FIRST COHOMOLOGY GROUPS OF THE AUTOMORPHISM GROUP OF A FREE GROUP WITH COEFFICIENTS IN THE ABELIANIZATION OF THE IA-AUTOMORPHISM GROUP

Takao Satoh

Department of Mathematics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto city 606-8502, Japan

Abstract. We compute a twisted first cohomology group of the automorphism group of a free group with coefficients in the abelianization of the IA-automorphism group of a free group. In particular, we show that it is generated by two crossed homomorphisms constructed with the Magnus representation and the Magnus expansion due to Morita and Kawazumi respectively. As a corollary, we see that the first Johnson homomorphism does not extend to the automorphism group of a free group as a crossed homomorphism for the rank of the free group is greater than 4.

1. Introduction

Let \(F_n\) be a free group of rank \(n \geq 2\) with basis \(x_1, \ldots, x_n\), and \(\text{Aut} F_n\) the automorphism group of \(F_n\). The study of the (co)homology groups of \(\text{Aut} F_n\) with trivial coefficients has been developed for these twenty years by many authors. There are several remarkable computations. Gersten [7] showed \(H_2(\text{Aut} F_n, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}\) for \(n \geq 5\). Hatcher and Vogtmann [8] showed \(H_q(\text{Aut} F_n, \mathbb{Q}) = 0\) for \(n \geq 1\) and \(1 \leq q \leq 6\), except for \(H_4(\text{Aut} F_4, \mathbb{Q}) = \mathbb{Q}\). Furthermore, recently Galatius [6] showed that the stable integral homology groups of \(\text{Aut} F_n\) are isomorphic to those of the symmetric group \(S_n\) of degree \(n\). In particular, from his results, we see that the stable rational homology groups \(H_q(\text{Aut} F_n, \mathbb{Q})\) of \(\text{Aut} F_n\) are trivial for \(n \geq 2q + 1\).

In this paper, we are interested in twisted (co)homology groups of \(\text{Aut} F_n\) from a viewpoint of the study of the Johnson homomorphism of \(\text{Aut} F_n\). Let \(H\) be the abelianization of \(F_n\). The group \(\text{Aut} F_n\) naturally acts on \(H\) and its dual group \(H^* := \text{Hom}_{\mathbb{Z}}(H, \mathbb{Z})\). There are a few computation for the (co)homology groups of \(\text{Aut} F_n\) with coefficients in \(H\) and \(H^*\). Hatcher and Wahl [9] showed that the stable homology groups of \(\text{Aut} F_n\) with coefficients in \(H\) are trivial using the stability of the homology groups of the mapping class groups of certain 3-manifolds. In our previous papers [23] and [29], we studied the stable twisted first and second (co)homology groups of \(\text{Aut} F_n\) with coefficients in \(H\) and \(H^*\), using the presentation for \(\text{Aut} F_n\) due to Gersten [7]. In particular, we obtained \(H^1(\text{Aut} F_n, H) = \mathbb{Z}\) for \(n \geq 4\), and \(H_2(\text{Aut} F_n, H^*) = 0\) for \(n \geq 6\).

Our research mentioned above is inspired by Morita’s work for the mapping class group of a surface. For \(g \geq 1\), let \(\Sigma_{g,1}\) be a compact oriented surface of genus \(g\) with one boundary component, and \(\mathcal{M}_{g,1}\) the mapping class group of \(\Sigma_{g,1}\). Namely, \(\mathcal{M}_{g,1}\) is

2000 Mathematics Subject Classification. 20F28(Primary), 20J06(Secondly).
Key words and phrases. automorphism group of a free group, twisted homology group, IA-automorphism group, Johnson homomorphism.
the group of isotopy classes of orientation preserving diffeomorphisms of $\Sigma_{g,1}$ which fix the boundary pointwise. The action of $\mathcal{M}_{g,1}$ on the fundamental group of $\Sigma_{g,1}$ induces a natural homomorphism $\mathcal{M}_{g,1} \to \text{Aut} F_{2g}$. It is known that this homomorphism is injective for any $g \geq 1$ due to classical works by Dehn and Nielsen. Then we can consider H as $\mathcal{M}_{g,1}$-modules for $n = 2g$. We remark that H^* is canonically isomorphic to H by the Poincaré duality. In [14], Morita computed $H^1(\mathcal{M}_{g,1}, H) = \mathbb{Z}$ for $g \geq 2$, and $H_2(\mathcal{M}_{g,1}, H) = 0$ for $g \geq 12$. (See also [15].) In particular, he showed that a crossed homomorphism induced from the Magnus representation of $\mathcal{M}_{g,1}$ generates $H^1(\mathcal{M}_{g,1}, H)$.

In general, the groups $\text{Aut} F_n$ and $\mathcal{M}_{g,1}$ share many similar algebraic properties. If a certain result for either $\text{Aut} F_n$ or $\mathcal{M}_{g,1}$ is obtained, it would be natural to ask whether the corresponding result holds or not for the other. As far as we compare the Morita’s works with ours, it seems that $\text{Aut} F_n$ and $\mathcal{M}_{g,1}$ behave similarly with respect to the low dimensional twisted (co)homology groups.

In this paper, we consider another $\text{Aut} F_n$-module other than H and H^*. Let $\rho : \text{Aut} F_n \to \text{Aut} H$ be the natural homomorphism induced from the abelianization of F_n. We identify $\text{Aut} H$ with $\text{GL}(n, \mathbb{Z})$ by fixing a basis of H induced from that of F_n. The kernel of ρ is called the IA-automorphism group of F_n, denoted by IA_n. The IA-automorphism group is a free group analogue of the Torelli subgroup of the mapping class group. Although the study of the IA-automorphism group has a long history since its finite many generators were obtained by Magnus [12] in 1935, the combinatorial group structure of IA_n is still quite complicated. For instance, any presentation for IA_n is not known in general. Nielsen [21] showed that IA_2 coincides with the inner automorphism group, hence, is a free group of rank 2. For $n \geq 3$, however, IA_n is much larger than the inner automorphism group $\text{Inn} F_n$. Krstić and McCool [11] showed that IA_3 is not finitely presentable. For $n \geq 4$, it is not known whether IA_n is finitely presentable or not. On the other hand, the abelianization V of IA_n is completely determined by recent independent works of Cohen-Pakianathan [3, 4], Farb [5] and Kawazumi [10]. From their results, we have $V \cong H^* \otimes \mathbb{Z} \Lambda^2 H$ as a $\text{GL}(n, \mathbb{Z})$-module.

Let L be a commutative ring which does not contain any 2-torsions. In this paper, we determine the stable first cohomology group of $\text{Aut} F_n$ with coefficients in $V_L := V \otimes \mathbb{Z} L$. Here the ring L is regarded as a trivial $\text{Aut} F_n$-module. Our main theorem is

Theorem 1. (= Theorem 4.7) For $n \geq 5$, if L does not contain any 2-torsions,

$$H^1(\text{Aut} F_n, V_L) = L^\otimes 2.$$

We also show that the generators of $H^1(\text{Aut} F_n, V_L)$ are constructed by the Magnus representation and the Magnus expansion due to Morita [17] and Kawazumi [10] respectively. These are denoted by f_M and f_K. (For details, see Section 4.)

The computation of Theorem 1 is motivated by a result for the mapping class group $\mathcal{M}_{g,1}$ due to Morita. In [16], he computed the first cohomology group of $\mathcal{M}_{g,1}$ with coefficients in $\Lambda^3 H$, the free part of the abelianization of the Torelli subgroup $I_{g,1}$ of $\mathcal{M}_{g,1}$. In particular, he showed $H^1(\mathcal{M}_{g,1}, \Lambda^3 H) = \mathbb{Z}^\otimes 2$ for $g \geq 3$. Hence, we also see that the corresponding result of $\mathcal{M}_{g,1}$ holds for $\text{Aut} F_n$ in this case.
In order to show the theorem above, we use the Nielsen’s presentation for Aut F_n. (See Subsection 2.2.) One of advantages of the generators-and-relations calculation is that by this method, we can determine $H^1(\text{Aut} F_n, V_L)$ for many L at the same time. For example, $L = \mathbb{Z}, \mathbb{Z}/p\mathbb{Z}$ for any integer $p \in \mathbb{Z}$ such that $(p, 2) = 1$.

Now, as an application of Theorem 1, we can see that the first Johnson homomorphism $\tau_1 : \text{IA}_n \to V$ does not extend to Aut F_n as a crossed homomorphism directly. (See [17] or [25] for the definition of the Johnson homomorphism, for example.) More precisely, for any commutative ring L, let denote $\tau_{1,L}$ the composition of the first Johnson homomorphism τ_1 and the natural projection $V \to V_L$. Then we have

Proposition 1. (= Proposition 5.1) Let L be a commutative ring which does not contain both any 2-torsions and 1/2. Then for $n \geq 5$, there is no crossed homomorphism from Aut F_n to V_L which restriction to IA_n coincides with $\tau_{1,L}$.

We should remark that if a commutative ring L contains 1/2, then the first Johnson homomorphism $\tau_1 : \text{IA}_n \to V_L$ extends to a crossed homomorphism $\text{Aut} F_n \to V_L$ due to Kawazumi [10]. He explicitly construct a crossed homomorphism, denoted by f_K in this paper, which restriction to IA_n coincides with $\tau_{1,L}$ using the theory of Magnus expansions. On the other hand, as to the mapping class group, it has already known by Morita [18] that if L contains 1/2 then the first Johnson homomorphism

$$
\tau_1 : \mathcal{I}_{g,1} \to \Lambda^3 H \otimes \mathbb{Z} L
$$

of the mapping class group is uniquely extends to $\mathcal{M}_{g,1}$ as a crossed homomorphism where $\mathcal{I}_{g,1}$ denotes the Torelli subgroup of $\mathcal{M}_{g,1}$. Hence, we see that the groups Aut F_n and $\mathcal{M}_{g,1}$ also share a common property with respect to the extension of the first Johnson homomorphism.

At the end of the paper, we consider the outer automorphism group Out F_n. In particular, we show

Proposition 2. (= Proposition 5.2) Let L be a commutative ring which does not contain any 2-torsions. Then for $n \geq 5$,

$$
H^1(\text{Out} F_n, V_L) = L.
$$

This paper consists of six sections. In Section 2, we fix some notation and conventions. Then we recall the Nielsen’s finite presentation for Aut F_n. In Section 3, we construct two crossed homomorphisms f_M and f_K from Aut F_n into V_L for any commutative ring L. In Section 4, we compute the twisted first cohomology groups of Aut F_n using the Nielsen’s presentation. In Section 5, we consider two applications. One is non-extendability of the Johnson homomorphism. The other is a computation of the twisted first cohomology group of the outer automorphism group of a free group.

Contents

1. Introduction
2. Preliminaries
 2.1. Notation and conventions
 2.2. Nielsen’s Presentation
 2.3. IA-automorphism group
2. Preliminaries

In this section, after fixing some notation and conventions, we recall the Nielsen’s finite presentation for Aut F_n, which is used to compute the first cohomology groups in Section 4. Then we also recall the IA-automorphism group of a free group and its abelianization.

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a group and N a normal subgroup of G.

