The Diagnosis of Diabetic Nephropathy using Neuro-Fuzzy Expert System

Jimmy Singla1 and Dinesh Grover2

1Department of CSE, IKG PTU, Kapurthala - 144603, Punjab, India; jimmysingla27@gmail.com
2Department of CSE and IT, LLRIET, Moga - 142001, Punjab, India; dineshgrover@yahoo.com

Abstract

Objectives: To develop an improved expert system for the diagnosis of nephropathy. Methods/Statistical Analysis: To achieve this objective, data on the nephropathy is taken by specialist doctors in this domain and adaptive neuro-fuzzy technique is applied on it. Gaussian membership functions are attempted in the study and MATLAB is used to implement the expert system. Findings: This system succeeds up to 96.25% of the cases. The sensitivity, specificity and precision obtained from this system are 97.5%, 95% and 95.12%. These parameters are found out by comparing the output achieved from this system with the judgments made by experts in this area. Application/Improvements: This expert system can be applied in the situations where the patient is unable to get medical assistance from doctor due to certain problems like low ratio of doctor to patient, unavailability of doctors in undeveloped areas etc.

Keywords: Diagnosis, Expert System, Nephropathy, Neuro-Fuzzy

1. Introduction

There is an increased burden of diabetes in developing countries. The largest number of diabetics in the world is present in India with frequency of 11.8% in urban and 3.8% in rural adults. Both the type 1 and type 2 diabetics direct to end stage renal disease. The reason behind this is the delayed detection of nephropathy in patients having diabetes. Nephropathy can be controlled by early recognition and treatment of renal changes14. In early detection of nephropathy, the expert may recommend the suitable actions to reduce the risk of nephropathy, adopt the multifactorial interventions and use the agents with renoprotective effect. So the early detection of diabetic nephropathy is must for the longer survival of patients. But due to contradictory information, the diagnosis of disease is overwhelming task in some cases14. For example some symptoms lead to different interpretations. The diagnosis in these cases is quite difficult. Hence the expert also needs some help to make the right diagnosis15. In some cases, some symptoms of the disease are very much common and some symptoms are very alike. It again produces difficulty for the expert to make the diagnosis16. The medical expert systems are built to aid the experts to reach at the right diagnosis17.

The medical expert systems are made up of programs and medical knowledge base. The knowledge about the disease is contained in the knowledge base18. In simple rule based medical expert systems, the user is asked to answer yes or no if a particular symptom occurs or not. In the end, on account of user’s answers name of the disease is found out19. Fuzzy medical expert systems are grouping of rules and membership functions. Fuzzy systems are sloping towards mathematical processing20,21. Fuzzy logic is a developing tool for its modeling using real values taken from structured range. It is likely to maintain as many features of classical logic as feasible22. Fuzzy logic is a data processing methodology that is highly advisable when trying to model imprecise information and to make rational decisions in an uncertainty environment23. The fuzzy expert system is based on three walks. In the first walk, the non fuzzy set is transformed into fuzzy
The Diagnosis of Diabetic Nephropathy using Neuro-Fuzzy Expert System

2. Background Work

Several clinical problems are diagnosed by classification system. Diabetic nephropathy is also one among them. There are several studies for the diagnosis of diabetic nephropathy. Rama devi has designed fuzzy knowledge based system to identify the risk of diabetic nephropathy. This system helps to resolve the renal failure and protects the patient from ESRD. Narasimhan proposed fuzzy logic system for the diabetic nephropathy control and obtained various parameters like classification accuracy, sensitivity and specificity. Meza-Palacios has developed a fuzzy inference system for the assessment of diabetic nephropathy. This fuzzy inference system succeeds in up to 93.33% of the cases.

3. The Problem

The incidence of diabetic nephropathy is rising at an alarming rate. The numeral of people living with this disease is increasing due to population growth, hypertension, smoking and lack of expert guidance. The ratio of doctor to patient is very small. Patient does not get expert medical assistance. Mostly patients recognize the nephropathy in last stages of renal disease. Sometimes doctors are also unable to diagnose diabetic nephropathy in early stages as some symptoms lead to different interpretations. So, medical expert systems are required to remove these problems. Simple rule based medical expert systems have drawback that they do not tell the probability the diagnosis is close to reality and development of rules. For example a simple rule based system is built for the finding of diabetic nephropathy. The knowledge base for the system is having knowledge of diabetic nephropathy. The rule developed from the knowledge taken from expert is in the following form:

Disease (Patient, nephropathy):-
Symptom (Patient, glomerular_filtration_rate),
Symptom (Patient, serum_creatinine),
Symptom (Patient, blood_glucose),
Symptom (Patient, type2_diabetes_mellitus_age),
Symptom (Patient, uric_acid),
Symptom (Patient, hypertension),
Symptom (Patient, dyslipedemia).

