Double trouble. A cryptic first record of *Berghia marinae* Carmona, Pola, Gosliner, & Cervera 2014 in the Mediterranean Sea

Carles GALIÀ-CAMPS\(^1\), Leila CARMONA\(^2\), Andrea CABRITO\(^1\) and Manuel BALLESTEROS\(^1\)

\(^1\) Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Avinguda Diagonal 643 CP 08028, Barcelona, Spain
\(^2\) Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus Universitario de Puerto Real CP 11510, Puerto Real, Cádiz, Spain

Corresponding author: carlesgalia@ub.edu

Handling Editor: Mehmet YOKES

Received: 20 March 2019 ; Accepted: 2 February 2020 ; Published online: 27 April 2020

Abstract

In 2014, *Berghia marinae* Carmona, Pola, Gosliner & Cervera, 2014 from Senegal was described along with the revision of the genus *Berghia* Trinchese, 1877. In this study, we establish a second record for the senegalese species *B. marinae* in the Mediterranean Sea, 4,000 Km away from its type location. The morphological mismatch from the original description hampered its identification, and thus, a molecular approach was needed. Multilocus phylogenetic trees were inferred from Maximum-likelihood and Bayesian analyses based on partial DNA sequences of the mitochondrial cytochrome c oxidase subunit I and 16S rRNA genes, and the nuclear gene histone-3. Species delimitation analyses were performed to support the phylogenetic results and a new morphological description is provided complementing earlier information on this barely known species.

Keywords: Cryptic species; Marine Biodiversity; Species distribution; Mollusca.

Introduction

The first records of Heterobranch sea slugs (formerly known as opisthobranchs) in the Mediterranean Sea date back to the 18th century. Since then, these organisms have been heavily researched, with descriptions and/or reports of the species providing a deeper knowledge of this group of molluscs from the Mediterranean Sea. Moreover, since the beginning of the 20\(^{th}\) century, the presence of exotic species of opisthobranchs in the Mediterranean has become more evident (Zenetos et al., 2004). The observation of new species increased in the 1960s, 1970s and 1980s, mainly due to the migration of species from the Red Sea through the Suez Canal (Lessepsian migrants) as well as the advances in scuba diving and more careful observations of the aquatic medium (Zenetos et al., 2004; Borg et al., 2009; Yokes et al., 2012).

Several opisthobranch checklists, including alien species, have been published and updated for specific areas (Ortea et al., 2001; Ballesteros et al., 2016; Zenetos et al. 2016), countries (Cervera et al., 2004; Calado & Silva, 2012; Crocetta et al. 2013) or for the whole Mediterranean Basin (Schmekel & Portmann, 1982; Cattaneo-Vietti et al., 1990; Trainito & Doneddu, 2014). On most of these checklists, species have been distinguished using external morphology and, in some cases, are based on the internal anatomy. However, molecular methodologies have facilitated the detection of species complexes, in parallel with the description of new species and even genera among the marine Heterobranchia (Bond et al., 2001; Xavier et al., 2010; Carmona et al., 2011; Carmona et al., 2014a; Churchill et al., 2014; Padula et al., 2014; Kienberger et al., 2016; Furfaro et al., 2017; Korshunova et al., 2017; Zamora-Silva & Malaquias, 2017). The genus *Berghia* Trinchese, 1877 was recently revised (Carmona et al., 2014b). The authors concluded that this genus does not have any clear morphological synapomorphy and proposed the external colouration as the main feature to differentiate and delimit species. Moreover, a new species from Senegal was described: *Berghia marinae* Carmona, Pola, Gosliner, & Cervera, 2014, increasing the number of species for the genus to 14. This species is closely related to *B. columbina* García-Gómez & Thompson, 1990, with the two presenting few external differences, being colouration the only significant differentiating trait. *B. columbina* has orange highlights in the cerata, while *B. marinae* presents a brownish opaque colour on these structures. In the Mediterranean Sea, only three *Berghia* species have been reported thus far: *B. coerulescens* Laurillard 1832, *B. columbina* and...
Material and Methods

Examined material

18-IV-2017. A single specimen was obtained among *Posidonia oceanica* (Linnaeus) Delile, 1813 at 15m depth while SCUBA diving in La Trencka, Mataró (41.52733° N, 2.46667° E) (NE Spain). The live specimen measured 8mm in length when it was completely extended. The specimen was photographed alive and then preserved in absolute ethanol.

