Very low wear of non-remelted highly cross-linked polyethylene cups
An RSA study lasting up to 6 years

Stephan M Röhrl¹, Ming Guo Li², Kjell-Gunnar Nilsson³, and Bo Nivbrant²

¹Ullevål University Hospital, Division of Neuroscience, Orthopaedics and Rehabilitation, Department of Orthopaedics, Oslo, Norway,
²Perth Orthopaedic Institute, University of Western Australia, Perth, Australia,
³Umeå University Hospital, Umeå, Sweden.
Correspondence SMR: s.m.rohrl@medisin.uio.no
Submitted 06-08-23. Accepted 06-12-27

Background and purpose Highly cross-linked polyethylenes (PEs) all appear to reduce wear dramatically in laboratory studies, although there is substantial variation in this respect between manufacturers. Non-remelted cross-linked PE is almost as tough as unirradiated PE, but is not completely stable and can oxidize in vivo, as has been shown in recent retrievals studies.

We had reported low wear and good clinical performance after 2 years for 10 non-remelted highly cross-linked PE cups compared to 16 conventional PE cups sterilized by gamma-in-air.

Method Because of possible degradation by free radicals, we followed up both cohorts for 5 years (conventional PE) and 6 years (highly cross-linked PE).

Result Mean (CI) proximal head penetration over the observation time was linear and measured 0.08 (0.02–0.13) mm for cross-linked PE and 0.42 (0.23–0.62) mm for conventional PE, and total penetration was 0.23 (0.1–0.35) mm and 0.75 (0.05–1.4) mm respectively. After subtracting creep, the annual wear for non-remelted highly cross-linked PE was below 6 µm. The cups had equally low migration and few radiolucencies.

Interpretation The theoretical possibility of oxidation in non-remelted highly cross-linked PE may not show clinically. However, it may be that cemented cups with their thicker PE are more forgiving than metal-backed cups with thin PE moving in the locking mechanism. So far, we can conclude that the Crossfire highly cross-linked polyethylene cups performed very well clinically, with extremely low wear even after almost 6 years. This is reassuring, but care should be taken in extrapolating these results to other cross-linked PEs or uncemented cups where toughness of PE is more of an issue.

Wear particles from joint articulations are considered to be the major cause of implant loosening and osteolysis. This problem has been addressed by the use of hard-on-hard bearings and highly cross-linked polyethylene (PE), which has shown excellent wear behavior in hip simulators (McKellop et al. 2000, Muratoglu 2001, Kurtz et al. 2002) and promising short-term clinical results (Digas et al. 2003, 2004, Martell et al. 2003, Heisel et al. 2004, Rothman et al. 2004, Dorr et al. 2005, Krushell et al. 2005, Manning et al. 2005, Engh et al. 2006).

Despite the encouraging short-term outcome, concerns still remain about the long-term effects of changes in the mechanical properties of polyethylene (Pruit 2005, Kurtz et al. 2006) and the free radicals that are trapped in the polyethylene during the cross-linking process (Wannomae et al. 2006). These free radicals could be quenched by remelting the polyethylene. As remelting also reduces the crystallinity and thereby the toughness of the PE (Puertolas et al. 2006), the submelt-annealing process is regarded as an advantage because it preserves the mechanical strength of PE (Wang et al. 2004). This results in an initially tougher PE since the grain structure is unchanged, but it still contains free radicals and can later oxidize in vivo—result-
ing in less toughness, fractures and deterioration in wear characteristics. In a retrieval study, non-
remelted highly cross-linked PE cups (Crossfire) showed high oxidation levels and an excessive
amount of wear in the hip simulator (Wannomae et al. 2006). These findings are of some concern,
as PE has been used in a large number of patients since the late 1990s and new highly cross-linked
PEs based on the annealing technology have been launched on the market recently (Dumbleton et al.
2006).

Our hypothesis was that if oxidative degradation does occur after implantation of the non-remelted
highly cross-linked PE cups, the wear rate will accelerate after a certain period of time. Thus, we
considered it important to update our previous 2-year report on non-remelted cross-linked polyeth
ylene (Rohrl et al. 2005) with 6-year data on wear and performance for Crossfire polyethylene.

Patients and methods

20 hips (20 patients) and 10 hips (10 patients) were operated consecutively with conventional
and highly cross-linked polyethylene (Table 1). The former were followed for up to 5 years and
the latter for up to 6 years. We refer to Rohrl et al. (2005) for further information regarding the sur-
gical technique and the RSA method we used in these patients.

