Understanding the Paradoxical Effects of Power Control on the Capacity of Wireless Networks

Yue Wang*, John C.S. Lui*, Dah-Ming Chiu+
*Department of Computer Science & Engineering
+Department of Information Engineering
The Chinese University of Hong Kong
Email: {ywang, cslui}@cse.cuhk.edu.hk, dmchiu@ie.cuhk.edu.hk

Abstract—Recent works show conflicting results: network capacity may increase or decrease with higher transmission power under different scenarios. In this work, we want to understand this paradox. Specifically, we address the following questions: (1) Theoretically, should we increase or decrease transmission power to maximize network capacity? (2) Theoretically, how much network capacity gain can we achieve by power control? (3) Under realistic situations, how do power control, link scheduling and routing interact with each other? Under which scenarios can we expect a large capacity gain by using higher transmission power? To answer these questions, firstly, we prove that the optimal network capacity is a non-decreasing function of transmission power. Secondly, we prove that the optimal network capacity can be increased unlimitedly by higher transmission power in some network configurations. However, when nodes are distributed uniformly, the gain of optimal network capacity by higher transmission power is upper-bounded by a positive constant. Thirdly, we discuss why network capacity in practice may increase or decrease with higher transmission power under different scenarios using carrier sensing and the minimum hop-count routing. Extensive simulations are carried out to verify our analysis.

Keywords: Network Capacity, Power Control, Routing, Link Scheduling

1. Introduction

Wireless networks have been actively developed for providing ubiquitous network access in the past decades. Recently, wireless mesh networks (WMNs) are considered as a key solution to extend the coverage of the Internet, especially in areas where wired networks are expensive to deploy, e.g., in rural areas. Therefore, improving network capacity is one of the most important issues in the research of wireless networks. Roughly speaking, network capacity is the total end-to-end throughputs, which we will carefully define in Section II. Various techniques ranging from physical layer to network layer have been proposed for this purpose, such as MIMO [1], multi-channel multi-radio [2], high-throughput routing [25]–[28], etc. One way to increase network capacity is by leveraging transmission power. This is effective especially in WMNs where stationary mesh routers usually have sufficient power supply, for example, they can share power supply with street-lamps as cited in [3].

In this paper, we study the impact of power control on the capacity of wireless networks. In particular, we consider wireless networks where nodes are stationary and are connected in ad-hoc manner. Under this network setting, power control can significantly affect network capacity via the interactions with the link scheduling and the routing algorithms.

First, many link scheduling algorithms in wireless networks nowadays implement carrier sensing to avoid transmission collisions due to interferences. That is, transmitters sense channel states before transmissions and they can transmit only when the sensed noise strength is below carrier sensing threshold. Power control has a tight relation with carrier sensing. When transmission power increases, the sensed noise strength, mainly due to interference, is more likely beyond carrier sensing threshold, which may reduce spatial reuse, i.e., the number of simultaneous transmissions. Since network capacity decreases with lower spatial reuse, higher transmission power may decrease network capacity. Second, power control has a tight relation with routing. On the one hand, higher transmission power may reduce the number of hops or transmissions that a source needs to reach its destination for a longer transmission range. Since network capacity increases with fewer number of transmissions for an application-layer packet, higher transmission power may increase network capacity. On the other hand, because longer transmission range reduces spatial reuse (see Section III, higher transmission power can decrease network capacity. Considering perfect link scheduling, authors in [4] argued that network capacity decreases with higher transmission power under the minimum hop-count routing. However, some recent works showed that network capacity actually increases with higher transmission power in some scenarios [5] [6].

In this paper, we systematically characterize the impact of power control on network capacity and provide a deep understanding on the interesting paradox: why network capacity may increase or decrease with higher transmission power in different scenarios? Specifically, we address the following questions:

1) Theoretically, should we increase or decrease transmission power to maximize network capacity?

2) Theoretically, how much network capacity gain can we achieve by power control?

3) Under realistic situations, how do power control, link scheduling and routing interact with each other? Under which scenarios can we expect a large capacity gain

1We do not consider CDMA at the moment, which applies some other techniques for interference cancellation.
using higher transmission power?

The contributions of this work are as follows:

- We prove that the *optimal* network capacity is a *non-decreasing* function of transmission power when the network is using the optimal link scheduling and routing.
- We prove that under some specific configurations, the optimal network capacity can be increased unlimitedly by higher transmission power. However, when nodes are distributed uniformly over a space, the gain of the optimal network capacity by higher transmission power is upper-bounded by some positive constant. To the best of our knowledge, we are the first to prove this property.
- We provide a qualitative analysis on the interactions of power control, carrier sensing and the minimum hop-count routing. The later two are the key features commonly used in the link scheduling and routing algorithms nowadays. Through this analysis, we can explain the paradoxical effects of power control on increasing network capacity. The essential reason is that carrier sensing and the minimum hop-count routing are not optimal. We also provide a taxonomy of different scenarios where network capacity (may) increase or decrease with higher transmission power.
- Besides the theoretical contributions, our work offers some important implications to network designers. First, one can redesign the link scheduling and routing algorithms so as to increase network capacity under high transmission power. Second, we observe from simulation that high transmission power can significantly increase network capacity in the networks whose diameters are within a few hops, which can find applications in small WMNs.

The rest of the paper is organized as follows. In Section II we present a model of wireless networks and define performance measures. In Section III we prove the theoretical network capacity gain of power control. In Section IV we discuss why network capacity in practice may increase or decrease with higher transmission power, considering the interactions of power control, carrier sensing and the minimum hop-count routing. In Section V we study how network capacity varies with transmission power in different scenarios via simulation. In Section VI we present related works. In Section VII we conclude our paper.

II. System Model

In this section, we first present a physical model commonly used in the research of wireless networks [7]. Then we define performance measures and some notations used throughout this paper.