Extraction, amplification and DNA sequencing

The whole organism was used for extraction. The DNeasy Blood & Tissue kit (09/2001; Qiagen, Valencia, CA, USA) was used for DNA extraction. Cytochrome Oxidase Subunit I (COI), ARN ribosomal 16S and Histone 3 fragments were amplified using the polymerase chain reaction (PCR) with the primers L1490 and Bergh_COI_intR for COI (Folmer et al., 1994; Carmona et al., 1997), imple-mented in the GenBank database. The coding sequences were translated into amino acids to confirm alignment. These sequences were deposited in GenBank under the accession numbers: MK468733 for COI, MK468734 for 16S, MK468735 for H3. In addition, 74 additional sequences from 31 specimens from GenBank previously used in Carmona et al. (2014) and Borges et al. (2016) were obtained and reanalysed to compare the sequences belonging to the collected organism (Table 1). MUSCLE (Edgar, 2004), implemented in MEGA7, was used to align the sequences.

Species Delimitation

Multiple methodologies were used to confirm the identification of the studied specimen. Genetic p-distances were calculated for the COI marker with MEGA7 (Kumar et al., 2016) assuming the Kimura-2 parameters nucleotide substitution-rate model. In addition, ABGD analyses were performed with the ABGD web version (http://wwwabi.snv.jussieu.fr/public/abgd/) (Puillandre et al., 2012). Pmin and Pmax values were established as 0.001 and 0.5 respectively, with a total of 1000 steps.

DNA sequences were assembled with SeqMan (Swin-dell & Plasterer, 1997) and edited with MEGA7 (Kumar et al., 2016). All sequences were confirmed to be free of contamination by BLAST (Altschul et al., 1997), implemented in the GenBank database. The coding sequences were translated into amino acids to confirm alignment. These sequences were deposited in GenBank under the accession numbers: MK468733 for COI, MK468734 for 16S, MK468735 for H3. In addition, 74 additional sequences from 31 specimens from GenBank previously used in Carmona et al. (2014) and Borges et al. (2016) were obtained and reanalysed to compare the sequences belonging to the collected organism (Table 1). MUSCLE (Edgar, 2004), implemented in MEGA7, was used to align the sequences.

Phylogenetic analyses

DNA sequences were assembled with SeqMan (Swindell & Plasterer, 1997) and edited with MEGA7 (Kumar et al., 2016). All sequences were confirmed to be free of contamination by BLAST (Altschul et al., 1997), implemented in the GenBank database. The coding sequences were translated into amino acids to confirm alignment. These sequences were deposited in GenBank under the accession numbers: MK468733 for COI, MK468734 for 16S, MK468735 for H3. In addition, 74 additional sequences from 31 specimens from GenBank previously used in Carmona et al. (2014) and Borges et al. (2016) were obtained and reanalysed to compare the sequences belonging to the collected organism (Table 1). MUSCLE (Edgar, 2004), implemented in MEGA7, was used to align the sequences.
Simple distance, Jukes & Cantor and Kimura-2 parameters were used as nucleotide substitution models and compared to each other to confirm the best barcoding detection.

The rooted COI consensus tree obtained by MrBayes was used for a bPTP analysis, performed via web version (http://species.h-its.org/ Zhang J. 2013-2015). The run was executed with a total of 100,000 generations, with an initial burn-in of 0.1% of the iterations performed. The value of thinning was established by default as 100.

