Pointwise convergence problem of one dimensional Schrödinger equation in Fourier-Lebesgue spaces

Xiangqian Yan, Wei Yan

School of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, China

Abstract. In this paper, we consider the pointwise convergence problem of one dimensional Schrödinger equation. We show the almost everywhere pointwise convergence of one dimensional Schrödinger equation in Fourier-Lebesgue spaces $\hat{H}^{s,r}(\mathbb{R})$ with $s \geq \frac{1}{2r}, 2 \leq r < \infty$ with rough data. We also present counterexamples showing that the maximal function estimate related to one Schrödinger equation can fail with data in $\hat{H}^{s,r}(\mathbb{R})(s < \frac{1}{2r})$. The key ingredients are maximal function estimate related to $\hat{H}^{s,r}(\mathbb{R}), 2 \leq r < \infty$ and the density theorem in $\hat{H}^{s,r}(\mathbb{R}), 2 \leq r < \infty$.

Keywords: Pointwise convergence; One dimensional Schrödinger equation; Fourier-Lebesgue spaces

AMS Subject Classification: 42B25; 42B15; 35Q53

1. Introduction

In this paper, we investigate the pointwise convergence problem of one dimensional Schrödinger equation

\begin{equation}
 iu_t + \partial_x^2 u = 0,
\end{equation}
\begin{equation}
 u(x, 0) = f(x).
\end{equation}

Carleson [5] showed pointwise convergence problem of the one dimensional Schrödinger equation in $H^s(\mathbb{R})$ with $s \geq \frac{1}{4}$. Dahlberg and Kenig [8] showed that the pointwise convergence of the Schrödinger equation is invalid in $H^s(\mathbb{R}^n)$ with $s < \frac{1}{4}$. Some authors have studied the pointwise convergence problem of Schrödinger equations in higher dimension [1, 2, 6, 7, 9, 13, 15, 18–27]. Bourgain [3] presented counterexamples showing that when $s < \frac{n}{2(n+1)}, n \geq 2$ the pointwise convergence problem of n dimensional Schrödinger equation does not hold. Du et al. [11] proved that the pointwise convergence problem of two
dimensional Schrödinger equation in $H^s(\mathbb{R}^2)$ with $s > \frac{1}{3}$. Du and Zhang [12] showed that the pointwise convergence problem of n dimensional Schrödinger equation is valid for data in $H^s(\mathbb{R}^n)(s > \frac{n}{2(n+1)}, n \geq 3)$.

In this paper, motivated by [10, 17], we use the Fourier-Lebesgue space $\hat{H}^{s,r}(\mathbb{R})$ which is used in [4, 14, 16] to study the pointwise convergence problem of Schrödinger equation. We show the almost everywhere pointwise convergence of one dimensional Schrödinger equation in Fourier-Lebesgue spaces $\hat{H}^{s,r}(\mathbb{R})$ with $s \geq \frac{1}{2} r, 2 \leq r < \infty$ with rough data. We also present counterexamples showing that the maximal function estimate related to one Schrödinger equation can fail with data in $\hat{H}^{s,r}(\mathbb{R})(s < \frac{1}{2} r)$.

We present some notations before stating the main results. $|E|$ denotes by the Lebesgue measure of set E.

\[
\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi} f(x)dx, \quad \mathcal{F}^{-1}_x f(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi} f(x)dx,
\]

\[
U(t)u_0 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi-it\xi^2} \hat{u}_0(\xi)d\xi, D^\alpha_u U(t)u_0 = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |\xi|^\alpha e^{ix\xi-it\xi^2} \hat{u}_0(\xi)d\xi,
\]

\[
\|f\|_{L^q_t L^p_x} = \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,t)|^p dt \right)^\frac{q}{p} dx \right)^\frac{1}{q}, \quad \frac{1}{r} + \frac{1}{r'} = 1.
\]

\[
\hat{H}^{s,r}(\mathbb{R}) = \left\{ f \in \hat{H}^{s,r}(\mathbb{R}) | f \in \mathcal{S}'(\mathbb{R}) : \|f\|_{\hat{H}^{s,r}(\mathbb{R})} = \|\langle \xi \rangle^s \hat{f}\|_{L^{r'}(\mathbb{R})} < \infty \right\}, \text{ where } \langle \xi \rangle^s = (1 + \xi^2)^{s/2} \text{ for any } \xi \in \mathbb{R}.
\]

Theorem 1.1. Let $f \in \hat{H}^{s,r}(\mathbb{R})$ with $s \geq \frac{1}{2r}, 2 \leq r < \infty$. Then, we have

\[
\lim_{t \to 0} U(t)f(x) = f(x) \quad (1.3)
\]

almost everywhere.

