SARS-CoV-2 Variants Infection in Relationship to Imaging-based Pneumonia and Clinical Outcomes

Jong Eun Lee, MD • Minhee Hwang, MD • Yun-Hyeon Kim, MD, PhD • Myung Jin Chung, MD, PhD • Byeong Hak Sim, MD • Won Gi Jeong, MD • Yeon Joo Jeong, MD, PhD

From the Department of Radiology, Chonnam National University Hospital, Gwangju, Korea (J.E.L., Y.H.K.); Department of Radiology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea (M.H.); Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (M.J.C.); Department of Radiology, Namwon Medical Center, Namwon, Korea (B.H.S.); Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea (W.G.J.); and Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan 50612, Korea (Y.J.J.).

Received July 14, 2022; revision requested August 18; revision received September 3; accepted September 13.

Address correspondence to Y.J.J. (email: jeongyj0610@gmail.com).

Conflicts of interest are listed at the end of this article.

Background: Few reports have evaluated the effect of the SARS-CoV-2 variant and vaccination on the clinical and imaging features of COVID-19.

Purpose: To evaluate and compare the effect of vaccination and variant prevalence on the clinical and imaging features of infections by the SARS-CoV-2.

Materials and Methods: Consecutive adults hospitalized for confirmed COVID-19 at three centers (two academic medical centers and one community hospital) and registered in a nationwide open data repository for COVID-19 between August 2021 and March 2022 were retrospectively included. All patients had available chest radiographs or CT images. Patients were divided into two groups according to predominant variant type over the study period. Differences between clinical and imaging features were analyzed with use of the Pearson χ² test, Fisher exact test, or the independent t test. Multivariable logistic regression analyses were used to evaluate the effect of variant predominance and vaccination status on imaging features of pneumonia and clinical severity.

Results: Of the 2180 patients (mean age, 57 years ± 21; 1171 women), 1022 patients (47%) were treated during the Delta variant predominant period and 1158 (53%) during the Omicron period. The Omicron variant prevalence was associated with lower pneumonia severity based on CT scores (odds ratio [OR], 0.71 [95% CI: 0.51, 0.99; P = .04]) and lower clinical severity based on intensive care unit (ICU) admission or in-hospital death (OR, 0.43 [95% CI: 0.24, 0.77; P = .004]) than the Delta variant prevalence. Vaccination was associated with the lowest odds of severe pneumonia based on CT scores (OR, 0.05 [95% CI: 0.03, 0.13; P < .001]) and clinical severity based on ICU admission or in-hospital death (OR, 0.15 [95% CI: 0.07, 0.31; P < .001]) relative to no vaccination.

Conclusion: The SARS-CoV-2 Omicron variant prevalence and vaccination were associated with better clinical outcomes and lower severe pneumonia risk relative to Delta variant prevalence.

© RSNA, 2022

Supplemental material is available for this article.

The first case of COVID-19 was detected toward the end of 2019, and in August 2022, over 587 million confirmed cases and six million deaths were reported (1). The overall mortality rate has declined from an initial 2% to 1.2%, probably due to vaccination or the emergence of clinically milder strains. COVID-19 vaccines have proven to be effective and critical tools for controlling the pandemic. Globally, as of August 2022, a total of 12 billion vaccine doses had been administered, and 4.8 billion persons were fully vaccinated (2).

According to the Korea Disease Control and Prevention Agency (hereafter, KDCA) data, the number of confirmed cases of COVID-19 per 100 000 of the Korean population was 16.6 in the unvaccinated group and 3.1 in the fully vaccinated group, and nonvaccinated individuals were at 5.2-fold higher risk of COVID-19 than the fully vaccinated (3). Although COVID-19 vaccines are highly effective, breakthrough infections have been reported with varying incidence rates (4). Recently, the numbers of those infected or vaccinated have increased, but so has the number of breakthrough infections (4). In our previous study (5), we found that the clinical and imaging characteristics of COVID-19 breakthrough infections in fully vaccinated patients tended to be milder than those of unvaccinated patients. In addition, several recently published studies revealed that clinical course and pneumonia severity are somewhat different according to the viral variants (6–9).

However, to our knowledge, few reports have evaluated the effect of both vaccination and viral variant prevalence on clinical and imaging severity of COVID-19. Therefore, the purpose of this study was to evaluate the clinical and imaging features of COVID-19 according to viral variant prevalence and vaccination statuses in order to analyze their relationships with clinical severity and vaccination status.
SARS-CoV-2 Variants Infection in Relationship to Imaging-based Pneumonia and Clinical Outcomes

November 2021 (10–12), but the Omicron variant gradually replaced the Delta variant from December 2021 to January 2022, and the detection rate of the Omicron variant exceeded 90% from February 2022 (10–12). In this study, we included patients with COVID-19 registered from August 2021 to March 2022 (Fig 1). Periods in which the detection rate of each variant exceeded 90% were defined as periods of variant predominance. Accordingly, August 2021 to November 2021 was defined as the Delta variant predominant period (the Delta period) and February 2022 to March 2022 as the Omicron variant predominant period (the Omicron period).