- The abelianization of G is denoted by G^{ab}.
- The automorphism group Aut F_n of F_n acts on F_n from the right. For any $\sigma \in$ Aut F_n and $x \in G$, the action of σ on x is denoted by x^σ.
- For an element $g \in G$, we also denote the coset class of g by $g \in G/N$ if there is no confusion.
- Let L be an arbitrary commutative ring. For any \mathbb{Z}-module M, we denote $M \otimes \mathbb{Z} L$ by the symbol obtained by attaching a subscript L to M, like M_L or M^L. Similarly, for any \mathbb{Z}-linear map $f : A \to B$, the induced L-linear map $A_L \to B_L$ is denoted by f_L or f^L.
- For elements x and y of G, the commutator bracket $[x, y]$ of x and y is defined to be $[x, y] := xyx^{-1}y^{-1}$.
- For a group G and a G-module M, we set

$$\text{Cros}(G, M) := \{ f : G \to M \mid f : \text{crossed homomorphism} \},$$

$$\text{Prin}(G, M) := \{ g : G \to M \mid g : \text{principal homomorphism} \}.$$

2.2. Nielsen’s Presentation.

For $n \geq 2$, let F_n be a free group of rank n with basis x_1, \ldots, x_n. Let P, Q, S and U be automorphisms of F_n given by specifying its images of the basis x_1, \ldots, x_n as follows:

	x_1	x_2	x_3	\cdots	x_{n-1}	x_n
P	x_2	x_1	x_3	\cdots	x_{n-1}	x_n
Q	x_2	x_3	x_4	\cdots	x_n	x_1
S	x_1^{-1}	x_2	x_3	\cdots	x_{n-1}	x_n
U	$x_1 x_2$	x_2	x_3	\cdots	x_{n-1}	x_n
In 1924, Nielsen [22] showed that the four elements above generate Aut F_n. Furthermore, he obtained a first finite presentation for Aut F_n.

Theorem 2.1 (Nielsen [22]). For $n \geq 2$, Aut F_n is generated by P, Q, S and U subject to relations:

(N1): P^2, Q^n, S^2,
(N2): $(QP)^{n-1}$,
(N3): $(SPU)^2$,
(N4): $[P, Q^{-1}PQ], \quad 2 \leq l \leq n/2$,
(N5): $[S, Q^{-1}PQ], [S, PQ]$,
(N6): $(PS)^4$,
(N7): $[U, Q^{-2}PQ^2], [U, Q^{-2}UQ^2], \quad n \geq 3$,
(N8): $[U, Q^{-2}S^2Q], [U, SUS]$,
(N9): $[U, PQ^{-1}PQ^{-1}PQ]$, $[U, PQ^{-1}SU]$,
(N10): $[U, PQ^{-1}PQUPQ^{-1}PQ], [U, PQ^{-1}SU]$,
(N11): $U^{-1}PUPSUSPS$,
(N12): $(PQ^{-1}UQ)^2UQ^{-1}U^{-1}QU^{-1}$.

Let H be the abelianization of F_n, and $H^* := \text{Hom}_\mathbb{Z}(H, \mathbb{Z})$ the dual group of H. Let e_1, \ldots, e_n be the basis of H induced from x_1, \ldots, x_n, and e_1^*, \ldots, e_n^* its dual basis of H^*. Here we remark the actions of the generators P, Q, S and U on e_i's and e_i^*'s. In this paper, according to the usual custom, any Aut F_n-module is considered as a left Aut F_n-module. Namely, for any element $\sigma \in \text{Aut} F_n$, the action of σ on e_i is given by $\sigma \cdot e_i := x_i^\sigma^{-1} \in H$. In particular, the actions of P, Q, S and U on e_i and e_i^* are given by

\[
P \cdot e_k = \begin{cases} e_2, & k = 1, \\
e_1, & k = 2, \\
e_k, & k \neq 1, 2, \end{cases} \quad P \cdot e_k^* = \begin{cases} e_2^*, & k = 1, \\
e_1^*, & k = 2, \\
e_k^*, & k \neq 1, 2, \end{cases}
\]

\[
Q \cdot e_k = \begin{cases} e_n, & k = 1, \\
e_k, & k \neq 1, \end{cases} \quad Q \cdot e_k^* = \begin{cases} e_n^*, & k = 1, \\
e_k^*, & k \neq 1, \end{cases}
\]

\[
S \cdot e_k = \begin{cases} -e_1, & k = 1, \\
e_k, & k \neq 1, \end{cases} \quad S \cdot e_k^* = \begin{cases} -e_1^*, & k = 1, \\
e_k^*, & k \neq 1, \end{cases}
\]

\[
U \cdot e_k = \begin{cases} e_1 - e_2, & k = 1, \\
e_k, & k \neq 1, \end{cases} \quad U \cdot e_k^* = \begin{cases} e_1^* + e_1, & k = 2, \\
e_k^*, & k \neq 2. \end{cases}
\]

2.3. IA-automorphism group.

Here we recall the IA-automorphism group of a free group. Fixing the basis e_1, \ldots, e_n of H, we identify Aut H with $\text{GL}(n, \mathbb{Z})$. The kernel of the natural homomorphism $\rho : \text{Aut} F_n \to \text{GL}(n, \mathbb{Z})$ induced from the abelianization of F_n is called the IA-automorphism group of F_n, denoted by IA_n. Magnus [22] showed that for any $n \geq 3$, the group IA_n is finitely generated by automorphisms

\[
K_{ij} : \begin{cases} x_i \mapsto x_j^{-1}x_ix_j, \\
x_t \mapsto x_t, \quad (t \neq i) \end{cases}
\]
for distinct \(i, j \in \{1, 2, \ldots, n\} \) and
\[
K_{ijk} : \begin{cases}
 x_i & \mapsto x_ix_jx_kx_j^{-1}x_k^{-1}, \\
 x_t & \mapsto x_t,
\end{cases} \quad (t \neq i)
\]
for distinct \(i, j, k \in \{1, 2, \ldots, n\} \) such that \(j > k \).

Recently, Cohen-Pakianathan [3, 4], Farb [5] and Kawazumi [10] independently determined the abelianization of \(\text{IA}_n \). More precisely, they showed
\[
\text{IA}_n^{ab} \cong H^* \otimes_\mathbb{Z} \Lambda^2 H
\]
as a \(\text{GL}(n, \mathbb{Z}) \)-module. This abelianization is induced from the first Johnson homomorphism
\[
\tau_1 : \text{IA}_n \to \text{Hom}_\mathbb{Z}(H, \Lambda^2 H) = H^* \otimes_\mathbb{Z} \Lambda^2 H
\]
defined by \(\sigma \mapsto (x \mapsto x^{-1}x^\sigma) \). (For a basic material concerning the Johnson homomorphism, see [17] and [25] for example.) In this paper, we identify \(\text{IA}_n^{ab} \) with \(H^* \otimes_\mathbb{Z} \Lambda^2 H \) through \(\tau_1 \). Then, (the coset classes of) the Magnus generators
\[
K_{ij} = e_i^* \otimes e_i \wedge e_j, \quad K_{ijk} = e_i^* \otimes e_j \wedge e_k
\]
form a basis of \(\text{IA}_n^{ab} \) as a free abelian group. In the following, for simplicity, we write \(V \) for \(\text{IA}_n^{ab} \), and set
\[
e_{i,j,k}^i := e_i^* \otimes e_j \wedge e_k
\]
for any \(i, j \) and \(k \). Moreover, we consider the set
\[
I := \{(i, j, k) \mid 1 \leq i \leq n, \ 1 \leq j < k \leq n\}
\]
of the indices of the basis of \(V \).

Finally, we recall the inner automorphism group. For each \(1 \leq i \leq n \), set
\[
\iota_i := K_{1i}K_{2i} \cdots K_{ni} \in \text{IA}_n,
\]
and let \(\text{Inn} F_n \) be a subgroup of \(\text{IA}_n \) generated by \(\iota_i \) for \(1 \leq i \leq n \). The group \(\text{Inn} F_n \) is called the inner automorphism group of \(F_n \), and is a free group with basis \(\iota_1, \ldots, \iota_n \). We remark that the abelianization \((\text{Inn} F_n)^{ab} \) is naturally isomorphic to \(H \) as a \(\text{GL}(n, \mathbb{Z}) \)-module. Furthermore, the inclusion \(\text{Inn} F_n \hookrightarrow \text{IA}_n \) induces a \(\text{GL}(n, \mathbb{Z}) \)-equivariant injective homomorphism
\[
H = (\text{Inn} F_n)^{ab} \to \text{IA}_n^{ab} = H^* \otimes_\mathbb{Z} \Lambda^2 H
\]
between their abelianizations.

3. Construction of crossed homomorphisms

In this section, for any commutative ring \(L \), we introduce two crossed homomorphisms \(f_M \) and \(f_K \) from \(\text{Aut} F_n \) into \(V_L = V \otimes_\mathbb{Z} L \), due to Morita [17] and Kawazumi [10] respectively. We remark that in their papers, the action of \(\text{Aut} F_n \) on \(F_n \) is considered as the left one. Hence, in this paper, whenever we use their notation and have to consider the left action of \(\text{Aut} F_n \) on \(F_n \), we use \(\sigma(x) := x^\sigma \) for any \(\sigma \in \text{Aut} F_n \) and \(x \in F_n \).
3.1. Morita’s construction.

First we construct a crossed homomorphism f_M from $\text{Aut} F_n$ into V using the Magnus representation of $\text{Aut} F_n$ due to Morita [17]. Let

$$\frac{\partial}{\partial x_j} : \mathbb{Z}[F_n] \rightarrow \mathbb{Z}[F_n]$$

be the Fox’s free derivations for $1 \leq j \leq n$. (For a basic material concerning with the Fox’s derivation, see [1] for example.) Let $\partial_j : \mathbb{Z}[F_n] \rightarrow \mathbb{Z}[F_n]$ be the Fox’s free derivations for $1 \leq j \leq n$. Let $\overline{\cdot} : \mathbb{Z}[F_n] \rightarrow \mathbb{Z}[F_n]$ be the antiautomorphism induced from the map $y \mapsto y^{-1} \in F_n$, and $\alpha : \mathbb{Z}[F_n] \rightarrow \mathbb{Z}[H]$ the ring homomorphism induced from the abelianization $F_n \rightarrow H$. For any matrix $A = (a_{ij}) \in \text{GL}(n, \mathbb{Z}[F_n])$, set $A^\alpha = (a_{ij}^\alpha) \in \text{GL}(n, \mathbb{Z}[H])$. Then a map $r_M : \text{Aut} F_n \rightarrow \text{GL}(n, \mathbb{Z}[H])$ defined by

$$\sigma \mapsto \left(\frac{\partial \sigma(x_j)}{\partial x_i} \right)^\alpha$$

is called the Magnus representation of $\text{Aut} F_n$. We remark that r_M is not a homomorphism but a crossed homomorphism. Namely, r_M satisfies

$$r_M(\sigma \tau) = r_M(\sigma) \cdot r_M(\tau)^{\sigma^*}$$

for any $\sigma, \tau \in \text{Aut} F_n$ where $r_M(\tau)^{\sigma^*}$ denotes the matrix obtained from $r_M(\tau)$ by applying a ring homomorphism $\sigma^* : \mathbb{Z}[H] \rightarrow \mathbb{Z}[H]$ induced from σ on each entry. (For detail for the Magnus representation, see [17].)

