Structural and functional characterization of a bifunctional GH30-7 xylanase B from the filamentous fungus Talaromyces cellulolyticus

Received for publication, December 26, 2018, and in revised form, January 15, 2019. Published, Papers in Press, January 17, 2019, DOI 10.1074/jbc.RA118.007207

© 2019 Nakamichi et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

From the Bioconversion Group and the Bio-based Materials Chemistry Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kajimiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; the Polymer Chemistry Group, Research Institute for Sustainable Chemistry, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan, and the Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan

Edited by Gerald W. Hart

Yusuke Nakamichi, Thierry Fouquet, Shotaro Ito, Masahiro Watanabe, Akinori Matsushika, and Hiroyuki Inoue

Glucuronoxylanases are endo-xylanases and members of the glycoside hydrolase family 30 subfamilies 7 (GH30-7) and 8 (GH30-8). Unlike for the well-studied GH30-8 enzymes, the structural and functional characteristics of GH30-7 enzymes remain poorly understood. Here, we report the catalytic properties and three-dimensional structure of GH30-7 xylanase B (Xyn30B) identified from the cellulolytic fungus Talaromyces cellulolyticus. Xyn30B efficiently degraded glucuronoxylan to acidic xyloligosaccharides (XOSs), including an α-l,2-linked 4-O-methyl-d-glucuronosyl substituent (MeGlcA). Rapid analysis with negative-mode electrospray-ionization multistage MS (ESI(−)-MSn) revealed that the structures of the acidic XOS products are the same as those of the hydrolysates (MeGlcA-2Xylm, n > 2) obtained with typical glucuronoxylanases. Acidic XOS products were further degraded by Xyn30B, releasing first xylobiose and then xylotetraose and xylohexaose as transglycosylation products. This hydrolysis reaction was unique to Xyn30B, and the substrate was cleaved at the xylobiose unit from its nonreducing end, indicating that Xyn30B is a bifunctional enzyme possessing both endo-glucuronoxylanase and exo-xylooligosaccharide activities. The crystal structure of Xyn30B was determined as the first structure of a GH30-7 xylanase at 2.25 Å resolution, revealing that Xyn30B is composed of a pseudo-(α/β)8-catalytic domain, lacking an α6 helix, and a small β-rich domain. This structure and site-directed mutagenesis clarified that Arg46, conserved in GH30-7 glucuronoxylanases, is a critical residue for MeGlcA appendage–dependent xylan degradation. The structural comparison between Xyn30B and the GH30-8 enzymes suggests that Asn43 in the β2-α2 loop is involved in xylobiohydrolyase activity. In summary, our findings indicate that Xyn30B is a bifunctional endo- and exo-xylanase.

Xylan is a major component of plant cell walls and hardwood hemicellulose. It is a heteropolysaccharide consisting of β-1,4-D-xylopyranose polymer as the main chain and some side-chain residues, such as α-l-arabinofuranose and 4-O-methyl-d-glucuronic acid (MeGlcA).2 Bacteria and fungi produce several kinds of endo-β-1,4-xylanases (EC 3.2.1.8) to cleave xylan backbones (1). These enzymes belong to a variety of glycoside hydrolase (GH) families (families 5, 8, 10, 11, 30, 43, 51, 98, and 141) in the Carbohydrate Active Enzymes (CAZy) database (1). Glucuronoxylan xylanohydrolyses (glucuronoxylanases: EC 3.2.1.136) are classified in the GH30 family (previously in the GH5 family) and degrade the glucuronoxylan main chain at the second glycosidic linkage from the MeGlcA residue toward the reducing end (2, 3). They exert no or very low effects on xylan or xyloligosaccharides (XOSs) when the MeGlcA side chain is absent (2–6). The bacterial and fungal enzymes are further classified in the GH30 subfamilies 8 (GH30-8) and 7 (GH30-7), respectively, by phylogenetic analysis based on their amino acid sequences (7). The GH30 enzymes of Actinobacteria are categorized into both GH30–8 and GH30–7.

Many studies on bacterial GH30-8 glucuronoxylanases have been performed (2–6, 8). Mutational analyses of EcxynA from Dickeya chrysanthemi (formerly Erwinia chrysanthemi) and BsxynC from Bacillus subtilis and their structural analyses when complexed with aldouronic acids have revealed that the ionic interaction between a conserved Arg residue (Arg293 of EcxynA and Arg272 of BsxynC) and a carboxyl group on the MeGlcA side chain confers specificity for glucuronoxylan (9–11). Several GH30-8 xylanases, including those without the

The abbreviations used are: MeGlcA, α-l,2-linked 4-O-methyl-d-glucuronosyl; GH30-7 and GH30-8, subfamily 7 and 8, respectively, of glycoside hydrolase family 30; Xyn30B, GH30-7 xylanase B from T. cellulolyticus; XOS, xyloligosaccharide; EcxynA, XynA from Dickeya chrysanthemi; BsxynC, XynC from Bacillus subtilis; Cxyn30A, XynA from Clostridium acetobutylicum; BR-MeGlcA-2Xylm, borohydride-reduced aldolotetrauronic acid; MeGlcA-2Xylm, aldotetrauronic acid; ESI, electrospray ionization; MSn, multistage mass spectrometry; Xylm, xylohexaose; HPAEC, high-performance anion-exchange chromatography; PAD, pulsed amperometric detection; GH, glycoside hydrolase; CAZy, carbohydrate active enzymes; PDB, Protein Data Bank; DNS, 3,5-dinitrosalicylic acid; Bis-Tris, 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol.

The authors declare that they have no conflicts of interest with the contents of this article.

This article contains Table S1 and Figs. S1–S6.

The atomic coordinates and structure factors (code 6IUJ) have been deposited in the Protein Data Bank (http://wwpdb.org).

1 To whom correspondence should be addressed: Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-Hiroshima, Hiroshima 739-0046 Japan. Tel.: 81-82-420-8285; Fax: 81-82-423-7820; E-mail: inoue-hl@aist.go.jp.

2 The abbreviations used are: MeGlcA, α-l,2-linked 4-O-methyl-d-glucuronosyl; GH30-7 and GH30-8, subfamily 7 and 8, respectively, of glycoside hydrolase family 30; Xyn30B, GH30-7 xylanase B from T. cellulolyticus; XOS, xyloligosaccharide; EcxynA, XynA from Dickeya chrysanthemi; BsxynC, XynC from Bacillus subtilis; Cxyn30A, XynA from Clostridium acetobutylicum; BR-MeGlcA-2Xylm, borohydride-reduced aldolotetrauronic acid; MeGlcA-2Xylm, aldotetrauronic acid; ESI, electrospray ionization; MSn, multistage mass spectrometry; Xylm, xylohexaose; HPAEC, high-performance anion-exchange chromatography; PAD, pulsed amperometric detection; GH, glycoside hydrolase; CAZy, carbohydrate active enzymes; PDB, Protein Data Bank; DNS, 3,5-dinitrosalicylic acid; Bis-Tris, 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol.
conserved Arg residue, have been reported to degrade both glucuronoxylan and arabinoxylan without exhibiting the MeGlcA appendage dependence (12, 13).

In contrast to bacterial enzymes, there are very few reports on fungal GH30-7 xylanases. Cellulolytic fungi, such as Trichoderma reesei, Myceliophthora thermophila, and Talaromyces cellulolyticus, which are promising enzyme sources for hydrolyzing lignocellulosic biomass (14–16), encode multiple putative GH30-7 xylanases in their genomes. The GH30-7 xylanases are secreted in cellulolytic and xylanolytic culture conditions (17, 18). However, information on their catalytic properties is limited, except for those expressed in T. reesei. This fungus produces two types of GH30-7 xylanases possessing exo-xylanase activity toward the reducing end of xylan (XYN IV) and glucuronoxylanase activity similar to the bacterial lanase activity toward the reducing end of xylan (XYN IV) (19, 20). The notable difference in the sequences of fungal GH30-7 and GH30-8 xylanases is the absence of an Arg293 counterpart (20). Without a three-dimensional structure of GH30-7, it is hard to determine the structural underpinnings of the MeGlcA appendage dependence of XYN VI and structural differences between exo-xylanase and glucuronoxylanase.

