Anisotropic Born-Infeld Cosmologies

Dan N. Vollick
Department of Physics
Okanagan University College
3333 College Way
Kelowna, B.C.
V1V 1V7

Abstract

Anisotropic cosmological spacetimes are constructed from spherically symmetric solutions to Einstein’s equations coupled to nonlinear electrodynamics and a positive cosmological constant. This is accomplished by finding solutions in which the roles of r and t are interchanged for all $r > 0$ (i.e. r becomes timelike and t becomes spacelike). Constant time hypersurfaces have topology $R \times S^2$ and in all the spacetimes considered the radius of the two sphere vanishes as t goes to zero. The scale factor of the other dimension diverges as t goes to zero in some solutions and vanishes (or goes to a constant) in other solutions. At late times local observers would see the universe to be homogeneous and isotropic.
Introduction

Over the last few years Born-Infeld theory \[1\] has undergone a revival due to its appearance in string theory \[2\]. In this paper some exact cosmological solutions are found to the Einstein field equations coupled to nonlinear electrodynamics and a positive cosmological constant. These solutions are constructed from spherically symmetric solutions with \(g_{tt} = 1 / g_{rr} = -(1 - 2m(r)/r) \). If \(m(r) > \frac{1}{2}r \) for \(0 < r < \infty \) then \(r \) and \(t \) interchange roles and the solutions describe cosmological spacetimes with a singularity at \(t = 0 \) (instead of at \(r = 0 \)). Constant time hypersurfaces have topology \(R \times S^2 \) and the radius of the two sphere goes to zero as \(t \) goes to zero. The scale factor of the other dimension diverges as \(t \) goes to zero in some solutions and vanishes (or goes to a constant) in other solutions. The Schwarzschild solution with a cosmological constant leads to a cosmological solution as does Born-Infeld theory. However, Maxwell’s theory does not as it is not possible to satisfy \(m(r) > \frac{1}{2}r \) for all \(r \) on \((0, \infty)\). Some other Born-infeld cosmologies can be found in \[3, 4\].

Born-Infeld Theory

In nonlinear electrodynamics the Maxwell Lagrangian

\[
L = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} = \frac{1}{2}(E^2 - B^2)
\]

is replaced by

\[
L = L(F^2, G^2)
\]

where \(F^2 = \frac{1}{2}F^{\mu\nu}F_{\mu\nu}, \) \(G^2 = \frac{1}{2}F^{\mu\nu}F^*_{\mu\nu}, \) \(F^*_{\mu\nu} \) is the dual of \(F_{\mu\nu}, \) and \(L \) is any function that reduces to (1) in the weak field limit. Born and Infeld took \(L \) to be given by

\[
L = -\frac{1}{a^2}\left[\sqrt{1 + a^2F^2} - 1\right]
\]

For the solutions considered in this paper \(\vec{B} = 0 \) so that \(G^2 = 0 \). Thus, all \(G^2 \) dependences will be dropped.

The field equations are

\[
\nabla_{\mu}P^{\mu\nu} = 0
\]

and

\[
\nabla_{\mu}F^{*\mu\nu} = 0,
\]

where

\[
P^{\mu\nu} = \frac{\partial L}{\partial F_{\mu\nu}}
\]

The energy-momentum tensor is

\[
T^{\mu\nu} = -2P^{\mu\alpha}F^*_{\alpha\nu} + g^{\mu\nu}L
\]
and the “Hamiltonian”, which is a function of $P^{\mu\nu}$, is

$$H = P^{\mu\nu} F_{\mu\nu} - L.$$ \hfill (8)

For the Born-Infeld Lagrangian

$$T^{\mu\nu} = \left[\frac{F^{\mu\alpha} F_{\nu}^{\alpha}}{\sqrt{1 + a^2 F^2}} - \frac{1}{a^2} g^{\mu\nu} \left(\sqrt{1 + a^2 F^2} - 1 \right) \right]$$ \hfill (9)

and

$$H(P^2) = \frac{1}{a^2} \left[\sqrt{1 + a^2 P^2} - 1 \right]$$ \hfill (10)

where $P^2 = -2P^{\alpha\beta} P_{\alpha\beta}$.

