Supporting Information

Improving the Photocatalytic Reduction of CO₂ to CO for TiO₂ Hollow Sphere through Hybridization with Cobalt Complex

Jinliang Lin*, Xiaoxiang Sun, Biao Qin and Ting Yu

* Department of Chemical and Engineering, Zunyi Normal College, 563000, Zunyi, P.R. China.

b Department of Chemical and Engineering, Qiannan Normal University for Nationalities, 558000, DuYun, P.R. China.

Email: jinliang_lin@163.com

Contents

Fig. S1 SEM images of bTiO₂ and Energy-dispersive X-ray spectroscopy (EDS) of the as-prepared bTiO₂.

Fig. S2 Mapping of the as-prepared bTiO₂.

Fig. S3 SEM images of sTiO₂ and Energy-dispersive X-ray spectroscopy (EDS) of the as-prepared sTiO₂.

Fig. S4 Mapping of the as-prepared sTiO₂.

Fig. S5 SEM images of sTiO₂ sample after reaction and Energy-dispersive X-ray spectroscopy (EDS) of the as-prepared sTiO₂ sample after reaction.

Fig. S6 Mapping of the as-prepared sTiO₂ sample after reaction.

Table S1 Element contents in bTiO₂ sample.

Table S2 Element contents in sTiO₂ sample.

Table S3 Element contents in sTiO₂ sample after reaction.
Fig. S1 SEM images of bTiO$_2$(left) and Energy-dispersive X-ray spectroscopy (EDS) of the as-prepared bTiO$_2$(right).

Fig. S2 Mapping of the as-prepared bTiO$_2$.
Fig. S3 SEM images of sTiO$_2$ (left) and Energy-dispersive X-ray spectroscopy (EDS) of the as-prepared sTiO$_2$ (right).

Fig. S4 Mapping of the as-prepared sTiO$_2$.
Fig. S5 SEM images of sTiO$_2$ sample after reaction (left) and Energy-dispersive X-ray spectroscopy (EDS) of the as-prepared sTiO$_2$ sample after reaction (right).

Fig. S6 Mapping of the as-prepared sTiO$_2$ sample after reaction.
Table S1 Element contents in bTiO$_2$ sample.

Elt.	Line	Intensity (c/s)	Conc	Units	Error 2-sig	MDL 3-sig
C	Ka	28.77	4.982	wt.%	0.852	0.945
N	Ka	0.27	0.226	wt.%	0.612	0.708
O	Ka	42.95	28.825	wt.%	3.138	2.402
Ti	Ka	876.42	65.205	wt.%	1.417	0.394
Co	Ka	0.38	0.062	wt.%	0.344	0.517
		100.000	wt.%			

Table S2 Element contents in sTiO$_2$ sample.

Elt.	Line	Intensity (c/s)	Conc	Units	Error 2-sig	MDL 3-sig
C	Ka	371.37	54.036	wt.%	1.838	0.742
N	Ka	0.00	0.000	wt.%	0.000	0.000
O	Ka	68.87	36.816	wt.%	3.014	1.684
Ti	Ka	86.61	8.823	wt.%	0.630	0.296
Co	Ka	1.53	0.325	wt.%	0.305	0.391
		100.000	wt.%			

Table S3 Element contents in sTiO$_2$ sample after reaction.

Elt.	Line	Intensity (c/s)	Conc	Units	Error 2-sig	MDL 3-sig
C	Ka	384.93	52.819	wt.%	1.722	0.403
N	Ka	0.00	0.000	wt.%	0.000	0.000
O	Ka	56.53	31.677	wt.%	2.801	1.328
Ti	Ka	165.14	15.261	wt.%	0.771	0.268
Co	Ka	1.25	0.243	wt.%	0.348	0.490
		100.000	wt.%			