A short note on Godbersen’s Conjecture

S. Artstein-Avidan

A convex body $K \subset \mathbb{R}^n$ is a compact convex set with non-empty interior. For compact convex sets $K_1, \ldots, K_m \subset \mathbb{R}^n$, and non-negative real numbers $\lambda_1, \ldots, \lambda_m$, a classical result of Minkowski states that the volume of $\sum \lambda_i K_i$ is a homogeneous polynomial of degree n in λ_i,

$$\text{Vol} \left(\sum_{i=1}^{m} \lambda_i K_i \right) = \sum_{i_1, \ldots, i_n=1}^{m} \lambda_{i_1} \cdots \lambda_{i_n} V(K_{i_1}, \ldots, K_{i_n}).$$ (1)

The coefficient $V(K_{i_1}, \ldots, K_{i_n})$, which depends solely on K_{i_1}, \ldots, K_{i_n}, is called the mixed volume of K_{i_1}, \ldots, K_{i_n}. The mixed volume is a non-negative, translation invariant function, monotone with respect to set inclusion, invariant under permutations of its arguments, and positively homogeneous in each argument. For K and L compact and convex, we denote $V(K[j], L[n-j])$ the mixed volume of j copies of K and $(n-j)$ copies of L. One has $V(K[n]) = \text{Vol}(K)$. By Alexandrov’s inequality, $V(K[j], -K[n-j]) \geq \text{Vol}(K)$, with equality if and only of $K = x_0 - K$ for some x_0, that is, some translation of K is centrally symmetric. For further information on mixed volumes and their properties, see Section §5.1 of [8].

Recently, in the paper [2] we have shown that for any $\lambda \in [0, 1]$ and for any convex body K one has that

$$\lambda^j (1-\lambda)^{n-j} V(K[j], -K[n-j]) \leq \text{Vol}(K).$$

In particular, picking $\lambda = \frac{j}{n}$, we get that

$$V(K[j], -K[n-j]) \leq \frac{n^n}{j^j (n-j)^{n-j}} \text{Vol}(K) \sim \binom{n}{j} \sqrt{2\pi j \frac{(n-j)}{n}}.$$ (2)

The conjecture for the tight upper bound $\binom{n}{j}$, which is what ones get for a body which is an affine image of the simplex, was suggested in 1938 by Godbersen [4] (and independently by Hajnal and Makai Jr. [5]).

Conjecture 1 (Godbersen’s conjecture). For any convex body $K \subset \mathbb{R}^n$ and any $1 \leq j \leq n-1$,

$$V(K[j], -K[n-j]) \leq \binom{n}{j} \text{Vol}(K),$$ (2)

with equality attained only for simplices.

We mention that Godbersen [4] proved the conjecture for certain classes of convex bodies, in particular for those of constant width. We also mention that the conjecture holds for $j = 1, n-1$ by the inclusion $K \subset n(-K)$ for bodies K with center of mass at the origin, and inclusion which is tight for the simplex, see Schneider [9]. The bound from [2] quoted above seems to be the currently smallest known upper bound for general j.

In this short note we improve the aforementioned inequality and show

Supported by ISF
Theorem 2. For any convex body $K \subset \mathbb{R}^n$ and for any $\lambda \in [0, 1]$ one has
\[
\sum_{j=0}^{n} \lambda^j (1 - \lambda)^{n-j} V(K[j], -K[n-j]) \leq \text{Vol}(K).
\]

The proof of the inequality will go via the consideration of two bodies, $C \subset \mathbb{R}^{n+1}$ and $T \subset \mathbb{R}^{2n+1}$. Both were used in the paper of Rogers and Shephard [7].

