Amorphous Alloys, Degradation Performance of Azo Dyes: Review

Hasan Eskalen¹, Celal Kursun²*, Mikail Aslan³, Mustafa Cesme⁴ and Musa Gogebakan²

¹Department of Material Science and Engineering, Institute of Science, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46100, Turkey
²Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46100, Turkey
³Department of Metallurgical and Materials Engineering, Gaziantep University, Gaziantep, Turkey
⁴Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46100, Turkey

Abstract

Today freshwater is more important than ever before and it is contaminated from textile industry. Removal of dyes from effluent of textile using amorphous alloys has been studied extensively by many researchers. In this review article it is presented up to date development on the azo dye degradation performance of amorphous alloys, a new class of catalytic materials. Numerous amorphous alloys have been developed for increasing higher degradation efficiency in comparison to conventional ones for the removal of azo dyes in wastewater. One of the objectives of this review article is to organize the scattered available information on various aspects on a wide range of potentially effective in the removal of dyes by using amorphous alloys. This study comprises the affective removal factors of azo dye such as solution pH, initial dye concentration, and adsorbent dosage. It was concluded that Fe, Mg, Co, Al and Mn-based amorphous alloys with wide availability have appreciable for removing several types of azo dyes from wastewater. Concerning amorphous alloys for future research, some suggestions are proposed and conclusions have been drawn.

Keywords: Amorphous Alloys, Mechanical alloying, Azo Dyes, Freshwater
*Corresponding author:
Department of Physics, Faculty of Art and Science, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46100, Turkey,
Tel.: +90 344 300 2540; Fax: +90 344 300 1352
E-mail address: celalkursun@ksu.edu.tr or celalkursun@hotmail.com

Contents

1. Introduction ... 3
 1.1. The status of freshwater resources .. 3
 1.2. Effect of azo dyes on formation of wastewater ... 3

2. Current treatment methods for dye removal ... 4

3. Properties and production methods of amorphous alloys ... 5
 3.1. Properties of amorphous alloys .. 6
 3.2. Production methods of amorphous alloys .. 6

4. Degradation performance of amorphous alloys ... 7
 4.1. Fe-based amorphous alloys .. 7
 4.2. Mg-based amorphous alloys .. 9
 4.3. Miscellaneous alloys .. 9

5. Conclusions and future perspectives ... 10
1. Introduction

1.1. The status of freshwater resources

Although about 71 % of earth surface are covered by water, only very small amount of it is vital for humans since water sources consist of nearly 97.5 % salty water and only 2.5 % freshwater. Small amount of the freshwater are accessible for human usage. The human could use merely 0.007 % of all water (Petersen et al., 2017). Fig. 1 shows the water distribution on the world mentioned above. At the beginning of twenty-first century about one out of five of humans are suffering from freshwater shortage and this will be much worse at the half of this century according to the report of UNESCO (Deb and Dutta, 2017). In addition, although approximately 780 million people do not still have access to proper resources of drinking water (Qu et al., 2013), the limited freshwater sources have been contaminated due to agricultural, industrial and domestic activities (Cosgrove and Rijsberman, 2014; Matheyarasu et al., 2015; Petersen et al., 2017).

Thus, water contamination has been an important issue for various fields of researchers and engineers to be eliminated. Until 2016, the number of scientific papers titled “wastewater” can be seen in Fig. 2. Although there are only 4 publications in 1992, over 3,500 papers have been published in 2016. On the other hand, only about 10 % of wastewater is treated (Matheyarasu et al., 2015) and commonly used in wastewater treatment processes while the remaining part of wastewater cannot be entirely cleaned from many toxic materials which are basically azo dyes and heavy metals (Luo et al., 2014b; Sadegh et al., 2017; Saha et al., 2017).

1.2. Effect of azo dyes on formation of wastewater

Dyes are simply divided into two main groups which are organic and synthetic. The most common use of synthetic dyes is azo dyes with above 50 % of usage of all dyes (Ajmal et al., 2014). Today, more than 100.000 dyes with different structures have been synthesized
The global market production of synthetic dyes exceed 10 million metric tons and it is continue to grow in the rate of 3-4 % (Ahmet Gürses et al, 2016), which implies the total production of azo dyes are more than 5 million metric tons. The most consumption of azo dyes that leads to water contamination is due to the textile industry since it generates large volume of effluent (Chequer et al., 2013). To dye 1 kg of cotton, 30-60 g of dyestuff and 70-150 L water are required (Sen et al., 2016; Wang et al., 2014) and it is reported that up to 50 percent of used dyes directly or indirectly contaminated water sources (Muhd Julkapli et al., 2014; Ramya et al., 2017; Sekuljica et al., 2015; Sen et al., 2016). Wastewater from dyes not only cause environmental pollution (Amir et al., 2016; Asgher and Bhatti, 2012; Lim et al., 2013; Sarkar et al., 2014; Zaini et al., 2014) and contamination of freshwater source and land, but also carcinogenic effect (Chahbane et al., 2007; de Jong et al., 2016; Fonovich, 2013; Gupta et al., 1990; Sharma et al., 2003; Soriano et al., 2014; Zeng et al., 2014; Zhou et al., 2016).

2. Current treatment methods and materials for dye removal

Generally, methods of dye wastewater treatment are divided into three categories that are physical, chemical and biological methods. Adsorption, ion exchange, chemical precipitation, coagulation-flocculation, oxidation, electrochemical treatment, membrane filtration biological treatment and combined techniques are most used dye removal strategies (Ahmad et al., 2015) of dye removal methods. Advantages and disadvantages of some techniques of dye removal industrial wastewater are given in Table 1 (Crini, 2006; Garg et al., 2004; Robinson et al., 2001; Yagub et al., 2014). Traditional treatment methods for azo dye removal have been reviewed by several authors (Bethi et al., 2016; Brillas and Martínez-Huitle, 2015; Deb and Dutta, 2017; Forgacs et al., 2004; Fu et al., 2014a; Gupta et al., 2009; Holkar et al., 2016; Pearce et al., 2003; Sadegh et al., 2017; Salleh et al., 2011; Sen et al., 2016; Singh et al., 2015; Yagub et al., 2014). Activated carbon (Malik, 2004; Namasivayam
and Kavitha, 2002; Santhy and Selvapathy, 2006), nanomaterials and nanocomposites (Alkaim et al., 2015; Chawla et al., 2017; Ozmen et al., 2010; Prashanth et al., 2017; Selen et al., 2016; Sohni et al., 2017), agricultural solid waste (Khatoon and Rai, 2016; Namasivayam and Kavitha, 2002; Singh et al., 2017), clay (Ehsan et al., 2017; Hadjltaief et al., 2016; Ho et al., 2001; Ngulube et al., 2017), peat (Ho and McKay, 1998; Zehra et al., 2016; Zehra et al., 2015), egg shells (Abdel-Khalek et al., 2017; Tsai et al., 2008), tea waste (Wen et al., 2017), polymers (Crini, 2003; Tu et al., 2017; Yao et al., 2016), wood (Ferrero, 2007; Leechart et al., 2009; Poots et al., 1978) are some of the used materials at azo dye wastewater treatment but these materials can not sufficiently reduce azo dye and their environmental impacts (Wang et al., 2014b; Xie et al., 2016). Zero-valent metals have been used for new azo dye wastewater treatment materials and among them zero-valent iron exhibit superior features at high efficient dye removal, low cost production and simple operation (Fu et al., 2014b; Ruiz et al., 2000; Xie et al., 2016). However, easily oxidization and rapidly decaying of degradation efficiency are two main problems of these materials (Xie et al., 2016). Because of this deficient, the new functional materials should be studied. Amorphous alloys could be new alternative materials with superior properties compared to zero-valent metals. To the best of our knowledge amorphous alloys in the field of dye wastewater have been never reviewed previously.

