ON A POSITIVITY PROPERTY OF THE REAL PART OF LOGARITHMIC DERIVATIVE OF THE RIEMANN ξ–FUNCTION

EDVINAS GOLDSSTEIN AND ANDRIUS GRIGUTIS

Abstract. In this paper we investigate the positivity property of the real part of logarithmic derivative of the Riemann ξ–function for $1/2 < \sigma < 1$ and sufficiently large t. We give an explicit upper and lower bounds for $\Re\sum_{\rho} 1/(s-\rho)$, where the sum runs over the zeros of $\xi(s)$ on the line $1/2+it$. We also check the positivity of $\Re\xi'/\xi(s)$ for $1/2 < \sigma < 1$ assuming that there occur a non-trivial zeros of $\zeta(s)$ off the critical line.

1. Introduction

For the complex $s = \sigma + it$ the Riemann ξ–function is defined by

$$\xi(s) = \frac{1}{2} s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s),$$

where $\zeta(s)$ is Riemann ζ–function. The functions $\xi(s)$ and $\zeta(s)$ have the same zeros in the strip $0 < \sigma < 1$ and the famous Riemann hypothesis states that they all are located on the line $1/2+it$ - called the critical line. Zeros in the strip $0 < \sigma < 1$ are known as non-trivial zeros of $\zeta(s)$. The Riemann ζ–function also has zeros at each even negative integer $s = -2n$ - these are known as the trivial zeros of $\zeta(s)$. The function $\xi(s)$ also satisfies $\xi(s) = \xi(1-s)$ and $\overline{\xi(s)} = \xi(\overline{s})$. From this, it is clear that $\xi(\sigma + it) = 0$ iff $\xi(1-\sigma + it) = 0$. Also, if s is a non-trivial zero of $\xi(s)$ off the critical line then the four numbers $\{s, \overline{s}, 1-s, 1-\overline{s}\}$ would all be non-trivial zeros off the line.

By $\rho = \beta + i\gamma$ we denote a non-trivial zero of $\zeta(s)$, i.e. $\zeta(\rho) = 0$. The function $\xi(s)$ can be expanded as an infinite product by ρ, see Edwards [4, p. 39] and Wolfram MathWorld [23],

$$\xi(s) = \xi(0) \prod_{\rho} \left(1 - \frac{s}{\rho}\right) = \frac{1}{2} \prod_{\rho} \left(1 - \frac{s}{\rho}\right),$$

where the product is taken in an order which pairs each root ρ with the corresponding root $1-\rho$. The logarithmic derivative of $\xi(s)$ is

$$\frac{\xi'}{\xi}(s) = \sum_{\rho} \frac{1}{s-\rho},$$
where the summation is understood the same way as defining the product (1). There is a direct relation between location of zeros of complex function \(f \) and behavior of its modulus or real part of logarithmic derivative. Matiyasevich, Saidak and Zvengrowski \cite{14} note that “...strict decrease of the modulus of any continuous complex function \(f \) along any curve in the complex plane clearly implies that \(f \) can have no zero along that curve.” The relation between monotonicity of modulus of complex function \(|f| \) and sign of its real part of logarithmic derivative \(\Re f' \) is provided in Lemma 6.

It is known that (see for example Hinkkanen \cite{9})

\[
\Re \frac{\xi'}{\xi}(s) > 0 \text{ when } \Re s > 1
\]

and the Riemann hypothesis is equivalent to

\[
\Re \frac{\xi'}{\xi}(s) > 0 \text{ when } \Re s > \frac{1}{2}.
\]

Lagarias \cite{10} proved that

\[
\inf \left\{ \Re \frac{\xi'}{\xi}(s) : -\infty < t < \infty \right\} = \frac{\xi'}{\xi}(\sigma) \tag{3}
\]

for \(\sigma > 10 \) and Garunkštis \cite{6} later improved (3) for \(\sigma > a \), where \(\sigma > a \) is a zero-free region of \(\xi(s) \). See also Broughan \cite{2} on the subject.

In the paper by Sondow and Dumitrescu \cite{19} there was given the following reformulation of the Riemann hypothesis.

Theorem 1. (Sondow, Dumitrescu) The following statements are equivalent.

I. If \(t \) is any fixed real number, then \(|\xi(\sigma + it)| \) is increasing for \(1/2 < \sigma < \infty \).

II. If \(t \) is any fixed real number, then \(|\xi(\sigma + it)| \) is decreasing for \(-\infty < \sigma < 1/2 \).

III. The Riemann hypothesis is true.

Also, in the same paper it was proved the following theorem.

Theorem 2. (Sondow, Dumitrescu) The \(\xi \)-function is increasing in modulus along every horizontal half-line lying in any open right half-plane that contains no \(\xi \) zeros. Similarly, the modulus decreases on each horizontal half-line in any zero-free, open left half-plane.

Matiyasevich, Saidak and Zvengrowski \cite{14} slightly reformulated the Theorem 2.

Theorem 3. (Matiyasevich, Saidak, Zvengrowski) Let \(\sigma_0 \) be greater than or equal to the real part of any zero of \(\xi \). Then \(|\xi(s)| \) is strictly increasing\(^1\) in the half-plane \(\sigma > \sigma_0 \).

\(^1\)With respect to \(\sigma \).
In this paper we further investigate the function $\xi'/\xi(s)$. We set

$$\frac{\xi'}{\xi}(s) = \sum_{\rho=1/2+i\gamma} \frac{1}{s-\rho} + \sum_{\rho \neq 1/2+i\gamma} \frac{1}{s-\rho} =: \Sigma_1 + \Sigma_2,$$

(4)

where the summation again is understood as defining (1). This ensures an absolute convergence of the series in (4) for $s : \xi(s) \neq 0$, see Edwards [4, p. 42]. Obviously, the sum Σ_1 exists, while Σ_2 might be vacuous as the Riemann hypothesis is unsolved.

