Groundwater Potential Investigation Using Geoelectric Method with Schlumberger Electrode Configuration in Catur Rahayu Village, Dendang District, Tanjung Jabung Timur Regency, Jambi Province

Tri Rahajoeningroem1*, Bagus Indrajana2
1,2 Department of Electrical Engineering, Universitas Komputer Indonesia, Indonesia

Email : *tri.rahajoeningroem@email.unikom.ac.id,

Abstract. The planning of making boreholes for groundwater exploitation on investigations location is necessary to investigate using the geoelectric method. This method is applied with Schlumberger electrode configuration to obtain information about the coating of subsurface rocks before drilling, where detection target to a depth of about 50 m. The information that will be obtained from the results of this geoelectric measurement is in the form of log geoelectrical sounding with the resistivity price of each rock layer that reflects the form of rock layers below the surface. Furthermore, from the rock resistivity value classification, it can be estimated the type / lithology of each rock layer. From the investigation result using geoelectric method obtained the illustration that the cover layer consists of soil and peat with resistivity values of 60.42 to 245.84 ohms-m. The second layer is in the form of a peat layer with a relatively high resistivity value of 116.78 to 212.58 ohms-m. The third layer is estimated to be a layer dominated by clay, with a relatively low resistivity value of 11.31 to 26.53 ohms-m. Finally, the fourth layer is estimated to be a layer dominated by sand, where the resistivity value is 41.99 to 59.50 ohm-m. This sand layer is expected to be an aquifer layer because it has high water passing characteristic. After the results of groundwater drilling are compared with the results of geoelectric research, it can be concluded that the results of geoelectric research can be used as a guide when conducting groundwater drilling activities.

1. Introduction
The plan to make a wellbore for groundwater exploitation in the requested location requires to obtain supporting data on subsurface bedding, especially the aquifer protective layer. The basic principle of the investigation using the geoelectric method is by injecting an electric current into the earth through a pair of current electrode, then measuring the potential difference through a pair of potential electrons. This method is applied with Schlumberger electrode configuration. The information that will be obtained from the results of the measurement is in the form of a log geoelectrical resistivity with the resistivity value of each rock layer that reflects the shape of the rock layers below the surface. From the rock resistivity value classification, it can be estimated the type of each rock layer. In advance, Geoelectric methods have been successfully used in groundwater exploration, since it is relatively cheap and a quantitative evaluation technique [1].
In addition to its use in groundwater exploration, it is an efficient and economical method for determining the degree of soil corrosivity and the distribution of a contaminant whose salinity varies from that of existing groundwater. In the past study, geophysical method is used to obtain information about the physical properties of the surface. This method is commonly used but need more time for the investigate the groundwater [2]. In some cases using geophysical method the aquifer is not well protected because of too little aquifer protective capacity parameters in the station [3]. On other study, the peat thickness and depth of aquifers is predicted using the geoelectrical resistivity surveys [4]. This survey determined the possibility of groundwater [5]. Therefore, it is necessary to investigate using the geoelectric method to obtain information about the bottom surface coating before drilling [6].

The purpose of this investigation is to determine the parameters of the rock surface subsurface, including the resistivity value of rock bed layer, depth of rock layer from the ground surface and thickness of each rock layer. The results of geoelectric sounding showed that the area of study is dominated by a type of KH-curve that consists of top soil, clay/weathered layer, broken basement and fresh basement. Results from both the Schlumberger and Wenner array data were compared with the static water level measurement; higher correlation value was found in the Schlumberger array than in the Wenner array [7]. While the purpose of this investigation is to provide information regarding the existence of the aquifer layer and its depth.

2. Method
2.1 Schlumberger Electrode Configuration
The basic principle of the investigation using the geoelectric method is by injecting an electric current into the earth through a pair of current electrodes A and B, then measuring the potential difference through a pair of potential electrons M and N. If the earth is considered a homogeneous isotropic medium, then the measured resistivity is the actual resistivity, but by the influence of layers with different resistivity, the measured resistivity is not actual resistivity but is apparent price, or so-called pseudo resistivity (ρ_a). In rock layers, the difference in resistivity such as causing current from A to B does not flow along a circular arc as in a homogeneous medium, but experiences distortion when it reaches the boundary layer and then takes a easier path. The potential difference that is read on deeper current penetration will experience two kinds of resistance. The potential difference measured at M and N will experience two kinds of resistance due to the difference in resistivity of the two layers, so the measured resistivity is pseudo resistivity (pa). In general, the pseudo/apparent resistivity equation is as follows:

