EFFECT OF COMBINING LOSARTAN AND PERINDOPRIL IN DIABETIC PATIENTS WITH PROTEINURIA

SHIN-CHEE CHIN, ADYANI MD REDZUAN*
Quality Use of Medicine Research Group, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Email: adyani@ukm.edu.my

Received: 27 May 2017, Revised and Accepted: 04 July 2017

INTRODUCTION

The renin-angiotensin system (RAS) is overactivated when concurrent medical illnesses such as hypertension and diabetes mellitus are present. Although the use of angiotensin-converting enzyme inhibitors (ACEIs) is effective, RAS blockade remains incomplete owing to a counter regulatory response caused by reactive hyperreninemia [1]. This, together with the activation of other tissue enzymes such as chymase, leads to the regeneration of plasma angiotensin II [2]. Therefore, an additional agent targeting the RAS is required particularly in preventing disease progression and further complications. In diabetes, a combination therapy of ACEI and angiotensin receptor blocker (ARB) are deemed effective in reducing albuminuria and delaying renal failure.

A number of studies have investigated on the efficacy and safety of combining ACEI and ARB in the management of diabetic population with micro- or macro-albuminuria, as defined by urinary albumin creatinine ratio (UACR) of 30-300 mg/g or >300 mg/g, respectively [3]. Two meta-analyses of small controlled trials revealed that dual RAS blockade resulted in additional reduction of UACR and systolic blood pressure (SBP) [4,5]. On the contrary, other studies did not show extra advantages but more harm by adding a second RAS blocker [6,7]. With these conflicting results, the latest kidney disease outcomes quality initiative guideline does not yet recommend dual ACEI and ARB treatment [8]. Further ongoing large-scaled trials are still underway [9,10].

The prescribing of combined ACEI and ARB therapy remains widespread currently and is a practice without firm evidence support. This study is carried out to evaluate the effect of combining losartan and perindopril on UACR, BP, serum creatinine, and estimated glomerular filtration rate (eGFR) among a subgroup of diabetic patients with hypertension and albuminuria.

METHODS

This retrospective study was approved by the Research Ethic Committee of Universiti Kebangsaan Malaysia (UKM1.5.3.5/244/NF-006-2013). Patients taking losartan from January 2012 to January 2013 were recruited as suitable participants (10 receiving losartan alone; 12 receiving concurrent losartan and perindopril). Patients’ medical case files were traced from the record unit. At least two UACR readings were categorized into monotherapy group (losartan alone) and combination group (losartan plus perindopril). Patients’ medical case files were traced from the record unit. At least two UACR readings were traced from patient’s medical records.

No significant differences (p=0.615) were detected in the pre- and post-treatment change in UACR between the monotherapy group (−38.3 mg/g, interquartile range [IQR]:−618.8-0) and combination therapy group (−88.4 mg/g, IQR: −729.3-+375.7). There was a considerably higher percentage of patients attaining the target BP of <125/75 mmHg in the combination group (66.7%; p<0.001). In terms of safety, combined losartan and perindopril caused more hypotension (p=0.003), higher rise in serum creatinine (p=0.481), and greater drop in eGFR (p=0.861). Body mass index was shown to have significant negative correlation with UACR reduction (r=−0.449; p=0.036).

Conclusion: The main finding of this study was that losartan alone was as equally efficacious as combined losartan and perindopril in lowering UACR and BP among diabetic patients.

Keywords: Albuminuria, Losartan, Perindopril, Hypertension, Urinary albumin creatinine ratio.

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). DOI: http://dx.doi.org/10.22159/ajpcr.2017v10i10.20253
RESULTS

The baseline characteristics of patients are presented in Table 1. All patients were comparable in terms of age, gender, body mass index (BMI), smoking status, alcoholic status, and history of ischemic heart disease (IHD). The majority of the patients were Type II diabetics, with only a quarter (n=3) in the combination group was diagnosed as Type I diabetics. Macroalbuminuria was significantly more common in the combination group as compared to the monotherapy group (p<0.001). The pre-treatment readings of outcome parameters among the study groups did not show significant differences, except for UACR reading (monotherapy 627.6±794.8 mg/g vs. combination 1856.4±2295.1 mg/g; p=0.012).

