Cerebral Amyloid Angiopathy-related Inflammation Presenting with Steroid-responsive Higher Brain Dysfunction: Case Report and Review of the Literature

Hideya Sakaguchi*, Akihiko Ueda, Takayuki Kosaka, Satoshi Yamashita, En Kimura, Taro Yamashita, Yasushi Maeda, Teruyuki Hirano and Makoto Uchino

Abstract
A 56-year-old man noticed discomfort in his left lower limb, followed by convulsion and numbness in the same area. Magnetic resonance imaging (MRI) showed white matter lesions in the right parietal lobe accompanied by leptomeningeal or leptomeningeal and cortical post-contrast enhancement along the parietal sulci. The patient also exhibited higher brain dysfunction corresponding with the lesions on MRI. Histological pathology disclosed β-amyloid in the blood vessels and perivascular inflammation, which highlights the diagnosis of cerebral amyloid angiopathy (CAA)-related inflammation. Pulse steroid therapy was so effective that clinical and radiological findings immediately improved.

CAA-related inflammation is a rare disease, defined by the deposition of amyloid proteins within the leptomeningeal and cortical arteries associated with vasculitis or perivasculitis. Here we report a patient with CAA-related inflammation who showed higher brain dysfunction that improved with steroid therapy. In cases with atypical radiological lesions like our case, cerebral biopsy with histological confirmation remains necessary for an accurate diagnosis.

Keywords: cerebral amyloid angiopathy, CAA-related inflammation, higher brain dysfunction

Background
Cerebral amyloid angiopathy (CAA) is a common pathology in the elderly characterized by the deposition of amyloid proteins within the leptomeningeal and cortical arteries [1]. Recently, coexisting inflammations in CAA patients, such as vasculitis or perivasculitis, which clinically resemble central nervous system vasculitis, have been recognized as CAA-related inflammation [2,3]. The inflammation typically responds well to steroid therapy [4], and recent studies have pointed out its similarities with meningoencephalitis induced by immunization to Aβ in Alzheimer disease patients [4-6]. Herein we report a patient with CAA-related inflammation who showed convulsion in the left lower extremity and higher brain dysfunction; both were dramatically improved by steroid therapy.

Case presentation
A 56-year-old man first noticed discomfort in his left lower limb in January 2010. After 7 days, convulsion in the left lower limb suddenly occurred, and he was transported to the emergency hospital. Magnetic resonance imaging (MRI) showed increased white matter intensities in the right parietal lobe on T2-weighted and fluid attenuated inversion-recovery (FLAIR) images. T1-weighted gadolinium (Gd)-enhanced images revealed enhanced leptomeningeal lesions along the parietal sulci (Figure 1A-B). No microhemorrhages were observed with Gradient-recalled echo (GRE)-T2* imaging (1.5T). He was referred to our institution.

On admission, neurological exam showed mild hyperesthesia in the left lower limb and mild hypalgesia in the...
left crus. No other abnormal findings were present. Bio-
chemical screening tests were generally normal except
for serum C-reactive protein (0.77 mg/dL), soluble inter-
leukin-2 receptor antibody (462 U/mL), erythrocyte sedi-
mentation rate (26/1 h, 72/2 h), and carcinoembryonic
antigen (4.5 ng/mL). In the cerebrospinal fluid, protein
levels were elevated (72 mg/dl) and the cell count was
mildly elevated (12/μL).

Because a follow-up MRI revealed progression of the
white matter lesions and parenchymal enhanced lesions
without microhemorrhages (GRE-T2* imaging; 3T) (Fig-
ure 1C-G), a brain biopsy was performed in March
2010. Histological pathology showed nonspecific menin-
goencephalitis involving perivasculitis of the leptome-
ninges and cortical gray matter (Figure 2A-D).

Starting in April 2010, the patient complained of diffi-
culty with his handwriting. Neuropsychological tests of
higher brain functions revealed mild constructional apraxia,
line imbalance for words and numbers, difficulty drawing a
figure following oral instructions, and problems with visual
reproduction. No apathy or dementia was observed.

