Lung cancer is one of the leading causes of cancer deaths worldwide (Parkin et al, 2005) and the treatment response and clinical outcome of the disease are difficult to predict. Recently, new treatment strategies targeting the epidermal growth factor receptor (EGFR) have been developed. The EGFR is one of the most frequently overexpressed proteins in various cancers including lung cancer, and signalling through this receptor is related to tumour progression and resistance to most treatments (Rusch et al, 1993; Fontanini et al, 1998; Giardiello and Tortora, 2008). Therefore, the EGFR has become an attractive target for cancer treatment. The two most commonly used tyrosine kinase inhibitors targeting EGFR are gefitinib (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774). Gefitinib and erlotinib are tailored inhibitors targeting EGFR are gefitinib (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774). Gefitinib was the first EGFR inhibitor approved for treatment of advanced non-small cell lung cancer (NSCLC); however, clinical trials using gefitinib did not show significant improvement in survival (Comis, 2005). In contrast, trials with erlotinib have demonstrated prolonged progression-free survival and improved survival of patients with advanced NSCLC (Shepherd et al, 2004). Erlotinib was also superior to placebo with respect to quality of life (Cohen et al, 2005). Nevertheless, overall response rates have been relatively low in studies that have examined all NSCLC patients collectively (Shepherd et al, 2005), indicating that not all lung cancer patients are suitable for erlotinib treatment and that the treatment should only be given to selected patients. Various parameters have been used to classify patients who respond to erlotinib, such as type of tumour, smoking history, gender, and ethnicity, but none of these parameters had significant impact on survival (Fukuoka et al, 2003; Perez-Soler et al, 2004). Patients with tumours expressing high amounts of the EGFR had an improved response to treatment with erlotinib (Shepherd et al, 2005) and the presence of specific mutations around the ATP binding domain of the receptor was found to increase the response to gefitinib treatment (Lynch et al, 2004; Paez et al, 2004). Determination of the EGFR expression and the presence of mutations require a tumour biopsy, which is not
possible to collect in all situations. Thus, non-invasive methods are needed that can identify the subset of patients who are most likely to benefit from erlotinib treatment.

Positron emission tomography (PET) is a 3-dimensional imaging technique that uses isotope-labelled tracers that decay with the emission of a positron, it is used for non-invasive assessment of biochemical and physiological processes in vivo. In the present study, we used 2-[11C]fluoro-2-deoxy-D-glucose (18F-FDG) for visualization of the higher glucose metabolism of tumour tissue compared with surrounding tissue (Gambhir, 2002; Jerusalem et al, 2003; Rohren et al, 2004) and 11C-labelled erlotinib for visualization of EGFRs. Labelling of gefitinib with 11C (Wang et al, 2006; Kawamura et al, 2009; Zhang et al, 2010) and 18F (Su et al, 2008) has been attempted but 18F-gefitinib showed a high non-specific cellular uptake both in vitro and in mice xenografted with human tumours. Furthermore, in this in-vivo model the 18F-gefitinib signal did not relate to EGFR expression (Su et al, 2008). In contrast, 11C-gefitinib showed enhanced accumulation in vitro in the cancer cells that had the highest EGFR expression (Zhang et al, 2010). In a recent micro-PET study, we reported the development of a new radiotracer, 11C-erlotinib, and its use in mice models of human lung cancer (Memon et al, 2009). Our results showed that 11C-erlotinib accumulated in xenografts that were sensitive to erlotinib treatment and expressed high levels of EGFR.

In the present study in patients with NSCLC, we examined the feasibility of using 11C-erlotinib PET combined with X-ray computed tomography (CT) for visualization of tumour tissue, metastases, and malignant lymph nodes.

SUBJECTS AND METHODS

Subjects and recruitment

Thirteen patients with NSCLC were included between December 2008 and October 2009 before start on second-line treatment with erlotinib. According to clinical practice, patients with metastatic lung cancer were treated with first-line chemotherapy as a palliative treatment (n = 10) and patients with locally advanced lung tumours received a potentially curative treatment with concomitant chemotherapy and radiotherapy (n = 3). If the patients progressed within 6 months as assessed by the ‘Response evaluation criteria in solid tumours’ (RECIST) (Eisenhauer et al, 2009) using contrast-enhanced CT, treatment with erlotinib was offered as second-line treatment.

