In vitro anticiandidal activity and gas chromatography-mass spectrometry (GC-MS) screening of Vitex agnus-castus leaf extracts

Ibtisam Mohammed Ababutain Corresp., 1, 2, Azzah Ibrahim Alghamdi 1, 2

1 Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
2 Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Corresponding Author: Ibtisam Mohammed Ababutain
Email address: lababutain@iau.edu.sa

Background Candida infections are becoming more drug resistant; it is necessary to search for alternative medications to treat them. Therefore, the present study estimates the anticiandidal activity of Vitex agnus-castus (VA-C) leaf extracts. Methods We used the agar well diffusion method to assess the anticiandidal activity of three different VA-C leaf extracts (ethanol, methanol, and water) against three Candida species (Candida tropicalis, Candida albicans, and Candida ciferrii). The minimum inhibitory concentration (MIC) was estimated using the two-fold dilution method and the minimum fungicidal concentration (MFC) was determined using the classic pour plate technique. The MFC/MIC ratio was calculated to estimate the microbicidal or microbiostatic activity. A gas chromatography mass spectrometer was used to screen the phytochemicals of the VA-C leaf extracts (ethanol, methanol, and water). Results All VA-C extracts ethanol, methanol, and water were significantly inhibited the growth of the test Candida species and the inhibition activity depended on the solvent used and the Candida species. The results showed that C. tropicalis was the most highly inhibited by all extracts followed by C. albicans and C. ciferrii. The MIC values were 12.5 µg/ml to 25 µg/ml, and MFC values were 25 µg/ml to 100 µg/ml. The ratios of MFC/MIC were two-fold to four-fold which was considered candidacidal activity. Ninety-five phytochemical compounds were identified by the GC-MS assay for the VA-C leaf extracts. The total number of compounds per extract differed. Methanol had 43 compounds, ethanol had 47 compounds, and water had 52 compounds. The highest compound concentrations were: 4,5-Dichloro-1,3-dioxolan-2-one in ethanol and methanol, 1H-Indene, 2,3-dihydro-1,1,2,3,3-pentamethyl in ethanol, Isobutyl 4-hydroxybenzoate in methanol, and Benzoic acid and 4-hydroxy- in water. These phytochemical compounds belong to different bioactive chemical group such as polyphenols, fatty acids, terpenes, terpenoids, steroids, aldehydes, alcohols, and esters, and most of which have anticiandidal activity. Conclusions VA-C leaf extracts may be useful alternatives to anticiandidal drugs.
based on their effectiveness against all test *Candida* species at low concentrations. However, appropriate toxicology screening should be conducted before use.
In vitro anticandidal activity and gas chromatography-mass spectrometry (GC-MS) screening of *Vitex agnus-castus* leaf extracts

Ibtisam Mohammed Ababutain1,2,* Azzah Ibrahim Alghamdi1,2

1Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.

2Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.

*Corresponding author: Ibtisam Mohammed Ababutain (iababutain@iau.edu.sa; Dr.King2007@hotmail.com);

ABSTRACT

Background

Candida Infections are becoming more drug resistant; it is necessary to search for alternative medications to treat them. Therefore, the present study estimates the anticandidal activity of *Vitex agnus-castus* (VA-C) leaf extracts.

Methods

We used the agar well diffusion method to assess the anticandidal activity of three different VA-C leaf extracts (ethanol, methanol, and water) against three *Candida* species (*Candida tropicalis*, *Candida albicans*, and *Candida ciferrii*). The minimum inhibitory concentration (MIC) was estimated using the two-fold dilution method and the minimum fungicidal concentration (MFC) was determined using the classic pour plate technique. The MFC/MIC ratio was calculated to estimate the microbicidal or microbiostatic activity. A gas chromatography mass spectrometer was used to screen the phytochemicals of the VA-C leaf extracts (ethanol, methanol, and water).

Results
All VA-C extracts ethanol, methanol, and water were significantly inhibited the growth of the test Candida species and the inhibition activity depended on the solvent used and the Candida species. The results showed that C. tropicalis was the most highly inhibited by all extracts followed by C. albicans and C. ciferrii. The MIC values were 12.5 µg/ml to 25 µg/ml, and MFC values were 25 µg/ml to 100 µg/ml. The ratios of MFC/MIC were two-fold to four-fold which was considered candidacidal activity. Ninety-five phytochemical compounds were identified by the GC-MS assay for the VA-C leaf extracts. The total number of compounds per extract differed. Methanol had 43 compounds, ethanol had 47 compounds, and water had 52 compounds. The highest compound concentrations were: 4,5-Dichloro-1,3-dioxolan-2-one in ethanol and methanol, 1H-Indene, 2,3-dihydro-1,1,2,3,3-pentamethyl in ethanol, Isobutyl 4-hydroxybenzoate in methanol, and Benzoic acid and 4-hydroxy- in water. These phytochemical compounds belong to different bioactive chemical group such as polyphenols, fatty acids, terpenes, terpenoids, steroids, aldehydes, alcohols, and esters, and most of which have anticandidal activity.

Conclusions

VA-C leaf extracts may be useful alternatives to anticandidal drugs, based on their effectiveness against all test Candida species at low concentrations. However, appropriate toxicology screening should be conducted before use.

Introduction

The number of severe Candida infections is on the rise, which is concerning due to their virulence, ability to survive in extreme environments, and resistance to antifungal agents (Paramythiotou et al., 2014). Candida species can cause a wide variety of infections ranging from mild to severe, such as candidemia which has a mortality rate up to 38% in immunosuppressed patients (i.e. organ transplantation patients, patients under chemotherapy, HIV- infected, and diabetic) (Koehler et al., 2019; de Oliveira Santos et al., 2018). The rate of fungal infections, including candidiasis, can reach 20% in the intensive care unit and antifungal medications including azoles, echinocandins, fluoropyrimidines, and polyenes are typically used to treat these infections. However, determining the appropriate dose for treatment is challenging when considering their side effects (Chatelon et al., 2019). Candidiasis is one of the most common fungal diseases in the world and includes cutaneous candidiasis, mucosal candidiasis, onychomycosis, and systemic candidiasis. Healthy individuals are also susceptible to candidiasis (de Oliveira Santos et al., 2018). Genus Candida is deuteromycetes fungi and belongs to the Cryptococcaceae family, with up to 200 species. There are thirty species most commonly isolated in human infections including Candida albicans, Candida tropicalis, Candida dubliniensis, Candida parapsilosis, Candida glabrata, Candida lusitaniae, Candida kefyr, and Candida krusei (Rodrigues et.al., 2019; Kim et al., 2016; Brandt and Lockhart, 2012; Miceli et al., 2011).
Antifungals have a broad range of applications but it is difficult to determine the ideal treatment regime because their use can be limited and is often accompanied by side effects. The indiscriminate use of antibiotics has led to an increased resistance to these types of medications (de Oliveira Santos et al., 2018). Accordingly, researchers are exploring therapeutic alternatives, such as the use of plant essential oils or extracts. These have been proven beneficial in the treatment of several diseases due to their phytochemical components that have physiological and therapeutic effects on humans, limited toxicity, and low therapeutic costs (Abdulrasheed et al., 2019; Sardi et al., 2013). The World Health Organization reports indicate that up to 25% of modern medicines used in the United States of America originate from plants. In Africa and Asia, 80% of the population still uses medicinal herbs in their primary health care centers (WHO, 2002). Moreover, there is documented evidence for the antimicrobial potential of more than 1340 plants (Yilar et al., 2016). *Vitex* is one of the largest of the 250 genera in the family Verbenaceae found worldwide (Ganapaty and Vidyadhar, 2005). The therapeutic applications of *Vitex agnus-castus* (VA-C) and its safety as a medicinal plant are well stated (Niroumand et al., 2018; Neves and da Camara, 2016; Rani and Sharma, 2013). Previous studies have emphasized the antibacterial activity of the essential oils extracted from the seeds and fruit of VA-C (Eryigit et al., 2015; Dervish-Shengjergji et al., 2014; Ghannadi et al., 2012). Other studies have investigated the antimicrobial activity of essential oils extracted from the leaves of VA-C (Katirae et al., 2015; Ulukanli et al., 2015). A few studies have demonstrated the antifungal activity of the seed oil (Asdadi et al., 2014). The antifungal potential of VA-C leaves essential oils against plant pathogens (Yilar et al., 2016). The antibacterial activity of the leaf extract of VA-C has been identified in a few studies (Ababutain and Alghamdi, 2018; Kalhoro et al., 2014; Arokiyaraj et al., 2009) as well as the antimicrobial activity of VA-C leaf extract (Kalhoro et al., 2014; Maltaş et al., 2010). These studies used only a few bacteria and one *Candida* species (*Candida albicans*). Keikha et al. (2018) evaluated the antifungal activity of ethanolic and aqueous lead extracts on *C. albicans* strains and they found that the ethanol extract was more effective than the aqueous extract against *C. albicans* strains. However, the effect of VA-C leaf extracts of against human *Candida* species has not been well-studied.

