1. Introduction

As usual, \(\mathbb{Z}, \mathbb{Q}, \mathbb{C} \) denote the ring of integers, the field of rational numbers and the field of complex numbers respectively. Let \(p \) be an odd prime. Recall that \(p \) is called a Fermat prime if \(p = 2^{2^r} + 1 \) for some positive integer \(r \); e.g., 3, 5, 17, 257 are Fermat prime.

Let us fix a primitive \(p \)-th root of unity \(\zeta_p \in \mathbb{C} \).

Let \(\mathbb{Q}(\zeta_p) \) be the \(p \)-th cyclotomic field. It is well-known that \(\mathbb{Q}(\zeta_p) \) is a CM-field. If \(p \) is a Fermat prime then the only CM-subfield of \(\mathbb{Q}(\zeta_p) \) is \(\mathbb{Q}(\zeta_p) \) itself, since the Galois group of \(\mathbb{Q}(\zeta_p)/\mathbb{Q} \) is a cyclic 2-group, whose only element of order 2 acts as the complex conjugation. All other subfields of \(\mathbb{Q}(\zeta_p) \) are totally real.

Let \(f(x) \in \mathbb{C}[x] \) be a polynomial of degree \(n \geq 4 \) without multiple roots. Let \(C_{f,p} \) be a smooth projective model of the smooth affine curve

\[
y^p = f(x).
\]

It is well-known (\[6\], pp. 401–402, \[8\], Prop. 1 on p. 3359, \[13\], p. 148) that the genus \(g(C_{f,p}) \) of \(C_{f,p} \) is \((p-1)(n-1)/2 \) if \(p \) does not divide \(n \) and \((p-1)(n-2)/2 \) if it does. The map

\[
(x, y) \mapsto (x, \zeta_p y)
\]

gives rise to a non-trivial birational automorphism

\[
\delta_p : C_{f,p} \to C_{f,p}
\]
of period \(p \).

Let \(J^{(f,p)} = J(C_{f,p}) \) be the jacobian of \(C_{f,p} \); it is an abelian variety, whose dimension equals \(g(C_{f,p}) \). We write \(\text{End}(J^{(f,p)}) \) for the ring of endomorphisms of \(J^{(f,p)} \). By functoriality, \(\delta_p \) induces an automorphism of \(J^{(f,p)} \) which we still denote by \(\delta_p \); it is known (\[13\], p. 149, \[14\], p. 448) that

\[
\delta_p^{-1} + \cdots + \delta_p + 1 = 0
\]
in \(\text{End}(J^{(f,p)}) \). This gives us an embedding

\[
\mathbb{Z}[\zeta_p] \cong \mathbb{Z}[\delta_p] \subset \text{End}(J^{(f,p)})
\]
(\[13\], p. 149, \[14\], p. 448)).

Our main result is the following statement.

Partially supported by the NSF.
Theorem 1.1. Let K be a subfield of \mathbb{C} such that all the coefficients of $f(x)$ lie in K. Assume also that $f(x)$ is an irreducible polynomial in $K[x]$ of degree $n \geq 5$ and its Galois group over K is either the symmetric group S_n or the alternating group A_n. Then $\mathbb{Z}[\delta_p]$ is a maximal commutative subring in $\text{End}(J^{(f,p)})$. If p is a a Fermat prime (e.g., $p = 3, 5, 17, 257$) then

$$\text{End}(J^{(f,p)}) = \mathbb{Z}[\delta_p] \cong \mathbb{Z}[\zeta_p].$$

When $p = 3$ one may obtain an additional information about Hodge classes on self-products of the corresponding trigonal jacobian.

Theorem 1.2. Let K be a subfield of \mathbb{C} such that all the coefficients of $f(x)$ lie in K. Assume also that $f(x)$ is an irreducible polynomial in $K[x]$ of degree $n \geq 5$ and its Galois group over K is either the symmetric group S_n or the alternating group A_n. If 3 does not divide $n - 1$ then:

(i) Every Hodge class on each self-product of $J^{(f,3)}$ could be presented as a linear combination of products of divisor classes. In particular, the Hodge conjecture is true for each self-product of $J^{(f,3)}$.

(ii) If K is a number field containing $\sqrt{-3}$ then every Tate class on each self-product of $J^{(f,3)}$ could be presented as a linear combination of products of divisor classes. In particular, the Tate conjecture is true for each self-product of $J^{(f,3)}$.

Example 1.3. The polynomial $x^n - x - 1 \in \mathbb{Q}[x]$ has Galois group S_n over \mathbb{Q} ([13], p. 42). Therefore the ring of endomorphism (over \mathbb{C}) of the jacobian $J(C(n,3))$ of the curve $C(n,3) : y^3 = x^n - x - 1$ is $\mathbb{Z}[\zeta_n]$ if $n \geq 5$.

If $n = 3k - 1$ for some integer $k \geq 2$ then all Hodge classes on each self-products of $J(C(n,3))$ could be presented as linear combinations of products of divisor classes. In particular, the Hodge conjecture is true for all these self-products. Notice that $J(C(n,3))$ is an abelian variety defined over \mathbb{Q} of dimension $n - 1 = 3k - 2$.

Remarks 1.4. (i) If $f(x) \in K[x]$ then the curve $C_{f,p}$ and its jacobian $J^{(f,p)}$ are defined over K. Let $K_a \subset \mathbb{C}$ be the algebraic closure of K. Clearly, all endomorphisms of $J^{(f,p)}$ are defined over K_a. This implies that in order to prove Theorem 1.3, it suffices to check that $\mathbb{Z}[\delta_p]$ is a maximal commutative subring in the ring of K_a-endomorphisms of $J^{(f,p)}$ or equivalently, that $\mathbb{Q}[\delta_p]$ is a maximal commutative \mathbb{Q}-subalgebra in the algebra of K_a-endomorphisms of $J^{(f,p)}$.

(ii) Assume that $p = 3$ and $\mathbb{Z}[\delta_3] = \text{End}(J^{(f,3)})$. The endomorphism algebra $\text{End}(J^{(f,p)}) = \text{End}(J^{(f,p)}) \otimes \mathbb{Q}$ is the imaginary quadratic field $\mathbb{Q}(\sqrt{-3})$. There are exactly two embeddings

$$\sigma, \bar{\sigma} : \mathbb{Q}(\delta_3) \hookrightarrow K_a \subset \mathbb{C}$$

and they are complex-conjugate. We have

$$\mathbb{Q}(\delta_3) \otimes \mathbb{Q} \mathbb{C} = \mathbb{C} \oplus \mathbb{C}.$$

By functoriality, $\mathbb{Q}(\delta_3)$ acts on the \mathbb{C}-vector space $H^{1,0}(J^{(f,3)}) = \Omega^1(J^{(f,3)})$ of differentials of the fist kind. This action gives rise to a splitting of the $\mathbb{Q}(\delta_3) \otimes \mathbb{Q} \mathbb{C} = \mathbb{C} \oplus \mathbb{C}$-module

$$H^{1,0}(J^{(f,3)}) = H^{1,0}_\sigma \oplus H^{1,0}_{\bar{\sigma}}.$$
The dimensions $n_\sigma := \dim C(H^1_{\sigma})$ and $n_{\bar{\sigma}} := \dim C(H^1_{\bar{\sigma}})$ are called the *multiplicities* of σ and $\bar{\sigma}$ respectively. Clearly, n_σ (resp. $n_{\bar{\sigma}}$) coincides with the multiplicity of the eigenvalue $\sigma(\delta_3)$ (resp. $\bar{\sigma}(\delta_3)$) of the induced C-linear operator

$$\delta_3^\natural : \Omega^1(J^{(f,3)}) \to \Omega^1(J^{(f,3)}).$$

By a theorem of Ribet ([1], Th. 3 on p. 526), if the multiplicities n_σ and $n_{\bar{\sigma}}$ are relatively prime and $\End^C(J^{(f,3)}) = Q(\delta_3)$ then every Hodge class on each self-product of $J^{(f,3)}$ could be presented as a linear combination of products of divisor classes. Therefore, the assertion (i) of Theorem 1.1 would follow from Theorem 1.1 (with $p = 3$) if we know that the multiplicities n_σ and $n_{\bar{\sigma}}$ are relatively prime while 3 does not divide $n - 1$.