Now, observing the images of the Nielsen’s generators by $\text{det} \circ r_M$, we verify that $\text{Im}(\text{det} \circ r_M)$ is contained in a multiplicative abelian subgroup $\pm H$ of $\mathbb{Z}[H]$. In order to modify the image of $\text{det} \circ r_M$, we consider the signature of $\text{Aut} F_n$. For any $\sigma \in \text{Aut} F_n$, set $\text{sgn}(\sigma) := \text{det}(\rho(\sigma)) \in \{\pm 1\}$, and define a map $f_M : \text{Aut} F_n \rightarrow \mathbb{Z}[H]$ by

$$\sigma \mapsto \text{sgn}(\sigma) \text{ det}(r_M(\sigma))$$

Then the map f_M is also crossed homomorphism which image of is contained in a multiplicative abelian subgroup H in $\mathbb{Z}[H]$. In the following, we identify the multiplicative abelian group structure of H with the additive one.

Finally, for any commutative ring L, by composing f_M with a natural homomorphism $H \rightarrow V \rightarrow V_L$ induced from the inclusion $\text{Im} F_n \hookrightarrow \text{IA}_n$ and the projection $V \rightarrow V_L$, we obtain an element in $\text{Cros}(\text{Aut} F_n, V_L)$, also denoted by f_M.

3.2. Kawazumi’s construction.

Next, we construct another crossed homomorphism from $\text{Aut} F_n$ into V_L using the Magnus expansion of F_n due to Kawazumi [10]. (For a basic material for the Magnus expansion, see Chapter 2 in [2].)

Let \hat{T} be the complete tensor algebra generated by H. For any Magnus expansion $\theta : F_n \rightarrow \hat{T}$, Kawazumi define a map

$$\tau_1^\theta : \text{Aut} F_n \rightarrow H^* \otimes_{\mathbb{Z}} H^\otimes 2$$
called the first Johnson map induced by the Magnus expansion θ. The map τ_1^θ satisfies
$$
\tau_1^\theta(\sigma)([x]) = \theta_2(x) - |\sigma|^{\otimes 2}\theta_2(\sigma^{-1}(x))
$$
for any $x \in F_n$, where $[x]$ denotes the coset class of x in H, $\theta_2(x)$ is the projection of $\theta(x)$ in $H^{\otimes 2}$, and $|\sigma|^{\otimes 2}$ denotes the automorphism of $H^{\otimes 2}$ induced by $\sigma \in \text{Aut} F_n$. This shows that τ_1^θ is a crossed homomorphism from $\text{Aut} F_n$ to $H^* \otimes \mathbb{Z} H^{\otimes 2}$. In [10], he also showed that τ_1^θ does not depend on the choice of the Magnus expansion θ, and that the restriction of τ_1^θ to IA_n is a homomorphism satisfying
$$
\tau_1^\theta(K_{ij}) = e_i^* \otimes e_i \otimes e_j - e_i^* \otimes e_j \otimes e_i, \quad \tau_1^\theta(K_{ijk}) = e_i^* \otimes e_j \otimes e_k - e_i^* \otimes e_k \otimes e_j.
$$

Now, for any commutative ring L, compose τ_1^θ and a natural projection $H^* \otimes \mathbb{Z} \Lambda^2 H \to V_L$. Then we obtain an element in $\text{Cros}(\text{Aut} F_n, V_L)$. In this paper, we denote it by f_K. For $L = \mathbb{Z}$, from the result of Kawazumi as mentioned above, we see that the restriction of f_K to IA_n coincides with the double of the first Johnson homomorphism τ_1. Namely, we have
$$
f_K(K_{ij}) = 2e_i^* \otimes e_j, \quad f_K(K_{ijk}) = 2e_k^* \otimes e_j.
$$
(See [17] or [25] for the definition of the Johnson homomorphism, for example.) Conversely, if L contains $1/2$, the composition of the first Johnson homomorphism τ_1 and the natural projection $V \to V_L$ extends to $\text{Aut} F_n$ as a crossed homomorphism.

3.3. Some observations.

In this subsection, we consider another crossed homomorphism f_N in $\text{Cros}(\text{Aut} F_n, V_L)$ constructed from f_M and f_K. It is used to determine the first cohomology group $H^1(\text{Aut} F_n, V_L)$ in Section 4.

To begin with, we see the images of the crossed homomorphisms f_M and f_K. From the definition, we have
$$
f_M(\sigma) := \begin{cases}
-(e_{1,2}^2 + e_{1,3}^3 + \cdots + e_{1,n}^n), & \sigma = S, \\
0, & \sigma = P, Q, U
\end{cases}
$$
and
$$
f_K(\sigma) := \begin{cases}
-e_{1,2}^1, & \sigma = U, \\
0, & \sigma = P, Q, S.
\end{cases}
$$
These are obtained by straightforward calculation. We leave it to the reader as exercises.

Next, for elements
$$
a_{j,k}^i := \begin{cases}
0, & i \neq j, k, \\
1, & i = k, \\
-1, & i = j,
\end{cases}
$$
in L for $(i, j, k) \in I$, set
$$
a := \sum_{(i,j,k) \in I} a_{j,k}^i e_{j,k}^i \in V_L,
$$
and let \(f_a \in \text{Prin}(\text{Aut} F_n, V_L) \) be a principal homomorphism associated to \(a \in V_L \). Namely, for any \(\sigma \in \text{Aut} F_n \), it holds

\[
f_a(\sigma) = \sigma \cdot a - a,
\]

\[
= \begin{cases}
0, & \sigma = P, Q, \\
-2(e_{1,2}^2 + e_{1,3}^3 + \cdots + e_{1,n}^n), & \sigma = S, \\
e_{1,2}^1 - (e_{2,3}^3 + e_{2,4}^4 + \cdots + e_{2,n}^n), & \sigma = U.
\end{cases}
\]

In fact, we have

\[
f_a(P) = -(a_{1,2}^2 + a_{1,2}^1)e_{1,2}^1 + \sum_{k=3}^{n}(a_{2,k}^2 - a_{1,k}^1)e_{1,k}^1 \\
- (a_{1,2}^1 + a_{1,2}^2)e_{1,2}^2 + \sum_{k=3}^{n}(a_{1,k}^1 - a_{2,k}^2)e_{2,k}^2 \\
+ \sum_{k=3}^{n}\{(a_{2,k}^k - a_{1,k}^k)e_{1,k}^k + (a_{1,k}^k - a_{2,k}^k)e_{2,k}^k\}, \\
= 0,
\]

\[
f_a(Q) = \sum_{1\leq j<i\leq n-1}(a_{j+1,i+1}^{i+1} - a_{j,i}^{i})e_{j,i}^i + \sum_{j=1}^{n-1}(-a_{1,j+1}^{1} - a_{j,n}^{n})e_{j,n}^n \\
+ \sum_{1\leq i<j\leq n-1}(a_{i+1,j+1}^{i+1} - a_{i,j}^{i})e_{i,j}^i, \\
= 0,
\]

\[
f_a(S) = \sum_{2\leq i\leq n} -2a_{i,i}^i e_{1,i}^i = -2(e_{1,2}^2 + e_{1,3}^3 + \cdots + e_{1,n}^n)
\]

and

\[
f_a(U) = a_{1,2}^2 e_{1,2}^1 + \sum_{3\leq i\leq n} -a_{i,i}^i e_{2,i}^i + \sum_{3\leq i\leq n}(a_{2,i}^2 - a_{1,i}^1)e_{2,i}^1, \\
= e_{1,2}^1 - (e_{2,3}^3 + e_{2,4}^4 + \cdots + e_{2,n}^n).
\]

Now, we define \(f_N := 2f_M - f_K - f_a \in \text{Cros}(\text{Aut} F_n, V_L) \). From the arguments above, we have

\[
f_N(\sigma) = \begin{cases}
\begin{align*}
& e_{2,3}^3 + e_{2,4}^4 + \cdots + e_{2,n}^n, & \sigma = U, \\
& 0, & \sigma = P, Q, S.
\end{align*}
\end{cases}
\]

We use \(f_N \) in Section 4.

4. The First Cohomology Group

In the following, we always assume that \(L \) is a commutative ring which does not contain any 2-torsions. Set \(V_L := V \otimes_{\mathbb{Z}} L \) as above. In this section, by using the Nielsen’s presentation for \(\text{Aut} F_n \), we show

Theorem 4.1. For \(n \geq 5 \),

\[
H^1(\text{Aut} F_n, V_L) = L^\otimes 2.
\]
Here we give the outline of the computation. Let F be a free group with basis P, Q, S and U, and $\varphi : F \to \text{Aut} F_n$ the natural projection. Then the kernel R of φ is a normal closure of the relators $(N1)$, \ldots, $(N12)$. Considering the five-term exact sequence of the Lyndon-Hochshild-Serre spectral sequence of the group extension

$$1 \to R \to F \to \text{Aut} F_n \to 1,$$

we obtain an exact sequence

$$0 \to H^1(\text{Aut} F_n, V_L) \to H^1(F, V_L) \to H^1(R, V_L)^F.$$

Observing this sequence at the cocycle level, we also obtain an exact sequence

$$0 \to \text{Cros}(\text{Aut} F_n, V_L) \to \text{Cros}(F, V_L) \xrightarrow{\iota^*} \text{Cros}(R, V_L)$$

where ι^* is a map induced from the inclusion $\iota : R \hookrightarrow F$. Hence we can consider $\text{Cros}(\text{Aut} F_n, V_L)$ as a subgroup consisting of elements of $\text{Cros}(F, V_L)$ which are killed by ι^*. Hence, we can determine $\text{Cros}(\text{Aut} F_n, V_L)$ by using the relators of the Nielsen’s presentation, and hence $H^1(\text{Aut} F_n, V_L)$.

Proof of Theorem 4.1. First, we consider the abelian group structure of $\text{Cros}(F, V_L)$. For any $\sigma \in F$ and a crossed homomorphism $f \in \text{Cros}(F, V_L)$, set

$$f(\sigma) := \sum_{(i,j,k) \in I} a^i_{j,k}(\sigma)e^i_{j,k} \in V_L$$

for $a^i_{j,k}(\sigma) \in L$. Since F is a free group generated by P, Q, S and U, by the universality of a free group, the crossed homomorphism f is completely determined by $a^i_{j,k}(\sigma)$ for $\sigma = P$, Q, S and U. More precisely, a map

$$\text{Cros}(F, V_L) \to L^{\oplus 2n^2(n-1)}$$

defined by

$$f \mapsto \left(a^i_{j,k}(P), a^i_{j,k}(Q), a^i_{j,k}(S), a^i_{j,k}(U) \right)_{(i,j,k) \in I}$$

is an isomorphism as an abelian group. In the following, through this map, we identify $\text{Cros}(F, V_L)$ with $L^{\oplus 2n^2(n-1)}$.

