Sexual behaviour and morphological variation in the millipede *Megaphyllum bosniense* (Verhoeff, 1897)

Vukica Vujić1,2, Bojan Ilić1, Zvezdana Jovanović1, Sofija Pavković-Lučić1, Sara Selaković1, Vladimir Tomić1, Luka Lučić1

1 University of Belgrade, Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia
2 E-mail: vukica.vujic@bio.bg.ac.rs

Keywords: copulation duration, Diplopoda, mating success, morphological traits, sexual behaviour, traditional and geometric morphometrics

Abstract

Sexual selection can be a major driving force that favours morphological evolution at the intraspecific level. According to the sexual selection theory, morphological variation may accompany non-random mating or fertilization. Here both variation of linear measurements and variation in the shape of certain structures can significantly influence mate choice in different organisms. In the present work, we quantified sexual behaviour of the millipede *Megaphyllum bosniense* (Verhoeff, 1897) as characterized by several sequences. These are: mating latency, duration of copulation, contact to copulation time, duration of contact without copulation, time from entrance (time-point when individuals were placed in boxes in which tests occurred) to contact with copulation, and time from entrance to contact without copulation. Further, we analysed the influence of morphological variation (both variation of linear measurements and variation in the shape of several structures) on mating success. Variation of body length, antennal length, length of the walking legs, trunk width, and trunk height was analysed by traditional morphometrics, while variation in size and shape of the antennae, walking legs, head, and gonopods (promeres, opisthomer) was analysed using geometric morphometrics. More than half of all physical contacts detected among the millipedes resulted in copulation. Based on the value of sexual selection coefficients, preferences toward the previous partner were found to be prevalent in both female and male choice tests. Individuals with different mating status significantly differed in some morphological traits (body mass, head centroid size, head shape, and promere shape). Our study yielded new information about the sexual behaviour of millipedes and variation of morphological traits as a potential basis for mate preferences.

Contents

Introduction ... 133
Material and methods .. 134
Analysed species ... 134
Behavioural assays .. 134
Morphological traits in *M. bosniense* 135
Results ... 136
“Mating arena” test ... 136
Female and male choice tests 137

Analyses of morphological traits in *M. bosniense* 137

Discussion .. 138

Morphological variation of antennae and legs between sexes with different mating status 143
Morphological variation of the head between sexes with different mating status 144
Morphological variation of gonopods (promeres and opisthomer) between males with different mating status ... 144

Conclusions ... 145

Acknowledgements .. 145

References ... 145
2008, 2009; Edward and Chapman, 2011; Dougherty and Shuker, 2014). Differences in mate choice presume the existence of variation of certain trait(s) in males and/or females and occurs when the effects of trait(s) expressed in one sex lead to non-random allocation of reproductive investment (e.g. mating or fertilization) with individuals of the opposite sex (Edward and Chapman, 2011; Edward, 2015). Among trait(s) that can be sexual selection subject(s) and which underlie preferences that lead to mate choice, morphological traits are probably the easiest to quantify. Apart from consideration of linear measurements, a geometric morphometric approach can be applied, and data obtained on size and shape of the trait(s) in focus can be separated and precisely analysed (Zelditch et al., 2004; McPeek et al., 2008, 2009; Gasparini et al., 2011; Cooke and Terhune, 2015). In connection with this, a number of studies are available that link the shape of certain structures (both the “usual morphological” traits and secondary sexual characteristics) with success in mating in the most studied Drosophila species (Menezes et al., 2013; Trajković et al., 2013; LeVasseur-Viens and Moehring, 2014; Richmond, 2014), as well as in other taxa (e.g. Kelly, 2014).

Studies of the potential relationship between sexual behaviour and morphological variability in millipedes (Diplopoda) are mostly focused on representatives of the superorder Juliformia (e.g. Haacker and Fuchs, 1970; Mathews and Bultman, 1993; Barnett et al., 1995; Tadler, 1996; Cooper and Telford, 2000; Jovanović et al., 2017). Precopulatory behaviour typically involves the male’s ascending on the female dorsal side, moving toward the anterior part of her body, and positioning his ventral side on the ventral side of the female. During all these stages, the male actively taps the female with his antennae. Gonopods (male secondary sexual structures which represent modified legs of the seventh and/or eighth body ring) serve as sperm carriers (Enghoff, 1985, 1992a; Barnett et al., 1993, 1995; Barnett and Telford, 1996). Since millipedes are characterized by multiple mating, gonopod size and shape could be under the influence of postcopulatory sexual selection.

We assumed that morphological features which are in frequent contact between males and females before copulation occurs may be involved in some sort of mutual assessment and be subject to precopulatory sexual selection. The julid species Megaphyllum bosniense (Verhoeoff, 1897) was used to test the impact of morphological variation (both variation of linear measurements, body mass and variation in the shape of certain structures) on mate choice. Mating success of both sexes was tested not only in relation to morphology, but also in relation to previous mating experience. Knowledge of these relationships, together with the results of quantifying behavioural sequences, would contribute to a better understanding of intersexual selection and the mating behaviour of millipedes.

Material and methods

Analysed species

Studied species M. bosniense is one of the most common millipedes in Serbia (Makarov et al., 2004) and is also distributed in other countries [Albania, Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Greece, Italy, Hungary, Montenegro, Former Yugoslav Republic of Macedonia (FYROM), Romania, Slovenia] (Lazányi et al., 2012). This species is characterized by sexual dimorphism (SD) in body length: females are approximately twice the size of males. For this study, we collected 114 animals (57 individuals of each sex) from Mt. Avala (near Belgrade, Serbia) (Čarapićev Brest, village of Beli Potok; N 44°41’32”; E 20°31’06”) during October of 2016. We confirm that no specific permissions were required for collecting millipedes on this site. Also, we confirm that no endangered and/or protected species was used in our study. Sex of the collected adults was immediately determined and males and females were placed in separate boxes filled with ground cover from the collecting site. Millipedes were kept for seven days in the laboratory (room temperature, relative humidity of ~60%, natural light regime) to acclimate them before the experiments.

