A CO-CHAIN MAP FOR THE G-IN Variant DE RHAM COMPLEX.
I.M. ANDERSON, M.E. FELS

1. Introduction

In this note we characterize the Lie group actions for which there exists, at least locally, an evaluation map that defines a cochain map from the differential complex of invariant forms on a manifold to the De Rham complex for the quotient. This problem is motivated by the principle of symmetric criticality [4].

Before giving any specific definitions we would like to illustrate the notion of such an evaluation map with a simple example. Consider the two dimensional Abelian Lie group \(G = \mathbb{R}^2 \) with coordinates \((a, b)\) acting on \(\mathbb{R}^3 \) by
\[
(a, b) \ast (x, y, z) = (x, y + a, z + b).
\]
If \(\alpha \in \Omega^2(\mathbb{R}^3)^G \) and \(\nu \in \Omega^3(\mathbb{R}^3)^G \), where we use the convention that a group superscript denotes the invariants of the group, then \(\alpha \) and \(\nu \) are necessarily of the form
\[
\alpha = a(x)dx \wedge dy + b(x)dx \wedge dz + c(x)dy \wedge dz \quad \text{and} \quad \nu = A(x)dx \wedge dy \wedge dz.
\]
The Lie algebra of infinitesimal generators of this action of \(G \) is generated by \(\partial_y, \partial_z \) and it is easy to check that evaluation on the generators
\[
\alpha(\partial_y, \partial_z) = c(x), \quad \nu(\partial_y, \partial_z, -) = A(x)dx
\]
defines a cochain map from \(\Omega^*(\mathbb{R}^3)^G \) to \(\Omega^{*-2}(\mathbb{R}) \), that is,
\[
(d\alpha)(\partial_y, \partial_z, -) = d(\alpha(\partial_y, \partial_z)) = c(x)'dx.
\]
As we shall see, not all group actions admit cochain evaluation maps.

2. Lie group actions and invariant vector fields

Let \(G \) be a \(p \)-dimensional Lie group which acts effectively on an \(n \)-dimensional manifold \(M \) with multiplication map \(\mu : G \times M \to M \). We write \(gx \) instead of \(\mu(g, x) \). For \(x \in M \) and \(g \in G \), we define \(\mu_x : G \to M \) and \(\mu_g : M \to M \) to be the maps
\[
\mu_x(g) = \mu_g(x) = gx.
\]
For any \(g \in G \), \(\mu_g \) is a diffeomorphism of \(M \). We let \(G_x \) denote the isotropy subgroup of \(G \) at \(x \),
\[
G_x = \{ g \in G \mid gx = x \}.
\]
For each \(x \in M \), the map \(\tilde{\mu}_x : G/G_x \to M \) given by \(\tilde{\mu}_x([g]) = gx \) is a one-to-one immersion which is also \(G \) equivariant with respect to the canonical action of \(G \) on the coset space \(G/G_x \).

The Lie algebra \(g \) of the Lie group \(G \) is the Lie algebra of right invariant vector fields on \(G \). The action of \(G \) on \(M \) induces a Lie algebra homomorphism
\(r : g \to X(M) \) of \(g \) to the vector fields on \(M \) whose image is the Lie algebra of the infinitesimal generators of the action of \(G \) on \(M \) \cite{2}. We write \(\Gamma = r(g) \). Because the action of \(G \) on \(M \) is assumed effective, the map \(r \) is injective. Let \(\Gamma \subset TM \) denote the (integrable) distribution generated by \(\Gamma \).

The action of the Lie group \(G \) on \(M \) is said to be \textit{regular} if the space of orbits is a manifold \(\overline{M} = M/G \) such that the quotient map
\[
q : M \to \overline{M}
\]
is a submersion. We will assume from here on that all actions are regular. For regular actions the orbits all have the same dimension which we assume to be \(q \) and so the isotropy subgroup \(G_x \), for any \(x \in M \), will have dimension \(p - q \). Let \(\text{Vert} M \to M \) be the sub-bundle of \(q \) vertical vectors in \(TM \), so \(\text{Vert} M = \ker q_* = \Gamma \). We also have the important property \((\tilde{\mu}_g)_*(T_eG/G_x) = \text{Vert} x M \).

