SAND, a new protein family: from nucleic acid to protein structure and function prediction

Amanda Cottage, Yvonne J. K. Edwards and Greg Elgar*
UK Human Genome mapping Project Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK

*Correspondence to:
G. Elgar, UK Human Genome mapping Project Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK.
E-mail: gelgar@hgmp.mrc.ac.uk

Received: 1 May 2001
Accepted: 21 June 2001

Abstract
As a result of genome, EST and cDNA sequencing projects, there are huge numbers of predicted and/or partially characterised protein sequences compared with a relatively small number of proteins with experimentally determined function and structure. Thus, there is a considerable attention focused on the accurate prediction of gene function and structure from sequence by using bioinformatics. In the course of our analysis of genomic sequence from Fugu rubripes, we identified a novel gene, SAND, with significant sequence identity to hypothetical proteins predicted in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, a Drosophila melanogaster gene, and mouse and human cDNAs. Here we identify a further SAND homologue in human and Arabidopsis thaliana by use of standard computational tools. We describe the genomic organisation of SAND in these evolutionarily divergent species and identify sequence homologues from EST database searches confirming the expression of SAND in over 20 different eukaryotes. We confirm the expression of two different SAND paralogues in mammals and determine expression of one SAND in other vertebrates and eukaryotes. Furthermore, we predict structural properties of SAND, and characterise conserved sequence motifs in this protein family.

Keywords: bioinformatics; structure prediction; comparative sequence analysis; data mining

Introduction
Many prokaryotic genomes have now been fully sequenced, as well as several eukaryotic genomes including: Saccharomyces cerevisiae (Goffeau et al., 1996; The yeast genome directory, 1997), Caenorhabditis elegans (The C.elegans sequencing consortium, 1998), Drosophila melanogaster (Adams et al., 1999) and that of the first plant genome Arabidopsis thaliana (Lin et al., 1999; Mayer et al., 1999; Salanoubat et al., 2000; Tabata et al., 2000; Theologis et al., 2000). The first complete vertebrate genomic sequence, that of man, is available but at this time is not fully assembled (Venter et al 2001; International human genome sequencing consortium, 2001). Many gaps in the sequence remain to be filled and only two chromosomes are in a finished state (Dunham et al., 1999; Hattori et al., 2000). It is now becoming apparent that the annotation of these genomic sequences relies heavily on gene prediction programs, of which the best only fare reasonably. Continuous sequence similarity searches of large genomic sequences against an increasing pool of cDNAs and ESTs is proving to be costly. A feature of the analysis of these genomes is the number of unknown proteins that they are predicted to encode. For example, in the relatively small genome of C. elegans, 60% of predicted genes encoded proteins of unknown function (The C. elegans sequencing consortium, 1998). In this study, we have identified a novel gene in the model vertebrate Fugu rubripes, which we have called SAND, as its location is next to the plasminogen related growth factor receptor (PRGFR) thought to be the orthologue of SEA (EMBL: AJ010317) (Cottage et al., 1999). BLAST (Altschul et al., 1997)
searches of cDNA and EST sequences have revealed that the SAND gene product is expressed in diverse eukaryotes, in various developmental stages in plants, and in many tissue types in vertebrates. We have identified two SAND para-
logues in mammals, which appear to be the result of a taxonomy class specific duplication. In an attempt to assign function to this new protein family, we have carried out a computational analysis including similarity searches, multiple sequence alignments, domain identification and characterisation, secondary structure predictions, solvent accessibility predictions and automatic protein fold recognition analyses.

Materials and methods

Characterisation of the F. rubripes cosmid 165K09

The F. rubripes cosmid 165K09 (EMBL: AJ010317) had previously been identified as encoding a PRGFR. The cosmid was sequenced and annotated as reported (Cottage et al., 1999). Additionally, RT PCR was used to verify the predicted SAND gene product.

