An effective singular oscillator for
Duffin–Kemmer–Petiau particles with a nonminimal
coupling: a two-fold degeneracy

T R Cardoso, L B Castro and A S de Castro

1 Instituto de Física Teórica, UNESP, São Paulo State University, Caixa Postal 70532-2, 01156-970 São Paulo, SP, Brazil
2 Departamento de Física, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Florianópolis, SC, Brazil
3 Departamento de Física e Química, UNESP, Campus de Guaratinguetá, 12516-410 Guaratinguetá, SP, Brazil
E-mail: tatifisica@hotmail.com, luis.castro@pgfsc.ufsc.br and castro@pq.cnpq.br

Received 3 August 2011, in final form 13 December 2011
Published 30 January 2012
Online at stack.iop.org/JPhysA/45/075302

Abstract
Scalar and vector bosons in the background of one-dimensional nonminimal vector linear plus inversely linear potentials are explored in a unified way in the context of the Duffin–Kemmer–Petiau theory. The problem is mapped into a Sturm–Liouville problem with an effective singular oscillator. With boundary conditions emerging from the problem, exact bound-state solutions in the spin-0 sector are found in a closed form, and it is shown that the spectrum exhibits degeneracy. It is shown that, depending on the potential parameters, there may or may not exist bound-state solutions in the spin-1 sector.

PACS numbers: 03.65.Ge, 03.65.Pm

1. Introduction

The first-order Duffin–Kemmer–Petiau (DKP) formalism [1–4] describes spin-0 and spin-1 particles and has been used to analyze relativistic interactions of spin-0 and spin-1 hadrons with nuclei as an alternative to their conventional second-order Klein–Gordon and Proca counterparts. The DKP formalism enjoys a richness of couplings not capable of being expressed in the Klein–Gordon and Proca theories [5, 6]. Although the formalisms are equivalent in the case of minimally coupled vector interactions [7–9], the DKP formalism opens new horizons as far as it allows other kinds of couplings which are not possible in the Klein–Gordon and Proca theories. Nonminimal vector potentials, added by other kinds of Lorentz structures, have already been used successfully in a phenomenological context for describing the scattering of mesons by nuclei [10–17]. Nonminimal vector coupling with a quadratic potential [18], linear potential [19], and mixed space and time components with a step potential [20, 21] and a linear potential [22, 23] have been explored in the literature. See also [22] for a comprehensive list of references on other sorts of couplings and functional forms for the potential functions.

1751-8113/12/075302+11$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA
[22, 23], it was shown that when the space component of the coupling is stronger than its time component, the linear potential, a sort of vector DKP oscillator, can be used as a model for confining bosons.

The Schrödinger equation with a quadratic plus inversely quadratic potential, known as a singular oscillator, is an exactly solvable problem [24–28], which works for constructing solvable models of N interacting bodies [29, 30] as well as a basis for perturbative expansions and variational analyses for spiked harmonic oscillators [31–36]. Generalizations for finite-difference relativistic quantum mechanics [37] as well as for time-dependent parameters in the nonrelativistic version have also been considered [38, 39].

The main purpose of this paper is to report on the properties of the DKP theory with nonminimal vector linear plus inversely linear potentials for spin-0 and spin-1 bosons in a unified way. The problem is mapped into an exactly solvable Sturm–Liouville problem of a Schrödinger-like equation. The effective potential resulting from the mapping has the form of the singular oscillator potential. The Schrödinger equation with quadratic plus inversely quadratic potential is indeed an exactly solvable problem. Nevertheless, only positive coefficients are involved in the well-known solution. Because we need solutions involving a repulsive as well as an attractive inverse-square term in the effective potential, the calculation including this generalization with proper boundary conditions at the origin is presented. The closed form solution for the bound states is uniquely determined with boundary conditions which emerge as a direct consequence of the equation of motion and the normalization condition, and do not have to be imposed. It is shown that the spectrum exhibits degeneracy. It is also shown that the existence of bound-state solutions for vector bosons depends on a too restrictive condition on the potential parameters.

It should be mentioned that a somewhat less general sort of problem, with only the space component of a nonminimal vector potential (erroneously called pseudoscalar potential), has already appeared in the literature [40].

2. Nonminimal vector couplings in the DKP equation

The DKP equation for a free boson is given by [4] (with units in which $\hbar = c = 1$)

$$ (i\beta^\mu \partial_\mu - m)\psi = 0, $$

where the matrices β^μ satisfy the algebra $\beta^\mu \beta^\nu + \beta^\nu \beta^\mu = \delta^{\mu\nu} + g^{\mu\nu}$ and the metric tensor is $g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$. This algebra generates a set of 126 independent matrices, whose irreducible representations are a trivial representation, a five-dimensional representation describing the spin-0 particles and a ten-dimensional representation associated with spin-1 particles. The second-order Klein–Gordon and Proca equations are obtained when one selects the spin-0 and spin-1 sectors of the DKP theory. A well-known conserved four-current is given by $J^\mu = \bar{\psi} \beta^\mu \psi / 2$, where the adjoint spinor $\bar{\psi}$ is given by $\bar{\psi} = \psi^\dagger \eta^0$ with $\eta^0 = 2\beta^0 \beta^0 - 1$. The time component of this current is not positive definite, but may be interpreted as a charge density. Then the normalization condition $\int \text{d}t J^0 = \pm 1$ can be expressed as

$$ \int \text{d}t \, \bar{\psi} \beta^0 \psi = \pm 2, $$

where the plus (minus) sign must be used for a positive (negative) charge.

