Mechanism of Cellular Formation and In Vivo Seeding Effects of Hexameric β-amyloid Assemblies

Céline Vrancx
Université catholique de Louvain: Universite Catholique de Louvain

Devkee M Vadukul
Université catholique de Louvain: Universite Catholique de Louvain

Nuria Suelles
Université catholique de Louvain: Universite Catholique de Louvain

Sabrina Contino
Université catholique de Louvain: Universite Catholique de Louvain

Ludovic D’Auria
Université catholique de Louvain: Universite Catholique de Louvain

Florian Perrin
Université catholique de Louvain: Universite Catholique de Louvain

Vincent van Pesch
Université catholique de Louvain: Universite Catholique de Louvain

Bernard Hanseeuw
Université catholique de Louvain: Universite Catholique de Louvain

Loïc Quinton
Université de Liège: Universite de Liege

Pascal Kienlen-Campard (✉ pascal.kienlen-campard@uclouvain.be)
Université catholique de Louvain: Universite Catholique de Louvain

Research Article

Keywords: Alzheimer's disease, Aβ oligomers, hexameric Aβ, seeding, FAD model, presenilins

Posted Date: June 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-550136/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Version of Record: A version of this preprint was published at Molecular Neurobiology on October 4th, 2021. See the published version at https://doi.org/10.1007/s12035-021-02567-8.
Abstract

The β-amyloid peptide (Aβ) is the main constituent of senile plaques, a typical hallmark of Alzheimer's disease (AD). Monomeric Aβ is generated through sequential processing of the amyloid precursor protein (APP), with a final step involving γ-secretase activity. In AD, Aβ monomers assemble in oligomers and ultimately fibrils depositing in plaques. Importantly, Aβ toxicity appears related to its soluble oligomeric intermediates. In particular, recombinant Aβ studies described Aβ hexamers as critical oligomeric nuclei. We recently identified hexameric Aβ assemblies in a cellular model, and revealed their ability to enhance recombinant Aβ aggregation in vitro. Here, we assessed the contribution of similar hexameric-like Aβ assemblies to the development of amyloid pathology. We report their early presence in both transgenic mice brains exhibiting human Aβ pathology and cerebrospinal fluid of AD patients, suggesting hexameric Aβ as a putative novel AD biomarker. Using isolated cell-derived hexameric Aβ, we report the potential of these assemblies to seed other human Aβ species, resulting in neuronal toxicity in vitro and amyloid deposition aggravation in vivo. In order to identify key contributors to their formation in a cellular context, we investigated the role of presenilin-1 (PS1) and presenilin-2 (PS2) in the formation of hexameric-like Aβ assemblies. As catalytic subunits of the γ-secretase complex, PS1 and PS2 can differentially participate in Aβ generation. Using CRISPR-Cas9-modified neuronal-like cell lines knockdown for each of the two presenilins, we present experimental evidence suggesting a direct link between the PS2-dependent pathway and the release of hexameric-like Aβ assemblies in extracellular vesicles.

Introduction

The β-amyloid peptide (Aβ) is the major constituent of senile plaques, a typical histological hallmark of Alzheimer's disease (AD). This peptide is produced by the amyloidogenic catabolism of the amyloid precursor protein (APP) [1]. APP undergoes a first cleavage by β-secretase, producing a C-terminal fragment (BCTF), which in turn is cleaved by γ-secretase to generate the intracellular domain of APP (AICD) and Aβ. To note, different isoforms of Aβ can be produced, mostly ranging from 38 to 43 amino acids [2]. After its release as a monomer, Aβ and particularly in its longer forms such as Aβ42, has a propensity to self-assemble [3]. This leads to the formation of Aβ oligomers and ultimately amyloid fibrils, aggregating into senile plaques in the brain. Many studies suggest that the toxicity of Aβ is not related to insoluble fibrils but rather to soluble oligomeric intermediates. This may result from their intrinsically misfolded nature and aggregation propensity, that contribute to trap vital proteins or cause cell membrane alterations [4,5]. In addition, soluble Aβ has been reported to have seeding properties. For instance, Aβ-rich brain extracts were shown to induce cerebral amyloidosis when inoculated in APP transgenic mice, but not in APP knockout mice. Brain extracts from inoculated APP knockout mice, that themselves did not develop amyloidosis, were still capable of inducing amyloidosis when in turn inoculated into naive APP transgenic mice [6]. This model of secondary transmission revealed the potential of soluble Aβ species to stably persist in the brain and also to retain pathogenic activity by acting as seeds in the presence of host Aβ that can be propagated. Hence, it is believed that the stability
of Aβ, and particularly of Aβ oligomers, gives them persistent and aggravating pathological properties for the formation of amyloid deposits [7].

Several oligomeric Aβ species have been suggested to play an important role in its self-assembly and to have deleterious effects underlying Aβ toxicity [8-12]. Among them, Aβ hexamers gain increasing interest, as the smallest assembly readily formed by synthetic Aβ₄₂ in solution [13,3]. Aβ assembly relies on a process of nucleated polymerization [14,15], involving a nucleation phase where Aβ monomers self-associate to form an oligomeric nucleus. Findings from structural studies indicated that hexameric Aβ assemblies might behave as such nuclei, serving as a building block for the formation of higher assemblies [16-18]. However, the cellular context leading to the formation of hexameric Aβ assemblies, as well as their intrinsic toxic properties, are still poorly understood.

We previously reported the presence of ~28kDa Aβ assemblies in Chinese hamster ovary (CHO) cells expressing amyloidogenic fragments of human APP [19]. Our recent biochemical studies have recently demonstrated that these assemblies likely correspond to Aβ₄₂ hexamers [20]. Here, we report the identification of similar, hexameric-like, Aβ assemblies across several cell lines – including a neuronal-like cell line – and, more importantly, in the 5xFAD mouse model of amyloid pathology [21] and the cerebrospinal fluid of human AD patients. This reinforces the role of Aβ hexamers in pathological conditions. We further assessed the ability of hexameric Aβ isolated from CHO cells to induce neuronal toxicity in vitro and to drive amyloid deposition in vivo. To this end, we used two mouse models: WT mice (C57BL/6) to measure the ability of the hexamers to form amyloid deposits in a non-pathological context, and transgenic 5xFAD mice to study their effect in an environment where Aβ is pre-existing. We found that cell-derived hexameric Aβ does not induce toxic effects by itself, but enhances Aβ deposition in a pathological context where human Aβ accumulates (5xFAD).

We studied the cellular pathway that potentially contributes to hexameric Aβ formation and propagation. The production of Aβ in a cellular context requires the γ-secretase activity. The catalytic core of the γ-secretase complex is formed by either the presenilin-1 (PS1) or the presenilin-2 (PS2) protein [22]. PS1 has been repeatedly reported as the major contributor to Aβ production [23-27], rendering the role of PS2 in amyloid pathology less understood. Recent findings revealed the enrichment of PS2 γ-secretases in endosomal compartments [28]. The less important contribution of PS2 to overall Aβ production could thus be explained by a secondary encountering of substrates along cellular trafficking. Importantly, PS2 γ-secretases were shown to preferentially favor the accumulation of aggregation-prone Aβ₄₂ in intracellular endocytic compartments [29]. Based on these observations, we aimed at discriminating the contribution of PS1 and PS2 γ-secretases to the production of the Aβ assemblies we identified. We generated human neuronal-like cell lines knockdown for each of the two presenilins. We provide evidence for a specific role of the PS2-dependent Aβ production pathway in the vesicular release of hexameric-like Aβ assemblies.

Materials And Methods

Chemicals and reagents
Reagents used for Western blotting – Pierce BCA protein assay kit, SeeBlue™ Plus2 pre-stained standard, NuPAGE™ 4-12% Bis-Tris protein gels, NuPAGE™ MES SDS Running Buffer (20X), NuPAGE™ Transfer Buffer (20X), nitrocellulose 0.1μm membranes and GE Healthcare ECL Amersham™ Hyperfilm™ – were all purchased from ThermoFisher (Waltham, MA, USA). Western Lightning® Plus-ECL was from PerkinElmer (Waltham, MA, USA). Complete™ protease inhibitor cocktail was from Roche (Basel, Switzerland). Primary antibodies targeting human Aβ: anti-Aβ clone W0-2 (MABN10), anti-Aβ40 clone 11A5-B10 (05-799) and anti-Aβ42 clone 12F4 (05-831-I) were from Merck (Kenilworth, NJ, USA). Anti-PS1 (D39D1) and anti-PS2 (D30G3) antibodies were from Cell Signalling (Danvers, MA, USA). Anti-APP-Cter (A8717) and anti-α-tubulin primary antibodies as well as secondary antibodies coupled to horseradish peroxidase (HRP) were obtained from Sigma-Aldrich (St-Louis, MO, USA). Alexa Fluor™ 647 secondary antibody was obtained from ThermoFisher. Thioflavin T (ThT) amyloid stain was obtained from Sigma-Aldrich. Mowiol® 4-88 used for mounting medium was purchased from Merck. Cell culture reagents – Ham's-F12, DMEM-F12, DMEM and Neurobasal® growth media, penicillin-streptomycin (p-s) cocktail, Lipo2000® transfection reagent, Opti-MEM®, HBSS, glutamine and B-27® – were all purchased from ThermoFisher. Fetal bovine serum (FBS) was from VWR (Radnor, PA, USA). GELFrEE™ 8100 12% Tris-Acetate cartridge kits were purchased from Expedeon (Heidelberg, Germany). ReadyProbes® cell viability assay kit was from ThermoFisher. ELISA strip plates for immuno-Europium assay (F8, high-binding 771261) were from Greiner Bio-One (Frickenhausen, Germany) and reagent diluent-2 10x (DY995) from R&D systems (Minneapolis, MN, USA). Anti-CD9 primary antibody (MAB1880) was from R&D systems, anti-CD81 (TAPA-1, 349502) from BioLegend (San Diego, CA, USA), anti-CD63 (MCA2142) from Serotec Bio-Rad (Kidlington, UK) and anti-GM130 (610823) from BD transduction (Franklin Lakes, NJ, USA). The anti-mouse IgG-biotin (NEF8232001EA), Europium-labeled streptavidin (1244-360), Delfia® wash concentrate 25x (4010-0010), Delfia® assay buffer (1244-111) and Delfia® enhancement solution (1244-105) were all from PerkinElmer.

