Comparison analysis of accuracy and precision on GNSS K706 Oem Board and GPS Topcon HiperPro

M N Cahyadi¹, E Y Handoko¹, and Fatikunada¹

¹ Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember
ITS Campus, Keputih, Sukolilo, Surabaya, 60111, Indonesia

Abstract. GNSS technology has been widely used in the field of surveys and mapping. According to Abidin this is because GNSS can be used regardless of time, is not affected by the topography of the survey area, and provides accuracy with a wide spectrum. GNSS technology also has several disadvantages, one of which is price. The tool used to implement GNSS technology has a high price, for example is the geodetic type which has prices ranging from hundreds of millions of rupiah. The last few years have found low-cost GNSS. which has a cheaper price. To find out the quality of low-cost GNSS a test was carried out. In this study a low-cost GN70 Oem Board was tested.

This study focuses on testing accuracy and precision. The method used for testing is RTK, and Static for data as a reference. RTK data acquisition uses the NTRIP method with CORS Surabaya as the base. There are 3 test locations in this study. The first is in BM01ITS or "bits", the second ITS Stadium or "bstd", and third Sakura Park or "bskr".

Horizontal and vertical deviation standards on the K706 OEM board has better quality than Topcon HiperPro. This is evidenced by the standard deviation of the K706 superior in 4 research points, while HiperPro only excels at two research points. Horizontal RMSE both devices have the same quality. This is evidenced by the RMSE of the K706 superior in 3 research points, and HiperPro excels in 3 research points. For vertical RMSE, the K706 is better than HiperPro. This is evidenced by the standard deviation of the K706 superior in 5 research points, while HiperPro only excels at one research point.

1. Introduction
At present the method of determining a point on the surface of the earth is experiencing technological advances. This is indicated by the availability of measuring equipment equipped with the latest digital technology. One method of positioning a point on the surface of the earth is using GPS [1]. Using positioning has been widely used, especially in the field of surveying and mapping [5]. According to [2] GPS technology is widely used due to tropospheric monitoring. The GNSS method also has several disadvantages, namely in terms of price, expensive tools [4]. Innovations in GPS positioning technology run very fast, both on geodetic type GPS equipment, mapping type and navigation type. In addition to the three-type GPS, in recent years low-cost / low-cost GPS devices have also experienced significant developments [6,8]. The problem of GPS accuracy of single frequencies caused by ionospheric bias [3]. The research about low cost GPS was already done for static observation [9].
Based on the above, a study was conducted on the accuracy comparison of low-cost dual frequency GNSS, namely GNSS K706 OEM BOARD from COMNAV to GPS Geodetik Topcon HiperPro. In this research, the Real Time Kinematic (RTK) method for data acquisition is used, and the static method for collecting data as a reference.

In this study an analysis of accuracy and precision testing was carried out. The data acquisition results from the Oem K706 will be compared to the results of data acquisition from topcon HiperPro.

With this study, it is expected to be able to determine the feasibility level of the GNSS K706 Oem Board in its use for geodesic measurement, and this research is very useful in saving the budgetary costs of a GNSS tool.

2. Methodology

2.1. Study area and data

The location of the study was conducted in Surabaya, East Java, precisely there were 3 locations scattered in Surabaya, the first being at ITS BM01, ITS Surabaya Stadium, and the last being in Sukolilo Sakura Park Surabaya.

![Research location](image1)

Figure 1. Research location.

In this study there are only two types of data used, namely primary and secondary data. The primary data collected by researchers is the data in the form of x, y, z coordinates. The research points obtained from measurements using GPS Geodetik Topcon HiperPro and GNSS K706 Oem. Secondary data
collected is BIG Surabaya's Rinex Statistics Cors data and ITSN CORS belonging to the ITS Geomatics Engineering Department.

Coordinate data is obtained by measuring directly in the field using each tool, the K706 Oem Board and Topcon HiperPro.

Rinex data from Cors Surabaya station and ITSN was obtained by asking the relevant agencies.

2.1.1. Stage of research implementation

![Implementation Flowchart](image-url)

Figure 2. Implementation Flowchart
• Preparation
The Preparation Phase includes identifying and formulating problems regarding the measurement method used, the location of the study. In addition, it also collects information relating to GPS, CORS, RTKNTRIP and others related.

• Implementation
At the implementation stage, before the data collection was carried out orientation and determination of location to find a suitable location for research. The sampling location is in 3 locations, namely Bm01 ITS called "bits", the ITS Stadium is called "bstd" and Sakura Park is called "bskr". Each location was measured using the RTK method for 2 minutes with an epoch per second, so as to get 120 sample data. Data collection was carried out on both tools, namely Topcon HiperPro and GNSS K706 OEM.