For $1/2 < \sigma < 1$ and sufficiently large t, in Theorem 4 below, we give an explicit lower and upper bounds for $\Re\Sigma_1$. The lower bound of $\Re\Sigma_1$ in Theorem 4 suggests that $\Re\xi'/\xi(s)$ may remain positive asymptotically close to the critical line despite that $\Re\Sigma_2$ might occur if the Riemann hypothesis fails. In Section 4 we test the positivity of $\Re(\Sigma_1 + \Sigma_2)$ assuming that a certain versions of Σ_2 exist - an obtained results widen Theorems 2 and 3, see Figures 1 and 2 in Section 4.

We start the investigation of Σ_1 by an observation that there are infinitely many zeros of $\zeta(s)$ lying on the line $1/2 + it$ (see Hardy [7]), however we do not know the quantity of zeros of $\zeta(s)$ lying in the strip $1/2 < \sigma < 1$. The initial result on the part of non-trivial zeros on the critical line of the Riemann zeta-function was obtained by Selberg [18]. There was proved that at least a positive proportion of all non-trivial zeros lie on the critical line. Later this result was improved by several authors, see for example Levinson [11], Conrey [3], Feng [5], Pratt et al. [17]. Based on the mentioned facts, we formulate the following theorem for $\Re\Sigma_1$.

Theorem 4. Let $1/2 < \sigma < 1$. Let c be the part of non-trivial zeros of $\zeta(s)$ lying on the line $1/2 + it$ and

$$A(t) = 0.12\log \frac{t}{2\pi} - 2.32\log\log t - 18.432 - \epsilon_1(t),$$

$$B(t) = 0.49\log \frac{t}{2\pi} + 0.58\log\log t + 4.603 + \epsilon_2(t),$$

where $\epsilon_1(t)$ and $\epsilon_2(t)$ are known explicit t functions (see (14) and (15) below) both vanishing as $t^{-1}\log t, t \to \infty$.

Then

$$0 < c\left(\sigma - \frac{1}{2}\right) A(t) < \Re\sum_{\rho=1/2+i\gamma} \frac{1}{s-\rho}, t > 1.984 \times 10^{114},$$

$$\Re\sum_{\rho=1/2+i\gamma} \frac{1}{s-\rho} < \frac{cB(t)}{\sigma - 1/2}, t > 14.635.$$

We prove Theorem 4 in Section 3. This theorem leads to the following corollary.

Corollary 5. The function

$$\Re\frac{\xi'}{\xi}(s) = -\Re\frac{\xi'}{\xi}(1-s) > 0$$
if
\[\Re \sum_{\rho \neq 1/2+iy} \frac{1}{s-\rho} + c \left(\sigma - \frac{1}{2} \right) A(t) > 0. \quad (5) \]

The remaining structure of this article is: in Section 2 we formulate an auxiliary statements, while in the last Section 4 we depict the condition (5) assuming that the Riemann hypothesis fails.

2. Lemmas

In this section we formulate a several auxiliary lemmas, which are needed for the proof of Theorem 4.

Lemma 6. (a) Let \(f \) be holomorphic in an open domain \(D \) and not identically zero. Let us also suppose \(\Re \left(\frac{f'(s)}{f(s)} \right) < 0 \) for all \(s \in D \) such that \(f(s) \neq 0 \). Then \(|f(s)| \) is strictly decreasing with respect to \(\sigma \) in \(D \), i.e. for each \(s_0 \in D \) there exists a \(\delta > 0 \) such that \(|f(s)| \) is strictly monotonically decreasing with respect to \(\sigma \) on the horizontal interval from \(s_0 - \delta \) to \(s_0 + \delta \).

(b) Conversely, if \(|f(s)| \) is decreasing with respect to \(\sigma \) in \(D \), then \(\Re \left(\frac{f'(s)}{f(s)} \right) \leq 0 \) for all \(s \in D \) such that \(f(s) \neq 0 \).

Proof. See Matiyasevich, Saidak, Zvengrowski [14] for the proof.

Note 1: Of course, the analogous results hold for monotone increasing \(|f(s)| \) and \(\Re \left(\frac{f'(s)}{f(s)} \right) > 0 \).

Lemma 7. Let \(N(T) \) be the number of zeros of \(\xi(s) \) in the rectangle \(0 < \sigma < 1, \) \(0 < t < T \). If \(T \geq e \), then
\[\left| N(T) - \frac{T}{2\pi} \log \frac{T}{2\pi e} - \frac{7}{8} \right| \leq 0.110 \log T + 0.290 \log \log T + 2.290 + \frac{25}{48\pi T}. \quad (6) \]

Proof. In the paper by Trudgian [22, p. 283] it is derived that, for \(T \geq 1 \)
\[\left| N(T) - \frac{T}{2\pi} \log \frac{T}{2\pi e} - \frac{7}{8} \right| \leq |S(T)| + \frac{1}{4\pi} \arctan \left(\frac{1}{2T} \right) + \frac{T}{4\pi} \log \left(1 + \frac{1}{4T^2} \right) + \frac{1}{3\pi T}, \]
where \(\pi S(T) \) is the argument of the Riemann zeta-function along the critical line. From the paper by Platt and Trudgian [16, Cor. 1] (see also Hasanalizade, Shen, Wong [8])
\[|S(T)| \leq 0.110 \log T + 0.290 \log \log T + 2.290, \ T \geq e \]
and, using inequalities,
\[\arctan \frac{1}{t} = \int_0^{1/t} \frac{dx}{1+x^2} \leq \frac{1}{t}, \ t > 0 \]
and
\[
\log(1 + t) \leq t, t > -1,
\]
we get a desired result.

Lemma 8. If \(a, b, \alpha > 0 \), then the following inequality holds
\[
\int_{\alpha}^{t} \log \frac{u}{2\pi} \frac{du}{a^2 + b^2(u-t)^2} \geq \frac{1}{ab} \log \left(\frac{t}{2\pi} \right) \arctan \left(\frac{b(t-\alpha)}{a} \right) - \kappa,
\]
when \(t > t_0 \geq \alpha \), where \(t_0 \) and constant \(\kappa > 0 \) are both sufficiently large and \(\kappa \) is independent on \(t \).

