Domination versus independent domination in regular graphs

Martin Knor¹ | Riste Škrekovski²,³ | Aleksandra Tepeh⁴

¹Department of Mathematics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovakia
²FMF, University of Ljubljana, Koper, Slovenia
³Faculty of Information Studies, Novo Mesto & FAMNIT, University of Primorska, Koper, Slovenia
⁴Faculty of Information Studies, Novo Mesto & Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

Correspondence
Aleksandra Tepeh, Faculty of Information Studies, Novo Mesto & Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, Maribor SI-2000, Slovenia.
Email: aleksandra.tepeh@gmail.com

Funding information
Slovenian research agency ARRS, Grant/Award Number: programs no. P1–0383 and projects J1–1692 and; Slovak research grants, Grant/Award Numbers: VEGA 1/0238/19, VEGA 1/0206/20, APVV-15-0220, APVV-17-0428

Abstract
A set S of vertices in a graph G is a dominating set if every vertex of G is in S or is adjacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The domination number \(\gamma(G) \) of G is the minimum cardinality of a dominating set in G, while the independent domination number \(i(G) \) of G is the minimum cardinality of an independent dominating set in G. We prove that for all integers \(k \geq 3 \) it holds that if G is a connected \(k \)-regular graph, then \(\frac{i(G)}{\gamma(G)} \leq \frac{k}{2} \), with equality if and only if \(G = K_{k,k} \). The result was previously known only for \(k \leq 6 \). This affirmatively answers a question of Babikir and Henning.

Keywords
domination, extremal graph, independent domination

1 | INTRODUCTION

Given a graph \(G = (V, E) \) an independent set is a subset of vertices \(U \subseteq V \), such that no two vertices in \(U \) are adjacent. An independent set is maximal if no vertex can be added without violating independence. An independent set of maximum cardinality is called a maximum
independent set. A set S of vertices in a graph G is a dominating set if every vertex of G is in S or is adjacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The domination number of G, denoted $\gamma(G)$, is the minimum cardinality of a dominating set of G. The independent domination number of G, denoted $i(G)$, is the minimum cardinality of an independent dominating set in G. Note that an independent set of vertices in a graph G is a dominating set of G if and only if it is a maximal independent set. Therefore, $i(G)$ is equal to the minimum cardinality of a maximal independent set of vertices in G. The object of study in this paper are k-regular graphs, that is, such that every vertex has degree k.

Dominating and independent dominating sets have been studied extensively in the literature; see, for example, the books [7,8] and a survey [5]. In early studies authors considered the difference between $\gamma(G)$ and $i(G)$ [2,3,6,9]. In [6] the authors initiated the study of the ratio $\frac{i(G)}{\gamma(G)}$. They showed that this ratio is at most $\frac{3}{2}$ for connected cubic graphs G, with equality if and only if $G = K_{3,3}$. Southey and Henning [11] proved that the $\frac{3}{2}$ ratio can be strengthened to a $\frac{4}{3}$ ratio if $K_{3,3}$ is excluded. Suil and West [12] constructed an infinite family of connected cubic graphs G such that $\frac{i(G)}{\gamma(G)} = \frac{5}{4}$. A question of determining whether $\frac{4}{3}$ ratio from the above-mentioned result of Southey and Henning can be improved to a $\frac{5}{4}$ ratio if finitely many graphs are forbidden, remains open.

The ratio of the independent domination number to the domination number for general graphs was studied by Furuya et al. [4] who showed that for a graph G this ratio is at most $\Delta(G) - 2\sqrt{\Delta(G)} + 2$, where $\Delta(G)$ denotes the maximum degree of G.

In this paper we give the affirmative answer to the following question from [1], with which the above sharp bound of Furuya et al. is also improved in the case of connected k-regular graphs.

Question 1. Is it true that for all integers $k \geq 3$ if G is a connected k-regular graph, then $\frac{i(G)}{\gamma(G)} \leq \frac{k}{2}$, with equality if and only if $G = K_{k,k}$?

As mentioned above, Question 1 was already answered affirmatively for $k = 3$ in [6], and for $k \in \{4, 5, 6\}$ in [1].

2 PROOF OF THE MAIN THEOREM

In the proof of our theorem we use $G[A]$ to denote the subgraph of G induced by a vertex set $A \subseteq V$, and we also use an old result by Rosenfeld [10].

