ASYMPTOTICS OF CERTAIN \(q \)-SERIES

RUIMING ZHANG

Abstract. In this work we study complete asymptotic expansions for the \(q \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^a} q^n \) and \(\sum_{n=1}^{\infty} \frac{\sigma_\alpha(n)}{n^b} q^n \) in the scale function \((\log q)^n \) as \(q \to 1^- \), where \(a > 0 \), \(q \in (0, 1) \), \(b, \alpha \in \mathbb{C} \) and \(\sigma_\alpha(n) \) is the divisor function \(\sigma_\alpha(n) = \sum_{d|n} d^\alpha \).

1. Preliminaries

In this work we study complete asymptotic expansions for the \(q \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^a} q^n \) and \(\sum_{n=1}^{\infty} \frac{\sigma_\alpha(n)}{n^b} q^n \) in the scale function \((\log q)^n \) as \(q \to 1^- \), where \(a > 0 \), \(q \in (0, 1) \), \(b, \alpha \in \mathbb{C} \) and \(\sigma_\alpha(n) \) is the divisor function \(\sigma_\alpha(n) = \sum_{d|n} d^\alpha \). Unlike methods used \[3, 4\], our method does not apply Fourier transform or the modular properties, it cannot give \(\sum_{n=1}^{\infty} \frac{1}{n^a} q^n \) a complete asymptotic expansion in exponential scales when \(a = 2 \) and \(b \) is an even integer. However, this shortcoming can be overcome by applying the functional equations for the corresponding zeta functions which are equivalent to the symmetry \(x \to 1/x \).

The Euler gamma function is defined by

\[
\Gamma(z) = \int_0^\infty e^{-x}x^{z-1}dx, \quad \Re(z) > 0,
\]

and its analytic continuation is given by

\[
\Gamma(z) = \int_1^\infty e^{-x}x^{z-1}dx + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^z(n+z)}, \quad z \in \mathbb{C}\setminus\mathbb{N}_0.
\]

Let \(a, b \in \mathbb{R} \) and \(a < b \), it is known that \(3, 5, 6\)

\[
\Gamma(\sigma + it) = O \left(e^{-\pi|t|/2} |t|^{|\sigma|-1/2} \right), \quad t \in \mathbb{R}
\]
as \(t \to \pm \infty \), uniformly with respect to \(\sigma \in [a, b] \). The digamma function is defined by

\[
\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}, \quad z \in \mathbb{C}
\]

and the Euler’s constant is

\[
\gamma = -\psi(1) \approx 0.577216.
\]

2000 Mathematics Subject Classification. 33D05; 33C45.

Key words and phrases. \(q \)-series; divisor functions; asymptotics.

The work is supported by the National Natural Science Foundation of China grants No. 11371294 and No. 11771355.
The Riemann zeta function $\zeta(s)$ is defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \Re(s) > 1,$$

then its analytic continuation, which is also denoted as $\zeta(s)$, is an meromorphic function that has a simple pole at 1 with residue 1. The meromorphic function $\zeta(s)$ satisfies the functional equation [1, 2, 5, 6]

$$\zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \sin \left(\frac{\pi s}{2} \right) \zeta(1-s).$$

For $\alpha, \beta \in \mathbb{R}$ and $\alpha \leq \sigma \leq \beta$, it is known that [6]

$$\zeta(\sigma + it) = O \left(|t|^{|\alpha|+1/2} \right)$$

as $t \to \pm \infty$, uniformly with respect to σ. The Stieltjes constants γ_n are the coefficients in the Laurent expansion,

$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n (s-1)^n,$$

where $\gamma_0 = \gamma$ and $\gamma_1 \approx -0.0728158$. Moreover, the Glaisher’s constant $A \approx 1.28243$ is defined as

$$\log A = \frac{1}{12} - \zeta'(-1).$$

The Bernoulli numbers B_n are defined by

$$\frac{z}{e^z-1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} z^n, \quad |z| < 2\pi.$$

Then

$$B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_{2n-1} = 0, \quad n \in \mathbb{N}.$$

By (1.7) we get

$$\zeta(-2n) = 0, \quad \zeta(1-2n) = -\frac{B_{2n}}{2n}, \quad n \in \mathbb{N}.$$