DNA constructs

The pSVK3-empty (EP), -C42 and -C99 vectors used for expression in rodent cell lines (CHO, MEF) were described previously [30,19]. C42 and C99 are composed of the APP signal peptide fused to the human Aβ42 and βCTF sequences, respectively. For expression in human cell lines (HEK293, SH-SY5Y), the C99 construct in a pCDNA3.1 plasmid was kindly provided by R. Pardossi-Piquard (University of Sophia Antipolis, Nice, France). The pCDNA3.1 plasmid bearing the C99-GVP construct used in reporter gene assays was a gift from H. Karlström (Karolinska Institute, Stockholm, Sweden). The associated Gal4RE-Firefly luciferase reporter gene (pG5E1B-luc) and Renilla luciferase reporter vector (pRL-TK) have been described previously [31,27,32].

Cell lines culture and transfection

Chinese hamster ovary (CHO) cell lines were grown in Ham's-F12 medium. Human neuroblastoma SH-SY5Y and mouse embryonic fibroblasts (MEF) in DMEM-F12. Human embryonic kidney (HEK293) in
DMEM. All media were supplemented with 10% of heat-inactivated FBS and 100 units/ml p-s. All cell cultures were maintained at 37°C in a humidified atmosphere and 5% CO₂.

For transient transfection, 40,000 cells/cm² were seeded 24h before transfection. Transfection mixes containing desired DNA and Lipo2000® were prepared in Opti-MEM® and pre-incubated for 15min at room temperature (rt). One day after transfection, medium was changed to fresh FBS-free culture medium and incubated for another 24h. Cell lysates and culture media were harvested 48h after transfection for analysis.

Western blotting

Cells were rinsed and scraped in phosphate-buffered saline (PBS) and centrifuged for 5min at 7,000 x g. Pellets were sonicated in lysis buffer (125mM Tris pH 6.8, 20% glycerol, 4% SDS) with Complete™ protease inhibitor cocktail. Protein concentration was determined using the Pierce BCA protein assay kit. Proteins were heated for 10min at 70°C in loading buffer (lysis buffer supplemented with 50mM dithiothreitol (DTT) and NuPAGE™ LDS sample buffer (ThermoFisher)). Samples were loaded and separated by SDS-PAGE electrophoresis on NuPage™ 4-12% Bis-Tris gels with MES SDS running buffer, using SeeBlue™ Plus2 pre-stained as a standard. Proteins were then transferred for 2h at 30V with NuPAGE™ transfer buffer onto 0.1 μm nitrocellulose membranes. After blocking (5% non-fat milk in PBS-Tween®20 0.1%), membranes were incubated overnight at 4°C with the primary antibodies, then washed and incubated with the secondary antibodies coupled to HRP for 1h prior to ECL detection. Primary antibodies were used as follows: anti-human Aβ clone W0-2 (1:1.500), anti-APP-C-ter (1:2.000), anti-PS1 (1:1.000), anti-PS2 (1:1.000), anti-α-tubulin (1:3.000). Secondary antibodies were used as follows: HRP-coupled anti-mouse IgG (1:10.000) or anti-rabbit IgG (1:10.000).

GELFrEE™ isolation of cell-derived hexameric Aβ

CHO cells culture media was collected 48h after transfection with either pSVK3-EP, -C42 or -C99, lyophilized, re-suspended in ultrapure water and pre-cleared with recombinant protein A sepharose (GE Healthcare, Chicago, IL, USA). Immunoprecipitation of Aβ species was performed with the monoclonal anti-human Aβ clone W0-2 antibody. Samples were separated through a gel-eluted liquid fraction entrapment electrophoresis (GELFrEE™ 8100) system to allow the collection of the desired kDa range of proteins directly in liquid fraction. The following method was used for hexameric Aβ collection: step 1: 60min at 50V, step 2: 6min at 70V, step 3: 13min at 85V and step 4: 38min at 85V. Fractions 1, 2 and 3 (Fig.1c) were collected at the end of steps 2, 3 and 4 respectively. All samples were collected in the system running buffer (1x buffer: 1% HEPES, 0.01% EDTA, 0.1% SDS and 0.1% Tris) and kept on ice. Absorbance at 280nm of each fraction was read using a BioPhotometer® D30 (Eppendorf, Hambourg, Germany) and the concentration of the collected hexameric Aβ was calculated using the molar extinction coefficient ε²₈₀nm = 1490 M⁻¹ cm⁻¹.

Dot blotting
5µl of isolated hexameric Aβ (150µM for isoform characterization, 15µM for fractions evaluation prior to intracerebral injection) and 5µl of 50µM synthetic monomeric Aβ (mAβ) with 40 (mAβ40) or 42 residues (mAβ42) were spotted onto 0.1µm nitrocellulose membranes and allowed to dry. Another 5µl of sample were then spotted twice on top and dried. The membranes were boiled twice in PBS for 3min, then blocked with 5% non-fat milk in PBS-Tween®20 0.1%, washed and incubated with primary and secondary antibodies prior to ECL detection, as described above. Primary antibodies dilutions were used as follows: anti-human Aβ clone W0-2 (1:1.500), anti-Aβ40 (1:1.000), anti-Aβ42 (1:1.000). Secondary antibodies were used as described for Western blotting. Synthetic mAβ40 and mAβ42 were prepared as previously described [33].

Animal models

Transgenic 5xFAD mice (Tg6799) harboring human APP and PSEN1 transgenes were originally obtained from the Jackson Laboratory: B6SJL-Tg(APPswFLon,PSEN1*M146L*L286V)6799Vas/Mmjax (34840-JAX). Colonies of 5xFAD and non-transgenic (wild-type, WT) mice were generated from breeding pairs kindly provided by Pr. Jean-Pierre Brion (ULB, Brussels, Belgium). All mice were kept in the original C57BL/6 background strain. Animals were housed with a 12h light/dark cycle and were given ad libitum access to food and water. All experiments conducted on animals were performed in compliance with protocols approved by the UCLouvain Ethical Committee for Animal Welfare (reference 2018/UCL/MD/011).

Protein extraction from mouse brain tissues

WT and 5xFAD mice of either sex were euthanized by cervical dislocation or using CO₂, and brains were quickly removed. The hippocampus and a portion of temporal cortex were immediately dissected on ice. Brain tissues were then homogenized by pipetting up and down with a 1000µl pipette and sonicating in ice-cold lysis buffer (150mM NaCl, 20mM Tris, 1% NP40, 10% glycerol) with Complete™ protease inhibitor cocktail until homogenous. Samples were stored at -80°C until use. Protein concentration was determined using the Pierce BCA protein assay kit prior to analysis.

Cerebrospinal fluid collection

Cerebrospinal fluid (CSF) was collected by lumbar puncture from AD patients and symptomatic controls undergoing diagnostic work-up at the Cliniques Universitaires Saint-Luc (UCL, Brussels, Belgium), both of either sex, following the international guidelines for CSF biomarker research [34]. Collected samples were directly frozen at -80°C until analysis and were always manipulated on ice during Western blotting and ECLIA experiments. Included patients signed an internal regulatory document, stating that residual samples used for diagnostic procedures can be used for retrospective academic studies, without any additional informed consent (ethics committee approval: 2007/10SEP/233). AD patients participated in a specific study referenced UCL-2016-121 (Eudra-CT: 2018-003473-94). In total, CSF samples from eight subjects were retrospectively monitored in this study (see Supplementary Table.S1).
Electro-chemiluminescence immunoassay (ECLIA) for monomeric Aβ quantification

Aβ monomeric peptides were quantified in human CSF or in SH-SY5Y cells media using the human Aβ 6E10 multiplex ECLIA assay (Meso Scale Discovery, Gaithersburg, MD, USA) as previously described [35]. For SH-SY5Y, cells were conditioned in FBS-free medium for 24h. After collection, medium was lyophilized and re-suspended in ultrapure water prior to analysis.

Primary neuronal cultures

Primary cultures of neurons were performed on mouse embryos of either sex at embryonic day 17 (E17), as described previously [36]. Briefly, cortices and hippocampi were isolated by dissection on ice-cold HBSS and meninges were removed. Tissues were then dissociated by pipetting up and down 15 times with a glass pipette. Dissociation was repeated 10 times with a flame-narrowed glass pipette and samples were allowed to sediment for 5min. Supernatants containing isolated neurons were then settled on 4ml FBS and centrifuged at 1.000 x g for 10min. Pellets were resuspended in Neurobasal® medium enriched with 1mM L-glutamine and 2% B-27® supplement medium. 100.000cells/cm² were plated in 12w plates pre-coated with poly-L-lysine (Sigma-Aldrich). Cultures were maintained at 37°C and 5% CO₂ in a humidified atmosphere.

Cell viability assay (ReadyProbes®)

Primary neuronal cultures performed from WT and 5xFAD mouse embryos of either sex were incubated at 7 days *in vitro* (DIV7) with 1 or 5µM of either cell-derived hexameric Aβ (C42 fraction) or control (EP fraction). At DIV8, 2drops/ml of each reagent of the ReadyProbes® assay were added to cells: NucBlue® Live reagent for the staining of all nuclei and NucGreen® Dead reagent for the nuclei of cells with compromised plasma membrane integrity. Staining were detected with standard DAPI and FITC/GFP filters respectively, at an EVOS® FL Auto fluorescence microscope. Quantification was performed by counting dead vs total cells on ImageJ.

Intracerebral stereotaxic surgery

2-month-old WT and 5xFAD mice of either sex were deeply anesthetized by intraperitoneal injection of a mixture of ketamine (Ketamin®) (10mg/kg) and medetomidine (Domitor®) (0.5mg/kg), and placed in a stereotaxic apparatus (Kopf® Instruments, Tujunga, CA, USA). 2µl of 15µM cell-derived hexameric Aβ (C42 fraction) or control (EP fraction) were injected using a 10µl Hamilton syringe and an automated pump (RWD®, Guangdong, China). Coordinates used for intrahippocampal injection were based on the Paxinos atlas: A/P -1.94; L ±2.17; D/V -1.96; mm relative to bregma, considering a bregma-lambda distance of 4.21mm. When the distance differed, coordinates were proportionally adjusted. 30 days after stereotaxic injection, mice were transcardially perfused with PBS and brains were post-fixed in 4% paraformaldehyde for 24h at 4°C.