Proposition 2. If G is a regular graph of order n with no isolated vertex, then $i(G) \leq \frac{n}{2}$.

Theorem 3. For $k \geq 3$, if G is a connected k-regular graph, then

$$\frac{i(G)}{\gamma(G)} \leq \frac{k}{2},$$

with equality if and only if $G = K_{k,k}$.
Proof. Let $G = (V, E)$ be a connected k-regular graph, $k \geq 3$. Let A be a dominating set in G with $|A| = \gamma(G)$, and $B = V \setminus A$. We distinguish two cases with respect to the number of edges in $G[A]$, which we denote by s.

Case 1: $s \geq \frac{\gamma(G)}{2}$. Denote by e the number of edges having one end-vertex in A and the other in B. Since G is k-regular, we derive

$$e = k \cdot |A| - 2s = k\gamma(G) - 2s \leq k\gamma(G) - \gamma(G) = (k - 1)\gamma(G).$$

Since A is a dominating set this readily implies that $|B| \leq e \leq (k - 1)\gamma(G)$. We now estimate $n = |A| + |B| \leq \gamma(G) + (k - 1)\gamma(G) = k\gamma(G)$, and using Proposition 2, we derive

$$\frac{i(G)}{\gamma(G)} \leq \frac{n/2}{n/k} = \frac{k}{2}.$$

Case 2: $s < \frac{\gamma(G)}{2}$. Let A' denote a maximum independent set in $G[A]$. Clearly, $|A'| \geq |A| - s = \gamma(G) - s$. Let $|A'| = \gamma(G) - s + x$ for some $x \geq 0$. Then $A \setminus A'$ contains $s - x$ vertices which we denote by $b_1, b_2, ..., b_{s-x}$. Let B_i be the set of neighbors of b_i in B, $i \in \{1, 2, ..., s-x\}$, and let $B' = B_1 \cup B_2 \cup \cdots \cup B_{s-x}$. Then $|B'| \leq (s - x)(k - 1)$, and since $k \geq 3$ we derive

$$|A' \cup B'| = |A'| + |B'|$$

$$\leq \gamma(G) - s + x + (s - x)(k - 1)$$

$$= \gamma(G) - 2s + sk + x(2 - k)$$

$$\leq \gamma(G) + (k - 2)s.$$

Our next aim is to show that $A' \cup B'$ contains an independent dominating set of G. Let B'' be the set of vertices in B' that have a neighbor in A', and C an independent dominating set in the subgraph of G induced by the set $B' \setminus B''$. It is straightforward to verify that $I = A' \cup C$ is an independent dominating set in G. Therefore we obtain

$$i(G) \leq |I| = |A'| + |C| \leq |A'| + |B'| \leq \gamma(G) + (k - 2)s.$$

Recall that $s < \frac{\gamma(G)}{2}$. Now we consider the following cases with respect to the parity of $\gamma(G)$. If $\gamma(G)$ is even, then $s \leq \frac{\gamma(G)}{2} - 1$, and we have

$$i(G) \leq \gamma(G) + (k - 2)\left(\frac{\gamma(G)}{2} - 1\right) = \frac{k}{2}\gamma(G) + 2 - k$$

$$< \frac{ky(G)}{2},$$

and therefore

$$\frac{i(G)}{\gamma(G)} < \frac{ky(G)}{2} \gamma(G) = \frac{k}{2}.$$
If $\gamma(G)$ is odd, then $s \leq \frac{\gamma(G)-1}{2}$, and we obtain

$$i(G) \leq \gamma(G) + (k-2)\frac{\gamma(G)-1}{2} = \frac{k\gamma(G)}{2} - \frac{k-2}{2} < \frac{k\gamma(G)}{2},$$

which again implies the desired inequality.

Now we describe the extremal graphs, that is, graphs G with $i(G) = \frac{k\gamma(G)}{2}$. Since $i(G) < \frac{k\gamma(G)}{2}$ if there are less than $\gamma(G)/2$ edges in $G[A]$ (see calculations in Case 2) the extremal graphs can be obtained only if there are at least $\gamma(G)/2$ edges in $G[A]$. In fact, $G[A]$ must have exactly $\gamma(G)/2$ edges, that is, $s = \gamma(G)/2$, since otherwise we get $e < (k-1)\gamma(G)$ which implies $n < k\gamma(G)$ and consequently $i(G) < \frac{k\gamma(G)}{2}$.

