Research Article

Music Rhythm Detection Algorithm Based on Multipath Search and Cluster Analysis

Shuqing Ma

School of Music, Shandong Women’s College, Jinan, Shandong 250002, China

Correspondence should be addressed to Shuqing Ma; 28018@sdwu.edu.cn

Received 14 April 2021; Revised 7 May 2021; Accepted 12 May 2021; Published 21 May 2021

Academic Editor: Zhihan Lv

Copyright © 2021 Shuqing Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Music rhythm detection and tracking is an important part of the music comprehension system and visualization system. The music signal is subjected to a short-time Fourier transform to obtain the frequency spectrum. According to the perception characteristics of the human auditory system, the spectrum amplitude is logarithmically processed, and the endpoint intensity curve and the phase information of the peak value are output through half-wave rectification. The Pulse Code Modulation (PCM) characteristic value is extracted according to the autocorrelation characteristic of the endpoint intensity curve. This article proposes a rhythm detection algorithm based on multipath search and cluster analysis; that is, based on the clustering algorithm, it absorbs the idea of multipath tracking and proposes its own detection and tracking algorithm. It overcomes the weakness of the clustering algorithm that needs to use Musical Instrument Digital Interface (MIDI) auxiliary input to achieve the desired effect. This article completely uses the PCM signal as the input, which is more robust than the clustering algorithm. The whole process is carried out in the time domain, and the amount of calculation is much smaller than the frequency domain calculation of multipath tracking, and the linear relationship with the rhythm of the music is much better than the filter bank algorithm. This algorithm can successfully detect the rhythm of the music with a strong sense of rhythm and can track the specific position of the rhythm point.

1. Introduction

In music, only when the time value of the sound is organized according to the rhythm of the music, the fixedness of their mutual relations, such as beat, rhythm pattern, and fixed rhythm, is meaningful. Therefore, the concept of rhythm in a narrow sense is the repetition of the sequence of pitch values, and the main purpose of rhythm recognition is to find this relatively stable rhythm pattern that is out of the relationship of pitch [1]. Because the rhythm pattern has nothing to do with the pitch, in the research of rhythm, the time value of the note is often recorded by numbers. Although this method is simple, it does not reflect the strength of the notes. Some studies use a graph with time as the horizontal axis and speed and force as the vertical axis. For rhythm recognition, first of all, we must establish a set of typical rhythm models under a fixed beat. The rhythm model and the beat model are interdependent, and they together reflect the regularity of time organization. In Western music, this rule is often multilevel, so the rhythm model should also be multilevel [2]. In rhythm recognition, the method often used is to compare the recognized music with a set of typical rhythm models. The difficulty is that the speed of the music will often change. Therefore, the current rhythm recognition is mainly for music works with relatively fixed rhythm patterns and distinctive characteristics, especially dance music. The audio file to be analyzed is passed through a low-pass filter and its information is used. Based on the analysis of the binary tree or grid structure constructed by the music signal pause, the periodic rhythm of the specified music can be detected.

Some scholars have proposed a music rhythm recognition algorithm based on spectrum analysis [3] because people’s perception of music rhythm is, in principle, a physiological feeling of musical energy fluctuations. The correct judgment of the rhythm of a piece of vocal a cappella music mainly depends on the periodicity of the strength of
the signal energy changes so that the energy signal can be analyzed in the frequency domain, and the periodic component of the energy signal can be judged in the entire song. This period is the rhythm of the music signal. In order to obtain music rhythm information, after the significant amount of the signal is analyzed and the fluctuation of the significant amount of the signal is determined, the signal integer multiple decimation method is used to reduce the amount of data to be analyzed, and the AR model (autoregressive model) power spectrum estimation is performed on the decimated signal data [4]. In this way, the energy fluctuation period of the music signal can be found in the frequency domain, and the rhythm of the music signal can be determined. Some scholars introduce the Bayesian rhythm model and then use the sequence Monte Carlo method based on Bayesian theory to infer the bars and the music fragments to obtain the position of the beat. This method can effectively extract rhythm features for music with different musical speeds and different rhythm patterns played by different instruments.

