Site-specific protein modification using immobilized sortase in batch and continuous-flow systems

Martin D Witte, Tongfei Wu, Carla P Guimaraes, Christopher S Theile, Annet E M Blom, Jessica R Ingram, Zeyang Li, Lenka Kundrat, Shalom D Goldberg and Hidde L Ploegh

Published online 26 February 2015; doi:10.1038/nprot.2015.026

Transpeptidation catalyzed by sortase A allows the preparation of proteins that are site-specifically and homogenously modified with a wide variety of functional groups, such as fluorophores, PEG moieties, lipids, glycans, bio-orthogonal reactive groups and affinity handles. This protocol describes immobilization of sortase A on a solid support (Sepharose beads). Immobilization of sortase A simplifies downstream purification of a protein of interest after labeling of its N or C terminus. Smaller batch and larger-scale continuous-flow reactions require only a limited amount of enzyme. The immobilized enzyme can be reused for multiple cycles of protein modification reactions. The described protocol also works with a Ca\(^{2+}\)-independent variant of sortase A with increased catalytic activity. This heptamutant variant of sortase A (7M) was generated by combining previously published mutations, and this immobilized enzyme can be used for the modification of calcium-sensitive substrates or in instances in which low temperatures are needed. Preparation of immobilized sortase A takes 1–2 d. Batch reactions take 3–12 h and flow reactions proceed at 0.5 ml h\(^{-1}\), depending on the geometry of the reactor used.

INTRODUCTION

Proteins are attractive therapeutics, diagnostic tools and imaging agents, but their application as such often requires the installation of additional, nongenetically encoded functional groups. Various methods for protein labeling exist, but these often lack specificity, and thus they may compromise protein function. Attachment of PEG (PEGylation), incorporation of dyes and other functional groups, as well as the generation of antibody-drug conjugates usually rely on modification of endogenous cysteine or lysine residues, which can lead to heterogeneous products, unspecific labeling and loss of protein function. For example, PEGylation, while increasing circulatory half-life, may cause a decrease or even loss of biological activity owing to the chemical modification(s) imposed. Such results have also been observed when preparing antibody-drug conjugates. Heterogeneity after labeling may confound accurate dosing and complicate drug approval and pharmaceutical production.

The transpeptidation reaction catalyzed by sortase A allows site-specific protein modification with functional groups of choice, such as dyes, biotin, click-handles, nucleic acids, carbohydrates, lipids and PEG moieties. The modification is installed in a controlled and site-specific manner, in near-quantitative yields. Engineered variants of sortase A with increased catalytic activity allow more rapid protein modification at lower temperatures, which enables a wider range of applications.

Advantages of sortase-mediated reactions using immobilized sortase

A sortase-mediated reaction comprises enzyme, substrate and the desired functional group to be installed. This reaction allows functionalization of a (poly)peptide of choice at its N terminus, C terminus or at both termini using two orthogonal sortases. Upon completion of the reaction, the labeled product requires further purification. To this end, both sortase and the input substrate can be engineered to contain an affinity tag, most commonly hexahistidine (His\(_6\)), at their C termini. This tag is lost upon successful transpeptidation of substrate, so that His-tagged sortase A and unreacted substrate can be removed in a single step by affinity chromatography on an Ni–nitrilotriacetic acid (NTA) matrix. Gel filtration can then be used for further purification of the product by removal of excess free peptide. Affinity chromatography cannot always resolve input material from the labeled product, either because both species contain an affinity tag (as applied to N-terminal labeling reactions) or because the intrinsic properties of the substrate and/or product cause nonspecific binding to the affinity resin. In these situations, product purification by gel filtration and/or ion-exchange chromatography are possible alternatives. As described in this report, the use of immobilized sortase accelerates the purification process and obviates the need for removal of sortase.

A concern frequently raised with regard to sortase-mediated reactions is the amount of sortase A required, as the enzyme and the substrate are typically used at near-equimolar concentrations. This is of particular worry for large-scale reactions, which therefore require sizable amounts of enzyme, whose presence can complicate downstream purification steps in large-scale applications. Immobilizing sortase A on a solid support can overcome these technical limitations, as it allows using sortase A in continuous-flow reactions. The prepared sortase columns can be reused, thus affording scale-up of the reactions and minimizing batch-to-batch variation. The amount of sortase A required for large-scale reactions may thus be decreased and downstream processing is simplified. Even for small-scale batch reactions, the use of immobilized sortase facilitates the analysis of reactions by simplifying the composition of the mixture of proteins in solution.
Sortase A mutants with increased activity can further decrease the amount of sortase needed for large-scale reactions. They can be used at lower concentrations, either in solution or when immobilized. Moreover, these mutant sortases can function at reduced temperatures (4 °C), compared with 20–37 °C used for sortagging with the wild-type enzyme that facilitates labeling of sensitive proteins. However, both wild-type sortase A and the evolved pentamutant sortase A (5M) require Ca\(^{2+}\) as a cofactor, which compromises their utility in applications in the presence of Ca\(^{2+}\) or in combination with buffers such as PBS. We recently described a sortase A variant, termed heptamutant sortase A (7M), which combines the pentamutant version with increased catalytic activity with mutations that render sortase calcium independent, resulting in an enzyme with increased activity and no longer requiring Ca\(^{2+}\) (ref. 19) (Fig. 1). The immobilized variant of this enzyme facilitated straightforward modification of aerolysin and greatly simplified the purification of the modified product.

