Diversity of Virulence Genes in Multidrug Resistant *Escherichia coli* from a Hospital in Western China

Xue Li, Qi Luo, Xinyu Yu, Yanling Zhang, Xiaoyue Cao, Dan Li

1Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People’s Republic of China; 2School of Medical Laboratory Science, Chengdu Medical College, Chengdu, Sichuan 610500, People’s Republic of China; 3Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, Sichuan 610500, People’s Republic of China

*These authors contributed equally to this work

Background: *Escherichia coli* strains are the most commonly isolated bacteria in hospitals. The normally harmless commensal *E. coli* can become a highly adapted pathogen, capable of causing various diseases both in healthy and immunocompromised individuals, by acquiring a combination of mobile genetic elements. Our aim was to characterize *E. coli* strains from a hospital in western China to determine their virulence and antimicrobial resistance potential.

Methods: A total of 97 *E. coli* clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, and antimicrobial susceptibility tests were used in this study.

Results: The frequency of occurrence of the virulence genes *fimC, irp2, fimH, fyuA, lpfA, hlyA, sat,* and *cnf1* in the *E. coli* isolates was 93.81, 92.78, 91.75, 84.54, 41.24, 32.99, 28.86, and 7.22%, respectively. Ninety-five (97.9%) isolates carried two or more different virulence genes. Of these, 44 (45.4%) isolates simultaneously harbored five virulence genes, 24 (24.7%) isolates harbored four virulence genes, and 17 (17.5%) isolates harbored six virulence genes. In addition, all *E. coli* isolates were multidrug resistant and had a high degree of antimicrobial resistance.

Conclusion: These results indicate a high frequency of occurrence and heterogeneity of virulence genes profiles among clinical multidrug resistant *E. coli* isolates. Therefore, appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals.

Keywords: *Escherichia coli*, clinical isolates, virulence genes, antimicrobial resistance, MDR

Introduction

Most *Escherichia coli* strains that colonize the human intestines rarely cause illness in healthy individuals. However, a number of pathogenic strains can cause intestinal or other diseases in healthy, as well as immunocompromised individuals.1

Commensal *E. coli* strains can evolve into highly adapted pathogens capable of inducing diseases following the acquisition of a combination of mobile genetic elements, including virulence genes.1–3

The occurrence of multidrug resistant (MDR) *E. coli* strains has increased in recent years, leading to a severe problem in healthcare settings, especially in developing countries.4–6 MDR *E. coli* strains complicate treatment, as they require prolonged hospitalization and antibiotic treatment and increase the need of surgery, which eventually increase mortality.7,8

E. coli strains have been well documented in healthcare settings in western China; however, their characterization has often been limited to phenotypic tests.
and the identification of resistance genes,9-13 with limited information regarding their virulence factors. Previously, we examined the virulence gene profiles of 13 diarrheagenic \textit{E. coli} (DEC) strains isolated from a hospital in western China, as well as the molecular characteristics of their genes.14 Here, we characterized \textit{E. coli} strains from a hospital in western China and determined their virulence and antimicrobial resistance potential, to better understand the prevalence of virulence genes and antimicrobial resistance in clinical \textit{E. coli} isolates. This study emphasizes the importance of preventing the spread of \textit{E. coli} isolates that harbor both antimicrobial resistance and virulence genes in the clinical setting.

Methods

Bacterial Isolates

A total of 97 non-duplicated clinical \textit{E. coli} isolates were collected from 97 different patients in various departments (gastroenterology, urology, endocrinology, neurosurgery, and other wards) of the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China from 2015 to 2016. The isolates were identified using standard laboratory methods and the ATB New system (bioMérieux, Lyon, France). Patients who satisfied the following three criteria were included in the analysis: 1) age $>$18 years; 2) suspected of having an infection, based on their clinical symptoms (e.g. fever, abdominal pain, nausea, vomiting, dehydration and tenesmus); and 3) their bacterial culture yielded \textit{E. coli} isolates. \textit{E. coli} isolates were collected from blood and samples including blood, urine, sputum, wound exudates and abscesses. Each isolate was further verified by PCR amplification of a 369-bp internal control region from the \textit{E. coli} marker gene, \textit{alr}.15 All bacterial strains were stored at -80 °C and were grown on MacConkey Agar (Oxoid, Hampshire, UK).

The study protocol was approved by the Ethics Committee of Chengdu Medical College, in accordance with the Helsinki Declaration. In all cases, the patients or their family members were informed and their written consents was obtained.

Detection of Adherence and Virulence Genes

All \textit{E. coli} isolates were subjected to PCR to detect 12 adherence (\textit{bfp}, \textit{dadaD}, \textit{dadaE}, \textit{fimC}, \textit{fimH}, \textit{aggA}, \textit{aaA}, \textit{aggA}, \textit{aggA}, \textit{lpfA}, \textit{sfa}, and \textit{pap}) and 27 virulence (\textit{aggR}, \textit{pic}, \textit{astaA}, \textit{stx1}, \textit{stx2}, \textit{eae}, \textit{ipaH}, \textit{est}, \textit{elt}, \textit{ipr2}, \textit{fyuA}, \textit{escL}, \textit{escN}, \textit{escV}, \textit{espP}, \textit{nleB}, \textit{nleE}, \textit{ent/espL2}, \textit{cnf1}, \textit{cnf2}, \textit{cdt-I}, \textit{cdt-II}, \textit{invE}, \textit{hlyA}, \textit{pet}, \textit{sat}, and \textit{subAB}) genes. The primers used to amplify these genes are listed in Table 1.

