Microbial mat related structures (MRS) from Mesoproterozoic Chhattisgarh and Khariar basins, Central India and their bearing on shallow marine sedimentation

1. Department of Geology, University of Delhi, Delhi - 110 007, India. E-mail: parthageology@gmail.com
2. Department of Earth Sciences, Bengal Science and Engineering University, Howrah - 711 103, India
3. Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-hiroshima 739-8526, Japan
4. Geological Survey of India, Northern Region, Lucknow, India

Introduction

Interest in the search of early life forms in geological records emerged not only from the desire of knowing how, when and in what form life started on the Earth but also from the belief that the obtained understanding from the related studies will help in searching evidences of life, if any, in other planetary bodies e.g. Mars, where water existed sometime in its planetary existence (Kral et al., 2004; Pietrogrande et al., 2005; Sarkar et al., 2006). Siliciclastic lithologies, however, were largely overlooked for the signatures of earliest life forms (bacterial remains) as stromatolite-like constructions are usually not developed (Seilacher, 1999) and the organic material is easily destroyed (Park, 1977). The last decade witnessed a trend-shift as it is increasingly appreciated by the earth scientists that at least since 3 Ga. benthic microbiota colonized sandy substrates in full-spectrum of siliciclastic depositional settings ranging between continental (fluvial, eolian-desertic) and shallow marine (Schieber et al., 2007); the oldest record to date comes from the 3.2 Ga old siliciclastic tidal deposits of the Moodies Group, South Africa (Noffke et al., 2012). Termed as 'Microbially Induced or Microbial-mat related sedimentary structures (MISS/ MRS)', a distinctive group of penecontemporaneous features are reported from near-shore siliciclastic depositional settings ranging between continental (fluvial, eolian-desertic) and shallow marine (Schieber et al., 2007), the oldest record to date comes from the 3.2 Ga old siliciclastic tidal deposits of the Moodies Group, South Africa (Noffke et al., 2012). Termed as 'Microbially Induced or Microbial-mat related sedimentary structures (MISS/ MRS)', a distinctive group of penecontemporaneous features are reported from near-shore siliciclastic depositional settings ranging between continental (fluvial, eolian-desertic) and shallow marine (Schieber et al., 2007), the oldest record to date comes from the 3.2 Ga old siliciclastic tidal deposits of the Moodies Group, South Africa (Noffke et al., 2012). Termed as 'Microbially Induced or Microbial-mat related sedimentary structures (MISS/ MRS)', a distinctive group of penecontemporaneous features are reported from near-shore siliciclastic depositional settings ranging between continental (fluvial, eolian-desertic) and shallow marine (Schieber et al., 2007), the oldest record to date comes from the 3.2 Ga old siliciclastic tidal deposits of the Moodies Group, South Africa (Noffke et al., 2012). Termed as 'Microbially Induced or Microbial-mat related sedimentary structures (MISS/ MRS)', a distinctive group of penecontemporaneous features are reported from near-shore siliciclastic depositional settings ranging between continental (fluvial, eolian-desertic) and shallow marine (Schieber et al., 2007), the oldest record to date comes from the 3.2 Ga old siliciclastic tidal deposits of the Moodies Group, South Africa (Noffke et al., 2012). Termed as 'Microbially Induced or Microbial-mat related sedimentary structures (MISS/ MRS)', a distinctive group of penecontemporaneous features are reported from near-shore siliciclastic depositional settings ranging between continental (fluvial, eolian-desertic) and shallow marine (Schieber et al., 2007), the oldest record to date comes from the 3.2 Ga old siliciclastic tidal deposits of the Moodies Group, South Africa (Noffke et al., 2012).
Chhattisgarh, Cuddapah, Pranhita-Godavari (P-G) etc. Since many of the MRS reported from the Mesoproterozoic siliciclastic rocks are not observed in modern microbial mat-dominated settings, the MRS from the Vindhyan and the Marwar basin successions are discussed and interpreted under genetic aspects and with the aim to understand the bio-physical processes in their formation; relationship with clastic depositional environments and distribution in stratigraphic columns formed at different sea level stands are yet to be characterized properly. This contribution aims at documentation of MRS assemblages with a depositional environments and distribution in stratigraphic columns bio-physical processes in their formation; relationship with clastic the Vindhyan and the Marwar basin successions are discussed and observed in modern microbial mat-dominated settings, the MRS from Chhattisgarh, Cuddapah, Pranhita-Godavari (P-G) etc. Since many of basin fill (Khariar Group, 1000 m thick; Das et al., 2001; Chakraborty et al., 2011; Patranabis-Deb et al., 2007) have convincingly established basin fills i.e. between ~1500 Ma and 1000 Ma. While Chhattisgarh basin (Chhattisgarh Supergrup; 2300 m thick; Chakraborty et al., 2011; Patranabis-Deb et al., 2007) have convincingly established assemblages with a formed at different sea level stands are yet to be characterised properly. depositions and distribution in stratigraphic columns recent studies (Bickford et al., 2011a, b, c; Das et al., 2009, Das et al., 2011; Patranabis-Deb et al., 2007) have convincingly established the Mesoproterozoic time frame for both Chhattisgarh and Khariar basin fills i.e. between ~1500 Ma and 1000 Ma. While Chhattisgarh basin fill (Chhattisgarh Supergroup; 2300 m thick; Chakraborty et al., 2010) is classified under three ‘Group’s viz. Singhora, Chandarpur and Raipur, in order of superposition (Das et al., 1992), the Khariar basin fill (Khariar Group, 1000 m thick; Das et al., 2001; Chakraborty et al., 2010) is represented by two arenaceous Members viz. Lower and Upper sandstone, intervened by an argillaceous Member i.e. Middle Shale (Fig. 1). Within the Chhattisgarh succession the features are documented from two stratigraphic intervals viz. the Bhalukona Formation of Singhora Group and the Kansapathar Formation of Chandarpur Group, while features within the Khariar succession are described from the Lower Sandstone Formation (Datta, 1998). A sandy near-shore depositional environment ranging between lower shoreface to foreshore-beach, occasionally tidal have been invoked for all the three stratigraphic intervals dealt with under this study. Detailed facies and paleo-environmental appraisal for the discussed stratigraphic intervals of Chhattisgarh successions in sequence stratigraphic backdrop is available in Chakraborty and Paul (2008) and Chakraborty et al., (2012), and hence, are summarily discussed here. Whereas medium to fine-grained lowstand sandstones of the Bhalukona Formation (Facies Association (FA) III and IV; Chakraborty et al., 2012) are interpreted as products of lower to upper shoreface bar-interbar sequence stacked as meter-thick ‘parasequence’s in an aggregational to weakly regrogradational motif, the forced regressive middle to upper shoreface deposits of Kansapathar Formation (facies ‘F’ of Chakraborty and Paul, 2008; their Table 1) represent deposition under fair weather- and storm-wave influence and stacked as thickening- and coarsening-upward ‘parasequence’s indicating progradation. In the Khariar basin the features are documented from well-sorted sandstones representing a transgressive shoreface-beach sequence (Datta, 1998; Mishra, 2009) in the topmost part of the Lower Sandstone.

