Waste generation and utilisation in micro-sized furniture-manufacturing enterprises in Turkey

Y. Top

Vocational School of Gumushane, University of Gumushane, Baglarbasi Mah., 29100 Gumushane, Turkey

Abstract

The number of small-scale businesses within most national economies is generally high, especially in developing countries. Often these businesses have a weak economic status and limited environmental awareness. The type and amount of waste produced, and the recycling methods adopted by these businesses during their operation can have negative effects on the environment. This study investigated the types of waste generated and the recycling methods adopted in micro-sized enterprises engaged in the manufacture of furniture. An assessment was also made of whether the characteristics of the enterprise had any effect on the waste recycling methods that were practised. A survey was conducted of 31 enterprises in the furniture industry in Gumushane province, Turkey, which is considered a developing economy. Surveys were undertaken via face-to-face interviews. It was found that medium-density fibreboard (MDF), and to a lesser extent, chipboard, were used in the manufacture of furniture, and two major types of waste in the form of fine dust and small fragments of board are generated during the cutting of these boards. Of the resulting composite board waste, 96.9% was used for heating homes and workplaces, where it was burnt under conditions of incomplete combustion. Enterprises were found to have adopted other methods to utilise their wastes in addition to using them as fuel. Such enterprises include those operating from a basement or first floor of a building in the cities, those continuing production throughout the year, those in need for capital and those enterprises not operating a dust-collection system.

1. Introduction

Waste wood can be a potentially valuable resource for the manufacture of various materials and products (Lykidis and Grigoriou, 2008). The type and volume of wastes generated during the manufacture of forest products have changed over time depending on various factors. One of these factors is the reduction in the amount of wood resources available. One example is the change in the past and present utilisation of bark, a by-product of the forest-products industry. The economic value of bark is much lower than that of wood, both quantitatively and qualitatively. Therefore, it has been considered a worthless by-product of the forest-products industry, and has mostly been given away or sold at low price (Lu et al., 2006). Today, bark can be used as a medium-layer material in board production (Pedieu et al., 2008) and as a raw material in insulation board production (Kain et al., 2012). Ilomäki and Melanen (2001) reported that small and medium-sized enterprises (SMEs) in Finland, which is rich in forest resources, have shown less effort in reducing material losses compared to the country’s metal industry.

One of the factors affecting the utilisation of industrial wood waste is the environmental pollution caused by fossil fuels and the regulations imposed to control such emissions (De Hoop et al., 1997). At a time when fossil fuels were much cheaper than wood, wood waste was destroyed by burning. The increase in fossil fuel prices and the environmental pollution caused by their use has resulted in the use of wood for generating energy (Hahn, 1982). The effects of legal regulations on wood waste management can be seen in the management of MDF waste. In Tennessee, where it is a legal requirement for MDF residues to be disposed of in a landfill, the number of landfill sites has diminished and burial costs have subsequently risen, resulting in efforts to demonstrate that these wastes can be utilised to improve soil (EPA, 2011). Lippke and Puettmann (2013) reported that in the forest-products industry, in which biomass is generated as a by-product, it was prohibited to burn wood wastes in boilers for heat production and it is only relatively recent that fossil-fuel boilers have been converted into renewable biomass-burning boilers.

Another change in the management of industrial wood wastes is the reduction in the amounts of waste generated. In commercial
forestry applications, the amounts of waste generated in the process from cutting a tree to delivering it to the end consumer as a product has been reduced. Those parts of felled trees that are unsuitable for lumber and plywood production are used in paper production. Wastes generated during lumber and plywood production are used in the production of composite panels, whereas bark is used to generate energy by burning (Hahn, 1982). Blatner et al. (2012) reported that by-products generated as a result of lumber production in the western United States fell from 59% to 51% in the last 40 years, despite the decline in lumber volume.

Recycling of all industrial wood waste is theoretically possible, but in practice there are factors that limit recycling practises. These include waste collection and transportation, the scale of the business, the industrial sector in which the company operates, the amount and type of waste produced, environmental regulations and the level of development within a particular country.

