Treatment strategy for colorectal cancer with resectable synchronous liver metastases: Is any evidence-based strategy possible?

Luca Viganò

Luca Viganò, Department of HPB and Digestive Surgery, Ospedale Mauriziano “Umberto I”, Torino 10128, Italy

Author contributions: Viganò L. Solely contributed to this paper.

Correspondence to: Luca Viganò, MD, Department of HPB and Digestive Surgery, Ospedale Mauriziano “Umberto I”, Largo Turati 62, Torino 10128, Italy. lvigano@ymail.com

Telephone: +39-11-5082590 Fax: +39-11-5082592

Received: April 22, 2012 Revised: August 10, 2012 Accepted: August 23, 2012

Published online: August 27, 2012

Abstract

Fifteen percent to twenty-five percent of patients affected by colorectal cancer presents with liver metastases at diagnosis. In resectable cases, surgery is the only potentially curative treatment and achieves survival rates up to 50% at 5 years. Management is complex, as colorectal resection, liver resection, chemotherapy, and, in locally advanced mid/low rectal tumors, radiotherapy have to be integrated. Modern medical practice usually relies on evidence-based protocols. Levels of evidence for synchronous metastases are poor: published studies include few recent prospective series and several retrospective analyses collecting a limited number of patients across long periods of time. Data are difficult to be generalized and are mainly representative of single centre’s experience, biased by local recruitment, indications and surgical technique. In this context, surgeons have to renounce to “evidence-based medicine” and to adopt a sort of “experience-based medicine”. Anyway, some suggestions are possible. Simultaneous colorectal and liver resection can be safely performed whenever minor hepatectomies are planned, while a case-by-case evaluation is mandatory in case of more complex procedures. Neoadjuvant chemotherapy is preferentially scheduled for patients with advanced metastatic tumors to assess disease biology and to control lesions. It can be safely performed with primary tumor in situ, even planning simultaneous resection at its end. Locally advanced mid/low rectal tumor represents a further indication to neoadjuvant therapies, even if treatment’s schedule is not yet standardized. In summary, several issues have to be solved, but every single HPB centre should define its proper strategy to optimize patient’s selection, disease control and safety and completeness of surgery.

© 2012 Baishideng. All rights reserved.

Key words: Synchronous liver metastases; Colorectal liver metastases; Liver surgery; Simultaneous colorectal and liver resection; Preoperative chemotherapy; Up-front chemotherapy; Neoadjuvant chemo-radiotherapy; Locally advanced rectal cancer; Survival

Peer reviewers: Yo-ichi Yamashita, MD, PhD, Department of Surgery, Hiroshima Red Cross Hospital and Atomic Bomb Survivors Hospital, Senda-machi 1-9-6, Naka-ku, Hiroshim 730-8619, Japan; Volker Fendrich, MD, Department of Surgery, Philipps-University, Marburg 35039, Germany

INTRODUCTION

Fifteen to 25% of patients affected by colorectal cancer presents with liver metastases at diagnosis[1,2]. In resectable cases, surgery is the only potentially curative treatment[3–5] and achieves survival rates up to 50% at 5 years[6,7]. Management is complex, as colorectal resection, liver resection, chemotherapy, and, in locally advanced mid/low rectal tumors, radiotherapy have to be integrated.
Modern medical practice usually relies on evidence-based protocols. Levels of evidence for synchronous metastases are poor: published studies include few recent prospective series and several retrospective analyses collecting a limited number of patients across long periods of time. Data are difficult to be generalized and are mainly representative of single centre’s experience, biased by local recruitment, indications and surgical technique. In this context, surgeons have to renounce to “evidence-based medicine” and to adopt a sort of “experience-based medicine”.