After the episode, further histological analysis with
Congo-red staining disclosed amyloid laden blood vessels.
Immunohistochemical staining for β-amyloid led to the
diagnosis of CAA-related inflammation (Figure 2F-G).

Steroid pulse therapy (methylprednisolone 1 g/day for 3
days) was performed. The abnormal Gd-enhanced findings
immediately improved with gradually decreasing FLAIR
findings, and the higher brain dysfunctions also gradually
resolved (Figure 3).
Figure 2 Histological and immune-histological examination of brain biopsy. Microscopic examination showed nonspecific meningoencephalitis involving perivasculitis of leptomeninges (arrows) and cortical gray matter (A). The cellular infiltrate was mainly composed of CD-3-positive T-lymphocytes (B) and CD-68-positive macrophages (C) with minimal CD-20-positive B-lymphocytes (D). PAS staining showed no deposits (E). Congo-red staining revealed amyloid positive blood vessels (F); the amyloid was disclosed to be amyloid-β by immunohistochemical staining (G).
Figure 3 Clinical course of treatment with steroid. Abnormal T1 Gd-enhanced findings immediately improved in the fifth course of steroid pulse therapy, accompanied by a gradual decrease of FLAIR findings and a gradual improvement in higher brain function. As the MRI lesions improved (05/28), the descriptions of the 3D-house and sunflower were made more vivid (05/25). Because T1 Gd-enhanced lesions almost disappeared after the fifth course of the steroid (05/28), we stopped the steroid therapy, and the lesion relapsed (06/04). However, after the initiation of oral steroid therapy, no relapse was observed either clinically or radiologically (08/17).
After the fifth course of steroid pulse treatment, the T1-enhanced lesions had almost disappeared, and we stopped the treatment. However, 2 weeks later, the lesions had relapsed on a follow-up MRI, although no clinical signs were observed. We performed pulse steroid therapy again, followed by oral methylprednisolone therapy (70 mg/day). After the oral steroid therapy was initiated, no relapses were observed either clinically or radiologically. Two months later, the oral steroid was tapered at a rate of 5 mg/week, and he was discharged on a regimen of methylprednisolone 30 mg/day.

Discussion

CAA is defined by the deposition of amyloid proteins within leptomeningeal and cortical arteries, arterioles, and capillaries [1]. Recently, a subset of patients who presented with seizures, subacute cognitive decline, or headaches with hyperintensities on T2-weighted or FLAIR MRI images with microhemorrhages were described as having CAA-related inflammation [2,3]. Neuropathologic examination has generally revealed angiitis of CAA-affected vessels and peripheral inflammation, presenting as vasculitis or perivasculitis [7]. Both pathologic forms can co-exist, and it has been suggested that the prognosis is better for the perivascular type [8]. This inflammation appears to represent an autoimmune response to vascular β-amyloid deposits. The mechanism by which this immune response occurs is not well understood, although one possible factor is the increased frequency of apolipoprotein E ε4/ε4 genotype [9].

The clinical spectrum of CAA-related inflammation is mainly composed of rapidly progressive dementia and seizure. Although the initial presentation of our case was seizure and numbness, the subsequent higher brain dysfunction is uncommon. To clarify how often higher brain dysfunction has been observed, we reviewed previous cases including our case (Table 1) [1,3,4,7-37]. In 64 cases, 10 presented with higher brain dysfunction without encephalopathy or dementia (15.3%). The most frequent symptom was aphasia (6 cases: 9.3%), followed by hemineglect (2 cases: 3.1%). One other case was reported of various higher brain dysfunction without mental change or dementia, like our case [23]. In these ten cases with higher brain dysfunction, MRI lesions and the presence of leptomeningeal enhancement were inconsistent, and thus the presentation of higher brain dysfunction was considered to be derived from the observed lesion rather than specific to CAA-related inflammation.

