Anisotropic Flow Measurements of Identified Particles in the STAR Experiment

Shaowei Lan1,2,3,* (for the STAR Collaboration)

1Pingdingshan University
2Central China Normal University
3Lawrence Berkeley National Laboratory
E-mail: shaoweilan@mails.ccnu.edu.cn

We report results of v_1 and v_2 for identified hadrons ($\pi^+, K^+, K_0^0, p, \phi$ and Λ) from Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV and v_2 for π^\pm, K^\pm, p and \bar{p} at $\sqrt{s_{NN}} = 27$ and 54.4 GeV using the STAR detector at RHIC. In Au+Au collisions at high energies, one finds that the values of v_2 are all positive and the number-of-constituent-quark (NCQ) scaling holds. On the other hand, results from collisions at 3 GeV, the midrapidity v_2 is negative for all hadrons and NCQ scaling is absent. In addition, the midrapidity v_1 slopes for all hadrons are found to be positive. Furthermore, the features of negative v_2 and positive v_1 slope at 3 GeV can be reproduced by calculations with baryonic mean-field potential in transport model. These results imply that in 3 GeV Au+Au collisions, the medium is characterized by baryonic interactions.
1. Introduction

One of the most important motivations of relativistic heavy-ion collisions is to explore the Quantum Chromodynamics (QCD) phase diagram [1]. Lattice QCD calculations show that the phase transition from hadronic matter into the Quark-Gluon Plasma (QGP) phase is a smooth crossover at vanishing baryon chemical potential region, while a first-order phase transition is expected at the finite baryon chemical potential region [2]. Searching for the onset of QGP and studying the properties of QCD medium is the focus of the ongoing RHIC Beam Energy Scan Phase II (BES-II) program.

Anisotropic flows [3, 4], the first two components of which are called directed flow (v_1) and elliptic flow (v_2), are effective tools to study the properties of the QCD matter created in heavy-ion collisions. They are generated early in the system evolution and are sensitive probes of the Equation-of-State (EoS) of the produced medium. Based on the hydrodynamical calculations, along the collision energy ($\sqrt{s_{NN}}$) the minimum in midrapidity v_1 slopes is proposed as a signal of the first-order phase transition between hadronic matter and the QGP [5, 6]. In the Beam Energy Scan Phase I (BES-I) program, STAR reported that the v_1 slopes for identified particles as a function of collision energy [7, 8]. A nonmonotonic behavior of midrapidity v_1 slopes as a function of collision energy for protons and Λ is observed and the v_1 slopes reach a minimum around $\sqrt{s_{NN}} = 10-20$ GeV. On the other hand, large positive v_2 along with the observation of its number-of-constituent-quark (NCQ) scaling are strong evidence for the formation of a hydrodynamically expanding QGP phase with partonic degree of freedom [9,10]. Positive v_2 of hadrons at midrapidity has been observed from the top RHIC energy down to 4.5 GeV [11,12]. The v_2 values are found to be negative at $\sqrt{s_{NN}} \leq 3.6$ GeV due to the shadowing effect by the passing spectator nucleons [13]. Previous studies have shown that the v_1 and v_2 are particularly sensitive to nuclear incompressibility (κ) in the high baryon density region [14]. The constrains on κ by comparing experimental data with results from the theoretical transport model will certainly help us to understand nuclear EoS.

In this paper, we present new results of v_1 and v_2 for identified hadrons ($\pi^\pm, K^\pm, K^0_S, p, \phi$ and Λ) at $\sqrt{s_{NN}} = 3$ GeV and v_2 of π^\pm, K^\pm, p and \bar{p} at $\sqrt{s_{NN}} = 27$ and 54.4 GeV from the STAR experiment at RHIC.

2. Analysis Details

Minimum-bias triggered data with 260M, 560M and 600M events from $\sqrt{s_{NN}} = 3, 27$ and 54.4 GeV Au+Au collisions, respectively, are used in this analysis. The Time Projection Chamber (TPC) [15] is the main detector of STAR which performs charged particle tracking near midrapidity. The 3 GeV data were taken, with beam energy of 3.85 GeV per nucleon, in 2018 in the fixed-target (FXT) mode. The target is positioned inside the beam pipe near the edge of the TPC, at 200 cm from the TPC center along the beam axis. This gives an experimental acceptance coverage of $0 < \eta < 2$ in pseudorapidity. The higher energy data were taken in the collider mode, where the beam bunch crossing restricted to the TPC central region, yielding an acceptance of $|\eta| < 1$. Particle identification is based on the energy loss information from TPC detector and time of flight information from Time-of-Flight (TOF) detector [16]. At $\sqrt{s_{NN}} = 3$ GeV, the first-order event plane is determined with the Event Plane Detector (EPD) [17] located on the east side of the STAR.
detector system. The v_1 and v_2 are calculated with the first-order event plane. For $\sqrt{s_{NN}} = 27$ and 54.4 GeV, the second-order event plane is reconstructed from tracks recorded by the TPC. In order to avoid self-correlation and suppress non-flow effects, a η-subevent plane method is used for the v_2 calculation, in which an η gap of $|\Delta\eta| = 0.1$ between positive and negative η-subevent is applied [18].

