左心疾患に伴う肺高血圧における肺動脈血管特性の評価
—PV-loopを用いた分析—
半谷 静雄1 吉井 健悟2 菅原 基晃3

要旨：【目的】左心系弁膜疾患による肺高血圧（PH-LHD）が主肺動脈（PA）stiffnessに与える影響を先ず①局所脈波速度（PWV）から検討し、さらに反射の程度を②圧（P）と血流速度（V）の波形相似性の分析から定量的に評価した。【方法】PH-LHD11例、control12例と肺高血圧のない高短絡ASD1例を対象に、multisensor catheterによるPA内同一部位のPとVの同時計測からPV-loopを描き、water-hammer式からPWVを求めた。次いで、1つのPV-loopの線形回帰分析による線形推定値に対する標準誤差（Sy/x）を、P-V波形相似性の指標として求めた。Control9例ではValsalva負荷時の上記指標の変化も合わせて検討した。【結果】疾患ごとに特有なPV-loopがみられ、max.PWV値はPH-LHD例の349 cm/s、min.PWV値はASD例の111 cm/sであった。Sy/xはPH-LHDがcontrolより有意に高値を示したが、両者間のPWV有意差はなく、Valsalva負荷によるPmの上昇でPWVは有意に増加したが、Sy/xの有意な増加はなかった。【結語】①control例での急速な肺動脈圧の上昇は、反射には作用せず、PA stiffnessを有意に増加させた。②PH-LHDにおけるpostcapillary typeの緩徐な肺動脈圧の上昇は、有意な反射の増大に働くも、PA stiffnessの増加には作用せず、その理由は緩徐に進行するPAのremodeling（拡張）にあることが、Moens–Kortewegの式から考察された。（J Jpn Coll Angiol 2016; 56: 45–53）

Key words: regional pulse wave velocity, multisensor catheter, Valsalva maneuver, wave reflection, Moens–Korteweg equation

序 言

高齢化による心不全症例の増加とともに、左心機能の低下による肺高血圧（PH-LHD）例も増加し1）。現在、肺高血圧（PH）の中でもPH-LHDの占める割合が最も高い。力学的に圧耐性能に劣る右室機能の維持には、低圧で伸展性に富む肺動脈（PA）の特性が不可欠で、PHの併発は右心不全発症の大きな誘因となる。

しかし、現在までPH-LHD例におけるPAの特性を詳細に分析した報告は方法論的制約もあり極めて少ない。

そこで主肺動脈内 pressure-velocity-loop（PV-loop）の分析から、PA stiffnessの指標として①局所脈波速度（PWV）を求め、さらに反射の程度を②圧と血流速度の波形相似性の解析から定量的に評価し、PH-LHDが主肺動脈の血管特性に与える影響を検討した。

対象と方法

1. 対象

心不全の既往がなく、LVEFが55%以上を示す僧帽弁もしくは大動脈弁疾患によるPH-LHD（平均肺動脈圧≥25 mmHg、平均肺動脈楔入圧＞15 mmHg）11例を研究対象とした。さらに、右心カテーテル検査の対象となり心肺機能に異常のない12例（control）と、PHがなく著明な肺動脈の拡張をみた肺・体血流比2.3の高短絡心房中隔欠損（ASD）1例を研究対象に加えた（Table 1）。

なお、本研究は全てで検査前にインフォームド・コンセントが得られ、当該医療機関倫理委員会の承認のもとに行われた。

1 金城大学医療健康学部大学院
2 京都府立医科大学大学院医学研究科
3 東京女子医科大学
doi: 10.7133/jca.15-00032

2015年8月10日受付 2016年4月7日受理

THE JOURNAL of JAPANESE COLLEGE of ANGIOLOGY Vol. 56
2. 方法

PV-loop\(^2\)に基づくPWV計測、並びに圧と血流速度波形の相似性に基づく反射の定量的評価法の概要

動脈内同一部位の圧（Pm）と流速（Vm）を縦軸と横軸にプロットすると1つのloop（PV-loop）が得られる。Fig. 1aにcontrol例の主肺動脈で得られた典型的なPV-loopを示した。収縮期のP-Vはほぼ線形（→部）で、Pmがピークをつけた後、loopは時計方向に回転し平坦なloopを形成している。P-V間の良好な線形関係は、収縮期には反射の影響が少なく、下のwater-hammer式が成立している\(^5\)。

\[
Pm = \rho \cdot PWV \cdot Vm
\]

