SET Protein Interacts with Intracellular Domains of the Gonadotropin-releasing Hormone Receptor and Differentially Regulates Receptor Signaling to cAMP and Calcium in Gonadotrope Cells*

Charlotte Avet, Ghislaine Garrel, Chantal Denoyelle, Jean-Noël Laverrière, Raymond Counis, Joëlle Cohen-Tannoudji, and Violaine Simon

From the Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Equipe Physiologie de l’Axe Gonadotrope, Case Courrier 7007, CNRS-EAC 4413, 4 Rue MA Lagroua Weill Hallé, 75013 Paris, France

Background: Mechanisms regulating signaling of mammalian GnRH receptor (GnRHR), which exhibits an atypical structure, are poorly known.

Results: SET interacts with GnRHR, differentially impacts GnRHR coupling to calcium and cAMP signaling, and enhances GnRH stimulation of Gnrhr promoter activity.

Conclusion: This represents the first identification of a GnRHR interacting partner that enhances its coupling to the cAMP pathway.

Significance: SET is a novel regulator of GnRHR signaling.

In mammals, the receptor of the neuropeptide gonadotropin-releasing hormone (GnRHR) is unique among the G protein-coupled receptor (GPCR) family because it lacks the carboxy-terminal tail involved in GPCR desensitization. Therefore, mechanisms involved in the regulation of GnRHR signaling are currently poorly known. Here, using immunoprecipitation and GST pull-down experiments, we demonstrated that SET interacts with GnRHR and targets the first and third intracellular loops. We delineated, by site-directed mutagenesis, SET binding sites to the basic amino acids KRKK and RK247, located next to sequences required for receptor signaling. The impact of SET on GnRHR signaling was assessed by decreasing endogenous expression of SET with siRNA in gonadotrope cells. Using cAMP and calcium biosensors in gonadotrope living cells, we showed that SET knockdown specifically decreases GnRHR-mediated mobilization of intracellular cAMP, whereas it increases its intracellular calcium signaling. This suggests that SET influences signal transfer between GnRHR and G proteins to enhance GnRHR signaling to cAMP. Accordingly, complexing endogenous SET by introduction of the first intracellular loop of GnRHR in αT3-1 cells significantly reduced GnRHR activation of the cAMP pathway. Furthermore, decreasing SET expression prevented cAMP-mediated GnRH stimulation of Gnrhr promoter activity, highlighting a role of SET in gonadotropin-releasing hormone regulation of gene expression. In conclusion, we identified SET as the first direct interacting partner of mammalian GnRHR and showed that SET contributes to a switch of GnRHR signaling toward the cAMP pathway.

G protein-coupled receptors (GPCR)3 represent the largest family of membranous receptors with more than 1000 members identified so far (1). GPCR process signals from a great diversity of endogenous and exogenous stimuli, including biogenic amines, peptides, glycoproteins, lipids, nucleotides, ions, proteases, photons, odors, and tastes. Because of their importance in a wide range of physiological and pathophysiological processes and the fact that they represent one of the most important drug targets, understanding the mechanisms regulating the efficacy and specificity of GPCR is a current challenge. GPCR-interacting proteins (GIP) have been shown to influence GPCR function (2). They are cytoplasmic proteins that bind to intracellular domains of GPCR and participate in the assembly of receptors into signal transduction complexes or “receptosomes.” GIP influence signal transfer from the receptor to G proteins, receptor trafficking between plasma membrane and intracellular compartments, and subcellular localization (2–4). The first identified and best characterized GIP, β-arrestin, has been shown to interact with a large number of GPCR following their phosphorylation upon agonist binding. Binding of β-arrestin to GPCR promotes G protein uncoupling from the receptor and receptor internalization, both events contributing to receptor desensitization. In addition, following receptor internalization, β-arrestin anchored to the receptor promotes G protein-independent signaling, such as activation of the MAPK cascade (5). To date, numerous GIP have been identi-

* This work was supported by grants from Paris 7 University and CNRS.
1 Supported by a fellowship from the University Paris 11.
2 To whom correspondence should be addressed. Tel.: 33-57-27-84-02; E-mail: violaine.simon@univ-paris-diderot.fr.

The abbreviations used are: GPCR, G protein-coupled receptor(s); GIP, GPCR-interacting protein(s); AP1, activator protein 1; GnRH, gonadotropin-releasing hormone; GnRHa, gonadotropin-releasing hormone agonist; GnRHa, gonadotropin-releasing hormone receptor(s); IBMX, 3-isobutyl-1-methylxanthine; ICL, intracellular loop; LH, luteinizing hormone; PACAP, pituitary adenyl cyclase-activating polypeptide; PKI, PKA inhibitor; PP2A, protein phosphatase 2A; rSET, His-tagged recombinant SET; PLC, phospholipase C.
SET Regulates GnRH Receptor Signaling in Gonadotrope Cells

fied, and most of them interact with the carboxyl-terminal tail of GPCR (6).

A unique feature of the mammalian type I gonadotropin-releasing hormone receptor (GnRHR) is that, contrasting with other GPCRs, it lacks the carboxyl-terminal tail. This atypical receptor is expressed at the surface of pituitary gonadotrope cells, where it interacts with the hypothalamic neuropeptide GnRH to control reproductive function. Activation of GnRHR leads to synthesis and secretion of the two gonadotropin hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which regulate both gametogenesis and steroidogenesis in gonads. GnRH regulates gonadotrope function, notably through its ability to modulate the expression of numerous genes in gonadotrope cells, among them the three gonadotropin subunit genes (Cga, Lhb, and Fshb) as well as genes encoding components of the GnRH signaling pathway, such as the GnRHR itself (7). GnRHR activates a complex signaling network involving notably PKC and PKA pathways. GnRHR is mainly coupled to phospholipase Cβ via Goq11, leading to a rapid increase of intracellular calcium concentrations and activation of several isoforms of PKC (8). PKC regulates gene transcription directly or through activation of the MAPK cascade. Recruitment of the cAMP/PKA pathway by GnRHR also contributes to the regulation by GnRH of expression of a few genes, including Nos1, Lhb, and Nr4a1 (9–13).

Because of the lack of the carboxyl-terminal tail, the mammalian GnRHR is insensitive to the classical mechanisms involved in GPCR desensitization. Therefore, upon agonist binding, GnRHR is resistant to phosphorylation, does not recruit β-arrestin, and is poorly internalized (14). Consequently, not much is known about the mechanisms controlling the efficacy and specificity of the mammalian GnRHR signaling. Few mechanisms have been identified that take place downstream of the receptor. Among them, a down-regulation of inositol 1,4,5-triphosphate receptors and a decrease of Ca21 concentration and PKC expression contribute to GnRHR signaling desensitization induced by a long term GnRH treatment (15, 16). Our hypothesis is that the GnRHR itself can be the target of regulatory mechanisms, not yet discovered, notably through interaction of cytoplasmic proteins with specific intracellular domains. Indeed, this is supported by the fact that introduction in gonadotrope cells of synthetic peptides corresponding to intracellular domains of mammalian GnRHR increases GnRHR coupling to the inositol phosphate pathway (17). This suggests that intracellular domains of GnRHR are targeted by cytoplasmic proteins that inhibit its signaling.

