UNBOUNDED WEIGHTED CONDITIONAL TYPE OPERATORS
ON $L^p(\Sigma)$

Y. ESTAREMI

Abstract. In this paper we consider unbounded weighted conditional type operators on the space $L^p(\Sigma)$, we give some conditions under which they are densely defined and we obtain a dense subset of the domain. Also, we get that a WCT operator is continuous if and only if it is every where defined. A description of polar decomposition, spectrum and spectral radius in this context are provided. Finally, we investigate hyperexpansive WCT operators on the Hilbert space $L^2(\Sigma)$. As a consequence hyperexpansive multiplication operators are investigated.

1. Introduction

In this paper we consider a class of unbounded linear operators on L^p-spaces having the form M_wEM_u, where E is a conditional expectation operator and M_u and M_w are multiplication operators. What follows is a brief review of the operators E and multiplication operators, along with the notational conventions we will be using.

Let (Ω, Σ, μ) be a σ-finite measure space and let A be a σ-subalgebra of Σ such that (Ω, A, μ) is also σ-finite. We denote the collection of (equivalence classes modulo sets of zero measure) Σ-measurable complex-valued functions on Ω by $L^0(\Sigma)$ and the support of a function $f \in L^0(\Sigma)$ is defined as $S(f) = \{t \in \Omega; f(t) \neq 0\}$. Moreover, we set $L^p(\Sigma) = L^p(\Omega, \Sigma, \mu)$. We also adopt the convention that all comparisons between two functions or two sets are to be interpreted as holding up to a μ-null set. For each σ-finite subalgebra A of Σ, the conditional expectation, $E_A(f)$, of f with respect to A is defined whenever $f \geq 0$ or $f \in L^p(\Sigma)$. In any case, $E_A(f)$ is the unique A-measurable function for which

$$\int_A f d\mu = \int_A E_A f d\mu, \quad \forall A \in A.$$

As an operator on $L^p(\Sigma)$, E^A is an idempotent and $E^A(L^p(\Sigma)) = L^p(A)$. If there is no possibility of confusion we write $E(f)$ in place of $E^A(f)$ [10] [12]. This operator will play a major role in our work and we list here some of its useful properties:

- If g is A-measurable, then $E(fg) = E(f)g$.
- $|E(f)|^p \leq E(|f|^p)$.
- If $f \geq 0$, then $E(f) \geq 0$; if $f > 0$, then $E(f) > 0$.
- $|E(fg)| \leq E(|f|^p)^{\frac{1}{p}}E(|g|^q)^{\frac{1}{q}}$, (Hölder inequality) for all $f \in L^p(\Sigma)$ and $g \in L^q(\Sigma)$, in which $\frac{1}{p} + \frac{1}{q} = 1$.

2010 Mathematics Subject Classification. 47B25, 47B38.

Key words and phrases. Conditional expectation, unbounded operators, hyperexpansive operators.
For each \(f \geq 0 \), \(S(f) \subseteq S(E(f)) \).

Let \(u \in L^0(\Sigma) \). The corresponding multiplication operator \(M_u \) on \(L^p(\Sigma) \) is defined by \(f \rightarrow uf \). Our interest in operators of the form \(M_uEM_u \) stems from the fact that such products tend to appear often in the study of those operators related to conditional expectation. This observation was made in [1, 2, 5, 8, 9]. In this paper, first we investigate some properties of unbounded weighted conditional type operators on \(L^p(\Sigma) \) and then we study hyperexpansive ones.

2. Unbounded weighted conditional type operators

Let \(X \) stand for a Banach space and \(B(X) \) for the Banach algebra of all linear operators on \(X \). By an operator in \(X \) we understand a linear mapping \(T : D(T) \subseteq X \rightarrow X \) defined on a linear subspace \(D(T) \) of \(X \) which is called the domain of \(T \). The linear map \(T \) is called densely defined if \(D(T) \) is dense in \(X \) and it is called closed if its graph \((G(T)) \) is closed in \(X \times X \), where \(G(T) = \{(f, Tf) : f \in D(T)\} \). We studied bounded weighted conditional type operators on \(L^p \)-spaces in [4]. Also we investigated unbounded weighted conditional type operators of the form \(EM_u \) on the Hilbert space \(L^2(\Sigma) \) in [3]. Here we investigate unbounded weighted conditional type operators of the form \(M_uEM_u \) on \(L^p \)-spaces. Let \(f \) be a positive \(\Sigma \)-measurable function on \(\Omega \). Define the measure \(\mu_f : \Sigma \rightarrow [0, \infty) \) by

\[
\mu_f(E) = \int_E f d\mu, \quad E \in \Sigma.
\]

It is clear that the measure \(\mu_f \) is also \(\sigma \)-finite, since \(\mu \) is \(\sigma \)-finite. From now on we assume that \(u \) and \(w \) are conditionable (i.e., \(E(u) \) and \(E(w) \) are defined). Operators of the form \(M_uEM_u(f) = wE(u.f) \) acting in \(L^p(\mu) \) with \(D(M_uEM_u) = \{ f \in L^p(\mu) : wE(u.f) \in L^p(\mu) \} \) are called weighted conditional type operators (or briefly WCT operators). In the first proposition we give a condition under which the WCT operator \(M_uEM_u \) is densely defined.

Theorem 2.1. For \(1 \leq p, q < \infty \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(E(|u|^p)^\frac{1}{p}E(|u|^q)^\frac{1}{q} < \infty \) a.e., the linear transformation \(M_uEM_u \) is densely defined.

Proof. For each \(n \in \mathbb{N} \), define

\[
A_n = \{ t \in \Omega : n - 1 \leq E(|w|^p)(t)E(|u|^q)^\frac{1}{q}(t) < n \}.
\]

It is clear that each \(A_n \) is \(\mathcal{A} \)-measurable and \(\Omega \) is expressible as the disjoint union of sets in the sequence \(\{A_n\}_{n=1}^{\infty} \), \(\Omega = \cup_{n=1}^{\infty} A_n \).

