Imaging of perforasome territories: the evolution of techniques

Warren M Rozen MBBS PhD FRACS,1,2 Rachael Leung MBBS (Hons),1,2 Michael P Chae MBBS,1,2 David J Hunter-Smith MBBS MPH FRACS1,2

Abstract

Background: Perforator flaps are widely used in reconstructive plastic surgery and technological advances in preoperative imaging have facilitated improvements in flap perfusion and clinical outcomes. The ‘perforasome’ concept describes the vascular territory supplied by a single arterial perforator and the imaging of these zones of perfusion has become increasingly advanced.

Methods: This paper presents a qualitative analysis of the current literature on perforasome imaging. A review of the literature was performed using PubMed and Medline. Historical and background studies were also included for completeness.

Results: The review identified an initial 858 records for assessment, with 52 studies formally reviewed. To date, there is largely level III and IV evidence for the available imaging techniques, although level II studies are emerging. There is currently no level I evidence for any imaging technique.

Conclusion: There have been significant developments in imaging techniques since the introduction of the perforasome concept nearly a decade ago. In this review we have described the evolution of these methods over time, from simple perforator location to advanced three- and four-dimensional imaging and real-time dynamic perfusion imaging. With this progression and ongoing innovation, we believe perforasome imaging has the potential to improve outcomes in perforator flap surgery.

Keywords: computed tomographic angiography, magnetic resonance angiography, ultrasonography; Doppler, indocyanine green angiography.
Introduction

Perforator flaps are widely used throughout reconstructive surgery. From pedicled ‘free-style’ perforator flaps in lower limb reconstruction, to free perforator flaps in breast reconstruction, the micro-dissection of perforators as the basis for flap vascularisation is routinely performed. An understanding of flap perfusion is essential and imaging techniques continue to evolve in order to better demonstrate this anatomy. Early imaging techniques in perforator flap surgery only focused on identifying the location and calibre of perforators, however, greater sophistication in both imaging and flap design has led to a clinical need to map the perfusion zones of individual perforators thus, facilitating favourable surgical outcomes in flap reconstruction.

The perforasome concept describes the vascular territory supplied by a single arterial perforator and is an evolution of the angiosome concept described and imaged in 1987 by Taylor and Palmer. Since those initial descriptions of the perforasomes by Saint-Cyr et al and Rozen et al nearly a decade ago, several studies have employed various methods to explore and describe these territories, with varying efficacy.

The current paper comprises a review of the evolving techniques for mapping perforator territories, used in varying capacities as a means to successful perforator flap design, reduction of fat necrosis and peripheral flap ischaemia. As yet, no imaging technique has been identified as the ‘ideal’ perforasome imaging method, making this an exciting time to be at the forefront of this emerging field of discovery.

Methods

This article presents a qualitative analysis of the current literature on perforasome imaging. A literature review of PubMed and Medline was performed using a combination of the key words ‘perforasome’, ‘perforator angiosome’, ‘perforator flap’, ‘perfusion’ and ‘imaging’ and limited to English language studies of humans published in the period 1980–2017. Additional references were identified through bibliographic linkage were also considered. A total of 858 articles were identified. Articles were excluded if they did not specifically describe or focus on a perforator or perforasome imaging technique. Studies that did not meet inclusion criteria but were relevant for historical reasons were included in the discussion but not in the formal review.

Results

After exclusions, 51 studies met criteria for inclusion in this review (Figure 1). Six imaging techniques were discussed within these studies (Table 1). To date, there is mostly level III and IV evidence for these techniques, although level II studies are emerging. There is currently no level I evidence for any imaging technique. Table 1 also categorises the study types which explore these techniques. This paper addresses established perforator imaging techniques and subsequently, their potential for application to perforasome imaging.

Figure 1: PRISMA attrition flow diagram
Perforator imaging techniques

Doppler sonography

While not strictly an imaging technique, hand-held Doppler ultrasound has long been used to locate perforators in flap planning. This use of sonography has significant limitations, such as both high false-positive and false-negative rates, lack of information regarding calibre, flow volume and perforator course, and operator dependence. However, the method is cheap, simple to use, non-invasive and risk-free for the patient and can be used in conjunction with preoperative imaging.