To date, no study has reported a direct interaction between proteins and intracellular domains of the mammalian GnRHR. Interestingly, in silico analysis of intracellular domain sequences of this receptor revealed the presence of basic amino acid clusters similar to the one previously identified within the muscarinic receptor. This basic amino acid cluster is located within the third intracellular loop of the M3 muscarinic receptor (M3-MR) and has been shown to interact with the proto-oncogene SET (18). SET was first described as part of the SET-CAN fusion gene, a putative oncogene associated with acute undifferentiated leukemia (19). SET is involved in the control of gene transcription through regulation of chromatin remodeli-
SET Regulates GnRH Receptor Signaling in Gonadotrope Cells

gene segment encoding the ICL3 peptide (Lys^{232}–Leu^{262}) was amplified by polymerase chain reaction (forward primer, 5’-CATGAAATCAATCTTCCGCTCA-3’; reverse primer, 5’-CATCTCGAGACGGCTGGTCTTTGGGAT-3’) and subcloned into the EcoRI and XhoI restriction sites of pGEX-4T-1. Mutations of basic amino acids (lysine and arginine) into glutamic acids within the ICL1 and ICL3 were made using the QuikChange site-directed mutagenesis kit according to the manufacturer’s instructions.

GST fusion proteins were expressed in BL21 bacteria and purified on a glutathione-Sepharose 4B matrix. Immobilized fusion proteins were stored at 4 °C, and each batch of fusion proteins used for experiments was first analyzed by SDS-PAGE and Coomassie Blue staining.

The full-length encoding sequence of human SET cloned into the pQE30 vector was kindly provided by Dr R. Z. Qi (Hong Kong University of Science and Technology). The SET protein containing a histidine tag at its amino-terminal extremity was expressed in M15 bacteria and purified on Ni^{2+}-nitrilotriacetic acid beads according to the manufacturer’s instructions.

Protein Interaction Assays—Human recombinant His-tagged SET protein (30 nM) were gently mixed for 1 h at 4 °C with GST or GST-ICL1, GST-ICL2, or GST-ICL3 fusion protein (~300 nm) bound to glutathione-Sepharose 4B (15 μl) in 750 μl of buffer A (25 mM Tris-HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl, 1 mM DTT, 0.1% Nonidet P-40). Resins were washed three times with 1 ml of buffer A. The retained proteins were eluted from the resin with 2× loading buffer (120 mM Tris-HCl, pH 6.8, 20% glycerol, 4% SDS, 20% β-mercaptoethanol), placed in a boiling water bath for 5 min, and applied to a 10% SDS-polyacrylamide gel. Separated proteins were then transferred to a nitrocellulose membrane and processed for immunoblotting with a polyclonal anti-SET antibody (dilution 1:2000) kindly provided by Dr. T. D. Copeland (NCI-Frederick, National Institutes of Health, Frederick, MD). Membranes were systematically stained in Ponceau Red to confirm equal amounts of GST fusion proteins.

For GST pull-down assays with cell lysates, gonadotrope αT3-1 or LBT2 cells were lysed in buffer B (50 mM Tris-HCl, pH 8.8, 5 mM EDTA, 150 mM NaCl, 1% Nonidet P-40), incubated for 1 h on ice, and centrifuged at 10,000 × g for 30 min at 4 °C. The supernatants were collected, and 750 μg of proteins were gently mixed for 1 h at 4 °C with GST or GST-ICL1, GST-ICL2, or GST-ICL3 fusion protein (~300 nm) bound to glutathione-Sepharose 4B (15 μl) and processed as described above. All buffers contained a protease inhibitor mixture (Complete Mini, EDTA-free).

Cell Culture—Pituitary gonadotrope cell lines αT3-1 and LBT2 generated by Pamela Mellon (University of California San Diego, La Jolla, CA) (24, 25) were grown in DMEM supplemented with glucose (4.5 g/liter) containing 10% FBS, 2% l-glutamine, and 0.1% gentamicin. Cells were passaged weekly and incubated at 37 °C in a humidified atmosphere with 5% CO₂.

Western Blotting—Gonadotrope αT3-1 cells were transfected with HA-GnRHR as described above were lysed in 750 μl of ice-cold lysis buffer (75 mM Tris, 2 mM EDTA, 5 mM MgCl₂, 0.5% digitonin, protease inhibitor mixture, pH 8). Cell lysates were sonicated, incubated overnight at 4 °C, and centrifuged at 12,000 × g (20 min, 4 °C). Supernatants were precleared with protein G-Sepharose beads and then incubated (1.5 mg of protein in 750 μl of lysis buffer) with monoclonal anti-HA antibody (dilution 1:150) for 1 h at 4 °C. Protein G-Sepharose beads (50 μl) were added, and incubation was continued for 2 h. The resin was pelleted and washed three times with lysis buffer. Immunoprecipitated proteins were eluted with 4× protein sample buffer, subjected to SDS-PAGE, and immunoblotted with monoclonal anti-HA antibody (dilution 1:1000) and polyclonal anti-SET antibody (dilution 1:2000).

siRNA-mediated Gene Silencing of SET—Gonadotrope αT3-1 cells were transfected at 70–90% confluence with SET siRNA duplexes (5’-CAGAAGAGGUCAGAAUUGCCCA-3’, bp 268–292; Invitrogen) targeting SET mRNA (accession number 45198) using Lipofectamine 2000 according to the manufacturer’s instructions. In control experiments, cells were transfected with the corresponding predicted oligonucleotide control for the siRNA duplex (Invitrogen). The transfection mixture was removed 5 h later and replaced by DMEM containing 2% FBS and 0.4% l-glutamine.

To assess SET knockdown, cells were homogenized 72 h after transfection in lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40) and incubated for 1 h on ice. Cell homogenates were then centrifuged at 10,000 × g at 4 °C, and 10 μg of the supernatant were separated on 10% SDS-PAGE and transferred to a nitrocellulose membrane. Expression of SET was assessed by immunoblotting with the polyclonal anti-SET antibody. Equal protein loading was verified by reprobing blots with an anti-β-actin antibody.

Quantification of Cell Surface GnRH Receptor Number—The [His⁵-DTyr⁶]GnRH was kindly provided by Dr. R. P. Millar (Edinburgh, UK). Five micrograms of [His⁵-d-Tyr⁶]GnRH were radioiodinated in the presence of 1 μCi of iodine-125 radionuclide using a modified oxidative reaction catalyzed by chloramine-T and purified by chromatography on a Sephadex G25 column (26, 27).

Saturation binding assays were carried out on intact αT3-1 cells as described previously (27). Briefly, cells transfected with
siRNA duplexes in 96-well plates were incubated at 25 °C for 75 min in DMEM containing 0.1% BSA, 25 mM HEPES, and 0.075–5 nM [125I]-[His5–d-Tyr6]GnRH. Non specific binding was determined using a 10–3 M concentration of the GnRH agonist (GnRHa) and was <3% of the total binding. Binding was stopped by placing the plates on ice, followed by two washes with ice-cold PBS containing 0.1% BSA. Cells were then scraped with 0.2 M NaOH, 0.1% SDS solution, and radioactivity was measured using a γ-counter. All assay points were performed in duplicate, and independent experiments were repeated at least four times.