Therefore, this study aims to investigate the anticandidal activity and efficiency of VA-C leaf extracts (water, methanol and ethanol) against the three most frequently isolated *Candida* species (*Candida albicans*, *Candida tropicalis* and *Candida ciferrii*). We determined the phytochemicals of these extracts using Gas Chromatography-Mass Spectrometry (GC-MS).

Materials & Methods

Plant material

Vitex agnus-castus VA-C leaves were collected from a private garden in Dammam City, Saudi Arabia belonging to Ibtisam Mohammed Ababutain. The plant was identified according to Brickell and Zuk (1997).

Preparation of plant extracts
VA-C leaves were washed with tap water and left to dry for two days at room temperature in a well-ventilated room using a fan to speed up the drying process, then ground to a fine powder. Maceration method described by Pandey and Tripathi (2014) was used with little modification, in which 60 g of the leaf powder was transferred to three Erlenmeyer flasks containing 300 mL of the three different solvents: distilled water, methanol (80%), and ethanol (80%) to a final concentration of 20% g/mL. The leaf mixtures were shaken for 72 hours at 300 rpm/min/20°C to extract the active compounds. We used the method previously described in Ababutain (2019) to extract the active compounds as follows: the leaf mixtures were filtered twice, first using Whatman No. 1 filter paper and then using bacterial filters. The filtrates were concentrated in an oven at 80°C. The residues were re-suspended in dimethyl sulfoxide (DMSO) to a final concentration of 20%. All flasks were kept at 4°C for further use.

Agar well-diffusion method

Three different prepared VA-C leaf extracts with a 20% (mg/ml) concentration were screened for their anticandidal activity using the agar well-diffusion method (NCCLS, 1993) against three unicellular fungi. Candida tropicalis and Candida albicans were provided by King Fahd Hospital, Al Khobar, Kingdom of Saudi Arabia. Candida ciferrii was obtained from the Biology Department, College of Science, Imam Abdulrahman Bin Faisal University.

Inoculums of the Candida species were prepared from new cultures in potato dextrose broth (PDB). A Biomerieux DensiCHEK plus meter device was used to adjust the cell suspension turbidity at 1-2 x 10^6 CFU/ml, which represents 0.5 McFarland standards. Each Petri dish was inoculated individually with 0.5 ml of the previous suspension. Melted potato dextrose agar (PDA) was poured over the inoculums, and the plates were rotated to ensure even distribution of the inoculums then left to harden at room temperate for 5 min. Five wells were made on the inoculated PDA using a 6 mm sterile cork-borer. Each well was filled with 100 µL of the plant extracts. Positive and negative controls were included; nystatin (10 mcg) was used as the positive control and DMSO was used as the negative control. The plates were incubated at 37°C for 24 hours. The anticandidal activity of the plant extracts was estimated in millimeters (mm) using a ruler and measuring the free growth zones around the wells. The experiments were performed in three replicates to ensure the reliability of the results.

Determination of minimum inhibitory concentration (MIC)
The minimum inhibitory concentration (MIC) of VA-C leaf extracts was estimated using the two-fold dilution method (Omura et al., 1993) as well as the method previously described in Ababutain (2019). Briefly, the plant extracts were diluted with PDB media using 96-well microtiter plates in wells 1 to 10. Standard Candida inoculums at a concentration of 1-2x10^6 CFU/mL were transferred to the wells to make a final concentration of 50%. We used growth media with the Candida inoculum in well 11 and growth media with plant extracts in well 12, as positive and negative controls, respectively. The turbidity was examined by the naked eye after an overnight incubation period at 37°C and the lowest concentration of plant extract showing no Candida species growth was recorded as MICs. All experiments were performed in three replicates.

Determination of minimum fungicidal concentration (MFC)

The classic pour plate technique was used to determine the MFC (NCCLS, 1997). Concentrations that showed no Candida species growth from previous MIC experiments were transferred to Petri dishes, then 15 mL of melted PDA was poured over it and gently rotated and left to solidify. Inoculated Petri dishes were incubated at 37°C for 48 hours. The lowest concentration that showed no visible Candida species colonies were recorded as MFC (Ababutain, 2019). All experiments were performed in three replicates.

Determination of anticandidal efficiency

The anticandidal efficiency of VA-C leaf extracts (ethanol, methanol and water) was determined by calculating the ratio of MFC/MIC according to Levison and Levison (2009).

Gas chromatography-mass spectrometry (GC-MS)

We analyzed the bioactive compounds of all three VA-C leaf extracts (ethanol, methanol and water) with a gas chromatography-mass spectrometer (Shimadzu-Japan) model QP2010 SE, with a 5 Sil MS 5% diphenyl/ 95% dimethyl polysiloxane capillary column (0.25-μm df, 30 meter, 0.25 mmID) using the method previously described in Ababutain (2019). One microliter from each diluted plant extract (100/1400, V/V in DMSO) was injected individually in the split mode with a split ratio of 1:10. We used the electron impact ionization system at 70eV ionization energy to determine GC-MS exposure or detection. Pure helium (99.999%) was used as a carrier gas, at a constant column flow 0.7ml/ min and total flow of 10.4 ml/min. The flow control mode had a linear velocity of 29.6cm/sec. The injector temperature was set at 250°C and the ion-source temperature was set at 250°C. The column temperature was programmed at 50°C to 300°C, with a hold time of 3 min, and a total run time of 29 min. The chemical compounds were identified using the National Institute of Standards and Technology (NIST 08) library match and the quantitative data were generated automatically as a percentage (Adams, 2007).

Statistical analysis
The anticandidal activity of the VA-C leaf extract between the solvents and the Candida species was conducted using one-way Anova test. A P-value of <0.01 was considered statistically significant. Statistical data were analyzed using Statistical Packages for Software Sciences (SPSS, 2013) version 21 Armonk, New York, IBM Corporation.

Results

Anticandidal activity of VA-C leaf extracts

The VA-C extracts were shown to inhibit the growth of all tested Candida species and the inhibition activity depended on the solvent type and Candida species. The results showed that C. tropicalis was the most inhibited by all the extracts followed by C. albicans and C. ciferrii (all P=0.01). The effects of the ethanol extract against C. tropicalis, C. albicans and C. ciferrii were significantly higher compared to water and methanol extracts at P=0.01, P=0.037 and P=0.047, respectively (Table 1).

MIC results were between 12.5 µg/ml to 25 µg/ml and all extracts showed similar activity against all Candida species at MIC 25 µg/ml, except C. tropicalis which was the most sensitive to the ethanol extract at MIC 12.5 µg/ml. The MFC results were between 25 µg/ml to 100 µg/ml. Most extracts showed similar MFC values against all Candida species at MFC 50 µg/ml except C. tropicalis. The MFC ethanol extract at 25 µg/ml had the highest anticandidal activity against C. tropicalis and the MFC methanol extract at 100 µg/ml was considered to be the lowest anticandidal activity against C. albicans. The results revealed that both MIC and MFC values for all three solvents were narrow where the differences between values were one to two concentrations only. The MFC/MIC ratio in all the three extracts were only two-fold to four-fold, which means that VA-C leaf extracts are potentially candidacidal (Table 2).

