Weak Localization and the Mooij Rule in Disorderd Metals

Mi-Ae Park
*Department of Physics, University of Puerto Rico at Humacao,
Humacao, PR 00791*

Kerim Savran and Yong-Jihn Kim
*Department of Physics, Bilkent University,
06533 Bilkent, Ankara, Turkey*

Abstract

Weak localization leads to the same correction to both the conductivity and the McMillan’s electron-phonon coupling constant λ (and λ_{tr}). Consequently the temperature dependence of the thermal electrical resistivity is decreasing as the conductivity is decreasing due to weak localization, which results in the decrease of the temperature coefficient of resistivity (TCR) with increasing the residual resistivity. When λ and λ_{tr} are approaching zero, only residual resistivity part remains and gives rise to the negative TCR. Accordingly, the Mooij rule is a manifestation of weak localization correction to the conductivity and the electron-phonon interaction. This study may provide a new means of probing the phonon-mechanism in exotic superconductors.

PACS numbers: 72.10.Di, 72.15.Rn, 72.15.Cz, 72.60.+g
I. INTRODUCTION

Although weak localization has greatly deepened our understanding of the normal state of disordered metals,1,2,3 its effect on superconductivity and the electron-phonon interaction has not been understood well.2 Recently, it has been shown that weak localization leads to the same correction to the conductivity and the phonon-mediated interaction.4,5 In fact, there are overwhelming numbers of experiments which support this idea.5 For instance, tunneling,6−8 specific heat,9 x-ray photoemission spectroscopy (XPS),10 correlation of T_c and the residual resistivity,11−13 universal correlation of T_c and the resistance ratio,14−16 and loss of the thermal electrical resistivity17 with decreasing T_c clearly show a decrease of the electron-phonon interaction accompanying the decrease of T_c with disorder. It is then anticipated that the electron-phonon interaction in the normal state of metals will also be influenced strongly by weak localization. We expect that phonon-limited electrical resistance, attenuation of a sound wave, thermal resistance, and a shift in phonon frequencies may change due to weak localization.18

Indeed, the Mooij rule19 in strongly disordered metallic systems seems to be a manifestation of the effect of weak localization on the electron-phonon interaction and the conductivity. In early seventies, Mooij found a correlation between the residual resistivity and the temperature coefficient of resistivity (TCR). In particular, TCR is decreasing with increasing the residual resistivity. Then it becomes negative for resistivities above 150\textmuΩcm. We stress that this behavior is consistent with the above superconducting properties: correlation of T_c and the residual resistivity,11−13 universal correlation of T_c and the resistance ratio,14−16 and loss of the thermal electrical resistivity17 with decreasing T_c.

There are already several theoretical works on this problem. Jonson and Girvin20 performed numerical calculations for an Anderson model on a Cayley tree and found that the adiabatic phonon approximation breaks down in the high-resistivity regime producing the negative TCR. Imry21 pointed out the importance of incipient Anderson localization (weak localization) in the resistivities of highly disordered metals. He argued that when the inelastic mean free path, ℓ_{ph}, is smaller than the coherence length, ξ, the conductivity increases with temperature like ℓ_{ph}^{-1} and thereby leads to the negative TCR. On the other hand, Kaveh and Mott22 generalized the Mooij rule. Their results are as follows: The temperature dependence of the conductivity of a disordered metal as a function of temperature changes slope due to weak localization effects, and if interaction effects are included, the conductivity changes its slope three times. Götze, Belitz, and Schirmacher23,24 introduced a theory with phonon-induced tunneling. There is also the extended Ziman theory,25 and Jayannavar and Kumar26 suggested that the Mooij rule can arise from strong electron-phonon interaction taking into account qualitatively different roles of the diagonal and off-diagonal modulations. In this paper, we propose an explanation of the Mooij rule based on the effect of weak localization on the electron-phonon interaction. If we assume the decrease of the electron-phonon interaction due to weak localization,4,5 we can understand the decrease of TCR with increasing the residual resistivity. The negative TCR is therefore due to weak localization correction to the Boltzmann conductivity, since when TCR is approaching zero there is no temperature-dependent resistivity left. (This latter point is similar to Kaveh and Mott’s interpretation.22) In Sec. II, we briefly describe the Mooij rule. In Sec. III, weak localization correction to the McMillan’s electron-phonon coupling constant λ and λ_r is calculated. A
possible explanation of the Mooij rule is given in Sec. IV, and its implication is briefly discussed in Sec. V. In particular, this study may provide a means to probe the phonon-mechanism in exotic superconductors.