Immunohistofluorescence
For immunohistological analysis, free-floating coronal sections (50μm) were generated from agarose-embedded fixed brains using a vibrating HM650V microtome (ThermoFisher), and were preserved in PBS-sodium azide 0.02% at 4°C. Prior to immunomarking, sections were washed in PBS and subsequently blocked and permeabilized with PBS-BSA 3%-TritonX100 0.5% for 1h at rt. Sections were then incubated with anti-human Aβ clone W0-2 (1:100) overnight at 4°C as a marker for Aβ-containing species. After three PBS washes and incubation with goat anti-mouse IgG Alexa Fluor™ 647 secondary antibody (1:500) for 1h at rt, slices were finally washed three times with PBS and mounted on SuperFrost® slides. Slides were then incubated with ThT (0.1mg/ml in ethanol 50%) for 15min at rt as a marker for fibrillar deposits. After three washes with ethanol 80% and a final wash with ultrapure water, coverslips were mounted with Mowiol® 4-88-glycerol. W0-2 and ThT staining were detected with standard FITC/Cy5 and GFP filters respectively at an EVOS® FL Auto fluorescence microscope. Counting of double-positive dots was performed on ImageJ.

Generation of SH-SY5Y PS1 and PS2 deficient cells by CRISPR-Cas9

Kits each containing guide RNA vectors that target human *PSEN1* or *PSEN2* genes, a GFP-puromycin or RFP-blasticidin donor vector respectively, and a scrambled sequence control were obtained from Origene (CAT#: KN216443 and KN202921RB). Target sequences were flanked with specific homology sequences for the stable integration of donor sequences, based on the homology-directed repair technique [37,38]. SH-SY5Y cells were transfected using Lipo2000® and FACS-sorted 48h later for GFP+ (PS1) or RFP+ (PS2) cells, then seeded in 24w plates. Following a few days for cell-growth, a second selection was performed using puromycin (PS1) or blasticidin (PS2) at a concentration of 15μg/ml or 30μg/ml, respectively. Cells were then allowed to grow again and split twice before subcloning in 96w plates. PS1 and PS2 clonal populations were selected for following experiments on account of the highest gene-extinction efficiency, mirrored by the strongest decrease in protein levels. Puromycin (2.5μg/ml) and blasticidin (7.5μg/ml) were used for the maintenance of PS1 and PS2 deficient cells, respectively.

Dual luciferase assay

SH-SY5Y cells were co-transfected with Lipo2000® in a 1:1:1 ratio with pG5E1B-luc, pRL-TK and either a pCDNA3.1-empty plasmid (EP) or the pCDNA3.1-C99-GVP, bearing a tagged C99 to quantify the release of the APP intracellular domain (AICD). The system setup was previously described [32,27]. Cells were rinsed with PBS 48h after transfection and incubated with the reporter lysis buffer (Promega, Madison, WI, USA) for 15min at rt. *Firefly* and *Renilla* luciferase activities were measured using the Dual-Glo® luciferase assay system (Promega, Madison, WI, USA) on a Sirius single tube luminometer (Berthold, Bad Wildbad, Germany). Luciferase activity corrected for transfection efficiency was calculated as the *Firefly/Renilla* ratio.

Extracellular vesicles isolation

Culture medium was collected and underwent several centrifugation steps (all at 4°C): 300 x *g* for 10min for the elimination of living cells, 1,000 x *g* for 10min to discard dead cells, 10,000 x *g* for 30min for the
removal of cellular debris, and finally 100,000 x g for 1h to collect extracellular vesicles (EVs) as a pellet and soluble proteins as supernatant. Soluble proteins were precipitated by incubation with 10% trichloroacetic acid (TCA) for 30min on ice. Both EVs and soluble proteins fractions were resuspended in 500µl of PBS for nanoparticle tracking analysis (NTA) and plate-based Europium-immunoassay. For Western blotting, a saved portion of both fractions was sonicated in lysis buffer (125mM Tris pH 6.8, 20% glycerol, 4% SDS) with Complete™ protease inhibitor cocktail. Protein concentration was determined using the Pierce BCA protein assay kit.

Nanoparticle tracking analysis (NTA)

EVs were counted in each fraction by the ZetaView® (ParticleMetrix GmbH, Inning am Ammersee, Germany), which captures Brownian motion through a laser scattering microscope combined with a video camera to obtain size distribution (50-1000nm) and concentration. Samples were diluted 1:50 (v:v) in PBS to reach 50-200 particles/frame, corresponding to ~2 x 10^7-1 x 10^8 particles/ml. Sensitivity was set to 65 and camera shutter to 100 in order to detect less than 3 particles/frame when PBS alone was injected, to assess background signal. Measurements were averaged from particles counted in 11 different positions for 2 repeated cycles with camera at medium resolution mode.

Plate-based Europium-immunoassay

50µl of EVs and soluble proteins fractions were bound to protein-binding ELISA plates. After overnight incubation at 4°C, the rest of the experiment was performed at rt by shaking on a tilting shaker at 30rpm. The plate was washed with Delfia® buffer (diluted to 1x in PBS: Delfia®-W), then blocked with reagent diluent-2 (diluted to 1% BSA in PBS) for 90min. The bound material was labeled with primary antibodies against CD9, CD81, CD63 and GM130 (1µg/ml in reagent diluent-2) for 90min. After three Delfia®-W washes, goat anti-mouse biotinylated antibody (1:2.500 in reagent diluent-2) was added for 60min. After another three Delfia®-W washes, Europium-conjugated streptavidin (diluted to 1:1.000 in Delfia® buffer) was added for 45min. After six final Delfia®-W washes, Delfia® enhancement solution was incubated for 15min before measurement using time-resolved fluorometry with excitation/emission: 340/615nm, flash energy/light exposure: high/medium and integration lag/counting time: 400/400µs (VICTOR® X4 multilabel plate reader, PerkinElmer).

Statistical analyses

The number of experiments (N) and the number of samples per condition in each experiment (n) are indicated in figure legends. All statistical analyses were performed using the GraphPad Prism 8 software (GraphPad Software, La Jolla, CA, USA). All datasets were assessed for gaussian distribution using the Shapiro-Wilk test. A parametric test was applied if the data followed normal distribution. Otherwise, non-parametric tests were used. Statistical analysis performed in each case is indicated in the corresponding figure legend. Briefly, when tested groups were expressed as a fold-change of their corresponding control, the value of the control was set as the hypothetical value for the use of parametric one-sample t test or
non-parametric one-sample Wilcoxon single-ranked test. When a correlation between two variables was assessed, Pearson's R correlation coefficient was calculated. When two groups were compared, parametric t or non-parametric Mann-Whitney tests were used. When more than two groups were compared, parametric ANOVA with indicated post hoc tests or non-parametric Kruskal-Wallis were used. Significance is indicated as: ns=non-significant, *=p<0.05, **=p<0.01, ***=p<0.001. Actual p-values of each test are indicated in the corresponding figure legend.

Results

Identification of cell-derived hexameric $\alpha\beta_{42}$

The emerging body of evidence pointing to the pathological properties of oligomeric – and particularly hexameric – $\alpha\beta$ assemblies has been mostly collected from studies using synthetic $\alpha\beta$ peptides. We have recently focused on the identification of $\alpha\beta$ assemblies that would be readily formed in a cellular context. We started with CHO (Chinese hamster ovary) cells transiently transfected with vectors expressing the human sequences of either $\alpha\beta_{42}$ (referred to as C42) or βCTF (C99), each fused to the APP signal peptide to ensure a proper cellular trafficking of the expressed fragments (Fig.1a). The $\alpha\beta$ assemblies formed in this cellular context were analyzed by Western blotting (Fig.1a-b) using a combination of different antibodies, targeting different epitopes of either the human $\alpha\beta$ sequence or the APP C-terminal region (APP-C-ter) (Fig.1a). As previously reported [19,20], we detected in a reproducible manner a band at ~28kDa in both C42 and C99-expressing cells with $\alpha\beta$-specific antibodies (W0-2 in Fig.1b and 6E10 in Supplementary Fig.S1). These assemblies were not recognized by the APP-C-ter specific antibody (Fig.1b), indicating that they are formed by self-association of the $\alpha\beta$ fragment and do not correspond to the previously reported C99 dimers [30,39]. In addition, intermediate $\alpha\beta$ assemblies – likely corresponding to monomers, dimers and trimers of $\alpha\beta$ – were detected in the media of C99-expressing cells. Various forms of $\alpha\beta$ and mostly $\alpha\beta_{40}$ are generated by C99 processing. This might indicate that assemblies smaller than hexamers are formed when $\alpha\beta$ is produced by C99 processing, but that hexameric forms are predominant when only $\alpha\beta_{42}$ is produced by cells.

For a further characterization of the identified $\alpha\beta$ assemblies, we used a gel-eluted liquid fraction entrapment electrophoresis technique (GELFrEE™ 8100) to isolate the cell-derived $\alpha\beta$ assemblies from W0-2-immunoprecipitated media of C42 or C99-expressing CHO cells (Fig.1c). The use of this technique recently allowed for extensive biochemical analyses [20]. Among the collected observations, dot blotting with primary antibodies directed against the free C-terminal end of the two major $\alpha\beta$ isoforms ($\alpha\beta_{40}$, $\alpha\beta_{42}$) was performed on the isolated ~28kDa assemblies and identified these to be composed of $\alpha\beta_{42}$ (see Supplementary Fig.S2 and [20]). Based on the observed size, these $\alpha\beta$ assemblies likely correspond to hexameric $\alpha\beta_{42}$ assemblies, produced in a cellular context.
Identification of hexameric-like Aβ assemblies across a wide range of cell lines

As Aβ self-assembly strongly depends on the context of its release, we sought to determine whether the assemblies of interest were produced particularly by CHO cells or commonly across other cell lines. Using the same procedure as described above [20], we assessed the Aβ profile in transiently transfected mouse embryonic fibroblasts (MEF) (Fig.2a) as well as two human immortalized models – human embryonic kidney (HEK293) cells (Fig.2b) and neuroblastoma-derived SH-SY5Y cells (Fig.2c). Importantly, the ~28kDa assemblies were consistently detected with the W0-2 Aβ specific antibody and not by the APP-C-ter targeted antibody in all the tested models (Fig.2). The amounts of ~28kDa Aβ assemblies produced by the different cell lines are variable and notably lower in HEK293, but our results indicate that similar, hexameric-like Aβ assemblies can readily form across different cell lines and are not restricted to one cell-type, fostering their relevance as a critical cell-derived Aβ assembly.