The system will ask to the user about the symptoms and user will reply yes or no to the symptoms. If the user will reply yes to all the symptoms of a particular disease then that disease will be diagnosed by the system. As in the above rule, if user will reply yes to glomerular filtration rate, serum creatinine, blood glucose, type2_diabetes_mellitus_age, uric_acid, hypertension and dyslipedemia then the system will find out that the patient is having diabetes nephropathy and in case user replies no to any one or more symptoms then the system will be unable to diagnose. So in this way, the simple rule based expert systems do not calculate the probability of disease and there is a need to formulate the rules from the knowledge taken from expert.

The fuzzy medical expert systems tell the probability of disease that is close to reality but the drawback of fuzzy
systems is to choose and develop the membership functions and rules. It is an important issue in fuzzy modeling. For instance the fuzzy inference system for analysis of diabetes has input parameter ‘glomerular filtration rate’. It is divided into three linguistic terms which are moderate, minor and normal. Using fuzzy system, there is a need to formulate the membership functions and rules. The membership function for glomerular filtration rate is chosen as follow in Figure 1.

Figure 1. Membership functions for glomerular filtration rate.

Example of rule created with the expertise of doctor is as follow:

If GFR is normal and blood glucose is good and T2DMA is in stage 1 and uric acid is good and serum creatinine is good and no hypertension and no dyslipidemia THEN the patient has good nephropathy control.

So to remove these drawbacks, we have used adaptive neuro-fuzzy technique for the diagnosis of diabetic nephropathy. In this technique, the membership functions and rules are generated automatically.

4. The Idea

The idea is to apply the neuro-fuzzy technique for the diagnosis of diabetic nephropathy. The true idea for this paper comes out from the following research papers:

“Development of a fuzzy expert system for the nephropathy control assessment in patients with type 2 diabetes mellitus” by Ramiro Meza-Palacios, Alberto A. Aguilar-Lasserre, Enrique L. Urena-Bogarin, Carlos F. Vazquez-Rodriguez, Ruben Posada-Gomez, Armin Trujillo-Mata. They have diagnosed diabetic nephropathy using fuzzy expert system. From this paper, we identify the inputs and output for the nephropathy control medical diagnostic system. We have taken the same inputs and output in our research work.

“Comparison of fuzzy logic and Neuro fuzzy algorithms for air conditioning system” by Arshdeep kaur, Amrit kaur. They have applied fuzzy and neuro-fuzzy techniques for air conditioning system and found that the neuro-fuzzy technique is superior to fuzzy logic. From here we come to know that the neuro-fuzzy technique is superior to fuzzy logic and applied this neuro-fuzzy technique for diagnosis of diabetic nephropathy in our research work.

“Neuro-fuzzy expert system for breast cancer diagnosis” by Manisha arora, Dinesh tagra. They have applied neuro-fuzzy technique with gaussian membership functions in their research work and they have obtained better results with this. From this, we come to know that the gaussian membership functions are better than others. So we have used Gaussian membership functions in our research work.

5. The Details

Neuro-fuzzy algorithm for diagnosis of diabetic nephropathy is developed using ANFIS edit in MATLAB. A sample of dataset taken from experts in medical assessments on patients of diabetic nephropathy is shown in Table 1.

