Mangrove Community Structure in Papuan Small Islands, Case Study in Biak Regency

I W E Dharmawan, Pramudji
Research Centre for Oceanography, LIPI
E-mail: iwayanekadharmawan@gmail.com

Abstract. Mangrove plays the importance of roles for the small island sustainability, both physically and ecologically. In the high-risk Pacific Ocean’s islands, small islands in Biak face typhoons, earthquakes, high waves, and tsunami effects. The study was conducted at 100 10mx10m-quadratic-plots scattered on seven small islands in Biak-Numfor Regency. Research objectives were to investigate the mangrove community structure of each island, i.e., canopy coverage, density, and morphological size, and to analyze the correlation among those parameters. The result found that mangrove was in pristine condition, large individual size with low anthropogenic threats. They were covered by a medium and dense canopy from 61.32±3.04% in Pasi to 93.88±0.14% in Meos Mangguandi. Substrate significantly influenced the level of canopy coverage and the MDS ordination of species composition. Sonneratia alba tended to be dominant in rocky sand in Pasi, Owi, Padaidori, and Wundi, while Ceriops and Rhizophora were mostly occupied the muddy sand, or Bruguiera gymnorrhiza has the highest domination in sandy mud substrate in Auki, Pai, and Meos. The canopy coverage had a significant correlation only with total density but none with the others. The height of the tree (up to 21.2 m) was found highly related to the diameter size (max: 124 cm).

1. Introduction
Indonesia has the largest mangrove area in the world, which is distributed at approximately 22.6% of global mangrove area [1]. Papua archipelago consisted of West Papua and Papua, which has the most proportion of mangrove in Indonesia, which is about 40% of Indonesian mangrove [2]. The islands were mostly located in the Pacific Ocean, delivering highly risked by facing high wave impact, tsunami and typhoons [3][4]. Moreover, most of the small Papuan islands in the Pacific Ocean are lack of information and governance due to distance from the city center. On the other hand, they are pristine and surely have fascinating marine biodiversity.

Mangrove has essential roles, both physically and ecologically, for the small island sustainability. They could reduce wave energy, storm effect, and tsunami [5][6][7], prevent abrasion-erosion [8][9], control saltwater intrusion [10], and protect coastal residences. Mangroves also provide wood resources for civil infrastructures [11][12]. Ecologically, mangrove is acted as the habitat and producer of the food web for marine and terrestrial habitats [13]. Moreover, mangrove could provide alternative food sources for local residents [14].

Study on mangrove community structure in Papuan small islands is lack of opportunity due to high cost and remotely accessed. This study was conducted in Biak Numfor Regency, which directly faces
to the Pacific Ocean. The study was aimed to analyze mangrove structure in Papua small islands and the correlation among vegetative parameters.

2. Methods

2.1 Site Description
The study was conducted in seven islands in Biak Numfor Regency (Figure 1). The islands were dominantly oceanic and typical sandy to a muddy substrate. Some sites were unique in their habitat condition. For instance, in Auki and Pai, mangroves grew in the middle of the island which only exposed to saltwater through the intrusion of tiny caves. Most of the mangrove habitat was a narrow area. The rocky sand habitat was typical in Pasi, Owi, and Wundi island. However, the others were covered by softer substrate i.e. sand, sandy mud, or muddy sand.

![Figure 1](image1.png)

Figure 1. Distribution of mangrove measurement in seven small islands in Biak Regency

2.2 Mangrove Community Measurement
The univariate data (coverage, density, diameter, and height) were collected from 100 10m x 10m-quadratic plots, which were scattered in stratified random sampling on each mangrove zones. On each plot, we collected the canopy coverage percentage using hemispherical photography method [15]. Besides, the diameter at breast height (DBH) was measured from all stands level i.e. tree (DBH≥4 cm); and sapling (DBH<4 cm) in the entire plot area. Species were identified during each diameter measurement [16]. Mangrove height was estimated using Protractor combining tangential equation of angle and measuring distance. The seedling was counted in 10 m x 10 m plot.

