Regularity of some invariant distributions on nice symmetric pairs

Pascale Harinck

Abstract

J. Sekiguchi determined the semisimple symmetric pairs \((\mathfrak{g}, \mathfrak{h})\), called nice symmetric pairs, on which there is no non-zero invariant eigendistribution with singular support. On such pairs, we study regularity of invariant distributions annihilated by a polynomial of the Casimir operator. We deduce that invariant eigendistributions on \((\mathfrak{gl}(4, \mathbb{R}), \mathfrak{gl}(2, \mathbb{R}) \times \mathfrak{gl}(2, \mathbb{R}))\) are locally integrable functions.

Mathematics Subject Classification 2000: MSC classification 22E30

Keywords and phrases: Nice symmetric pairs, invariant distributions, eigendistributions, transfer of distributions, radial part of differential operators.

Introduction

Let \(G\) be a reductive group such that \(\text{Ad}(G)\) is connected. Let \(\sigma\) be an involutive automorphism of \(G\). We denote by the same letter \(\sigma\) the corresponding involution on the Lie algebra \(\mathfrak{g}\) of \(G\). Let \(\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}\) be the decomposition into \(+1\) and \(-1\) eigenspaces with respect to \(\sigma\). Then \((\mathfrak{g}, \mathfrak{h})\) is called a reductive symmetric pair (or semisimple when \(\mathfrak{g}\) is semisimple). Let \(H\) be the group of fixed points of \(\sigma\) in \(G\).

In \([7]\), J. Sekiguchi describes semisimple symmetric pairs on which there is no non-zero invariant eigendistribution with support in \(\mathfrak{q} - \mathfrak{q}^{reg}\) where \(\mathfrak{q}^{reg}\) is the set of semisimple regular elements of \(\mathfrak{q}\). These pairs, called nice symmetric pairs, are characterized by a property on distinguished nilpotent elements and we can generalize this notion to reductive pairs (Definition 4.1). Our main result is the following. Let \(\omega\) be the Casimir polynomial of \(\mathfrak{q}\) and \(\partial(\omega)\) the corresponding differential operator on \(\mathfrak{q}\).

Theorem 0.1. Let \((\mathfrak{g}, \mathfrak{h})\) be a nice reductive symmetric pair. Let \(\mathcal{V}\) be an \(H\)-invariant open subset of \(\mathfrak{q}\). Let \(\Theta\) be an \(H\)-invariant distribution on \(\mathcal{V}\) such that

1. There exists \(P \in \mathbb{C}[X]\) such that \(P(\partial(\omega))\Theta = 0\),
2. There exists \(F \in L^1_{loc}(\mathcal{V})^H\) such that \(\Theta = F\) on \(\mathcal{V} \cap \mathfrak{q}^{reg}\).

Then \(\Theta = F\) as distribution on \(\mathcal{V}\).

In \([2]\), E. Galina and Y. Laurent obtained stronger results on invariant distributions on nice symmetric pairs by different methods based on algebraic properties of \(D\)-modules. They proved...
that any invariant distribution on a nice pair which is annihilated by a finite codimensional ideal of the algebra of H-invariant differential operators with constant coefficients on \mathfrak{q} is a locally integrable function ([2] Corollary 1.7.6).

Our approach uses properties of distributions. Assuming that $S = \Theta - F$ is non-zero, we are led to a contradiction. By the work of G. van Dijk ([8]) and J. Sekiguchi ([7]), we can adapt the descent method of Harish-Chandra. Thus, we construct a non-zero distribution $\tilde{\Theta}$ leading to a contradiction. By the work of G. van Dijk ([8]) and J. Sekiguchi ([7]), we can adapt the method developed by M. Atiyah in [1], one studies the degree of singularity along $\{0\} \times \mathbb{R}^m$ of different distributions in this equation. One deduces that $\tilde{\Theta}$ is integrable function $\tilde{\Theta}$ and a differential operator \tilde{D} of \mathfrak{g} to the space of differential operators with complex constant coefficients on \mathfrak{g}.

In the last section, we complete the results of [3] on the nice symmetric pair $(\mathfrak{gl}(4, \mathbb{R}), \mathfrak{gl}(2, \mathbb{R}) \times \mathfrak{gl}(2, \mathbb{R}))$ and deduce that any invariant eigendistribution for a regular character on this pair is given by a locally integrable function.

1 Notation

Let M be a smooth variety. Let $C^\infty(M)$ be the space of smooth functions on M, $\mathcal{D}(M)$ the subspace of compactly supported smooth functions, $L^1_{\text{loc}}(M)$ the space of locally integrable functions on M, endowed with their standard topology and $\mathcal{D}'(M)$ the space of distributions on M.

For a group G acting on M, one denotes by \mathcal{F}^G the points of \mathcal{F} fixed by G for each space \mathcal{F} defined as above.

If $N \subset M$ and if f is a function defined on M, one denotes by $f_{/N}$ its restriction to N.

If V is a finite dimensional real vector space then V^* is its algebraic dual and V_C is its complexified vector space. The symmetric algebra $S[V]$ of V can be identified to the space $\mathbb{R}[V^*]$ of polynomial functions on V^* with real coefficients and to the space of differential operators with real constant coefficients on V. Similarly, one has $S[V_C] = \mathbb{C}[V^*]$ and this algebra can be identified to the space of differential operators with complex constant coefficients on V_C. If $u \in S[V]$ (resp. $S[V_C]$), then $\partial(u)$ will denote the corresponding differential operator.

Let G be a reductive group such that $\text{Ad}(G)$ is connected, and σ an involution on G. This defines an involution, denoted by the same letter σ on the Lie algebra \mathfrak{g} of G. Let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$ be the direct decomposition of \mathfrak{g} into the $+1$ and -1 eigenspaces of σ. Then $(\mathfrak{g}, \mathfrak{h})$ is called a reductive symmetric pair. Let H be the subgroup of fixed points of σ in G.

Let $\mathfrak{c}_\mathfrak{g}$ be the center of \mathfrak{g} and \mathfrak{g}_s its derived algebra. We set

$$\mathfrak{c}_\mathfrak{g} = \mathfrak{c}_\mathfrak{g} \cap \mathfrak{q} \quad \text{and} \quad \mathfrak{g}_s = \mathfrak{g}_s \cap \mathfrak{q}.$$

If x is an element of \mathfrak{g} and \mathfrak{r} is a subspace of \mathfrak{g}, we denote by \mathfrak{r}_x the centralizer of x in \mathfrak{r}.

We fix a non-degenerate bilinear form B on \mathfrak{g} which is equal to the Killing form on \mathfrak{g}_s. Then $\omega(X) = B(X, X)$ is the Casimir polynomial of \mathfrak{g}.
2 Transfer of distributions and differential operators

We recall results of \([8]\) sections 2 and 3) and \([\mathcal{I}]\) section (3.2)) on restriction of distributions and radial parts of differential operators. Their proofs are similar to (\([\mathcal{II}]\) or \([\mathcal{II}]\) Part I, chapter 2).

Let \(x_0 \in \mathfrak{q}_a\). Let \(U\) be a linear subspace of \(\mathfrak{q}\) such that \(\mathfrak{q} = U \oplus [x_0, \mathfrak{h}]\) and \(V\) be a linear subspace of \(\mathfrak{h}\) such that \(\mathfrak{h} = V \oplus \mathfrak{h}_{x_0}\). Consider the open subset \(U = \{Z \in U; U + [x_0 + Z, \mathfrak{h}] = \mathfrak{q}\}\) containing 0. Then the map \(\Psi\) from \(H \times U\) to \(\mathfrak{q}\) defined by \(\Psi(h, u) = h \cdot (x_0 + u)\) is a submersion. In particular, \(\Omega = \Psi(H \times U)\) is an open \(H\)-invariant subset of \(\mathfrak{q}\) containing \(x_0\). We fix an Haar measure \(dh\) on \(H\) and we denote by \(du\) (respectively \(dx\)) the Lebesgue measure on \(U\) (respectively \(\mathfrak{q}\)). The submersion \(\Psi\) induces a continuous surjective map \(\Psi_*\) from \(D(H \times U)\) onto \(D(\Omega)\) such that, for any \(F \in L^1_{\text{loc}}(\mathfrak{q})\) and any \(f \in D(H \times U)\), one has

\[
\int_{H \times U} F \circ \Psi(h, u) f(h, u) du = \int_{\mathfrak{q}} F(x) \Psi_*(f)(x) dx.
\]

Theorem 2.1. For \(T \in D'(\Omega)^H\) there exists a unique distribution \(\text{Res}_U T\) defined on \(\mathfrak{q}\), called the restriction of \(T\) to \(\mathfrak{q}\) with respect to \(\Psi\), such that for any \(f \in D(H \times U)\), one has

\[
<T, \Psi_*(f) > = <\text{Res}_U T, p_*(f) >
\]

where \(p_*(f) \in D(U)\) is defined by \(p_*(f)(u) = \int_{H} f(h, u) dh\).