Let \(f \in L^p(\Sigma) \) and \(\epsilon > 0 \). Then, there exists \(N > 0 \) such that

\[
\int_{\cup_{n=N}^{\infty} A_n} |f|^p d\mu = \sum_{n=N}^{\infty} \int_{A_n} |f|^p d\mu < \epsilon.
\]

Define the sets

\[
B_N = \cup_{n=N}^{\infty} A_n, \quad C_N = \cup_{n=1}^{N-1} A_n.
\]

Then, \(\int_{B_N} |f|^p d\mu < \epsilon \) and \(C_N = \{ \{ t \in \Omega : E(|w|^p)(t)E(|u|^q)^\frac{1}{q}(t) < N - 1 \} \} \). Next, we define \(g = f \cdot \chi_{C_N} \). Clearly \(g \in L^p(\Sigma) \) and \(E(g) = E(f) \cdot \chi_{C_N} \). Now, we show
that $g \in \mathcal{D} = \mathcal{D}(M_wEM_n)$. Consider the following:

\[
\int_\Omega |wE(ug)|^p \, d\mu = \int_\Omega |wE(uf)\chi_{C_n}|^p \, d\mu \\
= \int_{C_n} E(|w|^p)|E(uf)|^p \, d\mu \\
\leq \int_{C_n} E(|w|^p)E(|u|^q)\frac{p}{q} |f|^p \, d\mu \\
\leq (N-1) \int_{C_n} |f|^p \, d\mu < \infty.
\]

Thus, $wE(uf) \in L^p(\Sigma)$. Now, we show that $\|g-f\|_p < \epsilon$:

\[
\|g-f\|_p^p = \int_{\mathcal{X}} |g-f|^p \, d\mu \\
= \int_{C_n} |g-f|^p \, d\mu < \epsilon.
\]

Thus, \mathcal{D} is dense in $L^p(\Sigma)$. \hfill \Box

Here we obtain a dense subset of $L^p(\mu)$ that we need it to proof our next results.

Lemma 2.2. Let $1 < p, q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$, $J = 1 + E(|w|^p)E(|u|^q)\frac{1}{q}$, $E(|w|^p)^{\frac{1}{p}}E(|u|^q)^{\frac{1}{q}} < \infty \ a.e., \ \mu$, and $d\nu = J \, d\mu$. We get that $S(J) = \Omega$ and

(i) $L^p(\nu) \subseteq \mathcal{D}(M_wEM_n)$,

(ii) $\| \cdot \|_\mu = \mathcal{D}(M_wEM_n)^{\nu} = L^p(\mu)$.

Proof. Let $f \in L^p(\nu)$. Then

\[
\|f\|_p^p \, d\mu \leq \|f\|_p^p < \infty,
\]

so $f \in L^p(\mu)$. Also, by conditional-type Hölder-inequality we have

\[
\|M_wEM_n(f)\|_p^p \, d\mu \leq \int_{\Omega} E(|w|^p)E(|u|^q)^{\frac{1}{q}} E(|f|^p) \, d\mu \\
= \int_{\mathcal{X}} E(|w|^p)E(|u|^q)^{\frac{1}{q}} |f|^p \, d\mu \\
\leq \|f\|_p^p < \infty,
\]

this implies that $f \in \mathcal{D}(M_wEM_n)$. Now we prove that $L^p(\nu)$ is dense in $L^p(\mu)$. By Riesz representation theorem we have

\[
(L^p(\nu))^\perp = \{g \in L^p(\mu) : \int_{\Omega} f \, g \, d\mu = 0, \ \forall f \in L^p(\nu)\}.
\]

Suppose that $g \in (L^p(\nu))^\perp$. For $A \in \Sigma$ we set $A_n = \{t \in A : J(t) \leq n\}$. It is clear that $A_n \subseteq A_{n+1}$ and $\Omega = \cup_{n=1}^{\infty} A_n$. Also, Ω is σ-finite, hence $\Omega = \cup_{n=1}^{\infty} \Omega_n$ with $\mu(\Omega_n) < \infty$. If we set $B_n = A_n \cap \Omega_n$, then $B_n \not\subseteq A$ and so $g \chi_{B_n} \not\subseteq g \chi_A \ a.e. \ \mu$. Since $\nu(B_n) \leq (n+1)\mu(B_n) < \infty$, we have $\chi_{B_n} \in L^p(\nu)$ and by our assumption $\int_{B_n} f \, d\mu = 0$. Therefore by Fatou’s lemma we get that $\int_{A} g \, d\mu = 0$. Thus for all $A \in \Sigma$ we have $\int_{A} g \, d\mu = 0$. This means that $g = 0 \ a.e. \ \mu$ and so $L^p(\nu)$ is dense in $L^p(\mu)$. \hfill \Box
By the Lemma [2.2] we get that $L^p(\nu)$ is a core of M_uEM_u. Here we give a condition that we will use in the next theorem.

(*) If (Ω, A, μ) is a σ-finite measure space and $J - 1 = \{E(|u|^s)\}^{1/p} E(|u|^{q}) \leq \infty$ a.e. μ, then there exists a sequence $\{A_n\}_{n=1}^{\infty} \subseteq A$ such that $\mu(A_n) < \infty$ and $J - 1 < n$ a.e. μ on A_n for every $n \in \mathbb{N}$ and $A_n \not\subset \Omega$ as $n \to \infty$.

Theorem 2.3. If $u, w : \Omega \to \mathbb{C}$ are Σ-measurable and $1 < p, q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$, then the following conditions are equivalent:

(i) M_uEM_u is densely defined on $L^p(\Sigma)$,

(ii) $J - 1 = E(|u|^p)(E(|u|^{q}))^{\frac{p}{q}} \leq \infty$ a.e., μ.

(iii) $\mu_{J-1} |A$ is σ-finite.

Proof. (i) \to (ii) Set $E = \{E(|u|^p)(E(|u|^{q}))^{\frac{p}{q}} = \infty\}$. Clearly by Lemma (i), $f |_{E} = 0$ a.e., μ for every $f \in L^p(\nu)$. This implies that $fJ |_{E} = 0$ a.e., μ for every $f \in L^p(\mu)$. So we have $J \chi_{A \cap E} = 0$ a.e., μ for all $A \subseteq \Sigma$ with $\mu(A) < \infty$. By the σ-finiteness of μ we have $J \chi_{E} = 0$ a.e., μ. Since $S(J) = \Omega$, we get that $\mu(E) = 0$.

