Inhibition of Protein-tyrosine Phosphatase Stimulates the Dynamin-dependent Endocytosis of ROMK1

Received for publication, October 9, 2001, and in revised form, November 19, 2001
Published, JBC Papers in Press, November 21, 2001, DOI 10.1074/jbc.M109739200

Hyacinth Sterling‡, Dao-Hong Lin‡, Rui-Min Gu, Ke Dong¶, Steven C. Hebert‡§, and Wen-Hui Wang‡¶

From the ‡Department of Pharmacology, New York Medical College, Valhalla, New York 10595 and the ¶Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510

We have previously shown that inhibiting protein-tyrosine kinase increased whereas inhibiting protein-tyrosine phosphatase (PTP) decreased renal outer medullary potassium channel 1 (ROMK1) channel activity (1). We have now used confocal microscopy, the patch clamp technique, and biotin labeling to further examine the role of tyrosine phosphorylation in regulating ROMK1 trafficking. Human embryonic kidney 293 cells were cotransfected with c-Src and green fluorescent protein-ROMK1, which has the same biophysical properties as those of ROMK1. Patch clamp studies have shown that phenylarsine oxide (PAO), an inhibitor of PTP, decreased the activity of ROMK1. Moreover, addition of PAO reduced the cell surface localization of green fluorescent protein-ROMK1 detected by confocal microscopy and diminished the surface ROMK1 density by 65% measured by biotin labeling. Also, PAO treatment significantly increased the phosphorylation of ROMK1. The notion that the effect of PAO is mediated by stimulating tyrosine phosphorylation-induced endocytosis of ROMK1 has also been supported by findings that mutating the tyrosine residue 337 of ROMK1 to alanine abolished the effect of PAO. Finally, the inhibitory effect of PAO on ROMK1 was completely blocked in the cells co-transfected with dominant negative dynamin (dynaminK44A). This indicates that the tyrosine phosphorylation-induced endocytosis of ROMK1 is dynamin-dependent. We conclude that inhibiting PTP increases ROMK1 phosphorylation and results in a dynamin-dependent internalization of the channel.

* The work was supported in part by National Institutes of Health Grants DK 47402 and DK 54983. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Supported by National Institutes of Health Grant DK 54999.
¶ To whom correspondence should be addressed: Dept. of Pharmacology, New York Medical College, BSB Rm. 537, Valhalla, NY 10595, Tel.: 914-594-4120; Fax: 914-347-4956; E-mail: wenhui_wang@nymc.edu.
‡ The abbreviations used are: ROMK, renal outer medullary potassium channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conductance K+ channel; CCD, cortical collecting duct; SK, small conduc...
Effect of PTP on ROMK1

FIG. 1. A Western blot showing that both GFP antibody (left panel) and ROMK antibody (right panel) detect a 71-kDa protein harvested by immunoprecipitation (IP) of the lysate of HEK293 cells transfected with GFP-ROMK1. IB, immunoblotting.

Moreover, we had previously carried out the patch clamp study in oocytes injected with cRNA encoding GFP-ROMK1 and detected an inward-rectifying K⁺ channel with an inward conductance of 40 picosiemens (1). This finding is also confirmed in the present investigation in which we have detected an inward-rectifying K⁺ channel with an inward slope conductance of 40 picosiemens in HEK293 cells transfected with GFP-ROMK1 (data not shown). The K⁺ channel has a high open probability and similar channel kinetics to that of ROMK1.

After confirming that GFP-ROMK1 has the same biophysical properties as those of ROMK1, we examined the effect of PAO on the activity of ROMK1 in HEK293 cells transfected with GFP-ROMK1 and c-Src. Fig. 2 is a typical recording showing that addition of 1 μM PAO inhibits the activity of ROMK1 by 95 ± 9%, and NPₙ falls from 0.93 to 0.04 (n = 4). This observation is consistent with our previous finding that inhibiting PTP decreased the activity of the native ROMK1-like channels in the CCD (9). Moreover, we have demonstrated previously that the inhibitory effect of PAO was absent in the CCDs treated with hypertonic solution, indicating that the effect of PAO on channel activity was mediated by stimulation of endocytosis (9). This hypothesis was further investigated using confocal microscopy. Fig. 3 depicts typical confocal images obtained from HEK293 cells transfected with GFP-ROMK1 + vector (A-D) or ROMK1 + c-Src (E-H). Application of PAO had no significant effect on the location of ROMK1 in the cells transfected with vector (Fig. 3, A-D). In contrast, addition of PAO altered the location of ROMK1 in the cells transfected with c-Src. From inspection of Fig. 3, E-H, it is apparent that the membrane location of ROMK1 diminished whereas the density of ROMK1 in the intracellular compartment increased significantly within 15 min following PAO treatment. This strongly indicates that inhibiting PTP stimulates the endocytosis of ROMK1 in cells transfected with c-Src and GFP-ROMK1.

