Light propagation in periodic modulated complex waveguides

Sean Nixon and Jianke Yang
Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401
(Dated: December 22, 2014)

Abstract: Light propagation in optical waveguides with periodically modulated index of refraction and alternating gain and loss are investigated for linear and nonlinear systems. Based on a multiscale perturbation analysis, it is shown that for many non-parity-time (\mathcal{PT}) symmetric waveguides, their linear spectrum is partially complex, thus light exponentially grows or decays upon propagation, and this growth or delay is not altered by nonlinearity. However, several classes of non-\mathcal{PT}-symmetric waveguides are also identified to possess all-real linear spectrum. In the nonlinear regime longitudinally periodic and transversely quasi-localized modes are found for \mathcal{PT}-symmetric waveguides both above and below phase transition. These nonlinear modes are stable under evolution and can develop from initially weak initial conditions.

PACS numbers: 42.65.Tg, 05.45.Yv

I. INTRODUCTION

Parity-time (\mathcal{PT})-symmetric systems have the unintuitive property that their linear spectrum can be completely real even though they contain gain and loss. In spatial optics, \mathcal{PT}-symmetric systems can be realized by employing symmetric index guiding and an anti-symmetric gain-loss profile. In temporal optics and other physical settings, \mathcal{PT}-symmetric systems can be obtained as well. So far, a number of novel phenomena in optical \mathcal{PT} systems have been reported, including phase transition, nonreciprocal Bloch oscillation, unidirectional propagation, distinct pattern of diffraction, formation of solitons and breathers, wave blowup, and so on. Novel photonic devices such as \mathcal{PT}-lasers have also been demonstrated.

Research into optical \mathcal{PT} systems has been largely devoted to waveguides where the gain and loss is distributed along the transverse direction. This leads to the natural question: what role does \mathcal{PT} symmetry play when the gain and loss is distributed in the direction of propagation? In the study of \mathcal{PT} systems which exhibit unidirectional propagation or Bragg solitons, this has been touched upon. However, the models in those works ignored the transverse effects on light propagation. For real waveguides (i.e., without gain and loss), control of light through modulation of the refractive index has been well documented, and just recently researchers have studied these modulations with added gain and loss distributed in the transverse direction.

In this article, we study the propagation of light in complex waveguides with periodically modulated index of refraction as well as alternating gain and loss along the direction of propagation. When this system is non-\mathcal{PT}-symmetric, we show that linear modes often grow or decay over distance, and this growth or decay is not affected by nonlinearity. However, several classes of non-\mathcal{PT}-symmetric waveguides are found to possess completely real linear spectrum, thus all linear modes propagate periodically over distance. In the nonlinear regime, families of longitudinally periodic and transversely quasi-localized solutions exist for \mathcal{PT}-symmetric waveguides both below and above phase transition. These nonlinear modes are stable under evolution and can develop from weak initial conditions. By applying multiscale perturbation theory, a reduced ordinary differential equation is derived for the modes’ linear and nonlinear propagation, and this reduced model agrees well with direct simulations of the original system.

Propagation of light in a modulated waveguide with gain and loss can be modeled under paraxial approximation by the following nonlinear Schrödinger equation

$$i\psi_z + \psi_{xx} + V(x, z)\psi + \sigma|\psi|^2\psi = 0,$$ \hspace{1cm} (1)

where z is the direction of propagation, x is the transverse direction, ψ is the envelope function of the light’s electric field, $V(x, z)$ is a complex periodic potential whose real part is the refractive index of the waveguide and the imaginary part represents gain and loss, and σ is the coefficient of the cubic nonlinearity. A schematic diagram of our system is given in Fig. 1. The paraxial model is valid when the waveguide modulation is weak and the light frequency is not near the Bragg frequency of the periodic waveguide, in which case back wave reflection is negligible. This waveguide would be \mathcal{PT}-symmetric if

$$V^*(x, z) = V(x, -z),$$ \hspace{1cm} (2)

where the asterisk * represents complex conjugation. Note that in this \mathcal{PT} condition, coordinate reflection is only in the z-direction, not x-direction. This differs from the usual multi-dimensional \mathcal{PT} symmetry and more resembles the partial \mathcal{PT} symmetry proposed in.

