Molecular evidence of Culex pipiens form molestus and hybrids pipiens/molestus in Morocco, North Africa
Fadila Amraoui, Mhamed Tijane, Mhammed Sarih, Anna-Bella Failloux

To cite this version:
Fadila Amraoui, Mhamed Tijane, Mhammed Sarih, Anna-Bella Failloux. Molecular evidence of Culex pipiens form molestus and hybrids pipiens/molestus in Morocco, North Africa. Parasites and Vectors, BioMed Central, 2012, 5 (1), pp.83. <10.1186/1756-3305-5-83>. <pasteur-00722006>

HAL Id: pasteur-00722006
https://hal-pasteur.archives-ouvertes.fr/pasteur-00722006
Submitted on 31 Jul 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Molecular evidence of *Culex pipiens* form molestus and hybrids pipiens/molestus in Morocco, North Africa

Fadila Amraoui1,2, Mhamed Tijane2, Mhammed Sarih1 and Anna-Bella Failloux3*

**Abstract**

**Background:** *Culex pipiens* L. is the most widespread mosquito vector in temperate regions including North Africa. *Cx. pipiens* has two recognized forms or biotypes: pipiens and molestus are morphologically indistinguishable with distinct behavior and physiology that may influence their vectorial status. In our study, we prospected for the different forms of *Cx. pipiens* in Morocco.

**Methods:** *Cx. pipiens* larvae were collected in 9 sites throughout Morocco during summer 2010 and reared until imago stage. *Cx. pipiens* was identified using diagnostic primers designed for the flanking region of microsatellite CQ11.

**Results:** We established the presence of both forms of *Cx. pipiens* and their hybrids in Morocco.

**Conclusions:** Molecular identification provides the first evidence of the presence of *Cx. pipiens* form molestus in Morocco and hybrids between pipiens and molestus forms in North Africa. The epidemiological implications of our findings are discussed.

**Keywords:** *Culex pipiens* complex, Microsatellite, Molecular taxonomy, Morocco, North Africa

**Background**

The *Culex pipiens* complex includes several species; *Cx. pipiens pipiens* Linnaeus, 1758 and *Cx. pipiens quinquefasciatus* Say, 1823 are the most ubiquitous mosquitoes in temperate and tropical regions, respectively. *Cx. p. pipiens* has two distinct forms or biotypes: form pipiens and form molestus which are morphologically indistinguishable and differ in physiology and behavior. *Cx. pipiens* form pipiens is subjected to diapause (heterodynamic), is anautogeneous (only lays eggs after a blood-meal), and eurygamous (unable to mate in confined spaces). On the other hand, *Cx. pipiens* form molestus Forskal, 1775 does not diapause (homodynamic), is anautogeneous (lays first batch of eggs without taking a blood-meal) and stenogamous (mates in confined spaces) [1,2]. In addition, the biotypes molestus and pipiens occupy distinct habitats in Russia and the northeastern United States. Indeed, molestus form occurs in underground areas in urban settings while pipiens form lives aboveground [3,4]. In Europe, sympatric occurrence of both biotypes has been observed in aboveground habitats as well as in underground habitats [5-7]. The two forms did not seem to be genetically isolated and were reported to hybridize in the United States and Europe [6-8]. They have different trophic preferences: pipiens biting mainly birds and molestus feeding on mammals, whereas hybrids exhibit an opportunistic behavior and can readily feed on both hosts. These feeding patterns are thought to influence the transmission of avian and mammalian pathogens.

In North Africa, *Cx. p. pipiens* is a competent vector of several pathogens infecting animals and humans including West Nile virus [9], Rift Valley Fever virus [10-12] and filarial worms [13-16]. Based on morphological characters, behavioral and reproductive specializations, the mosquito *Cx. p. pipiens* was described in the North African region [17-25]. Nevertheless, these classical characters present limited value. Therefore, our study aims to identify members of the *Cx. pipiens* complex present in Morocco based on a molecular identification.

**Methods**

Mosquitoes were collected as larvae using the “dipping” sampling method during summer 2010 from three...
Moroccan regions (Figure 1). A total of 9 sites were classified according to the habitat (urban, suburban or rural) and the type of breeding site (aboveground or underground). Fourth instar larvae were used for morphological identification [26] and reared until imago stage at 28 ± 1°C with 80% relative humidity and a 16 h:8 h photoperiod. Emerged adults were conserved at −20°C for subsequent molecular characterization.

DNA extraction from F0 individuals was performed using the method of DNAzol as described in the manufacturer’s protocol. Specimens were identified as belonging to the *Culex pipiens* complex using a multiplex PCR assay described in Bahnck and Fonseca (2006) [27]. The locus CQ11 was used to distinguish between the two forms of *Cx. pipiens*. The DNA fragment size amplified varied between pipient and molestus allowing us to distinguish the two forms in a single PCR reaction (Figure 2). Specimens of *Cx. pipiens* molestus from Japan were used as control.