3. Properties and Production Methods of Amorphous Alloys

The discovery of amorphous alloys which are known as one of the metastable materials has marked a new era in atomic structure of solids and crystallography. The searches reveal that these materials may exhibit unique structure and outstanding properties. The atomic packing of amorphous materials in contrast to crystalline alloys is not ordered and indicates a random distribution (Inoue, 1999; Inoue, 2000).
3.1. Properties of amorphous alloys

The amorphous alloys have received much attention because of their remarkable properties in comparison to crystalline alloys. They have good corrosion and oxidation resistance, low electrical conductivity, low thermal conductivity, good magnetic properties, ultrahigh strength and high hardness which are certain of significant mechanical properties at room temperature (Gebert et al., 1999; Janik-Czachor et al., 2002; Kilian and Schultz, 1988; Kim et al., 2005; Kim et al., 2004; Yang et al., 2007). Due to these excellent properties, amorphous alloys have been extensively studied from structural and functional applications since the first synthesis by Duwez et al. They succeed production of Au-Si binary amorphous alloy by rapid solidification technique in 1960 (Klement et al., 1960) and since then many binary, ternary, quaternary and quinary amorphous alloys have been manufactured. As well as above properties of the amorphous alloys, a new characteristic of them can be added. It is good degradation performance of azo dyes which contain carcinogenesis. It was schematized the amorphous alloys degrade to azo dyes in Fig.3. As shown in Fig. 3, the azo dyes has orange colour at initial. After the amorphous materials mix into the azo dyes, the orange colour transform into transparent one due to degradation of azo dyes. Therefore, these high quality materials have provided cleaner water to environment without any carcinogenesis.

3.2. Production methods of amorphous alloys

The amorphous materials can be synthesized by different techniques. Some of these techniques are rapid or conventional solidification, mechanical alloying and suction casting. In the rapid solidification technique, the amorphous alloys are manufactured in ribbon form. To produce the ribbons is required to high cooling. Thus the amorphous materials are produced by rapid solidification of a liquid. In this technique, cooling rates should be 10^5 to 10^9 K/s to avoid the nucleation of high-temperature equilibrium phases. This technique is schematized in Fig.4. As shown in Fig. 4, the melt are ejected on the copper wheel by Argon
(Ar) gas pressure. Then the amorphous material is obtained in ribbon form. In the mechanical alloying technique, the materials are manufactured in powder forms, which can be compacted in desired shapes and dimensions for practical application. One of the most significant advantages of mechanical alloying technique can be controlled the structures of produced amorphous alloy during proceeding process. Therefore, it is very easy to obtain desired microstructures which are so difficult or impossible to produce with other techniques. The working principle of mechanical alloying is schematized in Fig. 5. As shown in Fig. 5, the powders in the stainless steel cups remain between balls which collide with each other and the amorphous material are produced. In the suction casting technique, an arc-melted material is sucked into a copper mould, which can be chosen different length and diameter. The sucking process is done by negative pressure in the mould relative to the main chamber. Cooling rate of this technique rely on certain parameters which are mould temperature, casting temperature, interfacial heat transfer and mould geometry (Laws et al., 2009). The furnace where the materials are melted in arc melting machine is schematized in Fig. 6.

4. Degradation Performance of Amorphous Alloys

The most widely investigated amorphous alloys for azo dye degradation from wastewater are Fe-based, Mg-based and some miscellaneous alloys. In this review, amorphous materials are examined at three different categories. The most studied alloys are Fe-based alloys since their degradation efficiency compared with zero-valent irons. Although there are studies just only use metallic glass as a catalytic material, hydrogen peroxide, persulfate and solar light lamp are used with some combined techniques.

4.1 Fe-based amorphous Alloys

Fe-based amorphous alloys which are known as a kind of zero-valent iron material have characteristics of a metastable structure and chemical homogeneity in particular. This
makes Fe-based amorphous alloy more corrosive resistance and more chemically reactive on
the whole part of the surface instead of the defects such as the grain boundary in crystalline
materials (Tang et al., 2015). Due to these merits, it demonstrates that Fe-based amorphous
alloys are higher degradation efficiency compared to the conventional techniques (Das et al.,
2015; Wang et al., 2012a; Yang et al., 2013). The removal of pollutants including azo dyes in
water by means of a reduction reaction using Fe-based amorphous alloys has been developed
recently. As an alternative catalysis for the crystal typed zero-valent iron, Fe based amorphous
alloys has been studied (Deng et al., 2017; Xie et al., 2016) since crystalline type zero-valent
iron is easily oxidized (rust) and its degradation efficiency decays rapidly even if the most
commonly used metal is crystalline type zero-valent iron, which shows low cost, simple
operation, and high efficiency. In addition, Fe-based amorphous alloys offer a lower cost
alternative, and thus more attractive for commercialization. Azo dye degradation studies by
using iron based metallic glasses are summarized and presented in Table 2.

Fe–Si–B amorphous ribbon was successfully fabricated using a melt spinning method by
Wang et.al (Wang et al., 2014). In related study, Rhodamine B, which is a kind of azo dyes,
could be degraded by the catalyst with low dosage of H₂O₂ (see Table 2). In addition, the
catalyst demonstrated good stability and reusability. Another study was conducted by Wang
et.al (Wang et al., 2012). As a result of this study, the powders they produced could
completely remove the Direct Blue 6azo dye (C₁₂H₂₀N₆Na₄O₁₄S₄) from aqueous solution in
short time as shown in Table 2.

