Microsatellite Markers for the New Zealand Endemic Myosotis pygmaea Species Group (Boraginaceae) Amplify Across Species

Authors: Jessica M. Prebble, Jennifer A. Tate, Heidi M. Meudt, and V. Vaughan Symonds
Source: Applications in Plant Sciences, 3(6)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1500027
Microsatellite markers for the New Zealand endemic
Myosotis pygmaea species group (Boraginaceae) amplify
across species

Jessica M. Prebble1,2,3,4, Jennifer A. Tate2, Heidi M. Meudt3, and V. Vaughan Symonds2

1Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; and 2Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Cable Street, Wellington 6140, New Zealand

• Premise of the study: Microsatellite loci were developed as polymorphic markers for the New Zealand endemic Myosotis pygmaea species group (Boraginaceae) for use in species delimitation and population and conservation genetic studies.

• Methods and Results: Illumina MiSeq sequencing was performed on genomic DNA from seedlings of M. drucei. From trimmed paired-end sequences >400 bp, 484 microsatellite loci were identified. Twelve of 48 microsatellite loci tested were found to be polymorphic and consistently scorable when screened on 53 individuals from four populations representing the geographic range of M. drucei. They also amplify in all other species in the Myosotis species group, i.e., M. antarctica, M. brevis, M. glauca, and M. pygmaea, as well as 18 other Myosotis species.

• Conclusions: These 12 polymorphic microsatellite markers establish an important resource for research and conservation of the Myosotis species group and potentially other Southern Hemisphere Myosotis.

Key words: Boraginaceae; forget-me-nots; microsatellites; Myosotis; New Zealand; threatened species.

Forget-me-nots (Myosotis L., Boraginaceae) are found in both the Northern and Southern Hemispheres, with a center of diversity in New Zealand. The Myosotis pygmaea species group (Meudt et al., 2015) comprises M. antarctica Hook. f., M. brevis de Lange & Barkla, M. drucei (L. B. Moore) de Lange & Barkla, M. glauca (G. Simpson & J. S. Thomson) de Lange & Barkla, and M. pygmaea Colenso, all native to New Zealand. Questions persist regarding the delimitation of these morphologically similar species (de Lange et al., 2010), four of which appear on the New Zealand threatened species list (de Lange et al., 2013). Indeed, of the 44 endemic New Zealand Myosotis taxa, 32 are considered threatened or at risk (de Lange et al., 2013). A priority in the conservation management of members of this genus is to both accurately delimit species and understand the levels and structure of genetic diversity present. Low genetic diversity in New Zealand Myosotis, as evidenced by previous studies (Meudt et al., 2013, 2015), suggests that additional molecular markers are needed.

Here we report the development of 12 polymorphic microsatellite markers for the Myosotis pygmaea species group, which will be used in future studies of species delimitation and population genetic research. Additionally, we evaluate the utility of these loci in 18 other Myosotis species.

METHODS AND RESULTS

Sibling individuals were selected from the type locality of M. drucei as the source DNA for marker development (WELT SP100445; Appendix 1). Genomic DNA was extracted from fresh young leaf tissue from 15 seedlings using a modified cetyltrimethylammonium bromide (CTAB) method (Shepherd and McPhee, 2011). To generate sufficient template for the requirements of Illumina MiSeq, library preparation was performed using a REPLI-g kit (QIAGEN, Hilden, Germany) following the manufacturer’s protocol. DNA was quantified using a Qubit 2.0 Fluorometer (Thermo-Fisher Scientific, Waltham, Massachusetts, USA), and a genomic library was prepared using the TruSeq Library Preparation Kit (Illumina, San Diego, California, USA) by the Massey Genome Service (Massey University, Palmerston North, New Zealand). The indexed library was pooled with three other libraries to be sequenced in equal concentration and sequenced using the paired-end 250-bp chemistry on a MiSeq (Illumina) in the Massey Genome Service. The resulting 2.7 million sequences were trimmed to low-quality results using a 0.01 quality cut-off in DynamicTrim in SolexaQA (Cox et al., 2010), which yielded 1,449,369 trimmed paired-end sequences with an average length of 380 bp, ranging in size from 11–492 bp. Paired-end sequences were joined using the program FLASH (Magoc and Salzberg, 2011).