In this paper, we consider a static network of n nodes which are located on a 2D plane. Nodes are connected in ad-hoc manner. We use (A, B) to denote a link transmitting from node A to node B, and use $|A - B|$ to denote the Euclidean distance between A and B. We make the following assumptions for the wireless physical model: 1) *Common transmission power*. All nodes use the same transmission power. This assumption simplifies our discussions. Actually, the authors of the COMPOW (COMmon POWer) protocol showed that per-node (or per-link) power control can only improve network capacity marginally than common power control [4]. 2) *Single ideal channel*. All nodes transmit on an ideal channel without channel fading. This assumption simplifies our analysis so that we can focus on understanding this paradox. In practice, there are some physical technologies such as MIMO which can greatly mitigate channel fading by using smart antennas [1]. 3) *Single transmission rate*. All nodes transmit at the same rate of W bps. 4) *Correct packet reception based on signal-to-noise (SNR) threshold*.

Let P_e be the transmission power. For a link e, the received signal strength P_r at e’s receiver is

$$P_r = \frac{c_p P_e}{d^\beta},$$

where c_p is a constant determined by some physical parameters, e.g. antenna height, α is the path loss exponent, varying from 2 to 6 depending on the environment [9], and d is the distance from e’s transmitter to its receiver (we call it the length of link e). We assume all c_p’s are equal. Thus, by letting P_t denote $c_p P_e$, we can simplify Eq. (1) as

$$P_r = \frac{P_t}{d^\alpha},$$

For link e, its signal-to-noise (SNR) is defined at its receiver side, which is

$$SNR = \frac{P_r}{\sum_{i \neq e} I_i + N_0},$$

where P_r is the signal strength at e’s receiver, I_i is the interference strength from some other transmitting link i to e, and N_0 is the white noise. I_i is also calculated by Eq. (2) except that d here is the distance from i’s transmitter to e’s receiver. The accumulative interference strength and N_0 are treated as noise by e’s receiver. Note that N_0 is usually small comparing with interference strength so that we can ignore it.

To successfully receive a packet, the following two conditions should both be satisfied:

$$P_r \geq H_r,$$

and

$$SNR \geq \beta,$$

where H_r is the receiving power threshold and β is the SNR threshold for decoding packets correctly.

From the above equations, one can derive r, the maximum distance between a transmitter and a receiver for successful packet receptions (the maximum is achieved when interference is zero),

$$r = \min \left\{ \left(\frac{P_t}{N_0^{1/\beta}} \right)^{1/\alpha}, \left(\frac{P_t}{H_r} \right)^{1/\alpha} \right\}.$$

We refer to r as transmission range. Two nodes can form a link when they are within a distance of r.

The interference range r_I of a link e is defined as the minimum distance between an interfering transmitter and e’s receiver so that e’s transmissions are not corrupted. Let d be
the length of e. From Eq. (3), and ignoring N_0, we have
\[
\frac{P_i/d^\alpha}{P_i/r_i^\alpha} = \beta,
\]
which yields
\[
r_i = \beta^{1/\alpha} \cdot d \tag{7}
\]
We observe that r_i is a constant times of d and is independent of transmission power. Another observation is that the *silence area* for successful transmissions of a link is proportional to the link length. This suggests that spatial reuse, i.e. the number of simultaneous transmissions, will decrease with the lengths of links.

Next, we define network capacity according to [8], which is from the perspective of end-users. We consider a network G and a set of flows F. Each flow is associated with a rate. The rate of a flow is the average end-to-end throughput of the flow. We use a vector to denote the rates of all flows, named flow rate vector. Capacity region defines all flow rate vectors that can be supported by the network.

We define traffic pattern as the ratio of the rates of all flows, which can be represented in the vector form: $(v_1, v_2, ..., v_{|F|})$, where $v_1^2 + v_2^2 + \ldots + v_{|F|}^2 = 1$. Given the traffic pattern, we can obtain a corresponding flow rate vector $a \cdot (v_1, v_2, ..., v_{|F|})$ by a scaling factor a. The network capacity under the traffic pattern of $(v_1, v_2, ..., v_{|F|})$ is defined as
\[
\max_{a > 0} \left\{ a \cdot \sum_{i=1}^{\lfloor |F| \rfloor} v_i \right\}, \tag{8}
\]
which is the maximum total rates of flows supported by the network.

We illustrate the above definitions by an example. There are four nodes (A, B, C and D) and two flows (f_1 from A to C and f_2 from B to D) in the network of Fig. 1. So there are three links ((A, C), (B, C) and (C, D)) contending the channel. Let λ_1 and λ_2 be the rates of the two flows, respectively. We can easily calculate the capacity region of (λ_1, λ_2) by the constraint $\lambda_1 + 2\lambda_2 \leq W$. Suppose the traffic pattern is $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, then the network capacity is $\frac{2}{3}W$ when $\lambda_1 = \lambda_2 = \frac{1}{\sqrt{2}}W$.

![Fig. 1. Illustration of the definition of network capacity](image)

Equivalently, we can calculate network capacity as follows. Given the traffic pattern $(v_1, v_2, ..., v_{|F|})$, we generate the corresponding traffic workload vector $b \cdot (v_1, v_2, ..., v_{|F|})$ by a large scaling factor b ($b \cdot v_i$ is the traffic workload assigned to the i^{th} flow). Suppose that the network delivers all traffic workloads in time T, then the network capacity is
\[
\frac{b \sum_{i=1}^{\lfloor |F| \rfloor} v_i}{T}. \tag{9}
\]

Finally, we define the network capacity gain of power control. Given the wireless network and the traffic pattern, let $C_P(R, S)$ be the network capacity when $P_t = P$ under the routing algorithm R and the link scheduling algorithm S. R defines the routes of each flow, and S defines whether a link can transmit at any time t. We use $C_P^*(R^*, S^*)$ or C_P^* to denote the optimal network capacity when $P_t = P$ under the optimal routing algorithm R^* and the optimal link scheduling algorithm S^*.