Antimicrobial Susceptibility Testing

The minimum inhibitory concentrations (MICs) of 24 antimicrobial agents against the \textit{E. coli} isolates were determined by agar dilution methods, according to the 2019 Clinical and Laboratory Standards Institute guidelines.16 The following 24 antimicrobial agents were tested: sulfonamide, doxycycline, tetracycline, cefotaxime, ampicillin, ticarcillin, nalidixic acid, cefoperazone, pipercillin, gentamicin, ciprofloxacin, levofloxacin, ofloxacin, tobramycin, cefotaxime, ceftazidime, minocycline, aztreonam, kanamycin, amikacin, polymyxin, meropenem, imipenem, and cefepime. The results were used to classify the isolates as resistant or susceptible to a particular antibiotic using standard reference values.16

Results

Detection of \textit{E. coli} Adherence and Virulence Genes

The presence of 12 adherence genes and 27 toxin-encoding genes was examined in all \textit{E. coli} strains by PCR. As shown in **Figure 1**, the detection rate of \textit{fimC}, \textit{ipr2}, \textit{fimH}, \textit{fyuA}, \textit{lpfA}, \textit{invE}, and \textit{cnf1} in the isolated \textit{E. coli} strains was 93.81, 24.74, 24.74, 24.74, 24.74, 24.74, and 24.74, respectively. All isolates were negative for the other genes tested (\textit{bfp}, \textit{dadaD}, \textit{dadaE}, \textit{aggA}, \textit{aaA}, \textit{aggA}, \textit{aggA}, \textit{lpfA}, \textit{sfa}, \textit{pap}, \textit{aggR}, \textit{pic}, \textit{astaA}, \textit{stx1}, \textit{stx2}, \textit{eae}, \textit{ipaH}, \textit{est}, \textit{elt}, \textit{escL}, \textit{escN}, \textit{escV}, \textit{espP}, \textit{nleB}, \textit{nleE}, \textit{ent/espL2}, \textit{cnf2}, \textit{cdt-I}, \textit{cdt-II}, \textit{invE}, \textit{pet}, and \textit{subAB}).

Different combinations of multiple virulence genes were detected in the \textit{E. coli} isolates. The number of virulence genes in each isolate and the specific virulence gene combinations are shown in **Table 2**. Two or more different virulence genes were identified in ninety-five (97.94\%) isolates. Of these, 44 (45.37\%) isolates simultaneously harbored five virulence genes, 24 (24.74\%) isolates harbored four virulence genes, 17 (17.53\%) isolates harbored six virulence genes, five (5.15\%) isolates harbored three virulence genes, two (2.06\%) isolates harbored two virulence genes, two (2.06\%) isolates harbored seven virulence genes, and only one (1.03\%) isolate harbored eight virulence genes.

Resistance to Antimicrobial Agents

The 24 most commonly used antimicrobials in Chinese clinical practice were used in this study to test the antibiotic resistance of the 97 \textit{E. coli} isolates,14,18-20 including penicillin
Gene	Primer Sequence (5´-3´)	PCR Product (bp)	Reference
alr	F: CTGGAAAGAGCTAGCCTGGGACGAG		
R: AAAATGCACCACCGGTTGAGCGAT	369	15	
bfp	F: GACACCTCATGCTGAAGTCTG		
R: CCAGAACACCTCCGTTATG	324	55	
daaD	F: TGAAAGGGGAGTATAAGGAGATG		
R: GTCCGCCCATACCATCAAAA	444	56	
daaE	F: GAACCTTGTGTTAATGTTGGGTTA		
R: TATTCTTGGGGGTAAATG	542	57	
fimC	F: GGGTAGAAAATGCCGATGGTG		
R: CGTCATTTTGGGGGTAAATG	477	58	
fimH	F: CGAGTTTACCTCGTTTGTCTG		
R: ACGCCAAATATCCTGGATG	878	59	
aggA	F: GCTAGCAGCCGCTTGGTTAAGGG		
R: ACCATTGATCTATCTATCCGCC	421	59	
aggA	F: TCAAGGCTTGAGTATGGCTTGAAGACC		
R: GGATGATCTATCCTATCCGCC	169	59	
aggA	F: GACAGGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	169	41	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggA	F: GACGCTGATGTGCTTGACAAA		
R: CCACCTTGGAATCGATATTCCA	462	59	
aggR	F: AACGGCAGATTCCTGATAAAAG		
R: AATACGAGATCGACATCAGC	400	55	
pic	F: CGGTATTGTCCTCCTCCGAT		
R: ACAATCCACGCGTCCTCCCG	1176	62	
astA	F: CAACACAAGATATCAAGT		
R: GGTCGCGAGTGGGCCGTTG	111	59	
stx1	F: CGATGGTTGTTGTTGTTGTTTGTTA		
R: AATTCGACGCTTCCCATGGGGAGTT	244	55	
stx2	F: GTTTGACATTGCTCGATTATCAGGC		
R: AGCGTAAGGCTTCTGCTGTGAC	324	55	
eae	F: TGACGCGGTGGCATGAGTACAG		
R: CCGGAGATCATGACACCTTC	241	63	
fpaH	F: GTTCCTTGGACACCGTCTTCCGATACG		
 R: AAAATCCGACCGGTGAGCGAT | 619 | 64 |
Table 1 (Continued).

