Renormalization of Polyakov loops in different representations and the large-N limit

Anne Mykkanen, Marco Panero and Kari Rummukainen

Department of Physics and Helsinki Institute of Physics
University of Helsinki, Finland

Bari, Italy,
September 21st, 2011
Outline

1. Introduction and motivation
2. Polyakov loop renormalization
3. Setup of the computation
4. Preliminary results
Outline

1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results
Lattice simulations of Yang-Mills theories with gauge group $SU(N)$ at finite temperature

The Lagrangian is characterized by exact center symmetry.

The Polyakov loop $L = \text{tr} \prod_{t=1}^{NT} U_4(t)$; order parameter for deconfinement.

The free energy associated with the bare Polyakov loop is divergent in the continuum: renormalization required [Dotsenko and Vergeles, 1980].
Lattice simulations of Yang-Mills theories with gauge group $SU(N)$ at finite temperature

The Lagrangian is characterized by exact center symmetry

The Polyakov loop $L = \text{tr} \prod_{t=1}^{N_T} U_4(t)$; order parameter for deconfinement

The free energy associated with the bare Polyakov loop is divergent in the continuum: renormalization required [Dotsenko and Vergeles, 1980]
Lattice simulations of Yang-Mills theories with gauge group $SU(N)$ at finite temperature

The Lagrangian is characterized by exact center symmetry

The Polyakov loop $L = \text{tr} \prod_{t=1}^{N_T} U_4(t)$; order parameter for deconfinement

The free energy associated with the bare Polyakov loop is divergent in the continuum: renormalization required [Dotsenko and Vergeles, 1980]
Preliminaries

- Lattice simulations of Yang-Mills theories with gauge group $SU(N)$ at finite temperature
- The Lagrangian is characterized by *exact* center symmetry
- The Polyakov loop $L = \text{tr} \prod_{t=1}^{N_T} U_4(t)$; order parameter for deconfinement

The free energy associated with the *bare* Polyakov loop is divergent in the continuum: renormalization required [Dotsenko and Vergeles, 1980]
Bare Polyakov loops

Bare Polyakov loops in the fundamental representation
SU(3), Wilson action

Bare Polyakov loops in the two-index symmetric representation
SU(3), Wilson action
Why large N?

- At fixed $\lambda = g^2 N$ and N_f, expansions in powers of $1/N$ give non-trivial insight onto some non-perturbative features of QCD [’t Hooft, 1974; Witten, 1979; Manohar, 1998]

- Feynmann diagrams; Planar diagram dominance
- Formal connection to closed string theory; Topological expansions of amplitude \leftrightarrow Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri and Oz, 1999]
Why large N?

- At fixed $\lambda = g^2 N$ and N_f, expansions in powers of $1/N$ give non-trivial insight onto some non-perturbative features of QCD [‘t Hooft, 1974; Witten, 1979; Manohar, 1998]

- Feynmann diagrams; Planar diagram dominance

- Formal connection to closed string theory; Topological expansions of amplitude ↔ Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri and Oz, 1999]
Why large N?

- At fixed $\lambda = g^2 N$ and N_f, expansions in powers of $1/N$ give non-trivial insight onto some non-perturbative features of QCD ['t Hooft, 1974; Witten, 1979; Manohar, 1998]

- Feynmann diagrams; Planar diagram dominance

- Formal connection to closed string theory; Topological expansions of amplitude \leftrightarrow Loop expansion in Riemann surfaces [Aharony, Gubser, Maldacena, Ooguri and Oz, 1999]
Why large \mathcal{N}?

- Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
- Analytical solutions in $D = 1 + 1$ dimensions [Gross and Witten, 1980]
- Volume reduction [Eguchi and Kawai, 1982]
- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]
- Relevant for the Yang-Mills equation of state, both in $D = 3 + 1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D = 2 + 1$ dimensions [Caselle et al., 2011]
- Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010; Noronha, 2010]
Why large N?

- Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]

- Analytical solutions in $D = 1 + 1$ dimensions [Gross and Witten, 1980]

- Volume reduction [Eguchi and Kawai, 1982]

- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]

- Relevant for the Yang-Mills equation of state, both in $D = 3 + 1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D = 2 + 1$ dimensions [Caselle et al., 2011]

- Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010; Noronha, 2010]
Why large N?

- Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
- Analytical solutions in $D = 1 + 1$ dimensions [Gross and Witten, 1980]
- Volume reduction [Eguchi and Kawai, 1982]
- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]
- Relevant for the Yang-Mills equation of state, both in $D = 3 + 1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D = 2 + 1$ dimensions [Caselle et al., 2011]
- Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010; Noronha, 2010]
Why large N?

- Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]
- Analytical solutions in $D = 1 + 1$ dimensions [Gross and Witten, 1980]
- Volume reduction [Eguchi and Kawai, 1982]
- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]
- Relevant for the Yang-Mills equation of state, both in $D = 3 + 1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D = 2 + 1$ dimensions [Caselle et al., 2011]
- Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010; Noronha, 2010]
Why large N?

- Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]

- Analytical solutions in $D = 1 + 1$ dimensions [Gross and Witten, 1980]

- Volume reduction [Eguchi and Kawai, 1982]

- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]

- Relevant for the Yang-Mills equation of state, both in $D = 3 + 1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D = 2 + 1$ dimensions [Caselle et al., 2011]

- Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010; Noronha, 2010]
Why large N?

- Gauge/string correspondence conjecture; technically crucial for computations [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998; Witten, 1998] used to study the strongly interacting plasma [Gubser and Karch, 2009]

- Analytical solutions in $D = 1 + 1$ dimensions [Gross and Witten, 1980]

- Volume reduction [Eguchi and Kawai, 1982]

- Implications for the phase diagram structure at large densities [McLerran and Pisarski, 2007]

- Relevant for the Yang-Mills equation of state, both in $D = 3 + 1$ [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005; Panero, 2009; Datta and Gupta, 2010] and in $D = 2 + 1$ dimensions [Caselle et al., 2011]

- Does this hold for other thermal quantities, too? How about the renormalized Polyakov loop? [Burnier, Laine and Vepsäläinen, 2009; Brambilla et al., 2010; Noronha, 2010]
Why higher representations?

- Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]
- Equivalence of different irreducible representations in the large-N limit
- Effective (matrix) models for the deconfinement region? [Pisarski, 2002]
- Also interesting for ETC models: dynamical fermions in different representations, see [Rummukainen, 2011; Del Debbio, 2010] for recent reviews
Why higher representations?

- Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]
- Equivalence of different irreducible representations in the large-N limit
- Effective (matrix) models for the deconfinement region? [Pisarski, 2002]
- Also interesting for ETC models: dynamical fermions in different representations, see [Rummukainen, 2011; Del Debbio, 2010] for recent reviews
Why higher representations?

- Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]
- Equivalence of different irreducible representations in the large-N limit
- Effective (matrix) models for the deconfinement region? [Pisarski, 2002]
- Also interesting for ETC models: dynamical fermions in different representations, see [Rummukainen, 2011; Del Debbio, 2010] for recent reviews
Why higher representations?

- Tests of Casimir scaling [Döring et al., 2007; Hübner and Pica, 2007; Del Debbio, Panagopoulos and Vicari, 2003]
- Equivalence of different irreducible representations in the large-N limit
- Effective (matrix) models for the deconfinement region? [Pisarski, 2002]
- Also interesting for ETC models: *dynamical* fermions in different representations, see [Rummukainen, 2011; Del Debbio, 2010] for recent reviews
Outline

1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results
Using the $Q\bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$L_{\text{ren}} = Z^{N_t} L_{\text{bare}}, \quad Z = \exp(V_0 a/2)$$

At fixed temperature T, remove the N_t-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]:

$$F^{\text{bare}} = N_t F^{\text{div}} + F^{\text{ren}} + N_t^{-1} F^{\text{lat}} + \ldots$$

(However, note that g_0 is not fixed . . .)

Iterative determination of the renormalization term, from simulations at two different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]

Fixed scale renormalization [Gavai, 2010]
Polyakov loop renormalization methods

1. Using the $Q\bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$L_{\text{ren}} = Z^{N_t} L_{\text{bare}}, \quad Z = \exp(V_0 a/2)$$

2. At fixed temperature T, remove the N_t-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]:

$$F_{\text{bare}} = N_t F_{\text{div}} + F_{\text{ren}} + N_t^{-1} F_{\text{lat}} + \ldots$$

(However, note that g_0 is not fixed . . .)

3. Iterative determination of the renormalization term, from simulations at two different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]

4. Fixed scale renormalization [Gavai, 2010]
Polyakov loop renormalization methods

1. Using the $Q\bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$L_{\text{ren}} = Z^{N_t} L_{\text{bare}}, \quad Z = \exp(V_0 a/2)$$

2. At fixed temperature T, remove the N_t-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]:

$$F_{\text{bare}} = N_t F_{\text{div}} + F_{\text{ren}} + N_t^{-1} F_{\text{lat}} + \ldots$$

(however, note that g_0 is not fixed . . .)