The reference data was taken at 3 observation points using the Topcon HiperPro tool with a length of observation of 12 hours.

• Processing
The acquisition data obtained by the RTK method is coordinate data x, y, z (* txt) converted to (^ xls).

Data from data acquisition with Topcon HiperPro and K706 Oem are then calculated using RMSE and Standard Deviation for accuracy and precision analysis.

• Finishing
In the final stage, a report is made from the results of conclusions and analyzes that have been carried out in the previous stage.

3. Result and Discussion

3.1. 3 Measurement results of reference coordinates.
The reference coordinates are used for calculations on RMSE and also as a comparison between the results of HiperPro and K706. The reference coordinates are taken using the Topcon HiperPro tool with 12 hours of observation. The following are the results of the reference coordinates.

Point	NORTHING UTM(meters)	EASTING UTM(meters)	HEIGHT UTM(meters)
Bstd	9194459.113	697904.733	31.683
Bskr	9193208.343	697904.733	34.517
Bits	9194685.943	698075.536	32.286

3.2. Results of measurement of real time kinematic (RTK) method
Measurements using the RTK method are carried out at each point of research. Each point was observed for 2 minutes. Data acquisition is done by the NTRIP method using an internet connection. For Corss used are Cors Surabaya and ITSN.

For the RTK method, the results that will be presented are of two kinds, the first is the result that gets the fix solution and the second is the overall observation data. The following are the results of measurements using the RTK method.
Topcon HiperPro
Data acquisition was observed for 2 minutes. And every second the data is recorded, so that there are 120 coordinate data. After that, the average calculation is done to get one coordinate for comparison with the K706 Oem Board.

The following are the results of data acquisition using Topcon HiperPro using the RTK method.

Table 2. Coordinate results for all observation data of Topcon HiperPro RTK method.

Point	Cors	Koordinat UTM (m)		
		X	Y	Z
Bits	CSBY	698075.080	9194686.144	33.376
	ITSN	698077.188	9194686.833	39.354
Bskr	CSBY	698974.204	9193208.265	36.055
	ITSN	698974.437	9193208.204	35.779
Bstd	CSBY	697904.705	9194459.158	33.329
	ITSN	697898.971	9194467.548	48.018

Table 3. The results of the coordinate fix solution of Topcon HiperPro RTK method

Point	Cors	Koordinat UTM Fix (m)		
		X	Y	Z
Bits	CSBY	-	-	-
	ITSN	698075.739	9194685.919	33.497
Bskr	CSBY	-	-	-
	ITSN	698974.455	9193208.225	36.053
Bstd	CSBY	697904.729	9194459.168	33.316
	ITSN	697899.127	9194468.250	39.570

Note: For those marked "-" it means that the data has no fix ambiguity

K706 Oem Board
For data acquisition with the K706 Oem Board is done the same as Topcon HiperPro. The following are the results of data acquisition using Topcon HiperPro using the RTK method.

Table 4. Coordinate results for all observation data for the RTK K706 Oem Board method

Point	Cors	Koordinat UTM (m)		
		X	Y	Z
Bits	CSBY	698076.059	9194685.736	33.948
	ITSN	698074.534	9194684.707	37.377
Bskr	CSBY	698973.940	9193208.396	35.989
	ITSN	698974.228	9193206.942	35.546
Bstd	CSBY	697904.736	9194459.125	33.315
	ITSN	697904.127	9194459.313	21.157
Table 5. The results of the coordinate fix solution for RTK K706 Oem Board method

Point	Cors	X	Y	Z
Bits	CSBY	698074.537	9194684.498	37.548
	ITSN	-	-	-
Bskr	CSBY	698974.608	9193207.093	36.552
	ITSN	-	-	-
Bstd	CSBY	697904.752	9194459.101	33.104
	ITSN	697905.073	9194457.837	33.647

- Standart deviation

 Calculation of Deviation Standard here is divided into 2, namely Standard Deviation for the entire data and Standard Deviation for data that gets a fix solution [7]. Here are the results.

Table 6. Overall data deviation standart

Alat	Point	Cors	SD Horz (m)	SD Vert (m)
K706	BSKR	CSBY	0.081	0.066
		ITSN	2.027	5.433
	BSTD	CSBY	0.128	0.039
		ITSN	0.376	0.856
	BITS	CSBY	0.324	0.309
		ITSN	0.539	1.117
HiperPro	BSTD	CSBY	0.213	0.295
		ITSN	0.097	0.193
	BITS	CSBY	0.260	0.343
		ITSN	8.128	15.039

Table 7. Standart deviation fix solution.

