Use of ICD-10 codes for identification of injection drug use-associated infective endocarditis is non-specific and obscures critical findings on impact of medications for opioid use disorder

Laura R. Marks MD PhD,1 Nathanial S. Nolan MD MPH1, Linda Jiang MD,3 Dharushana Muthulingam, MD,1 Stephen Y. Liang MD MPH,1,2 Michael J. Durkin MD MPH1

1Division of Infectious Diseases, Washington University in St. Louis School of Medicine. 2Division of Emergency Medicine, Washington University in St. Louis School of Medicine. 3Division of Medical Education, University of Pittsburgh School of Medicine.

Key Points: Use of ICD-10 codes to identify IDU-IE was associated with misclassification of 56.4% of cases in this review. Use of ICD-10 codes alone to identify IDU-IE cases led to incorrect conclusions about most common pathogens, rates of Hepatitis B virus infection, and effect of MOUDs.

Corresponding Author:
Laura R. Marks MD PhD
Campus Box 8051
4523 Clayton Avenue
St. Louis, MO 63110-1093
Phone (707) 815-0716
Fax (314) 454-5392
Email marks@wustl.edu
Abstract:

Background: No International Classification of Diseases 10th revision (ICD-10) diagnosis code exists for injection drug use-associated infective endocarditis (IDU-IE). Instead, public health researchers regularly use combinations of non-specific ICD-10 codes to identify IDU-IE; however, the accuracy of these codes has not been evaluated.

Methods: We compared commonly used ICD-10 diagnosis codes for IDU-IE to a prospectively collected patient cohort diagnosed with IDU-IE at Barnes-Jewish Hospital to determine the accuracy of ICD-10 diagnosis codes used in IDU-IE research.

Results: ICD-10 diagnosis codes historically used to identify IDU-IE were inaccurate, missing 36.0% and misclassifying 56.4% of patients prospectively identified in this cohort. Use of these non-specific ICD-10 diagnosis codes resulted in substantial biases against the benefit of medications for opioid use disorder (MOUD) with relation to both AMA discharge and all-cause mortality. Specifically, when data from all patients with ICD-10 code combinations suggestive of IDU-IE was used, MOUD was associated with an increased risk of AMA discharge (RR 1.12; 95% CI 0.48 - 2.64). In contrast, when only patients confirmed by chart review as having IDU-IE were analyzed, MOUD was protective (RR 0.49; 95% CI 0.19 - 1.22). Use of MOUD was associated with a protective effect in time to all-cause mortality in Kaplan-Meier analysis only when confirmed IDU-IE cases were analyzed (p=0.007).

Conclusions: Studies using non-specific ICD-10 diagnosis codes for IDU-IE should be interpreted with caution. In the setting of an ongoing overdose crisis and a syndemic of infectious complications, a specific ICD-10 diagnosis code for IDU-IE is urgently needed.

Keywords: Persons Who Inject Drugs, Opioid Use Disorder, Endocarditis, ICD-10, Medications for Opioid Use Disorder
Background:

Injection drug use-associated infective endocarditis (IDU-IE) is a preventable infection with substantial morbidity and mortality. There is significant interest in quantifying the epidemiology, microbiology, economics and clinical outcomes of IDU-IE to identify comprehensive evidence-based treatments and opportunities for practice improvement [1]. However, IDU-IE remains challenging to study given difficulties in assembling representative study cohorts and the propensity for persons who inject drugs (PWID) to seek care at multiple health-care locations during the course of a single illness. Administrative data can provide a unified source of information for epidemiological studies given systematic collection of data over time. Several recent studies have sought to leverage these unique strengths to better understand IDU-IE [2-4].