This protocol describes immobilization of *Staphylococcus aureus* sortase A and its variants on Sepharose beads for modification of either the N or C terminus of a substrate in small-batch or continuous-flow mode for larger-scale reactions (see Fig. 2 for overall schematic). The continuous-flow mode is most effectively applied to C-terminal labeling reactions, in which the substrate and the modifying nucleophile are provided in solution, but it may also be applied to N-terminal reactions by prereacting the resin with an LPXTG-containing probe to boost yields. Before performing conjugation reactions using the continuous flow system, suitability of the designated protein as a substrate for sortase A should be evaluated in small-batch reactions.

Protocol

Figure 1 | Comparison of wild-type (WT), pentamutant (5M) and heptamutant (7M) SrtA activity in the presence or absence of Ca\(^{2+}\).

In this experiment, 30 µM VHHF4-LPETG-6×His, 0.5 mM G66-TAMRA and 5 µM of the appropriate sortase were incubated at 4 °C for the indicated time in either (+ Ca\(^{2+}\)) 50 mM Tris, pH 7.5, 150 mM NaCl supplemented with 10 mM CaCl\(_2\) or (−Ca\(^{2+}\)) PBS supplemented with 10 mM EGTA. Equal amounts of the reaction mixtures were loaded on a 15% (wt/vol) SDS–PAGE gel. (a, b) The mixtures were analyzed using in-gel fluorescence scanning with a 580-nm emission filter and staining with Coomassie brilliant blue (a). The band at 15 kDa in the fluorescence image corresponds to TAMRA-labeled VHHF4. No fluorescence signal is observed for WT SrtA.

Figure 2 | Schematic representation of the sortase immobilization on Sepharose beads. Free amines of sortase A react with the activated ester, forming an iso-urea or an imidocarbonate derivate.

Figure 3 | Comparison of C-terminal-specific labeling of an LPETG-containing streptavidin protein with a Gly\(_3\)-TAMRA fluorophore using immobilized heptamutant (7M) sortase A (batch) or heptamutant sortase A in solution. The LPETG-containing streptavidin and Gly\(_3\)-TAMRA were prepared as described in the protocol, and the expression and immobilization of sortase A was also done as described. In this experiment, 50 µM LPETG-containing streptavidin and 2 mM Gly\(_3\)-TAMRA were incubated overnight with either 25 µM immobilized sortase A (lane 1) or 10 µM sortase A in solution (lane 2). (a) Equal amounts of the reaction mixtures were loaded on a 15% (wt/vol) SDS–PAGE gel and stained with Coomassie Brilliant Blue. (b) In-gel fluorescence scanning with a 580-nm emission filter yielded the image shown. TAMRA-labeled product was only found in the lanes containing sortase, protein and probe. This gel confirms that immobilization of sortase A did not compromise its activity. The Coomassie-stained image (a) illustrates the absence of sortase A in solution, when using immobilized sortase A for the reaction. MW, molecular-weight ladder.
of the calcium-independent heptamutant sortase A to increase the utility of the reaction. In immobilized form, the heptamutant sortase enables a reduction in the amount of enzyme needed while accelerating the reaction in a wide array of buffers.

Limitations of the continuous flow method

Purification and immobilization of sortase, as well as packing a column or cartridge with the sortase-conjugated beads, for use in a continuous flow reaction takes time. However, the ability to reuse immobilized sortase saves both time and resources. Flow reactions for N-terminal labeling require slightly longer reaction times owing to the prequillibration of the column with an LPXTG-containing probe. Nonspecific binding of the substrate of interest or of the label itself may interfere with the immobilized sortase labeling reaction if blocking procedures are not carefully followed. In our experience, nonspecific binding is negligible (Figs. 3 and 4). Nonetheless, the occurrence and extent of nonspecific binding must be determined empirically for every reaction. A higher concentration of immobilized sortase may be required to achieve a similar degree of labeling when compared with soluble sortase, as not all sortase active sites may be equally accessible as a consequence of immobilization.