We shall show by imitating the methods of [7] that

Lemma 3. Given a convex body $K \subset \mathbb{R}^n$ define $C \subset \mathbb{R} \times \mathbb{R}^n$ by
\[
C = \text{conv} \left(\{0\} \times (1 - \lambda)K \cup \{1\} \times -\lambda K \right).
\]

Then we have
\[
\text{Vol}(C) \leq \frac{\text{Vol}(K)}{n+1}.
\]

With this lemma in hand, we may prove our main claim by a simple computation

Proof of Theorem 2
\[
\text{Vol}(C) = \int_0^1 \text{Vol}((1 - \eta)(1 - \lambda)K - \eta \lambda K) d\eta
\]
\[
= \sum_{j=0}^{n} \binom{n}{j} (1 - \lambda)^{n-j} \lambda^j V(K[j], -K[n-j]) \int_0^1 (1 - \eta)^{n-j} \eta^j d\eta
\]
\[
= \frac{1}{n+1} \sum_{j=0}^{n} (1 - \lambda)^{n-j} \lambda^j V(K[j], -K[n-j]).
\]

Thus, using Lemma 3 we have that
\[
\sum_{j=0}^{n} (1 - \lambda)^{n-j} \lambda^j V(K[j], -K[n-j]) \leq \text{Vol}(K).
\]

Before turning to the proof of Lemma 3 let us state a few consequences of Theorem 2. First, integration with respect to the parameter λ yields

Corollary 4. For any convex body $K \subset \mathbb{R}^n$
\[
\frac{1}{n+1} \sum_{j=0}^{n} \frac{V(K[j], -K[n-j])}{\binom{n}{j}} \leq \text{Vol}(K),
\]

which can be rewritten as
\[
\frac{1}{n-1} \sum_{j=1}^{n-1} \frac{V(K[j], -K[n-j])}{\binom{n}{j}} \leq \text{Vol}(K).
\]

So, on average the Godbersen conjecture is true. Of course, the fact that it holds true on average was known before, but with a different kind of average. Indeed, the Rogers-Shephard inequality for the difference body, which is
\[
\text{Vol}(K - K) \leq \binom{2n}{n} \text{Vol}(K)
\]
(see for example [8] or [3]) can be rewritten as
\[\frac{1}{(2n)^n} \sum_{j=0}^{n} \binom{n}{j} V(K[j], -K[n-j]) \leq \text{Vol}(K). \]

However, our new average, in Corollary 4 is a uniform one, so we know for instance that the median of the sequence \((\binom{n}{j})^{-1}V(K[j], -K[n-j]) \) is less than two, so that at least for one half of the indices \(j = 1, 2, \ldots, n - 1 \), the mixed volumes satisfy Godbersen’s conjecture up to factor 2. More generally, apply Markov’s inequality for the uniform measure on \(\{1, \ldots, n - 1\} \) to get

Corollary 5. Let \(K \subset \mathbb{R}^n \) be a convex body with Vol\((K) = 1 \). For at least \(k \) of the indices \(j = 1, 2, \ldots, n - 1 \) it holds that
\[V(K[j], -K[n-j]) \leq \frac{n-1}{n-k} \binom{n}{j}. \]

We mention that the inequality of Theorem 2 can be reformulated, for \(K \) with Vol\((K) = 1 \), say,
\[\frac{1}{2^n} \sum_{j=0}^{n} \binom{n}{j} V(K[j], -K[n-j]) \leq \text{Vol}(K). \]

So that by taking \(\lambda = 0, 1 \) we see, once again, that \(V(K, -K[n-1]) \leq V(K[n-1], -K) \leq n \).

A key ingredient in the proof of Lemma 3 is Rogers-Shephard inequality for sections and projections from [7], which states that

Lemma 6 (Rogers and Shephard). Let \(T \subset \mathbb{R}^m \) be a convex body, let \(E \subset \mathbb{R}^m \) be a subspace of dimension \(j \). Then
\[\text{Vol}(P_{E^\perp} T)\text{Vol}(T \cap E) \leq \binom{m}{j} \text{Vol}(T), \]
where \(P_{E^\perp} \) denotes the projection operator onto \(E^\perp \).

We turn to the proof of Lemma 3 regarding the volume of \(C \).

