Low productivity (2680 Kg/hectare) (Directorate of Agriculture, Govt. of Bihar; 2012-13) in Bihar is mainly due to late sowing of wheat coupled with prevalent of hot westerly wind during grain filling stage. The wheat production in state can be increased by two means, either by horizontal expansion or by vertical expansion i.e. by using improved variety or use of antioxidant or growth regulators to cope heat stress in delayed sown condition. Mitigation of elevated temperature on late sown wheat through genetic intervention is under way at many research stations. Study of plant growth regulators in overcoming this abiotic stress of elevated temperature during reproductive stage of wheat is of great importance. The present investigation was carried out at DRPCAU, Pusa Bihar during Rabi 2016-2017, with five plant growth regulating hormones viz., Glycine betaine (600 PPM) (T2), Salicylic acid (800 PPM) (T3), Salicylic acid (400 PPM) (T4), Ascorbic acid (10 PPM), Tocopherol (150 PPM), Elevated temperature, Heat stress

Keywords

Plant growth regulating hormones, Agro-morphological traits, Normal & late sown conditions, Glycine betaine (600 PPM), Salicylic acid (800 & 400 PPM), Ascorbic acid (10 PPM), Tocopherol (150 PPM), Elevated temperature, Heat stress

Article Info

Accepted: 10 June 2018
Available Online: 10 July 2018

Abstract

The present investigation was carried out at DRPCAU, Pusa Bihar during Rabi 2016-2017, with five plant growth regulating hormones viz., Glycine betaine (600 PPM) (T2), Salicylic acid (800 PPM) (T3), Salicylic acid (400 PPM) (T4), Ascorbic acid (10 PPM), Tocopherol (150 PPM) (T5) and control (T1) on two varieties HD-2733 (normal sown condition) and HD-2985 (late sown condition) with objective to access induced variation and differential influence created on fifteen agro-morphological traits under study after treatments in both conditions i.e. normal and late sown conditions. Treatment T2 i.e., Glycine betaine (600 PPM), showed significant effect on highest grain yield per plant via, different agro-morphological character mentioned above for normal and delayed sown condition. Yield enhancement due to effect of Treatment T2 Glycine betaine (600 PPM) was recorded 41.30% higher under normal sown condition whereas 44.92% higher under late sown condition in comparison to control. On seed quality traits also showed significant positive effect of Treatment T2 Glycine betaine (600 PPM) was observed for seed germination per cent and viability per cent and no effect on vigour index of seed under both normal and delayed sown condition.
Introduction

Wheat [Triticum aestivum (L.) em.TheIl] is a thermo sensitive crop mostly grown in temperate environment. In subtropical regions it is cultivated in winter season but it exposed to high temperature stress at the end of the season i.e. at grain filling stage. Heat stress is one of the major limiting factors for growth and productivity in wheat crop particularly in warmer region. Heat stress is anticipated to become more important in future with climate changes, monsoon irregularities and rice-wheat cropping system which has compelled wheat crop to be subjected to rapidly ascending temperature coupled with hot dry winds. Most of the crops including wheat exposed to heat stress during later stages of their life cycle (Stone, 2001) i.e. grain filling stage resulting in the development of shriveled grain. Exposure to higher than normal temperature or heat stress reduces yield and decreases quality.

The world acreage under wheat crop is 240 million hectares with production of 758.1 million tones with yield of 2872 kg ha\(^{-1}\) (FAO, Regional office for Asia and the Pacific, Bangkok, 2015-16). However average yield is quite variable across the world, ranging from less than 1 to over 7 tones ha\(^{-1}\). The differences in per hectare yield are due to differences in the level of inputs, agricultural sophistication and agro-climatic conditions. Bihar accounts for 5.94 MT of wheat production from an area of 2.22 lakh hectare area with a productivity of 2680 Kg/hectare (Directorate of Agriculture, Govt. of Bihar; 2012-13). Low productivity in Bihar is mainly due to late sowing of wheat coupled with prevalent of hot westerly wind during grain filling stage.