To perform the GMYC analysis, two ultrameric trees for the COI gene were obtained by using BEAST 2.0 (Drummond & Rambaut, 2007). Priors and models established for the trees were determined based on previ-
ous knowledge, using the associated software BEAUti. The nucleotide substitution model selected was HKY. The chosen clock model was the uncorrelated relaxed with lognormal distribution. Two different priors were determined for the trees: Yule process and Birth-Death process. No specific tree was selected as a starting tree. A total of 150M of generations were run with a sampling every 1,000 generations. The BEAUti output was executed with BEAST, with a 10% burn-in. Normality, low standard deviation and good values of ESS for each statistic of the resulting ultrametric tree were checked with Tracer v 1.6 (Rambaut et al., 2014). Once these values were considered to be correct, both files for each model were joined using LogCombiner v.2 (Rambaut & Drummond, 2014). GMYC analyses were then carried out with R (R Development Core Team, 2011) and Rstudio (Rstudio Team, 2015), using the packages “rncl” (Michonneau et al., 2016), “ape” (Paradis et al., 2004), “MASS” (Ripley, 2011), “paran” (Dinno, 2012), and “splits” (Ezard et al., 2009).

Results

Taxonomy
Subclass Heterobranchia Burmeister, 1837
Order Nudibranchia Cuvier, 1817
Family Aeolidiidae Gray, 1827
Genus Berghia Trinchese, 1877
Berghia marinae Carmona, Pola, Gosliner & Cervera, 2014

Morphology

The specimen collected in Mataró (NE Spain) (Fig. 1) has a long, narrow, whitish and translucent body except for the post-cardiac dorsal area, which is light brown due to the digestive gland. Bright orange patches are observed on both sides of the head. The oral tentacles are translucent and have white or slightly yellow granulations in their distal half. Rhinophores are orange in their lower half and moving up this colour becomes yellowish. The apex of the rhinophores is white. The rhinophores are covered with small papillae from almost the base to near the apex, which is white. The eyes are visible behind the base of the rhinophores. There are seven groups of cerata on each side of the back. Each insertion of the cerata has bright orange pigments. The cerata are elongated and sharp at the tip. Inside them, the digestive gland is light brown and occupies almost the entire interior of the cerata. A subapical yellowish band and fine whitish dots on the surface of the cerata is also visible. The cnidosacs are white. The foot is broad and almost translucent, and in its anterior part it has well-developed propodial palps. The tail is long and sharp.

Sequence analyses

After the primer deletion, the COI, 16S and H3 sequences were trimmed respectively to the GenBank sequence length obtaining a total of 658 bp for COI, 445 bp for 16S (including variant sites), and 328 bp for H3. Sequence alignment and gene concatenation yielded a combined dataset of 1431 (including variable sites) base pairs in length. The combined tree provided better resolution than H3, COI, or 16S independently. The COI gene best resolved the relationships at the species and generic levels, followed by 16S, while H3 provided little or no resolution. Bayesian inference and maximum likelihood analyses yielded the same topology, and thus only the BI trees are presented.

![Fig. 1: Berghia marinae Carmona, Pola, Gosliner & Cervera, 2014 representations. Photograph of living animal (A), drawing of the entire animal (B) and details of the rhinophoric structure (C).](image-url)
Fig. 2: Bayesian topology of the phylogenetic tree obtained with the COI marker. Represented on the upper side of the nodes is the PP and on the bottom side the BT values. On the right, the results of the different species delimitation analyses are shown.

Fig. 3: Bayesian topology of the phylogenetic tree obtained with COI+16S+H3 markers. Represented on the upper side of the nodes is the PP values and on the lower side the BT values.
Phylogenetic analyses

The phylogenies obtained from each molecular marker place the studied specimen together with *Berghia marinae* from Senegal (Fig. 2), except in the case of the H3 marker, where it is located with the species *B. marinae* and *B. columbina*. However, the obtained nodes are not supported for any of the independent analyses (COI: PP=0.61, BT=83; 16S: PP=0.71, BT=91; H3: PP=0.87, BT=53). The clade made up of *B. marinae* and *B. columbina* is sibling to *B. rissodominguezi* Muniani & Ortea, 1999 and *B. stephanieae* (Valdés, 2005), being supported by COI and 16S genes (COI: PP=1, BT=99, 16S: PP=1, BT=98) but not by H3.