Colour duplex ultrasonography

Colour duplex ultrasonography holds many of the benefits of hand-held Doppler while providing more information on the flow volume, calibre and course of perforator vessels. Its accuracy is superior to hand-held Doppler, given its added ability to visualise vessels. Other studies show CDU to be inferior to CTA for identifying perforators in the abdomen, though Zhang et al describe CDU as having higher accuracy than CTA in mapping of perforators in the lower extremities. Notably, contrast-enhanced ultrasonography plus three-dimensional reconstruction has been reported to increase accuracy and precision when compared with regular CDU and hand-held Doppler.

While CDU involves no radiation exposure and is negligibly invasive, it only gives two-dimensional detail, cannot display perforator branching networks and other relevant vessels and it is operator dependent. However preoperative sonography is routinely used.

Computerised tomographic angiography

Computerised tomographic angiography is generally accepted as state-of-the-art for perforator visualisation. Its high accuracy and excellent image quality mapping of location, calibre, course and branching of a perforator, have led to reduced operation times and fewer postoperative complications. As the first technique to produce highly detailed perforator images, CTA is well-studied as a preoperative perforator visualisation technique in multiple types of perforator flaps. While CTA requires radiation exposure and an iodinated contrast injection, there are many benefits. It is affordable, accessible and operator-independent, gives significant detail on perforator anatomy and can visualise small vessels to 0.3mm in diameter. Additionally, CTA has better fat-to-vessel contrast than MRA, allowing easier mapping of a perforator’s subcutaneous course, though intramuscular course is clearer on MRA.

Another feature of CTA is its potential for three-dimensional image processing, such as volume rendering reconstruction, which can facilitate interpretation of scans and provide visual representations of perforator location and course.

Table 1: Demographics of included studies

Imaging technique	Number of included studies	Highest level of evidence*	Study type	Cadaveric, experimental	Pre-operative clinical	Intra-operative clinical
Hand-held Doppler	6	IV	II			
CDU	9	IV	III			
CTA	19	II	III			
MRA	12	III	III			
DIRT	7	II	II			
ICG Angiography	11	III	III			

*Based on the American Society of Plastic Surgeons Rating Levels of Evidence and Grading Recommendations.
Given CTA's main and significant disadvantage is its use of contrast and radiation,23, 24, 26 there has been investigation into using lower doses of both.29 Several studies have found that low-dose techniques achieve high-quality vascular imaging similar to conventional CTA.29, 30

Overall, CTA is an excellent resource for preoperative perforator imaging with continuing developments to mitigate the risks of iodinated-contrast and radiation exposure.

Magnetic resonance angiography

Magnetic resonance angiography provides a three-dimensional image of perforator vessels but often using safer, non-iodinated contrast-enhancement. There are several contrast agents that provide varying levels of resolution. With the development of blood-pool contrast agents such as Gadofosveset (also known as AblavarTM or VasovistTM), MRA can clearly depict perforator intermuscular course due to its superior muscle-to-vessel contrast ratio.26, 27 Kagen et al31 reported that MRA produces a high-resolution image with similar spatial resolution to that of CTA.

Newman et al found high sensitivity and specificity of MRA in identifying perforators,32 and a review by Saint-Cyr et al showed that MRA and CTA were essentially equal in preoperative location of perforators.33 Another paper by the same group also illustrated that MRA has high concordance with intraoperative findings and decreases partial flap failure rates.34 Equilibrium-phase MRA is reported to be superior to first-pass MRA at visualising perforators.35, 36

A significant advantage of MRA over CTA is its use of magnetism rather than radiation, though this precludes the use of MRA in patients with metal implants. As with CTA, however, there is no operator dependence.

