EXPLORING THE AYURVEDIC KNOWLEDGE ON ENVENOMATION: A REVIEW ON ETHNO PHARMACOLOGICAL APPROACH

Reshmi Pushpan 1*, Smitha Jain 2, Nishteswar K 3

1 Associate Professor, Department of Agada Tantra, SDM Institute of Ayurveda and Hospital, Bengaluru, India
2 Assistant Professor, Department of Rasashastra & Bhaishajya Kalpana, SDM Institute of Ayurveda and Hospital, Bengaluru, India
3 Research Director, Professor and HOD, Dravyaguna Department, Shri Bhanvarilal Duggal Ayurveda Viswa Bharati College, Sardarshahar, Rajasthan, India

Received on: 02/12/19 Accepted on: 09/01/20

*Corresponding author
E-mail: reshmi.pushpan@gmail.com

DOI: 10.7897/2277-4343.11011

ABSTRACT

Envenomation is one of the significant public health issues in several tropical and subtropical countries due to high morbimortality. In developing countries like India their management is basically inadequate due to poor transportation and subsequent delay in antivenom administration. So improvement in the therapeutic approaches to envenomation is necessary and therefore the medicinal plants, available locally, which have been used since ages to treat a great variety of diseases including Envenomation, needs attention. Ayurveda, a well-established medical paradigm from ancient India dealt comprehensively on management of acute envenomation and treatment of its complications with the usage of abundant medicinal plants. The present study was designed to bring together information on medicinal plants with antivenin properties and actions. Data has been collected with prominence on the plants, family, parts used, indications, mode of use etc. from Ayurveda literatures in an ethnobotanical perspective. In recent years, many studies have been published on pharmacological confirmation of antivenin potential of these plants against a broad range of envenomation, including enzyme inhibiting activity, anti-hemolytic activity, anti-proteolytic activity, anti-cytotoxicity and anti-myotoxicity. However, several plants claimed to be Vishahara (anti-poisonous) in Ayurveda need to be explored scientifically for their antivenin potential.

Keywords: Envenomation, Ayurveda, Vishahara, Anti-Venom

INTRODUCTION

The introduction of venom into a body by means of the bite or sting of a venomous animal is envenomation.1 Envenomation is considered as a significant public health problem especially in rural populations across the globe.2 Numerous species of spiders, scorpions, insects, centipede, mollusks, jelly fish, sea anemones, fishes, snakes, lizards, frogs, moles, platypus, shrews are animals capable of producing venom.3 WHO enlists snake bite, cat bite, dog bite and monkey bites under animal bites. Amongst venomous animals, snake bite is considered to be the cause for the utmost burden of human suffering. Current estimates indicate that snake envenoming affects 2.4 million people and result in 94,000–1,25,000 deaths every year, with an additional 4,00,000 amputations and other severe health consequences, such as infection, tetanus, scarring, contractures and psychological sequelae.4 Scorpion stings is another common yet neglected health issue especially found lethal in young children.5 Bite by rabid mammals (99% dog-mediated) is estimated to cause 59,000 human deaths annually in over 150 countries, with 95% of cases occurring in Africa and Asia.6 The burden of venomous bites and stings causing mortality and morbidity continues to be a serious concern for the people and the health-care providers in developing countries despite the successful outcomes with anti-venom therapy. Most Envenomation happens in the world’s most remote and poorly developed tropical communities where majority of victims do not seek hospital treatment but prefer indigenous snake bite remedies.7 The lack of medical facility in the vicinity in the rural area is considered as one of the major reasons for seeking traditional healers. Measures adopted by traditional healers are blamed as the reason for poor outcomes in cases of envenomation. Few beliefs regarding snake bite and health seeking behavior studies conducted in Sri Lanka found that people firmly believed in Ayurvedic treatment for snake bite.8 Both traditional and conventional systems of medicine have limitations for management of envenomation from lack of resources and awareness. Evidence based, scientifically sound, integrative or multidisciplinary approach of native medical systems and conventional medical systems is the need of the hour for strengthening the health care in envenomation. The broad aim of this article is to provide a general outline on descriptions of poisons and their management from an Ayurvedic perspective. This article reviews the ethnobotanical aspect and pharmacological researches on anti-poisonous herbs delineated in Ayurveda.

