Trends of neglected *Plasmodium* species infection in humans over the past century in India

Rini Chaturvedi, Nimita Deora, Deepam Bhandari, Suhel Parvez, Abhinav Sinha, Amit Sharma

ARTICLE INFO

Keywords:
Neglected *Plasmodium* species
P. malariae
P. ovale
P. knowlesi
malaria

ABSTRACT

Background: Efforts for malaria elimination in India focus solely on the more prevalent human malaria parasites of *Plasmodium falciparum* (Pf) and *Plasmodium vivax* (Pv). The three non-Pf/Pv species - *Plasmodium malariae* (Pm), *Plasmodium ovale* (Po) and *Plasmodium knowlesi* (Pk) are seldom studied though they are often present as mixed infections with Pf/Pv and thus may be misdiagnosed. This study provides a comprehensive landscape of Pm, Po, and Pk infections from 1930 to 2020.

Methodology: We systematically searched for published literature on Pm, Po, and Pk in India from PubMed database and collated data from 35 studies. The data, starting from 1930, were mapped decade-wise across India. The prevalence of the three neglected *Plasmodium* species and their proportional contribution to reported *Plasmodium* mixed-infection were also calculated and analysed.

Principal findings: Amongst the three non-Pf/Pv species, Pm infections have been reported in greater numbers across India and were mostly mono-infections till 1980. From 1983 onwards, reports of Pm mixed infections with Pf/Pv started to emerge. In contrast, reports on occurrence of Po are still rare barring few mixed infection studies. Further, Pk mono- and mixed cases were first reported in 2004 in India and Pk now has been found reported from four Indian states.

Conclusion: This is the first account of country-wide assimilation of reported malaria parasite species data that covers Pm, Po, and Pk infection profiles from 1930 to 2020. This study illustrates the need to survey all 5 human malaria parasite species in India and to target them collectively during the malaria elimination phase.

1. Introduction

Malaria is a parasitic disease caused by various species of the protozoan *Plasmodium* that can spread to a susceptible mammalian host by female mosquito vectors belonging to *Anopheles* genus. In 2018, an estimated 228 million cases and ~ 0.40 million deaths from malaria were reported globally; 85% of malaria burden was in India and in 18 countries of Africa [1]. The *Plasmodium* species infecting humans are *Plasmodium falciparum* (Pf), *Plasmodium vivax* (Pv), *Plasmodium malariae* (Pm), *Plasmodium ovale* (Po), and *Plasmodium knowlesi* (Pk) either as single *Plasmodium* species (mono-infections) or with multiple species (mixed-infections) [2,3]. The most common causal agent for malaria in humans is Pf while the other four species (Pv, Pm, Po and Pk) are commonly termed as non-falciparum malaria agents. These five species differ from each other in their clinical manifestations, transmission dynamics, ability to elicit immune responses in hosts, and resistance patterns to antimalarial drugs [4–6], apart from the differences in their definitive hosts (invertebrate mosquito vectors) and secondary (mammalian) hosts. Whereas Pf (believed origin: avian parasite in humans and *P. reichenowi* in chimpanzees), Pv (believed origin: African great apes), Pm (believed origin: African great apes), and Po (believed origin: African great apes) have established themselves as human...
malaria parasites with the ability to sustain independent human-to-human transmission through anopheline mosquito vectors, *P. knowlesi* is unable to independently sustain human-to-human transmission in the absence of extra-human vertebrate hosts (long-tailed and pig-tailed macaques). The vector species transmitting most of the *Pf* and *Pv* malaria in India include *An. culicifacies, An. dirus, An. fluviatilis, An. minimus, An. sundicus* and *An. stephensi* [7,8]. However, for the non-*Pf/Pv* malaria transmission in India, studies mentioning incriminating vector species are not conclusive but include *An. culicifacies, An. fluviatilis*, and *An. varuna* for *Pm* [9], *An. stephensi, An. subpictus* and *An. dirus* for *Pf* [7,10] and *An. dirus, An. sundicus* and *An. latens* for *Pk* [11–15].

Pf remains the most virulent form of the parasite and is responsible for most of the fatalities. Defying the norm of *Pf* being a threat to malaria elimination program, *Pv* is now equally considered a threat to elimination with the emergence of cases with severe clinical presentations and deaths [16]. In addition, the threat from *Pv* is due to the asymptomatic infections and clinical relapses attributed to * Pv* hypnozoites. According to the World Malaria Report 2019, India accounted for 47% of all *Pv* cases globally in 2018 [1]. The other three species are often neglected but their infections have been reported in India since several decades.

In terms of prevalence/occurrence, *Pf* and *Pv* dominate *Pm* in India [16]. Malaria due to *Pm* is known as quartan malaria since fever in such patients frequently occurs every fourth day [2]. The peak parasitemia in *Pm* infection is lower than that in *Pf* or *Pv* infections [9]. This is one of the main reasons that most *Pm* infections are either overlooked or are misidentified as mono-infections of *Pf* or *Pv* by microscopy; note that *Pf* has a tendency to predominate in mixed infections [4]. *Pf* is known to infect all ages/stages of RBCs; *Pm* preferentially infects the older RBCs while *Pv* and *Po* invade younger RBCs [4,9]. Further, the intra-erythrocytic asexual developmental cycle of *Pm* is of 72 hours which might give more time to the human host to develop early immunity [9]. An interesting feature of *Pm* is its ability to persist in mammalian hosts for an extended period of time [9]. These key factors probably make *Pm* infections milder. Unlike *Pm*, *Po* causes tertian malaria in humans and is less dangerous than *Pf* [17]. *Po* consists of two distinct species - *Po curtisi* and *Po wallikeri* that occur globally [18]. *Po* cases in India are rarely reported as compared to *Pm* cases. *Po*, much like *Pv*, can cause relapse since its life cycle includes hypnozoites which can lay dormant in liver cells in human hosts. Although *Po* causes mild infections, few case studies indicate the potential of this particular species to cause severe disease and even death [19,20]. The fourth non-falciparum species, *Pk*, is known to infect macaques but it also has the capability to infect humans [3]. *Pk* is often misdiagnosed as *Pm* microscopically and has been proven to reach high parasitemia and to cause anaemia in patients [21].

The three non-*Pf/Pv* species (*Pm*, *Po*, and *Pk*) are thus either overlooked or misdiagnosed as either *Pf* or *Pv* and hence are clubbed as neglected *Plasmodium* species [22]. Despite scattered reports of these non-*Pf/Pv* species in India, their true burden and distribution across the country remains elusive. There is also a lack of knowledge about *Pm*, *Po*, and *Pk* vectors, infection rates and transmission dynamics. Further, the roles of each of *Pm*, *Po*, and *Pk* towards their specific clinical manifestations in mixed infections remains unclear. Knowing the burden and geographical distribution of these non-*Pf/Pv* species singly or in combination across India will not only highlight their underestimated importance but also help in planning dedicated studies towards estimating their real prevalence, understanding their eco-epidemiology, transmission dynamics, responsible vector species identification, vectorial capacity, and type of natural hosts (particularly in case of *Pk* where a zoonotic spill-over is proposed). Information on these parameters will enrich our knowledge for species-specific interventions and will make us future-ready to plan malaria elimination.