(iii) One may easily check that n_σ (resp. $n_{\bar{\sigma}}$) coincides with the multiplicity of the eigenvalue $\sigma(\delta_3)$ (resp. $\bar{\sigma}(\delta_3)$) of the induced C-linear operator

$$\delta_3^\natural : \Omega^1(C^{(f,3)}) \to \Omega^1(C^{(f,3)}).$$

2. Permutation groups and permutation modules

Let B be a finite set consisting of $n \geq 5$ elements. We write $\Perm(B)$ for the group of permutations of B. A choice of ordering on B gives rise to an isomorphism

$$\Perm(S) \cong S_n.$$

We write $\Alt(B)$ for the only subgroup in $\Perm(B)$ of index 2. Clearly, $\Alt(B)$ is normal and isomorphic to the alternating group A_n. It is well-known that $\Alt(B)$ is a simple non-abelian group of order $n!/2$. Let G be a subgroup of $\Perm(B)$.

Let F be a field. We write F^B for the n-dimensional F-vector space of maps $h : B \to F$. The space F^B is provided with a natural action of $\Perm(B)$ defined as follows. Each $s \in \Perm(B)$ sends a map $h : B \to F_2$ into $sh : b \mapsto h(s^{-1}(b))$. The permutation module F^B contains the $\Perm(B)$-stable hyperplane

$$(F^B)^0 = \{ h : B \to F \mid \sum_{b \in B} h(b) = 0 \}$$

and the $\Perm(B)$-invariant line $F \cdot 1_B$ where 1_B is the constant function 1. The quotient $F^B/(F^B)^0$ is a trivial 1-dimensional $\Perm(B)$-module.

Clearly, $(F^B)^0$ contains $F \cdot 1_B$ if and only if $\text{char}(F)$ divides n. If this is not the case then there is a $\Perm(B)$-invariant splitting

$$F^B = (F^B)^0 \oplus F \cdot 1_B.$$

Clearly, F^B and $(F^B)^0$ carry natural structures of G-modules. Their (Brauer) characters depend only on characteristic of F.

Let us consider the case of $F = Q$. Then the character of Q^B sends each $g \in G$ into the number of fixed points of g ([14], ex. 2.2,p.12); it takes on values in Z and called the *permutation character* of B. Let us denote by $\chi = \chi_B : G \to Q$ the character of $(Q^B)^0$.

It is known that the $Q[G]$-module $(Q^B)^0$ is absolutely simple if and only if G acts doubly transitively on B ([15], ex. 2.6, p. 17). Clearly, $1 + \chi$ is the permutation character. In particular, χ also takes on values in Z.

Now, let us consider the case of $F = F_p$.

If $p \mid n$ then let us define the $\Perm(B)$-module

$$(F^B_p)^0 := (F^B_p)^0/(F_p \cdot 1_B).$$
If p does not divide n then let us put

$$(\mathbb{F}_p^B)^0 := (\mathbb{F}_p^B)^0.$$

Remark 2.1. Clearly, $\dim_{\mathbb{F}_p}(\mathbb{F}_p^B)^0 = n - 1$ if n is not divisible by p and $\dim_{\mathbb{F}_p}(\mathbb{F}_p^B)^0 = n - 2$ if $p \mid n$. In both cases $(\mathbb{F}_p^B)^0$ is a faithful G-module.

One may easily check that if the $\mathbb{F}_p[G]$-module $(\mathbb{F}_p^B)^0$ is absolutely simple then the $\mathbb{Q}[G]$-module $(\mathbb{Q}^B)^0$ is also absolutely simple and therefore G acts doubly transitively on B.

Let $G^{(p)}$ be the set of p-regular elements of G. Clearly, the Brauer character of the G-module \mathbb{F}_p^B coincides with the restriction of $1 + \chi_B$ to $G^{(p)}$. This implies easily that the Brauer character of the G-module $(\mathbb{F}_p^B)^0$ coincides with the restriction of χ_B to $G^{(p)}$.

Remark 2.2. Let us denote by $\phi_B = \phi$ the Brauer character of the G-module $(\mathbb{F}_p^B)^0$. One may easily check that ϕ_B coincides with the restriction of χ_B to $G^{(p)}$ if p does not divide n and with the restriction of $\phi_B - 1$ to $G^{(p)}$ if $p \mid n$. In both cases ϕ_B takes on values in \mathbb{Z}.

Example 2.3. Suppose $n = p = 5$ and $G = \text{Alt}(B) \cong A_5$. Then in the notations of [1], p. 2 and [3], p. 2 $\chi_B = 1 + \chi_4$ and the restriction of $\phi_B - 1 = \chi_4 - 1$ to $G^{(p)}$ coincides with absolutely irreducible Brauer character φ_2. This implies that the $\text{Alt}(B)$-module $(\mathbb{F}_p^B)^0$ is absolutely simple.

The following elementary assertion is based on Lemma 7.1 on p. 52 of [12] and Th. 9.2 on p. 145 of [4]. (The case of $p = 2$ is Lemma 5.1 of [2].)

Lemma 2.4. Assume that G acts doubly transitively on B. If p does not divide n then $\text{End}_G((\mathbb{F}_p^B)^0) = \mathbb{F}_p$. In particular, if the G-module $(\mathbb{F}_p^B)^0$ is semisimple then it is absolutely simple.

Proof. It suffices to check that $\dim_{\mathbb{F}_p}(\text{End}_G((\mathbb{F}_p^B)^0)) \leq 1$. In order to do that, recall that the double transitivity implies that $\dim_{\mathbb{F}_p}(\text{End}_G((\mathbb{F}_p^B)^0)) = 2$ (Lemma 7.1 on p. 52 of [12]). Now the desired inequality follows easily from the existence of the G-invariant splitting

$$\mathbb{F}_p^B = (\mathbb{F}_p^B)^0 \oplus \mathbb{F}_p \cdot 1_B.$$

Remark 2.5. Assume that $n = \#(B)$ is divisible by p. Let us choose $b \in B$ and let $G' := G_b$ be the stabilizer of b in G and $B' = B \setminus \{b\}$. Then $n' = \#(B') = n - 1$ is not divisible by p and there is a canonical isomorphism of G'-modules

$$(\mathbb{F}_p^{B'})^0 \cong (\mathbb{F}_p^B)^0$$

defined as follows. First, there is a natural G'-equivariant embedding $\mathbb{F}_p^{B'} \subset \mathbb{F}_p^B$ which could be obtained by extending each $h : B' \to \mathbb{F}_p$ to B by letting $h(b) = 0$. Second, this embedding identifies $(\mathbb{F}_p^{B'})^0$ with a hyperplane of $(\mathbb{F}_p^B)^0$ which does not contain 1_B. Now the composition

$$(\mathbb{F}_p^{B'})^0 = (\mathbb{F}_p^{B'})^0 \subset (\mathbb{F}_p^B)^0 \to (\mathbb{F}_p^B)^0/(\mathbb{F}_p \cdot 1_B) = (\mathbb{F}_p^B)^0$$

gives us the desired isomorphism. This implies that if the G_0-module $(\mathbf{F}_p^B)^0$ is absolutely simple then the G-module $(\mathbf{F}_p^B)^0$ is also absolutely simple.

For example, if $G = \text{Perm}(B)$ (resp. $\text{Alt}(B)$) then $G_0 = \text{Perm}(B')$ (resp. $\text{Alt}(B')$) and therefore the $\text{Perm}(B')$-modules (resp. $\text{Alt}(B')$)-modules $(\mathbf{F}_p^B)^0$ and $(\mathbf{F}_p^B)^0$ are isomorphic. We use this observation in order to prove the following statement.

The following assertion goes back to Dickson.

Lemma 2.6. Assume that $G = \text{Perm}(B)$ or $\text{Alt}(B)$. Then the G-module $(\mathbf{F}_p^B)^0$ is absolutely simple.

Proof. In light of Example 2.3, we may assume that $(n, p) \neq (5, 5)$. In light of Remark 2.5 we may assume that p does not divide n and therefore $$(\mathbf{F}_p^B)^0 = (\mathbf{F}_p^B)^0.$$ The natural representation of $\text{Perm}(B) = S_n$ in $(\mathbf{F}_p^B)^0$ is irreducible (3, Th. 5.2 on p. 133).

Since $\text{Alt}(B)$ is normal in $\text{Perm}(B)$, the $\text{Alt}(B)$-module $(\mathbf{F}_p^B)^0$ is semisimple, thanks to Clifford’s theorem ([2], §49, Th. 49.2). Since $n \geq 5$, the action of $\text{Alt}(B) \cong A_n$ on $B \cong \{1, \ldots, n\}$ is doubly transitive. Applying Lemma 2.4, we conclude that the $\text{Alt}(B)$-module $(\mathbf{F}_p^B)^0$ is absolutely simple. (See also [19].) \qed

3. CYCLIC COVERS AND JACOBIANS

Throughout this paper we fix a prime p and assume that K is a field of characteristic zero. We fix its algebraic closure K_α and write $\text{Gal}(K)$ for the absolute Galois group $\text{Aut}(K_\alpha/K)$. We also fix in K_α a primitive pth root of unity ζ.