II. THE MOOIJ RULE

Mooij19 was the first to point out that the size and sign of the temperature coefficient of resistivity (TCR) in many disordered systems correlate with its residual resistivity ρ_0 as follows:

$$
\frac{d\rho}{dT} > 0 \text{ if } \rho_0 < \rho_M
$$

$$
\frac{d\rho}{dT} < 0 \text{ if } \rho_0 > \rho_M.
$$

Thus, TCR changes sign when ρ_0 reaches the Mooij resistivity $\rho_M \cong 150 \mu\Omega\text{cm}$. An approximate equation for $\rho(T)$ is given by2

$$
\rho(T) = \rho_0 + (\rho_M - \rho_0)AT,
$$

where A is a constant which depends on the material.

Figure 1 shows the temperature coefficient of resistance α versus resistivity for transition-metal alloys obtained by Mooij. It is clear that α (and TCR) is correlated with the residual resistivity. Note that above $150 \mu\Omega\text{cm}$ most α’s are negative while no negative α is found for resistivities below $100 \mu\Omega\text{cm}$. Figure 2 shows the resistivity as a function of temperature for pure Ti and TiAl alloys containing 3, 6, 11, and 33% Al. TCR is decreasing as the residual resistivity is increasing. For TiAl alloy with 33% Al shows the negative TCR. We note that the positive TCR is basically high temperature phenomenon, presumably related to the phonon-limited resistivity, whereas the negative TCR is rather low temperature behavior, probably connected with the residual resistivity part. Since this behavior is generally found in strongly disordered metals and alloys, amorphous metals, and metallic glasses,2 it is called the Mooij rule. However, the physical origin of this rule has remained unexplained until now.

III. WEAK LOCALIZATION CORRECTION TO THE ELECTRON-PHONON INTERACTION

Since the electron-phonon interaction in metals gives rise to both the (high temperature) resistivity and superconductivity, these properties are closely related, which was noticed by many workers.27–31 Gladstone, Jensen, and Schrieffer27 pointed out that λ and the high temperature electrical resistivity are closely related each other. Hopfield28,29 noted that the electronic relaxation time due to electron-phonon interaction, as measured in optical experiments above the Debye temperature, should be approximately equal to $2\pi\lambda k_B T/\hbar$. He applied this idea to Nb, Mo, Al and Sn and found a good agreement with experiment. Grimvall30 estimated λ for noble metals from Ziman’s high temperature resistivity formula. Maksimov and Motulevich31 followed the idea of Hopfield and estimated λ from optical measurements for Pb, Sn, In, Al, Zn, Nb, V, Nb\textsubscript{3}Sn, and V\textsubscript{3}Ga, which are in good agreement with the McMillan’s coupling constant λ from superconductivity data.

In this Section, we show that weak localization leads to the same correction to the conductivity, the McMillan’s electron-phonon coupling constant λ, and λ_{tr}.
A. High Temperature resistivity

At high temperatures, the phonon limited electrical resistivity is

$$\rho_{ph}(T) = \frac{4\pi mk_B T}{ne^2 \hbar} \int \frac{\alpha^2(F(\omega))}{\omega} d\omega,$$

$$= \frac{2\pi mk_B T}{ne^2 \hbar} \lambda_{tr}, \quad (3)$$

where α_{tr} includes an average of a geometrical factor $1 - \cos \theta_{kk'}$ and $F(\omega)$ is the phonon density of states. On the other hand, in the strong-coupling theory of superconductivity\(^{36,37}\) the McMillan’s electron-phonon coupling constant is defined by\(^{37}\)

$$\lambda = 2 \int \frac{\alpha^2(\omega) F(\omega)}{\omega} d\omega. \quad (4)$$

Assuming $\alpha_{tr}^2 \simeq \alpha^2$,\(^{32,38-40}\) we obtain

$$\rho_{ph}(T) = \frac{2\pi mk_B T}{ne^2 \hbar} \lambda_{tr}$$

$$\simeq 2\pi mk_B T \frac{\lambda}{ne^2 \hbar}. \quad (5)$$

Consequently the McMillan’s coupling constant λ also determines the size and sign of TCR.

The existence of this relationship was well confirmed theoretically and experimentally. Table I shows the comparison of λ_{tr} and λ by Economou\(^{38}\) for various materials. He obtained λ_{tr} from Eq. (5) and compared with λ, as obtained from T_c measurements, and/or tunneling experiments, and/or first principle calculations.\(^{39}\) The overall agreement between λ_{tr} and λ is impressive. Grimvall estimated λ for noble metals\(^{30}\) and noble metal alloys\(^{41}\) from Eq. (6). Maksimov\(^{40}\) also noted the direct relation between λ and the high temperature resistivity. Hayman and Carbotte\(^{42}\) pointed out that information on the volume dependence of an electron-phonon coupling strength can be obtained from high temperature resistivity. Chakraborty, Pickett, and Allen\(^{43}\) used Eq. (5) to obtain the empirical values of λ_{tr} for Nb, Mo, Ta, and W. They found that λ_{tr} from resistance and the McMillan’s coupling constant λ from superconductivity are very similar in magnitude for these materials. We can also mention experimental confirmations by Rapp and Crawford\(^{44}\) for Nb-V alloys, Rapp and Fogelholm\(^{45}\) for Al-Mg alloys, Flükiger and Ishikawa\(^{46}\) for Zr-Nb-Mo alloys, Fogelholm and Rapp\(^{47}\) for In-Sn alloys, Lutz et al.\(^{48}\) for Nb$_3$Ge films, Man’kovskii et al.\(^{49}\) for thin Sn films, Rapp, Mota and Hoyt\(^{50}\) for Au-Ga alloys, and Sundqvist and Rapp\(^{51}\) for aluminum under pressure. Figure 3 shows the McMillan’s coupling constant λ versus $d\rho/dT \propto \lambda_{tr}$ for Au-Ga, Au-Al, and Ag-Ga alloys,\(^{52}\) which exemplifies the correlation implied by Eq. (6).

