Oncocytic variant of medullary thyroid carcinoma: a rare case of sporadic multifocal and bilateral RET wild-type neoplasm with revision of the literature

Gian Luca Rampioni Vinciguerra,1 Niccolò Noccioli,1 Claudia Gippitelli,1 Angelo Minucci,2 Ettore Capoluongo,2 Armando Bartolazzi1

1Department of Pathology, Sant’Andrea Hospital, University Sapienza of Rome; 2Laboratory of Clinical Molecular and Personalized Diagnostics, Institute of Biochemistry and Clinical Biochemistry, Catholic University and Foundation, Gemelli Hospital, Rome Italy

Abstract

Oncocytic variant of medullary thyroid carcinoma (OV-MTC) is a very unusual entity, up to date only 17 cases have been reported in the literature. MTC is a neuro-endocrine malignancy arising from the para-follicular C cells of the thyroid gland. It generally has a slight female predominance and appears as a single lesion. However in the Multiple Endocrine Neoplasia Syndrome 2, linked to the point mutation of the RET oncogene, multifocal MTCs may also occur. Herein, we report the case of a 75 years old man with a rare form of sporadic multifocal and bilateral OV-MTC expressing wild-type RET gene. The histological and molecular features of this rare entity are presented and discussed with revision of the pertinent literature.

Introduction

Oncocytic changes are common findings in benign as well as in malignant thyroid conditions. Oncocytic metaplasia is invariably detected in Hashimoto thyroiditis and can be observed in single follicular lesions or in the form of nodular hyperplasia. Oncocytic variant of follicular adenoma may also occur. On the other hand well-differentiated thyroid carcinomas, both papillary and follicular types also have oncocytic variants.

Medullary thyroid carcinoma (MTC) is a relatively rare thyroid malignancy. It was first described by Hazard in 1959,1 and currently represents 5-10% of all thyroid malignancies.2 About 80% of MTC are sporadic, while 20% are linked to familial conditions such as Familiar Medullary Thyroid Carcinoma and Multiple Endocrine Neoplasia Syndrome 2 (MEN2) as a result of the point-mutation of the RET gene.3 In MEN2A medullary thyroid carcinoma is found associated with pheochromocytoma in about 20-50% of cases and with primary hyperparathyroidism in 5-20% of cases. MEN2B associates medullary thyroid carcinoma with pheochromocytoma in 50% of cases, with marfanoid habitus and with mucosal and digestive neurofibromatosis. In familial isolated MTC, instead, there are not other associated diseases. When inherited, multiple endocrine neoplasia type 2 is transmitted in an autosomal dominant pattern. Some cases, however, result from spontaneous new mutations in the RET gene. These cases occur in people with no family history of the disorder. In MEN2B, for example, about half of all cases arise as spontaneous new mutations.

RET is an oncogene coding for a tyrosine kinase receptor also involved in a fraction of papillary thyroid carcinoma where RET/papillary thyroid carcinoma (PTC) rearrangement occurs.4 Interestingly about 50% of sporadic MTC also show RET gene mutation;5 they are generally single lesions, while familiar RET-mutated MTC cases are frequently multifocal.

MTC seems to be closely related to C-cell hyperplasia. Two types of lesions can be recognised: a pre-neoplastic C-cell hyperplasia and a reactive or secondary type C-cell hyperplasia. The differential diagnosis of these conditions is not always easy at morphological level and, according to WHO 2004 is mainly based on the cellularity, intraglandular spread of medullary thyroid carcinoma cells and also on the demonstration of defects in the follicular basement membrane.3

Different variants of MTC have been described in the literature: papillary or pseudopapillary, glandular, giant cell, spindle cell, small cell, paraganglioma-like, clear cell, oncocytic, angiosarcoma-like, squamous cell, melanin producing and amphicrine.6 Among these, the oncocytic variant, first described by Harach,7 appears to be exceptional. In fact, only 17 cases have been reported so far.8

The surgical and oncological therapy for MTC is consistently different from that required for well-differentiated thyroid carcinomas. For this reason it is important to recognize the oncocytic variant of MTC because it can be easily misdiagnosed.

Here we describe a rare case of sporadic multifocal and bilateral oncocytic variant MTC (OV-MTC), carrying wtRET gene, occurring in a 75 years old man referred to our hospital for a thyroid goiter.

Case Report

A 75-year-old man underwent a neck eco-scan showing a thyroid goiter extending to the upper region of the chest cavity and dislocating the trachea. The thyroid showed a heterogeneous echo pattern with multiple confluent nodules with merging and undefined borders. Multiple enlarged latero-cervical lymph nodes were also detected bilaterally, but their morphological features were suggestive for an inflammatory origin.

Fine needle aspiration cytology of the prevalent thyroid nodule was performed elsewhere and a cytological report of benign thyroid condition (Thy-2 according to the British Thyroid Association) was provided.3

Routine laboratory analysis including thyroglobulin level, TSH, FT3 and FT4 were in the normal range whereas calcitonin level was found to be 62.7 pg/mL (RIA normal range: 0-17 pg/mL). The patient revealed a family history for colorectal adenocarcinoma and underwent simple nephrectomy in the past years for renal cell carcinoma. During last follow-up a magnetic resonance imaging (MRI) scan high-
lighted adrenal enlargement compatible with cortical nodular hyperplasia.

