Successful long-term maintenance of *Mansonella perstans* in an in vitro culture system

Abdel Jelil Njouendou, Manuel Ritter, Winston Patrick Chounna Ndongo, Chi Anizette Kien, Gandjui Tchamatchoua Victor Narcisse, Fanny Fri Fombad, Dizzle Bita Tayong, Kenneth Pfarr, Laura E. Layland, Achim Hoerauf and Samuel Wanji

Abstract

Background: Approximately 114 million people are infected with *Mansonella perstans* in large proportions of Africa. In contrast to other filariae that infect humans, *M. perstans*-infected individuals show no distinct pathology or specific clinical picture, indicating a well-tuned adaptation to the host. In addition, since *M. perstans* adult worms reside in serous cavities which are difficult to access, research has been hindered and there is a paucity of knowledge about the biology of *M. perstans*, especially the development of the different life stages as well as *M. perstans*-driven immune responses. Thus in this study, an in vitro culture system was developed which allows an in-depth analysis of *M. perstans*.

Results: *Culicoides* species were caught in Ediki (Kumba), Southwest Region within Cameroon following a blood meal on a microfilaremic donor that had 1500 microfilariae/ml of peripheral blood and kept in captivity for 12 days at 23 °C. In a pilot experiment, 15 infective larvae were obtained from the midges and co-cultured with a confluent monolayer of monkey kidney epithelial cells (LLC-MK2) in DMEM medium supplemented with 10% FBS for up to 77 days. The resulting survival rates of 33% revealed that the cell-conditioned medium was suitable for long-term maintenance of *M. perstans* worms. To confirm these preliminary observations, 249 infective larvae were cultured for 50 days and their development was monitored daily and microscopically graded for motility. In total, 170 (68.3%) filariae survived and 124 (49.8%) larvae moulted between days 21–30 to become L5 stage larvae which were motile and showed continuous vigorous movement.

Conclusion: We have established an in vitro culture system for the generation and long-term maintenance of viable *M. perstans* worms. This technique will be an important tool to study parasite biology and development, the role in host immunity, and might be helpful to discover novel treatment strategies against this filariae.

Keywords: *Mansonella perstans*, In vitro culture, Worms, L3 infective larvae, Long-term maintenance
Although *M. perstans* Mf circulate during day and night in the peripheral blood [4], weak diurnal periodicity with a maximum Mf intensity during the first 12 h of the day has been observed [5]. In summary, many facets of *M. perstans* infection such as the development of life stages and transmission are still unclear. Thus being able to culture *M. perstans* in vitro would provide an essential tool in unravelling many of the open questions about this filarial nematode.

Several studies have reported in vitro cultures of *Wuchereria bancrofti* [6–8], *Onchocerca* [9–12] and *Brugia* species [13–15] that have also been used to test potential anti-filarial treatment strategies [11, 16, 17]. In this study, we have established an in vitro culture system to generate *M. perstans* worms from infective larvae. Overall, 249 infective larvae, obtained from 16 different collection batches of Culicoides, were co-cultured with monkey kidney epithelial cells (LLC-MK2) in DMEM medium supplemented with 10% FBS. High larvae survival rates of 68.3% revealed that the applied co-culture system was suitable for long-term maintenance of *M. perstans* for up to 50 days. Moreover, 49.8% of the larvae (n = 124) moulted between days 21–30 of culturing to become L5 stage larvae which were vigorously motile.

