The IQD Gene Family in Soybean: Structure, Phylogeny, Evolution and Expression

Lin Feng1,3, Zhu Chen1,*, Hui Ma1, Xue Chen1, Yuan Li1, Yiyi Wang1, Yan Xiang1,2*

1 Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China, 2 Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei, China

Abstract
Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1–67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I–IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1–3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

Introduction

Ca2+ is a pivotal cytosolic second messenger involved in many physiological processes such as plant growth [1], plant-pathogen interactions [2], photosynthetic electron transport and photophosphorylation [3], regulation of stomatal aperture [4], hormonal regulation [5] and so on. Plants produce calcium signals by adjusting cytoplasm Ca2+ levels at specific times, places and concentrations [6], responding to numerous extracellular stimuli including physical signals (light, temperature, gravity, etc.) and chemical signals (plant hormones, pathogenic bacteria inducing factors, etc.) [7].

The transmission of these intracellular calcium signals relies on the oscillation signal generated by voltage- and ligand-gated Ca2+-permeable channels (influx) and by Ca2+-ATPases and antiporters (efflux) to return to resting Ca2+ levels [8,9]. The conduc­tion of calcium signals is also dependent on downstream Ca2+ sensors. These Ca2+ sensors detect changes in Ca2+ levels by binding to Ca2+ via domains such as EF hands, which undergo conformational changes [10]. Consequently, calcium signature information is decoded and relayed by these Ca2+ sensors [6,11–13].

To date, approximately four major classes of Ca2+ sensors have been identified in plants. Most of these sensors contain the Ca2+-binding EF-hand motif, a conserved helix-loop-helix structure that can bind to a single Ca2+ ion [7]. The four major classes of Ca2+ sensors are as follows: class A: calmodulin (CaM), containing four EF-hand motifs; class B: calcineurin B-like (CBL) proteins, possessing three EF-hand motifs; class C: Ca2+-dependent protein kinases (CDPK), containing four EF-hand motifs and a Ca2+-dependent Ser/Thr protein kinase domain and class D: lacking EF-hand motifs [7,14–19].

Calmodulin (CaM) and calcineurin B-like (CBL) proteins, which lack catalytic activity, are sometimes referred to as “Ca2+ sensor relays” [15,19,20]. In contrast, CDPK proteins, which function as catalytic effectors, are referred to as “Ca2+ sensor responders” [18]. Among these Ca2+-binding proteins, calmodulin is the most extensively studied Ca2+ sensor. Calmodulin is small, acid
resistant, heat resistant and highly stable. This multifunctional protein is widespread in eukaryotic cells, highly conserved and has at least 30 multiple target proteins or enzymes [21–23].

To mediate intracellular calcium signaling pathways, Ca\(^{2+}\) sensor relays expose their negative hydrophobic surfaces after they undergo conformational changes induced by Ca\(^{2+}\) binding. As a result, the affinity between Ca\(^{2+}\) sensor relays and their effectors are enhanced, and the biochemical activities of target proteins are modulated by Ca\(^{2+}\) sensor relays [6,12,14,19].

In the final phase of the calcium signal transduction process, the target effectors respond to specific extracellular signals by regulating various cellular activities. Calmodulin interacts with numerous target proteins termed calmodulin-binding proteins (CaMBPs), mainly by recognizing and targeting calmodulin-binding domains (CaMBD; basic amphipathic helices usually composed of 16–35 amino acid residues) in the CaMBPs via its negative hydrophobic pockets [12,22,24].

CaMBD amino acid sequences contain three CaMBD motifs that are grouped into two categories, including a Ca\(^{2+}\)-independent motif termed the IQ motif and two Ca\(^{2+}\)-dependent motifs referred to as the 1-5-10 motif and the 1-8-14 motif. The number and positions of these motifs in different CaMBPs are variable [25–27]. Due to the diversity of the motif arrangement, there are a variety of diverse CaMBPs with disparate functions, which are implicated in plant development, metabolic regulation, stress reactions, defense reactions, transcriptional regulation and so on [28,29].

Plant-specific IQ67 domain (IQD) protein families were first identified in Arabidopsis and rice by Abel et al. (2005) [30]. These proteins have two common features in their IQ67 domains (67 conserved amino acid residues) [31]. One feature is 1–3 copies IQ motifs are separated by 11 and 15 residues and overlapped certain conserved amino acid residues) [31]. One feature is 1–3 copies IQ motifs are separated by 11 and 15 residues and overlapped certain conserved amino acid residues) [31].

To conduct genome-wide identification of IQD gene families in soybean, we performed Glycine max genome BLASTP analysis. Through removing redundant sequences and pattern identifying, a total of 67 IQD genes were identified in the soybean genome, which is twice that of Arabidopsis (Table 1 and 2). We named these 67 IQD genes \textit{GmIQD1} to \textit{GmIQD67} according to their physical locations (from top to bottom) on chromosomes 1–20 (Table 1).

The physicochemical parameters of each gene were calculated using ExPAsy. Although all of the GmIQD genes encode the conserved IQ67 domains (Figure S1), their sequences are highly diverse with respect to size (141–904 aa) and molecular mass (16.3–99.2 kDa; Table 1). Almost all soybean IQD proteins (97%) have relatively high isoelectric points (pI>7.0 with an average of 10.1), except for \textit{GmIQD9} (pI 5.4) and \textit{GmIQD17} (pI 5.7; Table 1). All soybean IQD proteins were submitted to TargetP and Wolf PSORT to predict their subcellular localizations. Wolf PSORT revealed that fifty-seven soybean IQD proteins are localized to the nucleus, nine to the chloroplast and one to the endoplasmic reticulum. TargetP analysis revealed that fifteen soybean IQD proteins are located in the mitochondria, five in the chloroplast, one in the secretory pathway and forty-six in other compartments (Table 1). The detailed parameters are provided in Table 1.

Phylogenetic and structural analyses of the soybean IQD genes

To infer the similarity and evolutionary ancestry of soybean IQD proteins, we constructed an unrooted phylogenetic tree of the 67 soybean protein sequences. The soybean IQD gene family was categorized into four major subfamilies (subfamily I, II, III and IV; Figure 1a) according to phylogenetic analysis of IQD genes in \textit{Arabidopsis}, rice, and \textit{Brachypodium distachyon} [30,34,35]. Subfamily I was further divided into four subclasses (clade Ia, Ib, Ic and Id), and subfamily II and III were divided into two subclasses (clade IIa and IIb; clade IIIa and IIIb) based on bootstrap values, the existence and positions of introns and the presence of protein motifs flanking the IQ67 domain (Figure 1 and 2). Subfamily I (containing 27 members) is the largest group, followed by subfamily III (24) and subfamily IV (10). Subfamily II has the fewest IQD gene members (6). This distribution pattern is similar to that observed for IQD genes in \textit{Arabidopsis} and rice (Table 2). The phylogenetic tree reveals that 62 of the 67 soybean IQD genes form 31 gene pairs with strong bootstrap values (Figure 1a).