Bioinformatic analysis of SAND nucleic acid sequences

BLASTn (version 2.0.12) and tBLASTx (version 2.0.12) (Altschul et al., 1997) searches of EMBL release 66 (EMBL) (Stoesser et al., 2001) (and unfinished human genome contigs (http://www.ncbi.nlm.nih.gov/BLAST/) and BLASTx (version 2.0.12) (Altschul et al., 1997) searches of SWISS-PROT release 39 (SP) and SWISS-PROT TrEMBL release 16 (SPTR) (Bairoch and Apweiler, 2000) with F. rubripes SAND were used to identify homologous sequences. Where gene sequences had not been identified, these were determined from genomic sequences using NIX, a WWW tool to view the results of many DNA analysis programs (Williams, G., Woollard, P. and Hingamp P. unpublished data, http://www.hgmp.mrc.ac.uk/Registered/Webapp/nix/). Analysis of the promoter regions, in order to determine potential TATA boxes and conserved transcription factor binding sites, was facilitated by the use of Theatre. Theatre is a tool for obtaining the results for a set of DNA sequences, from various DNA sequence analysis programs (with emphasis of finding transcription factor binding sites), and producing a clear graphical display of this information in a comparative context (Edwards and coworkers; http://www.hgmp.mrc.ac.uk/Registered/Webapp/theatre/). tBLASTn version 2.0.12 (Altschul et al., 1997) searches of EST databases were used to generate an in silico expression profile of SAND homologues.

Bioinformatic analysis of SAND protein sequences

When gene sequences had been determined, the derived protein sequences were aligned, together with the mRNA and EST translations using ClustalW version 1.74 (Thompson et al., 1994). Percentage sequence identity and specific conserved residues were determined by the use of Belvu, an alignment viewer written by Erik Sonnhammer (http://www.cgr.ki.se/egf/groups/sonnhammer/Belvu.html). Composite analysis of each protein was performed using PIX, a WWW tool to view the results of many protein analysis programs for a query sequence (http://www.hgmp.mrc.ac.uk/Registered/Webapp/pix/). Further database searches using PSI-BLAST version 2 (Altschul et al., 1997) were used to identify potential domains by accepting the default and running several iterations. SAND was also submitted for PSI-BLAST analysis in overlapping contigs of 100 residues. A consensus secondary structure and associated solvent accessibility was generated using Jpred2 (Cuff et al., 1998) from a ClustalW (Thompson et al., 1994) alignment of seven full length SAND sequences in MSF format. The protein fold recognition program Threader (Jones et al., 1992) was used to score protein sequence compatibility against known protein folds. Sequence threading against a structural databank of 1902 known protein folds was performed for the seven SAND sequences. Threadings were computed in terms of 1. pairwise interaction energies, 2. solvation potential energies and 3. their weighted sum, in order to evaluate the fit of each sand sequence to a particular fold conformation, and represented as Z-scores (= (Energy – Mean)/Standard Deviation). Provided there is greater than 50% sequence and structure matching, the Z scores were sorted for input into a program called SumThreader (Edwards and Perkins, 1996) in order to summarise the outcome of the searches. For each of the three Z scores, the average rank of each fold was calculated from the seven values determined for the individual SAND sequence.

Copyright © 2001 John Wiley & Sons, Ltd.

Comp Funct Genom 2001; 2: 226–235.
threadings. The average ranked position for each fold for seven sequences were calculated.

Results and discussion

Identifying sequence homologues

The Japanese puffer fish, *F. rubripes*, was chosen as a suitable vertebrate model in which to identify genes of interest. Evidence suggests that the *F. rubripes* gene complement is about the same as that of mammals, and that gene order and structure may be preserved, but within a remarkably compact genome of only 400 Mbp (Brenner et al., 1993). Several gene families have been studied in this vertebrate, including the *Hox* genes (Aparicio et al., 1997), the pheromone receptors (Naito et al., 1998) and the surfet genes (Armes et al., 1997). Analysis of the genomic sequence from the *F. rubripes* cosmid 165K09 (EMBL: AJ010317) identified a novel sequence, *SAND* (Fr_SAND) (SPTR: Q9YGN1), with sequence identity to hypothetical proteins predicted in *S. cerevisiae* (Sc_SAND) (SP: P53129) and *Sz. pombe* (Sp_SAND) (SP: Q10150), and to part of a hypothetical protein predicted in *C. elegans* (Ce_SAND) (SPTR: Q20298). The *F. rubripes* sequence also has sequence identity to the *D. melanogaster* CG11926 gene product (Dm_SAND) (SPTR: Q9VR38) and a mouse cDNA clone (Mm_SAND1) (EMBL: AK013387). tBLASTx searches of *A. thaliana*’s chromosome 2 sequences identified a sequence with similarity to SAND (At_SAND) (EMBL: AC006283). Two human SAND homologues were identified: a cDNA clone KIAA0872 (Hs_SAND2) (SPTR: O94949), and a predicted open reading frame on chromosome 3p21 (Hs_SAND1) (EMBL: AC068701). Whilst BLAST (Altschul et al., 1997) searches reveal the expression of at least two SAND genes in a number of mammals (see Table 1A and 1B), including human, mouse, pig and cow, only one SAND gene can be detected in any non-mammalian organism (see Table 1C).