The function $\sigma_{\alpha}(n)$ for $\alpha \in \mathbb{C}$ is defined as the sum of the α-th powers of the positive divisors of n, [2, 5]

$$\sigma_{\alpha}(n) = \sum_{d|n} d^\alpha,$$

where $d|n$ stands for "d divides n". We also use the notations $d(n) = \sigma_0$ and $\sigma(n) = \sigma_1(n)$. It is known that [2, 5]

$$\sum_{n=1}^{\infty} \frac{\sigma_{\alpha}(n)}{n^s} = \zeta(s) \zeta(s-\alpha), \quad \Re(s) > \max \{ 1, \Re(\alpha) + 1 \}$$

and

$$\sum_{n=1}^{\infty} \frac{d(n)}{n^s} = \zeta^2(s) \quad \Re(s) > 1.$$
2. Main Results

Theorem 1. Given a positive integer k, let $a_j \in \mathbb{N}$, $b_j \in \mathbb{C}$ for all j satisfying $1 \leq j \leq k$.

If

$$\prod_{j=1}^{k} \zeta(a_j s + b_j) = \sum_{n=1}^{\infty} \frac{f_k(n)}{n^s}, \quad \Re(s) > \max_{1 \leq j \leq k} \left\{ \frac{1 - \Re(b_j)}{a_j} \right\},$$

where $\zeta(s)$ is the Riemann zeta function, then for all $x, a > 0$, $b \in \mathbb{C}$ and $c > 0$ satisfying $c > \max_{1 \leq j \leq k} \left\{ \frac{1 - \Re(b_j + b_a a_j)}{aa_j} \right\}$ we have

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \prod_{j=1}^{k} \zeta(a_j s + b_j + b) \frac{ds}{x^s} = \sum_{n=1}^{\infty} \frac{f_k(n)}{n^b} e^{-n^s x}.$$

Furthermore,

$$\sum_{n=1}^{\infty} \frac{f_k(n)}{n^b} e^{-n^s x} = \sum_j \text{Residue} \left\{ g(s), s = \frac{1 - b - b_j}{aa_j} \right\} + \sum_n \text{Residue} \left\{ g(s), s = -n \right\}$$

as $x \to 0^+$, where the first sum is over all the distinct pairs $a_j b_j, j = 1, \ldots, k$ while the last sum is over all nonnegative integers n such that

$$-n \neq \frac{1 - b - b_j}{aa_j}, \quad j = 1, \ldots, k.$$

Proof. For $\Re(s) > \max_{1 \leq j \leq k} \left\{ \frac{1 - \Re(b_j + b_a a_j)}{aa_j} \right\}$, since each factor of $\prod_{j=1}^{k} \zeta(a_j s + b_j + b)$ is an absolute convergent Dirichlet series, then the product itself is also an absolute convergent Dirichlet series. Let s_0 be any complex number satisfying

$$\sigma_0 = \Re(s_0) > \max_{1 \leq j \leq k} \left\{ \frac{1 - \Re(b_j + b_a a_j)}{aa_j} \right\},$$

then by the theory of Dirichlet series we know the partial sums \(\sum_{n \leq x} \frac{f_k(n)}{n^a s_0 + \Re(b)} \) are absolutely and uniformly bounded for all $x > 1$. Let N be a large positive integer and

$$M = \sum_{n=1}^{\infty} \frac{|f_k(n)|}{n^a s_0 + \Re(b)}$$

in Lemma 2 of section 11.6 in [2] to get $|f_k(N)| \leq 4MN^\sigma_0$. Hence,

$$\sum_{n=1}^{\infty} \frac{|f_k(N)|}{n^a s_0 + \Re(b)} e^{-n^a x} < \infty, \quad a, x > 0, \; b \in \mathbb{C}.$$

By the inverse Mellin transform of $\Gamma(s)$ we get

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \frac{ds}{x^s} = e^{-x}$$

for all $x, c > 0$.