B. Weak localization correction to the McMillan’s coupling constant λ and λ_{tr}

Now we need to calculate the McMillan’s electron-phonon coupling constant λ for highly disordered systems. We follow McMillan’s approach to the strong-coupling theory.\(^{37,5}\) (For simplicity we consider an Einstein model with frequency ω_D). He showed that λ can be written as\(^{37}\)
\[
\lambda = 2 \int \frac{\alpha^2(\omega)F(\omega)}{\omega} d\omega \\
= N_0 \frac{<I^2>}{M <\omega^2>},
\]
where \(M\) is the ionic mass and \(N_0\) is the electron density of states at the Fermi level. \(<I^2>\) is the average over the Fermi surface of the square of the electronic matrix element and \(<\omega^2> = \omega_D^2\). In the presence of impurities, weak localization leads to a correction to \(\alpha^2(\omega)\) or \(<I^2>\), (disregarding the changes of \(F(\omega)\) and \(N_0\)).

There are two ways to obtain the McMillan’s coupling constant \(\lambda\) in the presence of impurities. One method is to calculate \(\lambda\) directly from Eq. (8), using the electronic matrix element for disordered systems and the other is to carry out the canonical transformation of Fröhlich in the scattered state basis.\(^5\)\(^53\) We have found that both methods lead to the same \(\lambda\).

In this paper, we use the latter method in a simple manner by observing that the Fröhlich interaction can be derived from the phonon Green’s function.\(^54\) We note that the equivalent electron-electron potential in the electron-phonon problem is given by the phonon Green’s function:

\[
V(x - x') \rightarrow \frac{I_0^2}{M\omega_D^2} D(x - x'),
\]
where \(x = (r, t)\) and \(I_0\) is the electronic matrix element for the plane wave states. The Fröhlich interaction at finite temperatures is then given by\(^54\)

\[
V_{nn'}(\omega, \omega') = \frac{I_0^2}{M\omega_D^2} \int \int \frac{d\mathbf{r} d\mathbf{r}'}{\omega_D^2} \psi^*_n(\mathbf{r}) \psi^*_n(\mathbf{r}') D(\mathbf{r} - \mathbf{r}', \omega - \omega') \psi_{n'}(\mathbf{r}') \psi_n(\mathbf{r}) \\
= \frac{I_0^2}{M\omega_D^2} \int |\psi^*_n(\mathbf{r})|^2 |\psi_n(\mathbf{r})|^2 d\mathbf{r} \frac{\omega_D^2}{\omega_D^2 + (\omega - \omega')^2} \\
= V_{nn'} \frac{\omega_D^2}{\omega_D^2 + (\omega - \omega')^2},
\]

where

\[
D(\mathbf{r} - \mathbf{r}', \omega - \omega') = \sum_q \frac{\omega_D^2}{(\omega - \omega')^2 + \omega_D^2} e^{i\mathbf{q} \cdot (\mathbf{r} - \mathbf{r}')} \\
= \frac{\omega_D^2}{(\omega - \omega')^2 + \omega_D^2} \delta(\mathbf{r} - \mathbf{r'}). \quad (11)
\]

Here \(\omega\) means the Matsubara frequency and \(\psi_n\) and \(\psi_{n'}\) denote the scattered state and its time-reversed partner, respectively. Therefore, we get the strong-coupling gap equation\(^5\)

\[
\Delta(n, \omega) = T \sum_{n'} \sum_{\omega'} V_{nn'}(\omega, \omega') \frac{\Delta(n', \omega')}{\omega'^2 + E_{n'}^2(\omega')} \\
= T \sum_{\omega} \frac{\omega_D^2}{(\omega - \omega')^2 + \omega_D^2} \sum_{n'} V_{nn'} \frac{\Delta(n', \omega')}{\omega'^2 + E_{n'}^2(\omega')}, \quad (12)
\]
where

\[E_{n'}(\omega') = \sqrt{\epsilon_n^2 + \Delta_n^2(\omega')}, \] (13)

and the McMillan’s electron-phonon coupling constant \(\lambda \)

\[\lambda = N_0 < V_{nn'}(0,0) > = N_0 \frac{I_0^2}{M \omega_D^2} < \int |\psi_n(r)|^2 |\psi_{n'}(r)|^2 dr > . \] (14)

Here \(\epsilon_n \) means the eigenenergy of the scattered state \(\psi_n \). As expected, Eq. (14) is the same as Eq. (8). It is remarkable that the McMillan’s electron-phonon coupling constant is determined by the density correlation function.