The shapes of the cemented all-polyethylene cups were identical. The study group received an
Osteonics (Stryker) cup made of Crossfire polyethylene. This is a highly cross-linked GUR 1050
irradiated with 7.5 Mrad, heat-annealed below melt temperature (120°C) and finally sterilized with 2.5
Mrad, all in an inert atmosphere. The control group received an Exeter cup (Stryker) made of GUR
1050 sterilized with 2.5 Mrad γ-irradiation in air. Identical Exeter femoral stems with 28-mm metal
heads were used in both groups. The groups were well matched (except for age), with the Exeter
group being slightly older (p = 0.02) (Table 1).

The study patients (highly cross-linked PE) were examined at 2 months, 1, 2, 3, 4, and 5 years, and
also after 6 years, whereas the hips in the control group were followed postoperatively, at 2 months,
1 year, 2 years, and 5 years. Analyses of wear and migration were done with the UmRSA system
(RSA Biomedical). Initial creep and wear-in was eliminated by subtracting the early (2-month) mea-
surement from the last (6-year) one in each patient. The precision in this particular study according to
the RSA standard (Valstar et al. 2005) was calculated from 99 double investigations of the patients
in different positions, and found to be 0.08 mm for longitudinal wear (95% CI) and 0.16 mm for
3-dimensional (3D) wear. 3D wear is a vectorial value of the femoral head penetration along the 3
axes (x, y, and z) of the coordinate system. It is interpreted as the total or 3-dimensional wear.

Patients were assessed with Harris hip scores before surgery, at 2 years, and at the last visit. Conven-
tional radiographs were taken postoperatively, at 2 years, and at 5 years. At the 6-year control,
only RSA radiographs were taken to keep the radiation dose at a minimum. The percentage of the
cup interface covered by a radiolucent line (RLL) more than 1 mm wide was assessed in addition to
inclination and position of the cup.

At the last follow-up, 2 patients from the control group and 1 from the study group had died from
causes unrelated to the arthroplasty—all with their implants unrevised. Thus, 27 patients (9 in the study
group and 18 in the control group) could be evaluated clinically and 21 patients (9 in the study group
and 12 in the control group) could be evaluated by RSA after 6 additional patients were excluded from
the RSA evaluation because the RSA radiographs proved to be of insufficient quality.

Statistics

The study was approved by the ethics commit-

Table 1. Characteristics of the 2 groups, median (range)
Age (years)
Weight (kg)
Male / female
Side (right/left)
Charnley G 1 / 2 / 3
Cup size (mm)
Preoperative pain score
Preoperative Harris hip score
Inclination (º)
Statistical comparison was done with the Mann-Whitney U-test (comparing the two groups), or Wilcoxon signed rank test (comparing longitudinal changes within a group). We calculated the effect of age, weight, sex, cup size, and inclination on the polyethylene wear and clinical outcome (Harris hip score) with multiple regression analysis.

Results

The mean (CI) proximal head penetration for highly cross-linked PE and conventional γ-irradiated PE over the full time of follow-up was 0.08 (0.02–0.13) mm and 0.42 (0.23–0.62) mm, respectively (Figure 1 and 2), whereas the mean 3D wear was 0.23 (0.1–0.35) mm and 0.75 (0.05–1.4) mm. After subtracting the head penetration during the first 2 months, proximal wear was 0.035 (0.001–0.068) mm for cross-linked PE and 0.36 (0.16–0.56) mm for conventional γ-irradiated PE, and 3D wear was 0.19 (0.03) mm and 0.56 (-0.1–1.2) mm, respectively. This corresponds to a proximal annual wear for cross-linked PE and conventional PE of less than 6 µm and 72 µm, respectively, and 3D wear of 33 µm and 112 µm.

There were no apparent differences in overall (3-dimensional) migration (Figure 3); the cups were
equally stable in all the cardinal directions (Table 2). There were no differences in radiolucencies (RLs) between the groups, and none were progressive ($p = 0.5$) (Table 2). In the conventional PE group, 7 cups showed an RL of grade 1 in Charnley zone 1 and 1 cup had grade 4 in zone 1 with grade 3 in zone 2. 1 highly cross-linked cup showed radiolucency located in Charnley zone 1.

At the last follow-up, the pain score (min-max) was 44 (40–44) for Crossfire (at 6 years) and 35 (30–40) for conventional (at 5 years) ($p = 0.001$). The overall Harris hip score was 98 (94–100) for Crossfire and 82 (63–100) for conventional ($p = 0.001$). No cups were revised. Clinically, all patients were very satisfied.

