Phytochromes are chromoproteins found in plants and bacteria that switch between two photoconvertible forms via the photoisomerization of their chromophore. These two forms, Pr and Pfr, absorb red and far-red light, respectively. We have characterized the biophysical and biochemical properties of two bacteriophytochromes, RpBphP2 and RpBphP3, from the photosynthetic bacterium *Rhodopseudomonas palustris*. Their genes are contiguous and localized near the *pucBAD* genes encoding the polypeptides of the light harvesting complexes LH4, whose synthesis depends on the light intensity. At variance with all (bacterio)phytochromes studied so far, the light-induced isomerization of the chromophore of RpBphP3 converts the Pr form to a form absorbing at shorter wavelength around 645 nm, designated as Pnr for near red. The quantum yield for the transformation of Pr into Pnr is about 6-fold smaller than for the reverse reaction. Both RpBphP2 and RpBphP3 autophosphorylate in their dark-adapted Pr forms and transfer their phosphate to a common response regulator Rpa3017. Under semi-aerobic conditions, LH4 complexes replace specifically the LH2 complexes in wild-type cells illuminated by wavelengths comprised between 680 and 730 nm. In contrast, mutants deleted in each of these two bacteriophytochromes display no variation in the composition of their light harvesting complexes whatever the light intensity. From both the peculiar properties of these bacteriophytochromes and the phenotypes of their deletion mutants, we propose that they operate in tandem to control the synthesis of LH4 complexes by measuring the relative intensities of 645 and 710 nm lights.

Phytochromes are biliprotein photoreceptors originally discovered in plants (1, 2) but only recently in bacteria (3–6). They respond to red/thytochrome, the simplest linear tetrapyrrole containing biliverdin, the absorbance of which is centered at 665 nm. The two bacteriophytochromes, most bacteriophytochromes studied so far contain a two-component histidine kinase motif at their C termini. However some exceptions occur such as the bacteriophytochromes of the photosynthetic bacteria *Bradyrhizobium* (*BrBhp*) and *Rhodopseudomonas palustris* (*Rps. palustris*). The relative proportion of these LH complexes varies according to the light environment (14, 15). They differ by their absorption properties and carotenoid content. Some of these complexes present two distinct optical transitions absorbing around 800 and 850 nm in the near infrared. They are named LH2 (or B800 LH2) to differentiate them from the LH1 complexes, which present a single broad absorption band around 870 nm. A novel type of LH, recently characterized and designated LH4 (or B800 LH2), is expressed under low light intensity and presents a single absorption band in the near infrared centered at 800 nm (15).

The recent sequencing of the complete genome of *Rps. palustris* strain CGA009 revealed, in addition to *RpbphP1*, the unexpected presence of five other putative bacteriophytochrome genes scattered over the genome (16). This suggests that this bacterium has developed a sophisticated and complex network of photoreceptors for its adaptation to light environment. Four of these bacteriophytochromes, *RpBphP1* (*rpm1353*), *RpBphP2* (*rpm3015*), *RpBphP3* (*rpm3016*), and *RpBphP4* (*rpm1490*), are located close to photosynthesis genes. The *RpBphP1* gene is found inside the photosynthesis gene cluster and, as already stated, its product controls the synthesis of the RC-LH1 core complexes (8). The *RpBphP4* gene is located close to the *pucBAe* genes encoding one of the

A New Type of Bacteriophytochrome Acts in Tandem with a Classical Bacteriophytochrome to Control the Antennae Synthesis in *Rhodopseudomonas palustris*

Eric Giraud†, Sébastien Zappa§, Laurie Vuillet¹, Jean-Marc Adriano¹, Laure Hannibal¹, Joël Fardoux‡, Catherine Berthomieu¹, Pierre Bouyer³, David Pignol³, and André Verméglio⁶,²

From the †Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA 10/J, Campus de Baillarguet, 34398 Montpellier Cedex 5, France and ²CEA/Cadarache DEVMLaboratoire de Bioénergétique Cellulaire UMR 6191 CNRS-CEA, Aix-Marseille II 13108 Saint Paul lez Durance Cedex, France

Phytochromes are chromoproteins found in plants and bacteria that switch between two photoconvertible forms via the photoisomerization of their chromophore. These two forms, Pr and Pfr, absorb red and far-red light, respectively. We have characterized the biophysical and biochemical properties of two bacteriophytochromes, RpBphP2 and RpBphP3, from the photosynthetic bacterium *Rhodopseudomonas palustris*. Their genes are contiguous and localized near the *pucBAD* genes encoding the polypeptides of the light harvesting complexes LH4, whose synthesis depends on the light intensity. At variance with all (bacterio)phytochromes studied so far, the light-induced isomerization of the chromophore of RpBphP3 converts the Pr form to a form absorbing at shorter wavelength around 645 nm, designated as Pnr for near red. The quantum yield for the transformation of Pr into Pnr is about 6-fold smaller than for the reverse reaction. Both RpBphP2 and RpBphP3 autophosphorylate in their dark-adapted Pr forms and transfer their phosphate to a common response regulator Rpa3017. Under semi-aerobic conditions, LH4 complexes replace specifically the LH2 complexes in wild-type cells illuminated by wavelengths comprised between 680 and 730 nm. In contrast, mutants deleted in each of these two bacteriophytochromes display no variation in the composition of their light harvesting complexes whatever the light intensity. From both the peculiar properties of these bacteriophytochromes and the phenotypes of their deletion mutants, we propose that they operate in tandem to control the synthesis of LH4 complexes by measuring the relative intensities of 645 and 710 nm lights.