In particular, if \(a = 1/2, b = 1 \) and \(\alpha = 14.134725 \ldots \), then the provided inequality holds if \(t > 23 \) and \(\kappa = 0.135 \).

Proof. We set up the function
\[
F(t) = \int_{\alpha}^{t} \log \frac{u}{2\pi} \frac{du}{a^2 + b^2(u-t)^2} - \frac{1}{ab} \log \left(\frac{t}{2\pi} \right) \arctan \left(\frac{b(t-\alpha)}{a} \right) + \kappa
\]
and show that \(t \) derivative \(F'(t) \geq 0 \) for \(t > t_0 \geq \alpha \). Indeed, according to the Leibniz integral rule (see for example Mackevičius [12] or Spivak [20])
\[
F'(t) = 2b^2 \int_{\alpha}^{t} \frac{(u-t) \log u/2\pi \, du}{(a^2 + b^2(u-t)^2)^2} + \left(\frac{1}{a^2} - \frac{1}{a^2 + b^2(t-\alpha)^2} \right) \log \frac{t}{2\pi} \frac{1}{abt} \frac{b(t-\alpha)}{a}.
\]
The last integral is
\[
2b^2 \int_{\alpha}^{t} \frac{(u-t) \log u/2\pi \, du}{(a^2 + b^2(u-t)^2)^2} = -\int_{\alpha}^{t} \log \frac{u}{2\pi} \frac{d}{a^2 + b^2(u-t)^2} \frac{1}{a^2 + b^2(u-t)^2} - \int_{\alpha}^{t} \log(t/2\pi) \frac{du}{a^2 + b^2(t-\alpha)^2} + \int_{\alpha}^{t} \frac{du}{u(a^2 + b^2(t-\alpha)^2)},
\]
where
\[
\int_{\alpha}^{t} \frac{du}{u(a^2 + b^2(t-\alpha)^2)} = \frac{b^2}{b^2t^2 + a^2} \int_{\alpha}^{t} \left(\frac{1}{b^2u} + \frac{2t-u}{a^2 + b^2(u-t)^2} \right) \, du
\]
\[
= \frac{\log(t/\alpha)}{b^2t^2 + a^2} + \frac{b}{a} \frac{t}{b^2t^2 + a^2} \arctan \left(\frac{b(t-\alpha)}{a} \right) + \frac{1}{2} \cdot \frac{1}{b^2t^2 + a^2} \log \left(1 + \frac{b^2(t-\alpha)^2}{a^2} \right).
\]
Therefore

\[F'(t) = \frac{1}{2b^2t^2 + a^2} \log \left(\left(\frac{t}{\alpha} \right)^2 + \left(\frac{bt}{a\alpha} \right)^2 \right) - \frac{\log(t/\alpha)}{a^2 + b^2(t - \alpha)^2} \]

\[- \frac{a}{b} \cdot \frac{1}{t} \cdot \frac{1}{b^2t^2 + a^2} \arctan \left(\frac{b(t - \alpha)}{a} \right). \]

For \(t \geq \alpha + a/b \), it holds that

\[\frac{bt(t - \alpha)}{a\alpha} \geq \frac{t}{\alpha}, \]

and

\[F'(t) \geq \frac{\log \sqrt{2}}{a^2 + b^2t^2} - \frac{(\alpha(2t - \alpha))\log(t/\alpha)}{(a^2 + b^2t^2)(a^2 + b^2(t - \alpha)^2)} \]

\[- \frac{a}{b} \cdot \frac{1}{t} \cdot \frac{1}{b^2t^2 + a^2} \arctan \left(\frac{b(t - \alpha)}{a} \right). \]

The positive term of the right-hand side of inequality (7) vanishes as \(t^{-2} \) while the two negative terms as \(t^{-3} \log t \), which means that \(F'(t) > 0 \) if \(t > t_0 \geq \alpha \) and \(t_0 \) is sufficiently large.

We next check whether \(F(t_0) \geq 0 \). It is easy to see that

\[\lim_{t \to \alpha^+} F(t) = \kappa > 0. \]

Therefore, due to continuity of \(F(t) \), \(F(t) > 0 \) for at least \(t \in (\alpha, t_0] \) if \(\kappa \) is large enough and \(t_0 \) is dependent on \(\kappa \).

For the particular case \(a = 1/2, b = 1 \) and \(\alpha = 14.134725 \ldots \) we check with Mathematica \(^{[13]}\) that \(F'(t) > 0 \), when \(t > 23 \) and \(F(23) = 0.00092 \ldots \) if \(\kappa = 0.135 \).

Lemma 9. If \(t > 1 \), then

\[\frac{\pi}{2} - \frac{1}{t} < \arctan t < \frac{\pi}{2} - \frac{1}{2t}. \] (8)

Proof. The first inequality of (8) follows from

\[\frac{\pi}{2} = \int_0^\infty \frac{dx}{1 + x^2} = \int_0^t \frac{dx}{1 + x^2} + \int_t^\infty \frac{dx}{1 + x^2} \leq \arctan t + \int_t^\infty \frac{dx}{x^2} = \arctan t + \frac{1}{t}, \]

and the second

\[\frac{\pi}{2} = \int_0^\infty \frac{dx}{1 + x^2} = \int_0^t \frac{dx}{1 + x^2} + \int_t^\infty \frac{dx}{1 + x^2} > \arctan t + \int_t^\infty \frac{dx}{x^2 + x^2} = \arctan t + \frac{1}{2t}. \]

Note 2: The first inequality in (8) holds for \(t > 0 \) also.