ここで、

Pm：実測肺動脈圧（dyne/cm²）
ρ：血液密度（1.05 g/cm³）
PWV：局所脈波速度（cm/sec）
Vm：実測肺動脈内血流速度（cm/sec）

（1）式は、PWVをほぼ定数とみなせば、PmとVmが比例関係にあり、これは両者の波形が相似であることを意味する\(^6\)。正常なPAでは、反射の影響は1心周期にわたって小さく、圧波形と流速波形の相似性は、1心周期にわたりかなり高く保持される\(^7\)。

とくに反射の影響がほとんどの、（1）式がほぼ正確に成り立つ駆出初期には、PWV（2）式で与えられる。

\[
PWV = \frac{(Pm/Vm)}{\rho}
\]

で与えられる。

PmとVmのsamplingは2 msec毎に行い、得られたPmとVm値からPV-loopを描出し、収縮期の両者の一次回帰式からPWVを求めた。洞調波例では通常5心拍、心房細動例では通常10心拍で得られた計測値の算術平均値をPWVの最終確定値とした。なお、Sy/xの算出は20 msec毎にsamplingされたPmとVm値を用いて行った。

血流計本体はNarcomatic-RT500を用い、データの解析・処理は全てBIOPAC Systems MP-seriesにより行った。

Table 1 Patients characteristics
Control Patients with PH-LHD ASD

Patient (n)
Age (years)
Male/female
Pulmonary arterial pressure (mmHg)
Mean Pulmonary artery wedge pressure (mmHg)
Diagnosis

PH-LHD: pulmonary hypertension owing to left heart disease
ASD: atrial septal defect
得られたデータは全て中央値（最小値-最大値）で表示した。
PH群とcontrol群のPWVとSy/xの比較はWilcoxon rank sum検定により、Valsalva負荷時のPm、PWVとSy/xの比較はWilcoxon signed-rank検定で行い、有意水準0.05未満を有意とした。なお、上記の解析は全てR version 3.0.2を用いて行った。

結 果

Fig. 1のaからdにcontrol例とPH-LHD例およびASD例の主肺動脈で得られたPV-loopを比較しやすいように、全て%scaleで示した。

Fig. 1a（control例）のPV-loopの時計方向への回転は、反射による圧（Pm）の増減後も流速（Vm）は増加していることを示している。一般に圧反射はPmの増加（反射膨張波）のみに作用すると考えられておりが、このように正常肺動脈ではPmの減少とVmの増加に伴う“反射膨張波”も存在する。この症例のSy/xは13.5%と小さい。

Fig. 1bは非弁膜症性心房細動を伴うcontrol例で記録した連続10心拍のPV-loopである。先のcontrol例とは異なり全てのloopは反射圧縮波を反映して反時計方向に回転した後、Fig. 1aほど平坦ではないloopを形成している。収縮初期のP-Vにはいずれも線形が保たれ、その傾きもほぼ一定である。この症例のSy/xは26.2%で、先のcontrol例より大きい。

PH-LHD例の典型的なPV-loopをFig. 1cに示した。収縮初期P-V間の線形関係は良好で、Vmがピークに達した後、loopは大きく反時計方向に回転し、control例に比べ大きな台形状のloopを形成している。これは反射圧縮波によるPmの上昇とVmの低下の反映で、反射の影響の少ないcontrol例の平坦なPV-loopとは好対照である。この症例のSy/xは32.0%で、先のcontrol例より大きい。
Fig. 1d は ASD 例の主肺動脈で得られた PV-loop である。収縮初期の P-V 間線形関係は良好で、その傾きも control 例や PH 例より緩やかである。Vm がピークに達した後、僅かな Pm の上昇により loop は反時計方向に変曲し、全体として control 例ほど平坦ではない長方形状の loop を形成している。この症例の Sy/x は 18.2% で、control 例の値に近い。

control 例（Fig. 1a）の Valsalva 負荷時（phase-3）に記録した連続 5 心拍の Pm と Vm 波形、およびその PV-loop を Fig. 2 と Fig. 3 に示した。Pm の低下時にも収縮初期の線形はほぼ保たれており、その傾きは圧の低下とともに漸減している。5 拍目の Sy/x は 26.2% で、先の定常時より高い。

control 例の定常時と Valsalva 負荷時に計測された Pm と PWV の値（中間値 [最小値–最大値]）はそれぞれ（12 [7-15] mmHg vs 50 [18-110] mmHg, p=0.009）、（200 [148-
49