Gene	Primer Sequence (5´-3´)	PCR Product (bp)	Reference
est	F: ATTTTTTTTTTTGTATTTGTCTT		
 | R: CACCCGTTACAGCCAGGATT | 190 | 65 |
| elt | F: GGGCAGAGATTATACCGTGC
 | R: CGGTCTCCTATATTTCCGGTTT | 450 | 65 |
| ipp2 | F: AAGGATTCCGCTGTATACCCGGAC
 | R: TCGTCCGGCAAGGTTTCTCTT | 264 | 66 |
| fyuA | F: TGATTAACCCCGGCCAGGGGA
 | R: CCGAGTCGCAACAGGATGTA | 785 | 27 |
| escJ | F: GACCTAGCCTGATATAGAACC
 | R: GTCATGTTGTGATGCTATCTAAG | 824 | 60 |
| escN | F: CGCTTTTAACAGATAGAAGC
 | R: CATCTAAGAATAGACGGGAC | 854 | 67 |
| escV | F: GATGACATCAGATGATCAACTC
 | R: GCCTCTCAAGTCTGCTGAGAC | 238 | 40 |
| espP | F: AAACAGCAGGCACCTGGAACG
 | R: GGAGTCTGCTAGCTAGATGAT | 1830 | 62 |
| nleB | F: GGAAGTTTTTTCCACAGACG
 | R: AAAATGCCCTTGTGATACC | 847 | 68 |
| nleE | F: GTATAACCGAGGAGTATGC
 | R: GATCTTCAAACAAATGTCCTT | 860 | 68 |
| ent/espL2 | F: GAATCTACACACTCCCTCACC
 | R: TTACAGTGCCGGATTAT | 233 | 68 |
| cnf1 | F: GGGCAGAAATCGTTGAGCCGC
 | R: GACGGTGTTGCTGCAATGGG | 552 | 62 |
| cnf2 | F: GTGAGGTACGAGATCCCGACTG
 | R: CCAGCCTCCCTTCAGTGGTTCCT | 839 | 62 |
| cdt-I | F: GCATAGTCGCCCAAGGA
 | R: TATGCTAAGACACACCACCAC | 412 | 69 |
| cdt-II | F: AGTGTAAATCGAATTATAGTCCG
 | R: TGCTTGTCGCGCGCTGTTGAAA | 556 | 69 |
| invE | F: CGATGACGATCCCTACGAAATGAGAATATATCCGG
 | R: TACAGTGGCCGAGAATATATCCGG | 766 | 55 |
| hlyA | F: GCATCATCAAGCGTGATCTCC
 | R: AATGGGCAAGCTGTTAGAAGCT | 533 | 66 |
| pet | F: TTTCACAGCTTCTGGTCC
 | R: ATTTCCAGCTTCAGCCCAT | 297 | 70 |
| sat | F: GCAGCAGAGATATTGATATAC
 | R: GTGTTGACCCATGCAAGGAA | 2913 | 40 |
| subAB | F: TATGGGCTCCTTCATTGCC
 | R: TATAGTGTGTCTTCTGACG | 556 | 71 |
(ampicillin, ticarcillin, piperacillin), cephems (cefoxitin, cefoperazone, ceftaxime, ceftazidime), monobactams (aztreonam), carbapenems (meropenem, imipenem, ertapenem), aminoglycosides (tobramycin, kanamycin, gentamicin, amikacin, chloramphenicol), tetracyclines (doxycycline, minocycline, tetracycline, tetracycline), quinolones (levofloxacin, ofloxacin, nalidixic acid, ciprofloxacin).\(^\text{16}\) The resistance profiles of the E. coli isolates against these 24 antibiotics are detailed in Table 3. The isolates exhibited a high degree of resistance, especially against sulfonamides (99.01%), ampicillin (94.85%), ticarcillin (90.72%), nalidixic acid (90.72%), tetracycline (81.44%), doxycycline (88.49%), ciprofloxacin (70.10%), ofloxacin (69.34%), cefotaxime (68.04%), and levofloxacin (60.82%). Furthermore, all E. coli isolates were susceptible to meropenem and imipenem. The sensitivity rate of the E. coli strains to meropenem, amikacin, cefotaxime, ceftazidime, aztreonam and chloramphenicol was 92.79, 88.66, 74.22, 81.44, 88.66, and 64.98%, respectively.

Importantly, all isolates were resistant to at least three different classes of antimicrobial agents and were considered as multidrug resistant.\(^\text{17}\) Of the 97 MDR E. coli isolates, five (5.16%), one (1.03%), one (1.03%), three (3.09%), three (3.09%), six (6.19%), nine (9.28%), six (6.19%), nine (9.28%), twelve (12.37%), nine (9.28%), eight (8.25%), eight (8.25%), four (4.12%), three (3.09%), two (2.06%), three (3.09%), two (2.06%), and three (3.09%) isolates exhibited resistance to 3–21 types of antibiotics, respectively, as shown in Table 4 and Figure 2.

