Vibrations of Elastically Supported Masses Separated by a Textile Layer

DOI: 10.5604/12303666.1227894

Abstract
In this paper the problem of the transmission of vibration through a textile layer is presented. A mathematical model of a two degree of freedom system containing a textile layer and excited to vibrate by an electromagnet is formulated. The numerical simulation shows that the textile layer increases the resonance frequency.

Key words: transmission of vibration, textile layer.

Introduction
In order to protect the health of machine operators from the effect of machine vibrations, various textile elements placed between the human body and rigid machine elements are used. In this problem we have to deal with such machines as electric or pneumatic hand tools and mobile machines. Vibration protecting elements such as gloves, armrests, seats and backrests are subject to oscillating compression. The compression characteristics of fibrous assemblies were explored in works [1,2]. The modelling and computer simulation of such systems can be found in work [3]. The compression behaviour of fabrics was studied in works [4,5]. The dependence between the force acting on the fibrous layer and its deflection was found in work [6] to be in the form of Equation (1). In Figure 1, and denote coordinates of the upper and lower mass, respectively. Constants (and) denote elastic and (and) damping parameters of the upper and lower spring, respectively. Constants (and) denote elastic and damping parameters of the textile layer, defined in paper [1]. The parameters can be determined experimentally.

Equations of motion
The system considered is shown in Figure 1. It consists of two masses, and separated by a textile layer , two springs of stiffness and and an electromagnet of inductance .

The dependence between the force acting on the fibrous layer and its deflection was found in work [6] to be in the form of Equation (1).

Figure 1. Model of vibrating masses separated by a textile layer and excited to vibrate by an electromagnet.

\[F_w = \frac{k w}{\left(1 - \frac{w}{L}\right)^2} + \frac{c \operatorname{sgn}(\frac{d^2 w}{dt^2})}{\left(1 - \frac{w}{H}\right)^2}, \quad w < H_1, \quad w < L_1, \]

Equation (1)
The equations of motion of masses \(m_i\) and \(m_j\) (Figure 1, see page 131) are found to be in the form of Equations (2).

Assume the excitation force of the electromagnet to be described by Equations (3).

In Equations (3), \(i\) is the current intensity, \(R\) the resistance of the circuit, \(u\) feed voltage, \(x\) the position of the core centre, having its origin in the centre of the coil, and \(\delta\) is the distance from the centre of the core to the centre of the coil at rest.

The methods of determination of the inductance \(L\) are described in papers [7-10]. Here the experimental method [7, 11] is explained in detail. For the stationary electromagnet, having a coil of resistance \(R\), supplied with voltage \(u = Usin \omega t\), we measure the current \(I\) and calculate the inductance \(L\) as a function of the mutual position of the armature and electromagnet see Equations (4).

Using the results of measurements, we approximate the inductance function \(L\) by the function describing the intensity of the magnetic field \(H\) (Equations (5)) of the stationary coil (Figure 2) and by choosing proper parameters.

In Equations (6), defining the inductance \(L\) and its derivative \(dL/dx\) (Figure 3), the \(x\) coordinate specifies the position of the movable core centre and has its origin in the centre of the coil; \(l\) denotes half of the computational length of the coil; \(l_r\) the computational radius of the coil; \(L_{\text{min}}\) is the maximum inductance of the coil, that is when the centre of the core coincides with the centre of the coil, and \(L_{\text{min}}\) is the minimum inductance of the coil when the core is in the end position.

Results

The set of differential Equations (2), (3) was solved numerically using the
Runge-Kutta method. The integration was carried on until the difference between each period became negligible and the solution achieved steady-state. Calculations were performed for $u = U_0 \sin(\omega t)$, $U_0 = 24$ V, $L_1 = 0.03$ m, $H_1 = 0.03$ m, $k = 500$ and 5000 N/m, $c = 0.1$ Ns/m2, $k_c = k_d = 5000$ N/m, $c_c = c_d = 0.1$ Ns/m, $m_c = m_d = 1$ kg, $g = 9.81$ m/s2, $L_{\text{max}} = 0.364319$ H, $L_{\text{min}} = 0.04$ H, $t_0 = 0.028$ m, $r = 0.032$ m, $R = 40$ Ω, $\delta = l$, $U_m = 24$ V. Initial conditions were $w_0(0) = w_i(0) = 0$, $d w_0 d t(0) = d w_i d t(0) = 0$, $i(0) = 0$, $\omega = (k_i/m_c)^{0.5}$. The results are shown in Figures 4.

The peak of the reaction force of the textile layer F_{wc} shown in Figure 4, shows the frequency of vibration of the masses when they move in the opposite direction, which results in textile layer compression.

Conclusion

In the absence of the textile layer, since both oscillators are the same, the resonance frequencies associated with mass motion in the same and opposite direction are equal. If the textile layer is present, those resonant frequencies are different, and that variation in resonant frequencies increases with an increase in the textile layer stiffness. In order to get practical results, further studies of the transmission of vibrations through various textile elements are needed.

![Figure 4. Steady-state maximum displacements w_i of the lower mass and textile layer reaction force F_{wc} for increasing frequency of excitation ω_c.](image-url)

References

1. Dunlop J I. On the compression characteristics of fiber masses. _J. Textile Institute_ 1983; 74, 92-7.
2. Carnaby G A and Pan N. Theory of the compression hysteresis of fibrous assemblies. _Textile Res. J._ 1989; 59: 275-84.
3. Beil N B and Roberts W W Jr. Modeling and computer simulation of the compressional behaviour of fibre assemblies, Part I: comparison to van Wyk’s theory. _Textile Res. J._ 2002; 72,4: 341-51.
4. Hu J and Newton A. Low-load lateral-compression behaviour of woven fabrics. _Journal of Textile Institute_ 1997; 88, Part I, 3: 242-253.
5. Matsudaira M and Hong Q. Features and characteristic values of fabric compressional curves. _International Journal of Clothing Science and Technology_ 1994; 6, 2/3: 37-43.
6. Zajączkowski J. Impact of an Object on a Layer of Fibres Submerged in a Fluid. _Fibres and Textiles in Eastern Europe_ 2010, 18, (683): 60-62.
7. Zajączkowski J. Resonance Vibrations of an Elastic System Supported on a Textile Layer. _Fibres and Textiles in Eastern Europe_ 2014; 22, (104): 76-79.
8. Knight D W. An Introduction to the Art of Solenoid Inductance Calculation with emphasis on radio-frequency applications. http://g3ymh.info/zdocs/magnet- ics/Solenoids.pdf
9. Lu H, Pillans B, Lee J-B and Jonsson E. Micromachined On-Chip High-Aspect Ratio Air Core Solenoid Inductor for Multi-GHz Applications. School of Engineering and Computer Science University of Texas at Dallas, Richardson. Microwave Symposium Digest, 2004 IEEE MTT-S International (Volume: 2).
10. Schaub M J, Newman S A, Goodman L R, Suzuki I S and Suzuki M. Measurement of mutual inductance from the frequency dependence of impedance of AC coupled circuits using a digital dual-phase lock-in amplifier. _American Journal of Physics_ 2006; 76: 129.
11. Zajączkowski J. Machine Mechanics, available at https://sites.google.com/site/occupationsafe/