Tests for lapping of flat surfaces of ceramic elements with forced dosing of abrasive slurry

Badania docierania powierzchni płaskich elementów ceramicznych z wymuszonym dawkowaniem zawiesiny ściernej

ADAM BARYLSKI
MACIEJ GNIOIT*

The issues related to the forced dosing system of the abrasive slurry in single-disc lapping are presented. This system allows dosing of a suspension with different fluid viscosities. The innovative system developed was adapted to work on the Abralap 380. The advantages of this type of abrasive sludge dosing system and the procedure for planning of lapping of flat elements from technical ceramics, on the example of Al2O3, treatment, are described. Selected results of defect investigations are presented, which were subjected to detailed statistical analysis.

KEYWORDS: lapping the flat surfaces, forced dosage abrasive slurry

Przedstawiono zagadnienia dotyczące systemu wymuszonego dawkowania zawiesiny ściernej w docieraniu jednotarczowym. Umożliwia on dawkowanie zawiesiny o zróżnicowanej lepkości płynu. Opracowany innowacyjny układ przystosowany do pracy na docieradle Abralap 380. Opisano zalety takiego systemu dawkowania zawiesiny ściernej oraz sposób postępowania podczas planowania badań docierania elementów płaskich z ceramicznej na przykładzie obróbki Al2O3. Zaprezentowano wybrane wyniki badań ubytku liniowego elementów, które następnie poddano analizie statystycznej.

SŁOWA KLUCZOWE: docieranie powierzchni płaskich, wymuszone dawkowanie zawiesiny ściernej

Wprowadzenie

Proces docierania powierzchni płaskich realizuje się przed wszystkim maszynowo na docierarkach jednotarczowych [4, 11, 12]. Efektywność tej obróbki wynika z wielu czynników. Są one związane z obrabianym materiałem, rodzajem i właściwościami tarczy docierającej, warunkami kinematycznymi obrabiarki, wywieranym naciskiem jednostkowym na docierane elementy oraz rodzajem i charakterystyką mikroziaren ściernej zastosowanych w zawiesinie. Duży wpływ ma też sam sposób dawkowania zawiesiny ściernej [1, 2, 5].

W przypadku swobodnego (ciężłego) podawania zawiesiny część mikroziaren ściernych zostaje bardzo szybko usunięta z powierzchni czynnej docieraka (przez poruszające się na nim pierścień prowadzące separatory z obrabianymi elementami) i nie bierze udziału w skracaniu [3]. Z tego powodu na Politechnice Gdańskiej, we współpracy z Uniwersytetem Technologiczno-Przyrodniczym w Bydgoszczy, rozwijany jest wymuszony (okresowy) sposób dozowania zawiesiny ściernej [6, 8, 9]; wybrane wyniki tych badań przedstawiono w artykule. Posłużono się przykładem docierania jednostronnego elementów ceramicznych.

Model badań doświadczalnych

Jako czynniki wejściowe (badane) przyjęto w badaniach (rys. 1):
- \(K \) – zawartość ziaren ściernych w substancji nośnej [%],
- \(V_s \) – ilość dawkowanej zawiesiny ściernej w ciągu 20 min [ml/20 min].
- \(L_s \) – lepkość mieszaniny składników płynnych w zawiesinie [mPa·s].

Wyniki badań:
- \(C_{D1} \) – prędkość obrotowa tarczy docierającej [obr/min],
- \(C_{D2} \) – materiał obrabiany,
- \(C_{D3} \) – kinematyka docierania, materiał docieraka oraz wielkość i sposób wywierania nacisku na elementy (stano- nowisko obróbkowe),
- \(C_{D4} \) – konstrukcja urządzenia do wymuszonego dawkowania zawiesiny ściernej.

Zakłócenia występujące w procesie dotyczą głównie:
- \(U_{D1} \) – spadku napięcia w sieci elektrycznej,
- \(U_{D2} \) – rozrzutu wysokości próbek obrabianych jednocześnie.

Czynnikiem wynikowym (wyjściowym) był \(U_{b} \) – ubytek liniowy próbki [µm].

![Diagram of flat surface lapping tests](https://orcid.org/0000-0003-1672-8445)

Rys. 1. Diagram of flat surface lapping tests
Fig. 1. Schemat badań docierania powierzchni płaskich

* Prof. dr hab. inż. Adam Barylski, abarylsk@pg.edu.pl, https://orcid.org/0000-0003-1672-8445 – Wydział Mechaniczny Politechniki Gdańskiej, Gdańsk, Polska
Mgr inż. Maciej Gniot, maciej.gniot@utp.edu.pl, https://orcid.org/0000-0002-2707-0696 – Wydział Inżynierii Mechanicznej Uniwersytetu Technologicznoprzyrodniczego, Bydgoszcz, Polska
W badaniach wykorzystano mikroziarną węglik krzemu 98C F400/17, dawkowane na żelówną tarczę docierającą. Średnia prędkość docierania wynosiła: 0,58 m/s, a wartość nacisku jednostkowego: 0,045 MPa. Jako substancję płynną w dawkowanej zawiesinie ściernej zastosowano mieszaninę oleju maszynowego i nafty.