Wheat production in Bihar can be increased either by horizontal expansion (cultivation in newly/reclaimed land) or by vertical expansion (using improved variety or use of antioxidant or growth regulators to cope heat stress in delayed sown condition). Scope of horizontal expansion is very limited due to increase in human endeavour other than agriculture by urbanization and industrialization.

Literature on role of plant growth regulating hormones in mitigating heat stress is available. Halim \textit{et al.,} (2006), reported that Salicylic acid (SA) is an endogenous growth regulator of phenolic nature, which participates in the regulation of physiological processes in plants and act as signal molecule in the induction of defence mechanism. Morris \textit{et al.,} 2000 reported that SA modulates secondary metabolites pathway in plant under abiotic stresses whereas Khan \textit{et al.,} (2013) found that it interacts with Proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat. Wang \textit{et al.,} (2010) reported increase in the activities of different antioxidant enzymes in wheat treated with foliar SA. Similarly, Janda (1999) reported that exogenous SA alleviates the damaging effect of various abiotic stresses and modulates the photosynthetic process of the plant.

According to Smirnoff 2000, Ascorbic acid (AsA) is the most abundant and potential antioxidant known in nature. Ashraf and Foolad 2007 found that exogenous application of AsA enhance the stress tolerance and significantly contribute to the crop production in the stressed environment.

Tocopherol (vitamin E) is synthesized in the plants, mainly concentrated in plastids and acts as an amphiphilic lipid antioxidant. Tocopherol plays a protective role to membrane system in the cell of higher plants (Fryer, 1992; and Wang and Quinn, 2000); assists in maintaining membrane stability (Munné-Bosch and Falk, 2004) and regulates
the transport of electrons in the photo system-II system (Munné-Bosch and Alegre, 2002).

Therefore, present investigation were under taken to assess the chemically induced variation in agro-morphological characters of wheat under normal and heat stress condition and to analyze the differential influence of chemical application on phenotypic expression of yield attributing characters under heat stress.

Materials and Methods

The present investigation was carried out in the fields located at Breeder Seed Production Plot in TCA, Dholi, under DRPCAU, Pusa, Bihar during Rabi 2016-2017. The experimental materials of the study comprised of 2 varieties of bread wheat (*Triticum aestivum* L.) namely HD-2733 and HD-2985 and five plant growth regulator hormones namely Glycine betaine (600 PPM), Salicylic acid (800 PPM), Salicylic acid (400 PPM), Ascorbic acid (10 PPM) and Tocopherol (150 PPM).

The Experiment was sown in Randomized Block Design (RBD) with four replications and two dates of sowing i.e., normal and 30 days delay with two varieties HD-2733 & HD-2985 respectively. In each replication 6 treatment were given namely T1,control, T2-Glycinebetaine (600 PPM), T3-Salicylic acid (800 PPM), T4-Salicylic acid (400 PPM), T5-Ascorbic acid (10 PPM), T6-Tocopherol (150 PPM) at two stages i.e., first at vegetative and second at reproductive stage of plant. Standard agronomic practices were adopted with 22cm row to row spacing. Five random plants per replication were tagged to record observations on twelve seed yield i.e. Days to flowering, Days to maturity, Plant height (cm), Pollen fertility per cent, Spikelet fertility per cent, Flag leaf area (cm²), Number of tillers per plant, Ear length (cm), Number of grains per ear, 1000 grain weight (g), Harvest index, Seed yield per plant (g) and yield attributing characters along with three seed quality traits i.e. Seed germination per cent, Vigour Index, Viability per cent.

The statistical analysis of the data on individual character was carried out on the mean values over four replications. The statistical methods adopted were Mean, Range, Coefficient of Variation, Analysis of variance (ANOVA) for all characters, Correlation coefficient, Path coefficient analysis and Simple Regression coefficient analysis.

Results and Discussion

Analysis of variance revealed highly significant differences among entries in respect of all the agro-morphological traits under studied in both conditions *i.e.* normal and delayed sown condition except for number of tiller per plant in delayed sown condition.