2.3 Data Analysis
Univariate data were analyzed descriptively for its average and standard error (SE). Analysis of variance (ANOVA) and Tukey test was applied to identify differences of each parameter among sites. MDS ordination was made based on mangrove species importance value index (IVI), and its Euclidian Distance among sites. The correlation among variables was analyzed using Spearman rank analysis.
3. Results
A recent study found that canopy coverage of mangrove community in all sites was consistently higher than 50%, which was varied from 61.32±3.04% in Pasi island to 93.88±0.14% in Meos Mangguandi (Figure 2). It was implied that mangrove sites were in medium (<75%) and dense covered (≥75%). The Meos’s canopy coverage had no significant difference with the mangrove sites that had dense coverage. Tukey analysis classified that mangroves in Pasi and Owi were significantly different from Meos’s. Those sites were covered less than 75%, which were 61.32±3.04%; 70.97±3.06%, respectively.

Overall, mangrove total density (d_{tot}) was 21.4±4.1 ind.100m$^{-2}$ on average, which was varied from 11.3±6.1 ind.100m$^{-2}$ in Wundi to 37.3±1.5 ind.100m$^{-2}$ in Meos Mangguandi. The density of mangrove in Wundi, Owi and Padaidori were different significantly with Pai and Meos (ANOVA: F=4.012; Sig. 0.003). It implied that mangrove in sandy mud substrate had a higher mangrove density. In the higher plants community, tree density was ranged from 7.3±2.4 ind.100m$^{-2}$ to 34.0±2.6 ind.100m$^{-2}$ in Wundi and Meos Mangguandi, respectively. The highest regeneration was found in Pai which had the densest sapling and seedling stand at 22.3±7.1 ind.100m$^{-2}$ and 75.3 ind.100m$^{-2}$, respectively. It was different significantly with other sites. On the other hand, Pasi had the lowest regeneration levels (Table 1). Low density was consistently found in a rock-gravel sand substrate.

Table 1. The substrate, species INP, diameter-density; and height.

Island	Substrate Description*	Dominant Species**	Species Number	d_{tot} (ind.100 m$^{-2}$)	d_{tree} (ind.100 m$^{-2}$)	d_{sap} (ind.100 m$^{-2}$)	d_{sed} (ind.100 m$^{-2}$)
Auki	MS	BG	4	16.8±3.3ab	10.0±1.4a	6.8±2.2a	68.3
Wundi	RGS	SA	4	11.3±3.5a	7.3±2.4a	4.0±2.1a	8.0
Padaidori	MS	RA	6	12.2±1.6a	9.8±1.7a	2.3±0.7a	4.8
Pasi	RGS	SA	1	26.0±8.5ab	24.7±7.2bc	1.3±1.3a	2.0
Pai	SM	BG	4	34.7±13.4b	12.3±6.4a	22.3±7.1b	75.3
Meos	SM	BG	1	37.3±1.5b	34.0±2.6c	3.3±1.2a	54.3
Owi	RGS	SA	1	11.6±2.4a	9.5±1.1a	2.1±1.6a	5.8
Total			11	21.4±4.2	15.4±3.8	6.0±2.8	31.2±12.5

* MS=Muddy sand; RGS=Rock-Gravel Sand; SM=Sandy Mud
** BG=Brugueira gymnorrhiza; SA=Sonneratia alba; RA=Rhizophora apiculata
Mangrove in Biak’s small islands had a large size according to trunk diameter and tree height (Figure 3). The diameter average of mangrove in all sites was 16.6±1.9 cm, while their height means was 16.5±1.2 m. Mangrove in Auki had the tallest mangrove stands at 19.9±1.8 m, which had only a significant difference with Wundi (ANOVA: F=2.432; Sig. 0.04). The lowest average of mangrove diameter was found in Meos Mangguandi by 10.9±1.5 cm, which had no significant difference with other sites (ANOVA: F=1.113, Sig. 0.37).

As many as 11 species were found in all sites, where Padaidori was dominant and occupied by six species (Figure 4). Three sites, Owi, Pasi, and Meos Mangguandi, were a monospecies site that was only grown by a single species. There were two dominant species in Biak’s small islands, *Brugueira gymnorrhiza* (INP=115.97%) and *Sonneratia alba* (INP=140.07%).

Figure 3. Height (m)-left; and tree trunk diameter (cm)-right of mangrove in all sites (Islands: AU=Auki; WU=Wundi; PD=Padaidori; PS=Pasi; PI=Pai; MM=Meos Mangguandi; OW=Owi; All=total)

As many as 11 species were found in all sites, where Padaidori was dominant and occupied by six species (Figure 4). Three sites, Owi, Pasi, and Meos Mangguandi, were a monospecies site that was only grown by a single species. There were two dominant species in Biak’s small islands, *Brugueira gymnorrhiza* (INP=115.97%) and *Sonneratia alba* (INP=140.07%).