Remark 1. When $r = 2$, from Theorem 1.1, we obtain the same result as its of Carleson [5]. Thus, we extend the result of [5].

Theorem 1.2. The maximal function inequality

\[
\|U(t)f\|_{L^r_t L^\infty_x} \leq C\|f\|_{\hat{H}^{s,r}(\mathbb{R})} \quad (1.4)
\]

does not hold if $s < \frac{1}{2r}$.

2. Preliminaries

In this section, we present some preliminaries.
Lemma 2.1. Let $f \in L^2(\mathbb{R})$. Then, we have

$$\| U(t)f \|_{L^4_t L^\infty_x} \leq \| D_x^{\frac{1}{2}}f \|_{L^2(\mathbb{R})} = \| |\xi|^{\frac{1}{2}} \hat{f} \|_{L^2(\mathbb{R})}. \quad (2.1)$$

For the proof of Lemma 2.1, we refer the readers to [17].

Lemma 2.2. (Maximal function estimate related to $\dot{H}^{\frac{1}{p}, \frac{p}{2}}$, $p \geq 4$) Let $f \in \dot{H}^{\frac{1}{p}, \frac{p}{2}}$, $p \geq 4$. Then, we have

$$\| U(t)f \|_{L^p_t L^\infty_x} \leq C \| |\xi|^{\frac{1}{p}} \hat{f} \|_{L^p(\mathbb{R})}. \quad (2.2)$$

Proof. Obviously, we have

$$\| U(t)f \|_{L^\infty_t L^\infty_x} \leq \| \hat{f} \|_{L^1}. \quad (2.3)$$

Interpolating (2.1) with (2.3), we have that (2.2) is valid.

This completes the proof of Lemma 2.2.

Lemma 2.3. (Density Theorem in $\dot{H}^{s,r}$) Let $f \in \dot{H}^{s,r}$, $s \in \mathbb{R}$, $2 \leq r < \infty$. Then, $\forall \epsilon > 0$, there exists a rapidly decreasing function g and a function h with $\| h \|_{\dot{H}^{s,r}} < \epsilon$ such that

$$f = g + h. \quad (2.4)$$

Proof. From $f \in \dot{H}^{s,r}$, we have that $\langle \xi \rangle^s \hat{f} \in L^r$, according to the density theorem in L^r, we know that there exists rapidly decreasing function g_1 and a function h_1 such that $\langle \xi \rangle^s \hat{f} = g_1 + h_1$ with $\| h_1 \|_{L^r} < \epsilon$. Thus, we have that

$$f = \mathcal{F}_x^{-1} (\langle \xi \rangle^{-s} g_1) + \mathcal{F}_x^{-1} (\langle \xi \rangle^{-s} h_1). \quad (2.5)$$

Let $g = \mathcal{F}_x^{-1} (\langle \xi \rangle^{-s} g_1), h = \mathcal{F}_x^{-1} (\langle \xi \rangle^{-s} h_1)$. Since g_1 is a decreasing rapidly function, thus, g is a decreasing rapidly function. Obviously,

$$\| h \|_{\dot{H}^{s,r}} = \| h_1 \|_{L^r}. \quad (2.6)$$

Thus, we have $f = g + h$.

This completes the proof of Lemma 2.3.

Lemma 2.4. Let f be a rapidly decreasing function. Then, we have

$$| U(t)f - f | \leq C |t|. \quad (2.7)$$
Proof. By using a direct computation, since f is a decreasing rapidly function, we have

$$|U(t)f - f| = C \left| \int_{\mathbb{R}} e^{ix\xi} \left[e^{-it\xi^2} - 1 \right] \hat{f}(\xi) d\xi \right| \leq C|t| \int_{\mathbb{R}} |\xi|^2 |\hat{f}(\xi)| d\xi$$

$$\leq C|t| \int_{\mathbb{R}} (\xi)^2 |\hat{f}(\xi)| d\xi \leq C|t| \int_{\mathbb{R}} (\xi)^{-2} d\xi \leq C|t|. \quad (2.8)$$

This completes the proof of Lemma 2.4.

3. Proof of Theorem 1.1

In this section, we apply Lemmas 2.1-2.4 to establish Theorem 1.1.

Proof of Theorem 1.1. If f is rapidly decreasing function, from Lemma 2.4, we have

$$|U(t)f - f| \leq C|t|. \quad (3.1)$$

From (3.1), we know that Theorem 1.1 is valid.