Note also that in the presence of impurities, the density correlation function has a free-particle form for \(t < \tau \) (scattering time) and a diffusive form for \(t > \tau \). \(^{57}\) As a result, for \(t>\tau \) (or \(r>\ell \)), one finds \(^{58-62}\)

\[R(t > \tau) = \int_{t>\tau} |\psi_n(r)|^2 |\psi_{n'}(r)|^2 dr \]

\[= \sum_{\bar{q}} |< \psi_n | e^{-i\bar{q}r} | \psi_{n'} > |^2 \]

\[= \sum_{\pi/L < \bar{q} < \pi/\ell} \frac{1}{2\pi\hbar N_0 D \bar{q}^2} \]

\[= \frac{3}{2(k_F \ell)^2} (1 - \frac{\ell}{L}). \] (15)

Here \(\ell \) is the mean free path and \(L \) is the inelastic diffusion length. Whereas the contribution from the free-particle-like density correlation for \(t < \tau \) is \(^{58}\)

\[R(t < \tau) = \int_{t<\tau} |\psi_n(r)|^2 |\psi_{n'}(r)|^2 dr \]

\[= [1 - \frac{3}{(k_F \ell)^2} (1 - \frac{\ell}{L})]. \] (17)

Since the phonon-mediated interaction is retarded for \(t_{ret} \sim 1/\omega_D \), only the free-particle-like density correlation contributes to \(\lambda \). This is also true of \(\lambda_{tr} \), simply because the conductivity is determined by the behavior of the wavefunction \(\psi \) for \(t < \tau \) (or \(r < \ell \)).\(^ {63}\)

Consequently, we obtain weak localization correction to the McMillan’s coupling constant \(\lambda \) and \(\lambda_{tr} \):

\[\lambda = N_0 \frac{I_0^2}{M \omega_D^2} [1 - \frac{3}{(k_F \ell)^2} (1 - \frac{\ell}{L})]. \] (18)

and

\[\lambda_{tr} = 2 \int \frac{\alpha_{tr}^2(\omega) F(\omega)}{\omega} d\omega \]

\[\approx N_0 \frac{I_0^2}{M \omega_D^2} [1 - \frac{3}{(k_F \ell)^2} (1 - \frac{\ell}{L})] \]

\[= N_0 \frac{I_0^2}{M \omega_D^2} [1 - \frac{3}{(k_F \ell)^2}]. \] (19)

We have used the fact that \(L \) is effectively infinite at \(T = 0 \). Note that the weak localization correction term is the same as that of the conductivity.
IV. EXPLANATION OF THE MOOIJ RULE

As noted in the Section II, the positive TCR is high temperature phenomenon whereas the negative TCR is low temperature phenomenon. Thus, the decrease of the positive TCR is mainly due to the decrease of the phonon-limited resistivity, which is a manifestation of weak localization correction to the electron-phonon interaction. On the other hand, the negative TCR originates from the residual resistivity, which is also a manifestation of weak localization correction to the conductivity. Accordingly, weak localization seems to be the physical origin of the Mooij rule in disordered metals. One should note that this observation agrees with the superconducting behavior of disordered systems, such as correlation of \(T_c \) and the residual resistivity,\(^{11-13}\) universal correlation of \(T_c \) and the resistance ratio,\(^{14-16}\) and loss of the thermal resistivity\(^{17}\) with decreasing \(T_c \).

A. Decrease of TCR at high temperatures

Upon substituting Eq. (19) into Eq. (3), one finds the phonon-limited high temperature resistivity

\[
\rho_{ph}(T) = \frac{2\pi mk_BT}{ne^2\hbar} \lambda_{tr}
\]

\[
\cong \frac{2\pi mk_BT}{ne^2\hbar} \frac{N_0I_0^2}{M\omega_D^2} [1 - \frac{3}{(k_F\ell)^2}], \tag{20}
\]

Note that as the disorder parameter \(1/k_F\ell \) is increasing, both the magnitude of the phonon-limited resistivity and the TCR decrease. This behavior is due to the reduction of the McMillan’s electron-phonon coupling constant when electrons are weakly localized. It is remarkable that the slope of the high temperature resistivity varies as \(\sim 1/(k_F\ell)^2 \), in accord with the behavior of the residual resistivity.

