A new one-pot synthesis of novel hetarylazo-heterocyclic colorants and study of their solvatochromic properties

Ahmad S. Shawali *, Magda A. Abdallah, Mohamed A. Kandil

Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt

ABSTRACT

A simple synthetic strategy for synthesis of new series of hetarylazo-heterocycles is described. The effects of solvent on their electronic absorption spectra were analyzed using Kamlet-Taft equation. The results of fitting coefficients indicated that the solvatochromism of the studied compounds is mainly due to the solvent polarity rather than the solvent basicity and acidity.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.

A literature survey reveals that most of the reported hetarylazo heterocycles were usually prepared by coupling of diazotized heterocyclic amines with the appropriate heterocyclic nucleophilic reagents [1] or by reactions of hydrazonoyl halides with the appropriate reagents [2]. In continuation of our studies on exploring the utility of hydrazonoyl halides in synthesis of arylazo derivatives of heterocyclic compounds [3–10], it was thought interesting to study the synthesis of new 3-chloro-1,5-di-arylformazans and explore their utility in synthesis of novel hetarylazo derivatives of various heterocycles. This is because, although 3-chloro-1,5-diarylformazans, Ar=N=N=C(Cl)=NNHAr, have been known since 1946 [11–13], little attention, if there is any, has been given hitherto to the related 3-chloro-1,5-bis(hetaryl)formazans of the general formula, Het=N=N=C(Cl)=NNHHet. The adopted synthetic strategy for the target azo colorants in this study depends on 1,5-electrocyclization of the nitrilimines derived from the target new 3-chloro-1,5-bis(hetaryl)-formazans (Scheme 1). In addition, as many arylazo derivatives of heterocyclic compounds have found various applications in industry.
including hair dyeing, disperse dyes, ink-jet inks, photodynamic therapy, nonlinear optical systems and laser materials [14,15], it was thought interesting to study the solvatochromic properties of the new colorants prepared via application of Kamlet–Taft equation [16,17]. The knowledge of the results of such correlations is useful prior exploring the applications of the target azo colorants.

Experimental

All melting points were determined on a Gallenkamp apparatus. Solvents were generally distilled and dried by standard literature procedures [19,20]. Synthesis of 3-hetarylazo heterocycles (8–13)

General procedure – to a cold solution of the appropriate heterocyclic amine 1 (0.01 mol) solution in hydrochloric acid (3 mL, 1 M) was added a solution of sodium nitrate (0.7 g, 0.01 mol) dropwise while stirring the reaction mixture and being cooled in an ice bath. The resulting diazotized amine solution was then added portionwise to a stirred cold (0–5 °C) solution of a mixture of potassium chloromalonate (1.07 g, 0.005 mol) and sodium acetate (1 g, 0.01 mol) in water (20 mL). After the addition was completed, the reaction mixture was stirred for further 1 h while being cooled in an ice bath, then left overnight in a refrigerator. The solid product, that precipitated, was filtered off, dried and then crystallized from the appropriate solvent to give the corresponding heterozyazo derivative. The compounds 8–13 and their physical constants are listed below.

3-[4-(4-Methoxyphenyl)-1H-pyrazol-5-yl]-azo-[6-(4-methylphenyl)-1H-pyrazolo][5,1-c][1,2,4]triazole (9b): yellow solid, (1.5 g, 77%), mp. 152–154 °C (EtOH), IR: ν (KBr) 3181, 3300 (NH) cm⁻¹. ¹H NMR (DMSO-d₆) δ 7.48–7.59 (m, 9H, ArH), 3.76 (s, 3H, OCH₃), 2.35 (s, 3H, CH₃). MS, m/z (%): 444 (M₊, 75), 375 (60), 350 (58), 310 (53), 286 (64), 251 (68), 195 (58), 190 (100), 158 (55), 117 (67), 109 (28), 77 (60). Anal. Calcd for C₂₁H₁₈N₂O₂: 278.42. Found: C, 65.48; H, 3.95; N, 29.52%.