To be consistent with the paraxial approximation, in this article we consider complex waveguides where the z-direction modulation appears as a small perturbation

$$V(x, z) = V_0(x) + iV_1(x, z),$$ \hspace{1cm} (3)

where $V_0(x)$ is the usual multi-dimensional \mathcal{PT} symmetry proposed in.
where \(V_0(x) \) is the unperturbed real refractive index which is assumed to be localized, \(\epsilon \ll 1 \), and the perturbation \(V_1(z, x) \) is periodically modulated along the \(z \) direction whose period is normalized as \(2\pi \). Assuming \(V_1(z, x) \) has the same transverse profile as the unperturbed index \(V_0(x) \), \(V_1 \) then can be expanded into a Fourier series

\[
V_1(x, z) = V_0(x) \sum_{n=-\infty}^{\infty} a_n e^{inz}, \tag{4}
\]

where \(a_n \) are complex Fourier coefficients. Without loss of generality, we take \(a_0 = 0 \). The perturbed waveguide is \(PT \)-symmetric when all the Fourier coefficients \(a_n \) are strictly real.

II. MULTISCALE PERTURBATION ANALYSIS

Assume that the unperturbed real waveguide \(V_0 \) supports a linear discrete eigenmode \(\psi = u_0(x) e^{-i\mu_0 z} \), where \(\mu_0 \) is a real propagation constant, and \(u_0 \) is a real localized function satisfying

\[
(\partial_{xx} + V_0 + \mu_0)u_0 = 0. \tag{5}
\]

Then in the presence of the above longitudinal waveguide perturbations and weak nonlinearity, the perturbed solution to Eq. \(\Box \) can be expressed as

\[
\psi(x, z) = u(x, z, Z)e^{-i\mu_0 z}, \tag{6}
\]

where

\[
u(x, z, Z) = \epsilon A(Z)u_0(x) + \epsilon^2 A(Z)u_1(x, z) + \epsilon^3 U_2 + \ldots, \tag{7}
\]

\(A(Z) \) is a slowly varying complex envelope function, and \(Z = \epsilon^2 z \) is the slow distance variable. Substituting this expansion into Eq. \(\Box \), at order \(\epsilon^2 \) we have

\[
(i\partial_z + \partial_{xx} + V_0 + \mu_0)u_1 = -u_0 V_1.
\]

Defining the operator

\[
L_n = \partial_{xx} + V_0 + \mu_0 - n,
\]

and expanding the solution \(u_1(x, z) \) into a Fourier series

\[
u_1(x, z) = \sum_{n=-\infty}^{\infty} u_1^{(n)}(x) e^{inz},
\]

each term \(u_1^{(n)}(x) \) is then determined from the equation

\[
L_n u_1^{(n)}(x) = -a_n u_0(x) V_0(x).
\]

Since \(a_0 = 0 \), the right hand side is zero for \(n = 0 \). Without loss of generality we take \(u_1^{(0)}(x) = 0 \) as well. Since the potential \(V_0(x) \) is localized, assuming no other discrete eigenvalues of \(V_0 \) differ from \(\mu_0 \) by an integer, then when \(n > \mu_0 \) there is no solvability condition and a localized solution \(u_1^{(n)}(x) \) is admitted. When \(n < \mu_0 \), however, the \(L_n \) operator has non-vanishing bounded homogeneous solutions, and as a result the corresponding solution \(u_1^{(n)}(x) \) is non-vanishing at large \(|x| \) as well if \(a_n \neq 0 \).

