Distributed Average Tracking of Heterogeneous Physical Second-order Agents With No Input Signals Constraint

Sheida Ghapani, Student Member, IEEE, Salar Rahili, Student Member, IEEE, Wei Ren, Fellow, IEEE

Abstract—This paper addresses distributed average tracking of physical second-order agents with heterogeneous nonlinear dynamics, where there is no constraint on input signals. The nonlinear terms in agents’ dynamics are heterogeneous, satisfying a Lipschitz-like condition that will be defined later and is more general than the Lipschitz condition. In the proposed algorithm, a control input and a filter are designed for each agent. Each agent’s filter has two outputs and the idea is that the first output estimates the average of the input signals and the second output estimates the average of the input velocities asymptotically. In parallel, each agent’s position and velocity are driven to track, respectively, the first and the second outputs. Having heterogeneous nonlinear terms in agents’ dynamics necessitates designing the filters for agents. Since the nonlinear terms in agents’ dynamics can be unbounded and the input signals are arbitrary, novel state-dependent time-varying gains are employed in agents’ filters and control inputs to overcome these unboundedness effects. Finally, the results are improved to achieve the distributed average tracking for a group of double-integrator agents, where there is no constraint on input signals and the filter is not required anymore. Numerical simulations are also presented to illustrate the theoretical results.

I. INTRODUCTION

In this paper, the distributed average tracking problem for a team of agents is studied, where each agent uses local information and local interaction to calculate the average of individual time-varying input signals, one per agent. The problem has found applications in distributed sensor fusion [1], feature-based map merging [2], and distributed Kalman filtering [3], where the scheme has been mainly used as an estimator. However, there are some applications such as region following formation control [4] or distributed continuous-time convex optimization [5] that require the agents’ physical states instead of estimator states to converge to a time-varying network quantity, where each agent only has a local and incomplete copy of that quantity. Since the desired trajectory (the average of individual input signals) is time varying and not available to any agent, distributed average tracking poses more theoretical challenges than the consensus and distributed tracking problems.

In the literature, some researchers have employed linear distributed algorithms for some groups of time-varying input signals that are required to satisfy restrictive constraints [6]–[11]. In [7], a proportional algorithm and a proportional-integral algorithm are proposed to achieve distributed average tracking for slowly-varying input signals with a bounded tracking error. In [8], an extension of the proportional integral algorithm is employed for a special group of time-varying input signals with a common denominator in their Laplace transforms, where the denominator is required to be used in the estimator design. In [9] and [10], a discrete-time distributed average tracking problem is addressed, where [10] extends the proposed algorithm in [9] by introducing a time-varying sequence of damping factors to achieve robustness to initialization errors.

Note that the linear algorithms cannot ensure distributed average tracking for a more general group of input signals. Therefore, some researchers employ nonlinear tracking algorithms. In [12], a class of nonlinear algorithms is proposed for input signals with bounded deviations, where the tracking error is proved to be bounded. A non-smooth algorithm is proposed in [13], which is able to track time-varying input signals with bounded derivatives. In the aforementioned works, the distributed average tracking problem is studied from a distributed estimation perspective without the requirement for agents to obey certain physical dynamics. However, there are various applications, where the distributed average tracking problem is relevant for designing distributed control laws for physical agents. The region-following formation control is one application [4], where a swarm of robots move inside a dynamic region while keeping a desired formation. In these applications, the dynamics of the physical agents must be taken into account in the control law design, where the dynamics themselves introduce further challenges in tracking and stability analysis. Thus, distributed average tracking for physical agents with linear dynamics is studied in [14]–[17]. Refs. [14] studies the distributed average tracking for input signals with bounded accelerations. Ref. [17] introduces a discontinuous algorithm and filter for a group of physical double-integrator agents, where each agent uses the relative positions and neighbors’ filter outputs to remove the velocity measurements.

However, in real applications, physical agents might need to track the average of a group of time-varying input signals, where both physical agents and input signals have more complicated dynamics than single- or double-integrator dynamics. Therefore, the control law designed for physical agents with linear dynamics can no longer be used directly for physical agents subject to more complicated dynamic equations. For example, [18] extends a proportional-integral control scheme to achieve distributed average tracking for physical Euler-Lagrange systems for two different kinds of input signals with steady states and with bounded derivatives.