3-[4-(Chlorophenyl)-1H-pyrazol-5-yl]-azo-[6-(4-chlorophenyl)-1H-pyrazolo][5,1-c][1,2,4]triazole (9d): golden yellow solid, (1.73 g, 82%), mp. 165–167 °C (dioxane), IR: ν (KBr) 3151, 3209 (NH) cm⁻¹. ¹H NMR (DMSO-d₆) δ 7.85–8.15 (m, 4H, Het-H), 9.00 (s, 1H, NH), 9.65 (s, 1H, NH). MS, m/z (%): 423 (M₊, 25), 415 (30), 320 (70), 281 (40), 244 (61), 231 (63), 193 (36), 181 (29), 155 (33), 139 (90), 111 (60), 80 (100). Anal. Calcd for C₁₉H₁₄N₂O₂: 288.32. Found: C, 66.80; H, 3.98; N, 31.62%.
A new one-pot synthesis of novel hetarylazo-heterocyclic colorants

Synthesis and characterization

The required potassium chloromalonate was prepared as previously described [18]. Treatment of potassium chloromalonate with two molar equivalents of each of the appropriate diazotized 3-aminopyrazoles 2A–D in dioxane-water solution in the presence of sodium acetate, gave a single product in each case as evidenced by TLC analysis of the crude product. The structures of the isolated compounds were elucidated on the basis of their microanalyses and spectral data (MS, IR and \(^1\)H NMR) (see Experimental). For example, the IR spectra of the compounds prepared showed, in each case, two NH bands in the regions 3212–3367 cm\(^{-1}\). Their \(^1\)H NMR spectra, in addition to the aromatic proton signals, they revealed two common characteristic singlet signals in the regions 8.80–13.32 and 9.10–14.55 due to the resonances of the NH protons. Furthermore, the electronic absorption spectrum of each of the studied compounds exhibits, in a given solvent, two absorption bands in the regions 280–350 and 400–450 nm. The results are summarized in Table 1. As shown, each compound exhibits an intense absorption band in the region 300–450 nm similar to that of typical azo-chromophores [10,21,22]. These spectral data together with the results of elemental analyses indicate that the products isolated from the studied reactions are the corresponding hetarylazo compounds 8–11 (Scheme 1). Such structural assignment is further confirmed by their mass spectra (see Experimental).

![Scheme 2](image-url)

Results and discussion

Similar treatment of potassium chloromalonate with two molar equivalents of each of the diazotized 5-amino-1,2,4-triazole 2E and 2-aminobenzimidazole 2F under the same conditions resulted in the formation of the corresponding azo-heterocyclic colorants 12 and 13, respectively (Scheme 2).

Compd. no.	Ethanol	1,4-Dioxane	Chloroform	Methanol	Acetonitrile					
9a	419 (4.57)	318 (4.87)	420 (4.48)	316 (4.79)	417 (4.39)	314 (4.83)	418 (4.54)	319 (4.95)	416 (4.56)	315 (4.88)
9b	419 (4.59)	320 (4.92)	420 (4.68)	319 (4.98)	415 (4.55)	318 (4.85)	416 (4.60)	321 (4.86)	414 (4.63)	315 (4.92)
9c	418 (4.42)	314 (4.88)	419 (4.52)	316 (4.92)	412 (4.46)	314 (4.85)	413 (4.51)	318 (4.92)	410 (4.56)	317 (4.89)
9d	419 (4.78)	315 (4.98)	421 (4.85)	310 (5.01)	417 (4.77)	309 (4.94)	416 (4.89)	307 (5.02)	418 (4.74)	315 (4.97)
9e	423 (4.78)	319 (4.99)	423 (4.81)	315 (5.00)	417 (4.75)	314 (4.95)	415 (4.84)	318 (4.97)	420 (4.80)	316 (4.92)
10	425 (4.85)	315 (4.92)	428 (4.90)	319 (4.98)	420 (4.82)	318 (4.94)	419 (4.86)	312 (4.96)	421 (4.83)	317 (4.93)
11	428 (4.80)	312 (4.90)	432 (4.85)	300 (4.95)	425 (4.84)	288 (4.93)	423 (3.87)	300 (4.96)	426 (4.83)	300 (4.92)
conditions yielded the corresponding azo derivatives 12 and 13, respectively (Scheme 2). The structures of the latter compounds were elucidated on the basis of their microanalyses and spectral data (MS, IR and 1H NMR) (see Experimental).

To account for the formation of the products 8–13, it is suggested, as depicted in Scheme 1 that the reactions start with the formation of the corresponding 3-chloro-1,5-dihetarylformazans as intermediates. Under the employed reaction conditions, the latter undergo in situ dehydrochlorination to form the corresponding nitrilimines, which in turn undergo 1,5-electrocyclization to give the corresponding azo compounds 8–13 as end products. This suggested pathway is consistent with literature reports on 1,5-electrocyclization of N-hetaryl-nitrilimines [23] and synthesis of chloroformazans [24].