The MRI presentation for CAA-related inflammation was previously described as characterized by large confluent areas of predominantly white matter hyperintense signal on T2-weighted or FLAIR images [34]. These lesions are typically asymmetric and involve one or more cortical lesions without evident preferential laterality. T2-weighted gradient-echo sequence images usually showed multiple scattered cortical or subcortical microhemorrhages [34]. However, these microhemorrhages were not observed in our case, resulting in a delayed diagnosis. In our review, 13 cases were examined by MRI with an echo gradient sequence, and microhemorrhages were not seen in 2 cases including our case (13.3%). A possible explanation is that the inflammation caused by the immunoreactivity to amyloid might precede the vascular change of cerebellar amyloid angiopathy in some cases, such that microhemorrhages were not observed in radiological exams. This suggests that the gradient-echo sequence image might not be adequate for diagnosis of CAA-related inflammation in all cases. Brain biopsy should be considered if CAA-related inflammation is highly suspected from clinical presentation, even if microhemorrhages were not radiologically observed.

Approximately three quarters of all patients described had a good clinical response to corticosteroid therapy. Additionally, patients presenting with CAA and meningeal enhancement seem to have less progressive disease [29]. In our review, the leptomeningeal enhancement status of 42 patients was mentioned, and the clinical courses of 39 patients were described. Among 19 patients with leptomeningeal enhancement, only one patient died (5.3%) and the remaining 18 patients survived. However, among the other 20 patients without enhancement, 7 patients died (35%), suggesting that leptomeningeal enhancement might be a good prognostic factor.

The distinctive pattern of asymmetric MRI lesions in CAA-related inflammation appears to be distinguishable from both non-inflammatory CAA and other causes. This observation raises the possibility that typical MRI findings should prove sufficient to diagnose CAA-related inflammation without necessitating brain biopsy [4]. However, in our case, preoperative imaging did not show the typical microhemorrhages associated with CAA, and the diagnosis could not have been established before biopsy. Therefore, we suggest that cerebral biopsy with histological confirmation remains necessary for an accurate diagnosis.

Conclusion

We described a patient with CAA-related inflammation whose higher brain functions were dramatically improved by steroid therapy. Because the improvement of cognitive function paralleled resolution of the lesions seen on MRI, this report demonstrates clinically and radiologically progressive improvement of CAA-related inflammation. Our case also suggests the importance of brain biopsy for diagnosis in a case with atypical radiological findings, because correct diagnosis and treatment are crucial for successful recovery and good prognosis.
Reference	n	Age	Sex	Clinical presentation	MRI lesion	Micro bleeds	MRI enhanced lesion	Pathology	treatment	Outcome
Greenberg et al. 1993 [10]	1	72	F	dementia headache	left frontal	NA	(-)	vasculitis	NA	NA
Ortiz et al. 1996 [11]	1	68	F	headache	right temporal/parietal	NA	(-)	vasculitis	steroid	NA
Fountain et al. 1996 [12]	2	66	M	fluent aphasia right hemianopia	bilateral temporal/parietal	NA	(-)	vasculitis	steroid cyclophosphamide	alive relapse (+)
	69	F		headache confusion focal neurology seizure	bilateral confluent multifocal	NA	NA	vasculitis	steroid cyclophosphamide	died relapse (+)
Anders et al. 1997 [13]	2	70	M	mental status change	right frontal	NA	NA	vasculitis	NA	NA
	69	M		headache lethargy behavior change	bilateral white matter	NA	(+)	vasculitis	NA	NA
Fountain et al. 1999 [14]	1	71	M	headache confusion gait difficulty left hand apraxia	right temporal/parietal	NA	NA	vasculitis	cyclophosphamide	alive relapse (+)
Scully et al. 2000 [15]	1	63	M	behavior change ataxia	bilateral white matter	NA	(+)	perivasculitis	cyclophosphamide	alive
Oide et al. 2002 [16]	1	69	M	dizziness dementia seizure	bilateral symmetrical periventricular	NA	NA	vasculitis	(-)	NA
Schwab et al. 2003 [8]	2	74	M	seizure dementia headache	bilateral multifocal	NA	(+)	perivasculitis	steroid	alive relapse (+)
	70	F		dementia headache	right temporal	NA	(+)	perivasculitis	steroid	alive relapse (+)
Tamargo et al. 2003 [17]	1	80	F	dementia left-side hemineglect word finding difficulty	bilateral left frontal right parietal	NA	(+)	vasculitis	steroid	alive
Oh et al. 2004 [1]	2	80	F	Headache aphasia	bilateral right parietal/occipital left frontal	NA	(-)	perivasculitis	steroid	alive
	77	M		aphasia	left temporal	NA	(-)	vasculitis	steroid	alive
Safriel et al. 2004 [18]	1	49	M	seizure	right occipital/temporal	NA	(-)	vasculitis	steroid	alive
Hashizume et al. 2004 [19]	1	65	M	headache left hemianopia left-side hemineglect	right temporal/occipital	NA	(+)	vasculitis	steroid cyclophosphamide	died
Harkness et al. 2004 [20]	1	72	F	dementia	bilateral frontal	NA	(-)	vasculitis	no specific therapy	alive
Jacobs et al. 2004 [21]	1	81	F	confusion Balint's syndrome agraphia right-left confusion finger anomia left-side neglect	bilateral parietal/occipital	NA	(+)	vasculitis	steroid	alive
Table 1: Review of reported cases of CAA-related inflammation (Continued)