Let $f(x) \in K[x]$ be a separable polynomial of degree $n \geq 4$. We write \mathfrak{A}_f for the set of its roots and denote by $L = L_f = K(\mathfrak{A}_f) \subset K_\alpha$ the corresponding splitting field. As usual, the Galois group $\text{Gal}(L/K)$ is called the Galois group of f and denoted by $\text{Gal}(f)$. Clearly, $\text{Gal}(f)$ permutes elements of \mathfrak{A}_f and the natural map of $\text{Gal}(f)$ into the group $\text{Perm}(\mathfrak{A}_f)$ of all permutations of \mathfrak{A}_f is an embedding. We will identify $\text{Gal}(f)$ with its image and consider it as a permutation group of \mathfrak{A}_f. Clearly, $\text{Gal}(f)$ is transitive if and only if f is irreducible in $K[x]$. Therefore the $\text{Gal}(f)$-module $(\mathbf{F}_p^{\mathfrak{A}_f})^0$ is defined. The canonical surjection

$$\text{Gal}(K) \twoheadrightarrow \text{Gal}(f)$$

provides $(\mathbf{F}_p^{\mathfrak{A}_f})^0$ with canonical structure of the $\text{Gal}(K)$-module via the composition

$$\text{Gal}(K) \twoheadrightarrow \text{Gal}(f) \subset \text{Perm}(\mathfrak{A}_f) \subset \text{Aut}((\mathbf{F}_p^{\mathfrak{A}_f})^0).$$

Let us put

$$V_{f,p} = (\mathbf{F}_p^{\mathfrak{A}_f})^0.$$

Let $C = C_{f,p}$ be the smooth projective model of the smooth affine K-curve $y^p = f(x)$.

So, C is a smooth projective curve defined over K. The rational function $x \in K(C)$ defined a finite cover $\pi : C \to \mathbf{P}^1$ of degree p. Let $B' \subset C(K_\alpha)$ be the set of ramification points. Clearly, the restriction of π to B' is an injective map.
\(\pi : B' \hookrightarrow \mathbf{P}^1(K_\alpha) \), whose image is the disjoint union of \(\infty \) and \(\mathfrak{R}_f \) if \(p \) does not divide \(\deg(f) \) and just \(\mathfrak{R}_f \) if it does. We write
\[
B = \pi^{-1}(\mathfrak{R}_f) = \{ (\alpha, 0) \mid \alpha \in \mathfrak{R}_f \} \subset B' \subset C(K_\alpha).
\]
Clearly, \(\pi \) is ramified at each point of \(B \) with ramification index \(p \). We have \(B' = B \) if and only if \(n \) is divisible by \(p \). If \(n \) is not divisible by \(p \) then \(B' \) is the disjoint union of \(B \) and a single point \(\infty' := \pi^{-1}(\infty) \); in addition, the ramification index of \(\pi \) at \(\pi^{-1}(\infty) \) is also \(p \). If \(p \) does divide \(n \) then \(\pi^{-1}(\infty) \) consists of \(p \) unramified points denoted by \(\infty_1, \ldots, \infty_p \). This implies that the inverse image \(\pi'(n(\infty)) = n\pi'(\infty) \) of the divisor \(n(\infty) \) is always divisible by \(p \) in the divisor group of \(C \). Using Hurwitz’s formula, one may easily compute genus \(g = g(C) = g(C_{p,f}) \) of \(C \) ([18], pp. 401–402, [13], Prop. 1 on p. 3359, [14], p. 148). Namely, \(g \) is \((p - 1)(n - 1)/2 \) if \(p \) does not divide \(p \) and \((p - 1)(n - 2)/2 \) if it does. See §1 of [18] for an explicit description of a smooth complete model of \(C \) (when \(n > p \)).

Assume that \(K \) contains \(\zeta \). There is a non-trivial birational automorphism of \(C \)
\[
\delta_p : (x, y) \mapsto (x, \zeta y).
\]
Clearly, \(\delta_p^n \) is the identity map and the set of fixed points of \(\delta_p \) coincides with \(B' \).

Let \(J^{(f,p)} = J(C) = J(C_{f,p}) \) be the jacobian of \(C \). It is a \(g \)-dimensional abelian variety defined over \(K \) and one may view \(\delta_p \) as an element of
\[
\text{Aut}(C) \subset \text{Aut}(J(C)) \subset \text{End}(J(C))
\]
such that
\[
\delta_p \neq \text{Id}, \quad \delta_p^n = \text{Id}
\]
where \(\text{Id} \) is the identity endomorphism of \(J(C) \). Here \(\text{End}(J(C)) \) stands for the ring of all \(K_\alpha \)-endomorphisms of \(J(C) \). As usual, we write \(\text{End}^0(J(C)) = \text{End}^0(J^{(f,p)}) \) for the corresponding \(\mathbf{Q} \)-algebra \(\text{End}(J(C)) \otimes \mathbf{Q} \).

Lemma 3.1. \(\text{Id} + \delta_p + \cdots + \delta_p^{n-1} = 0 \) in \(\text{End}(J(C)) \). Therefore the subring \(\mathbf{Z}[[\delta_p]] \subset \text{End}(J(C)) \) is isomorphic to the ring \(\mathbf{Z}[\zeta_p] \) of integers in the \(p \)th cyclotomic field \(\mathbf{Q}(\zeta_p) \). The \(\mathbf{Q} \)-subalgebra
\[
\mathbf{Q}[[\delta_p]] \subset \text{End}^0(J(C)) = \text{End}^0(J^{(f,p)})
\]
is isomorphic to \(\mathbf{Q}(\zeta_p) \).

Proof. See [13], p. 149, [14], p. 448. \(\square \)

Remarks 3.2. (i) Assume that \(p \) is odd and \(n = \deg(f) \) is divisible by \(p \) say, \(n = pm \) for some positive integer \(m \). Then \(n \geq 5 \).

Let \(\alpha \in K_\alpha \) be a root of \(f \) and \(K_1 = K(\alpha) \) be the corresponding subfield of \(K_\alpha \). We have
\[
f(x) = (x - \alpha)f_1(x)
\]
with \(f_1(x) \in K_1[x] \). Clearly, \(f_1(x) \) is a separable polynomial over \(K_1 \) of odd degree \(pm - 1 = n - 1 \geq 4 \). It is also clear that the polynomials
\[
h(x) = f_1(x + \alpha), h_1(x) = x^{n-1}h(1/x) \in K_1[x]
\]
are separable of the same degree \(pm - 1 = n - 1 \geq 4 \).

The standard substitution
\[
x_1 = 1/(x - \alpha), y_1 = y/(x - \alpha)^m
\]
establishes a birational isomorphism between \(C_{f,p} \) and a superelliptic curve

\[
C_{b_1}: y_1^p = h_1(x_1)
\]

(see [19], p. 3359). But \(\deg(h_1) = pm - 1 \) is not divisible by \(p \). Clearly, this isomorphism commutes with the actions of \(\delta_p \). In particular, it induces an isomorphism of \(\mathbb{Z}[\delta_p] \)-modules \(J^{(f,p)}(K_a) \) and \(J^{(h_1,p)}(K_a) \) which commutes with the action of \(\text{Gal}(K_1) \).

(ii) Assume, in addition, that \(f(x) \) is irreducible in \(K[x] \) and \(\text{Gal}(f) \) acts \(s \)-transitively on \(\mathfrak{N}_f \) for some positive integer \(s \geq 2 \). Then the Galois group \(\text{Gal}(h_1) \) of \(h_1 \) over \(K_1 \) acts \(s - 1 \)-transitively on the set \(\mathfrak{N}_{h_1} \) of roots of \(h_1 \). In particular, \(h_1(x) \) is irreducible in \(K_1[x] \).

It is also clear that if \(\text{Gal}(f) = S_n \) or \(A_n \) then \(\text{Gal}(h_1) = S_{n-1} \) or \(A_{n-1} \) respectively.

Let us put \(\eta = 1 - \delta_p \). Clearly, \(\eta \) divides \(p \) in \(\mathbb{Z}[\delta_p] \cong \mathbb{Z}[\delta_p], \) i.e., there exists \(\eta' \in \mathbb{Z}[\delta_p] \) such that

\[
\eta' \eta = \eta' = \eta = p \in \mathbb{Z}[\delta_p].
\]

By a theorem of Ribet [10] the \(\mathbb{Z}_p \)-Tate module \(T_p(J^{(f,p)}) \) is a free \(\mathbb{Z}_p[\delta_p] \)-module of rank \(2g/(p - 1) = n - 1 \) if \(p \) does not divide \(n \) and \(n - 2 \) if \(p \) does. Let \(J^{(f,p)}(\eta) \) be the kernel of \(\eta \) in \(J^{(f,p)}(K_a) \). Clearly, \(J^{(f,p)}(\eta) \) is killed by multiplication by \(p \), i.e., it may be viewed as a \(\mathbb{F}_p \)-vector space. It follows from Ribet’s theorem that

\[
\dim_{\mathbb{F}_p} J^{(f,p)}(\eta) = \frac{2g}{p - 1}.
\]

In addition, \(J^{(f,p)}(\eta) \) carries a natural structure of Galois module. Notice that

\[
\eta'(J^{(f,p)}) \subset J^{(f,p)}(\eta)
\]

where \(J^{(f,p)}_\eta \) is the kernel of multiplication by \(p \) in \(J^{(f,p)}(K_a) \).

