Proteomic characterisation of polyglucosan bodies in skeletal muscle in RBCK1 deficiency

Christer Thomsen¹ | Edoardo Malfatti² | Ana Jovanovic³ | Mark Roberts⁴ | Ognian Kalev⁵ | Christopher Lindberg⁶ | Anders Oldfors¹

¹Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
²APHP, North-East-Ile-de-France Neuromuscular Pathology Reference Center, Henri-Mondor University Hospital, Paris, France
³The Mark Holland Metabolic Unit, Salford Royal NHS Foundation Trust, Salford, UK
⁴Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
⁵Neuromed Campus, Kepler University Hospital (Klinikum), Linz, Austria
⁶Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden

Correspondence
Anders Oldfors, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden.
Email: anders.oldfors@gu.se

Funding information
National Microscopy Infrastructure, NMI, Grant/Award Number: VR-RFI 2019-00217; Swedish Research Council, Grant/Award Number: 2018-02821; Västra Götalands Regionen, Grant/Award Number: ALFGBG-716821; Swedish Heart-Lung Foundation, Grant/Award Number: 20180236

Abstract

Aims: Several neurodegenerative and neuromuscular disorders are characterised by storage of polyglucosan, consisting of proteins and amylopectin-like polysaccharides, which are less branched than in normal glycogen. Such diseases include Lafora disease, branching enzyme deficiency, glycogenin-1 deficiency, polyglucosan body myopathy type 1 (PGBM1) due to RBCK1 deficiency and others. The protein composition of polyglucosan bodies is largely unknown.

Methods: We combined quantitative mass spectrometry, immunohistochemical and western blot analyses to identify the principal protein components of polyglucosan bodies in PGBM1. Histologically stained tissue sections of skeletal muscle from four patients were used to isolate polyglucosan deposits and control regions by laser microdissection. Prior to mass spectrometry, samples were labelled with tandem mass tags that enable quantitative comparison and multiplexed analysis of dissected samples. To study the distribution and expression of the accumulated proteins, immunohistochemical and western blot analyses were performed.

Results: Accumulated proteins were mainly components of glycogen metabolism and protein quality control pathways. The majority of fibres showed depletion of glycogen and redistribution of key enzymes of glycogen metabolism to the polyglucosan bodies. The polyglucosan bodies also showed accumulation of proteins involved in the ubiquitin-proteasome and autophagocytosis systems and protein chaperones.

Conclusions: The sequestration of key enzymes of glycogen metabolism to the polyglucosan bodies may explain the glycogen depletion in the fibres and muscle function impairment. The accumulation of components of the protein quality control systems and other proteins frequently found in protein aggregate disorders indicates that protein aggregation may be an essential part of the pathobiology of polyglucosan storage.

KEYWORDS
glycogen metabolism, glycogen storage disease, polyglucosan, protein aggregation

Abbreviations: LMD, laser microdissection; LUBAC, linear ubiquitin assembly chain complex; MS, mass spectrometry; PAS, periodic acid-Schiff; PGBM1, polyglucosan body myopathy type 1; PGBM2, polyglucosan body myopathy type 2.

[Correction added on 6 October 2021, after first online publication: Peer review history statement has been added.]

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

Neuropathol Appl Neurobiol. 2022;48:e12761. https://doi.org/10.1111/nan.12761
INTRODUCTION

Glycogen is a large macromolecule forming a particle of about 20 nm in diameter. It is composed of long chains of glucose units with α-1,4-glucosidic linkages, which are branched through α-1,6-glucosidic linkages. Glycogen has a protein core of glycogenin, which acts as a primer for de novo glycogen synthesis. Polyglucosan refers to abnormal amylopectin-like polysaccharides, which are less branched than normal glycogen and may aggregate into polyglucosan bodies. It includes various proteins and is, like normal glycogen, stained with periodic acid–Schiff (PAS) histochemistry. It is resistant to digestion with α-amylase to a variable extent. Polyglucosan has a fibrillar structure under the electron microscope and can be seen in normal ageing as polyglucosan bodies in the heart and as corpora amylacea in the central nervous system.

Diseases involving accumulation of polyglucosan are frequently inborn errors of metabolism caused by defects in the metabolic pathways of glycogen synthesis or degradation. The different diseases manifesting with polyglucosan storage in muscle are summarised in Table 1.2–50

Loss of function mutations of the RBCK1 gene is associated with polyglucosan body myopathy 1 (PGBM1), which is a rare, frequently fatal, autosomal recessive disorder characterised by accumulation of polyglucosan in several tissues, skeletal myopathy and cardiomyopathy leading to loss of ambulation and heart failure in many cases.11 Some individuals develop a severe immune system dysregulation with immunodeficiency and autoinflammation.12–16 RBCK1 encodes RANBP-type and C3HC4-type zinc finger-containing 1 or heme-oxidised IRP2 ubiquitin ligase 1 (HOIL-1). The RBCK1 protein is an E3 ubiquitin ligase known to function as a subunit of the linear ubiquitin chain assembly complex (LUBAC) that is a regulator of NF-kB and the immune system. In the context of myopathy and cardiomyopathy, the role of RBCK1 and the mechanisms leading to polyglucosan deposits when RBCK1 function is affected is unknown.

Polyglucosan bodies are thus associated with several clinically and genetically different diseases, but the massive storage of polyglucosan is a common morphological hallmark and considered to be central to the pathobiology of the diseases.17 The protein composition is important to explore in order to understand the pathobiology of the polyglucosan body diseases. Knowledge about the composition of polyglucosan bodies with regard to polysaccharides and proteins is also essential when designing pharmacological interventions to prohibit or reduce the polyglucosan burden of the affected cells.

