Enhancing the property of SS316 steel using polyether ether ketone

D Kumaravel¹*, B Mohanraj², M Sivaraj³
¹, ², ³Department of Mechanical Engineering,
Sri Shanmugha College of Engineering and Technology, Salem
*Corresponding Author: kevinkumaravel@gmail.com

Abstract. Aim of this project is to improve the corrosive property of SS316 steel using polyether ether ketone. SS316 is the standard molybdenum bearing grade having excellent forming and welding characteristic. In this experiment low carbon version of 316 steel was taken as base metal which is used in heavy gauge welding component. Using plasma spray method, the coating process done on SS316 metal and their uniformity of coating was examined by microscope. Salt spray test has been conducted to check the corrosive property of polyether coated steel.

1 Introduction

SS316 steel is composed of 18.5 % chromium, 14% nickel, 3% molybdenum and 2% manganese as a major element. It has a tensile and yield strength of 485 Mpa and 170 Mpa respectively. SS316 steel is mainly used for marine application but the corrosion will be more in warm water. Hence in order to enhance the corrosive property of SS316 steel, it was subjected to polyether coating [1,2,3]. Polyether ether ketone having high chemical resistance even at high temperature. It show good resistant to thermal degradation and also attack by aqueous environments [4,5,6]. It has also having high resistance to biodegradation. It seals and manifolds are commonly used in fluid applications. In this experiment, plasma spray method was used to make a polyether coating over SS316 steel. In plasma spray process, the molten material is used to spray on the surface of material. Material is injected in powder form at very high temperature using plasma flame. Hot material strike the surface to form the coating. Plasma spray consist of both cathode and anode. In this method anode is Copper and cathode material is tungsten. Plasma gas passed around the cathode and through the anode which is shaped as a constricting nozzle. Due to high voltage the plasma occur which produce ionization. Arc produced due to resistance heating make a gas to reach high temperature. Through an external port, powder was fed into plasma flame [7,8].

2. Experimentation

At first, SS316 steel of 100 x 100 mm was taken and polished by grinding machine to carry out the coating process. Plasma spray coating process is used to spray the molten metal on the surface. In this method SS316 was subjected to plasma spray coating of polyether ether ketone in order to increase the corrosive property. Hot molten material which strike the surface create a layer by rapid cooling process. PEEK deposited on SS316 steel was obtained by plasma spray coating process. Due to high temperature of plasma, the polyether ketone form the coating on the surface. An arc is produced in
between the electrodes which consists of argon. During this process PEEK powder is continuously sprayed on the SS316 steel substrate. Table 1 shows the process parameter for salt spray testing.

Table 1. Parameters used in salt spray testing

Parameter	Value
pH solution	6.7 to 6.84
Pressure	12 psi to 16 psi
Sodium Chloride	5.2 - 5.4%
Chamber temperature	34.8 - 35.3 C
Collection of solution per hour	21.5 ml

Figure 1. Salt Spray Testing Apparatus.

3. Testing and result

3.1. SEM analysis

Figure 2 shows the scanning electron microscopic image of polyether ether ketone and figure 3 shows the SEM image of PEEK coated SS316 steel.

Figure 2. SEM image of PEEK

Figure 3. SEM image of PEEK coated SS316 steel
3.2 Atomic Force Microscope testing

Atomic force microscope formed the shape of the work piece surface in three dimensional with high resolution. Image can be obtained by scan the position of probe and measure the height during probe movement over the work piece [11-15]. To maintain constant force during testing electronic loop is used. Scanning will start in x-y plane when the tip contact the sample.