This restriction satisfies the following properties:

1. If \(U\) is stable under the action of a subgroup \(H_0\) of \(H\) then \(\text{Res}_U T\) is \(H_0\)-invariant.
2. \(x_0 + \text{supp} (\text{Res}_U T) \subset \text{supp} (T) \cap (x_0 + \mathfrak{q})\).
3. If \(F \in L^1_{\text{loc}}(\Omega)^H\) then \(\text{Res}_U F\) is the locally integrable function on \(\mathfrak{q}\) defined by \(\text{Res}_U F(u) = F(x_0 + u)\).
4. If \(\text{Res}_U T = 0\) then \(T = 0\) on \(\Omega\).

Theorem 2.2. Let \(D\) be a \(H\)-invariant differential operator on \(\mathfrak{q}\). Then there exists a differential operator \(\text{Rad}_U(D)\), called the radial part of \(D\) with respect to \(\Psi\), defined on \(\mathfrak{q}\) such that for any \(f \in D(\Omega)^H\), one has \((D \cdot f)(x_0 + u) = \text{Rad}_U(D) \cdot \text{Res}_U f(u)\) for \(u \in \mathfrak{q}\).

Moreover, for any \(T \in D'(\Omega)^H\), one has

\[
\text{Res}_U (D \cdot T) = \text{Rad}_U(D) \cdot \text{Res}_U (T).
\]

3 Semisimple elements

We recall that a Cartan subspace of \(\mathfrak{q}\) is a maximal abelian subspace of \(\mathfrak{q}\) consisting of semisimple elements.

If \(\mathfrak{r} = \mathfrak{q}\) or \(\mathfrak{q}_a\), we denote by \(S(\mathfrak{r})\) the set of semisimple elements of \(\mathfrak{r}\).

Let \(\mathfrak{a}\) be a Cartan subspace of \(\mathfrak{q}\). If \(\lambda \in \mathfrak{g}_C^\ast\), we set

\[
\mathfrak{g}_C^\lambda = \{X \in \mathfrak{g}_C; [A, X] = \lambda(A)X \text{ for any } A \in \mathfrak{a}_C\}
\]
and
\[\Sigma(a) = \{ \lambda \in g_C^0 : g_C^0 \neq \{0\} \}. \]

Then \(\Sigma(a) \) is the root system of \((g_C, a_C)\).

An element \(X \) of \(S(q) \) is \(q \)-regular (or regular) if its centralizer \(q_X \) in \(q \) is a Cartan subspace. If \(X \in a \) then \(X \) is regular if and only if \(\lambda(X) \neq 0 \) for all \(\lambda \in \Sigma(a) \). We denote by \(q^{reg} \) the open dense subset of semisimple regular elements of \(q \).

Let \(A_0 \in S(q) \). Its centralizer \(z = g_{A_0} \) in \(g \) is a reductive \(\sigma \)-stable Lie subalgebra of \(g \). We denote by \(c \) its center and by \(z_0 \) its derived algebra. We set
\[c^- = c \cap q, \quad c^+ = c \cap h, \quad z^-_0 = z_0 \cap q \quad \text{and} \quad z^- = z_0 \cap h. \]

The pair \((z_0, z^-)\) is a semisimple symmetric subpair of \((g_s, h_s)\) which is equal to \((g_s, h_s)\) if \(A_0 \in c_q \).

Let \(H^+_s \) be the analytic subgroup of \(H \) with Lie algebra \(z^+_s \).

We assume that \(A_0 \notin c_q \). We take a Cartan subspace \(a \) of \(q \) containing \(A_0 \) and consider the corresponding root system \(\Sigma = \Sigma(a) \). We fix a positive system \(\Sigma^+ \) of \(\Sigma \). For any \(\lambda \in \Sigma^+ \), we choose a \(C \)-basis \(X_{\lambda,1}, \ldots, X_{\lambda,m_\lambda} \) of \(g_C^0 \) such that \(B(X_{\lambda,i}, \sigma(X_{\lambda,j})) = -\delta_{i,j} \) for \(i, j \in \{1, \ldots, m_\lambda\} \).

Let \(\Sigma^+_1 = \{ \lambda \in \Sigma^+ : \lambda(A_0) \neq 0 \} \). We set
\[V_{C}^\pm = \sum_{\lambda \in \Sigma^+_1}^{m_\lambda} (X_{\lambda,j} \pm \sigma(X_{\lambda,j})), \quad V^+ = V_{C}^+ \cap h, \quad V^- = V_{C}^- \cap q. \]

We have the decompositions \(h = z^+ + V^+ \) and \(q = z^- + V^- \), with \(\dim V^+ = \dim V^- \) and \([A_0, h] = V^- \).

If \(Z_0 \in z^- \), we define the map \(\eta_{Z_0} \) from \(V^+ \times z^- \) to \(q \) by \(\eta_{Z_0}(v, Z) = Z + [v, A_0 + Z_0] \). Then \(\eta_0 \) is a bijective map. We set \(\xi(Z_0) = det(\eta_{Z_0} \circ \eta^{-1}) \) and \(z^-_0 = \{ Z \in z^- : \xi(Z) \neq 0 \} \). Then \(z^-_0 \) is invariant under \(H^+_s \).

Thus the map \(\gamma \) from \(H \times z^-_0 \) to \(q \) defined by \(\gamma(h, Z) = h \cdot (A_0 + Z) \) is a submersion. By Theorem 2.2 for any \(H \)-invariant distribution \(\Theta \) on \(q \), there exists a unique \(H^+_s \)-invariant distribution \(Res_{z_0^-(\Theta)} \) defined on \(z^-_0 \) such that, for any \(f \in D(H \times z^-_0) \), one has \(< \Theta, \gamma_*(f) > = < Res_{z^-_0(\Theta)}, p_*(f) > \).

Let \(\omega_j^- \) be the restriction of \(\omega \) to \(z^-_0 \). Then, one has:

Lemma 3.1. ([?] Lemma 4.4). Let \(Rad_{z^-}(\partial(\omega)) \) be the radial part of \(\partial(\omega) \) with respect to \(\gamma \) (Theorem 2.2). Then
\[Rad_{z^-}(\partial(\omega)) = \xi^{-1/2} \partial(\omega_j^-) \circ \xi^{1/2} - \mu \]
where \(\mu(Z) = \xi(Z)^{-1/2}(\partial(\omega_j^-) \xi^{1/2})(Z) \) is an analytic function on \(z^-_0 \).

4 Nilpotent and distinguished elements

Let \(Z_0 \in q \). Let \(Z_0 = A_0 + X_0 \) be its Jordan decomposition ([?] Lemma 1.1). We construct the symmetric pair \((z_0, z^-_0)\) related to \(A_0 \) as in [3].

We assume that \(X_0 \) is different from zero. From ([?] Lemma 1.7), there exists a normal \(sl_2 \)-triple \((B_0, X_0, Y_0)\) of \((z_0, z^-_0)\) containing \(X_0 \), i.e. satisfying \(B_0 \in z^+_0 \) and \(Y_0 \in z^-_0 \) such that \([B_0, X_0] = 2X_0, [B_0, Y_0] = -2Y_0 \) and \([X_0, Y_0] = B_0 \).
We set $\mathfrak{z}_0 = \mathbb{R}B_0 + \mathbb{R}X_0 + \mathbb{R}Y_0$. The Cartan involution θ_0 of \mathfrak{z}_0 defined by $\theta_0 : (B_0, X_0, Y_0) \to (-B_0, -Y_0, -X_0)$ extends to a Cartan involution of \mathfrak{z}_s, denoted by θ, which commutes with σ. (Lemma 4.1.) The bilinear form $(X, Y) \mapsto -B(\theta(X), Y)$ defines a scalar product on \mathfrak{z}_s.

