FIRST IS BETTER THAN LAST FOR TRAINING DATA INFLUENCE

A PREPRINT

Chih-Kuan Yeh¹, Ankur Taly², Mukund Sundararajan², Frederick Liu², and Pradeep Ravikumar¹

¹Machine Learning Department, Carnegie Mellon University
²Google Inc.

ABSTRACT

The ability to identify influential training examples enables us to debug training data and explain model behavior. Existing techniques are based on the flow of influence through the model parameters Koh & Liang (2017); Yeh et al. (2018); Pruthi et al. (2020). For large models in NLP applications, it is often computationally infeasible to study this flow through all model parameters, therefore techniques usually pick the last layer of weights. Our first observation is that for classification problems, the last layer is reductive and does not encode sufficient input level information. Deleting influential examples, according to this measure, often does not change the model’s behavior much. We propose a technique called TracIn-WE that modifies a method called TracIn Pruthi et al. (2020) to operate on the word embedding layer instead of the last layer. This could potentially have the opposite concern, that the word embedding layer does not encode sufficient high level information. However, we find that gradients (unlike embeddings) do not suffer from this, possibly because they chain through higher layers. We show that TracIn-WE significantly outperforms other data influence methods applied on the last layer by 4 − 10× on the case deletion evaluation on three language classification tasks. In addition, TracIn-WE can produce scores not just at the training data level, but at the word training data level, a further aid in debugging.

1 Introduction

Training data influence methods study the influence of training examples on a model’s weights (learned during the training process), and in turn on the predictions of other test examples. They enable us to debug predictions by attributing them to the training examples that most influence them, debug training data by identifying mislabeled examples, and fixing mispredictions via training data curation. While the idea of training data influence originally stems from the study of linear regression (Cook & Weisberg, 1982), it has recently been developed for complex machine learning models like deep networks.

Prominent methods for quantifying training data influence for deep networks include influence functions (Koh & Liang, 2017), representer point selection (Yeh et al., 2018), and TracIn (Pruthi et al., 2020). While the details differ, all methods involve computing the gradients (w.r.t. the loss) of the model parameters at the training and test examples. Thus, they all face a common computational challenge of dealing with the large number of parameters in modern deep networks. In practice, this challenge is circumvented by restricting the study of influence to only the parameters in the last layer of the network.

In this work, we revisit the choice of restricting influence computation to the last layer in the context of large-scale Natural Language Processing (NLP) models. Specifically, we find that they do poorly on the case deletion evaluation metric, which expects highly influential training examples to cause a large change in the test example’s prediction when the influential examples are removed from training. The influential examples also appear unrelated to the test example in any intuitive sense. Since the gradient of the last layer parameters derive from the last layer activations, we posit that the poor influence performance stems from the representations carried by the last layer activations being too reductive, in the sense that, they contain more information about the output and less so on the input. As a result, they do not offer

¹We use the term ‘weights’ and ‘parameters’ interchangeably throughout this paper.
²While this choice may not be explicitly called out in the method definitions, it is implicit in the implementations.
a good measure of input sentence similarity, which is a critical component in estimating influence. We even find that a simple TF-IDF similarity based influence measure does better on the case deletion evaluation metric when compared to last layer versions of existing methods. This is aligned with existing literature on learning sentence representations, which finds last layer representations to be inappropriate for capturing meaningful sentence similarity [Li et al.] (2020).

In light of this observation, we propose computing influence over the weights in the word embedding layer. The representation generated after the word embedding layer is typically the first layer in any NLP model, which has not undergone any task-specific reductions or transformations. Thus, by design, it does not suffer from the shortcomings of last layer representations. While word embedding representations might have the opposite issue of not capturing any high-level input semantics, we surprisingly find that the gradients of the embedding weights do not suffer from this. This is because the gradients chain through the higher layers, and thus take into account the high-level information captured in those layers. As a result, the gradients of the embedding weights of a word depend on both the context and importance of the word in the input.

We develop the idea of word embedding based influence in the context of TracIn due to its computational and resource efficiency over other methods. Our proposed method, TracIn-WE, can be expressed as the sum of word embedding gradient similarity over overlapping words between the training and test examples. Requiring overlapping words between the training and test sentences helps capture low-level similarity, while the word gradient similarity helps capture the high-level semantic similarity between the sentences. A key benefit of TracIn-WE is that it affords a natural word-level decomposition, which is not readily offered by existing methods. This helps us understand which words in the training example drive its influence on the test example.

We evaluate TracIn-WE on several NLP classification tasks, including toxicity, AGnews, and MNLI language inference. We show that TracIn-WE outperforms existing influence methods on the case deletion evaluation metric by $4 - 10\times$. We also demonstrate applications of TracIn-WE in targeted fixing of miclassifications by removing or modifying training examples that influence them.

A potential criticism of TracIn-WE is its reliance on word overlap between the training and test examples, which would prevent it from estimating influence between examples that relate semantically but not syntactically. We address this in two ways. First, we show that the presence of common tokens in the input, such as a “start” and “end” token (which are commonly found in modern NLP models), allows TracIn-WE to capture influence between semantically related examples without any overlapping words. Second, we propose a variant of TracIn-WE that explicitly allows for influence via synonyms. We empirically show that when “start” and “end” tokens exist, TracIn-WE and its synonym-matching variant both outperform last layer based influence methods even on a restricted set of training examples that barely overlaps with the test example.

2 Preliminaries

Consider the standard supervised learning setting, with inputs $x \in \mathcal{X}$, outputs $y \in \mathcal{Y}$, and training data $D = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$. Suppose we train a predictor f with parameter Θ by minimizing some given loss function ℓ over the training data, so that $\Theta = \arg\min_{\Theta} \sum_{i=1}^{n} \ell(f(x_i), y_i)$. In the context of the trained model f, and the training data D, we are interested in the data importance of a training point x to the testing point x', which we generically denote as $I(x, x')$.

2.1 Existing Methods

We first briefly introduce the commonly used training data influence methods: Influence functions (Koh & Liang, 2017), Representer Point selection [Yeh et al., 2018], and TracIn (Pruthi et al., 2020). We demonstrate that each method can be decomposed into a similarity term $S(x, x')$, which measures the similarity between a training point x and the test point x', and loss saliency terms $L(x)$ and $L(x')$, that measures the saliency of the model outputs to the model loss. The decomposition largely derives from an application of chain rule to the parameter gradients.

$$I(x, x') = L(x)S(x, x')L(x')$$

The decomposition yields the following interpretation. A training data x has a larger influence on a test point x' if (a) the training point model outputs have high loss saliency, (b) the training point x and the test point x' are similar as construed by the model. In Section 3 we show that restricting the influence method to operate on the weights in the last layer of the model critically affects the similarity term, and in turn the quality of influence. We now introduce the form of each method, and the corresponding similarity and loss saliency terms.

Influence Functions:

$$\text{Inf}(x, x') = -\nabla_{\Theta} \ell(x, \Theta)^T H_{\Theta}^{-1} \nabla_{\Theta} \ell(x', \Theta),$$
We expect

where H_Θ is the hessian $\sum_{i=1}^n \nabla^2_{\Theta} \ell(x, \Theta)$ computed over the training examples. By an application of the chain rule, we can see that $\text{Inf}(x, x') = L(x)S(x, x')L(x')$, with the similarity term $S(x, x') = \frac{\partial f(x', \Theta)}{\partial \Theta}^T H_\Theta^{-1} \frac{\partial f(x', \Theta)}{\partial \Theta}$, and the loss saliency terms $L(x) = \frac{\partial f(x, \Theta)}{\partial \Theta}^T H_\Theta^{-1} \frac{\partial f(x, \Theta)}{\partial \Theta}$, and the loss saliency terms $L(x) = \frac{\partial f(x, \Theta)}{\partial \Theta}^T H_\Theta^{-1} \frac{\partial f(x, \Theta)}{\partial \Theta}$, and the loss saliency terms $L(x) = \frac{\partial f(x, \Theta)}{\partial \Theta}^T H_\Theta^{-1} \frac{\partial f(x, \Theta)}{\partial \Theta}$.