To the best knowledge of the authors, no evidence for direct and primary estimation of the burden of these species exists and no attempts to synthesize the available information from published data are known. Since on the whole research to estimate the burden of *Pm*, *Po* and *Pk* has been lacking in India, most of the information on these species is thought to be available as a secondary outcome of published research and/or case reports on *Pf* and *Pv*. Thus, the present study was done to establish a first of its kind synthesized database on the reported burden of *Pm*, *Po* and *Pk* in India from different studies published between 1930 and 2020. In the following sections, we will discuss in detail the species-specific distribution, prevalence, proportional contribution to reported *Plasmodium* mixed-infections, diagnosis and recommended treatment options/ outcomes from published evidence of *Pm*, *Po* and *Pk* in India.

2. Methodology

2.1. Data sources and search strategy

A systematic literature analysis was conducted on human *Plasmodium* infections from *Pm*, *Po* and *Pk*. Data sources selected in this study were retrieved from PubMed. In addition, Google® was also explored to supplement the research articles which did not appear in PubMed. The search terms were “Plasmodium malariae” and/or “Plasmodium ovale”, and/or “Plasmodium knowlesi” with the “state/region name” and the country name - “India”. Some relevant articles were extracted from cross-referencing.

2.2. Inclusion and exclusion criteria

We included only reports of *Pm*, *Po* and *Pk* infections (either as mono- or mixed infections with any *Plasmodium* species) in humans (including case studies) with available full text. Case studies were only included when depicting the distribution of cases and were excluded for the calculation of either proportion or prevalence for the species. No time frame was specified while searching the databases.

2.3. Data extraction and analysis

The distribution of *Pm*, *Po*, and *Pk* as mono- and mixed infections (in various combinations with each other and with *Pf/Pv*), reference year of data and name of the state/region/district were extracted from the reported studies and tabulated into a detailed district-level (where available) information spreadsheet (Supplementary tables 1 and 2). Each individual dataset was grouped into decadal data depending upon the availability for various years. Species-specific prevalence of *Pm*, *Po*, and *Pk* in India, in terms of mono- and mixed infections each, was estimated as a proportion of the total species-specific positive cases (as mono- & mixed infections) from the total number of persons screened for malaria for each decade and expressed as percentage. Species-specific prevalence = (total number of species-specific cases / total number of persons screened for malaria) * 100. The prevalence (%) in each decade was plotted as bar-graphs (Fig. 3a and b). The studies which did not specify the total number of persons screened for malaria were excluded for the estimation of prevalence. The prevalence of *Pk* could not be calculated as the total number of persons screened for malaria was not available. Details of the total number of people screened for malaria, the positive malaria cases and species distribution for respective geographical areas are available in supplementary table 1. The proportional contribution of different combinations of mixed-species in the total reported *Plasmodium* mixed infections was calculated by taking the percentage of the total number of different species-specific mixed-infections from the total number of mixed-infections (excluding *Pf/Pv*) for a particular decade (Fig. 5) [Proportion of specific mixed-species combination = (total number of specific mixed-species combination / total number of mixed-species infections) * 100]. For calculating this, all the studies (excluding case studies) were included - even ones that did not specify the total number of persons screened for malaria (and hence were excluded from estimating prevalence). The results from PCR diagnosis were preferred over microscopy in calculating species-specific prevalence and proportions. All percentages in...
decimals are shown up to 2 decimals places by rounding-up to the next digit if more than five.

3. Results

A total of 35 studies were included from 180 search hits retrieved from PubMed and Google® for Pf, Po, and Pk infections in India - spanning 1930 to 2020. For species-specific distribution and prevalence, these data were grouped into six decades: 1930–1939, 1940–1950, 1980–1989, 1990–1999, 2000–2009 and 2010–2019 based on the reference year of the data. Only scattered case reports of Pf/Po/Pk were found from 1951 to 1979 and hence these were not included in showing the decadal distribution. For proportional contribution of each species in Pf/Po/Pk mixed infections, the last two decades were modified to 2000–2010 and 2011–2019 as per the availability of data. The compiled data were used to map the distribution of occurrence of Pf/Po/Pk on India’s map as per the above decadal intervals (Fig. 1a-d).

Out of the 35 studies included in this paper, we found that in a little more than half (51%; N = 18; data reference years between 1930 and 2004) microscopy was used to diagnose malaria and to classify the attribution Plasmodium species. About 43% of the studies (N = 15; data reference year 2005 onwards) utilized both microscopy and PCR (nested and gene-specific) for malaria diagnosis and species confirmation. PCR alone was used to diagnose malaria and Plasmodium species in the rest ~6% studies included (N = 2).

3.1. Geographical distribution of Pf cases

We collated 24 reports for Pf from the 1930s to present. Of the three non-PfPv species, Pf cases have consistently been recorded in almost every decade since the 1930s (Fig. 1). However, from 1930 to 1975, only mono Backspace-infections of Pf were reported in various states of India (Fig. 1). Between 1930 and 1939, it was observed that Pf mono-infections were reported from four states of Assam, Haryana, Karnataka and West Bengal (Fig. 1a) [23]. However, from 1940 to 1950, the reported Pf infections were observed to be distributed throughout India (Fig. 1b) [23]. From 1960 to 1975, only a handful of case-studies reported mono-infections of Pf in Haryana, Karnataka, Kerala, and Tamil Nadu (not shown separately in figures) [24,25].

Reports of Pf mixed infection started to rise from the 1980s with the first case being reported from Sundargarh district of Odisha in 1988–1989 [26]. The mixed infections of Pf with Pf/Pv (Pf + Pf; Pf + Pv; Pf + PV + Pf) were reported in Odisha’s two main districts of Koraput and Sundargarh (Fig. 1c) [26–29]. Along with Odisha, the Bastar district of Chhattisgarh (previously a part of Madhya Pradesh), reported Pf mono-infection and mixed infection (Pf + Pm) (Fig. 1c) [30]. From 1990 to 1999, case-studies for Pf infections were reported in three states namely – Kerala, Uttarakhand (previously a part of Uttar Pradesh) and West Bengal (Fig. 1d) [31–34]. It is important to note that in Kerala, three cases found positive for Pf infection were earlier misidentified and reported as Pv cases (Fig. 1d) [34]. Pf mono-infection along with Pf + Pm mixed infection was also reported in Delhi in the same time period (Fig. 1d) [35].

Between 2000 and 2009, the cases for Pf infections were recorded in five different states of India namely - Arunachal Pradesh (Pf + Pm), Jharkhand (case study), Karnataka (case study from Bengaluru), multiple locations in Odisha (10 districts) (Pf + Pm; Pf + Pv; Pf + Pv + Pm) and West Bengal (Pf) (Fig. 1e; Supplementary table 1) [36–41]. A study from Arunachal Pradesh was the first to report Pf cases from the North-Eastern part of India (Fig. 1e) [36]. For cases in Odisha, both diagnostic techniques were utilized (microscopy and PCR) to detect Pf cases and it was observed that microscopy significantly underestimated the frequency of both mono- and mixed Pf infections [39].