The action of \(G \) on \(M \) defines an action of \(G \) on \(TM \) using the differential
\[
(\mu_g): TM \to TM.
\]
For each \(g \in G_x \), equation (2.1) gives
\[
(\mu_g)_*: T_xM \to T_xM
\]
which defines the linear isotropy representation of \(G_x \) on the tangent space \(T_xM \).

Suppose now that \(X \) is a \(G \) invariant vector field, that is,
\[
(\mu_g)_*X_x = X_{gx}.
\]
If \(g \in G_x \), then equation (2.2) implies that
\[
X_x \in (T_xM)^{G_x}.
\]
This observation leads us to define the following subset of \(TM \),
\[
\kappa(TM) = \bigcup_{x \in M} \kappa(T_xM), \quad \kappa(T_xM) = (T_xM)^{G_x}.
\]
Equation (2.3) implies that every \(G \) invariant vector field \(X \) takes values in the subset \(\kappa(TM) \subset TM \).

Since \(q \circ \mu_g = q \), the action of \(G \) on \(TM \) restricts to an action on \(\text{Vert} M \) and the linear isotropy representation of \(G_x \) also restricts to a representation on vertical vectors
\[
(\mu_g)_*: \text{Vert} x M \to \text{Vert} x M, \quad g \in G_x.
\]
Thus a \(G \) invariant vertical vector field takes values in the set
\[
\kappa(\text{Vert} M) = \bigcup_{x \in M} \kappa(\text{Vert} x M), \quad \kappa(\text{Vert} x M) = (\text{Vert} x M)^{G_x}.
\]
In the next theorem we give conditions which guarantee the existence of invariant vector fields. This is a special case of the general construction given in [2] or on p. 657 in [3].

\textbf{Theorem 2.1}. If \(\kappa(TM) \subset TM \) is a vector sub-bundle, then for each \(x \in M \) and \(Y \in \kappa(T_xM) \) there exists a \(G \) invariant vector field \(X \) on \(M \) such that \(X_x = Y \). The analogous statement holds for \(G \) invariant vertical vector fields if \(\kappa(\text{Vert} M) \subset \text{Vert} M \) is a vector sub-bundle.

\textbf{Remark 2.1} For the rest of this article we assume that all group actions are regular and that \(\kappa(TM) \), and \(\kappa(\text{Vert} M) \) are bundles.
3. Lie algebra cohomology

Given a Lie group G and a Lie subgroup $K \subset G$, with corresponding Lie algebras $\mathfrak{g} \subset \mathfrak{g}$, define the vector space of K relative forms on \mathfrak{g} by

$$A^r(\mathfrak{g}, K) = \{ \alpha \in A^r(\mathfrak{g}) \mid \iota_v \alpha = 0, \forall v \in \mathfrak{k} \text{ and } \text{Ad}^*_g \cdot \alpha = \alpha, \forall g \in K \},$$

where $A^r(\mathfrak{g})$ are the alternating r-forms on \mathfrak{g} and Ad^* denotes the co-adjoint representation of G on $A^r(\mathfrak{g})$.

The usual exterior derivative d on $A^*(\mathfrak{g})$ restricts to make $A^*(\mathfrak{g}, K)$ a differential complex whose cohomology is denoted by $H^*(\mathfrak{g}, K)$, the Lie algebra cohomology of \mathfrak{g} relative to the subgroup K.

If $K \subset G$ is a closed Lie subgroup, let $H^*(\mathfrak{g}, K)^G$ be the d-cohomology of the G invariant forms on G/K.

Lemma 3.1. If $K \subset G$ is closed, then $\Omega^r(G/K)^G \simeq A^r(\mathfrak{g}, K)$ and $H^*(\Omega^*(G/K)^G) \simeq H^*(A^*(\mathfrak{g}, K)).$

See Theorem 13.1 in [6] for a proof of this Lemma. It is well-known [8], that if G is connected and compact and K closed, then $H^*(\mathfrak{g}, K)$ computes the De Rham cohomology of the homogeneous space G/K.