Ayurveda understanding and approach to Envenomation

Ayurveda is considered as the earliest medical system with a specialized discipline of toxicology (Agada Tantra) in a codified form with texts and scriptures. Acharya Sushruta, the father of surgery in his treatise, Sushruta Samhita dealt extensively on toxicology in one of the six cantos i.e. Kalpa sthana. Consciousness of the security of the king and the methods employed for his protection from accidental and homicidal poisoning are important applied aspects of the subject of toxicology during ancient times. Various observations that one comes across in the treatise seems relevant even at present. Acharya Agnivesha, in his treatise Charaka Samhita observes that “Even an acute poison can become an excellent drug if properly administered and similarly a drug if not properly administered becomes an acute poison”.9 William Withering (1789) makes a
similar observation that poison in small doses are the best medicines and useful medicines in too large doses are poisons.10 Ayurveda understands Visha (poison/toxin) as Akritrima (natural) and Kritrima (artificial). Akritrima is further categorized as Silavara (animinate) and Jangama (animate). Kritrima Visha is developed by combination of two poisonous materials and combination of non-poisonous materials is Gara (concocted poison). Incompatible food (Virudhaahara) is also considered similar to Gara.11 Inanimate poisons include poisons of plant origin, toxic minerals, metals and metal ores in their natural form. Animate poisons include venoms of poisonous varieties of snakes, scorpions, spiders, rabid animals, insects, worms, fishes, frogs etc. Visha of mild potency, continuing to exist in the body for many years which is of animinate or inanimate origin and constantly polluting the bodily tissues thereby leading to chronic ailments is termed as Dushi Visha.12 The principles of management of Dushi Visha described in Ayurveda could be utilized for the management of long-term specific and nonspecific complications following envenomation.

Visha is attributed with ten qualities as per Ayurveda such as Laghu (lightness), Ruksa (unctuousness), Ashu (quickness), Vishada (non-sliminess/clear), Vyavayi (spreading without digestion/ pervades all body before getting digested) Tikshna (sharppness), Vikasi (relaxant), Sukshma (minuteness), Ushna (hotness) and Anirudhaya rasa (indistinct taste). All these properties of poison by virtue of its quickness vitiate the Tridoshas thus hindering them to perform normal functions attributed to them. Biotransformation, a function of the Tridoshas is adversely affected precipitating retention of toxins in the body and blocking their elimination.13 Ayurvedic texts quote that Ojas, the prime substance imparting immunity to the body is vitiated by Visha (toxic substance or poison). Visha, by virtue of its ten properties deactivate the ten opposite qualities of Ojas leading to impaired immunity and death. The signs and symptoms and principles of treatment of animate and inanimate poisons in general are based on Tridoshas and also on the Visha vega (toxic manifestation within a bodily tissue).14 Twenty-four methods of therapy are described by Acharya Charaka in his treatise, Charaka Samhita for the management of Visha. Treatment starts from ligation (Arishta bandhana) above the affected part and ends in revival of the apparently dead (Mrutsanjivana). Administration of specific antidotes for combating envenomation is part of these twenty-four methods of therapy.14

Ayurvedic medicinal plants for different Envenomation: Ethno pharmacological perspective

All the three major treatises of Ayurveda have chapters dedicated for Envenomation. Several hundreds of drugs of plant, mineral and animal origin are utilized for the management of envenomation under the term Vishahara in Ayurveda treatises. In the current review we have presented more than hundred plant drugs being recorded in Ashtanga Hridaya (Table 1) for the management of a variety of envenomations.15 Interestingly more herbs are recorded for the management of spider venom followed by snake bite, rat bite, scorpion sting respectively which is depicted as a figure (Figure 1). The identity of the plant source has been confirmed from Encyclopedia on Indian Medicinal plants in FRLHT’s ENVIS Resource Partner on Medicinal Plants.16 Medicinal plants belonging to 61 families have been identified used in treating envenomation. Many plants belonging to Fabaceae (14), Curcurbitaceae (6), Verbenaceae (5) and Zingiberaceae (4) were found used to treat different kinds of bite (Figure 2). Fabaceae was cited as the botanical family consisting of the greatest number of plants reputed against snake bite.17 The plant part designated in the classical text has been reported here for researchers to utilize the information for new drug development. In case the specific part is not mentioned then the useful part indicated in the Ayurveda pharmacopeia18 is reported here. Acharyas have preferred using sustainable plant parts like leaves, stem bark, fruits and flowers wherever possible, even though use of roots are also common. Ayurvedic texts specify that wherever the useful part is not specified in a given context, then root is to be procured.19 These medicinal plants are intended for use either internal or external or both in different dosage forms such as juice, aqueous decoctions, medicated jams, powders, fermented drinks, pastes etc.