Representers Points:

$$\text{Rep}(x, x') = -\frac{1}{2\lambda n} \frac{\partial \ell(x, \Theta)}{\partial f}(x, \Theta) a(x, \Theta)^T a(x', \Theta),$$

where $a(x, \Theta)$ is the final activation layer for the data point x, λ is the strength of the ℓ_2 regularizer used to optimize Θ, and j is the targeted class to explain. The similarity term is $S(x, x') = a(x, \Theta)^T a(x', \Theta)$, and the loss saliency terms are $L(x) = \frac{1}{2\lambda n} \frac{\partial \ell(x, \Theta)}{\partial f}(x, \Theta) a(x, \Theta)^T a(x', \Theta)$, and the loss saliency terms are $L(x) = \frac{1}{2\lambda n} \frac{\partial \ell(x, \Theta)}{\partial f}(x, \Theta)$.

TracIn:

$$\text{TracIn}(x, x') = -\sum_{c=1}^d \eta_c \nabla_{\Theta_c} \ell(x, \Theta_c)^T \nabla_{\Theta_c} \ell(x', \Theta_c),$$

where Θ_c is the weight at checkpoint c, and η_c is the learning rate at checkpoint c. In the remainder of the work, we suppress the sum over checkpoints of TracIn for notational simplicity. (This is not to undermine the importance of summing over past checkpoints, which is a crucial component in the working of TracIn.) For TracIn, the similarity term is $S(x, x') = \nabla_{\Theta} f(x, \Theta)^T \nabla_{\Theta} f(x', \Theta)$, while the loss terms are $L(x) = \frac{\partial \ell(x, \Theta)}{\partial \Theta}^T \nabla_{\Theta} f(x, \Theta)$, and the loss terms are $L(x) = \frac{\partial \ell(x, \Theta)}{\partial \Theta}^T \nabla_{\Theta} f(x, \Theta)$.

2.2 Evaluation: Case Deletion

We now discuss our primary evaluation metric, called **case deletion diagnostics** (Cook & Weisberg, 1982), which involves retraining the model after removing influential training examples and measuring the impact on the model. This evaluation metric helps validate the efficacy of any data influence method in detecting training examples to remove or modify for targeted fixing of misclassifications, which is the primary application we consider in this work. This evaluation metric was also noted as a key motivation for influence functions (Koh & Liang, 2017). Given a test example x', when we remove training examples with positive influence on x' (proponents) according to influence measure I are removed from the training set, and c is the ground-truth class of x' to decrease. On the other hand, when we remove training examples with negative influence on x' (opponents), we expect the prediction value for the ground-truth class of x' to increase. An alternative evaluation metric is based on detecting mislabeled examples via self-influence (i.e. influence of a training sample on that same sample as a test point). We prefer the case deletion evaluation metric as it more directly corresponds to the concept of data influence.

Deletion curve. Given a test example x' and influence measure I, we define the metrics $\text{DEL}_+(x', k, I)$ and $\text{DEL}_-(x', k, I)$ as the impact on the prediction of x' (for its groundtruth class) upon removing top-k proponents and opponents of x' respectively:

$$\text{DEL}_+(x', k, I) = \mathbb{E}[f_c(x', \Theta) - f_c(x', \Theta_{+k})],$$

$$\text{DEL}_-(x', k, I) = \mathbb{E}[f_c(x', \Theta) - f_c(x', \Theta_{-k})],$$

where, Θ_{+k} (Θ_{-k}) are the model weights learned when top-k proponents (opponents) according to influence measure I are removed from the training set, and c is the ground-truth class of x'. The expectation is over the number of retraining runs. We expect DEL_+ to be close to 0 while DEL_- to be close to 0. To evaluate the deletion metric at different values of k, we may plot $\text{DEL}_+(x', k, I)$ and $\text{DEL}_-(x', k, I)$ for different values of k, and report the area under the curve (AUC): $\text{AUC-DEL}_+ = \sum_{k=k_1}^{k_m} \frac{1}{m} \text{DEL}_+(x', k, I)$, and $\text{AUC-DEL}_- = \sum_{k=k_1}^{k_m} \frac{1}{m} \text{DEL}_-(x', k, I)$.

3 Issues with Last Layer based Influence

As mentioned in Section [] for scalability reasons, most influence methods choose to operate only on the parameters of the last fully-connected layer Θ_{last}. We argue that this choice critically affects the similarity component of data influence, and leads to inferior results.

We present our analysis in the context of the TracIn method applied to the last layer, referred to as TracIn-Last, although our experiments in Section [] suggest that Influence-Last and Representer-Last may also suffer from similar shortcomings.

3 We remark that the metrics $\text{DEL}_+(x')$ and $\text{DEL}_-(x')$ can also be defined by the difference of losses instead of model outputs. One practical issue with that choice however is that the average loss is often dominated by a few mis-predictions, which is not ideal when only a small set of test examples can be chosen since this evaluation is expensive.
4 Word Embedding Based Influence

In the previous section, we argue that last layer representations offer a poor measure of sentence similarity for use in influence computation. To remedy this, we propose operating on the first layer of the model, which is the word embedding layer in the case of NLP models. Surprisingly, we find that gradients to the word embedding layer can...
4.1 TracIn on Word Embedding Layer

We now apply TracIn on the word embedding weights, obtaining the following expression:

$$\text{TracIn-WE}(x, x') = -\frac{\partial \ell(x, \Theta)^T \partial \ell(x, \Theta)}{\partial \Theta_{WE}}$$

(1)

Implementing the above form of TracIn-WE would be computationally infeasible as word embedding layers are typically very large (vocab size × embedding dimension). For instance, a BERT-base model has 23M parameters in the word embedding layer. To circumvent this, we leverage the sparsity of word embedding gradients \(\frac{\partial \ell(x, \Theta)}{\partial \Theta_{w}}\). This is a sparse vector, where only embedding weights associated with words that occur in \(x\) have non-zero value. Thus, the dot product between two word embedding gradients has non-zero values only for words \(w\) that occur in both \(x, x'\). With this observation, we can rewrite TracIn-WE as:

$$\text{TracIn-WE}(x, x') = -\sum_{w \in x \cap x'} \frac{\partial \ell(x)}{\partial \Theta_{w}}^T \cdot \frac{\partial \ell(x')}{\partial \Theta_{w}}$$

(2)

where \(\Theta_{w}\) are the weights of the word embedding for word \(w\). We call the term \(\frac{\partial \ell(x)}{\partial \Theta_{w}}^T \cdot \frac{\partial \ell(x')}{\partial \Theta_{w}}\) the \textit{word gradient similarity} between sentences \(x, x'\) over word \(w\).

Computational and Space complexity Let \(L\) be the max length of each sentence, \(d\) be the word embedding dimension, and \(o\) be the average overlap between two sentences. If the training and test point gradients are precomputed and saved then the average computation complexity for calculating TracIn-WE for \(m\) training points and \(n\) testing points is \(O(mn)\). This can be contrasted with the average computation complexity for influence functions on the word embedding layer, which takes \(O(mn^2d^2v^2 + d^3v^3)\), where \(v\) is the vocabulary size which is typically larger than \(10^4\), and \(o\) is typically less than 5. Finally, we note that saving the word embedding gradients for TracIn-WE incurs space complexity of \(O((m + n)Ld)\), which may be costly when \(m\) and \(L\) are both very large (while influence function requires the space complexity \(O((m + n)Ld + d^2v^2)\)). In Section 4.4, we propose an implementation trick that yields significant improvement in both space and computation complexity of TracIn-WE.

