Generalized quantum process discrimination problems

Kenji Nakahira and Kentaro Kato

Quantum Information Science Research Center, Quantum ICT Research Institute,
Tamagawa University, Machida, Tokyo 194-8610, Japan

(Dated: February 22, 2022)

We study a broad class of quantum process discrimination problems that can handle many optimization strategies such as the Bayes, Neyman-Pearson, and unambiguous strategies, where each process can consist of multiple time steps and can have an internal memory. Given a collection of candidate processes, our task is to find a discrimination strategy, which may be adaptive and/or entanglement-assisted, that maximizes a given objective function subject to given constraints. Our problem can be formulated as a convex problem. Its Lagrange dual problem with no duality gap and necessary and sufficient conditions for an optimal solution are derived. We also show that if a problem has a certain symmetry and at least one optimal solution exists, then there also exists an optimal solution with the same type of symmetry. A minimax strategy for a process discrimination problem is also discussed. As applications of our results, we provide some problems in which an adaptive strategy is not necessary for optimal discrimination. We also present an example of single-shot channel discrimination for which an analytical solution can be obtained.

I. INTRODUCTION

A quantum process, which is a mathematical object that models the probabilistic description of quantum phenomena, plays a fundamental role in quantum information theory. Identifying a quantum process is of great importance to characterize the behavior of quantum devices. We focus on the situation in which a process is known to belong to a given finite collection of processes; our goal is to determine which one is used. This problem often arises, e.g., in quantum communication, quantum metrology, and quantum cryptography.

Quantum states can be regarded as a special case of quantum processes. Since the seminal works of Helstrom, Holevo, and Yuen et al. [1–3] appeared in the end of the 1960’s and 1970’s, quantum state discrimination has been extensively investigated [4–13]. This problem can be formulated as a semidefinite programming (SDP) problem (e.g., [14, 15]), which allows us to easily analyze properties of optimal discrimination. Many optimization strategies can be considered, among which it is necessary to choose a suitable one depending on the problem being solved. Possibly the simplest practical strategy is to find discrimination maximizing the average success probability, which is often called minimum-error discrimination. The Bayes strategy [2, 3, 16] and the Neyman-Pearson strategy [16–18] are also frequently used. As other strategies, discrimination maximizing the average success probability has been investigated subject to several constraints: for example, errors are not allowed [19, 20] (which is called optimal unambiguous discrimination), the average error probability does not exceed a fixed value [21–23], and the average inconclusive (or failure) probability is fixed [24–26] (which is referred to as optimal inconclusive discrimination). In the case in which the prior probabilities of the states are unknown, to optimize discrimination, several strategies based on the minimax criterion have been investigated [27–31]. Moreover, a generalized state discrimination problem, which can handle all of the above mentioned strategies, was proposed [32]. In these studies, necessary and sufficient conditions for optimal discrimination have been formulated. These results help us to find analytical and/or numerical optimal solutions.

A quantum process discrimination problem is more general and often more difficult to solve than a state discrimination problem. States, effects, measurements, channels, and superchannels are all special cases of quantum processes. In this paper, we are concerned with the task of discriminating quantum processes each of which can consist of multiple time steps and can have an internal memory. Process discrimination (in particular in the cases of single-shot and multi-shot channels, including measurements) has been an active area of research for at least the past two decades. Discrimination of two quantum processes with maximum average success probability has been widely studied [33–41]. Optimal unambiguous discrimination [42–45], optimal inconclusive discrimination [38], and the Neyman-Pearson strategy [46, 47] have also been investigated. It is well known that the problem of finding minimum-error discrimination between two channels can be formulated as an SDP problem [48–50]. In the more general case of more than two processes that can consist of multiple time steps with or without memory, the problem has been shown to be formulated as an SDP problem [51] (see also [52, 53] for the case of single-step processes). Note that such a problem can handle adaptive (feedback-assisted) and/or entanglement-assisted discrimination. However, in particular in the case of multi-step processes, only a few optimization strategies have ever been reported; these results cannot readily be applied to many other optimization strategies. Moreover, the properties of optimal discrimination are not known except for some special cases.

In this paper, we address generalized process discrimination problems, which are applicable to a broad class of optimization strategies including all of the above mentioned ones. Our approach can significantly reduce the required efforts for analyzing this class of process discrimination problems compared to analyzing these problems separately. We show that our discrimination problems are formulated as convex problems, which are a generalization of SDP problems. Convex problems are well-understood, and thus our formulation allows us to easily investigate the properties of optimal discrimination. Note that the problems addressed in this paper can be
interpreted as an extension of generalized state discrimination problems treated in Ref. [32]. However, the techniques used in Ref. [32] cannot directly be used for our problems; process discrimination problems are much harder to analyze than state discrimination problems.

The paper is organized as follows. In Sec. II, we provide a generalized process discrimination problem, which is formulated as a convex problem with a so-called quantum tester. In Sec. III, we provide its Lagrange dual problem and show that the optimal values of the primal and dual problems coincide. Also, necessary and sufficient conditions for a tester to be optimal are given. Moreover, we derive necessary and sufficient conditions that the optimal value remains unchanged even when a certain additional constraint is imposed. In Sec. IV, it is shown that if a problem has a certain symmetry and an optimal solution exists, then there also exists an optimal solution having the same type of symmetry. In Sec. V, we introduce a minimax version of a process discrimination problem. In Sec. VI, some examples are given to demonstrate how to apply our results to solve a problem.

II. PROCESS DISCRIMINATION PROBLEMS

A. Notation

We first introduce some notation. ℜ, ℜ⁺, and ℂ denote, respectively, the sets of all real, nonnegative real, and complex numbers. The complex conjugate of \(z \in ℂ \) is denoted by \(z^* \). For each finite-dimensional complex Hilbert space (which we also call a system) \(V \), let \(N_V \) be its dimension. We will identify a one-dimensional system with \(ℂ \). For each matrix \(X \) on \(V \), let \(X^T \) and \(X^† \) be, respectively, the Hermitian transpose and the transpose of \(X \) (in the standard basis of \(V \)). Let \(Her_V \) and \(PoS_V \) be, respectively, the sets of all Hermitian and positive semidefinite matrices on \(V \). \(Her_V \) is an \(N_V^2 \)-dimensional real Hilbert space with the inner product defined by \(\langle X, Y \rangle := Tr(XY) \) (\(X, Y \in Her_V \)). A positive semidefinite matrix is called pure if it has rank one. We will denote by \(Her(V, W) \) the set of all linear maps from \(Her_V \) to \(Her_W \), every element of which is called Hermitian-preserving. Let \(Pos(V, W) \) and \(Chn(V, W) \) be, respectively, the sets of all completely positive (CP) maps and all trace-preserving CP maps from \(Her_V \) to \(Her_W \). Moreover, let \(Den_V \) be the set of all positive semidefinite matrices with unit trace (i.e., density matrices) on \(V \) and \(Den^P_V \) be the set of all pure elements in \(Den_V \). For a set \(X \) in a real vector space, let \(Lin(X) \) be the smallest real vector space containing \(X \). Obviously, we have \(Chn(V, W) \subset Pos(V, W) \subset Her(V, W), Den^P_V \subset Den_V \subset PoS_V \subset Her_V, \) and \(Lin(Pos(V, W)) = Her(V, W) \), and \(Lin(PoS_V) = Her_V \). We can identify \(Chn(ℂ, V) \) with \(Den_V \), \(Pos(ℂ, V) \) with \(PoS_V \), and \(Her(ℂ, V) \) with \(Her_V \). \(I_V \) and \(I_1 \), respectively, denote the identity matrix on \(V \) and the identity map on \(Her_V \). \(0 \) denotes a zero matrix. In quantum theory, each single-step process is described by a CP map. In particular, a single-step process described by a trace-preserving CP map is called a quantum channel. Any quantum state, which is described by a density matrix, and any quantum measurement, which is described by a positive-operator-valued measure (POVM), can be regarded as special cases of quantum channels. Fix a natural number \(M \geq 2 \) and denote by \(POVM_M \) the set of all POVMs with \(M \) elements on a system \(V \). Throughout this paper, we consider only measurements with a finite number of outcomes. Given a set \(X \), let \(int(X), \) \(X^c \), and \(con(X) \) be the interior, the dual cone, the convex hull [i.e., \(co \ X := \{ \sum p_i x_i : p_i \in ℜ, \sum p_i = 1, x_i \in X \} \}], and the (convex) conical hull [i.e., \(con(X) := \{ \sum p_i x_i : p_i \in ℜ, x_i \in X \} \}] of \(X \). We denote the closure of \(X \) by \(X \), \(co X \) by \(co X \), and \(con(X) \) by \(con(X) \). For a given natural number \(T \), let \(\mathcal{V} := W_T \otimes V_T \otimes \cdots \otimes W_1 \otimes V_1 \). For any \(X, Y \in Her_V \), let \(X \succeq Y \) (or \(Y \preceq X \)) denote \(X - Y \in PoS_V \). For any natural number \(n \), let \(I_n := \{ 0, \ldots, n - 1 \} \). \(\delta_n \) denotes the Kronecker delta. Let \(Uni_V \) be the set of all unitary and anti-unitary operators on \(V \). For any \(U \in Uni_V \), the linear map \(Ad_U \in Her(V, V) \) is defined as

\[
Ad_U(X) := UXU^†, \quad X \in Her_V. \quad (1)
\]

\(Tr_V \) denotes the partial trace over \(V \).

B. Quantum processes, testers, and combs

1. Processes and testers

We shall introduce a quantum process (or a quantum network) and a quantum tester [51, 54, 55] (see also a quantum strategy [49]). Let us consider the connection of \(T \) linear maps \(\{ \hat{e}(t) \in Her(W_{t-1}^c \otimes V_t, W_t' \otimes W_t) \}_{t=1}^T \) as shown in Fig. 1, where \(W_0' := ℂ \) and \(W_T := ℂ \). We mathematically express this process as

\[
\hat{c} := \hat{c}(T) \otimes \hat{c}(T-1) \otimes \cdots \otimes \hat{c}(1), \quad (2)
\]

where \(\otimes \) denotes the connection of processes, which is called the link product [54]. \(\hat{c} \) has definite causal order; for any \(t \) and \(t' \) with \(t < t' \), signalling from \(\hat{e}(t) \) to \(\hat{e}(t') \) is impossible [i.e., \(\hat{c}(t') \) is not in the causal future of \(\hat{c}(t) \)]. \(W_1', \ldots, W_T' \) are internal systems of process \(\hat{c} \). Any memoryless process can be expressed in the form of Eq. (2) with \(W_1' = \cdots = W_T' = ℂ \). Let \(\otimes_{t=1}^T Her(V_t, W_t) \) be the set of all processes \(\hat{c} \) expressed in the form of Eq. (2). As a special case, if \(\hat{c}(1) = \cdots = \hat{c}(T) \) holds, then \(\hat{c} \) of Eq. (2) is denoted by \(\{ \hat{c}(1) \} \otimes T \). Also, let \(\otimes_{t=1}^T Pos(V_t, W_t) \) and \(\otimes_{t=1}^T Chn(V_t, W_t) \) be, respectively, the sets of all processes \(\hat{c} \) expressed in the form of Eq. (2) with \(\hat{c}(t) \in Pos(W_{t-1} \otimes V_t, W_t' \otimes W_t) \) and \(\hat{c}(t) \in Chn(W_{t-1} \otimes V_t, W_t' \otimes W_t) \) for each \(t \in \{ 1, \ldots, T \} \). \(\otimes_{t=1}^T Chn(V_t, W_t) \subset \otimes_{t=1}^T Pos(V_t, W_t) \subset \otimes_{t=1}^T Her(V_t, W_t) \) obviously holds.

\[1\] \(U \) is an anti-unitary operator on \(V \) if and only if there exists a unitary operator \(U \in Uni_V \) such that \(Ad_U(X) = \hat{U}X \hat{U}^† \) (\(X \in Her_V \)). If \(U \) is anti-unitary, then \(Ad_U \) is not CP.

\[2\] Although a linear map \(\hat{\epsilon} \in Her(V, W) \) is not CP in general, we will, by abuse of language, refer to \(\hat{\epsilon} \) as a (single-step) process. Also, we refer to \(\hat{\epsilon} \) as a process.
A collection of processes expressed in the form
\[
\Phi := \{\Phi_m\}_{m=0}^{M-1}, \quad \Phi_m := \Pi_m \circ \sigma_T \circ \sigma_{T^{-1}} \circ \cdots \circ \sigma_1
\]
with T channels ($\sigma_T \in \text{Chn}(W_{T^{-1}} \otimes V_{T^{-1}})$, $V_T \otimes V_T'$) and a measurement $\hat{\Pi} := \{\Pi_m\}_{m=0}^{M-1} \in \text{POVM}_{W_T \otimes V_T'}$ is called a quantum tester. It follows that $\Phi_m \in \bigotimes_{t=1}^{T+1} \text{Pos}(W_{T^{-1}}, V_t)$ holds, where $V_{T^{-1}} := \mathbb{C}$. Let G be the set of all testers Φ representable in the form of Eq. (3). We will call each element Φ_m of a tester Φ a tester element. In the special case of $T = 1$, a tester is often referred to as a process POVM [52]. A process \hat{c} and a tester element Φ_m can be connected as in Fig. 1, which is mathematically expressed by
\[
\langle \Phi_m, \hat{c} \rangle := \Pi_m \circ [\hat{c}(T) \otimes \Pi_{V_1}] \circ \cdots \circ [\hat{c}(2) \otimes \Pi_{V_2}] \circ [\Pi_{W_1} \circ \sigma_2] \circ [\hat{c}(1) \otimes \Pi_{V_1}] \circ \sigma_1 \in \mathbb{R},
\]
where \circ denotes the map composition.

For any two processes $\hat{c}, \hat{c}' \in \bigotimes_{t=1}^{T+1} \text{Her}(V_t, W_t)$ and $q, q' \in \mathbb{R}$, $q \hat{c} + q' \hat{c}'$ is the element of $\bigotimes_{t=1}^{T+1} \text{Her}(V_t, W_t)$ uniquely characterized by
\[
\langle \Phi_m, q \hat{c} + q' \hat{c}' \rangle = q \langle \Phi_m, \hat{c} \rangle + q' \langle \Phi_m, \hat{c}' \rangle
\]
for any tester element Φ_m. Thus, $\bigotimes_{t=1}^{T+1} \text{Her}(V_t, W_t)$ can be considered as a real Hilbert space; $\bigotimes_{t=1}^{T+1} \text{Her}(W_{T^{-1}}, V_t)$ is its dual space.

2. Choi-Jamiołkowski representations

Quantum processes and testers can be conveniently mathematically described in the so-called Choi-Jamiołkowski representations [56–59]. Specifically, the Choi-Jamiołkowski representation of a process $\hat{c} \in \bigotimes_{t=1}^{T+1} \text{Her}(V_t, W_t)$, denoted by \hat{C}, is given as Fig. 2(a), where $\hat{V}_t := \{|v_t\rangle \langle i| : |v_t\rangle \in \text{Pos}(V_t \otimes V_t', |i\rangle \rangle := \sum_{j=1}^{N_{V_t}} |j\rangle \otimes |j\rangle \rangle \in V_t \otimes V_t, \langle |i\rangle |j\rangle \rangle$ is the standard basis of V_t, and $\langle |v_t\rangle := |v_t\rangle \rangle$. Also, the Choi-Jamiołkowski representation of a tester element $\Phi_m \in \bigotimes_{t=1}^{T+1} \text{Pos}(W_{T^{-1}}, V_t)$, denoted by $\hat{\Phi}_m$, is given as Fig. 2(b), where $\hat{V}_t := \langle |v_t\rangle \rangle \in \text{Pos}(V_t \otimes V_t, \mathbb{C})$. Both \hat{C} and $\hat{\Phi}_m$ are well-defined as linear maps. We can see that $C : \bigotimes_{t=1}^{T+1} \text{Her}(V_t, W_t) \rightarrow \text{Her}_{V'}$ and $\hat{C} : \bigotimes_{t=1}^{T+1} \text{Her}(W_{T^{-1}}, V_t) \rightarrow \text{Her}_{V'}$.

3. Combs

Each element of $\bigotimes_{t=1}^{T+1} \text{Chn}(V_t, W_t)$ is called a quantum comb [54] (also known as a supermap or a quantum strategy [49]). For each comb \hat{c}, we will also call $c := C \hat{c}$ a comb. Let

\[\text{Her}(V, \mathbb{C}) \text{ are surjective. For each system } V, \text{ we often identify any } X \in \text{Her}(V, \mathbb{C}) \text{ with } (X, -) \in \text{Her}(V, \mathbb{C})^2, \text{ in which case } \hat{C} \text{ can be regarded as a map from } \bigotimes_{t=1}^{T+1} \text{Her}(W_{T^{-1}}, V_t) \rightarrow \text{Her}_V. \]

\[
\hat{\Phi}_m \in \bigotimes_{t=1}^{T+1} \text{Pos}(V_t \otimes V_t, \mathbb{C}), \text{ and } \hat{V}_t := \langle |v_t\rangle \rangle \in \text{Pos}(V_t \otimes V_t, \mathbb{C}). \]

\[\text{Both } \hat{C} \text{ and } \hat{\Phi}_m \text{ are well-defined as linear maps. We can see that } \hat{C} \in \bigotimes_{t=1}^{T+1} \text{Her}(V_t, W_t) \rightarrow \text{Her}_V \text{ and } \hat{\Phi}_m \in \bigotimes_{t=1}^{T+1} \text{Her}(W_{T^{-1}}, V_t) \rightarrow \text{Her}_V. \]

\[\text{As an example, we consider a POVM element } \Pi_0 \in \text{Pos}_V \text{. In quantum theory, } \Pi_0 \text{ is often identified with the linear map } (\Pi_0, -) = \text{Tr}(\Pi_0 \cdots -) \in \text{Her}(V, \mathbb{C}). \]
\(\bigotimes_{i=1}^T \text{Chn}_{W_i \otimes V_i} \) (or simply, \(\text{Chn}_V \)) be the set of all combs \(c \in \text{Pos}_V \), i.e.,

\[
\text{Chn}_V := \bigotimes_{i=1}^T \text{Chn}_{W_i \otimes V_i} := \{ C_c : \hat{c} \in \bigotimes_{i=1}^T \text{Chn}(V, W_i) \}. \tag{8}
\]

We can identify \(\text{Chn}_{V \otimes C} \) with \(\text{Den}_V \) and \(\text{Chn}_{C \otimes V} \) with \(\{ I_V \} \). \(c \in \text{Pos}_V \) is a comb if and only if there exists \(\{ c_i \in \text{Pos}_{W_i \otimes V_i} \}_{i=1}^T \) such that \([54, 55]\)

\[
c_T = c, \quad \text{Tr}_{W_i} c_i = I_{V_i} \otimes c_{i-1}, \quad \forall t \in \{2, \ldots, T\}, \quad \text{Tr}_{W_i} c_1 = I_{V_i}.
\tag{9}
\]

For each comb \(c, \{ c_i \}_{i=1}^T \) satisfying Eq. (9) is uniquely determined by \(c_T := c \) and

\[
c_i := \frac{1}{N_{V_{i+1}}} \text{Tr}_{W_{i+1} \otimes V_{i+1}} c_{i+1}, \quad t \in \{1, \ldots, T-1\}. \tag{10}
\]

Let

\[
\mathcal{T}_G := \{ \hat{G}_m : \Phi \in \mathcal{F}_G \}, \quad \mathcal{S}_G := \bigotimes_{i=1}^{T+1} \text{Chn}_{V_i \otimes W_i}.
\tag{11}
\]

Note that \(\mathcal{S}_G = \{ I_{W_i} \otimes \tau : \tau \in \bigotimes_{i=1}^{T+1} \text{Chn}_{V_i \otimes W_i} \} \) holds from \(V_{T+1} = C \). \(\Phi := \{ \Phi_m \}_{m=0}^{M-1} \subset \text{Pos}_V \) is in \(\mathcal{T}_G \) if and only if \(\sum_{m=0}^{M-1} \Phi_m \in \mathcal{S}_G \) \([49, 54]\). Thus, we have

\[
\mathcal{T}_G := \{ \Phi \in C_G : \sum_{m=0}^{M-1} \Phi_m \in \mathcal{S}_G \},
\]

\[
C_G := \text{Pos}_V^M. \tag{12}
\]

We can easily verify

\[
\langle \varphi, c \rangle = 1, \quad \forall c \in \text{Chn}_V, \quad \varphi \in \mathcal{S}_G,
\tag{13}
\]

which implies that, for every \(c \in \text{Chn}_V \) and \(\Phi \in \mathcal{T}_G \), \(\{ \langle \Phi_m, c \rangle \}_{m=0}^{M-1} \) is a probability distribution. Thus, \(\Phi \in \mathcal{T}_G \) can be regarded as a map from combs to probability distributions.

