UTILIZATION OF POLYMER AND LIPID-BASED DRUG DELIVERY SYSTEMS IN TREATMENT OF NEUROLOGICAL DISORDERS- A MINI REVIEW

Arsalan Sarmad
Department of Pharmacology, Lovely Professional University Pargwara, Punjab, India.

Conflicts of Interest: Nil
Corresponding author: Arsalan Sarmad
DOI: https://doi.org/10.32553/ijmsdr.v4i11.700

Abstract:
In modern drug discovery techniques consistently increasing in the number of new pharmacologically active lipid compounds these compounds are poorly water-soluble. A great challenge of making this medication for oral administration with the desired bioavailability. Epilepsy is a severe neurological disorder that needs rapid treatment. To enhance its bioavailability, we need to make lipid-based drugs. On other hand, the surface tension reducing agents will give poor water-soluble formulation. Treatment of Neurological disorder is still a challenge for medical practitioners because of restricted moments and barriers. The solid lipid nanoparticles (SLN) and nanoemulsions are easily avoided the blood-brain barrier. Therefore, there is a maximum therapeutic efficacy achieved by using the lipid and polymer-based drug delivery system in the treatment of neurological disorders.

Keywords: Neurological disorder, Lipid, Polymer, Lipid Based Drug delivery systems, Epilepsy, Treatment.

Introduction: Many neurological disorders are seeking treatments and in most of the neurologic diseases based on the hypersynchronous activity of the neurons in the cerebral cortex or neurochemical imbalance in the brain. Every year more than 500000 patients have reported this disorder in the world. In a neurological disorder, the tolerance of medication is high due to the molecular mechanism.\(^{[1,2,3]}\)
The drug which able to cross BBB that only able to treat neurological disorders. The small molecular weight lipophilic molecule can easily penetrate or cross BBB. In this review, we are focusing on the creative drug delivery system. These transporters play a very important role it is restricting access of molecules to the brain. Specifically, few transporters permit therapeutic drug molecules to the brain.\(^{[4,5,6,7]}\) The ATP binding cassette transporter (ABC-Transporter) & P-glycoprotein is one of the most studied BBB transporters of the ABC family. P-glycoprotein can eliminate NRx drug molecules, such as phenytoin, phenobarbital, and levetiracetam. There is another one transporter named as solute carrier (SLC) transporter which includes organic anion transporter present over neurons.\(^{[8-23]}\) The neurochemical which get affected in neurologic disorder & their roles are Serotonin, dopamine, adrenaline, acetylcholine, GABA, glutamate.\(^{[24]}\)

Glutamate: It is an excitatory neurotransmitter if it is in higher in amount then the brain will hyperactive.\(^{[24]}\)

GABA: It is an inhibitory neurotransmitter that diminished the activity of neurons which leads to loss of attention mood swings & drowsiness.\(^{[24]}\)

Serotonin: The synonym of serotonin is 5-Hydroxytriptamine. It is the hormone of happiness that plays the important role in the mood and normal behavior of a person. It manages the autonomic responses of the brain such as body temperature vasoconstriction vasodilation sleep & hormonal regulations, the level of serotonin involved in depression. It is a psychoactive substance and has a lot of roles in certain mental disorders.\(^{[24]}\)

The present review highlights, the use and clinical implications of lipid or polymer-based drug delivery systems in the treatment of neurological disorders.