The presented study aimed to identify the types and utilisation methods of solid waste generated by micro-enterprises operating in the furniture industry in the province of Gumushane, Turkey. This region is considered a developing economy by gross national income per capita (The World Bank, 2014). The presented study evaluates if certain properties of these businesses have any impact on solid waste utilisation. For these purposes, the research questions were defined as follows:

- What kind of solid wood wastes are generated in the micro-sized enterprises?
- How are these wood wastes utilised by these enterprises?
- How does location in the province, sites in city, and operating periods of the businesses affect the selection of waste utilisation methods?
- How do problems faced by businesses affect the utilisation of wood wastes?
- Are there any differences in the utilisation of wood wastes between businesses with and without dust collection systems?

1.1. The forest-products industry and its waste materials

The forest-products industry uses wood as a raw material. This industry includes lumber, furniture, paper and paper products, pulp, and other wood industries (Pentti et al., 2002). It is usually divided into two distinct industrial sectors. The first is the primary wood-products industry, which covers a wide range of operations from lumber production to the manufacture of finished products that are mostly or completely made of wood or composite wood materials (Burton et al., 2003). The second is the value-added or secondary forest-products industry, which manufactures products by processing raw materials or semi-processed materials, and generally includes the production of pallets, light furniture, cabinets, doors, and windows (Monroe et al., 1999).

A portion of the raw material becomes waste during the production process (Gombatz, 2007). These wastes vary due to the differences in raw materials that are involved in production, in the actual production processes, and in the different finished products in the primary and secondary wood-product industries. Wood waste refers to materials that are unsuitable for the production of wood products. They take different forms such as bark, small chips, sawdust, wood edges, and low-quality wood rejected by the manufacturing process (Burton et al., 2003). These wood wastes can be classified into three types: bark, coarse, and fine waste. Bark waste consists of the bark on the exterior part of the log. Coarse wastes include slabs, timber edges, and veneer cores that are suitable for chipping. Fine wastes include by-products that are not suitable for chipping, such as sawdust and veneer clippings (Murphy et al., 2007).

Wastes generated in primary and secondary wood-product factories are biomass resources (Skog and Rosen, 1997). The intended use of this biomass can be divided into energy and non-energy applications. The use of biomass for energy involves combustion to meet the energy needs of homes and industrial enterprises. Non-energy uses include the production of composite boards and wood pulp, land reclamation, animal bedding materials, landscaping, and agricultural mulch; the remainder is sent to landfills (MERAF, 2002; Murphy et al., 2007).

The large-scale use of sawdust and shavings is very problematic. The geographical location of the waste resources and the markets that could use them limit the development of a significant market for these wastes. Long transport distances are generally acceptable only for highly valuable products such as high-quality wood flour. Low-grade products can be used for agricultural applications. Timber shavings can be sold to markets close to where the waste is generated (Harkin, 1969). Other reasons for the limited use of wood waste are the lack of integration of the companies that generate the waste and those that ultimately use it (Nemerow, 2006) and the long delays during waste collection, which can degrade the quality of the waste (Nemli et al., 2007).

It is technologically possible for some factories to meet all of their energy needs by burning the wood waste that they generate; however, it may not be an economical investment (Carll et al., 1982). In some cases, it may not be possible to use waste as a fuel or in other beneficial ways. In such circumstances, the only benefit of wood waste disposal by incineration is to reduce the volume of the waste material (MERAF, 2002).

The type and quantity of emissions arising from burning wood wastes depend on two main factors: the type of biomass (chemical composition) and its physical properties, and the technology used to burn the biomass (Suzdalenkol et al., 2012). Although there are limited data regarding the exact emissions generated in the combustion process, biomass is also an important source of particulate emissions as well as combustion by-products. This is particularly true when they are not incinerated correctly or under conditions of incomplete combustion. The burning of wood wastes can cause serious particulate matter emissions. Pollutants other than particulate pollutants, particularly carbon monoxide, manganese, and organic compounds, can be released in large quantities under conditions of incomplete combustion (Burton et al., 2003). The main drawback of biomass burning is the large amount of emissions that result from improper combustion compared to fossil fuel combustion. This is especially true for the burning of biomass using devices such as woodstoves, ovens, and wood boilers (Van Loo and Koppejan, 2008). Therefore, to reduce emissions, wastes generated during the processing of engineering panels, such as MDF, should be burned only in industrial locations rather than in conventional home stoves, and at temperatures of about 1000 °C (URL 1, 2013).

