HIGH-MASS CLOUD CORES IN THE η CARINAE GIANT MOLECULAR CLOUD

Yoshinori Yonekura\(^1\), Shin’ichiro Asayama\(^{1,2}\), Kimihiro Kimura\(^1\), Hideo Ogawa\(^1\), Yoko Kanai\(^3\), Nobuyuki Yamaguchi\(^{2,3}\), Yasuo Fukui\(^3\), and Peter J. Barnes\(^{4,5}\)

ABSTRACT

We carried out an unbiased survey for massive dense cores in the giant molecular cloud associated with η Carinae with the NANTEN telescope in \(^{12}\)CO, \(^{13}\)CO, and C\(^{18}\)O \(J = 1–0\) emission lines. We identified 15 C\(^{18}\)O cores, whose typical line width \(\Delta V_{\text{comp}}\), radius \(r\), mass \(M\), column density \(N(H_2)\), and average number density \(n(H_2)\) were 3.3 km s\(^{-1}\), 2.2 pc, 2.6 \times 10^3 M_\odot, 1.3 \times 10^{22} \text{ cm}^{-2}\), and 1.2 \times 10^3 cm\(^{-3}\), respectively. Two of the 15 cores are associated with IRAS point sources whose luminosities are larger than \(10^4 L_\odot\), which indicates that massive star formation is occurring within these cores. Five cores including the two with IRAS sources are associated with MSX point sources. We detected H\(^{13}\)CO\(^+\) \((J = 1–0)\) emission toward 4 C\(^{18}\)O cores, two of which are associated with IRAS and MSX point sources, another one is associated only with an MSX point source, and the other is associated with neither IRAS nor MSX point sources. The core with neither IRAS nor MSX point sources shows the presence of a bipolar molecular outflow in \(^{12}\)CO \((J = 2–1)\), which indicates that star formation is also occurring in the core, and the other three of the four H\(^{13}\)CO\(^+\) detections show wing-like emission. In total, six C\(^{18}\)O cores out of 15 \((= 40\%)\) are experienced star formation, and at least 2 of 15 \((= 13\%)\) are massive-star forming cores in the η Car GMC. We found that massive star formation occurs preferentially in cores with larger \(N(H_2)\), \(M\), \(n(H_2)\), and smaller ratio of \(M_{\text{vir}}/M\). We also found that the cores in the η Car GMC are characterized by large \(\Delta V\) and \(M_{\text{vir}}/M\) on average compared to the cores in other GMCs observed with the same telescope. These properties of the cores may account for the fact that as much as 60–87 % of the cores do not show any signs of massive star formation. We investigated the origin of a large amount of turbulence in the η Car GMC. We found that turbulence injection from stellar winds, molecular outflows, and supernova remnants which originated from stars formed within the GMC, are not enough to explain the existing turbulence. We propose the possibility that the large turbulence was pre-existing when the GMC was formed, and is now dissipating. Mechanisms such as multiple supernova explosions in the Carina flare supershell may have contributed to form a GMC with a large amount of turbulence.

Subject headings: ISM: clouds —ISM: individual(η Carinae GMC) —ISM: molecules —radio lines: ISM —stars: formation

1. INTRODUCTION

It is well established that massive stars form in dense cores within giant molecular clouds.
(GMCs), while low-mass stars form both in dark clouds and GMCs. The formation process of an isolated low-mass star is fairly well understood; the gravitational collapse of a molecular cloud into a protostellar core and the subsequent accretion via a circumstellar disk surrounded by an infalling envelope (e.g., Shu, Adams, & Lizano 1987 and references therein), followed by the dissipation of momentum into its surroundings through molecular outflows (Lada 1985; Fukui et al. 1986, 1993; Fukui 1989; and references therein). The current paradigm is now being tested by observations, and it has become clear that some modifications to the details of protostellar formation are needed (e.g., Andrè et al. 1993; Onishi et al. 1996, 1998; Evans 1999 and references therein).

Concerning massive star formation, an empirical scenario of the later stages of the massive star formation process has been presented (e.g., Kurtz 2000 and references therein); dense ($\sim 10^5$ cm$^{-3}$), compact ($\lesssim 0.1$ pc), and hot ($\gtrsim 100$ K) regions called Hot Cores are formed in GMCs, then the UV radiation from newly formed stars within Hot Cores ionizes the surrounding material to produce ultra-compact H II regions (UCHIIs), and finally the central stars become visible, such as the Trapezium cluster in Orion. On the contrary, evolution before the formation of Hot Cores remains unclear, although some attempts to detect sources at the earliest stages of massive star formation have been made; surveys toward IRAS point sources and maser sources (e.g., Beuther et al. 2002a; Mueller et al. 2002; Sridharan et al. 2002; Shirley et al. 2003) have revealed the presence of the dense, compact, and massive cores (density $\gtrsim 10^6$ cm$^{-3}$, temperature $\gtrsim 100$ K, luminosity $\gtrsim 10^4 L_\odot$) sometimes called High-Mass Protostellar Objects (HMPOs; Sridharan et al. 2002), some of which are not accompanied by UCHIIs. Although sources without UCHIIs may be younger than the rest, the presence of IRAS point sources and maser sources themselves strongly indicates that stars are already formed within HMPOs. It is quite natural to suppose that dense, compact, massive, starless cores (density $\sim 10^5$ cm$^{-3}$, size $\lesssim 1.0$ pc, mass $\gtrsim 10^3 M_\odot$) are the precursors of the HMPOs and Hot Cores (e.g., Evans et al. 2002). Systematic studies of these massive starless cores had not been carried out until recently, due to the difficulty in selecting targets from the existing database. It is to be noted that large-scale surveys for possible candidates for massive starless cores (density $\sim 10^4$ cm$^{-3}$) have already been made; e.g., Lada, Bally, & Stark (1991) surveyed the L1630 cloud (Orion B) in CS ($J = 2-1$). The importance of the study of starless cores has been revealed in a series of unbiased surveys for dense cores in low-mass star-forming regions, especially from a viewpoint of setting observational constraints on the evolutionary time scales of the theoretical model (Onishi et al. 1996, 1998; Tachihara et al. 2002). The same is expected for the massive star forming regions and thus unbiased surveys for massive dense cores in massive star-forming regions are also crucial.

One of the most important tasks in the study of massive star formation at the moment is to identify massive dense cores which have not yet experienced massive-star formation but are capable of future massive-star formation. High-resolution observations of these cores will give observational constraints on the initial phases of the evolutional model of a massive star; massive stars are formed by direct accretion onto a central protostar through an accretion disk (e.g., McKee & Tan 2003), which is simple extension of low-mass star formation, or by collisions of intermediate-mass protostars within a young cluster (e.g., Bonnell, Bate, & Zinnecker 1998). Moreover, such observations are the only method to reveal the initial conditions of massive star forming cores, since the properties of the cores change rapidly soon after the formation of massive stars due to strong UV radiation and stellar winds. Surveys for Hot Cores and HMPOs toward IRAS point sources and maser sources are, however, biased toward regions which have experienced star formation, and thus it is not possible to obtain information on the initial conditions of the massive star forming cores. Therefore studies of dense cores which have not yet experienced massive-star formation are awaited. Unbiased surveys for massive dense cores over entire GMCs in molecular lines as well as in the far-infrared and (sub-)millimeter continuum may be the most effective methods to search for massive starless cores which are capable of future massive-star formation. Far-IR and submillimeter/millimeter continuum observations are best suited to detect radiation from the dust in starless cores, since the radiation from cold dust ($T \lesssim 20$ K) peaks at far-IR ($\gtrsim 150$ µm) wave-
lengths with gradual decrease toward longer wavelengths. Recent development of sensitive instruments, such as bolometer array receivers, makes (sub-)millimeter continuum observations more effective for carrying out a large-scale survey for massive dense cores. An unbiased survey of entire GMCs with (sub-)millimeter continuum has not yet been made, but several surveys in small fields surrounding IRAS point sources are now in progress for the purpose of detecting massive dense cores located near the IRAS point sources. So far, regions of $\sim 10' \times 10'$ around ~ 200 IRAS point sources have been observed at a resolution of 8–24" (Forbrich et al. 2004; Faúndez et al. 2004). Based on these surveys, a few massive dense cold cores without mid-IR (MSX) and far-IR (IRAS) counterparts have been found (Forbrich et al. 2004; Garay et al. 2004). Molecular line observations have the invaluable merit of drawing kinematic information within the cores, which is impossible in continuum observations. The empirical relation between the luminosity of the forming star and the line width of the parent dense core has been found by many authors from observations in NH$_3$ (e.g., Stacy et al. 1988; Wouterloot, Walmsley, & Henkel 1988; Myers, Ladd, & Fuller 1991; Harju, Walmsley, & Wouterloot 1993; Ladd, Myers, & Goodman 1994; Jijina, Myers, & Adams 1999) as well as in C18O (e.g., Saito et al. 2001), which makes molecular line observations still more important.

We, the NANTEN group, are now conducting unbiased surveys for dense cores in the C18O ($J = 1$–0) line with the NANTEN 4-meter millimeter telescope. Tachihara et al. (2002) compiled a sample of 174 C18O dense cores in low-mass star-forming regions of Taurus (Onishi et al. 1996, 1998), L1333 (Obayashi et al. 1998), Ophiuchus North (Nozawa et al. 1991), ρ Oph (Tachihara, Mizuno, & Fukui 2000), Chamaeleon (Mizuno et al. 1999), Lupus (Hara et al. 1999), Corona Australis (Yonekura et al. 1999), the Pipe nebula (Onishi et al. 1999), and the Southern Coalsack (Kato et al. 1999) including intermediate-mass clus-
tering regions such as ρ Oph, Cha I, R CrA, and Lupus 3, and found that cores with active star formation tend to have larger column density, number density, and mass, and tend to be gravitationally more bound. Observations toward massive star forming regions are also in progress; we have detected 112 cores so far in the unbiased surveys for dense cores in GMCs such as Orion A, Orion B, Cepheus OB3, Vela, S35/S37, and Centaurus (Yu, Nagahama, & Fukui 1996; Nagahama 1997; Yamaguchi et al. 1999a; Saito et al. 1999, 2001; Aoyama et al. 2001). The beam size of the NANTEN telescope, 2.7 (~0.3 pc at the distance of the nearest GMC, Orion B, $D = 400$ pc), is not necessarily sufficient to resolve massive starless cores. However, it is still meaningful to select candidates for massive starless cores (density $\sim 10^4$ cm$^{-3}$, size \sim a few pc, mass \gtrsim a few $\times 10^3 M_\odot$, which are estimated from the physical parameters of massive starless cores), which can be traced by C18O ($J = 1$–0) observations with NANTEN, since only a few massive starless cores have been identified so far. In this paper, we report the results of an unbiased survey for dense cores in the GMC associated with the η Carinae nebula (the η Car GMC hereafter), with the aim of obtaining samples of massive-starless-core candidates which are possible sites for future massive star formation.

The η Car GMC has been one of the most active star-forming regions in the Galaxy at least until the formation of the youngest stellar cluster associated with the GMC (~3 Myrs ago, e.g., Feinstein 1995). Eight stellar clusters (Trumpler 14, 15, 16, Collinder 228, Bochum 10, 11, NGC 3293, and NGC 3324; hereafter we abbreviate Trumpler 14 and Trumpler 16 as Tr 14 and Tr 16, respectively) are associated with the GMC, which contains more than 64 O-type stars including one of the most massive stars, η Car (Feinstein 1995). When we estimate the star formation activity from the richness of the clusters by counting the number of the most massive stars (e.g., stars with the spectral type of O3) since the total number of the cluster members can not be counted, the η Car GMC (with five O3 stars) is estimated to be the second most active star-forming region after NGC 3603 with six O3 stars (Maíz-Apellániz et al. 2004). Its proximity to the Sun ($D \sim 2.5$ kpc for the η Car GMC compared to 6.9 kpc for NGC 3603) makes the η Car GMC the best site for the detailed study of massive star formation, because much higher spatial resolution can be achieved. There is a possibility that active star-forming regions, such as W49, where more than 100 O-type stars have been found in infrared observations (Alves & Home-
ier 2003), are hidden in the galactic plane due to heavy foreground extinction. However, it is natural to think that regions with heavy foreground extinction are located distant from the Sun (11.4 kpc in the case of W49), and thus the η Car GMC still remains advantageous. It is to be noted that the well-studied massive star-forming region, the Orion region, is a much smaller system, containing only a single O4-6 star (Maíz-Apellániz et al. 2004).