3. Iterative determination of the renormalization term, from simulations at two different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]

4. Fixed scale renormalization [Gavai, 2010]
Using the $Q \bar{Q}$ potential at zero temperature [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

$$L_{ren} = Z^{N_t} L_{bare}, \quad Z = \exp(V_0 a/2)$$

At fixed temperature T, remove the N_t-dependent contributions to the bare Polyakov loop free energy [Dumitru et al., 2003]:

$$F^{bare} = N_t F^{div} + F^{ren} + N_t^{-1} F^{lat} + \ldots$$

(however, note that g_0 is not fixed . . .)

Iterative determination of the renormalization term, from simulations at two different bare couplings [Gupta, Hübner and Kaczmarek, 2008; Creutz, 1981]

Fixed scale renormalization [Gavai, 2010]
Outline

1. Introduction and motivation
2. Polyakov loop renormalization
3. Setup of the computation
4. Preliminary results
Simulations with the Wilson action [Wilson, 1974]:

\[S = \frac{2N}{g_0^2} \sum_x \sum_{\mu<\nu} \left\{ 1 - \frac{1}{N} \text{Re} \ tr U^{1,1}_{\mu,\nu}(x) \right\} \]

... and with the tree-level improved action [Curci, Menotti and Paffuti, 1983; Lüscher and Weisz, 1985]:

\[S = \frac{2N}{g_0^2} \sum_x \sum_{\mu<\nu} \left\{ 1 - \frac{1}{N} \text{Re} \ tr \left[\frac{5}{3} U^{1,1}_{\mu,\nu}(x) - \frac{1}{12} U^{1,2}_{\mu,\nu}(x) - \frac{1}{12} U^{1,2}_{\nu,\mu}(x) \right] \right\} \]

Simulation algorithm based on a (standard) 1 + 3 combination of heat-bath [Creutz, 1980; Kennedy and Pendleton, 1985] and overrelaxation [Adler, 1981; Brown and Woch, 1987] updates on SU(2) subgroups [Cabibbo and Marinari, 1982]
Simulations with the Wilson action \[\text{[Wilson, 1974]}\]:

\[
S = \frac{2N}{g_0^2} \sum_x \sum_{\mu < \nu} \left\{ 1 - \frac{1}{N} \text{Re} \text{ tr} U_{\mu,\nu}^{1,1}(x) \right\}
\]

... and with the tree-level improved action \(\text{[Curci, Menotti and Paffuti, 1983; Lüscher and Weisz, 1985]}\):

\[
S = \frac{2N}{g_0^2} \sum_x \sum_{\mu < \nu} \left\{ 1 - \frac{1}{N} \text{Re} \text{ tr} \left[\frac{5}{3} U_{\mu,\nu}^{1,1}(x) - \frac{1}{12} U_{\mu,\nu}^{1,2}(x) - \frac{1}{12} U_{\nu,\mu}^{1,2}(x) \right] \right\}
\]

Simulation algorithm based on a (standard) 1 + 3 combination of heat-bath \(\text{[Creutz, 1980; Kennedy and Pendleton, 1985]}\) and overrelaxation \(\text{[Adler, 1981; Brown and Woch, 1987]}\) updates on SU(2) subgroups \(\text{[Cabibbo and Marinari, 1982]}\)
Simulations with the Wilson action [Wilson, 1974]:

\[S = \frac{2N}{g_0^2} \sum_x \sum_{\mu<\nu} \left\{ 1 - \frac{1}{N} \text{Re} \, \text{tr} U_{\mu,\nu}^{1,1}(x) \right\} \]

... and with the tree-level improved action [Curci, Menotti and Paffuti, 1983; Lüscher and Weisz, 1985]:

\[S = \frac{2N}{g_0^2} \sum_x \sum_{\mu<\nu} \left\{ 1 - \frac{1}{N} \text{Re} \, \text{tr} \left[\frac{5}{3} U_{\mu,\nu}^{1,1}(x) - \frac{1}{12} U_{\mu,\nu}^{1,2}(x) - \frac{1}{12} U_{\nu,\mu}^{1,2}(x) \right] \right\} \]

Simulation algorithm based on a (standard) 1 + 3 combination of heat-bath [Creutz, 1980; Kennedy and Pendleton, 1985] and overrelaxation [Adler, 1981; Brown and Woch, 1987] updates on SU(2) subgroups [Cabibbo and Marinari, 1982]
Setting the scale

For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]

For the tree-level improved action: static potential at $T = 0$ from Wilson loops $W(r, L)$:

$$V(r) = \lim_{L \to \infty} \ln \frac{W(r, L - a)}{W(r, L)}, \quad W(r, L) = e^{-L \cdot V(r)} + \ldots$$