Let \(\Lambda \) be the centralizer of \(\delta_p \) in \(\text{End}(J^{(f,p)}) \). Clearly, \(\Lambda \) commutes with \(\eta \) and \(\eta' \). It is also clear that the subgroup \(J^{(f,p)}(\eta) \) is \(\Lambda \)-stable. This observation leads to a natural homomorphism

\[
\kappa : \Lambda \to \text{End}_{\mathbb{F}_p}(J^{(f,p)}(\eta)).
\]

I claim that its kernel coincides with \(\eta \Lambda \). Indeed, assume that \(u(J^{(f,p)}(\eta)) = \{0\} \) for some \(u \in \Lambda \). This implies that \(u \eta' = \eta' u \) kills \(J^{(f,p)}_\eta \). This implies, in turn, that there exists \(v \in \text{End}(J^{(f,p)}) \) such that

\[
\eta' = \eta' = \eta \eta
\]

Clearly, \(v \) commutes with \(\eta \) and therefore with \(\delta_p = 1 - \eta \), i.e., \(v \in \Lambda \). Since

\[
p = \eta \eta' = \eta \eta,
\]

and therefore \(u = v \eta \). On the other hand, it is clear that \(\eta \Lambda = \Lambda \eta \) kills \(J^{(f,p)}(\eta) \). Therefore the natural map

\[
\Lambda/\eta \Lambda \to \text{End}_{\mathbb{F}_p}(J^{(f,p)}(\eta))
\]

is an embedding; further we will identify \(\Lambda/\eta \Lambda \) with its image in \(\text{End}_{\mathbb{F}_p}(J^{(f,p)}(\eta)) \).

Theorem 3.3 (Prop. 6.2 in [13], Prop. 3.2 in [14]). There is a canonical isomorphism of the \(\text{Gal}(K) \)-modules

\[
J^{(f,p)}(\eta) \cong V_{f,p}.
\]
Remark 3.4. Clearly, the natural homomorphism $\text{Gal}(K) \to \text{Aut}_{\mathbb{F}_p}(V_{f,p})$ coincides with the composition

$$\text{Gal}(K) \to \text{Gal}(f) \subset \text{Perm}(\mathfrak{R}_f) \subset \text{Aut}((\mathbb{F}_p^{|s|})^0) = \text{Aut}_{\mathbb{F}_p}(V_{f,p}).$$

The following assertion is an immediate corollary of Lemma 2.4.

Lemma 3.5. Assume that $\text{Gal}(f) = S_n$ or A_n. If $n \geq 5$ then the $\text{Gal}(f)$-module $V_{f,p}$ is absolutely simple.

Theorem 3.6. Assume that $p > 2$ and $n \geq 4$. Let $\Lambda = \Lambda \otimes \mathbb{Q}$ be the centralizer of $\mathbb{Q}(\delta_p)$ in $\text{End}^0(J^{(f,p)})$. Then Λ could not be a central simple $\mathbb{Q}(\delta_p)$-algebra of dimension $(2g/(p-1))^2$ where g is genus of $C_{f,p}$.

Proof. Assume that Λ is a central simple $\mathbb{Q}(\delta_p)$-algebra of dimension $(2g/(p-1))^2$. We need to arrive to a contradiction. We start with the following statement.

Lemma 3.7. Assume that Λ is a central simple $\mathbb{Q}(\delta_p)$-algebra of dimension $(2g/(p-1))^2$. Then there exist a $(p-1)/2$-dimensional abelian variety Z over K_a, a positive integer r, an embedding

$$\mathbb{Q}(\delta_p) \cong \mathbb{Q}(\delta) \hookrightarrow \text{End}^0(Z)$$

and an isogeny $\phi : Z^r \to J^{(f,p)}$ such that the induced isomorphism

$$\text{Mat}_r(\text{End}^0(Z)) = \text{End}^0(Z^r) \cong \text{End}^0(J^{(f,p)}),$$

maps identically

$$\mathbb{Q}(\delta_p) \subset \text{End}^0(Z) \subset \text{Mat}_r(\text{End}^0(Z)) = \text{End}^0(Z^r)$$

onto

$$\mathbb{Q}(\delta_p) \subset \text{End}^0(J^{(f,p)}).$$

(Here $\text{End}^0(Z) \subset \text{Mat}_r(\text{End}^0(Z))$ is the diagonal embedding.) In particular, Z and $J^{(f,p)}$ are abelian varieties of CM-type over K_a.

Proof of Lemma 3.4. Clearly, there exist a positive integer r and a central division algebra H over $\mathbb{Q}(\delta_p) \cong \mathbb{Q}(\zeta_p)$ such that $\Lambda \cong \text{Mat}_r(H)$. This implies that there exist an abelian variety Z over K_a with

$$\mathbb{Q}(\delta_p) \subset H \subset \text{End}^0(Z)$$

and an isogeny $\phi : Z^r \to J^{(f,p)}$ such that the induced isomorphism $\text{End}^0(Z^r) \cong \text{End}^0(J^{(f,p)})$ maps identically

$$\mathbb{Q}(\delta_p) \subset \text{End}^0(Z) \subset \text{End}^0(Z^r)$$

onto $\mathbb{Q}(\delta_p) \subset \text{End}^0(J^{(f,p)})$. We still have to check that

$$2\dim(Z) = p - 1.$$

In order to do that let us put $g' = g/r$. Then $\dim_{\mathbb{Q}(\delta_p)}(H) = (\frac{2g'}{p-1})^2$ and therefore $\dim_{\mathbb{Q}}(H) = \frac{(2g')^2}{p-1}$. Since H is a division algebra and $\text{char}(K_a) = 0$, the number $\frac{(2g')^2}{p-1}$ must divide $2\dim(Z) = 2g'$. This means that $2g'$ divides $p - 1$. On the other hand,

$$\mathbb{Q}(\delta_p) \subset H \subset \text{End}^0(Z).$$

This implies that $p - 1 = [\mathbb{Q}(\delta_p) : \mathbb{Q}]$ divides $2\dim(Z)$ and therefore $2\dim(Z) = p - 1$. \qed
Now let us return to the proof of Theorem \ref{thm:3.6}. Recall that \(n \geq 4 \). We write \(\Omega^1(X) \) for the space of differentials of first kind for any smooth projective variety \(X \) over \(K_a \). Clearly, \(\phi \) induces an isomorphism \(\phi^*: \Omega^1(J^{(f,p)}) \cong \Omega^1(Z)^r = \Omega^1(Z)^r \) which commutes with the natural actions of \(Q(\delta_p) \). Since \(\dim(Z) = \frac{p-1}{2} \), we have \(\dim_k(\Omega^1(Z)) = \frac{p-1}{2} \). Therefore, the induced \(K_a \)-linear automorphism

\[
\delta^*_p: \Omega^1(Z) \to \Omega^1(Z)
\]

has, at most, \(\frac{p-1}{2} \) distinct eigenvalues. Clearly, the same is true for the action of \(\delta_p \) in \(\Omega^1(Z)^r \). Since \(\phi \) commutes with \(\delta_p \), the induced \(K_a \)-linear automorphism

\[
\delta^*_p: \Omega^1(J^{(f,p)}) \to \Omega^1(J^{(f,p)})
\]

has, at most, \(\frac{p-1}{2} \) distinct eigenvalues.

On the other hand, let \(P_0 \) be one of the \(\delta_p \)-invariant points (i.e., a ramification point for \(\pi \)) of \(C_{f,p}(K_a) \). Then

\[
\tau: C_{f,p} \to J^{(f,p)}, \quad P \mapsto \text{cl}((P) - (P_0))
\]

is an embedding of \(K_a \)-algebraic varieties and it is well-known that the induced map

\[
\tau^*: \Omega^1(J^{(f,p)}) \to \Omega^1(C_{f,p})
\]

is a \(K_a \)-linear isomorphism obviously commuting with the actions of \(\delta_p \). (Here \(cl \) stands for the linear equivalence class.) This implies that \(\delta_p \) has, at most, \(\frac{p-1}{2} \) distinct eigenvalues in \(\Omega^1(C_{f,p}) \).

