MODIFIED ERDÖS–GINZBURG–ZIV CONSTANTS FOR $\mathbb{Z}/n\mathbb{Z}$ AND $(\mathbb{Z}/n\mathbb{Z})^2$

AARON BERGER AND DANIELLE WANG

Abstract. For an abelian group G and an integer $t > 0$, the modified Erdős–Ginzburg–Ziv constant $s'_t(G)$ is the smallest integer ℓ such that any zero-sum sequence of length at least ℓ with elements in G contains a zero-sum subsequence (not necessarily consecutive) of length t. We compute $s'_t(G)$ for $G = \mathbb{Z}/n\mathbb{Z}$ and for $t = n, G = (\mathbb{Z}/n\mathbb{Z})^2$.

Keywords: Zero-sum sequence, Zero-sum subsequence, Erdős–Ginzburg–Ziv Constant.

1. Introduction

In 1961, Erdős, Ginzburg, and Ziv proved the following classical theorem.

Theorem 1.1 (Erdős–Ginzburg–Ziv [6]). Any sequence of length $2n - 1$ in $\mathbb{Z}/n\mathbb{Z}$ contains a zero-sum subsequence of length n.

Here, a subsequence need not be consecutive, and a sequence is zero-sum if its elements sum to 0. This theorem has lead to many problems involving zero-sum sequences over groups.

In general, let G be an abelian group, and let $G_0 \subseteq G$ be a subset. Let $\mathcal{L} \subseteq \mathbb{N}$. Then $s_{\mathcal{L}}(G_0)$ is defined to be the minimal ℓ such that any sequence of length ℓ with elements in G_0 contains a zero-sum subsequence whose length is in \mathcal{L}. When $G_0 = G$ and $\mathcal{L} = \{\exp(G)\}$, this constant is called the Erdős–Ginzburg–Ziv constant.

When $G = \mathbb{Z}$, this problem turns out to be not very interesting — if G_0 contains a nonzero element, then $s_{\mathcal{L}}(G_0) = \infty$. This has lead to [2] the study of the modified Erdős–Ginzburg–Ziv constant $s'_t(G_0)$, defined as the smallest ℓ such that any zero-sum sequence of length at least ℓ with elements in G_0 contains a zero-sum subsequence whose length is in \mathcal{L}. When $\mathcal{L} = \{t\}$ is a single element, we omit the set brackets for convenience. In [3], the first author determined modified EGZ constants in the infinite cyclic case. Here we treat the finite cyclic case and extensions.

Problem 1.2 ([3, Problem 2]). Compute $s'_t(G)$ for $G = \mathbb{Z}/n\mathbb{Z}$ and $(\mathbb{Z}/n\mathbb{Z})^2$.

In this paper, we answer Problem 1.2 for $G = \mathbb{Z}/n\mathbb{Z}$ and for $t = n, G = (\mathbb{Z}/n\mathbb{Z})^2$. Note that in both cases, when n does not divide t, the quantity $s'_t(G)$ is infinite.

Theorem 1.3. The modified EGZ constant of $\mathbb{Z}/n\mathbb{Z}$ is given by $s'_{nt}(\mathbb{Z}/n\mathbb{Z}) = (t+1)n - \ell + 1$, where ℓ is the smallest integer such that $\ell | n$.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
E-mail addresses: bergera@mit.edu, diwang@mit.edu.
Theorem 1.4. We have \(s'_n((\mathbb{Z}/n\mathbb{Z})^2) = 4n - \ell + 1 \) where \(\ell \) is the smallest integer such that \(d \geq 4 \) and \(\ell \nmid n \).

2. The cyclic case

In this section we give the proof of Theorem 1.3. As in [10], if \(J \) is a sequence of elements of \(\mathbb{Z}/n\mathbb{Z} \) or \((\mathbb{Z}/n\mathbb{Z})^2 \), we use \((k \mid J) \) to denote the number of zero-sum subsequences of \(J \) of size \(k \).