We can decompose \mathfrak{z}_s in an orthogonal sum $\mathfrak{z}_s = \sum_i \mathfrak{z}_i$ of irreducible representations \mathfrak{z}_i under the adjoint action of \mathfrak{z}_0. One can choose a suitable ordering of the \mathfrak{z}_i such that $(\mathfrak{z}_s^-)_{X_0} = \sum_{i=1}^r \mathfrak{z}_i \cap (\mathfrak{z}_s^-)_{Y_0} = \theta((\mathfrak{z}_s^-)_{X_0})$ with $\mathfrak{z}_1 = \mathfrak{z}_0$ and $\dim \mathfrak{z}_i \cap (\mathfrak{z}_s^-)_{Y_0} = 1$. We set $n_i + 1 = \dim \mathfrak{z}_i$. Hence, there exists an orthonormal basis (w_1, \ldots, w_r) of $(\mathfrak{z}_s^-)_{Y_0}$ such that $w_1 = \frac{Y_0}{\|Y_0\|}$ and $[B_0, w_i] = -n_i w_i$ for $i \in \{1, \ldots, r\}$. In particular, one has $n_1 = 2$.

We set \[\delta_q(Z_0) = \delta_{\mathfrak{z}_s^-}(X_0) = \sum_{i=1}^r (n_i + 2) - \dim (\mathfrak{z}_s^-). \]

Let $\mathcal{N}(\mathfrak{z}_s^-)$ be the set of nilpotent elements of \mathfrak{z}_s.

Definition 4.1. ([Lemma 1.11 and 1.13])

1. An element X_0 of $\mathcal{N}(\mathfrak{z}_s^-)$ is a \mathfrak{z}_s-distinguished nilpotent element if $(\mathfrak{z}_s^-)_{X_0}$ contains no non-zero semisimple element.

2. An element Z_0 of \mathfrak{g} with Jordan decomposition $Z_0 = A_0 + X_0$ is called \mathfrak{q}-distinguished if X_0 is a \mathfrak{z}_s-distinguished nilpotent element of \mathfrak{z}_s.

Definition 4.2. The symmetric pair $(\mathfrak{g}, \mathfrak{h})$ is nice if for any \mathfrak{q}-distinguished element Z, one has $\delta_{\mathfrak{q}}(Z) > 0$.

Let ω_s be the restriction of ω to \mathfrak{z}_s^-. Though ω_s is not the Casimir polynomial on \mathfrak{z}_s^-, one has the following result:

Lemma 4.3. ([Lemma 4]) The following assertions are equivalent:

1. X_0 is a \mathfrak{z}_s^--distinguished nilpotent element.

2. $\omega_s(X) = 0$ for all $X \in (\mathfrak{z}_s^-)_{X_0}$.

3. $\omega_s(X) = 0$ for all $X \in (\mathfrak{z}_s^-)_{Y_0}$.

4. $n_i > 0$.

5. $(\mathfrak{z}_s^-)_{X_0} \cap (\mathfrak{z}_s^-)_{Y_0} = \{0\}$.

Thus, if X_0 is a \mathfrak{z}_s^--distinguished nilpotent element then one has $\omega(X_0 + X) = 2B(X_0, X) = 2\|Y_0\| \cdot x_1$ for all $X \in (\mathfrak{z}_s^-)_{Y_0}$, where x_1 is the first coordinate of X in the basis (w_1, \ldots, w_r) of $(\mathfrak{z}_s^-)_{Y_0}$.

For any $X_0 \in \mathcal{N}(\mathfrak{z}_s^-)$, one has $\mathfrak{z}_s^- = (\mathfrak{z}_s^-)_{X_0} \oplus [\mathfrak{z}_s^+, X_0]$ and $\mathfrak{z}_s^+ = (\mathfrak{z}_s^+)_{X_0} \oplus [\mathfrak{z}_s^-, Y_0]$. From now on, we set $U = (\mathfrak{z}_s^-)_{Y_0}$.

For $X \in U$, we consider the map ψ_X from $[\mathfrak{z}_s^-, Y_0] \times U$ to \mathfrak{z}_s^- defined by $\psi_X(v, z) = z + [v, X_0 + X]$. The map ψ_0 is bijective.
Lemma 4.5. ([8] Lemma 13) The homogeneous part of degree 2 of ω R by only if ([8] Theorem 14) Let Theorem 4.6.

Lemma 4.4. ([8] Lemma 17 and 18). There exists a neighborhood U_0 of 0 in U such that

1. π is a submersion on $H_s^+ \times U_0$,
2. $\Omega_0 = \pi(H_s^+ \times U_0)$ is an open neighborhood of X_0 in \mathfrak{s}^- and $\Omega_0 \cap N_j = \mathcal{O}_j$,
3. $\mathcal{O}_j \cap (X_0 + U_0) = \{X_0\}$
4. Let Θ be an H_s^+-invariant distribution on Ω_0. Let $\text{Res}_U \Theta$ be its restriction to U with respect to π.

If $\text{supp} (\Theta) \subset N_j$ then $\text{supp} (\text{Res}_U \Theta) \subset \{0\}$.

We denote by ω_2 and ω_s the restrictions of ω to c^- and \mathfrak{s}^- respectively. One has $\omega_j = \omega_{j_-} + \omega_s$. We precise now the radial part $\text{Rad}_U (\partial(\omega_s))$ of $\partial(\omega_s)$ with respect to π. We denote by $\text{Rad}_{U,X} (\partial(\omega_s))$ its local expression at $X = U_0$.

Lemma 4.5. ([8] Lemma 13) The homogeneous part of degree 2 of $\text{Rad}_{U,0} (\partial(\omega_s))$ is zero if and only if X_0 is \mathfrak{s}^--distinguished.

Theorem 4.6. ([8] Theorem 14) Let X_0 be a \mathfrak{s}^--distinguished nilpotent element and $c_0 = \|X_0\|$. Then, there exist analytic functions $a_{i,j}$ ($2 \leq i, j \leq r$) and a_i ($2 \leq i \leq r$) on U_0 satisfying $a_{i,j}(0) = 0$ such that, for any H_s^+-invariant distribution T on Ω_0, one has

$$\text{Res}_U (\partial(\omega_s)T) = \text{Rad}_U ((\partial(\omega_s))\text{Res}_U (T) = \frac{1}{c_0} \left(2x_1 \frac{\partial^2}{\partial x_1^2} + (\dim \mathfrak{s}^-) \frac{\partial}{\partial x_1} + \sum_{i=2}^r (n_i + 2)x_i \frac{\partial^2}{\partial x_1 \partial x_i} \right)$$

$$+ \sum_{2 \leq i \leq j \leq r} a_{i,j}(X) \frac{\partial}{\partial x_j \partial x_i} + \sum_{i=2}^r a_i(X) \frac{\partial}{\partial x_i}) \text{Res}_U (T)$$

where x_1, \ldots, x_r are the coordinates of X in the basis (w_1, \ldots, w_r).

5 The main Theorem

Our goal is to prove the following Theorem:

Theorem 5.1. Let $(\mathfrak{g}, \mathfrak{h})$ be a nice reductive symmetric pair. Let \mathcal{V} an H-invariant open subset of \mathfrak{q}. Let Θ be an H-invariant distribution on \mathcal{V} such that

1. There exists $P \in \mathbb{C}[X]$ such that $P(\partial(\omega)) \Theta = 0$
2. There exists \(F \in L^1_{\text{loc}}(\mathcal{V})^H \) such that \(\Theta = F \) on \(\mathcal{V} \cap q^{reg} \).

Then \(\Theta = F \) as distribution on \(\mathcal{V} \).

We will use the method developed by M. Atiyah in [1]. First we recall some facts about distributions on \(\mathbb{R}^r \times \mathbb{R}^m \). Let \(\mathbb{N} \) be the set of non-negative integers. For \(\alpha = (\alpha_1, \ldots, \alpha_r) \in \mathbb{N}^r \), we set \(|\alpha| = \alpha_1 + \ldots + \alpha_r \) and

\[
x^\alpha = x_1^{\alpha_1} \cdots x_r^{\alpha_r}, \quad \partial_x^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_r^{\alpha_r}}.
\]

For \(\varphi \in \mathcal{D}(\mathbb{R}^r \times \mathbb{R}^m) \) and \(\varepsilon > 0 \), we set \(\varphi_{\varepsilon}(x,y) = \varphi(\frac{x}{\varepsilon}, y) \) for \((x,y) \in \mathbb{R}^r \times \mathbb{R}^m \). For \(T \in \mathcal{D}'(\mathbb{R}^r \times \mathbb{R}^m) \) we denote by \(T_\varepsilon \) the distribution defined by \(\langle T_\varepsilon, \varphi \rangle = \langle T, \varphi_{\varepsilon} \rangle \).