Figure 1. Location map of Chhattisgarh and Khariar basins, India with study area locations marked by bold black dots (a). Generalised stratigraphy, available paleoenvironmental models and age data indicating Mesoproterozoic time frame are given on the right. Asterisks mark the stratigraphic intervals from where the MRS are described (b).
Microbial mat-related structure (MRS)

In the studied stratigraphic intervals a variety of structures of potential microbial mat origin occur either on bedding planes or are found intrabed, which are described below:

Bhalukona Formation, Singhora Group, Chhattisgarh basin

Palimpsest ripples, cracks and ridges on the bedding plane exposures, and dark/ grey coloured laminae with wavy-crinkly and domal geometry in the bed-perpendicular sections are the commonly observed mat features within the fine- to medium-grained compact sandstones of Bhalukona Formation (Fig. 2a).

Palimpsest ripples

Replication of ripple forms in successive thin beds represents the palimpsest ripples. However, there is variation in the degree of replication; in some cases ripples on top of a very thin sandstone bed can be easily traced into the immediately underlying bed (Fig. 2b), while in others ripple geometry becomes unrecognisable, making the structure non-transparent (cf. Noffke, 2003).

Pfluger and Sarkar (1996) attributed palimpsest ripples to trapping of particles by filaments and extrapolymeric substance (EPS) of microbial mat grown uniformly over earlier formed ripple surface. In absence of mud and suspension fallout, replication of earlier morphology can only be explained by generation of enough cohesion by microbial mat growth within the sand that originally formed the rippled surface. Coherent mat matrices, consisting of cyanobacteria and their EPS, fix and glue together the surface sediment mimicking the earlier topography, a process termed as biostabilisation (Paterson and Daborn, 1991; Noffke and Krumein, 1999). Definitely a moist condition and slow sedimentation rate help in the process. However, a higher growth of mat at the ripple troughs may also bring non-transparency in the structure causing ripple geometry unrecognisable (Sarkar et al., 2006).

Cracks and Ridges

Mm-wide cracks, polygonal, semicircular, sinusoidal or spindle shaped in geometry, forming network are observed on the bedding planes of mud-free Bhalukona Sandstone (Fig. 2c, d). The cracks are invariably steep-sided and cut across one another in the network. Average depth of spindle-shaped cracks is measured as ~0.4 cm.

Earlier claims favouring trace fossil origin (animal trail) of circular and sinusoidal cracks on sandy surface are argued against in recent studies on the ground of steep flanks of these cracks and instead, an origin related to cracking of mat-infested sandy surface by desiccation or synerosis is invoked (Schieber, 2004). Indeed, cracking in sand cannot be explained unless development of cohesion is envisaged in presence of microbial mat. Irrespective of their desiccation (exposed surface) or synerosis (under water) origin, the near circular and sinusous cracks are identified as unequivocal expression of microbial mat cracking and well entrenched in literature under the name ‘Manchuriophycus’. Spindle-shaped cracks are possibly related with syneresis, although several theories explaining formation of such cracks and ridges are available in literature viz. sub-aerial desiccation, post-depositional intrastratal dewatering of argillaceous beds and rapid deposition of overlying bed, seismic shaking etc. The cross-cutting relationship between some of the crack fillings allowed us to support the syneresis hypothesis over other propositions (cf. Sarkar et al., 2006). Also, the interpreted under water paleo-depositional set up for the sediments, (Chakraborty et al., 2012) within which the cracks are noticed, supports the contention.