Gas chromatography -mass spectrometry (GC-MS) analysis

Our results revealed that VA-C leaf extracts are rich in phytochemical components of different concentrations. 95 chemical compounds were extracted depending on the solvent type and, of these, 13 compounds were extracted by all three solvents and the total number of extracted compounds was 52 by water extraction, 47 by ethanol extraction, and 43 by methanol extraction (Table 3).

Discussion
Antibiotic resistance is becoming more common among a larger number of microorganisms, including *Candida* species, leading to a heightened interest in finding alternative treatments. The secondary metabolites of plants have made them useful for treating a variety of diseases, flavoring foods and products, preserving food, in pesticides, in perfumes and cosmetics, and more recently to inhibit the microbial growth. VA-C leaf extracts have been reported to cause mild and reversible side effects such as headache, acne, nausea, gastrointestinal disturbances, erythematous rash, pruritus, and menstrual disorders. However, no drug interactions have been associated with VA-C leaf extracts (Daniele et al., 2005). Therefore, VA-C leaf extracts (ethanol, methanol, and water) were investigated for their ability to inhibit the growth of three Azoles antibiotic-resistant *Candida* species: *C. ciferrii*, *C. albicans*, and *C. tropicalis* (Romald et al., 2019; Bhakshu, et al., 2016).

Our results showed that alcohol extracts (methanol and ethanol) and aqueous extract have the ability to inhibit the growth of all tested *Candida* species. These results are in agreement with Kalhora et al.’s study (2014), which found that the ethanol VA-C leaf extract has the potential to inhibit the growth of *C. albicans*. Our results are also consistent with Maltaş et al., (2010) who observed that the methanol extract of VA-C leaves inhibits the growth of *C. albicans*. Moreover, we showed that the inhibitory capacity of the solvents varied significantly in descending order of ethanol, then water, then methanol. These results are in line with a recent study conducted by Keikha et al. (2018) who found that VA-C ethanol leaf extract has the highest inhibiting effect against *C. albicans* isolates than water extract. Our results showed a similarity in the inhibitory effect of all extracts with nystatin (10mcg) as a positive control against *C. albicans*, where the inhibitory effect for the positive control was higher than all extracts against *C. tropicalis*.

We found that MIC showed that the ethanol extracts of VA-C were relatively higher than water and methanol. MIC values were between 12.5 µg/ml and 25 µg/ml for ethanol and represented a dilution of 4 and 3, respectively. For water and methanol the MIC values are specified at 25 µg/ml which represents dilution 3. Our results are similar to those of Keikha et al. (2018) who also found that the ethanol extract of VA-C was more effective than the aqueous extract when the MIC values of ethanol against isolates of *Candida* species were between 0.78 µg/ml and 1.56 µg/ml, which represent dilution 7 and 8, respectively. The values of the aqueous extract were between 6.25 µg/ml and 1.562 µg/ml, which represent dilutions of 5 and 7, respectively.

There was a convergence of MFC values, which represents only the three dilutions from 1 to 3 (100 µg/ml and 25 µg/ml), respectively. The VA-C extract of ethanol was the most influential on *C. tropicalis* with the value of MFC 25 µg/ml and the aqueous extract was less effective on *C. albicans*, with a value of 100 µg/ml.
Selection of antibiotics for the treatment of infections is highly influenced by the mechanism of action. Antibiotics classified into either by killing the microbe (microbicidal) or inhibiting its growth (microbistatic) (Etebu and Arikekpar, 2016). Antibiotics with inhibitory effects are usually prescribed to patients who do not have problems with their immune system, while antibiotics with a fatal effect are prescribed for patients with low immunity or severe infections (Davies and Davies, 2010). Candida species are generally opportunistic and affect the group of people with low immunity so antibiotics that are prescribed are generally more effective if they are of the fatal type. Therefore, the inhibitory efficiency of the VA-C extract was estimated using the ratio between MFC and MIC. Our results showed that the ratio of MFC/MIC between two-fold to four-fold have a candidacidal effect (Levison and Levison, 2009). To our best of our knowledge, ours is the first study to establish this finding.

We found that the extracts of VA-C differed in their inhibitory effect according to the type of solvent and this is may be due to the difference in the degree of polarity between the solvent. Water has the highest polarity of 1,000 followed by methanol (0.762) and finally, ethanol (0.654). The compounds extracted by these highly polar solvents differ in quantity and quality (Abubakar and Haque, 2020). Many studies have demonstrated the effect of the solvent type on the inhibitory potential of plant extracts (Aljuraifani 2017; Ababutain 2015).

The GC-MC analysis result revealed that all three VA-C extracts were rich in chemical compounds that act as an anti-inflammatory, anticancer, anti-Alzheimer, anti-diarrheal, anti-diabetic, anti-viral, antioxidant, anti-allergic, nematicide, antibacterial, antifungal. These extracts are also used as food preservatives and flavorings, as previously found in other published works (Table 3). Several of these secondary metabolites belong to important chemical groups such as polyphenols, fatty acids, terpenes, terpenoid, steroids, aldehydes, alcohol, and esters. These results are in agreement with a previous study of Keikha et al. (2018), which stated that the VA-C extract was rich in chemical compounds, and the alcoholic extract contained 36 chemical compounds that belong to different chemical groups. Our results showed that the majority of compounds were 4,5-Dichloro-1,3-dioxolan-2-one in both ethanol and methanol, 1H-Indene, 2,3-dihydro-1,1,2,3,3-pentamethyl in ethanol, Isobutyl 4-hydroxybenzoate in methanol, and Benzoic acid and 4-hydroxy- in water. Keikha et al. (2018) found that the majority of compounds in the VA-C ethanol extract were α-Pinene, isoterpinolene, caryophyllene, and azulene. The difference in the number of phytochemical compounds may be attributed to the variations among the VA-C genotypes (Karaguzel and Girmen, 2009).
The inhibitory activity of VA-C extracts maybe attributed to the presence of important bioactive compounds (Abdal Sahib et al., 2019), which may target different structures of the Candida species including the cell wall, cell membrane, and mitochondria enzymes. Some of these compounds may reduce or prevent the virulence factors, including adhesins, enzymes production, germ tubes (Pseudohyphal), biofilm formation, and quorum sensing (de Oliveira Santos et al., 2018; Liu et al., 2017, Sardi et al., 2013). Our results showed the diversity of the compounds extracted from VA-C plant leaves that belong to several effective biochemical compounds with different anticandidal activity, including polyphenols that can destroy the Candida cell membrane leading to permeability of the cell contents (Peralta et al., 2015; Hwang et al., 2011; Hwang et al., 2010), inhibition of mitochondrial enzyme activity in the Candida cell (Yang et al., 2014) and inhibition of the germ tube formation (Seleem et al., 2016). Fatty acids with carbon chains between 10-12 carbons had a good inhibitory effect against Candida species (Ababutain, 2019; Bergsson et al., 2001). Terpenes have been reported to have inhibitory effects against C. albicans and may prevent biofilm formation (Pemmaraju et al., 2013). Terpenoids inhibit C. albicans cell growth by affecting the membrane and preventing adhesins, biofilm formation, and germ tube formation (Touil et al., 2020; Raut et al., 2013; Zore et al., 2011).

Conclusions

Our results showed that VA-C leaf extract is rich in bioactive compounds with broad spectrum activity that inhibited all the tested Candida species despite different species. Accordingly, VA-C leaf extracts may inhibit the growth of Candida species in general, compared to antifungals that affect a specific species or a strain of species and require an accurate diagnosis of the Candida isolation to choose the appropriate antifungal. The inhibitory activity of the ethanol solvent was better than methanol and water, which may indicate the importance of choosing the appropriate solvent to extract phytochemicals with high inhibiting effectiveness and in higher quantities. Moreover, our results showed that the extract had a candidacidal effect on test Candida species at low concentrations, which may reduce the side effects of the extract. VA-C leaf extracts are advantageous, and a promising component that can be used to develop an alternative anticandidal agent. Further studies are required to assess the toxicity, genotoxicity and mutagenicity of VA-C extracts and prove their safety for human use.