Intron/exon structure

SAND1 is predicted to comprise two exons in *Sz. pombe* (see Table 2A) and one in *S. cerevisiae*, however the hypothetical protein produced from the reported *S. cerevisiae* prediction introduces gaps into an alignment with other SAND proteins. The *S. cerevisiae* sequence is approximately 644 residues by comparison to the 520 residues encoded by the other sequences. A better alignment with the other SAND sequences was achieved by removing 54 residues from the N terminus and introducing an intron which removes residues 537–577 (SP: P53129), experimental confirmation is needed of this prediction and this sequence was not used for secondary structure predictions.

Gene sequences were determined from the *C. elegans* genomic data by Genefinder (P. Green and L. Hillier unpublished software). These predictions were confirmed or adjusted to account for protein, cDNA and EST matches (The *C. elegans* sequencing consortium, 1998). The *C. elegans* SAND Table 1. Expression profile of SAND generated by EST database searches

Organism	EMBL Accession number	Expression
Homo sapiens	CNSLTIEA9	Placenta
	CNSLTIIVF	T cell/T cell leukemia
	BE793894	Lung
Mus musculus	BF321829	Mammary infiltrating ductal carcinoma
	BF179283	Mammary, gross tissue
	BF584835	Colon
	A1853696	Brain
	AU06752	Brain
Rattus norvegicus	A1237869	Normalized spleen
	BE111711	Cardiac tissue
Sus scrofa	BE234656	Pooled
	BF193484	Pooled
Bos taurus	AW655266	Pooled
	AW653632	Pooled
	BF664794	Pooled

Organism	EMBL Accession number	Expression
Homo sapiens	BE785702	Lung
	BF313087	Neuroblastoma
	BE885699	Leiomyosarcoma
	CNSLTOYYF	T cell leukemia
	AK023374	Ovarian tumour
Mus musculus	AW626447	Lung
	AW322902	Lung
Sus scrofa	AW785756	Lung
	AW322902	Pooled
Bos taurus	BF602206	Pooled
protein (F41H10.4 SP:Q20298) is predicted by Genefinder to be encoded by 13 exons; however it would appear that exons 1–4 belong to a neighbouring gene and it is this sequence that shows similarity to a *Plasmodium yoelii* rhoptry protein as specified in the annotation. Residues encoded by exon 8 introduced a gap in an alignment with other SAND proteins, so this was removed from the gene prediction. We therefore expected that *C. elegans* SAND is encoded by 6 exons, although the exact gene start could not be determined from the given sequence, possibly due to sequencing/assembly errors and so is not shown in Figure 1.

The predicted gene structure of *D. melanogaster* did not require further adjustment. The *D. melanogaster* genome annotation used Genscan (Burge and Karlin, 1997), and a version of Genie that uses expressed sequence tag data (Reese et al., 2000), plus the results of cDNA and protein database searches, followed by review by human annotators (Adams et al., 2000). *D. melanogaster* SAND is encoded by three exons. In contrast, SAND is encoded by 12 exons in *A. thaliana*; the genes small intron and exon sizes, coupled with low G+C content (42%), may explain why this gene was missed by the gene prediction programs used in this genomic project, even though the annotation involved both DNA and protein database searches and gene prediction with the programs Genscan (Burge and Karlin, 1997), Genefinder (P. Green and Hillier unpublished) and Grail (Uberbacher et al., 1991).