Wavy-Crinkly laminae

Some bedding plane surfaces show strong rust red colouration and presence of network constituted of elongated, irregular, highly curved mm-high ridges (Fig. 2c). At hand specimen scale in bed-perpendicular sections, sand laminae within these beds are highly irregular, wavy, curved and recurved, often swollen, and showing extreme fold-like crenulations indicating high flexibility (Fig. 2f). Under thin section the sandstones reveal an irregular laminated character; mm-thick dark layers with dispersed sand grains alternate with fine-grained sand layers composed of 95% quartz grains having sub-rounded shapes (Fig. 3a). In close-up, the dark layers are constituted of dark, opaque laminae, between 15 and 20μm thick, irregularly wrinkled, wavy in nature and interwoven like the network of a carpet. Solitary quartz grains are found floating within the dark, laminated matrix. Often, the long axes of the grains are found parallel to the laminae (Fig. 3b). Also, mica flakes are observed within the dark layers either in random orientation or arranged in a preferred orientation at an acute angle with the wavy-crinkly laminae (Figs. 3c, d). In cases, convex-up antigrowth is noticed within the dark layers (Fig.3e). Iron oxide grains either as specks or clustered in form of thin, laterally restricted stringers are noticed within the dark layers (Fig. 3f).

Laminated sandstones constituted of quartz-rich and wavy-crinkly, dark, opaque layers are reported from both modern shallow marine sands and ancient sandstones and attributed to microbial mat growth (Gerdes, 1991; Noffke et al., 2003). The laminated pattern arises from microbial mat growth forming the dark laminae in the interludes of sand deposition by currents. Schieber (1986) considered such wavy-crinkly lamination as the most striking indication of a cyanobacterial mat origin. Solitary quartz grains embedded in the organic mat fabrics with their long axes parallel to the microbial mat layer are a common textural feature in both ancient and modern microbial mats (Noffke et al., 2012). The mica flakes oriented randomly or arranged in preferred orientation within the wavy-crinkly laminae may imply trapping by microbial mat instead of vertical settling through the water column (‘flypaper effect’, Gerdes and Krumein, 1987; Schieber, 2004). In rock records association of iron oxides with microbial mats are reported from different parts of the world e.g. Revett Formation, Belt Super group, USA (Schieber et al., 2007), Sonia Formation, Marwar Super group, India (Samanta et al., 2011).

Kansapathar Formation, Chandarpur Group, Chhattisgarh basin

Wrinkle structures (kinneyia ripples), ripple patches exposed due to microbial mat erosion, millimetre-wide cracks on ripple crests, false impression of sharp ripple crests and casts of rafted, overfolded mat fragments strewn over rippled bed surface, are the commonly observed mat-related features on mud-free sandstone bed surfaces in the Kansapathar Formation (Fig. 4a).
Figure 2. (a) Thick amalgamated medium-grained quartz arenites of Bhalukona Formation. Note mud-free, well sorted character given in the inset. (b-d) Features noted on bedding planes: (b) Palimpsest ripples; note inheritance of same ripple morphology in successive younger beds (arrowed); cracks: semi-circular, sinuous (c) and spindle-shaped (d). Rust brown coloured bedding plane with network of curvilinear ridges (e) and its polished bedding perpendicular slab (f); Note wavy, irregular, swaly (arrowed) lamination character.
Wrinkle structures and patchy ripples

Network of mm-scale shallow load depressions separated by minute ridges mark the wrinkle structures with crinkled appearance (Fig. 4b), which are seen in two different motifs viz. (i) occupying the ripple troughs and (ii) spread as a veil covering both ripple crests and troughs. Occasionally, the parallelism of ridges in the wrinkle structures resembles kinneyia ripples (Sarkar et al., 2006, 2008). Wrinkle structures with unidirectional asymmetry are also not uncommon. On some bedding plane surfaces, bearing wrinkle marks, have ripples in discrete patches; the limbs of the ripples being abnormally steep and their surfaces exceptionally smooth (Fig. 4c). In cases, exceptionally well-preserved ripples show smooth, sloping lateral upward transition to a surface that records multidirectional
bedforms and wrinkle structures. The ripples along their crest lines bear cracks, which are linear and millimetre-deep (Fig. 4d).

One major goal of MRS study is to assign biogeneity in the structures. Loading and dewatering of microbial mat layers are the most favoured explanation for the presence of wrinkle marks on mud-free sandstone bedding surfaces (Noffke et al., 2003a, b; Sarkar et al., 2006). Wrinkle structures with unidirectional asymmetry in profile that is common in the mud-free Kansapathar Sandstone might have developed under shear of gentle wave or current on a microbially mediated cohesive sand surface. The discrete ripple patches in otherwise wrinkled bed surface are developed with partial erosion of mat stabilised sand surface that allowed formation of ripples by wave action. The abnormal limb steepness and smoothness of surfaces of the ripples is suggestive of microbial mat growth following the ripple formation as well. The cracks along ripple crests may represent desiccation of exposed mat-bound ripple crests leading to incipient tears in the mat cover (Schieber, 2004; Sarkar et al., 2008). That the rippled surface got exposed and undergone desiccation gets
independent support from the presence of caliche' paleosol immediately above the rippled surface (cf. Chakraborty and Paul, 2008).