Iteratively smeared spacelike links:

$$U_{\mu}^{(i+1)}(x) = U \in SU(N) \quad \text{which maximizes} \quad \text{Re tr}(U^\dagger W)$$

with:

$$W = (1 - k)U_\mu^{(i)}(x) + \frac{k}{4} \sum U_{\text{staple}}^{(i)}$$

Fits to the Cornell potential to extract the string tension:

$$V(r) = \sigma r + V_0 + \frac{\gamma}{r}$$

Comparison with a scale setting from the determination of the critical temperature [Caselle, Panero and Piemonte, 2011]
Setting the scale

- For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]

- For the tree-level improved action: static potential at $T = 0$ from Wilson loops $W(r, L)$:

\[
V(r) = \lim_{L \to \infty} \ln \frac{W(r, L - a)}{W(r, L)}, \quad W(r, L) = e^{-L \cdot V(r)} + \ldots
\]

- Iteratively smeared spacelike links:

\[
U_{\mu}^{(i+1)}(x) = U \in SU(N) \text{ which maximizes } \Re \text{ tr}(U^\dagger W)
\]

with:

\[
W = (1 - k) U_{\mu}^{(i)}(x) + \frac{k}{4} \sum U_{\text{staple}}^{(i)}
\]

- Fits to the Cornell potential to extract the string tension:

\[
V(r) = \sigma r + V_0 + \frac{\gamma}{r}
\]

- Comparison with a scale setting from the determination of the critical temperature [Caselle, Panero and Piemonte, 2011]
Setting the scale

- For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]

- For the tree-level improved action: static potential at $T = 0$ from Wilson loops $W(r, L)$:

\[
V(r) = \lim_{L \to \infty} \ln \frac{W(r, L - a)}{W(r, L)}, \quad W(r, L) = e^{-L \cdot V(r) + \ldots}
\]

- Iteratively smeared spacelike links:

\[
U_{\mu}^{(i+1)}(x) = U \in SU(N) \quad \text{which maximizes} \quad \text{Re} \ tr(U^\dagger W)
\]

with:

\[
W = (1 - k)U_{\mu}^{(i)}(x) + \frac{k}{4} \sum U_{\text{staple}}^{(i)}
\]

- Fits to the Cornell potential to extract the string tension:

\[
V(r) = \sigma r + V_0 + \frac{\gamma}{r}
\]

- Comparison with a scale setting from the determination of the critical temperature [Caselle, Panero and Piemonte, 2011]
Setting the scale

- For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]

- For the tree-level improved action: static potential at $T = 0$ from Wilson loops $W(r, L)$:

 $$ V(r) = \lim_{L \to \infty} \ln \frac{W(r, L - a)}{W(r, L)}, \quad W(r, L) = e^{-L \cdot V(r) + \ldots} $$

- Iteratively smeared spacelike links:

 $$ U^{(i+1)}(x) = U \in SU(N) \quad \text{which maximizes} \quad \text{Re tr}(U^\dagger W) $$

 with:

 $$ W = (1 - k)U^{(i)}(x) + \frac{k}{4} \sum U^{(i)}_{\text{staple}} $$

- Fits to the Cornell potential to extract the string tension:

 $$ V(r) = \sigma r + V_0 + \frac{\gamma}{r} $$

- Comparison with a scale setting from the determination of the critical temperature [Caselle, Panero and Piemonte, 2011]
Setting the scale

- For the Wilson action: high-precision determinations available in the literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and Wenger, 2004]

- For the tree-level improved action: static potential at $T = 0$ from Wilson loops $W(r, L)$:

 $$V(r) = \lim_{L \to \infty} \ln \frac{W(r, L - a)}{W(r, L)}, \quad W(r, L) = e^{-L \cdot V(r)} + \ldots$$

- Iteratively smeared spacelike links:

 $$U_{\mu}^{(i+1)}(x) = U \in SU(N) \quad \text{which maximizes} \quad \text{Re} \; \text{tr}(U^{\dagger} W)$$

 with:

 $$W = (1 - k)U_{\mu}^{(i)}(x) + \frac{k}{4} \sum U_{\text{staple}}^{(i)}$$

- Fits to the Cornell potential to extract the string tension:

 $$V(r) = \sigma r + V_0 + \frac{\gamma}{r}$$

- Comparison with a scale setting from the determination of the critical temperature [Caselle, Panero and Piemonte, 2011]
Irreducible representations