Figure 4. Important Value Index (IVI) of mangrove species among sites (Islands: AU=Auki; WU=Wundi; PD=Padaidori; PS=Pasi; PI=Pai; MM=Meos Mangguandi; OW=Owi; All=total)
Initial correlation analysis found that canopy coverage was influenced by substrate type (Spearman rho = 0.195*; N=124; Sig (2-tailed)=0.03). Finer and higher organic substrate tend to have denser mangrove canopy. The later analysis was used substrate as a filter, which found the correlation between coverage and the other community data shown in Table 2. Coverage had a significant correlation to tree height, which was related to its diameter. The density and diameter have a significant negative relation both in total and tree level.

Table 2. Spearman rank among mangrove vegetative parameters in Papua small islands

	D_{tot}	d_{tot}	d_t	D_t	h (m)
C (%)	-0.08	0.12	0.08	-0.03	0.32*
D_{tot}	1	-0.65***	-0.46**	0.92***	0.29*
d_{tot}	-0.65***	1	0.81***	-0.61***	-0.10
d_t	-0.46**	0.81***	1	-0.56***	-0.05
D_t	0.92***	-0.61***	-0.56***	1	0.32*

The substrate type was highly related to mangrove species composition. Rock-gravel-sand was frequently occupied by *Sonneratia alba*, which dominantly grows in higher salinity environment. On the other hand, higher organic sediments were grown by mixed species, which are *Rhizophora*, *Ceriops*, and *Brugueira* (Figure 1). MDS ordination showed that Pasi and Owi, which had monospecies mangrove, *S. alba*, were attached to each other’s. Those sites were similar to Padaidori and Wundi’s mangroves related to their rocky sand substrate domination. In contrast, the finer substrate sites Meos, Pai, and Auki, were highly correlated to *Brugueira gymnorrhiza* domination (Figure 3).

Figure 5. MDS ordination among sites based on the importance value index (IVi) of mangrove species.

4. Discussion
Canopy coverage was categorized as a densely covered mangrove on average (≥75%), while some sites were in moderate (<75%) [17]. A pristine mangrove forest relatively has a dense canopy
coverage. This study had a similar percentage compared with the mangrove canopy coverage in Raja Ampat (84.73%) [18]; Bunaken Nasional Park (79.64%) [19]; Manado (76.98%) [20]; and Wondama (82.46%) [21]. Crown diameter had a strong relationship with tree height which was also correlated with diameter [22]. Tree height and diameter size representing habitus are varied among mangrove species; hence the canopy coverage was also influenced by dominated species in the area. In pristine condition, Sonneratia-dominated forest tended to has a lower canopy coverage than a dense Rhizophora.

Papuan small islands in Biak regency were categorized into a dense mangrove forest based on the mean of tree density which was upper than 15 tree.100m-2. A previous study found a lower tree density at 7.77 tree.100m-2 in Wondama Gulf, Papua [21]. It was similar to mangrove forest in Ternate and Tidore which had 12.75 tree.100m-2 of tree density [23]. Mangrove density has a significant correlation with trunk diameter. Their relation tended to be a negative correlation. Once a mangrove forest was low in tree density, trunk diameter size would be larger [21][24][25].

In terms of small islands, the morphological size of mangrove stands in Biak was relatively large compared with some previous studies. A pristine site of mangrove Papua, in Wondama Gulf, mangrove diameter was reaching 19.77± 6.55 cm on average, while was 78.59 cm for the maximum size of tree21. However, the small island mangroves which were located nearby Sorong city had lower diameter size (10.96 cm) and higher density (28.6 trees .100m-2) [26]. On the other hand, small islands in regencies of western Indonesia tended to have a smaller size of trunk diameter, for instance, Bintan’s (11.42 cm) [27], Natuna (10.90 cm) [28], Batam’s (7.55 cm) [29], Sabang’s (12.01 cm) [30], Kepulauan Seribu’s (10.47 cm) [31]. The mangrove tree height had a similar pattern compared with other studies. In addition, mangrove diameter and height had a significant positive correlation, hence the taller mangrove would be had a larger diameter size [32].

