Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products

Bo He, Xue Bai, Yumeng Tan, Wentao Xie, Yan Feng, Guang-Yu Yang *

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China

1. Introduction

More than 200,000 natural products are known to be synthesized by plants (hereafter, plant natural products; PNPs), collectively constituting a large, structural diverse library of compounds with widely varying biological activities [1]. A considerable proportion of PNPs are glycosylated with diverse sugar moieties attached to the aglycones, thus greatly increasing the variety and complexity of structures. These glycosylated PNPs have been used as medicines, sweeteners, nutrients, cosmetics, and health products, consequently drawing considerable research attention to their biosynthesis and modification [2].

The biosynthesis of glycosylated compounds involves multiple complex biological processes that are orchestrated by many enzymatic systems in plants. Glycosyltransferases (GTs) (EC 2.4.x.y) are crucial for the biosynthesis of glycosylated PNPs and commonly perform the final step in their biosynthesis pathway, mediating the regio- and stereo-specific glycosidic bond formation via transfer of nucleotide-diphosphate-activated sugar moieties to a variety of biomolecules [3]. GTs involved in the biosynthesis of glycosylated PNPs are universally classified into the GT1 family in the Carbohydrate Active Enzyme database (CAZy, http://www.cazy.org/). Currently, nearly 30,000 GTs are included in the GT1 family, and an increasing number of GT sequences are reported from different organisms with the development of high-throughput sequencing and advances in deep-learning-based analysis [4-6]. However, only 1% of GTs have been functionally characterized, which has limited the clarification of glycosylated PNPs biosynthetic pathways and validation of enzymatic mechanisms [7].

Using enzymatic catalysis or metabolic engineering methods, scientists can produce glycosylated PNPs at industrial scale, thus providing a reliable and scalable alternative to conventional production methods based on extraction from natural resources [8-11]. However, wild-type GTs are often accompanied by unfavorable properties for the synthesis of target products, such as low expression levels and low catalytic activity. Thus, these obstacles persist as limiting factors in glycosylated PNP biosynthesis which require protein engineering through rational design and/or directed evolution [12-14].

In recent years, the rapid development of synthetic biology has accelerated the metabolic engineering of complex synthetic pathways and increased efficiency during production of limited natural resources [15,16]. Systematic optimization of redirecting metabolic fluxes in
microbial hosts to produce desired products through the combined heterologous expression of plant pathways and enzymes makes it possible to construct new and efficient PNP biosynthetic routes [17]. Significant progress has been made in producing glycosylated PNPs via different hosts using synthetic biology approaches [8]. Once a microbial factory has been developed that can produce even low quantities of a target product, strategies are then employed to engineer that strain for production of industrial-scale titers [18,19].

Recently, the structure-function relationship and glycosylation mechanisms of terpenoid GTs were summarized [3,20]. The evolution and substrates coverage of GTI family were also overviewed to pave the way for the future exploration of GT proteins [12,21]. However, there is still a lack of comprehensive review on the catalytic diversity of plant GTs in the synthesis of glycosylated PNPs. Moreover, considerable progress has been made in recent years in the mining, engineering and applications of GTs. A timely systematic review will help in constructing synthetic pathways of glycosylated PNPs. In this review, we focus on recent advances in the mining, engineering, and applications of GTs in glycosylated PNP biosynthesis. We systematically summarize the phylogenetic distribution and catalytic diversity of the characterized GTs from plant sources, as well as advanced methods for identification of candidate GTs for glycosylated PNP synthesis. In addition, we also discuss current and ongoing efforts to engineer GTs for new or improved functions by rational design and directed evolution. Finally, this review also covers recent progress in GT applications in the microbial biosynthesis of glycosylated PNPs.

2. GT diversity in glycosylated PNP synthetic pathways

In plants, GTs can glycosylate almost all major classes of secondary metabolites, such as phenylpropanoids (flavanoids, coumarins, lignans, etc.) [22–24], alkaloids (indole alkaloids, steroidal alkaloids, cytokinins, etc.) [25–27], terpenoids (monoterpenoids, diterpenoids, triterpenoids, etc.) [28–30], and polyketides (phenol polyketides, polycyclic aromatic polyketides, etc.) (Fig. 1) [31–34].

In the present review, we phylogenetically summarized 303 characterized plant GTs (215 were collected in CAZy database, and 88 were collected from recent studies), and analyzed the diversity of their natural substrates and different glycosidic bonds they catalyze (Fig. 2). Phylogenetic trees were generated using the neighbor-joining method with the poisson model applied and using a bootstrap replication of 1000 using MEGA64. The trees were then imported into the online software iTOL (https://itol.embl.de/) for further optimization. The 303 selected plant GTs could be phylogenetically classified into four major clades. Among the four clades, GTs associated with phenylpropanoid glycoside synthesis comprise the largest family, followed by those that synthesize terpenoid glycosides and polyketide glycosides, while GTs involved in alkaloid glycosides production are relatively rare.

The different clades showed no strict catalytic boundaries for four classes of substrates (including phenylpropanoids, alkaloids, terpenoids, and polyketides). At the clade level, GTs in clades I-III collectively provide broad substrate selectivity, typically accepting almost all of the compound classes listed in Fig. 1. By contrast, clade IV GTs have a relatively narrow substrate spectrum, e.g., with obvious preference for phenylpropanoids or alkaloids.

Occasionally, functional characterizations reveal that evolutionarily close GTs may glycosylate disparate chemical aglycones. For instance, UGT84B1 accepts alkaloids [35], while UGT84B2 (78.3% similarity with UGT84B1) transforms phenylpropanoids (1 and 2 in Fig. 2, respectively) [36]. The reasons for this phenomenon may be attributable to either incomplete characterization of catalytic function, or that specific mutations in key residues, often outside of the active site region, have altered their substrate spectrum [37].

Moreover, despite the diversity in substrates at the clade level, plant GTs have high substrate specificity at the individual level, that they frequently will only accommodate one class of acceptors (Fig. 2).

Fig. 1. Representative substrates of functionally characterized GTs in the synthesis of glycosylated PNPs. Chemical groups that are typically glycosylated were colored red.
However, some GTs show remarkable promiscuity, showing the ability to catalyze different classes of compounds. This flexibility is key for the success of many glycosylation engineering strategies aimed at facilitating the production of diverse glycosylated PNP s. In particular, UGT71G1 (Medicago truncatula) [36,38], GuGT14, GuGT33 (Glycyrrhiza uralensis) [39] and UGT73AE1 (Carthamus tinctorius) [40] have been shown to catalyze glycosylation of phenylpropanoids (coumarins, coumarones, flavones, isoflavones, and others) and terpenoids (glycyrrhetinic acid and glycyrrhizinic acid) (3–6 in Fig. 2, respectively), while InGTase1 (Ipomoea nil) [41] can catalyze phenylpropanoids and alkaloids (7 in Fig. 2), PaGT2 (Phytolacca americana) [42] can catalyze phenylpropanoids and polyketides (9 in Fig. 2), and SaGT4A (Solanum aculeatissimum) [43] can catalyze terpenoids and alkaloids (10 in Fig. 2).

In addition to handling diverse substrates, GTs can also mediate sugar moiety transfer to a diversity of acceptor atoms, O-, C-, N- and even S-atoms in PNP aglycons [3]. O-glycosides are the most common natural products of glycosylation, while the C-, N- and S-glycosides are relatively rare (Fig. 2) [21,44]. The first triterpene arabinosyl-O-GT (UGT99D1, 11 in Fig. 2) was recently discovered and characterized from Avena strigosa. This enzyme selectively adds L-arabinoside to the triterpene scaffold at the C-3 position, a modification critical for disease resistance [45]. Another O-GT (UGT84B1, 1 in Fig. 2) from Arabidopsis thaliana can transfer a glucosyl moiety to the –COOH of indole-3-acetic acid and phenylacetic acid, two primary natural auxins. In addition, 11 O-GTs from Glycyrrhiza uralensis, including isoflavone 7-O-GTs, flavonol 3-O-GTs, and promiscuous O-GTs catalyzing flavones, chalcones, and triterpenoids have been characterized [39].