With the introduction of nonminimal vector interactions, the DKP equation can be written as

$$ (i\beta^\mu \partial_\mu - m - i[P, \beta^\mu]A_\mu)\psi = 0, $$

where P is the momentum and A_μ is the vector potential.
where \(P \) is a projection operator (\(P^2 = P \) and \(P' = P \)) in such a way that \(\bar{\psi} [P, \beta^\mu] \psi \) behaves like a vector under a Lorentz transformation as does \(\bar{\psi} \beta^\mu \psi \). Once again \(\partial_\nu J^\mu = 0 \) [22]. If the potential is time independent, one can write \(\psi(\vec{r}, t) = \phi(\vec{r}) \exp(-iEt) \), where \(E \) is the energy of the boson, in such a way that the time-independent DKP equation becomes

\[
[\beta^\mu E + i\beta^\mu \partial_\nu - (m + i[P, \beta^\mu]A_\nu)] \phi = 0.
\]

In this case \(J^\mu = \delta \beta^\mu \phi / 2 \) does not depend on time, so the spinor \(\phi \) describes a stationary state.

The DKP equation is invariant under the parity operation, i.e. when \(\vec{r} \rightarrow -\vec{r} \), if \(\bar{A} \) changes sign, whereas \(A_0 \) remains the same. This is because the parity operator is

\[
P = \exp(i\beta_\nu P_0 \eta^\nu),
\]

where \(\delta_P \) is a constant phase and \(P_0 \) changes \(\vec{r} \) into \(-\vec{r}\). Because this unitary operator anticommutes with \(\beta^\mu \) and \([P, \beta^\mu] \), they change the sign under a parity transformation, whereas \(\beta^0 \) and \([P, \beta^0] \), which commute with \(\eta^0 \), remain the same. Since \(\delta_P = 0 \) or \(\delta_P = \pi \), the spinor components have definite parities. The charge-conjugation operation can be accomplished by the transformation \(\psi \rightarrow \psi_c = C \bar{\psi} = CK \psi \), where \(K \) denotes the complex conjugation and \(C \) is a unitary matrix such that \(C\beta^\mu = -\beta^\mu C \). Meanwhile, \(C \) anticommutes with \([P, \beta^\mu] \). The matrix that satisfies these relations is \(C = \exp(i\delta_c) \eta^0 \eta^1 \). The phase factor \(\exp(i\delta_c) \) is equal to \(\pm 1 \); thus \(E \rightarrow -E \). Note also that \(J^\mu \rightarrow -J^\mu \), as should be expected for a charge current, and the charge-conjugation operation entails no change on \(A_\mu \). The invariance of the nonminimal vector potential under charge conjugation means that it does not couple to the charge of the boson. In other words, \(A_\mu \) does not distinguish particles from antiparticles. Hence, whether one considers spin-0 or spin-1 bosons, this sort of interaction cannot exhibit Klein’s paradox.

For the case of spin 0, we use the representation for the \(\beta^\mu \) matrices given by [41]

\[
\beta^0 = \begin{pmatrix} \theta & \bar{0} \\ \bar{0} & 0 \end{pmatrix}, \quad \beta^i = \begin{pmatrix} 0 & \rho_i \\ -\rho_i^T & 0 \end{pmatrix}, \quad i = 1, 2, 3,
\]

where

\[
\theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \rho_1 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix},
\]

\[
\rho_2 = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad \rho_3 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}.
\]

\(\bar{0}, \bar{0} \) and \(0 \) are \(2 \times 3, 2 \times 2 \) and \(3 \times 3 \) zero matrices, respectively, while the superscript \(T \) designates matrix transposition. Here the projection operator can be written as [5] \(P = (\beta^\mu \beta_\mu - 1)/3 = \text{diag}(1, 0, 0, 0, 0) \). In this case, \(P \) picks out the first component of the DKP spinor. The five-component spinor can be written as \(\psi^T = (\psi_1, \ldots, \psi_5) \) in such a way that the time-independent DKP equation for a boson constrained to move along the \(x \)-axis, restricting ourselves to potentials depending only on \(x \), decomposes into

\[
\begin{align*}
\left(\frac{d^2}{dx^2} + k^2 \right) \phi_1 &= 0 \\
\phi_2 &= \frac{1}{m} (E + iA_0) \phi_1 \\
\phi_3 &= \frac{1}{m} \left(\frac{d}{dx} + A_1 \right) \phi_1, \quad \phi_4 = \phi_5 = 0,
\end{align*}
\]

where

\[
k^2 = E^2 - m^2 + A_0^2 - A_1^2 + \frac{dA_1}{dx}.
\]
Meanwhile,
\[J^0 = \frac{E}{m} |\phi_1|^2 \quad \text{and} \quad J^1 = \frac{1}{m} \text{Im} \left(\phi_1^* \frac{d\phi_1}{dx} \right). \]