Definition 5.2. Let \(V = \{0\} \times \mathbb{R}^m \subset \mathbb{R}^r \times \mathbb{R}^m \) and \(T \in \mathcal{D}'(\mathbb{R}^r \times \mathbb{R}^m) \).

1. The distribution \(T \) is regular along \(V \) if \(\lim_{\varepsilon \to 0} T_\varepsilon = 0 \).

2. The distribution \(T \) has a degree of singularity along \(V \) smaller than \(k \) if for all \(\alpha \in \mathbb{N}^r \) with \(|\alpha| = k \), the distribution \(x^\alpha T \) is regular.

We denote by \(d^T \) the degree of singularity of \(T \) along \(V \) and we omit in what follows to precise "along \(V \)". Regularity corresponds to a degree of singularity equal to 0.

3. The degree of singularity of \(T \) is equal to \(k \) if \(d^T k \leq k \) and \(d^T k \neq k - 1 \).

Lemma 5.3.

1. If \(F \in L^1_{\text{loc}}(\mathbb{R}^r + m) \) then \(d^F = 0 \).

2. If \(d^F_i = k \geq 1 \) then \(d^F_i (x_i T) = k - 1 \) for \(i \in \{1, \ldots r\} \).

3. If \(d^F_i \leq k \) then \(\frac{\partial}{\partial x_i} T \leq k + 1 \) for \(i \in \{1, \ldots r\} \).

4. Let \(\delta_0 \) be the Dirac measure at 0 in \(\mathbb{R}^r \) and \(\delta_0^{(\alpha)} = \delta^\alpha \delta_0 \). If \(S \in \mathcal{D}'(\mathbb{R}^m) \) then the degree of singularity of \(\delta^{(\alpha)}_0 \otimes S \) is equal to \(|\alpha| + 1 \).

Proof.

1. Let \(F \in L^1_{\text{loc}}(\mathbb{R}^r + m) \) and \(\phi \in \mathcal{D}(\mathbb{R}^r + m) \) with \(\text{supp}(\phi) \subset K_1 \times K_2 \) where \(K_1 \) (resp., \(K_2 \)) is a compact subset of \(\mathbb{R}^r \) (resp., \(\mathbb{R}^m \)). One has

\[
|\int_{\mathbb{R}^r \times \mathbb{R}^m} F(x,y)\phi(x,y)dx dy| \leq \sup_{(x,y)\in \mathbb{R}^r + m} |\phi(x,y)| \int_{(\varepsilon K_1) \times K_2} |F(x,y)| dx dy
\]

and the first assertion follows.

2. is clear.

3. Let \(\alpha \in \mathbb{N}^r \) such that \(|\alpha| = k + 1 \). If \(\alpha_j \geq 1 \) for some \(j \in \{1, \ldots, r\} \), we set \(\bar{\alpha}^j = (\alpha_1, \ldots, \alpha_{j-1}, \alpha_j - 1, \alpha_{j+1}, \ldots, \alpha_r) \). Let \(\varphi \in \mathcal{D}(\mathbb{R}^r + m) \).

If \(\alpha_j \geq 1 \), one has

\[
\langle x^\alpha \frac{\partial}{\partial x_i} T, \varphi_{\varepsilon} \rangle = \langle - \alpha_i + x^\alpha x^i \varphi_{\varepsilon} + \frac{\partial}{\partial x_i} (\frac{\partial}{\partial x_i} \varphi)_{\varepsilon} \rangle > 0.
\]

7
thus \((x^\alpha T)_\varepsilon\) converges to 0 since \(d_x^\alpha T \leq k\).

If \(\alpha_i = 0\), we choose \(j\) such that \(\alpha_j \geq 1\). One has \(x^\alpha \frac{\partial}{\partial x_i} T, \phi_\varepsilon \geq -x^{\alpha j} T, (x_j \frac{\partial}{\partial x_i} \phi)_\varepsilon\) which tends to 0 as before.

4. We recall that for \(i \in \{1, \ldots, r\}\), one has

\[
x_i^* \delta^{(s_0)} = \begin{cases} (-1)^l \frac{(\alpha_1)!}{(\alpha_i-l)!} \delta^{(s_1, \ldots, s_l)} & \text{if } \alpha_i \geq l \\
0 & \text{if } \alpha_i < l.
\end{cases}
\]

Hence, one has \(x^\alpha \delta_0^{(s_0)} = (-1)^{\alpha \lambda} \alpha! \delta_0\) and for all \(\beta \in \mathbb{N}^r\) with \(|\beta| = |\alpha| + 1\), one has \(x^\beta \delta_0^{(s_0)} = 0\). The assertion follows.

Definition 5.4. Let \(\Gamma = x^\beta \partial^\gamma D\) where \(D\) is a differential operator on \(\mathbb{R}^m\). Then \(\Gamma\) increases the degree of singularity at most \(|\alpha| - |\beta|\). The integer \(|\alpha| - |\beta|\) is called the total degree of \(\Gamma\) in \(x\).

We can define the homogeneous part of highest total degree (in \(x\)) of an analytic differential operator developing its coefficients in Taylor series.

Proof of the Theorem. Let \(\Theta \in D'(\mathcal{V})^H\) and \(F \in L^1_{\text{loc}}(\mathcal{V})^H\) such that \(P(\partial(\omega))\Theta = 0\) for a unitary polynomial \(P \in \mathbb{C}[X]\) and \(\Theta = F\) on \(\mathcal{V}^{reg} = \mathcal{V} \cap q^{reg}\). We write \(\Theta = F + S\) where \(S\) is an \(H\)-invariant distribution with support contained in \(\mathcal{V} \setminus \mathcal{V}^{reg}\). We want to prove that \(S = 0\), which is equivalent to \(\text{supp } (S) = \emptyset\).

Assuming \(S\) is non-zero, we are led to a contradiction. We will study \(S\) near an element \(Z_0 \in \text{supp } (S)\) chosen as follows:

For \(Z_0 \in \text{supp } (S)\) with Jordan decomposition \(Z_0 = A_0 + X_0\), we construct the symmetric subpair \((\mathfrak{s}_-^+, \mathfrak{s}_-^+)\) related to \(A_0\) and we set \(q_{A_0} = \mathfrak{s}_-^+ = \mathfrak{c}^- \oplus \mathfrak{z}_-^+\) as in section 3. Let \(S_k\) be the set of \(Z_0\) in the support of \(S\) such that \(\text{rank} (\mathfrak{z}_-^+) = k\). Since \(\text{supp } (S) \subset \mathcal{V} \setminus \mathcal{V}^{reg}\), if \(Z_0 = A_0 + X_0\) belongs to \(\text{supp } (S)\) then \(A_0\) is not \(q\)-regular. One deduces that \(S_0 = \emptyset\). Let \(k_0 > 0\) such that \(S_0 = S_1 = \ldots = S_{k_0-1} = \emptyset\) and \(S_{k_0} \neq \emptyset\).

For \(Z_0 = A_0 + X_0\) in \(S_{k_0}\), we denote by \(\mathcal{N}(\mathfrak{z}_-^+) = \mathcal{O}_1 \cup \ldots \cup \mathcal{O}_\nu\) the set of nilpotent elements in \(\mathfrak{z}_-^+\) as in section 3. Since \(\text{supp } (S) \cap (A_0 + \mathcal{N}(\mathfrak{z}_-^+)) \neq \emptyset\), one can choose \(j_0 \in \{1, \ldots, \nu\}\) such that \(\text{supp } (S) \cap (A_0 + \mathcal{O}_i) = \emptyset\) for \(i \in \{1, \ldots, j_0 - 1\}\) and \(\text{supp } (S) \cap (A_0 + \mathcal{O}_{j_0}) \neq \emptyset\).

From now on, we fix \(Z_0 = A_0 + X_0\) in \(S_{k_0}\) such that \(X_0 \in \mathcal{O}_{j_0}\).

