Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia

Satoru Koyanagi, Naoki Kusunose, Marie Taniguchi, Takahiro Akamine, Yuki Kanado, Yui Ozono, Takahiro Masuda, Yuta Kohro, Naoya Matsunaga, Makoto Tsuda, Michael W. Salter, Kazuhide Inoue & Shigehiro Ohdo

Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain.
A variety of pathological conditions exhibit profound day–night changes in the symptom intensity with a large proportion exacerbating and occurrence of grave events. Diurnal alterations in pain hypersensitivity have been confirmed in patients with cancer, rheumatoid arthritis, diabetic neuropathy, fibromyalgia and multiple sclerosis; however, the underlying mechanism remains unknown.

Pain hypersensitivity is often caused by peripheral nerve injury, which is associated with the hyperexcitability of neurons in the dorsal horn of the spinal cord. Extracellular ATP in the spinal cord has been implicated in the development and maintenance of pain hypersensitivity after nerve injury. This pain hypersensitivity is even evoked by a simple touch, pressure from clothing or gentle massage, which is also known as ‘mechanical allodynia’.

In mammals, diurnal rhythms in physiological functions are governed by an internal self-sustained molecular oscillator referred to as the circadian clock. The circadian clock system in mammals is composed of a master pacemaker, which is located in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus, and subsidiary oscillators in other brain regions, as well as many peripheral tissues. The times of the day-dependent changes in the secretion of glucocorticoids from the adrenal glands are controlled by the SCN, which, in turn, synchronizes subsidiary oscillators to coordinate various biological processes, thereby generating daily rhythms in physiology and behaviour.

Since the glucocorticoid receptor (GCR) is expressed in most cell types, including spinal neurons, microglia and astrocytes, we investigated whether the diurnal secretion of adrenal glucocorticoids affects the threshold of mechanical allodynia in peripheral nerve-injured mice. Temporal elevations in glucocorticoid levels enhance the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. The stimuli of purinergic receptors decrease the threshold of mechanical allodynia. Serum- and glucocorticoid-inducible kinase-1 (SGK-1) mediates the glucocorticoid-enhanced release of ATP from astrocytes by opening the pannexin-1 hemichannels. Therefore, our findings reveal an underlying mechanism of diurnal exacerbation of neuropathic mechanical allodynia and also provide novel approaches to the management of chronic pain.

Results

Glucocorticoids govern diurnal exacerbation of mechanical allodynia. To determine the pathological relevance of the diurnal secretion of adrenal glucocorticoids in neuropathic hypersensitivity, we investigated the influence of adenectomy on the threshold of mechanical allodynia in nerve-injured mice. To achieve this, we prepared adenectomy-adrenalectomized (ADX) and sham-operated (sham) male ICR mice (Fig. 1). To induce neuropathic pain hypersensitivity, ADX mice underwent partial sciatic nerve ligation (PSL) in the right hindlimb. PSL is a well-established nerve injury model which produces pain hypersensitivity lasting >3 weeks. All animals were maintained on a 12-h light–dark cycle (ZT, zeitgeber time; ZT0, lights on; ZT12, lights off). Plasma CORT (corticosterone) concentrations in animals that had not been subjected to nerve injury—naïve mice—showed significant diurnal oscillations (F(20,548) = 5.482, P = 0.011; Fig. 1a, upper panel). The CORT levels increased from the late light phase to the early dark phase. A significant diurnal oscillation in plasma CORT levels was also observed in male sham + PSL mice on day 7 after nerve injury (F(5,30) = 6.592, P < 0.001; Fig. 1b, upper panel). No significant differences were observed in the rhythmicity of plasma CORT levels between sham + PSL and naïve male mice.

We found that the withdrawal threshold of the ipsilateral hindpaw, but not that of the contralateral hindpaw, of male sham + PSL mice exhibited a significant diurnal oscillation (F(5,30) = 5.482, P = 0.011; Fig. 1b, lower panel). By contrast, no diurnal variation was noted in the paw withdrawal threshold in male naïve mice (Fig. 1a, lower panel). The lowest level of paw withdrawal, that is, maximum pain hypersensitivity, in male sham + PSL mice occurred from the late light phase to the early dark phase (Fig. 1b, lower panel). The trough level of paw withdrawal corresponded to the peak in plasma CORT levels in male sham + PSL mice. This inverse relationship was observed between the threshold of mechanical allodynia and plasma CORT levels, for the entire 3-week observation period after PSL (Fig. 1e).

In contrast to naïve and sham + PSL mice, there was no diurnal oscillation in plasma CORT levels male ADX + PSL mice (F(5,34) = 1.271, P = 0.309; Fig. 1c, upper panel); CORT levels remained low throughout the day. Furthermore, the withdrawal threshold of the ipsilateral hindpaw in male ADX + PSL mice did not decrease even after nerve injury (F(5,34) = 1.311, P = 0.371; Fig. 1c, lower panel), which was similar to the paw withdrawal threshold in the contralateral side. Although we continued to assess the paw withdrawal threshold of male ADX + PSL mice for 3 weeks after nerve injury, no decreases in the pain threshold were observed during the duration of the experimental period (Fig. 1f).

To determine whether pain hypersensitivity could be reproduced in male ADX + PSL mice, we administered CORT (500 μg kg⁻¹ h⁻¹, s.c.) to animals starting 3 days after PSL. We found that the withdrawal threshold of the ipsilateral paw decreased to a level that was not different from the minimum level in sham + PSL mice (Fig. 1d). By contrast, the administration of CORT had no effect on the withdrawal threshold in the contralateral paw. In these experiments, CORT was administered continuously and neither plasma CORT levels nor the withdrawal threshold of the ipsilateral hindpaw in CORT-administered male ADX + PSL mice showed a significant diurnal oscillation (F(5,34) = 1.073, P = 0.408 for CORT levels, F(5,34) = 0.591, P = 0.707 for pain threshold; Fig. 1d). We also detected significant diurnal variations in the threshold of pain hypersensitivity of female sham + PSL mice (Supplementary Fig. 1). Consistent with males, diurnal variations in pain intensity was dampened by adenectomy. Therefore, the decrease observed in the threshold of pain hypersensitivity in PSL mice and the diurnal variations in the hypersensitivity appeared to be dependent on diurnal oscillations in glucocorticoid levels.