Administrative data is constrained by the data set used (i.e. who/what are included), the reason for its creation (they are often not created for the research in question), and the accuracy of the coding [5]. Many studies using administrative data never validate assumptions when building their cohort. Specifically, many studies do not include validation analyses on the diagnostic or procedural codes used [6]. Biases are often introduced based on the surrogates chosen for the diagnosis in question. For example, there is no specific ICD-10 diagnosis code for IDU-IE. Prior work using administrative data to evaluate outcomes for IDU-IE rely on combinations of ICD codes for both endocarditis and opioid use disorders [3, 4, 7-9]. However, these codes include non-specific conditions. Commonly used ICD-10 codes in endocarditis studies include “rheumatic heart disease” and “other valvular disorders.” The most common opioid use disorder code is also frequently applied to patients receiving prescription opioids from their physician for chronic pain. We hypothesized that the combined use of non-specific ICD-10 codes likely overestimates the national prevalence of IDU-IE and underestimates both the emergence of co-occurring infectious diseases such as Hepatitis B virus infection, all-cause mortality, as well as the use and benefit of medications for opioid use disorder (MOUD), including buprenorphine and methadone.
The aim of this study was to evaluate the accuracy of the most commonly used ICD-10 code combinations for identifying IDU-IE in administrative datasets. This included a validation study of existing ICD-10 codes to identify IDU-IE and an evaluation of the impact of misclassification on OUD outcomes reported in prior IDU-IE administrative data research.

Methods:

Data Source and Study Design

We compared a prospectively identified cohort of PWID with IDU-IE secondary to injection opioid use to a retrospective cohort identified using non-specific ICD codes from prior published studies[4]. Both cohorts were comprised of patients treated at Barnes-Jewish Hospital, a 1,400 bed academic medical center located in St. Louis, Missouri, between July 1, 2017 and May 1, 2020. We considered the prospective cohort the “gold standard” for the validation study.

Case Selection and Definitions

Patients in the **prospective cohort** were identified by infectious diseases physicians during routine patient care as part of a quality improvement initiative and later a CDC Developing Healthcare Safety Research contract [10]. The case form specifies the type of invasive infection and the type of substance used, only patients who had injection opioid use associated endocarditis were included in this analysis. Cases were manually reviewed by an infectious diseases (ID) physician (LRM) to verify that they met inclusion criteria (current injection drug use contributing to current episode of infective endocarditis). A second physician (LJ) reviewed 50% of the charts at random to assess for data concordance. Only individuals with evidence of endocarditis on prospective chart review were considered IDU-IE cases.

Patients in the **retroactive cohort** were identified for screening from admissions during the same time-frame as the prospective cohort, through use of ICD-10 codes listed in Supplemental Table 1. For inclusion in the retrospective cohort, patients must have had both ICD-10 code F11.xx as well as
at least 1 of the following ICD-10 codes related to endocarditis documented: I38, I33.0, I33.9, I35.8, B37.6, T82.6, I05.9, I01.1, I08.0, I08.3, I08.9, I37.8, I07.9, A38.2.

To assess the validity of ICD-10 diagnosis codes for identifying IDU-IE admissions, patient charts were individually reviewed by an infectious diseases (ID) physician (MJD, LRM, NSN) to evaluate: 1) if the hospital admission was related to infective endocarditis, 2) what clinical problem prompted the documentation of the code F11, and 3) if the patient’s infective endocarditis was presumed secondary to injection drug use. Using an iterative process, all reviewers (LRM, MJD and NSN) reviewed 10% of the charts at random to assess for data concordance. This process was repeated until concordance was >90%.

Patient Characteristics

Patient comorbidities were identified using elements from the Elixhauser comorbidity index [11]. Patient demographics, clinical covariates, 90-day readmission rates, against medical advice (AMA) discharge and outcomes data were collected. Receipt of MOUD, comprised of buprenorphine, methadone, or either oral or intramuscular naltrexone, was assessed by review of medication administration records. Hepatitis B virus antigen, Hepatitis C virus antibody and causative pathogen were assessed by review of microbiology data from the electronic medical record (EMR). Mortality was assessed using both the EMR and the National Social Security Death Index. Patients were censored at either 1 year of post-discharge follow-up or at 5/1/2020. We defined rural and urban location using patient zip codes for location data and Federal Office of Management and Budget definitions, categorizing all micropolitan and non-core counties as “rural” and all metropolitan counties as “urban” [12, 13].

