Sustainable Historic Architecture in Rural Areas – Concept for a sustainable and low carbon retrofit of a Bavarian farmhouse

Natalie Essig1,2 and Alicia Maria Davis1

1Dep. of Architecture, Munich University of Applied Sciences (MUAS), Karlstrasse 6, 80333 Munich, Germany
2Natalie Essig, natalie.essig@hm.edu

Abstract: The paper will show a real case project that has been retrofitted in a sustainable and energy efficient way to promote sustainable development in rural areas. The historical farm house “H14” (built up in 1858 and located in North Bavaria) is a typical Franconian three-sided building. The building has been vacant for over 30 years and the renovation was founded by the Bavarian Federal Office for the Preservation of Monuments and Historical Buildings. The paper will give an overview about the retrofit of the historical farm house into a two-family house with event and seminar rooms and its integration into the rural environment. The renovation concept pursued the following goals: low carbon retrofit and renewable energy solutions, resource efficiency, use of existing, historic and renewable building materials, lifecycle costs, buildings physics as well as integrating regional flora and fauna.

Keywords: Historic buildings renovation, energy retrofitting.

1. Introduction
The traditional historic architecture in rural areas is a key factor for sustainable development in the social, ecological and economic sense. Up to 60\% of buildings in rural areas are “historic”, but most of them are not in use and are increasingly decaying. In contrast to this, lots of new housing areas with single family units have emerged in the last years. The main aspect that was not considered in this development is that especially historic buildings are the basis of sustainable development in rural areas – not new ones. The preservation of historic buildings have several positive effects: use of the existing infrastructure, limitation of land use changes, decrease of rural depopulation, promotion of sustainable tourism and as one of the main effects, they reduce the ecological footprint \cite{1}. It will only be possible to reach the ambitious climate targets and preserve the cultural landscape in rural areas if the regions and the people that are living there intensify their efforts in the valorisation and sustainable use of the historic buildings and understand this task as a mission for the whole civil society.
2. Pre-Intervention Status
Prior to the start of the renovation an inventory was conducted in order to assess the building condition and develop coordinated renovation actions. In close coordination with the monument protection authority and specialist companies, the following measures were performed: building deformation survey, restoration report, roombook, dendrochronology, archival research, static report, building physics report, action plan, and construction cost estimate.

2.1. Ensemble and Outdoor Complex
The homestead “H14” is a typical Franconian three-sided building, which is composed of a residential building, a stable and a barn with an auxiliary building. The property is accessed next to the former cottage garden by a gate made of sandstone. The traditional “Sandsteintried” (sandstone ramp) guides one from the entry port to the main building and to the stable. A further entrance is located at the backside of the Farmstead and leads to the site of the former existing machine hall, which however collapsed in the past. Beyond the buildings used to be a meadow with fruit trees, fishing lakes and pastureland for the livestock. The complete property was overgrown and out of use for several of years.

2.2. Main Building
The main building was erected in 1858 and is located at the sight of a former farmhouse, which was built in 1774. A dendrochronological assessment revealed that various building materials of the
preceding building were reused in the existing construction. The two-storied building is partly built with a cellar, which is made of sandstone. The ground floor as well is a massive sandstone construction, whereas the upper and attic floor are framework constructions with infills made of clay and which are clad with slates on the outside. The ground floor is accessible by the central entrance hall and is divided in three sections: the former living room, the kitchen and the former stable. The internal walls are made of framework filled with clay and sandstone blocks. Besides two new pumice stone walls from the 1960s in the former living room and in the stable as well as the construction of a new wooden staircase in the entrance area, no structural changes have been made. The wooden stairs lead to the upper floor which is divided in various small rooms, originally serving as bedrooms and servants chambers. The internal walls are typically made of framework filled with clay. Wooden stairs in the main hallway provide access to the attic floor with its preserved roof beams from 1858, which were reused from the preceding building from 1774. In the 1970s, the concrete tile roofing was renewed. All ceilings in the entire main building are wood-beamed ceilings. Whereas the kitchen on the ground floor and the entire rooms on the upper floor are equipped with Franconian wooden floors and the entrance area is furnished with terrazzo flooring, the initially laid sandstone tiles in the former stable were replaced by a concrete floor. Unlike the well preserved ground floor, the upper and attic floor were in a poor condition and in danger of collapsing. Due to penetrating humidity numerous wooden beams in the roof and the walls were destroyed and suffered severe damage.