Hexameric-like Aβ assemblies in the context of amyloid pathology

We next investigated the presence of similar Aβ assemblies in mice expressing familial AD (FAD) mutations. We readily detected ~28kDa Aβ assemblies (Fig.3a) in brain extracts of 5xFAD mice [21], corresponding to those we have identified as hexameric Aβ in a cellular model. Interestingly, the intensity of hexameric-like Aβ detection in 5xFAD mice brains increased with age. To note, the detection of these assemblies preceded that of high molecular weight Aβ assemblies (>198kDa) likely corresponding to fibrils, which are recognized as the major indicator of the development of amyloid deposits in the 5xFAD model [21,40]. Quantitative analysis of Aβ hexamers (~28kDa) and fibrils (>198kDa) relative to the human APP expressed in mice brains confirmed the appearance of the ~28kDa Aβ assemblies as an early event (Fig.3b). These assemblies accumulated first in the hippocampus of the mice, as early as 2-month-old, while their detection in cortical regions peaked at 3 to 6 months of age. This is in line with the staging of amyloid pathology observed in human AD and suggests hexameric-like Aβ assemblies might serve as an early indicator and important contributor in the onset and development of amyloid pathology.

In addition, cerebrospinal fluid (CSF) samples from cognitively affected patients (diagnosed with non-AD dementia, pre-clinical AD or symptomatic AD) were monitored with the same Western blotting approach (Fig.3c, left panel). Only AD-related patients revealed the presence of ~28kDa Aβ assemblies. Although the amounts of assemblies detected in the CSF remain quite low, their signal increases in symptomatic AD cases with respect to control or pre-clinical AD. This evidences the presence of hexameric-like Aβ assemblies in the context of AD pathology for the first time. More detailed information on neurological examination and PET-analyses conducted on the patients are displayed in Supplementary Table.S1. The same CSF samples were used for a quantitative analysis of monomeric Aβ isoforms by ECLIA immunoassay and revealed an overall reduction in the Aβ42/Aβ40 ratio in AD patients (Fig.3c, right panel).
This reduction correlated with the severity of AD symptoms shown by the patients (see raw values in Table.1), in agreement with previous reports [41]. On the contrary, relative quantification of hexameric-like Aβ levels detected by Western blotting, using soluble APP (sAPP) as an intrasubject control, revealed an increase in the levels of hexameric-like Aβ assemblies alongside the progression of AD (Table.1). This suggests a direct correlation between the reduced proportion of monomeric Aβ_{42} and its aggregation in higher assemblies, as previously suggested [42,43], but here particularly with the hexameric-like ~28kDa assemblies. More precisely, statistical analysis revealed that 48.8% of the Aβ_{42}/Aβ_{40} ratio variance can be explained by the increase in hexameric Aβ formation.

Cell-derived hexameric Aβ decreases cell viability only in primary neurons expressing APP *in vitro*

Following the detection of hexameric-like Aβ assemblies in pathological conditions, we assessed whether isolated cell-derived hexameric Aβ would exert neurotoxic effects. For this, we cultured primary neurons from wild-type (WT) and transgenic (5xFAD) embryos and treated them after 7 days of differentiation *in vitro* (DIV) with isolated hexameric Aβ assemblies. The isolated assemblies were obtained by W0-2-immunoprecipitation and GELFrEE™ separation of C42-expressing CHO cells media as described above (Fig.1) [20]. The corresponding GELFrEE™ fraction of cells expressing the empty plasmid (EP) were used as a control. Two final concentrations were tested; 1mM and 5mM. 24h after treatment, cell viability was assessed using a ReadyProbes® assay and a percentage of dead cells out of the total cells was quantified (Fig.4a). Results showed no significant cytotoxic effect at tested concentrations on primary neurons cultured from WT mice (Fig.4b), even though both are above the reported neurotoxic concentrations from preparations of synthetic oligomeric Aβ [44,7]. This suggests that the identified assemblies are not cytotoxic *per se*, at least in these experimental conditions. However, primary neurons cultured from 5xFAD mice, which can serve as an amyloid model *in vitro* [45-47], displayed increased cell death when exposed to 5mM of cell-derived hexameric Aβ (Fig.4c). Importantly, this indicates that hexameric Aβ assemblies may have the ability to cause toxic effects only when there is pre-existing Aβ in the neuronal environment. This therefore implies that such a cytotoxic ability requires the intermediate seeding of other Aβ present.

Cell-derived hexameric Aβ aggravates *in vivo* amyloid deposition in a transgenic mouse model*

To further assess their potential to drive amyloid formation, we performed hippocampal stereotaxic injections of cell-derived hexameric Aβ assemblies in two mouse models: (i) WT mice (C57BL/6) to assess the potential of Aβ hexamers to form amyloid deposits in a previously amyloid-free context, (ii) mice developing amyloid pathology (5xFAD) to mimic a situation where the hexamers are incubated with pre-existing Aβ, to serve as seeds and thus study whether they have a nucleating potential *in vivo*, driving the assembly and deposition of Aβ produced in the brain. Experimental workflow is represented in Fig.5a.
As for in vitro toxicity assays, Aβ hexamers were obtained by W0-2-immunoprecipitation and GELFrEE™ separation of C42-expressing CHO cells media and the corresponding fraction of EP-expressing CHO cells media was used as a control. The fraction of cell-derived hexameric Aβ was diluted from 150mM to 15mM prior to intracerebral injection. The control fraction was diluted in a similar manner. Specific detection of diluted cell-derived hexameric Aβ was confirmed by dot blotting with the W0-2 antibody (Fig.5a, left panel). 2-month-old WT or 5xFAD mice were injected in the hippocampus of the left and right hemisphere with 2ml of EP (control) and C42 (cell-derived hexameric Aβ) diluted fractions, respectively. To evaluate Aβ deposition, mice were sacrificed 30 days after stereotaxic injection and coronal sections of fixed brains were co-stained with the human specific W0-2 antibody for Aβ and the Thioflavin T (ThT) dye for fibrillar aggregates. Quantitative analysis of Aβ deposition was performed by counting double-positive dots (as indicated in Fig.5a). The results showed that cell-derived hexameric Aβ assemblies do not have the ability to form fibrillar deposits by themselves in a WT brain (Fig.5b), but are capable of enhancing the deposition of Aβ already present in the 5xFAD brain (Fig.5c). In transgenic mice, the overall deposition of Aβ in the hemisphere injected with cell-derived hexameric Aβ showed a significant 1.47-fold increase when compared to the control-injected hemisphere (average (±SEM) of 32.39 (±3.49) and 47.50 (±4.74) deposits per field in control- and hexamer-injected hemispheres, respectively). Deposits were further investigated in the two regions mainly affected by amyloid pathology in AD: the hippocampus and the cortical areas (Fig.5c). As expected, the highest increase in Aβ deposition was observed in the hippocampal region, where stereotaxic injections were performed (2.90-fold increase relative to control). However, levels of Aβ deposits were also significantly increased by a 1.74-fold in the cortex. This suggests that the injected cell-derived hexameric Aβ assemblies are able to propagate from the hippocampal formation to associated cortical regions to promote amyloidosis.

Cellular pathways and contribution of presenilins to the formation of hexameric-like Aβ assemblies

Together, our results support that the identified hexameric-like Aβ assemblies have an important role in the development of amyloid pathology. Consequently, we aimed at understanding the cellular context in which these specific assemblies are formed, and more precisely the contribution of PS1- and PS2-dependent γ-secretases to the formation of these pathological Aβ assemblies. Previous studies demonstrated that PS1 and PS2 have differential substrate specificities [27,48] and that several factors, including their specific subcellular localization [29], can drive the γ-secretase activity towards the production of longer and more aggregation-prone Aβ isoforms.

Hence, we investigated the formation of the assemblies of interest in human cells expressing C99 and lacking either PS1 or PS2. To that end, we used a CRISPR-Cas9 editing approach [37,38] to generate PS1 and PS2 knockdown (KD) neuron-derived human cell lines (SH-SY5Y cells). SH-SY5Y cells readily produced hexameric-like Aβ assemblies in our conditions (Fig.2c). Cells were stably transfected with a CRISPR-Cas9 expression system targeting either PSEN1 or PSEN2 genes, and selected using fluorescent (FACS) and antibiotic resistance double-selections. Scrambled (S) target sequences for both the PSEN1
and PSEN2 genes were used for the generation of control cell lines. After sub-cloning, the expression of both presenilins (PSs) was verified by Western blotting (Fig.6a) which showed a 44.7% and 63.2% reduction of PS1 and PS2 protein levels, respectively. To note, the levels of the other, non-targeted, PS was not significantly affected (Supplementary Fig.S3).

We first assessed the ability of the KD cells to perform the initial cleavage of the C99 substrate at the ε-site, releasing APP intracellular domain (AICD). The AICD release from a tagged C99-GVP substrate was measured by a Gal4 reporter gene assay, as described previously [32,27]. Results revealed an efficient cleavage of the construct in both the PS1-KD and PS2-KD cells, when compared to PS1-S and PS2-S respectively, suggesting that the knockdown of neither PS1 nor PS2 affect the ability to ensure substrate cleavage. We next investigated the profile of Aβ production in these cell lines by combining Western blotting and ECLIA techniques. Results indicated that the reduction in PS1 levels had no significant effect on the profile of Aβ produced inside or outside of the cell (Fig.6b), with no significant decrease in monomeric Aβ40 or Aβ42 measured in culture media. This was quite an unexpected observation, that could be explained by the fact that only around 50% of PS1 knockdown could be achieved in our model. The remaining PS1-dependent γ-secretase activity could be sufficient to efficiently process APP-derived substrates. However, while the formation of intracellular hexameric Aβ was similar between PS2-KD and corresponding control cells, detection of intracellular monomeric Aβ was lost when PS2 expression was reduced. Concomitantly, the extracellular Aβ assembly profile was altered in PS2-KD cells, with an increase in monomeric form and an acute decrease in hexameric Aβ, suggesting that the extracellular release of the hexameric-like Aβ assemblies is dependent on the presence of PS2 (Fig.6c). This would illustrate that the absence of PS2 favors the accumulation of monomeric extracellular Aβ, but leads to decreased intracellular monomeric Aβ and extracellular aggregates. In other words, PS2-dependent γ-secretases could generate aggregation-prone intracellular Aβ, that is eventually released as an aggregate in the extracellular space. To note, PS2 [29,48], as well as APP and intermediate fragments of its metabolism [49,50], were previously found in endo-lysosomal compartments and extracellular vesicles (EVs). We examined whether the hexameric-like Aβ assemblies found outside the cells were present in EVs. We performed a specific ultracentrifugation procedure to separate EVs from soluble proteins in the media of PS1-S, PS1-KD, PS2-S and PS2-KD cells. The efficiency of the separation was confirmed by the Europium-immunoassay with, in the EVs, significantly increased levels of inclusions markers CD9, CD63 and CD81 and lower content of the exclusion marker GM130 (Fig.7a, left panel). The specific enrichment of inclusion markers due to higher protein content in EVs was ruled out since whole-protein assay showed larger protein amounts in soluble than EVs fractions (Fig.7a, right panel). Importantly, extracellular monomeric Aβ was found exclusively in the soluble proteins fraction while hexameric Aβ was confined exclusively in vesicles (Fig.7c), in agreement with recent observations on “Aβ-like” oligomeric species [51]. To note, EVs size distribution was similar between all conditions but the number of EVs was higher in PS1-KD and PS2-KD as compared to PS1-S and PS2-S respectively (Fig.7b). This suggests that the decrease in hexameric-like Aβ assemblies observed in PS2-KD is not due to a decrease in EVs formation. Our results here indicate that PS2 plays a critical role in the extracellular release of hexameric-like Aβ assemblies that display seeding properties.
Discussion