To further examine the structural diversity of the IQD genes in soybean, we deduced the exon/intron organization of individual GmIQD genes (Figure 1b). A comparison of the 67 genomic loci
Name	Gene Identifier	Chr.	Location coordinates (5' - 3')	ORF length (bp)	Protein ORF length (aa.)	pI	Mol.Wt. (kD)	Exons	subcellular localization	
GmIQD1	Glyma01g01030	1	681417–683646	1263	420	10.3	46.6	3	N	
GmIQD2	Glyma01g05100	1	4750065–475456	1692	563	9.7	61.7	6	N	
GmIQD3	Glyma01g24620	1	53843322–53846963	1191	396	10.4	44.4	4	N	
GmIQD4	Glyma02g00710	2	502944–506146	1254	417	9.6	46.8	3	N	
GmIQD5	Glyma02g02370	2	1778568–1785636	1692	563	9.8	61.7	6	N	
GmIQD6	Glyma02g15590	2	14083370–14086909	1608	535	10.8	60.1	5	N	
GmIQD7	Glyma03g33560	3	4109253–41096635	1434	477	10.0	53.3	5	N	
GmIQD8	Glyma03g40630	3	46330165–46332185	1125	374	10.5	42.4	3	N	
GmIQD9	Glyma04g02830	4	2030287–2036251	2715	904	5.4	99.2	6	N	
GmIQD10	Glyma04g05520	4	4187757–4190317	1353	450	10.5	49.9	5	N	
GmIQD11	Glyma04g23760	4	27192306–27195532	1353	450	9.8	50.8	5	N	
GmIQD12	Glyma04g34150	4	4014421–4015603	1752	583	9.4	64.6	6	N	
GmIQD13	Glyma04g41380	4	4722096–47224772	1392	463	9.6	51.7	4	N	
GmIQD14	Glyma05g01240	5	785189–792757	1761	586	9.7	64.9	6	N	
GmIQD15	Glyma05g03450	5	263836–2641896	1338	445	10.0	48.9	4	N	
GmIQD16	Glyma05g33920	5	3987124–39873985	1125	375	10.0	41.4	4	M0.81/3	
GmIQD17	Glyma06g02841	6	1950849–1956820	2532	843	5.7	92.8	6	N	
GmIQD18	Glyma06g05530	6	3957759–3960421	1353	450	10.7	49.8	5	E.R	
GmIQD19	Glyma06g13470	6	10606168–10611219	1341	446	9.7	50.1	4	N	
GmIQD20	Glyma06g20341	6	16752231–16759304	1755	584	9.5	64.9	6	N	
GmIQD21	Glyma07g0701040	7	60467–610485	1302	433	10.0	47.9	5	N	
GmIQD22	Glyma07g07160	7	1164144–1165715	1191	396	10.2	44.6	3	N	
GmIQD23	Glyma07g05680	7	435391–4399373	1641	546	10.3	61.2	5	N	
GmIQD24	Glyma07g14910	7	14801071–14803234	1398	465	10.0	51.8	3	C	
GmIQD25	Glyma07g32531	7	3741682–37421879	873	290	10.6	32.8	5	N	
GmIQD26	Glyma07g32860	7	3775388–37759623	1602	533	10.9	59.7	5	N	
GmIQD27	Glyma08g03710	8	2630927–2633769	1311	436	10.2	48.2	3	N	
GmIQD28	Glyma08g04430	8	1545360–15456579	1266	421	10.4	46.4	5	N	
GmIQD29	Glyma08g21430	8	162731106–16273575	1209	402	10.3	45.2	3	N	
GmIQD30	Glyma08g04880	8	40742659–40748073	1644	547	9.8	60.6	6	C	
GmIQD31	Glyma09g26630	9	3316370–33169453	1449	482	10.0	53.3	4	C	
GmIQD32	Glyma09g30780	9	37552192–37557238	1305	434	10.1	48.0	6	N	
GmIQD33	Glyma09g35920	9	4179402–41798738	1407	468	9.9	52.6	5	N	
Name	Gene Identifier	Chr.	Location coordinates (5'-3')	ORF length (bp)	Protein Length (aa.)	pI	Mol.Wt. (kD)	Exons	subcellular localization	
------	----------------	------	-----------------------------	----------------	----------------------	----	-------------	-------	------------------------	
GmIQD34	Glyma10g00630	10	386683–389158	1272	423	9.5	47.5	3	N	M0.33/5
GmIQD35	Glyma10g05720	10	4477640–4481520	1425	474	10.0	52.8	5	N	?
GmIQD36	Glyma10g35721	10	4397496–43978361	1452	483	10.6	53.0	5	N	?
GmIQD37	Glyma10g38310	10	4611844–46123432	1395	464	10.4	51.0	4	C	M0.54/5
GmIQD38	Glyma10g39030	10	4676429–46767407	1410	469	9.7	52.0	4	N	?
GmIQD39	Glyma11g20880	11	1771458–17717939	1374	457	10.0	51.7	5	N	M0.67/3
GmIQD40	Glyma12g01410	12	842971–846738	1383	460	10.0	51.8	5	N	M0.56/4
GmIQD41	Glyma12g31610	12	3518103–35188577	1269	422	9.9	46.5	6	N	?
GmIQD42	Glyma12g35711	12	3883385–38837834	885	294	9.8	34.2	5	N	?
GmIQD43	Glyma13g20070	13	23539750–23543840	1413	470	10.1	52.3	5	N	C0.34/5
GmIQD44	Glyma13g24070	13	2739608–27404534	774	257	10.5	29.3	4	N	?
GmIQD45	Glyma13g30590	13	3315458–33158861	900	299	10.4	33.6	5	N	?
GmIQD46	Glyma13g34700	13	36237460–36241896	1173	390	9.8	45.5	6	N	?
GmIQD47	Glyma13g38800	13	39521853–39528595	1278	425	9.9	47.1	6	N	?
GmIQD48	Glyma13g42440	13	42441870–42445047	1239	412	10.3	45.8	5	N	?
GmIQD49	Glyma13g43031	13	4279649–42804226	1143	380	10.2	43.4	3	N	?
GmIQD50	Glyma14g11050	14	9335703–9339095	1254	417	10.3	47.3	5	N	?
GmIQD51	Glyma14g25860	14	31470493–31475301	1377	458	10.0	51.3	4	N	?
GmIQD52	Glyma15g02370	15	1955640–1956898	1137	378	10.2	43.3	3	N	?
GmIQD53	Glyma15g02940	15	2051157–2053854	1251	416	10.3	45.9	5	C	?
GmIQD54	Glyma15g08660	15	6125483–6129362	927	308	10.3	34.7	5	N	?
GmIQD55	Glyma16g02240	16	1759505–1762330	1653	550	10.2	61.6	5	N	M0.37/5
GmIQD56	Glyma16g22935	16	26564269–26565120	426	141	11.1	16.3	2	C	M0.82/4
GmIQD57	Glyma16g32161	16	3533780–35343544	1434	477	10.0	52.8	4	C	M0.56/4
GmIQD58	Glyma17g10660	17	8002515–8009932	1767	588	9.5	65.0	6	N	?
GmIQD59	Glyma17g14000	17	10763173–10767584	1344	447	10.0	48.9	4	N	?
GmIQD60	Glyma17g23770	17	23932487–23938307	1386	461	10.4	50.7	5	N	?
GmIQD61	Glyma17g34520	17	3850561–3850843	1242	413	10.4	46.7	5	N	?
GmIQD62	Glyma18g16130	18	16440695–1644996	1644	547	9.7	60.3	6	N	C0.65/4
GmIQD63	Glyma19g36270	19	4361055–43615073	1434	477	10.0	53.3	5	N	?
GmIQD64	Glyma19g43300	19	48995941–48982644	1113	370	10.6	42.2	3	N	?
GmIQD65	Glyma20g28800	20	37708013–37709907	1434	477	9.8	52.7	3	N	C0.67/5
GmIQD66	Glyma20g29550	20	38392614–38397440	1371	456	10.5	50.3	4	C	?
GmIQD67	Glyma20g31810	20	40423269–40426995	1470	489	10.4	53.7	5	C	?

bp, base pair; aa, amino acids; kD, kilo Dalton.

WoLF PSORT predictions: N (nucleus), C (chloroplast), ER (endoplasmic reticulum).

TargetP predictions: C (chloroplast), M (mitochondrion), S (secretory pathway), any other location; values indicate score (0.00–1.00) and reliability class (1–5; best class is 1).
doi:10.1371/journal.pone.0110896.t001
Table 2. Number of IQD genes in the soybean, rice, Arabidopsis, tomato and Brachypodium distachyon genomes.

Subfamily	Soybean	Arabidopsis	Tomato	Rice	Brachypodium distachyon
I	27	13	15	11	9
II	6	4	6	1	2
III	24	10	10	10	9
IV	10	5	3	3	2
Outgroup	1	4		1	
Total number	67	33	34	29	23

do: 10.1371/journal.pone.0110896.t002

with corresponding cDNA sequences revealed that most of the gene models predicted by GSDS are correct, except for one pair of genes (GmIQD9/-17). Both GmIQD9 and GmIQD17 encode six exons, but GSDS predicted that these genes contain only five exons. This unconformity is caused by the missing annotation of the fifth intron by GSDS. The schematic structures reveal that the coding sequence of each IQD gene contains 2–6 translated exons (Figure 1b), which is similar to that reported in Arabidopsis, rice and Brachypodium distachyon [30,34]. More than three-fifths of the soybean IQD gene family (41 members) contain five or six protein-coding exons, and one gene (GmIQD56, encoding the smallest protein, comprising 141 aa) contains two exons (Figure 1b). Most closely related soybean IQD members in the same subfamilies share similar intron numbers and exon lengths. Soybean IQD genes in subfamily II and IV possess five and six exons, respectively. Most members in subfamily III contain five exons, except for GmIQD44 (four exons) and GmIQD32, GmIQD41, GmIQD46 and GmIQD47 (six exons). Subfamily I genes harbor 2–5 exons. All introns of most IQD genes are in phase-0 (interrupting two triplet codons exactly); a phase-1 intron (separating the first and second nucleotides of a codon) was found in 15 remaining IQD genes, and no phase-2 intron (splitting the second and third nucleotides of a codon) was found (Figure 1b).

The exon/intron organization of 31 paralogous pairs that clustered together at the terminal branch of the phylogenetic tree was further examined to obtain traceable intron gain/loss information. Although twenty-seven paralogous pairs exhibited conserved exon/intron structures, four pairs (GmIQD16/-27, GmIQD38/-65, GmIQD25/-44 and GmIQD42/-46) showed certain variations (Figure 1b). These differences may have been derived from single intron loss or gain events during the long evolutionary period. Based on analysis of the exon/intron organization of IQD genes from soybean, Arabidopsis [30], rice [30], and Brachypodium distachyon [34], we inferred that both GmIQD16 and GmIQD38 gained the third intron; GmIQD46 gained the first intron while GmIQD44 lost the first intron. The second or third exons in the central regions of most members encode amino acids 17–67 of the IQ67 domain, except for GmIQD46 (the fourth exon) and GmIQD56 (the C-terminal exon), with a conserved phase-0 intron separating codons 16 and 17 (Figure 1b and Figure S1).

A total of 67 IQD genes from soybean were subjected to analysis with MEME to reveal conserved domains or motifs shared among related proteins. We identified 10 conserved motifs (Figure 2 and Table S1). Each of the putative motifs was annotated by searching Pfam and SMART. Motif 1 was found to encode the IQ domain. Motif 2 and motif 7 were found to encode proteins of unknown function (DUF4005) and (DUF3982). While the other subfamily-specific motifs have not functional annotation. As expected, most of the closely related members had common motif compositions, suggesting functional similarities among IQD proteins within the same subfamily (Figure 2). The most common motif is motif 1, found in all sixty-seven soybean IQD genes (Figure 2). Motif 8 is mainly present in subfamily I besides one of GmIQD44 exists in subfamily IV. Subfamily III members contain motif 1, motif 10, motif 4 and motif 3 in order, except for GmIQD28 lacking motif 10. Motif 7 is peculiar to subfamily IV. To some extent, these subfamily-specific motifs may contribute to the functional divergence of IQD genes in soybean. The detailed information is shown in table S1. To predict calmodulin-binding sites, we searched the Calmodulin Target Database, which provides various structural and biophysical parameters for the 67 soybean IQD protein sequences. This analysis predicted that all soybean IQD proteins contain multiple IQ motifs and 1–3 strings of high-scoring amino acid residues (Table 3). These IQ motifs and amino acid residues indicate the locations of putative calmodulin interaction sites. Among the 67 IQD protein sequences, the predicted calmodulin binding sites of 50 sequences overlap with the IQ67 domain (Figure 2).

Chromosomal location and gene duplication

The 67 soybean IQD genes were mapped to all 20 soybean chromosomes. The distribution of soybean IQD genes varies depending on the chromosome and appears to be unequal. Both chromosomes 11 and 18 contain only one soybean IQD gene, while chromosomes 13, which possess seven IQD genes, has the highest number of IQD genes per chromosome. Although high densities of IQD genes were found on some chromosomal regions, for instance, the bottom of chromosome 13, these is no substantial clustering of soybean IQD genes on the map (Figure 3).