Statistical Analyses

Performance of the ICD-10 codes for identifying IDU-IE admissions as determined by physician chart review were compared with the prospectively collected cohort. Chi-squared and Fisher’s exact test was used to compare categorical variables. Pooled two-sample t-test were used to compare continuous variables. Sensitivity for IDU-IE was calculated for ICD-10 hospital discharge data,
accepting physician review as a “reference standard”. Relative risk ratios (RRs) with 95% confidence intervals (CIs) were calculated to determine the predictors for AMA discharge. Kaplan-Meier estimates were used to describe the survival distribution for time to readmission. The log-rank statistic was used to test the difference in time to readmission. Descriptive statistics were calculated using SPSS v26 (Armonk, NY). Figures were created using GraphPad Prism 9 (San Diego, CA). This study was approved by the Washington University Institutional Review Board.

Results:

Utility of ICD-10 codes for identification of IDU-IE

Few studies have validated ICD code algorithms for IDU-IE. A recent systematic review of the validity of ICD codes in identifying medical complications of illicit drug use, found that no two studies have validated the same algorithm despite similar target conditions[14]. An ICD-10 code algorithm comprised of code F11.xx plus at least one endocarditis-related code (Supplemental Table 1) identified a total of 188 patients over the study period. However, ID physician review demonstrated that only 82 (43.6%) of these patients met clinical criteria for IDU-IE. Furthermore, the ICD-10 algorithm failed to identify an additional 44 patients identified on prospective review.

Prospective identification of IDU-IE over this time-period yielded 114 patients. Of these, only 73 (64.0%) were also identified through electronic query using a combination of an endocarditis-related ICD-10 code from Supplemental Table 1 and ICD-10 code F11. Patients identified by prospective review but not ICD-10 codes were frequently noted to be missing an ICD code for their underlying substance use disorder, despite physician documentation that endocarditis was related to underlying injection drug use. In some instances, the patient was noted to have multiple infections (e.g., Staphylococcus aureus bacteremia complicated by endocarditis, septic arthritis, osteomyelitis, septic emboli and endocarditis) with only some complications receiving an ICD-10 diagnosis code along with a diagnosis of septic shock. Chronic pain with prescription opioids was a commonly used ICD-10 diagnosis code that led to erroneous identification of IDU. Underling valvular disease was the most
common ICD-10 diagnosis code that led to erroneous identification of IE. An additional 9 patients were identified by ICD -10 code combined with chart review, who were not identified by prospective physician review. All patient identified by prospective physician review, and the additional 9 patients identified by ICD-10 code combined with chart review were included as confirmed IDU-IE cases (total 123 cases) in our subsequent analysis. Sensitivity of ICD-10 code combinations for identification of IDU-IE cases was 65%.

Analyses of patient demographics between the confirmed IDU-IE cases and non-cases showed a statistically significant difference in age, length of stay and multiple chronic comorbidities (Table 1). Overall, patients with IDU-IE were younger (mean age of 34, compared with 54 for non-cases). Median length of stay for IDU-IE was 40 days vs 5 days for non-IDU-IE cases. Patients with IDU-IE were more likely to lack stable housing (28% vs 7%, p=0.001) and had higher rates of AMA discharge (15% vs 4%, p=0.005). In addition to being older and more stably housed, non-IDU-IE cases had significantly higher rates of diabetes, congestive heart failure, malignancy, neurologic disorders and depression.

Microbiologic characteristics significantly differed between the two groups with IDU-IE cases more likely to be attributed to methicillin-susceptible *Staphylococcus aureus*, methicillin-resistant *Staphylococcus aureus* or streptococcal species (Table 1). While *S. aureus* remained the most common pathogen overall, non-IDU-IE cases were found to attributed to a much broader group of pathogens including multiple different gram-negative pathogens. IDU-IE cases were additionally noted to have longer durations of bacteremia, with a mean of 4 days to blood culture clearance and multiple patients exceeding 7 days of bacteremia (longest duration of 16 days).