Study Authors	Age	Sex	Gender	Presenting Symptoms	Neuroimaging	Treatment	Outcome	
Scolding et al. 2005	69.3	M	3	Encephalopathy 6 focal neurology 2 seizure 1 headache 2	NA	(+) 5 perivasculitis	Died 2	
Mikolaenko et al. 2006	50	M	3	Seizure right frontal	NA	(+) vasculitis	Alive	
Wong et al. 2006	79	F	9	Higher brain dysfunction fatigue right frontal/temporal/parietal	NA	(+) vasculitis	Alive relapse (+)	
Kimnecom et al. 2007	62.3	M	9	Encephalopathy headache 5 seizure 7 aphasia 1 presyncope 1	NA	NA (the presence of microbleeds are mentioned but the proportion is not mentioned)	Alive relapse (+) 3	
Greenberg et al. 2007	63	M	3	Headache behavioral change cognitive change bilateral multiple	NA	(+) vasculitis	Alive relapse (+)	
Marotti et al. 2007	57	F	9	Headache seizure bilateral frontal/temporal/insular right thalamus	(+)	(+) vasculitis	Died	
McHugh et al. 2007	80	F	9	Confusion incontinent urine global aphasia seizure right hemianopia right hemiparesis bilateral frontal	(+)	(-) perivasculitis	Alive relapse (+)	
Takada et al. 2007	69	F	9	Headache cognitive decline bilateral right frontal/parietal bilateral parietal/occipital	(+)	(-) vasculitis	Died	
Machida et al. 2008	69	F	9	Cognitive decline bilateral multifocal	(-)	(+) perivasculitis	Alive relapse (+)	
Salvarani et al. 2008	63*	M	6	Encephalopathy 6 focal neurology 2 headache 3 only aphasia with alexia 1 bilateral 8 multifocal	NA	(+) 5 (-) 3 vasculitis	Improved 6 died 1 worsened 1	
Amick et al. 2008	79	F	9	Transient right sided weakness left occipital/parietal	NA	(-) vasculitis	Died	
Alcalay et al. 2009	92	F	9	Mental status change bilateral multifocal	(+)	(+) (+)	Steroid	Alive
Daniëls et al. 2009	80	F	9	Mental status change right sided hemiparesis dysphasia seizure bilateral left hemisphere right parietal/occipital	(+)	(-) (+)	Steroid	Alive relapse (+)
Greenberg et al. 2010	87	F	9	Seizure cognitive impairment bilateral multifocal	(+)	NA perivasculitis	Died	
Kloppenborg et al. 2010	74	M	9	Increased sleepiness loss of initiative seizure bilateral frontal	(+)	(+) perivasculitis	Alive	
Morishige et al. 2010	78	F	9	Motor aphasia dementia left frontal	NA	(+) vasculitis	Died	
Savoardo et al. 2010	76	M	9	Fatigue confusion bilateral temporal/occipital/parietal	(+)	(-) (+)	Steroid	Alive