We have performed protein analysis of the storage material in four unrelated patients with RBCK1 deficiency by combining laser microdissection (LMD) and mass spectrometry (MS), immunohistochemical investigations and western blot analyses. We demonstrate that the protein component of the inclusions is mainly composed of proteins related to glycogen metabolism and cellular quality control mechanisms. Sequestration to the polyglucosan bodies of key enzymes involved in glycogen metabolism explains the glycogen depletion seen in the muscle fibres with polyglucosan bodies and may also explain the impaired muscle function. The increase of the protein quality control systems shows similarities with protein aggregate diseases of muscle and neurodegenerative diseases indicating that the pathogenesis of polyglucosan involves a component that may impair protein degradation, which may have implications for treatment.

MATERIAL AND METHODS

Patients

Four patients (P1–P4) diagnosed with PGBM1 and with known mutations in RBCK1 and histological hallmarks of polyglucosan disease were included in this study (Figure 1 and Table 2). The clinical features of the patients have been previously described.11,15 Muscle biopsy specimens were obtained by open biopsy and frozen in isopentane chilled in liquid nitrogen. As a positive control for autophagy, we included a patient with chloroquine myopathy. Two patients with inclusion body myositis (IBM) and numerous protein aggregates associated with rimmed vacuoles were included as disease controls for immunohistochemistry analysis of glycogen related proteins and p62.

Laser microdissection and quantitative mass spectrometry

The entire workflow for LMD-MS is summarised in Figure 2. Ten micrometre thick, frozen skeletal muscle sections were placed on polyethylene naphthalate (PEN) MembraneSlides 1.0 (Zeiss). The sections were stained with an adapted protocol for PAS. In short, samples were incubated (all reagents cooled on ice) in 70% ethanol for 10 s, 0.5% periodic acid (Sigma-Aldrich, 77310) for 20 s, dehydrated in an ethanol series (70% for 20 s, 95% for 20 s, 100% two times for 20 s) and air-dried for 30 min. Samples were stored in air-tight containers at –80°C until used for LMD. A total
area of 50,000 μm² of polyglucosan bodies (in average 150 individual tissue regions) was isolated from each patient’s muscle biopsy using a PALM Microdissection System (Zeiss) and collected in AdhesiveCap 500 opaque tubes (Zeiss). A corresponding total area and number of regions of tissue with normal morphology by PAS staining were dissected from the same sections for each patient and collected separately for comparison with polyglucosan. Samples from P1–P3 were subjected to repeated LMD-MS analysis, whereas P4 samples were analysed once due to limited amounts of sample. Laser microdissected samples were directly treated with trypsin as previously described,18 with minor modifications and peptides were labelled using tandem mass tag (TMT) isobaric mass tagging reagents (Thermo Scientific) to enable the identification of differentially abundant proteins in polyglucosan and control tissue for each patient. The proteomic profiling is described in detail in the Supporting Information.

Morphological and immunohistochemical analyses

Cryostat sections (8 μm) of fresh-frozen muscle tissue were analysed by standard histochemical technique for PAS staining. For diastase treatment, a 30-min incubation in phosphate buffered saline (pH 6.0) with or without 0.1% diastase was applied followed by PAS staining.

Gene	Protein	Disease and clinical features
RBCK1	Heme-oxidised IRP2 ubiquitin ligase 1	PGBM1 (OMIM #615895): Early onset progressive muscle weakness and cardiomyopathy sometimes associated with severe immune system dysregulation and autoinflammation.
GYG1	Glycogenin-1	GSD15 (OMIM #613507): Dilated cardiomyopathy with minor skeletal myopathy
GBE1	Branching enzyme	PGBM2 (OMIM #616199): Slowly progressive muscle weakness with onset in adulthood
EPM2A	Laforin	GSD4 (OMIM #232500)
EPM2B	Malin	Andersen disease: Early onset rapidly progressive liver disease
PFKM	Phosphofructokinase	Neuromuscular forms: perinatal (arthrogryposis, fetal hydrops and early death), congenital, juvenile or adult onset of myopathy/neuropathy, and may include cardiomyopathy
PRKAG2	Gamma subunit of AMP-activated protein kinase	APBD (OMIM #263570): Adult onset of neurogenic bladder, spastic gate, peripheral neuropathy and mild cognitive impairment
KLHL24	Kelch-like protein 24	GSD7 (OMIM #232800): Muscle weakness, exercise intolerance and compensated hemolytic anaemia. Polyglucosan only in some cases
		(OMIM #600858): Familial hypertrophic cardiomyopathy with Wolf-Parkinson-White syndrome, CMH6 Polyglucosan only in cardiac muscle

Abbreviations: APBD, adult polyglucosan body disease; CMH, familial hypertrophic cardiomyopathy; GSD, glycogen storage disease; PGBM, polyglucosan body myopathy.
For immunohistochemistry, cryostat sections (8 μm) were fixed in acetone for 10 min, air-dried and further processed in a Dako Autostainer using the Dako EnVision FLEX High pH kit (Agilent). Primary antibodies (Table S1) were applied for 1 h.