C. Discrimination problems

To simplify the discussion, we first restrict ourselves to \(T \)-shot channel discrimination problems. Let us consider the problem of determining which of \(R \) known quantum channels, \(\{ \Lambda_i \}_{t=0}^{R-1} \subset \text{Pos}(V, W) \), is used. This problem is depicted as Fig. 3, which can be seen as a special case of Fig. 1, where \(\Lambda_t \) is a given channel and \(V_t := V \) and \(W_t := W \) for each \(t \in \{1, \ldots, T\} \). To discriminate the channels, we first prepare an input state \(\hat{\delta}_1 \in \text{Den}_{V_1 \otimes V_1} \), and then the channels \(\hat{\Lambda}_t \otimes \mathbb{I}_{V_1}, \hat{\Lambda}_t \otimes \mathbb{I}_{V_2}, \ldots, \hat{\Lambda}_t \otimes \mathbb{I}_{V_T} \) are sequentially applied. We finally perform a measurement \(\hat{\Pi} \in \bigotimes_{m=0}^{M-1} \text{POVM}_{W_m \otimes V_T} \). There exist many criteria for discriminating quantum channels. When using the minimum-error criterion, we set \(M := R \) and try to find a tester \(\hat{\Phi} := \{ \Phi_m := \)

\[
\hat{\Pi}_m \otimes \sigma_T \otimes \cdots \otimes \hat{\Pi}_1 \in \mathcal{F}_G \) that maximizes the average success probability \(P_S(\hat{\Phi}) := \sum_{r=0}^{R-1} p_r \langle \hat{\Phi}_r, \hat{\Lambda}_r^{\otimes T} \rangle \), where \(p_r \) is the prior probability of the channel \(\hat{\Lambda}_r \). This problem can be written as

\[
\text{maximize } P_S(\hat{\Phi}) \\
\text{subject to } \hat{\Phi} \in \mathcal{F}_G. \tag{14}
\]

The above discussion easily extends to discrimination of more general processes, e.g., multi-shot subchannel discrimination or discrimination of processes each of which consists of multiple time steps. We give three typical examples.

Example 1 The first example is the problem of discriminating quantum memoryless combs \(\{ \hat{\epsilon}_i \}_{i=0}^{R-1} \), where each \(\hat{\epsilon}_i \) is characterized by the connection of \(T \) channels \(\hat{\Lambda}_t^{(i)} \), i.e.,

\[
\hat{\epsilon}_i := \hat{\Lambda}_t^{(i)} \otimes \cdots \otimes \hat{\Lambda}_t^{(1)} \in \bigotimes_{m=0}^{M-1} \text{Chn}(V, W_i),
\tag{15}
\]

where \(\hat{\Lambda}_t^{(i)} \in \text{Chn}(V_t, W_i) \). One can see that \(T \)-shot discrimination of quantum channels \(\{ \hat{\Lambda}_t^{(r)} \}_{t=0}^{R-1} \) is a special case of this model with \(\hat{\Lambda}_t^{(r)} = \hat{\Lambda}_r \). Another special case is quantum change point problems (see Refs. \([60, 61]\) in the case of \(\hat{\Lambda}_t^{(i)} \) being a state, i.e., \(V_t := C \)). In change point problems, a channel \(\hat{\Lambda}_t \in \text{Chn}(V, W) \) is prepared until some unspecified point \(r \), after which another channel \(\hat{\Lambda}_t \in \text{Chn}(V, W) \) is prepared. We want to determine the change point \(r \) as accurately as possible. This situation corresponds to the case in which \(V_t := V = W_t := W, R = T + 1 \), and \(\hat{\Lambda}_t^{(i)} = \hat{\Lambda}_t^{(i)} \) \((r \in \mathcal{I}_R)\) hold, where \(\lambda_i \equiv 1 \) for \(t > r \), else 0. A third special case is discrimination of the order in which the channels \(\hat{\Lambda}_1, \ldots, \hat{\Lambda}_T \in \text{Chn}(V, W) \) are applied. Assume that each of the channels is applied once and only once; then, this situation corresponds to the case \(V_t = V, W_t = W, R = T! \), and \(\hat{\Lambda}_t^{(i)} = \hat{\Lambda}_{t_1}^{(i)} \) \((r \in \mathcal{I}_R)\), where \(\gamma_i \) is the permutation on \(\{1, \ldots, T\} \) determined by \(r \in \mathcal{I}_R \).

Example 2 (Comparison of quantum channels) The second example is the problem of comparing quantum channels, which is an extension of quantum state comparison \([62-65]\) and quantum measurement comparison \([66]\). Suppose that \(K \) unknown quantum channels are given, each of which is randomly chosen from \(L \) known channels \(\hat{\Lambda}_0, \ldots, \hat{\Lambda}_{L-1} \) with the probabilities \(u_0, \ldots, u_{L-1} \). We want to determine whether they are identical or not. This problem is reduced to the
FIG. 4. Spatial and temporal pattern \(x \in \mathcal{I}_L^{(T,K)} \) encoded in quantum channels. \(\tilde{\lambda}_0, \ldots, \tilde{\lambda}_{L-1} \) are channels.

problem of discriminating the following two channels

\[
\begin{align*}
\tilde{\lambda}_0 & := p_0^{-1} \sum_{t=0}^{L-1} (u_t \tilde{\lambda}_t)^{\otimes K}, \\
\tilde{\lambda}_1 & := p_1^{-1} \left[\sum_{t=0}^{L-1} (u_t \tilde{\lambda}_t)^{\otimes K} - \sum_{t=0}^{L-1} (u_t \hat{\lambda}_t)^{\otimes K} \right],
\end{align*}
\]

where \(p_0 := \sum_{t=0}^{L-1} u_t^2 \) and \(p_1 := 1 - p_0 \) are the prior probabilities of \(\tilde{\lambda}_0 \) and \(\tilde{\lambda}_1 \).

Example 3 (Discrimination of patterns) The third example is the problem of discriminating spatial and temporal patterns encoded in quantum channels. Assume that a comb

\[
\mathcal{E}_c := \bigotimes_{k=1}^K \tilde{\lambda}_{x^{(k)}} \otimes \cdots \otimes \bigotimes_{k=1}^K \hat{\lambda}_{x^{(k)}}
\]

is given, where \(\tilde{\lambda}_0, \ldots, \tilde{\lambda}_{L-1} \in \mathcal{C}_{n}(V, W) \) are some channels and \(\mathcal{E}_c \) is uniquely determined by a two-dimensional pattern \(x := (x^{(k)})_{k=1}^K \), each of whose entries \(x^{(k)} \) is in \(\mathcal{I}_L \) (see Fig. 4). Also, assume that \(x \) belongs to one of \(R \) mutually exclusive subsets \(\mathcal{X}_0, \ldots, \mathcal{X}_{R-1} \) of \(I_L^{(T,K)} \). We want to determine which of \(\mathcal{X}_0, \ldots, \mathcal{X}_{R-1} \) the pattern \(x \) belongs to. One can see this problem as the problem of discriminating \(R \) channels \(\{\tilde{\lambda}_0, \ldots, \tilde{\lambda}_{L-1}\} \), where \(p_c \) is the prior probability of \(\mathcal{E}_c \). This problem can be applied to various spatial and temporal patterns. The memoryless comb discrimination shown in Example 1 can be seen as an example of this problem with \(K = 1 \). One can easily see that quantum comb comparison, shown in Example 2 is also an example of this problem, which corresponds to \(\mathcal{X}_0 := \{ x \in I_L^{(T,K)} : \forall \ell \in \mathcal{I}_L, x^{(k)} = l (\forall t, k) \} \), \(\mathcal{X}_1 := \{ x \in I_L^{(T,K)} : x_k^{(1)} = x_k^{(2)} = \cdots = x_k^{(T)} (\forall k) \} \setminus \mathcal{X}_0 \) (where \(\setminus \) is the set difference operation), and \(p_c := \prod_{k=1}^K u_t^{(k)} \). A third example is the problem of discriminating pulse-position modulated channels [67], which corresponds to \(R := K \) and \(X_v := \{ x \in I_L^{(T,K)} : X_v = \delta_{k+1} (\forall t) \} \) \((r \in \mathcal{I}_R) \). A fourth example is the problem of determining whether \(\tilde{\lambda}_0 \) has occurred or not, which corresponds to \(R := 2, \mathcal{X}_0 := \{ x \in I_L^{(T,K)} : \exists r, k, x^{(k)}(t) = 0 \} \), and \(\mathcal{X}_1 := I_L^{(T,K)} \setminus \mathcal{X}_0 \).

D. Formulation

1. Unrestricted testers

In this paper, to analyze a wide range of process discrimination problems, we consider a problem written in the following form:

\[
\begin{align*}
\text{maximize} & \quad \sum_{m=0}^{M-1} \langle \hat{\Phi}_m, \hat{\chi}_m \rangle \\
\text{subject to} & \quad \hat{\Phi} \in \mathcal{F}_G, \quad \sum_{m=0}^{M-1} \langle \hat{\Phi}_m, \hat{\chi}_{j,m} \rangle \leq b_j (\forall j \in \mathcal{J}),
\end{align*}
\]

where \(\{\hat{\chi}_m\}_{m=0}^{M-1}, \{\hat{\chi}_{j,m}\}_{j,m=0}^{(J-1,M-1)} \subset \otimes_{r=1}^T \mathcal{H}(V, W_r) \) and \(\{b_j\}_{j=0}^{J-1} \in \mathbb{R} \) are constants determined by the problem. \(J \) is a non-negative integer. Problem (14) is obviously the special case of Problem (18) with \(M = R, J = 0, \) and \(\hat{\chi}_m := \hat{\lambda}_r^{\otimes T} \). In the special case of \(T = 1 \) and \(V_1 = \mathbb{C} \), it follows from \(\otimes_{r=1}^T \mathcal{H}(V, W_r) \equiv \mathcal{H}_{\phi} \) that Problem (18) is the generalization quantum state discrimination problem described in Ref. [32]. Throughout this paper, for simplicity of discussion, in any optimization problem that maximizes (respectively, minimizes) an objective function, the optimal value is set to \(-\infty \) (respectively, \(\infty \)) if there is no feasible solution.

We often use \(c_m := C_m \in \mathcal{H}_{\phi}, \ a_{j,m} := C_{a_{j,m}} \in \mathcal{H}_{\phi} \) instead of \(\hat{\chi}_m \) and \(\hat{\chi}_{j,m} \), which enables us to simplify the formulation of process discrimination problems. Let

\[
\mathcal{P}_G := \{ \hat{\Phi} \in \mathcal{F}_G : \eta_j(\hat{\Phi}) \leq 0 (\forall j \in \mathcal{J}) \}
\]

where

\[
\eta_j(\hat{\Phi}) := \sum_{m=0}^{M-1} \langle \hat{\Phi}_m, a_{j,m} \rangle - b_j \in \mathbb{R}.
\]

Problem (18) is rewritten by the following SDP problem:

\[
\begin{align*}
\text{maximize} & \quad \mathcal{P}(\hat{\Phi}) := \sum_{m=0}^{M-1} \langle \hat{\Phi}_m, c_m \rangle \\
\text{subject to} & \quad \hat{\Phi} \in \mathcal{P}_G.
\end{align*}
\]

2. Restricted testers

We are often concerned with a process discrimination problem in which the available testers are restricted to belong to a certain subset of all possible testers in quantum mechanics. Very recently, a general formulation of restricted problems of finding minimum-error testers has been discussed in Ref. [68]. For examples of such restricted problems, the reader can refer to Ref. [68]. We will extend this work to a broad class of optimization criteria. We impose the additional constraint \(\Phi \in \mathcal{T}, \)
where \mathcal{T} is a nonempty convex subset of \mathcal{T}_G. This problem is formulated as\footnote{We do not assume that \mathcal{T} is closed, which is inspired by the fact that there exists an important subset of all possible testers that is not closed, e.g., the set of local operations and classical communication [69]. While an optimal solution to Problem (P) may not exist, its optimal value, $\sup_{\Phi \in \mathcal{P}_G} P(\Phi)$, is always uniquely determined.}

$$\begin{align*}
\text{maximize } & P(\Phi) \\
\text{subject to } & \Phi \in \mathcal{P},
\end{align*} \quad (P)$$

where $\mathcal{P} := \mathcal{P}_G \cap \mathcal{T}$, i.e.,

$$\mathcal{P} := \{ \Phi \in \mathcal{T} : \eta_j(\Phi) \leq 0 \ (\forall j \in J) \}. \quad (22)$$

Problem (P_G) can be viewed as the special case of Problem (P) with $\mathcal{T} := \mathcal{T}_G$. Problem (P) is not an SDP problem in general, but is a convex problem since \mathcal{P} is convex. The assumption of the convexity of \mathcal{T} implies that any probabilistic mixture of any pair of testers $\Phi^{(1)}, \Phi^{(2)} \in \mathcal{T}$, $\{p\Phi^{(1)}_m + (1 - p)\Phi^{(2)}_m\}_{m=0}^{M-1}$ $(\forall 0 < p < 1)$, is in \mathcal{T}. In this paper, we also assume

$$\overline{\mathcal{T}} = \{ \Phi \in \mathcal{T} : \eta_j(\Phi) \leq 0 \ (\forall j \in J) \}. \quad (23)$$

If \mathcal{T} is closed, then Eq. (23) always holds. These assumptions hold in many practical situations. Let us choose a closed convex cone C and a closed convex set S such that\footnote{Such C and S always exist. Indeed, $C := \{ [p\Phi^0_m]_{m=0}^{M-1} : p \in \mathbb{R}_+, \Phi \in \mathcal{T} \}$ and $S := \{ \sum_{m=0}^{M-1} \Phi_m : \Phi \in \mathcal{T} \}$ satisfy Eq. (24).}

$$\overline{\mathcal{T}} = \{ \Phi \in C : \sum_{m=0}^{M-1} \Phi_m \in S \}, \quad C \subseteq C_G, \quad S \subseteq S_G. \quad (24)$$

Equation (12) is the special case of Eq. (24) with $C = C_G$ and $S = S_G$. Note that if the feasible set \mathcal{P} is not empty, then at least one optimal solution exists.

3. Examples

We provide three simple examples of Problem (P). For more information, see Sec. II of Ref. [32], which provides several other examples in the case of state discrimination.

Example 4 (Optimal inconclusive discrimination)

The first example is the problem of finding optimal inconclusive discrimination of quantum combs. This is an extension of the problem of finding optimal inconclusive state discrimination [19, 70, 71]. In this problem, we want to discriminate R combs $\hat{E}_0, \ldots, \hat{E}_{R-1} \in \mathcal{D}_G \subset \mathcal{D}_G \subset \mathcal{D}_G$, with maximum average success probability subject to the constraint that the average inconclusive probability is equal to a constant value p_{inc} with $0 \leq p_{inc} \leq 1$. We try to find an optimal tester $\hat{\Phi} := [\Phi^0_m]_{m=0}^{M-1} \in \mathcal{F}_G$ with $M := R + 1$. The element Φ_R with $r < R$ corresponds to the identification of the comb \hat{E}_r, whereas Φ_R corresponds to the inconclusive answer.

The average success and inconclusive probabilities are, respectively, written as

$$P_S(\hat{\Phi}) := \sum_{r=0}^{R-1} p_r \text{Pr}(r|\hat{E}_r), \quad P_I(\hat{\Phi}) := \sum_{r=0}^{R-1} p_r \text{Pr}(\hat{E}_r), \quad (25)$$

where $\text{Pr}(m|\hat{E}_r) := \langle \Phi_m, \hat{E}_r \rangle$ and p_r is the prior probability of the comb \hat{E}_r. Thus, the problem is formulated as

$$\begin{align*}
\text{maximize } & P_S(\hat{\Phi}) \\
\text{subject to } & \Phi \in \mathcal{F}_G, \quad P_I(\hat{\Phi}) = p_{inc}.
\end{align*} \quad (P_{inc})$$

From Eq. (7), we have $\text{Pr}(m|\hat{E}_r) = \langle \Phi_m, \hat{E}_r \rangle$. The optimal value of the problem does not change if we replace the constraint $P_I(\hat{\Phi}) = p_{inc}$ by $P_I(\hat{\Phi}) \geq p_{inc}$; indeed, in this case, we can easily verify that any optimal solution Φ must satisfy $P_I(\hat{\Phi}) = p_{inc}$. Therefore, this problem is rewritten as Problem (P_G) with

$$\begin{align*}
M & := R + 1, \\
J & := 1, \\
c_m & := \begin{cases} p_m \mathcal{E}_m, & m < R, \\
0, & m = R, \\
0, & m < R, \\
- \sum_{r=0}^{R-1} p_r \mathcal{E}_r, & m = R, \\
b_0 & := -p_{inc}.
\end{cases} \quad (26)
\end{align*}$$

\mathcal{P}_G is not empty for any $0 \leq p_{inc} \leq 1$. In the case of $T = 1$ and $V_1 = C$, this problem reduces to the SDP problem given by Ref. [25].

In the special case of $p_{inc} = 0$, Problem (P_{inc}) is equivalent to the problem of finding minimum-error discrimination, i.e., $\hat{\Phi} \in \mathcal{F}_G$ that maximizes $P_S(\hat{\Phi})$, in which case, without loss of generality, we can assume $\Phi_R = 0$. Thus, this problem is written as Problem (P_G) with $M := R$, $J := 0$, and $c_r := p_r \mathcal{E}_r$ $(r \in J_R)$.