Since purinergic receptors on microglia in the spinal cord are responsible for the induction of pain hypersensitivity evoked by a peripheral nerve injury, the stimulation of spinal microglia by ATP is required for the development and maintenance of neuropathic pain hypersensitivity. Although an increase in the number of Iba1-positive cells, a marker of microglia, was observed in the ipsilateral side of the spinal cord in male sham + PSL mice (F(7,36) = 6.550, P < 0.001; Fig. 2a), no significant time-dependent changes were noted in the number of Iba1-positive cells. A further depression of ATP-evoked mechanical allodynia was observed in male sham + PSL mice (F(7,36) = 6.592, P < 0.001; Fig. 2b). A significant diurnal oscillation was also noted in the mRNA levels of interferon regulatory factor 8 (IRF8; F(7,36) = 13.307, P < 0.001; Fig. 2c), P2ry6 (F(7,36) = 7.586, P < 0.001; Fig. 2f) and P2ry12 (F(7,36) = 9.544, P < 0.001; Fig. 2g). We found no change in the mRNA levels for GCR encoded by Nr3c1 gene (F(7,36) = 0.347, P = 0.926; Fig. 2b), P2rx4 (F(7,36) = 1.325, P = 0.267; Fig. 2d) or P2rx7 (F(7,36) = 0.809, P = 0.586; Fig. 2e) in the ipsilateral side of the spinal cord in male sham + PSL mice; moreover, their mRNA levels did not show significant time-dependent variations. A significant time-dependent variation in CORT levels was also detected in the spinal cord of male sham + PSL mice (Supplementary Fig. 2; Supplementary...
Glucocorticoids enhance ATP release from the spinal cord. Extracellular ATP in the spinal cord has been implicated in the development and maintenance of pain hypersensitivity after nerve injury. Therefore, we also investigated whether temporary changes in glucocorticoid levels affected extracellular ATP release in the spinal cord of PSL mice. We prepared contralateral and ipsilateral spinal slices from L4-L5 lumbar segments of sham + PSL and ADX + PSL male mice at six different time points. The amount of ATP in the perfusate of the slices after incubation for 20 min was measured as an increase in ATP release. The increased amount of ATP was normalized to protein contents of the slices. The release of ATP from spinal slices prepared from male sham + PSL mice exhibited a significant diurnal oscillation with a peak from the late light phase to the early dark phase ($F_{5,20} = 2.552$, $P = 0.035$ for the ipsilateral side; $F_{5,20} = 2.049$, $P = 0.048$ for the contralateral side; $F_{5,20} = 0.008$; ANOVA; $P < 0.001$; ANOVA).
Figure 2 | Morphological and molecular alterations in the spinal cords of PSL mice. (a) Temporal profiles of Iba1-positive cells in the spinal cords of sham + PSL and ADX + PSL male mice. The dorsal horn areas are surrounded with dashed line. Scale bar, 100 μm. The right panel shows the quantification of the number of Iba1-positive cells (means ± s.e.m.; n = 5). Tukey-Kramer’s post hoc tests (PHT) shows that the number of Iba1-positive cells in the ipsilateral (Ipsi.) side of sham + PSL and ADX + PSL mice is significantly higher than that in the contralateral (Contra.) side (**P < 0.01, *P < 0.05), whereas no significant difference is noted in the number of cells between the two time points (F5,32 = 6.550, P < 0.001; ANOVA). (b-g) Temporal profiles of mRNA levels for GCR/Nr3c1, Irf8, P2rx4, P2rx7, P2ry6 and P2ry12 in the spinal cords of sham + PSL and male ADX + PSL mice (means ± s.e.m.; n = 5–6). **P < 0.01, *P < 0.05 significantly different from contralateral sides in the corresponding groups (F7,36 = 13.307, P < 0.001 for Irf8, F7,36 = 7.586, P < 0.001 for P2ry6, F7,36 = 9.544, P < 0.001 for P2ry12; ANOVA with Tukey-Kramer’s PHT).

Fig. 3a, left panel). Similar time-dependent variations were also detected in ATP concentrations in the cerebrospinal fluid (CSF) of sham + PSL mice (P < 0.05; Supplementary Fig. 4a; Supplementary Method). This may have been due to diurnal variations in the release of ATP from cells in the spinal cord. The rhythmic pattern of spinal ATP release in male sham + PSL mice resembled the overall oscillation in plasma and spinal CORT levels (Fig. 1b upper panel and Supplementary Fig. 2). In contrast, the oscillation in ATP release from spinal slices of male ADX + PSL mice was severely dampened (Fig. 3a, right panel); the release of ATP from both the ipsilateral and contralateral sides remained low throughout the day (F5,28 = 1.158, P = 0.369 for the ipsilateral side; F5,28 = 0.492, P = 0.779 for the contralateral side). Time-dependent variations in ATP concentrations in the CSF were also diminished in female ADX + PSL mice (Supplementary Fig. 4b). Since the single subcutaneous administration of CORT (30 mg kg⁻¹) to male ADX + PSL mice significantly enhanced ATP release from the ipsilateral and contralateral spinal slices (F5,16 = 3.755, P = 0.042 for the ipsilateral side, F5,16 = 4.933, P = 0.018 for the contralateral side; Fig. 3b), diurnal changes in glucocorticoid levels appear to govern the time-dependent oscillations in extracellular ATP release in the spinal cord.

The administration of CORT to male ADX + PSL mice significantly enhanced ATP release from both the ipsilateral and contralateral sides of the spinal cord. However, the withdrawal threshold of the ipsilateral hindpaw only decreased significantly after the administration of CORT (F6,35 = 2.356, P = 0.042 for the ipsilateral side; F6,35 = 1.075, P = 0.396 for the contralateral side; Fig. 3c). Due to the ability of glucocorticoids to enhance ATP release as well as produce mechanical allodynia in ADX + PSL mice, we also examined whether ATP was involved in the glucocorticoid-induced decrease in the threshold of pain hypersensitivity. The single intrathecal injection of ATP (30 nmol per mouse) to male ADX + PSL mice transiently, but significantly decreased the withdrawal threshold of the ipsilateral hindpaw (F6,19 = 3.964, P = 0.002; Fig. 3d); however, ATP-induced decreases in the withdrawal threshold were not detected in the...
Contral.

ANOVA with Tukey–Kramer’s PHT. Time of drug administration was set at ZT10. All experiments were performed on day 7 after nerve injury. Observed in ATP release from the ipsilateral (Ipsi.) oscillations in ATP release from spinal slices were abrogated by adrenalectomy (means ± s.e.m.; n = 5). *P < 0.05 significantly different from the basal level (F_{23,93} = 3.755, P = 0.042 for Ipsi.; F_{23,93} = 4.933, P = 0.018 for Contra; ANOVA with Tukey-Kramer’s PHT). Administration of CORT (30 mg kg⁻¹, s.c.) to male ADX+/PSL mice decreases the withdrawal threshold of the ipsilateral hindpaw (means ± s.e.m.; n = 6). *P < 0.01; *P < 0.05 significantly different from the basal level (F_{23,93} = 2.356, P = 0.042; ANOVA with Tukey-Kramer’s PHT). Intrathecal (i.th.) injection of ATP (30 nmol per mouse) to male ADX + PSL mice decrease the withdrawal threshold of the ipsilateral hindpaw (means ± s.e.m.; n = 8). **P < 0.01; *P < 0.05 significantly different from the basal level (F_{23,93} = 3.964, P = 0.002; ANOVA with Tukey-Kramer’s PHT).

