Research Article

Liang-liang Zhou, Wen-bo Wang, Meng-cheng Du, De-long Ma, and Xiao-lai Zhang*

Synthesis of insoluble sulfur and development of green technology based on Aspen Plus simulation

https://doi.org/10.1515/gps-2022-0076
received April 25, 2022; accepted July 24, 2022

Abstract: The continuous process for the production of insoluble sulfur (IS) has been developed to overcome the disadvantages associated with the traditional batch process, such as low automation, discontinuous production, and high consumption of sulfur and CS₂. The consumption of CS₂ in the continuous process is lower than that in the batch process. The recovery of solvent facilitates the recycling of CS₂ and N₂ in addition to the closed circulation of the entire system. The key process and recovery parameters of the IS synthesis were simulated using Aspen Plus. Sulfur was completely recovered after high-temperature pyrolysis, and the utilization ratio of sulfur atoms was increased from approximately 50% to more than 95%. Tail gas was comprehensively utilized through compression and cryogenic green treatment. Based on the developed green synthesis process and simulated process parameters, the continuous production of IS was evaluated on an industrial scale of 10,000 metric tonnes. Owing to the continuous characteristics of the production process, the air tightness of the production process was significantly improved, and the quality of the product was more stable than that of the product obtained by the current domestic batch process. The unconverted sulfur could be recycled after recovery, without low-grade sulfur as a by-product. The amount of sulfur used as raw material per unit product was reduced; the comprehensive conversion rate of sulfur to IS exceeded 95%, which significantly improved the utilization rate of sulfur atoms. Through the compression and condensation of the tail gas, the recovery efficiency of CS₂ was considerably improved at the same temperature, and compressed N₂ could be simultaneously obtained. The liquefaction rate of CS₂ approached 91.78%, which was characterized by obvious greening.

Keywords: insoluble sulfur, Aspen Plus simulation, green recycling process, process research

1 Introduction

Insoluble sulfur (IS), a high-performance rubber auxiliary material that can replace the use of ordinary sulfur, is a large molecule of sulfur polymerization, named after insoluble in CS₂. It is slow to migrate in rubber and can effectively prevent rubber frosting and improve the heat and wear resistance of tires in tire production. Therefore, IS is an essential and important raw material in tire production [1–3].

Currently, there are three methods to produce IS: one-step melting method, high-temperature water method, and continuous method. The first two methods are batch reaction processes (collectively referred to as batch processes). High contents of IS can be obtained after separation, washing, and drying. In the one-step melting method, ordinary sulfur is melted at 130–150°C. Subsequently, the temperature of the mixture is increased to 300–400°C for a certain period; ordinary sulfur is converted into IS, but the conversion efficiency is low [4,5]. IS is extracted after rapid cooling of the solvent, and the product is obtained after drying, crushing, oil filling, and screening. However, the IS produced by the molten one-step process is poorly dispersed and subsequently needs to be crushed. Moreover, the index of the product visibly fluctuates. In the high-temperature water method, the high-temperature sulfur vapour is introduced into an acidic water medium, and the sulfur is cooled to produce IS. The reactant is a mixture of soluble and IS. The mixture is washed, dried, crushed, and extracted to obtain IS. This method involves low production costs [4,6]. However, owing to the use of water for cooling and
liquid sulfur with a ring structure consisting of eight sulfur atoms after melting by heating. When the temperature exceeds a certain temperature, ordinary sulfur \(S_8 \) undergoes ring-opening cracking to form an unsaturated sulfur atom chain free radical monomer with electrons at both ends. This free radical monomer forms linear macro-molecular chain sulfur through polymerization, which is the main body of IS. The polymerization reaction is reversible, and the degree of polymerization of the polymerization products varies [13]. First, the average molecular weight range of IS was investigated by ideal model isometric titration, and the experimental results showed that its molecular weight was about 2,800–3,100. Then, the density simulation method based on molecular dynamics combined with experimental methods was used to study the number of sulfur atoms in the polymerized sulfur chain (Sn) of IS, and the results showed that \(n = 96 \) was appropriate. The following simulation study was based on \(S_{96} \) [14].

Gauss View is used to obtain chemical kinetic information and thermodynamic information. According to the Schrodinger equation and Hartree–Fock equation, combined with density functional theory, the equation is as follows.

\[
E_0 = -\sum_a z_a \int \frac{\sum_i |\theta |^2}{r_{ia}} - \frac{1}{2} \sum_i |\theta_i|^2 \rho(r_2) + E_{xc}(\rho)
\]

Finally, combining its reaction machine with the existing physical and chemical data (Table 1), Aspen Plus was used to model the IS synthesis process, and sensitivity analysis was used to study the relationship between temperature and IS yield (Scheme 1).

