Consumption of Dietary Folate Estimates and Its Implication for Reproductive Outcome among Women of Reproductive Age in Kersa: Cross-Sectional Survey

Nega Assefa
Haramaya University

Yasir Y Abdullahi (✉ yasdire@gmail.com)
Jugal Hospital

Aklilu Abrham
Haramaya University

Elena C Hemler
Harvard T.H. Chan School of Public Health, Harvard University

Isabel Madzorera
Harvard T.H. Chan School of Public Health, Harvard University

Yadeta Dessie
Haramaya University

Kedir Teji
Haramaya University

Wafaie W Fawzi
Harvard T.H. Chan School of Public Health, Harvard University

Research Article

Keywords: folate consumption, dietary folate, food diversity, daily folate consumption

DOI: https://doi.org/10.21203/rs.3.rs-601866/v1

License: ☑ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Dietary folate inadequacy is one of the most common micronutrient deficiencies that causes neural tube defect (NTD) among infants in Sub-Saharan African countries. This study aims to determine the dietary intake of folate among women of reproductive age (WRA) of Kersa, Eastern Ethiopia.

Methods: A cross-sectional study took place among voluntary women that were selected from 1140 random households. Using a validated Food Frequency Questionnaire, participants weekly dietary intake history of Ethiopian foods and dietary folate intake was worked out. Statistical analysis was done at 95% confidence interval. Modified Poisson regression was used to identify factors that associated with dietary folate consumption.

Result: The estimated median usual intake of folate was 170 ug/d (IQR: 118.3; 252.2) and about 33% WRA had low folate intake and 73.9% were at risk for folate inadequacy. From the reported food groups, Beans and Peas, Starchy staples, and Vitamin-A rich dark-green leafy vegetables were the top three ranked foods that contributed much of the dietary folate. The following conditions were statistically related with dietary folate inadequacy; women's age, being in poor wealth index, low dietary diversity, having seasonal employment, and reliance on market food source.

Conclusions: We found that women's dietary intake of folate in Kersa is very low and cannot protect their offspring from having NTD. They could also potentially be predisposed poor health outcomes. Diversifying and fortification Ethiopian wheats and salts could decrease the burden of folate deficiency in the country.

Background

Folate is one of the naturally occurring essential micronutrients found in food [1]. Dietary sources of folate include green leafy vegetables, legumes, egg yolks, liver, and citrus fruits [2]. Folic acid is the synthetic form of the micronutrient and is found in dietary supplements, enriched foods, and pharmaceutical vitamins. Folate is vital for various metabolic functions, including cell division and reproduction, and DNA and RNA synthesis in the body [3]. Folate deficiency is however a severe public health problem, especially among disadvantaged groups in developing countries [4, 5]. Even though data on the overall global folate status for women of reproductive age (WRA) are limited with huge discrepancies, the estimated prevalence of folate deficiency was > 20% compared to < 5% in lower- and higher-income countries, respectively [6].

Folate deficiency in WRA has been linked to various complications during pregnancy. These include increased risk of maternal anemia, hypertensive disorder, abortion, bleeding, and cardiovascular disease [7, 8]. Folate deficiency has also been commonly cited as a significant risk factor for developing neural tube defects (NTD) in the fetus [9–11]. NTDs are a group of congenital anomalies occurring when the spinal cord fails to develop properly in utero, and they can present as Spina Bifida or Anencephaly or both.
These conditions affect more than 300,000 babies worldwide, the majority in developing countries [6, 7, 9]. In Ethiopia, it estimated that 65 infants out of 10,000 births have NTD [16].

There is limited data available on dietary folate intake from sub-national studies in sub-Saharan African (SSA) countries. In South Africa, the mean dietary folate intake for WRA was reported as 82 to 334 µg/d and median dietary folate intake for WRA in Ethiopia is estimated to be 88 to 204 µg/d [5]. It is also estimated around 98% and 100% of WRA have inadequate dietary folate intake in these counties [5, 8, 17]. Folate intakes are often low among women in SSA because access to micronutrient-rich foods and fortified foods is limited, and these foods are expensive, locally unavailable, or unacceptable for cultural or religious reasons [18].

Given that inadequate dietary folate consumption is one of the primary causes of folate deficiency, the World Health Organization (WHO) recommends supplementation with 400µg of folic acid before pregnancy to decrease the incidence of NTD [19, 20]. Ethiopia has relied on free distribution of iron and folic acid (IFA) tablets to pregnant women during antenatal care to address issues of folate deficiency [21]. Since the development of the central nervous system in the embryo occurs as early as nine weeks after fertilization, an increment in pre-pregnancy folate levels is the crucial and most appropriate method of reducing NTD and other pregnancy complications due to folate deficiency [22]. Thus current approaches for IFA supplementation in Ethiopia and other SSA countries where most pregnant women present at health centers well advanced into the pregnancy will not address the problem [23]. Population-wise increment of folate consumption status by fortification of wheat and cereals and availing affordable nutrient-rich food alternatives and eliminating hunger have shown significantly in improving nutritional and the health status of women and their offspring [24, 25]. However, there is limited availability of folate fortified foods or enriched food products in Ethiopia [26].

There is limited information available on the dietary intake of folate among WRA in Ethiopia. This study aims to evaluate dietary folate consumption among WRA in Kersa district of Oromia region, eastern Ethiopia. Further, the study evaluates dietary diversity, and other factors associated with folate consumption.