- For SU(2), the recursive formula for obtaining characters of any irreducible representation:
 \[\text{tr}_{n+1} g = \text{tr}_n g \text{ tr}_1 g - \text{tr}_{n-1} g \quad \text{with: } \text{tr}_0 g = 1 \]

- For SU(3), the characters of higher representations are obtained using the Young calculus and the relation between the traces in the fundamental and anti-fundamental irreducible representation:
 \[\frac{1}{2} \left((\text{tr}_f g)^2 - \text{tr}_f (g^2) \right) = \text{tr} \bar{g} = (\text{tr}_f g)^* \]

- For SU(N > 3) we combine the character relations derived from Young calculus with the Weyl formula [Weyl, 1960; Itzykson and Nauenberg, 1966]:
 \[\text{tr}_{\vec{\lambda}} g = \frac{\det F(\vec{\lambda})}{\det F(\vec{0})} \]
 where \(F_{kl}(\vec{\lambda}) = \exp \left[i (N - k) \alpha_l \right] \) and \(e^{i \alpha_1}, e^{i \alpha_2}, \ldots, e^{i \alpha_N} \) are the eigenvalues of \(g \) in the fundamental representation.
Irreducible representations

- For SU(2), the recursive formula for obtaining characters of any irreducible representation:
 \[\text{tr}_{n+1} g = \text{tr}_n g \text{tr}_1 g - \text{tr}_{n-1} g \quad \text{with: tr}_0 g = 1 \]

- For SU(3), the characters of higher representations are obtained using the Young calculus and the relation between the traces in the fundamental and anti-fundamental irreducible representation:
 \[
 \frac{1}{2} [(\text{tr}_f g)^2 - \text{tr}_f (g^2)] = \text{tr} \bar{f} g = (\text{tr}_f g)^*
 \]

- For SU(N > 3) we combine the character relations derived from Young calculus with the Weyl formula [Weyl, 1960; Itzykson and Nauenberg, 1966]:
 \[
 \text{tr} \bar{\lambda} g = \frac{\det F(\bar{\lambda})}{\det F(0)}
 \]
 where \(F_{kl}(\bar{\lambda}) = \exp [i(N - k) \alpha_k] \) and \(e^{i\alpha_1}, e^{i\alpha_2}, \ldots, e^{i\alpha_N} \) are the eigenvalues of \(g \) in the fundamental representation.
Irreducible representations

- For $\text{SU}(2)$, the recursive formula for obtaining characters of any irreducible representation:
 \[\text{tr}_{n+1} g = \text{tr}_n g \text{tr}_1 g - \text{tr}_{n-1} g \quad \text{with: } \text{tr}_0 g = 1 \]

- For $\text{SU}(3)$, the characters of higher representations are obtained using the Young calculus and the relation between the traces in the fundamental and anti-fundamental irreducible representation:
 \[\frac{1}{2} [(\text{tr}_f g)^2 - \text{tr}_f (g^2)] = \text{tr} \tilde{g} = (\text{tr}_f g)^* \]

- For $\text{SU}(N > 3)$ we combine the character relations derived from Young calculus with the Weyl formula [Weyl, 1960; Itzykson and Nauenberg, 1966]:
 \[\text{tr} \tilde{\lambda} g = \frac{\det F(\tilde{\lambda})}{\det F(\tilde{0})} \]
 where $F_{kl}(\tilde{\lambda}) = \exp [i (N - k) \alpha_i]$ and $e^{i\alpha_1}, e^{i\alpha_2}, \ldots e^{i\alpha_N}$ are the eigenvalues of g in the fundamental representation.
1 Introduction and motivation

2 Polyakov loop renormalization

3 Setup of the computation

4 Preliminary results
Scale determination from the zero-temperature potential

Wilson loop ratios (5 levels of smearing, $k = 0.3$)

SU(4), 16^4 lattice, tree-level improved action, $\beta = 8$
Scale determination from the zero-temperature potential

Zero-temperature potential (5 levels of smearing, $k = 0.3$)

SU(4), 16^4 lattice, tree-level improved action, $\beta = 8$
Scale determination from the zero-temperature potential

Zero-temperature string tension from smeared Wilson loops
SU(4), tree-level improved action
Scale determination from the zero-temperature potential

1 / r term from smeared Wilson loops
SU(4), tree-level improved action
Scale determination from the zero-temperature potential

Renormalization factor from smeared Wilson loops
SU(4), tree-level improved action
Scale determination from the zero-temperature potential

Casimir scaling of bare Polyakov loops
SU(4), tree-level improved action, $N_t = 5$
Scale determination from the zero-temperature potential

Renormalized Polyakov loop
SU(4), tree-level improved action, fundamental representation

$N_t = 5$