In this paper, an algorithm is introduced to achieve the distributed average tracking for physical second-order agents with heterogeneous nonlinear dynamics, where there is no constraint on the input signals. Here, the nonlinear terms in agents’ dynamics are heterogeneous, satisfying a Lipschitz-like condition that will be defined later and is more general than the Lipschitz condition. Therefore, the agents’ dynamics can cover many well-known systems such as car-like robots. Due to the presence of the nonlinear heterogeneous terms in the agents’ dynamics, a local filter is introduced for each agent to estimate the average of input signals and input velocities. Note that the unknown terms in agents’ dynamics can be unbounded and the input signals are arbitrary, which create extra challenges. Therefore, a time-varying state-dependent gains are employed in the filter’s dynamics and control law to overcome the unboundedness effects. In the special case, where the agents have double-integrator dynamics, the filter is not required anymore. Thus, the algorithm is modified to drive the agents’ positions and velocities to directly track the average of the input signals and the input velocities. Here, by introducing novel time-varying state-dependent gains in the control law, the distributed average tracking is achieved for a group of arbitrary input signals. A preliminary version of the work has appeared in [19]. The current work contains more rigorous algorithm design and proofs, an additional result on heterogeneous double-integrator agents, and
The advantages of the proposed algorithms in comparison with the literature are summarized as follows.

1) In the first part of this paper, the agents are described by physical heterogeneous nonlinear second-order dynamics. The nonlinear terms in agents’ dynamics, satisfying a Lipschitz-like condition that will be defined later, are heterogeneous and hence more general and more realistic. In contrast, in [13], the agents’ dynamics are assumed to be homogeneous single- or double-integrator dynamics. The results for single- or double-integrator dynamics are not applicable to physical heterogeneous nonlinear agents.

2) In the existing algorithms in the literature, there are always constraints on input signals. For example, in [14], the second derivative of the input signals are assumed to be bounded. In contrast, by proposing a new distributed control law in combination with a local filter for each agent, there is no limitation on the input signals in the current paper. The novelty of the local filters is that by introducing new time-varying state-dependent gains, the distributed average tracking problem can be achieved for an arbitrary group of input signals.

II. NOTATIONS AND PRELIMINARIES

A. Notations

The following notations are adopted throughout this paper. \(\mathbb{R} \) denotes the set of all real numbers and \(\mathbb{R}^+ \) denotes the set of all positive real numbers. The transpose of matrix \(A \) and vector \(x \) are shown as \(A^T \) and \(x^T \), respectively. Let \(I_n \) and \(\mathcal{O}_n \) denote, respectively, the \(n \times 1 \) column vector of all ones and all zeros. Let \(\text{diag}(z_1, \ldots, z_p) \) be the diagonal matrix with diagonal entries \(z_1 \) to \(z_p \). We use \(\otimes \) to denote the Kronecker product, and \(\text{sgn}(\cdot) \) to denote the signum function defined component-wise. For a vector function \(x(t) : \mathbb{R} \rightarrow \mathbb{R}^n \), define \(\|x\|_p \) as the p-norm; \(x(t) \in \mathbb{L}_2 \) if \(\int_{0}^{\infty} \|x(\tau)\|^2 d\tau < \infty \) and \(x(t) \in \mathbb{L}_\infty \) if for each element of \(x(t) \), denoted as \(x_i(t) \), \(\sup_{t \geq 0} |x_i(t)| < \infty \), \(i = 1, \ldots, m \).

B. Graph Theory

An undirected graph \(G \triangleq (V, E) \) is used to characterize the interaction topology among the agents, where \(V \triangleq \{1, \ldots, n\} \) is the node set and \(E \subseteq V \times V \) is the edge set. An edge \((j, i), E\) means that node \(i \) and node \(j \) can obtain information from each other and they are neighbors of each other. Self edges \((i, i)\) are not considered here. The set of neighbors of node \(i \) is denoted as \(N_i \). The adjacency matrix \(A \triangleq [a_{ij}] \in \mathbb{R}^{n \times n} \) of the graph \(G \) is defined such that the edge weight \(a_{ij} = 1 \) if \((j, i) \in E \) and \(a_{ij} = 0 \) otherwise. For an undirected graph, \(a_{ij} = a_{ji} \). The Laplacian matrix \(L \triangleq [l_{ij}] \in \mathbb{R}^{n \times n} \) associated with \(A \) is defined as \(l_{ij} = \sum_{k \neq j} a_{ik} \) and \(l_{ii} = -a_{ii} \), for \(i \neq j \). For an undirected graph, \(L \) is symmetric positive semi-definite. Let \(m \) denote the number of edges in \(E \), where the edges \((j, i) \) and \((i, j)\) are counted only once. By arbitrarily assigning an orientation for the edges in \(G \), let \(D \triangleq [d_{ij}] \in \mathbb{R}^{n \times m} \) be the incidence matrix associated with \(G \), where \(d_{ij} = -1 \) if the edge \(e_j \) leaves node \(i \), \(d_{ij} = 1 \) if it enters node \(i \), and \(d_{ij} = 0 \) otherwise. The Laplacian matrix \(L \) is then given by \(L = DD^T \).