With the development of computer and multimedia technology, visualization technology has become more and more widely used. Music rhythm detection is an important part of the music visualization system. Rhythm, in the usual sense, is the phenomenon of regular strength and weakness, length and short that alternately appear in music. An ordinary person without professional training can easily tap a piece of music with his hands. This is actually a process of rhythm detection and beat tracking [5]. In the process of cluster center update, the data objects with the smallest distance to the sample in the cluster were selected as the cluster centers, and then the other data objects were divided into the corresponding clusters by the minimum distance so as to realize the clustering. At present, many researchers have proposed many algorithms in the field of intelligent rhythm detection and tracking. According to the scope of application, it is mainly divided into two categories. One category is suitable for handling musical notation [6]. This type of method uses MIDI signals as input and has high detection accuracy for both single-tone and multitone music. The second category is suitable for processing PCM-encoded music signals. Although the accuracy of this type of method is lower than that of the first type of algorithm, it is more practical because it processes more general PCM signals. In recent years, there are mainly three methods in this category: cluster detection, multipath tracking, and filter bank. The algorithm in this article does not belong to these three categories; that is, based on the clustering algorithm, it absorbs multipath tracking idea and proposes its own detection and tracking algorithm. It overcomes the weakness of the clustering method that needs to use MIDI auxiliary input to achieve the desired effect. It completely uses PCM signal as input, which is more robust than the cluster algorithm. The whole process is carried out in the time domain, and the amount of calculation is much smaller than that of frequency domain calculation, and it is only linearly related to the rhythm of the music, which is much better than the filter bank algorithm and others.

This article proposes a rhythm detection algorithm based on multipath search and clustering analysis; that is, based on the clustering algorithm, it absorbs the idea of multipath tracking and proposes its own detection and tracking algorithm. The calculation amount of the algorithm proposed in this article is much smaller than the frequency domain calculation of multipath tracking and is better than the multipath tracking algorithm. This algorithm overcomes the shortcomings of the clustering algorithm that it needs to use other parameters such as auxiliary input and can successfully detect the rhythm of the music with a strong sense of rhythm. Compared with the clustering algorithm, it is more robust and can track the specific location of the rhythm point.

2. Related Work

The acquisition of music information can be roughly divided into three research fields based on the research content and technical difficulty: onset detection of music events [7], which is an intermediate medium for acquiring other advanced music information, and the acquired starting point signal sequence called the onset detection function (ODF); the advanced music feature acquisition based on the onset detection function, such as the analysis of ODF to obtain the pitch, speed, rhythm, beat, bar, chord, or extraction of signal features of specific musical instruments; higher-level music understanding, such as Music Genre Classification, Music Mood Recognition, and Music Tag Classification [8]. Previous articles mainly focused on the acquisition of music rhythm features based on the starting point detection function, which focuses on the music beat tracking technology and briefly gives a method for estimating the tempo and beat structure. Rhythm characteristics are the most easily perceivable information for humans, and their applications are also the most extensive. Benetos et al. [9] gave a brief introduction to the research overview of these three levels.

Rhythm is the organization of music in time. It is the regular phenomenon of strength and weakness, length and short that alternately appear in music, and it is the change and repetition of priority. Compared with other music elements, human beings have the most sensitive perception and the most instinctive response to the rhythm of music. Rhythm is the backbone of music. It organizes the various musical elements in a coordinated manner in terms of the speed and the level of pitch, forming an organic and complete sound unity. From a more macro perspective, rhythm can also be the "progress" process of music. This dynamic concept of "progress" encompasses the rich movement patterns in music, including the cycle of priority and urgency, and the pitch. The abstract concept of Rajendran et al. [10] is divided into three subparts. The first part is hierarchically metrical structure, which is the temporal relationship in the music score; the second part is tempo variation, which indicates the possible time-varying rate of occurrence of music events; the third is the non-rhythmic part, it refers to some nonrhythmic information, that is, the part where there is no periodic feature.
Nakamura et al. [11] further subdivided the rhythm structure into three levels, which are secondary beat point (tatum), beat point (beat), and bar (measure). The regular appearance of beats is the most basic mode of music rhythm, and the beats are organized by mountain bars. A bar is a rhythm recording rule that is one level higher than the beat point, and it is closely related to the change of harmonics. In music with quarter notes as a beat, the duration between two beat points is the duration of a quarter note, and the duration between two minor beat points is the duration of an eighth note. Beat tracking is the detection of "pulse" or significant periodic musical events. In terms of music information retrieval, beat tracking is often used in chord recognition, song detection, music segmentation, and transcription. In the past two decades, there has been much related research on beat tracking and many improved algorithms have been proposed at the annual international music information retrieval evaluation exchange conference [12].