The paired-end sequences were then imported into Geneious 6.1.5 (Biomatters, Auckland, New Zealand), where only sequences >400 bp were retained. Organellar sequences were removed by performing a local BLAST search of the M. drucei sequences against the phylogenetically closest relatives (Solis et al., 2011) with the most complete mitochondrial and chloroplast sequences from GenBank. The chloroplast genomes used were: Nicotiana undulata Ruiz & Pav. NC_016066 (Solanaeaceae), Olea europaea L. subsp. maroccana (Greuter & Burdet) P. Vargas, J. Hess, Muñoz Garn & Kadereit NC_015623 (Oleaceae), Coffea arabica L. NC_008535 (Rubiaeaceae), and Arabidopsis thaliana (L.) Heynh. NC_000932 (Brassicaceae). The mitochondrial genomes used were: N. tabacum L. NC_006581, A. thaliana NC_001284, and Vigna radiata (L.) R. Wilczek NC_015121 (Fabaceae). The remaining 397,224 sequences were split into four groups (due to computer memory constraints), and the first group of 99,999 sequences was searched for perfectly di- to hexanucleotide microsatellite sequences against the phylogenetically closest relatives (Solis et al., 2011) with the most complete mitochondrial and chloroplast sequences from GenBank. The chloroplast genomes used were: Nicotiana undulata Ruiz & Pav. NC_016066 (Solanaeaceae), Olea europaea L. subsp. maroccana (Greuter & Burdet) P. Vargas, J. Hess, Muñoz Garn & Kadereit NC_015623 (Oleaceae), Coffea arabica L. NC_008535 (Rubiaeaceae), and Arabidopsis thaliana (L.) Heynh. NC_000932 (Brassicaceae). The mitochondrial genomes used were: N. tabacum L. NC_006581, A. thaliana NC_001284, and Vigna radiata (L.) R. Wilczek NC_015121 (Fabaceae). The remaining 397,224 sequences were split into four groups (due to computer memory constraints), and the first group of 99,999 sequences was searched for perfectly di- to hexanucleotide microsatellite sequences against the phylogenetically closest relatives (Solis et al., 2011) with the most complete mitochondrial and chloroplast sequences from GenBank. The chloroplast genomes used were: Nicotiana undulata Ruiz & Pav. NC_016066 (Solanaeaceae), Olea europaea L. subsp. maroccana (Greuter & Burdet) P. Vargas, J. Hess, Muñoz Garn & Kadereit NC_015623 (Oleaceae), Coffea arabica L. NC_008535 (Rubiaeaceae), and Arabidopsis thaliana (L.) Heynh. NC_000932 (Brassicaceae). The mitochondrial genomes used were: N. tabacum L. NC_006581, A. thaliana NC_001284, and Vigna radiata (L.) R. Wilczek NC_015121 (Fabaceae). The remaining 397,224 sequences were split into four groups (due to computer memory constraints), and the first group of 99,999 sequences was searched for perfectly di- to hexanucleotide microsatellite
TABLE 1. Primer sequences and characteristics of 12 microsatellite loci developed in *Myosotis drucei*.