The phonon-limited resistivity \(\rho_{ph} \) versus temperature \(T \) is shown in Fig. 4 (a) for six values of \(k_F\ell \). We used \(k_F = 0.8\text{Å}^{-1}, \ n = k_F^2/3\pi^2, \) and \(N_0I_0^2/(M\omega_D^2) = 0.5. \) It is clear that TCR is decreasing significantly as the electrons are weakly localized.

B. Negative TCR at low temperatures

At low temperatures the conductivity and the residual resistivity are given by\(^{2,3}\)

\[
\sigma = \sigma_B[1 - \frac{3}{(k_F\ell)^2}(1 - \frac{\ell}{L})], \tag{21}
\]

and

\[
\rho_0 = \frac{1}{\sigma_B[1 - \frac{3}{(k_F\ell)^2}(1 - \frac{\ell}{L})]}, \tag{22}
\]

where \(\sigma_B = ne^2\tau/m. \) When \(1/k_F\ell \) becomes comparable to \(\sim 1, \) the magnitude and slope of \(\rho_{ph}(T) \) are negligible. In that case, only the residual resistivity will play an important role.
Therefore, the observed negative TCR may be understood from the residual part. With decreasing T, since the inelastic diffusion length L increases, the residual resistivity will also increase, leading to the negative TCR. We stress that both the phonon-limited resistivity and the residual resistivity have the same quadratic dependence on the disorder parameter $1/k_F\ell$.

Figure 4 (b) shows the temperature dependence of the residual resistivity ρ_0 for $k_F\ell = 2.2, 2.4, 2.8, 3.4, 5, \text{ and } 15$. Since it is difficult to evaluate $k_F\ell$ up to a factor of 2, we assumed that $\rho_0 = 100 \mu\Omega cm$ corresponds to $k_F\ell = 3.2$. We used the same k_F as in Fig. 4 (a) and $L = \sqrt{D\tau_i} = \sqrt{\ell \times 350/T(A)}$. Here D is the diffusion constant and τ_i denotes the inelastic scattering time. When $k_F\ell$ is comparable to 1, the negative TCR emerges. Notice the scale difference between Figures, 4 (a) and 4 (b).

C. Comparison with experiment

In Sections IV. A and B, we have explained the physical origin of the Mooij rule. In this section, we compare our theoretical resistivity curve and the experimental data (Figure 2) for extended temperature range. Let us remind the approximate formula for $\rho(T)$ suggested by Lee and Ramakrishnan, i.e.,

$$\rho(T) = \rho_0 + (\rho_M - \rho_0)AT. \quad (23)$$

This form of equation can be obtained if we add the residual resistivity Eq. (22) and the phonon-limited resistivity Eq. (20), that is,

$$\rho(T) = \rho_0 + \rho_{ph}(T) + \Delta^\text{int} \rho_{ph}, \quad (25)$$

where c denotes an impurity concentration. Whereas Altshuler65 and Reizer and Sergeev66 investigated corrections to the impurity resistivity due to the interference, we have considered its correction to the phonon-limited resistivity. Since the interference correction to the impurity resistivity is $\sim 1\%$ of the residual resistivity,66,67 we neglect its effect for simplicity.

In general, the phonon-limited resistivity at any temperature T is given by$^{32-35}$

$$\rho_{ph}(T) = \frac{4\pi m}{ne^2} \int \frac{(\beta\hbar\omega)\alpha^2_{tr}(\omega)F(\omega)}{(e^{\beta\hbar\omega} - 1)(1 - e^{-\beta\hbar\omega})}d\omega, \quad (26)$$

where $\beta = 1/k_BT$. For an Einstein phonon model with68

$$\alpha^2_{tr}(\omega)F(\omega) = \frac{N_0I_0^2}{2M\omega_D}\delta(\omega - \omega_D), \quad (27)$$

8
it is rewritten as69

\[
\rho_{ph}(T) = \frac{2\pi m}{ne^2} \frac{N_0 I_0^2}{M\omega_D^2} \frac{(\beta \hbar \omega_D)\omega_D}{(e^{\beta \hbar \omega_D} - 1)(1 - e^{-\beta \hbar \omega_D})}.
\] (28)

It is necessary to emphasize that this result is exact for the phonon-limited resistivity in an Einstein model.67 Including the weak localization correction to \(\alpha^2(\omega) \approx \alpha^2_{tr}(\omega)\),

\[
\alpha^2_{tr}(\omega) F(\omega) = \frac{N_0 I_0^2}{2M\omega_D} \left[1 - \frac{3}{(k_F\ell)^2}\right][\delta(\omega - \omega_D)]
\] (29)

one finds

\[
\rho_{ph}(T) = \frac{2\pi m}{ne^2} \frac{N_0 I_0^2}{M\omega_D^2} \left[1 - \frac{3}{(k_F\ell)^2}\right] \frac{(\beta \hbar \omega_D)\omega_D}{(e^{\beta \hbar \omega_D} - 1)(1 - e^{-\beta \hbar \omega_D})}.
\] (30)