Let P and $K P$ ($K > 1$) be the minimal and the maximal transmission power, respectively. Note that P should guarantee network connectivity; Otherwise, network capacity is meaningless since some flows may not be able to find routes to reach their destinations. We define network capacity gain of power control ($G_K(R, S)$) by using the routing algorithm R and the link scheduling algorithm S as
\[
G_K(R, S) = \frac{C_K P(R, S)}{C_P(R, S)}. \tag{10}
\]

Furthermore, we define the theoretical network capacity gain of power control (G_K^*), i.e.,
\[
G_K^* = \frac{C_K P^*}{C_P^*}. \tag{11}
\]

Unless we state otherwise, we will use K to denote the ratio of the maximal transmission power to the minimal transmission power in this paper.

III. Theoretical network capacity gain of power control

In this section, we derive the theoretical capacity gain of power control based on the information-theoretic perspective. In order to derive the optimal network capacity, we assume that nodes transmit in a synchronous time-slotted mode and each transmission occupies one time slot. From now on we will use the phrase "with high probability" abbreviated as "whp" to stand for "with probability approaching 1 as $n \to \infty$" where n is the number of nodes in the network.

The following theorem states the relationship between the optimal network capacity and transmission power.

Theorem 1: Given the network topology and the traffic pattern, the optimal network capacity is a non-decreasing function of the common transmission power. Therefore, $G_K^* \geq 1$.

Proof: Let $S_P(t)$ denote the set of transmitting links at time slot t when $P_t = P$. For any link $e \in S_P(t)$, its SNR satisfies
\[
P_r \sum_{i \in S_P(t), i \neq e} I_i + N_0 \geq \beta, \tag{12}
\]
where P_r is the signal strength of e and I_i is the interference strength from some other transmitting link i to e. Now we set $P_t = K P$ ($K > 1$) and use the same routes and the same link
Theorem 2: In general, G^*_K can be unbounded when $n \to \infty$.

Proof: We prove it by constructing a specific network. There are $2m+1$ vertical links each with a length of d. The horizontal distance between any two adjacent vertical links is $2d$. Fig. 2 illustrates five vertical links where (A_1, A_2) is the middle link of the network. A_3 evenly separates the line between A_1 and A_2. Also, there are two nodes evenly separating the line between any two horizontally neighboring nodes. So there are totally $n = 12m + 3$ nodes in the network. There is a flow along each vertical link from the top node to the bottom node. Let $\alpha = 4$ and $\beta = 10$ in the physical model.

The maximal transmission power KP is set large enough that the transmission range r is much larger than d and N_0 can be neglected. Thus, the $2m+1$ vertical links can transmit simultaneously for any m. To see this, we can check the SNR of the middle link (A_1, A_2) which suffers the most interference, i.e.,

$$\text{SNR}_{(A_1, A_2)} \geq \frac{KP}{2 \sum_{i=1}^{m} (\frac{KP}{d^2 + (2id)^2})^i}.$$

(14)

\(\text{SNR}_{(A_1, A_2)} \approx 11 > \beta\) when $m \to \infty$. Therefore, C^*_KP is $(2m+1)W$ or $(\frac{1}{2}n + \frac{1}{2})W$. The minimal transmission power P is set so that $d > r > \frac{\beta}{2}d$. Thus all flows have to go through A_1, A_3 and A_2 to reach their destinations. For example, the route from E_1 to E_2 is through C_1, A_1, A_3 and A_2 and C_2. So C^*_P is at most $\frac{1}{2}W$ since (A_1, A_3) and (A_1, A_2) are the bottleneck links for all flows. Therefore, G^*_K is at least $(\frac{1}{2}n + 1)$, which is unbounded when $n \to \infty$.

Remarks: The above theorem shows that network capacity can be increased unlimitedly by using higher transmission power in some network configurations.

However, nodes placement is approximately random in many real networks. We will show that G^*_K is upper-bounded by a constant whp for networks with uniform node distribution. Before we finally prove this result, we have the following lemmas. We first cite a lemma which was proved in [7].

Lemma 1: For any two simultaneous links (A, B) and (C, D), we have $|B - D| \geq \frac{\beta}{2}((A - B) + (C - D))$, where $\Delta = \beta/\alpha - 1$.

Remarks: From this lemma, if we draw a disc for each link where the center of the disc is the link’s receiver and the radius is $\frac{\Delta}{2}$ times the link length, all such discs are disjoint. Note that $\Delta > 0$ because we usually have $\beta > 1$ in practice.

Lemma 2: Consider a set of simultaneously transmitting links where the length of any link is at least d. Given a region whose diameter is $2R$, the number of links intersecting the region is upper-bounded by $\frac{1}{\Delta}(4(\Delta + 1)\frac{P}{d} + \Delta + 2)^2$, where $\Delta = \beta/\alpha - 1$.

Proof: See Appendix A-1.

We define r_c as the critical transmission range for network connectivity whp. From [7], we know that $r_c = \sqrt{\frac{\log n + kn}{2m}}$ for n nodes uniformly located in a disc of unit area, where $k_n \to \infty$ as $n \to \infty$.

Lemma 3: Assume transmission power is sufficiently large so that $r > 4r_c$. For a network with uniform node distribution, there exists a route between any two nodes A and B which satisfies the following conditions whp: (a) for any relay link on the route, its length is smaller than or equal to $4r_c$; (b) the vertical distance from any relay node to the straight-line segment of (A, B) is at most r_c; (c) the number of hops between any two relay nodes a_1 and a_2 is not more than $\frac{|a_1 - a_2|}{4r_c} + 1$.

Proof: See Appendix A-2.

Remarks: Intuitively, the lemma shows that there exists a route which can "approximate" the straight-line segment of any two nodes whp for a network with uniform node distribution.