Several observations have been made so far covering the entire η Car GMC with moderate spatial resolution. Grabelsky et al. (1987, 1988) observed the whole η Car GMC (3 × 2 deg2) in the 12CO ($J = 1–0$) line with an 8′′ beam, and revealed the existence of a string of CO clouds between $l = 284^\circ.7$ and 289° with a total mass of $6.7 \times 10^5 M_\odot$. Zhang et al. (2001b) made sub-millimeter observations in 12CO ($J = 4–3$) and atomic carbon [CI] $^3P_1–^3P_0$ with a 3′′ beam, and found that these two emissions and 12CO ($J = 1–0$) are approximately coextensive, and that the excitation temperature is higher (~ 50 K near η Car and ~ 20 K in clouds farther from η Car) than that in dark clouds. High-resolution observations at a resolution of $\sim 20–40''$ were made toward some selected clouds near η Car. There are two main CO emission regions near η Car; northern and southern clouds (de Graauw et al. 1981; Brooks, Whiteoak, & Storey 1998). The northern cloud lies surrounding the cluster Tr 14 (~ 7 pc northwest of η Car). Brooks et al. (2003) observed the northern cloud and found that the cloud consists of 4 main CO clouds with masses in the range 40–500 M_\odot, two of which are gravitationally bound with density exceeding 10^5 cm$^{-3}$. They proposed that these clouds are exposed to a radiation field originating mainly from the most massive stars in Tr 14. The southern cloud is located adjacent to the cluster Tr 16, which includes η Car. Megeath et al. (1996) found a gravitationally-bound cloud with a mass of $70 M_\odot$, and that a cold IRAS point source with luminosity $\sim 10^4 L_\odot$ is associated with the cloud. They concluded that star formation is on-going at the interface between the cloud and the cluster Tr 16, which is triggered by radiation driven shocks. In between the northern and the southern clouds, the distribution of the molecular gas is patchy due to dissociation by the strong UV radiation and stellar winds from nearby massive stars in Tr 16 (Cox & Bronfman 1995). They also found that the typical mass of the clouds is $\sim 10 M_\odot$, and that the clouds are not gravitationally bound. Recently, Rathborne et al. (2004) studied the region called the giant pillar (Smith et al. 2000), $\sim 0^\circ5$ south of η Car. Since the distance from the clusters is larger than that of the northern and southern clouds, and the giant pillar is located behind the southern cloud, the influence of the UV radiation and stellar winds from the clusters may be smaller and the photo-dissociation takes longer than the northern and southern clouds. From CO $J = 2–1$ observations toward four mid-IR sources identified by Smith et al. (2000) using mid-infrared data obtained by Midcourse Space Experiment (MSX), they found these sources are also influenced by the radiation from clusters Tr 14 and Tr 16. The mass of the associated clouds ranges from 10–45 M_\odot and they are probably not gravitationally bound. They also found 12 candidates for massive young stellar objects and UCHIIIs from the mid-IR data. These studies revealed that star formation is still on-going in the η Car GMC under the strong influence of the most massive stars in clusters, in at least 1.5×2 deg2 regions in the vicinity of η Car.

Here we report the results of an unbiased survey for dense cores in the entire η Car GMC. The purpose of the present study is to obtain a sample of massive-starless-core candidates which are possible sites for future massive star formation. With moderate spatial resolution, 2′′, our observation covered the entire η Car GMC (3×2 deg2) including regions farther from η Car, such as the western part of the η Car GMC around the H II region Gum 31 and the southern most part of the η Car GMC, where no previous observations had been made except coarse large-scale surveys. Observations were made in C18O ($J = 1–0$) as well as in 12CO and 13CO with NANTEN. We also made high-resolution observations in H13CO$^+$ ($J = 1–0$) with the Mopra 22-meter millimeter telescope and searched for molecular outflows in 12CO ($J = 2–1$) toward some selected dense cores with the ASTE 10-meter sub-millimeter telescope. Out of the 15 C18O cores detected in this survey, two are on-going massive star forming cores associated with luminous infrared sources and another 4 are possibly less-massive star-forming cores, and thus as many as 9–13 cores which have not experienced massive star formation, are detected in this sur-
vey. We present the physical properties of the dense cores and compare the star-formation activity with them. We also compare the properties of the C\(^{18}\)O cores with those in other massive star forming regions, such as Orion, Cepheus, Vela, S35, and Centaurus, in order to study the characteristics of the \(\eta\) Car GMC.

2. OBSERVATIONS

2.1. Large Scale Observations of CO Gas and the Search for High-Mass Cores

Observations of the \(J = 1-0\) transitions of \(^{12}\)CO, \(^{13}\)CO, and \(^{18}\)O were made with the NANTEN 4-meter telescope of Nagoya University at Las Campanas Observatory of the Carnegie Institution of Washington (Fukui et al. 1991; Fukui & Sakakibara 1992; Fukui & Yonekura 1998). The half-power beam width of the telescope was 2\(\prime\)7 at 110 GHz and 2\(\prime\)6 at 115 GHz, corresponding to \(\sim 2\) pc for the distance of the \(\eta\) Car GMC, 2.5 kpc. The 4 K cooled SIS mixer receiver provided a typical system temperature of \(\sim 140\) K (SSB) at 110 GHz and \(\sim 200\) K (SSB) at 115 GHz, including the atmosphere toward the zenith (Ogawa et al. 1990). The spectrometer was an acousto-optical spectrometer with a total bandwidth of 40 MHz divided into 2048 channels. The effective spectral resolution was 40 kHz, corresponding to a velocity resolution of 0.11 km s\(^{-1}\) at 110 GHz.

The \(^{12}\)CO data were obtained from 1998 May to July, and in 1999 March. Most of the region was observed by using a position-switching technique with a grid spacing of 2\(\prime\), and the rest with 4\(\prime\) grid. The total integration time and the typical rms noise of the data at a velocity resolution of 0.1 km s\(^{-1}\) were \(\sim 5\) sec and \(\Delta T_{\text{rms}} \sim 1.0\) K, respectively. In \(^{13}\)CO, observations were made from 1999 January to March with 4\(\prime\) grid by using a position-switching technique. The total integration time per point was \(\sim 90\) sec and the typical rms noise of the data was \(\Delta T_{\text{rms}} \sim 0.1\) K at a velocity resolution of 0.1 km s\(^{-1}\).

For the calibration of the spectral line intensity, a room-temperature chopper wheel was employed. The absolute-intensity calibration was made by observing Ori KL (\(\alpha_{1950} = 5^h32^m47^s, \delta_{1950} = -5^\circ24'21''\)) and \(\rho\) Oph East (\(\alpha_{1950} = 16^h29^m20^s9, \delta_{1950} = -24^\circ22'13''\)). The peak radiation temperatures, \(T_{\text{R}}\), are assumed to be \(T_{\text{R}}\) \((^{12}\)CO, Ori KL) = 65 K (Ulrich & Haas 1976; Kutner & Ulrich 1981; Levreault 1988), \(T_{\text{R}}\) \((^{13}\)CO, Ori KL) = 10 K (Mizuno et al. 1995), and \(T_{\text{R}}\) \((^{18}\)O, \(\rho\) Oph East) = 4.4 K. The last value is consistent with the assumption that \(T_{\text{R}}\) \((^{18}\)O, TMC-1 \(\alpha_{1950} = 4^h38^m42^s0, \delta_{1950} = 25^\circ35'45''\)) = 2.0 K (Onishi et al. 1996), which has been established by the long-term monitoring of standard sources made at the NANTEN telescope. The pointing accuracy was measured to be better than 20\(''\), as checked by optical observations of stars with a CCD camera attached to the telescope as well as by radio observations of Jupiter, Venus, and the edge of the Sun.

2.2. Detailed Observations for High-Density Regions

Observations of the \(J = 1-0\) transition of \(^{13}\)CO\(^+\) were made with MOPRA, the 22-meter radio telescope of the Australia Telescope National Facility (ATNF), on 2003 July. The half-power beam width of the telescope was \(\sim 37''\) at 86 GHz (Ladd et al. 2005). The front end was a dual-channel 4 K cooled SIS mixer receiver, and the typical system temperature was 200 K (SSB) at 86 GHz, including the atmosphere toward the zenith.

Two orthogonal polarizations were simultaneously observed, both tuned to the \(^{13}\)CO\(^+\) \((J = 1-0)\) frequency. The spectrometer was a digital correlator with a bandwidth of 64 MHz and 2048 channels, which was divided into two 1024 channels in order to measure the two polarizations simultaneously. The velocity coverage was \(\sim 110\) km s\(^{-1}\) at 86 GHz, and the effective spectral resolution was \(\sim 0.13\) km s\(^{-1}\) at 86 GHz, corresponding to \(\sim 1.2\) times the channel increment.

The data were obtained with a grid spacing of 40\(''\) by the position-switching mode. The total in-
tegration time per point was \(\sim 8 \) minutes, and the typical rms noise of the data was \(\Delta T_{\text{rms}} \sim 0.1 \) K at a velocity resolution of \(0.1 \) km s\(^{-1}\). The intensity calibration was made by using a room-temperature chopper-wheel. The absolute intensity calibration was made by observing Ori KL, by assuming \(T_R^* \approx 0.55 \) K (Johansson et al. 1984).

The pointing accuracy was measured to be within 15" by observing the SiO maser source RW Vel at 86 GHz every two hours during the observations.

2.3. Search for Molecular Outflows

Observations of the \(J = 2 \rightarrow 1 \) transition of \(^{12}\)CO were made with Atacama Submillimeter Telescope Experiment (ASTE), the 10-meter radio telescope of Nobeyama Radio Observatory\(^1\) at Pampa la Bola, Chile, on 2003 November (Kohno et al. 2003; Ezawa et al. 2004). The half-power beamwidth of the telescope was 30" at 230 GHz. The front end was a 4 K cooled SIS mixer receiver (Sekimoto et al. 2001). The typical system temperature was 300 K (DSB) at 230 GHz, including the atmosphere toward the zenith. We used a digital correlator with a bandwidth of 128 MHz and 1024 channels (Sorai et al. 2000). The effective spectral resolution was 150 kHz, corresponding to a velocity resolution of 0.16 km s\(^{-1}\) at 230 GHz.

The data were obtained with a grid spacing of 30" by using the position-switching mode. The total integration time per point was \(\sim 1 \) minute and the typical rms noise of the data was \(\Delta T_{\text{rms}} \sim 0.8 \) K at a velocity resolution of \(0.5 \) km s\(^{-1}\). The intensity calibration was made by using a room-temperature chopper-wheel. The absolute intensity calibration was made by observing Ori KL by assuming \(T_R^* \) to be 111 K (Sutton et al. 1985). The pointing accuracy was measured to be within 15" as checked by optical observations of stars with a CCD camera attached to the telescope as well as by radio observations of Jupiter and Mars.

\(^1\)Nobeyama Radio Observatory (NRO) is a branch of the National Astronomical Observatory of Japan (NAOJ), which belongs to the National Institutes of Natural Sciences (NINS)

3. RESULTS

3.1. Distributions of CO Gas

The \(J = 1 \rightarrow 0 \) emission lines of carbon monoxide (\(^{12}\)CO) and its isotopes (\(^{13}\)CO and \(^{18}\)O) have been used to study molecular clouds, since they are among the most abundant molecules in the dense interstellar medium. Although all these lines have nearly the same critical density for collisional excitation, it is found empirically that the typical densities traced by them are different: \(\sim 10^2 \) cm\(^{-3}\) for \(^{12}\)CO, \(\sim 10^3 \) cm\(^{-3}\) for \(^{13}\)CO, and \(\sim 10^4 \) cm\(^{-3}\) for \(^{18}\)O (e.g., Mizuno et al. 1995, Onishi et al. 1996, 1998 for Taurus; Mizuno et al. 1998, 1999 for Chamaeleon; Dobashi et al. 1994, 1996, Yonekura et al. 1997, Kawamura et al. 1998, Kim et al. 2004 for a series of \(^{13}\)CO survey in the Milky Way; Tachihara et al. 2002 and references therein for \(^{18}\)O cores in nearby star forming regions). This density differentiation can be understood as follows: One of the causes for this density differentiation is due to the optical depth. The \(^{12}\)CO transition is optically thick in most molecular clouds, making it to probe the lower density enveloping layer of a molecular cloud due to the photon trapping. The other two lines have smaller optical depths, allowing us to look more deeply into clouds. However, because of the selective photo-dissosiation of the \(^{13}\)CO and \(^{18}\)O molecules, abundance ratio of the isotopes vary as a function of the visual extinction \(A_V \) (e.g., Warin, Benayoun, & Viala 1996). The abundance ratio \(R^{(13)\text{CO}/(18)\text{O}} \) reaches up to \(\sim 10 \) near the cloud surface at \(A_V \sim 1 \). As a result, it is expected that the \(^{13}\)CO emission mainly comes from the intermediate part of the density (\(\sim 10^3 \) cm\(^{-3}\)) and that the \(^{18}\)O emission comes from the inner part of the density (\(\sim 10^4 \) cm\(^{-3}\)).

Figure 1 shows the total-intensity distribution of \(^{12}\)CO (\(J = 1 \rightarrow 0 \)) in the velocity range from \(V_{\text{LSR}} = -30 \) km s\(^{-1}\) to \(-10 \) km s\(^{-1}\), overlaid on an optical image taken from the Digitized Sky Survey. We also show the distribution of OB stars overlaid on a \(^{12}\)CO map and an \(H_\alpha \) image in Figure 2. The positions of the OB stars are taken from the SIMBAD database. We find \(\sim 80 \) O-type stars including five O3 stars, \(\sim 400 \) B stars, and 7 Wolf-Rayet stars in the observed area. The \(H_\alpha \) image is reproduced from the Southern \(H_\alpha \) Sky Survey Atlas (SHASSA; Gaustad et al. 2001). It is clearly seen
that the overall distribution of the 12CO emission shows an anti-correlation with the optical objects such as stellar clusters and H II regions. Most of the O-type stars are located near the η Car nebula at $(l, b) \sim (287.5, -0.7)$, creating the huge H$\alpha$ emission nebulosity, while small H II regions are made by a few O stars such as NGC 3293 at (285.9, 0.1) and Gum 31 at (286.2, -0.2). On the other hand, there is a good correlation of the 12CO emission with the optical obscuration around the η Car nebula; the northern cloud at (287.3, -0.7), the southern cloud at (287.7, -0.7), and the giant pillar at (288.0, -1.1).

