Viable semi-relativistic quark model of heavy-light systems

Takayuki Matsuki∗, Toshiyuki Morii† and Kazutaka Sudoh∗∗

∗Tokyo Kasei University, 1-18-1 Kaga, Itabashi, Tokyo 173, JAPAN
†Faculty of Human Development, Kobe University, Nada, Kobe 657-8501, JAPAN
∗∗Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, 1-1 Ooho, Tsukuba, Ibaraki 305-0801, JAPAN

Abstract. The semi-relativistic quark potential model is surprisingly powerful for heavy-light systems if the bound state equation is treated correctly using $1/m_Q$ expansion with heavy quark mass m_Q. We elucidate the reasons why our semi-relativistic model succeeds in predicting and reproducing all the mass spectra of heavy-light systems so far reported, $D/D_s/B/B_s$, by reviewing and comparing recent experimental data with the results of our model and others. Especially the mass spectra of the so-called D_{sJ}, i.e., D_{s0}^* and D_{s1}', are successfully reproduced only by our model but not by other models.

Keywords: Heavy Quark Effective Theory; Spectroscopy; Heavy Quarks
PACS: 12.39.Hg; 2.39.Pn; 12.40.Yx; 14.40.Nd

INTRODUCTION

Beginning from the discovery of the narrow meson states $D_{s0}^*(2317)$ and $D_{s1}'(2457)$ (the so-called D_{sJ}) by BaBar [1] and CLEO [2] in 2003, respectively, open charm/bottom hadrons of the heavy-light systems have been discovered one after another. Ten years before this discovery, we proposed a formulation for the semi-relativistic potential model [5], based on which we have calculated mass spectra of higher states of the heavy-light mesons. Subsequently to the discovery of D_{sJ}, another set of broad heavy mesons, $D_{s0}^*(2308)$ and $D_{s1}'(2427)$, were discovered by the Belle collaboration [3]. These mesons are identified as $c\bar{q}$ ($q = u/d$) excited ($\ell = 1$) bound states and have the same quantum numbers, $J^P = 0^+$ and 1^+, as D_{sJ}, respectively. The decay widths of these excited D_{sJ} mesons are narrow, since the masses are below the DK/D^*K threshold, and hence the dominant decay modes violate the isospin invariance, whereas the excited D mesons, $D_{0}^*(2308)$ and $D_{1}'(2427)$, are broad because there is no such restriction as in D_{sJ} cases. More recent experiments reported by CDF and D0 [4] found narrow B and B_s states with $\ell = 1$, $B_1(5720)$, $B_s^*(5745)$, $B_{s2}^*(5839)$, and $B_{s1}(5829)$. These are narrow because they

1 Talk presented by T. Matsuki at the Workshop on "Scalar Mesons and Related Topics (Scadron 70)" held at Instituto Superior Tecnico (IST), Lisbon, Portugal, February 11-16, 2008.
2 E-mail: matsuki@tokyo-kasei.ac.jp
3 E-mail: morii@kobe-u.ac.jp
4 E-mail: kazutaka.sudoh@kek.jp
decay through the D-waves.

Utilizing our semi-relativistic potential model, we have so far solved the following problems.

1. Construct the formulation how to calculate the mass spectra of heavy-light systems.
2. Numerically calculate the mass spectra of these systems and compare them with the experiments.
3. Predicted mass spectra for $D_{s0}^*(2317)$, $D_{s1}'(2457)$, $D_0^*(2308)$, and $D_1'(2427)$ agrees well with the experiments.
4. Predict that 0^+ and 1^+ of B_s are also below the threshold BK/B^*K. [6]
5. Refurbish the calculations of [5] and fit these with the experimental data, $B_1(5720)$, $B_2(5745)$, and $B_{s2}^*(5839)$ together with the above data. [7] This calculation predicted $M(B_{s1}') = 5831$ MeV while the experiment observes it at 5829 MeV. [4]
6. Fit our calculations with the experimentally observed radial excitations, $n = 2$ $D_s^*(2715)$ and $D_0^*(2860)$, and to obtain other radial excitations of $D/D_s/B/B_s$. [8]
7. Explain the superficially recovered global $SU(3)$ invariance among 0^+ states of D and D_s. [9]
8. Calculate the KM matrix elements by first calculating the Isgur-Wise functions from the wave functions used in computing the above mass spectra. [10]

Note that the difference between the experimental data of D_{sJ} and the threshold DK/D^*K is only about 30 MeV but that the difference between our calculations for B_{sJ} and the threshold BK/B^*K is about 200 MeV. Hence the trials to explain D_{sJ} as a loosely bound D and K molecule can not be applied to the case for B_{sJ}. Because it is hard to imagine that D_{sJ} and B_{sJ} have different structures, we believe that our explanation for these states as $Q\bar{q}$ states is legitimate both for D_{sJ} and B_{sJ}.