Note 3: The function \(\arctan \) is an odd function and for \(t < -1 \) the estimates are
\[-\frac{\pi}{2} - \frac{1}{2}\alpha < \arctan(t) < -\frac{\pi}{2} - \frac{1}{t} .\]

Lemma 10. Let \(\alpha > 0 \) and \(b > a > 0 \) be a constants. For \(t > t_0 \geq \alpha + a/b \), let

\[
\tilde{A}(t) := \frac{\pi}{ab} \log \left(\frac{t}{2\pi} \right) - \frac{\log \frac{t}{2\pi}}{b^2(t-\alpha)} - \kappa
\]

and

\[
\tilde{B}(t) := \left(\frac{\pi}{ab} + \frac{1}{b^2t} \right) \log \frac{t+1}{2\pi} + \frac{\log(t+1)}{b^2t} ,
\]

where \(\kappa > 0 \) is a constant from Lemma 8 and \(t_0 \) is sufficiently large.

Then

\[
\tilde{A}(t) < \int_{\alpha}^{\infty} \frac{\log(u/2\pi) du}{a^2 + b^2(u-t)^2} < \tilde{B}(t).
\]

Proof. For the lower bound, by elementary calculation and Lemmas 8 and 9 we obtain

\[
\int_{\alpha}^{\infty} \frac{\log(u/2\pi) du}{a^2 + b^2(u-t)^2} = \left(\int_{\alpha}^{t} + \int_{t}^{\infty} \right) \frac{\log(u/2\pi) du}{a^2 + b^2(u-t)^2}
\]

\[
> \int_{t}^{\infty} \frac{\log(u/2\pi) du}{a^2 + b^2(u-t)^2} + \log \left(\frac{t}{2\pi} \right) \int_{t}^{\infty} \frac{du}{a^2 + b^2(u-t)^2}
\]

\[
> \frac{1}{ab} \log \left(\frac{t}{2\pi} \right) \arctan \left(\frac{b(t-\alpha)}{a} \right) - \kappa + \frac{\pi}{2ab} \log \left(\frac{t}{2\pi} \right)
\]

\[
> \frac{\pi}{ab} \log \left(\frac{t}{2\pi} \right) - \frac{\log \frac{t}{2\pi}}{b^2(t-\alpha)} - \kappa = \tilde{A}(t).
\]

By the same thoughts for the upper bound we get

\[
\int_{\alpha}^{\infty} \frac{\log(u/2\pi) du}{a^2 + b^2(u-t)^2} = \left(\int_{\alpha}^{t+1} + \int_{t+1}^{\infty} \right) \frac{\log(u/2\pi) du}{a^2 + b^2(u-t)^2}
\]

\[
< \log \left(\frac{t+1}{2\pi} \right) \int_{\alpha}^{t+1} \frac{du}{a^2 + b^2(u-t)^2} + \frac{1}{b^2} \int_{t+1}^{\infty} \frac{\log(u/2\pi) du}{(u-t)^2}
\]

\[
= \frac{1}{ab} \log \left(\frac{t+1}{2\pi} \right) \left(\arctan \left(\frac{b}{a} \right) + \arctan \left(\frac{t-\alpha}{a/b} \right) \right) + \frac{(1 + \frac{1}{t}) \log(t+1) - \log 2\pi}{b^2}
\]

\[
< \left(\frac{\pi}{ab} - \frac{t-\alpha+1}{2b^2(t-\alpha)} \right) \log \left(\frac{t+1}{2\pi} \right) + \frac{(1 + \frac{1}{t}) \log(t+1) - \log 2\pi}{b^2}
\]

\[
< \left(\frac{\pi}{ab} + \frac{1}{2b^2} \right) \log \left(\frac{t+1}{2\pi} \right) + \frac{\log(t+1)}{b^2t} = \tilde{B}(t).
\]

Lemma 11. Let \(\alpha > 0 \) and \(b > a > 0 \) be a constants. For \(t > \alpha + a/b \), let

\[
\tilde{C}(t) := \frac{1}{4b^2t} \log \left(\frac{t}{2\pi} \right) - \frac{\alpha}{b^2t^2} \log \left(\frac{\alpha}{2\pi} \right)
\]
and
\[\tilde{D}(t) := \frac{1}{2b^2t} \log \left(\frac{2t^3}{4\pi^3} \right). \]

Then
\[\tilde{C}(t) < \int_{\alpha}^{\infty} \frac{\log(u/2\pi)}{a^2 + b^2(u+t)^2} du < \tilde{D}(t). \]

Proof. We do the same as in the proof of the previous lemma. For the lower bound
\[
\int_{\alpha}^{\infty} \frac{\log(u/2\pi)}{a^2 + b^2(u+t)^2} du = \left(\int_{\alpha}^{t} + \int_{t}^{\infty} \right) \frac{\log(u/2\pi)}{a^2 + b^2(u+t)^2} \\
> \frac{1}{ab} \log \left(\frac{\alpha}{2\pi} \right) \left(\arctan \frac{2t}{a/b} - \arctan \frac{t+\alpha}{a/b} \right) + \frac{1}{ab} \log \left(\frac{t}{2\pi} \right) \left(\frac{\pi}{2} - \arctan \frac{2t}{a/b} \right) \\
> \frac{1}{ab} \log \left(\frac{\alpha}{2\pi} \right) \left(\frac{\pi}{2} - \frac{a/b}{2t} - \frac{\pi}{2} + \frac{a/b}{2(t+\alpha)} \right) + \frac{1}{ab} \log \left(\frac{t}{2\pi} \right) \left(\frac{\pi}{2} - \frac{\pi}{2} + \frac{a/b}{4t} \right) \\
> \frac{1}{ab} \log \left(\frac{\alpha}{2\pi} \right) - \frac{\alpha}{b^2t^2} \log \left(\frac{\alpha}{2\pi} \right) = \tilde{C}(t).
\]