Let

$$g(s) = \Gamma(s) \prod_{j=1}^{k} \zeta(a_j s + b_j + b) x^{-s},$$
then for any positive \(c \) satisfying \(c > \max_{1 \leq j \leq k} \left\{ \frac{1 - \Re(b_j + b)}{a_{a_j}} \right\} \), by (2.6) we get

\[
\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} g(s) ds = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(s)}{x^s} \left(\sum_{n=1}^{\infty} \frac{f_k(n)}{n^{s+1}} \right) \frac{ds}{x^s} \\
= \sum_{n=1}^{\infty} \frac{f_k(n)}{n^b} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \frac{ds}{(n^a x)^s} = \sum_{n=1}^{\infty} \frac{f_k(n)}{n^b} e^{-n^a x},
\]

where we have applied (2.5) and the Fubini’s theorem to exchange the order of summation and integration.

Since \(\zeta(s) \) has a simple pole at \(s = 1 \) and \(\Gamma(s) \) has simple poles at all non-positive integers, then all the possible poles of the meromorphic function \(g(s) \) are

\[
s = 1 - \frac{b - b_j}{a_{a_j}}, \quad j = 1, \ldots, k
\]

and all non-positive integers. Let \(N \in \mathbb{N} \) and \(M \in \mathbb{R} \) such that

\[
N > \max_{1 \leq j \leq k} \left\{ \frac{1 + |b + b_j|}{a_{a_j}} \right\} + 1, \quad M > \max_{1 \leq j \leq k} \left\{ \frac{1 + |b + b_j|}{a_{a_j}} \right\},
\]

we integrate \(g(s) \) over the rectangular contour \(\mathcal{R}(M, N) \) with vertices,

\[
c - iM, \quad c + iM, \quad -N - \frac{1}{2} + iM, \quad -N - \frac{1}{2} - iM.
\]

Then by Cauchy’s theorem we have

\[
\int_{\mathcal{R}(M, N)} g(s) ds = \sum_j \text{Residue} \left\{ g(s), s = \frac{1 - b - b_j}{a_{a_j}} \right\} + \sum_n \text{Residue} \left\{ g(s), s = -n \right\},
\]

where the first sum is over all the distinct pairs from \(a_{a_j}, b_j, j = 1, \ldots, k \) whereas the last sum is over all \(n \) satisfying \(0 \leq n \leq N \) and (2.4).

On the other hand, we also have

\[
\int_{\mathcal{R}(M, N)} g(s) ds = \left\{ \int_{c-iM}^{c+iM} - \int_{-2N+1-iM}^{-2N+1+iM} \right\} g(s) ds + \left\{ \int_{-2N+1+iM}^{-2N+1-iM} - \int_{c-iM}^{c+iM} \right\} g(s) ds
\]

Fix \(N \) and \(x \), by (1.3) and (1.8), since the integrands of the last two integrals have the estimate

\[
g(s) = O \left(e^{-\epsilon/2} e^{M} \right), \quad M \to \infty,
\]

where \(\epsilon \) is an arbitrary positive number such that \(0 < \epsilon < \frac{\pi}{2} \), then the last two integrals have limit 0 as \(M \to \infty \). Then by taking limit \(M \to \infty \) in (2.9) and (2.8) we get

\[
\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} g(s) ds = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(s)}{x^s} \left(\sum_{n=1}^{\infty} \frac{f_k(n)}{n^{s+1}} \right) \frac{ds}{x^s} \\
+ \sum_j \text{Residue} \left\{ g(s), s = \frac{1 - b - b_j}{a_{a_j}} \right\} + \sum_n \text{Residue} \left\{ g(s), s = -n \right\},
\]

where the summations are the same as in (2.8).
Proof. When as \(x \to 0 \) then again by (1.3) and (1.8) we get

\[
\frac{1}{2\pi i} \int_{-\frac{2N+1}{2} - i\infty}^{\frac{2N+1}{2} + i\infty} g(s) ds = o\left(x^N\right)
\]

as \(x \to 0 \). Then by (2.10) and (2.11) we get

\[
\frac{1}{2\pi i} \int_{e^{2\pi i} - \frac{2N+1}{2} - i\infty}^{e^{2\pi i} + \frac{2N+1}{2} + i\infty} g(s) ds = \sum_j \text{Residue} \left\{ g(s), s = \frac{1 - b - b_j}{a a_j} \right\} + \sum_n \text{Residue} \left\{ g(s), s = -n \right\}
\]

as \(x \to 0 \), where the first sum is over all the distinct pairs from \(a_j b_j, j = 1, \ldots, k \) while the last sum is over all nonnegative integers \(n \) satisfying (2.4). Finally, (2.2) is obtained by combining (2.7) and (2.12).

