Conformal β-change in Finsler spaces

S. H. Abed *

Abstract. We investigate what we call a conformal β-change in Finsler spaces, namely

$$L(x, y) \rightarrow *L(x, y) = e^{\sigma(x)}L(x, y) + \beta(x, y)$$

where σ is a function of x only and $\beta(x, y)$ is a given 1-form.

This change generalizes various types of changes: conformal changes, Randers changes and β-changes.

Under this change, we obtain the relationships between some tensors associated with (M, L) and the corresponding tensors associated with $(M, *L)$. We investigate some σ-invariant tensors. This investigation allows us to give an answer to the question: Are the properties of C-reducibility, S_3-likeness and S_4-likeness invariant under a conformal β-change?

1. Introduction and Notations

Let (M, L) be a Finsler space, where M is an n-dimensional differentiable manifold equipped with a fundamental function L. Given a function σ, the change

$$L(x, y) \rightarrow e^{\sigma(x)}L(x, y)$$

is called a conformal change. The conformal theory of Finsler spaces has been initiated by M.S. Kneblman [5] in 1929 and has been deeply investigated by many authors: [1], [3], [4],... etc.

In 1941, Randers [9] has introduced the Finsler change

$$^rL(x, y) \rightarrow ^rL(x, y) + \beta(x, y)$$

where rL is a Riemanian structure and β is a 1-form on M. The resulting space is a Finsler space. This change has been studied by several authors: [7], [12],... etc.

The Randers change has been generalized by Shibata [10] to what is called a β-change

$$L(x, y) \rightarrow L(x, y) + \beta(x, y)$$

*Department of Mathematics, Faculty of Science, Cairo University, Cairo, Egypt.
where L a fundamental Finslerian function. The resulting space known as a generalized Randers space was studied in [13], [4], [7], [11] and [8], etc.

In this paper, we construct a theory which generalizes all the above mentioned changes. In fact, we consider a change of the form

$$L(x, y) \rightarrow *L(x, y) = e^{\sigma(x)}L(x, y) + \beta(x, y),$$

where σ is a function of x and $\beta(x, y) = b_i(x)y^i$ is a 1-form on M, which we call a conformal β-change. This change generalizes various type of changes. When $\beta = 0$, it reduces to a conformal change. When $\sigma = 0$, it reduces to a β-change and consequently to a Randers change.

We obtain the relationships between some tensors associated with (M, L) (the fundamental tensor, the $h(hv)$ - torsion and the third curvature tensor) and the corresponding tensors associated with $(M, *L)$.

Under the conformal β - change, we investigate some σ- invariant tensors (a tensor K is σ- invariant if $*K(x, y) = e^\sigma K(x, y)$).

This investigation leads us to find out necessary and /or sufficient conditions for the properties of C-reducibility, S_3-likeness and S_4-likeness to be invariant under a conformal β - change (cf. theorems A, B, and C).

More investigation and development of this theory will be the object of forthcoming papers.

Throughout the present paper, (x^i) denotes the coordinates of a point of the base manifold M and (y^i) the supporting element (\dot{x}^i).

We use the following notations:

- $l_i := \dot{\partial}_i L = \frac{\partial L}{\partial y^i}$: the normalized supporting element,
- $h_{ij} := \dot{L}l_i l_j = Ll_{ij}$: the angular metric tensor,
- $g_{ij} := \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2$: the fundamental tensor,
- $c_{ijk} := \dot{\partial}_k (g_{ij}/2)$: the(h) hv -torsion tensor ,
- $c_i := g^{jk} c_{ijk}$: the torsion vector,
- $c^k := g^{jk} c_i$: , $c^2 = c_i c^i$,
- $S_{hijk} := c_{ijr} c_{h}^r k - c_{ikr} c_{h}^r j$: the components of the third curvature tensor.

2. Conformal β-change

We firstly introduce the following definition

Definition 1. A change of Finsler metric defined by

$$L(x, y) \rightarrow *L(x, y) = e^{\sigma(x)}L(x, y) + \beta(x, y)$$

where $\sigma = \sigma(x)$ is a function of x and $\beta(x, y) = b_i(x)y^i$ is a 1-form, will be called a conformal β-change.
This change generalizes various changes studied by Randers [9], Matsumoto [7], Shibata [10]...etc.

We assume that $^*L(x, y)$ enjoys the same properties possessed by $L(x, y)$.

As the Finsler space associated to L is denoted by (M, L), we denote the Finsler space associated to the conformal β–change by $(M, ^*L)$.

