Upper Critical Fields up to 60 T and the Vortex Matter Phase Diagram of Arsenic-deficient LaO$_{0.9}$F$_{0.1}$FeAs$_{1-\delta}$

G. Fuchs1, S.-L. Drechsler1, N. Kozlova1, V. Grinenko1, J. Freudenberger1, M. Bartkowiak2, G. Behr1, C. Hess1, R. Klingeler1, A. Köhler1, K. Nenkov1, H.-H. Klauss3, B. Büchner1 and L. Schultz1

1IFW Dresden, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, P.O. Box 270116, D-01171 Dresden, Germany
2Hochfeld-Magnetlabor Dresden, FZ Dresden-Rossendorf (FZD), Germany
3Institut für Festkörperphysik, TU Dresden, Germany

E-mail: fuchs@ifw-dresden.de

Abstract - We report resistivity, magnetization and upper critical field $B_{c2}(T)$ data for arsenic deficient LaO$_{0.9}$F$_{0.1}$FeAs$_{1-\delta}$ in a wide temperature and high field range up to 60 T. These disordered samples exhibit a slightly enhanced transition temperature of $T_c = 29.0$ K and a significantly enlarged slope $dB_{c2}/dT = -5.4$ T/K near T_c. The high-field $B_{c2}(T)$ data obtained from resistance measurements in pulsed magnetic fields follow up to about 30 T the WHH (Werthamer-Helfand-Hohenberg) curve for the orbital limited upper critical field, but show a clear flattening above 30 T. This flattening evidences Pauli limiting behavior (PLB) with $B_{c2}(0) \approx 63$ T. We compare our results with $B_{c2}(T)$ data reported in the literature for clean and disordered samples. Whereas clean samples show no PLB for fields below 70 T as measured so far, the hitherto unexplained flattening of $B_{c2}(T)$ for applied fields $H\parallel ab$ observed for several disordered closely related systems is interpreted as a manifestation of PLB. The influence of the arsenic vacancies in LaO$_{0.9}$F$_{0.1}$FeAs$_{1-\delta}$ on the vortex matter phase diagram is studied by magnetization measurements on bulk samples.