PARABOLIC OMORI-YAU MAXIMUM PRINCIPLE FOR MEAN CURVATURE FLOW AND SOME APPLICATIONS

JOHN MAN SHUN MA

Abstract. We derive a parabolic version of Omori-Yau maximum principle for a proper mean curvature flow when the ambient space has lower bound on ℓ-sectional curvature. We apply this to show that the image of Gauss map is preserved under a proper mean curvature flow in euclidean spaces with uniform bounded second fundamental forms. This generalizes the result of Wang [12] for compact immersions. We also prove a Omori-Yau maximum principle for properly immersed self-shrinkers, which improves a result in [2].

1. Introduction

Let (M, g) be a Riemannian manifold and let $u : M \to \mathbb{R}$ be a twice differentiable function. If M is compact, u is maximized at some point $x \in M$. At this point, basic advanced calculus implies

$$u(x) = \sup u, \quad \nabla^M u(x) = 0, \quad \Delta^M u(x) \leq 0.$$

Here ∇^M and Δ^M are respectively the gradient and Laplace operator with respect to the metric g. When M is noncompact, a bounded function might not attain a maximum. In this situation, Omori [9] and later Yau [13] provide some noncompact versions of maximum principles. We recall the statement in [13]:

Theorem 1.1. Let (M, g) be a complete noncompact Riemannian manifold with bounded below Ricci curvature. Let $u : M \to \mathbb{R}$ be a bounded above twice differentiable function. Then there is a sequence $\{x_i\}$ in M such that

$$u(x_i) \to \sup u, \quad |\nabla u|(x_i) \to 0, \quad \lim_{i \to \infty} \Delta^M u(x_i) \leq 0.$$

Maximum principles of this form are called Omori-Yau maximum principles. The assumption on the lower bound on Ricci curvature in Theorem 1.1 has been weaken in (e.g.) [3], [10]. On the other hand, various Omori-Yau type maximum principles have been proved for other elliptic operators and on solitons in geometric flows, such as Ricci soliton [2] and self-shrinkers in mean curvature flows [4]. The Omori-Yau maximum principles are powerful tools in studying noncompact manifolds and have a lot of geometric applications. We refer the reader to the book [1] and the reference therein for more information.

In this paper, we derive the following parabolic version of Omori-Yau maximum principle for mean curvature flow.

Date: September 12, 2018.
Theorem 1.2 (Parabolic Omori-Yau Maximum Principle). Let \(n \geq 2 \) and \(m \geq 1 \). Let \((\overline{M}^{n+m}, \overline{g}) \) be a \(n+m \)-dimensional noncompact complete Riemannian manifold such that the \((n-1)\)-sectional curvature of \(\overline{M} \) is bounded below by \(-C\) for some positive constant \(C \). Let \(M^n \) be a \(n \)-dimensional noncompact manifold and let \(F : M^n \times [0, T] \to \overline{M} \) be a proper mean curvature flow. Let \(u : M \times [0, T] \to \mathbb{R} \) be a continuous function which satisfies

1. \(\sup_{(x,t) \in M \times [0, T]} u > \sup_{x \in M} u(\cdot, 0) \),
2. \(u \) is twice differentiable in \(M \times (0, T) \), and
3. (sublinear growth condition) There are \(B > 0 \), \(\alpha \in [0, 1) \) and some \(y_0 \in \overline{M} \) so that

\[
(1.1) \quad u(x, t) \leq B(1 + d_{\overline{M}}(y_0, F(x, t))^\alpha), \quad \forall (x, t) \in M \times [0, T].
\]

Then there is a sequence of points \((x_i, t_i) \in M \times (0, T)\) so that

\[
(1.2) \quad u(x_i, t_i) \to \sup u, \quad |\nabla M^a u(x_i, t_i)| \to 0, \quad \liminf_{i \to \infty} \left(\frac{\partial}{\partial t} - \Delta M^a \right) u(x_i, t_i) \geq 0.
\]

We remark that the above theorem makes no assumption on the curvature of the immersion \(F_t \). See section 2 for the definition of \(\ell \)-sectional curvature.

With this parabolic Omori-Yau maximum principle, we derive the following results.

In [12], the author studies the gauss map along the mean curvature flow in the euclidean space. He shows that if the image of the gauss map stays inside a geodesic submanifold in the Grassmanians, the same is also true along the flow when the initial immersion is compact. As a first application, we extend Wang’s theorem to the noncompact situation.