Phytochromes are chromoproteins found in plants and bacteria that switch between two photoconvertible forms via the photoisomerization of their chromophore. These two forms, Pr and Pfr, absorb red and far-red light, respectively. We have characterized the biophysical and biochemical properties of two bacteriophytochromes, RpBphP2 and RpBphP3, from the photosynthetic bacterium *Rhodopseudomonas palustris*. Their genes are contiguous and localized near the *pucBAD* genes encoding the polypeptides of the light harvesting complexes LH4, whose synthesis depends on the light intensity. At variance with all (bacterio)phytochromes studied so far, the light-induced isomerization of the chromophore of RpBphP3 converts the Pr form to a form absorbing at shorter wavelength around 645 nm, designated as Pnr for near red. The quantum yield for the transformation of Pr into Pnr is about 6-fold smaller than for the reverse reaction. Both RpBphP2 and RpBphP3 autophosphorylate in their dark-adapted Pr forms and transfer their phosphate to a common response regulator Rpa3017. Under semi-aerobic conditions, LH4 complexes replace specifically the LH2 complexes in wild-type cells illuminated by wavelengths comprised between 680 and 730 nm. In contrast, mutants deleted in each of these two bacteriophytochromes display no variation in the composition of their light harvesting complexes whatever the light intensity. From both the peculiar properties of these bacteriophytochromes and the phenotypes of their deletion mutants, we propose that they operate in tandem to control the synthesis of LH4 complexes by measuring the relative intensities of 645 and 710 nm lights.

(8) Based upon primary sequence alignment, phytochromes and bacteriophytochromes possess a similar protein organization with an N-terminal chromophore binding domain (CBD) and a C-terminal module involved in signal transduction and dimerization. The plant and cyanobacteria chromophores are 3E-phycocyanobilin and 3Z-phycocyanobilin, respectively (1, 9), whereas other proteobacteria use, as chromophore, biliverdin, the simplest linear tetrapyrrole synthesized from heme by a heme oxygenase (10). Like plant phytochromes, most bacteriophytochromes studied so far contain a two-component histidine kinase motif at their C termini. However some exceptions occur such as the bacteriophytochromes of the photosynthetic bacteria *Bradyrhizobium* (*BrBhp*) and *Rhodopseudomonas palustris* (*Rps. palustris*). The relative proportion of these LH complexes varies according to the light environment (14, 15). They differ by their absorption properties and carotenoid content. Some of these complexes present two distinct optical transitions absorbing around 800 and 850 nm in the near infrared. They are named LH2 (or B800 LH2) to differentiate them from the LH1 complexes, which present a single broad absorption band around 870 nm. A novel type of LH, recently characterized and designated LH4 (or B800 LH2), is expressed under low light intensity and presents a single absorption band in the near infrared centered at 800 nm (15).

The recent sequencing of the complete genome of *Rps. palustris* strain CGA009 revealed, in addition to *RpbphP1*, the unexpected presence of five other putative bacteriophytochrome genes scattered over the genome (16). This suggests that this bacterium has developed a sophisticated and complex network of photoreceptors for its adaptation to light environment. Four of these bacteriophytochromes, *RpBphP1* (*rpm1353*), *RpBphP2* (*rpm3015*), *RpBphP3* (*rpm3016*), and *RpBphP4* (*rpm1490*), are located close to photosynthesis genes. The *RpBphP1* gene is found inside the photosynthesis gene cluster and, as already stated, its product controls the synthesis of the RC-LH1 core complexes (8). The *RpBphP4* gene is located close to the *pucBAe* genes encoding one of the

* This work was supported by the CEA, the IRD, and the CNRS (programme Protéomique). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Both authors contributed equally to this study.

‡ To whom correspondence should be addressed. Tel.: 33-442254630; Fax: 33-442254701; E-mail: avermeglio@cea.fr.

§ These abbreviations used are: Rds., *Rhodopseudomonas*; CBD, chromophore binding domain; LED, light-emitting diode; LH, light harvesting; FTIR, Fourier transform infrared spectroscopy.
Regulation of Antennae by Two Bacteriophytochromes

LH2 complexes. Remarkably, the RpBphP2 and RpBphP3 genes are organized in tandem downstream the pucBAD encoding the apoproteins of the LH4 complexes. Two other genes coding for LH complexes (the pucBAc genes rpa3009 and rpa3010) are located upstream the pucBAD genes. However, one of them, pucAc, contains a frameshift mutation and has been annotated as a pseudogene (16).

To better understand the role and function of these bacteriophytochromes in the adaptation of Rps. palustris to changes in its light environment, we initiated their systematic study at the genetic and biochemical level. Of particular interest are the two bacteriophytochromes, RpBphP2 and RpBphP3. What is the significance of the tandem organization of the two bacteriophytochromes genes? Do these two bacteriophytochromes possess different properties? Are these two bacteriophytochromes involved in the regulation of the closely located pucBAD genes or in different regulatory processes? In this report, we show by combining genetics, biochemical and biophysical approaches that the bacteriophytochrome RpBphP3 possesses unusual photochemical properties and works in tandem with RpBphP2 to regulate the synthesis of the LH4 complexes.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions—Rps. palustris CEA001 strain (11) was grown under semiaerobic conditions for 72 h at 30 °C on Petri dishes filled with 40% Sisman-agar medium and sealed with tape. The cells were subjected to continuous illumination provided by a series of light-emitting diodes (LEDs) of different wavelengths between 590 and 875 nm. Each LED illuminated a 3.5 cm² area. The half-peak bandwidth was below 25 nm for all wavelengths. Irradiance was adjusted between 1 and 200 μmol of photon/m²/s.