THE JOURNAL of JAPANESE COLLEGE of ANGIOLOGY Vol. 56

238] cm/s vs 260[192–306] cm/s; p=0.009)で、Valsalva 負荷により例外なく有意な Pm の上昇と PWV の増加 (p=0.009) を認めた（Fig. 4）。Fig. 5 に定常時と Valsalva 負荷時の Sy/x を box plot で示したが、その値は(19.6[12.7–28.9]%) vs 28.2[19.3–40.7]%; p=0.079)で、Pm の上昇にもかかわらず有意な Sy/x の増加はなかった。

Control と PH 群で計測された PWV 値は(203[154–289] cm/s vs 269[159–349] cm/s; p=0.089)で、中間値、最小値、最大値いずれも PH 群が Control 群より高値を示したが、有意ではなかった（Fig. 6）。一方、control と PH-LHD 群の Sy/x 値は(17.5[8.4–28.9]% vs 31.0[14.3–36.3]%; p<0.001)と PH 群が control 群より有意に高値を示した（Fig. 7）。

考 察

高齢化とともに心不全発生数が血栓性心疾患を上回り、心不全は今や主要な加齢関連疾患の一つといってよい10)。それに伴い今後左心負荷に由来する PH-LHD 例の
増加が予想される。ふいご状の断面をもつ右室は低圧系の流量発生に向く反面、高圧には耐え難い特徴をもつ。左室補助人工心臓（LVAD）装着後の30%前後に右心不全がみられる事実も、これを裏付ける証左と捉えてよい。したがって、今後高齢者の増加と共に、右心不全例の増加が危惧され、実際に左心疾患によるPHが現在PHの中では最も高率を占めている。

右室圧を低圧に保つには容量血管としての肺動脈の伸展性が不可欠で、硬い血管ではその特性が失われやすい。動脈は内圧の上昇とともに硬さ（stiffness）を増す性質があり、stiffnessが増せばPWVの増加を招く。PWVの増加は圧反射波の早期重疎による心室後負荷の増大から右心不全の一因をなす。実際、Valsalva負荷によるPmの上昇時には例外なくPWVの増加をみた。したがって、PH-LHD例でも当然、PWVの上昇が予測されるが、現在までPHとPWVに関する報告は方法論的制約もあり極めて少ない。

その概要をTable 2にまとめたが、記載されたPH例のPWV値はいずれも本稿のPH-LHD例より明らかに高い。この理由として、計測法の違い、PHの程度の差、二次性と原発性の病態差などが考えられるが、Table 2の圧計測は全てfluid-filled catheter（一部は術中の肺動脈穿刺）で行われている。正確なPWVの計測には正確な圧計測システムの使用が不可欠であるが、特発性肺動脈性肺高血圧症（IPAH）を対象とした計測は全て6FのJudkins catheterの引き抜きによる2点計測法で行われている。そのためかそのcontrol例のPWV平均値（3.5 m/s.）も本稿の2 m/s.より明らかに大きい。MRIによる計測でも、正常主肺動脈のPWV値は2 m/s.前後であり、Table 2のPWV計測値には信頼性の点で問題があるよう。なお、主肺動脈の正常PWV値、water-hammer法と2点計測法で得られるPWV値の差異等については先の拙稿を参照された。

今回の検討では予想に反し、PH-LHDとcontrol間のPWVに有意差がなかった。PWVは動脈stiffnessの指標であるが、stiffnessはあくまでも硬さの概念的総称なので、この理由を動脈stiffnessの物理的指標の一つであるヤング弾性率（E）とPWVの分析から考察を加える。

弾性とは変形が元に戻る性質のことで、弾性率（E）が大きいとは変形が元に戻りやすい、言い換えれば変形し難く硬いことをさす。したがって、Eとstiffnessはほぼ同義語と考えてよく、動脈のようにEが極めて小さい（柔らかい）場合には、PWVは次のMoens–Korteweg（M-K）式で近似される。

\[\text{PWV}^2 = \frac{Eh}{D} \rho \]