In a preliminary study, we detected two GH30-7 proteins from T. cellulolyticus, termed Xyn30A (NCBI protein ID GAM43270) and Xyn30B (GAM36763), which were secreted as major proteins in a culture containing birchwood glucuronoxylan (Fig. S1). Xyn30A has been predicted to be a putative exo-xylanase from its relatively high sequence similarity with XYN IV (77%), whereas Xyn30B has remained to be identified due to lack of an appropriate GH30-homologous protein. Here, we report the catalytic properties and crystal structure of Xyn30B. Xyn30B exhibited an obvious, MeGlcA appendage–dependent glucuronoxylanase activity. Moreover, we found that Xyn30B exhibits a novel xylolhydrodolase activity wherein xylolbiose (Xyl₂) is released from the nonreducing end of β-1,4-xylan and XOS. This unique bifunctional activity and the conserved Arg residue found in Xyn30B are discussed based on the structural comparison between GH30-8 and GH30-7 xylanase.

Results

Amino acid sequence analysis of Xyn30B

The Xyn30B gene is composed of 1,425 bp without introns in the T. cellulolyticus genome and encodes a protein consisting of 474 amino acid residues. Xyn30B has a relatively high amino acid sequence identity with fungal GH30-7 enzymes, such as XYN IV (38.2%) and XYN VI (42.2%) from T. reesei and XYL D (53.4%) from Bispora sp. (19–21), as compared with bacterial GH30-8 enzymes, such as EcXynA (24.4%), BsXynC (23.3%), and CaXyn30A from Clostridium acetobutylicum (26.3%) (2, 12, 22). Two conserved catalytic residues previously identified in GH30 xylanase—a general acid/base residue and a nucleophilic residue—were found to correspond with Glu¹⁰² and Glu²⁹⁷, respectively, in Xyn30B (Fig. 1, gray highlights). As with XYN IV and XYN VI, an Arg residue responsible for recognition of the MeGlcA in GH30-8 enzymes is not conserved in Xyn30B (Fig. 1, red box). The Xyn30B amino acid sequence includes a signal sequence (residues 1–22) as predicted by the SignalP server (23). The cleavage site of the signal peptide was estimated to lie between Ala¹⁹ and Ile²⁰ or between Ala¹² and Gin¹³. Eight of the N-glycosylation sites (Asn⁶⁰, Asn⁸⁸, Asn¹¹¹, Asn¹⁵⁴, Asn¹⁷⁵, Asn³⁴⁶, and Asn₄¹²) were predicted by the NetNglyc server (http://www.cbs.dtu.dk/services/NetNglyc/).³

Xyn30B was overexpressed using the T. cellulolyticus homologous expression system (24). SDS-PAGE analysis of the purified enzyme showed a molecular mass slightly larger than 49,403 Da, which has been estimated from the primary structure excluding the N-terminal signal peptide (Fig. 2). Furthermore, the average molecular mass of Xyn30B determined by TOF-MS was 56,354 Da, indicating that Xyn30B was glycosylated at several sites. The glycosylation sites in Xyn30B were assigned by X-ray crystallography, as described below.

Enzyme characterization

Xyn30B exhibited xylanase activity on beechwood xylan (11.3 units mg⁻¹) and birchwood xylan (9.0 units mg⁻¹), whereas degradation activities for arabinoxylan, carboxymethyl cellulose, glucomannan, and xyloglucan were not detected by the 3,5-dinitrosalicylic acid (DNS) method. The optimum pH and temperature for hydrolysis of beechwood xylan were estimated around pH 4 and 50 °C, respectively (Fig. S2). Xyn30B retained more than 90% activity after incubation for 30 min at 40 °C in pH over a range of 3–6.5 and was stable for 24 h at temperatures below 40 °C at pH 4.0.

The initial degradation product of beechwood xylan by Xyn30B was found to be acidic XOSs, whereas linear oligosaccharides and xylose were hardly detected (Fig. 3). These observations indicate that Xyn30B is a glucuronoxylan-specific xylanase. Xyn30B also degraded the MeGlcA-appended oligosaccharide analogue, borohydride-reduced aldotetrauronic acid (BR-MeGlcA³Xyl₂), into aldotriuronic acid (MeGlcA²Xyl₁) and xylitol. Kinetic parameters were also determined as follows: $K_{m} = 19$ mg ml⁻¹ and $k_{cat} = 17$ s⁻¹ for beechwood xylan; $K_{m} = 0.064$ mM and $k_{cat} = 23$ s⁻¹ for BR-MeGlcA³Xyl₂. The low K_{m} value for BR-MeGlcA³Xyl₂ suggests that Xyn30B has high affinity for MeGlcA.

Molecular and structural characterization of the acidic XOS products

The molecular content in acidic XOS produced by Xyn30B was evaluated by ESI(−)-MS (Fig. 4A). Acidic products were readily observed as singly and doubly charged deprotonated species generically labeled [Xyl₅MeGlcA − H⁻]⁻ (1−, mainly COO⁻ from MeGlcA) and [Xyl₆MeGlcA − 2H]²⁻ (2−, COO⁻ from MeGlcA and O⁻ from anomeric carbon). They correspond to the XOS backbones formed by n xylose units and carrying one MeGlcA moiety with no information about its position. The ESI(−) analysis filters the oligoxyllose species, Xylₙ, occurring with no acidic moiety and allows for instant visualization of the shortest acidic product, which was found to be Xyl₄MeGlcA at m/z 471 (Fig. 4A, highlighted in boldface red) and associated with a broad distribution of longer congeners up to Xyl₄MeGlcA at m/z 1,027 (2−).

³ Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third party hosted site.
The position of the MeGlcA moiety along the XOS chain (reducing end, nonreducing end, or in between) was further revealed using a multistage MS procedure (MS\(^n\)). Upon activation in MS\(^2\) (Fig. 4B), the [Xyl\(_2\)MeGlcA/H\(_{11002}\)H]/H\(_{11002}\) expelled a neutral C\(_2\)H\(_4\)O\(_2\) via a cross-ring cleavage, yielding \(^{0,2}\)A\(_3\) at \(m/z\) 411 (60 Da) concomitantly to a xylose unit via a glycosidic bond.

Figure 1. Multiple-sequence alignments of GH30 xylanases. Primary structures of Xyn30B, XYN IV, XYN VI, EcXynA, and BsXynC were used for sequence alignments. The features are shown as follows: conserved Arg residues in GH30-8 glucuronoxylanases (red box); catalytic Glu residues (highlighted in gray); predicted signal sequence of Xyn30B (highlighted in black); 2–2 loop of Xyn30B and EcXynA (boldface type); N-glycosylated Asn residues (red characters); the conserved Arg residues in GH30-7 glucuronoxylanases (highlighted in red); Asn\(_93\) of Xyn30B (indicated by a black arrow). Secondary structures of Xyn30B are shown above the sequences. Each of the secondary structures of EcXynA and BsXynC is also indicated within the sequence. N-terminal signal sequence, N-glycosylation sites, and secondary structures are based on assignment by the crystal structure.
Characterization and crystal structure of Xyn30B

Figure 2. SDS-PAGE analysis of purified Xyn30B. Lane 2, purified Xyn30B; lane 1, standards. Molecular masses of the standards are indicated on the left. Arrow, Xyn30B position.

Figure 3. HPAEC-PAD chromatogram of initial degradation product of beechwood xylan by Xyn30B. The reaction mixture containing 10 mg ml\(^{-1}\) beechwood xylan, 50 mM sodium acetate, pH 4.0, and 10 \(\mu\)g ml\(^{-1}\) Xyn30B was incubated at 40 °C for 1 h followed by incubation at 99 °C for 5 min to stop enzyme reaction.

Cleavage that yielded a C\(_2\) at \(m/z\) 339 (−132 Da). As the precursor ion is two xylose units long, it instantly indicates that the MeGlcA is located at the nonreducing end of Xyl\(_2\) (Fig. 4C). Both cross-ring and glycosidic bond cleavages have been found to occur only at the reducing ends of deprotonated acidic products (25, 26). The ESI(−)-MS\(^3\) spectrum of C\(_2\) displays two product ions formed upon its dehydration (B\(_2\) at \(m/z\) 321, −18 Da) and a cross-ring cleavage of the last xylose moiety (\(0,2\)X\(_2\) at \(m/z\) 249) as the two sole fragmentation pathways that are opened up by the MeGlcA position at the reducing end of the activated species (Fig. 4B).