To further confirm that PAO enhanced the endocytosis of ROMK1, we used the biotin labeling technique to study the effect of PAO on ROMK1 membrane location. The cells were treated with PAO or vehicle at 37°C for 15 min followed by labeling the surface proteins with biotin at 4°C. The ROMK1 channels were harvested by immunoprecipitation of the cell lysate with GFP antibody and detected by the ROMK antibody whereas the biotin-labeled ROMK1 channels were identified with neutravidin (Fig. 4A). Clearly, treatment of cells with 1 μM PAO significantly reduced the number of the biotin-labeled ROMK1. In 11 experiments, the density of biotin-labeled ROMK1 channels decreased by 65 ± 3% in the cells treated with PAO in comparison to those without PAO. This strongly indicates that inhibiting PTP facilitates the internalization of ROMK1. This hypothesis is also supported by experiments in which the effect of PAO on ROMK1 membrane location was studied using sulfo-NHS-SS-biotin. After labeling the surface proteins with biotin, the cells were treated with PAO for 15 min.

RESULTS

We first examined the properties of the GFP-ROMK fusion protein using Western blot and the patch clamp technique. Fig. 1 is a typical Western blot showing that ROMK antibody detects a 71-kDa protein harvested from the immunoprecipitation of the lysate of cells transfected with GFP-ROMK1 with GFP antibody.

Effect of PTP on ROMK1

FIG. 1. A Western blot showing that both GFP antibody (left panel) and ROMK antibody (right panel) detect a 71-kDa protein harvested by immunoprecipitation (IP) of the lysate of HEK293 cells transfected with GFP-ROMK1. IB, immunoblotting.

Moreover, we had previously carried out the patch clamp study in oocytes injected with cRNA encoding GFP-ROMK1 and detected an inward-rectifying K⁺ channel with an inward conductance of 40 picosiemens (1). This finding is also confirmed in the present investigation in which we have detected an inward-rectifying K⁺ channel with an inward slope conductance of 40 picosiemens in HEK293 cells transfected with GFP-ROMK1 (data not shown). The K⁺ channel has a high open probability and similar channel kinetics to that of ROMK1.

After confirming that GFP-ROMK1 has the same biophysical properties as those of ROMK1, we examined the effect of PAO on the activity of ROMK1 in HEK293 cells transfected with GFP-ROMK1 and c-Src. Fig. 2 is a typical recording showing that addition of 1 μM PAO inhibits the activity of ROMK1 by 95 ± 9%, and NPₙ falls from 0.93 to 0.04 (n = 4). This observation is consistent with our previous finding that inhibiting PTP decreased the activity of the native ROMK1-like channels in the CCD (9). Moreover, we have demonstrated previously that the inhibitory effect of PAO was absent in the CCDs treated with hypertonic solution, indicating that the effect of PAO on channel activity was mediated by stimulation of endocytosis (9). This hypothesis was further investigated using confocal microscopy. Fig. 3 depicts typical confocal images obtained from HEK293 cells transfected with GFP-ROMK1 + vector (A-D) or ROMK1 + c-Src (E-H). Application of PAO had no significant effect on the location of ROMK1 in the cells transfected with vector (Fig. 3, A-D). In contrast, addition of PAO altered the location of ROMK1 in the cells transfected with c-Src. From inspection of Fig. 3, E-H, it is apparent that the membrane location of ROMK1 diminished whereas the density of ROMK1 in the intracellular compartment increased significantly within 15 min following PAO treatment. This strongly indicates that inhibiting PTP stimulates the endocytosis of ROMK1 in cells transfected with c-Src and GFP-ROMK1.