2.2 Studies on the recycling process of by-product sulfur

The raw materials of IS are generally common sulfur from mining or recovered products from petroleum and gas...
desulfurization devices. However, the production of IS requires common sulfur of high purity to ensure that the quality of IS is unaffected. The purity requirements are generally greater than 99.95%. The conversion rate cannot always be increased because the polymerization is a reversible equilibrium reaction. Therefore, the IS products obtained by polymerization contain a large quantity of ordinary sulfur in addition to organic compounds mixed in the production process [15]. Therefore, the by-product sulfur cannot be used in the production of IS; the treated by-product generates a low price and subsequently leads to an increase in production costs. At present, the maximum conversion rate that can be achieved by the melt method in the laboratory stage is around 50–60%. The point of the continuous method compared to the melt method mainly lies in the finer particle size and better stability of the product obtained, and since the reaction is reversible, changing the method has little effect on the maximum conversion rate of the substance. In this process, the unreacted common sulfur in the sulfur polymerization reaction is recovered and re-introduced into the system after treatment to participate in the polymerization reaction.

As the cycle process continues, organic matter accumulates in the sulfur and therefore needs to be removed. The enrichment of alkanes in the by-product sulfur mainly consists of chain breaking and dehydrogenation reactions. The C–C bonds in alkanes are broken by temperature, and the main components of enriched organic matter contain alkanes, cyclic alkanes, aromatic hydrocarbons, and other hydrocarbons. After a complex chemical reaction of high-temperature cracking, the final products of organic matter in sulfur are H₂S and coke particles.

2.3 Development of tail gas recycling process

The entire production process of IS is performed under N₂ to avoid the influence of O₂ on the product. However, the continuous addition of N₂ to the system increases the system pressure. Therefore, the excess gas is discharged from the system. The production tail gas is a mixture of CS₂ and atmospheric N₂, which is the main component. In the tail gas treatment method, N₂ is condensed and directly discharged into the atmosphere. Therefore, N₂ is not recycled; this results in its underutilization and subsequently raises production costs. The separation and recovery of CS₂ and N₂ from the mixture are essential for environmental protection [16,17], and reduced material consumption and production costs. Additionally, this step is a technical challenge for IS production plants. In the conventional recovery of CS₂, frozen water is recycled in the condenser, and CS₂ is condensed into a liquid. However, the recovery rate of CS₂ in tail gas by the frozen water method is inadequate owing to the high vapour pressure and volatile characteristics of CS₂, and excess N₂ in the tail gas. Thus, the consumption of CS₂ is generally high. Tail gas compression and cryogenic design are implemented to reduce the consumption of solvent in the production of IS and facilitate green production. The compressed tail gas replaces pure N₂ using pressure to supplement the production gas; this can reduce the overall use of N₂ and the loss of CS₂ [18].

3 Simulation and research of green recovery process of IS

The scale-up process from the laboratory stage to actual industrial production generally follows a comprehensive experimental cycle. For reaction systems, the interaction of various process parameters affects the scale-up to actual industrial production capacities. Since the 1990s, the chemical process simulation system has entered a period of extensive development, where the value of chemical process simulation technology has been recognized and widely used. It is a powerful auxiliary tool for design, research, and production. Chemical process simulations “reproduce” the actual production process on a computer. Therefore, they do not involve any changes in pipelines, equipment, and energy. The designer is provided a considerable degree of freedom to analyse different schemes and process conditions on the computer. Therefore, process simulation considerably saves time and operating costs; it is useful in analysing the planning, research, and development of chemical processes and their technical reliability. Aspen Plus is representative simulation software, which is widely used in...
chemical, oil refining, oil and gas processing, petrochemical, and other industries [19–22]. In this study, we simulate the green industrialization of IS based on Aspen Plus in order to obtain more suitable and green process parameters.

3.1 Aspen Plus model construction

With relevant experimental data obtained through a literature review as the boundary conditions. The sensitivity analysis module in Aspen Plus is used to select reliable physical properties, methods, and models. Users can use this tool to change one or more process variables and study the impact of their changes on other processes. Additionally, the module is used to analyse and verify whether the solution of the design specification is within the range of manipulated variables [23] to conduct a simulation study of the process. In this simulation, the physical property methods of PR-BM and RK-SOVE and the built-in physical property library of Aspen Plus are used in this article. In conjunction with the operational state, the Aspen Plus simulation makes the following assumptions.