Both the cross-ring cleavage (yielding \(0,2\)A\(_3\) at \(m/z\) 543) and the glycosidic bond cleavage (yielding C\(_3\) at \(m/z\) 471) were observed in the ESI(−)-MS\(^2\) fingerprint of the deprotonated acidic product, [Xyl\(_2\)MeGlcA − H]\(^{−}\), at \(m/z\) 603 (Fig. 5A), indicating that the MeGlcA residue is not located at its reducing end. In the MS\(^3\) spectra (Fig. 5A), C\(_3\) was found to dissociate into B\(_3\) at \(m/z\) 453 (dehydration, −18 Da) and \(0,2\)X\(_2\) only (cross-ring cleavage at the reducing end). Deviating from the MS\(^2\) spectrum of [Xyl\(_3\)MeGlcA − H]\(^{−}\) (Fig. 4B) but resembling the MS\(^3\) pattern of C\(_3\) from [Xyl\(_2\)MeGlcA − H]\(^{−}\), it unambiguously localized the acidic MeGlcA pendant group at the reducing end of C\(_3\). In a reverse chain reconstruction, one xylose unit was added to the reducing end of C\(_3\), demonstrating that [Xyl\(_2\)MeGlcA − H]\(^{−}\) carries the glucuronic acid moiety one unit away from the reducing end (Fig. 5C).

A similar conclusion was drawn for [Xyl\(_2\)MeGlcA − H]\(^{−}\) at \(m/z\) 867 (Fig. 5B); the ESI(−)-MS\(^3\) spectrum barely displayed a xylose-shorter C\(_5\) ion product at \(m/z\) 735 (glycosidic bond cleavage at the reducing end), indicating the MeGlcA is not located at the reducing end but probably one unit away, considering the low intensity of C\(_5\) (26). Its ESI(−)-MS\(^3\) fingerprint was eventually identical to the previous MS\(^3\) pattern of C\(_3\) from [Xyl\(_3\)MeGlcA − H]\(^{−}\) (Fig. 5A) with the B\(_3\) and \(0,2\)X\(_2\) product ions only (Fig. 5B), suggesting that the MeGlcA is positioned at the reducing end of C\(_3\), one unit away for [Xyl\(_2\)MeGlcA − H]\(^{−}\). This indicates a generic MeGlcA\(^2\)Xyl\(_n\) (\(n > 1\)) shape for the all of the acidic products released using Xyn30B (Fig. 4A). From these results, Xyn30B appears to specifically cleave glucuronoxylan at the second glycosidic linkage from the MeGlcA residue toward the reducing end, similarly to typical GH30 glucuronoxylanases.

Xylobiohydrolase activity

During the hydrolysis of beechwood xylan by Xyn30B, we noticed that Xyl\(_2\) was produced after prolonged incubation and increased protein loading of the reaction mixture (Fig. 6A). The increases in MeGlcA\(^2\)Xyl\(_2\) and MeGlcA\(^2\)Xyl\(_3\) were also observed with a decrease in longer acidic XOSs in the mixture. These results indicate that Xyl\(_2\) was produced by further degradation of the acidic XOS. The specific production of Xyl\(_2\) suggests that Xyn30B has xylobiohydrolase activity, releasing Xyl\(_2\) units from the acidic XOSs that were generated in the initial stage of the reaction. This activity was predicted to release the product from the nonreducing end of MeGlcA\(^2\)Xyl\(_n\). In addition, the production of xylotetraose (Xyl\(_4\)) and xylohexaose (Xyl\(_6\)) was significantly increased with increasing time compared with that of xylotriose (Xyl\(_3\)) and xylopentaose (Xyl\(_5\)) (Fig. 6A). The product concentrations are shown in Table S1. These observations imply that the xylobiohydrolase activity was accompanied by transglycosylation activity, which transfers the Xyl\(_2\) from the acidic XOS to the free acceptors (Xyl\(_2\) and Xyl\(_3\)).

The xylobiohydrolase activity of Xyn30B was also confirmed for linear XOS, which was MeGlcA appendage–independent. When Xyl\(_3\) was used as the substrate, xylose and Xyl\(_2\) were produced as hydrolysates, and Xyl\(_5\) was formed through a transglycosylation (Fig. 6B). The hydrolysis and transglycosylation activities of Xyl\(_2\) were 0.388 and 0.303 units mg\(^{-1}\) for the production of xylose and Xyl\(_5\), respectively. The major products from Xyl\(_4\) were identified as Xyl\(_3\) and Xyl\(_6\). A small amount of unidentified XOS longer than Xyl\(_6\) was also observed during the hydrolysis of these substrates, probably due to further transglycosylation (Fig. 6B, arrows). In contrast, no products were pro-
duced when only Xyl\textsubscript{2} was used as the substrate (data not shown), suggesting that transglycosylation occurs during the hydrolysis. These results indicate that Xyn30B is a bifunctional enzyme possessing both MeGlcA appendage–dependent glucuronoxylanase activity and xylobiohydrolase (including transglycosylation) activity.

Characterization and crystal structure of Xyn30B

The crystal structure of Xyn30B was determined at 2.25 Å resolution by molecular replacement using Ca\textsubscript{Xyn30A} as the search model (PDB code 5CXP). The data collection and refinement statistics are shown in Table 1. The Xyn30B crystal was in the P\textsubscript{2\textsubscript{1}}\textsubscript{1}2\textsubscript{1}2 space group with two protein molecules (chains A and B) in the asymmetric unit. Amino acid residues numbered 20–473 were assigned to chains A and B with the electron density map indicating that the N-terminal signal sequence was disordered and therefore not assigned to chain A. In the electron density maps, sugar chains are observed at Asn\textsubscript{60}, Asn\textsubscript{88}, Asn\textsubscript{215}, Asn\textsubscript{334}, Asn\textsubscript{412}, and Asn\textsubscript{415} (Fig. 7A, red). In the electron density maps, sugar chains are observed at Asn\textsubscript{60}, Asn\textsubscript{88}, Asn\textsubscript{215}, Asn\textsubscript{334}, Asn\textsubscript{412}, and Asn\textsubscript{415} (Fig. 7A, blue) and Figs. S3 and S4). Asn\textsubscript{111} and Asn\textsubscript{146} are not glycosylated, although they were predicted to be glycosylation sites by the NetNglyc server. Cys242 and Cys243 form an intramolecular disulfide bond.

To clarify the Xyn30B substrate recognition mechanism, the crystal structure was superimposed on the EcXynA model complexed with MeGlcA\textsubscript{2}Xyl\textsubscript{3} and imidazole (PDB code 2Y24) (Fig. 8A). In the EcXynA–ligand complex, three xylose residues of MeGlcA\textsubscript{2}Xyl\textsubscript{3} are located in the subsites 1, 2a, and 3; a MeGlcA residue is in the subsite 2b; and an imidazole is in the putative +1 subsite (Fig. 8B). Amino acid residues in the +1 and −1 subsites of the two enzymes are highly conserved except for a few variations (Fig. 8, C and D). The residues corresponding to Trp141, Asn201, Glu202, Tyr209, Tyr279, Glu297, and Trp341 of Xyn30B are found in the subsites of EcXynA. Trp148 and Leu204 of EcXynA, which probably interact with substrates at the +1 subsite, are substituted by Glu205 and Val245 in Xyn30B, respectively (Fig. S7C).

The notable differences between Xyn30B and EcXynA are found at subsites −2b, −2a, and −3. Subsite −2b of Xyn30B is formed by Arg46, Leu301, Trp341, Ile342, Glu345, Thr349, and Ser351 (Fig. 8E). The residues are substantially different between Xyn30B and EcXynA except for Trp341, corresponding to EcXynA Trp289 (Fig. 8, E and F). Interestingly, the guanidinium group of Arg46 in Xyn30B is located in the same region as Arg293 in EcXynA (Fig. 8, E and F). EcXynA Arg293 is the important residue that forms an ionic interaction with the carboxyl group of the MeGlcA side chain (9–11). Therefore, Xyn30B Arg46 has been suggested to have the same role in position −2b as Arg293 found in bacterial GH30-8 enzymes.