(9)

For the case of spin-1, the \(\beta^\mu \) matrices are [42]

\[\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -i \epsilon & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \epsilon \end{pmatrix}. \]

(10)

where \(s_i \) are the \(3 \times 3 \) spin-1 matrices \((s_i)_{jk} = -i \epsilon_{ijk}\), \(e_i \) are the \(1 \times 3 \) matrices \((e_i)_{1j} = \delta_{ij}\) and \(\bar{0} = (0 \ 0 \ 0) \), while \(\mathbf{I} \) and \(\mathbf{0} \) designate the \(3 \times 3 \) unit and zero matrices, respectively. In this representation \(P = \beta^\mu \beta_\mu - 2 = \text{diag}(1, 1, 1, 1, 0, 0, 0, 0, 0, 0) \), i.e. \(P \) projects out the four upper components of the DKP spinor.

With the spinor written as \(\psi^T = (\psi_1, \ldots, \psi_{10}) \) and partitioned as

\[\begin{align*}
\psi_8 &= 0 \\
\psi_{i\,8}^{(+)} &= \begin{pmatrix} \psi_3 \\
\psi_4 \end{pmatrix}, \quad \psi_{i\,8}^{(-)} = \psi_5 \\
\psi_{ii}^{(+)} &= \begin{pmatrix} \psi_6 \\
\psi_7 \end{pmatrix}, \quad \psi_{ii}^{(-)} = \psi_2 \\
\psi_{iii}^{(+)} &= \begin{pmatrix} \psi_{10} \\
-\psi_9 \end{pmatrix}, \quad \psi_{iii}^{(-)} = \psi_1
\end{align*} \]

(11)

the one-dimensional time-independent DKP equation can be expressed as

\[\left(\frac{d^2}{dx^2} + k^2_{\sigma} \right) \phi^{(\sigma)}_I = 0 \]

\[\phi^{(\sigma)}_I = \frac{1}{m} (E + i \sigma A_0) \phi^{(\sigma)}_I \]

\[\phi^{(\sigma)}_I = \frac{i}{m} \left(\frac{d}{dx} + \sigma A_1 \right) \phi^{(\sigma)}_I, \quad \phi_8 = 0, \]

(12)

where \(\sigma \) is equal to + or −, and

\[k^2 = E^2 - m^2 - A_0^2 - A_1^2 + \sigma \frac{dA_1}{dx}. \]

(13)

Now the components of the four-current are

\[J^0 = \frac{E}{m} \sum \phi^{(\sigma)}_I \phi^{(\sigma)}_I, \quad J^1 = \frac{1}{m} \text{Im} \sum \phi^{(\sigma)}_I \phi^{(\sigma)}_I \frac{d\phi^{(\sigma)}_I}{dx}. \]

(14)

It is of interest to note that \(\phi_I^{(+)} \) (in the vector sector) obeys the same equation obeyed by the first component of the DKP spinor in the scalar sector and, taking account (9) and (14), \(\phi_I \) and \(\phi^{(\sigma)}_I \) are square-integrable functions. Given that the interaction potentials satisfy certain conditions, we have a well-defined Sturm–Liouville problem and hence a natural and definite method for determining the possible discrete or continuous eigenvalues of the system. We also note that there is only one independent component of the DKP spinor for the spin-0 sector instead of the three required for the spin-1 sector, and that the presence of a space component of the potential might compromise the existence of solutions for spin-1 bosons.
when compared to the solutions for spin-0 bosons with the very same potentials \((A_0 \text{ and } A_1)\). This might happen because the solution for this class of problem consists in searching for bounded solutions for two Schrödinger equations. It should not be forgotten, though, that the equations for \(\phi^{(+)}_I\) and \(\phi^{(-)}_I\) are not independent because the energy of the boson, \(E\), appears in both equations. Therefore, one has to search for bound-state solutions for \(\phi^{(+)}_I\) and \(\phi^{(-)}_I\) with a common energy. This is to say that the solutions for the spin-1 sector of the DKP theory can be obtained from a restricted class of solutions of the spin-0 sector.

3. The linear plus inversely linear potential

Now we are in a position to use the DKP equation with specific forms for vector interactions. Let us focus our attention on potentials in the linear plus inversely linear form, namely

\[
A_0 = m^2 \omega_0 |x| + \frac{g_0}{|x|}, \quad A_1 = m^2 \omega_1 x + \frac{g_1}{x},
\]

where the coupling constants, \(\omega_0, \omega_1, g_0\) and \(g_1\), are real the dimensionless parameters. Our problem is to solve (7) and (12) for \(\phi_1\) (in the scalar sector) and \(\phi^{(\sigma)}_I\) (in the vector sector), and to determine the allowed energies. Although the absolute value of \(x\) in \(A_0\) is irrelevant in the effective equations for \(\phi_1\) and \(\phi^{(\sigma)}_I\), it is there to ensure the covariance of the DKP theory under parity. It follows that the DKP spinor will have a definite parity and \(A^\mu\) will be a genuine 4-vector. In this case the first equations of (7) and (12) transmute into