We investigated gene duplication events to further understand the expansion mechanism of the soybean IQD family. Except for three genes (GmIQD11, -39 and -51) located outside of a duplicated block, 64 genes were mapped onto 48 related duplicated blocks (Figure 3 and Table S2). Among these, twenty-two block pairs retained thirty GmIQD gene pairs, whereas the remaining four duplication blocks harbor GmIQD3, -32, -56 and -60 respectively, but lack IQD sisters in their corresponding synteny blocks (Figure 3 and Table S2). Analysis of GmIQD paralogous pairs showed that one pair (GmIQD11/-39) appear to be closely related paralogs, sharing 91.2% identity (Table S3) as well as similar exon–intron organization. However, both of them exist outside of any duplicated blocks. Except for GmIQD11/-39, 30 out of 31 gene pairs have remained in conserved positions on segmental duplicated blocks, indicating that these genes were generated by segmental duplication. Furthermore, we analyzed the adjacent genes to determined whether tandem duplication has taken place. A pair of genes separated by three or fewer genes within a 100-kb region on a
chromosome may have resulted from tandem duplication. According to this criterion, no pair was found to be generated by tandem duplication. Therefore, segmental duplication appears to have played a crucial role in the expansion of the IQD gene family in soybean (Figure 3 and Table S2).

To explore the selective constraints on duplicated soybean IQD genes, we calculated the ratio of nonsynonymous versus synonymous substitutions (Ka/Ks) for each pair of duplicated IQD genes. In general, a ratio of 1 indicates that both genes are drifting neutrally; a Ka/Ks ratio >1 indicates accelerated evolution with positive selection, while a ratio <1 indicates functional constraint, with negative or purifying selection of the genes[44]. The Ka/Ks ratios from 31 soybean IQD paralogous pairs (Table 4) were less than 0.6. This result suggests that the soybean IQD gene family has evolved mainly under the influence of strong purifying selection pressure, with limited functional divergence occurring after segmental duplication. Duplication of these 31 paralogous pairs was estimated to have occurred between 6.39 to 17.94 Mya (Table 4), according to the divergence rate of 6.1 x 10^{-9} synonymous mutations per synonymous site per year, as previously proposed for soybean [45,46].

Comparative analysis of the IQD genes in soybean, Arabidopsis, rice, tomato and Brachypodium distachyon

The development of comparative genomics has enabled the analysis of the same protein families among different species. We constructed an NJ phylogenetic tree using 184 full-length protein sequence to reveal the evolutionary relationships among soybean, Arabidopsis, rice, tomato and Brachypodium distachyon IQD proteins [34]. In Arabidopsis, the IQD gene family is divided into four subfamilies, with AtIQD33 (containing a C-terminally truncated IQ67 domain) as the outgroup. Therefore, based on their phylogenetic relationships, the combined phylogenetic tree can be divided into five distinct subfamilies (I to V; Figure 4) [30]. In general, IQD I genes comprise the largest subfamily in these plant species, except for Brachypodium distachyon, where both IQD I and III comprise the largest subfamilies. By contrast, IQD V genes comprise the smallest IQD subfamily (Figure 4, Table 2).

To illustrate the paralogous and orthologous relationships among IQD family members, the subfamilies were further divided into subgroups using previously defined clades from studies of Arabidopsis, rice and tomato IQDs, as shown in Figure 4. IQD subfamily I was divided into four subclades, i.e., a, b, c and d, and clade d was further divided into two clades, d1 and d2. Because one of the IQD Ib clades only contains four IQD genes (BdIQD11, BdIQD19, OsIQD19 and OsIQD20) from monocots, we assigned these four genes to the rice- and Brachypodium distachyon-specific Ib2 clade. The clade containing the genes encoding C-terminal IQ67 domains was defined as Id. Notably, no members of Brachypodium distachyon were detected in this clade, suggesting that Brachypodium distachyon IQD family lost its members of this subgroup during the long period of evolution. Both IQD II and IQD III subfamilies were divided into two subclades, a and b, which were designated as described by Zejun et al.(2013) and Abel et al. (2005) [35]. The C-terminally truncated IQ67 domain-containing genes (At IQD33, OsIQD28 and BdIQD14) comprise IQD V subfamily (Figure 4) [30,54].

The combined phylogenetic tree reveals that most genes in the IQD family, especially the duplicated genes, are contained in paralogous pairs in each species, which supports the occurrence of species-specific IQD gene duplication events. By contrast, we identified 20 pairs of orthologous genes from monocotyledons (rice and Brachypodium distachyon) distributed among all of the subfamilies. In addition, two pairs of orthologous genes from dicotyledons (soybean and tomato) stemming from subfamily I (GmIQD56 and SISUN9) and subfamily III (GmIQD60 and SISUN13) were found. And AtIQD20 and OsIQD26, members of subfamily I, formed a pair of orthologous genes.

Conserved microsynteny of IQD III genes from soybean, Arabidopsis and tomato

The analysis of microsynteny provides valuable information for identifying gene expansion patterns and inferring gene orthology or paralogy. We combined genetic and phylogenetic analyses to perform microsynteny analysis of three dicotyledons, i.e., soybean, tomato and Arabidopsis.

To provide a basic framework for the identification of IQD III orthologous or paralogous genes, 44 IQD III genes, including 24 predicted soybean IQDs, 10 Arabidopsis IQDs and 10 tomato IQDs, were classified into four distinct clades, clade 1 (thirteen genes), clade 2 (five genes), clade 3 (eleven genes) and clade 4 (fifteen genes), based on phylogenetic analysis (Figure S2). Clade 1, 2 and 3 correspond to IQD IIIa and clade 4 corresponds to IQD IIIb (Figure 4 and S2). Each clade contains at least one gene from soybean, tomato and Arabidopsis, indicating that members from different species may be derived from a common ancestor.

Subsequently, to produce a comparative genetic map, 44 IQD III genes from the three dicot genomes were used as anchor genes. Conserved microsynteny was identified through reciprocal pairwise comparisons of the chromosomal regions containing IQD III genes. Microsyntenic relationships among AtIQD3, AtIQD4, AtIQD5, GmIQD32, GmIQD56 or SISUN13 with other IQD III members in these three dicot genomes were not observed. The map reveals that the 38 conserved syntenic segments diverged into four groups (Figure 5), which were anastomosed with the classification revealed by phylogenetic tree analysis.

In clade 1 (Figure 5a), Map a shows a higher level of microsynteny, with both the same and opposite directions. SISUN11/GmIQD21 and GmIQD53/GmIQD48 exhibit remarkable opposite-direction microsynteny, while GmIQD10/GmIQD18, GmIQD21/GmIQD28, AtIQD7/AtIQD8 and AtIQD8/SISUN11 are aligned with flanking gene pairs in the same order but discordant transcriptional orientation. In addition, genes in map a were divided into two groups (Figure 5a), i.e., one group with higher levels of microsynteny (GmIQD21, GmIQD28, GmIQD53, GmIQD48, AtIQD7, AtIQD8 and AtIQD8/SISUN11) and the other group with lower levels of microsynteny (GmIQD61, GmIQD50, GmIQD10, GmIQD18, AtIQD6 and SISUN22). These two groups were also detected in the phylogenetic tree of IQD III genes (Figure S2). In clade 2 (Figure 5b), two pairs from soybean and tomato, GmIQD41/
SUN31 and GmIQD47/SUN31, exhibited microsynteny. However, the predicted duplicated pair GmIQD41/GmIQD47 had no detectable linkage with each other. High level of microsynteny exists in Clade 3, with most pairs in reverse order (Figure 5c), especially GmIQD42/GmIQD46, GmIQD45/GmIQD54 and GmIQD25/GmIQD44. GmIQD45/GmIQD44 and GmIQD44/SUN33 were identified as having same-direction microsynteny. In clade 4 (Figure 5d), we also observed a higher level of microsynteny. Except for AtIQD2/SUN32, SUN30/SUN29 and GmIQD67/GmIQD36, which are aligned in the opposite direction, most gene pairs in this clade have successive collinearity in order and the same orientation.

To estimate the degree of conserved gene content and order, the synteny quality was calculated [47]. The average synteny quality of IQD III genes from the three dicotyledon genomes was 18.41% (Table S5d). Due to the large number of syntenic genes between tomato and soybean, the synteny quality between these genomes is 26.39%; this value is higher than that observed in the SI/At synteny blocks (16.68%). The lowest synteny quality (12.15%) was found between soybean and Arabidopsis (Table S5). Details of this comparative analysis are shown in Table S5.

Expression patterns of soybean IQD genes in various tissues

To gain insight into the expression patterns of soybean IQD genes in various tissues, we searched the RNA-Seq Atlas of Glycine max; this atlas provides high-resolution gene expression data from 14 diverse tissues, including aerial tissues (young leaf, flower, one-cm pod, pod-shell 10-DAF and pod-shell 14-DAF), underground tissues (root and nodule) and seed tissue at various stages of development (seed 10-DAF, seed 14-DAF, seed 21-DAF, seed 25-DAF, seed 28-DAF, seed 35-DAF and seed 42-DAF). Because the expression profiles of eight IQD genes (GmIQD17, -20, -25, -36, -42, -49, -56, -57) weren’t obtained in the database, we only examined the expression patterns of fifty-nine IQD genes (Figure 6 and Table S6).

Most soybean IQD genes exhibit broad expression patterns (Figure 6). Forty-four soybean IQDs are expressed in all of the seven tissues (young leaves, flowers, one-cm pod, pod-shell, roots, nodules and seed). The heat map also revealed that the majority of GmIQDs showed preferential expression. Based on a hierarchical clustering analysis, fifty-nine IQD genes were mainly clustered into four groups (A–D) (Figure 6). Group A showed partial expression in young leaves, group B in roots, group C in nodules and group D in flowers. Eight GmIQDs (GmIQD8, -13, -19, -29, -36, -32, -64 and -67) showed marked high transcript abundance profiles in only a single tissue. Among the fifty-nine soybean IQD genes examined, six showed the highest transcript accumulation in young leaves (GmIQD13, -18, -19, -29, -50 and -61), six in flowers (GmIQD11, -15, -38, -52-65 and -67), one in roots (GmIQD26) and two in nodules (GmIQD8 and -64; Figure 6). Genes in different subfamilies have their primary abundant transcripts, for instance, GmIQD I in leaves, flowers and nodules, GmIQD II in flowers and roots, GmIQD III in young leaves, flowers and roots and GmIQD IV in roots and young leaves (Figure 6). These subfamily-specific tissue expression patterns may be closely related to gene functions. The expression patterns of the paralogous pairs were also revealed by heat maps; paralogous pairs with high sequence similarity have similar expression patterns. The best examples of this include GmIQD8/−64 and GmIQD6/−26, which are strongly expressed in nodules and root respectively, with little or no expression in other tissues. Expression divergence was also found in paralogous pairs. For example, GmIQD15 is highly expressed in flowers, while its paralog, GmIQD59, is highly expressed in nodules.