Theorem 3: Assume $\alpha > 2$ and transmission power is sufficiently large so that $r > 4r_c$. For a network with uniform node distribution, G^*_K is bounded by a constant c whp, where c is not depending on K or traffic pattern.

Proof: Let P and KP ($K > 1$) be the minimal and maximal transmission power, respectively. Let $S^*_{KP}(t)$ be the set of
simultaneously transmitting links at time slot \(t \) when \(P_t = KP \). To prove this theorem, it is sufficient to prove that for any \(t \) we can schedule the traffic in \(S_{KP}(t) \) in at most \(c \) time slots when \(P_t = P \). By optimality, we have \(G^*_K \leq c \). We will construct such \(c \).

To avoid confusion here, we use ”link” to denote a link when \(P_t = KP \) and use ”sublink” to denote a link when \(P_t = P \). Note that we only construct all sublinks from their corresponding links in this proof according to Lemma 5. That is, suppose \(P \) is sufficiently large so that \(r > 4r_c \), we can find the relay sublinks which satisfy the conditions of Lemma 3 for each link in \(S_{KP}(t) \) when \(P_t = P \).

First, we will show that such a sublink is interfered by at most \(c_0 \) sublinks, where \(c_0 \) is a constant not depending on \(K \) or traffic pattern. Note that we only consider the links in \(S_{KP}(t) \) with a length larger than or equal to \(r_c \) here, since we can schedule the links in \(S_{KP}(t) \) with a length smaller than \(r_c \) using another time slot.

We consider some relay sublink \((A, B)\). In the preparatory step, we count the number of sublinks intersecting the annulus \(U(i) \) of all points lying within a distance between \(ir_c \) and \((i + 1)r_c \) from \(B \), where \(i \geq m \) (\(m \) is a constant which we will determine later). We evenly divide \(U(i) \) into \(\lceil 2\pi(i + 1) \rceil \) sectors, each of which has a central angle of at most \(\frac{1}{i+1} \). Consider such a sector \(S \). It is easy to see that its diameter is not more than \(2r_c \). So we can draw a disc of radius \(2r_c \), named \(S' \), to cover \(S \). From Lemma 3, a relay sublink deviates from its corresponding link by a distance of not more than \(r_c \). Therefore, if a sublink intersects \(S' \), the shortest distance between its corresponding link and \(S' \) is at least \(r_c \). Fig. 3 illustrates the worst case for a link (denoted by the directional dashed line) whose sublinks intersect \(S' \), where the link should at least intersect a disc of radius \(3r_c \). Since we consider the links with a length not less than \(r_c \), from Lemma 2, the number of links whose sublinks intersect \(S' \) is upper-bounded by \(\frac{1}{2 \pi}(4\Delta + 1)(\frac{2r_c}{\Delta} + \Delta + 2)^2 = \frac{1}{2 \pi}(13\Delta + 14)^2 \).

A sublink cannot intersect \(S' \) if the shortest distance between its transmitter (or receiver) and \(S' \) is larger than \(4r_c \), since its length is not more than \(4r_c \) according to Lemma 3. Therefore, for any link, the number of its corresponding sublinks intersecting \(S' \) is upper-bounded by \(\frac{2(2\Delta + 1)r_c}{2r_c} + 1 = 7. \)

Fig. 3. Illustration of the worst case for a link whose sublinks can intersect \(S' \).

From the above results, the number of sublinks intersecting the annulus \(U(i) \) is upper-bounded by \([2\pi(i + 1)] \cdot \frac{1}{2 \pi}(13\Delta + 14)^2 \cdot 7 < c_1(i + 2) \), where \(c_1 = \frac{4}{3\pi}(13\Delta + 14)^2 \). Besides, for a sublink intersecting \(U(i) \), the distance from its transmitter to \(B \) is not less than \((i - 4)r_c \). As a result, the total interference to \(B \) contributed by the sublinks intersecting \(U(i) \) is upper-bounded by \(c_1(i + 2) \cdot \frac{P}{(i - 4)r_c} \).

Consider the disc \((B, mr_c)\) of all points lying within a distance \(mr_c \) from \(B \). Suppose that no simultaneous transmissions of the sublinks intersecting \(C(B, mr_c) \) are allowed, the SNR of \((A, B)\) is lower-bounded by

\[
\begin{align*}
\sum_{i=m}^{P} c_1(i + 2) \cdot \frac{P}{(i - 4)r_c} + N_0 & = \\
\frac{P}{(mr_c)^2 N_0} & = \\
\frac{6}{\alpha - 1}m^{1 - \alpha} + \frac{1}{\alpha - 2}m^{2 - \alpha} - \frac{c_0 P}{(\Delta r_c)^2 N_0} + 1. \quad (15)
\end{align*}
\]

We see that the denominator of the last term above approaches 1 when \(m \to \infty \) for \(\alpha > 2 \) (In practice, we usually have \(\alpha > 2 \) [9]. And \(\alpha = 2 \) corresponds to the free-space path loss model). Suppose \(P \) is sufficiently large so that \(r > 4r_c \), then we have \(\frac{P}{(mr_c)^2 N_0} > \beta \). So there must exist some constant \(m \) making Eq. (15) larger than or equal to \(\beta \). Clearly, \(m \) only depends on \(c_1 \). Therefore, \((A, B)\) is only interfered by the sublinks intersecting \(C(B, mr_c) \). So the number of sublinks interfering \((A, B)\) is upper-bounded by

\[
c_0 = \frac{1}{2 \pi}(4\Delta + 1)(\frac{m + 1)r_c}{r_c} + \Delta + 2)^2 \cdot \frac{2(m + 4)r_c}{2r_c} + 1 = m + 5 + \frac{1}{\Delta^4}((4m + 5)\Delta + 4m + 6)^2, \quad (16)
\]

following the similar arguments above. Note that \(c_0 \) is not depending on \(K \) or traffic pattern.