In terms of the change in UACR between pre- and post-treatment, there were no significant differences (p=0.571) found between the monotherapy group (−38.3 mg/g; IQR: 618.8) and combination group (−88.4 mg/g; IQR: 110.5). The result is presented in Table 2. Despite the lack of significant differences in BP reduction between the study groups (change in SBP, p=0.617; change in diastolic BP, p=0.695), there was a higher percentage of participants in the combination group achieving target BP of <125/75 mmHg (p<0.001). The result is presented in Table 3. The changes in serum creatinine (p=0.481) and eGFR (p=0.861) were not significantly affected by the type of therapy; whether it was losartan alone or losartan plus perindopril. However, the combination regimen had caused a higher rise in serum creatinine (6.08±18 µmol/L vs. −0.8±16.2 µmol/L) along with a further drop in kidney function (−1.5±15.4 ml/minute/1.73 m² vs. −0.56±7.7 ml/minute/1.73 m²).

Table 1: Baseline characteristics of the study population according to therapy group

Characteristics	Monotherapy (n=10)	Combination therapy (n=12)	p-value
Age (year; mean±SD)	61±2	53±4	0.09
Gender (M/F)	6/4	7/5	0.64
BMI (kg/m²)	28.7±5.7	28.2±4.1	0.79
Smoker (%)	30	25	0.53
Alcoholic (%)	20	25	0.50
Duration of hypertension (%)	30	50	<0.001
<10 years	70	50	
Diabetes mellitus (%)			
Type I	0	25	<0.001
Type II	100	75	
Duration of DM (%)			
<5 years	30	25	0.59
5-10 years	20	25	
>10 years	50	50	
Diabetic kidney disease (%)	10	42	<0.001
Existing renal diseases (%)	90	58	<0.001
Previous IHD/CAD (%)	20	33	0.054
Type of albuminuria (%)			
Microalbuminuria	50	0	<0.001
Macroalbuminuria	50	100	
UACR (mg/g; mean±SD)	627.6±794.8	1856.4±2295.1	0.012
SBP (mmHg; mean±SD)	146±11	135±16	0.087
DBP (mmHg; mean±SD)	81±5	81±15	0.99
Serum creatinine (µmol/L; mean±SD)	102.1±41.6	91.6±35.3	0.53
eGFR (ml/minute/1.73 m²; mean±SD)	74.2±26.7	92.1±28.8	0.15
Serum potassium (mmol/L; mean±SD)	4.23±0.38	4.25±0.38	0.903
Dose of losartan (%)			
25 mg	10	25	<0.001
50 mg	30	58	
100 mg	60	17	
Concurrent antihypertensives (%)			
β-blocker	20	50	
Dihydropyridine CCB	30	58	
Diuretic	50	17	
α-blocker	10	8	

DISCUSSION

Losartan therapy or combined losartan and perindopril therapy were similarly effective in lowering proteinuria and BP. This was supported by results from ONTARGET trial [6], although CALM study [11] and a few meta-analyses [4,5] suggested the opposite. Although the mean reduction of UACR in the combination group was slightly but not significantly higher than the group on single therapy, this favorable outcome might be offset by the increment in mean serum creatinine along with a reduction in mean eGFR as seen in the current study. The same findings were observed in the ONTARGET and TRANSCEND studies [12]. In other words, for optimal control of proteinuria, we may need to spare the risk of causing more damage on the kidney and hence the loss of renoprotective functions of ACEI and ARB.

Both dual and single therapy were good in controlling BP although the former was not significantly more effective than the latter. The total antihypertensive responses were minor, but this should not be neglected in the current study because as little as 2-3 mmHg drop in SBP could contribute to a cardiovascular risk reduction of 4-5% [13].

In the current study, a significant negative correlation was found between the patient’s BMI and UACR reduction (r=-0.44; p=0.036).
This result coincided with that discovered by Rossi et al. in the DEMAND study [14]. Other patient factors such as gender, age, and history of IHD were poorly related with UACR reduction; as opposed with what had been established previously [3,15,16].