The identification of fibrillar Aβ as the main component of amyloid plaques present in AD has led to the extensive investigation of the Aβ self-assembly process and, as a result, to the identification of many intermediate oligomeric assemblies of Aβ. Today, it is widely agreed that such non-fibrillar, soluble assemblies can exert a widespread neurotoxic effect and should be the main target of therapeutic prevention or intervention. Among Aβ oligomers, hexameric Aβ has repeatedly been identified as a key assembly in vitro [13,3,16,52]. Studies performed on synthetic preparations of Aβ have shed light on the importance of Aβ hexamers as a crucial nucleating step in the process of Aβ self-assembly [16-18,53]. However, such studies have, to the best of our knowledge, not been able to characterize the production of hexameric Aβ in a cellular environment, nor to assess its toxic potential and relevance to AD pathogenesis. Our work identifies specific ~28kDa Aβ assemblies in a wide range of models. Using CHO cells, we were able to confirm the nature of these assemblies as hexameric Aβ42 [20]. The question of whether these assemblies are exclusively formed by six Aβ42 monomers associated together would require extensive analytical biochemistry investigation, which are of real interest, but beyond the scope of our study. Nevertheless, the Aβ assemblies we identified and isolated from CHO cells by GELFrEE™ electrophoresis (i) have an apparent molecular weight around 28kDa, (ii) are recognized by W0-2, 6E10 and anti-Aβ42 antibodies but not by APP-C-ter or anti-Aβ40 antibodies and (iii) are affected by the knockdown of PS2, a catalytic subunit of the γ-secretase complex. Our recently reported aggregation assays revealed a seeding potential of the isolated assemblies when incubated with recombinant monomeric Aβ in vitro [20]. Together, this clearly indicates that the identified Aβ assemblies contain Aβ42 and have not only the theoretical size, but also the expected properties of Aβ hexamers.

Here, we report for the first time the identification of similar, hexameric-like Aβ assemblies in brain extracts from a well-characterized amyloid mouse model (5xFAD) as well as in the CSF of AD patients.

Our observations strongly support that these assemblies may act as a driver of amyloid pathogenesis. In the 5xFAD model, the presence of hexameric-like Aβ assemblies followed a regional pattern of progression that corresponds to the neuropathological, clinical staging of human AD pathogenesis [54]. Indeed, the ~28kDa assemblies were detected first in the hippocampus, as early as 2-month-old, and further spread to the cortex starting from 3 to 6-month-old. On the contrary, amyloid plaques formation in the 5xFAD mice have previously been reported to appear first in deep layers of the cortex and in the subiculum, and to later spread to the hippocampus as mice aged [21]. As the spreading properties of soluble Aβ oligomers are likely to depend on the initial site where they are formed, investigating the aggravation of amyloid pathology upon injection of cell-derived hexameric Aβ in the cortical areas might bring important evidence to support this hypothesis. Meanwhile, the pattern of detection of hexameric-like Aβ assemblies reported here suggest that they could represent early biomarkers of amyloid pathology. The detection of similar ~28kDa assemblies in CSF extracted from human patients diagnosed with pre-clinical AD and symptomatic AD supports this hypothesis.
The isolation of hexameric Aβ from our CHO cell model has also allowed the characterization of its detrimental properties. The treatment of primary WT neurons with 1mM of cell-derived hexameric Aβ for 24h did not elicit any cytotoxic effect. These experimental conditions mimic a cellular environment comparable to the early phase of oligomeric Aβ pathology, as reported in several studies [55-58]. As concentrations of oligomeric Aβ42 have been reported to reach concentrations of up to 3mM in AD-affected neurons [59], we also tested a 5mM concentration in our assay. Yet, we did not observe any increase in cell death when comparing WT neurons treated with cell-derived hexameric Aβ to control-treated neurons. Interestingly, observations collected from aggregation assays revealed a very stable behavior of the hexameric assemblies when incubated alone in vitro, unable to further aggregate [20]. The lack of direct harmful effects on neurons is in line with the fact that (i) the process of Aβ self-assembly is thought to be vital in mediating cytotoxicity [33,60], (ii) the pathological properties of Aβ oligomers could rely not only on their synaptotoxic effects but also on their seeding properties, propagating amyloid pathology throughout the brain parenchyma.

In line with the observation that cell-derived hexameric Aβ does not appear cytotoxic by itself when applied in the culture medium, and considering its suggested role as a nucleus for Aβ self-assembly, we studied whether the damaging potential of Aβ hexamers could be unraveled when pre-existing Aβ species are present. Cytotoxic assays on primary neurons derived from transgenic 5xFAD mice were performed, since cultured neurons from AD transgenic animal models express APP metabolites involved in amyloid pathology and can reflect AD phenotypes in vitro [45,47,46]. We observed a significant increase in the proportion of cell death when neurons were treated with 5mM of cell-derived hexameric Aβ. This suggests that these specific assemblies can indeed exert a toxic effect in a FAD context, where Aβ to seed is available. To further assess this hypothesis, we performed stereotaxic injections of isolated cell-derived hexameric Aβ in 5xFAD mouse brains and followed Aβ deposition, in parallel to WT injected mice. The results obtained in WT mice suggest that the injected assemblies are not able to induce Aβ deposition in vivo per se. To note, Aβ deposition in vivo was assessed in a time-frame of 30 days. One cannot exclude that pathogenic mechanisms might take place upon longer incubation time. In addition, the absence of cytotoxicity or Aβ deposits formation by cell-derived hexameric Aβ per se does not exclude its ability to alter brain function apart from cytotoxicity or amyloid deposition. Indeed, cellular dysfunctions or alterations of neuronal connectivity might occur in our WT models and simply not be sufficient yet to cause cytotoxicity or amyloidosis. The absence of Aβ deposits after injection of cell-derived hexameric Aβ in the brain of WT mice also does not exclude the possibility that the stable seeds injected might not directly cause amyloidosis in the injected animals, but persist in the brain and retain pathogenic properties, as was previously shown with second-transmission studies [6].

A major observation in this study is the ability of cell-derived hexameric Aβ to act as a seeding nucleus and cause both cytotoxicity in primary neurons and aggravation of Aβ deposition in the brain when using transgenic 5xFAD mice. These mice express five familial AD mutations that together trigger Aβ42 overproduction and result in a rapid and severe development of amyloid pathology [21,40]. 5xFAD mice therefore represented a useful model to assess the nucleating hypothesis in vivo in a reasonable
timeframe. An earlier onset of Aβ aggregation in this model was previously reported upon single intracerebral injection of brain homogenates containing oligomeric Aβ, following a prion-like seeding mechanism [61]. Aβ oligomers have been further suggested as early initiating actors of the seeding process, as their depletion by passive immunization delays Aβ aggregation and leads to a transient reduction of seed-induced Aβ deposition [62]. Our study has the advantage of focusing on a specific cell-derived Aβ aggregate, that previous studies carried out in vitro showed to be heavily involved in the processes of nucleation and seeding [16,20]. We chose to perform intracerebral injections at 2 months of age, when amyloid deposition begins in the 5xFAD mice [21]. The significant increase of Aβ deposition observed in hexamer-injected hemispheres suggests that hexameric Aβ is indeed able to promote amyloidosis. As very recent in vitro studies from our group revealed the ability of the isolated Aβ hexamers to drive the aggregation of synthetic monomers of Aβ in vitro [20], it is likely that the enhancement in Aβ aggregation observed here in vivo relies on the same process of nucleation, with Aβ hexamers serving as a template for aggregation. The greater increase of Aβ deposition in the hippocampus when compared to the cortex of the injected mice supports this hypothesis, as hexameric Aβ is likely to seed and promote Aβ aggregation to a higher rate at the site of injection. Still, the significant aggravation of deposition in the cortex also suggests that hexameric Aβ is able to spread throughout the brain, as rapidly as in 30 days. Together, these observations suggest that hexameric Aβ is a key factor in the amyloidosis process, with seeding properties and ability to spread through connected brain regions, and might serve when naturally present as an early indicator of Aβ deposition.

With this important hypothesis in mind, we sought to better understand the cellular context in which hexameric Aβ is produced. In particular, we assessed the respective involvement of both presenilins in its production. Indeed, the distinct subcellular localizations [29] and differential substrate specificities [27] of PS1 and PS2 control the production of different Aβ pools. Production of Aβ can differ considerably between cellular compartments [29]. Pathological Aβ formation is related to dysfunction of the endocytic pathway, and PS1 and PS2 are differentially distributed between the secretory compartments and the late endosomes/lysosomes, to which PS2 is shuttled [29]. Our results showed the absence of any significant change in the processing of C99 or the release of Aβ when cells have a nearly 50% reduction of PS1 protein levels. This was rather surprising regarding previous reports on the preponderant importance of PS1 for γ-secretase substrates cleavage and overall Aβ production [23-27]. One can imagine, as mentioned above, that the reduction of PS1 protein levels is not significant enough to observe any effect. PS1 knockdown might induce compensatory mechanisms and still ensure its primary function even when its protein levels are reduced by half. In the PS2 knockdown cells, the reduction of PS2 protein levels by just over 60% was sufficient to cause clear changes in Aβ production. While the initial cleavage of the C99 construct (ε-site) remained unaffected, the production of monomeric Aβ was strongly diminished inside the cell and, in an opposite manner, strongly increased in the extracellular medium. In particular, the Aβ_{40} isoform was increased in the medium of PS2-KD cells. The levels of the ~28kDa hexameric Aβ assemblies were unchanged in the cell lysates but strongly diminished in the extracellular environment. Importantly, we observed for the first time that these specific Aβ assemblies were enriched in extracellular vesicles, while monomeric Aβ was present solely in the soluble fraction. Although the amount of EVs
tended to increase upon knockdown of PS1/PS2, it did not seem to impact Aβ fate. As PS1 and PS2 have been respectively shown to produce the extra- and intracellular pools of Aβ [29], the direct release of soluble Aβ outside the cellular environment is likely to rely mostly on the action of PS1, while the intracellular pool is likely to be mainly dependent of PS2 activity in vesicular compartments. Our observations suggest that PS2 knockdown strongly affects the production of Aβ from the C99 fragment. Monomeric Aβ_{42} is likely to completely aggregate, while monomeric Aβ_{40} might not be able to, causing the observed increase in the detection of this isoform outside the cell. Importantly, this is supported by observations reported in our biochemical in vitro study [20], showing the isolation of monomeric Aβ from the medium of C99-expressing CHO cells and identifying it as non-aggregating Aβ_{40}.