3. Results and Discussion

![Figure 1](Color online) Rapidity dependence of v_1 (top panel) and v_2 (bottom panel) for $p, \Lambda, \pi^{\pm}, K^{\pm}$ and K_S^0 in 10-40% Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV.

The rapidity dependence of directed flow (v_1) and elliptic flow (v_2) for identified hadrons ($p, \Lambda, \pi^{\pm}, K^{\pm}$ and K_S^0) from the $\sqrt{s_{NN}} = 3$ GeV 10-40% centrality is shown in top and bottom panels in Fig. 1 respectively. Due to the acceptance, the results from the rapidity region $-1 < y < 0$ are presented and the corresponding p_T range for each hadron is shown in the figure. From the top panel, the baryons’ v_1 in panel (a) is significantly larger in magnitude than mesons’. Small charge dependence of v_1 has been observed for pions in panel (b) and kaons in panel (c). As shown in the lower panel, the measured v_2 for all hadrons at midrapidity ($|y| \leq 0.5$) are negative, implying an out-of-plane expansion in the 3 GeV collision, contrary to the in-plane expansion in high energy collisions. For comparison, the calculations from transport model UrQMD [19] and JAM [20], with same centrality and kinematic selections for given hadrons, are shown as colored bands. Red, golden and gray bands represent the results of JAM mean-field, UrQMD mean-field and cascade mode, respectively. As one can see in the figure, the UrQMD and JAM calculations with baryonic mean-field potential can qualitatively describe the data, but not for K^+ results. The incompressibility value (κ) used in the mean-field option is 380 MeV in this analysis.

We employed a polynomial fit of the function $v_1 = a + by + cy^3$ to extract the strength of directed flow at midrapidity. We refer to $dv_1/dy|_{y=0}$ as the slope obtained from the above fits. Figure 3 shows the centrality dependence of $dv_1/dy|_{y=0}$ and v_2 at midrapidity for p, π^{\pm} and K^\pm in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV. The centrality dependence for $dv_1/dy|_{y=0}$ and v_2 of all hadrons has been observed. The v_2 values at midrapidity for all hadrons are found negative. The
Figure 2: (Color online) Centrality dependence of $dv_1/dy|_{y=0}$ (top panel) and v_2 (bottom panel) for p, π^\pm and K^\pm in Au+Au collisions at $\sqrt{s_{NN}}=3$ GeV.

results from UrQMD mean-field and cascade mode are represented by the golden and gray bands, respectively. The UrQMD results with baryonic mean-field potential can qualitatively describe the data, but not for K^+ results.

Figure 3: (Color online) NCQ scaled v_2 as a function of $(m_T - m_0)/n_q$ for π^\pm, K^\pm, p and \bar{p} from Au+Au collisions in 10-40% centrality at $\sqrt{s_{NN}}=3$, 27 and 54.4 GeV for positive (left panel) and negative (right panel) charged particles.

Figure 3 presents v_2 scaled by the number of constituent quarks, v_2/n_q, as a function of scaled transverse kinetic energy, $(m_T - m_0)/n_q$, for π^\pm and K^\pm, p and \bar{p} in 10-40% midcentral Au+Au collisions at 3, 27 and 54.4 GeV. At the two higher energies, the NCQ scaling of v_2 holds well, which indicates that the collectivity is developed during the partonic phase stage. The colored dashed lines represent the scaling fit to data for both positive and negative charged particles at 7.7, 14.5, 27, 54.4 and 200 GeV [21]. While for 3 GeV collisions, it is apparent that all values of v_2/n_q are negative. Contrary to the higher energy data shown, the NCQ scaling disappears in such low energy collisions. As shown in Fig. 3 and Fig. 4, the JAM and UrQMD model calculations with
baryonic mean-field potential reproduce the observed negative values of v_2 for baryons as well as pions. The new results clearly indicate different properties for the matter produced in the 3 GeV collisions. In other words, partonic interactions no longer dominate and baryonic scatterings take over.