1.2. The Turkish furniture industry and the quantity of wastes generated

SMEs have an important role in the global economy. Although their contribution varies from country to country, they globally constitute 70% of domestic gross national product (O’Laioire and Welford, 1996 cited in Ilomäki and Melanen (2001)). This type of enterprise (with less than 200 employees) comprises 99% of all businesses in the European Union and 85% of the gross national product. They pollute the environment during their activities but they are often not aware of their impact (Mitchell et al., 2011). Redmond et al. (2008) determined that 39% of small businesses (with 1–20 employees) believe they have no effect on the environment (Redmond et al., 2008). Only 24% of SMEs in the European Union are engaged in activities to mitigate their effects on the
A limited number of studies (Aragón-Correa et al., 2008; Redmond et al., 2008) has been conducted regarding the waste utilisation and environmental impact of these enterprises. In studies on the waste disposal of small-scale enterprises (Casares et al., 2005; Ilomäki and Melanen, 2001; Mitchell et al., 2011; Redmond et al., 2008), enterprises operating across various sectors, rather than a single sector, were investigated.

The furniture industry in Turkey consists of micro-scale enterprises engaged in workshop-type production using mostly traditional methods. However, the number of small enterprises, as well as medium-sized and large enterprises, has increased rapidly in the last 15–20 years (Kades, 2012). The total number of enterprises engaged in furniture production in different employment size classes in Turkey is given in Table 1. It can be seen that 96.5% of all enterprises engaged in furniture production are micro-sized enterprises that employ 1–9 people. The official number of businesses operating in the furniture sector in Turkey is 35,053, and this number makes up about 2% of all industries. However, there are also unregistered businesses operating in the furniture industry, and therefore this figure is not exact. The proportion of businesses that are unregistered is estimated to be between 50% and 60% (Anonym, 2006).

Wood and composite products of wood, including particle-board, plywood, and MDF (Güneri, 2005) are widely used in the manufacture of products used inside buildings such as furniture, flooring, doors, and cabinets. In particular, particleboard and MDF are widely used in the manufacture of furniture. United Nations data on plywood, fibreboard, and particleboard production in Turkey are given in Fig. 1 (URL, 2). The total numbers of boards produced have increased over time. Furthermore, while the production of particleboard has decreased in recent years, fibreboard production has increased.

Industrial waste is the waste resulting from production across many industrial sub-sectors (Casares et al., 2005; Christensen, 2010). Furniture manufacturing is one of these sub-sectors. Wastes are generated during both the production and processing of the composite boards used in furniture production. The Turkish Statistical Institute (TSI) defines waste in the wood product industry as “loss that occurs during the felling of trees, processing, and transport of timber”. According to TSI data, during the manufacture of furniture in 2004, 149,265,000 m3 of solid waste, 140,000 m3 of which was hazardous waste, was generated by manufacturing industry establishments with 50 or more employees (TUIK, 2005). However, wastes generated by micro-sized enterprises are not included in these statistics.

1.3. Legal background of waste management in Turkey

The accession process of Turkey to the European Union (EU) as a full member has had an impact on making laws related with waste management and environment. Until 2005, only three by-laws on waste management have been forced in law. After launching accession negotiations between EU and Turkey, already 13 regulations have been put into practice until present (URL, 3). One of the EU acquis, that includes 35 chapters, is the environment. In order to meet legal environmental requirements, it is estimated that Turkey needs to invest approximately €60 billion (Kose et al., 2007).

With the technical and financial projects supported by the EU, regulations in Turkey have substantially been harmonised with the EU waste management directives. However, the lack of existing infrastructure and institutional and technical capacity hinder their implementation (Kose et al., 2007). Furthermore, Agan et al. (2013) reported that enforcement of current environmental laws is impossible due to high numbers of SMEs in Turkey and existing confusion among legal institutions regarding responsibilities.

According to Turkey’s climate change strategy 2010–2020, the percentage of renewable energy usage in electricity production will be increased to 30% until 2023. Biodegradable wastes will be directed to be used for energy and compost production (The Ministry of Environment and Urban Planning, 2012). The Kyoto Protocol has been signed in 2009, and Turkey was removed from the Annex II list in 2001 (Wikipedia, 2014). But Turkey has not committed to any greenhouse gas (GHG) emission reduction so far (Baykan, 2011).