Examination of soybean IQD gene expression by qRT-PCR

Since soybean production is limited by stress, it is important to identify the master regulators of stress responses in soybean, as well as their regulatory pathways. According to microsynteny analysis, the high level of microsynteny indicates that IQD III genes existed before the divergence of the three dicotyledon genomes examined (soybean, tomato and Arabidopsis). In addition, IQD III genes in the same clade may share common ancestors and play similar roles in these species. AtIQD1, which belongs to the IQD III subfamily, plays a major role in the response to biotic stress, as it mediates the accumulation of glucosinolate in response to phytophagous insect attack. Jasmonic acid methyl ester (MeJA), the plant hormones and the signal molecules, widely exists in plants, which triggers expression of plants defense genes by exogenous applications and has similar effects with mechanical damage and insect herbivory [49,50]. Based on these, we subjected 24 members of the soybean IQD III subfamily to real-time quantitative PCR (qRT-PCR) analysis to examine their regulation by MeJA.

The qRT-PCR results show that all 24 genes are MeJA-responsive, but some differences were observed among these genes (Figure 7). Although 23 genes were upregulated by MeJA treatment, GmIQD21 was obviously downregulated (<0.5 folds) at all time points. Eleven of the twenty-three upregulated GmIQD III genes exhibited minor changes in expression (relative expression scale from 0 to 5 and lower), including GmIQD10, -18, -21, -23, -42, -47, -53, -61, -7, -36 and -63. By contrast, 12 genes (GmIQD2, -32, -41, -44, -45, -46, -48, -50, -53, -54, -35, -43, -60 and -67) exhibited major changes in expression (relative expression scales from 0 to 5 up to 80). The expression of six genes (GmIQD35, -46, -54, -63 and -67) peaked relatively early (at 1 h of treatment); GmIQD54 and -67 were strongly upregulated (more than 26-fold and 34-fold, respectively). Eight genes (GmIQD10, -18, -28, -41, -42, -43, -53 and -60) were highly expressed at 4 h; GmIQD28 and -60 had the highest expression level more than 12-fold and GmIQD41 had the highest expression level more than 28-fold. While seven genes (GmIQD7, -25, -32, -44, -46, -48 and -61) exhibited the highest expression levels at 8 h; GmIQD48 were strongly induced by more than 35-fold. Only one gene (GmIQD45) had the highest expression level.
Table 3. Predicted calmodulin binding sites in soybean IQD proteins.

Group	Name	Gene Identifier	Predicted calmodulin binding sequence
Ia	GmIQD1	Glyma01g01030	7-WVKSLFGIRREKELKLN 100-VAVVRRLTSGRRTMFG
	GmIQD3	Glyma01g42620	94-VRGHIERTKAEW
	GmIQD15	Glyma05g03450	136-LVRGHIERTKAEWL
	GmIQD16	Glyma05g35920	120-QERLAVKIQTFPR
	GmIQD22	Glyma07g01760	109-FSGSREKWAALKV
	GmIQD24	Glyma07g14910	39-MGRATVRVSKLFGIRKE
	GmIQD27	Glyma08g03710	2-GRAILWVLGFLGIRTDRER 102-RDTTFQGAGQERLAVVKK
Ib	GmIQD4	Glyma02g00710	133-LQALVRGHLVRKQARETL 155-ALVIAQRARARAQRA
	GmIQD8	Glyma03g40630	46-RWSFGKLTGAGHKLGF
	GmIQD26	Glyma07g32531	67-AYKARKYLHRLR
IIIa	GmIQD10	Glyma04g05520	131-VRGRRQVRKQAVTLRCMQALVRVQA
	GmIQD18	Glyma06g05530	136-LVRGRRQVRKQAVTLRCMQALVRVQAR
	GmIQD21	Glyma07g01040	117-AIFRGWQVRKQAAVTLRCMQ
	GmIQD25	Glyma07g32531	67-AYKARKYLHRLR
	GmIQD28	Glyma08g03710	2-GRAILWVLGFLGIRTDRER 102-RDTTFQGAGQERLAVVKK
Id	GmIQD13	Glyma04g41380	109-YGRQSKERAILQSYYR
	GmIQD19	Glyma06g13470	119-ILQSSYRGYLARRALKG
	GmIQD21	Glyma07g01040	117-AIFRGWQVRKQAAVTLRCMQ
	GmIQD25	Glyma07g32531	67-AYKARKYLHRLR
	GmIQD28	Glyma08g03710	2-GRAILWVLGFLGIRTDRER 102-RDTTFQGAGQERLAVVKK
Ila	GmIQD11	Glyma04g23760	119-QIPESSAIKIQAIFRGL
	GmIQD33	Glyma09g35920	125-IKESAAAIQUIATFRGY
	GmIQD39	Glyma11g20880	132-QIPESSAIKIQTAYRGYLA
	GmIQD40	Glyma12g01410	125-IKESAAAIQUIATFRGY
IIb	GmIQD6	Glyma02g15590	1-MGGKGSWSFSAI
	GmIQD26	Glyma07g32860	1-MGGKGSWSFSAI
Ila	GmIQD10	Glyma04g05520	131-VRGRRQVRKQAVTLRCMQALVRVQA
	GmIQD18	Glyma06g05530	136-LVRGRRQVRKQAVTLRCMQALVRVQAR
	GmIQD21	Glyma07g01040	117-AIFRGWQVRKQAAVTLRCMQ
	GmIQD25	Glyma07g32531	67-AYKARKYLHRLR
	GmIQD28	Glyma08g03710	2-GRAILWVLGFLGIRTDRER 102-RDTTFQGAGQERLAVVKK
	GmIQD41	Glyma12g31610	3-VSGKWIKALVGLKKEKPG 90-R EELARIRIQTAFRGFLA 207-ARKERAMAYALSHQWQAG
	GmIQD42	Glyma12g35711	68-AATRIQAFRSMARRTL 210-LGKESWGWSWTERWVAAR
	GmIQD44	Glyma13g24070	27-AKYARKYLHRLR
	GmIQD45	Glyma13g30590	78-RAYKARKALRMMKGFXLKLTLEG
	GmIQD46	Glyma13g34700	25-EIKHLIQNGWRF 90-LKINRKMGAQKWF
	GmIQD47	Glyma13g38800	3-VSGKWIKALVGLKKEKPG 204-ARKERAMAYALSHQWQAG
	GmIQD48	Glyma13g42440	123-LRCMAOLVRVQRVARRAR
	GmIQD50	Glyma14g11050	126-VRVQARVRAR 187-GAFK RERAIAYS
	GmIQD53	Glyma15g02940	138-LRCMAOLVRVQRVARRAR
more IQD genes in soybean genome may reflect the great needs of evolutionary history. It can be speculated that the presence of polyploidy event and segmental duplication events in soybean's genome size and estimated gene count between soybean and Arabidopsis may be mainly due to the recent genome expansion. The presence of twice as many of these genes in Arabidopsis possesses 9.2-fold larger genome size and 1.75-fold higher gene count than soybean versus Arabidopsis, which has a genome of 125 Mbp and, in rice, 34 in tomato and 23 in Brachypodium distachyon. At 12 h, with a relative expression level approaching 70-fold. We also compared the expression profiles of paralogous pairs. For example, the expression of GmIQD28 peaked at 4 h while its sister gene, GmIQD21, was downregulated at all time points, suggesting that these genes may play diverse roles in the response to MeJA stress.

Discussion

Structural characteristics of IQD proteins

The plant-specific IQD gene family has previously been comprehensively analyzed in Arabidopsis, rice, tomato and Brachypodium distachyon, this gene family has not been previously identified and annotated in soybean. We identified and characterized 67 IQ67 domain-encoding genes in soybean using genome-wide analysis. The IQD gene family in soybean is by far the largest family (33 in Arabidopsis, 29 in rice, 34 in tomato and 23 in Brachypodium distachyon). At \(~1,150\text{ Mbp}, \text{with} \sim46,400\text{ predicted coding genes}, soybean possesses 9.2-fold larger genome size and 1.75-fold higher gene count than Arabidopsis, which has a genome of 125 Mbp and \sim26,500\text{ coding genes} \[51\]. Given the obvious difference in genome size and estimated gene count between soybean and Arabidopsis, the IQD genes in soybean seems to be highly expanded. The presence of twice as many of these genes in soybean versus Arabidopsis may be mainly due to the recent polyploidy event and segmental duplication events in soybean's evolutionary history. It can be speculated that the presence of more IQD genes in soybean genome may reflect the great needs for these genes coding for calcium signal regulatory components with functions in plant development, defense response or others.