Scientifically validated Visha hara herbs with anti-venom activity

Several plant species have been studied for pharmacological evidence against snake venoms including inhibitory potential against hyaluronidase, phospholipase, proteolytic, hemorrhagic, myotoxic and edematogenic activities. However, research into Ayurvedic anti-venom herbs is still in a very premature stage. Very few (approximately 22%) of the species used in Ayurvedic medicine against various Envenomation were studied in preclinical assays with different snake venoms as shown tabulated (Table 2) along with details of the extract and the research model. Some medicinal plants used repeatedly in the management have not been explored such as Valeriana wallchii DC, Saussurea lappa (Decne.) Sch. Bip, Coscinium fenestratum (Goeth.) Celebr., Glycyrrhiza glabra L., Acorus calamus L. Messa ferre L. etc.

CONCLUSION

Medicinal plants Albizia lebbeck (L.) Benth., Valeriana wallchii DC., Saussurea lappa (Decne.) Sch. Bip., Curcuma longa L., Piper longum L., Coscinium fenestratum (Goeth.) Celebr. Glycyrrhiza glabra L., Zingiber officinale Rosc., Acorus calamus L., Vitex negundo L., Aegle marmelos (L.) Corrêa, Clitoria ternatea L., Amaranthus spinosus L. occupy prime place in the management of envenomation in Ayurveda. These drugs are administered in different dosage forms, through enteral and parenteral routes to treat Cobra, Viper, Krait envenomation, spider and scorpion venom, rat bite and rabid dog bite. Most of these medicinal plants are scantily studied for their role in envenomation and hence researchers can thoroughly screen these herbs for anti-venom new drug development.