Methods

Study area

This study was conducted in the Kersa Health and Demographic Surveillance System (KHDSS) field site in Oromia region in eastern Ethiopia. The HDSS covers 24 kebeles (the lowest administrative unit in Ethiopia) three of which are urban, out of the 38 kebeles in the district. The 2016 national census reported that Kersa had the third largest in Oromia region with a total population of 350,064, and a population density of 36.8 persons per square kilometre [27].

We conducted a cross-sectional survey among 1200 households in the KHDSS from September to August, 2019 [28]. Study participants were selected using proportional allocation to the population size of
the study kebeles, followed by random selection of households based on data from the KHDSS database. Eligibility criteria for the study included households with at least one married woman, who was of reproductive age (15–49 years old), and was not pregnant at study recruitment. If more than one woman of reproductive age lived in the household and was present at the time of interview, a lottery method was used to select one woman for the interview.

Data were collected via interviewer-administered tablet-based questionnaires. Women responded to a questionnaire, including information on socio-demographic characteristics, health information, food choices and cooking practices, food security, food expenditures, nutrition knowledge, homestead food production, and dietary intake. Height and weight of WRA were measured in the nearest centimeters (cm) and kilograms (kg) using a stadiometer and standard clinical scale. [29]. Body mass index (BMI) was computed as weight in kilograms divided by height in meters squared. Based on BMI, individuals were classified using standard cutoffs as underweight (< 18.5 kg/m2), average weight (18.5–24.9 kg/m2), or overweight/obese (≥ 25 kg/m2). Overweight was classified as BMI 25-29.9 kg/m2 and obesity BMI ≥ 30 kg/m2 [30].

Ethical approval for the study was obtained from the Institutional Health Research Ethical Review Board of the College of Health and Medical Sciences of Haramaya University in Ethiopia. At the time of visit to the household, written informed, voluntary consent was secured from respondents.

Dependent variables:

The outcome of interest was women's dietary folate intake. Women's diets were assessed using a non-quantitative food frequency questionnaire (FFQ), locally adapted from a semi-quantitative FFQ validated for use among urban Tanzanian adults [31]. The participants were asked if they consumed 69 different foods items in the past seven days and the frequency of their consumption in terms of days. The weekly reported consumption of the food items was converted into daily consumption by dividing by seven. The FFQ included locally available common foods and an option to specify other foods. Portion size information was not collected in the current study. We used portion sizes for each food item that were adopted from a recent national survey [32].

We estimated women's daily folate consumption by multiplying the mean portion size and folate composition for each reported food item with its daily consumption. We summed up women's total folate intake based on the reported individual foods in the FFQ. The cutoffs for inadequate folate intake were defined as consuming less than the age- and sex-specific Estimated Average Requirement (EAR) of folate intake of WRA < 250 µg/d [33]. We calculated a binary indicator for adequate folate intake (yes/no). We have also divided the total distribution of folate intake into tertiles and categorized them into low, middle, and high folate intake, respectively.

Independent variables

We considered women's dietary diversity and socio-demographic characteristics, including BMI, household family size and wealth index, household food source and pregnancy history as potential
predictors of women's folate intake.

We assessed women's dietary diversity using the Minimum Dietary Diversity for Women (MDD-W) indicator [34]. We grouped foods consumed by women into ten non-overlapping food groups. The 10 food groups are 1) starchy staples, 2) pulses 3) nuts and seeds 4) dairy products 5) flesh foods 6) eggs 7) dark green leafy vegetables 8) vitamin-a rich fruits and vegetables 9) other vegetables and 10) other fruits [35]. Foods made from grains, cereals, roots, and tubers are grouped to starchy staples. Poultry and all meat products were categorized as flesh foods [36].

A participant was scored as consuming a food group if they ate at least one type of food item comprising that food group daily on average. We summed up the food groups consumed by women into a dietary diversity score (DDS-W, range 0–10). We categorized women as meeting minimum dietary diversity (MDD) if they consumed at least 5 food groups (DDS ≥ 5) daily. MDD-W serves as a proxy for micronutrient adequacy [37].

We considered the following as potential predictors of women's folate intake. Women's BMI categorized as underweight, normal and over-weight. As the study setting was rural we classified women's employment according to the Ethiopian Demographic and health survey definition, as fully-employed, and seasonal and part-time employment [38]. Those who were fully employed had a skilled and stable job working in the 7 days preceding the survey. Hard labor and agricultural employment were categorized as partial and seasonal based on time and experience before the survey. Household wealth was defined using a wealth index, constructed using principal component analysis (PCA) of 10 items describing the household's asset ownership, housing quality, crowding, and water and sanitation facilities. The wealth index was divided into population tertiles (poor, middle, and rich) [39].

Data processing and analysis

Means, and standard deviations (SDs) were used to describe continuous variables and medians and interquartile ranges for variables that were not normally distributed. Counts and percentages were used to describe categorical variables. Data points with more than 50% missing data and with un-usual amounts (outliers) were removed from the analysis. Bivariate analysis using Modified Poisson regression [40, 41] was undertaken to examine the independent predictors of inadequate folate intake (0 = adequate consumption, 1 = inadequate consumption) and Crude Prevalence Ratios (CPR) and 95% Confidence Interval (CI) estimated. Variables that were significant in the univariate analysis (p < 0.2) were included to control for confounding for the final model. We adjusted Prevalence Ratio (APR) by incorporating variables that are significant or assumed to be a confounder. The statistical association level was p < 0.05 to identify independent variables associated with inadequate folate consumption.