In the 12CO emission, a dozen intense peaks are distributed within more extended diffuse emission. The total molecular mass traced in the 12CO emission is $\sim 3.5 \times 10^5 M_\odot$, which is estimated in the following manner: We assumed an empirical relation that the molecular hydrogen column density, N(H$_2$) is proportional to the 12CO integrated intensity, $I(^{12}$CO). The conversion factor is called the X-factor [$X = N$(H$_2$)/$I(^{12}$CO)], and the value lies in the range (1–3) \times 1020 cm$^{-2}$ (K km s$^{-1}$)$^{-1}$ toward the clouds in the Galactic disk, as estimated by the virial mass, γ-ray emission, and so on (e.g., Bloemen et al. 1986; Solomon et al. 1987; Strong et al. 1988; Bertsch et al. 1993). Here we adopted $X = 1.6 \times 10^{20}$ cm$^{-2}$ (K km s$^{-1}$)$^{-1}$ as derived from observations with the Energetic Gamma-Ray Experiment Telescope (EGRET; Hunter et al. 1997). The total mass of the 12CO emission is estimated by using

$$M = \mu m_H \sum D^2 \Omega N(H_2+He) = 2.8 m_H \sum D^2 \Omega N(H_2),$$

where D is the distance, Ω is the solid angle subtended by the effective beam size ($2' \times 2' \text{ or } 4' \times 4'$), m_H is the proton mass, and μ is the mean molecular weight. The factor of 2.8 is introduced by taking into account the contribution of helium (one He atom for every five H$_2$ molecules), which is the same assumption as $\mu = 2.33$. The summation is performed over the observed points within the 3-sigma contour level (5 K km s$^{-1}$) of the integrated intensity. The distance of the η Car GMC is not well determined. Grabelsky et al. (1988) used $D = 2.7$ kpc, which is estimated from the distances of associated star clusters. Feinstein (1995) summarized the photometric data of the open clusters distributed over the entire η Car GMC, and obtained the average value of 2.5 kpc. In the vicinity of η Car, values in the range 2.2–2.8 kpc are reported for the distances of Tr 14 and Tr 16 (e.g., Davidson & Humphreys 1997). In this paper, we adopt the frequently quoted value of 2.5 kpc as the distance of the η Car GMC (Feinstein 1995). The uncertainty in determining the total mass is estimated to be $\sim 70\%$ from the equation (1), since the distance D and the conversion factor X include $\sim 10\%$ and $\sim 50\%$ uncertainty, respectively. The total mass obtained in this manner is somewhat smaller than that derived in Grabelsky et al. (1988), $6.7 \times 10^5 M_\odot$ (cloud 11 [287.5–0.5] in their catalog), who observed the Carina arm with a 1.2-meter telescope at Cerro Tololo. The difference in the total mass basically originates from the different assumptions on the X-factor and the distance used in deriving the mass; they used $X = 2.8 \times 10^{20} \text{ cm}^{-2} (\text{K km s}^{-1})^{-1}$ and $D = 2.7$ kpc. When we use the same assumption as in Grabelsky et al. (1988), $7.2 \times 10^5 M_\odot$ is obtained, which is in good agreement with the value derived by Grabelsky et al. (1988).

Clumpy structure is more clearly seen in the 13CO ($J = 1–0$) emission (Fig. 3). From the 13CO distribution, we can divide the η Car GMC into 7 regions, which are clearly separated at the 3-sigma contour level (1.35 K km s$^{-1}$). The boundaries of the regions are similar to those in a previous study by Zhang et al. (2001b), which is based on the 12CO ($J = 1–0$) map of 7.5 grid spacing with an 8/8 beam, but our definition traces more detailed structure. Moreover we identified one more region (region 7). This is mainly because the spatial resolution in our study is ~ 3 times higher than that in Zhang et al. (2001b) and because we used 13CO emission instead of 12CO.

The physical properties of the 13CO gas are estimated in the following manner assuming local thermodynamical equilibrium (LTE): The excitation temperature, T_{ex}, was estimated from T_R^{12} (12CO) at the peak position of each C18O core (see § 3.2) by using

$$T_{\text{ex}} = \frac{5.53}{\ln(1 + 5.53/[T_R^{12}(CO)(K) + 0.819])} (K).$$

We used the average value of the T_{ex} of each of the C18O cores within the region as the T_{ex} of the region. In order to derive the 13CO column density, we divide each spectrum into 0.1 km s$^{-1}$
bins, calculate the column density within each bin, and sum them up within an LSR velocity range from -30 km s^{-1} to -10 km s^{-1}. The optical depth in each bin, $\tau_{13}(V)$, is calculated by the following equation:

$$\tau_{13}(V) = -\ln \left(1 - \frac{T_{13}(V)}{5.29\{J_{13}[T_{\text{ex}}(K)] - 0.164\}} \right), \quad (3)$$

where $T_{13}(V)$ is the average temperature of the 13CO spectrum in each bin in the unit of Kelvin, and $J_{13}[T(K)] = 1/\exp[5.29/T(K)] - 1$. The 13CO column density is estimated from

$$N_{13} = 2.42 \times 10^{14} \sum_{V} 0.1(\text{km s}^{-1})\tau_{13}(V)T_{\text{ex}}(K) \left(\frac{1}{1 - \exp[-5.29/T_{\text{ex}}(K)]} \right) \quad \text{(cm}^{-2}). \quad (4)$$

The ratio $N(\text{H}_2)/N(^{13}\text{CO})$ is assumed to be 5×10^{5} (Dickman 1978). The mass is estimated in the same manner as for the 12CO. The total molecular mass traced in the 13CO emission is $\sim 1.3 \times 10^5 M_\odot$, which is 38 % of the 12CO mass.

The spatial distribution of the 18CO ($J = 1$–0) integrated intensity is shown in Figure 4. The distribution of the 18CO gas is more compact than those of the 12CO and 13CO gas. The total molecular mass traced in the 18CO emission is $\sim 5.8 \times 10^4 M_\odot$ (see § 3.2), which is 44 % of the 13CO mass.

The mass of each region traced in 12CO, 13CO, and 18CO is summarized in Table 1. The fraction of the 13CO mass to the 12CO mass ranges from 36–68 %, with the largest value of 68 % in region 1. The fraction of the 18CO mass to the 13CO mass ranges from 21–72 %, with the largest value of 72 % again in regions 1 and 5.

We note that CO emission with $V_{\text{LSR}} > -10 \text{ km s}^{-1}$ was detected toward some areas around (l, b) = (286.5, -0.2), although these velocity components are not shown in the figures. These velocity components come from distant clouds (clouds on the far side of the Carina arm at $D = 7.5 \text{ kpc}$, Grawelsky et al. 1988), not associated with the η Car GMC. We will discuss these clouds in a separate paper (Yonekura et al. 2005 in preparation).

3.2. Identification of 18O Cores and their Physical Properties

In order to investigate the physical properties of the dense regions, we define a 18O core in the same manner as that adopted by Onishi et al. (1996): (1) find a peak-intensity position, (2) draw a contour at the half level of the peak intensity, (3) identify a core unless previously identified cores exist within the half-level contour, (4) find the next intensity peak outside the core, (5) repeat the procedure after (2) until the peak intensity falls down below 6-sigma level (= 1.0 K km s$^{-1}$).

We finally identified 15 18O cores. In Figure 5 we show the boundaries of each core, and their observed properties are listed in Table 2. The absolute peak temperature, T_R (18O), the radial velocity of the 18O emission, V_{LSR}, and the FWHM line width, ΔV, are derived from a single Gaussian fitting for a line profile at the peak position of the core. There is a variation in the ratio of the 18O integrated intensity, $I(\text{^{18}O})$, to the 13CO integrated intensity, $I(\text{^{13}CO})$; three prominent 18O cores, whose 18O intensities at the peak position are larger than $\sim 2 \text{ km s}^{-1}$ (nos. 5, 6, and 13), possess only moderate 13CO intensity among the dozens of 13CO local peaks. This indicates that 18O observation is not necessarily suited to trace the high-density regions.

The physical properties of the 18O cores were estimated using nearly the same procedure as for 13CO. Differences between the two procedures are the following: The optical depth of the 18O line in each bin, $\tau_{18}(V)$, is calculated by the following equation:

$$\tau_{18}(V) = -\ln \left(1 - \frac{T_{18}(V)}{5.27\{J_{18}[T_{\text{ex}}(K)] - 0.166\}} \right), \quad (5)$$

where $T_{18}(V)$ is the average temperature of the 18O spectrum in each bin in Kelvin, and $J_{18}[T(K)] = 1/\exp[5.27/T(K)] - 1$. The 18O column density is estimated from

$$N_{18} = 2.42 \times 10^{14} \sum_{V} 0.1(\text{km s}^{-1})\tau_{18}(V)T_{\text{ex}}(K) \left(\frac{1}{1 - \exp[-5.27/T_{\text{ex}}(K)]} \right) \quad \text{(cm}^{-2}). \quad (6)$$

The ratio $N(\text{H}_2)/N(^{18}\text{O})$ is assumed to be 6×10^{6} (Ferking, Langer, & Wilson 1982). The mass of a 18O core is derived by summing over the observed points within the core. The radius of a core, r, was calculated from

$$r = \sqrt{\frac{S}{\pi}}. \quad (7)$$
where S is the area inside the core. The radius of small cores is overestimated by the beam-size effect. The relation between the observed radius, r, and the deconvolved radius, r_{dec}, is approximated by the relation

$$r_{\text{dec}} = \sqrt{r^2 - \left(\frac{\text{beam size}}{2}\right)^2}.$$ \hfill (8)

We also calculated the virial mass, M_{vir},

$$\left(\frac{M_{\text{vir}}}{M_\odot}\right) = 209 \left(\frac{r}{\text{pc}}\right) \left(\frac{\Delta V_{\text{comp}}}{\text{km s}^{-1}}\right)^2,$$ \hfill (9)

with ΔV_{comp} defined as the FWHM line width of the composite profile derived by using a single Gaussian fitting, where the composite profile was obtained by averaging all the spectra within the core. The average H_2 number density of the core, $n(\text{H}_2)$, was derived by dividing M by the volume of the core, assuming that the core is spherical with radius r. The physical properties of the C18O cores thus obtained are listed in Table 3 along with the average and the median values.

Here we compare the physical properties of the cores in the η Car GMC to those of massive-star-forming cores observed with the NANTEN and the 4-m radio telescopes of Nagoya University: Orion B (Aoyama et al. 2001), Orion A (Nagahama 1997), Vela C (Yamaguchi et al. 1999a), Cepheus OB3 (Yu, Nagahama, & Fukui 1996), S55/S37 (Saito et al. 1999), and Centaurus (Saito et al. 2001). All these studies assume LTE in deriving physical properties and use the same assumption on abundance. Since the definition of a C18O core in Orion A, Vela C, and Cepheus OB3 is different from the one in this work, only values at the peak position (i.e., ΔV and $N(\text{H}_2)$) are compared for these regions. In order to be consistent for comparison, we used $(M_{\text{vir}}/M_\odot) = 209 (r/\text{pc}) (\Delta V/\text{km s}^{-1})^2$ instead of equation (9), and we excluded cores with serious beam-size effect, i.e., $r_{\text{dec}}/r < 0.8$, in calculating the average and median values of r, $n(\text{H}_2)$, and M_{vir}/M according to Saito et al. (2001). Hereafter, we call the cores with $r_{\text{dec}}/r \geq 0.8$ as ‘resolved’ cores. The average and median values in each region are listed in Table 4. The line width, ΔV, of the cores in the η Car GMC ranges from 2.2 to 5.4 km s$^{-1}$ with an average value of 3.2 km s$^{-1}$. This is the largest among the sample. The peak column density ranges from $0.6 - 3.5 \times 10^{22}$ cm$^{-2}$ with an average of 1.3×10^{22} cm$^{-2}$, which is a typical value for the GMCs listed here. The core mass ranges from 450 to 6100 M_\odot with an average of 2600 M_\odot. It is difficult to compare the absolute values of the mass, since there is a dependence on the distance. The radius of the resolved cores ranges from 1.6 to 3.1 pc with an average of 2.2 pc. The radius is also dependent on the distance. The average number density, $n(\text{H}_2)$, ranges from 0.5–3.4 $\times 10^3$ cm$^{-3}$ with an average of 1.2×10^3 cm$^{-3}$, which is about one order smaller than the expected value for a C18O core, $\sim 10^4$ cm$^{-3}$. This is mainly due to the beam dilution; the resolution of the telescope is ~ 2 pc at the distance of the η Car GMC, which is larger than the typical size of the C18O cores in Orion, ~ 0.5 pc. The ratio of the virial mass, M_{vir}, to the LTE mass, M, ranges from 0.5 to 2.9 with an average of 1.6, which is the second largest value among the whole sample.

To summarize, the cores in the η Car GMC are characterized by larger values of ΔV and M_{vir}/M on average than those in other massive-star-forming regions.

3.3. Star- Formation Activity in Dense Cores: Existence of Large Numbers of Non-Star-Forming Cores

In this subsection, we investigate the star-formation activity in C18O cores in the η Car GMC. The IRAS point source catalog is a useful database to search for young stellar objects (YSOs) embedded in molecular clouds. In order to select candidates for recently formed stars among the IRAS point sources, we searched for sources having cold infrared spectra defined at 25 and 60 μm, i.e., sources with higher flux densities at 60 μm than at 25 μm with a data quality better than or equal to 2 in these two bands. We excluded objects from the selection that have already been identified as planetary nebulae or external galaxies in the IRAS point source catalog. Among the 316 IRAS point sources in the observed region, 73 were found to satisfy the criteria, and only two sources are located inside the boundaries of C18O cores, i.e., within the half-intensity contours: IRAS 10365–5803 and IRAS 10361–5830 are associated with C18O cores nos. 5 and 6, respectively (Figs. 4 and 5). The luminosities of these sources are $\sim 30000 L_\odot$ (IRAS 10365–5803) and $\sim 21000 \ldots$
sources with a data quality better than or equal to 3 in Band C (\(\sim 12 \mu m\)), D (\(\sim 14 \mu m\)), and E (\(\sim 21 \mu m\)). Among the 2799 MSX point sources in the observed region, 147 were found to satisfy the criteria, and 8 sources are associated with 5 \(^{18}\)O cores (nos. 5, 6, 9, 10, and 12; Fig. 6). The properties of these MSX point sources are summarized in Table 6.