The P2Y$_{12}$ receptor antagonists AR-C69931 (5 pmol, i.th.), or AZD6140 (10 pmol, i.th.) prevent CORT-evoked mechanical allodynia in male ADX+/PSL mice after the injection of AR-C69931 (5 pmol per mouse, i.th.) or AZD6140 (10 pmol per mouse, i.th.) (means ± s.e.m.; n = 6). **P < 0.01; **P < 0.05 significantly different from vehicle (0.01% DMSO, 0.01% ethanol in PBS)-treated groups (F_{14,75} = 1.965, P = 0.033; ANOVA with Tukey-Kramer’s PHT).

Time of drug administration was set at ZT10. All experiments were performed on day 7 after nerve injury.

contal.

Figure 3 | Glucocorticoids decrease the threshold of mechanical allodynia in PSL mice via P2Y$_{12}$ receptor in the ipsilateral spinal cord. (a) Diurnal oscillations in ATP release from spinal slices were abrogated by adrenalectomy (means ± s.e.m.; n = 5–6). Significant time-dependent variations are observed in ATP release from the ipsilateral (Ipsi.) (F_{23,90} = 2.552, P = 0.035; ANOVA) and contralateral (Contra.) sides (F_{23,90} = 2.049, P = 0.048; ANOVA). Subcutaneous (s.c.) administration of CORT (30 mg kg⁻¹) to male ADX + PSL mice enhances ATP release from spinal slices (means ± s.e.m.; n = 5). *P < 0.05 significantly different from the basal level (F_{23,90} = 3.755, P = 0.042 for Ipsi.; F_{23,90} = 4.933, P = 0.018 for Contra; ANOVA with Tukey-Kramer’s PHT). Administration of CORT (30 mg kg⁻¹, s.c.) to male ADX + PSL mice decreases the withdrawal threshold of the ipsilateral hindpaw (means ± s.e.m.; n = 6). *P < 0.01; *P < 0.05 significantly different from the basal level (F_{23,93} = 2.356, P = 0.042; ANOVA with Tukey-Kramer’s PHT). Intrathecal (i.th.) injection of ATP (30 nmol per mouse) to male ADX + PSL mice decrease the withdrawal threshold of the ipsilateral hindpaw (means ± s.e.m.; n = 8). **P < 0.01; *P < 0.05 significantly different from the basal level (F_{23,93} = 3.964, P = 0.002; ANOVA with Tukey-Kramer’s PHT).

The P2Y$_{12}$ receptor antagonists AR-C69931 (5 pmol per mouse, i.th.) or AZD6140 (10 pmol per mouse, i.th.) prevent CORT (30 mg kg⁻¹, s.c.)-induced pain hypersensitivity in male ADX + PSL mice (means ± s.e.m.; n = 5–6). **P < 0.05; significantly different from other groups (F_{23,90} = 1.012, P = 0.046; ANOVA with Tukey-Kramer’s PHT). Effects of antagonist P2X$_{1–4}$ receptors TNP-ATP (3 nmol per mouse, i.th.) or antagonist P2Y$_{6}$ receptor MRS2578 (30 nmol per mouse, i.th.) on CORT (30 mg kg⁻¹, s.c.)-induced pain hypersensitivity in male ADX + PSL mice (means ± s.e.m.; n = 5–6). **P < 0.05; significantly different from other groups (F_{23,93} = 1.987, P = 0.014; ANOVA with Tukey-Kramer’s PHT). The withdrawal threshold of the ipsilateral hindpaw of male sham + PSL mice after the injection of AR-C69931 (5 pmol per mouse, i.th.) or AZD6140 (10 pmol per mouse, i.th.) (means ± s.e.m.; n = 5–6). **P < 0.01; **P < 0.05 significantly different from vehicle (0.01% DMSO, 0.01% ethanol in PBS)-treated groups (F_{14,75} = 1.965, P = 0.033; ANOVA with Tukey-Kramer’s PHT).
ADX + PSL mice (Fig. 3f). The single intrathecal injection of AR-C69931 or AZD6140 also prevented PSL-induced decreases in the withdrawal threshold of ipsilateral hindpaw of male mice (F1,14.75 = 1.965, P = 0.033; Fig. 3g). We also found that the P2Y12 receptor antagonists, AR-C69931, alleviated CORT- or PSL-induced mechanical allodynia in female mice (Supplementary Fig. 5). Since, the mRNA levels of P2ry12 were significantly elevated in the ipsilateral spinal cord of both male and female ADX + PSL mice (Fig. 2g), P2Y12 receptors appeared to be involved in the glucocorticoid-induced decrease in the threshold of mechanical allodynia in ADX + PSL mice.

Glucocorticoids induce exacerbation of mechanical allodynia via SGK-1. Glucocorticoids modulate the physiology of the cell by activating or repressing the expression of its target genes. Therefore, we hypothesized that glucocorticoids caused diurnal oscillations in spinal ATP release by inducing specific genes. To screen for glucocorticoid-regulated genes whose expression in the spinal cord exhibited diurnal oscillations, we performed oligonucleotide microarray analyses using RNA isolated from the spinal cords of male sham + PSL or ADX + PSL mice at ZT10 and ZT22, times at which plasma glucocorticoid levels in sham + PSL mice peaked and declined, respectively (Fig. 1b). Three criteria were applied to select diurnal cycle-dependent glucocorticoid-regulated genes in the spinal cord. (1) Sham + PSL at ZT10 > Sham + PSL at ZT22; (2) ADX + PSL at ZT10 > ADX + PSL at ZT22; and (3) Sham + PSL > ADX + PSL. From this analysis, we identified 25 genes as candidates for diurnal time-dependent glucocorticoid-regulated genes expressed in the spinal cord (Table 1). The glucocorticoid-regulated gene Sgk-1 was included as a diurnal time-dependent spinal gene. Since typical glucocorticoid response elements are located in the upstream promoter region of both mouse and human Sgk-1 genes, we focused on this gene to examine whether SGK-1 was involved in the glucocorticoid-regulated diurnal release of ATP in the spinal cord as well as time-dependent oscillations in the threshold of mechanical allodynia in PSL mice.