In another special case in which p_{inc} is sufficiently large, the average error probability, $P_E(\hat{\Phi}) := 1 - P_S(\hat{\Phi}) - P_I(\hat{\Phi})$, of an optimal solution becomes zero. Unambiguous (or error-free) discrimination, which satisfies $P_E(\hat{\Phi}) = 0$, is called optimal if it maximizes the average success probability (or, equivalently, minimizes the average inconclusive probability). The problem of finding optimal unambiguous discrimination can be formulated as

$$\begin{align*}
\text{maximize } & P_S(\hat{\Phi}) - \lim_{\kappa \to \infty} \kappa P_E(\hat{\Phi}) \\
\text{subject to } & \Phi \in \mathcal{F}_G, \quad (P_{unamb})
\end{align*}$$

One can easily verify that an optimal solution satisfies $P_E(\hat{\Phi}) = 0$. Problem (P_{unamb}) is rewritten as Problem (P_G) with $M := R + 1, J := 0, c_r := p_r \mathcal{E}_r - \kappa \sum_{r' \neq r} p_r \mathcal{E}_{r'}$ $(r \in J_R), c_R := 0$, and $\kappa \to \infty$. Note that this problem is also formulated as

$$\begin{align*}
\text{maximize } & P_S(\hat{\Phi}) \\
\text{subject to } & \Phi \in \mathcal{F}_G, \quad P_S(\hat{\Phi}) + P_I(\hat{\Phi}) = 1, \quad (27)
\end{align*}$$
which is rewritten by Problem (P_G) with

\[M := R + 1, \]
\[J := 1, \]
\[c_m := \begin{cases} p_m E_m, & m < R, \\ 0, & m = R, \end{cases} \]
\[a_{0,m} := \begin{cases} -p_m E_m, & m < R, \\ -\sum_{r=0}^{R-1} p_r E_r, & m = R, \end{cases} \]
\[b_{0,j} := -1. \]

(28)

In the case of \(T = 1 \) and \(V_1 = \mathbb{C} \), this problem reduces to the SDP problem given by Ref. [72].

Example 5 (Neyman-Pearson strategy) The second example is an optimal process discrimination problem under the Neyman-Pearson criterion, whose state discrimination version has been extensively investigated [16–18]. Let us consider the problem of discriminating two combs \(\hat{E}_0 \) and \(\hat{E}_1 \). This criterion attempts to maximize the detection probability \(\Pr(1|\hat{E}_1) \) while the false-alarm probability \(\Pr(1|\hat{E}_0) \) is less than or equal to a constant value \(p_{\text{false}} \) with \(0 \leq p_{\text{false}} \leq 1 \), where \(\Pr(m|\hat{E}_i) := \left(\hat{\Phi}_m, \hat{E}_i \right) \). This problem can be formulated as

\[
\begin{align*}
\text{maximize} & \quad \Pr(1|\hat{E}_1) \\
\text{subject to} & \quad \hat{\Phi} \in \hat{T}_G, \quad \Pr(1|\hat{E}_0) \leq p_{\text{false}}. \\
\end{align*}
\]

(29)

which is rewritten by Problem (P_G) with

\[M := 2, \quad J := 1, \quad c_m := \delta_{m,1} E_1, \quad a_{0,m} := \delta_{m,1} E_0, \quad b_{0,j} := p_{\text{false}}. \]

(30)

\(\mathcal{P}_G \) is not empty for any \(0 \leq p_{\text{false}} \leq 1 \).

Example 6 (Restricted testers) We can consider a process discrimination problem under the inconclusive and Neyman-Pearson strategies in which testers are restricted to belong to a subset of \(\hat{T} \) of \(\hat{T}_G \). Let us consider the former case. This problem is formulated as

\[
\begin{align*}
\text{maximize} & \quad P_{\text{inc}}(\hat{\Phi}) \\
\text{subject to} & \quad \hat{\Phi} \in \hat{T}, \quad P_{\text{inc}}(\hat{\Phi}) \geq p_{\text{inc}}. \\
\end{align*}
\]

(31)

As a concrete example, let us assume that testers are restricted to the form of Fig. 5. Such a tester, consisting of two sequentially connected single-shot testers, is interpreted as a tester performed by Alice and Bob in which only one-way classical communication from Alice to Bob is allowed. Specifically, in such a tester, Alice prepares a state \(\hat{\rho}_A \), performs a measurement \(\{\hat{\Pi}_m^{(i)}\}_i \) and sends her outcome \(i \) to Bob. Based on her result \(i \), Bob then prepares a state \(\hat{\rho}_B^{(i)} \) and performs a measurement \(\{\hat{\Pi}_m^{(i)}\}_m \). It is seen that \(\mathcal{T} \) satisfies Eq. (24) with

\[
C := \left\{ \left\{ \sum_{r=0}^{R-1} B_{r}^{(i)} \otimes A_{r} \right\} : A_{r} \in \text{Pos}_{W_r \otimes V_r}, \{B_{r}^{(i)}\}_r \in \text{Test}_{W_r, V_r} \right\},
\]

(32)

and \(S := S_G \), where \(\text{Test}_{W_r, V_r} \) is the set of all testers \(\{B_{r}^{(i)}\}_r \subset \text{Pos}_{W_r \otimes V_r} \) with \(R + 1 \) outcomes \(\{B_{r}\}_r \) satisfies \(\sum_{r=0}^{R} B_{r} = I_{W_r} \otimes \rho \) for some \(\rho \in \text{Den}_{V_r} \).

Similarly, in the case of the Neyman-Pearson strategy, the problem is written as Problem (P_{NP}) with \(\hat{T}_G \) replaced by \(\hat{T} \), i.e.,

\[
\begin{align*}
\text{maximize} & \quad \Pr(1|\hat{E}_1) \\
\text{subject to} & \quad \hat{\Phi} \in \hat{T}, \quad \Pr(1|\hat{E}_0) \leq p_{\text{false}}. \\
\end{align*}
\]

(33)

which is also formulated as Problem (P) with Eq. (26) and \(\mathcal{T} \) of Eq. (31).

III. OPTIMAL SOLUTIONS TO PROCESS DISCRIMINATION PROBLEMS

In this section, we derive the Lagrange dual problem of Problem (P) that has no duality gap. Also, necessary and sufficient conditions for a tester to be optimal are given. We also give necessary and sufficient conditions that the optimal value remain unchanged even when a certain additional constraint is imposed. These results are useful for obtaining analytical and/or numerical optimal solutions.

A. Dual problems

The following theorem holds (proved in Appendix A).

6 We should note that Problem (30) is not exactly equivalent to Problem (P_{inc}) with \(\hat{T}_G \) replaced by \(\mathcal{T} \). Indeed, any \(\hat{\Phi} \in \mathcal{T} \) may satisfy \(P_{\text{inc}}(\hat{\Phi}) > p_{\text{inc}} \), in which case there is no feasible solution to the latter problem. However, the latter problem can also be formulated in the form of Problem (P) since \(P_{\text{inc}}(\hat{\Phi}) = p_{\text{inc}} \) is equivalent to \(P_{\text{inc}}(\hat{\Phi}) \geq p_{\text{inc}} \) and \(P_{\text{inc}}(\hat{\Phi}) \leq p_{\text{inc}} \).

7 A diagrammatic representation of dual problems (in the minimum-error case) can be seen in Ref. [73], which allows us to gain an intuitive understanding of an operational interpretation.
Theorem 1 Assume that Problem (P) is given. Let C and S be a closed convex cone and a closed convex set satisfying Eq. (24). The optimal value of Problem (P) coincides with that of the following optimization problem:

$$\begin{align*}
\text{minimize} & \quad D_S(\chi, q) := \lambda_S(\chi) + \sum_{j=0}^{J-1} q_j b_j \\
\text{subject to} & \quad (\chi, q) \in \mathcal{D}
\end{align*}$$

with $\chi \in \text{Her}_V$ and $q := \{q_j\}_{j=0}^{J-1} \in \mathbb{R}_+^J$, where

$$\lambda_S(\chi) := \sup_{\varphi \in S} \langle \varphi, \chi \rangle,$$

$$\mathcal{D} := \{ (\chi, q) \in \text{Her}_V \times \mathbb{R}_+^J : \chi - z_m(q) |_{m=0}^{M-1} \in C^* \}.$$

$$z_m(q) := c_m - \sum_{j=0}^{J-1} q_j a_{jm} \in \text{Her}_V. \quad (33)$$

One can easily see that Problem (D), which is the Lagrange dual problem of Problem (P), is a convex problem. Problem (D) is often easier to solve than Problem (P). Note that $\{y_m \in \text{Her}_V |_{m=0}^{M-1} \in C^* \} = \sup_{\varphi \in S} \langle \varphi, \chi \rangle$, $\forall \varphi \in C$. It is easily seen that the function λ_S is convex and positively homogeneous of degree 1 [i.e., $\lambda_S(r\chi) = r \lambda_S(\chi)$ holds for any $r \in \mathbb{R}_+$, and $\chi \in \text{Her}_V$]. From Eq. (13), we have

$$\langle \varphi, \chi \rangle = \lambda_{S^*}(\varphi) = \lambda_S(\chi), \quad \forall \varphi \in S, \chi \in \text{Lin}(\text{Chn}_V). \quad (35)$$

As a special case of Problem (D), the dual of Problem (P) is given by

$$\begin{align*}
\text{minimize} & \quad D_{S^*}(\chi, q) \\
\text{subject to} & \quad (\chi, q) \in \mathcal{D}_G
\end{align*}$$

with (χ, q), where

$$\mathcal{D}_G := \{ (\chi, q) \in \text{Her}_V \times \mathbb{R}_+^J : \chi \geq z_m(q) (\forall m \in I_M) \}. \quad (36)$$

Theorem 1 immediately yields that the optimal values of Problems (P$_G$) and (D$_G$) coincide.

Note that one can consider two any sets $C \subseteq C_G$ and S ($\subseteq S_G$) such that

$$\overline{C} = \{ \Phi \in \text{con}C : \sum_{m=0}^{M-1} \Phi_m \in \text{con} S \}, \quad (37)$$

instead of Eq. (24). In this case, one can easily verify $\lambda_{\overline{C}}(\chi) = \lambda_S(\chi)$ and $\overline{C} = \text{con} C^*$, which indicates that Theorem 1 works without any changes. In what follows, for simplicity, we assume that C and S are, respectively, a closed convex cone and a closed convex set.

Example 7 (Optimal inconclusive discrimination) By substituting Eq. (26) into Problem (D$_G$), the dual of Problem (P$_{inc}$) is immediately obtained as

$$\begin{align*}
\text{minimize} & \quad \lambda_{S_0}(\chi) - q_{\text{inc}} \\
\text{subject to} & \quad \chi \geq p_r E_r \quad (\forall r \in I_{R+1}) \quad (D_{inc})
\end{align*}$$

with $\chi \in \text{Her}_V$ and $q \in \mathbb{R}_+$, where $p_R := q$ and $E_R := \sum_{r=0}^{R-1} p_r E_r$. Any feasible solution χ is in Pos_S. It is easily seen that there exists an optimal solution (χ, q) such that $q \leq 1^8$. In the special case of $p_{inc} = 0$, which corresponds to the minimum-error strategy, the dual problem is written as

$$\begin{align*}
\text{minimize} & \quad \lambda_{S_0}(\chi) \\
\text{subject to} & \quad \chi \geq p_r E_r \quad (\forall r \in I_R).
\end{align*} \quad (38)$$

Also, the dual of Problem (P$_{unamb}$) is

$$\begin{align*}
\text{minimize} & \quad \lambda_{S_0}(\chi) \\
\text{subject to} & \quad \lim_{k \to \infty} \left(\chi - p_r E_r + \kappa \sum_{r' \neq r} p_r E_{r'} \right) \geq 0 \quad (\forall r \in I_R). \quad (39)
\end{align*}$$

Example 8 (Neyman-Pearson strategy) By substituting Eq. (29) into Problem (D$_G$), the dual of Problem (P$_{NP}$) is obtained as

$$\begin{align*}
\text{minimize} & \quad \lambda_{S_0}(\chi) + q_{\text{Place}} \\
\text{subject to} & \quad \chi \geq E_1 - q E_0 \quad (40)
\end{align*}$$

with $\chi \in \text{Pos}_S$ and $q \in \mathbb{R}_+$.

Example 9 (Restricted testers) By substituting Eq. (26) into Problem (D), the dual of Problem (30) is obtained as

$$\begin{align*}
\text{minimize} & \quad \lambda_S(\chi) - q_{\text{inc}} \\
\text{subject to} & \quad (\chi - p_r E_r) |_{r=0}^{R} \in C^* \quad (41)
\end{align*}$$

with $\chi \in \text{Her}_V$ and $q \in \mathbb{R}_+$, where $p_R := q$ and $E_R := \sum_{r=0}^{R-1} p_r E_r$. In the special case of C given by Eq. (32), Problem (41) is rewritten by

$$\begin{align*}
\text{minimize} & \quad \lambda_{S_0}(\chi) - q_{\text{inc}} \\
\text{subject to} & \quad \sum_{r=0}^{R} B_r (\chi - p_r E_r) \geq 0 \quad (42)
\end{align*}$$

$$\forall \{B_r \}_{r=0}^{R} \in \text{Test}_{W_2, V_2}.$$
We can show the following Proposition (proved in Appendix B).

Proposition 2 For any \((\chi', q) \in D\), there exists \((\chi, q) \in D\) satisfying \(\lambda_{S_G}(\chi) = \lambda_{S_G}(\chi')\) and \(\chi \in \text{Lin}(\text{CHn}_T)\).

This proposition immediately yields the following corollary (proof omitted).

Corollary 3 If \(S = S_G\) holds, then for any optimal solution \((\chi', q)\) to Problem \((D)\), there also exists an optimal solution \((\chi, q)\) to Problem \((D)\) satisfying \(\chi \in \text{Lin}(\text{CHn}_T)\).

B. Conditions for optimality

The following theorem provides necessary and sufficient conditions for a tester to be optimal for Problem \((P)\) (proved in Appendix C).

Theorem 4 \(\Phi \in P\) and \((\chi, q) \in D\) are, respectively, optimal for Problems \((P)\) and \((D)\) if and only if they satisfy

\[
q_j \eta_j(\Phi) = 0, \quad \forall j \in I_J,
\]

\[
\sum_{m=0}^{M-1} \langle \Phi_m, \chi - z_m(q) \rangle = 0,
\]

\[
\sum_{m=0}^{M-1} \langle \Phi_m, \chi \rangle = \lambda_S(\chi).
\]

(43)

We consider the case \(C = C_G\); then, since \(\chi \geq z_m(q)\) holds, the second line of Eq. (43) is equivalent to

\[
[\chi - z_m(q)] \Phi_m = 0, \quad \forall m \in I_M,
\]

(44)

which follows from \(XY = 0 \iff \langle X, Y \rangle = 0\) for any \(X, Y \in \text{POs}_P\). Moreover, let us consider \(\Phi \in P\) such that \(\sum_{m=0}^{M-1} \Phi_m\) is of full rank. Let

\[
\chi^\Phi(q) := \left[\sum_{m=0}^{M-1} z_m(q) \Phi_m \right]^{-1} \sum_{m=0}^{M-1} \Phi_m.
\]

(45)

then it follows that \(\chi = \chi^\Phi(q)\) holds for any \((\chi, q) \in D\) satisfying Eq. (44). This immediately yields the following two corollaries.

Corollary 5 Let us consider Problem \((P)\) with \(C = C_G\). Assume that there exists an optimal solution \(\Phi\) such that \(\sum_{m=0}^{M-1} \Phi_m\) is of full rank. Then, any optimal solution \((\chi, q)\) to Problem \((D)\) satisfies \(\chi = \chi^\Phi(q)\). If, in addition, \(S = S_G\) (i.e., \(T = T_G\)) holds, then \(\chi^\Phi(q) \in \text{Lin}(\text{CHn}_T)\) holds.

Proof From Theorem 4, any optimal solution \((\chi, q)\) to Problem \((D)\) satisfies Eq. (44), which gives \(\chi = \chi^\Phi(q)\). In the case of \(S = S_G\), from Corollary 3, there exists an optimal solution \((\chi', q)\) to Problem \((D)\) such that \(\chi' \in \text{Lin}(\text{CHn}_T)\). Again from Theorem 4, we have \(\chi' = \chi^\Phi(q)\).

Corollary 6 Let us consider Problem \((P)\) with \(C = C_G\). Assume that there exists an optimal solution to Problem \((D)\). Arbitrarily choose \(\Phi \in P\) such that \(\sum_{m=0}^{M-1} \Phi_m\) is of full rank; then, \(\Phi\) is optimal for Problem \((P)\) if and only if there exists \(q \in \mathbb{R}^J\) such that

\[
q_j \eta_j(\Phi) = 0, \quad \forall j \in I_J,
\]

\[
\chi^\Phi(q) \geq z_m(q), \quad \forall m \in I_M,
\]

\[
\sum_{m=0}^{M-1} \langle \Phi_m, \chi^\Phi(q) \rangle = \lambda_S[\chi^\Phi(q)].
\]

(46)

Proof “If”: Let \(\chi := \chi^\Phi(q)\); then, \((\chi, q) \in D\) holds from the second line of Eq. (46). \(\chi^\Phi(q) \in \text{Her}_P\) obviously holds from \(\chi^\Phi(q) \geq z_m(q)\). From Theorem 4, it suffices to show Eq. (43). The first and third lines of Eq. (43) obviously hold. \(\sum_{m=0}^{M-1} \langle \Phi_m, \chi^\Phi(q) \rangle = \lambda_S[\chi^\Phi(q)]\).

Taking the trace of this equation yields the second line of Eq. (43).

“Only if”: Let \((\chi, q)\) be an optimal solution to Problem \((D)\); then, \(\chi = \chi^\Phi(q)\) holds from Corollary 5. Thus, Eq. (46) holds from Theorem 4 and \((\chi, q) \in D\).

Example 10 (Optimal inconclusive discrimination) We can show, by substituting Eq. (26) into Eq. (43), that necessary and sufficient conditions for \(\Phi \in P_G\) and \((\chi, q) \in D_G\) to be, respectively, optimal for Problems \((P_{\text{inc}})\) and \((D_{\text{inc}})\) are

\[
q(\langle \Phi_R, E_R \rangle - p_{\text{inc}}) = 0,
\]

\[
(\chi - p_r E_r) \Phi_r = 0, \quad \forall r \in I_{R+1},
\]

\[
\sum_{r=0}^{R} \langle \Phi_r, \chi \rangle = \lambda_{S_G}(\chi),
\]

(47)

where \(p_R := q \) and \(E_R := \sum_{r=0}^{R-1} p_r E_r\). It is easily seen that the first line is rewritten by \(P_I(\Phi) (= \langle \Phi_R, E_R \rangle) = p_{\text{inc}}\). Also, Corollary 6 gives that, for any \(\Phi \in P_G\) such that \(\sum_{r=0}^{R} \Phi_r\) is of full rank, \(\Phi\) is optimal for Problem \((P_{\text{inc}})\) if and only if there exists \(q \in \mathbb{R}^J\) such that

\[
\langle \Phi_R, E_R \rangle = p_{\text{inc}},
\]

\[
\chi^\Phi(q) \geq p_r E_r, \quad \forall r \in I_{R+1},
\]

\[
\sum_{r=0}^{R} \langle \Phi_r, \chi^\Phi(q) \rangle = \lambda_{S_G}[\chi^\Phi(q)].
\]

(48)

[recall that an optimal solution to Problem \((D_{\text{inc}})\) always exists]. In the special case of \(T = 1\) and \(V_1 = C\), in which case each \(E_r\), denoted by \(\rho_r\), is a quantum state, necessary and sufficient conditions for \(\Phi \in P_G \subseteq \text{POV}M_W\), and \((\chi, q) \in D_G\) to be optimal are

\[
\langle \Phi_R, \rho_R \rangle = p_{\text{inc}},
\]

\[
(\chi - p_r \rho_r) \Phi_r = 0, \quad \forall r \in I_{R+1},
\]

(49)

where \(p_R := q \) and \(\rho_R := \sum_{r=0}^{R-1} p_r \rho_r\). The third line of Eq. (43) always holds from \(\sum_{r=0}^{R} \langle \Phi_r, \chi \rangle = \text{Tr} \chi = \lambda_{S_G}(\chi)\) [note that
Theorem 7 Let \mathcal{T}_1 and \mathcal{T}_2 be nonempty convex sets satisfying $\mathcal{T}_1 \subseteq \mathcal{T}_2 \subseteq \mathcal{T}_G$. For each $i \in \{1, 2\}$, let us choose a closed convex cone C_i and a closed convex set S_i such that $\mathcal{T}_i = \{ \phi \in C_i : \sum_{m=0}^{K-1} d_m \phi_m \in S_i \}$, $C_1 \subseteq C_2 \subseteq C_G$, and $S_1 \subseteq S_2 \subseteq S_G$ [see Eq. (24)]. Problem (D) with $(C, S) = (C_1, S_1)$ is denoted by Problem (D$_1$). Assume that the feasible set of Problem (P) with $\mathcal{T} = \mathcal{T}_1$ is not empty and that an optimal solution to Problem (D$_2$) exists. We consider the following four statements:

1. The optimal value of Problem (P) with $\mathcal{T} = \mathcal{T}_2$ is the same as that with $\mathcal{T} = \mathcal{T}_1$ [or, equivalently, the optimal values of Problems (D$_1$) and (D$_2$) are the same.