Throughout the whole paper, the geometric objects associated with $^*L(x, y)$ will be asterisked.

Definition 2. A geometric object K is said to be σ–invariant if it is invariant, up to a factor $e^{\sigma(x)}$, under a conformal β–change: $^*K = e^{\sigma(x)}K$.

It follows from (1) that

$$^*l_i(x, y) = e^{\sigma(x)}l_i(x, y) + b_i(x), \quad ^*l_{ij}(x, y) = e^{\sigma(x)}l_{ij}(x, y).$$

The angular metric tensor h_{ij} is given in terms of h_{ij} by

$$^*h_{ij} = ^*L^*l_{ij} = ^*Le^{\sigma}l_{ij} = \tau h_{ij}, \quad \tau = e^{\sigma(x)}\frac{^*L}{L}.$$ \hspace{1cm} (3)

Then we have the following

Lemma 1. $\frac{h_{ij}}{L}$ is σ–invariant under a conformal β–change:

$$\frac{^*h_{ij}}{^*L} = e^{\sigma} \frac{h_{ij}}{L}.$$ \hspace{1cm} (4)

As $h_{ij} = g_{ij} - l_i l_j$, equations (3) give us a relation between the fundamental tensors g_{ij} and $^*g_{ij}$:

$$^*g_{ij} = \tau(g_{ij} - l_i l_j) + ^*l_i ^*l_j.$$ \hspace{1cm} (5)

The relation between the corresponding covariant components is obtained in the form

$$^*g^{ij} = \tau^{-1}g^{ij} + \mu l^i l^j - \tau^{-2}(l^i b^j + l^j b^i),$$ \hspace{1cm} (6)

where $\mu = (e^{\sigma}Lb^2 + \beta)/L^2$, $b^2 = b^ib^j$, $b^i = g^{ij}b_j$.

Let us introduce the π–vector field

$$\overline{m} = \overline{B} - \frac{\beta}{L^2} \overline{m}, \quad m^i = b^i - \frac{\beta}{L} l^i, \quad m^2 = m_i m^i.$$

Lemma 2. For a conformal β–change which is not conformal (i.e $\beta \neq 0$), $\overline{m} \neq 0.$
In fact, if \(\overline{m} = 0 \), then \(m_i = 0 \) for all \(i \), and consequently \(b_i = \frac{2}{L} l_i \) which implies \(\beta = e^{\psi(x)} L \), for some function \(\psi(x) \).

Lemma 3. The (h) hv- torsion tensor \(^*c_{ijk} \) associated to \(^*F \) is given by

\[
^*c_{ijk} = \tau [c_{ijk} + \frac{1}{2^*L} h_{ijk}],
\]

where

\[
h_{ijk} = h_{ij} m_k + h_{jk} m_i + h_{ki} m_j.
\]

From the tensor \(^*c_{ijk} \), we obtain the following important tensors:

\[
^*c^r_{ij} = c^r_{ij} + \frac{1}{2^*L} (h_{ij} m^r + h_{jr} m_i + h_{rj} m_j) - \tau^{-1} c_{ij} l^r b^s - \frac{1}{2^*L} (2 m_i m_j + m^2 h_{ij}) l^r,
\]

\[
^*c_i = c_i + \frac{n + 1}{2^*L} m_i,
\]

\[
^*c^k = \tau^{-2} [\tau c^k - c^r l^k + \frac{n + 1}{2^*L} (\tau m^k - m^2 l^k)],
\]

\[
^*c^2 = \tau^{-1} [c^2 + \frac{n + 1}{2^*L} A^2],
\]

\[
^*c^\beta = c^\beta + \frac{n + 1}{2^*L} m^2
\]

where \(A^2 = c^\beta + \frac{n + 1}{2^*L} m^2 \), \(c^\beta = c_i b^i \).

Proof.

- Equation (7) is deduced from the definition of \(c_{ijk} \) together with (6)
- Equation (9) is deduced by raising the index \(k \) in (7), using (6)
- Equation (10) is obtained by contracting the subscript \(i \) and the superscript \(r \) in (9)
- Equation (11) follows from (10) by raising its subscript, using (6)
- Equation (12) follows directly from (10) and (11) by contracted multiplication
- Equation (13) is obtained easily from (10) and the definition of \(c^\beta \) by contracted multiplication. □
Lemma 4.