Acknowledgements

The authors thank the Director of Basic and Applied Scientific Research Centre (BASR) at Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia for her continuous support and encouragement. The authors would like to thank Dr. Ahmed Alsayyah, Dr. Reem AlJindan, and Mrs. Nouf Alromaihi at King Fahd Hospital, Al Khobar, Kingdom of Saudi Arabia for providing us with the microorganisms for testing.

References
Ababutain, I., 2015. Impact of solvent type on antibacterial activities of Lawsonia inermis leaves. J. Food Agric. Environ. 13 (1), 51-53.

Ababutain, I.M., 2019. Antimicrobial activity and gas chromatography-mass spectrometry (GC-MS) analysis of Saudi Arabian Ocimum basilicum Leaves Extracts, J. Pure Appl. Microbiol. 13(2), 823-833.

Ababutain, I.M., Alghamdi, A.I., 2018. Phytochemical analysis and antibacterial activity of Vitex agnus-castus L. leaf extracts against clinical isolates. Asia Life Sci. 27(1), 11-20.

Abd al Sahib, A.H., Al-Shareefi, E., Hameed, I.H., 2019. Detection of Bioactive Compounds of Vitex agnus-castus and Citrus sinensis Using Fourier-transform infrared spectroscopic profile and Evaluation of Its Anti-microbial Activity. Indian J. Public. Health Res. Dev. 10(1), 954-959.

Abdurasheed, M., Ibrahim I.H, Luka, A, Maryam, A.A, Hafsat, L, Ibrahim, S, Maigari, F.U., Gidado, M.B., 2019. Antibacterial effect of Cinnamon (Cinnamomum zeylanicum) bark extract on different bacterial isolates. JEMAT. 7(1), 16-20.

Abubakar, A.R., Haque M., 2020. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioall. Sci. 12, 1-10.

Adams, R.P., 2007. Identification of essential oil component by gas chromatography/ mass spectrometry. Allured Publishing Corporation, Carol Stream, Illinois.

Aljuraifani, A., 2017. Impact of solvent types on antimicrobial activities of pumpkin (Cucurbita pepo L.) pulp extracts. Asia Life Sci. 26 (2), 229-235.

Al-Marzoqi, A.H., Hadi, M.Y., Hameed, I.H., 2016. Determination of metabolites products by Cassia angustifolia and evaluate antimicrobial activity. J. Pharmacognosy Phytother. 8(2), 25-48.

Al-Salih, D.A., Aziz, F.M., Mshimesh, B.A., Jehad, M.T., 2013. Antibacterial Effects of Vitamin E: in Vitro Study. J. Biotechnol. Res. Center 7(2), 17-23.

Arokiyaraj, S., Perinbam, K., Agastian, P., Kumar M.R., 2009. Phytochemical analysis and antibacterial activity of Vitex agnus-castus. IJGP. 3(2), 162-164.

Asdadi, A., Idrissi Hassani L.M., Chebli, B., Moutaj, R., Gharby, S., Harhar, H., Salghi, R., EL Hadek, M. 2014. Chemical composition and antifungal activity of vitex agnus-castus l. seeds oil growing in Morocco. J. Mater Environ. Sci. 5(3), 823-830.

Bergsson, G., Arnfinnsson, J.H., Steingrí´msson, O´., Thormar, H., 2001. In Vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 45(11), 3209-3212.

Bhakshu, L.Md., Ratnam, K.V., Raju, R.R.V., 2016. Anticandidal activity and phytochemical analysis of certain medicinal plants from Eastern Ghats, India. Indian J. Nat. Prod. Resour. 7(1), 25-31.

Bidossi, A., Bortolin, M., Toscano, M., De Vecchi, E., Romanò, C.L., Mattina, R., Drago, L., 2017. In vitro comparison between α-tocopheryl acetate and α-tocopheryl phosphate against bacteria responsible of prosthetic and joint infections. PLoS One 12(7), e0182323. doi:10.1371/journal. Pone.0182323

Birkbeck, T.H., Reid, H.I., Darde, B., Grant, A.N., 2006. Activity of bronopol (Pyceze®) against bacteria cultured from eggs of halibut, Hippoglossus hippoglossus and cod, Gadus morhua. Aquaculture 254, 125–128.
Brandt, M.E., Lockhart, S.R., 2012. Recent Taxonomic Developments with Candida and Other Opportunistic Yeasts. Curr. Fungal Infect. Rep. 6(3), 170–177.

Brickell, C., Zuk, J.D., 1997. A-Z Encyclopedia of garden plants. New York, United States, The American Horticultural Society, DK Publishing Inc. 1095 p.

Carlomagno, G., Unfer, V., 2011. Inositol safety: clinical evidences. Eur. Rev. Med. Pharmacol. Sci. 15, 931-936.

Chatelon, J., Cortegiani, A., Hammad, E., Cassir, N., Leone, M., 2019. Choosing the Right Antifungal Agent in ICU Patients. Adv. Ther. 36(12), 3308-3320.

Cheng, S-S., Chung, M-J., Lin, C-Y., Wang, Y-N., Chang, S-T., 2012. Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents. J. Agric. Food Chem. 60(1), 124–128.

da Rocha, A. B., Lopes, R. M., Schwartsmann, G. 2001. Natural products in anticancer therapy. Curr. Opin. Pharmacol. 1, 364–369. doi: 10.1016/s1471-4892(01)00063-7.

Daniele, C., Coon, J.T., Pittler, M.H., Ernst. E., 2005. Vitex agnus castus: A systematic review of adverse events. Drug Saf. 28(4), 319-332.

Davies, J., Davies, D., 2010. American Society for Microbiology. All Rights Reserved. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. R. 74(3), 417–433.

de Oliveira Santos, G.C., Vasconcelos, C.C., Lopes, A.J.O., de Sousa Cartágenes, M.dS., Filho, A.K.D.B., do Nascimento, F.R.F., Ramos, R.M., Pires, E.R.R.B., de Andrade, M.S., Rocha, F.M.G., de Andrade, M.C., 2018. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front. Microbiol. 9,1351. doi: 10.3389/fmicb.2018.01351.

Dervishi-Shengjergji, D., Vilma, P., Xhulieta, H., Aurel, N., Blerta, K., 2014. Antibacterial activity and chemical composition of Vitex agnus castus fruits essential oils from Mbishkodra, Albania. JIEAS. 9(4), 521-424.

Drobnica, L., Sturdík, E.,1980. Antimicrobial Activity of 2-vinylfuran Derivatives. Folia Microbiol (Praha). 25(6), 467-75.

Eryigit, T., Çig, A., Okut, N., Yildirim, B., Ekici, K., 2015. Evaluation of chemical composition and antimicrobial activity of Vitex agnus castus L. fruits’ essential oils from West Anatolia, Turkey. J. Essent. Oil Bear Plants 18, 208-214.

Eseyin, O.A., Sattar M.A., Rathore, H.A., Aigbe,F., Afzal S., Ahmad, A., Lazhari, M., Akthar, S., 2018. GC-MS and HPLC profiles of phenolic fractions of the leaf of Telfairia occidentalis. Pak. J. Pharm. Sci. 31(1), 45-50.

Etebu, E., Arikekpar, I., 2016. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 4, 90-101.

Ganapaty, S., Vidyadhari, K.N., 2005. Phytoconstituents and biological activities of Vitex: A review. JNR. 5, 75-95.

Ghannadi, N., Bagherinejad, M.R., Abedi, D., Jalali, M., Absalan, B., Sadeghi, N., 2012. Antibacterial activity and composition of essential oils from Pelargonium graveolens L’ Herit. and Vitex agnus-castus L. Iran. J. Microbiol. 4(4), 171-176.