2. There exists an optimal solution (χ^*, q^*) to Problem (D$_1$) such that it is a feasible solution to Problem (D$_2$) and satisfies $\lambda_{S_2}(\chi^*) = \lambda_{S_1}(\chi^*)$.

3. Any optimal solution to Problem (D$_2$) is optimal for Problem (D$_1$).

4. There exists an optimal solution (χ^*, q^*) to Problem (D$_1$) such that it is a feasible solution to Problem (D$_2$) and satisfies $\chi^* \in \text{Lin}(\text{Chn}_F)$.

Then, (1) \Rightarrow (2) \Rightarrow (3) always holds. Also, if $S_2 = S_G$ holds, then (1)–(4) are all equivalent.

Proof We start with some preliminary remarks. For each $i \in \{1, 2\}$, let D^*_i and D_i be, respectively, the optimal value and the feasible set of Problem (D$_i$). From $S_1 \subseteq S_2$, $\lambda_{S_1}(\chi) \leq \lambda_{S_2}(\chi)$ holds for any $\chi \in \text{Her}_F$. Thus, we have

$$D^*_1 \leq D_{S_1}(\chi, q) \leq D_{S_2}(\chi, q), \quad \forall (\chi, q) \in D_1. \quad (51)$$

Also, $D_{S_2}(\chi, q) = D_{S_2}(\chi, q)$ is equivalent to $\lambda_{S_2}(\chi) = \lambda_{S_1}(\chi)$.

We first show (1) \Rightarrow (3), (1) \Rightarrow (2), and (2) \Rightarrow (1).

(1) \Rightarrow (3): Choose any optimal solution (χ^*, q^*) to Problem (D$_2$). Since $D_2 \subseteq D_1$ holds from $C_1 \subseteq C_2$, $(\chi^*, q^*) \in D_1$ holds. We also have $D^*_1 = D^*_2 = D_{S_2}(\chi^*, q^*)$. Thus, from Eq. (51) with (χ, q) replaced by (χ^*, q^*), $D_{S_2}(\chi^*, q^*) = D^*_1$ must hold. Therefore, (χ^*, q^*) is optimal for Problem (D$_1$).

(1) \Rightarrow (2): Let (χ^*, q^*) be any optimal solution to Problem (D$_2$). Since Statement (3) holds, (χ^*, q^*) is optimal for Problem (D$_1$). $\lambda_{S_2}(\chi^*) = \lambda_{S_1}(\chi^*)$ obviously holds from $D_{S_1}(\chi^*, q^*) = D_{S_2}(\chi^*, q^*)$.

(2) \Rightarrow (1): From Eq. (51) with (χ, q) replaced by (χ^*, q^*), we have $D^*_1 = D_{S_1}(\chi^*, q^*) = D_{S_2}(\chi^*, q^*) \geq D^*_2$. Thus, since $D^*_1 \leq D^*_2$ always holds, we have $D^*_1 = D^*_2$.

We next assume $S_2 = S_G$ and show (3) \Rightarrow (4) and (4) \Rightarrow (2).

(3) \Rightarrow (4): From Corollary 3, there exists an optimal solution (χ^*, q^*) to Problem (D$_2$) satisfying $\chi^* \in \text{Lin}(\text{Chn}_F)$. From Statement (3), (χ^*, q^*) is optimal for Problem (D$_1$).

(4) \Rightarrow (2): $\lambda_{S_2}(\chi^*) = \lambda_{S_1}(\chi^*)$ obviously holds from Eq. (51).

IV. SYMMETRY

We now focus on a process discrimination problem that has a certain symmetry. We show that, in such a problem, if at least one optimal solution exists, then there exists an optimal solution having the corresponding symmetry. This symmetric property can reduce the number of degrees of freedom and allows us to easily obtain analytical optimal solutions. This can also lead to computationally efficient algorithms for finding optimal solutions.

A. Group action

As a preliminary, we recall a group action. Let \mathcal{G} be a group with the identity element e. Assume that the order of \mathcal{G}, denoted as $|\mathcal{G}|$, is greater than one since the case $|\mathcal{G}| = 1$ is trivial. A group action of \mathcal{G} on a set \mathcal{T}, $(g \bullet - : \mathcal{T} \rightarrow \mathcal{T})_{g \in \mathcal{G}}$, is a set of maps on \mathcal{T} satisfying

$$(gh) \bullet x = g \bullet (h \bullet x), \quad \forall g, h \in \mathcal{G}, \ x \in \mathcal{T},$$

$$e \bullet x = x, \quad \forall x \in \mathcal{T}. \quad (52)$$

Let \tilde{g} be the inverse of g. For each $g \in \mathcal{G}$, since $\tilde{g} \bullet (g \bullet x) = x$ holds for any $x \in \mathcal{T}$, $g \bullet -$ is bijective. In this paper, group actions on I_K ($K \geq 1$) and Her_F are considered.

Let us first consider an action of \mathcal{G} on I_K, $(g \bullet - : I_K \rightarrow I_K)_{g \in \mathcal{G}}$. A trivial example is $g \bullet k := k \quad (\forall g \in \mathcal{G}, k \in I_K)$. Another example is $g \bullet k := g \otimes_k k \quad (\forall g \in \mathcal{G}, k \in I_K)$, where \otimes_k denotes addition modulo K and $\mathcal{G} \equiv \mathbb{Z}_k := \{0, \ldots, K - 1\}$ is the cyclic group with the multiplication $gh := g \otimes_h h \quad (\forall g, h \in \mathcal{G})$.

Let us next consider an action of \mathcal{G} on the real Hilbert space Her_F, $(g \bullet - : \text{Her}_F \rightarrow \text{Her}_F)_{g \in \mathcal{G}}$. We are only concerned with a linearly isometric action, i.e., each $g \bullet -$ is linear and satisfies

$$(g \bullet x, g \bullet y) = \langle x, y \rangle, \quad \forall g \in \mathcal{G}, \ x, y \in \text{Her}_F. \quad (53)$$

A typical example is an action expressed in the form

$$g \bullet := A_g, \quad (54)$$
TABLE I. Formulation of the generalized process discrimination problems.

Basic formulation	Dual problems	Necessary and sufficient conditions for $\Phi \in \mathcal{P}$ and $(\chi, q) \in \mathcal{D}$ to be optimal
Primal problems	**Dual problems**	**(43)**
maximize $\sum_{n=0}^{M-1} \langle \Phi_n, c_m \rangle$	minimize $\lambda_S(\chi) + \sum_{j=0}^{J-1} q_j p_j$	$q_j n_j(\Phi) = 0 \ (\forall j \in I_j)$,
subject to $\Phi \in \mathcal{T}$,	subject to $(\chi, q) \in \text{Her}_V \times \mathbb{R}_+$,	$\sum_{n=0}^{M-1} \langle \Phi_n, \chi - z_m(q) \rangle = 0$,
$\sum_{n=0}^{M-1} \langle \Phi_n, a_{jm} \rangle \leq b_j \ (\forall j \in I_j)$	$\chi \in \mathbb{C}^n$,	(D)
(P)	**(D)**	**(D)**

Example 1: Optimal inconclusive discrimination of combs $\{\tilde{\mathcal{E}}_r\}_{r=0}^{R-1} \subset \bigotimes_{r=1}^T \text{Chn}(V, W_r)$ with the prior probabilities $\{p_{r, l}\}_{r=0}^{R-1}$

- maximize $\sum_{r=0}^{R-1} \langle \Phi_r, p_r \mathcal{E}_r \rangle$ | minimize $\lambda_S(\chi) - q p_{\text{inc}}$ | $p_R := q$ and $\mathcal{E}_R := \sum_{r=0}^{R-1} p_r \mathcal{E}_r$ |
| subject to $\Phi \in \mathcal{T}_\mathcal{G}$, | subject to $(\chi, q) \in \text{Her}_V \times \mathbb{R}_+$, | $(\Phi_R, \mathcal{E}_R) = p_{\text{inc}}$, |
| $\sum_{r=0}^{R-1} \langle \Phi_r, p_r \mathcal{E}_r \rangle = p_{\text{inc}}$ | $\chi \geq p_r \mathcal{E}_r \ (\forall r \in I_{R+1})$, | $(\chi - p_r \mathcal{E}_r) \Phi_r = 0 \ (\forall r \in I_{R+1})$, |
| **(P)$_{\text{inc}}$** | **(D)$_{\text{inc}}$** | **(47)** |

Example 2: Optimal inconclusive discrimination of states $\{p_r\}_{r=0}^{R-1} \subset \text{Den}_W$ with the prior probabilities $\{p_{r, l}\}_{r=0}^{R-1}$

- maximize $\sum_{r=0}^{R-1} \langle \Phi_r, p_r \rho_r \rangle$ | minimize $\text{Tr} \chi - q p_{\text{inc}}$ | $p_R := q$ and $\rho_R := \sum_{r=0}^{R-1} p_r \rho_r$ |
| subject to $\Phi \in \text{POVM}_W$ | subject to $(\chi, q) \in \text{Her}_W \times \mathbb{R}_+$, | $(\Phi_R, \rho_R) = p_{\text{inc}}$, |
| $\sum_{r=0}^{R-1} \langle \Phi_r, p_r \rho_r \rangle = p_{\text{inc}}$ | $\chi \geq p_r \rho_r \ (\forall r \in I_{R+1})$, | $(\chi - p_r \rho_r) \Phi_r = 0 \ (\forall r \in I_{R+1})$, |
| **(P)$_{\text{inc}}$** | **(D)$_{\text{inc}}$** | **(49)** |

where $\mathcal{G} \ni g \mapsto U_g \in \text{Univ}_V$ is a projective unitary or projective anti-unitary representation (which we will simply call a
projective representation) of \mathcal{G}. Another example is an action expressed in the form

$$g \bullet =: \text{Ad}_{U_g \otimes U_{g,j}^\dagger \otimes U_{g,j}^\dagger},$$

where, for each $t \in \{1, \ldots, T\}$, $\mathcal{G} \ni g \mapsto U_{g,t} \in \text{Univ}_V$, and $\mathcal{G} \ni g \mapsto U_{g,j}^\dagger \otimes U_{g,j}^\dagger \in \text{Univ}_V$ are projective representations of \mathcal{G}. For instance, the partial transposes $(-)^{T_W}$ and $(-)^{T_V}$ ($t \in \{1, \ldots, T\}$) can be expressed in the form of Eq. (55).

B. Symmetric discrimination problems

Definition 1 Let \mathcal{G} be a group. We will call Problems (P) and (D) **\mathcal{G}-symmetric** if the following conditions hold: (a) there exist group actions of \mathcal{G} on I_M, I_J, and Her_V; (b) the action of \mathcal{G} on Her_V is linearly isometric; and (c)

$$\Phi^{(s)} \in \mathcal{T}, \quad \forall g \in \mathcal{G}, \Phi \in \mathcal{T},$$

$$\Phi^{(s)} \in \mathcal{C}, \quad \forall g \in \mathcal{G}, \Phi \in \mathcal{C},$$

$$g \bullet \varphi \in \mathcal{S}, \quad \forall g \in \mathcal{G}, \varphi \in \mathcal{S},$$

$$g \bullet d_{jm} = a_g \cdot j \cdot m, \quad \forall g \in \mathcal{G}, j \in I_J, m \in I_M,$$

$$b_j = b_g \cdot j, \quad \forall g \in \mathcal{G}, j \in I_J$$

and

$$g \bullet c_m = c_g \cdot m, \quad \forall g \in \mathcal{G}, m \in I_M$$

hold10, where

$$\Phi^{(s)} := (\Phi^{(s)}_m) := \tilde{g} \bullet (\Phi \cdot M_{m=0}^{M-1}), \quad g \in \mathcal{G}, \Phi \in \mathcal{C}.$$

If \mathcal{T} is closed, then the first line of Eq. (56) is derived from its second and third lines.

A large class of process discrimination problems having certain symmetries can be formulated as Problem (P) with \mathcal{G}-symmetric. Indeed, in the case of minimum-error state

9 $\mathcal{G} \ni g \mapsto U_g \in \text{Univ}_V$ is called a projective unitary or projective anti-unitary representation of \mathcal{G} if $\text{Ad}_{U_g} = 1_V$ and $\text{Ad}_{U_g^\dagger} = \text{Ad}_{U_g^\dagger}$ hold for any $g, g' \in \mathcal{G}$. In this case, $\text{Ad}_{U_g} = \text{Ad}_{U_g^\dagger}$ holds.

10 In this case, since the map $\Phi \mapsto \Phi^{(s)}$ is invertible, $(\Phi^{(s)} : \Phi \in \mathcal{C}) = \mathcal{C}$ must hold. Also, since the map $\varphi \mapsto g \bullet \varphi$ is invertible, $[g \bullet \varphi : \varphi \in \mathcal{S}] = \mathcal{S}$ must hold.
Example 11 (Optimal inconclusive discrimination) We consider Problem (30), i.e., the problem of discriminating quantum combs \([\{\hat{E}_1\}_{i=1}^{r-1}\] under the inconclusive strategy in which testers are restricted to belong to a subset \(\hat{T}\) of \(\hat{T}_G\). Let \(p_r\) be the prior probability of the comb \(\hat{E}_r\). Since this problem is rewritten as Problem (P) with Eq. (26), it follows that for some group \(G\), this problem and its dual problem [i.e., Problem (41)] are \(G\)-symmetric if and only if
\[
\Phi^{(g)}(s) = \Phi^{(g)}(s), \quad g \in G, \quad s \in S, \quad \sigma_g(R) = R,
\]
holds for any \(g \in G\), \(\Phi \in C\), \(\phi \in S\), and \(r \in I_R\), where the action \([g \cdot \cdot \cdot]_{g \in G}\) of \(G\) on \(I_M\) \((M := R + 1)\) is denoted by \([\sigma_g(\cdot)]_{g \in G}\). Note that the action of \(G\) on \(I_I = I_1\) is uniquely determined by \(g \cdot 0 = 0\). Recall that Problems (\(P_{inc}\)) and (\(D_{inc}\)) are the particular case of \(C = C_G\) and \(S = S_G\).

Example 12 Let us consider Problem (\(P_{inc}\)) with \(\hat{E}_r := \hat{\Lambda}^{g \cdot r}_{r} \) and \(\hat{\Lambda}_0, \ldots, \hat{\Lambda}_{R-1} \in Ch(n(V,W))\). Assume that the prior probabilities are equal and that
\[
\hat{\Lambda}_r = Ad_{U_r} \circ \hat{\Lambda}_0, \quad \forall r \in I_R
\]
holds, where \(U\) is a unitary operator on \(W\) satisfying \(U^R = I_W\) and \(U^\prime \neq I_W\) for each \(1 \leq r < R\). Let \(Z_R := \{0, \ldots, R - 1\}\) be the cyclic group. We consider the actions of \(Z_R\) on \(I_M\) \((M := R + 1)\) and \(H_{G_r}\) given, respectively, by
\[
g \cdot m := \begin{cases} g \cdot m, & m < R, \\ R, & m = R,
\end{cases}
g \cdot 0 := Ad_{U_R \circ U_R \circ \ldots \circ U_{R-1} \circ U_0}\]
for each \(g \in Z_R\); then, \(g \cdot \hat{E}_r = \hat{E}_r\) holds for any \(g \in Z_R\) and \(r \in I_R\). Thus, one can easily verify from Example 11 that this problem is \(G\)-symmetric.

Example 13 Let us consider Problem (\(P_{inc}\)) with \(\hat{E}_r := \hat{\Lambda}^{g \cdot r}_{r} \) and \(\hat{\Lambda}_0, \ldots, \hat{\Lambda}_{R-1} \in Ch(n(V,W))\). Let \(H\) be a group and assume that
\[
\hat{\Lambda}_r = Ad_{U_r} \circ \hat{\Lambda}_0 \circ Ad_{U_r}, \quad \forall h \in H, \quad r \in I_R
\]
[or, equivalently, \(\hat{\Lambda}_r = Ad_{U_r \circ U_r \circ \ldots \circ U_r} \)] holds for some projective representations \(H \ni h \mapsto U_h \in U_{G_r}\) and \(\hat{\Lambda} \ni h \mapsto \hat{U}_h \in U_{G_r}\). The prior probabilities are arbitrarily chosen. Note that a channel \(\hat{\Lambda}_r\) satisfying Eq. (62) is sometimes called covariant. Let us consider the \(T\)-fold direct product of \(H\),
\[
\mathcal{H}^T := \{ (h_1, \ldots, h_T) : h_1, \ldots, h_T \in H \},
\]
and its group actions on \(I_M\) \((M := R + 1)\) and \(H_{G_r}\) defined as
\[
g \cdot m := m, \quad g \in \mathcal{H}^T, \quad m \in I_M, \quad (h_1, \ldots, h_T) \cdot m := Ad_{U_{h_1} \otimes U_{h_1} \otimes \cdots \otimes U_{h_T}}, \quad (h_1, \ldots, h_T) \in \mathcal{H}^T;
\]
then, \(g \cdot \hat{E}_r = \hat{E}_r\) holds for any \(g \in \mathcal{H}^T\) and \(r \in I_R\). Thus, it is easily seen from Example 11 that this problem is \(G\)-symmetric if \(\Phi^{(g)}\) belongs to \(C_G\) for any \(\Phi \in C_G\).

Example 14 As an example of a problem with restricted testers, let us consider Problem (30) with \(R := T\), \(V_1 = \cdots = V_T = V\), \(W_1 = \cdots = W_T = W\), \(\hat{E}_r := \hat{\Lambda}_{\gamma_1 + \cdots + \hat{\Lambda}_{\gamma_T}}\), \(h_{\gamma_1}, \ldots, h_{\gamma_T} \in Ch(V,W)\), where \(\gamma_r\) is the permutation on \(\{1, \ldots, T\}\) determined by \(r \in I_T\). For simplicity, we focus on the case \(T = 2\), i.e., the problem of discriminating \(\hat{\Lambda}_0 := \hat{\Lambda} \circ \hat{\Lambda}_0\) and \(\hat{\Lambda}_1 := \hat{\Lambda}_0 \circ \hat{\Lambda}_1\). Assume that the prior probabilities are equal and that testers are restricted to nonadaptive ones. In this case, Eq. (24) with
\[
C := C_G, \quad S := \{(I_{W_1} \otimes I_{W_2} \otimes I_{V_1} \otimes I_{V_1} : \rho : \rho \in \text{Den}_{W_1} \otimes \text{Den}_{V_1} \}\}
\]
holds, where \(\otimes_{W_1}\) is the process that swaps two systems \(V\) and \(W\). Let \(G := \{e, g\}\), where \(g \cdot \cdot \cdot : Her_{\gamma} \rightarrow Her_{\gamma}\) is the linear action characterized by \(g \cdot \cdot \cdot = \cdot \otimes_{W_1} \otimes_{W_2} \otimes_{V_1} \otimes_{V_1}\). Note that this action can be expressed in the form of Eq. (54). Since \(\hat{\Lambda}_0 = \hat{\Lambda} \circ \hat{\Lambda}_0\) and \(\hat{\Lambda}_1 = \hat{\Lambda}_0 \circ \hat{\Lambda}_1\), \(g \cdot \hat{E}_r = \hat{E}_r\) holds for each \(g \in G\) and \(r \in I_2\). Thus, in the case of inconclusive strategy, one can easily verify from Example 11 that the problem is \(G\)-symmetric. The same discussion can be applied to the case \(T > 2\).

