Algebraicity of some Hilbert-Kunz multiplicities (modulo a conjecture)

Paul Monsky

Brandeis University, Waltham MA 02454-9110, USA. monsky@brandeis.edu

Abstract

Let F be a finite field of characteristic 2 and h be the element $x^3 + y^3 + xyz$ of $F[[x, y, z]]$. In an earlier paper we made a precise conjecture as to the values of the colengths of the ideals (x^q, y^q, z^q, h^j) for q a power of 2. We also showed that if the conjecture holds then the Hilbert-Kunz series of $H = uv + h$ is algebraic (of degree 2) over $\mathbb{Q}(w)$, and that $\mu(h)$ is algebraic (explicitly, $\frac{4}{3} + \frac{5}{14\sqrt{7}}$). In this note, assuming the same conjecture, we use a theory of infinite matrices to rederive this result, and we extend it to a wider class of H; for example $H = g(u, v) + h$. In a follow-up paper, under the same hypothesis, we will show that transcendental Hilbert-Kunz multiplicities exist.

1 A product on X

In this section we develop some general results about Hilbert-Kunz series and multiplicities for characteristic 2 power series. (There are similar results, implicit in [5], in all finite characteristics but they are harder to prove.)

Definition 1.1 X is the vector space of functions $I \rightarrow Q$ where $I = [0, 1] \cap Z[\frac{1}{2}]$. If $f \neq 0$ is in the maximal ideal of $F[[u_1, \ldots, u_r]]$, char $F = 2$, then ϕ_f in X is the function $\frac{i}{q} \rightarrow q^{-r} \deg(u_1^q, \ldots, u_r^q, f^i)$; here q denotes a power of 2 and \deg is colength in $F[[u_1, \ldots, u_r]]$. Note that ϕ_f is well-defined.

Definition 1.2 α in X is convex if for all i and q with $0 < i < q$, $2\alpha\left(\frac{i}{q}\right) \geq \alpha\left(\frac{i-1}{q}\right) + \alpha\left(\frac{i+1}{q}\right)$.

Note that $\phi_f(0) = 0$, $\phi_f(1) = 1$, ϕ_f is convex and ϕ_f is Lipschitz. The first two assertions are clear. If we set $J = (u_1^q, \ldots, u_r^q)$ then multiplication by f induces a map of $(J, f^{i-1})/(J, f^i)$ onto $(J, f^i)/(J, f^{i+1})$, yielding convexity. Finally, as Lipschitz constant we can take the Hilbert-Kunz multiplicity, μ, of f.

Definition 1.3 Suppose that α in X is convex Lipschitz with $\alpha(0) = 0$ and $\alpha(1) = 1$. Then $\mu(\alpha) = \lim_{n \to \infty} \alpha(2^{-n}) \cdot 2^n$, while S_α is the element $\sum \alpha(2^{-n})(2w)^n$ of $Q[[w]]$. (The convexity of α shows that $n \to 2^n\alpha(2^{-n})$ is non-decreasing. Since α is Lipschitz, the function is bounded and the limit exists.)

Remarks When $\alpha = \phi_f$, $\mu(\alpha)$ and $S_\alpha(2^{-1}w)$ are just the Hilbert-Kunz multiplicity and Hilbert-Kunz series of f. Note that if α is as in Definition 1.3 then $\mu(\alpha) = \lim_{w \to 1^-} (1 - w)S_\alpha(w)$. For convexity shows that the co-efficients of the power series $(1 - w)S_\alpha(w)$ are ≥ 0. So the limit is the value of this power series at 1. And we note that $\alpha(1) + (2\alpha(\frac{1}{2}) - \alpha(1)) + (4\alpha(\frac{1}{4}) - 2\alpha(\frac{1}{2})) + \cdots$ converges to $\mu(\alpha)$.

We next define a bilinear product $\# : X \times X \to X$ and show that if $f \neq 0$ and $g \neq 0$ are in the maximal ideals of $F[[u_1, \ldots, u_r]]$ and $F[[v_1, \ldots, v_s]]$, then $\phi_f \# \phi_g = \phi_h$, where h is the element $f(u) + g(v)$ of $F[[u_1, \ldots, u_r, v_1, \ldots, v_s]]$. (There is a similar construction, implicit in [5], in any finite characteristic.)

Definition 1.4 Suppose α and β are in X. We define $\alpha \# \beta(t)$ by induction on the denominator of t in I, according to the following procedure:

Let α_0 and α_1 be the elements $t \to \alpha(\frac{1}{2})$ and $t \to \alpha(\frac{1}{2} + t)$ of X; define β_0 and β_1 similarly. Then:

(1) $\alpha \# \beta(0) = 0$; $\alpha \# \beta(1) = (\alpha(1) - \alpha(0))(\beta(1) - \beta(0))$

(2) If $0 \leq t \leq \frac{1}{2}$

$\alpha \# \beta(t) = \alpha_0 \# \beta_0(2t) + \alpha_1 \# \beta_1(2t)$

(3) If $\frac{1}{2} \leq t \leq 1$

$\alpha \# \beta(t) = \alpha_0 \# \beta_0(1) + \alpha_1 \# \beta_1(1) + \alpha_0 \# \beta_1(2t - 1) + \alpha_1 \# \beta_0(2t - 1)$

Note that when $t = 0$, $\frac{1}{2}$ or 1 the two definitions of $\alpha \# \beta(t)$ given by the above scheme coincide, so that $\alpha \# \beta$ is a well-defined element of X. $\#$ is evidently bilinear and symmetric; one can show that it is associative. It’s easy to see that if α is constant then $\alpha \# \beta = 0$, while if α is the identity function t, $\alpha \# \beta = (\beta(1) - \beta(0))t$. In particular, $t \# t = t$.