In the following, we show that each $f \in \text{Cros}(\text{Aut} F_n, V_L) \subset \text{Cros}(F, V_L)$ is determined by at most

$$a^i_{j,k}(Q), \quad 1 \leq i \leq n - 1, \quad 1 \leq j < k \leq n,$$

$$a^1_{j,k}(U), \quad 1 \leq j < k \leq n,$$

$$a^2_{1,2}(S), \quad a^3_{2,3}(U).$$

(2)

Namely, we show that a map

$$\Phi : \text{Cros}(\text{Aut} F_n, V_L) \to L^{\oplus (n^3 - n^2 + 4)/2}$$

defined by

$$f \mapsto \left((a^i_{j,k}(Q))_{i \neq n, 1 \leq j < k \leq n}, (a^1_{j,k}(U))_{1 \leq j < k \leq n}, a^2_{1,2}(S), a^3_{2,3}(U) \right)$$

is injective. (Later, we see that these elements uniquely determine a crossed homomorphism from $\text{Aut} F_n$ into V_L.) To see this, it suffices to show that each of $a^i_{j,k}(\sigma)$ for
\[\sigma = P, Q, S \text{ and } U, \text{ and } (i, j, k) \in I \text{ other than } 2 \text{ is written as a linear combination of } 2. \text{ In this process, we use the relators of the Nielsen’s presentation.} \\

To do this, we prepare some notation. Let \(f \in \text{Cros}(\text{Aut } F_n, V_L) \). We denote by \(W \) the quotient \(L \)-module of a free \(L \)-module spanned by \(a_{j,k}^i(\sigma) \) for \(\sigma = P, Q, S \text{ and } U, \text{ and } (i, j, k) \in I \) by a submodule generated by all linear relations obtained from \(\nu^i(f) = 0 \). Then each of the coefficients of \(e_{j,k}^i \) in \(f(\sigma) \) is considered as an element in \(W \). Furthermore, we denote by \(\overline{W} \) the quotient module of \(W \) by the submodule generated by all elements in \(2 \). We use \(\doteq \) for the equality in \(\overline{W} \). In the following, from Step I to Step V, we show

\[a_{j,k}^i(\sigma) \doteq 0 \]

for \(\sigma = P, Q, S \text{ and } U, \text{ and any } (i, j, k) \in I. \)

For the convenience, we also write \(a \doteq a' \) for \(a, a' \in V_L \) if each of the coefficients of \(e_{j,k}^i \) in \(a \) is equal to that in \(a' \) in \(\overline{W} \).

Step I. (Proof for \(a_{j,k}^n(Q) \doteq 0 \).)
From the relation (N1): \(Q^n = 1 \), we obtain

\[f(Q^n) = (1 + Q + Q^2 + \cdots + Q^{n-1})f(Q) = 0. \]

For any \(1 \leq j < k \leq n \), observing the coefficient of \(e_{j,k}^n \) in the equation above, we see

\[
\begin{align*}
a_{j,k}^n(Q) &= a_{j+1,k+1}^1(Q) + a_{j+2,k+2}^2(Q) + \cdots + a_{j+n-k}^{n-k}(Q) \\
&- a_{1,j+n-k+1}^{n-k+1}(Q) - \cdots - a_{k-1,j+n-k}^{n-j}(Q) + a_{1,k-j+1}^{n-j+1}(Q) + \cdots + a_{j-1,k-1}^{n-1}(Q) \doteq 0,
\end{align*}
\]

and hence \(a_{j,k}^n(Q) \doteq 0 \). Therefore we see \(f(Q) \doteq 0 \).

Step II. (Some relations among \(a_{j,k}^1(P) \) and \(a_{j,k}^1(S) \).)
Here we consider some linear relations among \(a_{j,k}^1(P) \) and \(a_{j,k}^1(S) \).

From the relation (N1): \(P^2 = 1 \), we see

\[f(P^2) = (1 + P)f(P) \doteq 0. \]

Observing the coefficients of \(e_{j,k}^1, e_{1,k}^1, e_{1,2}^1, e_{2,k}^1 \) and \(e_{1,k}^i \) in the equation above, we obtain

\[
\begin{align*}
(3) \quad &a_{j,k}^1(P) + a_{j,k}^2(P) \doteq 0, \quad 3 \leq j < k \leq n, \\
(4) \quad &a_{1,k}^1(P) + a_{2,k}^2(P) \doteq 0, \quad 3 \leq k \leq n, \\
(5) \quad &a_{1,2}^1(P) - a_{1,2}^2(P) \doteq 0, \\
(6) \quad &a_{2,k}^1(P) + a_{1,k}^2(P) \doteq 0, \quad 3 \leq k \leq n, \\
(7) \quad &a_{i,k}^1(P) + a_{2,k}^i(P) \doteq 0, \quad 3 \leq i, k \leq n
\end{align*}
\]

respectively.

On the other hand, from the relation (N1): \(S^2 = 1 \), we see

\[f(S^2) = (1 + S)f(S) \doteq 0. \]
Observing the coefficients of $e_{i,k}^j$ for $2 \leq i \leq n$ and $2 \leq j < k \leq n$ in the equation above, we see $2a_{j,k}^i(S) = 0$. Since L does not contain any 2-torsions, we obtain $a_{j,k}^i(S) = 0$. Similarly, from the coefficients of $e_{1,k}^1$ for $2 \leq k \leq n$, we see $a_{1,k}^1(S) = 0$.

These relations are often used later.

Step III. (Proof for $a_{j,k}^i(U) = 0$) This step consists of six parts.

(i) (Proof for $a_{1,2}^2(U) = a_{1,2}^2(U) = 0$) From the relation (N3): $(PSU)^2 = 1$, we have

$$
(PSU + 1)f(PSU) = (PSU + 1)(f(P) + Pf(S) + Psf(P) + PSPf(U)) = 0
$$

(8)
The actions of PS, PSP and $PSPU$ on e_k and e_k^* are given by

$$
PS \cdot e_k = \begin{cases}
-e_2, & k = 1, \\
 e_1, & k = 2, \\
e_k, & k \neq 1,2,
\end{cases}

PS \cdot e_k^* = \begin{cases}
-e_2^*, & k = 1, \\
e_1^*, & k = 2, \\
e_k^*, & k \neq 1,2,
\end{cases}

PSP \cdot e_k = \begin{cases}
-e_2, & k = 2, \\
e_k, & k \neq 2,
\end{cases}

PSP \cdot e_k^* = \begin{cases}
-e_2^*, & k = 2, \\
e_k^*, & k \neq 2,
\end{cases}

PSPU \cdot e_k = \begin{cases}
e_1 + e_2, & k = 1, \\
e_2, & k = 2, \\
e_k, & k \neq 1,2,
\end{cases}

PSPU \cdot e_k^* = \begin{cases}
e_2^* + e_1^*, & k = 2, \\
e_k^*, & k \neq 2,
\end{cases}

$$

Using this, we see that the coefficient of $e_{2,k}^i$ for $3 \leq i, k \leq n$ in $(PSU + 1)f(PSPU)$ is equal to the coefficient of $e_{1,k}^i$ in $f(PSPU)$, and to

$$
a_{1,k}^i(P) + a_{1,2}^i(S) + a_{1,2}^i(P) + a_{1,2}^i(U) = a_{1,k}^i(U)
$$

by the argument above in Step III. Hence we obtain $a_{1,k}^i(U) = 0$. Similarly, from the coefficient of $e_{1,2}^2$ in $(PSU + 1)f(PSPU)$, which is equal to the coefficient of $e_{1,2}^2$ in $f(PSPU)$ times -1, we see

$$
-(a_{1,2}^2(P) - a_{1,2}^1(S) - a_{1,2}^1(P) + a_{1,2}^2(U)) = -a_{1,2}^2(U) = 0.
$$

(ii) (Proof for $a_{1,k}^2(U) = 0$ for $3 \leq k \leq n$. In general, if elements $\sigma, \tau \in \text{Aut} F_n$ are commute, we have $f(\sigma) + \sigma f(\tau) = f(\tau) + \tau f(\sigma)$ from a relation $\sigma \tau = \tau \sigma$. Hence, we see

$$
(\tau - 1)f(\sigma) = (\sigma - 1)f(\tau).
$$

Applying (9) for $\sigma = U$ and $\tau = Q^{-(l-1)}UQ^{l-1}$ for $3 \leq l \leq n - 1$, we have

$$
(Q^{-(l-1)}UQ^{l-1} - 1)f(U) = (U - 1)f(Q^{-(l-1)}UQ^{l-1})
$$

$$
= (U - 1)(f(Q^{-(l-1)} + Q^{-(l-1)}UQ^{l-1} + Q^{-(l-1)}Uf(Q^{l-1})).
$$

Since $f(Q) = 0$ by Step I, we see

$$
(Q^{-(l-1)}UQ^{l-1} - 1)f(U) \doteq (U - 1)Q^{-(l-1)}f(U).
$$

(10)
Here the actions of $Q^{-(l-1)}UQ^{l-1}$ on e_k and e_k^* are given by

$$Q^{-(l-1)}UQ^{l-1} \cdot e_k = \begin{cases} e_{l+1}, & k = l, \\ e_l, & k = l+1, \\ e_k, & k \neq l, l+1. \end{cases}$$

$$Q^{-(l-1)}UQ^{l-1} \cdot e_k^* = \begin{cases} e_{l+1}^* + e_l^*, & k = l, \\ e_l^*, & k = l+1, \\ e_k^*, & k \neq l, l+1. \end{cases}$$

Observing this, we see the coefficient of $e_{2,l}^{l+1}$ of $(Q^{-(l-1)}UQ^{l-1} - 1)f(U)$ is equal to 0. On the other hand, that of $(U - 1)Q^{-(l-1)}f(U)$ is equal to

the coefficient of $e_{1,l}^{l+1}$ of $Q^{-(l-1)}f(U)$ times -1,

and to

the coefficient of $e_{1,n+2-l}^2$ of $f(U)$.

Hence, we see

$$a_{1,n+2-l}^2(U) = 0$$

for $3 \leq l \leq n - 1$. Namely, $a_{1,k}^2(U) = 0$ for $3 \leq k \leq n - 1$.

Similarly, applying (9) for $\sigma = U$ and $\tau = Q^{-(l-1)}PQ^{l-1}$ for $3 \leq l \leq n - 1$, we have

$$(Q^{-(l-1)}PQ^{l-1} - 1)f(U) \equiv (U - 1)Q^{-(l-1)}f(P).$$

Here the actions of $Q^{-(l-1)}PQ^{l-1}$ on e_k and e_k^* are given by

$$Q^{-(l-1)}PQ^{l-1} \cdot e_k = \begin{cases} e_{l+1}, & k = l, \\ e_l, & k = l+1, \\ e_k, & k \neq l, l+1. \end{cases}$$

$$Q^{-(l-1)}PQ^{l-1} \cdot e_k^* = \begin{cases} e_{l+1}^* + e_l^*, & k = l, \\ e_l^*, & k = l+1, \\ e_k^*, & k \neq l, l+1. \end{cases}$$

Using this, from the coefficient of $e_{1,l}^2$ in (11), we see

$$a_{1,l+1}^2(U) - a_{1,l}^2(U) \equiv 0$$

for $3 \leq l \leq n - 1$. In particular, we have $a_{1,n}^2(U) = a_{1,n-1}^2(U) \equiv 0$.

