Regularity of limit sets of AdS quasi-Fuchsian groups

Olivier Glorieux, Daniel Monclair
28th September 2018

Abstract

Limit sets of AdS-quasi-Fuchsian groups of $\text{PO}(n, 2)$ are always Lipschitz submanifolds. The aim of this article is to show that they are never C^1, except for the case of Fuchsian groups. As a byproduct we show that AdS-quasi-Fuchsian groups that are not Fuchsian are Zariski dense in $\text{PO}(n, 2)$.

1 Introduction

The study of various notions of convex cocompact groups in semi-simple Lie groups has gain considerable interest the last decade, thanks to its relation with Anosov representations. A particularly nice setting is for subgroups of $\text{PO}(p, q)$ where the quadratic form helps to construct invariant domains of discontinuity, see [DGK18].

In a previous paper, we studied the metric properties of limit sets for such representations [GM] and proved a rigidity result for quasi-Fuchsian representations in $\text{PO}(2, 2)$. Recently Zimmer [Zim18] showed a C^2 rigidity result for Hitchin representations in $\text{PSL}_n(\mathbb{R})$ (C^∞ rigidity was known from the work of Potrie-Sambarino [PS17]).

In this paper, we study the C^1 regularity of such a limit set and prove a rigidity result for quasi-Fuchsian subgroups $\text{PO}(n, 2)$. They are examples of AdS-convex cocompact groups, as defined by [DGK18].

Given the standard quadratic form $q_{n, 2}$ of signature $(n, 2)$ on \mathbb{R}^{n+2}, we define $\partial \AdS^{n+1}$ as the subset of \mathbb{RP}^{n+1} consisting of negative lines for $q_{n, 2}$. Its boundary $\partial \AdS^{n+1}$ is the set of $q_{n, 2}$-isotropic lines.

Definition 1.1. [DGK18] A discrete subgroup Γ of $G = \text{PO}(n, 2)$ is AdS-convex cocompact if it acts properly discontinously and cocompactly on some properly convex closed subset \mathcal{C} of $\partial \AdS^{n+1}$ with nonempty interior whose ideal boundary $\partial \mathcal{C} := \overline{\mathcal{C}} \setminus \mathcal{C}$ does not contain any nontrivial projective segment.

Any infinite convex-cocompact group contains proximal elements, i.e. elements that have a unique attractive fixed point in $\partial \AdS^{n+1}$. For Γ a discrete
subgroup of \(\text{PO}(n,2) \), the \textit{proximal limit set} of \(\Gamma \) is the closure \(\Lambda_\Gamma \subset \mathbb{R}P^{n,2} \) of the set of attracting fixed points of proximal elements of \(\Gamma \). Since \(\Gamma \) acts properly discontinuously on a convex set \(\mathcal{C} \), the proximal limit set coincides with the ideal boundary of \(\mathcal{C} \). It is shown in [DGK18] that this notion of limit set coincides with the closure of orbits in the boundary.

Definition 1.2. A discrete group of \(\text{PO}(n,2) \) is AdS-quasi-Fuchsian if it is AdS-convex cocompact and its proximal limit set is homeomorphic to a \(n-1 \) dimensional sphere.

If moreover, the group preserves a totally geodesic copy of \(\mathbb{H}^n \), it is called AdS-Fuchsian.

The limit set of an AdS-Fuchsian group is a geometric sphere, hence a \(C^1 \)-submanifold of \(\partial \text{AdS} \). The principal aim of this article is to show that the converse holds:

Theorem 1.3. Let \(\Gamma \subset \text{PO}(n,2) \) be AdS quasi-Fuchsian. If \(\Lambda_\Gamma \) is a \(C^1 \) submanifold of \(\partial \text{AdS}^{n+1} \), then \(\Gamma \) is Fuchsian.

The proof is based on the following result which is interesting on its own:

Proposition 1.4. Let \(\Gamma \subset \text{PO}(n,2) \) be AdS quasi-Fuchsian. If \(\Gamma \) is not AdS-Fuchsian, then it is Zariski dense in \(\text{PO}(n,2) \).