In addition to scientific research, beat tracking technology also has a wide range of applications in real life. For example, the automatic polyphonic transcription system proposed in [13] solved the problem of transcription of polyphonic music by people without a music professional learning background; automatic rhythmic accompaniment system impromptu performance or singing with suitable accompaniment music; some chord recognition algorithms are also mostly based on beat tracking; musical fountains set up in some squares give visitors a dual enjoyment of audiovisual as in large evening parties, dazzling the light color changes and brightness with the rhythm of the music. It analyzed the rhythm of the received music signal to make a robot [14]; some professional arranger software (such as sonic foundry acid), DJ console, and even song similarity detection are all applied to the beat tracking algorithm. It can be seen that music beat tracking has broad prospects for development, but due to the complexity and diversity of music itself, we want the cognition of the computer to fully match the human auditory system, which needs further research.

Compared with other methods, Fourier-based techniques suffer from the problem of static resolution that is currently believed to be a fundamental limitation of the Fourier Transform. Although alternative solutions overcome this limitation, none provide the simplicity, versatility, and convenience of the Fourier analysis. The lack of convenience often prevents these alternatives from replacing classical spectral methods, even in applications that suffer from the limitation of static resolution.

From another point of view, rhythm includes two concepts: beat and speed. The former refers to the regular alternating movement of music, that is, the combination of beats, and the latter refers to the speed of this rhythm. The rhythm that repeats in a certain way of strength and weakness is called the beat of the music, and the beat is specified by the time signature, which describes the pattern of the strong and weak sounds at the time interval of the music. The number combination that appears in the form of a score at the beginning of the score is the time signature. The numerator represents a measure of music composed of several beat points, and the denominator represents the fractional note in the music. For example, the meaning of the time signature 3/4 is that a quarter note is a beat, and each measure has three beats. Usually, the beats are divided into single meter and compound meter. Single meter means that each measure contains only one upbeat and a fixed number of downbeats. From the beginning to the end of the music, there is strong and weak law. The common single time is like 3/4; its strength is strong-weak-weak; compound time is generally composed of two or more single times, which means that it is within one measure. It contains two or more strong pars, but these strong beats are different in strength. In common multiple beats such as 6/8, its strength law is strong-weak-weak-second strong-weak-weak. The strength and weakness of the beat seem to be simple. Combining them can get various beat structures, which can form music with various styles and rich emotions.

3. Music Rhythm Detection Algorithm Based on Multipath Search and Cluster Analysis

3.1. Algorithm Description. First of all, it can be considered that a piece of music consists of a series of musical events, such as a guitarist plucking a string, a drummer plucking a drum, and a singer’s pronunciation. The sum of these musical events is the melodious music we usually hear. According to music theory [13], each music event has a peak corresponding to it in the PCM coded signal in this article. These crests or musical events are called onsets, as shown in Figure 1. The rhythm of the music is hidden in these incentives. For example, music in 2/4 time has two heavier incentives in each measure, and music in 4/4 time has four heavier incentives in each summary. The corresponding positions of these heavier excitations in the signal are called rhythm points. For a piece of music with little change in rhythm, the appearance of rhythm points can be regarded as periodic, and this period is called the rhythm value, as shown in Figure 1.

The purpose of this algorithm is to detect all rhythm points and rhythm values from a PCM-encoded music signal. The algorithm is mainly divided into three parts. The first part is excitation detection. The position of most of the excitations in the music from the input signal is analyzed. The second part uses the position of the signal excitation to estimate the possible rhythm values of the target music. At this step, the rhythm of the music cannot be finalized, and the third part of the rhythm track is needed to mark the rhythm points of the entire piece of music.

