Observational Study

Association between private health insurance and medical use by linking subjective health and chronic diseases

Jeong Min Yang, BSa,\textcopyright, Su bin Lee, BSb,\textcopyright, Ye ji Kim, BSb,\textcopyright, Douk young Chon, PhDb, Jong Youn Moon, MD, PhDc,d, Jae Hyun Kim, PhDa,\textcopyright,\textasteriskcentered.

Abstract
This empirical study identifies the negative aspects of private health insurance (PHI) by analyzing the association between subjective health conditions, 2 weeks of outpatient care, chronic diseases, and hospitalizations for 1 year. We used frequency analysis, \(\chi^2 \) testing, an analysis of variance, and logistic and multiple logistic regression models to analyze the association between PHI and subjective health conditions, outpatient care, chronic disease status, and hospitalization. The PHI group had good subjective health but had more outpatient care for 2 weeks. There were few chronic diseases in the private insurance group, and there was no significant difference in hospitalizations for 1 year. Hospitalization may occur when essential medical care is required, regardless of health insurance type. This study confirmed that as the PHI lowers the burden of personal medical expenses, the PHI can lead to an increase in the medical resource expenditures on the outpatient medical service and higher public health costs. The government should work to redefine the role of private and national health insurance. Also, the effectiveness of PHI should be reevaluated so that it does not lead to indiscriminate use of medical services by minimizing the burden of private insurance.

Abbreviations: CI = confidence interval, KNHNES = Korea National Health and Nutrition Examination Survey, NHI = national health insurance, PHI = private health insurance, OECD = Organization for Economic Cooperation and Development, OPD= Outpatient Department.

Keywords: hospitalization, outpatient care, private health insurance, subjective health condition

1. Introduction
Korea has been building a system to improve the medical accessibility of all citizens since the introduction of the National Health Insurance (NHI) system in July 1989.[1] The demand for medical services has been increasing due to an aging population, increasing chronic illnesses, higher incomes, and medical technology advancements. However, the national health system has a high personal burden rate of 37.3\% and faces a 17.7\% higher burden rate than the Organization for Economic Cooperation and Development average of 19.6\%. The public experiences a nonwage burden of about 16.6\%, and the nonwage burden for local clinics increased from 11.5\% in 2008 to 22.8\% as of 2018. A drastic increase in total health spending is predictable due to the rapidly aging Korean population and associated epidemiological changes that require more chronic care. The NHI program considered the potential contribution of private health insurance (PHI) in financing the ongoing issues of public financing and limited benefit availability.[2–3] According to the “2019 Health Insurance System National Recognition Survey,” a survey of 2000 health insurance subscribers, 94.9\% (or 1898) of households had PHI. The majority of people are subscribing to PHI to ease the financial burden of medical expenses, and the size of the PHI market is expanding.[1]

The NHI has greatly expanded access to medical services and universal medical care, but there are problems with the scope of wages and the coverage.[4] Under such a system, PHI takes the form of supplementary schemes providing faster access, better quality services, and increased consumer choices, based on income and ability to pay.[5] In particular, countries with universal coverage perceive private insurance as a necessity.
as a complementary resource to assist public funding.[10–12] The expansion of private insurance may provide various benefits to the public insurer and the general population.[13] But others believe that PHI will contribute to a rapid increase in health expenditures, fragment the health system, and aggravate social inequity by increasing the gap in health care utilization among different socioeconomic groups. Some assert that the role of NHI should be further extended by raising contributions, extending benefit packages, and reducing out-of-pocket payment at the point of service.[14]

According to prior research, PHI subscriptions significantly increase the number of outpatient visits and hospitalizations.[15] The 2001 Korean Labor and Income Panel showed that the probability of using outpatient and inpatient care was high for PHI purchasers over the age of 15 years.[16,17] Insured people often increase the demand for health care services due to a reduction in cost sharing. If this effect is strong, PHI will lead to higher health care utilization rates and spending.[18]

France operates supplemental PHI similar to Korea’s and the NHI system.[19] From a policy perspective, the net increase in total health care spending associated with the expanded PHI financing casts doubt on deleting private insurance providing a more enhanced stake in health care financing.[20] In the United States, an empirical study on Medigap, a form of supplemental insurance for Medicare,[20–23] found that subscribed patients use more medical services than nonsubscribed patients and spend more on medical care.[22]

Reports indicate that Medigap increases Medicare’s medical spending.[23]

An analysis of Medigap data shows that the better a person’s subjective health, the lower their use of medical care.[22] Private insurance subscriptions can minimize medical use by psychologically making the subscriber feel healthier.