Challenges in lipid and polymer delivery systems
If we can manipulate these transporters it will significantly enhance the penetration of the drug into the brain. Lipid-based drug delivery system (LBBDS) has the potential to emerge as a novel treatment for various neurological disorders.\(^{[25,26,27,28,29]}\) These carriers will protect the drug from degradation & on the other hand reducing the neural toxicity. Lipid and polymer delivery systems leading from front because of its higher advantages & numerous biocompatibilities.\(^{[30,31,32,33,34-40]}\) To meet a wide range of product requirements these formulations can be modified in various ways per the disease condition, route of administration, and also cost product stability, toxicity, and efficacy. Lipid-based carriers are safe and efficient hence they have been proved to be attractive candidates for the formulation of pharmaceuticals, as well as vaccines, diagnostics, and nutraceuticals. Lipid and polymer delivery systems enhance the solubility and bioavailability of drugs.
In LBBDS oral route is more preferable because of its properties like noninvasiveness, inexpensive with fewer side effects.\(^{[42,43,44,45,46,47]}\) Easiest and most convenient route of administration for the chronic therapies of diseases. Solubility dispersion digestion we have to keep in our mind while formulating LBBDS.\(^{[48,49,50,51,52,61]}\) With LBBDS various molecules of the drug have been created that have a potential for therapeutic action. But the real problem is most of the novel discovered molecules possess a high4er molecular weight and belong to biopharmaceutical classification system (BCS)–II, these molecules have poor aqueous solubility and high membrane permeability.\(^{[62]}\) These two characteristics are a challenging task for the bioavailability of orally-administered drugs. On the other hand, the drugs possess low solubility which leads to low dissolution and lack of good absorption properties. The poor solubility of the molecules not only gives low oral bioavailability but it leads to high inter and intracellular variability and lack of dose responses. Few drugs may enhance bioavailability when administered along with food.\(^{[63,64]}\) To formulation such drugs which is safe as well as efficacious, we have to maintain a balance between bioavailability, disposition within the body & toxicity.\(^{[65,66]}\) Their various techniques can be used e.g micronization, complexation with cyclodextrins, dispersions of solid, surfactants, and permeation enhancers have been reported to solve the permeability & solubility issues.\(^{[67,68]}\)

Formulation of lipid and polymer delivery systems

Lipid and polymer delivery systems can be developed successfully by consideration of the following formulation objectives In which selection of excipients based on their melting point and fatty acid composition, HLB value, disposability, and digestibility; proper screening of required excipients for appropriate solubility, dispersion & dissolution properties, which must be compatible with API and able to enhance the stability of formulation design of proper animal models to evaluate in vivo performance of the chosen formulation and improve the formulation with the proper drug loading and dissolution profile.\(^{[69,70,71,72]}\)

Silica Based Materials for Solid Carriers

Silica-based materials have had a traditional role in lipid and polymer delivery systems silica is very important excipients which increases surface area and that enhance the absorbance of the drug. MCM-41 and SBA-15 are mesoporous materials. Researches have been a great interest in silica-based materials as delivery systems for numerous variety of hydrophilic and hydrophobic drug substances. It is suitable for poorly water-soluble drugs, the physicochemical properties of silica-based materials makes the effective in enhancing drug dissolution and oral absorption of drug multiple mechanisms, in which (i) preservation of drug molecules in the molecularly dispersed (i.e. amorphous) form, (ii) maintain the drug contact with solid surface & control the balance between intermolecular interaction in aqueous media silica-based materials are hydrophilic, (iii) It allows the supersaturated drug solubilization which helps in a drug absorption.\(^{[69,70,71,72]}\)

Assessment of safety and Toxicity concerns of delivery systems in Neurological disorders

The use of novel materials for lipid and polymer delivery systems will bring various regulatory challenges, like proving biocompatibility and safety to human use. Whilst the oral route is considered as safer in comparison to other delivery routes of administration (e.g. parenteral), The importance given by the regulatory agencies on the safety of nanostructured materials has increased in recent times due to notable advances in the field of nanomedicine. In which the repurposing of known and biocompatible excipients like montmorillonite, starch & carbonate salts, for solidifying lipid and polymer delivery systems have negligible regulatory hurdles when seeking marketing approval. Lipid and polymer delivery systems are a cost-effective and biocompatible approach towards novel therapies for neurologic disorders.\(^{[69,70,71,72]}\)

Conclusion

Lipid and polymer delivery systems are bioavailability enhancing formulations for poorly water-soluble drugs, on the other hand, lipid and polymer delivery systems help in minimizing the cost. Lipid and polymer delivery systems are suitable for the hydrophilic as well as the hydrophobic nature of the drug. The solid carrier of lipid and polymer delivery systems like silica-based increase the area of absorption of drugs which leads to help in hassle-free absorption. If absorption of the drug is in the desired manner will give appropriate permeability and smooth transportation of the drug across the barriers. There are some regulatory authority hurdles but once it clears then will achieve the desired therapeutic action with less detrition and wastage of drug. Lipid and polymer delivery systems enhance the biopharmaceutical performance of the drug.

