SURFACES OF COORDINATE FINITE TYPE IN THE
LORENTZ-MINKOWSKI 3-SPACE

HASSAN AL-ZOUBI, ALEV KELLECİ, AND TAREQ HAMADNEH

Abstract. In this article, we study the class of surfaces of revolution in the
3-dimensional Lorentz-Minkowski space with nonvanishing Gauss curvature
whose position vector \(x \) satisfies the condition \(\Delta^{III} x = Ax \), where \(A \) is a
square matrix of order 3 and \(\Delta^{III} \) denotes the Laplace operator of the second
fundamental form \(III \) of the surface. We show that such surfaces are either
minimal or pseudospheres of a real or imaginary radius.

1. Introduction

Let \(M^2 \) be a connected non-degenerate submanifold in the 3-dimensional Lorentz-
Minkowski space \(E^3_1 \) and \(x : M^2 \to E^3_1 \) be a parametric representation of a surface in
the Lorentz-Minkowski 3-space \(E^3_1 \) equipped with the induced metric. Let \((x, y, z) \)
be a rectangular coordinate system of \(E^3_1 \). By saying Lorentz-Minkowski space \(E^3_1 \),
we mean the Euclidean space \(E^3 \) equipped with the standard metric given by
\[
ds^2 = -dx^2 + dy^2 + dz^2.
\]
As well known that a submanifold is called a \(k \)-type submanifold if its position
vector \(x \) can be written as a sum of eigenvectors of the Laplace-Beltrami op erator,
\(\Delta \), according to \(k \) distinct eigenvalues, i.e., \(x = y_0 + y_1 + \cdots + y_k \), for a constant
vector \(y_0 \) and smooth non-constant functions \(y_k, (i = 1, \ldots, k) \) such that \(\Delta y_i = \lambda_i y_i, \lambda_i \in \mathbb{R}. \)
The year 1966 was the beginning when Takahashi in [34] stated
that spheres and minimal surfaces are the only ones in \(E^3 \) whose position vector \(x \)
satisfies the relation
\[
\Delta I x = \lambda x, \quad \lambda \in \mathbb{R},
\]
where \(\Delta I \) is the Laplace operator associated with the 1st fundamental form \(I \) of
the surface. Since the coordinate functions of \(x \) can be denoted as \((x_1, x_2, x_3) \), then
Takahashi’s condition (1.1) becomes

Let \((x_1, x_2, x_3) \) be the component functions of \(x \). Then it is well-known that
\[
\Delta I x = (\Delta I x_1, \Delta I x_2, \Delta I x_3).
\]

Thus Takahashi’s condition (1.1) becomes
\[
\Delta I x_i = \lambda_i x_i, \quad i = 1, 2, 3.
\]

Later, in [25] O. Garay generalized Takahashi’s condition (1.3). Actually, he
studied surfaces of revolution in \(E^3 \), whose component functions satisfy the condition
\[
\Delta I x_i = \lambda_i x_i, \quad i = 1, 2, 3,
\]

2010 Mathematics Subject Classification. 53A05, 53A07, 53C40.

Key words and phrases. Surfaces in \(E^3 \), Surfaces of revolution, Surfaces of coordinate finite
type, Beltrami operator .
that is, the component functions are eigenfunctions of their Laplacian but not necessary with the same eigenvalue. Another generalization is to study surfaces whose position vector \mathbf{x} satisfies a relation of the form

$$\Delta^J \mathbf{x} = A \mathbf{x},$$

where $A \in \mathbb{R}^{3 \times 3}$.

Many results concerning this can be found in ([16], [19], [20], [22], [23], [25]). This type of study can be also extended to any smooth map, not necessary for the position vector of the surface, for example, the Gauss map of a surface. Regarding this see ([8], [13], [15], [25], [17], [18], [20], [24], [26]). Similarly, another extension can be drawn by applying the conditions stated before but for the second or third fundamental form of a surface [32]. Here again, many results can be found in ([1], [2], [14], [30], [31], [33]).

On the other hand, all the ideas mentioned above can be applied in the Lorentz-Minkowski space E_{1}^3. So, an interesting geometric question has posed classify all the surfaces in E_{1}^3, which satisfy the condition

$$\Delta^J \mathbf{x} = A \mathbf{x}, \quad J = I, II, III,$$

where $A \in \mathbb{R}^{3 \times 3}$ and Δ^J is the Laplace operator, with respect to the fundamental form J.

Kaimakamis and Papantoniou in [28] solved the above question for the class of surfaces of revolution with respect to the second fundamental form, while in [21] Bekkar and Zoubir studied the same class of surfaces with respect to the first fundamental form satisfying

$$\Delta x^i = \lambda^i x^i, \quad \lambda^i \in \mathbb{R}.$$

2. Basic concepts

Let $C : \mathbf{r}(s) : s \in (a, b) \subset E \rightarrow E^2$ be a curve in a plane E^2 of E_{1}^3 and l be a straight line of E^2 which does not intersect the curve C. A surface of revolution M^2 in E_{1}^3 is defined to be a non-degenerate surface, revolving the curve C around the axis l. If the axis l is timelike, then we consider that the z-axis as axis of revolution. If the axis l is spacelike, then we may assume that the x-axis or y-axis as axis of revolution. Without loss of generality, we may consider the x-axis as the axis of revolution. If the axis is null, then we may assume that this axis is the line spanned by the vector $(0,1,1)$ of the yz-plane.