The concatenated phylogeny (Fig. 3) shows that the specimen collected from Mataró, *Berghia sp.* joins *B. marinae* from Senegal with consistent Bayesian node support values (PP=0.95, BT=66). This species is sister to *B. columbina*. This sibling species clade clusters together with *B. stephanieae* and *B. rissodominguezi* with high support values (PP=1, BT=99). *Berghia coerulescens* appears as a sibling species to the clade that includes *B. marinae*, *B. columbina*, *B. stephanieae* and *B. rissodominguezi* (PP=0.99, BT=89). All of the species named are sister to a clade that comprises *B. verrucicornis* and *B. marusi* Domínguez, Troncoso & García, 2008 (PP=0.93, BT=66). Finally, the basal node splits in a politomy made up of *B. creutzbergi* Er. Marcus & Ev. Marcus, 1970, *B. benteva* (Er. Marcus, 1958) and the clade including all the other *Berghia* species.

Species delimitation

The minimum p-distance value (Table 2) between the specimen collected on the Catalan coasts and *B. marinae* is 0.013. This value is much higher when comparing the Catalan *Berghia* sp. to *B. columbina* (0.046-0.048), *B. rissodominguezi* or *B. stephanieae* (0.09 both). The minimum genetic distance (uncorrected p-distance for COI) between *Berghia* sp. and the remaining species of the genus ranges from 0.189 to 0.221.

The ABGD output (Fig. 2) indicates eight species as the most suitable scenario for our data, independently from the chosen model (Jukes and Cantor, Tamura 2-parameters and simple distance). This model displays the *Berghia* sp. found in Mataró together with *B. marinae*.

On the other hand, the bPTP analysis shows that *Berghia* sp. from Mataró joins *B. marinae* with a PP value of 0.8, and is sister to *B. columbina* (PP=0.92).

Finally, both Yule and Birth-Death models obtained by BEAST presented high BSS values, normality in the residue, and a low standard deviation. The Yule model, nevertheless, when was used for GMYC analyses, showed a low p-value. Data given with this model was considered unsatisfactory due to the low statistical support. The Birth-Death model presented satisfactory p-values and the results were taken into consideration. From this analysis, eight putative species were distinguished, combining *Berghia* sp. with *B. marinae*, and separating these two specimens from all other species.

Discussion

Phylogenetic analyses

Phylogenetic analyses based on the mitochondrial genes COI and 16S cluster the specimen found in Mataró with *B. marinae* from Senegal. However, when the nuclear gene H3 was used, our specimen was sibling to the *B. columbina* and *B. marinae* clade. While these results may be ambiguous, analyses representing unlinked genes may provide different genetic evolutionary stories. Thus, combined analyses provide better-resolved trees (Huelsenbeck et al., 1996; Maddison, 1997). Here, concatenated data is supported in the majority of the nodes for both Maximum likelihood and Bayesian Inference. In this case, the specimen found in Mataró belongs to *B. marinae*, and is a sibling species to *B. columbina*, as previously suggested by Carmona et al. (2014b).

Double crypsis

The specimen found on the Spanish coast of Mataró shows a different colouration pattern compared to the original description of *B. marinae*, and externally resembles *B. columbina*. This presents a new case study for cryptic species living sympatrically, not only due to the resemblance between the two different species, but because of different chromatic patterns observed within the same species. Multiple hypotheses have been proposed about why cryptic species live together in the

Table 2. Genetic distances among the species most related to *Berghia* sp.

Berghia sp.	*Berghia marinae*	*Berghia columbina*	*Berghia stephanieae*	*Berghia rissodominguezi*
B. marinae	0.013			
B. columbina	0.046-0.048	0.036		
B. stephanieae	0.09	0.075	0.073-0.075	0.062
B. rissodominguezi	0.09	0.084	0.077-0.079	0.062

