STraTA: Self-Training with Task Augmentation for Better Few-shot Learning

Tu Vu

November, 2021
STraTA: Self-Training with Task Augmentation for Better Few-shot Learning

Tu Vu¹,²
Thang Luong¹
Quoc Le¹
Grady Simon¹
Mohit Iyyer²
Agenda

- Motivation
- STraTA: Self-training with Task Augmentation
- Results and Discussion
- Conclusion
The current dominant learning paradigm

Pre-training Fine-tuning

target task

labeled data

Credit to Jay Alammar for creating the BERT image
Exploiting task-specific unlabeled data

Pre-training Task augmentation Self-training

auxiliary task

unlabeled data labeled data

synthetic training data pseudo-labeled data

Credit to Jay Alammar for creating the BERT image
STraTA substantially improves sample efficiency

![Graph](image-url)

- **SST-2**
 - BERT\textsubscript{BASE}
 - BERT\textsubscript{BASE} + STraTA
 - BERT\textsubscript{BASE} w/ 67K examples

- **SciTail**
 - BERT\textsubscript{BASE}
 - BERT\textsubscript{BASE} + STraTA
 - BERT\textsubscript{BASE} w/ 27K examples

Accuracy vs. # labeled examples per class
What is self-training?

Teacher Model

Labeled Data

Inference

Pseudo-labeled Data

Repeat until convergence

Student Model

what pseudo-labeled examples to use?
Self-training on a broad distribution of pseudo-labeled data

Iterative confidence filtering

Our self-training algorithm

Labeling accuracy

self-training iterations

-dev
-test
-predict
-self_train
Our self-training algorithm

Teacher Model

Labeled Data

Pseudo-labeled Data

Student Model

Inference

Use a broad distribution

Repeat until convergence
Our self-training algorithm (cont.)

what model to use?

what model to use?
Task Augmentation

Pre-trained Language Model

Task-specific Unlabeled Texts

Data Generation Model

Synthetic In-domain Auxiliary-task Data

Auxiliary-task Model
Task augmentation

1. Train an NLI data generator by fine-tuning a pre-trained generative model on the MNLI dataset in a text-to-text format

entailment: I have met a woman whom I am attracted to → I am attracted to a woman I met

2. Use the model to simulate a large amount of NLI data using target-task unlabeled text

contradiction: his acting was really awful

→ he gave an incredible performance

3. Create synthetic in-domain NLI training examples

[his acting was really awful, he gave an incredible performance]

→ contradiction
unlabeled text from SST-2

Input: a cast of a-list brit actors

- **Entailment** → **Output:** the cast includes British actors.
- **Neutral** → **Output:** the cast includes a-list brit actors such as Nicole Kidman and Charlie Chaplin.
- **Contradiction** → **Output:** the cast was all new and unknown.

Input: both heartbreaking and heartwarming ... just a simple fable done in an artless sytle, but it ’s tremendously moving

- **Entailment** → **Output:** the story is moving and touching.
- **Neutral** → **Output:** the artless style used to make the fable was a favorite of many.
- **Contradiction** → **Output:** the fable is artful and sophisticated but it is also heartbreaking.

unlabeled text from SciTail

Input: Surface tension is responsible for the fact that small insects can walk on water.

- **Entailment** → **Output:** small insects can walk on water due to surface tension.
- **Neutral** → **Output:** it’s difficult for large insects to walk on water.
- **Contradiction** → **Output:** small insects cannot walk on water because of surface tension.

Input: Tamiflu inhibits spread of virus.

- **Entailment** → **Output:** the virus is less spread when tamiflu is used.
- **Neutral** → **Output:** tamiflu is a good way to treat hiv.
- **Contradiction** → **Output:** tamiflu promotes viral spread.
STraTA: Self-training with Task Augmentation

Task Augmentation
- Pre-trained Language Model
- Task-specific Unlabeled Texts
- Data Generation Model
- Synthetic In-domain Auxiliary-task Data
- Auxiliary-task Model

Self-training
- Teacher Model
- Labeled Data
- Pseudo-labeled Data
- Inference
- Use a broad distribution
- Student Model
- Repeat until convergence
Experimental setup: datasets