Experimental design and general considerations

Sortase A or derivatives with increased activity and/or Ca$^{2+}$ independence, including the heptamutant sortase A, are expressed and purified as described,20 followed by immobilization on commercially available cyanogen bromide–activated Sepharose. Free amines of sortase A react with the activated resin and form an iso-urea or an imidocarbonate derivate (Fig. 1a). For small-batch reactions, the sortase-containing beads are mixed with substrate and labeled in a microcentrifuge tube and reacted for 3–12 h at 37 °C. The heptamutant sortase A described here can be used at 37 °C. The heptamutant sortase A described here can be used at

Figure 4 Comparison of N-terminal-specific labeling of a Gly$_3$–containing cholera toxin B (CtxB) with an LPETG-containing TAMRA fluorophore using immobilized sortase A (batch) or sortase A in solution. The LPETG-containing TAMRA and Gly$_3$–CtxB were prepared as described in the protocol, as well as the expression and immobilization of sortase A. In this experiment, 50 μM LPETG-containing TAMRA and 30 μM Gly$_3$–CtxB were incubated overnight with either 50 μM immobilized sortase A (lane 1) or 50 μM sortase A in solution (lane 2). (a,b) Equal amounts of the reaction mixtures were loaded on a 15% (wt/vol) SDS–PAGE gel. The mixtures were analyzed after in-gel fluorescence scanning with a 580-nm emission filter (b) and staining with Coomassie Brilliant Blue (a). The two fluorescent bands ~10 kDa (lanes 1 and 2) in the fluorescence image indicate near-complete conversion to the labeled product. The Coomassie-stained image in a illustrates the absence of sortase A in solution, when using immobilized sortase A for the reaction. MW, molecular-weight ladder.

Figure 5 C-terminal labeling of proteins using immobilized sortase. A protein that is C-terminally modified with the LPXTG motif and a peptide probe containing a series of N-terminal glycine residues are injected onto a column with S. aureus sortase A immobilized on Sepharose beads. Sortase forms an acyl-enzyme intermediate with Thr on the protein’s recognition motif. Nucleophilic attack of the peptide probe resolves the intermediate, thus ligating the peptide probe to the C terminus of the protein and regenerating the active site Cys on sortase. Labeled protein is eluted from the column.
Figure 6 | N-terminal labeling of proteins using immobilized sortase.
A protein that is N-terminally modified with a series of glycine residues and a peptide probe containing C-terminal LPXTG. S. aureus motif are injected onto a column with S. aureus sortase A immobilized on Sepharose beads. Sortase forms an acyl-enzymic intermediate with Thr residue within the peptide’s recognition motif. Nucleophilic attack of the protein resolves the intermediate, thus ligating the peptide probe to the N terminus of the protein and regenerating the active site Cys on sortase. Labeled protein is eluted from the column.

(10 mg of enzyme in a 5 × 70 mm column) and equilibrate it with sortase reaction buffer at 37 °C. The optimal labeling temperature and probe-to-substrate ratio, as determined in the batch reaction, provide good starting conditions for the optimization of the flow reaction. We vary the flow rate and determine the conversion of the substrate by taking aliquots and analyzing them by SDS-PAGE.

For C-terminal labeling of a protein on a larger scale, we load the column with the desired substrate protein bearing a sortase-recognition motif LPXTG at its C terminus (where X can be any amino acid, although typically glutamic acid is used; Fig. 5) together with an oligoglycine probe harboring the functional group to be conjugated onto the protein.

For N-terminal labeling, we use a similar approach (Fig. 6). Here the column is preloaded with an LPETGG-containing peptide, which is decorated with the substituent of choice at its N terminus. This allows the acyl intermediate to form on-resin before incubation with the Glyₙ-modified substrate protein to be labeled. This preincubation step is essential to increase the yield of the labeled product.

MATERIALS
REAGENTS
▲ CRITICAL For all items marked with a ▲ CAUTION marker, please use proper personal protective equipment (gloves, eye protection and proper attire). The use of these chemicals should be carried out in a fume hood when possible. For more information, please refer to each item’s Material Safety Data Sheet (MSDS).
• Cyanogen bromide–activated Sepharose 4B (e.g., Sigma-Aldrich, cat. no. C-9142)
• Hydrochloric acid (HCl; EMD Millipore, cat. no. HX0603) ▲ CAUTION HCl is toxic and corrosive.
• Sortase A or the heptamutant sortase A (expressed and purified as described in Guimaraes et al.20). Plasmids are available from Addgene, cat. nos. 51138 and 51141)
• Sodium chloride (NaCl; American Bioanalytical, cat. no. AB01915)
• Sodium bicarbonate (NaHCO₃; American Bioanalytical, cat. no. AB01929)
• Glycine (Sigma, cat. no. 67126)
• Tris base (American Bioanalytical, cat. no. AB02000)
• Tris-HCl (American Bioanalytical, cat. no. AB02005)
• Common reagents for SDS-PAGE analysis
• Brilliant Blue R (Sigma-Aldrich, cat. no. B7920) ▲ CAUTION MeOH is toxic and flammable.
• Acetic acid (AcOH; VWR, cat. no. BDH3094) ▲ CAUTION AcOH is corrosive and flammable.
• CaCl₂ (EMD, cat. no. 208290)
• For C-terminal labeling: purified target protein (LPETGGHHHHHH at the C terminus at a 220 µM concentration in Tris-buffered saline (TBS))
• For C-terminal labeling: N-terminal oligoglycine peptide probe: 20 mM in water (synthesis described elsewhere²⁰)
• For N-terminal labeling: purified protein to be used as a nucleophile (GGG at the N terminus)
• For N-terminal labeling: LPXTGG peptide probe: 20 mM stock solution in water, 1 mM solution for reactions (synthesis described elsewhere²¹)
• Triglycine (Sigma-Aldrich, cat. no. G1377)
• Ethanol (Pharmco-AAPER, cat. no. 111000190) ▲ CAUTION Ethanol is flammable.
• Ni-NTA agarose suspension (Qiagen, cat. no. 30230)
• Imidazole (Alfa Aesar, cat. no. A10221) ▲ CAUTION Imidazole is harmful.
• Sample-loading LDS buffer, 4× (Invitrogen, cat. no. NP0008)