Introduction of ICL1 Peptide in αT3-1 Cells—In order to reduce SET interaction with GnRHR, αT3-1 cells were incubated with peptide corresponding to the first intracellular loop of GnRHR (KLQKWTQKRKKGKLSRMK). A control experiment was performed using a peptide mutated on the SET binding site (KLQKWTSQEEEEGKLSRMK). To allow efficient peptide delivery into αT3-1 cells, each peptide was covalently attached in its amino-terminal part to a 16-amino acid peptide (RQIKIWFQNRRMKWKK) corresponding to the third helix of the homedomain of Drosophila Antennapedia protein (28). Synthesis of peptides was performed by Proteogenix. Peptide quality was controlled by mass spectrometry and HPLC. The use of FITC-coupled peptides allowed us to ensure efficient delivery of wild type and mutated peptides in αT3-1 cells. Cells transfected with pGloSensor™-22F cAMP plasmid were preincubated for 75 min at 37 °C with each peptide (wild type or mutated, 50 μM), rinsed, and processed to measure cAMP production in response to GnRHa and PACAP38 as described above.

GnRHR Gene Promoter and Luciferase Assay—Transcriptional activity of the Gnrhr was measured using a pluc0.44Gnrhr promoter fusion construct as described previously (11). Briefly, this construct was obtained by inserting the −475/+32 fragment of the 5′-upstream sequence of the rat Gnrhr promoter into the pGL3-Basic vector containing the firefly luciferase reporter gene. Luciferase constructs containing promoters mutated on cAMP-response element-binding protein (CREm) and/or AP1 (AP1m) elements have been described previously (29). The day before transfection, αT3-1 cells were plated at 100,000 cells/well in 96-well plates in DMEM containing 10% FBS. Cells were transfected with pluc0.44Gnrhr plasmid (100 ng/well) and co-transfected either with empty or pCMV-PKI vector (10 ng/well) (30) or with control or SET siRNA duplexes using Lipofectamine 2000 according to the manufacturer’s instructions. The pRL-SV plasmid expressing Renilla luciferase reporter gene was systematically used (10 ng/well) as an internal control to normalize for transfection efficiency. The next day, cells were incubated overnight with IBMX (250 μM) in the presence or absence of GnRHa (10 nM) or PACAP38 (20 nM). Following stimulation, firefly and Renilla luciferase activities were measured in cell lysates using the Dual-Luciferase reporter assay system according to the manufacturer’s instructions.

Statistical Analysis—Results are expressed as mean ± S.E. Statistical analyses were performed using a one- or two-way analysis of variance test. If the F test was significant, the means were compared using least significant difference test. Values were considered statistically different when p was < 0.05.

RESULTS

SET Protein Interacts Directly with the First and Third Intracellular Loops of the GnRH Receptor—We first asked if SET interacts with intracellular domains of mammalian GnRHR. For this attempt, we generated GST fusion proteins encompassing each intracellular loop (ICL) of the rat GnRHR (GST-ICL) and used them as affinity matrices in GST pull-down assays. We generated and purified a His-SET recombinant protein (rSET) that was incubated with each GST fusion protein...
SET Regulates GnRH Receptor Signaling in Gonadotrope Cells

Figure 1. Recombinant SET interacts with the first and third intracellular loops of the GnRHR. A, purified GST fusion proteins encompassing the first, second, or third intracellular loop of rat GnRHR (GST-ICL1, -2, and -3) were incubated with rSET. The bound proteins were then eluted, separated on SDS-PAGE (10%), transferred to nitrocellulose membrane, and immunoblotted with a polyclonal anti-SET antibody. Fusion proteins were detected after membrane staining with Ponceau Red. B, quantification of rSET binding to intracellular domains of GnRHR. SET immunoreactivity and Ponceau Red-stained protein signals were quantified using MultiGauge software. SET signals were normalized to the amount of GST proteins used for each GST pull-down assay, and the results are expressed as the percentage of total rSET used in the pull-down assay. The data are presented as the mean ± S.E. of three independent experiments. ***, p < 0.001 compared with GST alone.

Figure 2. Interaction between SET, endogenously expressed in gonadotrope cells, and GnRHR. A, top, 10 μg of protein homogenates from LβT2 and αT3-1 gonadotrope cells were separated onto 10% SDS-PAGE, transferred onto nitrocellulose membrane, and probed with a polyclonal anti-SET antibody. **Bottom, αT3-1 cells were transfected with the HA-GnRHR construct, and subcellular distribution of HA-GnRHR (red) and endogenous SET (green) was determined by immunocytochemistry as described under “Experimental Procedures.” Images were acquired using the ×63 objective of a Zeiss LSM 700 confocal laser microscope. The magnification panel is a magnification of the white box in the merge panel. Scale bar, 2 μm. B, co-immunoprecipitation of SET and αT3-1 cells by immunocytochemistry (Fig. 2A, bottom). As described for other cell types, SET mainly localized into the nucleus of αT3-1 cells (green signal). SET antibody also recognized a fair amount of endogenous SET in the cytoplasm. Interestingly, a fraction of cytoplasmic SET localized in close vicinity to plasma membrane, where the GnRHR is expressed (red signal). Furthermore, we could also detect some overlapping signals within plasma membrane. The close proximity of the two (Fig. 1). Results showed that SET interacts directly with the first (ICL1) and third intracellular (ICL3) loops of GnRHR, whereas no interaction was apparent with the second intracellular loop (ICL2) or GST protein alone used as control (Fig. 1A). Quantification of the amount of bound SET to each ICL revealed that whereas all of the rSET introduced in the pull-down assay bound to ICL1, only ~20% bound to ICL3 (Fig. 1B), suggesting a better affinity of rSET for ICL1. Altogether, our results demonstrate for the first time a direct interaction between SET protein and intracellular domains of GnRHR. Because GnRHR is expressed in pituitary gonadotrope cells, we then asked whether SET was coexpressed in these cells. We thus screened by immunoblotting the expression of SET in the two gonadotrope cell lines, LβT2 and αT3-1, and showed that SET was endogenously expressed in both cell lines (Fig. 2A, top). We also verified by co-detection of SET and LHβ subunit in rat anterior pituitary gland using immunohistochemistry that SET was expressed in native gonadotrope cells as well (data not shown). We then analyzed the subcellular distribution of GnRHR and SET in αT3-1 cells by immunocytochemistry (Fig. 2A, bottom).
proteins suggests that SET interacts with cell surface GnRHR in αT3-1 cells (Fig. 2A, bottom; see merge and magnification panels). We then performed a co-immunoprecipitation experiment and showed that SET was co-immunoprecipitated with GnRHR expressed in gonadotrope cells (Fig. 2B), indicating that the two proteins in their native conformations interact with each other.

We then asked which intracellular domains of GnRHR were involved in GnRHR interaction with endogenous SET. Using GST pull-down assays with gonadotrope lysates, we showed that SET endogenously expressed in gonadotrope αT3-1 cells interacts with the first intracellular loop of GnRHR (Fig. 2C). Surprisingly, no interaction of gonadotrope SET could be detected with ICL3, contrasting with the results obtained with rSET (Fig. 2C). This suggests that a factor present in gonadotrope cells prevents SET binding to ICL3 either by a direct competition with SET or by complexing SET and selectively precluding its interaction with ICL3 but not ICL1. To better understand SET-ICL3 interaction, we evaluated if GST-ICL3 fusion protein, preincubated with gonadotrope cell lysates, still retains its capacity to bind rSET (Fig. 2D). Our results show that whereas GST-ICL3 is able to interact with rSET, preincubation of GST-ICL3 with gonadotrope lysate abrogates rSET binding (Fig. 2D). This result strongly suggests that interaction of SET with ICL3 might be regulated in gonadotrope cells by a protein competing with SET for binding.