Behavioural assays

Behavioural traits in M. bosniense were scored in three types of tests (mating arena test, female choice test, and male choice test). In the mating arena test, males and females were placed in plastic boxes (38 cm × 25 cm) filled with leaf-litter, pieces of bark, and soil from the sampling site. We put males and females together into plastic boxes for ~30 minutes. Each mating pair was scored for behavioural sequences (explained below, Table 1) and transferred to a separate plastic box. Mated and non-mated individuals were further kept individually in plastic boxes filled with leaf litter for 48 hours. Female and male choice tests were conducted after the mating arena test. In the “choice”
tests, an individual of one sex and two individuals of the opposite sex (the previous partner from the mating arena test and a new one) were placed in a plastic box (20 cm × 13 cm × 13 cm) filled with leaf-litter, pieces of bark, and soil from the sampling site. We marked the previous and new partners using UV dust, which is commonly employed to tag insects (Hagler and Jackson, 2001) without modifying their mating behaviour (Terzić et al., 1994). A small amount of red-coloured dust was applied to the telson of the previous partner, while green-coloured dust was applied to the telson of the new partner. A fluorescent UV lamp was used in subsequent determination of the mating partner.

Sexual behaviour was quantified by determining several sequences (Jovanović et al., 2017) (Table 1). Behavioural sequences were scored in the mating arena, female choice, and male choice tests. Additionally, mating success of previously mated and non-mated individuals in the mating arena test was scored in both types of subsequent “choice” tests. The time elapsed between the mating arena and female/male choice tests was 48 hours (Jovanović et al., 2017). During this time, the individuals were kept individually in plastic boxes filled with leaf litter, regularly fed, and moistened, to relax them from the previous mating.

Descriptive statistical procedures were performed to describe the aforementioned sequences of sexual behaviour. Differences in values of DC, ECC, and CC in the mating arena test and in some of the “choice” tests were determined using the T-test. All statistical analyses were performed in the R program package (R Development Core Team, 2013; available at http://www.r-project.org/) and Statistica 7 (StatSoft Inc., Tulsa, OK, USA). To determine differences in success of mating with the previous partner and mating with a new one, the sexual selection coefficient (W) was calculated for males and females separately using JMATING software (the highest mating success, W = 1) (Carvajal-Rodriguez and Rolan-Alvarez, 2006, available at http://acraaj.webs.uvigo.es/JMsoft.htm). The sexual selection coefficient (W) is widely used parameter for estimation of sexual selection effects and it represents the maximum likelihood fitness estimator of one class relative to another (Rolán-Alvarez and Caballero, 2000).

Morphological traits in M. bosniense

To explore the relationship between mating success and morphological variation of certain traits, traditional and geometric morphometric analyses were carried out.

In performing these analyses, we used the ImageJ program (Abramoff et al., 2004) to measure several morphological traits (Table 2; see Ilić et al. (2016) for descriptions of linear measurements). Body mass was weighted using a Scout Pro 123® scale (Ohaus Corporation, Pine Brook, NJ, USA).

Table 1. Description and quantification of sexual behavior.

Sequences	Abbreviation	Description of sequences
Mating latency	ML	Time elapsed from placing millipedes in the mating experiments until the beginning of copulation.
Duration of copulation	DC	Time scored from the beginning to the end of mating.
Contact to copulation time	CC	Time scored from contact between female and male that finished with copulation.
Contact duration without copulation	CWC	Duration of contact between female and male which does not result in copulation.
Time from entrance to contact with copulation	ECC	Time elapsed from entry of individuals into plastic boxes until contact with copulation.
Time from entrance to contact without copulation	ECWC	Time elapsed from entry of individuals into plastic boxes until contact without copulation.

Table 2. List of analyzed morphological traits.

Morphological trait	Abbreviation
Body mass	BM
Body length	BL
Antennal length	AL
Walking leg length (anterior pair of legs) taken from the 25th body ring	LL
Trunk width taken from the 24th body ring	TW
Trunk height taken from the 24th body ring	TH
T-test was used to test the differences in mean values of BM, BL, AL, LL, TW, and TH between sexes with different mating status. Eighty-four mated (42 individuals per sex) and 30 non-mated millipedes (15 individuals per sex) were used for that purpose.

To analyse shape and size of antennae, walking legs, head, and gonopods (promeres, opisthomeres), geometric morphometrics was applied as a method widely used in animal studies (Kaliontzopoulou et al., 2007; McPeek et al., 2008, 2009; Wojcieszek and Simmons, 2011; Brusatte et al., 2012; Richmond, 2014; Changjunjong et al., 2016; Sasakawa, 2016). For these analyses, we used: 1) the antennae in 56 males (41 mated and 15 non-mated, further presented as mated/non-mated) and 57 females (42/15); 2) the walking legs from the 25th body ring in 57 males (42/15) and 56 females (41/15); 3) the head in 57 males (42/15) and 54 females (40/14); and 4) the promeres of 57 males (42/15) and 5) opisthomeres of 56 males (42/14). All of the indicated structures were used to estimate morphological variation between individuals with different mating status.

The aforementioned structures (head, antennae, walking legs, gonopods - promeres, and opisthomeres) with a reference scale were photographed using a Nikon DS-Fi2 camera with a Nikon DS-L3 camera controller attached to a Nikon SMZ 1270 binocular stereomicroscope. To determine the position of semilandmarks, it was necessary to make fans at the head, promeres, and opisthomeres in the MakeFan program (available at http://www3.canisius.edu/~sheets/IMP%208.htm). TpsDig software (Rohlf, 2008, available at http://life.bio.sunysb.edu/morph/soft-dataacq.html) was used to position landmarks and semilandmarks. Different numbers of landmarks and semilandmarks were placed, depending on the type of morphological structure (Fig. 1).

Figure 1. Position of landmarks on antenna (A) and leg (B) of M. bosniense; and position of landmarks and semilandmarks on head (C), opisthomere (D1), and promere (D2). See supplementary data for descriptions of landmarks and semilandmarks.
Differences in linear measurements and CS of the aforementioned traits were tested using ANOVA in the R program package (R Development Core Team, 2013; available at http://www.r-project.org/).

Results

“Mating arena” test

In observation of the sexual behaviour of individuals in the mating arena test, it was noticed that males of *M. bosniense* (Fig. 2 A) were the more active when searching for mates, and attempted to establish numerous contacts with females. If the female is receptive, it will allow access to its gonopores (Fig. 2 B), which designate this sex as the “choosier” one in mate selection. Precopulatory behaviour in this species (Fig. 2 C-F) was quite similar to that recorded in the earlier studied species *Pachyiulus hungaricus* (Karsch, 1881) (see Jovanović et al., 2017). Behavioural sequences (ML, DC, CC, ECC, ECWC, and CWC) explored by descriptive statistics are presented in Table 3. Out of all contacts, 51% resulted in copulation (Fig. 2 G-I).