Corollary 2. Let \(a, x > 0, b \in \mathbb{C} \). If \(b \neq 1 + an, \ n \in \mathbb{N} \cup \{0\} \), then

\[
\sum_{n=1}^{\infty} \frac{e^{-n^a x}}{n^b} = \frac{x^{b-1}}{a} \Gamma\left(\frac{1 - b}{a}\right) + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(b - an)
\]

as \(x \to 0 \).

If there exists a \(n_0 \in \mathbb{N} \cup \{0\} \) such that \(b = 1 + an_0 \), then

\[
\sum_{n=1}^{\infty} \frac{e^{-n^a x}}{n^b} = \frac{(-x)^n}{an_0!} \left(\gamma a + \psi(n_0 + 1) - \log(x)\right) + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(b - an)
\]

as \(x \to 0 \).

Proof. When \(b \neq 1 + an, \ n \in \mathbb{N} \cup \{0\} \), the integrand \(\frac{\Gamma(s) \zeta(as + b)}{x^s} \) is meromorphic and has the following simple poles

\[
s = \frac{1 - b}{a}, 0, -1, -2, \ldots
\]

with residues

\[
\text{Residue} \left\{ \Gamma(s) \zeta(as + b), s = \frac{1 - b}{a} \right\} = \frac{x^{(b-1)/a}}{a} \Gamma\left(\frac{1 - b}{a}\right)
\]

\[
\text{Residue} \left\{ \Gamma(s) \zeta(as + b), s = -n \right\} = \frac{(-x)^n}{n!} \zeta(b - an).
\]

Then (2.13) is obtained by applying Theorem 1

When \(b = 1 + an_0 \) for some nonnegative integer \(n_0 \), then

\[
\frac{\Gamma(s) \zeta(as + b)}{x^s} = \frac{\Gamma(s) \zeta(a(s + n_0) + 1)}{x^s}
\]

has a double pole at \(-n_0\) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s) \zeta(as + b)}{x^s}, s = -n_0 \right\} = \frac{(-1)^{n_0} x^{n_0} (\gamma a + \psi(n_0 + 1) - \log(x))}{an_0!},
\]
all the other nonpositive integers are simple poles with residues,

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)}{x^s} \right\}, s = -n \neq -n_0 = \frac{(-x)^n}{n!} \zeta(b - an).
\]

Then by Theorem 1 we have

\[
\sum_{n=1}^{\infty} e^{-n^a x} = \frac{(-x)^{n_0}(\gamma a + \psi(n_0 + 1) - \log(x))}{an_0!} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(b - an)
\]

\[
\text{as } x \to 0.
\]

\[\square\]

Example 3. When \(a = 2, b = 0\) we have

\[\sum_{n=1}^{\infty} e^{-n^2 x} = \frac{1}{2\sqrt{\pi x}} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(-2n) = \frac{1}{2\sqrt{\pi x}}\]

as \(x \to 0\), which means the error term is better than any \(x^n\). When \(a = 2, b = 1\),

\[
\sum_{n=1}^{\infty} e^{-n^2 x} = \frac{\gamma - \log(x)}{2} - \sum_{n=1}^{\infty} \frac{B_{2n} (-x)^n}{n!(2n)},
\]

as \(x \to 0\). When \(a = 2, b = -1\), then \(2n + 1 = -1\) has no nonnegative integer solutions. Thus,

\[
\sum_{n=1}^{\infty} ne^{-n^2 x} = \frac{1}{2x} + \frac{1}{2x} \sum_{n=1}^{\infty} \frac{B_{2n} (-x)^n}{n!},
\]

or

\[
\sum_{n=-\infty}^{\infty} |n|e^{-n^2 x} = \frac{1}{x} + \frac{1}{x} \sum_{n=1}^{\infty} \frac{B_{2n} (-x)^n}{n!}
\]

as \(x \to 0\).