Figure 4: (Color online) v_1 slopes $dv_1/dy|_{y=0}$ (top panel) and v_2 (bottom panel) versus $\sqrt{s_{\text{NN}}}$ for identified particles in heavy-ion collisions.

The collision energy dependence of v_1 slopes ($dv_1/dy|_{y=0}$) and v_2 for identified particles at 10-40% centrality is summarized in Fig. 4. The top panel shows p_T integrated midrapidity v_1 slopes as a function of collision energy for π, K, p, ϕ and Λ from Au+Au collisions at 10-40% centrality interval. Here the positive and negative particle results are combined for both pions and kaons, as the difference between them is small, as shown in Fig. 1. The new measurements from STAR at 3 GeV for π, K, p, ϕ and Λ are shown in the figure. The midrapidity v_1 slopes and v_2 for all hadrons are found to be positive and negative at 3 GeV, respectively. The bottom panel in Fig. 4 shows the midrapidity v_2 results as a function of collision energy for π, p and charged hadrons from STAR, E877, E895 and FOPI [11–13, 22]. Results from JAM and UrQMD calculations, with the same centrality and kinematic cuts used in data analysis, are shown as colored bands. Red, golden and gray bands represent the results of JAM mean-field, UrQMD mean-field and cascade mode, respectively. By including the baryonic mean-field potential, the JAM and UrQMD models reproduce the trends for both $dv_1/dy|_{y=0}$ and v_2 for baryons. It indicates that the dominant degrees of freedom are the interacting baryons in the 3 GeV collisions.

4. Summary

In summary, we reported the measurements of v_1 and v_2 for identified hadrons ($\pi^\pm, K^\pm, K_S^0, p, \phi$ and Λ) from Au+Au collisions at $\sqrt{s_{\text{NN}}}=3$ GeV and v_2 for π^\pm, K^\pm, p and \bar{p} at $\sqrt{s_{\text{NN}}}=27$ and 54.4...
Anisotropic Flow Measurements of Identified Particles in the STAR Experiment
Shaowei Lan

The NCQ scaling of v_2 is observed for the collision energies ≥ 7.7 GeV. Due to the formation of the QGP, one finds that each hadron’s v_2 is positive and all slopes of v_1 are negative. For the 3 GeV collisions, the NCQ scaling is absent and the opposite collective behavior is observed, namely, in contrast to that from high energy collisions, the values of v_2 for all hadrons are negative while the v_1 slopes are all positive. Transport model JAM and UrQMD calculations with baryonic mean-field potential qualitatively reproduce these results. These observations imply the vanishing of partonic collectivity and a new EoS, dominated by baryonic interactions in the high baryon density region.

Acknowledgements

This work is supported in part by the National Key Research and Development Program of China under Grant No. 2020YFE0202002, the National Natural Science Foundation of China (under Grant No. 11890710, 11890711 and 12175084) and the Chinese Scholarship Council (CSC).

References

[1] J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005).
[2] Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006).
[3] H. Sorge, Phys. Rev. Lett. 78, 2309 (1997).
[4] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[5] C.M. Hung and E. Shuryak, Phys. Rev. Lett. 75, 4003 (1995).
[6] H. Stoecker, Nucl. Phys. A 750, 121 (2005).
[7] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112, 162301 (2014).
[8] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 120, 062301 (2018).
[9] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 116, 062301 (2016).
[10] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 118, 212301 (2017).
[11] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 93, 014907 (2016).
[12] M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 103, 034908 (2021).
[13] C. Pinkenburg et al. (E895 Collaboration), Phys. Rev. Lett. 83, 1295 (1999).
[14] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002).
[15] M. Anderson et al., Nucl. Instrum. Meth. A 499, 659 (2003).
[16] F. Geurts et al., Nucl. Instrum. Meth. A 533, 60 (2004).
[17] A. Adams et al., Nucl. Instrum. Meth. A 968, 163970 (2020).
[18] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).
[19] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
[20] Y. Nara, N. Otuka, A. Ohnishi, K. Nitta, and S. Chiba, Phys. Rev. C 61, 024901 (1999).
[21] X. Dong, S. Esumi, P. Sorensen, N. Xu, and Z. Xu, Phys. Lett. B 597, 328 (2004).
[22] A. Andronic et al. (FOPI Collaboration), Phys. Lett. B 612, 173 (2005)