Effect of inclusion of IDU-IE cases identified using non-specific ICD-10 code combinations to prospectively identified cases on research outcomes

We observed substantial differences in clinical outcomes for AMA discharge and all-cause mortality between the two cohorts (Table 2). Specifically, when the entire cohort of 229 patients (including all prospectively identified patients and patients with an ICD-10 code combination in Supplemental
Table 1 previously used to study patients with IDU-IIE) was analyzed, receipt of MOUD was paradoxically associated with a trend toward an increased risk of AMA discharge (RR 1.12; 95% CI 0.48 - 2.64). In contrast, if only confirmed IDU-IIE cases were analyzed, receipt of MOUD was associated with a trend toward a reduction in AMA discharges as 6 of 62 (9.7%) patients left AMA in the MOUD group compared with 12 of 61 (19.7%) patients who did not receive MOUD (RR 0.49; 95% CI 0.19 - 1.22). Neither of these results were statistically significant, however the apparent reversal in trend is striking. To investigate the impact inclusion of non-cases would have on mortality, we performed a Kaplan Meier analysis of survival stratified by receipt of MOUD. Patients who received either methadone or buprenorphine during their hospitalization had lower mortality rates than those who did not; however, the effect was not statistically significant when both IDU-IIE cases and non-cases were included in the overall population (p 0.173). The effect of MOUD is magnified and becomes significant (p 0.007) when only IDU-IIE patients are analyzed (Figure 1).

Discussion:

Our results demonstrate that ICD-10 diagnosis code combinations currently used to identify IDU-IIE admissions in the administrative data research literature are not specific. Such ICD code combinations included non-IDU-IIE cases with substantially different ages, comorbidities, lengths of stay, and microbiologic illnesses. Misclassification of IDU-IIE cases in clinically relevant analyses biases analyses towards the null. IDU-IIE specific ICD-10 diagnosis codes are needed. Without such codes, analyses using administrative data to analyze outcomes and epidemiology of IDU-IIE should require physician review, have additional external validation, or be interpreted with caution.
Use of ICD code algorithms to identify cases of IDU-IE is becoming increasingly common as the opioid crisis continues. Large datasets, such as administrative data, have offered researchers the hope of identifying clinical practices that impact readmission rates and mortality, or identifying concerning pathogen trends early. However, our analysis raises concern that these datasets could contain non-IDU-IE cases, and actually consist of high volumes of patients with chronic pain or cancer related pain, who have endocarditis not related to injection drug use. Inclusion of such patients could bias multiple important hypotheses towards the null. Our study demonstrates that inclusion of non-IDU-IE cases (such as patients with chronic pain and endocarditis from other causes) obscures the benefit provided by MOUD on both AMA discharge and all-cause mortality. It is easy to imagine that the inclusion of non-IDU-IE cases would dramatically alter the results of existing research, ranging from missed opportunities for provision of naloxone kits to the impact of interventions such as cardiac surgery, and the cost of hospitalizations for IDU-IE.

Microbiologic outcomes were also affected. Inclusion of non-IDU-IE cases altered important epidemiologic information such as the rate of prolonged bacteremia, incidence of MSSA, and prevalence of viral hepatitis. These findings are consistent with work by other teams that has shown significant differences in causative pathogens between IDU-IE vs non-IDU-IE cases [15]. This has important impacts on economic analyses and anticipated survival analyses for IDU-IE. Furthermore, public health analyses evaluating hepatitis screening and treatment for IDU-IE will likely be biased towards underscreening and undertreating IDU-IE patients.

Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is a comprehensive and precise international clinical reference terminology frequently used in electronic health records for clinical documentation of problem lists. Clinicians should also be aware that several SNOMED CT codes may map to a single ICD-10 diagnosis code. For example, although ‘heroin addiction’ and ‘opioid dependence with daily use’ are clinically distinct conditions, both of these problem list items (also known as clinician display names) map to the same ICD-10 F11.xx diagnosis code (Table 3).
This underlying issue illustrates the limited utility of ICD-10 billing and claims data in administrative data research targeting IDU-IE.