Results

We analyzed data from 1134 WRA household that participated in the study. Thirty-nine households refused to participate in the study and 27 participants with missing and outlier data were excluded from
the analysis. The mean age of women was 31.1 (± 6.2) years and a half of the women had never attended school. Most participants were Muslims and housewives. At least 67.5% of WRA worked full time and 56.2% were in the poor wealth index category. The median weight and height of WRA was 51.0 kg (IQR: 48.0; 56.0) and 157.0 cm (IQR: 154.5; 161.1), respectively (Table 1).
Table 1
Sociodemographic, reproductive, and Food intake characteristics of women of reproductive age in Kersa, Eastern Ethiopia, 2019

Variables	N	Values
Woman's age (years)	1134	
16–25		268 (23.6)
26–35		637 (56.2)
≥ 36		229 (20.2)
Highest Education	1134	
Never attended school		609 (50.7)
Did not finished first grade		99 (8.7)
Completed 10 grade and more		426 (37.6)
Partner Highest Education	1134	
Never attended school		571 (50.4)
Did not finished first grade		84 (7.4)
Completed 10 grade and more		479 (42.2)
Religion	1134	
Muslim		1080 (95.2)
Orthodox		42 (3.7)
Other b		12 (1.1)
Employment type	1134	
Full-time		765 (67.5)
Part-time		101 (8.9)
seasonal		268 (23.6)
Occupational status of women	1134	
Farmer		925 (81.6)
Trade		49 (4.3)
Professional/technical		66 (5.8)
Other d		94 (8.3)
Role in the household	1134	
Variables	N	Values
---	-----	-------------------------------
Head of the HH	141	(12.4)
Spouse	981	(86.5)
Another c	14	(1.1)
Wealth index	1134	
Poor	637	(56.2)
Middle	265	(23.4)
Rich	232	(20.4)
Weight a (kg)	1134	51.0 (48.0; 56.0)
Height a (cm)	1134	157.0 (154.5; 161.1)
Body Mass Index (BMI) a	1134	20.6 (19.2; 22.4)
BMI		
Underweight	1134	188 (16.6)
Normal		870 (76.7)
Overweight		76 (6.7)
Family size #	1134	5.8 ± (3.0)
Has an under 5 children	1134	1029 (90.7)
Age of Under 5 children a*	1029	36.0 (23.0; 48.0)
Number of previous pregnancies #	1134	4.5 ± (2.4)
Source of household food	1134	
Household production		854 (75.3)
Street Vendor and local market		280 (24.7)
Food source Distance from Household # e	280	0.7 ± (1.4)
Women's Minimum dietary diversity scores (out of 10 groups) a f	1134	4.0 (3.0; 5.0)
Minimum dietary diversity	1134	
Low		733 (64.6)
Estimated Usual Folate intake (ug/d) a	1134	170.2 (118.3; 252.2)
Many of the participants reported using own food production as a primary source of food and travel more than half a kilometer for reaching the source. The median dietary diversity score was 4.0 (IQR: 3.0; 5.0) and 35.4% of had optimum dietary diversity (consumed 5 or more food groups daily). Most study participants had under-five children in their household with a median age of 36 months (IQR: 23.0; 48.0). The highest number of previous pregnancies reported was thirteen (Table 1).

Food frequency distribution and food ranking

Table 2 shows the ranking and contribution of food groups to the dietary intake of folate. Almost all participants reported consuming starchy staples and other vegetables but these groups ranked 2nd and 5th in contributing to daily dietary folate intake. Even though less than half of the study participants reported intake of beans and peas, they were ranked the 1st in contributing dietary folate with median of 101.7 ug/d (IQR: 73.7; 178.3). The least consumed food group was flesh foods and it is also contributed least to folate intake. The median folate consumption in this study was 170.2 ug/day (IQR: 118.3; 252.2): 95% CI (164.3–176.1). The distribution of folate intake was positively skewed and 73.9% were at risk for dietary folate inadequacy based on a cut-off of 250 µg/day (Figs. 1 and 2). About 33% of WRA had low folate intake.
Table 2
Food frequency with Mean Folate dietary intake of women of reproductive age in Kersa, Eastern Ethiopia, 2019

Food group	Rank	Contribution	Consumed	Folate (ug/d) *
1) All starchy staples	2	49.6%	1130 (99.6)	84.4 (60.4; 104.0)
Consumed everyday			769 (67.8)	95.2 (75.9; 110.4)
Consumed ≤ 6 days			361 (31.8)	55.1 (38.6; 72.4)
2) Beans and Peas	1	59.7%	467 (41.2)	101.7 (73.7; 178.3)
Consumed everyday			16 (1.4)	340.0 (129.0; 342.3)
Consumed ≤ 6 days			451 (39.8)	97.1 (73.7; 161.6)
3) Nuts and Seeds	4	11.0%	74 (6.5)	18.7 (18.0; 27.0)
Consumed everyday			0.0 (0.0)	0.0 (0.0; 0.0)
Consumed ≤ 6 days			74 (6.5)	18.7 (18.0; 27.0)
4) All Diary	8	4.4%	754 (66.5)	7.5 (4.3; 7.5)
Consumed everyday			293 (25.8)	7.5 (7.5; 7.5)
Consumed ≤ 6 days			461 (40.6)	5.4 (4.3; 6.9)
5) Flesh Foods	10	1.0%	119 (10.5)	1.7 (0.9; 3.4)
Consumed everyday			4 (0.4)	6.0 (6.0; 148.0)
Consumed ≤ 6 days			115 (10.1)	1.7 (0.9; 3.4)
6) Eggs	9	3.1%	134 (11.8)	5.3 (2.6; 10.6)
Consumed everyday			2 (0.2)	18.5 (18.5; 18.5)
Consumed ≤ 6 days			132 (11.6)	5.3 (2.6; 10.6)
7) Vitamin A-rich dark green leafy vegetables	3	23.0%	524 (46.2)	39.2 (26.1; 52.3)
Consumed everyday			10 (0.9)	91.4 (91.4; 91.4)
Consumed ≤ 6 days			514 (45.3)	39.2 (26.1; 52.3)
8) Other vitamin A-rich vegetables and fruits	6	5.5%	355 (31.3)	9.4 (6.0; 16.9)
Consumed everyday			2 (0.2)	21.0 (21.0; 21.0)