Expression and Purification of Rpa3014, RpBphP2, RpBphP3, and Rpa3017 Proteins—The rpa3014, RpBphP2, RpBphP3, and rpa3017 genes were amplified by polymerase chain reaction from genomic DNA of Rps. palustris CEA001 using primers designed to add appropriate restriction sites for expression as His₅-tagged versions in pBAD/HisB expression vector (Invitrogen). To reconstitute in vivo the RpBphP2 and RpBphP3 holobacteriophytochromes, the hmuO gene from Bradyrhizobium ORS278 was amplified by polymerase chain reaction using primers designed to add a ribosome binding site upstream the gene and restriction site for insertion in the previous constructions pBAD:RpBphP2 and pBAD:RpBphP3. The recombinant proteins were overexpressed in Escherichia coli LMG194 and purified as described previously (11).

Protein Kinase Assays—Protein kinase reaction was performed as described previously (9). For autophosphorylation experiments, the bacteriophytochromes RpBphP2 or RpBphP3 were either dark-adapted for more than 1 h or pre-illuminated with saturating red light (705 nm) at 30 °C. The kinase reactions were initiated by adding [γ-32P]ATP, and the resulting mixtures were subjected to a further 1-h darkness condition or illumination. At this stage, the reactions were stopped by addition of the buffer used for the SDS-PAGE assay and analyzed by gel electrophoresis. For the phosphotransfer reactions, the RpBphP2 and RpBphP3 were incubated in the presence of [γ-32P]ATP during 1 h in the dark or under 705 nm light and for an additional 10 min with equal amount of Rpa3014 or Rpa3017 or a mixture of Rpa3014 and Rpa3017. 32P-Labeled products were quantified by using a Typhoon PhosphoImager (Amersham Biosciences).

Construction of RpBphP2 and RpBphP3 Mutant Strains—for the construction of the RpBphP2 null mutant, a 1.4-kb PstI fragment inside the RpBphP2 gene was deleted and replaced by the lacZ-Km’ cassette. These constructions were introduced in the pJQ200 suicide vector (18) and delivered by conjugation into the Rps. palustris CEA001 strain as described (11). Double recombinants were selected on sucrose and confirmed by polymerase chain reaction.

Absorbance Spectra Measurements—Absorbance spectra of purified RpBphP2 and RpBphP3 bacteriophytochromes were recorded with a Cary 50 spectrophotometer. Bacteriophytochrome spectra were recorded either in the dark or under continuous illumination at 645, 705, or 750 nm provided by LEDs with an irradiance of 15 μmol of photon/m²/s. Light-induced absorbance changes were performed with a laboratory-built spectrophotometer similar to the one developed by Joliot et al. (19). The absorption level is sampled using 2-μs monochromatic flashes given from 1 ms to several seconds after actinic excitation. Actinic illumination was provided with a Xenon flash (2 μs).

Fluorescence Measurements—Fluorescence measurements have been performed at room temperature using a Cary Eclipse spectrophotometer. To perform the photoinduced transition of RpBphP2 and RpBphP3, excitation light was provided by 645-, 705-, or 750-nm LEDs with an irradiance of 15 μmol of photon/m²/s. For the measurement of the excitation spectra (2-nm slit bandwidth), the fluorescence was detected at 730 nm (10-nm slit bandwidth). For the emission spectra (2-nm slit bandwidth), the excitation was set at 400 nm (10-nm slit bandwidth). Measurements of the variation of the fluorescence yield were performed at 400 nm for the excitation wavelength (10-nm slit bandwidth) and 730 nm for the emission wavelength (2-nm slit bandwidth).

Light-induced FTIR Difference Spectra Measurements—Light-induced FTIR difference spectra were recorded at 10 °C at 4 cm⁻¹ resolution, with a Bruker 66 SX spectrometer equipped with a KB beam splitter and nitrogen-cooled MCT-A detector. The FTIR samples consisted in 10 μl of a solution of bacteriophytochrome at a concentration of ~200 μM, in 50 mM Tris-Cl, pH 8, 100 mM KCl, 20 mM MgCl₂, deposited between two calcium fluoride windows sealed with silicon grease to avoid sample dehydration. The samples were subjected to successive light cycles, applying 705 nm light to generate Prf (or Pnr) and 750 or 645 nm light to restore the Pr form of RpBphP2 or RpBphP3, respectively.

RESULTS

Expression and Purification of Recombinant Holobacteriophytochromes—The RpBphP2 and RpBphP3 genes belong to the same putative operon, which includes three other putative response regulator genes (rpa3014, rpa3017, and rpa3018) (Fig. 1A). This operon is found upstream the pucBAD genes encoding the apoproteins of the light-harvesting complexes LH4. Sequence analysis reveals that the RpBphP2 and RpBphP3 proteins are highly homologous, with 54% of sequence identity and 76% similarity. In contrast, they present only 30–35% sequence identity with the other bacteriophytochromes of Rps. palustris. These two bacteriophytochromes display the classical bacteriophytochrome architecture with an N-terminal CBD and a C-terminal histidine kinase domain (Fig. 1B). To prove that RpBphP2 and RpBphP3 encode functional bacteriophytochromes, they were co-expressed with the heme oxygenase gene (required for chromophore synthesis) in E. coli and subsequently purified. Gel electrophoresis and zinc fluorescence (not shown) demonstrated that the biliverdin molecule was covalently bound in both proteins as previously reported for bacteriophytochromes of various bacterial species (8, 10, 20). Site-directed mutagenesis (data not shown) indicate that the Cys residues of the N terminus, located at position 16 and 28 for RpBphP2 and RpBphP3, respectively, are necessary for attachment of chromophore and are likely to be the site of attachment based upon their position and the
previous data from the bacteriophytochrome Agp1 of Agrobacterium (20).