To delineate SET binding sites within ICL1 and ICL3 of GnRHR, we generated mutants in which basic amino acids (arginine and lysine) within ICL1 and ICL3 were replaced by glutamic acid residues (Fig. 3). We targeted basic amino acids based on our recent characterization of SET binding sites on M3-MR ICL3 (31). This strategy was strengthened by the fact that whereas ICL1 and ICL3 contain such basic amino acid clusters, they are absent in ICL2, which does not bind SET (Fig. 1). Mutation of the basic cluster “KKRK” into “EEEE” completely abolished SET binding to ICL1 (mutant A; Fig. 3A). Mutation of only one amino acid did not significantly change the amount of bound SET (mutants C and D). However, mutation of two amino acids severely disrupted SET interaction (mutants E–G). In this case, only ~20% of SET interaction with ICL1 was retained at the most. These results indicate that within the KRKK cluster, at least three basic amino acids are needed for a full interaction of SET with ICL1. This may explain the weaker interaction observed between SET and ICL3, which contains only the two basic residues RK (Figs. 1 and 3B). Additionally, we demonstrated that the two basic amino acids KK following the KRKK sequence in ICL1 have a role in stabilizing SET interaction because their mutation into glutamic acids decreased by ~50% the interaction of SET with ICL1 (mutant B; Fig. 3A). As expected from ICL1 data, mutation into glutamic acid of the RK amino acids abolished SET binding to ICL3 (Fig. 3B).

Modulation of SET Expression in αT3-1 Gonadotrope Cells—To address the role of SET in GnRHR signaling, we evaluated the effect of a decreased expression of SET in αT3-1 gonadotrope cells. To do this, we used siRNA targeting a specific sequence of SET mRNA (bp 268–292) as described previously (31) to transfect αT3-1 cells. Endogenous SET expression was consistently decreased by 51 ± 7% in cells transfected with SET siRNA as compared with those transfected with control siRNA (Fig. 4A). Prior to addressing the role of SET in GnRHR signaling, we first evaluated whether SET knockdown may impact cell surface expression of GnRHR. Saturation binding studies using a radioiodinated GnRH ligand (125I-[His5-D-Tyr6]GnRH) on αT3-1 cells transfected either with control or SET siRNA indicated that there was no apparent effect of SET knockdown on cell surface GnRHR number or ligand affinity (Fig. 4B, top). Scatchard analyses indeed revealed similar Bmax and Kd values in both control and SET knock-down cells (control siRNA and SET siRNA: 6.2 ± 1.4 and 5.5 ± 1.4 fmol/well for Bmax and 1.1 ± 0.2 and 1.0 ± 0.1 nM for Kd, respectively) (Fig. 4B, bottom).

Impact of SET on GnRHR Coupling to Calcium Pathway in Gonadotrope Cells—To measure calcium variations, gonadotrope αT3-1 cells were loaded with a calcium-sensitive fluorescent dye, and changes in intracellular calcium concentrations were recorded in living cells after stimulation with GnRH or with oxytocin, a hypophysiotropic hormone known to signal through the calcium pathway. No significant effect of SET knockdown was observed on basal intracellular calcium concentrations (Fig. 5A; 249 ± 22 and 259 ± 38 arbitrary units for
Set Regulates GnRH Receptor Signaling in Gonadotrope Cells

control siRNA and SET siRNA, respectively). In control siRNA cells, the addition of GnRHa induced a rapid and significant increase of intracellular calcium concentration. Calcium peak was reached ~5 s after the GnRHa addition and corresponded to a 1.7 ± 0.1-fold increase over basal level. Following the peak, intracellular calcium concentration decreased progressively (~70% decrease) and reached a plateau, which remained stable until at least 5 min of stimulation (Fig. 5A) (data not shown). The same calcium profiles were observed in untransfected cells (data not shown) and were similar to profiles described previously in αT3-1 cells (32). Interestingly, decreasing SET expression significantly increased the calcium peak value by 44 ± 14% in response to GnRHa. All other parameters of the calcium response (kinetics, decay profiles, and plateau values) were unaffected by SET siRNA (see the legend to Fig. 5). As shown in Fig. 5B, the amplitude of the calcium peak was dose-dependent increased by GnRHa in both control and SET siRNA-transfected cells. However, decreasing SET expression significantly potentiated GnRHa-induced calcium mobilization for each concentration of GnRHa (Fig. 5B) without affecting significantly the EC_{50} value (38 ± 17 versus 17 ± 5 nM in control and SET siRNA transfected cells, respectively). In contrast, SET knockdown did not alter calcium mobilization elicited by the oxytocin receptor, an endogenously expressed G_{q}-

coupled receptor in αT3-1 cells (Fig. 5C). Altogether, our results demonstrate that SET specifically inhibits GnRH coupling to the G_{q} calcium signaling pathway.

Impact of SET on GnRH Coupling to cAMP Pathway in Gonadotrope Cells—Coupling of GnRH to the cAMP signaling pathway was addressed by introducing in αT3-1 cells a plas-

FIGURE 4. SET knockdown in αT3-1 cells. A, 10 μg of protein homogenates from αT3-1 cells transfected with control or SET siRNA were electrophoresed on 10% SDS-PAGE, membrane-transferred, and probed with anti-SET or anti-β-actin antibodies. B, effect of SET knockdown on the expression of GnRHR at the cell surface. Cell surface GnRHR was measured in αT3-1 cells transfected with control or SET siRNA by radioligand binding as described under “Experimental Procedures.” Top, saturation binding curve. Bottom, Scatchard analysis. The data are presented as the mean ± S.E. of one experiment representative of 4–5 independent experiments performed in duplicate.

FIGURE 5. Effect of SET knockdown on GnRH-induced calcium mobilization in gonadotrope cells. αT3-1 cells transfected with control or SET siRNA were plated in 96-well black plates precoated with poly-L-lysine and loaded with calcium fluorescent dye. Excitation fluorescence was set at 485 nm, and emission was detected at 525 nm (515-nm emission cut-off filter) using the FlexStation III microplate reader (Molecular Devices). A, cells were stimulated with 1 μM GnRHa, and intracellular calcium mobilization was measured every 1.5 s during the following 2 min. Results are expressed as relative fluorescence units (RFU). Data are representative of three independent experiments performed in triplicate. Kinetics of calcium mobilization (t_{1/2} = 2.5 ± 0.5 and 3 ± 0.9 s for control siRNA and SET siRNA, respectively), decay profiles (64 ± 1.3 and 70 ± 15% decrease for control siRNA and SET siRNA, respectively), and plateau values (318 ± 8 and 329 ± 8 arbitrary units for control siRNA and SET siRNA, respectively) were unaffected by SET siRNA. B, cells were treated with increasing concentrations of GnRHa (10^{-10} to 10^{-5} M), and increases in intracellular calcium were determined by subtracting the base-line values from peak values. Results were expressed as the percentage of the maximal response in control siRNA-transfected cells. The data are presented as the mean ± S.E. of three independent experiments performed in triplicate. **, p < 0.01; ***, p < 0.001 compared with control at respective GnRHa concentrations. C, intracellular calcium mobilization in αT3-1 cells transfected with control siRNA or SET siRNA was measured in response to increasing concentrations of oxytocin (10^{-14} to 10^{-9} M) as described in B. The data are presented as the mean ± S.E. of three independent experiments performed in triplicate.
SET Regulates GnRH Receptor Signaling in Gonadotrope Cells