Together, our results in both knockdown cell lines drive towards the hypothesis that extracellular hexameric Aβ might be exclusively released in EVs emerging from the intracellular pool of Aβ, and likely produced through the activity of PS2. The identification of such a specific role for PS2 in the release of hexameric Aβ, that might then exert nucleating effects, is of particular importance. This is quite promising in the hope of re-evaluating Aβ modulators and developing therapeutic agents targeting a specific γ-secretase activity depending on the PS present in the complex. PS1 and PS2 were reported to have different sensitivities to γ-secretase inhibitors [27]. Importantly, the intracellular pool of Aβ, generated by PS2, has been repeatedly associated with the progression of AD [63-66]. FAD mutations in PSEN2 have been shown to dramatically increase the proportion of longer length Aβ intracellularly, accelerating its assembly. Further, a subset of familial mutations on PSEN1 have been reported to shift the localization of the PS1 protein to that of PS2 [29]. Thus, it is likely that the PS2-dependent production of aggregation-prone Aβ inside intracellular compartments and its resulting accumulation and excretion are enhanced in the context of AD.

Conclusions

Altogether, our findings have shed light on a particular cell-derived Aβ assembly that corresponds to an Aβ_{42} hexamer. Combining in vitro and in vivo approaches, we have revealed an absence of detrimental effects of cell-derived hexameric Aβ by itself, but its capacity to induce cytotoxicity and aggravate amyloid deposition when there is Aβ to seed at disposal. An insight in cellular mechanisms at stake suggests a strong contribution of PS2 to the formation of this particular Aβ oligomer, in line with previous reports linking the restricted location of PS2 in acidic compartments to the production of more aggregation-prone Aβ.

Abbreviations

Aβ: β-amyloid. AD: Alzheimer's disease. AICD: APP intracellular domain. APP: amyloid precursor protein. CHO: Chinese hamster ovary. CRISPR: clustered regularly interspaced short palindromic repeats. Cryo-EM: cryo-electron microscopy. CSF: cerebrospinal fluid. CTF: C-terminal fragment. HEK293: human embryonic kidney. KD: knockdown. MCI: mild cognitive impairment. PET: positron-emission tomography. PSEN:
presenilin (gene). PS: presenilin (protein). S: scrambled. sAPP: soluble APP. ThT: Thioflavin T. WT: wild-type.

Declarations

Acknowledgments

We thank Esther Paître, Sarah Houben and Pierre Burguet for technical support. We are grateful to Jean-Noël Octave, Nathalie Pierrot and Jean-Pierre Brion for providing scientific input as well as materials and animal models.

Funding

This work was supported by a grant of the Belgian F.N.R.S FRIA (Fonds National pour la Recherche Scientifique) and a grant of UCLouvain Fonds du Patrimoine to CV. Funding to PKC is acknowledged from SAO-FRA Alzheimer Research Foundation, Fondation Louvain and Queen Elisabeth Medical Research Foundation (FMRE to PKC and LQ). The work was supported by funds from FNRS grant PDRT.0177.18 to PKC and LQ.

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Availability of data and material

All datasets generated and analyzed during this study are included in this published article and its supplementary information files. Materials are available upon request.

Code availability

Not applicable.

Authors’ contributions

CV designed and performed experiments, analyzed and interpreted data, and wrote the manuscript. DMV performed experiments and analyzed data. SC and NS provided neuronal cultures and analyzed data. LD’A performed nanoparticle tracking and Europium-immunoassay analyses on isolated EVs, and helped with the analysis of related data. FP participated in experiment design and analysis. VVP and BH together provided the human CSF specimens. BH provided significant input in the interpretation of clinical data. LQ provided the GELFrEE™ technique and contributed to data collection. PKC designed and supervised the research project and contributed to interpretation of data. All authors revised and approved the final manuscript.
Ethics approval

All animal experiments were performed with the approval of the UCLouvain Ethical Committee for Animal Welfare (reference 2018/UCL/MD/011). Human cerebrospinal fluid samples were collected as part of clinical analyses performed at Cliniques Universitaires Saint-Luc (UCL, Brussels, Belgium).

Consent to participate

Symptomatic non-AD patients signed an internal regulatory document, stating that residual samples used for diagnostic procedures can be used for retrospective academic studies, without any additional informed consent (ethics committee approval: 2007/10SEP/233). AD patients participated to a specific study referenced UCL-2016-121 (Eudra-CT: 2018-003473-94).

Consent for publication

All authors have given consent for publication.

References

1. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5):a006270. doi:10.1101/cshperspect.a006270
2. Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y (2009) gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29(41):13042–13052. doi:10.1523/jneurosci.2362-09.2009
3. Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100(1):330–335. doi:10.1073/pnas.222681699
4. Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357. doi:10.1038/nn.3028
5. Almeida ZL, Brito RMM (2020) Structure and Aggregation Mechanisms in Amyloids. Molecules 25(5). doi:10.3390/molecules25051195
6. Ye L, Fritschi SK, Schelle J, Obermüller U, Degenhardt K, Kaeser SA, Eisele YS, Walker LC, Baumann F, Staufenbiel M, Jucker M (2015) Persistence of Aβ seeds in APP null mouse brain. Nat Neurosci 18(11):1559–1561. doi:10.1038/nn.4117
7. Sengupta U, Nilson AN, Kayed R (2016) The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 6:42–49. doi:10.1016/j.ebiom.2016.03.035
8. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453. doi:10.1073/pnas.95.11.6448
9. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357. doi:10.1038/nature04533

10. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572(Pt 2):477–492. doi:10.1113/jphysiol.2005.103754

11. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi:10.1038/nm1782

12. Müller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, Horn AH, Sticht H, de Souza Silva MA, Gottmann K, Sergeeva OA, Huston JP, Keyvani K, Korth C (2016) Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain 139(Pt 2):509–525. doi:10.1093/brain/awv355

13. Wolff M, Zhang-Haagen B, Decker C, Barz B, Schneider M, Biehl R, Radulescu A, Strodel B, Willbold D, Nagel-Steger L (2017) Aβ42 pentamers/hexamers are the smallest detectable oligomers in solution. Sci Rep 7(1):2493. doi:10.1038/s41598-017-02370-3

14. Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274. doi:10.1016/s0076-6879(99)09019-9

15. Serpell LC (2000) Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502(1):16–30. doi:10.1016/s0925-4439(00)00029-6

16. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem 284(8):4749–4753. doi:10.1074/jbc.R800036200

17. Cernescu M, Stark T, Kalden E, Kurz C, Leuner K, Deller T, Göbel M, Eckert GP, Brutschy B (2012) Laser-induced liquid bead ion desorption mass spectrometry: an approach to precisely monitor the oligomerization of the β-amyloid peptide. Anal Chem 84(12):5276–5284. doi:10.1021/ac300258m

18. Österlund N, Moons R, Ilag LL, Sobott F, Gräslund A (2019) Native Ion Mobility-Mass Spectrometry Reveals the Formation of β-Barrel Shaped Amyloid-β Hexamers in a Membrane-Mimicking Environment. J Am Chem Soc 141(26):10440–10450. doi:10.1021/jacs.9b04596

19. Decock M, Stanga S, Octave JN, Dewachter I, Smith SO, Constantinescu SN, Kienlen-Campard P (2016) Glycines from the APP GXXXG/GXXXA Transmembrane Motifs Promote Formation of Pathogenic Aβ Oligomers in Cells. Front Aging Neurosci 8:107. doi:10.3389/fnagi.2016.00107

20. Vadukul DM, Vrancx C, Burguet P, Contino S, Suelves N, Serpell LC, Quinton L, Kienlen-Campard P (2021) An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β. Accepted for publication in Sci Rep. doi:10.21203/rs.3.rs-129253/v1

21. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration,
neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. doi:10.1523/jneurosci.1202-06.2006

22. De Strooper B (2003) Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 38(1):9–12. doi:10.1016/s0896-6273(03)00205-8

23. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390. doi:10.1038/34910

24. Frånberg J, Svensson Al, Winblad B, Karlström H, Frykman S (2011) Minor contribution of presenilin 2 for γ-secretase activity in mouse embryonic fibroblasts and adult mouse brain. Biochem Biophys Res Commun 404(1):564–568. doi:10.1016/j.bbrc.2010.12.029

25. Pintchovski SA, Schenk DB, Basi GS (2013) Evidence that enzyme processivity mediates differential Aβ production by PS1 and PS2. Curr Alzheimer Res 10(1):4–10. doi:10.2174/156720513804871480

26. Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J, Kelleher RJ 3rd (2015) Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease. Neuron 85(5):967–981. doi:10.1016/j.neuron.2015.02.010

27. Stanga S, Vrancx C, Tasiaux B, Marinangeli C, Karlström H, Kienlen-Campard P (2018) Specificity of presenilin-1- and presenilin-2-dependent γ-secretases towards substrate processing. J Cell Mol Med 22(2):823–833. doi:10.1111/jcmm.13364

28. Meckler X, Checler F (2016) Presenilin 1 and Presenilin 2 Target γ-Secretase Complexes to Distinct Cellular Compartments. J Biol Chem 291(24):12821–12837. doi:10.1074/jbc.M115.708297

29. Sannerud R, Esselens C, Ejsmont P, Mattera R, Rochin L, Tharkeshwar AK, De Baets G, De Wever V, Habets R, Baert V, Vermeire W, Michiels C, Groot AJ, Wouters R, Dillen K, Vints K, Baatsen P, Munck S, Derua R, Waëlkens E, Basi GS, Mercken M, Vooijs M, Bollen M, Schymkowitz J, Rousseau F, Bonifacino JS, Van Niel G, De Strooper B, Annaert W (2016) Restricted Location of PSEN2/γ-Secretase Determines Substrate Specificity and Generates an Intracellular Aβ Pool. Cell 166(1):193–208. doi:10.1016/j.cell.2016.05.020

30. Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, Fei JZ, Aimoto S, Courtoy PJ, Smith SO, Constantinescu SN, Octave JN (2008) Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 283(12):7733–7744. doi:10.1074/jbc.M707142200

31. Huysseune S, Kienlen-Campard P, Hébert S, Tasiaux B, Leroy K, Devuyyst O, Brion JP, De Strooper B, Octave JN (2009) Epigenetic control of aquaporin 1 expression by the amyloid precursor protein. Faseb j 23(12):4158–4167. doi:10.1096/fj.09-140012

32. Karlström H, Bergman A, Lendahl U, Näslund J, Lundkvist J (2002) A sensitive and quantitative assay for measuring cleavage of presenilin substrates. J Biol Chem 277(9):6763–6766. doi:10.1074/jbc.C100649200
33. Marshall KE, Vadukul DM, Dahal L, Theisen A, Fowler MW, Al-Hilaly Y, Ford L, Kemenes G, Day IJ, Staras K, Serpell LC (2016) A critical role for the self-assembly of Amyloid-β1–42 in neurodegeneration. Sci Rep 6:30182. doi:10.1038/srep30182

34. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, Fleming JO, Furlan R, Hintzen RQ, Hughes SG, Johnson MH, Krasulova E, Kuhle J, Magnone MC, Rajda C, Reidak K, Schmidt HK, van Pesch V, Waubant E, Wolf C, Giovannoni G, Hemmer B, Tumani H, Deisenhammer F (2009) A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73(22):1914–1922. doi:10.1212/WNL.0b013e3181c47cc2

35. Hage S, Stanga S, Marinangeli C, Octave JN, Dewachter I, Quetin-Leclercq J, Kienlen-Campard P (2015) Characterization of Pterocarpus erinaceus kino extract and its gamma-secretase inhibitory properties. J Ethnopharmacol 163:192–202. doi:10.1016/j.jep.2015.01.028

36. Opsomer R, Contino S, Perrin F, Gualdani R, Tasiaux B, Doyen P, Vergouts M, Vranx C, Doshina A, Pierrot N, Octave JN, Gailly P, Stanga S, Kienlen-Campard P (2020) Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional Activator Neuronal PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. eNeuro 7 (3). doi:10.1523/eneuro.0322-19.2020

37. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010

38. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. doi:10.1038/nature10886

39. Munter LM, Voigt P, Harmeyer A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. Embo j 26(6):1702–1712. doi:10.1038/sj.emboj.7601616

40. Eimer WA, Vassar R (2013) Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Mol Neurodegener 8:2. doi:10.1186/1750-1326-8-2

41. Doecke JD, Pérez-Grijalva V, Fandos N, Fowler C, Villemagne VL, Masters CL, Pesini P, Sarasa M (2020) Total Aβ(42)/Aβ(40) ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology 94(15):e1580–e1591. doi:10.1212/wnl.0000000000009240

42. Gravina SA, Ho L, Eckman CB, Long KE, Otvos L Jr, Younkin LH, Suzuki N, Younkin SG (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270(13):7013–7016. doi:10.1074/jbc.270.13.7013

43. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32(18):4693–4697. doi:10.1021/bi00069a001

44. Li X, Buxbaum JN (2011) Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 6:79. doi:10.1186/1750-1326-6-79
45. Kim H, Kim B, Kim HS, Cho JY (2020) Nicotinamide attenuates the decrease in dendritic spine density in hippocampal primary neurons from 5xFAD mice, an Alzheimer's disease animal model. Mol Brain 13(1):17. doi:10.1186/s13041-020-0565-x

46. Mariani MM, Malm T, Lamb R, Jay TR, Neilson L, Casali B, Medarametla L, Landreth GE (2017) Neuronally-directed effects of RXR activation in a mouse model of Alzheimer's disease. Sci Rep 7:42270. doi:10.1038/srep42270

47. Noh H, Park C, Park S, Lee YS, Cho SY, Seo H (2014) Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology. BMC Genom 15(1):644. doi:10.1186/1471-2164-15-644

48. Dehury B, Tang N, Blundell TL, Kepp KP (2019) Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1. RSC Advances 9(36):20901–20916. doi:10.1039/C9RA02623A

49. Lauritzen I, Pardossi-Piquard R, Bourgeois A, Pagnotta S, Bifoni MG, Barkats M, Lacor P, Klein W, Bauer C, Checler F (2016) Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Acta Neuropathol 132(2):257–276. doi:10.1007/s00401-016-1577-6

50. Evrard C, Kienlen-Campard P, Coevoet M, Opsomer R, Tasiaux B, Melnyk P, Octave JN, Buée L, Sergeant N, Vingtdeux V (2018) Contribution of the Endosomal-Lysosomal and Proteasomal Systems in Amyloid-β Precursor Protein Derived Fragments Processing. Front Cell Neurosci 12:435. doi:10.3389/fncel.2018.00435

51. Perrin F, Papadopoulos N, Suelves N, Opsomer R, Vadukul DM, Vrancx C, Smith SO, Vertommen D, Kienlen-Campard P, Constantinescu SN (2020) Dimeric Transmembrane Orientations of APP/C99 Regulate γ-Secretase Processing Line Impacting Signaling and Oligomerization. ISCIENCE. doi:https://doi.org/10.1016/j.isci.2020.101887

52. Roychaudhuri R, Yang M, Deshpande A, Cole GM, Frautschy S, Lomakin A, Benedek GB, Teplow DB (2013) C-terminal turn stability determines assembly differences between Aβ40 and Aβ42. J Mol Biol 425(2):292–308. doi:10.1016/j.jmb.2012.11.006

53. Lendel C, Bjerring M, Dubnovitsky A, Kelly RT, Filipiov A, Antzukin ON, Nielsen NC, Härd T (2014) A hexameric peptide barrel as building block of amyloid-β protofibrils. Angew Chem Int Ed Engl 53(47):12756–12760. doi:10.1002/anie.201406357

54. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9(1):119–128. doi:10.1016/s1474-4422(09)70299-6

55. Nath S, Agholme L, Kurudennakandy FR, Granseth B, Marcusson J, Hallbeck M (2012) Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid. J Neurosci 32(26):8767–8777. doi:10.1523/jneurosci.0615-12.2012

56. Hallbeck M, Nath S, Marcusson J (2013) Neuron-to-neuron transmission of neurodegenerative pathology. Neuroscientist 19(6):560–566. doi:10.1177/1073858413494270
57. Domert J, Rao SB, Agholme L, Brorsson AC, Marcussen J, Hallbeck M, Nath S (2014) Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol Dis 65:82–92. doi:10.1016/j.nbd.2013.12.019

58. Sackmann C, Hallbeck M (2020) Oligomeric amyloid-β induces early and widespread changes to the proteome in human iPSC-derived neurons. Sci Rep 10(1):6538. doi:10.1038/s41598-020-63398-6

59. Hashimoto M, Bogdanovic N, Volkmann I, Aoki M, Winblad B, Tjernberg LO (2010) Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Abeta42 and Alzheimer’s disease neuropathology. Acta Neuropathol 119(5):543–554. doi:10.1007/s00401-010-0661-6

60. Castelletto V, Ryumin P, Cramer R, Hamley IW, Taylor M, Allsop D, Reza M, Ruokolainen J, Arnold T, Hermida-Merino D, Garcia CI, Leal MC, Castaño E (2017) Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta Peptide Derivatives. Sci Rep 7:43637. doi:10.1038/srep43637

61. Morales R, Callegari K, Soto C (2015) Prion-like features of misfolded Aβ and tau aggregates. Virus Res 207:106–112. doi:10.1016/j.virusres.2014.12.031

62. Katzmarski N, Ziegler-Waldkirch S, Scheffler N, Witt C, Abou-Ajram C, Nuscher B, Prinz M, Haass C, Meyer-Luehmann M (2020) Aβ oligomers trigger and accelerate Aβ seeding. Brain Pathol 30(1):36–45. doi:10.1111/bpa.12734

63. Bayer TA, Wirths O (2011) Intraneuronal Aβ as a trigger for neuron loss: can this be translated into human pathology? Biochem Soc Trans 39 (4):857–861. doi:10.1042/bst0390857

64. Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, Kaether C, Fändrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci U S A 107(5):1942–1947. doi:10.1073/pnas.0904532106

65. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119(5):523–541. doi:10.1007/s00401-010-0679-9

66. Pensalfini A, Albay R 3rd, Rasool S, Wu JW, Hatami A, Arai H, Margol L, Milton S, Poon WW, Corrada MM, Kawas CH, Glabe CG (2014) Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol Dis 71:53–61. doi:10.1016/j.nbd.2014.07.011

Tables

Table.1 Inverse correlation between monomeric and hexameric-like Aβ in human CSF samples
Inclusion n°	Classification	$\text{A}β_{42}/\text{A}β_{40}$	Hexameric $\text{A}β$/sAPP
1258	Non-AD	0.069	0.079
1506		0.065	0.055
1523	Pre-clinical AD	0.052	0.075
1268		0.080	0.084
1556		0.052	0.092
1272	Symptomatic AD	0.033	0.140
1329		0.039	0.224
1633		0.032	0.143

CSF samples from eight subjects were monitored in this study: patients n°1258 and 1506 did not exert any AD-related features. Patients n°1523, 1268 and 1556 were diagnosed with pre-clinical AD and patients n°1272, 1329 and 1633 with symptomatic AD. Ratios of monomeric $\text{A}β_{42}$ over monomeric $\text{A}β_{40}$, and of hexameric-like $\text{A}β$ over soluble APP (sAPP) were obtained from ECLIA and Western blot quantifications respectively (see Fig.3). Pearson’s R correlation test: $R=-0.70$ (R-squared=0.49), $p=0.05$