Program i wybrane wyniki badań

Widok ogólny zastosowanego systemu dawkowania zawiesiny ściernej zamieszczono na rys. 2.

W eksperymentach zastosowano plan badań statyczny, zdeterminowany, selekcyjny, wieloczynnikowy, quasi-rotatylny drugiego rzędu [10] opracowany przez Boxa i Huntera [7], o kulistym rozkładzie informacji. Zapewnia on stałość oszacowania funkcji regresji w pewnym otoczeniu punktu centralnego planu PS/DS-P:L [13].

TABLE I. Values of tested factors

Numer prób	Wartości kodowe czynników badanych	Wartość zarien ściernych K [%]	ilość substancji ściernej \(V_\text{s} \) [ml/20 min]	Lepkość substancji płynnej w zawiesinie \(L_\text{s} \) [mPa·s]
1	−1	−1	−1	−1
2	1	−1	1	−1
3	−1	1	1	−1
4	1	1	1	1
5	−1	−1	1	1
6	1	−1	−1	1
7	−1	1	1	1
8	1	1	1	1
9	−1,682	0	0	0
10	1,682	0	0	0
11	0	−1,682	0	0
12	0	1,682	0	0
13	0	0	−1,682	0
14	0	0	1,682	0
15	0	0	0	0
16	0	0	0	0
17	0	0	0	0
18	0	0	0	0
19	0	0	0	0
20	0	0	0	0

TABLE II. Coefficients of the quadratic equation

Wartości czynników badanych	Wartości kodowe	Przed kodowaniem	Zawartość zarien ściernych K [%]	ilość substancji ściernej \(V_\text{s} \) [ml/20 min]	Lepkość substancji płynnej w zawiesinie \(L_\text{s} \) [mPa·s]
−1,682	5	10	10,3	10,3	10,3
−1	9	26	16,5	16,5	16,5
0	1	26	23	23	23
1	2	40	29,5	29,5	29,5
1,682	2	40	34	34	34

Plan charakteryzuje się stosunkowo dużą informatywnością i efektywnością, co jest istotne z punktu widzenia kosztochłonności badań. Wymaga on przeprowadzenia \(n = 20 \) prób przy podanych wartościach czynników badanych, zamieszczonych w tabl. I.

Funkcja matematyczna wyznaczona na podstawie danych eksperymentalnych ma postać:

\[
Ub_l = b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 + b_5x_5^2 + b_6x_6^2 + b_7x_7 + b_8x_8x_9 + b_9x_9 + b_{10};
\]

gdzie:

\(Ub_l \) – ubytek liniowy próbek [\(\mu m \)]
\(K \) – zawartość zarien ściernych w nośniku [%],
\(V_\text{s} \) – dawka zawiesiny ściernych [ml/20 min],
\(L_\text{s} \) – lepkość mieszany płynnej w zawiesinie ścierniej [mPa·s]

\(b_1, b_2, \ldots, b_{10} \) – współczynniki równania,
\(x_1 \) – warstówka zarien, \(x_1 = 1 \).

Z analizy wpływu trzech badanych czynników na ubytek liniowy docierających próbek ceramicznych otrzymano wartości współczynników równania drugiego stopnia, które zawarto w tabl. II.

TABLE II. Coefficients of the quadratic equation

\(b_1 \)	−571,550
\(b_2 \)	38,6214
\(b_3 \)	1,2930
\(b_4 \)	30,8078
\(b_5 \)	−0,9653
\(b_6 \)	−0,0163
\(b_7 \)	−0,6466
\(b_8 \)	0,0226
\(b_9 \)	−0,3077
\(b_{10} \)	0,0401
Na rys. 3 przedstawiono wpływ procentowej zawartości ziaren w substancji ściernie oraz nanoszonej dawki zawieszony na docierak w czasie 20 min na ubytek liniowy próbek.

![Graph showing line loss of Al2O3 technical ceramics](image)

Fig. 3. Line loss of Al2O3 technical ceramics, lapped on a Abralap 380 single-disc lapping machine, with a forced abrasive slurry dosing system

Rys. 3. Ubytek liniowy elementów z ceramiki technicznej Al2O3 docieranych na docieracze jednotarczowe Abralap 380 z wymuszonym systemem dozowania zawiesziny ścierniej

W wyniku przeprowadzonych analiz stwierdzono, że lepkość substancji płynnej w zawieszinie ścierniej (w zakresie badanym) nie ma istotnego wpływu na ubytek obrabialnych elementów. Z praktycznego punktu widzenia najistotniejszy wpływ ma wielkość dawki i zawartość procentowa ziaren ściernych.

W eksperyencie przyjęto zakres tej dawki od 10 ml/20 min do 90 ml/20 min. Najlepsze rezultaty, w aspekcie wydajności procesu, otrzymano przy dawce 90 ml/20 min.