Now let T_0 and $T_1 : X \to X$ be the maps taking α to $t \to \alpha(\frac{1}{2})$ and $t \to \alpha(\frac{1}{2} + t)$. Replacing t by $\frac{1}{2}$ in (2) above and by $\frac{1}{2} + t$ in (3) above gives:

Theorem 1.5 If $\gamma = \alpha \# \beta$ then:

$$T_0(\gamma) = (T_0(\alpha) \# T_0(\beta)) + (T_1(\alpha) \# T_1(\beta))$$

$$T_1(\gamma) = \gamma \left(\frac{1}{2}\right) + (T_0(\alpha) \# T_1(\beta)) + (T_1(\alpha) \# T_0(\beta))$$

We now recall some notation used in both [1] and [5]. By an $F[T]$-module we’ll mean a finitely generated $F[T]$-module annihilated by a power of T. Γ is the
Grothendieck group of the set of isomorphism classes of such modules. There is a multiplication on \(\Gamma \) making it into a commutative ring; if \(V \) and \(W \) are \(F[T] \)-modules, a representative of their product is \(V \otimes W \), with \(T \) acting by \((T_V \otimes \text{id}) + (\text{id} \otimes T_W)\). There is a \(Z \)-basis \(\lambda_0, \lambda_1, \ldots \) of \(\Gamma \) with the following property. If \(V \) is an \(F[T] \)-module then the class of \(V \) in \(\Gamma \) is \(\sum c_i \lambda_i \) where \(c_i = (-1)^i \dim(T^i V / T^{i+1} V) \). Because \(\text{char } F = 2 \), the multiplicative structure of \(\Gamma \) is very simple; \(\lambda_i \lambda_j = \lambda_k \) where \(k \) is the “Nim-sum” of \(i \) and \(j \).

Lemma 1.7 Suppose now that \(q = 2^n \) and \(0 \leq i < q \). Since the Nim-sum of \(i \) and \(q \) is \(q + i \), \(\lambda_i \lambda_q = \lambda_{q+i} \) giving:

\[
\lambda_{n+1}(\alpha) = \lambda_n(\alpha_0) + \lambda_q \lambda_n(\alpha_1)
\]

Theorem 1.8 If \(\gamma = \alpha \neq \beta \), \(\lambda_n(\gamma) = \lambda_n(\alpha) \cdot \lambda_n(\beta) \).

Proof We argue by induction on \(n \). Since \(\gamma(1) - \gamma(0) = (\alpha(1) - \alpha(0)) (\beta(1) - \beta(0)) \) the result holds for \(n = 0 \). Suppose that it’s true for a given \(n \). Lemma 1.7, Theorem 1.5 and the induction hypothesis show that \(\lambda_{n+1}(\gamma) = \lambda_n(\alpha_0) \lambda_n(\beta_0) + \lambda_n(\alpha_1) \lambda_n(\beta_1) + \lambda_q \lambda_n(\alpha_0) \lambda_n(\beta_1) + \lambda_q \lambda_n(\alpha_1) \lambda_n(\beta_0) \). But this is \((\lambda_n(\alpha_0) + \lambda_q \lambda_n(\alpha_1)) \cdot (\lambda_n(\beta_0) + \lambda_q \lambda_n(\beta_1)) \) which is \(\lambda_{n+1}(\alpha) \cdot \lambda_{n+1}(\beta) \) by Lemma 1.7.

Theorem 1.9 Suppose \(h = f(u_1, \ldots, u_r) + g(v_1, \ldots, v_s) \). Then:

1. For each \(n \), \(\lambda_n(\phi_h) = \lambda_n(\phi_f) \cdot \lambda_n(\phi_g) \)
2. \(\phi_h \neq \phi_f \neq \phi_g \)

Proof With \(q = 2^n \), let \(V \) be as in the paragraph following Definition 1.6. As we’ve seen \(V \) represents the element \(q^r \lambda_i \lambda_j \) of \(\Gamma \). Replacing \(f \) by \(g \) we get a \(W \) representing the element \(q^r \lambda_i \lambda_j \) of \(\Gamma \). Then \(q^{r+s} \lambda_i \lambda_j \) is represented by \(F[[u_1, \ldots, u_r, v_1, \ldots, v_s]]/(u_1^q, \ldots, v_s^q) \) with \(T \) acting by multiplication by \(f(u_1, \ldots, u_r) + g(v_1, \ldots, v_s) = h \). Since this \(F[T] \)-module represents \(q^{r+s} \lambda_i \lambda_j \) we get (1). Suppose now that \(\phi_h(t) \neq \phi_f \neq \phi_g(t) \) for some \(t = \frac{i}{2^n} \). Choose such a \(t \) with \(i \) as small as possible. Then \(i \neq 0 \), and the co-efficients of \(\lambda_{i-1} \) in \(\lambda_n(\phi_h) \) and \(\lambda_n(\phi_f \neq \phi_g) \) differ. Theorem 1.8 then shows that \(\lambda_n(\phi_h) \neq \lambda_n(\phi_f) \lambda_n(\phi_g) \), contradicting (1).
Theorem 1.10 If α and β are Lipschitz with Lipschitz constant m, then $\gamma = \alpha \# \beta$ is Lipschitz with Lipschitz constant m^2.

