Discrete Translates in Function Spaces

Alexander Olevskii

The talk is based on joint work with Alexander Ulanovskii
Introduction

Given $f \in L^2(\mathbb{R})$, consider the set of the translates

$$\{f(t - \lambda), \lambda \in \mathbb{R}\}.$$

WIENER: When the translates span the whole space $L^2(\mathbb{R})$?

Theorem (Wiener). The set of translates $\{f(t - \lambda), \lambda \in \mathbb{R}\}$ spans the whole space $L^1(\mathbb{R})$ if and only if $\mathcal{F}f$ has no zeros on \mathbb{R}.
Introduction

Given \(f \in L^2(\mathbb{R}) \), consider the set of the translates

\[
\{ f(t - \lambda), \lambda \in \mathbb{R} \}.
\]

WIENER: When the translates span the whole space \(L^2(\mathbb{R}) \)?

Theorem (Wiener). ... *if and only if the Fourier transform \(\hat{f} \) is non-zero almost everywhere on \(\mathbb{R} \).*
Given $f \in L^2(\mathbb{R})$, consider the set of the translates

$$\{f(t - \lambda), \lambda \in \mathbb{R}\}.$$

WIENER: When the translates span the whole space $L^2(\mathbb{R})$?

Theorem (Wiener). ... if and only if the Fourier transform \hat{f} is non-zero almost everywhere on \mathbb{R}.

Let $f \in L^1(\mathbb{R})$.

Theorem (Wiener). The set of translates $\{f(t - \lambda), \lambda \in \mathbb{R}\}$ spans the whole space $L^1(\mathbb{R})$ if and only if \hat{f} has no zeros on \mathbb{R}.

Alexander Olevskii (The talk is based on joint work with Alexander Ulanovskii)
Consider the zero set of \(\hat{f} \):

\[
Z(\hat{f}) := \{ w : \hat{f}(w) = 0 \}.
\]

Wiener expected that similar characterizations hold for the spaces \(L^p(\mathbb{R}) \) in terms of "smallness" of \(Z(\hat{f}) \).
Consider the zero set of \hat{f}:

$$Z(\hat{f}) := \{ w : \hat{f}(w) = 0 \}.$$

Wiener expected that similar characterizations hold for the spaces $L^p(\mathbb{R})$ in terms of "smallness" of $Z(\hat{f})$.

Beurling (1951): The set of translates spans $L^p(\mathbb{R})$ if $\text{DIM}_H(Z(\hat{f})) < 2(p - 1)/p$.

Sharp, but not necessary.
Consider the zero set of \(\hat{f} \):

\[
Z(\hat{f}) := \{ w : \hat{f}(w) = 0 \}.
\]

Wiener expected that similar characterizations hold for the spaces \(L^p(\mathbb{R}) \) in terms of "smallness" of \(Z(\hat{f}) \).

Beurling (1951): *The set of translates spans \(L^p(\mathbb{R}) \) if\[
\text{DIM}_H(Z(\hat{f})) < 2(p - 1)/p.
\]*

Sharp, but not necessary.

Pollard, Herz, Newman, ...
Consider the zero set of \hat{f}:

$$Z(\hat{f}) := \{ w : \hat{f}(w) = 0 \}.$$

Wiener expected that similar characterizations hold for the spaces $L^p(\mathbb{R})$ in terms of “smallness” of $Z(\hat{f})$.

Beurling (1951): The set of translates spans $L^p(\mathbb{R})$ if

$$\text{DIM}_H(Z(\hat{f})) < 2(p - 1)/p.$$

Sharp, but not necessary.

Pollard, Herz, Newman, ...

Theorem (N. Lev, A.O., Annals 2011). For every $p, 1 < p < 2$, there are two functions $f_1, f_2 \in (L^1 \cap L^p)(\mathbb{R})$ such that

(i) $Z(\hat{f}_1) = Z(\hat{f}_2)$;

(ii) The set of translates of f_1 spans $L^p(\mathbb{R})$, while the set of translates of f_2 does not.
Discrete Translates

Let Λ be a discrete subset of \mathbb{R}. Given $f \in L^2(\mathbb{R})$, consider the set of its Λ-translates

$$\{f(t - \lambda), \lambda \in \Lambda\}.$$
Let Λ be a discrete subset of \mathbb{R}. Given $f \in L^2(\mathbb{R})$, consider the set of its Λ-translates
\[
\{ f(t - \lambda), \lambda \in \Lambda \}.
\]

Definition. f is called a generator for Λ if its Λ-translates span the whole space $L^2(\mathbb{R})$.

Two examples:

- $\Lambda_1 := \{ \sqrt{n}, n \in \mathbb{Z}^+ \}$
- $\Lambda_2 := \mathbb{Z}$

Λ_1 admits a generator while Λ_2 does not.