Chronic disease is a long-term, persistent disease, often with gradual onset, that has a complex, multifactorial causality. These conditions can result in significant impairments in quality of life and activities and premature mortality.[24] Therefore, chronic diseases require long-term treatment, which is a significant economic burden, unlike other diseases. People with chronic diseases are more likely to obtain PHI as a way to reduce medical expenses. Insurance generally increases the utilization of allied health services by people with chronic diseases.[24] However, a prior study suggests that the proportion of people with chronic disease with PHI is lower than that of people without PHI.[24]

Research suggests that PHI positively impacts outpatient expenditure.[27–30] No studies have identified an increase in medical service usage by linking PHI subscribers’ subjective health and chronic disease status to outpatient care and hospitalization rates.

The purpose of this study is to identify the negative aspects of PHI by analyzing the subjective health conditions of subscribers, the rate of outpatient care for 2 weeks, chronic diseases, and the rate of hospitalization for 1 year. This study revealed that the use of medical care by PHI subscribers is not always necessary but based on their desires. The role of public and private insurance must be redefined.

2. Methods

2.1. Research data and subjects

The purpose of this study is to empirically analyze the relationship between outpatient use of private insurance and subjective health conditions or chronic diseases. This is the second analysis using data from the 2016 and 2017 Korea National Health and Nutrition Examination Survey (KNHNES) that was organized and conducted by the Ministry of Health and Welfare. The KNHNES is a nationwide survey conducted every 3 years based on Article 16 of the National Health Promotion Act, which was enacted in 1995. In the first year, 8150 people from 3513 households participated, and 8127 people from 3580 households participated in the second year. The subjects in the study were extracted from the total census data of the population housing as the basic extraction frame by a 2-stage stratification collection method consisting of survey districts and households as primary and secondary extraction units.

There were 11,283 study participants, excluding nonresponders and those missing variables for PHI status, gender, age, marital status, alcohol history, smoking history, income (individual), occupation, health insurance type, unfulfilled necessary medical care, subjective health condition, outpatient for 2 weeks, hospitalization for 1 year, diagnosis of hypertension, abnormal lipemia, or diabetes. Data were integrated from the 2016 to 2017 Annual National Nutrition Health Survey.

2.2. Independent variables

2.2.1. PHI status. PHI was investigated by a self-survey by answering “Yes,” “No,” and “Don’t know” to the question: “Does OO0 have a PHI policy that subsidizes medical expenses such as cancer insurance, cardiovascular disease insurance, and accident insurance, sold by insurance companies?” In this study, those who answered “Don’t know” were excluded from the analysis.

2.3. Dependent variables

2.3.1. Subjective health condition. Subjective health condition was investigated by a self-survey with the choices “very good,” “good,” “normal,” “bad,” and “very bad” for the question “How do you usually feel about your health?” In this study, “very good” and “good” were grouped into “good,” and “bad” and “very bad” are grouped into “bad.” Answers were reclassified as “good,” “normal,” and “bad.”

2.3.2. Outpatient care for 2 weeks. Outpatient services for 2 weeks were investigated by a self-survey with “yes” and “no” choices to the question “Have you been hospitalized for the last two weeks or received treatment at a hospital (including dentistry), a health center, or an oriental clinic?”

2.3.3. Hospitalization for 1 year. Hospitalization for 1 year was surveyed with a self-survey of “yes” or “no” to the question “Have you been hospitalized for the last year?”

2.3.4. Chronic disease status. The number of chronic diseases was investigated by a self-survey of “yes” or “no” to the question of whether or not the subject had hypertension, abnormal lipemia, or diabetes, which were one of the 3 major chronic diseases with high medical use rate in Korea.[31] In this study, only “yes” responses were extracted from each question and reclassified as “none,” “1,” or “2 or 3.”