Table 2 Distribution of Virulence Genes Among E. coli Isolates

No. of Virulence Genes	Virulence Genes Profile	No. (%) of Bacterial Strain	Total No. (%)
0 genes	2(2.06)	2(2.06)	
2 genes	fimC, fimH	1(1.03)	3(3.09)
	ipr2, fyuA		
3 genes	fimC, fimH, lpfA,	2(2.06)	5(5.15)
	fimC, lpfA, sat,		
	fimC, ipr2, fyuA,		
	ipr2, fyuA, lpfA,		
4 genes	fimC, fimH, ipr2, fyuA	14(14.44)	24(24.74)
	fyuA	4(4.12)	
	ipr2, fyuA, lpfA,		
	lpfA, hlyA	2(2.06)	
	fimC, fimH, ipr2, fyuA		
	fimC, lpfA, hlyA	1(1.03)	
5 genes	fimC, fimH, ipr2, fyuA	19(19.59)	44 (45.37)
	fyuA	12(12.38)	
	sat	10(10.31)	
	fimC, fimH, ipr2, fyuA		
	sat	2(2.06)	
	lpfA, hlyA	1(1.03)	
6 genes	fimC, fimH, ipr2, fyuA	7(7.23)	17(17.53)
	fyuA	4(4.12)	
	hlyA	3(3.09)	
	sat	2(2.06)	
	fimC, fimH, ipr2, fyuA		
	fyuA		
	hlyA, cfA	1(1.03)	
7 genes	fimC, fyuA	2(2.06)	2(2.06)
	hlyA, sat, cfA		
8 genes	fimC, fimH, fyuA	1(1.03)	1(1.03)
	fyuA		

Frequency of Virulence Gene Occurrence in Isolated E. coli Strains Exhibiting Antimicrobial Resistance

The frequencies of virulence gene occurrence in isolated E. coli strains exhibiting antimicrobial resistance are detailed in Table 5. The frequencies for fimC, irp2, and fimH among the resistant E. coli isolates were nearly > 90%, whereas that of fyuA was > 80%. Moreover, the frequencies of lpfA, hlyA, sat,
and cnf1 in the resistant isolates were higher than 40, 30, 20, and 5%, respectively.

Discussion

Escherichia coli strains are the most commonly isolated bacteria in hospitals.18–20 Although these strains have been frequently reported in hospitals in western China, data regarding the virulence genes present in these strains are limited.9–13 Thus, in this study, we investigated the presence of virulence genes and antimicrobial resistance in *E. coli* strains at a hospital in the western region of China in order to further expand our knowledge of the characteristics of *E. coli* strains prevalent in China.

We first detected 12 adherence and 27 virulence genes in 97 clinical *E. coli* isolates. Our results showed that most of the *E. coli* isolates contained multiple and heterogeneous virulence genes (Table 2). Type 1 fimbriae is an *E. coli* adhesion factor encoded by the *fimC* and *fimH* genes. It enables *E. coli* to bind to intestinal epithelial cells by attaching on mannose-containing receptors. In our study, *fimC* and *fimH* were identified in 93.81 and 91.75% of the strains, respectively. Nuesch-Inderbinen et al21 detected the presence of *fimC* and *fimH* in all human *E. coli* strains isolated in Switzerland, while Malekzadegan and Khashei22 found *fimH* in all isolates from Iranian patients. These reports are in agreement with our findings; the high frequency of occurrence of *fimC* and *fimH* among *E. coli* strains points to their importance in *E. coli* adhesion.

Some *E. coli* strains carried another type of fimbriae, long polar fimbriae (LPF), encoded by the conserved gene *lpfA*.23,24 We found that 41.24% of the *E. coli* isolates carried *lpfA*, which is similar to the frequency (50%) reported in Mexico.25 In situ studies conducted on human biopsy samples have suggested that adherence and the attaching and effacing lesion caused by *E. coli* do not require LPF.24 Therefore, it is possible that LPF are not necessary for *E. coli* pathogenicity.

The High-Pathogenicity Island (HPI) marker genes, *irp2* and *fyuA*, were detected in 92.78 and 84.54%, respectively, of *E. coli* isolates in this study. The *irp2* and *fyuA* genes have been detected in a number of studies examining pathogenic *E. coli* isolated from humans,26–28 similar to the results of the present study. The iron-uptake system of highly pathogenic strains is mediated via yersiniabactin, which is encoded by *irp2* and *fyuA* and is associated with strain virulence.29,30 A considerable number of bacteria isolated from food harbor *irp2* and *fyuA* (involved in iron capture systems).31,32 This could be the reason for the frequent detection of *irp2* and *fyuA* in pathogenic *E. coli* isolated from humans.