It is useful to note that if $K_2 = gK_1g^{-1}$ are conjugate subgroups of G then $\text{Ad}(g)$ induces an isomorphism

$$A^*(\mathfrak{g}, K_1) = A^*(\mathfrak{g}, K_2).$$

Example: Consider the two sphere S^2 and the projective plane $\mathbb{R}P^2$ as the homogeneous spaces $SO(3)/SO(2)$ and $SO(3)/O(2)$. Letting X_1, X_2, X_3 be a basis for $so(3)$ with X_3 the basis for $so(2)$ (which particular $so(2)$ is actually irrelevant because of (3.1)) and letting $\alpha^1, \alpha^2, \alpha^3$ be the dual basis, we find

$$A^1(so(3), SO(2)) = \{0\} \quad \text{and} \quad A^2(so(3), SO(2)) = \{\alpha^1 \wedge \alpha^2\}.$$

Therefore $H^2(so(3), SO(2))$ is generated by $\alpha_1 \wedge \alpha_2$. On the other hand, there is a reflection in $O(2)$ which maps X_1 to $-X_1$ and X_2 to X_2 so that

$$A^1(so(3), O(2)) = \{0\} \quad \text{and} \quad A^2(so(3), O(2)) = \{0\}$$

and therefore $H^2(so(3), O(2)) = 0$. Of course, these computations reflect the fact that S^2 is orientable whereas $\mathbb{R}P^2$ is not.

4. A map on the G invariant De Rham complex

In this section we generalize the evaluation map from the introduction by studying the problem of defining a map

$$\rho^k_{\lambda} : \Omega^k(M)^G \to \Omega^{k-q}(\mathcal{M})$$

which shifts form degree by the orbit dimension q of G on M. To begin, we define $\Lambda_q(\text{Vert} M) \to M$ to be the vector bundle of vertical q-chains on $\text{Vert} M$ (alternatively, the bundle of vertical multi-vectors of degree q). Given that the orbits of G have dimension q it follows that about each point $x \in M$ there exists an open set U and vector fields X_1, X_2, \ldots, X_q in Γ which define a local frame for $\Gamma|_U = \text{Vert} U$. Consequently if χ is a section of $\Lambda_q(\text{Vert} M)$ then $\chi|_U$ can written as

$$\chi|_U = J X_1 \wedge X_2 \wedge \cdots \wedge X_q,$$
where $J \in C^\infty(U)$. The action of G on $\text{Vert} M$ described in section 2, induces an action of G on $\Lambda_q(\text{Vert} M)$.

Given a G invariant q-chain $\chi : M \to \Lambda_q(\text{Vert} M)$, we now define a map $\iota \chi : \Omega^k(M) \to \Omega^{k-q}_{\text{sb}}(M)$ where
\[
\Omega^{k}_{\text{sb}}(M) = \{ \omega \in \Omega^k(M) \mid \iota \chi \omega = 0 \quad \text{for all} \ X \in \Gamma \}
\]
are the q semi-basic forms on M. The map $\iota \chi$ is defined by setting
\[
(\iota \chi \omega)_x(Y_1, Y_2, \ldots, Y_{k-q}) = \omega_x(\chi_x, Y_1, Y_2, \ldots, Y_{k-q})
\]
for $\omega \in \Omega^k(M)$ and $Y_i \in T_x M$. If $\omega \in \Omega^k(M)^G$ then $\iota \chi \omega$ is q semi-basic, and since χ is G invariant, $\iota \chi \omega$ is G invariant and so G basic. By this last statement $\iota \chi \omega \in \Omega^{k-q}_{\text{sb}}(M)^G$, and therefore by Lemma A.3 in [1], we find there exists a unique $(k-q)$-form $\iota \chi \omega$ on M satisfying $q^*(\iota \chi \omega) = \iota \chi \omega$. The sought after evaluation map $\rho \chi$ is then defined by
\[
(4.1) \quad \rho^k_{\chi}(\omega) = (-1)^{(n-k)q} \iota \chi \omega.
\]
Note that for each invariant χ we have a map $\rho \chi$.