\[
H_\sigma \phi_\sigma = \varepsilon_\sigma \phi_\sigma,
\]

where \(\phi_\sigma\) is equal to \(\phi_1\) for the scalar sector, and to \(\phi^{(\sigma)}_I\) for the vector sector, with

\[
H_\sigma = -\frac{1}{2m} \frac{d^2}{dx^2} + V_\sigma
\]

\[
\varepsilon_\sigma = \frac{E^2 - m^2 + m^2 (\sigma \omega_1 + 2 (\omega_0 g_0 - \omega_1 g_1))}{2m}
\]

and

\[
V_\sigma = \frac{1}{2} m \Omega^2 x^2 + \frac{\alpha_\sigma}{x^2},
\]

with

\[
\Omega^2 = m^2 (\omega_0^2 - \omega_1^2), \quad \alpha_\sigma = \frac{g_1 (g_1 + \sigma) - g_0^2}{2m}.
\]

The set (16)–(20), with \(\alpha_\sigma = 0\) (\(\alpha_\sigma \neq 0\)) and \(\Omega^2 > 0\), is precisely the Schrödinger equation for the nonrelativistic nonsingular (singular) harmonic oscillator. For \(\alpha_\sigma < 0\) and \(\Omega^2 = 0\), the effective potential has also a form that would make allowance for bound-state solutions with \(\varepsilon_\sigma < 0\). All the remaining possibilities for \(\alpha_\sigma\) and \(\Omega^2\) make the effective potential either everywhere repulsive or there appears an attractive region about \(x = 0\) between potential barriers (\(\alpha_\sigma < 0\) and \(\Omega^2 < 0\)) which lead to boson tunneling. It is well known that the singularity at \(x = 0\) for \(\alpha_\sigma < 0\) menaces the boson to collapse to the center [24] so that the condition \(\alpha_\sigma \geq \alpha_{\text{crit}} = -1/(8m)\) (with \(\Omega^2 > 0\)) is required for the formation of bound-state solutions. We shall limit ourselves to study the bound-state solutions.

Since \(V_\sigma\) is invariant under reflection through the origin \((x \rightarrow -x)\), eigenfunctions with well-defined parities can be built. Thus, one can concentrate on the positive half-line and impose boundary conditions on \(\Phi_\sigma\) at \(x = 0\) and \(x = \infty\). Continuous eigenfunctions on the whole line with well-defined parities can be constructed by taking symmetric and antisymmetric linear combinations of \(\Phi_\sigma\). These new eigenfunctions possess the same
eigenenergy, then, in principle, there is a two-fold degeneracy. As \(x \to 0 \), the solution behaves as \(Cx^\sigma \), where \(C \neq 0 \) is a constant and \(s_\sigma \) is a solution of the algebraic equation

\[
s_\sigma (s_\sigma - 1) - 2m\alpha_\sigma = 0,
\]

namely

\[
s_\sigma = \frac{1}{2} \left(1 \pm \sqrt{1 + 8m\alpha_\sigma} \right),
\]

where \(s_\sigma \) is not necessarily a real quantity. Nevertheless, \(J^1 \) for a stationary state, as expressed by (9) and (14), is the same at all points of the \(x\)-axis and vanishes for a bound-state solution (because \(\Phi_\sigma \) vanishes as \(x \to \infty \)), so we demand that \(s_\sigma \in \mathbb{R} \) and so \(\alpha_\sigma \geq \alpha_{\text{crit}} \). Normalizability of \(\Phi_\sigma \) also requires \(s_\sigma > -1/2 \) and due to the two-fold possibility of values of \(s_\sigma \) for \(\alpha_{\text{crit}} < \alpha_\sigma < 3/(8m) \), it seems that the solution of our problem cannot be uniquely determined. This ambiguity can be overcome by a regularization of the potential. Following the steps of [24], we replace \(V_\sigma (x) \) by \(V_\sigma (x_0) \) for \(x < x_0 \approx 0 \) and after using the continuity conditions for \(\Phi_\sigma \) and \(d\Phi_\sigma/dx \) in the cutoff we take the limit \(x_0 \to 0 \). It turns out that the solution with the lesser value of \(s_\sigma \) is suppressed relative to the one involving the greater value as \(x_0 \to 0 \). Thus, the minus sign in (22) must be ruled out for \(\alpha_\sigma \neq 0 \) in such a way that \(\Phi_\sigma (0) = 0 \). Hence, \(s_\sigma = 0 \) or \(s_\sigma \geq 1/2 \). The homogeneous Dirichlet boundary condition \((\Phi_\sigma (0) = 0) \) is essential whenever \(\alpha_\sigma \neq 0 \); nevertheless, it also develops for \(\alpha_\sigma = 0 \) when \(s_\sigma = 1 \) but not for \(s_\sigma = 0 \). The continuity of \(\Phi_\sigma \) at the origin excludes the possibility of an odd-parity eigenfunction for \(s = 0 \), and effects on the even-parity eigenfunction for \(s = 1 \) are due to the continuity of its first derivative. Effects due to the potential on \(d\Phi_\sigma/dx \) in the neighborhood of the origin can be evaluated by integrating (16) from \(-\delta \) to \(+\delta \) and taking the limit \(\delta \to 0 \). The connection formula between \(d\Phi_\sigma/dx \) on the right and \(d\Phi_\sigma/dx \) on the left can be summarized as