To further confirm that PAO enhanced the endocytosis of ROMK1, we used the biotin labeling technique to study the effect of PAO on ROMK1 membrane location. The cells were treated with PAO or vehicle at 37°C for 15 min followed by labeling the surface proteins with biotin at 4°C. The ROMK1 channels were harvested by immunoprecipitation of the cell lysate with GFP antibody and detected by the ROMK antibody whereas the biotin-labeled ROMK1 channels were identified with neutravidin (Fig. 4A). Clearly, treatment of cells with 1 μM PAO significantly reduced the number of the biotin-labeled ROMK1. In 11 experiments, the density of biotin-labeled ROMK1 channels decreased by 65 ± 3% in the cells treated with PAO in comparison to those without PAO. This strongly indicates that inhibiting PTP facilitates the internalization of ROMK1. This hypothesis is also supported by experiments in which the effect of PAO on ROMK1 membrane location was studied using sulfo-NHS-SS-biotin. After labeling the surface proteins with biotin, the cells were treated with PAO for 15 min.

RESULTS

We first examined the properties of the GFP-ROMK fusion protein using Western blot and the patch clamp technique. Fig. 1 is a typical Western blot showing that ROMK antibody detects a 71-kDa protein harvested from the immunoprecipitation of the lysate of cells transfected with GFP-ROMK1 with GFP antibody.
at 37 °C to stimulate endocytosis and then incubated with TCEP, a reducing agent, to cleave the surface biotin (Fig. 4B). Thus, only internalized ROMK1 channels were labeled with biotin whereas the ROMK1 channels located in the cell membrane did not bear biotin. From inspection of Fig. 4B, it is apparent that inhibiting PTP significantly increased the internalization of ROMK1 channels. The amount of biotin-labeled ROMK1 in the PAO-treated group was 75 ± 9% (n = 4) of the control (no TCEP and PAO treatment) whereas the amount of the biotin-labeled ROMK1 in the absence of PAO was only 20 ± 4% (n = 4) of the control value.

Inhibiting PTP is expected to enhance the tyrosine phosphorylation of ROMK1, which has been shown to be a substrate of c-Src. Therefore, we examined the effect of PAO on the tyrosine phosphorylation of ROMK1 in cells transfected with GFP-ROMK1 and c-Src.

Lin, D. H., Sterling, H., Lerea, K. M., Welling, P., Jin, L., Giebisch, G., and Wang, W. H. (2001) J. Am. Soc. Nephrol. 12, 28.
ROMK1 and c-Src. After immunoprecipitation of ROMK1 with the GFP antibody, we detected the tyrosine phosphorylated ROMK1 with PY20, an antibody that reacts with tyrosine-phosphorylated proteins. Fig. 5 is a typical recording from 10 such experiments in which the effect of inhibiting PTP on the tyrosine phosphorylation of ROMK1 was studied. Although the same amount of ROMK1 was present in the cells treated or not treated with PAO, inhibiting PTP significantly increased the fraction of the tyrosine-phosphorylated ROMK1 by 110 ± 8% in comparison to those without PAO treatment. Therefore, the data strongly suggest that PAO increases the tyrosine phosphorylation of ROMK1 and in turn stimulates the internalization of ROMK1.

Our previous experiments indicated that the tyrosine residue 337 in the C terminus was critical for mediating c-Src-induced phosphorylation. Moreover, the observation that mutation of the tyrosine residue to alanine abolished the inhibitory effect of PAO on K current in oocytes injected with R1Y337A and c-Src suggested that tyrosine residue 337 is essential for initiating PAO-induced endocytosis (1). To further test this hypothesis, we investigated the effect of PAO on the membrane location of ROMK1 mutant, R1Y337A. Fig. 6 is a typical confocal image from eight such experiments showing the effect of PAO on the distribution of R1Y337A in HEK293 cells cotransfected with c-Src and R1Y337A. In contrast to ROMK1, addition of PAO did not change the pattern of R1Y337A distribution, and the intensity of membrane fluorescence was not significantly altered in the presence of PAO. The possibility that tyrosine residue 337 is essential for facilitating the endocytosis of ROMK1 is also supported by experiments in which the effect of PAO on the membrane density of ROMK1 or R1Y337A was studied using the biotin labeling technique (Fig. 7). The cells transfected with c-Src + ROMK1 or c-Src + R1Y337A were incubated in the presence or in the absence of PAO at 37 °C for 15 min followed by biotin labeling at 4 °C. Similar to the results shown in Fig. 4, inhibiting PTP significantly diminished the amount of ROMK1 located in the cell membrane as shown by the fact that the intensity of the biotin-labeled ROMK1 decreased by 65 ± 3% in comparison to those in the absence of PAO, although the same amount of ROMK1 was present in cells treated or not treated with PAO. In contrast, PAO did not significantly reduce the number of R1Y337A in the cell membrane (95 ± 9% of the control value) in comparison to those in the absence of PAO in cells transfected with c-Src and R1Y337A.