ここで、Eはヤング弾性率、hは血管の壁厚、Dは血管内径、\(\rho \)は血液密度である。ヤング弾性率（E）は、試料を応力\(\Sigma \)で引っ張った場合のひずみを\(\varepsilon \)とすれば、\(E = \Sigma / \varepsilon \)式で与えられる。金属などの工業材料では\(\Sigma - \varepsilon \)関係は線形で、Eは一定であるが、血管壁では\(\Sigma - \varepsilon \)関係は線形ではなく、\(\Sigma \)が大きくなるほどその傾き（E）も大きくなる。つまり、血圧の上昇時には血管は硬く拡張し難くなるため、血圧の変動下では動脈のstiffnessをEで評価することはできないう。先のMoen-Korteweg式では\(\rho \)は一定のため、結局PWVはEと\(h/D \)で決まることがある。

PWV\(^2 = \frac{Eh}{D} \rho \)で、ここで、Eはヤング弾性率、\(h \)は血管の壁厚、\(D \)は血管内径、\(\rho \)は血液密度である。ヤング弾性率（E）は、試料を応力\(\Sigma \)で引っ張った場合のひずみを\(\varepsilon \)とすれば、\(E = \Sigma / \varepsilon \)式で与えられる。金属などの工業材料では\(\Sigma - \varepsilon \)関係は線形で、Eは一定であるが、血管壁では\(\Sigma - \varepsilon \)関係は線形ではなく、\(\Sigma \)が大きくなるほどその傾き（E）も大きくなる。つまり、血圧の上昇時には血管は硬く拡張し難くなるため、血圧の変動下では動脈のstiffnessをEで評価することはできないう。先のMoen-Korteweg式では\(\rho \)は一定のため、結局PWVはEと\(h/D \)で決まることがある。

左心負荷によるPH-LHDの主要な器質的病変部位は外径500μm以下の筋性動脈より末梢のため、近位筋性肺動脈の壁厚（h）に関する検討は殆どされていない。
IPAHを対象とした検討では、IPAHとcontrolの主肺動脈内径(D)と壁厚(h)の比がIVUS等を用いて行われている。記載のある平均値だけの比較では、hの増加(1.22倍)よりDの増加(1.33倍)が大きい38)。これは肺動脈の肥厚を主病変とするIPAHでも、近位肺動脈のh/Dはcontrolに比べ低下傾向にあることを示している。passiveな肺動脈の拡張を伴うPH-LHDでは、h/Dはさらに低下している。これは肺動脈の肥厚を主病変とするIPAHでも、近位肺動脈のh/Dはcontrolに比べ低下傾向にあることを示している。

いずれにせよ肺動脈はその特性である①伸展性と②壁厚の菲薄化および③血管床の再疎通によりそのcomplianceを保ち、運動などの生理的な肺血流の増大時にも低圧が維持されている。上記の①と③はDの増加に、②はhの減少に働くと考えてよい。したがってPH-LHDのような病態下でも、①、②、③によるh/Dの低下が肺動脈圧の上昇によるEの増加を相殺したと考えることができる。

PWVはあくまで血管の硬さの指標であり、それから反射様式まで評価することはできない。PWV-loopを用いれば、その傾き(→)からPWVを、その形からは反射の様式を容易に把握できる。PWV-loopは反射圧縮波の存在を、線状の上向きPW-loopは反射の少ないcompliantなPAのそれぞれ反映と考えてよい。同じ線状でも、時計回りのloopは容量血管の完備な反射様式である“open-end型反射膨張波”の存在を意味している23)。とくに高齢者で近年増加傾向にある左室拡張不全によるPH-LHDでは、症状の潜在化から診断が遅れがちとなり予後の悪化を招きやすい。かかる症例でもPW-loopの定期的な観察から、PHの早期診断が容易かつ確実に行える可能性がある。このようにPW-loopには血管特性に関する多くの情報が含まれており、PWV-loopの情報から容易に描出でき、bedsideでの血管特性の評価に極めて適した方法といってよい。超音波ドプラ法とエコー・トラッキング法の組み合わせによる臨床初のPW-loop描出(頸動脈を対象)の試みも本邦でHandaらにより初めて行われている23)。PAでの非観血的なPW-loopの描出も現在技術的には十分に可能であり、他医療機関における本法の追試が強く望まれる。

結 論

①Controlでの肺動脈圧(Pm)の急速な上昇は、PA stiffnessの増加に働くも、反射への影響はなかった。②PH-LHDにおける緩徐なPmの上昇は、有意な反射の増大を来すも、肺動脈はそのremodeling(拡張)を介してstiffness増加の抑制に働くことが示唆された。著明な近位肺動脈の拡張を伴うASD例で、研究対象例中最低のPWV値が観察された事実もこれを裏付ける証左と捉えることもできる。ただ、h/Dの低下には時間的余裕が不可欠なためValsalva負荷による一過性の急激なPmの上昇時には、上記の代償機構が働かず有意なPWVの上昇をみたと考えられる。