3.2. Onset Detection. The excitation detection module inputs the PCM signal. The output is the excitation position of the music. Music is very expressive to human thinking, and its corresponding PCM signal is also very complicated. There is no way for a computer to fully recover all the musical stimuli from such a signal. The algorithm in this article can only extract most of the excitations, and sometimes the excitation position will have an error of tens of milliseconds. However,
the practice has proved that excitation missed detection and position error have no effect on the rhythm detection system [14].

First, the PCM signal a_i is passed through a first-order high-pass filter to remove the DC component. Then, the smoothing filter is used to calculate the signal amplitude envelope, denoted as $W_j = \left(\sum_{i=1}^{N} a_i^2 \right)^{1/2}$, where N is the number of signal points per frame. The signal length of each frame is 20 ms, and the overlap between the two frames is 10 ms. The peak of the first-order differential signal of the envelope can be regarded as the excitation point of the signal. For envelope W_j, the four-point linear regression algorithm is used to detect the first-order difference of the envelope [15], which is recorded as

$$A_j = \ln(2W_{j+2} + W_{j+1} - W_j - 2W_{j-1}).$$

(2)

Then, a crest detection algorithm is used to detect the A_j crest. In many peak detection algorithms, the threshold is set to be global or local. Compared with the low computational complexity of the global threshold, the local threshold has good adaptability to the change of the audio signal. This article uses dynamic threshold ω_j (med).

$$\omega_j (\text{med}) = \text{median}(j_{\text{med}}),$$

$$j_{\text{med}} \in \left[\text{med} - \frac{t}{2}, \text{med} + \frac{t}{2} \right],$$

(3)

where t is the window width and med is the median operator. For the signal after threshold filtering, if a peak has other peaks with a larger value within 50 ms, this peak will be removed. Finally, record the positions of these peaks [16].

3.3. Rhythm Detection. The input of the rhythm detection module is a series of excitation positions, denoted as $Y_i, i \in R$, and several possible music rhythms are estimated by the method of grouping and clustering [17]. First, calculate the time interval between any two $Y_i, i \in R$, denoted as InOln (inter onset interval); the flow of the beat tracking algorithm is shown in Figure 2.

$$\text{InOln}_{ij} = Y_i - Y_j, \quad i, j \in R, i > j.$$

(4)

Using the value of InOln, as a feature, perform one-dimensional clustering analysis on interonset interval, and record it as pattern class $f_i, i \in R$. Let χ_i denote the average InOln of the pattern type f_i; n_i denote the number of elements contained in the pattern type f_i.

For any f_i and $f_j, i, j \in R$, when the corresponding χ_i is an integral multiple of χ_j, call f_i and f_j as the relevant model class:

$$s_{ij} = \frac{\chi_i}{\chi_j}.$$

(5)

The weight y_i of f_i is defined as follows:

$$y_i = n_i f(1) + \sum_j n_j g(s_{ij}),$$

(6)

$g(s_{ij})$ is the function of s_{ij} which is defined as follows:

$$g(s_{ij}) = 1, \quad \text{if } 6 \leq s_{ij} \leq 10,$$

$$g(s_{ij}) = 7 - s_{ij}, \quad \text{if } 1 \leq s_{ij} \leq 5.$$

(7)

The practice has proved that for music segments with little change in rhythm value, f_i of several pattern classes with the highest weight χ_i include the rhythm value of the music, the integral multiple of the rhythm value, and the divisor of the rhythm value. These high-weight pattern type
record the rhythm information of the music and will be transmitted to the rhythm tracking module.

3.4. Rhythm Tracking. The short-time Fourier transform (STFT) is a general tool for speech signal processing. It defines a very useful time and frequency distribution class, which specifies the complex number of any signal with time, frequency, and amplitude. In fact, the process of calculating the short-time Fourier transform is to divide a longer time signal into shorter segments of the same length and calculate the Fourier transform on each shorter segment, that is, the Fourier spectrum.