The expression of Sgk-1 mRNA and its protein exhibited a significant diurnal oscillations in both the ipsilateral (F4,24 = 33.233, P < 0.001 for mRNA; F5,24 = 4.808, P = 0.006 for protein) and contralateral (F4,24 = 14.996, P < 0.001 for mRNA; F5,24 = 4.591, P = 0.007 for protein) sides of the spinal cord of male sham + PSL mice (Fig. 4a). However, oscillations were not detected in the ipsilateral (P = 0.995 for mRNA, P = 0.979 for protein) side of male ADX + PSL mice (Fig. 4b). Disruption of diurnal variation in Sgk-1 mRNA levels was also detected in female ADX + PSL mice (Supplementary Fig. 6). The results of the chromatin immunoprecipitation analysis indicated that diurnal oscillations in the spinal expression of Sgk-1 were associated with enhanced binding of the GCR to the promoter region of the gene (Fig. 4c). The induction of the spinal expression of Sgk-1 and enhancements in GCR binding to the promoter region were also detected when male ADX + PSL mice were subcutaneously administered with 30 mg kg−1 CORT (Supplementary Fig. 7). The single intrathecal injection of the SGK-1 inhibitor GSK650394 (0.5 nmol per mouse) to male sham + PSL mice increased the threshold of mechanical allodynia (F4,40 = 8.876, P < 0.001; Fig. 4d), and this was accompanied by the suppression of extracellular ATP release in the spinal cord (F3,16 = 12.454, P < 0.001). Furthermore, the intrathecal injection of GSK650394 (0.5 nmol per mouse) to male ADX + PSL mice prevented the CORT-induced decrease in the threshold of mechanical allodynia (F3,36 = 3.599, P < 0.001), as well as spinal ATP release (F3,36 = 5.735, P < 0.001; Fig. 4e). Similar inhibitory effects of GSK650394 on CORT- or PSL-induced mechanical allodynia were also observed in female mice (Supplementary Fig. 5). These results suggest that the glucocorticoid-induced exacerbation of neuropathic pain hypersensitivity depends on SGK-1.

SGK-1 mediates the glucocorticoid-enhanced ATP release from astrocytes. In an attempt to identify the types of cells expressing SGK-1, we performed double immunofluorescence labelling for SGK-1 and cell type-specific markers: for neurons, neuronal nuclei (NeuN); for microglia, CD11b; and for astrocytes, glial fibrillary acidic protein (GFAP). In the dorsal horn of the spinal cord in male sham + PSL mice, cells showing SGK-1 immunofluorescence were not double-labelled for NeuN or CD11b (Fig. 5a). Instead, most SGK-1-positive cells were double-labelled with GFAP, and their number in the dorsal horn was significantly higher at ZT10 than at ZT22 (51.78 ± 6.11% for ZT10; 20.42 ± 4.22% for ZT22; n = 5, mean ± s.e.m.; t5 = 4.031, P = 0.004, unpaired t-test, two-sided). Consistent with previous observation14, the immunoreactivity of GFAP were significantly increased in the ipsilateral spinal cord of male sham + PSL mice, whereas the number of GFAP-positive cells were similar between the two time points (Supplementary Fig. 8). Therefore, SGK-1 in the spinal cord of PSL mice appears to be mainly expressed in astrocytes and exhibits diurnal variation. The treatment of primary cultures of astrocytes with 100 ng ml−1 CORT significantly induced the expression of Sgk-1 mRNA (F1,148 = 25.461, P < 0.001; Fig. 5b), and this was suppressed by a concomitant treatment with the GCR antagonist RU486 (F2,12 = 55.500, P < 0.001; Fig. 5c). The treatment with CORT for 4 h also enhanced ATP release from astrocytes (F2,24 = 6.175, P = 0.017; Fig. 5d). The enhancing effects of CORT appeared to be mediated by SGK-1, because the treatment of cells with GSK650394 resulted in the suppression of the CORT-induced release of ATP (P < 0.01). The ability of SGK-1 to enhance ATP release from astrocytes was further confirmed by the transfection of cells with Sgk-1-expressing vectors (Fig. 5e). The amount of ATP released from Sgk-1-expressing vector-transfected cells was approximately five-fold higher than that from empty (pcDNA3.1) vector-transfected cells (F2,12 = 13.508, P = 0.002). The enhancing effect of SGK-1 was also prevented in cells treated with GSK650394 (P < 0.05).

SGK-1 enhances ATP release from astrocytes via pannexin-1. Several possible pathways have been suggested for ATP release in astrocytes30,31. To identify which pathway is involved in the SGK-1-induced enhancement in ATP release, we tested the sensitivity of CORT-treated astrocytes to inhibitors on the proteins contributing to possible ATP-releasing pathways. As demonstrated above (Fig. 5d), a significant increase in ATP release from astrocytes was detected when cells were treated with 100 ng ml−1 CORT for 4 h (P < 0.05, F0.45 = 3.094, P = 0.005; ANOVA with Tukey–Kramer’s PHT; Fig. 5f). We then investigated the effects of different inhibitors by adding them to media at concentrations that were previously reported to be effective. The CORT-induced enhancement in astrocytic ATP release was unaffected by the treatments with 10 μM verapamil (P = 0.999) or 1 mM probenecid (P = 0.998), which are known to inhibit the transporting activity of p-glycoprotein32 and multidrug resistance protein 1 (ref. 33), respectively. Similarly, the treatment of cells with 200 μM glibenclamide, an inhibitor of the cystic fibrosis transmembrane conductance regulator anion channel34, also failed to prevent the CORT-induced enhancement in ATP release (P = 0.999). An inhibitor of the P2X7 receptor (ref. 35), brilliant blue G (1 μM), did not have a significant effect on the release of ATP (P = 0.778). Max-ion channels are shown
to be responsible for the hypotonicity-induced ATP release from mouse astrocytes. However, the treatment of cells with 50 μM GdCl3, an inhibitor of maxi-ion channels, did not suppress the CORT-induced enhancement in ATP release ($P = 0.989$).

Although no significant effects were observed when cells were treated with 2 mM 1-octanol ($P = 0.971$), an inhibitor of connexins37 or 100 μM carbonoxolone ($P = 0.786$), an inhibitor of both connexins and pannexins38, the selective pannexin-1 inhibitor, 10Panx-1 (100 μM) (ref. 39), significantly inhibited CORT-enhanced astrocytic ATP release ($P < 0.05$). Since 10Panx-1 also inhibited the enhancement effects of SGK-1 on the astrocytic ATP release (Supplementary Fig. 9a; Supplementary Method), we further investigated whether the inhibition of Orai1-mediated intracellular calcium entry also suppressed the CORT-enhanced release of ATP from astrocytes. The results of a Fluo-8 fluorescence analysis revealed that the treatment of astrocytes with 100 ng ml$^{-1}$ CORT-enhanced store-operated calcium entry (Fig. 6d), and the enhancing effects of CORT were suppressed by treating of cells with 10 μM Cpd5J-4, an inhibitor on Orai1 (ref. 42). This Orai1 inhibitor also prevented the release of ATP from CORT-treated cells ($F_{3,16} = 19.323$, $P < 0.001$; Fig. 6e). Cpd5J-4 exerted similar inhibitory effects on intracellular calcium entry and ATP release were also observed in SGK-1 over-expressing astrocytes (Supplementary Fig. 10; Supplementary Method). These results suggest that glucocorticoid-induced SGK-1 enhances ATP release from astrocytes through pannexin-1 hemichannels gated by store-operated calcium entry.