2.4. Control variables

2.4.1. Social demographic variable. Social demographic variables used in the study include gender, age, marital status, income (individual), and occupation. Gender was classified as “male” or “female,” and age was classified as “19 to 29,” “30 to 39,” “40 to 49,” “50 to 59,” “60 to 69,” and “≥70 years of age.” Marital status was classified as “married” or “unmarried,” and income was classified as “low,” “low-intermediate,” “high-intermediate,” and “high.” Finally, occupations were classified into 3 categories: “white collar,” “blue collar,” and “unemployed” (housewife, student, etc).

2.4.2. Health-related characteristics variables. Smoking history, alcohol history, health insurance type, and unfulfilled necessary medical care were the health characteristics used. Smoking history was classified as “≤5 packs (100 cigarettes),”
Table 1
General characteristics of subjects included for analysis.

	Total	Subjective health condition (good)	OPD utilization (yes)	Chronic disease	Hospitalization (yes)
	n %*	n %* Pvalue	n %* Pvalue	n Means	n %* Pvalue
				Standard deviation	
				Pvalue	
Private health insurance status					
Yes	8688 81.7	2613 31.1 P<.0001	2545 27.8	8688 1.328	2595 1.742
No	2595 18.3	508 21.2 34.7	1019 34.7	2595 1.742	42.310 344
Gender					
Male	4904 49.5	1535 32.7 P<.0001	1393 25.7	4904 1.409	2179 1.398
Female	6379 50.5	1586 32.6	2171 32.3	6379 1.389	36.025 486
Age					
19–29	1217 16.5	465 38.8	279 23.0	1217 1.029	2174 1.554
30–39	1879 18.6	606 31.7	462 24.4	1879 1.062	2174 1.554
40–49	2128 21.0	658 30.2	495 22.5	2128 1.230	2174 1.554
50–59	2174 20.4	567 26.6	684 30.9	2174 1.554	2174 1.554
60–69	1976 12.9	451 24.3	749 37.1	1976 1.879	2109 2.057
70	1909 10.6	374 21.9	895 46.4	1909 2.057	2109 2.057
Marital status					
Yes	9550 78.1	2517 27.5 P<.0001	2517 27.5	9550 1.492	2517 1.088
No	1733 21.9	604 35.7	402 22.8	1733 1.088	604 22.8
Alcohol history					
No	1314 9.3	282 25.3	519 37.1	1314 1.314	282 25.3
Yes	9969 90.7	2839 29.7	3045 28.8	9969 1.399	2839 29.7
Smoking history					
<5 packs	228 2.4	90 41.6	61 26.0	228 1.194	90 41.6
>5 packs	4223 40.7	1116 27.6	1272 27.8	4223 1.425	1116 27.6
Never smoked	6832 56.9	1915 30.0	2231 30.1	6832 1.383	1915 30.0
Income (individual)					
Low	2737 24.6	591 24.2	873 29.3	2737 1.430	591 24.2
Low-intermediate	2817 24.6	727 27.4	915 29.4	2817 1.384	727 27.4
High-intermediate	2827 25.1	823 30.3	838 27.2	2827 1.397	823 30.3
High	2902 25.7	980 35.1	938 30.4	2902 1.403	980 35.1
Occupation					
White collar	4190 41.4	1403 33.5	1083 25.3	4190 1.252	1403 33.5
Blue collar	2631 23.2	666 27.0	820 27.8	2631 1.484	666 27.0
Unemployed	4462 35.4	1052 25.9	1661 34.3	4462 1.527	1052 25.9
Health insurance type					
National health insurance	3299 28.8	871 29.2	1025 29.1	3299 1.470	871 29.2
(regional)					
National health insurance	7568 68.2	2202 30.0	2325 28.3	7568 1.357	2202 30.0
(work)					
Medical benefits	416 3.0	48 14.0	214 47.6	416 1.828	48 14.0
Unfulfilled necessary					
medical care					
Yes	1053 9.2	139 13.6	365 32.2	1053 1.436	139 13.6
No	9727 85.4	2795 30.2	3141 29.9	9727 1.415	2795 30.2
Never required medical	503 5.5	167 42.2	58 11.1	503 1.172	167 42.2
attention					
Subjective health condition					
Good	3121 29.3	763 22.8	3121 23.8	3121 1.238	763 22.8
Normal	5916 52.8	1772 27.8	5916 1.389	5916 1.389	1772 27.8
Bad	2246 17.9	1029 43.1	2246 1.717	2246 1.717	1029 43.1
Outpatient for 2 wk					
Yes	3564 29.1	763 23.0	3564 1.581	3564 1.581	763 23.0
No	7719 70.9	2358 31.9	7719 1.331	7719 1.331	2358 31.9
Chronic disease status					
(hypertension, diabetes, and dyslipidemia)					