* Median Folate intake (25th ; 75th percentile)
Food group

Food group	Rank	Contribution	Consumed	Folate (ug/d) *
Consumed ≤ 6 day			353 (31.1)	9.0 (6.0; 16.3)
9) Other vegetables	5	10.4%	1113 (98.2)	17.7 (15.5; 27.1)
Consumed everyday			890 (78.5)	17.7 (15.5; 28.0)
Consumed ≤ 6 days			223 (19.7)	15.5 (11.9; 23.5)
10) Other fruits	7	5.2%	152 (13.4)	8.8 (8.8; 23.1)
Consumed everyday			20 (1.8)	42.8 (42.8; 42.8)
Consumed ≤ 6 days			132 (11.6)	8.8 (8.8; 13.2)

* Median Folate intake (25th ; 75th percentile)

Factors associated with dietary folate inadequacy

Table 3 shows the factors associated with inadequate dietary folate consumption. We found that wealth index, seasonal employment, and low women’s nutritional diversity were associated with inadequate folate intake defined as intake of below EAR of folate, which below 250 µg/day in a population in univariate models. In adjusted models, seasonal employment, food source, being in the lowest and middle wealth index category, and low women’s nutritional diversity were associated with dietary folate inadequacy. Women with low dietary diversity intake were twice as likely (APR 1.9; 95% CI 1.7–2.2) to have inadequate folate intake compared to women who met criteria for minimum dietary diversity. Women who were involved in seasonal agricultural employments were more likely (APR 1.1; 95% CI 1.1–1.2) to have inadequate folate intake compared to women with full-time employment. Compared to women in the wealthiest households, women from poor and middle wealth tertile were 1.1 times (95% CI 1.0-1.3) and 1.2 times (95% CI 1.1–1.4) more likely to have dietary folate inadequacy, respectively. Women aged 15–25 years were 10% less likely to be at risk for folate inadequacy compared to those aged 36 years or older.
Table 3
Factors associated with inadequate dietary folate consumption \(^a\) among women of reproductive age in Kersa, eastern Ethiopia, 2019

	Inadequate Folate N (%)	CPR	95% CI	P-value	APR	95% CI	P-value
Age							
16–25	190 (70.9)	0.88	0.80–0.97	0.01	0.89	0.80–0.97	0.01**
25–35	464 (72.4)	0.91	0.84–0.98	0.02	0.96	0.89–1.02	0.20
≥ 36	184 (80.4)	ref	ref	ref	ref	ref	ref
Employment type							
Full-time	547 (71.5)	ref	0.73–1.01	0.3	ref	0.80–1.07	0.30
Part-time	62 (61.4)	0.86	1.12–1.28	0.000	0.93	1.06–1.20	<0.001**
Seasonal							
BMI	149 (79.3)	1.08	0.99–1.17	0.40	1.03	0.96–1.11	0.4
Underweight	640 (73.6)	ref	ref	0.58	ref	ref	0.6
Average	49 (64.5)	0.88	0.74–1.04	0.97	ref	ref	
Overweight							
Wealth Index							
Poor	513 (80.5)	1.39	1.24–1.57	0.01	1.14	1.03–1.26	0.01**
Middle	191 (72.1)	1.25	1.09–1.43	0.000	1.20	1.06–1.35	<0.001**
Rich		ref	ref	ref	ref	ref	ref
Number of previous pregnancies	4.54(2.44)	1.02	1.00–1.03	0.03	0.99	0.98–1.01	0.7
Dietary Diversity							
Optimum	180 (44.9)	ref	ref	0.000	ref	ref	<0.001**
Low	658 (89.8)	2.00	1.79–2.23	1.94	1.73–2.18		

\(^a\) folate intake of < 250 µg/day

\(^#\) mean (SD)

CPR = Crude Prevalence Ratio

APR = Adjusted Prevalence Ratio

** = significant at p = 0.05
Discussion

This study assessed dietary folate intake among women of reproductive age in Kersa, Eastern Ethiopia. Most participants had low dietary diversity during the study period, with most consuming starchy staples and vegetables. The food groups least consumed were fish, eggs, fleshy-foods, and fruits. Many women had folate intake which was insufficient and far less than the recommended standard of 250 µg/d.[33]. We found that women that had low dietary diversity, in poorer households, seasonal employment and market purchases of food were at higher risk of dietary folate inadequacy. Older women were also more likely to have inadequate dietary folate intake.

We found low levels of folate intake, which was 33% and high magnitude of folate inadequacy for WRA in Kersa. In this study, the folate inadequacy was higher compared to Tanzania which was 33.8%, but comparable with the low intake folate, which was 33% [42]. It was also higher than in Nigerian study, where 47% had inadequate intake but lower than in South African report of 98% [5]. The difference could be related to the difference in utilizing different methodology, food stability and security in those different countries. In developed countries, it was previously reported having a folate inadequacy of 64% [12, 43]. These counties had decreased folate deficiency and the incidence of NTD by fortifying primary foods that would typically have no or little folate [9, 42, 44] In those countries not only mandatory folate fortification policies are in place, but also improving in dietary diversity, gender equity and equality [6, 14, 45] unlike Ethiopia, explaining the higher folate deficiency in our population. It is estimated that mandatory fortification in Ethiopia will reduce NTD by 85% annually if fully implemented [46]. Although effective, the policy has not been endorsed and developed in Ethiopia [47].