References:

1. Sandeep K., Mohanvarma M., (2013), “Oral lipid-based drug delivery systems”. *Acta Pharmaceutica Sinica*. Volume 3(6) Page no. 361–372.
2. Roger E., Lagarce F., (2011), “Development and characterization of a novel lipid nano capsule formulation of Sn38 for oral administration”. *European Journal of Pharmaceutics & Biopharmaceutics*, Volume 79, Page No. 181–188.
3. Abdelhady, S., Honsy, K. M., & Kurakula, M. (2015).
Electro Spun- Nanofibrous Mats: A Modern Wound Dressing Matrix with a Potential of Drug Delivery and Therapeutics. *Journal of Engineered Fibers and Fabrics*, 10(4), 1558925015010000. https://doi.org/10.1177/ 1558925015010041

4. Arik D., Amnon H., (2008), “Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs”. *Journal of Controlled Release* by eelsevier, Volume 6, Page no. 1-10.

5. Ahmed, O. A. A., Kurakula, M., Banjar, Z. M., Afouna, M. I., & Zidan, A. S. (2015). Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films. *Journal of Pharmaceutical Sciences*, 104(6), 2062–2075. https://doi.org/10.1002/jps.24448

6. Martinez M.N, Amidon G.L, (2002) “A mechanistic approach to understanding the factors affecting drug absorption” a review of fundamentals”. *Journal of Clinical Pharmacology*. Volume 42 (6) Page no. 620–643.

7. Constantinides P.P., (2007), “Lipid micro emulsions for improving drug dissolution and oral absorption physical and biopharmaceutical aspects”. *Pharmaceutical Research*. Volume 12 (11) Page no. 1561-1572.

8. Alhakamy, N. A., Ahmed, O. A. A., Kurakula, M., Caruso, G., Caraci, F., Asfour, H. Z., Alfarsi, A., Eid, B. G., Mohamed, A. I., Alruwaili, N. K., Abdulalaa, W. H., Fahmy, U. A., Alhadrami, H. A., Eldakhakhny, B. M., & Abdel-Naim, A. B. (2020). Chitosan-based microparticles enhance ellagic acid’s colon targeting and proapoptotic activity. *Pharmaceutics*, 12(7), 1–14. https://doi.org/10.3390/pharmaceutics12070652

9. Brigger I., Dubernet C., and Couvreur P., (2002) “Nanoparticles in cancer therapy and diagnosis,” *Advanced Drug Delivery Reviews*, volume. 54, no. 5, Page No. 631–651.

10. Panyam J., and Labhasetwar V., (2003), “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” *Advanced Drug Delivery Reviews*, vol. 55, no. 3, Page 329–347.

11. Alhakamy, N. A., Fahmy, U. A., Ahmed, O. A. A., Caruso, G., Caraci, F., Asfour, H. Z., Bakhrehab, M. A., Alomary, M. N., Abdulalaa, W. H., Okbazghi, S. Z., Abdel-Naim, A. B., Eid, B. G., Aldawsari, H. M., Kurakula, M., & Mohamed, A. I. (2020). Chitosan coated microparticles enhance simvastatin colon targeting and pro-apoptotic activity. *Marine Drugs*, 18(4), 226. https://doi.org/10.3390/md18040226

12. Gershkovich P., Wasan K. M., and Barta C. A., (2008), “A review of the application of lipid-based systems in systemic, dermal/ transdermal, and ocular drug delivery,” *Critical Reviews in Therapeutic Drug Carrier Systems*, Volume. 25, no. 6, Page NO. 545–584.

13. Hasnain, M. S., Kiran, V., Kurakula, M., Rao, G. K., Tabish, M., & Nayak, A. K. (2020). Use of alginates for drug delivery in dentistry. In *Alginates in Drug Delivery* (pp. 387–404). Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00015-7

14. Benamer H., (2006) “Liquid and semi-solid formulations for enhancing oral absorption,” *Bulletin Technique Gattefosse’s*, Volume. 99, no. 1, pp. 63–75.

15. Pouton C. W. and Porter C. J. H., (2008) “Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies,” *Advanced Drug Delivery Reviews*, Volume. 60, no. 6, Page No. 625–637.

16. Hasnain, M. S., Nayak, A. K., Kurakula, M., & Hoda, M. N. (2020). Alginate nanoparticles in drug delivery. In *Alginates in Drug Delivery* (pp. 129–152). Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00006-6

17. Dahan A., Hoffman A., (2008), “Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs,” *Journal of Controlled Release*, Volume. 129, no. 1, Page No. 1–10.