OUR SEMI-RELATIVISTIC POTENTIAL MODEL

Our formulation [5] using the Cornell potential is to expand Hamiltonian, energy, and wave function in terms of $1/m_Q$ and sets coupled equations order by order. The non-trivial differential equation is obtained in the zeroth order, which gives orthogonal set of eigenfunctions, and quantum mechanical perturbative corrections to energy and wave functions in higher orders are formulated. Applying the Foldy-Wouthuysen-Tani (FWT) transformation to a heavy quark and the Hamiltonian, eigenvalue equation becomes

$$H\psi_\ell = E_\ell \psi_\ell, \quad (H_{-1} + H_0 + H_1 + \cdots)(\psi_{\ell 0} + \psi_{\ell 1} + \cdots) = (E_{\ell 0} + E_{\ell 1} + \cdots)(\psi_{\ell 0} + \psi_{\ell 1} + \cdots),$$

with the Cornell potential given by

$$S(r) = \frac{r}{a^2} + b, \quad V(r) = -\frac{4}{3} \frac{\alpha_s}{r},$$

where integers of subscripts and superscripts denote order in $1/m_Q$ and $H = H_{FWT} - m_Q$ [5]. The FWT transformation is not a simple non-relativistic reduction but it also in-
cludes the effects of the negative components of the heavy quark. We have the following expanded Hamiltonians:

\begin{align}
H_{++}^{1+} &= -(1 + \beta Q) m_Q, \\
H_0^{++} &= \vec{\alpha}_q \cdot \vec{p} + \beta_q (m_q + S) + V, \\
H_1^{++} &= \frac{1}{2m_Q} \vec{p}^2 + \frac{1}{2m_Q} V \left[\left((\vec{\alpha}_q \cdot \vec{p}) - i(\vec{\alpha}_q \cdot \vec{n}) \partial_r \right) \right] - \frac{1}{2m_Q} \frac{1}{r} V \left(\vec{\alpha}_q \cdot \vec{\Sigma}_Q \times \vec{n} \right).
\end{align}

Here superscripts ++ mean that the matrix elements of the Hamiltonian are taken between the positive energy components of the heavy quarks. Negative components of the heavy quark have not much contributions to the masses and so are the second orders in $1/m_Q$. Equation (2) gives the projection operator and determines the lowest order wave function which has only the positive component of the heavy quark while the light-antiquark is treated as a fully relativistic Dirac particle, being expressed by Eq. (3). The original Hamiltonian has the heavy quark symmetry (HQS) in the limit of $m_Q \to \infty$, and then this symmetry is broken by including the $1/m_Q$ correction terms. Actually the HQS is broken by the third term in Eq. (4), which only depends on the quantum number k that determines whether the HQS is broken or not. This term includes the Dirac matrix $\vec{\alpha}_q$, which has only off-diagonal matrix elements so that there is no counter term after the non-relativistic reduction. The chiral symmetry is broken in the first step (1), which is included in the Hamiltonian in a certain limit as shown in Fig. 1, then the system breaks the HQS in the last step (2) in Fig. 1, which is nothing but the hyperfine splitting owing to the third term of Eq. (4). The dominant term for the mass is given by the recoil term, $\vec{p}^2/(2m_Q)$, the first term in Eq. (4).

Mass Spectra

To demonstrate that how good our model calculations are, let us show in the following Tables 2-5 the comparison with the experimental data with the parameter set given in Table 1. In Tables 2-5, J^P stands for the total spin and parity, M_0 the lowest degenerate mass, c_1/M_0 the first order correction, M_{calc} calculated value of mass, and M_{obs} observed mass. The calculated masses, M_{calc}, are within one percent of accuracy compared with the observed masses, M_{obs}, k the quantum number of the operator.
TABLE 1. Optimal values of parameters.

Parameters	α^c	α^b	a (GeV$^{-1}$)	b (GeV)
$m_{u,d}$ (GeV)	0.261±0.001	0.393±0.003	1.939±0.002	0.0749±0.002
m_s (GeV)	0.0112±0.0019	0.0929±0.0021	1.032±0.005	4.639±0.005

TABLE 2. D meson mass spectra (units are in MeV).