C. Symmetric solutions

Let us fix a group \(G\). For any \(\Phi \in C\), let
\[
\Phi^{(g)} := \left\{ \Phi^{(g(m))}_{m} = \frac{1}{|G|} \sum_{g \in G} \Phi^{(g)}_{m} \right\}_{m=0}^{M-1},
\]
where \(\Phi^{(g)}\) is defined by Eq. (58). It follows that \(\Phi^{(g)}\) has the symmetry property
\[
g \cdot \Phi^{(g)} = \Phi^{(g)} \cdot m, \quad \forall g \in G, \quad m \in I_M.
\]
which follows from
\[
g \cdot \Phi^{(g)} = \frac{1}{|G|} \sum_{h \in G} g \cdot \Phi^{(h)} = \frac{1}{|G|} \sum_{h \in G} h \cdot \Phi^{(h)} \cdot m = \Phi^{(g)} \cdot m,
\]
where \(h' := h\). Similarly, for any \((\gamma, q) \in Her_{\gamma} \times \text{Den}_{\gamma}\), let
\[
\chi^{(g, \gamma)} := \chi^{(g)} \cdot q^{(g)}, \quad q^{(g)} := \left\{ q^{(j)}_{m} = \frac{1}{|G|} \sum_{g \in G} q^{(j)}_{g \cdot m} \right\}_{j=0}^{J-1},
\]
where \(q^{(g)} = g \cdot \chi^{(g)}\).
Thus, we have

\[g \cdot \chi^o = \frac{1}{|\mathcal{G}|} \sum_{h \in \mathcal{G}} g \cdot \chi^{(h)} = \frac{1}{|\mathcal{G}|} \sum_{h \in \mathcal{G}} (gh) \cdot \chi = \chi^o, \]

\[q^o_g \cdot j = \frac{1}{|\mathcal{G}|} \sum_{h \in \mathcal{G}} q^{(h)}_g \cdot j = \frac{1}{|\mathcal{G}|} \sum_{h \in \mathcal{G}} q((hg) \cdot j) = q^o_g \cdot j, \]

(70)

\((\chi^o, q^o)\) has the symmetry property

\[g \cdot \chi^o = \chi^o, \quad \forall g \in \mathcal{G}, \]

\[q^o_g \cdot j = q^o_j \cdot g, \quad \forall g \in \mathcal{G}, \quad j \in J. \]

(71)

\textbf{Lemma 8} If \(T, C, S, \{a_{m}\}_{m=0}^{J-1,l-1} \subseteq \text{Her}_{V}, \) and \(\{b_{j}\}_{j=1}^{J-1} \subseteq \mathbb{R}^J\) satisfy Eq. (56), then \(\Phi^{(g)}, \Phi^o \in \mathcal{P}\) holds for any \(\Phi \in \mathcal{P}\) and \(g \in \mathcal{G}\).

\textbf{Proof} Arbitrarily choose \(\Phi \in \mathcal{P}\). It follows from \(\Phi \in T\) and the first line of Eq. (56) that \(\Phi^{(g)}, \Phi^o \in \mathcal{T}\) holds. We have that for any \(g \in \mathcal{G}\) and \(j \in J\),

\[\sum_{m=0}^{M-1} (\Phi^{(g)}_m, a_{j,m}) = \sum_{m=0}^{M-1} (\bar{g} \cdot \Phi_{g \cdot m}, a_{j,m}) = \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, g \cdot a_{j,m}) \]

\[= \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, a_{g \cdot j,m}) \leq b_{g \cdot j} = b_j, \]

(72)

where the inequality follows from the map \(g \cdot -: I_M \rightarrow I_M\) being bijective. Thus, we have \(\Phi^{(g)} \in \mathcal{P}\). Since \(\mathcal{P}\) is convex, we have \(\Phi^o \in \mathcal{P}\).

\textbf{Theorem 9} Let \(\mathcal{G}\) be a group. Assume that Problem (P) is \(\mathcal{G}\)-symmetric; then \(\Phi^o \in \mathcal{P}\) and \(P(\Phi^o) = P(\Phi)\) hold for any \(\Phi \in \mathcal{P}\).

\textbf{Proof} \(\Phi^o \in \mathcal{P}\) holds from Lemma 8. We have that for any \(g \in \mathcal{G}\),

\[P(\Phi^{(g)}) = \sum_{m=0}^{M-1} (\Phi^{(g)}_m, c_m) = \sum_{m=0}^{M-1} (\bar{g} \cdot \Phi_{g \cdot m}, c_m) \]

\[= \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, g \cdot c_m) = \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, c_{g \cdot m}) = P(\Phi). \]

(73)

Thus, we have

\[P(\Phi^o) = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} P(\Phi^{(g)}) = P(\Phi), \]

(74)

Considering the case of \(\Phi\) being optimal for Problem (P), we immediately obtain the following corollary as a special case of Theorem 9 (proof omitted).

\textbf{Corollary 10} Let \(\mathcal{G}\) be a group. Assume that Problem (P) is \(\mathcal{G}\)-symmetric. Then, for any optimal solution, \(\Phi\), to Problem (P), \(\Phi^o\) is also optimal for Problem (P).

In the case of Problem (P) being \(\mathcal{G}\)-symmetric, this corollary guarantees that if at least one optimal solution exists, then there also exists an optimal solution with the symmetry property of Eq. (67). This corollary also implies that the optimal value remains unchanged even if we impose the additional constraint of Eq. (67) (with \(\Phi^o\) replaced by \(\Phi\)). Problem (P) with this constraint is still convex.

\textbf{Theorem 11} Let \(\mathcal{G}\) be a group. Assume that Problem (D) is \(\mathcal{G}\)-symmetric; then, \((\chi^o, q^o) \in \mathcal{D}\) and \(D_S(\chi^o, q^o) \leq D_S(\chi, q)\) hold for any \((\chi, q) \in \mathcal{D}\).

\textbf{Proof} We have that for any \(m \in I_M\),

\[z_m(q^o) = c_m - \sum_{j=0}^{J-1} q^o_j a_{j,m} = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \left[c_m - \sum_{j=0}^{J-1} q^o_j a_{j,g \cdot m} \right] \]

\[= \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \sum_{j=0}^{J-1} g \cdot \left[c_{g \cdot j,m} - \sum_{j=0}^{J-1} q^o_j a_{j,g \cdot m} \right] \]

\[= \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} g \cdot \sum_{j=0}^{J-1} q^o_j a_{j,m} \]

(75)

where \(j' := \bar{g} \cdot j\). This yields

\[\sum_{m=0}^{M-1} (\Phi^{(g)}_m, \chi^o - z_m(q^o)) = \frac{1}{|\mathcal{G}|} \sum_{m=0}^{M-1} \sum_{g \in \mathcal{G}} (\Phi^{(g)}_m, g \cdot [\chi - z_g \cdot m(q)]) \]

\[= \frac{1}{|\mathcal{G}|} \sum_{m=0}^{M-1} \sum_{m' \in \mathcal{G}} (\Phi^{(g)}_{m'}, \chi - z_{m'}(q)) \geq 0 \]

(76)

for any \(\Phi \in \mathcal{C}\), where \(m' := \bar{g} \cdot m\). The inequality follows from \(\Phi^{(g)} \in \mathcal{C}\) and \(\{\chi - z_m(q^o)\}_{m=0}^{M-1} \subseteq \mathcal{C}^*\). Therefore, \((\chi^o - z_m(q^o))_{m=0}^{M-1} \subseteq \mathcal{C}^*\), i.e., \((\chi^o, q^o) \in \mathcal{D}\) holds. Moreover, we have

\[D_S(\chi^o, q^o) = \lambda_S \left[\sum_{g \in \mathcal{G}} \sum_{j=0}^{J-1} \sum_{g \in \mathcal{G}} (\Phi^{(g)}_m, q^o_j b_j) \right] \]

\[\leq \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \lambda_S \left[\sum_{j=0}^{J-1} q^o_j b_j \right] \]

\[= \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \lambda_S(\chi) + \sum_{j=0}^{J-1} q^o_j b_{g \cdot j} \]

\[= \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} D_S(\chi, q) \]

(77)

where the second line follows since \(\lambda_S\) is convex. The third line follows from

\[\lambda_S(\chi) = \sup_{\varphi \in S} \langle \varphi, g \cdot \chi \rangle = \sup_{\varphi \in S} \langle \bar{g} \cdot \varphi, \chi \rangle = \lambda_S(\chi). \]

(78)

We immediately obtain the following corollary as a special case of Theorem 11 (proof omitted).
Corollary 12 Let \(G \) be a group. Assume that Problem (D) is \(G \)-symmetric. Then, for any optimal solution, \((\chi, q)\), to Problem (D), \((\chi^*, q^*)\) is also optimal for Problem (D).

In the case of Problem (D) being \(G \)-symmetric, this corollary says that there exists an optimal solution with the symmetry property of Eq. (71) whenever an optimal solution exists. Also, the optimal value does not change even if we impose the additional constraint of Eq. (71) [with \((\chi^*, q^*)\) replaced by \((\chi, q)\)]. Problem (D) with this constraint is still convex.

D. Sufficient conditions that a tester with maximally entangled pure states can be optimal

We will call a tester expressed as in Fig. 6 a tester with maximally entangled pure states, where \(\Psi_1, \ldots, \Psi_T \) are maximally entangled pure states and \(\Pi := (\Pi_m)_{m=0}^{M-1} \) is a measurement. Such a tester \(\hat{\Phi} \) is expressed by Eq. (3) with \(\hat{\sigma}_t := \Psi_t \otimes 1_{W_{t-1} \otimes V_{t+1} \otimes \cdots \otimes W_{T} V_1} \) (\(t \in \{1, \ldots, T\} \)). We may assume, without loss of generality, that each \(\Psi_t \) is the generalised Bell state \(|I_V \rangle |I_V \rangle |N_{V_1} \rangle \in \text{Det}_{V_2 \otimes V_3} \). In this case, we have \(\Phi_m = \Pi_m / \prod_{t=1}^{T} N_{V_t} \). It is easily seen that \(\Phi \in \hat{\Phi} \) is a tester with maximally entangled pure states if and only if if \(\sum_{m=0}^{M-1} \Phi_m \) is in the unit set

\[
S_G := \left\{ I_V / \prod_{t=1}^{T} N_{V_t} \right\}.
\]

\(S_G \) is obviously a closed convex subset of \(S_G \). In some \(G \)-symmetric problems, we can derive sufficient conditions that the optimal value of Problem (P) with \(S = S_G \) remain unchanged if \(S \) is replaced by \(S_G \).

Proposition 13 Let \(G \) be a group whose action on \(\text{Her}_{V_1} \) satisfies \(g \otimes I_V = I_V \) (\(\forall g \in G \)). [Note that if \(g \otimes - \) is expressed in the form of Eq. (54) or Eq. (55), then \(g \otimes I_V = I_V \) holds.] Assume that \(S = S_G \) holds and that Problem (P) is \(G \)-symmetric. Also, assume that, for any \(t \in \{1, \ldots, T\} \), there exists a subgroup \(\mathcal{H}^{(t)} \subseteq G \) such that

\[
\text{Tr}_{W_{t-1} \otimes V_{t+1} \otimes \cdots \otimes W_{T} V_1} (h \otimes -) = \mathcal{A}_{U_{h,t}} \otimes 1_{W_{t-1} \otimes V_{t+1} \otimes \cdots \otimes W_{T} V_1}
\]

for any \(h \in \mathcal{H}^{(t)} \), where \(\mathcal{H}^{(t)} \ni h \mapsto U_{h,t} \in \text{Un}_{V_t} \) is an irreducible projective representation. Then, the optimal value of Problem (P) remains unchanged if \(S \) is replaced by \(S_G \).

Proof Let \(P^* \) be the optimal value of Problem (P) and \(P^*_G \) be that of Problem (P) with \(S \) replaced by \(S_G \). The assumption \(g \otimes I_V = I_V \) gives \(g \otimes \varphi \in S_G \) (\(\forall \varphi \in S_G \)). Thus, Problem (P) with \(S \) replaced by \(S_G \) is also \(G \)-symmetric. Arbitrarily choose \(0 \leq \varepsilon \in \mathbb{R} \); then, it is easily seen that there exists \((\chi, q) \in D\) such that \(D_{\chi,q}(\varepsilon) = P^*_G + \varepsilon \). From Theorem 11, we have \(D_{\chi,q}(\varepsilon) = P^*_G + \varepsilon \). Let \(X_t := W_{t-1} \otimes V_{t+1} \otimes \cdots \otimes W_T \otimes V_1 \) and \(\chi_t = \text{Tr}_{W_{t-1} \otimes V_{t+1} \otimes \cdots \otimes W_T} \chi^* \in \text{Her}_{V_t} \otimes \chi_e \) (\(t \in \{1, \ldots, T\} \)). Assume now that, for each \(t \in \{1, \ldots, T\} \), \(\chi_t \) is expressed in the form

\[
\chi_t = I_{V_t} \otimes \chi'_t, \quad \chi'_t \in \text{Her}_{V_t};
\]

then, we can easily check \(\chi^* \in \text{Lin}(\text{Ch}_{\mathcal{H}^{(t)}}) \) [see Eq. (9)]. From \((\chi^*, q^*) \in D \) and Eq. (35), we have \(P^*_G \leq D_{\chi,q} \chi^*, q^* \) from Schur’s lemma (on anti-unitary groups) [77], \(\chi_x^* \), is expressed in the form

\[
\chi_x^* = I_{V} \otimes \chi_x^*, \quad \chi_x^* \in \text{Herm}_{V};
\]

and

\[
\langle s' \otimes s, \chi_x^* \rangle = \langle s' \otimes s, \chi_x^* \rangle \langle s', I_{V_t} \rangle = \langle s', I_{V_t} \rangle \chi_x^*.
\]

V. MINIMAX STRATEGY

We now discuss a minimax strategy for a quantum process discrimination problem. This strategy is useful in particular in the case in which the prior probabilities of the processes are not known.
A. Formulation

Let us consider a process discrimination problem in which the value of an objective function, $Q_k(\Phi)$, depends not only on a tester Φ but also on some random variable, $k \in \mathcal{I}_k$. We want to maximize the average of $Q_k(\Phi)$,

$$Q(\mu, \Phi) := \sum_{k=0}^{K-1} \mu_k Q_k(\Phi),$$ \hspace{1cm} (83)

where $\mu := \{\mu_k\}_{k=0}^{K-1}$ is a probability distribution of k. Here, we consider a situation in which the probability distribution μ is unknown but known to lie in a fixed subset, Prob, of $\text{Prob}_{\text{max}} := \{\mu \in \mathbb{R}_+^K : \sum_{k=0}^{K-1} \mu_k = 1\}$. In what follows, assume that Prob is a nonempty closed convex set. A natural approach is to maximize the infimum of $Q(\mu, \Phi)$ over $\mu \in \text{Prob}$. This problem is formulated as

$$\begin{align*}
\text{maximize} & \quad \inf_{\mu \in \text{Prob}} Q(\mu, \Phi) \\
\text{subject to} & \quad \Phi \in \mathcal{P},
\end{align*}$$ \hspace{1cm} (P_{\text{mm}}) \tag{84}

where \mathcal{P} is defined by Eq. (22). Assume that, for each $k \in \mathcal{I}_k$, $Q_k(\Phi)$ is expressed in the form

$$Q_k(\Phi) := \sum_{m=0}^{M-1} (\Phi_m, c_{k,m}),$$ \hspace{1cm} (85)

where $\{c_{k,m}\}_{(k,m)=(0,0)}^{(K-1,M-1)} \subseteq \text{Her}_\mathcal{P}$ are constants. Note that, when $c_{k,m}$ is expressed in the form $c_{k,m} = c_{k,m}' + d_k u$ with $c_{k,m}' \in \text{Her}_\mathcal{P}$, $d_k \in \mathbb{R}$, and $u := I_{\mathcal{F}} / \prod_{j=1}^{T} N_{W}$, we can rewrite $Q_k(\Phi)$ as

$$Q_k(\Phi) = \sum_{m=0}^{M-1} (\Phi_m, c_{k,m}') + d_k, \quad \forall \Phi \in \mathcal{P}.$$ \hspace{1cm} (86)

Example 15 (Optimal inconclusive discrimination) We can consider a minimax version of Problem (P_{\text{mm}}). Assume that the prior probabilities $p := \{p_r\}_{r=0}^{R-1}$ of the combs $\{\hat{\mathcal{E}}_r\}_{r=0}^{R-1}$ are completely unknown. The average success and inconclusive probabilities are, respectively, expressed as

$$P_S(\Phi; p) := \sum_{r=0}^{R-1} p_r \text{Pr}(\hat{r}|\hat{\Phi}), \quad P_1(\Phi; p) := \sum_{r=0}^{R-1} p_r \text{Pr}(R|\hat{\Phi}),$$ \hspace{1cm} (87)

where $\text{Pr}(\hat{r}|\hat{\Phi}) := \langle \hat{\Phi}_m, \hat{\mathcal{E}}_r \rangle$. Since the constraint $P_1(\Phi; p) = p_{\text{inc}}$ ($\forall p \in \text{Prob}_{\text{max}}$) is too tight, we relax it to $P_1(\Phi; p) \leq p_{\text{inc}}$ ($\forall p \in \text{Prob}_{\text{max}}$). Let us consider the problem of minimizing the maximum average error probability, which is equal to $1 - P_S(\Phi; p) - P_1(\Phi; p)$. This problem is formulated as

$$\begin{align*}
\text{maximize} & \quad \inf_{p \in \text{Prob}_{\text{max}}} [P_S(\Phi; p) + P_1(\Phi; p)] \\
\text{subject to} & \quad \Phi \in \mathcal{F}_G, \quad P_1(\Phi; p) \leq p_{\text{inc}} \quad (\forall p \in \text{Prob}_{\text{max}}).
\end{align*}$$ \hspace{1cm} (88)

The second constraint is equivalent to $\text{Pr}(R|\hat{\mathcal{E}}_r) \leq p_{\text{inc}}$ ($\forall j \in \mathcal{I}_R$), and thus this problem is rewritten as Problem (P_{\text{mm}}) with

$$\begin{align*}
M & := R + 1, \quad K := R, \quad J := R, \\
c_{k,m} & := \delta_{m,k} + \delta_{m,R} \mathcal{E}_k, \quad \text{Prob} := \text{Prob}_{\text{max}}, \quad T := T_G, \\
a_{j,m} & := \delta_{m,R} \mathcal{E}_j, \quad b_j := p_{\text{inc}}.
\end{align*}$$ \hspace{1cm} (89)

If $T = 1$ and $V_1 = \mathbb{C}$ hold, then this problem is the state discrimination problem discussed in Ref. [31]. In the special case of $p_{\text{inc}} = 0$, Problem (87) is rewritten as

$$\begin{align*}
& \text{maximize} \quad \inf_{p \in \text{Prob}_{\text{max}}} \text{min} \quad P_S(\Phi; p) \\
& \text{subject to} \quad \Phi \in \mathcal{F}_G;
\end{align*}$$ \hspace{1cm} (90)

in this case, without loss of generality, we can assume $\Phi_R = 0$. Problem (89) corresponds to a minimax version of minimum-error discrimination.