Task	Train	Task type	Domain
text classification/regression			
SNLI (Bowman et al., 2015)	570K	NLI	misc.
MNLI (Williams et al., 2018)	393K	NLI	misc.
QQP (Iyer et al., 2017)	364K	paraphrase identification	social QA
QNLI (Wang et al., 2019b)	105K	QA-NLI	Wikipedia
SST-2 (Socher et al., 2013)	67K	sentiment analysis	movie reviews
SciTail (Khot et al., 2018)	27K	NLI	science QA
SST-5 (Socher et al., 2013)	8.5K	sentiment analysis	movie reviews
STS-B (Cer et al., 2017)	7K	semantic similarity	misc.
SICK-E (Marelli et al., 2014)	4.5K	NLI	misc.
SICK-R (Marelli et al., 2014)	4.5K	semantic similarity	misc.
CR (Hu and Liu, 2004)	4K	sentiment analysis	product reviews
MRPC (Dolan and Brockett, 2005)	3.7K	paraphrase identification	news
RTE (Dagan et al., 2005, et seq.)	2.5K	NLI	news, Wikipedia

Datasets used in our experiments and their characteristics, sorted by training dataset size.
Experimental setup: baselines

LMFT & ITFT
- **LMFT**: target-task language model fine-tuning ([Howard and Ruder, 2018](#)); ([Gururangan et al., 2020](#))
- **ITFT**: intermediate-task fine-tuning with MNLI ([Phang et al., 2019](#))

Prompt/entailment-based fine-tuning
- **LM-BFF**: prompt-based fine-tuning ([Gao et al., 2021](#))
- **EFL**: entailment-based fine-tuning ([Wang et al., 2021](#))

Du et al. (2021)
- **SentAugST**: Retrieval-based augmentation (SentAug) + self-training (ST)
Main results

STraTA significantly improves results across 12 NLP benchmark datasets (numbers in the subscript indicate the standard deviation across 10 random seeds).

Model	SNLI	QQP	QNLI	SST-2	SciTail	SST-5	STS-B
FULL (1024 total training examples)							
BERT_LARGE	91.1	88.4	91.9	92.4	95.3	53.7,9	89.6,2
+ LMFT	91.0	88.1	90.4	93.5	95.3	54.0,4	89.5,2
+ ITFT_MNLI	91.1	88.2	91.6	93.5	96.5	54.0,8	90.3,3
+ TA	**91.9**	**88.5**	**92.5**	**94.7**	**96.9**	**55.7,8**	**90.9,2**

LIMITED (1024 total training examples)							
BERT_LARGE	77.4,6	74.1,0	81.7,9	89.8,6	90.9,7	49.1,3	88.2,4
+ LMFT	75.8,5	71.6,0	80.5,2	88.9,8	87.7,3	49.2,1	88.4,0
+ ITFT_MNLI	85.2,4	74.0,0	83.5,5	90.0,8	92.1,1	49.4,2	87.8,8
+ TA	**87.3,3**	**75.7,5**	**85.0,5**	**91.7,0**	**92.3,1**	**51.4,0**	**89.0,6**

FEW-SHOT (8 training examples per class)							
BERT_LARGE	43.1,4	58.5,4	64.4,1	66.1,8	68.8,5	35.2,3	74.6,38
+ LMFT	39.6,6	52.7,4	52.2,16	66.3,9,3	66.4,10,6	36.8,2,9	75.4,9,4
+ ITFT_MNLI	79.9,3,1	62.6,9,0	64.5,4	80.7,5,0	72.3,12,2	36.4,2,1	75.5,4,0
+ TA	84.8,0,7	64.6,6,3	71.5,4,0	85.5,1,4	79.0,4,5	38.5,3,0	78.9,2,4
+ ST	69.3,9,2	74.3,1,2	85.4,1,7	81.9,12,2	79.9,4,8	42.0,1,5	82.8,2,3
+ STraTA	**87.3,0,3**	**75.1,0,2**	**86.4,0,8**	**91.7,0,7**	**87.3,2,9**	**43.0,2,3**	**84.5,1,6**

Prompt-based (LM-BFF; Gao et al., 2021) and entailment-based (EFL; Wang et al., 2021) methods
Main results (cont.)