(iii) (Proof for $a_{j,k}^2(U) \equiv 0$ for $2 \leq j < k \leq n$.) First, we show $a_{2,k}^2(U) \equiv 0$. Now, observing the coefficients of $e_{1,k}^1$ and $e_{2,k}^1$ for $3 \leq k \leq n$ in $(PSPU + 1)f(PSPU)$, which are equal to those of $2e_{1,k}^1 + e_{1,k}^2$ and $-e_{2,k}^2 + e_{2,k}^1$ in $f(PSPU)$ respectively, we obtain

$$2a_{1,k}^1(P) + a_{1,k}^2(P) + 2a_{2,k}^2(S) + a_{2,k}^1(S) + 2a_{2,k}^2(P) - a_{2,k}^1(P) + 2a_{1,k}^1(U) - a_{1,k}^2(U) \equiv 0,$$

$$-a_{2,k}^2(P) + a_{1,k}^2(P) - a_{1,k}^1(S) + a_{2,k}^1(S) - a_{1,k}^1(P) - a_{2,k}^1(P) - a_{2,k}^2(U) - a_{1,k}^2(U) \equiv 0.$$
Using (11), and \(a_{1,k}^1(S) = a_{2,k}^2(S) = 0 \), we have

12. \[
a_{1,k}^2(P) + a_{2,k}^1(P) - a_{2,k}^1(S) - a_{1,k}^2(U) + 2a_{1,k}^1(U) = 0,
\]

13. \[
a_{1,k}^2(P) + a_{2,k}^1(S) - a_{2,k}^1(P) - a_{2,k}^2(U) - a_{1,k}^2(U) = 0.
\]

Then, considering (12) \(-\) (13), we obtain \(a_{2,k}^2(U) = -2a_{1,k}^1(U) = 0 \) for \(3 \leq k \leq n \).

Next, we show \(a_{j,k}^2(U) = 0 \) for \(3 \leq j < k \leq n \). For \(3 \leq j < l \leq n - 1 \), from the coefficient of \(e_{j,l+1}^2 \) in (10), we see \(a_{j,k}^2(U) = 0 \). Similarly, for \(3 \leq l \leq n - 2 \), from the coefficient of \(e_{l+1,n}^2 \) in (10), we see \(a_{l,n}^2(U) = 0 \). To see \(a_{n-1,n}^2(U) = 0 \), we use (14). Observing the coefficient of \(e_{n-2,n}^2 \) in (11) for \(l = n - 2 \), we see \(a_{n-1,n}^2(U) = a_{n-2,n}^2(U) = 0 \).

(iv) (Proof for \(a_{1,2}^1(U) = 0 \) for \(3 \leq i \leq n \).) Observing the coefficient of \(e_{1,2}^1 \) in (10), we see \(a_{1,2}^1(U) = 0 \) for \(3 \leq l \leq n - 1 \). To show \(a_{1,2}^3(U) = 0 \), considering the coefficient of \(e_{1,2}^3 \) in (11), we see \(a_{1,2}^3(U) = a_{1,2}^4(U) = 0 \).

(v) (Proof for \(a_{j,k}^i(U) = 0 \) for \(3 \leq i \leq n \) and \(3 \leq j < k \leq n \).) First, we consider the case where \(i \neq j, k \) and \(j \neq k - 1 \), and show that \(a_{j,k}^i(U) = a_{n,n}^i(U) \). For \(3 \leq l \leq n - 1 \) and \(j, k \neq l, l + 1 \), from the coefficient of \(e_{j,k}^l \) in (11), we see

\[a_{j,k}^l(U) = a_{j,k}^{l+1}(U). \]

Similarly, observing the coefficients of \(e_{j,l+1}^l \) and \(e_{l+1,k}^l \) in (11), we obtain

14. \[a_{j,k}^l(U) = a_{j,k}^{l+1}(U), \quad 3 \leq j < l \leq n - 1, \]

15. \[a_{l+1,k}^l(U) = a_{l+1,k}^{l+1}(U), \quad 3 \leq l < k - 1 \leq n - 1 \]
respectively. Using these equations, we obtain,

16. \[a_{j,k}^i(U) = a_{j,k}^{i+1}(U) = \cdots = a_{j,k}^n(U), \quad k + 1 \leq i \]

17. \[a_{j,k}^i(U) = a_{j,k}^{i+1}(U) = \cdots = a_{j,k}^{k-1}(U) = a_{j,k}^k(U) = a_{j,k-1}(U) = a_{j,k-1}(U), \quad j + 1 \leq i \leq k - 1, \]

18. \[a_{j,k}^i(U) = a_{j,k}^{i+1}(U) = \cdots = a_{j,k}^{j-1}(U) = a_{j,k}^j(U) = a_{j-1,k}(U) = a_{j-1,k}(U), \quad i \leq j - 1. \]

Hence it suffices to show that \(a_{n,n}^j(U) = 0 \) for \(j < k - 1 \) and \(k \leq n - 1 \). The reason why we consider only \(k \leq n - 1 \) is that an element type of \(a_{n,n}^j(U) \) never appear in the above. Then, observing the coefficient of \(e_{j+1,k}^n \) in (11) for \(l = j \), we obtain the required result.

Next, we consider the other cases. If \(j = k - 1 \), by the same argument as (18) and (16), we have

\[
a_{k-1,k}^i(U) = \begin{cases} a_{k-1,k}^{k-2}(U) = a_{k-2,k-1}^0(U) = 0, & i \leq k - 2, \\ a_{k-1,k}^{k+1}(U) = a_{k-1,k}^0(U) = 0, & i \geq k + 1. \end{cases}
\]
For the case where \(i = j, k \), we prepare some relations as follows. By the coefficients of \(e_{j,i}^l \) and \(e_{i,k}^l \) in (11), we see
\[
(19) \quad a_{j,l}^i(U) = a_{j,l+1}^{i+1}(U), \quad 3 \leq j < l \leq n - 1,
\]
\[
(20) \quad a_{i,k}^l(U) = a_{l+1,k}^{l+1}(U), \quad 3 \leq l < k - 1 \leq n - 1
\]
respectively. Then by (19) and (20),
\[
a_{j,i}^l(U) = a_{j,i}^{j+1}(U), \quad a_{i,k}^l(U) = a_{i,k}^{k-1}(U).
\]
Hence it suffices to show that \(a_{i,l+1}^l(U) = a_{i,l+1}^{l+1}(U) = 0 \) for \(3 \leq l \leq n - 1 \). From the coefficients of \(e_{i,l+1}^l \) in (11) and (10), we have
\[
a_{i,l+1}^l(U) = -a_{i,l+1}^{l+1}(U), \quad a_{i,l+1}^{l+1}(U) = 0
\]
for \(3 \leq l \leq n - 1 \) respectively. This shows the required result.

(vi) (Proof for \(a_{i,k}^1(U) = 0 \) for \(3 \leq i, k \leq n \).) First, we consider the case where \(i \neq k \). For \(k \neq l + 1 \), in the equation (10), the coefficient of \(e_{2,k}^l \) of \((Q^{-(l-1)}UQ^{l-1} - 1)f(U)\) is \(a_{2,k}^{l+1}(U) \). On the other hand, that of \((U - 1)Q^{-(l-1)}f(U)\) is equal to the coefficient of \(Q_{1,k}^l \) of \(Q^{-(l-1)}f(U) \) times \(-1\), and hence \(a_{k-l+1,n-2-i}(U) \). Therefore, we have
\[
(21) \quad a_{2,k}^{l+1}(U) = a_{k-l+1,n-2-i}(U) = 0
\]
for \(3 \leq l \leq n - 1 \) and \(k \neq l + 1 \).

Similarly, from the coefficient of \(e_{2,l+1}^3 \) in (10), we see
\[
a_{2,l+1}^3(U) = -a_{2,n+2-l}^{n+4-l}(U) = 0
\]
from (21) for \(4 \leq l \leq n - 1 \). To show \(a_{2,n}^3(U) = 0 \), we consider a relation
\[
[U, Q^{-(n-2)}PUP^{-1}Q^{(n-2)}] = 1.
\]
Using (9), we have
\[
(Q^{-(n-2)}PUP^{-1}Q^{(n-2)} - 1)f(U) = (U - 1)f(Q^{-(n-2)}PUP^{-1}Q^{(n-2)})
= (U - 1)Q^{-(n-2)}(f(P) + Pf(U) - PUP^{-1}f(P)).
\]
Here the actions of \(Q^{-(l-2)}PUP^{-1}Q^{(l-2)} \) for \(2 \leq l \leq n \) on \(e_k \) and \(e_k^* \) are given by
\[
Q^{-(l-2)}PUP^{-1}Q^{(l-2)} \cdot e_k = \begin{cases} e_{l-1} - e_l, & k = l, \\ e_k, & k \neq l, \end{cases}
\]
\[
Q^{-(l-2)}PUP^{-1}Q^{(l-2)} \cdot e_k^* = \begin{cases} e_{l-1}^* + e_l^*, & k = l - 1, \\ e_k^*, & k \neq l - 1. \end{cases}
\]
Then the coefficient of \(e_{2,n-1}^3 \) of \((Q^{-(n-2)}PUP^{-1}Q^{(n-2)} - 1)f(U)\) is given by \(-a_{2,n}^3(U)\). On the other hand, that of \((U - 1)Q^{-(n-2)}(f(P) + Pf(U) - PUP^{-1}f(P))\) is equal to the coefficient of \(e_{1,n-1}^3 \) of \(Q^{-(n-2)}(f(P) + Pf(U) - PUP^{-1}f(P)) \) times \(-1\), and to
\[
\text{the coefficient of } e_{2,3}^3 \text{ of } f(P) + Pf(U) - PUP^{-1}f(P),
\]
and to
\[a_{2,3}^5(P) + a_{1,3}^5(U) - a_{2,3}^5(P) = a_{1,3}^5(U). \]
Hence we obtain \(a_{2,n}^3(U) \equiv -a_{1,3}^5(U) \equiv 0. \)

Finally, we consider the case where \(i = k. \) In (10), the coefficients of \(e_{2,l+1}^i \) of \((Q^{-l-1})UQ^{-l-1} - 1) f(U) \) is equal to
\[
(a_{2,l+1}^i(U) - a_{2,l}^i(U) - a_{2,l}^{i+1}(U) \equiv a_{2,l+1}^i(U) - a_{2,l}^i(U).
\]
On the other hand, that of \((U - 1)Q^{-l-1} f(U)\) is equal to
the coefficient of \(e_{1,l+1}^i \) of \(Q^{-l-1} f(U) \) times \(-1,\)
and to \(a_{2,2-l+n}^1(U) \equiv 0. \) Then we obtain \(a_{2,l+1}^1(U) \equiv a_{2,l}^1(U) \) for \(3 \leq l \leq n - 1, \) and hence
\[
a_{2,n}^n(U) \equiv a_{2,n-1}^{n-1}(U) \equiv \cdots \equiv a_{2,3}^3(U) \equiv 0.
\]
Therefore we see \(a_{i,j,k}^i(U) \equiv 0 \) for any \((i, j, k) \in I. \) This shows that \(f(U) \equiv 0. \) This completes the proof of Step III.