Absorption and Photochemical Properties—Unexpectedly, the purified RpBphP2 and RpBphP3 bacteriophytochromes present slightly different colors (Fig. 2A). The absorption spectra of dark-adapted samples of RpBphP2 and RpBphP3 are typical of the Pr form with a main band centered at 710 and 705 nm, respectively (Fig. 2, C and D). Both RpBphP2 and RpBphP3 behave as usual bacteriophytochromes assuming a Pr ground state after dark adaptation. This behavior is at variance to that reported for the first bacteriophytochrome (RpBphP1) studied in Rps. palustris, which was shown to be stable under its Pfr form (8, 11). Presence of two bacteriophytochromes which differ by their dark-adapted state has also been reported in Agrobacterium tumefaciens (21). In this bacterium, the ground state of the bacteriophytochrome AtBphP1 is the Pr state, whereas the Pfr form of AtBphP2 corresponds to its dark-adapted state (21). Upon illumination with a 705-nm light of RpBphP2 (Fig. 2C), a typical Pr/Pfr transition is observed with the partial bleaching of the main absorption band and appearance of a broad band cen-
Regulation of Antennae by Two Bacteriophytochromes

rates of the phototransformation of Pr into Pfr and of Pfr into Pr are similar (Fig. 2B). Note that these initial rate measurements, determined in the first 2 s of illumination, are not affected by the dark reversion of RpBphP2 and RpBphP3, which takes several tens of minutes in both cases (Fig. 3). The ratio between these initial rates is therefore a good estimate of the ratio of the quantum efficiencies of the photoconversion of the two photoconvertible states.

To determine the absolute absorption spectra of the two photoconvertible forms of RpBphP2 and RpBphP3, we have used the following method. The steady-state spectrum $S_A(\lambda)$ obtained under illumination at a given wavelength, λ_1, is a mixture of the spectra $S_A(\lambda)$ and $S_B(\lambda)$ of the two pure photoconvertible forms, with relative weights $\alpha(\lambda_1)$ and $[1 - \alpha(\lambda_1)]$, respectively,

$$S_A(\lambda_1) = \alpha(\lambda_1) S_A(\lambda) + [1 - \alpha(\lambda_1)] S_B(\lambda) \quad (\text{Eq. 1})$$

The steady-state condition implies

$$\rho_A \alpha(\lambda_1) S_A(\lambda_1) = \rho_B S_B(\lambda_1) [1 - \alpha(\lambda_1)] \quad (\text{Eq. 2})$$

where the ρs stand for the quantum efficiencies for the conversion into the other form.

From Equation 1,

$$S_B(\lambda) = \left[S_A(\lambda) - \alpha(\lambda_1) S_A(\lambda) \right] / [1 - \alpha(\lambda_1)] \quad (\text{Eq. 3})$$

and from Equation 2,

$$S_B(\lambda_1) = \frac{\alpha(\lambda_1)}{1 - \alpha(\lambda_1)} \eta S_A(\lambda_1) \quad (\text{Eq. 4})$$

where $\eta = \rho_A / \rho_B$.

Making $\lambda = \lambda_1$ in Equation 3 and equating with Equation 4, one obtains the relation between α and η.

$$\alpha(\lambda_1) = \frac{S_A(\lambda_1)}{S_B(\lambda_1)} \frac{1}{1 + \eta} \quad (\text{Eq. 5})$$

If $S_A(\lambda)$ (dark-adapted spectrum) and $S_B(\lambda)$ (under steady-state illumination at $\lambda = \lambda_1$) are known, then $\alpha(\lambda_1)$ is a unique function of the ratio of quantum efficiencies $\eta = \rho_A / \rho_B$. Thus, the determination of $S_A(\lambda)$ requires one additional information that may be (i) an independent measurement of ρ or (ii) the acquisition of a steady-state spectrum under actinic illumination at another wavelength λ_2. The first method was applied to both RpBphP2 and RpBphP3 bacteriophytochromes. The measurement of $\eta \approx 1$ for RpBphP2 (Fig. 2B), implies that the S_{305} spectrum of Fig. 2C is contributed by $\alpha(705) \approx 30\%$ of the Pr form. The corresponding $S_B(\lambda)$ spectrum, i.e. the absorption spectrum of the Pr form is shown in Fig. 4A. For RpBphP3, using $\eta \approx 6$ (Fig. 2B), we found
that the S_{705} spectrum of Fig. 2D is contributed by $\alpha(705) \approx 50\%$ of the Pr form. Using method (ii) for RpBphP2 with the spectra obtained under steady-state illumination at $\lambda_1 = 705$ nm and $\lambda_2 = 645$ nm (Fig. 2D), we confirmed a value of η for the pure $S_0(\lambda)$ spectrum of RpBphP3 shown in Fig. 4B.

The absorption spectra of the pure Pr and Pfr forms of RpBphP2 are typical of bacteriophytochromes described so far (8, 10). As already mentioned, the dark-adapted state of RpBphP3 is similar in shape to the Pr state of RpBphP2, i.e., a classical Pr spectrum. On the other hand, the light-induced state of RpBphP3 absorbs maximally at 650 nm. The absorption spectrum of this state is similar in shape to the Pfr state of RpBphP2 but blue-shifted by 95 nm (Fig. 4B). Because of its peak location, we name this new spectral form Pnr for pigment absorbing in the near red.

In conclusion, RpBphP3 presents unusual photochemical properties in terms of both quantum yield for photoconversion and wavelength position of the Pnr state.