Discussion

Although the extracellular ATP release in the spinal cord is considered to activate the microglia and produce neuropathic pain behaviour49, the results of the present study suggest that the glucocorticoid-induced release of ATP from spinal astrocytes is involved in the diurnal decrease in the threshold of mechanical allodynia in PSL mice. Astrocytes play an active role in cell-to-cell signalling in the central nervous system through their release of gliotransmitters, which form neuron–glia and glia–glia networks51,43. Astrocytes have been shown to release ATP in

Table 1 | Candidates for glucocorticoid-regulated genes in spinal cords of mice.

Genbank accession #	Gene symbol	Gene name	Sham + PSL ZT10/22	ADX + PSL ZT10/22	ADX + PSL/ Sham + PSL Location of GRE in upstream region
NM_00108529	Myh4	Myosin, heavy polypeptide 4	213.1	Null	0.009
NM_001111293	Xfr5b	X-linked lymphocyte-regulated 5B	43.5	Null	0.063
NM_031493	Xfr5c	X-linked lymphocyte-regulated 5C	30.1	Null	0.043
NM_009394	Tnnr2	Troponin C2	17.3	1.3	0.133
NM_021285	Myf1	Myosin, light polypeptide 1	14.9	0.9	0.156
NM_001033350	Bnk1	B-cell scaffold protein with ankryin repeats 1	12.1	Null	0.089
NM_001045539	Xfr5a	X-linked lymphocyte-regulated 5A	11.6	Null	0.178
NM_175936	Vnr2rs1	Vomeronasal 2, receptor 81	5.6	Null	0.126
NM_009148	Exoc4	Exocyst complex component 4	5.5	1.0	0.288
NM_010378	H2-Aa	Histocompatibility 2, class II antigen A, alpha	4.9	Null	0.163
NM_00103238	Cblb	Casitas B-lineage lymphoma b	4.5	1.5	0.474
NM_026428	Dccr	Dicarboxyl L-xylulose reductase	4.4	0.9	0.349
NM_021365	Xfr4b	X-linked lymphocyte-regulated 4B	4.3	1.0	0.145
NM_007621	Cbr2	Carboxyl reductase 2	4.0	0.9	0.266
NM_009405	Tnnr2	Troponin 1, skeletal, fast 2	3.6	1.0	0.246
NM_001081106	Cyt1	Cytokine-like 1	3.2	1.0	0.327
NM_029568	Mfp4	Microfibrill-associated protein 4	2.9	0.9	0.136
NM_007409	Adh1	Alcohol dehydrogenase 1	2.5	1.3	0.249
NM_001081643	Xfr3b	X-linked lymphocyte-regulated 3B	2.4	0.8	0.442
NM_001161845	Sgk-1	Serum- and glucocorticoid-inducible kinase-1	2.2	0.8	0.584 – 994 to – 980 bp
NM_015776	Mfp5	Microfibrill-associated protein 5	2.0	0.8	0.084
NM_001099299	Ajap1	Adherens junction associated protein 1	1.8	0.9	0.603
NM_008788	Pcolce	Procollagen C-endopeptidase enhancer protein	1.8	1.0	0.250
NM_001012518	Ehmt1	Euchromatic histone methyltransferase 1	1.8	1.1	0.726
NM_178598	Tagln2	Transgelin 2	1.7	0.9	0.624

Values of ADX + PSL/Sham + PLS were calculated by mean expression levels in ADX + PSL mice between ZT10 and ZT22 being divided by the mean expression levels in sham + PLS mice between ZT10 and ZT22.
Figure 4 | SGK-1 mediates the glucocorticoid-regulated diurnal oscillations in the threshold of mechanical allodynia in PSL mice. (a,b) Diurnal oscillations in the spinal expression of SGK-1 is dependent on glucocorticoid (means ± s.e.m.; n = 5). Significant time-dependent variations were observed in the levels of Sgk-1 mRNA and its protein in the contralateral (Contra.) and ipsilateral (Ipsi.) sides (F₂,₂₄ = 14.996, P < 0.001 for mRNA; F₂,₄₄ = 4.591, P = 0.007 for protein; ANOVA). *P < 0.05 significantly different from vehicle-treated groups at the corresponding time points (F₂,₂₄ = 3.16, P < 0.001 for mRNA; F₂,₄₄ = 670.562, P < 0.001 for protein; ANOVA with Tukey-Kramer's PHT). (c) The temporal binding profiles of the GCR to the SGK-1 promoter in the spinal cords of sham + PSL and ADX + PSL male mice. GCR and RNA polymerase 2 (POL2) in the nuclear fraction of spinal cords were detected by western blotting (WB). Immunoprecipitates (IP) with anti-GCR antibodies were subjected to a PCR analysis. Solid line arrows in the upper panel represent PCR amplification areas. Data are representative of three independent experiments. (d) The intrathecal (i.th.) injection of the SGK-1 inhibitor GSK650394 (0.5 nmol per mouse) alleviates pain hypersensitivity of the ipsilateral hindpaw in male sham + PSL mice and suppresses spinal ATP release (means ± s.e.m.; n = 5). **P < 0.01, *P < 0.05 significantly different from vehicle-treated groups at the corresponding time points (F₂,₂₄ = 3.599, P < 0.001 for pain threshold, F₂,₄₄ = 7.375, P < 0.001 for ATP release; ANOVA with Tukey-Kramer's PHT). (e) The SGK-1 inhibitor GSK650394 (0.5 nmol per mouse, i.th.) prevents CORT (30 mg kg⁻¹, s.c.)-induced pain hypersensitivity of the ipsilateral hindpaw in male ADX + PSL mice and suppresses spinal ATP release (means ± s.e.m.; n = 5) **P < 0.01, *P < 0.05 significantly different from the other groups (F₂,₂₄ = 9.40, P < 0.001 for pain threshold, F₂,₄₄ = 12.454, P < 0.001 for ATP release; ANOVA with Tukey-Kramer's PHT). The administration time of CORT or GSK650394 was set at ZT10. All experiments were performed on day 7 after nerve injury.