Step IV. (Proof for \(a_{i,j,k}^i(P) \equiv 0. \))

By a result obtained in Step II, it suffices to show \(a_{i,j,k}^i(P) \equiv 0 \) for \(i \neq 2. \)

(i) (Proof for \(a_{1,j,k}^1(P) \equiv 0 \) for \(1 \leq j < k \leq n. \)) From a relation \((PQ^{-1}UQ)^2 = UQ^{-1}UQU^{-1} \) and a result \(f(Q) \equiv f(U) \equiv 0 \) as above, we see
\[
(1 + PQ^{-1}UQ)f(PQ^{-1}UQ) \equiv f(UQ^{-1}UQU^{-1}) \equiv 0,
\]
and hence
\[
(1 + PQ^{-1}UQ)f(P) \equiv 0.
\]
The actions of \(PQ^{-1}UQ \) on \(e_k \) and \(e_k^* \) are given by
\[
PQ^{-1}UQ \cdot e_k = \begin{cases}
eq 2, & k = 1, \\ e_1 - e_3, & k = 2, \\ e_k, & k \neq 1, 2, \end{cases}
\]
and
\[
PQ^{-1}UQ \cdot e_k^* = \begin{cases} e_2^*, & k = 1, \\ e_1^*, & k = 2, \\ e_1^* + e_3^*, & k = 3, \\ e_k^*, & k \neq 1, 2, 3. \end{cases}
\]
Using this, we see that the coefficients of \(e_{2,3}^2 \) and \(e_{3,k}^2 \) in (22) are calculated as
\[
a_{2,3}^2(P) + a_{1,3}^1(P) - a_{1,2}^1(P) \equiv 0,
\]
\[
a_{3,k}^2(P) + a_{3,k}^1(P) - a_{2,k}^1(P) \equiv 0, \quad 4 \leq k \leq n
\]
respectively. Then from (1) and (3), we obtain \(a_{1,2}^1(P) \equiv 0 \) and \(a_{2,k}^1(P) \equiv 0 \) for \(4 \leq k \leq n. \)

Next, applying (9) for \(\sigma = P \) and \(\tau = Q^{-l-1}UQ^{-l-1} \) for \(3 \leq l \leq n - 1, \) we have
\[
(Q^{-l-1}UQ^{-l-1} - 1) f(P) \equiv (U - 1)Q^{-l-1}UQ^{-l-1} \equiv 0.
\]
By the coefficient of \(e_{2,l+1}^1 \) in the equation above, we see \(-a_{2,l}^1(P) \equiv 0. \) In particular, \(a_{2,3}^1(P) \equiv 0. \) Furthermore, from the coefficient of \(e_{1,l+1}^1, \) we see
\[
a_{1,l}(P) \equiv 0, \quad 3 \leq l \leq n - 1.
Now, from a relation \((QP)^{n-1} = 1\),
\[(1 + QP + \cdots + (QP)^{n-2})(f(Q) + Qf(P)) = 0,\]
and hence
\[(24) \quad (1 + QP + \cdots + (QP)^{n-2})Qf(P) = 0.\]
By the coefficient of \(e_{1,2}^1\) in (24), we see
\[a_{2,3}^2(P) + a_{2,4}^2(P) + \cdots + a_{2,n}^2(P) - a_{1,2}^2(P) = 0.\]
Then using (4) and (5), we obtain \(a_{1,n}^1(P) = 0\).

Subsequently, we consider \(a_{j,k}^1(P)\) for \(3 \leq j < k \leq n\). From the coefficient of \(e_{j,l+1}^1\) in (23) for \(3 \leq j < l \leq n - 1\), we obtain
\[(25) \quad a_{j,l}^1(P) = 0.\]
On the other hand, from the coefficient of \(e_{i,n}^1\) in (23), we see \(a_{i,n}^1(P) = 0\) for \(3 \leq j \leq n - 2\). Furthermore, observing the coefficient of \(e_{n-1,n}^1\) in (24), we see
\[-a_{1,2}^2(P) + a_{1,3}^2(P) + a_{3,4}^2(P) + \cdots + a_{n-2,n-1}^2(P) + a_{n-1,n}^2(P) = 0,\]
and hence \(a_{1,n-1,n}^1(P) = -a_{n-1,n}^2(P) = 0\). Therefore we have \(a_{j,k}^1(P) = a_{j,k}^2(P) = 0\) for any \(1 \leq j < k \leq n\).

(ii) (Proof for \(a_{i,k}^1(P) = 0\) for \(3 \leq i \leq n\) and \(2 \leq k \leq n\).) First, we consider the case where \(i \neq k\). Observing the coefficients of \(e_{1,k}^i\) and \(e_{1,l+1}^i\) in (23), we see
\[(26) \quad a_{1,k}^{i+1}(P) = 0, \quad 3 \leq l \leq n - 1, \quad 2 \leq k \neq l + 1,\]
\[(27) \quad a_{1,l}^{i+1}(P) = 0, \quad 4 \leq l \leq n - 1\]
respectively. Hence, it suffices to show that \(a_{1,n}^{i+1}(P) = a_{1,n}^2(P) = 0\).

By the coefficient of \(e_{1,2}^3\) in (24), we see
\[a_{2,3}^4(P) + a_{2,4}^5(P) + \cdots + a_{2,n-1}^n(P) + a_{2,n}^1(P) - a_{1,2}^3(P) = 0.\]
From (7),
\[-a_{1,3}^4(P) - a_{1,4}^5(P) - \cdots - a_{1,n-1}^n(P) + a_{1,n}^1(P) = a_{1,2}^3(P),\]
and hence \(a_{1,2}^3(P) = 0\). Similarly, the coefficient of \(e_{1,n}^3\) in (24), we see
\[-a_{1,2}^4(P) + a_{2,3}^5(P) + \cdots + a_{2,n-2}^n(P) + a_{2,n-1}^1(P) + a_{1,n}^3(P) = 0,\]
and
\[-a_{1,2}^4(P) - a_{1,3}^5(P) - \cdots - a_{1,n-2}^n(P) + a_{1,n-1}^1(P) = a_{1,n}^3(P),\]
and hence \(a_{1,n}^3(P) = 0\).

Next, we consider the case where \(i = k\). By the coefficient of \(e_{1,l+1}^i\) in (23),
\[(28) \quad a_{1,l+1}^{i+1}(P) = a_{1,l}^i(P) - a_{1,l}^{i+1}(P) = a_{1,l}^i(P), \quad 3 \leq l \leq n - 1,\]
Hence it suffices to show that \(a_{1,i}^3(P) = 0\). On the other hand, by the coefficient of \(e_{2,3}^1\) in (22), we see
\[a_{2,3}^1(P) + a_{1,3}^2(P) - a_{1,2}^3(P) - a_{1,2}^3(P) + a_{1,3}^3(P) = 0,\]
and hence $a_{1,3}^3(P) \doteq 0$.

From the argument above, we obtain $a_{i,k}^i(P) \doteq 0$ for $3 \leq i \leq n$ and $2 \leq k \leq n$. We remark that this also shows that $a_{2,k}^i(P) \doteq 0$ for $3 \leq i \leq n$ and $3 \leq k \leq n$ by (7).

(iii) (Proof for $a_{i,k}^i(P) \doteq 0$ for $3 \leq i \leq n$ and $3 \leq j < k \leq n$.) First, we consider the case where $i \geq 4$. By the coefficient of $e_{j,k}^i$ in (23), we see

$$a_{i,k}^{i+1}(P) \doteq 0$$

for $3 \leq l \leq n - 1$ and $j, k \neq l + 1$. Hence $a_{j,k}^i(P) \doteq 0$ for $4 \leq i \leq n$ and $i \neq j, k$.

If $i = j$ or $i = k$, observe the coefficients of $e_{i,l+1}^i, e_{j,l+1}^j$ and $e_{l+1,k}^l$ in (23). Then we see

(iii) $a_{i,k}^{i+1}(P) \doteq 0$, 3 \leq l \leq n \label{eq9}$

(iii) $a_{i,k}^{i+1}(P) - a_{j,l}^{i+1}(P) - a_{j,l}^i(P) \doteq 0$, 3 \leq l \leq n - 1, j \neq l \label{eq10}$

(iii) $a_{i,k}^{i+1}(P) - a_{i,l}^i(P) - a_{i,l}^{i+1}(P) \doteq 0$, 3 \leq l \leq n - 1, l + 1 < k \label{eq11}$

respectively. By (29), the equations (30) and (31) are equivalent to

(iii) $a_{j,l+1}^{i+1}(P) \doteq a_{j,l}^i(P)$, $a_{i,k}^{i+1}(P) \doteq a_{i,l}^i(P)$

respectively. Using this and (30), we see

(iii) $a_{j,n}^n(P) \doteq a_{j,n-1}^{n-1}(P) \doteq \cdots \doteq a_{j,j+1}^{j+1}(P) \doteq 0$

(iii) $a_{j,j+1}^j(P) \doteq a_{j-1,j+1}^{j-1}(P) \doteq \cdots \doteq a_{j,j+1}^3(P)$

for $3 \leq j \leq n - 1$. Hence the proof of Step IV is finished if we show $a_{j,k}^i(P) \doteq 0$ for $3 \leq j < k \leq n$.

From the coefficients of $e_{j,l+1}^3$ and $e_{l+1,n}^3$ in (23), we see

(iii) $a_{j,l}^3(P) \doteq 0$, 3 \leq j \leq l \leq n - 1, \label{eq12}$

(iii) $a_{l,n}^3(P) \doteq 0$, 4 \leq l \leq n - 2 \label{eq13}$

respectively. Hence it suffices to show $a_{3,n}^3(P) \doteq a_{n-1,n}^3(P) \doteq 0$. Then observing the coefficients of $e_{3,n}^3$ and $e_{n-1,n}^3$ in (24), we obtain

(iii) $a_{1,4}^4(P) - a_{3,5}^5(P) - \cdots - a_{n-2,n}^n(P) + a_{1,n-1}^1(P) + a_{3,n}^3(P) \doteq 0$,

(iii) $- a_{1,n}^4(P) + a_{1,3}^5(P) + a_{3,4}^6(P) + \cdots + a_{n-3,n-2}^n(P) + a_{1,n-2,n-1}^1(P) + a_{3,n-1,n}^3(P) \doteq 0$.

These equations induce the required results. Therefore we obtain $a_{j,k}^i(P) \doteq 0$ for any $(i,j,k) \in I$. This shows that $f(P) \doteq 0$. This completes the proof of Step IV.

Step V. (The rest of the proof for $a_{j,k}^i(S) \doteq 0$.)

Here we show that $a_{i,k}^i(S) \doteq 0$ for $i, k \geq 2$, and $a_{j,k}^j(S) \doteq 0$ for $2 \leq j < k \leq n$.

By the relation (N11): $SUSPS = PU^{-1}PU$, we have

(iii) $(1 + SU + SUSP)f(S) = f(PU^{-1}PU) \doteq 0$.