(a) The relation between \(*S_{hijk} \) and \(S_{hijk} \) takes the form

\[
* S_{hijk} = \tau S_{hijk} - \frac{\tau}{2* L} [h_{ik} H_{jh} + h_{jh} H_{ik} - h_{hk} H_{ij} - h_{ij} H_{hk}],
\]

(14)

where

\[
H_{ij} = c_{i}^{r} j m_{r} + \frac{1}{2* L} m_{i} m_{j} + \frac{1}{4* L} h_{ij} m^{2}.
\]

(15)

(b) The v- Ricci tensor \(*S_{ik} \) is written in the form

\[
* S_{ik} = S_{ik} - \frac{1}{2* L} [A_{\beta} h_{ik} + (n - 3) H_{ik}]
\]

(16)

(c) The v- scaler curvature tensor is written in the form

\[
* S = \tau^{-1} [S - \frac{n - 2}{* L} A_{\beta}]
\]

(17)

Proof.

(a) From equations (7) and (9) we have

\[
* c_{ijr} * c_{h k}^{r} = \tau [c_{ijr} + \frac{1}{2* L} h_{ijr}] [c_{h k}^{r} + \frac{1}{2* L} (h_{hk} m_{r} + h_{r}^{h} m_{k})]
\]

\[
- \tau^{-1} c_{h k}^{r} b^{r} - \frac{1}{2* L} \tau (2 m_{h} m_{k} + m_{h}^{2}) b^{r}
\]

\[
= \tau c_{ijr} c_{h k}^{r} + \frac{\tau}{2* L} [(c_{r}^{j} h_{hk} + c_{r}^{k} h_{ij}) m_{r} + (c_{ijk} m_{h} + c_{jkh} m_{i} + c_{khi} m_{j} + c_{hij} m_{k})]
\]

\[
+ \frac{\tau}{4* L^2} [h_{ij} h_{hk} m^{2} + 2 h_{hk} m_{i} m_{j} + 2 h_{ij} m_{h} m_{k} + h_{jh} m_{i} m_{k} + h_{jk} m_{i} m_{h} + h_{ik} m_{j} m_{h}].
\]

Similarly, one can obtain \(*c_{ikr} * c_{h j}^{r} \) (by interchange \(j \) and \(k \)). Hence the result.

(b) follows from (a) by contracted multiplication, using (11).

(c) is obtained from (b), using (11) again, by contracted multiplication. \(\square \)

Remark. The tensor \(H_{ij} \) defined by (15) has the properties:

1. \(H_{ij} \) is a symmetric tensor : \(H_{ij} = H_{ji} \),

2. \(H_{ij} \) is an indicatory tensor : \(H_{ij} y^{i} = 0 = H_{ij} y^{j} \),

3. \(g^{ij} H_{ij} = A_{\beta} \).
3. Geometrical properties of the conformal β-change

Definition 3. [6] A Finsler space \((M, L)\) of dimension \(n \geq 3\) is called a C-reducible space if the \(h(hv)\)-torsion tensor \(c_{ijk}\) has the form

\[
c_{ijk} = h_{ij}M_k + h_{kj}M_i + h_{ki}M_j, \quad M_i = \frac{c_i}{n + 1}.
\]

(18)

Define the tensor

\[
K_{ijk} = [c_{ijk} - (h_{ij}M_k + h_{kj}M_i + h_{ki}M_j)]/L.
\]

It is clear that \(K_{ijk}\) is a symmetric and indicatory tensor. Moreover \(K_{ijk}\) vanishes if and only if the Finsler space is C-reducible.

Proposition 1. Under a conformal β-change, the tensor \(K_{ijk}\) is \(σ\)-invariant:

\[
*K_{ijk} = e^σK_{ijk}.
\]

Proof. Using Equation (17) together with the definition of \(K_{ijk}\), we get

\[
*K_{ijk} = [c_{ijk} - (h_{ij}M_k + h_{kj}M_i + h_{ki}M_j)]/L
\]

\[
= τ[(c_{ijk} + \frac{1}{2L}h_{ijk}) - (h_{ij}M_k + h_{kj}M_i + h_{ki}M_j)]/L
\]

\[
= τ[c_{ijk} + \frac{1}{2L}(h_{ij}m_k + h_{kj}m_i + h_{ki}m_j) - \frac{1}{n + 1}(h_{ij}c_k + h_{kj}c_i + h_{ki}c_j)]/L
\]

\[
= τ[c_{ijk} + \frac{1}{n + 1}(h_{ij}c_k + h_{kj}c_i + h_{ki}c_j)]/L
\]

\[
= e^σ[c_{ijk} - (h_{ij}M_k + h_{kj}M_i + h_{ki}M_j)]/L = e^σK_{ijk} \quad □
\]

Now, Proposition 1 yields

Theorem A. Under a conformal β-change \(L \rightarrow *L\), the space \((M, L)\) is C-reducible if and only if the space \((M, *L)\) is C-reducible.

