот процесс. Такая же картина в данном варианте отмечена и у края колонии *F. culmorum* (табл. 2).
Таблица 2 – Развитие фитопатогенного микромицета *F. culmorum* присутствующих штаммов актиномицета рода *Streptomyces*.

Вариант опыта	ПИ, %	ИС, ×10⁶ шт/см²		
	Время расчета, сут	Место измерения ИС		
	4	8	Центр колонии	Край колонии
F. culmorum + А 17с	44,8	63,7	11,2±0,27*	1,2±0,03*
F. culmorum + А 84	46,9	65,9	2,7±0,05*	–
F. culmorum + А 45	19,8	10,5	5,23±0,43*	1,2±0,08*
F. culmorum + А 35	22,1	16,2	22,6±1,08*	2,3±0,03*
Контроль (*F. culmorum*)	0	0	19,4±0,07	1,87±0,11

Примечание: * – достоверно (*P* ≤ 0,05) по сравнению с контролем для одноимённого места измерения (центр или край колонии); знак «–» означает отсутствие спороношения.

Как и в случае изучения двух других видов фузариума, штаммы 17с и 84 оказали наиболее сильное (на 41, 2 % и 49,3 %) ингибитирование ростовой активности гриба *F. sulphureum* (табл.3). По истечении 8-ми суток наблюдения отмечено дальнейшее усиление (примерно до 60 %) угнетения этого процесса.

Таблица 3 – Развитие фитопатогенного микромицета *F. sulphureum* в присутствииштаммов актиномицета рода *Streptomyces*.

Вариант опыта	ПИ, %	ИС, ×10⁶ шт/см²		
	Время расчета, сут	Место измерения ИС		
	4	8	Центр колонии	Край колонии
F. sulphureum + А 17с	41,5	58,4	6,9±0,14*	3,8±0,7*
F. sulphureum + А 84	49,3	62,6	1,6±0,23*	–
F. sulphureum + А 45	24,1	19,5	4,9±0,53*	2,2±0,11*
F. sulphureum + А 35	26,6	12,3	32,8±0,96	21,3±0,78*
Контроль (*F. sulphureum*)	0	0	17,3±0,14	6,7±0,9

Примечание: * – достоверно (*P* ≤ 0,05) по сравнению с контролем для одноимённого места измерения (центр или край колонии); знак «–» означает отсутствие спороношения.

Репродуктивная активность гриба *F. sulphureum* испытывала наиболее сильное угнетение (на 40% и 92%) под воздействием штаммов 17с и 84. Для остальных вариантов опыта отмечена реакция, аналогичная двум другим видам фузариума (табл. 3).

Таким образом, скрининг тестируемых штаммов актиномицетар. *Streptomyces*на предмет их антифузариозной активности позволил установить, что штаммы 17с и 84 оказали наибольшее (более 60%) ингибитующее воздействие на все изучаемые виды фузариума. Это дает основание для возможности практического применения их в качестве штаммов-антиагонистов при разработке препаратов на их основе.
Литература

1. Виноградова К.А., Шаркова Т.С., Александрова А.В., Кожевин П.А. Анализ межпопуляционных взаимодействий почвенных грибов и актиномицетов // Микология и фитопатология. 2005. Т. 39, вып. 3. С. 28–40.

2. Домрачева Л.И., Широких И.Г., Фокина А.И. Антифузариозное действие цианобактерий и актиномицетов в почве и ризосфере // Микология и фитопатология. 2009. Т. 43, вып. 2. С. 157–165.

3. Зенова Г.М. Почвенные актиномицеты. М.: МГУ, 1992. 78 с.

4. Микология: методы экспериментального изучения микроскопических грибов //Авт. сост.: В.Д. Полиссенова, А.К. Храмцов, С.Г. Пискун. Мн.: БГУ, 2004. 38 с.

5. Новикова И.И., Бойкова И.В., Шенин Ю.Д. Биологические особенности и компонентный состав активного комплекса штамма Streptomyces chrysomallus P-21 – антагониста фитопатогенных грибов // Вестник защиты растений. 2006. № 3. С. 13–21.

6. Раткевич Е.Б., Сидорова С.Г. Антифунгальная активность грибов рода Trichoderma Pers.: Фр. и актиномицетов в отношении возбудителя фузариоза томата // Тезисы докл. II Междунар. науч.-практ. конф. «Клеточная биология и биотехнология растений». Минск, 28-31 мая, 2018 г. Мн.: БГУ, 2018. С 173–174.

7. Широких И.Г. Антифунгальный потенциал актиномицетов в ризосфере ячменя на дерново-подзолистых почвах // Почвоведение. 2003. №4. С. 458–464.

8. Chater K.F., Biro S., Lee K.J., Painer T., Schrempf H. The complex extracellular biology of streptomycetes // FEMS Microbiol. Rev. 2010. V. 34. P. 171–198.

9. Hoster F., Schmitz J., Daniel R. Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain // Appl. Microbiol. Biotechnol. 2005. V. 66. P. 434–442.