Second, we can consider each sublink as a vertex. If a sublink is not interfered by some other sublink, they are assigned by different colors. From the well-known result of vertex coloring in graph theory, we know that each sublink can be scheduled at least once in every \(c_0 + 1 \) slots to finish the traffic of \(S_{KP}(t) \).

Finally, consider the links in \(S_{KP}(t) \) with its length smaller than \(r_c \), we have \(c = c_0 + 2 \), where \(c \) is not depending on \(K \) or traffic pattern.

Remarks: First, the assumption of ”the transmission power is sufficiently large” is necessary for \(G^*_K \) to be upper-bounded. We illustrate it by an example. Consider there is one field transmitting from \(A \) to \(B \) in a linear topology. Suppose there is a direct communication between \(A \) and \(B \) when \(P_t = KP \). So \(C_{KP} = W \). Suppose there are \(m \) hops from \(A \) to \(B \) and each hop distance is exactly \(r \) when \(P_t = P \), where \(r \) is the transmission range and \(r = \frac{P}{H_r} \) (theoretically, we can assume \(H_r \) is arbitrary small). Obviously, only one hop can transmit successfully at a time to satisfy the SNR requirement. So \(C_{P} = \frac{P}{r} \). Therefore \(G^*_K = m \) which is unbounded when \(m \to \infty \). Second, the assumption of ”uniform node distribution” is not necessary for \(G^*_K \) to be upper-bounded. Actually, we can derive the same result in Theorem 3 if Lemma 3 holds for some other random node distribution, or more generally, if the route between any two nodes can ”approximate” the straight line segment of them.
In summary, the optimal network capacity is a non-decreasing function of transmission power. Under some specific configurations, the optimal network capacity can be increased unlimitedly by higher transmission power. However, when nodes are distributed uniformly over a space, the gain of optimal network capacity by higher transmission power is upper-bounded by some positive constant \(\text{whp.} \)

IV. Practical Network Capacity Gain of Power Control

In the previous section we see that network capacity is maximized under the settings of maximal transmission power, optimal routing and link scheduling. However, the latter two are NP-hard problems [10] [11]. In this section, we examine \(G_K \) by using carrier sensing and the minimum hop-count routing, which are the key features commonly used in the link scheduling and routing algorithms nowadays.

First, we discuss carrier sensing. To avoid collisions during transmissions, many current solutions require transmitters to sense channel before transmissions. A transmitter can transmit only when

\[
P_s \leq H_s,
\]

where \(P_s \) is the noise strength sensed at transmitter side and \(H_s \) is carrier sensing threshold. Assume the network is symmetric, that is, \(P_s \) at transmitter side is equal to \(\sum I_i + N_0 \) at receiver side (Note that the assumption is often invalid in practice). By setting \(H_s = \frac{H_r}{\beta} \), one can guarantee that \(SNR \geq \beta \) [12]. However, it is difficult in practice for a transmitter to know its SNR at receiver side. To circumvent this problem, we can conservatively estimate \(P_r \) by \(H_r \). So we have

\[
H_s = \frac{H_r}{\beta}.
\]

\(H_s \) in current settings is more or less this value, e.g. Lucent ORINOCO wireless card [13].

For better illustrations, we introduce carrier sensing range \(r_s \), which is defined as the maximum distance that the transmitter can sense the transmissions of an interfering transmitter. From Eq. (2) by letting \(P_r = H_s \), we have

\[
r_s = \left(\frac{P_l}{H_s} \right)^{1/\alpha}.
\]

Suppose \(H_r \geq \beta N_0 \), which is usually the case in practice [14]. From Eq. (6), (15) and (19), we have

\[
r_s = \beta^{1/\alpha} \cdot r.
\]

Comparing with Eq. (7), we see that \(r_s \) is equal to the interference range of the maximum link length.

Fig. 4 illustrates the relationships of \(r \), \(r_I \) and \(r_s \) by a network of a transmitter \(A \), a receiver \(B \) and a interfering transmitter \(C \). Here, we use \(d \) to denote \(|A - B| \). The network is not symmetric as \(A \) is further from \(C \) than \(B \) is. In Fig. 4(a), \(C \) causes packet collisions of \((A, B) \) as it is within \(r_I \) of \(B \). However, \(C \) is also within \(r_s \) of \(A \). So \(A \) will not transmit and thus avoid collisions when it senses the transmissions of \(C \). In Fig. 4(b), \(C \) is moved outside \(r_I \) of \(B \) and thus becomes a non-interfering transmitter to \((A, B) \). So \(A \) and \(C \) can transmit simultaneously. However, carrier sensing forbids the simultaneous transmissions as the \(C \) is within \(r_s \) of \(A \). This case is often referred to as exposed terminal (node) problem. Fig. 4(c) and (d) illustrate the scenarios when we increase \(d \). By Eq. (7), \(r_I \) also increases and it is not fully covered by \(r_s \) here. In Fig. 4(c), there will be a lot of collisions for \((A, B) \) as \(C \) is inside \(r_I \) of \(B \) and outside \(r_s \) of \(A \). This case is often referred to as hidden terminal (node) problem. Currently, some MAC protocols (e.g. 802.11) use the backoff mechanism to reduce collisions in this case. In Fig. 4(d), \(C \) is moved outside \(r_I \) of \(B \) and becomes a non-interfering transmitter to \((A, B) \). So \(A \) and \(C \) can transmit simultaneously.

Exposed terminal problem is liable to occur when the length of a link is small, while hidden terminal problem is liable to occur when the length of a link is large. The radical reason is that carrier sensing uses fixed \(H_s \) and operates at transmitter side, which cannot estimate interference accurately.