C-glycoside secondary metabolites and bioactive molecules are widely distributed in plants, and are metabolically more stable than O-, N-, S-glycosides [46,47]. Interestingly, the vast majority of plant C-GTs are found in Clade I, which may indicate their evolutionary conservation and unique catalytic function for C-glycoside synthesis (Fig. 2). In particular, Ye et al. reported a di-C-glycosyltransferase GgCGT (12 in Fig. 2) from Glycyrrhiza glabra, which catalyzes a two-step di-C-glycosylation of floropione-containing substrates with conversion rates of >98%. GgCGT is the first di-C-GT with a crystal structure containing a sugar acceptor [48]. Recently, TeCGT1 (13 in Fig. 2) from A. thaliana have been identified as an 8-C-GT, which can efficiently and regio-specifically catalyze the 8-C-glycosylation of 36 flavones and other flavonoids. This broad substrate promiscuity of TeCGT1 is enabled by a spacious binding pocket and provides a basis for efficient directed biosynthesis of valuable and diverse bioactive flavonoid C-glycosides [49].

In contrast, few examples of S- and N-GTs from plants have been described in the literature. Historically, glucosinolates were the first identified S-glycosides, which were found in cruciferous vegetables.

Fig. 2. Phylogenetic tree analysis of the characterized plant GTs from the GT1 family. The substrate specificities of the characterized plant GTs were depicted by different colors in peripheral circle. The glycosidic bond catalytic by the characterized plant GTs were depicted by different colors in interlayer circle. The characterized plant GTs with co-crystal structures reported were highlighted by red lines. GTs mentioned in the text were marked and numbered in red.
UGT74B1 (14 in Fig. 2) from *A. thaliana* was reported to efficiently glycosylate thiophosphate in glucosinolate biosynthesis [50].

A few plant GTs were shown to perform multiple catalytic functions for different glycosides. For example, a bifunctional maize glycosyltransferase (UGT708A6, 15 in Fig. 2) can produce both C- and O-glycosylated flavonoids, a property not previously described for any other GTs [51]. Additionally, PIGT7 (*Pueraria lobata*) [52], UGT73AE1 (*C. tinctorius*) [40], RyUGT3A (*R. yunnanensis*), and RyUGT12 (*R. yunnanensis*) [53] (16, 6, 17, 18 in Fig. 2, respectively) can even transfer various sugars to three different nucleophilic groups (OH, NH$_2$, and SH) of diverse compounds, thus producing O-, N-, and S-glycosides.

3. Mining GTs for biosynthesis of glycosylated PNPs

The discovery of GTs with novel functions is a necessity for advancing their practical applications. Recently, the development of high-throughput sequencing and deep learning analysis have enabled considerable advances in enzyme mining, leading to progress in discovery of novel GTs for glycosylated PNP production (Fig. 3) [54–58].

Genomic analysis of whole genome sequence data can provide a multi-level resource for mining novel enzymes that can be greatly informative for researchers seeking to identify genes involved in glycosylated PNP synthesis [59–61]. Huang et al. demonstrated that plant GTs harbor a highly conserved 44 amino acid C-terminus motif (the plant secondary product glycosyltransferase box, PSPG box), which has been proposed to serve as a nucleotide diphosphate sugar binding site [62, 63]. A recent genome-wide analysis of soybean by Rehman et al. identified 149 putative UGTs based on the PSPG box [64]. Similar approaches were used for GT identification in the genomes of chickpea, cotton, maize, and flax [65–68]. In addition, genomic data can also provide insights into glycosylated PNP biosynthetic pathways evolution, regulation, and production [69]. Despite the exponential increase in genomic sequence data, the use of glycosylated PNP for engineering biosynthetic pathways is still restricted to experimentally characterized GTs [70]. For example, to identify the 2′-O-GT (P2′GT) responsible for phloretin production, Zhou et al. performed genome-wide analysis in domesticated apple (*M. domestica* Borkh), which identified two P2′GTs (MdUGT88F1 and MdUGT88F4) that were validated by *in vitro* activity assays and relative expression analysis (Table 1) [4].

In addition to genomic data, whole transcriptome sequencing (RNA-seq) can provide the cDNA sequence and tissue-specific expression levels of specific genes not available through genomic data [112]. Thus, many studies opt for this approach to mine for GTs relevant to the synthesis of glycosylated PNPs [113,114]. For example, Murukarthick et al. carried out transcriptome sequencing on four root samples type from *Panax ginseng* including whole roots of from one-year-old plants, and the main root bodies, rhizomes, and lateral roots of six-year-old plants. This analysis ultimately identified 189 GT-derived transcripts involved in ginsenoside biosynthesis [115]. Similarly, a comprehensive analysis of the transcriptome landscape of three genotypes of *Stevia* (SR-1, SR-2, and SR-3) revealed 143 total GT unigenes, some of which were determined to contribute to steviol glycoside biosynthesis [116].

Indeed, comparative transcriptome analysis of different organs or tissues can provide more information than genomic analysis that is relevant to screening novel candidate GTs [117]. For instance, Fan et al. showed that the anthraquinone glycosides accumulated to higher levels in roots of *R. yunnanensis* than in the stems or leaves [118]. Based on this finding, Yi et al. compared the transcriptomes of *R. yunnanensis* roots, stems and leaves and identified 32 novel candidate GT genes with high expression in root tissue from 499 putative GTs found in transcriptomic data [53]. These findings largely guided subsequent screening of candidate GTs for glycosylated PNP biosynthesis.

Taking advantage of advances in LC-MS/MS technology, a recent study developed a proteomics workflow to identify candidate GTs involved in glycosylated PNP biosynthesis [119]. For instance, Suliman et al. used tandem mass spectrometry (LC-MS/MS) to identify proteins involved in glycosylated PNP biosynthesis.
The recent five years characterized GTs identified by high-throughput sequencing strategies.