Patients were eligible if they were over 18 years of age, had normal liver and kidney function as judged from blood tests, were non-diabetic, and could lie in the PET/CT scanner for 90 min (Table 1). Patients were excluded if they were allergic to X-ray contrast media, had normal liver and kidney function as judged from blood tests, or were unable to fast overnight but were free to drink water. The patient was placed on the back in a 40-slice Siemens Biograph TruePoint PET/CT scanner with a 21-cm transaxial field-of-view (Siemens AG, Erlangen, Germany). A low-dose CT scan (50 effective mAs with CAREDose4D, 120 kV, pitch 0.8, slice thickness 5 mm) was performed for definition of anatomical structures and attenuation correction of the PET recordings.

For the 11C-erlotinib PET/CT study, 500 MBq ± 10% 11C-erlotinib was administered intravenously and immediately

Table 1 Clinical characteristics of patients with non-small lung cancer (NSCLC) at inclusion for 11C-erlotinib PET/CT

Characteristics	Patients (n)	Male	Female	Age (years) (median; range)
Histology				
Adenocarcinoma	8			
Squamous cell carcinoma	3			
Large-cell carcinoma	1			
Unspecified	1			
TNM classification				
Stage				
Tx	2			
T1	2			
T2	4			
T3–4	5			
Node				
Nx	1			
N1	0			
N2	7			
N3	5			
Metastasis				
M0	2			
M1A	0			
M1B	11			

Abbreviations: CT = computed tomography; PET = positron emission tomography; n = number of patients; TNM = tumour-node-metastasis.
followed by a dynamic PET recording of the thorax for 90 min using list-mode data acquisition. Two hours after the 11C-erlotinib administration (six times the radioactive half-life for 11C of 20 min), 400 MBq ± 10% 18F-FDG was administered intravenously and after 1 h, a static PET recording was performed from head to groin using list-mode acquisition. Images were reconstructed by an iterative algorithm (6 iterations, 14 subsets) resulting in 3-dimensional images consisting of 168 × 168 × 73 voxels of 4.0 × 4.0 × 3.0 mm3 followed by a post-reconstruction smoothing Gaussian filter (5-mm full-width at half-maximum).

Data from the dynamic 11C-erlotinib PET recordings following the initial 5 min vascular phase were summed to give images of the average radioactivity concentrations. Foci with radioactivity concentrations higher than in the surrounding tissue were defined as hotspots of lung tumours, lymph-node metastases, or distant metastases. Volumes-of-interest were drawn in the hotspots and in the normal lung and muscle tissue for extraction of time courses of radioactivity concentrations.

For 18F-FDG PET/CT, hotspots were defined as foci with increased activity concentration compared with the surrounding tissues as previously described (Fischer et al., 2009).

Assessment of treatment response

Treatment response was assessed by comparison of pre-treatment (13–34 days before start of treatment, median 20 days) and post-treatment (12 weeks after start of treatment) contrast-enhanced CT images, using the CT-based tumour-node metastasis (TNM) staging system for lung cancer (Sobin and Fleming, 1997), the RECIST criteria, and 18F-FDG PET/CT. Patients having stable disease at the evaluation were classified as responders ($n = 5$), whereas the non-responders consisted of the patients with progressive disease and the patients who died before the final assessment ($n = 8$).

