Cunha MR, Matos FL, Génio L, Hilário A, Moura CJ, Ravara A, Rodrigues CF (2013) Are organic falls bridging reduced environments in the deep sea? – Results from colonization experiments in the Gulf of Cadiz. PLoS ONE 8(10): e76688. doi:10.1371/journal.pone.0076688

Supporting Information

Text S1. Environmental and biological characterization of the three study sites.

Figure S1. Location of the three study sites (Mercator, Meknès and Darwin mud volcanoes) in the Gulf of Cádiz. Black dots show the position of other mud volcanoes in the region.

Table S1. List of the taxa identified from the colonization experiments (CHEMECOLI) deployed in the Gulf of Cádiz. Classification according to the World Register of Marine Species (www.marinespecies.org accessed May 2013). The taxa in blue were found only in the external parts of the CHEMECOLI. The occurrence of new records (in bold) and background fauna in the substrata enclosed by the 2mm mesh net is shown for each sub-region (El Arraiche, Carbonate Province) and substrate type (wood, alfalfa, carbonate). Each taxon was assigned to one of 20 different trophic groups.

Table S2. Breakdown of percentual contributions from SIMPER analysis for comparisons between mud volcanoes: Mercator (Mer); Meknès (Mek) and Darwin (Dar). The taxa listed contribute at least 1.5%. Numbers in bold mark the six dominant species at each site.

Table S3. Breakdown of percentual contributions from SIMPER analysis for comparisons between substrate types: wood (W), alfalfa (A) and carbonate (C). The taxa listed contribute at least 1.5%. Numbers in bold mark the six dominant species in each substrate type.
Supporting Information

Text S1. Environmental and biological characterization of the three study sites

Mercator MV. The shallowest study site, Mercator (350 m), is located at the El Arraiche field on the upper slope of the Moroccan margin [1] where the proximity to the euphotic zone and to the African coast adds to the great productivity observed in the area. Colonisation experiments were deployed in the crater at the top of Mercator where the seafloor shows patches of disturbed sediments from which gas venting is occasionally observed [2]. The sediment consists of brown pelagic silty clay covering grey matrix-supported breccia with clasts of different lithology and size with disseminated sulphides (pyrite-marcasite) and filled fractures. The sulphides form frambooidal aggregates, generally less than 2mm and several carbonated cemented clasts within clayey matrix. Mercator MV is an example of gas production by admixture of thermogenic sources from different depths and influence of evaporite deposits. Nuzzo et al. [3] the porewater is extremely enriched in chloride (Cl$^-$ reaching up to 5.3 M thus, exceeding normal seawater values by a factor of 9) and SO$_4$$^2-$ consistent with the dissolution of minerals (e.g. halite and gypsum), additionally, the fluids are highly enriched in Li and B indicating a deep fluid source from mineral dewatering reactions at elevated temperatures [4]; radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ ratios are consistent with a terrigenous/continental deep source of the fluids [5], and the carbon isotopic signature of methane ($\delta^{13}\text{C}: -33.8$ to -38.8%) indicates high thermal maturity [3,6,7]. The upward fluid flow rates were estimated as ~6 cm/a at the top of the MV, gradually decreasing to 0.3 cm/a towards the rim [4].

The megafauna at Mercator mud volcano is sparse, with some fish (*Helicolenus* sp.), crinoids and cidarid echinoids associated mainly to the boulders in the crater and the sea-pen *Pennatula aculeata* anchored in the sediments at the rim. Solitary corals (*Caryophyllia* sp.) accompanied by Cidaridae echinoids and Onuphidae polychaetes (*Hyalinoecia tubicola*) are the most conspicuous organisms seen during video surveys of the crater. Over 300 macrofaunal species are known to occur in Mercator MV [8, MR Cunha unpublished data]. The chemosymbiotic fauna recorded in this mud volcano includes the bivalves *Solemya elarraichensis*, *Lucinoma asapheus*, *Axinulus*...
croulinensis (mixotrophic species); Thyasira granulosa (mixotrophic species) and five Frenulata species, Polybrachia sp.1, Siboglinum Ib, Siboglinum Ic, Siboglinum Id, and Siboglinum sp.1 [9].

Meknès MV. In the Moroccan margin the extensive authigenic Carbonate Province at intermediate depths (700-1200m) is accompanied by the frequent occurrence of mounds, thickets and debris of mostly dead cold-water scleractinean corals. Meknès MV is the southernmost mud volcano in this region rising isolated among an extensive field of small coral mounds at ca. 700m depth. The porewater is characterized by a moderate depletion of Cl$^-$ [5,7]. The carbon isotopic signature of methane is more depleted ($\delta^{13}C$: -48.9 to -52.8‰) than in Mercator MV suggesting lower thermal maturity [3].