Finally, we obtain the total resistivity at any temperature \(T\):

\[
\rho(T) = \rho_0 + \rho_{ph}(T)
\] = \frac{1}{\sigma_B[1 - \frac{3}{(k_F\ell)^2}(1 - \frac{\ell}{L})]} + \frac{2\pi m}{ne^2} \frac{N_0 I_0^2}{M\omega_D^2} \left[1 - \frac{3}{(k_F\ell)^2}\right] \frac{(\beta \hbar \omega_D)\omega_D}{(e^{\beta \hbar \omega_D} - 1)(1 - e^{-\beta \hbar \omega_D})}.
\] (31)

(If we consider the Debye and realistic phonon models, there are minor changes. However, the overall behavior is the same. More details will be published elsewhere.)

Figure 5 shows the resistivity as a function of temperature for \(k_F\ell = 2.3, 2.5, 2.8, 3.4, 5, \) and 15. The solid lines represent the resistivity from an accurate expression Eq. (31), while the dashed lines are obtained from Eq. (24). We used the same parameters as those in Fig. 4 and \(\hbar \omega_D = 250K\). It is noteworthy that both equations give rise to almost the same curve as the system is more disordered. For low temperatures \(\tau_i\) is determined by electron-electron scattering while for high temperatures it is determined by the electron-phonon scattering. Since we are interested in rather high temperatures, we assumed \(\tau_i \sim T^{-1}\) corresponding to the electron-phonon scattering.2,3 Considering the crudeness of our calculation, the overall behavior is in good agreement with experiment, Fig. 2.

\section*{V. DISCUSSION}

At low temperatures the interference of the Coulomb interaction and the impurity scattering leads to the interaction correction to the conductivity.60,2 This effect is described by70

\[
\sigma = \sigma_B[1 - \frac{3}{(k_F\ell)^2}(1 - \frac{\ell}{L}) - \frac{C}{(k_F\ell)^2(1 - \frac{\ell}{L_T})}],
\] (32)

where \(L_T = (\hbar D/k_BT)^{1/2}\) and \(C \sim 1\). The second correction term is the interaction term. The constant \(C\), however, changes sign depending on the exchange and Hartree terms and since it is difficult to determine \(C\),2,3,70 we did not include this term. But it may be important at much lower temperatures.
It is clear that weak localization effect on the electron-phonon interaction needs more theoretical and experimental studies. In particular, weak localization effect on the attenuation of a sound wave, shear modulus, thermal resistance, and a shift in phonon frequencies will be very interesting. Since superconductivity is also caused by the electron-phonon interaction, comparative study of the normal and superconducting properties of the metallic samples will be beneficial. There is already compelling evidence that this is the case. For instance, Testardi and his coworkers14−17 found the universal correlation of T_c and the resistance ratio. They also found that decreasing T_c is accompanied by the decrease of the thermal electrical resistivity.17

Observe that this study may provide a means of probing the phonon-mechanism in exotic superconductors, such as, heavy fermion superconductors, organic superconductors, fullerene superconductors, and high T_c cuprates. For superconductors caused by the electron-phonon interaction we expect the following behavior. As the electrons are weakly localized by impurities or radiation damage, the electron-phonon interaction is weakened. As a result, both T_C and TCR are decreasing at the same rate. When λ is approaching zero, both T_c and TCR drops to zero almost simultaneously. When this happens we may say that the electron-phonon interaction is the origin of the pairing in the superconductors. This behavior was already confirmed in A15 superconductors14−17 and Ternary superconductors.71 More details will be published elsewhere.

\textbf{VI. CONCLUSION}

It is shown that weak localization decreases both the conductivity and the electron-phonon interaction at the same rate and thereby leads to the Mooij rule. As the residual resistivity is increasing due to weak localization, so the thermal electrical resistivity is decreasing, producing the decrease of TCR. When the electron-phonon interaction is near zero, only the residual resistivity is left and therefore the negative TCR obtains. This study may provide a means of probing the phonon-mechanism in exotic superconductors, such as, heavy fermion superconductors, organic and fullerene superconductors, and high T_c superconductors.