Remark that this proposition and Zimmer’s result [Zim18, Corollary 1.48] imply that the limit set is not \(C^2 \).

2 Background on AdS-quasi-Fuchsian groups.

We introduce the results needed for the proofs of Theorem 1.3 and Proposition 1.4. Most of this section follows directly from the work of [BM12] and [DGK18], except maybe the characterization of Fuchsian groups as subgroups of \(\text{O}(n,1) \) in Proposition 2.6.

First, let us define the anti-de Sitter space. We denote by \(\langle \cdot | \cdot \rangle_{n,2} \)

Definition 2.1. The anti-de Sitter space is defined by

\[
\text{AdS}^{n+1} := \{ [x] \in \mathbb{R}P^{n+1} | \langle x|x \rangle_{n,2} < 0 \}.
\]

Its boundary is

\[
\partial \text{AdS}^{n+1} := \{ [x] \in \mathbb{R}P^{n+1} | \langle x|x \rangle_{n,2} = 0 \}.
\]

Two points \([x], [y] \in \partial \text{AdS}^{n+1}\) are called transverse if \(\langle x|y \rangle_{n,2} \neq 0 \).

We now give a brief review of the proximal limit set:
Definition 2.2. Given $\gamma \in \text{PO}(n,2)$, we denote by $\lambda_1(\gamma) \geq \lambda_2(\gamma) \geq \cdots \geq \lambda_{n+2}(\gamma)$ the logarithms of the moduli of the eigenvalues of any of its representants in $O(n,2)$. We say that γ is proximal if $\lambda_1(\gamma) > \lambda_2(\gamma)$.

Remark that an element of $\text{PO}(n,2)$ has not always a lift in $SO(n,2)$. However since it is the quotient of $O(n,2)$ by $\pm \text{Id}$, the set of moduli of eigenvalues of a lift is well defined. If $\gamma \in \text{PO}(n,2)$ is proximal, it has a unique lift $\hat{\gamma} \in O(n,2)$ which has $e^{\lambda_1(\gamma)}$ as an eigenvalue.

Notice that we always have $\lambda_3(\gamma) = \cdots = \lambda_n(\gamma) = 0$, as well as $\lambda_1(\gamma) + \lambda_{n+2}(\gamma) = \lambda_2(\gamma) + \lambda_{n+1}(\gamma) = 0$.

Definition 2.3. If $\gamma \in \text{PO}(n,2)$ is proximal, we denote by $\gamma_+ \in \mathbb{RP}^{n+1}$ its attractive fixed point, i.e. the eigendirection for the eigenvalue of modulus $e^{\lambda_1(\gamma)}$ of a lift of γ to $O(n,2)$. We also set $\gamma_- = (\gamma^{-1})_+$.

Note that γ_+ is necessarily isotropic, i.e. $\gamma_+ \in \partial \text{AdS}^{n+1}$.

Proposition 2.4 (Proposition 5 in [Fra05]). If $\gamma \in \text{PO}(n,2)$ is proximal, then $\lim_{n \to +\infty} \gamma^n(\xi) = \gamma_+$ for all $\xi \in \partial \text{AdS}^{n+1}$ which is transverse to γ_- (i.e. such that $\langle \xi \mid \gamma_- \rangle_{n,2} \neq 0$).

Recall that the proximal limit set of a discrete subgroup $\Gamma \subset \text{PO}(n,2)$ is the closure Λ_Γ in \mathbb{RP}^{n+1} of the set of all attractive fixed points of proximal elements of Γ, it is therefore a subset of $\partial \text{AdS}^{n+1}$. If additionally Γ is AdS-convex cocompact, then it is word-hyperbolic and the action of Γ on its proximal limit set is conjugated to the action on its Gromov boundary [DGK18]. As a consequence, we have:

Proposition 2.5. [Gai18] If $\Gamma \subset \text{PO}(n,2)$ is AdS-convex cocompact, the action of Γ on the limit set Λ_Γ is minimal, i.e. all orbits are dense.