いずれにせよ肺動脈はその特性である①伸展性と②壁厚の菲薄化および③血管床の再疎通によりそのcomplianceを保ち、運動などの生理的な肺血流の増大時にも低圧が維持されている。上記の①と③はDの増加に、②はhの減少に働くと考えてよい。したがってPH-LHDのような病態下でも、①、②、③によるh/Dの低下が肺動脈圧の上昇によるEの増加を相殺したと考えることができる。要約すれば、今回の研究結果は肺動脈の特性そのものが肺動脈圧上昇に対する自己防衛機能に働くことを示した証左と捉えることもできる。

PWV-loopは圧(Pm)と流速(Vm)の情報から容易に描出でき、bedsideでの血管特性の評価に極めて適した方法といえる。△PWV-loopを用いて、PHの早期診断が容易かつ確実に行える可能性がある。このようにPW-loopには血管特性に関する多くの情報が含まれており、PWV-loopの情報から容易に描出でき、bedsideでの血管特性の評価に極めて適した方法といってよい。超音波ドプラ法とエコー・トラッキング法の組み合わせによる臨床初のPW-loop描出(頸動脈を対象)の試みも本邦でHandaらにより初めて行われている23)。PAでの非観血的なPW-loopの描出も現在技術的には十分に可能であり、他の医療機関における本法の追試が強く望まれる。

利益相反

筆者らは本稿の記載内容等に関して、どの組織とも利益相反を有しないことをここに明記致す。

文 献

1) Enriquez-Sarano M, Rossi A, Seward JB, et al: Determinations of pulmonary hypertension in left ventricular dysfunction. J Am Coll Cardiol 1997; 29: 153–159
2) Dujardin JP, Stone DN: Characteristic impedance of the proximal aorta determined in the time and frequency domain: a comparison. Med Biol Eng Comput 1981; 19: 565–568
3) Khir AW, Parker KH: Measurements of wave speed and reflected waves in elastic tubes and bifurcations. J Biomech 2002; 35: 775–783
4) 半谷静雄、河合靖、近藤順義: Water-hammer式に基づく肺動脈局所脈波速度の計測(1点計測法)とその解析. 脈管学 2009; 49: 411–416
5) McDonald DA: Blood Flow in Arteries. Edward Arnold, London, 1974, 284
6) Niki K, Sugawara M, Uchida K, et al: A noninvasive method of measuring wave intensity, a new hemodynamic index: application to the carotid artery in patients with mitral regurgitation before and after surgery. Heart Vessels 1999; 14: 263–271
7) van den Bos GC, Westerhof N, Randall OS: Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res 1982; 51: 479–485
8) Hanya S: The multisensor catheter. The Blood Flow in the Heart and Large Vessels, Springer-Verlag, Tokyo, 1989, 189–195
9）半谷静雄：Valsalva負荷による肺動脈内反射膨張波の発生 Wave-intensity(W-I)による分析. 医学のあゆみ 2015; 252: 321–322
10）Sakata Y, Shimokawa H: Epidemiology of heart failure in Asia. Circ J 2013; 77: 2209–2217
11）Matthews JC, Koelling TM, Pagani FD, et al: The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 2008; 51: 2163–2172
12）Milnor WR, Conti CR, Lewis KB, et al: Pulmonary arterial pulse wave velocity and impedance in man. Circ Res 1969; 25: 637–649
13）Bramwell JC, Hill AV: The velocity of the pulse wave in man. Proc R Soc B 1922; 93: 298–306
14）Elzinga G, Piene H, de Jong JP: Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart. Circ Res 1980; 46: 564–574
15）CARO CG, HARRISON GK: Observations on pulse wave velocity and pulsatile blood pressure in the human pulmonary circulation. Clin Sci 1962; 23: 317–329
16）Milnor WR, Conti CR, Lewis KB, et al: Pulmonary arterial pulse wave velocity and impedance in man. Circ Res 1969; 25: 637–649
17）Kopeć G, Moertl D, Jankowski P, et al: Pulmonary artery pulse wave velocity in idiopathic pulmonary arterial hypertension. Can J Cardiol 2013; 29: 683–690
18）Korteweg, DJ: Über die Fortpflanzungsgeschwindigkeit des Schalles in Elastischen Röhren. Annalen der Physik 1878; 241: 525–542
19）Corson N, Armato SG, Labby ZE, et al: CT-based pulmonary artery measurements for the assessment of pulmonary hypertension. Acad Radiol 2014; 21: 523–530
20）Jordan SC, Hicken P, Watson DA, et al: Pathology of the lungs in mitral stenosis in relation to respiratory function and pulmonary haemodynamics. Br Heart J 1966; 28: 101–107
21）Hollander EH, Wang JJ, Dobson GM, et al: Negative wave reflections in pulmonary arteries. Am J Physiol Heart Circ Physiol 2001; 281: H895–902
22）Smolich JJ, Mynard JP, Penny DJ: Simultaneous pulmonary trunk and pulmonary arterial wave intensity analysis in fetal lambs: evidence for cyclic, midlystolic pulmonary vasoconstriction. Am J Physiol Regul Integr Comp Physiol 2008; 294: R1554–1562
23）Harada A, Okada T, Niki K, et al: On-line noninvasive one-point measurements of pulse wave velocity. Heart Vessels 2002; 17: 61–68
Study of the Characteristics of Pulmonary Trunk in Pulmonary Hypertension Secondary to Left Heart Disease Using Pressure-velocity Loops