Figure 6 | SGK-1 mediates the glucocorticoid-regulated diurnal oscillations in the threshold of mechanical allodynia in PSL mice. (a) The SGK-1 inhibitor GSK650394 (0.5 nmol per mouse, i.th.) prevents CORT (30 mg kg⁻¹, s.c.)-induced pain hypersensitivity of the ipsilateral hindpaw in male sham + PSL mice and suppresses spinal ATP release (means ± s.e.m.; n = 5). **P < 0.01, *P < 0.05 significantly different from vehicle-treated groups at the corresponding time points (F₂,₂₄ = 3.599, P < 0.001 for pain threshold, F₂,₄₄ = 7.375, P < 0.001 for ATP release; ANOVA with Tukey-Kramer's PHT). (b) The SGK-1 inhibitor GSK650394 (0.5 nmol per mouse, i.th.) prevents CORT (30 mg kg⁻¹, s.c.)-induced pain hypersensitivity of the ipsilateral hindpaw in male ADX + PSL mice and suppresses spinal ATP release (means ± s.e.m.; n = 5) **P < 0.01, *P < 0.05 significantly different from the other groups (F₂,₂₄ = 9.40, P < 0.001 for pain threshold, F₂,₄₄ = 12.454, P < 0.001 for ATP release; ANOVA with Tukey-Kramer's PHT). The administration time of CORT or GSK650394 was set at ZT10. All experiments were performed on day 7 after nerve injury.
parsimonious explanation for our results is that temporal elevations in glucocorticoid levels induce the expression of SGK-1 in spinal astrocytes, thereby enhancing extracellular ATP release through pannexin-1 hemichannels (Fig. 6f). The glucocorticoid-controlled diurnal release of ATP was detected in both contralateral and ipsilateral spinal cords of sham + PSL mice, whereas the number of microglia and expression of the P2ry12 gene increased only in the ipsilateral side. Consequently, the glucocorticoid-enhanced release of ATP from astrocytes may stimulate P2Y12 receptors on microglia in the ipsilateral spinal cord, which then evoke mechanical allodynia in the nerve-injured hindpaw during a certain time of day.

SGK-1 is a member of the AGC kinase family and participates in the regulation of cell physiology through the phosphorylation of its target proteins. Since elevations in the abundance of the SGK-1 protein in cultured astrocytes had negligible effects on the membrane expression of pannexin-1, this kinase appears to enhance extracellular ATP release through the opening of pannexin-1 hemichannels. The opening of pannexin-1 is known to be gated by various cellular signals. As described above, SGK-1 has the ability to increase the activity of Orai1 (ref. 41). In fact, an inhibitor of Orai1 significantly suppressed the SGK-1-enhanced release of ATP from astrocytes, and this inhibitor also prevented the store-operated calcium entry. Therefore, we suggest that astrocytic ATP release by this mechanism may be responsible for the glucocorticoid-induced decrease in the threshold of mechanical allodynia in PSL mice.

The involvement of GCR in the development of mechanical allodynia has been demonstrated in rats following chronic constriction nerve injury. The development of pain hypersensitivity in chronic constriction nerve injury rats has been implicated in the increase in the spinal expression of GCR, which is induced by interleukin-6 and protein kinase C. We also detected significant elevations in GCR mRNA levels in the ipsilateral spinal cord of male PSL model rats. However, GCR mRNA levels was not observed in the spinal cords of PSL mice (Fig. 2b). It is therefore possible that differences among animal species is reflected in the distinct expression patterns of GCR in the spinal cords of nerve-injured rats and mice. This may also be applicable to the absence of significant alterations in the spinal expression of the P2X4 receptor in PSL mice, because we observed elevations in the mRNA levels of both P2X4 and P2Y12 in the ipsilateral spinal cord in male PSL rats.
also appears to be associated with the activation of P2X4 and P2Y12 receptors in the spinal cord. Alternatively, we detected elevations in P2rx4 mRNA levels in the ipsilateral spinal cord of C57BL mice following L4 spinal nerve transaction (Supplementary Fig. 12; Supplementary Method). The transection of spinal nerves also tended to increase P2rx4 mRNA expression in the ipsilateral spinal cord of ICR mice. In addition to the animal species and strain, the spinal expression of the P2X4 receptor may also be dependent on the nerve injury procedures.

A recent study has demonstrated that microglial involvement in mechanical allodynia is dependent on sex47. Nerve-injured female mice achieve similar levels of pain hypersensitivity as those in males, but this may be caused by proalgesic mediators released from T cells48. We also found that diurnal variation in the threshold of pain hypersensitivity of female sham + PSL mice was dependent on diurnal oscillation in glucocorticoid levels (Supplementary Fig. 1). Glucocorticoids also play a key role in conveying circadian signals from the SCN to the immune system36. Diurnal variations in plasma glucocorticoid levels show a negative correlation with 24-h changes in blood lymphocyte counts51. Elevations of glucocorticoid levels decrease the number of lymphocytes in the blood by enhancing the migration of these cells to tissues52. Time-dependent elevations in plasma CORT levels may also enhance the infiltration of immune cells into the inflammatory sites during a certain time of day, which causes diurnal variations in pain hypersensitivity in nerve-injured female mice. In addition to this possible mechanism, ATP release in the spinal cord appears to be partially involved in the mechanism underlying PSL-induced mechanical allodynia in female mice. As observed in males, female sham + PSL mice also exhibited diurnal variations in ATP concentrations in the CSF, accompanied by elevations in P2ry12 mRNA levels in the ipsilateral spinal cord (Supplementary Fig. 3 and Fig. 4). Although the anti-allodynic effects were less as compared with those observed in males, the P2Y12 receptor antagonist AR-C69931 or SGK-1 inhibitor GSK650394 alleviated CORT- and PSL-induced mechanical allodynia in female mice (Supplementary Fig. 5). Taken together, glucocorticoids may also govern diurnal variations in pain hypersensitivity in female PSL mice by controlling extracellular ATP release in the spinal cord and activation of the P2Y12 receptor.

In clinical situation, high doses of synthetic glucocorticoids are used in the management of neuropathic pain53. Synthetic glucocorticoids are considered to reduce the symptoms of neuropathic pain through their anti-inflammatory and immunosuppressive actions. On the other hand, the role of...
endogenous glucocorticoids in nerve injury-induced pain hypersensitivity had been enigmatic. Under certain conditions, physiological levels of endogenous glucocorticoids have enhancing effects on the immune system, while similar levels of glucocorticoids suppress autoimmune and inflammatory reactions under other conditions. These differential effects of glucocorticoids on the immune system may be due to the differences in the duration of their exposure. Diurnal rhythms in pain hypersensitivity have been demonstrated clinically. However, the temporal pattern of the exacerbation of pain is distinct in a manner that is dependent on the cause of the pain. For example, cancer-associated pain is exacerbated around the morning or during the daytime, but the intensity of spontaneous pain in patients with diabetic neuropathy or post-herpetic neuralgia has been reported to decrease during the night. Although the rhythmic phase of adrenal glucocorticoid secretion is controlled by the circadian clock machinery, the secretion pattern is sometimes modulated under pathological conditions. The understanding of such patterns is necessary for research on the mechanisms and triggers of chronic pain, and for appropriate patient care, including optimal timing of analgesic treatment. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, and also provide novel approaches to the management of chronic pain.