The detection limit of the IRAS survey toward the \(\eta\) Car GMC is estimated to be \(\sim 1000 \ L_{\odot}\), which we derived from the distribution of the luminosity of the above 73 YSO-candidate IRAS point sources on the assumption that these sources are located at the same distance as the \(\eta\) Car GMC. Therefore, we can conclude that massive star formation has not occurred in the cores without IRAS point sources, although we can not exclude the existence of sources at an evolutionary stage prior to the formation of a massive star, which may not have enough emission at infrared wavelengths (e.g., Sridharan et al. 2002).

Along with the result in the next subsection, 6 \(^{18}\)O cores (nos. 5, 6, 9, 10, 12, and 15) out of 15 (= 40\%) are experienced star formation, and at least 2 of 15 (= 13\%) are massive-star forming cores in the \(\eta\) Car GMC, although the proportion of star-forming cores may vary when high-spatial-resolution molecular line observations and more sensitive infrared and (sub)millimeter observations are made. It should be noted that as many as 13 out of the 15 \(^{18}\)O cores, i.e., 87\%, are not associated with luminous IRAS point sources (\(L > 10^3 \ L_{\odot}\)). The proportion, 13\%, is much lower than in other massive star forming regions at distances within a factor of two of the \(\eta\) Car GMC: 28\% in S35/S37 and 86\% in Centaurus III (Saito et al. 1999, 2001). We will discuss the inactiveness in detail later in § 4.3

3.4. Search for High-Density Regions and Molecular Outflows

In this subsection, we present the results from the search for high-density regions and molecular outflows, in order to reveal the physical properties and the evolutionary stages of dense cores, especially those without IRAS point sources, more precisely.

3.4.1. Identification of \(^{13}\)CO\(^+\) Cores and their Physical Properties

In order to detect high-density regions within \(^{18}\)O cores, we have observed 14 \(^{13}\)O cores (all except for \(^{18}\)O core no. 4) in \(^{13}\)CO\(^+\) (\(J = 1\rightarrow 0\)) emission, which traces a typical density of \(\sim 10^5 \ cm^{-3}\) (e.g., Mizuno et al. 1994; Onishi et al. 2002). Therefore, the \(^{18}\)O cores without IRAS point sources, which are detected in \(^{13}\)CO\(^+\) emission, can be considered as good candidates for the sites of future massive star formation. Significant \(^{13}\)CO\(^+\) emission above the 3-sigma noise level was detected toward 4 \(^{18}\)O cores (nos. 5, 6, 9, and 15), two of which (nos. 5 and 6) have associated IRAS point sources and three of which (nos. 5, 6, and 9) with MSX point sources (see § 3.3). Distributions of \(^{13}\)CO\(^+\) emission are presented in Figure 7. In order to study the physical properties, we define the \(^{13}\)CO\(^+\) cores in the same manner as \(^{18}\)O cores. As a result, we identified 3 cores.

Physical properties of the \(^{13}\)CO\(^+\) cores were estimated using the same method as for \(^{18}\)O: The \(^{13}\)CO\(^+\) optical depth in each bin, \(\tau_V\), is calculated from

\[
\tau(V) = -\ln \left(1 - \frac{T(H^{13}CO^+)_V}{4.16 \times (T(10)/0.27)}\right),
\]

where \(J(T) = 1/\left(\exp[4.16(T) - 1]\right)\). We tentatively estimate \(T_{ex}\) of each \(^{13}\)CO\(^+\) core from the \(^{12}\)CO (\(J = 2\rightarrow 1\)) observations (see § 3.4.2), since the beam sizes of both observations are similar. The \(^{13}\)CO\(^+\) column density, \(N(H^{13}CO^+)_V\), is estimated by using the following equation:

\[
N(H^{13}CO^+) = 1.92 \times 10^{15} \ \sum_V \frac{0.1(km \ s^{-1})\tau(H^{13}CO^+)_V T_{ex}(K)}{1 - \exp[-4.16/T_{ex}(K)]} \ \text{(cm}^{-2})\]

The \(^2\)H column density, \(N(\text{H}_2)\), was derived from \(N(H^{13}CO^+)\) by making the same assumption as in Aoyama et al. (2001); \(\text{[HCO}^+]/[\text{H}_2] = 4.0 \times 10^{-9}\) and \(^{12}\)C/\(^{13}\)C = 89. The assumption of \(T_{ex}\) may not be correct, since the density is perhaps smaller than the critical density of \(^{13}\)CO\(^+\) (\(J = 1\rightarrow 0\)), i.e., \(J = 1\rightarrow 0\) line of \(^{13}\)CO\(^+\) is perhaps sub-thermally excited. However, the uncertainty in \(T_{ex}\) would
not seriously affect the estimate of the column density N: Even if we changed the value of T_{ex} by a factor of 2, the estimated value of N changes within a factor of 1.9, which is smaller than the uncertainty in the HCO$^+$ abundance (e.g., Bergin et al. 1997; Jørgensen, Schöier, & van Dishoeck 2004).

The physical properties of the H13CO$^+$ cores are listed in Table 7. The total mass of the molecular gas traced by H13CO$^+$ in the observed area above the 3-sigma level is estimated to be $\sim 4300 M_\odot$, corresponding to ~ 7% of the C18O mass.

It is to be noted that a significant difference is found in the behavior of the line width between cores with and without IRAS point sources: The line widths in the H13CO$^+$ cores are much smaller than those in the C18O cores for the cores without IRAS point sources (nos. 5 and 15), whereas the line widths in the H13CO$^+$ cores are nearly the same as or somewhat larger than those in C18O cores for cores with IRAS point sources (nos. 5 and 6). The present result can be compared to the multitracer, single-cloud line-width-size relation, which is classified as Type 3 in Goodman et al. (1998). The relation $\Delta V \propto R^a$ with $0.2 \lesssim a \lesssim 0.7$ is reported with the tendency that massive star-forming regions tend to have lower values of a (e.g., Caselli & Myers 1995). The present result is consistent with the above tendency in a sense that the value a in massive star-forming cores tends to be smaller than in the others, although the trend is more extreme; i.e., $a \lesssim 0$. The trend might be indicating that line-width enhancement due to the input of turbulence by the activity of star-formation, such as jets and molecular outflows, is effective especially near the center of the massive star-forming cores. However, we have to wait until statistically more accurate studies can be made based on a large sample.

This section can be summarized as follows: We detected H13CO$^+$ emission from 4 C18O cores, which indicates that high-density gas is presented in these cores and that these cores are capable of star formation. Indeed, two (nos. 5 and 6) have already experienced massive star formation and another one (no. 9) has experienced less-massive star formation. The other C18O core (no. 15) may have not yet experienced star formation, which makes the core the most probable site for future star formation, though we cannot rule out the possibility that less-massive stars are forming inside (see § 3.4.2).

3.4.2. Molecular Outflows

It is well known that molecular outflows are ubiquitous in low-mass star formation (Lada 1985; Fukui et al. 1986; Fukui 1989; Fukui et al. 1993 and references therein), and they are believed to be related to the accretion process. It is also suggested by these studies that molecular outflows are also common in massive star forming regions. Recent systematic surveys for outflows toward regions of massive-star formation showed a detection rate of molecular outflow phenomena as high as ~ 90%, confirming that outflows are also common in massive-star forming regions (e.g., Shepherd & Churchwell 1996; Zhang et al. 2001a; Beuther et al. 2002b). The formation process of massive stars is, however, still controversial; it is not yet known whether massive stars are formed by direct accretion on a central protostar through an accretion disk (e.g., McKee & Tan 2003), or by the coalescence of low- to intermediate-mass protostars (Bonnell, Bate, & Zinnecker 1998). At any rate, the detection of a molecular outflow is a direct indication of on-going star formation. The age and the luminosity of the driving source can be estimated from the observations, and moreover, the kinematic information, such as the interaction with parent molecular clouds as well as the systemic velocity of the driving source, can be used to solve the distance ambiguity in cases where more than one molecular cloud is located in the same line of sight.

We searched for molecular outflows toward 7 C18O cores (nos. 5–9, 14, and 15). We detected one outflow as well as three candidates for outflows. Figure 8 displays the 12CO spectra around C18O core no. 15. In the figure, both the blue-shifted ($-35 \text{ km s}^{-1} \leq V_{\text{LSR}} \leq -25 \text{ km s}^{-1}$) and red-shifted wings ($-15 \text{ km s}^{-1} \leq V_{\text{LSR}} \leq -5 \text{ km s}^{-1}$) are clearly seen in some spectra, where the velocity ranges for wing components are determined at a 1-σ noise level in the spectra smoothed to the velocity resolution of 0.5 km s$^{-1}$ ($T_{\text{mb}} \sim 0.8$ K): The blue-shifted component is prominent at the offset $(\Delta \alpha, \Delta \delta) = (-1', 0')$, while the red is most intense at $(-0'5, 0')$. The distribution of the 12CO line intensities integrated between $V_{\text{LSR}} = -35$ and -25 km s$^{-1}$ (blue component) and be-
between -15 and -5 (red component) is shown in Figure 9.

Figure 10 shows 12CO profiles of three outflow candidates. Although their spectra show asymmetry, or have broad wing features, we cannot make a contour map of the wing components, due to the existence of multiple velocity components and/or contamination from the emission at OFF position.

Physical parameters of the detected outflow associated with the C18O core no. 15 were estimated as follows: The excitation temperature of the high-velocity gas was assumed to be the same as that of the quiescent gas, and estimated to be 30 K from the 12CO ($J = 2–1$) observations by using the following equation:

$$T_{ex} = \frac{11.1}{\ln\left(1 + 11.1 \left[T_\text{R}^{(12}\text{CO, 2–1})(\text{K}) + 0.187 \right] \right)} \text{K}.\quad (12)$$

The column densities of 12CO ($J = 2–1$) are calculated under the assumption of LTE using the following equation:

$$N(\text{CO}) = 1.04 \times 10^{13} \ T_{ex} \ exp \left(\frac{16.6}{T_{ex}} \right) \ \frac{1}{\beta} \ \int T_\text{R}^{(12}\text{CO}) dV,\quad (13)$$

where the integration is made over the wing component; β is defined from the 12CO optical depth as $\beta = [1 - \exp(-\tau)] / \tau$. We assumed $\tau = 2$ for both the red and blue components, which is a typical value for outflows observed in the 12CO ($J = 2–1$) line (Levreault 1988). The column density of H$_2$ molecules was estimated using an [H$_2$]/[CO] ratio of 1×10^4 (Freking, Langer, & Wilson 1982). The mass of each component is derived using equation (1) with an effective beam size of $30'' \times 30''$. The summation is performed over the observed points within the 3-sigma contour level (5 K km s$^{-1}$) of the intensity integrated over the wing component. Sizes of the lobes are defined at the 3-sigma contour level of the integrated intensity map of the outflow. We tentatively defined the position of the driving source of this outflow as the center of the peak position of each lobe, because no driving sources, such as IRAS and MSX point sources, have been identified around the outflow yet. The radius is defined as the maximum separation between the position of the driving source and the 3-sigma contour of the wing emission.

Using the mass and the radius of the outflow, we estimate the kinetic energy, mechanical luminosity, momentum, and dynamical timescale of the outflow in the same manner as in Yonekura et al. (1998). We calculated physical properties of the outflow for the velocity ranges from -35 to -25 km s$^{-1}$ for the blue-shifted wing and from -15 to -5 km s$^{-1}$ for the red-shifted wing.

These values are summarized in Table 8. The nature of the driving source is not clear because no sources have been identified yet around the outflow. We estimate the upper limit to the luminosity from the IRAS sky survey atlas to be 3900 L_\odot. Another estimate for the luminosity can be made by using the empirical relation between the mechanical luminosity of the outflow and the bolometric luminosity of the driving source (Cabrit & Bertout 1992); $15 L_\odot$ is obtained in this manner. There are two possibilities for the nature of the driving source: [i] a less-massive star with a luminosity below the IRAS and/or MSX detection limit or [ii] a source at an evolutionary stage prior to the formation of a star without enough emission in the infrared (e.g., Sridharan et al. 2002). We cannot rule out either of the above two possibilities at the moment, but the former might be more probable because the dynamical timescale ($\sim 3 \times 10^4$ yrs), which will probably be overestimated because of the overestimation of size due to low angular resolution, is relatively long. High-resolution CO observations as well as sub-millimeter dust continuum observations will reveal the nature of the driving source.

4. DISCUSSION

4.1. Physical Properties of C18O Cores and their Relation to Star Formation

We discuss here the relationship between the star-formation activity and the physical properties of C18O cores, which has become possible thanks to the detection of a large number of cores without any signs of star formation.

In the study of C18O cores in Orion B, Aoyama et al. (2001) found that star formation occurs preferentially in cores with larger ΔV, N, and M, and that the luminosity of the forming stars increases with N. In Centaurus, the luminosity of the forming stars increases with N and M as well as ΔV, and decreases with M_{vir}/M (Saito et al. 2001). Saito et al. (2001) also found that the luminosity...
increases with ΔV by compiling the data in Orion A, B, S35, Vela C, and Centaurus, and proposed a possibility that the mass of forming stars is determined by ΔV, since high mass-accretion rates can be achieved in cores with large ΔV. However, it is controversial whether large ΔV is a cause or effect of massive star formation.