One may easily check that \(\Omega^1(C_{f,p}) \) contains differentials \(dx/y^i \) for all positive integers \(i < p \) satisfying \(ni \geq (p + 1) \) if \(p \) does not divide \(n \) (\cite{1}, Th. 3 on p. 403; see also \cite{2}, Prop. 2 on p. 3359). Since \(n \geq 4 \) and \(p \geq 3 \), we have \(ni \geq (p + 1) \) for all \(i \) with \(\frac{p-1}{2} \leq i < p \). Therefore the differentials \(dx/y^i \in \Omega^1(C_{f,p}) \) for all \(i \) with \(\frac{p-1}{2} \leq i < p - 1 \); clearly, they all are eigenvectors of \(\delta_p \) with eigenvalues \(\zeta^{-i} \) respectively. (Recall that \(\zeta \in K_a \) is a primitive \(p \)th root of unity and \(\delta_p \) is defined in \(\S 1 \) by \((x, y) \mapsto (x, \zeta y) \).) Therefore \(\delta_p \) has in \(\Omega^1(C_{f,p}) \), at least, \(\frac{p-1}{2} \) distinct eigenvalues. Contradiction.

Now assume that \(p \) divides \(n \). Then \(n \geq 5 \). By Remark \ref{rem:3.2}, \(C_{f,p} \) is birationally isomorphic over \(K_a \) to a curve \(C_1 = C_{h_1,p} : y_1^2 = h_1(x_1) \) where \(h_1(x_1) \in K_a[x_1] \) is a separable polynomial of degree \(n - 1 \); in addition, one may choose this isomorphism in such a way that it commutes with the actions of \(\delta_p \) on \(C_{f,p} \) and \(C_{h_1,p} \). This implies that \(\delta_p \) has, at most, \(\frac{p-1}{2} \) distinct eigenvalues in \(\Omega^1(C_{h_1,p}) \).

On the other hand, \(n - 1 \geq 4 \) and \(n - 1 \) is not divisible by \(p \). Recall that \(\deg(h_1) = n - 1 \). We conclude, as above, that for all \(i \) with \(\frac{p-1}{2} \leq i < p - 1 \) the differentials \(dx_1/y_1^i \in \Omega^1(C_{h_1,p}) \). Now, the same arguments as in the case of \(p \) not dividing \(n \) lead to a contradiction. \(\square \)

Theorem 3.8. Suppose \(n \geq 4 \) and \(p > 2 \). Assume that \(Q(\delta_p) \) is a maximal commuting subalgebra in \(\text{End}^0(J^{(f,p)}) \). Then:

(i) The center \(\mathcal{C} \) of \(\text{End}^0(J^{(f,p)}) \) is a CM-subfield of \(Q(\delta_p) \);

(ii) If \(p \) is a Fermat prime then \(\text{End}^0(J^{(f,p)}) = Q(\delta_p) \cong Q(\zeta_p) \) and therefore \(\text{End}(J^{(f,p)}) = \mathbb{Z}[\delta_p] \cong \mathbb{Z}[\zeta_p] \).
Proof. Clearly, $C \subset \mathbb{Q}(\delta_p)$. Since $\mathbb{Q}(\delta_p)$ is a CM-field, C is either a totally real field or a CM-field. If p is a Fermat prime then each subfield of $\mathbb{Q}(\delta_p)$ (distinct from $\mathbb{Q}(\delta_p)$ itself) is totally real. Therefore, (ii) follows from (i).

In order to prove (i), let us assume that C is totally real. We are going to arrive to a contradiction which proves (i). Replacing, if necessary, K by its subfield finitely generated over the rationals, we may assume that K (and therefore K_a) is isomorphic to a subfield of the field \mathbb{C} of complex numbers. Since the center \mathcal{E} of $\text{End}^0(J_{f,p})$ is totally real, the Hodge group of $J_{f,p}$ must be semisimple. This implies that the pair $(J_{f,p}, \mathbb{Q}(\delta_p))$ is of Weil type (\mathbb{S}), i.e., $\mathbb{Q}(\delta_p)$ acts on $\Omega^1(J_{f,p})$ in such a way that for each embedding $\sigma : \mathbb{Q}(\delta_p) \hookrightarrow \mathbb{C}$ the corresponding multiplicity

$$n_\sigma = \dim(J_{f,p})$$

Now assume that p does not divide n. We have

$$\frac{\dim(J_{f,p})}{[\mathbb{Q}(\delta_p) : \mathbb{Q}]} = \frac{g(C_{f,p})}{p-1} = \frac{(n-1)}{2}$$

and therefore

$$n_\sigma = \frac{(n-1)}{2}$$

Since the multiplicity n_σ is always an integer, n is odd. Therefore $n \geq 5$. Let us consider the embedding σ which sends δ_p to ζ. Elementary calculations ([6], Th. 3 on p. 403) show that for all integers i with

$$0 \leq i \leq n - 1 - \frac{(n+1)}{p}$$

the differentials $x^i dx / y^{p-1} \in \Omega^1(C_{f,p})$; clearly, they constitute a set of K_a-linearly independent eigenvectors of δ_p with eigenvalue ζ. In light of the δ_p-equivariant isomorphism

$$\Omega^1(J_{f,p}) \rightarrow \Omega^1(C_{f,p}),$$

we conclude that

$$\frac{(n-1)}{2} = n_\sigma \geq [n - 1 - \frac{(n+1)}{p}] + 1.$$

This implies that $\frac{(n-1)}{2} > n - 1 - \frac{(n+1)}{p}$. It follows easily that $n < \frac{p+2}{p-2} \leq 5$ and therefore $n < 5$. This gives us the desired contradiction when p does not divide n.

Now assume that p divides n. Then $n \geq 5$ and $n - 1 \geq 4$. Again, as in the proof of Theorem 3.6, the usage of Remark 3.2 allows us to apply the already proven case (when p does not divide $n - 1$) to $C_{h_1,p}$ with $\deg(h_1) = n - 1$.

Remark 3.9. Let us keep the notations and assumptions of Theorem 3.8. Assume, in addition that $p = 3$. Then $\mathbb{Q}(\delta_3) = \mathbb{Q}(\zeta_3)$ is an imaginary quadratic field and there are exactly two embeddings $\mathbb{Q}(\delta_3) \hookrightarrow K_a$ which, of course, are complex-conjugate. In this case one could compute explicitly the corresponding multiplicities.
Indeed, first assume that 3 does not divide \(n \). Then \(n = 3k - e \) for some \(k, e \in \mathbb{Z} \) with \(3 > e > 0 \). Since \(n \geq 4 > 3 \), we have \(k \geq 2 \). By Prop. 2 on p. 3359 of \([18]\), the set
\[
\{x^i dx/y, 0 \leq i < k - 1; x^j dx/y^2, 0 \leq j < 2k - 1 - \left\lfloor \frac{2e}{3} \right\rfloor \}
\]
is a basis of \(\Omega^1(C_{f,3}) \). It follows easily that it is an eigenbasis with respect to the action of \(\delta_3 \). This implies easily that \(Q(\delta_3) \) acts on \(\Omega^1(J^{(f,3)}) = \Omega^1(C_{f,3}) \) with multiplicities \(k - 1 \) and \(2k - 1 - \left\lfloor \frac{2e}{3} \right\rfloor \).

Assume now that \(n = 3k \) is divisible by 3. Then as in the proof of Theorem 3.6, the usage of Remark 3.2 allows us to reduce the calculation of multiplicities to the case of \(C_{h_1,3} \) with \(\deg(h_1) = n - 1 \). More precisely, we have \(n = 3k \) and \(n - 1 = 3k - 1 \), i.e., \(e = 1 \) and \(k \geq 2 \). This implies that \(Q(\delta_3) \) acts on \(\Omega^1(J^{(f,3)}) = \Omega^1(J^{(h_1,3)}) \) with multiplicities \(k - 1 \) and \(2k - 1 \).