Female and male choice tests

Out of all achieved copulation in the female choice test (64% out of 31 copulations), females mostly chose the previous partner for subsequent copulation (in 80% of cases). A similar pattern was detected in the male choice test: 47% of all contacts resulted in copulation (out of 21 copulation). Males also mostly chose the previous mating partner for copulation (in 85% of cases). When considering “contacts” (the male’s ascending on the female dorsal side and moving toward the anterior part of her body), 77% of all contacts (with and without copulations) were observed with the previous males in the female choice test. In the male choice test, on the other hand, 68% of all contacts were observed with previous females. In most cases, one contact was sufficient for accomplishing copulation in both the female and the male choice tests (75 and 69%.

Table 3. Descriptive statistics of behavioural sequences: mating latency – **ML**; duration of copulation – **DC**; contact to copulation time – **CC**; contact duration without copulation – **CWC**; time from entrance to contact with copulation – **ECC**; and time from entrance to contact without copulation – **ECWC**. The time is expressed in seconds. For explanation of behavioral sequences see Table 1.

	N	Min.	Max.	Median	Variance	Std. Dev.	Quartiles 25%	Quartiles 75%
ML	42	205.00	8025.00	1318.50	3168232	1779.95	625.00	2510.00
DC	42	103.00	23935.00	17013.50	35581643	5965.04	14822.00	19463.00
CC	42	10.00	1127.00	162.00	52994	230.20	97.00	277.00
CWC	93	4.00	367.00	35.00	6299	79.36	19.00	78.00
ECC	42	104.00	7866.00	1075.50	3315427	1820.83	371.00	2252.00
ECWC	93	71.00	7325.00	1012.00	2165755	1471.65	571.00	2077.00

*Figure 2. Sequences of sexual behaviour in *M. bosniense*. A – male; B – female; C, D – contact; E, F – extrusion of gonopods (arrows); G, I, H – copulation (photo: B. Ilić).*
observed between mated and non-mated individuals (Table 5). CVA showed clustering of the groups by CV2 axis, illustrating that the proximal part of the head was sharper in non-mated individuals of both sexes (Fig. 5). Promere shape differed significantly between males with different mating status (Table 6). Namely, the bases of promeres were wider in non-mated males (Fig. 8). In the case of other parts of the body (antennae, walking legs, opisthomerers), significant differences in size and shape were not observed (Table 6; Figs. 6, 7, and 9).

Discussion

In laboratory conditions, *M. bosniense* established numerous body contacts, more than half of which resulted in copulation. Sexual selection coefficient (W) calculated in this study indicated that preferences toward the previous partner were expressed in both “choice” tests. We presumed that females use a combination of different types of stimuli in recognition of suitable mating partner: morphological traits under the action of sexual selection, chemical/olfactory cues (such as volatile pheromones, cuticular components), respectively. A smaller percentage of copulations was recorded after two and three contacts in both types of “choice” tests (24 and 30%, respectively).

The number of copulations was significantly higher with the previous partner than with a new partner in both types of “choice” tests (female choice test: W1 = 0.24, SD = 0.1149, P < 0.0001, W2 = 1; male choice test: W1 = 0.17, SD = 0.1129, P < 0.0001, W2 = 1).

Furthermore, no significant differences of DC, ECC, CC, and ML were obtained in females that mated twice in the mating arena and female choice tests (Table 6). On the other hand, significant differences of DC, ECC, and ML were observed between mated and non-mated individuals (Table 5). CVA showed clustering of the groups by CV2 axis, illustrating that the proximal part of the head was sharper in non-mated individuals of both sexes (Fig. 5). Promere shape differed significantly between males with different mating status (Table 6). Namely, the bases of promeres were wider in non-mated males (Fig. 8). In the case of other parts of the body (antennae, walking legs, opisthomerers), significant differences in size and shape were not observed (Table 6; Figs. 6, 7, and 9).

Analyses of morphological traits in *M. bosniense*

We detected the existence of variability in the morphology of certain structures between males and females with different mating status. Mated females were larger with higher values of body mass and head CS than non-mated females (Figs. 3 and 4, Tables 5 and 6). Except in the case of body mass and body length in females, no differences of linear measurements were observed between mated and non-mated individuals (Table 5). CVA showed clustering of the groups by CV2 axis, illustrating that the proximal part of the head was sharper in non-mated individuals of both sexes (Fig. 5). Promere shape differed significantly between males with different mating status (Table 6). Namely, the bases of promeres were wider in non-mated males (Fig. 8). In the case of other parts of the body (antennae, walking legs, opisthomerers), significant differences in size and shape were not observed (Table 6; Figs. 6, 7, and 9).

Discussion

In laboratory conditions, *M. bosniense* established numerous body contacts, more than half of which resulted in copulation. Sexual selection coefficient (W) calculated in this study indicated that preferences toward the previous partner were expressed in both “choice” tests. We presumed that females use a combination of different types of stimuli in recognition of suitable mating partner: morphological traits under the action of sexual selection, chemical/olfactory cues (such as volatile pheromones, cuticular components,
mandibular secretion, secretion from the coxal glands) or auditory stimuli (Haacker, 1969; Carey and Bull, 1986; Tadler, 1996, Wesener et al., 2011). In the context of sexual selection, exchange of visual information is common in diurnal animals living in open habitats. In millipedes, because of their way of life in natural conditions, the visual stimuli themselves could not play an important role in determining mating partner. However, the quality of morphological traits could be detected indirectly, through other sensory domains (e.g. through the quality and/or intensity of tactile/mechanical stimulation provided by certain morphological structures).

A tendency toward mating with previously chosen partners was reported in millipedes in laboratory conditions (Telford and Dangerfield, 1993a; Jovanović et al., 2017). Mating with the same partner could be the result of assessment of his/her good health condition or his/her high genetic quality. Moreover, mating with the same partner could be explained as a form of mate guarding. The opposite strategy was observed, for example, in some insect and pseudoscorpion species [Tregenza and Hosken (2005) and references therein]. Selection of a different mating partner may ensure successful fertilization if the first male was sterile or of poor quality. Mating with a different partner could provide genetic diversity of the progeny as well.