**Results and Discussion**

A total of 214 adults were characterized by PCR and frequencies of different forms are represented in Table 1. Overall, 52.3% of adults tested were homozygous for the 200 bp fragment which is characteristic of the pipient form, 22% were homozygous for the 250 bp fragment identifying the molestus form and the remaining (25.7%) corresponded to hybrids.

This study provides the first molecular evidence for the presence of *Cx. pipiens* form molestus in Morocco and hybrids in North Africa.

![Figure 1 Localization of the collection sites in Morocco.](image1)

![Figure 2 Example of PCR amplification of the flanking region of the CQ11 microsatellite of Culex pipiens collected in an underground site in Casablanca (Morocco). DNA was extracted from individual mosquitoes and identified by PCR amplification of the flanking region of the CQ11 microsatellite. Lane M: 100-bp size marker; Lane 1: control Cx. pipiens form molestus from Japan; Lane 2: molestus form; Lane 3: pipient form; Lane 4: hybrid form.](image2)
The molestus form has been described as a distinct species, Cx. molestus Forskal, 1775 from autogeneous Egyptian specimens. Because Cx. pipiens form molestus is stenogamous and autogenous, it colonizes underground areas in urban settings [3] with limited geographic distribution throughout the world. In our study, Cx. pipiens graphic distribution throughout the world. In our study, Cx. pipiens larval larvae were collected at various sites in Morocco, reared to adults and identified by PCR amplification of the flanking region of the CQ11 microsatellite. In brackets, number of tested mosquitoes.

The authors declare that they have no competing interests.

Acknowledgments
We thank Laurence Mousson for technical help. FA carried out mosquito genotyping, contributed to the interpretation of results and drafted the manuscript. MT participated in the design of experiments. MS participated in the design of experiments and mosquito collections. AB designed the experiments and drafted the manuscript. All authors read and approved the final manuscript.

Received: 11 March 2012 Accepted: 27 April 2012
Published: 27 April 2012

References
1. Harbach RE, Harrison BA, Gad AM: Culex (Culex) molestus Forskal (Diptera: Culicidae): Neotype designation, description, variation, and taxonomic status. Proc Entomol Soc Wash 1984, 86:521–542.
2. Harbach RE, Dahl C, White GB: Culex (Culex) pippins Linnaeus (Diptera, Culicidae) - concepts, type designations, and description. Proc Entomol Soc Wash 1985, 87:1–24.
3. Byrne K, Nichols RA: Culex pippins in London Underground tunnels: differentiation between surface and subterranean populations. Heredity 1999, 82:15.
4. Huang S, Moiai G, Andreis TC: Genetic insights into the population structure of Culex pippins (Diptera: Culicidae) in the Northeastern United States by using microsatellite analysis. Am J Trop Med Hyg 2008, 79:518–527.
5. Chevillon C, Erjia R, Pasteur N, Raymond M: Commercialism, adaptation and gene flow: mosquitoes of the Culex pippins complex in different habitats. Genet Res 1995, 66:147–157.
6. Gomes B, Sousa CA, Novo MT, Freitas FB, Alves R, Côrte-Real AR, Salgueiro P, Donnelly MJ, Almeida AP, Pinto J: Asymmetric introgression between sympatric molestus and pippins forms of Culex pippins (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol 2009, 9:262.
7. Reusken CEBM, de Vries A, Buiks J, Braks MAH, den Hartog W, Scholte EJ: First evidence for presence of Culex pippins biotype molestus in the Netherlands, and of hybrid biotype molestus and pippins in northern Europe. J Vector Ecol 2010, 35:210–212.
8. Fontiaca DMA, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkinsen RC: Emerging vectors in the Culex pippins complex. Science 2004, 303:1535–1538.
9. Krida G, Diancourt L, Bouattour A, Rhim A, Chemiri I, Fallaux AB: Assessment of the risk of introduction to Tunisia of the Rift Valley fever virus by the mosquito Culex pippins. Bull Soc Pathol Exot 2011, 104:250–259.
10. Hoogstraal H, Meegan JM, Khalil GM, Adham FR: The Rift Valley fever epizootic in Egypt 1977–82. 2. Ecological and entomological studies. Trans R Soc Trop Med Hyg 1979, 73:624–629.
11. Meegan JM, Khalil GM, Hoogstraal H, Adham FR: Experimental transmission and field isolation studies implicating Culex pippins as a vector of Rift Valley fever virus in Egypt. Am J Trop Med Hyg 1980, 29:1405–1410.
12. Moutailler S, Krida G, Schaffner F, Vazelle M, Fallaux AB: Potential vectors of Rift Valley fever virus in the Mediterranean Region. Vector Borne Zoonotic Dis 2008, 8:749–753.
13. Harb M, Fatis R, Gad AM, Hafez OM, Ramzi R, Bakk AA: The emergence of lymphatic filariasis in the Nile Delta. Bull WHO 1993, 71:49–54.
14. Krida G, Bouattour A, Rodhan A, Fallaux AB: Variability among Tunisian populations of Culex pippins: genetic structure and susceptibility to a filarial parasite, Brugia pahangi. Parasitol Res 1998, 84:139–142.
15. Abdel-Hamid YM, Soliman MI, Allam KM: Spatial distribution and abundance of culicine mosquitoes in relation to the risk of filariasis transmission in El Sharqiyah Governorate, Egypt. Egypt Acad J Biolog Sci 2009, 1:39–48.
16. Abdel-Hamid YM, Soliman MI, Kenawy MA: Mosquitoes (Diptera: Culicidae) in relation to the risk of disease transmission in El Ismailia governorate, Egypt. J Egypt Soc Parasitol 2011, 41:109–118.
17. Rousseau E, Le pouvoir autogène chez le biopte nord-africain du moustique commun Culex pippins (L.), Bull Soc Path Exp 1939, 36:172–175.
18. Knight KL, Malek A, A morphological and biological study of Culex pippins in the Cairo area of Egypt. Bull Soc Fouad I Entomol 1950, 38:75–185.
19. Gaud J: Notes biogéographiques sur les Culicidés du Maroc. Arch Inst Pasteur Maroc 1953, 4:443–490.

