Table S1. Description and equations of the variables.

Ecosystem service categories	Services	Equation	Description of the variable	References
	Water supply	$V_w = \sum_{i=1}^{3} W_i \cdot P_i$	V_w: the total value of water supply	
W_i: the amount of water used for the ith application (tons)				
P_i: the water supply price for the ith use				
$i = 1, 2, 3$: industrial water, agricultural water, and residential water	[4]			
Provisioning service	Provide aquatic products	$V_{scp} = A_s \cdot V_{dyy}$		
$V_{dyy} = \frac{\sum_{n=1}^{4} V_n}{\sum_{n=1}^{4} A_n}$				
V_n: the total fishery output value per unit area (100 million yuan/km2)				
A_n: administrative division area (km2) of each city				
$n = 1, 2, 3, 4$: Suzhou, Wuxi, Changzhou, and Huzhou, respectively	V_{scp}: the value of aquatic products provided by Taihu Lake (100 million yuan)			
A_s: the water area of Taihu Lake	[1]			
	Shipping function	$V_h = Q_{cargo} \cdot P_{cargo}$		
+ $Q_{passenger} \cdot P_{passengert}$
V_h: shipping value
Q_{cargo}: cargo turnover (ton-kilometer)
P_{cargo}: cargo turnover price (yuan/ton-kilometer)
$Q_{passenger}$: passenger turnover (person-kilometer) | | [4] |
| Service | Formula | Notes |
|-------------------------|---|--|
| Regulate the atmosphere | $V_g = P_g \cdot Q_g$
$V_y = P_y \cdot Q_y$ | $P_{passenger}$: turnover price (yuan/person-kilometer)
V_g: the value of carbon sequestration
P_g: the afforestation cost of an absorbed unit of CO\(_2\) (yuan/ton)
Q_g: the annual fixed amount of CO\(_2\) (ton) of the water ecosystem
V_y: the value of oxygen release
P_y: the unit cost of industrial oxygen production (yuan/ton)
Q_y: the amount of O\(_2\) released by the water ecosystem (ton) each year |
| Water purification | $V_j = \sum_{k=1}^{4} Q_{jk} \cdot P_{jk}$ | V_j: the total value of water purification
Q_{jk}: the reduction amount of the kth pollutant entering and leaving the lake (tons)
P_{jk}: the cost of treating the kth pollutant by the sewage treatment plant (yuan/ton)
$k = 1, 2, 3, 4$: the hypermanganate index, NH\(_3\)-N, TP, and TN, respectively |
| Surface water storage | $V_d = Q_d \cdot P_d$ | V_d: the storage value of surface water resources
Q_d: the capacity of surface water storage (m\(^3\))
P_d: the unit storage value |
| Support service | $V_s = D_s \cdot F_s \cdot A_s$
$D_s = \frac{1}{3} \sum_{m=1}^{3} S_m \cdot R_m$ | V_s: the value of maintaining biodiversity
D_s: the ecological service value of 1 standard equivalent factor
F_s: the equivalent value of maintaining biodiversity service function in per unit area of water ecosystem
S_m: the percentage (%) of the cultivated area of the mth crop in the total cultivated area of the crops |
| Cultural service | Soil conservation | Tourism and leisure | Research and education |
|------------------|-------------------|---------------------|-----------------------|
| Soil conservation | \(R_m \): the average net profit per unit area of the \(m \)th crop in the country (yuan/mu) \(m \) = 1, 2, 3: rice, wheat, and rapeseed, respectively. | \(V_r \): the soil conservation value (yuan/year) \(F_r \): the soil conservation service value equivalent per unit area of the water ecosystem | \(V_{ky} \): the value generated by scientific research and education \(P_{ky} \): the average value generated by scientific research and education per unit area of wetland |
| \(V_c = \frac{1}{3} \sum_{m=1}^{3} S_m \cdot R_m \cdot F_r \cdot A_s \) | \(\text{It is calculated by the price substitution method. The difference between operating income and expenditure (i.e., operating profit) was used to quantify the value of tourism and leisure in Taihu Lake} \) | \(V_{ky} = P_{ky} \cdot A_s \) | \(\text{[5]} \) |

Figure S1. Biological species of Taihu Lake.
References

[1] Yan Renhua, Gao Junfeng, Huang Qi, Zhao Jiahu, Dong Chuanyong, Chen Xiaofei, Zhang Zhiming, Huang Jiacong. Service value of water ecosystem in the polder area of Taihu Lake Basin[J]. Journal of Ecological Sciences, 2015, 35(15): 5197-5206.

[2] Zhang Yunlin, Feng Sheng, Ma Ronghua, Liu Mingliang, Qin Boqiang. The spatial distribution of the true light layer depth and the estimation of phytoplankton primary productivity in Taihu Lake in autumn[J]. Lake Science, 2008(03): 380-388.

[3] Zan Xin, Zhang Yuling, Jia Xiaoyu, Xiong Guangsen. Evaluation of water ecosystem service value in the upper reaches of Yongding River[J]. Journal of Natural Resources, 2020, 35(06): 1326-1337.

[4] Xiang Chen, Yan Lijiao, Han Yicai, Wu Zhixu, Yang Wenhie. Evaluation of Ecosystem Service Value of Qiandao Lake [J]. Journal of Applied Ecology, 2019, 30(11): 3875-3884.

[5] Xie Gaodi, Zhang Caixia, Zhang Changshun, Xiao Yu, Lu Chunxia. The value of China’s ecosystem services[J]. Resource Science, 2015, 37(09): 1740-1746.

[6] Xu Yan, Gao Junfeng, Huang Jiacong. Evaluation of Service Function Value of Taihu Wetland Ecosystem[J]. Resources and Environment in the Yangtze River Basin, 2010, 19(06): 646-652.

[7] Fu Wenfeng, Jiang Hai, Fang Juanjuan, Guan Yongxiang, Wu Tianxiang, Zhao Haiyan, Wu Hao. Evaluation of the comprehensive benefits of the ecological engineering of the lakeside buffer zone in Zhushan Bay: Taking Zhoutie Town, Yixing City, Jiangsu Province as an example [J]. Bulletin of Soil and Water Conservation, 2017, 37(02): 268-273.