Proposition 2.1. If \(d \mid n \) and \(J \) is a zero-sum sequence in \(\mathbb{Z}/n\mathbb{Z} \) of length \(2n - d \), then \((n \mid J) > 0 \).

Proof. By Theorem 1.1, we can break off subsequences of \(J \) of size \(d \) with sum \(0 \) (mod \(d \)) until we have fewer than \(2d - 1 \) remaining. In fact, since \(d \mid n \), we will have exactly \(d \) remaining. But since the sum was zero-sum to begin with, the last \(d \) must also sum to zero, so we have \(2(n/d) - 1 \) blocks of size \(d \) with sums \(dx_1, \ldots, dx_{2(n/d)−1} \) for some \(x_i \). By Theorem 1.1, some \(n/d \) of these must sum to \(0 \) in \(\mathbb{Z}/(n/d)\mathbb{Z} \), so the union of these blocks gives a subsequence of length \(n \) whose sum is zero in \(\mathbb{Z}/n\mathbb{Z} \).

Corollary 2.2. Let \(\ell \) be the smallest positive integer such that \(\ell \nmid n \), and let \(t \geq 1 \). If \(J \) is a zero-sum sequence in \(\mathbb{Z}/n\mathbb{Z} \) of length at least \((t+1)n−\ell+1\), then \((nt \mid J) > 0 \).

Proof. We induct on \(t \). The case \(t = 1 \) follows from Proposition 2.1 since \(\ell−1, \ldots, 1 \) all divide \(n \). Suppose the result is true for positive integers less than \(t > 1 \). Then \(J \) contains a zero-sum subsequence of length \((t−1)n \). Remove these elements from \(J \). We are left with a zero-sum sequence of length \(2n−\ell+1 \). This is the \(t = 1 \) case, so we can find another zero-sum subsequence of length \(n \). Combine this with the \((t−1)n \) to get the desired subsequence of length \(nt \).

Proposition 2.3. Suppose \(\ell \nmid n \) and \(t \geq 1 \). Then there exists a zero-sum subsequence in \(\mathbb{Z}/n\mathbb{Z} \) of length \((1+t)n−\ell\) which contains no zero-sum subsequence of length \(nt \).

Proof. Consider a sequence of 0’s and 1’s with multiplicities \(a \leq tn − 1, b \leq n − 1 \) respectively where \(a + b = (t + 1)n − \ell \). Such a sequence will have no zero-sum subsequence of length \(nt \). It suffices to find \(a, b \) such that \(g = \gcd(n, \ell) \mid b \), because then we can add some constant to every term of the sequence to make it zero-sum. Note that adding a constant to every term does not introduce any new zero-sum subsequences. It suffices to take \(b = tn − g \) and \(a = n − \ell + g \leq n − \ell/2 \leq n − 1 \).

Corollary 2.2 and Proposition 2.3 together imply Theorem 1.3.

3. The case \((\mathbb{Z}/n\mathbb{Z})^2\)

In this section we prove Theorem 1.4. We first prove some preliminary lemmas.

The following results from [10] are key.

Lemma 3.1 ([10, Corollary 2.4]). Let \(p \) be a prime, and let \(J \) be a sequence of elements in \((\mathbb{Z}/p\mathbb{Z})^2\). If \(|J| = 3p - 2 \) or \(|J| = 3p - 1 \), then \((p \mid J) = 0 \) implies \((2p \mid J) \equiv -1 \) (mod \(p \)).

Lemma 3.2 ([10, Corollary 2.5]). Let \(p \) and \(J \) be as in Lemma 3.1. If \(|J| \) is a zero-sum sequence with exactly \(3p \) elements, then \((p \mid J) > 0 \).
Theorem 3.3 ([10, Theorem 3.2]). If J is a sequence of length $4n - 3$ in $(\mathbb{Z}/n\mathbb{Z})^2$ then $(n \mid J) > 0$.

We generalize Lemma 3.2 to non-prime n.

Lemma 3.4. If J is a zero-sum sequence of length $3n$ in $(\mathbb{Z}/n\mathbb{Z})^2$, then $(n \mid J) > 0$.