Medit. Mar. Sci., 21/1 2020, 191-200
same area, such as niche overlapping and coexistence in nearby areas (Fiser et al., 2018). Berghia columbina and B. marinae, which are sibling species with low genetic divergence, are found in overlapping areas. Evolution is not only driven by phenotypic characters, but also by anatomical ones, as well as chemical compounds involved in reproduction, ecology and/or behaviour. Hence, sister clades can show identical phenotypes because their evolutionary characters are hidden (Faulkner & Ghiselin, 1983; Harvell, 1990). Nonetheless, our specimen is clearly different from the specimen found in Senegal. Mimetism and aposematism play a crucial role in aeolid nudibranchs. For instance, Spurilla neapolitana (Delle Chiàje, 1841) is completely mimetic to the anemone where it feeds. Moreover, S. neapolitana is able to retain its nematocysts and zooxanthellae. This way it is able to camouflage in front of their potential predators and defend itself with the anemone stinging cells. (Marín & Ros, 1991). In Cratena peregrina (Gmelin, 1791), the opposite strategy is found, and vivid colours represent a warning signal to potential predators (Aguado & Marín, 2007). Something similar may be occurring in B. marinae, in which the strategy used by the Senegal population is to be unnoticed, while the Mediterranean population, with its vivid colours, warns its predators in the same way as B. columbina.

Geographical Distribution

Until now, B. marinae had only been reported in Senegal, and thus its presence in the Mediterranean presents new questions. Was this species present in the Mediterranean Sea, hidden by cryptis and presumed to be B. columbina, or is this species allochthonous, settling only recently in the Mediterranean Sea? Figure 4 shows the localities where B. columbina and B. marinae have been found thus far. There are other examples of nudibranch species whose range occupies the Mediterranean Sea and part of the Atlantic Ocean (Polycera quadrilineata (O. F. Müller, 1776), Polycerella emertoni A. E. Verrill, 1880, Flabellina affinis (Gmelin, 1791), Doriopsilla areolata Bergh, 1880) (Eyster, 1980; Templado et al., 1990; García & Bertsch, 2009; Camps & Prado, 2018). On the other hand, several species of Heterobranchia considered widely distributed, were ultimately found to have hidden species complexes and their geographic location had been limited to a given area (Alexander & Valdés, 2013; Churchill et al., 2014; Hoover et al., 2015; McCarthy et al., 2017). Due to this problem, records of B. columbina for the Mediterranean Sea can be the result of misidentifications caused-by resemblance with B. marinae. Further research and a broader taxon sampling should be carried out for this species to corroborate its ecological state.

Conclusions

This specimen of B. marinae from the Catalan coast is the first record of the species on the Mediterranean coasts and the second one globally. The great geographical distance between this sample and its species holotype, as well as the difference in habitat, opens the debate about whether this species is allochthonous or if its distribution range is wider than was originally described, overlapping with the range of B. columbina and B. verrucicornis. However, since the genetic divergence between B. marinae and B. columbina is based on just two organisms and due to the external morphological similarity between the organism found in Mataró and the one found in Senegal (holotype), further investigation will be required to totally clarify their relationships.

In the study of marine heterobranchs certain groups of species should be studied with some caution, especially when identifying closely-related species. Some species with chromatic variability have actually been shown to include different cryptic species (see for example Furfaro et al., 2016). Similarly, morphologically similar specimens may also belong to different species (see for example Korshunova et al., 2019). In all of these cases, molecular analyses are necessary to provide a better understanding of the species taxonomy.
Acknowledgements

This work was supported by the Catalan Government research group BEB (SGR2017-1120). The authors thank the diving club Blaumar of Mataró (Barcelona) for the facilities provided to access the diving area. We thank the Generalitat of Catalonia for the pertinent permits for sampling the specimen. CG was supported by a PhD scholarship funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085227).

References

Aguado, F., Marin, A., 2007. Warning coloration associated with nematocyst-based defences in aeolidiodean nudibranchs. Journal of Molluscan Studies, 73, 23-28.

Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.

Alexander, J., Valdés, A., 2013. The Ring Doesn’t Mean a Dating: A molecular phylogeny of the Aeolidiidae (Aeolidiida, Nudibranchia, Gastropoda). Invertebrate Systematics, 6, 1-28.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z. et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25 (17), 3383-3402.

Ballesteros, M., Madrenas, E., Pontes, M., 2016. Actualización del catálogo de los moluscos opistobranquios (Gastropoda, Heterobranchia) de las costas catalanas. Spira, 6, 1-28.

Bond, J.E., Hedin, M.C., Ramirez, M.G., Opell, B.D., 2001. Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology, 10, 899-910.