The common feature of IQ67 domain proteins is the arrangement of three IQ motifs separated by 11 and 15 intervening amino acid residues (Figure S1). To date, at least five protein families containing IQ motifs, which play a role in the calcium signaling pathway, have been identified in Arabidopsis. These protein families include the cyclic nucleotide gated channels family (CNGC), the IQ-Motif family (IQM), the CaM-binding transcriptional activator family (CAMTA), the myosin family and the IQD family, which contain one, two, five and up to three IQ motifs, respectively \[52–54\]. The unique spacing of IQ motifs and exon/intron organization of each family suggest that these IQD protein families represent separate classes of putative calmodulin targets. The calmodulin-interacting peptides in IQD protein families containing IQ motifs, which play a role in the calcium signaling pathway, have been identified in Arabidopsis. These protein families include the cyclic nucleotide gated channels family (CNGC), the IQ-Motif family (IQM), the CaM-binding transcriptional activator family (CAMTA), the myosin family and the IQD family, which contain one, two, five and up to three IQ motifs, respectively \[52–54\]. The unique spacing of IQ motifs and exon/intron organization of each family suggest that these IQD protein families represent separate classes of putative calmodulin targets. The calmodulin-interacting peptides in Arabidopsis IQD20 and CNGC proteins, which were experimentally verified, were previously predicted using the algorithm provided by the Calmodulin Target Database successfully \[30\]. In the current study, using the Calmodulin Target Database, we detected calmodulin-binding sites in all soybean IQD proteins, which strongly suggests that all IQD proteins have the potential to interact with calmodulin (Figure 2 and Table 3). Three aspects of IQD proteins appear to underlie the mechanism of interaction between IQD proteins and calmodulin: the number and specific arrangement of three IQ motifs separated by 11 and 15 intervening amino acid residues (Figure S1). To date, at least five protein families containing IQ motifs, which play a role in the calcium signaling pathway, have been identified in Arabidopsis. These protein families include the cyclic nucleotide gated channels family (CNGC), the IQ-Motif family (IQM), the CaM-binding transcriptional activator family (CAMTA), the myosin family and the IQD family, which contain one, two, five and up to three IQ motifs, respectively \[52–54\]. The unique spacing of IQ motifs and exon/intron organization of each family suggest that these IQD protein families represent separate classes of putative calmodulin targets. The calmodulin-interacting peptides in Arabidopsis IQD20 and CNGC proteins, which were experimentally verified, were previously predicted using the algorithm provided by the Calmodulin Target Database successfully \[30\]. In the current study, using the Calmodulin Target Database, we detected calmodulin-binding sites in all soybean IQD proteins, which strongly suggests that all IQD proteins have the potential to interact with calmodulin (Figure 2 and Table 3). Three aspects of IQD proteins appear to underlie the mechanism of interaction between IQD proteins and calmodulin: the number and specific composition of the IQ, 1-5-10 and 1-0-14 motifs, the predicted calmodulin binding site and the overall tertiary structure of the IQD protein.

Of the 31 soybean IQD paralogs examined, 27 exhibit highly conserved exon-intron structures, which is consistent with the high

Group	Name	Gene Identifier	Predicted calmodulin binding sequence
IIb	GmIQD7	Glyma03g33560	116-PKDEVAAIKIQTAFRGYL 227-LSKYEAATRRERALAYA
			427-NKAEKGSFGSASKRLSF
	GmIQD35	Glyma10g05720	111-EEMAIIRIQKAFRGYLA 218-KLSSKYESAMMRARAMAYS
	GmIQD36	Glyma10g35721	1-MGKRGGWFSAV 292-HASAKSVASQMTSV
	GmIQD43	Glyma13g20070	126-LARRIELRALGLV
	GmIQD60	Glyma17g23770	1-MGKGSWFSAV
	GmIQD63	Glyma19g36270	116-PKDEVAAIKIQTAFRGYL 227-LSKYEAATRRERALAYA
			427-NKAEKGSFGSASKRLSF
	GmIQD67	Glyma20g31810	1-MGKRGGWFSAV 293-HASAKSVASQMTSV
	GmIQD69	Glyma04g02830	133-LARRTLQKKG 175-RGYNVRRS
	GmIQD12	Glyma04g34150	13-LFGKKSSK NISK 153-KLQALVRGGRIQ
	GmIQD14	Glyma05g01240	19-KNSIKGRKREL
	GmIQD17	Glyma06g02841	175-IKMQILVRRAWQ
	GmIQD20	Glyma06g20341	20-KNSIKGRE
	GmIQD30	Glyma08g40880	113-QAIRGYQARG 163-LARGYKRHS
	GmIQD58	Glyma17g10660	12-VLFKGSKKSNIK
	GmIQD62	Glyma18g16130	115-IRGYQARGTFKTL 161-QAARGYKVRHSDV

Predicted calmodulin binding sites obtained from the Calmodulin Target Database are shown for strings of amino acid residues with a score of at least 7. Residues with the highest score (9) are highlighted in bold. Numbers before strings indicate the location of the first amino acid residues of the strings in soybean IQD protein sequences.

doi:10.1371/journal.pone.0110896.t003
degree of position and phase conservation broadly found across angiosperms [41]. In addition, the sizes of related introns between paralogs are also highly conserved, indicating that few insertions and deletions have accumulated within introns over the past 13 million years [41]. Most introns in GmIQD genes are in phase-0. This strong bias for phase-0 introns in soybean IQD genes is also found in IQD genes of Arabidopsis, rice and Brachypodium distachyon. The strong bias for one intron phase class, along with the variation in the number of exons (two to six) and the sizes of encoded proteins, suggests that exon shuffling has played a prominent role during the evolution and diversification of IQD genes [30].

65 of 67 soybean IQD proteins have relatively high isoelectric points with an average of 10.1. It is very similar to Arabidopsis (10.3), rice (10.4) and Brachypodium distachyon (10.3) [30,34]. The extensive presence of the basic isoelectric point and high frequency of serine residues (Arabidopsis: ~11%, rice: ~11%, Brachypodium distachyon: ~11.5% and soybean: ~12%; Table S7) in IQDs suggest that the basic nature of IQDs is crucial to their biochemical functions [30,34]. The high isoelectric points are evocative of RNA-binding proteins although IQD proteins don’t comprise currently known RNA-binding motifs. Fifty-seven soybean IQD proteins are localized to the nucleus, because of their high content of basic residues revealed by Wolf PSORT. TargetP analysis revealed that fifteen soybean IQD proteins are located in the mitochondrion by identifying the presence of mitochondrial targeting peptide (mTP). The contradicting subcellular localization predictions is due to the different algorithm used by Wolf PSORT and TargetP. Most soybean IQD protein members are likely to function in the nucleus, as nucleus specific Ca2+-signatures are reported to generate in plant cells [55–57] and calmodulin and related Ca2+ sensor proteins may play a regulatory role in nuclear processes such as transcription [58,59]. Observably, Arabidopsis IQD1 was revealer to target to microtubules as well as the cell nucleus and nucleolus [32]. In vitro binding to single-stranded nucleic acids suggests AtIQD1 and other IQD family members may control and fine-tune gene expression and protein sorting by facilitating cellular RNA localization [32].

Phylogenetic analysis and evolution of IQD family genes

IQD proteins are an ancient family of CaM/CML binding proteins that originated during the early evolution of land plants, as IQD genes are present in Physcomitrella patens. ESTs corresponding to IQD proteins for angiosperm species (Arabidopsis, rice, etc.) and at least nine homologous sequences in the gymnosperm pine (Pinus ssp.) corresponding to IQD proteins were identified suggesting that the IQD gene family originated not later than the split of gymnosperms and angiosperms about 300 Myr ago [30]. We performed a genome-wide comparison of plant IQD members from monocots (rice and Brachypodium distachyon) and eudicots (soybean, Arabidopsis and tomato) to explore how the IQD gene family has evolved. The plant IQD members from monocots (rice and Brachypodium distachyon) and eudicots (soybean, Arabidopsis and tomato) appear to be more closely
Table 4. Divergence between paralogous IQD gene pairs in soybean.

Group	No.	Paralogous pairs	Ka	Ks	Ka/Ks	Duplication date (MY)	Duplicate type
Ia	1	GmIQD1-GmIQD24	0.0474	0.0802	0.5914	6.57	S
	2	GmIQD16-GmIQD27	0.045	0.195	0.228	15.99	S
	3	GmIQD22-GmIQD29	0.029	0.108	0.267	8.83	S
	4	GmIQD49-GmIQD52	0.041	0.106	0.388	8.66	S
	5	GmIQD15-GmIQD59	0.041	0.158	0.258	12.96	S
	6	GmIQD31-GmIQD57	0.029	0.147	0.194	12.03	S
	7	GmIQD37-GmIQD66	0.030	0.116	0.260	9.48	S
Ib	8	GmIQD4-GmIQD34	0.044	0.124	0.356	10.18	S
	9	GmIQD38-GmIQD65	0.054	0.111	0.485	9.07	S
	10	GmIQD8-GmIQD64	0.039	0.134	0.293	11.00	S
lc	11	GmIQD23-GmIQD55	0.017	0.086	0.193	7.08	S
ld	12	GmIQD13-GmIQD19	0.057	0.164	0.346	13.47	S
lla	13	GmIQD11-GmIQD39	0.043	0.093	0.460	7.60	O
lkb	15	GmIQD6-GmIQD26	0.022	0.094	0.238	7.70	S
lla	16	GmIQD10-GmIQD18	0.030	0.152	0.197	12.43	S
	17	GmIQD50-GmIQD61	0.031	0.162	0.189	13.30	S
	18	GmIQD21-GmIQD28	0.041	0.125	0.325	10.22	S
	19	GmIQD48-GmIQD53	0.029	0.111	0.262	9.08	S
	20	GmIQD25-GmIQD44	0.052	0.157	0.335	12.84	S
	21	GmIQD45-GmIQD54	0.034	0.105	0.325	8.57	S
	22	GmIQD42-GmIQD46	0.058	0.219	0.263	17.94	S
	23	GmIQD41-GmIQD47	0.037	0.095	0.387	7.78	S
llb	24	GmIQD35-GmIQD43	0.033	0.114	0.293	9.34	S
	25	GmIQD7-GmIQD63	0.024	0.093	0.235	7.61	S
	26	GmIQD36-GmIQD67	0.045	0.127	0.349	10.43	S
IV	27	GmIQD12-GmIQD20	0.054	0.134	0.400	10.99	S
	28	GmIQD14-GmIQD58	0.035	0.118	0.297	9.66	S
	29	GmIQD2-GmIQD55	0.059	0.109	0.537	8.93	S
	30	GmIQD30-GmIQD62	0.067	0.151	0.443	12.35	S
	31	GmIQD9-GmIQD17	0.028	0.078	0.363	6.39	S

S: segmental duplication, O: other events.
doi:10.1371/journal.pone.0110896.t004
related to each other than to IQD genes of the same species in a different subfamily. This alternating distribution of monocots and eudicots in all subfamilies suggests that an ancestral set of IQD genes have existed before the dicot–monocot split (Figure 4, Table 4). The presence of five distinct subfamilies of IQD genes and the presence of both monocots and eudicots containing members in all five subfamilies indicate IQD genes have diversified before the monocot–eudicot split (Figure 4). These subfamilies include 23 pairs of orthologous genes, suggesting that orthologous genes may have originated from a common ancestor (Figure 4). About half of the orthologous genes (10 pairs; BdIQD1/ OsIQD8:N, BdIQD5/OsIQD3:N, BdIQD8/OsIQD10:C, BdIQD9/OsIQD23:C, BdIQD11/OsIQD19:N, BdIQD14/OsIQD28:N, BdIQD17/OsIQD24:N, BdIQD18/OsIQD7:N, BdIQD20/OsIQD2:N, GmIQD60:N) have the same predicted subcellular localization suggesting that the encoded proteins may play similar roles in both species [30,34]. A total of 87% (20 pairs) of orthologous gene pairs from rice and Brachypodium distachyon are distributed in all subfamilies. However, only two pairs of orthologous genes from dicotyledons (soybean and tomato) are from subfamily I and III. This difference may be due to the fact that both rice and Brachypodium distachyon are in the grass family and are therefore more closely related than Arabidopsis, soybean and tomato, which belong to Cruciferae, Solanaceae and Leguminosae, respectively. The number of soybean genes in each subfamily is greater than that of the other four species examined.