Significant differences were observed in some morphological traits that could be involved in sexual selection (body mass, head size, and head shape) between mated and non-mated females, as well as in head and gonopod promere shape between mated and non-mated males. These results are consistent with data obtained in many arthropods indicating that

Figure 3. Morphological variation of body mass (A), body length (B), antennal length (C), leg length (D), trunk width (E), and trunk height (F) between males and females with different mating status. The median with the first and the third quartiles is shown (in boxes), together with the range of variation and outliers.
Figure 4. Morphological variation in centroid size (CS) of head (A), antennae (B), walking legs (C), promeres (D), and opisthomeres (E) between individuals with different mating status. The median with the first and the third quartiles is shown (in boxes), together with the range of variation and outliers.

Table 6. Analysis of centroid size (CS) and shape of certain morphological traits, as source of variation, between males and females with different mating status. Significant differences are highlighted in bold.

Morphological traits	Mated/non-mated males	Mated/non-mated females		
	CS	Shape	CS	Shape
Head	0.9984	0.0026	0.0012	0.0004
Antennae	0.9824	0.8728	0.9999	0.1103
Walking legs	0.9163	0.6397	0.5176	0.2073
Promeres	0.3435	0.0064	/	/
Opisthomeres	0.6456	0.1548	/	/
morphological variability of sexual and non-sexual traits influenced their mating success (Polihronakis, 2006; Zhou et al., 2012; Menezes et al., 2013; Kamimura, 2014; Outomuro et al., 2016; Bertram et al., 2017).

Behavioural traits were scored and quantified in mating arena and “choice” tests. We obtained differences in some behavioural characteristics (ML, DC, and ECC) as well as in certain morphological traits (linear measures, centroid size, and shape values) between individuals with different mating status. It seems that mate choice in this species is quite complex, since evaluation of mating partners was based on a number of traits tested in this study (previous mating experience, several important behavioural steps, and size and shape of certain sexual and non-sexual structures).

The sequences of precopulatory behaviour in this species are quite similar to those previously described in other juliform millipedes (Haacker and Fuchs, 1970; Tadler, 1996; Jovanović et al., 2017 and references therein). The male uses his anterior pairs of legs to get a grip on the female’s head, after which the extrusion of gonopods follows. An intermediate step between the grip and actual copulation is the charge of gonopods with spermatophores (Barnett and Telford, 1996; Minelli and Michalik, 2015). The copulating pair can assume different positions, from parallel to those where the male is coiled around the female in varying degrees with the anterior or posterior part of his body. Components of mating behaviour, mating latency (ML), and copulation duration (DC) in some Drosophila species were indicators of mate choice based on previous mating experience [Pavković-Lučić and Kekić (2009) and references therein]. Our results showed that ML and ECC lasted for a significantly shorter time in the female choice test than in the mating arena test. However, the pairs formed in the female choice test copulated significantly longer than in the mating arena. In other studies, it was found that the duration of copulation can be prolonged as a result of a male–biased operational sex ratio (OSR), considering that there were two males and only one female available (Telford and Dangerfield, 1990; Cooper, 2016).

Long copulation duration, a possible adaptation in connection with mate guarding and sperm competition, was previously observed in spiders (Schneider et al., 2006; Herberstein et al., 2011), diplopods (Telford and Dangerfield, 1990, 1993a,b; Barnett and Telford, 1996; Rowe, 2010; Cooper, 2016), chrysomelids (Dickinson, 1997), and many insects (e.g. Sillén-Tullberg, 1981; Schöfl and Taborsky, 2002; Afaq and Omkar, 2017). In M. bosniense, the long copulation (~5 hours) could be explained, at least partially, in terms of mate guarding. During this long-lasting copulation, the male protects his investment, a behavioural trait that could result from the need for manifestation of
sperm precedence (Harari et al., 2003; Cooper, 2016). A positive correlation between the amount of sperm in the female receptacula, and the duration of copulation with the last male was detected in some millipedes (Barnett and Telford, 1994) and insects (Simmons, 2001). It is possible that a male millipede can manipulate his own ejaculate, distributing it closer to the part of the oviduct where fertilization occurs (Barnett and Telford, 1994), i.e., performing sperm repositioning, which is common in insects (Simmons, 2001; Córdoba-Aguilar et al., 2003; Xu and Wang, 2010). In some millipedes, the volume of the second male ejaculate significantly increased within 24 hours after copulation (Cooper, 2015), or the volume of the first male ejaculate significantly decreased during the same period (Barnett et al., 1995). Sperm competition may act as an agent in the shaping of genital structure(s) involved in sperm removal (Kamimura, 2000) and sperm mixing (Barnett et al., 1995; Simmons, 2001). In millipedes, the flagellum can have such a role (Tadler, 1996; Minelli and Michalik, 2015). Wojcieszek and Simmons (2011) revealed a relationship between paternity success and the presence of a spiral, spike-like shape of the tip of the gonopods, which could be responsible for sperm manipulation and/or female stimulation. We assume that the opisthomere processes have a similar function in *M. bosniense*. In some millipedes, one of the effective mechanisms for preventing subsequent copulation is the use of copulation plugs preventing future copulations with another male (Barnett and Telford, 1994; Cooper, 2016). However, we did not observe the presence of copulation plug in our sample. Before the female utilizes ejaculates, the male must maximize the likelihood of reproduction, which requires time spent not just in guarding the female, but also in maintaining genital contact. In that manner, the male could establish himself as one of the potential “choices”, if not the most successful one.

One of the basic prerequisites for “choosiness” is morphological variation of the potential partners (Bonduriansky, 2001). Different morphological traits (i.e., linear and shape measurements, centroid size values) were analysed as the potential basis for mate preference and mating success in a number of previous studies (Zhou et al., 2012; Head et al., 2013; Menezes et al., 2013; Ali et al., 2014; Outomuro et al., 2016; Bertram et al., 2017). In the present study, body mass and body length differed significantly between mated and non-mated females, i.e., mated females had a larger values of both traits. We investigated mating success as one of the components of reproductive success, others being fecundity, paternity success and parental care. However, explanation of our results may

Figure 7. Canonical Variate Analysis (CVA) of differences in leg shape between males and females with different mating status (rectangles: black – non-mated males, white – mated males; circle: black – non-mated females, white – mated females).
rest upon literature evidence of positive correlations
between fecundity and body mass in millipedes
(Heath et al., 1974), Orthoptera (Sturm, 2016) and
in oviparous species of several insect orders (Honěk,
1993). Larger females with thicker abdomens (Yang
and Wang, 2004), greater body length (Lu et al., 2013),
and body width (Cooper, 2017) were more attractive to
males in different species. This could result not only
from possessing a greater number of eggs, but also
from being capable of receiving a larger volume of
ejaculate (Lu et al., 2013; Cooper, 2017). In the family
Julidae, paired ovaries extend from 15th to the last
leg-bearing segment, and eggs can take up more than
half the segment’s volume (Hopkin and Read, 1992).
Further, M. bosniense is an euanamorphic species
(individuals moult throughout entire life), body size is
linked with age (Enghoff, 1992b). It implies that the
age of an individual could also contribute to mating
preference/success.