Human and mouse SANDs have the highest G+C content (>60%), followed by *F. rubripes* (53%) and *D. melanogaster*. *C. elegans*, both yeast and *A. thaliana* all have a lower G+C composite at

Organism	EMBL accession number	Expression
Gallus gallus	GGA395913	Bursa of fabricus
Danio rerio	GGA392697	Bursa of fabricus
Drosophila melanogaster	AI294091	Larvae
	A1S16700	Embryo 0–24 hrs
	AI389145	Head
Caenorhabditis elegans	CE12C12	Mixed
	AU111676	Whole
	AU112292	Whole
Dicyostelium discoidum	DDC4047	Gamete
Arabidopsis thaliana	BE322449	Developing seeds
	AVS36886	Flower buds
	AVS53362	Green siliques
Glycine max	AW201401	Cotyledons
Lycomerson esculentum	AI777002	Callus
Medicago truncatula	CNS06681	Arbuscular mycorrhiza
Solanum Tuberosum	BF459706	Tuber
Pinus taeda	BG318737	Xylem
Secale cereale	BE588169	Root tip
Gossypium hirsutum	AW876466	Cotton fibre
Hordeum vulgare	BG300416	Seedling shoot

Table 2. Comparison of intron/exon sizes and exon phase between SAND sequences in *A. thaliana* (At), *C. elegans* (Ce), *F. rubripes* (Fr), Human (Hs), *D. melanogaster* (Dm), *S. cerevisiae* (Sc) and *S. pombe* (Sp). The question mark indicates unresolved or ambiguous boundaries in gene annotation.

Organism	Ex.	At	Ce	Fr	Hs1	Hs2	Dm	Sc	Sp
Gallus gallus	1	186	155	124	127	148	593	144	1295
Danio rerio	2	101	213	384	486	327	152	204	247
Drosophila	3	106	155	766	766	820	842		
		4	2	72	371	148	148		
	5	166	407	143	141	201			
	6	122	277						
	7	233							
	8	83							
	9	263							
	10	92							
	11	65							
	12	96							

2B. Size of introns in base pairs

Organism	Ex.	At	Ce	Fr	Hs1	Hs2	Dm	Sc	Sp
Gallus gallus	A	57	269	146	1208	1818	66	120	86
Danio rerio	B	66	58	89	637	557	56		
Drosophila	C	122	298	129	718	380			
	D	249	50	439	98	2425			
	E	96	51						
	F	366							
	G	162							
	H	251							
	I	81							
	J	90							
	K	103							
around 40%. Analysis of the promoter regions by the use of Theatre (Edwards and coworkers; unpublished material) determined that the promoters appear to be largely TATA-less; no significant sequence identity could be determined between them. Comparisons between the promoter regions proved difficult due to the variable length of the N terminus of the encoded proteins and the lack of sequence identity between them across this region.

Both intron/exon number and size, as well as intron phase, show no conservation between yeasts, fly, worm and plant (see Table 2). Analyses of SAND in these organisms may elucidate some interesting clues to the dynamics of intron formation/loss. Vertebrate evolution, however, appears to have taken a more concerted route: F. rubripes SAND and human SAND1 and SAND2 are all encoded in five exons, and the intron phases of the three genes are conserved (see Table 2C). Exon 4 is the same size in all three genes Fr_SAND (148 bp), Hs_SAND1 (148 bp) and Hs_SAND2 (148 bp) (see Table 2A).

Genomic loci

The orientation of genes neighbouring SAND and their accession numbers are given in Table 3. Human SAND2 protein KIAA0872 has been mapped to chromosome 16 (Nagase et al., 1998). BLAST (Altschul et al., 1997) searches of the human SAND2 locus (EMBL:AC009139) have shown its 5’ neighbour on the direct strand to be a putative pheromone receptor, whilst its 3’ neighbour on the reverse strand encodes a hypothetical protein. Hypothetical proteins are also predicted as neighbours to SAND in D. melanogaster, C. elegans, and A. thaliana, but these sequences do not appear to be homologous. Of interest are the ribosomal proteins predicted 5’ to SAND and on the opposite strand in both D. melanogaster and S. cerevisiae. The 5’ neighbour (on the reverse strand) of F. rubripes SAND is the TRAF interacting protein TRIP. The 3’ neighbour, on the direct strand, is the plasminogen related growth factor receptor (PRGFR3). This gene organisation is conserved on the genomic segment of chromosome 3p21 encoding human SAND1. Human TRIP (SPTR:O00467) is on the reverse strand 5’ of SAND1, and the plasminogen related growth factor receptor (SP:Q04912) is approximately 10Kbp on the direct strand 3’ to it. Considerable interest has been focused on 3p21 in man as a cancer hot spot; it is particularly implicated in all major types of lung cancer (Kok et al., 1987).