(Continued)
As shown in Table 1, PHI subscribers were 1.298× (95% confidence interval [CI], 1.141–1.476; \(P < .0001 \)) more likely to report “good” subjective health conditions than those who do not have it. Also, PHI subscribers were 1.240× (95% CI, 1.056–1.457; \(P = .0089 \)) more likely to use outpatient department use in 2 weeks than those who did not. At this time, influencing factors like gender, age, marital status, alcohol history, smoking history, income (individual), occupation, health insurance type, unfulfilled necessary medical care, number of chronic diseases, and hospitalization for 1 year were calibrated.

3.3. The relationship between chronic diseases and hospitalizations in 1 year with PHI
As shown in Table 3, an analysis of the relationship between chronic diseases and hospitalization for 1 year shows that there are 0.054 fewer (95% CI, −0.087 to −0.021; \(P = .0019 \)) chronic diseases in people with PHI compared to those who do not have PHI. Those who subscribed to PHI had 1.198× (95% CI, 0.981–1.463; \(P = .0768 \)) more hospitalizations in 1 year than those who did not, but this was not statistically significant. Factors such as gender, age, marital status, alcohol history, smoking history, income (individual), occupation, health insurance type, unfulfilled necessary medical care, subjective health condition, and outpatient care for 2 weeks were calibrated.

4. Discussion
In this study, the association between private insurance subscriptions and medical use was analyzed using data from the KNHINES (2016–2017) organized and conducted by the Ministry of Health and Welfare. There were 11,283 respondents, excluding nonresponders and missing values by variable, used after adjusting for gender, age, marital status, drinking and smoking history, income (individual), occupation, health insurance type, and unfulfilled necessary medical care.

First, the PHI group had good subjective health but had more outpatient care for 2 weeks. In this study, the PHI group used more hospital outpatient services, which was in line with a prior study that found that indemnity and fixed benefit insurance increased outpatient service use, hospitalization,

Table 1

(Continued)

Variable	Total	Subjective health condition (good)	OPD utilization (yes)	Chronic disease	Hospitalization (yes)							
	N	%*	n	%*	P-value	n	Means	Standard deviation	P-value	n	%*	P-value
None	7378	71.3	2423	33.7	1894	24.3				791	10.6	
1	2241	17.0	468	21.3	914	38.5				313	13.8	
2 or 3	1664	11.7	230	14.4	756	44.3				264	16.1	
Hospitalization for												
1 y*												
Yes	1368	11.8	271	21.7	574	38.7				1368	1.517	43.225
No	9915	88.2	2850	30.3	2990	27.8				9915	1.388	39.482
Total	11,283	100.0	3121	29.3	3564	29.076	11,283	1.4	33.533	1368	11.804	

OPD = outpatient department.

*Weighted percentage.
outpatient medical expenses, and overall medical expenses.

While a US study that analyzed medical use based on Medcap subscriptions found that higher subjective health results in less medical use, this study found that higher subjective health results in higher medical use. According to the 2020 Ministry of Health and Welfare, in Korea, medical access is high due to the compulsory subscription to the NHI, and as a result, even with a high level of personal health, medical use is higher than in other countries for personal health satisfaction due to low copayment rates. In addition, in the case of the group that even subscribed to private insurance, it was found that medical use was higher because even “noninsurance items,” which were not included in the health insurance fee system, could be covered. According to a previous study in Korea, it was found that the PHI group received treatment for additional health satisfaction rather than being diagnosed to receive essential medical care compared to the non-PHI group.