Colonisation experiments were deployed at the crater which is formed by stiff, sometimes heavily disturbed, greenish grey mud breccia with scattered clasts of different lithology and size (2mm -5 cm in diameter) and a striking large number of empty shells of the gastropod Neptunea contraria. The surveys over Meknès showed coral rubble and small coral thickets colonised by sponges and octocorals at the lower flanks of the mud volcano contrasting with the almost bare mud breccia of the crater inhabited only by N. contraria, Paromola cuvieri and Helicolenus sp. Except for a few individuals of these three species, living megafauna is rarely sighted in the crater. Over 175 macrofaunal species are known to occur in Meknès MV [8, M.R. Cunha unpublished data]. The chemosymbiotic fauna recorded in this mud volcano includes the bivalve Solemya elarraichensis and two Frenulata species Siboglinum If and Siboglinum sp.2 [9].

Darwin MV. The carbonate province also includes the Darwin mud volcano (ca. 1100m). Darwin MV differs from the other mud volcanoes in this area because its crater is completely covered by large carbonate slabs and crusts; the fissures among slabs and depressions with scattered crust are filled with abundant shell ash and occasionally small clumps of living “Bathymodiolus” mauritanicus. Paromola cuvieri, soft corals and other epifauna were occasionally sighted on the surface of rocks and sediment. Over 100 macrofaunal species are known to occur in Darwin MV (MR. Cunha unpublished data) where the gastropod fauna is particularly diverse [10]. The chemosymbiotic fauna recorded in this mud volcano includes the bivalves Isorropodon megadesmus, Solemya
elarraichensis and “Bathymodiolus”mauritanicus, and two Frenulata species, *Siboglinum* Ia and *Siboglinum* Ie [9].

References

1. Van Rensbergen P, Depreiter D, Pannemans B, Moerkerke G, Van Rooij D, Marsset B, Akhmanov G, Blinova V, Ivanov M, Rachidi M, Magalhães V, Pinheiro L, Cunha M, Henriet J-P (2005) The El Arraiche mud volcano field at the Moroccan Atlantic slope, Gulf of Cadiz. Mar Geol 219: 1-17.

2. Vanreusel A, Andersen AC, Boetius A, Connelly D, Cunha MR, Decker C, Hilário A, Kormas KA, Maignien L, Olu K, Pachiadaki M, Ritt B, Rodrigues C, Sarrazin J, Tyler P, Van Gaever S, Vanneste H (2009) Biodiversity of cold seep ecosystems along the European margins. Oceanography 22: 110-127.

3. Nuzzo M, Hornibrook ERC, Gill F, Hensen C, Pancost RD, Haeckel M, Reitz A, Scholz F, Magalhães VH, Brueckmann W, Pinheiro LM (2009) Origin of light volatile hydrocarbon gases in mud volcano fluids, Gulf of Cadiz - Evidence for multiple sources and transport mechanisms in active sedimentary wedges. Chem Geol 266: 359-372.

4. Haffert L, Haeckel M, Liebetrau V, Berndt C, Hensen C, Nuzzo M, Reitz A, Scholz F, Schönfeld J, Perez-Garcia C, Weise SM (2013) Fluid evolution and authigenic mineral paragenesis related to salt diapirism – The Mercator mud volcano in the Gulf of Cadiz. Geochimica et Cosmochimica Acta 106: 261-286.

5. Scholz F, Hensen C, Lu Z, Fehn U (2010) Controls on the 129I/I ratio of deep-seated marine interstitial fluids: ‘Old’ organic versus fissiogenic 129-iodine. Earth Planet Sc Lett 294: 27-36.

6. Stadnitskaia A, Ivanov MK, Blinova V, Kreulen R, van Weering TCE (2006) Molecular and carbon isotopic variability of hydrocarbon gases from mud volcanoes in the Gulf of Cadiz, NE Atlantic. Mar Petrol Geol 23: 281–296.

7. Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhães VH, Bruckmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz – indications for hydrothermal imprint. Geochim Cosmochim Acta 71: 1232– 1248.

8. Cunha MR, Rodrigues CF, Génio L, Hilário A, Ravara A, Pfannkuche O (2013) Macrofaunal assemblages from mud volcanoes in the Gulf of Cadiz: abundance,
biodiversity and diversity partitioning across spatial scales. Biogeosciences 10: 2553–2568. doi:10.5194/bg-10-2553-2013.