**SIMULTANEOUS COLORECTAL AND LIVER RESECTION: IS IT BENEFICIAL OR DETRIMENTAL?**

The timing of colorectal and liver surgery (simultaneous vs staged) has been debated since the 1980s. Theoretically, simultaneous resections have an increased risk of both anastomotic leak (splanchnic congestion after liver surgery) and liver failure (septic complications due to the combination of “clean” and “contaminated” procedures) 

Despite strong theoretical advantages, practical evidences are weak. In 2008 a RCT compared outcomes of patients undergoing surgery with or without perioperative chemotherapy: treated patients had higher disease-free survival rates, but effects of pre- and postoperative chemotherapy resulted indistinguishable. Two retrospective series, specifically focused on synchronous metastases, failed to demonstrate any survival advantage in patients receiving neoadjuvant treatments.

Selective indications might be adopted. The presence of more than three lymph node metastases has been proposed, but this criterion is difficult to be preoperatively ascertained.

**LIVER SURGERY SYNONYMOUS FOR IMMEDIATE RESECTION?**

If neoadjuvant chemotherapy is scheduled, the commonest strategy is colorectal surgery followed by chemotherapy, and then liver surgery. In the past, the anticipated risk of intestinal occlusion while on therapy precluded any possibility to plan simultaneous resection at the end of treatment. Some authors even criticized simultaneous surgery because of the impossibility to perform any patient’s selection.

At present, simultaneous resection is no more synonymous for immediate resection at diagnosis. Recent series demonstrated that up-front chemotherapy with primary tumor in situ could be safely administered in unresectable patients. The occlusion risk is low, mainly thanks to the effectiveness of modern chemotherapies on primary tumor (Table 2). Furthermore, endoscopic metallic stents may treat symptomatic patients before chemotherapy or even while on treatment.

**PREOPERATIVE CHEMOTHERAPY: SYSTEMATIC VS SELECTIVE INDICATIONS**

Even if surgery is the optimal treatment of patients with colorectal metastases, some resectable patients do not benefit from immediate resection because of rapidly progressive disease or of microscopic neoplastic foci that lead to early recurrence. How to select good candidates? A time test, i.e., an interval of time before resection, has been proposed. At present, neoadjuvant chemotherapy is the standard time test, allowing tumor biology evaluation, disease control and microscopic foci sterilization.

Despite strong theoretical advantages, practical evidences are weak. In 2008 a RCT compared outcomes of patients undergoing surgery with or without perioperative chemotherapy: treated patients had higher disease-free survival rates, but effects of pre- and postoperative chemotherapy resulted indistinguishable. Two retrospective series, specifically focused on synchronous metastases, failed to demonstrate any survival advantage in patients receiving neoadjuvant treatments. Adicional indications can be proposed on a logical basis: ill-located lesions (disease shrinkage enables easier R0 resection) and presence of extra-hepatic disease. Further studies are needed to codify these indications.
feasible in 95%, and the 3-year survival rate was 75% (unpublished data). These promising results need to be validated by larger prospective studies.

**METASTATIC LOCALLY ADVANCED MID/LOW RECTAL CANCER: WHAT ABOUT RADIOTHERAPY?**

Neoadjuvant chemo-radiotherapy is the gold standard for patients with non-metastatic locally advanced (T3-4 and/or N+) mid/low rectal cancer to reduce local relapse [42,43]. The inclusion of radiotherapy in the treatment of metastatic patients presents some problems, as high-dose systemic chemotherapy regimens are needed to control hepatic disease, but chemotherapy doses must be reduced in association with radiations in order to limit toxicity [44]. Currently, there is no consensus about the optimal treatment.

In 2006, Menth et al [44] proposed a “reverse” strategy, i.e., a two-stage surgery with liver resection as the first procedure. It easily enables the inclusion of radiations before rectal surgery (the second surgical step). Encouraging results were reported (4-year survival rate of 56%). In 2001 a cooperative study between the author’s centre and the Cherqui one (Henri Mondor Hospital, Créteil, France) collected 36 patients [46]. The adopted strategy was up-front neoadjuvant chemotherapy and/or chemo-radiotherapy, according to liver disease extension, followed by simultaneous rectal and liver resection. Five-year survival rate was 59% and no pelvic recurrence occurred among patients who correctly completed the treatment strategy. Further, systemic chemotherapy achieved primary tumor downsizing in most cases, questioning the real need for radiations.