4.2 Interpreting Word Gradient Similarity

Equation 1 gives the impression that TracIn-WE merely considers a bag-of-words style similarity between the two sentences, and does not take the semantics of the sentences into account. This is surprisingly not true! Notice that for overlapping words, TracIn-WE considers the similarity between gradients of word embeddings. Since gradients are back-propagated through all the intermediate layers in the model, they take into account the semantics encoded in the various layers. This is aligned with the use of word gradient norm \(\|\frac{\partial \ell(x)}{\partial \Theta_{w}}\|\) as a measure of importance of the word \(w\) to the prediction \(f(x)\) (Wallace et al., 2019; Simonyan et al., 2013). Thus, word gradient similarity would be larger for words that are deemed important to the predictions of the training and test points.

Word gradient similarity is not solely driven by the importance of the word. Surprisingly, we find that word gradient similarity is also larger for overlapping words that appear in similar contexts in the training and test sentences. We illustrate this via an example. Table 1 shows 4 synthetic premise-hypothesis pairs for the Multi-Genre Natural Language Inference (MNLI) task (Williams et al., 2018). An existing pretrained model (He et al., 2020) predicts these examples correctly with softmax probability between 0.65 and 0.93. Notice that all examples contain the word ‘not’ once. The word gradient importance \(\|\frac{\partial \ell(x)}{\partial \Theta_{w}}\|\) for ‘not’ is comparable in all 4 sentences. The value of word gradient similarity for ‘not’ is 0.34 for the pair S1-S2, and −0.12 for S1-S3, while it is −0.05 for S1-S4. This large difference stems from the context in which ‘not’ appears. The absolute similarity value is larger for S1-S2 and S1-S3, since ‘not’ appears in a negation context in these examples. (The word gradient similarity of S1-S3 is negative since they have different labels.) However, in S4, ‘not’ appears in the phrase “not only ... but”, which is not a negation (or can be considered as double negation). Consequently, word gradient similarity for ‘not’ is small between S1 and S4. In summary, we expect the absolute value of TracIn-WE score to be large for training and test sentences that have overlapping important words in similar (or strongly opposite) contexts. On the other hand, overlap of unimportant words like stop words would not affect the TracIn-WE score.

4We focus on TracIn due to challenges in applying the other methods to the word embedding layer: influence functions on the word embedding layer are computationally infeasible due to the large size (vocab size × embedding dimension) of the embedding layer, and representer is designed to only use the final layer.
4.3 Word-Level Decomposition for TracIn-WE

An attractive property of TracIn-WE is that it decomposes into word-level contributions for both the testing point \(x' \) and the training point \(x \). As shown in (2), word \(w \) in \(x \) contributes to TracIn-WE(\(x, x' \)) by the amount \(\frac{\partial \ell(x, \Theta)}{\partial \Theta_w} \cdot \frac{\partial \ell(x', \Theta)}{\partial \Theta_{w'}} [w \in x'] \); a similar word-level decomposition can be obtained for \(x' \). Such a decomposition helps us identify which words in the training point \(x \) drive its influence towards the test point \(x' \). For instance, consider the example in Table 2 which contains two test sentences (T1, T2) and a training sentence S1. We decompose the score TracIn-WE(S1, T1) and TracIn-WE(S1, T2) into words contributions, and we see that the word “lazy” dominates TracIn-WE(S1, T1), and the word “end” dominates TracIn-WE(S1, T2). This example shows that different key words in a training sentence may drive influence towards different test points. The word decomposition of TracIn-WE is also helpful in applications where we seek to fix mis-classifications by dropping or substituting words in the training examples that most influence it. We demonstrate such an application in Section 6.

4.4 An approximation for TracIn-WE

As we note in Sec. 4.1, the space complexity of saving training and test point gradients scales with the number of words in the sentence. This may be intractable for tasks with very long sentences. We alleviate this by leveraging the fact that the word embedding gradient for a word \(w \) is the sum of input word gradients from each position where \(w \) is present. Given this decomposition, we can approximate the word embedding gradients by saving only the top-k largest input word gradients for each sentence. (An alternative is to save the input word gradients that are above a certain threshold.) Formally, we define the approximation

\[
\frac{\partial \ell(x, \Theta)}{\partial \Theta_w}|_{\text{top-k}} = \sum_{i \in \text{top-k} \land x^i = w} \frac{\partial \ell(x, \Theta)}{\partial x^i}
\]

where \(x^i \) is the word at position \(i \), and \(x^{\text{top-k}} \) is the set of top-k input positions by gradient norm. We then propose

\[
\text{TracIn-WE-Topk}(x, x') = - \sum_{w \in x \cap x'} \frac{\partial \ell(x, \Theta_w)}{\partial \Theta_w}|_{\text{top-k}} \cdot \frac{\partial \ell(x', \Theta_w)}{\partial \Theta_w}|_{\text{top-k}}.
\]

This approximation drops the space complexity from \(O((m + n)Ld) \) to \(O((m + n)kd) \), and the computational complexity from \(O(mn) \) to \(O(mnokd) \) where \(ok \) is the average overlap between the sets of top-k words from the two sentences. It has the additional benefit of preventing unimportant words (ones with small gradient) from dominating the word similarity by multiple occurrences, as such words may get pruned. In all our experiments, we set \(k \) to 10 for consistency, and do not tune this hyper-parameter.

4.5 Influence without Word-Overlap

One potential criticism of TracIn-WE is that it may not capture any influence when there are no overlapping words between \(x \) and \(x' \). To address this, we note that modern NLP models often include a “start” and “end” token in all inputs. We posit that gradients of the embedding weights of these tokens take into account the semantics of the input (as represented in the higher layers), and enable TracIn-WE to capture influence between examples that are semantically related but do not have any overlapping words. We illustrate this in Tab. 1 via examples for the MNLI task. Sentence S5 has no overlapping words with S6 and S7. However, the word gradient similarity of “start” and “end” tokens for the pair S5-S6 is 1.15, while that for the pair S5-S7 is much lower at \(-0.05\). Indeed, sentence S5 is more similar to S6 than S7 due to the presence of similar word pairs (e.g., think and thinks, annoying and boring), and the same negation usage. We further validate that TracIn-WE can capture influence from examples without word overlap via a controlled experiment in Sec. 5.

4.6 A Relaxation to Synonym Matching

While common tokens like “start” and “end” allow TracIn-WE to implicitly capture influence between sentences without word-overlap, the influence cannot be naturally decomposed over words in the two sentences. This hurts interpretability. To remedy this, we propose a relaxation of TracIn-WE, called TracIn-WE-Syn, which allows for synonyms in two sentences to directly affect the influence score. In what follows, we define synonyms to be words with similar embeddings.

We first rewrite word gradient similarity as

\[
WGS_{x,x'}(w, w') = \frac{\partial \ell(x, \Theta)}{\partial \Theta_w} \cdot \frac{\partial \ell(x', \Theta)}{\partial \Theta_{w'}} [w = w'].$
First is Better Than Last for Training Data Influence

Figure 1: Deletion Curve or Toxicity dataset for removing opponents (larger better) and the removing proponents (smaller better).

Figure 2: Deletion Curve or Agnews for removing opponents (larger better) and the removing proponents (smaller better).