Proof We show that if $0 \leq j < 2q$ then $|\gamma \left(\frac{j+1}{2q}\right) - \gamma \left(\frac{j}{2q}\right)| \leq \frac{m^2}{2q}$, arguing by induction on q. Note first that $\alpha_0, \alpha_1, \beta_0$ and β_1 are all Lipschitz with Lipschitz constant $\frac{m}{2q}$. We claim that when $j < q$ the values of $\alpha_0 \# \beta_0$ (and of $\alpha_1 \# \beta_1$) at $\frac{j+1}{2q}$ and $\frac{j}{2q}$ differ by at most $\frac{m^2}{4q}$. (When $q = 1$, $j = 0$, and this is clear. When $q > 1$ we use the fact that α_0 and β_0 (and α_1 and β_1) have Lipschitz constant $\frac{m}{2q}$, together with the induction hypothesis.) Theorem 1.5 then shows that $\gamma \left(\frac{j+1}{2q}\right)$ and $\gamma \left(\frac{j}{2q}\right)$ differ by at most $\frac{m^2}{4q} + \frac{m^2}{4q} = \frac{m^2}{2q}$. The argument is similar when $j \geq q$, but now we make use of the values of $\alpha_0 \# \beta_1$ (and of $\alpha_1 \# \beta_0$) at $\frac{j+1}{2q}$ and $\frac{j}{2q}$. □

Lemma 1.11 Let $\delta_r, r \geq 1$, be the class of $F[T]/T^r$ in Γ; note that $\delta_r = \lambda_0 - \lambda_1 + \lambda_2 \cdots + (-)^{r-1}\lambda_{r-1}$. Then for α in X the following are equivalent:

(1) α is convex.

(2) For each n, $L_n(\alpha) = \sum_{i=0}^{q} c_i (-)^i \lambda_i$ with $c_0 \geq c_1 \geq \cdots \geq c_{q-1}$.

(3) For each n, $L_n(\alpha)$ is a linear combination of $\delta_1, \ldots, \delta_q$ with the co-efficients of $\delta_1, \ldots, \delta_{q-1} \geq 0$.

Proof Since the c_i in (2) is $\alpha \left(\frac{i+1}{q}\right) - \alpha \left(\frac{i}{q}\right)$, (1) and (2) are equivalent. Suppose (2) holds. If we set $c_q = 0$, then the formula for δ_r given above shows that $L_n(\alpha) = \sum_{i=0}^{q-1} (c_i - c_{i+1}) \delta_i$. Since $c_0 - c_1, \ldots, c_{q-2} - c_{q-1}$ are all ≥ 0 we get (3). That (2) follows from (3) is easy. □

Lemma 1.12 Suppose $1 \leq r, s \leq q$. Then, in Γ, $\delta_r \delta_s$ is a linear combination of $\delta_1, \ldots, \delta_q$ with non-negative integer co-efficients. Furthermore $\delta_r \delta_q = r \delta_q$.

Proof Let V and W be the $F[T]$-modules $F[T]/T^r$ and $F[T]/T^s$ representing δ_r and δ_s. Writing $V \otimes W$ (with T acting by $T_V \otimes \text{id} + \text{id} \otimes T_W$) as a direct sum of cyclic $F[T]$-modules we get the first assertion. The second is an easy calculation. □

Theorem 1.13 If α and β in X are convex, then so is $\alpha \# \beta$.

Proof By Lemma 1.11, $L_n(\alpha)$ and $L_n(\beta)$ are each linear combinations of $\delta_1, \ldots, \delta_q$ with the co-efficients of $\delta_1, \ldots, \delta_{q-1} \geq 0$. By Lemma 1.12 the same is true of $L_n(\alpha) \cdot L_n(\beta)$. Theorem 1.8 and Lemma 1.11 then show that $\alpha \# \beta$ is convex. □

Theorem 1.14 Suppose that α in X is convex Lipschitz with $\alpha(0) = 0$ and $\alpha(1) = 1$. Suppose further that $S_\alpha = \sum \alpha(2^{-n})(2w)^n$ lies in a finite extension, L, of $Q(w)$. (We extend the imbedding of $Q[w]$ in $Q[[w]]$ to their fields of fractions.) Then $\mu(\alpha)$ is algebraic over Q of degree $\leq [L : Q(w)]$. In fact there
is a valuation ring containing $Q[w]$ in L whose maximal ideal contains $w - 1$
and whose residue class field contains a copy of $Q(\mu(\alpha))$.

Proof Take H irreducible in $Q[W, T]$ so that $H(w, (1 - w)S_a) = 0$. Then for
any z in the open unit disc, $H(z, (1 - z)S_a(z)) = 0$. The remarks following Def-
nition 1.3 show that $H(1, \mu(\alpha)) = 0$. Since $H(1, T) \neq 0$, $\mu(\alpha)$ is algebraic over
Q. Let g be $\text{Irr}(\mu(\alpha), Q)$. Then $(W - 1, g(T))$ is a maximal ideal in $Q[W, T]/H$
and we take a valuation ring in L that contains $Q[w, (1 - w)S_a] = Q[W, T]/H$,
and whose maximal ideal contracts to the above maximal ideal. \qed

2 A calculation from [2], revisited

Let f be the element $x^3 + y^3 + xyz$ of $Z/2 [x, y, z]$, defining a nodal cubic.
The values of ϕ_f at $\frac{1}{q}$ are known, and in particular, $\mu(f) = \frac{7}{3}$. In [2] we
conjectured a precise value for all $\phi_f \left(\frac{1}{q} \right)$, and showed that the conjecture
implied that $\mu(wv + f)$ is $\frac{4}{3} + \frac{5}{4\sqrt{7}}$. In this section we’ll rework this result using
infinite matrix techniques from [3]; this approach will give rise to more general
theorems.