Morphological variation of antennae and legs between
sexes with different mating status

In millipedes, the male’s tapping the head of the female
with his antennae can be described as male courtship
and/or mate assessment (Carey and Bull, 1986). This
type of behaviour is also common in insects (Møller
and Zamora-Muñoz, 1997; Bonduriansky, 2001). In
the process of courtship and/or mate assessment, the
antennae have an important role in millipedes, as shown
by Carey and Bull (1986) in an experiment with the
julid Ommatoiulus moreleti (Lucas, 1860). Males whose
whole antennae or just the antennal tips were removed
mated less frequently than did males which were not
subjected to this procedure, while females with different
degrees of antennal removal mated as frequently as
did ones whose antennae remained intact. On the other
hand, the length of undamaged and intact antennae was
not significantly different between mated and non-mated
longhorn beetle Stenurella melanura (Linnaeus, 1758)
males (Møller and Zamora-Muñoz, 1997). This was
corroborated in our study; namely, no significant effect
of antennal size and shape (females: P = 0.9999, males:
P = 0.9824; females: P = 0.1103, males: P = 0.8728;
respectively) on mating decisions was observed.

It is known that possession of longer legs used in
grasping (Garga et al., 1997; Sugano et al., 2008) or
courtship behaviour (Amin et al., 2012) is positively
correlated with male mating success in insects and
spiders. Since males “walk” across the whole length of
the female’s body, we supposed that the length and/or
shape of the legs could be important factors providing
suitable tactile stimulation in M. bosniense. A similar
type of behaviour is observed in the hymenopteran
Cephalonomia tarsalis (Ashmead, 1893) (Cheng et
al., 2004). However, our results gave no support to the

![Figure 8. Canonical Variate Analysis (CVA) of differences in
promere shape between males with different mating status (bars:
white – mated males; grey – non-mated males).]

![Figure 9. Canonical Variate Analysis (CVA) of differences in
opisthomere shape between males with different mating status
(bars: white – mated males; grey – non-mated males).]
presumption that this type of stimulation is important for successful mating (CS: females, \(P = 0.5176 \), males, \(P = 0.9163 \); shape: females, \(P = 0.2073 \), males, \(P = 0.6397 \)). The significance of walking legs for the male mate search effort was previously noted in the paradoxosomatid Cladethosoma clarum Chamberlin, 1920 (Rowe, 2010). In this species, males possess longer legs than females. Nevertheless, since in C. clarum copulation lasts only several minutes, the number of receptive females could be the main driving force influencing male mating success.

Apart from tactile stimuli, courtship behaviour in millipedes can include exchange of stimuli from other sensory domains. Other cues were not investigated here, although it is presumed that volatile pheromones or cuticular components may play an important role in the mating behaviour of some millipedes (Carey and Bull, 1986). Mandibular secretion is observed in the julid Julius terrestris Latzel, 1884 (Haacker, 1969) and in the pachybolid Centrobolus Cook, 1897 after copulation has already started (Cooper and Telford, 2000). In Cylindroulus boleti (C. L. Koch, 1847) and Brachyulus lusitanus (Verhoeff, 1898), males released a secretion from the coxal glands of the second pair of legs in the mouth of females during the first minute of copulation (Tadler, 1996). Males of the family Sphaerotheriidae or the genus Loboglomeris (both belonging to order Glomerida) use specific sound to induce vibrational patterns that would appear to counter the coiling behaviour of females (Haacker, 1968; Wesener et al., 2011).

Morphological variation of the head between sexes with different mating status

Precopulatory sexual selection can affect morphological variation of the head in insects (Rodriguero et al., 2002; Bonduriansky and Rowe, 2003). Females of some insects distinguished their potential mates on the basis of head morphology, eye length, face width (Rodriguero et al., 2002) or on the basis of head elongation (Bonduriansky and Rowe, 2003).

As already mentioned, the head of the female in M. bosniense is an area where the male spends some time tapping with his antennae, as it is “the attachment region” after formation of a mating pair. In the present study, we found that mated and non-mated individuals of both sexes differed significantly in head shape (females: \(P = 0.0004 \); males: \(P = 0.0026 \)). As the male positions himself above the female grasping her head, shape of the head could be important for achieving the position needed for a successful copulation. The larger heads in mated females provide larger areas for males to perform courtship and/or mate assessment.

Morphological variation of gonopods (promeres and opisthomeres) between males with different mating status

Morphological variation of somatic and genital traits may have significant impact on mating success in many animal groups (Langerhans et al., 2005; Pavković-Lučić et al., 2009; Ponlawat and Harrington, 2009; Cator and Zanti, 2016). Somatic traits are under the influence of precopulatory sexual selection (Jones and Ratterman, 2009), while sexual traits can be subjected to both pre- and postcopulatory selection (Polihronakis, 2006; Kamimura, 2014; Simmons, 2014). When considering genital traits, for example, in water striders, non-intromittent genital traits are under precopulatory, while intromittent genital traits are under postcopulatory sexual selection (Rowe and Arnqvist, 2012).

Millipede gonopods are morphologically complex integrated units with different roles during copulation (Wojcieszek et al., 2012). In several julid species, the function of the promeres are probably only to open the vulvae. On the other hand, the opisthomeres - onto which a sperm droplet is secreted - are necessary for insemination (Tadler, 1996). This author considered that the Julid gonopods evolved toward being opisthospermous (sperm transfer by posterior gonopods). Promeres are regarded as a structures without a direct sperm transfer function. When reaching vulva, promeres are pressed against the operculum, which “covers the gonopore from anterior” (Koch, 2015). Therefore, it is important for members of the family Julidae to possess well developed promer. Gonopods of M. bosniense are characterized by a well-developed promeres, as well as opisthomeres with two smaller processes and a larger posterior one (Lazányi and Vagalinski, 2013). Our results show that only promere shape differs between mated and non-mated males (promere shape: \(P = 0.0064 \); opisthomere shape: \(P = 0.1548 \)), suggesting that shape of “genital” parts has more important role in mating in comparison with the size of the same structures. These findings corroborate results of the study on water striders where the shape of genital structures has greater importance in insect genital evolution (Rowe and Arnqvist, 2012).
Conclusions

In *M. bosniense*, it seems that both sexes can exert precopulatory as well as cryptic choice. Here we examined morphometric traits that could determine a suitable mating partner and measured some sequences of mating behaviour that imply cryptic choice on the background of extremely long copulation during which mate guarding and possible ejaculate manipulation occur. Using a combination of different types of stimuli, males of *M. bosniense* recognize females with greater body mass and head shape corresponding to their own to achieve a firm grasp and head-above-head copulation position. Furthermore, differences in promere shape contribute to male mating success. Previous mating experience also influence mate choice in this species.