TracIn-WE can then be represented in the following form:

\[
\text{TracIn-WE}(x, x') = -\sum_{w \in x} \sum_{w' \in x'} \text{WGS}_{x,x'}(w, w').
\]

which can be seen as the sum of word gradient similarities for matching words in the two sentences. It is then natural to consider the variant where exact match is relaxed to synonym match:

\[
\text{WGS-syn}_{x,x'}(w, w') = \partial \ell(x, \Theta) / \partial \Theta w^T \partial \ell(x', \Theta) / \partial \Theta w' \cdot \text{Syn}(w, w') = 1.
\]

where \(\text{Syn}(w, w') = 1\) if the cosine similarity of the embeddings of \(w\) and \(w'\) is above a threshold. We set the threshold to be 0.7 in our experiments. However, this direct relaxation has the caveat that a word \(w\) in \(x\) may be matched to several synonyms (including itself) in \(x'\) simultaneously, which is not in the spirit of TracIn-WE where each word should only be matched to at most one word. To resolve this, we seek an optimal 1:1 match between words between the two sentences that respects synonymy and maximizes influence. We formulate this in terms of the Monge assignment problem (Peyré et al., 2019) from optimal transport. For scalability reasons, we operate on the top-\(k\) relaxation of TracIn-WE (Section 4.4). Let \(\{w_1, w_2, ..., w_k\}\) and \(\{w'_1, w'_2, ..., w'_k\}\) be the top-\(k\) words contained in \(x\) and \(x'\) respectively. Our goal is to find the optimal assignment function \(m \in \mathcal{M}: \{1, ..., k\} \rightarrow \{1, ..., k\}\), such that \(m(i) \neq m(j)\) for \(i \neq j\) where

\[
m^* = \arg \min_{m \in \mathcal{M}} \sum_{i=1}^{k} -|\text{WGS-syn}_{x,x'}(w_i, w'_{m(i)})|.
\]

We define the matching cost between \(w\) and \(w'\) to be the negative absolute value of the word gradient similarity, as this allows us to match synonyms with strong positive as well as strong negative influence. Optimal assignment can be calculated efficiently by existing solvers, for instance, linear_sum_assignment function in SKlearn (Pedregosa et al., 2011). The final total influence can be obtained by

\[
\text{TracIn-WE-Syn}(x, x) = -\sum_{w_i \in x} \text{WGS-syn}_{x,x'}(w_i, w'_{m^*(i)}),
\]

5 Experiments

We evaluate the proposed influence methods on 3 different NLP classification datasets. As discussed in Section 2.2, we use the case deletion evaluation and report the metrics on the deletion curve.
Figure 3: Deletion Curve or MNLI for removing opponents (larger better) and the removing proponents (smaller better).

Dataset	Metric	Inf-Last	Rep	TR-last	TR-WE	TR-WE-topk	TR-WE-Syn	TR-TFIDF
Toxic	AUC-DEL+	-0.022	-0.021	-0.025	-0.105	-0.104	-0.103	-0.067
	AUC-DEL-	-0.001	0.006	0.007	0.122	0.125	0.125	0.044
AGnews	AUC-DEL+	-0.025	-0.021	-0.032	-0.148	-0.152	-0.142	-0.083
	AUC-DEL-	0.023	0.021	0.017	0.100	0.100	0.096	0.054
MNLI	AUC-DEL+	0.006		-0.198				-0.004
	AUC-DEL-	0.026		0.169				0.005

Toxicity. We first experiment on the toxicity comment classification dataset ([Kaggle](https://www.kaggle.com/2018), which contains sentences that are labeled toxic or non-toxic. We randomly choose 50,000 training samples and 20,000 validation samples. We then fine-tune a BERT-small model on our training set, which leads to 96% accuracy. Out of the 20,000 validation samples, we randomly choose 20 toxic and 20 non-toxic samples, for a total of 40 samples as our targeted test set. For each example x' in the test set, we remove top-k proponents and top-k opponents in the training set respectively, and retrain the model to obtain $\text{DEL}_+(x', k, I)$ and $\text{DEL}_-(x', k, I)$ for each influence method I. We vary k over \{10, 20, \ldots, 100\}. For each k, we retrain the model 10 times and take the average result, and then average over the 40 test points. We implement the methods Influence-last, Representer Points, TracIn-last, TracIn-WE, TracIn-WE-Topk, TracIn-WE-Syntropics, and TracIn-TFIDF (introduced in Sec. 3), and abbreviate TracIn with TR in the experiments. The deletion curve in shown in Fig. 1 and the AUC-DEL+ and AUC-DEL− scores are reported in Table 3. We see that our proposed TracIn-WE method, along with its variants TracIn-WE-Topk, TracIn-WE-Syn outperform other methods by a significant margin. As mentioned in Sec. 3 TF-IDF based method beats the existing data influence methods using last layer weights by a decisive margin as well. This showcases the shortcomings of last-layer based influence.

AGnews. We next experiment on the AG-news-subset ([Gulli](https://www.gulli.com), [Zhang et al](https://www.zhang.com) 2015), which contains a corpus of news with 4 different classes. We follow our setting in toxicity and choose 20 random samples with 25 from each class as our targeted test set. The deletion curve for $k \in \{10, 20, \ldots, 100\}$ is shown in Fig. 2 and the AUC-DEL+ and AUC-DEL− scores are reported in Table 3. Again, we see that the variants of TracIn-WE significantly outperform other existing methods applied on the last layer. In both AGnews and Toxicity, removing 10 top-proponents or top-opponents for TracIn-WE has more impact on the test point compared to removing 100 top-proponents or top-opponents for TracIn-last.

MNLI. Finally, we test on a larger scale dataset, Multi-Genre Natural Language Inference (MultiNLI) ([Williams et al](https://www.williams.com) 2018), which consists of 433k sentence pairs with textual entailment information, including entailment, neutral, and contradiction. In this experiment, we use the full training and validation set, and BERT-base which achieves 84% accuracy on matched-MNLI validation set. We choose 30 random samples with 10 from each class as our targeted test set. We only evaluate TracIn-WE-Topk, TracIn-last and TracIn-TFIDF as those were the most efficient methods to run at large scale. The deletion curve for $k \in \{20, \ldots, 5000\}$ is shown in Fig. 3 and the AUC-DEL+ and AUC-DEL− scores for our test set are reported in Table 3. We again see TracIn-WE-Topk significantly outperforms TracIn-Last and TracIn-TFIDF, demonstrating its efficacy over natural language understanding tasks as well. Unlike previous datasets, here TracIn-TFIDF does not perform better than TracIn-Last, which may be because input similarity for MNLI cannot be merely captured by overlapping words. For instance, a single negation would completely change the label of the sentence.
No Word Overlap. To assess whether TracIn-WE can do well in settings where the training and test examples do not have overlapping words, we construct a controlled experiment on the Toxicity dataset. Given a test sentence \(x' \), we only consider the top-5000 training sentences (out of 50,000) with the least word overlap for computing influence. We use TF-IDF similarity to rank the number of word overlaps so that stop word overlap will not be over-weighted. We also find that when the word-embedding layer is fixed during training (result when word-embedding is not fixed is in the appendix, where removing examples based on any influence method does not change the prediction), sentence with no word overlaps carry more influence. The \(\text{AUC-DEL}_+ \) and \(\text{AUC-DEL}_- \) scores are reported in the lower section of Table 3. We find that TracIn-WE variants can outperform last-layer based influence methods even in this controlled setting. In Section 4.3, we claimed that this gain stems from the presence of common tokens (“start”, “end”). To validate this, we compared with a controlled variant, TracIn-WE-NoCommon (TR-WE-NoC) where the common tokens are removed from TracIn-WE. As expected, this variant performed much worse on the \(\text{AUC-DEL}_+ \) and \(\text{AUC-DEL}_- \) scores, thus confirming our claim.