It follows that if \(n = 3k \) or \(n = 3k - 1 \) then
\[
\dim(J^{(f,3)}) = 3k - 2
\]
and the imaginary quadratic field \(\mathbb{Q}(f_3) \) acts on \(\Omega^1(J^{(f,3)}) \) with mutually prime multiplicities \(k - 1 \) and \(2k - 1 \). Since \(Q(f_3) \) coincides with \(\text{End}^0(J^{(f,3)}) \), a theorem of Ribet ([19], Th. 3 on p. 526) implies that the Hodge group of \(J^{(f,3)} \) is as large as possible. More precisely, let \(K' \subset K \) be a subfield which admits an embedding into \(\mathbb{C} \) and such that \(f(x) \subset K'[x] \) (such a subfield always exists). Then one may consider \(C_{f,3} \) as a complex smooth projective curve and \(J^{(f,3)} \) as a complex abelian variety, whose endomorphism algebra coincides with \(\mathbb{Q}(\delta_3) \equiv \mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3}) \). Then the Hodge group of \(J^{(f,3)} \) coincides with the corresponding unitary group of \(H_1(J^{(f,3)}(\mathbb{C}), \mathbb{Q}) \) over \(\mathbb{Q}(\zeta_3) \). In particular, all Hodge classes on all self-products of \(J^{(f,3)} \) could be presented as linear combinations of exterior products of divisor classes. As was pointed out in [19], pp. 572–573, the same arguments work also for Tate classes if say, \(K' \) is a number field and all endomorphisms of \(J^{(f,3)} \) are defined over \(K' \). (If \(\sqrt{-3} \in K' \) then all endomorphisms of \(J^{(f,3)} \) are defined over \(K' \) because \(\text{End}(J^{(f,3)}) = \mathbb{Z}[\delta_3] \) and \(\delta_3 \) is defined over \(K' \).

4. Representation theory

Definition 4.1. Let \(V \) be a vector space over a field \(F \), let \(G \) be a group and \(\rho : G \to \text{Aut}_F(V) \) a linear representation of \(G \) in \(V \). We say that the \(G \)-module \(V \) is very simple if it enjoys the following property:

If \(R \subset \text{End}_F(V) \) be an \(F \)-subalgebra containing the identity operator \(\text{Id} \) such that
\[
\rho(\sigma) R \rho(\sigma)^{-1} \subset R \quad \forall \sigma \in G
\]
then either \(R = F \cdot \text{Id} \) or \(R = \text{End}_F(V) \).

Remark 4.2.

(i) Clearly, the \(G \)-module \(V \) is very simple if and only if the corresponding \(\rho(G) \)-module \(V \) is very simple. It is known ([21], Rem. 2.2(ii)) that a very simple module is absolutely simple.

(ii) If \(G' \) is a subgroup of \(G \) and the \(G' \)-module \(V \) is very simple then the \(G' \)-module \(V \) is also very simple.

Theorem 4.3. Suppose a field \(F \), a positive integer \(N \) and a group \(H \) enjoy the following properties:
• F is either finite or algebraically closed;
• H is perfect, i.e., $H = [H, H]$;
• Each homomorphism from H to S_N is trivial;
• Let $N = ab$ be a factorization of N into a product of two positive integers a and b. Then either each homomorphism from H to $\text{PGL}_a(F)$ is trivial or each homomorphism from H to $\text{PGL}_b(F)$ is trivial.

Then each absolutely simple H-module of F-dimension N is very simple. In other words, in dimension N the properties of absolute simplicity and supersimplicity over F are equivalent.

Proof. We may assume that $N > 1$. Let V be an absolutely simple H-module of F-dimension N. Let $R \subset \text{End}_F(V)$ be an F-subalgebra containing the identity operator Id and such that

$$uRu^{-1} \subset R \quad \forall u \in H.$$

Clearly, V is a faithful R-module and

$$uRu^{-1} = R \quad \forall u \in H.$$

Step 1. By Lemma 7.4(i) of [21], V is a semisimple R-module.

Step 2. The R-module V is isotypic. Indeed, let us split the semisimple R-module V into the direct sum

$$V = V_1 \oplus \cdots \oplus V_r$$

of its isotypic components. Dimension arguments imply that $r \leq \dim(V) = N$. It follows easily from the arguments of the previous step that for each isotypic component V_i its image sV_i is an isotypic R-submodule for each $s \in H$ and therefore is contained in some V_j. Similarly, $s^{-1}V_j$ is an isotypic submodule obviously containing V_i. Since V_i is the isotypic component, $s^{-1}V_j = V_i$ and therefore $sV_i = V_j$. This means that s permutes the V_i; since V is H-simple, H permutes them transitively. This gives rise to the homomorphism $H \rightarrow S_r$, which must be trivial, since $r \leq N$ and therefore S_r is a subgroup of S_N. This means that $sV_i = V_i$ for all $s \in H$ and $V = V_i$ is isotypic.

Step 3. Since V is isotypic, there exist a simple R-module W and a positive integer d such that $V \cong W^d$. We have

$$d \cdot \dim(W) = \dim(V) = N.$$

Clearly, $\text{End}_R(V)$ is isomorphic to the matrix algebra $\text{Mat}_d(\text{End}_R(W))$ of size d over $\text{End}_R(W)$.

Let us put

$$k = \text{End}_R(W).$$

Since W is simple, k is a finite-dimensional division algebra over F. Since F is either finite or algebraically closed, k must be a field. In addition, $k = F$ if F is algebraically closed and k is finite if F is finite. We have

$$\text{End}_R(V) \cong \text{Mat}_d(k).$$

Clearly, $\text{End}_R(V) \subset \text{End}_F(V)$ is stable under the adjoint action of H. This induces a homomorphism

$$\alpha : H \rightarrow \text{Aut}_F(\text{End}_R(V)) = \text{Aut}_F(\text{Mat}_d(k)).$$
Since k is the center of $\text{Mat}_d(k)$, it is stable under the action of H, i.e., we get a homomorphism $H \to \text{Aut}(k/F)$, which must be trivial, since H is perfect and $\text{Aut}(k/F)$ is abelian. This implies that the center k of $\text{End}_H(V)$ commutes with H. Since $\text{End}_H(V) = F$, we have $k = F$. This implies that $\text{End}_H(V) \cong \text{Mat}_d(F)$ and

$$\alpha : H \to \text{Aut}_F(\text{Mat}_d(F)) = \text{GL}(d, F)/F^* = \text{PGL}_d(F)$$

is trivial if and only if $\text{End}_H(V) \subset \text{End}_H(V) = F \cdot \text{Id}$. Since $\text{End}_H(V) \cong \text{Mat}_d(F)$, α is trivial if and only if $d = 1$, i.e. V is an absolutely simple R-module.

It follows from the Jacobson density theorem that $R \cong \text{Mat}_m(F)$ with $dm = N$. This implies that α is trivial if and only if $R \cong \text{Mat}_N(F)$, i.e., $R = \text{End}_F(V)$.

The adjoint action of H on R gives rise to a homomorphism

$$\beta : H \to \text{Aut}_F(\text{Mat}_m(F)) = \text{PGL}_m(F).$$

Clearly, β is trivial if and only if R commutes with H, i.e. $R = F \cdot \text{Id}$.

It follows that we are done if either α or β is trivial. Now one has only to recall that $N = dm$. \hfill \Box

Corollary 4.4

Let p be a prime, V a vector space over F_p of finite dimension N. Let $H \subset \text{Aut}(V)$ be a non-abelian simple group. Suppose that the H-module V is absolutely simple and H is not isomorphic to a subgroup of S_N. Then the H-module V is very simple if one of the following conditions holds:

1. N is a prime;
2. $N = 8$ or twice a prime. In addition, H is not isomorphic to $\text{PSL}_2(F_p)$ and either H is not isomorphic to A_5 or p is not congruent to ± 1 modulo 5;
3. $\#(H) \geq ((p^{\left\lfloor \sqrt{N} \right\rfloor} - 1)^{\left\lfloor \sqrt{N} \right\rfloor})/(p - 1)$
4. $\#(H) \geq (p^N - 1)/(p - 1)$.

Proof. Let us split N into a product $N = ab$ of two positive integers a and b. In the case (i) either a or b is 1 and the target of the corresponding projective linear group $\text{PGL}_1(F_p) = \{1\}$. In the case (ii) either one of the factors is 1 and we are done or one of the factors is 2 and it suffices to check that each homomorphism from H to $\text{PGL}_2(F_p)$ is trivial. Since H is simple, each non-trivial homomorphism $\gamma : H \to \text{PGL}_2(F_p)$ is an injection, whose image lies in $\text{PSL}_2(F_p)$. In other words, $\gamma(H)$ is a subgroup of $\text{PSL}_2(F_p)$ isomorphic to H. Since H is not isomorphic to $\text{PSL}_2(F_p)$, the subgroup $\gamma(H)$ is proper and simple non-abelian. It is known ([7], Th. 6.25 on p. 412 and Th. 6.26 on p. 414) that each proper simple non-abelian subgroup of $\text{PSL}_2(F_p)$ is isomorphic to A_5 and such a subgroup exists if and only if p is congruent to ± 1 modulo 5. This implies that such γ does not exist and settles the case (ii). In order to do the case (iii) notice that one of the factors say, a does not exceed $\left\lfloor \sqrt{N} \right\rfloor$. This implies easily that the order of $\text{GL}_a(F_p)$ does not exceed $((p^{\left\lfloor \sqrt{N} \right\rfloor} - 1)^{\left\lfloor \sqrt{N} \right\rfloor})$ and therefore the order of $\text{PGL}_a(F_p)$ does not exceed $((p^{\left\lfloor \sqrt{N} \right\rfloor} - 1)^{\left\lfloor \sqrt{N} \right\rfloor})/(p - 1)$. Hence, the order of H is strictly greater than the order of $\text{PGL}_a(F_p)$ and therefore there are no injective homomorphisms from H to $\text{PGL}_a(F_p)$. Since H is simple, each homomorphism from H is either trivial or injective. This settles the case (iii). The case (iv) follows readily from the case (iii). \hfill \Box
Corollary 4.5. Suppose \(n \geq 5 \) is an integer, \(B \) is an \(n \)-element set. Suppose \(p = 3 \). Then the Alt(\(B \))-module \((\mathbb{F}_3^B)^{00}\) is very simple.