The impact of SET knockdown is shown. αT3-1 cells plated in 96-well white plates precoated with poly-L-lysine were transfected with a plasmid encoding an engineered cAMP-sensitive luciferase (pGloSensorTM-22F cAMP plasmid). Twenty-four hours later, cells were preincubated or not (control) at 37 °C with 50 μM peptide corresponding to the first intracellular loop of GnRHR (ICL1 WT). A control experiment was performed using ICL1 peptide mutated on the SET binding site (ICL1 mutant). After 75 min, cells were washed and processed to measure cAMP production in response to GnRHa (100 nM) or PACAP38 (100 nM) as described under “Experimental Procedures.” Increases in intracellular cAMP levels were determined. Results are expressed as the percentage of maximal response in control cells. The data are presented as the mean ± S.E. of three independent experiments performed in triplicate. ***, p < 0.001 compared with control cells.

GnRHa induces a significant increase in luciferase activity, reflecting an increase in intracellular cAMP concentration. Intracellular cAMP concentration increased progressively upon GnRHa stimulation and reached a maximum at 10 min. Mobilization of cAMP increased dose-dependently upon GnRHa stimulation (Fig. 6B) and was completely blocked by preincubation with antide, a GnRH antagonist (data not shown), thus demonstrating that GnRHR couples to the cAMP signaling pathway in the gonadotrope αT3-1 cell line. Knockdown of SET in αT3-1 cells did not change basal cAMP levels but dramatically reduced by 47% intracellular cAMP mobilization induced by GnRHa (Fig. 6A). Decreasing SET expression did not significantly affect kinetics (Fig. 6A, t1/2 = 4.3 ± 0.9 and 3.2 ± 0.9 min for control siRNA and SET siRNA, respectively) or the EC50 values (Fig. 6B, EC50 = 1.4 ± 0.5 and 1.2 ± 0.5 nM for control siRNA and SET siRNA, respectively). It is noteworthy that cAMP mobilization by an endogenously expressed Gαi-coupled receptor, such as the PACAP type I receptor, was not altered by decreased SET expression (Fig. 6C).

Altogether, our results demonstrate that SET specifically enhances GnRHR coupling to the Gαi/cAMP signaling pathway.

To confirm these results, we asked if delivery of a peptide corresponding to ICL1 in αT3-1 cells will decrease GnRHR signaling by complexing endogenous SET protein and preventing its action on GnRHR. Cells were preincubated with a cell-permeable ICL1 peptide and challenged either with GnRHa or PACAP38, and intracellular cAMP production was measured in real time in αT3-1 living cells (Fig. 7). Introduction of ICL1 peptide into αT3-1 cells decreased by 33% intracellular cAMP production in response to GnRHa but did not have any impact on cAMP production by PACAP38 (Fig. 7, ICL1 WT). These results suggest that ICL1 peptide does not disturb cAMP signaling events downstream of GPCR but rather decreases coupling of...
GnRHR to the cAMP pathway. Importantly, introduction of a peptide corresponding to mutant A of ICL1 (Fig. 3A), which does not interact with SET, did not have any significant effect on GnRHR coupling to cAMP (Fig. 7A, ICL1 Mutant). This indicates that the inhibitory effect of ICL1 on GnRHR signaling is mediated through its interaction with endogenous SET. Altogether, these results, which are in agreement with the siRNA experiments, support a role of SET in GnRHR coupling to the cAMP pathway in αT3-1 cells.

Impact of SET on GnRH-induced Gnhr Promoter Activity—In gonadotrope cells, the GnRHR gene is known to be regulated by GnRH and by the cAMP pathway (33–35). However, involvement of the cAMP pathway in GnRH regulation of GnRHR gene expression in gonadotrope cells remains unknown. To monitor Gnhr promoter activity in αT3-1 cells, cells were transfected with a construct encoding the firefly luciferase under the control of the Gnhr proximal promoter, as described previously (11). Stimulation of αT3-1 cells with GnRHa increases significantly Gnhr promoter activity (1.4 ± 0.1-fold over basal level; Fig. 8A). Transfection of cells with a vector encoding the PKA inhibitor PKI significantly decreased basal activity of the Gnhr promoter, confirming the involvement of the PKA pathway in Gnhr expression. It is noteworthy that the GnRH-mediated Gnhr promoter activity increase was abolished by overexpression of PKI (Fig. 8A), demonstrating that GnRH regulates Gnhr promoter activity through the PKA pathway. Further evidence for the mediation by the cAMP/PKA pathway was provided by the fact that mutations of the Gnhr response element and/or AP1 elements within the Gnhr promoter significantly inhibited the IBMX-induced (Fig. 8B, left) and GnRH-induced increase of Gnhr promoter activity (Fig. 8B, right). Because we demonstrated that SET increases GnRHR coupling to the cAMP pathway, we evaluated whether SET could potentiate GnRHR induction of its own receptor gene. To this end, αT3-1 cells were co-transfected with either control or SET siRNA and then treated with GnRHa (Fig. 8C). In con-
SET Regulates GnRH Receptor Signaling in Gonadotrope Cells

FIGURE 9. Impact of SET binding site mutations on GnRHR subcellular localization and signaling. αT3-1 and CHO cells were transfected with HA-tagged GnRHR construct carrying (mutant) or not (WT) mutations precluding SET binding onto intracellular domains of GnRHR (mutations corresponding to mutant A of Fig. 3A were generated on full-length GnRHR by site-directed mutagenesis). A, expression and subcellular localization of GnRHR were monitored by immunocytochemistry by staining either permeabilized or non-permeabilized cells with monoclonal anti-HA antibody (red). Nuclei were stained with DAPI (blue). Images were acquired using a Zeiss LSM 700 confocal laser microscope. B, CHO cells transfected either with WT or mutant GnRHR were incubated with increasing concentrations of GnRHa, and intracellular calcium was determined as described under “Experimental Procedures.” Results were expressed as the percentage of the maximal response in cells transfected with WT GnRHR. The data are presented as the mean ± S.E. of three independent experiments performed in triplicate.

Control cells, GnRHa induced a 1.6 ± 0.2-fold increase of Gnrhr promoter activity. Decreasing expression of SET markedly inhibited by 78.5 ± 9.6% GnRH stimulation of promoter activity as compared with control siRNA-transfected cells (Fig. 8C; 1.6 ± 0.2- versus 1.1 ± 0.1-fold increase in control siRNA and SET siRNA transfected cells, respectively), without any significant change of basal Gnrhr promoter activity (Fig. 8C). In αT3-1 cells, PACAP38, also significantly increased Gnrhr promoter activity (Fig. 8D), as reported previously (11). However, contrasting with the drastic effect of SET on the regulation exerted by GnRH, SET siRNA did not interfere with PACAP38 regulation of Gnrhr promoter activity (Fig. 8D). Altogether, this demonstrates that SET is critical for Gnrh stimulation of the Gnrhr promoter, probably by enhancing GnRHR coupling to the cAMP signaling pathway.