(ii) \to (i) Evident.

(ii) \to (iii) Let $\{A_n\}_{n=1}^{\infty}$ be in (*). We have

$$\mu_{J-1} |A (A_n) = \int_{A_n} E(|u|^p)(E(|u|^{q}))^{\frac{p}{q}} d\mu \leq n \mu(A_n) < \infty, \quad n \in \mathbb{N}.$$

This yields (iii).

(iii) \to (i) Let $\{A_n\}_{n=1}^{\infty} \subseteq A$ be a sequence such that $A_n \not\subset \Omega$ as $n \to \infty$ and $\mu_{J-1} |A (A_n) < \infty$ for every $k \in \mathbb{N}$. It follows from the definition of μ_{J-1} that $J - 1 = E(|u|^p)(E(|u|^{q}))^{\frac{p}{q}} < \infty$ a.e., μ on A. Applying Theorem 2.1 we obtain (i).

Let X, Y be Banach spaces and $T : X \to Y$ be a linear operator. If T is densely defined, then there is a unique maximal operator T^* from $D(T^*) \subset Y^*$ into X^* such that

$$y^*(Tx) = \langle Tx, y^* \rangle = \langle x, T^*y^* \rangle = T^*y^*(x), \quad x \in D(T), \quad y^* \in D(T^*).$$

T^* is called the adjoint of T.

By Riesz representation theorem for L^p-spaces we have $\langle f, F \rangle = F(f) = \int_{\Omega} f \hat{F} d\mu$, when $f \in L^p(\Sigma), \quad F \in L^q(\Sigma) = (L^p(\Sigma))^*$ and $\frac{1}{p} + \frac{1}{q} = 1$. By the Theorem 2.3 easily we get that: the operator M_uEM_u is densely defined if and only if the operator M_uEM_u is densely defined. In the next proposition we obtain the adjoint of the WCT operator M_uEM_u on the Banach space $L^p(\Sigma)$.

Proposition 2.4. If the linear transformation $T = M_uEM_u$ is densely defined on $L^p(\Sigma)$, then M_uEM_u is a densely defined operators on $L^q(\Sigma)$ and $T^* = M_uEM_u$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 2.6. If \(w \in L^2(\Omega) \), then it is continuous if and only if it is everywhere defined.

Proof. Let \(f \in \mathcal{D}(T) \) and \(g \in \mathcal{D}(T^*) \). So we have

\[
(Tf, g) = \int_{\Omega} wE(uf)\overline{g}d\mu = \int_{\Omega} fuE(wg)d\mu = \langle f, \overline{M_w}g \rangle.
\]

Hence \(T^* = \overline{M_w} \).

Now we prove that every densely defined WCT operator is closed.

Proposition 2.5. If \(\int E(|w|^q)\mu < \infty \) a.e., \(\mu \). Then the linear transformation \(M_w \mathcal{E}_w : \mathcal{D}(M_w \mathcal{E}_w) \to \mathcal{L}(\Sigma) \) is closed.

Proof. Assume that \(f_n \in \mathcal{D}(M_w \mathcal{E}_w) \), \(f_n \to f \), \(wE(u_{f_n}) \to g \), and let \(h \in \mathcal{D}(\overline{M_w} \mathcal{E}_w) \). Then

\[
\langle f, \overline{M_w} \mathcal{E}_w h \rangle = \lim_{n \to \infty} \langle f_n, \overline{M_w} \mathcal{E}_w h \rangle = \lim_{n \to \infty} (wE(u_{f_n}), h) = \langle g, h \rangle.
\]

This calculation (which uses the continuity of the inner product and the fact that \(f_n \in \mathcal{D}(M_w \mathcal{E}_w) \)) shows that \(f \in \mathcal{D}(M_w \mathcal{E}_w) \) and \(wE(u_f) = g \), as required.

In the next theorem we get that if WCT operator \(M_w \mathcal{E}_w \) is densely defined, then it is continuous if and only it is everywhere defined.

Theorem 2.6. If \(\int E(|w|^q)\mu < \infty \) a.e., \(\mu \). Then the WCT operator \(M_w \mathcal{E}_w : \mathcal{D}(M_w \mathcal{E}_w) \to \mathcal{L}(\Sigma) \) is continuous if and only if it is everywhere defined i.e., \(\mathcal{D}(M_w \mathcal{E}_w) = \mathcal{L}(\Sigma) \).

Proof. Let \(M_w \mathcal{E}_w \) be continuous. By Lemma 2.2, it is closed. Hence easily we get that \(\mathcal{D}(M_w \mathcal{E}_w) \) is closed and so \(\mathcal{D}(M_w \mathcal{E}_w) = \mathcal{L}(\Sigma) \). The converse is easy by closed graph theorem.

We denote the range of the operator \(T \) as \(\mathbb{R}(T) \) i.e., \(\mathbb{R}(T) = \{T(x) : x \in \mathcal{D}(T)\} \).

Proposition 2.7. If \(E(|w|^2)E(|w|^2) < \infty \) a.e., \(\mu \) and \(M_w \mathcal{E}_w : \mathcal{D}(M_w \mathcal{E}_w) \subset L^2(\Sigma) \to L^2(\Sigma) \), then \(\mathbb{R}(M_w \mathcal{E}_w) \) is closed if and only if \(\mathbb{R}(M_w \mathcal{E}_w) = \mathbb{L}(\Sigma) \).

Proof. Let \(P : L^2(\Sigma) \times L^2(\Sigma) \to G(M_w \mathcal{E}_w) \) be a projection and \(Q : L^2(\Sigma) \times L^2(\Sigma) \to \{0\} \times L^2(\Sigma) \) be the canonical projection. It is clear that \(\mathbb{R}(M_w \mathcal{E}_w) = \mathbb{R}(QP) \). Also, \(\mathbb{R}(M_w \mathcal{E}_w) \cong \mathbb{R}((I - Q)(I - P)) \). Since \(P \) and \(Q \) are orthogonal projections, then \(\mathbb{R}(QP) \) is closed if and only if \(\mathbb{R}((I - Q)(I - P)) \). Thus we obtain the desired result.