Figure 4. Phylogenetic tree of full-length IQD proteins from soybean, Arabidopsis, rice, tomato and Brachypodium distachyon. The tree was generated with Clustal X2.0 using the NJ method. Dicotyledons (soybean, tomato and Arabidopsis) IQD proteins are marked with colored dots. Monocotyledons (rice and Brachypodium distachyon) are marked with colored triangles. A moss IQD protein (Pp1s38230v6), used as the outgroup, is marked with a black box. Each IQD subfamily is indicated by a specific color. doi:10.1371/journal.pone.0110896.g004
suggesting that IQD counterparts in soybean may have undergone gene expansion.

The duplication of individual genes, chromosomal segments or entire genomes has been a major force in the evolution of plant genome structure and content during the process of genome evolution [60,61]. The soybean genome has undergone at least two rounds of duplication, resulting in the presence of significant features of remnants of a glycine-specific genome duplication that occurred ∼13 Ma and fainter remnants of older polyploidy. These results suggest that segmental duplication has occurred as a continuous process and dynamic changes may have occurred in a chromosomal segment that contained two ancestral IQD genes, leading to corresponding sister gene loss [62]. One paralog (GmIQD11/-39) shares 91.2% identity and similar exon/intron organization, but exists outside of any duplicated blocks. This pair might have been produced by retrotransposition. A high proportion (approximately 96%) of soybean IQD genes reside preferentially in duplicated segments, suggesting that segmental duplications have played a prominent role in the expansion of the soybean IQD gene family. The duplicated IQD genes in soybean have been preferentially retained at the high rate of 92.5% (62/67), which is distinctly higher than the retention rate (67.3%) of duplicated paralogs in the 1.1-gigabase sequence of the soybean (cv. Williams 82) genome, in which 31,264 genes exist as 15,632 paralog pairs (out of the 46,430 predicted high-confidence genes that were duplicated and retained after the 13-Mya tetraploidy event) [63]. The higher retention rate corroborates previous findings that genes involved in signal transduction are preferentially retained following duplications[64]. Our calculation of the duplication dates of the 31 paralogous pairs revealed that all of the segmental duplication events in the soybean IQD family occurred during the recent whole-genome duplication event.

During evolution, eukaryotic genomes have retained genes on corresponding chromosomes (synteny) and in corresponding orders (collinearity) to various degrees. Synteny broadly refers to parallels in gene arrangement in dissimilar genomes. Collinearity, a specific form of synteny, requires genes to occur in largely corresponding orders along the chromosomes of respective genomes. According to the microsynteny analysis, microsynteny relationships among AtIQD3, AtIQD4 or SinSUN13 with other IQD III members in these three dicot genomes were not observed indicating that either these genes are ancient genes without detectable linkage to other IQD genes or that they were formed through complete transposition and loss of their primogenitors. In addition, three different duplicated chromosomal segments (harboring AtIQD5, GmIQD32 and GmIQD6) that lost their sister IQD genes lack detectable microsynteny relationships to all other IQD III genes in the soybean and Arabidopsis genome, respectively. In the four IQD III gene clades, genes from soybean, tomato and Arabidopsis exhibit high levels of microsynteny, which indicates the IQD III genes existed before the divergence of the three dicotyledonous genomes (soybean, tomato and Arabidopsis). Microsynteny was detected in most pairs, and alignment in clade 1–3 was discordant, suggesting that these genes may all be present in genome regions that were inverted, expanded or contracted after the divergence. Notably, most gene pairs in clade 4 have successive collinearity in order and the same orientation, which indicates high conservation among these IQD III gene-residing regions, with little rearrangement. The low (18.41%) synteny quality of IQD III genes from the three dicotyledon genomes (soybean, tomato and Arabidopsis) may have been due to the fact that these plants are not closely related; moreover, the gene density differs between Arabidopsis and the two other species. Significantly, the number of synteny blocks (31) within the soybean genome is much more than the number (3 or 4) of synteny blocks between tomato or Arabidopsis genomes, which suggests that soybean IQD III genes may have undergone large-scale duplication events and less rearrangement was followed (Figure 5 and Table S5b). The gene expansion pattern analysis of soybean paralogs indicates that most pairs were generated from a large-scale duplication, which supports the results of soybean gene duplication analysis, with the exception of GmIQD11/-39.

Organ- or tissue-specific expression of IQD genes and expression of GmIQD III genes under MeJA stress treatment

Organ- or tissue-specific expression patterns have been observed for quite a few members of the IQD family. However, the functions of soybean IQD genes remain unclear. We therefore performed a thorough analysis of the RNA-Seq Atlas to investigate organ- or tissue-specific expression of IQD genes and qRT-PCR to examine the expression of GmIQD III members under MeJA stress treatment.

The tissue expression data deficiency of eight soybean IQD genes potentially indicated that these are pseudogenes or express only at specific developmental stages or under special conditions. 65.7% soybean IQD genes constitutively express in all of the seven tissues suggesting that GmIQDs may play roles at multiple developmental stages. Eight GmIQD proteins peak in only one tissue indicating that these tissue-specific calmodulin target proteins may be limited to discrete cells or organs to regulate various cellular activities.

Except for group C comprised of genes from GmlIQD I, group A, B and D comprise genes from four subfamilies indicating these soybean IQD genes exhibit similar transcript abundance profiles but are relatively phylogenetically distinct. The analysis indicated that only some members within the same phylogenetic subgroup share a similar expression profile in soybean organs/tissues during development, excluding GmlIQD6 and GmlIQD26 belong to GmlIQD IIb. For instance, GmlIQD4, -34, -38 and -63 belong to GmlIQD Ib clustered in group with high expression in flowers suggesting their potential roles in flower formation. While the other two GmlIQD Ib members (GmlIQD8 and -64) were detected in nodules indicating they may involve in fixing atmospheric nitrogen.

Members possessing similar sequences are clustered in the same subfamilies, which may have similar expression patterns or functions. In IQD subgroup Ia, Arabidopsis IQD22 is involved in the negative feedback regulation of GA-responsive DELLA
Figure 6. Hierarchical clustering of the expression profiles of soybean IQD genes in 14 tissues. RNA-seq relative expression data from 14 tissues were used to reconstruct the expression patterns of soybean genes. The raw data was normalized and retrieved from the online database http://soybase.org/soyseq/. The normal relative expression levels of 67 IQD genes are shown in Table S6. YL, young leaf; F, flower; P.1cm, one cm pod; PS.10d, pod shell 10 DAF; PS.14d, pod shell 14 DAF; S.10d, seed 10 DAF; S.14d, seed 14 DAF; S.21d, seed 21 DAF; S.25d, seed 25 DAF; S.28d, seed 28 DAF; S.35d, seed 35 DAF; S.42d, seed 42 DAF; R, root; N, nodule. Gene names in different subfamilies are highlighted with various colors. Genes clustered into four groups (A–D) are indicated by the black vertical bars.

doi:10.1371/journal.pone.0110896.g006
genes [36]. Subgroup Ia members of Arabidopsis IQD26 has higher expression level in parts with divided vigorous growth and microtubule organization of leaves, root and flowers [65]. Eight of the thirteen soybean IQD Ia members (GmIQD3, -16, -22, -27, -29, -31, -37 and -66) have high expression in young leaves. Figure 7. Expression patterns of 24 selected IQD III genes under MeJA stress using qRT-PCR. Relative expression levels of 24 IQD genes were examined by qRT-PCR and normalized to the expression of CYP2. Bars represent standard deviations (SD) of three biological replicates. Y-axes indicate the scale of the relative expression levels. X-axes show time courses of MeJA stress treatments for each gene. a and b: data for genes from IIIa and IIIb, respectively. doi:10.1371/journal.pone.0110896.g007
expression in one-cm pod or pod-shell 10-DAF. GmIQD22 have
obviously higher expression at seed 21-DAF, the period of seed cell
division (3, 4 weeks after flowering) [66]. These founding suggested
that soybean IQD Ia members may function in transport of
signaling molecules, nutrient transport and cell division.

Mapping and positional cloning of the SUN locus revealed
that this member of the IQD II subfamily was generated by
duplication of a 24.7-kb region carrying the tomato IQD12 gene,
a major gene involved in the control of fruit shape, particularly
length, in tomato [35]. SUN is expressed the highest in hypocotyl
and shoot apex. Overexpression of SUN causes root reduction
when applied auxin and prostrate growth and twisted stems
indicating that SUN can affect auxin transport or response [38].
SISUN7 shows slightly higher expression in the hypocotyl, flower
at anthesis and fruit at 10 and 20 DPA [35]. SISUN12 and
SISUN21 highly are expressed in the hypocotyls and root
respectively [35]. SISUN17 evenly expressed in almost all tissues
[35]. Soybean IQD II members showed the similar expression
profile (GmIQD11: highest in flowers; GmIQD33, -39 and -40:
slight high in flowers and GmIQD6 and -26: highest in roots),
indicating that GmIQD II members may play similar role in
plant development.