This multicenter study was conducted at three centers (one community hospital [center 1, \(n = 1144 \)] and two academic medical centers [center 2, \(n = 617 \); center 3, \(n = 419 \)]) registered in the Korean Imaging Cohort of COVID-19 (hereafter, KICC) database (a nationwide open data repository) (13). The participants were consecutive patients of at least 18 years of age hospitalized for COVID-19 (as confirmed by real-time reverse transcriptase polymerase chain reaction per national guidelines) with available chest radiographs (posteroanterior or anteroposterior view) or CT images. The indications of hospitalization were determined based on the patient’s risk and severity of symptoms and were also applied differently according to periods of variant predominance and level of center. All confirmed patients were eligible for hospitalization and isolation in the Delta period, whereas high-risk patients or patients with severe symptoms were eligible for hospitalization in the Omicron period.

Materials and Methods

The study was approved by the institutional review board (2207–002–116), which waived the requirement for informed consent due to the retrospective nature of the study.

Study Design and Patients

The KDCA monitors COVID-19 variant types by analyzing 10%–30% of daily confirmed cases in Korea through random sampling (10). According to a KDCA report, the detection rate of the Delta variant exceeded 90% from August 2021 to November 2021 (10–12), but the Omicron variant gradually replaced the Delta variant from December 2021 to January 2022, and the detection rate of the Omicron variant exceeded 90% from February 2022 (10–12). In this study, we included patients with COVID-19 registered from August 2021 to March 2022 (Fig 1). Periods in which the detection rate of each variant exceeded 90% were defined as periods of variant predominance. Accordingly, August 2021 to November 2021 was defined as the Delta variant predominant period (the Delta period) and February 2022 to March 2022 as the Omicron variant predominant period (the Omicron period).

This multicenter study was conducted at three centers (one community hospital [center 1, \(n = 1144 \)] and two academic medical centers [center 2, \(n = 617 \); center 3, \(n = 419 \)]) registered in the Korean Imaging Cohort of COVID-19 (hereafter, KICC) database (a nationwide open data repository) (13). The participants were consecutive patients of at least 18 years of age hospitalized for COVID-19 (as confirmed by real-time reverse transcriptase polymerase chain reaction per national guidelines) with available chest radiographs (posteroanterior or anteroposterior view) or CT images. The indications of hospitalization were determined based on the patient’s risk and severity of symptoms and were also applied differently according to periods of variant predominance and level of center. All confirmed patients were eligible for hospitalization and isolation in the Delta period, whereas high-risk patients or patients with severe symptoms were eligible for hospitalization in the Omicron period.
Data Collection
Demographic characteristics (age and sex), smoking history, vaccination status, body mass index at time of admission, comorbidities (hypertension, diabetes, cardiovascular disease, cancer, chronic kidney disease, and immunocompromised state), clinical symptoms (fever, cough, sputum, dyspnea, myalgia, sore throat, and sensory loss), initial laboratory findings, and clinical outcomes were evaluated with use of the KICC cloud-based data storage platform. Vaccination status was classified as unvaccinated, partially vaccinated, fully vaccinated, or booster dose administered (Table S1). Initial laboratory findings included white blood cell, lymphocyte, platelet counts, lactate dehydrogenase, and C-reactive protein levels. Leukocytosis was defined as a white blood count of greater than 10 000 µL, lymphocytopenia as a lymphocyte count of less than 1500 µL, and thrombocytopenia as a platelet count of less than 150 000 µL. The predefined clinical thresholds for lactate dehydrogenase and C-reactive protein elevation were 50 mg/L and 250 U/L, respectively. Clinical outcomes were receipt of supplemental oxygen, mechanical ventilation, intensive care unit (ICU) admission, and in-hospital death.

Chest radiographs and CT images obtained during hospitalization were acquired from the KICC cloud-based data storage platform. The initial chest radiographs were obtained in all patients at admission and followed up every 2–3 days until discharge. The chest CT scans were obtained differently depending on patients’ condition and the situation of centers, and the CT images that were obtained at admission or during hospitalization but within a week of symptom onset were regarded as the initial CT images. An initial chest radiograph was obtained for all 2180 patients, and an initial chest CT image was obtained for 1413 patients (center 1 [n = 1144], center 2 [n = 82], and center 3 [n = 187]) (Fig 1).

Image Analysis
Two thoracic radiologists (M.H. and J.E.L., with 3 and 8 years of experience, respectively), unaware of patient clinical information, reviewed all images independently. Interreader discrepancies were resolved by consensus agreements. Pneumonia extent on percentage of any opacification with chest radiographs and CT images (score 0 = no evidence of pneumonia, score 1 = 1%–25% involvement, and score 2 = >25% involvement) (5,14,15). Pneumonia patterns with CT images were categorized as typical, indeterminate, atypical, or negative as per the RSNA Expert Consensus Statement (16).