It is well-known that for a densely defined closed operator \(T \) of \(\mathcal{H}_2 \) into \(\mathcal{H}_2 \), there exists a partial isometry \(U_T \) with initial space \(\mathcal{N}(T) = \overline{\mathbb{R}(T^*)} = \overline{\mathbb{R}((T))} \) and final space \(\mathcal{N}(T^*) = \overline{\mathbb{R}(T)} \) such that

\[T = U_T |T|. \]
Theorem 2.8. Suppose that $\mathcal{D}(M_wEM_u)$ is dense in $L^2(\Sigma)$. Let $M_wEM_u = U|M_wEM_u|$ be the polar decomposition of M_wEM_u. Then

(i) $|M_wEM_u| = M_w E M_u$, where $u' = \left(\frac{E(|u|^2)}{E(|u|^2)}\right)^\frac{1}{2} \chi_{S\cap G}$ and $S = S(E(|u|^2))$,

(ii) $U = M_wEM_u$, where $w' : \Omega \to \mathbb{C}$ is an a.e. μ well-defined Σ-measurable function such that

$$w' = \frac{w}{(E(|w|^2)E(|u|^2))^\frac{1}{2}} \chi_{S\cap G},$$

in which $G = S(E(|w|^2))$.

Proof. (i). For every $f \in \mathcal{D}(M_wEM_u)$ we have

$$\|M_wEM_u(f)(f)\|^2 = \|M_wEM_u(f)\|^2.$$

Also, by Lemma 2.2 we conclude that $\mathcal{D}(M_wEM_u) = \mathcal{D}(|M_wEM_u|)$ and it is easily seen that M_wEM_u is a positive operator. These observations imply that $|M_wEM_u| = M_wEM_u$.

(ii). For $f \in L^2(\Sigma)$ we have

$$\int_{\Omega} |w' E(u f)|^2 d\mu = \frac{\chi_{S\cap G}}{E(|w|^2)E(|u|^2)} \int_{\Omega} |w E(u f)|^2 d\mu,$$

which implies that the operator M_wEM_u is well-defined and $\mathcal{N}(M_wEM_u) = \mathcal{N}(M_wEM_u)$. Also, for $f \in \mathcal{D}(M_wEM_u) \oplus \mathcal{N}(M_wEM_u)$ we have

$$U(|M_wEM_u|(f)) = wE(u f).\chi_{S\cap G} = wE(u f).$$

Thus $\|U(f)\| = \|f\|$ for all $f \in \mathcal{R}(|M_wEM_u|)$ and since U is a contraction, then it holds for all $f \in \mathcal{N}(M_wEM_u)^\perp = \mathcal{R}(|M_wEM_u|)$. □

Here we remind that: if $T : \mathcal{D}(T) \subset X \to X$ is a closed linear operator on the Banach space X, then a complex number λ belongs to the resolvent set $\rho(T)$ of T, if the operator $\lambda I - T$ has a bounded everywhere on X defined inverse $(\lambda I - T)^{-1}$, called the resolvent of T at λ and denoted by $R_\lambda(T)$. The set $\sigma(T) := \mathbb{C} \setminus \rho(T)$ is called the spectrum of the operator T.

It is known that, if a, b are elements of a unital algebra A, then $1 - ab$ is invertible if and only if $1 - ba$ is invertible. A consequence of this equivalence is that $\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}$. Now, in the next theorem we compute the spectrum of WCT operator M_wEM_u as a densely defined operator on $L^2(\Sigma)$.

Proposition 2.9. Let M_wEM_u be densely defined and $A \subseteq \Sigma$, then

(i) $\text{essrange}(E(uw)) \setminus \{0\} \subseteq \sigma(M_wEM_u)$,

(ii) If $L^2(A) \subseteq \mathcal{D}(EM_uw)$, then $\sigma(M_wEM_u) \setminus \{0\} \subseteq \text{essrange}(E(uw)) \setminus \{0\}$.

Proof. Since $\sigma(M_wEM_u) \setminus \{0\} = \sigma(EM_uw) \setminus \{0\}$, then by using theorem 2.8 of \cite{Y. ESTAREMI}, we get the proof. □

By a similar method that we used in the proof of theorem 2.8 of \cite{Y. ESTAREMI} we have the same assertion for the spectrum of the densely defined operator EM_u on the space $L^p(\Sigma)$, i.e.,

(i) $\text{essrange}(E(u)) \cup \{0\} \subseteq \sigma(EM_u)$,
If \(L^p(A) \subseteq D(EM_u) \), then \(\sigma(EM_u) \subseteq \text{essrange}(E(u)) \cup \{0\} \).

By these observations we have the next remark.

Remark 2.10. Let \(M_w EM_u \) be densely defined operator on \(L^p(\Sigma) \) and \(A \subseteq \Sigma \), then

(i) \(\text{essrange}(E(uw)) \setminus \{0\} \subseteq \sigma(M_w EM_u) \),

(ii) If \(L^p(A) \subseteq D(EM_{uw}) \), then \(\sigma(M_w EM_u) \setminus \{0\} \subseteq \text{essrange}(E(uw)) \cup \{0\} \).

As we know the spectral radius of a densely defined operator \(T \) is denoted by \(r(T) \) and is defined as: \(r(T) = \sup_{\lambda \in \sigma(T)} |\lambda| \). Hence we have the next corollary.

Corollary 2.11. If the WCT operator \(M_w EM_u \) is densely defined on \(L^p(\Sigma) \) and \(L^p(A) \subseteq D(EM_{uw}) \), then \(\sigma(M_w EM_u) \setminus \{0\} = \text{essrange}(E(uw)) \cup \{0\} \) and \(r(M_w EM_u) = ||E(uw)||_\infty \).