2.3. Stable
In 1873 a single-storey stable made of sandstone blocks was attached to the main building. The stable is accessed from the courtyard and used to consist of a feed storage chamber, a cowshed with a Prussian coved vault and a smokehouse with a water well. The outer walls as well as the gable walls are built with sandstone blocks, as the internal walls are made of quarry and sandstone on the ground floor and half-timbered constructions with quarry stone infills on the attic floor. While the historic roof beams from 1873/74 were preserved, the tile roofing over the stable was renewed in the course of a roof renovation in the 1990s. Furthermore the roof truss above the feed storage chamber was renewed and the intermediate ceiling was removed, however the original static structure was not restored. In addition, the coved vault made of bricks ad collapsed on several points.

Image 4: Sustainability Concept “H14”

3. Renovation Sustainability Concept and Goals
The farmstead “H14” in northern Bavaria is a typical Franconian three-sided building. The buildings of the farmstead (residential building, stable and barn) are arranged around a paved courtyard, which is reached entering the gateway. The residential building is a two-story, gable-fronted building with a hipped roof towards the street. The solid ground floor is made of sandstone, whereas the upper floor is a framework construction with slate cladding on the outside. After 30 years of vacancy, the farmstead
"H14", built in 1858, has become outdated and was supposed to be retrofitted in an energy- and resource efficient manner. In addition to the residential building, a multifunctional room for seminars and events was created.

With the support of the district of Lower Franconia, the Bavarian State Foundation and the support from the compensation fund of the Bavarian State Ministry for Science and Art, a comprehensive renovation was implemented. The aim was to create a sustainable monument by means of a renovation concept suitable for historical monuments, renewable energies and the reuse of existing and regional materials. Under the motto of the holistic renovation approach "ecology, economy and social aspects” and "efficiency (better), consistency (different) and sufficiency (less)", the following planning goals were the priorities in the course of the renovation:

- Preservation and promotion of building culture in rural areas: "Learning from the past"
- Resource efficiency: use of historic, regional and regenerative building materials
- Energy efficiency: Resource efficiency: renewable energies, an energy concept tailored to the building and energy storage
- Integral planning: sustainable living and working in historic walls
- Economic efficiency and life cycle costs
- Revitalization of the cultural landscape: the overall ensemble (buildings and outdoor complex)
- Promotion of flora und fauna: biodiversity
- New mobility concepts for rural areas: e-mobility

4. Description of the implemented Sustainability Measures

4.1. Ensemble and Outdoor Complex
The main objective of the planning was to keep the farmstead "H14" in its original function. The main objective of the planning was to keep the courtyard "H14" in its original function. The exterior and interior building measures that were added in the 1960s and 1970s were carefully dismantled so that the original state could be restored. The barns and stables from 1823 were statically upgraded and the former cottage garden on the street side was newly laid out. The collapsed machine hall behind the three-sided farmhouse was torn down and used again as land for pasture and garden. In order to integrate the building ensemble into its natural cultural landscape and to promote the biodiversity, breeds of domestic livestock were resettled on the heavily overgrown meadow with fruit trees and at the fishing lakes. In doing so, "traditional and endangered" breeds of domestic animals, such as the "Coburger Fuchsschaf", a sheep with the colour of a fox, were used, in order to revive the natural resource cycles.