S No.	GFR	BG	T2DMA	UA	SC	HYP	DLP	Nephropathy control
1	61.06	130	8	5.4	0.7	1	0	2
2	89.41	121	3	6.1	1.2	0	0	3
3	111.7	337	23	4.7	0.7	1	1	4
4	64	125	2	7.3	1.45	1	0	1
5	58.65	129	9	5	0.7	0	0	2
6	148.6	206	13	3.6	0.55	1	0	4
7	60.81	233	24	6.9	1.43	1	0	1
8	90.44	150	11	4	0.79	0	0	3
name 'input1', 'input2', 'input3', 'input4', 'input5', 'input6', 'input7' respectively and the output takes the name 'output'. Input1 to input3 each is having three Gaussian membership functions and input4 to input7 each is having two Gaussian membership functions. The output has four membership functions of constant nature. The generated fuzzy expert system is then trained for the input output data deposit collected from experts. The membership functions of input1 to input 7 with their range are shown in Figure 2 to Figure 8. Fuzzy logic structure is exposed in Figure 9. The representation of rules in the neuro-fuzzy expert system is shown in Figure 10.

There are total 432 rules in the system. It is calculated as follow:
Total number of rules = membership functions of input1 * membership functions of input2 * membership functions of input3 * membership functions of input4 * membership functions of input5 * membership functions of input6 * membership functions of input7

Entire number of rules = 3*3*3*2*2*2*2

Entire number of rules = 432

Figure 9. Fuzzy logic structure.

Figure 10. Rules representation in Neuro-fuzzy system.

Figure 11. ANFIS rules.

Figure 12. ANFIS rules.
The Diagnosis of Diabetic Nephropathy using Neuro-Fuzzy Expert System

ANFIS rules are shown in Figure 11 and 12. Training error at 30 epochs is shown in Figure 13.

6. Results

Throughout testing the feat of the structure, the professional expert classify adequately and inadequately diagnosed patient cases by evaluating the decisions made by the system with that of the professional expert decisions made on the same patients test cases. Performance is frequently calculated by applying the figures in the matrix array. The following Table 2 illustrates the confusion matrix array for the four set classifier using neuro-fuzzy expert system.

The entries in Table 2 have the following sense in the perspective of this research:

As a result out of 80 diagnosed patients cases, 20 diagnosed patients are sorted as severe out of which all 20 diagnosed patients are adequately sorted. The second column illustrates an idea of about 20 diagnosed patient cases, 19 are sorted as moderate and 01 patient is sorted faultily. The third column explains that out of 20 diagnosed patient cases, 18 are sorted as minor and 02 patients are sorted faultily and in the fourth column out of the 20 diagnosed patient cases, 18 are sorted as good and 02 patients are sorted faultily. On the whole out of 80 diagnosed patients' cases, 75 diagnosed patients' cases are adequately sorted and 05 diagnosed patients cases are sorted inadequately.

Number of successes = 75
Total of tests= 80
Confidence indicator = ((75/80)*100) = 93.75
The result shows that the judgments reached by adaptive neuro-fuzzy expert system are 93.75% in acceptably categorized patients and 06.25% in wrongly categorized patients. Now the severe and moderate classifiers are taken as yes. It means they are unhealthy people and minor and good classifiers are taken as no. It means they are healthy
people. So the 3*3 matrix of values in table 2 is reduced to 2*2 matrix of values which is shown in Table 3.

\[TP: \text{True positive is 39} \]
\[FN: \text{False negative is 01} \]
\[FP: \text{False positive is 02} \]
\[TN: \text{True negative is 38} \]

Sensitivity = \(\frac{TP}{TP+FN} = \frac{39}{39+01} = 97.5\% \)
Specificity = \(\frac{TN}{TN+FP} = \frac{38}{38+02} = 95\% \)
Precision = \(\frac{TP}{TP+FP} = \frac{39}{39+02} = 95.12\% \)
Classification accuracy = \(\frac{(TP+TN)}{(TP+TN+FP+FN)} = \frac{(39+38)}{(39+38+02+01)} = 96.25\% \)

Table 2. Confusion matrix array using neuro-fuzzy expert system

Severe	Moderate	Minor	Good	Class Names
20	00	00	00	Severe
00	19	01	00	Moderate
00	02	18	00	Minor
00	00	02	18	Good

Table 3. Confusion matrix with reduced dimensionality

Yes	No	Class Names
39	01	Yes
02	38	No

8. Future Scope

With the passage of time, medical study and research will identify more parameters that affect on the measurement of nephropathy control. These parameters can be incorporated into the neuro-fuzzy model being undertaken in the research work. The performance of the system can still be improved by training the neural network with different number of input output combinations.