Table 1

Sectors	Employment size classes	Total				
	1–9	10–49	50–150	151–250	251+	
Number of local units						
All sectors	1,788,835	58,521	7407	1577	1851	1,858,191
Furniture manufacturing	33,852	1052	107	25	17	35,053

In this study, micro-sized enterprises (with 1–9 employees) operating in the furniture manufacturing sector in Gumushane province, one of the 81 provinces of Turkey, were selected for investigation. The furniture-manufacturing industry is classified as a sub-section of the manufacturing sector and is coded as Section 36 within the Statistical Classification of Economic Activities in the European Community. According to TSI data, there are 33 enterprises in Gumushane that fall under Section 36 coding. The number of enterprises engaged in the production of furniture in the province of Gumushane corresponds to 4% of all of the manufacturing industry in the province. In addition, 47% of provincial manufacturing sector businesses are micro-sized enterprises, 48% are small enterprises, and 5% are medium-sized enterprises (Anonym, 2012). All businesses operating in the furniture-manufacturing industry in the province of Gumushane are micro-sized (Top et al., 2013).
2.2. Method

A face-to-face interview method (Arıkan, 2011) was used to collect data. The questionnaire has been applied to the SME owner-manager, and its questions were prepared as open-ended, multiple choice, or with two options (yes–no). In addition, a field study was initiated to survey each business selected. However, it was not possible to visit some businesses for various reasons (e.g., not all addresses could be identified in the records of the Gumushane and Celik Chamber of Commerce), while other non-registered businesses were identified following information obtained from the businesses that were interviewed. As a result, the final number of completed questionnaires was 31. As confirmed by the 2002 General Industry and Business Census conducted by the TSI, 93% of the businesses that make up the main segment of the furniture manufacturing sector were reached (TUIK, 2002). The research was conducted between the years 2012 and 2013.

The data obtained were arranged into a cross table using software, Statistical Package for Social Sciences (SPSS®). However, correlations among categorical variables in the table could not be made because more than 20% of the expected frequency values in cells were below five and the expected frequency of any given cell was less than one.

3. Results and discussion

3.1. Properties of the businesses

To understand the facilities and capacities of the micro-sized businesses selected better, various types of data on each business were collected. Statistical values of employment, the educational background of employees, and the period of operation are given in Table 2.

The mean number of employees per enterprise in the furniture-manufacturing industry in Gumushane province was less than 3.4, which is the mean value across Turkey. The mean number of years of operation of these businesses was less than 34, which is the mean value across Turkey (Fırat, 2013). Although there are many vocational schools in Turkey that provide education related to furniture manufacturing, as well as institutions that grant degrees in vocational schools in Turkey that provide education related to furniture manufacturing, the employment rate of graduates in this sector is low (Aksu and Köc, 2009). Only 13.2% of vocational school graduates are employed in this sector. However, the employment rate of graduates from non-vocational educational institutions employed in this sector is 68.4%. It can be concluded from this that the majority of employees in the sector do not have an in-depth knowledge of the physical and chemical properties of wood or wood composites.

In a study conducted in an industrial zone comprising SMEs, it was concluded that the environmental responsibilities of companies are usually limited and directly proportional to the scale of the company (Casares et al., 2005). Ilomäki and Melanen (2001) demonstrated that small businesses, most of which were micro-sized businesses, had very little interest in environmental protection. In Europe, SMEs include businesses with less than 250 employees and an annual turnover of a maximum of € 40 million, whereas micro-sized businesses are those with less than 10 employees and an annual turnover of less than € 2 million (Anonym, 2003). Given this definition and the studies referred to here, it is understandable that the micro-sized businesses in Gumushane have few or no environmental concerns.

3.2. Types of waste and methods for their utilisation

Fig. 2 shows the typical waste generated by a company that produces furniture in Gumushane. The waste produced during the cutting of boards is in the form of fine dust, while those generated during drilling and milling operations have a less dense structure. As seen in Fig. 2, some businesses collect the wastes in a mixed manner without sorting them at source.

Some businesses collect their wastes in the form of sawdust using vacuum systems, such as that shown in Fig. 3. Fig. 4 shows wastes in the form of small pieces of board generated after cutting MDF and particleboards. These pieces, which are too small to be used in the manufacture of furniture, are left after cutting out the sections needed. This type of wood waste can be used to make new boards (Lykidis and Grigoriou, 2008).