Although Fe-based metallic glasses have been found more effective for degrading azo dyes,
many issues are still inadequately understood and have need of further investigation which
consists of how it is influenced by the degradation environment and by the atomic and
electronic configurations of the amorphous structure, how to improve the optimized Fe-based
amorphous alloy systems with higher degradation efficiency and service life and finally
solving the underlying mechanism of the degradation process.
4.2 **Mg-based Amorphous Alloys**

Apart from the ferrous alloys, for degrading the water contaminants, Mg-based amorphous alloys are preferred due to the resistant to rusting, cheap material to obtain, widely tunable compositions and intrinsic brittleness that provides glass forming ability. In addition, during the degradation processes, Mg atoms not only offer high surface area for the adsorption, but also improve the electron transfer between metal atoms and organic molecules. Thus, the combination of these properties makes Mg-based amorphous alloys show high degradation efficiencies of azo dyes than the corresponding pure metals. The first study related to the Mg-based amorphous alloys was conducted by Inoue et.al (Inoue et al., 1991). They accomplished to produce Mg-based amorphous alloys in a cylindrical form by casting melts into a copper mould. Wang et.al (Wang et al., 2012) reported the first time the MgZn-based amorphous alloys represent good functional ability compared to commercial crystalline Fe powders and crystalline MgZn with a greater corrosion resistance in water, in order to degrade azo dyes. They claimed that these alloys keep high reaction efficiency under even complex environmental conditions. Other studies related to Mg-based amorphous alloys are available in the literature (Iqbal and Wang, 2014; Luo et al., 2014; Zhao et al., 2014). The conducted some few studies of Mg-based amorphous alloys on textile azo dyes removal are compiled in Table 3. The degradation efficiency of azo dyes depends on pH of the reactive medium, the alloy dosages and initial dye concentration and dye volume (see Table 3).

4.3 **Some Miscellaneous-based Amorphous Alloys**

Synthesis of amorphous alloys needs strict circumstances including high vacuum, rapid cooling and high purity of raw materials for degrading azo dyes. It continues a need of developing tailored materials having high degradation efficiency, low cost and easy to fabrication. In this regard, some miscellaneous-based amorphous alloys such as Al, Co, Pd, Cu, Zn and Mn have been studied recently by engineers and scientist (Ben Mbarek et al., 2017; Das et al., 2016; Qin et al., 2015; Wang et al., 2017; Zhao et al., 2014). These metallic
glasses are usually used in powder form that makes more active surface sites for highly efficient degradation of organic azo dye molecules when comparing to the crystalline metals of the same weight. According to the study conducted by Das et.al (Das et al., 2016), Alloying high percentage conducting aluminium with low percentage of transition metals as an amorphous form promotes catalytically active surface for the degradation of organic water pollutants without any toxic formation. Qin et.al (Qin et al., 2015) studied Co-based amorphous alloys produced by ball milling. Their study shows the studied alloys possess better resistance to corrosion in wastewater, little mass loss, durability and the highest reaction rate of all investigated powders. Mbarek et.al (Ben Mbarek et al., 2017) carried out the reduction reaction of the azo dye Reactive Black 5 by using Mn based amorphous alloys produced melt-spinning and ball-milling processes. In this system, the low activation energy and the rapid degradation kinetics was observed, which in turn makes promising as a low-cost, efficient material for azo dyes removal. Above studies are summarized in Table 4.

Removal efficiency of the various alloys is also shown as a function time in Fig. 7. According to Fig. 7, Co_{78}Si_{14}B_{8} and Mg_{65}Cu_{25}Y_{10} amorphous alloys have the most performance of removal efficiency at 2 min and 4 min, respectively. It takes more time for the other alloys because of the different production techniques and their compositions.

5. Conclusions and future perspectives

It is obvious that, freshwater is needed for living organism and if wastewater is treated properly, it can be used again. Azo dyes are main effluent of textile industry resulting huge volume of wastewater. Because of this reason effective treatment of azo dye effluents is needed. This review article presented amorphous alloys for azo dye removal from wastewater. Amorphous alloys have exhibited very promising results for the azo dye treatment from wastewater. Many researchers have been investigated azo dye degradation properties of some amorphous alloys with combination of different factors that are pH, temperature and dye-alloy
dosage. The unique properties of amorphous alloys and their high efficient azo dye catalysis properties with their own and combined methods present a significant opportunity for dealing with azo dye effluents.

However, many challenges still exist in applicability. The future perspectives and suggestions are listed

- Most of the work has been carried out at laboratories scale. It is needed to adapting of these works in industry scale.
- Examination of the properties of amorphous alloys to degrade azo dyes is an important subject alone. However, the studies about ability of removal of hazardous contaminants such as heavy metals, nitrate arsenic, will be also needed by amorphous alloys.
- Reusability and production cost of amorphous alloys are needed to study more.
- Using more than one technique at azo dye degradation with metallic glasses is needed to investigate in terms of removal time, removal efficiency, large scale applicability and total required cost.

Acknowledgements

We would like to thanks Kahramanmaras Sutcu Imam University.
References

Abdel-Khalek, M., Rahman, M.A., Francis, A., 2017. Exploring the adsorption behavior of cationic and anionic dyes on industrial waste shells of egg. Journal of Environmental Chemical Engineering 5, 319-327.

Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, R., Rafatullah, M., 2015. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5, 30801-30818. http://dx.doi.org/10.1039/c4ra16959j

Gürses A, Açıklyıldız M., Güneş K., Gürses M. S., 2016. Dyes and Pigments: Their Structure and Properties. Springer International Publishing, 13-29.

Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., Nadeem, M.A., 2014. Principles and mechanisms of photocatalytic dye degradation on TiO2based photocatalysts: a comparative overview. RSC Advances 4, 37003. http://dx.doi.org/10.1039/c4ra06658h

Alkaim, A.F., Sadik, Z., Mahdi, D.K., Alshrefi, S.M., Al-Sammarraie, A.M., Alamgir, F.M., Singh, P.M., Aljeboree, A.M., 2015. Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of maxilon blue dye. Korean J Chem Eng 32, 2456-2462. http://dx.doi.org/10.1007/s11814-015-0078-y

Amir, M., Kurtan, U., Baykal, A., Sozeri, H., 2016. MnFe2O4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants. Journal of Materials Science & Technology 32, 134-141. http://dx.doi.org/10.1016/j.jmst.2015.12.011

Asgher, M., Bhatti, H.N., 2012. Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions. Ecol Eng 38, 79-85. http://dx.doi.org/10.1016/j.ecoleng.2011.10.004

Ben Mbarek, W., Azabou, M., Pineda, E., Fiol, N., Escoda, L., Suñol, J.J., Khitouni, M., 2017. Rapid degradation of azo-dye using Mn–Al powders produced by ball-milling. RSC Adv. 7, 12620-12628. http://dx.doi.org/10.1039/c6ra28578c

Bethi, B., Sonawane, S.H., Bhanvase, B.A., Gumfekar, S.P., 2016. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing: Process Intensification 109, 178-189. http://dx.doi.org/10.1016/j.cep.2016.08.016

Brillas, E., Martínez-Huitle, C.A., 2015. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental 166-167, 603-643. http://dx.doi.org/10.1016/j.apcatab.2014.11.016

Chahbani, N., Popescu, D.L., Mitchell, D.A., Chanda, A., Lenoir, D., Ryabov, A.D., Schramm, K.W., Collins, T.J., 2007. Fe-III-TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products,
toxicity, kinetics, and mechanisms. Green Chem 9, 49-57.
http://dx.doi.org/10.1039/b604990g

Chawla, S., Uppal, H., Yadav, M., Bahadur, N., Singh, N., 2017. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water. Ecotox Environ Safe 135, 68-74. http://dx.doi.org/10.1016/j.ecoenv.2016.09.017

Chequer, F.M.D., de Oliveira, G.A.R., Ferraz, E.R.A., Cardoso, J.C., Zanoni, M.V.B., de Oliveira, D.P., 2013. Textile dyes: dyeing process and environmental impact, Eco-friendly textile dyeing and finishing. InTech.