The group $O(n,1)$ can be embedded in $\text{PO}(n,2)$ by the following map:

$$A \rightarrow \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}.$$

We will say that an element (respectively a subgroup) of $\text{PO}(n,2)$ is conjugate to an element (respectively to a subgroup) of $O(n,1)$ if it has a conjugate in the image of this embedding.

Note that if $\gamma \in \text{PO}(n,2)$ is proximal, we have $\lambda_2(\gamma) = 0$ if and only if γ is conjugate to an element of $O(n,1)$.

A subgroup of $\text{PO}(n,2)$ which is conjugate to a cocompact lattice of $O(n,1)$ is AdS-Fuchsian, as it fixes a totally geodesic copy of \mathbb{H}^n on which it acts properly discontinuously and cocompactly. These are the only AdS-Fuchsian groups:
Proposition 2.6. A discrete group of $\PO(n, 2)$ is AdS-Fuchsian if and only if it is conjugate to a cocompact lattice of $O(n, 1)$.

Proof. Let $\Gamma \subset \PO(n, 2)$ be an AdS-Fuchsian group. Let H be a totally geodesic copy of \mathbb{H}^n in AdS^{n+1} preserved by Γ. Since the stabilizer $L \subset \PO(n, 2)$ of H is conjugate to $O(n, 1)$, we only have to show that Γ is a cocompact lattice of L. This will be a consequence of the fact that Γ acts properly discontinuously and cocompactly on H.

Let γ be a proximal element of Γ. Let $\xi \in \partial H$ be transverse to the repelling fixed point γ^-. The sequence $\gamma^n \xi$ lies in H and converges to γ^+. Therefore, ∂H contains the attracting point of γ, and it follows that $\Lambda_\Gamma \subset \partial H$. Since Λ_Γ and ∂H are homeomorphic to S^{n-1}, we have $\Lambda_\Gamma = \partial H$.

Finally since, Γ is convex-cocompact, Γ acts properly discontinuously and cocompactly on the convex hull of Λ_Γ that is H (see [DGK18]).

The boundary $\partial \text{AdS}^{n+1}$ is naturally equipped with a conformal Lorentzian structure. It is conformally equivalent to the quotient of $S^{n-1} \times S^1$ endowed with the Lorentzian conformal metric $[g_{S^{n-1}} - d\theta^2]$ (where $g_{S^{n-1}}$ is the round metric of curvature 1 on S^{n-1}, and $d\theta^2$ is the round metric on the circle of radius one) by the antipodal map $(x, \theta) \mapsto (-x, -\theta)$. See [BM12, paragraph 2.3] for more details.

Using the absence of segments in the limit sets of AdS-quasi-Fuchsian groups we have:

Proposition 2.7. The limit set $\Lambda_\Gamma \subset \partial \text{AdS}^{n+1}$ of an AdS-quasi-Fuchsian group $\Gamma \subset \PO(n, 2)$ is the quotient by the antipodal map of the graph of a distance-decreasing map $f : S^{n-1} \to S^1$ where S^{n-1} and S^1 are endowed with the round metrics.

Proof. Barbot-Mérigot showed in [BM12] that the limit set of a quasi-Fuchsian group lifts to the graph of a 1-Lipschitz map. Since the limit set does not contain any non trivial segment of $\partial \text{AdS}^{n+1}$ the map strictly decreases the distance.

Finally we will need the following proposition, which in the Lorentzain vocabulary translates as the fact that the limit set is a Cauchy hypersurface:

Proposition 2.8. If $\Gamma \subset \PO(n, 2)$ is AdS-quasi-Fuchsian, then every isotropic geodesic of $\partial \text{AdS}^{n+1}$ intersects Λ_Γ at exactly one point.