C. Nonemptyness Analysis

Consider a vector-valued differential equation

\[
\dot{x}(t) = f(t, x(t)),
\]

where \(t \in \mathbb{R} \) and \(x(t) \in \mathbb{R}^n \).

Definition 2.1:

For the differential equation \((1) \), define the Filippov set-valued map \(\mathcal{K}[f](t, x(t)) = \bigcap_{\varepsilon > 0} \bigcap_{\varepsilon(N) = 0} co\left(f(t, B(x(t), \varepsilon) - N)\right) \), where \(co \) denotes the convex closure, \(\bigcap_{\varepsilon(N) = 0} \) denotes the intersection over all sets of Lebesgue measure zeros and \(B(x, \delta) \) is the open ball of radius \(\delta \) centered at \(x \).

Definition 2.2: Replace the differential equation \((1) \) with the differential inclusion

\[
\dot{x}(t) \in \mathcal{K}[f](t, x(t)).
\]
Consider a multi-agent system consisting of n physical agents described by the following heterogeneous nonlinear second-order dynamics
\begin{align*}
\dot{x}_i(t) &= v_i(t), \\
\dot{v}_i(t) &= f_i(x_i(t), v_i(t), t) + u_i(t), \quad i = 1, \ldots, n,
\end{align*}
where $x_i(t), v_i(t), u_i(t) \in \mathbb{R}^2$ are the ith agent's position, velocity, and control input, respectively, $f_i : \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ is a vector-valued nonlinear function which will be defined later. Suppose that each agent has a time-varying input signal $x_i'(t) \in \mathbb{R}^2$, $i = 1, \ldots, n$, satisfying
\begin{align*}
\ddot{x}_i'(t) = v_i'(t), \quad \dot{v}_i'(t) = a_i'(t), \quad i = 1, \ldots, n,
\end{align*}
where $v_i'(t), a_i'(t) \in \mathbb{R}^2$ are, respectively, the input velocity and the input acceleration. Note that Assumption 3.1 is more general than the Lipschitz condition, satisfied by many well-known systems such as the pendulum system with a control torque, car-like robots, the Chua's circuit, the Lorenz system, and the Chen system [23]. In fact, the term $f_i(\cdot, \cdot, t)$ is general enough to represent both the nonlinear dynamics and possible bounded disturbances.

Remark 3.2: Note that Assumption 3.1 is more general than the Lipschitz condition, satisfied by many well-known systems such as the pendulum system with a control torque, car-like robots, the Chua’s circuit, the Lorenz system, and the Chen system [23]. In fact, the term $f_i(\cdot, \cdot, t)$ is general enough to represent both the nonlinear dynamics and possible bounded disturbances.

Remark 3.2: Note that Assumption 3.1 is more general than the Lipschitz condition, satisfied by many well-known systems such as the pendulum system with a control torque, car-like robots, the Chua’s circuit, the Lorenz system, and the Chen system [23]. In fact, the term $f_i(\cdot, \cdot, t)$ is general enough to represent both the nonlinear dynamics and possible bounded disturbances.

It should be noted that the nonlinear term $f_i(\cdot, \cdot, t)$ is unknown and the input acceleration $a_i'(t)$ is arbitrary and can be unbounded. Therefore, a novel filter is introduced with time-varying state-dependent gains to estimate the average of input signals and input velocities in the presence of these challenges. For notational simplicity, we will remove the index t from the variables in the reminder of the paper. Consider the following local filter for agent i
\begin{align*}
\hat{p}_i &= z_i + x_i', \\
\hat{\tilde{z}}_i &= -\kappa(p_i - x_i') - \kappa(q_i - v_i'),
\end{align*}
where $p_i, q_i \in \mathbb{R}^n$ are the filter outputs, $q_i = \dot{p}_i$, $z_i \in \mathbb{R}^m$ is an auxiliary filter variable, $v_i = [v_i',]_1 + [v_i',]_1 + [a_i',]_1 + \gamma$, and $\kappa, \beta \in \mathbb{R}^+$ will be designed later. The control input u_i is designed as
\begin{align*}
u_i &= -\eta [\dot{x}_i + \dot{\hat{v}}_i + \text{sgn}(\dot{x}_i + \dot{\hat{v}}_i)] + q_i,
\end{align*}
where $\dot{x}_i = x_i - \dot{\hat{z}}_i, \dot{\hat{v}}_i = v_i - q_i, \psi_i = [\dot{x}_i, x_i',]_1 + [\dot{v}_i, v_i',]_1 + \gamma$ and $\eta \in \mathbb{R}^+$ to be designed. Here, the time-varying state-dependent gains ψ_i and ψ_i' are used in the filter’s dynamics (2) and the control law (3) to overcome the unboundedness challenges of the heterogeneous unknown term $f_i(\cdot, \cdot, t)$ and the arbitrary input acceleration a_i'.