Definition 2.1 t and ϵ will denote the elements $t \to 1$, $t \to t$ and $t \to t - t^2$
of X.

Definition 2.2 For $m = 0, 1, 2, \ldots$ and t in I, $\phi_m(t)$ is defined by induction on
the denominator of t as follows:

1. $\phi_m(0) = \phi_m(1) = 0$
2. If $0 \leq t \leq \frac{1}{2}$, $8\phi_m(t) = \phi_{m+1}(2t) + (8m + 6)t$ for m even, and $\phi_{m-1}(2t) +
\epsilon(2t) + (8m + 6)t$ for m odd.
3. If $\frac{1}{2} \leq t \leq 1$, $8\phi_0(t) = \phi_0(2t - 1) + 6(1 - t)$
4. If $\frac{1}{2} \leq t \leq 1$, $8\phi_m(t) = \phi_{m-1}(2t - 1) + \epsilon(2t - 1) + (8m + 6)(1 - t)$ for
$m \neq 0$ even, and $\phi_{m+1}(2t - 1) + (8m + 6)(1 - t)$ for m odd.

When $t = 0, \frac{1}{2}$ or 1, the two definitions of $\phi_m(t)$ given by the above scheme
evidently coincide. So the ϕ_m are well-defined elements of X. Replacing t by
$\frac{t}{2}$ in (2) and by $\frac{1 + t}{2}$ in (3) and (4) we get the “magnification rules”:

1. $8T_0(\phi_0) = \phi_1 + 3t$
2. When $m \neq 0$ is even,
$8T_0(\phi_m) = \phi_{m+1} + (4m + 3)t$
3. When m is odd,
$8T_0(\phi_m) = \phi_{m-1} + \epsilon + (4m + 3)t$

Note also that $4T_0(\epsilon) = \epsilon + t$ and that $4T_1(\epsilon) = \epsilon + (1 - t)$.

5
Conjecture 2.3 If \(f = x^3 + y^3 + xyz \), then \(\phi_f = t + \phi_0 \) with \(\phi_0 \) as above.

In [2] we presented evidence for a conjecture easily seen to be equivalent to this. We noted in particular that both sides agree at all \(\frac{1}{q} \) and at each \(\frac{1}{512} \).

Theorem 2.4 If \(E_1 = \epsilon \# \phi_0 \) then \(\lim_{n \to \infty} E_1(2^{-n})2^n = \frac{1}{3} + \frac{5}{14\sqrt{7}} \).

Suppose now that Conjecture 2.3 holds. Then \(t + E_1 = (t + \epsilon) \# (t + \phi_0) = \phi_{uv} \# \phi_f = \phi_{uv + f} \). So Theorem 2.4 tells us that the Hilbert-Kunz multiplicity of \(uv + x^3 + y^3 + xyz \) is \(\lim_{n \to \infty} (2^{-n} + E_1(2^{-n}))2^n = \frac{4}{3} + \frac{5}{14\sqrt{7}} \), an observation made in [2]. We now give a proof of Theorem 2.4 using the techniques of [3].

Lemma 2.5 Let \(T : X \to X \) be \(32T_0 \). Set \(E_k = \epsilon \# \phi_{k-1} \). Then:

1. \(T(E_1) = E_1 + E_2 + 6t \)
2. \(T(E_k) = E_{k-1} + E_{k+1} + (8k - 2)t + (\epsilon \# \epsilon) \) for \(k > 1 \)
3. \(T(\epsilon \# \epsilon) = 4(\epsilon \# \epsilon) + 4t \), and \(T(t) = 16t \)

Proof Suppose \(k \) is even. Then \(T(E_k) = 32T_0(\epsilon \# \phi_{k-1}) = (4T_0(\epsilon \# 8T_0(\phi_{k-1}))) + (4T_1(\epsilon \# 8T_1(\phi_{k-1}))) \). The magnification rules following Definition 2.2 show that this is \((\epsilon + t) \# (\phi_{k-2} + \epsilon + (4k-1)t) + (\epsilon + 1 - t) \# (\phi_k + (4k-1)(1-t)) \). Expanding out we get \((\epsilon \# \phi_{k-2}) + (4k-1)t + (\epsilon \# \phi_k) + (4k-1)t + (\epsilon \# \epsilon) = E_{k-1} + E_{k+1} + (8k - 2)t + (\epsilon \# \epsilon) \). The other parts of the lemma are derived similarly.

Lemma 2.6 Let \(S \) be the power series \(\sum E_1(2^{-n})(32w)^n \). Then \((1 - 16w)(1 - 4w)(1 - 2w)^2S = 4w(1 - 2w)^2 + (2w - 12w^2)\sqrt{1 - 4w^2} \).

Proof Let \(l : X \to Q \) be evaluation at 1, so that \(l(E_k) = 0 \) for each \(k \), and \(l(\epsilon \# \epsilon) = 0 \), while \(l(t) = 1 \). Then \(E_1(2^{-n})32^n = l(T^n(E_1)) \) and \(S \) is just \(\sum l(T^n(E_1))w^n \). If we take \(Y \) to be the subspace of \(X \) spanned by \(\epsilon \# \epsilon \) and \(t \), Lemma 2.5 shows that we are in the situation of Example 5.12 of [3]. The final line of that paper is the desired result.