Rafted mat

Irregular, semi-circular patches (diameters in cms-scale) are observed on the bedding planes of Kansapathar sandstone; internally the patches are constituted of irregular, curved centimetre-long ridges and depression of 1 to 2 cm in width and several tenths of a millimetre in height. Often, ridges tend to overthrust on their adjacent depressions. Such patches are scattered both on limbs and crests of ripples (Fig. 4e).

Semi-circular patches having irregular ridges and depressions resemble microbial mats that became wrinkled due to shrinkage during sub-aerial exposure or to thin subaqueous mats that became detached as a result of flow turbulence. This feature was first described by Horodyski (1982), and attributed to dried-out fragments of episodically exposed thin microbial mats those curl up and then transported by wind or flowing water. Schieber (1999) and Simonson and Carney (1999) inferred that the overfolded structures or thin, wavy rock beds reflect the cohesive properties of bacterially bound deposits. Strata composed of eroded mat fragments are also interpreted as storm event layers (Bouougri and Porada, 2002). Taking into consideration i) absence of any feature indicating sub-aerial exposure and desiccation, and ii) storm origin of the strata within which these structures are observed (Paul, 2005), we are inclined to assign the detached mat origin triggered by tearing of mat under the storm action. The deformation of soft, cohesive mat fragment possibly caused the upward movement of the soft sediment generating the ridges those often overthrust on their adjacent depressions.

Distribution of MRS within progradational package(s)

The preferential distribution of MRS within the Kansapathar stratigraphic column is illustrated in Fig. 5. Stacked progradational packages (cf. Catuneanu, 2006) record repeated transitions from lower to middle/upper shoreface characterise the studied section. Within individual package, while the wrinkle structures covering both crests and troughs of ripples dominate the basal lower shoreface part, the wrinkles are found to be restricted within the ripple troughs in the middle shoreface. Interestingly, the rafted, overfolded patches are seen only in the upper shoreface part that bears the evidences of storm action.

In a sequence stratigraphic backdrop, Chakraborty and Paul (2008) modelled the Kansapathar shoreface packages as part of forced regressive wedge. While the wrinkle marks covering both crests and troughs of ripples are restricted within the sandstones representing the deepest bathymetry i.e the lower shoreface part, their counterparts within the middle/upper shoreface are essentially confined within the ripple troughs, which are likely to be more moist part in the shallower bathymetry. Occasional high energy event like storm torn the cohesive mat layer and spread the mat fragments on the rippled bed surface.

Lower Sandstone, Khariar basin

Stacked meter-thick beds of fine- to medium-grained, well-sorted sandstones constituted of plane lamination and trough cross-stratification, occasionally intervened by thin-bedded rippled strata, represent the shoreface-beach succession present at the lower part of Khariar succession. An upward progradation from lower/ middle shoreface to upper shoreface-beach setting can be noticed upward within the stratigraphic column with systematic increase in bed thickness and decrease in the abundance of thin-bedded rippled strata. The structures described herein (setulf, ridges) are documented from the upper part of the litho-package, inferred as the product of supratidal upper shoreface-beach set-up.

Setulf

Swarms of positive relief structures, distinctly steep at one end and flaring at other, strongly unidirectional in orientation are observed on the bedding planes of sandstones which are internally plane laminated or cross-stratified (Fig. 6a, b). Dimension of these structures is quiet uniform; average length, width and height recorded are 7 cm, 3 cm and 1.5 cm, respectively.

Friedman and Sanders (1974) reported similar small-scale unidirectional positive relief structures from modern beach and termed them as ‘setulf’ i.e inverted flutes. Sarkar et al.,
being fossilised under microbial mat cover. Suggesting a bias of these structures within the sedimentary archives of Proterozoic-Paleozoic time, these authors cited examples from two Neoproterozoic (~600 Ma) Indian examples, viz. the Upper Bhandar sandstone, Vindhyan basin and the Sonia sandstone, Marwar basin. The present example dates back the antiquity of these structures within ca. 1400 Ma old Khariar sandstones.

Ridges

Many of the mud-free sandstone bed surfaces of the Lower sandstone unit of the Khariar Basin bear spindle-shaped, curled, folded and meandering ridges, which are broadly parallel to one another (Fig. 6c). Ridge widths vary between 0.02 and 1 cm and their maximum continuity is traces up to 9.5 cm. Ridges, curled, folded and meandering in nature, are analogous with ‘petee’ structures described from modern settings (Gerdes et al., 1993) and ancient rock records (Gehling, 1999), and interpreted as the product of drying and subsequent buckling, curling and rupturing of mat layer under wave and/or current action. Citing occurrence of median furrow along some ridges, Sarkar et al. (2006, 2008) suggested an alternate model in which flowage of cohesive mat layer converging from two sides of a crack under confining pressure from overlying younger bed is considered as the more preferred reason behind formation of the ridges. In absence of such median furrow, we are more inclined to relate the ridges within the Khariar sandstones with the first proposition. Supratidal depositional setting for the sandstones corroborates this contention.