Theorem 3.3: Under the control algorithm given by (7)–(8) for the system (1), the distributed average tracking goal (5) is achieved asymptotically, provided that Assumptions 3.2 and 3.3 hold and the control gains satisfy the constraints $\beta > \kappa, \kappa > \max\{1, \frac{\lambda_{\max}(L)}{2\lambda_{\max}(D)}, \gamma > \rho_3 + \rho_4, \eta > \max\{1, \rho_1, \rho_2\}$.

Proof: First, it is proved that for $i = 1, \ldots, n$,
\begin{align*}
\lim_{t \to \infty} p_i &= \frac{1}{n} \sum_{j=1}^{n} r_j, \quad \lim_{t \to \infty} q_i = \frac{1}{n} \sum_{j=1}^{n} v_j', \quad (9)
\end{align*}
Using $q_i = \dot{p}_i$, the local filter’s dynamics (7) can be rewritten as
\begin{align*}
\ddot{\hat{p}}_i &= q_i, \\
\ddot{\hat{\tilde{z}}}_i &= -\kappa(p_i - x_i') - \kappa(q_i - \dot{v}_i') - \beta \sum_{j=1}^{n} a_{ij}(\psi_i + \psi_j)\text{sgn}(p_i - q_i) - (p_j + q_j') + a_i'.
\end{align*}
Due to the existence of the signum function in the algorithm (7), the closed-loop dynamics (10) always exist and are absolutely continuous. Let $r = [r_1', \ldots, r_n']_1, v' = [v_1', \ldots, v_n']_1, a' = [a_1', \ldots, a_n']_1, p = [p_1', \ldots, p_n']_1, q = [q_1', \ldots, q_n']_1, \tilde{p}_i = p_i - \frac{1}{n} \sum_{j=1}^{n} p_j$ and $\tilde{q}_i = q_i - \frac{1}{n} \sum_{j=1}^{n} q_j$. Defining $M = I_n - \frac{1}{n} I_n', \tilde{p} = (M \otimes I_p)p$ and $\tilde{\hat{q}} = (M \otimes I_q)q$, we get that
\begin{align*}
\frac{\ddot{\hat{p}}}{\ddot{\hat{\tilde{z}}}} \in \mathbb{R}^n, \quad Kf(\tilde{p}, \tilde{q})
\end{align*}
where a.e. stands for “almost everywhere”, $f = [f_1', f_n']_1$ and $\tilde{f}_p \equiv \dot{\tilde{p}}, \tilde{f}_q \equiv \dot{\tilde{q}}$.

Consider the following Lyapunov function candidate
\begin{align*}
V_i &= \frac{1}{2} \tilde{p}^T \tilde{q}'^T (L \otimes \frac{2\kappa I_p}{I_p} \tilde{p} \otimes \tilde{q}') \tilde{p}',
\end{align*}
where W is a diagonal matrix and $M = D$. The kth diagonal element of the matrix W describes the kth edge weight. If the kth edge is between node i and node j, then it is equal to $\psi_i + \psi_j$.