18. Hosny, K. M., Aldawsari, H. M., Bahmdan, R. H., Sindi, A. M., Kurakula, M., Alrobaian, M. M., Aldryhim, A. Y., Alkhalidi, H. M., Bahmdan, H. H., Khallaf, R. A., & El Sisi, A. M. (2019). Preparation, Optimization, and Evaluation of Hyaluronic Acid-Based Hydrogel Loaded with Miconazole Self-Nanoemulsion for the Treatment of Oral Thrush. *AAPS PharmSciTech*, 20(7), 297. https://doi.org/10.1208/s12249-019-1496-7

19. Strickley R.G, (2004) “Solubilizing excipients in oral and injectable formulations,” *Pharmaceutical Research*, Volume. 21, no. 2, Page No. 201–230.

20. Cannon J. B, Long M. A, (2008) “Emulsions, micro emulsions, and lipid-based drug delivery systems for drug solubilization and delivery, part II,” in *Oral Applications*, Volume. 16, Page No. 227–254.

21. Kurakula, M., & A. Ahmed, T. (2015). Co-Delivery of Atorvastatin Nanocrystals in PLGA based in situ Gel for Anti-Hyperlipidemic Efficacy. *Current Drug Delivery*, 13(2), 211–220. https://doi.org/10.2174/1567201813666151109102718

22. Souto E. B, Muller R. H, (2007) “Nanoparticulate Drug Delivery Systems”, *Informa Healthcare*, New York, NY, USA, Volume. 166.

23. Kurakula, M., Ahmed, O. A. A., Fahmy, U. A., & Ahmed, T. A. (2016). Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. *Journal of Liposome Research*, 26(4), 288–296. https://doi.org/10.3109/08982104.2015.1117490
24. Howard C.B., (2018) “Kindling in Alcohol Withdrawal, Alcohol health and research world” Published by University of California, VOL. 22, NO. 1 Page. No. 25-32

25. Kurakula, M., El-Helw, A. M., Sobahi, T. R., & Abdelaal, M. Y. (2015). Chitosan based atorvastatin nanocrystals: Effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. International Journal of Nanomedicine, 10, 321–334. https://doi.org/10.2147/IJN.S77731

26. Abouelmagd S.A., Hyun H. (2014), “Extracellularly achievable nanocarriers for drug delivery to tumor”. Expert opinion delivery. Volume 11 Page No. 1601-1618.

27. Kurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136, 109919. https://doi.org/10.1016/j.eurpolymj. 2020.109919.

28. Agrawal S, Giri T.K, Tripathi D.K, Alexander A.A (2012), “A review on novel therapeutics strategies for the enhancement of solubility for hydrophobic drugs through lipid and surfactant based self-micro emulsifying drug delivery system: a novel approach”. American Journal of Drug Discovery & Development, Volume 2 Page No.143–183

29. Kurakula, M., Naveen, N. R., & Yadav, K. S. (2020). Formulations for Polymer Coatings. Polymer Coatings, 415–443. https://doi.org/10.1002/9781119655145.ch19

30. Aungst B.J. (1993) “Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or pre systemic metabolism”. Journal of Pharmaceutical Science, Volume 82 Page no. 979–987.

31. Kurakula, M., & Raghavendra Naveen, N. (2020). In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. Marine Drugs, 18(4), 201. https://doi.org/10.3390/md18040201

32. Brannon-Peppas L., Blanchette J.O., (2004), “Nanoparticle and targeted systems for cancer therapy”. Advance Drug Delivery Review, Volume 56, Page No.1649–1659

33. Burkersroda F.V, Schedl L., Göpferich A. (2002) “Why degradable polymers undergo surface erosion or bulk erosion”. Biomaterials Volume 23 Page No. 4221–4231

34. Kurakula, M., Rao, G. K., Kiran, V., Hasnain, M. S., & Nayak, A. K. (2020). Alginate-based hydrogel systems for drug releasing in wound healing. In Alginites in Drug Delivery (pp. 323–358). Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00013-3

35. Chang C., Wei H., Quan C.Y, Li Y.Y, (2008), “Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery”. Journal of Polymer Science Part A, Volume 46, Page No. 3048–3057

36. Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinlypyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60, 102046. https://doi.org/10.1016/j.jddst.2020.102046