Stepwise multiple regression analysis showed that none of the parameters age, sex, weight, cup size, or inclination were sufficient to explain the cup wear (adjusted $r^2 < 0.1$, $p = 0.5$, 95% CI for regression coefficients: -0.77 to 0.15)

Discussion

Our results with highly cross-linked PE show extremely low annual wear of less than 5 µm, even after 6 years and without any notable disadvantages. This is 10 times less wear than in the control group with conventional PE, γ-irradiated in air. Also, another of our studies involving 50 patients with highly cross-linked UHMWPE has shown almost negligible annual wear (0.009 µm) after the so-called wear-in period (Zhou et al. 2006). These values correspond well with the results of laboratory studies, but they are less than was reported for Crossfire by Martell et al. (2003) as measured by another method. Several authors have also reported a drastic but different reduction in wear for remelted highly cross-linked polyethylene after short and medium-term follow-up (Digas et al. 2004, Heisel et al. 2004, Dorr et al. 2005, Manning et al. 2005, Engh et al. 2006). One reason for the differences may certainly be the difference in cohorts, but in some studies creep and early wear-in is also included in the wear. 6 µm of annual wear is far below the “safety limit” as suggested by Dumbleton et al. (2002). This, of course is promising, but whether it is absolutely safe in the long term is unknown. Cross-linked particles are smaller than particles from conventional PE (Ries et al. 2001) and show an increased bioactivity in in vitro studies (Fisher et al. 2004, Ingram et al. 2004). However, so far we have not been able to detect an increased or alarming amount of osteolysis on conventional radiographs.

In contrast to others (Digas et al. 2003), we believe that it has been shown clearly that the time period for creep is short (2–3 months) (Penmetsa et al. 2005). In addition, we have seen similar “early creep” behavior in other RSA results with highly cross-linked PE (Zhou et al. 2006), and using in vitro tests Deng et al. (1998) found that creep occurs in the early time period following the application of load. Creep and true wear might in fact be different for the new highly cross-linked PEs manufactured by different methods.

A drawback of our study is of course the small sample size, and that the study was not randomized. However, with the small SDs and the repeatedly found linear (conventional) and low (highly cross-linked) wear, we still consider our findings to be close to the true values in a larger group—and therefore of interest.

Wannomae et al. (2006) found free radicals, oxidation, and white bands in retrieved Crossfire polyethylene. When these cups were tested in a hip simulator they performed poorly, with high wear and also fractures, which has raised concerns as to possible clinical failures with this PE. Thus, the authors concluded that remelting is superior to annealing. This is, however, still debatable because contrary to the latter findings, Gencur et al. (2006)
found that annealing as a post-irradiation treatment may be somewhat less detrimental to the fatigue crack propagation resistance of PE than remelting.

Firstly, it is still questionable whether free radicals really cause clinical failures. None of the cross-linked PEs used in the 3 classical long-term reports by Oonishi et al. (1998), Wroblewski et al. (1999), and Grobbelar et al. (1999) was annealed or remelt-stabilized. They contained free radicals and oxidized, but still seemed to perform well clinically over a long period of time. Sugano et al. (2004) reported no clinical deterioration regarding a retrieved gamma-irradiated cup that was cross-linked with 10 times the irradiation dose (100 kGy) compared to modern highly cross-linked cups. In our study, there was no acceleration of wear from 2 years to 6 years in the non-remelted highly cross-linked PE, which might have been the case if further oxidative degradation of the PE would lead to clinical failure. Kurtz et al. (2006) found that oxidation mainly occurs on the acetabular ring because the pressure from the femoral head protects the articulation area from oxidation. They speculated that oxidation will therefore not show clinically before 10 years. Thus, 6 years may still be regarded as an early stage, and our findings substantiate the idea that further oxidation of the remaining free radicals is not a significant issue in the short to medium term.

Secondly, oxidation occurs with a peak of about 1–3 mm below the surface of the polyethylene. This implies that an increase of wear due to oxidation might not happen for a number of years. Until the ball has penetrated the oxidized subsurface region, the cross-linked cup will perform well clinically. However, delamination-type wear is also a risk in the case of sub-surface oxidation, and before wear reaches the deeper layer. Thus, the effect of further oxidation of free radicals must be monitored in the longer term.

Thirdly, fractures have been reported for remelted highly cross-linked PE (Bradford et al. 2004). This complication did not occur in our series. One reason might be that the annealed highly cross-linked PE is mechanically tougher than remelted Pes, but it might also be caused by the fixation method—which was cement. Cemented cups are more forgiving and tolerant of stress. A thin PE liner squeezed between a metal head and shell held only by a locking mechanism is a different story. In such cases, reduced toughness of oxidized PE might lead to failure.