Stronger evidences are needed to consider any possible strategy as the optimal one.

**CONCLUSION**

No evidence-based conclusions can be drawn, but some suggestions are possible. Simultaneous colorectal and liver resection can be safely performed whenever minor hepatectomies are planned, while a case-by-case evaluation is mandatory in case of more complex procedures. Neoadjuvant chemotherapy is preferentially scheduled for patients with advanced metastatic tumors to assess disease biology and to control lesions. It can be safely performed with primary tumor in situ, even planning simultaneous resection at its end. Locally advanced mid/low rectal tumor represents a further indication to neoadjuvant therapies, even if treatment’s schedule is not yet standardized.

Several issues have to be solved, but every single HPB centre should define its proper strategy to optimize patient’s selection, disease control and safety and completeness of surgery.

**REFERENCES**

1. Manfredi S, Lepage C, Hatem C, Coatmeur O, Favier J, Bourbon AM. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 2006; 244: 254-259

2. Simmonds PC, Primrose JN, Colquitt JL, Garden OJ, Poston GJ, Rees M. Surgical resection of hepatic metastases from colorectal cancer. Ann Surg 2006; 244: 254-259

---

**Table 1 Outcome of simultaneous vs staged major liver resections**

| Author               | Year | Patients | SimRes | Del | SimRes (%) | Del (%) | P value | SimRes (%) | Del (%) | P value |
|----------------------|------|----------|--------|-----|------------|---------|---------|------------|---------|---------|
| Martin et al [20]    | 2005 | 45       | 76     | 4   | 4          | NS      | 60      | 70          | 0.03    |
| Thelen et al [21]    | 2007 | 15       | 142    | 26.7| 1.4        | 0.0007  | NR      | NR          | 0.04    |
| Reddy et al [22]     | 2007 | 36       | 291    | 8.3 | 1.4        | 0.03    | 44.4    | 26.8        | 0.04    |
| Capussotti et al [23] | 2007 | 31       | 48     | 3.2 | 0          | NS      | 32.6    | 56.3        | 0.04    |
| de Santibanes et al [24] | 2010 | 42       | -      | 4.7 | -          | -       | 37.2    | -            |
| Luo et al [25]       | 2010 | 44       | 133    | NR  | NR         |         | 56.8    | 57.1        | NS      |

Table 2 Outcome of “Up-front chemotherapy” strategy: risk of emergency surgery while on treatment n (%)

| Author               | Year | Patients | Resectable at diagnosis | Oxaliplatin- or Irinotecan-based chemotherapy (%) | Emergency surgery |
|----------------------|------|----------|-------------------------|-----------------------------------------------|-------------------|
| Benoist et al [26]   | 2005 | 27       | No                      | 67                                            | 4 (14.8)          |
| Muratore et al [27]  | 2007 | 35       | No                      | 100                                           | 1 (2.8)           |
| Poultsides et al [28]| 2009 | 233      | No                      | 100                                           | 16 (7)            |
| Karoui et al [29]    | 2011 | 123      | No                      | 90                                            | 15 (12.1)         |
| Viganò/Capussotti     | 2012 | 40       | Yes                     | 100                                           | 3 (7.5)           |

In delayed liver resections, morbidity of both hospitalizations (colorectal surgery and liver surgery) is considered. Simultaneous colorectal and major liver resection vs other isolated liver resections. SimRes: Simultaneous colorectal and major liver resection; Del: Delayed major liver resection; NR: Data not reported; NS: Not significant.