EQUIPMENT
• Amicon Ultra concentrators, 3- or 10-kDa MWCO (Millipore, cat. nos. UFC00324 and UFC00124). The cutoff range is dependent on the size of the protein being labeled
• Dialysis cassettes (Thermo Scientific, cat. no. 66330 or 66110)
• Polypropylene gravity columns with fritted bottom, 25 ml (Bio-Rad, cat. no. 732-1010)
• Rotating mixer/shaker
• Tubes or vials for immobilized sortase storage
• GE Healthcare, Tricorn 5/100 column
• Micropipettes (5–1,000 µl)
• Centrifuge that supports centrifugation at 2,080g
• Incubator, 37 °C
• Centrifuge tubes, 1.5 ml
Protocol

- Corning Costar spin-X centrifuge tube filters (Sigma-Aldrich, cat. no. CLS8161)
- Superdex 75 (10/300 GL)
- Heating block
- Centrifuge that supports centrifugation at 2,500 g
- GENIE Plus syringe pump (Kent Scientific)

Reagent Setup

- **Sepharose swelling buffer**
 - Sepharose swelling buffer is 1 mM HCl in water; store the solution at 4 °C for up to 1 month.

- **NaHCO$_3$/NaCl coupling buffer**
 - NaHCO$_3$/NaCl coupling buffer is 0.1 M NaHCO$_3$ (pH 8.3) and 0.5 M NaCl. Store the solution at 4 °C for up to 1 month.

- **AcOH/NaCl buffer**
 - AcOH/NaCl buffer is 0.1 M AcOH (pH 4.0) and 0.5 M NaCl. Store the solution at 4 °C for up to 1 month.

- **Blocking solution**
 - Blocking solution is 0.2 M glycine in water. Store the solution at 4 °C for up to 1 month.

- **TBS buffer**
 - TBS buffer is 50 mM Tris-HCl (pH 7.4) and 150 mM NaCl. Pass the buffer through a 0.22-µm filter and store it at 4 °C for up to 3 months.

- **Coomassie blue staining**
 - Dissolve 1.25 g of Brilliant Blue R in a mixture of MeOH (200 ml), water (250 ml) and AcOH (50 ml). Store it in a dark container at room temperature (RT, 20–25 °C) for up to 1 year.

- **Destaining solution**
 - Mix water, ethanol and AcOH at a ratio of 6:3:1. Store the solution at RT for up to 1 year.

- **Sortase reaction buffer**
 - Sortase reaction buffer is 500 mM Tris-HCl (pH 7.4) 1.5 M NaCl and 100 mM CaCl$_2$ (10× stock). Pass the buffer through a 0.22-µm filter and store it at 4 °C for up to 3 months.

- **Purification buffer**
 - Purification buffer is 50 mM Tris-HCl (pH 7.5) and 150 mM NaCl. Store the buffer at 4 °C for up to 3 months.

- **Column washing solution**
 - Column washing solution is 1 mM triglycine, 50 mM Tris-HCl (pH 7.5), 150 mM NaCl and 10 mM CaCl$_2$. Pass the solution through a 0.22-µm filter and store it at 4 °C for up to 3 months.

Procedure

Part 1, immobilization of sortase

1. Take 30 mg of stock sortase A or heptamutant sortase A and exchange the buffer to NaHCO$_3$/NaCl coupling buffer through dialysis or with spin concentrators. Dilute the sortase to a total volume of 7 ml of coupling buffer.

2. Split 1 g of dry cyanogen bromide–activated Sepharose into two 25-ml polypropylene gravity flow columns.

3. Add 20 ml of cold 1 mM HCl swelling solution to each column and cap each end. Incubate for 7 min at 4 °C by rotating it in an end-over-end mixer. After uncapping, gently vacuum the liquid through the bottom frit. Repeat this step five times. Note that good swelling of the Sepharose beads is required to obtain good immobilization efficiencies. **Critical Step** Do not let the beads dry out.