The *hlyA* gene was detected in 32.99% of the *E. coli* isolates. In Iran, Malekzadegan and Khashei22 reported

Table 3 Antimicrobial Susceptibility of *E. coli* Clinical Isolates

Antimicrobial Agent	Resistant n (%)	Intermediate n (%)	Susceptible n (%)
Sulfonamide	95 (97.94)	—	2 (2.06)
Ampicillin	92 (94.85)	0(0)	5 (5.15)
Ticarcillin	88 (90.72)	2 (2.06)	7 (7.23)
Nalidixic acid	88 (90.72)	—	9 (9.28)
Tetracycline	76 (81.41)	1 (1.03)	20 (21.56)
Doxycycline	77 (81.94)	4 (4.12)	20 (21.56)
Ciprofloxacin	68 (70.10)	2 (2.06)	27 (29.84)
Ofloxacin	66 (68.04)	2 (2.06)	29 (31.90)
Cefotaxime	66 (68.04)	4 (4.12)	37 (39.84)
Levofloxacin	59 (60.82)	10 (10.83)	28 (29.35)
Piperacillin	59 (59.79)	19 (19.59)	20 (21.56)
Cefoperazone	51 (52.58)	18 (18.55)	28 (29.87)
Gentamicin	51 (52.58)	4 (4.12)	42 (45.30)
Kanamycin	39 (40.21)	1 (1.03)	57 (60.76)
Tobramycin	39 (40.21)	17 (17.53)	41 (44.26)
Chloramphenicol	33 (34.02)	1 (1.03)	63 (67.94)
Minocycline	33 (34.02)	13 (13.40)	51 (55.58)
Aztreonam	28 (28.87)	4 (4.12)	65 (70.01)
Cefazidime	21 (21.65)	11 (11.34)	65 (70.01)
Cefotaxin	17 (17.53)	8 (8.25)	72 (77.22)
Amikacin	8 (8.25)	3 (3.09)	86 (88.66)
Ertaopenem	3 (3.09)	4 (4.12)	90 (92.79)
Meropenem	0(0)	0(0)	97 (100)
Imipenem	0(0)	0(0)	97 (100)

Table 4 Number of *E. coli* Isolates Resistant to Different Classes of Antibiotics

Different classes of antibiotics	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Isolates	5	1	1	3	3	6	9	6	9	12	9	8	8	4	3	2	3	2	3
%	5.16	1.03	1.03	3.09	3.09	6.19	9.28	6.19	9.28	12.37	9.28	8.25	8.25	4.12	3.09	2.06	3.09	2.06	3.09
that 28.6% of the E. coli strains were positive for hlyA, whereas Dale et al33 found that 26% of E. coli strains in the UK carried hlyA, and Bozcal et al34 identified this gene in 15.4% of E. coli strains in Turkey. The percentage of E. coli harboring hlyA in our study was higher than detected in the above-mentioned studies. α-hemolysin (HlyA) belongs to a group of pore-forming leukotoxins containing RTX repeats, and is thus considered a virulence factor in E. coli.35–37 Depending on its concentration and the type of cell affected, HlyA either displays cytolytic activity or hijacks innate immune signaling pathways.37–39 The high percent of hlyA in this study suggests that HlyA is involved in the mechanisms underlying E. coli pathogenicity in 32 (32.99%) patients.

The sat gene was detected in 28.86% of E. coli isolates. Sat is frequently detected in pathogenic E. coli strains.5,40,41 As demonstrated by Guignot et al,42 Sat can cause tight junction lesions between epithelial cells, which may lead to an increase in their permeability. These findings indicate that Sat probably plays a role in E. coli pathogenesis in 28 (28.86%) of the patients.

The cnf1 gene was found in seven (7.22%) E. coli isolates, similar to the 7.2% reported in Turkey.43 Moreover, Bouzari et al43 reported that 29.8% of E. coli strains harbor cnf1 genes. Cytotoxic necrotizing factor type 1 (CNF1) is a monomeric protein previously shown to affect rabbit skin cell necrosis and multinucleation of various cultured eukaryotic cells.44–46 Our results are in agreement with the low occurrence of cnf1 in E. coli strains.

We next examined the antimicrobial resistance of the 97 E. coli isolates. The E. coli isolates were insensitive to first-line antibiotics such as nalidixic acid, sulfonamide, ticarcillin,