Alat	Point	Cors	SD Horz (m)	SD Vert (m)
K706	BSKR	CSBY	-	-
		ITSN	0.448	0.738
	BSTD	CSBY	-	-
		ITSN	0.002	0.007
	BITS	CSBY	0.011	0.039
		ITSN	0.007	0.037
HiperPro	BSKR	CSBY	-	-
		ITSN	0.448	8.817
	BSTD	CSBY	-	-
From table 5, it can be concluded that the horizontal standard deviation of OEM K706 is better than HiperPro. This is evidenced by K706 having a better standard deviation than HiperPro on 4 data (CSBY level, ITSN score, bstd CSBY, and ITSN bits), while HiperPro has a better standard deviation than K706 in 2 data (ITSN bstd, bits CSBY). The standard vertical deviation of the K706 is better compared to HiperPro. This is evidenced by K706 having a better standard deviation than HiperPro on 4 data (ITSN score, bstd CSBY, bits CSBY and bits ITSN), while HiperPro has a better standard deviation than K706 on 2 data (bstd ITSN, CSBY bsk).

The smallest standard horizontal deviation value is at the "bskr" point with CORS CSBY which is equal to 0.081 meters and the smallest vertical standard deviation is at the point "bstd" with CORS CSBY. The highest standard horizontal and vertical deviation is at the "bits" point with the ITSN CORS which is equal to 8,128 meters for horizontal and 15,039 meters for vertical. According to the author's analysis this is because the antenna specifications used in the study are not good. Besides that, the point in the BM01 ITS has the most obstacle which causes multipath influence, and affects the results obtained.

Table 8. Comparison of deviation standard results of measurement of K706 Oem Board with RTK method tool specifications.

SD	Spesifikasi	Kesimpulan			
Horz (m)	Vert (m)	Horz (m)	Vert (m)	Horz (m)	Vert (m)
0.081	0.066	0.0025	0.005	TS	TS
2.207	5.433	0.0025	0.005	TS	TS
0.128	0.039	0.0025	0.005	TS	TS
0.376	0.856	0.0025	0.005	TS	TS
0.324	0.309	0.0025	0.005	TS	TS
0.539	1.117	0.0025	0.005	TS	TS
0.213	0.183	0.0025	0.005	TS	TS
2.248	8.817	0.0025	0.005	TS	TS
0.287	0.295	0.0025	0.005	TS	TS
0.097	0.193	0.0025	0.005	TS	TS
0.260	0.343	0.0025	0.005	TS	TS
8.128	15.039	0.0025	0.005	TS	TS

From the comparison above states that the results of the entire data state the incompatibility with what is stated in the specifications. According to the analysis of the author, this can be caused by the antenna specifications used in the study is not good, so the results of measurements are not in accordance with what was stated specified. In addition, the influence of multipath around the research area also determines signal reception, so the results obtained are not thorough.

- **Root Mean Square**

RMSE calculation is done by comparing per-epoch data with Topcon HiperPro data with a measurement duration of 12 hours through post processing using Topcon Tools software. The RMSE calculation here is divided into 2, namely RMSE for the entire data and RMSE for the data that gets the fix solution. The smaller the RMSE value the more accurate the data is generated. Here are the results.
Table 9. RMSE results overall data RTK method.

Alat	Point	Cors	RMSE Horz (m)	RMSE Vert (m)
K706	BSKR	CSBY	0.562	1.662
		ITSN	1.592	5.091
	BSTD	CSBY	0.305	1.472
		ITSN	1.338	0.895
	BITS	CSBY	0.012	1.431
		ITSN	0.848	10.667
HiperPro	BSKR	CSBY	0.499	1.090
		ITSN	1.876	7.068
	BSTD	CSBY	0.087	1.538
		ITSN	0.060	1.127
	BITS	CSBY	0.053	1.646
		ITSN	10.371	16.194

From the results of the RMSE calculation above, the K706 Oem has the same quality as the HiperPro on the horizontal RMSE. This is proven by K706 having RMSE better than HiperPro on 3 data (ITSN, CSBY, and ITSN bits), and HiperPro having RMSE better than K706 in 3 data (CSBY, CSBY, and ITSN bstd). The vertical RMSE of the K706 has better quality compared to HiperPro. This is evidenced by K706 having RMSE better than HiperPro on 5 data (ITSN cycle, ITSN and CSBY bstd, and ITSN and CSBY bits), and HiperPro having better RMSE than K706 on 1 data (CSBY account).