Analizie poddano również wpływ zawartości ziaren ściernych w substancji nośnej. Na potrzeby eksperymentu określono przedział zawartości ziaren węglika krzemu w substancji nośnej – przygotowanej na bazie oleju maszynowego i nafty kosmetycznej – od 5% do 25%. Stwierdzono, że najlepsze efekty ubytku liniowego próbek ceramicznych można uzyskać, jeżeli zawartość ziaren ściernych w substancji nośnej wynosi ok. 15%.

Podsumowanie

Na podstawie przeprowadzonych badań wpływu wymuszonego dawkowania i nanoszenia zawiesziny ścierniej na powierzchnię roboczą docieraka żelowego na efektywność procesu docierania elementów płaskich wykonanych z ceramiki Al2O3, można stwierdzić, że:

- wymuszony system dawkowania przyczynia się znacząco do oszczędności związanych ze zużyciem zawiesziny ścieńnej,
- zastosowany sposób dawkowania zawiesziny generuje mniejszą ilość szkodliwych substancji, które należy poddawać kosztownej utylizacji,
- istotny wpływ na wydajność procesu docierania ma odpowiedni dobór zawartości procentowej ziaren ściernych; w analizowanym przypadku najlepsze wyniki uzyskano przy 15-procentowym udziale ziaren ściernych w substancji nośnej,
- nadmierna zawartość ziaren ściernych nie zwiększa efektywności procesu docierania,
- istotnym czynnikiem mającym wpływ na efektywność procesu docierania jest wielkość dawki substancji ścierniej przypadająca na jeden obrót tarczy docierającej,
- na podstawie przeprowadzonego eksperymentu stwierdzono, że największy ubytek materiału uzyskano, stosując sumaryczną dawkę 90 ml/20 min,
- lepkość składników płynnych zawiesiny ścierniej nie ma istotnego wpływu na ubytek liniowy przy wymuszonym systemie dawkowania (w badanym zakresie).

Przedstawione rozwiązanie systemu dozowania i nanoszenia zawiesziny ścierniej pozwala znacząco zmniejszyć koszty związane z obróbką wykończeniową i przyczynia się do rozwoju automatyzacji operacji docierania. Za-projektowany i wykonany układ umożliwia nanoszenie substancji o zróżnicowanej lepkości. Jego zaletą jest również równomiernie nanoszenie zawiesziny ścierniej na powierzchnię roboczą metalowej tarczy docierającej, tak aby straty narzędziowe były jak najmniejsze.

LITERATURA

[1] Bakoń A., Barylski A. „Preparaty na bazie nano- i mikrodiamondów do operacji docierania i polerowania”. Mechanik. 87, 8–9 (2014): 9–12.
[2] Bakoń A., Barylski A. „Ziama i mikrozierna diamentowe. Rodzaje ścieńowych i przykłady zastosowań”. Gdańsk: Wydawnictwo Politechniki Gdańskiej, 2017.
[3] Barylski A. „Badania wpływu koncentracji śmiertwi i intensywności dawkowania zawiesziny na efekty docierania jednotarczowego”. Mechanik. 88, 8–9 (2015): 20–24, http://dx.doi.org/10.17814/mechanik.2015.s-8.334.
[4] Barylski A. „Docieranie powierzchni płaskich na docierakach”. Gdańsk: Wydawnictwo Politechniki Gdańskiej, 2015.
[5] Barylski A. „Technological problems in lapping on flat surfaces of ceramic parts”. Solid State Phenomena, 199 (2013): 627–632, https://doi.org/10.4028/www.scientific.net/SSP.199.627.
[6] Barylski A., Gniot M. „Wpływ zawiesziny ścierniej dawkowanej w sposób wymuszony na wydajność docierania jednotarczowego elementów ceramicznych”. Mechanik, 91, 8–9 (2018): 734–736, https://doi.org/10.17814/mechanik.2018.s-8.118.
[7] Box G., Hunter J. „Multifactor experimental designs for exploring response surfaces”. Ann.Math.Statist. 28, 1 (1957).
[8] Gniot, M., Barylski, A., Migawa K. „System dawkowania zawiesiny ścieńnej w docieraniu powierzchni płaskich”. Mechanik, 90, 10 (2017): 894–896, https://doi.org/10.17814/mechanik.2017.10.139.
[9] Gniot M., Barylski A. „Hydrodynamiczne dawkowanie zawiesziny ścieńnej w docieraniu jednotarczowym powierzchni płaskich”. Mechanik, 89, 8–9 (2016): 1110–1111, http://dx.doi.org/10.17814/mechanik/2016.s-8.9.272.
[10] Mańczak K. „Techniki planowania eksperymentu”. Warszawa: WNT 1976.
[11] Marinescu I.D., Uhlmann E., Doi T.K. „Handbook of Lapping and Polishing. Manufacturing Engineering and Materials Processing”. London, New York: CRC Press, Taylor & Francis Group, 2007.
[12] Klocke F. „Manufacturing Processes 2 – Grinding, Honing, Lapping”. Berlin–Heidelberg: Springer-Verlag, 2009.
[13] Polański Z. „Metody optymalizacji w technologii maszyn”. Warszawa: PWN, 1977.