At order \(\epsilon^3 \) equation \(\Box \) gives

\[
(i\partial_z + \partial_{xx} + V_0 + \mu_0)U_2 = -iA_2 u_0 - A u_1 - \sigma |A|^2 A_0^3.
\]

Decomposing the solution \(U_2 \) into a Fourier series in \(z \), the equation for the constant mode \(U_2^{(0)} \) is found to be

\[
L_0 U_2^{(0)} = -iA_2 u_0 + A \sum_{m=-\infty}^{\infty} a_m u_1^{(m)} V_0 - \sigma |A|^2 A_0^3,
\]

where \(L_m u_1^{(m)} = u_0 V_0 \). In view of Eq. \(\Box \), \(u_0 \) is a homogeneous solution of the above inhomogeneous equation. Since \(L_0 \) is self-adjoint, in order for this equation to be solvable, its right hand side must be orthogonal to \(u_0 \). This solvability condition leads to the following ordinary differential equation (ODE) for the evolution of the slowly-varying envelope function \(A(Z) \),

\[
A_Z + i\mu A - i\sigma |A|^2 A = 0, \tag{8}
\]

where

\[
\mu = \sum_{m=-\infty}^{\infty} a_m \int_{-\infty}^{\infty} V_0 u_0 \tilde{u}_1^{(m)} dx \text{, } \quad \sigma = \int_{-\infty}^{\infty} u_0^4 dx \int_{-\infty}^{\infty} \tilde{u}_0^2 dx. \tag{9}
\]

This reduced ODE model will be helpful for the understanding of linear and nonlinear dynamics of solutions in the original equation \(\Box \) as we will elucidate below.

First we consider the solution to the linear equation \(\Box \), i.e., with the cubic term in \(\Box \) dropped. As a concrete example we take a waveguide where all modulations of \(V_1 \) are in the first harmonics,

\[
V_1(x, z) = V_0(x) \left(e^{iz} + \beta e^{-iz}\right), \tag{10}
\]

where \(\beta \) is a complex constant. In this case, \(\tilde{\mu} = \beta c \), where \(c \) is a real constant dependent on the unperturbed waveguide \(V_0(x) \). Thus the linear envelope equation \(\Box \) yields

\[A(Z) = A_0 e^{-i\beta c Z}, \]
where A_0 is the initial envelope value. In view of Eqs. (9)-(7), this $A(Z)$ solution can be absorbed into a shift of the eigenvalue

$$\mu = \mu_0 + e^2 \beta c$$

(11)

in the linear Bloch mode of Eq. (1),

$$\psi(x, z) = e^{-i\mu z} u(x, z).$$

(12)

Then we immediately see that for non-real β in the first-harmonic waveguide perturbation (10), a complex eigenvalue bifurcates out from every discrete real eigenvalue of the unperturbed waveguide. Noticing this waveguide perturbation is \mathcal{PT}-symmetric when β is real, we conclude that the linear spectrum is partially complex when the waveguide is non-\mathcal{PT}-symmetric.

Next we consider the solution to the nonlinear ODE (8). This nonlinear equation is exactly solvable, and its general solution is

$$A(Z) = A_0 \exp \left[-i\mu Z - i\frac{\beta^2}{2} \left| u_0 \right|^2 (e^{-2\text{Re}[i\mu]Z} - 1) \right].$$

(13)

where A_0 is the initial envelope value. The amplitude of this nonlinear solution evolves as

$$|A(Z)| = \left| A_0 e^{-\text{Re}[i\mu]Z} \right|,$$

(14)

which is exactly the same as that of the linear solution $A(Z) = A_0 e^{-i\mu Z}$. This indicates that nonlinearity does not affect the magnitude of the envelope solution (regardless whether it is focusing or defocusing nonlinearity). In particular, for the first-harmonic waveguide perturbation (10) where $\mu = \beta c$, when β is complex with $\text{Re}[i\beta c] < 0$, the linear solution will grow exponentially. In this case, nonlinearity will not arrest this exponential growth at larger amplitudes.