9. Rodrigues CF, Hilário A, Cunha MR (2013) Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic): distribution, life styles and nutritional patterns. Biogeosciences, 10, 2569-2581. doi: 10.5194/bg-10-2569-2013.

10. Génio L, Warén A, Matos FL, Cunha MR (2013) A snails’ tale at deep-sea habitats in the Gulf of Cadiz (NE Atlantic). Biogeosciences Discuss 10: 3707-3733.
Table S1. List of the taxa identified from the colonization experiments (CHEMECOLI) deployed in the Gulf of Cadiz. Classification according to the World Register of Marine Species (www.marinespecies.org accessed May 2013). The taxa in blue were found only in the external parts of the CHEMECOLI. The occurrence of new records (in bold) and background fauna in the substrata enclosed by the 2mm mesh net is shown for each sub-region (El Arraiche, Carbonate Province) and substrate type (wood, alfalfa, carbonate). Each taxon was assigned to one of 20 different trophic groups.

Major taxa	Family	Species name/code	Habit	Mode	Food type	TG	EA	CP																																															
PORIFERA	Unassigned	Porifera unassigned	Ep/S/R	Om/Su	pom	16	-	-	-	-	U																																												
CNIDARIA	Hydrozoa	Hydrozoa unassigned	Ep/S/A	Ca/Su	zoo	5	U	U	-	-	U																																												
	Anthoathecata	Tubiclavoididae	Tubiclavoides striatum	Ep/S/A	Ca/Su	zoo	5	-	-	-	-																																												
	Eudendriidae	Eudendrium sp.	Ep/S/A	Ca/Su	zoo	5	-	-	-	-	L																																												
	Leptothecale	Clyta linearis	Ep/S/A	Ca/Su	zoo	5	R	R	-	-	R																																												
	Campanulariae	Campanulinidae	Campanulinidae unassigned	Ep/S/A	Ca/Su	zoo	5	-	-	U	-																																												
		Campanulina panicula	G.O. Sars, 1874	Ep/S/A	Ca/Su	zoo	5	-	L	-	-																																												
	Haleciidae	Halcium cf. tenellum	Hincks, 1861	Ep/S/A	Ca/Su	zoo	5	R	-	-	-																																												
	Lafoeidae	Cryptolaria pectinata	(Allman, 1888)	Ep/S/A	Ca/Su	zoo	5	-	R	-	-																																												
		Filellum serratum	Clarke, 1879	Ep/S/A	Ca/Su	zoo	5	L	L	-	-																																												
	Tiarannidae	Modeeria rotunda	(Quoy & Gaimard, 1827)	Ep/S/A	Ca/Su	zoo	5	-	-	-	-																																												
Scyphozoa	Actiniaria	Actiniaria unassigned	Ep/S/A	Ca/Su	zoo	5	-	-	U	-	-																																												
NEMERTEA	Coronata	Nausithoidae	Nausithoe sp.	Ep/S/A	U	-	-																																																
SIPUNCULA	Unassigned	Nemertea unassigned	Ss/M/F	Ca/Pr	mac	6	U	-	-	-																																													
	Unassigned	Sipuncula unassigned	Str/D/F	Om/Dt	pom;mic;mac	12	U	-	U	-	U																																												
ANNELIDA	Oligochaeta	Unassigned	Oligochaeta unassigned	Ss/M/F	Om/Dt	pom;mic	1																																																
---	---	---	---	---	---	---	---																																																
Polychaeta	Incerate sedis	Protodrilidae	Protodrilus sp.	Sr/M/F	Mc/Gr	mic	11																																																
			Linoperus cf. hemuli (Fauchald, 1972)	Ss/M/F	Ca/Pr	mac	6																																																
			Pareyrythoe cf. borealis (M. Sars, 1862)	Ss/M/F	Ca/Pr	mac	6																																																
	Aciculata	Dorvilleidae	Ophryotrocha sp01	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
			Ophryotrocha sp02	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
			Ophryotrocha sp03	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
			Ophryotrocha sp04	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
			Ophryotrocha sp05	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
			Ophryotrocha sp06	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
			Ophryotrocha sp07	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
			Ophryotrocha sp08	Sr/M/F	Om/Sc;Gr	pom;mic;mei	2																																																
		Protodorvillea kefersteini (McIntosh, 1869)	Ss/M/F	Ca/Pr	mei	8																																																	
	Lumbrineridae	Lumbrineridae unassigned	Ss/M/F	Ca/Pr	mei;mac	8																																																	
			Lumbrineriopsis paradoxa (Saint-Joseph, 1888)	Ss/M/F	Ca/Pr	mei;mac	8																																																
		Chrysopetalidae	Chrysopetalidae unassigned	Ss/M/F	Ca/Pr	mei;mac	9																																																
		Glyceridae	Glyceridae unassigned	Ss/M/F	Ca/Pr	mac	6																																																
			Glycerina tesselata Grube, 1840	Ss/M/F	Ca/Pr	mac	6																																																
		Hesionidae	Hesionidae unassigned	Ss/M/F	Ca/Pr	mac	6																																																
			cf. Amphiduros sp.	Ss/M/F	Ca/Pr;Sc	mac	4																																																
			Leocrates atlanticus (McIntosh, 1885)	Ss/M/F	Ca/Pr	mac	6																																																
			Nereimyra sp. (juveniles)	Ss/M/F	Ca/Pr	mac	6																																																
			Nereimyra punctata (Muller, 1788)	Ss/M/F	Ca/Pr	mac	6																																																
		Nereididae	Eunereis longissima Johnston, 1840	Ss/D/T	Om/De	sed;pom;mic	13																																																
			Nicon sinica Wu & Sun, 1979	Ss/D/T	Om/De;Pr	pom;mic;mei	2																																																
		Phyllocoidea	Phyllocoidea madeirensis Langerhans, 1880	Ss/M/F	Ca/Pr;Sc	mac	4																																																
		Polynoidae	Harmothoe evei Kirkegaard, 1980	Ss/M/F	Ca/Pr	mac	7																																																
			Subadyte pellucida (Ehlers, 1864)	Ss/M/F	Ca/Pr	mac	6																																																
		Sigalionidae	Pholoides dorsipapillatus (Marenzeller, 1893)	Ss/M/F	Ca/Pr	mac	6																																																
			Sthenelais cf. boa (Johnston, 1833)	Ss/M/F	Ca/Pr	mac	6																																																
		Syllidae	Eusyllinae unassigned	Ss/M/F	Ca/Pr	mei	8																																																
		Exogoninae unassigned	Sr/M/F	Mc/Gr	mic	10																																																	
