Impact of 68Ga-DOTATOC PET/CT in comparison to 111In-Octreotide SPECT/CT in management of neuro-endocrine tumors

A case report

Anna Tolomeo, PhDa,*, Gaetano Lopopolo, PhDb, Vincenzo Dimiccoli, PhDb, Luana Perioli, PhDb, Sergio Modoni, MDc, Antonio Scilimati, PhDd

Abstract

Rationale: In the diagnostics of neuroendocrine tumors (NETs), scintigraphy and Single Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) with 111Indium-Octreotide occupy a prominent place. The introduction in clinical practice of 68Gallium-labelled somatostatin analogues (DOTA-TOC, DOTA-TATE, DOTA-NOC) for Positron Emission Tomography/Computed Tomography (PET/CT), significantly improved NETs diagnostics due to greater sensitivity and improved lesion detection in addition to better patient convenience and decreased radiation dose.

Patient concerns: We report a case of a patient who was diagnosed with a neuroendocrine tumor of the ileocecal valve.

Diagnoses: Diagnosis was made by ultrasonography, CT, and colonoscopy. Histology after surgery was G2 NET of ileocecal valve. Restaging was carried out by 111In-Octreotide SPECT/CT and, 1 month later, by 68Ga-DOTATOC PET/CT. 18F-FDG PET/CT was also carried out.

Interventions: 68Ga-DOTATOC PET/CT showed larger disease that modified disease management from surgery to medical treatment.

Outcomes: After an initial improvement in the patient clinical condition, the tumor caused a worsening with the appearance of ascites.

Lessons: 68Ga-DOTA-conjugate PET/CT is appropriate in low and intermediate NET (Ki67 index respectively ≤3% and 3%–20%) characterized by better survival and better response after Peptide Receptor Radionuclide Therapy.

18F-FDG is mostly useful in high grade (G3) of disease, so that 68Ga-DOTA-conjugate SUV and 18F-FDG SUV have an opposite trend in relation to the tumor grade. 68Ga-DOTATOC PET/CT changes, as in our case, therapeutic management in about 40% of cases.

Abbreviations: DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DTPA = diethylenetriaminepentaacetic acid, MIP = Maximum Intensity Projection, NETs = neuroendocrine tumors, NOC = 1-Nal3-octreotide, PET/CT = Positron Emission Tomography/Computed Tomography, PRRT = Peptide Receptor Radionuclide Therapy, SPECT/CT = Single Photon Emission Computed Tomography/Computed Tomography, SUV = standardized uptake value, TATE = Tyr3-octreotate, TOC = Tyr3-octreotide.

Keywords: 111In-Octreotide, 18F-FDG, 68Ga-DOTATOC, ileocecal-NET, neuroendocrine tumors, PET/CT

1. Introduction

Neuroendocrine tumors (NETs) originate from the widespread neuroendocrine system and, therefore, can arise in any body district. In two thirds of cases they can be born in the gastroenteropancreatic tract. In terms of frequency, NETs are usually considered rare neoplasms when compared to the corresponding non-neuroendocrine neoplasms.

The frequency of NETs is low, even if increasing in the last years (1–5 new cases/100,000 inhabitants/year), but the prevalence is high (35 cases/100,000 inhabitants) because most of them are well differentiated and slowly growing tumors with an indolent clinical course.[1] In Italy, the overall incidence rate is 4.15%, with 2697 new cases in 2015, without significant differences between males and females, and reaches 11.27% in the age group over 65 years. The overall prevalence rate is 40.73%, with 23,937 estimated prevalent cases, with an average 5-year survival of approximately 75%. Small intestine and the bowel account for about a quarter of all cases (25.3%).[2] NETs
express a variable amount of 5 different somatostatin receptors (SSTR1-5) which have been used as targets for diagnostic radionuclide imaging and therapy.

Radiolabelled somatostatin, which could be the best probe, cannot be used because of its in vivo very short half-life (1–3 minutes); therefore, the octreotide derivate as somatostatin analogues endowed with a sufficient long half-life are employed. Scintigraphic detection was performed first by radiiodinated analogues[1] followed by [111In]Indium (In)- and [99mTc]Technetium (Tc)-radiolabelled analogues.[2] Further technical improvements were achieved by the use of SPECT/CT hybrid scanner[3] which improved detection via a better target-to-background ratio and better anatomical localization due to CT images.