The above predictions for the solution dynamics are verified with direct numerical computations of the original system (1). For this purpose, we take

$$V_0 = 2 \text{sech} x, \quad \epsilon = 0.2$$

(15)

in our waveguides (3) and (10). In this case, the unperturbed real waveguide V_0 has a single discrete eigenvalue $\mu_0 \approx -1.245$, and the parameter $c \approx -0.369$. Under the first-harmonic waveguide perturbation (10), we have confirmed that complex eigenvalues do bifurcate out from μ_0 in the linear spectrum according to the formula (11) whenever β is non-real. In this bifurcated eigenvalue is the only complex eigenvalue in the linear spectrum. To verify the nonlinear amplitude formula (13), we choose two β values of i and $-i$. The corresponding z-direction modulations of the perturbed waveguide at $x = 0$ are displayed in Fig. 2(a,b) respectively. In these perturbed waveguides, we take the initial condition $\psi(x, 0) = e A_0 u_0(x)$, where $A_0 = 1$ and $u_0(x)$ is the eigenmode of eigenvalue μ_0 in the unperturbed waveguide V_0 with normalized peak height of 1. The simulation of the original equation (1) under this initial condition is plotted in Fig. 2(c,d) for $\beta = 1$ and $-i$ respectively. Here the solution’s amplitude at $x = 0$ versus z is displayed. For comparison, the analytical amplitude solution $|e A(Z) u_0(0)|$ with $|A(Z)|$ given by (14) is also plotted. As predicted by the ODE model (8), the solution for $\beta = i$ exponentially decays, while that for $\beta = -i$ exponentially grows. In the latter case, this growth is not arrested by nonlinearity (even for longer distances than those shown in panel (d)), in agreement with the analytical solution (13). It is noted that amplitude oscillations in the numerical solution are due to higher order terms in the perturbation expansion (7), which are not accounted for in our leading-order analytical solution plotted in this figure. Physically these amplitude oscillations are due to periodic gain and loss in the waveguide.

![FIG. 2: (Color online) (a,b) z-direction modulations of the waveguide (9) at $x = 0$ for $\beta = i$ and $\beta = -i$ in the first-harmonic perturbations (10) respectively; solid blue is refractive-index variation and dashed red gain-loss variation (positive for gain and negative for loss); (c,d) amplitude evolution in the nonlinear simulation of Eq. (1) with $\sigma = 1$ for $\beta = 1$ and $\beta = -i$ respectively; the analytical solution is also plotted as dashed red lines for comparison.](image-url)
The common phenomenon in \mathcal{PT}-symmetric systems is that when the gain-loss strength (relative to the real refractive index) exceeds a certain threshold, complex eigenvalues can appear in the linear spectrum — a phenomenon called phase transition [1, 5, 12, 19, 21]. Then for \mathcal{PT}-symmetric waveguides [1, 11], can phase transition occur when β is varied? For the previously chosen function $V_0(x)$ and ϵ value in [15], our numerics did not detect phase transition. But for some other choices of $V_0(x)$ and ϵ, phase transition can indeed occur. For instance, when we choose

$$V_0 = 2\text{sech}^2 x, \quad \epsilon = 0.2,$$ \hspace{1cm} (17)

phase transition occurs at $\beta = 0$. The linear spectrum is all-real when $\beta > 0$ and becomes complex when $\beta < 0$. Two waveguides with β values of 0.5 and −0.5 (below and above phase transition) are illustrated in Fig. 3(a,b) respectively. It should be pointed out that even though this \mathcal{PT}-symmetric waveguide is above phase transition when $\beta < 0$, the complex eigenvalues in its linear spectrum have very small imaginary parts, meaning that the growth or decay of the corresponding linear eigenmodes is very weak. For instance, when $\beta = -0.5$, the complex eigenvalue with maximal imaginary part is $\mu = -0.9864 + 0.0026i$. Notice that the real part of this complex eigenvalue is very well predicted by the analytical formula [11], which gives −0.9862 since $\mu_0 = -1$ and $c \approx -0.691$ for the present waveguide. But the imaginary part of this complex eigenvalue is not captured by the perturbation analysis of this section since it is very small and occurs at higher orders of perturbation expansions.

III. NON-\mathcal{PT}-SYMMETRIC WAVEGUIDES WITH ALL-REAL LINEAR SPECTRUM

It is seen from the previous section that for first-harmonic waveguide perturbations [10], all-real linear spectra are possible only for real values of β, i.e., when the perturbed waveguide is \mathcal{PT}-symmetric. However, we have found two notable families of complex waveguides which are non-\mathcal{PT}-symmetric but still possess all-real linear spectra. This is quite surprising, since in complex waveguides with transverse gain-loss variations, all-real spectra are very rare for non-\mathcal{PT}-symmetric systems [22].