Proof. We induct on n. The base case $n = 1$ is clear. Assume the the lemma is true for all positive integers less than n. Let $n = pm$ with p prime and $m < n$.

Since $3n > 4m - 3$, we can find some m elements of J whose sum is 0 (mod m). Say their sum is mx_1 and remove these m elements. We can continue doing this until there remain only $3m$ elements. But since J was a zero-sum sequence, the remaining $3m$ elements must sum to 0 (mod m), so by the induction hypothesis, we can remove another m with sum a multiple of m. This gives us $3p - 2$ blocks of size m whose sums are mx_1, \ldots, mx_{3p-2} for some x_i.

If some p of the x_i sum to 0 (mod p), then combining the blocks would give us n elements whose sum is 0 (mod n), as desired. If not, by Lemma 3.1, we must have some $2p$ of the x_i summing to 0 (mod p), so we have $2n$ elements whose sum is 0 (mod n). But since J itself is zero-sum and has size $3n$, the complement is zero-sum as well and has size n. \hfill \Box

Proposition 3.5. If $d \mid n$, and J is a zero-sum sequence in $(\mathbb{Z}/n\mathbb{Z})^2$ of length $4n - d$, then $(n \mid J) > 0$.

Proof. Note that $4n - d \geq 3m$. By Theorem 3.3, we can break off subsequences of size d with sum 0 (mod d) until we have only $3d$ elements remaining. Then by Lemma 3.4 we can break off another d elements, to obtain $4(n/d) - 3$ blocks of size d, with sums $dx_1, \ldots, dx_{4(n/d)-3}$ for some x_i. By Theorem 3.3, some n/d of the x_i must sum to 0 in $(\mathbb{Z}/(n/d)\mathbb{Z})^2$. Combining the corresponding blocks gives a subsequence of length n whose sum is zero in $(\mathbb{Z}/n\mathbb{Z})^2$. \hfill \Box

The following corollary is clear from Proposition 3.5 and Theorem 3.3.

Corollary 3.6. Let ℓ be the smallest integer greater than or equal to 4 such that $\ell \nmid n$. If J is a zero-sum sequence in $(\mathbb{Z}/n\mathbb{Z})^2$ of length at least $4n - \ell + 1$, then $(n \mid J) > 0$.

Proposition 3.7. Suppose $4 \leq \ell \nmid n$. There exists a zero-sum sequence in $(\mathbb{Z}/n\mathbb{Z})^2$ of length $4n - \ell$ which contains no zero-sum subsequences of length n.

Proof. First, consider a sequence of the form

\[
\begin{align*}
(0, 0) & \quad a \leq n - 1 \\
(0, 1) & \quad b \leq n - 1 \\
(1, 0) & \quad c \leq n - 1 \\
(1, 1) & \quad d \leq n - 1,
\end{align*}
\]

where a denotes the number of $(0, 0)$’s, etc., and $a + b + c + d = 4n - \ell$. It is easy to check that this sequence contains no zero-sum subsequence of length n. Now, we claim that there exists $(r, s) \in (\mathbb{Z}/n\mathbb{Z})^2$ such that adding (r, s) to each term of the above sequence will result in a zero-sum sequence. Note that adding (r, s) to each term does not change the fact that there is no zero-sum subsequence of length n.

In fact, all we need is

\[
g := \gcd(n, \ell) \mid c + d, b + d.
\]
We claim that the following \(a, b, c, d \) work.

\[
\begin{align*}
 a &= n - \ell + g + 1 \quad (\text{or } n - \ell + 2g + 1 \text{ if } g = 1) \\
 b &= n - 1 \\
 c &= n - 1 \\
 d &= n - g + 1 \quad (\text{or } n - 2g + 1 \text{ if } g = 1).
\end{align*}
\]

Note that \(g \leq \ell/2 \) because \(\ell \nmid n \), so \(a \leq n - \ell/2 + 1 \leq n - 1 \) if \(g \neq 1 \), and \(a = n - \ell + 3 \leq n - 1 \) if \(g = 1 \). It is easy to show that we always have \(a, d \geq 0 \) and \(d \leq n - 1 \), and that these \(a, b, c, d \) satisfy the divisibility relation. \(\square \)

Now, Corollary 3.6 and Proposition 3.7 imply Theorem 1.4.