The disadvantages of MRA compared with CTA include cost, poorer accessibility, longer scanning time (and the potential for artefacts), decreased image quality in overweight patients and a slightly lower accuracy for deep inferior epigastric artery (DIEA) branching detection.21 Despite Kagen et al’s findings,31 other studies have shown that MRA lacks the ability to show smaller vessels37 and that currently, CTA image quality is superior to MRA.22, 26

Yang et al38 investigated the novel concept of magnetic resonance-based perforator phase contrast angiography, reporting that it was superior to CTA in image quality, vessel contrast and accuracy of perforator anatomy. Magnetic resonance angiography is a worthwhile alternative to CTA, especially when iodinated-contrast and radiation are contraindicated. It is increasingly used for its lower risk profile and is being constantly improved as contrast options and technologies evolve.

Dynamic infra-red thermography

Dynamic infra-red thermography technology in preoperative perforator location has limited evidence.37 Involving cooling of the skin followed by infra-red imaging as the skin re-warms,39 the resulting thermogram displays ‘hotspots’ which signify perforator location.40 It is therefore non-invasive, with no radiation or contrast exposure. There are varying levels of camera resolution available.41

Several papers have shown that DIRT accurately identified perforators with some postulating that DIRT’s true accuracy is higher than that of hand-held Doppler.39, 40, 42 Chubb et al reported that DIRT matched the accuracy of CTA in perforator identification.43 As with Doppler techniques, DIRT lacks the three-dimensional information on perforator calibre and course.39, 40 Additionally, thermograms only show hotspots for perforators that transport blood to the dermis, meaning that a suitable perforator that ends in the subcutaneous tissue may be missed with DIRT.39 This perhaps limits its use alone as the sole preoperative imaging technique.

At this stage DIRT is a useful adjunct in perforator imaging.

With the introduction of the ‘perforasome’ concept by Saint-Cyr et al2 and Rozen et al,3 the features and capabilities of these perforator imaging techniques have become even more important. Both studies
utilised CTA in cadavers to assess the perforasome. Saint-Cyr et al investigated perforasomes in anterior and posterior trunk flaps and in upper and lower extremity flaps. Rozen et al focused on the perforasomes of the DIEA perforator flap and also conducted a clinical, in-vivo, CTA study into the course, calibre and branching of the DIEA perforators. Although comprehensive, these studies focused on broadly defining the general characteristics of perforasomes and, while Rozen et al included a clinical component to their study there was limited exploration of the techniques of perforasome mapping in-vivo. Currently, several perforator imaging methods suitable for in-vivo mapping of the perforasome exist. These methods can be categorised as preoperative or intraoperative.

Perforasome imaging techniques

Computed tomographic angiography

Computed tomographic angiography perforasomes mapping in cadavers has been well-studied but significantly less so in-vivo. Predominantly, in-vivo preoperative CTA is used to locate a perforator vessel with limited consideration of vascular branching patterns. However, a well-developed vascular network is often preferred when selecting a source perforator vessel using CTA. Rozen et al’s clinical study assessed branching patterns of medial and lateral row perforators but there has been little investigation into the in-vivo mapping of perforasomes based on perforator branching networks using CTA. It stands to reason that this would follow similar principles as cadaveric.

Compared with perfusion-based perforasome imaging techniques, a disadvantage of preoperative CTA is its static nature and possible underestimation of actual perfused territory.

CTA currently has the capability to preoperatively visualise perforator branching networks and inter-perforator zones in-vivo (figures 2 and 3) but requires further investigation.

Indocyanine green angiography

Indocyanine green angiography (ICG) is an intraoperative imaging technique involving the intravenous injection of fluorescent indocyanine green dye and laser or infra-red photography, resulting in an image showing the perfusion of the perforator and its branches.

ICG was originally used in cardiothoracic surgery before its application to microvasculature in the free flap transfer. The advantage of this real-time perfusion imaging is the ability to dynamically assess flap perfusion and identify viable flap tissue, allowing resection and modification of the flap intraoperatively which may reduce post-operative flap necrosis.

ICG angiography can also confirm the integrity and flow through of inter-perforator zones.

ICG's short half-life allows for multiple evaluations and minimal impact on surgical time, though the technique is costly.

As a preoperative perforator imaging technique, ICG angiography has limited application and is unable to show deeper anatomy, rendering it inadequate for flap-planning in fatty tissue.
More research is required to ascertain parameters of hypo-perfusion, but ICG angiography shows promise in dynamically assessing perforasomes intra-operatively.

