Title	A note on Hilbert-Kunz multiplicity (Free resolution of defining ideals of projective varieties)
Author(s)	Yoshida, Ken-ichi
Citation	数理解析研究所講究録 (1999), 1078: 64-74
Issue Date	1999-02
URL	http://hdl.handle.net/2433/62668
Type	Departmental Bulletin Paper
Textversion	publisher

Kyoto University
A note on Hilbert-Kunz multiplicity

名古屋大学大学院数理科学研究科　吉田　健一 (Ken-ichi YOSHIDA)

1 Introduction

This is a joint work with Prof. Kei-ichi Watanabe in Nihon University; see [WY].

Throughout this talk, let (A, m, k) be a Noetherian local ring of characteristic $p > 0$. Put $d := \dim A \geq 1$. Let \widehat{A} denote the m-adic completion of A, and let $\text{Ass}(A)$ (resp. $\text{Min}(A)$) denote the associated prime ideals (resp. minimal prime ideals) of A. Moreover, unless specified, let I denote an m-primary ideal of A and M a finite A-module.

First, we recall the notion of Hilbert-Kunz multiplicity which was defined by Kunz [Ku1]; see also Monsky [Mo], Huneke [Hu].

Definition 1.1 The Hilbert-Kunz multiplicity $e_{HK}(I, M)$ of M with respect to I is defined as follows:

$$e_{HK}(I, M) := \lim_{q \to \infty} \frac{\lambda_A(M/I^qM)}{q^d},$$

where $q = p^e$ and $I^q = (a^q \mid a \in I)A$. For simplicity, we put $e_{HK}(I) := e_{HK}(I, A)$ and $e_{HK}(A) := e_{HK}(m)$.

The following question is fundamental but still open.

Question 1.2 Is $e_{HK}(I)$ always a rational number?

• Known Results.

(1.3.1) Let $e(I)$ be the multiplicity of A with respect to I. Then we have the following inequalities:

$$\frac{e(I)}{d!} \leq e_{HK}(I) \leq e(I).$$

(1.3.2) $e_{HK}(I) \geq e_{HK}(A) \geq 1$.

(1.3.3) Put $\text{Assh}(A) = \{P \in \text{Spec}(A) \mid \dim A/P = d\}$. Then

$$e_{HK}(I, M) = \sum_{P \in \text{Assh}(A)} e_{HK}(I, A/P) \cdot l_{AP}(M_P).$$

For example, if A is a local domain and B is a torsion free A-module of rank r, then $e_{HK}(I, B) = r \cdot e_{HK}(A)$.
(1.3.4) (Kunz [Ku2]) For any prime ideal \(P \in \text{Spec}(A) \) such that height \(P + \dim A/P = \dim A \), we have
\[
e_{HK}(A_P) \leq e_{HK}(A).
\]

(1.3.5) If \(A \) is a regular local ring, then
\[e_{HK}(I) = \lambda(A/I).
\]

(1.3.6) If \(I \) is a parameter ideal, then
\[e_{HK}(I) = e(I).
\]

(1.3.7) We recall the notion of tight closure. An element \(x \in A \) is said to be in the tight closure \(I^* \) of \(I \) if there exists an element \(c \in A^0 \) such that for all large \(q = p^e \), \(cx^q \in I^{[q]} \), where \(A^0 := A \setminus \bigcup\{P \mid P \in \text{Min}(A)\} \).

Let \(I, J \) be \(\mathfrak{m} \)-primary ideals such that \(I \subseteq J \). Then if \(I^* = J^* \), then \(e_{HK}(I) = e_{HK}(J) \). Furthermore, if, in addition, \(\hat{A} \) is equidimensional and reduced, then the converse is also true.

(1.3.8) ([WY] or [BCP]) Let \((A, \mathfrak{m}) \subseteq (B, \mathfrak{n}) \) be a module-finite extension of local domains. Then
\[
e_{HK}(I, A) = \frac{[B/\mathfrak{n} : A/\mathfrak{m}]}{[Q(B) : Q(A)]} \cdot e_{HK}(IB, B),
\]
where \(Q(A) \) denotes the fraction field of \(A \).

Question 1.4 If \(\text{pd}_A A/I < \infty \), then does the same formula as that in (1.3.5) hold?

• Background and Questions.