Consider the following Lyapunov function candidate
\begin{align*}
V_1 \geq \frac{1}{2} \tilde{p}^T \tilde{q}'^T \left[2\kappa (\lambda_2(L)) I_{n_p} \lambda_2(L) I_{n_p} \right] \tilde{p}',
\end{align*}
where $\lambda_2(L)$ is the second largest eigenvalue of the Laplacian matrix L.
If \(\kappa > \frac{1}{2} \frac{\sqrt{2} \eta_\lambda (L)}{\lambda (L)} \), then it can be proved that the matrix
\[
\begin{bmatrix}
2 \kappa \lambda_2 (L) I_{np} & L \otimes I_{np} \\
L \otimes I_{np} & \lambda_2 (L) I_{np}
\end{bmatrix}
\]
and hence \(V_i \) are positive definite. Since \(V_i \) is a continuous function, its set-valued Lie derivative along \(U \) is given as
\[
\dot{V}_i = \mathcal{K} [2 \kappa \tilde{p}^T (L \otimes I_p) \tilde{q} + \tilde{q}^T (L \otimes I_p) \tilde{q} - \kappa \tilde{p}^T (L \otimes I_p) \tilde{p} \\
+ \kappa \tilde{p}^T (L \otimes I_p) \tilde{q} - \kappa \tilde{p}^T (L \otimes I_p) \tilde{q} \tilde{v}^{T} \\
- \beta \tilde{p}^T (L \otimes I_p) \tilde{q}^T (L \otimes I_p) \tilde{v}^{T} \\
+ \tilde{p}^T (L \otimes I_p) \tilde{q}^T (L \otimes I_p) \tilde{v}^{T} \\
- \kappa \tilde{q}^T (L \otimes I_p) \tilde{q} + \kappa \tilde{q}^T (L \otimes I_p) \tilde{q} \tilde{v}^{T} \\
- \beta \tilde{q}^T (L \otimes I_p) \tilde{q}^T (L \otimes I_p) \tilde{v}^{T} \\
+ \tilde{q}^T (L \otimes I_p) \tilde{v}^{T}
\]
= \(- \kappa \tilde{p}^T (L \otimes I_p) \tilde{p} - (\kappa - 1) \tilde{q}^T (L \otimes I_p) \tilde{q} \\
- \beta \tilde{p}^T (L \otimes I_p) \tilde{q} + (\tilde{p}^T + \tilde{q}^T) (L \otimes I_p) \tilde{v}^{T}
\).
(13)

If \((D^T \otimes I_p) (\tilde{p} + \tilde{q}) = 0 \), then \(L \otimes I_p \) is globally exponentially stable, which means for \(i = 1, \ldots, n \),
\[
\lim_{t \to \infty} p_j = \frac{1}{n} \sum_{j=1}^{n} p_j, \quad \lim_{t \to \infty} q_i = \frac{1}{n} \sum_{j=1}^{n} q_j.
\]
Now, it is proved that \(\sum_{j=1}^{n} p_j \to \sum_{j=1}^{n} r_j \) and \(\sum_{j=1}^{n} q_j \to \sum_{j=1}^{n} v_j \). Defining the variables \(S_p = \sum_{j=1}^{n} (p_j - r_j) \) and \(S_q = \sum_{j=1}^{n} (q_j - v_j) \), we can get from (10) that
\[
\left[S_p, S_q \right] = \left[\begin{bmatrix} 0 & \kappa \lambda_2 (L) \tilde{p}^T (L \otimes I_p) \tilde{q} \\
\kappa \lambda_2 (L) \tilde{q}^T (L \otimes I_p) \tilde{p} & (A \otimes I_p) \right] \left[S_p, S_q \right].
\]

If \(\kappa > 0 \), the matrix \(A \) is Hurwitz. Therefore, \(\lim_{t \to \infty} \left[S_p, S_q \right] = \mathbf{0} \),
which means \(\sum_{j=1}^{n} p_j \to \sum_{j=1}^{n} r_j \) and \(\sum_{j=1}^{n} q_j \to \sum_{j=1}^{n} v_j \). Now, using (15), it is easy to see that (6) holds.