The actions of SU and $SUSP$ on e_k and e_k^* are given by
\[
SU \cdot e_k = \begin{cases}
-e_1 - e_2, & k = 1, \\
e_k, & k \neq 1,
\end{cases}
SU \cdot e_k^* = \begin{cases}
-e_1^*, & k = 1, \\
e_1^* + e_2^*, & k = 2, \\
e_k^*, & k \neq 1, 2,
\end{cases}
\]
\[
SUSP \cdot e_k = \begin{cases}
e_2, & k = 1, \\
e_1 + e_2, & k = 2, \\
e_k, & k \neq 1, 2
\end{cases}
SUSP \cdot e_k^* = \begin{cases}
-e_1^* + e_2^*, & k = 1, \\
e_1^*, & k = 2, \\
e_k^*, & k \neq 1, 2,
\end{cases}
\]
Using this, for $3 \leq k \leq n$, from the coefficients $e_{1,k}^1$ and $e_{1,k}^2$ in (33), we obtain
\[
2a_{1,k}^1(S) + a_{1,k}^2(S) + a_{2,k}^2(S) - a_{2,k}^1(S) = 0,
\]
\[
a_{2,k}^1(S) = 0
\]
respectively. Hence $a_{1,k}^1(S) = a_{2,k}^1(S) = 0$.

Next, we show $a_{1,k}^i(S) = 0$ for $i \geq 3$ and $k \geq 2$. Applying (9) for $\sigma = S$ and $\tau = QP$, we have
\[
(34) \quad (QP - 1)f(S) = (S - 1)f(QP) = 0.
\]
The actions of QP on e_k and e_k^* are given by
\[
QP \cdot e_k = \begin{cases}
e_1, & k = 1, \\
e_n, & k = 2, \\
e_{k-1}, & k \neq 1, 2
\end{cases}
QP \cdot e_k^* = \begin{cases}
e_1^*, & k = 1, \\
e_n^*, & k = 2, \\
e_{k-1}^*, & k \neq 1, 2
\end{cases}
\]
Using this, from the coefficients $e_{1,k}^i$ in (34), we see
\[
35) \quad a_{1,k+1}^{i+1}(S) = a_{1,k}^i(S), \quad 2 \leq i, k \leq n - 1,
\]
\[
36) \quad a_{1,2}^{i+1}(S) = a_{1,n}^i(S), \quad 2 \leq i \leq n - 1, \quad k = n.
\]
From (35), if $i \leq k$,
\[
a_{1,k}^i(S) = a_{1,k-1}^{i-1}(S) \cdots \cdots a_{1,k+2-i}^2(S) = 0,
\]
and hence from (35) if $i > k$,
\[
a_{1,k}^i(S) = a_{1,k-1}^{i-1}(S) \cdots \cdots a_{1,2}^{i+2-k}(S) = 0.
\]
Finally, we show $a_{1,k}^1(S) = 0$ for $3 \leq j < k \leq n$. From the coefficient $e_{1,k}^1$ in (34), we see
\[
a_{1,j+1,k+1}^1(S) = a_{j,k}^1(S)
\]
for $2 \leq j < k \leq n - 1$. This shows that for $3 \leq j < k \leq n$,
\[
a_{1,k}^1(S) = a_{j-1,k-1}^{j-1}(S) \cdots \cdots a_{2,k+2-j}^1(S) = 0.
\]
Therefore we obtain $a_{1,k}^i(S) = 0$ for any $(i, j, k) \in I$. This completes the proof of Step V.

From the argument above, we verify that any $a_{j,k}^i(\sigma) \in W$ belongs to the submodule generated by (2). Namely, a crossed homomorphism $f \in \text{Cros}(\text{Aut} F_n, V_L)$ is determined by (2). In other words, the map $\Phi : \text{Cros}(\text{Aut} F_n, V_L) \to L^{\oplus(n^3-n^2+4)/2}$
is injective. Let $W' = L^\oplus(n^3 - n^2 + 4)/2$ be the target of the map above. We consider $\text{Cros}(\text{Aut } F_n, V_L)$ as a submodule of W'. In the next Step, we study the quotient L-module $W'/\text{Prin}(\text{Aut } F_n, V_L)$.

Step VI. (The structure of $W'/\text{Prin}(\text{Aut } F_n, V_L)$.)

Here, we show that $W'/\text{Prin}(\text{Aut } F_n, V_L)$ is a free L-module of rank 2. For any element

$$a := \sum_{(i,j,k) \in I} a_{j,k}^i e_{j,k}^i \in V_L,$$

let $f_a : \text{Aut } F_n \to V$ be the principal homomorphism associated to a. For example,

$$f_a(Q) = \sum_{i \neq n, 1 \leq j < k \leq n-1} (a_{j+1,k+1}^i - a_{j,k}^i) e_{j,k}^i + \sum_{1 \leq i,j \leq n-1} (-a_{1,j+1}^i - a_{j,n}^i) e_{j,n}^i$$

$$+ \sum_{1 \leq j < k \leq n} (a_{j+1,k+1}^1 - a_{j,k}^n) e_{j,k}^n + \sum_{1 \leq j < k \leq n} (-a_{1,j+1}^1 - a_{j,n}^n) e_{j,n}^n$$

and

$$f_a(U) = \sum_{2 \leq k \leq n} a_{1,k}^2 e_{1,k}^2 + \sum_{3 \leq k \leq n} (a_{2,k}^2 - a_{1,k}^2) e_{2,k}^1 + \sum_{3 \leq j \leq n} a_{1,k}^j e_{j,k}^j$$

$$+ \sum_{3 \leq j \leq n} -a_{1,k}^2 e_{2,j}^2 + \sum_{3 \leq i,k \leq n} -a_{1,k}^i e_{i,k}^i.$$

In order to determine the L-module structure of $W'/\text{Prin}(\text{Aut } F_n, V_L)$, it suffices to find the elementary divisors of an $n^2(n - 1)/2 \times (n^3 - n^2 + 4)/2$ matrix:

$$A := \begin{pmatrix} a_{1,1}^1(Q) & a_{2,1}^2(Q) & \cdots & a_{n,1}^{n-1}(Q) & a_{1,1}^1(U) & a_{1,2}^2(S) & a_{1,3}^3(U) \\ a_{1,1}^2 & A_{1,1} & \cdots & A_{1,n-1} & A_{1,n} & A_{1,n+1} & A_{1,n+2} \\ a_{2,1}^1 & A_{2,1} & \cdots & A_{2,n-1} & A_{2,n} & A_{2,n+1} & A_{2,n+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1}^1 & A_{n,1} & \cdots & A_{n,n-1} & A_{n,n} & A_{n,n+1} & A_{n,n+2} \end{pmatrix}$$

which row is indexed by $a_{j,k}^i$s, and which column is indexed by i. Here each $A^{p,q}$ is a block matrix defined as follows. First, we consider the case where $1 \leq q \leq n - 1$. For $\sigma = P, Q, S$ and U, set

$$f_a(\sigma) := \sum_{(i,j,k) \in I} a_{j,k}^i(\sigma) e_{j,k}^i \in V_L.$$

Then, for any $1 \leq j_2 < k_2 \leq n$, we have

$$a_{j_2,k_2}^q(Q) = \sum_{(p,j_1,k_1) \in I} C_{(j_1,k_1), (j_2,k_2)}^{p,q} a_{j_1,k_1}^p.$$
for some $C_{(j_1, k_1), (j_2, k_2)} \in L$. Then the matrix $A^{p,q}$ is defined by

$$A^{p,q} := \begin{pmatrix}
 a^p_{1,2} & a^p_{1,3} & \cdots & a^p_{n-1,n} \\
 C^{p,q}_{(1,2), (1,2)} & C^{p,q}_{(1,2), (1,3)} & \cdots & C^{p,q}_{(1,2), (n-1,n)} \\
 C^{p,q}_{(1,3), (1,2)} & C^{p,q}_{(1,3), (1,3)} & \cdots & C^{p,q}_{(1,3), (n-1,n)} \\
 \vdots & \vdots & \ddots & \vdots \\
 C^{p,q}_{(n-1,n), (1,2)} & C^{p,q}_{(n-1,n), (1,3)} & \cdots & C^{p,q}_{(n-1,n), (n-1,n)}
\end{pmatrix}$$

where the rows are indexed by $a^p_{j,k}$s according to the usual lexicographic order on the set $\{(j, k) | 1 \leq j < k \leq n\}$. Similarly, the columns are indexed by $a^q_{j,k}$s.

By an argument similar to the above, the block matrices $A^{p,n}$, $A^{p,n+1}$ and $A^{p,n+2}$ for $1 \leq p \leq n$ are defined from $a^1_{j,k}(U)s$, $a^2_{1,2}(S)$ and $a^3_{2,3}(U)$ respectively.

Set

$$A' := \begin{pmatrix}
 a^1_{j,k} & a^2_{j,k} & \cdots & a^{n-1}_{j,k} & a^1_{j,k}(U) \\
 A^{1,1} & A^{1,2} & \cdots & A^{1,n-1} & A^{1,n} \\
 A^{2,1} & A^{2,2} & \cdots & A^{2,n-1} & A^{2,n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 A^{n,1} & A^{n,2} & \cdots & A^{n,n-1} & A^{n,n}
\end{pmatrix}.$$

In the following, we prove that all elementary divisors of A are equal to $1 \in L$ by showing that A' can be transformed into the identity matrix with only the elementary column operations. Then we conclude $W'/\text{Prin}(\text{Aut } F_n, V_L) \cong L^{n^2}$.

First, we transform the $a^1_{j,k}(U)$ columns of A'. To do this, we use the followings. From $f_\alpha(Q)$ and $f_\alpha(U)$ as above, the $a^1_{j,k}(Q)$ columns, the $a^1_{j,k}(U)$ columns for $j \neq 2$ and the $a^1_{2,k}(U)$ columns of A' are given by

$$a^1_{1,k} \begin{pmatrix} -E & O \\ O & -1 \end{pmatrix}, \quad a^1_{j,k}(U) \begin{pmatrix} O \\ a^1_{j,k} \end{pmatrix}, \quad a^1_{1,2} \begin{pmatrix} O \\ -E \end{pmatrix}, \quad a^1_{1,k} \begin{pmatrix} O \\ -E \end{pmatrix}$$

respectively. Here E denotes the identity matrix.