Borg, J.A, Evans, J., Schembri, P.J., 2009. Occurrence of the alien nudibranch Melibe viridis (Kelaart, 1858) (Opistobranchia, Tethyliidae) in the Maltese Islands. Mediterranean Marine Science, 10 (1), 131-136.

Borges, L. M., Hollatz, C., Lobo, J., Cunha, A. M., Vilela, A. P. et al., 2016. With a little help from DNA barcoding: investigating the diversity of Gastropoda from the Portuguese coast. Scientific reports, 6 (1), 1-11.

Calado, G., Silva, J.P., 2012. Lesmas do mar do Algarve. Guia de moluscos opistobranquios de costa sul de Portugal. Edições Subnauta, Portimão, Portugal.

Camps, J., Prado, P., 2018. Polycerella emertoni associated to Anathia verticillata in the Ebro Delta, NE Spain (Western Mediterranean). P 673-689. In: New Mediterranean Biodiversity Records (November, 2018), Yokes, M.B., Andreou, V., Bakiu, R., Bonanomi, S., Camps, J. et al. Mediterranean Marine Science, 19 (3), 673-689.

Carmona, L., Malaquias, M.A.A, Malaquias, N.E., Gosliner, T.M., Pola, M. et al., 2011. Amphitropical distributions and cryptic species in Sacoglossan sea slugs. Journal of Molluscan Studies, 77 (4), 401-412.

Carmona, L., Pola, M., Gosliner, T.M., Cervera, J.L., 2013. A tale that morphology fails to tell: a molecular phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). PloS One, 8: e63000.

Carmona, L., Lei, B.R., Pola, M., Gosliner, T.M., Valdès, A. et al., 2014a. Untangling the Spurilla neapolitana (Delle Chiaje, 1841) species complex: a review of the genus Spurilla Bergh, 1864 (Mollusca: Nudibranchia: Aeolidiidae). Zoological Journal of the Linnean Society, 170, 132-154.

Cervera, L., Pola, M., Gosliner, T.M., Cervera, J.L., 2014b. The Atlantic-Mediterranean genus Berghia Trinchese, 1877 (Nudibranchia: Aeolidiidae): taxonomic review and phylogenetic analysis. Journal of Molluscan Studies, 80 (5), 482-498.

Cattaneo-Vietti, R., Chemello, R., Giannuzzi-Savelli, R., 1990. Atlas of Mediterranean nudibranchs. Rome: La Conchiglia.

Cella, K., Carmona, L., Ekimova, I., Chichvarkhin, A., Schepetov, D. et al., 2016. A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae. PloS One, 11 (12).

Colgan, D., McLauchlan, A., Wilson, G.D.F., Livingston, S.P., Edgecombe, G.D. et al., 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology, 46, 419-437.

Crocetta, F., Zibrowius, H., Bitar, G., Templado, J., Oliverio, M., 2013. Biogeographical homogeneity in the eastern Mediterranean Sea - I: the opisthobranchs (Mollusca: Gastropoda) from Spain and Portugal (including islands and archipelagos). Boletín del Instituto Español de Oceanografía, 20, 1-122.

Colgan, D., McLauchlan, A., Wilson, G.D.F., Livingston, S.P., Edgecombe, G.D. et al., 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology, 46, 419-437.

Cutler, R., Rabenold, K., 2002. The Nudibranchs of the World. Shambhala, Boston.

Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2015. jModelTest 2: more models, new heuristics and high-performance computing. Nature Methods, 9.

Dimo, A., 2012. Paran: Horn's test of principal components/factors. R package version 1.5. 1.

Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 1-8.

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792-1797.

Eyster, L.S., 1980. Distribution and reproduction of shell-less opisthobranchs from South Carolina. Bulletin of Marine Science, 30 (3), 580-599.

Eyster, L.S., 1980. Distribution and reproduction of shell-less opisthobranchs from South Carolina. Bulletin of Marine Science, 30 (3), 580-599.

Fisher, L.E., 1993. The Nudibranchs of the World. Shambhala, Boston.