Multiple studies reported the mono- and mixed infections of Pf that were scattered in multiple states of India since 2010 but the prevalence of the same was low (Fig. 1f) [42–44]. The diagnosis of Pf cases in Assam was achieved by nested PCR technique although no cases were detected when diagnosis was performed microscopically – this re-confirms that microscopy alone is not sufficient for detection of all Pf infections [45]. A report of a unique combination of mixed infection of Pf with both Po and Pf (Pf + Po + Pf) emerged in Jharkhand in 2014 which was not reported anywhere earlier in India (Fig. 1f) [44]. Following the previous years’ trend, Odisha reported Pf (mono- and mixed infections) cases in multiple districts of the state (Pf + Pm; Pf + Pm; Pf + Pm + Pf) (Fig. 1f) [44,46]. Bastar in Chhattisgarh appears to be one of the hotspots for these neglected Plasmodium infections as all cases of Pf and Po have been reported from this particular region in Chhattisgarh earlier as well [44,47,48]. Bastar is the first place in India where the report of a very rare case of mixed infection with four species (Pf, Po, Pm and Pf) emerged in 2015 [47]. However, no further studies have been reported for Pf infections from 2015. But the reported rise in Pf mixed infections in 2010–2015 suggests that Pf was able to infect humans at more regular intervals in combination with Pf - or more targeted studies were conducted to identify Pf infections - or possibly that a high number of studies reported Pf by chance.

3.2. Geographical distribution of Po and Pk infections

We collated 9 reports for Po infections from 1930 to date, starting in 1988 from Koraput district (Odisha) with three mixed infections of Po with Pf (Fig. 1c) [49]. The first report of Po mono-infection in north India was observed in Delhi in the year 1997 (Fig. 1d) [35]. Between 2000 and 2009, Po (mono-infections) were also reported in Assam and Gujarat (Fig. 1d) [50,51]. The Po + Pf pair has been recorded from Jharkhand, Madhya Pradesh and Odisha between 2010 and 2015 (Fig. 1f) [44,52,53]. Po sympatric species - Po curtisi and Po wallikeri - have been reported from Bastar (Chhattisgarh) along with a fatal case of cerebral malaria with Po + Pf (Fig. 1f) [52].

Only two studies have reported human Pk infections in India to date [54,55]. (Fig. 1f). Between 2004 and 2010, 53 Pk infections (mostly mixed with Pf (46) and Pv (4)) were reported from the Andaman and Nicobar Islands predominantly from Car Nicobar and Port Blair (Fig. 1f) [54]. The other study published in 2020 (samples collection was done from 2011 to 2018), the occurrence of Pk infections was reported from Bihar, Delhi and Uttar Pradesh (Fig. 1f) [55].

The distribution of the number of non-PfPv infections (mono- and mixed-infections) across the identified six decades (Fig. 2) shows rise in Pf mixed infections from the 1980s, while Po mixed and Pk mixed infections were reported between 2011 and 19 and 2000–2010 respectively (Fig. 2). The reported number of mixed infections for Pm was greater than Pf mono-infections from 1990 onwards. For the combined six decades (1930–2019), the number of Pm mono-infections seems to be considerable higher than Pf mixed infections while mixed infections for both Po and Pk dominated over their corresponding mono-infections.

3.3. Variations in parasite species-specific prevalence

We then analysed species-specific prevalence of mono- and mixed infections across six decades in India (Fig. 3a). A higher prevalence of Pf mono-infection was observed during 1930–1939 (1.3%) as compared to that in the following decade (0.9%). Moreover, Pm in the form of both mono- and mixed infection was observed to be more prevalent during 2000–2009 (0.68% (Pm - 0.3%, Pm + Pf - 0.3%, Pm + Pm0.06%, Pm + Pf + Pm - 0.03%)) followed by 2010–2019 (0.57% (Pm - 0.3%, Pm + Pf - 0.2%, Pm + Pf - 0.03%, Pm + Pm + Pf + Pm - 0.07%, Pm + Po + Pm - 0.01%)) and 1980–1989 (0.32% (Pm - 0.2%, Pm + Pf - 0.03%, Pm + Pf - 0.02%, Pm + Pf + Pm - 0.04%)). Furthermore, during 1990–1999 Pf was reported with only Pf in the form of mixed infections (0.2%) and rest as mono-infection (0.03%) (Fig. 3a).

It has been reported that Pf mono-infections were scattered in 14 regions/states of India between 1930 and 1950 (Fig. 3a) [23]. The
Fig. 1. Geographical distribution for the years. A) 1930–1939; B) 1940–1950; C) 1980–1989, D) 1990–1999; E) 2000–2009; F) 2010–2019. *P. malariae* (*Pm*), *P. ovale* (*Po*) and *P. knowlesi* (*Pk*) mono-infections are denoted as circles; mixed infections are denoted as - triangle for *Pm* with *Pf/Pv/Po*; rhombus - for mixed infections with *Po* with *Pf/Pv/Pm*; four-point star - for mixed infections of *Pk* with *Pf/Pv*; 7-point star - for mixed infection with all four species i.e. *Pm, Po, Pv* and *Pf*.

R. Chaturvedi et al.
highest prevalence in that period for *Pm* cases was recorded in West Bengal (1.8%), followed by current state of Telangana (1.4%), Assam (1.4%), Tamil Nadu (1.2%) and Maharashtra (1.1%) (Supplementary table 1) [23]. Reports of mixed infections of *Pm* with *Pf/Pv* started to emerge from 1981 with very low prevalence from the two neighbouring states - Chhattisgarh (*Pm* + *Pv* - 0.1%) and Odisha (*Pm* + *Pf* - 0.02%; *Pm* + *Pv* - 0.01%; *Pm* + *Pv* + *Pf* - 0.04%) (Fig. 3a; Supplementary table 1) [26–30]. *Pm* mixed infection with *Pf* was reported in Delhi with 1.2% prevalence in 1997 (Supplementary table 1) [35]. *Pm* cases have been persistent in Odisha and have been recorded every decade from the 1980s. From 2000 to 2009, only three states reported a low prevalence of *Pm* mono- and/or mixed infections – Arunachal Pradesh, Odisha and West Bengal [36,39–41]. Different combinations of mixed infections were observed in Odisha (*Pm* + *Pf* - 0.5%, *Pm* + *Pv* - 0.1%, and *Pm* + *Pv* + *Pf* - 0.04%) and Arunachal Pradesh (*Pm* + *Pf* - 0.05%) whereas West Bengal reported only *Pm* mono-infections (Fig. 3a; Supplementary table 1) [36,39,40]. The highest prevalence of *Pm* + *Pf* (22%) was observed in 2008 and was distributed in 8 different districts of Odisha (Supplementary table 1) [39].