Theorem 1.3. Let \(F_0 : M^n \to \mathbb{R}^{n+m} \) be a proper immersion and let \(F : M^n \times [0, T] \to \mathbb{R}^{n+m} \) be a mean curvature flow of \(F_0 \) with uniformly bounded second fundamental form. Let \(\Sigma \) be a compact totally geodesic submanifold of the Grassmanians of \(n \)-planes in \(\mathbb{R}^{n+m} \).

If the image of the Gauss map \(\gamma \) satisfies \(\gamma(\cdot, 0) \subset \Sigma \), then \(\gamma(\cdot, t) \subset \Sigma \) for all \(t \in [0, T] \).

As a corollary, we have the following:

Corollary 1.1. Let \(F_0 : M^n \to \mathbb{R}^{2n} \) be a proper Lagrangian immersion and let \(F : M \times [0, T] \to \mathbb{R}^{2n} \) be a mean curvature flow with uniformly bounded second fundamental form. Then \(F_t \) is Lagrangian for all \(t \in [0, T] \).

The above result is well-known when \(M \) is compact [11], [12]. Various forms of Corollary 1.1 are known to the experts (see remark 2 below).

The second application is to derive a Omori-Yau maximum principle for the \(\mathcal{L} \)-operator of a proper self-shrinker. The \(\mathcal{L} \) operator is introduced in [5] when the authors study the entropy stability of a self-shrinker. Since then it proves to be an important operator in mean curvature flow. Using Theorem 1.2 we prove

Theorem 1.4. Let \(\tilde{F} : M^n \to \mathbb{R}^{n+m} \) be a properly immersed self-shrinker and let \(f : M^n \to \mathbb{R} \) be a twice differentiable function so that

\[
(1.3) \quad f(x) \leq C(1 + |\tilde{F}(x)|^\alpha)
\]

\(f(x) \leq C(1 + |\tilde{F}(x)|^\alpha) \)
for some $C > 0$ and $\alpha \in [0,1)$. Then there exists a sequence \(\{x_i\} \) in \(M \) so that
\[
(1.4) \quad f(x_i) \to \sup_M f, \quad |\nabla f|(x_i) \to 0, \quad \limsup_{i \to \infty} Lf(x_i) \leq 0.
\]

The above theorem is a generalization of Theorem 5 in [2] since we assume weaker conditions on \(f \).

In section 2, we prove the parabolic Omori-Yau maximum principle. In section 3 we prove Theorem 1.3 and in section 4 we prove Theorem 1.4. The author would like to thank Jingyi Chen for the discussion on Omori-Yau maximum principle and Kwok Kun Kwong for suggesting the work of Li and Wang [7].

2. PROOF OF THE PARABOLIC OMORI-YAU MAXIMUM PRINCIPLE

Let \((\overline{M}^{n+m}, g)\) be an \(n + m \) dimensional complete noncompact Riemannian manifold. Let \(F: M \times [0, T] \to \overline{M} \), where \(M \) is an \(n \)-dimensional noncompact manifold, be a family of immersions \(\{F(\cdot, t): M \to \overline{M}\} \) which satisfies the mean curvature flow equation
\[
(2.1) \quad \frac{\partial F}{\partial t}(x, t) = \vec{H}(x, t).
\]

Here \(\vec{H}(x, t) \) is the mean curvature vector given by
\[
(2.2) \quad \vec{H} = \text{tr}A
\]
and \(A(X,Y) = (\nabla_X Y)^\perp \) is the second fundamental form of the immersion \(F(\cdot, t) \).

Next we recall the definition of \(\ell \)-sectional curvature in [7]. Let \(\overline{M}^N \) be an \(N \)-dimensional Riemannian manifold. Let \(p \in \overline{M}, 1 \leq \ell \leq N - 1 \). Consider a pair \(\{w, V\} \), where \(w \in T_p\overline{M} \) and \(V \subset T_p\overline{M} \) is a \(\ell \)-dimensional subspace so that \(w \) is perpendicular to \(V \).

Definition 2.1. The \(\ell \)-sectional curvature of \(\{w, V\} \) is given by
\[
(2.3) \quad K_{\overline{M}}^\ell(w, V) = \sum_{i=1}^{\ell} \langle R(w, e_i)w, e_i \rangle,
\]
where \(R \) is the Riemann Curvature tensor on \(\overline{M} \) and \(\{e_1, \ldots, e_\ell\} \) is any orthonormal basis of \(V \).