Table 1 Frequency of forms of the Culex pippins complex in Morocco

| City          | Habitat | Breeding site (Ground) | Pippins form (%) | Molestu form (%) | Hybrids (%) |
|---------------|---------|------------------------|------------------|------------------|-------------|
| Tanger        | Urban   | Above                  | 69.6 (16)        | 8.7 (2)          | 21.7 (5)    |
| Sub-urban     | Above   | 52.2 (12)              | 34.8 (8)         | 13 (3)           |             |
| Rural         | Above   | 62.5 (15)              | 8.3 (2)          | 29.2 (7)         |             |
| Casablanca    | Urban   | Above                  | 31 (9)           | 17.2 (5)         | 51.8 (15)   |
| Mohammed      | Urban   | Above                  | 25 (8)           | 59.4 (19)        | 15.6 (5)    |
| Marraakech    | Sub-urban | Above               | 53.6 (15)        | 17.8 (5)         | 28.6 (8)    |
| Rural         | Above   | 60.9 (14)              | 8.7 (2)          | 30.4 (7)         |             |
| Rural         | Under   | 78.3 (18)              | 4.3 (1)          | 17.4 (4)         |             |
| Rural         | Under   | 55.6 (5)               | 33.3 (3)         | 11.1 (1)         |             |

Culex pippins larvae were collected at various sites in Morocco, reared to adults and identified by PCR amplification of the flanking region of the CQ11 microsatellite. In brackets, number of tested mosquitoes.
20. Vermeil C: Nouvelle contribution à l'étude du complexe Culex pipiens en Tunisie. Bull Soc Pathol Exot 1954, 47:841–843.

21. Rioux JA: Les culicidés du "midi" méditerranéen. Paris: Lechevalier; 1958.

22. Senevet G, Andarelli L, Craeils R: A propos de Culex pipiens en Algérie. Arch Inst Pasteur Algérie 1958, 36:70–74.

23. Rioux JA, Juminier B, Kchouk M, Croset H: Présence du caractère autogène chez Culex pipiens pipiens L. dans un biotope épigé de l'Île de Djerba. Arch Inst Pasteur Tunis 1965, 42:1–8.

24. Pasteur N, Rioux JA, Guivard E, Pech-Perières J: Nouvelle mention, pour le "Midi" méditerranéen, de populations naturelles anautogènes et sténogames de Culex pipiens pipiens L. Ann Parasitol Hum Comp 1977, 52:205–210.

25. Himmi O, Dakh M, Trari B, El Agbani MA: Les Culicidae du Maroc: clés d'identification, avec données biologiques et écologiques. Trav Inst Sci, Série Zool Rabat 1995, 44:51.

26. Brunhes J, Rhaim A, Geoffroy B, Angel G, Hény JP: Les moustiques de l'Afrique méditerranéenne. Logiciel d'identification et d'enseignement. Montpellier, France: IRD & IPT, CD-Rom collection didactique, Éditions IRD; 2000.

27. Bahnk CM, Fonseca DM: Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. AmJTrop Med Hyg 2006, 75:251–255.

28. Spielman A: Structure and seasonality of Nearctic Culex pipiens populations. Ann NY Acad Sci 2001, 951:220–234.

29. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM: Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. AmJTrop Med Hyg 2007, 77:567–571.

30. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED: Culex pipiens (Diptera: Culicidae): a bridge vector of West Niles Virus to humans. J Med Entomol 2008, 45:125–128.

doi:10.1186/1756-3305-5-83
Cite this article as: Amraoui et al: Molecular evidence of Culex pipiens form molestus and hybrids pipiens/molestus in Morocco, North Africa. Parasites & Vectors 2012 5:83.