RESULTS

Of the 13 patients included, 5 patients had stable disease at the post-treatment assessment, 4 patients had progressive disease, and 4 patients had died (Table 2). Among the five patients with stable disease, three had 11C-erlotinib hotspots (Table 2). One patient (patient no. 7) with erlotinib hotspots died 5 days after the start of treatment due to liver failure. Patient no. 12 discontinued treatment after 7 weeks due to severe side effects (fatigue and diarrhoea, grade 3 based on Common Terminology Criteria for Adverse Events v3.0 (Cancer Therapy Evaluation Program, Common Terminology Criteria for Adverse Events, Version 3.0, DCTD, NCI, NIH, DHHS (31 March 2003) (http://ctep.cancer.gov), 9 August 2006)). Among the nine patients with no 11C-erlotinib hotspots, three died before evaluation, four showed progressive disease, while two had stable disease at the post-treatment assessment (Table 2).

Figure 1 exemplifies CT, 18F-FDG PET/CT, and 11C-erlotinib PET/CT of a metastasis located in the sternum in a patient (no. 12) who responded to the treatment.

Patient no. 6, who also responded to the treatment, CT showed non-enlarged (<10 mm) hilar lymph nodes (positions 10R and 10L) and an enlarged (>10 mm) subcarinal lymph node (position 7) (Figure 2A). There was no accumulation of 18F-FDG in any of these tissues.

Table 2 Clinical parameters related to erlotinib treatment, status of 11C-erlotinib PET/CT, and clinical response after 12 weeks erlotinib treatment

Patient no.	Gender	Smoking status	Histology	11C-erlotinib hotspot	Treatment response
6	F	Never smoked	Adeno	Yes	SD
8	F	Never smoked	Adeno	Yes	SD
12	F	Never smoked	Adeno	Yes	SD*D
5	F	Former smoker	SCC	No	SD
11	F	Former smoker	Adeno	No	SD
2	F	Former smoker	Adeno	No	PD
3	F	Former smoker	Not specified	No	PD
9	M	Former smoker	Adeno	No	PD
10	M	Active smoker	SCC	No	PD
1	M	Never smoked	Adeno	No	PD
4	F	Former smoker	Large-cell carcinoma	No	PD
13	F	Former smoker	SCC	No	PD

Abbreviations: Adeno = adenocarcinoma; CT = computed tomography; PD = progressive disease; PET = positron emission tomography; SCC = squamous-cell carcinoma; SD = stable disease. *No. indicates the ID of the patients and was assigned as the patient was included in the study. †Patient discontinued treatment after 7 weeks because of severe side effects. ‡Patient died 5 days after start of erlotinib treatment. §Patient died within study period.
lymph nodes, whereas 11C-erlotinib PET/CT showed accumulation in both the enlarged and the non-enlarged lymph nodes (Figure 2A). The patient continued treatment after end of the study and at follow-up 1 year later, 18F-FDG PET/CT was negative and contrast-enhanced CT showed no changes in the size of these three lymph nodes (Figure 2B).

Figure 2 11C-erlotinib accumulation in lymph nodes that were negative on 18F-FDG PET/CT in a 42-year-old patient (no. 6). (A) Left: transaxial slices of contrast-enhanced CT; middle: 18F-FDG PET/low-dose CT; right: 11C-erlotinib PET/low-dose CT. CT (left figure) showed an enlarged lymph node (> 10 mm) at position 7 (arrow) and non-enlarged lymph nodes (< 10 mm) at positions 10R and 10L (arrows). None of these lymph nodes were visualized by 18F-FDG PET/CT (arrows, middle figure), whereas both enlarged and non-enlarged lymph nodes were visualized by 11C-erlotinib PET/CT (arrows, right figure). The ratio between 11C-erlotinib average radioactivity concentrations in the lymph nodes and that in surrounding lung tissue was 2. (B) Comparison of pre-treatment and 1-year post-treatment CT scans showed no significant change in the size of any of these lymph nodes.