Table 1

Enzyme Name	Accession No.	Taxonomy	Systems biology tool	Reference
UGT75D1	AAA85497.1	*Arabidopsis thaliana*	Genomic	[25]
UGT71C1	AAF82195.1	*Arabidopsis thaliana*	Genomic	[71]
UGT1	QG157841.1	*Atropa belladonna*	Genomics	[72]
MdUGT88F1	ARV88476.1	*Malus domestica*	Genomics	[4]
UGG8423	ANNO2875.1	*Panax gramineum*	Transcriptomic	[73]
MdPh4-4-OGT	AXX14693.1	*Malus domestica Brokh*	Transcriptomic	[74]
DeuUGat1	AI223632.1	*Daucus carota*	Genomics	[75]
GtGCTAs, GtGCTb	QLF98865.1, QLF98866.1	*Glycyrhiza aralensis*	Genomic	[76]
UGG72AD1, UGG72AIH1, UGG72I22	AP099657.1, AOG18241.1, AK225344.1	*Lotus japonicus*	Genomic	[77]
MdF2GT	AM64187.17	*Malus domestica*	Genomic	[78]
MdUGT88F, MdUGT88F4	ARV88476.1	*Malus domestica*	Genomic	[4]
MdPh4-4-OGT	AXX14693.1	*Malus x domestica Brokh*	Genomic	[79]
AgUGat1	AX908426.1	*Apium graveolens*	Transcriptomic	[80]
UGT71B5	AMN66102.1	*Arabidopsis thaliana*	Transcriptomic	[81]
UGT76C1, UGT76C2	BAB10792.1, BAB10791.1	*Arabidopsis thaliana*	Transcriptomic	[82]
UGT76E12	AK82559.1	*Arabidopsis thaliana*	Transcriptomic	[83]
UGT85A1	AAI85371.1	*Arabidopsis thaliana*	Transcriptomic	[83]
AeUGTs, AeUGTa	QLF98868.1, QLF98867.1	*Arisuma erubescens*	Transcriptomic	[84]
GtUG73A20, GtUG75SL12, GtUG77A14, GtUG77A15	ALO19886.1, ALO19892.1, ALO19888.1, ALO19889.1	*Camellia sinensis*	Transcriptomic	[85]
UGT84A57	BII5602.1	*Eucaliptus paniculata*	Transcriptomic	[90]
GtUGT	QG05036.1	*Glycyrrhiza glabra*	Transcriptic	[86]
Pn1-31, Pn3-29, Pn3-31, Pn3-32	QOJ43864.1, QOJ43865.1, QOJ43866.1, QOJ43868.1	*Panax notoginseng*	Transcriptic	[88]
RylUGTA3	QSB46663.1	*Rubia yunnanensis*	Transcriptic	[53]
RsUGT75L20, RsUGT7ST4	AWU66063.1, AWU66062.1	*Rubus suavissimus*	Transcriptic	[76]
UGT76E2	BAA97491.1	*Arabidopsis thaliana*	Transcriptic	[89]
TgUGT1	QCC24216.2	*Trollius chinensis*	Transcriptic	[49]
GtUGT1	QOM38949.1	*Glycyrhiza aralensis*	Transcriptic	[39]
ApUGT1	QDA11331.1	*Androgaphis paniculata*	Transcriptic	[90]
CgUGT3	QOH43895.1	*Crocus*	Transcriptic	[91]
ShUGT1	QBR5224.1	*Scutellaria baicaleensis*	Transcriptic	[92]
PgUGT95S2	ABO25139.1	*Panax gramineum*	Transcriptic	[93]
DeuUGT1	AWD73388.1	*Ornhagiaum caudatum*	Transcriptic	[94]
Pq3-O-UGT1	ALE15279.1	*Panax quinquefolius*	Transcriptic	[95]
Pq3-O-UGT2	ALE15280.1	*Panax quinquefolius*	Transcriptic	[96]
UGT72Z3	AAP79321.1	*Arabidopsis thaliana*	Transcriptic	[97]
UGT73F7	AS75258.1	*Glycyrrhiza aralensis*	Transcriptic	[98]
EpUPFR7	M6264429.1	*Epimedium*	Transcriptic	[99]
UGT76E11	CAB2337.1	*Pseudowushananghei*	Transcriptic	[100]
PgUGT71A27	AAOA071A61.1	*Panax ginseng*	Transcriptic	[101]
UGT75B2	AAP7932.1	*Arabidopsis thaliana*	Transcriptic	[102]
ChCGT, CcCGT, FcCGT	BBA18064.1, BBA18063.1, BBA18062.1	*Cerus hanuyi*	Genomic & Transcriptic	[103]
CuUGT1	MWG29113.1	*Cistanhe tubulosa* Genomic and transcriptic	[104]	
GmSGT2	BAA99548.1	*Glycine max*	Genomic & Transcriptic	[105]
UGT71K3	XP_004294260.1	*Fragaria ananassa*	Genomics & Transcriptic	[106]
Pq-PPT-6/2-O-UGT, Pq-PPT-6-O-UGT	QEV87497.1, QEV87498.1	*Panax quinqufoelius*	Transcriptic	[97]
PgUGTs, PgUGTb	QLF89887.1, QLF89882.1	*Potia striata*	Genomic and Transcriptic	[76]
SgT30, SgT34	AMK52071.1, AMK52072.1	*Scutellaia baicaleensis*	Transcriptic	[108]
SgTS6	AMK52073.1	*Scutellaia baicaleensis*	Transcriptic	[108]
UGT90F1, UGT73B26, UDPG1	MF417497.1, MF417498.1, HQ259620.1	*Sinatia grisservii*	Genomic and Transcriptic	[109]
ZmUGTb	QLF89887.3	*Zea mays*	Genomic and Transcriptic	[76]
UGT99D1	AQQ26921.1	*Avena strigosa*	Transcriptic & Proteomic	[65]
UGT74H5, UGT74H6	ACD03250.1, ACD03261.1	*Avena strigosa*	Transcriptic & Proteomic	[110]
UGT73AD1	ALD84259.1	*Centella asiatica*	Transcriptic and Proteomic	[35]
GmSSAT1	XP_00352274.1	*Glycine max*	Transcriptic & Proteomic	[111]

extracted from the Golgi-enriched fractions of wheat endosperm. This analysis revealed 1135 proteins in the wheat endosperm, which identified 64 GTs by searching mass data against four databases, including UniProt, Gene Index Databases Wheat release 12.0, an in-house glycosyltransferase databank, and a contaminant database (i.e., keratins and trypsin) [120].

Moreover, comprehensive gene mining has realized through the integration of genomic, transcriptomics, and proteomics data. As an example, in depth metabolic fingerprinting and LC-MS profiling of various parts of *Asparagus racemosus* led to the identification of a significant number of steroidal saponins exclusively present in roots. Transcriptome sequencing from three different tissues led to the identification of 321 different genes involved in saponin biosynthesis [6]. Similarly, two homologous GTs, itUGT1 and itUGT2 (86% similarity) have been identified based on peptide mass fingerprinting and previously described transcriptomics data of *Indigofera tinctoria* leaves [121]. A large number of GT genes have been obtained by using the above gene mining methods, however, there are still some challenges in narrowing down the scope of target GTs mining for specific PNPs glycosylation owing to the labor-intensive function characterization of individual enzymes [20]. Therefore, development of efficient and flexible enzyme function detection methods is crucial for obtaining comprehensive enzyme functional data. Some progress has been made recently, such as the development of a high-throughput screening method by using mass spectrometry [122]. Another publication has recently highlighted the potential for a fluorescence-based method to
universally monitor the activity of GTs by detecting the nucleotides generated in a biochemical reaction [123].

In addition, the development of artificial intelligence provides a unique avenue for the identification of target enzymes through rapidly expanding sequence databases. Recent advances in deep learning models for feature extraction and pattern recognition for sequence classification and functional prediction of enzymes in large datasets have also facilitated the discovery of novel GTs [124,125]. Yang et al. developed a chemical-bioinformatic model for functional prediction of uncharacterized GT family GTs based on sequence data of 54 GTs of A. thaliana and structural information of 91 candidate substrates. The model successfully identified novel substrates for GTs and enabled functional annotation of GTs from other sources including alfalfa, oats, and bacteria. Using enzyme sequences that did not rely on experimental data, this analysis provided meaningful biological insights that guided subsequent directed evolution and mechanistic studies of GT enzymes [126].

4. Engineering of GTs for biosynthesis of glycosylated PNPs

Wild-type GTs often lack properties desirable for the synthesis of glycosylated PNPs, such as high activity, high stereo- and regioselectivity, and minimal undesirable activities and promiscuity towards valuable unnatural substrate [12]. However, structure-based rational design and directed evolution can efficiently improve the properties of GTs for industrial applications.

As of October 20, 2021, a total of 26 GT family GTs involved in PNPs glycosylation with solved crystal structures (among nearly 30,000 total GT sequences) are available in the CAZy database (Table 2). Increasing the availability of GT structures, especially in the presence of both donor and acceptor analogues, is essential for the continued success of guided rational engineering of GT mutants with improved or altered functions [13,14]. As an alternative strategy for GT engineering, directed evolution may offer the potential for altering GT specificity and/or fine-tuning the activity of rational GT chimeras [12,127,128]. Here, we summarize several recently reported protein engineering strategies to increase the catalytic activity, broaden the substrate spectrum, and alter the regioselectivity of GTs.