Figures
Figure 1

Hexameric Aβ42 derived from CHO cells expressing human APP metabolites. a. Full-length APP is cleaved by β-secretase at the β site, located at the N-terminus of Aβ, to produce a 99-amino acid long membrane-bound fragment called βCTF (encompassing Aβ and AICD). The construct referred to as C99 here is composed of the signal peptide (SP) of APP fused to the sequence of the βCTF fragment. This fragment is then cleaved by γ-secretase at the γ site to release Aβ. The C42 construct is composed of the
SP of APP and the Aβ42 sequence. The epitopes of the primary antibodies used in this study are indicated on the scheme; either directed against human Aβ (clones W0-2 and 6E10 targeting its N-terminal part, and Aβ40 and Aβ42 antibodies specifically targeting the free C-terminal end of Aβ) or against the C-terminal region of APP (APP-C-ter). Nt=N-terminus, Ct=C-terminus, sAPP=soluble APP, AICD=APP intracellular domain, EC=extracellular, IM=intramembrane, IC=intracellular. b. Detection of ~28kDa assemblies by Western blotting in CHO cell lysates and culture media following expression of either C42 or C99. These assemblies are recognized by Aβ specific antibodies (such as W0-2 here), but not by the APP-C-ter, suggesting they emerge by assembly of Aβ. In the media of C99-expressing cells, intermediate assemblies are also observed; monomers, dimers and trimers. EP=empty plasmid. c. Isolation of cell-derived Aβ assemblies. The media of CHO cells expressing either EP, C42 or C99 were immunoprecipitated and separated using the GELFrEE™ technique. We optimized a method to collect the ~28kDa Aβ assemblies as an isolated liquid fraction. Dashed lines indicate that proteins were run on the same gel, but lanes are not contiguous.
Commonality of hexameric Aβ production in several cell lines. Cell lysates and media from murine MEF fibroblasts (in a.) and human embryonic HEK293 cells (in b.), as well as from human neuroblastoma-derived SH-SY5Y cells (in c.) expressing C99 all revealed the presence of ~28kDa assemblies recognized by the human Aβ specific W0-2 antibody, and not by the anti-APP-C-ter. EP= empty plasmid
Identification of hexameric-like Aβ assemblies in the context of AD. a. Detection of Aβ assemblies in brain samples from an amyloid mouse model (5xFAD). Cortices and hippocampi of euthanized mice were lysed and analyzed by Western blotting. Aβ fibrils appear stuck in the wells and hexameric-like Aβ assemblies are detected at ~28kDa. To note, Aβ monomers are also detected in all 5xFAD samples and reflect an efficient metabolism of the human APP protein expressed in these mice. Dashed lines indicate
that proteins were run on the same gel, but lanes are not contiguous. Hipp.=hippocampus. b. The signal intensities of Aβ hexamers and Aβ fibrils were quantified relatively to the APP signal. Samples used for quantitative analysis derived from the same experiment, with Western blots processed in parallel. The displayed graphs represent the profile of Aβ assemblies as related to both the analyzed brain area (cortex, hippocampus) and the age (2, 3, 6, 9, 12 months of age) (min N=3 each). c. Identification of ~28kDa, hexameric-like, Aβ assemblies in the cerebrospinal fluid (CSF) of AD patients. Western blotting analysis was performed using the W0-2 and APP-C-ter antibodies. Dosage of monomeric Aβ42/Aβ40 by ECLIA immunoassay confirmed the correct classification of individuals, with a reduction in ratio along with AD progression. sAPP=soluble APP. Pre-cl.=preclinical. Sympto.=symptomatic
Cell-derived hexameric Aβ assemblies are only cytotoxic in primary neurons that express amyloid proteins. a. Experimental workflow. Primary neurons were isolated from wild-type (WT) or transgenic (5xFAD) mouse embryos at stage E17 and cultured for 8 days in vitro (DIV). At DIV7, cells were incubated for 24h with 1µM or 5µM of cell-derived hexameric Aβ or control, isolated from the media of C42- and EP-expressing CHO cells respectively. Cell viability was assessed using the ReadyProbes® assay and
fluorescent staining was captured at an EVOS® FL Auto fluorescence microscope. A representative image of the assay is shown. Scale bar=50µm. b, c. Quantification of the proportion of dead cells compared to the total cells in WT (in b.) and 5xFAD cultures (in c.). Total number of cells counted (number of dead cells counted in brackets) was as follows in WT: n=1183(439), 1070(472), 650(314), 813(318), 797(400) and 5xFAD: n=528(212), 640(270), 1019(442), 465(224), 775(544) for NT, control (equivalent of 1µM), control (equivalent of 5µM), hexameric Aβ (1µM) and hexameric Aβ (5µM) respectively. NT=not treated. N=4 independent experiments in WT, N=3 independent experiments in 5xFAD. One-way ANOVA with Tukey's multiple comparison test: ns=non-significant, *=p<0.05, **=p<0.01 (in WT: p=0.99 NT vs hexameric Aβ (1µM), p=0.38 NT vs hexameric Aβ (5µM), p=0.95 control (1µM) vs hexameric Aβ (1µM), p=0.97 control (5µM) vs hexameric Aβ (5µM); in 5xFAD: p=0.70 NT vs hexameric Aβ (1µM), p=0.004 NT vs hexameric Aβ (5µM), p=0.85 control (1µM) vs hexameric Aβ (1µM) and p=0.009 control (5µM) vs hexameric Aβ (5µM))
Intracerebral injection of cell-derived hexameric Aβ in WT and 5xFAD mice. a. Experimental workflow. 2-month-old mice were deeply anesthetized, placed in a stereotaxic apparatus and bilaterally injected with 2µl of either 15µM GELFrEE™-isolated Aβ hexamers (C42) or control (EP) in the hippocampus (A/P -1.94; L +2.17; D/V -1.96; mm relative to bregma). Both fractions were analyzed by dot blotting prior to injection. 30 days later, mice were transcardially perfused, brains were fixed and coronally sectioned.
(50μm). Immunostaining was performed on free-floating sections using the anti-human Aβ (W0-2) antibody as a marker for Aβ and the Thioflavin T (ThT) dye as a marker for fibrillar deposits. W0-2 and ThT staining were detected with FITC/Cy5 and GFP filters respectively. Right panel displays an example of double-positive counting. Scale bar=400μm. b, c. Quantification of fibrillar deposits in full hemispheres of WT (in b.) and 5xFAD brains (in c. upper panel) injected with control vs hexameric Aβ. Scale bar=1000μm. n=32 slides from N=8 mice for both WT and 5xFAD. Mann-Whitney test: ns=non-significant, *=p<0.05 (in WT: p>0.99 control vs hexameric Aβ; in 5xFAD: p=0.04 control vs hexameric Aβ). For transgenic mice, deposits were also classified according to the two most affected brain regions, hippocampus and cortex, as a function of the control-injected hemisphere (in c. middle and lower panel, scale bar=400μm). A 2.90-fold and a 1.74-fold increase were observed in the hippocampus and cortex respectively. One-sample Wilcoxon signed-rank test with hypothetical value set at 1: *=p<0.05, **=p<0.01 (in 5xFAD hippocampus: p=0.008 control vs hexameric Aβ; in 5xFAD cortex: p=0.02 control vs hexameric Aβ)
Contribution of presenilins to the production of hexameric Aβ assemblies. a. SH-SY5Y knockdown (KD) cell lines were generated using CRISPR-Cas9, with guide RNA vectors targeting either human PSEN1 (PS1-KD) or PSEN2 (PS2-KD) genes. Control cells were transfected with respective scrambled sequences. Left, a representative Western blot; middle and right, quantitative decrease in PS1 and PS2 protein levels in KD compared to S cells (for all conditions, see Supplementary Fig.S2). N=3. One-sample t test with
hypothetical value set as 100: *=p<0.05, ***=p<0.001 (S vs KD, in PS1: p=0.03; in PS2: p=0.0001).

WT=wild-type, S=scrambled. b, c. Initial cleavage ability was monitored by a reporter gene assay. The release of APP intracellular domain (AICD) from a tagged C99-GVP substrate was measured by the Gal4-Firefly reporter gene. Results are represented as Firefly/Renilla luciferases ratios, with Renilla serving as a transfection-efficiency control. The profile of Aβ production was assessed after transfection with either an empty plasmid (EP) or C99, using Western blotting and ECLIA immunoassay, in PS1-KD vs PS1-S (in b.) and in PS2-KD vs PS2-S (in c.). Dashed line indicates that proteins were run on the same gel, but lanes are not contiguous. Luciferase assays (initial cleavage of C99): N=4 each. One-way ANOVA with Tukey's multiple comparison test: ns=non-significant (S vs KD, in PS1 control: p>0.99; in PS1 C99-GVP: p=0.10; in PS2 control: p=0.99; in PS2 C99-GVP: p=0.99). Western blots quantitative analyses (hexameric Aβ, in cell lysates and released, relative to C99 and expressed as a % to S): N=3 each. One-sample t test with hypothetical value set as 1: ns=non-significant, **=p<0.01 (S vs KD, in PS1 cell lysates: p=0.16; in PS1 media: p=0.97; in PS2 cell lysates: p=0.99; in PS2 media: p=0.01). ECLIA assays (monomeric Aβ released): N=5 each. Mann-Whitney test: ns=non-significant, *=p<0.05 (S vs KD, in PS1 Aβ40: p>0.99; in PS1 Aβ42: p>0.99; in PS2 Aβ40: p=0.04; in PS2 Aβ42: p=0.12)
Figure 7

Localization of hexameric Aβ assemblies in extracellular vesicles (EVs). Media of PS1-S, PS1-KD, PS2-S and PS2-KD cells underwent an ultracentrifugation process to separate putative enrichment of EVs, in pellet, from soluble proteins. a. The efficiency of EVs isolation was confirmed by plate-based Europium-immunoassay (left panel) showing an enrichment of EVs inclusion markers CD9, CD63 and CD81 while EVs exclusion marker GM130 was lower in EVs as compared to soluble fractions. N=6. Mann-Whitney
test: *=p<0.05, ***=p<0.001 (CD9 (n=22), CD63 (n=22) and CD81 (n=18): p<0.001; GM130 (n=19): p=0.0362). Quantification of protein levels by BCA (right panel) showed larger protein amounts in soluble than EVs fractions, ruling out the specific enrichment of inclusion markers due to higher content in proteins. b. EVs ultracentrifugation pellets were counted for number of particles of 70-400nm by nanoparticle tracking analysis (NTA). n=9 in N=3 independent experiments. Two-way ANOVA with Bonferroni’s multiple comparison: *=p<0.05 (PS2-KD EP vs PS2-S EP: p<0.05). c. Both EVs and soluble extracts were monitored by Western blotting with the W0-2 antibody. Dashed lines indicate that proteins were run on the same gel, but lanes are not contiguous. EP=empty plasmid, EV(s)=extracellular vesicle(s), Sol=soluble proteins fraction

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Vrancxetal.2021SupplementaryFig.S1S3.pdf
- Vrancxetal.2021SupplementaryTable.S1.xlsx