Theorem 4.1. If there exists a non-vanishing G invariant vertical q-chain χ on M, then
\[
(4.2) \quad A^q(\mathfrak{g}, G_x) \neq 0 \quad \text{for all} \ x \in M.
\]
Conversely, if for each $x \in M$, $A^q(\mathfrak{g}, G_x) \neq 0$ then about each $x_0 \in M$ there exists a G invariant open set U and non-vanishing G invariant vertical q-chain χ on U.

Proof. Let χ be a non-vanishing G invariant vertical q-chain. Let $x \in M$ and let $\tilde{\chi}$ be the restriction of χ to G/G_x, so that $(\tilde{\mu}_x)_* \tilde{\chi} = \chi$. By the equivariance property of $\tilde{\mu}_x$ the q-chain $\tilde{\chi}$ is G invariant. Now let $\alpha \in \Omega^q(M)$ satisfy $\alpha(\chi) = 1$. The form α is not unique, and it is not necessarily invariant. We claim the form $\tilde{\mu}_x^* \alpha$ defines a non-zero element of $\Omega^q(G/G_x)^G$. We compute
\[
(4.1) \quad (g^* \tilde{\mu}_x^* \alpha)(\tilde{\chi}) = \alpha((\tilde{\mu}_x)_* g_* \tilde{\chi}) = \alpha((\tilde{\mu}_x)_* \tilde{\chi}) = \alpha(\chi) = 1.
\]
Thus $\tilde{\mu}_x^* \alpha$ is a non-vanishing G invariant form of top degree on G/G_x and so, by Lemma 3.1, $A^q(\mathfrak{g}, G_x) \neq 0$.

We now prove the converse part of the theorem. Let
\[
\kappa(\Lambda_q(\text{Vert} M)) = \bigcup_{x \in M} \kappa(\Lambda_q(\text{Vert}_x M)),
\]
where $\kappa(\Lambda_q(\text{Vert}_x M)) = (\Lambda_q(\text{Vert}_x M))^{G_x}$. We shall show that $A^q(\mathfrak{g}, G_x) \neq 0$ implies $\kappa(\Lambda_q(\text{Vert} M))$ is a line bundle. Then the existence of a G invariant q-chain is guaranteed (in a similar manner to Theorem 2.1) by Theorem 1.2 in [2].

If $A^q(\mathfrak{g}, G_x) \neq 0$ then by Lemma 3.1 there exists a non-vanishing $\tilde{\alpha} \in \Omega^q(G/G_x)^G$. Let $\tilde{\chi}$ be the invariant q-chain defined by $\tilde{\alpha}(\tilde{\chi}) = 1$. Then $\chi_x = (\mu_x)_* \tilde{\chi} |_{G_x} \in \Lambda_q(\text{Vert}_x M)^{G_x}$ by the equivariance of μ_x, and is non-zero. Thus $\Lambda_q(\text{Vert}_x M)^{G_x} = \Lambda_q(\text{Vert}_x M)$ and so $\kappa(\Lambda_q(\text{Vert} M)) = \Lambda_q(\text{Vert} M)$ is a line bundle. \qed
5. THE COCHAIN CONDITION

In this section we find necessary and sufficient conditions on the action of G on M that determine whether we can choose a G invariant q-chain χ so that the map $\rho\chi : \Omega^*(M)^G \to \Omega^{*-q}(M)$ defined in (4.1) is a cochain map, that is,

$$\rho\chi(d\omega) = d\rho\chi(\omega).$$

Granted that the action of G on M satisfies the conditions in Remark 2.1, the solution to this problem is given by the following theorem.

Theorem 5.1. If there exists a non-vanishing invariant q-chain χ such that the map $\rho\chi$ in (4.1) defines a cochain map, then $H^q(g, G_x) \neq 0$ for all $x \in M$. Conversely, if $H^q(g, G_x) \neq 0$ for all $x \in M$ then about each $x_0 \in M$ there exists a G invariant open set U and a non-vanishing G invariant vertical q-chain χ on U such that $\rho\chi : \Omega^*(U)^G \to \Omega^{*-q}(U/G)$ is a cochain map.