Ghimire, G.P., Thuan, N.H., Koirala, N., Sohn, J.K., 2016. Advances in biochemistry and microbial production of squalene and its derivatives. J. Microbiol. Biotechnol. 26(3), 441–451.
404 Huntley, N. F., Patience, J. F., 2018. Xylose: absorption, fermentation, and postabsorptive metabolism in the pig. J. Anim. Sci. Biotechno. 9(4), DOI 10.1186/s40104-017-0226-9.
405 Hwang, B., Cho, J., Hwang, I.-S., Jin, H.-G., Woo, E.-R., Lee, D. G., 2011. Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochem. Biophys. Res. Commun. 410(3), 489–493.
406 Hwang, B., Lee, J., Liu, Q.-H., Woo, E.-R., Lee, D. G., 2010. Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii. Molecules 15(5), 3507–3516, 2010.
407 Ibrahim, I.S., Ali, M., Zage, A.U., 2016. Phytochemistry of methanolic and aqueous extracts of Eucalyptus camaldulensis leaves, seeds and stem back. Int J Advan. Academic Res. Sci. 2, 75-80.
408 Jegadeeswari, P., Nishanthini, A., Muthukumarasamy, S., Mohan. V.R. 2012. GC-MS analysis of bioactive components of Aristolochia krysagathra (Aristolochiaceae). J. Curr. Chem. Pharm. Sci. 2, 226-232.
409 Johny, A.K., Darre, M.J., Donoghue, A.M., Donoghue, D.J., Venkitanarayanan, K., 2010. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. J. Appl. Poultry Res. 19(3), 237–244.
410 Joller, C., De Vrieze, M., Moradi, A., Fournier, C., Chinchilla, D., L’Haridon, F., Bruisson, S., Weisskopf, L., 2020. S-methyl Methanethiosulfonate: Promising Late Blight Inhibitor or Broad Range Toxin? Pathogens 9(6), 496 doi.org/10.3390/pathogens9060496.
411 Kalhoro, M.A., Farheen, S., Aqsa, N.U., 2014. The antimicrobial activity of ethanol extract of Vitex agnus-castus. Am. Int. J. Contemp. Res. 1(1), 47-50.
412 Karthikeyan, S. C., Velmurugan, S., Donio, M. B., Michaelbabu, M., Citarasu, T., 2014. Studies on the antimicrobial potential and structural characterization of fatty acids extracted from Sydney rock oyster Saccostrea glomerata. Ann. Clin Microb. Anti. 13, 332. doi.org/10.1186/s12941-014-0057-x
413 Karaguzel, O., Girmen, B., 2009. Morphological variations of chaste tree (Vitex agnus-castus) genotypes from southern Anatolia, Turkey, New Zeal. J. Crop. Hort. 37(3), 253-261.
414 Katiraei, F., Mahmoudi, R., Tahapour, K., Hamidian, G., Emami, S.J., 2015. Biological properties of Vitex agnus-castus essential oil (phytochemical component, antioxidant and antifungal activity). Biotechnol. Health. Sci. 2(2), 267–97.
415 Keikha, N., Shafaghat, M., Mousavia, S.M., Moudi, M., Keshavarzi, F., 2018. Antifungal effects of ethanolic and aqueous extracts of Vitex agnus-castus against vaginal isolates of Candida albicans. Curr. Med. Mycol. 4(1), 1–5.
416 Kim, G-Y., Jeon J-S., Jae Kyung Kim, J.K., 2016. Isolation Frequency Characteristics of Candida Species from Clinical Specimens. Mycobiology 44(2), 99-104.
417 Kirti, K., Amita, S., Priti, S., Mukesh Kumar, A., Jyoti. S., 2014. Colorful World of Microbes: Carotenoids and Their Applications. Adv. Biol. 2014, 1–13.
418 Koehler, P., Stecher. M., Cornely O.A., Koehler. D., Vehreschild, M.J.G.T., Bohlius. J., Wisplinghoff, H., Vehreschild, J.J., 2019. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin. Microbiol. Infect. 25(10), 1200-1212.
Kumar, R.N., Vasantha, K., Mohan, V.R., 2014. GC-MS analysis of bioactive components of tubers of Ruellia tuberosa L. (Acanthaceae). Am. J. Phytomed. Clin. Ther. 2(2), 209-216.

Kumaravel, S., Muthukumaran, P., Shanmugapriya, K., 2017. Chemical composition of Trigonella foenum-graecum through gas chromatography mass spectrometry analysis. J. Med. Plants Stud. 5, 1-3.

Lamba, A., 2007. Antimicrobial activities of aldehydes and ketones produced during rapid volatilization of biogenic oils. Masters Theses.

Levison M.E., Levison J.H., 2009. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North Am. 23(4), 791-9.

Liu, X., Ma, Z., Zhang, J., Yang, L., 2017. Antifungal compounds against Candida infections from traditional Chinese medicine. BioMed Res. Int. 2017, 1-12. doi.org/10.1155/2017/4614183

Ma, K., Thomason, L.A., McLaurin, J., 2012. Scylo-Inositol, preclinical, and clinical data for Alzheimer's disease. Adv. Pharmacol. 64,177-212.

Madan R.K., Levitt J., 2014. A review of toxicity from topical salicylic acid preparations. J. Am. Acad. Dermatol. 70(4), 788-92.

Maltaş, E., Uysal, A., Yildiz, S., Durak, Y., 2010. Evaluation of antioxidant and antimicrobial activity of Vitex agnus castus L. Fresenius Environ. Bull. 19, 3094-3099.

McDonnell, G., 2009. Sterilization and Disinfection. In Encyclopedia of Microbiology, 3rd Edition, Moselio Schaechter (Editor), Academic press, Elsevier Ltd, 529-548.

Miceli, M.H., Diaz, J.A., Lee, S.A., 2011. Emerging opportunistic yeast infections. Lancet. Infect. Dis. 11, 142–151.

Miguel, V., Lestard, M.E.D., Tuttolomondo, M.E., Diaz, S.B., BenAltabef, A., Puiatti, M., Pierini, A.B., 2016. Molecular view of the interaction of S-methyl methane-thiosulfonate with DPPC bilayer. Biochim. Biophys. Acta. Biomembr. 1858(1), 38-46.

Mincea, M.M., Lupşa, I.R., Cinghiță, D.F., Radovan, C.V., Talpos, I., Ostafe, V., 2009. Determination of methylparaben from cosmetic products by ultraperformance liquid chromatography. J. Serb. Chem. Soc. 74 (6), 669–676.

Naragani, K., Mangamuri, U., Muvva, V., Poda, S., Munaganti, R.K., 2016. antimicrobial potential of streptomyces cheonaensis vuk-a from mangrove origin. Int. J. Pharm. Pharm. Sci. 8(3), 53-57.

National Committee for Clinical Laboratory Standards (NCCLS), 1993. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard, NCCLS Document M2-A5, National Committee for Clinical Laboratory Standards, Wayne, Pennsylvania, USA, 13(24), 35.

National Committee for Clinical Laboratory Standards (NCCLS), 1997. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard M2-A6. National Committee for Clinical Laboratory Standards, Wayne, Pennsylvania, USA, 17(1).

Neeraj, Vasudeva, N., Sharma, S., 2019. Chemical composition of Fagopyrum esceulentum Moench seed through GC-MS. Int. J. Pharm. Sci. Res. 10(5), 2392-2396.
Neves, R.C.S., da Camara, C.A.G., 2016. Chemical composition and acaricidal activity of the essential oils from Vitex agnus-castus L. (Verbenaceae) and selected monoterpenes. Annals of the Brazilian Academy of Sciences. An. Acad. Bras. Cienc. 88(3), 1221-1233.