After establishing that inhibiting PTP increases the endocytosis of ROMK1 and that tyrosine residue 337 plays a key role in mediating the effect of PAO, we expanded the study to determine whether the effect of inhibiting PTP requires the involvement of dynamin. We first cotransfected the HEK293 cells with dominant negative dynamin (dynaminK44A), c-Src, and ROMK1 and found that the cells expressing ROMK1 also successfully expressed c-Src and dynaminK44A (Fig. 8). The effect of PAO on the ROMK1 distribution has also been studied using confocal microscopy and biotin labeling techniques. Fig. 9 is a typical confocal image demonstrating the effect of PAO on ROMK1 distribution in the cells transfected with GFP-ROMK1, c-Src, and dynaminK44A at a ratio of 1:1:3. It is apparent that PAO-induced internalization of ROMK1 is absent in the cells transfected with dynaminK44A (n = 7), the possibility that dynamin is required for the PAO-induced endocytosis of ROMK1 is also supported by the observation that PAO did not significantly decrease the number of ROMK1 in the membrane of cells transfected with dynaminK44A (Fig. 10). In 10 experiments we have observed that inhibiting PTP reduced the amount of the biotin-labeled ROMK1 by 10 ± 8% in...
The present investigation shows that inhibiting PTK can also abolish the effect of PAO on the activity of ROMK1 (1). ROMK1 is an inwardly rectifying K⁺ channel that is located in the apical membrane of the CCD (3, 5, 6). The CCD is responsible for K⁺ secretion and the hormone-regulated sodium reabsorption (7, 12). The K⁺ secretion is a two-step process: K⁺ enters the cell via the basolateral Na⁺–K⁺-ATPase and then diffuses into the lumen across the apical K⁺ channels (7). Two types of K⁺ channels, an SK channel and a Ca²⁺-activated large conductance K⁺ channel (13–18), have been identified in the apical membrane. The SK channel is mainly responsible for K⁺ secretion, because the SK channel has a high density and a high channel open probability (4). Although it is still not completely understood whether ROMK1 alone is sufficient to form the native SK channel, it is well established that ROMK1 is a key component of the native SK channel in the CCD (4). Therefore, ROMK1 plays a key role in regulating K⁺ secretion in the kidney.

K⁺ secretion is regulated by hormones such as aldosterone and by a dietary K⁺ intake (7, 12). The stimulatory effect of aldosterone on K⁺ secretion may be mediated by increasing the driving force for K⁺ diffusion across the apical membrane rather than altering the K⁺ conductance (19). This view is supported by the observation that application of aldosterone alone did not increase the number of the functional SK channels in the CCD (20). The effect of the dietary K⁺ intake on K⁺ secretion is well established; a low K⁺ intake decreases whereas a high K⁺ intake increases K⁺ secretion in the CCD (7, 12).

The effect of the dietary K⁺ intake on K⁺ secretion is at least in part achieved by changing the number of apical SK channels. For instance, we and others (14, 20) have observed that the number of ROMK1 channels increased in the CCD harvested from rats on a high K⁺ diet. Moreover, the effect of a high K⁺ intake on ROMK1 channels was not mediated by increasing transcription or translation, because neither ROMK mRNA nor ROMK protein in the kidney harvested from rats on a high K⁺ diet was changed in comparison to those on a normal K⁺ diet (21). This indicates that post-translation factors are involved in regulating the effect of the dietary K⁺ intake on K⁺ secretion. However, the nature of the factors responsible for mediating the effect of the K⁺ intake on ROMK1 is not completely understood.