In general, there is an example such that \(e_{HK}(I) = e(I) \); for instance, let \(q \) be a minimal reduction of \(m \). If \(q^* = m \), then we have \(e_{HK}(m) = e_{HK}(q) = e(q) = e(m) \). However, we have no example such that \(\frac{e(I)}{d!} = e_{HK}(I) \). On the other hand, if \(A = k[[X_1, \ldots, X_d]]^{(r)} \), then
\[e_{HK}(A) = \frac{1}{r} \left(\frac{d + r - 1}{r - 1} \right) \text{ and } e(A) = r^{d-1}.
\]

Thus if we tend \(r \) to \(\infty \), then the limit \(\frac{e_{HK}(A)}{e(A)} \) tends to \(\frac{1}{d!} \). So we consider the following question.

Question 1.5 Is there a constant number \(\alpha > 0 \) depending on \(d = \dim A \) alone such that
\[e_{HK}(I) \geq \frac{e(I)}{d!} + \alpha?\]

On the other hand, in [WY], we proved the following theorem.

Theorem 1.6 [WY, Theorem (1.5)] If \(A \) is an unmixed (i.e. \(\text{Ass}(\hat{A}) = \text{Assh}(\hat{A}) \)) local ring with \(e_{HK}(A) = 1 \), then it is regular.
In the above theorem, we cannot remove the assumption that A is “unmixed”. For instance, if $e(A) = 1$, then $e_{HK}(A) = 1$. We now consider the case of Cohen-Macaulay local rings. Then the following question is a natural extension of the above theorem.

Question 1.7 If A is a Cohen-Macaulay local ring with $e_{HK}(A) < 2$, then is it F-regular?

The following conjecture is related to the above questions.

Conjecture 1.8 Let A be a quasi-unmixed (i.e. $\text{Min}(\hat{A}) = \text{Assh}(\hat{A})$) local ring. Then $e_{HK}(I) \geq \lambda(A/I^{*})$ for any m-primary ideal I.

Further, if A is a Cohen-Macaulay local ring then $e_{HK}(I) \geq \lambda(A/I)$ for any m-primary ideal I.

2 A positive answer to Question 1

Throughout this section, let A be a Noetherian local ring with $\dim A = 2$ and suppose that $k = A/m$ is infinite. The following theorem is a main result in this section.

Theorem 2.1 (cf. [WY, Section 5]) Suppose $\dim A = 2$. Then for any m-primary ideal I, we have

$$e_{HK}(I) \geq \frac{e(I) + 1}{2} > \frac{e(I)}{2}.$$

First, we consider the case of Cohen-Macaulay local rings. Now suppose that A is Cohen-Macaulay. Let I be an m-primary ideal and J its minimal reduction, that is, $J = (a, b)$ is a parameter ideal of A and $I^{n+1} = JI^{n}$ for some $n \geq 1$.

Lemma 2.2 Suppose that A is Cohen-Macaulay, $1 \leq s < 2$ and $q = p^{s}$. We define $I^{x} = I^{\lfloor x \rfloor}$ for any positive real number x. Then we have

1. $\lambda_{A}(A/I^{(s-1)q}) = \frac{e(I)}{2}((s-1)q^{2} + o(q^{2}))$, where $f(q) = o(q^{2})$ means $\lim_{q \to \infty} \frac{f(q)}{q^{2}} = 0$.

2. $\lambda_{A}\left(\frac{I^{sq} + J^{[q]}}{J^{[q]}}\right) = \frac{e(I)}{2}(2-s)^{2}q^{2} + o(q^{2})$.

Proof. Put $n = [(s-1)q]$ and $\epsilon = (s-1)q - n$.

1. $\lambda_{A}(A/I^{(s-1)q}) = \lambda_{A}(A/I^{n}) = \frac{e(I)}{2}n^{2} + f(n)$, where $\lim_{n \to \infty} \frac{f(n)}{n^{2}} = 0$.