Unpublished data.
Viganò L. Management of synchronous colorectal liver metastases

colorectal cancer: a systematic review of published studies. Br J Cancer 2006; 94: 982-999

3 Minagawa M, Makuchiu M, Torzilli G, Takayama T, Kawasaki S, Kosuge T, Yamamoto J, Imamura H. Extension of the frontal view of surgical indications in the treatment of liver metastases from colorectal cancer: long-term results. Ann Surg 2000; 231: 487-499

4 Tomlinson JS, Jarnagin WR, DeMatteo RP, Fong Y, Kornprat P, Gonen M, Kemeny N, Brennan MF, Blumgart LH, D'Angelica M. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol 2007; 25: 4575-4580

5 Viganò L, Ferrero A, Lo Tesorieri R, Capussotti L. Liver surgery for colorectal metastases: results after 10 years of follow-up. Long-term survivors, late recurrences, and prognostic role of morbidity. Ann Surg Oncol 2008; 15: 2458-2464

6 Viganò L, Russollilo N, Ferrero A, Langella S, Sperti E, Capussotti L. Evolution of long-term outcome of liver resection for colorectal metastases: analysis of actual 5-year survival rates over two decades. Ann Surg Oncol 2012; 19: 2035-2044

7 Brouquet A, Mortensen MM, Vauthay JN, Rodriguez-Bigas MA, Overman MJ, Chang GJ, Kopetz S, Garrett C, Curley SA, Abdalla EK. Surgical strategies for synchronous colorectal liver metastases in 156 consecutive patients: classic, combined or reverse strategy? J Am Coll Surg 2010; 210: 934-941

8 Viganò L, Langella S, Ferrero A, Russollilo N, Sperti E, Capussotti L. Colorectal cancer with synchronous resectable liver metastases: monocentric management in HPB referral center improves survival outcomes. Ann Surg Oncol 2012; 19: 483-488

9 Vogt P, Raar B, Ringe B, Pichlmayr R. Resection of synchronous colorectal liver metastases from colorectal cancer. World J Surg 1991; 15: 62-67

10 Nordlinger B, Guignet M, Vaillant JC, Balladur P, Boudjema K, Bachelier P, Jaed D. Surgical resection of colorectal carcino-noma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Francaise de Chirurgie. Cancer 1996; 77: 1254-1262

11 Belghiti J. [Synchronous and resectable hepatic metastases of colorectal cancer: should there be a minimum delay before hepatic resection?]. Ann Chir 1990; 44: 427-429; discussion 449-432

12 Lyass S, Zamir G, Matot I, Goitein D, Eid A, Jurim O. Combined colon and hepatic resection for synchronous colorectal liver metastases. J Surg Oncol 2001; 78: 17-21

13 de Santibañes E, Lassalle FB, McCormack L, Pekolj J, Quintana GC, Vaccaro C, Benati M. Simultaneous colorectal and hepatic resections for colorectal cancer: postoperative and longterm outcomes. J Am Coll Surg 2002; 195: 196-202

14 Weber JC, Bachelier P, Oussoultzoglou E, Jaek D. Simultane-ous resection of colorectal primary tumour and synchronous liver metastases. Br J Surg 2003; 90: 956-962

15 Martin R, Paty P, Fong Y, Grace A, Cohen A, DeMatteo R, Jarnagin W, Blumgart L. Simultaneous liver and colorectal resections are safe for synchronous colorectal liver metastasis. J Am Coll Surg 2003; 197: 233-241; discussion 241-242

16 Tanaka K, Shimada H, Matsuo K, Nagano Y, Endo I, Sekido H, Togo S. Outcome after simultaneous colorectal and hepatic resection for colorectal cancer with synchronous metastases. Surgery 2004; 136: 650-659

17 Chua HK, Sondena K, Tsiotos GG, Larson DR, Wolff BG, Nagorney DM. Concurrent vs. staged colectomy and heptectomy for colorectal liver metastases with synchronous hepatic metastases. Dis Colon Rectum 2004; 47: 1310-1316

18 Reddy SK, Pavlik TM, Zorzi D, Gleisner AL, Ribero D, Assumpcao L, Barbac A, Abdalla EK, Choti MA, Vauthey JN, Ludwig KA, Mantyh CR, Morse MA, Clary BM. Simultaneous resections of colorectal cancer and synchronous liver metas-tases: a multi-institutional analysis. Ann Surg Oncol 2007; 14: 3481-3491