Shizuo Hanya,1 Kengo Yoshii,2 and Motoaki Sugawara3

1Graduate School of Health Science, Kinjo Gakuin University, Nagoya, Japan
2Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
3Tokyo Women’s Medical College, Tokyo, Japan

Key words: regional pulse wave velocity, multisensor catheter, Valsalva maneuver, wave reflection, Moens–Korteweg equation

Objectives: Although pulmonary hypertension (PH) caused by left heart disease (PH-LHD) is more common in PH, little is known about its properties of pulmonary artery (PA) in PH-LHD. The purpose of this study was to measure pulmonary regional pulse wave velocity (PWV) and to quantify the magnitude of reflected waves in patients with PH-LHD by the analysis of the pressure-velocity loops (PV-loop). Methods: High-fidelity PA pressure (Pm) and PA velocity (Vm) were measured in 11 subjects with PH-LHD (mean Pm > 25 mmHg), 1 subject with atrial septal defect (ASD) without PH and 12 control subjects, using multisensor catheters. PWV was calculated as the slope of the initial part of the PV-loop in early systole. The similarity in the shapes of the pressure and flow velocity waveforms over one PV-loop was quantified as the magnitude of reflected wave by calculating the standard error of the estimate (Sy/x) from linear regression analysis between Pm and corresponding Vm. PWV and Sy/x during a Valsalva maneuver (VM) were also assessed in nine control subjects. Results: The contour of PV-loop was so characteristic between control and PH-LHD. Max. PWV (349 cm/s) was recorded in PH-LHD and min. PWV (111 cm/s) was recorded in ASD. VM increased Pm (12[7–15] mmHg vs 50[18–110] mmHg; p = 0.009) and PWV (200[148–238] cm/s vs 260[192–306] cm/s; p = 0.009) significantly without significant increase of Sy/x (19.6[12.7–28.9]% vs 28.2[19.3–40.7]; p = 0.079). Although Sy/x was significantly higher in PH-LHD than in control and ASD (17.5[8.4–28.9]% vs 31.0[14.3–36.3]%; p = 0.009, ASD: 18.2%), no significant difference was found in PWV between PH-LHD and control (269[159–349] cm/s vs 203[154–289] cm/s; p = 0.089). Conclusions: 1) The magnitude of wave reflection was elevated in PH-LHD significantly as compared with control and ASD. 2) Despite the significant increase in PA-PWV caused by abrupt elevation in Pm during Valsalva maneuver in control, chronic elevation in Pm did not increase PA-PWV in PH-LHD significantly. It was hypothesized that the pulmonary artery constituted a self-regulating system for maintaining the arterial stiffness stable against the chronic elevation in Pm in PH-LHD by a remodeling of increasing proximal pulmonary arterial cross-sectional area gradually, which was compatible with the Moens–Korteweg equation. The PV-loop could provide a new simple and conventional method for assessing the pulmonary arterial properties, clinically.

(J Jpn Coll Angiol 2016; 56: 45–53)