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science, and Technological Development (Grant No. 173038). The authors are highly grateful to Mr. Raymond Dooley for his help in preparing the English version of the manuscript. Special thanks to three reviewers for their valuable comments that improved the manuscript. Also, the authors deeply appreciate the selfless assistance of Professor Emilio Rolán-Alvarez (University of Vigo, Vigo, Spain) and his suggestions regarding the section on statistical analyses.

References

Abrámoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with ImageJ. *Biophotonics International* 11: 36–42.
Afaq U, Omkar O. 2017. Prolonged copulation in the parthenium beetle, *Zygogramma bicolorata*: An alternative male tactic to amplify sperm transfer, reproductive attributes and paternity outcomes. *Entomologia Experimentalis et Applicata* 164: 45–53. DOI: 10.1111/eea.12595.
Ali AK, Primicerio R, Folstad I. 2014. Female morphology and mate mating success in the calanoid copepod, *Eudiaptomus graciloides*. *Journal of Plankton Research* 36: 1216–1223.
Amin MR, Bussiere L, Goulson D. 2012. Effects of male age and size on mating success in the bumblebee *Bombus terrestris*. *Journal of Insect Behavior* 25: 362–374.
Andersson MA. 1994. *Sexual selection*. Princeton University Press, Princeton, New Jersey.
Arnold SJ. 1994. Is there a unifying concept of sexual selection that applies to both plants and animals? *The American Naturalist* 144 (suppl.): S1–S12.
Arnqvist G. 1998. Comparative evidence for the evolution of genitalia by sexual selection. *Nature* 393: 784–786.
Arnqvist G, Danielsson I. 1999. Copulatory behavior, genital morphology, and male fertilization success in water striders. *Evolution* 53: 147–156.
Barnett M, Telford SR. 1994. The timing of insemination and its implications for sperm competition in a millipede with a prolonged copulation. *Animal Behaviour* 48: 482–484.
Barnett M, Telford SR. 1996. Sperm competition and the evolution of female genitalia. *Mémoires du Muséum National d’Histoire Naturelle* 169: 331–339.
Barnett M, Telford SR, De Villiers CJ. 1993. Sperm displacement in a millipede? An investigation into the genital morphology of the southern African spirostreptid millipede *Orthoporus pyrrocephalus*. *Journal of Zoology* 231: 511–522.
Barnett M, Telford SR, Tibbles BJ. 1995. Female mediation of sperm competition in the millipede *Alloporus uncinatus* (Diplopoda: Spirostreptidae). *Behavioral Ecology and Sociobiology* 36: 413–419.
Bertram SM, Loranger MJ, Thomson IR, Harrison SJ, Ferguson GL, Reifer ML, Corlett DH, Gowaty PA. 2017. Choosy males in Jamaican field crickets. *Animal Behaviour* 133: 101–108.
Bonduriansky R. 2001. The evolution of male mate choice in insects: a synthesis of ideas and evidence. *Biological Reviews* 76: 305–339.
Bonduriansky R, Rowe L. 2003. Interactions among mechanisms of sexual selection on male body size and head shape in a sexually dimorphic fly. *International Journal of Organic Evolution* 57: 2046–2053.
Brusatte SL, Sakamoto M, Montanari S, Harcourt–Smith WEH. 2012. The evolution of cranial form and function in theropod dinosaurs: insights from geometric morphometrics. *Journal of Evolutionary Biology* 25: 365–377.
Bussiere L, Gwynne DT, Brooks R. 2008. Contrasting sexual selection on males and females in a role-reversed swarming dance fly *Rhamphomyia longicauda* Loew (Diptera: Empididae). *Journal of Evolutionary Biology* 21: 1683–1691.
Carey CJ, Bull CM. 1986. Recognition of mates in the Portuguese millipede *Ommatoiulus moreletii*. *Australian Journal of Zoology* 34: 837–842.
Carvajal-Rodriguez A, Rolan-Alvarez E. 2006. JMATING: A software for the analysis of sexual selection and sexual isolation effects from mating frequency data. *BMC Evolutionary Biology* 6: 40. Available at http://acraaj.webs.uvigo.es/JMsoft.htm
Cator LJ, Zanti Z 2016. Size, sounds and sex: interactions between body size and harmonic convergence signals determine mating success in *Aedes aegypti*. *Parasite Vectors* 9: 622. doi: 10.1186/s13071-016-1914-6.
Changbunjong T, Sumruayphol S, Weluwanarak T, Ruangsittichai J, Dujardin JP. 2016. Female mediation of sperm competition in the millipede *Orthoporus pyrrocephalus*. *Animal Behaviour* 145: 617–623. doi: 10.1016/j.anbehav.2016.02.028.
Changbunjong T, Sumruayphol S, Weluwanarak T, Ruangsittichai J, Dujardin JP. 2016. Female mediation of sperm competition in the millipede *Orthoporus pyrrocephalus*. *Animal Behaviour* 145: 617–623. doi: 10.1016/j.anbehav.2016.02.028.
Cheng L-I, Howard RW, Campbell JF, Charlton RE, Nechols JR, Ramaswamy SB. 2004. Mating behavior of *Rhamphomyia longicauda* Loew (Diptera: Empididae). *Journal of Evolutionary Biology* 21: 1683–1691.
Cooke SB, Terhune CE. 2015. Form, function, and geometric morphometrics. *The Anatomical Record* 298: 5–28.
Cooper MI. 2015. Competition affected by re–mating interval in a myriapod. *Journal of Entomology and Zoology Studies* 3: 77–78.
Cooper MI. 2016. Post-insemination associations between males and females in Diplopoda: A remark on Alcock’s (1994) predictions of the mate–guarding hypothesis. *Journal of Entomology and Zoology Studies* 4: 283–285.