Taxon	Family	Subfamily	Genus	Species	Gender	Measurement 1	Measurement 2	Measurement 3	Measurement 4	Measurement 5	Measurement 6	Measurement 7	Measurement 8	Measurement 9	Measurement 10	Measurement 11	Measurement 12	Measurement 13	Measurement 14	Measurement 15	Measurement 16	Measurement 17	Measurement 18	Measurement 19	Measurement 20	Measurement 21	Measurement 22	Measurement 23	Measurement 24	Measurement 25	Measurement 26	Measurement 27	Measurement 28	Measurement 29	Measurement 30	Measurement 31	Measurement 32	Measurement 33	Measurement 34	Measurement 35	Measurement 36	Measurement 37	Measurement 38	Measurement 39	Measurement 40	Measurement 41	Measurement 42	Measurement 43	Measurement 44	Measurement 45	Measurement 46	Measurement 47	Measurement 48	Measurement 49	Measurement 50
Family	Genus	Species	Gender	Sr/M/F	Mc/Gr	mic	Remarks																																																
-------------------	---------------	------------------------------	--------	--------	-------	-----	-------------																																																
Alvania cimicoides	(Forbes, 1844)	Alvania cf. zylensis	Sr/M/F	Mc/Gr	mic	10	R																																																
		Alvania cf. zylensis Gotas & Warén, 1982	Sr/M/F	Mc/Gr	mic	10	R																																																
		Marginellidae spA	Sr/M/F	Mc/Gr	mic	10	R																																																
		Pseudosetia spD	Sr/M/F	Mc/Gr	mic	10	R																																																
		Cimidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Cimidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Marginitellidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Pagodula echinata (Kiener, 1840)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Graphis gracilis	Sr/M/F	Mc/Gr	mic	10	R																																																
		Xylodisculidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Neomphalina	Sr/M/F	Mc/Gr	mic	10	R																																																
		Pseudococculinidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Larocheidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Bathyxylophilia sp nov	Sr/M/F	Mc/Gr	mic	10	R																																																
		Moelleriopsis messanensis (Seguenza, 1876)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Putzeysia cf. wiseri (Clacara, 1842)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Vetigastropodida	Sr/M/F	Mc/Gr	mic	10	R																																																
		Skeneidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Cirsonella romettensis (Granata-Grillo, 1877)	Sr/M/F	Mc/Gr	mic	10	R																																																
		cf. Lissospora sp.	Sr/M/F	Mc/Gr	mic	10	R																																																
		Neomphalina	Sr/M/F	Mc/Gr	mic	10	R																																																
		Pseudococculinidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Larocheidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Bathyxylophilia sp nov	Sr/M/F	Mc/Gr	mic	10	R																																																
		Moelleriopsis messanensis (Seguenza, 1876)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Putzeysia cf. wiseri (Clacara, 1842)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Vetigastropodida	Sr/M/F	Mc/Gr	mic	10	R																																																
		Skeneidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Cirsonella romettensis (Granata-Grillo, 1877)	Sr/M/F	Mc/Gr	mic	10	R																																																
		cf. Lissospora sp.	Sr/M/F	Mc/Gr	mic	10	R																																																
		Neomphalina	Sr/M/F	Mc/Gr	mic	10	R																																																
		Pseudococculinidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Larocheidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Bathyxylophilia sp nov	Sr/M/F	Mc/Gr	mic	10	R																																																
		Moelleriopsis messanensis (Seguenza, 1876)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Putzeysia cf. wiseri (Clacara, 1842)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Vetigastropodida	Sr/M/F	Mc/Gr	mic	10	R																																																
		Skeneidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Cirsonella romettensis (Granata-Grillo, 1877)	Sr/M/F	Mc/Gr	mic	10	R																																																
		cf. Lissospora sp.	Sr/M/F	Mc/Gr	mic	10	R																																																
		Neomphalina	Sr/M/F	Mc/Gr	mic	10	R																																																
		Pseudococculinidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Larocheidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Bathyxylophilia sp nov	Sr/M/F	Mc/Gr	mic	10	R																																																
		Moelleriopsis messanensis (Seguenza, 1876)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Putzeysia cf. wiseri (Clacara, 1842)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Vetigastropodida	Sr/M/F	Mc/Gr	mic	10	R																																																
		Skeneidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Cirsonella romettensis (Granata-Grillo, 1877)	Sr/M/F	Mc/Gr	mic	10	R																																																
		cf. Lissospora sp.	Sr/M/F	Mc/Gr	mic	10	R																																																
		Neomphalina	Sr/M/F	Mc/Gr	mic	10	R																																																
		Pseudococculinidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Larocheidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Bathyxylophilia sp nov	Sr/M/F	Mc/Gr	mic	10	R																																																
		Moelleriopsis messanensis (Seguenza, 1876)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Putzeysia cf. wiseri (Clacara, 1842)	Sr/M/F	Mc/Gr	mic	10	R																																																
		Vetigastropodida	Sr/M/F	Mc/Gr	mic	10	R																																																
		Skeneidae	Sr/M/F	Mc/Gr	mic	10	R																																																
		Cirsonella romettensis (Granata-Grillo, 1877)	Sr/M/F	Mc/Gr	mic	10	R																																																
		cf. Lissospora sp.	Sr/M/F	Mc/Gr	mic	10	R																																																