In order to prove this theorem, we need a number of preliminary results. The first of these is the important observation that the cochain condition (5.1), which is a condition that involves the quotient manifold \overline{M}, can be expressed as a condition entirely on M.

Lemma 5.2. A G invariant, vertical q-chain χ defines a cochain map $\rho\chi$ if and only if

$$\iota\chi d\omega = (-1)^q d(\iota\chi \omega)$$

for all $\omega \in \Omega^*(M)^G$.

Proof. If η is any G basic form, then $d\eta$ is also G basic. Let $\bar{\eta}$ be the unique form on \overline{M} such that $q^*(\bar{\eta}) = \eta$. Then, since

$$q^*(d\bar{\eta}) = dq^*(\bar{\eta}) = d\eta$$

the two forms $d\bar{\eta}$ and $dq^*(\bar{\eta})$ pullback by q to the same form and must therefore be equal. Since χ and ω are both G invariant, we can apply this observation to the G basic form $\iota\chi \omega$ to deduce that

$$d(\iota\chi \omega) = d(\iota\chi \omega).$$

The cochain condition (5.1) can therefore be expressed as

$$(-1)^q \iota\chi d(\omega) = d(\iota\chi \omega).$$

But two G basic forms on M are equal if and only if the corresponding forms on \overline{M} are equal and so (5.2) proves the equivalence of (5.1) with (5.3). □

Lemma 5.3. If (5.2) holds for all G invariant $(n-1)$-forms, then (5.3) holds for all G invariant r-forms, $r \geq q$.

Proof. Suppose (5.2) holds true for all G invariant $(n-1)$-forms. Let ω be a G invariant r-form, where $q \leq r < n - 1$. Then, if α is any G basic $(n-r-1)$-form, $\omega \wedge \alpha$ is a G invariant $(n-1)$-form and therefore we can use (5.2) to write

$$\iota\chi d(\omega \wedge \alpha) = (-1)^q d(\iota\chi (\omega \wedge \alpha)).$$

Because α (and hence $d\alpha$) is G basic, the expansion of both sides of this equation gives

$$\iota\chi d\omega \wedge \alpha = (-1)^q d(\iota\chi \omega) \wedge \alpha.$$
Since α is an arbitrary G basic form and $\iota \chi d\omega$ and $d(\iota \chi \omega)$ are both G basic this implies

$$
\iota \chi d\omega = (-1)^q d(\iota \chi \omega).
$$

\[\square\]

Lemma 5.4. Let μ be a G basic $(n - q)$-form on a G invariant open set U. Let χ be a non-vanishing, G invariant, vertical q-chain on U and let α be any q-form such that $\alpha(\chi) = 1$. Then

$$
\nu = \alpha \wedge \mu
$$
is a G invariant n-form on U.

Proof. For any $g \in G$, we compute

$$
[\mu^*_g(\alpha)](\chi) = \alpha((\mu_g)_*(\chi)) = \alpha(\chi) = 1
$$
and therefore

$$
\iota \chi [\mu^*_g(\nu)] = \iota \chi [\mu^*_g(\alpha) \wedge \mu] = \mu = \iota \chi \nu.
$$

This suffices to prove that $\mu^*_g(\nu) = \nu$. \[\square\]

Lemma 5.5. If χ is non-vanishing vertical q-chain and R is a G invariant vector field then

$$
\mathcal{L}_R \chi = \lambda_R \chi,
$$
where λ_R is a G invariant function.

Proof. Let X_1, \ldots, X_q be vector fields in Γ which form a local basis for $\text{Vert} M$ in some neighborhood about the point x. Then $\chi = J X_1 \wedge X_2 \wedge \cdots \wedge X_q$ and, since $[R, X_i] = 0$,

$$
\mathcal{L}_R \chi = R(J) X_1 \wedge X_2 \wedge \cdots \wedge X_q = \frac{R(J)}{J} \chi.
$$

\[\square\]

Theorem 5.6. If χ is a non-vanishing, G invariant, vertical q-chain, then the map

$$
\rho_\chi : \Omega^*(M)^G \to \Omega^{n-q}(M)
$$
is a cochain map if and only if

$$
(5.4)
\mathcal{L}_R \chi = 0
$$
for all G invariant vector fields R on M.