Fiser, C., Robinson, C.T., Malard, F., 2018. Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27 (3), 613-635.

Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cy-
tochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*, 3, 294-299.

Furfaro, G., Picton, B. E., Martynov, A. V., Mariottini, P., 2016. *Diaphorodoris alba* Portmann & Sandmeier, 1960 is a valid species: molecular and morphological comparison with *D. lutecincita* (M. Sars, 1870) (Gastropoda: Nudibranchia). *Zootaxa*, 4193 (2), 304-316.

Furfaro, G., Salvi, D., Mancini, E., Mariottini, P., 2017. A multilocus view on Mediterranean aeolid nudibranchs (Mollusca): Systematics and cryptic diversity of Flabellinidae and Pseïnocididae. *Molecular Phylogenetics and Evolution*, 118, 13-22.

Garcia, F.J., Bertsch, H., 2009 Diversity and distribution of the Gastropoda Opisthbranchia from the Atlantic Ocean: A global biogeographic approach. *Scientia Marina*, 73 (1), 153-160.

Garcia-Gómez, J.C., Thompson, T.E., 1990. North atlantic spuriilid nudibranchs, with a description of a new species, *Spurilla cublina* from the Andalucian coast of Spain. *Journal of Molluscan Studies*, 56, 323-331.

Garcia-Gómez, J.C., Cervera, J.L., Garcia-García, F., 2011. Familia Aeolidiidae. p. 508–511. In: *Moluscos marinos de Andalucía*. Gofas, S., Moreno, D., Salas, C. (Eds). Servicio de Publicaciones e Intercambio Cientifico, Universidad de Málaga, Málaga.

Harvell, C.D., 1990. The Ecology and Evolution of Inducible Defenses. *The Quarterly Review of Biology*, 65 (3), 323-340.

Hoover, C., Lindsay, T., Goddard, J.H.R., Valdés, Á., 2015. Seeing double: Pseudocryptic diversity in the *Doriopsilla albopunctata-Doriopsilla gemela* species complex of the north-eastern Pacific. *Zoologica Scripta*, 44 (6), 1-20.

Huelsenbeck, J.P., Bull, J.J., Cunningham, C.W., 1996. Combining data in phylogenetic analysis. *Trends in Ecology and Evolution*, 11 (4), 152-158.

Kienberger, K., Carmona, L., Pola, M., Padula, V., Gosliner, T.M. *et al.*, 2016. *Aeolidia papillosa* (Linnaeus, 1761) (Mollusca: Heterobranchia: Nudibranchia): single species or a cryptic species complex? A morphological and molecular study. *Zoological Journal of the Linnean Society*, 177 (3), 481-506.

Korshunova, T.A., Martynov, A.V., Bakken, T., Evertsen, J., Fletcher, K. *et al.*, 2017. Polyphyly of the traditional family Flabellinidae affects a major group of Nudibranchia: aeolidacean taxonomic reassessment with descriptions of several new families, genera, and species (Mollusca, Gastropoda). *ZooKeys*, 717, 1-139.

Korshunova, T., Picton, G., Furfaro, P., Mariottini, M., Pontes, I. *et al.*, 2019. Multilevel fine-scale diversity challenges the ‘cryptic species’ concept. *Scientific Reports*, 9, 6732.

Kumar, S., Stecher, G., Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Molecular Biology and Evolution*, 33 (7), 1870-1874.

Maddison, M., 1997. Gene trees in species trees. *Systematic Biology*, 46, 523-536.

McCarthy, J.B., Krug, P.J., Valdés, A., 2017. Integrative systems of *Placida cremoniana* (Trinchese, 1892) (Gastropoda, Heterobranchia, Sacoglossa) reveals multiple pseudocryptic species. *Marine Biodiversity*, 1-15.

Michonneau, F., Brown, J.W., Winter, D.J., 2016. ROTL: an R package to interact with the Open Tree of Life data. *Methods in Ecology and Evolution*, 7 (12), 1476-1481.

Moreno, D., Templado, J., 1998. Nuevas aportaciones al conocimiento de los opistobranquios del sureste español. *II. Iberras*, 16 (2), 39-58.