Bivalvia

Family	Genus	Species	Gender	Sr/M/F	Mc/Gr	mic	Remarks
Unassigned	Unassigned	Bivalvia unassigned (juveniles)		U	U	mic	
Heterodonta	Cuspidariidae	Cuspidaria sp.	Sr/D/F	Ca/Pr	zoo;mei	9	
	Pholadidae	Xylophaga dorsalis (Turtun, 1819)	Sr/S/Z	Om/Hs;Su	pom;ter	19	N
		Xyloredo sp.	Sr/S/Z	Om/Hs;Su	pom;ter	19	N
	Kellieliidae	Kelliella sp. (juveniles)	Ss/D/F	Om/De;Su	sed;pom;mic	13	L
Protobranchia	Neionellidae	Neionella laitor (Jeffreys, 1876)	Ss/D/F	Om/De	sed;mic	13	R
	Yoldiidae	Yoldiella sp.(juveniles)	Ss/D/F	Om/De	sed;mic	13	R
	Nuculidae	Eunucula bushae (Dolphus, 1898)	Ss/M/F	Om/De	sed;pom;mic	13	R
	Solemyidae	Solemyidae (juveniles)	Ss/D/F	Ch		20	L
Pteriomorphia	Mytilidae	Idas modiolaeformis (Sturany, 1896)	Ep/D/A	Om/Ch;Su	pom	20	N
	Pectinidae	Delectopecten vitreus (Gmelin, 1791)	Ep/D/F	Om/Su	pom	16	R
	Propeamussidae	Propeamussium sp.	Ep/D/F	Om/Su	pom	16	R