Theorem 2.4 is now easily proved. Lemma 2.6 shows that the value, \(\lambda \), of \((1 - 16w)S \) at \(w = \frac{1}{16} \) is \(\left(\frac{4}{3} \cdot \frac{64}{49} \right) \left(\frac{4}{16} \cdot \frac{49}{64} \cdot \frac{64}{61} \cdot \frac{61}{64} \right) = \frac{1}{3} + \frac{5}{14\sqrt{7}} \). Furthermore, \(S - \frac{\lambda}{1 - 16w} \) is holomorphic in the disc \(|w| < \frac{1}{4} \). It follows that \(S \left(\frac{w}{16} \right) - \frac{\lambda}{1 - w} \) is holomorphic in \(|w| < 4 \), and so the co-efficients in its power series expansion \(\to 0 \). So \(E_1(2^{-n}) \cdot 2^n - \lambda \to 0 \), the desired result.

We conclude this section by showing that the \(\phi_m \) of Definition 2.2 are convex and Lipschitz.

Lemma 2.7 \(\phi_m \left(\frac{1}{q} \right) \leq \frac{4m+4}{3q} \) for even \(m \) and \(\frac{4m+3}{3q} \) for odd \(m \).
Proof When \(q = 2 \), \(\phi_{m} \left(\frac{1}{q} \right) = \frac{4m+3}{4q} \). We argue by induction. Suppose \(q \geq 2 \).

If \(m \) is even, \(\phi_{m} \left(\frac{1}{2q} \right) = \frac{1}{8} \phi_{m+1} \left(\frac{1}{q} \right) + \frac{4m+3}{8q} \). By the induction hypothesis this is \(\leq \frac{4m+7}{24q} + \frac{4m+3}{8q} = \frac{4m+4}{3(2q)} \).

If \(m \) is odd, \(\phi_{m} \left(\frac{1}{2q} \right) = \frac{1}{8} \phi_{m+1} \left(\frac{1}{q} \right) + \frac{1}{8q} - \frac{1}{8q^{2}} + \frac{4m+3}{8q} \).

By the induction hypothesis this is \(\leq \frac{4m+4}{24q} + \frac{4m+4}{8q} = \frac{4m+3}{3(2q)} \). \(\square \)

Lemma 2.8 \(\phi_{m} \left(1 - \frac{1}{q} \right) \leq \frac{4m+4}{3q} \) for odd \(m \) and \(\frac{4m+3}{3q} \) for even \(m \).

Proof \(q = 2 \) is clear. Suppose \(q \geq 2 \); we argue by induction. If \(m \) is odd, \n
\[\phi_{m} \left(1 - \frac{1}{2q} \right) = \frac{1}{8} \phi_{m+1} \left(1 - \frac{1}{q} \right) + \frac{4m+3}{8q} \]

while if \(m \neq 0 \) is even, \(\phi_{m} \left(1 - \frac{1}{2q} \right) = \frac{1}{8} \phi_{m+1} \left(1 - \frac{1}{q} \right) + \frac{1}{8q} - \frac{1}{8q^{2}} + \frac{4m+3}{8q} \), and we continue as in the proof of Lemma 2.7. Finally, \(\phi_{0} \left(1 - \frac{1}{2q} \right) = \frac{1}{8} \phi_{0} \left(1 - \frac{1}{q} \right) + \frac{3}{8q} \).

By the induction hypothesis this is \(\leq \frac{1}{8q} + \frac{3}{8q} = \frac{1}{2q} \). \(\square \)

Lemma 2.9 \(\phi_{m} \left(\frac{s+1}{2q} \right) \) and \(\phi_{m} \left(\frac{s-1}{2q} \right) \) are \(\leq \phi_{m} \left(\frac{1}{2} \right) \).

Proof If \(m \) is odd, \(8 \left(\phi_{m} \left(\frac{1}{2} \right) - \phi_{m} \left(\frac{s+1}{2q} \right) \right) = \frac{4m+3}{q} - \phi_{m+1} \left(\frac{1}{q} \right) \). By Lemma 2.7 this is \(\geq \frac{4m+3}{q} - \frac{4m+8}{3q} \geq 0 \).

Also \(8 \left(\phi_{m} \left(\frac{1}{2} \right) - \phi_{m} \left(\frac{s-1}{2q} \right) \right) \geq \frac{4m+3}{q} - \phi_{m-1} \left(1 - \frac{1}{q} \right) \).

By Lemma 2.8 this is \(\geq \frac{4m+3}{q} - \frac{4m-1}{3q} \geq 0 \). The argument for even \(m \) is similar. \(\square \)

Theorem 2.10 The \(\phi_{m} \) are convex and Lipschitz.

Proof To prove convexity, we show that if \(0 < j < 2q \), then \(2\phi_{m} \left(\frac{j}{2q} \right) - \phi_{m} \left(\frac{j-1}{2q} \right) - \phi_{m} \left(\frac{j+1}{2q} \right) \geq 0 \), arguing by induction on \(q \). The case \(q = 1 \) is immediate. When \(j < q \) the induction assumption tells us that \(2\phi_{s} \left(\frac{j}{q} \right) - \phi_{s} \left(\frac{j-1}{q} \right) - \phi_{s} \left(\frac{j+1}{q} \right) \geq 0 \) for each \(s \); this and the fact that \(\epsilon \) and \(t \) are convex gives the result. When \(j > q \), the induction assumption tells us that \(2\phi_{s} \left(\frac{j}{q} \right) - \phi_{s} \left(\frac{j-1}{q} \right) - \phi_{s} \left(\frac{j+1}{q} \right) \geq 0 \); this and the convexity of \(\epsilon \) and \(1-t \) give the result. Finally the case \(j = q \) is handled by Lemma 2.9. Note also that Lemmas 2.7 and 2.8 show that \(|\phi_{m} \left(\frac{1}{q} \right) - \phi_{m}(0)| \) and \(|\phi_{m} \left(1 - \frac{1}{q} \right) - \phi_{m}(1)| \) are each \(\leq \frac{4m+4}{3q} \). Since \(\phi_{m} \) is convex, it follows that it is Lipschitz with Lipschitz constant \(\frac{4m+4}{3q} \). \(\square \)