For \(\varepsilon > 0\), we denote by \(W_\varepsilon\) the set of \(x\) in \(\mathfrak{z}_-^+\) such that, for any eigenvalue \(\lambda\) of \(\text{ad}_x\), one has \(|\lambda| < \varepsilon\). The choice of \(k_0\) implies that there exists \(\varepsilon > 0\) such that \(\text{supp } (S) \subset (Z_0 + \mathcal{N}(\mathfrak{z}_-^+))^\varepsilon \subset \text{supp } (S) \cap (Z_0 + \mathcal{N}(\mathfrak{z}_-^+))\). Hence, we can choose an open neighborhood \(W_\varepsilon\) of 0 in \(\mathfrak{c}^-\) and an open neighborhood \(W_\varepsilon\) of 0 in \(\mathfrak{z}_-^+\) such that

\[
\text{supp } (S) \cap (A_0 + W_\varepsilon + W_\varepsilon) \subset \text{supp } (S) \cap (A_0 + W_\varepsilon + \mathcal{N}(\mathfrak{z}_-^+)).
\]

First case. \(A_0 \notin \mathfrak{o}_2\) and \(X_0 \neq 0\).

We keep the notation of section 3. We fix a normal \(sl_2\)-triple \((B_0, Y_0, X_0)\) in \((\mathfrak{z}_-^+, \mathfrak{z}_+^+)\). We choose an open neighborhood \(U_0\) of 0 in \(U\), the centralizer of \(Y_0\) in \(\mathfrak{z}_-^+\), as in Lemma 4. We keep the notation of this lemma. We recall that the map \(\gamma\) from \(H \times \mathfrak{z}_-^+\) to \(\mathfrak{q}\) defined by \(\gamma(h, Z) = h \cdot (A_0 + Z)\) is a submersion. Reducing \(U_0\), \(W_\varepsilon\) and \(W_\varepsilon\) if necessary, we may assume
that $\mathcal{W}_c + \Omega_0 \subset \mathcal{W}_c + W_s \subset \mathfrak{g}^-$ and that $V_0 = \gamma(H \times (\mathcal{W}_c + \Omega_0))$ is an open neighborhood of Z_0 contained in \mathcal{V}.

If T is an H-invariant distribution on \mathcal{V}, we denote by T_0 its restriction to V_0. By theorem 2.1, one can consider its restriction $T_1 = R_{\gamma^{-1}}^{-1}T_0$ to $\mathcal{W}_c + \Omega_0$ with respect to γ. One has $A_0 + \text{supp}(T_1) \subset \text{supp}(T) \cap (A_0 + \mathcal{W}_c + \Omega_0)$.

We set $T_2 = \xi^{1/2}T_1$ where $\xi^{1/2}$ is the analytic function on $\mathcal{W}_c + \Omega_0$ defined in section 3.

Now, we consider the submersion π_0 from $H^+_S \times U_0 \times \mathcal{W}_c$ to \mathfrak{g}^- defined by $\pi_0(h, X, C) = h \cdot (X_0 + X) + C$. One denotes by T_3 the restriction on $U_0 \times \mathcal{W}_c$ of T_2 with respect to π_0. We have $X_0 + \text{supp}(T_3) \subset \text{supp}(T_2) \cap (X_0 + U_0)$.

Since F is a locally integrable function, the distribution F_3 is the locally integrable function on $U_0 \times \mathcal{W}_c$ defined by $F_3(X, C) = \xi^{1/2}(C + X)F(C + X)$.

By assumption, the distribution S_3 is non-zero. By (5.3) and Lemma 4.4 (2), one has $\text{supp}(S_2) = \text{supp}(S_1) \subset \mathcal{W}_c + \Omega_0 \cap \mathcal{N}_j = \mathcal{W}_c + \mathcal{O}_j$. We deduce from Lemma 4.1 (3) that $\text{supp}(S_3) \subset \{0\} \times \mathcal{W}_c$. By (6), Lemma 3, there exists a family $(S_\alpha)_\alpha$ of $\mathcal{D}(\mathcal{W}_c)$ such that $S_3 = \sum_{\alpha \in \mathbb{N}^r; |\alpha| \leq l} \delta_0^{(\alpha)} \otimes S_\alpha$ where δ_0 is the Dirac measure at 0 of U_0 and for $\alpha \in \mathbb{N}^r$, the S_α with $|\alpha| = l$ are not all zero.

By assumption, the distribution Θ satisfies $P(\partial(\omega))\Theta = 0$. By Lemma 3.1 one has

$$P\left(\left(\partial(\omega_s) + \partial(\omega_c)\right) - \mu(Z)\right) \Theta_2 = 0 \text{ on } \mathcal{W}_c + \Omega_0.$$

Using the restriction with respect to π_0, one obtains

$$P\left(\left(\text{Rad}_U(\partial(\omega_s)) + \partial(\omega_c) - \tilde{\mu}\right)\Theta_3 = 0 \text{ on } U_0 \times \mathcal{W}_c$$

where $\tilde{\mu}(X, C) = \mu(C + X)$ for $X \in U_0$ and $C \in \mathcal{W}_c$.

Let D_0 be the homogeneous part of highest total degree d of $\text{Rad}_U(\partial(\omega_s))$. We set

$$P\left(\left(\text{Rad}_U(\partial(\omega_s)) + \partial(\omega_c) - \tilde{\mu}\right)\right) = D_0^N + D_1$$

where N is the degree of P and D_1 is a differential operator with total degree in X strictly smaller than Nd. Since $\Theta_3 = F_3 + S_3$ with $S_3 = \sum_{\alpha \in \mathbb{N}^r; |\alpha| \leq l} \delta_0^{(\alpha)} \otimes S_\alpha$, we obtain the following relation on $U_0 \times \mathcal{W}_c$:

$$(D_0^N + D_1)S_3 = (D_0^N + D_1)(\sum_{\alpha \in \mathbb{N}^r; |\alpha| \leq l} \delta_0^{(\alpha)} \otimes S_\alpha) = -(D_0^N + D_1)F_3 \quad (5.2)$$

We study now the degree of singularity along $\{0\} \times \mathcal{W}_c$ of the two members of (5.2).

If X_0 is not a \mathfrak{g}^--distinguished nilpotent element then by Lemma 4.5, the homogeneous part of degree 2 of $\text{Rad}_l(\partial(\omega_s))$ does not vanish and is a differential operator with constant coefficients of degree 2. Hence the total degree of D_0 is equal to $d = 2$. Since F_3 is a locally integrable function, it follows from Lemma 5.3 that one has $d_s^0F_3 = 0$ and $d_s^0((D_0^N + D_1)F_3) \leq 2N$. By the same Lemma, one has $d_s^0((D_0^N + D_1)S_3) = l + 1 + 2N$. Hence, we have a contradiction.
Assume that X_0 is a 3_--distinguished nilpotent element. Lemma [4.4] gives $c_0D_0 = 2x \frac{\partial^2}{\partial x_1^2} + (\dim 3_-) \frac{\partial}{\partial x_1} + \sum_{i=2}^r (n_i + 2)x_i \frac{\partial^2}{\partial x_1 \partial x_i} + \sum_{2 \leq i \leq j \leq r} a_{i,j}(X) \frac{\partial^2}{\partial x_j \partial x_i} + \sum_{i=2}^r a_i(X) \frac{\partial}{\partial x_i}$ where $c_0 = \|X_0\|$.

Since $a_{i,j}(0) = 0$, the total degree of D_0 is equal to 1.