Solvatochromic properties

Before exploring the utility of the compounds prepared as colorant reagents, it was thought necessary to shed some light on their solvatochromic properties. For this purpose, the electronic absorption spectra of each of the compounds 8–11 recorded in a series of five solvents of different solvation character namely ethanol, 1,4-dioxane, chloroform, methanol and acetonitrile at a concentration of 1×10$^{-6}$ mol/L over the range λ 200–800 nm. The results are summarized in Table 1. The effects of solvent polarity and hydrogen bonding on the electronic absorption spectra of the studied compounds 9a–e, 10 and 11 were interpreted by means of the lineal solvation energy relationship (LSER) namely Kamlet–Taft equation (Eq. (1)) [16,17],

$$\delta = \nu^0 + s\pi^* + h\beta + a\alpha$$

(1)

where π^* is the measure of solvent dipolarity/polarizability, β is the scale of the solvent hydrogen bond acceptor basicity, α is the scale of the solvent hydrogen-bond donor acidity and ν^0 is the regression value of the solute property in the reference solvent cyclohexane. The regression coefficients s, b and a in Eq. (1) measure the relative susceptibilities of the solvent-dependent solute property (absorption frequencies) to the indicated solvent parameters. The values of the solvent parameters are given in Table 2.

The correlation of the spectroscopic data were carried out by multiple linear regression analysis using Eq. (1). The results are given in Table 3. As shown, the values (0.890–0.990) of the correlation coefficient (r) indicate that the absorption frequencies for the studied azo compounds in the selected solvents show satisfactory correlation with the solvent parameters π^*, β and α. The degree of success of Eq. (1) is shown also in Fig. 1 by means of a plot of calculated v_{max} versus observed v_{max} in 1,4-dioxane (Table 4). The equation of the regression line is:

$$v_{\text{exp}} = 2.493 + 0.966v_{\text{calc}}$$

(2)

with correlation coefficient $r = 0.970$ and standard error $s = \pm 0.220$.

Furthermore, as the coefficients of the solvent parameters measure the relative susceptibilities of the solvent-dependent solute property namely the absorption frequencies to the indicated solvent parameters, it is clear that the negative sign of the α-coefficient indicates a bathochromic shift and the positive sign of the β-coefficient indicates a hypsochromic shift. The percentage contributions of solvatochromic parameters for the studied azo dyes 9–11 are depicted in Table 5. As shown

Compd. no.	Equation	r_1, ±s
9a	$v_{\text{max}} = (70.05 + 1.98\pi^* - 0.138\beta + 0.463a)10^{13}$	$r = 0.920$; $s = \pm 0.195$
9b	$v_{\text{max}} = (69.53 + 4.15\pi^* - 1.072\beta + 0.795a)10^{13}$	$r = 0.990$; $s = \pm 0.020$
9c	$v_{\text{max}} = (69.32 + 5.54\pi^* - 1.32\beta + 0.723a)10^{13}$	$r = 0.970$; $s = \pm 0.205$
9d	$v_{\text{max}} = (70.10 + 1.78\pi^* - 0.76\beta + 0.97a)10^{13}$	$r = 0.974$; $s = \pm 0.153$
9e	$v_{\text{max}} = (70.15 + 2.13\pi^* - 1.62\beta + 1.53a)10^{13}$	$r = 0.850$; $s = \pm 0.640$
10	$v_{\text{max}} = (68.20 + 4.36\pi^* - 1.57\beta + 1.702a)10^{13}$	$r = 0.978$; $s = \pm 0.240$
11	$v_{\text{max}} = (67.87 + 3.51\pi^* - 1.16\beta + 1.624a)10^{13}$	$r = 0.981$; $s = \pm 0.217$

a r_1, Correlation coefficient.

b ±s, Standard error of the estimate.
for all of the compounds studied, the solvatochromism is due to the solvent polarity rather than the solvent basicity and acidity.

Conclusions

In summary, we have developed a new one-pot method that offers a convenient and efficient procedure for synthesis of various hetarylazo heterocycles. Expanding the scope of this method will be useful to the synthesis of other interesting hetarylazo heterocycles. Expanding the scope of this subject.