Cosgrove, W.J., Rijsberman, F.R., 2014. World water vision: making water everybody's business. Routledge.

Crini, G., 2003. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresource Technol 90, 193-198.

Crini, G., 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technol 97, 1061-1085. http://dx.doi.org/10.1016/j.biortech.2005.05.001

Das, S., Bandi, V., Arora, H.S., Veligatla, M., Garrison, S., D'Souza, F., Mukherjee, S., 2015. Synergistic catalytic effect of iron metallic glass particles in direct blue dye degradation. Journal of Materials Research 30, 1121-1127.

Das, S., Garrison, S., Mukherjee, S., 2016. Bi-Functional Mechanism in Degradation of Toxic Water Pollutants by Catalytic Amorphous Metals. Advanced Engineering Materials 18, 214-218. http://dx.doi.org/10.1002/adem.201500239

De Jong, L., Pech, N., Umbuzeiro, G.D., Moreau, X., 2016. Multi-scale biomarker evaluation of the toxicity of a commercial azo dye (Disperse Red 1) in an animal model, the freshwater cnidarian Hydra attenuata. Water Res 96, 62-73. http://dx.doi.org/10.1016/j.watres.2016.03.043

Deb, S., Dutta, P., 2017a. Wastewater in Agriculture: Possibilities and Limitations, Adaptive Soil Management: From Theory to Practices. Springer, pp. 215-225.

Deb, S., Dutta, P., 2017b. Wastewater in Agriculture: Possibilities and Limitations. 215-225. http://dx.doi.org/10.1007/978-981-10-3638-5_10

Deng, Z., Zhang, X.H., Chan, K.C., Liu, L., Li, T., 2017. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation. Chemosphere 174, 76-81. http://dx.doi.org/10.1016/j.chemosphere.2017.01.094

Ehsan, A., Bhatti, H.N., Iqbal, M., Noreen, S., 2017. Native, acidic pre-treated and composite clay efficiency for the adsorption of dicationic dye in aqueous medium. Water Sci Technol 75, 753-764.

Ferrero, F., 2007. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials 142, 144-152.

Fonovich, T.M., 2013. Sudan dyes: are they dangerous for human health? Drug Chem Toxicol
Forgacs, E., Cserhati, T., Oros, G., 2004. Removal of synthetic dyes from wastewaters: a review. Environ Int 30, 953-971. [http://dx.doi.org/10.1016/j.envint.2004.02.001]

Fu, F., Dionysiou, D.D., Liu, H., 2014a. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267, 194-205. [http://dx.doi.org/10.1016/j.jhazmat.2013.12.062]

Fu, F.L., Dionysiou, D.D., Liu, H., 2014b. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials 267, 194-205. [http://dx.doi.org/10.1016/j.jhazmat.2013.12.062]

Garg, V.K., Amita, M., Kumar, R., Gupta, R., 2004. Basic dye (methylene blue) removal from simulated wastewater by adsorption sawdust: a timber using Indian Rosewood industry waste. Dyes Pigments 63, 243-250. [http://dx.doi.org/10.1016/j.dyepig.2004.03.005]

Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., Schultz, L., 1999. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Materials Science and Engineering: A 267, 294-300.

Gupta, G.S., Prasad, G., Singh, V.N., 1990. Removal of Chrome Dye from Aqueous-Solutions by Mixed Adsorbents - Fly-Ash and Coal. Water Res 24, 45-50. [http://dx.doi.org/Doi 10.1016/0043-1354(90)90063-C]

Gupta, V.K., Carrott, P.J.M., Ribeiro Carrott, M.M.L., Suhas, 2009. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review. Critical Reviews in Environmental Science and Technology 39, 783-842. [http://dx.doi.org/10.1080/10680930903088275]

Hadjlaief, H.B., Zina, M.B., Galvez, M.E., Da Costa, P., 2016. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO 2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry 315, 25-33.

Ho, Y.-S., Chiang, C.-C., Hsu, Y.-C., 2001. Sorption kinetics for dye removal from aqueous solution using activated clay. Separation Science and Technology 36, 2473-2488.

Ho, Y.-S., McKay, G., 1998. Sorption of dye from aqueous solution by peat. Chem Eng J 70, 115-124.

Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M., Pandit, A.B., 2016. A critical review on textile wastewater treatments: Possible approaches. J Environ Manage 182, 351-366. [http://dx.doi.org/10.1016/j.jenvman.2016.07.090]

Inoue, A., 1999. Bulk amorphous alloys. Pergamon Materials Series 2, 375-415.

Inoue, A., 2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia 48, 279-306.

Inoue, A., Kato, A., Zhang, T., Kim, S., Masumoto, T., 1991. Mg–Cu–Y amorphous alloys
with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM 32, 609-616.

Iqbal, M., Wang, W.H., 2014. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes. IOP Conference Series: Materials Science and Engineering 60, 012035. http://dx.doi.org/10.1088/1757-899x/60/1/012035

Janik-Czachor, M., Szummer, A., Bukowska, J., Molnar, A., Mack, P., Filipek, S., Kedzierzawski, P., Kudelski, A., Pisarek, M., Dolata, M., 2002. Modification of surface activity of Cu-based amorphous alloys by chemical processes of metal degradation. Applied Catalysis A: General 235, 157-170.

Jia, Z., Duan, X., Zhang, W., Wang, W., Sun, H., Wang, S., Zhang, L.C., 2016a. Ultra-sustainable Fe78Si9B13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light. Sci Rep 6, 38520. http://dx.doi.org/10.1038/srep38520

Jia, Z., Kang, J., Zhang, W.C., Wang, W.M., Yang, C., Sun, H., Habibi, D., Zhang, L.C., 2017. Surface aging behavior of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Applied Catalysis B: Environmental 204, 537-547. http://dx.doi.org/10.1016/j.apcatb.2016.12.001

Jia, Z., Liang, S.X., Zhang, W.C., Wang, W.M., Yang, C., Zhang, L.C., 2017. Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 alloys: The influence of adsorption. Journal of the Taiwan Institute of Chemical Engineers 71, 128-136. http://dx.doi.org/10.1016/j.jtice.2016.11.021

Jia, Z., Zhang, W.C., Wang, W.M., Habibi, D., Zhang, L.C., 2016b. Amorphous Fe 78 Si 9 B 13 alloy: An efficient and reusable photo-enhanced Fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under UV–vis light. Applied Catalysis B: Environmental 192, 46-56. http://dx.doi.org/10.1016/j.apcatb.2016.03.048

Khatoon, H., Rai, J.P.N., 2016. Agricultural Waste Materials As Biosorbents For The Removal Of Heavy Metals And Synthetic Dyes-A Review. Octa Journal of Environmental Research 4.