Proof of Lemma 3. We borrow directly the method of [7]. Let \(K_1, K_2 \subset \mathbb{R}^n \) be convex bodies, we shall consider \(T \subset \mathbb{R}^{2n+1} = \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \) defined by
\[T = \text{conv}\{(0,0,y) : y \in K_2 \} \cup \{(1, x, -x) : x \in K_1\}. \]

Written out in coordinates this is simply
\[T = \{ (\theta, \theta x, -\theta x + (1-\theta)y) : x \in K_1, y \in K_2 \} \]
\[= \{ (\theta, w, z) : w \in \theta K_1, z \in (1-\theta)K_2 \}. \]

The volume of \(T \) is thus, by simple integration, equal to
\[\text{Vol}(T) = \text{Vol}(K_1)\text{Vol}(K_2) \int_0^1 \theta^n (1-\theta)^n d\theta = \frac{n!n!}{(2n+1)!} \text{Vol}(K_1)\text{Vol}(K_2). \]

We now take the section of \(T \) by the \(n \) dimensional affine subspace
\[E = \{(\theta_0, x, 0) : x \in \mathbb{R}^n \} \]
and project it onto the complement \(E^\perp \). We get for the section:
\[T \cap E = \{ (\theta_0, x, 0) : x \in \theta_0 K_1 \cap (1-\theta_0)K_2 \} \]
and so $\text{Vol}_n(T \cap E) = \text{Vol}(\theta_0 K_1 \cap (1 - \theta_0)K_2)$. As for the projection, we get
\[
P_{E \perp T} = \{(\theta, 0, y) : \exists x \text{ with } (\theta, x, y) \in T}\]
\[
= \{(\theta, 0, y) : \theta K_1 \cap ((1 - \theta)K_2 - y)\}
\[
= \{(\theta, 0, y) : y \in (1 - \theta)K_2 - \theta K_1\}.
\]
Thus $\text{Vol}_n(P_{E \perp T}) = \text{Vol}((\theta, y) : y \in (1 - \theta)K_2 - \theta K_1)$ which is precisely a set of the type we considered before in \mathbb{R}^{n+1}. In fact, putting instead of K_1 the set λK and instead of K_2 the set $(1 - \lambda)K$ we get that $P_{E \perp T} = C$.

Staying with our original K_1 and K_2, and using the Rogers-Shephard Lemma bound for sections and projections, we see that
\[
\text{Vol}(P_{E \perp T}) \text{Vol}(T \cap E) \leq \binom{2n + 1}{n} \text{Vol}(T),
\]
which translates to the following inequality
\[
\text{Vol}(\text{conv}\{\{0\} \times K_2 \cup \{1\} \times (-K_1)\}) \leq \frac{1}{n + 1} \frac{\text{Vol}(K_1)\text{Vol}(K_2)}{\text{Vol}(\theta_0 K_1 \cap (1 - \theta_0)K_2)}.
\]

We mention that this exact same construction was preformed and analysed by Rogers and Shephard for the special choice $\theta_0 = 1/2$, which is optimal if $K_1 = K_2$.

For our special choice of $K_2 = (1 - \lambda)K$ and $K_1 = \lambda K$ we pick $\theta_0 = (1 - \lambda)$ so that the intersection in question is simply $\lambda(1 - \lambda)K$, which cancels out when we compute the volumes in the numerator. We end up with
\[
\text{Vol}(\text{conv}\{\{0\} \times (1 - \lambda)K \cup \{1\} \times (-\lambda K)\}) \leq \frac{1}{n + 1} \text{Vol}(K),
\]
which was the statement of the lemma.

Our next assertion is connected with the following conjecture regarding the unbalanced difference body
\[
D_\lambda K = (1 - \lambda)K + \lambda(-K).
\]

Conjecture 7. For any $\lambda \in (0, 1)$ one has
\[
\frac{\text{Vol}(D_\lambda K)}{\text{Vol}(K)} \leq \frac{\text{Vol}(D_\lambda \Delta)}{\text{Vol}(\Delta)}
\]
where Δ is an n-dimensional simplex.