We say that \(\overline{M} \) has \(\ell \)-sectional curvature bounded from below by a constant \(C \) if
\[
K_{\overline{M}}^\ell(w, V) \geq \ell C
\]
for all pairs \(\{w, V\} \) at any point \(p \in M \). In [7], the authors prove the following comparison theorem for the distance function \(r \) on manifolds with lower bound on \(\ell \)-sectional curvatures.

Theorem 2.1. ([Theorem 1.2 in [7]]) Assume that \(\overline{M} \) has \(\ell \)-sectional curvature bounded from below by \(-C \) for some \(C > 0 \). Let \(p \in M \) and \(r(x) = d_{\overline{M}}(x, p) \). If \(x \) is not in the cut
locus of \(p \) and \(V \subset T_{x_0}M \) is perpendicular to \(\nabla r(x) \), then

\[\sum_{i=1}^{\ell} \nabla^2 r(e_i, e_i) \leq \ell \sqrt{C \coth(\sqrt{C} r)}, \]

where \(\{e_1, \cdots, e_\ell\} \) is any orthonormal basis of \(V \).

Now we prove Theorem 1.2. We recall that \(F \) is assumed to be proper, and \(u \) satisfies condition (1)-(3) in the statement of Theorem 1.2.

Proof of Theorem 1.2. Adding a constant to \(u \) if necessary, we assume

\[\sup_{x \in M} u(x, 0) = 0. \]

By condition (1) in Theorem 1.2 we have \(u(y, s) > 0 \) for some \((y, s) \). Note that \(s > 0 \). Let \(y_0 \in \overline{M} \) and \(r(y) = d_\rho(y, y_0) \) be the distance to \(y_0 \) in \(\overline{M} \). Let \(\rho(x, t) = r(F(x, t)) \).

Note that \(u(y, s) - \epsilon \rho(y, s)^2 > 0 \) whenever \(\epsilon \) is small. Let \((\bar{x}_i, s_i) \) be a sequence so that \(u(\bar{x}_i, s_i) \to \sup u \in (0, \infty) \). Let \(\{\epsilon_i\} \) be a sequence in \((0, \epsilon) \) converging to 0 which satisfies

\[\epsilon_i \rho(\bar{x}_i, s_i)^2 \leq \frac{1}{i}, \quad i = 1, 2, \cdots. \]

Define

\[u_i(x, t) = u(x, t) - \epsilon_i \rho(x, t)^2. \]

Note that \(u_i(y, s) > 0 \) and \(u_i(\cdot, 0) \leq 0 \). Using condition (3) in Theorem 1.2 there is \(R > 0 \) so that \(u_i(x, t) \leq 0 \) when \(F(x, t) \notin B_R(y_0) \), the closed ball in \(\overline{M} \) centered at \(y_0 \) with radius \(R \). Since \(\overline{M} \) is complete, \(B_R(y_0) \) is a compact subset. Furthermore, \(F \) is proper and thus \(u_i \) attains a maximum at some \((x_i, t_i) \in M \times (0, T] \). From the choice of \((\bar{x}_i, s_i) \) and \(\epsilon_i \) in (2.5),

\[u(x_i, t_i) \geq u_i(x_i, t_i) \geq u_i(\bar{x}_i, s_i) \geq u(\bar{x}_i, s_i) - \frac{1}{i}. \]

Thus we have

\[u(x_i, t_i) \to \sup u. \]

Now we consider the derivatives of \(u \) at \((x_i, t_i) \). If \(F(x_i, t_i) \) is not in the cut locus of \(y_0 \), then \(\rho \) is differentiable at \((x_i, t_i) \). Then so is \(u_i \) and we have

\[\nabla^{M_{t_i}} u_i = 0 \quad \text{and} \quad \left(\frac{\partial}{\partial t} - \Delta^{M_{t_i}} \right) u_i \geq 0 \quad \text{at} \quad (x_i, t_i). \]

(The inequality holds since \(t_i > 0 \).) The first equality implies

\[\nabla^{M_{t_i}} u = \epsilon_i \nabla^{M_{t_i}} \rho^2 = 2 \epsilon_i \rho(\nabla r)^\top \]

at \((x_i, t_i) \), where \((\cdot)^\top\) denotes the projection onto \(T_{x_i}M_{t_i} \). Let \(\{e_1, \cdots, e_n\} \) be any orthonormal basis at \(T_{x_i}M_{t_i} \) with respect to \(g_{t_i} \). Then

\[\Delta^{M_{t_i}} \rho^2 = 2 \sum_{i=1}^{n} |\nabla^{M_{t_i}} r(e_i)|^2 + 2 \rho \sum_{i=1}^{n} \nabla^2 r(e_i, e_i) + 2 \rho \bar{g}(\nabla r, \vec{H}). \]
Next we use the lower bound on \((n-1)\)-sectional curvature of \(\overline{M}\) to obtain the following lemma.