References:
1. Sakaguchi et al. Journal of Neuroinflammation 2011, 8:116
2. http://www.jneuroinflammation.com/content/8/1/116
Table 1 Review of reported cases of CAA-related inflammation (Continued)

Case	Age	Sex	Symptom(s)	Imaging Features	Treatment	Outcome
Cano et al. 2010 [35]	76	M	transient motor aphasia transient headache	bilateral temporal (+)	NA (-) (-)	alive
DiFrancesco et al. 2011 [36]	68	M	memory loss mood disorder	bilateral multifocal (+)	(-) NA steroid	alive
Chung et al. 2011 [37]	83	F	seizure	bilateral multifocal	NA NA vasculitis steroid	died
			headache mild hemiparesis sensory loss	right parietal/occipital (+)	NA vasculitis steroid	alive
			hemianopia			
our case	56	M	Seizure sensory disturbance higher brain dysfunction	bilateral multifocal	(+) perivasculitis steroid	alive relapse

From the literature, we extracted the cases of CAA-related inflammation in which an MRI was evaluated. If autopsy or biopsy was examined, the cases without inflammation were excluded. All cases satisfy the diagnostic criteria of definite or probable CAA-related inflammation proposed by Chung et al. [37]. In 64 cases, 10 presented with higher brain dysfunction without encephalopathy or dementia (15.3%). The most frequent symptom was aphasia (6 cases: 9.3%), followed by hemineglect (2 cases: 3.1%). One case besides the current presented with various higher brain dysfunction without mental change or dementia [23]. In these 10 cases with higher brain dysfunction, MRI lesions and the presence of leptomeningeal enhancement were inconsistent. Thirteen cases were examined with MRI with an echo gradient sequence, and microhemorrhages were not seen in 2 cases, including our case (13.3%).

The leptomeningeal enhancement status of 42 patients was mentioned, and the clinical courses of 39 patients were described. Only one patient among 19 patients with leptomeningeal enhancement died (5.3%); however, 7 of 20 patients without enhancement died (35%), suggesting that leptomeningeal enhancement might be a factor in good prognosis. *: calculated mean
Consent
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

List of abbreviations
AJL: amyloid Jr, ADC: apparent diffusion coefficient, CAA: cerebral amyloid angiopathy; FLAIR: fluid attenuated inversion-recovery; Gd: gadolinium; MRI: magnetic resonance imaging; GRE: gradient-recalled echo.

Acknowledgements
The authors are very grateful to Professor Hitoshi Takahashi of the Brain Research Institute at the University of Niigata for his expert suggestions regarding pathology.

Authors’ contributions
HS designed this article and direction for investigations and drafted the manuscript. AU, TK, SY, EK, TY, YM, TH, and MU contributed to interpretations of clinical, radiological and pathological details. All authors read and approved the final manuscript.

Authors’ information
All authors are members of the Department of Neurology, Faculty of Life Sciences, Kumamoto University, and TK was also a graduate student of the Brain Research Institute, University of Niigata until March 2011.

Competing interests
The authors declare that they have no competing interests.