Subsites at the −3 position of Xyn30B have limited space with the presence of the β2–α2 loop composed of Gly285–Tyr117 (Fig. 8, G and J) in contrast to that of EcXynA (Fig. 8, H and J). Binding of the nonreducing end of MeGlcA\textsubscript{2}Xyl\textsubscript{3} seems to be
blocked at the −3 position by the β2–α2 loop (Fig. 8I). This loop is significantly longer than the loop of EcXynA (Fig. 1 and Fig. S5). Asn93 on the tip of the loop is more specific in Xyn30B and has been predicted to be located proximal to the xylose at the −2a subsite (Fig. 8G). These observations suggest that the substrate binding at the −2a and −3 positions in Xyn30B is apparently different from that in EcXynA under the influence of the β2–α2 loop.

Site-directed mutagenesis

The role of Arg46 in Xyn30B was confirmed by site-directed mutagenesis by substituting Arg46 for Ala (Xyn30B R46A). The specific activity of R46A for beechwood xylan was 3.52 units mg⁻¹, which was 3.2-fold lower than that of the WT enzyme. The Km value of R46A for BR-MeGlcA3Xyl3 was not determined in this study, because the initial rate of xylitol production was not saturated, even at the substrate concentration of 24 mM. These results suggest that Arg46 within Xyn30B plays an important role in the recognition of MeGlcA side chain.

In contrast, the xylobiohydrolase and transglycosylation activities for Xyl3 were 0.505 units mg⁻¹ and 0.371 units mg⁻¹, respectively, which were both slightly higher than the WT enzyme. The degradation pattern of beechwood xylan by R46A exhibited significantly high production of xylobiose (Fig. 6C). Considering the hydrolytic activity of Xyn30B and R46A for Xyl3, acidic XOS appears to act as an inhibitor as well as a substrate during xylobiohdyalysis in the WT enzyme.

The endo-xylanase activity of R46A was suggested to be glucuronoxylan-specific, similar to the WT enzyme, based on the HPAEC elution pattern of acidic XOS in a reaction mixture wherein enzyme loading was increased (data not shown). The endo-xylanase activity for arabinoxylan was also not detected for R46A. These observations agree with previous reports suggesting that mutants of the conserved Arg residue in the bacterial GH30-8 enzymes, EcXynA and StXyn30A, which is the GH30 glucuronoxylanase from Streptomyces turgidiscabies, degrade glucuronoxylan in the same manner as the WT enzymes, whereas their catalytic efficiencies were lower (8, 11).
This paper described the characterization and structural determination of the novel GH30-7 xylanase, Xyn30B, from T. cellulolyticus. Xyn30B displayed glucuronoxylan-specific endo-xylanase activity that has been reported in bacterial GH30-8 glucuronoxylanases and T. reesei GH30-7 XYN VI. X-ray crystallography of Xyn30B and site-directed mutagenesis revealed that Arg46 is important for recognition of the MeGlcA residue, corresponding to a conserved Arg 293 of GH30-8 EcXynA. Xyn30B was demonstrated to release Xyl2 units from the nonreducing end of the acidic XOS and linear XOS in an exo-fashion and also to transfer Xyl2 to an aglycon receptor (Fig. 6, A and B). To our knowledge, this is the first evidence describing exo-type xylobiohydrolase activity. Although xylobiosyltransferase activity has been reported for GH10 endo-xylanase (28–30), xylobiose-specific transglycosylation in Xyn30B is expected to be more profitable for producing xylobioside products. A study of the transglycosylation reaction of Xyn30B is in progress. A dual function showing endo-/exo-xylanase activity has not been reported for bacterial GH30-8 glucuronoxylanase, whereas XYN VI is capable of slower but significant cleavage of unsubstituted parts of xylan and acidic XOS (20). The catalytic diversity observed in Xyn30B and XYN VI may be a common property of fungal GH30-7 glucuronoxylanases.

To confirm the generality of Arg46 in GH30-7 xylanases, the amino acid sequences of GH30-7 enzymes assigned in the CAZy database were aligned with Xyn30A and Xyn30B from T. cellulolyticus using molecular phylogenetic analysis. As of December 2018, 20 fungal enzymes and 22 actinobacterial enzymes are assigned to the GH30-7 subfamily in the CAZy database. Three enzymes were excluded for the analysis due to their lack of catalytic Glu residues. The sequence alignment revealed that GH30-7 and GH30-8 enzymes are obviously distributed into different clusters in the molecular phylogenetic tree and that GH30-7 enzymes are further divided into fungal and actinobacterial groups (Fig. 9). We found that Arg46 in

Discussion

This paper described the characterization and structural determination of the novel GH30-7 xylanase, Xyn30B, from T. cellulolyticus. Xyn30B displayed glucuronoxylan-specific endo-xylanase activity that has been reported in bacterial GH30-8 glucuronoxylanases and T. reesei GH30-7 XYN VI. X-ray crystallography of Xyn30B and site-directed mutagenesis revealed that Arg46 is important for recognition of the MeGlcA residue, corresponding to a conserved Arg 293 of GH30-8 EcXynA. Xyn30B was demonstrated to release Xyl2 units from the nonreducing end of the acidic XOS and linear XOS in an exo-fashion and also to transfer Xyl2 to an aglycon receptor (Fig. 6, A and B). To our knowledge, this is the first evidence describing exo-type xylobiohydrolase activity. Although xylobiosyltransferase activity has been reported for GH10 endo-xylanase (28–30), xylobiose-specific transglycosylation in Xyn30B is expected to be more profitable for producing xylobioside products. A study of the transglycosylation reaction of Xyn30B is in progress. A dual function showing endo-/exo-xylanase activity has not been reported for bacterial GH30-8 glucuronoxylanase, whereas XYN VI is capable of slower but significant cleavage of unsubstituted parts of xylan and acidic XOS (20). The catalytic diversity observed in Xyn30B and XYN VI may be a common property of fungal GH30-7 glucuronoxylanases.

To confirm the generality of Arg46 in GH30-7 xylanases, the amino acid sequences of GH30-7 enzymes assigned in the CAZy database were aligned with Xyn30A and Xyn30B from T. cellulolyticus using molecular phylogenetic analysis. As of December 2018, 20 fungal enzymes and 22 actinobacterial enzymes are assigned to the GH30-7 subfamily in the CAZy database. Three enzymes were excluded for the analysis due to their lack of catalytic Glu residues. The sequence alignment revealed that GH30-7 and GH30-8 enzymes are obviously distributed into different clusters in the molecular phylogenetic tree and that GH30-7 enzymes are further divided into fungal and actinobacterial groups (Fig. 9). We found that Arg46 in

Table 1

Statistics for X-ray crystallography

Data collection	
Wavelength (Å)	0.9
Resolution limits (Å)	48.26–2.25 (2.28–2.25)*
Space group	P2₁2₁2₁
Unit cell dimensions a, b, c (Å)	83.2, 114.9, 118.5
No. of reflections	370,211 (16,467)
No. of unique reflections	54,785 (2,649)
Redundancy	6.8 (6.2)
Completeness (%)	99.8 (98.5)
I/σ(I)	15.1 (3.2)
Rmerge (%)	10.5 (7.1)
CC1⁄2	0.998 (0.819)

Refinement		
Resolution range (Å)	48.25–2.25 (2.31–2.25)	
No. of reflections	51,791 (3,757)	
Completeness (%)	99.9 (99.9)	
Rwork (%)	16.6 (23.9)	
Rfree (%)	20.2 (28.5)	
No. of molecules in an asymmetric unit	2	
Average R-factors (Å²) / No. of atoms	Proteins: 31.19/7,004; Sugar chains: 49.76/426; Water: 33.91/384	
Root mean square deviations	Bond lengths (Å)/bond angles (degrees)	0.006/1.492
Ramachandran plot		
Favored (%)	96.1	
Allowed (%)	3.7	
Outlier (%)	0.2	
PDB code	6IUJ	

*Values in parentheses are for the highest-resolution shell.