Lemma 2.1. There is \(C_1 = C_1(n, C) > 0\) so that

\[
\sum_{i=1}^{n} \nabla^2 r(e_i, e_i) \leq C_1 \rho. \tag{2.9}
\]

Proof of lemma. We consider two cases. First, if \(\gamma'\) is perpendicular to \(T_{x_i} M_t\), write

\[
\sum_{i=1}^{n} \nabla^2 r(e_i, e_i) = \frac{1}{n-1} \sum_{j=1}^{n-1} \sum_{i \neq j} \nabla^2 r(e_i, e_i).
\]

Since \(\overline{M}\) has \((n-1)\)-sectional curvature bounded from below by \(-C\), we apply Theorem 2.1 to the plane \(V\) spanned by \(\{e_1, \cdots, e_n\} \setminus \{e_i\}\) for each \(i\). Thus

\[
\sum_{i=1}^{n} \nabla^2 r(e_i, e_i) \leq \frac{n}{n-1} \sum_{j=1}^{n-1} \sqrt{C} \rho \coth(\sqrt{C} \rho)
\]

\[
= n \sqrt{C} \rho \coth(\sqrt{C} \rho). \tag{2.10}
\]

Second, if \(\gamma'\) is not perpendicular to \(T_{x_i} M_t\), since the right hand side of (2.9) is independent of the orthonormal basis chosen, we can assume that \(e_1\) is parallel to the projection of \(\gamma'\) onto \(T_{x_i} M_t\). Write

\[
e_1 = e_1^+ + a \gamma',
\]

where \(e_1^+\) lies in the orthogonal complement of \(\gamma'\) and \(a = \langle e_1, \gamma' \rangle\). By a direct calculation,

\[
\nabla^2 r(e_1, e_1) = (\nabla_{e_1} \nabla r)(e_1)
\]

\[
= e_1 \langle \gamma', e_1 \rangle - \langle \gamma', \nabla_{e_1} e_1 \rangle
\]

\[
= \langle \nabla_{e_1} \gamma', e_1 \rangle
\]

\[
= \langle \nabla_{e_1^+ + a \gamma'} \gamma', e_1^+ + a \gamma' \rangle
\]

\[
= \langle \nabla_{e_1^+} \gamma', e_1^+ \rangle + a \langle \nabla_{e_1^+} \gamma', \gamma' \rangle
\]

\[
= \nabla^2 r(e_1^+, e_1^+). \tag{2.11}
\]

We further split into two situations. If \(e_1^+ = 0\), then the above shows \(\nabla^2 r(e_1, e_1) = 0\). Using Theorem 2.1 we conclude

\[
\sum_{i=1}^{n} \nabla^2 r(e_i, e_i) = \sum_{i=2}^{n} \nabla^2 r(e_i, e_i)
\]

\[
\leq (n-1) \sqrt{C} \rho \coth(\sqrt{C} \rho). \tag{2.12}
\]
If \(e_1^\perp \neq 0\), write \(b = \|e_1^\perp\|\) and \(f_1 = b^{-1}e_1^\perp\). Then \(\{f_1, e_2, \ldots, e_n\}\) is an orthonormal basis of a \(n\)-dimensional plane in \(T_{F(x_i,t_i)}M\) orthogonal to \(\gamma\). Using (2.11),

\[
\sum_{i=1}^{n} \nabla^2 r(e_i, e_i) = \nabla^2 r(e_1^\perp, e_1^\perp) + \sum_{i=2}^{n} \nabla^2 r(e_i, e_i)
\]

\[
= b^2 \nabla^2 r(f_1, f_1) + \sum_{i=2}^{n} \nabla^2 r(e_i, e_i)
\]

\[
= b^2 \left(\nabla^2 r(f_1, f_1) + \sum_{i=2}^{n} \nabla^2 r(e_i, e_i) \right) + (1 - b^2) \sum_{i=2}^{n} \nabla^2 r(e_i, e_i).
\]