The smallest horizontal RMSE value is at the "bits" point with the binding of CORS CSBY, and the smallest vertical RMSE is at the point "bstd" with the CORS ITSN. The largest horizontal and vertical RMSE is at the "bits" point with the binding of the CORS ITSN. According to the author's analysis this is because the antenna specifications used in the study are not good. Besides that, the point in the BM01 ITS has the most obstacle which causes multipath influence, and affects the results obtained.

Table 10. RMSE Results Fix Solution RTK Method.

Alat	Point	Cors	RMSE Horz (m)	RMSE Vert (m)
K706	BSKR	CSBY	-	-
		ITSN	1.757	5.091
	BSTD	CSBY	-	-
		ITSN	1.184	0.895
	BITS	CSBY	0.023	1.431
		ITSN	1.234	10.667
HiperPro	BSKR	CSBY	-	-
		ITSN	0.204	7.068
	BSTD	CSBY	-	-
		ITSN	0.044	1.127
	BITS	CSBY	0.055	1.646
		ITSN	10.869	16.194

From the results of the RMSE calculation above, the K706 Oem has the same quality as the HiperPro on the horizontal RMSE. This is proven by K706 having RMSE better than HiperPro on 3 data (ITSN, CSBY, and ITSN bits), and HiperPro having RMSE better than K706 in 3 data (CSBY, CSBY, and ITSN bstd). The vertical RMSE of the K706 has better quality compared to HiperPro. This is evidenced by K706 having RMSE better than HiperPro on 5 data (ITSN cycle, ITSN and CSBY bstd, and ITSN and CSBY bits), and HiperPro having better RMSE than K706 on 1 data (CSBY account).
4. Conclusion
Based on the research that has been done, it can be concluded as follows:

- From the Standard Deviation test states that the results of the K706 Oem Board do not match what is stated in the application. This can be because the antenna specifications used in the study are not good, so the results of the measurements are not in accordance with what is stated as specified. In addition, the influence of multipath around the research area also determines signal reception, so the results obtained are not thorough.

- From the standard deviation calculation, states that the K706 em board has a standard horizontal and vertical standard deviation that is better than Topcon HiperPro. This is evidenced by the standard deviation of the K706 superior in 4 research points, while HiperPro only excels at two research points.

- From the RMSE calculation, the K706 has the same quality as the HiperPro on the horizontal RMSE. This is evidenced by the RMSE of the K706 superior in 3 research points, and HiperPro excels in 3 research points. For vertical RMSE, the K706 is better than HiperPro. This is evidenced by the standard deviation of the K706 superior in 5 research points, while HiperPro only excels at one research point.

5. References
[1] Abidin, H. Z, 2007. “Penetuan Posisi Dengan GPS Dan Aplikasinya. Jakarta: PT. Pradnya pramitha”.
[2] Cahyadi, M. N, 2017. Analysis of weather changes in the region of Surabaya in 2015 and 2016 using water vapor data from GPS and terra MODIS satellite image. Surabaya.
[3] Cahyadi, M. N, 2019. Analysis of Total Electron Content (TEC) Near Real Time Using Dual Frequency GPS Data (Study Case: Surabaya). Surabaya.
[4] Endang, 2011. “Penentuan Posisi Dengan GPS. Jakarta: Badan Informasi Geospasial”.
[5] Petru, T.H.D., “Survei Satelit Metode Real Time Kinematic Untuk Pemetaan Persebaran Pilar Batas Pembangkit Listrik Tenaga Air Garung Di Kabupaten Wonosobo”, Universitas Pendidikan Indonesia: Bandung.
[6] R. I. Arjiansah , B. D. Yuwono dan F. J. Amarrohman, 2016. “Analisis Ketelitian Pengamatan GPS Menggunakan Single Frekuensi dan Dual Frekuensi Untuk Kerangka Kontrol Horizontal. Semarang: Universitas Diponogoro”.
[7] Syetiawan, A., Prayoga, O., & Efendi, 2016. Bandan Informasi Geospasial, Cibinong: Uji Akurasi Penentuan Posisi Metode GPS-RTK.
[8] T. Takasu and A. Yasuda, 2009. “Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB Korea: International Symposium on GPS/GNSS, International Convention Center Jeju”.
[9] Yuwono, E Y Handoko, M N Cahyadi, A Rahmadiansah, I S Yudha and Sari, 2019.“Assessment of the Single Frequency Low Cost GPS RTK Positioning “, IOP Conference Series: Earth and Environmental Science, Volume 280.

Acknowledgement
The author of F.N would like to thank the Geospatial Information Agency for providing support in the form of CORS CSBY data for this research.