Kilian, R., Schultz, L., 1988. High temperature corrosion of iron-based amorphous alloys. Zeitschrift für Physikalische Chemie 157, 165-170.

Kim, C.K., Lee, H.S., Shin, S.Y., Lee, J.C., Kim, D.H., Lee, S., 2005. Microstructure and mechanical properties of Cu-based bulk amorphous alloy billets fabricated by spark plasma sintering. Materials Science and Engineering: A 406, 293-299.

Kim, W., Ye, B., Yi, S., 2004. Amorphous phase formation in a Ni– Zr– Al– Y alloy system. Metals and Materials International 10, 1-5.

Klement, W., Willens, R., Duwez, P., 1960. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869-870.
Laws, K.J., Gun, B., Ferry, M., 2009. Influence of casting parameters on the critical casting size of bulk metallic glass. Metallurgical and Materials Transactions A 40, 2377-2387.

Leechart, P., Nakbanpote, W., Thiravetyan, P., 2009. Application of ‘waste’ wood-shaving bottom ash for adsorption of azo reactive dye. Journal of environmental management 90, 912-920.

Liang, S.X., Jia, Z., Zhang, W.C., Wang, W.M., Zhang, L.C., 2017. Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV–Vis light. Materials & Design 119, 244-253. http://dx.doi.org/10.1016/j.matdes.2017.01.039

Lim, C.K., Bay, H.H., Aris, A., Majid, Z.A., Ibrahim, Z., 2013. Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach. Environmental Science and Pollution Research 20, 5056-5066. http://dx.doi.org/10.1007/s11356-013-1476-5

Liu, P., Zhang, J.L., Zha, M.Q., Shek, C.H., 2014. Synthesis of an Fe rich amorphous structure with a catalytic effect to rapidly decolorize Azo dye at room temperature. ACS Appl Mater Interfaces 6, 5500-5505. http://dx.doi.org/10.1021/am501014s

Luo, X., Li, R., Zong, J., Zhang, Y., Li, H., Zhang, T., 2014a. Enhanced degradation of azo dye by nanoporous-copper-decorated Mg–Cu–Y metallic glass powder through dealloying pretreatment. Appl Surf Sci 305, 314-320. http://dx.doi.org/10.1016/j.apsusc.2014.03.069

Luo, Y.L., Guo, W.S., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C.C., 2014b. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473, 619-641. http://dx.doi.org/10.1016/j.scitotenv.2013.12.065

Lv, Z.Y., Liu, X.J., Jia, B., Wang, H., Wu, Y., Lu, Z.P., 2016. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci Rep 6, 34213. http://dx.doi.org/10.1038/srep34213

Malik, P.K., 2004. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Journal of Hazardous Materials 113, 81-88.

Matheyarasu, R., Seshadri, B., Bolan, N.S., Naidu, R., 2015. Impacts of Abattoir Waste-Water Irrigation on Soil Fertility and Productivity. http://dx.doi.org/10.5772/59312

Muhd Julkapli, N., Bagheri, S., Bee Abd Hamid, S., 2014. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. ScientificWorldJournal 2014, 692307. http://dx.doi.org/10.1155/2014/692307

Namasivayam, C., Kavitha, D., 2002. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54, 47-58.

Ngulube, T., Gumbo, J.R., Masindi, V., Maity, A., 2017. An update on synthetic dyes
adsorption onto clay based minerals: A state-of-art review. Journal of Environmental Management 191, 35-57.

Ozmen, M., Can, K., Arslan, G., Tor, A., Cengeloglu, Y., Ersoz, M., 2010. Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254, 162-169. http://dx.doi.org/10.1016/j.desal.2009.11.043

Pearce, C.I., Lloyd, J.R., Guthrie, J.T., 2003. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58, 179-196. http://dx.doi.org/10.1016/S0143-7208(03)00064-0

Petersen, L., Heynen, M., Pellicciotti, F., 2017. Freshwater Resources: Past, Present, Future. 1-11. http://dx.doi.org/10.1002/9781118786352.wbieg0712

Poots, V., McKay, G., Healy, J., 1978. Removal of basic dye from effluent using wood as an adsorbent. Journal (Water Pollution Control Federation), 926-935.

Prashanth, M.N., Paulraj, R., Ramasamy, P., Vijayan, N., 2017. One step synthesis of tin oxide nanomaterials and their sintering effect in dye degradation. Optik 135, 434-445. http://dx.doi.org/10.1016/j.ijleo.2017.01.068

Qin, X., Li, Z., Zhu, Z., Fu, H., Li, H., Wang, A., Zhang, H., Zhang, H., 2017. Mechanism and kinetics of treatment of acid orange II by aged Fe-Si-B metallic glass powders. Journal of Materials Science & Technology. http://dx.doi.org/10.1016/j.jmst.2017.01.024

Qin, X.D., Zhu, Z.W., Liu, G., Fu, H.M., Zhang, H.W., Wang, A.M., Li, H., Zhang, H.F., 2015. Ultrafast degradation of azo dyes catalyzed by cobalt-based metallic glass. Sci Rep 5, 18226. http://dx.doi.org/10.1038/srep18226

Qu, X.L., Alvarez, P.J.J., Li, Q.L., 2013. Applications of nanotechnology in water and wastewater treatment. Water Res 47, 3931-3946. http://dx.doi.org/10.1016/j.watres.2012.09.058

Ramya, M., Karthika, M., Selvakumar, R., Raj, B., Ravi, K.R., 2017. A facile and efficient single step ball milling process for synthesis of partially amorphous Mg-Zn-Ca alloy powders for dye degradation. Journal of Alloys and Compounds 696, 185-192. http://dx.doi.org/10.1016/j.jallcom.2016.11.221

Robinson, T., McMullan, G., Marchant, R., Nigam, P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technol 77, 247-255. http://dx.doi.org/doi 10.1016/S0960-8524(00)00080-8

Ruiz, N., Seal, S., Reinhart, D., 2000. Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation. Journal of Hazardous Materials 80, 107-117. http://dx.doi.org/doi 10.1016/S0304-3894(00)00281-8
Sadegh, H., Ali, G.A.M., Gupta, V.K., Makhlouf, A.S.H., Shahryari-ghoshekandi, R., Nadagouda, M.N., Sillanpää, M., Megiel, E., 2017. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry 7, 1-14. http://dx.doi.org/10.1007/s40097-017-0219-4

Saha, N., Rahman, M.S., Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W.S., 2017. Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management 185, 70-78. http://dx.doi.org/10.1016/j.jenvman.2016.10.023

Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A., Idris, A., 2011. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 280, 1-13. http://dx.doi.org/10.1016/j.desal.2011.07.019

Santhy, K., Selvapathy, P., 2006. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresource Technol 97, 1329-1336.