Fourthly, in remelted PE the effects of different durations of the remelting process (2h, 6h, 24h) (Santavirta et al. 2003) are not known, and to our knowledge they have been insufficiently documented in the literature.

Apart from the issue of wear, patient satisfaction, stability, and development of osteolysis are just as important in helping prediction of a possible failure scenario for THA. None of our cups showed worrisome migration in any direction, and they were as stable as the conventional cups. This confirms our earlier results and the findings are in agreement with those of other authors (Hopper et al. 2003, Martell et al. 2003, Digas 2005). The higher HHS score in the group with cross-linked PE than in the group with conventional PE may be attributed to the younger age of the former.

In summary, highly cross-linked cemented Crossfire polyethylene cups performed well even after almost 6 years in vivo, and showed a very low wear rate and good clinical performance. There was no acceleration of wear rate after the initial 2 years. This is reassuring, but care should be taken when extrapolating these results to other cross-linked PEs and uncemented cups where PE toughness might be more of an issue.

Contributions of authors
BN: initiated the study. SMR, KGN and MGL: collected the data and performed the analysis. SMR: wrote the manuscript. All authors critically reviewed and contributed to the final paper.

The authors wish to thank Dr H Dahlstrand for help with collection of data about a particular patient.

No competing interests declared.

Bradford L, Baker DA, Graham J, Chawan A, Ries M D, Pruitt L A. Wear and surface cracking in early retrieved highly cross-linked polyethylene acetabular liners. J Bone Joint Surg (Am) 2004; 86: 1271-82.

Deng M, Latour R A, Ogale A A, Shalaby W S. Study of creep behavior of ultra-high-molecular-weight polyethylene systems, J Biomed Mat Res 1998; 40 (2): 214-23.
Digas G. New polymer materials in total hip arthroplasty. Evaluation with radiostereometry, bone densitometry, radiography and clinical parameters. Acta Orthop Scand (Suppl 315) 2005; (76): 3-82.

Digas G, Karrholm J, Thanner J, Malchau H, Herberts P. Highly cross-linked polyethylene in cemented THA: randomized study of 61 hips. Clin Orthop 2003; (417): 126-38.

Digas G, Karrholm J, Thanner J, Malchau H, Herberts P. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiosteometric analysis. Clin Orthop 2004; (429): 6-16.

Dorr L D, Wan Z, Shahdar C, Sirinanni L, Bountary M, Yun A. Clinical performance of a Durasul highly cross-linked polyethylene acetabular liner for total hip arthroplasty at five years. J Bone Joint Surg (Am) 2005; 87: 1816-21.

Dumbleton J H, D’Antonio J A, Manley M T, Capello W N, Wang A. The basis for a second-generation highly cross-linked UHMWPE. Clin Orthop 2006; (445): 265-71.

Engh C A, Stepniewski A S, Ginn S D, Beykirch S E, Sychterz-Terefenko C J, Hopper R H, Engh C. A randomized prospective evaluation of outcomes after total hip arthroplasty using cross-linked Marathon and non-cross-linked Enduron polyethylene liners. J of Arthroplasty (Suppl) 2006; 21: 17-25.

Fisher J, McEwen H M, Tipper J L, Galvin A L, Ingram J, Kamali A, Stone M H, Ingham E. Wear, debris, and biological activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin Orthop 2004; (428): 114-9.

Gencur S J, Rimnac C M, Kurtz S M. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene. Biomaterials; 2006; 27: 1550-7.

Grobbeelaar C J, Weber F A, Spirakis A, du Plessis T A, Cappara G, Cakic J N. Clinical experience with gamma irradiation cross-linked polyethylene. A 20 years follow up report. S Afr J Bone Joint Surgery 1999; 9: 140-7.

Heisel C, Silva M, Dela Rosa M, Schmalzried T P. Shortterm in vivo wear of cross-linked Polyethylene. J Bone Joint Surg (Am) 2004; 86: 748-51.

Hopper R H, Jr., Young A M, Orishimo K F, McAuley J P. Correlation between early and late wear rates in total hip arthroplasty with application to the performance of marathon cross-linked polyethylene liners. J Arthroplasty 2003; 18: 60-7.

Ingram J H, Stone M, Fisher J, Ingham E. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials 2004; 25: 3511-22.