Second, it is proved that by using the control law (3) for (4),
\[
\lim_{t \to \infty} x_i = p_i \quad \text{and} \quad \lim_{t \to \infty} v_i = q_i \quad \text{in parallel and hence it can be concluded that} \quad \lim_{t \to \infty} x_i = \frac{1}{n} \sum_{j=1}^{n} r_j \quad \text{and} \quad \lim_{t \to \infty} v_i = \frac{1}{n} \sum_{j=1}^{n} v_j.
\]
Define \(\hat{x} = [\hat{x}_1, \ldots, \hat{x}_n]^T, \hat{v} = [\hat{v}_1, \ldots, \hat{v}_n]^T \), and \(f(x, v, t) \) such that \(\hat{x} = f(x, v, t) - \eta \hat{v} \). Using the control law (3) for (4),
we get the closed-loop dynamics in vector form as
\[
\dot{\hat{x}} = \hat{v},
\]
\[
\hat{v} = f(x, v, t) - \eta \hat{v},
\]
where \(\eta \triangledown \Delta \left(\psi_1, \ldots, \psi_n \right) \). Since the signum function is measurable and locally essentially bounded, the Filippov solution for the closed-loop dynamics (15) exists. Consider the Lyapunov function candidate
\[
V_2 = \frac{1}{2} \left[\hat{x}^T \hat{v} \right]^T \left[\begin{bmatrix} 2 \eta & -1 \\ -1 & I_{np} \end{bmatrix} \right] \left[\frac{\hat{x}^T \hat{v}}{\hat{v}^T \hat{v}} \right].
\]
(17)
It is easy to see that \(V_2 \) is positive definite. By taking the set-valued Lie derivative of \(V_2, V_2 \), along the Filippov set-valued map of (16),
we have
\[
\dot{V}_2 = \mathcal{K} \left[2 \eta \hat{x}^T \hat{v} + \hat{v}^T \hat{v} + \hat{x}^T f(x, v, t) - \eta \hat{v}^T \right] \left(\begin{bmatrix} 2 \eta & -1 \\ -1 & I_{np} \end{bmatrix} \right) \left[\frac{\hat{x}^T \hat{v}}{\hat{v}^T \hat{v}} \right]
\]
\[
\dot{V}_2 = \left\{ - \eta \hat{v}^T \hat{v} + (\hat{x}^T + \hat{v}^T) f(x, v, t) - \eta \hat{v}^T \right\}
\]
where \(\psi \triangleq \Delta \left(\psi_1, \ldots, \psi_n \right) \).
where we have used the fact that $\mathcal{K}[\tilde{x}^T + \tilde{v}^T](\psi \otimes I_p)\text{sgn}(\tilde{x} + \tilde{v}) = \mathcal{K}\left[\sum_{i=1}^{n} \psi_i(\tilde{x}_i + \tilde{v}_i)\text{sgn}(\tilde{x}_i + \tilde{v}_i)\right] = \mathcal{K}\left[\sum_{i=1}^{n} \psi_i\|\tilde{x}_i + \tilde{v}_i\|\right] = \left\{\sum_{i=1}^{n} \psi_i\|\tilde{x}_i + \tilde{v}_i\|\right\}$. Note that the set-valued Lie derivative of V_2 is a singleton and the function V_2 is continuously differentiable. It follows from $V_2 \in \mathcal{V}_2$, where V_2 denotes the derivative of V_2, that

$$
V_2 = -\eta \tilde{x}^T \tilde{x} - (\eta - 1)\tilde{v}^T \tilde{v} + \sum_{i=1}^{n} (\tilde{x}_i + \tilde{v}_i)^T f_i(x_i, v_i, t)
$$

$$
-\eta \sum_{i=1}^{n} \psi_i\|\tilde{x}_i + \tilde{v}_i\|
$$

$$
= -\eta \tilde{x}^T \tilde{x} - (\eta - 1)\tilde{v}^T \tilde{v}
$$

$$
+ \sum_{i=1}^{n} (\tilde{x}_i + \tilde{v}_i)^T f_i(x_i, v_i, t) - f_i(0_p, 0_p)
$$

$$
+ \sum_{i=1}^{n} (\tilde{x}_i + \tilde{v}_i)^T f_i(0_p, 0_p, t)
$$

$$
- \eta \sum_{i=1}^{n} \|\|x_i|_1 + \|v_i|_1 + \gamma\|\|\tilde{x}_i + \tilde{v}_i\|
$$

$$
\leq -\tilde{x}^T \tilde{x} - (\eta - 1)\tilde{v}^T \tilde{v}
$$

$$
- \eta \sum_{i=1}^{n} \|\|x_i|_1 + \|v_i|_1 + \gamma\|\|\tilde{x}_i + \tilde{v}_i\|
$$

$$
+ \sum_{i=1}^{n} (\rho_1\|x_i|_1 + \rho_2\|v_i|_1 + \rho_3 + \rho_4)\|\tilde{x}_i + \tilde{v}_i\|
$$

$$
\leq -\eta \tilde{x}^T \tilde{x} - (\eta - 1)\tilde{v}^T \tilde{v} < 0,
$$

where we have used Assumption 3.1 to obtain the first inequality and $\eta > \max\{1, \rho_1, \rho_2\}$ and $\gamma > \rho_3 + \rho_4$ to obtain the second inequality. Therefore, by using Theorem 4.10 in [27], it is concluded

$$
\eta > \max\{1, \rho_1, \rho_2, \rho_3, \rho_4\}
$$

and

$$
\gamma > \rho_3 + \rho_4
$$

as $\|\|x|_1 + \|v|_1 + \gamma\|$, respectively.