Proof. Let $f : S^{n-1} \to S^1$ be a distance-decreasing map such that the quotient by the antipodal map of its graph is Λ_Γ. An isotropic geodesic can be parametrized by $(c(\theta), \theta)$, where $c : \theta \to c(\theta)$ is a unit speed geodesic on S^{n-1}. Then the proposition is equivalent to the existence and uniqueness of

1That is $\forall x \neq y, d(f(x), f(y)) < d(x, y)$.
a fixed point for the map \(f \circ c : S^1 \to S^1 \).
It is a simple exercise to show that a distance-decreasing map of a compact
metric space to itself has a unique fixed point.

\[\Box \]

3 The Zariski closure of AdS quasi-Fuchsian groups

We prove in this section the Zariski density of AdS-quasi-Fuchsian subgroups
of \(\text{PO}(n, 2) \) which are not AdS-Fuchsian. This result, which happens to be
interesting in itself, will considerably simplify the proof of Theorem 1.3 when
we will use Benoist’s Theorem \([\text{Ben97}]\) about Jordan projections for discrete
subgroups of semi-simple Lie groups in the last section.

Lemma 3.1. Let \(\Gamma \subset \text{PO}(n, 2) \) be AdS quasi-Fuchsian. If \(\Gamma \) is reducible,
then it is Fuchsian.

Proof. Assume that \(\Gamma \) is not Fuchsian, and let \(V \subset \mathbb{R}^{n+2} \) be a \(\Gamma \)-invariant
subspace with \(0 < \dim(V) < n + 2 \).
First, let us show that the restriction of \(\langle \cdot | \cdot \rangle_{n,2} \) to \(V \) is non degenerate.
Assume that it is not the case. Then \(\Gamma \) preserves the totally isotropic space
\(V \cap V^\perp \). It has dimension 1 or 2. If \(\dim(V \cap V^\perp) = 1 \), then \(\mathbb{P}(V \cap V^\perp) \)
is a global fixed point for the action on \(\partial \text{AdS}^{n+1} \), which cannot exist. The
case \(\dim(V \cap V^\perp) = 2 \) is impossible because it also implies the existence
of a global fixed point on \(\partial \text{AdS}^{n+1} \) (the intersection of the null geodesic
\(\mathbb{P}(V \cap V^\perp) \) of \(\partial \text{AdS}^{n+1} \) with \(\Lambda_\Gamma \)).
We can now assume that the restriction of \(\langle \cdot | \cdot \rangle_{n,2} \) to \(V \) is non degenerate.
It can have signature \((k,2), (k,1) \) or \((k,0) \) (where \(k \geq 0 \) is the number of
positive signs).
In the first case, \(\Gamma \) acts on some totally geodesic copy \(X \) of \(\text{AdS}^{k+1} \) (with
\(k < n \)) in \(\text{AdS}^{n+1} \). Then \(\partial X \cap \Lambda_\Gamma \) is a non empty closed invariant subset of
\(\Lambda_\Gamma \), hence \(\Lambda_\Gamma \subset \partial X \) and \(C(\Lambda_\Gamma) \subset X \). Since \(C(\Lambda_\Gamma) \)
has non empty interior in \(\text{AdS}^{n+1} \) (Lemma 3.13 in \([\text{BM12}]\)), we see that \(X = \text{AdS}^{n+1}, \) i.e. \(V = \mathbb{R}^{n+2}, \)
which is absurd.
Now assume that \(V \) has Lorentzian signature \((k,1) \). Then \(\Gamma \) preserves \(X = \mathbb{P}(V) \cap \text{AdS}^{n+1} \) which is a totally geodesic copy of \(\mathbb{H}^k \). It also acts on \(X' = \mathbb{P}(V^\perp) \cap \text{AdS}^{n+1} \) which is a totally geodesic copy of \(\mathbb{H}^{k'} \) (with \(k + k' = n \)).
Considering a proximal element \(\gamma \in \Gamma \), there is a point in \(\partial X \cup \partial X' \) which
is transverse to the repelling fixed point \(\gamma_- \) of \(\gamma \) (otherwise \(\gamma_- \) would be
in \(V \cap V^\perp \)). This implies that \(\gamma_+ \in \partial X \cup \partial X', \) hence \(\Lambda_\Gamma \cap \partial X \neq \emptyset \) or
\(\Lambda_\Gamma \cap \partial X' \neq \emptyset \). The action of \(\Gamma \) on \(\Lambda_\Gamma \) being minimal, we find that \(\Lambda_\Gamma \subset \partial X \)
or \(\Lambda_\Gamma \subset \partial X' \). This is impossible because \(\Lambda_\Gamma \) is homeomorphic to \(S^{n-1} \) and
\(\partial X \) (resp. \(\partial X' \)) is homeomorphic to \(S^{k-1} \) (resp. \(S^{k'-1} \)).
Finally, if \(V \) is positive definite, then \(V^\perp \) has signature \((n-k,2) \), this case
has already been ruled out. \[\Box \]
Corollary 3.2. If $\Gamma \subset \PO(n, 2)$ is AdS-quasi-Fuchsian but not AdS-Fuchsian, then the identity component of the Zariski closure of Γ acts irreducibly on \mathbb{R}^{n+2}.