Table 1: Clinical Characteristics and Outcomes of Patients with COVID-19 by Predominant Variant

Variables	Delta Group (n = 1022)	Omicron Group (n = 1158)	P Value
Age (y)*	49 ± 19	63 ± 20	<.001†
Sex			
F	522 (51)	649 (56)	.02†
M	500 (49)	509 (44)	NA
Smoking history			
Smoker	139 (17)	72 (11)	<.001†
Never smoker	678 (83)	596 (89)	NA
Vaccination status			
Unvaccinated	625 (61)	239 (21)	<.001†
Any vaccinated	397 (39)	919 (79)	<.001†
Partially vaccinated	140 (14)	32 (2.8)	NA
Fully vaccinated	257 (25)	255 (22)	NA
Booster dose administered	0 (0)	632 (55)	NA
Symptoms			
Asymptomatic	123 (12)	125 (11)	.36
Symptomatic	899 (88)	1033 (89)	NA
Comorbidities			
Hypertension	279 (27)	535 (46)	<.001†
Diabetes	145 (14)	305 (26)	<.001†
Cardiovascular disease	93 (9.1)	251 (22)	<.001†
Obesity	85 (8.3)	63 (5.4)	.008†
History of cancer	60 (5.9)	129 (11)	<.001†
Chronic kidney disease	39 (3.8)	122 (11)	<.001†
Immunocompromised	14 (1.4)	24 (2.1)	.21
Initial laboratory findings			
WBC count >10 000 µL	31 (3.0)	106 (9.2)	<.001*
Lymphocyte count <1000 µL	260 (25)	270 (23)	.24
Platelet count <150 000 µL	170 (17)	233 (20)	.03*
LDH >250 U/L	313 (31)	397 (34)	.06
CRP >50 mg/L	131 (13)	247 (21)	<.001*
Clinical outcomes			
Length of hospital stay*	12 ± 7.9	9.5 ± 17	<.001*
Requiring O₂ supply	214 (21)	298 (26)	.008*
ICU admission	50 (5)	63 (5)	.56
Mechanical ventilation	30 (3)	54 (5)	.003*
In-hospital death	19 (2)	49 (4)	<.001*

Note.—Data are numbers of patients with percentages in parentheses, unless otherwise noted. CRP = C-reactive protein, ICU = intensive care unit, LDH = lactate dehydrogenase, NA = not applicable, WBC = white blood cell.

* Data are means ± SDs.
† Indicates statistical significance (P < .05).

Statistical Analysis
Statistical analysis was performed with use of SPSS version 28.0 (IBM). Categorical variables are presented as numbers and percentages and continuous variables as means and SDs. The 2180 patients were divided into two groups according to variant predominance. Significances of intergroup were determined with use of the Pearson χ² test or Fisher exact test for categorical variables (sex, smoking history, comorbidities, symptoms, initial laboratory findings, three-point chest radiography and CT scores, CT pneumonia pattern, and clinical outcomes), and the
significances of differences between continuous variables (age and hospital length of stay) were determined with use of the independent t test. Post hoc analysis was performed with use of the Bonferroni method. Bonferroni-adjusted P values were determined by multiplying raw P values by numbers of comparisons. κ statistics were used to estimate interreader agreements for chest radiography and CT scores and CT pneumonia pattern. The Cohen κ coefficient values of less than 0.40 indicated poor agreement, 0.41–0.60 as moderate agreement, 0.61–0.80 as substantial agreement, and 0.81–1 as almost perfect agreement. Multivariable ordinal logistic regression analyses were used to evaluate the association of pneumonia severity with variant predominance and vaccination status, and multivariable binary logistic regression analyses were used to evaluate the association of clinical severity with variant predominance and vaccination status. The unadjusted models included each of the predominant variant and vaccination statuses, and the adjusted multivariable models included predominant variant and vaccination status with additional covariates of age, sex, smoking history, hypertension, diabetes, cardiovascular disease, history of cancer, chronic kidney disease, immunocompromised state, obesity, and laboratory measures above or below predefined clinical thresholds (white blood count, lymphocyte, and platelet counts and lactate dehydrogenase and C-reactive protein levels) as covariates. Statistical significance was accepted for $P < .05$.

Results

Clinical Characteristics and Outcomes of Patients according to Variant Predominance

Of the 2849 patients, 662 patients registered from the inconclusive variant predominance period and seven patients with missing imaging evaluation were excluded (Fig 1). Baseline clinical characteristics and outcomes of the 2180 patients included in the analysis according to variant predominance and vaccination status are presented in Figure 1, Table 1, and Table S2. Mean age was higher in the Omicron variant prevalence group (the Omicron group) (63 years ± 20) than in the Delta variant prevalence group (the Delta group) (49 years ± 19) ($P < .001$). The percentage of women was higher in the Omicron group (56%, 649 of 1158 patients vs 51%, 522 of 1022 patients) ($P = .02$), and the percentage of unvaccinated individuals was higher in the Delta group (61%, 625 of 1022 patients vs 21%, 239 of 1158 patients). Only the Omicron group included individuals who received a booster vaccine dose.