Species distribution of mangrove has been influenced by many factors such as salinity, substrate type, and habitat geo-morphology [33]. Salinity is the main factor for zonation forms in mangrove forests [34]. Small islands with a narrow mangrove habitat and low freshwater input tend to have a high salinity environment. Hence, only salt-tolerant species could be grown. Sonneratia alba preferred to grow in a higher salinity and hard substrate. On the other hand, B. gymnorrhiza was grown optimally in the finer muddy substrate and lower salinity in the landward zone.

5. Conclusion
Even the mangrove growth in the risky Pacific Ocean, Papuan small island’s mangroves in Biak Numfor regency were in excellent condition since they had a dense canopy coverage, high tree density, and large size of stands. Mangrove species distribution was highly related to the substrate type and habitat.

References
[1] Giri C, Ochieng E, Tieszen L L, Zhu Z, Singh A, Loveland T, Masek J and Duke N 2011 Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data Global Ecology and Biogeography 20 154-159
[2] Ilman M, Dargusch P and Dart P 2016 A Historical Analysis of the Drivers of Loss and Degradation of Indonesia’s Mangroves Land Use Policy 54 448-459
[3] Jenkins A P and Jupiter S 2015 Natural Disasters, Health and Wetlands: A Pacific Small Island Developing State Perspective Wetlands and Human Health (Wetland: Ecology, Conservation and Management vol 5) ed Finlayson C, Horwitz P and Weinstein P (Dordrecht: Springer) 169-191
[4] Kelman I 2015 Disaster Risk Governance for Pacific Island Communities the Asia-Pacific Journal: Japan Focus 13
[5] Koh H L, Teh S Y, Kh’ng X Y and Raja Barizan R S 2018 Mangrove Forests: Protection Against and Resilience to Coastal Disturbances Journal of Tropical Forest Science 30 446-460

[6] McIvor A, Spencer T, Möller I and Spaldinga M 2016 Coastal Defense Services Provided by Mangroves Managing Coasts with Natural Solutions: Guidelines for Measuring and Valuing the Coastal Protection Services of Mangroves and Coral Reefs ed Beck M W and Lange G-M (Washington, DC: Wealth Accounting and the Valuation of Ecosystem Services Partnership (WAVES), World Bank) 24-53

[7] Montgomery J M, Bryan K R, Mullarney J C and Horstman E M 2019 Attenuation of Storm Surges by Coastal Mangroves Geophysical Research Letters 46 2680-2689

[8] Ariandi D 2019 Strategy of The Mangrove Ecosystem Management in Efforts to Combat Abrasion in The Bantan District Case of the Mangrove Ecosystem in Teluk Papal Village, Bantan District, Bengkalis Regency, Indonesia EurAsian Journal of BioSciences 13 75-82

[9] Badwi N, Baharuddin I I and Abbas I 2019 Abrasion Hazard Mitigation Efforts on The Coast Maros Regency of South Sulawesi, Indonesia. Proceeding 1st International Conference on Advanced Multidisciplinary Research (ICAMR 2018), Advances in Social Science, Education and Humanities Research (ASSEHR)) (Amsterdam: Atlantis Press) 227 430-433

[10] Hilmi E, Kusmana C, Suhendang E and Iskandar I 2017 Correlation Analysis Between Seawater Intrusion and Mangrove Greenbelt Indonesian Journal of Forestry Research 4 151-168

[11] Dayalatha W K V and Ali S K M 2018 The Use of Mangroves as a Source of Fire Wood: A Socio-Economic Study on Selected Mangroves in Southern Sri Lanka Journal of Social Sciences and Humanities Review 3

[12] Rizal A, Sahidin A and Herawati H 2018 Economic Value Estimation of Mangrove Ecosystems in Indonesia Biodiversity International Journal 2 98-100

[13] Nagelkerken I S J M, Blaber S J M, Bouillon S, Green P, Haywood M, Kirton L G, Meynecke J O, Pawlik J, Penrose H M, Sasekumar A and Sommerfield P J 2008 The Habitat Function of Mangroves for Terrestrial and Marine Fauna: A Review Aquatic Botany 89 155-185

[14] Kusmana C 2018 Mangrove Plant Utilization by Local Coastal Community in Indonesia IOP Conference Series: Earth and Environmental Science Vol 196 No. 1 (Bristol: IOP Publishing) 012028

[15] Dharmawan I W E and Pramudji 2017 Panduan Pemantauan Kesehatan Komunitas Mangrove (Jakarta: Pusat penelitian Oceanografi, LIPI) 65