Discussion

Alike Vindhyan and Marwar basins, a wide range of microbial mat related structures within the Chhattisgarh and Khariar basin successions bear clear indication for microbial mat proliferation in siliciclastic depositional environments of Indian sedimentary basins during the Mesoproterozoic time, as recorded in other parts of the world (Schieber et al., 2007). Table 1 summarises the observed MRS, their topology and characteristic expressions in the rock record. Unlike many of the MRS bearing sections around the Globe those represent tidal-supratidal paleogeography, the present structures are described essentially from wave-influenced foreshore/shoreface sections. Incidentally, Sarkar et al. (2008) also described a spectacular range of MRS from the wave-agitated shoreface succession of the Sonia Sandstone, Marwar basin that shows transition up to supralittoral eolian setting. Indeed, microbial growth and associated sedimentation are likely to be most favoured in environments with low sedimentation rate, low to moderate energy and alternate domination of physical and biological processes. A (fair weather) wave-dominated shoreline with intermittent incursion of storm events may be a suitable environmental set up in this regard instead of perpetuous tidal action that would impede mat growth (Bouougri and Porada, 2002). Possibly the dissipation of wave energy at the low-gradient Proterozoic epeiric sea margins (Friedman et al., 1992) combined with a low rate of sedimentation (lower freeboard; Eriksson et al., 1999) allowed microbial mat growth in the wave-dominated coastlines. A persistent, uniform shelf circulation and maintenance of delicate balance between sediment supply and subsidence in the epeiric basins (Eriksson et al., 1998) would have helped in the process. Above these, absence of grazers and bioturbators allowed mat proliferation and thereby

![Figure 6. Plane-laminated and cross-stratified well-sorted quartz arenites in Lower Sandstone, Khariar basin (a), Swarms of setulf on bedding surface (b), rolled-up mats on the bedding plane forming sub-parallel ridges (c).](image-url)
influence the clastic sediment dynamics near the coastlines of the Proterozoic basins. Possibly a hydrodynamic flow condition that is sufficient to sweep mud but not strong enough to erode cohesive microbial mat infested surface was prevalent in the Chhattisgarh and Khariar wave-influenced shorelines. Although it is presumed that outer shelf storms would have been more regular in the Proterozoic time, the prolific presence of mat structures within the near shore sandstones of both the basins suggest significant quiescence and very low sedimentation between the high energy events.

In the studied sections the microbial imprints are noticed both on bedding plane and bed-perpendicular sections. Considering the processes involved in generation, Noffke (2009) classified MRS under five category viz. (i) growth, (ii) biostabilisation, (iii) binding, (iv) baffling and trapping, and (v) structures induced by the combination of all/some of the processes. The present MRS assemblages fall under all the categories. The wavy-crinkled laminae, ridges, cracks and setulfs represent the mat growth and biostabilisation, grains within the mat layer bear signature of trapping and binding and wrinkle marks, patchy ripples, impression of rafted mat fragments suggest combined actions of all the processes including the tearing of mat layer under high energy event/s.

Occurrence of MRS in the stratigraphic sections can mostly be correlated with regression-transgression cycle with dominant development within the transgressive portions of the rock sequence. Although as a general caveat this may be valid, the present study documents presence of MRS within the forced regressive and lowstand deposits of the Kansapathar Formation and the Bhalukona Formation as well. On low-gradient epeiric shelf under low continental freeboard, chances of preservation for forced regressive products are likely to be less because of their thin character and possibility of getting reworked by subsequent transgression and ravinement. Restricted erosion due to microbial mat cover of the sediment surface possibly allowed the forced regressive sediment on the Kansapathar sea floor escape the erosion from the flooding that established the lowstand system immediately above. In the Bhalukona Formation, it needs to be judged whether the aggradational stacking of lowstand is a reflection of increasing sediment supply keeping balance with generated accommodation due to rising sea level or because of high net sedimentation resulted from restricted erosion of mat infested sandy surfaces (cf. Sarkar et al., 2005).

Conclusions

Presence of a wide spectrum of MRS within the near shore sandstones of Mesoproterozoic Chhattisgarh basin and Khariar basin suggest unequivocal influence of microbial mat on shallow marine clastic sedimentation of Indian Proterozoic basins. The structures mostly generated either by deformation and loading of mucilaginous, sticky mat surface or their cracking in course of desiccation or syneresis. The waves and currents that prohibit the deposition of mud at the sites of microbial colonization, however, are not strong enough to erode the microbial mats once they are established. Retention of low-preservation structures viz. setulf show that stabilisation of sandy surfaces by mat successfully protected the depositional surfaces against erosion through high-energy flows. Tearing of mat and spreading of its fragments on bedding surface corroborates well with extreme high energy event e.g. storm. To escape complete destruction, mat fragments have to be deposited nearby, and covered by sediment to become preserved. Abundant mat growth on shallow marine

Formation Group	Observation made in	Nature of Structure	Topology	Imagery Expression
Palimpsest Group	Outcrop	ripple	Bedding plane (Upper surface)	
Manchurio-physicus Group	Hand specimen polished section	a. Highly irregular, wavy, curved, and recurved laminae	Intra-bed	
Wrinkle structure Kenneyia	Bedding plane (Upper surface)			
Patchy ripple	Bedding plane (Upper surface)			
Wrinkles in ripple crests	Bedding plane (Upper surface)			
Fragments of torn mat	Bedding plane (Upper surface)			
Setulf	Bedding plane (Upper surface)			
Peette structure	Bedding plane (Upper surface)			

Table 1. Mat features in the studied formations with their imagery expressions and mode of occurrence (upper/lower surface of bed or intrabed)
sandstones of the Chhattisgarh and the Khariar basins implies slow rate of sedimentation, in general, except phases when storms struck the shorelines.