The mean time between final vaccination and diagnosis was greater in the Omicron than the Delta group (86 days ± 52 vs 61 days ± 45) ($P < .001$). Percentages of patients with comorbidities, including hypertension, diabetes, cardiovascular disease, history of cancer, chronic kidney disease, were higher in the Omicron group ($P < .001$), but the percentage of obese patients was higher in the Delta group ($P = .008$). Percentages of patients with leukocytosis, or an elevated C-reactive protein level, were higher than in the Omicron group ($P < .001$), and the percentage of patients with thrombocytopenia was also higher in the Omicron group ($P = .03$). Mean hospital stay was shorter in the Omicron group (9.5 days ± 17 vs 12 days ± 7.9) ($P < .001$), and proportions of patients receiving supplemental oxygen or mechanical ventilation and in-hospital deaths were higher in the Omicron group.

Vaccination Status and Breakthrough Infections

There were 864 (40%) of the 2180 patients who had not been vaccinated at time of diagnosis, 172 (8%) were partially vaccinated, 512 (23%) were fully vaccinated, and 632 (29%) had received a booster dose. Mean time between last vaccination and diagnosis was 79 days ± 51. Of the 1316 vaccinated patients, 1258 (96%) received a vaccination...
within 6 months of diagnosis and 58 (4%) more than 6 months at diagnosis (Table S3).

Pneumonia Severity and Patterns by Variant Predominance

κ agreements for initial and follow-up chest radiographs and CT scores between two readers were as follows: initial chest radiographs, 0.76; follow-up chest radiographs, 0.90; initial CT images, 0.89. κ agreements for CT patterns between two readers were almost perfect (0.85). Pneumonia severities and patterns by variant predominance are presented in Table 2. There were 1744 patients (80%) of the 2180 patients who underwent at least one follow-up chest radiography assessment during hospitalization. According to initial chest radiography assessments, 68% (695 of 1022) of patients in the Delta group and 75% (866 of 1158) of those in the Omicron group had negative chest radiographs (score of 0), and the proportion of patients with an initially negative chest radiograph was higher in the Omicron group (Bonferroni-adjusted \(P < .001 \)). Additionally, 15% (149 of 1022) of patients in the Delta group and 12% (136 of 1158) of patients in the Omicron group had a chest radiograph score of 2. The proportion of patients with severe pneumonia (a chest radiograph score of 2) was similar in the Omicron and Delta groups (Bonferroni-adjusted \(P = .10 \)).

According to the worst chest radiography assessments during hospitalization, 66% (671 of 1022) of patients in the Delta group and 73% (843 of 1158) of patients in the Omicron group were negative for pneumonia on chest radiographs. The proportion of patients with negative chest radiograph findings during follow-up was higher in the Omicron group (Bonferroni-adjusted \(P < .001 \)). Additionally, 16% (164 of 1022) of patients in the Delta group and 16% (182 of 1158) of patients in the Omicron group had a chest radiograph score of 2. The proportion of patients with severe pneumonia in the worst chest radiographs (score of 2) was similar in the Omicron and Delta groups (Bonferroni-adjusted \(P = .83 \)).

Overall, 1413 of the 2180 patients (65%) underwent chest CT during hospitalization; of these, 35% (209 of 601) of patients in the Delta group and 71% (573 of 812) of patients in the Omicron group were negative for pneumonia on chest CT. The proportion of patients with negative chest CT findings was higher in the Omicron group (Bonferroni-adjusted \(P < .001 \)). Additionally, 19% (114 of 601) of patients in the Delta group and 12% (100 of 812) of patients in the Omicron group had a CT score of 2. The proportion of patients with a CT score of 2 was lower in the Omicron group (Bonferroni-adjusted \(P < .001 \)). Of the 1413 patients that underwent chest CT, 631

Variable	Model 1		Model 2	
Chest radiography				
Predominant variant				
Delta	Reference	NA	Reference	NA
Omicron	0.76 (0.63, 0.91)*	.002*	0.92 (0.68, 1.23)	.56
Last vaccination status				
Unvaccinated	Reference	NA	Reference	NA
<6 months after partially vaccinated	0.35 (0.24, 0.51)*	<.001*	0.38 (0.24, 0.57)*	<.001*
≥6 months after partially vaccinated	0.83 (0.28, 2.32)	.73	0.30 (0.08, 1.04)	.06
<6 months after fully vaccinated	0.22 (0.17, 0.29)*	<.001*	0.14 (0.10, 0.20)*	<.001*
≥6 months after fully vaccinated	0.50 (0.26, 0.94)*	.03*	0.15 (0.07, 0.33)*	<.001*
Booster dose administered	0.17 (0.13, 0.21)*	<.001*	0.07 (0.05, 0.10)*	<.001*
CT				
Predominant variant				
Delta	Reference	NA	Reference	NA
Omicron	0.28 (0.23, 0.35)*	<.001*	0.71 (0.51, 0.99)*	.04*
Last vaccination status				
Unvaccinated	Reference	NA	Reference	NA
<6 months after partially vaccinated	0.43 (0.28, 0.67)*	<.001*	0.42 (0.26, 0.68)*	<.001*
≥6 months after partially vaccinated	0.42 (0.10, 1.68)	.22	0.33 (0.07, 1.52)	.15
<6 months after fully vaccinated	0.13 (0.09, 0.18)*	<.001*	0.11 (0.08, 0.17)	<.001*
≥6 months after fully vaccinated	0.26 (0.13, 0.52)*	<.001*	0.16 (0.07, 0.33)	<.001*
Booster dose administered	0.07 (0.05, 0.09)*	<.001*	0.05 (0.03, 0.13)	<.001*