[16] Giesen W, Wulffraat S, Zieren M and Scholten L 2007 Mangrove guidebook for Southeast Asia (Bangkok: FAO)

[17] Keputusan Menteri Lingkungan Hidup No. 201 Tahun 2004 tentang Kriteria Baku dan Pedoman Penentuan Kerusakan Mangrove

[18] Schaduw J N W 2019 Struktur Komunitas dan Persentase Penutupan Kanopi Mangrove Pulau Salawati Kabupaten Kepulauan Raja Ampat Provinsi Papua Barat Majalah Geografi Indonesia 33 26-35

[19] Tuwongkesong H, Mandagi S V and Schaduw J N 2018 Kajian Ekologis Ekosistem Mangrove untuk Ekowisata di Bahowo Kota Manado Majalah Geografi Indonesia 32 177-183

[20] Iskandar A O, Schaduw J N, Rumampuk N D, Sondak C F, Warouw V and Rondonuwu A 2019 Kajian Kesanuaan Lahan Ekowisata Mangrove di Desa Arakan Kabupaten Minahasa Selatan Sulawesi Utara Jurnal Pesisir dan Laut Tropis 7 40-51

[21] Dharmawan I W E and Widyastuti A 2017 Pristine Mangrove Community in Wondama Gulf, West Papua, Indonesia Marine Research in Indonesia 42 73-82
[22] Galvício J D and Popescu S C 2016 Measuring Individual Tree Height and Crown Diameter for Mangrove Trees with Airborne Lidar Data *International Journal of Advanced Engineering, Management and Science* 2

[23] Nurdiansah D and Dharmawan I W E 2018 Mangrove Community in Coastal Area of Tidore Islands *Oceanologi dan Limnologi di Indonesia* 3 1-9

[24] Calegario G, Sarment Moreira de Barros Salomão M, de Rezende C E and Bernini E 2015 Mangrove forest structure in the São João river estuary, Rio de Janeiro, Brazil *Journal of Coastal Research* 31 653-660

[25] Zhila H, Mahmood H and Rozainah M Z 2014 Biodiversity and Biomass of a Natural and Degraded Mangrove Forest of Peninsular Malaysia *Environmental Earth Sciences* 71 4629-4635

[26] Dharmawan I W E 2018 Kondisi Kesehatan Mangrove dan Cadangan Karbon Mangrove di Kota Sorong dan Pulau-Pulau Sekitarnya *Report* (Jakarta: Pusat Penelitian Oseanografi-LIPI)

[27] Dharmawan I W E 2019 Dinamika Kondisi Kesehatan Mangrove di Kabupaten Bintan, Kepulauan Riau *Report* (Jakarta: Pusat Penelitian Oseanografi-LIPI)

[28] COREMAP-LIPI 2018 Kondisi Terkini Ekosistem Mangrove di Kabupaten Natuna, Kepulauan Riau *Report* (Jakarta: Pusat Penelitian Oseanografi-LIPI)

[29] COREMAP-LIPI 2018 Kondisi Terkini Ekosistem Mangrove di Kabupaten Batam, Kepulauan Riau *Report* (Jakarta: Pusat Penelitian Oseanografi-LIPI)

[30] Dharmawan I W E 2017 Serapan dan Cadangan Karbon Mangrove di Pulau Weh *Report* (Jakarta: Pusat Penelitian Oseanografi-LIPI)

[31] Dharmawan I W E 2017 Serapan dan Cadangan Karbon Mangrove di Kepulauan Seribu *Report* (Jakarta: Pusat Penelitian Oseanografi-LIPI)

[32] Mugasha W A, Mauya E W, Njana A M, Karlsson K, Malimbwi R E and Ernest S 2019 Height-Diameter Allometry for Tree Species in Tanzania Mainland *International Journal of Forestry Research*

[33] Snedaker S C 1982 Mangrove Species Zonation: Why? *Contributions to the ecology of halophytes. Tasks for vegetation science*, vol 2 ed Sen D N and Rajpurohit K S (Dordrecht: Springer) 111-125

[34] Barik J, Mukhopadhyay A, Ghosh T, Mukhopadhyay S K, Chowdhury S M and Hazra S 2018 Mangrove Species Distribution and Water Salinity: An Indicator Species Approach to Sundarban *Journal of Coastal Conservation* 22 361-368