DIRT

As a perforasome mapping technique, DIRT can be used preoperatively in flap planning and intraoperatively to assess flap viability.

On a thermogram, the perfusion territory of a perforator is indicated by the ‘re-warming’ areas surrounding the hotspot and the rate and pattern of re-warming may provide information on the haemodynamic properties of a perforasome.

Chubb et al and Taylor et al use DIRT to map both the perforasome and the inter-perforator zone, quantitatively showing that the re-warming of a perforasome fits a logarithmic curve. They hypothesise that inter-perforator zones with rapid re-warming that also resemble this logarithmic curve are more robust linking vessels than those that display slow re-warming and do not fit this curve.

A disadvantage is DIRT inability to measure perfusion of subcutaneous tissue, which may impact rates of postoperative fat necrosis.

Discussion

The angiosomes of the body were detailed and mapped by Taylor and Palmer in 1987, providing the anatomical basis of our understanding of vascular territories today. Their studies were undertaken in cadavers, using dye, lead oxide and X-ray imaging. They defined an angiosome as a composite block of tissue supplied by a named source artery and showed true and choke anastomoses (or direct and indirect linking vessels) between adjacent angiosomes. More recently, Taylor further explored these anastomoses with angiosome mapping in animals, using lead oxide and radiographic images in cadavers and fluorescein and ink in-vivo. He described choke anastomoses (indirect linking vessels) as reduced calibre vessels, and the most common inter-connection. Less frequently, a true anastomosis (or direct linking vessel) exists between angiosomes, and this linking vessel is of the same calibre as the vessels it joins (Figure 2). These anastomoses control flow between angiosomes and hence flap design should be dictated by the type of linking vessels present. Interestingly, choke anastomoses can be converted to true, via hyperplasia, after hyper-perfusion in the setting of flap reconstruction. These findings may be applied to perforasomes and have significant implications in perforator flap reconstruction, especially if the discussed imaging techniques can be applied to inter-perforator zones and the assessment of anastomotic calibre.

With a growing number of ways to visualise perforasomes, the condition under which imaging is performed becomes increasingly important. First, in-vivo imaging is subject to various factors that affect vessel behaviour and hence impact the picture of perfused territory produced. Thermal, hormonal and neuronal elements can all influence perfusion zones by altering the dilatation and calibre of vessels. Cadaveric imaging, in contrast, is not influenced by these dynamic factors, leading to a different perforasome image than when carried out in-vivo. Similarly, pre-, intra- and post-operative imaging can each lead to slightly different perfusion pictures due to neuronal, hormonal, thermal and pressure differences.

A note on nomenclature of the perforasome and its imaging. The generally accepted definition of a perforasome, as mentioned in this review, is the territory supplied by a single perforator and its branches, the border being at the inter-perforator zone. Taylor et al summarise that this is the anatomical territory of a perforator, defined by a line drawn through the anastomotic zone, while the clinical territory of a perforator comprises the anatomical territory as well as the adjacent-perfused perforasomes.

Conclusions

Significant developments in imaging techniques have occurred since the introduction of the perforasome concept nearly a decade ago. These imaging techniques each offer different information on perforasomes and have been investigated in many environments—cadaveric,
in-vivo, pre- and intraoperatively. In this review, we have illustrated the evolution of these methods from simple perforator location to advanced three-dimensional imaging and real-time dynamic perfusion imaging.

In plastic and reconstructive surgery, the purpose of imaging the perforasome ultimately lies in the reduction and postoperative complications in perforator flap reconstruction and consequently an improvement in outcome measures such as flap loss and fat necrosis. While further research into newer techniques and their translation into clinical outcomes are required, it is clear that with advances and ongoing innovation, perforasome imaging has the potential to improve patient outcomes in perforator flap surgery.

Disclosure
The authors have no financial or commercial conflicts of interest to disclose.