Table 1: Ethno-botanical information on Ayurvedic drugs used in the management of Envenomation
Plant name	Family	Habit	Plant part used	Ailment treated	Other details
Achyranthes aspera L.	Amaranthaceae	Herb	Whole plant	Snake bite – viper and krait, spider venom	Internal
Aconitum heterophyllum Wall. ex Royle	Ranunculaceae	Herb	Tuber	Snake bite – viper and krait, insect bite	Internal and External
Acorus calamus L.	Acoraceae	Herb	Rhizome	Viper bite, insect bite, spider venom, rat bite	Internal and External
Adhatoda vasica Nees	Acanthaceae	Shrub	Root, Leaves	Snake bite, spider venom, scorpion sting, rat bite	Internal
Aegle marmelos (L.) Corrêa	Rutaceae	Tree	Root	Snake bite – viper, cobra and krait, spider venom, rat bite	Internal and External
Alangium salvifolium (L.f.) Wangerin	Cornaceae	Small tree	Bark	Spider venom, rat bite	Internal for Emesis, external
Albizia lebbeck(L.) Benth	Fabaceae	Tree	Stem, bark, flowers, fruit, root	Snake bite – viper and krait, spider venom	Internal and External
Albizia procera (Roxb.) Benth.	Fabaceae	Tree	Stem bark, seeds	Snake bite – viper, cobra and krait, rat bite	Internal and External
Amaranthus spinosus L.	Amaranthaceae	Herb	Root, whole plant	Snake bite – viper, cobra and krait, rat bite	Internal and External
Aquilaria agallocha Roxb.	Thymelaeaceae	Evergreen tree	Heartwood	Spider venom	External
Aristolochia indica L.	Aristolochiaceae	Perennial climber	Root	Snake bite – viper, cobra and krait	Internal and External
Azadirachta indica A. Juss.	Meliaceae	Tree	Bark, leaves	Spider venom	Internal and external
Baliospernum montanum (Wild.) Müll. Arg.	Euphorbiaceae	Under shrub	Root, seed, leaf	Spider venom	External
Bambusa arundinacea Wild.	Poaceae	Herb	Seeds, tender stem	Viper bite, spider venom	Internal and external
Boerhaavia diffusa Linn.	Nyctaginaceae	Herb	Whole plant, root	Rat bite	Internal
Boswellia serrata Roxb.	Burseraceae	Tree	Resin	Snake bite – viper, cobra and krait	Internal
Caesalpinia sappan L.	Fabaceae	Tree	Heartwood	Insect bite, spider venom	Internal and External
Callicarpa macrophylla Vahl	Verbenaceae	Evergreen shrub	Fruit	Spider venom	External
Calophyllum inophyllum L.	Calophyliaceae	Evergreen tree			
Calotropis gigantea (L.) Dryand.	Apocynaceae	Shrub	Root, flower latex	Snake bite, scorpion sting, rhabid animal bite	Internal and External
Catunaregam spinosa (Thumb.) Tiran.	Rubiaceae	Small tree	Fruit	Spider venom, rat bite	Internal and External
Cedrus deodora (Roxb.) G. Don	Pinaceae	Tree	Heartwood	Snake bite, scorpion sting, spider venom, rat bite	Internal and External
Cinnamomum tamala (Buch.-Ham.) T. Nees and Eberm.	Lauraceae	Tree	Bark, leaves	Spider venom	Internal and External
Cinnamomum zeylanicum Nees	Lauraceae	Small evergreen tree	Bark	Spider venom	Internal
Cirrhzus colocynthis (L.) Schrad.	Cucurbitaceae	Creeper	Fruit	Snake bite – viper, cobra and krait	Internal
Clerodendrum phlomidis L.f.	Verbenaceae	Shrub	Root	Spider venom	Internal
Clerodendrum serratum (L.) Moon	Verbenaceae	Shrub	Root	Spider venom	Internal
Clitoria ternatea L.	Fabaceae	Perennial climber	Root	Snake bite – viper, cobra and krait, rat bite	Internal
Coixlacryma-jobi L.	Poaceae	Annual herb	Root	Viper bite	Internal
Coleus vettiveroides Jacob	Lamiaceae	Perennial herb	Whole plant	Spider venom	External
Cordia myxa L.	Boraginaceae	Small tree	Fruit	Snake bite – viper, cobra and krait, spider venom	Internal
Coscinium fenestratum (Goetgh.) Colebr.	Menispermaceae	Climbing shrub	Wood	Snake bite – viper, cobra and krait, spider venom, scorpion sting, insect bite, rat bite	Internal and External
Crotonaescu nurvala Buch.-Hum.	Capparaceae	Tree	Bark	Spider venom	Internal
Crocus sativus L.	Iridaceae	Herb	Stigma	Spider venom, rat bite	External
Curcuma longa L.	Zingiberaceae	Herb	Rhizome	Snake bite – viper, cobra and krait, spider venom, scorpion sting, insect bite, rat bite	Internal and External
Plant Name	Family	Habitat	Part Used	Medicinal Use	Mode of Use
----------------------------------	------------------------	-------------------	---	---	--------------------------
Cyclea peltata (Lam.) Hook. f. and Thomson	Menispermaceae	Twining shrub	Whole plant	Snake bite, insect bite and spider venom	Internal and External
Cyperus esculentus L.	Cyperaceae	Perennial herb	Whole plant	Spider venom	Internal
Cyperus rotundus L.	Cyperaceae	Perennial herb	Whole plant	Spider venom	Internal
Datura metel L.	Solanaceae	Perennial herb	Leaves, root	Snake bite, rabid animal bite	Internal and External
Desmodium triflorum (L.) DC.	Fabaceae	Herb	Whole plant	Rabid animal bite	External
Dipteroecarpus alatus Roxb. ex G. Don	Dipteroecarpaceae	Tree	Wood	Rabid animal bite	External
Elettaria cardamomum (L.) Maton	Zingiberaceae	Herb	Fruit	Snake bite, Insect bite and spider venom	Internal and External
Emblica officinalis Gaertn.	Phyllanthaceae	Tree	Fruit	Snake bite, scorpion sting, spider venom, rat bite	Internal and External
Euphorbia hirta L.	Euphorbiaceae	Herb	Whole plant	Spider venom	External
Feronia limonia (Linn.) Swingle	Rutaceae	Large tree	Fruit pulp, fruit, root, leaves, flower, bark	Snake bite-krait, cobra, viper venom, rat bite	Internal
Ficus benghalensis L.	Moraceae	Large tree	Tree bark	Snake bite-krait, cobra, viper venom, insect bite	Internal
Ficus glomerata Roxb.	Moraceae	Large tree	Tree bark	Snake bite-krait, cobra, viper venom, insect bite	Internal
Ficus lacor Buch-Ham	Moraceae	Large tree	Tree bark	Snake bite - krait, cobra, viper venom, insect bite	Internal
Ficus religiosa L.	Moraceae	Large tree	Tree bark	Snake bite - krait, cobra, viper venom, insect bite	Internal
Flacourtia jaungomas (Lour.) Raeusch.	Salicaceae	Tree	Bark, fruit	Spider venom	External
Gloriosa superba L.	Liliaceae	Herb	Root	Spider venom	Internal and External
Glycyrrhiza glabra L.	Fabaceae	Perennial herb	Root	Spider venom	Internal and External
Gmelina arborea Roxb.	Verbenaceae	Deciduous tree	Root, fruit	Snake bite – krait, viper, cobra	Internal and External
Hemidesmus indicus (L.) R. Br. ex Schult.	Asclepiadaceae	Training vine	Root	Rat bite, spider venom	External
Indigofera tinctoria L.	Fabaceae	Shrub	Root	Rat bite, spider venom	External
Lageronia siceraria (Molina) Standl.	Cucurbitaceae	Annual vine	Fruit	Rat bite	Internal
Luffa acutangula (L.) Roxb.	Cucurbitaceae	Annual vine	Fruit	Spider venom	External
Luffa cylindrica (L.) M. Roem.	Cucurbitaceae	Annual vine	Fruit	Spider venom	External
Luffa echinata Roxb.	Cucurbitaceae	Annual vine	Fruit	Rat bite	Internal
Malaxis acuminata D. Don	Orchidaceae	Terrestrial orchid	Rhizome	snake bite – krait, viper, cobra	Internal
Mesua ferrea L.	Clusiaceae	Evergreen tree	Dry flower, stem	All types of Envenomation, Viper bite and spider venom, insect bite	Internal and External
Microstylis wallichii Lindl.	Orchidaceae	Terrestrial orchid	Rhizome	snake bite – krait, viper, cobra	Internal
Moringa oleifera Lam.	Moringaceae	Tree	Bark, fruit	Rat bite	Internal
Narcondostachys jatamansi (D. Don) DC	Caprifoliaceae	Perennial herb	Root	Snake bite	Internal and External
Nerium oleander L.	Apocynaceae	Shrub	Root, flower	Snake bite – krait, cobra, viper	Internal and External
Nymphaea alba L.	Nymphaeace	Aquatic herb	Flower	Snake bite - krait	Internal
Ocimum sanctum L.	Lamiaceae	Herb	Whole plant	All types of Envenomation, Snake bite – krait, cobra and krait, spider venom, scorpion sting, insect bite, rat bite	Internal and External
Ocimum tenuiflorum L.	Lamiaceae	Herb	Whole plant	All types of Envenomation, Snake bite – krait, cobra and krait, spider venom, scorpion sting, insect bite, rat bite	Internal and External
Onosma bracteata Wall.	Boraginaceae	Perennial herb	Whole plant	Rabid animal bite	External
Operculina turpethum (L.) Silva Manso	Convolvulaceae	Herb	Root	Insect bite, spider venom, rat bite	Internal
Pergularia daemia (Forssk.) Chiov.	Asclepiadaceae	Perennial herb	Whole plant	Spider venom	External
Plant name	Plant part and Extract used	Model studied	Reference		
------------	-----------------------------	---	-----------		
Abutilon indicum (L.) Sweet	Hexane and methanolic leaf extract	Enzyme inhibiting activity on Echis carinatus s (Saw scaled viper)	20		
Achyranthes aspera L. Corêa	Aqueous and ethanolic extract of the leaves	Inhibition of phospholipase activity, Inhibition of Procoagulant activity, Inhibition of Hemolytic activity	21		
Acorus calamus L.	Root extract using distilled water	Neutralization of lethality, edema-forming activity, hemorrhagic activity, phospholipase activity (PLA2) and pro-coagulant activity caused by Echis carinatus venom	22, 23		