Table 5 Frequency of Virulence Genes Among Antibiotic Resistant E. coli Isolates

Antibiotic (n)	Virulence Genes, n (%)							
	fimC	epB	fyuA	lpfA	hlyA	sat	cnf1	
Sulfonamide (95)	89 (93.68)	88 (92.63)	88 (92.63)	80 (84.21)	39 (41.05)	32 (33.68)	27 (28.42)	7 (7.37)
Ampicillin (92)	87 (94.68)	85 (92.39)	85 (92.39)	77 (83.69)	38 (41.30)	32 (34.78)	25 (27.17)	7 (7.61)
Ticarcillin (88)	84 (94.45)	83 (93.88)	83 (93.88)	81 (90.48)	37 (45.02)	32 (36.36)	25 (28.57)	7 (7.61)
Nalidixic acid (88)	71 (95.45)	82 (98.82)	84 (95.45)	74 (85.40)	38 (43.18)	32 (36.36)	27 (30.68)	7 (7.61)
Tetracycline (79)	62 (94.45)	74 (93.88)	74 (93.88)	67 (84.09)	30 (41.47)	23 (31.51)	20 (27.05)	7 (9.59)
Doxycycline (73)	58 (98.53)	65 (95.93)	67 (95.93)	63 (86.30)	30 (41.10)	23 (31.51)	20 (27.05)	6 (8.82)
Ciprofloxacin (68)	66 (98.48)	63 (95.45)	65 (95.45)	57 (86.36)	26 (39.39)	24 (36.36)	21 (31.82)	6 (9.09)
Doxycycline (66)	66 (98.48)	63 (95.45)	65 (95.45)	57 (86.36)	26 (39.39)	24 (36.36)	21 (31.82)	6 (9.09)
Levofloxacin (59)	70 (96.31)	56 (94.92)	58 (98.31)	50 (84.75)	24 (40.68)	21 (35.59)	15 (25.42)	6 (10.17)
Piperacillin (51)	56 (96.55)	55 (94.82)	55 (94.82)	53 (91.37)	26 (44.82)	17 (29.31)	16 (25.00)	5 (8.21)
Cefoperazone (44)	51 (100)	50 (98.04)	49 (96.07)	45 (88.24)	25 (49.02)	14 (27.45)	12 (23.53)	3 (5.88)
Gentamicin (54)	49 (96.08)	47 (92.16)	48 (92.16)	45 (88.24)	25 (49.02)	14 (27.45)	12 (23.53)	3 (5.88)
Kanamycin (39)	37 (94.87)	36 (92.31)	35 (89.74)	32 (82.05)	19 (48.72)	9 (23.08)	8 (20.51)	3 (7.69)
Tobramycin (39)	38 (94.74)	36 (92.31)	35 (89.74)	36 (92.31)	19 (48.72)	5 (12.82)	8 (20.51)	3 (7.69)
Chloramphenicol (33)	32 (96.97)	30 (90.91)	29 (87.88)	27 (81.82)	13 (39.39)	8 (24.24)	10 (30.30)	2 (6.06)
Minocycline (33)	31 (93.94)	32 (96.97)	30 (90.91)	31 (93.94)	17 (51.52)	8 (24.24)	11 (33.33)	2 (6.06)
Azezagomet (28)	28 (100)	28 (100)	27 (96.43)	26 (88.24)	12 (42.86)	7 (25.00)	7 (25.00)	2 (7.14)
Ceftazidime (21)	21 (100)	21 (100)	21 (100)	19 (90.98)	9 (45.02)	6 (28.57)	7 (33.33)	1 (4.76)
Cefoxitin (17)	15 (88.23)	15 (88.23)	12 (70.59)	13 (76.47)	9 (52.94)	6 (35.29)	2 (11.76)	2 (11.76)
Amikacin (8)	7 (87.50)	6 (75.00)	7 (87.50)	4 (50.00)	5 (62.50)	1 (12.50)	1 (12.50)	0 (0)
Ertapenem (3)	3 (100)	3 (100)	3 (100)	2 (66.67)	1 (33.33)	1 (33.33)	2 (66.67)	1 (33.33)
ampicillin, tetracycline, doxycycline, oxolinic acid, cefotaxime, ciprofloxacin, and levofloxacin (Table 3). The antibiotic resistance rates of the E. coli isolates exceeded those reported in developing countries such as Brazil, Turkey, and Ghana.5,34,47 Moreover, the resistance rates observed in our study were higher than noted in the CHINET project.18–20 Unexpectedly, we found that all E. coli isolates were MDR and over half of them were resistant to > 12 classes of antibiotics (Table 4 and Figure 2). These results highlight the increasing severity of antibiotic misuse in clinical practice in western China.

Carbapenem-resistant Enterobacteriaceae (CRE) are highly prevalent in China, the United States, Italy, Israel, Colombia, Greece, the Indian subcontinent, North Africa, and Turkey.48,49 China (especially the regions of Beijing, Changsha, Chongqing, Fuzhou, Guangzhou, Hangzhou, Hebei, Hong Kong, and Zhengzhou) is thought to be one of main endemic regions of these bacteria around the world.50,51 In our study, we found that three (3.0%) CRE among the 97 E. coli isolates were resistant to ertapenem (Table 3). Carbapenem-resistant E. coli have been frequently reported in western China in recent years,52–54 most probably owing to the use of carbapenems as antimicrobial agents in this region.

Lastly, but most importantly, we found that the E. coli strains harbor a high rate of virulence genes in addition to high antimicrobial resistance (Table 5). These findings explain how the E. coli isolates are able to successfully invade the human body and evade antibiotic treatment. Our findings indicate that clinical MDR E. coli isolates harbor a high frequency of virulence genes and that the virulence gene profiles are highly heterogeneous. Therefore, surveillance and control measures need to be enhanced to prevent these isolates from spreading further in hospitals.

Conclusions
This study demonstrates a high frequency of occurrence and heterogeneity of virulence gene profiles among clinical multidrug-resistant E. coli isolates. We conclude that appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals. However, further investigations are needed including additional hospitals in western China and a greater number of E.coli isolates to better understand the prevalence of virulence genes and antimicrobial resistance of the E.coli in western China.