References
1 Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg. 1987;40(2):113–41. https://doi.org/10.1016/0007-1226(87)90185-8
2 Saint-Cyr M, Wong C, Schaverien M, Mojallal A, Rohrich RJ. The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg. 2009;124(5):1529–44. https://doi.org/10.1097/PRS.0b013e31818b9a56
3 Rozen WM, Ashton MW, Le Roux CM, Pan WR, Corlett RJ. The perforator angiosome: a new concept in the design of deep inferior epigastric artery perforator flaps for breast reconstruction. Microsurgery. 2010;30(1):1–7.
4 Taylor GI, Doyle M, McCarten G. The Doppler probe for planning flaps: anatomical study and clinical applications. Br J Plast Surg. 1990;43(1):1–16. https://doi.org/10.1016/0007-1226(90)90039-3
5 Stekelenburg CM, Sonneveld PM, Bouman MB, van der Wal MB, Knol DL, de Vet HC, van Zuijlen PP. The hand held Doppler device for the detection of perforators in reconstructive surgery: what you hear is not always what you get. Burns. 2014;40(8):1702–706. https://doi.org/10.1016/j.burns.2014.04.018 PMID:24953858
6 Khan UD, Miller JG. Reliability of handheld Doppler in planning local perforator-based flaps for extremities. Aesthetic Plast Surg. 2007;31(5):521–527.
7 Imai R, Matsumura H, Tanaka K, Uchida R, Watanabe K. Comparison of Doppler sonography and multidetector-row computed tomography in the imaging findings of the deep inferior epigastric perforator artery. Ann Plast Surg. 2008;61(1):94–98. https://doi.org/10.1097/SAP.0b013e3181561500 PMID:18580158
8 Klassen S, Svensson H, Malm K, Wasselius J, Velander P. Preoperative CT angiography versus Doppler ultrasound mapping of abdominal perforator in DIEP breast reconstructions: A randomized prospective study. J Plast Reconstr Aesthet Surg. 2015;68(6):782–86. https://doi.org/10.1016/j.bjps.2015.02.002 PMID:25824193
9 Ono S, Hayashi H, Ohi H, Ogawa R. Imaging studies for preoperative planning of perforator flaps: an overview. Clin Plast Surg. 2017;44(1):21–30. https://doi.org/10.1016/j.cps.2016.09.004 PMID:27894580
10 Dorfman D, Pu LL. The value of color duplex imaging for planning and performing a free anterolateral thigh perforator flap. Ann Plast Surg. 2014 Suppl 1;72(2):s6–8. https://doi.org/10.1097/SAP.0b013e3182729e9e PMID:24667878
11 Rozen WM, Phillips TJ, Ashton MW, Stella DL, Gibson RN, Taylor GI. Preoperative imaging for DIEP perforator flaps: a comparative study of computed tomographic angiography and doppler ultrasound. Plast Reconstr Surg. 2008 Suppl 1;121(s1–8. https://doi.org/10.1097/01. prs.0000293874.71269.c9 PMID:18176200
12 Scott JR, Liu D, Said H, Neligan PC, Mathes DW. Computed tomographic angiography in planning abdomen-based microsurgical breast reconstruction: a comparison with color duplex ultrasound. Plast Reconstr Surg. 2010;125(2):446–53. https://doi.org/10.1097/PRS.0b013e3181c8d24 PMID:21024830
13 Feng S, Min P, Grassetto L, Lazzieri D, Sadigh P, Nicolò F, Torresetti M, Gao W, di Benedetto G, Zhang W, Zhang YX. A prospective head-to-head comparison of color doppler ultrasound and computed tomographic angiography in the preoperative planning of lower extremity perforator flaps. Plast Reconstr Surg. 2016;137(1):335–47. https://doi.org/10.1097/PRS.0b013e3182729e9e PMID:26710036
14 Su W, Lu L, Lazzieri D, Zhang YX, Wang D, Innocenti M, Qian Y, Agostini T, Levin LS, Messmer C. Contrast-enhanced ultrasound combined with three-dimensional reconstruction in preoperative perforator flap planning. Plast Reconstr Surg. 2013;131(1):80–93. https://doi.org/10.1097/PRS.0b013e3182729e9e PMID:23271520
15 Gunnarsson GL, Tei T, Thomsen JB. Color Doppler ultrasonography-targeted perforator mapping and angiosome-based flap reconstruction. Ann Plast Surg. 2016;77(4):464–68. https://doi.org/10.1097/SAP.0000000000000661 PMID:27387469
16 Nahabedian MY. Overview of perforator imaging and flap perfusion technologies. Clin Plast Surg. 2011;38(2):165–74. https://doi.org/10.1016/j.cplas.2011.03.005 PMID:21620143
17 Rozen WM, Garcia-Tutor E, Alonso-Burgos A, Acosta R, Stillaert F, Zubieta JL, Hamdi M, Whitaker IS, Ashton MW. Planning and optimising DIEP flaps with virtual surgery: the Navarra experience. J Plast Reconstr Aesthet Surg. 2010;63(2):289–97. https://doi.org/10.1016/j.bjps.2008.10.007 PMID:19042174
18 Alonso-Burgos A, Garcia-Tutor E, Bastarrika G, Cano D, Martinez-Cuesta A, Pina LJ. Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multislice-CT angiography: imaging findings and initial experience. J Plast Reconstr Aesthet Surg. 2006;59(6):585–93. https://doi.org/10.1016/j.bjps.2005.12.011 PMID:16716951
Rozen GD, Williams CG, Fishman EK, Singh NK. 3D CT angiography of abdominal wall vascular perforators to plan DIEAP flaps. *Microsurg*. 2007;27(8):641–46. https://doi.org/10.1002/micr.20423 PMID:17941105