\[
\lim_{\delta \to 0} \frac{d\Phi_\sigma}{dx} \bigg|_{x=\pm \delta} = 2m\alpha_\sigma \lim_{\delta \to 0} \int_{-\delta}^{+\delta} dx \frac{\Phi_\sigma}{x^2},
\]

so that

\[
\lim_{\delta \to 0} \frac{d\Phi_\sigma}{dx} \bigg|_{x=\pm \delta} = \begin{cases} 2mC\alpha_\sigma & \text{for } \Phi_\sigma \text{ symmetric with } \alpha_\sigma \neq 0 \\ 0, \text{ otherwise}. \end{cases}
\]

Therefore, the eigenfunctions have a first derivative continuous at the origin, except for \(s_\sigma < 1 \) when the eigenfunction is not differentiable at the origin. Thus, the bound-state solutions for the singular oscillator potential are two-fold degenerate: for the same energy there is an odd-parity solution with a continuous first derivative, and an even-parity solution with a continuous first derivative if \(s_\sigma > 1 \) or a discontinuous first derivative if \(s_\sigma < 1 \). There is no odd-parity solution for \(s_\sigma = 0 \) and there develops the homogeneous Neumann condition \((d\Phi_\sigma/dx)_{x=0} = 0 \), and there is no even-parity solution for \(s_\sigma = 1 \). Thus, the bound-state solutions for the nonsingular oscillator potential are nondegenerate.

We shall now consider separately two different possibilities for \(\Omega \), namely \(\Omega = 0 \) and \(\Omega \neq 0 \).

3.1 \(\Omega = 0 \)

Defining

\[
z_\sigma = 2\sqrt{-2m\epsilon_\sigma} x
\]

(25)
for \(x > 0 \), and using the set (16)–(20), one obtains a special case of Whittaker’s differential equation [43]

\[
\frac{d^2\Phi_\sigma}{dz^2} + \left(-\frac{1}{4} - \frac{2m\alpha_\sigma}{z^2} \right) \Phi_\sigma = 0.
\] (26)

The normalizable asymptotic form of the solution as \(z_\sigma \to \infty \) is \(e^{-\xi z^2/2} \), with \(\xi > 0 \). Note that this asymptotic behaviour rules out the possibility \(\varepsilon_\sigma > 0 \), as has already been pointed out based on qualitative arguments. The exact solution can now be written as

\[
\Phi_\sigma = z_\sigma^{\kappa_\sigma} w(z_\sigma) e^{-\xi z^2/2},
\] (27)

where \(w \) is a regular solution of the confluent hypergeometric equation (Kummer’s equation) [43]

\[
z_\sigma \frac{d^2w}{dz_\sigma^2} + (b_\sigma - z_\sigma) \frac{dw}{dz_\sigma} - a_\sigma w = 0
\] (28)

with the definitions

\[
a_\sigma = s_\sigma \quad \text{and} \quad b_\sigma = 2s_\sigma.
\] (29)

The general solution of (28) is expressed in terms of the confluent hypergeometric functions (Kummer’s functions) \(_1F_1(a_\sigma, b_\sigma, z_\sigma) \) (or \(M(a_\sigma, b_\sigma, z_\sigma) \)) and \(_2F_0(a_\sigma, 1 + a_\sigma - b_\sigma, -1/z_\sigma) \) (or \(U(a_\sigma, b_\sigma, z_\sigma) \)):

\[
w = A_\sigma \ _1F_1(a_\sigma, b_\sigma, z_\sigma) + B_\sigma z_\sigma^{\tilde{n}_\sigma} _2F_0 \left(a_\sigma, 1 + a_\sigma - b_\sigma, -1/z_\sigma \right), \quad b_\sigma \neq -\tilde{n}_\sigma,
\] (30)

where \(\tilde{n}_\sigma \) is a non-negative integer. Due to the singularity of the second term at \(z_\sigma = 0 \), only choosing \(B_\sigma = 0 \) gives a behavior at the origin which can lead to square-integrable solutions. Furthermore, the requirement of finiteness for \(\Phi_\sigma \) at \(z_\sigma \to \infty \) implies that the remaining confluent hypergeometric function \(_1F_1(a_\sigma, b_\sigma, z_\sigma) \) should be a polynomial. This is because \(_1F_1(a_\sigma, b_\sigma, z_\sigma) \) goes as \(e^{z_\sigma} \) as \(z_\sigma \to \infty \) unless the series breaks off. This demands that \(a_\sigma = -n_\sigma \), where \(n_\sigma \) is also a non-negative integer. This requirement combined with (29) implies that the existence of bound-state solutions for pure inversely quadratic potentials \((|\omega_1| = |\omega_0|) \) is out of question.