Between 2010 and 2015, *Pm* + *Pv* + *Pf* mixed-species infections occurred at a prevalence of 0.1%. In addition, a rare case with four species infection was observed in Chhattisgarh (*Pm* + *Po* + *Pv* + *Pk* - 0.01%) (Fig. 3a; Supplementary table 1) [47]. *Pm* mixed infections were reported in six states namely - Assam (2012; *Pm* + *Pf*/0.8%), Chhattisgarh (2015; *Pm* + *Pf* - 0.04%; *Pm* + *Pv* + *Pf* - 0.1%), Madhya Pradesh (2012; *Pm* + *Pf* - 0.4%), Maharashtra (2012; *Pm* + *Pf* - 0.4%; *Pm* + *Pv* - 0.4%), Odisha (2014; *Pm* + *Pf* - 0.3%; *Pm* + *Pv* - 0.2%; *Pm* + *Pv* + *Pf* - 0.3%), and Tamil Nadu (2012; *Pm* + *Pf* - 0.2%) (Fig. 3a) [42,45–48]. *Pm* mono-infections were also observed in the same time period in five states - Assam (1%), Andhara Pradesh (0.8%), Madhya Pradesh (1%), Odisha (0.6%), and Tamil Nadu (0.8%) (Supplementary table 1) [42,45,46,48]. *Pm* mono- and mixed infections therefore show their persistent nature in various states of India with varying prevalence. However, no reports of *Pm* monoand/or mixed infection cases have been noted after 2015. This may stem from the use of microscopy and RDTs for diagnosis as former will tend to miss or misidentify non-*Pf/Pv* infections while the latter cannot detect these neglected *Plasmodium* parasites.

The overall prevalence of *Po* has been low compared to that of *Pm*. *Po* mono-infection was detected in Delhi between 1992 and 1997 but at low prevalence of 0.03% (Fig. 3b) [35]. Alarmingly to date only Bastar district in Chhattisgarh has reported the prevalence of a unique mixed combination of *Po* (*Po* + *Pv* + *Pf* - 0.01%) and a rare quadruple mixed species infection (*Pm* + *Po* + *Pv* + *Pf* - 0.01%) in the year 2015 (Fig. 3b; Supplementary table 1) [47]. Such cases depict the complexity of emerging mixed *Plasmodium* infections and their threat to elimination of malaria if the focus remains only on *Pv* and *Pf* surveillance.

We have also analysed the dominance of mixed over mono-infections expressed in terms of number of mixed infections per mono-infection for each species across the identified decades (Fig. 4). Mixed infections consistently dominate for each species (except between 1980 and 1989) (Fig. 4). For each mono-infection of *Pm* and *Po*, just a little over 1 mixed infection was reported except for *Pm* in 1980–1989 (less than one mixed infection for each mono-infection) and in 1990–1999 (more than 6 mixed infections for each mono-infection) was reported (Fig. 4). Strikingly, the dominance of mixed over mono-infections was greater for *Pk* wherein between 3 and 5 mixed infections were always reported for each mono-infection. Overall, mixed infections dominated for *Po* and *Pk* (Fig. 4).

3.4. Proportional contributions in mixed *Plasmodium* infections

Amongst all mixed infections, *Pm* + *Pf* has contributed the highest proportion for the last three decades (Figs. 1, 6). Reports of *Pm* and *Po* co-infection started to emerge in 1980s (Fig. 1) when all 30 mixed infections had *Pm* as a component. The triple infection *Pm* + *Pv* + *Pf* comprised ~47% of the total followed by *Pm* + *Pf* (33%) and *Pm* + *Pv* (20%) in 1980s. Between 1990 and 1999, of 37 mixed infections, all were *Pm* + *Pf* while from 2000 onwards diverse combinations of mixed-infections involving *Pm/Po/Pk* were reported which included all five *Plasmodium* species i.e. *Pm*, *Po*, *Pk*, *Pv*, and *Pf* (Fig. 5). Between 2000 and 2010, almost half (46%) of the total 125 mixed infections had *Pm* + *Pf*. *Pk* with either *Pf* (37%) or *Pv* (~4%) were also observed for the first time in Andaman & Nicobar between 2004 and 2010 (Fig. 5; Supplementary...
Fig. 3. Graphical representation of prevalence. A) Pm cases either as mono- or mixed-infections (with Po, Pv and Pf) for the years 1930–2019 and, B) Po cases either as mono- or mixed-infections (with Pm, Pv and Pf) for the years 1990–2019 in India. The numbers at the top of each bar indicate the total number who were screened for malaria. The data time-frames (in decades) are specified at the bottom. Special note for Singh et al.: for the ease of description and uniformity, the data from 1930 to 1950 were split into that of two decades 1930–1939 and 1940–1950. The year 1950 was included in the previous decade (1940–1949) as there were no studies reporting Pm between 1951 and 1979. Where the data spanned across two decades and were not available separately for each of the two decades, such data were split equally into two decades in order to maintain uniformity.

Fig. 4. Distribution of mono- or mixed infections. The dominance of mixed over mono-infections was calculated by taking the ratio for mixed over mono-infections for each Pm, Po, and Pf cases from the 1980s decade.
3.5. Treatments and outcomes

The treatment plan for malaria relies on the specific diagnosis of the Plasmodium species followed by recommended chemotherapy. Chloroquine may be administered in conventional doses for *Pm*, *Po*, and *Pk* at 10 mg base/kg body weight for uncomplicated cases [56]. The Government of India’s recommended treatment plan for *Po* is the same as for *Pv* as both species tend to form hypnozoites and hence use chloroquine (25 mg/kg body weight for three days) along with radical treatment with primaquine (15 mg daily for 14 days; total 3.5 mg base/kg body weight) [57]. Although *Pm* is reported to be sensitive to chloroquine, the Government of India recommends that *Pm* should be treated in the same way as *Pf*. For mixed infections of *Pm* with *Pf*, the focus should be on the species known to have a higher virulence or fatality - hence the treatment for mixed infections involving *Pm/Po/Pk* is generally recommended to be the same as *Pf* treatment i.e. artemisinin combination therapies (AS; SP; artesunate 4 mg/kg body weight for 3 days; sulfadoxine 25 mg/kg body weight; and pyrimethamine 1.25 mg/kg body weight) should be administered in all India except the Northeast [57]. In such areas with documented failure rates of more than 10% with sulfadoxine-pyrimethamine, artemether combined with lumefantrine (AL) is the treatment of choice for *Pf* malaria (artemether 80 mg + lumefantrine 480 mg for more than 34 kg weight) [57]. Although most malaria mixed infection cases recover there have been a few reports of fatal outcomes from *Pm + Pf*.

Two studies have reported *Pk* infections from India and showed its distribution along with *Pf* and/or *Pv* [54,55]. *Pk* mono-infections are likely susceptible to chloroquine while the co-infecting species *Pf* might be resistant to chloroquine in India. For this reason, *Pk* infections with *Pf + Pv* are given ACTs. Fatalities related to *Pk* infections have been reported from Malaysian region earlier and has been considered as potentially life-threatening in a few cases [21].