The high magnitude of dietary folate inadequacy is expected and could be related to the characteristics of the study area. With reliance on supplementation of folic acid in pregnancy, WRA would at risk for

Inadequate Folate N (%)	CPR	95% CI	P-value	APR	95% CI	P-value	
Food source							
Household	622 (72.8)	ref	ref	0.2	ref	ref	0.04**
Market	216 (77.1)	1.06	0.98–1.14	1.07	1.01–1.15		

a = folate intake of < 250 µg/day

= mean (SD)

CPR = Crude Prevalence Ratio

APR = Adjusted Prevalence Ratio

** = significant at p = 0.05
folate deficiency. It is also one of drought prone, with poor living standard, difficulty in accessing affordable folate rich foods and poor place of Ethiopia. Most of the dietary system is mainly based on traditional farming in unsuitable places, with poor support from the agriculture system. As a result, most of the residents are supported through the safety-net program [48].

Even though the serum level of folate was not measured, our study showed a close relationship between dietary diversity and folate inadequacy. Daily folate-rich food like beans and peas were consumed by less than half of the participants but it contributed the most folate from all food groups. Whereas the starchy stables and vegetables were consumed daily, the amount of folate was lower compared to intake of fleshy foods (including liver), where only four women reported its intake in one week before the data collection. This finding agrees with much of the scientific literature that stated dietary inadequacy being the primary cause of folate deficiency [14, 49].

We found that with an increase in women's age was more likely to be inadequacy of dietary folate. Another cross-sectional FFQ study reported younger women were more likely to have folate inadequacy than advanced-aged women [7]. This difference could be respectively be explained by the higher household family member and children the older women expected to feed [7]. The study finding could also be limited by the potential introduction of recall bias and participants could over-report the consumption of specific food items.

Seasonal agricultural employment and being in a poor and middle category of wealth were also associated with dietary folate intake insufficiency. This finding is expected because women's seasonal dependent agricultural employment could have a potential for hunger and food scarcity and insecurity for families due to lack of other options if difficulties arise for harvest or drought seasons [50]. Besides, seasonal agricultural employment also leads to poverty, which in-turn poses makes it difficult to purchase adequate nutrient rich-food for the family [51]. The risk of folate dietary inadequacy increased in twice in women who had low dietary diversity compared to their counterparts. This finding can be attributed to the fact that having low dietary diversity leads to unhealthy and unbalanced diet patterns as well as micronutrient deficiencies [52]. WRA in Ethiopia relatively eat less because food shortage, physical discomfort, and unpleasant monotonous food with less variety [17]. This puts them at increased risk for any micronutrient deficiency in a household. Other studies in Ethiopia have also reported dietary diversity was a strong predictor of micronutrient adequacies with direct relationship with food security, household income and health access of a community [53, 54]

Ethiopia is one the highest NTD burdened country, with a prevalence rate ranging from 0.23%-40.3% [55, 56]. For pregnant women, reports indicate 12% folate deficiency in Ethiopia, 3% in Kenya, and 4% in Nigeria [5]. Other causes for folate deficiency include low bio-activity, pregnancy, malabsorptive conditions, anti-folate drugs or other metabolic inhibitors, and alcohol intake [4, 57] Low levels of folate consumption reported in this study can affect nutrition and health for WRA. Given that low folate intake can affect cell growth and duplication [58]. Low intake among WRA prior to and during pregnancy could lead to irreversible damage to the nerve system of the conceived fetus [59]. The nerve damage to the
baby ranges from a complete loss of fetal brain to some defects in the brain, spinal cord, and associated structures (ref). Anencephaly and spina bifida are common condition attributed for low level of folate concentration in the women's body. In any case of these, the outcome is clear, either the fetus will die or born with a permanent neural damage leading to a lifelong disability affecting growth, development, and failure to thrive [60].

To correct the problem, in the routine health system, pregnant women are given a capsule that contain iron and folic acid for ninety days. Yet, it is reported that, only as few as five percent of the women complete the full doses and the remaining more than 95% leave their fetus to the mercy of dietary folate consumption [21, 61]. In-addition, the widely available foods in Ethiopia have low bioavailable folate. Even though it is planned in introducing Folic Acid intervention program in our national document like fortification, it is not implemented [32]

Some of the strength of this study is utilizing the first community based FFQ with adequate sample size and training data collectors for quality control. The utilization of FFQ is a quick and efficient way of identifying and assessing micronutrient inadequacy. A past-week FFQ can provide better assessment of usual intake of micronutrient intake compared to 24- hour recall [62]. However, it has also several limitations. FFQ usually overestimate micronutrient intake which made it difficult in accurately capturing absolute micronutrient value and introduces with and between variation errors [63]. To reduce this, we have seen the folate intake distribution using two different cut-offs, the EAR (< 250 µg/d) and tertiles. Other factors that may affect folate absorption, seasonal dietary changes, knowledge, and awareness towards folate were not considered in this study.