ARTHROPODA

Maxillopoda
Kingdom	Family	Genus	Species	Class	Order	Suborder	Class	Order	Suborder	Size (mm)
Malacostraca	Verrucidae	Verruca	sp.	Cirripedia	Verrucidae					
Euphausiacea	Meganyctiphanes	cf. norvegica	(M. Sars, 1857)							
Nebaliacea	Nebalia	spA								
	Nebalia	spB								
Amphipoda	Amphipoda	unassigned								
Aoridae	Leptamphopus	sp122								
	Leptamphopus	sp123								
Phoxocephalidae	Harpina	sp.								
Phrosinidae	Primno macropa	Guérin-Méneville, 1836								
Pleustidae	Pleustidae	spA								
Sebidae	Seba aloe	Karaman, 1971								
Class	Order	Family	Genus	Species	Habit	Feeding habit	Motility	Food type and size	Habits	
----------------	------------------------------	-----------------------------	------------------------	------------------------------	--------------	--------------	------------	-------------------	--------------------------	
Cumacea	Leuconidae	Leuconidae	Leucon sp.	Stenothoe sp.	Sr/M/F	Ca/Pr	mac	7		
	Nannastacidae	Nannastacidae unassigned								
	Isopoda	Desmosomatidae unassigned	Desmosomatidae sp.	Chelator sp.	Sr/M/F	Om/Dt	pom;mic	1		
		Prochelator sp.			Sr/M/F	Om/Dt	pom;mic	1		
		Munnidae	Munna sp.		Sr/M/F	Om/Dt	12	pom;mic		
		Munnopsidae	Disconectes sp.		Sr/M/F	Om/Dt	12	pom;mic		
			Ilyarachna sp.		Sr/M/F	Om/Dt	12	pom;mic		
		Mysida unassigned			U					
	Tanaidacea	Apseudidae	Apseudes setiferus		Sr/D/F	Om/Dt	12	pom	R	
	Unassigned	Tanaidomorpha unassigned								
		Leptocheliidae	Mesotanais pinguiculus	Błazewicz-Paszkowycz, Bamber & Cunha, 2011	Sr/D/T	Om/Dt	12	pom		
		Leptognathiidae	Leptognathia sp.							
		Pseudotanaidae	Pseudotanaidys tympanobaculum	Błazewicz-Paszkowycz, Bamber & Cunha, 2011	Sr/D/T	Om/Dt	12	pom		
		Tanaellidae	Araphura macrobelone	Błazewicz-Paszkowycz, Bamber & Cunha, 2011	Sr/D/T	Om/Dt	12	pom		
		Tanaella unguicillata		Błazewicz-Paszkowycz, Bamber & Cunha, 2011	Sr/D/T	Om/Dt	12	pom		
		Unassigned	Ophiurida unassigned (juv.)		Sr/D/F	Om/Su;De	pom;mic;zoo	15	R	
	BRYOZOA	Unassigned	Bryozoa unassigned		Ep/S/R	Om/Su	16	U		

Feeding habit. Source of food: epibenthic (Ep); seafloor surface (Sr); subsurface (Ss). Motility: mobile (M); discretely motile, movement not necessary for feeding (D); sessile (S).

Habit: free living or active burrower (F); tubiculous (T); sedentary, living in burrow (B); encrusting, requiring large area of attachment (R); attached, requiring one point of attachment (A); parasitic (X); unassigned (U). **Feeding mode.** Type of symbiosis: chemotrophic (Ch); heterotrophic (Hs). Diet: carnivorous (Ca), omnivorous (Om), feeding on microbes (Mc). Mode: deposit feeder, ingest sediment (De); detritus feeder, ingests particulate matter (Dt); suspension, filter feeder, strains particles from the water (Su); grazer, feeds by scraping (Gr); predator, eats living animals (Pr); scavenger, eats carrion (Sc); suctorial parasite (Sp); symbiotic (Sym); unassigned (U). **Food type and size.** Sediment (sed),
particulate organic matter (pom); wood and other terrestrial or coastal plant material (ter); single celled organisms (mic); meiofauna (mei); macrofauna (mac); zooplankton (zoo); fish (fis); unassigned (U). The trophic scheme is based on Macdonald et al. [1]. Trophic information was obtained from stable isotope data (mostly unpublished) and from the literature for each individual species wherever possible; if the feeding behaviour of a particular species was unknown, it was assumed to feed in a similar manner to congeneric or confamilial species, or species within the same major group.

Trophic guilds. For simplification we established 20 different trophic guilds based on source of food, feeding mode and diet: 1. Omnivores on subsurface items; 2. Omnivores on surface small items; 3. Omnivores on surface large items; 4. Scavengers; 5. Predators on zooplankton; 6. Predators on subsurface macrofauna; 7. Predators on surface macrofauna; 8. Predators on subsurface meiofauna; 9. Predators on surface meiofauna; 10. Microbial grazers; 11. Microbial grazers, wood specialists; 12. Detritivores; 13. Subsurface deposit feeders; 14. Surface deposit feeders; 15. Suspension feeders on surface items; 16. Suspension feeders on epibenthic items; 17. Suctorials parasites on macrofauna; 18. Suctorials parasites on fish; 19. Heterotrophic symbiosis; 20. Chemotrophic symbiosis; U. unassigned.