DISCUSSION

A unique feature of the mammalian Gnrhr is that, unlike other receptors belonging to the GPCR family, it lacks the carboxyl-terminal tail classically involved in GPCR regulation. Therefore, mechanisms regulating the efficacy of its signaling are poorly known. In this study, we report for the first time an interaction between the intracellular domains of Gnrhr and a protein distinct from heterotrimeric G proteins, the proto-oncogene SET. We show here that SET co-localizes with cell surface Gnrhr in gonadotrope cells and interacts with Gnrhr through two distinct regions of the receptor, the ICL1 and to a lesser extent the ICL3. There is now growing evidence that SET is an accessory protein for GPCR signaling. Its interaction was first reported with the ICL3 of the M3-MR (18). Since then, other receptors have been found to interact with SET (i.e. the M1, M2, and M5 subtypes of muscarinic receptor (36), the type 1A angiotensin receptor (37), and the β1-adrenergic receptor (38)). Using site-directed mutagenesis, we delineated SET binding sites to basic amino acid clusters contained within the ICL1 and ICL3 of Gnrhr. Importantly, these sites were absent from the ICL2 of Gnrhr, which does not bind SET, and their mutation in the ICL3 of M3-MR precluded SET binding (31). Interestingly, in silico analyses revealed the presence of similar basic amino acid clusters within intracellular domains of receptors known to interact with SET, such as the muscarinic (ICL3 and carboxyl-terminal domain) and the β1-adrenergic receptors (ICL3), but also within other GPCR, such as rhodopsin and melatonin receptors. This suggests that SET could interact with other GPCR through these particular sites and influence their signaling.

To assess the potential role of SET in Gnrhr signaling in gonadotrope cells, we took advantage of calcium and cAMP biosensors that allowed us to monitor with high sensitivity and in real time calcium and cAMP mobilization in gonadotrope αT3-1 living cells. To reduce interaction between Gnrhr and SET in αT3-1 cells, we developed several experimental strategies. In a first series of experiments, we introduced mutations in the first and third intracellular domains of the full-length Gnrhr to abolish SET binding to the receptor. However, whereas wild type Gnrhr was efficiently targeted at the plasma membrane of αT3-1 and CHO cells, the mutant receptor did not reach the plasma membrane but instead remained in the cytoplasm of both cell types (Fig. 9A). Consequently, GnRHa did not induce any calcium signaling in CHO cells expressing the mutant Gnrhr (Fig. 9B). These results are in accordance with other studies showing that targeting of mammalian Gnrhr to the plasma membrane is very often impaired by mutations, leading in some cases to the development of disease, such as hypogonadotropic hypogonadism in humans (for a review, see Ref. 39). Nevertheless, this precluded us from addressing the role of SET in Gnrhr signaling with this strategy. We then used the RNAi antisense strategy to decrease efficiently SET endogenous expression in αT3-1 cells. With this strategy, we demonstrated for the first time that Gnrhr mobilization of calcium signaling is markedly inhibited by SET in gonadotrope αT3-1 cells. Indeed, decreasing expression of SET by siRNA significantly increased calcium signaling in response to GnRHa. However, SET did not have any significant impact on intracellular calcium mobilization by the Gq-coupled oxytocin receptor, endogenously expressed in αT3-1 cells. This demonstrates that SET does not regulate signaling events downstream of the receptor but rather acts at the level of the receptor itself to specifically inhibit its coupling to Gq/PLC/calcium sig-
naling pathway. A similar inhibitory action of SET on M3-MR coupling to calcium signaling has been reported (18). Interestingly, a recent study addressing some of the mechanisms involved in SET action on M3-MR signaling showed that SET decreased Gq protein engagement by the M3-MR, possibly through a competition for binding to the receptor, given the close proximity of the two protein binding sites within ICL3 (31). Similarly, in ICL3 of GnRHR, SET binding sites (246RK247) are next to amino acids involved in coupling to the Gq/PLC/calcium pathway (259RAR261) (40, 41), suggesting that SET may also inhibit Gq protein binding to GnRHR in gonadotrope αT3-1 cells. SET has been described as an inhibitor of PP2A activity (22). There is very recent evidence showing that SET may regulate GPCR signaling by influencing the phosphorylation of proteins involved in GPCR signaling cascades through the inhibition of PP2A. For example, SET inhibits dephosphorylation of the M3-MR as well as of the β1- and β2-adrenergic receptors (31, 38). Inhibition of β1-adrenergic receptor dephosphorylation contributes to the attenuation of its signaling, probably by preventing receptor desensitization (38). SET can also influence the phosphorylation of proteins recruited by GPCR. This is the case for Akt kinase, which is recruited by the type 1A angiotensin receptor (37). SET association with this receptor leads to sustained Akt phosphorylation through PP2A inhibition, resulting in the attenuation of glycogen synthase 3β signaling (37). A role of PP2A inhibition in the attenuation of GnRHR coupling to calcium signaling is an attractive hypothesis, especially because we identified by affinity chromatography and mass spectrometry analysis both the catalytic subunit of PP2A and the protein SET associated with the ICL3 of GnRHR. Although it is unlikely that SET will have an impact on GnRHR because of its resistance to phosphorylation (42), we could hypothesize that docking of SET onto intracellular domains of GnRHR may control the phosphorylation of proteins associated directly with the GnRHR and/or present in the signaling complex activated by the receptor. Phosphorylation of Gq11 protein has been shown to decrease coupling to GPCR and induce receptor desensitization, as demonstrated for the 5-HT2A receptor (43). Therefore, the inhibition of GnRHR coupling with the calcium pathway mediated by SET might result from a competition between SET and Gq protein and/or could be the consequence of increased phosphorylation of Gq or other signaling entities.

Interestingly, we found that in addition to ICL3, SET interacts also with another intracellular domain of GnRHR (i.e., the ICL1), demonstrating for the first time that SET binding to GPCR is not restricted to ICL3. Our results suggest that SET binding to ICL1 is stronger than with ICL3. This might be due to the presence of more basic amino acids within ICL1. SET binds to the sequence 66KRKGKK72 within ICL1, whereas it binds to the 246RK247 sequence within ICL3. It is noteworthy that in mammals, the 66KRKGKK72 sequence is part of a putative binding site for heterotrimeric G protein 71KILSR75 and mutations of the amino acids 75LSR75 markedly reduced cAMP production in response to GnRH in COS-7 cells (44). In

4 V. Simon and J. Cohen-Tannoudji, unpublished data.

5 C. Avet and V. Simon, unpublished observations.
explain enhanced receptor coupling to the calcium signaling pathway (49). SET has been shown to interact with a myriad of proteins (50), and among them, some are involved in the GPCR signaling cascade. For example, SET interacts with PI3K (38), Rac1 (51), casein kinase II (50), and β-arrestin (37). Our hypothesis is that SET could act as a scaffold protein and interact with some components of the cAMP signaling, allowing an efficient and robust coupling of GnRHR to the cAMP pathway. Alignment of the ICL1 sequence of a number of GnRHR (52) reveals that, whereas mammalian GnRHR contain the SET binding sequence, such sequence is only partial or even absent in non-mammalian GnRHR, such as *Xenopus* or catfish (Table 1). This strongly suggests that SET may not bind to ICL1 of non-mammalian GnRHR. It is thus tempting to speculate that, in addition to the unique absence of the carboxyl-terminal tail, the mammalian GnRHR has acquired another structural peculiarity through evolution, giving the capacity to couple efficiently to the cAMP pathway.