Cooper MI. 2017. The affect of female body width on copulation duration in *Centrotelobulus inscriptus* (Attems). *Journal of Entomology and Zoology Studies* 5: 732–733.

Cooper MI, Telford SR. 2000. Copulatory sequences and sexual struggles in millipedes. *Journal of Insect Behavior* 13: 217–230.

Córdoba-Aguilar A, Uhá E, Cordero Rivera A. 2003. Sperm competition in *Odonata* (Insecta): The evolution of female sperm storage and rival’s sperm displacement. *Journal of Zoology* 261: 381–398.

Danielsson I. 2001. Antagonistic pre- and post-copulatory sexual selection on male body size in a water strider *Gerris lacustris*. *Proceedings of the Royal Society of London B: Biological Sciences* 268: 77–81.

Darwin C. 1871. *The descent of man and selection in relation to sex*. John Murray, London, UK.

Dickinson J. 1997. Multiple mating, sperm competition, and cryptic female choice in the leaf beetles (*Coleoptera: Chrysomelidae*). Pp. 164–183 in: Choe JC, Crespi BJ eds., *The Evolution of Mating Systems in Insects and Arachnids*. Cambridge University Press, Cambridge.

Dougherty LR, Shuker DM. 2014. Precoerculatory sexual selection in the seed bug *Lygaeus equestris*: a comparison of choice and no-choice paradigms. *Animal Behaviour* 89: 207–214.

Eberhard WG. 1996. *Female control: sexual selection by cryptic female choice*. Princeton University Press, Princeton, New Jersey.

Edward DA. 2015. The description of mate choice. *Behavioral Ecology* 26: 301–310.

Edward DA, Chapman T. 2011. The evolution and significance of male mate choice. *Trends in Ecology and Evolution* 26: 647–654.

Enghoff HE. 1985. The millipede family Nematomatidae. With description of a new genus, and a revision of *Orinobates* (Diplopoda: Julida). *Entomologica Scandinavica* 15: 27–67.

Enghoff HE. 1992a. *Dolichoiulus* – a mostly Macaronesian multitude of millipedes. With the description of a related new genus from Tenerife, Canary Islands (Diplopoda, Julida, Julidae). *Entomologica Scandinavica Supplements* 40: 1–158.

Enghoff HE. 1992b. The size of a millipede. *Berichte des Naturwissenschaftlich-medicinischen Vereins in Innsbruck* Supplement 10: S47–S56.

Garga N, Proctor H, Belczewski R. 1997. Leg size affects male mating success in *Tarsonemus confusus* Ewing (Prostigmata: Tarsonemidae). *Acarologia* 38: 369–375.

Gasparini C, Pilastro A, Evans JP. 2011. Male genital morphology and its influence on female mating preferences and paternity success in guppies. *Plos ONE* 6: e22329.

Haacker U. 1968. Stridulation bei *Glomeris marginata* (Villers) in north-west England. *Symposia of the Zoological Society of London* 32: 433–462.

Herberstein ME, Schneider JM, Uhlig G, Michalík P. 2011. Sperm dynamics in spiders. *Behavioral Ecology* 22: 692–695.

Honká A. 1993. Intraspecific variation in body size and fecundity in insects: A general relationship. *Oikos* 66: 483–492.

Hopkin SP, Read HJ. 1992. *The biology of millipedes*. Oxford University Press, Oxford.

Ilić BS, Mitić BM, Makarov SE. 2016. Sexual dimorphism in *Apfelbeckia insculpta* (L. Koch, 1867) (Myriapoda: Diplopoda: Callipodida). *Archives of Biological Sciences* 69: 23–33.

Jimenez-Perez A, Wang Q. 2004. Sexual selection in *Cnephasia jactatana* (Lepidoptera: Tortricidae) in relation to age, virginity, and body size. *Annals of the Entomological Society of America* 97: 819–824.

Jones AG, Ratterman NL. 2009. Mate choice and sexual selection: What have we learned since Darwin? *Proceeding of the National Academy of Sciences of the United States of America* 106: S1 10001–S1 10008.

Jovanović Z, Pavković-Lučić S, Ilić B, Vujić V, Dudić B, Jovanović V, Savić N, Lakić N, Dudić S, Savić N, Marković M. 2014. Sexual dimorphism and *Centrobolus inscriptus* (Karsch, 1881) (Myriapoda, Diplopoda, Julida). *Turkish Journal of Zoology* 41: 1010–1023.

Kahn AT, Mautz B, Jennions MD. 2010. Females prefer to associate with males with longer intromittent organs in mosquitofish. *Biological Letters* 6: 55–58.

Kaliontzopoulos A, Carretto MA, Llorente GA. 2007. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in *Podarctis lizards*. *Journal of Morphology* 268: 152–165.

Kamimura Y. 2000. Possible removal of rival sperm by the elongated genitalia of the earwig, *Euborellia plebeja*. *Zeological Science* 17: 667–672.

Kamimura Y. 2014. Pre- and postcopulatory sexual selection and the evolution of sexually dimorphic traits in earwigs (Dermaptera). *Entomological Science* 17: 139–166.

Kelly CD. 2014. Sexual selection, phenotypic variation, and allometry in genitalic and non-genitalic traits in the sexually size-dimorphic stick insect *Micrarchus hystriculeus*. *Biological Journal of the Linnean Society* 113: 471–484.

Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric morphometrics. *Molecular Ecology Resources* 11: 353–357. Available at http://www.flywings.org.uk/morphoJ_page.htm

Langerhans RB, Layman CA, DeWitt TJ. 2005. Male genital...
size reflects a tradeoff between attracting mates and avoiding predators in two live-bearing fish species. *Proceedings of the National Academy of Sciences of the United States of America* 102: 7618–7623.

Lazányi E, Vagaliński B. 2013. Redefinition of the millipede subgenus *Megaphylum sensu stricto* Verhoeff, 1894 and neotype designation for *Megaphylum austricum* (Latzel, 1884) (Myriapoda: Diplopoda: Julida: Julidae). *Zootaxa* 3741: 55–100.

Lazányi E, Vagaliński B, Korosz Z. 2012. The millipede genus *Megaphylum* Verhoeff, 1894 in the Balkan Peninsula, with description of new species (Myriapoda: Diplopoda: Julida: Julidae). *Zootaxa* 3228: 1–47.