Sub-regions: El Arraïche, Mercator MV (EA); Carbonate Province, Meknès and Darwin MV (CP). **Type of substrate:** wood (W); alfalfa (A); carbonate (C). **Occurrence:** new occurrences (N); taxa previously recorded in the region (R); taxa previously recorded in the study site (L); unassigned taxa (U).

Reference:
1. Macdonald TA, Burd BJ, Macdonald VI, van Roodselaar A (2010) Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia. Can Tech Rep Fish Aquat Sci 2874: iv + 63 p.
Table S2. Breakdown of percentual contributions from SIMPER analysis for comparisons between mud volcanoes: Mercator (Mer); Meknès (Mek) and Darwin (Dar). The taxa listed contribute at least 1.5%. Numbers in bold mark the six dominant species at each site.

Abundance (ind.m\(^{-2}\))	% Contribution	% Contribution	% Contribution													
	Mer	Mek	Dar	TG	Mer	Mek	Dar	Mer/Mek	Mer/Dar	Mek/Dar						
Total	654.1	637.6	886.0	AS:18.4	AS:20.6	AS:28.7	AS:92.4	AS:91.6	AS:71.2							
Cnidaria																
Hydrozoa																
Clytia linearis																
Sipuncula																
Sipuncula und.																
Nemertea																
Nemertea und.																
Annelida																
incertae sedis																
Aciculata																
Ophryotrocha sp01	15.0	1.3	0.0	S-O	•	•	---	1.5	•	•						
Ophryotrocha sp02	**16.2**	4.0	4.3	S-O	1.7	3.3	•	1.9	1.5	1.5						
Ophryotrocha sp08	0.0	14.3	8.0	S-O	---	3.7	2.5	2.0	•	2.3						
Leocrates atlanticus	0.5	1.0	0.3	S-P	•	8.3	•	1.5	•	•						
Nereimyra sp.	2.2	1.3	12.3	S-P	•	2.3	3.6	•	1.7	2.2						
Harmothoe evei	5.0	0.3	0.0	S-P	18.3	•	---	2.7	2.1	•						
Sabadyte pelicuda	0.7	0.3	1.3	S-P	3.7	•	•	•	•	•						
Exogoninae sp.	0.2	0.0	7.3	S-Gr	•	•	1.7	•	•	1.5						
Canaliopalpata																
Amage sp.	0.2	1.7	42.7	S-De	•	•	5.1	•	3.1	3.9						
Mellinopsis sp.	1.8	**49.0**	**79.3**	S-De	•	8.1	7.4	4.0	4.4	5.7						
Raricirrus beryli	9.0	4.3	24.3	S-Gr	•	•	4.6	1.7	2.5	3.0						
Polycirrus norvegicus	3.3	0.0	0.0	S-De	4.8	•	•	•	---	---						
Scolecida																
Capitellidae sp05	1.0	0.0	0.0	S-De	5.7	•	•	1.6	---	---						
Mollusca																
Heterodonta																
Xylophaga dorsalis	**362.3**	3.7	3.7	Sy	14.1	1.7	•	8.9	7.5	•						
Protobranchia																
Solemyidae juv.	0.7	4.3	0.7	Sy	1.8	•	•	•	•	•						
Pteriomorphia																
Idas modiolaeformis	0.3	**101.7**	**106.0**	Sy	•	14.5	9.5	5.8	4.9	6.8						
Caenogastropoda																
Eulimidae sp01	0.0	0.0	0.7	S-Sp	---	---	•	---	•	---						
Coccoolinaformia																
Coccopigya sp.	0.5	7.7	57.0	S-Gr	•	4.4	3.7	1.6	3.1	3.9						
Heterobranchia																
Xyloptisculus sp.	0.5	1.7	31.3	S-Gr	•	2.3	2.2	•	2.2	2.8						
Taxonomic Group	Species	TG	AS	AD	E	S	De	Dt	Gr	O	P	Sp	Su	Sy	De	% Contribution of selected taxa
---------------------	--------------------------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--------------------------------
Vetigastropoda	*Copulabysia* sp.	3.2	253.7	179.7	S-Gr	●	26.3	13.7	9.4	6.4	9.8					
Arthropoda																
Amphipoda	*Leptamphopus* sp122	26.8	0.0	0.0	E-P	●	---	---	2.7	1.9	---					
Orthomene grimaldii		147.2	0.7	0.0	S-O	5.9	●	---	5.7	4.7	●					
Seba aloe		0.0	153.7	213.0	S-Gr	---	20.7	10.9	7.4	6.6	9.0					
Isopoda	*Gnathia* sp.	10.2	0.0	0.0	E-Sp	6.5	---	---	3.0	2.2	---					
Janira maculosa		0.0	1.7	0.0	S-Dt	---	1.7	---	●	---	●					
Munna sp.		0.8	1.3	0.3	S-Dt	1.6	●	●	●	●	●					
Tanaidacea	*Apseudes setiferus*	1.3	0.0	0.0	S-Dt	1.9	---	---	●	●	---					
Mesotanais pingüiculus		0.0	3.7	59.7	S-Dt	---	2.9	13.5	●	5.1	5.7					
Echinodermata	Ophiurida	0.7	0.3	24.3	S-Su	3.7	●	10.3	●	3.1	4.8					
% Contribution of selected taxa		93.5	92.5	93.8	87.8	100.0	96.3	74.9	76.8	75.7						
Table S3. Breakdown of percentual contributions from SIMPER analysis for comparisons between substrate types: wood (W), alfalfa (A) and carbonate (C). The taxa listed contribute at least 1.5%. Numbers in bold mark the six dominant species in each substrate type.