Altogether, our results strongly suggest that SET binding generates a signaling switch of GnRHR from calcium to cAMP signaling, thus highlighting a new role for the accessory protein SET in the regulation of GPCR signaling. This constitutes an original finding regarding GPCR regulation because apart from NHERF2, which reduces parathyroid hormone receptor coupling to Gs, but increases its coupling to Go (49), only very few GIP have been shown to operate a switch of GPCR coupling to G protein.

We have demonstrated here that GnRH regulation of rat *Gnrhr* promoter activity is mediated through the cAMP pathway. Our study thus identifies *Gnrhr* as an additional gene among the few genes known to be regulated by GnRH through this pathway. In addition, our results indicate that SET is critical to increase GnRH stimulation of *Gnrhr* expression. In native gonadotrope cells, recruitment of the cAMP pathway by GnRHR occurs preferentially at the proestrus stage of the reproductive cycle in the female rat, a few h prior to the LH surge and ovulation (12, 53, 54). The mechanisms underlying such activation are not yet known. Our previous studies in LβT2 cells and in cultured rat pituitary cells demonstrated that mobilization of the cAMP pathway by GnRHR is dependent on the mode of GnRH stimulation because it only occurs under sustained and not pulsatile stimulation (12, 45). This may explain why the cAMP pathway is massively recruited by GnRHR, *in vivo* at proestrus, when pituitary gonadotrope cells are challenged with GnRH at a very high pulse frequency. This suggests that GnRH input contributes to the specificity of GnRHR coupling. This is in line with a previous study showing that increasing GnRH concentrations from nanomolar to micromolar induces a switch in GnRHR coupling from Gs to Gi proteins in hypothalamic cells and GT1-7 neurons (55). Because we demonstrated in the present study that SET enhances GnRHR coupling to the cAMP pathway in gonadotrope cells, it is tempting to speculate that SET could play a role *in vivo* by favoring cAMP pathway recruitment by GnRH, notably at proestrus. In particular, SET may contribute to the increased GnRHR expression at proestrus (56, 57) and hence to the increased sensitivity of gonadotrope cells leading to LH surge. Thus, GnRHR signaling switch induced by SET could be of physiological importance at this specific period of the estrus cycle.

In conclusion, we identified SET as a novel interacting partner of the mammalian GnRHR. We demonstrated that SET binds directly to ICL1 and ICL3 of GnRHR and regulates the efficacy and specificity of GnRHR signaling. Our study highlights a new role for the accessory protein SET, which behaves as a switch molecule to change GnRHR coupling specificity from calcium to the cAMP pathway. Furthermore, our data suggest that SET may impact gonadotrope cell function, notably through changes of the regulation exerted by GnRH on its receptor gene expression.

Acknowledgments—We thank Dr. Terry D. Copeland (NCI-Frederick, National Institutes of Health, Frederick, MD), Dr. Robert Z. Qi (Hong Kong University of Science and Technology), Dr. R. P. Millar (University of Edinburgh), Dr. K. A. Eidne (University of Western Australia), and Dr. P. Mellon (University of California San Diego, La Jolla, CA) for kind gifts of materials. We are grateful to Dr. C. Bleux (Université Paris 7) for a contribution to GnRH radiodination and to Dr. S. M. Lanier (Medical University of South Carolina) for helpful discussions. Measurements of calcium mobilization were performed at the Flexstation III facility of the Biologie Fonctionnelle et Adaptative laboratory.

REFERENCES

1. Lefkowitz, R. J. (2007) Seven transmembrane receptors. Something old, something new. *Acta Physiol. (Oxf).* **190**, 9–19

2. Bockaert, J., Fagni, L., Dumuis, A., and Marin, P. (2004) GPCR interacting proteins (GIP). *Pharmacol. Ther.* **103**, 203–221

3. Sato, M., Blumer, J. B., Simon, V., and Lanier, S. M. (2006) Accessory proteins for G proteins. Partners in signaling. *Ann. Rev. Pharmacol. Toxicol.* **46**, 151–187

4. Maurice, P., Guillaume, J. L., Benelumi-Chachoua, A., Daulet, A. M., Kamal, M., and Lockers, R. (2011) GPCR-interacting proteins, major players of GPCR function. *Adv. Pharmacol.* **62**, 349–380

5. Luttrell, L. M., and Lefkowitz, R. J. (2002) The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. *J. Cell. Sci.* **115**, 455–465

6. Ritter, S. L., and Hall, R. A. (2009) Fine-tuning of GPCR activity by receptor-interacting proteins. *Nat. Rev. Mol. Cell Biol.* **10**, 819–830

7. Counis, R., Laverrière, J. N., Garrel, G., Bleux, C., Cohen-Tannoudji, J., Larrant, Y., Kottler, M. L., and Magre, S. (2005) Gonadotropin-releasing hormone and the control of gonadotrope function. *Reprod. Nutr. Dev.* **45**, 819–830

TABLE 1

Amino acid sequence alignment of the first intracellular loop from various vertebrate GnRH receptors

The amino acid sequence involved in SET binding is boxed, and basic residues are shown in boldface type. This table was adapted from Millar et al. (52).

Species	Amino Acid Sequence	Basic Residues
Mouse	K L O K W T Q	K R K G K K L S R I K
Rat	K L O Q W T Q	K R K G K K L S R M K
Human	K L O K W T Q	K R K G K K L S R M K
Marmoset	K L O K W T Q	K R K G K K L S R M K
Pig	K L O K W T Q	K R K G K K L S R M K
Chicken	S L L - - - R	- - - C H V R
Xenopus	S I S - - - G	K R C K - - - S H L R
Catfish	S V T R G E	R R L A - - - S H L R
R-trout	S V W C G R G	R R L A - - - S H L R

2652 JOURNAL OF BIOLOGICAL CHEMISTRY
SET Regulates GnRH Receptor Signaling in Gonadotrope Cells

24. Thomas, P., Mellon, P. L., Turgeon, J., and Waring, D. W. (1996) The cAMP signaling system regulates LHBeta gene expression. Roles of early growth response protein-1, SP1 and steroidogenic factor-1. J. Mol. Endocrinol. 32, 291–306

25. Hamid, T., Malik, M. T., Millar, R. P., and Kakar, S. S. (2008) Protein kinase A serves as a primary pathway in activation of Nur77 expression by gonadotropin-releasing hormone in LβT2 mouse pituitary gonadotroph tumor cell line. Int. J. Oncol. 33, 1055–1064

26. Liu, F., Ainsworth, D. E., and Webster, N. J. (2003) Gonadotropin-releasing hormone-desensitized LβT2 gonadotrope cells are refractory to acute protein kinase C, cyclic AMP, and calcium-dependent signaling. Endocrinology 144, 4354–4365

27. Shacham, S., Cheifetz, M. N., Fridkin, M., Pawson, A. J., Millar, R. P., and Naor, Z. (2005) Identification of Ser^153 in ICL2 of the gonadotropin-releasing hormone receptor as a phosphorylation-independent site for inhibition of G^coupling. J. Biol. Chem. 280, 28891–28898