Now we apply Theorem 2.1 again (note that the first term can be dealt with as in (2.10))

\[
\sum_{i=1}^{n} \nabla^2 r(e_i, e_i) \leq b^2 n \sqrt{C} \rho \coth(\sqrt{C} \rho) + (1 - b^2) (n - 1) \sqrt{C} \rho \coth(\sqrt{C} \rho)
\]

(2.13)

Summarizing (2.10), (2.12) and (2.13), we have

\[
\sum_{i=1}^{n} \nabla^2 r(e_i, e_i) \leq n \sqrt{C} \rho \coth(\sqrt{C} \rho) \leq C_1 \rho
\]

for some \(C_1 = C_1(n, C) > 0\). Thus the lemma is proved.

Using Lemma 2.1, (2.8) and \(\frac{\partial \rho^2}{\partial t} = 2 \rho \bar{g}(\nabla r, \bar{H})\),

\[
\left(\frac{\partial}{\partial t} - \Delta^M_{t_i} \right) \rho^2 = -2 \sum_{i=1}^{n} |\nabla^{M_{t_i}}_{e_i} r|^2 - 2 \rho \sum_{i=1}^{n} \nabla^2 r(e_i, e_i)
\]

\[
\geq -2n - 2C_1 \rho
\]

(2.14)

(2.7) and (2.14) imply that at \((x_i, t_i)\) we have respectively

\[
|\nabla u| \leq 2 \epsilon_i \rho
\]

(2.15)

and

\[
\left(\frac{\partial}{\partial t} - \Delta^M_{t_i} \right) u \geq -2 \epsilon_i (n + C_1 \rho).
\]

(2.16)

Note

\[
u(x_i, t_i) - \epsilon_i \rho(x_i, t_i)^2 = u_i(x_i, t_i) \geq u_i(y, s) > 0.
\]

This implies

\[
\rho(x_i, t_i)^2 \leq u(x_i, t_i) \epsilon_i^{-1}.
\]

Using the sub-linear growth condition (3) of \(u\) and Young’s inequality, we have

\[
\rho(x_i, t_i)^2 \leq B \epsilon_i^{-1} + B \epsilon_i^{-1} \rho(x_i, t_i)^\alpha
\]

\[
\leq B \epsilon_i^{-1} + \frac{1}{2} \rho(x_i, t_i)^2 + \frac{1}{2} (B \epsilon_i^{-1})^{\frac{2}{2-\alpha}}.
\]
Thus we get
\[\rho(x_i, t_i) \epsilon_i \leq \sqrt{2B \sqrt{\epsilon_i}} + B^{\frac{1}{2} - \alpha} \epsilon_i^\frac{1}{2} - \alpha. \]
Together with (2.15), (2.16) and that \(\epsilon_i \to 0 \),
\[|\nabla u|(x_i, t_i) \to 0, \quad \liminf_{i \to \infty} \left(\frac{\partial}{\partial t} - \Delta_{M_{t_i}} \right) u(x_i, t_i) \geq 0. \]
This proves the theorem if \(\rho \) is smooth at \((x_i, t_i)\) for all \(i \). When \(\rho \) is not differentiable at some \((x_i, t_i)\), one applies the Calabi’s trick by considering \(r \epsilon(y) = d_{\bar{g}}(y, y_\epsilon) \) instead of \(r \), where \(y_\epsilon \) is a point close to \(y_0 \). The method is standard and thus is skipped. □

Remark 1. Condition (1) in the above theorem is used solely to exclude the case that \(u_i \) is maximized at \((x_i, 0)\) for some \(x_i \in M \). The condition can be dropped if that does not happen (see the proof of Theorem 1.4).

3. Preservation of Gauss image

In this section we assume that \(F_0 : M^n \to \mathbb{R}^{n+m} \) is a proper immersion. Let \(F : M \times [0, T] \to \mathbb{R}^{n+m} \) be a mean curvature flow starting at \(F_0 \). We further assume that the second fundamental form are uniformly bounded: there is \(C_0 > 0 \) so that
\[\|A(x, t)\| \leq C_0, \quad \text{for all } (x, t) \in M \times [0, T]. \]

Lemma 3.1. The mapping \(F \) is proper.