We divided the $\mathrm{C^{18}O}$ cores into 3 groups: (A) cores with IRAS point sources (nos. 5 and 6), (B) other star-forming cores (nos. 9, 10, 12 and 15), and (C) cores without any signs of star formation. The cores in group A are thought to be sites of massive star formation (see Table 5 for the luminosities of the associated IRAS point sources). There are two possibilities for the nature of the cores in group B: these are either [i] less-massive stars with luminosities below the IRAS detection limit or [ii] sources at an evolutionary stage prior to the formation of stars without enough emission in the infrared (see § 3.4.2). Here we tentatively treat them as less-massive star-forming cores, following the argument in § 3.4.2. The cores in group C seem to be sites of less-active star formation than those in groups A and B, which is inferred from the absence of the high-density regions (see § 3.4.1). Table 9 gives the average physical properties of these 3 groups as well as the average of all cores in the η Car GMC. We also calculated the average properties of all the star-forming cores, i.e., cores in groups A and B. Figure 11 shows a series of histograms of the core parameters, [a] line width ΔV_{comp}, [b] H_2 column density $N(\mathrm{H}_2)$, [c] LTE mass M, [d] radius r, [e] H_2 number density $n(\mathrm{H}_2)$, and [f] ratio M_{vir}/M. Note that only resolved cores are used to make the histograms of r, $n(\mathrm{H}_2)$, and M_{vir}/M.

It is clearly seen that $N(\mathrm{H}_2)$, M, and $n(\mathrm{H}_2)$ are larger and the ratio M_{vir}/M is smaller in group A than in groups B and C, while the tendency is not clear in ΔV_{comp} and r (trend 1). Between star-forming cores (groups A+B) and non-star-forming cores (group C), $N(\mathrm{H}_2)$ and $n(\mathrm{H}_2)$ are larger in groups A+B than in group C (trend 2). However, no significant difference between group B and group C is seen (trend 3). These trends (trends 1–3) might be indicating the differences in the physical properties among the cores as a function of the masses of the forming stars.

Here we compare the present results to those in Centaurus (Saito et al. 2001). In Centaurus, the luminosity of the forming stars increases with N and M as well as ΔV, and decreases with M_{vir}/M. This trend is same as the trend 1 in η Car GMC except ΔV. Although we have obtained 127 $\mathrm{C^{18}O}$ cores in massive star forming regions so far by using the same telescope including 15 in η Car GMC, we can not make direct comparison at present, because of the differences in the detection limit and/or the definition of $\mathrm{C^{18}O}$ cores. The results of detailed comparison will be published in a separate paper.

We can conclude that massive star formation occurs preferentially in cores with larger N, M, n, and smaller M_{vir}/M in η Car GMC. High spatial-resolution and high sensitivity observations in infrared (e.g., Spitzer, ASTRO-F) as well as the observations in high density tracer such as CS ($J = 7–6$), HCO$^+$ ($J = 4–3$), HCN ($J = 4–3$) (e.g., ASTE), will help to reveal the properties of $\mathrm{C^{18}O}$ cores.

4.2. Comparison with Sub-mm Observations

It is of interest to compare the distribution of CO and $\mathrm{C^{18}O}$ ($J = 1–0$) emissions to that of CO ($J = 4–3$) emission obtained with the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO; Zhang et al. 2001b), since different excitation conditions are required between CO ($J = 4–3$) and CO ($J = 1–0$). The $J = 4$ level of the CO molecule is 55 K above the ground level, and the critical density of the $J = 4–3$ transition is $\sim 8 \times 10^4$ cm$^{-3}$ for the optically thin case, whereas the $J = 1$ level of the CO molecule is 5.5 K above the ground level, and the critical density of the $J = 1–0$ transition is $\sim 10^5$ cm$^{-3}$. At kinetic temperature of 40 K, the $J = 4–3$ emission of CO is most intense at density of $\sim 10^5$ cm$^{-3}$ while the $J = 1–0$ intensity is peaked at around 10^3 cm$^{-3}$ (Goldsmith and Langer 1978). Observationally, the density effectively emitting these emissions may correspond to somewhat lower than these values ($\sim 10^2$ cm$^{-3}$ for the $J = 1–0$ emission), which can be understood if we take into account the optical depth effect. Thus, the CO ($J = 4–3$) line requires higher temperature and density than the CO ($J = 1–0$) line. However, the overall distribution of the molecular gas traced in the CO ($J = 1–0$) line and that of the CO ($J = 4–3$) line is quite similar except the following two regions:
(1) C\(^{18}\)O core no. 10 (adjacent to Tr 14)

The integrated intensities of CO \((J = 4–3)\) and CO \((J = 1–0)\) are the strongest in the observed region, although the integrated intensity of C\(^{18}\)O \((J = 1–0)\) shows only moderate values. A possible explanation for this is a high excitation temperature due to the star cluster Tr 14: Because of the high excitation temperature, the optical depth of C\(^{18}\)O \((J = 1–0)\) remains very small in spite of its large column density, resulting in very low intensity in C\(^{18}\)O \((J = 1–0)\) emission. The NANTEN data indicate the excitation temperature is \(\sim 25\) K, and this value seems to be a lower limit, since higher resolution data obtained with a 24'' beam show the excitation temperature to be as high as \(\sim 45\) K (Brooks 2000).

(2) C\(^{18}\)O core no. 5

The intensity of CO \((J = 4–3)\) is very weak, whereas CO and C\(^{18}\)O \((J = 1–0)\) emission is quite strong. In general, two explanations are possible: (1) the temperature is not high enough to excite the \(J = 4–3\) emission and/or (2) the density is lower than the typical value traced in CO \((J = 4–3)\). However, the excitation temperature derived from the CO \((J = 1–0)\) observations at NANTEN is 28 K, the highest value among the C\(^{18}\)O cores in the observed region. The number density, 2800 cm\(^{-3}\), is also the highest. Moreover, the detection of H\(^{13}\)CO\(^+\) \((J = 1–0)\) emission toward the core indicates that a high-density region of \(\sim 10^4\) cm\(^{-3}\) exists within the core. Thus, the above two hypotheses fail to explain the properties of the core. High-resolution observations of both low-\(J\) and mid-\(J\) CO lines may unveil the properties of the core.

4.3. Characteristics of the Star Formation in the \(\eta\) Car GMC

In this subsection, we will describe the characteristics of the star formation in the \(\eta\) Car GMC. The proportion of massive-star forming cores, i.e., cores with IRAS point sources with \(L > 10^5\) \(L_\odot\), 13 \% \((= 2/15)\), is much lower than in massive star forming regions at distances within a factor of two of the \(\eta\) Car GMC; 28 \% in S35/S37 and 86 \% in Centaurus III (Saito et al. 1999, 2001). This is consistent with the fact that the ratio of \(M_{\text{IRAS}}/M\) is large (see § 3.2), i.e., most of the cores are not gravitationally bound. The large line widths of the cores \(\sim 3\) km s\(^{-1}\) compared to the other GMCs \(\sim 2\) km s\(^{-1}\), see § 3.2) also support this. A large amount of turbulence in the \(\eta\) Car GMC may prevent star formation at the present time.

Let us then consider the origin of the large turbulence in the \(\eta\) Car GMC. The kinetic energy due to the turbulence is roughly estimated from \(E_{\text{kin}} = \frac{1}{2} M V_{\text{turb}}^2\). By using the 12CO mass \(M = 3.5 \times 10^5\) \(M_\odot\), and the average line width of the C\(^{18}\)O cores \(V_{\text{turb}} = 3\) km s\(^{-1}\), \(E_{\text{kin}} \sim 3.4 \times 10^{49}\) ergs is obtained as the kinematic energy of the \(\eta\) Car GMC. The momentum \(P = M V_{\text{turb}}\) is estimated to be \(1.0 \times 10^6\) \(M_\odot\) km s\(^{-1}\). In the absence of any mechanisms to prevent it, the turbulence would dissipate on the crossing time-scale of the cloud, \(t_{\text{cr}} \sim R_{\text{cloud}}/\Delta V_{\text{cloud}}\) (see Vázquez-Semadeni et al. 2000 for a review), which corresponds to \(\sim 15\) Myr in the case of the \(\eta\) Car GMC. Thus the presence of a large amount of turbulence means either that the turbulence is somewhat constantly injected by some mechanisms, or that a large amount of turbulence is still retained although the turbulence is dissipating because the GMC is young and/or the initial amount of the turbulence is large. In the followings, we examine four possibilities: (1) Turbulence injection by mass outflows from young stellar objects, (2) by supernova remnants, (3) by stellar winds from massive stars, and (4) turbulence is pre-existing.

(1) Turbulence injection by mass outflows from young stellar objects: The kinetic energy and the momentum of such outflows range from \(E = 10^{43}–10^{47}\) ergs and from \(P = 0.1–1000\) \(M_\odot\) km s\(^{-1}\), respectively (Fukui et al. 1993). Thus, even if we assume that all outflows have \(E = 10^{47}\) ergs and \(P = 1000\) \(M_\odot\) km s\(^{-1}\) and that all the energy and momentum of such outflows are converted into turbulence (i.e., conversion coefficient \(\varepsilon = 1\)) at least 1000 YSOs are needed to supply the present turbulence of the \(\eta\) Car GMC.

Here we estimate the contribution of outflows from low-mass YSOs, since most of the stars are formed as clusters in massive star forming regions. Observationally, it is known that the kinetic energy and the momentum of outflows are correlated with the bolometric luminosity of the driving source, \(L_{\text{bol}}\) (Wu et al. 2004). Least-squares fits to their data yield \(P = 10^{-0.48} L_{\text{bol}}^{0.59}\) and \(E = 10^{-1.87} L_{\text{bol}}^{0.68}\). If we assume that the relation between the mass and the luminosity of YSOs as \(L = M^a\) with \(a = 3.45\) (Allen 1972) and that the initial mass
function (IMF) of YSOs as Scalo’s IMF ($dn/dM = M^{-b}$, $b = 2.7$, Scalo 1986) with the cutoff at $1 \ M_\odot$, 1.6 \times 10^5 YSOs are needed to supply the present turbulence of the η Car GMC. The number of YSOs largely depends on the cutoff mass of the IMF and the indices a and b, however, 3×10^3 are still needed for the IMF with the cutoff at $3 \ M_\odot$ with $a = 4$ and $b = 2$. Although these estimate are quite rough, the number required to supply the present turbulence of the η Car GMC is extremely large compared to the number of YSOs formed in a single GMC in any assumption. Therefore, we can conclude that the turbulence injection by mass outflows from YSOs are not important.

(2) Turbulence injection by supernova remnants: The kinetic energy and the initial speed of ejecta of a single supernova remnant are typically $E_{\text{kin}} = 10^{51}$ ergs and $V = 10^4 \ \text{km s}^{-1}$. If we assume the mass of the ejecta to be $M = 3 \ M_\odot$, $P = 3 \times 10^4 \ M_\odot \ \text{km s}^{-1}$ can be provided by a single supernova. Thus, even if we assume $\varepsilon \sim 1$, at least \sim30 supernovae are needed to supply the present turbulence of the η Car GMC, which is too large when we consider the ages of the associated clusters, 3–7 Myr (e.g., Feinstein 1995). The fact that no supernova remnants are known to exist (Whiteoak 1994) supports this, although possible non-thermal radio emission is reported (Jones 1973; Tateyama, Strauss, & Kaufmann 1991). Fukui et al. (1999) suggested the possible influence of the Carina flare supershell, which may have been formed by more than 20 supernovae located 100 pc away from the η Car GMC. The momentum supplied to the η Car GMC from the Carina flare supershell through the cross section of the η Car GMC is estimated in the following manner: The total momentum of the Carina flare supershell is assumed to be 20 times the typical momentum of a single supernova. We also assume the depth of the GMC to be the same as the projected extent of the GMC, \sim 130 pc. The momentum supplied through the cross section of the η Car GMC is estimated to be $P = 3 \times 10^4 \times 20 \times (130 \times 130)/(4\pi \times 100^2) = 8 \times 10^4 \ M_\odot \ \text{km s}^{-1}$ on the assumption of $\varepsilon = 1$, and thus it fails to explain the origin of the turbulence.

(3) Turbulence injection by stellar winds from massive stars: The terminal velocity of the stellar wind and the mass-loss rate from η Car are $V = 700 \ \text{km s}^{-1}$ and $\dot{M} = 5 \times 10^{-4} \ M_\odot \ \text{yr}^{-1}$, respectively (van Boekel et al. 2003; Smith et al. 2003). During the time scale of 10^6 yr, η Car will be able to provide $E_{\text{kin}} = 2 \times 10^{51}$ ergs and $P = 3 \times 10^5 \ M_\odot \ \text{km s}^{-1}$, which is comparable to the energy and momentum needed if the conversion efficiency is $\sim 100 \%$. However, the effect of the stellar wind will be confined to a small region around η Car; a radius of ~ 25 pc is derived from the models of Castor, McCray, & Weaver (1975) and Weaver et al. (1977) by taking the typical density of a molecular cloud, 100 cm$^{-3}$, and thus injection from η Car alone is not sufficient to explain the observed turbulence.