\textbf{ACKNOWLEDGMENTS}

Y.J.K. is grateful to Prof. Bilal Tanatar for discussions and encouragement. M.P. thanks the FOPI at the University of Puerto Rico-Humacao for release time.
REFERENCES

1 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
2 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
3 N. F. Mott and M. Kaveh, Adv. Phys. 34, 329 (1985).
4 Yong-Jihn Kim, Mod. Phys. Lett. B 10, 555 (1996).
5 Mi-Ae Park and Yong-Jihn Kim, Phys. Rev. B 61, 14733 (2000).
6 K. E. Kihlstrom, D. Mael, and T. H. Geballe, Phys. Rev. B 29, 150 (1984).
7 D. A. Rudman and M. R. Beasley, Phys. Rev. B 30, 2590 (1984).
8 R. C. Dynes, A. E. White, J. M. Graybeal, and J. Garno, Phys. Rev. Lett. 57, 2195 (1986).
9 C. C. Tsuei, S. von Molnar, and J. M. Coey, Phys. Rev. Lett. 41, 664 (1978).
10 R. A. Pollak, C. C. Tsuei, and R. W. Johnson, Solid State Commun. 23, 879 (1977).
11 A. T. Fiory and A. F. Hebard, Phys. Rev. Lett. 52, 2057 (1984).
12 H. Wiesmann, M. Gurvitch, A. K. Ghosh, H. Lutz, K. W. Jones, A. N. Goland, and M. Strongin, J. Low. Temp. Phys. 30, 513 (1978).
13 T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979).
14 J. M. Poate, L. R. Testardi, A. R. Storm, and W. M. Augustyniak, Phys. Rev. Lett. 35, 1291 (1975).
15 L. R. Testardi, R. L. Meek, J. M. Poate, W. A. Royer, A. R. Storm, and J. H. Wernick, Phys. Rev. B 11, 4304 (1975).
16 J. M. Poate, R. C. Dynes, L. R. Testardi, and R. H. Hammond, Phys. Rev. Lett. 37, 1308 (1976).
17 L. R. Testardi, J. M. Poate, and H. J. Levinstein, Phys. Rev. B. 15, 2570 (1977).
18 D. Pines, Elementary Excitations in Solids, (Benjamin, New York, 1963), ch. 5.
19 J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).
20 M. Jonson and S. M. Girvin, Phys. Rev. Lett. 43, 1447 (1979).
21 Y. Imry, Phys. Rev. Lett. 44, 469 (1980).
22 M. Kaveh and N. F. Mott, J. Phys. C: Solid State Phys. 15, L707 (1982).
23 D. Belitz and W. Götze, J. Phys. C 15, 981 (1982).
24 D. Belitz and W. Schirmacher, J. Non-cryst. Solids 61/62, 1073 (1983).
25 N. F. Mott, Conduction in Non-Crystalline Materials, (Oxford University Press, Oxford, 1977), p.15.
26 A. M. Jayannavar and N. Kumar, Phys. Rev. B 37, 573 (1988).
27 G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in Superconductivity, Vol. 2, R. D. Parks ed. (Marcel Dekker, New York, 1969), p. 665.
28 J. J. Hopfield, Comments Sol. Sta. Phys. 3, 48 (1970).
29 J. J. Hopfield, in Superconductivity in d- and f-Band Metals, D. H. Douglass ed. (AIP, New York, 1972), p. 358.
30 G. Grimvall, Phys. Kondens. Materie 11, 279 (1970).
31 E. G. Maksimov and G. P. Motulevich, Zh. Eksp. Teor. Fiz. 61, 414 (1971) [Sov. Phys. JETP 34, 219 (1972)].
32 G. Grimvall, The Electron-Phonon Interaction in Metals, (North-Holland, Amsterdam, 1981).
33. B. Hayman and J. P. Carbotte, Can. J. Phys. 49, 1952 (1971).
34. B. Hayman and J. P. Carbotte, J. Phys. F 1, 828 (1971).
35. P. B. Allen, Phys. Rev. B 3, 305 (1971).
36. G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov. Phys. JETP 11, 696 (1960)].
37. W. L. McMillan, Phys. Rev. B 167, 331 (1968).
38. E. N. Economou, in Metal Hydrides, G. Bambakidis ed. (Plenum, New York, 1981), p. 1.
39. G. Grimvall, Phys. Scripta, 14, 63 (1976).
40. E. G. Maksovov, Zh. Eksp. Teor. Fiz. 57, 1660 (1969) [Sov. Phys. JETP 30, 897 (1970)].
41. B. Hayman and J. P. Carbotte, Solid State Commun. 15, 65 (1974).
42. B. Chakraborty, W. E. Pickett, and P. B. Allen, Phys. Rev. B 14, 3227 (1976).
43. Ö. Rapp and C. Crawfoord, Phys. Stat. Sol. (b) 64, 139 (1974).
44. Ö. Rapp and R. Fogelholm, J. Phys. F: Metal Phys., 5, 1694 (1975).
45. R. Flükiger and M. Ishikawa, in Proceedings of the 14th International Conference on Low
Temperature Physics, vol. 2, M. Krusius and M. Vuorio, eds. (North-Holland and Elsevier,
Helsinki, 1975) p. 63.
46. R. Fogelholm and Ö. Rapp, in Proceedings of the 14th International Conference on Low
Temperature Physics, vol. 2, M. Krusius and M. Vuorio, eds. (North-Holland and Elsevier,
Helsinki, 1975) p. 429.
47. H. Lutz, H. Weismann, O. F. Kammerer, and M. Strongin, Phys. Rev. Lett. 36, 1576
(1976).
48. K. K. Man’kovskii, V. V. Pilipenko, Y. F. Komnik, and I. M. Dmitrenko, Zh. Eksp. Teor.
Fiz. 59, 740 (1970) [Sov. Phys. JETP 32, 404 (1971)].
49. Ö. Rapp, A. C. Mota, and R. F. Hoyt, Solid State Commun. 25, 855 (1978).
50. B. Sundqvist and Ö. Rapp, J. Phys. F: Metal Phys., 9, 1694 (1979).
51. Yong-Jihn Kim and A. W. Overhauser, Phys. Rev. B 47, 8025 (1993).
52. W. Jones and N. H. March, Theoretical Solid State Physics, (Dover, New York, 1985), p.
897.
53. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Physics, (Dover, New York, 1975), p. 79.
54. J. D. Walecka, Quantum Theory of Many-Particle Systems, (McGraw-Hill, New York, 1971), p. 401.
55. B. L. Altshuler and A. G. Aronov, Zh. Eksp. Teor. Fiz. 77, 2028 (1979) [Sov. Phys. JETP
50, 968 (1979)].
56. E. Abrahams, P. W. Anderson, P. A. Lee, and T. V. Ramakrishnan, Phys. Rev. B 24, 6783 (1981).
57. Y. Imry, Y. Gefen, and D. J. Bergman, Phys. Rev. B 26, 3436 (1982).
58. M. Kaveh and N. F. Mott, J. Phys. C: Solid State Phys. 14, L177 (1981).
59. H. Gutfreund, M. Weger, and O. Entin-Wohlman, Phys. Rev. B 31, 606 (1985).
60. B. L. Altshuler, Zh. Eksp. Teor. Fiz. 75, 1330 (1978) [Sov. Phys. JETP 48, 670 (1978)].
61. M. Yu. Reizer and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 92, 2291 (1987) [Sov. Phys. JETP
12
65, 1291 (1987)].
67 P. M. Echternach, M. E. Gershenson, and H. M. Bozler, Phys. Rev. B 47, 13659 (1993).
68 S. V. Vonsovsky, Y. A. Izyumov, and E. Z. Kurmaev, Superconductivity of Transition Metals, (Springer-Verlag, Berlin, 1982), Chap. 2.
69 H.-L. Engquist, Phys. Rev. B 21, 2067 (1980).
70 N. F. Mott, Metal-Insulator Transitions, (Taylor & Francis, London, 1990), p. 152.
71 R. C. Dynes, J. M. Rowell, and P. H. Schmidt, in Ternary Superconductors, ed. G. K. Shenoy, B. D. Dunlap, and F. Y. Fradin (North-Holland, Amsterdam, 1981), p. 169.
Table I. Comparison of λ_{tr} and the McMillan’s electron-phonon coupling constant λ. Data are from Economou, Ref. 38 and Grimvall, Ref. 39.