Figure 3 11C-erlotinib PET/CT demonstrates the heterogeneous nature of advanced lung cancer. Two transaxial slices of (left) contrast-enhanced CT; (middle) 18F-FDG PET/low-dose CT, and (right) 11C-erlotinib PET/low-dose CT. A 48-year-old patient (no. 7) with NSCLC in the right lung and enlarged mediastinal lymph nodes (upper and lower panel left figure, arrows). Both 18F-FDG and 11C-erlotinib accumulated in lymph nodes at positions 4R and 5 (upper panel, arrows). The tumour in the right lung and one of the lymph nodes at position 7 showed only a weak accumulation of 11C-erlotinib (arrows). The ratio between the 11C-erlotinib average radioactivity concentrations in the lymph node metastasis and that in surrounding lung tissue was 2 (see Figure 4).
Patient no. 7 showed different tumour foci that differed with regard to accumulation of 11C-erlotinib as illustrated in Figure 3. Enlarged lymph nodes in the mediastinum at positions 4R and 5 (CT, arrows) showed hotspots on 18F-FDG PET/CT and on 11C-erlotinib PET/CT (upper panel, arrows) whereas the lung tumour and one of the enlarged lymph nodes at position 7 did not accumulate 11C-erlotinib (lower panel, arrows). Time courses of the radioactivity concentrations of 11C-erlotinib in this patient (Figure 4) show higher initial distribution in lung tissue and in the lung tumour than in the subcarinal lymph node and muscle tissue (Figure 4, left), which can be ascribed to differences in the blood perfusion. Ten minutes after the 11C-erlotinib administration and throughout the remaining 80-min measurement period, the radioactivity concentration was higher in the lymph node and the lung tumour than in the non-malignant lung and muscle tissue (Figure 4, right). The ratio between radioactivity concentrations lung tumour/lung tissue was around 1.3 and that of the lymph node/lung tissue around 2.0.

DISCUSSION

In total, four of the thirteen patients examined showed 11C-erlotinib accumulation in one or more tumour foci and 11C-erlotinib accumulated in non-enlarged 18F-FDG PET/CT-negative lymph nodes. Our results also showed variation in 11C-erlotinib accumulation between different malignant lesions in the same patient.

Erlotinib is a targeted drug that inhibits signalling through the EGFR and thereby prolongs survival of a subgroup of lung cancer patients treated with this drug. Clinical parameters and mutational status of EGFR are considered helpful but insufficient to predict treatment response; and therefore, additional methods are required to improve the selection of patients for erlotinib treatment. We previously showed that 11C-erlotinib could be used to identify tumours overexpressing the EGFR in animal models (Memon et al, 2009), and we have presented a case report showing accumulation of 11C-erlotinib in brain metastasis of a patient with NSCLC (Weber et al, 2011). Here, we investigated the use of 11C-erlotinib PET/CT as a non-invasive method to identify tumours accumulating erlotinib and have established a method that may prove useful for the selection of patients suitable for erlotinib treatment. Our results showed that normal lung tissue accumulated no or minimal 11C-erlotinib, whereas some malignant lesions and metastases did accumulate the tracer.

Because tumour material was not available from all lesions, the EGFR status in 11C-erlotinib accumulating and non-accumulating tumour lesions is not known. However, in the present study, we observed different accumulation of 11C-erlotinib in the primary tumour and metastatic lesions in the same patient. This suggests that it may be of limited value to know the EGFR status in a biopsy from just one tumour lesion.

Variation in the accumulation of 11C-erlotinib between different tumours in the same patient is in agreement with the molecular evolution of the disease in these patients. The majority of lung cancer patients who initially respond to treatment eventually have a relapse (Sequist et al, 2007). Some of the known causes of these relapses are mutations in EGFR causing erlotinib resistance, amplification of the met proto-oncogene (MET) (Engelman et al, 2007), activation of other receptor tyrosine kinases (insulin-like growth factor 1) (Morgillo et al, 2007), and KRAS mutations (Eberhard et al, 2005). Our observations of variation in the uptake of 11C-erlotinib further suggest that not all tumours in the same patient are driven by EGFR signalling, and therefore may not respond to erlotinib treatment.