There are 7 WR stars and \sim80 O-type stars around the η Car GMC (see Fig. 2). A typical value of the terminal velocity of the stellar wind and the mass-loss rate of a WR star is $V \sim 2000 \ \text{km s}^{-1}$ and $\dot{M} = 4 \times 10^{-5} \ M_\odot \ \text{yr}^{-1}$ (van der Hucht 2001). The total energy and momentum from these WR stars in 10^6 yr are estimated to be $E_{\text{kin}} = 1.1 \times 10^{52}$ ergs and $P = 6 \times 10^5 \ M_\odot \ \text{km s}^{-1}$, respectively. For an O-type star, typical values are $V \sim 1500$–2500 km s$^{-1}$ and $\dot{M} \sim 10^{-5}$–$10^{-7} \ M_\odot \ \text{yr}^{-1}$ (e.g., Markova et al. 2004). Over a time scale of 10^6 yr, one O-type star will be able to provide $E_{\text{kin}} \sim 2.3 \times 10^{48}$–$6.3 \times 10^{50}$ ergs and $P \sim 1.5 \times 10^2$–$2.5 \times 10^4 \ M_\odot \ \text{km s}^{-1}$. Thus about one hundred O stars can provide enough E_{kin} and P on the assumption of $\varepsilon = 1$. It may therefore be possible that somewhat uniformly distributed WR stars and O-type stars account for the large turbulence, although the estimate of ε is highly uncertain.

(4) Turbulence is pre-existing: Bertoldi & McKee (1992) argued that massive cores are magnetically supercritical. This conclusion is extended to low-mass cores by Nakano (1998). Magnetically supercritical cores are supported by turbulence against the pressure of the surrounding medium P_s. When P_s exceeds a critical value P_{cr}, the core cannot be in magnetohydrostatic equilibrium and collapses. Nakano (1998) suggested that dissipation of turbulence is the most important process in reducing P_{cr}. The condition $P_{cr} < P_s$ can, however, be achieved without dissipating turbulence if P_s is large. Thus, star formation in molecular clouds with large turbulence is possible. Here we investigate the possibility that the η Car GMC still retains a large amount of turbulence although that turbulence is dissipating, i.e., the η Car GMC is
not a relaxed system. There are two possibilities; the \(\eta \) Car GMC is young and/or it has an initially large turbulence. The former may be inconsistent with the fact that the ages of the associated clusters are not extremely small, 3–7 Myr (e.g., Feinstein 1995), and thus we concentrate on the latter possibility.

Concerning molecular cloud formation, various theories have been proposed so far; cloud formation by spontaneous instabilities, by the compression of diffuse interstellar medium, and by random coalescence of existing clouds (see Elmegreen 1993 for a review). The most realistic scenario may be a combination of the above processes. The origin of the turbulence in molecular clouds is not yet understood, but possible formation mechanisms of a molecular cloud with large turbulence have been proposed: For example, Koyama & Inutsuka (2000) investigated the propagation of a shock wave into the interstellar medium and suggested that the postshock region collapses into a cold layer through thermal instability. Their recent two-dimensional calculation shows that the layer breaks up into small cloudlets, in which a large amount of molecules are formed, in several Myr, and that the velocity dispersion of the cloudlets is typically several \(\text{km s}^{-1} \) (Koyama & Inutsuka 2002). The fragments then coalesce and become larger clouds with supersonic velocity dispersions. In the case of the \(\eta \) Car GMC, multiple supernova explosions may have contributed to a certain degree; Fukui et al. (1999) suggested that \(\sim 20 \) supernova explosions may have occurred \(\sim 100 \text{ pc away} \) from the \(\eta \) Car GMC over the last \(2 \times 10^7 \) yr. These supernova explosions may have triggered the formation of the \(\eta \) Car GMC as well as the formation of massive stars within the GMC.

Although the above estimate is quite rough, we suggest the possibility that a large amount of turbulence was supplied when the GMC was formed, and is now dissipating. To identify the formation mechanism for the \(\eta \) Car GMC is beyond the scope of the paper, but compression due to supernova explosions in the Carina flair supershell may have played an important role. Turbulent injection from stellar winds, supernova remnants, and outflows originating in the stars formed within the GMC may also contribute, supplying turbulence to some degree.

5. SUMMARY

We carried out an unbiased survey for massive dense cores in the giant molecular cloud associated with \(\eta \) Carinae with the NANTEN telescope in \(^{12}\text{CO}, ^{13}\text{CO}, \) and \(^{18}\text{O} J = 1–0 \) emission lines. The purpose of the present study is to obtain a sample of massive-starless-core candidates which are possible sites for future massive star formation. With moderate spatial resolution, 2\(\arcmin \), our observations covered the entire \(\eta \) Car GMC \((3 \times 2 \text{ deg}^2) \) including regions farther from \(\eta \) Car, where no previous observations had been made except coarse large-scale surveys. We also made high-resolution observations in \(^{13}\text{CO}^+ (J = 1–0) \) with the MOPRA 22-m millimeter telescope and searched for molecular outflows in \(^{12}\text{CO} (J = 2–1) \) toward selected regions with the ASTE 10-m sub-millimeter telescope. The main results are summarized as follows:

(1) We identified 15 \(^{18}\text{O} \) cores, whose typical line width \(\Delta V_{\text{comp}} \), radius \(r \), mass \(M \), column density \(N(\text{H}_2) \), and average number density \(n(\text{H}_2) \) were \(3.3 \text{ km s}^{-1}, 2.2 \text{ pc}, 2.6 \times 10^3 \, M_\odot, 1.3 \times 10^{22} \text{ cm}^{-2}, \) and \(1.2 \times 10^3 \text{ cm}^{-3} \), respectively.

(2) Two of the 15 cores are associated with IRAS point sources whose luminosities are larger than \(10^4 \, L_\odot \), which indicates that massive star formation is occurring within these cores. Five cores including the two with IRAS sources are associated with MSX point sources. We detected \(^{13}\text{CO}^+ (J = 1–0) \) emission toward 4 \(^{18}\text{O} \) cores, two of which are associated with IRAS and MSX point sources, another one is associated only with an MSX point source, and the other is associated with neither IRAS nor MSX point sources. The core with neither IRAS nor MSX point sources shows the presence of a bipolar molecular outflow in \(^{12}\text{CO} (J = 2–1) \), which indicates that star formation is also occurring in the core, and the other three of the four \(^{13}\text{CO}^+ \) detections show wing-like emission. In total, six \(^{18}\text{O} \) cores out of 15 (= 40\%) are experienced star formation, and at least 2 of 15 (= 13\%) are massive-star forming cores in the \(\eta \) Car GMC.

(3) We found that massive star formation occurs preferentially in cores with larger \(N(\text{H}_2) \), \(M \), \(n(\text{H}_2) \), and smaller ratio of \(M_{\text{vir}}/M \). We also found that the cores in the \(\eta \) Car GMC are characterized by large \(\Delta V \) and \(M_{\text{vir}}/M \) on average com-
pared to the cores in other GMCs observed with the same telescope. These properties of the cores may account for the fact that as much as 60–87% of the cores do not show any signs of massive star formation.

(4) We investigated the origin of a large amount of turbulence in the η Car GMC. We found that turbulence injection from stellar winds, molecular outflows, and supernova remnants which originated from stars formed within the GMC, are not enough to explain the existing turbulence. We propose the possibility that the large turbulence was pre-existing when the GMC was formed, and is now dissipating. Mechanisms such as multiple supernova explosions in the Carina flare supershell may have contributed to form a GMC with a large amount of turbulence.

The NANTEN project (southern 4-meter radio telescope) is based on a mutual agreement between Nagoya University and Carnegie Institution of Washington. We greatly appreciate the hospitality of all staff members of the Las Campanas Observatory of the Carnegie Institution of Washington. We also acknowledge that this project could be realized by the contribution from many Japanese public donators and companies. ASTE (Atacama Submillimeter Telescope Experiment) is a joint project between Japan and Chile. The telescope is operated by the ASTE team including NAOJ, University of Tokyo, Nagoya University, Osaka Prefecture University, and Universidad de Chile. We are grateful to all the members of the ASTE team. We are grateful to the ATNF for thier hospitality, and to the staff of Mopra Observatory, especially Stuart Robertson, for his help in observations. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work made use of the Southern H-Alpha Sky Survey Atlas (SHASSA), which is supported by the National Science Foundation. The Digitized Sky Surveys were produced at the Space Telescope Science Institute under U.S. Government grant NAGW-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. We are also grateful to Akiko Kawamura, Yoshiaki Moriguchi, Masanori Nakagawa, and Joanne Dawson for their helpful comments. This work was financially supported in part by Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) and Japan Society for the Promotion of Science (JSPS); Nos. 14102003, 14403001, 15071202, and 15071205.

REFERENCES

Allen, C. W. 1972, Astronomical Quantities (London: Athlone)

Alves, J. & Homeier, N. 2003, ApJ, 589, L45

André, P., Word-Thompson, D., & Barsony, M. 1993 ApJ, 406, 122

Aoyama, H., Mizuno, N., Yamamoto, H., Onishi, T., Mizuno, A., & Fukui, Y. 2001, PASJ, 53, 1053

Bergin, E. A, Goldsmith, P. F., Snell, R. L., & Langer, W. D. 1997, ApJ, 482, 285

Bertoldi, F. & McKee, C. F. 1992, ApJ, 395, 140

Bertsch, D. L., Dame, T. M., Fichtel, C. E., Hunter, S. D., Sreekumar, P., Stacy, J. G., & Thaddeus, P. 1993, ApJ, 416, 587

Beuther, H., Schilke, P., Menten, K. M., Motte, F., Sridharan, T. K., & Wyrowski, F. 2002, ApJ, 566, 945

Beuther, H., Schilke, P., Sridharan, T. K., Menten, C. M. Walmsley, & Wyrowski, F. 2002, A&A, 383, 892

Bloemen J. B. G. M., et al. 1986, A&A, 154, 25

van Boekel, R., et al. 2003, A&A, 410, L37

Bonnell, I. A., Bate, M. R., & Zinnecker, H. 1998, MNRAS, 298, 93

Bronfman, L., Nyman, L. -Å., & May, J. 1996, A&AS, 115, 81

Brooks, K. 2000, PhD thesis, Univ. New South Wales
van der Hucht, K. A. 2001, New A Rev., 45, 135
Hunter, S. D., et al. 1997, ApJ, 481, 205
Jijina, J., Myers, P. C., & Adams, F. C. 1999, ApJS, 125, 161
Johansson, L. E. B., Andersson, C., Elldér, P., Friberg, P., Hjalmarson, A., Höglund, B., Irvine, W. M., Olofsson, H., & Rydbeck, G. 1984, A&A, 130, 227
Jones, B. B. 1973, Aust. J. Phys., 26, 545
Jørgensen, J. K., Schöier, F. L., & van Dishoeck, E. F. 2004, A&A, 416, 603
Juvela, M. 1996, A&AS, 118, 191
Kato, S., Mizuno, N., Asayama, S., Mizuno, A., Ogawa, H., & Fukui, Y. 1999, PASJ, 51, 883
Kawamura, A., Onishi, T., Yonekura, Y., Dobashi, K., Mizuno, A., Ogawa, H., & Fukui Y. 1998, ApJS, 117, 387
Kim, B. G., Kawamura, A., Yonekura, Y., & Fukui, Y. 2004, PASJ, 56, 313
Kohno, K., et al. 2003, in Springer Proceedings in Physics 91, The Dense Interstellar Medium in Galaxies, ed. S. Pfalzner, C. Kramer, C. Staubmeier, & A. Heithausen (Berlin: Springer), 349
Koyama, H., & Inutsuka, S. 2000, ApJ, 532, 980
Koyama, H., & Inutsuka, S. 2002, ApJ, 564, L97
Kurtz, S., Cesaroni, R., Churchwell, E., Hofner, P., & Walmsley, C. M. 2000, Protostars and Planets IV, ed. V. Mannings, A. Boss, & S. Russel (Tucson: Univ. of Arizona Press), 299
Kutner, M. L. & Ulrich B. L. 1981, ApJ, 250, 341
Lada, E. A., Bally, J., & Stark, A. A. 1991, ApJ, 368, 432
Ladd, E. F., Myers, P. C., & Goodman, A. A. 1994, ApJ, 433, 117
Ladd, N., Purcell, C., Wong, T., & Robertson, S. 2005, PASA, 22, 62
Levreault, R. M. 1988, ApJS, 67, 283
McKee, C. F. & Tan, J. C. 2003, ApJ, 585, 850
Maíz-Apellániz, J., Walborn, N. R., Galué, H. Á., & Wei, L. H. 2004, ApJS, 151, 103
Markova, N., Puls, J., Repolust, T., & Markov, H. 2004, A&A, 413, 693
Mcgeath, S. T., Cox, P., Bronfman, L., & Roelfsema, P. R. 1996, A&A, 305, 296
Mizuno, A., et al. 1998, ApJ, 507, L83
Mizuno, A., Onishi, T., Hayashi, M., Ohishi, N., Sunada, K., Hasegawa, T., & Fukui, Y. 1994, Nature, 368, 719
Mizuno, A., Onishi, T., Yonekura, Y., Nagahama, T., Ogawa, H., & Fukui, Y. 1995, ApJ, 445, L161
Mizuno, A., et al. 1999, PASJ, 51, 859
Mueller, K. E., Shirley, Y. L., Evans II, N. J., & Jacobson, H. R. 2002, ApJS, 143, 469
Myers, P. C., Ladd, E. F., & Fuller, G. A. 1991, ApJ, 372, L95
Nagahama T. 1997, PhD thesis, Nagoya University
Nakano, T. 1998, ApJ, 494, 587
Nozawa, S., Mizuno, A., Teshima, Y., Ogawa, H., & Fukui, Y. 1991, ApJS, 77, 647
Obayashi, A., Kun, M., Sato, F., Yonekura, Y., & Fukui, Y. 1998, AJ, 115, 274
Ogawa, H., Mizuno, A., Hoko, H., Ishikawa, H., & Fukui, Y. 1990, Int. J. Infrared Millimeter Waves, 11, 717
Onishi, T., Mizuno, A., Kawamura, A., Ogawa, H., & Fukui, Y. 1996, ApJ, 465, 815
Onishi, T., Mizuno, A., Kawamura, A., Ogawa, H., & Fukui, Y. 1998, ApJ, 502, 296
Onishi, T., Mizuno, A., Kawamura, A., Tachihara, K., & Fukui, Y. 2002, ApJ, 575, 950
Onishi, T., et al. 1999, PASJ, 51, 871
Plume, R., Jaffe, D. T., & Evans II, E. J. 1992, ApJS, 78, 505
Plume, R., Jaffe, D. T., Evans II, E. J., Martín-Pintado, J., & Gómez-González, J. 1997, ApJ, 476, 730