Proof. Let \(B_0(r) \) be the closed ball in \(\mathbb{R}^{n+m} \) centered at the origin with radius \(r \). Then by (2.1) and (3.1) we have
\[|F(x, t) - F(x, 0)| = \left| \int_0^t \frac{\partial F}{\partial s}(x, s)ds \right| \]
\[= \left| \int_0^t \tilde{H}(x, s)ds \right| \]
\[\leq \sqrt{n} \int_0^t \|A(x, s)\|ds \]
\[\leq C_0 \sqrt{n} T. \]
Thus if \((x, t) \in F^{-1}(B_0(r))\), then \(x \) is in \(F_0^{-1}(B_0(r + C_0 \sqrt{n} T)) \). Let \((x_n, t_n) \in F^{-1}(B_0(r))\). Since \(F_0 \) is proper, a subsequence of \(\{x_n\} \) converges to \(x \in M \). Since \([0, T]\) is compact, a subsequence of \((x_n, t_n)\) converges to \((x, t)\), which must be in \(F^{-1}(B_0(r)) \) since \(F \) is continuous. As \(r > 0 \) is arbitrary, \(F \) is proper. □

In particular, the parabolic Omori-Yau maximum principle (Theorem 1.2) can be applied in this case.

Let \(G(n, m) \) be the real Grassmanians of \(n \)-planes in \(\mathbb{R}^{n+m} \) and let
\[\gamma : M \times [0, T] \to G(n, m), \quad x \mapsto F_* T_x M \]
be the Gauss map of \(F \).

Now we prove Theorem 1.3 which is a generalization of a Theorem of Wang [12] to the noncompact situation with bounded second fundamental form.
Proof of Theorem 1.3. Let \(d : G(n, m) \to \mathbb{R} \) be the distance to \(\Sigma \). That is \(d(\ell) = \inf_{L \in \Sigma} d(L, \ell) \). Since \(\gamma(\cdot, 0) \subset \Sigma \), we have \(d \circ \gamma = 0 \) when \(t = 0 \). Using chain rule and (3.1), as \(d\gamma = A \),

\[
d(\gamma(x, t)) = d(\gamma(x, t)) - d(\gamma(x, 0)) = \int_{0}^{t} \nabla d \circ d\gamma(x, s) ds \leq tC_0.
\]

Since \(\Sigma \subset G(n, m) \) is compact, there is \(\epsilon_0 > 0 \) so that the open set

\[V = \{ \ell \in G(n, m) : d(\ell, \Sigma) < \sqrt{\epsilon_0} \} \]

lies in a small tubular neighborhood of \(\Sigma \) and the function \(d^2 \) is smooth on this neighborhood. Let \(T' = \epsilon_0/2C_0 \). Then the image of \(f := d^2 \circ \gamma \) lies in this tubular neighborhood if \(t \in [0, T'] \) and \(f \) is a smooth function on \(M \times [0, T'] \).

The calculation in Wang [12] shows that

\[
\left(\frac{\partial}{\partial t} - \Delta \right) f \leq C|A_i|^2 f,
\]

where \(C > 0 \) depends on \(\epsilon_0 \) and \(\Sigma \). Together with (3.1) this shows that

\[
\left(\frac{\partial}{\partial t} - \Delta \right) f \leq C_1 f
\]

for some positive constant \(C_1 \).

Let \(g = e^{-(C_1+1)t} f \). Then \(g \) is bounded, nonnegative and \(g(\cdot, 0) \equiv 0 \). On the other hand,

\[
\left(\frac{\partial}{\partial t} - \Delta \right) g = -(C_1 + 1)g + e^{-(C_1+1)t} \left(\frac{\partial}{\partial t} - \Delta \right) f \leq -g.
\]

If \(g \) is positive at some point, Theorem 1.2 implies the existence of a sequence \((x_i, t_i)\) so that

\[
g(x_i, t_i) \to \sup g, \quad \limsup_{i \to \infty} \left(\frac{\partial}{\partial t} - \Delta \right) g(x_i, t_i) \geq 0.
\]

Take \(i \to \infty \) in (3.4) gives \(0 \leq -\sup g \), which contradicts that \(g \) is positive somewhere. Thus \(g \) and so \(f \) is identically zero. This is the same as saying that \(\gamma(x, t) \in \Sigma \) for all \((x, t) \in [0, T']\). Note that \(T' \) depends only on \(C_0 \), so we can repeat the same argument finitely many time to conclude that \(\gamma(x, t) \in \Sigma \) for all \((x, t) \in M \times [0, T]\).