Density (ind.m$^{-2}$)	% Contribution	% Contribution								
	W	A	C	TG	W	A	C	W/A	W/C	A/C
Total	1302.8	786.3	35.0							

Cnidaria

	Density	% Contribution
Hydrozoa		
Hydrozoa und	0.3	0.5
Clytia linearis	0.5	0.3

Nemertea

	Density	% Contribution
Nemertea und.	0.3	0.0

Annelida

	Density	% Contribution
Aciculata		
Ophryotrocha sp01	23.5	0.0
Ophryotrocha sp02	25.8	4.8
Ophryotrocha sp08	11.8	5.0
cf. Amphiduros sp.	2.8	1.3
Leocrates atlantica	1.0	0.3
Nereimyra sp.	8.5	5.0
Harmothoe evei	3.5	2.8
Sabadyte pelucida	0.6	1.3

Canalipalpata

	Density	% Contribution
Amage sp.	24.5	9.0
Mellinopsis sp.	72.3	26.8
Raricirrus beryl	20.8	14.3
Polycirrus norvegicus	3.8	0.5
Scolecida Capitellidae sp05	0.0	0.3

Mollusca

	Density	% Contribution
Heterodonta		
Xylophaga dorsalis	543.3	0.8
Pteriomorphia		
Idas modiolaeformis	88.8	67.5
Cocculiniformia	9.5	39.8
Heterobranchia		
Xylodiscula sp.	2.8	22.8
Vetigastropoda		
Copulabysia sp.	200.5	129.3

Arthropoda

	Density	% Contribution
Leptostraca		
Nebalia sp01	1.5	2.5
Amphipoda		
Ensayara carpinei	1.0	13.3
Leptiamphopus sp122	0.0	40.3

Density (ind.m$^{-2}$)	% Contribution	% Contribution								
	W	A	C	TG	W	A	C	W/A	W/C	A/C
Total	1302.8	786.3	35.0							
----------------	----------------	-------	-------	-------	-------	-------	-------			
Orchomene grimaldi		61.8	159.5	0.0	S-O	2.1	---			
Seba aloe		117.3	157.8	0.0	S-Gr	6.08	11.6			
Isopoda										
Gnathia sp.		1.0	1.3	13.0	E-Sp	●	●			
Munna sp.		2.3	0.0	0.3	S-Dt	3.37	---			
Tanaidacea		10.8	35.0	1.8	S-Dt	2.6	●			
Echinodermata										
Ophiurida		3.5	14.3	1.8	S-Su	2.98	6.8			
Mesotanais pinguiculus		10.8	35.0	1.8	S-Dt	2.6	●			

% Contribution of selected taxa

		95.4	96.1	80.7	88.1	99.1	100.0
		73.9	74.9	73.5			

TG: trophic guild; AS: average similarity; AD: Average dissimilarity; E: epibenthic source of food; S: sediment surface or subsurface source of food; De: deposit feeder; Dt: detritus feeder; Gr: Grazer; O: Omnivore; P: predator; Sc: scavenger; Sp: suctorial parasite; Su: suspension feeder; Sy: symbiotic; ●: contributions lower than 1.5%.