Prior work in other settings has demonstrated a similar lack of sensitivity when using ICD-10 diagnosis codes to identify IDU-IE [16]. To compensate, some researchers have suggested restricting age ranges [17, 18] or adding codes for blood-borne pathogens such as hepatitis C or HIV [18]. However, this selects for PWID who preferentially engage in needle-sharing and who may have different characteristics than those using syringe exchange facilities or taking other precautions. Similarly, some studies have attempted to remove any codes related to potential substance use disorders or evaluate the intersection of hepatitis C and infective endocarditis as a proxy for IDU-IE [7]. The results from our study underscore the limitations of this strategy; while confirmed IDU-IE cases in our cohort were more likely to have a positive hepatitis C antibody (76%), a sizeable percentage (32%) of non-IDU-IE cases had a positive hepatitis C antibody. (p<0.001)

Importantly, this study represents the first work to compare ICD-10 code algorithms to prospective identification of IDU-IE cases in a US health-care setting. That ICD code algorithms not only incorrectly identify non-IDU-IE patients, but also fail to identify patients who do have IDU-IE is of significant concern. Researchers using ICD code algorithms for this purpose should attempt to adjust for misclassification, if results are intended to inform clinical practice.

Limitations of this study include its single center design and limited timespan (2017-2020). However, the limitations related to non-specific ICD codes would be present in all geographic regions. This study further focuses entirely on IDU-IE secondary to opioid use and does not evaluate IDU-IE secondary to injection of other substances, including methamphetamines. As use of methamphetamines continues to increase nationwide, particularly in rural areas of the country, current and future analyses will likely underestimate the true prevalence of IDU-IE secondary to methamphetamines and other non-opiods. Although our data suggests that MOUD reduce overall mortality, these analyses are complex and our current models do not take into account patients
switching between treatment groups during subsequent admissions. Thus, these results should be interpreted with caution.

The US faces an ongoing syndemic of substance use disorders and life-threatening infectious complications associated with IDU, including infective endocarditis. It is critical that in the midst of this epidemic we have the ability to accurately measure epidemiologic trends of this syndemic. While our work only evaluates one specific algorithm to identify IDU-IE secondary to opioids, the lack of sensitivity is troubling. Our findings demonstrate that the current state of combining multiple non-specific ICD-10 codes fails to consistently identify this unique cohort and likely underestimates the benefit of evidence-based treatments, such as MOUDs. We believe that the best way to overcome these significant problems is to issue a new ICD-10 code that is specific for injection drug use-associated infective endocarditis.
Funding: This work was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under grant numbers [KL2TR002346, and T32AI007172]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Patient Consent: This study was granted a waiver of consent and approved by Washington University Institutional Review Board (IRB#201804183 and IRB# 201907187).

Acknowledgements: none

Conflicts of Interest: All authors report no relevant conflicts of interest.
References:

1. Schwetz, T.A., et al., *Opioids and Infectious Diseases: A Converging Public Health Crisis*. J Infect Dis, 2019. 220(3): p. 346-349.

2. Collier, M.G., M. Doshani, and A. Asher, *Using Population Based Hospitalization Data to Monitor Increases in Conditions Causing Morbidity Among Persons Who Inject Drugs*. J Community Health, 2018. 43(3): p. 598-603.

3. McCarthy, N.L., et al., *Bacterial Infections Associated with Substance Use Disorders, Large Cohort of United States Hospitals, 2012-2017*. Clin Infect Dis, 2020.

4. Kadri, A.N., et al., *Geographic Trends, Patient Characteristics, and Outcomes of Infective Endocarditis Associated With Drug Abuse in the United States From 2002 to 2016*. J Am Heart Assoc, 2019. 8(19): p. e012969.

5. van Walraven, C. and P. Austin, *Administrative database research has unique characteristics that can risk biased results*. J Clin Epidemiol, 2012. 65(2): p. 126-31.

6. van Walraven, C., C. Bennett, and A.J. Forster, *Administrative database research infrequently used validated diagnostic or procedural codes*. J Clin Epidemiol, 2011. 64(10): p. 1054-9.