For $\alpha = (\alpha_1, \ldots, \alpha_r) \in \mathbb{N}^r$, we set $\tilde{\alpha}^i = (\alpha_1, \ldots, \alpha_i-1, \alpha_i+1, \alpha_i+1, \ldots, \alpha_r)$ and $\tilde{\alpha}^i = (\alpha_1, \ldots, \alpha_i-1, \alpha_i-1, \alpha_i+1, \ldots, \alpha_r)$. The relation $x_1d_0^{(\alpha)} = -\alpha_0d_0^{(\tilde{\alpha}^i)}$ and the above expression of D_0 give

$$c_0D_0 \cdot d_0^{(\alpha)} \otimes S_\alpha = \lambda_\alpha \delta^{(\tilde{\alpha}^i)} \otimes S_\alpha + \sum_{2 \leq i \leq j \leq r} a_{i,j}(X) \delta^{(\tilde{\alpha}^i)} \otimes S_\alpha + \sum_{i=2}^r a_i(X) \delta^{(\tilde{\alpha}^i)} \otimes S_\alpha$$

where

$$\lambda_\alpha = -2(\alpha_1 + 2) + \dim 3_- - \sum_{i=2}^r (n_i + 2)(\alpha_i + 1).$$

Since n_1 is equal to 2 and $(\mathfrak{g}, \mathfrak{h})$ is a nice pair, we obtain

$$\lambda_\alpha = -\delta_q(Z_0) - \left[2\alpha_1 + \sum_{i=2}^r (n_i + 2)\alpha_i\right] < 0 \text{ for all } \alpha \in \mathbb{N}^r.$$

Consider $\alpha_0 = (\alpha_1, \ldots, \alpha_r) \in \mathbb{N}^r$ such that $|\alpha_0| = l$, $S_{\alpha_0} \neq 0$ and α_1 is maximal for these properties. One deduces that the coefficient of $\delta^{(\tilde{\alpha}^i)} \otimes S_{\alpha_0}$ in $D_0 \cdot (\sum_{\alpha \in \mathbb{N}^r;|\alpha| = l} \delta^{(\alpha)} \otimes S_\alpha)$ is non-zero. Thus, the degree of singularity of $(D_0^N + D_1)S_3$ is equal to $1 + l + N$. Since F_3 is locally integrable and the total degree of D_0 is equal to 1, we have $d_0^2(D_0^N + D_1)F_3 \leq N$. This gives a contradiction in [5.2].

Second case. $A_0 \in \mathfrak{c}_q$ and $X_0 \neq 0$.

The symmetric pair $(3_-, 3_+)$ is equal to $(\mathfrak{g}_s, \mathfrak{h}_s)$. We just consider the submersion π_0 from $H \times U_0 \times \mathcal{W}_c$ to \mathfrak{q} defined by $\pi_0(h, X, C) = h \cdot (X_0 + X) + A_0 + C$ where U_0 is defined as in Lemma [4.4] for the symmetric pair $(\mathfrak{g}_s, \mathfrak{h}_s)$.

For $T \in \mathcal{D}'(\mathfrak{q})^H$, we denote by T_1 the restriction of T to $U_0 \times \mathcal{W}_c$ with respect to π_0. As in the first case, we have $\Theta_1 = F_1 + S_1$ where F_1 is a locally integrable function on $U_0 \times \mathcal{W}_c$ and S_1 is a non-zero distribution such that $\text{supp} \ (S_1) \subset \{0\} \times \mathcal{W}_c$. Moreover the distribution Θ_1 satisfies the relation

$$P\left(\text{Rad}_c(\partial(\omega_s)) + \partial(\omega_s)\right) \Theta_1 = 0 \text{ on } U_0 \times \mathcal{W}_c.$$

The same arguments as in the first case lead to the contradiction $S_1 = 0$.

Third case. $X_0 = 0$.

The open sets \mathcal{W}_c and \mathcal{W}_s satisfy $\text{supp} \ (S) \cap (A_0 + \mathcal{W}_c + \mathcal{W}_s) \subset \text{supp} \ (S) \cap (A_0 + \mathcal{W}_c + \mathcal{N}(3_+))$. By the choice of j_0, we deduce that $\text{supp} \ (S) \cap (A_0 + \mathcal{W}_c + \mathcal{W}_s) \subset \text{supp} \ (S) \cap (A_0 + \mathcal{W}_c)$.

If $A_0 \in \mathfrak{c}_q$, then $V_0 = A_0 + \mathcal{W}_c + \mathcal{W}_s$ is an open neighborhood of A_0 in \mathfrak{q}. We identify \mathfrak{q} with $\mathfrak{q}_s \times \mathfrak{q}_s$. Thus, the restriction S_0 of S to V_0 is different from zero and satisfies $\text{supp}(S_0) \subset \{0\} \times (A_0 + \mathcal{W}_c)$. On the other hand, one has $P(\partial(\omega))S_0 = -P(\partial(\omega))F|V_0$. Since $\partial(\omega)$ is a second order operator with constant coefficients, we obtain a contradiction as above.
If $A_0 \notin \mathfrak{q}$, we may assume that $\mathcal{W}_c + \mathcal{W}_s \subset \mathfrak{g}^-$. We denote by T_1 the restriction of an H-invariant distribution T to $\mathcal{W}_c + \mathcal{W}_s$ with respect to the submersion γ from $H \times \mathfrak{g}^-$ to \mathfrak{q} and we consider $T_2 = \xi^{1/2}T_1$ as distribution on $\mathcal{W}_s \times \mathcal{W}_c$. Thus, we have $S_2 \neq 0$ and $\text{supp} (S_2) = \{0\} \times \mathcal{W}_c$. Moreover, the distribution $\Theta_2 = F_2 + S_2$ satisfies $P \left((\partial(\omega_s) + \partial(\omega_t)) - \mu(Z) \right) \Theta_2 = 0$ on $\mathcal{W}_s \times \mathcal{W}_c$ by Lemma 3.1. This is equivalent to

$$P \left((\partial(\omega_s) + \partial(\omega_t)) - \mu(Z) \right) S_2 = -P \left((\partial(\omega_s) + \partial(\omega_t)) - \mu(Z) \right) F_2.$$

Since $\partial(\omega_s)$ is a second order operator with constant coefficients, we obtain a contradiction as above.

This achieves the proof of the Theorem. □

6 Application to $(\mathfrak{gl}(4, \mathbb{R}), \mathfrak{gl}(2, \mathbb{R}) \times \mathfrak{gl}(2, \mathbb{R}))$

On $G = GL(4, \mathbb{R})$ and its Lie algebra $\mathfrak{g} = \mathfrak{gl}(4, \mathbb{R})$, we consider the involution σ defined by $\sigma(X) = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} X \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}$ where I_2 is the 2×2 identity matrix. We have $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$ with

$$\mathfrak{h} = \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} ; A, B \in \mathfrak{gl}(2, \mathbb{R}) \right\} \quad \text{and} \quad \mathfrak{q} = \left\{ \begin{pmatrix} 0 & Y \\ Z & 0 \end{pmatrix} ; Y, Z \in \mathfrak{gl}(2, \mathbb{R}) \right\}.$$

By [7] Theorem 6.3, the symmetric pair $(\mathfrak{gl}(4, \mathbb{R}), \mathfrak{gl}(2, \mathbb{R}) \times \mathfrak{gl}(2, \mathbb{R}))$ is a nice pair.

We first recall some results of [3]. Let $\kappa(X, X') = \frac{1}{2} \text{tr}(XX')$. The restriction of κ to the derived algebra of \mathfrak{q} is a multiple of the Killing form. Let $S(\mathfrak{q}_C)^{HC}$ be subalgebra of $S(\mathfrak{q}_C)$ of all elements invariant under H_C. We identify $S(\mathfrak{q}_C)^{HC}$ with the algebra of H_C-invariant differential operators on \mathfrak{q}_C with constant coefficients. Using κ, we identify $S(\mathfrak{q}_C)^{HC}$ with the algebra $\mathbb{C}[\mathfrak{q}_C]^{HC}$ of H_C-invariant polynomials on \mathfrak{q}_C. A basis of $\mathbb{C}[\mathfrak{q}_C]^{HC}$ is given by $Q(X) = \frac{1}{2} \text{tr}(X^2)$ and $S(X) = \det(X)$. The Casimir polynomial is just a multiple of Q.

By [3] Lemma 1.3.1, the H-orbit of a semisimple element $X = \begin{pmatrix} 0 & Y \\ Z & 0 \end{pmatrix}$ of \mathfrak{q} is characterized by $(Q(X), S(X))$ or by the set $\{\nu_1(X), \nu_2(X)\}$ of eigenvalues of YZ, where the functions ν_1 and ν_2 are defined as follows: let Y be the Heaviside function. Let $S_0 = Q^2 - 4S$ and $\delta = t^{Y(-S_0)} \sqrt{|S_0|}$. We set

$$\nu_1 = (Q + \delta)/2 \quad \text{and} \quad \nu_2 = (Q - \delta)/2.$$

Regular elements of \mathfrak{q} are semisimple elements with 2 by 2 distinct eigenvalues or equivalently, semisimple elements X of \mathfrak{q} such that $\nu_1(X)^2 - \nu_2(X)^2 = 0$ [3 Remarque 1.3.1].