Wild-type GTs often show low catalytic activity when expressed in heterogeneously engineered hosts, which in many cases can restrict the industrial-scale production of glycosylated PNPs. Recently, to address the inefficiency of the key ginseng GT, our group selected fifteen mutants/hour in vitro (Table 2) [143]. Similarly, Liu et al. engineered the GT Yjic from Bacillus subtilis for Rh2 synthesis. Using a semi-rational design that included structure-guided alanine scanning and saturation mutations, mutant M315F was found to efficiently synthesize Rh2 (~99%) and block the further glycosylation of C12-0H [149].

An in vivo directed evolution strategy in which mutations were directly introduced into the chasis was also recently developed in an effort to enhance catalytic activity. The mutants were screened based on in vivo yield of target products, resulting in mutated bioparts with improved enzymatic characteristics and performance in compatibility with chassis. Using this method, the poor performance of UGTpg45 in catalyzing the conversion of its unnatural substrate, PPD to ginsenoside Rh2, was improved. As a result, the UGT mutant UGTpg45-HV was achieved which carried two missense mutations (Q222H and A322V) that conferred a 70% increase in ginsenoside Rh2 yield [148]. Recently, our group developed an ultrahigh-throughput dual-channel microfluidic droplet screening system and a fluorescence-activated cell sorting system that both enabled the high-throughput screening (>10^7 mutants/hour) of mutants, which can contribute to the effective engineering of high activity GTs [150,151].

Recently, the promiscuous substrate specificity of GTs has inspired studies exploring how to effectively design biocatalysts for efficient and directed biosynthesis of bioactive glycosides. Structure-guided mutagenesis was conducted to alter the catalytic specificity of C-0-glycosylation by TcCGT1. As a C-glycosyltransferase (CGT) from the medicinal plant Trollius Chinensis, TcCGT1 can catalyze the 8-C-glycosylation of 36 different flavonoids and the O-glycosylation of diverse phenolics. The spurious binding pocket characterized using its crystal structure in complex with uridine diphosphate explains its substrate promiscuity, with the substrate binding pose determining its C- or O-glycosylation activity. Site-directed mutagenesis at two residues (I94E and G284K) enabled the conversion from C- to O-glycosylation [49]. Other studies have also successfully switched sugar donor preference and acceptor substrates using either single- or multiple-point mutations not exclusively located within the binding site (Table 2) [48,76,132].

Based on the successful GT engineering cases, the specificity for the donor substrate, especially the nucleotide residue, is largely determined by the highly conserved PSGG motif in the C-terminus. Besides, mutations in the residues involved in substrate recognition may change the preference of glycosylation.

Regioselectivity is also a typical problem that must be considered in the synthesis of structurally diverse glycosides [152]. Recent studies of plant GTs have shown that point mutations can alter regioselectivity due to flexibility in the GT substrate binding pocket [153]. Fan et al. demonstrated the successful switching of regioselectivity by UGTL1 from Bacillus licheniformis to yield polydatin (resveratrol 3-O-β-glucoside) instead of resveratrol 4′-O-β-glucoside polydatin, a compound used to relieve the toxic side effects of cisplatin and treat acute severe hemorrhagic shock. To this end, a 3D model of UGTL1 was constructed, and residue Ile62 was found to significantly influence its regioselectivity. Mutation I62G ultimately led to the switch in regioselectivity from 4′-OH to 3-OH of resveratrol, with a roughly sevenfold increase in the formation of the preferred polydatin over that of 4′-O-glucoside compared to wild type [154]. Recently, Sun and co-workers tuned a newly identified GT from Striatia grossenovii (UGT74AC2) to serve as the catalyst of targeted regioselective glycosylation of the polyhydroxy substrate silybin and derivatives. Three single-site mutants (P12Y, L200W and Y145W) showed 94%, >99%, and >99% selectivity on the 3-OH, 7-OH and 3,7-O-diglycoside of the substrates, respectively, compared with that of wild type, which produced a 22%-39% product mixture [132].

5. GT applications in glycosylated PNP biosynthesis

Emerging synthetic biology strategies are rapidly expanding the application of GTs in the synthesis of glycosylated PNPs, or their desirable precursors, in microbial fermentation systems [155–158]. Here, we discuss some breakthrough of GT-based biosynthesis of glycosylated PNPs at industrial scale in model hosts like Escherichia coli and S. cerevisiae (Table 3). These representative products include flavonoid glycosides (fisetin 3-O-glycosides, astragalin, scutellaren 7-O-glucoside), terpenoid glycosides (rebaudioside A, ginsenosides), and polyketide glycosides (salidroside, polydatin).

Fisetin glycoside is a medicinally important flavonoid glycoside produced by various plants that has been reported to exhibit diverse medicinal effects such as prevention of cardiovascular diseases, anti-oxidant activity, anti-diabetic activity, and anticancer activity [177–179]. The regiospecific GT (UGT78K1) from Glycine max or ArGt-3 from A. thaliana were introduced into E. coli BL21 (DE3), along with the respective UDP-glucose and TDP-rhamnose biosynthetic genes from different bacterial sources, in order to achieve the bioconversion of fisetin. Approximately 1.18 g of fisetin 3-O-glucoside and 1.03 g of fisetin 3-O-rhamnoside were produced in a 3L bioreactor [161].

Similar to this accomplishment, the GT (AtUGT78D2) from A. thaliana and a highly efficient UDP-glucose synthesis pathway were
Table 2
The structure-based rational design and directed evolution of GTs that involved in the biosynthesis of glycosylated plant natural products.

Protein name	Organism	Genbank	PDB code	Key residues	Engineering	Reference
YjiC	Bacillus subtilis	NP_389104.1	17BOV	Ser277 is critical for Nucleoside Diphosphate (NDP) recognition		[129]
				Glu317, Gln318, Ser128 and Ser129 are crucial for glycosyl moiety recognition		
				V108A increase 5-fold for UDP glycosylation activity and improve 35% for pterostilbene glycosylation under the existence UDPG.		
				L320A improve 2-fold for K_{cat}/K_m while add 65% activity for ADPG.		
UGT72B1	Arabidopsis thaliana	CAB80916.1	2VCE	His19 is positioned to act as a Brønsted base		[130]
				Glu389 and Gln388 interact with the glucose moiety of donors		
				Glu83, Ile86, Leu118, Phe119, Phe148, Leu183, and Leu197 are predominant in the acceptor binding		
UGT74F2	Arabidopsis thaliana	AAB64024.1	5U6M	His18 shows a central role in catalysis		[131]
				Tyr180 is important for ligand recognition or binding		
				Met274 could be crucial for orientation of the salicylic acid		
				Asp356, His357, Pro147 and Ile148 are key residues for sugar donor recognition and specificity for UDP-β-L-rhamnose.		
UGT89C1	Arabidopsis thaliana	AAF80123.1	6IJ7	His21 is a key residue as the catalytic base and the only catalytic residue		[132]
				H357Q exhibited activity with both UDP-β-L-rhamnose and UDP-glucose		