Immunoblot analysis

Protein was extracted from cryostat sections (10 μm) in SDS-urea buffer (125 mM Tris–HCl, 4% SDS, 4-M urea, 10% glycerol, 100-mM DTT, 0.001% bromophenol blue (pH 8.0) at 95°C for 10 min and samples cleared by centrifugation (14,000 rcf, 5 min). For alfa-amylase treatment preceding glycogenin-1 analysis, samples were incubated for 1 h at 37°C in phosphate-buffered saline (PBS) pH 6.5 with 50 units/ml of alfa-amylase (A0521, Sigma-Aldrich) or without enzyme and subsequently extracted as above. Protein concentration was determined with the Pierce 660-nm protein assay, and 10 μg was loaded per well on NuPAGE 4%–12% Bis-Tris gels (Thermo Scientific) followed by transfer to PVDF membranes and subsequent Coomassie staining of the gels. Membranes were blocked with 5% skim milk and incubated with primary antibodies (Table S1) over night at 4°C. Protein bands were visualised with HRP-conjugated secondary antibodies and SuperSignal West Femto substrate (Thermo Scientific).
RESULTS

To identify the major protein components of polyglucosan bodies in PGBM1 patients, we applied LMD-MS as outlined in Figure 2. We identified 303 proteins of which 51 were accumulated by an average ratio of 1.2 or more in polyglucosan bodies of all patients and 31 proteins that were reduced in polyglucosan bodies by an average ratio of 0.6 or less (Data S1).

The 51 accumulated proteins were assigned to groups based on their main cellular function (Table 3). Analysis of protein–protein interaction networks using the STRING database showed a functional interplay of the accumulated proteins with interaction clusters forming largely in line with the protein groups (Figure S1). A substantial part of these proteins were glycogen-related including enzymes with anabolic (e.g., glycogen synthase) or catabolic (e.g., myophosphorylase) activity. Some key enzymes of glycolysis (e.g., muscle phosphofructokinase) were also enriched in the polyglucosan bodies. Many of the remaining accumulated proteins were associated with cellular quality control having key functions in the ubiquitin-proteasome and autophagy degradation pathways or acting as protein chaperones (Table 3).

Most of the proteins that were reduced in the polyglucosan bodies compared to normal appearing sarcoplasm were components of the sarcomere and cytoskeleton (Table 4).

The MS results for 17 candidate proteins that were identified as accumulated by LMD-MS were validated by immunohistochemistry. To confirm the accumulation of the proteins is associated with polyglucosan, serial sections of muscle tissue were stained with PAS and antibodies to the 17 accumulated proteins. Protein expression and antibody specificity were further examined by immunoblot analysis of patient and control muscle homogenates.

Immunohistochemical staining of several proteins involved in glycogen metabolism such as glycogenin-1 (GYG1), glycogen synthase (GYS1), myophosphorylase (PYGM), debranching enzyme (AGL) and laforin (EPM2A) colocalised to PAS-positive polyglucosan aggregates with prominent staining corresponding to the polyglucosan bodies and depletion of the same enzymes in the surrounding sarcoplasm (Figure 3). Glycolysis-related proteins such as
Protein	UniProt	Gene	MW	UP	P1	P2	P3	P4	p	PAR
Glycogen metabolism										
Glycogenin-1	P46976	GYG1	39	4	5.5	17.8	5.7	6.9	0.01	9.3
Laforin	O95278	EPM2A	37	2	6.1	12.3	9.2	4.7	0.00	8.5
Glycogen phosphorylase, muscle form	P11217	PYGM	97	25	3.8	7.5	6.5	5.3	0.00	5.8
Glycogen [starch] synthase, muscle	P13807	GYS1	84	4	4.4	4.4	5.4	3.2	0.00	4.5
Glycogen debranching enzyme	P35573	AGL	175	6	2.1	4.2	1.9	2.4	0.01	2.7
UTP--glucose-1-phosphate uridylyltransferase	Q16851	UGP2	57	9	2.2	1.5	1.3	1.4	0.03	1.6
Glycolysis										
6-Phosphofructokinase, muscle type	P08237	PFKM	85	10	1.7	1.7	1.7	2.1	0.00	1.7
Glyceraldehyde-3-phosphate dehydrogenase	P04406	GAPDH	36	9	1.1	1.5	1.5	1.8	0.05	1.5
Glucose-6-phosphate isomerase	P06744	GPI	63	2	1.5	1.5	1.5	1.3	0.00	1.5
Chaperone activity										
Heat shock protein HSP 90-alpha	P07900	HSP90AA1	85	5	2.2	1.7	1.6	1.8	0.00	1.8
Heat shock protein beta-1	P04792	HSPB1	23	7	1.8	1.6	2.1	1.5	0.01	1.8
Alpha-crystallin B chain	P02511	CRYAB	20	7	2.6	1.3	1.5	1.3	0.06	1.8
Heat shock protein HSP 90-beta	P08238	HSP90AB1	83	5	1.1	2.2	1.4	2.4	0.06	1.7
Heat shock 70-kDa protein 1A/1B	P08107	HSPA1A	70	7	1.4	1.6	1.4	1.9	0.01	1.5
Heat shock cognate 71-kDa protein	P11142	HSPA8	71	7	1.6	1.3	1.2	1.2	0.02	1.3
Ubiquitin-proteasome system and autophagy										
Sequestosome-1 (p62)	Q13501	SQSTM1	48	7	4.5	9.4	8.1	1.4	0.04	6.5
Polyubiquitin-C (ubiquitin)	P0CG48	UBC	77	3	5.9	6.0	5.5	6.1	0.00	5.9
UV excision repair protein RAD23 homologue B	P54727	RAD23B	43	2	4.7	3.7	3.5	4.7	0.00	4.2
Proteasome subunit alpha type-1	P25786	PSMA1	30	1	5.6	2.8	2.9	2.5	0.01	3.5
26S protease regulatory subunit 7	P35998	PSMC2	49	1	6.4	3.1	2.1	1.2	0.07	3.2
26S proteasome non-ATPase regulatory subunit 13	Q9UNM6	PSMD13	43	1	5.3	2.8	1.7	1.9	0.03	2.9
Proteasome subunit beta type-7	Q99436	PSMB7	30	1	3.1	2.6	2.4	3.4	0.00	2.8
Proteasome subunit alpha type-4	P25789	PSMA4	29	1	4.1	3.2	1.8	2.0	0.02	2.8
Proteasome subunit beta type-1	P20618	PSMB1	26	1	3.6	1.8	4.1	1.3	0.05	2.7
Transitional endoplasmic reticulum ATPase	P55072	VCP	89	5	2.4	2.9	2.1	2.3	0.00	2.4
Proteasome subunit alpha type-5	P28066	PSMA5	26	1	3.2	2.1	1.7	2.7	0.01	2.4
COP9 signalosome complex subunit 1	Q13098	GPS1	56	1	2.4	2.0	2.7	2.1	0.00	2.3
NSFL1 cofactor p47	Q9UNZ2	NSFL1C	41	1	2.3	1.5	2.6	-	0.04	2.1
Proteasome subunit alpha type-3	P25788	PSMA3	28	1	2.4	2.1	1.8	1.5	0.01	2.0
Ubiquitin carboxyl-terminal hydrolase isozyme L1	P09936	UCHL1	25	4	2.1	1.9	1.3	2.5	0.02	1.9
Kelch-like protein 41	O60662	KHL41	68	3	1.4	1.1	1.3	1.2	0.03	1.3
Proteasome subunit beta type-6	P28072	PSMB6	25	3	1.4	1.2	1.2	1.1	0.02	1.2
Redox homeostasis and oxidative stress										
Superoxide dismutase [Mn], mitochondrial	P04179	SOD2	25	2	2.2	1.8	1.3	1.7	0.01	1.7
Peroxiredoxin-1	Q66830	PRDX1	22	4	1.6	1.9	1.6	1.8	0.00	1.7
Thioredoxin	P10599	TXN	12	1	1.4	1.5	2.4	1.2	0.07	1.7
Peroxiredoxin-2	P32119	PRDX2	22	4	1.6	1.1	1.3	1.2	0.04	1.3
Structural proteins										
Desmin	P17661	DES	54	20	1.9	2.8	2.9	1.9	0.01	2.4
Tubulin alpha-4A chain	P68366	TUBA4A	50	5	1.6	1.8	1.3	1.7	0.01	1.6
Tubulin beta-3 chain	Q13509	TUBB3	50	1	1.7	1.8	1.3	1.5	0.01	1.5
Tubulin beta-4B chain	P68371	TUBB4B	50	2	1.5	1.1	1.8	1.1	0.10	1.4