3.2 \(\Omega \neq 0 \)

As for \(\Omega \neq 0 \), it is convenient to define the dimensionless quantity \(\xi \):

\[
\xi = m \sqrt{\Omega^2 x^2},
\] (31)

and using (16)–(20), one obtains the complete form for Whittaker’s equation [43]

\[
\xi \frac{d^2\Phi_\sigma}{d\xi^2} + \frac{1}{2} \frac{d\Phi_\sigma}{d\xi} + \left(-\frac{\varepsilon_\sigma}{2\sqrt{\Omega^2}} - \frac{\xi}{4} - \frac{m\alpha_\sigma}{2\xi} \right) \Phi_\sigma = 0.
\] (32)

The normalizable asymptotic form of the solution as \(\xi \to \infty \) is given by \(e^{-\xi^2/2} \) only for \(\Omega^2 > 0 \) (\(|\omega_1| > |\omega_0| \)). The solution for all \(\xi \) can now be written as

\[
\Phi_\sigma = \xi^{\kappa_\sigma/2} w(\xi) e^{-\xi^2/2},
\] (33)

where \(w(\xi) \) is a regular solution from

\[
\xi \frac{d^2w}{d\xi^2} + (b_\sigma - \xi) \frac{dw}{d\xi} - a_\sigma w = 0,
\] (34)

\[
b_\sigma \neq -\tilde{n}_\sigma,
\] (29)

\[
\xi \frac{d^2w}{d\xi^2} + (b_\sigma - \xi) \frac{dw}{d\xi} - a_\sigma w = 0
\] (28)

with the definitions

\[
a_\sigma = s_\sigma \quad \text{and} \quad b_\sigma = 2s_\sigma.
\] (29)
with
\[
a_\sigma = b_\sigma - \frac{\epsilon_\sigma}{2|\Omega|},
\]
(35)
\[
b_\sigma = s_\sigma + 1/2.
\]
Then, \(w \) is expressed as \(i F_1 (a_\sigma, b_\sigma, \xi) \) and in order to furnish normalizable \(\Phi_\sigma \), the confluent hypergeometric function must be a polynomial. This demands that \(a_\sigma = -n_\sigma \) and \(b_\sigma \neq -n_\sigma \). Note that \(i F_1 (-n_\sigma, b_\sigma, \xi) \) is proportional to the generalized Laguerre polynomial \(L_n^{(b_\sigma - 1)}(\xi) \), a polynomial of degree \(n_\sigma \). The requirement \(a_\sigma = -n_\sigma \), combined with the top line of (35), also implies into quantized effective eigenvalues
\[
\epsilon_\sigma = (2n_\sigma + s_\sigma + \frac{1}{2})|\Omega|, \quad n_\sigma = 0, 1, 2, \ldots ,
\]
(36)
with
\[
\Phi_\sigma \propto \xi^{s_\sigma/2} e^{-\xi/2} L_n^{(s_\sigma - 1/2)}(\xi).
\]
(37)
In summary, only for \(\Omega^2 > 0 \ (\epsilon_\sigma > 0) \) and \(\alpha_\sigma \geq \alpha_{\text{crit}} \), the potentials (15) are able to furnish bound states. The spectrum is purely discrete and the solution is expressed in an exact closed form. It is instructive to note that \(s_\sigma = 0 \) or \(s_\sigma = 1 \) for the case \(\alpha_\sigma = 0 \) and the associated Laguerre polynomials \(L_n^{(-1/2)}(\xi) \) and \(L_n^{(1/2)}(\xi) \) are proportional to \(H_{2n_\sigma}(\sqrt{\xi}) \) or \(\xi^{-1/2} H_{2n_\sigma+1}(\sqrt{\xi}) \), respectively [43]. Therefore, the solution for the effective nonsingular harmonic oscillator can be succinctly written in the customary form in terms of Hermite polynomials:
\[
\epsilon_\sigma = (n_\sigma + \frac{1}{2})|\Omega|, \quad n_\sigma = 0, 1, 2, \ldots ,
\]
(38)
with \(\Phi_\sigma \) being proportional to
\[
e^{-\xi/2} H_{n_\sigma}(\sqrt{\xi}).
\]
(39)
The preceding analyses show that the effective eigenvalues for the scalar sector are equally spaced with a step given by \(2|\Omega| \) when the effective potential is singular at the origin. It is remarkable that the level stepping is independent of the sign and intensity of the parameter responsible for the singularity of the potential. We also note that the effective spectrum varies continuously with \(\alpha_\sigma \) as far as \(\alpha_\sigma \neq 0 \). When the effective potential becomes nonsingular \((\alpha_\sigma = 0)\) the step switches abruptly to \(|\Omega| \). There is a clear phase transition when \(\alpha_\sigma \rightarrow 0 \) due to the disappearance of the singularity. In the limit as \(\alpha_\sigma \rightarrow 0 \) the Neumann boundary condition, in addition to the Dirichlet boundary condition always present for \(\alpha_\sigma \neq 0 \), makes an appearance. This occurrence permits the appearance of even Hermite polynomials and their related eigenvalues, which intercalate among the pre-existent eigenvalues related to odd Hermite polynomials. The appearance of even Hermite polynomials makes \(\Phi_\sigma (0) \neq 0 \), and this boundary condition is never permitted when the singular potential is present, even though \(\alpha_\sigma \) can be small. You might also understand the lack of such a smooth transition by starting from a nonsingular potential \((\alpha_\sigma = 0)\), when the solution of the problem involves even and odd Hermite polynomials, and then turning on the singular potential as a perturbation of the nonsingular potential. Now the ‘perturbative singular potential’ by nature demands, if is either attractive or repulsive, that \(\Phi_\sigma (0) = 0 \), so that it naturally kills the solution involving even Hermite polynomials. Furthermore, there is no degeneracy in the spectrum for \(\alpha_\sigma = 0 \).