Second, the number of chronic diseases was lower in the private insurance group, and there was no significant difference in hospitalization use for 1 year. This translates into the use of

Table 2	Association between private health insurance and subjective health condition.			
Subjective health condition (good)	OR	95% CI	P value	
Private health insurance status	Yes	1.298	1.141–1.476	<.0001
	No	1.000	1.000	
Gender	Male	1.702	1.518–1.909	<.0001
	Female	1.000	1.000	
Age	19–29	1.631	1.273–2.089	.0001
	30–39	1.150	0.943–1.401	.1671
	40–49	1.123	0.937–1.346	.2100
	50–59	1.098	0.922–1.307	.2943
	60–69	1.098	0.932–1.294	.2619
	70	1.000	1.000	
Marital status	Yes	1.275	1.083–1.500	.0036
	No	1.000	1.000	
Alcohol history	No	1.035	0.885–1.211	.6625
	Yes	1.000	1.000	
Smoking history	<5 packs of cigarettes	1.133	0.838–1.532	.4169
	>5 packs of cigarettes	0.631	0.557–0.714	<.0001
	Never smoked	1.000	1.000	
Income (individual)	Low	0.621	0.544–0.709	.0001
	Low-intermediate	0.723	0.638–0.820	<.0001
	High-intermediate	0.748	0.659–0.849	<.0001
	High	1.000	1.000	
Occupation	White collar	1.248	1.116–1.396	<.0001
	Blue collar	1.157	1.016–1.317	.0283
	Unemployed (housewife, student, etc)	1.000	1.000	
Health insurance type	National health insurance (regional)	1.893	1.453–2.466	<.0001
	National health insurance (work)	1.758	1.352–2.287	<.0001
	Medical benefits	1.000	1.000	
Unfulfilled necessary medical care	Yes	0.268	0.212–0.339	<.0001
	No	0.723	0.592–0.883	<.0001
Subjective health condition	Good	0.534	0.456–0.626	<.0001
	Normal	0.631	0.559–0.711	<.0001
	Bad	1.000	1.000	
Outpatient for 2 wk	Yes	0.682	0.616–0.755	<.0001
	No	1.000	1.000	
Chronic disease status (hypertension, diabetes, and dyslipidemia)	None	2.611	2.257–3.019	<.0001
	1	1.541	1.323–1.794	<.0001
	2 or 3	1.000	1.000	
Hospitalization for 1 yr	Yes	0.633	0.552–0.726	<.0001
	No	1.000	1.000	

CI = confidence interval, OPD = outpatient department, OR = odds ratio.

*Adjusted for socioeconomic factors and health status and risk factors.
hospital admissions being similar to those of chronic patients, even those who do not have serious chronic diseases. The low number of chronic diseases in private insurance subscribers is believed to be caused by the “underwriting” process. When attempting to get an indemnity medical insurance policy in Korea, policyholders are required to provide information on their health status to insurance companies under the obligation of notice.\(^{[37]}\) However, insurance companies have a strong incentive to reject patients with chronic disease who might require a lot of medical use during an “underwriting” process.\(^{[37]}\) There were few people with ≥2 chronic diseases who had PHI. This is in line with previous studies that indicate that chronic diseases have harmed PHI.\(^{[26,33,38,39]}\) In addition, hypertension, hyperlipidemia, and diabetes mellitus included as chronic diseases in this study are the 3 major diseases with the highest medical use rate in Korea. Because most of them seek health improvement through outpatient treatment, not through inpatient treatment, there was no significant difference in the hospitalization rate.\(^{[40]}\)

The absence of significant differences in hospitalization for 1 year indicates that hospitalization is used when essential medical use is required, regardless of whether the patient has PHI. The PHI did not affect hospitalization rates as it