Proof. Let $\Gamma_0 \subset G$ be a finite index subgroup. Since $\Lambda_{\Gamma_0} = \Lambda_{\Gamma}$, it cannot be Fuchsian, so it acts irreducibly on \mathbb{R}^{n+2} by Lemma 3.1.

Proposition 3.3. Let $\Gamma \subset \PO(n, 2)$ be AdS-quasi-Fuchsian. If Γ is not AdS-Fuchsian, then it is Zariski dense in $\PO(n, 2)$.

Proof. Let $G \subset \SO_0(n, 2)$ be the pre-image by the quotient map $\SO_0(n, 2) \to \PO(n, 2)$ of the identity component of the Zariski closure of Γ, and assume that Γ is not Fuchsian.

By Corollary 3.2, we know that G acts irreducibly on \mathbb{R}^{n+2}. According to [DSL], the only connected irreducible subgroups of $\SO(n, 2)$ other than $\SO(n, 2)$ are $U(\frac{n}{2}, 1)$, $SU(\frac{n}{2}, 1)$, $S^1\SO_0(\frac{n}{2}, 1) \ (\text{when } n \text{ is even})$ and $\SO_0(2, 1) \ (\text{when } n = 3)$.

The first three cases are subgroups of $U(\frac{n}{2}, 1)$, which only contains elements $\gamma \in \SO(n, 2)$ satisfying $\lambda_1(\gamma) = \lambda_2(\gamma)$ so G cannot be one of them (otherwise Γ would not contain any proximal element and $\Lambda_{\Gamma} = \emptyset$).

The irreducible copy of $\SO_0(2, 1)$ in $\SO(3, 2)$ can also be ruled out because a quasi-Fuchsian subgroup of $\PO(3, 2)$ has cohomological dimension 3, so it cannot be isomorphic to a discrete subgroup of $\SO_0(2, 1) \approx \PSL(2, \mathbb{R})$.

The only possibility left is that Γ is Zariski dense in $\PO(n, 2)$.

4 Non differentiability of limit sets

We finally prove the main result, Theorem 1.3. The proof goes as follows: first, we prove that the tangent spaces of the limit set are space like (i.e. positive definite for the natural Lorentzian conformal structure on $\partial \AdS^{n+1}$).

Then by an algebraic argument, this shows that all proximal elements of Γ are conjugate (by an a priori different element of $\PO(n, 2)$) to an element of $O(n, 1)$. Finally, using a famous theorem of Benoist, this implies that Γ is not Zariski-dense, and therefore by Proposition 1.4 that the group is Fuchsian.

4.1 Spacelike points

Lemma 4.1. If $\Gamma \subset \PO(n, 2)$ is AdS quasi-Fuchsian and Λ_{Γ} is a C^1 submanifold of $\partial \AdS^{n+1}$, then there is $\xi \in \Lambda_{\Gamma}$ such that $T_{\xi} \Lambda_{\Gamma}$ is spacelike.

Proof. Let $f : S^{n-1} \to S^1$ be a distance-decreasing map such that the quotient by the antipodal map of its graph is Λ_{Γ}.