Proof. By Lemma 2.3, \((\mathbb{F}_3^B)^{00}\) is absolutely simple and \(N = \dim_{\mathbb{F}_3}((\mathbb{F}_3^B)^{00}) \) is either \(n - 1 \) or \(n - 2 \). The group Alt(\(B \)) is a simple non-abelian group, whose order \(n!/2 \) is greater than the order of \(S_{n-1} \) and the order of \(S_{n-2} \). Therefore each homomorphism from Alt(\(B \)) to \(S_N \) is trivial. On the other hand, one may easily check that
\[
n!/2 > 3^{n-1}/2 > (3^N - 1)/(3 - 1)
\]
for all \(n \geq 5 \). Now one has only to apply Corollary 4.4(iv) to \(H = \text{Alt}(B) \) and \(p = 3 \). \(\Box \)

Corollary 4.6. Suppose \(p > 3 \) is a prime, \(n \geq 8 \) is a positive integer, \(B \) is an \(n \)-element set. Then the Alt(\(B \))-module \((\mathbb{F}_p^B)^{00}\) is very simple.

Proof. Recall that \(N = \dim_{\mathbb{F}_p}((\mathbb{F}_p^B)^{00}) \) is either \(n - 1 \) or \(n - 2 \). In both cases
\[
[\sqrt{N}] - 1 < [n/3].
\]
Clearly, Alt(\(B \)) \(\cong \mathbb{A}_n \) is perfect and every homomorphism from Alt(\(B \)) to \(S_N \) is trivial.

We are going to deduce the Corollary from Theorem 4.3 applied to \(F = \mathbb{F}_p \) and \(H = \text{Alt}(B) \). In order to do that let us consider a factorization \(N = ab \) of \(N \) into a product of two positive integers \(a \) and \(b \). We may assume that \(a > 1, b > 1 \) and say, \(a \leq b \). Then
\[
a - 1 \leq [\sqrt{N}] - 1 < [n/3].
\]
Let
\[
\alpha : \mathbb{A}_n \cong \text{Alt}(B) \to \text{PGL}_n(\mathbb{F}_p)
\]
be a group homomorphism. We need to prove that \(\alpha \) is trivial. Let \(\mathbb{F}_p \) be an algebraic closure of \(\mathbb{F}_p \). Since PGL\(_n(\mathbb{F}_p) \subset \text{PGL}_n(\mathbb{F}_p) \), it suffices to check that the composition
\[
\mathbb{A}_n \cong \text{Alt}(B) \to \text{PGL}_n(\mathbb{F}_p) \subset \text{PGL}_n(\mathbb{F}_p)
\]
which we continue denote by \(\alpha \), is trivial.

Let
\[
\pi : \mathbb{A}_n \to \mathbb{A}_n
\]
be the universal central extension of the perfect group \(\mathbb{A}_n \). It is well-known that \(\mathbb{A}_n \) is perfect and the kernel (Schur’s multiplier) of \(\pi \) is a cyclic group of order 2, since \(n \geq 8 \). One could lift \(\alpha \) to the homomorphism
\[
\alpha' : \mathbb{A}_n \to \text{GL}_n(\mathbb{F}_p).
\]
Clearly, \(\alpha \) is trivial if and only if \(\alpha' \) is trivial. In order to prove the triviality of \(\alpha' \), let us put \(m = [n/3] \) and notice that \(\mathbb{A}_n \) contains a subgroup \(D \) isomorphic to \((\mathbb{Z}/3\mathbb{Z})^m\) (generated by disjoint 3-cycles). Let \(D' \) be a Sylow 3-subgroup in \(\pi^{-1}(D) \). Clearly, \(\pi \) maps \(D' \) isomorphically onto \(D \). Therefore, \(D' \) is a subgroup of \(\mathbb{A}_n \) isomorphic to \((\mathbb{Z}/3\mathbb{Z})^m\).

Now, let us discuss the image and the kernel of \(\alpha' \). First, since \(\mathbb{A}_n \) is perfect, its image lies in SL\(_n(\mathbb{F}_p)\), i.e., one may view \(\alpha' \) as a homomorphism from \(\mathbb{A}_n \) to SL\(_n(\mathbb{F}_p)\). Second, the only proper normal subgroup in \(\mathbb{A}_n \) is the kernel of \(\pi \). This implies that if \(\alpha' \) is nontrivial then its kernel meets \(D' \) only at the identity element and therefore \(\text{SL}_n(\mathbb{F}_p) \) contains the subgroup \(\alpha'(D') \) isomorphic to \((\mathbb{Z}/3\mathbb{Z})^m\). Since
$p \neq 3$, the group $\alpha'(D')$ is conjugate to an elementary 3-group of diagonal matrices in $\text{SL}_n(F_p)$. This implies that

$$m \leq a - 1.$$

Since $m = [n/3]$, we get a contradiction which implies that our assumption of the nontriviality of α' was wrong. Hence α' is trivial and therefore α is also trivial.

\[\square \]

Theorem 4.7. Suppose $n \geq 5$ is a positive integer, B is an n-element set, p is a prime. Then the $\text{Alt}(B)$-module $(F_p^B)^{00}$ is very simple.

Proof. The case of $p = 2$ was proven in [2], Ex. 7.2. The case of $p = 3$ was done in Corollary 4.4. So, we may assume that $p \geq 5$. In light of Corollary 4.6 we may assume that $n < 8$, i.e., $5 \leq n \leq 7$.

Assume that $n \neq p$. Then p does not divide n and $n - 1$ is either a prime or twice a prime. Therefore

$$N = \dim_{F_p}(F_p^B)^{00} = n - 1$$

is either a prime or twice a prime. Now the very simplicity of $(F_p^B)^{00}$ follows from the cases (i) and (ii) of Corollary 4.4.

Assume now that $n = p$. Then either $n = p = 5$ or $n = p = 7$. In both cases

$$N = \dim_{F_p}(F_p^B)^{00} = n - 2$$

is a prime. Now the very simplicity of $(F_p^B)^{00}$ follows from Corollary 4.4(i). \[\square \]

5. **Jacobians and Endomorphisms**

Recall that K is a field of characteristic zero, $f(x) \in K[x]$ is a polynomial of degree $n \geq 5$ without multiple roots, $\mathfrak{R}_f \subset K_a$ the set of its roots, $K(\mathfrak{R}_f)$ its splitting field,

$$\text{Gal}(f) = \text{Gal}(K(\mathfrak{R}_f)/K) \subset \text{Perm}(\mathfrak{R}_f).$$

Remark 5.1. Assume that $\text{Gal}(f) = \text{Perm}(\mathfrak{R}_f)$ or $\text{Alt}(\mathfrak{R}_f)$. Taking into account that $\text{Alt}(\mathfrak{R}_f)$ is non-abelian simple, $\text{Perm}(\mathfrak{R}_f)/\text{Alt}(\mathfrak{R}_f) \cong \mathbb{Z}/2\mathbb{Z}$ and $K(\zeta)/K$ is abelian, we conclude that the Galois group of f over $K(\zeta)$ is also either $\text{Perm}(\mathfrak{R}_f)$ or $\text{Alt}(\mathfrak{R}_f)$. In particular, f remains irreducible over $K(\zeta)$. So, in the course of the proof of main results from Introduction we may assume that $\zeta \in K$.

Theorem 5.2. Let p be an odd prime and $\zeta \in K$. If the $\text{Gal}(f)$-module $(F_p^\mathfrak{R}_f)^{00}$ is very simple then $\mathbb{Q}(\delta_p)$ coincides with its own centralizer in $\text{End}^0(J^{(f,p)})$ and the center of $\text{End}^0(J^{(f,p)})$ is a CM-subfield of $\mathbb{Q}(\delta_p)$. In particular, if p is a Fermat prime then $\text{End}^0(J^{(f,p)}) = \mathbb{Q}(\delta_p)$ and $\text{End}(J^{(f,p)}) = \mathbb{Z}[[\delta_p]].$

Combining Theorems 5.2, Remark 5.1, Theorem 4.7 and Remark 4.2(ii), we obtain the following statement.