Locus	Primer sequences (5′–3′)	Fluorescent dye (pooling group)	Repeat motif	Allele size range (bp)*	T_m (°C)	GenBank accession no.
MYPY-4	F: TATGTCGTGACACCACACAC	NED (2)	(TGT)₄	248–255	53	KP861356
	R: AGTCTTATTTGGCCCTCT					
MYPY-10	F: GGCAGATGCACTGATGAC	VIC (1)	(GAT)₁₀	312–345	53	KP861353
	R: TACCTGATGCTGACATCAC		(GAC)₉	211–217	53	KP861350
MYPY-14	F: AAGAACATTTGGCACACCAC	VIC (2)	(GAA)₄	203–215	53	KP861356
	R: TTAATACATGCACTGCG					
MYPY-17	F: CTCCTCTATAATGTGCGG	VIC (3)	(ATA)₁₂	273–311	53	KP861357
	R: GGATTACCTTGGGACAGTG					
MYPY-20	F: GTGGAGGAGAGCTCCTGCG	FAM (4)	(AT)₁₄	328–361	53	KP861359
	R: GTACCCGACATTAACAGG					
MYPY-26	F: ACTTGGAGAAGATTGTTGGCC	NED (3)	(TC)₇	374–477	53	KP861355
	R: AACGCCGCAAATTTCAACAC					
MYPY-28	F: TGACCTGCAACTATGAGAGAG	VIC (4)	(TA)₁₆	341–357	53	KP861352
	R: GCCTGTGTTATGACCCCC					
MYPY-29	F: GTTTCACTGATAATGGTGGGC	FAM (2)	(AC)₁₈	334–341	53	KP861351
	R: CACAGGAGGATCACTGACGGC					
MYPY-36	F: GTTGCCCTGRGCTGGAC	NED (4)	(GAT)₁₀	259–296	53	KP861360
	R: CACCATCTTTCCTCCACCC					
MYPY-40	F: CTGCTCATTATTCTCTGCGG	FAM (1)	(AG)₁₂	261	53	KP861358
	R: CACGACATTGCTGTTAACAC					
MYPY-41	F: CTCCTCTGAGCAGTTTCCTAC	NED (1)	(TG)₁₄	269–271	53	KP861354
	R: TTTGAGATATGTGGGAGGCG					
MYPY-48	F: ATTTGGAGATATGTGGGAGGCG	FAM (3)	(GATGAA)₁₀	251–275	53	KP861349
	R: AAGAAGAACATTTCAACGACAGG					

*Note: Fragment size range based on 53 *Myosotis drucei* samples from four populations: WELT SP091599, WELT SP100445, WELT SP100440, and WELT SP100428; voucher information in Appendix 1.*

TABLE 2. Summary statistics of microsatellite polymorphism determined by screening 53 *Myosotis drucei* samples from four populations; three from the South Island and one from the North Island of New Zealand.*

Locus	South Island	North Island											
	Coronet Peak (N = 13)	Tapuae-o-Uenuku (N = 14)	Mt. Altimarlock (N = 11)	Ruahine Ranges (N = 15)	Total (N = 53)								
	A	H_e	H_r										
MYPY-4	2	0.077	0.204	2	0.000	0.375	1	0.000	0.000	1	0.000	0.000	2
MYPY-10	3	0.000	0.462	3	0.000	0.500	2	0.091	0.351	1	0.000	0.000	7
MYPY-14	1	0.000	0.000	2	0.000	0.408	1	0.000	0.000	2	0.000	0.391	3
MYPY-17	2	0.077	0.074	3	0.000	0.000	1	0.000	0.000	1	0.000	0.000	4
MYPY-20	2	0.000	0.153	2	0.000	0.408	3	0.100	0.515	1	0.000	0.000	4
MYPY-26	2	0.000	0.142	2	0.000	0.408	1	0.000	0.000	3	0.000	0.561	5
MYPY-28	2	0.000	0.500	2	0.000	0.355	2	0.091	0.087	1	0.000	0.000	4
MYPY-29	2	0.000	0.165	3	0.667	0.667	2	1.000	0.500	2	0.600	0.420	4
MYPY-36	3	0.077	0.210	2	0.000	0.408	1	0.000	0.000	1	0.000	0.000	4
MYPY-40	2	0.000	0.165	1	0.000	0.000	1	0.000	0.000	1	0.000	0.000	2
MYPY-41	1	0.000	0.000	2	0.000	0.142	1	0.000	0.000	1	0.000	0.000	2
MYPY-48	2	0.000	0.473	2	0.000	0.408	1	0.000	0.000	2	0.000	0.337	4

Note: A = number of alleles; A_T = total number of alleles; H_e = expected heterozygosity; H_r = observed heterozygosity; N = sample size for each population.

South Island: Coronet Peak = WELT SP091599, Tapuae-o-Uenuku = WELT SP100440, Mt. Altimarlock = WELT SP100442; North Island: Ruahine Ranges = WELT SP100445. See Appendix 1 for voucher information.

http://www.bioone.org/loi/apps

2 of 5
Table 3. Cross-amplification of 12 novel microsatellite loci in 22 *Myosotis* species.