Krushell J, Fingeroth J, Cushing C. Early femoral head penetration of a highly cross-linked polyethylene liner vs a conventional polyethylene liner: a case-controlled study. J Arthroplasty (Suppl 3) 2005; 20 (7): 73-6.

Kurtz S M, Turner J L, Herr M, Edidin A A. Deconvolution of surface topology for quantification of initial wear in highly cross-linked acetabular components for THA. J Biomed Mater Res 2002; 63 (5): 492-500.

Kurtz S M, Hozack W J, Purtill J J, Marcolongo M, Kraay M J, Goldberg V M, Sharkey P F, Parvizi J, Rimnac C M, Edidin A A. Significance of in vivo degradation for polyethylene in total hip arthroplasty. Clin Orthop 2006 (epublication).

Manning D, Chiang P, Martell J, Harris W. In vivo comparison of traditional vs highly crosslinked polyethylene wear. J Arthroplasty 2005; 20 (7): 880-6.

Martell J M, Verner J J, Incavo S J. Clinical performance of a highly cross-linked polyethylene at two years in total hip arthroplasty: a randomized prospective trial. J Arthroplasty 2003; 18: 55-9.

McKellop H, Shen F W, Lu B, Campbell P, Salovey R. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultrahigh molecular weight polyethylene. A hip-simulator study. J Bone Joint Surg (Am) 2000; 82: 1708-25.

Muratoglu O K. The comparison of the wear behavior of four different types of crosslinked acetabular components. J Orthop Res 2001; 19: 1210-7.

Onishi H, Saito M, Kadoya Y. Wear of high dose gamma irradiated polyethylene in total joint replacement - Long term radiological evaluation. Trans 44th Annual meeting of the Orthopaedic Research Society USA 1998.: 97.

Pennetta J, Laz P, Petrella A, Rullkoetter P. Influence of polyethylene creep behaviour on wear in THA. Trans 51th Annual meeting of the Orthopaedic Research Society, Paper 0013, USA, 2005.

Pruit L. Deformation, yielding, fracture and fatigue behaviour of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 2005; 26: 905–15.

Puertas J A, Medel F J, Cegonino J, Gomez-Barrena E, Rios R. Influence of the remelting process on the fatigue behaviour of electron beam irradiated UHMWPE. J Biomed Mater Res B Appl Biomater 2006; 76 (2): 346-53.

Ries M D, Scott M L, Jani S. Relationship between gravimetric wear and particle generation in hip simulators: conventional compared with cross-linked polyethylene. J Bone Joint Surg (Am) (Suppl 2 Pt 2): 2001; 83: 116-22.

Rohrl S, Nivbrant B, Li M, Hewitt B. In vivo wear and migration of highly cross-linked polyethylene cups A radiostereometry analysis study. J Arthroplasty 2005; 20 (4): 409-13.

Rothman R H, Sharkey P F, Hozack W J, Martell J. Wear performance of conventional (Arcom) and highly cross-linked acetabular liners in bilateral total hip arthroplasty. J Arthroplasty 2004; 19 (2): 261.

Santavirta S, Böhler M, Harris W H, Konttinen Y T, Lapalainen R, Muratoglu O, Rieker C, Salzer M. Alternative materials to improve total hip replacement tribology. Acta Orthop Scand 2003; 74 (4): 380–8.

Sugano N, Saito M, Yamamoto N, Yau S S, Wang A. Analysis of a retrieved UHMWPE acetabular cup crosslinked in air with 1000 kGy of gamma radiation, J Orthopaedic Research 2004; 22: 828-31.

Valstar E R, Gill R, Ryd L, Flivik G, Borlin N, Karrholm J. Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 2005; 76 (4): 563-72.
Wang A, Manley M, Serekeian P. Wear and structural fatigue simulation of Cross-linked Ultra-High Molecular weight Polyethylene for hip and knee bearing. Journal of ASTM International 2004; 1 (1): 1-17.

Wannomae K K, Bhattacharyya S, Freiberg A A, Estok D, Harris W, Muratoglu O. In vivo oxidation of retrieved cross-linked ultra high molecular weight polyethylene acetabular components with residual free radicals. J Arthroplasty 2006; 21: 1005-11.

Wroblewski B M, Siney P D, Fleming P A. Low-friction arthroplasty of the hip using alumina ceramic and cross-linked polyethylene. A ten-year follow-up report. J Bone Joint Surg (Br) 1999; 81: 54-5.

Zhou Z G, Li M G, Børlin N, Wood D, Nivbrant B. No Increased Migration in Cups with Ceramic-on-Ceramic Bearing - An RSA Study. Clin Orthop 2006; (448): 39-45.