And for the upper bound
\[
\int_{\alpha}^{\infty} \frac{\log(u/2\pi)}{a^2 + b^2(u+t)^2} du = \left(\int_{\alpha}^{t} + \int_{t}^{\infty} \right) \frac{\log(u/2\pi)}{a^2 + b^2(u+t)^2} \\
< \log \left(\frac{t}{2\pi} \right) \int_{\alpha}^{t} \frac{du}{a^2 + b^2(u+t)^2} + \int_{t}^{\infty} \frac{\log(u/2\pi)}{b^2(u+t)^2} du \\
= \frac{1}{ab} \log \left(\frac{t}{2\pi} \right) \left(\arctan \left(\frac{2t}{a/b} \right) - \arctan \left(\frac{t+\alpha}{a/b} \right) \right) + \frac{1}{2b^2t} \log \left(\frac{2t}{\pi} \right) \\
< \frac{1}{ab} \log \left(\frac{t}{2\pi} \right) \left(\frac{\pi}{2} - \frac{a/b}{4t} - \frac{\pi}{2} + \frac{a/b}{t+\alpha} \right) + \frac{1}{2b^2t} \log \left(\frac{2t}{\pi} \right) \\
< \frac{1}{b^2t} \log \left(\frac{2t}{\pi} \right) + \frac{1}{b^2t} \log \left(\frac{t}{2\pi} \right) = \tilde{D}(t).
\]

The next lemma we need is well known as a summation by parts.

Lemma 12. Let \(\{a_n\}_{n=1}^{\infty} \) be a sequence of complex numbers and \(G(u) \) a continuously differentiable function on \([1, x]\). If \(A(u) = \sum_{n \leq u} a_n \), then
\[
\sum_{n \leq x} a_n G(n) = A(x) G(x) - \int_{1}^{x} A(u) G'(u) \, du.
\]

Proof. See for example Murty [15, p. 18] or Apostol [1, p. 54] for the proof.
In the below met inequalities numbers are rounded up to two or three decimal places.

Lemma 13. Let \(\rho = \beta + i \gamma \) denote a non-trivial zero of \(\zeta(s) \). Let \(a, b > 0 \) and \(\gamma := 14.134725 \ldots \) (\(\zeta(1/2 + i \gamma) = 0 \)). If \(t > \gamma \), then

\[
\sum_{\rho = \beta + i \gamma} \frac{1}{a^2 + b^2(t - \gamma)^2} = \sum_{\gamma > 0} \frac{1}{a^2 + b^2(t - \gamma)^2} + \sum_{\gamma > 0} \frac{1}{a^2 + b^2(t + \gamma)^2} =: S_1 + S_2,
\]

where

\[
\left| S_1 - \frac{1}{2\pi} \int_{\gamma}^{\infty} \frac{\log(u/2\pi)}{a^2 + b^2(u-t)^2} du \right| < \frac{0.22 \log t + 0.58 \log \log t + 4.58}{a^2} + \frac{0.166}{a^2 t} \left(1 + \frac{2.411a}{b} \right)
\]

and

\[
\left| S_2 - \frac{1}{2\pi} \int_{\gamma}^{\infty} \frac{\log(u/2\pi)}{a^2 + b^2(u+t)^2} du \right| < \frac{3.811}{a^2 + b^2(\gamma_1 + t)^2} + \frac{0.045}{ab}.
\]

Proof. Since \(\zeta(\rho) = \zeta(\bar{\rho}) = 0 \) we have that

\[
\sum_{\rho = \beta + i \gamma} \frac{1}{a^2 + b^2(t - \gamma)^2} = \sum_{\gamma > 0} \frac{1}{a^2 + b^2(t - \gamma)^2} + \sum_{\gamma > 0} \frac{1}{a^2 + b^2(t + \gamma)^2} = S_1 + S_2.
\]

For \(S_1 \), by Lemma 12

\[
S_1 = - \int_{\gamma}^{\infty} N(u) f'(u) du,
\]

where \(f(u) := 1/(a^2 + b^2(t - u)^2) \) and the step function \(N(u) \) is defined in Lemma 7. Let \(N_{up}(u) \) and \(N_{low}(u) \) be the corresponding continues upper and lower bounds of \(N(u) \). From Lemma 7,

\[
N_{up}(u) = \frac{u}{2\pi} \log \frac{u}{2\pi e} + 0.11 \log u + 0.29 \log \log u + 3.165 + \frac{25}{48\pi u},
\]

\[
N_{low}(u) = \frac{u}{2\pi} \log \frac{u}{2\pi e} - 0.11 \log u - 0.29 \log \log u - 1.415 - \frac{25}{48\pi u}.
\]

Let us observe that \(u \) derivative \(f'(u) \) is non-negative for \(u \leq t \) and \(f'(u) \) is negative for \(u > t \). As \(N_{up}(u), N_{low}(u) \) are continues functions, then
\[S_1 \leq -\int_{\gamma_1}^t N_{low}(u)f'(u)du - \int_{\gamma_1}^\infty N_{up}(u)f'(u)du = -\int_{\gamma_1}^\infty \frac{u}{2\pi} \log \frac{u}{2\pi e} f'(u)du \\
+ \int_{\gamma_1}^t \left(0.11 \log u + 0.29 \log \log u + 1.415 + \frac{25}{48\pi u}\right) df(u) \\
- \int_{t}^\infty \left(0.11 \log u + 0.29 \log \log u + 3.165 + \frac{25}{48\pi u}\right) df(u) \\
\leq \frac{1}{2\pi} \int_{\gamma_1}^\infty \frac{\log(u/2\pi)}{a^2 + b^2(u-t)^2} + \frac{\gamma_1}{2\pi} \log \left(\frac{\gamma_1}{2\pi e}\right) f'(\gamma_1) \\
+ (f(t) - f(\gamma_1)) \left(0.11 \log t + 0.29 \log \log t + 1.415 + \frac{25}{48\pi \gamma_1}\right) \\
+ f(t) \left(3.165 + \frac{25}{48\pi t}\right) - 0.11 \int_{t}^\infty \log u df(u) - 0.29 \int_{t}^\infty \log \log u df(u). \tag{9} \]