A densely defined operator \(T \) on the Hilbert space \(\mathcal{H} \) is said to be **hyponormal** if \(D(T) \subseteq D(T^*) \) and \(||T^*(f)|| \leq ||T(f)|| \) for \(f \in D(T) \). A densely defined operator \(T \) on the Hilbert space \(\mathcal{H} \) is said to be **normal** if \(T^*T = TT^* \). For the WCT operator \(T = M_w EM_u \) on \(L^2(\Sigma) \) we have \(T^* = M_w EM_u \) and we recall that \(T \) is densely defined if and only if \(T^* \) is densely defined. If \(T \) is densely defined, then by the Lemma 2.2 we get that \(L^2(\nu) \subseteq D(T) \), \(L^2(\nu) \subseteq D(T^*) \) and

\[
\frac{L^2(\nu)}{\|\mu\|} = \frac{D(T)}{\|\mu\|} = \frac{D(T^*)}{\|\mu\|} = L^2(\mu),
\]

in which \(d\nu = Jd\mu \) and \(J = 1 + E(|w|^2)E(|u|^2) \). Also, we have \(T^*T = M_w EM_u \) and \(TT^* = M_w EM_u \). Similarly, we have \(L^2(\nu) \subseteq D(T^*T) \), \(L^2(\nu) \subseteq D(TT^*) \) and

\[
\frac{L^2(\nu)}{\|\mu\|} = \frac{D(T^*T)}{\|\mu\|} = \frac{D(TT^*)}{\|\mu\|} = L^2(\mu),
\]

in which \(d\nu' = J'd\mu \) and \(J' = 1 + (E(|w|^2))^2(E(|u|^2))^2 \). By these observations we have next assertions.

Proposition 2.12. Let WCT operator \(M_w EM_u \) be densely defined on \(L^2(\Sigma) \). Then we have the followings:

(i) If \(u(E(|w|^2))^\frac{1}{2} = \tilde{w}(E(|u|^2))^\frac{1}{2} \) with respect to the measure \(\mu \), then \(T = M_w EM_u \) is normal.

(ii) If \(T = M_w EM_u \) is normal, then \(E(|w|^2)E(u)^2 = E(|u|^2)E(w)^2 \) with respect to the measure \(\mu \).

Proof. (i) Direct computations shows that

\[
T^*T - TT^* = M_w EM_u - M_w EM_u,
\]
on \(L^2(\nu') \). Hence for every \(f \in L^2(\nu') \) we have

\[
\langle T^*T - TT^*(f), f \rangle = \int_X E(|w|^2)E(u)\bar{w}f - E(|u|^2)E(\tilde{w})\bar{f}w d\mu
\]

\[
= \int_X |E(u(E(|w|^2))^\frac{1}{2}f)|^2 - |E((E(|u|^2))^\frac{1}{2}\bar{w}f)|^2 d\mu.
\]

This implies that if

\[
(E(|w|^2))^\frac{1}{2} = u(E(|w|^2))^\frac{1}{2},
\]
then for all \(f \in L^2(\nu') \), \((T^*T - TT^*(f), f) = 0 \). Thus \(T^*T = TT^* \).
(ii) Suppose that T is normal. By (i), for all $f \in L^2(\nu')$ we have
\[
\int_X |E(u(E(|w|^2)))^{\frac{1}{2}}f)|^2 - |E((E(|w|^2)))^{\frac{1}{2}}\bar{w}f)|^2 d\mu = 0.
\]
Let $A \in \mathcal{A}$, with $0 < \nu'(A) < \infty$. By replacing f to χ_A, we have
\[
\int_A |E(u(E(|w|^2)))^{\frac{1}{2}}f)|^2 - |E((E(|w|^2)))^{\frac{1}{2}}\bar{w}f)|^2 d\mu = 0
\]
and so
\[
\int_A |E(u)|^2E(|w|^2) - |E(w)|^2E(|u|^2)d\mu = 0.
\]
Since $A \in \mathcal{A}$ is arbitrary and $\mu \ll \nu'$ (absolutely continuous), then $|E(u)|^2E(|w|^2) = |E(w)|^2E(|u|^2)$ with respect to μ. □

Proposition 2.13. Let the WCT operator M_wEM_u be densely defined on $L^2(\Sigma)$. Then we have the followings:

(i) If $u(E(|w|^2)))^{\frac{1}{2}} \geq \bar{w}(E(|u|^2)))^{\frac{1}{2}}$ with respect to μ, then $T = M_wEM_u$ is hyponormal.

(ii) If $T = M_wEM_u$ is hyponormal, then $E(|w|^2)|E(u)|^2 \geq E(|u|^2)|E(w)|^2$ with respect to the measure μ.

Proof. By a similar method of 2.12 we can get the proof. □

3. Hyperexpansive WCT operators

In this section we are going to present conditions under which WCT operator M_wEM_u on $L^2(\Sigma)$ is k-isometry, k-expansive, k-hyperexpansive and completely hyperexpansive. For an operator T on the Hilbert space \mathcal{H} we set

\[
\Theta_{T,n}(f) = \sum_{0 \leq i \leq n} (-1)^i \binom{n}{i} \|T^i(f)\|^2, \quad f \in D(T^n), \quad n \geq 1.
\]

By means of this definition an operator T on \mathcal{H} is said to be:

(i) k-isometry ($k \geq 1$) if $\Theta_{T,k}(f) = 0$ for $f \in D(T^k)$,

(ii) k-expansive ($k \geq 1$) if $\Theta_{T,k}(f) \leq 0$ for $f \in D(T^k)$,

(iii) k-hyperexpansive ($k \geq 1$) if $\Theta_{T,n}(f) \leq 0$ for $f \in D(T^n)$ and $n = 1, 2, ..., k$.

(iv) completely hyperexpansive if $\Theta_{T,n}(f) \leq 0$ for $f \in D(T^n)$ and $n \geq 1$.

For more details one can see [9, 7, 11]. It is easily seen that for every $f \in L^2(\Sigma)$

\[
\|M_wEM_u(f)\|_2 = \|EM_v(f)\|_2,
\]

where $v = u(E(|w|^2)))^{\frac{1}{2}}$. Thus without loss of generality we can consider the operator EM_v instead of M_wEM_u in our discussion. First we recall some concepts that we need them in the sequel. Now we present our main results. The next lemma is a direct consequence of Theorem [2, 3].
Lemma 3.1. For every $n \in \mathbb{N}$ the operator $(EM_v)^n$ on $L^2(\Sigma)$ is densely-defined if and only if the operator EM_v is densely defined on $L^2(\Sigma)$.