$$\rho_a = K \frac{\Delta V}{I} \tag{1}$$

$$K = \frac{2\pi}{\left(\frac{1}{\pi} - \frac{1}{\pi^2}\right) - \left(\frac{1}{\pi} - 1\right)} \tag{2}$$

$$K = \pi \left(\frac{s^2 - b^2}{2b}\right) \tag{3}$$

Note: $\rho_a =$ pseudo/apparent resistivity
$K =$ geometric factor
$\Delta V =$ potential difference between M and N
$I =$ the current injected through A and B
$s =$ half distance between current electrodes (AB / 2)
$b =$ half distance between potential electrodes (MN / 2)

The value of apparent resistivity is very dependent on geometric factors, or in other words depends on the configuration / arrangement of the electrodes used. In the Schlumberger electrode configuration, the four electrodes are located in a straight line. A pair of current electrodes is placed on the outside, while a pair of potential electrodes is on the inside, as shown in Figure 1. The apparent resistivity equation on field for the Schlumberger electrode configuration based on equation (1), equation (2) and equation (3) are:
\[\rho_{as} = \pi \left(\frac{s^2}{2b} \right) \frac{\Delta V}{I} \] \hspace{1cm} (4)

Whereas the theoretical apparent resistivity equation for the Schlumberger electrode configuration based on the Johansen formulation is as follows:

\[\rho_{as}(i\Delta y) = \sum_{j = j_{\text{min}}}^{j_{\text{max}}} T(i \Delta y + x)C(j\Delta y - x) \] \hspace{1cm} (5)

Note:
- \(T \) = resistivity transformation function
- \(i\Delta y \) = the space from Schlumberger (AB / 2) electrode to i
- \(\Delta y \) = sampling interval = Ln(10)/10
- \(C \) = koefisien filter Johansen
- \(x \) = -1.7239458
- \(j_{\text{min}} \) and \(j_{\text{max}} \) = upper limit / lower limit of Johansen's filter coefficient

2.2 Electrical Properties of Materials

Of all the geophysical characteristic of rocks, rock resistivity has the highest value. The resistivity value of a rock can range up to 10 times as possible, or even more. Figure 2 shows a general description of the resistivity values of several rock groups (See Figure 1) [8].

Soil and rocks consist mostly of silicate minerals which are basically insulators. The most common exceptions include magnetite, specular hematite, carbon, graphite, pyrite and pyrite. Therefore, conduction of most electrolytes, and conductivity mainly depends on porosity, hydraulic permeability, water content, dissolved electrolyte concentration, temperature and phase of pore fluid, amount and composition of
colloids (clay content / clay). Figure 2 shows the variation in resistivity values of some rocks, soil, and minerals [9-11].

![Figure 2](image.png)

2.3 Method
In this investigation, a geoelectric method with a Schlumberger electrode configuration is applied, where the detection target is up to a depth of about 50 m. Therefore the maximum current electrode stretch is set at 200 m or half the maximum current electrode range (AB / 2) of 100 m. The information that will be obtained from the results of this geoelectric measurement is in the form of a log geoelectrical resistivity with the resistivity value of each rock layer that reflects the shape of the rock layers below the surface. Furthermore, from the rock resistivity value classification, it can be estimated the type / lithology of each rock layer. Equipment used in measurement is:

- Resistivity-meter, 2 unit
- Power Supply / Accu 12 V, 2 unit
- Electrode stainless steel, 8 pieces
- Current cable with length measurement, 4 rolls
- Potential cable with length measurement, 4 rolls
- Hammer, 8 pieces
- Handy Talky (HT), 8 pieces
- GPS (Global Positioning System), 2 pieces
- Geological Compass, 2 pieces

3. Results and Discussion
3.1 Location of Measurement Points
From the geological map of the Muara Bungo Sheet and the Jambi Sheet, the geological information from the investigation area was obtained that the study location was in the area of Catur Rahayu Village. In the
western part of this location is above the Kasai Formation which consists of alternation between tuff and sandstone claystone, while in the eastern location is above Aluvium which consists of grit, gravel, silt, and clay. Geoelectric measurements in the field were made in 21 measurement points (sounding) with the position of geoelectric measurement points as shown in Figure 3 and Figure 4.