Chromophore Conformation and Transient States—The new optical properties of the short wavelength state of RpBphP3 poses the problem of the biliverdin conformation in this state and the dark-adapted state. High similarities can be found between the dark-adapted state of RpBphP3 and the classical Pr state of RpBphP2 and accordingly between the classical Pfr state and the new Pnr state of RpBphP3. A first argument comes from the almost identical absorption spectra of the two dark-adapted states of these bacteriophytochromes (Fig. 4). A second argument is the observation that the dark-adapted states of both RpBphP2 and RpBphP3 are fluorescent. The fluorescence excitation spectra of RpBphP2 and RpBphP3 closely match their respective absorption spectra, and the emission spectra are centered at 725 and 720 nm, respectively (Fig. 5, A and B). On the other hand, a large fluorescence decrease occurs upon 705 nm illumination in both cases. This is shown in Fig. 5, C and D where the fluorescence yield of both bacteriophytochromes have been measured in the dark or under 705-nm illumination. The decreases in fluorescence yield, ~65 and 45% for RpBphP2 and RpBphP3, respectively (Fig. 5, C and D), correspond nicely to the amounts of Pr and Pnr states formed under such illumination (Fig. 2). The non-fluorescent character of the new Pnr state of RpBphP3 is a typical prop-

FIGURE 4. Absorption spectra of recombinant RpBphP2 and RpBphP3. A, RpBphP2. The Pr spectrum (black line) corresponds to the dark-adapted sample. The Pfr spectrum (blue line) was derived from the spectrum recorded under 705 nm illumination (Fig. 2) using a Pfr/Pr ratio of 0.70 as described in the text. B, RpBphP3. The Pr spectrum (black line) corresponds to the dark-adapted sample. The Pfr spectrum (blue line) was derived from the spectrum recorded under 705 nm illumination (Fig. 2) using a Pfr/Pr ratio of 0.50 as described in the text.

FIGURE 5. Fluorescent properties of recombinant RpBphP2 and RpBphP3. A, excitation (solid line) and emission (dotted line) spectra of a sample of RpBphP2 recorded at room temperature. B, same as A but for a sample of RpBphP3. C and D, light-induced variations of the fluorescence yield for RpBphP2 (C) and RpBphP3 (D). The fluorescence emission is measured at 730 nm upon excitation with 400-nm light. The fluorescence yield is measured in the dark or under 705, 645, or 750 nm illumination as indicated. a.u., arbitrary units.

FIGURE 6. Light-induced FTIR difference spectra of RpBphP2 and RpBphP3. Light-induced FTIR difference spectra corresponding to the formation of the Pfr form of RpBphP2 (A) and to the Pnr form of RpBphP3 (B). These spectra are the result of successive light-cycles, applying 705-nm light to generate Pfr (or Pnr) and 750 nm light or 645 nm light to restore the Pr form of RpBphP2 or RpBphP3, respectively. Inset, structure of the biliverdin chromophore. a.u., arbitrary units.
property of the “classical” Pfr form of phytochromes (22). A third argument comes from the comparison of the FTIR difference spectra recorded with both bacteriophytochromes. The Pfr – Pr FTIR difference spectrum recorded with RpBphP2 (Fig. 6A) presents a striking similarity to that observed for the plant phytochrome (23, 24) for which ZZZ to ZZE isomerization in C15 of phytochromobilin was demonstrated using NMR spectroscopy. The occurrence of common infrared bands at 1653/1643–1638, 1248, 1118, 960–958/947 cm⁻¹ and especially at 1595/1583 cm⁻¹ in the Prn-Pr and Pfr-Pr spectra recorded with RpBphP3 or RpBphP2 strongly supports that Z to E isomerization also occurs around the C15=C16 double bond for RpBphP3. Previous studies on phytochromes using chromophores chemically modified at ring D or ¹⁸O-labeled at ring A have shown that the contributions of the carbonyl group of ring A lie above 1730 cm⁻¹, whereas those of ring D are at 1710–1696 cm⁻¹ (24). Thus we assign the upshift of 1735–1750 cm⁻¹ upon Pr to Pnr transition to ring A carbonyl, whereas the large positive band at 1698 cm⁻¹ is assigned to the carbonyl group of ring D in the Pfr form of RpBphP3 (Fig. 6). The last argument comes from the analysis of the light-induced absorption changes following an exciting flash. Fig. 7A shows the light-induced absorbance changes detected at different times, between 1 and 100 ms, after flash excitation of a dark-adapted sample of RpBphP2. The light-induced difference spectrum detected 1 ms after the exciting flash presents an absorbance increase centered at 740 nm and a bleaching around 640 and 705 nm. When the light-induced absorbance changes are detected at longer times, a shift to longer wavelengths is observed for the positive changes together with an increase of the amplitude of the negative changes (Fig. 7A). These light-induced changes can be interpreted as follows. Flash excitation induces the formation of a short-lived state absorbing around 740 nm, which is transformed with a half-time of 10 ms (Fig. 7A, inset) into the stable Pfr state absorbing around 760 nm. The properties of this transient state, in terms of half-time and absorption at shorter wavelength than the stable Pfr form, are similar to the lumir-R state observed for plant phytochrome (22, 25). An equivalent transient state is observed upon phototransformation from the Pr to the Pnr state in the case of RpBphP3 (Fig. 7B). This short lived state peaks around 730 nm and is converted into the stable Pnr form with a half-time of 10 ms. On the other hand, we have observed no transition state, in the ms to second time range, for both the flash-induced transformation of Pfr into Pr or Pnr into Pr for RpBphP2 and RpBphP3, respectively (data not shown). We take the similarity between the transient states measured in RpBphP2 and RpBphP3 as supplementary evidence that their dark-adapted states correspond to a Pr state. Collectively, the above results strongly support an identical conformational state of the chromophore for the new Pnr form of RpBphP3 and the classical Pfr form of RpBphP2. We therefore propose that the new Pnr form of RpBphP3 is equivalent to the classical Pfr but absorbing at much shorter wavelengths. **Autophosphorylation and Phosphotransfer**—Both RpBphP2 and RpBphP3 bacteriophytochromes possess a histidine kinase module at their C-terminal regions (Fig. 1B). We have determined the correlation between this kinase activity and their conformational states by incubation in the presence of [γ-³²P]ATP. Both bacteriophytochromes autophosphorylate in the dark, i.e. under their Pr forms (Fig. 8A). In agreement with His serving as phosphoacceptor site, the autophosphorylated RpBphP2 and RpBphP3 are acid labile and base stable (data not shown). Illumination of RpBphP2 with a 705-nm light strongly represses its kinase activity indicating that its Pfr form is not able to autophospho-

