Rebuttal to: “Comment on Scaling properties of background- and chiral-magnetically-driven charge separation in heavy ion collisions at $\sqrt{s_{NN}} = 200$ GeV”

Roy A. Lacey1 and Nisem Magdy2

1Depts. of Chemistry & Physics, Stony Brook University, Stony Brook, New York 11794, USA
2Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA

(Dated: July 12, 2022)

Recently, F. Wang commented [1] on our work – “Scaling properties of background- and chiral-magnetically-driven charge separation in heavy ion collisions at $\sqrt{s_{NN}} = 200$ GeV” [2] – and made several claims to support his conclusion that the results in Ref. [2] are fallacious. His conclusion and claims are not only incorrect; they show a fundamental disconnect with the rudiments of the $R_{\Psi_2}(\Delta S)$ correlator. This rebuttal addresses the root misconception responsible for Wang’s false claims.

In the recent publication of the STAR Collaboration’s isobar data [3], the ratios between Ru+Ru and Zr+Zr collisions of the observables $\Delta \gamma/v_2$ (the azimuthal correlator $\Delta \gamma$ divided by the elliptic flow coefficient v_2) and $1/\sigma_{R_{\Psi_2}}$ (the inverse width of the $R_{\Psi_2}(\Delta S)$ distribution Ψ_2) were reported. Both correlators indicated ratios ($R_{\text{Ru/Ru}}/Zr$) less than unity but more significant deviations from unity for $\Delta \gamma/v_2$. Because these ratios are different from the predefined values $R_{\text{Ru/Zr}} > 1$ expected for the chiral magnetic effect (CME) [3], it was hypothesized that the signal difference (between the isobars) obtained in the STAR blind analysis is incompatible with the presence of a CME signal. This conclusion is, of course, predicated on the notion that the background difference between Ru+Ru and Zr+Zr is negligible and the correlators are sensitive to the small-signal difference expected [3]. A non-negligible background difference influencing $R_{\text{Ru/Zr}}$ was reported in Ref. [3] and several post-blind analyzes’ attempted to evaluate its consequence on the ratios for $\sigma_{R_{\Psi_2}}$ [2] and $\Delta \gamma/v_2$ [4, 7]. This rebuttal addresses the essential question raised by F. Wang in his comment [1] to the post-blind results we reported in Ref. [2].

A central underpinning to Wang’s critique [1] of our work in Ref. [2] is the misconception that $\sigma_{R_{\Psi_2}}^2 \approx N_{\text{ch}} \Delta \gamma \propto v_2$ [1, 4], where N_{ch} is the charged particle multiplicity. In the following, we debunk this misconception by showing that the $R_{\Psi_2}(\Delta S)$ correlator for background-driven charge separation is only sensitive to the charge-dependent non-flow background [5, 10, 11], and $\sigma_{R_{\Psi_2}}^2 \propto 1/N_{\text{ch}}$.

The $R_{\Psi_2}(\Delta S)$ correlator measures charge separation relative to the Ψ_2 plane via the ratios:

$$R_{\Psi_2}(\Delta S) = C_{\Psi_2}(\Delta S)/C_{\Psi_2}^\perp(\Delta S),$$

where $C_{\Psi_2}(\Delta S)$ and $C_{\Psi_2}^\perp(\Delta S)$ are correlation functions that quantify charge separation ΔS, approximately parallel and perpendicular (respectively) to the \vec{B}-field. The charge shuffling procedure employed in constructing these correlation functions ensures identical properties for their numerator and denominator, except for the charge-dependent correlations, which are of interest [3, 10].

The inverse variance $\sigma_{R_{\Psi_2}}^{-2}$ of the $R_{\Psi_2}(\Delta S)$ distributions quantifies the charge separation [3, 10] as:

$$\sigma_{R_{\Psi_2}}^{-2} = [\sigma_{\Delta S\text{Real}}^2 - \sigma_{\Delta S\text{Shuffled}}^2]/\sigma_{\Delta S\text{Real}}^2 = [\sigma_{\Delta S}^2 - \sigma_{\Delta S\text{Shuffled}}^2]/\sigma_{\Delta S\text{Real}}^2 \propto 1/N_{\text{ch}}$$

indicating that $\sigma_{R_{\Psi_2}}^{-2}$ is the difference between the inverse variances for the distributions of Real and Shuffled events. This is illustrated in Fig. 1 for events simulated with the anomalous viscous fluid dynamics (AVFD) model [13] for background-driven charge separation; these results incorporate the requisite corrections for number fluctuations and event plane resolution [5, 10]. Fig. 1(a) shows that v_2 is proportional to the shuffled term in Eq. 4 indicating the difference be-

FIG. 1. Comparison of the N_{ch}-dependence of v_2 and the inverse variances for Real and Shuffled events (cf. Eq. 4) obtained for background-driven charge separation simulated with the AVFD model (a). The open and closed symbols in panel (b) compare $\sigma_{R_{\Psi_2}}^{-2}$ vs. $1/N_{\text{ch}}$ for fits to the $R_{\Psi_2}(\Delta S)$ distributions (Eq. 1) and the inverse variances extracted via Eq. 4.
tween the Real and Shuffled terms [Eq. 4] reflects only the influence of the charge-dependent non-flow correlations. The well-known $1/N_{ch}$ dependence of such correlations is made more transparent in Fig. 1(b), which shows that $\sigma_{R_{\Psi}}^2 \propto 1/N_{ch}$; this dependence is similar for both isobars but with different N_{ch} values. Wang et al. [1, 3, 14, 15] have been repeatedly made aware of these facts to no avail.