Proof. We start by assuming (5.4). Then by Lemma 5.3 it suffices to prove (5.4) for G invariant $(n - 1)$-forms.

Given the non-vanishing G invariant vertical q-chain χ, let $x \in M$ and use Lemma 5.4 to construct a non-vanishing G invariant n-form $\nu = \alpha \wedge \mu$ on an invariant open set U about x. Let $\omega \in \Omega^{n-1}(M)^G$, then restricted to U there exists a unique G invariant vector field S on U such that

$$
(5.5)
\omega_U = \iota_S \nu.
$$

Let R be a G invariant vector field on M which agrees with S on an invariant open set $V \subset U$ of x so that

$$
(5.6)
\omega_V = \iota_R \nu.
$$

With ω_V given by (5.6), we compute on V

$$
[d(\iota \chi \omega)]_V = d(\iota \chi \iota_R \nu) = (-1)^q d(\iota_R \chi \nu) = (-1)^q d(\iota_R \mu) \quad \text{and}
$$

$$
[i \chi d\omega]_V = i \chi d(\iota_R \nu) = i \chi \mathcal{L}_R(\nu) = \mathcal{L}_R(\mu) - i \mathcal{L}_R(\chi) \nu.
$$
But it is easy to check that if \(\mu \) is a \(G \) basic \((n-q)\)-form, then \(d\mu = 0 \) and therefore

\[
eq 0.
\]

Evaluating (5.7) at \(x \in V \) shows that if (5.4) holds at \(x \) then (5.2) holds at \(x \) for all \(G \) invariant \((n-1)\)-forms \(\omega \). Since our original point \(x \in M \) was arbitrary, equation (5.2) holds on \(M \).

To prove that (5.2) implies (5.4) we reverse the argument above. Let \(R \) be a \(G \) invariant vector field on \(M \) and let \(x \in M \). Choose a \(G \) basic \((n-q)\)-form \(\mu \) which doesn’t vanish at \(x \). Then the form \(\omega = \iota_R \nu \), where \(\nu = \alpha \land \mu \) with \(\alpha(\chi) = 1 \), is a \(G \) invariant \(n-1 \) form on \(M \). Equation (5.4) (evaluated at \(x \)) coupled with Lemma 6.3 shows that (5.2) implies (5.4) at \(x \). But \(x \) was arbitrary so (5.4) holds on \(M \).

We are now in a position to prove Theorem 5.1.

Proof. We begin the proof by first noting that the condition \(H^q(G, G_x) \neq 0 \) is equivalent to the following:

i) For each \(x \in M \) there exists a non-vanishing \(\tilde{\alpha} \in \Omega^q(G/G_x)^G \); and

ii) for all \(\tilde{\eta} \in \Omega^{q-1}(G/G_x)^G \), \(d\tilde{\eta} = 0 \).

Suppose there exists a non-vanishing \(G \) invariant \(q \)-chain \(\chi \) such that \(\rho_\chi \) is a cochain map. Let \(\alpha \in \Omega^q(M) \) with \(\alpha(\chi) = 1 \). Then as was shown in Theorem 4.1, given any \(x \in M \), \(\mu_x^\ast \alpha \in \Omega^q(G/G_x)^G \) and is non-vanishing. Thus condition i) is true.

Let \(\tilde{\eta} \in \Omega^{q-1}(G/G_x)^G \). Then \(\tilde{\eta} \) can be written \(\tilde{\eta} = \iota_Y \mu_x^\ast \alpha \) where \(Y \) is a \(G \) invariant vector field on \(G/G_x \). Now \((\mu_x)_x Y_x \in \kappa(Vert_x M) \) and by the hypothesis on invariant vector fields (Theorem 2.1), there exists a \(G \) invariant vector field \(Y \) on \(M \) such that \(Y_x = (\mu_x)_x Y_x \). Thus \(\tilde{\eta} = \mu_x^\ast (\iota_Y \alpha) \).