Gacto-Sanchez P, Sicilia-Castro D, Gomez-Cia T, Lagares A, Coltell T, Suarez C, Parra C, Leal S, Infante-Cossio P, De la Higuera JM. Computed tomographic angiography with VirSSPA three-dimensional software for perforator navigation improves perioperative outcomes in DIEP flap breast reconstruction. *Plast Reconstr Surg*. 2010;125(1):24–31. https://doi.org/10.1097/PRS.0b013e3181c4948b PMID:20048587

Cina A, Barone-Adesi L, Rinaldi P, Cipriani A, Salgarelo M, Masetti R, Bonomo L. Planning deep inferior epigastric perforator flaps for breast reconstruction: a comparison between multidetector computed tomography and magnetic resonance angiography. *Eur Radiol*. 2013;23(8):2333–343. https://doi.org/10.1007/s00330-013-2834-x PMID:23571697

Rozen WM, Stella DL, Bowden J, Taylor GI, Ashton MW. Advances in the pre-operative planning of deep inferior epigastric artery perforator flaps: magnetic resonance angiography. *Microsurg*. 2009;29(2):119–23. https://doi.org/10.1002/micr.20590 PMID:19021232

Smit JM, Dimopoulos A, Liss AG, Zeebregts CJ, Kildal M, Masetti R, Bonomo L. Planning deep inferior epigastric perforators: a better preoperative imaging tool. *J Plast Reconstr Aesthet Surg*. 2009;62(9):1112–117. https://doi.org/10.1016/j.bjps.2007.12.090 PMID:18675605

Fitzgerald O’Connor E, Rozen WM, Chowdhry M, Band B, Ramakrishnan JV, Griffiths M. Preoperative computed tomography angiography for planning DIEP flap breast reconstruction reduces operative time and overall complications. *Gland Surg*. 2016;5(2):93–98.

Rozen WM, Ashton MW, Stella DL, Phillips TJ, Taylor GI. Stereotactic image-guided navigation in the preoperative imaging of perforators for DIEP flap breast reconstruction. *Microsurg*. 2008;28(6):417–23. https://doi.org/10.1002/micr.20511 PMID:18623155

Chae MP, Hunter-Smith DJ, Rozen WM. Comparative analysis of fluorescent angiography, computed tomographic angiography and magnetic resonance angiography for planning autologous breast reconstruction. *Gland Surg*. 2015;4(2):164–78. PMID:26005648 PMCid:PMC4409669