For the treatment of *Po* infections, all the cases reported from Indian states since 1980s are being prescribed chloroquine with mostly successful treatment outcomes. To prevent relapse due to the ability of *Po* to form hypnozoites, primaquine has to be co-administered with chloroquine in all G6PD sufficient children and adults except infants and pregnant ladies. A few instances of severe *Po* infections, either mono- or mixed infections have been reported. In 1988, a case report from Odisha showed the infection of a 7-month-old male with *Pv + Po* mixed infection. This patient was given 50 mg of chloroquine, but within two months patient was found to be positive again with *Po + Pv + Pf* mixed infection [49]. A fatal case of *Po* infection was also reported in Delhi in 1997 wherein a 60-year-old female who was hospitalised in a comatose state died within 48 hours of starting quinine-sulphate infusion [35]. Another case of severe disease due to *Po* was reported in 2015 in a 75-year-old male in Uttar Pradesh. The patient presented with *Po* infection with complicated jaundice, hypotension, thrombocytopenia and acute renal failure [58]. The patient was administered IV artesunate, ceftriaxone and antipyretics and discharged on primaquine for 14 days [58]. An interesting case of a 12-year-old boy with rare quadruple mixed species infection (*Pm + Po + P + Pf*) was reported in Chhattisgarh [47]. In this case, the bivalent *Pf + Pv* RDT showed the presence of *Pf* infection only. The microscopist was unable to identify other Plasmodium species and the patient was given oral AS + SP. The fever of the patient did not reduce, and the patient was then given IV Quinine. However, the patient soon left the hospital and the exact outcome could not be determined [47]. This particular case of misdiagnosis emphasises the importance of utilizing PCR-based diagnosis techniques for non-*Pf/Pv* species. Misdiagnosis poses severe health concerns and can lead to delayed treatment/parasite clearance.

4. Discussion

The Government of India has developed a framework to eliminate malaria from India by the end of 2030 [59]. This program focuses on eliminating the burden of malaria due to *Pf* and *Pv* in India. However, no light is shed upon the burden and/or elimination of the non-*Pf/Pv* malaria agents (*Pm*, *Po*, and *Pk*). Malaria in India is predominantly caused by *Pf* and *Pv* with gradually declining peaks in reported cases from 1976 (~6.4 million cases), 1996 (~3 million cases) and 2015 (~1.1 million cases) [59]. Despite this, there has been a conspicuous increase in the proportional contribution of *Pf* malaria as compared to the *Pv* malaria in
India: 12% in 1976, 39% in 1996 and 67% in 2015, as reported by the National Vector-Borne Disease Control Program (NVBDPC) of the Government of India [59]. The NVBDPC however does not track malaria cases due to \textit{Pm}, \textit{Po} and \textit{Pk} and hence data on non-\textit{PfPv} infections in India are available only in published case reports and other studies, and that too usually as a secondary outcome. This study, therefore, puts together and elaborates on the published data from all possible resources on the occurrence, distribution and prevalence of neglected \textit{Plasmodium} spp. in India over nearly a century (1930–2020). The current study shows that \textit{Pm} and \textit{Po} infections (though less when compared to \textit{Pv} and \textit{Pf}) have been reported since 1930 and the 1980s respectively followed by that of \textit{Pk} from 2004 onwards. This work thus emphasises the significance and need of tracking malaria infections due to the neglected parasites - \textit{Pm}, \textit{Po}, and \textit{Pk}.

Infection by \textit{Pm} is shown to be more prevalent than \textit{Po} or \textit{Pk} in India. \textit{Pm} is reported to survive in a single host for decades and this might be advantageous to its long-term survival, particularly in absence of symptoms in the host [69,61]. Persistence of \textit{Pm} in infecting humans presents an opportunity for sustained transmission of malaria [69,61]. The highest number of reported studies for mixed infections of \textit{Pm} seems to be concentrated in Odisha while for \textit{Po} mixed infections, Bastar (Chhattisgarh) has the highest number of reports. So, it could be proposed that both Odisha and Bastar (Chhattisgarh) may be considered as potential hotspots for \textit{Pm} and \textit{Po} infections in India respectively. While human \textit{Pk} infections are more common in neighbouring south-east Asian countries like Malaysia, only 2 studies have reported \textit{Pk} infections in India from four states namely- Andaman & Nicobar, Bihar, Delhi, and Uttar Pradesh (2004–2018) [54,55]. It is to be noted that \textit{Pk} infections were previously misdiagnosed as \textit{Pm} as they appear to be morphologically similar and it was not until molecular detection methods (like PCR) were used that both infections became common in South-East Asia [62]. This information on potential \textit{Pm}/\textit{Po}/\textit{Pk} hotspots could serve a vital role for the decision-making bodies to focus on development of policies on the targeted detection, diagnosis, and treatment of neglected \textit{Plasmodium} species in India. It is worthwhile to note that non-\textit{PfPv} mixed infections were reported more after 1980s for \textit{Pm} and after the year 2000 for \textit{Pk} and \textit{Po} mixed infections. This could be due to many factors including more emphasis on non-\textit{PfPv} species detection, better technology (PCR) to detect mixed infections (especially those involving non-\textit{PfPv} species), and misdiagnosis of species by microscopy particularly between \textit{Pv} and \textit{Pm}. However, it has to be noted that the relative abundance of reported/published prevalence of non-\textit{PfPv} species in certain areas is most likely to be due to a higher number of studies conducted and therefore reported due to a higher established burden of \textit{Pf} and \textit{Pv} in these areas (Odisha, Chhattisgarh, Madhya Pradesh). A similar discrepancy could be clearly interpreted from the difference in reported \textit{Pm} occurrence between 1930s and 1940s. It is evident from the data in supplementary tables that both decades, starting 1930 and 1940, differ in the number of studies reported within the respective time brackets. Whereas 1930s reported only 3 studies (involving 3 states; with 14,830 blood smears examined), 1940s reported 14 studies from 14 states wherein 2,10,301 blood smears were examined. Thus, it is clear that the wider reported distribution of \textit{Pm} during 1940–1950 is due to huge increase in the number of reporting studies, and Fig. 1 shows only the occurrence of \textit{Pm} across India. Further, it is important to note that the prevalence of \textit{Pm} is similar in 1930s (1.3%) and 1940s (0.97%) and hence it could be said that the burden of \textit{Pm} is similar between the two decades and not to be too different. This again highlights the need for adding these non-\textit{PfPv} species in routine surveillance, independent of existing burden of \textit{Pf} and \textit{Pv} malaria, to gauge the real burden of neglected \textit{Plasmodium} species in India and the reasons thereof. In addition, since most of the PCR-based \textit{Plasmodium}-species research is focussed in areas with relatively better access to health care and health seeking behaviour, these neglected \textit{Plasmodium} species may be left undetected in remote and hard-to-reach areas with ongoing malaria transmission. A further layer of complexity in detecting and understanding the real burden of these neglected \textit{Plasmodium} infections in humans is added by a relative lack of entomological studies to identify the local vectors that transmit these parasites to humans. This is particularly true for \textit{Pk} infections as reported from Andaman and Nicobar Islands where \textit{An. sundicus} has been specifically reported to carry \textit{Pk} parasites [63].