Conclusion

The study found that folate intake is low and that folate inadequacy is public health in Kersa, Eastern Oromia. Diversifying diets, and daily consumption of folate-rich foods like beans and liver, and mandatory fortification of wheat or salt are highly recommended to increase folate adequacy and decrease risk of folate deficiency among WRA. National FFQ coupled with plasma folate levels are recommended for accurate identification of folate inadequacy and deficiency as well as for monitoring of micronutrient deficiencies

Abbreviations

DDS; dietary diversity score;

FFQ; food frequency questionnaire,

IFA; iron and folic acid,

MDD; minimum dietary diversity,
Declarations

Ethics Approval and consent to participate

This study was ethically cleared by Institution Health Research Ethical Review Board of the College of Health and Medical Sciences with reference number SHE/S1M/14.4/708/19 and the procedures were undertaken in accordance to Helenski Declaration.

Consent for publication

Not Applicable

Availability of data and materials

The datasets used and analyzed during this study are available from the corresponding author on reasonable request.

Competing Interest

The authors declare no conflicts of interest.

Funding

This work was supported Harvard T.H. Chan School of Public Health, USA.

Acknowledgements

The Authors wish to Thank Dr Sabri Bromage for his valuable comments and suggestions and Harvard school of public health for their assistance in data collection. The authors would like to thank study participants, local administrators, and data collector in facilitating the data collection.

References
1. Gazzali AM, Lobry M, Colombeau L, Acherar S, Azais H, Mordon S, Amoux P, Baros F, Vanderesse R, Frochot C: **Stability of folic acid under several parameters.** *Eur J Pharm Sci* 2016, **93**:419–430.

2. Evans SE, Mygind VL, Peddie MC, Miller JC, Houghton LA: **Effect of increasing voluntary folic acid food fortification on dietary folate intakes and adequacy of reproductive-age women in New Zealand.** *Public Health Nutr* 2014, **17**:1447–1453.

3. van Gool JD, Hirche H, Lax H, De Schaepdrijver L: **Folic acid and primary prevention of neural tube defects: A review.** *Reprod Toxicol* 2018, **80**:73–84.

4. Nunn RL, Kehoe SH, Chopra H, Sahariah SA, Gandhi M, Di Gravio C, Coakley PJ, Cox VA, Sane H, Shivshankaran D, et al: **Dietary micronutrient intakes among women of reproductive age in Mumbai slums.** *Eur J Clin Nutr* 2019, **73**:1536–1545.

5. Harika R, Faber M, Samuel F, Kimiywe J, Mulugeta A, Eilander A: **Micronutrient Status and Dietary Intake of Iron, Vitamin A, Iodine, Folate and Zinc in Women of Reproductive Age and Pregnant Women in Ethiopia, Kenya, Nigeria and South Africa: A Systematic Review of Data from 2005 to 2015.** *Nutrients* 2017, **9**.

6. Rogers LM, Cordero AM, Pfeiffer CM, Hausman DB, Tsang BL, De-Regil LM, Rosenthal J, Razzaghi H, Wong EC, Weakland AP, Bailey LB: **Global folate status in women of reproductive age: a systematic review with emphasis on methodological issues.** *Ann N Y Acad Sci* 2018, **1431**:35–57.

7. Rodrigues HG, Gubert MB, Santos LM: **Folic acid intake by pregnant women from Vale do Jequitinhonha, Brazil, and the contribution of fortified foods.** *Arch Latinoam Nutr* 2015, **65**:27–35.

8. Arias LD, Parra BE, Munoz AM, Cardenas DL, Duque TG, Manjarres LM: **Study Exploring the Effects of Daily Supplementation with 400 mug of Folic Acid on the Nutritional Status of Folate in Women of Reproductive Age.** *Birth Defects Res* 2017, **109**:564–573.

9. Centeno Tablante E, Pachon H, Guetterman HM, Finkelstein JL: **Fortification of wheat and maize flour with folic acid for population health outcomes.** *Cochrane Database Syst Rev* 2019, **7**:CD012150.

10. Bulloch RE, McCowan LME, Thompson JMD, Houghton LA, Wall CR: **Plasma folate and its association with folic acid supplementation, socio-demographic and lifestyle factors among New Zealand pregnant women.** *Br J Nutr* 2019, **122**:910–918.

11. McNulty H, Ward M, Hoey L, Hughes CF, Pentieva K: **Addressing optimal folate and related B-vitamin status through the lifecycle: health impacts and challenges.** *Proc Nutr Soc* 2019, **78**:449–462.

12. French MR, Barr SI, Levy-Milne R: **Folate intakes and awareness of folate to prevent neural tube defects: a survey of women living in Vancouver, Canada.** *J Am Diet Assoc* 2003, **103**:181–185.

13. Meng Q, Zhang L, Liu J, Li Z, Jin L, Zhang Y, Wang L, Ren A: **Dietary folate intake levels in rural women immediately before pregnancy in Northern China.** *Birth Defects Res A Clin Mol Teratol* 2015, **103**:27–36.

14. Karacil Erhumcu MS, Mengi Celik O, Acar Tek N: **An Evaluation of Awareness, Knowledge, and Use of Folic Acid and Dietary Folate Intake among Non-Pregnant Women of Childbearing Age and Pregnant Women: A Cross-Sectional Study from Turkey.** *Ecol Food Nutr* 2020:1–15.
15. Centers for Disease C, Prevention: Trends in folic acid supplement intake among women of reproductive age—California, 2002–2006. MMWR Morb Mortal Wkly Rep 2007, 56:1106–1109.

16. Bitew ZW, Worku T, Alebel A, Alemu A: Magnitude and Associated Factors of Neural Tube Defects in Ethiopia: A Systematic Review and Meta-Analysis. Glob Pediatr Health 2020, 7:2333794X20939423.