4. Combine the beads into one column and flow 200 ml of cold distilled water through the column with vacuum at 4 °C to wash the beads.

5. With vacuum, flow through 10 ml of NaHCO$_3$/NaCl coupling buffer at 4 °C.

6. Immediately after washing, add the 7 ml of sortase A solution from Step 1. Remove a small amount (~50 µl) of the supernatant for coupling efficiency analysis (Step 15). Remove a small amount (~50 µl) of the supernatant for coupling efficiency analysis (Step 15). Rotate in an end-over-end mixer at RT for 2 h. **Critical Step** Avoid amine-containing buffers, such as Tris, or other nucleophilic buffers, as they will react with cyanogen bromide–activated Sepharose.

7. Remove the supernatant by gravity flow and carefully collect it to keep it as a control (Step 15).

8. Flow through 20 ml of NaHCO$_3$/NaCl coupling buffer, using vacuum to wash the resin.

9. Modify any remaining unreacted cyanate ester groups with 15 ml of blocking solution for 2 h at RT, by rotating the mixture in an end-over-end shaker. **Pause Point** The blocking step may be carried out for 16 h at 4 °C.

10. Flow through 15 ml of ice-cold NaHCO$_3$/NaCl coupling buffer using vacuum to wash the resin.

11. Flow through with vacuum 15 ml of 0.1 M AcOH/NaCl buffer at pH 4 to wash the resin.

12. Repeat Steps 10 and 11 five times.

13. Flow through 15 ml of ice-cold TBS buffer using vacuum to wash the resin. Repeat this step three times.

14. Resuspend the beads with an equivalent volume of TBS buffer to obtain a 50% slurry and transfer it to a tube or vial for long-term storage. **Pause Point** Immobilized sortase from *S. aureus* can be stored at 4 °C for 3 months or until degradation or loss of efficiency is observed. The heptamutant sortase has a shorter lifetime of 3–4 weeks. Longer storage at 4 °C in the absence of
a bacteriostatic or bactericidal is not recommended, as the protein may degrade or contamination may occur. The resin can be frozen in 20% (vol/vol) glycerol at −20 °C or lyophilized in the presence of sucrose and stored at −20 °C for even longer periods. For freeze-drying, we recommend gradually freezing the slurry at −20 °C before lyophilizing to minimize damage to the beads. After reconstitution, wash the resin with TBS buffer.

15| Analyze aliquots of the supernatant taken before and after immobilization (from Steps 6 and 7) by SDS-PAGE to estimate sortase A coupling efficiency and the concentration of enzyme that is immobilized on the beads. It will be beneficial to create a serial dilution of the initial sample to achieve a better coupling efficiency estimate. The coupling efficiency should be 90–100%.

TROUBLESHOOTING

16| You can now either use the beads for small-scale batch labeling reaction to test their function and determine optimal reaction conditions (perform the steps in Part 2 of the PROCEDURE) or, if you are already satisfied that the beads will perform their function, you can perform flow reactions for large-scale protein production (perform the steps in Part 3 of the PROCEDURE).

Part 2, batch labeling using immobilized sortase A: optimization of the batch reaction ● TIMING 1.5 d

17| Add 20–150 µM immobilized sortase A (~7.5 mg ml⁻¹ resin, 300 µM) or 5–25 µM immobilized heptamutant sortase A (~7.5 mg ml⁻¹ resin, 440 µM) to a solution containing 10–50 µM target protein and 1–2 mM peptide probe in 1× sortase buffer (final concentrations). The final reaction volume should be at least 100 µl. The controls to be included are as follows: resin only, target protein only, probe only, target protein combined with the resin, probe combined with the resin and probe combined with the target protein (in the absence of resin). Reactions may be performed in PBS (instead of sortase buffer) if you are using the heptamutant sortase A. Note that removal of aliquots from the supernatant to monitor the reaction (see Step 18) will increase the concentration of the immobilized sortase A. Use a reaction volume of 100 µl to minimize concentration increase and to allow direct comparison with sortase A reactions in solution.

18| Swirl the beads using an end-over-end shaker or a thermomixer (800 r.p.m.), and take aliquots (2 µl) from the supernatant after 1, 2, 4, 8 and 16 h. Note that different temperatures have to be screened to arrive at the optimal reaction conditions. For the regular sortase A, the optimal reaction temperature is between RT and 37 °C. The heptamutant sortase is active at reduced temperatures. Most commonly, heptamutant reactions are performed between 15 °C and RT, although temperatures as low as 4 °C can be used for particularly sensitive experiments.

19| Remove the beads by centrifugation through spin filters at 280 g for 5 min at 4 °C. Recover the supernatant and immediately denature the proteins by adding 1× LDS sample buffer and boiling for 2 min. The beads may be washed several times with TBS buffer and saved for further use.

20| Analyze the samples by SDS-PAGE, followed by fluorescence scanning, western blotting or Coomassie staining, depending on the probe being used.