One of the major restrictions in comparing the data for the neglected species includes the type of diagnostic techniques (microscopy and PCR) used to detect these infections as the limits of detection are different in both techniques. PCR is \textasciitilde{}50–100 times more sensitive than microscopy [64–68] for the detection of \textit{Plasmodium} (particularly of low density infections). PCR is also a robust tool for species identification (particularly in case of mixed-species infections) and for estimating parasite densities. This therefore contributes to the difference in reported prevalence of different \textit{Plasmodium} species, either singly or as mixed infections, before and after the introduction of PCR in mid-1990s. Thus, an increase in species-specific prevalence of infections (particularly for non-\textit{PfPv} species) post-PCR period may be a false increase as more infections were being detected by PCR.

On the other hand, microscopy has its own limitations not because of the technique but due to a lack of skilled manpower particularly to differentiate various \textit{Plasmodium} species. Hence microscopy cannot be recommended as a routine point-of-care (POC) diagnostics for the three neglected \textit{Plasmodium} spp. The use of artificial intelligence (AI) coupled with microscopy may be harnessed to compensate for the dependence on skilled workforce, but its use is still in infancy even for detection of \textit{Pf} and \textit{Pv} [69,70]. A pentavalent pan-\textit{Plasmodium} RDT is the only practical solution worth exploring as a POC screening/diagnostic technique. In addition, a POC PCR or its modification like the Loop-mediated isothermal amplification (LAMP) could be another solution feasible if coupled to the pan-\textit{Plasmodium} RDT in order to improve its sensitivity and specificity [71,72]. Alternatively, current bivalent Pf/Pv RDTs could be used as a screening tool coupled with traditional lab-based confirmatory PCR. The dual use of RDT/PCR for non-\textit{Pf} and non-\textit{Pv} infections can be exploited so that if the bivalent RDTs suggest a non-\textit{Pf/Pv} infection, PCR can then be done to identify the other three neglected species. The problem could still persist if Pf/Pv is also present with either \textit{Pm}/\textit{Po}/\textit{Pk} as reported in many studies. Therefore, a robust solution for community-wide screening for all 5 \textit{Plasmodium} species would be a pan-\textit{Plasmodium} pentavalent RDT.

Further, for countries like India, it would be worthwhile to explore the incorporation of making and archiving dried blood spots (DBS) along with a microscopic blood smear in the National malaria control programs. This is expected to generate a repository from which a population representative sub-sample (proportional to the population size) could be examined intermittently to screen for \textit{Pm}/\textit{Po}/\textit{Pk} infections along with for sub-microscopic \textit{Pf/Pv} across India. Special emphasis is required for detecting \textit{Pk} infections in India not only in humans but also in suspected vectors and natural hosts. For \textit{Pk} transmission, there is the presence of suitable vectors (including \textit{An. dirus}, \textit{An. sundicus} and \textit{An. latens}), pigtailed macaques and susceptible human hosts in India, especially in North-Eastern states (that neighbour the \textit{Pk} endemic regions of South-East Asia) and in Andaman and Nicobar Islands (that harbour the parasite) [11-15]. Thus, to conclude, data on neglected (non-\textit{PfPv}) infections in India is meagre and is required for species-specific therapeutic purposes, for disease prevention, to enhance our understanding of disease epidemiology, to address transmission dynamics and to inform malaria control strategies. The need and type of preventive measures will depend upon the real burden of these species, their specific vector bionomics and their parasite biology. More importantly, in light of India’s commitment of malaria elimination by 2030, a ‘complete’ coverage must include all human malaria parasites species.

Role of the funding source

This research did not receive any specific grant from funding.
agencies in the public, commercial, or not-for-profit sectors.

Author statement

Rini Chaturvedi: Data acquisition, analysis and interpretation, drafting the manuscript and editing the manuscript critically. Nimita Sinha: Data collection and analysis, drafting the manuscript. Suheil Parvez: drafting and editing the manuscript critically. Abhinav Sinha: Supervision, Data analysis and interpretation, editing the manuscript critically. Amit Sharma: Original idea, conceptually designing the work, data interpretation, drafting the manuscript and revising it critically.

Declaration of Competing Interest

The authors declare no conflict of interests.

Acknowledgements

We thank GR Alex and Rai Sharma for invaluable insights. AS is supported by funds from DBT, MMV, NIH and DST’s JC Bose fellowship.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ehileth.2020.100190.