When $f \in H^{s,r}(\mathbb{R})(s \geq \frac{1}{2r})$, by using Lemma 2.3, there exists a rapidly decreasing function g such that $f = g + h$, where $\|h\|_{\hat{H}^{s,r}(\mathbb{R})} < \epsilon(s \geq \frac{1}{2r})$. Thus, we have

$$\lim_{t \to 0} |U(t)f - f| \leq \lim_{t \to 0} |U(t)g - g| + \lim_{t \to 0} |U(t)h - h|. \quad (3.2)$$

We define

$$E_{\alpha} = \left\{ x \in \mathbb{R} : \lim_{t \to 0} |U(t)f - f| > \alpha \right\}. \quad (3.3)$$

Obviously, $E_{\alpha} \subset E_{1\alpha} \cup E_{2\alpha}$.

$$E_{1\alpha} = \left\{ x \in \mathbb{R} : \lim_{t \to 0} |U(t)g - g| > \frac{\alpha}{2} \right\}, \quad (3.4)$$

$$E_{2\alpha} = \left\{ x \in \mathbb{R} : \lim_{t \to 0} |U(t)h - h| > \frac{\alpha}{2} \right\}. \quad (3.5)$$

Obviously,

$$E_{\alpha} \subset E_{1\alpha} \cup E_{2\alpha}. \quad (3.6)$$

From Lemmas 2.4, we have

$$|E_{1\alpha}| = 0. \quad (3.7)$$

Obviously,

$$E_{2\alpha} \subset E_{21\alpha} \cup E_{22\alpha}. \quad (3.8)$$

where

$$E_{21\alpha} = \left\{ x \in \mathbb{R} : \sup_{t > 0} |U(t)h| > \frac{\alpha}{4} \right\}, \quad (3.9)$$

$$E_{22\alpha} = \left\{ x \in \mathbb{R} : |h| > \frac{\alpha}{4} \right\}. \quad (3.10)$$
Thus, from Lemma 2.2, we have
\[|E_{21\alpha}| = \int_{E_{21\alpha}} dx \leq \int_{E_{21\alpha}} \left[\sup_{t>0} |U(t)h| \right]^{2r} dx \leq \frac{\|U(t)h\|_{L^2_rL^\infty_t}^{2r}}{\alpha^{2r}} \leq C \frac{\|h\|_{\dot{H}^{\frac{1}{r}}}^{2r}}{\alpha^{2r}} \leq C \frac{\epsilon^{2r}}{\alpha^{2r}}. \] (3.11)

By using the Hausdorff-Young inequality, we have
\[|E_{22\alpha}| = \int_{E_{22\alpha}} dx \leq \int_{E_{22\alpha}} \frac{|h|^r}{\alpha^r} dx \leq \frac{\|h\|_{L^r}^r}{\alpha^r} \leq C \frac{\|h\|_{L^r}^r}{\alpha^r} \leq C \frac{\epsilon^r}{\alpha^r}. \] (3.12)

From (3.7), (3.11) and (3.12), we have
\[|E_{\alpha}| \leq |E_{1\alpha}| + |E_{2\alpha}| \leq |E_{1\alpha}| + |E_{21\alpha}| + |E_{22\alpha}| \leq C \epsilon^{2r} + C \frac{\epsilon^r}{\alpha^r}. \] (3.13)

Thus, since \(\epsilon \) is arbitrary, from (3.13), we have
\[|E_{\alpha}| = 0. \] (3.14)

Thus, from (3.3) and (3.14), we have \(U(t)f - f \to 0 (t \to 0) \) almost everywhere.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we present the counterexamples showing that \(s \geq \frac{1}{2r} \) is the necessary condition for the maximal function estimate.

Proof of Theorem 1.2. We choose \(f = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi} 2^{-k(s+\frac{1}{r})} \chi_{2^k \leq |\xi| \leq 2^{k+1}}(\xi) d\xi \), obviously,
\[\|f\|_{\dot{H}^{s,r}} \sim 1. \] (4.1)

We choose \(t \leq \frac{\delta}{100} 2^{-2k} \), where \(\delta \) will be chosen later. For \(|x| \leq 2^{-k} \) and sufficiently small \(\delta \), we have
\[\|U(t)f\|_{L^2_rL^\infty_t} \sim 2^{-k(s+\frac{1}{r})}. \] (4.2)

We choose \(t \leq \frac{\delta}{100} 2^{-2k} \), where \(\delta \) will be chosen later. For \(|x| \leq 2^{-k} \) and sufficiently small \(\delta \), we have
\[\|U(t)f\|_{L^2_rL^\infty_t} \leq C \|f\|_{\dot{H}^{s,r}(\mathbb{R})} \] and (4.1)-(4.2), we have
\[2^{-k(s+\frac{1}{r})} \leq C. \] (4.3)

We know that for sufficiently large \(k \), when \(s < \frac{1}{2r} \), (4.3) is invalid.