Arabidopsis IQD1 from the IQD III subfamily modulates the
expression of several glucosinolate (GS) pathway genes, resulting in
the alteration of glucosinolate content and composition to promote
resistance to herbivory. Arabidopsis IQD1, the first functionally
characterized IQD gene, is expressed in vascular tissues of
hypocotyls, leaves, stems, flowers and roots, as revealed by
histochemical analysis. Expression pattern analysis of soybean
IQD genes revealed that genes from the soybean IQD III
subfamily were mainly expressed in young leaves, flowers and
roots (Figure 6). Jasmonic acid (JA) treatment leads to elevating
levels of specific glucosinolate in Arabidopsis [67,68]. And
overexpression of AtIQD1 causes the accumulation of glucosinolates.
However, AtIQD1 expression is independent of JA, as
steady-state AtIQD1 mRNA expression levels are not appreciably
altered when externally applied JA and are also unaffected in
mutants defective in JA synthesis or signaling (JA -jar1 and fus3-2
fus7-2 fus8) [31]. Indeed, AtIQD1 increases resistance against
herbivory by augmenting and fine-tuning glucosinolate accumu-
lation [31]. Glucosinolates with important roles in plant defense
and human nutrition are a small but diverse class of defense
to insect herbivory. Compared to with MeJA treatment to detect whether soybean IQD III genes
IQDIII members might have the similar biological function with
GmIQD45 than 10-fold. GmIQD45 even accumulated the highest transcripts
approaching 70-fold at 12 h (Figure 7). Based on these, we
speculate that IQD III genes in soybean may involve in defense to
insect herbivory by JA pathway.

Orthologs may have equivalent functions, as they originated
from a single ancestral gene in the last common ancestor of the
species. Two pairs of orthologous genes (SISUN22/AtIQD6 and
SISUN31/AtIQD5) were found between tomato and Arabidopsis
(Figure S2). Similar expression patterns of these two pairs in
tomato and Arabidopsis have been reported; SISUN31 and
AtIQD5 are almost ubiquitously expressed, whereas SISUN22 and
AtIQD6 are highly expressed in young flower buds [30,34,35].

Duplicated genes may face three different fates: nonfunc-
tionalization (one copy becomes silenced); neofunctionalization (one
copy acquires a novel, beneficial function while the other copy
retains the original function) or subfunctionalization (both copies
become partially compromised by the accumulation of mutations)
[45,71]. Paralogs originating from duplication within one organ-
ism may have more divergent functions. In the current study,
several pairs of paralogs showed similar expression patterns, which
suggests that they may share a common or similar function. For
example, GmIQD10/GmIQD18 were highly expressed in young
leaves, and their expression peaked at 4 h in response to MeJA
(Figure 7). Several pairs of paralogs have different expression
patterns, suggesting that they play diverse roles in soybean
development. For example, GmIQD21/GmIQD28 are mainly
expressed in young leaves. Upon MeJA treatment, GmIQD28 was
most highly expressed at 4 h while its sister gene GmIQD21 was
downregulated at all time points.

In conclusion, IQD proteins play fundamental roles in various
plant developmental processes. Therefore, the systematic analysis
of the soybean IQD gene family performed in the current study
provides an important reference for further characterization of the
biological functions of these proteins.

Materials and Methods

Identification of IQD family genes in soybean

To identify IQD proteins in soybean, the Glycine max genome
database (release 1.0, http://www.phytozome.net/soybean.php)
was searched using Basic Local Alignment Search Tool algorithms
(BLASTP), with the published Arabidopsis IQD protein sequences
and their IQ67 domain used as initial query sequences. Redundant sequences were then removed manually, and the
Hidden Markov Model of the Pfam (http://pfam.sanger.ac.uk/
search) [72] and SMART (http://smart.embl-heidelberg.de/) [73]
databases were used to confirm each candidate sequence as a
member of the IQD family [74]. A total of 33 Arabidopsis, one
moss (Physcomitrella patens) and 23 Brachypodium IQD protein
sequences were downloaded from Phytozone v9.0 (http://www.
phytozone.net/), and 34 tomato IQD protein sequences were
retrieved from the tomato WGS chromosomes (2.40; SL2.40)
(SGNhttp://solgenomics.net). Finally, 27 rice IQD protein
sequences were obtained from the TAIR database (http://rice.
plantbiology.msu.edu). Accession numbers of published IQD
proteins for Arabidopsis, rice, tomato, Brachypodium and moss
were listed in Table S8.

Soybean IQD gene information, including the number of amino
acids, ORF lengths and chromosome locations, was obtained from
the Phytozone database. Physicochemical parameters including
the molecular weight (kDa) and isoelectric point (pI) of each gene
product were calculated using compute pl/Mw tool from ExPASy
(http://www.expasy.org/tools/) and parameter (resolution) was
set to average [75]. Subcellular localization was predicted using
the TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/) serv-
er and WoLF PSORT (http://wolfpsort.org/).
Multiple alignment and phylogenetic analysis of IQD family genes

Multiple sequence alignment of all predicted soybean IQD protein sequences was performed with Clustal X2.0 software using default parameters. Then, based on this alignment, phylogenetic trees were constructed using Clustal X2.0 with the Neighbor-Joining (NJ) method, and bootstrap analysis was conducted using 1,000 replicates [76]. An unrooted NJ tree of 184 the full-length IQD protein sequences from soybean, rice, Arabidopsis, tomato, Brachypodium was constructed using Clustal X2.0 with one moss IQD protein (Pt1383230v6.1) as the outgroup. The GmIQD genes were classified according to their phylogenetic relationships with the corresponding Arabidopsis and rice IQD genes. For microsynteny analysis of IQD III genes across soybean, tomato, and Arabidopsis, a phylogenetic tree was constructed using MEGA 5.0 with the NJ method and bootstrap analysis was conducted using 1,000 replicates.

Genomic structure

Exon and intron structures of individual soybean IQD genes were deduced using GSDS (Gene structure display server; http://gds.cbi.pku.edu.cn/) via alignment of the cDNAs with their corresponding genomic DNA sequences [77].

Identification of conserved motifs and putative calmodulin-binding sites

Online MEME (Multiple Expectation Maximization for Motif Elicitation) (http://meme.sdsc.edu/meme4_4_0/intro.html) was performed to identify the conserved motif structures encoded by GmIQD genes. The parameters were as follows: number of repetitions - any, maximum number of motifs -10, and the optimum motif width was constrained to between 6 and 200 residues. In addition, each structural motif was annotated using the Pfam (http://pfam.sanger.ac.uk/search) and SMART (http://smart.embl-heidelberg.de/) tools. All IQD protein sequences were examined against the Calmodulin Target Database (http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html) to predict putative calmodulin-binding sites.

Chromosomal location and gene duplication

The chromosomal location image of GmIQD genes was generated by MapInspect (http://www.plantbreeding.wur.nl/uk/software_mapinspect.html) according to chromosomal position information provided in the Phytozone database. To identify tandem and segmental duplications, two genes in the same species located in the same clade of the phylogenetic tree were defined as paralogs. The SoyBase browser (http://soybase.org/soyseq/) was queried to detect the segmental duplication coordinates of the target genes. Paralogs were deemed to result from segmental duplication if they were located on duplicated chromosomal blocks [79]. Paralogs were deemed to be tandem duplicated genes if two genes were separated by five or fewer genes in a 100-kb region [80]. The local alignment of two protein sequences was calculated using the Smith-Waterman algorithm (http://www.ebi.ac.uk/Tools/psa/).

Calculation of Ka/Ks Values

Amino acid sequences of each paralog pair were first aligned using Clustal X2.0. Then, the multiple sequence alignments of proteins and the corresponding cDNA sequences were converted to codon alignments using PAL2NAL (http://www.bork.embl.de/pal2nal/) [81]. Finally, the resulting codon alignment was subjected to calculation of synonymous (Ks) and non-synonymous (Ka) substitution rates using the CODEML program of PAML [82]. Based on a rate of 6.1×10^{-9} substitutions per site per year, divergence time (T) was calculated using the Ka/Ks value with the formula: T = Ks/(2×6.1×10^{-9})×10^{-6} Mya [45].

Microsynteny analysis

For microsynteny analysis, IQD III genes from soybean, tomato and Arabidopsis as the anchors were localized to specific target genomic regions. Then, all protein-coding sequences of 100 kb flanking each anchor point were compared by pairwise BLASTP analysis. The syntenic blocks used to construct synteny analysis maps of the IQD III genes were obtained from the Plant Genome Duplication Database (http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of collinearity between chromosomes [83-85]. A synteny block is defined as a region where three or more conserved homologs are located within a 100-kb DNA stretch in both genomes. Two regions were considered to have originated from a large-scale duplication event when five or more protein-coding gene pairs flanking the anchor point were ligatured with the best non-self match (E-value<1e-10) [48]. The relative syntenic quality in a region was calculated from the sum of the total number of genes in both conserved gene regions (excluding retroelements and transposons and collapsing tandem duplications) [47].

RNA-Seq atlas analysis

To acquire the tissue-specific transcript data, a list of 67 GmIQD gene names was entered to the RNA-Seq Atlas of Glycine max (http://soybase.org/soyseq/) [86]. The raw digital gene expression counts of the uniquely mappable reads were normalized using a slight variation of the reads/Kb/Million (RPKM) method and the normalized data was downloaded from this database [86]. Hierarchical clustering analysis was conducted using clustering distance “correlation” (Pearson correlation) and the clustering method used “complete” (complete linkage method) in R [87]. A heat map was generated in R using the heatmap function [87].