Thus we get

$$\lambda_{A}(A/I^{(s-1)q}) = \frac{e(I)}{2}((s-1)q - \epsilon)^{2} + o(q^{2}) = \frac{e(I)}{2}(s-1)^{2}q^{2} + o(q^{2}).$$

2. $\lambda_{A}\left(\frac{I^{sq} + J^{[q]}}{J^{[q]}}\right) \leq \lambda_{A}\left(\frac{J^{sq} + J^{[q]}}{J^{[q]}}\right) + \lambda_{A}\left(\frac{I^{sq}}{J^{[q]}}\right)$.
First, we estimate the second term. Since \(e(I) = e(J) \), we have

\[
\lambda_A(I^{sq}/J^{sq}) = \lambda_A(A/J^{sq}) - \lambda_A(A/I^{sq}) = o(q^2).
\]

Next, we estimate the first term.

\[
\lambda_A \left(\frac{J^{sq} + J'[q]}{J'[q]} \right) \leq \sum_{l=n}^{2q} \left\{ (x, y) \in \mathbb{Z}^2 \mid 0 \leq x, y \leq q-1, x + y = l \right\} \times \lambda_A(A/J) + o(q^2)
\]

\[
= \frac{1}{2} (2q - sq) e(I) + o(q^2).
\]

Q.E.D.

Lemma 2.3 Suppose that \(A \) is Cohen-Macaulay. Let \(I \) be an \(\mathfrak{m} \)-primary ideal of \(A \) and \(J \) a minimal reduction of \(I \). If \(I/J \) is generated by \(r \) elements (i.e. \(r \geq \mu_A(I) - 2 \)), then we have

\[
\lambda_A(I^{[q]}/J^{[q]}) \leq \frac{r}{2(r+1)} e(I) \cdot q^2 + o(q^2).
\]

Moreover, if \(J^* \subseteq I \) and \(I/J^* \) is generated by \(r \) elements, the same result holds.

Proof. Let \(s \) be any real number such that \(1 \leq s < 2 \). Then

\[
\lambda_A \left(\frac{I^{[q]}}{J^{[q]}} \right) \leq \lambda_A \left(\frac{I^{[q]} + Isq}{J^{[q]} + Isq} \right) + \lambda_A \left(\frac{J^{[q]} + Isq}{J^{[q]}} \right) =: (E1) + (E2).
\]

Since we can write as \(I = Au_1 + \cdots + Au_r + J \), we get

\[
(E1) \leq \sum_{i=1}^{r} \lambda_A \left(\frac{u_i^q A + J^{[q]} + Isq}{J^{[q]} + Isq} \right) = \sum_{i=1}^{r} \lambda_A \left(\frac{A}{(J^{[q]} + Isq)} : u_i^q \right)
\]

\[
\leq r \cdot \lambda_A \left(\frac{A}{I^{(s-1)q}} \right) = r \cdot \frac{e(I)}{2} (s-1)^2 q^2 + o(q^2) \quad \text{by (2.2)}.
\]

On the other hand, by (2.2) again, \((E2) = \frac{e(I)}{2} (2-s)^2 q^2 + o(q^2) \). Thus

\[
\lambda_A \left(\frac{J^{[q]}}{J^{[q]}} \right) \leq \frac{e(I)}{2} q^2 \left\{ (r+1)s^2 - 2(r+2)s + (r+4) \right\} + o(q^2).
\]

Put \(s = \frac{r+2}{r+1} \), and we get the required inequality.

Further, the last statement follows from the fact \(\lambda_A(A/J^{[q]}) = \lambda_A(A/(J^*)^{[q]}) + o(q^2) \).

Q.E.D.

Next proposition easily follows from the above lemma.

Proposition 2.4 Suppose that \(A \) is Cohen-Macaulay. Let \(I \) be an \(\mathfrak{m} \)-primary ideal of \(A \) and \(J \) a minimal reduction of \(I \). If \(I/J \) is generated by \(r \) elements then we have

\[
e_{HK}(I) \geq \frac{r + 2}{2(r + 1)} \cdot e(I).
\]

Moreover, if \(J^* \subseteq I \) and \(I/J^* \) is generated by \(r \) elements (i.e. \(r \geq \mu_A(I/J^*) = \lambda_A(I/J^* + Im) \)), the same result holds.
We now give a proof of Theorem (2.1). First, we suppose that A is Cohen-Macaulay and let J be a minimal reduction of m. Since

$$e(I) - 1 = \lambda_A(m/J) = \lambda_A(I/J) + \lambda_A(m/I) \geq \lambda_A(I/J + Im) + \lambda_A(m/I),$$

we have $e(I) - 1 \geq e(I) - 1 - \lambda_A(m/I) \geq \mu_A(I/J)$. By virtue of Proposition (2.4), we get

$$e_{HK}(I) \geq \frac{r + 2}{2(r + 1)} \cdot e(I) \geq \frac{e(I) + 1}{2e(I)} \cdot e(I) = \frac{e(I) + 1}{2},$$

where $r = e(I) - 1 - \lambda_A(m/I)$.