Consequently the C-reducibility property is invariant under this change.

It should be noticed that Theorem 4-1 and Corollary 4-1 of Shibata [10] result from the above Theorem as a very special case. Some results of Matsumoto [7] are also contained in the above Theorem.

Definition 4. [2] A Finsler space \((M, L)\) of dimension \(n > 4\) is called an \(S_4\)-like space if the vertical curvature tensor \(S_{hijk}\) has the form

\[
S_{hijk} = h_{jh}M_{ik} + h_{ik}M_{jh} - h_{hk}M_{ij} - h_{ij}M_{hk},
\]

(19)

where \(M_{ij}\) is the symmetric and indicatory tensor given by \(M_{ij} = \frac{1}{n-3}[S_{ij} - \frac{S_{hijk}}{2(n-2)}]\).
Define the tensor
\[\eta_{hijk} = \frac{[S_{hijk} - (h_{jh}M_{ik} + h_{ik}M_{jh} - h_{hk}M_{ij} - h_{ij}M_{hk})] / L}{}, \]

It is clear that \(\eta_{hijk} \) vanishes if and only if the manifold \((M, L) \) is an \(S_4 \)-like manifold.

It is not difficult to prove the following.

Lemma 5. The tensor \(*M_{ij} \) is given in terms of \(M_{ij} \) by
\[*M_{ij} = M_{ij} - \frac{1}{2} \ast_L H_{ij}. \]

In fact, the result follows from (12) and (16).

Proposition 2. Under a conformal \(\beta \)-change, the tensor \(\eta_{hijk} \) is \(\sigma \)-invariant:
\[*\eta_{hijk} = e^\sigma \eta_{hijk}. \]

Proof. Taking Lemma 4a and Lemma 5 into account, we get
\[
L^\eta_{hijk} = *S_{hijk} - (h_{jh} *M_{ik} + *h_{ik} *M_{jh} - *h_{hk} *M_{ij} - *h_{ij} *M_{hk}) \\
= \tau S_{hijk} - \frac{\tau}{2^*L}[h_{jk} H_{ih} + h_{ih} H_{jk} - h_{hk} H_{ij} - h_{ij} H_{hk}] \\
- \tau [h_{jk} (M_{ih} - \frac{1}{2} *L H_{ih}) + h_{ik} (M_{jh} - \frac{1}{2} *L H_{jh})] \\
- h_{hk} (M_{ij} - \frac{1}{2} *L H_{ij}) - h_{ij} (M_{hk} - \frac{1}{2} *L H_{hk})] \\
= \tau [S_{hijk} - (h_{jh} M_{ih} + h_{ih} M_{jk} - h_{hk} M_{ij} - h_{ij} M_{hk})] \\
= \tau L \eta_{hijk} = e^\sigma *L \eta_{hijk}.
\]

Hence the result. \(\square \)

Proposition (2) yields

Theorem B. Under a conformal \(\beta \)-change \(L \rightarrow *L \), the space \((M, L) \) is \(S_4 \)-like if and only if the space \((M, *L) \) is an \(S_4 \)-like.

Consequently, the \(S_4 \)-likeness property is invariant under this change.

The above result generalizes Theorem 4-5 (and its Corollary) of Shibata [10].

Definition 5. A Finsler space \((M, L) \) of dimension \(n > 3 \) is called an \(S_3 \)-like space if the vertical curvature tensor \(S_{hijk} \) has the form
\[
S_{hijk} = \frac{S}{(n - 1) (n - 2)} [h_{ik} h_{jh} - h_{ij} h_{hk}].
\]
Define the tensor
\[\zeta_{hijk} = \left[S_{hijk} - \frac{S}{(n-1)(n-2)}(h_{ik}h_{jh} - h_{ij}h_{hk}) \right] lL \]

It is clear that \(\zeta_{hijk} \) vanishes if and only if the manifold \((M, L)\) is an \(S_3\)-like manifold.

Proposition 3. Under a conformal \(\beta\)-change, the tensor \(\zeta_{hijk}\) is \(\sigma\)-invariant if and only if \(H_{ij} = \frac{1}{n-1}A_\beta h_{ij}\).