(continued on next page)
Protein name	Organism	Genbank code	PDB code	Representative reaction	Key residues involved in catalysis.	Key residues	Engineering	Reference
UGT78K6	Clitoria ternatea	BAF49297.1	3WC4	Delphinidin → Delphinidin 3-O-glucoside	● Pro78, Asp181 and Asp367 are involved in the acceptor binding. ● Asn137 could participate in the recognition of the glucose moiety. ● His17 is the key catalytic residue.	—	—	[133, 134]
UGT708C1	Fagopyrum esculentum	BAP90360.1	6LLG	Phloretin → 3'-C-glucosyphloretin	● Asp382, Gln383, Thr151 and Thr150 play important role in the recognition of sugar moiety. ● Phe130, Tyr102 and Phe198 bound and stabilize the acceptor. ● Arg280 and Asp96 play important roles in the catalytic activity.	—	—	[135]
GgCGT	Glycyrrhiza glabra	QGL05036.1	6L5P	Phloretin → 3',5'-di-C-glucosyphloretin	● R285, T145, D390 and Q391 determine the sugar donor preference. ● The flopropione unit is the minimum required unit for the di-C-glycosylation due to the interactions of its 2'-/6'-OH with H27. ● The spacious substrate-binding tunnel near G389 is critical for the di-C-glycosylation activity and the broad access to the active site. ● G389K mutation could switch di- to mono-C-glycosylation	—	—	[48]
Protein name	Organism	Genbank code	PDB code	Representative schematic reaction	Key residues	Engineering	Reference	
--------------	-------------------	--------------	----------	-----------------------------------	---	-------------	-----------	
UGT73P12 Glycyrrhiza uralensis	BBN60799.1 7C2X	● Arg32 is the essential residue to provide high specificity for UDP-glucuronic acid.						
LpCGTa Landoltia punctata	QLF98869.1 6LG1	● His24 is critical to initiate the catalytic reaction through deprotonation of the substrate.						
LpCGTb Landoltia punctata	QLF98870.1 6LFN	● His24 is critical to initiate the catalytic reaction through deprotonation of the substrate.						
SbCGTa Scutellaria baicalensis	QLF98861.1 6LG0	● Arg32 is the essential residue to provide high specificity for UDP-glucuronic acid.						

(continued on next page)
Protein name	Organism	Genbank code	PDB code	Representative schematic reaction	Key residues	Engineering	Reference	
SbCGTb	Scutellaria baicalensis	QLF98862.1	6LFZ	![SbCGTb schematic](image)	● His23 is critical to initiate the catalytic reaction through deprotonation of the substrate. ● R94 M/I143 M/V144T/T145S/H194D/G275T/P374Q mutant had switched the function of SbCGTb to SbCGTa		[76]	
UGT708A6	Zea mays	AC81582.1	6LF6	![UGT708A6 schematic](image)				[76]
UGT71G1	Medicago truncatula	AAW5692.1	2ACV	![UGT71G1 schematic](image)	● His22 is the catalytic base. ● Asp121 is a key residue that may assist deprotonation of the acceptor. ● Glu381 is the key residue in recognition of the sugar donor.			[2]

Table 2 (continued)

(continued on next page)
Protein name	Organism	Genbank code	PDB code	Representative schematic reaction	Key residues	Engineering	Reference
UGT85H2	Medicago truncatula	AB827250.1	2PQ6	![Reaction Diagram](attachment:reaction1.png)	- HIS21 and ASP125 are essential for catalytic activity.	-	[137]
UGT78G1	Medicago truncatula	ABI94025.1	3HBF	![Reaction Diagram](attachment:reaction2.png)	- GLU192 is the key residue for the reverse reaction. - HIS26 act as the catalytic residue. - ASP124 also plays an essential role in catalysis.	-	[138]
Os79	Oryza sativa	BAF14158.1	5TMB	![Reaction Diagram](attachment:reaction3.png)	- HIS27 activate the trichothecene O3 hydroxyl for nucleophilic attack at C1' of the UDP-glucose donor. - THR291 plays a critical role in catalysis as a catalytic acid or to position the UDP moiety during the nucleophilic attack.	-	[139]
PtUGT1	Persicaria tinctoria	BB806426.1	5NLM	![Reaction Diagram](attachment:reaction4.png)	- E88 could play a major role in indoxyl specificity and turnover. - H26 is expected to be the Brønsted base. - D122 is believed to balance the charge on the	-	[140]

(continued on next page)
Table 2 (continued)

Protein name	Organism	Genbank code	PDB code	Representative schematic reaction	Key residues	Engineering	Reference
PaGT2	Phytolacca americana	BAG71125.1	6JEL	![Piceatannol](image)	catalytic histidine.	C142A and C142F [42]	
					● His18 and His81 are recognized as the catalytic residues.		
					● C142A and C142F mutants formed resveratrol 3-O-β-glucoside and resveratrol 4′-O-β-glucoside, respectively, with high regioselectivity.		
PaGT3	Phytolacca americana	BAG71127.1	6LZX	![Resveratrol](image)	His20 is the active-site residue.	–	[141]
					● Trp417 and Arg419 are actively participate in the formation of the acceptor-binding pocket.		
UGT51	Saccharomyces cerevisiae	AAB67475.1	5GL5	![Cholesterol](image)	Asp752 serve as a catalytic base.	A mutant M7,1 (S81A/L82A/V84A/K92A/E96K/S129A/N172D) presented an ~1800-fold activity improvement toward an unnatural substrate propanaxadiol.	[142, 143]
					● Met851 is important for UGT51 activity.		
					● Gln1094, Asp1093 and Ser1072 make several critical interactions with the glucose moiety of donor.		
					● Mutant M4 (T79Y/R28H/L48 M/L109I) showed ~200-fold higher activity than WT.		
UGT74AC1	Siraitia grosvenorii	AEM42999.1	6L8W	![Mogrol](image)	His18 is the general base abstracts a proton from the 3-hydroxyl group of mogrol.	Mutant M5 (T79Y/R28H/L48 M/L109I/S15A) showed ~3.8-fold higher than M4.	[144]
					● Asp11 stabilizes the catalytic conformation and balance the charge.		

(continued on next page)
Table 2 (continued)

Protein name	Organism	Genbank code	PDB code	Representative schematic reaction	Key residues	Engineering	Reference
UGT74AC2	Siraitia grosvenorii	AXK92493.1	7BV3	![Silybin A reaction diagram](image)	● The uracil ring forms hydrogen bonds and parallel π-stacking interactions with A353 and W352, respectively, and the ribose ring interacts with the enzyme through hydrogen bonds with E378 and Q355, while the α-phosphate forms hydrogen bonds with H370, N374 and S375	Mutant G11Y is found that shows 75% selectivity and >99% conversion towards silybin A-3,7-O-diglucoside. Three variants show enhanced regioselectivity toward silybin A-7-O-glucoside, P12Y (81% selectivity and 68% conversion), L200W (92% selectivity and 61% conversion) and Y145W (89% selectivity and 75% conversion)	[145]
UGT76G1	Stevia rebaudiana	AAR06912.1	6INF	![4-nitrophenyl glucopyranoside reaction diagram](image)	● His25 is the general base, which deprotonates the 3-hydroxyl of the accepting glucose A to activate it as a nucleophile. ● Asp124 plays an important catalytic role in relaying protons off and on His25.	–	[146]
TcCGT1	Trollius chinensis	QCZ42162.1	6JTD	![4-nitrophenyl β-D-glucopyranoside reaction diagram](image)	● H24 acts to stabilize both the deprotonated substrate and the product sugar, though it is not	I94E and G284K switch C- to O-glycosylation.	[49]

(continued on next page)
Table 2 (continued)

Protein name	Organism	Genbank code	PDB code	Representative schematic reaction	Key residues	Engineering	Reference
VvGT1	Vitis vinifera	AAB81683.1	2C1X	![Reaction 1](image1)	● Asp374, Gln375 and Thr141 are key players in sugar recognition.		[147]
UGTPg45	Panax ginseng	AKAA45586.1	–	![Reaction 2](image2)	● Arp374, Gln375 and Thr141 are key players in sugar recognition.	● A mutant UGTPg45-HV with two missense mutations (Q222H and A322V) gave 70% increase of ginsenoside Rh2 yield	[148]
of the PGK1 promoter. At the same time, the *Nocardia farcinica* phosphoglucomutase gene, nfa44530, which participates in UDP-glucose synthesis, and the *E. coli* K12 glucose-1-phosphate-1 uridylytransferase gene, galU, were also co-expressed in the recombinant *S. cerevisiae*. Following by optimizing the availability of UDP-glucose, rebaudioside A production reached 1.16 g/L [164].