The main task of this section is to specify the rhythm value of the music in the results of the previous summary, indicate the specific location of the rhythm point, and design a multipath search algorithm. Several f_r introduced in the previous summary may all be the rhythm of the piece of music. Furthermore, the starting point of the rhythm of the music may be the first excitation of this signal, or it may be the second, third, and so on. Therefore, multiple paths are initialized with different rhythm values and starting excitation points. Each search path uses the currently determined rhythm point and rhythm value to estimate the position of the next rhythm point. Investigate the excitation $Y_i, i \in R$ that is closest to the predicted point, as shown in Figure 3, M and N, respectively, indicate that the path has been searched for rhythm points, l is a prediction point, and L is the excitation point closest to l [18]. There are three possibilities for the positional relationship between l and L. First, L falls in the inner neighborhood of l. In this case, consider L as a rhythm point on the path, add it to the rhythm point queue, and continue to predict the next rhythm point O. The second is that L falls in the neighborhood outside l. In this case, L is also regarded as a rhythm point on the path, but the path weight correction is different from the first case. The third is that L falls outside the neighborhood of l, and l is regarded as a rhythm point but does not join the queue and then continues to predict O through N and twice the rhythm value. These three possible reasons are generally: (1) a little change in the rhythm of the music; (2) errors caused by the excitation detection.

The weight of path x is $\phi(x)$, and every time a prediction point is generated, $\phi(x)$ is modified to

$$\phi(x + 1) = \phi(x) + 5m_i.$$

Among them, m is the number of times that $Y_i, i \in R$ continuously falls in the neighborhood of each predicted point of path x.

$$\phi(x + 1) = \phi(x) + 10. \quad (9)$$

$Y_i, i \in R$ falls outside the neighborhood of each predicted point of path x.

$$\phi(x + 1) = \phi(x) + 10.$$

After all the paths are searched separately, the rhythm value of the path with the highest weight is the rhythm of the music, and the rhythm points it contains can be determined as the rhythm points of the music.

4. Test Results and Analysis

4.1. Algorithm Accuracy Comparison. The sampling theorem states that in the process of analog/digital signal conversion, when the sampling frequency is greater than 2 times the highest frequency of the signal, the digital signal after sampling completely retains the information in the original signal. At present, in order to ensure the quality of music signals and preserve more original information, the sampling frequency of most music signals is 440 Hz. The beat information of the music signal mainly exists in the low frequency. Therefore, before the beat extraction, the music signal is resampled uniformly, and the frequency is reduced to 220 Hz [19].

The repertoire tested in this article includes pop music, country music, and rap music. The results of the algorithm in this article are shown in Figure 3. The difference between the
4.2. Algorithm Operation Time Comparison. The energy of the start point of the beat of a music signal usually changes drastically. Therefore, finding the energy mutation point is a reliable basis for determining the start point of the beat. According to the start point of the beat plus several times the beat value, all the beat point positions can be obtained. Therefore, the determination of the starting point of the beat is extremely important. Because the value of the music signal is usually between 60 and 240, that is, the time interval of the beat is 0.25 s–1 s, only a fragment can be used to detect a beat. All the test signals in this article are intercepted music signals. The signal is not stable in the first 1 s, so 1 s–2 s is selected as the detection segment in the experiment. Due to the characteristics of the music signal itself, within a short-time range of 10–30 ms, its characteristics can be regarded as a quasisteady state process; that is, it has a short-term nature. Therefore, the short-term energy method can be used to determine the starting beat point.

The algorithm in this article can be applied to real-time detection and tracking, and the calculation amount is lower than that of the clustering method and multitacking method, as shown in Figure 4. The average time consumption of multipath search and cluster analysis algorithms to process 90 s signals with high-performance computers is 35.2 s and 6.0 s, respectively. This algorithm uses a low-performance computer simulation, and the time-consuming is only 0.821 s. It can be seen that the computational complexity of this algorithm is much better than the filter bank method used by Chen and Wang [20]. Because the optimized code of multipath search and cluster analysis algorithm is not available, it cannot be compared with the configured computer. However, the comparison method used in this article is also scientific and feasible.

4.3. Multifundamental Frequency Estimation under Different Numbers of Instruments. In order to improve the multifundamental frequency estimation effect through the music rhythm detection algorithm based on multipath search and cluster analysis, we compare the improved algorithm with the method of separate cluster analysis and set up several sets of comparative experiments in the end. At the same time, the results under different numbers of instruments are compared.

The test data are 100 pieces each for duo music, trio music, and quartet music. The results under each number of instruments are counted, and the final result is shown in Figure 5.