We remark that Equality $e_{HK}(I) = (e(I) + 1)/2$ implies $I = m$.

Next, we consider about general local rings. Since $e_{HK}(I) = e_{HK}(I\hat{A})$ and $e(I) = e(I\hat{A})$, we may assume that A is complete. Moreover, since

$$e_{HK}(I) = \sum_{P \in \text{Assh}(A)} e_{HK}(I, A/P) \cdot \lambda_A(P),$$

we may assume that A is a complete local domain. Let B be the integral closure of A in its fraction field. Then B is a complete normal local domain and a finite A-module; thus it is a two-dimensional Cohen-Macaulay local ring. Let n be an unique maximal ideal of B and put $t = [B/n : A/m]$. Then we have

$$e_{HK}(I) = t \cdot e_{HK}(IB, B), \quad e(I) = t \cdot e_{HK}(IB, B).$$

Thus by the argument in the Cohen-Macaulay case, we get

$$e_{HK}(I) = t \cdot e_{HK}(IB, B) \geq t \cdot \frac{e_{HK}(IB, B) + 1}{2} \geq \frac{e_{HK}(I) + 1}{2}.$$

Corollary 2.5 If A is a non-Cohen-Macaulay, unmixed local ring (with $\dim A = 2$), then

$$e_{HK}(I, A) > \frac{e(I) + 1}{2}$$

for any m-primary ideal I of A.

Proof. By the above proof, we may assume that A is a complete local domain. With the same notation as in the proof of Theorem, B is a torsion free A-module. If $\mu_A(B) = 1$, then $B \cong A$; this contradicts the assumption that A is not Cohen-Macaulay. Thus $\lambda_A(B/mB) = \mu_A(B) \geq 2$.

When $t := [B/n : A/m] = 1$, since $\lambda_B(B/mB) = \lambda_A(B/mB) \geq 2$, we have $IB \subseteq mB \subset n$. Hence

$$e_{HK}(I) = e_{HK}(IB, B) > \frac{e(IB) + 1}{2} = \frac{e(I) + 1}{2}.$$

On the other hand, when $t \geq 2$, we have

$$e_{HK}(I) \geq \frac{e(I) + t}{2} > \frac{e(I) + 1}{2} \quad \text{Q.E.D.}$$
Corollary 2.6 Let A be a local ring with $\dim A = 2$. Then

(1) When $e(A) = 1$, we have $e_{HK}(A) = 1$.

(2) When $e(A) \geq 2$, we have $e_{HK}(A) \geq \frac{3}{2}$.

3 Local rings with small Hilbert-Kunz multiplicity

In this section, we consider Question (1.7) in case of local rings with $\dim A = 2$. In order to state the main theorem, we recall the notion of \mathcal{F}-regular rings. A local ring A is said to be \mathcal{F}-regular (resp. \mathcal{F}-rational) if $I^* = I$ for every ideal (resp. parameter ideal) I of A. We are now ready to state the main theorem, which is a slight generalization of Theorem (5.4) in [WY].

Theorem 3.1 (cf. [WY, Theorem (5.4)]) Let A be an unmixed local ring with $\dim A = 2$ and suppose $k = \overline{k}$. Then

(1) $1 < e_{HK}(A) < 2$ if and only if \hat{A} is an \mathcal{F}-rational double point, that is, $\hat{A} \cong k[[X, Y, Z]]/(f)$, where f is given by the list below (3.2).

(2) $e_{HK}(A) = 2$ if and only if A satisfies either one of the following conditions:

(a) A is not \mathcal{F}-regular with $e(A) = 2$.

(b) $\hat{A} \cong k[[X^3, X^2Y, XY^2, Y^3]]$.

Corollary 3.2 Let A be an unmixed local ring with $\dim A = 2$. If $e_{HK}(A) < 2$, then \hat{A} is isomorphic to the completion of the ring $k[X, Y]^G$ where G is a finite subgroup of $SL_2(k)$. In particular, A is a module-finite subring of $k[[X, Y]]$ and $e_{HK}(A) = 2 - \frac{1}{|G|}$.