37. Kaity S, Isaac J, Ghosh A, (2013), “Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery”. Carbohydrate Polymer, Volume 94, Page No. 456–467

38. Knepp V.M, Hinz R.S, Szoka F.C, (1987), “Controlled drug release from a novel liposomal delivery system”. International Investigation of transdermal potential”. Journal Control Release, Volume 5 Page No. 211–221

39. Korsmeyer RW, Gurny R, Doelker E, (1983) “Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air”. Journal Pharm Science, Volume 72 Page No. 1189–1191

40. Kurakula, M., Sobahi, T. R., El-Helw, A., & Abdelaal, M. Y. (2014). Development and validation of a RP-HPLC method for assay of atorvastatin and its application in dissolution studies on thermosensitive hydrogel-based nanocrystals. Tropical Journal of Pharmaceutical Research, 13(10), 1681–1687. https://doi.org/10.4314/tjpr.v13i10.16

41. Anette M., Anayo O., (2010) “New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs”. JPP Journal of pharmacy and Pharmacology. Volume .62, Page No. 1622–1636.

42. Kurakula, M., Srinivas, C., Kasturi, N., & Diwan, P. V. (2012). Formulation and Evaluation of Prednisolone Proliposomal Gel for Effective Topical Pharmacotherapy. International Journal of Pharmaceutical Sciences and Drug Research, 4(1), 35. www.ijpsdr.com

43. Cardoso F.L, Brites D, Brito M.A, (2010), “Looking at the blood brain barrier: Molecular anatomy and possible investigation approaches”. Brain Research Review, Volume 64 Page No. 328–363.

44. Mallesh, K., Pasula, N., & Kumar Ranjith, C. P. (2012). Piroxicam proliposomal gel: a novel approach for tropical delivery. Journal of Pharmacy Research, 5(3), 1755–1763.

45. Begley D.J, (2004), “Delivery of therapeutic agents to the central nervous system: The problems and the
possibilities”. *Pharmacology & Therapeutics*, Volume 104 Page No. 29–45.

46. Mohd, A. B., A. P. R., & Diwan, P. V. (2011a). Estimation of Prednisolone in Proliposomal formulation using RP HPLC method. *Int. J. Chem. Anal. Sci.* 2011; 2: 1193, 2(4), 1663–1669.

47. Mahar Doan K.M, Humphreys J.E., (2002). “Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs”. *Journal of Pharmacology Experiments & Therapeutics*, Volume 303 Page No. 1029–1037.

48. Mohd, A. B., A. P. R., & Diwan, P. V. (2011b). Estimation of Prednisolone in Proliposomal formulation using RP HPLC method. *Int. J. Res. Pharm. Biomed. Sci.* 2011; 2: 663, 2(4), 1663–1669.

49. Levin V.A., (1980), “Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability”. *Journal of Medicinal Chemistry*, Volume 23 Page No. 682–684.

50. Bodor N, Buchwald P., (2003), “Brain-targeted drug delivery”. *American Journal Of Drug Target*, Volume 1 Page No. 13–26.

51. MacKay J.A, Deen D.F, Szoka F.C Jr. (2005). “Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating”. *Brain Research*, Volume 1035 Page No. 139–153.

52. Murali, V. P., Fujiwara, T., Gallop, C., Wang, Y., Wilson, J. A., Atwill, M. T., Kurakula, M., & Bumgardner, J. D. (2020). Modified electrospun chitosan membranes for controlled release of simvastatin. *International Journal of Pharmaceutics*, 584, 119438. https://doi.org/10.1016/j.ijpharm.2020.119438

53. Matsuhsia K, Kondoh M, Takahashi A, (2009). “ Tight junction modulator and drug delivery”. Expert Opinion on Drug Delivevry, Volume 6 Page No. 509–515.

54. Naguib, G. H., Hassan, A. H., Al-Hazmi, F., Kurakula, M., Al-Dharrab, A., Alkilali, H. M., Al-Ahidal, A. M., Hamed, M. T., & Pashley, D. H. (2017). Zein based magnesium oxide nanowires: Effect of anionic charge on size, release and stability. *Digest Journal of Nanomaterials and Biostructures*, 12(3), 741–749.