The model shown in Figure 1 is established for the actual production process of IS. The whole system is closed with micro-positive pressure, in order to avoid leakage of materials or CS₂ into the atmosphere. The RSTOIC module is used first for known chemical reactions.

Ordinary sulfur S8 reacts with a small number of alkane impurities contained therein at high temperatures to generate small quantities of H₂S and coke, which are subsequently separated by FLASH1 and FLASH2. The obtained pure sulfur undergoes a high-temperature cracking polymerization reaction in reactor R2 and is quenched to generate IS. Typically, the conversion rate of IS is 50–60%. In the extraction kettle, CS₂ is used as the extractant at normal temperature, and a second extraction method is applied [24,25]. Moreover, some materials are transported by a pump during the actual production process. These materials are not considered during modelling and the steady-state flow is adopted by default. Therefore, there is a gap between the energy loss in the simulation and the actual process. However, the loss of materials is ignored and considered equal to the output of the actual process.

4 IS synthesis process Aspen Plus simulation

The investigation of a process generally involves time, concentration, temperature, pressure, and other process conditions. This process is mainly concerned with the effect of temperature on the production process, the effect of CS₂ dose on the extraction effect of the product, and the temperature and pressure on the liquefaction rate of CS₂.
when the mixture of CS$_2$ and N$_2$ is separated. Therefore, in this process, the main module consists of the reactor and separator, supplemented by other modules; each module is built sequentially. Independent analysis and optimization are applied to the follow-up module. Subsequently, the most efficient process conditions are determined.

4.1 Production process of IS

In the production process of IS, common sulfur and by-product sulfur are mixed and fed into reactor R1, which reacts to produce IS after high-temperature action. During the reaction process, the temperature has a large influence on the product. Figure 2 shows the relationship between the polymerization temperature and the yield of IS. The polymerization temperature has a significant effect on the yield of IS. When the reaction temperature is lower than 400°C, the yield curve of IS increases rapidly and gradually decreases. When the temperature is in the range of 420–450°C, the reaction reaches an approximate maximum, and the reaction temperature is no longer the dominant factor in the reaction. As the temperature continues to increase, the yield of IS increases slowly and is stabilized near the maximum, probably because the temperature was too high, and some IS was cracked. In this study, the reaction temperature is 450°C; the overall reaction of IS yield is approximately 59.1%.

4.2 Extraction process

The obtained reaction products were mixed with CS$_2$, and since IS is insoluble in CS$_2$, high-quality IS can be obtained by dissolving the by-product sulfur, but the efficiency of extraction is influenced by temperature and dose.

4.2.1 Effect of extraction temperature on the IS yield

Controlling the temperature significantly influences the yield of IS. The lower limit of the extraction temperature is set to 0°C; extremely low temperatures are not conducive to extraction efficiency and result in higher costs. The upper limit is set to 45°C; CS$_2$ will vaporize at temperatures above 46.5°C. The effect of extraction temperature on the content of IS was studied by varying the temperature. Figure 3 shows that the efficiency of CS$_2$ in the product increases with the increase in temperature. The extraction efficiency is 94.60% at 25°C and 95.01% at 30°C. In this study, the extraction temperature is 30°C, and the final mass fraction of IS is 95.01%.

4.2.2 Effect of extractant dosage on extraction efficiency

Two-stage extraction was used to improve the extraction efficiency. Figure 4 shows that the mass fraction of IS increases with the increasing amount of extractant at the set temperature. The yield of IS was low, not reaching 90% when the feed ratio of CS$_2$/S8 is less than 100. The
extraction rate increases slowly when the feed ratio of CS$_2$/S$_8$ is greater than 175. Increasing the amount of CS$_2$ would result in high production costs. The feed ratio of CS$_2$/S$_8$ was set at 150 to allow the collection of IS. This ratio offers a product of 95.01%, while avoiding the waste of raw materials.

4.3 Tail gas recovery process

CS$_2$ and N$_2$ in the tail gas are compressed, but CS$_2$, as a condensable gas, can be liquefied at the right temperature and pressure and will exist in a different phase from N$_2$, so that the two can be separated. Therefore, the effect of temperature and pressure on the liquefaction rate of CS$_2$ is investigated separately.