Table 3

Chronic disease status	Hospitalization for 1 yr (yes)							
Estimate 95% CI	OR 95% CI	Estimate 95% CI	OR 95% CI					
Private health insurance status	Yes	−0.054	−0.087 to −0.021	.0019	1.198	0.981–1.463	.0768	
	No	Ref	1.000					
Gender	Male	0.077	0.048–0.106	<.0001	0.758	0.618–0.929	.0079	
	Female	Ref	1.000					
Age	19–29	−0.910	−0.969 to −0.846	<.0001	2.172	1.387–3.402	.0007	
	30–39	−0.872	−0.922 to −0.822	<.0001	1.618	1.188–2.205	.0024	
	40–49	−0.709	−0.757 to −0.661	<.0001	1.109	0.828–1.487	.4866	
	50–59	−0.411	−0.458 to −0.365	<.0001	1.390	1.070–1.806	.0137	
	60–69	−0.115	−0.162 to −0.068	<.0001	1.045	0.838–1.303	.6969	
	70	Ref	1.000					
Marital status	Yes	−0.006	−0.047 to 0.034	.7660	1.686	1.207–2.354	.0023	
	No	Ref	1.000					
Alcohol history	No	0.025	−0.014 to 0.065	.2042	1.242	1.010–1.528	.0402	
Smoking history	<5 packs of cigarettes	−0.036	−0.107 to 0.035	.3248	0.972	0.570–1.656	.9152	
	>5 packs of cigarettes	0.004	−0.025 to 0.033	.7974	1.196	0.972–1.472	.0905	
	Never smoked	Ref	1.000					
Income (individual)	Low	−0.009	−0.040 to 0.023	.5979	0.963	0.771–1.202	.7374	
	Low-intermediate	−0.011	−0.041 to 0.019	.4759	0.852	0.691–1.050	.1331	
	High-intermediate	−0.001	−0.031 to 0.029	.9535	0.959	0.790–1.165	.5725	
	High	Ref	1.000					
Occupation	White collar	−0.007	−0.035 to 0.020	.5910	0.639	0.525–0.762	<.0001	
	Blue collar	−0.015	−0.046 to 0.015	.3301	0.819	0.689–0.987	.0363	
	Unemployed (housewife, student, etc)	Ref	1.000					
Health insurance type	National health insurance (regional)	−0.133	−0.200 to −0.067	<.0001	0.895	0.629–1.271	.5332	
	National health insurance (work)	−0.158	−0.223 to −0.092	<.0001	0.842	0.590–1.203	.3436	
	Medical benefits	Ref	1.000					
Unfulfilled necessary medical care	Yes	0.061	0.003 to 0.120	.0390	2.238	1.299–3.855	.0038	
	No	0.103	0.056 to 0.151	<.0001	2.811	1.704–4.638	<.0001	
	Never required medical attention	Ref	1.000					
Subjective health condition	Good	−0.274	−0.307 to −0.240	<.0001	0.495	0.401–0.611	<.0001	
	Normal	−0.176	−0.206 to −0.146	<.0001	0.609	0.515–0.721	<.0001	
	Bad	Ref	1.000					
Outpatient for 2 wk	Yes	0.096	0.072–0.120	<.0001	1.372	1.195–1.575	<.0001	
	No	Ref	1.000					
Chronic disease status (hypertension, diabetes, and dyslipidemia)	None							
	1							
	2 or 3							
	Hospitalization for 1 yr	Yes	0.050	0.017–0.084	.0029			
	No	Ref	1.000					

CI = confidence interval, OR = odds ratio, Ref = reference.
did outpatient care because the entry barrier is low and the patient's solvency and choice can affect continuous utilization and expenditure. Hospitalization and expenditure are influenced more by physician recommendations and disease severity than by patient decisions, and it is believed that the solvency is soon reflected in the subscription of PHI.\[14\] According to a previous study, groups with sufficient PHI solvency can receive high-quality medical services, while groups with insufficient PHI solvency do not receive high-quality medical services and medical services themselves.\[33\] As a result, there is a problem of hiding the equity and publicity of medical care, which is the goal pursued by the Ministry of Health and Welfare in Korea.\[41\]

The results of a study that outpatient treatment of the PHI subscribers is longer than that of health insurance subscribers for >2 weeks are consistent with the current financial deterioration of the NHI Service, which is the biggest problem in Korea.\[33]\] Therefore, this study intends to provide basic data to prevent the deterioration of insurance finances due to excessive medical treatment due to PHI.