Note.—Data in parentheses are 95% CIs. The analysis was performed with use of an ordinal logistic regression model. Model 1 was the unadjusted model. Model 2 included predominant variant and vaccination status with age, sex, smoking history, hypertension, diabetes, cardiovascular disease, history of cancer, chronic kidney disease, immunocompromised state, obesity, and laboratory measures above or below predefined clinical thresholds (white blood count, lymphocyte, platelet counts, and lactate dehydrogenase and C-reactive protein levels) as covariates. NA = not applicable, OR = odds ratio.

* Indicates statistical significance (\(P < .05 \)).
(45%) were positive for pneumonia, and the most common CT patterns observed were “typical” (76% [298 of 392] in the Delta group, and 42% [101 of 239] in the Omicron group). The proportion with a “typical” CT pattern was lower in the Omicron group (Bonferroni-adjusted \(P < .001 \)), and the proportion with an “atypical” CT pattern was higher in the Omicron group (Bonferroni-adjusted \(P < .001 \)).

Factors Associated with Pneumonia Severity
The unadjusted and adjusted odds ratios (ORs) of pneumonia severity are summarized in Table 3. Adjusted multivariable analysis showed that the Omicron variant prevalence had a lower OR for pneumonia severity based on CT scores (OR, 0.71 [95% CI: 0.51, 0.99; \(P = .04 \))). Adjusted multivariable analysis showed that all vaccinated statuses except at least 6 months from partial vaccination had lower ORs for pneumonia severity based on chest radiograph and CT scores than the unvaccinated (all \(P < .001 \)) (Figs 2, 3). The ORs of pneumonia severity based on chest radiograph and CT scores were the lowest for patients who had been administered a booster dose (OR, 0.07 [95% CI: 0.05, 0.10, \(P < .001 \)]) and 0.05 [95% CI: 0.03, 0.13, \(P < .001 \)], respectively).

Factors Associated with Clinical Severity
The unadjusted and adjusted ORs of clinical severity are summarized in Table 4. Adjusted multivariable analysis showed that the Omicron variant prevalence had lower ORs for clinical severity based on ICU admission or in-hospital death (OR, 0.43 [95% CI: 0.24, 0.77; \(P = .004 \)]). Adjusted multivariable analysis showed that booster dose–administered patients and fully vaccinated patients within 6 months before admission had lower ORs for clinical severity based on receipt of supplemental oxygen than the unvaccinated (\(P < .001 \)). Fully vaccinated patients above 6 months and partially vaccinated patients within 6 months before admission also had lower ORs for clinical severity based on receipt of supplemental oxygen than the unvaccinated (\(P = .01 \) and .003, respectively). Adjusted multivariable analysis

Figure 2: Representative cases show pneumonia extents and patterns with chest radiographs and CT images during the Omicron period. (A, B) Images in a 52-year-old woman with a breakthrough COVID-19 infection 4 months after a second dose of the mRNA-1273 vaccine (fully vaccinated) in the Omicron period. The patient had no history of comorbidity. (A) Chest radiograph obtained at admission shows no abnormality in both lungs. The chest radiograph extent of pneumonia was scored as 0 (no evidence of pneumonia). (B) Axial chest CT image obtained on the same day shows poorly defined centrilobular nodules in the left lower lobe (arrows). The extent of pneumonia with CT was scored as 1 (1%–25% involvement). This case was classified as “atypical” for COVID-19 pneumonia, as per the RSNA chest CT classification system. (C, D) Images in a 30-year-old man with no history of COVID-19 vaccination and no history of comorbidity in the Omicron period. (C) Chest radiograph taken at admission shows patchy ground-glass opacities in the middle to lower zones of both lungs. The chest radiograph extent of pneumonia was scored as 2 (>25% involvement). (D) Axial chest CT image obtained on the same day shows multifocal ground-glass opacities with a crazy-paving appearance in bilateral lungs. The extent of pneumonia at CT was scored as 2 (>25% involvement), and the appearance of COVID-19 pneumonia was classified as “typical,” according to the RSNA chest CT classification system.
Lee et al showed that booster dose–administered patients and fully vaccinated patients within 6 months before admission had lower ORs for clinical severity based on ICU admission or in-hospital death than the unvaccinated \((P < .001) \). Partially vaccinated patients within 6 months before admission also had lower OR for clinical severity based on ICU admission or in-hospital death than the unvaccinated \((P = .01) \). The ORs for clinical severity based on receipt of supplemental oxygen and ICU admission or in-hospital death were the lowest for patients who had received a booster dose \((OR, 0.10 [95\% CI: 0.07, 0.16; P < .001]) \) and \(0.15 [95\% CI: 0.07, 0.31; P < .001] \), respectively.