Two major types of solid waste are generated during the processing of boards in the manufacture of furniture: sawdust and small pieces of boards. Half of the enterprises investigated in this study utilised a system to collect dust. However, businesses usually do not do so diligently. The most important reason for this is the lack of available space and tools for collection (Fig. 2). Casares et al. (2005) reported that specific technologies are required to collect bulky wastes such as paper, cardboard, plastic, and wood.

The methods adopted to utilise wastes generated during the production of furniture were determined and are shown in Fig. 5. Wastes are basically utilised in three different ways. Individual businesses usually prefer to adopt only one of these different methods. Only one company stated that it utilises its wastes in two different ways.

A very large proportion (96.9%) of the wastes generated in furniture-manufacturing businesses in Gumushane province was found to be utilised as fuel in workplaces and homes. This is not surprising, given that half of the world’s wood is consumed as firewood, and wood is still the primary energy source for the vast majority of the world’s population (Sutton, 1993; Risbrudt, 2012). In many developing countries, wood and charcoal are the primary fuels used by people to prepare food and they are also important fuels for SMEs (Zerbe, 2004).

The primary condition for the use of wood as an environmentally sustainable fuel is that it burns completely and efficiently.

| Table 2 |
| Number and educational background of employees, and the period of operation for the businesses selected. |
N	Sum	Mean	
Employees	31	76	2.45
Years of operation	31	624	20.13
Graduated from primary school	12	13	1.08
Graduated from secondary school	12	17	1.42
Graduated from high school	12	22	1.83
Graduated from vocational schools	6	10	1.67
Graduated from university	11	14	1.27

Fig. 2. Wastes generated during the processing of MDF and particleboard in furniture manufacturing.
The combustion process should allow the wood to be burned completely to avoid the formation of environmentally undesirable components (Vos, 2005). In combustion tests using composite wood materials, Tatàno et al. (2009) reported high emissions of carbon monoxide as a result of incomplete combustion, as well as nitrogen oxide emissions, which can lead to the formation of acid rain. Therefore, composite board wastes should be fully burned in special furnaces and at high temperatures (1000 °C) (URL 1, 2013).

The use of wastes generated during the manufacture of furniture can also be used in the production of MDF. Fibres contained in the waste particles can be recycled using microwave technology (Harrison, 2012). In addition, end-use wood panels can also be reused in the manufacture of MDF (Mantanis et al., 2004). In a study in an industrial zone comprising SMEs, 27% of all wastes, including glass, metal, and wood, were shown to be re-used in manufacturing industries. However, industrial sectors were not separated (Casares et al., 2005). It has also been shown that MDF wastes can be utilised to improve agricultural soil (EPA, 2011). However, no such use was identified in our study sample.

Basic stoves, such as those shown in Fig. 6, are used to burn wastes. These stoves are not considered suitable for burning composite board wastes because they create conditions that lead to incomplete combustion. It is important to have suitable combustion conditions during the incineration of particleboards. Incomplete combustion can result in the formation of toxic components (Risholm-Sundman and Vestin, 2005, cited in Lykidis and Grigoriou (2008)). Because these stoves are used in Gumushane to burn waste, the waste produced in the region is likely to be burnt under conditions of incomplete combustion.

3.3. Effects of certain business properties on the methods adopted to utilise wastes

The businesses selected for this study operated in the city centre and the counties of Gumushane province. The waste utilisation by the businesses in different locations is given in Table 3. Regardless of whether a business operated in the city centre or in a rural area, utilisation of waste materials was similar, with the majority of wood waste used as a fuel.

Micro-sized furniture manufacturing enterprises are located in different types of sites (e.g., ground floor of a building, etc.). The relationship between site of operation and the method of waste utilisation is given in Table 4.

Local businesses operating from the lower floors of buildings utilised their waste in three different ways. These businesses used 80% of their wood waste as fuel, a high rate. Businesses operating on industrial sites are close to each other, allowing them to make
use of each other’s waste materials, (e.g., collecting and selling wastes between businesses); however, this was not happening in Gumushane. Almost all (24 out of 25) of the businesses operating in an industrial site burned their wood waste to generate heat. The relationship between waste utilisation and the period of business operation is given in Table 5.

The furniture industry is linked to the construction sector (Cındık and Akyüz, 1998; Top et al., 2013). In Gumushane, due to climatic conditions, building construction is suspended in winter. Therefore, some furniture manufacturing businesses suspend their activities due to insufficient demand. All businesses that operate seasonally burn their waste to meet their own fuel needs. In those that operate throughout the year, surplus waste is sold for use as residential fuel and bedding. Thus, there is some variability in the utilisation of surplus waste.