This study has some limitations. First, the study conducted a cross-sectional analysis using data from the first year (2016) and the second year (2017) of the KNHNES, so it is not possible to identify the causal relationship between PHI and medical care utilization, health conditions. Second, PHI subscription status, outpatient care for 2 weeks, hospitalization for 1 year, and chronic disease diagnosis may have regression bias from self-examination. Third, there may be differences in behavior depending on the type of PHI (fixed benefit, indemnity, and mixed types). This study did not separate by the type of PHI. Fourth, this study analyzed the number of chronic diseases by dividing them into a single chronic disease and a combination of chronic diseases. Although measuring the number of chronic diseases is easy to classify, this method does not correct severity because all diseases are assessed equally.\[16\] An analysis based on the number of chronic diseases, the combination of different chronic diseases, and their severity is necessary. Fifth, since this study used data from the 2016 and 2017 KNHNES, it does not represent the results of the latest data from the KNHNES. Sixth, to analyze the relationship between PHI and medical use, we selected 3 chronic diseases with high medical expenses and medical use rates in Korea among various chronic diseases,\[31\] so there is a limitation that various chronic diseases cannot be included.

5. Conclusion
There was a significant association between the availability of private insurance and the usage of medical services in this study. One key controversy surrounding PHI in Korea is its potential impact on health care utilization.\[33,41\] If a purchaser of supplementary PHI utilizes more health care services (due to decreased copayments under NHI), then PHI fiscally spills over on NHI, and there is an inequity in health care utilization between those who purchase PHI and those who do not.\[14\] Therefore, the government will have to redefine the role of PHI and NHI to enhance efficiency and equity in the health care sector and to relieve financial burdens.\[10\] PHI should be reassessed to minimize the reckless use of medical services through private insurance subscriptions.

Author contributions
Jeong Min Yang designed this study, performed statistical analysis and completed the manuscript.
Su Bin Lee designed this study and drafted the manuscript.
Ye Li Kim designed this study and drafted the manuscript.
Douk Young Chon contributed to the design of the study and manuscript.

References
[1] Lee YJ, Lee JH. Effect of private health insurance on health care utilization in a universal health insurance system: a case of South Korea. Korean J Hosp Manag. 2018;23:42–53.
[2] Huh SI, Lee SY. Impact of complementary private health insurance on public health spending in Korea. Health Policy Manag. 2007;17:1–17.
[3] Kim W, SA. Study on the coordinated balance of national health insurance and private health insurance. Korean Insur Dev Rev. 2002;13:111–53.
[4] Lee JS, Chung BK, Huh SI, et al. Discussion on the optimal coordination of national health insurance and private health insurance in Korea. Health Insur Forum. 2006;5:16–31.
[5] Park IS, Lee DH. The NHIC Financial Outlook: Long-Term Forecasting and Policy Simulation. Center for the NHII Policy Research. 2010.
[6] Lee CH, Kim WJ. A study on the attitudes of some medical consumers to private health insurance and policy implications. J Inje. 2007;22:297–310.
[7] Sokou O, Kaitelidou D, Economou C, et al. Private expenditure and the role of private health insurance in Greece: status quo and future trends. Eur J Health Econ. 2009;10:467–74.
[8] Kesley T, Hall J, Preston L. Private and public health insurance in the UK. Europ Econ Rev. 1998;42:491–7.
[9] Liapotopoulos L. Public/private financing in the Greek health care system: implications for equity. Health Policy. 1998;43:153–69.
[10] Liapotopoulos LL. Health services financing in Greece: a role for private health insurance. Health Policy. 1995;34:53.
[11] Liu TC, Chen CS. An analysis of private health insurance purchasing decisions with national health insurance in Taiwan. Soc Sci Med. 2002;55:755–74.
[12] Van Doorslaer E, Clarke P, Savage E, et al. Horizontal inequities in Australians mixed public/private health care system. Health Policy. 2008;86:97–108.
[13] Shin J. Private health insurance in South Korea: an international comparison. Health Policy. 2012;108:76–85.
[14] Jeon B, Kwon S. Effect of private health insurance on health care utilization in a universal public insurance system: a case of South Korea. Health Policy. 2013;113:69–76.
[15] You CH, Kwon YD, Choi JH, et al. Analysis of effect of indemnity private health insurance on medical utilization using instrumental variable regression, J Korea Econ Soc. 2018;18:268–76.
[16] Kang S, You CH, Kwon YD, et al. Effects of supplementary private health insurance on physician visits in Korea. J Formos Med Assoc. 2009;108:912–20.
[17] Kim MH, Do YK. Strengthening causal inference in studies using non-experimental data: an application of propensity score and instrumental variable methods. J Prev Med Pub Health. 2007;40:495–504.
[18] Zweifel P, Breyer F, Kifmann M. Health economics. 2nd ed New York: Springer; 2009.
[19] Buchmueller TC, Couffignal H, Grignon M, et al. Access to physician services: does supplemental insurance matter? Evidence from France. Health Econ. 2004;13:669–88.
[20] Ettrn SL. Adverse selection and the purchase of Medigap insurance by the elderly. J Health Econ. 1997;16:543–62.
[21] Hurd MD, McGarry K. Medical insurance and the use of health care services by the elderly. J Health Econ. 1997;16:129–54.
[22] Khandker RK, McCormack LA. Medicare spending by beneficiaries with various types of supplemental insurance. Med Care Res Rev. 1999;56:137–55.
[23] Kim HS. Development of Medigap in the United States and Policy Implications for a Utilization of Private Health Insurance in Korea. Korean J Policy Stud. 2003;12:33–58.
[24] Australian Institute of Health and Welfare (AIHW) 2002. Chronic diseases and associated risk factors in Australia. Canberra: AIHW; 2001.
[25] Skinner EH, Foster M, Mitchell G, et al. Effect of health insurance on the utilization of allied health services by people with chronic disease: a systematic review and meta-analysis. Aust J Prim Health. 2014;20:9–19.
[26] Lee HB, Hyung KR. A study for characteristics and factors of private health insurers. Korean Social Secur Stud. 2011;27:217–40.
[27] Jung KT, Shin EK, Kwak CH. An empirical study on the relationship between private health insurance and moral hazard. J KLIMA. 2006;7:1–25.
[28] Manning WG, Newhouse JP, Duan N, et al. Health insurance and the demand for medical care: evidence from a randomized experiment. Am Econ Rev. 1987;77:251–77.