19 Chen J, Li Q, Wang C, Zhu H, Shi Y, Zhao G. Simultaneous vs. staged resection for synchronous colorectal liver metasta-ses: a metaanalysis. Int J Colorectal Dis 2011; 26: 191-199

20 Capussotti L, Ferrero A, Viganò L, Ribero D, Lo Tesorieri R, Polastri R. Major liver resections synchronous with colorectal surgery. Ann Surg Oncol 2007; 14: 195-201

21 Luo Y, Wang L, Chen C, Chen D, Huang M, Huang Y, Peng J, Lan P, Cui J, Cai S, Wang J. Simultaneous liver and colorectal resections are safe for synchronous colorectal liver metastases. J Gastrointest Surg 2010; 14: 1974-1980

22 Thelen A, Jonas S, Bencert C, Spinelli A, Lopez-Hanninen E, Rudolph B, Neumann U, Neuhaus P. Simultaneous versus staged liver resection of synchronous liver metastases from colorectal cancer. Int J Colorectal Dis 2007; 22: 1269-1276

23 de Santibañes E, Fernandez D, Vaccaro C, Quintana GO, Bonaddeo F, Pekolj J, Bonofiglio C, Molmenti E. Short-term and long-term outcomes after simultaneous resection of colorectal malignancies and synchronous liver metastases. World J Surg 2010; 34: 2133-2140

24 Lambert IA, Coleacchio TA, Barth RJ. Interval hepatic resec-tion of colorectal metastases improves patient selection. Arch Surg 2000; 135: 473-479; discussion 479-480

25 Yoshidome H, Kimura F, Shimiizu H, Obutsuka M, Kato A, Yoshitomi H, Furukawa K, Mitsuhashi N, Takeuchi D, Iida A, Miyaizaki M. Interval period tumor progression: does delayed hepatectomy detect occult metastases in synchro-nous colorectal liver metastases? J Gastrointest Surg 2008; 12: 1391-1398

26 Nordlinger B, Sorbye H, Gimelblum DJ, Persson GJ, Schlag PM, Rougger P, Bechstein WO, Primrose JN, Walpole ET, Finch-Jones M, Jaed M, Mirza D, Parks RW, Collette L, Praet M, Bethe U, Van Cutssem E, Scheithauer W, Gruenberger T. Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 2008; 371: 1007-1016

27 Allen PJ, Kemeny N, Jarnagin W, DeMatteo R, Blumgart L, Fong Y. Importance of response to neoadjuvant chemothera-py in patients undergoing resection of synchronous colorectal liver metastases. J Gastrointest Surg 2003; 7: 109-115; discussion 116-117

28 Reddy SK, Zorzi D, Lum YW, Barbac A, Pavlik TM, Ribero D, Abdalla EK, Choti MA, Kemp C, Vauthey JN, Morse MA, White RR, Clary BM. Timing of multimodality therapy for resectable synchronous colorectal liver metastases: a retrospective multi-institutional analysis. Ann Surg Oncol 2009; 16: 809-818

29 Minagawa M, Yamamoto J, Miwa S, Sakamoto Y, Kokudo N, Kosuge T, Miyagawa S, Makuchiu M. Selection criteria for simultaneous resection in patients with synchronous liver metastases. Arch Surg 2006; 141: 1006-1012; discussion 1013

30 Capussotti L, Viganò' L, Ferrero A, Lo Tesoriere R, Ribero D, Polastri R. Timing of resection of liver metastases synchronous to colorectal tumor: proposal of prognosis-based decisional model. Ann Surg Oncol 2007; 14: 1143-1150

31 Mella J, Biffin A, Radcliffe AG, Stamatakis JD, Steele RJ. Population-based audit of colorectal cancer management in two UK health regions. Colorectal Cancer Working Group, Royal College of Surgeons of England Clinical Epidemiology and Audit Unit. Br J Surg 1997; 84: 1731-1736