Operational problems faced by enterprises can influence their waste utilisation. For example, a business is expected to choose the most cost effective method to dispose of their waste. The relationship between the methods used for waste and the operational problems faced by businesses are given in Table 6.

Utilisation of by-products in the forest-products industry has developed in response to various operational problems that have been experienced (Hahn, 1982; Ilomäki and Melanen, 2001; Lu et al., 2006). Therefore, in the present study, it was expected that the operational problems experienced by the businesses under investigation would also influence the methods adopted to utilise waste materials; however, the results did not support this assumption. Only 1 of 23 businesses that stated that they were short of capital utilised their waste by selling it rather than using it to meet their own fuel needs.

The relationship between businesses with waste-collection systems and their waste utilisation methods is given in Table 7. All of the businesses with a system for collecting the fine dust that is generated during cutting declared that they used their waste for meeting their own fuel needs, while 18.8% of businesses without these systems reported that they sold the waste for use as fuel or bedding.

The operating systems and machines owned by businesses may indicate their capital structure and status. Enterprises with systems for collecting the fine dust generated during the cutting of boards are likely to be in a better position in terms of capital than businesses without such systems. Businesses that do not have such systems utilise their waste in various ways. The results of this study indicate that the operational problems experienced by a business do not influence their utilisation of waste materials. When these two results are considered together, businesses facing economic problems are likely to be making effort to utilise their wastes in a more cost effective way.

Table 3
Waste utilisation by businesses in different locations.

Location of business	City centre	Kelkit	Siran	Other counties	
Used in facility as fuel	Number	6	17	4	2
% Within column	85.7%	100.0%	100.0%	50.0%	
Sold as residential fuel	Number	1	0	0	1
% Within column	14.3%	0.0%	0.0%	25.0%	
Given away as bedding	Number	0	0	0	1
% Within column	0.0%	0.0%	0.0%	25.0%	
Total	Number	7	17	4	4

Table 4
Waste utilisation by businesses operating from different sites.

Site where a business operates	Ground floor	Industrial site	Detached land	Total	
Used in facility as fuel	Number	3	24	2	29
% Within column	60.0%	96.0%	100.0%		
Sold as residential fuel	Number	1	1	0	2
% Within column	20.0%	4.0%	0.0%		
Given away as bedding	Number	1	0	0	1
% Within column	20.0%	0.0%	0.0%		
Total	Number	5	25	2	32

Table 5
Waste utilisation by businesses operating for different periods of time.

Operating period of businesses	Seasonal	Annual	Total	
Used in facility as fuel	Number	17	12	29
% Within column	100.0%	80.0%		
Sold as residential fuel	Number	0	2	2
% Within column	0.0%	13.3%		
Given away as bedding	Number	0	1	1
% Within column	0.0%	6.7%		
Table 7

Utilisation of waste materials in businesses with and without dust-collection systems.

	Dust-collection system	Total	
	No	Yes	
Used in facility as fuel	Number		
	13	16	29
	% Within column	81.3%	100.0%
Sold as residential fuel	Number		
	2	0	2
	% Within column	12.5%	0.0%
Given away as bedding	Number		
	1	0	1
	% Within column	6.3%	0.0%
Total	16	16	32
The relationship between the methods used to utilise waste in the furniture industry and certain properties of the businesses can be summarised as follows: enterprises that operate from the basement or first floor of buildings in cities, those that continue production throughout the year, those in need of capital, and those that do not have dust-collection systems utilise their waste in three different ways: as fuel in the facility, as residential fuel, and as bedding for animals. In contrast, enterprises without these characteristics utilise their waste only as fuel. The proportion of waste used as fuel is also higher than that of the other utilisation methods in the enterprises that utilise the three different methods.

The quantity and type of waste generated by micro-sized enterprises should also be included in annual waste statistics. Actual waste data that include businesses of all sizes will facilitate an understanding of the importance of the potential for waste utilisation and waste management. More importantly, the by-laws related with waste management in Turkey must be put into practice. Combustion of wood waste with improper equipment has to be prevented as well.