Reformulating, Conjecture asks whether the following inequality holds
\[
\sum_{j=0}^{n} \binom{n}{j} \lambda^j (1 - \lambda)^{n-j} V_j \leq \sum_{j=0}^{n} \binom{n}{j}^2 \lambda^j (1 - \lambda)^{n-j},
\] \hspace{1cm} \text{(3)}
where we have denoted $V_j = V(K[j], -K[n - j]) / \text{Vol}(K)$.

Clearly Conjecture follows from Godbersen’s conjecture. Conjecture holds for $\lambda = 1/2$ by the Rogers-Shephard difference body inequality, it holds for $\lambda = 0, 1$ as then both sides are 1, and it holds on average over λ by Lemma (one should apply Lemma for the body $2K$ with $\lambda_0 = 1/2$). We rewrite two of the inequalities that we know on the sequence V_j:
\[
\sum_{j=0}^{n} \lambda^j (1 - \lambda)^{n-j} V_j \leq \sum_{j=0}^{n} \binom{n}{j} \lambda^j (1 - \lambda)^{n-j},
\] \hspace{1cm} \text{(4)}
In all inequalities we may disregard the 0^{th} and n^{th} terms as they are equal on both sides. We may take advantage of the fact that the j^{th} and the $(n-j)^{th}$ terms are the same in each inequality, and sum only up to $(n/2)$ (but be careful, if n is odd then each term appears twice, and if n is even then the $(n/2)^{th}$ term appears only once).

Theorem 8. For $n = 4, 5$ Conjecture holds.

Proof. For $n = 4$ We have that $V_0 = V_4 = 1$ and $V_1 = V_3$. We thus know that

$$8V_1 + 6V_2 \leq 32 + 36$$

and that for any $\lambda \in [0,1]$ we have

$$(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3)V_1 + \lambda^2(1-\lambda)^2V_2 \leq 4(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3) + 6\lambda^2(1-\lambda)^2.$$

We need to prove that

$$4(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3)V_1 + 6\lambda^2(1-\lambda)^2V_2 \leq 16(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3) + 36\lambda^2(1-\lambda)^2.$$

If we find $a, b \geq 0$ such that

$$(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3)a + 8b = 4(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3)$$

and

$$\lambda^2(1-\lambda)^2a + 6b = 6\lambda^2(1-\lambda)^2$$

then by summing the two inequalities with these coefficients, we shall get the needed inequality.

We thus should check whether the following system of equations has a non-negative solution in a, b:

$$
\begin{pmatrix}
\lambda^3(1-\lambda) + \lambda(1-\lambda)^3 & 8 \\
\lambda^2(1-\lambda)^2 & 6
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix}
=
\begin{pmatrix}
4(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3) \\
6\lambda^2(1-\lambda)^2
\end{pmatrix}.
$$

The determinant of the matrix of coefficients is positive:

$$6(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3) - 8\lambda^2(1-\lambda)^2 =$$

$$2\lambda(1-\lambda)[3(\lambda^2 + (1-\lambda)^2) - 4\lambda(1-\lambda)] =$$

$$2\lambda(1-\lambda)[3(1-2\lambda)^2 + 2\lambda(1-\lambda)] \geq 0$$

We invert it to get, up to a positive multiple, that

$$
\begin{pmatrix}
a \\
b
\end{pmatrix}
=
\begin{pmatrix}
6 & -8 \\
-\lambda^2(1-\lambda)^2 & (\lambda^3(1-\lambda) + \lambda(1-\lambda)^3)
\end{pmatrix}
\begin{pmatrix}
4(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3) \\
6\lambda^2(1-\lambda)^2
\end{pmatrix}
=
\begin{pmatrix}
2(\lambda(1-\lambda))(1-2\lambda)^2 \\
2(\lambda^3(1-\lambda) + \lambda(1-\lambda)^3)\lambda^2(1-\lambda)^2
\end{pmatrix}.
$$

We see that indeed the resulting a, b are non-negative.