This study has highlighted the potential advantages and drawbacks of cotherapy using losartan and perindopril in treating diabetic patients with albuminuria. Nevertheless, the findings should be deduced with caution owing to several limitations such as limited sample size, sampling bias, and the existence of confounding variables (e.g., non-standardized patient's review date, changes in diet, medication compliance, and physical activities). Therefore, the results may not be generalizable to the entire population.

CONCLUSION

Our study findings did not support the concurrent use of losartan and perindopril for the treatment of albuminuria in hypertensive diabetics population. Until the results of ongoing trials and further safety data emerge, it is recommended to withhold its use in general practice, especially for low kidney-risk patients and maybe for those with advanced kidney disease. If used, patients' renal function should be monitored closely, as there is no sufficient evidence of safety.

REFERENCES

1. Mooser V, Nussberger J, Juillerat L, Burnier M, Waerber B, Bidiville J, et al. Reactive hyperreninemia is a major determinant of plasma angiotensin II during ACE inhibition. J Cardiovasc Pharmacol 1990;15(2):276-82.
2. Rakugi H, Wang DS, Dzau VI, Pratt RE. Potential importance of tissue angiotensin-converting enzyme inhibition in preventing neointima formation. Circulation 1994;90(1):449-55.
3. National Kidney Foundation. KDOQI clinical practice guideline for chronic kidney disease: Evaluation, classification and stratification. Am J Kidney Dis 2002;39 2 Suppl 1:S1-266.
4. Pham JT, Schmitt BP, Leehey DJ. Effects of dual blockade of the renin-angiotensin system in diabetic kidney disease: A systematic review and meta-analysis. J Nephrol Ther 2012;S2:003.
5. Kunz R, Friedrich C, Wolbers M, Mann JF. Meta-analysis: Effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med 2008;148(1):30-48.
6. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358(15):1547-9.
7. Pfeffer MA, McMurray JJ, Velasquez EJ, Rouleau JL, Kober L, Maggioni AP, et al. For the valsartan in acute myocardial infarction trial investigators. Valsartan, captopril or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 2003;349(20):1839-1906.
8. National Kidney Foundation. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 update. Am J Kidney Dis 2012;60(5):850-6.
9. Clinical Trials at Villa Camozzi. Preventing ESRD in Overt Nephropathy of Type 2 Diabetes. The VALID Trial. 2012. Available from: http://www.clinicaltrials.marionegri.it/index.php/main-trials/main-trials-ongoing/70.html. [Last accessed on 2013 Feb 25].
10. Fried LF, Duckworth W, Zhang JH, O’Connor T, Brophy M, Emanuele N, et al. Design of combination angiotensin receptor blocker and angiotensin-converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D). Clin J Am Soc Nephrol 2009;4(2):361-8.
11. Mogensen CE, Neldam S, Tikkanen I, Oren S, Viskoper R, Watts RW, et al. Randomised controlled trial of dual blockade of reninangiotensin system in patients with hypertension, micro albuminuria, and noninsulin dependent diabetes: The Candesartan and Lisinopril Microalbuminuria (CALM) study. BMJ 2000;321(7274):1440-4.
12. Tobe SW, Clase CM, Gao P, McQueen M, Grosshennig A, Wang X, et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk: Results from the ONTARGET and TRANSCEND studies. Circulation 2011;123(10):1097-9.
13. Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001;345(18):1291-7.
14. Rossi MC, Noclucci A, Pellegrini F, Comaschi M, Ceriello A, Cucinotta D, et al. Obesity and changes in urine albumin/creatinine ratio in patients with Type 2 diabetes: The DEMAND study. Nutr Metab Cardiovasc Dis 2010;20(20):110-6.
15. Bildirici U, Ural E, Kilic T, Aygun F, Acar E, Cekmen M, et al. Association between documented coronary artery disease and urinary albumin, albumin to creatinine ratio. Med Sci Monit 2010;16(11):CR545-8.
16. Epstein M. Aging and the kidney. J Am Soc Nephrol 1996;7(8):1106-22.