Effect of different plant growth regulating hormones on mean performance of fifteen agro-morphological traits under normal sown condition showed varied response such as:

For days to flowering, T1 showed the longest duration of 72.05 days under normal sown condition, whereas T6 acquired the shortest duration of 66.10 days. For days to maturity, T2 recorded shortest duration of 109.32 days followed by T3 (111.62 days) and T5 (111.02 days). For plant height, T6 recorded maximum (99.31cm), whereas T2 recorded shortest plant height .The maximum pollen fertility per cent was exhibited by T2 (77.93) and minimum pollen fertility per cent was exhibited by T1 (69.71). For spikelet fertility per cent, T6 recorded highest (90.95%), whereas T2 recorded lowest value. For flag leaf area, T1 and T3 showed highest and lowest value respectively. For number of tillers per plant T2
showed maximum tillers whereas T1 recorded minimum number of tillers. T2 recorded highest ear length. For number of grains per ear, the maximum value being associated with T2 while minimum value recorded with the T1. The treatment T2 recorded highest 1000 grain weight (46.61) followed by T6 (43.34). Similarly for harvest index, the highest significant effect being associated with T2 (48.63%) in compare with control. For seed yield per plant the lowest and highest effect being associated with T1 (14.36g) and T2 (20.29g), respectively.

Correlation coefficient analysis of fifteen agro-morphological traits under normal sowing condition reveals that seed yield per plant exhibited highest positive and significant association with seed germination percentage (0.5783) followed by harvest index (0.5216), 1000 grain weight and number of tillers per plant.

The cause and effect analysis reveals that 1000 grain weight showed maximum direct positive phenotypic effect (0.6378) on yield per plant whereas days to flowering had minimum (0.1816) direct effect. The direct effects of other yield components, viz., number of tillers per plant, pollen fertility per cent, spikelet fertility per cent and number of grain per year on yield per plant were 0.4457, 0.3705, 0.2809 and 0.2146 respectively. Ear length, harvest index, days to maturity, plant height, and flag leaf area showed negative direct effects (-0.9637, -0.4253, -0.3302, -0.1296, and -0.0793, respectively) on seed yield per plant.

The adjusted coefficient of determination (R²) for variance of seed yield was recorded as 93.39 per cent. The traits like, days to maturity, pollen fertility per cent, spikelet fertility per cent, number of tiller per plant, ear length, 1000 grain weight, harvest index, seed germination per cent and seed viability per cent (0.9393) recorded maximum values of R². Among fifteen agro-morphological traits taken for study of effect of plant growth regulator chemicals under normal sown condition, five traits viz., spikelet fertility per cent, number of tiller per plant, ear length, 1000 grain weight and harvest index was found significant indicated the effect of these traits on seed yield.

Effect of different plant growth regulating hormones on mean performance of fifteen agro-morphological traits under delayed sown condition showed varied response such as:

For days to flowering T6 results in significant earlier days to flowering than check (T1). For the traits days to maturity, T6 recorded shortest days (99.87 days) followed by T5 (100.27 days). For plant height, T2 recorded maximum (93.13cm), whereas treatment (T1) recorded shortest plant height. The maximum pollen fertility per cent was exhibited by T6 (75.27) and minimum pollen fertility per cent was exhibited by T1 (67.72%). Effect of treatment on spikelet fertility per cent, T2 recorded highest (87.03%), whereas T4 recorded lowest spikelet fertility per cent (84.11%). For flag leaf area T3 and T1 showed highest and lowest value respectively. Number of tillers per plant also influenced maximum by treatment T2 whereas T1 recorded minimum value for traits. For ear length effect of treatment T2 showed recorded maximum value, whereas T1 recorded minimum value.