17. Asayehu TT, Lachat C, Henauw S, Gebreyesus SH: Dietary behaviour, food and nutrient intake of women do not change during pregnancy in Southern Ethiopia. Matern Child Nutr 2017, 13:e12343.

18. Sayed AR, Bourne D, Pattinson R, Nixon J, Henderson B: Decline in the prevalence of neural tube defects following folic acid fortification and its cost-benefit in South Africa. Birth Defects Res A Clin Mol Teratol 2008, 82:211–216.

19. Amoroso L: The Second International Conference on Nutrition: Implications for Hidden Hunger. World Rev Nutr Diet 2016, 115:142–152.

20. World Health Organization (WHO), Food and Agriculture Organization (FAO): Vitamin and mineral requirements in human nutrition. 2 edn. Geneva: WHO; 2004.

21. Desta M, Kassie B, Chanie H, Mulugeta H, Yirga T, Temesgen H, Leshargie CT, Merkeb Y: Adherence of iron and folic acid supplementation and determinants among pregnant women in Ethiopia: a systematic review and meta-analysis. Reprod Health 2019, 16:182.

22. Obeid R, Oexle K, Rissmann A, Pietrzik K, Koletzko B: Folate status and health: challenges and opportunities. J Perinat Med 2016, 44:261–268.

23. Gomes S, Lopes C, Pinto E: Folate and folic acid in the periconceptional period: recommendations from official health organizations in thirty-six countries worldwide and WHO. Public Health Nutr 2016, 19:176–189.

24. Gaskins AJ, Mumford SL, Chavarro JE, Zhang C, Pollack AZ, Wactawski-Wende J, Perkins NJ, Schisterman EF: The impact of dietary folate intake on reproductive function in premenopausal women: a prospective cohort study. PLoS One 2012, 7:e46276.

25. Gaskins AJ, Minguez-Alarcon L, Fong KC, Abu Awad Y, Di Q, Chavarro JE, Ford JB, Coull BA, Schwartz J, Kloo L, et al: Supplemental Folate and the Relationship Between Traffic-Related Air Pollution and Livebirth Among Women Undergoing Assisted Reproduction. Am J Epidemiol 2019, 188:1595–1604.

26. USAID: Feed The Future: Ethiopia’s Growth through Nutrition project In The US Goverment’s Global Hunger & Food Security Initiative 2019.

27. Oromiya: Demography and Health [http://www.ethiodemographyandhealth.org/Oromia.html]

28. Assefa N, Oljira L, Baraki N, Demena M, Zelalem D, Ashenafi W, Dedefo M: HDSS Profile: The Kersa Health and Demographic Surveillance System. Int J Epidemiol 2016, 45:94–101.

29. Bilukha O, Leidman E: Concordance between the estimates of wasting measured by weight-for-height and by mid-upper arm circumference for classification of severity of nutrition crisis: analysis of population-representative surveys from humanitarian settings. BMC Nutrition 2018, 4:24–24.

30. WHO (World Health Organization): Body Mass Index - BMI. 2019.
31. Zack RM, Irema K, Kazonda P, Leyna GH, Liu E, Gilbert S, Lukmanji Z, Spiegelman D, Fawzi W, Njelekela M, et al: Validity of an FFQ to measure nutrient and food intakes in Tanzania. *Public Health Nutr* 2018, 21:2211–2220.

32. Ethiopian Public Health Institute: Ethiopian national food consumption survey. Addis Ababa, Ethiopia 2013.

33. Allen LH, Carriquiry AL, Murphy SP: Perspective: Proposed Harmonized Nutrient Reference Values for Populations. *Adv Nutr* 2020, 11:469–483.

34. Wiesmann D, Arimond M, Loechi C: Dietary diversity as a measure of the micronutrient adequacy of women’s diets: Results from rural Mozambique site. In Washington (DC): Food and Nutrition Technical Assistance II Project, FHI 360 2009.

35. FAO, FHI 360: Minimum dietary diversity for women: a guide for measurement. vol. 82. Rome: FAO; 2016.

36. FAO: A resource guide to method selection and application in low resource settings. pp. 152. Rome 2018:152.

37. Women’s Dietary Diversity Project Study Group: Development of a Dichotomous Indicator for Population-Level Assessment of Dietary Diversity in Women of Reproductive Age. *Curr Dev Nutr* 2017, 1.

38. Central Statistical Agency (CSA), ICF.: Ethiopia Demographic and Health Survey. Addis Ababa, Ethiopia and Rockville, Maryland, USA:: CSA and ICF; 2016.

39. Rutstein SO, Johnson K: The DHS wealth index. In *DHS Comparative Reports No 6*. Calverton, Maryland, USA: ORC Macro; 2004.

40. Zou G: A modified poisson regression approach to prospective studies with binary data. *Am J Epidemiol* 2004, 159:702–706.

41. Yelland LN, Salter AB, Ryan P: Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data. *Am J Epidemiol* 2011, 174:984–992.

42. Noor RA, Abioye AI, Ulenga N, Msham S, Kaishozi G, Gunaratna NS, Mwiru R, Smith E, Dhillon CN, Spiegelman D, Fawzi W: Large-scale wheat flour folic acid fortification program increases plasma folate levels among women of reproductive age in urban Tanzania. *PLoS One* 2017, 12:e0182099.