Corollary 4. For all \(x, a > 0, b \in \mathbb{C}\) and \(c > \frac{1-\Re(b)}{a}\) we have

\[\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s)\zeta^2(as + b) \frac{ds}{x^s} = \sum_{n=1}^{\infty} \frac{d(n)}{n^b} e^{-n^a x}.
\]

Furthermore, if \(an \neq b - 1\) for all nonnegative integers \(n\), then

\[\sum_{n=1}^{\infty} \frac{d(n)}{n^b} e^{-n^a x} = \frac{x^{b-1} \Gamma \left(\frac{1-b}{a} \right) \left(\psi \left(\frac{1-b}{a} \right) + 2\gamma a - \log(x) \right)}{a^2} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta^2(b - an)
\]

as \(x \to 0^+\).
If \(am = b - 1 \) for certain nonnegative \(m \), then

\[
\sum_{n=1}^{\infty} \frac{d(n)}{n^b} e^{-n^ax} = \frac{(-x)^m}{a^2m!} \left\{ (a\gamma)^2 - 2a^2\gamma_1 + (2a\gamma - \log x) \psi(m + 1) - 2a\gamma \log x + \frac{\psi^2(m + 1) - \psi^{(1)}(m + 1) + \log^2(x)}{2} + \frac{\pi^2}{6} \right\} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta^2(b - an),
\]

as \(x \to 0^+ \).

Proof. When \(an \neq b - 1 \) for all nonnegative integers \(n \), then the meromorphic function \(\Gamma(s)\zeta^2(as + b)x^{-s} \) has a double pole at \(s = (1 - b)/a \) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta^2(as + b)}{x^s}, s = 1 - \frac{b}{a} \right\} = \frac{x^{\frac{b-1}{a}}\Gamma(\frac{1-b}{a}) (\psi(\frac{1-b}{a}) + 2\gamma a - \log(x))}{a^2}
\]

and simple poles at all nonpositive integers \(n \in \mathbb{N}_0 \) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta^2(as + b)}{x^s}, s = -n \right\} = \frac{(-x)^n}{n!} \zeta^2(b - an).
\]

Then by Theorem [1] we get

\[
\sum_{n=1}^{\infty} \frac{d(n)}{n^b} e^{-n^ax} = \frac{x^{\frac{b-1}{a}}\Gamma(\frac{1-b}{a}) (\psi(\frac{1-b}{a}) + 2\gamma a - \log(x))}{a^2} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta^2(b - an)
\]

as \(x \to 0^+ \).

When \(\alpha = 0, \ am = b - 1 \) for certain nonnegative integer \(m \), then the meromorphic function \(\Gamma(s)\zeta^2(as + b)x^{-s} \) has a triple pole at \(s = -m \) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta^2(as + b)}{x^s}, s = -m \right\} = \frac{(-x)^m}{a^2m!} \left\{ (a\gamma)^2 - 2a^2\gamma_1 + (2a\gamma - \log x) \psi(m + 1) - 2a\gamma \log x + \frac{\psi^2(m + 1) - \psi^{(1)}(m + 1) + \log^2(x)}{2} + \frac{\pi^2}{6} \right\}.
\]

It has simple poles at all other nonpositive integers with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta^2(as + b)}{x^s}, s = -n \right\} = \frac{(-x)^n}{n!} \zeta^2(b - an).
\]

Then by Theorem [1] we get

\[
\sum_{n=1}^{\infty} \frac{d(n)}{n^b} e^{-n^ax} = \frac{x^{\frac{b-1}{a}}\Gamma(\frac{1-b}{a}) (\psi(\frac{1-b}{a}) + 2\gamma a - \log(x))}{a^2} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta^2(b - an)
\]

as \(x \to 0^+ \).
Example 5. Let \(a = 2, \ b = 2 \), then by (2.20) to get
\[
\sum_{n=1}^{\infty} \frac{d(n)}{n^2} e^{-n^2 \pi^2} = \frac{\sqrt{\pi x} \left(\log x - \psi\left(\frac{1}{2}\right) - 4\gamma_1 \right)}{2} + \frac{\pi^4}{36}
\]
as \(x \to 0^+ \), the remainder here is better than any \(x^n \).

Let \(n, \alpha, \beta \) be nonnegative integers, then by (2.21) to get
\[
\sum_{n=1}^{\infty} \frac{d(n)}{n} e^{-n^2 \pi^2} = \frac{6 \log^2 x - 45 \log x + 6 \gamma^2 + \pi^2 - 24 \gamma_1}{12} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{B_{2n}(-x)^n}{n(n+1)!}
\]
as \(x \to 0^+ \).