Figure 6. HPAEC-PAD profiles of Xyn30B reaction products. A, time course analysis of Xyn30B products from beechwood xylan. Hydrolysis was performed at 40 °C in a mixture consisting of 10 mg ml⁻¹ beechwood xylan and 100 µg ml⁻¹ Xyn30B in 50 mM sodium acetate (pH 4.0). B, XOSs from Xyl₄ (top) and Xyl₆ (bottom) produced by Xyn30B. The hydrolysis of 10 mM Xyl₄ and 10 mM Xyl₆ was performed using 100 µg ml⁻¹ Xyn30B in 50 mM sodium acetate (pH 4.0) at 40 °C for 60 min. Arrows indicate linear XOSs that are longer than Xyl₆. C, comparison of the degradation profiles of beechwood xylan by Xyn30B and R46A. Hydrolysis was performed at 40 °C for 60 min in a mixture consisting of 10 mg ml⁻¹ beechwood xylan and 20 µg ml⁻¹ enzyme in 50 mM sodium acetate (pH 4.0).
Xyn30B is a highly conserved residue in the greater part of fungal and actinobacterial GH30-7 enzymes (Fig. S6). Fungal enzymes, which have a residue corresponding to Arg46 of Xyn30B, form a large cluster that includes Xyn30B and XYN VI (Fig. 9; Arg46 is conserved), suggesting that these enzymes share relatively high amino acid sequence similarity and therefore are glucuronoxylanases. This group included only one exception, Fusarium fujikuroi CCT73001, which has a His residue instead of an Arg residue. However, the His residue may form an ionic interaction with the MeGlcA residue of glucuronoxylan in the same manner as the Arg residue, because the side chain of His is positively charged in acidic conditions, which is a common condition of fungal xylanase. In contrast, XYN IV, Xyn30A, Thielaviopsis terrestris THITE_2123443, and Actinoplanes derwentensis SDT08346, which do not possess a residue corresponding to Arg46 of Xyn30B, were located in an independent cluster (Fig. 9; Arg46 is not conserved). It seems reasonable that XYN IV does not have the Arg residue, because XYN IV is known to be an exo-xylanase but not a glucuronoxylanase (19). Xyn30A, T. terrestris THITE_2123443, and A. derwentensis SDT08346 are predicted to have enzyme activities that differ from glucuronoxylanase.

Unique structural features in the crystal structure of Xyn30B, including a β2–α2 long loop, a β-sheet structure composed of β8-, β8A-, and β8B-strands (Fig. 7), and an intramolecular disulfide bond formed by Cys242 and Cys243, were found to be common features in fungal GH30-7 xylanases used for phylogenetic analysis, whereas they were not conserved in GH30-8 enzymes, such as EcXynA from Gram-negative D. chrysanthemi (PDB code 2Y24) (9) and BsXynC from Gram-positive B. subtilis (PDB code 3KL0) (10) (Figs. 1 and 7 (B and C)). It should be noted that the β2–α2 loop and the β-sheet structure in Xyn30B is a highly conserved residue in the greater part of fungal and actinobacterial GH30-7 enzymes (Fig. S6). Fungal enzymes, which have a residue corresponding to Arg46 of Xyn30B, form a large cluster that includes Xyn30B and XYN VI (Fig. 9; Arg46 is conserved), suggesting that these enzymes share relatively high amino acid sequence similarity and therefore are glucuronoxylanases. This group included only one exception, Fusarium fujikuroi CCT73001, which has a His residue instead of an Arg residue. However, the His residue may form an ionic interaction with the MeGlcA residue of glucuronoxylan in the same manner as the Arg residue, because the side chain of His is positively charged in acidic conditions, which is a common condition of fungal xylanase. In contrast, XYN IV, Xyn30A, Thielaviopsis terrestris THITE_2123443, and Actinoplanes derwentensis SDT08346, which do not possess a residue corresponding to Arg46 of Xyn30B, were located in an independent cluster (Fig. 9; Arg46 is not conserved). It seems reasonable that XYN IV does not have the Arg residue, because XYN IV is known to be an exo-xylanase but not a glucuronoxylanase (19). Xyn30A, T. terrestris THITE_2123443, and A. derwentensis SDT08346 are predicted to have enzyme activities that differ from glucuronoxylanase.

Unique structural features in the crystal structure of Xyn30B, including a β2–α2 long loop, a β-sheet structure composed of β8-, β8A-, and β8B-strands (Fig. 7), and an intramolecular disulfide bond formed by Cys242 and Cys243, were found to be common features in fungal GH30-7 xylanases used for phylogenetic analysis, whereas they were not conserved in GH30-8 enzymes, such as EcXynA from Gram-negative D. chrysanthemi (PDB code 2Y24) (9) and BsXynC from Gram-positive B. subtilis (PDB code 3KL0) (10) (Figs. 1 and 7 (B and C)). It should be noted that the β2–α2 loop and the β-sheet structure in Xyn30B
Figure 8. The active-site structure of Xyn30B. The Xyn30B model is superimposed on EcXynA complexed with MeGlcA^2Xyl_3 and imidazole (PDB code 2Y24). Atoms are colored as follows: carbon of Xyn30B (green); carbon of EcXyn30A (white); carbon of MeGlcA^2Xyl_3 and imidazole (yellow); oxygen (red); nitrogen (blue). Red letters, subsites. A, C, E, and G, Xyn30B and the superposed ligands in the EcXynA model. B, D, F, and H, EcXynA–ligands complex in the same orientation as in the left panels (Xyn30B; A, C, E, and G), A and B, components of the subsites +1, −1, −2a, −2b, and −3. C and D, amino acid residues at subsite +1 and −1. E, amino acid residues of subsite −2b and MeGlcA side chain. F, the structure of subsite −2b in EcXynA, including Arg^293 of Xyn30B, superimposed with the EcXynA model. Black dashed lines indicate the interaction between Arg^293 and MeGlcA side chain. A red dashed line indicates the distance between the ε nitrogen atoms of Arg^293 of Xyn30B and Arg^293 of Xyn30B. G and H, enlargement of subsites, −2a and −3. Asn^93 of Xyn30B protrudes into subsite −3, which is the xylose-binding position of EcXynA. I and J, Van der Waals surface of Xyn30B (I) and EcXynA (J) with the MeGlcA^2Xyl_3 as sticks. The dashed line indicates the candidate locations of subsites −3 and −4 of Xyn30B.
contribute to the formation of subsites $-2a$ and $-2b$, respectively, which are involved in the substrate recognition (Fig. 8, E and G). Alteration of $-2a$ and $-2b$ in GH30-7 provides a clue to understanding the catalytic diversity of Xyn30B.

Xyn30B sufficiently acts on linear XOS, whereas the specific activity of EcXynA for linear XOS is 3 orders of magnitude lower than that for aldouronic acid (9). The dual activity observed in Xyn30B is perhaps due to the contribution of the $\beta2-\alpha2$ loop, which recognizes the nonreducing end of XOS, especially the Asn93 residue (Fig. 8, G and H). The subsite -3 of Xyn30B seems to be located at a different position from that of EcXynA with the presence of the loop; a candidate cleft has limited space, as shown by the dashed box in Fig. 8I. Our results indicate that the acidic XOS products and Xyl$_4$ are degraded in a xylobiohydrolase manner, despite them being of adequate lengths to bind to the -3 subsite (Fig. 6, A and B). These facts suggest that introduction of the xylose residue into the -3 subsite is likely interrupted by the limited space of subsite -3.

Figure 9. Molecular phylogenetic analysis of GH30 enzymes. Molecular phylogenetic analysis of the amino acid sequences of GH30-7 enzymes and BsXynC and EcXynA by the neighbor-joining method (57). The 43 sequences used for the analysis are described in detail in Fig. S6. The optimal tree with the sum of branch length $= 8.49592807$ is shown. The tree is drawn to scale, with branch lengths in the same units, indicative of the evolutionary distances. The evolutionary distances were computed using the Poisson correction method (58) and are expressed as the number of amino acid substitutions per site. All positions containing gaps and missing data were eliminated. There were a total of 300 positions in the final data set. Evolutionary analyses were conducted in MEGA7 (59).
Characterization and crystal structure of Xyn30B

In contrast, Xyn30B shows obvious endo-glucuronoxylanase activity for substrates with the MeGlcA side chain recognized at the −2b subsite (Fig. 8E). Such substrates must bind to the −3 subsite and further downstream. R46A was found to prefer the xylobiohydrolase activity rather than the glucuronoxylanase activity (Fig. 6C), indicating that disturbance of the interaction between the MeGlcA side chain and the −2b subsite decreased endo-glucuronoxylanase activity without influencing the xylobiohydrolase activity. Based on these considerations, we speculate that the interaction between the MeGlcA side chain and the −2b subsite plays an important role in orientating the xylan main chain to introduce the xylose residue into the −3 subsite. Further structural studies using enzyme–substrate complexes are necessary to understand the bifunctionality of Xyn30B.