\[\square \]

Proof of Corollary 1.1. An immersion is Lagrangian if and only if its Gauss map has image in the Lagrangian Grassmanians \(LG(n) \), which is a totally geodesic submanifold of \(G(n, n) \). The Corollary follows immediately from Theorem 1.3. \[\square \]

Remark 2. Various forms of Corollary 1.1 are known to the experts. In [8], the author comments that the argument used in [11] can be generalized to the complete noncompact case, if one assumes the following volume growth condition:

\[
Vol(L_0 \cap B_R(0)) \leq C_0 R^n, \quad \text{for some } C_0 > 0.
\]

The above condition is needed to apply the non-compact maximum principle in [6].
4. OMORI-YAU MAXIMUM PRINCIPLE FOR SELF-SHRINKERS

In this section, we improve Theorem 5 in [2] using Theorem 1.2. The proof is more intuitive in the sense that we use essentially the fact that a self-shrinker is a self-similar solution to the mean curvature flow (possibly after reparametrization on each time slice).

First we recall some facts about self-shrinker. A self-shrinker to the mean curvature flow is an immersion $\tilde{F} : M^n \rightarrow \mathbb{R}^{n+m}$ which satisfies

\begin{equation}
\tilde{F}^\perp = -\frac{1}{2} \tilde{H}.
\end{equation}

Fix $T_0 \in (-1, 0)$. Let $\phi_t : M \rightarrow M$ be a family of diffeomorphisms on M so that

\begin{equation}
\phi_{T_0} = \text{Id}_M, \quad \frac{\partial}{\partial t} (\tilde{F}(\phi_t(x))) = \frac{1}{2(-t)} \tilde{F}^\top(\phi_t(x)), \quad \forall t \in [-1, T_0].
\end{equation}

Let

\begin{equation}
F(x, t) = \sqrt{-t} \tilde{F}(\phi_t(x)), \quad (x, t) \in M \times [-1, T_0].
\end{equation}

Then F satisfies the MCF equation since by (4.1),

\[
\frac{\partial F}{\partial t}(x, t) = \frac{\partial}{\partial t}(\sqrt{-t} \tilde{F}(\phi_t(x))) \\
= -\frac{1}{2\sqrt{-t}} \tilde{F}(\phi_t(x)) + \sqrt{-t} \frac{\partial}{\partial t}(\tilde{F}(\phi_t(x))) \\
= -\frac{1}{2\sqrt{-t}} \tilde{F}(\phi_t(x)) + \frac{1}{2\sqrt{-t}} \tilde{F}^\top(\phi_t(x)) \\
= \frac{1}{\sqrt{-t}} \tilde{H}_F(\phi_t(x)) \\
= \tilde{H}_F(x, t).
\]

Lastly, recall the \mathcal{L} operator defined in [5]:

\begin{equation}
\mathcal{L} f = \Delta f - \frac{1}{2} \langle \nabla f, \tilde{F}^\top \rangle.
\end{equation}

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall $T_0 \in (-1, 0)$. Let $u : M \times [-1, T_0] \rightarrow \mathbb{R}$ be given by

\begin{equation}
u(x, t) = f(\phi_t(x)), \quad \forall (x, t) \in M \times [-1, T_0].
\end{equation}

Then

\[u(x, t) \leq C(1 + |\tilde{F}(\phi_t(x)|^\alpha) \leq C(-T_0)^{-\alpha/2}|F(x, t)|^\alpha.
\]

Thus we can apply Theorem 1.2 (The condition that $u(\cdot, 0) \equiv 0$ in Theorem 1.2 is used only to exclude the case $t_i = -1$. But since