The subsequent availability of positron emitters radionuclides like 68Ga-Gallium (Ga) for PET/CT scan led to synthesis of radionuclides in which, the interposition of specific chelator agents such as di-ethylene-triaminepentaacetate (DTPA) or 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) between somatostatin analogue and radionuclide made the link more stable.

PET/CT hybrid imaging with 68Ga-DOTATOC PET/CT examination, while he was prepared for the surgical removal of the known retropancreatic mass. PET/CT scan was carried out by Discovery 710PET/CT (GE Healthcare, Little Chalfont, UK). Iterative method using ordered-subset expectation maximization (OSEM), with 2 iterations and 10 subsets, and Butterworth post-filter (0.48 critical frequency, power 10) were used for reconstruction procedure.

About a month later, the patient also underwent to 68Ga-DOTATOC PET/CT examination, which showed a voluminous 10-cm nodule in the right hepatic lobe and retropancreatic bulky disease imprinting the inferior vena cava, at the renal confluence. Clear thickening of the walls of the last ileal loop was associated with involvement of the caecal fundus and of the root of the mesentery.

Colonoscopy showed an easily bleeding polylobed vegetative mass, which involved the ileocecal valve and almost completely obstructed the visceral lumen.

Laboratory tests showed chromogranin A levels > 50nmol/L. Biopsy and histology results showed an ulcerated neuroendocrine tumor of the ileocecal valve with Ki67 index approximately 12% (G2sec. WHO 2010) and hepatic metastasis. Immunohistochemistry showed positivity for Chromogranin A, synaptophysin, NSE and CD56.

The tumor was therefore staged (TNM/AJCC) as pT4N1M1. Patient underwent surgery with right hemicolectomy and right hepatectomy and subsequent treatment by “cold” somatostatin analogues.

One month after surgery, the patient underwent 111In-Octreotide SPECT-CT scan (118 MBq i.v.) which showed retroperitoneal increased expression of somatostatin receptors without any other uptake areas (Fig. 1a).

The SPECT images were acquired on a dual-head gamma-camera (Discovery NM/CT 670, GE Healthcare, Little Chalfont, UK). Iterative method using ordered-subset expectation maximization (OSEM), with 2 iterations and 10 subsets, and Butterworth post-filter (0.48 critical frequency, power 10) were used for reconstruction procedure.

Scanning showed the known gross lymphnode mass in the right para-caval site, behind the head of the pancreas (SUV max 56.8) but also showed multiple nodular areas, as from peritoneal implants, in the peri-glissonian, omental, mesenteric and pelvic area (Fig. 1b). Moreover, inside the medial lip of the left adrenal gland, in the context of physiologic radiopharmaceutical uptake (SUV max 14.9), a nodular area compatible with adenoma was shown (SUV max 27.5) (Fig. 2).

These results modified the therapeutic course from surgical (curative secondary resection) to pharmacological treatment.

For completeness, 1 month later, we decided to carry out a 18F-FDG PET/CT scan (256 MBq i.v.) (Fig. 1c) which showed a small but intense uptake (SUV max 7.8) in the left paracardiac area at the anterior segment of the lower lobe of the left lung, and uptake in some mesenteric nodes (Fig. 3).

The Maximum Intensity Projection (MIP) images (Fig. 4), also known as volumetric images, summarize the physiological and
Figure 1. Restaging with 111In-Octreotide SPECT/CT scan (column a), 68Ga-DOTATOC (column b), and 18F-FDG PET/CT scan (column c) of the patient, performed after colectomy and partial right hepatectomy and subsequent treatment by “cold” somatostatin. Since NET is a G2 tumor (Ki67 index 12%), positivity can be observed in columns a and b. 111In-Octreotide SPECT-CT scan (column a) showed persistence of the retropancreatic uptake without other significant uptake areas. 68Ga-DOTATOC PET/CT scan (column b) confirmed uptake behind the pancreas head (SUV max 56.8) and showed multiple nodules of peritoneal implants in the periglandular space, omentum, mesenteric region and pelvis (SUV max 13.8-15.4). 18F-FDG PET/CT scan (column c): metabolic activity in retropancreatic lesion was absent (SUV max 1.9) and mild pathological nodal uptake was observed in mesenteric region, with a conspicuous ascitic and pleural effusions.