Received: 20 May 2011 Accepted: 14 September 2011
Published: 14 September 2011

References
1. Oh U, Gupta R, Krakauer JW, Khandji AG, Chin SS, Elkind MS: Reversible leukoencephalopathy associated with cerebral amyloid angiopathy. Neurology 2004, 62(3):494-497.
2. Eng JA, Frosh MP, Choi K, Rebeck GW, Greenberg SM: Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 2004, 55(2):250-256.
3. Scolding NJ, Joseph F, Kirby PA, Mazanti I, Gray F, Mikol J, Ellison D, Hilton DA, Williams TL, Mackenzie JW, et al: Abeta-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 2005, 128(Pt 3):300-315.
4. Kirmirecom C, Lev MH, Wendell L, Smith EE, Rosand J, Frosh MP, Greenberg SM: Course of cerebral amyloid angiopathy-related inflammation. Neurology 2007, 68(17):1411-1416.
5. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO: Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003, 9(4):448-452.
6. Oogoga JO, Gilman S, Davignes JP, Laurent B, Puee M, Kirby LC, Jouanny P, Dubois B, Eiser L, Fillettan S, et al: Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003, 61(1):46-54.
7. Kloppenborg RP, Richard E, Sprenger ME, Trost D, Eikenboom P, Nederkoorn PJ: Steroid responsive encephalopathy in cerebral amyloid angiopathy: a case report and review of evidence for immunosuppressive treatment. J Neuroinflammation 2010, 7:18.
8. Schwab P, Lidov HG, Schwartz RB, Anderson RJ: Cerebral amyloid angiopathy associated with primary angiitis of the central nervous system: report of 2 cases and review of the literature. Arthritis Rheum 2003, 49(3):421-427.
9. Greenberg SM, Rapalino O, Frosh MP: Case records of the Massachusetts General Hospital. Case 22-2010. An 87-year-old woman with dementia and a seizure. N Engl J Med 2010, 363(4):373-381.
10. Greenberg SM, Vonsattel JP, Stakes JW, Gruber M, Finklestein SP: The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage. Neurology 1993, 43(10):2073-2079.
11. Orzu O, Reed L: Cerebral amyloid angiopathy presenting as a nonhemorrhagic, infiltrating mass. Neurosurgery 1996, 38(5):449-452.
12. Fountain NB, Eberhard DA: Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy: report of two cases and review of the literature. Neurology 1996, 46(1):190-197.
13. Anders KH, Wang ZZ, Kornfeld M, Gray F, Soontornniyomkij V, Reed LA, Hart MN, Menchine M, Sercor DL, Vinters HV: Giant cell arteritis in association with cerebral amyloid angiopathy: Immunohistochemical and molecular studies. Hum Pathol 1997, 28(11):1237-1246.
14. Fountain NB, Lopes MB: Control of primary angiitis of the CNS associated with cerebral amyloid angiopathy by cyclophosphamide alone. Neurology 1999, 52(6):660-662.
15. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 10-2000. A 63-year-old man with changes in behavior and ataxia. N Engl J Med 2000, 342(13):957-965.
16. Oide T, Tokuda T, Takei Y, Takahashi H, Ito K, Ikeda S: Serial CT and MRI findings in a patient with isolated angiitis of the central nervous system associated with cerebral amyloid angiopathy. Amyloid 2002, 9(4):256-262.
17. Tamargo RJ, Connolly ES, McKenna GM, Khajdyi A, Chang Y, Libien J, Adams D: Clinicopathological review: primary angiitis of the central nervous system in association with cerebral amyloid angiopathy. Neurosurgery 2003, 53(3):136-143, discussion 143.
18. Saitoh Y, Sae G, Westmark K, Baehering J: MR spectroscopy in the diagnosis of cerebral amyloid angiopathy presenting as a brain tumor. AJNR Am J Neuroradiol 2004, 25(10):1705-1708.
19. Hashizume Y, Yohida M, Suzuki E, Hirayama M: A 65-year-old man with headaches and left homonymous hemianopsia. Neuropathology 2004, 24(4):350-353.
20. Hatneski KA, Coles A, Pohi U, Xueh J, Baron JC, Lennox GG: Rapidly reversible dementia in cerebral amyloid inflammatory vasculopathy. Eur J Neurol 2004, 11(1):59-62.
21. Jacobs DA, Liu GT, Nelson PT, Galetta SL: Primary central nervous system angiitis, amyloid angiopathy, and Alzheimer’s pathology presenting with Balint’s syndrome. Surv Ophthalmol 2004, 49(4):454-459.
22. Mikolaenko I, Corrier MG, Jinnah HA: A 50-year-old man with acute-onset generalized seizure. Cerebral amyloid angiopathy and associated giant cell reaction. Arch Pathol Lab Med 2006, 130(1):e5-7.
23. Wong SH, Robbins PD, Knuckey NW, Kermode AG: Cerebral amyloid angiopathy presenting with vasculopathic pathology. J Clin Neurosci 2006, 13(2):291-294.
24. Greenberg SM, Parisi JE, Keegan BM: A 63-year-old man with headaches and behavioral deterioration. Neurology 2007, 68(10):782-787.
25. Marotti JD, Savitz SI, Kim WK, Williams K, Caplan LR, Joseph JT: Cerebral amyloid angiitis processing to generalized angiitis and leukoencephalitis. Neuropathol Appl Neurobiol 2007, 33(4):475-479.
26. McHugh JC, Ryan AM, Lynch T, Dempsey B, Stack J, Farrell MA, Kelly PJ: Steroid-responsive recurrent encephalopathy in a patient with cerebral amyloid angiopathy. Cerebrovasc Dis 2007, 23(1):66-69.
27. Takeda A, Tatsumi S, Yamashita M, Yamamoto T: [Granulomatous angiitis of the CNS associated with cerebral amyloid angiopathy-an autopsy case with widespread involvement]. Brain Nerve 2007, 59(5):537-543.
28. Machida K, Tojjo K, Naito KS, Gono T, Nakata Y, Ikeda S: Cortical petechial hemorrhage, subarachnoid hemorrhage and corticosteroid-responsive leukoencephalopathy in a patient with cerebral amyloid angiopathy. Amyloid 2008, 15(1):60-64.
29. Salvareni C, Brown RD, Calamia KT, Christianson TJ, Huston J, Meschia JF, Giannini C, Miller DV, Hunder GG: Primary central nervous system vasculitis: comparison of patients with and without cerebral amyloid angiopathy. Rheumatology (Oxford) 2008, 47(11):1671-1677.
30. Amick A, Joseph K, Silvestri N, Selim M: Giant cell arteritis, amyloid angiopathy, and Alzheimer’s disease: a review of the literature. Neurology 2006, 67(7):1671-1677.
31. Alcalay RN, Smith EE: MRI showing white matter lesions and multiple lobar microbleeds in a patient with reversible encephalopathy. J Neuromaging 2009, 19(1):89-91.
32. Daniels R, Geurts JJ, Bot JC, Schonewille WJ, van Oosten BW: Steroid-responsive edema in CAA-related inflammation. J Neurotol 2009, 25(2):285-286.
33. Morishige M, Abe T, Kamida T, Hikawa T, Fujiki M, Kobayashi H, Okazaki T, Kimura N, Kumamoto T, Yamada A, et al: Cerebral vasculitis associated with
with amyloid angiopathy: case report. *Neurol Med Chir (Tokyo)* 2010, 50(4):336-338.