Staging of lung cancer is crucial when deciding treatment options and the prognosis also differs significantly according to stage. The TNM preoperative staging system employing CT is widely used; however, lymph-node staging (N staging) of hilar and mediastinal lymph nodes is still a challenge and CT scanning results in a significant amount of false positive and false negative results (Al-Sarraf et al, 2008). Another method for staging is 18F-FDG PET/CT (Fischer et al, 2009). The major obstacle with this method is the difficulty in distinguishing between benign and metastatic lymph nodes (Love et al, 2005). According to standard CT criteria, lymph nodes with a diameter >10 mm (enlarged) are classified as malignant and lymph nodes with a diameter <10 mm (non-enlarged) are classified as non-malignant. However, recent studies suggest that non-enlarged lymph nodes can also be metastatic even in the absence of a positive 18F-FDG PET/CT and small lymph nodes can therefore not be identified as non-malignant until other characteristics are considered (Liu et al, 2009). Interestingly, 11C-erlotinib PET/CT identified both enlarged and non-enlarged lymph nodes, which were negative on 18F-FDG PET/CT. These results indicate that it is possible that non-enlarged lymph nodes in cancer patients may harbour tumour cells expressing EGFR. We monitored these lymph nodes during erlotinib treatment in patient no. 6, and both enlarged and non-enlarged lymph nodes remained stable according to the RECIST criteria for more than 2 years, and were therefore negative on 18F-FDG PET/CT. If these findings are confirmed in more patients, then this observation could have clinical significance as it may change the criteria for staging of lung cancer and thereby the treatment strategy for the patients.

CONCLUSIONS

This study showed a potential for 11C-erlotinib in PET/CT for visualizing NSCLC lung tumours, including lymph nodes not identified by 18F-FDG PET/CT. Moreover, 11C-erlotinib in PET/CT could be a useful tool to identify molecular heterogeneity between tumours in the same patient. Large clinical studies are now needed to explore to which extent pre-treatment 11C-erlotinib PET/CT can predict response to erlotinib treatment.

ACKNOWLEDGEMENTS

We thank the patients who participated. This work was supported by the Danish Research Medical Council, Danish Cancer Society, Danish Cancer Foundation, and Novo Nordisk Foundation.

Conflict of interest

The authors declare no conflict of interest.
REFERENCES

Al-Sarraf N, Aziz R, Gately K, Lucery J, Wilson L, McGovern E, Young V (2008) Pattern and predictors of occult mediastinal lymph node involvement in non-small cell lung cancer patients with negative mediastinal uptake on positron emission tomography. *Eur J Cardiothorac Surg* 33: 104 – 109

Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. *N Engl J Med* 358: 1160 – 1174

Cohen MH, Johnson JR, Chen YF, Srirratha R, Pazdur R (2005) FDA drug approval summary: erlotinib (Tarceva) tablets. *OncoLink* 10: 461 – 466

Conn BR (2005) The current situation: erlotinib (Tarceva) and gefitinib (Iressa) in non-small cell lung cancer. *OncoLog* 10: 467 – 470

Eberhard DA, Johnson BE, Amerl LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Janne PA, Januario T, Johnson DH, Klein P, Miller VA, Ostland MA, Ramies DA, Sebisanovic D, Stinson JA, Zhang YR, Seshagiri S, Hillan KJ (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. *J Clin Oncol* 23: 5900 – 5909

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancy J, Arbour S, Gwyther S, Mooney M, Rubinstein L, Shankl K, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). *Eur J Cancer* 45(2): 228 – 247

Engelmann JA, Zejnjullah K, Mutsudomi T, Song Y, Hyland C, Park JO, Lindemann N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Cao YX (2009) Accuracy of18F-FDG PET/CT for lymph node staging in non-small-cell lung cancer. *Eur J Nucl Med Mol Imaging* 36: 1039 – 1043

Fischer B, Lassen U, Mortensen J, Larsen S, Luft A, Bertelsen A, Ravn J, Clemensn P, Hoghroom A, Larsen K, Rasmussen T, Keiding S, Dirksen A, Gerke O, Skov B, Steffensen I, Hansen H, Viimann P, Jacobsen G, Backer V, Malbaek N, Pedersen J, Madsen H, Nielsen H, Hojgaard L (2009) Preoperative staging of lung cancer with combined PET-CT. *N Engl J Med* 361: 32 – 39