Some studies have shown that the loop-like roof structure is an important factor for determining whether exo- or endo-hydrolysis activity occurs. Proctor et al. (31) have converted the enzyme specificity of Cellvibrio japonicus GH43 exo-arabinanase (CjArb43A) to an endo-type enzyme by removing a steric interaction at the nonreducing end of substrates. Santos et al. (32) have clarified that the steric interaction between the long loop and an arabinose residue at the reducing end of arabinan is important for the exo-action of a GH43 arabinanase isolated from rumen metagenome. The roof structures and its interaction with substrate at reducing or nonreducing ends of substrates have been reported to be important for other GH enzymes, such as GH8, -26, -46, and -74 (33–36). These reports support our suggestion that the β2–α2 loop of Xyn30B is critical for its exo-xylobiohydrolase activity, because an additional region, including Asn⁹³ (Ser⁹⁰–Leu⁹⁶) in the β2–α2 loop, appears to form a partial roof structure (Figs. 1 and 8F and Fig. S5). This region is specific in Xyn30B and is not seen in XYN VI. These differences could explain why significant exo-xylanase activity is detected in Xyn30B.

Experimental procedures

Strains and culture conditions

T. cellulolyticus CF-2612 (FERM BP-10848) were maintained on potato dextrose agar (Difco, Detroit, MI) plates (37). *T. cellulolyticus* YP-4 uracil autotroph was maintained on potato dextrose agar plates containing uracil and uridine at final concentrations of 1 g/liter each (24). The prototrophic transformants of *T. cellulolyticus* YP-4 expressing recombinant proteins Xyn30B and Xyn30B R46A were maintained on MM agar (1% (w/v) glucose, 10 mM NH₄Cl, 10 mM potassium phosphate (pH 6.5), 7 mM KCl, 2 mM MgSO₄, and 1.5% (w/v) agar) plates (38). Recombinant enzymes were produced using a soluble starch medium containing 2% (w/v) soluble starch (Wako Pure Chemical Industries, Osaka, Japan) and 0.2% (w/v) urea as described previously (24).

Plasmid construction and fungal transformation

The plasmid pANC202 (24), which contains the pyrF gene and the glucoamylase (glaA) promoter and terminator regions, was used to construct the plasmids pANC215 and pANC281, which were used to express recombinant Xyn30B and Xyn30B R46A, respectively. *Escherichia coli* DH5α (Takara Bio, Kyoto, Japan) were used for the DNA procedures. The primers for the genomic region encoding xyn30B were designed based on the genome sequence of *T. cellulolyticus* registered in DDBJ/EMBL/GenBankTM (DF933814.1) (39). The xyn30B gene was amplified using the forward primer 5′-ATTGTTAACAGAATGTTGTTCAGCAAAGTCGCGC (with the Hpal site underlined), and the reverse primer 5′-AATCCTGAGTTCACTCGCACAATCTGTGAAAGATCGTTG (with the SbfI site underlined). The expression plasmid, pANC215, was constructed by ligating the xyn30B fragment that had been digested with Hpal/SbfI into the EcoRV/SbfI site of pANC202. The expression plasmid, pANC281, was constructed by site-directed mutagenesis of pANC215 using the KOD-plus-Mutagenesis kit (Toyobo, Osaka, Japan). The forward primer 5′-GCAGCGGAGGATATCTTTGCGAACGTACGCG (mutation site underlined) and the reverse primer 5′-TTGGAATTCCTGTGAGCAACAGCAAG (mutation site underlined) were used for PCR. The presence of all ligated gene fragments and locations was verified by DNA sequencing.

The plasmids pANC215 and pANC281 were transformed into protoplasts of *T. cellulolyticus* YP-4 by nonhomologous integration into the host chromosomal DNA (38). The strains producing recombinant Xyn30B and Xyn30B R46A were selected based on the amount of recombinant protein in culture supernatant as visualized by SDS-PAGE using NuPage 4–12% Bis-Tris gels (Invitrogen) and were designated as Y215 and Y281, respectively.

Purification of Xyn30B and Xyn30B R46A

Purification of Xyn30B and Xyn30B R46A from culture supernatants of Y215 and Y281 strains, respectively, was performed using an ÄKTA purifier chromatography system (GE Healthcare, Buckinghamshire, UK) at room temperature. Culture supernatants were filtered through a 0.22-µm polyethersulfone membrane and desalted using a HiPrep 26/10 desalting column (GE Healthcare) that had been equilibrated with 20 mM MES (pH 6.5). The desalted sample was applied to a Resource Q anion-exchange column (6 ml; GE Healthcare) that had been equilibrated with the same buffer, and protein peaks were eluted with a linear gradient of 0–0.5 M NaCl (20 column volumes) at a flow rate of 4 ml min⁻¹. Fractions containing the target proteins were confirmed by SDS-PAGE and pooled. (NH₄)₂SO₄ was added to a final concentration of 1.3 M, and then the samples were subjected to Source 15I50 (10 ml; GE Healthcare) hydrophobic interaction chromatography using a 1.3–0.7 M (NH₄)₂SO₄ gradient (30 column volumes) in 20 mM sodium acetate buffer (pH 5.5) at a flow rate of 2.5 ml min⁻¹. The fractions containing target protein were pooled and were desalted and concentrated by ultrafiltration using Vivaspin 20-5K (Sartorius, Göttingen, Germany). The purified enzymes were preserved in a 20 mM sodium acetate buffer (pH 4.5) containing 0.01% NaN₃ at 4 °C. Protein concentration was determined with a bichinchoninic acid protein assay kit (Thermo Scientific, Rockford, IL) using BSA (Thermo Scientific) as the protein standard.

Enzyme characterization

Xylanase activity was measured in a reaction mixture containing purified Xyn30B and 10 mg ml⁻¹ beechwood xylan.
Characterization and crystal structure of Xyn30B

(Megazyme, Wicklow, Ireland) in 50 mM sodium acetate (pH 4.0) at 40 °C for 15 min. The reducing sugars from depolymerization of the substrate were measured using the DNS method (40). One unit of enzyme activity was defined as the amount of enzyme that catalyzed the formation of 1 μmol of reducing sugar/min.

The optimal pH values and pH stabilities were examined using McIlvaine buffer for pH adjustment (41). To determine the optimal pH values, the reaction mixtures from pH 2.0 to 6.5 were incubated at 40 °C for 15 min. To examine the pH stabilities, the enzymes were preincubated in buffer at pH values ranging from 2.0 to 7.0 for 30 min at 40 °C, and the residual activity was subsequently measured under standard assay conditions using 10 mg ml⁻¹ beechwood xylan. The optimal reaction temperature was examined at 35–60 °C for 15 min in 50 mM sodium acetate (pH 4.0). To evaluate thermal stability, enzyme was preincubated in 50 mM sodium acetate (pH 4.0) at 4–60 °C for 30 min or 24 h, and then the residual activity was measured under standard assay conditions. To investigate the substrate specificity of Xyn30B, reaction mixture containing 10 mg ml⁻¹ substrate was incubated at 40 °C in 50 mM sodium acetate (pH 4.0). The following substrates were used: birchwood xylan, beechwood xylan, wheat arabinoxylan (Megazyme), carboxymethyl cellulose (Sigma-Aldrich), konjac glucomannan (Megazyme), and xyloglucan (Megazyme).

Kinetic parameters were evaluated using 3.6–48 mg ml⁻¹ beechwood xylan and 0.03–24 mM borohydride-reduced aldotetrauronic acid (2³-(4-O-methyl-D-glucuronyl)-α-D-xylotriitol (BR-MeGlcA³Xyl3, Megazyme). The reaction was performed at 40 °C in 50 mM sodium acetate (pH 4.0). Enzyme activity for beechwood xylan was measured by the DNS method. Enzyme activity for BR-MeGlcA³Xyl3 was estimated by measuring the amount of released xyitol by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis as described below (42). Kinetic constants were determined using the nonlinear least-squares data fitting method in Microsoft Excel 2016 (Microsoft, Redmond, WA) (43).

Xylobiohydrolase and transglycosylation activities were measured in a reaction mixture containing purified Xyn30B and 4 mM xylotriose (Xyl₃, Megazyme) in 50 mM sodium acetate (pH 4.0) at 40 °C for 15 min. The released products were determined by HPAEC-PAD analysis. One unit of xylobiohydrolase and transglycosylation activities was defined as the amount of enzyme that catalyzed the release of 1 μmol of xylose and Xylₛ per minute, respectively.