34. Savoiardo M, Erbetta A, Storchi G, Girotti F: Case 159: cerebral amyloid angiopathy-related inflammation. *Radiology* 2010, 256(1):323-327.

35. Cano LM, Martínez-Yelamos S, Majos C, Alberti MA, Bokuda S, Velasco R, Rubio F: Reversible acute leukoencephalopathy as a form of presentation in cerebral amyloid angiopathy. *J Neurol Sci* 2010, 288(1-2):190-193.

36. DiFrancesco JC, Brioschi M, Brighina L, Ruffmann C, Saracchi E, Costantino G, Galimberti G, Conti E, Curto NA, Marzorati L, et al: Anti-Abeta autoantibodies in the CSF of a patient with CAA-related inflammation: a case report. *Neurology* 2011, 76(9):842-844.

37. Chung KK, Anderson NE, Hutchinson D, Synek B, Barber PA: Cerebral amyloid angiopathy related inflammation: three case reports and a review. *J Neurol Neurosurg Psychiatry* 2011, 82(1):20-26.

doi:10.1186/1742-2094-8-116
Cite this article as: Sakaguchi et al.: Cerebral Amyloid Angiopathy-related Inflammation Presenting with Steroid-responsive Higher Brain Dysfunction: Case Report and Review of the Literature. *Journal of Neuroinflammation* 2011, 8:116.