Let χ be the character of $\mathbb{C}[\mathfrak{q}_C]^{HC}$ defined by $\chi(Q) = \lambda_1 + \lambda_2$ and $\chi(S) = \lambda_1 \lambda_2$ where λ_1 and λ_2 are two complex numbers satisfying $\lambda_1 \lambda_2 (\lambda_1 - \lambda_2) \neq 0$.

For an open H-invariant subset \mathcal{V} in \mathfrak{q}, we denote by $\mathcal{D}'(\mathcal{V})^H$ the set of H-invariant distributions T with support in \mathcal{V} such that $\partial(P(T) = \chi(P))T$ for all $P \in \mathbb{C}[\mathfrak{q}_C]^{HC}$. Let \mathcal{N} be the set of nilpotent elements of \mathfrak{q} and $\mathcal{U} = \mathfrak{q} - \mathcal{N}$ its complement. In [3], we describe a basis of
the subspace of $\mathcal{D}'(\mathcal{U})^H_x$ consisting of locally integrable functions. More precisely, we obtain the following result.

We consider the Bessel operator $L_c = 4 \left(z \frac{d^2}{dz^2} + \frac{d}{dz} \right)$ on \mathbb{C} and its analogous $L = 4 \left(t \frac{d^2}{dt^2} + \frac{4}{dt} \right)$ on \mathbb{R}. Let $\text{Sol}(L_c, \lambda)$ (resp., $\text{Sol}(L, \lambda)$) be the set of holomorphic (resp., real analytic) functions f on $\mathbb{C} - \mathbb{R}$ (resp., \mathbb{R}^+) such that $L_c f = \lambda f$ (resp., $L f = \lambda f$). For $\lambda \in \mathbb{C}^*$, we set

$$\Phi_\lambda(z) = \sum_{n \geq 0} \frac{(\lambda z)^n}{4^n (n!)^2} \quad \text{and} \quad w_\lambda(z) = \sum_{n \geq 0} \frac{a(n)(\lambda z)^n}{4^n (n!)^2},$$

where $a(x) = -2\Gamma(x+1) \frac{\Gamma(x+1)}{1(x+1)}$. Then $(\Phi_\lambda, W_\lambda = w_\lambda + \log(\cdot) \Phi_\lambda)$ form a basis of $\text{Sol}(L_c, \lambda)$, where log is the principal determination of the logarithm function on $\mathbb{C} - \mathbb{R}_-$ and $(\Phi_\lambda, W_\lambda = w_\lambda + \log(\cdot) \Phi_\lambda)$ form a basis of $\text{Sol}(L, \lambda)$.

For two functions f and g defined over \mathbb{C}, we set

$$S^+(f, g)(X) = f(\nu_1(X))g(\nu_2(X)) + f(\nu_2(X))g(\nu_1(X))$$

and

$$[f, g](X) = f(\nu_1(X))g(\nu_2(X)) - f(\nu_2(X))g(\nu_1(X)).$$

We define the following functions on q^{reg}:

1.

$$F_{ana} = \frac{[\Phi_{\lambda_1}, \Phi_{\lambda_2}]}{\nu_1 - \nu_2}$$

2.

$$F_{sing} = \frac{[\Phi_{\lambda_1}, W_{\lambda_2}] + [W_{\lambda_1}, \Phi_{\lambda_2}] + \log |\nu_1 \nu_2|[\Phi_{\lambda_1}, \Phi_{\lambda_2}]}{\nu_1 - \nu_2}$$

3. For $(A, B) \in \{(\Phi_{\lambda_1}, \Phi_{\lambda_2}), (\Phi_{\lambda_1}, W_{\lambda_2}^r), (W_{\lambda_1}^r, \Phi_{\lambda_2}), (W_{\lambda_1}^r, W_{\lambda_2}^r)\}$, we set

$$F_{A,B}^+ = Y(S_0) \frac{S^+(A, B)}{|\nu_1 - \nu_2|}$$

where $S_0 = Q^2 - 4S \in \mathbb{C}[q]\mathcal{U}^H_x$ and Y is the Heaviside function.

Theorem 6.1. (33 Theorem 5.2.2 and Corollary 5.3.1).

1. The functions F_{ana} and F_{sing} are locally integrable on q.

2. For $(A, B) \in \{(\Phi_{\lambda_1}, \Phi_{\lambda_2}), (\Phi_{\lambda_1}, W_{\lambda_2}^r), (W_{\lambda_1}^r, \Phi_{\lambda_2}), (W_{\lambda_1}^r, W_{\lambda_2}^r)\}$, the functions $F_{A,B}^+$ are locally integrable on \mathcal{U}.

3. The family F_{ana}, F_{sing} and $F_{A,B}^+$, with (A, B) as above form a basis \mathcal{B} of the subspace of $\mathcal{D}'(\mathcal{U})^H_x$ consisting of distributions given by a locally integrable function.

Corollary 6.2. Any invariant distribution of $\mathcal{D}'(\mathcal{U})^H_x$ is given by a locally integrable function on \mathcal{U}. In particular, the family \mathcal{B} defined in the previous Theorem is a basis of $\mathcal{D}'(\mathcal{U})^H_x$.

12
Proof. Let \(T \in \mathcal{D}'(\mathcal{U}_\lambda^H) \). We denote by \(F \) its restriction to \(\mathcal{U}^{reg} \). By \((\mathbb{F})\) Theorem 5.3 (i), \(F \) is an analytic function on \(\mathcal{U}^{reg} \) satisfying \(\partial(P)F = \chi(P)F \) on \(\mathcal{U}^{reg} \) for all \(P \in \mathbb{C}[q]^{H^c} \).

In \((\mathbb{B})\) section 4., we describe the analytic solutions of (*) in terms of \(\Phi_\lambda, W_\lambda \) and \(W_\lambda^\ast \) for \(\lambda = \lambda_1 \) and \(\lambda_2 \). By the asymptotic behaviour of orbital integrals near non-zero semisimple elements \((\mathbb{B})\) Theorems 3.3.1 and 3.4.1, and the Weyl integration formula \((\mathbb{B})\) Lemma 3.1.2), one deduces that \(F \in L^1_{loc}(\mathcal{U}_\lambda^H) \). Theorem 5.1 gives the result. \(\square \)

Corollary 6.3. Any invariant distribution of \(\mathcal{D}'(q)^H \) is given by a locally integrable function on \(q \).

Proof. Let \(T \in \mathcal{D}'(q)^H \). By Corollary 5.2 the restriction of \(T \) to \(\mathcal{U} \) is a linear combination of elements of \(B \). By Theorem 5.1 and Theorem 6.1, it is enough to prove that the functions \(F_{\lambda,A,B}^+ \), with \((A,B) \in \{(\Phi_{\lambda_1}, \Phi_{\lambda_2}), (\Phi_{\lambda_1}, W_{\lambda_2}), (W_{\lambda_1}, \Phi_{\lambda_2}), (W_{\lambda_1}, W_{\lambda_2})\} \) are locally integrable on \(q \) or equivalently, that the integral \(\int_q |F_{\lambda,A,B}^+(X)f(X)|dX \) is finite for all positive function \(f \in \mathcal{D}(q) \).

For this, we will use the Weyl integration formula \((\mathbb{B})\) Proposition 1.8 and Theorem 1.27).

For \(\varepsilon = (\varepsilon_1, \varepsilon_2) \) with \(\varepsilon_j = \pm \), we define

\[
\alpha_\varepsilon = \left\{ X_\varepsilon(u_1, u_2) = \begin{pmatrix} 0 & u_1 & 0 \\ \varepsilon_1 u_1 & 0 & u_2 \\ 0 & \varepsilon_2 u_2 & 0 \end{pmatrix} ; (u_1, u_2) \in \mathbb{R}^2 \right\}.
\]

and

\[
\alpha_2 = \left\{ \begin{pmatrix} 0 & \tau - \theta & \tau \\ \tau & \theta & \tau \\ \tau & -\theta & \tau \end{pmatrix} ; (\theta, \tau) \in \mathbb{R}^2 \right\}
\]

By \((\mathbb{B})\), Lemma 1.2.1), the subspaces \(\alpha_{++}, \alpha_{+-}, \alpha_{-+} \) and \(\alpha_2 \) form a system of representatives of \(H \)-conjugaison classes of Cartan subspaces in \(q \). By \((\mathbb{B})\) Remark 1.3.1), an element \(X \in q \) satisfies \(S_0(X) \geq 0 \) if and only if \(X \) is \(H \)-conjugate to an element of \(\alpha_\varepsilon \) for some \(\varepsilon \). Furthermore, one has \(\{\nu_1(X_\varepsilon(u_1, u_2)), \nu_2(X_\varepsilon(u_1, u_2))\} = \{\varepsilon_1 u_1^2, \varepsilon_2 u_2^2\} \).