Discussion

The effect of the SARS-CoV-2 variant and vaccination on the clinical and imaging features of COVID-19 remain lacking. In this study, we evaluated the clinical and imaging features of COVID-19 according to the prevalence of viral variants and vaccination status and analyzed their relationships with clinical severity.

Figure 3: Representative cases show pneumonia extents and patterns with chest radiographs and CT images during the Delta period \((A, B)\). Images in a 54-year-old man 1 month after a first dose of BNT162b2 vaccine (partially vaccinated) in the Delta period. The patient had no history of comorbidity. \((A) \) Chest radiograph obtained at admission shows no abnormality in both lungs. The chest radiograph extent of pneumonia was scored as 0 (no evidence of pneumonia). \((B) \) Axial chest CT image obtained on the same day shows unilateral focal ground-glass opacity in the right upper lobe (arrow). The extent of pneumonia with CT was scored as 1 (1%–25% involvement), and this case was classified as an “indeterminate” for COVID-19 pneumonia, according to the RSNA chest CT classification system. \((C, D) \) Images in a 32-year-old man with no history of COVID-19 vaccination and no history of comorbidity in the Delta period. \((C) \) Chest radiograph at admission shows patchy ground-glass opacities in the middle to lower zones of both lungs. The chest radiograph extent of pneumonia was scored as 2 (25% involvement). \((D) \) Axial chest CT image obtained on the same day shows multifocal ground-glass opacities with a crazy-paving appearance in bilateral lungs. The extent of pneumonia with CT was scored as 2 (25% involvement), and this case was classified as “typical” for COVID-19 pneumonia, as per the RSNA chest CT classification system.

Summarizing our findings were as follows: \((a) \) The clinical characteristics of the Delta and Omicron prevalence groups were quite different, and the proportions of patients requiring supplemental oxygen \((26\% vs 21\%, P = .008) \) or mechanical ventilation \((5\% vs 3\%, P = .003) \) and in-hospital deaths \((4\% vs 2\%, P < .001) \) were higher in the Omicron group; \((b) \) the proportions of patients with an initially negative chest radiographic \((75\% vs 68\%, P < .001) \) or CT findings \((71\% vs 35\%, P < .001) \) were also higher in the Omicron group; \((c) \) the most common CT pattern was typical (RSNA classification \([10] \)), but the proportion of an atypical CT pattern \((28\% vs 3\%) \) was higher in the Omicron group \((P < .001) \); \((d) \) adjusted multivariable analysis also showed that all vaccinated statuses except more than 6 months from partial vaccination had lower odds ratios (ORs) for pneumonia severity based on chest radiograph and CT scores than the unvaccinated \((all P < .001) \). In addition, Omicron variant prevalence had significantly lower ORs for clinical severity based on intensive care unit admission or in-hospital death \((OR, 0.43 [95\% CI: 0.24, 0.77; P = .004]) \).
From February 2022 to April 2022, the number of confirmed COVID-19 cases rose sharply due to the Omicron variant in Korea, and the number of confirmed cases accounted for 95% of all confirmed cases in Korea during the period (17). In February 2022, the Korean government announced a new treatment strategy based on the screening and treatment of high-risk populations as early as possible (18). Confirmed patients with no or mild symptoms were asked to isolate at home, and the isolation period at home or hospital was reduced from 10 to 7 days. Accordingly, the patients recruited in the Omicron period were of higher risk than those recruited in the Delta period, and, thus, clinical outcomes were poorer in the Omicron group than in the Delta group. However, multivariable analysis adjusted for baseline characteristic differences showed clinical outcomes were better in the Omicron group.

Although it is difficult to infer intrinsic severity of the Omicron variant due to the effect of difference in population immunity, the Omicron variant causes less severe pneumonia than the Alpha (15) or Delta variant (8,9), which concurs with our findings. In particular, the multivariable analysis conducted in our current study, which was corrected for vaccination status and underlying disease, showed that the Omicron variant prevalence was an independent protective factor of pneumonia severity as compared with the Delta variant prevalence, which supports the results of previous studies. Notably, we found the “atypical” pattern of COVID-19 pneumonia was more prevalent in the Omicron group, which is also consistent with previous studies (8,9). Although the exact pathogenesis of the “atypical” pattern of COVID-19 pneumonia was not determined, we believed it was probably the result of co-infection or secondary infections, rather than COVID-19 pneumonia (16,19). When the Omicron variant became predominant, the severity of pneumonia decreased and the negative scan rate increased, but proportions of patients admitted with a co-infection or secondary infection increased in line with increased admissions of high-risk hospitalized patients, which may have influenced the pneumonia patterns.