[29] Wong IO, Lindner MJ, Cowling BJ, et al. Measuring moral hazard and adverse selection by propensity scoring in the mixed health care economy of Hong Kong. Health Policy. 2010;95:24–35.

[30] Yoon HS. Effects of private insurance on medical expenditure. KDI J Econ Policy. 2008;30:99–128.

[31] Ministry of Health and Welfare. Health insurance coverage rate. 2020. Available at: https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=2763. [Accessed April 18, 2022].

[32] Choi SA. Study on the role of private medical insurance and the utilization of medical service. Korean Review of Applied Economics. 2016;18:79–97.

[33] Baek IL, Park HS, Byeon SS. The determinants and medical care utilization behavior of private health insurance. J Korea Contents Assoc. 2012;12:295–305.

[34] Oh HL, Moon SU. Effect of the coverage of fee-for-service medical insurance on the healthcare utilization. Health Soc Sci. 2019;51:153–76.

[35] You CH, Kwon YD, Choi JH, et al. Analysis of effect of indemnity private health insurance on medical utilization using instrumental variable regression. Korea J Hosp Manag. 2018;18:268–76.

[36] Lee YJ, LEE JH. Effect of private health insurance on health care utilization in a universal health insurance system: a case of South Korea. Korean J Hosp Manage. 2018;23:42–53.

[37] Kim DH, Lee BJ. An analysis on adverse selection in fee-for-service health insurance. Korean J Insur. 2013;96:25–50.

[38] Kim DJ. Income-related inequality in health care use in Korea. Health Welfare Policy Forum. 2011;176:45–54.

[39] Yoon YM. Effects of purchasing private health insurance on the use of healthcare service. Seoul: Korea University, Graduate school of Public Health; 2012.

[40] Seo YS, Park JH, Lim JH. Factors affecting regular medical services utilization of chronic disease patients - focusing on the hypertension, diabetes mellitus, hyperlipidemia. Korean Soc Health Educ Promot. 2014;31:27–37.

[41] Kang JH, Jeong BG, Cho YG. Medical expenditure attributable to overweight and obesity in adults with hypertension, diabetes and dyslipidemia: evidence from Korea National Health and Nutrition Examination Survey Data and Korea National Health Corporation Data. J Agric Med Community Health. 2010;35:77–88.

[42] Marengoni A, Angleman S, Melis R, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10:430–9.