HPAEC-PAD analysis of hydrolysis reaction mixtures

HPAEC-PAD analysis of linear and acidic XOS hydrolysate was performed using a Dionex ICS-3000 ion chromatography system equipped with a CarboPac PA1 (Dionex, Sunnyvale, CA).

Analysis of acidic XOS was conducted at a flow rate of 1 ml min⁻¹ as follows: (i) the system was equilibrated with 10 mM sodium hydroxide; (ii) after sample injection, 10 mM sodium hydroxide was run through the column for 3 min; (iii) a linear gradient of sodium hydroxide (10–100 mM) was run for 7 min; (iv) a linear gradient of sodium acetate (0–200 mM) in 100 mM sodium hydroxide was run for 40 min. The column was washed with 100 mM sodium hydroxide for 10 min after each sample analysis.

Analysis of xylose, xylitol, and linear XOS was conducted at 1 ml min⁻¹ as follows: (i) the system was equilibrated with 10 mM sodium hydroxide; (ii) after sample injection, 10 mM sodium hydroxide was run through the column for 3 min; (iii) a linear gradient of sodium hydroxide (10–100 mM) was run for 2 min; and (iv) a linear gradient of sodium acetate (0–100 mM) in 100 mM sodium hydroxide was run for 8 min. The column was washed with 200 mM sodium acetate in 100 mM sodium hydroxide solution for 5 min after each sample analysis. Data were processed with Chromeleon software (Dionex). Xylose (Nacalai Tesque, Kyoto, Japan), Xyl₃ (xylobiose, Wako Pure Chemicals, Osaka, Japan), Xyl₃₋, Xyl₄ (Megazyme), Xyl₅₋, Megazyme), Xyl₆ (Megazyme), and xylitol (Wako Pure Chemicals) were used as standards.

Mass spectrometry

The molecular mass of the purified Xyn30B was evaluated by MALDI-TOF MS with a Spiral TOF JMS-S3000 (JEOL, Tokyo, Japan). The purified sample was applied to the MALDI target plate after dilution into a mixture containing 0.5% (w/v) sinapinic acid, 0.1% TFA, and 25% acetonitrile. Monovalent and bivalent ions from conalbumin (75 kDa) included in the Gel Filtration Calibration Kit HMW (GE Healthcare) were used for external mass calibration. Instrument control, data acquisition, and data processing of all experiments were achieved using MS Tornado (JEOL).

Electrospray ionization single-stage and multistage MS in the negative ion mode (ESI(−)-MSⁿ; n = 1–3) were used for the molecular and structural analyses of acidic XOS using an Amazon SL-STT2 ion trap (Bruker, Bremen, Germany). Samples were diluted in methanol (MeOH) and introduced into the ionization source in infusion mode using a syringe pump at a flow rate of 10 μl min⁻¹. The apparatus was operated in enhanced resolution mode (mass range: 50–2200 m/z, scanning rate: 8,100 m/z per second). In MSⁿ experiments (n > 1), the width of the selection window was set at 1 Da to obtain clean isotopic selection. The amplification of the excitation was set according to the experiment to reach a survival yield (abundance of the precursor ion divided by the sum of the product and precursor ion abundances) at ~20%. Instrument control, data acquisition, and data processing of all experiments were achieved using Compass 1.3 SR2 (Bruker), whereas mMass 5.5.0.0 (44) was used for data treatment and artworks.

X-ray crystallography

Purified Xyn30B was concentrated to 30 mg ml⁻¹ for crystallization. Crystals were obtained with the hanging-drop vapor diffusion method at 20 °C for a week. The drop was composed of 1.5 μl of protein solution mixed with 1.5 μl of reservoir solution containing 30% PEG 4000, 0.1 M Tris–HCl (pH 8.1), 200 mM sodium acetate and equilibrated against 500 μl of reservoir solution.

The Xyn30B crystal was soaked with the reservoir solution supplemented with 30% glycerol as a cryoprotectant and then flash-cooled in liquid nitrogen. X-ray diffraction data of the
crystal were collected to 2.25 Å resolution at 100 K at the SPring-8 beamline BL44XU. Diffraction images were checked with adxv (http://www.scripps.edu/tainer/arvai/adxv.html) and integrated and scaled with XDS (version: January 26, 2018) (45). Phasing was performed using Molrep 11.6 in CCP47.0 (46, 47) with CaXyn30A (PDB code 5CXP) as the model, which had been processed using Sculptror in Phenix 1.12 (48, 49). The first model was refined using AutoBuild (50). The model was manually completed using Coot 0.8.9 and refined using Refmac 5.8 (51, 52). Model quality was verified using MolProbity 4.4 (53). Molecular figures were generated with Open-source PyMol 1.8 (54). Secondary structures of Xyn30B, EcXynA, and BsXynC were assigned using STRIDE (55).

Amino acid sequence alignment

Amino acid sequences of T. cellulolyticus Xyn30B (NCBI protein ID: GAM36763), T. reesei XYN IV (AAP64786), T. reesei XYN VI (EGR45006), D. chrysanthemi EcXynA (AABS3151), and B. subtilis BsXynC (CA97612) were aligned by using the Clustal Omega server (56).

Author contributions—H. I. designed the study. H. I. and Y. N. prepared and characterized the enzymes. T. F. and S. I. collected the data. T. F. and S. I. conducted the X-ray cryocrystallography experiments. A. M. and H. I. coordinated the study. All authors contributed to the writing of this manuscript and approved the final version.

Acknowledgments—We thank Maya Ishii and Benchaporn Inoue for technical assistance. This work was performed at the BL44XU synchrotron beamline at SPring-8 under the Collaborative Research Program within the Institute for Protein Research at Osaka University (Harima, Japan; Proposals 2017B6767 and 2018A6863). We thank the beamline staff—Drs. Eiki Yamashita, Akiyumi Higashiura, and Kenji Takagi—for assistance with data collection.