Methods

Isolation of infective *M. perstans* larvae

Mansonella perstans infective larvae (L3) were obtained from Culicoides midges following a blood meal on a consenting donor from Ediki village (Kumba health district) that had a peripheral microfilariae (Mf) load of 1500 Mf/mL. After 15–20 min, midges were collected via aspiration into a net in darkness. Midge heads were then aspirated using bright torch light into tubes. This process was repeated several times between 6 pm and 6 am. Engorged midges were kept in 50 ml tubes filled one-fourth with plaster of Paris which formed a cement layer and helped to retain moisture for 12 days at 23 °C, the time required for the development of L3 from Mf in the vector. Midge heads were fed daily with cotton gauze soaked in autoclaved 15% sucrose solution suspended over the rim of moist paper. At intervals of 24 h, a drop of distilled water was added to the plaster of Paris to keep the gauze moist. After 12 days, L3 were isolated in dissecting medium containing RPMI-1640 medium (Sigma-Aldrich, Munich, Germany) supplemented with a 2% antibiotic cocktail (penicillin-streptomycin-neomycin; Thermo Fisher Scientific, Schwerte, Germany) using a dissecting microscope (Motic, Wetzlar, Germany). The head, the thorax and the abdomen were separately placed in three different dissecting wells containing the same dissecting medium. Infective larvae were allowed to migrate out of the various parts, especially the proboscis. The infective larvae were collected in sterile manner and parasites were washed 4 times with sterile dissecting medium and used to culture *M. perstans* worms in vitro.

In vitro culturing of *M. perstans* worms

In 48-well flat bottomed plates (Greiner Bio-One GmbH, Frickenhausen, Germany), 1 ml of Dulbecco’s Modified Eagle Medium (DMEM; Thermo Fisher Scientific, Schwerte, Germany) supplemented with 10% foetal bovine serum (FBS; Lonza, Verviers, Belgium), 5 μg/ml ciprofloxacin hydrochloride and 10 μg/ml fluconazole or 1% penicillin-streptomycin-neomycin (PSN) (Sigma-Aldrich) was used for the in vitro culture of *M. perstans*. Ten L3 were cultured in a 48-well plate (Thermo Fisher Scientific) containing a confluent monolayer of monkey kidney epithelial cells (LLC-MK2; LGC Standard GmbH, Wesel, Germany) which were cultivated 2 days before the addition of L3. Four to ten infective larvae (average of 6–7 larvae/well) were cultured for at least 50 days at 37 °C and 5% CO₂ and were monitored daily using a Motic AE21 inverted microscope (Motic, Wetzlar, Germany). Additionally, growth of the worms was recorded using a digital camera (Fiber Tech PC & Mobile, Putsbocht, Netherlands). Helminth viability was assessed on a daily basis via microscopy using a 4 point score sheet: 0, no movement; 1, intermittent shaking of head and tail; 2, sluggishness (movement of whole worm on one spot); and 3, vigorous movement. Mortality was defined as the percentage of dead worms in each well. An immotile worm was declared dead after observing its immobility for 5 min. Moulting and motility were scored for individual worms by two experienced trained parasitologists and results were analysed as an aggregate. The culture medium was replenished at 5 day intervals or as soon as observable colour changes were seen in the wells.

Data processing and analysis

Data were collected daily on record sheets and entered into a template designed on Microsoft Office Excel 2007 (Microsoft, Redmond, USA). Graphs were created using PRISM 5 for Windows (GraphPad Software, Inc., La Jolla, USA).

Results

Establishment of a cell-conditioned in vitro culture system for the maintenance of *M. perstans* worms

Due to the inaccessibility of adult *M. perstans* worms, investigations into the developmental stages and metamorphosis of infective larvae into adult worms have not been possible until now. Therefore, we developed an in vitro culture to generate viable *M. perstans* worms from infective larvae (L3). Several studies previously described that cell-conditioned media, especially cocultures with monkey kidney epithelial cells and inactivated FBS, were critical components for the maintenance of...
filariae in vitro [8–13]. Based on those studies, we established cultures of monkey-kidney epithelial cells in DMEM medium supplemented with 10% foetal bovine serum and successfully cultured Loa loa in vitro (unpublished findings). Based on these observations, we hypothesised that this culturing method could also be suitable for the development and growth of M. perstans infective larvae. Indeed, long-term maintenance of infective M. perstans larvae was observed under these culture conditions, with 40% (n = 6) worm survival after 31 days and 33% (n = 5) surviving for up to 77 days in the in vitro culture (Fig. 1).

Development of viable M. perstans worms from infective larvae (L3) in vitro

Since we were able to maintain worms in co-culture with LLC-MK2 cells, we used the co-culture to analyse the metamorphosis and motility of L3 in more detail. Thus, 249 infective larvae were extracted from 16 Culicoides batches following a blood meal on an M. perstans infected mouse. Indeed, long-term maintenance of infective M. perstans larvae was observed under these culture conditions with 40% (n = 6) worm survival after 31 days and 33% (n = 5) surviving for up to 77 days in the in vitro culture (Fig. 1).