In fact, $|G|$ is given by the following table.

| type | f | $|G|$ |
|-------|-------------------|------|
| (A_n) | $f = xy + z^{n+1}$ | $n + 1$ | $n \geq 1$ |
| (D_n) | $f = x^2 + yz^2 + y^{n-1}$ | $4(n-2)$ | $n \geq 4$, $p \geq 3$ |
| (E_6) | $f = x^2 + y^3 + z^4$ | 24 | $p \geq 3$ |
| (E_7) | $f = x^2 + y^3 + yz^3$ | 48 | $p \geq 5$ |
| (E_8) | $f = x^2 + y^3 + z^5$ | 120 | $p \geq 7$ |

From now on, let A be an unmixed local ring with $\dim A = 2$. In order to prove the above theorem, we give several lemmas.

Lemma 3.3 If $1 < e_{HK}(A) < 2$, then \hat{A} is an integral domain with $e(\hat{A}) = 2$ and \hat{A}_P is regular for any prime ideal $P \neq \mathfrak{m}\hat{A}$.
Proof. We may assume that A is complete. First, we observe that $e(A) = 2$. Actually, it follows from Theorem (2.1).

Next, we show that A is a local domain with isolated singularity. For any prime ideal $P \neq m$, we have $e_{HK}(A_P) \leq e_{HK}(A) < 2$. Since $e_{HK}(A_P)$ must be a positive integer, we have $e_{HK}(A_P) = 1$. Hence A_P is regular.

On the other hand, $\# \text{Ass}(A) = \# \text{Assh}(A) = 1$. Actually, if $\# \text{Assh}(A) \geq 2$,

$$2 > e_{HK}(A) = \sum_{P \in \text{Assh}(A)} e_{HK}(A_P) \cdot \lambda_{A_P}(A) \geq \# \text{Assh}(A) \geq 2$$

gives a contradiction. Hence $\# \text{Ass}(A) = 1$. Therefore A is a local domain. Q.E.D.

Corollary 3.4 Let A be a Cohen-Macaulay local ring with $e(A) = 2$ and suppose that \hat{A} is reduced. Then

1. If A is F-regular, then $e_{HK}(A) < 2$.
2. If A is not F-regular, then $e_{HK}(A) = 2$.

Proof. Let q be a minimal reduction of m. Since A is Cohen-Macaulay, we have $\lambda_A(A/q) = e(A) = 2$; thus $q^* = q$ or $q^* = m$, because $q \subseteq q^* \subseteq m$.

When $q^* = q$, since A is Gorenstein, A must be F-regular. Moreover, since $m \neq q^*$ and \hat{A} is reduced, we get

$$e_{HK}(A) := e_{HK}(m) < e_{HK}(q^*) = e_{HK}(q) = e(q) = 2.$$

On the other hand, when $q^* = m$, A is not F-regular and $e_{HK}(A) = e_{HK}(q) = 2$. Q.E.D.

We now give an outline of the proof of Theorem (3.1). Let A be an unmixed local ring with $\dim A = 2$ and suppose $k = \overline{k}$.

Step 1. When A is a complete Cohen-Macaulay local ring with $e_{HK}(A) < 2$, it is an F-rational double point.

Proof. In fact, by Lemma (3.3), A is a complete local domain with $e(A) = 2$. Thus Corollary (3.4) implies that A is F-regular. Then A is given by the list in Corollary (3.2).

Step 2. If A is unmixed local ring with $e_{HK}(A) < 2$, then \hat{A} is F-regular.

Proof. We may assume that A is complete. By Lemma (3.3), A is a complete local domain with $e(A) = 2$. Let B the integral closure of A in its fraction field. Then $\lambda_A(B/A) < \infty$ and B is a local domain and is a module-finite extension of A. Let n be an unique maximal ideal of B. In order to show that A is F-regular it is enough to show $A = B$, for B is Cohen-Macaulay. As $A/m \cong B/n$, we get

$$2 > e_{HK}(A) = e_{HK}(m, B) \geq e_{HK}(n, B) =: e_{HK}(B).$$

According to Step 1, B is F-regular with $e_{HK}(B) = 2 - \frac{1}{|G|}$ and is a module-finite subring of $C = k[[X, Y]]$ such that $|G| = [Q(C) : Q(B)]$.