Model	SST-2	SST-5	CR
Ours (8 examples per class)			
BERT_{BASE}	69.8_{6.5}	32.8_{2.0}	73.1_{0.5}
+ TA	85.5_{0.6}	41.0_{0.8}	88.7_{0.2}
+ ST	74.9_{9.0}	38.3_{0.8}	85.6_{1.8}
+ STraTA	90.8_{0.6}	43.1_{1.1}	91.4_{0.2}
BERT_{LARGE}	75.6_{3.3}	36.6_{0.4}	79.3_{0.7}
+ TA	87.3_{0.3}	41.7_{1.1}	90.0_{0.4}
+ ST	90.6_{0.3}	43.8_{0.4}	89.0_{1.1}
+ STraTA	92.4_{0.1}	45.5_{0.7}	90.6_{0.0}
Du et al. (2021) (20 examples per class)			
RoBERTa_{LARGE}	83.6_{2.7}	42.3_{1.6}	88.9_{1.7}
+ SentAugST	86.7_{2.3}	44.4_{1.0}	89.7_{2.0}

Compared to Du et al. (2021), our approach leads to better downstream performance, despite using a weaker base model (BERT vs. RoBERTa) and with less labeled examples.
STraTA improves a randomly-initialized base model while being competitive on SciTail. Additionally, vanilla BERT typically add a small set of unlabeled examples et al. algorithms (pseudo-labeled data: Self-training on a broad distribution of and SciTail, respectively. BERT the vanilla BERT as BERT model (RAND applied to a randomly initialized Transformer base model to exhibit improvements: when approach does not require a powerful pre-trained model: STraTA improves a randomly-initialized base dataset of 27K labeled examples at performance of standard fine-tuning with the whole dataset of 67K labeled examples. On the harder task of SciTail, STraTA already nearly saturated its performance, achieving results competitive with standard fine-tuning even when starting with a randomly-initialized model, but pre-training helps considerably.

Model	SST-2	SciTail
RAND_{BASE}	50.0_{1.6}	50.7_{2.4}
+ STraTA	78.6_{0.9}	64.4_{3.1}
BERT_{BASE}	59.1_{8.4}	67.1_{6.6}
+ STraTA	90.1_{0.8}	86.3_{3.5}
BERT_{LARGE}	66.1_{8.7}	68.8_{9.5}
+ STraTA	91.7_{0.7}	87.3_{2.9}

Our approach yields improvements even when starting with a randomly-initialized model, but pre-training helps considerably.
Does self-training work with out-of-domain/distribution unlabeled data?

Model	SciTail	CR	MRPC	RTE
\(\text{BERT}_{\text{BASE}} \)	67.1\,_{6.6}	65.2\,_{8.2}	72.4\,_{10.2}	51.4\,_{2.5}
\(\text{BERT}_{\text{BASE}} + \text{TA} \)	78.5\,_{3.2}	86.5\,_{2.2}	74.5\,_{6.5}	67.6\,_{7.1}
\(+ \text{ST}_{\text{IN}} \)	86.3\,_{3.5}	90.5\,_{0.8}	81.0\,_{0.8}	70.6\,_{2.4}
\(+ \text{ST}_{\text{OUT}} \)	81.4\,_{3.7}	88.3\,_{1.9}	80.3\,_{1.9}	71.2\,_{3.2}
\(+ \text{ST}_{\text{IN} + \text{OUT}} \)	82.6\,_{2.6}	88.3\,_{1.5}	80.2\,_{1.1}	69.9\,_{4.0}

Self-training with out-of-domain unlabeled examples also results in improvements, but using in-domain data works significantly better.
Towards realistic evaluation in few-shot learning

Model	SST-2	SciTail
BERT_{BASE}	58.8_{8.4} (↓ 0.3)	61.5_{5.4} (↓ 5.6)
+ LMFT	64.0_{8.1} (↓ 0.9)	59.3_{5.6} (↓ 4.7)
+ ITFT_{MNLI}	76.5_{7.2} (↓ 0.3)	76.2_{5.4} (↑ 0.4)
+ TA	79.8_{6.3} (↓ 0.5)	77.8_{3.3} (↓ 0.7)
+ STraTA	86.6_{2.6} (↓ 3.5)	80.6_{3.0} (↓ 5.7)

In a realistic evaluation without a development set, our STraTA approach still leads to significant improvements on top of BERT_{BASE}. In parentheses, we show the absolute increase (↑) or decrease (↓) in performance compared to the same method used with a development set.
Conclusion

STraTA

✧ two *complementary* and *independently effective* methods to leverage task-specific unlabeled data for improved downstream performance

• *task augmentation*: synthesizes a large amount of in-domain data for auxiliary-task fine-tuning from target-task unlabeled texts

• *self-training*: trains on a broad distribution of pseudo-labeled data

✧ substantially improves sample efficiency across 12 NLP benchmark datasets
Thank you!

Code will be available at
https://github.com/google-research/google-research/tree/master/STraTA