7. Schranz, A.J., et al., *Trends in Drug Use-Associated Infective Endocarditis and Heart Valve Surgery, 2007 to 2017: A Study of Statewide Discharge Data*. Ann Intern Med, 2019. 170(1): p. 31-40.

8. Barocas, J.A., et al., *Outcomes Associated With Medications for Opioid Use Disorder Among Persons Hospitalized for Infective Endocarditis*. Clinical Infectious Diseases, 2020.

9. Fleischauer, A.T., et al., *Hospitalizations for Endocarditis and Associated Health Care Costs Among Persons with Diagnosed Drug Dependence - North Carolina, 2010-2015*. MMWR Morb Mortal Wkly Rep, 2017. 66(22): p. 569-573.

10. Marks, L.R., et al., *Medications for Opioid Use Disorder Demonstrate Clear Benefit for Patients With Invasive Infections*. J Addict Med, 2020.
11. Elixhauser, A., et al., Comorbidity measures for use with administrative data. Med Care, 1998. 36(1): p. 8-27.

12. Census Bureau. Geography program: 2010 census urban and rural classification and urban area criteria [Internet]. Washington (DC): Census Bureau; [last revised 2018 Nov 26; cited 2020 May 1]. Available from: https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html. Available from: https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html.

13. Office of Management and Budget. 2010 standards for delineating Metropolitan and Micropolitan Statistical Areas. Federal Register [serial on the Internet]. 2010 Jun 28 [cited 2020 May 1]. Available from: https://www.federalregister.gov/documents/2010/06/28/2010-15605/2010-standards-for-delineating-metropolitan-and-micropolitan-statistical-areas.

14. McGrew, K.M., et al., Validity of ICD-based algorithms to estimate the prevalence of injection drug use among infective endocarditis hospitalizations in the absence of a reference standard. Drug Alcohol Depend, 2020. 209: p. 107906.

15. Leahey, P.A., et al., High Morbidity and Mortality Among Patients With Sentinel Admission for Injection Drug Use-Related Infective Endocarditis. Open Forum Infect Dis, 2019. 6(4): p. ofz2089.

16. Kobayashi, T., et al., 198. Chart Validation of an Algorithm for Identifying Patients with Intravenous Drug Use-Associated Endocarditis Using Administrative Code Data. Open Forum Infectious Diseases, 2019. 6: p. S118-S118.

17. Wurcel, A.G., et al., Increasing Infectious Endocarditis Admissions Among Young People Who Inject Drugs. Open Forum Infect Dis, 2016. 3(3): p. ofw157.

18. Ball, L.J., et al., Validation of an Algorithm to Identify Infective Endocarditis in People Who Inject Drugs. Med Care, 2018. 56(10): p. e70-e75.
Table 1. Baseline characteristics of patients who met physician criteria for IDU-IE vs patients who did not meet physician criteria for IDU-IE.

Variable	IDU-IE case N= 123 (%)	Non-IDU-IE case N= 106 (%)	P-value
Median age (q1,q3)	34 (25, 48)	54 (27.78)	<0.001
Median LOS (q1,q3)	40 (1, 71)	5 (1, 23)	<0.001
Female	58 (47)	49 (46)	0.888
Black	43 (35)	41 (39)	0.464
Unhoused	28 (23)	7 (7)	0.001
Rural	26 (21)	16 (15)	0.236

Admission Characteristics

Variable	IDU-IE case N= 123 (%)	Non-IDU-IE case N= 106 (%)	P-value
Mean duration of bacteremia and/or fungemia (q1, q3)	4 (2, 7)	2 (1, 3)	<0.001
Received MOUD during hospitalization	62 (50)	5 (5)	<0.001
Hepatitis B Ag positive	6 (5)	1 (1)	0.006
Hepatitis C Ab positive	93 (76)	39 (37)	<0.001