Purification of the batch reaction ● TIMING 4 h

21| Repeat the batch reaction using the optimized reaction time and temperature. Use a minimum reaction volume of 100 µl.

22| Transfer the reaction to a centrifuge tube filter, centrifuge it at 280 g for 5 min at 4 °C and collect the fluid phase.

23| Wash the resin beads with 1× sortase buffer, centrifuge again and collect the fluid phase. Note that the beads may be stored at 4 °C in TBS buffer, and they may be reused until degradation or loss of activity is observed (as evidenced by decreased conversion of the substrate on Coomassie staining, fluorescence staining or western blotting).

24| Combine the yield from Steps 22 and 23.

25| Load the protein onto a previously washed and equilibrated size-exclusion column Superdex 75 (10/300 GL). Elute the protein with 25 ml of purification buffer at a flow rate of 0.5 ml h⁻¹.

26| Collect 1.3-ml fractions, and combine the positive fractions for protein (based on the UV spectra). Concentrate using an Amicon concentrator at 2,080 g at 4 °C.

PAUSE POINT Final storage depends on the stability of the protein being labeled. Usually, storage at 4 °C is optimal for the short term, whereas storage at −20 or −80 °C with 10% (vol/vol) glycerol is optimal for longer durations.
Part 3, Protein Labeling by Flow Reactions ● **Timing** 7–16 h

27 | To pack a column of immobilized sortase A, carefully resuspend the immobilized sortase A slurry to obtain a homogeneous solution. Next, pack the suspension of immobilized sortase A into a 5 × 100 mm column according to the manufacturer’s protocol. The final loading volume is 5 × 70 mm immobilized sortase A (bead bed) containing 10 mg of protein.

28 | Flow through 3 ml of TBS buffer to wash the column.

- **Pause Point** The column can be stored at 4 °C for up to 3 months for sortase A. Columns containing the immobilized heptamutant variant can be stored for 3 weeks. The column can be reused many times until loss of activity or degradation is observed.

29 | For large-scale protein labeling experiments, follow Step 29A if you want to do C-terminal labeling, or Step 29B if you want to do N-terminal labeling.

(A) C-terminal Labeling (LPXTG-containing protein) ● **Timing ~1 d**

1. Wash the column with 3 ml of 1× sortase buffer.
2. Incubate the column at 37 °C and wait for 2 h before proceeding to the next step. If you are using the heptamutant sortase, the temperature may be reduced.
3. Mix the protein substrate (345 µl of a 220 µM stock), the oligoglycine probe (150 µl of a 20 mM stock), 10× sortase reaction buffer (300 µl) and water (2,205 µl) in a centrifuge tube.
4. Inject the reaction mixture in the sortase A–immobilized column at a flow rate of 0.5 ml h⁻¹ using a syringe pump at 37 °C. Collect the eluate.
5. Inject 1.5 ml of 1 mM oligoglycine peptide in 1× sortase reaction buffer after the final amount of protein substrate has flowed through the column. Collect the eluate.
6. Combine the eluate from Step 29A(iv,v).
7. Purify the protein by gel filtration (Steps 30–31), and regenerate the column as described in Steps 32 and 33.

Troubleshooting

(B) N-terminal Protein Labeling (GGG-containing protein) ● **Timing ~1 d**

1. Prepare solution A by mixing 300 µl of LPETG-containing probe (1 mM), 150 µl of 10× sortase buffer and 1,050 µl of deionized water (total volume 1,500 µl).
2. Prepare solution B by mixing 450 µl of the GGG N-terminal protein (55 µM), 600 µl of LPETG-containing probe (1 mM), 300 µl of 10× sortase buffer and 1,650 µl of deionized water (total volume 3,000 µl).
3. Inject solution A into the immobilized sortase A column. Store the column at 37 °C for 0.5 h. Note that this step allows the LPETG-containing probe to fully react with the sortase to preform the LPET-sorte covalent intermediate. If you are using the heptamutant sortase, the temperature may be reduced.
4. Pass mixture B through the column at a flow rate of 0.5 ml h⁻¹. Collect 0.5-ml fractions from the column.
5. Re-inject the void volume (0.9 ml) back through the column at a flow rate of 0.5 ml h⁻¹ to elute any remaining free protein.
6. Combine the fractions from the column and concentrate to an appropriate concentration using an Amicon concentrator at 2,080g at RT.
7. Purify the protein by gel filtration (Steps 30 and 31) and regenerate the column as described in Steps 32 and 33.

Troubleshooting

Purification of the Labeled Protein ● **Timing** 1.5–4 h

30 | Load the concentrated protein onto a previously washed and equilibrated size-exclusion column Superdex 75 (10/300 GL), and elute the proteins with 25 ml of eluting solution at a flow rate of 0.5 ml h⁻¹.