Acknowledgments
This work was supported by grants from the Natural Science Foundation of Sichuan Provincial Education Department (grant 15ZB0239) and the Natural Science Foundation of Chengdu Medical College (grant CYZ11-008). We also thank Professor Xu Jia at Chengdu Medical College for providing technical support and Professor Ying Xu at the First Affiliated Hospital of Chengdu Medical College for supplying E. coli clinical isolates.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2:123–140. doi:10.1038/nrmicro1022
2. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11:142–201. doi:10.1128/CMR.11.1.142
3. Croten MA, Law RJ, Steele R, et al. Recent advances in understanding enteric pathogenesis of Escherichia coli. Clin Microbiol Rev. 2016;29:822–888. doi:10.1128/CMR.00020-16
4. Pathak A, Chaturvedi SP, Mahadeo V, et al. Frequency and factors associated with carriage of multi-drug resistant commensal Escherichia coli among women attending antenatal clinics in central India. Infect Dis. 2013;13:2–9. doi:10.1186/1471-2334-13-199
5. Soomo LC, da Cunha KN, Montardini MV, et al. High prevalence of diarrheagenic Escherichia coli carrying toxin-encoding genes isolated in children and adults in southeastern Brazil. BMC Infect Dis. 2017;17:773. doi:10.1186/s12879-017-2872-0
6. Zheng Z, Chen X, et al. Enteropathogens in children less than 5 years of age with acute diarrhea: a 5-year surveillance study in the South Coast of China. BMC Infect Dis. 2016;16:434. doi:10.1186/s12879-016-1760-3
7. Pop-Vicas A, Tacconelli E, Gravenstein S, et al. Influx of multidrug-resistant, gram-negative bacteria in the hospital setting and the role of elderly patients with bacterial bloodstream infection. Infect Control Hosp Epidemiol. 2009;30:325–331. doi:10.1086/596608
8. Kollef MH. Introduction: update on the appropriate use of meropenem for the treatment of serious bacterial infections. Clin Infect Dis. 2008;47:1–2. doi:10.1086/590060
9. Zhang L, Lu X, Zong Z. The emergence of blaCTX-M-15-carrying Escherichia coli of ST131 and new sequence types in Western China. Ann Clin Microbiol Antimicrob. 2013;12:35. doi:10.1186/1476-0711-12-35
10. Long H, Feng Y. The co-transfer of plasmid-borne colistin-resistant genes mcr-1 and mcr-3, the carbapenemase gene blaNDM-3 and the 16S methylase gene rmtB from Escherichia coli. Sci Rep. 2019;9:6996. doi:10.1038/s41598-018-37125-1
11. Liu L, Feng Y, McNally A, et al. blaNDM-21, a new variant of blaNDM in an Escherichia coli clinical isolate carrying blacTX-M-55 and rmtB. J Antimicrob Chemother. 2018;73:2336–2339. doi:10.1093/jac/dky226
12. Ma K, Feng Y, Zong Z. Fitness cost of a mcr-1-carrying IncHI2 plasmid. Front Microbiol. 2018;12:331. doi:10.3389/fmicb.0209706
13. Wu W, Feng Y. NDM metallo-beta-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32:115–118. doi:10.1128/cmr.00115-18
14. Li D, Shen M, Xu Y, et al. Virulence gene profiles and molecular genetic characteristics of diarrheagenic Escherichia coli from a hospital in western China. Gut Pathog. 2018;10:35. doi:10.1186/s13099-018-0262-9
15. Preethirani PL, Isloor S, Sundareshan S, et al. Isolation, biochemical and molecular identification, and in-vitro antimicrobial resistance patterns of bacteria isolated from bubaline subclinical mastitis in South India. PLoS ONE. 2015;10:e0142717. doi:10.1371/journal.pone.0142717
16. CLSI. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute. 2019.

17. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–281. doi:10.1111/j.1469-0691.2011.03570.x

18. Fupin HU, Zhu D, Wang F, et al. CHINET 2014 surveillance of bacterial resistance in China. Chin J Infect Chemother. 2015;15:401–410.

19. Fupin HU, Zhu D, Wang F, et al. CHINET 2015 surveillance of bacterial resistance in China. Chin J Infect Chemother. 2016;16:685–694. doi:10.1677/j.9001-7708.2016.06003

20. Hu F, Guo Y, Zhu D, et al. CHINET surveillance of bacterial resistance across China: report of the results in 2016. Chin J Infect Chemother. 2017;17:481–491. doi:10.1677/j.1009-7708.2017.05.001.

21. Nuesch-Inderbinen M, Cernela N, Wuthrich D, et al. Genetic characterization of Shiga toxin producing Escherichia coli belonging to the emerging hybrid pathotype O80: h2isolated from humans 2010–2017 in Switzerland. Int J Med Microbiol. 2018;308:534–538. doi:10.1016/j.ijmm.2018.05.007

22. Malekzadegan Y, Khashei R. Distribution of virulence genes and their association with antimicrobial resistance among uropathogenic Escherichia coli isolates from Iranian patients. BMC Infect Dis. 2018;18:572. doi:10.1186/s12879-018-4364-0

23. Torres AG, Kanack KJ, Tutt CB, et al. Characterization of the second long polar (LP) fimbriae of Escherichia coli O157: H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett. 2004;238:333–344. doi:10.1016/j.femsle.2004.07.053