3 Algebraicity results

We generalize the calculations of Section 2 to show:

Theorem 3.1 Suppose \(\beta_{1} \) lies in a finite dimensional subspace of \(X \) stable under \(T_{0} \) and \(T_{1} \), and is convex Lipschitz. Set \(E_{1} = \beta_{1} \neq \phi_{0} \) with \(\phi_{0} \) as in
Definition 2.2. Then the power series \(S_{t+E_1}(w) \) is algebraic over \(Q(w) \), and \(\mu(t+E_1) \) is algebraic over \(Q \).

Proof Since \(\beta_1 \) and \(\phi_0 \) are convex Lipschitz, the same is true of \(t + E_1 \). In view of Theorem 1.14 we only need to prove the result for \(S \). We shall mimic the proof of Theorem 2.4. Take \(\beta_1, \ldots, \beta_l, 1, t \) spanning a space stable under \(T_0 \) and \(T_1 \). We are free to modify each \(\beta_j \) by a linear combination of \(1 \) and \(t \) and so may assume \(\beta_j(0) = \beta_j(1) = 0 \). Then

\[
T_0(\beta_j) = (a \text{ linear combination of } \beta_j) + a \text{ multiple of } t,
\]

while

\[
T_1(\beta_j) = (a \text{ linear combination of } \beta_j) + a \text{ multiple of } (1-t).
\]

Since \(T_0(\beta_j)(1) = T_1(\beta_j)(0) = \beta_j \left(\frac{1}{2} \right) \) we get:

\[
T_0(\beta_j) = \sum r_{i,j} \beta_i + c_j t
\]

\[
T_1(\beta_j) = \sum s_{i,j} \beta_i + c_j (1-t)
\]

with the \(r_{i,j} \), the \(s_{i,j} \) and the \(c_j \) all in \(Q \).

We proceed in several steps:

I) Let \(R \) and \(S \) be the elements \(|r_{i,j}| \) and \(|s_{i,j}| \) of \(M_l(Q) \). We define an infinite matrix \(V \) with rows and columns indexed by the positive integers as follows. \(V \) is built up out of \(l \) by \(l \) blocks. The initial diagonal block is \(S \) while all succeeding diagonal blocks are matrices of zeroes. The blocks just below the diagonal blocks are alternately \(R \) and \(S \), as are the blocks just to the right of the diagonal blocks. All other entries are zero.

II) Let \(\phi_m \) be as in Definition 2.2. If \(m \geq 0 \) and \(1 \leq j \leq l \) let \(E_{j+lm} = \beta_j \# \phi_m \); note that \(E_1 = \beta_1 \# \phi_0 \) in accord with the statement of the theorem. \(Y \subset X \) is the subspace spanned by \(t \) and the \(\beta_j \# \epsilon \), and we define \(y_1, y_2, \ldots \) in \(Y \) as follows. If \(1 \leq j \leq l \), \(y_j = 6c_j t \). If \(m > 0 \),

\[
y_{j+lm} = (8m+6)c_j t = \sum r_{i,j} (\beta_i \# \epsilon)
\]

for odd \(m \) and \(\sum s_{i,j} (\beta_i \# \epsilon) \) for even \(m \). Note that \(4T_0(\beta_j \# \epsilon) = T_0(\beta_j) \# (\epsilon + t) + T_1(\beta_j) \# (\epsilon + 1 - t) \), so that \(Y \) is stable under \(T_0 \).

III) With notation as above we claim that \(8T_0(E_j) = \sum s_{i,j} E_i + y_j \). This amounts to:

1. If \(1 \leq j \leq l \), \(8T_0(E_j) = \sum s_{i,j} E_i + \sum r_{i,j} E_{i+t} + y_j \)
2. If \(m \) is odd, \(8T_0(E_{j+lm}) = \sum r_{i,j} E_{i+lm-t} + \sum s_{i,j} E_{i+lm+t} + y_{j+lm} \)
3. If \(m > 0 \) is even, \(8T_0(E_{j+lm}) = \sum s_{i,j} E_{i+lm-t} + \sum r_{i,j} E_{i+lm+t} + y_{j+lm} \)

Note that the left hand side of (3) is \(8T_0(\beta_j \# \phi_m) = (\sum s_{i,j} \beta_i + c_j t) \# (\phi_{m+1} + (4m+3) t) + (\sum s_{i,j} \beta_i + c_j (1-t)) \# (\phi_{m-1} + \epsilon + (4m+3)(1-t)) \). Expanding out and using the definition of \(y_{j+lm} \) we get (3). Similar calculations give (1) and (2).

IV) Now set \(s = 2l \). It’s convenient to view the matrix \(V \) of \(I \) as built up out of \(s \) by \(s \) blocks. Set \(D = \begin{pmatrix} S & R \\ R & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & R \\ R & 0 \end{pmatrix} \) in \(M_s(Q) \). Then the diagonal blocks of \(V \) are a single \(D \) followed by \(B \)’s. If we take \(A = \begin{pmatrix} 0 & S \\ S & 0 \end{pmatrix} \) and \(C = \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix} \), then the blocks just below the diagonal blocks are all \(A \)’s,
while those just to the right of the diagonal blocks are all C’s. And all other entries are zero.