31 | Collect 1.3-ml fractions and combine the positive fractions for protein (based on the UV spectra). Concentrate using a centrifugal concentrator at 2,500g at 4 °C.

- **Pause Point** Final storage depends on the stability of the protein being labeled. Usually, storage at 4 °C is optimal for the short term (3 d), whereas storage at ~20 °C or ~80 °C with 10% (vol/vol) glycerol is optimal for longer durations.

Regeneration of the Immobilized Sortase Column ● **Timing** 30 min

32 | Wash the immobilized sortase column with 3 ml of column washing solution at a flow rate of 30 ml h⁻¹.

33 | Wash the column with 3 ml of TBS buffer by hand injection.

Troubleshooting

- **Pause Point** The column can be stored at 4 °C until the next sortase reaction.
TROUBLESHOOTING
Troubleshooting advice can be found in Table 1.

Problem	Possible reason	Solution
Poor immobilization	The cyanogen bromide–activated Sepharose is no longer reactive	Check the expiration date of the Sepharose
	The protein is diluted in a buffer that is incompatible with immobilization	Avoid the use of amine-containing buffers
	Incorrect pH	Prepare a fresh batch of immobilized sortase
	Incorrect buffer	Extend the C terminus of the protein introducing a linker (Gly₄Ser)₂ immediately upstream of the sortase motif
	Incorrect C terminus	Reaction conditions should be tested in batch using soluble and immobilized enzymes, before scaling up to the continuous flow system
Incomplete conversion for C-terminal protein modification	Wrong buffer	The buffer pH should be ~7.5. If *S. aureus* sortase A is used, the buffer should contain 1 mM CaCl₂ and phosphate-based buffers should be avoided
	The ratio between the C-terminal protein-LPXTGG and GGG-label is not optimal	Increase the amount of nucleophile. The conditions need to be determined empirically
	Sortase is degraded	Prepare a fresh batch of immobilized sortase
	C terminus is not well exposed	Extend the C terminus of the protein introducing a linker (Gly₄Ser)₂ immediately upstream of the sortase motif
	The protein to be labeled is not a suitable substrate for sortase	Reaction conditions should be tested in batch using soluble and immobilized enzymes, before scaling up to the continuous flow system
	Hydrolysis of the C-terminal LPXTGG protein	Although uncommon, this may occur more frequently with the heptamutant sortase. Lower the amount of sortase added. Alternatively, reduce the temperature and/or reaction time
Incomplete conversion for N-terminal protein modification	No acyl intermediate was formed	Load the LPXTGG-containing (poly)peptide on the immobilized sortase column and let it incubate at 37 °C for 1–2 h
	The ratio between the N-terminal protein-LPXTGG and GGG-protein is not optimal	Decrease the amount of injected protein or increase the amount of LPXTGG probe for the incubation
	The flow rate may be too high or too low	Use SDS-PAGE to check the conversion rate, and adjust the flow rate
	Sortase is degraded	Prepare a fresh batch of immobilized sortase
	N terminus is not exposed	Increase the length of the Gly₄N terminus
	The protein to be labeled is not a suitable substrate for sortase	Reaction conditions should be tested in batch using soluble and immobilized enzymes, before scaling up to the continuous flow system
	Hydrolysis of the LPXTGG probe	This may occur more frequently with the heptamutant sortase. Reduce the temperature and/or reaction time

TIMING
Steps 1–16 (part 1), immobilization of sortase: 8–9 h
Steps 17–20 (part 2), batch labeling and optimization: 1.5 d
Steps 21–26, purification of the batch reaction: 4 h
Steps 27 and 28, column packing and preparation: 1 h
Step 29A, C-terminal labeling (LPXTG-containing protein): ~1 d
Step 29B, N-terminal protein labeling (GGG-containing protein): ~1 d
Steps 30 and 31, purification of the labeled protein: 1.5–4 h
Steps 32 and 33, regeneration of the immobilized sortase column: 30 min

ANTICIPATED RESULTS
The anticipated loading of the resin using the above described conditions is ~7.5 mg of sortase A per milliliter of packed resin, and this resin can be stored for several weeks to months at 4 °C depending on the sortase variant used.

A successful sortase reaction will result in the formation of product, which, depending on the probe used, can be visualized by fluorescence scanning (if you are using a fluorescent dye), western blotting (if you are using biotin or an affinity tag) or Coomassie staining (if the substrate and the product differ in apparent MW sufficiently to be visualized by SDS-PAGE). Figures 3 and 4 present a successful batch C-terminal and N-terminal labeling reaction, using immobilized heptamutant sortase A and sortase A, respectively. Sortase A should not be visible in any of the samples, as it is immobilized and removed by filtration/centrifugation in the case of batch reactions. As an acyl intermediate may form, a decrease in protein signal...
is expected in the control samples containing just the target protein and immobilized sortase when performing C-terminal labeling. On some occasions, proteins will nonspecifically bind to the resin. This can be inferred by comparing the amount of protein obtained upon reaction with the amount of input material.