Expression profile

Expression of the human SAND protein KIAA0872 has been assayed by means of RT PCR from mRNA derived from heart, brain, lung, liver, smooth muscle, kidney, pancreas, spleen, testis and ovary. KIAA0872 was shown to be expressed predominately in brain, kidney and ovary (Nagase et al., 1998). In this study, RT PCR analysis confirmed expression of F. rubripes SAND in brain, kidney and ovary, reflecting the expression profile seen in human. Although some expression was seen in other tissues assayed such as heart, lung, liver, smooth muscle, spleen and testis. An expression profile was generated for the SAND transcripts by BLAST (Altschul et al., 1997) searches with all identified SAND sequences and is shown in Tables 1A, 1B and 1C. Human SAND2 (KIA00872) had been identified in pooled tissues as well as lung. The transcript had also been identified in four neoplastic tissues, of particular interest is the lack of exon 3 from EMBL:AK023374 identified from an ovarian tumour. Expression of Hs_SAND1 appears more widespread and includes neurological, lymphatic and cardiac tissue, whilst once again neoplastic tissues are also represented. The expression of SAND in other eukaryotes appears to occur at various developmental stages, and even in specialised tissues such as the bursa of fabricus in chicken. In plants, expression of SAND is seen in both monocots and dicots, and is even to be found expressed in the xylem of pine. SAND is expressed in many different tissue types in plants, including: flowers, seeds, tubers, leaves, shoots and roots.
Inferring function from sequence data is the new dogma in DNA research, and the main focus of molecular biologists and bioinformaticians following in the wake of the large genomic projects. Despite current innovations in bioinformatics, this endeavour is non-trivial and requires validation.

Search for a structural homologue using basic search methods

In order to determine if SAND has sequence similarity to proteins with known 3D structures, BLASTP (version 2.0.12) (Altschul et al., 1997) was used to search NRL-3D (http://pir.georgetown.edu/pirwww/dbinfo/nrl3d.html), a databank of protein sequences whose structures have been experimentally determined (Garavelli et al., 2001). No structural homologues were identified by searches with the seven full SAND sequences reported in this communication.

PSI-BLAST (Altschul et al., 1997) – Position Specific Iterated BLAST uses an iterative search in which sequences identified in the first round of searching are used to build a score model for the next round. PSI BLAST has been used to successfully identify homologous protein sequences that have known 3D structures, even when the query and subject sequences have less than 20% sequence identity overall (Bork et al., 1999). Successive PSI BLAST 2 iterations with the seven full length SAND protein sequences resulted in convergence after the 4th iteration.

Search against the databank of Pfam profiles

Profile Hidden Markov Models (HMMs) built from Pfam alignments can be useful for automatically recognising that a new protein contains an existing protein domain, even if the sequence similarity is weak. Pfam HMMs (Sonnhammer et al., 1998) were searched with the nine SAND sequences using the search package HMMER; no significant matches were reported. A seed alignment of SAND is available in PfamB (pfam b8448) but only contains 5 partial sequences from H. sapiens, F. rubripes, C. elegans, Sz. pombe and S. cerevisiae. No homologous structural domains are reported for these proteins.

PIX analysis of the nine SAND protein sequences

Composite analysis of the SAND proteins for protein motifs and structural elements was facilitated by using PIX (http://www.hgmp.mrc.ac.uk/Registered/Webapp/pix/). Matches to various motifs and structural elements were found. SAND has 13 conserved sequence motifs. Motif 3 contains 4 and 6 hydrophobic residues which coincide with beta strands B4 and B5. Motif 5 contains the conserved residues NYDLRRL encoded on loop L9 which are also present in 1pii. Motif 13 contains charged C terminal residues predicted on loop L26.