In the Theorem 3.2 we give some necessary and sufficient conditions for k-isometry and k-expansive WCT operators EM_v.

Theorem 3.2. If $\mathcal{D}(EM_v)$ is dense in $L^2(\mu)$, then:

(i) If the operator EM_v is k-isometry ($k \geq 1$), then $A_k^0(|E(v)|^2) = 0$;

(ii) If $(1 + E(|v|^2)A_k^1(|E(v)|^2)) = 0$ and $|E(vf)|^2 = E(|v|^2)E(|f|^2)$ for all $f \in \mathcal{D}(EM_v)$, then the operator EM_v is k-isometry;

(iii) If the operator EM_v is k-expansive, then $A_k^0(|E(v)|^2) \leq 0$;

(iv) If $(1 + E(|v|^2)A_k^1(|E(v)|^2)) \leq 0$ and $|E(vf)|^2 = E(|v|^2)E(|f|^2)$ for all $f \in \mathcal{D}(EM_v)$, then the operator EM_v is k-expansive, where

$$A_k^0(|E(v)|^2) = \sum_{0 \leq i \leq k} (-1)^i \binom{k}{i} |E(v)|^{2i}, \quad A_k^1(|E(v)|^2) = \sum_{1 \leq i \leq k} (-1)^i \binom{k}{i} |E(v)|^{2(i-1)}.$$

Proof. Suppose that the operator EM_v is k-isometry. So for all $f \in \mathcal{D}((EM_v)^k)$ we have

$$0 = \Theta_{T,k}(f)$$

$$= \sum_{0 \leq i \leq k} (-1)^i \binom{n}{i} \| (EM_v)^i(f) \|^2$$

$$= \int_\Omega |f|^2 d\mu + \sum_{1 \leq i \leq k} (-1)^i \binom{n}{i} \int_\Omega |E(v)|^{2(i-1)}|E(vf)|^2 d\mu,$$

and so for all \mathcal{A}-measurable functions $f \in \mathcal{D}((EM_v)^k)$

$$0 = \int_\Omega |f|^2 d\mu + \sum_{1 \leq i \leq k} (-1)^i \binom{n}{i} \int_\Omega |E(v)|^{2(i-1)}|E(v)|^2 |f|^2 d\mu$$

$$= \int_\Omega \left(\sum_{0 \leq i \leq k} (-1)^i \binom{n}{i} |E(v)|^{2i} \right) |f|^2 d\mu.$$

Since $(EM_v)^k$ is densely defined, then we get that $A_k(|E(v)|^2) = 0$.

(ii) Let $1 + E(|v|^2)A_k^1(|E(v)|^2) = 0$ and $|E(vf)|^2 = E(|v|^2)E(|f|^2)$ for all $f \in$
\(\mathcal{D}((EM_v)^k) \). Then for all \(f \in \mathcal{D}((EM_v)^k) \) we have

\[
\Theta_{T,k}(f) = \sum_{0 \leq i \leq k} (-1)^i \binom{n}{i} \|(EM_v)^i(f)\|^2
= \int_{\Omega} |f|^2 d\mu + \sum_{1 \leq i \leq k} (-1)^i \binom{n}{i} \int_{\Omega} |E(v)|^2 E(\pi^1 |E(v)|^2) |f|^2 d\mu
= \int_{\Omega} |f|^2 d\mu + \int_{\Omega} \left(\sum_{1 \leq i \leq k} (-1)^i \binom{n}{i} (E(|v|^2))^{2(i-1)} \right) E(|v|^2) E(|f|^2) d\mu
= \int_{\Omega} (1 + E(|v|^2) A_k(|E(v)|^2)) |f|^2 d\mu
= 0.
\]

This implies that the operator \(EM_v \) is \(k \)-isometry.

(iii), (iv). By the same method that is used in (i) and (ii), easily we get (iii) and (iv).

\[\square \]

Here we recall that if the linear transformation \(T = EM_v \) is densely defined on \(L^2(\Sigma) \), then \(T = EM_v \) is closed and \(T^* = M_\pi E \). Also, if \(\mathcal{D}(EM_v) \) is dense in \(L^2(\Sigma) \) and \(v \) is almost every where finite valued, then the operator \(EM_v \) is normal if and only if \(v \in L^0(A) \) \[3\]. Hence we have the Remark 3.3 for normal WCT operators.

Remark 3.3. Suppose that the operator \(EM_v \) is normal and \(\mathcal{D}(EM_v) \) is dense in \(L^2(\mu) \) for a fixed \(k \geq 1 \). If \(|E(f)|^2 = E(|f|^2) \) on \(S(v) \) for all \(f \in \mathcal{D}((EM_v)^k) \), then:

(i) The operator \(EM_v \) is \(k \)-isometry \((k \geq 1)\) if and only if \(A_k(|v|^2) = 0 \);

(ii) The operator \(EM_v \) is \(k \)-expansive if and only if \(A_k(|v|^2) \leq 0 \).

\[\text{Proof.} \] Since \(EM_v \) is normal, then \(|E(v)|^2 = E(|v|^2) = |v|^2 \). Thus by Theorem 3.2 we have (i) and (ii).

Here we give some properties of \(2 \)-expansive WCT operators and as a corollary for \(2 \)-expansive multiplication operators.

Proposition 3.4. If \(\mathcal{D}(EM_v) \) is dense in \(L^2(\mu) \) and \(EM_v \) is \(2 \)-expansive, then:

(i) \(EM_v \) leaves its domain invariant:

(ii) \(|E(v)|^{2k} \geq |E(v)|^{2(k-1)} \) a.e. \(\mu \) for all \(k \geq 1 \).
Remark 3.1 and Theorem 3.2. (iii) of [7] we get that

\[d_{EM}(f) = \frac{\sum_{n=0}^{\infty} \phi(n)}{n} \leq 1\]

so \(M_v(f) \in D(EM_v)\).