3.2 Data processing
Data from geoelectric measurements (entirety) obtained good quality field data. This can be seen from field data showing changes in pseudo resistivity values that are relatively smooth and do not contain much noise (interference). The software used in processing geoelectric data with Schlumberger electrode configuration is PROGRESS Ver. 3.0. From the results of geoelectric data processing obtained rock parameters for each measurement point at each location. From the resistivity value of the rock layers can then be estimated rock types based on Figure 3 and Figure 4 as well as the geological information of the investigation area. Estimation results of rock types can be seen in Table 1.

Figure 3. Location Map of the Study Area [12]

Figure 4. Map of Geoelectric Measurement Points
Table 1. Estimated Rock Type based on Resistivity Value

No.	Village	Layer	Color	Resistivity (Ohm-m)	Rock Type Estimation
1	Catur Rahayu	Layer-1	grey	60.42 - 245.84	cover layer
		Layer-2	Light green	116.78 - 212.58	peat
		Layer-3	Light yellow	11.31 - 26.53	clay
		Layer-4	Light blue	41.99 - 59.5	sand (aquifer)

The depth of the aquifer layer for each geoelectric measurement point can be seen in Table 2. To provide a clearer picture of subsurface conditions at the investigation site, then from several measurement points in the same direction, several geoelectric cross sections are made.

Table 2. The Depth of the Aquifer Layer at Geoelectric Measurement Points

No.	Village	Point	UTM coordinates (zone = 48 M)	Geographical coordinates	Depth of Aquifer Layer (m)		
			X	Y	Longitude	Latitude	Depth
1	Catur Rahayu	CR-01	377873	9860666	103.902279	-1.260364	29.43
2	Catur Rahayu	CR-02	378077	9860678	103.904113	-1.260256	28.53
3	Catur Rahayu	CR-03	378279	9860676	103.905928	-1.26027	27.04
4	Catur Rahayu	CR-04	377674	9860274	103.904899	-1.263909	26.81
5	Catur Rahayu	CR-05	377874	9860287	103.902287	-1.263792	26.96
6	Catur Rahayu	CR-06	378076	9860286	103.904102	-1.263802	28.92
7	Catur Rahayu	CR-07	379474	9860074	103.916666	-1.265725	31.93
8	Catur Rahayu	CR-08	379674	9860074	103.918481	-1.265725	29.27
9	Catur Rahayu	CR-09	379873	9860072	103.920252	-1.265744	28.86
10	Catur Rahayu	CR-10	380071	9860074	103.920311	-1.265727	32.23
11	Catur Rahayu	CR-11	380072	9860274	103.922041	-1.263918	34.45
12	Catur Rahayu	CR-12	380072	9860472	103.922042	-1.262127	33.04
13	Catur Rahayu	CR-13	379274	9859674	103.914867	-1.269342	34.69
14	Catur Rahayu	CR-14	379475	9859679	103.916673	-1.269298	35.11
15	Catur Rahayu	CR-15	379677	9859677	103.918489	-1.269317	32.18
16	Catur Rahayu	CR-16	379874	9859677	103.920259	-1.269317	33.12
17	Catur Rahayu	CR-17	380070	9859673	103.922021	-1.269354	31.26
18	Catur Rahayu	CR-18	379077	9859079	103.913094	-1.274724	33.11
19	Catur Rahayu	CR-19	379274	9859075	103.914864	-1.274764	31.6
20	Catur Rahayu	CR-20	379470	9859075	103.916626	-1.274761	30.27

From the results of the investigation using the geoelectric method, subsurface bedding features are obtained. The discussion including the type of subsurface bedding in Catur Rahayu Village. There are:

a. **Cover Layer**

Cover layer consisting of soil and peat [13]. This layer has a resistivity value that varies between 60.42 to 245.84 ohms-m. The cover at the investigation site is more dominated by peat.
b. **Peat**: The second layer is a layer of peat. This layer has a relatively high resistivity price between 116.78 to 212.58 ohms-m. In this peat layer there is surface water, but when the dry season, the presence of water in the peat layer can be reduced and even dry [14].

c. **Clay**: The third layer is estimated to be a layer dominated by clay, with a relatively low resistivity value of between 11.31 to 26.53 ohms-m. In this layer the possibility of groundwater density is relatively small due to clay rock which has low water passing characteristic [15].

d. **Sand (aquifer)**: The fourth layer is estimated to be a layer dominated by sand, where the resistivity value is between 41.99 to 59.5 ohms-m. This sand layer is thought to be an aquifer layer because it has high water passing properties [16].

In general, the results of geoelectric investigations at the location of Catur Rahayu Village can be seen in Table 3.