Figure 2. 68Ga-DOTATOC PET/CT scan: as additional finding, in the medial lip of the left adrenal gland, surrounded by physiological uptake (SUV max 14.9), was found a nodular area suggesting adenoma (SUV max 27.5), confirmed by surgery.
pathological body distribution of the 2 PET radiopharmaceuticals (\(^{68}\text{Ga-DOTA-TOC}\) on the left, \(^{18}\text{F-FDG}\) on the right).

3. Discussion

Neuroendocrine neoplasms (NEYs) are a heterogeneous group of tumors that originate from neuroendocrine cells and grow in a lot of different organs, mainly in the gastrointestinal tract and the lungs.

Most of NETs express somatostatin receptors (SSTR), which can be used as targets for radionuclide imaging and therapy.

\(^{68}\text{Ga-DOTA-conjugates PET/CT}\) showed higher sensitivity than \(^{111}\text{In-Octreotide scintigraphy}\) (96.1% vs 13.7% in bowel NETs)\(^{[9]}\) due to its better intrinsic and physical resolution.

Another issue is the correct indication of use of these radiopharmaceuticals. For this purpose, it is very important to know the proliferative activity of the tumor, which is measured by the Ki67 index.

Radiolabelled somatostatin analogues are appropriate in NETs with low or intermediate proliferative activity grade. (Ki67 index respectively \(\leq 3\)% and 3%–20%). Ki67 index well correlates with \(^{68}\text{Ga-DOTA-conjugates uptake}\) expressed by SUV\(_{\text{max}}\), whereas \(^{18}\text{F-FDG uptake}\) is higher in tumors with high proliferative activity (Ki67 index >20%).\(^{[11]}\)

\(^{68}\text{Ga-DOTA-conjugates SUV}_{\text{max}}\) is, therefore, an important prognostic factor in G1 and G2 NETs because it well correlates with progression-free survival.\(^{[12,13]}\)

Primary indications of radiolabelled somatostatin analogues are in diagnosis and staging, re-staging, monitoring response to treatments and more generally to determine the receptor status in order to adopt correct management decisions as well as patients selection for PRRT (with \(^{177}\text{Lu or }^{90}\text{Y-DOTA-conjugates}\)).

Secondary indication is to assess non-NETs with low or varying SSTR expression.\(^{[7,14]}\)

PET/CT with \(^{68}\text{Ga-DOTA-conjugates}\) has a significant impact on general management which, in most of cases, about 40% in midgut NETs, was nonsurgical and more conservative.\(^{[13]}\)

However, functional imaging is a high sensitive method and false-positive findings are always possible. These outcome triggers further tests with increased costs. Therefore, higher care must be taken to correlate the findings with the patient clinical conditions.\(^{[16]}\)

The presented case as an excellent example of the diagnostic advantages of \(^{68}\text{Ga-DOTA-TOC PET/CT}\) in comparison with \(^{111}\text{In-Octreotide SPECT/CT}\), and \(^{18}\text{F-FDG PET/CT}\) helps to highlight the various degrees of tumor differentiation during its spread. In the same patient we found also an adrenal adenoma. Even if adrenal medulla has a physiologic uptake of \(^{68}\text{Ga-DOTA-conjugates}\), it is not rare to find, in course of PET/CT with these radiopharmaceuticals, other pathologic neuroendocrine tissue characterized by a higher SUV\(_{\text{max}}\) value\(^{[17,18]}\), such as adenoma suggesting possible undiagnosed familiar NET syndromes.

Finally, \(^{68}\text{Ga-DOTA-conjugates uptake}\) besides being a favorable prognostic indicator, is also a good prognostic index of response to PRRT.\(^{[19]}\)

3.1. Statement

Patient has provided written informed consent for publication of the case. The authors would like to thank the patient for authorizing the use the medical information contained in the present article.
Author contributions

Conceptualization: Anna Tolomeo, Vincenzo Dimiccoli and Antonio Scilimati.