We have observed previously that a low K⁺ intake increases whereas a high K⁺ intake decreases the expression of c-Src and cYes PTK in the kidneys (8), suggesting the role of PTK in mediating the effect of dietary K⁺ intake on K⁺ secretion. This notion is further supported by observations that inhibiting PTK increased the number of functional ROMK1 channels in the CCD obtained from rats on a K⁺-deficient diet (8, 22). In contrast, inhibiting PTK decreased the number of ROMK1 channels in the tubule from rats on a high K⁺ diet (9). Moreover, a low K⁺ intake increases the PTK-sensitive recycling pool of ROMK1 channels (8). Therefore, tyrosine phosphorylation or dephosphorylation of ROMK1 is an important mechanism by which a dietary K⁺ intake changes the ROMK1 density in the cell membrane. It is highly possible that an increase in tyrosine phosphorylation of ROMK1 diminishes whereas a decrease in tyrosine phosphorylation of ROMK1 augments the number of the ROMK1 channels in the cell membrane. This hypothesis has been supported by the preceding findings that PAO inhibits whereas herbimycin A increases the K⁺ current in oocytes injected with ROMK1 and c-Src (1). Four lines of evidence obtained from the previous and the present investigations strongly suggest that the inhibitory effect of PTK on ROMK1 channels is mediated by increasing the tyrosine phosphorylation of ROMK1. Second, mutation of tyrosine residue 337 of ROMK1 to alanine abolished the effect of PAO on ROMK1 channel activity in oocytes injected with R1Y337A (1). Third, our previous investigation has shown that inhibiting PTK can also abolish the effect of PAO on the activity of ROMK1 (1). ROMK1 is a large conductance K⁺ channel (19) of cell lysate with IP° 15 min followed by biotin labeling at 4 °C. The cell image under control conditions (A) was taken right before addition of PAO. B, C, and D show the channel location following addition of PAO at 5 min (B), 10 min (C), and 15 min (D), respectively.

FIG. 6. A confocal image showing the effect of PAO on the distribution of R1Y337A, a ROMK1 mutant in which tyrosine residue 337 was mutated to alanine. The magnification of the picture is ×600, and the length of the bar represents 10 μm. The cell image under control conditions (A) was taken right before addition of PAO. B, C, and D show the channel location following addition of PAO at 5 min (B), 10 min (C), and 15 min (D), respectively.

FIG. 7. A Western blot shows the effect of PAO on the membrane fraction of ROMK1 or R1Y337A labeled by biotin. The cells transfected with ROMK1/R1Y337A + c-Src were treated with PAO for 15 min followed by biotin labeling at 4 °C. The ROMK1/R1Y337A proteins were harvested by immunoprecipitation (IP) of cell lysate with GFP antibody. The membrane fraction of the K⁺ channels was detected with neutrevidin horseradish peroxidase (left panel), and the total ROMK1/R1Y337A proteins were identified with ROMK antibody (right panel). The data were normalized according to the total K⁺ channel protein level. IB, immunoblotting.
internalization of ROMK1 rather than by a direct inhibition induced by tyrosine phosphorylation. First, we have previously shown that addition of exogenous c-Src to the bath facing cytosolic membrane of inside-out patches did not block the channel activity (1). Second, previous investigations have found that the inhibitory effect of PAO on K^+/H^+ current in oocytes injected with ROMK1 and c-Src was abolished by hypertonic solution or concanavalin A (1, 9); both maneuvers have been shown to block the endocytosis of the membrane proteins (23, 24). Third, we have previously used GFP-ROMK1 as a tool to demonstrate that PAO decreases whereas herbimycin A increases the fluorescence intensity of the membrane in oocytes injected with c-Src and GFP-ROMK1 (1). This observation has also been confirmed by the present finding that inhibiting PTP decreased the number of ROMK1 in the membrane of HEK293 cells using confocal microscopy and the biotin labeling technique. Finally, we have shown in the present study that the effect of PAO on the ROMK1 surface distribution was absent in the cells transfected with dominant negative dynamin.