P, Q, Alg, \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}
Now suppose $A \neq B$. Then $H^1_m(A) \cong B/A \neq 0$ and thus A is not Cohen-Macaulay. Further, as $\mu_A(B) \geq 2$, we have $m.B \subseteq n$. Moreover, since both B and C are F-regular rings, we obtain that $I.C \cap B = I$ for any ideal I of B. In particular, we have $m.C \subseteq n.C$. Hence we get

$$e_{HK}(A) - e_{HK}(B) = \frac{1}{|G|} \lambda_A(C/m.C) - \frac{1}{|G|} \lambda_A(C/n.C)$$

$$= \frac{1}{|G|} \lambda_A(n.C/m.C) \geq \frac{1}{|G|}.$$

Thus

$$e_{HK}(A) \geq e_{HK}(B) + \frac{1}{|G|} = 2.$$

Thus we conclude that $A = B$ as required. \hfill \Box

Step 3. Let A be a complete Cohen-Macaulay local ring. Then $e_{HK}(A) = 2$ if and only if A is not F-regular with $e(A) = 2$ or $A \cong k[[X^3, X^2Y, XY^2, Y^3]]$.

Proof. If part is easy. But only if part is hard. See [WY, Section5] for details. \hfill \Box

Step 4. Suppose that A is unmixed but not Cohen-Macaulay. Then $e_{HK}(A) = 2$ if and only if $e(A) = 2$.

Proof. If part: If $e(A) = 2$, then $e_{HK}(A) \leq 2$. If $e_{HK}(A) < 2$, then A is Cohen-Macaulay by Step 2. However, this contradicts the assumption. Hence $e_{HK}(A) = 2$.

Only if part follows from Corollary (2.5). \hfill Q.E.D.

In the final of this section, we give the following problem.

Problem 3.5 Let A be an unmixed local ring with dim $A = 2$. Characterize the ring A which satisfies $e_{HK}(A) = \frac{e(A) + 1}{2}$.

In fact, if $A = k[[X,Y]](e)$ then $e(A) = e$ and $e_{HK}(A) = \frac{e + 1}{2}$. Further, the proof of the above theorem implies that if $e_{HK}(A) = \frac{e(A) + 1}{2}$ and $e(A) \leq 3$ then $A \cong k[[X,Y]]^{\nu(A)}$. Moreover, the following proposition gives a partial answer to this problem.

Proposition 3.6 If A is an unmixed local ring with $e_{HK}(A) = \frac{e(A) + 1}{2}$, then it is F-rational.

Proof. By Cor (2.5), A is Cohen-Macaulay. Then we show that A has a minimal multiplicity, that is, $\text{emb}(A) = e(A) + \text{dim } A - 1$. Let q be a minimal reduction of m. Then since

$$e(A) - 1 = \lambda_A(m/q) \geq \lambda_A(m/q + m^2) = \mu_A(m/q).$$

If $e(A) - 1 > \mu_A(m/q) =: r_0$, then

$$e_{HK}(A) \geq \frac{r_0 + 2}{2(r_0 + 1)} \cdot e(A) > \frac{e(A) + 1}{2};$$
see the proof of Theorem (2.1) for detail. Thus $e(A) - 1 = \mu_A(m/q)$. It follows that $m^2 \subseteq q$; thus A has a minimal multiplicity.

We will show that A is F-rational. Suppose not. Then $q^* \neq q$. Since $m^2 \subseteq q \subseteq q^*$, we have $r_1 := \mu_A(m/q^*) < \mu_A(m/q) = r_0$. Thus by virtue of (2.4), we get

$$e_{HK}(A) \geq \frac{r_1 + 2}{2(r_1 + 1)} \cdot e(A) > \frac{r_0 + 2}{2(r_0 + 1)} \cdot e(A) = \frac{e(A) + 1}{2}.$$

This contradicts the assumption. Hence we conclude that A is F-rational. \textbf{Q.E.D.}

4 Extended Rees Rings.

In this section, we consider the following question.

\textbf{Question 4.1} Let A be a local ring and $F = \{F_n\}$ a filtration of A. Then does $e_{HK}(A) \leq e_{HK}(G_F(A))$ always hold? Further, when does equality hold?

In order to state our result, we recall the definition of Rees ring, extended Rees ring and the associated graded ring.

Let A be a local ring of A with $d := \dim A \geq 1$. Then $F = \{F_n\}_{n \in \mathbb{Z}}$ is said to be a filtration of A if the following conditions are satisfied:

(a) F_i is an ideal of A such that $F_i \supseteq F_{i+1}$ for each i.

(b) $F_i = A$ for each $i \leq 0$ and $m \supseteq F_1$.

(c) $F_i F_j \subseteq F_{i+j}$ for each i, j.