Because of symptoms and high serum calcitonin levels a total thyroidectomy with central nodal dissection was performed.

Grossly the thyroid appeared normal in shape, fairly enlarged (left lobe 6×3.5×2.5 cm, isthmus 2.5×1 cm, right lobe 7×3×2.5 cm). Cut sections showed the aspect of a colloid goiter with 5 whitish areas with irregular edges, 0.3-0.7 cm in diameter scattered in both thyroid lobes, which were sampled for histological examination. At histology a multinodular goiter (hyperlplasia) was confirmed, but scattered neoplastic cells showing large eosinophilic and loosely granular cytoplasm, arranged in nests and in a trabecular fashion were detected bilaterally. Their nuclei showed salt-and-pepper-textured chromatin, enhancement of nuclear membrane and occasional prominent nucleoli. No alterations suggestive of PTC were visible (Figure 1A,B). All of the nine examined lymph nodes showed chronic reactive lymphadenitis.

Neoplastic oncocytic foci were immunoreactive for calcitonin, galectin-3 and TTF1. Immunostaining for S100 protein highlighted the sustentacular cells located at the periphery of the neoplastic cell nests (Figure 1C,D). Congo Red histochemical staining did not show any amyloid deposition.

According to morphology and immunophenotype, a diagnosis of multifocal and bilateral oncocytic variant of medullary carcinoma was made.

Considering the co-existence of bilateral adrenal lesions revealed at MRI-scan, the possibility of a MEN syndrome was investigated. In order to exclude a genetic form of disease, RET gene analysis was planned after patient’s informed consent. Genomic DNA was isolated from peripheral blood by a manual method (Roche Diagnostics, Basel, Switzerland).

Since about 98% of patients with autosomal dominant hereditary form of medullary thyroid carcinoma (MTC), known as multiple endocrine neoplasia type 2 (MEN2) presents hotspot mutations in exons 2, 5, 8, 10, 11, 13, 14, 15 and 16 of the RET gene, we performed direct sequencing of this exons set, as previously reported.11 Oncocytic variant of MTC is very rare and considering the possibility of additional RET mutations, which were not included in the aforementioned screening-test, a direct sequencing of the entire RET coding sequence comprehensive of exon-intron junctions was performed.13 PCR products were sequenced by using the Big Dye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA) in an automated sequencer ABI Prism 3500 Genetic Analyzer (Applied Biosystems). Using the SeqScape® Software v2.5, sequences were aligned to the reference sequence NG_007489.1. Finally no germline RET mutations were identified.

Discussion

Oncocytic variant of medullary thyroid carcinoma is an extremely rare entity and only 17 cases have been reported in the literature until

Table 1. Oncocytic variant of medullary thyroid carcinoma reported in the literature.

Study	Reported cases	Sex	Age	Single/multifocal	RET-status
Harach et al.1	7	6F, 1M	56-67	NS	ND
Canberk et al.3	1	F	54	Single lesion	ND
Dominguez Malagon et al.11	1	M	65	Single lesion	ND
Dediositis et al.14	1	F	71	Single lesion	ND
Desai et al.13	3	NS	NS	NS	ND
Tranchida et al.16	1	F	66	Single lesion	ND
Raickilin et al.17	2	NA	NA	NA	ND
Chetty18	1	F	54	NS	ND

NS, not specified; ND, not determined; NA, not available
now. Nevertheless it appears oncologically relevant to recognize this entity, because it can be misdiagnosed with several benign oncotypic changes occurring in the thyroid gland.

Canberk S. and colleagues highlight how difficult can be to recognize the oncotypic variant of medullary thyroid carcinoma on cytological bases. The morphology of neoplastic cells, the disposition like single cells or cell nests, presence of nuclei with clumping chromatin and inconspicuous nucleoli, lack of the typical nuclear features of papillary carcinoma, will arise a suspect of MTC that will be supported by serological (high serum levels of calcitonin) and immunohistochemical data, although very rare cases of MTC with abortive calcitonin secretion have been reported also.

In the present case the patient underwent fine needle aspiration-cytology for thyroid nodules classified as Thy2 (benign) in a regional hospital. This approach likely provided a cytological sampling of the prevalent thyroid nodules, whereas the neoplastic sub-centimetric multifocal lesions were missed.

Histologically, the most relevant diagnostic aspects were the multifocality and bilaterality of the lesion, which put the differential diagnosis between a multifocal and bilateral MTC oncotypic type or a focal neoplasia arisen in a context of multifocal C-cell hyperplasia with oncotypic changes, two entities which are difficult to be distinguished.