Documentation of the MRS within the products of forced regression, lowstand and transgression suggests that the microbial mat growth and proliferation was pervasive in clastic nearshore sediments of Proterozoic basins irrespective of the sea level stand in which they belong. Variation in the character of the MRS within the progradational shelf-edge packages of Kansapather Formation clearly shows importance of taphonomy i.e. subsequent sedimentary events that lead to the complete formation of a microbial mat, in the growth and preservation of these structures. It is presumed that on low-gradient Proterozoic epeiric shelves under low freeboard, infestation of microbial mat cover may increase chances of preservation for thin forced regressive products manifold from subsequent transgression and ravinement. Due to biostabilizing microbial activities, it is possible that more of them have escaped erosion than would have been the case without the presence of microbes.

Acknowledgements

PPD and KD acknowledge Department of Science and Technology (DST) for support during the fieldworks and Dr. Ashish Sarkar for his enthusiastic support during field trips. PD acknowledges financial help from CSIR for carrying out field work. PCC acknowledges the infrastructural help from University of Delhi. Thanks are also due to Prof. Pat Eriksson and an anonymous reviewer for suggesting improvement in the earlier version of the paper.

References

Banerjee, S., Jeevan kumar, S., 2005, Microbially originated wrinkle structures on sandstones and their stratigraphic context: Paleoproterozoic Koldaha Shale, central India: Sedimentary Geology, v. 176, pp. 211–224.

Banerjee, S., Dutta, S., Paikaray, S. and Mann, U., 2006, Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). Journal of Earth Systems Science, v. 115, pp. 37-48.

Banerjee, S., Sarkar, S., Eriksson, P.G. and Samanta, P., 2010, Microbially related structures in siliciclastic sediment resembling Ediacaran fossils: examples from India, ancient and modern. In: Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems (Eds. J. Seckbach and A. Oren), Springer-Verlag, Berlin, pp. 111-129.

Bickford, M.E., Basu, A., Patranabis-Deb, S., Dhang, P.C., Schieber, J., 2011a, Depositional history of the Chhattisgarh basin, central India: constraints from new SHRIMP zircon ages: Journal of Geology, v. 119, pp. 33–50.

Bickford, M.E., Basu, A., Patranabis-Deb, S., Dhang, P.C., and Schieber, J., 2011b, Depositional history of the Chhattisgarh Basin, Central India: Constraints from New SHRIMP Zircon Ages; a Reply: Journal of Geology, v. 119, pp. 553–556.

Bickford M.E., Basu, A., Mukherjee, A., Hietpas, J., Juergen, S., Patranabis-Deb, S., Ray, R.K., Guhey, R., Bhattacharya, P., Dhang, P.C., 2011c, New U-Pb SHRIMP Zircon ages of the Dhamda Tuff in the Mesoproterozoic Chhattisgarh Basin, Pul and Nilnagar, India: Stratigraphic Implications and Significance of a 1-Ga Thermal-Magmatic Event: Journal of Geology, v. 119, pp. 535-548.

Bouougri, E., Porada, H., 2002, Mat related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton: Sedimentary Geology, v. 153, pp. 85–106.

Catuneanu, O., 2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375p.

Chakraborty, P.P., and Paul, S., 2008, Forced regressive wedges on a Neoproterozoic siliciclastic shelf, Chandarpur Group, central India: Precambrian Research, v. 162, pp. 227–247.

Chakraborty, P.P., Dey, S., Mohanty, S. 2010, Neoproterozoic platform sequences of Peninsular India: Implications towards basin evolutions and supercontinent assembly: Journal of Asian Earth Science, v. 39, pp. 589–607.

Chakraborty, P.P., Das, P., Das, K., Saha, S., Balakrishnan, S., 2012, Regressive depositional architecture on a Mesoproterozoic siliciclastic ramp: sequence stratigraphic and Nd isotopic evidences from Bhalukona Formation, Singhora Group, Chhattisgarh Supergroup, Central India: Precambrian Research, v. 200–203, pp. 129–148.

Das, D.P., Kundu, A., Das, N., Dutta, D.R., Kumaran, K., Ramamurthy, S., Thangavelu, C., Rajaiya, V., 1992, Lithostratigraphy and sedimentation of Chhattisgarh basin. Indian Minerals, v. 46, pp. 271–288.

Das, N., Dutta, D. R., Das, D. P., 2001, Proterozoic cover sediments of southeastern Chhattisgarh state and adjoining parts of Orissa; Geol. Surv. India Spec. Publ. 55, 237–262.

Das, K., Yokoyama, K., Chakraborty, P.P., Sarkar, A., 2009, Basal tuffs and contemporaneity of the Chhattisgarh and Khariar Basins based on new dates and geochemistry: Journal of Geology, v. 117, pp. 88–102.

Das, P., Das, K., Chakraborty, P.P., Balakrishnan, S., 2011, 1420 Ma diabasic intrusives from the Mesoproterozoic Singhora Group, Chhattisgarh Supergroup, India: Implications towards non-plume intrusive activity: Journal of Earth System Science, v. 120, pp. 1–14.

Dutta, B., 1998, Stratigraphy and sedimentologic evolution of the Proterozoic siliciclastic in the southern part of Chhattisgarh and Khariar, Central India: Journal of Geological Society India, v. 51, pp. 345-360.