References

[1] World Malaria Report, World Health Organization Press 2019, Geneva, 2019. http://www.who.int/publications-detail/world-malaria-report-2019.
[2] P. Garnham, The myth of quartan malaria, R. Soc. Trop. Med. Hyg. 75 (1981).
[3] B. Singh, L.K. Sung, A. Matusop, A. Radhakrishnan, S.S.G. Shamsul, J. Cox-Singh, A. Thomas, D.J. Conway, A large focus of naturally acquired Plasmodium knowlesi infections in human beings, Lancet (2004), https://doi.org/10.1016/S0140-6736(04)6836-4.
[4] E.F. McKenzie, W.H. Bossett, Multispecies Plasmodium infections of humans, J. Parasitol. 85 (1999) 12-18, https://doi.org/10.2307/2586692.
[5] G. Davidson, T.H. Chua, A. Cook, P. Speldewinde, P. Weinstein, Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework, Malar. J. (2019), https://doi.org/10.1186/s12936-019-0269-2.
[6] N. Singh, S.K. Chand, P.K. Bharti, M.P. Singh, G. Chand, A.K. Mishra, M.M. Shukla, M.M. Mahaul, R.K. Sharma, Dynamics of forest malaria transmission in Balaghat district, Madhya Pradesh, India, PloS One 8 (2013), e27730, https://doi.org/10.1371/journal.pone.0027730.
[7] P. Singh, M.A.I. Lingala, S. Sarkar, R.C. Dhiman, Mapping of malaria vectors at District Level in India: Changing scenario and identified gaps, Vector-Borne Zoonotic Dis. (2017), https://doi.org/10.1089/vbz.2016.2418.
[8] A.P. Dash, T. Adak, K. Raghavendra, O.P. Singh, The biology and control of malaria vectors in India, Curr. Sci. 92 (2007) 10.
[9] – A. Mewara, R. Sehgal, Guest commentary: Plasmodium knowlesi-need to diagnose from the onset to control, J. Commun. Dis. 45 (2013), e15836-4.
[10] – S.K. Subbarao, Centenary celebrations article: Plasmodium knowlesi: from macaque monkeys to humans in south-East Asia and the risk of its spread in India, J. Commun. Dis. 22 (2008) 94-98.
[11] – A.K. Krishnaswami, S.P.W. RAMAKRISHNAN, The distribution of human Plasmodia in India, Indian J. Malar. 6 (1952) 415-433.
[12] – G. Roy, K.P. Chakrappan, J. Zacharias, Plasmodium malarias in Kerala and tamilnadu states of India (1960-75), Trans. R. Soc. Trop. Med. Hyg. (1977), https://doi.org/10.1016/0035-9203(77)90054-0.
[13] – N. Midha, P.S. Grover, T.D. Chugh, Focal outbreak of Plasmodium malarias infection in Rohtak District (Haryana), Indian J. Pathol. Microbiol. 22 (1979) 377-380.
[14] – R.S. Yadav, V.P. Sharma, S.K. Ghosh, A. Kumar, Quartan malaria-an investigation on the incidence of Plasmodium malaria in Bihar PHC, District Sundargarh, Orissa, Indian J. Malar. 27 (1990) 85-94.
[15] – S.K. Ghosh, R.S. Yadav, Naturally acquired concomitant infections of bancroftian filariasis and human Plasmodia in Orissa, Indian J. Malar. 32 (1995) 32-36.
[16] – L.D. Das, S.S.S. Mohapatra, P. Jambulingam, K. Gunasekaran, S.P. Pani, P.K. Das, Malaria and other common ailments among upper Bonda tribals in Koraput district, Orissa, Indian J. Med. Res. - Sect. A Infect. Dis. 89 (1989) 334-339.
[17] – P.K. Rajagopalan, P.K. Das, S.P. Pani, P. Jambulingam, S.S.S. Mohapatra, K. Gunasekaran, L.K. Das, Parasitological aspects of malaria persistence in Koraput district Orissa, India, Indian J. Med. Res. - Sect. A Infect. Dis. 91 (1990) 44-51.
[18] – R. Panda, K.V. Verma, S.J. Rahman, Persistent foci of Plasmodium malarias infection in Bastar District (M.P.), J. Commun. Dis. 22 (1990) 185-190.
[19] – R.P. Shukla, V.K. Kohli, Plasmodium malarias - A case report from District Nainital, Uttar Pradesh, Indian J. Malar. 35 (1998) 39-40.
[20] – B. Mandal, N.K. Mitra, A.K. Mukhopadhyay, H. Mukherjee, A.K. Hati, Emerging Plasmodium falciparum in an endemic area in Calcutta, J. Indian Med. Assoc. 96 (1998) 328-329.
[21] – S. Das, P. Malakar, G.K. Saha, B. Ganggupata, A.K. Hati, A case of Plasmodium malarias infection in the Doars region of West Bengal, India, Indian J. Malar. 33 (1996) 159-160.
[22] – J. Charan, M. Das, S. Jayakumary, Plasmodium malarias - a report of three cases, J. Commun. Dis. 22 (2000) 227-229.
[23] – S. Singh, N. Singh, R. Handa, Tumor necrosis factor-alpha in patients with malaria, Indian J. Malar. 37 (2000) 27-33.
[24] – Pradyumna Kishore Mohapatra, Anil Prakash, Dibya Ranjan Bhattacharyya, Detection & molecular characterization of foci of Plasmodium malarias in Arunachal Pradesh, India, Indian J. Med. Res. 128 (2008) 52-56.
[25] – R.K. Singh, P.L. Pandey, Detection of two cases of Plasmodium malarias in Jharkhand, Indian J. Malar. 39 (2002) 48-49.
[26] – S. S idolokshmi, A. Srikanta, P. Padmanabha, Plasmodium malarias malarias - A case report, J. Indian Med. Assoc. 103 (2005) 547-550.
[27] – G. Dhingadamaibai, S.K. Kar, M.R. Ranjit, High prevalence and gender bias in distribution of Plasmodium malarias infection in central east-coast India, Trop. Biomed. 26 (2009) 326-333.
[28] – S.S. Sahu, K. Gunasekaran, P. Vanamal, P. Jambulingam, Persistent foci of falciparum malaria among tribes over two decades in Koraput district of Odisha State, India, Malar. J. (2013), https://doi.org/10.1186/1747-2572-12-72.
[29] – D. Sur, L. von Seideline, B. Manna, S. Dutta, A.K. Deb, B.L. Sarkar, S. Karunjo, J. L. Deen, M. Ali, D.R. Kim, V.K. Gupta, L. Ochiai, A. Tsuzuki, J.C. Acosta, J. D. Clements, S.K. Bhattacharya, The malaria and typhoid fever burden in the slums of Kolkata, India: data from a prospective community-based study, Trans. R. Soc. Trop. Med. Hyg. (2006), https://doi.org/10.1016/S0035-9203(06)80215-9.
[30] – C.G. Haanshuus, S. Chand, A. Manoharan, R. Vivek, D. Mathai, D. Xena, A. Singh, N. Langeland, B. Blomberg, G. Vasanthan, U. Sitaram, J. Appasamy, J. Nesaraj, A. Henry, S. Patil, G. Alvarez-Uria, L. Armstrong, K. Morch, A high malaria prevalence identified by PCR among patients with acute undifferentiated fever, India, PloS One (2016), https://doi.org/10.1371/journal.pone.0158816.
[31] – P.K. Bharti, S.K. Chand, M.P. Singh, S. Mishra, M.M. Shukla, R. Singh, Emergence of a new focus of Plasmodium malarias in forest villages of district Bastar, Central India: Investigations for the diagnosis of malaria and its control, Trop. Med. Int. Health. (2013), https://doi.org/10.1111/tmi.12005.
[32] – S. Krishna, P.K. Bharti, H.S. Choudhary, A. Ahmad, R. Kumar, P.P. Singh, M.P. Singh, N. Singh, Detection of mixed infections with Plasmodium app. by PCR, India, 2014, Emerg. Infect. Dis. (2015), https://doi.org/10.3201/eid2113.150421.
[33] – S. Dhiman, D. Goswami, D. Kumar, B. Rabha, D.K. Sharma, R.K. Bhola, J. Barnath, V. Veer, Nested PCR detection of Plasmodium malarias from microscopy confirmed P. falciparum samples in endemic area of NE India, Folia Parasitol. (Praga) (2013), https://doi.org/10.14411/fp.2013.041.
[46] P. Pati, R.K. Rana, H.K. Khuntia, M.S. Bal, M.R. Ranjit, The prevalence of P. Malariae in Odisha, India, Trop. Biomed. 34 (2017) 607–614.

[47] S. Krishna, S. Bhandari, P.K. Bharti, S. Basak, N. Singh, A rare case of quadraple malaria infection from the highly malaria-endemic area of Bastar, Chhattisgarh, India, PLoS Negl. Trop. Dis. (2017), https://doi.org/10.1371/journal.pntd.0005556.

[48] S. Krishna, A. Yadav, S. Bhandari, A.K. Vishwakarma, P.K. Bharti, P.L. Mandavi, P. Baub, S. Basak, R.K. Sharma, N. Singh, Prevalence of malaria in two highly endemic Community Health Centers in the Bastar district, Chhattisgarh showing mixed infections with Plasmodium species, Sci. Rep. (2017), https://doi.org/10.1038/s41598-017-16974-2.

[49] P. Jambulingam, S.S.S. Mohapatra, L.K. Das, P.K. Das, P.K. Rajagopalan, Detection of Plasmodium ovale in Koraput district, Orissa state, Indian J. Med. Res. - Sect. A Infect. Dis. 89 (1989) 115–116.

[50] A. Prakash, P.K. Mohapatra, D.R. Bhattacharyya, R.K. Gowani, J. Mahanta, Plasmodium ovale: First case report from Assam, India, Curr. Sci. 84 (2003) 1187–1188.