Dynamin has been shown to be involved in clathrin-mediated vesicular trafficking processes (25) and endocytosis of a variety of proteins such as GLUT 4 (26, 27) and glutamate receptor (28). In the kidney, dynamin is required for initiating endocytosis of epithelial sodium channels (29) and Na^+H^+ exchanger (10). It has been shown that dynamin is a substrate of PTK, and phosphorylation of dynamin is essential for inducing the internalization of β2-adrenergic receptor (30, 31). We need further experiments to determine whether dynamin phosphorylation is required for initiating the endocytosis of ROMK1. However, the observation that expression of dynaminK44A abolished the effect of PAO on the internalization of ROMK1 channels strongly indicates that endocytosis of ROMK1 requires dynamin.

In the present study we have demonstrated that the tyrosine phosphorylation of ROMK1 is an important step for initiating the endocytosis of ROMK1, because mutation of tyrosine residue 337 of ROMK1 completely abolished the PAO-induced stimulation of ROMK1 endocytosis. We have previously demonstrated that ROMK1 is a substrate of c-Src, and tyrosine residue 337 is the main site of PTK-induced tyrosine phosphorylation (11). However, it is possible that phosphorylation of tyrosine residue is not the only requirement for initiating the endocytosis of ROMK1. This conclusion is based on our
observation that PAO did not inhibit the activity of ROMK2 channels in oocytes. Moreover, inhibiting PTP did not inhibit the ROMK-like K⁺ channels in the thick ascending limb (11) where ROMK2 is located. This indicates that the N terminus of ROMK1 may also be required for starting the endocytosis. We need further experiments to explore the role of the N terminus in inducing the endocytosis of ROMK1.

The physiological significance of the present investigation is to define a mechanism by which a low K⁺ intake decreases the apical K⁺ conductance and K⁺ secretion. We have demonstrated previously that the amount of tyrosine-phosphorylated ROMK channels was significantly larger in the kidney from rats on a K⁺-deficient diet than those on a high K⁺ diet (11). This finding may be used to explain the observation that herbimycin A was over 80% in the CCD from rats on a K⁺/H₁₁₀₀₁-P TK inhibitor was absent in the CCD from rats on a high K⁺ intake decreases the number of ROMK1 channels in the cell membrane. D, dynamin, P, phosphorylation.

Fig. 11. A model of CCD principal cell illustrating the mechanism by which low K⁺ intake decreases the number of ROMK1 channels in the cell membrane. D, dynamin, P, phosphorylation.

We conclude that inhibiting PTP increases the tyrosine phosphorylation of ROMK1 and enhances the dynamin-dependent endocytosis and that tyrosine residue 337 of ROMK1 is essential for the effect of inhibiting PTP.

Acknowledgment—We thank Melody Steinberg for helping in the preparation of the manuscript.