43. Matsuzaki M, Haruna M, Ota E, Sasaki S, Nagai Y, Murashima S: Dietary folate intake, use of folate supplements, lifestyle factors, and serum folate levels among pregnant women in Tokyo, Japan. *J Obstet Gynaecol Res* 2008, 34:971–979.

44. Ferreira AF, Giugliani R: Consumption of folic acid-fortified flour and folate-rich foods among women at reproductive age in South Brazil. *Community Genet* 2008, 11:179–184.

45. Monteagudo C, Mariscal-Arcas M, Palacin A, Lopez M, Lorenzo ML, Olea-Serrano F: Estimation of dietary folic acid intake in three generations of females in Southern Spain. *Appetite* 2013, 67:114–118.
46. Kancherla V, Koning J, Biluts H, Woldemariam M, Kidruiysfaw Z, Belete A, Koning M: Projected impact of mandatory food fortification with folic acid on neurosurgical capacity needed for treating spina bifida in Ethiopia. Birth Defects Res 2021, 113:393–398.

47. Kancherla V, Chadha M, Rowe L, Thompson A, Jain S, Walters D, Martinez H: Reducing the Burden of Anemia and Neural Tube Defects in Low- and Middle-Income Countries: An Analysis to Identify Countries with an Immediate Potential to Benefit from Large-Scale Mandatory Fortification of Wheat Flour and Rice. Nutrients 2021, 13:244.

48. Miller BDD, Welch RM: Food system strategies for preventing micronutrient malnutrition. Food Policy 2013, 42:115–128.

49. Haidar J, Melaku U, Pobocik R: Folate deficiency in women of reproductive age in nine administrative regions of Ethiopia: an emerging public health problem. South African Journal of Clinical Nutrition 2016, 23:132–137.

50. Belgnaoui S, Belahsen R: Nutrient intake and food consumption among pregnant women from an agricultural region of Morocco. International Journal of Food Sciences and Nutrition 2006, 57:19–27.

51. Maueri A, Barchitta M, Agrifoglio O, Favara G, La Mastra C, La Rosa MC, Magnano San Lio R, Panella M, Cianci A, Agodi A: The impact of social determinants and lifestyles on dietary patterns during pregnancy: evidence from the "Mamma & Bambino" study. Ann Ig 2019, 31:81–89.

52. Adubra L, Savy M, Fortin S, Kameli Y, Kodjo NE, Fainke K, Mahamadou T, Le Port A, Martin-Prevel Y: The Minimum Dietary Diversity for Women of Reproductive Age (MDD-W) Indicator Is Related to Household Food Insecurity and Farm Production Diversity: Evidence from Rural Mali. Curr Dev Nutr 2019, 3:nzz002.

53. Mekonnen DA, Talsma EF, Trijsburg L, Linderhof V, Achterbosch T, Nijhuis A, Ruben R, Brouwer ID: Can household dietary diversity inform about nutrient adequacy? Lessons from a food systems analysis in Ethiopia. Food Security 2020, 12:1367–1383.

54. Jemal K, Awol M: Minimum Dietary Diversity Score and Associated Factors among Pregnant Women at Alamata General Hospital, Raya Azebo Zone, Tigray Region, Ethiopia. J Nutr Metab 2019, 2019:8314359.

55. Oumer M, Taye M, Aragie H, Tazebew A: Prevalence of Spina Bifida among Newborns in Africa: A Systematic Review and Meta-Analysis. Scientifica (Cairo) 2020, 2020:4273510.

56. Tadesse AW, Kassa AM, Aychiluhm SB: Determinants of Neural Tube Defects among Newborns in Amhara Region, Ethiopia: A Case-Control Study. Int J Pediatr 2020, 2020:5635267.

57. Maffoni S, De Giuseppe R, Stanford FC, Cena H: Folate status in women of childbearing age with obesity: a review. Nutr Res Rev 2017, 30:265–271.

58. Krishnaswamy K, Madhavan Nair K: Importance of folate in human nutrition. Br J Nutr 2001, 85 Suppl 2:S115-124.

59. Ohrvik VE, Witthoft CM: Human folate bioavailability. Nutrients 2011, 3:475–490.

60. Gashu D, Stoecker BJ, Adish A, Haki GD, Bougma K, Marquis GS: Ethiopian pre-school children consuming a predominantly unrefined plant-based diet have low prevalence of iron-deficiency
anaemia. *Public Health Nutr* 2016, 19:1834–1841.

61. Tuokkola J, Luukkainen P, Kaila M, Takkinen HM, Niinisto S, Veijola R, Virta LJ, Knip M, Simell O, Ilonen J, Virtanen SM: Maternal dietary folate, folic acid and vitamin D intakes during pregnancy and lactation and the risk of cows’ milk allergy in the offspring. *Br J Nutr* 2016, 116:710–718.

62. Eck LH, Klesges RC, Hanson CL, Slawson D, Portis L, Lavasque ME: Measuring short-term dietary intake: development and testing of a 1-week food frequency questionnaire. *J Am Diet Assoc* 1991, 91:940–945.

63. Resnicow K, Odom E, Wang T, Dudley WN, Mitchell D, Vaughan R, Jackson A, Baranowski T: Validation of three food frequency questionnaires and 24-hour recalls with serum carotenoid levels in a sample of African-American adults. *Am J Epidemiol* 2000, 152:1072–1080.

Figures

![Figure 1](image)

Figure 1

Usual dietary Folate consumption among women of reproductive age, Kersa, Eastern Ethiopia, 2019
Figure 2

Total Dietary Folate Consumption by Minimum Dietary Diversity among women of reproductive age, Kersa, Eastern Ethiopia, 2019