LeVasseur-Viens H, Moehring AJ. 2014 Individual genetic contributions to genital shape variation between *Drosophila simulans* and *D. mauritiana*. *International Journal of Evolutionary Biology* Article ID 808247: 9 pages. DOI:10.1155/2014/808247

Levitan DR. 2004. Density-dependent sexual selection in external fertilizers: variances in male and female fertilization success along the continuum from sperm limitation to sexual conflict in the sea urchin *Strongylocentrotus franciscanus*. *The American Naturalist* 164: 289–309.

Lu W, Wang Q, Tian M, Xu J, Lv J, Qin A. 2013. Mating behavior and sexual selection in a polygamous beetle. *Current Zoology* 59: 257–264.

Makarov SE, Ćurčić BPM, Tomić VT, Legakis A. 2004. *The Diplopods of Serbia, Montenegro, and the Republic of Macedonia. Monographs*. Volume IX. Belgrade – Athens – Institute of Zoology – Faculty of Biology – University of Belgrade; Hellenic Zoological Society, Committee for Karst and Speleology; Serbian Academy of Sciences and Arts.

Mathews PL, Bulman TL. 1993. Mating behaviour of a parajulid millipede, *Aniulus bollmani*. *Canadian Journal of Zoology* 71: 2297–2300.

McPeek MA, Shen L, Torrey JZ, Farid H. 2008. The tempo and mode of three-dimensional morphological evolution in male reproductve structures. *The American Naturalist* 171: E158–178.

McPeek MA, Shen L, Farid H. 2009. The correlated evolution of three-dimensional reproductive structures between male and female damselflies. *Evolution* 63: 73–83.

Menezes BF, Vigoder FM, Peixoto AA, Varaldi J, Bitner-Mathé BC. 2013. The influence of male wing shape on mating success in *Drosophila melanogaster*. *Animal Behaviour* 85: 1217–1223.

Minelli A, Michalik P. 2015. Diplopoda: Reproduction. Pp. 237–265 in: Minelli A ed., *The Myriapoda*. Volume 2, Brill, Leiden.

Moller AP; Zamora-Muñoz C. 1997. Antennal asymmetry and sexual selection in a cerambycid beetle. *Animal Behaviour* 54: 1509–1515.

Outomuro D, Söderquist L, Nilsson-Örtman V, Cortázár-Chinarro M, Lundgren C, Johansson F. 2016. Antagonistic natural and sexual selection on wing shape in a scrambling damselfly. *Evolution* 70: 1582–1595.

Pavković-Lučić S, Kekić V. 2009. Influence of mating experience on mating latency and copulation duration in *Drosophila melanogaster* females. *Russian Journal of Genetics* 45: 875–877.

Pavković-Lučić S, Kekić V, Čvoro A. 2009. Larger male mating advantage depends on sex ratio in *Drosophila melanogaster*. *Ethology, Ecology and Evolution* 21: 155–160.

Polihronakis M. 2006. Morphometric analysis of intraspecific shape variation in male and female genitalia of *Phyllophaga hirticula* (Coleoptera: Scarabaeidae: Melolonthidae). *Annals of the Entomological Society of America* 99: 144–150.

Ponlawat A, Harrington L. 2009. Factors associated with male mating success of the dengue vector mosquito, *Aedes aegypti*. *The American Journal of Tropical Medicine and Hygiene* 80: 395–400.

Rowe M. 2010. Copulation mating system and sexual dimorphism in an Australian millipede, *Cladethosoma clarum*. *Australian Journal of Zoology* 58: 127–132.

Rowe L, Arnvist G. 2012. Sexual selection and the evolution of genital shape and complexity in water striders. *Evolution* 66: 40–54. DOI: 10.1111/j.1558-5646.2011.01411.x

Sasakawa K. 2016. Utility of geometric morphometrics for inferring feeding habit from mouthpart morphology in insects: tests with larval Carabidae (Insecta: Coleoptera). *Sociobiology* 71: 394–409.

Shepherd JM, Gilberg S, Frohmage L, Uhl G. 2006. Sexual conflict over copulation duration in a cannibalistic spider. *Animal Behaviour* 71: 781–788.

Schöfl G, Taborsky M. 2002. Prolonged tandem formation in firebugs (*Pyrrhocoris apterus*) serves mate-guarding. *Behavioral Ecology and Sociobiology* 52: 426–433. DOI: 10.1007/s00265-002-0524-9.

Sheets HD. 2003. *IMP*-Integrated Morphometrics Package. Buffalo: Department of Physics, Canisius College. Available at http://www3.canisius.edu/~sheets/IMP%208.htm

Sillén-Tullberg B. 1981. Prolonged copulation: A male ‘postcopulatory’ strategy in a promiscuous species, *Strongylocentrotus franciscanus*. *Animal Behaviour* 395–400.

Simmons LW. 2007. Sperm competition and its evolutionary consequences in insects. *Princeton University Press*, Princeton, New Jersey.

Simmons LW. 2014. Sexual selection and genital evolution. *Austral Entomology*, 53: 1–17.

Stuart-Smith J, Swain R, Wapstra E. 2007. The role of body size in competition and mate choice in an agamid with female-biased size dimorphism. *Behaviour* 144: 1087–1102.

Sturm R. 2016. Relationship between body size and reproductive capacity in females of the black field cricket (*Orthoptera,*
Vujić et al. 2011. Male genital morphology influences paternity success in the millipede Antichirus variabilis. Behavioral Ecology and Sociobiology 65: 1843–1856.

Wojcieszek JM, Austin P, Harvey MS, Simmons LW. 2012. Micro-CT scanning provides insight into the functional morphology of millipede genitalia. Journal of Zoology 287: 91–95.

Xu J, Wang Q. 2010a. Form and nature of premating sexual selection in both sexes of a moth. Naturwissenschaften 97: 617–625.

Xu J, Wang Q. 2010b. Mechanisms of last male precedence in a moth: Sperm displacement at ejaculation and storage sites. Behavioral Ecology 21: 714–721.

Yang L, Wang Q. 2004. Precopulation sexual selection in Nysius huttoni White (Heteroptera: Lygaeidae) in relation to morphometric traits. Journal of Insect Behavior 17: 695–707.

Zelditch ML, Swiderski D, Sheets D, Fink WL. 2004. Geometric morphometrics for biologists: a primer. Elsevier, London.

Zhou Z-S, Guo J-Y, Guo W, Zheng H-Y, Wan, F-H. 2012. Effects of morphological traits, age, and copulation experience on mate choice in Ophraella commana. Biocontrol Science and Technology 22: 81–91.

Received: 7 March 2018
Revised and accepted: 22 May 2018
Published online: 19 September 2018
Editor: A. Minelli