State ($2s+1L_J$)	k	J^P	M_0	c_1/M_0	M_{calc}	M_{obs}
1S_0	-1	0$^-$	1784	0.476×10$^{-1}$	1869	1867
3S_1	-1	1$^-$	2067	1.271×10$^{-1}$	2011	2008
3P_0	1	0$^+$	2067	1.046×10$^{-1}$	2283	2308
3P_1"	1	1$^+$	2067	1.713×10$^{-1}$	2421	2427
1P_1"	-2	1$^+$	2125	1.415×10$^{-1}$	2425	2420
3P_2	-2	2$^+$	2125	1.618×10$^{-1}$	2468	2460
3D_1	2	1$^-$	2322	1.894×10$^{-1}$	2762	$-$
3D_2"	2	2$^-$	2322	2.054×10$^{-1}$	2800	$-$

$$-\beta_q \left(\sum_q \cdot \vec{L} + 1 \right),$$ which denotes the degenerate states. In the calculations, we have used values of parameters listed in Table 1.

Comparison with Other Models

After observing that our model nicely succeeds in predicting and/or reproducing the experimental data for the heavy-light mesons, we should clarify the reason why our model well works while others do not. Especially the other models have trouble to generate masses for the 0^+ and 1^+ states of D_s. We will give Table 6 which qualitatively describes the differences between our model and others. As one can see in Table 6, only successful quark potential model to reproduce masses of D_{sJ} is our semirelativistic model. A coupled channel method is also successful but the physical meaning remains obscure in that the authors of Ref. 15 do not take into account all the channels.

The BS equation is proposed by Zeng, Van Orden, and Roberts [12] to describe the heavy-light system, which is similar to ours except that they neglect the negative components of the heavy quark. Their numerical calculations give values higher than DK/D^*K thresholds and use constituent quark masses. The differences between ours and theirs are i) whether the light quark masses m_q are small or not, i.e., current or constituent quark masses, ii) whether the negative components of the heavy quark are taken into account or not. We adopt the current quark masses, $m_u = m_d = 11.2$ and $m_s = 92.9$ MeV while they adopt $m_u = m_d = 248$ and $m_s = 400$ MeV. We take into account the negative components of the heavy quark which contribute to the second order calculations in $1/m_Q$, while the paper [12] takes into account the second orders coming from only the positive components of the heavy quark. Considering our successful
TABLE 3. \(D \) meson mass spectra (units are in MeV).

State \((2s+1LJ)\)	\(k\)	\(J^P\)	\(M_0\)	\(c_1/M_0\)	\(M_{calc}\)	\(M_{obs}\)
\(^1S_0 \)	-1	0^-	1900	0.352 × 10^{-1}	1967	1969
\(^3S_1 \)	-1	1^-	1.102 × 10^{-1}	2110	2112	
\(^3P_0 \)	1	0^+	2095	1.101 × 10^{-1}	2325	2317
\("^3P_1" \)	1	1^-	1.779 × 10^{-1}	2467	2460	
\("^1P_1" \)	-2	1^+	2239	1.274 × 10^{-1}	2525	2535
\(^3P_2 \)	-2	2^+	1.467 × 10^{-1}	2568	2572	
\(^3D_1 \)	2	1^-	2.032 × 10^{-1}	2817	-	
\("^3D_2" \)	2	2^-	2.196 × 10^{-1}	2856	-	

TABLE 4. \(B \) meson mass spectra (units are in MeV).

State \((2s+1LJ)\)	\(k\)	\(J^P\)	\(M_0\)	\(c_1/M_0\)	\(M_{calc}\)	\(M_{obs}\)
\(^1S_0 \)	-1	0^-	5277	-0.161 × 10^{-2}	5270	5279
\(^3S_1 \)	-1	1^-	0.981 × 10^{-2}	5329	5325	
\(^3P_0 \)	1	0^+	5570	0.401 × 10^{-2}	5592	-
\("^3P_1" \)	1	1^-	1.412 × 10^{-2}	5649	-	
\("^1P_1" \)	-2	1^+	5660	1.069 × 10^{-2}	5720	5720
\(^3P_2 \)	-2	2^+	1.364 × 10^{-2}	5737	5745	
\(^3D_1 \)	2	1^-	2.203 × 10^{-1}	6999	-	
\("^3D_2" \)	2	2^-	1.430 × 10^{-1}	6556	-	

calculations, we believe that if they [12] adopt the current quark masses, then they would obtain the correct mass values for \(D_{sJ} \) by adjusting parameters. How the light quark mass affects the spectra can be seen in Figure 1 of Ref. [17], in which paper the average \(D \) meson mass of \(D \) and \(D^* \) is calculated by varying the \(c \) quark mass and by taking two values of the light quark mass, \(m_u = 10 \) and 336 MeV. Even though the potential form is different from ours, this figure shows that the value of the light quark mass is important to determine the spectra of the heavy-light system. It turns out that only the case of \(m_u = 10 \) MeV, i.e., current quark mass, can fit with the experiments for the heavy-light system.