4.3.1 Effect of temperature on liquefaction rate of CS$_2$

As shown in Figure 5, under the initial set pressure, the temperature control significantly influences the liquefaction rate of CS$_2$. When the temperature is lower than 10°C, the liquefaction rate of CS$_2$ is higher. With the increase in temperature, the liquefaction rate of CS$_2$ begins to decrease significantly. Particularly, the increase in temperature greatly increases the molecular activity of CS$_2$, which reduces its tendency to liquefy. Therefore, lower temperatures result in higher liquefaction yields. However, considering the actual industrial production, the temperature is controlled at 10–15°C to avoid significant waste of energy in the recovery process. The liquefaction rate of CS$_2$ approaches values above 90%. In this study, 12°C is considered the separation temperature of CS$_2$, which optimizes the liquefaction rate of CS$_2$ in the entire separation process.

4.3.2 Effect of pressure on liquefaction rate of CS$_2$

Figure 6 shows that the pressure considerably influences the liquefaction rate of CS$_2$. At the set temperature, the
liquefaction rate of CS₂ increases with the increase in pressure. For pressures lower than 400 kPa, the liquefaction rate of CS₂ increases rapidly with the increase in pressure; the rate decreases gradually when the pressure is higher than 600 kPa. In this study, the pressure of the entire cryogenic recovery unit is set to 450 kPa, and the liquefaction rate of CS₂ in tail gas is approximately 91.78% using compression and cryogenic separation at 12°C.

5 Green process cycle

Based on the Aspen Plus simulation of the IS production process, a continuous and green production process is developed. The by-product sulfur is completely recycled, as shown in Figure 7. The process mainly consists of reaction, extraction, compression, condensation, and other auxiliary systems. Liquid sulfur after high-temperature cracking and polymerization reaction forms IS. The extraction step uses CS₂; relatively pure CS₂ is obtained after separation. Subsequently, the product is obtained after washing and drying. The extracted common sulfur is recycled into the reaction system for participation in the next reaction cycle. After separation, most of the CS₂ is in a liquefied form. The tail gas undergoes cryogenic compression, and liquefied CS₂ is directed into the tank. Following the extraction step, supplementary N₂ gas participates in the process cycle. The results of the simulation reduce the debugging interval and provide reference values for the actual operation parameters of IS production in Shandong Yanggu Huatai Chemical Co., Ltd., China.

6 Conclusions

The actual process model of continuous production of IS is established using Aspen Plus. The simulation and optimization results provide a suitable reference for the actual operation. The model can reasonably predict the different working conditions of the IS production process.

The process of producing IS was studied by simulation with Aspen Plus software, from which the utilization rate of sulfur atoms was greatly improved from about 50% in the current intermittent method to more than 95%. Through the process of CS₂ extraction of common sulfur, the extractant feed volume-to-mass ratio, temperature, and pressure analysis was optimized between the process modules by the control variable method, from the optimization results; it can be learned that the product with a mass of more than 95% can be obtained at
a feed ratio of 150 for CS$_2$/S8 and an extraction temperature of 30°C. By compressing and condensing the tail gas, the pressure of the deep cooling and compression device is controlled at 450–500 kPa, and the temperature is controlled at 8–10°C. The recovery efficiency of CS$_2$ is greatly improved so that the liquefaction rate of CS$_2$ reaches 91.78%, and the consumption of unit IS is greatly reduced through recycling. Moreover, while recovering CS$_2$, compressed nitrogen can be obtained at the same time, which realizes the green recycling of tail gas.

Acknowledgments: The authors express their sincere appreciation to the Shandong Provincial Key Research and Development Program (Plan No. 2017CXGC1101 & Project No. 2019JZZY010513).

Funding information: The project was funded by the Shandong Provincial Key Research and Development Program (Plan No. 2017CXGC1101 and Project No. 2019JZZY010513).

Author contributions: Liang-liang Zhou: investigation, methodology, and writing – original draft; Xiao-lai Zhang: conceptualization, investigation, and supervision; Wen-bo Wang: data curation; Meng-cheng Du: formal analysis; De-long Ma: project administration.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Available data are presented in the manuscript.

References

[1] Cataldo F. A study on the structure and properties of polymeric sulfur. Angew Makromol Chem. 1997;249:137–49. doi: 10.1002/apmc.1997.052490109.

[2] Donohue J, Caron A. On structure of carbon disulfide-insoluble sulfur. J Polym Sci. 1961;50(153):517–22. doi: 10.1002/pol.1961.1205015333.

[3] Ouyang F, Hao T, Li Y, Yin C. Preparation of insoluble sulfur. Chem Ind Eng Pro (China). 2015;34(5):1389–394,1400.