Therefore, even under the optimal routing, network capacity can degrade with higher transmission power by using carrier
sensing. For example, consider a network with all one-hop flows, higher transmission power increases r_s, which can reduce spatial reuse and thus decrease network capacity.

However, the current H_s may not be too conservative under the minimum hop-count routing, because this kind of routing prefers the links of longest lengths (approaching r), which is close to the case when we derive Eq. (18). Consider a link with a length d, the range that r_s cannot cover r_f is
\[d + r_f - r_s = d + \beta^{1/\alpha} d - \beta^{1/\alpha} r, \tag{21} \]
which is approximately r when $d \approx r$. This implies that there can be more hidden terminals when r becomes larger under the minimum hop-count routing.

Next, we discuss the minimum hop-count routing. The authors of [4] argued that even under optimal link scheduling network capacity by using the minimum hop-count routing is proportional to
\[\frac{1}{r}. \tag{22} \]
So $G_K = (\frac{1}{4})^{1/\alpha}$ by Eq. (6). Their interpretation is as follows. The network capacity consumption of a flow is proportional to the number of hops the flow traverses, i.e. $\frac{1}{1}$. Spatial reuse is proportional to $\frac{1}{0}$. Network capacity is proportional to spatial reuse and inversely proportional to the network capacity consumption per flow, i.e. $\frac{1}{r}$.

We make some comments on Eq. (22). First, although it properly characterizes the order of network capacity as a function of r, it has some deviations from practice. For example, the network diameter (in term of the number of hops) may be so small that the spatial reuse may not decrease as much as $\frac{1}{d}$ due to edge effect. As a result, the network capacity may increase with larger r. Fig. 5 shows an example where there are five nodes and two flows of equal rate in the network. When the transmission power is low, both flows need to traverse the centered node to reach their respective destinations. Since there are four links contending the channel, the network capacity is $\frac{1}{4}W \cdot 2 = \frac{1}{2}W$. When we increase the transmission power so that packets can be transmitted directly from sources to destinations, there are two links contending the channel, and network capacity is $\frac{1}{2}W \cdot 2 = W$. Actually, the spatial reuse here is always one transmitting link per time slot for any power level due to edge effect. The network capacity increases with higher transmission power due to a less number of hops per flow. Second, it may not hold for the networks with non-uniform link load distribution. Fig 6 shows an example where there are k flows of equal rate traversing through the centered node. The link load distribution is non-uniform here as the centered node is the biggest bottleneck. It is easy to see that the spatial reuse decreases as $\frac{1}{k}$ here. However, the network capacity does not decrease as $\frac{1}{k}$. To see this, we consider two specific cases. In the first case of using the minimal transmission power, each flow is m-hop ($m >> 2$). So there are at least $2k$ links neighboring the centered node, resulting in the network capacity of at most $\frac{W}{2} \cdot k = \frac{1}{2}W$. In the second case of using the maximal transmission power, each flow is 1-hop. So there are k links contending the channel, resulting in the network capacity of $\frac{W}{k} \cdot k = W$.

Based on the above observations, one can explain why network capacity sometimes increases with higher transmission power under the minimum hop-count routing [5].

In summary, current carrier sensing and the minimum hop-count routing do not guarantee $G_K \geq 1$ and may lead to significant capacity degradation with higher transmission power. However, network capacity may increase significantly with higher transmission power in some scenarios, e.g. in networks whose diameter is within a small number of hops. Therefore, there is a paradox on whether to use higher transmission power to increase network capacity in practice.

V. Simulation Results

In this section, we examine the impact of power control on network capacity via simulation. We use carrier sensing and the minimum hop-count routing as the link scheduling and routing algorithms in our simulations. Our essential goals are to verify our analysis in the previous section and to find out under which scenarios we can expect a large network capacity gain by using high transmission power.

We use the wireless physical model described in Section II. We set $\alpha = 4$ for simulating the two-ray ground path loss model [9]. We set $\beta = 10$ and $H_r = -81$dBm [14]. Therefore, $H_s = \frac{1}{4}H_r$ by Eq. (18). We ignore N_0 which is usually much smaller than the interference strength. For better illustrations, we use the transmission range r to represent the transmission power. We increase the transmission power so that $r = 250m$, 500m, 750m and 1000m. Actually, one can
change r proportionally and scale network topologies at the same time to obtain the similar simulation results.

We implemented a TDMA simulator for performance evaluation. That is, nodes transmit in synchronous time-slotted mode and each DATA transmission and its ACK occupies one time slot. Transmitters sense the channel one by one at the beginning of each time slot. A transmitter will transmit a DATA packet when $P_s \leq H_s$ and its backoff timer expires. The receiver returns an ACK to the transmitter when it receives the packet successfully. If the transmitter does not receive an ACK due to packet collision, it will carry out the exponential backoff. The backoff mechanism is similar to that of 802.11 except that we backoff the time slot here.

We calculate network capacity according to Eq. (9). We assign a traffic workload to each flow before simulations start and measure the duration until all flows finish delivering its traffic workload. In our simulations, each flow has a equal traffic workload of 500 equal-sized packets. We generate CBR traffic for each flow until completing its traffic workload. The CBR rate is set large enough to saturate the network. Besides, the packet buffer in each node is set sufficiently large since we do not consider queue management at the moment.

There are other factors that affect network capacity in practice such as sophisticated collision resolution mechanisms, TCP congestion control and queue management. However, by isolating these factors, we can better understand the key roles of carrier sensing and the minimum hop-count routing on network capacity.

For simplicity, in the following experiments, we use CS to denote carrier sensing and use HOP to denote the minimum hop-count routing. We implemented a centralized link scheduling, named Cen, as a benchmark, which schedules links one by one in a centralized and collision-free way and thus ensures maximal spatial reuse. In each experiment, we take the average of all simulation results for ten networks.

In the first experiment, we study the interaction of power control and carrier sensing by considering one-hop flows so as to isolate the interaction of routing.