Cosmologies from Spherically Symmetric Solutions

Birkhoff’s theorem holds for nonlinear electrodynamic theories and the general spherically symmetric solution is

$$ds^2 = -\left[1 - \frac{2m(r)}{r} \right] dt^2 + \left[1 - \frac{2m(r)}{r} \right]^{-1} dr^2 + r^2 d\Omega^2$$ \hfill (11)

and

$$P = \frac{Q}{r^2} dt \wedge dr$$ \hfill (12)

and

$$\frac{dm(r)}{dr} = 4\pi r^2 H(P^2) + \frac{1}{2} r^2 \Lambda$$ \hfill (13)

where $P^2 = Q^2 / r^4$ and Λ is the cosmological constant.

If $m(r) > \frac{1}{2} r$ for $0 < r < \infty$ then r is a timelike coordinate and t is a spacelike coordinate. Relabeling r and t and denoting the spacelike variable by x gives

$$ds^2 = -\left[\frac{2m(t)}{t} - 1 \right]^{-1} dt^2 + \left[\frac{2m(t)}{t} - 1 \right] dx^2 + t^2 d\Omega^2$$ \hfill (14)

and

$$P = \frac{Q}{t^2} dx \wedge dt$$ \hfill (15)

and

$$\frac{dm(t)}{dt} = 4\pi t^2 H \left[\frac{Q^2}{t^4} \right] + \frac{1}{2} t^2 \Lambda.$$ \hfill (16)

Constant timelike surfaces have topology $R \times S^2$ and the two sphere has radius t. The Ricci scalar is given by

$$R = -2 \left[\frac{\dot{t} \ddot{m} + 2 \dot{m}}{t^2} \right]$$ \hfill (17)
and \(R \) generically diverges as \(t \) goes to zero.

Equation (16) can be written as

\[
\frac{dm(t)}{dt} = 4\pi t^2 H \left[\frac{Q^2}{t^4} \right] + \frac{1}{2} t^2 \Lambda
\]

Integrating gives

\[
\frac{2m(t)}{t} - 1 = 8\pi \int t^2 H \left[\frac{Q^2}{t^4} \right] dt + \frac{2m_0}{t} + \frac{1}{3} \Lambda t^2 - 1
\]

where \(m_0 \) is a constant. It is important to remember that the constraint

\[
\frac{2m(t)}{t} - 1 > 0
\]

must be satisfied for all \(t > 0 \).

First consider the case \(Q = 0 \) and take \(H(0) = 0 \). The constraint becomes

\[
\frac{2m_0}{t} + \frac{1}{3} \Lambda t^2 - 1 > 0.
\]

This will be satisfied if \(\Lambda > 0 \) and \(m_0 > \frac{1}{3} \Lambda^{-1/2} \). Even though \(R \) remains finite as \(t \) goes to zero the scalar \(R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} \) diverges, so that \(t = 0 \) is an initial singularity. Thus, Schwarzschild with a positive cosmological constant can be converted into a cosmological solution with metric

\[
ds^2 = -\left[\frac{2m_0}{t} + \frac{1}{3} \Lambda t^2 - 1 \right]^{-1} dt^2 + \left[\frac{2m_0}{t} + \frac{1}{3} \Lambda t^2 - 1 \right] dx^2 + t^2 d\Omega^2.
\]

As \(t \to 0 \) the two sphere collapses but the x direction blows up. For large \(t \) the metric is

\[
ds^2 = -d\tau^2 + \exp \left[2 \sqrt{\frac{\Lambda}{3}} \tau \right] \left[d\bar{x}^2 + d\Omega^2 \right],
\]

where \(\tau = \sqrt{3/\Lambda} \ln t \) and \(\bar{x} = \sqrt{\Lambda/3} x \). Thus, at late times we have inflationary behaviour and the scale factor of the two sphere is the same as the scale factor for the x direction.

Next consider Maxwell’s theory with \(H(P^2) = 1/2P^2 = Q^2/2t^4 \). The constraint is

\[
\frac{2m_0}{t} - \frac{4\pi Q^2}{t^2} + \frac{1}{3} \Lambda t^2 - 1 > 0
\]

which cannot be satisfied for all \(t > 0 \). The problem is that the \(Q^2 \) term diverges faster than the \(m_0 \) term and has the wrong sign. This can be modified in nonlinear electrodynamics by including a more divergent term with the correct sign or by eliminating the
divergence. If Maxwell’s theory is modified so that \(H(P^2) = \frac{1}{2}P^2 - \alpha^2 P^4 \), the constraint becomes
\[
\frac{2m_0}{t} - \frac{4\pi Q^2}{t^2} + \frac{8\pi \alpha^2 Q^4}{5t^6} + \frac{1}{3} \Lambda t^2 - 1 > 0.
\] (25)
This inequality is satisfied for a wide range of values of the parameters \(m_0, Q, \Lambda, \) and \(\alpha \). Here the additional term diverges more rapidly than the Maxwell term and has the correct sign. This spacetime behaves in a similar fashion to the case with \(Q = 0 \).