Table 2: Anti-venom activity and their model reported
Species	Extracts/Preparations	Activities	References
Aegle marmelos (L.) Corrêa	Methanolic extract of Leaf, stem and root bark	Inhibition of effect of the enzymatic components present in the venom of the Viperidae family	24
Albizia lebbeck (L.) Benth	Seed methanolic extract - hot extracts by the Soxhlet method using different solvents (1:25 w/v) with increasing polarity (n-hexane, chloroform, ethyl acetate, methanol and water)	Neutralization potential against the toxic enzymes of ECV (proteases and hyaluronidases), prevented the characteristic ECV induced hemorrhage and myotoxicity	25
Andrographis paniculata (Burman f.)	Dried Ariel part (after 90 – 120 days of sowing) Alcoholic extract Dried Ariel part - Ethanolic extract	Anti-cobra venom activity Anti-scorpion venom activity	26
Aristolochia indica L.	Aristolochic acid and its derivatives from the aqueous root extract	In vitro Assay for L-amino acid oxidase (LAAO) – Russel viper venom In vivo	27
Azadirachta indica A. Juss.	Methanolic leaf extract	In vitro- PLA2 Inhibitor activity – inhibits the cobra and Russell's viper venoms	28
Caesalpinia cristia L.	Seeds and leaves	Anti-Contractile skeletal muscle against Bites arietans	29
Calotropis gigantea (L.)	Methanolic extract of plant	Neutralization of Haemorrhagic Activity, Neutralization of Necrotizing Activity, Neutralization of Edema forming activity	30
Cinnamomum tamala (Buch.-Ham.) T. Nees and Eberm	Aqueous and alcoholic extracts of dried bark	In vivo and In vitro models were used to determine the anti-venom capacity of the plant extract by using two dose levels and it showed a significant neutralization of lethality, PLA2 activity and bleeding time.	31
Coix lacryma-jobi L.	Ethanolic root extract	Neutralization of venom-induced HRBC lysis, inhibition of PLAr2, nucleotidase (DNase), fibrinogenolytic enzyme activity	32
Curcuma longa L.	Rhizome extract	Enzyme inhibition activity, anti cytotoxicity and anti myotoxicity against Naja venom Anti hemorrhagic activity against Both Rop jararaca venom and anti lethal activity against Crotalus durissus terrificus venom	33 34
Cyclea peltata (Lam.) Hook. f. & Thomson	Aqueous extract of Cyclea peltata root	Ex vivo neutralization tests such as acetylcholinesterase, protease, direct hemolysis assay, phospholipase activity and procoagulant activity	35
Emblica officinalis Gaertn.	Methanolic root extract	In vitro and in vivo- V. russelli and N. kaouthia induced hemorrhage, coagulant, defibrinogenating and inflammatory activity	36
Euphorbia hirta L.	Whole plant methanolic extract	Protease, PLA2, hyalurondase and hemolytic inhibitory activity of Naja ora venom induced toxicity	37 38
Gloriosa superba L.	Root ethanolic extract	In vitro and in vivo neutralizing effect against the venom of Naja nigrig collis	39
Hemidesmus indicus (L.) R. Br. ex Schult.	Methanolic extract of root	In vitro and In vivo studies- viper venom-induced lethal, hemorrhagic, coagulant and anticoagulant activity	40 41
Indigofera tinctoria L.	Ariel parts methanolic extract	In vitro and in vivo neutralizing effect against the venom of Naja nigrig collis	42
Piper longum L.	Ethanolic extract of fruits	Inhibited venom induced lethality, hemorrhage, necrosis, defibrinogenation and inflammatory paw edema, reduced venom induced mast cell degranulation	43
Symplocos racemosa Roxb.	Methanolic extract of stem bark	Enzyme inhibition activity against phosphodiesterase l	44
Vitex negundo L.	Methanolic root extract	Anti-lethal activity, anti hemorrhagic activity, coagulant, defibrinogenating, fibrinolytic activity	45
Vitis vinifera L.	Methanolic seed extract	Dabeus/Piper russelli induced proteolytic and hyaluronidase activities, pro-coagulant activity	46
REFERENCES