Experiment 1 Network capacity vs Power in a random network with one-hop flows. There are $n = 200$ nodes uniformly placed in a square of $3000m \times 3000m$, which form a connected network when $r = 250m$. Each node randomly communicates with one of its nearest neighbors.

Fig. 7 shows the network capacity as a function of r. Obviously, the network capacity by using Cen is almost a constant in this scenario. However, when we use CS, higher transmission power causes more exposed terminals and decrease network capacity, since the carrier sensing threshold is fixed.

In the following experiments, we study the interaction of power control, carrier sensing and the minimum hop-count routing by considering multi-hop flows.

Experiment 2 Network capacity vs Power in a random network with multi-hop flows and small network diameter (in terms of the number of hops). There are $n = 20$ nodes uniformly placed in a square of $1000m \times 1000m$, which form a connected network when $r = 250m$. Each node randomly communicates with any other node in the network.

Experiment 3 Network capacity vs Power in a grid network with multi-hop flows and large network diameter (in terms of the number of hops). There are $n = 625$ nodes placed in a 25×25 grid. There is a distance of $200m$ between any two horizontally or vertically neighboring nodes. There are 25 flows from the leftmost nodes to the rightmost nodes horizontally and 25 flows from the topmost nodes to the bottommost nodes vertically. This configuration ensures a large network diameter and uniform link load distribution.

We observe that the network capacity decreases significantly with larger r, as shown in Fig. 8 because of the significant decreasing of spatial reuse under the minimum hop-count routing. We also plot the network capacity by using HOP and Cen, which confirms our explanation.

We also test the random networks with multi-hop flows and a large network diameter. We observe that the network capacity significantly decreases with larger r in this scenario when n is sufficiently large.

In summary, the following conclusions can be made from our analysis (Section IV) and simulations. When we use carrier sensing and the minimum hop-count routing,

- In the networks with one-hop flows, the network capacity significantly decreases with higher transmission power due to exposed terminal problem.
- In the networks with multi-hop flows and a small network diameter of a few hops, the network capacity can increase significantly with higher transmission power because the edge effect makes spatial reuse only decrease slightly with larger r. This can find applications in small WMNs. Currently, many WMNs tend to have a small network diameter (in term of the number of hops), because the
end-to-end throughput of a flow drops significantly with an increasing number of hops [7] [15].

- In the networks of multi-hop flows and a large network diameter, there are two subcases. Under uniform link load distribution, the network capacity decreases significantly with higher transmission power as shown in Eq. (22). Under non-uniform link load distribution, it is hard to make a conclusion. The network capacity may increase with higher transmission power as illustrated by Fig. 6.

VI. Related Work

In this section, we present related work and highlight our contributions.

Research on power control can be classified into two classes: energy oriented and capacity oriented. The first class of works focus on energy-efficient power control [16] [17] [18]. The application is in mobile ad hoc networks (MANETs) or wireless sensor networks (WSNs), where nodes have limited battery life. Low transmission power is preferred here to maximize the throughput per unit of energy consumption, while maximizing overall network capacity is the secondary consideration. As a result, their solutions often achieve moderate network capacity. The second class of works focus on capacity-oriented power control. The application is in WMNs where mesh routers have sufficient power supply and maximizing network capacity is the first consideration.

Authors in [4] indicated that network capacity decreases significantly with higher transmission power under the minimum hop-count routing and they suggested using the lowest transmission power to maximize network capacity. There are a lot of works following this suggestion, e.g. [19] [20], and they observed capacity improvement by using lower transmission power. However, there is an opposite argument recently. Park et al showed via simulation that network capacity sometimes increase with higher transmission power [5]. Behzad et al formulated the problem of power control as an optimization problem and proved that network capacity is maximized by properly increasing transmission power [6].

We also proved that the optimal network capacity is a non-decreasing function of common transmission power in a simpler way. Furthermore, we characterized the theoretical network capacity gain of power control. Besides, we studied the interactions of power control, carrier sensing and the minimum hop-count routing. As a result, we explained the above paradox successfully from both theoretical and practical perspective. Our work provides a deep understanding on the structures of the power control problem and can be seen as an extension to [4]- [6].

Carrier sensing recently attracts attentions in the area of wireless networks. Many researchers noticed that carrier sensing can significantly affect spatial reuse and the current carrier sensing threshold is not optimal in many cases. Xu et al indicated that RTS/CTS is not sufficient to avoid collisions and larger carrier sensing range can help to some extend [21]. Yang et al showed that the MAC layer overhead has a great impact on choosing carrier sensing threshold [22]. Zhai et al considered more factors on choosing carrier sensing threshold such as different data rates and one-hop (or multi-hop) flows [23]. They showed that network capacity may suffer a significant degradation if any of these factors is not considered properly. Kim et al revealed that tuning transmission power has the same effect on maximizing spatial reuse as tuning carrier sensing threshold [24].
There are some works on high-throughput routing recently. ETX uses expected packet transmission times as the routing metric so as to filter poor channel-quality links in fading channels [25]. WCETT extends ETX for multi-channel wireless networks by also considering contention time and channel diversity [26]. MTM uses packet transmission duration as the routing metric in discovering high-throughput routes in multirate wireless networks [27]. ExOR takes a different approach which forwards packets opportunistically in fading channels [28].

VII. Conclusion
This work thoroughly studies the impact of power control on network capacity from both theoretic and practical perspective. In the first part, we provided a formal proof that the optimal network capacity is a non-decreasing function of common transmission power. Then we characterize the theoretical capacity gain of power control in the case of the optimal network capacity. We proved that the optimal network capacity can be increased unlimitedly with higher transmission power in some network configurations. However, the increase of network capacity is bounded by a constant with higher transmission power whp for the networks with uniform node distribution. In the second part, we analyzed why network capacity increases or decreases with higher transmission power in different scenarios, by using carrier sensing and the minimum hop-count routing in practice. We also conduct simulations to study this problem under different scenarios such as a small network diameter vs a large network diameter and one-hop flows vs multi-hop flows. The simulation results verify our analysis. In particular, we observe that network capacity can be significantly improved with higher transmission power in the networks with a small network diameter, which can find applications in small WMNs.