(Continues)
After treatment with alpha amylase, the pattern was consistent with alpha amylase to mobilise free glycogenin-1 before gel electrophoresis of glycogenin-1, it is therefore necessary to digest the glycogen granules because it is the primer for glycogen synthesis. For western blot analysis on human muscle, the glycogenin-1 protein is bound to glycogen granules and determined by western blot analysis (Figure 3). To be more abundant in patient muscle compared to control as an overall increase of the proteins. Laforin (EPM2A), however, appeared to be more abundant in patient muscle compared to control as determined by western blot analysis (Figure 3). In addition to the localization of glycogenin-1 to polyglucosan bodies, the molecular state of glycogenin-1 appeared to be different in PGBM1 patient muscle compared with control muscle. In normal human muscle, the glycogenin-1 protein is bound to glycogen granules because it is the primer for glycogen synthesis. For western blot analysis of glycogenin-1, it is therefore necessary to digest the glycogen with alpha amylase to mobilise free glycogenin-1 before gel electrophoresis. After treatment with alpha amylase, the pattern was similar in patient and control muscles (Figure 3). Without alpha amylase treatment, the glycogenin-1 appeared as multiple bands of different sizes in patient muscle but not in control muscle where only a faint band of normal size glycogenin-1 was present. This finding indicates that some of the glycogenin-1 in patient muscles were linked to polysaccharides of various length and may be separated by size by gel electrophoresis, unlike the normal muscle where nearly all glycogenin-1 is embedded in glycogen granules that are too large to enter into the gel.

A selection of cellular quality control proteins involved in protein degradation (ubiquitin, p62, VCP, 20S proteasome subunits, KLHL41) or chaperoning functions (HSPB1, HSP70, CRYAB, RAD23B) had accumulated in the polyglucosan according to the MS results and was verified by immunohistochemistry to be enriched in polyglucosan bodies (Figure 4A). For ubiquitin, western blot analysis showed increased levels of both ubiquitinated proteins and monomeric ubiquitin (8.5 kDa) in patient muscle. Although the proteomics analysis identified proteins involved in the clearance of cellular aggregates, factors involved in effector stages of autophagy were not found. However, markers of autophagosome formation (LC3) and lysosomes (LAMP2) were colocalised with polyglucosan bodies by immunohistochemistry (Figure 4B). They had higher expression levels in patient muscle than in normal control muscle and comparable levels to that seen in a case of chloroquine myopathy with prominent activation of autophagocytosis (Figure 4C).

We further validated the MS results for four proteins with chaperone function (HSPB1, HSP70, CRYAB and RAD23B) and one structural protein (DES). For all five proteins, prominent immunolocalisation to polyglucosan was observed confirming the result from LMD-MS (Figure 5).

Immunohistochemical analysis was performed in two IBM patients with antibodies to proteins involved in glycogen metabolism and accumulated in polyglucosan bodies in PGBM1 patients. The IBM patients exhibited numerous rimmed vacuoles, which showed p62 (sequestosome-1)-positive protein aggregates, but there was no apparent accumulation of glycogen synthase, myophosphorylase, debranching enzyme, laforin or glycogenin-1 (Figure S2).