Niroumand, M.C., Heydarpour, F., Farzaei, M.H., 2018. Pharmacological and therapeutic effects of Vitex agnus-castus L.: A review. Phcog. Rev. 12, 103-14.

Okoye, N.N., Ajaghaku, D.L., Okeke, H.N., Ilodigwe, E.E., Nworu, C.S., Okoye, F.B. 2014. Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 52(11), 1478–14786.

Olajuyigbe, O.O., Onibudo, T.E., Coopoosamy, R.M., Ashafa, A.O.T., Afolayan, A.J., 2018. Bioactive compounds and in vitro antimicrobial activities of ethanol stem bark extract of Trilepisium madagascariense DC. Int. J. Pharmacol. 14(7), 901-912.

Omura, S., Pyl, D.V.D., Inokoshi, J., Takahashi, Y., Takeshima, Y., 1993. Pepticinnaminsnew farnesyl-protein transferase inhibitors produced by an actinomycete I. Producingstrain, fermentation, isolation and biological activity. J. Antibiot. 46, 222-228.

Ovesná, Z., Vachálková, A., Horváthová, K., 2004. Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects. Neoplasma 51(6), 407-414.

Özçelik, B., Kartal, M., Orhan, I., 2011. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. biol. 49(4), 396-402.

Pandey, A., Tripathi, S., 2014. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J. Pharmacogn. Phytochem. 2 (5), 115-119.

Paramythiotou, E., Frantzeskaki, F., Flevari, A., Armaganidis, A., Dimopoulos, G., 2014. Invasive Fungal Infections in the ICU: How to Approach, How to Treat. Molecules 19(1), 1085-119.

Pemmaraju, S.C., Pruthi, P.A., Prasad, R., Pruthi, V., 2013. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J. Exp. Biol. 51, 1032-1037.

Peralta, M. A., Da Silva, M. A., Ortega, M. G., Cabrera, J. L., Paraje, M. G., 2015. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine, 22(11), 975–980.

Ovesná, Z., Vachálková, A., Horváthová, K., 2004. Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects. Neoplasma 51(6), 407-414.

Özçelik, B., Kartal, M., Orhan, I., 2011. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. biol. 49(4), 396-402.

Rani, A., Sharma, A., 2013. The genus Vitex: A review. Pharmacogn Rev. 7(14), 1-5.

Raut, J.S., Shinde, R.B., Chauhan, N.M., Karuppayil, S.M., 2013. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 29(1), 87-96.

Rodrigues, C.F., Rodrigues, M.E., Henriques, M., 2019. Candida sp. Infections in Patients with Diabetes Mellitus. J. Clin. Med. 8(1): 76. doi: 10.3390/jcm8010076

Romald, P.N., Sridharan, K.S., Mohanty, S., Anupma Jyoti Kindo, A.J., 2019. Rare isolate of Stephanoascus ciferrii from the aural discharge of post-mastoidectomy patient-A case report. J. Clin. Diagn. Res. 13(3), 1-3.

Sardi, J.C.O., Scorzoni, L., Bernardi, T., Fusco-Almeida A.M., Mendes Giannini M. J. S., 2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 62, 10-24.

Saud, R., Pokhrel, S., Yadav, P.N., 2019. Synthesis, characterization and antimicrobial activity of maltol functionalized chitosan derivatives, Journal of Macromolecular Science, Part A, DOI: 10.1080/10601325.2019.1578616.
Seleem, D., Benso, B., Noguti, J., Pardi, V., Murata, R.M., 2016. In vitro and in vivo antifungal activity of lichochalcone-A against candida albicans biofilms. PLoS ONE, 11(6), e0157188. doi:10.1371/journal.pone.0157188.

Sermakkani, M., Thangapandian, V., 2012. GC-MS analysis of Cassia italica leaf methanol extract. Asian J. Pharm. Clin. Res. 5(2), 90-4.

Shahina, P., Shahzad, A., Upadhyaaya, P., Yadav, V. 2016. Gas chromatography-mass spectrometry analysis of methanolic leaf extract of Cassia angustifolia Vahl. Asian J. Pharm. Clin. Res. 9, 111-6.

Sharma, V., Singh, G., Kaur, H., Saxena, A.K., Ishar, M.P., 2012. Synthesis of β-ionone derived chalcones as potent antimicrobial agents. Bioorg. Med. Chem. Lett. 22(20), 6343-6.

Shibula, K., Velavan, S., 2015. Determination of phytocomponents in methanolic extract of Annona muricata leaf using GC-MS technique. Int. J. Pharmacog. Phytochem. Res. 7, 1251-5.

Solanki, S., Singh, A., Sood, H., 2018. GC analysis of invitro developed shoots of Stevia rebaudiana through rapid tissue culture. International Conference on New Horizons in Green Chemistry & Technology (ICGCT) 2018. Available at SSRN: http://dx.doi.org/10.2139/ssrn.3298672

Statistical Packages for Software Sciences (SPSS). 2013. version 21.0 Armonk, New York, IBM Corporation. Released.

Tan, K.H., Nishida, R., 2012. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect. Sci. 12(1), 1-60.

Tolstikov, G.A., Flekhter, O.B., Shul'ts, E.E., Baltin, L.A., Tolsikov, A.G., 2005. Betulin and its derivatives. chemistry and biological activity. Khim. Interes. Ust. Razv. 13, 1-30.

Touil, H.F.Z., Boucherit, K., Boucherit-Otmani, Z., Kohder, G., Madkour, M., Soliman, S.S.M. 2020. Optimum inhibition of amphotericin-B-Resistant Candida albicans strain in single- and mixed-species biofilms by Candida and non-Candida terpenoids. Biomolecules 10(2), 342. doi: 10.3390/biom10020342

Treasurer, W. Cochrane, E., Grant, A., 2005. Surface disinfection of cod gadus morhua and haddock melanogrammus aeglefinus eggs with bronopol, aquaculture 250(1-2), 27–35.

Tripathi, N., Kumar, S., Singh, R., Singh, C.J., Singh, P., 2013. Varshney V.K. Isolation and Identification of γ-sitosterol by GC-MS from Roots of Girardinia heterophylla. OJC. 29(2), 705-7.

Tyagi, T., Agarwal, M., 2017. Phytochemical screening and GCMS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 6(1), 195-206.

Ulukanli, Z., Çenet, M., Öztürk, B., Bozok, F., Karabörklü, S., Demirci, S.C., 2015. Chemical characterization, phytotoxic, antimicrobial and insecticidal activities of Vitex agnus-castus: Essential oil from East Mediterranean Region. J. Essent. Oil-Bear. Plants. 18(6), 1500-1507.

Wei, J.H., Yin, X., Welander, P.V., 2016. Sterol Synthesis in Diverse Bacteria. Front Microbiol. 7,990. doi:10.3389/fmicb.2016.00990.

World Health Organization. (WHO). 2002. Monographs on Selected Medicinal Plants. 2, 55–65.
Yang, S., Fu, Y., Wu X., Zhou, Z., Xu, J., Zeng, X., Kuang, N., Zeng, Y., 2014. Baicalin prevents Candida albicans infections via increasing its apoptosis rate. Biochem. Biophys. Res. Commun. 451(1), 36–41.

Yılar, M., Bayan, Y., Onaran, A., 2016. Chemical Composition and Antifungal Effects of Vitex agnus-castus L. and Myrtus communis L. Plants. Not. Bot. Horti. Agrobo. 44(2), 466-471.

Zore, G.B., Thakre, A.D., Jadhav, S., Karuppayil, S.M., 2011. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18(13), 1181-90.
Table 1. Anticandidal activity of VAC leaves extract at concentration of 20% by using well diffusion assay

*P-value has been calculated using one-way Anova. ** Significant at p<0.01 level. ND, not identified
Candida species	Nystatin (10 mcg)	negative control	Ethanol	Water	Methanol	P-value *
C. tropicalis	11.0 ± 1.00	0	7.50 ± 0.50	5.67 ± 0.29	5.33 ± 0.29	0.01 **
C. albicans	5.83 ± 0.29	0	5.83 ± 0.29	5.00 ± 0.50	5.00 ± 0.50	0.047 **
C. ciferrii	ND	0	4.33 ± 0.58	3.33 ± 0.29	3.33 ± 0.29	0.037 **
P-value	0.01 **	-	0.01 **	0.01 **	0.01 **	--
Table 2. Minimal Inhibitory Concentration (MIC) µg/ml and Minimal Fungicidal Concentration (MFC) µg/ml and their ratio of VA-C leaves extracts.