Furthermore, we will show that $G[A]$ is a collection of independent edges. Suppose that $G[A]$ has exactly t components. Take one vertex from each component to form an independent set. This set can be completed with at most $(k-1)(\gamma(G) - t)$ vertices of B (i.e., with at most $k-1$ vertices of B for each of nonselected vertices from A) to a maximal independent set M. Recall that M is an independent dominating set of G and therefore $i(G) \leq |M|$. If $t > \gamma(G)/2$, then

$$i(G) \leq |M| \leq t + (k-1)(\gamma(G) - t) = k\gamma(G) - \gamma(G) - t(k-2) < k\gamma(G) - \gamma(G) - \frac{\gamma(G)}{2}(k-2) = \frac{k}{2} \gamma(G),$$

which implies $i(G) < \frac{k\gamma(G)}{2}$, a contradiction. Therefore $t \leq \gamma(G)/2$, that is, $t \leq s$. If a component of $G[A]$ contains a cycle, then $s > \gamma(G) - t$, which together with $s = \gamma(G)/2$ implies that $t > \gamma(G)/2$, a contradiction. Thus $G[A]$ is a forest. Since $t \leq s$ we have $s = \gamma(G) - t \geq \gamma(G) - s = s$, and thus $t = s$.

If there is a component of $G[A]$ which contains at least three vertices, then this component contains two independent vertices (recall that $G[A]$ is a forest). So take two independent vertices from this component and one vertex from every other component of $G[A]$. This set contains $t + 1$ independent vertices and analogously as above it can be completed with at most $(k-1)(\gamma(G) - t - 1)$ vertices of B to a maximal independent set M. We get

$$i(G) \leq |M| \leq (t + 1) + (k-1)(\gamma(G) - t - 1) = k\gamma(G) - \gamma(G) - (t + 1)(k-2) = \frac{k}{2} \gamma(G) - (k-2) < \frac{k}{2} \gamma(G),$$

which implies $i(G) < \frac{k\gamma(G)}{2}$, a contradiction. Thus, $G[A]$ is a collection of independent edges $\{u_1v_1, u_2v_2, ..., u_kv_k\}$.

Our next aim is to show that for each $i \in \{1, 2, ..., s\}$ vertices u_i and v_i do not have a common neighbor. If there is $z \in N(u_i) \cap N(v_i)$, then taking u_i and one vertex from every other edge of $G[A]$ to an independent set, we can complete it to a maximal
independent set I with at most $k - 2$ neighbors of v_i in $V \setminus A$, and at most $k - 1$ neighbors for each of nonselected vertices of $G[A]$. Therefore

$$i(G) \leq |I| \leq \frac{\gamma(G)}{2} + k - 2 + \left(\frac{\gamma(G)}{2} - 1\right)(k - 1) = \frac{\gamma(G)}{2}k - 1 \leq \frac{\gamma(G)}{2}k,$$

which again yields $\frac{i(G)}{\gamma(G)} < \frac{k}{2}$. Thus, $N(u_i) \cap N(v_i) = \emptyset$.

Now suppose that there is $z \in N(u_i)$ which has a neighbor w outside $N(u_i) \cup N(v_i)$. We distinguish two cases.

Case A: $w \in A \setminus \{u_1, v_1\}$. Without loss of generality we may assume that $w = v_2$. Then put to an independent set v_1 and complete it to an independent dominating set I analogously as above. More precisely, I contains v_i for every $i \in \{1, 2, ..., s\}$, at most $k - 1$ neighbors of u_i in B for every $i \in \{2, 3, ..., s\}$, and at most $k - 2$ neighbors of u_1 in B since $u_2 z \in E$ and $z \in N(u_i)$. Then

$$i(G) \leq |I| \leq \frac{\gamma(G)}{2} + k - 2 + \left(\frac{\gamma(G)}{2} - 1\right)(k - 1) < \frac{\gamma(G)}{2}k,$$

which again implies $\frac{i(G)}{\gamma(G)} < \frac{k}{2}$, a contradiction.