4.2. Architectural Measures

4.2.1. Main Building: Living
As part of the future use of the "H14" estate, the main building was retained in its original use as a residential building, which however can be divided into two residential units in the future. The "Sandsteintried" (sandstone ramp) remains the main access. In addition, the main building can be accessed from the garden with another entrance. The technical areas are located in the rear part on the ground floor. The entrance to the cellar made of sandstone was re located in the former kitchen of the main building and restored. The cellar area was drained and serves as a storage chamber for food and wine. No changes were made to the historical floor plan of the ground floor. The living room was restored to its original function as a kitchen, dining and lounge area and the pumice stone wall that
was added in the 1970s, was removed. The former kitchen at the end of the entrance area was converted into a wardrobe and guest toilet. The stable section on the ground floor will be used in the future as a living room with a work and music area. The pumice stone wall, which was added to the former stable at a later date, was statically impaired and therefore removed, and the historic wooden structure of the stable (beams and pillars) was statically restored using a steel construction. The upper floor remains accessible via the wooden staircase. No floor plan changes were planned here either. The upper floor serves as a bedroom, children’s room and guest room. The bathroom was arranged on the first floor above the former kitchen on the ground floor. For the time being the attic remains unfinished and serves as a storage space. The former feed storage chamber of the attached stable is assigned to the residential building as a second residential unit, both on the ground as in the attic floor. All building services and storage rooms of the building were accommodated here, as well as an open room with a gallery. Another bathroom and the kitchen were situated on the attic floor of the former feed storage chamber.

4.2.2. Stables: Multifunctional Room for Events
The former stables were refurbished as a multifunctional event room for exhibitions and seminars. The objective is here to create a centre for sustainable building in rural regions. The main entrance is via the courtyard, however the event room is also accessible from the garden area. The former floor plan is retained. The sanitary rooms were integrated into the former feed storage chambers, from where the future event room is also connected to the main building. Next to the event room, a kitchen for accommodation/catering is planned in the former smokehouse. For this purpose, an opening was made from the smokehouse to the former stables. The kitchen can be accessed form the courtyard, as well as from the garden. For the time being, the attic floor above the event room remains unfinished and serves as storage space.

4.3. Energy-efficient, Constructional and Technical Measures
Within the scope of the renovation of the farmstead „H 14“, besides the preservation of the building’s history and building culture, particular attention was paid to the constructional, energy efficient and sustainable retrofitting of the building as well as the use of renewable energies. The following planned measures were synchronized:

4.3.1. Drinking Water and Sewage
So far the construction project “H14” has no connection to the public drinking-water or sewage supply. Solely, in the courtyard remains of a outside toilet were found close to the dung hole pit. The
initial concept intended to use the building's own water well for service water, however due to poor water quality, the building now relies on public drinking-water supply and the well provides water for the garden irrigation. Furthermore, rainwater is collected in a cistern in the garden. The historic drainage in the courtyard directs the excess rainwater to the adjacent river.

4.3.2. Building Services
The renovation’s aim was to significantly reduce the energy demand of the building. Heating with renewable energies was at the forefront, in particular with wood as the farmstead has the right to cut wood in the neighbouring community forest. The energy concept purposes a combination of an air-water heat pump for the base load and the use of multiple wood-burning stoves (partially water bearing). The operation of the air-water heat pump is supported by the electricity generated by a photovoltaic plant, which is hidden and integrated in the roof of the former dove cote (annex of the barn). The concept of the installation of the PV system was coordinated with the office for the preservation of monuments beforehand (see Image 5). In the future, battery storages and e-mobility are to be integrated.

4.3.3. Thermal Component Activation
The residential building is heated by a component activation in terms of the installation of wall heating on the outer walls on the ground and upper floor and floor heating in addition. The event room as well as the kitchen area are equipped with floor heating, which is integrated into the screed. Furthermore, the main building can be heated with additional fireplaces. The existing fireplaces were refurbished. As a large section of the building does not have a cellar and was used as stables (salinization of the walls) and as there were no protective measures made against rising damp from the floor area, a thermal component activation on the basis of the tempering method as a horizontal barrier by Großeschmidt was applied [2]. At the level of the base plate, an entire heating pipe was laid on the ground floor (see Image 6), which is heated all year round in order to prevent humidity from rising. With the software programme WUFI ® (Wärme Und Feuchte Instationär) different variants were simulated, in order to determine the moisture content in the sandstone masonry and in the lime plaster and to define the layout of the heating pipes (see Image 6 and 7):

- Variant 1: without additional heat source
- Variant 2: heat source in sandstone
- Variant 3: heat source in lime plaster

Variant 3 was executed, as it was the easiest option to implement in terms of building construction. Furthermore, the thermal component activation is to be reassessed by a future monitoring.