24. Tsutou I, Mundy R, Frankel G, et al. The lip gene cluster for long polar fimbriae is not involved in adherence of enteropathogenic Escherichia coli or virulence of Citrobacter rodentium. Infect Immun. 2006;74:265–272. doi:10.1128/iai.74.1.265-272.2006

25. Munhoz DD, Nara JM, Freitas NC, et al. Distribution of major pilin subunit genes among atypical enteropathogenic Escherichia coli: influence of growth media on expression of the ecp operon. Front Microbiol. 2018;9:942. doi:10.3389/fmicb.2018.00942

26. Schubert S, Cuenca S, Fischer D, et al. High pathogenicity island of Yersinia pestis in enterobacteria is involved in fluid cultures and urine samples: prevalence and functional expression. J Infect Dis. 2000;182:1268–1271. doi:10.1086/318331

27. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181:261–272. doi:10.1086/315217

28. Cespedes S, Saizy S, Del Canto F, et al. Genetic diversity and virulence determinants of Enterobacteriaceae strains isolated from patients with Crohn disease in Spain and Chile. Front Microbiol. 2017;8:630. doi:10.3389/fmicb.2017.00639

29. Schubert S, Rana A, Kaniuti M, et al. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to man. J Infect Dis. 1998;178:40–485.

30. Carmel RE. Yersinia high-pathogenicity island: an iron-uptake mechanism. Microbes Infect. 2001;3:561–569. doi:10.1016/S1286-4579(01)01242-5

31. Johnson JR, Delvari P, O’Bryan TT, et al. Contamination of retail foods, particularly turkey, from community markets (Minnesota, 1999–2000) with antimicrobial-resistant and extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis. 2005;2:38–49. doi:10.1089/fpd.2005.2.38

32. Johnson JR, McCabe JS, White DG, et al. Molecular analysis of Escherichia coli from retail meats (2002–2004) from the United States National antimicrobial resistance monitoring system. Clin Infect Dis. 2009;49:195–201. doi:10.1086/59830

33. Dale AP, Pandey AK, Hesp RJ, et al. Genomes of Escherichia coli bacteraemia isolates originating from urinary tract foci contain more virulence-associated genes than those from non-urinary foci and neutropenic hosts. J Infect. 2018;77:534–543. doi:10.1016/j.jinf.2018.10.011

34. Bozcal E, Eldem V, Aydemir S, et al. The relationship between phylogenetic classification, virulence and antibiotic resistance of extraintestinal pathogenic Escherichia coli in Izmir province, Turkey. Peer J. 2018;6:e5470. doi:10.7717/peerj.5470

35. Welch RA. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol. 1991;5:521–528. doi:10.1111/j.1365-2958.1991.sissue-3

36. Bhakdi S, Bayley H, Valeva A, et al. Staphyloccocal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol. 1996;165:73–79. doi:10.1007/s002030035000

37. Linhartova I, Bumba L, Masin J, et al. Host molecules: a highly diverse family secreted by a common mechanism. Future Microbiol. 2010;5:1076–1112. doi:10.2217/fmb.10.0231

38. Gu C, Coppenagen-Glazier S, Rosenberg S, et al. Natural killer cell-mediated host defense against pathogenic E. coli is counteracted by bacterial hemolysin. Dependence of NK cells. Cell Host Microbe. 2011;9:664–673. doi:10.1016/j.chom.2011.05.014

39. Wiles TJ, Mulvey MR. The role of pore-forming toxin alpha-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol. 2006;1:73–84. doi:10.2174/157340506776241213

40. Mansfield WR, R, Perez BL, Giugliano LG. Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. J Infect Dis. 2003;188:221–228. doi:10.1086/371433-1

41. Lima IF, Boisen N, Quetz JDA, et al. Prevalence of enterococcal carriage of methicillin-resistant Escherichia coli and its virulence-related genes in a case-control study among children from north-eastern Brazil. J Med Microbiol. 2013;62:693–699. doi:10.1099/jmm.0.054262-0

42. Caprioli A, Falbo V, Roda LG, et al. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun. 1983;39:1300–1306.

43. Caprioli A, Donelli G, Falbo V, et al. A cell division-active protein from E. coli. Biochim Biophys Res Commun. 1984;118:578–593. doi:10.1016/0006-291X(84)91343-3

44. De Rycke J, Gonzalez EA, Blanco J, et al. Evidence for two types of cytoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol. 1990;28:694–699.

45. Forson AO, Tsidi WB, Nana-Adjei D, et al. Correction to: Escherichia coli bacteremia in pregnant women in Ghana: antibiotic resistance patterns and virulence factors. BMC Res Notes. 2019;12:29. doi:10.1186/s13104-019-4057-y

46. Gupta N, Limbagho BM, Patel JB, et al. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53:60–67. doi:10.1093/cid/cir202

47. Nordmann P, Poirel L. The difficult-to-control spread of carbapenem-resistant Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20:821–830. doi:10.1111/1469-0691.12719

48. Qin S, Fu Y, Zhang Q, et al. High incidence and endemic spread of NDM-1-positive Enterobacteriaceae in Henan Province, China. Antimicrob Agents Chemother. 2014;58:4275–4282. doi:10.1128/aac.02813-13