Sarkar, A.K., Pal, A., Ghorai, S., Mandre, N.R., Pal, S., 2014. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amyllopectin and poly(acrylic acid). Carbohydr Polym 111, 108-115. http://dx.doi.org/10.1016/j.carbpol.2014.04.042

Sekuljica, N.Z., Prlainovic, N.Z., Stefanovic, A.B., Zuza, M.G., Cickaric, D.Z., Mijin, D.Z., Knezevic-Jugovic, Z.D., 2015. Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: optimization and kinetic study. ScientificWorldJournal 2015, 371625. http://dx.doi.org/10.1155/2015/371625

Selen, V., Guler, O., Ozer, D., Evin, E., 2016. Synthesized multi-walled carbon nanotubes as a potential adsorbent for the removal of methylene blue dye: kinetics, isotherms, and thermodynamics. Desalin Water Treat 57, 8826-8838. http://dx.doi.org/10.1080/19443994.2015.1025851

Sen, S.K., Raut, S., Bandyopadhyay, P., Raut, S., 2016. Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews 30, 112-133. http://dx.doi.org/10.1016/j.fbr.2016.06.003

Sharma, S., Sharma, S., Pathak, S., Sharma, K.P., 2003. Toxicity of the azo dye methyl red to the organisms in microcosms, with special reference to the guppy (Poecilia reticulata peters). B Environ Contam Tox 70, 753-760. http://dx.doi.org/10.1007/s00128-003-0047-8

Singh, H., Chauhan, G., Jain, A.K., Sharma, S., 2017. Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering 5, 122-135.

Singh, R.L., Singh, P.K., Singh, R.P., 2015. Enzymatic decolorization and degradation of azo dyes – A review. International Biodeterioration & Biodegradation 104, 21-31. http://dx.doi.org/10.1016/j.ibiod.2015.04.027
Sohni, S., Gul, K., Ahmad, F., Ahmad, I., Khan, A., Khan, N., Bahadar Khan, S., 2017. Highly efficient removal of acid red-17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite. Polymer Composites.

Soriano, J.J., Mathieu-Denoncourt, J., Norman, G., de Solla, S.R., Langlois, V.S., 2014. Toxicity of the azo dyes Acid Red 97 and Bismarck Brown Y to Western clawed frog (Silurana tropicalis). Environmental Science and Pollution Research 21, 3582-3591. http://dx.doi.org/10.1007/s11356-013-2323-4

Tang, Y., Shao, Y., Chen, N., Liu, X., Chen, S.Q., Yao, K.F., 2015a. Insight into the high reactivity of commercial Fe–Si–B amorphous zero-valent iron in degrading azo dye solutions. RSC Adv. 5, 34032-34039. http://dx.doi.org/10.1039/c5ra02870a

Tang, Y., Shao, Y., Chen, N., Yao, K.-F., 2015b. Rapid decomposition of Direct Blue 6 in neutral solution by Fe–B amorphous alloys. RSC Adv. 5, 6215-6221. http://dx.doi.org/10.1039/c4ra10000j

Tsai, W.-T., Hsien, K.-J., Hsu, H.-C., Lin, C.-M., Lin, K.-Y., Chiu, C.-H., 2008. Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresource Technol 99, 1623-1629.

Tu, H., Yu, Y., Chen, J., Shi, X., Zhou, J., Deng, H., Du, Y., 2017. Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polymer Chemistry.

Wang, H., Yuan, X., Zeng, G., Leng, L., Peng, X., Liao, K., Peng, L., Xiao, Z., 2014a. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent. Environmental Science and Pollution Research 21, 11552-11564.

Wang, J.-Q., Liu, Y.-H., Chen, M.-W., Xie, G.-Q., Louzguine-Luzgin, D.V., Inoue, A., Perepezko, J.H., 2012a. Rapid Degradation of Azo Dye by Fe-Based Metallic Glass Powder. Advanced Functional Materials 22, 2567-2570. http://dx.doi.org/10.1002/adfm.201103015

Wang, J.Q., Liu, Y.H., Chen, M.W., Louzguine-Luzgin, D.V., Inoue, A., Perepezko, J.H., 2012. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders. Sci Rep 2, 418. http://dx.doi.org/10.1038/srep00418

Wang, P., Wang, J.-Q., Li, H., Yang, H., Huo, J., Wang, J., Chang, C., Wang, X., Li, R.-W., Wang, G., 2017. Fast decolorization of azo dyes in both alkaline and acidic solutions by Al-based metallic glasses. Journal of Alloys and Compounds 701, 759-767. http://dx.doi.org/10.1016/j.jallcom.2017.01.168

Wang, X., Pan, Y., Zhu, Z., Wu, J., 2014b. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process. Chemosphere 117, 638-643. http://dx.doi.org/10.1016/j.chemosphere.2014.09.055

Wen, T., Wang, J., Yu, S., Chen, Z., Hayat, T., Wang, X., 2017. Magnetic Porous
Carbonaceous Material Produced from Tea Waste for Efficient Removal of As (V), Cr (VI), Humic Acid and Dyes. ACS Sustainable Chemistry & Engineering.

Xie, S.H., Huang, P., Kruzic, J.J., Zeng, X.R., Qian, H.X., 2016. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Sci Rep-Uk 6, 21947. http://dx.doi.org/ARTN 2194710.1038/srep21947

Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M., 2014a. Dye and its removal from aqueous solution by adsorption: A review. Adv Colloid Interface 209, 172-184. http://dx.doi.org/10.1016/j.cis.2014.04.002

Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M., 2014b. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209, 172-184. http://dx.doi.org/10.1016/j.cis.2014.04.002

Yang, J.F., Bian, X.F., Yuan, M.L., Bai, Y.W., Liu, Y., Fan, J.P., Lu, X.Q., Song, K.K., 2013. Excellent degradation performance of azo dye by metallic glass/titanium dioxide composite powders. Journal of Sol-Gel Science and Technology 67, 362-367. http://dx.doi.org/10.1007/s10971-013-3089-3

Yang, Y.-J., Kang, F.-W., Xing, D.-W., Sun, J.-F., Shen, Q.-K., Jun, S., 2007. Formation and mechanical properties of bulk Cu-Ti-Zr-Ni metallic glasses with high glass forming ability. Transactions of Nonferrous Metals Society of China 17, 16-20.

Yao, L., Zhang, L., Wang, R., Chou, S., Dong, Z., 2016. A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes. Journal of hazardous materials 301, 462-470.