55. Temsamani J, Scherrmann J.M, Rees A.R., (2000). “Brain drug delivery technologies: Novel approaches for transporting therapeutics”. *Pharmaceutical Science & Technology Today*, Volume 3 Page no.155–162.

56. Naguib, Ghada Hussein, Al-Hazmi, F. E., Kurakula, M., Abdulaziz Al-Dharrab, A., Mohamed Hosny, K., Mohammed Alkilali, H., Tharwat Hamed, M., Habiballah Hassan, A., Al-Mohammadi, A. M., Mohamed Alnowaiser, A., & Henry Pashley, D. (2018). Zein coated zinc oxide nanoparticles: Fabrication and antimicrobial evaluation as dental aid. *International Journal of Pharmaceutics*, 14(8), 1051–1059. https://doi.org/10.3923/ijp.2018.1051.1059

57. Pardridge W.M, Golden P.L, Kang Y.S. (1997). “Brain micro vascular and astrocyte localization of P-glycoprotein”. *Journal of Neurochemicals*, Volume 68 Page No. 1278–1285.

58. Naveen, N. R., Gopinath, C., & Kurakula, M. (2020). Okra-thioglycolic acid conjugate-synthesis, characterization, and evaluation as a mucoadhesive polymer. *Processes*, 8(3), 316. https://doi.org/10.3390/pr8030316

59. Hawkins B.T, Davis T.P. (2005). “The blood-brain barrier/ neurovascular unit in health and disease”. *Pharmacology Review*, Volume 57 Page No. 173–185.

60. Reese T.S, Karnovsky M.J. (1967). “Fine structural localization of a blood-brain barrier to exogenous peroxidase”. *Journal of Cell Biology*, Volume 34 Page No. 207–217.

61. Raghavendra Naveen, N., Kurakula, M., & Gowthami, B. (2020). Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. *Materials Today: Proceedings*. https://doi.org/10.1016/j.matpr.2020.01.491

62. Eugen B., Eva M., (2009), “The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier”, Expert Opinion. Drug Delivery, Taylor & Francis volume 6(6) Page No. 553-565.

63. Girish B.S., Rakesh P. P., (2011), “Solid lipid nanoparticles and nano lipids carriers: as a novel solid lipid based carriers”, *International research journal of pharmacy*, by IRUP Volume 2(2), Page No.40-52.

64. Vanitasagar, S., Srinivas, C., Subhashini, N. J. P., & Mallesh, K. (2012). Solid dispersion-a comparative study on the dissolution rate of aceclofenac. *International Journal of Pharmacy and Pharmaceutical Sciences, 4*(SUPPL.3), 274–278.

65. Tahnee J.D., Shasha R., (2016), “Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems”, The AAPS journals, volume 18, Page No. 23-40.

66. Humberstone A.J., Charman W.N., (1997) “Lipid-based vehicles for the oral delivery of poorly water soluble drugs”. *Advance Drug Delivery Reviw*, Volume 25(1): Page No. 103–128.

67. Porter C.J.H, Trevaskis N.L, Charman W.N., (2007) “Lipids and lipidbased formulations: optimizing the oral delivery of lipophilic drugs”. *National Review Drug Discovery*. Volume 6(3) Page No. 231–248.
68. Venkatesh, M., & Mallesh, K. (2013). Self-Nano Emulsifying Drug Delivery System (Snedds) for Oral Delivery of Atorvastatin- Formulation and Bioavailability Studies. *Journal of Drug Delivery and Therapeutics*, 3(3), 131–140. https://doi.org/10.22270/jddt.v3i3.517

69. Hauss D.J., (2007) “Oral lipid-based formulations”. *Advance Drug Delivery Review*. Volume;59 (7) Page No. 667–676.

70. Chakraborty S., Shukla D., (2009) “Lipid an emerging platform for oral delivery of drugs with poor bioavailability”. *European Journal of Pharmaceutics & Biopharmaceutics*. Volume 73(1): Page No. 1–15.

71. Rao, G. S. N. K., Kurakula, M., & Yadav, K. S. (2020). Application of Electrospun Materials in Gene Delivery. Electrospun Materials and Their Allied Applications, 265–306.

72. Porter C.J.H, Pouton C.W, (2008) “Enhancing intestinal drug solubilisation using lipid-based delivery systems”. *Advance Drug Delivery Review*. Volume 60 (6) Page No. 673–691.