Image 6: Concept idea on building part tempering for protection against ascending humidity as per Großeschmidt
4.3.4. Building Physics and Building Envelope

Monument protection and building culture play an important role in the energetic renovation of the "H 14" estate. The object is to make the building as energy-efficient as possible in the context of careful and preservation-friendly handling of the building envelope (e.g. interior insulation).

The exterior facade and the structure of the building are completely retained, i.e. the sandstone facade on the ground floor and the slate façade on the upper floor retain their historical structure. In the context of the energetic concept, a distinction is made between the using of the premises. The energetic renovation of the building envelope of the residential building is carried out on the exterior walls with the installation of interior insulation made of mineral foam panels on the historic plaster on all floors. Care is taken to ensure that these are retained to the greatest extent possible. The wall heating is attached to the interior insulation, as well as the lime plaster. All connections (ceilings, interior walls) were planned and professionally implemented by the means of thermal bridges calculations. The energetic concept of the event room (formerly stable) is based on different standards. The focus here is on the function and its former use. Due to the temporary use, the exposed sandstone outer walls are solely re-grouted (airtightness).

The basement ceiling on the ground floor is insulated in the living area and in the former stables with foam glass gravel, on which the exposed concrete and the restored wooden ceilings were applied. All ceilings from the first floor to the attic and the main roof of the former stables (including the smokehouse and the feed storage chamber) were filled with hemp insulation between and below the rafters to ensure thermal comfort within the building.

In the main house, all historic outside windows are preserved and renovated. The inner box-type windows installed in the 80s were removed, as the building physics requirements were not met here, and they were professionally re-installed with double insulating glazing made of wood (also as box-type windows). Particular care was taken to ensure that there were no thermal bridges in the reveals. The former stable buildings had no windows so far. Windows with double insulating glass made of wood were installed here. The historic entrance door of the main building has been energetically upgraded.

4.4. Resource Efficiency Measures

For the renovation of the "H14" project, existing, historic and renewable resources were be used. A static report as well as the constructional assessment formed the basis for the further measures. The examination of the roof structure revealed major damages to the construction of the collar beam roof. Most of the wood originated from a preceding building out of the 18th century. The roof structure of the residential building had to be upgraded, so that as many components as possible could be preserved for reasons of monument protection. After the old roofing was removed, it was found that numerous rafters had to be replaced or reinforced. Carpenters reinforced the entire roof structure with
steel beams. In large areas, the base of the collar beam roof as well as the tops of the ends of the centering beams were replaced or supplemented. Also the collar beams had to be renewed or reinforced. The half-timbered walls were supplemented and plastered with clay wraps on all stories, as well as all the ceilings were renewed with clay. All historic wooden floors on the upper floor have been restored and reinstalled.

Image 8: Humidity simulation of the different variants of building part tempering

The facade of the upper half-timbered stories was re-slated, largely using the old, rhombic shaped stones. In addition, the decorations on the slates were applied to the slate stones according to a historic template. Since this is an old craftsmanship and no specialist company could be found for the implementation, the client, together with restorers, newly acquired the craft. Appropriate patterns were cut out of tin foil and placed on the slate stones with a mixture of linseed oil. In earlier times, lead silver alloy was our tinfoil of today. Today it is a thin, rolled tin foil.

Image 9: Renewal of the slates

5. References
[1] Bundesinstitut für Bau-, Stadt- und Raumforschung 2017 Themenheft „Gebäudetechnik“ Energieeffiziente Gebäudetechnik im Baudenkmal. Wissenschaftliche Begleitung der Modellvorhaben „Gebäudebestand (Energieeffizienz, Denkmalschutz)“ in der Umsetzungsphase; cf. https://www.bbsr.bund.de/BBSR/DE/forschung/programme/weitere/ekf/ModellvorhabenGebaeudebes tand/ekf-themenheft.pdf?__blob=publicationFile&v=1 (12.01.2021)
[2] Großeschmidt H 2004 Das temperierte Haus: Sanierte Architektur – behagliche Räume – “Großvitrine” cf. https://www.initiative-denkmaelschutz.at/images/2011/03/Henning_Das_temperierte_Haus_lang.pdf (10.05.2020)