(ii) Since \(EM_v\) leaves its domain invariant, then \(D(EM_v) \subseteq D^\infty(EM_v)\). So by lemma 3.2 (iii) of [7] we get that \(\|EM_v(f)\| \geq \|EM_v(k-1)(f)\|^2\) for all \(f \in D(EM_v)\) and \(k \geq 1\) we have

\[\int_{\Omega} |E(v)|^{2(k-1)}|E(vf)|^2d\mu \geq \int_{\Omega} |E(v)|^{2(k-2)}|E(vf)|^2d\mu,
\]

and so

\[\int_{\Omega} (|E(v)|^{2(k-1)} - |E(v)|^{2(k-2)} |E(vf)|^2d\mu \geq 0,
\]

for all \(f \in D(EM_v)\). This leads to \(|E(v)|^{2k} \geq |E(v)|^{2(k-1)}\) a.e., \(\mu\). \(\square\)

Corollary 3.5. If \(D(M_v)\) is dense in \(L^2(\mu)\) and \(M_v\) is \(2\)-expansive, then:

(i) \(M_v\) leaves its domain invariant:

(ii) \(v^{2k} \geq v^{2(k-1)}\) a.e. \(\mu\) for all \(k \geq 1\).

Recall that a real-valued map \(\phi\) on \(\mathbb{N}\) is said to be completely alternating if

\[\sum_{0 \leq i \leq n} (-1)^i \binom{n}{i} \phi(m+i) \leq 0 \text{ for all } m \geq 0 \text{ and } n \geq 1.\]

The next remark is a direct consequence of Lemma 3.1 and Theorem 3.2.

Remark 3.6. If \(D(EM_v)\) is dense in \(L^2(\mu)\) and \(k \geq 1\) is fixed, then:

(i) If the operator \(EM_v\) is \(k\)-hyperexpansive \((k \geq 1)\), then \(A_n^0(|E(v)|^2) \leq 0\) for \(n = 1, 2, \ldots, k\);

(ii) If \((1 + E(|v|^2)A_n^1(|E(v)|^2)) \leq 0\) and \(|E(vf)|^2 = E(|v|^2)E(|f|^2)\) for all \(f \in D(EM_v)^n\) and \(n = 1, 2, \ldots, k\), then the operator \(EM_v\) is \(k\)-hyperexpansive \((k \geq 1)\);

(iii) If the operator \(EM_v\) is completely hyperexpansive, then

(a) the sequence \(|E(v)(t)|^2|^2_{n=0}^\infty\) is a completely alternating sequence for almost every \(t \in \Omega\),
(b) \(A_n^0(|E(v)|^2) \leq 0\) for \(n \geq 1\).

(iv) If \((1 + E(|v|^2)A_n^1(|E(v)|^2)) \leq 0\) and \(|E(vf)|^2 = E(|v|^2)E(|f|^2)\) for all \(f \in D((EM_v)^n)\) and \(n \geq 1\), then the operator \(EM_v\) is completely hyperexpansive.
By Remark 3.6 and some properties of normal WCT operators we get the next remark for \(k \)-hyperexpansive and completely hyperexpansive normal WCT operators.

Remark 3.7. Let the operator \(EM_v \) be normal, \(D(EM_v) \) be dense in \(L^2(\mu) \) and \(k \geq 1 \) be fixed. If \(|E(f)|^2 = E(|f|^2) \) on \(S(\nu) \) for all \(f \in D((EM_v)^k) \), then

(i) \(EM_v \) is \(k \)-hyperexpansive (\(k \geq 1 \)) if and only if \(A_n(|v|^2) \leq 0 \) for \(f \in D(T^n) \) and \(n = 1, 2, ..., k \).

(ii) \(EM_v \) is completely hyperexpansive if and only if the sequence \(\{|u(t)|^2\}_{n=0}^\infty \) is a completely alternating sequence for almost every \(t \in \Omega \).

If all functions \(v^{2i} \) for \(i = 1, ..., n \) are finite valued, then we set

\[
\triangle_{v,n}(x) = \sum_{0 \leq i \leq n} (-1)^i \binom{n}{i} |v|^{2i}(t).
\]

Also, if \(\mathcal{A} = \Sigma \), then \(E = I \). So we have next two corollaries.

Corollary 3.8. If \(D(M_v) \) is dense in \(L^2(\mu) \) for a fixed \(n \geq 1 \), then:

(i) \(M_v \) is \(k \)-expansive if and only if \(\triangle_{v,n}(x) \leq 0 \) a.e. \(\mu \).

(ii) \(M_v \) is \(k \)-isometry if and only if \(\triangle_{v,n}(x) = 0 \) a.e. \(\mu \).

Corollary 3.9. Let \(D(M_v) \) be dense in \(L^2(\mu) \) and \(k \geq 1 \) be fixed. Then

(i) \(M_v \) is \(k \)-hyperexpansive (\(k \geq 1 \)) if and only if \(\triangle_{v,n}(t) \leq 0 \) a.e., \(\mu \) for \(n = 1, 2, ..., k \).

(ii) \(M_v \) is completely hyperexpansive if and only if the sequence \(\{|u(t)|^2\}_{n=0}^\infty \) is a completely alternating sequence for almost every \(t \in \Omega \).

Finally we give some examples.

Example 3.10. Let \(\Omega = [-1, 1] \), \(d\mu = \frac{1}{2}dx \) and \(\mathcal{A} = \mathcal{A} = \{(-a, a) : 0 \leq a \leq 1\} \) (Sigma algebra generated by symmetric intervals). Then

\[
E^A(f)(t) = \frac{f(t) + f(-t)}{2}, \quad t \in \Omega,
\]

where \(E^A(f) \) is defined. If \(v(t) = e^t \), then \(E^A(v)(t) = \cosh(t) \) and we have the followings:

1) \(E^A M_v \) is densely defined and closed on \(L^p(\Omega) \).

2) \(\sigma(E^A M_v) = R(\cosh(t)) \).