References

[1] Shawali AS. Synthesis and tautomerism of aryl- and hetaryl-azo derivatives of bi- and tri-heterocycles. J Adv Res 2010;1:255–90.
[2] Shawali AS, Mosselhi MAN. Hydrazonoyl halides: useful building blocks for the synthesis of arylazo heterocycles. J Heterocycl Chem 2003;40(5):725–46.
[3] Shawali AS, Farghaly TA. Synthesis and tautomerism of 6-arylhydrazono-1H-pyrazol[3',4':5,6]pyrimidin[1,6-b][1,2,4]triazines. Tetrahedron 2009;65:644–7.
[4] Shawali AS, Mosselhi MA, Altalbawy FMA, Farghaly TA. Synthesis and tautomerism of 3,7-bis(arylazo)-6-methyl-2-phenyl-1H-imidazo[1,2-b]pyrazoles in ground and excited states. Tetrahedron 2008;64:5524–30.
[5] Shawali AS, Sherif SM, Farghaly TA, Darwish MAA. Site selective synthesis and tautomerism of arylazo derivatives of pyrazol[3,4-d]pyrimidin[1,6-b][1,2,4]triazine. Afimad 2008;LV:314–8.
[6] Shawali AS, Mosselhi MA, Farghaly TA, Shehata MR, Tawfik NM. Synthesis and tautomerism of 3,6-bis(arylazo)pyrazol[1,5-a]pyrimidine-5,7(4H,6H)-diones. J Chem Res 2008:452–6.
[7] Shawali AS, Darwish ES, Altalbawy FMA. Synthesis of 4-amino-5-phenyl-1,2,4-triazol-3-yl) thiohydrazonates and spectrophotometric study of their cyclization products in ground and excited states. Asian J Spectrosc 2007;11:115–25.
[8] Shawali AS, Mosselhi MA, Farghaly TA. Synthesis and tautomerism of 2-arylazo-4H-imidazol[2,1-b][1,3,4]thiadiazines. J Chem Res 2007:479–83.
[9] Shawali AS, Mosselhi MAN, Abdallah MA, Elewa MS. A new selective route for synthesis of functionalized imidazol[2,1-c][1,2,4]triazoles. J Heterocycl Chem 2007;44:285–8.
[10] Shawali AS, Farghaly TA, Edrees MM. Synthesis and tautomerism of 2-arylazo-4H-imidazol[2,1-b][1,3,4]triazines. J Chem Soc 2007:452–6.
[11] Fusco R, Romani R. Investigations of formazyls. I. The action spectrum of diazo compounds on chloro- and bromomonalic acids. Gazz Chim Ital 1946;76:419–38.
[12] Ninemah A. The chemistry of formazans and tetrazolium salts. Chem Rev 1955;55:355–483.
[13] Hooper WD. Recent chemistry and uses of formazans and tetrazolium salts. Rev Pure Appl Chem 1969:19:221–41.
[14] Shawali AS, Abdelkader MH, Altalbawy FMA. Synthesis and tautomerism of novel 3,7-bis(arylazo)-2,6-diphenyl-1H-imidazo[1,2-b]pyrazoles in ground and excited states. Tetrahedron 2002;58:2875–80.
[15] Fozooni S, Tirkadi AM, Hamidian H, Khabazadeh H. Synthesis of some new 4-arylidenec-5(4H)-oxazoloneazo dyes and an evaluation of their solvatochromic behaviour. Arkivoc 2008:xiv:115–23.
[16] Kamlet MJ, Abboud JM, Taft RW. An examination of linear solvation energy relationships. Prog Phys Org Chem 2007;13:465–630.
[17] Kamlet MJ, Abboud JM, Abraham MH, Taft RW. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, \(\varepsilon^s\), \(\varepsilon^r\), and some of the studies.
methods for simplifying the generalized solvatochromic equation. J Org Chem 1983;48:2877–87.

[18] Shawali AS, Abdelkalek AA, Sayed AR. Kinetics and mechanism of dehydrochlorination of 3-chloro-1,5-diaryl-formazans and their mass spectra. J Chin Chem Soc 2001;48:693–9.

[19] Hartmann H, Liebscher J. A facile synthesis of 5-aminopyrazoles by the reaction of β-chlorocinnamanitriles with hydrazine hydrate. Synthesis 1984:276–7.

[20] Nenaidenko VG, Golubinskii IV, Lenkova ON, Shastin AV, Balenkova ES. New synthesis of 3-aryl-5-amino-1H-pyrazoles. Russ J Org Chem 2004;40:1518–20.

[21] Shawali AS, Zayed MM, Farghaly TA. Synthesis and biological activity of new 1H-pyrazolo[3,4-b]quinoxalines (flavazoles). J Heterocycl Chem 2005;42:185–9.

[22] Shawali AS, Khattab SA, Farag AM. Structure of the diazonium coupling products of γ-phenyl-Δ5, γ-butenediolide. J Chem Eng Data 1977;22:104–10.

[23] Shawali AS. Tandem in situ generation and 1,5-electrocyclization of hetaryl nitrilimines. A facile methodology for synthesis of annulated 1,2,4-triazoles and their acyclo C-nucleosides. Arkivoc 2010(i):33–97.