For a given filtration $F = \{F_n\}_{n \in \mathbb{Z}}$ of A, we define

$$R := R_F(A) := \bigoplus_{n=0}^{\infty} F_n t^n.$$

$$S := R'_F(A) := \bigoplus_{n \in \mathbb{Z}} F_n t^n.$$

$$G := G_F(A) := \bigoplus_{n=0}^{\infty} F_n / F_{n+1} \cong S / t^{-1} S \cong R / R(1).$$

$R_F(A)$ (resp. $R'_F(A), G_F(A)$) is said to be the Rees (resp. the extended Rees, the associated graded) ring with respect to a filtration F of A.

Then our main result in this section is the following theorem.

\textbf{Theorem 4.2} Let A be any local ring with $d := \dim A > 0$ and let $F = \{F_n\}_{n \in \mathbb{Z}}$ be a filtration of A. Suppose that $R_F(A)$ is a Noetherian ring with $\dim R_F(A) = d + 1$. Then for any m-primary ideal I of A such that $F_1 \subseteq I \subseteq m$, we have

(1) $e_{HK}(I, A) \leq e_{HK}(N, S)$, where $N = (t^{-1}, I, S_+)$.
(2) If F_1 is an m-primary ideal, then $e_{HK}(N, S) \leq e_{HK}(G)$.

In particular, if F_1 is an m-primary ideal, then

$$e_{HK}(A) \leq e_{HK}(S) \leq e_{HK}(G).$$

Question 4.3 In the above theorem, when does equality hold? How about $e_{HK}(A) \leq e_{HK}(R_F(A))$?

Example 4.4 Let $A = k[[X, Y]]$ and $I = (X^m, Y^n)$, where $m \geq n \geq 1$. Then

1. $e(R(I)) = n + 1$.
2. $e_{HK}(R(I)) = n + 1 - \frac{n(3m - 1)}{3m^2}$.
3. $e(R'(I)) = n + 2$ (if $n \geq 2$), $= 2$ (otherwise).
4. $e_{HK}(R'(I)) = n + 2 - \frac{n}{m} - \frac{1}{n}$.

References

[BC] Buchweitz, R. O. and Chen, Q., Hilbert-Kunz Functions of Cubic Curves and Surfaces, J. Algebra 197 (1997) 246–267.

[BCP] Buchweitz, R. O., Chen, Q. and Pardue, K., Hilbert-Kunz Functions, Preprint.

[C] Conca, A., Hilbert-Kunz functions of monomials and binomial hypersurfaces, Manuscripta Math. 90 (1996), 287–300.

[FW] Fedder, R. and Watanabe, K.-I., A characterization of F-regularity in terms of F-purity: in Commutative Algebra, Math. Sci. Research Inst. Publ. Vol.15 (1989) Springer-Verlag, New York-Berlin-Heidelberg.

[HM] Han, C. and Monsky, Some surprising Hilbert-Kunz functions, Math. Z. 214 (1993), 119-135.

[HH] Hochster, M. and Huneke, C., Tight Closure, invariant theory, and Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31-116.

[Hu] Huneke, C., Tight Closure and Its Applications, C.B.M.S. Regional Conf. Ser. in Math. No.88 (1996), American Mathematical Society

[Ku1] Kunz, E., Characterizations of regular local rings of characteristic p, Amer. J. Math. 41 (1969), 772–784.

[Ku2] Kunz, E., On Noetherian rings of characteristic p, Amer. J. Math. 88 (1976), 999–1013.
[Mo] Monsky, P., The Hilbert-Kunz function, Math. Ann. 263 (1983), 43–49.

[Re] Rees, D., A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24–28.

[Se] Seibert, G., The Hilbert-Kunz function of rings of finite Cohen-Macaulay type, Arch. Math. (Basel) 69 (1997), 286–296.

[Sm] Smith, K., F-rational rings have rational singularities, Amer. J. Math. 119 (1997), 159–180.

[TW1] Tomari, M. and Watanabe, K., Filtered rings, filtered blowing-ups and normal two-dimensional singularities with ”star-shaped” resolution, Publ. Res. Inst. Math. Sci. 25 (1989), 681–740.

[TW2] Tomari, M. and Watanabe, K., Normal \mathbb{Z}_r-graded rings and normal cyclic covers, Manuscripta Math. 76 (1992), 325–340.

[WY] Watanabe, K. and Yoshida, K., Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, Preprint, 1998.

Ken-ichi YOSHIDA
Graduate School of Mathematics, Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan
e-mail: yoshida@math.nagoya-u.ac.jp