6 Targeted Fixing of Misclassifications

We now discuss an application of our influence method in fixing specific misclassifications made by the model. We propose two means of fixing (a) remove top-\(k \) opponents (b) replace the most negatively influential word in each of the top-\(k \) opponents by [PAD]. The most influential word may be identified using the word-level decomposition of TracIn-WE; see Section 4.3. We consider a BERT model for the toxicity comment classification task [Kaggle.com (2018)], and randomly chose 40 misclassifications from the test set with prediction probability in [0.3, 0.7]. For each misclassification, we apply the two approaches mentioned above for various values of \(k \). For each \(k \), we report the average percentage of the mistake being fixed in 10 rounds of retraining.

We compare TracIn-WE-Topk with Influence-Last. To identify the most influential word using Influence-Last, we consider its gradient w.r.t. to each word, which is suggested in a similar use case by Pezeshkpour et al. (2021). For fix method (a), removing 50 opponents by TracIn-WE-Topk can fix a mistake 73% of the time, while removing 50 opponents by Influence-Last can only fix it 33% of the time. With both methods, the average accuracy of the model after removing 50 examples only drops by 0.01%. For fix method (b), removing the most negatively influential word for the top-200 opponents by TracIn-WE-Topk can fix a mistake 70% of the time, while the same for Influence-Last can only fix a mistake 30% of the time. With both methods, the average accuracy of the model after removing the most negatively influential word in the top-200 opponents drops by less than 0.02%. The full fixing probability curve is shown in Appendix E.

7 Related Work

In the field of explainable machine learning, our works belongs to training data importance [Koh & Liang (2017), Yeh et al. (2018), Jia et al. (2019), Pruthi et al. (2020), Khanna et al. (2019)]. Other forms of explanations include feature importance feature-based explanations, gradient-based explanations (Baehrens et al. (2010), Simonyan et al. (2013), Zeller & Fergus (2014), Bach et al. (2015), Ancona et al. (2018), Sundararajan et al. (2017), Shrikumar et al. (2017), Ribeiro et al. (2016), Lundberg & Lee (2017), Ye et al. (2019), Pesituk et al. (2018), and perturbation-based explanations (Ribeiro et al. (2016), Lundberg & Lee (2017), Ye et al. (2019), Pesituk et al. (2018)), self-explaining models (Wang & Rudin (2015), Lee et al. (2019), Chen et al. (2019)), counterfactuals to change the outcome of the model (Wachter et al. (2017), Dhurandhar et al. (2018), Hendricks et al. (2018), van der Waa et al. (2018), Goyal et al. (2019)), concepts of the model (Kim et al. (2018), Zhou et al. (2018)), and for applications on applying data importance methods on NLP tasks, there have been works identifying data artifacts (Han et al. (2020), Pezeshkpour et al. (2021)) and improving models (Han & Tsvetkov (2020, 2021)) based on existing data importance method using the influence function or TracIn.

8 Conclusion

In this work, we revisit the common practice of computing training data influence using only last layer parameters. We show that last layer representations in language classification models can be reductive leading to a poor notion of input similarity, which in turn leads to inferior results on influence. We instead recommend computing influence on the word embedding parameters, and apply this idea to propose a variant of TracIn called TracIn-WE. We show that TracIn-WE significantly outperforms last versions of existing influence methods on three different language classification tasks, and also affords a word-level decomposition of influence that aids interpretability. Finally, we demonstrate how TracIn-WE can be used for targeted fixing of misclassifications.
First is Better Than Last for Training Data Influence

A PREPRINT

References

Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. A unified view of gradient-based attribution methods for deep neural networks. *International Conference on Learning Representations*, 2018.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. *PloS one*, 10(7):e0130140, 2015.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and MÁžller, K.-R. How to explain individual classification decisions. *Journal of Machine Learning Research*, 11(Jun):1803–1831, 2010.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K. This looks like that: deep learning for interpretable image recognition. In *Advances in Neural Information Processing Systems*, pp. 8928–8939, 2019.

Cook, R. D. and Weisberg, S. *Residuals and influence in regression*. New York: Chapman and Hall, 1982.

Dhurandhar, A., Chen, P.-Y., Luss, R., Tu, C.-C., Ting, P., Shanmugam, K., and Das, P. Explanations based on the missing: Towards contrastive explanations with pertinent negatives. In *Advances in Neural Information Processing Systems*, pp. 592–603. NeurIPS, 2018.

Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., and Lee, S. Counterfactual visual explanations. In *International Conference on Machine Learning*, pp. 2376–2384. ICML, 2019.

Kaggle.com. Toxic comment classification challenge: Identify and classify toxic online comments. *https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge*, 2018.

Khanna, R., Kim, B., Ghosh, J., and Koyejo, S. Interpreting black box predictions using fisher kernels. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 3382–3390. PMLR, 2019.

Koh, P. W. and Liang, P. Understanding black-box predictions via influence functions. In *International Conference on Machine Learning*, pp. 1885–1894. ICML, 2017.

Lee, G.-H., Jin, W., Alvarez-Melis, D., and Jaakkola, T. Functional transparency for structured data: a game-theoretic approach. In *International Conference on Machine Learning*, pp. 3723–3733. PMLR, 2019.

Li, B., Zhou, H., He, J., Wang, M., Yang, Y., and Li, L. On the sentence embeddings from pre-trained language models. *arXiv preprint arXiv:2011.05864*, 2020.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

Petsiuk, V., Das, A., and Saenko, K. Rise: Randomized input sampling for explanation of black-box models. *arXiv preprint arXiv:1806.07421*, 2018.

Peyré, G., Cuturi, M., et al. Computational optimal transport: With applications to data science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.
Pezeshkpour, P., Jain, S., Singh, S., and Wallace, B. C. Combining feature and instance attribution to detect artifacts.
arXiv preprint arXiv:2107.00323, 2021.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimating training data influence by tracing gradient descent.
Advances in Neural Information Processing Systems, 33, 2020.

Ribeiro, M. T., Singh, S., and Guestrin, C. Why should i trust you?: Explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM, 2016.

Sultan, G. and Buckley, C. Term-weighting approaches in automatic text retrieval. *Information processing & management*, 24(5):513–523, 1988.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning important features through propagating activation differences.
International Conference on Machine Learning, 2017.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside convolutional networks: Visualising image classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep networks. In *International Conference on Machine Learning*. PMLR, 2017.

van der Waa, J., Robeer, M., van Diggelen, J., Brinkhuis, M., and Neerincx, M. Contrastive Explanations with Local Foil Trees. In *2018 Workshop on Human Interpretablity in Machine Learning (WHI)*. WHI, 2018.

Wachter, S., Mittelstadt, B. D., and Russell, C. Counterfactual explanations without opening the black box: Automated decisions and the gdpr. *European Economics: Microeconomics & Industrial Organization eJournal*, 2017.

Wallace, E., Tuyls, J., Wang, J., Subramanian, S., Gardner, M., and Singh, S. Allennlp interpret: A framework for explaining predictions of nlp models. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations*, pp. 7–12, 2019.

Wang, F. and Rudin, C. Falling rule lists. In *Artificial Intelligence and Statistics*, pp. 1013–1022, 2015.

Williams, A., Nangia, N., and Bowman, S. A broad-coverage challenge corpus for sentence understanding through inference. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 1112–1122. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/N18-1101.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K. Representer point selection for explaining deep neural networks. In *Advances in Neural Information Processing Systems*, pp. 9291–9301. NeurIPS, 2018.