FIGURE 7. Flash-induced absorption difference spectra of RpBphP2 and RpBphP3. Flash-induced absorption difference spectra corresponding to the formation of the Pfr form of RpBphP2 (A) and to the Pnr form of RpBphP3 (B). Flash-induced absorption changes were detected at different times (squares, 1 ms; circles, 8 ms; triangles, 20 ms; diamonds, 50 ms; inverted triangles, 100 ms) after a short (2 µs) excitation flash. The insets correspond to the kinetics of the absorbance changes detected at 740 nm. The vertical and horizontal bars represent ΔA = 10⁻¹ and 20 ms, respectively.

FIGURE 8. RpBphP2 and RpBphP3 act as light-regulated histidine kinases. A, autophosphorylation of purified RpBphP2 and RpBphP3 in the dark or under illumination at 705 nm. After incubation with [γ-³²P]ATP during 1 h, the reaction products were separated by SDS-PAGE, and the gels were subjected to autoradiography (top) or stained for protein (prot) with Coomassie Blue (bottom). Percentages of phosphorylation levels are indicated below the autoradiogram. B, kinetics of phosphotransfer between the two bacteriophytochromes and the response regulator Rpa317. Open squares, RpBphP2; filled circles, RpBphP3. C and D, transfer of the phosphate from RpBphP2 (C) and RpBphP3 (D) to the response regulators Rpa3014 and Rpa3017. A.U., arbitrary units.
Regulation of Antennae by Two Bacteriophytochromes

FIGURE 9. Effect of light of various wavelengths on the LH4 synthesis. A, absorption spectra of *Rps. palustris* cells grown under semiaerobic conditions subjected to illumination at various wavelengths (from 637 to 751 nm) provided by LEDs. The light intensity was set to 10 μmol of photon/m²/s for each wavelength. B, variation of the ratio A805/A860 as a function of the wavelength of the incident light, deduced from experiments similar to those reported in part A.

Because the enhancement of LH4 complexes synthesis has been reported to occur only at very low light intensity under anaerobic conditions (15), we have followed the LH4 synthesis as a function of the intensity of 710 nm light. This enhancement was half-saturated for intensity of 5 μmol of photon/m²/s and remained constant up to 200 μmol of photon/m²/s (not shown). This unexpected behavior is probably because of the difference in growth conditions between the present work (semiaerobic) and the previous report (anaerobic) (15).

Because of the peculiar absorption and quantum yield properties of the *Rps. palustris* Pnr state, we expect that both bacteriophytochromes are in their dephosphorylated activating state only when the 710-nm light is in excess to 645-nm light. To test this possibility the synthesis of LH4 complexes has been measured as a function of the ratio between 645 and 710 nm light intensities. We indeed observed that increasing this ratio led to a large decrease in the synthesis of LH4 complexes. Typically, the ratio A805/A860 decreases from 2.0 to 1.2 when the ratio between 645 and 710 nm light intensities increases from 0.1 to 10 (not shown).

To definitively prove that the LH4 synthesis is regulated by the action of *RpbPbP2* and *RpbPbP3*, we have examined the phenotype of mutants deleted in *RpbPbP2* or *RpbPbP3* genes. In contrast to the wild-type strain, no synthesis of LH4 complexes was observed for these mutants irrespective of the illumination intensity and wavelength (not shown).

DISCUSSION

Based on the results described above, we conclude that the light-induced dephosphorylation of *RpbPbP2* and *RpbPbP3* is the first step of the signal transduction pathway of the LH4 synthesis. These two bacteriophytochromes act as the inputs to an "and gate" for the regulation of the LH4 synthesis as a function of the relative intensities of 645 and 710 nm light. We propose that measurement of this ratio is an indirect detection of the presence of phytoplankton. Indeed, in their natural environment, photosynthetic bacteria may develop below dense layers of phytoplankton. Because of the strong absorption of cyanobacteria and microalgae chromophores in the visible region up to 700 nm, the ratio of photons of 645 and 710 nm reaching the lower layer of photosynthetic bacteria is significantly affected by the presence of phytoplankton. In particular, photosynthetic bacteria receive only far-red light in these conditions. This significantly decreases their available light energy. To overcome this limitation in light supply, *Rps. palustris* activates the synthesis of LH4 complexes, via the action of *RpbPbP2* and *RpbPbP3* and decreases the synthesis of LH2 complexes. These changes in LH complexes significantly enhance the light capture efficiency of the bacteria. First, the infrared absorption of all the bacteriochlorophyll molecules of the LH4 complexes is centered around 800 nm, whereas...
most (two-thirds) of the absorption the LH2 complexes peaks at longer wavelengths, around 860 nm (15). Because much more light is transmitted at 800 nm than around 860 nm due to depth water attenuation (26), the LH4 complexes collect more light than the LH2 complexes. In addition, the increase in energy gap between LH4 (B800 LH2) and the B870 LH1 complexes, as compared with the gap between LH2 (B800–850 LH2) and B870 LH1, constitutes an effective sink and a barrier against back transfer of excitonic energy.