For the integrals in (9) it holds that

\[-\int_{t}^\infty \log u df(u) = f(t) \log t + \int_{t}^\infty \frac{f(u)du}{u} < f(t) \log t + \frac{\pi/2}{ab} \cdot \frac{1}{t},\]
\[-\int_{t}^\infty \log \log u df(u) < f(t) \log \log t + \frac{\pi/2}{ab} \cdot \frac{1}{t \log t}.\]

Therefore

\[S_1 < \frac{1}{2\pi} \int_{\gamma_1}^\infty \frac{\log(u/2\pi)}{a^2 + b^2(u-t)^2} + \frac{0.220 \log t + 0.580 \log \log t + 4.580}{a^2} \\
+ \frac{0.166}{a^2 t} \left(1 + \frac{2.413a}{b}\right). \]

By the similar arguments, the lower bound of \(S_1 \) is

\[S_1 > \frac{1}{2\pi} \int_{\gamma_1}^\infty \frac{\log(u/2\pi)}{a^2 + b^2(u-t)^2} - \frac{0.220 \log t + 0.580 \log \log t + 4.580}{a^2} \\
- \frac{0.166}{a^2 t} \left(1 + \frac{2.413a}{b}\right). \]

The upper bound of

\[S_2 = -\int_{\gamma_1}^\infty N(u)g'(u)du, \ g(u) := 1/(a^2 + b^2(t+u)^2), \]
observing that $g(u)$ is decreasing for $u \geq 0$, is

$$S_2 < - \int_{\gamma}^{\infty} N_{up}(u)g'(u) \, du = - \int_{\gamma}^{\infty} \frac{u}{2\pi} \log \frac{u}{2\pi e} \, dg(u)$$

$$- \int_{\gamma}^{\infty} \left(0.11 \log u + 0.29 \log \log t + 3.165 + \frac{25}{48\pi u} \right) g'(u) \, du$$

$$= \frac{1}{2\pi} \int_{\gamma}^{\infty} \frac{\log (u/2\pi)}{a^2 + b^2(u+t)^2} + \frac{\gamma_1}{2\pi} \log \left(\frac{\gamma_1}{2\pi e} \right) g(\gamma_1)$$

$$- 0.11 \int_{\gamma}^{\infty} \log u g'(u) \, du - 0.29 \int_{\gamma}^{\infty} \log \log u g'(u) \, du$$

$$- \int_{\gamma}^{\infty} \left(3.165 + \frac{25}{48\pi u} \right) g'(u) \, du. \quad (10)$$

The integrals in (10) and (11) evaluate to

$$- \int_{\gamma}^{\infty} \log u g'(u) \, du = g(\gamma_1) \log \gamma_1 + \int_{\gamma}^{\infty} \frac{du}{u(a^2 + b^2(t+u)^2)} < g(\gamma_1) \log \gamma_1 + \frac{\pi/2}{\gamma_1 \rho b},$$

$$- \int_{\gamma}^{\infty} \log \log u g'(u) \, du < g(\gamma_1) \log \gamma_1 + \frac{\pi/2}{\gamma_1 \rho b},$$

$$- \int_{\gamma}^{\infty} \left(3.165 + \frac{25}{48\pi u} \right) g'(u) \, du < g(\gamma_1) \left(3.165 + \frac{25}{48\pi \gamma_1} \right).$$

Therefore

$$S_2 < \frac{1}{2\pi} \int_{\gamma}^{\infty} \frac{\log (u/2\pi)}{a^2 + b^2(u+t)^2} + 3.811g(\gamma_1) + \frac{0.045}{ab}.$$

Arguing the same, the lower bound of S_2 is

$$S_2 > \frac{1}{2\pi} \int_{\gamma}^{\infty} \frac{\log (u/2\pi)}{a^2 + b^2(u+t)^2} - 3.811g(\gamma_1) - \frac{0.045}{ab}.$$

The proof follows by collecting the upper and lower bounds of S_1 and S_2.

3. Proof of Theorem

In this section we prove the Theorem.

Proof. [Proof of Theorem] Let $1/2 < \sigma < 1$. Since $0 < (\sigma - 1/2)^2 < 1/4$, we have that

$$\sum_{\rho=1/2+i\gamma} \frac{\sigma - 1/2}{1/4 + (t-\gamma)^2} < \Re \sum_{\rho=1/2+i\gamma} \frac{1}{s-\rho} < \sum_{\rho=1/2+i\gamma} \frac{(\sigma - 1/2)^{-1}}{1 + 4(t-\gamma)^2}. \quad (12)$$
Recall that \(c \) denotes the part of zeros of \(\zeta(s) \) on the line \(1/2 + it \). Then, the total quantity \(N(T) \) of non-trivial zeros of \(\zeta(s) \) in the rectangle \(0 < \sigma < 1, 0 < t < T \) can be expressed as \(N(T) = cN(T) + (1 - c)N(T) \). Then, by Lemma 13 and Lemma 7 with \(cN(T) \)

\[
\Re \sum_{\rho=1/2+i\gamma} \frac{1}{s-\rho} = \sum_{\rho=1/2+i\gamma} \frac{\sigma - 1/2}{(\sigma - 1/2)^2 + (t - \gamma)^2} \quad (13)
\]

where \(M(t) = O(\log t) \) as \(t \to \infty \) and the explicit lower and upper bounds of \(M(t) \) for \(t > 14.134725 \ldots \) are given in Lemma 13.