For number of grains per ear the maximum value being associated with T2, while minimum value recorded with T1. The treatment T2 recorded highest 1000 grain weight (44.24g) followed by T1 (34.68g). For harvest index the highest significant effect being associated with the treatment T2 (47.47%) in compare with control. Effect of treatment T2 Glycine betaine (600 PPM) (17.13g) also influenced seed yield per plant significantly in compare with control T1 (11.82g) (Table 1–9).
Table 1: Analysis of variance for fifteen agro-morphological characters under normal and delayed sowing conditions

Characters	Mean sum of squares (normal)	Mean sum of squares (delayed)				
	Rep. (d f=3)	Treatment (d f=5)	Error (d f=15)	Rep. (d f=3)	Treatment (d f=5)	Error (d f=15)
1. Days to Flowering	4.43	18.42*	5.66	10.16	54.1**	11.56
2. Day to Maturity	1.83	11.70**	3.20	2.84	10.23*	4.24
3. Plant height	4.34	25.14*	7.72	7.72	42.76*	12.28
4. Pollen fertility per cent	21.17	33.78*	9.66	15.85	33.5**	8.71
5. Spikelet fertility per cent	3.13	4.77	3.70	15.92	4.34*	6.11
6. Flag leaf Area (cm²)	0.052	1.08*	0.42	2.20	1.46*	0.49
7. Number of tiller Per Plant	0.19	1.32**	0.23	1.52	1.43	0.67
8. Ear length (cm)	1.38	9.90**	1.60	2.24	10.5**	1.69
9. Number of grain per ear	7.48	67.63**	15.73	1.17	23.70*	7.83
10. 1000 grain weight (gm)	13.45	70.77**	9.47	8.22	51.47**	11.08
11. Harvest Index per cent	8.71	56.17**	13.59	14.85	55.60*	15.66
12. Seed yield per plant	10.24	20.75*	6.60	5.86	16.3**	3.85
13. Seed germination per cent	3.72	19.15*	5.69	3.56	18.8**	4.67
14. Seed viability per cent	4.17	15.73**	4.35	2.98	22.9**	5.97
15. Vigour Index	5971.12	124173.12**	16954.24	10797.75	23893.26	19780.92
Table 2 Mean performance of fifteen agro-morphological traits under normal sowing conditions

SN	Treat.	DF	DM	PH	PFP	SFP	FLA	TPP	EL	GPE	TGW	HI	SYPP	SGP	VP	VI
1	T1	72.05	114.52	98.37	69.71	88.72	19.96	5.81	8.86	39.39	35.91	38.37	14.36	89.80	86.64	1366.04
2	T2	69.24	109.32*	92.98*	77.93*	87.92	19.02	7.42*	13.77*	50.49*	46.61*	48.63*	20.29*	96.04*	92.03*	1478.95
3	T3	69.67	111.62*	95.25	76.06*	90.12*	18.72	6.56*	10.97*	41.65	38.86	40.86	14.92	92.47	90.84*	1385.16
4	T4	71.78	112.25	99.05	74.02	89.04*	19.87	7.09*	11.20*	42.80	36.05	38.75	14.54	91.24	90.97*	1376.16
5	T5	69.71	111.02*	97.99	75.10*	88.92*	19.85	6.27	10.71	40.61	40.35	40.57	15.66	92.98	91.26*	1705.33*
6	T6	66.10*	112.30	99.31	76.90*	90.95*	19.24	6.53*	11.35*	46.07*	43.34*	42.44	17.28	94.17*	91.75*	1758.80*
Mean		69.76	111.84	97.16	74.95	89.26	19.44	6.61	11.14	43.50	40.19	41.60	16.17	92.78	90.58	1511.75
Cv		3.41	1.60	2.86	4.14	2.15	3.36	7.35	11.37	9.11	7.65	8.86	15.88	2.57	2.30	8.61
CD		3.58	2.69	4.18	4.6	3.45	2.34	0.73	1.91	5.97	4.63	5.55	3.87	3.59	3.14	196.24

Table 3 Mean performance of fifteen agro-morphological traits under delayed sowing conditions

