Backfolded acoustic phonons as ultrasonic probes in metal-oxide superlattices

Fryderyk Lyzwa,1 Andrew Chan,2,3 Jarji Khmaladze,1 Katrin Fürsich,4 Bernhard Keimer,4 Christian Bernhard,1 Matteo Minola,4 and Benjamin Mallett2,5

1 Department of Physics and Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
2 The MacDiarmid Institute for Advanced Materials and Nanotechnology and The Dodd Walls Centre for Quantum and Photonic Technologies, 1010 Auckland, New Zealand
3 School of Chemical Sciences, The University of Auckland, 1010 Auckland, New Zealand
4 Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
5 Department of Physics, The University of Auckland, 1010 Auckland, New Zealand

For thin-film structures, ultrasound spectroscopy is in general difficult because the signal is dominated by the substrate. Here, we use confocal Raman spectromicroscopy to that multiple reflection of sound waves at internal interfaces in metal-oxide superlattices generates standing waves that are insensitive to the normally strong substrate in thin film structures [1]. These Raman-active modes, which arise from a backfolded c-axis acoustic branch, are highly sensitive to atomic-scale thickness variations of the superlattice and can hence serve as a powerful characterization tool of thin-film structures. In addition, these results of tunable phonon modes in superlattices can have implications on important physical properties such as thermal transport, and shape future quantum acoustic devices.

[1] F. Lyzwa, A. Chan, J. Khmaladze, K. Fürsich, B. Keimer, C. Bernhard, M. Minola, B. P. P. Mallett, Phys. Rev. Mater. 2020, 4, 043606.