The first family consists of waveguides [3, 4, 11, 13, 20] with unidirectional Fourier series decomposition, i.e., $a_n = 0$ for either $n < 0$ or $n > 0$. In our calculation of the shifted eigenvalue $\mu = \mu_0 + \epsilon^2 \tilde{\mu}$ with $\tilde{\mu}$ given in Eq. (4), notice that $\tilde{\mu} = 0$ for a unidirectional Fourier series, hence the eigenvalue μ_0 does not shift at all under these complex waveguide perturbations. Regarding other eigenvalues in the linear spectrum, we have verified numerically that they do not shift to the complex plane either, thus the linear spectrum is all-real for waveguides of this type.

The second family consists of separable waveguides, $V(x, z) = V_a(z) + V_b(x)$, where $\int_0^{2\pi} \text{Im}[V_a(z)]dz = 0$ (meaning that the gain and loss are balanced along the propagation direction), and $V_b(x)$ is real. In this case, Bloch modes [12] in the linear equation (11) can be decomposed as $\mu = \mu_a + \mu_b$ and $u(x, z) = u_a(z)u_b(x)$, where (μ_a, μ_b), (u_a, u_b) satisfy the following one-dimensional eigenvalue problems

$$\left\{ \begin{array}{ll}
[i\partial_z + V_a(z)]u_a = -\mu_a u_a, \\
[\partial_{xx} + V_b(x)]u_b = -\mu_b u_b.
\end{array} \right.$$ \hspace{1cm}

The first eigenvalue problem has an exact solution

$$u_a(z) = \text{Exp} \left\{ i\mu_a z + i \int_0^z V_a(\xi) d\xi \right\}.$$ \hspace{1cm}

Thus for waveguides with equal amounts of gain and loss, i.e., $\int_0^{2\pi} \text{Im}[V_a(z)]dz = 0$, its μ_a-spectrum is all-real. The second eigenvalue problem is a Schrödinger eigenvalue problem. Thus for real waveguides $V_b(x)$, its spectrum is also all-real. Together, we see that for the separable waveguides of the above form, the linear spectrum is all-real. Notice that these separable waveguides are non-\mathcal{PT}-symmetric in general, thus they constitute another large class of non-\mathcal{PT}-symmetric waveguides with all-real spectra.

IV. LONGITUDINALLY-PERIODIC NONLINEAR MODES

In this section we consider nonlinear z-periodic modes in these modulated waveguides. Such modes are of the form

$$\psi(x, z) = e^{-i\mu z} u(x, z),$$ \hspace{1cm} (18)

where μ is a real propagation constant, and $u(x, z)$ is 2π-periodic in z. From the reduced ODE model (8) for the first-harmonic waveguide perturbation (10), we see that when the waveguide is non-\mathcal{PT}-symmetric (i.e., β is non-real) the solution (13) will either grow or decay (since $\tilde{\mu} = \beta c$ is complex), thus nonlinear z-periodic modes are not expected. But when the waveguide is \mathcal{PT}-symmetric (with real β), the nonlinear solution to the ODE model is

$$A(Z) = A_0 \exp \left[-i\beta c Z + i \tilde{\sigma} |A_0|^2 Z \right].$$ \hspace{1cm} (19)

Since βc and $\tilde{\sigma}$ are real, when this $A(Z)$ function is substituted into the perturbation series solution (16), analytical z-periodic nonlinear modes (15) with

$$\mu = \mu_0 + \epsilon^2 (\beta c - \tilde{\sigma}|A_0|^2)$$ \hspace{1cm} (20)