Even if the small dimension of the vast majority of neoplastic foci could lead to a diagnosis of C-cell hyperplasia, we rejected this hypothesis in consideration of the number of cells characterising each foci, the presence of cellular atypia and most important the common oncotypic phenotype among the neoplastic foci. The latter suggests a clonal multifocal expansion rather than the occurrence of common oncotypic change in scattered hyperplastic calcitonin producing cell aggregates. Moreover this case lacks of the mutation of RET gene, concerning the classical involved exons in hereditary forms (Exons 10 MEN2B), (Exons 10, 11 MEN2A) (Exons 10, 13, 16 FMTC), postulating other molecular mechanisms that are able to cause both MTC and cortical nodular hyperplasia of the adrenal gland. To date, 17 cases of oncotypic variant of MTC have been reported in the literature. As shown in Table 1, oncotypic variant of MTC is characterized by a mean age at presentation older than common MTC (63.9 versus 50 years) and a stronger predominance in women (F:M ratio around 5:1). The former datum seems to be confirmed by our case affecting a 75-year-old patient that on the other hand diverges with regard to sex prevalence. This could be due to the paucity of cases described in the literature. Furthermore oncotypic variant of MTC has been invariably reported as a single lesion in contrast with the multifocal and bilateral neoplasia reported here. Tranchida and colleagues described a recurrence in thyroid bed of medullary thyroid carcinoma in a patient, which underwent total thyroidectomy 20 years earlier. The relapsing mass showed an oncotypic differentiation that was lacking in the previous tumor. Considering the early onset of the tumor (45 years old at the diagnosis), they performed an immunohistochemical stains for RET-oncogene (NCL-RET by Leica Microsystems) that resulted negative. To the best of our knowledge, this is the first case of sporadic multifocal and bilateral OV-MTC, without amyloid deposition, with in RET gene expression. After all, the previously mentioned late onset of the reported similar tumors strengthen the hypothesis that this variant of medullary thyroid carcinoma is mainly sporadic.

Conclusions

Oncotypic variant of MTC is a very uncommon tumor malignancy, which is remarkably important to recognize in the spectrum of oncotypic lesions of thyroid gland. Future investigations are needed to evaluate the pathophysiology of oncotypic metabolism in parafollicular C-cells hyperplasia and derived tumors.

References

1. Hazard JB, Hawk WA, Crile G Jr. Medullary (solid) carcinoma of the thyroid; a clinicopathologic entity. J Clin Endocrinol Metab 1959;19:152-61.
2. Sippel RS, Kunnimalayiaan M, Chen H. Current management of medullary thyroid carcinoma. Oncologist 2008;13:539-47.
3. Baloch ZW, LiVolsi VA. C-cells and their associated lesions and conditions: a pathologist’s perspective. Turk Patholoji Derg 2015;31:60-79.
4. Santoro M, Carlomagno F, Melillo RM, et al. Molecular mechanisms of RET action in human neoplasia. J Endocrinol Invest 1999;22:811-9.
5. Pacini F, Elisei R, Remei C, Pinchera A. RET-proto oncogene mutations in thyroid carcinomas: clinical relevance. J Endocrinol Invest 2000;23:328-38.
6. Dellellis RA, Lloyd RV, Heitz PU, Eng C, eds. World Health Organization Classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004.
7. Harach HR, Bergholm U. Medullary (C cell) carcinoma of the thyroid with features of follicular oxyphilic cell tumours. Histopathology 1988;13:645-56.
8. Canberk S, Onenerk M, Gunes P, et al. Oncotypic variant of medullary thyroid carcinoma. Endocr Pathol 2015;26:320-3.
9. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid 2009;19:1159-65.
10. Pasini B, Ceccherini I, Romeo G. RET mutations in human disease. Trends Genet 1996;12:138-44.
11. Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1999;363:458-60.
12. Kasajima A, Cameselle-Teijeiro J, Loidi I, et al. A calcitonin non-producing neuroendocrine tumor of the thyroid gland. Endocr pathol 2016. [Epub ahead of print]
13. Dominguez-Malagon H, Delgado-Chavez R, Torres-Najera M, et al. Oxyphil and squamous variants of medullary thyroid carcinoma. Cancer 1989;63:1183-8.
14. Dedivitis RA, Di Giovanni JH, Silva GF, et al. Oncotypic variant of medullary thyroid carcinoma: case report. Arq Bras Endocrinol Metabol 2004;48:315-7. [Article in Portuguese]
15. Desai SS, Sarkar S, Borges AM. A study of histopathological features of medullary carcinoma of the thyroid: cases from a single institute in India. Indian J Cancer 2005;42:25-9.
16. Tranchida P, Estigarribia J, Sethi S, Giorgadze T. Cytologic diagnosis of recurrent medullary thyroid carcinoma with oncotypic change twenty-one years post-thyroidectomy: case report and review of the literature. Diagn Cytopathol 2010;39:641-6.
17. Ra khlin NT, Smirnova EA, Satylyganov IZh. Histological variants of thyroid medullary carcinoma. Arkh Patol 2001;63:10-4.
18. Chetty R. Hurthle cell medullary carcinomas of the thyroid gland. S Afr J Surg 1990;28:95-7.