For $n = 5$ we do the same, namely we have $V_0 = V_5 = 1$ and $V_1 = V_4$ and $V_2 = V_3$ so we just have two unknowns, for which we know that

$$5V_1 + 10V_2 \leq 25 + 100$$

5
and that for any \(\lambda \in [0, 1] \) we have
\[
(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4)V_1+(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2)V_2 \leq 5(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4)+10(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2).
\]

We need to prove that
\[
5(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4)V_1+10(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2)V_2 \leq 25(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4)+100(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2).
\]

We are thus looking for a non-negative solution to the equation
\[
\begin{pmatrix}
(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4) & 5 \\
(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2) & 10
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix}
= \begin{pmatrix}
5(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4) \\
10(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2)
\end{pmatrix}.
\]

The determinant is positive since the left hand column is decreasing and the right hand column increasing. Up to a positive constant \(c \) we thus have
\[
\begin{pmatrix}
a \\
b
\end{pmatrix}
= c \begin{pmatrix}
10 \\
-5
\end{pmatrix}
\begin{pmatrix}
(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4) \\
(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2)
\end{pmatrix}
\begin{pmatrix}
5(\lambda^4(1-\lambda)+\lambda(1-\lambda)^4) \\
10(\lambda^2(1-\lambda)^3+\lambda^3(1-\lambda)^2)
\end{pmatrix}.
\]

Multiplying we see that the solution is non-negative. (We use that \((\lambda^j(1-\lambda)^n-j+\lambda^{n-j}(1-\lambda)^j)\) is decreasing in \(j \in \{0, 1, \ldots, n/2\} \), an easy fact to check.)

We end this note with a simple geometric proof of the following inequality from [2] (which reappeared independently in [1])

Theorem 9. Let \(K, L \subset \mathbb{R}^n \) be convex bodies which include the origin. Then
\[
\text{Vol}(\text{conv}(K \cup -L)) \text{Vol}((K^\circ + L^\circ)^\circ) \leq \text{Vol}(K) \text{Vol}(L).
\]

We remark that this inequality can be thought of as a dual to the Milman-Pajor inequality [6] stating that when \(K \) and \(L \) have center of mass at the origin one has
\[
\text{Vol}(\text{conv}(K \cap -L)) \text{Vol}(K + L) \geq \text{Vol}(K) \text{Vol}(L).
\]

Simple geometric proof of Theorem 2. Consider two convex bodies \(K \) and \(L \) in \(\mathbb{R}^n \) and build the body in \(\mathbb{R}^{2n} \) which is
\[
C = \text{conv}(K \times \{0\} \cup \{0\} \times L)
\]

The volume of \(C \) is simply
\[
\text{Vol}(C) = \text{Vol}(K)\text{Vol}(L)\frac{1}{(2n)^n}.
\]

Let us look at the two orthogonal subspaces of \(\mathbb{R}^{2n} \) of dimension \(n \) given by \(E = \{(x, x) : x \in \mathbb{R}^n\} \) and \(E^\perp = \{(y, -y) : y \in \mathbb{R}^n\} \). First we compute \(C \cap E \):
\[
C \cap E = \{(x, x) : x = \lambda y, x = (1-\lambda)z, \lambda \in [0, 1], y \in K, z \in L\}.
\]

In other words,
\[
C \cap E = \{(x, x) : x \in \bigcup_{\lambda \in [0, 1]} (\lambda K \cap (1-\lambda)L)\} = \{(x, x) : x \in (K^\circ + L^\circ)^\circ\}.
\]