With sluggish movement (score 2) decreased. Interestingly, 60.2% (n = 150) of the larvae moulted and became L5 stage larvae between days 21–30 (n = 127, Fig. 2b), which corresponded to the increase in viability observed through score 3. Furthermore, videos recorded on day 20 (Additional file 1), 30 (Additional file 2), 40 (Additional file 3) and 50 (Additional file 4) show the development and growth of M. perstans worms over the time of in vitro culture. To get an impression of the worm size, we randomly obtained five worms from the in vitro culture and measured the length. Interestingly, the worms had lengths of 40–60 mm (mean = 48.4 mm, median = 47 mm; SD = 8.2 mm) after 50 days of in vitro culture.

Discussion

The silent nature of M. perstans with regards to clinical symptoms and pathology development has resulted in a shortfall on studies on the biology, transmission and host evasion tactics of this nematode. Interestingly M. perstans is, however, considered one of the most prevalent human diseases in tropical areas with approximately 114 million infected people [1, 2, 18]. Most of the knowledge about M. perstans infection has been obtained as a by-product of studies with other filarial or parasitic infections [19–22] that were considered to be more important for public health. However, M. perstans-induced symptoms such as subcutaneous swellings, abdominal pain, skin rashes, pericarditis and pleuritis [1, 2] have been reported. Moreover, initial studies have shown that M. perstans infection may influence the efficacy of Bacillus Calmette-Guérin (BCG) vaccination against tuberculosis as well as the susceptibility and disease course of HIV, tuberculosis and malaria [23–26]. Those studies increased the focus on M. perstans research but, until now, investigations have been hindered by the inaccessibility of M. perstans adult worms [1–3]. Therefore, in this study we established an in vitro culture system to decipher unresolved questions about the biology and development of M. perstans worms. To the best of our knowledge, we demonstrate for the first time that cultures of monkey kidney epithelial cells (LLC-MK2) in DMEM medium supplemented with 10% FBS allow long term-maintenance of M. perstans worms for up to 77 days. These data confirm previous studies showing that cell-conditioned and inactivated FBS are critical for the maintenance of filariae in vitro [8–13]. In addition, further experiments have shown that the in vitro survival and maintenance of Loa loa infective larvae was improved in DMEM medium compared to RPMI and that LLC-MK2 cells are indispensable for parasite moulting (unpublished findings). Collectively, these data suggest that Loa loa and M. perstans may...
share similar in vitro requirements for growth and development. In addition, most of the *M. perstans* infective larvae moulted between days 21–30 to become L5 stage larvae which continued to show vigorous movement upon 50 days of in vitro culture. It is known that moult behaviour and life duration of the different larval stages vary strongly between different filariae and indeed, there are two groups of filaria based on the duration of L3 stages in their mammalian host [27]. The first group including filariae such as *Onchocerca volvulus* and *O. lienalis* is characterized by an early moult (less than 3 days) whereas other filariae like *L. loa*, *Wuchereria bancrofti* and *Brugia* spp. execute the first moult only after a week. In this latter group, the second moult (L4 into L5) occurs significantly before day 50 [27, 28]. *Mansonella perstans* therefore seem to belong to the first group which execute an early moult from L3 into L4 stage larvae within the first 3 days of in vitro culture. Thus, it is likely that the first moult remains unnoticed or was not obvious during this study and the moult observed after 20 days marks the development from L4 into L5 stage larvae. However, in-depth analysis needs to be performed to decipher *M. perstans* moultng behaviour and the development of the different life stages in vitro in greater detail. Interestingly, the worms had lengths of 40–60 mm after 50 days of in vitro culture and are thus comparable to *M. perstans* worms (35–80 mm) isolated from infected human individuals [29]. Nevertheless, further investigations need to be performed to discriminate gender and decipher morphology and fertility of the cultured *M. perstans* worms in more detail. In addition, the in vitro culture system will allow us to elucidate the presence and role of *Wolbachia* in this filarial nematode as previous studies have reported contradictory findings showing either the absence [30, 31] or the presence of the endosymbiont in *M. perstans* worms [32–34].