Knowing that the graph of f is a C^1-submanifold, we first want to show that
\(f \) is \(C^1 \). Using the Implicit Function Theorem, it is enough to know that the tangent space of the graph projects non trivially to the tangent space of \(\mathbb{S}^{n-1} \). This is true because \(\Lambda_\Gamma \) is acausal.

Since \(f \) satisfies \(d(f(x), f(y)) < d(x, y) \) for \(x \neq y \) [BM12], it cannot be onto, so it can be seen as a function \(f : \mathbb{S}^{n-1} \to \mathbb{R} \). At a point \(x \in \mathbb{S}^{n-1} \) where it reaches its maximum, it satisfies \(df_x = 0 \), so the tangent space to \(\Lambda_\Gamma \) at \((x, f(x))\) is \(T_x \mathbb{S}^{n-1} \times \{0\} \), which is spacelike.

Corollary 4.2. If \(\Gamma \subset \text{PO}(n,2) \) is AdS quasi-Fuchsian and \(\Lambda_\Gamma \) is a \(C^1 \) submanifold of \(\partial \text{AdS}^{n+1} \), then for all \(\xi \in \Lambda_\Gamma \), the tangent space \(T_\xi \Lambda_\Gamma \) is spacelike.

Proof. Let \(E = \{ \xi \in \Lambda_\Gamma : T_\xi \Lambda_\Gamma \) is spacelike} \}. Then \(E \) is open and \(\Gamma \)-invariant. Since the action of \(\Gamma \) on \(\Lambda_\Gamma \) is conjugate to the action on its Gromov boundary, it is minimal (i.e. all orbits are dense). It follows that \(E \) is either empty or equal to \(\Lambda_\Gamma \) and by Lemma 4.1 it is not empty.

Remark: Lemma 4.1 fails in general in higher rank pseudo-Riemannian symmetric spaces, i.e. for \(\mathbb{H}^{p,q} \)-quasi-Fuchsian groups. Indeed, Hitchin representations in \(\text{PO}(3,2) \) provide \(\mathbb{H}^{2,2} \)-quasi-Fuchsian groups which are not \(\mathbb{H}^{2,2} \)-Fuchsian, yet have a \(C^1 \) limit set (which is isotropic for the natural Lorentzian conformal structure on \(\partial \mathbb{H}^{2,2} \)).

4.2 Fixed points and Benoist’s asymptotic cone

Lemma 4.3. Let \(\Gamma \subset \text{PO}(n,2) \) be AdS-quasi-Fuchsian. If the limit set \(\Lambda_\Gamma \subset \partial \text{AdS}^{n+1} \) is a \(C^1 \) submanifold, then every proximal element \(\gamma \in \Gamma \) is conjugate in \(\text{PO}(n,2) \) to an element of \(\text{O}(n,1) \).

Proof. Let \(\gamma \in \Gamma \) be proximal, and let \(\hat{\gamma} \in \text{O}(n,2) \) be the lift with eigenvalue \(e^{\lambda_1(\gamma)} \). Let \(\gamma_+ \in \Lambda_\Gamma \) be the attractive fixed point. Then the differential of \(\gamma \) acting on \(\partial \text{AdS}^{n+1} \) at \(\gamma_+ \) preserves \(T_{\gamma_+} \Lambda_\Gamma \). It also preserves \((T_{\gamma_+} \Lambda_\Gamma)^\perp \), which is a timelike line because of Corollary 4.1.

Lifting everything to \(\mathbb{R}^{n+2} \) and using the identification of \(T_{\gamma_+} \partial \text{AdS}^{n+1} \) with \(\gamma_+^\perp / \gamma_+ \), we see that \(\hat{\gamma} \) preserves a two-dimensional plane \(V \subset \gamma_+^\perp \) which contains \(\gamma_+ \) and a negative direction. Let \((u, v)\) be a basis of \(V \), where \(u \in \gamma_+ \) and \(\langle v \mid v \rangle_{n,2} = -1 \).