Decho, A., W., 1990, Microbial exopolymer secretions in ocean environments: their (roles) in food webs and marine processes: Oceanography and Marine Biology Annual Review, v. 28, pp. 73–153.

Eriksson, P.G., Reckzo, B.F.E., 1998, Contours associated with pelagic mudrocks and distal delta fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa: Sedimentary Geology, v. 120, pp. 319–335.

Eriksson, P.G., Mazumder, R., Roy, K.K., Bose, P.K., Altermann, W., Van Der Merwe, R., 1999, The 2.7–2.0 Ga volcano-sedimentary record of Africa, India and Australia: evidence for global and local changes in sea level and continental freeboard: Precambrian Research, v. 97, pp. 269–302.

Friedman, G.M., Sanders, J.E., 1974, Positive-relief bedforms on modern tidal flat that resemble molds of flutes and grooves: implications for geopetal criteria and for origin and classification of bedforms: Journal of Sedimentary Petrology, v. 44, pp. 181–189.

Friedman, G.M., Sanders, J.E., Kopaska-Merkel, D.C., 1992, Principles of Sedimentary Deposits: Macmillan, New York.

Gehling, J.G., 1999, Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks, in Hagadorn, J.W., et al., Unexplored microbial worlds: Palaisos, v. 14, pp. 40–57.

Gerdes, G., Krumbein, W.E., 1987, Bioluminescent Deposits: Lecture Notes in Earth Sciences, v. 9, Springer-Verlag, New York, pp. 183.

Gerdes, G., Krumbein, W.E., Reineck, H.E., 1991, Biolumination secocele versus depositional dynamics, In: Eisele, G.,Ricken, W., Seilacher, A. (Eds.). Cycles and Events in Stratigraphy: Springer, Berlin, pp. 592–607.

Gerdes, G., Claes, M., Dunajcishek-Piekaw, K., Riege, H., Krumbein, W.E., Reineck, H.E., 1993, Contributions of microbial mats to sedimentary surface structures: Facies, v. 29, pp. 61–74.

Horodyski, R.J., 1982, Impressions of algal mats from the Middle Proterozoic Belt Supergroup, northwestern Montana, U.S.A: Sedimentology, v. 29, pp. 285–289.

Kral, T.A., Bekkum, CR., McKay, CP., 2004, Growth of methanogens on a Mars soil stimulant: Orig. Life Evol. Biosph., v. 34, pp. 615–626.

Lan, Z.W., Chen, Z.Q., 2012, Possible animal body fossils from the Late Neoproterozoic interglacial successions in the Kimberley region, northwestern Australia: Gondwana Research, v. 21, pp. 293–301.

Mishra, S., 2009, Facies and Paleo Environmental Analysis of Devdhara and Kulharthit Formation of Patari Group, Khariar Basin, Central India: M.Sc. dissertation (Unpub.), Indian School of Mines, Dhanbad, pp. 51.

Noffke, N., and Krumbein, W.E., 1999, A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics: Sedimentology, v. 46, pp. 417–426.

Noffke, N., Gerdes, G, Klenke, T., Krumbein, W.E., 2001, Microbially induced sedimentary structures – A new category within the classification of Primary Sedimentary Structures: Journal of Sedimentary Research, v. 71, pp. 649-656.

Noffke, N., Knoll, A.H., Gotzinger, J., 2002, Sedimentary controls on the

December 2012
formation and preservation of microbial mats in siliciclastic deposits: a case study from the upper Neoproterozoic Nama Group, Namibia: Palaios, v. 17, pp. 1–14.

Noffke, N., Gerdes, G., Klenke, T., 2003a, Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic and evaporitocarbonate): Earth-Science Reviews, v. 52, pp. 1–14.

Noffke, N., Haizen, R.M., Nhleko, N., 2003b, Earth’s earliest microbial mats in a siliciclastic marine environment (Mozzaun Group, 2.9 Ga, South Africa): Geology, v. 31, pp. 673–676.

Noffke, N., 2009, The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits: Earth-Science Reviews, v. 96, pp. 173–180.

Noffke, N., Eriksson, K.A., Hazen, R.M., Simpson, E.L., 2012, A new window into Early Archean life: Microbial mats in the Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa): The Geological Society of America, v. 34, pp. 253-256.

Park, R., 1977, A note on the significance of lamination in stromatolites: Sedimentology, v. 23, pp. 379–394.

Paterson, D.M., Daborn, G.R., 1991, Sediment stabilization by biological actions: significance for coastal engineering: In: Peregrine, D.H., Loveless, J.H. (Eds.) Developments in Coastal Engineering, University of Bristol Press, Bristol, pp. 111–119.

Patranabis-Deb, S., Chaudhuri, A.K., 2007, A retreating fan delta system in the Neoproterozoic Chattisgarh rift basin, central India: major controls on its evolution: AAPG Bulletin, v. 91, pp. 785–808.

Paul, S., 2005, Facies, palaeography and depositional sequence analysis in Episodes Vol. 35, no. 4

Paterson, D.M., and Sarkar, S., 1996, Precambrian bedding planes- bound to part of Meso-to-Neoproterozoic rocks of Chattishgarh Supergroup, India: Ph.D thesis (unpub.), Indian School of Mines, Dhanbad, pp. 153

Paterson, D.M., Daborn, G.R., 1991, Sediment stabilization by biological actions: significance for coastal engineering: In: Peregrine, D.H., Loveless, J.H. (Eds.) Developments in Coastal Engineering, University of Bristol Press, Bristol, pp. 111–119.