DISCUSSION

Polyglucosan bodies are the histopathological hallmark of PGBM1 and other diseases characterised by storage of polyglucosan, which consists of polyglucans and proteins forming dense and strongly PAS-positive aggregates. The exact composition of the aggregates in different polyglucosan storage disorders is not known, and only sparse

TABLE 3 (Continued)

Protein	UniProt	Gene	MW	UP	P1	P2	P3	P4	p	PAR
Miscellaneous										
Ferritin heavy chain	P02794	FTH1	21	1	4.6	10.4	3.6	-	0.03	5.6
Syntxin-binding protein 2	Q15833	STXB2	66	1	2.7	3.2	3.1	-	0.00	3.0
Testis-specific serine/threonine-protein kinase 6	Q9BXA6	TSSK6	30	1	3.4	3.2	1.9	2.8	0.00	2.8
Iroquois-class homeodomain protein IRX-4	P78413	IRX4	54	1	1.7	2.0	1.7	1.8	0.00	1.8
Cytochrome b-c1 complex subunit 9	Q9UDW1	UQCR10	7	1	0.9	1.9	2.3	1.8	0.09	1.7
AMP deaminase 1	P23109	AMPD1	90	1	2.4	1.7	1.5	1.0	0.09	1.6
Annexin A6	P08133	ANXA6	76	3	1.4	1.7	1.6	1.5	0.00	1.6
Reticulon-4	Q9NQC3	RTN4	130	1	1.9	1.4	1.3	-	0.07	1.5
14-3-3 protein gamma	P61981	YWHAG	28	3	1.3	1.8	1.1	1.4	0.04	1.4
Phosphatidylethanolamine-binding protein 1	P30086	PEBP1	21	3	1.5	1.1	1.5	1.2	0.04	1.4
WD repeat-containing protein 11	Q9BZH6	WDR11	137	1	1.5	1.3	1.3	1.2	0.01	1.3

Note: Listed are proteins with an adjusted p value (p) below 0.10 and an average protein accumulation ratio for all patients (PAR) above 1.20.

Abbreviations: MW, molecular weight in kDa; P1–P4, ratio of protein accumulation in polyglucosan from individual patients; UP, number of unique peptides.
information is available regarding the proteins that are part of the polyglucosan bodies. To get more insight into the pathobiology of polyglucosan body diseases, we performed quantitative MS analysis of the protein content of polyglucosan bodies in PGBM1, which is a disease with massive storage of polyglucosan aggregates in muscle that can readily be isolated by LMD for further analysis. This allowed us to define the main protein composition of polyglucosan bodies by direct coupling of the histologically defined PAS-positive polyglucosan aggregates to MS analysis using LMD.

The method was validated by immunohistochemical analysis of 17 selected proteins, which had been identified as accumulated by the MS analysis. The immunohistochemical validation included only one patient, but the proteins reported to be accumulated were increased in all patients as demonstrated by the LMD-MS method. These proteins showed a clear localization to the polyglucosan bodies by immunohistochemistry and were frequently depleted in the same fibres in regions outside the polyglucosan bodies. Notably, several accumulated proteins did not show a substantially altered overall expression in patient muscle, and therefore the accumulation of such proteins to polyglucosan bodies probably reflects a redistribution. However, some other proteins appeared to be more abundant as revealed by western blot analysis.

Protein	UniProt	Gene	MW	UP	P1	P2	P3	P4	P	PAR
PDZ and LIM domain protein 5	Q96HC4	PDLM5	64	2	0.4	0.4	0.4	0.4	0.00	0.4
Myozin-2	Q9NPC6	MYOZ2	30	1	0.9	0.3	0.3	0.3	0.04	0.4
Myotilin	Q9UBF9	MYOT	55	12	0.5	0.5	0.5	0.6	0.00	0.5
Alpha-actinin-2	P35609	ACTN2	104	25	0.4	0.5	0.6	0.6	0.01	0.5
Myozin-1	Q9NP98	MYOZ1	32	6	0.3	0.4	0.6	0.7	0.02	0.5
Tropomyosin beta chain	P07951	TPM2	33	9	0.4	0.4	0.6	0.6	0.01	0.5
Myomesin-2	P54296	MYOM2	165	18	0.5	0.5	0.6	0.8	0.02	0.5

TABLE 4: Proteins with reduced quantity in polyglucosan from PGBM1 patient muscle

Note: Listed are proteins with an adjusted p value (p) below 0.10 and an average protein accumulation ratio for all patients (PAR) below 0.66.
Abbreviations: MW, molecular weight in kDa; P1–P4, ratio of protein accumulation in polyglucosan from individual patients; UP, number of unique peptides.
A major functional group of proteins accumulated in polyglucosan in PGBM1 muscle were key enzymes involved in glycogen synthesis and degradation. Several of these proteins are known to physically associate with glycogen. Glycogen synthase has multiple glycogen-binding sites, which are necessary for efficient catalytic activity.\(^\text{19}\) Glycogenin-1 is an essential primer for glycogen synthesis and is thus a part of glycogen and also binds to glycogen synthase.\(^\text{20,21}\) Laforin has a carbohydrate-binding domain of a very specific type (carbohydrate-binding module 20, CBM20), which is thought to bind a laforin-malin complex to elongating long-branched glucans in glycogen to inhibit further elongation and precipitation.\(^\text{9}\) Glycogen phosphorylase\(^\text{22}\) and debranching enzyme\(^\text{23}\) also exhibit glycogen-binding sites. Branching enzyme, which also contains a carbohydrate-binding domain,\(^\text{24}\) was not detected in the MS analysis although branching enzyme protein levels in PGBM1 patients were similar to controls when analysed by western blot (not shown). However, branching enzyme does not seem to form stable interactions with glycogen particles prepared from muscle and thus may not accumulate in polyglucosan.\(^\text{25}\) The enzymes associated with glycogen metabolism that were identified in the polyglucosan bodies largely overlap with those found in normal glycogen particles isolated from mouse and rat liver and mouse 3T3-L1 adipocytes.\(^\text{26,27}\) Therefore, accumulation of several key enzymes of glycogen metabolism in polyglucosan bodies may be due to interactions with the carbohydrate and protein components.
of polyglucosan, through carbohydrate-binding modules and protein–protein interactions.