Proof. Using Equation (7) together with the definition of \(K_{ijk}\), we get
\[
L^\zeta_{hijk} = \left[*S_{hijk} - \frac{*S}{(n-1)(n-2)}(*h_{ik} *h_{jh} - *h_{ij} *h_{hk}) \right] \\
= \left[\tau S_{hijk} - \frac{\tau}{2 *L} (h_{ik}H_{jh} + h_{jh}H_{ik} - h_{hk}H_{ij} - h_{ij}H_{hk}) \right] \\
- \frac{\tau}{(n-1)(n-2)} \left(S - \frac{(n-2)}{*L} A_\beta \right) (h_{ik} h_{jh} - h_{ij} h_{hk}) \\
= \left[\tau (S_{hijk} - \frac{S}{(n-1)(n-2)}(h_{ik}h_{jh} - h_{ij}h_{hk})) \right] \\
- \frac{\tau}{2 *L} \left[(h_{ik} H_{jh} + h_{jh} H_{ik} - h_{hk} H_{ij} - h_{ij} H_{hk}) + \frac{1}{(n-1)} A_\beta (2h_{ik} h_{jh} - 2h_{ij} h_{hk}) \right] \\
= \tau L \zeta_{hijk} - \frac{\tau}{2 *L} \left[(h_{ik} (H_{jh} - \frac{1}{(n-1)} A_\beta h_{jh})) + (h_{jh} (H_{ik} - \frac{1}{(n-1)} A_\beta h_{ik})) + \right. \\
+ (h_{hk} (H_{ij} - \frac{1}{(n-1)} A_\beta h_{ij})) + h_{ij} (H_{hk} - \frac{1}{(n-1)} A_\beta h_{hk})) \right]
\]

Now the tensor \(*\zeta_{hijk}\) is \(\sigma\)-invariant \((*\zeta_{hijk} = e^\sigma \zeta_{hijk})\) if and only if all terms of the forms
\(H_{ij} - \frac{1}{(n-1)} A_\beta h_{ij}\) vanish; that is, if and only if the condition \(H_{ij} = \frac{1}{n-1} A_\beta h_{ij}\) holds. \(\square\)

Consequently we get

Theorem C. Under a conformal \(\beta\)-change \(L \longrightarrow *L\), the following two assertions are equivalent

1. The space \((M, L)\) is \(S_3\)-like,

2. The space \((M, *L)\) is \(S_3\)-like

if and only if the condition \(H_{ij} = \frac{1}{n-1} A_\beta h_{ij}\) holds.

Consequently, the \(S_3\)-likeness property is invariant under this change if and only if \(H_{ij} = \frac{1}{n-1} A_\beta h_{ij}\)
References

[1] M. Hashiguchi, On conformal transformation of Finsler metric, J. Math. Kyoto Univ.. 16(1976) pp. 25-50.

[2] F. Ikedo, On S_3-and S_4-like Finsler spaces with the T- tensor of a special form, Tensor, N.S.. 35(1981) pp. 345-351.

[3] H. Izumi, Conformal transformations of Finsler spaces I and II, Tensor, N.S.. 31 and 33(1977 and 1980) pp. 33-41 and 337-359.

[4] M. Kitayama, Geometry of transformations of Finsler metrics, Hokkaido University of Education, Kushiro Campus.. Japan(2000)

[5] M. S. Knebelman, Conformal geometry of generalized metric spaces, Proc.nat.Acad. Sci.USA.. 15(1929) pp. 33-41 and 376-379.

[6] M. Matsumoto, On C - reducible Finsler spaces, Tensor, N.S.. 24(1972) pp. 29-37.

[7] M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ.. 14(1974) pp. 477-498.

[8] R. Miron, General Randers space, Lagrange and Finsler geometry, Ed. by P.L. Antonelli and R.Miron..76(1996) pp.123-140.

[9] G. Randers, On the asymmetrical metric in the four- space of general relativity, Phys. Rev..2(1941)59 pp. 195-199.

[10] C. Shibata, On invariant tensors of β - change of Finsler metrics, J. Math. Kyoto Univ.. 24(1984) pp. 163-188.

[11] C. Shibata and M. Asuma, C-conformal invariant and tensors of Finsler metrics, Tensor, N.S.. 52(1993) pp. 76-81.

[12] C. Shibata and H. Shimada and M. Azuma and H. Yasda, On Finsler spaces with Randers metric, Tensor, N.S..31(1977) pp. 219-226.

[13] A. A. Tamim and N. L. Youssef, On generalized Randers manifold, Algebras, Groups and geometries..16(1999) pp.115-126.