Species name	Voucher no.	N Location	MYPY-4	MYPY-10	MYPY-14	MYPY-17	MYPY-20	MYPY-26	MYPY-28	MYPY-29	MYPY-36	MYPY-40	MYPY-41	MYPY-48	
Myosotis pygmaea															
M. arnoldii	SP100473	3 NZ	6	8	5	6	1	2	+	2	3	2	3	—	4
M. cheesemani	SP092210	1 NZ	+	+	+	+	+	+	+	+	+	+	—	—	
M. colensoi	SP092419	1 NZ	+	—	—	+	+	+	+	—	—	—	—	—	
M. forsteri	SP089691	1 NZ	2	1	2	2	—	2	—	2	3	1	1	1	
M. glabrescens	SP089801	1 NZ	+	+	2	+	—	—	—	+	+	+	—	—	
M. macrantha	SP100468	3 NZ	3	7	4	4	2	1	2	3	4	2	3	3	
M. pansa	SP089670	2 NZ	2	1	2	2	—	—	1	1	—	1	—	—	
M. petiolata	SP089853	3 NZ	2	1	2	2	—	—	—	1	1	1	1	1	
M. potosiana	SP089687	2 NZ	1	2	1	2	—	1	1	1	—	2	1	—	
M. pulvinaris	SP092196	1 NZ	—	2	+	+	+	—	2	+	+	+	+	—	
M. small white	SP090247	1 NZ	2	2	1	1	2	—	1	—	2	3	1	1	
M. tenericuluis	SP090251	1 NZ	—	2	—	+	+	+	—	2	—	—	—	—	
M. tenericulis	SP092404	1 NZ	2	—	+	+	—	+	—	+	+	+	+	—	

Note: N = number of individuals trialed from each population.

a Number of amplified alleles are indicated, + = amplified with unknown levels of polymorphism as only one allele in one individual amplified, — = no amplification.

b See Appendix 1 for voucher information.

c Aust = Australian native; CI = Campbell Island native; Euro = European native growing in New Zealand; NZ = New Zealand endemic.
subsequent fragment separation on an ABI 3730 Genetic Analyzer (Applied Biosystems) by the Massey Genome Service.

Alleles were visualized and scored using GeneMapper version 3.7 (Applied Biosystems). Of the 48 primer pairs tested, 25 were polymorphic, two were monomorphic, seven were unscorable, and 14 did not amplify. Twenty-four of the polymorphic loci were further tested using the above PCR conditions on 15 individuals from five Myosotis species. The 12 markers (Table 1) with the best amplification rates were selected for further investigation using four populations of M. drucei to demonstrate the utility of the markers in a population genetic framework. For these four populations, Table 2 shows the number of alleles, and observed (H_o) and expected (H_e) heterozygosities, which were determined using GenAlEx (Peakall and Smouse, 2012). The average number of observed alleles per locus was 3.75, and average H_o was 0.059 (Table 2). H_e was typically lower than H_o, which matches the hypothesized mostly selfing nature of the M. pygmaea species group (Robertson and Lloyd, 1991; Brandon, 2001). The 12 markers amplified well across the other four species (one population each) in the M. pygmaea group (voucher information in Appendix 1) and were also trialed in an additional 18 species of Myosotis, 14 endemic to New Zealand, one from Australia, and three introduced to New Zealand from Europe. Amplification rates and polymorphism are reported in Table 3.

CONCLUSIONS

We describe 12 polymorphic microsatellite loci that will be useful for exploring species limits within the M. pygmaea species group, as well as determining the population genetic variation within and among other species of Southern Hemisphere Myosotis.

LITERATURE CITED

Brandon, A. M. 2001. Breeding systems and rarity in New Zealand Myosotis. Ph.D. Thesis, Massey University, Palmerston North, New Zealand.

Brownstein, M. J., J. D. Carpten, and J. R. Smith. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. *BioTechniques* 20: 1004–1010.