Corollary 6. Let \(\alpha \in \mathbb{C} \) and \(\alpha \neq 0 \), then for all \(x, a > 0, b \in \mathbb{C} \) and \(c > \max_{1 < k \leq b} \left(1 - R(b, 1 - R(b, -\alpha)) \right) \)
we have
\[
\frac{1}{2\pi i} \int_{c+\infty}^{c-i\infty} \Gamma(s) \zeta(as + b) \zeta(as + b - \alpha) \frac{ds}{x^s} = \sum_{n=1}^{\infty} \frac{\sigma_a(n)}{n^b} e^{-n^a x}.
\]
Furthermore, if \(an \neq b - 1 \) and \(an \neq b - 1 - \alpha \) for all nonnegative integers \(n \in \mathbb{N}_0 \), then
\[
\sum_{n=1}^{\infty} \frac{\sigma_a(n)}{n^b} e^{-n^a x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(b - an) \zeta(b - an - \alpha) + \frac{x^{(b-1)/a}}{\alpha} \Gamma\left(1 - \frac{b}{a}\right) \zeta(1 - \alpha) + \frac{x^{(b-1-a)/a}}{\alpha} \Gamma\left(1 - \frac{b + \alpha}{a}\right) \zeta(1 + \alpha)
\]
as \(x \to 0^+ \).

If \(am = b - 1 \) for certain nonnegative integer \(m \) and \(an \neq b - 1 - \alpha \) for all nonnegative integers \(n \in \mathbb{N}_0 \), then
\[
\sum_{n=1}^{\infty} \frac{\sigma_a(n)}{n^b} e^{-n^a x} = \frac{(-x)^m (a\zeta'(1 - \alpha) + \zeta(1 - \alpha) (\gamma a + \psi(m + 1) - \log(x)))}{am!} + \frac{x^{m-a/a}}{\alpha} \Gamma\left(\frac{\alpha - ma}{a}\right) \zeta(1 + \alpha) + \sum_{n = 0}^{\infty} \frac{(-x)^n}{n!} \zeta(1 - a(n - m)) \zeta(1 - \alpha - a(n - m))
\]
as \(x \to 0^+ \).

If \(an \neq b - 1 \) for all nonnegative integers \(n \in \mathbb{N}_0 \) and \(am = b - 1 - \alpha \) for certain \(m \in \mathbb{N}_0 \), then
\[
\sum_{n=1}^{\infty} \frac{\sigma_a(n)}{n^b} e^{-n^a x} = \frac{(-x)^m (a\zeta'(1 + \alpha) + \zeta(1 + \alpha) (\gamma a + \psi(m + 1) - \log(x)))}{am!} + \sum_{n = 0}^{\infty} \frac{(-x)^n}{n!} \zeta(1 + \alpha - a(n - m)) \zeta(1 - a(n - m))
\]
as \(x \to 0^+ \).
If \(am = b - 1 \) and \(\alpha = a(m - \ell) \) for certain nonnegative integers \(m, \ell \in \mathbb{N}_0 \) with \(m \neq \ell \), then

\[
\sum_{n=1}^{\infty} \frac{\sigma_\alpha(n)}{n^b} e^{-n^a x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(1 - a(n - m)) \zeta(1 - a(n - \ell)) \\
+ \frac{(-x)^m}{am!} (a\zeta'(1 - a(m - \ell)) + \zeta(1 - a(m - \ell))(\gamma a + \psi(m + 1) - \log(x))) \\
+ \frac{(-x)^\ell}{a\ell!} (a\zeta'(1 + a(m - \ell)) + \zeta(1 + a(m - \ell))(\gamma a + \psi(\ell + 1) - \log(x)))
\]

as \(x \to 0^+ \).