Data curation: Sergio Modoni.

Formal analysis: Sergio Modoni.

Investigation: Sergio Modoni.

Methodology: Sergio Modoni.

Supervision: Anna Tolomeo, Gaetano Lopolopo, Vincenzo Dimiccoli, Luana Perioli and Antonio Scilimati.

Validation: Gaetano Lopolopo, Vincenzo Dimiccoli, Luana Perioli and Antonio Scilimati.

Writing – original draft: Anna Tolomeo, Sergio Modoni.

Writing – review & editing: Anna Tolomeo, Gaetano Lopolopo, Vincenzo Dimiccoli, Luana Perioli and Antonio Scilimati.

References

[1] Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017;3:1335–42.

[2] Brusco S, Buonozzi C, Mallone S, et al. Italian cancer figures – Report 2015: The burden of rare cancer in Italy. Epidemiologia e Prevenzione 2016;40:90–3.

[3] Krenning EP, Bakker WH, Breeman WA, et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1989;1:242–4.

[4] Bakker WH, Albert R, Bruns C, et al. [111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. Life Sci 1991;49:1583–91.

[5] Perri M, Erba P, Volterrani D, et al. Octreo-SPECT/CT imaging for accurate detection and localization of suspected neuroendocrine tumors. Q J Nucl Med Mol Imaging 2008;52:323–33.

[6] Krenning EP, Kwekkeboom DJ, Valkema R, et al. Peptide receptor radionuclide therapy. Ann NY Acad Sci 2004;1014:234–45.

[7] Bozkurt MF, Virgolini I, Bolognini S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with [68Ga]-DOTA-conjugated somatostatin receptor targeting peptides and [18F]-DOPA. Eur J Nucl Med Mol Imaging 2017;44:1588–601.

[8] Poeppel TD, Bins L, Petersen S, et al. [68Ga]-DOTATOC Versus [68Ga]-DOTATATE PET/CT in Functional Imaging of Neuroendocrine Tumors. J Nucl Med 2011;52:1864–70.

[9] Sadowski SM, Nyechev V, Millo C, et al. Prospective Study of [68Ga]-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. J Clin Oncol 2016;34:588–96.

[10] Ezzi D, Adler L, Sabel A, et al. Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET: feasibility of a metabolic grading system. J Nucl Med 2014;55:1260–6.

[11] Kayani I, Bomanji J, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT Using [68Ga]-DOTATE (Dota-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 2008;112:2447–55.

[12] Campana D, Ambrosini V, Pizzili R, et al. Standardized uptake values of [68Ga]-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 2010;51:333–9.

[13] Ambrosini V, Campana D, Polverari G, et al. Prognostic value of [68Ga]-DOTANOC PET/CT SUVmax in patients with neuroendocrine tumors of the pancreas. J Nucl Med 2015;56:1843–8.

[14] Sundin A, Arnold R, Baudin E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine & hybrid imaging. Neuroendocrinology 2017;105:212–44.

[15] Evangelia Skoura E, Michopoulos S, Mohmaduvesh M, et al. The impact of [68Ga]-dotatate pet/ct imaging on management of patients with neuroendocrine tumors: experience from a national referral center in the United Kingdom. J Nucl Med 2016;57:34–40.

[16] Yu R, Wachsman A. Imaging of neuroendocrine tumors: indications, interpretations, limits, and pitfalls. Endocrinol Metab Clin North Am 2017;46:793–814.

[17] Hofman MS, Lau E, Hicks RJ. Somatostatin receptor imaging with [68Ga] dotatate petct: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics 2015;35:500–16.

[18] Chang CA, Paterson DA, Thottil RW, et al. [68Ga]-DOTATATE and 18F-FDG PET/CT in paraganglioma and pheochromocytoma: utility, patterns and heterogeneity. Cancer Imaging 2016;16:22–34.

[19] Kratochwil C, Stefanova M, Mavropoulou E, et al. SUV of [68Ga]-DOTATOC-PET/CT predicts response probability of PRRT in neuroendocrine tumors. Mol Imaging Biol 2015;17:313–8.