As a group of glycosylated triterpenes found in *Panax* species, ginsenosides are synthesized from 2,3-oxidosqualene through the universal precursors, dimethylallyl diphosphate (DAMP) and isopentenyl diphosphate (IPP) [182]. An approach for ginsenoside production was recently developed for *S. cerevisiae*. Following the chromosomal integration of a PPD biosynthetic pathway in yeast, UGTPγ45 and UGTPγ29 from *P. ginseng* were introduced into the recombinant cells, enabling production of the Rh2 and Rg3 ginsenosides. However, Rh2 production was relatively low (16.95 mg/L in shaken flasks) for commercialization due to the poor performance of the GT (UGTPγ45) [148]. Based on these findings, our group built an efficient ginsenoside Rh2 biosynthetic cell factory by repurposing an inherently promiscuous GT (UGT51 mutant) from *S. cerevisiae* with an 1800-fold increase in catalytic efficiency over wild type. This strain harboring the engineered GT could produce 0.3 g/L of ginsenoside Rh2 in a 5 L fed-batch fermentation system [143]. Notably, Zhou’s group successfully constructed yeast strains that could produce ginsenoside CK, ginsenoside Rg1, notoginsenoside R1, and notoginsenoside R2 by introducing a group of GTs including UGTPγ1, PgUGT71A53, PgUGT94Q13, and PgUGT71A54. *De novo* production of these ginsenosides reached 5.74, 1.95, 1.62, and 1.25 g/L, respectively [170,171].

As one of the major polyketide glycosides in *Rhodiola*, salidroside (the 8-O-β-glucoside of tyrosol) has been purported to confer adaptogenic and ergogenic effects [183]. Xue et al. reported salidroside production through the expression of *Rhodiola* UGT72B14 in *E. coli*. Codon optimization resulted in significantly enhanced salidroside accumulation, reaching 6.7 mg/L, a 3.2-fold increase over that of wild-type GT [170].

Polypadin is a well-known pharmaceutical polyketide glycoside that provides anticancer, antinging, and anti-inflammatory effects [184–186]. Recently, Liu et al. explored the development of a microbial chassis for polypadin production that could potentially replace plant extraction in future systems. This work also identified a key enzyme for polypadin biosynthesis, resveratrol GT, Pcr3GAT. Polypadin production thus reached 0.54 g/L through the incorporation of a resveratrol biosynthesis module, UDP-glucose supply module, and GT expression module and subsequent optimization of fermentation conditions [176].

6. Conclusion and future perspectives

Glycosylation is one of the most important physiological and biochemical reactions in nature, given its crucial roles in a multitude of essential processes. This intrinsic importance has attracted longstanding and wide research attention into the characteristics of GTs [173]. Other than *E. coli*, *S. cerevisiae* has also been used for flavonoid glycosylation biosynthesis. Successful deletion of glucosidases in *S. cerevisiae* in conjunction with overexpression of the flavonoid GT SbGT34 from *Scutellaria baicalensis* enabled production of the medicinal compound scutellarein 7-O-glucoside. The feasibility of scaling in vivo glycosylation was demonstrated by large-scale production of 1.20 g/L scutellarein 7-O-glucoside by optimization of the appropriate fermentation conditions [108].

As the sweetest terpenoid glycoside from *Stevia rebaudiana*, rebaudioside A is commercially significant as a natural sweetener used in the food and beverage industry [180,181]. To produce rebaudioside A in yeast, UGT76G1 from *S. rebaudiana* was overexpressed under the control

Table 3 The recent glycosylated plant natural products synthesis by microbial sources.

Compound	Microbial sources	GTs	Titer	Reference
Cyanidin 3-O-glucoside	*E. coli*	3 GT	0.35 g/L	[159]
Luteolin-7-O-glucoroside, Quercetin-3-O-glucuronide, Quercetin 3-O-galactoside	*E. coli*	AmUGT10, VvUGT, PhUGT	0.30, 0.69, 0.28 g/L	[160]
Fisetin 3-O-glucoside, Fisetin 7-O-rhamnoside	*E. coli*	UG778K1, AtlGt-3	0.39, 0.34 g/L	[161]
Quercetin 3-O-galactoside, Quercetin 3-O-rhamnoside	*E. coli*	RhaGT	0.94, 1.12 g/L	[162]
Scutellarenol 7-O-glucoside	*S. cerevisiae*	SbGT34	1.20 g/L	[108]
Kaempferol 3-O-glucoside	*E. coli*	AtUG78D2	3.60 g/L	[163]
Rebaudioside A	*S. cerevisiae*	UGT76G1	1.16 g/L	[164]
Tyrosol glucoside	*E. coli*	UGT72B14	6.7 mg/L	[165]
Ginsenoside Rh1, Ginsenoside F1	*S. cerevisiae*	UGT7P1, UGT7P100	0.10, 0.04 g/L	[166]
Ginsenoside Rh2, Ginsenoside Rg3	*S. cerevisiae*	UGT7P29, UGT7P45	0.02, 0.05 g/L	[30]
Ginsenoside Rh2	*S. cerevisiae*	UGT51	0.30 g/L	[143]
3j,12j-Di-O-Gluc-PPD, PPT, DM	*S. cerevisiae*	UGT109A1	9.05, 4.57, 11.5 mg/L	[167]
3j-O-Glc-DM	*S. cerevisiae*	UGT774E2	5.60 g/L	[168]
Ginsenoside Rh2, PPD, DM	*S. cerevisiae*	UGT7Pn50	2.25, 9.05, 8.09 g/L	[146]
Ginsenoside Compound K	*Yarrowia lipolytica*	UGT7P1	0.16 g/L	[169]
Ginsenoside Compound K	*S. cerevisiae*	UGT7P1	5.74 g/L	[170]
Ginsenoside Rg1, Notoginsenoside	*S. cerevisiae*	PγUGT71A53, PγUGT74Q13, PγUGT71A54	1.95, 1.62, 1.25 g/L	[171]
Crocin	*E. coli*	YjrC, YdhE, YojK	4.42 mg/L	[172]
Kaempferol, astragalin	*E. coli*	AtUG778D2	1.18, 1.74 g/L	[173]
Geranyl glucoside	*E. coli*	VvGT14a	0.93 g/L	[174]
Glycyrrhirzin	*S. cerevisiae*	UGT1A1	5.98, 2.31 mg/L	[175]
Glycyrirhetic acid	(3-O-mono-β-D-glucuronide	Pcr3GAT	0.55 g/L	[176]
Polypadin	*S. cerevisiae*			
The metabolic engineering needed to produce a particular PNP glycoside relies on the biosynthetic routes of PNP-precursors, however these details are frequently unavailable or incomplete. In this case, candidate pathway design, enzyme selection, and pathway testing all bring different challenges [8]. More efforts should be made to reveal the complexity of natural PNP pathways.

Another obstacle present in GT application in the synthesis of PNP glycosides is that when introducing GTs into a heterologous host, they may function sub-optimally or not at all for reasons that include low expression or activity, improper folding, and mislocalization. Therefore, modifying the function of GTs need for glycosylated PNP synthesis, and tuning the biosynthetic systems to improve the yields of these natural products, is an increasing research priority, given the urgent need for affordable, effective drugs that are inefficiently produced in nature.