Next let us calculate the projection of \(C \) onto \(E^\perp \). Since \(C \) is a convex hull, we may project \(K \times \{0\} \) and \(\{0\} \times L \) onto \(E^\perp \) and then take a convex hull. In other words we are searching for all \((x, -x)\) such that there exists \((y, y)\) with \((x+y, -x+y)\) in \(K \times \{0\} \) or \(\{0\} \times L \). Clearly this means that \(y \) is either \(x \), in the first case, or \(-x \), in the second, which means we get
\[
P_{E^\perp} C = \text{conv}\{(x, -x) : 2x \in K \text{ or } -2x \in L\} = \{(x, -x) : x \in \text{conv}(K/2 \cup -L/2)\}.
\]

6
In terms of volume we get that
\[\text{Vol}_n(C \cap E) = \sqrt{2^n} \text{Vol}_n((K^\circ + L^\circ)^\circ) \]
and
\[\text{Vol}_n(P_{E^\perp}(C)) = \sqrt{2^{-n}} \text{Vol}_n(\text{conv}(K \cup -L)) \]
and so their product is precisely the quantity in the right hand side of Theorem\[9\] and by the Rogers Shephard inequality for sections and projections, Lemma\[6\] we know that
\[\text{Vol}_n(C \cap E)\text{Vol}_n(P_{E^\perp}(C)) \leq \text{Vol}_n(C) \left(\frac{2^n}{n} \right). \]
Plugging in the volume of \(C \), we get our inequality from Theorem\[9\].

Remark 10. Note that taking, for example, \(K = L \) in the last construction, but taking \(E_{\lambda} = \{(\lambda x, (1-\lambda)x) : x \in \mathbb{R}^n\} \), we get that
\[C \cap E = \{(\lambda x, (1-\lambda)x) : x \in K\} \]
and
\[P_{E_{\lambda}}C = \{((1-\lambda)x, -\lambda x) : x \in \frac{1}{\lambda^2 + (1-\lambda)^2} \text{conv}((1-\lambda)K \cup \lambda K)\}. \]
In particular, the product of their volumes, which is simply
\[\text{Vol}(\text{conv}((1-\lambda)K \cup \lambda K)) \text{Vol}(K) \]
is bounded by \(\left(\frac{2^n}{n} \right) \text{Vol}(C) \) which is itself \(\text{Vol}(K) \), giving yet another proof of the following inequality from \[3\], valid for a convex body \(K \) such that \(0 \in K \)
\[\text{conv}((1-\lambda)K \cup \lambda K) \leq \text{Vol}(K), \]
and more importantly a realization of all these sets as projections of a certain body.

References

[1] Alonso-Gutierrez, D., Gonzalez, B., Jimenez, C.Hugo, Villa, R. Rogers-Shephard inequality for log-concave functions. J. Funct. Anal. 271 (2016), no. 11, 32693299.

[2] Artstein-Avidan, S., Einhorn, K., Florentin, D. I. and Ostrover, Y. On Godbersen’s conjecture, Geom. Dedicata 178 (2015), 337350.

[3] Artstein-Avidan, S., Giannopoulos, A. and Milman, V. Asymptotic Geometric Analysis, Part I, Mathematical Surveys and Monographs, 202. American Mathematical Society, Providence, RI, 2015. xx+451 pp. ISBN: 978-1-4704-2193-9.

[4] Godbersen, C., *Der Satz vom Vektorbereich in Räumen beliebiger Dimensionen*, 1938, Göttingen.

[5] Hajnal, A. and Makai, E., Research problems, Period. Math. Hungar., 5, 1974, 4, pp 353–354.

[6] Milman, V. D., Pajor, A. Entropy and asymptotic geometry of non-symmetric convex bodies Adv. Math. 152 (2000) no 2. pp 314–335.

[7] Rogers, C. A. and Shephard, G. C. Convex bodies associated with a given convex body J. London Math. Soc., 33, 1958, pp 270–281.

[8] Schneider, R., Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, 1993, xiv+490.
[9] Schneider, R., *Stability for some extremal properties of the simplex*, J. Geom. 96 (2009), no. 1-2, 135148.

Shiri Artstein-Avidan School of Mathematical Science, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.

Email address: shiri@post.tau.ac.il