Conclusions

Collectively, these findings present a novel tool for *M. perstans* research and an approach to elucidate several unresolved questions about the biology and development of *M. perstans* life stages. These include studies about worm fertility and morphology, genome and transcriptome analysis with single sex adult worms, as well as in-depth analysis of the role of *Wolbachia* in *M. perstans* worms using immunohistochemistry, multilocus sequence typing, and treatment with anti-wolbachial antibiotics. Finally, the in vitro worm culture also provides a platform to study potential treatments against this ivermectin non-susceptible filariae [35, 36].

Additional files

Additional file 1: *Mansonella perstans* worms after 20 days of in vitro culture. On day 20 of the in vitro culture, motility of *M. perstans* worms were microscopically monitored and recorded at 10x magnification. (MP4 1737 kb)

Additional file 2: *Mansonella perstans* worms after 30 days of in vitro culture. On day 30 of the in vitro culture, motility of *M. perstans* worms were microscopically monitored and recorded at 10x magnification. (MP4 2282 kb)

Additional file 3: *Mansonella perstans* worms after 40 days of in vitro culture. On day 40 of the in vitro culture, motility of *M. perstans* worms were microscopically monitored and recorded at 10x magnification. (MP4 4426 kb)

Additional file 4: *Mansonella perstans* worms after 50 days of in vitro culture. On day 50 of the in vitro culture, motility of *M. perstans* worms were microscopically monitored and recorded at 4x magnification. (MP4 6039 kb)

Abbreviations

DMEM: Dulbecco's modified eagle medium; FBS: Foetal bovine serum; HIV: Human immunodeficiency virus; L3: Infective larvae (third stage larvae able to infect human hosts); Mf: Microfilariae

Acknowledgements

We sincerely thank the chiefs and entire populations of all health districts surveyed for accepting and participating in this study. The authors are grateful
to the participants for their voluntary participation. We also thank the Cameroon health system for all the facilities put in place during the surveys.

Funding

This work is funded through a grant awarded to SW, LEL and AH from the German Research Council (DFG) within the “African-German Cooperation Projects in Infectiology” (HD 2009/10–1). AH and LEL are members of the Excellence Cluster Immunosensation (DFG, EXC 1023). AH, LEL and KP are members of the German Centre of Infectious Disease (DZIF).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

Authors’ contributions

SW and AH conceived and designed the study. AJN, FFF and WPCN developed the in vitro culture of *M. perstans* worms. WPCN, CAK, GTVN and DBT managed field studies. SW, AJN and MR analysed and interpreted data sets. MR wrote the manuscript which was then critically assessed and amended by SW, AH, LEL and KP. All authors read and approved the final manuscript.

Ethics approval and consent to participate

An ethical clearance was obtained from the National Institutional Review Board, Yaoundé (Ref: No. 2015/09/639/CE/CNERSH/SP) and administrative clearance from the Delegation of Public Health, South West Region (Re: R11/MINSANTE/SWR/RDH/PS/259/382). Special consideration was taken to minimize the health risks to which any participant in this study was exposed. We explained the objectives of the study to the donor willing to participate after which they signed an informed consent form. The participant was debriefed on the study’s objectives and the possible health risks and benefits. Furthermore, all procedures related to the study were conducted with the utmost care to ensure the safety and well-being of all participants. The study was approved by the Local Ethics Committee of the University of Buea and the National Ethics Committee Board of the Cameroon National Health Authority

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.
2. Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon.
3. Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
4. German Centre for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany.