28. Simon, V., Omer, S. S., Cohen-Tannoudji, J., Tobin, A. B., and Lanier, S. M. (2012) Influence of the accessory protein set on M3 muscarinic receptor phosphorylation and G protein coupling. Mol. Pharmacol. 82, 17–26

29. Granger, A., Bleux, C., Kottler, M. L., Rhodes, S. J., Counis, R., and Laverrière, J. N. (2006) The LIM-homeodomain proteins Isl-1 and Lhx3 act with steroidogenic factor-1 to enhance gonadotrope-specific activity of the gonadotropin-releasing hormone receptor gene promoter. Mol. Endocrinol. 20, 2093–2108

30. Olsen, S. R., and Uhler, M. D. (1991) Inhibition of protein kinase A by overexpression of the cloned human protein kinase inhibitor. Mol. Endocrinol. 5, 1246–1256

31. Kim, J. Y., Cohen-Tannoudji, J., Tobin, A. B., and Lanier, S. M. (2012) Identification of low molecular mass interacting proteins. Role in receptor function. J. Neurosci. Methods 195, 161–169

32. Kendall, R. T., Strung, E. G., Rachidi, S. M., Blumentagg, J., and Counis, R. (1995) Expression of gonadotropin-releasing hormone (GnRH) receptor gene is altered by GnRH agonist desensitization in a manner similar to that of gonadotropin B-subunit genes in normal and castrated rat pituitary. Endocrinology 136, 2803–2808

33. Matsuzumi, K., Nagata, K., Miyaji-Yamaguchi, M., Kikuchi, A., and Tsujimoto, M. (1999) Sperm chromatin decondensation by template activating factor I through direct interaction with basic proteins. Mol. Cell. Biol. 19, 6940–6952

34. Prasad, S. V. (2011) Inhibition of protein phosphatase 2A activity by PI3K overexpression of the cloned human protein kinase inhibitor. Mol. Endocrinol. 25, 11059–11062

35. Vasudevan, N. T., Mohan, M. L., Gupta, M. K., Naga Prasad, S. V. (2011) Inhibition of protein phosphatase 2A activity by PI3K regulates β-adrenergic receptor function. Mol. Cell 41, 636–648

36. Conn, P. M., Ulloa-Aguirre, A., Ito, J., and Janovick, J. A. (2007) G protein–coupled receptor trafficking in health and disease. Lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol. Rev. 59, 225–250

37. Myburgh, D. B., Millar, R. P., and Hoppard, J. P. (1998) Alamine-261 in intracellular loop III of the human gonadotropin-releasing hormone receptor is crucial for G protein-coupling and receptor internalization. Biochem. J. 331, 893–896

38. de Roux, N., Young, J., Misrahi, M., Benet, R., Chanson, P., Schaison, G., and Milgrom, E. (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N. Engl. J. Med. 337, 1597–1602

39. Williams, G. B., Bualonti, A., Vreel, M., Sell, R., Blomenrohr, M., Nahorski, S. R., Eidne, K. A. (1999) Lack of a C-terminal tail in the mammalian gonadotropin-releasing hormone receptor confers resistance to agonist-dependent phosphorylation and rapid desensitization. J. Biol. Chem. 274, 30146–30153

40. Shi, J., Damjanoska, K. I., Singh, R. K., Carrasco, G. A., Garcia, F., Grippo,
SET Regulates GnRH Receptor Signaling in Gonadotrope Cells

A. J., Landry, M., Sullivan, N. R., Battaglia, G., and Muma, N. A. (2007) Agonist-induced phosphorylation of Galpha11 protein reduces coupling to 5-HT2A receptors. *J. Pharmacol. Exp. Ther.* **323**, 248–256

44. Arora, K. K., Krsmanovic, L. Z., Mores, N., O’Farrell, H., and Catt, K. J. (1998) Mediation of cyclic AMP signaling by the first intracellular loop of the gonadotropin-releasing hormone receptor. *J. Biol. Chem.* **273**, 25581–25586

45. Larivière, S., Garrel, G., Simon, V., Soh, J. W., Laverrière, J. N., Counis, R., and Cohen-Tannoudji, J. (2007) Gonadotropin-releasing hormone couples to 3’,5’-cyclic adenosine-5’-monophosphate pathway through novel protein kinase C and -ε in LβT2 gonadotrope cells. *Endocrinology* **148**, 1099–1107

46. Horn, F., Bilezikjian, L. M., Perrin, M. H., Bosma, M. M., Windle, J. J., Huber, K. S., Blount, A. L., Hille, B., Vale, W., and Mellon, P. L. (1991) Intracellular responses to gonadotropin-releasing hormone in a clonal cell line of the gonadotrope lineage. *Mol. Endocrinol.* **5**, 347–355

47. Pantel, J., Williams, S. Y., Mi, D., Sebag, J., Corbin, J. D., Weaver, C. D., Cone, R. D. (2011) Development of a high throughput screen for allosteric modulators of melanocortin-4 receptor signaling using a real time cAMP assay. *Eur. J. Pharmacol.* **660**, 139–147

48. Scott, K., and Zuker, C. S. (1998) Assembly of the *Drosophila* phototransduction cascade into a signalling complex shapes elementary responses. *Nature* **395**, 805–808

49. Wang, B., Ardura, J. A., Romero, G., Yang, Y., Hall, R. A., Friedman, P. A. (2010) Na/H exchanger regulatory factors control parathyroid hormone receptor signaling by facilitating differential activation of Gα protein subunits. *J. Biol. Chem.* **285**, 26976–26986

50. Vera, J., Estanyol, J. M., Canela, N., Llorens, F., Agell, N., Itarte, E., Bachs, O., and Jaumot, M. (2007) Proteomic analysis of SET-binding proteins. *Proteomics* **7**, 578–587

51. ten Klooster, J. P., Leeuwen, I., Scheres, N., Anthony, E. C., and Hordijk, P. L. (2007) Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. *EMBO J.* **26**, 336–345

52. Millar, R. P., Lu, Z. L., Pawson, A. J., Flanagan, C. A., Morgan, K., and Maudsley, S. R. (2004) Gonadotropin-releasing hormone receptors. *Endocr. Rev.* **25**, 235–275

53. Kimura F, Kawakami M, Nakano H, McCann SM. (1980) Changes in adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate concentrations in the anterior pituitary and hypothalamus during the rat estrous cycle and effects of administration of sodium pentobarbital in proestrus. *Endocrinology* **106**, 631–635

54. Cohen-Tannoudji, J., Avet, C., Garrel, G., Counis, R., and Simon, V. (2012) Decoding high gonadotropin-releasing hormone pulsatility. A role for GnRH receptor coupling to the cAMP pathway? *Front. Endocrinol. (Lausanne)* **3**, 107

55. Krsmanovic, L. Z., Mores, N., Navarro, C. E., Arora, K. K., and Catt, K. J. (2003) An agonist-induced switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile neuropeptide secretion. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 2969–2974

56. Savoy-Moore, R. T., Schwartz, N. B., Duncan, J. A., and Marshall, J. C. (1980) Pituitary gonadotropin-releasing hormone receptors during the rat estrous cycle. *Science* **209**, 942–944

57. Bauer-Dantoin, A. C., Hollenberg, A. N., and Jameson, J. L. (1993) Dynamic regulation of gonadotropin-releasing hormone receptor mRNA levels in the anterior pituitary gland during the rat estrous cycle. *Endocrinology* **133**, 1911–1914