Let us consider the $a^1_{2,k}(U)$ columns of A'. Add the $a^1_{1,k}(U)$ columns to $a^1_{2,k}(U)$ columns for $3 \leq k \leq n$, and minus $a^1_{1,k}(Q)$ columns from the $a^1_{2,k}(U)$ columns for $3 \leq k \leq n$. Subsequently, by subtracting the $a^1_{1,2}(U)$ column from the $a^1_{2,n}(U)$ column,
we see that the $a_{2,k}(U)$ columns of A' are transformed into

\[
\begin{pmatrix}
a_{2,1}(U) \\
\vdots \\
a_{2,k} \\
X \\
\vdots \\
a_{2,n}(U)
\end{pmatrix}
\]

where

\[
X = \begin{pmatrix}
a_{2,1}(U) & a_{2,4}(U) & \cdots & a_{2,n}(U) \\
1 & 0 & \cdots & 0 & 0 \\
-1 & 1 & & & 0 \\
0 & & & & \\
& & & & \\
& & \ddots & & \\
& & & & 1 & 0
\end{pmatrix}
\]

It is easily seen that X can be transformed into the identity matrix with the elementary column operations. Hence the $a_{j,k}(U)$ columns of A' are transformed into

\[
\begin{pmatrix}
a_{j,1}(U) \\
\vdots \\
a_{j,k} \\
E \\
\vdots \\
a_{j,n}(U)
\end{pmatrix}
\]

(37)

Next, for any $1 \leq j \leq n - 1$, we consider the $a_{j,k}(Q)$ columns given by

\[
\begin{pmatrix}
a_{j,1}(Q) & a_{j,n}(Q) \\
\vdots & \\
a_{j,k} & O \\
\vdots & \\
a_{j,n} & O \\
\vdots & \\
a_{j+1,k+1} & E \\
\vdots & \\
a_{j+1,1} & O
\end{pmatrix}
\]

Multiplying each column by -1 and using (37), we can transform the $a_{j,k}(Q)$ columns into

\[
\begin{pmatrix}
a_{j,1}(Q) \\
\vdots \\
a_{j,k} \\
E \\
\vdots \\
a_{j,n}(Q)
\end{pmatrix}
\]
Now, we consider the $a_{j,k}^2(Q)$ columns given by

$$
\begin{pmatrix}
\vdots & O & O & O & \cdots & O & O \\
\vdots & -E & O & O & \cdots & O & O \\
a_{1,k}^2 & O & -1 & O & \cdots & 0 & 0 \\
a_{1,n}^2 & O & 0 & O & \cdots & 0 & 0 \\
a_{2,l}^2 & O & 0 & -E & \cdots & O & O \\
a_{2,n}^2 & O & 0 & O & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n-1,n}^2 & O & 0 & O & \cdots & 0 & -1 \\
a_{1,2}^3 & O & -1 & O & \cdots & 0 & 0 \\
a_{1,3}^3 & O & 0 & O & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{1,n}^3 & O & O & O & \cdots & 0 & -1 \\
a_{2,k+1}^3 & E & O & O & \cdots & O & O \\
a_{3,l+1}^3 & O & O & E & \cdots & O & O \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n-1,n}^3 & O & O & O & \cdots & 1 & 0 \\
\vdots & O & O & O & \cdots & 0 & O \\
\end{pmatrix}
$$

respectively. Similarly, using (37) and the multiplication of -1, we can transform the $a_{j,k}^2(Q)$ columns of A' into

$$
\begin{pmatrix}
\vdots \\
\vdots \\
a_{j,k}^3 \\
\vdots \\
\vdots \\
a_{j,k}^2 \\
\end{pmatrix}
\begin{pmatrix}
O \\
E \\
O \\
\end{pmatrix}
$$

respectively.

By the same argument as above, for any $3 \leq p \leq n - 1$, we can transform the $a_{j,k}^p(Q)$ columns of A' into

$$
\begin{pmatrix}
\vdots \\
\vdots \\
a_{j,k}^{p+1} \\
\vdots \\
\vdots \\
a_{j,k}^p \\
\end{pmatrix}
\begin{pmatrix}
O \\
E \\
O \\
\end{pmatrix}
$$
recursive from \(p = 3 \) to \(n - 1 \). From the argument above, we can transform \(A' \) into

\[
A' := \begin{pmatrix}
\begin{array}{cccc}
a^1_{j,k}(Q) & a^2_{j,k}(Q) & \cdots & a^{n-1}_{j,k}(Q) \\
E & O & \cdots & O \\
a^2_{j,k} & O & \cdots & O \\
a^3_{j,k} & O & \cdots & E \\
\vdots & \vdots & \ddots & \vdots \\
\end{array}
\end{pmatrix}
\]

and into the identity matrix with only the elementary column operations. Therefore we conclude that all elementary divisors of \(A \) are equal to 1 ∈ \(L \). In particular, observing the process of the transformation of \(A \) as mentioned above, we see that a map \(\Phi' : W' \to \mathbb{L}^{\oplus 2} \) defined by

\[
\left((a^i_{j,k}(Q))_{i \neq n, 1 \leq j < k \leq n}, (a^1_{j,k}(U))_{1 \leq j < k \leq n}, a^2_{1,2}(S), a^3_{2,3}(U)\right) \mapsto (a^2_{1,2}(S), a^3_{2,3}(U))
\]

induces an isomorphism

\[
W' / \text{Prin}(\text{Aut } F_n, V_L) \cong \mathbb{L}^{\oplus 2}.
\]

Finally, for the crossed homomorphisms \(f_M, f_N \in \text{Cros}(F, V_L) \) defined in Section 3 we see

\[
\Phi'(f_M) = (-1, 0), \quad \Phi(f_N) = (0, 1).
\]

Hence

\[
H^1(\text{Aut } F_n, V_L) \cong W' / \text{Prin}(\text{Aut } F_n, V_L) \cong \mathbb{L}^{\oplus 2}.
\]

This completes the proof of Theorem 4.1. \(\square \)

From Theorem 4.1, we see that the crossed homomorphisms \(f_M \) and \(f_N \), and hence \(f_M \) and \(f_K \), generate \(H^1(\text{Aut } F_n, V_L) \) for \(n \geq 5 \).

5. Some Applications

In this section, we consider the first Johnson homomorphism and the first cohomology group of the outer automorphism group.

5.1. The first Johnson homomorphism.

Here we show

Proposition 5.1. Let \(L \) be a commutative ring which does not contain both any 2-torsions and \(1/2 \). Then for \(n \geq 5 \), there is no crossed homomorphism from \(\text{Aut } F_n \) to \(V_L \) which restriction to \(\text{IA}_n \) coincides with \(\tau_{1,L} \).

Proof of Proposition 5.1. Assume that the first Johnson homomorphism \(\tau_{1,L} \) extends to \(\text{Aut } F_n \) as a crossed homomorphism. By Theorem 4.1, \(\tau_{1,L} \) is cohomologous to \(a f_M + b f_K \) for some \(a, b \in L \). Then, for distinct \(i, j, k \) and \(j < k \), observing \(f_K(K_{ijk}) = 2e^i_{j,k} \), we see

\[
e^i_{j,k} = \tau_{1,L}(K_{ijk}) = 2be^i_{j,k}.
\]

This shows \(2b = 1 \). It is contradiction to the hypothesis of \(L \). This completes the proof of Proposition 5.1. \(\square \)
5.2. Outer automorphism group.

Here, we compute the first cohomology group of the outer automorphism group $\text{Out} F_n := \text{Aut} F_n / \text{Inn} F_n$ of F_n with coefficients in V_L for any commutative ring L which does not have any 2-torsions.

Proposition 5.2. Let L be as above. Then, for $n \geq 5$, \[H^1(\text{Out} F_n, V_L) = L. \]

Proof of Proposition 5.2. Considering the five-term exact sequence of \[1 \to \text{Inn} F_n \to \text{Aut} F_n \to \text{Out} F_n \to 1, \] we have \[0 \to H^1(\text{Out} F_n, V_L) \to H^1(\text{Aut} F_n, V_L) \xrightarrow{\alpha} H^1(\text{Inn} F_n, V_L) \to H^2(\text{Out} F_n, V_L). \]

From Theorem 4.1, $H^1(\text{Aut} F_n, V_L)$ can be identified with a free L-module $L^{\oplus 2}$ generated by f_M and f_K. Since

\[\alpha(f_M) = (n - 1) \sum_{i=1}^{n} \iota_i^* \otimes (e_{1,i} + e_{2,i} + \cdots + e_{n,i}), \]

\[\alpha(f_K) = 2 \sum_{i=1}^{n} \iota_i^* \otimes (e_{1,i} + e_{2,i} + \cdots + e_{n,i}), \]

the image of α is contained in a free L-module L generated by

\[\sum_{i=1}^{n} \iota_i^* \otimes (e_{1,i} + e_{2,i} + \cdots + e_{n,i}). \]

Then α is considered as an L-linear homomorphism $L^{\oplus 2} \to L$ which matrix representation is $(n - 1 \ 2)$. Using the elementary operations, we can transform it into

\[\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \ n : \text{even}, \]

\[\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \ n : \text{odd}. \]

In both cases, the kernel of this homomorphism is isomorphic to L. This completes the proof of Proposition 5.2.

6. Acknowledgments

This research is supported by JSPS Research Fellowship for Young Scientists and Global COE program at Kyoto University.

References

[1] J. S. Birman. Braids, Links, and Mapping Class Groups, Annals of Math. Studies 82 (Princeton University Press, 1974).

[2] N. Bourbaki: Lie groups and Lie algebra, Chapters 1–3, Softcover edition of the 2nd printing, Springer-Verlag (1989).

[3] F. Cohen and J. Pakianathan. On Automorphism Groups of Free Groups, and Their Nilpotent Quotients, preprint.

[4] F. Cohen and J. Pakianathan. On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.

[5] B. Farb. Automorphisms of F_n which act trivially on homology, in preparation.
[6] S. Galatius. Stable homology of automorphism groups of free groups, preprint, arXiv:math.AT/0610216v3.
[7] S. M. Gersten. A presentation for the special automorphism group of a free group, J. Pure and Applied Algebra 33 (1984), 269-279.
[8] A. Hatcher and K. Vogtmann. Rational homology of Aut(F_n), Math. Res. Lett. 5 (1998), 759-780.
[9] A. Hatcher and N. Wahl. Stabilization for the automorphisms of free groups with boundaries, Geometry and Topology, Vol. 9 (2005), 1295-1336.
[10] N. Kawazumi. Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.
[11] S. Krsti´c, J. McCool. The non-finite presentability in IA(F_3) and $GL_2(\mathbb{Z}[t,t^{-1}])$, Invent. Math. 129 (1997), 595-606.
[12] W. Magnus. Über n-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.
[13] J. McCool. Some remarks on IA automorphisms of free groups, Can. J. Math. Vol. XL, no. 5 (1998), 1144-1155.
[14] S. Morita; On the Homology Groups of the Mapping Class Groups of Orientable Surfaces with Twisted Coefficients, Proc. Japan Acad., 62, Ser. A (1986), 148-151.
[15] S. Morita. Families of Jacobian manifolds and characteristic classes of surface bundles I, Ann. Inst. Fourier 39 (1989), 777-810.
[16] S. Morita. Families of Jacobian manifolds and characteristic classes of surface bundles, II, Math. Proc. Camb. Phil. Soc. 105 (1989), 79-101.
[17] S. Morita. Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699-726.
[18] S. Morita. The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, Invent. math. 111 (1993), 197-224.
[19] S. Morita. Structure of the mapping class groups of surfaces: a survey and a prospect, Geometry and Topology Monographs Vol. 2 (1999), 349-406.
[20] S. Morita. Cohomological structure of the mapping class group and beyond, preprint.
[21] J. Nielsen. Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385-397.
[22] J. Nielsen. Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), 169-209.
[23] J. Nielsen. Untersuchungen zur Topologie der geschlossenen Zweizeitigen Flächen, Acta Math. 50 (1927), 189-358.
[24] T. Satoh. Twisted first homology group of the automorphism group of a free group, Journal of Pure and Applied Algebra, 204 (2006), 334-348.
[25] T. Satoh. New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group, Journal of the London Mathematical Society, (2) 74 (2006) 341-360.
[26] T. Satoh. Twisted second homology group of the automorphism group of a free group, Journal of Pure and Applied Algebra, 211 (2007), 547-565.

Department of Mathematics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto city 606-8502, Japan
E-mail address: takao@math.kyoto-u.ac.jp