Since traditional GT activity assays are not suitable for rapid detection, a central goal of future research on GTs is to develop universal high-throughput detection methods, such as qualitative mass spectrometry-based assays or fluorescence-based assays for rapid screening of target GTs. In addition, further structural elucidation of GTs will help to increase our understanding of the catalytic mechanism of these enzymes. The crystal structures validated by experimental methods, or predicted by high accurate artificial intelligence methods, e.g., AlphaFold2 [188] and RoseTTAFold [189], will accelerate the elucidation of the structure-function relationship. In particular, this involves identifying which hot domains or motifs of the protein affects its structure and the associated enzymatic activity, which will further guide the rational design of GTs.

Moving forward, synthetic biology-driven metabolic engineering of different desirable GT characteristics combine with relevant components of synthesis pathways will reinvoke current efforts to increase the diversity of PNP glycosides used in industrial production for medicine, functional foods, and cosmetics.

CRediT authorship contribution statement

Bo He: Conceptualization, Writing – original draft, Data curation, Validation. Xue Bai: Writing – original draft, Data curation. Yumeng Tan: Investigation, Data curation. Wentao Xie: Investigation, Data curation. Yan Peng: Supervision. Guang-Yu Yang: Funding acquisition, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no conflict of interests.

Acknowledgement

This study was financially supported by the National Key R&D Program of China (2020YFA0907900, 2018YFE0200501), and the National Natural Science Foundation of China (Grant number 32030063).

References

[1] Atanazov AG, et al. Discovery and repurposing of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 2015;33:1582-614.
[2] Shao H, et al. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 2005;17:3141-54.
[3] Liang DM, et al. Glycosyltransferases: mechanisms and applications in natural product development. Chem Rev 2015;14:8350-74.
[4] Zhou K, et al. Genome-wide identification of glycosyltransferases converting phloretin to phlorizin in Malus species. Plant Sci 2017;265:131-45.
[5] Shen Cj, et al. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci Rep 2017;7:187.
[6] Srivastava PL, Shukla A, Kalunke RM. Comprehensive metabolic and transcriptomic profiling of various tissues provide insights for saponin biosynthesis in the medicinally important Asparagus racemosus. Sci Rep 2018;8:9098.
[7] Lombard V, et al. The carbohydrate-active enzymes database (CAzY) in 2013. Nucleic Acids Res 2014;42:D940-5.
[8] Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun 2019;10:2142.
[9] Wang CL, et al. Microbial platform for terpenoid production: Escherschia coli and yeast. Front Microbiol 2018;9:2460.
[10] Muhammad A, et al. Production of plant natural products through engineered Farnswia lipolipica. Biotechnol Adv 2020;43:107555.
[11] Wang LX, Huang W. Enzyme-assisted acetylation for glyconjugate synthesis. Curr Opin Chem Biol 2009;13:592-600.
[12] McArthur JB, Chen X. Glycosyltransferase engineering for carbohydrate based biochemistry. Biochem Soc Trans 2016;44:129-42.
[13] Lairosi L, et al. Glycosyltransferase structures, functions, and mechanisms. Annu Rev Biochem 2008;77:521-55.
[14] Breton C, et al. Recent structures, evolution and mechanisms of glycosyltransferases. Front Plant Sci 2012;3:299.
[15] Nemhauser JL, Torri KU. Plant synthetic biology for molecular engineering of signaling and development. Native Plants 2016;2:16010.
[16] Meng FK, Ellis T. The second decade of synthetic biology: 2010-2020. Nat Commun 2020;11:5174.
[17] Lee JW, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 2012;8:536-46.
[18] Liu H, et al. Enhanced β-amyrin synthesis in Sarcochromus cervicornis by coupling an optimal acetyl-CoA supply pathway. J Agric Food Chem 2019;67:3723-32.
[19] Ajikumar PK, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010;330:70-4.
[20] Kurze E, et al. Structure-function relationship of terpenoid glycosyltransferases from plants. Nat Prod Rep 2021. Advance article.
[21] Zhang P, et al. Glycosyltransferase GT1 family: phylogenetic distribution, substrates coverage, and representative structural features. Comput Struct Biotechnol J 2020;18:1383-90.
[22] Kramer CM, et al. Chemical regioselectivity studies of two flavonoid glycosyltransferases from Allium cepa. Phytochemistry 2003;64:1069-76.
[23] Oto E, et al. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci U S A 2006;103:11075-80.
[24] Lim CE, Ahn JH, Lim J. Molecular genetic analysis of randomly located glycosyltransferase genes, UGT73B1, UGT73B2, and UGT73B3, in Arabidopsis thaliana. J Plant Physiol 2006;163:907-14.
[25] Zhang GZ, et al. Ecotypic expression of UGT73D1, a glycosyltransferase preferring inulin-3-butyric acid, modulates defense development and stress tolerance in seed germination of Arabidopsis thaliana. Plant Mol Biol 2016;90:77-93.
[26] Eudes A, et al. Metabolism of the folate precursor p-aminobenzoate in plants: glucose ester formation and vacuolar storage. J Biol Chem 2008;283:15451-9.
[27] Veenstra VR, et al. O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 2003;131:1374-80.
[28] Zhou YQ, et al. Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chem Commun 2018;54:7179-82.
[29] Smelikova M, et al. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front Plant Sci 2016;7:1264.
[30] Wang PP, et al. Production of bioactive ginsenosides Rg2 and Rg3 by metabolically engineered yeasts. Metab Eng 2015;25:97-105.
[31] Pandey RP, Parajuli P, Sohng JK. Metabolic engineering of glycosylated polyketide biosynthesis. Emerg Top Life Sci 2018;2:389-403.
[32] Lee H, Raskin L. Purification, cloning, and expression of a pathogen inducible UDP-glucosylsucrose synthase. J Biol Chem 1999;274:36637-42.
[33] Mittach J, et al. Identification of UGT84A13 as a candidate enzyme for the first committed step of gallocatechin biosynthesis in pedunculate oak (Quercus robur). Phytochemistry 2014;104:44-51.
[34] Ma LQ, et al. Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiola sachalinensis. Plant Cell Rep 2007;26:989-99.
[35] de Cota F, et al. Molecular cloning of an ester-forming triterpenoid: UDP-glucose 26-O-glucosyltransferase involved in saponin biosynthesis from the medicinal plant Centella asiatica. Plant Sci 2017;262:9-17.
[36] Modolo LV, et al. A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol 2007;64:499-518.
[37] Peng M, et al. Differentially evolved glycosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun 2017;8:1975.
[38] Arachine L, et al. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 2005;41:975-87.
[39] Chen K, et al. Diversity of Oglycosyltransferases contributes to the biosynthesis of flavonoid and triterpenoid glycosides in Glycyrrhiza uralensis. ACS Synth Biol 2019;8:1858-66.
[40] Xie KB, et al. Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus inicatus. Org Lett 2014;16:4874-77.
[41] Suzuki H, et al. Identification and characterization of an Ipomoea nil glucosyltransferase which metabolizes some phytohormones. Biochem Biophys Res Commun 2004;322:693-8.
[42] Nakajima D, et al. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front Plant Sci 2016;7:1264.
618

B. He et al.

[67] Huang J, et al. Genome-wide analysis of the family 1 glycosyltransferases in Glyceria glabra. J Am Chem Soc 2020;142:5506–12.

[66] Li YJ, et al. Genome-wide identification and phylogenetic analysis of Family-1 glucosyltransferases from Tropilochus chinensis. Angew Chem Int Ed Engl 2018;57:10589–96.

[65] Barvkar VT, et al. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Manihot esculenta Crantz. J Plant Physiol 2016;206:87–94.

[64] Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: the roles of UGT94B1 and UGT94B5 in flavonoid biosynthesis. Hortic Res 2018;5:129.

[63] Wang ZL, et al. Dissection of the general two-step di-o-acylglycerol biosynthesis. J Am Chem Soc 2020;142:3506–12.