1. Envenomation. (n.d.). In Your Dictionary. https://www.yourdictionary.com/envenomation
2. Chippaux JP. Snake-bites: appraisal of the global situation. Bull World Health Organ 1998; 76(5): 515-24.
3. Charles D Ericsson, Christoph Hatz, Thomas Junghanss, Mauro Bodio. Medically Important Venomous Animals: Biology, Prevention, First Aid, and Clinical Management. Clinical Infectious Diseases 2006; 43 (10): 1309–1317. https://doi.org/10.1086/508279
4. World Health Organization. Animal bites: WHO; 2018. https://www.who.int/news-room/fact-sheets/detail/animal-bites
5. Chippaux JP. Emerging options for the management of scorpion stings. Drug design, development and therapy 2012; 6: 165–173. https://doi.org/10.2147/24754
6. World Health Organization. 10 facts on Rabies: WHO; 2017. https://www.who.int/features/factfiles/rabies/en/
7. Ediriweera DS, Kasturiratne A, Pathmeswaran A, Gunawardena NK, Jayamanne SF, et al. Health seeking behavior following snakebites in Sri Lanka: Results of an island wide community-based survey. PLOS Neglected Tropical Diseases 2017; 11(11): e0006073. https://doi.org/10.1371/journal.pntd.0006073
8. Makita L. Investigation of beliefs regarding snakebites in rural Sri Lanka and the influence of those beliefs in health seeking behavior. MCommH Thesis, Liverpool School of Tropical Medicine; 2002.
9. Agnivesha, Charaka, Driddhala. Charaka Samhita, Sutra sthana 1/123, Vaidya Yadavji Trikamji Acharya. Editor. Varanasi: Chaukamba Surbharti Prakashan; 2015. p. 23.
10. Nishteswar K. Agada Tantra and Vyavahara Ayurveda. Varanasi: Chaukamba Surbharti Prakashan; 2017. p. 1.
Andrographis paniculata
Manim methanolic extract as a complementary therapy to manage venom. IJPT Pharmacognosy and Phytochemistry, vol. 2016; 4(10): 2672-2679.