9. References

1. Bojestig M, Arqvist HJ, Hermanson G, Karlberg, BE, Ludvigsson J. Declining incidence of nephropathy in insulin-dependent diabetes mellits. The New England Journal of Medicine. 1994; 330(1):15-8. Crossref. PMid:8259139.
2. Remuzzi G, Schieppati A, Ruggenenti P. Nephropathy in patients with type 2 diabetes. The New England Journal of Medicine. 2002; 346:1145-51. Crossref. PMid:11948275
3. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005; 28(1):176-88. Crossref.
4. Miller RA. Medical diagnostic decision support systems—past, present, and future: A threaded bibliography and brief commentary. Journal of the American Medical Informatics Association. 1994; 1(1):8-27. Crossref. PMid:7719792 PMCid:PMC116181.
5. Alonso-Amo F, Perez AG, Gomez GL, Montes C. An expert system for homeopathic glaucoma treatment (SEHO). Expert Systems with Applications. 1995; 8(1):89-99. Crossref.
6. Singla J, Jindal N. The diagnosis of some tweens childhood diseases in a prolog expert system. Proceedings of National Conference on Advances in Engineering and Technology. 2014; p. 1-4. PMid:26328137 PMCid:PMC4548645.
7. Ramesh AN, Kambhampati C, Monson JRT, Drew PJ. Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England. 2004; 86(5):334-8. Crossref. PMid:15333167 PMCid:PMC1964229.
8. Roventa E, Rosu G. The diagnosis of some kidney diseases in a small prolog expert system. Proceedings of the 3rd International Workshop on Soft Computing Applications. 2009; p. 219-24. Crossref.
9. Singla J. The diagnosis of some lung diseases in a prolog expert system. International Journal of Computer Applications. 2013; 78(15):37-40. Crossref
10. Singla J. Comparative study of mamdani-type and sugeno-type fuzzy inference systems for diagnosis of diabetes. Proceedings of International Conference of Advances in
The Diagnosis of Diabetic Nephropathy using Neuro-Fuzzy Expert System

11. Bhandari V, Kumar R. Comparative analysis of fuzzy expert systems for diabetic diagnosis. International Journal of Computer Applications. 2015; 132(6):8-14. Crossref.
12. Novak V. Which logic is the real fuzzy logic? Fuzzy Sets and Systems. 2006 Mar; 157(5):635-41. Crossref, Crossref.
13. Sproule BA, Naranjo CA, Turksen IB. Fuzzy pharmacology: Theory and applications. Trends in Pharmacological Sciences. 2002 Sep; 23(9):412-7. Crossref.
14. Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences. 1975; 8(3):199-249. Crossref
15. Kaur A. Comparison of mamdani-type and sugeno-type fuzzy inference systems for air conditioning system. International Journal of Soft Computing and Engineering, 2012 Jan; 2(2):323-5.
16. Kamboj V, Kaur V. Comparison of constant sugeno-type and mamdani-type fuzzy inference system for load sensor. International Journal of Soft Computing and Engineering. 2013; 3(2):1-4.
17. Arora M, Tagra D. Neuro-fuzzy expert system for breast cancer diagnosis. Proceedings of International Conference on Advances in Computing, Communications and Informatics. 2012; p. 979-85. Crossref.
18. Devi ER, Nagaveni N. Design methodology of a fuzzy knowledgebase system to predict the risk of diabetic nephropathy. International Journal of Computer Science Issues. 2010; 7(5):1-9.
19. Narasimhan B, Malathi A. Fuzzy logic system for risk-level classification of diabetic nephropathy. Proceedings of International Conference on Green Computing, Communication and Electrical Engineering. 2014; p. 1-4. Crossref.
20. Meza-Palacios R, Aguilar-Lasserre AA, Vazquez-Rodriguez CF, Posada-Gomez R, Trujillo-Mata A. Development of a fuzzy expert system for the nephropathy control assessment in patients with type 2 diabetes mellitus. Expert Systems with Applications. 2017 April; 72:335-43. Crossref.
21. Kaur A. Comparison of fuzzy logic and neuro fuzzy algorithms for air conditioning system. International Journal of Soft Computing and Engineering. 2012; 2(1):417-20.
22. Thakur M, Kaur A. Neuro-fuzzy based fake currency detection system. International Journal of Advanced Research in Computer Science and Software Engineering, 2014; 4(7):1-8.