Proof. When \(\alpha \neq 0 \), \(an \neq b - 1 \) and \(an \neq b - 1 - \alpha \) for all nonnegative integers \(n \in \mathbb{N}_0 \), the meromorphic function \(\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)x^{-s} \) has simple poles at

\[
\frac{1 - b}{a}, \frac{1 - b + \alpha}{a}, 0, -1, -2, \ldots
\]

with residues

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = 1 - \frac{b}{a} \right\} = \frac{x^{(b-1)/a}}{a} \Gamma \left(\frac{1 - b}{a} \right) \zeta(1 - \alpha),
\]

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = 1 - \frac{b + \alpha}{a} \right\} = \frac{x^{(b-1)/a}}{a} \Gamma \left(\frac{1 - b + \alpha}{a} \right) \zeta(1 + \alpha)
\]

and

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -n \right\} = \frac{(-x)^n}{n!} \zeta(b - an) \zeta(b - an - \alpha)
\]

for \(n \in \mathbb{N}_0 \). Then by Theorem II we get

\[
\sum_{n=1}^{\infty} \frac{\sigma_\alpha(n)}{n^b} e^{-n^a x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(b - an) \zeta(b - an - \alpha) \\
+ \frac{x^{(b-1)/a}}{a} \Gamma \left(\frac{1 - b}{a} \right) \zeta(1 - \alpha) + \frac{x^{(b-1)/a}}{a} \Gamma \left(\frac{1 - b + \alpha}{a} \right) \zeta(1 + \alpha)
\]

as \(x \to 0^+ \).

When \(am = b - 1 \) for certain nonnegative integer \(m \) and \(an \neq b - 1 - \alpha \) for all nonnegative integers \(n \in \mathbb{N}_0 \), then the meromorphic function \(\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)x^{-s} \) has a double pole at \(s = -m \) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -m \right\} = \frac{(-x)^m}{am!} (a\zeta'(1 - \alpha) + \zeta(1 - \alpha)(\gamma a + \psi(m + 1) - \log(x)))
\]

and a simple pole at \(s = -m + \frac{\alpha}{a} \) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -m + \frac{\alpha}{a} \right\} = \frac{2^{m-\alpha/a}}{a} \Gamma \left(\frac{\alpha - ma}{a} \right) \zeta(1 + \alpha)
\]
and simple poles at all nonpositive integers other than \(-m\) with residues

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -n \right\} = \frac{(-x)^n}{n!} \zeta(b - an)\zeta(b - \alpha - an).
\]

Hence,

\[
\sum_{n=1}^{\infty} \frac{\sigma_a(n)}{n^b} e^{-nx} = \frac{(-x)^m (a\zeta'(1 + \alpha) + \zeta(1 + \alpha)(\gamma a + \psi(m + 1) - \log(x)))}{am!} + \frac{x^{m-a/a}}{a} \Gamma \left(\frac{\alpha - ma}{a} \right) \zeta \left(1 + \alpha \right) + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(b - an)\zeta(b - \alpha - an)
\]
as \(x \to 0^+\).

When \(am \neq b - 1\) for all nonnegative integers \(n \in \mathbb{N}_0\) and \(am = b - 1 - \alpha\) for certain \(m \in \mathbb{N}_0\), then the meromorphic function \(\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)x^{-s}\) has a double simple pole \(s = -m\) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -m \right\} = \frac{(-x)^m (a\zeta'(1 + \alpha) + \zeta(1 + \alpha)(\gamma a + \psi(m + 1) - \log(x)))}{am!}
\]

and a simple pole \(s = -m - \frac{a}{\alpha}\) with residue

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -m - \frac{\alpha}{a} \right\} = \frac{x^{m+a/a}}{a} \Gamma \left(\frac{-am + \alpha}{a} \right) \zeta \left(1 - \alpha \right)
\]

and simple poles at all nonpositive integers other than \(-m\) with residues

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -n \right\} = \frac{(-x)^n}{n!} \zeta(b - an)\zeta(b - \alpha - an).
\]

Thus,

\[
\sum_{n=1}^{\infty} \frac{\sigma_a(n)}{n^b} e^{-nx} = \frac{(-x)^m (a\zeta'(1 + \alpha) + \zeta(1 + \alpha)(\gamma a + \psi(m + 1) - \log(x)))}{am!} + \frac{x^{m+a/a}}{a} \Gamma \left(\frac{-am + \alpha}{a} \right) \zeta \left(1 - \alpha \right) + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \zeta(b - an)\zeta(b - \alpha - an)
\]
as \(x \to 0^+\).