Zaini, M.A.A., Cher, T.Y., Zakaria, M., Kamaruddin, M.J., Setapar, S.H.M., Yunus, M.A.C., 2014. Palm oil mill effluent sludge ash as adsorbent for methylene blue dye removal. Desalin Water Treat 52, 3654-3662. http://dx.doi.org/10.1080/19443994.2013.854041

Zehra, T., Priyantha, N., Lim, L.B., 2016. Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies. Environmental Earth Sciences 75, 1-15.

Zehra, T., Priyantha, N., Lim, L.B., Iqbal, E., 2015. Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalin Water Treat 54, 2592-2600.

Zeng, L.X., Chen, Y.F., Zhang, Q.Y., Kang, Y., Luo, J.W., 2014. Adsorption of congo red by cross-linked chitosan resins. Desalin Water Treat 52, 7733-7742. http://dx.doi.org/10.1080/19443994.2013.833879

Zhang, C., Zhang, H., Lv, M., Hu, Z., 2010. Decolorization of azo dye solution by Fe–Mo–Si–B amorphous alloy. Journal of Non-Crystalline Solids 356, 1703-1706. http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.019

Zhang, C., Zhu, Z., Zhang, H., Hu, Z., 2011. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys. Chinese Science Bulletin 56, 3988-3992. http://dx.doi.org/10.1007/s11434-011-4781-8
Zhao, Y., Si, J., Song, J., Yang, Q., Hui, X., 2014. Synthesis of Mg–Zn–Ca metallic glasses by gas-atomization and their excellent capability in degrading azo dyes. Materials Science and Engineering: B 181, 46-55.

Zhou, K.F., Hu, X.Y., Chen, B.Y., Hsueh, C.C., Zhang, Q., Wang, J.J., Lin, Y.J., Chang, C.T., 2016. Synthesized TiO$_2$/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity. Appl Surf Sci 383, 300-309. http://dx.doi.org/10.1016/j.apsusc.2016.04.155
Table 1: Advantages and disadvantages of some waste dye removal techniques

Techniques	Advantages	Disadvantages
Ion exchange	No absorbent loss	Not suitable for all dyes
Peat	Good adsorbent	Surface area is low
Fentons reagent	Effective decolourisation	Sludge generation
Absorption (Activated carbon)	High effective for various dyes	Very expensive
Ozonation	Effluent volume remains fix	Shorthalf life (20 min)
Membrane filtration	Removes all dyes	Concentrated sludge production
Photochemical	No sludge generation	Formation of byproducts
Irradiation	Effective oxidation at lab scale	Required a lot of dissolved O₂
Electrokinetic coagulation	Economically applicable	High sludge generation
Biomass	Low operating cost and good efficiency	Slow process, performance depends on external factors
Table 2: Azo dye degradation using Fe-Based Metallic Alloys

Alloy name	Production Methods	Dye	Integrated with other techniques	Initial concentrations	pH	Removal efficiency	Other details and Literatures
Fe₇₈Si₉B₁₃	Arc melting then roller spinning	Rhodamine B (RhB)	H₂O₂	20 mg/L	3, 3.5, 4	70 % of RhB degrade within 60 min (at pH 3 and 0.5 M H₂O₂ addition)	This alloy stable for at least four cycle and effect of pH, H₂O₂ and temperature were also studied, (Wang et al., 2014)
Fe₇₂Si₂B₂₀Nb₆	Arc melting then roller spinning	Direct Blue 15 (DB 15)	H₂O₂	100 mg/L		Fully transparent within 60 min (20 % hydrofluoric acid treatment for 40 min before reaction to obtain porous structure)	This study was also investigated, dye concentration, temperature, H₂O₂ concentration and different porous structures on azo dye degradation (Deng et al., 2017)
Fe₇₈Si₁₃B₉	Amorphous alloy obtained from Antai Co.	Orange II Methyl Orange Direct Blue 6	100 200 300 mg/L	2, 4, 10.3	Fully transparent within 30 min (pH 2) also different pH, dye concentration and alloy concentration were studied.	Amorphous ribbon and same composition crystalline alloy and 300 mesh iron powders were examined (Tang et al., 2015)	
Fe₇₃Si₇B₁₇Nb₃	Arc melting then 1-high pressure argon gas atomization (GA) 2- Ball milling (BM)	Direct Blue 6	200 mg/L	-	Half peak intensity for BM powders 10 min GA powders 600 min Fe powders 2000 min	Two different metallic glasses and 325 mesh iron powder were examined at various temperatures (Wang et al., 2012)	
Fe₇₈Si₉B₁₃ Fe_{73.5}Si_{13.5}B₉Cu₁Nb₃	Arc melting then roller spinning	Brilliant red 3B-A	H₂O₂ 300W simulated solar light	20 mg/L 2 6.45 12	Fe₇₈Si₉B₁₃ in 5 min Fe_{73.5}Si_{13.5}B₉Cu₁Nb₃ in 20 min (for 2g/L ribbon dose, 1.0 mM)	Effect of pH, light intensity, catalyst dosage, H₂O₂ concentration were also studied (Jia et al., 2017)	
Composition	Method	Dye/Reagent	pH	Light Intensity	H₂O₂ Concentration	Photosynthesis/Characteristics	
----------------------	-------------------------	------------------------------	-----	-----------------	---------------------	--	
Fe₇₈Si₉B₁₃ Fe₇₃.₅Si₁₃₅B₉Cu₁Nb₃	Vacuum melt spinning	Methyl blue Methyl orange	2	3.4	7.8	Full transparent Fe₇₈Si₉B₁₃ in 20 min at pH=2. About 75% transparent for Fe₇₃.₅Si₁₃₅B₉Cu₁Nb₃ in 20 min at pH=2. Effect of pH, H₂O₂ concentration, light intensity, dosage area and reusability were investigated (Jia et al., 2017)	
Fe₇₈(Si,B)₂₂	Melt spinning	Orange II	100			Full transparent within 60 min. Effect of temperature was also studied (Zhang et al., 2011)	
Fe₇₈Si₉B₁₃	Melt spinning	Cibacron brilliant red 3B-A (BR3B-A)	2	4	6.45	Full transparent within 10 min (at 7.7 µW/cm² irradiation intensity, 20 mg/L dye concentration and pH=2). Effect of pH, H₂O₂ concentration, light intensity, catalyst dosage and reusability were investigated (Jia et al., 2016)	
Fe₇₈Si₉B₁₃	Arc melting then roller spinning	Methylene blue Solar light lamp and persulfate	20		3.39	Fully transparent within 20 min. Effect of persulfate, irradiation intensity, alloy dosage were studied. Outstanding sustainability of alloy was revealed (Jia et al., 2016).	
A-Fe₈₄Mo₀.₉₉B₁₆ B-Fe₈₂B₁₈ C-Fe₈₀B₂₀	Melt spinning	Direct Blue 6	200	4	7	Half life A-6.30 B-6.13 C-4.44 300 mesh iron, annealed crystalline A alloy, temperature pH and alloy dosage were also mentioned (Tang et al., 2015)	
(Fe₀.₉₉Mo₀.₀₁)₇₈Si₉B₁₃	Arc melting then roller spinning	Direct Blue 2B	200			Fully transparent within 30 min. Compare decolorization efficiency of annealed crystalline ribbon with amorphous ribbon and it was also examined reusability of ribbons (Zhang et al., 2010)	
Alloy Code	Method	Catalyst	Concentration	Half-life	Reusability	Notes	
------------	--------	----------	---------------	-----------	-------------	-------	
A-Fe₇₉B₁₆Si₅	Arc melting then roller spinning	Orange G	100 mg/L	6	A-Fully transparent within 180 min	Alloy B reusability up to 11th cycles whereas alloy A has 8 cycles reusability. In short, Alloy B was shorter decolorization time and more reusability compared to alloy B (Liu et al., 2014)	
B-Fe₆₆.₃B₁₆.₆Y₁₇.₁							
Fe₇₃.₅Si₁₃.₅B₉Cu₁Nb₃	Melt spinning	Malachite green	300 W simulated solar light lamp persulfate	100 mg/L	2.8	Fully transparent within 30 min	Effect of pH, light intensity, catalyst dosage, persulfate Concentration and Stability and reusability of alloys were also studied (Liang et al., 2017)
A-Fe₇₆B₁₂Si₉Y₃ ribbon	Melt spinning then ball milling	Methyl orange	20 mg/L	2 4 6 8 10 12	Half-life for A-90 min B-5 min C-10 min D-20 min E-5000 min	Effect of annealing temperature of alloys, pH, temperature and reusability were investigated. Also some results compared with zero valent iron (Xie et al., 2016)	
B-prepared alloy at A ball milled C-B annealed at 474 K for one hour D- B annealed at 853 K for one hour E-Crystalline zero-valent iron							
Fe₇₈Si₉B₁₃	Gas-atomized	Acid orange II	200 mg/L	2.5 4.5 6.6 8.5 10.5	98 % transparent within 10 min	Effect of pH, reusability and degradation mechanism and kinetics were studied (Qin et al., 2017)	
Fe₄₈Cr₁₃Mo₁₄Y₂C₁₅B₆	Gas-atomized, ball milling	Direct Blue	15 mg/L	-	Transparent within 25 to 250 min according to milling time	(Das et al., 2015)	
Table 3: Azo dye degradation using Mg-Based Metallic Alloys