Table 2. Roughness analysis from AFM

Parameter	Range
Sampling amount	65536
Maximum	144 nm
Minimum	0 nm
S_y value (peak to peak)	144 nm
S_z value (ten point height)	72 nm
Average value	70 nm
S_a value (Average roughness)	14 nm
S_k value (Surface skewness)	0.00137283

Figure 4. AFM image

Figure 5. AFM image in 3D
3.3 Corrosion Test

In order to find the corrosive property of SS316 after coating, salt spray test was made. It is one the standard testing method as compare with other. In this method, corrosive attack was done on the coated sample to find the corrosive property of the metal. Duration of coating depends on the resistance offered by the coating over the surface. Salt spray testing is low cost method to find the corrosive property [9,10]. It consist of testing chamber where salt water is sprayed with the help of nozzle. Pressure of air was maintained in the range of 14 psi in testing apparatus. Corrosive test was conducted upto 300 hrs and from the result it is observed that the coated metal show good resistance to corrosion which is shown in figure 7.

Table 3. Salt Spray Test parameter
Air pressure (psi)
Chamber temperature (°C)
Components loading in chamber position
Concentration of solution (%)
pH value
Volume of solution collected (ml/hr)

4. Conclusion

In this experiment the Polyether ether Ketone (PEEK) coating was made on the SS316 steel. The coatings of 5 microns thickness was obtained using plasma spray coating process by maintaining the distance between the target and the substrate from 2.5 to 4 inch. The characteristics of coating was
analyzed by Atomic force Microscope and Scanning electron microscope. The salt spray test was conducted for coated SS316 steel at pH ranges from 6.74 to 6.87 for 300 hrs. It is observed that the coated sample remains unchanged beyond 320Hrs. Hence it is concluded that with the help of polyether ether ketone, the corrosive resistance can be improved for SS316 steel material.

5. References

[1] Ming Liu and Stuart Bell 2017 A eutectic salt high temperature phase change material: Thermal stability and corrosion of SS316 with respect to thermal cycling Solar Energy Materials and Solar Cells 170 1
[2] Andrews N and Giourntas L 2014 Effect of impact angle on the slurry erosion-corrosion of Stellite 6 and SS316 Wear 320 143
[3] Schreinlechner I and Sattler P 1992 Behaviour of SS316 with and without aluminization, in stagnant Pb17Li Journal of Nuclear Materials 191 970
[4] Arya Tewatia and Justin Hendrix 2017 Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite Materials Science and Engineering 216 41
[5] Deuk Ju Kim and Chi Hoon Park 2016 Characterization of a soluble poly(ether ether ketone) anion exchange membrane for fuel cell application International Journal of Hydrogen Energy 41 7649
[6] Adriana Soveja and Pierre Sallamand 2011 Improvement of flame spraying PEEK coating characteristics using lasers Journal of Materials Processing Technology 211 12
[7] Bingbing Zheng and Yifan Luo 2017 Investigation of the crystallinity of suspension plasma sprayed hydroxyapatite coatings Journal of the European Ceramic Society 37 5017
[8] Mohit Gupta and Nicolaie Markocsan 2017 Improving the lifetime of suspension plasma sprayed thermal barrier coatings Surface and Coatings Technology 332 550
[9] Elena Shchukina and Dmitry Grigoriev 2017 Comparative study of the effect of halloysite nanocontainers on autonomic corrosion protection of polyepoxy coatings on steel by salt-spray tests Progress in Organic Coatings 108 84
[10] Bao Z B and Wang Q M 2008 Corrosion behaviour of AIP NiCoCrAlYSiB coating in salt spray tests Corrosion Science 50 847
[11] Lanjiao Liu and Wenxiao Zhang 2017 Biomechanical measurement and analysis of colchicine-induced effects on cells by nanoindentation using an atomic force microscope Journal of Biomechanics 122 255
[12] Sadegh Sadeghzadeh 2017 Role of mechanical and thermal nonlinearities in imaging by Atomic Force Microscope International Journal of Mechanical Sciences 102 255
[13] Severin Unger and Shingo Ito 2016 Development of a Compact Atomic Force Microscope Based on an Optical Pickup Head 49 629
[14] Iwata F and Ohashi Y 2013 Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device 133 88
[15] Mingqian Hu and Jiongkun Wang 2008 Analysis of Sodium Benzoate Biototoxicity using Atomic Force Microscope Chinese Journal of Biotechnology 24 1428