Case B: $w \in V \setminus (A \cup N(u_i) \cup N(v_i))$. Without loss of generality we may assume that w is a neighbor of u_2. Let I be the set consisting of v_i for every $i \in \{1, 2, ..., s\}$, at most $k - 1$ neighbors of u_i in B for every $i \in \{3, 4, ..., s\}$, and at most $(k - 1) + (k - 1) - 1$ vertices in $(N(u_i) \cup N(u_2)) \setminus \{v_1, v_2\}$ since $u_2 w, z w \in E$. Note that I is an independent dominating set. We derive

$$i(G) \leq |I| \leq \frac{\gamma(G)}{2} + \left(\frac{\gamma(G)}{2} - 2\right)(k - 1) + 2k - 3 < \frac{\gamma(G)}{2}k,$$

leading to a contradiction again.

With this we have shown that no neighbor of u_1 in B has a neighbor outside $N(u_i) \cup N(v_i)$. Proceeding analogously for neighbors of v_1 we see that no vertex of $N(u_i) \cup N(v_i)$ has a neighbor outside $N(u_i) \cup N(v_i)$. That is, $G[N(u_i) \cup N(v_i)]$ is a component of G, and since G is connected, we have $\gamma(G) = 2$.

Now suppose that there are vertices $z_1, z_2 \in N(u_i) \setminus \{v_i\}$ such that $z_1 z_2 \in E$. Then put to an independent set v_1 and complete it to an independent dominating set of G with neighbors of u_1 in $V \setminus A$. Since $z_1 z_2 \in E$, we get an independent dominating set of size at most $1 + (k - 2) < k = \frac{\gamma(G)}{2}k$, which gives $\frac{i(G)}{\gamma(G)} < \frac{k}{2}$ again. Thus, $N(u_i) \setminus \{v_i\}$ is an independent set in G. In fact, $N(u_i)$ itself is an independent set of G, since we have already shown that v_1 has no neighbors in $N(u_i) \cap V \setminus A$. Analogously it can be shown that $N(v_i)$ is an independent set, which means that G is a k-regular graph with $2k$ vertices, and two independent sets $N(u_i)$ and $N(v_i)$ of size k. Consequently, G is $K_{k,k}$. \hfill \qquad \square

ACKNOWLEDGMENTS

The first author acknowledges partial support by Slovak research grants VEGA 1/0238/19, VEGA 1/0206/20, APVV-15-0220, and APVV-17-0428. The research was partially supported
also by Slovenian research agency ARRS, programs no. P1–0383 and projects J1–1692 and J1–8130.

ORCID
Aleksandra Tepeh https://orcid.org/0000-0002-2321-6766

REFERENCES
1. A. Babikir and M. A. Henning, *Domination versus independent domination in graphs of small regularity*, Discrete Math. **343** (2020), 111727.
2. C. Barefoot, F. Harary, and K. F. Jones, *What is the difference between the domination and independent domination numbers of a cubic graph?* Graphs Combin. **7** (1991), 205–208.
3. E. J. Cockayne and S. T. Hedetniemi, *Independence and domination in 3-connected cubic graphs*, J. Combin. Math. Combin. Comput. **10** (1991), 173–182.
4. M. Furuya, K. Ozeki, and A. Sasaki, *On the ratio of the domination number and the independent domination number in graphs*, Discrete Appl. Math. **178** (2014), 157–159.
5. W. Goddard and M. A. Henning, *Independent domination in graphs: A survey and recent results*, Discrete Math. **313** (2013), 839–854.
6. W. Goddard, M. A. Henning, J. Lyle, and J. Southey, *On the independent domination number of regular graphs*, Ann. Combin. **16** (2012), 719–732.
7. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Domination in graphs: Advanced topics*, Marcel Dekker Inc., New York, 1998.
8. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, *Fundamentals of domination in graphs*, Marcel Dekker Inc., New York, 1998.
9. A. V. Kostochka, *The independent domination number of a cubic 3-connected graph can be much larger than its domination number*, Graphs Combin. **9** (1993), 235–237.
10. M. Rosenfeld, *Independent sets in regular graphs*, Israel J. Math. **2** (1964), 262–272.
11. J. Southey and M. A. Henning, *Domination versus independent domination in cubic graphs*, Discrete Math. **313** (2013), 1212–1220.
12. O. Suil and D. B. West, *Cubic graphs with large ratio of independent domination number to domination number*, Graphs Combin. **32** (2016), 773–776.

How to cite this article: M. Knor, R. Škrekovski, and A. Tepeh, *Domination versus independent domination in regular graphs*, J Graph Theory. 2021;98:525–530. https://doi.org/10.1002/jgt.22711