Vasile JV, Levine JL. Magnetic resonance angiography in perforator flap breast reconstruction. *Gland Surg*. 2016;5(2):197–211. PMID:27047787 PMCid:PMC4791349

Chae MP, Hunter-Smith DJ, Rozen WM. Comparative study of software techniques for 3D mapping of perforators in deep inferior epigastric artery perforator flap planning. *Gland Surg*. 2016;5(2):99–106. PMID:27047778 PMCid:PMC4791354

Gao Z, Meng D, Lu H, Yao B, Huang N, Ye Z. Utility of dual-energy spectral CT and low-ionization contrast medium in DIEP angiography. *Int J Clin Pract*. 2016 Suppl 9b:70;6b:64–71. https://doi.org/10.1111/iicp.12855 PMID:27577517

Nioumsawatt V, Debrotwir AN, Rozen WM. Reducing radiation dose without compromising image quality in preoperative perforator flap imaging with CTA using ASIR technology. *Int Surg*. 2014;99(4):485–91. https://doi.org/10.9738/INTSURG-D-13-00140.1 PMID:25058789 PMCid:PMC4114385

Kagen AC, Hossain R, Dayan E, Maddula S, Samson W, Dayan J, Smith ML. Modern perforator flap imaging with high-resolution blood pool MR angiography. *Radiographics*. 2015;35(3):901–15. https://doi.org/10.1148/rg.2015140133 PMID:25884098

Newman TM, Vasilje J, Levine JL, Greenspun DT, Allen RJ, Chao MT, Winchester PA, Prince MR. Perforator flap magnetic resonance angiography for reconstructive breast surgery: a review of 25 deep inferior epigastric and gluteal perforator flap patients. *J Magn Reson Imaging*. 2010;31(5):1176–84. https://doi.org/10.1002/jmri.22136 PMID:20432354

Schaervien MV, Ludman CN, Neil-Dwyer J, McCulley SJ. Contrast-enhanced magnetic resonance angiography for preoperative imaging of deep inferior epigastric artery perforator flaps: advantages and disadvantages compared with computed tomography angiography: a United Kingdom perspective. *Ann Plast Surg*. 2011;67(6):671–74. https://doi.org/10.1097/SAP.0b013e3181f9ebaa PMID:21407061

Schaervien MV, Ludman CN, Neil-Dwyer J, Perks GB, Akhtar N, Rodrigues JN, Benetatos K, Raurell A, Rasheed T, McCulley SJ. Contrast-enhanced magnetic resonance angiography for preoperative imaging in DIEP flap breast reconstruction. *Plast Reconstr Surg*. 2011;128(1):56–62. https://doi.org/10.1097/PRC.0b013e31821740b1 PMID:21701321

Zou Z, Kate Lee H, Levine JL, Greenspun DT, Allen RJ, Vasile J, Rohde C, Prince MR. Gadofosveset trisodium-enhanced abdominal perforator MRA. *J Magn Reson Imaging*. 2012;35(3):711–16. https://doi.org/10.1002/jmri.22853 PMID:22031489

Versluis B, Tuinder S, Boetes C, Van Der Hulst R, Lataster A, Van Mulken T, Wildberger J, de Haan M, Leiner T. Equilibrium-phase high spatial resolution contrast-enhanced MR angiography at 1.5T in preoperative imaging for perforator flap breast reconstruction. *PLoS ONE*. 2013;8(9):e71286. https://doi.org/10.1371/journal.pone.0071286 PMID:24009659 PMCid:PMC3756980

Mohan AT, Saint-Cyr M. Advances in imaging technologies for planning breast reconstruction. *Gland Surg*. 2016;5(2):242–54. PMID:27047790 PMCid:PMC4791355

Yang X, Miller MJ, Friel HT, Slijepcevic A, Knopp MV. Perforator phase contrast angiography of deep inferior epigastric perforators: a better preoperative imaging tool for flap surgery than computed tomographic angiography? *Invest Radiol*. 2012;56(2):334–42. https://doi.org/10.1097/RLI.0b013e31821740b1 PMID:22805985