Cox, M. P., D. A. Peterson, and P. J. Biggs. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. *BMC Bioinformatics* 11: 485.

De Lange, P. J., P. B. Heenan, D. A. Norton, J. R. Rolfe, and J. Sawyer. 2010. Threatened plants of New Zealand. Canterbury University Press, Christchurch, New Zealand.

De Lange, P. J., J. R. Rolfe, P. D. Champion, S. P. Courtney, P. B. Heenan, I. W. Barkel, E. K. Cameron, et al. 2013. Conservation status of New Zealand indigenous vascular plants. 2012. New Zealand Department of Conservation, Wellington, New Zealand.

Magoc, T., and S. Salzberg. 2011. FLASH: Fast length adjustment of short reads to improve genome assembly. *Bioinformatics* 27: 2957–2963.

Mayer, C. 2010. Phobos Version 3.3.11. http://www.ruhr-uni-bochum.de/spezzoo/cm/cm_phobos.htm [accessed 21 May 2015].

Meudt, H. M., J. M. Prebble, R. J. Stanley, and M. J. Thorsen. 2013. Morphological and amplified fragment length polymorphism (AFLP) data show that New Zealand endemic Myosotis petiolata (Boraginaceae) comprises three rare and threatened species. *Australian Systematic Botany* 26: 210–232.

Meudt, H. M., J. M. Prebble, and C. A. Lehnerbach. 2015. Native New Zealand forget-me-nots (Myosotis, Boraginaceae) comprise a Pleistocene species radiation with very low genetic divergence. *Plant Systematics and Evolution* 301: 1455–1471. 10.1007/s00606-014-1166-x.

Peakall, R., and P. E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. *Bioinformatics* 28: 2537–2539.

Robertson, A. W., and D. G. Lloyd. 1991. Herkogamy, dichogamy and self-pollination in six species of Myosotis (Boraginaceae). *Evolutionary Trends in Plants* 5: 53–63.

Shepherd, L. D., and T. G. B. McIay. 2011. Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. *Journal of Plant Research* 124: 311–314.

Solitis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdaek, D. C. Tank, S. F. Brockington, N. F. Repullo-Rodriguez, et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. *American Journal of Botany* 98: 704–730.

Symonds, V. V., and A. M. Lloyd. 2004. A simple and inexpensive method for producing fluorescently labeled size standard. *Molecular Ecology Notes* 4: 768–771.

Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3—New capabilities and interfaces. *Nucleic Acids Research* 40: e115.
APPENDIX 1. Voucher and location information for all *Myosotis* populations used in this study.

Species	Location	Voucher no.
Myosotis pygmaea species group		
Myosotis antarctica Hook. f.	New Zealand, Campbell Island, cliffs near Menhir	WELT SP102775
Myosotis brevis de Lange & Barkla	New Zealand, Coastal Taranaki, Puakapu Rd. end*	WELT SP090361
Myosotis brevis de Lange & Barkla	New Zealand, Coastal Taranaki, Stent Rd.	WELT SP090543
Myosotis drucei (L. B. Moore) de Lange & Barkla	New Zealand, North Island, Ruahine Ranges, near Mt. Maungamahue*	WELT SP100445
Myosotis drucei (L. B. Moore) de Lange & Barkla	New Zealand, South Island, Marlborough, Tapuae-o-Uenuku	WELT SP100440
Myosotis drucei (L. B. Moore) de Lange & Barkla	New Zealand, South Island, Central Otago, Coronet Peak	WELT SP091599
Myosotis drucei (L. B. Moore) de Lange & Barkla	New Zealand, South Island, Marlborough, Mt. Altimarlock*	WELT SP100428
Myosotis glauca (G. Simpson & J. S. Thomson)	New Zealand, South Island, Central Otago, Nevis Valley*	WELT SP093284
Myosotis pygmaea Colenso	New Zealand, North Island, Coastal Taranaki, Opunake treatment ponds	WELT SP090540
Myosotis pygmaea Colenso	New Zealand, North Island, Northwest Nelson, near Sandhill Creek river mouth*	WELT SP100460