Rathborne, J. M., Brooks, K. J., Burton, M. G., Cohen, M., & Bontemps, S. 2004, A&A, 418, 563

Saito, H., Mizuno, N., Moriguchi, Y., Matsunaga, K., Onishi, T., Mizuno, A., & Fukui, Y. 2001, PASJ, 53, 1037

Saito, H., Tachihara, K., Onishi, T., Yamaguchi, N., Mizuno, N., Mizuno, A., Ogawa, H., & Fukui, Y. 1999, PASJ, 51, 819

Scalo, J. M. 1986, Fund. Cosmic Phys., 11, 1

Sekimoto, Y., et al. 2001, PASJ, 53, 951

Shepherd, D.S. & Churchwell, E. 1996, ApJ, 472, 225

Shirley, Y. L., Evans II, N. J., Young, K. E., Knez, C., & Jaffe, D. T. 2003, ApJS, 149, 375

Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23

Smith, N., Davidson, K., Gull, T. R., Ishibashi, K., & Hillier, D. J. 2003, ApJ, 586, 432

Smith, N., Egan, M. P., Carey, S., Price, S. D., Morse, J. A., & Price, P. A. 2000, ApJ, 532, L145

Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730

Sorai, K., Sumada, K., Okumura, S. K., Iwasa, T., Tanaka, A., Natori, N., & Onuki, H. 2000, Proc. SPIE, 4015, 86

Sridharan, T. K., Beuther, H., Schilke, P., Menten, K. M., & Wyrowski, F. 2002, ApJ, 566, 931

Stacy, J. G., Benson, P. J., Myers, P. C., & Goodman, A. A. 1988, in Interstellar Matter: Proc. 2d Haystack Obs. Meeting, ed. J. M. Moran & P. T. P. Ho (New York: Gordon & Breach), 179

Strong, A. W., et al. 1988, A&A, 207, 1

Sugitani, K., Fukui, Y., Mizuno, A., & Ohashi, N. 1989, ApJ, 342, L87

Sutton, E. C., Blake, G. A., Masson, C. R., & Phillips, T. G. 1985, ApJS, 58, 341

Tachihara, K., Mizuno, A., & Fukui, Y. 2000, ApJ, 528, 817

Tachihara, K., Onishi, T., Mizuno, A., & Fukui, Y. 2002, A&A, 385, 909

Tateyama, C. E., Strauss, F. M., & Kaufmann, P. 1991, MNRAS, 249, 716

Ulich, B. L. & Haas, R. W. 1976, ApJS, 30, 247

Vázquez-Semadeni, E., Ostriker, E. C., Passot, T., Gammie, C. F., & Stone, J. M. 2000, Protostars and Planets IV, ed. V. Mannings, A. Boss, & S. Russel (Tucson: Univ. of Arizona Press), 3

Warin, S., Benayoun, J. J., & Viala, Y. P. 1996, A&A, 308, 535

Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, ApJ, s218, 377

Whiteoak, J. B. Z. 1994, ApJ, 429, 225

Wouterloot, J. G. A., Walmsley, C. M., & Henkel, C. 1988, A&A, 203, 367

Wu, Y., Wei, Y., Zhao, M., Shi, Y., Yu, W., Qin, S., & Huang, M. 2004, A&A, 426, 503

Yamaguchi, N., Mizuno, N., Saito, H., Matsunaga, K., Mizuno, A., Ogawa, H., & Fukui, Y. 1999a, PASJ, 51, 775

Yamaguchi, R., Saito, H., Mizuno, N., Mine, Y., Mizuno, A., Ogawa, H., & Fukui, Y. 1999b, PASJ, 51, 791

Yonekura, Y., Dobashi, K., Hayashi, Y., Sato, F., Ogawa, H., & Fukui, Y. 1998, AJ, 115, 2009

Yonekura, Y., Dobashi, K., Mizuno, A., Ogawa, H., & Fukui, Y. 1997, ApJS, 110, 21

Yonekura, Y., Mizuno, N., Saito, H., Mizuno, A., Ogawa, H., & Fukui, Y. 1999, PASJ, 51, 911

Yu, Z.-A., Nagahama, T., & Fukui, Y. 1996, ApJ, 471, 867
Zhang, Q., Hunter, T.R., Brand, J., Sridharan, T.K., Molinari, S., Kramer, M.A., & Cesaroni, R. 2001a, ApJ, 552, L167

Zhang, X., Lee, Y., Bolatto, A., & Stark, A. A. 2001b, ApJ, 553, 274

Zinchenko, I., Mattila, K., & Toriseva, M. 1995, A&AS, 111, 95

Zinchenko, I., Pirogov, L., & Toriseva, M. 1998, A&AS, 133, 337
Fig. 1.— Integrated intensity map of the 12CO ($J = 1–0$) emission in the velocity range $V_{\text{LSR}} = -30 \text{ km s}^{-1}$ to -10 km s^{-1}, overlaid on the optical image taken from the Digitized Sky Survey. The contour levels are every 20 K km s^{-1}, starting from 5 K km s^{-1} (3 sigma).
Fig. 2.— Distribution of OB stars is compared with the distribution of ^{12}CO gas, overlaid on the H$_\alpha$ image reproduced from SHASSA. Yellow, green, red, and blue crosses denote η Car, WR stars, O stars, and B stars, respectively. The sizes of the crosses denote the luminosity of the stars. The contour levels are the same as in Figure 1.
Fig. 3.— Total intensity map of 13CO ($J = 1-0$) integrated over the velocity range $V_{\text{LSR}} = -30 \text{ km s}^{-1}$ to -10 km s^{-1}. The contour levels are every 1.35 K km s^{-1} (3 sigma), starting from 1.35 K km s^{-1}.
Fig. 4.— Total intensity map of C18O ($J = 1-0$) integrated over the velocity range $V_{\text{LSR}} = -30$ km s$^{-1}$ to -10 km s$^{-1}$. The contour levels are every 0.5 K km s$^{-1}$ (3 sigma), starting from 0.5 K km s$^{-1}$. IRAS point sources selected as candidates for protostars are also shown as crosses. The sizes of the signs are proportional to the luminosity. Two IRAS point sources which are associated with C18O cores are labelled.
Fig. 5.— Positions of the cores indicated on a C18O integrated intensity map. The contour levels are the same as in Figure 4. Bold contours represent the boundaries of each core.
Fig. 6.— MSX point sources selected as candidates for protostars are shown as crosses. Eight MSX point sources which are associated with C18O cores are labelled. The contour levels are the same as in Figure 4.
Fig. 7.— (a) Distribution of the H13CO+ ($J = 1–0$) emission toward C18O core no. 5. The bold contours represent H13CO+ intensity integrated over the velocity range $-23 \text{ km s}^{-1} \leq V_{\text{LSR}} \leq -16 \text{ km s}^{-1}$. Contour levels are every 0.4 K km s$^{-1}$ (3 sigma), starting from 0.4 K km s$^{-1}$. The thin contours represent the distribution of the C18O core observed by NANTEN, with contour levels of 50 %, 60 %, 70 %, 80 %, and 90 % of the peak intensity. The coordinates are shown in offsets from the reference position ($\alpha_{2000} = 10^h 38^m 41.8^s$, $\delta_{2000} = -58.20.4^\prime.4^\prime\prime$). The filled circle and the cross denote IRAS and MSX point sources, respectively.

(b) Same as Fig. 7a but for C18O core no. 6. The velocity range, the 3-sigma level, and the reference position are $-30 \text{ km s}^{-1} \leq V_{\text{LSR}} \leq -20 \text{ km s}^{-1}$, 0.42 K km s$^{-1}$, and ($10^h 37^m 58.0^s$, $-58.46.40^\prime.44^\prime\prime$), respectively.

(c) Same as Fig. 7a but for C18O core no. 9. The velocity range, the 3-sigma level, and the reference position are $-20 \text{ km s}^{-1} \leq V_{\text{LSR}} \leq -16 \text{ km s}^{-1}$, 0.35 K km s$^{-1}$, and ($10^h 42^m 53.0^s$, $-59.25.44^\prime.44^\prime\prime$), respectively.

(d) Same as Fig. 7a but for C18O core no. 15. The velocity range, the 3-sigma level, and the reference position are $-20 \text{ km s}^{-1} \leq V_{\text{LSR}} \leq -16 \text{ km s}^{-1}$, 0.45 K km s$^{-1}$, and ($10^h 47^m 57.5^s$, $-60.26.26^\prime.26^\prime\prime$), respectively.
Fig. 8.— 12CO spectra observed toward C18O core no. 15. The offsets from the position $(\alpha_{2000}, \delta_{2000}) = (10^\text{h} 47^\text{m} 57.5^\text{s}, -60^\circ 26' 26'')$ are shown in parentheses in the unit of arcminutes. The spectra are smoothed to the velocity resolution of 0.5 km s$^{-1}$.

Fig. 9.— Distribution of the molecular outflow within the 18O core no. 15. The solid contours represent the 12CO intensity of the blue component integrated between $V_{\text{LSR}} = -35$ and -25 km s$^{-1}$, and the dashed contours show that of the red component between $V_{\text{LSR}} = -15$ and -5 km s$^{-1}$. Contours are every 5 K km s$^{-1}$ (3 sigma) from 5 K km s$^{-1}$ as the lowest.
Fig. 10.— 12CO profiles for the outflow candidates. The positions are (a) $\alpha_{2000} = 10^h 38^{m} 34^{s}.2$, $\delta_{2000} = -58^\circ 19' 34''$ ($\Delta \alpha, \Delta \delta = (-1', 0.5)$ offset from the reference position in Fig. 7a), (b) $\alpha_{2000} = 10^h 37^{m} 54^{s}.1$, $\delta_{2000} = -58^\circ 46' 40''$ ($\Delta \alpha, \Delta \delta = (-0.5', 0')$ offset from the reference position in Fig. 7b), and (c) $\alpha_{2000} = 10^h 42^{m} 49^{s}.0$, $\delta_{2000} = -59^\circ 25' 44''$ ($\Delta \alpha, \Delta \delta = (-0.5', 0')$ offset from the reference position in Fig. 7c).
Fig. 11.— Histograms of (a) line width, (b) H$_2$ column density, (c) mass, (d) radius, (e) average H$_2$ number density, and (f) ratio M_{vir}/M of cores in the 3 groups. The dark-shaded and light-shaded regions indicate massive-star forming cores (group A) and less-massive-star forming cores (group B), respectively. The open regions indicate less-active star-forming cores (group C). Note that only resolved cores are used to make the histograms of r, n(H$_2$), and M_{vir}/M.

32
Table 1
Comparison between 12CO, 13CO, and C18O Masses in each Region

Region	l_{min} (°)	l_{max} (°)	b_{min} (°)	b_{max} (°)	$M_{12}{^a}$	$M_{13}{^a}$	$M_{18}{^a}$	M_{13}/M_{12}	M_{18}/M_{13}	$T_{\text{ex}}{^b}$ (K)	C18O Cores	Associated Objects
1	287.800	288.400	−1.467	−0.933	2.2	1.5	1.07	0.68	0.72	20	13, 15	giant pillar
2	287.600	287.900	−0.900	−0.400	1.7	0.8	0.28	0.44	0.37	20	12	η Car, southern cloud
3	286.867	287.567	−1.000	0.067	9.8	3.8	0.80	0.39	0.21	23	8, 9, 10, 11	η Car, northern cloud
4	286.033	286.967	−0.800	−0.033	8.0	3.0	1.00	0.38	0.33	21	6, 7	Gum 31
5	285.800	286.533	−0.200	0.333	6.6	3.2	2.29	0.48	0.72	21	2, 3, 4, 5	Gum 31, NGC 3293
6	285.700	286.000	−0.800	−0.300	2.0	0.7	0.27	0.36	0.38	16	1	
7	287.933	288.200	−0.900	−0.600	0.4	0.2	0.06	0.48	0.31	9	14	
total					34.6	13.2	5.78	0.38	0.44			

a M_{12}, M_{13}, and M_{18} represent 12CO mass, 13CO mass, and C18O mass, respectively. Units are in $10^4 M_\odot$.

b Average value of the T_{ex} of each of the C18O cores within the region.
Table 2