*Ratio MFC/MIC
Candida species	Ethanol	Water	Methanol						
	MIC	MFC	Ratio*	MIC	MFC	Ratio*	MIC	MFC	Ratio*
C. tropicalis	12.5	25	2	25	50	2	25	50	2
C. albicans	25	50	2	25	50	2	25	100	4
C. ciferrii	25	50	2	25	50	2	25	50	2
Table 3. GC-MS analysis of VA-C leaves extracts, their molecular formula, nature and biological activities.									
No	Compound name	Peak Area%	Molecular Formula	Compound nature and biological activities					
----	--	------------	-------------------	--					
1	4,5-Dichloro-1,3-dioxolan-2-one	7.43	C₆H₅ClO₂	No report was found.					
2	Benzoic acid, 4-hydroxy-	2.13	C₇H₆O₃	Phenolic compounds (Eseyin et al., 2018).					
3	5-Hydroxymethylfurfural	1.18	C₆H₄O₃	Organic compound Antioxidant and Antiproliferative (Ibrahim et al., 2016).					
4	Phenol	1.12	C₆H₅OH	Phenolic compound, antiviral, antibacterial and antifungal activities (Özçelik et al., 2011).					
5	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-	0.75	C₆H₄O₄	Flavonoids, Anti-inflammatory, analgesic, antimicrobial activity (Neeraj et al., 2019).					
6	Catechol	0.50	C₆H₄(OH)₂	Polyhydric phenol, antiviral, antimicrobial activities (Özçelik et al., 2011).					
7	Benzeneacetaldehyde, alpha-methyl-	0.35	C₉H₁₀O	Hydrotropic aldehyde.					
8	Benzeneacetic acid, 4-hydroxy3-methoxy,	0.39	C₁₀H₁₂O₄	No report was found.					
9	Pentanal	0.10	C₅H₁₀O	alky aldehyde, Inhibition bacteria (Lamba, 2007).					
10	Squalene	0.13	C₃₀H₄₀	Terpenoid, Anticandidal activity, antioxidant, anti-inflammatory, and anticancer agent (Ghimire et al., 2016; Zore et al., 2011).					
11	Maltol	0.06	C₆H₆O₃	Antimicrobial activity (Saud et al., 2019).					
12	1H-Benzocyclohepten-7-ol,2,3,4,4a,5,6,7,8-	0.36	C₁₅H₂₆O	Sesquiterpenids (Solaki et al., 2018).					
13	n-Hexadecanoic acid	0.70	C₁₆H₃₂O₂	Palmitic saturated Fatty acid ester, antimicrobial, antitumor activities, antioxidant, pesticide, nematicide, antiandrogenic and hypcholesteroleni (Tyagi and Agarwal., 2017; Karthikeyan et al., 2014; Sermakkani and Thangapandian, 2012).					
14	3,5-Octadienoic acid, 7-hydroxy-2-methyl	0.85	C₉H₁₄O₃	No report was found.					
15	Eugenol	0.39	C₁₀H₁₂O₂	Phenolic compounds, antimicrobial activity, insecticide nematicide and food additive (Tan and Nishida, 2012; Johny.					
No.	Name	E	R	CAS	Description				
---	---	---	---	---	---	---			
16	1,2,3-Benzenetriol	0.56	0.67	C₆H₆O₃	No report was found.				
17	Propylphosphonic acid, di(2-ethylhexyl) ester	2.57	1.18	C₂₁H₄₀O₄	Antimicrobial activity, food preservative, added to cosmetic products, and pharmaceutical products (Mincea et al., 2009).				
18	Methylparaben	0.39	0.28	C₈H₈O₃					
19	1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene	1.21	1.04	C₁₄H₂₂O	No report was found.				
20	Triacetin	0.19	0.27	C₉H₁₆O₆	Triester of glycerin and acetic acid.				
21	5-(1-Isopropenyl-4,5-dimethylbicyclo[4.3.0]	1.13	0.87	C₂₂H₃₆O₂	No report was found.				
22	2,4-Cholestadien-1-one	1.72	0.96	C₂₃H₄₂O	No report was found.				
23	Phytol	3.31	1.81	C₂₀H₄₀O	Diterpene, antiviral and antimicrobial activities (Özçelik et al., 2011).				
24	9,12,15-Octadecatrienoic acid, (Z, Z,Z)-	1.18	0.90	C₁₈H₃₀O₂	Linolenic Omega-3 polyunsaturated fatty acid, anti–inflammatory (Sermakkani and Thangapandian, 2012).				
25	Cedran-diol, (8S,14)-	0.13	0.52	C₁₉H₃₂O₂	No report was found.				
26	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	1.11	1.34	C₂₀H₄₀O	Terpene Alcohol, antioxidant, anti–inflammatory and flavoring agent (Shibula and Velavan, 2015; Jegadeeswari et al., 2012; Sermakkani and Thangapandian, 2012).				
27	Spiro[4.5] dec-9-en-1-ol,1,6,6,10-tetramethyl	0.54	0.39	C₁₄H₂₄O	No report was found.				
28	Dodeca-1,6-dien-12-ol,6,10-dimethyl	1.57	1.57	C₁₄H₂₅O	No report was found.				
29	Octadecanoic acid	0.51	-	C₁₈H₃₅CO₂H	Stearic saturated fatty acid.				
30	Benzenediazonium, 2-hydroxy-, hydroxide, i	0.86	-	C₆H₅N₂O	No report was found.				
31	Vitamin E	-	0.39	C₂₀H₅₀O₂	Lipid, antibacterial, anti–alzheimer, antiaging and antioxidant (Kumaravel et al., 2017; Al-Marzoqi et al., 2016; Shahina et al., 2016; Al-Salih et al., 2013).				
	Chemical Name	C, H, O, or component	C, H, O, or component	C, H, O, or component	Molecular Formula	Description			
---	-------------------------	----------------------	----------------------	----------------------	------------------	---			
32	Cedrol	- 0.22 0.12	C₁₄H₂₆O	sesquiterpene alcohol.					
33	gamma-Sitosterol	- 0.89 0.56	C₂₀H₅₀O	Steroid, antidiabetic drug (Tripathi et al., 2013).					
34	Paromomycin	- 0.12 0.22	C₂₃H₄₅N₅O₁₄	Treatment of diarrhea and protozoa infections (Olajuyigbe et al., 2018).					
35	Heptanal	0.20 - -	C₇H₁₄O	aldehyde antibacterial activity (Lamba, 2007).					
36	Ionone	0.33 - -	C₁₃H₂₆O	Sesquiterpenoids, antimicrobial agents (Sharma et al., 2012).					
37	Chloroxylol	0.16 - -	C₈H₅OCl	phenols with antiseptic activity, It is used in the manufacture of disinfectants and sterilizers (McDonnell, 2009).					
38	1-Heptadecene	0.22 - -	C₁₇H₃₄	unsaturated aliphatic hydrocarbons.					
39	Undecanal	0.25 - -	C₁₆H₃₁CHO	fatty aldehyde lipid molecule.					
40	1H-Indene, 2,3-dihydro-1,1,2,3,3-pentamethyl	9.63 - -	C₁₄H₂₀	No report was found.					
41	Epiglobulol	0.97 - -	C₁₈H₂₆O	Alcohol.					
42	tau-Cadinol	1.64 - -	C₁₃H₂₆O	No report was found.					
43	alpha-Cadinol	0.38 - -	C₁₃H₂₆O	Antifungal activity (Cheng et al., 2012).					