Yeh, C.-K., Hsieh, C.-Y., Suggala, A., Inouye, D. I., and Ravikumar, P. K. On the (in)fidelity and sensitivity of explanations. In *Advances in Neural Information Processing Systems*, pp. 10965–10976, 2019.

Yu, H., Chen, C., Du, X., Li, Y., Rashwan, A., Hou, L., Jin, P., Yang, F., Liu, F., Kim, J., and Li, J. TensorFlow Model Garden. https://github.com/tensorflow/models, 2020.

Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. In *European conference on computer vision*, pp. 818–833. Springer, 2014.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convolutional networks for text classification. In *Advances in neural information processing systems*, pp. 649–657, 2015.

Zhou, B., Sun, Y., Bau, D., and Torralba, A. Interpretable basis decomposition for visual explanation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 119–134. ECCV, 2018.
First is Better Than Last for Training Data Influence

A Issues with Last Layer.

We begin by qualitatively examining the influential examples obtained from TracIn-Last. Consider the test sentence and its top-2 proponents and opponents in Table 4. As expected, the proponents have the same label as the test sentence. However, besides this label agreement, it is not clear in what sense the proponents are similar to the test sentence. We also observe that out of 40 randomly chosen test examples, proponent-1 is either in the top-20 proponents or top-20 opponents for 39 test points.

Table 4: Examples for TracIn-Last

Sentence content	Label
Somebody that double clicks your nick should have enough info but don’t let that cloud your judgement! There are other people you can hate for no reasons whatsoever. Hate another day.	Non-Toxic
Wow! You really are a piece of work, aren’t you pal? Every time you are proven wrong, you delete the remarks. You act as though you have power, when you really don’t.	Non-Toxic
Ok i am NOT trying to piss you off ,but dont you find that touching another women is slightly disgusting. with all due respect, dogblue	Non-Toxic
Spot, grow up! The article is being improved with the new structure. Please stop your nonsense.	Toxic
are you really such a cunt? (I apologize in advance for certain individuals who are too sensitive)	Toxic

To further validate that the inferior results from TracIn-Last can be attributed to the use of last layer similarity, we perform a controlled experiment where we replace the similarity term by a common sentence similarity measure — the TF-IDF similarity [Salton & Buckley, 1988].

\[
TR-\text{TFIDF}(x, x') = -\text{Tf-Idf}(x, x') \cdot \frac{\partial f(x, \Theta)}{\partial f(x', \Theta)} \cdot \frac{\partial f(x', \Theta)}{\partial f(x, \Theta)}
\]

We find that TFIDF performs much better than TracInCP-last and Influence-Last on the Del+ and Del- curve (see Fig. 2, Fig. 1). This shows that last layer similarity does not provide a useful measure of sentence similarity for influence.

Since TF-IDF similarity captures sentence similarity in the form of low-level features (i.e., input words), we speculate that last layer representations are too reductive and do not preserve adequate low-level information about the input, which is useful for data influence. This is aligned with existing findings that last layer similarity in Bert models does not offer a meaningful notion of sentence similarity [Li et al., 2020], even performing worse than GLoVe embedding.

We note that we have not tested the last layer similarity for generative tasks, as it is beyond the scope of the paper, and we leave it to future works.

B Qualitative Examples

We show qualitative examples of the top-proponents and top-opponents for two random test points on dataset Toxicity (Tab. 5, 7), AGnews (Tab. 8, 9), and MNLI (Tab. 10, 11).
Table 5: AUC-DEL table for various methods Toxicity with no overlap and embedding not fixed.

Dataset	Metric	TR-last	TR-WE	TR-WE-topk	TR-WE-Syn	TR-WE-NoC
Toxic	AUC-DEL+	0.001	0.002	0.003	0.004	0.006
Nooverlap	AUC-DEL−	−0.013	−0.003	−0.007	−0.008	−0.004

Figure 5: Deletion Curve or Toxicity dataset for removing opponents (larger better) and the removing proponents (smaller better).

C No word overlap Experiment – More Details

Why Fix Word Embedding: We first start by the conclusion of our observation: many influence methods cannot find training examples that influences a test point without word overlap in the case where word embedding is not fixed. To support this observation, we show the deletion curve on no word overlap experiment (when word embedding is not fixed during training) in Fig. 6 and the AUC-DEL score in Tab. 5. We can see after that removing proponents the Deletion score is actually slightly positive for all methods, and that removing opponents the Deletion score is actually slightly negative for all methods. This shows that no influence methods is able to find training examples that influence the test point without having word overlaps.

We thus suspect that influence may flow through examples pairs without word overlaps when the embedding is fixed. The intuition is that if you have two words A and A’, that have the same initial word embedding. When embedding is not fixed, the embedding of A’ and A may grow apart during training. However, if the embedding is fixed, the input of A and A’ will always be the same regardless of whether if the training is applied on A and A’. Based on this intuition, we fix the word embedding during the model training for the no word overlap experiment. We now show the deletion curve for our experiment on no word overlap (when word embedding is fixed during training) in Fig. 5 (which is omitted from main text due to space constraint). We observe that although the signal is weak, most methods other than TR-WE-Noc is consistently positive when opponents are removed, and consistently negative when proponents are removed. As our result of AUC-DEL suggests, TR-WE variants perform the best in this case.

Figure 6: Deletion Curve or Toxicity dataset for removing opponents (larger better) and the removing proponents (smaller better).
Table 6: Proponents and opponents for TracIn-Last on Toxicity

Test Sentence	Proponent-1	Opponent-1	Opponent-2	Label
I find Sandstein’s dealing with the Mbz1 phenomenon very professional. He removed the soapbox image from that user’s page and also banned you for not complying with your topic ban. It is you the one who is not assimilating the teaching of your topic ban. For example. You are topic banned because you don’t have a professional approach to I-P topic and in general to any topic related to Jews and Judaism. The most resent example. When you reported that soapbox you qualified it as antisemitic. You at least should get informed of what that is. A neutral approach would be to have called it as soapbox canvasing and that’s it. You should focus in your pictures which is the thing that you manage to do relatively well. Once you get into your holly war program of fighting all that in your imagination is an attack to Judaism you simply behave stupidly. It is those kinds of behaviors the ones that keep bringing hatred to us. That kind of attitude is, know it, racist, and if you are true to the struggles of the people of Abraham you above all should regret behaving as a racist. Once more, focus on your pictures and maybe even Sandstein will take a like on you.	Pontiac Monrana Karrmann you full of shit ibelive all of the people who know that the montan will return after 2008 and we want ot knwo ehre do you get your info form and can you sohw it and guess what you dont know anything about the Montana	Pss Rex, be sure to DOCUMENT all the things you’ve discovered on the John Kerry page etc. It’s awesome that you and I INDEPENDENTLY observed (and can corroborate) virtually the exactsame pattern by these liberals. Demonizing conservatives; lionizing liberals. It’s repeated ad infinitum, ad nauseum. The more proof we have, the easier it will be to persuade all but their fellow brain-dead truth haters to give a red cent to Wikipedia. And, until WHOLESALE changes are made from the top down, that’s exactly what’s about to happen. It’s almost like this is the liberal’s religion. Too bad they’re gonna have to find a church other than Wikipedia to practice their faith, huh? I’ve heard rumors that my actions are already sending users Hippocrite, Fred Bauder, WoohooKitty, Kizzle, FVW, Derek and especially the pimply faced 15 year old RedWolf to become so verklempt they don’t know whether to schedule an appointment with their psychiatrist...or their gynecologist. Big Daddy- PHASE II Dry up the funding (on the road)	Non-Toxic	
Table 7: Proponents and opponents for TracIn-WE on toxicity