SN	Treat.	DF	DM	PH	PFP	SFP	FLA	TPP	EL	GPE	TGW	HI	SYPP	SGP	VP	VI
1	T1	68.37	102.72	83.91	67.72	84.98	17.15	5.35	7.73	38.51	34.68	36.87	11.82	88.61	84.78	1224.72
2	T2	64.44	101.19*	93.13	71.92	87.03*	18.11	6.80*	12.75*	44.55*	44.24*	47.47*	17.13*	94.99*	91.45*	1166.55
3	T3	64.98	102.31*	88.56	74.65*	85.41	18.81*	5.75*	10.02*	40.38	37.58	39.74	12.28	91.71	88.31	1202.44
4	T4	67.55	104.09	87.08	73.87*	84.11	17.60	5.54*	9.97*	39.91	36.08	37.86	12.10	90.97	87.15	1347.64*
5	T5	60.29*	100.27*	89.38	75.07*	85.66*	18.06	6.05*	10.22*	40.94	38.53	39.93	13.40	92.87*	89.29*	1350.39*
6	T6	59.39*	99.87*	91.56	75.27*	86.46*	17.34	6.68*	10.89*	44.21*	41.77*	40.41	14.51	93.09*	90.42*	1228.60*
Mean		64.17	101.74	88.94	73.08	85.61	17.84	6.03	10.26	41.42	38.81	40.38	13.54	92.04	88.57	1253.39
Cv		5.29	2.02	3.94	4.04	2.88	3.94	13.59	12.67	6.75	8.57	9.80	14.49	2.34	2.76	11.22
Table 4: Correlated effect of chemical application (Normal)

	DF	DM	PH	PFP	SFP	FLA	TPP	EL	GPE	TGW	HI	SGP	VP	VI
DF														
DM	0.2016													
PH	-0.0320	0.4059*												
PFP	-0.3434	-0.0876	0.5056*											
SFP	-0.2545	0.1571	0.0808	0.2859										
FLA	0.4191*	0.5492**	0.3774	-0.4037	0.0551									
TPP	-0.0751	-0.2980	-0.4821*	0.3446	-0.051	-0.2806								
EL	-0.3244	-0.2843	0.4019	0.2440	0.4680*	0.5038*	0.6302**							
GPE	-0.3895	-0.2400	0.4740*	-0.0465	-0.3569	0.4213*	0.5533**							
TGW	-0.4781*	-0.4395	-0.2333	0.4345*	0.1567	0.4642*	0.3086	0.7416**	0.4394*					
HI	-0.0533	-0.3810	-0.4623*	0.2326	0.0744	-0.2202	0.4659*	0.3089	0.5122*	0.5229**				
SGP	-0.1775	-0.3284	-0.3023	0.1584	0.0502	0.1493	0.4492*	0.4835*	0.2851	0.6508**	0.6710**			
VP	-0.3711	-0.3431	-0.1350	0.4774*	-0.2794	-0.1316	0.4793*	0.4443*	0.2156	0.3545	0.2341	0.4332*		
VI	-0.3636	-0.0638	0.2858	0.1304	-0.1320	0.0604	0.0440	0.1087	0.1881	0.3647	0.2092	0.4246*	0.3270	
SYPP	-0.0964	-0.3114	-0.3627	0.3319	0.1663	0.1526	0.4468*	0.2653	0.2589	0.4911*	0.5216**	0.5783**	0.1561	0.245
Table 5: Correlated effect of chemical application (Late)

	DF	DM	PH	PFP	SFP	FLA	TPP	EL	GPE	TGW	HI	SGP	VP	VI
DF														
DM	0.5798**													
PH	-0.4224*	-0.2720												
PF	-0.2488	-0.2884	0.2665											
SFP	-0.1997	0.1400	0.1982	0.1082										
FLA	0.1249	0.0788	0.1720	-0.2272	0.0804									
TPP	-0.2712	-0.1332	0.3693	-0.7438**	0.0987	-0.5836**								
EL	-0.3089	-0.0393	0.6104**	-0.1578	0.2145	0.4554*	0.6239**							
GPE	-0.3712	-0.1525	0.7253**	0.1396	0.5419**	0.0910	0.4922*	0.6141**						
TGW	-0.2663	-0.0335	0.5664**	-0.1229	0.2895	-0.2875	0.5258**	0.7078**	0.4143*					
HI	-0.1877	-0.1694	0.3990	0.0738	0.0576	-0.0168	0.3314	0.3517	0.1834	0.5196**				
SGP	-0.3651	-0.3579	0.5606**	0.3940	0.2188	0.1919	0.2627	0.6540**	0.5688**	0.4688*	0.3023			
VP	-0.4799*	-0.4602*	0.7145**	0.5093*	0.3131	-0.2669	0.2981	0.5490**	0.5410**	0.5333**	0.3134	0.6868**		
VI	0.0810	-0.0835	-0.0391	-0.1459	-0.2946	0.1346	-0.1721	-0.0677	-0.2113	-0.1255	-0.4283*	0.0201	0.0441	
SYPP	-0.0868	-0.2191	0.4141*	0.0017	0.0286	0.0348	0.3581	0.3740	0.3934	0.5149**	0.6622**	0.3328	0.2234	0.1668
Table 6 Result of cause and effect - analysis of chemical application under normal condition