44	Phytol, acetate	0.37 - -	C₂₃H₄₂O₂	Food additive, antimicrobial, anti-inflammatory, anticancer and antiuretic properties (Sermakkani and Thangapandian, 2012).					
45	1S,2S,5R-1,4,4-Trimethyltricyclo[6.3.1.0(2,5)]1.26 - -	C₁₃H₂₄	No report was found.						
46	beta-iso-Methyl ionone	0.39 - -	C₁₄H₂₂O	No report was found.					
47	Longipinane, (E)-	0.41 - -	C₁₃H₂₄	No report was found.					
48	(-)-Isolongifolol, methyl ether	0.70 - -	C₁₆H₂₅O	Ether.					
49	Taraxasterol	0.07 - -	C₃₀H₅₀O	Anti-tumor and chemopreventive activity (Ovesná and Horvathova, 2004).					
50	S-Methyl methanethiosulphonate	0.07 - -	CH₃SO₂SCH₃	Ester, Antimutagentic agent and antimicrobial activity (Joller et al., 2020; Miguel et al., 2016).					
51	1-Heptatriacotanol	0.23 - -	C₁₃H₂₆O	Fatty alcohol.					
52	2-Vinylfuran	0.83 -	C₆H₆O	Antimicrobial activity (Drobnica and Sturidik, 1980).					
53	Salicyl hydrazide	- 0.39 -	C₇H₈N₂O₂	Phenolic compounds, antimicrobial activity, Anti-inflammatory (Madan et al.,					
No.	Compound	pIC (or pK)	LogP	Molecular Formula	Additional Information				
-----	--	-------------	-------	-------------------	--				
54	Isobutyl 4-hydroxybenzoate	-	8.91	C₁₁H₁₄O₃	No report was found.				
55	Methyl(ethenyl)bis(but-3-en-1-ynyl) silane	-	1.62	C₇H₁₆Si	No report was found.				
56	Beta Carotene	-	0.16	C₄₀H₅₆	Carotenoids used as food, nutrition, antioxidant, disease control, and antimicrobial agents (Kirti et al., 2014).				
57	17-Norkaur-15-ene, 13-methyl-(8, beta., 13, b)	-	1.05	C₂₀H₃₂	No report was found.				
58	3-Hydroxy-2-(2-methylyclohex-1-enyl) propanoic acid	-	1.48	C₁₆H₁₆O₂	No report was found.				
59	Cyclopropanebutanoic acid, 2-[2-[2-[2-[2-[(2-pen	-	1.20	C₁₁H₂₂N₂O₄	No report was found.				
60	Cholan-24-oic acid, methyl ester, (5.beta.)	-	1.56	C₂₂H₃₀O₃	No report was found.				
61	Lup-20(29)-en-3-ol, acetate, (3.beta.)	-	1.12	C₃₂H₃₂O₂	No report was found.				
62	Geranyl-alpha-terpinene	-	0.80	C₂₀H₃₂	Terpinene.				
63	Tungsten, tricarbonyl-(2,5-norbornadiene)	-	1.32	C₁₄H₁₆	No report was found.				
64	1,2-Cyclopentanediene	-	1.21	C₇H₁₀O₂	Prevents gastrointestinal tumor growth (Neeraj et al., 2019).				
65	2-Cyclopenten-1-one, 2-hydroxy-3-methyl-	-	0.34	C₆H₅O₂	No report was found.				
66	1,2,3-Propanetriol, 1-acetate	-	1.23	C₄H₁₀O₄	No report was found.				
67	Acetoacetic acid, 3-thio-, benzyl ester	-	0.16	C₁₁H₁₂O₂	No report was found.				
68	trans-Z-alpha-Bisabolene epoxide	-	1.11	C₁₅H₂₄O	No report was found.				
69	2-Hydroxyoctanoic acid	-	0.62	C₈H₁₆O₃	No report was found.				
70	1-Tetradecene	-	0.67	C₁₄H₂₈	Antimicrobial activity (Naragani et al., 2016).				
71	Benzoic acid, 4-methoxy	-	0.69	C₈H₅O₃	No report was found.				
72	Chlorozotocin	-	0.20	C₉H₁₆ClN₃O₇	No report was found.				
73	2-Isopropyl-5-methyl-6-oxabicyclo [3.1.0] hex	-	1.51	C₁₀H₁₆O₂	No report was found.				
74	Quinic acid	-	2.96	C₇H₁₂O₆	Anti-viral activity (Özçelik et al., 2020).				
No.	Chemical Name	Molecular Formula	Molecular Weight	CAS Number	Note				
-----	---------------	-------------------	------------------	------------	------				
75	3-Methylindene-2-carboxylic acid	- -	1.11	C_{11}H_{16}O_{2}	No report was found.				
76	O, O-Dibutyl S-(2-acetamidoethylmercapto)p	- -	1.32	C_{12}H_{22}O_{4}	No report was found.				
77	3-Deoxy-d-mannonic acid	- -	1.21	C_{6}H_{12}O_{6}	No report was found.				
78	Cyclooctane-1,4-diol, cis	- -	0.44	C_{8}H_{16}O_{2}	No report was found.				
79	cis, cis, cis-7,10,13-Hexadecatrienal	- -	0.58	C_{16}H_{26}O	Unsaturated fatty aldehyde.				
80	5-Iodo-7-oxa-2-thia-tricyclo[4.3.1.0(3,8)]de	- -	1.08	C_{8}H_{11}I_{2}O	No report was found.				
81	Bicyclo [6.1.0] nonane, 9-(1-methyllethylidene)	- -	3.66	C_{12}H_{20}	No report was found.				
82	Inositol	- -	0.15	C_{6}H_{12}O_{6}	Essential nutrient, Cancer chemoprevention agent, treatment for Polycystic Ovary Syndrome and insulin sensitizing agent (Carlomagno and Unfer, 2011).				
83	Xylose	- -	0.15	C_{5}H_{10}O_{5}	Pentose sugar (Huntley and Patience, 2018).				
84	Scyollo-Inositol	- -	1.18	C_{6}H_{12}O_{6}	treatment of Alzheimer's disease (Ma et al., 2012).				
85	2,4-Pentadien-1-ol, 3-pentyl-, (2Z)	- -	0.94	C_{10}H_{18}O	No report was found.				
86	Widdrol hydroxyether	- -	0.23	C_{13}H_{26}O_{2}	No report was found.				
87	Stigmasterol	- -	0.21	C_{29}H_{48}O	Steroid, antioxidant, antimicrobial, anticancer, antiarthritic, antiasthma, anti-inflammatory, diuretic (Tyagi and Agarwal, 2017; Kumar et al., 2014).				
88	beta.-Amyrin	- -	0.43	C_{30}H_{50}O	Triterpenes, anti-inflammatory (Okoye et al., 2014).				
89	5,5'-Dihydroxy-3,3'-dimethyl-2,2'-binaphthal	- -	1.31	C_{17}H_{14}O_{6}	No report was found.				
90	Lanosterol	- -	0.22	C_{30}H_{50}O	Sterol, essential components of eukaryotic cells (Wei et al., 2016).				
91	Betulin	- -	0.58	C_{30}H_{50}O_{2}	Anti-Viral and anti-tumour (Tolstikov et al., 2005).				
92	alpha-Tocopheryl acetate	- -	0.23	C_{31}H_{52}O_{3}	Antimicrobial activity (Bidossi et al., 2017).				
93	Geldanamycin	- -	0.33	C_{29}H_{40}N_{2}O_{9}	Chemotherapeutic agents				
	Compound	Retention Time	Mass	Molecular Formula	Note				
---	--------------	----------------	------	-------------------	---				
94	Dihydrosteviobiside	-	0.26	C32H52O13	No report was found.				
95	Bronopol	-	0.10	C3H6BrNO4	Antimicrobial activity (Birkbeck et al., 2006; Treasurer et al., 2005).				

Total compounds for each solvent: 47, 43, 52