Example 16 (Discrimination of sets of combs) Let us consider the problem of discriminating R subsets of combs, $\{\hat{\mathcal{E}}_0\}_{r=0}^{R-1}, \{\hat{\mathcal{E}}_1\}_{r=0}^{R-1}, \ldots, \{\hat{\mathcal{E}}_{R-1}\}_{r=0}^{R-1}$, where L_0, \ldots, L_{R-1} are natural numbers. Assume that the prior probability, $p_{r,l}$, of each comb $\hat{\mathcal{E}}_{r,l}$ is unknown. We want to maximize the infimum of the average success probability given by

$$P'_S(\Phi; p) := \sum_{r=0}^{R-1} \sum_{l=0}^{L_r-1} p_{r,l} \langle \hat{\Phi}_r, \hat{\mathcal{E}}_{r,l} \rangle,$$ \hspace{1cm} (91)

where $p := \{p_{r,l}\}_{(r,l)=(0,0)}^{(R-1,L_r-1)} \in \text{Prob}$ ($K := \sum_{r=0}^{R-1} L_r$). This problem can be formulated as follows:

$$\begin{align*}
& \text{maximize} \quad \inf_{p \in \text{Prob}} P'_S(\Phi; p) \\
& \text{subject to} \quad \Phi \in \mathcal{F}_G.
\end{align*}$$ \hspace{1cm} (92)

One can easily verify that this problem is equivalent to Problem (P_{\text{mm}}) with

$$M := R, \quad K := \sum_{r=0}^{R-1} L_r, \quad J := 0, \quad c_{l,m} := \delta_{r,m} \mathcal{E}_{r,l},$$ \hspace{1cm} (93)

where $k(r,l) := \sum_{r'=0}^{r-1} L_{r'} + l$ ($r \in \mathcal{I}_R, l \in \mathcal{I}_L$). Note that if the prior probabilities are known, then this problem can be simply reduced to the problem of discriminating R combs $\{\sum_{m=0}^{M-1} p_{r,l} \mathcal{E}_{r,l}\}_{r=0}^{R-1}$ with the prior probabilities $\{p'_{r,l}\}_{r=0}^{R-1}$, where $p'_{r,l} := \sum_{l=0}^{L_r-1} p_{r,l}$.

B. Properties of minimax solutions

$(\mu^*, \Phi^*) \in \text{Prob} \times \mathcal{P}$ is called a minimax solution (or saddle point) if

$$Q(\mu^*, \Phi^*) \leq Q(\mu, \Phi^*) \leq Q(\mu^*, \Phi^*)$$ \hspace{1cm} (94)

holds for all $\mu \in \text{Prob}$ and $\Phi \in \mathcal{P}$. We refer to Φ^* as a minimax tester. Let

$$Q^*(\mu) := \sup_{\Phi \in \mathcal{P}} Q(\mu, \Phi).$$ \hspace{1cm} (95)

If there exists a minimax solution to Q, then (μ^*, Φ^*) is a minimax solution to Q if and only if Φ^* is optimal for Problem (P_{\text{mm}}) and μ^* is $\arg\min_{\mu \in \text{Prob}} Q^*(\mu)$ holds [78]. Also, from Eq. (93), $Q^*(\mu^*) = Q(\mu^*, \Phi^*)$ holds.
Remark 14 Assume that P is nonempty and closed; then, in Problem (Pmm), there exists a minimax solution to Q.

Proof P and Prob are nonempty compact convex sets. $Q(\mu, \Phi)$ is a continuous convex function of μ fixed and Φ and a continuous concave function of Φ fixed. Then, from Ref. [79] (Chap. VI, Proposition 2.1), there exists a minimax solution to Q.

The following remark states that the problem of finding $Q^*(\mu)$ can be formulated as Problem (P).

Remark 15 For given $\mu \in \text{Prob}$, let P^*_μ be the optimal value of Problem (P) with $c_m := \sum_{k=0}^{K-1} \mu_k c_{k,m}$; then, $Q^*(\mu) = P^*_\mu$ holds.

Proof We have

$$Q^*(\mu) = \sup_{\Phi \in P} Q(\mu, \Phi) = \sup_{\Phi \in P} \sum_{k=0}^{K-1} \mu_k \sum_{m=0}^{M-1} \langle \Phi_m, c_{k,m} \rangle = \sup_{\Phi \in P} \sum_{m=0}^{M-1} \langle \Phi_m, c_m \rangle = P^*_\mu. \quad (95)$$

Proposition 16 $(\mu, \Phi) \in \text{Prob} \times P$ is a minimax solution to Q if and only if $Q^*(\mu) \leq Q(\mu, \Phi)$ holds for any $\mu' \in \text{Prob}$.

Proof “If”: Considering the case $\mu = \mu'$, we have $Q^*(\mu) \leq Q(\mu, \Phi)$. Thus, from $Q(\mu, \Phi) < Q^*(\mu)$, $Q(\mu, \Phi) = Q^*(\mu)$ must hold. Therefore, (μ, Φ) is a minimax solution.

“Only if”: Equation (93) gives $Q^*(\mu) = Q(\mu, \Phi)$ for any $\mu' \in \text{Prob}$.

Proposition 17 Assume that the affine hull of Prob contains Prob_{\max} [or, equivalently, the affine hull of Prob is $(K-1)$-dimensional]. Also, assume that μ is a relative interior point of Prob and that $\Phi \in P$ holds. Then, (μ, Φ) is a minimax solution to Q if and only if $Q_\Phi(\Phi) = Q^*(\mu)$ holds for any $k \in I_K$.

Proof “If”: $Q^*(\mu) = \sum_{k=0}^{K-1} \mu'_k Q_k(\Phi) = Q(\mu', \Phi)$ (for $\mu' \in \text{Prob}$) holds. Thus, from Proposition 16, (μ, Φ) is a minimax solution.

“Only if”: Assume by contradiction that there exists $k \in I_K$ such that $Q_k(\Phi) \neq Q^*(\mu)$. In the case of $Q_k(\Phi) = \cdots = Q_{K-1}(\Phi)$, $Q(\mu, \Phi) = \sum_{k=0}^{K-1} \mu_k Q_k(\Phi) \neq Q^*(\mu)$ holds, which contradicts that (μ, Φ) is a minimax solution. Then, we consider the other case. Let us choose $k_0 \in \text{argmin}_{k \in I_K} Q_k(\Phi)$ and $k_1 \in \text{argmax}_{k \in I_K} Q_k(\Phi)$; then, $Q_{k_0}(\Phi) < Q_{k_1}(\Phi)$ holds. Also, let $\mu' := (\mu_k + \varepsilon(\delta_{k_1} - \delta_{k_0}))/K-1$; then, since μ is a relative interior point of Prob, $\mu' \in \text{Prob}$ holds for sufficiently small $\varepsilon > 0$. We have $Q(\mu', \Phi) - Q(\mu, \Phi) = \varepsilon(Q_{k_1}(\Phi) - Q_{k_0}(\Phi)) < 0$, which contradicts that (μ, Φ) is a minimax solution.

In the special case of $\text{Prob} = \text{Prob}_{\max}$, the following proposition and corollary hold.

Proposition 18 Assume $\mu \in \text{Prob} = \text{Prob}_{\max}$ and $\Phi \in P$. The following statements are all equivalent:

1. (μ, Φ) is a minimax solution to Q.
2. (μ, Φ) satisfies
 $$Q^*(\mu) = Q(\mu, \Phi),$$
 $$Q_\Phi(\Phi) \geq Q_{\Phi'}(\Phi), \quad \forall k, k' \in I_K \text{ s.t. } \mu_k > 0. \quad (96)$$
3. (μ, Φ) satisfies
 $$Q_\Phi(\Phi) \geq Q^*(\mu), \quad \forall k \in I_K. \quad (97)$$

Proof (1) \Rightarrow (2): The first line of Eq. (96) is obvious. Arbitrarily choose $k, k' \in I_K$ such that $\mu_{k'} > 0$. Let $\mu' := (\mu_k + \varepsilon(\delta_k - \delta_{k'}))/K-1$ with sufficiently small $\varepsilon > 0$; then, $\mu' \in \text{Prob}_{\max}$ holds. Thus, $\varepsilon(Q_\Phi(\Phi) - Q_{\Phi'}(\Phi)) = Q(\mu', \Phi) - Q(\mu, \Phi) \geq 0$, i.e., the second line of Eq. (96), holds.

(2) \Rightarrow (3): From the second line of Eq. (96), $\mu_1 Q_\Phi(\Phi) \geq Q^*(\Phi)$ holds for any $k, l \in I_K$. Summing this equation over $l = 0, \ldots, K-1$ yields

$$Q_\Phi(\Phi) \geq \sum_{l=0}^{K-1} \mu_l Q_\Phi(\Phi) = Q(\mu, \Phi) = Q^*(\mu). \quad (98)$$

(3) \Rightarrow (1): $Q^*(\mu) \leq \sum_{l=0}^{K-1} \mu_l Q_\Phi(\Phi) = Q(\mu', \Phi)$ holds for any $\mu' \in \text{Prob}_{\max}$; thus, from Proposition 16, (μ, Φ) is a minimax solution.

Corollary 19 Assume $\text{Prob} = \text{Prob}_{\max}$. A tester is a minimax one of Q if and only if it is optimal for the following problem:

$$\max \min_{k \in I_K} Q_k(\Phi) \quad \text{subject to } \Phi \in P. \quad (99)$$

Proof “If” : We here replace P with its closure \overline{P}. Let (μ^*, Φ^*) be a minimax solution to Q. Remark 14 guarantees that such a minimax solution exists. Also, let Φ be an optimal solution to Eq. (99); then, Φ is also optimal for Eq. (99) with P replaced by \overline{P}. Thus, $Q_{\min}(\Phi) \geq Q_{\min}(\Phi^*) \geq Q^*(\mu^*)$ holds, where the last inequality follows from Eq. (97). Therefore, (μ^*, Φ^*) satisfies Statement (3) of Proposition 18, which implies that (μ^*, Φ^*) is a minimax solution to Q.

“Only if” : Let (μ^*, Φ^*) be a minimax solution to Q. From Eq. (97), we have

$$Q_{\min}(\Phi^*) \geq Q^*(\mu^*) = \sup_{\Phi \in P} Q(\mu^*, \Phi) \geq \sup_{\Phi \in P} Q_{\min}(\Phi), \quad (100)$$

which gives that Φ^* is optimal for Eq. (99).

C. Symmetry

Using a similar argument as in Sec. IV, we can see that if Problem (Pmm) has a certain symmetry and at least one minimax solution exists, then there exists a symmetric minimax solution.
Definition 2 Let G be a group. We will call Problem (P_{mm}) G-symmetric if the following conditions hold: (a) there exist group actions of G on I_M, I_I, I_K, and Her_G; (b) the action of G on Her_G is linearly isometric; and (c) Eq. (56) and

$$g \cdot c_{km} = c_{g \cdot k \cdot m}, \quad \forall g \in G, \ k \in I_K, \ m \in I_M,$$

$$\{\mu_{g \cdot k}\}_{k=0}^{K-1} \in \text{Prob}, \quad \forall g \in G, \ \mu \in \text{Prob}$$

(101)

hold.

For any group G and $\mu \in \text{Prob}$, let

$$\mu^o := \left\{ \mu_k^o := \frac{1}{|G|} \sum_{g \in G} \mu_{g \cdot k} \right\}_{k=0}^{K-1}.$$

(102)

We can easily verify $\mu^o \in \text{Prob}$ and

$$\mu_k^o = \mu_{g \cdot k}^o, \quad \forall g \in G, \ k \in I_K.$$

(103)

Analogously to Theorem 9, the following theorem can be proved.

Theorem 20 Let G be a group. Assume that Problem (P_{mm}) is G-symmetric; then, for any minimax solution (μ, Φ) to Q, (μ^o, Φ^o) defined by Eqs. (66) and (102) is also a minimax solution to Q.

Proof $\Phi^o \in \mathcal{P}$ holds from Lemma 8. From Proposition 16, it suffices to show $Q^*(\mu^o) \leq Q(\mu', \Phi^o)$ for any $\mu' \in \text{Prob}$. In what follows, we show $Q(\mu', \Phi^o) \geq Q^*(\mu)$ ($\forall \mu' \in \text{Prob}$) and $Q^*(\mu) \geq Q^*(\mu^o)$.

First, we show $Q(\mu', \Phi^o) \geq Q^*(\mu)$ ($\forall \mu' \in \text{Prob}$). We have that for any $\mu' \in \text{Prob}$,

$$Q(\mu', \Phi^o) = \sum_{k=0}^{K-1} \frac{1}{|G|} \sum_{g \in G} \sum_{m=0}^{M-1} (g \cdot \Phi_{g \cdot m}, c_{km})$$

$$= \frac{1}{|G|} \sum_{g \in G} \frac{1}{K} \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, g \cdot c_{km})$$

$$= \frac{1}{|G|} \sum_{g \in G} \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, g \cdot c_{km})$$

$$= \frac{1}{|G|} \sum_{g \in G} \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, g \cdot c_{km})$$

$$= \frac{1}{|G|} \sum_{g \in G} \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} (\Phi_{g \cdot m}, g \cdot c_{km})$$

$$\geq Q^*(\mu),$$

(104)

where $m' := g \cdot m$ and $k' := g \cdot k$. The inequality follows from $\{\mu_{g \cdot k} \}_{k=0}^{K-1} \in \text{Prob}$ and $Q(\mu', \Phi) \geq Q^*(\mu)$ ($\forall \mu' \in \text{Prob}$) (see Proposition 16).

Next, we show $Q^*(\mu) \geq Q^*(\mu^o)$. Let $\mu^{(g)} := \left\{ \mu_k^{(g)} \right\}_{k=0}^{K-1}$; then, we have that for any $g \in G$,

$$Q^*[\mu^{(g)}] = \sup_{\Phi \in \mathcal{P}} \sum_{k=0}^{K-1} \mu_{g \cdot k} \sum_{m=0}^{M-1} (\Phi_{m}, c_{km})$$

$$= \sup_{\Phi \in \mathcal{P}} \sum_{k=0}^{K-1} \mu_{g \cdot k} \sum_{m=0}^{M-1} (\Phi_{m}, c_{g \cdot k \cdot m})$$

$$= \sup_{\Phi \in \mathcal{P}} \sum_{k=0}^{K-1} \mu_{g \cdot k} \sum_{m=0}^{M-1} (g \cdot \Phi_{g \cdot m}, c_{g \cdot k \cdot m})$$

$$\leq \sup_{\Phi \in \mathcal{P}} \sum_{k=0}^{K-1} \mu_{g \cdot k} \sum_{m=0}^{M-1} (\Phi_{m}, c_{g \cdot k \cdot m})$$

$$= Q^*(\mu),$$

(105)

where $k' := g \cdot k$ and $m' := g \cdot m$. The inequality follows from $\{g \cdot \Phi_{g \cdot m} \}_{m=0}^{M-1} = \Phi^{(g)} \in \mathcal{P}$ (see Lemma 8). Thus, we have

$$Q^*(\mu) \geq \frac{1}{|G|} \sum_{g \in G} \sum_{k=0}^{K-1} \mu_{g \cdot k}^{(g)} Q_k(\Phi^o)$$

$$\geq \sup_{\Phi \in \mathcal{P}} \frac{1}{|G|} \sum_{g \in G} \sum_{k=0}^{K-1} \mu_{g \cdot k}^{(g)} Q_k(\Phi^o) = Q^*(\mu^o).$$

(106)
$X \geq \Delta$ and $X \geq -\Delta$. Thus, we have $X = |\Delta|$ and $\chi^* = \frac{1}{2}(p_0\mathcal{E}_0 + p_1\mathcal{E}_1 + |\Delta|)$. Since \mathcal{E}_0 and \mathcal{E}_1 are combs, $\chi^* \in \text{Lin}(ext{Chn}_V)$ holds if and only if $|\Delta| \in \text{Lin}(ext{Chn}_V)$ holds. Therefore, Theorem 7 completes the proof.

Note that Corollary 3 of Ref. [53] states that, in the problem of finding (single-shot) minimum-error discrimination of two channels $\hat{\Lambda}_0, \hat{\Lambda}_1 \in \text{Chn}(V, W)$ with prior probabilities p_0 and p_1, respectively, there exists a test with maximally entangled pure states that is optimal if and only if $\text{Tr}_W[p_0\hat{\Lambda}_0 - p_1\hat{\Lambda}_1] \propto I_W$ holds. One can immediately conclude that this is the special case of Corollary 21 with $T := 1, \hat{\Lambda}_0 := \hat{\Lambda}_0$, and $\hat{\Lambda}_1 := \hat{\Lambda}_1$.

Corollary 22 Let us consider the direct product, $\mathcal{G} := \mathcal{H}_1 \times \cdots \times \mathcal{H}_T$, of some groups $\mathcal{H}_1, \ldots, \mathcal{H}_T$. Assume that the group action of \mathcal{G} on \mathcal{H}_T is expressed as

$$\begin{align*}
(h_1, \ldots, h_T) \cdot \hat{g} &:= \text{Ad}_{U_{\mathcal{G}_T}^{h_1} \otimes U_{\mathcal{G}_T}^{h_2} \otimes \cdots \otimes U_{\mathcal{G}_T}^{h_T}}, \\
(h_1, \ldots, h_T) &\in \mathcal{G},
\end{align*}
$$

(108)

where, for each $t \in \{1, \ldots, T\}$, $\mathcal{H}_t \ni h_t \mapsto U_{h_t} \in \text{Uni}_V$, and $\mathcal{H}_t \ni h_t \mapsto U_{h_t} \in \text{Uni}_V$ are projective representations of \mathcal{H}_t. Also, assume that $S = S_G$ holds and that Problem (P) is \mathcal{G}-symmetric. If $h_t \mapsto U_{h_t}^{T_t}$ is irreducible for any $t \in \{1, \ldots, T\}$, then the optimal value of Problem (P) remains unchanged if S is replaced by $S_{\mathcal{G}}$.

Proof Proposition 13 with $\mathcal{H}^{(t)} := \{(h_1, \ldots, h_T) : h_T = e_T, h_t \in \mathcal{H}_t\}$ concludes the proof, where e_T is the identity element of \mathcal{H}_T.

We provide two simple applications of this corollary. Note that each of them is a special case of the problem shown in Example 6.

1. T-shot discrimination of symmetric channels

Let us first consider the problem of finding optimal inconclusive discrimination of R channels, $\{\hat{\Lambda}_i\}_{i=1}^{R}$, discussed in Example 13. Assume that $\Phi^{(g)} \in C_G$ ($\forall \Phi \in C_G$) holds; then, this problem is \mathcal{H}_T-symmetric. It immediately follows from Corollary 22, with $\mathcal{G} := \mathcal{H}_T$, that there exists a test with maximally entangled pure states that is optimal for Problem (P) in $h \mapsto \hat{U}_h$ (in \mathcal{H}) is irreducible. In what follows, we present two typical examples.