	DF	DM	PH	PFP	SFP	FLA	TPP	EL	GPE	TGW	HI	SGP	VP	VI
DF	0.1816	0.0366	-0.0058	-0.0918	0.0462	-0.0761	-0.0136	-0.0589	-0.0868	-0.0838	-0.0097	-0.0322	-0.0674	-0.0661
DM	-0.0666	-0.3302	-0.1340	0.1134	0.0518	0.1813	0.0984	0.2081	0.1286	0.1442	0.1258	0.1084	0.1133	0.0211
PH	0.0041	-0.0525	-0.1294	0.0113	0.0104	0.0488	0.0624	0.0368	0.0311	0.0302	0.0598	0.0391	0.0175	-0.0370
PF	-0.1873	-0.1272	-0.0324	0.3705	-0.1059	0.1496	0.1277	0.1489	0.1756	0.1610	0.0862	0.0587	0.1769	0.0483
SFP	0.0715	-0.0441	-0.0227	-0.0803	0.2809	-0.0155	-0.0146	0.0685	-0.0131	0.0440	0.0209	0.0141	-0.0785	-0.0371
FLA	0.0332	0.0435	0.0299	-0.0320	0.0043	-0.0793	-0.0114	-0.0371	-0.0283	-0.0368	-0.0175	-0.0118	-0.0104	0.0048
TPP	-0.0335	-0.1328	-0.2149	0.1536	-0.0231	0.0643	0.4457	0.2245	0.1878	0.1375	0.2077	0.2002	0.2136	0.0196
EL	0.3126	0.6074	0.2740	-0.3873	-0.2351	-0.4510	-0.4855	-0.9637	-0.5332	-0.7146	-0.2977	-0.4660	-0.4282	-0.1047
GPE	-0.1026	-0.0836	-0.0515	0.1017	-0.0099	0.0766	0.0904	0.1187	0.2146	0.0943	0.1099	0.0612	0.0463	0.0404
TGW	-0.2943	-0.2786	-0.1488	0.2771	0.0999	0.2961	0.1968	0.4730	0.2802	0.6378	0.3335	0.4151	0.2261	0.2327
HI	0.0226	0.1620	0.1966	-0.0989	-0.0316	-0.0937	-0.1982	-0.1314	-0.2178	-0.2224	-0.4253	-0.2854	-0.0996	-0.0890
SGP	-0.0969	-0.1792	-0.1650	0.0864	0.0273	0.0814	0.2451	0.2638	0.1556	0.3551	0.3661	0.5456	0.2363	0.2316
VP	0.0762	0.0704	0.0277	-0.0980	0.0573	-0.0270	-0.0984	-0.0912	-0.0443	-0.0728	-0.0480	-0.0889	-0.2053	-0.0671
VI	-0.0173	-0.0030	0.0136	0.0062	-0.0062	-0.0029	0.0021	0.0052	0.0089	0.0173	0.0099	0.0202	0.0155	0.0475
SYPP	-0.0964	-0.3114	-0.3627	0.3319	0.1663	0.1526	0.4468	0.2653	0.2589	0.4911	0.5216	0.5783	0.1561	0.2450

R^2 0.6755
Table 7 Result of cause and effect - analysis of chemical application under delayed condition