The waste generated by the wood products industry represents one of the biomass resources and the energy generated from this resource is clean and renewable. In this regard, the enhanced reutilisation of the wood waste generated in furniture manufacturing enterprises for the production of electricity is significant since Turkey imported 78% of its energy needs and supplied 87% of its energy from fossil fuels in 2004, respectively (Erdogdu, 2008). Each generated energy unit from biomass will reduce the GHG emission and the amount of imported energy in Turkey.

Studies which reveal the economical and environmental potential from recycling and aiming to remove existing barriers in waste recovery will help to develop proper policies.

References

Ackroyd, J., Coulter, B., Phillips, P.S., Read, A.D., 2003. Business excellence through resource efficiency (brete): an evaluation of the UK's highest recruiting, facilitated self-help waste minimization project. Resour. Conserv. Recycl. 38, 271–299.

Agan, Y., Acar, M.F., Borodin, A., 2013. Drivers of environmental processes and their impact on performance: a study of Turkish SMEs. J. Clean. Prod. 51, 23–33.

Aksu, B., Koc, K.H., 2009. Opportunities and future in technical and vocational education in the light of global developments. In: 1st International 5th national vocational schools symposium ’09, proceeding book, May 27–29, Konya, Turkey, University of Selcuk, pp. 3378–3389.

Anonymous, 2003. Concerning the definition of micro, small and medium-sized enterprises. European Union.

Anonymous, 2006. The specialization commission report for the wood products and furniture industry. <http://plan001.dpt.gov.tr/okul7_agacmobilya/agac_mobilya.pdf> (retrieved 23.06.13). p. 141 (in Turkish).

Anonymous, 2012. Status Report of 81 Provinces. Ministry of Science, Industry and Technology, Ankara (in Turkish).

Aragón-Correa, J.A., Hurtado-Torres, N., Sharma, S., Garcia-Morales, V.J., 2008. Environmental strategy and performance in small firms: a resource-based perspective. J. Environ. Manage. 86, 88–103.

Arkan, R., 2011. Research Methods and Techniques, first ed. Nobel Akademik Yayıncılık, Ankara (in Turkish).

Baykan, B.G., 2011. Türkiye Sera Gazi Salımı Azaltma Taahhüdü Vermekten Kaçmıyorum, Araştirma Notu 11/121, Bahcesehir Üniversitesi Ekonomik ve Toplumsal Araştırmalar Merkezi, Ankara (in Turkish).

Blatner, K.A., Keegan III, C.E., Daniels, J.M., Morgan, T.A., 2012. Trends in lumber processing in the Western United States. Part III: Residue recovered versus lumber produced. For. Prod. J. 62, 429–433.

Burrton, J.P., Messier, C., Smith, D.W., Wókrot, L.A., 2003. Towards Sustainable Management of the Boreal Forest. NRC Research Press, Ottawa.

Carll, C.G., Youngquist, J.A., Dickerhoff, H.E., 1982. U.S. wood-based panel industry; energy, environment protection, and occupational safety and health. For. Prod. J. 32, 18–22.

Casares, M.L., Ulierte, N., Mataran, A., Ramos, A., Zamorano, M., 2005. Solid industrial wastes and their management in Asegra. Waste Manage. 25, 1075–1082.

Christensen, T., 2010. Solid Waste Technology and Management. Wiley, Hoboken.

Cundik, H., Agyüz, K.C., 1998. The structure and suggestions to solve problems of small and middle-sized forest products industry establishments in Trabzon. Tr. J. Agric. For. 22, 7–11.

Daian, G., Ozarska, B., 2005. Wood waste management practices and strategies to increase sustainability standards in the Australian wooden furniture manufacturing sector. J. Clean. Prod. 17, 1594–1602.

De Hoop, C.F., Klet, S., Chang, S.J., Gazo, R., Buchart, M.E., 1997. Survey and mapping of wood residue users and producers in Louisiana. For. Prod. J. 47, 31–37.

EPA, 2011. Potential Recycling of Medium Density Fiberboard. United States Environmental Protection Agency. <http://www.epa.gov/oswer/docs/iwg/fiberboard.pdf>.

Erdogdu, E., 2008. An expose’ of bioenergy and its potential and utilization in Turkey. Energy Policy 36, 2182–2190.

EUIBIONET, 2003. Biomass Co-firing-An Efficient Way to Reduce Greenhouse Gas Emissions. Vraskyäälä, Finland.