It was not possible to dissect aggregates and control tissue from the same muscle fibres due to the dispersed distribution of polyglucosan in affected fibres. Control tissue was therefore collected from adjacent but separate fibres with normal morphology. In these fibres, proteins were not reduced in the cytoplasm by sequestration to polyglucosan. Thus, the true accumulation ratios in affected fibres were probably underestimated (e.g., GYS1 in Figure 3).

Sequestration of the glycogen metabolism machinery components into polyglucosan bodies, as indicated by LMD-MS and verified by immunohistochemistry, results in depletion of glycogen in other parts of afflicted fibres, as demonstrated by PAS histochemistry. To our knowledge, this is the first study to comprehensively describe the sequestration of core glycogen metabolic enzymes to polyglucosan.
bodies causing glycogen depletion. This metabolic deficiency in a large proportion of the muscle fibres most likely results in impairment of muscle function similar to what is found in glycogen synthase deficiency. Inactivation of the \textit{GYS1} gene, resulting in glycogen synthase deficiency and absence of glycogen as a source for rapidly degradable glucose, is associated with severe muscle weakness and profound exercise intolerance.²⁸

The largest subset of proteins identified in polyglucosan bodies from PGBM1 patients is associated with various abnormalities of protein quality control. A number of chaperones (heat shock proteins) were accumulated in polyglucosan indicating that protein misfolding and aggregation occur at high levels in diseased muscle fibres. Several of the identified chaperones have previously been described in muscle, mainly in relation to maintenance of the contractile apparatus.²⁹,³⁰

The substrate for the chaperones is unknown, but the abnormal accumulation of proteins related to glycogen metabolism may result in misfolding and aggregation of such proteins and drive the recruitment of the chaperone system. Several of the chaperones that we identified in polyglucosan bodies (HSP90, HSPA1A, HSPA8) are also involved in clearance of misfolded or damaged proteins by interaction with the systems for protein degradation described below.³⁰

Our results further demonstrate a prominent localisation to polyglucosan of factors involved in degradation of proteins and protein aggregates through the ubiquitin-proteasome and autophagy-lysosome systems. Ubiquitin, regarded as the pivotal molecular clue for protein degradation, was highly accumulated in polyglucosan and conjugated to various proteins in PGBM1 muscle. Alongside ubiquitin, we found UCHL1, which is involved in processing of newly synthesised ubiquitin and KILH41 and GPS1 that control the ligation of ubiquitin to substrate proteins. Furthermore, sequestosome-1 (p62), VCP, NSFL1 and RAD23B, which are known to bind ubiquitin and function as bridging factors between ubiquitinylated proteins and the proteasome or autophagy degradation pathways, were identified by our LMD-MS approach. As these ubiquitin-binding proteins may interact with subunits of the proteasome as well as autophagy pathways, their presence does not indicate which route of degradation is active.³¹ We identified several key subunits of the 20S catalytic core and 26S regulatory domain of the proteasome by LMD-MS and further verified the accumulation of proteasomes in polyglucosan by immunohistochemistry. Our results therefore indicate that proteasomes are recruited to polyglucosan bodies. Proteins involved in autophagy after substrate recognition were not identified by our LMD-MS analysis. However, LC3 and LAMP2 were detected in polyglucosan by immunohistochemistry and found to be upregulated by western blot analysis indicating the presence of both autophagosomes and lysosomes. Activation of the cellular control systems may be similar in different polyglucosan storage diseases since immunohistochemical studies have revealed ubiquitin and p62 in polyglucosan in Lafora disease, glycogenin-1 deficiency and branching enzyme deficiency.⁶,³²,³³

The accumulation of proteins involved with various aspects of cellular quality control in polyglucosan bodies points to insufficient function of the ubiquitin-proteasome and autophagy systems. The RBCK1-containing LUBAC complex and otulin have been demonstrated to control assembly of autophagosomes by regulating Atg13 stability through linear ubiquitination and de-ubiquitylation, respectively.³⁴ Although RBCK1 deficiency thus may lead to impaired autophagy, it is unlikely that defective autophagy is the primary cause of PGBM1 pathology, and it should be noted that myopathies with primary defects in autophagy generally do not feature polyglucosan bodies.³⁵ However, impaired autophagy may play a part in the pathobiology as has been suggested for glycogen storage disease II and III.³⁶,³⁷ In addition, RBCK1 is an E3 ubiquitin ligase, and there may be a so far not identified substrate for RBCK1, which is dysregulated and
essential for the formation of polyglucosan. Given the morphological and biochemical similarities of polyglucosan bodies in PGBM1 to other glycogen storage diseases with polyglucosan storage, it is likely that deficiency of RBCK1 affects molecular processes central for glycogen metabolism. In this context, it is of interest that laforin and glycogenin-1, which are also associated with polyglucosan storage when they are inactivated by mutations, showed the highest accumulation in polyglucosan in RBCK1 deficient patients.