Received: 16 August 2017 **Accepted:** 31 October 2017 **Published online:** 10 November 2017

References

1. Hoerauf A. *Mansonella perstans* - the importance of an endosymbiont. *N Engl J Med.* 2009;361:1502–4.
2. Simonsen PE, Onapa AW, Asio SM. *Mansonella perstans* filariasis in Africa. *Acta Trop.* 2011;120(Suppl 1):S109–20.
3. Asio SM, Simonsen PE, Onapa AW. *Mansonella perstans* filariasis in Uganda: patterns of microfilaraemia and clinical manifestations in two endemic communities. *Trans R Soc Trop Med Hyg.* 2009;103:266–73.
4. Kershaw WE. Studies on the epidemiology of filariasis in West Africa, with special reference to the British Cameroons and the Niger Delta. I. Methods of survey for infections with *Loa loa* and *Acanthocheilonema perstans*. *Ann Trop Med Parasitol.* 1950;44:361–78.
5. Asio SM, Simonsen PE, Onapa AW. Analysis of the 24 h microfilarial periodicity of *Mansonella perstans*. *Parasitol Res.* 2009;104:945–8.
6. Franke ED, Riberu W, Wadiy I. In vitro cultivation of third stage larvae of *Wuchereria bancrofti* to the fourth stage. *Am J Trop Med Hyg.* 1987;37:370–5.
7. Hoti SL, Gros AM, Pally KP, Manonmanri AM, Mary KA, Balaraman K. In vitro cultivation of third stage larvae of *Wuchereria bancrofti* to fourth stage: influence of some physico-chemical factors. *Southeast Asian J Trop Med Public Health.* 1994;25:278–83.
8. Zaraspe G, Cross JH. Attempt to culture *Wuchereria bancrofti* in vitro. *Southeast Asian J Trop Med Public Health.* 1986;17:579–81.
9. Townsend S, Connelly C, Muller R. Optimization of culture conditions for the maintenance of *Onchocerca gutturosa* adult worms in vitro. *J Helminthol.* 1986;60:323–30.
10. Townsend S. The development of a laboratory model for onchocerciasis using *Onchocerca gutturosa*: in vitro culture, collagenase effects, drug studies and cryopreservation. *Trop Med Parasitol.* 1988;39(Suppl 4):475–9.
11. Townsend S, Tagboto S, McGarry HF, Egerton GL, Taylor MJ. *Onchocerca* parasites and *Wolbachia* endosymbions: evaluation of a spectrum of antibiotic types for activity against *Onchocerca gutturosa* in vitro. *Filarias J.* 2006;5:4.
12. Cupp MS, Cupp SW, Pouloupoulou C. The use of cell-conditioned medium for the in vitro culture of *Onchocerca* spp. larvae (*Nematoda: Filarioidea*). *Trop Med Parasitol.* 1990;41:20–4.
13. Mak JW, Lim PK, Sim BK, Liew LM. *Brugia malayi* and *B. pahangi*: cultivation in vitro of infective larva to the fourth and fifth stages. *Exp Parasitol.* 1983;55:243–8.
14. Riberu WA, Atmosedejono S, Purnomo, Titokusumo S, Bangs MJ, Baird JK. Cultivation of sexually mature *Brugia malayi* in vitro. *Am J Trop Med Hyg.* 1990;43:3–5.
15. Falcone FH, Zahrner H, Schlaak M, Haas H. In vitro cultivation of third-stage larvae of *Brugia malayi* to the young adult stage. *Trop Med Parasitol.* 1995;46:230–4.
16. Baird JK, Riberu W, Masbar S, Purnomo. Ivermectin inhibits molting of *Wuchereria bancrofti* third stage larvae in vitro. *J Parasitol.* 1991;77:162–3.
17. Townsend S, Connelly C, Dobinson A, Muller R. Drug activity against *Onchocerca gutturosa* males in vitro: a model for chemotherapeutic research on onchocerciasis. *J Helminthol.* 1987;61:271–81.
18. Nelson GS. Filarial infections as zoonoses. *J Helminthol.* 1965;39:229–50.
19. Metenou S, Dembélé B, Konate S, Dolo H, Coulibaly SY, Coulibaly YI, et al. Patent filarial infection modulates malaria-specific type 1 cytokine responses in an IL-10-dependent manner in a filaria/malaria-coinfected population. *J Immunol.* 2008;183:916–24.