In order to calculate \(d\tilde{\eta} \) we let \(\mu \) be a \(G \) basic \((n-q)\)-form which doesn’t vanish at \(x \) so that by Lemma 5.4 \(\alpha \land \mu \) is \(G \) invariant \(n \)-form which doesn’t vanish at \(x \). It is simple to check that \(\iota_Y [d(\iota_Y \alpha)]_x = 0 \) if and only if \(\iota_Y [d(\iota_Y \alpha) \land \mu]_x = 0 \).

By using the fact \(\mu \) is \(\delta \)-closed and by applying equation (5.2) to the invariant one-form \(\iota_Y (\alpha \land \mu) = (\iota_Y \alpha) \land \mu \), we find

\[
\iota_Y [d(\iota_Y \alpha) \land \mu]_x = \iota_Y [d(\iota_Y \alpha) \land \mu]_x = (-1)^q [d(\iota_Y \alpha) \land \mu]_x = 0.
\]

Thus \(\tilde{\eta} [d(\iota_Y \alpha)]_x = 0 \). Now computing

\[
\tilde{\eta} (\tilde{\chi})_x = [\mu_x^\ast (\iota_Y \alpha)(\tilde{\chi})]_x = [\mu_x^\ast d(\iota_Y \alpha)(\tilde{\chi})]_x = [d(\iota_Y \alpha)(\tilde{\chi})]_x = 0
\]

and using the invariance of \(\tilde{\eta} \) we get \(d\tilde{\eta} = 0 \). This proves ii) and therefore \(H^q(G, G_x) \neq 0 \).

To prove the converse, choose \(x_0 \in M \). Then by Theorem 4.1 the hypothesis \(A^q(G, G_x) \neq 0 \) implies there exists a non-vanishing \(G \) invariant \(q \)-chain \(X_0 \) on an invariant open neighbourhood \(U \) of \(x_0 \). Suppose that the rank of \(\kappa(Vert M) \) is \(s \) and that the rank of \(\kappa(TM) \) is \(r \). Let \(Y_a, a = 1, \ldots s \) be a local frame about \(x_0 \) for \(\kappa(Vert M) \) consisting of invariant vector fields. Choose invariant vector fields \(Z_t, t = s + 1, \ldots, r \) which together with \(Y_a \) form a local frame about \(x_0 \) for \(\kappa(TM) \). Refine \(U \) so all these objects exist on an invariant open set which we again call \(U \).

We now show that if \(H^q(G, G_x) \neq 0 \) then \(\mathcal{L}_{Y_a} X_0 = 0 \). First we compute

\[
(\mathcal{L}_{Y_a} \alpha)(X_0) = (\alpha(X_0)) - \alpha(\mathcal{L}_{Y_a} X_0) = -\alpha(\mathcal{L}_{Y_a} X_0).
\]
Expanding out the left side of this equation we get
\[(5.9) \quad d(\iota_\alpha Y_\alpha) + \iota_\alpha d\alpha \mid (\chi_0) = -\alpha(\mathcal{L}_{Y_\alpha}\chi_0).\]
Immediately \(\iota_\chi_0\iota_\alpha Y_\alpha d\alpha = 0\), because \(Y_\alpha\) is vertical, while condition ii) implies by the argument used above that \(d(\iota_\alpha Y_\alpha) \mid (\chi_0) = 0\), and so \((5.9)\) along with Lemma 5.4 implies \(\mathcal{L}_{Y_\alpha}\chi_0 = 0\).
To finish the proof of the theorem we now show there exists an invariant \(K\) which doesn’t vanish at \(x_0\) so that \(\chi = K\chi_0\) satisfies equation \((5.4)\) for \(Y_\alpha, Z_t\). Using the fact that \(\mathcal{L}_{Y_\alpha}\chi_0 = 0\), it is easy to check \(\mathcal{L}_{Y_\alpha}(K\chi_0) = 0\). The conditions \(\mathcal{L}_{Z_t}(K\chi_0) = 0\) leads to the differential equations for \(K\)
\[(5.10) \quad \tilde{Z}_t(K) + \tilde{K}\lambda_{Z_t} = 0.\]
The integrability conditions for \(K\) or \(\tilde{K}\) can be easily verified by a computation using Lemma 5.5. Therefore there exists an open neighbourhood \(\tilde{V}\) of \(\tilde{x}_0\) and a non-vanishing \(\tilde{K}\) which is a solution to \((5.10)\) on \(\tilde{q}^{-1}(\tilde{V})\).