The formation of polyglucosan bodies in inherited diseases has been attributed to faulty glycogen synthesis and the production of elongated glucan chains with lack of branching leading to insoluble molecules and aggregation. This may be caused by an imbalance of the enzymatic activities of glycogen related proteins, for instance, due to hypomorphic mutations in GBE1 encoding branching enzyme,38,39 or overexpression of glycogen synthase.40,41 In Lafora disease, a central quality control mechanism, prohibiting extensive glucan chain elongation in glycogen, is disabled by mutations of either laforin or malin.9

Our analysis of the protein content of PGBM1 polyglucosan highlights cellular processes involved in protein aggregation and clearance and thereby points to similarities between polyglucosan and protein aggregates found in various muscle and neurodegenerative diseases. Several of the proteins accumulated in polyglucosan are present in protein aggregate myopathies like myotilinopathy and filaminopathy, for example, HSPB1, alpha-crystallin B chain, p62, VCP and the muscle-specific intermediate filament desmin.37,42 Protein components found in polyglucosan of patients with RBCK1 deficiency are also seen in protein aggregates of frontotemporal dementia and amyotrophic lateral sclerosis, for example, UCHL-1 and RAD23B.43,44 These similarities between polyglucosan and well-established protein aggregate diseases indicate that protein aggregation is a contributing factor for the establishment and persistence of polyglucosan bodies. Future treatment strategies aiming at reducing the polyglucosan load will likely need to address aspects of protein aggregation in parallel with the glucan component, and this may also be important in other glycogen storage disorders such as Lafora disease and branching enzyme deficiency.

CONCLUSIONS

Our results demonstrate redistribution of key enzymes of glycogen metabolism to the polyglucosan bodies, explaining the glycogen depletion in numerous fibres resulting in muscle function impairment with weakness and wasting. The accumulation of components of the protein quality control systems and other proteins frequently found in protein aggregate disorders indicate that protein aggregation may be an essential part of the pathobiology of polyglucosan storage.

ACKNOWLEDGEMENTS

We acknowledge the Centre for Cellular Imaging at University of Gothenburg and the National Microscopy Infrastructure, NMI (VR-RFI 2019-00217) for providing access to laser microdissection instrumentation. We thank the Proteomics Core Facility at University of Gothenburg for performing the proteomic/mass spectrometry analysis. Statistical analysis was performed by Jari Martikainen and Malick Senghore at the Bioinformatics Core Facility at the University of Gothenburg. This study was supported by grants from the Swedish Research Council (No 2018-02821 to AO), the Swedish Heart-Lung Foundation (No 20180236 to AO) and Västra Götalands Regionen (ALFGBG-716821 to AO).

CONFLICT OF INTEREST

None of the other authors report any conflict of interest.

ETHICS STATEMENT

The study was approved by the regional ethical review board in Gothenburg, Sweden. The investigated individuals gave their informed consent.

AUTHOR CONTRIBUTIONS

CT and AO designed the study and experiments. CT performed experiments. CT and AO interpreted data. AO, EM, AJ, MR, OK and CL assessed patients and clinical parameters. AO, EM, AJ, MR and OK provided samples. CT and AO wrote the manuscript. All authors commented and approved the manuscript.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1111/nan.12761.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the Supporting Information of this article.

ORCID

Christer Thomsen https://orcid.org/0000-0001-5416-552X
Anders Oldfors https://orcid.org/0000-0002-5758-7397

REFERENCES

1. Robitaille Y, Carpenter S, Karpati G, DiMauro SD. A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: a report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora’s disease and normal ageing. Brain. 1980;103:315-336.
2. Cavanagh JB. Corpora-amylacea and the family of polyglucosan diseases. Brain Res Rev. 1999;29(2-3):265-295.
3. Hedberg-Oldfors C, Abramsson A, Osborn DPS, et al. Cardiomyopathy with lethal arrhythmias associated with inactivation of KLHL24. Hum Mol Genet. 2019;28(11):1919-1929.
4. Hedberg-Oldfors C, Oldfors A. Polyglucosan storage myopathies. Mol Aspects Med. 2015;46:85-100.
5. Kilimann MW, Oldfors A. Glycogen pathways in disease: new developments in a classical field of medical genetics. J Inherit Metab Dis. 2015;38(3):483-487.
6. Malfatti E, Nilsson J, Hedberg-Oldfors C, et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol. 2014;76(6):891-898.
7. Minassian BA. Lafora’s disease: towards a clinical, pathologic, and molecular synthesis. Pediatr Neurol. 2001;25(1):21-29.
PROTEOMIC CHARACTERISATION OF POLYGLUCOSAN BODIES IN SKELETAL MUSCLE IN RBCK1 DEFICIENCY

8. Moslemi AR, Lindberg C, Nilsson J, Tajsharghi H, Andersson B, Oldfors A. Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med. 2010;362(13):1203-1210.

9. Nitschke F, Ahonen SJ, Nitschke S, Mitra S, Minassian BA. Lafora disease - from pathogenesis to treatment strategies. Nat Rev Neuro. 2018;14(10):606-617.

10. Oldfors A, DiMauro S. New insights in the field of muscle glycogenoses. Curr Opin Neurol. 2013;26(5):544-553.

11. Nilsson J, Schoser B, Laforet P, et al. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann Neurol. 2013;74(6):914-919.

12. Boisson B, Laplantine E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13(12):1178-1186.

13. Wang K, Kim C, Bradfield J, et al. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Med. 2013;5(7):67.

14. Elton L, Carpentier I, Verhelst K, Staal J, Beyaert R. The multifaceted role of the E3 ubiquitin ligase HOIL-1: beyond linear ubiquitination. Immunol Rev. 2015;266(1):208-221.