The proof of Theorem 3.1 is now easy. III and IV tell us that we are in the situation of Theorem 5.11 of [3] with $T = 8T_0$ and s, A, B, C, D as above. (Note that the y_j are all in Y, that Y is finite-dimensional and stable under T, and that the condition of Lemma 5.10 of [3] on the sequence y_1, y_2, \ldots is trivially satisfied.) Let $l : X \to Q$ be evaluation at 1 so that each $l(E_j) = 0$. Then Theorem 5.11 of [3] shows that $\sum l(T^n(E_1))w^n = \sum E_1(2^{-n})(8w)^n$ is algebraic over $Q(w)$. So the same is true of

$$\frac{1}{1-w} + \sum E_1(2^{-n})(2w)^n = \sum (2^{-n} + E_1(2^{-n}))(2w)^n = S + E_1(w).$$

Definition 3.2 $g \neq 0$ in the maximal ideal of $F[[u_1, \ldots, u_r]]$ is “strongly rational” if ϕ_g lies in a finite dimensional subspace of X stable under T_0 and T_1.

The following is shown in [4] and [5]:

Theorem 3.3

1. If F is finite and $r = 2$, g is strongly rational.
2. If g is strongly rational, the Hilbert-Kunz series of g lies in $Q(w)$, and $\mu(g)$ is rational.
3. If $g(u_1, \ldots, u_r)$ and $h(v_1, \ldots, v_s)$ are strongly rational, then so are $g(u) + h(v)$, $g(u)h(v)$, and all powers of $g(u)$.

Remark Much of the above is easy to prove. (1) however makes use of a result on the finiteness of the number of ideal classes in certain 1-dimensional rings. And the proof of (3) for $g(u) + h(v)$ (or rather the generalization of this result to arbitrary finite characteristic p) isn’t easy. But when $p = 2$ there’s an immediate proof. Namely suppose that V_1 and V_2 are finite dimensional subspaces of X containing ϕ_g and ϕ_h and stable under T_0 and T_1. Then the space spanned by 1 and $V_1 \# V_2$ is finite dimensional and stable under T_0 and T_1. Furthermore it contains $\phi_g \# \phi_h = \phi_{g(u) + h(v)}$.

If g is strongly rational, Theorem 3.1 tells us that $S + (\phi_g \# \phi_0)$ is algebraic over $Q(w)$ and that $\mu(t + (\phi_g \# \phi_0))$ is algebraic. Now $t + (\phi_g \# \phi_0) = \phi_g \# (t + \phi_0)$. This gives:

Theorem 3.4 Suppose that Conjecture 2.3 holds; that is to say that $t + \phi_0 = \phi_{x^3 + y^3 + x^2 y}$. Then if g in $F[[u_1, \ldots, u_r]]$ is strongly rational, the Hilbert-Kunz series of $g(u_1, \ldots, u_r) + x^3 + y^3 + xyz$ is algebraic over $Q(w)$, and the Hilbert-Kunz multiplicity is algebraic. In particular using Theorem 3.3 we find that if we assume Conjecture 2.3 then these algebraicity results hold for $\sum g_i(u_i, v_i) + x^3 + y^3 + xyz$ whenever F is finite over $Z/2$.

9
In Theorem 3.1 it is possible in theory, once the \(r_{i,j} \), the \(s_{i,j} \) and the \(c_j \) are known, to get a polynomial relation between \(w \) and \(S_{t+E_1} \) and compute \(\mu(t+E_1) \) by using the methods of [3]. This is daunting in practice but we'll give one interesting partial result. Let \(M \) be the smallest subspace of \(X/(Q+Q\cdot t) \) that contains the image of \(\beta_1 \) and is stable under \(T_0 \) and \(T_1 \); our hypotheses show it to be finite dimensional. If \(J_0 \) and \(J_1 \) are maps \(M \rightarrow M \) let \(\Psi_{J_0,J_1}(x,w) \) be the 2-variable polynomial \(\det[xI-w^2(J_0+xJ_1)(J_1+xJ_0)] \).

Theorem 3.5 In the situation of Theorem 3.1, \(\sum E_1(2^{-n})(8w)^n \) lies in the splitting field over \(Q(w) \) of \(\Psi_{T_0,T_1}(x,w) \).

Proof We adopt the notation of Theorem 3.1 and its proof. \(\sum E_1(2^{-n})(8w)^n = \sum (T^n(E_1))w^n \), and Theorem 5.11 of [3] shows that this power series lies in a certain extension \(\mathcal{L} \) of \(Q(w) \) constructed from the matrices \(A, B \) and \(C \). We saw in [3] that \(\mathcal{L} \subset \) a splitting field over \(Q(w) \) of \(\det[xI_w-w(Ax^2+Bx+C)] \).