The strategy adopted by Rps. palustris to measure the difference in intensity and light quality has been the involvement of a pair bacteriophytochromes, one of which, RpBphP3, presents atypical optical properties. Unusual photochemical properties have also been reported recently for the light sensor protein Ppr of Rhodospirillum centenum by Kyndt et al. (27). This chromoprotein possesses both a photocactive yellow protein domain and a bacteriophytochrome domain (5). The dark-adapted form of Ppr presents an absorption maximum at 702 nm with a shoulder around 650 nm, typical of the Pr form of bacteriophytochromes. Upon illumination, both the 702- and the 650-nm transitions bleach with no concomitant appearance of a red- or blue-shifted transition (27). It is important to note that this behavior, which may appear at first sight similar to what we observed for RpBphP3, corresponds to a real bleaching of the optical transitions of Ppr and not to a blue shift of these transitions as in the case of RpBphP3 (Fig. 4B).

Another example of unusual spectral properties has been also reported for the PizJ1 holoprotein of the cyanobacterium Synechocystis sp. PCC6803 (28). This light sensor shows a photoconvertible response between a blue light-absorbing form and a green light-absorbing form. However this chromoprotein contains two GAF domains but does not possess the CBD, characteristic of phytochromes. In addition, the chemical nature of the chromophore remains unknown. It has been shown to be different from the various phytochrome chromophores previously characterized in plant, cyanobacteria or bacteria (phytachromobilin, phycocyanobilin, biliverdin, respectively) (28). So PizJ1 cannot be considered as a bona fide phytochrome.

The short wavelength position of the Pnr form of RpBphP3 may be related to a less extensive conjugation of the π-electrons because of the distortion of one of the biliverdin ring. In agreement with this hypothesis, the large positive absorption band at 1698 cm⁻¹, assigned to the carbonyl group of ring D in the Pnr form of RpBphP3 (Fig. 6) may indicate a difference in the environment of this carbonyl between RpBphP3 and RpBphP2. This could be because of a modification of the coupling of ν(C=O) and ν(C=C) modes (of the C₁₅=O₁₅ methine bridge) in the Pnr state of RpBphP3. Sequence alignment of several bacteriophytochromes reveals unconserved amino acids in the CBD of RpBphP3 (Fig. 1C). Some of these residues were introduced in RpBphP2 by site-directed mutagenesis (Fig. 1C), to test whether this could confer the short wavelength position of the Pnr form of RpBphP3 to RpBphP2. This was not the case with any of these single mutations. The molecular basis of the short wavelength position of the new Pnr form remains therefore to be disclosed. Construction of mutants containing multiple amino acid substitutions is in progress to address this question.

Several questions concerning the molecular mechanism of the light regulation of LH4 complexes remain to be answered. What other partner(s) are involved in the phosphorelay initiated by the two bacteriophytochromes RpBphP2 and RpBphP2? Putative candidates are the transcriptional factor Rpa3014 and the response regulator Rpa3018, whose genes belong to the same operon than RpBphP2 and RpBphP3. These two proteins present some similarities with the transcriptional factor Rpa1491 and the putative RpBphP4 bacteriophytochrome, respectively. The RpBphP4 and rpa1491 genes are located near the pucBAe genes encoding LH2 complexes. A cross-talk between the bacteriophytochrome RpBphP4 and the three proteins, Rpa3014, Rpa3018, and Rpa1491, is possibly involved in the co-regulation of the synthesis of the LH2 and LH4 complexes. Although the genes of the two other bacteriophytochromes, present in Rps. palustris, are found in genome regions noticeably distant from photosynthesis genes, we cannot exclude yet their participation in the regulation of the synthesis of the photosynthetic apparatus. Another point to be solved is the mechanism of the enhancement of the LH4 complexes synthesis observed only at low light intensity under anaerobic conditions, for which the involvement of RpBphP2 or RpBphP3 is difficult to understand, because their chromophore synthesis requires oxygen.

The measurement of light parameters, like those described above for Rps. palustris, is essential for photosynthetic organism’s adaptation to their light environment to regulate light capture for an optimal photosynthetic activity. Changes in pigment composition in response of different wavelengths, the so-called complementary chromatic adaptation, has been observed in different species of cyanobacteria. For example, the pigmentation of cyanobacteria changes in function of light quality. In Fremyella diplosiphon, red light (~650 nm) induces the synthesis of a large amount of blue-absorbing phycocyanin biliprotein but only small amount of the red-absorbing phycoerythrin biliprotein (29, 30). In contrast, green light (~540 nm) induces the synthesis of large quantities of phycoerythrin but only small amounts of phycocyanin. The regulation observed during this complementary chromatic adaptation suggests the existence of a peculiar light control system. This system presents therefore some homologies to the light-sensing system of regulation of LH4 complexes of Rps. palustris. The peculiar light sensors required for complementary chromatic adaptation would have to absorb in the green (540 nm) and the red (650 nm) regions. It has been recently proposed that the photoreceptor RcaE is required for both green and red light responsiveness during complementary chromatic adaptation (31). This protein contains both the CBD and the transmitter module typical of phytochrome (3). Although it has been shown that RcaE covalently binds in vitro classical bilins (phycocyanobilin, phycobilin, biliverdin), the reconstructed proteins obtained are not photochromes suggesting that contrary to plant or bacterial photochromes, RcaE could require a separate lyase activity for an accurate bilin attachment (31). In the absence of spectral analysis, it is still unclear whether complementary chromatic adaptation-regulated gene expression in Fremyella is under the control of RcaE alone with unusual optical properties. Alternatively, RcaE could be associated in tandem with another photoreceptor similarly to the organization of RpBphP2/RpBphP3 present in Rps. palustris.