4. Open problems

Harborth [8] first considered the problem of computing \(s_n((\mathbb{Z}/n\mathbb{Z})^d) \) for higher dimensions. He proved the following bounds.

Theorem 4.1 (Harborth [8]). We have

\[
(n - 1)2^d + 1 \leq s_n((\mathbb{Z}/n\mathbb{Z})^d) \leq (n - 1)n^d + 1.
\]

For \(d > 2 \) the precise value of \(s_n((\mathbb{Z}/n\mathbb{Z})^d) \) is not known. See [4, 5] for some better lower bounds and [1, 9] for some better upper bounds. In general the lower bound in Theorem 4.1 is not tight, but Harborth showed that it is an equality for \(n = 2^k \) a power of 2.

Conjecture 4.2. If \(n = 2^k \) and \(d \geq 1 \), we have

\[
s'_n((\mathbb{Z}/n\mathbb{Z})^d) = 2^d n - \ell + 1,
\]

where \(\ell \) is the smallest integer such that \(\ell \geq 2^d \) and \(\ell \nmid n \).

By an argument similar to the \((\mathbb{Z}/n\mathbb{Z})^2\) case, we can reduce this conjecture to the case \(n = 2^d \), in which case \(\ell = 2^d + 1 \). We also have not determined the modified EGZ constants for \((\mathbb{Z}/n\mathbb{Z})^2\) for subsequences of length greater than \(n \).

Problem 4.3. Compute \(s'_nt((\mathbb{Z}/n\mathbb{Z})^2) \) for \(t > 1 \).

The constant \(s_n(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}) \) is known to be \(2m + 2n - 3 \) for \(m \mid n \) [7, Theorem 5.8.3].

Problem 4.4. Compute \(s'_nt(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}) \) for \(t \geq 1 \) and \(m \mid n \).

5. Acknowledgements

This research was conducted at the University of Minnesota Duluth REU and was supported by NSF / DMS grant 1650947 and NSA grant H98230-18-1-0010. We would like to thank Joe Gallian for running the program.

References

[1] Alon, N., and Dubiner, M. Zero-sum sets of prescribed size. Combinatorics, Paul Erdös is Eighty 1 (1993), 33–50.

[2] Augspurger, C., Minter, M., Shoukry, K., Sissoko, P., and Voss, K. Avoiding zero-sum subsequences of prescribed length over the integers. arXiv preprint arXiv:1603.03978 (2016).
[3] Berger, A. An analogue of the Erdős-Ginzburg-Ziv theorem over \(\mathbb{Z} \). arXiv preprint arXiv:1608.04125 (2016).

[4] Edel, Y., Elsholtz, C., Geroldinger, A., Kubertin, S., and Rackham, L. Zero-sum problems in finite abelian groups and affine caps. Quarterly Journal of Mathematics 58, 2 (2007), 159–186.

[5] Elsholtz, C. Lower bounds for multidimensional zero sums. Combinatorica 24, 3 (2004), 351–358.

[6] Erdős, P., Ginzburg, A., and Ziv, A. Theorem in the additive number theory. Bull. Res. Council Israel F 10 (1961), 41–43.

[7] Halter-Koch, F., and Geroldinger, A. Non-unique factorizations: Algebraic, Combinatorial and Analytic Theory. Chapman and Hall/CRC, 2006.

[8] Harborth, H. Ein extremalproblem für Gitterpunkte. J. Reine Angew. Math. (1973).

[9] Meshulam, R. On subsets of finite abelian groups with no 3-term arithmetic progressions. Journal of Combinatorial Theory, Series A 71, 1 (1995), 168–172.

[10] Reiher, C. On Kemnitz’ conjecture concerning lattice-points in the plane. The Ramanujan Journal 13, 1-3 (2007), 333–337.