In Ref. [2], the $\sigma_{R_{\Psi}}^2$ values extracted for background and signal + background at a given centrality, were checked to establish their sensitivity to variations in the magnitude of the anisotropic flow coefficient v_2, using event-shape selection via fractional cuts on the distribution of the magnitude of the q_2 flow vector [16]. The checks indicated that, while v_2 shows a sizable increase with q_2, the corresponding $\sigma_{R_{\Psi}}^2$ values are insensitive to q_2 regardless of background or signal + background. Similar patterns were observed for the Isobar data reported in Ref. [3].

In contrast to Wang’s stated confusion about the q_2 dependence of $\sigma_{R_{\Psi}}^2$ [1, 3], it is straightforward to see that the observed insensitivity stems from a cancellation which results from the difference between the Real and Shuffled terms in Eq. 4 (cf. Fig. 1). Note, however, that q_2 selection methods which result in a small N_{ch} bias, especially for large q_2 [3], could lead to small modifications to the insensitivity trend. It is straightforward to implement a methodological change that prevents a possible N_{ch} bias. Wang et al. [1, 3] has persistently ignored these facts.

In summary, we have shown that $\sigma_{R_{\Psi}}^2 \propto 1/N_{ch}$ which debunks the the root claim by Wang et al. that $\sigma_{R_{\Psi}}^2 \approx N_{ch}\Delta \gamma \propto v_2$ [1, 3, 14, 15]. This falsification renders all direct and collateral inferences in Wang’s comment [1] false.

This research is supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under contracts DE-FG02-87ER40331.A008

* Roy.Lacey@stonybrook.edu
[1] F. Wang, (2022), arXiv:2204.08450 [nucl-ex]
[2] R. A. Lacey, N. Magdy, P. Parfenov, and A. Taranenko, (2022), arXiv:2203.10029 [nucl-ex]
[3] M. Abdallah et al. (STAR), Phys. Rev. C 105, 014901 (2022). The authors of this rebuttal are also co-authors of Phys. Rev. C 105, 014901 (2022); this note is a minority report of our dissenting view to the conjectures expressed therein regarding the $R_{\Psi}(\Delta S)$ variable. arXiv:2109.00131 [nucl-ex]
[4] S. A. Voloshin, Phys. Rev. C70, 057901 (2004), arXiv:hep-ph/0406311 [hep-ph]
[5] N. Magdy, S. Shi, J. Liao, N. Ajitanand, and R. A. Lacey, (2017), arXiv:1710.01717 [physics.data-an]
[6] N. Magdy, M.-W. Nie, G.-L. Ma, and R. A. Lacey, Phys. Lett. B 809, 135771 (2020), arXiv:2002.07934 [nucl-ex]
[7] Prithwish Tribedy (For the STAR Collaboration), “Star overview presentation at quark matter 2022: https://indico.cern.ch/event/895086/contributions/4314628/,” Krakow, Poland, 2022.
[8] D. E. Kharzeev, J. Liao, and S. Shi, (2022), arXiv:2205.00120 [nucl-th]
[9] R. A. Lacey and N. Magdy, (2022), arXiv:2206.05773 [nucl-ex]
[10] N. Magdy, S. Shi, J. Liao, P. Liu, and R. A. Lacey, Phys. Rev. C98, 061902 (2018), arXiv:1803.02416 [nucl-ex]
[11] Y. Sun and C. M. Ko, (2018), arXiv:1803.06043 [nucl-th]
[12] S. Shi, H. Zhang, D. Hou, and J. Liao, Phys. Rev. Lett. 125, 242301 (2020), arXiv:1910.14010 [nucl-th]
[13] S. Shi, Y. Jiang, E. Lilleskov, and J. Liao, Annals Phys. 394, 50 (2018), arXiv:1711.02496 [nucl-th]
[14] Y. Feng, J. Zhao, H.-j. Xu, and F. Wang, Phys. Rev. C 103, 034912 (2021), arXiv:2011.01123 [nucl-th]
[15] S. Choudhury et al., Chin. Phys. C 46, 014101 (2022), arXiv:2105.06044 [nucl-ex]
[16] J. Schukraft, A. Timmins, and S. A. Voloshin, Phys. Lett. B 719, 394 (2013), arXiv:1208.4563 [nucl-ex]