Other New Zealand *Myosotis*

Species	Location	Voucher no.
Myosotis arnoldii L. B. Moore	New Zealand, South Island, Marlborough, Mt. Benmore	WELT SP100439
Myosotis arnoldii L. B. Moore	New Zealand, South Island, Northwest Nelson, Hoary Head	WELT SP100473
Myosotis cheesemani Petrie	New Zealand, South Island, Central Otago, Pisa Range	WELT SP092210
Myosotis colensoi (Kirk) J. F. Machr.	New Zealand, cultivated (Origin: South Island, Canterbury, Castle Hill)	WELT SP092419
Myosotis forsteri Lehmn.	New Zealand, North Island, Kaweka Ranges	WELT SP089828
Myosotis forsteri Lehmn.	New Zealand, North Island, Raukumara, Waioeka Conservation Area	WELT SP089691
Myosotis forsteri Lehmn.	New Zealand, South Island, Northwest Nelson, Kahurangi National Park	WELT SP092179
Myosotis glabrescens L. B. Moore	New Zealand, South Island, Central Otago, Hector Mountains	WELT SP089801
Myosotis macrantha (Hook. f.) Benth. & Hook. f.	New Zealand, South Island, Central Otago, Queenstown, Moke Creek	WELT SP100494
Myosotis pansa (L. B. Moore) Meudt, Prebble, R. J. Stanley & Thorsen subsp. *pansa*	New Zealand, North Island, Auckland Region, Anawhata stream	WELT SP089670
Myosotis pansa (L. B. Moore) Meudt, Prebble, R. J. Stanley & Thorsen subsp. *pansa*	New Zealand, North Island, Auckland Region, Parahaka Valley	WELT SP089674
Myosotis pansa subsp. *praeceps* Meudt, Prebble, R. J. Stanley & Thorsen	New Zealand, North Island, Taranaki, Paraninhi/White Cliffs	WELT SP089686
Myosotis pansa subsp. *praeceps* Meudt, Prebble, R. J. Stanley & Thorsen	New Zealand, North Island, Waikato, Ngarupupu Point	WELT SP089685
Myosotis petiolata Hook. f.	New Zealand, North Island, Hawkes Bay, Te Waka Range	WELT SP089853
Myosotis pottsiana (L. B. Moore) Meudt, Prebble, R. J. Stanley & Thorsen	New Zealand, North Island, Bay of Plenty, Ohiu Stream	WELT SP089689
Myosotis pottsiana (L. B. Moore) Meudt, Prebble, R. J. Stanley & Thorsen	New Zealand, North Island, Bay of Plenty, Waikokopu Stream	WELT SP089687
Myosotis pulvinaris Hook. f.	New Zealand, South Island, Central Otago, Pisa Range	WELT SP092196
Myosotis “small white”	New Zealand, South Island, Northwest Nelson, Kahurangi National Park	WELT SP090251
Myosotis spathulata G. Forst.	New Zealand, North Island, Hawkes Bay	WELT SP090628
Myosotis spathulata var. radicata L. B. Moore	New Zealand, cultivated, origin Kaweka Ranges, North Island	WELT SP092757
Myosotis tenericaulis Petrie	New Zealand, South Island, Northwest Nelson, Kahurangi National Park	WELT SP092404
Myosotis uniforma Hook. f. aff.	New Zealand, South Island, Central Otago, Pisa Flats	WELT SP089883

Other *Myosotis*

Species	Location	Voucher no.
Myosotis arvensis (L.) Hill	New Zealand, North Island, Wellington, Karori	WELT SP094173
Myosotis australis R. Br.	Australia, New South Wales, Barrington Tops National Park	MPN 44757
Myosotis discolor Pers.	New Zealand, South Island, Central Otago, Ranfurly Holiday Park	WELT SP089930
Myosotis laxa Lehmn.	New Zealand, South Island, Canterbury, Arthurs Pass	WELT SP090206

a A written description of the population location is included rather than GPS locations due to the threatened status of these species. An * indicates the five populations on which the markers were initially trialed.

b One voucher was collected for each population used; all vouchers are deposited in the herbaria of the Museum of New Zealand Te Papa Tongarewa (WELT) or Massey University (MPN).