When \(am = b - 1\) and \(\alpha = a(m - \ell)\) for certain nonnegative integers \(m, \ell \in \mathbb{N}_0\) with \(m \neq \ell\), then the meromorphic function \(\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)x^{-s}\) has two double poles at \(s = -m\) and \(s = -\ell\) with residues

\[
\text{Residue} \left\{ \frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -m \right\} = \frac{(-x)^m (a\zeta'(1 - a(m - \ell)) + \zeta(1 - a(m - \ell))(\gamma a + \psi(m + 1) - \log(x)))}{am!}
\]
and

\[
\text{Residue}\left\{\frac{\Gamma(s)\zeta(as + b)\zeta(as + b - \alpha)}{x^s}, s = -\ell\right\} = \frac{(-x)^\ell}{\ell!} \left(\alpha\zeta'(1 + a(m - \ell)) + \zeta(1 + a(m - \ell))(\gamma a + \psi(\ell + 1) - \log(x))\right)
\]

giving residues at all other nonpositive integers other than \(-m, -\ell\) with residues

\[
-\frac{(-x)\zeta(1 - a(n - m))\zeta(1 - a(n - \ell))}{n!}.
\]

Then,

\[
\sum_{n=1}^\infty \frac{\sigma_n(n)}{n^b} e^{-nx} = \sum_{n=0}^\infty \frac{(-x)^n}{n!}\zeta(1 - a(n - m))\zeta(1 - a(n - \ell)) + \frac{(-x)^m}{m!} \frac{\alpha\zeta'(1 - a(m - \ell)) + \zeta(1 - a(m - \ell))(\gamma a + \psi(m + 1) - \log(x))}{a\ell!} + \frac{(-x)^\ell}{\ell!} \left(\alpha\zeta'(1 + a(m - \ell)) + \zeta(1 + a(m - \ell))(\gamma a + \psi(\ell + 1) - \log(x))\right)
\]

as \(x \to 0^+\).

Example 7. When \(a = 2, \alpha = 1, b = \frac{1}{2}\), by (2.28) we get

(2.29)

\[
\sum_{n=1}^\infty \frac{\sigma(n)}{n^{b/2}} e^{-n^{1/2}x} = \frac{\pi^2}{9} \frac{\Gamma\left(\frac{7}{4}\right)}{\Gamma\left(\frac{5}{4}\right)} x^{-\frac{1}{4}} + \sum_{n=0}^\infty \frac{(-x)^n}{n!} \zeta\left(\frac{1 - 4n}{2}\right) \zeta\left(\frac{-1 - 4n}{2}\right)
\]

as \(x \to 0^+\). When \(a = 2, \alpha = 1, b = 1\), then \(m = 0\) in (2.26). Then

\[
\sum_{n=1}^\infty \frac{\sigma(n)}{n} e^{-n^2x} = \frac{\pi^{5/2}}{12\sqrt{x}} + \log x - \log 2\pi - \gamma - \frac{\gamma}{4},
\]

as \(x \to 0^+\), it implies that the difference between two sides of the above formula is smaller than any \(x^n\). Let \(a = 2, b = 1, \alpha = -2\) in (2.28), then \(m = 0, \ell = 1\). Then,

\[
\sum_{n=1}^\infty \frac{\sigma_{-2}(n)}{n} e^{-n^2x} = -\frac{\zeta(3)}{2} \log x + \frac{2\zeta'(3) + \zeta(3)\gamma}{2} - x \log x + 24\log A + \gamma + 1 + \frac{24}{n} \sum_{n=2}^\infty \frac{B_2(n-1)B_{2n} (-x)^n}{(n-1)n n!}
\]

as \(x \to 0^+\).

References

[1] G. E. Andrews, R. Askey and R. Roy, *Special Functions*, Cambridge University Press, Cambridge, 1999.

[2] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.

[3] B. C. Berndt and B. Kim, Asymptotic Expansions of Certain Partial Theta Functions, Proceedings of AMS, Volume 139, Number 11, November 2011, 3779-3788.
[4] K. Bringmann, A. Folsom and A. Milas, Asymptotic behavior of partial and false theta functions arising from Jacobi forms and regularized characters, Journal of Mathematical Physics 58, 011702 (2017); doi: 10.1063/1.4973634.

[5] Nist DLMF, http://dlmf.nist.gov/

[6] Hans Rademacher, Topics in Analytic Number Theory, Springer-Verlag, Berlin, 1973

College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.

E-mail address: ruimingzhang@yahoo.com