Weum S, Mercer JB, de Weerd L. Evaluation of dynamic infrared thermography as an alternative to CT angiography for perforator mapping in breast reconstruction: a clinical study. *BMC Med Imaging*. 2016;16(1):43. https://doi.org/10.1186/s12880-016-0144-x PMID:27421763 PMCid:PMC4947300

Sheena Y, Jennison T, Hardwicke JT, Titley OG. Detection of perforators using thermal imaging. *Plast Reconstr Surg*. 2013;132(6):603–10. https://doi.org/10.1097/PRC.0b013e3182a80740 PMID:24281586

Hardwicke JT, Osmani O, Skillman JM. Detection of perforators using smartphone thermal imaging. *Plast Reconstr Surg*. 2016;137(1):39–41. https://doi.org/10.1097/PRC.0000000000001649 PMID:26710006
41 Chubb DP, Taylor GI, Ashton MW. True and ‘choke’ anastomoses between perforator angiosomes: part II. Dynamic thermographic identification. Plastic Reconstr Surg. 2013;132(6):1457–64. https://doi.org/10.1097/PRS.0b013e3182756f3 PMid:23579465

42 Chubb D, Rozen WM, Whitaker IS, Ashton MW. Images in plastic surgery: digital thermographic photography (‘thermal imaging’) for preoperative perforator mapping. Ann Plast Surg. 2011;66(4):324–25. https://doi.org/10.1097/SAP.0b013e31820c8001

43 Hijjawi JB, Blondeel PN. Advancing deep inferior epigastric artery perforator flap breast reconstruction through multidetector row computed tomography: an evolution in preoperative imaging. J Reconstr Microsurg. 2010;26(1):11–20. https://doi.org/10.1055/s-0029-1244807 PMid:20043275

44 Newman MI, Samson MC. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J Reconstr Microsurg. 2009;25(1):21–26. https://doi.org/10.1055/s-0028-1090617 PMid:18925547

45 Komorowska-Timek E, Gurtner GC. Intraoperative perfusion mapping with laser-assisted indocyanine green imaging can predict and prevent complications in immediate breast reconstruction. J Reconstr Microsurg. 2010;25(4):1065–073. https://doi.org/10.1055/s-0025-1090617 PMid:20358589

46 Holm C, Tegeler J, Mayr M, Becker A, Pfeiffer U, Muhlbauer W. Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience. Microsurg. 2002;22(7):278–87. https://doi.org/10.1002/micr.10052 PMid:12404345

47 Pestana IAMD, Zenn MRMD. Correlation between abdominal perforator vessels identified with preoperative ct angiography and intraoperative fluorescent angiography in the microsurgical breast reconstruction patient. Ann Plast Surg. 2014;72(6):S144–S49. https://doi.org/10.1097/SAP.0000000000000104 PMid:24835872

48 Burnier P, Niddam J, Bosc R, Hersant B, Meningaud JP. Indocyanine green applications in plastic surgery: A review of the literature. J Plast Reconstr Aesthet Surg. 2017;70(6):814–27. https://doi.org/10.1016/j.bjps.2017.01.020 PMid:28292569

49 Bigdeli AK, Gazyakan E, Schmidt VJ, Hernekamp FJ, Harhaus L, Henzler T, Kremer T, Knser U, Hirche C. Indocyanine green fluorescence for free-flap perfusion imaging revisited: advanced decision making by virtual perfusion reality in visionsense fusion imaging angiography. Surg Innov. 2016;23(3):249–60. https://doi.org/10.1177/1533350615610651 PMid:26474605

50 Casey WJ, 3rd, Connolly KA, Nanda A, Rebecca AM, Perdikis G, Smith AA. Indocyanine green laser angiography improves deep inferior epigastric perforator flap outcomes following abdominal suction lipectomy. Plast Reconstr Surg. 2015;135(3):941e–97e. https://doi.org/10.1097/PRS.0000000000000964 PMid:25719713

51 Muntean MV, Muntean V, Ardelean F, Georgescu A. Dynamic perfusion assessment during perforator flap surgery: an up-to-date. Clujul Med. 2015;88(3):293–97. https://doi.org/10.15386/cjmed-484