Proof: Here the proof is very similar to the first step of Theorem 1 of [23] and hence the detail is omitted here. First, the following Lyapunov function is employed to prove that $\lim_{t \to \infty} \tilde{x}_i = \frac{1}{n} \sum_{j=1}^{n} \tilde{x}_j$ and $\lim_{t \to \infty} v_i = \frac{1}{n} \sum_{j=1}^{n} v_j$, $i = 1, \ldots, n$.

$$
V = \frac{1}{2} [e_x^T e_x + e_v^T e_v] (L \otimes \left[\begin{array}{cc} 2\kappa I_p & I_p \\ I_p & I_p \end{array}\right]) [e_x^T e_v],
$$

where $e_x = (M \otimes I_p)x$ and $e_v = (M \otimes I_p)v$ and x, v, M are defined in Subsection III-A. Second, it is shown that $\lim_{t \to \infty} \sum_{i=1}^{n} x_i = \sum_{j=1}^{n} r_j$ and $\lim_{t \to \infty} \sum_{i=1}^{n} v_i = \sum_{j=1}^{n} v_j^f$ asymptotically. To prove that, we employ the control input (19) for (18) and rewrite the closed-loop dynamics as

$$
\dot{\hat{x}}_i = \psi_{i} S \hat{x}_i,
$$

$$
\dot{\hat{v}}_i = \kappa \hat{S} \hat{x}_i - \kappa \hat{S} v_i,
$$

where $\hat{x}_i = \sum_{j=1}^{n} (x_j - r_j)$ and $\hat{S} = \sum_{j=1}^{n} (v_j - v_j^f)$. By using the same analysis as Theorem 3.3 and employing the results of the first step, it is finally concluded that $\lim_{t \to \infty} \bar{x}_i = \frac{1}{n} \sum_{j=1}^{n} x_j$ and $\lim_{t \to \infty} v_i = \frac{1}{n} \sum_{j=1}^{n} v_j$.

Remark 3.7: The introduced algorithm in (14) can achieve the distributed average tracking provided that α_i^f is bounded. However, the algorithm (15) is more general and solves the problem regardless of any constraint on α_i^f.

Corollary 3.8: Suppose that each agent is described by the following heterogeneous double-integrator dynamics

$$
\dot{x}_i = v_i,
$$

$$
\dot{v}_i = u_i,
$$

where $\bar{m}_i \in \mathbb{R}^n$. Let $\bar{m} = \max_{i=1, \ldots, n} \bar{m}_i$. If the input acceleration α_i^r in (5) is arbitrary, by employing the local filter and the control input defined in, respectively, (7) and (8), where $\beta > \kappa$, $\kappa > \max\{1, \frac{\max_\mathcal{S}(\mathcal{S})}{2\max_\mathcal{S}(\mathcal{S})}, \gamma > 0\}$, and $\eta > \max\{1, \frac{\bar{m}}{2}\}$, the distributed average tracking is achieved.

Proof: The proof is similar to the proof of Theorem 3.3 where (17) is replaced with

$$
V_2 = \frac{1}{2} \sum_{i=1}^{n} [\tilde{x}_i^T \tilde{v}_i] \left[\begin{array}{cc} 2\kappa I_p & I_p \\ I_p & I_p \end{array}\right] [\tilde{x}_i] [\tilde{v}_i].
$$
where there is no constraint on input signals. The nonlinear terms in agents’ dynamics satisfy a Lipschitz-like condition that is more general than the Lipschitz condition. For each agent, a control input combined with a local filter was designed. The idea is that first the filter’s outputs converge to the average of the input signals and input velocities asymptotically and then the agent’s position and velocity are driven to track the filter outputs. Since the nonlinear terms can be unbounded, a state-dependent time-varying gain was introduced in each filter’s dynamics. Then, the algorithm was modified to achieve the distributed average tracking for physical second-order agents. In this algorithm, the filter is not required and a novel state-dependent time-varying gain was designed to solve the problem when there is no constraint on input signals.