Causative Pathogen

Variable	IDU-IE case N= 123 (%)	Non-IDU-IE case N= 106 (%)	P-value
Methicillin-resistant *S. aureus*	34 (28)	15 (14)	0.011
Methicillin-sensitive *S. aureus*	54 (44)	11 (10)	<0.001
Streptococcal species	22 (18)	7 (7)	0.008
Candida	5 (4)	2 (2)	0.330

Outcomes

Variable	IDU-IE case N= 123 (%)	Non-IDU-IE case N= 106 (%)	P-value
AMA discharge	18 (15)	4 (4)	0.005
Mortality	19 (15)	5 (5)	0.006

Comorbidities

Variable	IDU-IE case N= 123 (%)	Non-IDU-IE case N= 106 (%)	P-value
Anemia	31 (25)	34 (32)	0.251
Congestive heart failure	15 (12)	25 (24)	0.023
Chronic pulmonary disease	21 (17)	27 (25)	0.120
Drug abuse	48 (39)	38 (36)	0.621
Depression	16 (13)	30 (28)	0.004
Diabetes	7 (6)	15 (14)	0.029
HIV and AIDS	2 (2)	2 (2)	0.881
Hypertension	20 (16)	43 (41)	<0.001
Liver disease	14 (11)	14 (13)	0.675
Obesity	5 (4)	9 (8)	0.163
Other neurological disorders	10 (8)	18 (17)	0.041
Psychoses	8 (7)	11 (10)	0.290
Renal failure	11 (9)	18 (17)	0.068
Malignancy	1 (1)	13 (12)	<0.001
Valvular disease	26 (21)	27 (25)	0.439
Weight loss	12 (10)	15 (14)	0.305

AMA, against medical advice; IDU-IE, injection drug use associated infective endocarditis; MOUD, Medication for opioid use disorder includes buprenorphine, buprenorphine-naloxone, methadone and naltrexone.
Table 2. Impact of inclusion of non-IDU-IE cases on outcomes of potential research analyses

Clinical Research Question	All patients analyzed	Only confirmed IDU-IE cases analyzed
Association between MOUD prescription at discharge and all-cause mortality at 1 year.	RR 0.48; 95% CI 0.17-1.36	RR 0.26; 95% CI 0.09 - 0.75
Association between MOUD prescription and AMA discharge	RR 1.12; 95% CI 0.48 - 2.64	RR 0.49; 95% CI 0.19 - 1.22

AMA, against medical advice; IDU-IE, injection drug use associated infective endocarditis; MOUD; Medication for opioid use disorder includes buprenorphine, buprenorphine-naloxone, methadone and naltrexone; RR, relative risk; 95% CI, 95% confidence interval
Table 3. Clinician display name seen in electronic medical records mapped to SNOMED-CT identifiers and ICD-10 codes.

Narrative Problem Description in Electronic Medical Record	SNOMED-CT ID	ICD-10 code
History of opioid abuse	704212	F11.11
Opioid use disorder, mild in early remission	1394420	F11.11
Severe opioid use disorder	1333826	F11.20
Continuous opioid dependence	363988	F11.20
Opiate addiction	280618	F11.20
Uncomplicated opioid dependence	677291	F11.20
Narcotic dependence, episodic use	312950	F11.20
Heroin addiction	313545	F11.20
Heroin dependence	313550	F11.20
Methadone use	347672	F11.20
Opioid type dependence continuous abuse	640388	F11.20
Encounter for long-term methadone use for opiate dependence	705065	F11.20
Opioid dependence, daily use	712913	F11.20
chronic narcotic dependence	723299	F11.20
Episodic opioid dependence	363989	F11.20
Opiate use	292913	F11.90
Heroin user	313554	F11.90
Uncomplicated opioid use	678511	F11.90
Chronic, continuous use of opioids	1027754	F11.90
Methadone misuse	1246362	F11.90
Opioid use, unspecified, uncomplicated	1755152	F11.90
Figure 1. (A) Kaplan-Meier survival analysis of all patients with ICD-10 codes consistent with IDU-IE stratified by receipt of medications for opioid use disorder (MOUD). (B) Kaplan-Meier survival analysis of only patients confirmed on chart review to have IDU-IE, stratified by receipt of MOUD.