Metal	λ_{tr}	λ	Metal	λ_{tr}	λ
Li	.40	.41±.15	Na	.16	.16±.04
K	.14	.13±.03	Rb	.19	.16±.04
Cs	.26	.16±.06	Mg	.32	.35±.04
Zn	.67	.42±.05	Cd	.51	.40±.05
Al	.41	.43±.05	Pb	1.79	1.55
In	.85	.805	Hg	2.3	1.6
Cu	.13	.14±.03	Ag	.13	.10±.04
Au	.08	.14±.05	Nb	1.11	.9±.2
FIGURES

FIG. 1. The temperature coefficient of resistance α versus resistivity for bulk alloys (+), thin films (●), and amorphous (X) alloys. Data are from Mooij, Ref. 19.

FIG. 2. Resistivity versus temperature for Ti and TiAl alloys containing 0, 3, 6, 11, and 33% Al. Data are from Mooij, Ref. 19.

FIG. 3. McMillan’s coupling constant λ versus $d\rho/dT \propto \lambda_{tr}$ for Ag-Ga, Au-Al, and Au-Ga alloys. Data are from Rapp, Ref. 52 and Grimvall, Ref. 32.

FIG. 4. (a) Phonon-limited resistivity ρ_{ph} versus T for $k_F\ell = 15, 5, 3.4, 2.8, 2.4, \text{ and } 2.2$. (b) residual resistivity ρ_0 versus T for the same six values of $k_F\ell$.

FIG. 5. Calculated resistivity versus temperature for $k_F\ell = 15, 5, 3.4, 2.8, 2.5, \text{ and } 2.3$. The solid lines are $\rho(T)$ from an accurate formula, Eq. (31). The dashed lines represent the resistivity obtained from the approximate expression, Eq. (24).