Let \(f \) be a positive function in \(\mathcal{D}(q) \). We define the orbital integral of \(f \) on \(q^{reg} \) by

\[
\mathcal{M}(f)(X) = |\nu_1(X) - \nu_2(X)| \int_{H/Z_H(X)} f(h.X)dX
\]

where \(Z_H(X) \) is the centralizer of \(X \) in \(H \) and \(dh \) is an invariant measure on \(H/Z_H(X) \).

By \((\mathbb{B})\) Theorem 1.23), the orbital integral \(\mathcal{M}(f) \) is a smooth function on \(q^{reg} \) and there exists a compact subset \(\Omega \) of \(q \) such that \(\mathcal{M}(f)(X) = 0 \) for all regular element \(X \) in the complement of \(\Omega \).

Since \(F_{\lambda,A,B}^+ \) is zero on \(\alpha^+_2 \), one deduces from the Weyl integration formula that there exist positive constants \(C_\varepsilon \) (only depending of the choice of measures), such that one has...
\[\int_\mathbb{H} F^+_u(X) f(X) dX = \sum_{\epsilon \in \{(\pm1,\pm1,\pm1)\}} C_\epsilon \int_\mathbb{R^2} F^+_u(X\varepsilon(u_1, u_2)) \times \mathcal{M}(f)(X\varepsilon(u_1, u_2)) u_1 u_2 (\varepsilon_1 u_1^2 - \varepsilon_2 u_2^2) |du_1 du_2. \]

By definition of \(F^+_u \), there exist positive constants \(C, C_1 \) and \(C_2 \) such that, for all \(X\varepsilon(u_1, u_2) \in \Omega^{reg} \), one has

\[|(\varepsilon_1 u_1^2 - \varepsilon_2 u_2^2) F^+_u(X\varepsilon(u_1, u_2))| \leq C(C_1 + |\log |u_1|)|(C_2 + |\log |u_2||). \]

One deduces easily the corollary from the following Lemma.

Lemma 6.4. Let \(f \in \mathcal{D}(q) \). Then there exist positive constants \(C', C'_1, C'_2 \) such that, for all \(X\varepsilon(u_1, u_2) \in q^{reg} \) one has

\[|\mathcal{M}(f)(X\varepsilon(u_1, u_2))| \leq C'(C'_1 + |\log |u_1|)|(C'_2 + |\log |u_2||). \]

Proof. Let \(H = K N A \) be the Iwasawa decomposition of \(H \) with \(K = O(2) \times O(2) \), \(N = N_0 \times N_0 \) where \(N_0 \) consists of \(2 \) by \(2 \) unipotent upper triangular matrices and \(A \) is the set of diagonal matrices in \(H \). It is easy to see that the centralizer of \(X \) in \(H \) is the set of diagonal matrices \(diag((\alpha, \beta, \alpha, \beta)) \) with \((\alpha, \beta) \in (\mathbb{R}^*)^2 \). Hence \(H/Z_H(X) \) is isomorphic to \(K \times N \times \{diag(e^x, e^y, 1, 1); x, y \in \mathbb{R}\} \).

For \(\xi \in \mathbb{R} \), we set \(n_\xi = \begin{pmatrix} 1 & \xi \\ 0 & 1 \end{pmatrix} \). We define the function \(\tilde{f} \) by \(\tilde{f}(X) = \int_K f(k \cdot X) dk \). Then, one has

\[\mathcal{M}(f)(X\varepsilon(u_1, u_2)) = |\varepsilon_1 u_1^2 - \varepsilon_2 u_2^2| \int_\mathbb{R^2} \left(\int_\mathbb{R^2} \tilde{f}(Y(u, \varepsilon, x, y, \xi, \eta)) d\xi d\eta \right) dxdy \]

with

\[Y(u, \varepsilon, x, y, \xi, \eta) = \begin{pmatrix} n_\xi & 0 \\ 0 & n_\eta \end{pmatrix} \cdot diag(e^x, e^y, 1, 1) \cdot X\varepsilon,u. \]

Writing \(Y(u, \varepsilon, x, y, \xi, \eta) = \begin{pmatrix} 0 & Y \\ Z & 0 \end{pmatrix} \), one has

\[Y = \begin{pmatrix} u_1 e^x & -\eta u_1 e^x + e^y \xi u_2 \\ 0 & u_2 e^y \end{pmatrix} \quad \text{and} \quad Z = \begin{pmatrix} \varepsilon_1 u_1 e^{-x} & -\xi \varepsilon_1 u_1 e^{-x} + \eta \varepsilon_2 u_2 e^{-y} \\ 0 & \varepsilon_2 u_2 e^{-y} \end{pmatrix}. \]

Since \(f \in \mathcal{D}(q) \), the function \(\tilde{f} \) has compact support in \(q \). Identify \(q \) with \(\mathbb{R}^8 \), there exists \(T > 0 \) such that supp(\(\tilde{f} \)) \(\subset [-T, T]^8 \). If \(\tilde{f}(Y(u, \varepsilon, x, y, \xi, \eta)) \neq 0 \) then we have the following inequalities:

1. \(|u_1 e^{\pm x}| \leq T \) and \(|u_2 e^{\pm y}| \leq T \),
2. \(| -\eta u_1 e^x + e^y \xi u_2| \leq T \),
3. \(| -\xi \varepsilon_1 u_1 e^{-x} + \eta \varepsilon_2 u_2 e^{-y}| \leq T \).
Changing the variables (ξ, η) in $(r, s) = (\xi u_2 e^y - \eta u_1 e^x, -\xi \xi_1 u_2 e^{-x} + \eta \xi_2 u_2 e^{-y})$, we obtain the result.

Remark. By (3) Corollary 5.3.1, the function F_{ana} defines an invariant eigendistribution on \mathfrak{q}. At this stage, we don’t know if it is the case for the functions F_{sing} and $F^{+}_{A,B}$. Indeed, the proof of Theorem 6.1 of (3) is based on integration by parts using estimates of orbital integrals and some of their derivatives near non-zero semisimple elements of \mathfrak{q}. To determine if F_{sing} and $F^{+}_{A,B}$ are eigendistributions using the same method, we have to know the behavior of derivatives of orbital integrals near 0.

References

[1] M. Atiyah, *Characters of semi-simple Lie groups*, (lecture given in Oxford), Mathematical Institute, Oxford, (1976).

[2] E. Galina, Y. Laurent, *D-modules and characters of semisimple Lie groups*, Duke Math. J. Volume 123, Number 2 (2004), 265-309.

[3] P. Harinck et N. Jacquet, *Distributions propres invariantes sur la paire symétrique $(\mathfrak{g}l(4, \mathbb{R}), \mathfrak{g}l(2, \mathbb{R}) \times \mathfrak{g}l(2, \mathbb{R}))$*, Journal of Funct. Anal. 261 (2011), 2362–2436.

[4] Harish-Chandra, *Invariant distributions on Lie Algebras*, Am. J. Math. 86, (1964), 271–309.

[5] J. Orloff, *Orbital integrals on symmetric spaces*, Noncommutative harmonic analysis and Lie groups” (Marseille-Luminy, 1985), Lecture Notes in Math., Vol 1243, Springer, Berlin, 1987, p. 198-239.

[6] L. Schwartz, *Thorie des distributions*, Hermann, (1950).

[7] J. Sekiguchi, *Invariant spherical hyperfunctions on the tangent space of a symmetric space*, Algebraic groups and related topics, Advanced Studies in Pure Mathematics, vol. 6, (1985), 83–126.

[8] G. Van Dijk, *Invariant eigendistributions on the tangent space of a rank one semisimple symmetric space I*, Math. Ann., Vol. 268, (1984), p. 405–416.

[9] G. Van Dijk, *Orbits on real affine symmetric spaces*, I. Proc. Kon. Ned. Ak. Wet. A86, (1983) 51-66.

[10] V. S. Varadarajan, *Harmonic Analysis on Real Reductive Groups*, Lecture Notes in Mathematics, Vol 576, Springer-Verlag, Berlin/Heidelberg/New York, 1977.