Table 3. Characterisation of SAND loci

5' Accession number	Identification	3' Accession number	Identification
Fr_SAND	SPTR:Q9YGN2 TRIP (–)	SPTR:Q9YGN0 PRGFR3 (+)	
Dm_SAND	SPTR:Q9VR37 Ribosomal protein S2 (–)	SPTR:Q9VR39 Hypothetical protein (+)	
Ce_SAND	SPTR:Q20297 Hypothetical protein (+)	SPTR:Q20299 Similarity to GRMS (+)	
Sc_SAND	SP:P25443 Ribosomal protein S4 (–)	SP:PS3128 Met1 (–)	
Sp_SAND	SPT:Q10147 Probable T complex protein (+)	EMBL:Z69239.1 p65 (+)	
At_SAND	SPTR:AAD20686 Hypothetical protein (+)	SPTR:AAD20658 Hypothetical protein (+)	
Hs_SAND2	EM:AC009139 Probable pheromone receptor (+)	EM:AC009139 Hypothetical protein(–)	
Hs_SAND1	SPTR:Q00467 TRIP (–)	SP:Q04912 MSP Receptor RON (+)	

The orientation of the gene neighbouring SAND is given in parenthesis, (+) for the leading strand and (–) for the reverse strand.

Figure 1. A ClustalW alignment of seven full length SAND amino acid sequences. The following abbreviations are used Hs (H. sapiens), Fr (F. rubripes), Dm (D. melanogaster), At (A. thaliana) Mm (Mus musculus) and Sp (S. pombe). Shown below the alignment is the Jpred2 consensus secondary structure prediction (H – helix, E – strand, – loop) and solvent accessibility (b – buried, e – exposed). Shown in bold underlined type are two cysteines located on helix A10 and strand B12, they are present only in vertebrates and yeast, they may form a disulphide bridge in the mature peptide. SAND has 13 conserved sequence motifs. Motif 3 contains 4 and 6 hydrophobic residues which coincide with beta strands B4 and B5. Motif 5 contains the conserved residues NYDLRRL encoded on loop L9 which are also present in 1pii. Motif 13 contains charged C terminal residues predicted on loop L26.
features, for example transmembrane domains, coiled coils, signal peptides and peptide cleavage sites were reported in individual sequences, but the threshold at which these features were determined was not significant. Furthermore, these features were not present in the majority of the sequences. With the exception of *A. thaliana*, PSORT kNN predictions only marginally predict SAND as a nuclear localised protein ahead of the prediction as a cytoplasmic protein. The *A. thaliana* SAND is predicted as a plasma membrane located protein with a score of 42%. There were no significant matches to domain databases, e.g. SBASE (Murvai et al., 2001), ProDom (Corpet et al., 1998), BLOCKS (Henikoff et al., 1999), PRINTS (Attwood et al., 1997) and PROSITE (Hofmann et al., 1999). Although comprehensive protein database searches have not revealed a possible function for the SAND proteins, they firmly establish SAND as a new protein family.

Alignment and prediction of secondary structure and solvent accessibility

The *C. elegans* and *S. cerevisiae* SAND sequences were not included in the alignment (Figure 1) due to problems with their annotations as outlined in this manuscript. The alignment comprises seven sequences that have low sequence identity overall, this typically being less than 30% between pairs of sequences. There is no shared sequence similarity at their N terminus (sequence lengths vary between 104–151 residues). However, following the N terminus, several regions of highly conserved residues are apparent (see Figure 1). These provide evidence for at least two domains within the SAND proteins.

Jpred2 was used to predict the secondary structure and solvent accessibility of the SAND proteins. Three types of input can be supplied to Jpred; a single protein sequence, an unaligned set of protein sequences, or a multiple protein sequence aligned in MSF format. The ClustalW alignment shown in Figure 1 was used as input to Jpred. The Jpred2 consensus secondary structure and solvent accessibility predictions are also shown in Figure 1. The N terminal region described previously is predicted not to contain either alpha helices or beta strands. The SAND proteins are predicted to contain thirteen alpha helices and thirteen beta strands, plus a total of 27 loops. All beta strands are predicted to be largely solvent inaccessible, as well as four helices A2, A7, A8 and A9. Eight of the thirteen helices display an amphipathic pattern (A3, A4, A5, A6, A10, A11, A12 and A13); these helices are likely to be located on the outer surface of the protein with one side of the helix facing the solvent and the other the hydrophobic interior. The lengths of secondary structure elements predicted are typical of those observed in known protein structures and A3 is the only helix predicted to be over 20 residues. Given that the proteins share a low level of sequence identity, the accuracy of the prediction will be affected. The Jpred secondary structure prediction is expected to be about 70% accurate at the amino-acid residue level (Cuff et al., 1998).