Now we move on to match a common energy to the spin-1 boson problem. The compatibility of the solutions for \(\Phi_+ = \phi_1^{(+)} \) and \(\Phi_- = \phi_1^{(-)} \) demands that the quantum numbers \(n_+ \) and \(n_- \) must satisfy the relation
\[
n_+ - n_- = R(\omega_0, \omega_1)
\]
(40)
for the nonsingular potential and

\[n_+ - n_- = \frac{1}{2} \{ R(\omega_0, \omega_1) - \sqrt{1 + 8m\alpha_+} + \sqrt{1 + 8m\alpha_-} \} \] \hspace{1cm} (41)

for the singular potential. Here,

\[R(\omega_0, \omega_1) = \frac{\text{sgn}(\omega_1)}{\sqrt{1 - \left(\frac{\omega_0}{\omega_1}\right)^2}} \]

and \(\text{sgn}(\omega_1) \) stands for the sign function. For the nonsingular potential \(|n_+ - n_-| \) varies from 1 to infinity (as \(|\omega_0/\omega_1| \) varies from 0 to 1), whereas for the singular potential \(|n_+ - n_-| \) varies from the minor to the major value between \(|R(\omega_0, \omega_1)|/2 \) and \(|R(\omega_0, \omega_1)| \pm \sqrt{8g_1^2}/2 \) (the \(\pm \) sign corresponding to \(\alpha_+ = \alpha_{\text{crit}} \)). These constraints on the nodal structure of \(\phi_1^+ \) and \(\phi_1^- \) dictate that acceptable solutions only occur for a restricted number of possibilities for the potential parameters and that no solution should be expected for \(g_1 < 0 \). Furthermore, these constraints exclude a few low-lying quantum numbers for a given set of possible solutions for the simple reason that \(n_+ \) and \(n_- \) are non-negative integers. In conclusion, the possible bound-state solutions for spin-1 bosons exist only for a finite set of potential parameters.

To have a better understanding of the spectrum, we plot in figure 1 the effective spectrum for the four low-lying levels as a function of \(\alpha_+ \), for fixed \(\omega_0 \) and \(g_0 \). From this figure, we see the phase transition for the spin-0 spectrum at \(\alpha_+ = 0 \) and the severe restriction on the solutions for the spin-1 spectrum. Note that no bound-state solution for the spin-1 spectrum exists if \(\alpha_+ \) exceeds \(|R(\omega_0, \omega_1)|/2 \) and that not all the bound states have a nodeless \(\Phi_\ell \) for the ground state.
4. Conclusions

We approached the problem of a particle in a (3+1)-dimensional world despite the restriction to the one-dimensional movement. The motion on axis allows us to explore the physical consequences of the nonminimal vector coupling in a mathematically simpler and more physically transparent way. There is no angular momentum, so that there is no spin–orbit coupling. The more general potential matrix ensuring a conserved four-current can be written in terms of well-defined Lorentz structures. For the spin-0 sector there are two scalar, two vector and two tensor terms [5], whereas for the spin-1 sector there are two scalar, two vector, a pseudoscalar, two pseudovectors and eight tensor terms [6]. There is no pseudoscalar potential in the spin-0 sector of the DKP theory. In fact, the space component of a nonminimal vector potential is used in [40]. We described spin-0 particles by a five-component spinor, of which only one component is independent instead the two required in [40]. Also, the number of degrees of freedom described by the ten-component spinor in the spin-1 sector reduces correctly to 3. By considering space plus time components of a nonminimal vector potential, we showed that scalar and vector bosons in the background of one-dimensional linear plus inversely linear potential are mapped into a Sturm–Liouville problem with an effective singular oscillator. The existence of solutions for spin-0 bosons requires $|\omega_1| > |\omega_0|$ and $g_1 (g_1 + \sigma) - g_0^2 \geq -1/4$. In words, the time component of the nonminimal vector potential (A_0) alone cannot hold bound states, and the presence of the time component in the inversely linear potential lessens the interval of parameters which provides confinement. As for spin-1 bosons, confining solutions require $g_1 > 0$ and when compared to the solutions for spin-0 bosons with the very same potentials (A_0 and A_1) they can only be obtained from a restricted class of solutions of the spin-0 sector. It may be salutary to note that, because the differential equation (16) has a singularity at the origin for $\alpha \sigma \neq 0$, one could expect the existence of singular solutions for Φ_0 so that we are not free to suppose that $s_0 > 0$. Due to the fact that Φ_0, whether they are even or odd, disappears at the origin for $\alpha \sigma \neq 0$, this one-dimensional quantum-mechanical problem is degenerate and H_0 in (17) is a self-adjoint operator.