Patranabis-Deb, S., Chaudhuri, A.K., 2007, A retreating fan delta system in the Neoproterozoic Chattisgarh rift basin, central India: major controls on its evolution: AAPG Bulletin, v. 91, pp. 785–808.

Paul, S., 2005, Facies, palaeography and depositional sequence analysis in part of Meso-to-Neoproterozoic rocks of Chattishgarh Supergroup, India: Ph.D thesis (unpub.), Indian School of Mines, Dhanbad, pp. 153

Pflug, F., and Sarkar, S., 1996, Precambrian bedding planes- bound to remain: Journal of Geological Society of America, v. 28, pp. 491.

Pflug, F., 1999, Matground structures and redox facies: Palaios, v. 14, pp. 25–39.

Pietrogrande, M.C., Zampolli, M.G., Dondi, F., Szopa, C., Sternberg, R., Buch, Pflug, F., and Sarkar, S., 1999, Microbial mats in the Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa): The Geological Society of America, v. 34, pp. 253-256.

Pfugler, F., 1999, Matground structures and redox facies: Palaios, v. 14, pp. 25–39.

Petrogrande, M.C., Zampolli, M.G., Dondi, F., Szopa, C., Sternberg, R., Buch, A., Raulin, F., 2005, In situ analysis of the Martian soil by gas chromatography: Decoding of complex chromatograms of organic molecules of exobiological interest: Journal of Chromatography A, v. 1071, pp. 255–261.

Sarkar, S., Banerjee, S., Eriksson, P.G., Catuneanu, O., 2005, Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: examples from India: Sedimentary Geology, v. 176, pp. 195–209.

Sarkar, S., Banerjee, S., Samanta, P., Jeevankumar, S., 2006, Microbial mat induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga. Chorhat Sandstone, Vindhyan Supergroup, M.P., India: Journal of Earth System Science, v. 115, no. 1, pp. 49–60.

Sarkar, S., Bose, P.K., Samanta, P., Sengupta, P., and Eriksson, P.G., 2008, Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation: Precambrian Research, v. 162, pp. 248–263.

Sarkar, S., Sammanta, P., Altermann, W., 2011, Setalfs, modern and ancient: Formative mechanism, preservation bias and palaeoenvironmental implications: Sedimentary Geology, v. 238, pp. 71–78.

Schieber, J., 1986, The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins: Sedimentology, v. 33, pp. 521–536.

Schieber, J., 1998, Possible indicators of microbial mat deposit in shale and sandstones: example from the Mid- Proterozoic Belt Supergroup, Montana, USA: Sedimentary Geology, v. 120, pp. 105–124.

Schieber, J., 1999, Microbial mats in terrigenous clastics: The challenge of identification in the rock record: Palaios, v. 14, pp. 3–12.

Schieber, J., 2004, Microbial mats in the siliciclastic rock record: a summary of the diagnostic features. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and Events, Elsevier, Amsterdam, pp. 663–673.

Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., Catuneanu, O., 2007, Atlas of microbial mat features preserved within the Siliciclastic rock record: Atlases in Geoscience, Elsevier, Amsterdam, pp. 311.

Seilacher, A., 1999, Biomat-related lifestyles in the Precambrian: Unexplored microbial worlds: Palaios, v. 14, pp. 86–93.

Simmonson, B.M., Carney, K.E., 1999, Roll-up structures: evidence of in situ Microbial Mats in Late Archean Deep Shelf Environments: Palaios, v. 14, pp. 13–24.

Sur, S., Schieber, S. and Banerjee, S., 2006. Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale, Vindhyan basin, India. Journal of Earth Systems Science, v. 115, pp. 61-66.

Partha Pratim Chakraborty is Associate Professor at University of Delhi, Delhi. He received his Masters in 1990 and Ph.D degree in 1996 from Jadavpur University, Kolkata, India. Since 2010 he has worked as a faculty at University of Delhi. He has participated in several IGCP programs.

Subhojit Saha is a Research Scholar at University of Delhi. He received his M.Sc. in Applied Geology from Bengal Engineering and Science University Shibpur, He received his M.Sc. in 2007 from Presidency College, Kolkata. Since 2008 is pursuing his Ph.D and presently is a Senior Research Fellow of Council of Scientific and Industrial Research (CSIR) India. He is a student member of International Association of Sedimentologist.

Priyabrata Das is pursuing his Ph.D. degree from Bengal Engineering and Science University Shibpur, He received his M.Sc. in 2007 from Presidency College, Kolkata. Since 2008 is pursuing his Ph.D and presently is a Senior Research Fellow of Council of Scientific and Industrial Research (CSIR) India. He is a student member of International Association of Sedimentologist.

Kaushik Das is Assistant Professor (on lien) at Hiroshima University, Japan. He received his M.Sc. in Applied Geology from Bengal Engineering and Science University in 1992 from Jadavpur University; India and Ph.D. in Earth and Planetary Sciences in 2000 from Hokkaido University, Japan. From 2000 till 2012 he has worked for NIMS, Tsukuba, Japan and at Banaras Hindu University, India; ISM, Dhanbad, India.