Automatic protein fold recognition

The identification of a protein fold was attempted using Threader (Jones et al., 1992). SumThreader (Edwards and Perkins, 1996) was used to summarise the outputs. The sequences in Figure 1 minus the N terminal residues with the absence of regular secondary structure predicted were used as input for threading analysis. The SAND sequences were matched ‘favourably’ with protein structures (protein structure codes and domain annotations are given and the average Z score are given in parentheses): 1pii00(2.65), 1pdz02(2.65), 1eedP0(2.62), 2exo00 (2.56), 1mpp00 (2.55) and 1hpm00(2.52). The Z scores of these matches approach the threshold score of 2.7. In the Threader user guide, this score is specified as “borderline significant, possibly correct”. 1pii consists of two alpha beta TIM barrel domains. 1pii is the experimentally determined structure of the bifunctional *E. coli* enzyme phosphoribosylanthranilate isomerase: indoleglycerol phosphate synthase. The 1pdz lyase and the 2exo hydrolase structures both adopt an alpha beta TIM barrel fold. 1hpm is a heat shock protein ATPase fragment adopting an open alpha beta alpha sandwich structure. 1eedP0 and 1mpp00 are aspartate proteinases, adopting beta barrel structures. This beta barrel structure is not compatible with the SAND secondary structure prediction results, that comprise equal numbers of alpha helices and beta strands. The predicted secondary structure of SAND is only a fair match with the largely alternating pattern of helices and strands of 1pii. However, the secondary structure and solvent accessibility predictions for SAND indicate mostly amphipathic helices and predominately solvent.

Copyright © 2001 John Wiley & Sons, Ltd.

Comp Funct Genom 2001; 2: 226–235.
inaccessible strands, these characteristics are typical properties observed in known alpha beta protein fold types like the alpha beta sandwich structures or the closed alpha beta TIM barrels.

Conclusions

Lack of conformity and standards in annotation has resulted in variability between genomes in how accurately genes are predicted. In this example, SAND has been partially missed from the accurate genes are predicted. In this example, Lack of conformity and standards in annotation Conclusions the closed alpha beta TIM barrels. fold types like the alpha beta sandwich structures or inaccessible strands, these characteristics are typical properties observed in known alpha beta protein fold types like the alpha beta sandwich structures or the closed alpha beta TIM barrels.

References

No authors listed. 1997. The yeast genome directory. Nature 387(suppl.): 5.
Adams MD, Celinker SE, Holt RA, et al. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185–2195.
Altschul SF, Madden TL, Schaffer AA, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
Aparicio S, Hawker K, Cottage A, et al. 1997. Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes. Nat Genet 16: 79–83.
Armes N, Gilley J, Fried M. 1997. The comparative genomic structure and sequence of the surfet gene homologs in the puffer fish Fugu rubripes and their association with CpG-rich islands. Genome Res 7: 1138–1152.
Attwood TK, Avison H, Beck ME, et al. 1997. The PRINTS database of protein fingerprints: A novel information resource for computational molecular biology. J Chem Inf Comput Sci 37: 417–424.
receptors related to the Ca$_{2+}$-sensing receptor in Fugu. Proc Natl Acad Sci U S A 95: 5178–5181.

Reese MG, Kulp D, Tammana H, Haussler D. 2000. Genie–gene finding in Drosophila melanogaster. Genome Res 10: 529–538.

Salanoubat M, Lemeke K, Rieger M, et al. 2000. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408: 820–822.

Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R. 1998. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26: 320–322.

Stoesser G, Baker W, van den Broek A, et al. 2001. The EMBL Nucleotide Sequence Database. Nucleic Acids Res 29: 17–21.

Tabata S, Kaneko T, Nakamura Y, et al. 2000. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408: 823–826.

The C. elegans Sequencing Consortium. 1999. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018.

The International Human Genome Mapping Consortium. 2001. A physical map of the human genome. Nature 409: 934–941.

Theologis A, Ecker JR, Palm CJ, et al. 2000. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408: 816–820.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.

Uberbacher EC, Mural RJ. 1991. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci U S A 88: 11261–11265.

Venter JC, Adams MD, Myers EW, et al. 2001. The sequence of the human genome. Science 291: 1304–1351.