For large-scale flow reactions, we typically use a flow rate of 0.5 ml h⁻¹ with a residence time of the protein on the column of 2 h. Under these conditions, we obtain a yield in the range of 65–90% of purified labeled protein. Reaction rates and flow rates are protein-dependent and need to be determined empirically before scaling up the reaction.

ACKNOWLEDGMENTS This work was supported by funding from The Netherlands Organisation for Scientific Research (to M.D.W.) and the US National Institutes of Health (NIH; grant no. R01 AI087879 to H.L.P.).

AUTHOR CONTRIBUTIONS M.D.W., C.P.G. and H.L.P. conceived of the idea; M.D.W., T.W., C.S.T., C.P.G. and A.E.M.B. performed the immobilization reactions and optimized the sortase reactions in batch and in flow; J.R.I. developed the heptamutant sortase; and Z.L. and L.K. assisted in sortase and protein production; M.D.W., T.W., C.S.T., C.P.G., J.R.I. and H.L.P. wrote the manuscript; and S.D.G. and H.L.P. supervised the project.

COMPETING FINANCIAL INTERESTS The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Millar, P., Dosio, F. & Cattel, L. Pegylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 13, 105–119 (2011).
2. Veronese, F.M. Peptide and protein Pegylation: a review of problems and solutions. Biomaterials 22, 405–417 (2001).
3. Pillow, T.H. et al. Site-specific trastuzumab maytansinoid antibody-drug conjugates with improved therapeutic activity through linker and antibody engineering. J. Med. Chem. 57, 7890–7899 (2014).
4. Popp, M.W., Antos, J.M., Grotenbreg, G.M., Spooner, E. & Ploegh, H.L. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3, 707–708 (2007).
5. Witte, M.D. et al. Preparation of unnatural N-to-N and C-to-C protein fusions. Proc. Natl. Acad. Sci. USA 109, 11993–11998 (2012).
6. Pritz, S. et al. Synthesis of biologically active peptide nucleic acid-peptide conjugates by sortase-mediated ligation. J. Org. Chem. 72, 3909–3912 (2007).
7. Samantaray, S., Marathe, U., Dasgupta, S., Nandicoori, V.K. & Roy, R.P. Peptide-sugar ligation catalyzed by transpeptidase sortase: a facile approach to neoglycoconjugate synthesis. J. Am. Chem. Soc. 130, 2132–2133 (2008).
8. Antos, J.M., Miller, G.M., Grotenbreg, G.M. & Ploegh, H.L. Lipid modification of proteins through sortase-catalyzed transpeptidation. J. Am. Chem. Soc. 130, 16338–16343 (2008).
9. Popp, M.W., Dougan, S.K., Chuang, T.Y., Spooner, E. & Ploegh, H.L. Sortase-catalyzed transformations that improve the properties of cytokines. Proc. Natl. Acad. Sci. USA 108, 3169–3174 (2011).
10. Chen, L., Dorr, B.M. & Liu, D.R. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl. Acad. Sci. USA 108, 11399–11404 (2011).
11. Antos, J.M. et al. Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity. J. Am. Chem. Soc. 131, 10800–10801 (2009).
12. Williamson, D.J., Fascione, M.A., Webb, M.E. & Turnbull, W.B. Efficient N-terminal labeling of proteins by use of sortase. Angew Chem. Int. Ed. Engl. 51, 9377–9380 (2012).
13. Hess, G.T. et al. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjug. Chem. 23, 1478–1487 (2012).
14. Mao, H., Hart, S.A., Schink, A. & Pollok, B.A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126, 2670–2671 (2004).
15. Guimaraes, C.P. et al. Identification of host cell factors required for intoxication through use of modified cholera toxin. J. Cell Biol. 195, 751–764 (2011).
16. Popp, M.W., Artavanis-Tsakonas, K. & Ploegh, H.L. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. J. Biol. Chem. 284, 3593–3602 (2009).
17. Popp, M.W., Antos, J.M. & Ploegh, H.L. Site-specific protein labeling via sortase-mediated transpeptidation. Curr. Protoc. Protein Sci. 56, 15.3.1–15.3.9 (2009).
18. Hirakawa, H., Ishikawa, S. & Nagamune, T. Design of Ca²⁺-independent Staphylococcus aureus sortase A mutants. Biotechnol. Bioeng. 109, 2955–2961 (2012).
19. Wuechtich, I. et al. Site-specific chemoenzymatic labeling of aerolysin enables the identification of new aerolysin receptors. PLoS ONE 9, e109883 (2014).
20. Guimaraes, C.P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).
21. Thiele, C.S. et al. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1800–1807 (2013).
22. Steinhagen, M., Zunker, K., Nordsieck, K. & Beck-Sickinger, A.G. Large scale modification of biomolecules using immobilized sortase A from Staphylococcus aureus. Bioorg. Med. Chem. 21, 3504–3510 (2013).