\[u_i(x, t) = f(\phi_t(x)) - \epsilon_i |\sqrt{-t} \tilde{F}(\phi_t(x))|^2,
\]
in order that \(u_i \) is maximized at \((x_i, t_i) \) we must have \(t_i = T_0 \). In particular \(t_i \neq -1 \).
Thus there is a sequence \((x_i, T_0) \) so that
\[
u(x_i, T_0) \to \sup u,
\quad |\nabla^{M_{T_0}} u(x_i, T_0)| \to 0,
\quad \liminf_{i \to \infty} \left(\frac{\partial}{\partial t} - \Delta^{M_{T_0}} \right) u(x_i, T_0) \geq 0.
\]
Using \(\phi_{T_0} = \text{Id} \) and the definition of \(u \), the first condition gives
\[
(4.6) f(x_i) \to \sup f.
\]
Since \(\nabla^{M_{T_0}} = \frac{1}{\sqrt{-T_0}} \nabla^M \), the second condition gives
\[
(4.7) |\nabla^M f(x_i)| \to 0.
\]
Lastly,
\[
(4.8) \frac{\partial u}{\partial t}(x_i, T_0) = \frac{\partial f}{\partial t}(\phi_{T_0}(x)) \bigg|_{t=T_0} = \frac{1}{2(-T_0)} \langle \nabla f(x_i), \tilde{F}^\top(x_i) \rangle
\]
and
\[
\Delta^{M_{T_0}} u(x_i, T_0) = \Delta^{M_{T_0}} f(x_i) = \frac{1}{-T_0} \Delta^M f(x_i).
\]
Thus
\[
\left(\frac{\partial}{\partial t} - \Delta^{M_{T_0}} \right) u(x_i, T_0) = \frac{1}{T_0} \mathcal{L} f(x_i)
\]
and the result follows. \(\square \)

Remark 3. Note that the above theorem is stronger than Theorem 5 in [2], where they assume that \(f \) is bounded above (which corresponds to our case when \(\alpha = 0 \)).

Remark 4. Our growth condition on \(f \) is optimal: the function \(f(x) = \sqrt{|x|^2 + 1} \) defined on \(\mathbb{R}^n \) (as a self-shrinker) has linear growth, but the gradient of \(f \)
\[
\nabla f = \frac{x}{\sqrt{|x|^2 + 1}}
\]
does not tend to 0 as \(f(x) \to \sup f = \infty \).

Remark 5. In Theorem 4 of [2], the authors also derive a Omori-Yau maximum principle on a properly immersed self-shrinker for the Laplace operator. There they assume \(u : M \to \mathbb{R} \) satisfies the growth condition
\[
\lim_{x \to \infty} \frac{u(x)}{\log \left(\sqrt{|\tilde{F}(x)|^2 + 4} - 1 \right)} = 0.
\]
We remark that the condition can be weaken to
\[
\lim_{x \to \infty} \frac{u(x)}{|\tilde{F}(x)| + 1} = 0,
\]
since the Laplacian of the function \(|\tilde{F}|^2 \) satisfies better estimates: \(\Delta |\tilde{F}|^2 \leq 2n \). Thus one can argue as in p.79 in [1] to conclude.
REFERENCES

1. Alías, L., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics ISBN 978-3-319-24335-1
2. Chen, Q., Jost, J., Qiu, H.: Omori-Yau maximum principles, V-harmonic maps and their geometric applications, Ann. Glob. Anal. Geom. (2014) 46:259-279
3. Chen, Q., Xin, Y.L.: A Generalized Maximum Principle and its Applications in Geometry. Am. J. Math., Vol. 114, No. 2 (Apr., 1992), pp. 355-366
4. Cheng, Q.M., Peng, Y.: Complete self-shrinkers of the mean curvature flow. Calc. Var. (2015) 52: 497.
5. Colding, T., Minicozzi, W.: Generic Mean Curvature Flow I: Generic Singularities. Ann. Math. (2) 175, No. 2, 755-833 (2012)
6. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. (2) 130, 453-471 (1989)
7. Li, P., Wang, J.: Comparison theorem for Kähler manifolds and positivity of spectrum. J. Differential Geom. 69 (2005), no. 1, 043-074.
8. Neves, A.: Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent. math. (2007) 168: 449.
9. Omori, H.: Isometric immersion of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205-214 (1967)
10. Pigola, S., Rigoli, M., Setti, A.: Maximum principle on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174 (822) (2005)
11. Smoczyk, K.: A canonical way to deform a Lagrangian submanifold. arxiv. [dg-ga/9605005]
12. Wang, M.T.: Gauss map of the mean curvature flow, Math. Res. Lett. 10, 287-299 (2003)
13. Yau, S.T.: Harmonic function on complete Riemannian manifolds. Comm. Pure. Appl. Math. 28, 201-228 (1975)

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC CANADA V6T1Z2

E-mail address: johnma@math.ubc.edu.ca