DISCUSSION

Alexander Olevskii (The talk is based on joint work with Alexander Ulanovskii)
Let \(\Lambda \) be a discrete subset of \(\mathbb{R} \). Given \(f \in L^2(\mathbb{R}) \), consider the set of its \(\Lambda \)-translates

\[
\{ f(t - \lambda), \lambda \in \Lambda \}.
\]

Definition. \(f \) is called a generator for \(\Lambda \) if its \(\Lambda \)-translates span the whole space \(L^2(\mathbb{R}) \).

Two examples:

\[
\Lambda_1 := \{ \sqrt{n}, n \in \mathbb{Z}_+ \}, \quad \Lambda_2 := \mathbb{Z}.
\]

\(\Lambda_1 \) admits a generator while \(\Lambda_2 \) does not.
Discrete Translates

Let Λ be a discrete subset of \mathbb{R}. Given $f \in L^2(\mathbb{R})$, consider the set of its Λ-translates

$$\{f(t - \lambda), \lambda \in \Lambda\}.$$

Definition. f is called a generator for Λ if its Λ-translates span the whole space $L^2(\mathbb{R})$.

Two examples:

$$\Lambda_1 := \{\sqrt{n}, n \in \mathbb{Z}_+\}, \quad \Lambda_2 := \mathbb{Z}.$$

Λ_1 admits a generator while Λ_2 does not.

SIZE VERSUS ARITHMETICS!
Generators

Does there exist a *uniformly discrete* set Λ which admits a generator?
Generators

Does there exist a *uniformly discrete* set Λ which admits a generator?

It was conjectured that the answer is negative (1995).
Generators

Does there exist a *uniformly discrete* set \(\Lambda \) which admits a generator?

It was conjectured that the answer is negative (1995).

We call \(\Lambda \) an almost integer set if

\[
\Lambda := \{ n + \gamma(n), 0 < |\gamma(n)| = o(1) \}.
\]
Generators

Does there exist a *uniformly discrete* set Λ which admits a generator?

It was conjectured that the answer is negative (1995).

We call Λ an almost integer set if

$$\Lambda := \{ n + \gamma(n), 0 < |\gamma(n)| = o(1) \}.$$

Theorem (A.O., 1997). *For any almost integer set of translates there is a generator.*

The construction is based on "small denominators" argument.
The case $p > 2$:

Theorem (A. Atzmon, A. O., Journal of Approximation Theory, 1996). For every $p > 2$ there is a smooth function $f \in (L^p \cap L^2)(\mathbb{R})$ such that the family \(\{f(t - n), n \in \mathbb{Z}\} \) is complete and minimal in $L^p(\mathbb{R})$.

Hence, $\Lambda = \mathbb{Z}$ admits an L^p-generator for every $p > 2$ (and it does not for $p \leq 2$).
L^1-generators

No u.d. set Λ may admit an L^1-generator.

Theorem (J. Bruna, A. O., A. Ulanovskii, Rev. Mat. Iberoam., 2006) Λ admits an L^1-generator iff it has infinite Beurling-Malliavin density.

For $1 < p < 2$ the problem remained open.
Discrete Translates in Function Spaces

Which function spaces can be spanned by a uniformly discrete set of translates of a single function?

All results below are from A.O., A.Ulanovskii:
– Bull. London Math. Soc. (2018) and
– Analysis Mathematica (2018).

Let X be a Banach function space on \mathbb{R}, satisfying the condition:
(I) The Schwartz space $S(\mathbb{R})$ is embedded in X continuously and densely;
Then the elements of X^* are tempered distributions.
We also assume
(II) Conditions $g \in X^*$ and $\text{spec} g \subset \mathbb{Z}$ imply $g = 0$.
Which function spaces can be spanned by a uniformly discrete set of translates of a single function?

All results below are from A.O., A.Ulanovskii:
– Bull. London Math. Soc. (2018) and
– Analysis Mathematica (2018).

Let X be a Banach function space on \mathbb{R}, satisfying the condition:

(I) The Schwartz space $S(\mathbb{R})$ is embedded in X continuously and densely;

Then the elements of X^* are tempered distributions.
Which function spaces can be spanned by a uniformly discrete set of translates of a single function?

All results below are from A.O., A. Ulanovskii:
– Bull. London Math. Soc. (2018) and
– Analysis Mathematica (2018).

Let X be a Banach function space on \mathbb{R}, satisfying the condition:
(I) The Schwartz space $S(\mathbb{R})$ is embedded in X continuously and densely;

Then the elements of X^* are tempered distributions.