From the data in Figure 6, it can be seen that the estimation accuracy of the first fundamental frequency and the estimation accuracy of the multiple fundamental frequencies before and after the improvement have been improved for several musical instruments. And it can be seen from Figures 7 and 8 that before and after the improvement, the improvement effect is most obvious when the number of instruments is 4, and there is a slight increase when the number of instruments is 2 and 3. All these show that the music rhythm detection algorithm of multipath search and cluster analysis in this article is effective.

This article uses various signal analysis methods, combined with the maximum and minimum distance clustering algorithm, and proposes an efficient and accurate beat tracking algorithm. The maximum distance product and the sum of the maximum and minimum distance clustering algorithm, which solved the problems that the traditional K-means algorithm had such as large randomness, poor stability, and a maximum distance product method with a large number of iterations and a long operation time problem. With the continuous development of the music signal research field and the continuous improvement of the model, the algorithm needs to be further improved to enhance the applicability and completeness of the algorithm. In the future, the algorithm will be improved in the following aspects.

Because music files with manually marked beat positions are not easy to obtain, this algorithm mainly uses MI-REX2006 test data when verifying. Although the music in this database covers various genres and different rhythm types, the number is not much. In the future, we will collect more music materials to further test this algorithm.

As a nonvocal student, there is still a lack of professional knowledge in the design of algorithms. With the learning
and accumulation of music theory in the future, the algorithm will incorporate more music theory knowledge to improve accuracy [21]. At the same time, only format music files were tested in the laboratory. In future work, we will add test music signal formats, such as MP3 and WMA format.

This algorithm simulates the process of humans playing the beat when listening to music, which is an imitation of subjective perception. Everyone has different understanding and appreciation angles of music, and the beats they play are also different. To better simulate this process, it is necessary to conduct further research on the auditory system so as to improve the degree of fit between the beat sequence output by the computer and the beat produced by human listening to music.

Some beats appear at the rest of the music (that is, the peak value of the change point signal is zero, and there is no information). The endpoint detection algorithm in this article has a poor detection effect for this type of beat point. In the future, it will be from the perspective of auditory images. The music signal is analyzed to improve the detection effect of this type of beat point, thereby improving the accuracy of the overall beat tracking.

4.4. Algorithm Evaluation Criteria

In terms of evaluation criteria, the most basic idea of beat tracking evaluation is to compare the similarity between the calculated beat sequence and the real beat sequence [21–23]. Although there are many evaluation methods, no consensus has been reached so far, so there is no uniform standard [24–26]. In this article, manually labeled beats are used as the standard beats, and the four indicators P-Score, Cemgil, CMLc, and AMLt proposed in the references are used to evaluate the algorithm. P-score was the impulse train cross-correlation method; Cemgil is the beat accuracy calculated by Gaussian error function with 40 ms standard deviation. CMLc is an evaluation method based on the longest continuously correctly tracked section. This article proposes a music rhythm detection algorithm data based on multipath search and cluster analysis. The beat tracking competition uses the average data of the three databases DAVDataset, MAZ Dataset, and MCK Dataset for comparison.
The principle of P-Score is to evaluate the accuracy of the beat by calculating the total number of finite cross-correlations between the pulse sequence of the standard beat point and the pulse sequence of the beat point to be evaluated \([27–29]\). Take the median value of the marked beat interval 20% as the tolerance, and the calculated beat is considered accurate within the tolerance range. Cemgil evaluates the accuracy of the beat by calculating the time error between the standard beat point and the beat point to be evaluated. The Gaussian error function is used to determine the time error. The closer the to-be-evaluated beat is to the standard beat, the higher the evaluation index value is. Grekow [30] proposed an evaluation method based on the continuity of small tolerances, which evaluated the accuracy of the beat sequence by calculating the continuity between the local beat points to be evaluated and the standard beat points. The specified tolerance is 17.5%; the beat point to be evaluated is the closest to the current standard beat point. AMLt allowed metrical levels, continuity not required, which is similar to CMLc, but the conditions are broader. The beat to be evaluated can occur at the downbeat or at twice or half of the standard beat.