Alloy name	Production Methods	Dye	Initial concentrations	pH	Removal efficiency	Other details and Literatures
\(\text{Mg}_{66}\text{Zn}_{35}\text{Ca}_5 \)	Ball milling	Congo red	200 gm/L	6.7	Transparent after 15 min (with 0.2 g powders)	Effect of powder dosage was also investigated (Ramya et al., 2017)
\(\text{Mg}_{65}\text{Cu}_{25}\text{Y}_{10} \)	Arc melting then melt spinning then ball milling	Direct Blue 6	20 mg/L		Transparent after 4 min for Ball milled powder	Effect of nanoporous copper, ball milled powder and dealloyed powder were studied (Luo et al., 2014)
\(\text{Mg}_{60}\text{Zn}_{35}\text{Ca}_5 \)	Melt spinning	Direct Blue 6	200 mg/L		Decolorization within 360 min	(Iqbal and Wang, 2014)
\(\text{Mg}_{73}\text{Zn}_{21.5}\text{Ca}_{5.5} \)	Melt spinning	Direct Blue 6	200 mg/L	3 7 10	Transparent within 0.78 min	This study also examined three different particles annealed crystalline powder, power exposed air (oxygen) and effect of temperature and pH (Wang et al., 2012)
\(\text{Mg}_{63+x}\text{Zn}_{32-x}\text{Ca}_5 \) (\(x=0,3,7,10 \))	Gas-atomized and melt spinning	Direct Blue 6	200 mg/L		M70-coded powder transparent within 7.15 min	The produced metallic glassy powders were considerably higher degradation capacity than Fe based powders found in this study. Also degradation rate were related to concentration of Mg gave best result at 70>73>66>63 respectively (Zhao et al., 2014).
Alloy name	Production Methods	Dye	Initial concentrations	pH	Removal efficiency	Other details and Literatures
------------	-------------------	-----	------------------------	----	--------------------	-------------------------------
Mn$_{85}$Al$_{15}$	Arc melting then roller spinning and then ball milling	Reactive Black 5	40 mg/L	3 6 10	Fully transparent within 30 min	Effect of temperature and pH were also studied (Ben Mbarek et al., 2017)
Co$_{78}$Si$_{8}$B$_{14}$	Melt spinning then ball milling	-	200 mg/L	3 4 5 8 9 10	Transparent less than 2 min	Four different powders, effect of pH, initial dye concentration, temperature and reusability were mentioned (Qin et al., 2015)
Al$_{91-x}$Ni$_{9}$Y$_{x}$ (x=0, 3, 6, 9)	Induction melting then melts spinning	Direct Blue 2B	200 mg/L	2 7 12	Transparent less than 120 min	Effect of addition of Y to composition, temperature and pH were deeply investigated (Wang et al., 2017)
Al$_{82}$Y$_{8}$Ni$_{7}$Fe$_{3}$	Gas-atomized	Direct Blue 6	0.015 Molar	transparent less than 40 min	The produced alloy was compared with zero valent iron and show superior properties compared to it (Das et al., 2016)	
A-AlCoCrTiZn	Ball milling	Direct Blue 6	200 mg/L	Transparent less than 10 min for alloy A	Alloy A has been one of the best metallic glass in azo dye degradation area. This was also the only study with High Enthalpy Alloys and azo dye degradation (Lv et al., 2016)	
Table Captions

Table 1: Advantages and disadvantages of some waste dye removal techniques

Table 2: Azo dye degradation using Fe-Based Metallic Alloys

Table 3: Azo dye degradation using Mg-Based Metallic Alloys

Table 4: Azo dye degradation using some miscellaneous alloys
Figures Captions

Figure 1: Distribution of total water on world, freshwater and human accessible freshwater.

Figure 2: Number of publications with “wastewater” mentioned in the title.

Figure 3: Schematic diagram of degradation performance of azo dyes for amorphous alloys.

Figure 4: Schematic diagram of melt spinning technique.

Figure 5: Schematic diagram of mechanical alloying technique.

Figure 6: Schematic diagram of furnace in arc melting machine for suction casting technique.

Figure 7: Removal efficiency of the different alloys as a function time.
Figure 3
Figure 4
Figure 5

Steel balls

Powders

Steel cup

Planeter disk

Ball milling
Figure 6

Arc melting furnace
Figure 7