Sentence content	Label	Salient word	
Test Sentence			
I find Sandstein’s dealing with the Mbz1 phenomenon very professional. He removed the soapbox image from that user’s page and also banned you for not complying with your topic ban. It is you the one who is not assimilating the teaching of your topic ban. For example. You are topic banned because you don’t have a professional approach to I-P topic and in general to any topic related to Jews and Judaism. The most resent example. When you reported that soapbox you qualified it as antisemitic. You at least should get informed of what that is. A neutral approach would be to have called it as soapbox canvasing and that’s it. You should focus in your pictures which is the thing that you manage to do relatively well. Once you get into your holly war program of fighting all that in your imagination is an attack to Judaism you simply behave stupidly. It is those kinds of behaviors the ones that keep bringing hatred to us. That kind of attitude is, know it, racist, and if you are true to the struggles of the people of Abraham you above all should regret behaving as a racist. Once more, focus on your pictures and maybe even Sandstein will take a like on you.	Non-Toxic		
Proponent-1	Hello, Mandarax, you put a banner in the talk of François Asselineau saying that the article may not respect the policy on biographies of living persons in the reason that is poorly sourced. All the sources (17) are coming from the French national press.	Non-Toxic	ass
Proponent-2	Hey Asspro I left a disparaging remark about you on the helpdesk. Enjoy.	Non-Toxic	ass
Opponent-1	” Road Good aRticles are a pain in the ass. I’ve asked some one involved with the project what needs to be done with the article to take it to GA. The history needs to be there, especially the early history which is missing. It also needs more information on the road features, such as intersections, road width, road markings, etc. The few sources I’ve looked at haven’t included this, and the roads people tend to use Google Maps as a source for the major intersections part. ”	Toxic	ass
Opponent-2	hi ho no more I will be systematically reviewing all of your edits with the description ”hi ho” when you make an edit explain the edit you made so that the other editors can follow the progress or digress of the article instead of being a jack ass.	Toxic	ass
Test Sentence	Dear Mr.RHaworth We have relised that your wikipedia page has come under a number of violent attacks We are happy with this as you are an extreme nob Wikipedia advises that you imediantly kill yourself. Thank you - Wikipedia Staff	Non-Toxic	
Proponent-1	. And to you you conservative being, you are a M Cosgrove defender. Admit it yourself	Non-Toxic	you
Proponent-2	you want to know why it will kill manga well il tell you yours will be like a poison that will affect everything in the world if you write your manga the stock market will crash the world will flood pepole will commit crimes arrmageddon will be rain down on us	Non-Toxic	kill
Opponent-1	” Please take time today to kill yourself. We would all enjoy it. ” CALTLAS IF YOU CONTINUE TO RVV IT, I WILL BLANK YOUR TALK PAGE, I WILL BLOCK YOU, I WILL BAN YOU, AND I WILL KILL YOUCALTLAS IF YOU CONTINUE TO RVV IT, I WILL BLANK YOUR TALK PAGE, I WILL BLOCK YOU, I WILL BAN YOU, AND I WILL KILL YOUCALTLAS IF YOU CONTINUE TO RVV IT, I WILL BLANK YOUR TALK PAGE, I WILL BLOCK YOU, I WILL BAN YOU, AND I WILL KILL YOUCALTLAS IF YOU CONTINUE TO RVV IT, I WILL BLANK YOUR TALK PAGE, I WILL BLOCK YOU, I WILL BAN YOU, AND I WILL KILL YOUCALTLAS IF YOU CONTINUE TO RVV IT, I WILL BLANK YOUR TALK PAGE, I WILL BLOCK YOU, I WILL BAN YOU, AND I WILL KILL YOUCALTLAS IF YOU CONTINUE TO RVV IT, I WILL BLANK YOUR TALK PAGE, I WILL BLOCK YOU, I WILL BAN YOU, AND I WILL KILL YOUCALTLAS IF YOU CONTINUE TO RVV IT,	Toxic	kill
Opponent-2		Toxic	kill

D Other Experiment Details

For Toxicity and AGnews, we use the small-Bert model\(^5\) as our base model and fine-tune on our validation set. For MNLI, we use normal Bert models\(^6\) and fine-tune on the validation set. For checkpoint selection, we follow suggestions

\(^5\)https://huggingface.co/google/bert_uncased_L-2_H-128_A-2\(^5\)
Table 8: Proponents and opponents for TracIn-Last on AGnews

Test Sentence	Label
Sheik Ahmed bin Hashr Al-Maktoum earned the first-ever Olympic medal for the United Arab Emirates when he took home the gold medal in men 39s double trap shooting on Tuesday in Athens.	sports
ARSENE WENGER is preparing for outright confrontation with the FA over his right to call Ruud van Nistelrooy a cheat. Arsenal boss Wenger was charged with improper conduct by Soho Square for his comments after	Sport
AFP - Shaquille O’Neal paid various women hush money to keep quiet about sexual encounters, Kobe Bryant told law enforcement officers in Eagle, Colorado.	Sport
ARSENE WENGER is preparing for outright confrontation with the FA over his right to call Ruud van Nistelrooy a cheat. Arsenal boss Wenger was charged with improper conduct by Soho Square for his comments after	Sport
AFP - Shaquille O’Neal paid various women hush money to keep quiet about sexual encounters, Kobe Bryant told law enforcement officers in Eagle, Colorado.	Sport
AFP - Jermain Defoe has urged Tottenham to snap up his old West Ham team-mate Joe Cole who is out of favour with Chelsea manager Jose Mourinho.	World
AP - Democratic Party officials picked U.S. Rep. William Lipinski’s son Tuesday to replace his father on the November ballot, a decision engineered by Lipinski after he announced his retirement and withdrew from the race four days earlier.	World
NEW YORK - Investors shrugged off rising crude futures Wednesday to capture well-priced shares, sending the Nasdaq composite index up 1.6 percent ahead of Google Inc.’s much-anticipated initial public offering of stock. In afternoon trading, the Dow Jones industrial average gained 67.10, or 0.7 percent, to 10,039.93...	World
NEW YORK - Investors bid stocks higher Tuesday as oil prices declined and earnings results from a number of companies, including International Business Machines Corp. and Texas Instruments Inc., topped Wall Street’s expectations...	World
NEW YORK - Investors bid stocks higher Tuesday as oil prices declined and earnings results from a number of companies, including International Business Machines Corp. and Texas Instruments Inc., topped Wall Street’s expectations...	World
China protests against a US investigation that could lead a to trade war over China’s cotton trouser trade.	Business
A new anti-corruption watchdog for Bangladesh has been welcomed by global anti-graft campaigners.	Business

We also clarify that in the context of our work, we refer to the tokens and words interchangeably for presentation simplicity. In our work, we use the tokenizer that is used along with Bert, which contains mostly words but also some word piece. When using a character-based tokenizer, the usage of “word” would then become characters.

E Full Curve for Fixing Application

We show the full fixing curve in the fixing application in Fig[4] where x-axis is the number of training sentence we remove (either full remove or only remove one top key word). We show that TrackIn-WE-topk significantly outperforms Influence-last in the targeted fixing application across different number of removal k. When remove num k = 0, we see that the fix probability is 0.3, meaning that after direct retrain without removal, the mistake can actually be correctly classified by the model 30% of the time.