15. Phadke R, Hedberg-Oldfors C, Scalco RS, et al. RBCK1-related disease: a rare multisystem disorder with polyglucosan storage, auto-inflammation, recurrent infections, skeletal, and cardiac myopathy - Four additional patients and a review of the current literature. J Inherit Metab Dis. 2020;43(5):1002-1013.

16. Krenn M, Salzer E, Simonitsch-Klupp I, et al. Mutations outside the N-terminal part of RBCK1 may cause polyglucosan body myopathy with immunological dysfunction: expanding the genotype-phenotype spectrum. J Neurol. 2018;265(2):394-401.

17. Laforet P, Oldfors A, Malfatti E, et al. Proteomic characterisation of polyglucosan bodies in RBCK1 deficiency. Neuropathol Appl Neurobiol. 2014;40(6):572-583. https://doi.org/10.1111/nan.12232

18. Karlsson O, Berg AL, Hanrieder J, Arnerup G, Lindstrom AK, Brittebo EB. Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA. Arch Toxicol. 2015;89(3):423-436.

19. Barkasan S, Chikwana VM, Contreras CJ, et al. Multiple glycogen-binding sites in eukaryotic glycogen synthase are required for high catalytic efficiency toward glycogen. J Biol Chem. 2011;286(39):33999-34006.

20. Skurat AV, Dietrich AD, Roach PJ. Interaction between glycogenin and glycogen synthase. Arch Biochem Biophys. 2006;456(1):93-97.

21. Zegers J, Tang X, Hunter RW, et al. Structural basis for the recruitment of glycogen synthase by glycogenin. Proc Natl Acad Sci U S A. 2014;111(28):E2831-E2840.

22. Pinotsis N, Leonidas DD, Chrysina ED, Oikonomakos NG, Mavridis IM. The binding of beta- and gamma-cyclodextrins to glycogen causes mutations. Eur J Biochem. 2001;268(12):3914-1924.

23. Zhai L, Feng L, Xia L, Yin H, Xiang S. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat Commun. 2016;7(1):11229.

24. Froese DS, Michaela A, McCrorie TJ, et al. Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design. Hum Mol Genet. 2015;24(20):5667-5676.

25. Caudwell FB, Cohen P. Purification and subunit structure of glycogen-branching enzyme from rabbit skeletal muscle. Eur J Biochem. 1980;109(2):391-394.

26. Stapleton D, Nelson C, Parsawar K, Flores-Opazo M, McClain D, Parker G. The 3T3-L1 adipocyte glycogen proteome. Proteome Sci. 2013;11(1):11.

27. Stapleton D, Nelson C, Parsawar K, et al. Analysis of hepatic glycogen-associated proteins. Proteomics. 2010;10(12):2320-2329.

28. Kollberg G, Tulinius M, Gilljam T, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med. 2007;357(15):1507-1514.

29. Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl. 2014;8(11-12):875-895.

30. Carlisle C, Prill K, Pilgrim D. Chaperones and the proteasome system: regulating the construction and demolition of striated muscle. Int J Mol Sci. 2017;19(1).

31. Pohl C, Dilkic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366(6467):818-822.

32. Zhao SN, Maitie R, Sharma J, et al. Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Hum Mol Genet. 2010;19(23):4726-4734.

33. Sampaolo S, Esposito T, Gianfrancesco F, et al. A novel GBE1 mutation and features of polyglucosan bodies in autophagy in adult polyglucosan body disease. Neuromuscul Disord. 2015;25(3):247-252.

34. Chu Y, Kang Y, Yan C, et al. LUBAC and OTULIN regulate autophagy initiation and maturation by mediating the linear ubiquitination and the stabilization of ATG13. Autophagy. 2020;1-16.

35. Margeta M. Autophagy Defects in Skeletal Myopathies. Annu Rev Physiol. 2020;15(1):261-285.

36. Nascimbeni AC, Fanin M, Masiero E, Angelini C, Sandri M. The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII). Cell Death Differ. 2012;19(10):1698-1708.

37. Laforet P, Inoue M, Giolli E, et al. Deep morphological analysis of muscle biopsies from type III glycogenesis (GSDIII), debranching enzyme deficiency, revealed stereotyped vacuolar myopathy and autophagy impairment. Acta Neuropathol Commun. 2019;7(1):167.

38. Souza PVS, Badia BML, Farias IB, et al. GBE1-related disorders: adult polyglucosan body disease and its neuromuscular phenotypes. J Inherit Metab Dis. 2020;44(3):534-543. https://doi.org/10.1016/j.jimd.12325

39. Orhan Akman H, Emmanuelle V, Kurt YG, et al. A novel mouse model that recapitulates adult-onset glycogenosis type 4. Hum Mol Genet. 2015;24(23):6801-6810.

40. Raben N, Danon M, Lu N, et al. Surprises of genetic engineering: a possible model of polyglucosan body disease. Neurology. 2001;56(12):1739-1745.

41. Maile CA, Hingst JR, Mahalingan KK, et al. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase. Biochim Biophys Acta Gen Subj. 1861; 2017:3388-3398.

42. Maerkens A, Olive M, Schreiner A, et al. New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropatol Commun. 2016;4(1):1-20.

43. Zhang YJ, Gendron TF, Grima JC, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocyttoplasmic transport proteins. Nat Neurosci. 2016;19(5):668-677.

44. Riemslag FH, Lans H, Seelaar H, et al. HR23B pathology preferentially core-localizes with p62, pTDP-43 and poly-GA in C9ORF72-linked frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2019;7(1):1-13.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.