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.
[2] R. Aragues, J. Cortes, and C. Sagues, “Distributed consensus on robot networks for dynamically merging feature-based maps,” IEEE Transactions on Robotics, vol. 28, no. 4, pp. 840–854, 2012.
[3] H. Bai, R. A. Freeman, and K. M. Lynch, “Distributed kalman filtering using the internal model average consensus estimator,” in Proceedings of the American Control Conference. San Francisco, 2011, pp. 1500–1505.
[4] C. C. Cheah, S. P. Hou, and J. J. E. Slotine, “Region-based shape control for a swarm of robots,” Automatica, vol. 45, no. 10, pp. 2406–2411, 2009.
[5] S. Rahili and W. Ren, “Distributed continuous-time convex optimization with time-varying cost functions,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 1–1, 2016.
[6] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consensus on mobile networks,” in Proceedings of The 16th IFAC World Congress. Prague Czech Republic, 2005.
[7] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence properties of dynamic average consensus estimators,” in Proceedings of the IEEE Conference on Decision and Control. San Diego, 2006, pp. 338–343.
[8] H. Bai, R. Freeman, and K. Lynch, “Robust dynamic average consensus of time-varying inputs,” in Proceedings of the IEEE Conference on Decision and Control. Atlanta, 2010, pp. 3104–3109.
[9] M. Zhu and S. Martínez, “Discrete-time dynamic average consensus,” Automatica, vol. 46, no. 2, pp. 322–329, 2010.
[10] E. Montijano, J. I. Montijano, C. Sagüés, and S. Martínez, “Robust discrete time dynamic average consensus,” Automatica, vol. 50, no. 12, pp. 3131–3138, 2014.
[11] S. Kia, J. Cortes, and S. Martínez, “Singularly perturbed algorithms for dynamic average consensus,” in European Control Conference, 2013, pp. 1758–1763.
[12] S. Nosrati, M. Shafiee, and M. B. Menhaj, “Dynamic average consensus via nonlinear protocols,” Automatica, vol. 48, no. 9, pp. 2262 – 2270, 2012.
[13] F. Chen, Y. Cao, and W. Ren, “Distributed average tracking of multiple time-varying reference signals with bounded derivatives,” IEEE Transactions on Automatic Control, vol. 57, no. 12, pp. 3169–3174, 2012.
[14] F. Chen, W. Ren, W. Lan, and G. Chen, “Distributed average tracking for reference signals with bounded accelerations,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 863–869, 2015.
[15] Y. Zhao, Z. Duan, and Z. Li, “Distributed average tracking for multiple reference signals with general linear dynamics,” arXiv preprint arXiv:1312.7445, 2013.
[16] F. Chen and W. Ren, “Robust distributed average tracking for coupled general linear systems,” in 32nd Chinese Control Conference, 2013, pp. 6953–6958.
[17] S. Ghapani, W. Ren, and F. Chen, “Distributed average tracking for double-integrator agents without using velocity measurements,” in American Control Conference. Chicago, 2015, pp. 1445–1450.
[18] F. Chen, G. Feng, L. Liu, and W. Ren, “Distributed average tracking of networked Euler-Lagrange systems,” IEEE Transactions on Automatic Control, vol. 60, no. 2, pp. 547–552, 2015.
[19] S. Ghapani, S. Rahili, and W. Ren, “Distributed average tracking for second-order agents with nonlinear dynamics,” in American Control Conference, 2016. Boston, 2016, pp. 4636–4641.
[20] G. Royle and C. Godsil, *Algebraic Graph Theory*. New York: Springer Graduate Texts in Mathematics #207, 2001.

[21] A. F. Filippov, “Differential equations with discontinuous right-hand side,” *Matematicheskii sbornik*, vol. 93, no. 1, pp. 99–128, 1960.

[22] D. Zelazo, A. Rahmani, and M. Mesbahi, “Agreement via the edge laplacian,” in *46th IEEE Conference on Decision and Control*, IEEE, 2007, pp. 2309–2314.

[23] F. Chen, W. Ren, W. Lan, and G. Chen, “Tracking the average of time-varying nonsmooth signals for double-integrator agents with a fixed topology,” in *American Control Conference*, 2013, pp. 2032–2037.

[24] J. Mei, W. Ren, J. Chen, and G. Ma, “Distributed adaptive coordination for multiple lagrangian systems under a directed graph without using neighbors velocity information,” *Automatica*, vol. 49, no. 6, pp. 1723–1731, 2013.

[25] A. F. Filippov, *Differential Equations with Discontinuous Righthand Sides*. Amsterdam, The Netherlands: Kluwer, 1988.

[26] J. Cortes, “Discontinuous dynamical systems,” *IEEE Control Systems Magazine*, vol. 28, no. 3, pp. 36–73, 2008.

[27] H. K. Khalil, “Nonlinear systems, 3rd,” *New Jersey, Prentice Hall*, vol. 9, 2002.