Correa. in silico Nisha, NC, Sreekumar S. Venom potential of Acharya Sharangadhar, Sharangadhar Samhita, Ed. Smt. Anonymous. Complementary and Alternative Medicine, vol. 201 An analysis of traditional use of medicinal plants for treatment of local tissue damage induced by snake venoms: A review. Journal of Ethnopharmacology, vol. 2016; 175: 116-124.

Vagbhata. Surbharti. Yadavji Sushruta. Sushruta Samhita, Kalpa sthana 35. Atridev Gupta. Varanasi: Chaukhambha. 2001; p. 573.

Acharya Sharangadhar, Sharangadhar Samhita, Ed. Smt. Anonymous. Complementary and Alternative Medicine, vol. 201 An analysis of traditional use of medicinal plants for treatment of local tissue damage induced by snake venoms: A review. Journal of Ethnopharmacology, vol. 2016; 175: 116-124.

Vagbhata. Surbharti. Yadavji Sushruta. Sushruta Samhita, Kalpa sthana 35. Atridev Gupta. Varanasi: Chaukhambha. 2001; p. 573.

Acharya Sharangadhar, Sharangadhar Samhita, Ed. Smt. Anonymous. Complementary and Alternative Medicine, vol. 201 An analysis of traditional use of medicinal plants for treatment of local tissue damage induced by snake venoms: A review. Journal of Ethnopharmacology, vol. 2016; 175: 116-124.

Vagbhata. Surbharti. Yadavji Sushruta. Sushruta Samhita, Kalpa sthana 35. Atridev Gupta. Varanasi: Chaukhambha. 2001; p. 573.
ethanolic extract of fruits of *Piper longum* L. (Piperaceae) against Russell’s viper venom: Characterization of piperine as active principle. Journal of Ethno-pharmacology 2013; 147(2): 373-382. https://doi.org/10.1016/j.jep.2013.03.022.

44. Ahmad VU, Abbasi MA, Hussain H, Akhtar MN, Farooq U, Fatima N, Choudhary MI. Phenolic glycosides from *Symplocos racemose*: natural inhibitors of phosphodiesterase I. Phytochemistry 2003; 63(2): 217-20.

45. Alam MI and Gomes A. Snake venom neutralization by Indian medicinal plants (*Vitex negundo* and *Emblica officinalis*) root extracts. Journal of Ethno-pharmacology 2003; 86(1): 75-80.

46. Mahadeswaraswamy YH, Devaraja S, Kumar MS, Goutham YN, Kemparaju K. Inhibition of local effects of Indian Daboia/ *Vipera russelli* venom by the methanolic extract of grape (*Vitis vinifera* L.) seeds. Indian J Biochem Biophys 2009; 46(2): 154-60.

Cite this article as:

Reshmi Pushpan et al. Exploring the Ayurvedic knowledge on Envenomation: A Review on Ethno pharmacological approach. Int. J. Res. Ayurveda Pharm. 2020; 11(1):1-9

http://dx.doi.org/10.7897/2277-4343.11011

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IJRAP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IJRAP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IJRAP editor or editorial board members.