Methods

Animals and treatments. Male ICR mice (6–8 weeks old) were housed in groups (from 6 to 10 per cage for mice and from 3 to 4 per cage for rats) in a light-controlled room (lights on from ZT0 to ZT15 at 24 ± 1 °C and humidity of 60 ± 10% with food and water ad libitum). We prepared ADX mice under sodium pentobarbital (40 mg/kg, i.p.) and isoflurane anaesthesia. The adrenalectomy was performed via a dorsal approach using an aseptic technique. ADX mice were given 0.9% NaCl to drink during the duration of the experiment. Sham adrenalectomy was performed using the same procedure to expose the adrenals without their removal. Mouse models of PSL were also prepared under anaesthesia. The right thigh was shaved and the sciatic nerve was exposed through an incision. Half of the nerve was tightly ligated with 8-0 silk thread and the wound was sutured (Ipsilateral side; right hindpaw). The sciatic nerve of the left hindpaw was also exposed by the same procedure; however, the wound was sutured without nerve ligation (Contralateral side; left hindpaw). ADX + PSL mice were anaesthetized and an osmotic pump (Model 2001, Alzet, Alza Corp., Palo Alto, CA) was implanted subcutaneously. These osmotic pumps were designed to deliver a flow rate of 1 μl/hr for 7 days and were fitted with CORT solution (4.8 mM KCl, 5.6 mM D-glucose, 1.2 mM CaCl₂, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 25 mM HEPES, pH 7.4), and were incubated for 30 min. The assay buffer was also collected for the ATP assay. ATP levels were measured using a bioluminescent ATP assay kit (Promega, Madison, WI). The ectonucleotidase inhibitor 6-NA-diethyl-β-γ-dibromomethylene-β-adenosine-5'-triphosphate (6-NA-diphosphorylated, 6-NA-diphosphorylated) was added to ACSF or the assay buffer to prevent ATP degradation during the experiment for decreased ATP hydrolysis.

Microarray analysis. Spinal slices (500-μm-thick) from lumbar segments L4 to L5 were prepared from sham + PSL and ADX + PSL mice at ZT10 and ZT22. Total RNA was extracted using an RNeasy Mini kit (Qiagen). The quality of the extracted RNA was analysed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). cRNA was amplified and labelled using a low-input quick amp labelling kit. Labeled cRNA was hybridized to a 44k Agilent 60-mer oligonucleotidearray (Whole Mouse Genome Microarray kit version 2.0) according to the manufacturer’s instructions. All hybridized microarray slides were washed and scanned using an Agilent scanner. Relative hybridization intensities and background hybridization values were calculated using Agilent Feature Extraction software (version 9.5.1.1). Raw signal intensities and flags for each probe were calculated from hybridization intensities and spot position according to the procedures recommended by Agilent. The raw signal intensities of two samples were log2-transformed and normalized by a quantile algorithm in the ‘preprocessCore’ library package of the Bioconductor software. This produced a gene expression matrix consisting of 55,681 probe sets, and differentially expressed genes between samples were selected by calculating Z-scores and ratios (non-log-scaled fold change) as follows: for upregulated genes: a Z-score of 2.0 or more and a ratio of twofold or more; and for downregulated genes: a Z-score of -2.0 or less and a ratio of 0.5 or less.

Chromatin immunoprecipitation analysis. Cross-linked chromatin in the spinal cord was sonicated on ice, and nuclear fractions were obtained by centrifugation at 10,000 g for 5 min. Supernatants were incubated with antibodies against GCR (1:500; sc1002, Santa Cruz Biotechnology) or rabbit IgG (1:500; sc6931, Santa Cruz Biotechnology). DNA was purified using a DNA purification kit (Promega) and amplified by PCR for the surrounding GRE in the 5′-flanking region of the Sgk-1 gene. The primer sequences for amplification of the surrounding GRE were as follows: 5′-CTCACGTGTCTTGGCATG-3′ and 5′-TGGCCAAAATCTA GAAAGG-3′. The quantitative reliability of PCR was evaluated by a kinetic analysis of the amplified products to ensure that signals were only derived from the experiment phase of amplification. This analysis also provided the absence of an antibody or the presence of rabbit IgG as negative controls. Ethidium bromide staining did not detect any PCR products in these samples.
Immunofluorescent histochemical staining. Animals were anaesthetized and perfused transcardially with 4% paraformaldehyde in PBS, pH 7.4. The 1.4 mm spinal cord was removed and postfixed at 4°C for 3 h. The postfixed spinal cord was transferred to 15% sucrose in PBS for 24 h and then 30% sucrose in PBS for 24 h. Floating transverse sections (30-μm-thick) were blocked in solution containing 10% normal goat serum and 0.1% Triton X-100 for 2 h at 4°C. The sections were then incubated with a fluorescent-conjugated secondary antibody (Alexa 488 or Alexa 546, 1:1,000; Jackson ImmunoResearch, Laboratories, West Grove, PA) at 4°C for 2 h. The sections were mounted with Vectashield (Vector Laboratories, Burlingame, CA). Fluorescent images were obtained with confocal fluorescence microscopy. The images of Iba1-positive microglial cells and GFAP-positive astrocytic cells were quantified with the Image J cell counter analysis tool in defined area of interest on the spinal cord dorsal horn. The score was blinded to sampling times and animal treatments.

Preparation and treatment of primary cultures of astrocytes. A dissociated cell suspension was prepared from the cerebral cortex of neonatal mouse pups (2 days old). Cells were plated in tissue culture flasks at a concentration of 1 × 10^5 cells per ml and incubated in DMEM supplemented with 10% fetal bovine serum (FBS) and antibiotics at 37°C in a humified 5% CO2 atmosphere for 72 h, which allowed the cells sufficient time to adhere and begin multiplying. Medium was changed every 72 h during the growth of cells. After incubating the primary cultures for 7–9 days, medium was changed completely and culture flasks were shaken to remove oligodendrocytes from the cultures. Fresh medium was added to the shaken flasks and the shaking process was repeated at least four times. The purification of primary cultures of astrocytes was confirmed by immunohistochemistry for the expression of GFAP. Astrocytes were treated with CORT for 4-h in the presence or absence of each inhibitor. The Sgk-1-expressing astrocytes were prepared by transfecting with Flag-tagged Sgk-1-expressing vectors, which were kindly provided by Dr Ono (Kyushu University). Vectors were transfected into cells using a squarewave electroporater (Model CUY21, Nepa Gene, Chiba, Japan). Transfection efficacy was confirmed by immunofluorescent staining by using anti-Flag monoclonal antibodies (F1804, Sigma-Aldrich). Approximately 70% of GFAP-positive cells merged with Flag-tagged Sgk-1. Astrocytes were also transfected with 150 pmol siRNA against pannexin-1 (sc12188, Santa Cruz Biotechnology) using Lipofectamine 2000 reagent (Invitrogen Life Technologies) and used for experiments 72 h after transfection. The downregulated efficacy of this siRNA was confirmed, as shown in Fig. 6b.