As vaccination rates increased, the proportion of patients admitted with a COVID-19 breakthrough infection increased, and overall disease severity decreased (20,21). The effectiveness of vaccination for Delta and Omicron variants has been well demonstrated (22,23). In an earlier study we conducted during the early Delta period, vaccination was found to reduce disease severity and rate of pneumonia and improve clinical outcomes.

Table 4: ORs for Clinical Severity by Predominant Variant and Vaccination Status

Variable	Model 1		Model 2	
	Unadjusted OR	*P* Value	Adjusted OR	*P* Value
Requirement for supplemental oxygen				
Predominant variant				
Delta	Reference	NA	Reference	NA
Omicron	1.31 (1.07, 1.60)*	.008*	1.10 (0.75, 1.59)	.63
Last vaccination status				
Unvaccinated	Reference	NA	Reference	NA
<6 months after partially vaccinated	0.37 (0.24, 0.58)*	<.001*	0.41 (0.22, 0.74)*	.003*
≥6 months after partially vaccinated	2.22 (0.80, 6.17)	.12	0.46 (0.10, 2.15)	.32
<6 months after fully vaccinated	0.36 (0.27, 0.48)*	<.001*	0.18 (0.12, 0.28)*	<.001*
≥6 months after fully vaccinated	1.11 (0.59, 2.08)	.75	0.27 (0.10, 0.73)*	.01
Booster dose administered	0.34 (0.27, 0.45)*	<.001*	0.10 (0.07, 0.16)*	<.001*
ICU admission or in-hospital death				
Predominant variant				
Delta	Reference	NA	Reference	NA
Omicron	1.13 (0.79, 1.60)	.49	0.43 (0.24, 0.77)*	.004*
Vaccination status				
Unvaccinated	Reference	NA	Reference	NA
<6 months after partially vaccinated	0.16 (0.05, 0.51)*	.002*	0.17 (0.04, 0.65)*	.01*
≥6 months after partially vaccinated	0.63 (0.08, 4.87)	.63	0.16 (0.01, 1.65)	.12
<6 months after fully vaccinated	0.33 (0.20, 0.55)*	<.001*	0.27 (0.14, 0.53)*	<.001*
≥6 months after fully vaccinated	1.05 (0.40, 2.73)	.92	0.31 (0.09, 1.05)	.06
Booster dose administered	0.19 (0.11, 0.33)	<.001	0.15 (0.07, 0.31)*	<.001*

Note.—Data in parentheses are 95% CIs. There were 512 patients in the supplemental oxygen group, and 135 patients in the intensive care unit (ICU) admission or in-hospital death group. The analysis was performed with use of a logistic regression model. Model 1 was the unadjusted model. Model 2 included predominant variant and vaccination status with age, sex, smoking history, hypertension, diabetes, cardiovascular disease, history of cancer, chronic kidney disease, immunocompromised state, obesity, and laboratory measures above or below predefined clinical thresholds (white blood count, lymphocyte, platelet counts, and lactate dehydrogenase and C-reactive protein levels) as covariates. NA = not applicable, OR = odds ratio. * Indicates statistical significance (*P* < .05).
In our current study, multivariable analysis showed vaccinated status was negatively associated with pneumonia severity and poor clinical outcomes and that it was a stronger independent factor of lower risk than variant status. Therefore, the Delta to Omicron switch and a higher vaccination rate may have been largely responsible for the observed reductions in clinical and pneumonia severities in patients with COVID-19.

Several limitations of this study warrant consideration. First, the study was conducted on patients hospitalized for COVID-19, which may have introduced selection bias. Second, we defined our study groups according to periods of variant predominance rather than by testing. Third, we used medical records to determine vaccination histories and, thus, were unable to evaluate the effectiveness of different types of vaccine. Finally, there were several potential confounders (changes in treatment methods and numbers of vaccine doses between two variants prevalence) to impact on the results.

In summary, the SARS-CoV-2 Omicron variant prevalence and vaccination were associated with better clinical outcomes and lower severe pneumonia risk. Vaccination was found to have the greatest protective effects on pneumonia and clinical severity in SARS-CoV-2 Omicron and Delta variant infections.

Author contributions: Guarantors of integrity of entire study, J.E.L., B.H.S., W.G.J., Y.J.J.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of final version of submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors; literature research, M.H., Y.H.K., M.J.C., Y.J.J.: clinical studies, all authors; statistical analysis, J.E.L., M.H., Y.J.J.; and manuscript editing, J.E.L., M.H., Y.H.K., B.H.S., Y.J.J.

Disclosures of conflicts of interest: J.E.L. No relevant relationships. M.H. No relevant relationships. Y.H.K. No relevant relationships. M.J.C. No relevant relationships. B.H.S. No relevant relationships. W.G.J. No relevant relationships. Y.J.J. No relevant relationships.