F Exploration on Second Layer

One interesting follow-up is whether the second layer could be a better choice compared to the first layer. While this is not in the main scope of our paper, we have tested this on the Toxicity dataset. TracIn-Second is defined as using

https://huggingface.co/bert-base-uncased
Table 9: Proponents and opponents for TracIn-WE on AGnews

Test Sentence	Proponent-1	Opponent-1	Opponent-2
Sheik Ahmed bin Hashr Al-Maktoum earned the first-ever Olympic medal for the United Arab Emirates when he took home the gold medal in men's double trap shooting on Tuesday in Athens.	ATHENS, Aug. 19 – Worried about the potential for a terrorist catastrophe, Greece is spending about $1.5 billion on security for the Olympic Games. The biggest threats so far? Foreign journalists and a Canadian guy dressed in a tutu.	"Britain’s Kelly Holmes storms to a sensational Olympic 800m gold in Athens."	
	ATHENS (Reuters) - A Canadian man advertising an online gaming site, who broke security and jumped into the Olympic diving pool, has been given a five-month prison term for trespassing and disturbing public order, court officials say.	AFP - Britain were neck and neck with Olympic minnows Slovakia and Zimbabwe and desperately hoping for an elusive gold medal later in the week.	
NEW YORK - Investors shrugged off rising crude futures Wednesday to capture well-priced shares, sending the Nasdaq composite index up 1.6 percent ahead of Google Inc.’s much-anticipated initial public offering of stock. In afternoon trading, the Dow Jones industrial average gained 67.10, or 0.7 percent, to 10,039.93...	. NEW YORK - Stocks are seen moving lower at the open Wednesday as investors come to grips with the Federal Reserve hiking its key rates by a quarter point to 1.75 percent. Dow Jones futures fell 14 points recently, while Nasdaq futures were down 2.50 points and S&P futures dropped 1.80 points...	NEW YORK - Investors awaited testimony from Federal Reserve Chairman Alan Greenspan before a House budget panel. In morning trading, the Dow Jones industrial average was down 0.08 at 10,342.71...	
	. Google Saves Kidnapped Journalist in Iraq Google can claim another life saved after a kidnapped Australian journalist was freed by his captors in Iraq earlier today. Freelance journalist John Martinkus was abducted by gunmen on Saturday outside a hotel near the Australian embassy. Apparently Martinkus was able to convince his captors ...	With a 9:15 p.m. curfew imposed because of Hurricane Jeanne, Tampa Bay beat Toronto with 39 minutes to spare. Hoping to beat the storm, the Blue Jays were scheduled to leave Florida on a charter flight immediately after the loss. Today’s series finale was canceled because of the hurricane, which was expected to hit Florida’s east coast late yesterday or ...	

only the second layer parameters to calculate TracIn. Our results show that TR-Second achieves AUC-DEL+ score of \(-0.031\) and AUC-DEL- score of \(0.017\) in Toxicity. This result is worse than TracIn-We and TR-TFIDF but better than TR-Last (see Tab. 3). Therefore, this initial result shows that first is not only better than last, but is also better than second.
Table 10: Proponents and opponents for TracIn-Last on MNLI

Sentence content	Label
Test Sentence	
Premise: To some critics, the mystery isn’t, as Harris suggests, how women throughout history have exploited their sexual power over men, but how pimps like him have come away with the profit. Hypothesis: Harris suggests that it’s a mystery how women have exploited men with their sexual power.	Entailment
Proponent-1	
Premise: Also in Back Lane are the headquarters of An Taisce, an organization dedicated to the preservation of historic buildings and gardens. Hypothesis: The headquarters of An Taisce are located in Black Lane.	Entailment
Proponent-2	
Premise: yeah you know because they they told us in school that you know crime has to be an intent you know has to be not just the act but you have to intend to do it because there could be accidental kind of things you know. Hypothesis: I was told in school that if you do something bad by accident it is not a crime.	Entailment
Opponent-1	
Premise: I still can’t quite believe that. Hypothesis: I don’t believe that at all.	Contradiction
Opponent-2	
Premise: The problem isn’t so much that men are designed by natural selection to fight as what they’re designed to fight women. Hypothesis: Women were designed by natural selection to fight men.	Contradiction
Test Sentence	
Premise: Mykonos has had a head start as far as diving is concerned because it was never banned here (after all, there are no ancient sites to protect). Hypothesis: Diving was banned in places other than Mykonos.	Entailment
Proponent-1	
Premise: yeah i could use a discount i have to wait for the things to go on sale. Hypothesis: I wait for sales now, and it’s very convenient.	Entailment
Proponent-2	
Premise: you know and then we have that you know if you can’t stay if something comes up and you can’t stay within it then we have uh you know a budget for you know like we call our slush fund or something and something unexpected unexpected comes up then you’re not. Hypothesis: Having a slush fund helps to pay for things that are not in the budget in case of emergencies.	Entailment
Opponent-1	
Premise: Farrow is humorless and steeped in a bottomless melancholy. Hypothesis: Farrow is depressed and acting very sad.	Neutral
Opponent-2	
Premise: Julius leaned forward, and in doing so the light from the open door lit up his face. Hypothesis: Julius moved so that the light could illuminate his face.	Neutral
Table 11: Proponents and opponents for TracIn-WE-topk on MNLI

Sentence content	Label	Salient Word
Test Sentence	Premise: To some critics, the mystery isn’t, as Harris suggests, how women throughout history have exploited their sexual power over men, but how pimps like him have come away with the profit. Hypothesis: Harris suggests that it’s a mystery how women have exploited men with their sexual power.	Entailment
Proponent-1	Premise: but get up during every commercial and things like that and you’d be surprised at how much just that little bit adds up you know just gives you a little more activity so. Hypothesis: You won’t get any significant exercise by moving around during commercial breaks.	Contradiction
Proponent-2	Premise: From Chapter 4, a 500 MWe facility will need about 175 tons of steel to install an ACI system, or about 0.35 tons per MWe. Hypothesis: A 500 MWe needs steel to install an ACI system	Entailment
Opponent-1	Premise: Also exhibited are examples of Linear B type, which was deciphered in 1952 and is of Mycenaean origin showing that by the time the tablet was written the Minoans had lost control of the major cities. Hypothesis: Although Linear B has been deciphered, Linear A is still a mystery.	Contradiction
Opponent-2	Premise: The problem isn’t so much that men are designed by natural selection to fight as what they’re designed to fight women . Hypothesis: Women were designed by natural selection to fight men.	Entailment
Test Sentence	Premise: Mykonos has had a head start as far as diving is concerned because it was never banned here (after all, there are no ancient sites to protect) Hypothesis: Diving was banned in places other than Mykonos.	Entailment
Proponent-1	Premise: and they have a job in jail and they work that they should i and this may sound cruel but i do not think that they should be allowed cigarettes i mean they’re in jail for crying out loud what do they need cigarettes for. Hypothesis: I think cigarettes should be banned in prison.	Entailment
Proponent-2	Premise: If I fill in my name and cash it, I pay tax. Hypothesis: I’ll have to pay taxes when I cash the check.	Neutral
Opponent-1	Premise: Already, [interleague play] has restored one of baseball’s grandest the passion for arguing about the game, observed the Chicago Tribune . Things could be The Los Angeles Times reports that, thanks to the popularization of baseball in Poland, bats have emerged as a weapon of choice for hooligans, thugs, [and] extortionists. Hypothesis: Baseball bats have been banned in Poland.	Neutral
Opponent-2	Premise: Because of the possible toxicity of thiosulfate to test organisms, a control lacking thiosulfate should be included in toxicity tests utilizing thiosulfate-dechlorinated water. Hypothesis: Because of the possible toxicity of thiosulfate to test organisms, it should be banned.	Neutral