By writing \(\hat{\gamma} v = au + bv \), we find that \(b^2 = -\langle \hat{\gamma} v \mid \hat{\gamma} v \rangle_{n,2} = -(v \mid v)_{n,2} = 1 \).

So the matrix of the restriction of \(\hat{\gamma} \) to \(P \) in the basis \((u, v)\) has the form

\[
\begin{pmatrix}
e^{\lambda_1(\gamma)} & a \\ 0 & \pm 1
\end{pmatrix}
\]

It has \(\pm 1 \) as an eigenvalue, and the eigendirection is in \(V \) but is not \(\gamma_+ \) (because \(\lambda_1(\gamma) > 0 \)), so it is negative for \(\langle \cdot \mid \cdot \rangle_{n,2} \). This eigendirection is a point of \(\text{AdS}^{n+1} \) fixed by \(\gamma \).
Theorem 4.4. Let $\Gamma \subset \text{PO}(n,2)$ be AdS quasi-Fuchsian. If the limit set $\Lambda_\Gamma \subset \partial\text{AdS}^{n+1}$ is a C^1 submanifold, then Γ is Fuchsian.

Proof. By Lemma 4.3, the Jordan projections of proximal elements of Γ all lie in a half line in a Weyl chamber a^+ of $\text{PO}(n,2)$, therefore its asymptotic cone has empty interior in a^+. Benoist’s Theorem [Ben97] implies Γ is not Zariski dense. Proposition 1.4 implies that Γ is Fuchsian. \hfill \square

References

[Bar15] Thierry Barbot. Deformations of fuchsian AdS representations are quasi-fuchsian. Journal of Differential Geometry, 101(1):1–46, 2015.

[Ben97] Yves Benoist. Propriétés asymptotiques des groupes linéaires. Geom. and Funct. Anal. 7 (1997), no. 1, 1–47.

[BBZ07] Thierry Barbot, François Béguin, and Abdelghani Zeghib. Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on ads 3. Geometriae Dedicata, 126(1):71–129, 2007.

[BM12] Thierry Barbot and Quentin Mérigot Anosov AdS representations are quasi-fuchsian. Groups, Geometry, and Dynamics, 6(3):441–483, 2012.

[DGK17] Jeffrey Dancinger, Fanny Kassel, Francois Guéritaud. Convex cocompactness in real projective space. [arXiv:1704.08711]

[DGK18] Jeffrey Dancinger, Fanny Kassel, Francois Guéritaud. Convex cocompactness in pseudo-Riemannian hyperbolic spaces. Geom. Dedicata 192 (2018), p. 87-126.

[DSL] Antonio J. Di Scala and Thomas Leistner. Connected subgroups of $\text{SO}(2,n)$ acting irreducibly on $\mathbb{R}^{2,n}$ T. Isr. J. Math. (2011) 182: 103.

[Fra05] Charles Frances. Lorentzian Kleinian groups. Comment. Math. Helv. 80 (2005), no. 4, 883–910.

[GdIH] Etienne Ghys, Pierre de la Harpe. Sur les groupes Hyperboliques d’après Mikhael Gromov Birkhäuser, Boston, MA ,Springer, 1990

[GM] Olivier Glorieux, Daniel Monclair Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry pre-print arXiv: 1606.05512.
[KK16] Fanny Kassel and Toshiyuki Kobayashi. Poincaré series for non-riemannian locally symmetric spaces. In *Advances in Mathematics*, 287, p.123-236, 2016

[Lab06] François Labourie. Anosov flows, surface groups and curves in projective space. *Inventiones Mathematicae*, 165(1):51–114, 2006.

[Mes07] Geoffrey Mess. Lorentz spacetimes of constant curvature. *Geometriae Dedicata*, 126(1):3–45, 2007.

[PS17] Raphael Potrie and Andres Sambarino. Eigenvalues and Entropy of a Hitchin representation *Inventiones Mathematicae*, 209(3):885–925, 2017

[Zim18] Andrew Zimmer. Projective Anosov representations, convex cocompact actions, and rigidity. Arxiv: 1704.0858v2