In comparison with the evaluation data of other different algorithms, sorted according to the pros and cons of P-Score, the P-Score, Cemgil, CMLc, and AMLt indicators of the beat tracking algorithm based on the method proposed in this paper are shown in Figure 9. It can be seen from the definition of indicators that different indicators evaluate the beat tracking algorithm from different angles. A single comparison of a certain index cannot fully evaluate the effect of the algorithm. In addition, the beat tracking system simulates the subjective feelings of people, and it is even more difficult to use objective indicators to simply judge right or wrong.

According to the directivity of the four indicators, it can be seen that the overall performance of the algorithm is relatively stable, and it can track the beat of the music signal well in terms of continuous accuracy and global sequence accuracy. For different types and styles of music signals, whether it contains drums or not, it can accurately simulate the human auditory system to recognize the beat.

5. Conclusion

Beat tracking is one of the most challenging subjects in music signal processing. It is a question about hidden period detection and signal internal period positioning. In life, people stomped or nodded involuntarily following the music. This process is called beat tracking, and the computer's beat tracking algorithm is a simulation of this process. Beat, as one of the most basic units of music, describes the structure of music signals in terms of time. It can be used to detect deeper music events in music information retrieval, such as music classification, music similarity detection, chord recognition, and music transcription. The development prospect of beat tracking is very broad. It can be applied to the lighting control of large-scale evening parties, the change of the water column of the music fountain in the square, the automatic scoring system for singing, and some music games or sports, such as rhythm masters and dancing mats. The algorithm proposed in this article can successfully track music with a strong sense of rhythm. The result is affected by the complexity of the music. Generally speaking, the more expressive the music is, the more complicated it is. The weight evaluation method in the second and third steps of this algorithm can be further improved to achieve better detection results. The innovation of this article is to introduce the clustering algorithm into the peak extraction part of the music beat tracking algorithm.

From the perspective of clustering, the peaks are clustered, and the maximum and minimum distance clustering algorithm is used to classify the peaks simply and efficiently. At the same time, the executable degree judgment is added in the algorithm execution process, and the characteristics of the clustering algorithm and the prior information of the clustering result are used to judge whether the input music signal is tried to be used in the algorithm of this article.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] B. Giorgi, M. Zanoni, S. Böck, and A. Sarti, "Multipath beat tracking,” Journal of the Audio Engineering Society, vol. 64, no. 7/8, pp. 493–502, 2016.

[2] B. Vishwanath, R. V. Pujeri, and G. Devanagavi, "Probabilistic principal component analysis-based dimensionality reduction and optimization for arrhythmia classification using ECG signals,” Bio-Algorithms and Med-Systems, vol. 15, no. 1, p. 27, 2019.
Complexity

[3] A. E. Coca and L. Zhao, “Musical rhythmic pattern extraction using relevance of communities in networks,” Information Sciences, vol. 329, pp. 819–848, 2016.

[4] D. Herremans and E. Chew, “MorpheuS: generating structured music with constrained patterns and tension,” IEEE Transactions on Affective Computing, vol. 10, no. 4, pp. 510–523, 2017.

[5] D. A. Adams, N. A. Laskaris, and S. Michelyannis, “Hearing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening,” Journal of Neural Engineering, vol. 15, no. 3, Article ID 036012, 2018.

[6] R. Panda, R. Malheiro, and R. P. Paiva, “Musical texture and expressivity features for music emotion recognition,” InISMIR, vol. 3, pp. 383–391, 2018.

[7] H. Liang, J. Wang, Q Sun et al., “Barehanded music: real-time hand interaction for virtual piano,” ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, vol. 27, pp. 87–94, 2016.

[8] L. K. Fink, B. K. Hurley, J. J. Geng, and P. Janata, “A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns,” Journal of Eye Movement Research, vol. 11, no. 2, p. 12, 2018.

[9] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Automatic music transcription: an overview,” IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 20–30, 2018.

[10] V. G. Rajendran, N. S. Harper, J. A. Garcia-Lazaro, N. A. Lesica, and J. W. H. Schnupp, “Midbrain adaptation may set the stage for the perception of musical beat,” Proceedings of the Royal Society B: Biological Sciences, vol. 284, no. 1866, Article ID 20171455, 2017.