Acknowledgments—We thank Drs. B. Genty and B. Dimon for helpful comments. We wish also to express our gratitude to Dr. J. Lavergne for computing the equations of the pure spectra calculation and for constructive discussions.

REFERENCES
1. Smith, H. (2000) Nature 407, 585–591
2. Quail, P. H., Boylan, M. T., Parks, B. M., Short, T. W., Xu, Y., and Wagner, D. (1995) Science 268, 675–680
3. Keboe, D. M., and Grossman, A. R. (1996) Science 273, 1409–1412
4. Hughes, J., Lamparter, T., Mittmann, F., Hartmann, E., Gärtner, W., Wilde, A., and Börner, T. (1997) Nature 386, 663
5. Jiang, Z.-Y., Swem, L. R., Rushing, B. G., Devanathan, S., Tollin, G., and Bauer, C. E. (1999) Science 285, 406–409
6. Davis, S. J., Vener, A. V., and Vierstra, R. D. (1999) Science 286, 2517–2520
7. Yoshihara, S., Suzuki, F., Fujita, H., Geng, X. Y., and Ikeuchi, M. (2000) Plant Cell Physiol. 41, 1299–1304
8. Giraud, E., Faroux, J., Fournier, N., Hannibal, L., Genty, B., Bouyer, P., Dreyfus, B., and Verméglio, A. (2002) Nature 417, 202–205
9. Yeh, K. C., Wu, S. H., Murphy, J. T., and Lagarias, J. C. (1997) Science 277, 1505–1508
10. Bhoo, S.-H., Davis, S. J., Walker, J., Karnieli, B., and Vierstra, R. D. (2001) Nature 414, 32396
11. Giraud, E., Zappa, S., Jaubert, M., Hannibal, L., Fardoux, J., Adriano, J.-M., Bouyer, P., Genty, B., Pignol, D., and Verméglio, A. (2004) *Photochem. Photobiol. Sci.* 3, 587–591.
12. Giraud, E., Hannibal, L., Fardoux, J., Jaubert, M., Jourand, P., Dreyfus, B., Sturgis, J. N., and Verméglio, A. (2004) *J. Biol. Chem.* 279, 15076–15083.
13. Tadros, M. H., and Waterkamp, K. (1989) *EMBO J.* 8, 1303–1308.
14. Evans, M. B., Hawthornthwaite, A. M., and Cogdoll, R. J. (1990) *Biochim. Biophys. Acts* 1016, 71–76.
15. Hartigan, N., Tharia, H. A., Sweeney, F., Lawless, A. M., and Papiz, M. Z. (2002) *Biophys. J.* 82, 963–977.
16. Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobel, C., Torres, J. L., Peres, C., Harrison, F. H., Gibson, J., and Harwood, C. S. (2004) *Nature Biotech.* 22, 55–61.
17. Kokotek, W., and Lotz, W. (1989) *Gene (Amst.)* 84, 467–471.
18. Quandt, J., and Hynes, M. F. (1993) *Gene (Amst.)* 127, 15–21.
19. Joliot, P., Béal, D., and Frilley, B. (1980) *J. Chimie Physique* 77, 209–216.
20. Lamparter, T., Michael, N., Mittmann, F., and Esteban, B. (2002) *Proc. Natl. Acad. Sci. U. S. A.* 99, 11628–11163.
21. Karniol, B., and Vierstra, R. D. (2003) *Proc. Natl. Acad. Sci. U. S. A.* 100, 2807–2812.
22. Sineshchekov, V. A. (1995) *Biochim. Biophys. Acts* 1228, 125–164.
23. Foerstendorf, H., Benda, C., Gartner, W., Storf, M., Scheer, H., and Siebert, F. (2001) *Biochemistry* 40, 14952–14959.
24. Foerstendorf, H., Mummert, E., Schäfer, E., Scheer, H., and Siebert, F. (1996) *Biochemistry* 35, 10793–10799.
25. Linschitz, H., Kasche, V., Butler, W. L., and Siegelman, H. W. (1966) *J. Biol. Chem.* 241, 3395–3403.
26. Vilia, X., Colomer, J., and Garcia-Gil, L. J. (1996) *Ecol. Model.* 87, 59–68.
27. Kynsö, J. A., Meyer, T. E., and Cusanovich, M. A. (2004) *Photochem. Photobiol. Sci.* 3, 519–530.
28. Yoshihara, S., Katayama, M., Geng, X., and Ikehuchi, M. (2004) *Plant Cell Physiol.* 45, 1729–1737.
29. Bogorad, L. (1975) *Annu. Rev. Plant Physiol.* 26, 369–401.
30. Tandeau de Marsac, N. (1977) *J. Bacteriol.* 130, 82–91.
31. Terauchi, K., Montgomery, B. L., Grossman, A. R., Lagarias, J. C., and Kehoe, D. M. (2004) *Mol. Microbiol.* 51, 567–577.
A New Type of Bacteriophytochrome Acts in Tandem with a Classical Bacteriophytochrome to Control the Antennae Synthesis in *Rhodopseudomonas palustris*

Eric Giraud, Sébastien Zappa, Laurie Vuillet, Jean-Marc Adriano, Laure Hannibal, Joël Fardoux, Catherine Berthomieu, Pierre Bouyer, David Pignol and André Verméglio

J. Biol. Chem. 2005, 280:32389-32397.

doi: 10.1074/jbc.M506890200 originally published online July 11, 2005

Access the most updated version of this article at doi: [10.1074/jbc.M506890200](http://doi.org/10.1074/jbc.M506890200)

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 31 references, 10 of which can be accessed free at http://www.jbc.org/content/280/37/32389.full.html#ref-list-1