Combining (12) and (13) and applying Lemmas 10, 11 and 13 with \(a = 1/2, b = 1 \) and \(\alpha = \gamma_1 = 14.134725 \ldots \) for the lower bound we get

\[
\Re \sum_{\rho=1/2+i\gamma} \frac{1}{s-\rho} > c(\sigma - 1/2) \int_{\gamma}^{\infty} \left(\frac{\log(2\pi u)}{1/4 + (u-t)^2} + \frac{\log(2\pi u)}{1/4 + (u+t)^2} \right) du
\]

\[
+ c(\sigma - 1/2) \left(-0.88 \log t - 2.32 \log \log t - 18.41 - \frac{1.465}{t} - \frac{3.811}{0.25 + (\gamma_1 + t)^2} \right)
\]

\[
> c(\sigma - 1/2) \left(0.12 \log \frac{t}{2\pi} - 2.32 \log \log t - 18.432 - \varepsilon_1(t) \right),
\]

where

\[
\varepsilon_1(t) = \left(\frac{1}{8\pi t} - \frac{1}{2\pi(t - \gamma_1)}\right) \log \frac{t}{2\pi} - \frac{1.465}{t} - \frac{\gamma_1 \log (2\pi t)}{2\pi t^2} - \frac{3.811}{0.25 + (\gamma_1 + t)^2}. \quad (14)
\]

We check with Mathematica 13 that

\[
0.12 \log \frac{t}{2\pi} - 2.32 \log \log t - 18.432 \geq 49 \times 10^{-6}, |\varepsilon_1(t)| \leq 1.65 \times 10^{-113},
\]

when \(t \geq 1.984 \times 10^{114} \).

By the same arguments, with \(a = 1 \) and \(b = 2 \), for the upper bound we get

\[
\Re \sum_{\rho=1/2+i\gamma} \frac{1}{s-\rho} < c(\sigma - 1/2) \int_{\gamma}^{\infty} \left(\frac{\log(2\pi u)}{1+4(u-t)^2} + \frac{\log(2\pi u)}{1+4(u+t)^2} \right) du
\]
+ c(\sigma - 1/2) \left(0.22 \log t + 0.58 \log \log t + 4.603 + \frac{0.367}{t} + \frac{3.811}{1 + 4(\gamma + t)^2} \right) \\
< c(\sigma - 1/2) \left(0.49 \log \frac{t}{2\pi} + 0.58 \log \log t + 4.603 + \epsilon_2(t) \right),

where

\[
\epsilon_2(t) = \frac{0.637}{t} + \frac{3.811}{1 + 4(t + \gamma)^2} + \frac{\log(t + 1) + \frac{1}{2} \log \frac{2\pi^3}{4\pi^2}}{8\pi t}.
\]

(15)

4. Can \(\mathcal{R} \frac{\xi'}{\xi}(s)\) remain positive if there are zeros off the critical line?

In this section we assume that the Riemann hypothesis fails by three different scenarios:
I. there is only one zero in the region \(1/2 < \sigma < 1, \ t > 0\),
II. there is a finite number \(n \geq 2\) of zeros off the critical line,
III. there are infinitely many of zeros off the critical line.

I. Assume that there is one point \(\tilde{\beta} + i\tilde{\gamma}\) such that \(\zeta(\tilde{\beta} + i\tilde{\gamma}) = 0\) for \(1/2 < \tilde{\beta} < 1, \ t > 0\). Then, by Theorem 4 with \(c = 1\) and estimation,

\[
\mathcal{R} \frac{\xi'}{\xi}(s) = \left(\sigma - \frac{1}{2} \right) \sum_{\rho = 1/2 + i\gamma} \frac{1}{(\sigma - 1/2)^2 + (t - \gamma)^2}
\]

\[
+ \frac{\sigma - \tilde{\beta}}{(\sigma - \tilde{\beta})^2 + (t - \gamma)^2} + \frac{\sigma - \tilde{\beta}}{(\sigma - \tilde{\beta})^2 + (t + \gamma)^2}
\]

\[
+ \frac{\sigma - (1 - \tilde{\beta})}{(\sigma - (1 - \tilde{\beta}))^2 + (t - \gamma)^2} + \frac{\sigma - (1 - \tilde{\beta})}{(\sigma - (1 - \tilde{\beta}))^2 + (t + \gamma)^2}
\]

\[
> 0.11 \left(\sigma - \frac{1}{2} \right) \log \frac{t}{2\pi} + \frac{\sigma - \tilde{\beta}}{(\sigma - \tilde{\beta})^2 + (t - \gamma)^2} + O \left(\frac{\log \log t}{\log t} \right) > 0
\]

if

\[
(\sigma, t) \in \left\{ \frac{\sigma - \tilde{\beta}}{(\sigma - \tilde{\beta})^2 + (t - \gamma)^2} > -0.11 \left(\sigma - \frac{1}{2} \right) \log \frac{t}{2\pi} \right\}
\]

(16)

and \(t\) is sufficiently large that \(\log \log t / \log t\) is negligible. The region of \((\sigma, t)\) given by (16) might have the following gray view given in Figure 1 below. Figure 1 was obtained by Mathematica [13] with some chosen point \(\tilde{\beta} + i\tilde{\gamma}\).

II. Assume that there is a finite number \(n \geq 2\) of points \(\tilde{\beta}_k + i\tilde{\gamma}_k, \ k = 1, \ldots, n\) such that \(\zeta(\tilde{\beta}_k + i\tilde{\gamma}_k) = 0\) for \(1/2 < \tilde{\beta}_k < 1, \ t > 0\). Then, by Theorem 4 with \(c = 1\) and
Figure 1: Whole gray region satisfies inequality (16). Theorem 2 or 3 gives a dashed gray strip, where $\Re \xi'/\xi(s) > 0$.

Figure 2: Whole gray region satisfies inequality (17). Theorem 2 or 3 gives a dashed gray strip, where $\Re \xi'/\xi(s) > 0$.