The first example is the case in which $\hat{\Lambda}_0, \ldots, \hat{\Lambda}_{R-1}$ are teleportation-covariant channels [39, 80]. Let \mathcal{H} be a group and $\{U_{h_t}\}_{h_t \in \mathcal{H}_T}$ be the set of unitary operators generated by the Bell detection in a teleportation process. Assume that a collection of channels $\{\hat{\Lambda}^{(t)}\}_{t=0}^{R-1}$ is teleportation-covariant, i.e., there exists a projective unitary representation $h \mapsto \hat{U}_h$ such that

$$\hat{\Lambda}_r = \text{Ad}_{U_{h_r}} \circ \hat{\Lambda}_r \circ \text{Ad}_{U_{h_r}}, \quad \forall r \in I_R, \ h \in \mathcal{H}.$$

(109)

It is easily seen that $\Phi^{(g)} \in C_G$ ($\forall \Phi \in C_G$) holds and $h \mapsto \hat{U}_h$ (in \mathcal{H}) is irreducible, and thus there exists a test with maximally entangled pure states that is optimal. Note that its minimum-error version has been discussed in Ref. [81].

The second example is the case in which $T = 1$ holds and $\hat{\Lambda}_0, \hat{\Lambda}_1, \ldots, \hat{\Lambda}_{T-1} \in \text{Chn}(V, W)$ are unitary qubit channels, i.e., unitary channels with $N_V = N_W = 2^{12}$. For any unitary qubit channel $\hat{\Lambda} \in \text{Chn}(V, W)$, since $\text{Tr}_W \Lambda \propto I_V$ and $\text{Tr}_Y \Lambda \propto I_W$ hold, Λ is expressed in the form

$$\Lambda = \begin{bmatrix}
 s_0 & s_1 & t_1 & t_0 \\
 s_1 & s_2 & t_2 & -t_1 \\
 t_1 & t_2 & -s_2 & -s_1 \\
 t_0 & -t_1 & -s_1 & s_0
 \end{bmatrix},
$$

(110)

with $s_0, s_2 \in \mathbb{R}$ and $s_1, t_1, t_2 \in \mathbb{C}$. We can easily verify that such Λ satisfies $\text{Ad}_{S_{\mathcal{G}_T}}(\Lambda) = \Lambda$, where $S_{\mathcal{G}_T}$ is the anti-unitary operator defined by

$$\text{Ad}_{S_{\mathcal{G}_T}}(x) := \text{Ad}_S(x^\dagger), \quad x \in \mathcal{H}_{\mathcal{G}_T},
$$

(111)

Let us consider a group $\mathcal{H} := \{e, \hat{h}\}$ and its projective representation $\mathcal{H} \ni h \mapsto U_h \in \text{Uni}_V$ with $U_e : I_V$ and $U_h := S_h$; then, we have

$$\hat{\Lambda}_r = \text{Ad}_{I_R} \circ \text{Ad}_{U_{\mathcal{G}_T}} \circ \text{Ad}_{U_{\mathcal{G}_T}}, \quad \forall r \in I_R, \ h \in \mathcal{H}.
$$

(112)

It follows that $\Phi^{(g)} \in C_G$ ($\forall \Phi \in C_G$) holds and the representation $h \mapsto U_h$ is irreducible, and thus there exists a test with maximally entangled pure states that is optimal.

2. Determination of the modulo sum of independent rotations

We next consider the problem of determining the modulo sum of T independent rotations. Let $\mathcal{H} := \{g_{jk}^{(d-1-d-1)}\}$ be the generalized Pauli group (or discrete Heisenberg-Weyl group), whose projective representation is

$$\mathcal{H} \ni g_{jk} \mapsto U_{g_{jk}}^{I_V} := \sum_{i=0}^{N_V-1} \exp\left(2\pi ik\frac{i}{N_V}\right) |i \oplus j\rangle \langle i| \in \text{Uni}_V,
$$

(113)

where $i := \sqrt{-1}$, V is a system, \oplus is addition modulo N_V, and $|i\rangle$ is the standard basis of V. j and k can be, respectively, interpreted as the amounts of x- and z- rotations. Note that this representation is irreducible. We consider the following process

$$\hat{\Lambda}_{(h_1, \ldots, h_T)} := \hat{\Lambda}^{(T)}_{I_V} \otimes \hat{\Lambda}^{(T-1)}_{I_{h_1}} \otimes \cdots \otimes \hat{\Lambda}^{(1)}_{I_{h_T}}, \quad (h_1, \ldots, h_T) \in \mathcal{H}_T,
$$

(114)

where, for each $t \in \{1, \ldots, T\}$, $\{\hat{\Lambda}^{(t)}_{I_{h_t}}\}_{h_t \in \mathcal{H}_T} \subset \text{Chn}(V, W_t)$ is a collection of channels satisfying

$$\hat{\Lambda}^{(t)}_{I_{h}} = \text{Ad}_{U_{h_t}} \circ \hat{\Lambda}^{(t)}_{I_{h_t}} \circ \text{Ad}_{U_{h_t}}, \quad \forall h \in \mathcal{H}_T.
$$

(115)

--

12 A channel $\hat{\Lambda} \in \text{Chn}(V, W)$ is called unit if $\text{Tr}(\hat{I}_V/N_V) = L/W/N_W$ (or, equivalently, $\text{Tr}_Y \Lambda/N_Y = L/W/N_W$) holds. Examples of unitary channels are mixed unitary qubit channels and Schur channels [82].
W_i is a system, and $\mathcal{H} \ni h \mapsto U_{ih} \in \mathcal{U}_{W_i}$ is a projective representation. Suppose that a process $\tilde{\Lambda}_{(h_1, \ldots, h_T)}$ is given, where (h_1, \ldots, h_T) is uniformly randomly chosen from \mathcal{H}^T, and that we want to determine the modulo sum of z-rotations $\bigoplus_{t=1}^T z(h_t)$, where z is defined as $z(g_{jk}) := k \ (g_{jk} \in \mathcal{H})$. This problem is formulated as the problem of finding optimal discrimination of the processes $\tilde{E}_m \mid m = 0, \ldots, N^{-1}$, where

$$\tilde{E}_m := \frac{1}{|H|} \sum_{(h_1, \ldots, h_T) \in \mathcal{H}^T} \tilde{\Lambda}_{(h_1, \ldots, h_T)}.$$

To simplify the discussion, we here consider the minimum-error strategy, which is written as Problem (P2) with

$$M := N_V, \quad J := 0, \quad c_m := C_{\tilde{E}_m}.$$

Let the group actions of \mathcal{H}^T on I_M and Her_R be, respectively, defined as

$$\begin{align*}
(h_1, \ldots, h_T) \cdot m & := \left\{ \bigoplus_{t=1}^T z(h_t) \right\} \oplus m, \\
(h_1, \ldots, h_T) \cdot T & := \text{Ad}_{U_{h_1} \otimes U_{h_2}^* \otimes \cdots \otimes U_{h_T}^*}.
\end{align*}$$

for any $(h_1, \ldots, h_T) \in \mathcal{H}^T$; then, one can easily verify that this problem is \mathcal{H}^T-symmetric. Thus, there exists a tester with maximally entangled pure states that is optimal.

B. Single-shot discrimination of cyclic unital qubit channels

It is known that, in several state discrimination problems for highly symmetric states, their optimal values can be obtained analytically. Similarly, it is expected that we can analytically obtain the optimal values in several process discrimination problems with high symmetry.

In this subsection, let us consider the following two problems: the problem of obtaining single-shot optimal inconclusive discrimination [i.e., Problem (Pinc)] for R unital qubit channels $\{\Lambda_r\}_{r=1}^{R-1} \subset \text{Chn}(V, W)$ and its minimax version [i.e., Problem (87)]. Let U be a unitary operator on W satisfying $U^R = I_W$ and $U^T \neq I_W$ for any $1 \leq r < R$. We choose the eigenvectors of U as the standard basis of W. Assume

$$\tilde{\Lambda}_{r=0} = \text{Ad}_U \circ \tilde{\Lambda}_r, \quad \forall r \in I_R,$$

$$\tilde{\Lambda}_0 (\rho^T) = [\tilde{\Lambda}_0 (\rho)]^T, \quad \forall \rho \in \text{Pos}_V,$$

which means $\Lambda_{r=1} = \text{Ad}_{U \otimes U^*} (\Lambda_r)$ for all $r \in I_R$ and $\Lambda_0 = \Lambda_0$. Also, assume that, in Problem (Pinc), the prior probabilities are all equal.

The symmetry expressed by Eq. (119) can be represented by group actions as follows. Let

$$\mathcal{G} := \{ h^R \cdot r : r \in I_R, \ k \in I_2 \}$$

be a dihedral group of order $2R$ generated by a ‘rotation’ h and a ‘reflection’ h_s that satisfy $h^R = e = h_s^2$ and $h_s h h_s = -h$.

We consider the actions of G on I_M and $\text{Her}_W = \{ \chi \}$ defined by

$$h \cdot m := \begin{cases} (m \oplus 1, & m < R, \\ R, & m = R, \end{cases}$$

for any $m \in I_M$ and $x \in \text{Her}_W = \{ \chi \}$. Also, in Problem (87), the action of G on $I_R = I_2$ is defined by $h \cdot r := r \oplus 1$ and $h_s \cdot r := r \ (\forall r \in I_2)$. One can easily verify that Problems (Pinc) and (87) satisfying Eq. (119) are G-symmetric.

In Problem (87), Theorem 20 guarantees that there exists a minimax solution (μ^*, Φ^*) satisfying Eqs. (67) and (103). This gives $\mu_{r=1}^* = \mu^*$, i.e., the prior probabilities μ_0, \ldots, μ_{R-1} are all equal. Thus, Problem (87) is essentially the same as Problem (Pinc). In what follows, we focus on solving Problem (Pinc). Note that since each channel is unital, there exists a tester with maximally entangled pure states that is optimal for Problem (Pinc), as shown in the previous subsection. This fact reduces Problem (Pinc) to the corresponding state discrimination problem. However, solving this state discrimination problem is as hard as solving Problem (Pinc).

Let us consider Problem (Dinc). We can see that $\lambda_{\text{inc}} (\chi) = \lambda_{\text{max}} (\text{Tr}_W \chi)$ holds for any $\chi \in \text{Her}_W = \{ \chi \}$, where $\lambda_{\text{max}} (X)$ is the largest eigenvalue of X. From Corollary 3, without loss of generality, we assume that an optimal solution, χ, is in $\text{Lin}(\text{Chn}_W \chi)$. Corollary 12 asserts that (χ^0, q^0) is also an optimal solution. From Eq. (71), $h \cdot \chi^0 = \chi^0$ and $h_s \cdot \chi^0 = \chi^0$ hold. One can also easily check $\chi^0 \in \text{Lin}(\text{Chn}_W \chi)$. Thus, Problem (Dinc) can be rewritten as

$$\begin{align*}
\text{minimize} \quad & \lambda_{\text{max}} (\text{Tr}_W \chi) - q \mu_{\text{inc}} \\
\text{subject to} \quad & \chi \geq \chi^0, \quad \chi \in \text{Lin}(\text{Chn}_W \chi), \\
& \text{Ad}_{U \otimes U^*} (\chi) = \chi, \quad \lambda^T = \lambda_0.
\end{align*}$$

with $\chi \in \text{Her}_W = \{ \chi \}$ and $q \in \mathbb{R}$, where $\lambda_0 := \Lambda_0 / R$ and $\lambda_1 := \sum_{r=0}^{R-1} \Lambda_r / R = q \sum_{r=0}^{R-1} \text{Ad}_{U \otimes U^*} (\Lambda_0) / R$. One should remember that Λ_1 is a function of q. Note that any feasible solution to Problem (122) satisfies $\chi \geq \Lambda_1 / R$ (for $r \in I_R$), which follows from $\chi \geq \chi^0$ and $\text{Ad}_{U \otimes U^*} (\chi) = \chi$.

From $\text{Tr}_W \Lambda_0 = \chi_1 I_1, \text{Tr}_V \Lambda_0 = \chi_2 I_2$, and $\Lambda_0 = \Lambda_0, \chi_0$ and χ_1 can be expressed in the form

$$\begin{bmatrix}
\chi_0 & 0 \\
0 & \chi_1
\end{bmatrix} = q \begin{bmatrix}
\begin{bmatrix} s_0 & s_1 & t_1 & t_0 \\ s_1 & s_2 & t_2 & -t_1 \\ t_1 & t_2 & s_2 & -s_1 \\ t_0 & -t_1 & -s_1 & s_0
\end{bmatrix} & 0 \\
0 & \begin{bmatrix} s_0 & s_1 & 0 & 0 \\ s_1 & s_2 & 0 & 0 \\ 0 & 0 & s_2 & -s_1 \\ 0 & 0 & -s_1 & s_0
\end{bmatrix}
\end{bmatrix}$$

with some $s_k, t_k \in \mathbb{R}$ ($k \in I_3$) [see Eq. (110)]. They are rewritten as

$$\chi_0 = q \begin{bmatrix}
\begin{bmatrix} A_1 & B_1 \\ B_1 & A_1
\end{bmatrix} \Theta^T
\end{bmatrix} \begin{bmatrix} A_1 & B_1 \\ B_1 & A_1
\end{bmatrix} \Theta, \quad \forall \ell \in I_2,$$

where $\Theta = \begin{bmatrix} \theta_1 & \theta_2 \\ \theta_2 & -\theta_1
\end{bmatrix}$.
where
\[
\Theta := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \quad A_i := \begin{bmatrix} \tilde{s}_{l,0} & \tilde{s}_{l,1} \\ \tilde{s}_{l,1} & \tilde{s}_{l,2} \end{bmatrix}, \quad B_i := \begin{bmatrix} -\tilde{t}_{l,0} & \tilde{t}_{l,1} \\ \tilde{t}_{l,1} & \tilde{t}_{l,2} \end{bmatrix}
\] (125)
and
\[
\tilde{s}_{0,k} := s_k, \quad \tilde{t}_{0,k} := t_k, \quad \tilde{s}_{l,1} := q R s_k, \quad \tilde{t}_{l,1} := 0, \quad k \in I_3.
\] (126)

From $\chi \in \text{Lin}(\mathcal{C}h_{\mathbb{C}^2} \otimes \mathbb{C}^2)$, we obtain the eigenvalues of
\[
\chi = \chi^\top = \chi
\]
where
\[
\chi := \begin{bmatrix} x + z & y & 0 & 0 \\ y & x - z & 0 & 0 \\ 0 & 0 & x - z & -y \\ 0 & 0 & -y & x + z \end{bmatrix} = \Theta(X \otimes X) \Theta^\top
\] (127)
with some $x, y, z \in \mathbb{R}$, where
\[
X := \begin{bmatrix} x + z & y \\ y & x - z \end{bmatrix}
\] (128)

It follows that any squared matrices C and D with the same size satisfy
\[
\det \begin{bmatrix} C & D \\ D & C \end{bmatrix} = \det \begin{bmatrix} C + D & D + C \\ D & C \end{bmatrix} = \det \begin{bmatrix} C + D & 0 \\ D & C - D \end{bmatrix} = \det(C + D) \cdot \det(C - D).
\] (130)

Thus, by solving the equation $\det(X - A_i - \lambda I_V \pm B_i) = 0$, we obtain the eigenvalues of $\chi - \zeta_i$ as follows:
\[
\lambda_{l,k} := x - x_{l,k} \pm \sqrt{(y - y_{l,k})^2 + (z - z_{l,k})^2}, \quad k \in I_2,
\] (131)
where
\[
x_{l,k} := \frac{1}{2} \left[\tilde{s}_{l,0} + \tilde{s}_{l,2} + (-1)^i(\tilde{t}_{l,0} - \tilde{t}_{l,2}) \right],
\]
\[
y_{l,k} := \tilde{s}_{l,1} - (-1)^i \tilde{t}_{l,1},
\]
\[
z_{l,k} := \frac{1}{2} \left[\tilde{s}_{l,0} - \tilde{s}_{l,2} + (-1)^i(\tilde{t}_{l,0} + \tilde{t}_{l,2}) \right].
\] (132)

It follows that \mathcal{N}_e is a cone with its apex at the point v. Let $u := (x, y, z)$ and $u^{l,k} := (x_{l,k}, y_{l,k}, z_{l,k})$; then, since $\lambda_{l,k} \geq 0$ is equivalent to $u \in \mathcal{N}_{\rho_{l,k}}$, Problem (122) is rewritten as
\[
\begin{align*}
\text{minimize} & \quad 2u_x - q p_{\text{inc}} \\
\text{subject to} & \quad u \in \mathcal{N}_{\rho_{00}} \cap \mathcal{N}_{\rho_{01}} \cap \mathcal{N}_{\rho_{11}^{(q)}},
\end{align*}
\] (134)
where we use $u^{1,0} = u^{1,1}$, which is given by $\tilde{t}_{l,0} = \tilde{t}_{l,1} = \tilde{t}_{l,2} = 0$. To emphasize that $u^{1,1}$ is a function of q, we denote it by $u^{q_{11}}(q)$. It is easily seen that the optimal value of Problem (134) is equal to
\[
P^*(p_{\text{inc}}) := \inf_{q \in \mathbb{R}} [2u_x^*(q) - q p_{\text{inc}}].
\] (135)
where, for each q, $u_x^*(q)$ is the x-component of the point $u^*(q) \in \mathcal{N}_{\rho_{00}} \cap \mathcal{N}_{\rho_{01}} \cap \mathcal{N}_{\rho_{11}^{(q)}}$ that has the minimum x-component. Note that Eq. (135) implies that $-P^*(p_{\text{inc}})$ is the Legendre transformation of $2u_x^*(q)$.

We should note that Problem (134) can also be expressed as
\[
\begin{align*}
\text{minimize} & \quad \text{Tr} X - q p_{\text{inc}} \\
\text{subject to} & \quad X \geq y^{00}, \quad X \geq y^{01}, \quad X \geq y^{11}
\end{align*}
\] (136)
with two-dimensional symmetric matrix X given by Eq. (128) and $q \in \mathbb{R}_+$, where
\[
y_{l,k} := \begin{bmatrix} x_{l,k} + z_{l,k} \\ y_{l,k} \\ x_{l,k} - z_{l,k} \end{bmatrix}.
\] (137)

If q is fixed, then Problem (136) can be regarded as the dual of a qubit state discrimination problem and thus can be analytically solved [83]. One can interpret Problem (134) as the geometrical representation of Problem (136) (see [84, 85]).

As a simple example, we now consider the case $s_1 = t_1 = 0$. Note that this case is equivalent to the case in which Λ_0 is a Pauli channel. Since $u^{l,k} = y_{l,k} = 0$ holds, we need only to consider in the plane $y = 0$. Figure 7 shows a geometrical representation of Problem (134) in the case of $R = 3, s_0 = t_0 = 0.3/R, s_2 = 0.7/R,$ and $t_2 = 0.1/R$. Let u' be the element of $\mathcal{N}_{\rho_{00}} \cap \mathcal{N}_{\rho_{01}}$ that has the minimum x-component, q_0 be the maximum value of q satisfying $u' \in \mathcal{N}_{\rho_{01}^{(q)}}$, and q_1 be the minimum value of q satisfying $u^{1,1}(q) \in \mathcal{N}_{\rho_{01}}$. Also, let $q^{(0)} := u^{1,1}(q_0)$ and $q^{(1)} := u^{1,1}(q_1)$. Then, we can easily verify
\[
u' = \begin{cases} u', & q \leq q_0, \\
q_0 - q_{10} [q^{(1)} - q^{(0)}], & q_0 < q < q_1, \\
q^{(1)}, & q \geq q_1.
\end{cases}
\] (138)

Note that u' and $q^{(1)}$ can be easily obtained from s_0, s_2, t_0, and t_2. Moreover, from Eq. (135), we have
\[
P^*(p_{\text{inc}}) = \begin{cases} 2u_x^*(q) - q_{10} p_{\text{inc}}, & p_{\text{inc}} < q_0, \\
2u_x^*(q) - q_0 p_{\text{inc}}, & q_0 \leq q_{10}, \\
2u_x^*(q) - 2q_{10} p_{\text{inc}}, & q \geq q_{11}, \quad q_0 \neq q_{10}, \\
1, & \text{otherwise}.
\end{cases}
\] (139)
We first showed that the optimal values of this problem and its Lagrange dual problem coincide (i.e., the strong duality holds). Based on this result, necessary and sufficient conditions for a tester to be optimal were provided. Necessary and sufficient conditions that the optimal value remain unchanged even when a certain additional constraint is imposed were also given. We next showed that for a problem that is symmetric with respect to group actions, there exists an optimal solution having the same type of symmetry. Moreover, we discussed a minimax strategy for a generalized process discrimination problem.