6. Examples

Example 1. As our first example consider the two dimensional solvable group \(G = \mathbb{R}^* \times \mathbb{R}\) with coordinates \((a, b)\) acting on \(\mathbb{R} \times \mathbb{R}^* \times \mathbb{R}\) by
\[(a, b) \ast (x, y, z) = (ax + b, ay, z).\]
This is a free action and so \(H^2(\mathfrak{g}, G_x) = H^2(\mathfrak{g})\) and one easily computes \(H^2(\mathfrak{g}) = 0\).
We proceed to check Theorem 5.6 for this example. The most general \(G\) invariant vertical 2-chain \(\chi\) is of the form
\[\chi = K(z)y^2\partial_x \wedge \partial_y.\]
The invariant vector fields are
\[R = f(z)y\partial_x + g(z)y\partial_y + h(z)\partial_z.\]
Computing \(\mathcal{L}_y \partial_y \chi\) we get
\[\mathcal{L}_y \partial_y \chi = K(z)y^2\partial_x \wedge \partial_y\]
and so, consistent with Theorem 5.6 and Theorem 5.1 there is no choice of non-zero \(K(z)\) so that \((5.4)\) is satisfied, and no cochain exists.

Example 2. Consider the action of the two dimensional Abelian group \(G = \mathbb{R}^2\) with coordinates \((a, b)\) on \(\mathbb{R}^2\) given by
\[(a, b) \ast (x, y) = (x + ay + b, y).\]
The fact the group is Abelian implies \(H^1(\mathfrak{g}, G_x) \neq 0\), for all \(x \in \mathbb{R}^2\), so a cochain map exists by Theorem 5.1. The \(G\) invariant vertical 1-cochains are given by
\[(6.1) \quad \chi = K(y)\partial_x,\]
and the invariant vector fields are
\[R = a(y)\partial_x.\]
So every cochain χ in \((6.1)\) satisfies \((5.4)\). This examples demonstrates the fact that the q-chain may not be unique, and by a further simple computation, that the cochain map $\rho\chi$ may not be surjective.

As a final remark we state a theorem on the surjectivity of $\rho\chi$.

Theorem 6.1. Let χ be a G invariant vertical q-chain such that $\rho\chi$ defines a cochain map. Then $\rho\chi$ is surjective if and only if there exists $\alpha \in \Omega^q(M)$ such that $\alpha(\chi) = 1$ and α is G invariant.

See [4] and [5] for other examples.

References

[1] I.M. Anderson and M.E. Fels, *Exterior Differential Systems with Symmetry*, submitted, Acta. Appl. Math., SPT. 2004.
[2] I.M. Anderson and M.E. Fels, *Topology and its Applications*, **123**, 2002, pp. 443-459
[3] I.M. Anderson and M.E. Fels, *Commun. Math. Phys.*, **212**, 2000, pp. 653–686
[4] I.M. Anderson and M.E. Fels, *Amer. Jour. Math.*, **119**, 1997, pp. 609–670
[5] M.E. Fels, C.G. Torre, *Class. Quantum Grav.*, **19**, 2002, pp. 641–675.
[6] C. Chevalley, S. Eilenberg, *Trans. Amer. Math. Soc.*, **63**, 1948, pp. 85–124.
[7] P.J. Olver, *Applications of Lie groups to differential equations*, Springer-Verlag, 1993
[8] M. Spivak, *A comprehensive introduction to differential geometry Vol. 5*, Publish or Perish, 1979

Department of Mathematics and Statistics, Utah State University, Logan Utah USA, 84322, E-mail: anderson@math.usu.edu, fels@math.usu.edu