[4] Terada N, Kouge K, Komaguchi K, Hayakawa S, Tsutsumi H. Thermal stability change of insoluble sulfur by a heat treatment and its mechanism study. Anal Sci. 2020;36(1):75–9.

[5] Wang C. Experimental study on the influencing factors of the stability of environmentally friendly insoluble sulfur. Fresenius Env Bull. 2020;29(9A):8600–9.

[6] Wang M, Guo Y, Shi P, Qi C, An H. The influence of heating mechanism for sulfur polymerization. Chin J Appl Chem. 2016;45(11):2190–2.

[7] Wang Y, Li F, Wang F, Pu Y, Zhao N, Xiao F. Effect of extractant on preparation of insoluble sulfur and optimization of operation conditions. Petrochem Technol (Beijing, China). 2017;46(8):1017–21.

[8] Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, et al. Sulfur Chemistry in Polymer and Materials Science. Macromol Rapid Commun. 2019;40(1):1800650-1-1800650-51. doi: 10.1002/marc.201800650.

[9] Jorg H, Christoph Z. Process for the production of polymeric sulfur: US, 2005143507; 2005-06-30.

[10] Wei L. Response surface methodology for optimizing production process parameters of polysulfur. Inorg Chem Ind. 2020;52(9):47–51.

[11] Zhang Y, Ji D, Ma S, Wang W, Dong R, Shi L, et al. Synthesis of 2, 2'-dibenzoylaminodiphenyl disulfide based on Aspen Plus simulation and the development of green synthesis processes. Green Process Synth. 2020;9(1):248–58. doi: 10.1515/gps-2020-0026.

[12] Hou W, Su H, Hu Y, Chu J. Modeling simulation and optimization of a whole industrial catalytic naphtha reforming process on aspen plus platform. Chin J Chem Eng. 2006;14(5):584–91. doi: 10.1016/s1004-9541(06)60119-5.

[13] Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem. 2013;5(6):518–24.

[14] Ma J, Zhao J, Wang R, Shen B. Theoretical study on structure of polymeric sulfur. Asian J Chem. 2015;27(12):4583–6.

[15] Zhao J, Shu Y, Wang R, Shen B. A novel and easy way to improve the thermal stability of insoluble sulfur by curing process. Phosphorus Sulfur Silicon Relat Elem. 2017;192(4):431–6. doi: 10.1080/10426507.2016.1247842.

[16] Ouyang F, Gu J, Zhang Y, Weng H. Study on new extractant for insoluble sulfur. Spec Petrochem (Tianjin, China). 2008;25(3):7–12.

[17] Kansha Y, Kishimoto A, Nakagawa T, Tsutsumi A. A novel cryogenic air separation process based on self-heat recuperation. Sep Purif Technol. 2011;77(3):389–96. doi: 10.1016/j.seppur.2011.01.012.

[18] Chen S. Comparison of nitrogen producing processes of pressure shift adsorption (PSA) and cryogenic separation. Mod Chem Ind. 2013;33(2):76–8.

[19] Ouyang FS, Gao P, Li B. Application of solubility parameter method in development of extractants for insoluble sulfur. J East China Univ Sci Technol Nat Sci Ed. 2010;36(1):25–30.

[20] Gursel IV, Hessel V, Wang Q, Noel T, Lang J. Window of opportunity – potential of increase in profitability using modular compact plants and micro-reactor based flow processing. Green Process Synth. 2012;14(4):315–6. doi: 10.1515/gps-2012-0046.

[21] Agudelo Y, Barrera Zapata R. Use of advanced simulation software Aspen Plus as teaching tool in chemical reaction engineering. Rev Educ Ing. 2015;10(19):57–68.

[22] Ghasem N. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design. Eur J Educ. 2016;41(4):455–67. doi: 10.1080/03043797.2015.1095158.

[23] Tozzi PV, Wisniewski CM, Zalewski NJ, Savelski MJ, Slater CS, Richetti FA. Life cycle assessment of solvent extraction as a low-energy alternative to distillation for recovery of N-methyl-2-pyrrolidone from process waste. Green Process Synth. 2018;7(4):277–86. doi: 10.1515/gps-2017-0030.
[24] Wang R, Shen B, Liu J, Zhao J. Optimization of insoluble sulfur extraction by response surface methodology. Chin J Appl Chem. 2018;47(7):1457–61.

[25] Ouyang FS, Bi YX, Li B, Sun Q, Weng HX. Effect of the molecular structures of extractants on separating insoluble sulfur. J East China Univ Sci Technol Nat Sci Ed. 2008;34(4):482–6.