Marín, A., Ros, J.D., 1991. Presence of Intracellular Zooxanthellae in Mediterranean Nudibranchs. *Journal of Molluscan Studies*, 57 (4), 8-101.

Ortea, J., Moro, L., Bacallado, J.J., Herrera, R., 2001. Catalógo actualizado de los Moluscos Opistobranquios de las Islas Canarias. *Revista de la Academia Canaria de Ciencias*, 12 (3–4), 105-136.

Padula, V., Wirtz, P., Schrödl, M., 2014. Heterobranch sea slugs (Mollusca: Gastropoda) from Ascension Island, South Atlantic Ocean. *Journal of the Marine Biological Association of the United Kingdom*, 97 (4), 743-752.

Palumbi, S.R., Martin, A., Romano, S., Macmillan, W.O., Stice, L. *et al.*, 1991. *The simple fool’s guide to PCR*. Department of Zoology, University of Hawaii, Honolulu.

Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. *Bioinformatics*, 20 (2), 289-290.

Puillandre, N., Lambert, A., Brouillet, S., Achatz, G., 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. *Molecular Ecology*, 21 (8), 1864-1877.

R Development Core Team, 2011 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Rambaut, A., 2009. FigTree, version 1.3. 1. Computer program distributed by the author.

Rambaut, A., Drummond, A.J., 2014. *LogCombiner v2*. 1.3. Institute of Evolutionary Biology, University of Edinburgh, UK.

Rambaut, A., Suchard, M., Xie, W., Drummond, A., 2014. *Tracer v 1.6*. Institute of Evolutionary Biology, University of Edinburgh.

Ripley, B., 2011. MASS: support functions and datasets for Venables and Ripley’s *MASS*. R package version, 7-3.

Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19, 1572-1574.

Rstudio Team, 2015 RStudio: Integrated Development for R. RStudio, Inc., Boston, MA.

Schmekel, L., Portmann, A., 1982. Opisthobranchia des Mittelmeeres. Nudibranchia und Saccoglossa. Springer-Verlag, Berlin, 410 pp.

Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics*, 22, 2688-2690.

Swindell, S.R., Plasterer, T.N., 1997. SEQMAN Contig Assembler. *Methods in Molecular Biology*, 75-89.

Templado, J., Luque, A.A., Ortea, J., 1990. A commented check-list of the Amphiatlantic Ascoglossa and Nudibranchia (Mollusca: Opisthobranchia). *Lavori della Società Italiana di Malacologia*, 23, 295-326.

Trainito, E., Doneddu, M., 2014. *Nudibranchi del Mediterraneo*. 2a edizione, riveduta ed ampliata. Il Castello, Milano, 192pp.
Xavier, J.R., Rachello-Dolmen, P.G., Parra-Velandia, F., Schönberg, C.H.L., Breeuwer, J.A.J. et al., 2010. Molecular evidence of cryptic speciation in the “cosmopolitan“ excavating sponge Cliona celata (Porifera, Clionaidae). Molecular Phylogenetics and Evolution, 56 (1), 13-20.

Yokes, M.B., Dalyam, C., Karhan, S.U., Demir, V., Tural, U. et al., 2012 Alien Opisthobranchs from the turkish coasts: first record of Plocamoplerus tilesii Bergh, 1877 from the Mediterranean. Triton, 25 (1), 1-9.

Zamora-Silva, A., Malaquias, M.A.E., 2017. Molecular phylogeny of the Aglajidae head-shield sea slugs (Heterobranchia: Cephalaspidea): new evolutionary lineages revealed and proposal of a new classification. Zoological Journal of the Linnean Society, XX, 1-51.

Zenetos, A., Gofas, S., Russo, G., Templado, J., 2004. CIESM Atlas of Exotic Species in the Mediterranean. Vol. 3 Molluscs. CIESM Publishers, Monaco, 376 pp.

Zenetos, A., Masic, V., Jaklin, A., Lipej, L., Poursanidis, D. et al., 2016. Adriatic ‘opisthobranchs’ (Gastropoda, Heterobranchia): shedding light on biodiversity issues. Marine Ecology, 37 (6), 1239-1255.