	DF	DM	PH	PFP	SFP	FLA	TPP	EL	GPE	TGW	HI	SGP	VP	VI
DF	0.2236	0.1296	-0.0944	0.0556	-0.0446	-0.0279	-0.0606	-0.0691	-0.0830	-0.0595	-0.0420	-0.0816	-0.1073	-0.0181
DM	-0.1793	-0.3093	0.0841	-0.0892	-0.0433	0.0244	0.0412	0.0122	0.0472	0.0104	0.0524	0.1107	0.1423	-0.0258
PH	0.1330	0.0856	-0.3149	0.0839	-0.0624	0.0542	-0.1163	-0.1922	-0.2284	-0.1784	-0.1257	-0.1765	-0.2250	-0.0123
PF	0.0027	0.0032	-0.0029	0.011	-0.0012	0.0025	0.0013	-0.0017	-0.0015	-0.0014	-0.0008	-0.0044	-0.0056	0.0016
SFP	0.0525	-0.0368	-0.0521	0.0284	-0.2627	0.0211	-0.0259	-0.0564	-0.1424	-0.0761	-0.0151	-0.0575	-0.0822	-0.0774
FLA	-0.0023	-0.0014	-0.0031	0.0041	-0.0015	0.0183	-0.0047	-0.0083	-0.0017	-0.0053	0.0003	-0.0035	-0.0049	0.0025
TPP	0.0521	0.0256	-0.0710	-0.0223	-0.0190	0.0495	-0.1922	-0.1199	-0.0946	-0.1011	-0.0637	-0.0505	-0.0573	-0.0331
EL	0.0256	0.0033	-0.0505	0.0131	-0.0177	0.0377	-0.0516	-0.0827	-0.0508	-0.0586	-0.0291	-0.0541	-0.0454	-0.0056
GPE	-0.3235	-0.1329	0.6320	-0.1216	0.4722	-0.0793	0.4289	0.5351	0.8715	0.3611	0.1599	0.4957	0.4714	0.1841
TGW	-0.1310	-0.0165	0.2788	-0.0605	0.1425	-0.1415	0.2588	0.3483	0.2039	0.4922	0.2557	0.2307	0.2625	0.0618
HI	-0.1276	-0.1152	0.2712	-0.0502	0.0392	0.0114	0.2253	0.2390	0.1247	0.3532	0.6797	0.2055	0.2130	0.2911
SGP	0.0328	0.0321	-0.0503	0.0354	-0.0196	0.0172	-0.0236	-0.0587	-0.0511	-0.0421	-0.0271	-0.0898	-0.0616	0.0018
VP	0.1372	0.1316	-0.2043	0.1456	-0.0895	0.0763	-0.0852	-0.1570	-0.1547	-0.1525	-0.0896	-0.1964	-0.2859	0.0126
VI	0.0175	-0.0181	-0.0085	-0.0316	-0.0638	-0.0291	-0.0372	-0.0146	-0.0457	-0.0272	-0.0927	0.0043	0.0095	0.2164
SYPP	-0.0868	-0.2191	0.4141	0.0017	0.0286	0.0348	0.3581	0.3740	0.3934	0.5149	0.6622	0.3328	0.2234	0.1668

R^2 0.7279
Table 8 Simple Regression coefficient on seed yield of different chemically induced traits under timely sown condition

Character	Beta	R square	Reg. Coeff.	Std .Error	Significance
D M	-0.3003	0.0935	-0.4336	0.3282	
P F P	0.3490	0.1158	0.2746	0.1748	
S F P	-0.2862	0.0477	-0.4640	0.3165	*
T PP	0.5045	0.2254	2.4393	1.1047	**
E L	0.8103	0.2149	1.4041	0.6220	*
T G W	0.4722	0.2319	0.3116	0.2217	**
H I	0.2207	0.1151	0.1493	0.1773	*
S G P	0.5286	0.3057	0.5824	0.3061	
S V P	-0.2600	-0.0406	-0.3177	0.2723	

R² 0.9393

Table 9 Simple Regression coefficient on seed yield of different chemically induced traits under delayed sown condition