This completes the proof of Theorem 1.2.

Acknowledgments

This work are supported by the Young core Teachers program of Henan province under grant number 5201019430009 and the education department of Henan Province under grant number 21A110014.

References
References

[1] J. Bourgain, Some new estimates on oscillatory integrals, In: Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton, NJ 1991. Princeton Mathematical Series, vol. 42, pp. 83.112. Princeton University Press, New Jersey (1995).

[2] J. Bourgain, On the Schrödinger maximal function in higher dimensions, Proc. Steklov Inst. Math. 280(2013), 46-60.

[3] J. Bourgain, A note on the Schrödinger maximal function, J. Anal. Math. 130(2016), 393-396.

[4] T. Cazenave, L. Vega, M. C. Vilela, A note on the nonlinear Schrödinger equation in weak L^p spaces, Commun. Contemp. Math. 3(2001), 153-162.

[5] L. Carleson, Some analytical problems related to statistical mechanics. Euclidean Harmonic Analysisi. Lecture Notes in Mathematics, vol. 779, pp. 5.45, Springer, Berlin, (1979).

[6] C. Cho, S. Lee and A. Vargas, Problems on pointwise convergence of solutions to the Schrödinger equation, J. Fourier Anal. Appl. 18(2012), 972-994.

[7] M. Cowling, Pointwise behavior of solutions to Schrödinger equations. In: Harmonic Analysis (Cortona, 1982). Lecture Notes in Mathematics, vol. 992, pp. 83.90. Springer, Berlin, (1983).

[8] B. E. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Proceedings of Italo-American Symposium in Harmonic Analysis, University of Minnesota. Lecture Notes in Mathematics, vol. 908, pp. 205.208. Springer, Berlin, (1982).

[9] C. Demeter and S. Guo, Schrödinger maximal function estimates via the pseudo-conformal transformation, arXiv: 1608.07640.

[10] X. Du, A sharp Schrödinger maximal estimate in \mathbb{R}^2, Dissertation, 2017.

[11] X. Du, L. Guth and X. Li, A sharp Schrödinger maximal estimate in \mathbb{R}^2, Ann. Math. 188(2017), 607-640.

[12] X. Du and R. Zhang, Sharp L^2 estimates of the Schrödinger maximal function in higher dimensions, Ann. Math. 189(2019), 837-861.

[13] X. Du, L. Guth, X. Li and R. Zhang, Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates, Forum Math.Sigma 6(2018).
[14] C. Fefferman, Inequalities for strongly singular convolution operators, *Acta Math.* 124(1970), 9-36.

[15] G. Gigante and F. Soria, On the the boundedness in $H^{1/4}$ of the maximal square function associated with the Schrödinger equation, *J. Lond. Math. Soc.* 77(2008), 51-68.

[16] A. Grünrock, An improved local well-posedness result for the modified KdV equation, *Int. Math. Res. Not.* 61(2004), 3287-3308.

[17] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, *India. Univ. Math. J.* 40(1991), 33-69.

[18] S. Lee, On pointwise convergence of the solutions to Schrödinger equation in \mathbb{R}^2, *Int. Math. Res. Not.* (2006), 32597.

[19] R. Luca and M. Rogers, An improved neccessary condition for Schrödinger maximal estimate, arXiv:1506.05325.

[20] R. Luca and M. Rogers, Coherence on fractals versus pointwise convergence for the Schrödinger equation, *Commun. Math. Phys.* 351(2017), 341-359.

[21] A. Moyua, A. Vargas and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, *IMRN* 1996(1996), 793-815.

[22] S. Shao, On localization of the Schrödinger maximal operator, arXiv: 1006.2787v1.

[23] P. Sjölin, Regularity of solutions to the Schrödinger equation, *Duke Math. J.* 55(1987), 699-715.

[24] T. Tao, A sharp bilinear restriction estimate for paraboloids, *Geom. Funct. Anal.* 13(2003), 1359-1384.

[25] T. Tao and A. Vargas, A bilinear approach to cone multipliers, II. *Appl. Geom. Funct. Anal.* 10(2003), 216-258.

[26] L. Vega, Schrödinger equations: pointwise convergence to the initial data, *Proc. Am. Math. Soc.* 102(1988), 874-878.

[27] C. Zhang, Pointwise convergence of solutions to Schrödinger type equations, *Nonli. Anal. TMA* 109(2014), 180-186.