Previous means,

$$\Re \frac{\xi'}{\xi}(s) > 0.11 \left(\sigma - \frac{1}{2} \right) \log \frac{t}{2\pi} + \sum_{k=1}^{n} \frac{\sigma - \bar{\beta}_k}{(\sigma - \bar{\beta}_k)^2 + (t - \bar{\gamma}_k)^2} + O \left(\frac{\log \log t}{\log t} \right) > 0$$

if

$$(\sigma, t) \in \left\{ \sum_{k=1}^{n} \frac{\sigma - \bar{\beta}_k}{(\sigma - \bar{\beta}_k)^2 + (t - \bar{\gamma}_k)^2} > -0.11 \left(\sigma - \frac{1}{2} \right) \log \frac{t}{2\pi} \right\}$$

(17)

and t is sufficiently large that $\log \log t / \log t$ is negligible. The region of (σ, t) given by (17) might have the following gray view given in Figure 2 above. Figure 2 was obtained by Mathematica [13] too with some chosen $\bar{\beta}_k$ and $\bar{\gamma}_k$, where the black points are $\bar{\beta}_k + i\bar{\gamma}_k$.

III. Assume that there are infinitely many points $\bar{\beta}_k + i\bar{\gamma}_k$, such that $\zeta(\bar{\beta}_k + i\bar{\gamma}_k) = 0$ for $1/2 < \bar{\beta}_k < 1, \ t > 0$.

14
Then, by the same arguments as in I. and II.,

\[\Re \frac{\xi'(s)}{\xi(s)} > c \cdot 0.11 \left(\sigma - \frac{1}{2} \right) \log \frac{t}{2\pi} \]

\[+ \sum_{\rho = \beta_k + i\gamma_k} \frac{\sigma - \bar{\beta}_k}{(\sigma - \bar{\beta}_k)^2 + (t - \gamma_k)^2} - \sum_{\gamma_k > 0} \frac{1/2}{(t + \gamma_k)^2} + O\left(\frac{\log \log t}{\log t} \right) > 0 \quad (18) \]

if

\[(\sigma, t) \in \left\{ \sum_{\rho = \beta_k + i\gamma_k} \frac{\sigma - \bar{\beta}_k}{(\sigma - \bar{\beta}_k)^2 + (t - \gamma_k)^2} > -c \cdot 0.11 \left(\sigma - \frac{1}{2} \right) \log \frac{t}{2\pi} \right\} \]

and \(t \) is sufficiently large. We note that \(\sum_{\gamma_k > 0} \frac{1/2}{(t + \gamma_k)^2} = O\left(\frac{\log t}{t} \right), t \to \infty \) in (18), see Lemmas [11] and [13].

REFERENCES

[1] T. M. Apostol, *Introduction to Analytic Number Theory*, Springer, 1998.

[2] K. Broughan, *Extension of the Riemann \(\xi \)-Function’s Logarithmic Derivative Positivity Region to Near the Critical Strip*, Canad. Math. Bull., 52(2), 186–194, 2009, doi:10.4153/CMB-2009-021-3.

[3] J. B. Conrey, *More than two fifths of the zeros of the Riemann zeta function are on the critical line*, J. Reine Angew. Math., 399 (1989) 1-26.

[4] H. M. Edwards, *Riemann’s Zeta Function*, Academic Press, New York (1974). Reprinted by Dover Publications, Mineola, N.Y. (2001).

[5] S. Feng, *Zeros of the Riemann zeta function on the critical line*, J. Number Theory, 132(4), 2012, 511-542.

[6] R. Garunkštis, *On a positivity property of the Riemann \(\xi \)-function*, Liet. matem. rink. 42 (2002), 179–184.

[7] G. H. Hardy, *Sur les zéros de la fonction \(\zeta(s) \).* Comptes Rendus 158(1914) 1012–1014.

[8] E. Hasanalizade, Q. Shen, P. J. Wong, *Counting zeros of the Riemann zeta function*, J. Number Theory, 2021.

[9] A. Hinkkanen, *On functions of bounded type*, Complex Variables Theory Appl. 34 (1997), 119-139.

[10] J. C. Lagarias, *On a positivity property of the Riemann \(\xi \) function*, Acta Arith. 89 (1999), 217–234.

[11] N. Levinson, *More than one third of the zeros of Riemann’s \(z \)-function are on \(\sigma = 1/2 \)*, Adv. Math., 13 (4) (1974), 383–436.

[12] V. Mackevičius, *Integralas ir matas*, TEV, 1998, ISBN 9986-546-47-8.

[13] Mathematica (Version 9.0), Wolfram Research, Inc., Champaign, Illinois, 2012.

[14] Yu. Matiyasevich, F. Saidak, P. Zvengrowski, *Horizontal monotonicity of the modulus of the zeta function, L-functions, and related functions*, Acta Arith., 166.2 (2014), 189–200.

[15] M. R. Murty, *Problems in Analytic Number Theory*, Grad. Texts in Math. 206, Springer, New York, 2001.

[16] D. J. Platt, T. S. Trudgian, *An improved explicit bound on \(|\zeta(1/2+i t)| \)*, J. Number Theory, 147, 2015, 842–851.

[17] K. Pratt, N. Robles, A. Zaharescu et al., *More than five-twelfths of the zeros of \(\zeta \) are on the critical line*, Res. Math. Sci. 7(2), (2020).

[18] A. Selberg, *On the zeros of Riemann’s zeta-function*, Skr. Norske Vid. Akad. Oslo I., 10 (1942), 59.
[19] J. Sondow, C. Dumitrescu, A monotonicity property of Riemann’s xi function and a reformulation of the Riemann hypothesis, Period. Math. Hungar. 60 (2010), 37–40.

[20] M. Spivak, Calculus (3 ed.), Houston, Texas: Publish or Perish, 1994, ISBN 978-0-914098-89-8.

[21] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd edition, Oxford Univ. Press, 1986.

[22] T.S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, Journal of Number Theory, 134 (2014), 280-292.

[23] Wolfram MathWorld, https://mathworld.wolfram.com/Xi-Function.html

Andrius Grigutis, Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania, e-mail: andrius.grigutis@mif.vu.lt

Edvinas Goldstein, Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania, e-mail: edvinasgoldstein@gmail.com

Corresponding Author: Andrius Grigutis