This last matrix is

\[
\begin{pmatrix}
xI_l & -wx(R+xS) \\
-w(S+xR) & xI_l
\end{pmatrix}.
\]

So our determinant is just

\[
x^l \det \begin{pmatrix}
I_l & -w(R+xS) \\
-w(S+xR) & xI_l
\end{pmatrix}.
\]

Since \(R \) and \(S \) give the action of \(T_0 \) and \(T_1 \) on \(M \), this last determinant is \(\Psi_{T_0,T_1}(x,w) \). \(\Box \)

4 A (very) partially worked example

Suppose \(\beta_1 = \phi_9 \) with \(g = u^6 + u^3v^3 + v^6 \). The methods of [4] show that \(M \) is five dimensional, that the action of \(4T_0 \) on \(M \) is given by \(\beta_1 \rightarrow \beta_2 \rightarrow \beta_3 \rightarrow \beta_1 \), \(\beta_4 \rightarrow \beta_5 \rightarrow 0 \), and that the action of \(4T_1 \) is given by \(\beta_5 \rightarrow \beta_4 \rightarrow \beta_3 \rightarrow \beta_5 \), \(\beta_2 \rightarrow \beta_1 \rightarrow 0 \). A Maple calculation then shows that \(\Psi_{4T_0,4T_1}(x,w) = -x^2\Psi^* \) where \(\Psi^* \) is the reciprocal polynomial \(w^{10}(x^6+1) - (2w^8+w^4)(x^5+x) - (2w^8-3w^6-2w^2)(x^4+x^2) + (2w^{10}-w^8+2w^6-4w^4-1)x^3 \). In an algebraic closure of \(Q(w) \) let \(\rho, \sigma \) and \(\tau \) be the roots of \(\Psi^* \) having positive ord; the other 3 roots are \(\rho^{-1}, \sigma^{-1} \) and \(\tau^{-1} \). The Galois group of \(\Psi^* \) over \(Q(w) \) has order 48 and consists of those permutations of the roots that permute the sets \(\{\rho, \rho^{-1}\}, \{\sigma, \sigma^{-1}\}, \{\tau, \tau^{-1}\} \) among themselves.

Now Theorem 3.5 shows that \(\sum E_1(2^{-n})(32w)^n \) is in a splitting field of \(\Psi^* \) over \(Q(w) \). But as we saw in [3], the field \(\mathcal{L} \) attached to the matrices \(A, B \) and \(C \)
sits inside a certain subfield of the splitting field of det $|xI_s-w(Ax^2+Bx+C)|$. In our case \mathcal{L} is the degree 8 extension of $Q(w)$ corresponding to the subgroup of the Galois group that stabilizes the set $\{\rho, \sigma, \tau\}$.

Let $u_1 = w^{10}(\rho - \rho^{-1})(\sigma - \sigma^{-1})(\tau - \tau^{-1})$ and $u_2 = w^{10}(\rho \sigma \tau + \rho^{-1} \sigma^{-1} \tau^{-1})$. Using Galois theory we find that u_1^2 is in $Q(w)$, that u_2 has degree 4 over $Q(w)$, and that u_1 and u_2 generate the degree 8 extension of $Q(w)$ mentioned above.

So $\sum E_1(2^{-n})(32w)^n$ lies in $Q(w,u_1,u_2)$. A short calculation shows that $u_1^2 = (w^2 - 1)^2(w^2 + 1)^2((1-w^2)^2 - 4w^6)$. One can also write down an irreducible equation for u_2 over $Q(w)$ but it’s messy. (Some of the primes of $Q[w]$ that ramify in $Q(w,u_2)$ are $(1 - w^2 + 2w^3)$, $(1 - w^2 - 2w^3)$ and $(4 + 8w^2 - 4w^4 - 12w^6 - 23w^8 - 18w^{10} + 81w^{12} + 108w^{14})$). Now the only fields between $Q(w)$ and $Q(w,u_1,u_2)$ are $Q(w)$, $Q(w,u_1,u_2) = Q(w,\sqrt{(1-w^2)^2 - 4w^6})$, $Q(w,u_2)$ and $Q(w,u_1,u_2)$. So $\sum E_1(2^{-n})(32w)^n$, and consequently the conjectured Hilbert-Kunz series of $u^6 + u^3 v^3 + v^6 + x^3 + y^3 + xyz$, generates one of these 4 extensions of $Q(w)$. I think it generates the full degree 8 extension, but verifying this would be a very nasty computation.

Now consider the integral closure of $Q[w]$ in $Q(w,u_1,u_2)$. There is just one prime ideal in this ring lying over $(1 - 16w)$, and the argument of Theorem 1.14 shows that $\mu(t + E_1)$, the putative Hilbert-Kunz multiplicity of $u^6 + u^3 v^3 + v^6 + x^3 + y^3 + xyz$ lies in the residue class field of this ideal.

The residue-class field is a degree 8 extension of Q generated by the images, \bar{u}_1 and \bar{u}_2 of u_1 and u_2. $Q(\bar{u}_1)$ is just $Q(\sqrt{(13)(157)(2039)})$, while $Q(\bar{u}_2)$ is a degree 4 extension of Q with discriminant $2^2 \cdot 3^3 \cdot 5^2 \cdot 13^2 \cdot 17^2 \cdot 31 \cdot 157^2 \cdot 2039^2 \cdot 780854102129687$. The only subfields of $Q(\bar{u}_1,\bar{u}_2)$ are Q, $Q(\bar{u}_1)$, $Q(\bar{u}_2)$ and $Q(\bar{u}_1,\bar{u}_2)$. So $\mu(t + E_1)$ generates one of these 4 extensions of Q. My belief is that it generates the full degree 8 extension.

References

[1] C. Han, P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), 119–135.
[2] P. Monsky, Rationality of Hilbert-Kunz multiplicities: a likely counterexample, Michigan Math. J. 57 (2008), 605–613.
[3] P. Monsky, Generating functions attached to some infinite matrices, Preprint (2009), arXiv:math.CO/0906.1836.
[4] P. Monsky, P. Teixeira, p-Fractals and power series I, J. Algebra 280 (2004), 505–536.
[5] P. Monsky, P. Teixeira, p-Fractals and power series II, J. Algebra 304 (2006), 237–255.