Fontanini G, De Laurentiis M, Vignati S, Chine S, Lucchi M, Silvestri V, Bezwoda WR, Sauerbrei W, Hohenberger P, et al. (2003) PET scan imaging in oncology. *Eur J Cancer* 39: 1525 – 1534

Fukumura T, Suzuki K, Kanno I, Zhang MR (2009) Preoperative staging of lung cancer with combined PET-CT. *Oncologist* 14(6): 1237 – 1246

Fukumura T, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. *Eur J Cardiothorac Surg* 33: 104 – 109

Giaccione G, Tamura T, Nakagawa K, Douillard JY, Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. *Eur J Cardiothorac Surg* 33: 104 – 109

Gortler SR, Hustinx R, Beguin Y, Fillet G (2003) PET scan imaging in oncology. *Eur J Nucl Med Mol Imaging* 30: 1357 – 1368

Hillan KJ (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. *J Clin Oncol* 23: 5900 – 5909

Huang Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda M, Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PI, Hasekrt SM, Suikga JG, Halsusa FG, Louis DN, Christiansi DC, Settlement J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib. *N Engl J Med* 350: 2129 – 2139

Memon AA, Jacobsen S, Dagnaes-Hansen F, Sorensen BS, Keiding, Nexo E (2009) Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. *Cancer Res* 69: 873 – 878

Morffilo F, Kim WY, Kim ES, Ciardiello F, Hong WK, Lee HY (2007) Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. *Clin Cancer Res* 13: 2795 – 2803

Paz FJ, Janne PA, Lee JG, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindemann N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. *Science* 304: 1497 – 1500

Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics. 2002. *CA Cancer J Clin* 55: 74 – 108

Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, Rigs J, Clark GM, Santabarbara P, Bonomi P (2004) Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. *J Clin Oncol* 22: 3238 – 3247

Roben EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. *Radiology* 231: 305 – 332

Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, McIntosh J, Kurie J, Dmitrovsky E (1993) Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. *Cancer Res* 53: 2379 – 2385

Sequist LV, Bell DW, Lynch TJ, Haber DA (2007) Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. *J Clin Oncol* 25: 587 – 595

Shepherd FA, Pereira J, Ciuleanu TE, Tan EH, Hirsh V, Thongprasert S, Bezjak A, Tu D, Santabarbara P, Seymour L (2004) A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC): following failure of 1(st) line or 2(nd) line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. *J Clin Oncol* 22: 622S

Shepherd FA, Pereira JR, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu DS, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L (2005) Erlotinib in previously treated non-small-cell lung cancer. *N Engl J Med* 353: 123 – 132

Sobin LH, Fleming ID (1997) TNM classification of malignant tumors, fifth edition (1997). *Union International Contre le Cancer and the American Joint Committee on Cancer. Cancer* 80: 1803 – 1804

Su H, Scimbild Y, Ferl GZ, Bodenstein C, Fueger B, Kim KJ, Hsu YT, Duncia M, Phelps M, Gazenko G, Carlson JE, Weber WA (2008) Evaluation of [11C]-labeled erlotinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. *Eur J Nucl Med Mol Imaging* 35: 1089 – 1099

Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH (2006) Synthesis of [11C]Iressa as a new potential PET imaging agent for epidermal growth factor receptor tyrosine kinase. *Bioorg Med Chem Lett* 16: 4102 – 4106

Weber B, Winterdhal M, Momen A, Sorensen BS, Keiding, Sorensen L, Nexo E, Meldgaard P (2011) Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. *J Thorac Oncol* 6: 1287 – 1289

Zhang MR, Kumata K, Hatori A, Takai N, Toyohara J, Yamasaki T, Yanamoto K, Uji J, Kawamura K, Koike S, Ando K, Suzuki K (2010) [11C]-Gefitinib ([11C]Iressa): radiosynthesis, in vitro uptake, and in vivo imaging of intact murine fibrosarcoma. *Mol Imaging Biol* 12: 181 – 191

This work is published under the standard license to publish available. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.