are then obtained. In this μ formula, the amplitude parameter A_0 is arbitrary. Thus a continuous family of nonlinear z-periodic modes parameterized by the propagation constant μ are predicted. Our perturbation analysis also reveals another important property about these z-periodic modes, i.e., they contain weak transversely nonlocal tails and are thus not fully localized. The order
at which these nonlocal tails appear in the perturbation series depends on the unperturbed waveguide \(V_0(x) \) as well as the waveguide perturbation \(V_1(x) \). For the first-harmonic perturbation \(V_0 = 2 \text{sech}^2 x \) [as in \(14 \)], these nonlocal tails appear at the \(O(\epsilon^3) \) term in the \(e^{-2iz} \) harmonics. For perturbations with \(V_0 = 2 \text{sech}^2 x \) [as in \(14 \)], these nonlocal tails appear at the \(O(\epsilon^2) \) term in the \(e^{-iz} \) harmonics. Since these transversely nonlocal tails occur at higher orders of the perturbation series, the resulting \(z \)-periodic nonlinear mode is then quasi-localized, i.e., the height of the solution’s tails at \(x \to \pm \infty \) is much less than the solution’s peak amplitude.

Numerically we have confirmed the existence of these \(z \)-periodic and transversely quasi-localized nonlinear modes in Eq. \(1 \) for \(\mathcal{PT} \)-symmetric waveguides. In addition, we have found that these modes exist both below and above phase transition. These solutions are computed as a boundary value problem in the \((x,z)\) space by the Newton-conjugate-gradient method \(28 \). To demonstrate, we take the first-harmonic perturbation \(10 \) with \(V_0 \) and \(\epsilon \) given in Eq. \(17 \). We also take \(\sigma = 1 \) (focusing nonlinearity). For \(\beta = 0.5 \) below phase transition, this solution family is displayed in Fig. 3(e). It is seen that these modes bifurcate from \(\mu \approx -1.011 \) where its amplitude approaches zero. The analytical bifurcation point from formula \(20 \), with \(A_0 \) set to zero, is \(\mu_{\text{anal}} \approx -1.014 \), since \(\mu_0 = -1 \) and \(c \approx -0.691 \) for the present waveguide. Apparently the numerical and analytical bifurcation points are in good agreement. Further comparison between the numerically obtained peak amplitudes of these modes and analytically obtained \(A_0 \) values from Eq. \(20 \) for varying \(\mu \) values can be seen in Fig. 3(e). An example solution, with \(\mu = -1.04 \), is shown in Fig. 3(c). Notice that this solution is strongly localized, since its nonlocal transverse tails are very weak and thus almost invisible.

At \(\beta = -0.5 \) above phase transition, these nonlinear modes are found as well, whose peak amplitude versus the propagation constant \(\mu \) is depicted in Fig. 3(f). These solutions do not bifurcate from infinitesimal linear modes, thus its peak amplitude does not reach zero. An example solution at \(\mu = -1.044 \) is shown in Fig. 3(d). This solution is also strongly localized with tails almost invisible.

We have examined the stability of these \(z \)-periodic nonlinear modes by simulating their evolution under perturbations in Eq. \(11 \), and they are found to be stable. This stability holds even when the waveguide is above phase transition. In the latter case, an initial localized function whose amplitude is above the threshold of periodic nonlinear modes in Fig. 3(f) would evolve into one of these modes. If the initial amplitude is very small, then it will first grow exponentially due to the existence of complex (unstable) eigenvalues in the linear spectrum above phase transition. Subsequently in the nonlinear regime,
we find that its growth saturates, and the solution approaches a z-periodic nonlinear state. This evolution is illustrated in Fig. 4 for the waveguide of Fig. 3(b) (with $\sigma = 1$) under the initial condition $\psi(x, 0) = 0.02 \text{sech} x$. This growth saturation by nonlinearity in \mathcal{PT}-symmetric waveguides (above phase transition) contrasts that in non-\mathcal{PT}-symmetric waveguides, where the linear exponential growth is not arrested by nonlinearity [see Sec. II and Fig. 2(d)]. This growth saturation occurs over a long distance though, since the growth rates of linear modes are very small (see the end of Sec. II).