Acknowledgments

This work was supported in part by means of funds provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors gratefully acknowledge the anonymous referees for their valuable comments and suggestions.

References

[1] Petiau G 1936 Acad. R. Belg., A. Sci. Mém. Collect. 16 2
[2] Kemmer N 1938 Proc. R. Soc. A 166 127
[3] Duffin R J 1938 Phys. Rev. 54 1114
[4] Kemmer N 1939 Proc. R. Soc. A 173 91
[5] Guertin R F and Wilson T L 1977 Phys. Rev. D 15 1518
[6] Vijayalakshmi B, Seetharaman M and Mathews P M 1979 J. Phys. A: Math. Gen. 12 665
[7] Riedel M 1979 Relativistische Gleichungen fuer Spin-1-Teilchen Diplomarbeit Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Frankfurt/Main
[8] Nowakowski M 1998 Phys. Lett. A 244 329
[9] Lunardi J T, Pimentel B M, Teixeira R G and Valverde J S 2000 Phys. Lett. A 268 165
[10] Clark B C, Hama S, Kälbermann G, Mercer R L and Ray L 1985 Phys. Rev. Lett. 55 592
[11] Kälbermann G 1986 Phys. Rev. C 34 2240
[12] Kozack R E, Clark B C, Hama S, Mishra V K, Mercer R L and Ray L 1988 Phys. Rev. C 37 2898
[13] Kozack R E, Clark B C, Hama S, Mishra V K, Kälbermann G, Mercer R L and Ray L 1989 Phys. Rev. C 40 2181
[14] Kurth L J, Clark B C, Cooper E D, Hama S, Mercer R L, Ray L and Hoffmann G W 1994 Phys. Rev. C 50 2624
[15] Barret R C and Nedjadi Y 1995 Nucl. Phys. A 585 311c
[16] Kurth L J, Clark B C, Cooper E D, Hama S, Mercer R L, Ray L and Hoffmann G W 1995 Nucl. Phys. A 585 335c
[17] Clark B C, Furnstahl R J, Kerr L K, Rusnak J and Hama S 1998 Phys. Lett. B 427 231
[18] Nedjadi Y, Ait-Tahar S and Barret R C 1998 J. Phys. A: Math. Gen. 31 3867
[19] Kulikov D A, Tutik R S and Yaroshenko A P 2005 Mod. Phys. Lett. A 20 43
[20] Cardoso T R, Castro L B and de Castro A S 2009 Can. J. Phys. 87 857
[21] Cardoso T R, Castro L B and de Castro A S 2009 Can. J. Phys. 87 1185
[22] Cardoso T R, Castro L B and de Castro A S 2010 J. Phys. A: Math. Theor. 43 055306
[23] Castro L B and de Castro A S 2011 Phys. Lett. A 375 2596
[24] Landau L D and Lifshitz E M 1958 Quantum Mechanics (New York: Pergamon)
[25] Gol’dman I I and Krivchenkov V D 1961 Problems in Quantum Mechanics (London: Pergamon)
[26] Constantinescu F and Magyari E 1971 Problems in Quantum Mechanics (Oxford: Pergamon)
[27] Bagrov V G and Gitman D M 1990 Exact Solutions of Relativistic Wave Equations (Dordrecht: Kluwer)
[28] Palma G and Raff U 2003 Am. J. Phys. 71 247
[29] Calogero F 1969 J. Math. Phys. 10 2191
[30] Calogero F 1971 J. Math. Phys. 12 419
[31] Hall R L, Saad N and Keviczky A von 1998 J. Math. Phys. 39 6345
[32] Hall R L and Saad N 2000 J. Phys. A: Math. Gen. 33 5531
[33] Hall R L and Saad N 2000 J. Phys. A: Math. Gen. 33 569
[34] Hall R L and Saad N 2001 J. Phys. A: Math. Gen. 34 1169
[35] Hall R L, Saad N and von Keviczky A 2002 J. Math. Phys. 43 94
[36] Hall R L, Saad N and von Keviczky A 2003 J. Phys. A: Math. Gen. 36 487
[37] Nagiyev S M, Jafarov E I and Imanov R M 2003 J. Phys. A: Math. Gen. 36 7813
[38] Camiz P, Gerardi A, Marchioro C, Presutti E and Scacciatelli E 1971 J. Math. Phys. 12 2040
[39] Dodonov V V, Malkin I A and Man’ko V I 1972 Phys. Lett. A 39 377
[40] Chargui Y, Trabelsi A and Chetouani L 2010 Phys. Lett. A 374 2907
[41] Nedjadi Y and Barret R C 1993 J. Phys. G: Nucl. Part. Phys. 19 87
[42] Nedjadi Y and Barret R C 1994 J. Math. Phys. 35 4517
[43] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (Toronto: Dover)