32 Temple LK, Hishe L, Wong WD, Salth L, Schrag D. Use of surgery among elderly patients with stage IV colorectal can-cer. J Clin Oncol 2004; 22: 3475-3484

33 de Haas RJ, Adam R, Wicherts DA, Azoulay D, Bismuth H, Vibert E, Salloum C, Perdigao F, Benkaboua A, Castaign D. Comparison of simultaneous or delayed liver surgery for limited synchronous colorectal metastases. Br J Surg 2010; 97: 1279-1289

34 Scoggins CR, Meszoely IM, Blanke CD, Beauchamp RD, Leach SD. Nonoperative management of primary colorectal cancer in patients with stage IV disease. Ann Surg Oncol 1999;
Viganò L. Management of synchronous colorectal liver metastases

6: 651-657
35 Sarela AI, Guthrie JA, Seymour MT, Ride E, Guillou PJ, O’Riordan DS. Non-operative management of the primary tumour in patients with incurable stage IV colorectal cancer. Br J Surg 2001; 88: 1352-1356
36 Tebbutt NC, Norman AR, Cunningham D, Hill ME, Tait D, Oates J, Livingston S, Andreyev J. Intestinal complications after chemotherapy for patients with unresected primary colorectal cancer and synchronous metastases. Gut 2003; 52: 568-573
37 Benoist S, Pautrat K, Mitry E, Rougier P, Penna C, Nordlinger B. Treatment strategy for patients with colorectal cancer and synchronous irresectable liver metastases. Br J Surg 2005; 92: 1155-1160
38 Muratore A, Zorzi D, Bouzari H, Amisano M, Massucco P, Speri E, Capussotti L. Asymptomatic colorectal cancer with unresectable liver metastases: immediate colorectal resection or up-front systemic chemotherapy? Ann Surg Oncol 2007; 14: 766-770
39 Poultsides GA, Servais EL, Saltz LB, Patil S, Kemeny NE, Guillem JC, Weiser M, Temple LK, Wong WD, Paty PB. Outcome of primary tumor in patients with synchronous stage IV colorectal cancer receiving combination chemotherapy without surgery as initial treatment. J Clin Oncol 2009; 27: 3379-3384
40 Karoui M, Roudot-Thoraval F, Mesli F, Mitry E, Aparicio T, Des Gaetz G, Louvet C, Landi B, Tiret E, Sobhani I. Primary colectomy in patients with stage IV colon cancer and unresectable distant metastases improves overall survival: results of a multicentric study. Dis Colon Rectum 2011; 54: 930-938
41 Karoui M, Soprani A, Charachon A, Delbaldo C, Viganò L, Luciani A, Cherqui D. Primary chemotherapy with or without colonic stent for management of irresectable stage IV colorectal cancer. Eur J Surg Oncol 2010; 36: 58-64
42 Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, Rutten HJ, Pahlman L, Glimelius B, van Krieken JH, Leer JW, van de Velde CJ. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med 2001; 345: 638-646
43 Bossert JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A, Ollier JC. Chemotherapy with or without colonic stent for management of irresectable stage IV colorectal cancer. Br J Surg 2006; 93: 872-878
44 Benoist S. Recommendations for clinical practice. Therapeutic choices for rectal cancer. How should rectal cancers with synchronous metastases be managed?. Gastroenterol Clin Biol 2007; 31 Spec No 1: S173-S180, S100-S102
45 Mentha G, Majno PE, Andres A, Rubbia-Brandt L, Morel P, Roth AD. Neoadjuvant chemotherapy and resection of advanced synchronous liver metastases before treatment of the colorectal primary. Br J Surg 2006; 93: 872-878
46 Viganò L, Karoui M, Ferrero A, Tayar C, Cherqui D, Capussotti L. Locally advanced mid/low rectal cancer with synchronous liver metastases. World J Surg 2011; 35: 2788-2795

S- Editor Jia F  L- Editor A  E- Editor Zheng XM