In the last two rows of Table 6 we list the experiments and the sum of masses of \(D/D^* \) and \(K \) so that one can see how far calculated ones are away from the experiments and \(D/D^* K \) thresholds.

REFERENCES

1. BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 90, 242001 (2003).
2. CLEO Collaboration, D. Besson et al., Phys. Rev. D 68, 032002 (2003); Belle Collaboration, Y. Mikami et al., Phys. Rev. Lett. 92, 012002 (2004).
3. Belle Collaboration, K. Abe et al., Phys. Rev. D 69, 112002 (2004).
4. CDF Collaboration, CDF note 7938 (2005); D0 Collaboration, D0notes 5026-CONF, 5027-CONF (2006); I. Kravchenko, hep-ex/0605076; M. Paulini (CDF and D0 Collaborations),
TABLE 5. B_s meson mass spectra (units are in MeV).

State $^{(2s+1)L_J}$	k	J^P	M_0	c_1/M_0	M_{calc}	M_{obs}
$^{1}S_0$	-1	0$^-$	5394	-0.302×10^{-2}	5578	5369
$^{3}S_1$	-1	1$^-$	5573	0.855×10^{-2}	5440	5369
$^{3}P_0$	1	0$^+$	5598	0.350×10^{-2}	5617	5829
$^{1}P_1$	1	1$^+$	5780	1.498×10^{-2}	5682	5829
$^{3}P_1$	-2	1$^+$	5775	0.978×10^{-2}	5831	5829
$^{3}P_2$	-2	2$^+$	5875	1.263×10^{-2}	5847	5839
$^{3}D_1$	2	1$^+$	5875	2.949×10^{-2}	6048	5908
$^{3}D_2$	2	2$^+$	5875	0.564×10^{-2}	5908	5908

TABLE 6. Comparison ours with other models. QPM means quark potential model.

Method	Authors	D_{qJ}	Successful?	m_q
Semirelativistic QPM	T. M. et al.[5, 7]	2.339, 2.487 GeV	OK	current
Conventional QPM	Godfrey et al.[11]	2.48, 2.55	No	constituent
BS eq. ~ ours	Zeng et al.[12]	2.38, 2.51	No	constituent
Another QPM	Ebert et al.[13]	2.463, 2.535	No	constituent
DK Molecule	Barnes et al.[14]	–	?	N/A
Coupled Channel	Beveren et al.[15]	2.28 (2.320)	OK	N/A
tetraquark	Cheng et al.[16]	–	?	N/A
Observed	[1, 2]	2.317, 2.460	–	–
$D + K/D^* + K$	–	2.367, 2.505	–	–

5. T. Matsuki and T. Morii, PRD 56, 5646 (1997). The first order calculations in this paper are enough to compare our results with the experiments, which predicted D_{qJ}.
6. T. Matsuki, K. Mawatari, T. Morii, and K. Sudoh, Phys. Lett. B 606, 329 (2005), hep-ph/0411034
7. T. Matsuki, T. Morii, and K. Sudoh, Prog. Theor. Phys. 117, 1077 (2007), hep-ph/0605019
8. T. Matsuki, T. Morii, and K. Sudoh, Eur. Phys. J. A 31, 701 (2007), hep-ph/0610186
9. T. Matsuki, T. Morii, and K. Sudoh, Phys. Lett. B 659, 593 (2007), hep-ph/0712.1288
10. T. Matsuki and K. Seo, Prog. Theor. Phys. 118, 1087 (2007), hep-ph/0703158
11. S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985); S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
12. J. Zeng, J. W. Van Orden, and W. Roberts, Phys. Rev. D 52, 5229 (1995).
13. D. Ebert, V.O. Galkin, and R.N. Faustov, Phys. Rev. D 57, 5663 (1998).
14. T. Barnes, F. E. Close, and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003).
15. E. van Beveren, G. Rupp, Phys. Rev. Lett. 91, 012003 (2003); D.S. Hwang, D.W. Kim, Phys. Lett. B 601, 137 (2004).
16. H.Y. Cheng and W.S. Hou, Phys. Lett. B 566, 193 (2003); K. Terasaki, Phys. Rev. D 68, 011501(R) (2003).
17. M. Kaburagi, M. Kawaguchi, T. Morii, T. Kitazoe, and J. Morishita, Z. Phys. C 9, 213 (1981).