References
[1] D. Gesbert, M. Shafi, D. Shiu, P.J. Smith, and A. Naguib, "From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems," IEEE J. Selected Areas in Comm., vol. 21, pp. 281-301, 2003.
[2] J. Mo, H.-S. W. So, J. Walrand, "Comparison of Multi-channel MAC Protocols," Procs., MobiWIM, pp. 209-218, 2005.
[3] "Nortel Wireless Mesh Network Solution", http://www.nortel.com/solutions/wrlsmesh/, 2007.
[4] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar, "Power Control in Ad-hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol," Procs., European Wireless Conference, 2002.
[5] S.-J. Park, R. Sivakumar, "Load-Sensitive Transmission Power Control in Wireless Ad-hoc Networks," Procs., GLOBECOM, vol. 1, pp. 42-46, 2002.
[6] A. Behzad, I. Rubin, "High Transmission Power Increases the Capacity of Ad Hoc Wireless Networks," IEEE Trans. on Wireless Commun., vol. 5(1), pp. 156-165, 2006.
[7] P. Gupta, and P. R. Kumar, "The Capacity of Wireless Networks," IEEE Trans. on Information Theory, vol. 46, no. 2, pp. 388-404, 2000.
[8] M. Kodialam and T.Nandagopal, "Characterizing the capacity region in multi-radio multi-channel wireless mesh networks," Procs., Mobicom, pp. 73-87, 2005.
[9] David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication," Cambridge University Press, 2005.
[10] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, "Impact of Interference on Multi-hop Wireless Network Performance," Procs., Mobicom, pp. 66-80, 2003.
[11] G. Sharma, R. Mazumdar, and N. Shroff, "On the Complexity of Scheduling in Wireless Networks," Procs., Mobicom, pp. 227-238, 2006.

Appendix A-1: The proof of Lemma 2

Proof: We can draw a disc (C_R) of radius R to cover the given region. We calculate the number of simultaneous links intersecting C_R. Let l be the length of the longest link. Obviously, we can draw a disc C_{R+l} to cover all links intersecting C_R, where the center of C_{R+l} is that of C_R and its radius is $R+l$. By Lemma 1, each receiver occupies at least an area of $\frac{1}{4} \pi \Delta^2 l^2$. When $l < \frac{2R^2}{\Delta}$, the number of links in C_{R+l} is upper-bounded by

$$\frac{1}{\Delta} \pi \Delta^2 d^2 \leq \frac{1}{\Delta} \left(4(\Delta + 1) \frac{R}{d} + \Delta + 2\right)^2.$$ \hspace{1cm} (23)

The upper bound of the above equation is obtained when $l = \frac{2R^2}{\Delta}$.

When $l \geq \frac{2R^2}{\Delta}$, from Eq. (21), we can easily see that the silence area (A_l) of the longest link covers C_R, as illustrated in Fig. 10. Because all the other simultaneous transmitters should be outside A_l, for any other link intersecting C_R, its length is at least the shortest distance from the circle of A_l to the circle of C_R, which is $(1 + \Delta) l - l - 2R = \Delta l - 2R$ in the worst case. By Lemma 1, each receiver occupies an area of
at least \(\frac{1}{2} \Delta^2 \pi (\Delta l - 2R)^2 \). So the number of links in \(C_{R+l} \) is upper-bounded by

\[
\frac{\pi (R + (1 + \frac{2}{\Delta})L)^2}{\Delta^2 \pi (\Delta l - 2R)^2} \leq \frac{1}{\Delta^2} \left(4(\Delta + 1) \frac{R}{d} + \Delta + 2 \right)^2.
\] (24)

The upper bound of the above equation is obtained when \(l = \frac{2R + d}{\Delta} \). Combining the above two cases of \(l \), we proved this lemma.

\[\text{Fig. 10. Illustration of } C_R, C_{R+l} \text{ and } A_l\]

\[\text{Appendix A-2: The proof of Lemma 3}\]

Proof: We prove it by constructing such a route. If \(|A - B| \leq 4r_c\), then \((A, B)\) itself is the desired route. Otherwise, we divide the straight-line segment of \((A, B)\) into small segments of \(2r_c\) until reaching \(B\). Then we draw a small disc \(C_{r_c}(i)\) of radius \(r_c\) to cover each small segment, where \(i = 1, 2, ..., \left\lfloor \frac{|A-B|}{2r_c} \right\rfloor\). Fig. [1] illustrates the case when \(\left\lfloor \frac{|A-B|}{2r_c} \right\rfloor = 3\). For better illustrations, we define the \(x\) axes with its origin at \(A\) and its direction from \(A\) to \(B\), and define the \(y\) axes vertical to \(x\). We can see that the coordinate of the center of \(C_{r_c}(i)\) is \(((2i - 1)r_c, 0)\). The probability of no node lying in \(C_{r_c}(i)\) is \((1 - \pi r_c^2)^n\). Since \(|A - B|\) is upper-bounded by the diameter of the disk of unit area, i.e. \(\frac{2}{\sqrt{\pi}}\), the probability that we can select at least one node in each \(C_{r_c}(i)\) is lower-bounded by \((1 - (1 - \pi r_c^2)^n)^n\), which approaches 1 as \(n \to \infty\). Since \(r > 4r_c\), we can connect the selected nodes to form a route from \(A\) to \(B\). It is easy to see that the route satisfies the conditions of this lemma.

\[\text{Fig. 11. Dividing } (A, B) \text{ into small segments of } 2r_c\]