Plant growth and treatments

Soybean (Glycine max L. Williams 82 was used in this study. Seedlings were grown in a growth chamber under the following conditions: temperature, 30°C; photoperiod, 12 h/12 h; photon flux density, 80 μmol m^{-2} s^{-1} and relative humidity, 50% [88]. For expression pattern analysis of soybean IQD genes under stress, four-week-old seedlings were treated with 100 μM MeJA in the growth chamber [89]. Jasmonic acid methyl ester (MeJA) (Sigma, 95%) was diluted 1:10 with 95% ethanol, followed by a further dilution with MilliQ water containing 0.1% Triton X-100, resulting in a final concentration of 100 μmol/L MeJA. Untreated seedlings were used as a control. Leaves of MeJA-treated plants were collected at 0, 1, 2, 4, 8 and 12 h. After collection, the samples were immediately frozen in liquid N2 and stored at −80°C for RNA extraction. Three biological replicates were conducted per sample.

RNA extraction and qRT-PCR analysis

An RNAprep Pure Plant Kit (Tiangen) was used to isolate total RNA from each frozen sample. Possible contaminating genomic DNA was removed using DNasel supplied in the kit. First-strand cDNA was synthesized from the RNA using a PrimeScript™ RT Master Mix Kit (TaKaRa) according to the manufacturer’s instructions. Gene-specific primers for the 24 GmIQD genes were
designed using Primer3.0 (Table S9). Primer specificity was first checked using the primer-BLAST tool available on the NCBI website. Subsequently, by performing analysis of melting curves and analysis of visualization of amplicon fragments, we found primers were gene-specific only when corresponding melting curves generated a single sharp peak and the primers demonstrated an electrophoresis pattern of a single amplicon with the correct predicted length. A housekeeping gene constitutively expressed in soybean, CYP2 (cyclophilin) [46,90–93], was used as a reference for normalization. The qRT-PCR analysis was conducted using GraphPad Prism 5.01. The relative expression levels were calculated as 2 \(-\Delta\Delta CT\) = Ct, Treatment - Ct, CK (0 h). The relative expression levels (2 \(-\Delta\Delta CT\), CK 0 h) in the untreated control plants were normalized to 1 as described previously [46,94,95]. If an efficiency of amplification was less than 2, the result was proofread. Statistical analyses were conducted using GraphPad Prism 3.01 software [96].

Supporting Information

Figure S1 Amino acid sequence alignments of IQ67 domains in soybean IQD protein sequences. The multiple alignment results indicate the highly conserved IQD domains among the 67 identified soybean IQD protein sequences. The positions of the conserved IQ calmodulin binding motifs are shown. Identical residues of proteins are marked with an asterisk. The consensus sequence at the bottom was constructed with greater than 50% conservation among the 67 soybean IQD proteins. Red arrow indicates the position of the conserved phase-0 intron, which divides codons 16 and 17 of the IQ67 domain. (TIF)

Figure S2 Phylogenetic tree of full-length IQD III proteins from soybean, Arabidopsis and tomato. The tree was generated with MEGA 5.0 using the NJ method with 1,000 bootstrap replicates. Dicotyledon (soybean, tomato and Arabidopsis) IQD proteins are marked with colored dots. IQD III proteins from soybean, Arabidopsis and tomato were divided into four clades (1–4) presented by different color. (TIF)

Table S1 Detailed information about the 10 motifs in soybean IQD proteins.

(XLS)

Table S2 Recent synteny blocks of soybean and soybean (13 Mya) genomes containing IQD genes.

(XLS)

Table S3 Pairwise identities between paralogous pairs of IQD genes from soybean.

(XLS)

Table S4 The synteny blocks used to construct microsynteny map.

(XLS)

Table S5 Number of conserved gene pairs and synteny blocks and relative syntenic quality.

(XLS)

Table S6 Transcription of soybean IQD genes, as determined by RNA-seq analysis.

(XLSX)

Table S7 Animo acid content of 67 soybean IQD proteins.

(XLS)

Table S8 Accession numbers of IQDs for Arabidopsis thaliana, rice, tomato, Brachypodium distachyon and moss.

(XLS)

Table S9 List of primer sequences used for qRT-PCR analysis of the 24 soybean IQD III genes.

(XLS)

Author Contributions

Conceived and designed the experiments: LF YX. Performed the experiments: LF XC. Analyzed the data: LF ZC. Contributed reagents/materials/analysis tools: LF XC YW. Wrote the paper: LF ZC YL.

References

1. Hepler PK, Vidal L, Cheung AV (2001) Polarized cell growth in higher plants. Annual review of cell and developmental biology 17: 159–187.

2. Du L, Ali GS, Simons KA, Hou J, Yang T, et al. (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457: 1154–1158.

3. Harada A, Shimagaki K (2009) Measurement of changes in cytosolic Ca2+ in guard cells and mesophyll cells in response to blue light. Plant and cell physiology 50: 360–373.

4. Ng C, Mcainsh MR, Gray JE, Hunt L, Leckie CP, et al. (2001) Calcium-based signalling systems in guard cells. New Physiologist 151: 109–120.

5. Reddy AN (2001) Calcium: silver bullet in signaling. Plant Science 160: 381–404.

6. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Ann Rev Plant Biol 61: 593–620.

7. Day ES, Reddy VS, Shad Ali G, Reddy AS (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3: RESEARCH0056.

8. Evans NH, McMish MR, Hertherington AM (2001) Calcium oscillations in higher plants. Current opinion in plant biology 4: 415–420.

9. Harper JF (2001) Dissecting calcium oscillators in plant cells. Trends in plant science 6: 393–397.

10. Ali GS, Reddy VS, Lundgren PB, Jakobek JL, Reddy A (2003) Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Molecular Biology 51: 803–815.

11. Sneeden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Physiologist 151: 35–66.

12. Bouché N, Yellin A, Sneeden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56: 435–466.

13. Luang S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Grusswein W (2002) Calmodulins and calcineurin B–like proteins calcium sensors for specific signal response coupling in plants. The Plant Cell Online 14: S389–S400.

14. Ranny B, Aldou D, Galaud JP (2006) Plant calmodulins and calmodulin-related proteins: multifaceted relays to decode calcium signals. Plant Signal Behav 1: 96.

15. Zhang H, Yin W, Xia X (2008) Calcineurin B–like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regulation 56: 129–140.

16. Zhang C, Bia M, Yu H, Liu Q, Yang Z (2011) Identification of alkaline stress-responsive genes of CBL family in sweet sorghum (Sorghum bicolor L.). Plant Physiol Biochem 49: 1306–1312.

17. Yu Y, Xia X, Yin W, Zhang H (2007) Comparative genomic analysis of CDPK gene family in Arabidopsis and Populus. Plant Growth Regulation 52: 101–110.

18. Zuo R, Hu R, Chai G, Xu M, Qi G, et al. (2013) Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Mol Biol Rep 40: 2645–2662.

19. Reddy AS, Ali GS, Celenik H, Day IS (2011) Coping with stress: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23: 2010–2032.
49. Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate
47. Cannon SB, McCombie WR, Sato S, Tabata S, Denny R, et al. (2003)
46. Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, et al. (2014) Genome-Wide
45. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate
43. Helfer S (2014) Rust fungi and global change. New Phytologist 201: 770–780.
40. Soto-Valdez H, Colin-Chavez C, Peralta E. Fabrication and Properties of
39. Kamenetzky L, Asis R, Bassi S, de Godoy F, Bermudez L, et al. (2010) Genomic
37. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A
35. Huang Z, Van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013)
34. Filiz E, Tombuloglu H, Ozyigit II (2013) Genome-wide analysis of IQ67 domain
31. Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a
26. Bährler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS letters
25. Fischer C, Kugler A, Hoth S, Dietrich P (2013) An IQ domain mediates the
28. Bhattacharya S, Bunick CG, Chazin WJ (2004) Target selectivity in EF-hand
21. Boonburapong B, Buaboocha T (2007) Genome-wide identification and analyses
20. Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Plant Cell 16: 951–964.
19. Bohnert BH, Bubneva M, Schindler C, Florentz C, Schmidt I et al. (2009) Identification and functional characterisation of a calcium-dependent protein kinase in Arabidopsis. Journal of Biological Chemistry 284: 33048–33057.
18. Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Plant Cell 16: 951–964.
Wang L, Guo K, Li Y, Tu Y, Hu H, et al. (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC plant biology 10: 202.

Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic acids research 34: W609–W612.

Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular biology and evolution 24: 1586–1591.

Lee T-H, Tang H, Wang X, Paterson AH (2013) PGIDT: a database of gene and genome duplication in plants. Nucleic acids research 41: D1152–D1158.

Tang H, Bowers JE, Wang X, Ming R, Alam M, et al. (2008) Synteny and collinearity in plant genomes. Science 320: 406–408.

Tang H, Wang X, Bowers JE, Ming R, Alam M, et al. (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome research 18: 1944–1954.

Severin AJ, Woody JL, Bolon Y-T, Joseph B, Diers BW, et al. (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC plant biology 10: 160.

Team RC (2012) R: A language and environment for statistical computing.

Hyun TK, Eom SH, Jeun YC, Han SH, Kim JS (2013) Identification of glutamate decarboxylases as a γ-aminobutyric acid (GABA) biosynthetic enzyme in soybean. Industrial Crops and Products 49: 864–870.

Cheng Q, Zhang B, Zhuge Q, Zeng Y, Wang M, et al. (2006) Expression profiles of two novel lipoxygenase genes in Populus deltoides. Plant Science 170: 1027–1035.

Gutierrez N GMJ, Palomino C, et al. (2011) Assessment of candidate reference genes for expression studies in Vicia faba L. by real-time quantitative PCR. Molecular Breeding: 13–24.

Vivian de Jesus Miranda RRC, António Américo Barbosa Viana, Osmundo Brilhante de Oliveira Neto, Regina Maria Dechechi Gomes Carneiro, Thales Lima Rocha, Maria Fatima Grossi de Sa, Rodrigo Rocha Fragoso (2013) Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Research Notes 6.

Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, et al. (2011) Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res 18: 17–29.

Jian B, Liu B, Bi Y, Hou W, Wu C, et al. (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9: 59.

Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. methods 25: 402–408.

Peng X, Zhao Y, Cao J, Zhang W, Jiang H, et al. (2012) CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One 7: e40120.

Bryczynski SP, Pascoe RP (2009) GraphPad: a graph creation tool for CS2/CS7. ACM SIGCSE Bulletin 41: 389–389.