REFERENCES

1. Morrall, Z., Deng, K., Wei, Y., Sterling, H., Deng, H., Ali, S., Gu, R. M., Huang, X. Y., Hebert, S. C., Giebisch, G., and Wang, W. H. (2001) J. Biol. Chem. 276, 7156–7163
2. Boin, M. A., Ho, K., Schuck, M. E., Bienkowski, M. J., Block, J. H., Sligh, J. L., Yang, Y., Brenner, B. M., and Hebert, S. C. (1995) Am. J. Physiol. 268, F1132–F1140
3. Ho, K., Nichols, C. G., Lederer, W. J., Lytton, J., Vassilev, P. M., Kanazirska, M. V., and Hebert, S. C. (1993) Nature 362, 31–38
4. Wang, W. H., Hebert, S. C., and Giebisch, G. (1997) Annu. Rev. Physiol. 59, 413–436
5. Xu, J. Z., Hall, A. E., Peterson, L. N., Bienkowski, M. J., Esselau, T. E., and Hebert, S. C. (1997) Am. J. Physiol. Renal Physiol. 273, F739–F748
6. Mennitt, P. A., Wade, J. B., Ezelbarger, C. A., Palmer, L. G., and Frindt, G. (1997) J. Am. Soc. Nephrol. 8, 1823–1830
7. Giebisch, G. (1998) Am. J. Physiol. Renal Physiol. 274, F817–F833
8. Wei, Y., Bloom, P., Lin, D. H., Gu, R. M., and Wang, W. H. (2001) Am. J. Physiol. Renal Physiol. 281, F206–F212
9. Wei, Y., Bloom, P., Gu, R. M., and Wang, W. H. (2000) J. Biol. Chem. 275, 20502–20507
10. Collazo, R., Fan, L., Hu, M. C., Zhao, H., Wiederkehr, M. R., and Moe, O. W. (2000) J. Biol. Chem. 275, 31601–31608
11. Gu, R. M., Wei, Y., Falc, J. R., Krishna, U. M., and Wang, W. H. (2001) Am. J. Physiol. Cell. Physiol. 281, C1188–C1195
12. Palmer, L. G. (1999) Am. J. Physiol. Renal Physiol. 277, F821–F825
13. Frindt, G., and Palmer, L. G. (1989) Am. J. Physiol. Renal Physiol. 256, F143–F151
14. Wang, W., Schwach, A., and Giebisch, G. (1990) Am. J. Physiol. Renal Physiol. 259, F494–F502
15. Satlin, L. M., and Palmer, L. G. (1997) Am. J. Physiol. Renal Physiol. 272, F397–F404
16. Schlatter, E., Lohrmann, E., and Greger, R. (1992) Pflugers Arch. 420, 39–45
17. Hunter, M., Lopes, A. G., Boulpaep, E. L., and Giebisch, G. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4237–4239
18. Frindt, G., and Palmer, L. G. (1987) Am. J. Physiol. Renal Physiol. 252, F458–F467
19. Schafer, J. A., Troutman, S. L., and Schlatter, E. (1990) Am. J. Physiol. Renal Physiol. 258, F199–F210
20. Palmer, L. G., Antonian, L., and Frindt, G. (1994) J. Gen. Physiol. 103, 693–710
21. Frindt, G., Zhou, H., Sackin, H., and Palmer, L. G. (1998) Am. J. Physiol. Renal Physiol. 274, F525–F531
22. Wang, W. H., Lerea, K. M., Chan, M., and Giebisch, G. (2000) Am. J. Physiol. Renal Physiol. 278, F165–F171
23. Luttrell, L. M., and Daaka, Y., Della-Rocca G. J., and Lefkowitz, R. J. (1997) J. Biol. Chem. 272, 31648–31656
24. Beaumont, V., Heworth, M. B., Luty, J. S., Kelly, E., and Henderson, G. (1998) J. Biol. Chem. 273, 33174–33183
25. Marks, B., Stowell, M. H., Vallis, Y., Mills, I. G., Gibson, A., Hopkins, C. R., and McMahon, H. T. (2001) Nature 410, 231–235
26. Kao, A. W., Ceresa, B. P., Santeler, S. R., and Pessin, J. E. (1998) Am. J. Physiol. 275, 25450–25464
27. Al-Hussaini, H. H., Hine, C. S., and Cushman, S. W. (1998) J. Biol. Chem. 273, 17504–17510
28. Carroll, R. C., Beattie, E. C., Xia, H., Luescher, C., Autsch, Y., Ricci, N., Malenk, R. C., and von Zastrow, M. (1999) Proc. Natl. Acad. Sci. 96, F1140–F1147
29. Shankets, A. A., Lutret, R. P., and Carues, C. M. (1997) J. Biol. Chem. 272, 25537–25541
30. Foster-Barber, A., and Bishop M. (1998) Proc. Natl. Acad. Sci. 95, 4673–4677
31. Miller, W. E., Maudsley, S., Ahn, S., Khan, K. D., Luttrell, L. M., and Lefkowitz, R. J. (2000) J. Biol. Chem. 275, 11312–11319

3 Unpublished observation.
Inhibition of Protein-tyrosine Phosphatase Stimulates the Dynamin-dependent Endocytosis of ROMK1
Hyacinth Sterling, Dao-Hong Lin, Rui-Min Gu, Ke Dong, Steven C. Hebert and Wen-Hui Wang

J. Biol. Chem. 2002, 277:4317-4323.
doi: 10.1074/jbc.M109739200 originally published online November 21, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M109739200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 31 references, 13 of which can be accessed free at http://www.jbc.org/content/277/6/4317.full.html#ref-list-1