Calcium mobilization assay. Astrocytes (2 × 10^5) were seeded on a 96-well plate. After 24 h, CORT was added to culture media at a final concentration of 100 ng/ml. Four hours after the treatment, cells were loaded with 4 μM Fluo-8 AM (Abcam) in 100 μl of Hank’s balanced salt solution containing 20 mM HEPES (pH 7.4) supplemented with 0.04% Pluronic F-127 and 1% FBS at 37°C for 30 min, followed by a further incubation at room temperature for 30 min. Intracellular calcium mobilization was measured by monitoring the fluorescence intensity (excitation at 490 nm and emission at 525 nm) using FlexStation 3 (Molecular Devices, Sunnyvale, CA, USA).

Statistical and data analyses. The values presented are expressed as the means ± s.e.m. The significance of the 24-h variations in each parameter was tested by ANOVA. The statistical significance of differences among groups was analysed by ANOVA. The statistical significance of differences among groups was tested. P < 0.05 was considered significant. No statistical method was used to predetermined sample sizes; however, our sample sizes were similar to those reported in previous studies. Experiments were not randomized.

Data availability. All data supporting the results of the present study are included in the article, either in the main figures or the Supplementary Information Files. Microarray data were submitted to the Gene Expression Omnibus at the National Center for Biotechnology Information (accession # GSE65756).

References
1. Gagnon, B. et al. The impact of delirium on the cerebral distribution of breakthrough analgesia in advanced cancer patients. J. Pain Symptom Manage. 22, 826–833 (2001).
2. Saini, A. et al. Circadian variation of breakthrough pain in cancer patients. Eur. J. Pain 17, 264–270 (2013).
3. Cuesta, M., Cermakian, N. & Boivin, D. B. Oligodendrocytes from enrichment analysis in defined area of interest on the spinal cord dorsal horn. The score was blinded to sampling times and animal treatments.
36. Liu, H. T., Toychiev, A. H., Takahashi, N., Sabirov, R. Z. & Okada, Y. Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res. 18, 558–565 (2008).

37. Ye, Z. C., Wyeth, M. S., Ballan-Tekkok, S. & Ransom, B. R. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23, 3588–3596 (2003).

38. Bruzzone, R., Barbe, M. T., Jakob, N. J. & Monyer, H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J. Neurochem. 92, 1033–1043 (2005).

39. Woehrel, T. et al. Hypertonic stress regulates T cell function via pannexin-1 hemichannels and P2X receptors. J. Leukoc. Biol. 88, 1181–1189 (2010).

40. MacVicar, B. A. & Thompson, R. J. Non-junction functions of pannexin-1 channels. Trends Neurosci. 33, 93–102 (2010).

41. Eylenstein, A. et al. Stimulation of Ca2+-channel Orai1/STIM1 by serum- and glucocorticoid-inducible kinase 1 (SGK1). PNAS 108, 25,212–25,217 (2011).

42. Kim, K. D. et al. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th1 differentiation. J. Immunol. 192, 110–122 (2014).

43. Fields, R. D. & Burnstock, G. Purinergic signalling in neuron-glia interactions. Nat. Rev. Neurosci. 7, 423–436 (2006).

44. Slezak, M. et al. Astrocytes are a neural target of morphine action via glucocorticoid receptor-dependent signaling. Glia 61, 623–635 (2013).

45. Peng, H. Y., Chen, G. D., Lai, C. Y., Hsieh, M. C. & Lin, T. B. Spinal serum- and glucocorticoid-inducible kinase 1 (SGK1). Mol. Pain. 6, 83 (2010).

46. Frödin, M. et al. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J. 21, 5396–5407 (2002).

47. Wang, S. et al. Expression of central glucocorticoid receptors after peripheral nerve injury contributes to neuropathic pain behaviors in rats. J. Neurosci. 24, 8595–8605 (2004).

48. Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083 (2015).

49. Scheiermann, C., Kuniaki, Y. & Finnete, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 199–198 (2013).

50. Oishi, K. et al. Clock mutation affects circadian regulation of circulating blood cells. J. Circadian Rhythms 4, 13 (2006).

51. Scheiermann, C. et al. Adrenergic nerves govern circadian leucocyte recruitment to tissues. Immunity 37, 290–301 (2012).

52. Bijlsma, M., van Wijk, A. J., Kalkman, C. J. & Yaksh, T. L. The effects of glucocorticoids on neuropathic pain: a review with emphasis on intrathecal methylprednisolone acetate delivery. Anesth. Analg. 118, 1097–1112 (2014).

53. Dhabhar, F. S. & McEwen, B. S. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc. Natl Acad. Sci. USA 96, 1059–1064 (1999).

54. Dhabhar, F. S. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation 16, 300–317 (2009).

55. Touitou, Y., Bogdan, A., Lévi, F., Benavides, M. & Auzeby, A. Disruption of the circadian patterns of serum cortisol in breast and ovarian cancer patients: relationships with tumor marker antigens. Br. J. Cancer 74, 1248–1252 (1996).

56. Lederbogen, F. et al. Flattened circadian cortisol rhythm in type 2 diabetes. Exp. Clin. Endocrinol. Diabet. 19, 573–575 (2011).

57. Ronchi, C. L. et al. Low SGK1 expression in human adrenocortical tumors is associated with ACTH-independent glucocorticoid secretion and poor prognosis. J. Clin. Endocrinol. Metab. 97, E2251–E2260 (2012).

58. Wiper-Bergeron, N., Wu, D., Pope, L., Schild-Poulter, C. & Haché, R. J. Stimulation of preadipocyte differentiation by steroid through targeting of an HDAC1 complex. EMBO J. 22, 2135–2145 (2003).

59. Mühlbauer, M., Chilton, P. M., Mitchell, T. C. & Jobin, C. Impaired Bcl3 up-regulation leads to enhanced lipopolysaccharide-induced interleukin (IL)-23p19 gene expression in IL-10(−/−) mice. J. Biol. Chem. 283, 14182–14189 (2008).

Acknowledgements

We thank Dr Yamashita for technical assistance with calcium imaging, and Mr. Tsurudome for their technical support in the preparation of animal models and gene analyses. We are also grateful for the technical support provided by the Research Support Center, Graduate School of Medical Sciences, Kyushu University. This work was supported by a Grant-in-Aid for Scientific Research B from the Japan for the Promotion of Science (15H04765 to S.K.), a Grant-in-Aid from the Mochida Memorial Foundation (to S.K.), and a Grant-in-Aid from Kyushu University Interdisciplinary Programs in Education and Projects in Research Development. This work was also supported in part by a Grant-in-Aid for Scientific Research A (16H02636 to S.O.) from the Japan for the Promotion of Science.

Author contributions

S.K., N.K., M.T. and S.O. designed the research; S.K., N.K., M.T., T.A., Y.K., Y.O., T.M., Y.K. and M.T. acquired the data; N.M. and T.A. supplied the experimental materials; S.K., N.K., M.T., M.W.S., K.I. and S.O. drafted the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Koyanagi, S. et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat. Commun. 7, 13102 doi: 10.1038/ncomms13102 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/