[62] Han J, et al. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of D-galacturonic acid in model plants. Front Plant Sci 2021;12:637695.

[61] Xu XY, et al. The chromosome-level Stevia genome provides insights into steviol glycoside biosynthesis and auxin homeostasis. Plant J 2004;40:893–908.

[60] Jain M, et al. Recent developments in the exploitation of leguminous trees as a source of natural products. Phytochemistry 2019;160:111–11.

[59] Yi SY, et al. Discovery and characterization of four glycosyltransferases involved in anthraquinone biosynthesis in Paeonia lactiflora. J Agric Food Chem 2015;63:9024–30.

[58] Zhang M, et al. Functional characterization and structural basis of an efficient di-o-glucosyltransferase from Panax ginseng. Sci Rep 2018;8:15671.

[57] Mashima K, et al. Identification and characterization of apigenin 6-C-glucosyltransferase involved in biosynthesis of isosapogenol in wasabi (Eutrema japonicum). Plant Cell Physiol 2019;60:2733–43.

[56] He JB, et al. Identification and characterization of UDP-glucosyltransferase 73f17, a new glycosyltransferase from Glycyrrhiza uralensis. Phytochem Lett 2019;33:277–82.

[55] Haroosh S, et al. The glycosyltransferase UGT76E1 significantly contributes to 12-O-galactopyranosyl-jasmonic acid formation in wounded Arabidopsis thaliana leaves. J Biol Chem 2020;295:3799–809.

[54] Chen X, et al. Tandem UGT71B5s catalyze lignan glycosylation in Oxytropis hirsuta. J Agric Food Chem 2016;64:2545–50.

[53] Yoon Y, et al. Identification and characterization of three flavonoid glycosyltransferases from Anthriscus cerefolium. Phytochem Lett 2013;6:79–84.

[52] Ono NN, et al. Two UGT84 family glycosyltransferases catalyze a critical reaction in flavonoid metabolism. J Biol Chem 2017;292:13140–2.

[51] Fahimi H, et al. The chromosom-level Avena sativa genome provides insights into apocarotenoid biosynthesis. Sci Rep 2016;6:35274.

[50] Lin JS, et al. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of D-galacturonic acid in model plants. Front Plant Sci 2021;12:637695.

[49] Haroosh S, et al. The glycosyltransferase UGT76E1 significantly contributes to 12-O-galactopyranosyl-jasmonic acid formation in wounded Arabidopsis thaliana leaves. J Biol Chem 2020;295:3799–809.

[48] Zhang M, et al. Functional characterization and structural basis of an efficient di-o-glucosyltransferase from Glyceria glabra. J Am Chem Soc 2020;142:3506–12.

[47] Wang D, et al. Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform. Metab Eng 2020;61:131–40.

[46] Lalitha K, et al. Identification of a bifunctional maize (Zea mays) flavonol synthase gene involved in flavonol biosynthesis and auxin homeostasis. Plant J 2004;40:893–908.

[45] Louveaux T, et al. Analysis of two new arabinosyltransferases belonging to the Carbohydrate-Active Enzyme (CAZY) glycosyl transferase family 1 provides insights into disease resistance and sugar donor specificity. Plant Cell 2018;30:3038–57.

[44] Lalitha K, et al. Recent developments in p-c-glucosides: synthesis and applications. Carbohydr Res 2015;405:158–71.

[43] Thibodeaux CJ, Minton CR, Liu HW. Unusual sugar biosynthesis and natural product glycodiversification. Nature 2007;446:1008–16.

[42] Zhang TJ, et al. Purification and characterization of a novel phloretin-2-0-glucosyltransferase favoring phloretin biosynthesis. Sci Rep 2016;6:35274.

[41] Ying Q, et al. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus. J Exp Bot 2017;68:594–609.

[40] Zhang TJ, et al. Purification and characterization of a novel phloretin-2-0-glucosyltransferase favoring phloretin biosynthesis. Sci Rep 2016;6:35274.
[111] Louveau T, et al. Analysis of two new arabinoxylantransferases belonging to the carbohydrate-active enzyme (CAZy) glycosyl transferase family 1 provides insights into disease resistance and sugar donor specificity. Plant Cell 2018;30: 3038–57.
[112] Lowe R, et al. Transcriptomics technologies. PLoS Comput Biol 2017;13: e1005457.
[113] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[114] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[115] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[116] Chen JW, et al. RNA-seq for gene identification and transcript profiling of three species in the genus Paeonia. BMC Plant Biol 2015;15:138.
[117] Lowe R, et al. Transcriptomics technologies. PLoS Comput Biol 2017;13: e1005457.
[118] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[119] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[120] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[121] Li ZY, et al. Comparative transcriptome analysis of Chen JW, et al. RNA-seq for gene identification and transcript profiling of three species in the genus Paeonia. BMC Plant Biol 2015;15:138.
[122] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[123] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[124] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[125] Chen JW, et al. RNA-seq for gene identification and transcript profiling of three species in the genus Paeonia. BMC Plant Biol 2015;15:138.
[126] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[127] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[128] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[129] Lowe R, et al. Transcriptomics technologies. PLoS Comput Biol 2017;13: e1005457.
[130] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[131] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[132] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[133] Chen JW, et al. RNA-seq for gene identification and transcript profiling of three species in the genus Paeonia. BMC Plant Biol 2015;15:138.
[134] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[135] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[136] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[137] Chen JW, et al. RNA-seq for gene identification and transcript profiling of three species in the genus Paeonia. BMC Plant Biol 2015;15:138.
[138] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[139] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[140] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[141] Chen JW, et al. RNA-seq for gene identification and transcript profiling of three species in the genus Paeonia. BMC Plant Biol 2015;15:138.
[142] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[143] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[144] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.

[145] Chen JW, et al. RNA-seq for gene identification and transcript profiling of three species in the genus Paeonia. BMC Plant Biol 2015;15:138.
[146] Sarangi BK, Minami Y, Thul ST. RNA-seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorum. Genom Data 2015;1:212–3.
[147] Huang J, et al. Functional characterization of a novel glycosyltransferase (UGT73CD1) from Iris tectorum Maxim. for the substrate promiscuity. Mol Biotechnol 2021;65:1030–9.
[148] Jayakodi M, et al. Comparative transcriptome analysis of synthetic and systems biotechnology 7 (2022) 602–620.
Juergenliemk G, et al. In vitro studies indicate that miquelianin (quercetin 3-O-β-D-glucuronopyranoside) is able to reach the CNS from the small intestine. Planta Med 2003;69:1013–7.

Soundararajan R, et al. Quercetin 3-glucoside protects neuroblastoma (SH-SY5Y) cells in vitro against oxidative damage by inducing sterol regulatory element-binding protein-2-mediated cholesterol biosynthesis. J Biol Chem 2008;283:2231–45.

Carakostas MC, et al. Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem Toxicol 2008;46:S1–10.

Wu XL, et al. The non-cytotoxicity characterization of rebaudioside A as a food additive. Food Chem Toxicol 2014;66:334–40.

Christensen JF. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1–99.

Chiang HM, et al. Rhodiola plants: chemistry and biological activity. J Food Drug Anal 2015;23:359–69.

Wang CM, et al. Polydatin induces apoptosis and inhibits growth of acute monocytic leukemia cells. J Biochem Mol Toxicol 2016;30:200–5.

Wang HL, et al. Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo. Phytomedicine 2015;22:553–9.

Lanzilli G, et al. Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation 2012;35:240–8.

Zhang CZ, et al. Production of terpenoids by synthetic biology approaches. Front Bioeng Biotechnol 2020;8:347.

Tunyasuvunakool K, et al. Highly accurate protein structure prediction for the human proteome. Nature 2021;596:583–9.

Pennisi E. Protein structure prediction now easier, faster. Science 2021;373:262–3.