Observed Properties of the C18O Cores

Name	Coordinate	T_{R}^R (C18O) (K)	V_{LSR} (km s-1)	ΔV (km s-1)	I_{18}a	I_{13}a	I_{18}/I_{13}
1	285.967	−0.500 10 34 23.6	−58 46 56 0.6	−16.6 2.4	1.6 9.5	0.17	
2	286.100	−0.133 10 36 41.1	−58 31 50 0.3	−20.7 4.5	1.4 10.6	0.14	
3	286.100	0.233 10 38 03.5	−58 12 40 0.5	−20.6 2.6	1.4 16.5	0.09	
4	286.167	0.033 10 37 45.3	−58 25 06 0.4	−21.6 2.6	1.2 4.3	0.28	
5	286.233	0.167 10 38 41.8	−58 20 04 1.2	−20.0 2.9	3.6 17.6	0.20	
6	286.400	−0.233 10 38 19.0	−58 45 54 0.5	−24.1 3.1	1.9 9.3	0.20	
7	286.433	−0.400 10 37 54.6	−58 55 36 0.6	−13.0 2.5	1.5 13.4	0.11	
8	287.133	−0.833 10 41 03.7	−59 38 42 0.3	−19.9 3.8	1.2 12.2	0.10	
9	287.233	−0.533 10 42 53.0	−59 25 44 0.5	−17.6 2.6	1.2 9.4	0.13	
10	287.333	−0.600 10 43 19.7	−59 32 05 0.3	−18.7 4.0	1.2 12.7	0.10	
11	287.333	−0.433 10 43 56.8	−59 23 16 0.3	−19.3 5.4	1.5 17.1	0.09	
12	287.790	−0.733 10 45 24.0	−59 49 28 0.3	−25.8 3.9	1.1 14.1	0.08	
13	287.967	−1.133 10 45 48.2	−60 18 09 0.7	−21.3 2.8	2.3 17.2	0.13	
14	288.100	−0.700 10 48 21.3	−59 58 44 0.5	−12.1 2.2	1.1 3.4	0.32	
15	288.233	−1.133 10 47 43.0	−60 25 31 0.4	−17.8 3.5	1.3 9.7	0.14	

\textbf{Note.}—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

aI_{18} and I_{13} represent the integrated intensity of the C18O and 13CO emission, respectively. Units are in K km s-1.
Table 3

Physical Properties of the C\(^{18}\)O Cores

Name	\(T_{ex}\) (K)	\(N(H_2)\)^a (10\(^{21}\) cm\(^{-2}\))	\(\langle N(H_2) \rangle_r\) (pc)	\(r_{dec}\) (pc)	\(M\) (\(\langle M_\odot \rangle\))	\(n(H_2)\) (cm\(^{-3}\))	\(\Delta V_{comp}\) (km s\(^{-1}\))	\(M_{vir}\) (\(\langle M_\odot \rangle\))	\(M_{vir}/M_\odot\)	IRAS\(^c\)	MSX\(^d\)	\(H^{12}CO^+\)
1	16	10.6	7.4	2.0	1.8	2100	900	2.7	3000	1.4	·	·
2	15	9.2	6.9	3.1	2.9	4600	540	3.2	6500	1.4	·	·
3	21	11.1	8.4	2.7	2.5	4400	750	3.3	6100	1.4	·	·
4	20	9.1	7.3	1.4	1.0	1000	1200	2.6	1900	1.9	·	·
5	28	34.8	25.7	1.8	1.6	6100	3400	2.8	2900	0.5	1	1
6	26	17.3	12.8	2.0	1.8	3700	1600	3.6	5300	1.5	1	3
7	17	10.7	8.6	1.6	1.3	1600	1300	3.1	3200	2.0	·	·
8	24	10.1	7.0	2.7	2.5	3700	630	3.6	7500	2.0	·	·
9	21	9.7	7.3	1.6	1.3	1400	1100	2.5	2200	1.6	·	1
10	25	11.0	11.0	0.8	·	520	3500	4.0	2700	5.2	·	·
11	22	11.8	10.1	1.4	1.0	1400	1700	4.5	6100	4.3	·	·
12	20	8.8	6.5	2.3	2.1	2600	710	3.5	5900	2.3	·	1
13	20	17.4	12.8	2.2	1.9	4200	1400	4.9	11000	2.6	·	·
14	9	5.9	4.8	1.2	0.6	450	1000	1.9	900	2.0	·	·
15	19	9.9	7.0	2.0	1.8	2000	850	2.9	3500	1.8	·	4
average	20	12.5	9.6	1.9	1.7	2600	1400	3.3	4600	2.1	·	·
median	20	10.6	7.4	2.0	1.8	2100	1100	3.2	3500	1.9	·	·

^a The column density for the peak position of each core.

^b Beam-deconvolved radius of each core.

^c Number of associated IRAS point sources.

^d Number of associated MSX point sources.

^e The name of the associated \(H^{13}CO^+\) cores.
Table 4

Average Physical Properties of C18O Cores in Massive-Star-Forming Regions

Region	Distance (pc)	Number of C18O Cores	Number ofa Resolved Cores	\(\Delta Vb \) (km s-1)	\(N(H_2)c \) \((10^{22} \text{ cm}-2)\)	\(Md \) \((M_\odot)\)	\(re \) (pc)	\(n(H_2)f \) \((10^3 \text{ cm}-3)\)	\(M_{\text{vir}}/M_\odotd \)	Ref.
Orion B	400	19	18	1.7 (1.7)	2.1 (1.6)	250 (160)	0.5 (0.5)	7.6 (5.7) *	2.1 (1.4) *	1
Orion A	480	19	12	1.7 (1.6)	2.4 (1.7)	\cdots	\cdots	\cdots	\cdots	2
Vela C	700	13	10	2.5 (2.3)	2.8 (2.8)	\cdots	\cdots	\cdots	\cdots	3
Cepheus OB3	730	8	8	2.0 (1.9) f	1.5 (1.4)	\cdots	\cdots	\cdots	\cdots	4
S35/37	1800	18	4	1.7 (1.6)	1.7 (1.1)	1100 (640)	1.3 (1.3)	11.0 (9.2)	0.5 (0.6)	5
\(\eta\) Car GMC	2500	15	11	3.2 (2.9)	1.3 (1.1)	2600 (2100)	2.2 (2.0)	1.2 (0.9)	1.6 (1.3)	6
Centaurus III	3500	14	10	2.3 (2.3)	1.3 (1.3)	5400 (4700)	2.8 (2.8)	1.1 (1.0) *	0.8 (0.6)	7
Centaurus II	4500	5	5	3.1 (3.0)	1.9 (1.9)	20000 (24000)	4.2 (3.8)	1.1 (0.7) *	0.6 (0.5)	7
Centaurus I	5300	16	11	2.3 (2.2)	1.3 (1.0)	11000 (8600)	4.0 (3.6)	0.7 (0.7) *	0.5 (0.5)	7

\textbf{Note.}—Median values are given in parentheses.

\textbf{References.} — (1) Aoyama et al. 2001; (2) Nagahama 1997; (3) Yamaguchi et al. 1999b; (4) Yu et al. 1996; (5) Saito et al. 1999; (6) this work; (7) Saito et al. 2001.

aNumber of C18O cores with \(r_{\text{dec}}/r \gtrsim 0.8\).

bFWHM line width at the peak position of the core.

cValues for resolved cores.

dCalculated by using the equation \(M_{\text{vir}}/M_\odot = 209 \times (r/\text{pc}) (\Delta V/\text{km s}-1)^2\).

eCalculated in this work.

fDerived from the composite profile, i.e., \(\Delta V_{\text{comp}}\).
Table 5
Properties of the Associated IRAS Point Sources

Name	Coordinate	Flux Density	Quality	$C^{18}O$								
	l ($^\circ$)	b ($^\circ$)	α (J2000)	δ (J2000)	F_{12} (Jy)	F_{25} (Jy)	F_{60} (Jy)	F_{100} (Jy)	L (L_\odot)	Correlation Coefficient	CABA	DCBD
10365−5803	286.203	0.170	10 38 30.6	−58 19 00	7.242	85.64	1173	2782	1333	5		
10361−5830	286.375	−0.255	10 38 03.8	−58 46 18	12.38	38.38	625.7	2156	21000	1333	DCBD	6

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

aCorrelation coefficient.

bThe name of the associated $C^{18}O$ core.
No.	Name	l (°)	b (°)	α (J2000)	δ (J2000)	Band-A (Jy)	Band-C (Jy)	Band-D (Jy)	Band-E (Jy)	Quality	18Oa
1	MSX6C G286.2086+00.1694	286.2086	0.1694	10 38 32.5	−58 19 12	1.3532	2.8816	7.1817	40.572	4444	5
2	MSX6C G286.3579-00.2933	286.3579	−0.2933	10 37 48.4	−58 47 48	0.71259	1.8153	2.6774	6.0653	4344	6
3	MSX6C G286.3747-00.2630	286.3747	−0.2630	10 38 02.0	−58 46 43	3.5907	4.7559	2.4093	7.5775	4444	6
4	MSX6C G286.3773-00.2563	286.3773	−0.2563	10 38 04.6	−58 46 26	1.6278	2.9183	3.8554	12.095	4444	6
5	MSX6C G287.2238-00.5339	287.2238	−0.5339	10 42 48.9	−59 25 29	1.2040	1.6909	1.5151	4.3560	4344	9
6	MSX6C G287.3399-00.6008	287.3399	−0.6008	10 43 22.3	−59 32 19	0.80028	2.9386	5.9723	12.516	4444	10
7	MSX6C G287.3506-00.5900	287.3506	−0.5900	10 43 29.2	−59 32 03	0.55922	2.0313	3.9602	7.9096	4444	10
8	MSX6C G287.6393-00.7219	287.6393	−0.7219	10 45 00.9	−59 47 10	3.4863	4.2647	3.6021	17.835	4444	12

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

aThe name of the associated C18O core.
Name	α (J2000)	δ (J2000)	T_{R} (K)	V_{LSR} (km s$^{-1}$)	ΔV (km s$^{-1}$)	T_{ex} (K)	τ	$N(H_2)^a$	r (pc)	ΔV_{comp} (km s$^{-1}$)	M (M_\odot)	M_{vir} (M_\odot)	$\langle N(H_2) \rangle^b$	$n(H_2)^b$	C^{18}Oc
1	10 38 31.7	−58 18 44	0.38	−19.4	2.9	30	0.018	4.5	0.77	3.8	1400	2300	3.4	1.1	5
2	10 37 52.9	−58 47 20	0.41	−22.5	3.0	55	0.011	7.6	0.27	3.0	400	500	7.6	6.8	6
3	10 42 47.8	−59 26 24	0.35	−17.3	1.3	35	0.017	2.0	…	…	…	…	…	…	9
4	10 47 46.7	−60 26 26	0.81	−17.8	1.6	30	0.035	5.0	0.39	1.6	470	200	4.4	2.8	15

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

aUnits are in 10^{22} cm$^{-2}$.

bUnits are in 10^4 cm$^{-3}$.

cThe name of the associated C18O core.
Table 8

Properties of the Outflow

Component	V_{range}^a (km s$^{-1}$)	V_{char}^b (km s$^{-1}$)	Sizec (pc)	Radius (pc)	Mass (M_\odot)	Kinetic Energy (10^{45} ergs)	Mechanical Luminosity (L_\odot)	Momentum (M_\odot km s$^{-1}$)	Dynamical Timescale (104 yr)
Blue	($-35, -25$)	16.5	0.41	0.41	1.2	1.7	0.39	14	2.4
Red	($-15, -5$)	13.5	0.41	0.55	2.1	1.9	0.37	20	4.0

aVelocity range where the high velocity emission is detected at > 1-σ noise level ($T^*_R \sim 0.8$ K).

bMaximum velocity shift of the 12CO ($J = 2-1$) emission from $V_{LSR} = -18.5$ km s$^{-1}$.

cThe maximum separation of the outflow lobes from the position of the driving source.
Table 9
AVERAGE PHYSICAL PROPERTIES OF C\(^{18}\)O CORES IN THE \(\eta\) CAR GMC

Group	Name	\(\Delta V_{\text{comp}}\) \(^{\text{a}}\) (km s\(^{-1}\))	\(N(\text{H}_2)\) \(^{\text{b}}\) \(^{\text{c}}\) \(^{\text{d}}\)	\(M\) \(^{\text{e}}\) \(^{\text{d}}\) (\(M_\odot\))	\(r^d\) \(^{\text{d}}\) (pc)	\(n(\text{H}_2)^d\) \(^{\text{d}}\) (x \(10^3\) cm\(^{-3}\))	\(M_{\text{vir}}/M^d\)
Cores with IRAS point sources	A 5, 6	3.2 (3.2)	26.1 (26.1)	4900 (4900)	1.9 (1.9)	2.5 (2.5)	1.0 (1.0)
Other star-forming cores	B 9, (10), 12, 15	3.2 (3.2)	9.9 (9.8)	1600 (1700)	2.0 (2.0)	0.9 (0.9)	1.9 (1.8)
All star-forming cores A+B 5, 6, 9, (10), 12, 15	3.2 (3.2)	15.3 (10.5)	2700 (2300)	2.0 (2.0)	1.5 (1.1)	1.5 (1.6)	
Non-star-forming cores C 1, 2, 3, (4), 7, 8, (11), 13, (14)	3.3 (3.2)	10.7 (10.6)	2600 (2100)	2.4 (2.4)	0.9 (0.8)	1.8 (1.7)	
All C\(^{18}\)O cores	all	3.3 (3.2)	12.5 (10.6)	2600 (2100)	2.2 (2.0)	1.2 (0.9)	1.7 (1.6)

Note.—Median values are given in parentheses.

\(^{\text{a}}\)See text (§ 4.1).

\(^{\text{b}}\)The Names of the associated C\(^{18}\)O cores. The names of the unresolved cores are given in parentheses.

\(^{\text{c}}\)Units are in \(10^{21}\) cm\(^{-2}\).

\(^{\text{d}}\)Values for resolved cores.