We also assume
(II) Conditions $g \in X^*$ and $\text{spec } g \subset \mathbb{Z}$ imply $g = 0$.
Discrete Translates in Function Spaces

Theorem 1. There exist a smooth function f and a uniformly discrete set Λ of translates such that the family $\{f(t - \lambda), \lambda \in \Lambda\}$ spans X.
Theorem 1. There exist a smooth function f and a uniformly discrete set Λ of translates such that the family $\{f(t - \lambda), \lambda \in \Lambda\}$ spans X.

Below we present an explicit construction of f and Λ in this result.
Examples

Theorem 1 is applicable to

1. $L^p(\mathbb{R}), p > 1$.
2. Separable symmetric spaces (like Orlitz, Marzienkevich). The only exception is $L^1(\mathbb{R})$.
3. Sobolev spaces $W^{l,p}(\mathbb{R}), p > 1$.
4. Weighted spaces $L^1(w; \mathbb{R})$, where the weight is bounded and vanishes at infinity.
Construction

Definition. $F \in S(R)$ is said to have a deep zero at point t if

$$|F(t + h)| < Ce^{-1/|h|}, \quad |h| < \frac{1}{2}. $$
Construction

Definition. $F \in S(R)$ is said to have a deep zero at point t if

$$|F(t + h)| < Ce^{-1/|h|}, \quad |h| < \frac{1}{2}.$$

GENERATOR: Take an even real function F with deep zeros at all integers (with the same constant) and at infinity, and which has no other zeros. Consider its Fourier transform $f := \hat{F}$.

TRANSLATES: Now define the translates as exponentially small perturbation of integers:

$$\Lambda := \{n + e^{-|n|}, n \in \mathbb{Z}\}.$$

Theorem 1'. The set of translates $\{f(t - \lambda), \lambda \in \Lambda\}$ is complete in every X satisfying (I) and (II).

Universality!

Construction

Main Lemma. Let F and Λ be as above, $g \in S'$. If the convolution $\hat{F} \ast g$ vanishes on Λ then it is zero.
Construction

Main Lemma. Let F and Λ be as above, $g \in S'$. If the convolution $\hat{F} \ast g$ vanishes on Λ then it is zero.

Model Example. If F is as above and $\hat{F}|_{\Lambda} = 0$ then $F = 0$.

Alexander Olevskii (The talk is based on joint work with Alexander Ulanovskii)
Construction

Main Lemma. Let F and Λ be as above, $g \in S'$. If the convolution $\hat{F} \ast g$ vanishes on Λ then it is zero.

Model Example. If F is as above and $\hat{F}|_{\Lambda} = 0$ then $F = 0$.

Proof. \hat{F} is analytic in a strip. Denote

$$H(t) := \sum_{k \in \mathbb{Z}} F(t + k).$$

By the Poisson formula,

$$H(t) = \sum_{n \in \mathbb{Z}} \hat{F}(n) e^{2\pi i nt}.$$

Since $\hat{F}(n)$ is exponentially small, then H is analytic on the circle. And it has a deep zero, so that $H = 0$. Hence, $\hat{F}|_{\mathbb{Z}} = 0$.

Iterate the argument above for tF, t^2F, ... to get $\hat{F}^{(k)}|_{\mathbb{Z}} = 0$, $k = 1, 2, ...$, so that $\hat{F} = 0$.
Proof of Theorem 1’

Suppose the translates \(\{ f(t - \lambda), \lambda \in \Lambda \} \) are not complete in \(X \). Then there is a functional \(g \) ”orthogonal” to them, which means

\[g \ast f|_\Lambda = 0. \]

By the Main Lemma, \(g \ast f = 0 \). That is \(\hat{g}F = 0 \). So, \(\hat{g} = 0 \) on \(\mathbb{R} \setminus \mathbb{Z} \). This means Spec \(g \subset \mathbb{Z} \). Applying Property (II), we get \(g = 0 \).
Proof of Theorem 1’

Suppose the translates \(\{ f(t - \lambda), \lambda \in \Lambda \} \) are not complete in \(X \). Then there is a functional \(g \) ”orthogonal” to them, which means

\[g \ast f|_{\Lambda} = 0. \]

By the Main Lemma, \(g \ast f = 0 \). That is \(\hat{g}F = 0 \). So, \(\hat{g} = 0 \) on \(\mathbb{R} \setminus \mathbb{Z} \). This means \(\text{Spec } g \subset \mathbb{Z} \). Applying Property (II), we get \(g = 0 \).

Open Problem. Does there exist a set of translates of a single function, which is complete and minimal in \(L^2(\mathbb{R}) \)?
Theorem 2. There are $f_1, f_2 \in S(\mathbb{R})$ such that the Λ-translates of them span every space X, satisfying property (I) only.

This shows an advantage of collective work!
Two generators

Theorem 2. There are \(f_1, f_2 \in S(\mathbb{R}) \) such that the \(\Lambda \)-translates of them span every space \(X \), satisfying property (I) only.

This shows an advantage of collective work!

THANKS!