References
1. World Health Organization. Weekly epidemiological update on COVID-19. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---17-august-2022. Published June 8, 2022. Accessed August 21, 2022.
2. World Health Organization. Coronavirus (COVID-19) dashboard. https://covid19.who.int/. Published August 16, 2022. Accessed August 21, 2022.
3. Korea Disease Control and Prevention Agency. COVID-19 dashboard, Republic of Korea. http://ncov.mohw.go.kr/en/. Published June 30, 2022. Accessed August 21, 2022.
4. Stouten V, Hubin P, Haarhuis F, et al. Incidence and Risk Factors of COVID-19 Vaccine Breakthrough Infections: A Prospective Cohort Study in Belgium. Viruses 2022;14(4):802.
5. Lee JE, Hwang M, Kim YH, et al. Imaging and Clinical Features of COVID-19 Breakthrough Infections: A Multicenter Study. Radiology 2022;303(3):682–692.
6. Madhi SA, Kwatara G, Myers JE, et al. Population immunity and COVID-19 severity with Omicron variant in South Africa. N Engl J Med 2022;386(14):1314–1326.
7. Yang N, Wang C, Huang J, et al. Clinical and Pulmonary CT Characteristics of Patients Infected With the SARS-CoV-2 Omicron Variant Compared With Those of Patients Infected With the Alpha Viral Strain. Front Public Health 2022;10:931480.
8. Tsakok MT, Watson RA, Saujani SJ, et al. Chest CT and Hospital Outcomes in Patients With Omicron Compared With Delta Variant SARS-CoV-2 Infection. Radiology 2022. 10.1148/radiol.220533. Published online June 28, 2022.
9. Yoon SH, Lee JH, Kim BN. Chest CT Findings in Hospitalized Patients With SARS-CoV-2: Delta versus Omicron Variants. Radiology 2022. 10.1148/radiol.220676. Published online June 28, 2022.
10. Korea Disease Control and Prevention Agency. Public Health Weekly Report, Status and characteristics of the SARS-CoV-2 variant outbreak in the Republic of Korea in January 2022. https://www.kdcda.go.kr/board/board.es?mid=a30501000000&bid=0031&list_no=719156&act=view. Published February 2, 2022. Accessed June 30, 2022.
11. Korea Disease Control and Prevention Agency. Public Health Weekly Report, COVID-19 outbreak report from January 20, 2020 to January 19, 2022 in the Republic of Korea. https://www.kdcda.go.kr/board/board.es?mid=a30501000000&bid=0031&list_no=719156&act=view. Published March 31, 2022. Accessed June 30, 2022.
12. Ritchie H, Mathieu E, Rodés-Guirao L, et al. Coronavirus Pandemic (COVID-19). https://ourworldindata.org/coronavirus. Published June 30, 2022. Accessed June 30, 2022.
13. Yoon SH, Ham SY, Nam BD, et al. Establishment of a nationwide Korean imaging cohort of coronavirus disease 2019. J Korean Med Sci 2020;35(46):e413.
14. Au-Yong I, Higashi Y, Giannotti E, et al. Chest Radiograph Scoring Alone or Combined with Other Risk Scores for Predicting Outcomes in COVID-19. Radiology 2022;302(2):460–469.
15. Guillo E, Bedmar Gomez I, Dangeard S, et al. COVID-19 pneumonia: Diagnostic and prognostic role of CT based on a retrospective analysis of 214 consecutive patients from Paris, France. Eur J Radiol 2020;131:109209.
16. Simpson S, Kay FU, Abbara S, et al. Radiological Society of North America Expert Consensus Document on Reporting Chest CT Findings Related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol Cardiology Imaging 2020;2(2):e200152.
17. Korea Disease Control and Prevention Agency. Public Health Weekly Report, Outbreak report of COVID-19 during designation of Class 1 infectious disease in the Republic of Korea (January 20, 2020 and April 24, 2022). https://www.kdcda.go.kr/board/board.es?mid=a30501000000&bid=0031&list_no=719926&act=view. Published June 23, 2022. Accessed June 30, 2022.
18. Korea Disease Control and Prevention Agency. Press Release, South Korea's New Strategy against Omicron. https://www.kdcda.go.kr/board/board.es?mid=a30402000000&bid=0030. Published January 10, 2022. Accessed June 30, 2022.
19. de Jaegere TMH, Krdzalic J, Fasen BACM, Kwee RM; COVID-19 CT Investigators South-East Netherlands (CISEN) study group. Radiological Society of North America chest CT classification system for reporting COVID-19 pneumonia: interobserver variability and correlation with reverse-transcription polymerase chain reaction. Radiol Cardiothorac Imaging 2020;2(3):e200213.
20. Suther AB, Wang J, Seffen V, Wieand GE, Griffing S, Zell E. Public health impact of covid-19 vaccines in the US: observational study. BMJ 2022;377:e069317.
21. Christensen PA, Olsen RJ, Long SW, et al. Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with Coronavirus disease 2019 caused by the Omicron variant of severe acute respiratory syndrome Coronavirus 2 in Houston, Texas. Am J Pathol 2022;192(4):642–652.
22. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med 2021;385(7):585–594.
23. Andrews N, Stripe J, Kirsbohm F, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med 2022;386(16):1532–1546.