Corollary 5.3. Let p be an odd prime. If $f(x) \in K[x]$ is an irreducible polynomial of degree $n \geq 5$ and $\text{Gal}(f) = S_n$ or A_n then $\mathbb{Q}(\delta_p)$ is a maximal commutative subalgebra in $\text{End}^0(J^{(f,p)})$ and the center of $\text{End}^0(J^{(f,p)})$ is a CM-subfield of $\mathbb{Q}(\delta_p)$. In particular, if p is a Fermat prime then $\text{End}^0(J^{(f,p)}) = \mathbb{Q}(\delta_p)$ and $\text{End}(J^{(f,p)}) = \mathbb{Z}[[\delta_p]].$
Proof of Theorem 5.2. Recall that \(J^{(f,p)}\) is a \(g\)-dimensional abelian variety defined over \(K\).

Since \(J^{(f,p)}\) is defined over \(K\), one may associate with every \(u \in \text{End}(J^{(f,p)})\) and \(\sigma \in \text{Gal}(K)\) an endomorphism \(\sigma u \in \text{End}(J^{(f,p)})\) such that
\[
\sigma u(x) = \sigma u(\sigma^{-1}x) \quad \forall x \in J^{(f,p)}(K_a).
\]

Let us consider the centralizer \(\Lambda\) of \(\delta_p\) in \(\text{End}(J^{(f,p)})\). Since \(\delta_p\) is defined over \(K\), we have \(\sigma u \in \Lambda\) for all \(u \in \Lambda\). Clearly, \(Z[\delta_p]\) sits in the center of \(\Lambda\) and the natural homomorphism
\[
\Lambda \otimes Z_p \rightarrow \text{End}_{Z_p[\delta_p]} T_p(J^{(f,p)})
\]
is an embedding. Here \(T_p(J^{(f,p)})\) is the \(Z_p\)-Tate module of \(J^{(f,p)}\) which is a free \(Z_p[\delta_p]\)-module of rank \(\frac{2g}{p-1}\). Notice that
\[
J^{(f,p)}(\eta) = T_p(J^{(f,p)})/\eta T_p(J^{(f,p)}).
\]

Recall also that (Theorem 3.3 and Remark 3.4)
\[
J^{(f,p)}(\eta) = (F^p)^{00}
\]
and \(\text{Gal}(K)\) acts on \((F^p)\) through
\[
\text{Gal}(K) \hookrightarrow \text{Gal}(f) \subset \text{Perm}(\mathfrak{R}_f) \subset \text{Aut}((F^p)^{00}).
\]

Since the \(\text{Gal}(f)\)-module \((F^p)^{00}\) is very simple, the \(\text{Gal}(K)\)-module \(J^{(f,p)}(\eta)\) is also very simple, thanks to Remark 3.4(i). On the other hand, if an endomorphism \(u \in \Lambda\) kills \(J^{(f,p)}(\eta) = \ker(1 - \delta_p)\) then one may easily check that there exists a unique \(v \in \text{End}(J^{(f,p)})\) such that \(u = v \cdot \eta\). In addition, \(v \in \Lambda\). This implies that the natural map
\[
\Lambda \otimes Z[\delta_p] Z[\delta_p]/(\eta) \rightarrow \text{End}_{F_p}(J^{(f,p)}(\eta))
\]
is an embedding. Let us denote by \(R\) the image of this embedding. We have
\[
R := \Lambda/\eta \Lambda = \Lambda \otimes Z_p/\eta \Lambda \otimes Z_p \subset \text{End}_{F_p}(J^{(f,p)}(\eta)).
\]

Clearly, \(R\) contains the identity endomorphism and is stable under the conjugation via Galois automorphisms. Since the \(\text{Gal}(K)\)-module \(J^{(f,p)}(\eta)\) is very simple, either \(R = F_p \cdot \text{Id}\) or \(R = \text{End}_{F_p}(J^{(f,p)}(\eta))\). If \(\Lambda/\eta \Lambda = R = F_p \cdot \text{Id}\) then \(\Lambda\) coincides with \(Z[\delta_p]\). This means that \(Z[\delta_p]\) coincides with its own centralizer in \(\text{End}(J^{(f,p)})\) and therefore \(Q(\delta_p)\) is a maximal commutative subalgebra in \(\text{End}^0(J^{(f,p)})\).

If \(\Lambda/\eta \Lambda = R = \text{End}_{F_p}(J^{(f,p)}(\eta))\) then, by Nakayama’s Lemma,
\[
\Lambda \otimes Z_p = \text{End}_{Z_p[\delta_p]} T_p(J^{(f,p)}) \cong \text{Mat}_{\frac{2g}{p-1}}(Z_p[\delta_p]).
\]
This implies easily that the \(Q(\delta_p)\)-algebra \(\Lambda_Q = \Lambda \otimes Q \subset \text{End}^0(X)\) has dimension \(\left(\frac{2g}{p-1}\right)^2\) and its center has dimension 1. This means that \(\Lambda_Q\) is a central \(Q(\delta_p)\)-algebra of dimension \(\left(\frac{2g}{p-1}\right)^2\). Clearly, \(\Lambda_Q\) coincides with the centralizer of \(Q(\delta_p)\) in \(\text{End}^0(J^{(f,p)})\). Since \(\delta_p\) respects the theta divisor on the jacobian \(J^{(f,p)}\), the algebra \(\Lambda_Q\) is stable under the corresponding Rosati involution and therefore is semisimple as a \(Q\)-algebra. Since its center is the field \(Q(\delta_p)\), the \(Q(\delta_p)\)-algebra \(\Lambda_Q\) is central simple and has dimension \(\left(\frac{2g}{p-1}\right)^2\). By Theorem 3.4, this cannot happen. Therefore \(Q(\delta_p)\) is a maximal commutative subalgebra in \(\text{End}^0(J^{(f,p)})\). \(\square\)
Proof of main results. Clearly, Theorem 1.1 follows readily from Corollary 5.3. Theorem 1.2 follows readily from Corollary 5.3 combined with Remark 3.9.

REFERENCES

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Clarendon Press, Oxford, 1985.
[2] Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras. Interscience Publishers, New York London 1962.
[3] H. K. Farahat, On the natural representation of the symmetric group. Proc. Glasgow Math. Association 5 (1961-62), 121–136.
[4] I. M. Isaacs, Character theory of finite groups. Academic Press, New York San Francisco London, 1976.
[5] Ch. Jansen, K. Lux, R. Parker, R. Wilson, An Atlas of Brauer characters. Clarendon Press, Oxford, 1995.
[6] J. K. Koo, On holomorphic differentials of some algebraic function field of one variable over C. Bull. Austral. Math. Soc. 43 (1991), 399–405.
[7] B. Moonen, Yu. G. Zarhin, Hodge and Tate classes on simple abelian fourfolds. Duke Math. J. 77 (1995), 553–581.
[8] B. Moonen, Yu. G. Zarhin, Weil classes on abelian varieties. J. reine angew. Math. 496 (1998), 83–92.
[9] D. Mumford, Abelian varieties, Second edition. Oxford University Press, London, 1974.
[10] K. Ribet, Galois action on division points of Abelian varieties with real multiplications. Amer. J. Math. 98 (1976), 751–804.
[11] K. Ribet, Hodge classes on certain abelian varieties. Amer. J. Math. 105 (1983), 523–538.
[12] D. Passman, Permutation groups. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[13] B. Poonen, E. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line. J. reine angew. Math. 488 (1997), 141–188.
[14] E. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310 (1998), 447–471.
[15] J.-P. Serre, Topics in Galois Theory. Jones and Bartlett Publishers, Boston-London, 1992. 163–176.
[16] J.-P. Serre, Linear representations of finite groups. Springer-Verlag, 1977.
[17] M. Suzuki, Group Theory I. Springer-Verlag, 1982.
[18] C. Towse, Weierstrass points on cyclic covers of the projective line. Trans. AMS 348 (1996), 3355-3377.
[19] A. Wagner, The faithful linear representations of least degree of \(S_n \) and \(A_n \) over a field of odd characteristic. Math. Z. 154 (1977), 103–114.
[20] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication. Math. Res. Letters 6 (2000), 123–132.
[21] Yu. G. Zarhin, Hyperelliptic jacobians and modular representations, to appear in "Moduli of abelian varieties" (C. Faber, G. van der Geer, F. Oort, eds.), Birkhäuser.

E-mail address: zarhin@math.psu.edu