3) \(E^A M_v \) is not 2-expansive, since

\[
1 - 2|E(v)|^2(t) + |E(v)|^4(t) = 1 - 2\cosh^2(t) + \cosh^4(t) = (\cosh^2(t) - 1)^2 \geq 0.
\]
Example 3.11. Let $\Omega = \mathbb{N}$, $\mathcal{G} = 2^\mathbb{N}$ and let $\mu(\{t\}) = pq^{t-1}$, for each $t \in \Omega$, $0 \leq p \leq 1$ and $q = 1 - p$. Elementary calculations show that μ is a probability measure on \mathcal{G}. Let A be the σ-algebra generated by the partition $B = \{\Omega_1 = \{3n : n \geq 1\}, \Omega_1^c\}$ of Ω. So, for every $f \in \mathcal{D}(E^A)$ we have

$$E(f) = \alpha_1 \chi_{\Omega_1} + \alpha_2 \chi_{\Omega_1^c}$$

and direct computations show that

$$\alpha_1(f) = \frac{\sum_{n \geq 1} f(3n) pq^{3n-1}}{\sum_{n \geq 1} pq^{3n-1}}$$

and

$$\alpha_2(f) = \frac{\sum_{n \geq 1} f(n) pq^{n-1} - \sum_{n \geq 1} f(3n) pq^{3n-1}}{\sum_{n \geq 1} pq^{n-1} - \sum_{n \geq 1} pq^{3n-1}}.$$

So, if u and w are real functions on Ω. Then we have the followings:

1) If $\alpha_1((|w|^q)^{\frac{1}{q}}) \alpha_1((|w|^p)^{\frac{1}{p}}) < \infty$ and $\alpha_2((|w|^q)^{\frac{1}{q}}) \alpha_2((|w|^p)^{\frac{1}{p}}) < \infty$, then the operator $M_w EM_u$ is a densely defined and closed operator on $L^p(\Omega)$.

2) $\sigma(M_w EM_u) = \{\alpha_1(E(uw)), \alpha_2(E(uw))\}$.

Example 3.12. Let $\Omega = [0,1] \times [0,1]$, $d\mu = ddtdt'$, Σ the Lebesgue subsets of Ω and let $\mathcal{A} = \{A \times [0,1] : A$ is a Lebesgue set in $[0,1]\}$. Then, for each f in $L^2(\Sigma)$, $(Ef)(t,t') = \int_0^1 f(t,s)ds$, which is independent of the second coordinate. Hence for $v(t,t') = t^m$ we get that v is \mathcal{A}-measurable and EM_v is k-expansive and k-isometry if

$$\sum_{0 \leq i \leq k} (-1)^i \binom{k}{i} x^{2mi} \leq 0, \quad \sum_{0 \leq i \leq k} (-1)^i \binom{k}{i} t^{2mi} = 0,$$

respectively. This example is valid in the general case as follows:

Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be two σ-finite measure spaces and $\Omega = \Omega_1 \times \Omega_2$, $\Sigma = \Sigma_1 \times \Sigma_2$ and $\mu = \mu_1 \times \mu_2$. Put $A = \{A \times \Omega_2 : A \in \Sigma_1\}$. Then A is a sub-σ-algebra of Σ. Then for all f in domain E^A we have

$$E^A(f)(t_1) = E^A(f)(t_1, t_2) = \int_{\Omega_2} f(t_1, s)d\mu_2(s) \quad \mu - a.e.$$

on Ω.

Also, if (Ω, Σ, μ) is a finite measure space and $k : \Omega \times \Omega \to \mathbb{C}$ is a $\Sigma \otimes \Sigma$-measurable function such that

$$\int_{\Omega} |k(., s)f(s)|d\mu(s) \in L^2(\Sigma)$$

for all $f \in L^2(\Sigma)$. Then the operator $T : L^2(\Sigma) \to L^2(\Sigma)$ defined by

$$Tf(t) = \int_{\Omega} k(t, s)f(s)d\mu, \quad f \in L^2(\Sigma),$$

is called kernel operator on $L^2(\Sigma)$. We show that T is a weighted conditional type operator. Since $L^2(\Sigma) \times \{1\} \cong L^2(\Sigma)$ and vf is a $\Sigma \otimes \Sigma$-measurable function,
when \(f \in L^2(\Sigma) \). Then by taking \(v := k \) and \(f'(t, s) = f(s) \), we get that
\[
E^A(vf)(t) = E^A(vf')(t, s) = \int_{\Omega} v(t, t') f'(t', d\mu(t') = \int_{\Omega} v(t, t') f(t') d\mu(t') = Tf(t).
\]

Hence \(T = EM_v \), i.e, \(T \) is a weighted conditional type operator. This means all assertions of this paper are valid for a class of integral type operators.

References

[1] P.G. Dodds, C.B. Huijsmans and B. De Pagter, characterizations of conditional expectation-type operators, Pacific J. Math. 141(1) (1990), 55-77.
[2] R. G. Douglas, Contractive projections on an \(L_1 \) space, Pacific J. Math. 15 (1965), 443-462.
[3] Y. Estaremi, Unbounded weighted conditional expectation operators, Complex Anal. Oper. Theory, to appear 2015.
[4] Y. Estaremi and M.R. Jabbarzadeh, Weighted lambert type operators on \(L^p \)-spaces, Oper. Matrices 1 (2013), 101-116.
[5] J. J. Grobler and B. de Pagter, Operators representable as multiplication-conditional expectation operators, J. Operator Theory 48 (2002), 15-40.
[6] Z. J. Jablonski. Complete hyperexpansivity, subnormality and inverted boundedness conditions; Integral Equations Operator Theory 44 (2002) 316-336.
[7] Z. J. Jablonski and J. Stochel, Unbounded 2-hyperexpansive operators, Proc. Edinburgh Math. Soc. 44 (2001), 613-629.
[8] A. Lambert, \(L^p \) multipliers and nested sigma-algebras, Oper. Theory Adv. Appl. 104 (1998), 147-153.
[9] Shu-Teh Chen, Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954), 47-63.
[10] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
[11] V. M. Sholapurkar and A. Athavale, Completely and alternatingly hyperexpansive operators. J. Operator Theory 43 (2000), 43-68.
[12] A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

Y. Estaremi
E-mail address: yestaremi@pnu.ac.ir

Department of Mathematics, Payame Noor University, P. O. Box: 19395-3697, Tehran, Iran.