[51] A. Marathe, V. Date, H.N. Shah, J.R. Tripathi, Plasmodium ovale - A case report. 2030.pdf.

[52] N. Chaturvedi, S. Bhandari, P.K. Bharti, P.L. Mandavi, S. Krishna, A. Yadav, S. Bhandari, A.K. Vishwakarma, P.K. Bharti, P.L. Mandavi, A rare case of quadruple malaria infection from the highly malaria-endemic area of Bastar, Chhattisgarh, India, PLoS Negl. Trop. Dis. (2017), https://doi.org/10.1371/journal.pntd.0005556.

[53] C.K. Kaur, A. Pramanik, K. Kumari, R. Mandage, A.K. Dinda, J. Sankar, A. Bagga, S. Singh, R. Singh, V. Jain, P.P. Singh, P.K. Bharti, T. Thomas, S. Basak, N. Singh, First report of detection and molecular confirmation of Plasmodium ovale from severe malaria cases in central India, Trop. Med. Int. Heal. (2013), https://doi.org/10.1111/tmi.12184.

[54] R.K. Tyagi, M.K. Das, S.S. Singh, Y.D. Sharma, Discordance in drug resistance-associated mutation patterns in marker genes of plasmodium falciparum and plasmodium knowlesi during coinfections, J. Antimicrob. Chemother. (2015) 352–354, https://doi.org/10.1093/jac/dks508.

[55] C. Kaur, A. Pramanik, K. Kumari, R. Mandage, A.K. Dinda, J. Sankar, A. Bagga, S. K. Agarwal, A. Sinha, G. Singh, P. Acharya, Renal detection of Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi in malaria associated acute kidney injury: A retrospective case-control study, BMC Res. Notes (2020), https://doi.org/10.1186/s13104-020-4900-1.

[56] T. Dutta, M. Vadivelan, Recent advances in the management of Plasmodium knowlesi infection, Trop. Parasitol. 4 (2014) 31–34, https://doi.org/10.4103/2229-5070.129158.

[57] NVBDCP, Operational Manual for Malaria Elimination in India 2016, file:///C:/Users/USER/Desktop/Operational-Manual-Malaria-2016-Version-1.pdf.

[58] L.R. Tomar, S. Giri, N.K. Basudh, R. Ramb, Complicated malaria: a rare presentation of Plasmodium ovale, Trop. Dis. Dr. 45 (2015) 140–142, https://doi.org/10.1177/0049475515571989.

[59] NVBDCP, National Framework for Malaria Elimination in India, 2016, http://nvbdcp.gov.in/Doc/National-framework-for-malaria-elimination-in-India-2016–2030.pdf.

[60] A.J. DUGGAN, P.G. SHUTE, Quartan malaria relapsing after thirteen years, J. Trop. Med. Hyg. 64 (1961) 20–21.

[61] C.J. Sutherland, Persistent parasites: the adaptive biology of malariae and ovale malaria, Trends Parasitol. (2016), https://doi.org/10.1016/j.pt.2016.07.001.

[62] B. Singh, C. Daneshvar, Human infections and detection of plasmodium knowlesi, Clin. Microbiol. Rev. (2013), https://doi.org/10.1128/CMR.00079-12.

[63] P.T. Vidyha, L.P. Sunith, A. Maile, A.K. Zahid, Anopheles sundaicus mosquitoes as vector for plasmodium knowlesi, andaman and Nicobar Islands, India, Emerg. Infect. Dis. 25 (2019) 817–820, https://doi.org/10.3201/eid2504.181668.

[64] B.A. Mathison, B.S. Print, Update on malaria diagnostics and test utilization, J. Clin. Microbiol. (2017) 2009–2017, https://doi.org/10.1128/JCM.02562-16.

[65] P. Berzosa, A. De Lucio, M. Mwinga, D.R. Mumbengegwi, Loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) as quality assurance tools for rapid diagnostic test (RDT) malaria diagnosis in northern Namibia, PLoS One 9 (2014), e104855, https://doi.org/10.1371/journal.pone.0104855.

[66] H.S. Park, M.T. Rinehart, K.A. Walzer, J.T. Ashley Chi, A. Wax, Automated Detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells, PLoS One 11 (2016) e0163045, https://doi.org/10.1371/journal.pone.0163045.

[67] Linder, R., Turkli, M., Wallander, A., Mårtensson, V., Nandini, S., Riloha, M., Fozil, G., “Using machine learning algorithms with quantitative phase images of unstained cells to detect malaria parasites,” PLoS One 11 (2016) e0163045, https://doi.org/10.1371/journal.pone.0163045.

[68] P.A. Zimmerman, R.E. Howes, Malaria diagnosis for malaria elimination, Curr. Opin. Infect. Dis. (2015) 446–454, https://doi.org/10.1097/QCO.0000000000000191.

[69] N. Linder, R. Turkli, M. Wallander, A. Mårtensson, V. Diwan, E. Rahtu, P. Berzosa, A. De Lucio, M. Mwinga, D.R. Mumbengegwi, Loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) as quality assurance tools for rapid diagnostic test (RDT) malaria diagnosis in northern Namibia, PLoS One 9 (2014), e104855, https://doi.org/10.1371/journal.pone.0104855.

[70] H.S. Park, M.T. Rinehart, K.A. Walzer, J.T. Ashley Chi, A. Wax, Automated Detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells, PLoS One 11 (2016) e0163045, https://doi.org/10.1371/journal.pone.0163045.

[71] A.J. DUGGAN, P.G. SHUTE, Quartan malaria relapsing after thirteen years, J. Trop. Med. Hyg. 64 (1961) 20–21.

[72] C.J. Sutherland, Persistent parasites: the adaptive biology of malariae and ovale malaria, Trends Parasitol. (2016), https://doi.org/10.1016/j.pt.2016.07.001.

[73] B. Singh, C. Daneshvar, Human infections and detection of plasmodium knowlesi, Clin. Microbiol. Rev. (2013), https://doi.org/10.1128/CMR.00079-12.

[74] P.T. Vidyha, L.P. Sunith, A. Maile, A.K. Zahid, Anopheles sundaicus mosquitoes as vector for plasmodium knowlesi, andaman and Nicobar Islands, India, Emerg. Infect. Dis. 25 (2019) 817–820, https://doi.org/10.3201/eid2504.181668.

[75] B.A. Mathison, B.S. Print, Update on malaria diagnostics and test utilization, J. Clin. Microbiol. (2017) 2009–2017, https://doi.org/10.1128/JCM.02562-16.

[76] P. Berzosa, A. De Lucio, M. Mwinga, D.R. Mumbengegwi, Loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) as quality assurance tools for rapid diagnostic test (RDT) malaria diagnosis in northern Namibia, PLoS One 9 (2014), e104855, https://doi.org/10.1371/journal.pone.0104855.

[77] H.S. Park, M.T. Rinehart, K.A. Walzer, J.T. Ashley Chi, A. Wax, Automated Detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells, PLoS One 11 (2016) e0163045, https://doi.org/10.1371/journal.pone.0163045.