Process discrimination problems can be interpreted as an extension of state discrimination problems. In state discrimination, the formulation of the problem as a convex problem is useful for developing analytical and numerical techniques, such as deriving analytical expressions for optimal measurements, developing numerical algorithms for efficiently obtaining optimal solutions, finding near-optimal measurements (e.g., a square root measurement), and obtaining upper and lower bounds on optimal values. We expect that our results will allow us to extend these techniques to a broad class of process discrimination problems.

ACKNOWLEDGMENTS

We are grateful to O. Hirota and T. S. Usuda for useful discussions. This work was supported by JSPS KAKENHI Grant Number JP19K03658.

Appendix A: Proof of Theorem 1

Let \(P^* \) and \(D^* \) be, respectively, the optimal values of Problems (P) and (D). We consider the following Lagrangian associated with Problem (P):

\[
L(\Phi, \varphi, \chi, q) := \sum_{m=0}^{M-1} \left(\Phi_m, c_m \right) + \left(\varphi - \sum_{m=0}^{M-1} \Phi_m, \chi \right) - \sum_{j=0}^{J-1} q_j \eta_j(\Phi)
\]

\[
= \left(\varphi, \chi \right) + \sum_{j=0}^{J-1} q_j \eta_j - \sum_{m=0}^{M-1} \left(\Phi_m, \chi - z_m(q) \right)
\]

(A1)

where \(\Phi \in C, \varphi \in S, \chi \in \text{Her}_V, \) and \(q := \{q_j\}_{j=0}^{J-1} \in \mathbb{R}_+^J. \) It follows that

\[
\inf_{\chi, \Phi} L(\Phi, \varphi, \chi, q) = \begin{cases} \sum_{m=0}^{M-1} \left(\Phi_m, c_m \right), & \Phi \in \mathcal{P}, \varphi = \sum_{m=0}^{M-1} \Phi_m \\ -\infty, & \text{otherwise} \end{cases}
\]

\[
\sup_{\varphi, \Phi} L(\Phi, \varphi, \chi, q) = \begin{cases} D_2(\chi, q), & (\chi, q) \in \mathcal{D}, \\ -\infty, & \text{otherwise} \end{cases}
\]

(A2)

holds. Thus, from the max-min inequality, we have

\[
P^* = \sup_{\Phi, \varphi} \inf_{\chi, \Phi} L(\Phi, \varphi, \chi, q) \leq \inf_{\chi, \Phi} \sup_{\Phi, \varphi} L(\Phi, \varphi, \chi, q) = D^*.
\]

(A3)

It remains to show the strong duality. In the case of \(D^* = -\infty, \) the strong duality obviously holds from \(P^* = D^* = -\infty. \)
Now, we consider the other case. It suffices to show that there exists $\Phi^* \in \mathcal{P}$ such that $P(\Phi^*) \geq D^*$, in which case, from $P^* \geq P(\Phi^*)$, we have $P^* = D^*$. We consider the set

$$Z := \left\{ (y_m + z_m(q) - \chi)^{\tau_0}_{m=0}, D_S(\chi, q) - d) : (\chi, y, d, q) \in Z_0 \right\} \subset \text{Her}_V^p \times \mathbb{R},$$

(A4)

where $y := \{y_m\}_{m=0}^{M-1}$ and $Z_0 := \left\{ (\chi, y, d, q) \in \text{Her}_V^p \times C^* \times \mathbb{R} \times \mathbb{R}^J_+ : d < D^* \right\}$. (A5)

One can easily verify that Z is a nonempty convex set. We can show $(0,0) \not\in Z$. Indeed, for any $(\chi, y, d, q) \in Z_0$ such that $y_m + z_m(q) = \chi = 0$ ($\forall m$), since $\{\chi - z_m(q)\}_m = \chi \in C^*$ [i.e., $(\chi, q) \in D$], holds, $D_S(\chi, q) - d \geq D^* - d > 0$ must hold. From the separating hyperplane theorem [86], there exists $(\Psi_m)_{m=0}^{M-1} \alpha \neq (0,0) \in \text{Her}_V^p \times \mathbb{R}$ such that

$$\sum_{m=0}^{M-1} \langle \Psi_m, \chi \rangle + \alpha[D_S(\chi, q) - d] \geq 0,$$

(A6)

By substituting $y_m = k\psi_m$ $(\kappa \in \mathbb{R}_+, \{y_m\}_m \in C^*)$ into Eq. (A6) and taking the limit $\kappa \to \infty$, we obtain $(\Psi_m)_m \in C$. Also, we have $\alpha \geq 0$ in the limit $d \to -\infty$. We can show $\alpha > 0$. [Indeed, assume by contradiction that $\alpha = 0$. Substituting $\chi = \kappa' I_V$ $(\kappa \in \mathbb{R}_+)$ into Eq. (A6) and taking the limit $\kappa \to \infty$ gives $\sum_{m=0}^{M-1} \text{Tr} \Psi_m \leq 0$. From $(\Psi_m)_m \in C \subseteq \text{Pos}_V^p \times \mathbb{R}_+$ holds for any $m \in I_M$. This contradicts $((\Psi_m)_m, \alpha) \neq (0,0)$]. Let $\Phi^* := \Psi_m/\alpha$; then, Eq. (A6) is rewritten by

$$\sum_{m=0}^{M-1} \langle \Phi^*_m, y_m + z_m(q) - \chi \rangle + D_S(\chi, q) - d \geq 0,$$

(A7)

Substituting $\chi = \kappa' \chi'$ $(\kappa \in \mathbb{R}_+, \chi' \in \text{Her}_V$) and $q_i = 0$ into Eq. (A7) and taking the limit $\kappa \to \infty$ yields $\lambda_S(\chi') \geq \sum_{m=0}^{M-1} \langle \Phi^*_m, \chi' \rangle$ $(\forall \chi' \in \text{Her}_V$). This implies $\sum_{m=0}^{M-1} \Phi^*_m \in \mathcal{S}$. [Indeed, assume by contradiction that $\sum_{m=0}^{M-1} \Phi^*_m$ is not in \mathcal{S}; then, from separating hyperplane theorem, there exists $\chi' \in \text{Her}_V$ such that $\langle \phi_x \chi' \rangle < \langle \sum_{m=0}^{M-1} \Phi^*_m, \chi' \rangle$ $(\forall \phi \in \mathcal{S})$, which contradicts $\lambda_S(\chi') \geq \sum_{m=0}^{M-1} \langle \Phi^*_m, \chi' \rangle$]. Thus, $\Phi^* \in \mathcal{P}$ holds [see Eq. (24)]. By substituting $q_i = k\delta_{j,f}$ $(f \in T)$ into Eq. (A7), we have $\eta_j(\Phi^*) \leq 0$ in the limit $\kappa \to \infty$, $\Phi^* \in \mathcal{P}$ holds from Eq. (23). By substituting $y_m = 0, \chi = 0$, and $q_i = 0$ into Eq. (A7) and taking the limit $d \to D^*$, we have $P(\Phi^*) = \sum_{m=0}^{M-1} \langle \Phi^*_m, c_m \rangle \geq D^*$.

Lemma 23 For any $\chi \in \text{Her}_V, \lambda_S(\chi)$ is equal to the optimal value of the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \omega_0 \\
\text{subject to} & \quad T_{W_t} \chi \leq I_{V_t} \otimes \omega_{t-1}, \\
& \quad T_{W_t} \omega_t \leq I_V \otimes \omega_{t-1} \quad (\forall t \in [1, \ldots, T-1]),
\end{align*}
\]

with $[\omega_t \in \text{Her}_{W_t \otimes V_t \otimes \cdots \otimes W_t \otimes V_t}]_{t=0}^{T-1}$ (note that $\omega_0 \in \mathbb{R}$ holds).

Proof Let us consider the following Lagrangian associated with Problem (B1):

\[
L_0(\tau, \omega) := \omega_0 + \sum_{t=1}^{T-1} \langle \tau_t, T_{W_t} \omega_t - I_{V_t} \otimes \omega_{t-1} \rangle + \langle \tau_t, T_{W_t} \chi - I_{V_t} \otimes \omega_{t-1} \rangle + \langle \tau_t \otimes \tau, \chi \rangle,
\]

(B2)

where $\tau := \{\tau_t \in \text{Pos}_{W_t \otimes V_t \otimes \cdots \otimes W_t \otimes V_t}]_{t=1}^{T} \} \otimes \omega$:= $[\omega_t \in \text{Her}_{W_t \otimes V_t \otimes \cdots \otimes W_t \otimes V_t}]_{t=0}^{T-1}$. Due to the max-min inequality, we have

\[
\sup_{\tau} \inf_{\omega} L_0(\tau, \omega) \leq \inf_{\omega} \sup_{\tau} L_0(\tau, \omega).
\]

(B3)

From the second equation of Eq. (B2), it is straightforward to derive that if ω is a feasible solution to Problem (B1), then $\sup_{\tau} L_0(\tau, \omega) = \omega_0$, otherwise ∞. Thus, the right-hand side of Eq. (B3) is equal to the optimal value of Problem (B1), denoted by D^*_0. Similarly, it follows from the last equation of Eq. (B2) that the left-hand side of Eq. (B3) is equal to the optimal value of the following problem:

\[
\begin{align*}
\text{maximize} & \quad \langle I_{W_t} \otimes \tau, \chi \rangle \\
\text{subject to} & \quad T_{V_t} \tau_t = I_{W_{t-1}} \otimes \tau_{t-1} \quad (\forall t \in [2, \ldots, T]), \\
& \quad \text{Tr} \tau_1 = 1
\end{align*}
\]

with τ. The constraint is equivalent to $\tau_t \in \otimes_{t=1}^T \text{Ch}_{V_t \otimes W_{t-1}}$ (with $W_0 := C$), or, equivalently, $I_{W_t} \otimes \tau_t \in \mathcal{S}_G$. Thus, the optimal value is $\sup_{\chi \in \mathcal{S}_G} \langle \phi \chi \rangle = \lambda_S(\chi)$. To prove $D^*_0 = \lambda_S(\chi)$, it suffices to show that Slater’s condition holds. Let $\tau' := \{\tau'_t\}_{t=1}^T$ with $\tau'_t := I_{V_t}/N_{V_t}$, and $\tau'_t := I_{V_t}/N_{V_t} \otimes I_{W_{t-1}} \otimes \tau'_{t-1} \quad (t \in \{2, \ldots, T\})$; then, τ' is a feasible solution to Problem (B4) and τ' is positive definite for each $t \in [1, \ldots, T]$, which implies that Slater’s condition holds.

We are now ready to prove Proposition 2. Arbitrarily choose $(\chi', q) \in D$. Let $[\omega_t]_{t=0}^{T-1}$ be an optimal solution to Problem (B1) with $\chi := \chi'$. Also, let

\[
\omega_0 := \omega' \quad \Rightarrow \quad \omega_t := \omega'_t + \frac{I_{W_t}}{N_{W_t}} \otimes (I_{V_t} \otimes \omega_{t-1} - T_{W_t} \omega'_t), \quad \forall t \in [1, \ldots, T-1],
\]

(A5)

\[
\chi := \chi' + \frac{I_{W_t}}{N_{W_t}} \otimes (I_{V_t} \otimes \omega_{t-1} - T_{W_t} \chi').
\]

\[\text{Appendix B: Proof of Proposition 2} \]

Before proving Proposition 2, we first show the following lemma.
follows from

\[M^{-1} \sum_{m=0}^{M-1} (\Phi_m, \chi - z_m(q)) \geq 0, \quad \forall \Phi \in C, \quad (B6) \]

which gives \((\chi - z_m(q))_{m=0}^{M-1} \in C^* [i.e., (\chi, q) \in \mathcal{D}]\). From Eq. (B5), we have

\[
\begin{align*}
\text{Tr}_\mathcal{W}, \omega_t & = I_{\mathcal{V}} \otimes \omega_{t-1}, \quad \forall t \in \{1, \ldots, T-1\}, \\
\text{Tr}_\mathcal{W}, \chi & = I_{\mathcal{V}} \otimes \omega_{T-1}.
\end{align*}
\]

(B7)

Assume now that \(\chi \in \text{Lin}(\text{Chn}_\mathcal{V})\) holds, i.e., \(\chi\) is expressed in the form \(\chi = \beta_+ \chi_+ - \beta_- \chi_-\) \((\beta_+ \in \mathbb{R}_+, \chi_+ \in \text{Chn}_\mathcal{V})\); then, \(\omega_0 = \beta_+ - \beta_-\) obviously holds. From Eq. (13), we have \(\lambda_S(q)(\chi) = \lambda_S(q)(\chi_0)\).

To complete the proof, we have to show \(\chi \in \text{Lin}(\text{Chn}_\mathcal{V})\).

Let \(u_t := I_{\mathcal{W}_t \otimes \mathcal{V}} \otimes_{\mathcal{W}_t \otimes \mathcal{V}} \Pi_{q \in \mathcal{Q}} N_{\omega_t}, \chi_t := \chi + p\omega_t, \) and \(\omega_t := \omega_0 + p\omega_t \quad (t \in \{0, \ldots, T-1\})\), where \(p \in \mathbb{R}_+\) is taken to be sufficiently large such that \(\chi^+ \geq 0, \omega_t^+ \geq 0\ (\forall t \in \{1, \ldots, T-1\}\), and \(\omega_0^+ > 0\). From Eq. (B7) and \(\text{Tr}_{\mathcal{W}_t} u_t = I_{\mathcal{V}} \otimes \omega_{t-1}\), we have \(\text{Tr}_{\mathcal{W}_t} \omega_t^+ = I_{\mathcal{V}} \otimes \omega_{t-1}^+ \) \((\forall t \in \{1, \ldots, T-1\})\) and \(\text{Tr}_{\mathcal{W}_t} \chi_t = I_{\mathcal{V}} \otimes \omega_{t-1}^+\), which gives \(\chi^+ / \omega_t^+ \in \text{Chn}_\mathcal{V}\) [see Eq. (9)]. From \(u_t \in \text{Chn}_\mathcal{V}, \chi = \chi^+ - p\lambda_t \in \text{Lin}(\text{Chn}_\mathcal{V})\) holds.

Appendix C: Proof of Theorem 4

We will prove it using the proof of Theorem 1 in Appendix A. Arbitrarily choose \(\Phi \in \mathcal{P}\) and \((\chi, q) \in \mathcal{D}\). We consider a sequence \(\{\varphi_n \in \mathcal{S}\}_{n=1}^{\infty}\) such that \(\lim_{n \to \infty} \langle \varphi_n, \chi \rangle = \lambda_S(\chi)\). From Eq. (A1), we have

\[
D_S(\chi, q) - P(\Phi) = - \sum_{j=0}^{M-1} q_j \rho_j(\Phi) + \sum_{m=0}^{M-1} (\Phi_m, \chi - z_m(q)) \quad (C1)
\]

in the limit \(n \to \infty\). Since each term on the right-hand side of Eq. (C1) is always nonnegative, \(P(\Phi) = D_S(\chi, q)\) holds [i.e., \(\Phi\) and \((\chi, q)\) are, respectively, optimal for Problems (P) and (D)] if and only if Eq. (43) holds.
[46] I. Maflies, S. Koudia, A. Gharbi, and M. G. Paris, Quant. Inf. Proc. 18, 1 (2019).
[47] C. Hirche, arXiv preprint arXiv:2103.02404 (2021).
[48] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Phys. Rev. A 71, 062310 (2005).
[49] G. Gutoski and J. Watrous, in Proceedings of the 39th annual ACM symposium on Theory of computing (2007) pp. 565–574.
[50] J. Watrous, Theory of Computing 5, 217 (2009).
[51] G. Chiribella, New J. Phys. 14, 125008 (2012).
[52] M. Ziman, Phys. Rev. A 77, 062112 (2008).
[53] A. Jenčová and M. Plávala, J. Math. Phys. 57, 122203 (2016).
[54] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. Lett. 101, 060401 (2008).
[55] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 80, 022339 (2009).
[56] M.-D. Choi, Lin. Alg. Appl. 10, 285 (1975).
[57] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
[58] M. Jiang, S. Luo, and S. Fu, Phys. Rev. A 87, 022310 (2013).
[59] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. Lett. 101, 180501 (2008).
[60] G. Sentis, E. Bagan, J. Calsamiglia, G. Chiribella, and R. Muñoz-Tapia, Phys. Rev. Lett. 117, 150502 (2016).
[61] G. Sentis, J. Calsamiglia, and R. Muñoz-Tapia, Phys. Rev. Lett. 119, 140506 (2017).
[62] J. A. Bergou and M. Hillery, Phys. Rev. Lett. 94, 160501 (2005).
[63] M. Kleinmann, H. Kampermann, and D. Bruß, Phys. Rev. A 72, 032308 (2005).
[64] S. Pang and S. Wu, Phys. Rev. A 84, 012336 (2011).
[65] A. Hayashi, T. Hashimoto, and M. Horibe, Phys. Rev. A 97, 052323 (2018).
[66] M. Ziman, T. Heinosaari, and M. Sedlák, Phys. Rev. A 80, 052102 (2009).
[67] Q. Zhuang and S. Pirandola, Commun. Phys. 3, 1 (2020).
[68] K. Nakahira, arXiv preprint arXiv:2104.09038 (2021).
[69] E. Chitambar, W. Cui, and H.-K. Lo, Phys. Rev. Lett. 108, 240504 (2012).
[70] D. Dieks, Phys. Lett. A 126, 303 (1988).
[71] A. Peres, Phys. Lett. A 128, 19 (1988).
[72] Y. C. Eldar, M. Stojnic, and B. Hassibi, Phys. Rev. A 69, 062318 (2004).
[73] K. Nakahira, Tamagawa University Quantum ICT Research Institute Bulletin 10, 23 (2020).
[74] E. Andersson, S. M. Barnett, C. R. Gilson, and K. Hunter, Phys. Rev. A 65, 052308 (2002).
[75] T. S. Usuda, I. Takumi, M. Hata, and O. Hirota, Phys. Lett. A 256, 104 (1999).
[76] K. Nakahira and T. S. Usuda, IEEE Trans. Inf. Theory 58, 1215 (2012).
[77] J. O. Dimmock, J. Math. Phys. 4, 1307 (1963).
[78] D. P. Bertsekas, Convex optimization theory (Athena Scientific, Belmont, MA, 2009).
[79] I. Ekeland and R. Temam, Convex analysis and variational problems, Vol. 28 (Siam, North Holland, 1999).
[80] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun. 8, 1 (2017).
[81] Q. Zhuang and S. Pirandola, Phys. Rev. Lett. 125, 080505 (2020).
[82] J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018).
[83] D. Ha and Y. Kwon, Phys. Rev. A 87, 062302 (2013).
[84] M. E. Deconinck and B. M. Terhal, Phys. Rev. A 81, 062304 (2010).
[85] K. Nakahira, T. S. Usuda, and K. Kato, Phys. Rev. A 91, 022331 (2015).
[86] A. Dhara and J. Dutta, Optimality conditions in convex optimization: a finite-dimensional view (CRC Press, 2011).