20. Semnani RT, Mahapatra L, Dembele B, Konate S, Metenou S, Dolo H, et al. Expanded numbers of circulating myeloid dendritic cells in patient human filarial infection reflect lower CCR1 expression. *J Immunol.* 2010;185:6364–72.
21. Dolo H, Coulibaly YI, Dembele B, Konate S, Coulibaly SY, Doumbia SS, et al. Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults. *PLoS Negl Trop Dis.* 2012;6:e1890.
22. Lechner CJ, Komander K, Hegewald J, Huang X, Gantin RG, Soboslay PT, et al. Cytokine and chemokine responses to helminth and protozoan parasites and to fungus and mite allergens in neonates, children, adults, and the elderly. *Immun Ageing.* 2013;10:29.
23. Muhangi L, Woodburn P, Omara M, Omoding N, Kizito D, Mpairwe H, et al. Associations between mild-to-moderate anaemia in pregnancy and helminth, malaria and HIV infection in Entebbe, Uganda. *Trans R Soc Trop Med Hyg.* 2007;101:899–907.
24. Hillier SD, Booth M, Muhangi L, Nkurunziza P, Khiembo M, Kakande M, et al. *Plasmodium falciparum* and helminth coinfection in a semi urban population of pregnant women in Uganda. *J Infect Dis.* 2008;198:290–7.
25. Stensgaard AS, Vounatsou P, Onapa AW, Utzinger J, Pedersen EM, Kristensen TK, et al. Ecological drivers of *Mansonella perstans* infection in Uganda and patterns of co-endemicity with lympthic filariasis and malaria. *PLoS Negl Trop Dis.* 2016;10:e0004319.
26. Elliott AM, Mawa PA, Webb EL, Nampijja M, Lyadda N, Bukusuba J, et al. Effects of maternal and infant co-infections, and of maternal immunisation, on the infant response to BCG and tetanus immunisation. *Vaccine.* 2010;29:247–55.
27. Bain O, Wanjuri S, Enyong P, Petit G, Ntoumi F, Eberhard M, et al. New features on the molluscs and morphogenesis of the human filaria *Loa loa* by using rodent hosts consequences. *Parasite.* 1998;5:37–46.
28. Bianco AE, Mustafa MB, Ham PJ. Fate of developing larvae of Onchocerca lienalis and O. volvulus in micropore chambers implanted into laboratory hosts. J Helminthol. 1989;63:218–26.
29. Baird JK, Neafie RC, Lanoie L, Connor DH. Adult Mansonella perstans in the abdominal cavity in nine Africans. Am J Trop Med Hyg. 1987;37:578–84.
30. Bluttner DW, Wanjii S, Bazzocchi C, Bain O, Fischer P. Obligatory symbiotic Wolbachia endobacteria are absent from Loa loa. Filaria J. 2003;2:10.
31. Grobusch MP, Kombila M, Autenrieth I, Mehlihom H, Kremsner PG. No evidence of Wolbachia endosymbiosis with Loa loa and Mansonella perstans. Parasitol Res. 2003;90:405–8.
32. Keiser PB, Coulbaly Y, Kubofok J, Diallo AA, Klion AD, Traoré SF, et al. Molecular identification of Wolbachia from the filarial nematode Mansonella perstans. Mol Biochem Parasitol. 2008;160:123–8.
33. Coulbaly YI, Dembele B, Diallo AA, Lipner EM, Dsembia SS, Coulbaly SY, et al. A randomized trial of doxycycline for Mansonella perstans infection. N Engl J Med. 2009;361:1448–58.
34. Gehringer C, Kreidenweiss A, Flamen A, Antony JS, Grobusch MP, Bélard S. Molecular evidence of Wolbachia endosymbiosis in Mansonella perstans in Gabon, Central Africa. J Infect Dis. 2014;210:1633–8.
35. Asio SM, Simonsen PE, Onapa AW. Mansonella perstans: safety and efficacy of ivermectin alone, albendazole alone and the two drugs in combination. Ann Trop Med Parasitol. 2009;103:31–7.
36. Asio SM, Simonsen PE, Onapa AWA. Randomised, double-blind field trial of ivermectin alone and in combination with albendazole for the treatment of Mansonella perstans infections in Uganda. Trans R Soc Trop Med Hyg. 2009;103:274–9.