Character	Beta	R square	Reg. Coeff.	Std .Error	Significance
DFF	0.283	-0.0225	0.163	0.107	
D M	-0.385	0.084	-0.434	0.219	
G P E	0.483	0.190	0.391	0.156	*
T G W	0.321	0.165	0.190	0.118	*
H I	0.627	0.415	0.333	0.101	*
S V P	-0.456	-0.102	-0.391	0.187	*
S V I	0.209	-0.035	0.004	0.003	

R² 0.9035

Correlation studies revealed that grain yield per plant showed significant positive correlation with plant height, 1000 grain weight and harvest index under delayed sown condition.
flowering, days to maturity, number of grain per ear, 1000 grain weight, harvest index and viability per cent recorded maximum values of R^2 (0.9035). Hence, selection of plant growth regulating hormones based on these characters would be more effective for yield improvement.

In conclusion, out of five plant growth regulating hormones, the effect of treatment T_2 Glycine betaine (600 PPM), showed significant effect on highest grain yield per plant via, different agro-morphological character mentioned above for both normal and delayed condition.

Yield enhancement due to effect of treatment T_2 Glycine betaine (600 PPM) was recorded 41.30% higher under normal sown condition whereas 44.92% higher under delayed sown condition in comparison to control T_1.

Seed quality traits also showed significant positive effect of Glycine betaine (600 PPM) for seed germination per cent and viability per cent and no effect on vigour index of seed under both normal and delayed sown condition.

Research highlight

Significant yield enhancement due to effect of Glycine betaine (600 PPM) (Plant growth regulating hormone) accomplish with positive effect on seed quality traits such as germination, viability & vigour were recorded under both normal sown condition as well as under late sown condition in comparison to control.

Acknowledgement

Financial help received during conduct of experiment as fellowship and for purchase of chemical molecules from DRPCAU, Pusa is duly acknowledged.

References

Fryer MJ (1992). The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ.,15: 381-392.

Janda, T., G. Szalai, I. Tari and E-Paldi. 1999. Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) Plants. Planta, 208: 175-180.

Khan, M.I., N. Iqbal, A. Masood, T.S. Per and N.A. Khan(2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav. 8(11): 263-74.

M. Ashraf, and M. R. Foolad, 'Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance', Environmental & Experimental Botany, 59 (2007): 206-16

Munne – Bosch (2005).The role of alpha Tocopherol in plant stress tolerance. J Plant Physiol. 162(7):743.8.

Munne- Bosch and Jon Falk (2004).Tocopherols plants, biosynthesis, tocotrienols, antioxidants, chloroplast, vitamin E, lipids, biochemical pathways, enzyme. Insights into the function of Tocopherols in plants,218:323- 326.

Munné-Bosch S, Alegre L (2002). The function tocopherols and to cotrienols in plants. Crit. Rev. Plant Sci., 21: 31-57.

Smirnoff, N. and G.L. Wheeler, 2000. Ascorbic acid in plants: Biosynthesis and function. Crit. Rev. Plant Sci., 19: 267-290.

Stone, P. (2001). The effects of heat stress on cereal yield and quality. In: A.S. Basra (Ed.) Crop V.A. Halim., A. Vess., D. Scheel., S. Rosahl. (2006). The role of salicylic acid and
jasmonic acid in pathogen defence. 8: 307-313.

V.A. Halim., A. Vess., D. Scheel., S. Rosahl. (2006) The role of salicylic acid and jasmonic acid in pathogen defence. Vol:08, page – 307-313.

Wang, L.J., Fan, L., Loescher, W., Duan, W., Liu, G.J. and Cheng, J.S. 2010. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 10:34-40.

Wang, Xiaoyuan and Quinn, Peter. J (2000). The location and function of vitamin E in membranes. Molecular Membrane Biology. 17:143-156.

How to cite this article:

Bharati, S.P., Ravi Kant, Anil Kumar, V.K. Sharma and Choudhary, V.K. 2018. Study of Chemically Induced Variation in Agro-morphological Characters of Wheat Under Heat Stress. Int.J.Curr.Microbiol.App.Sci. 7(07): 1679-1691. doi: https://doi.org/10.20546/ijcmas.2018.707.198