Finally consider the Born-Infeld Lagrangian. The constraint is
\[
\frac{2m_0}{t} + \frac{1}{3} \Lambda t^2 - 1 + \frac{8\pi}{a^2 t} \int_0^t \sqrt{a^2 Q^2 + t^4} dx > 0.
\] (26)
Since the integral is greater than zero for all \(t > 0 \) the inequality will certainly be satisfied if \(m_0 > \frac{1}{3} \Lambda^{-1/2} \). In Born-Infeld theory the electric contribution remains finite and does not present a problem as \(t \) goes to zero. For \(m_0 > 0 \) this spacetime has similar properties to the case with \(Q = 0 \). It is possible to take \(m_0 = 0 \). For small \(t \)
\[
\frac{2m(t)}{t} - 1 \simeq \frac{1}{3} \left(\Lambda - \frac{8\pi}{a^2} \right) t^2 - \frac{8\pi}{a^2} |Q|.
\] (27)
Thus, we require that \(|Q| \geq a/8\pi \). Now let \(f(t) = t(2m(t)/t - 1) \). The derivative of \(f(t) \) is given by
\[
f'(t) = \left(\Lambda - \frac{8\pi}{a^2} \right) t^2 - 1 + \frac{8\pi}{a^2} \sqrt{a^2 Q^2 + t^4}.
\] (28)
If \(\Lambda \geq 8\pi/a^2 \) and \(|Q| \geq a/8\pi \) then \(f'(t) > 0 \) for \(t > 0 \) and \(2m(t)/t - 1 > 0 \) for \(t > 0 \).

Equation (19) determines the spacetime metric given \(H(P^2) \). The reverse process is also possible. For a metric of the form
\[
d s^2 = -\frac{dt^2}{a(t)^2} + a(t)^2 dx^2 + t^2 d\Omega^2
\] (29)
the Hamiltonian is given by
\[
H \left[\frac{Q^2}{t^4} \right] = \frac{1}{4\pi t^2} \left[\frac{d}{dt} (ta^2) - \Lambda t^2 + 1 \right].
\] (30)
To be physically reasonable \(H \) must reduce to the Maxwell Hamiltonian in the weak field limit.

Conclusion

Exact cosmological solutions to the Einstein field equations coupled to nonlinear electrodynamics, including Born-Infeld theory, were constructed. These solution were produced by considering spherically symmetric solutions in which the roles of \(r \) and \(t \) are reversed.
These spacetimes have an initial singularity and constant time hypersurfaces have topology $R \times S^2$. The radius of the two sphere is t and the scale factor of the other dimension diverges in some cases as t goes to zero and vanishes (or goes to a constant) in other cases. At late times local observers would see the universe to be homogeneous and isotropic. Such solutions can be constructed from the Schwarzschild solution with a positive cosmological constant and from Born-Infeld theory. Maxwell theory does not lead to a cosmological solution because the roles of r and t cannot be reversed for all $r > 0$.

References

[1] M. Born and L. Infeld, Proc. Roy. Soc. (London) A144, 425 (1934)
[2] J. Polchinski, String Theory, Vol. 1 and 2, Cambridge University Press, 1998
[3] G.W. Gibbons and C.A.R. Herdeiro, hep-th/0101229
[4] R. Garcia-Salcedo and N. Breton, gr-qc/0004017
[5] B. Hoffman, Quart. J. Maths (Oxford) 6, 149 (1935)
[6] B. Hoffman, Phys. Rev. 47, 887 (1935)
[7] B. Hoffman and I. Infeld, Phys. Rev. 51, 765 (1937)
[8] A. Peres, Phys. Rev. 122, 273 (1961)
[9] M. Demianski, Found. Phys. 16, 187 (1986)
[10] D. Wiltshire, Phys. Rev. D38, 2445 (1988)
[11] H. d’Olivera, Class. Quant. Grav. 11, 1469 (1994)