References

1. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 CrossRef Medline
2. St John, F. J., Rice, J. D., and Preston, J. F. (2006) Characterization of XynC from Bacillus subtilis subsp. subtilis Strain 168 and analysis of its role in depolymerization of glucuronoxylan. J. Bacteriol. 188, 8617–8626 CrossRef Medline
3. Vrsámská, M., Kolenová, K., Puchart, V., and Biely, P. (2007) Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEMS J. 274, 1666–1677 CrossRef Medline
4. Valenzuela, S. V., Díaz, P., and Pastor, F. I. (2012) Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl. Environ. Microbiol. 78, 3923–3931 CrossRef Medline
5. Padilha, I. Q. M., Valenzuela, S. V., Grisi, T. C. S. L., Díaz, P., de Araújo, D. A. M., and Pastor, F. I. (2014) A glucuronoxylan-specific xylanase from a new Paenibacillus favesior strain isolated from tropical soil of Brazil. Int. Microbiol. 17, 175–184 CrossRef Medline
6. St John, F. J., Crooks, C., Dietrich, D., and Hurlbert, J. (2016) Xylanase 30 A from Clostridium thermocellum functions as a glucuronoxylan xylanohydrolase. J. Mol. Catal. B Enzyme. 133, S445–S451 CrossRef
7. St John, F. J., González, J. M., and Pozharski, E. (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett. 584, 4435–4441 CrossRef Medline
8. Maehara, T., Yagi, H., Sato, T., Ohnishi-Kameyama, M., Fujimoto, Z., Kamino, K., Kitamura, Y., St John, F. J., Yaoi, K., and Kaneko, S. (2018) GH30 glucuronoxylan-specific xylanase from Streptomyces turgidiscabies C56. Appl. Environ. Microbiol. 84, e01850–17 CrossRef Medline
9. Urbániková, L., Vršanská, M., Mäkberg Krogh, K. B. R., Hoff, T., and Biely, P. (2011) Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. FEBS J. 278, 2105–2116 CrossRef Medline
10. St John, F. J., Hurlbert, J. C., Rice, J. D., Preston, J. F., and Pozharski, E. (2011) Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase. J. Mol. Biol. 407, 92–109 CrossRef Medline
11. Suchová, K., Kozmón, S., Puchart, V., Malovíková, A., Hoff, T., Mäkberg Krogh, K. B. R., and Biely, P. (2018) Glucuronoxylan recognition by GH 30 xylanases: a study with enzyme and substrate variants. Arch. Biochem. Biophys. 643, 42–49 CrossRef Medline
12. St John, F. J., Dietrich, D., Crooks, C., Balogun, P., de Serrano, V., Pozharski, E., Smith, J. K., Bales, E., and Hurlbert, J. C. (2018) A plasmid borne, functionally novel glycoside hydrolase family 30, subfamily 8 endoxylanase from solventogenic Clostridium. Biochem. J. 475, 1533–1551 CrossRef Medline
13. St John, F. J., Dietrich, D., Pozharski, E., González, J. M., Bales, E., Smith, K., and Hurlbert, J. C. (2014) A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity. Acta Crystallogr. D Biol. Crystallogr. 70, 2950–2958 CrossRef Medline
14. Karnaouri, A., Topakas, E., Antonopoulou, I., and Christakopoulos, P. (2014) Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Front. Microbiol. 5, 281 CrossRef Medline
15. Fuji, T., Inoue, H., Yano, S., and Sawayama, S. (2018) Strain improvement for industrial production of lignocellulolytic enzyme by Talaromyces cellulosolyticus: in fungal Cellulolytic Enzymes (Fang, X., and Qu, Y., eds) pp. 58–68, Springer, Singapore
16. Peterson, R., and Nevalainen, H. (2012) Trichoderma reesei RUT-C30: thirty years of strain improvement. Microbiology 158, 58–68 CrossRef Medline
17. Adav, S. S., Chao, L. T., and Sze, S. K. (2012) Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol. Cell. Proteomics 11, M111.012419 CrossRef Medline
18. Kolbuz, M. A., Di Falco, M., Ishaq, N., Marqueueta, S., Moisan, M. C., Baptista, C. D. S., Powalkowski, J., and Tsang, A. (2014) Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila. Funct. Genet. Biol. 72, 10–20 CrossRef Medline
19. Tenkanen, M., Vrsámská, M., Siika-aho, M., Wong, D. W., Puchart, V., Pettilä, M., Saloheimo, M., and Biely, P. (2013) Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J. 280, 285–301 CrossRef Medline
20. Biely, P., Puchart, V., Stringer, M. A., and Mäkberg Krogh, K. B. R. (2014) Trichoderma reesei XYN VI: a novel appendage-dependent eukaryotic glucuronoxylan hydrolase. FEBS J. 281, 3894–3903 CrossRef Medline
21. Luo, H., Yang, J., Li, J., Shi, P., Huang, H., Bai, Y., Fan, Y., and Yao, B. (2010) Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl. Microbiol. Biotechnol. 86, 1829–1839 CrossRef Medline
22. Hurlbert, J. C., and Preston, J. F., 3rd (2001) Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. Appl. Environ. Microbiol. 67, 2093–2100 CrossRef Medline
23. Nielsen, H. (2017) Predicting secretory proteins with signalP. Methods Mol. Biol. 1611, 59–73 CrossRef Medline
24. Inoue, H., Fujii, T., Yoshimi, M., Taylor, L. E., 2nd, Decker, S. R., Kishishita, S., Nakabayashi, M., and Ishikawa, K. (2013) Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes. Fungal Genet. Biol. 59, 1611, 59–73 CrossRef Medline
25. Reis, A., Domingues, M. R. M., Domingues, P., Ferrer-Correia, A. J., and Coimbra, M. A. (2003) Positive and negative electrospary ionisation tandem mass spectrometry as a tool for structural characterisation of acid released oligosaccharides from olive pulp glucuronoxylans. Carbohydr. Res. 338, 1497–1505 CrossRef Medline
Characterization and crystal structure of Xyn30B

26. Fouquet, T., Sato, H., Nakamichi, Y., Matsushika, A., and Inoue, H. (2018) Electrospun multistage mass spectrometry in the negative ion mode for the unambiguous molecular and structural characterization of acidic hydrolysates from 4-O-methylglucuronoxylan generated by endoxylanases. J. Mass Spectrom. 10.1002/jms.4321 CrossRef Medline

27. Larson, S. B., Day, J., Barba de la Rosa, A. P., Keen, N. T., and McPherson, A. (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Biochemistry 42, 8411–8422 CrossRef Medline

28. Zhengqiang, J., Kobayashi, A., Ahsan, M. M., Lite, L., Kitaoa, M., and Hayashi, K. (2001) Characterization of a thermostable family 10 endoxylanase (XynB) from Thermotoga maritima that cleaves p-nitrophenyl-β-D-xylloside-β-D-xylloside and xylosides. J. Bacteriol. 114, 125–134 CrossRef Medline

29. Jiang, Z., Zhu, Y., Li, L., Yu, X., Kusakabe, I., Kitaoa, M., and Hayashi, K. (2004) Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alky1 β-D-xylosibides and xylosides. J. Biotechnol. 114, 125–134 CrossRef Medline

30. Gätard, S., Plantier-Royon, R., Rémond, C., Muzard, M., Kowandy, C., and Bouquillon, S. (2017) Preparation of new β-D-xylloside- and β-D-xylloside-based ionic liquids through chemical and/or enzymatic reactions. Carbohydr. Res. 451, 72–80 CrossRef Medline

31. Proctor, M. R., Taylor, E. J., Niruzzo, D., Turkenburg, J. P., Lloyd, R. M., Vardakou, M., Davies, G. J., and Gilbert, H. J. (2005) Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proc. Natl. Acad. Sci. U.S.A., 102, 2697–2702 CrossRef Medline

32. Santos, C. R., Polo, C. C., Costa, M. C. M. F., Nascimento, A. F. Z., Meza, A. N., Cota, J., Hoffmann, Z. B., Honorato, R. V., Oliveira, P. S. L., Goldman, G. H., Gilbert, H. J., Prade, R. A., Ruller, R., Squina, F. M., Wong, D. W. S., and Murakami, M. T. (2014) Mechanistic strategies for catalysis adopted by evolutionarily distinct family 43 arabinanases. J. Biol. Chem. 289, 7362–7373 CrossRef Medline

33. Cartnell, A., Topakas, E., Duncos, V. M. A., Suits, M. D. L., Davies, G. J., and Gilbert, H. J. (2008) The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J. Biol. Chem. 283, 34403–34413 CrossRef Medline

34. Fushinobu, S., Hitadka, M., Honda, Y., Wakagi, T., Shouh, H., and Kitaoa, M. (2005) Structural basis for the specificity of the reducing end xylene-releasing exo-oligosaccharase from Bacillus halodurans C-125. J. Biol. Chem. 280, 17180–17186 CrossRef Medline

35. Yao, Y. Y., Shrestha, K. L., Wu, Y. J., Tasi, H. J., Chen, C. C., Yang, J. M., Ando, A., Cheng, C. Y., and Li, Y. K. (2008) Structural simulation and protein engineering to convert an endo-chitosanase to an exo-chitosanase. Protein Eng. Des. Sel. 21, 561–566 CrossRef Medline

36. Yaoi, K., Kondo, H., Hiyoshi, A., Noro, N., Sugimoto, H., Tsuda, S., Mit-, suishi, Y., and Miyazaki, K. (2007) The structure of the active site of the Xyn30B enzyme. Acta Crystallogr. D Biol. Crystallogr. 63, 776–785 CrossRef Medline

37. Bunkóczi, G., and Read, R. J. (2011) Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. D Biol. Crystallogr. 67, 303–312 CrossRef Medline

38. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 CrossRef Medline

39. Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L. W., Read, R. J., and Adams, P. D. (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 CrossRef Medline

40. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 CrossRef Medline

41. Skubák, P., Murshudov, G. N., and Pannu, N. S. (2004) Direct incorporation of experimental phase information in model refinement. Acta Crystallogr. D Biol. Crystallogr. 60, 2196–2201 CrossRef Medline

42. Williams, C. J., Headd, J. J., Moriarty, N. W., Frisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., 3rd, Snoeyink, J., Adams, P. D., et al. (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 CrossRef Medline

43. Delano, W. L. (2018) The PyMOL Molecular Graphics System, version 1.8.6.0. Schrodinger, LLC, New York

44. Frishman, D., and Argos, P. (1995) Knowledge-based protein secondary structure assignment. Proteins 23, 566–579 CrossRef Medline

45. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., and Higgins, D. G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 CrossRef Medline

46. Saiou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 CrossRef Medline

47. Zuckerandl, E., and Pauling, L. (1965) Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 CrossRef Medline

48. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: molecular evolution-ary genetics analysis version 7.0. molecular biology and evolution. Mol. Biol. Evol. 33, 1870–1874 CrossRef Medline

49. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 CrossRef