[11] E. Nakamura, K. Yoshii, and H. Katayose, “Performance error detection and post-processing for fast and accurate symbolic music alignment,” InISMIR, vol. 2, pp. 347–353, 2017.

[12] N. Kroher, J.-M. Díaz-Báñez, J. Mora, and E. Gómez, “Corpus COFLA,” Journal on Computing and Cultural Heritage, vol. 9, no. 2, pp. 1–21, 2016.

[13] M. Tian and M. B. Sandler, “Towards music structural segmentation across genres: features, structural hypotheses, and annotation principles,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8, no. 2, pp. 1–9, 2016.

[14] M. Panteli, B. Rocha, N. Bogards, and A. Honingh, “A model for rhythm and timbre similarity in electronic dance music,” Musicae Scientiae, vol. 21, no. 3, pp. 338–361, 2017.

[15] M. C. McCallum, “Unsupervised learning of deep features for music segmentation,” InICASSP, vol. 12, pp. 346–350, 2019.

[16] M. Farrokhamanesh and A. Hamzeh, “Music classification as a new approach for malware detection,” Journal of Computer Virology and Hacking Techniques, vol. 15, no. 2, pp. 77–96, 2019.

[17] S.-W. Hsiao, S.-K. Chen, and C.-H. Lee, “Methodology for stage lighting control based on music emotions,” Information Sciences, vol. 412-413, pp. 14–35, 2017.

[18] Y. L. Hsu, J. S. Wang, W. C. Chiang, and C. H. Hung, “Automatic ECG-based emotion recognition in music listening,” IEEE Transactions on Affective Computing, vol. 11, no. 1, pp. 85–99, 2017.

[19] B. Xing, X. Zhang, K. Zhang et al., “PopMash: an automatic musical-mashup system using computation of musical and lyrical agreement for transitions,” Multimedia Tools and Applications, vol. 79, no. 29-30, pp. 21841–21871, 2020.

[20] N. Chen and S. Wang, “High-level music descriptor extraction algorithm based on combination of multi-channel CNNs and LSTM,” InISMIR, vol. 10, pp. 509–514, 2017.

[21] A. Manfré, A. Augello, G. Pilato, F. Vella, and I. Infantino, “Exploiting interactive genetic algorithms for creative humanoid dancing,” Biologically Inspired Cognitive Architectures, vol. 17, pp. 12–21, 2017.

[22] T. Ni, Q. Xu, Z. Huang, H. Liang, A. Yan, and X. Wen, “A cost-effective TSV repair architecture for clustered faults in 3D IC,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 98, 2020.

[23] J. Wen, J. Yang, B. Jiang, H. Song, and H. Wang, “Big data driven marine environment information forecasting: a time series prediction network,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 1, pp. 4–18, 2021.

[24] F. Orujov, R. Maskeliunas, R. Damaševičius, W. Wei, and Y. Li, “Smartphone based intelligent indoor positioning using fuzzy logic,” Future Generation Computer Systems, vol. 89, pp. 335–348, 2019.

[25] T. Ni, Y. Yao, H. Chang et al., “LCHR-TSV: novel low cost and highly repairable honeycomb-based TSV redundancy architecture for clustered faults[],” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2938–2951, 2019.

[26] J. Li, G. Deng, W. Wei et al., “Design of a real-time ECG filter for portable mobile medical systems,” IEEE Access, vol. 5, pp. 696–704, 2016.

[27] J. Yang, J. Wen, Y. Wang et al., “Fog-based marine environmental information monitoring toward ocean of things,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4238–4247, 2019.

[28] X. Cai, H. Zhao, S. Shang et al., “An improved quantum-inspired cooperative co-evolution algorithm with multi-strategy and its application,” Expert Systems with Applications, vol. 171, Article ID 114629, 2021.

[29] P. Oleksy and L. Januszkiewicz, “Wireless capsule endoscopy localization with phase detection algorithm and simplified human body model,” International Journal of Electronics and Telecommunications, vol. 66, no. 1, pp. 45–51, 2020.

[30] J. Grekow, “Audio features dedicated to the detection of arousal and valence in music recordings,” Intelligent Systems and Applications (INISTA), vol. 7, no. 3, pp. 40–44, 2017.