V. SUMMARY

In summary, we have studied light propagation in complex waveguides with periodic refractive index modulations and alternating gain and loss along the direction of propagation. Our analysis is based on a multi-scale perturbation theory, supplemented by direct numerical simulations. We have shown that non-\mathcal{PT}-symmetric waveguides often possess complex eigenvalues in their linear spectrum, but several classes of such waveguides with all-real linear spectra are also identified. In the nonlinear regime, we have shown that for non-\mathcal{PT}-symmetric waveguides, cubic nonlinearity does not alter the exponential growth or decay of the related linear system. But for \mathcal{PT}-symmetric waveguides, continuous families of longitudinally periodic and transversely quasi-localized nonlinear modes exist both below and above phase transition. In the latter case, low-amplitude initial conditions eventually develop into these nonlinear periodic states.

Acknowledgment

This work was supported in part by the Air Force Office of Scientific Research (USAF 9550-12-1-0244) and the National Science Foundation (DMS-1311730).

[1] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243–5246 (1998).
[2] R. El-Ganainy, K. G. Makris, D. N. Christodoulides and Z. H. Musslimani, Opt. Lett. 32, 2632–2634 (2007).
[3] A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, and D.N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).
[4] C.E. Rueter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, and D. Kip, Nature Phys. 6, 192-195 (2010).
[5] A. Regensburger, C. Bersch, M.A. Miri, G. Onishchukov, D.N. Christodoulides and U. Peschel, Nature 488, 167-171 (2012).
[6] R. Driben and B.A. Malomed, Opt. Lett. 36, 4323 (2011).
[7] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Phys. Rev. A 84, 040101(R) (2011).
[8] H. Cartarius and G. Wunner, Phys. Rev. A 86, 013612 (2012).
[9] L. Feng, Y.L. Xu, W.S. Fegadolli, M.H. Lu, J.E.B. Oliveira, V.R. Almeida, Y.F. Chen, and A. Scherer, Nature Materials, 12, 108-113 (2013).
[10] C. M. Bender, B. Berntson, D. Parker, and E. Samuel, Am. J. Phys. 81, 173179 (2013).
[11] B. Peng, S. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).
[12] H. Hodaei, M.-A. Miri, M. Heinrich, D.N. Christodoulides, M. Khajavikhan, arXiv:1405.2103 [physics.optics] (2014).
[13] Z. H. Musslimani, K. G. Makris, R. El-Ganainy and D. N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008).
[14] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).
[15] K. G. Makris, R. El-Ganainy, D. N. Christodoulides and Z. H. Musslimani, Phys. Rev. A 81, 063807 (2010).
[16] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao and D.N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011).
[17] M. Miri, A.B. Aceves, T. Kottos, V. Kovanis and D.N. Christodoulides, Phys. Rev. A 86, 033801 (2012).
[18] F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, and D. A. Zezyulin, Phys. Rev. A 83, 041805 (2011).
[19] S. Nixon, L. Ge and J. Yang, Phys. Rev. A 85, 023822 (2012).
[20] I.V. Barashenkov, S.V. Suchkov, A.A. Sukhorukov, S.V. Dmitriev, and Y.S. Kivshar, Phys. Rev. A 86, 053809 (2012).
[21] D. A. Zezyulin and V. V. Konotop, Phys. Rev. Lett. 108, 213906 (2012).
[22] S. Nixon, Y. Zhu and J. Yang, Opt. Lett. 37, 4874-4876 (2012).
[23] Y. Lumer, Y. Plotnik, M.C. Rechtsman, and M. Segev, Phys. Rev. Lett. 111, 263901 (2013).
[24] I.L. Garanovich, S. Longhi, A.A. Sukhorukov and Y.S. Kivshar, Phys. Rep. 518, 1-79 (2012).
[25] X. Luo, J. Huang, H. Zhong, X. Qin, Q. Xie, Y.S. Kivshar, and C. Lee, Phys. Rev. Lett. 110, 243902 (2013).
[26] J. Yang, Opt. Lett. 39, 1133-1136 (2014).
[27] M. Miri, M. Heinrich, and D.N. Christodoulides, Phys. Rev. A 87, 043819 (2013).
[28] J. Yang, J. Comp. Phys. 228, 7007-7024 (2009).