No.	Layer Type	Value Range	Average				
		Depth (m)	Thickness (m)	Resistivity (Ohm-m)	Depth (m)	Thickness (m)	Resistivity (Ohm-m)
1	Cover layer	0.00 - 0.00	0.45 - 1.99	60.42 - 245.84	0.00	0.99	128.75
2	Peat	0.45 - 1.06	3.39 - 8.10	116.78 - 212.58	0.59	3.35	113.92
3	Clay	0.64 - 9.10	23.8 - 30.6	11.31 - 26.53	4.34	26.54	18.23
4	Sand (aquifer)	26.8 - 35.1	41.99 - 59.50	41.99 - 50.19	30.88	50.19	

4. **Conclusion**

From the results of the investigation using the geoelectric method, it was concluded that each layer has specific resistivity values that can determine the characteristics. The cover layer consists of soil and peat with resistivity values of 60.42 to 245.84 ohms-m. The second layer is in the form of a peat layer with a relatively high resistivity value of 116.78 to 212.58 ohms-m. The third layer is estimated to be a layer dominated by clay, with a relatively low resistivity value of 11.31 to 26.53 ohms-m. Finally, the fourth layer is estimated to be a layer dominated by sand, where the resistivity value is 41.99 to 59.50 ohm-m. This sand layer is thought to be an aquifer layer because it has high water passing characteristic. After the results of groundwater drilling are compared with the results of geoelectric research, it can be concluded that the results of geoelectric research can be used as a guide when conducting groundwater drilling activities.

Acknowledgment

The authors are greatly indebted to Provincial Forestry Office of Jambi for providing funds for this research. We also wish to appreciate the efforts of team survey who assisted during the data acquisition and field work for this research. We do not also forget the efforts of anonymous reviewers who reviewed this work.

References

[1] Sikandar, P., Bakhsh, A., Arshad, M., & Rana, T. 2010. The use of vertical electrical sounding resistivity method for the location of low salinity groundwater for irrigation in Chaj and Rachna Doabs. *Environmental Earth Sciences*, 60(5), pp.1113-1129.
[2] Schwartz, F. W., & McClymont, G. L. 1977. Applications of surface resistivity methods. *Groundwater*, **15**(3), pp.197-202.

[3] R. Mailet, Geophysics. 1947. *The Fundamental Equation of Electrical Prospecting*, **12**(4), pp.529-556

[4] Oladapo, M.I., M.Z. Mohammed, O.O. Adeoye and B.A. 2004. Adetola. Geoelectrical investigation of the Ondo state housing corporation Estate Ijapo Akure, *Southwestern Nigeria. J. Min. Geol.*, **40**(1), pp.41-48.

[5] Fereidoun R, Jonathan S P et al. 2016. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. *Chemical Geology*, pp. 75-84.

[6] Mogaji, K.A., K.A.N. Adiat and M.I. Oladapo. 2007. Geoelectric investigation of the Dape phase III housing estate FCT Abuja, *North Central Nigeria, On-line J. Earth Sci.*, **1**(2), pp.76-84.

[7] Koefoed, O. 1979. Geosounding Principles 1, Resistivity Sounding Measurement, *Elsevier, Amsterdam*.

[8] Palacky, G. 1987. Resistivity Characteristics of Geological Targets. In: Nabighian, M., Ed., Electromagnetic Methods in Applied Geophysics-Theory, *Society of Exploration Geophysicists Tulsa, OK*, pp. 53-129.

[9] Keller, G. V., et al. 1966. Electrical Methods in Geophysical Prospecting, *International Series in Electromagnetic Wave*, **10**, Pergamon Press inc., Colorado.

[10] Daniels, F. and Alberty,R.A. *Physical chemistry*, John Wiley & Sons, Inc, 1966

[11] Telford W. M., et al. 1990. Applied geophysics, Second Edition, *Cambridge University Press, London*.

[12] Google Earth. 2017. *Explore, Search and Discover*, Google Inc.

[13] ASTM D5715-00, Standard Test Method for Estimating the Degree of Humification of Peat.

[14] S. Kazemian, B.K. Huat, 2009. Compressibility characteristics of fibrous tropical peat reinforced with cement column, Electronic Geotech. Eng., *Bundle C, (EJGE)*, **14**.

[15] Bell, F, 1996. Engineering geology: *Lime stabilization of clay minerals and soils*, **42**(4), pp. 223-237.

[16] Gash, B. 2007. Groundwater Aquifers. The Richard Stockton College of New Jersey: *Pomona, New Jersey*.