We consider the axis of revolution is the x-axis (spacelike) and the curve C is lying in the xy-plane. Then a parameterization of C with respect to its arclength is $\mathbf{r}(s) = (f(s), g(s), 0)$ where f, g are smooth functions. Without loss of generality, we may assume that $f(s) > 0, s \in (a, b)$. A surface of revolution M^2 in E_{1}^3 in a system of local curvilinear coordinates (s, θ) is given by:

$$\mathbf{x}(s, \theta) = (f(s) \cosh \theta, g(s), f(s) \sinh \theta).$$

or

$$\mathbf{x}(s, \theta) = (f(s) \sinh \theta, g(s), f(s) \cosh \theta).$$

In the case that the axis of revolution is the z-axis (timelike) and the curve C is given $\mathbf{r}(s) = (f(s), 0, g(s))$ and lies in the xz-plane, the surface of revolution M^2 is given by:

$$\mathbf{x}(s, \theta) = (f(s) \cos \theta, f(s) \sin \theta, g(s)).$$

or

$$\mathbf{x}(s, \theta) = (f(s) \sin \theta, f(s) \cos \theta, g(s)).$$

Finally, if the axis of revolution is the line spanned by the vector \((0, 1, 1)\) and the curve \(C\) lies in the \(yz\)-plane, then the surface of revolution \(M^2\) can be parametrized as
\[
x(s, \theta) = (\theta h(s), g(s) + \frac{1}{2} \theta^2 h(s), f(s) + \frac{1}{2} \theta^2 h(s)),
\]
where \(h(s) = f(s) - g(s) \neq 0\).

We denote by \(g = g_{km}, b = b_{km}\) and \(e = e_{km}, k, m = 1, 2\) the first, second and third fundamental forms of \(M^2\) respectively, where we put
\[
g_{11} = E = \langle x_s, x_s \rangle, \quad g_{12} = F = \langle x_s, x_\theta \rangle, \quad g_{22} = G = \langle x_\theta, x_\theta \rangle,
\]
\[
b_{11} = L = \langle x_{ss}, n \rangle, \quad b_{12} = M = \langle x_{s\theta}, n \rangle, \quad b_{22} = N = \langle x_{\theta\theta}, n \rangle,
\]
\[
e_{11} = \frac{EM^2 - 2FLM + GL^2}{EG - F^2} = \langle n_s, n_s \rangle,
\]
\[
e_{12} = \frac{EMN - FLN + GLM - FM^2}{EG - F^2} = \langle n_s, n_\theta \rangle,
\]
\[
e_{22} = \frac{GM^2 - 2FNM + EN^2}{EG - F^2} = \langle n_\theta, n_\theta \rangle,
\]
which are the coefficients of the first, second, third fundamental form respectively, and \(\langle, \rangle\) is the Lorentzian metric.

For a sufficient differentiable function \(p(u^1, u^2)\) on \(M^2\) the second Laplace operator according to the fundamental form \(III\) of \(M^2\) is defined by [4],
\[
\Delta^{III} p = -\frac{1}{\sqrt{e}} (\sqrt{e^{km} p^l/k})_{/m},
\]
where \(p_{/k} := \frac{\partial p}{\partial u^k}\), \(e^{km}\) denote the components of the inverse tensor of \(e_{km}\) and \(e = \det(e_{km})\). After a long computation, we arrive at
\[
\Delta^{III} p \quad = \quad -\frac{\sqrt{EG - F^2}}{LN - M^2} \left(\left(\frac{(GM^2 - 2FNM + EN^2) \partial p}{(LN - M^2) \sqrt{EG - F^2}} \right)_s - \left(\frac{EMN - FLN + GLM - FM^2 \partial p}{(LN - M^2) \sqrt{EG - F^2}} \right)_s \right)
\]
\[
- \left(\frac{(EMN - FLN + GLM - FM^2 \partial p}{(LN - M^2) \sqrt{EG - F^2}} \right)_\theta \right).
\]
Here we have \(LN - M^2 \neq 0\), since the surface has no parabolic points.
3. Proof of the main results

In this paragraph we classify the surfaces of revolution M^2 satisfying the relation (1.5). We distinguish the following three types according to whether these surfaces are determined.

Type I. The parametric representation of M^2 is given by (2.1). Then
\[f'^2(s) + g'^2(s) = 1, \] (3.1)
where $\frac{d}{ds}$, from which we obtain that
\[E = 1, \quad F = 0, \quad G = -f^2 \] (3.2)
and
\[L = -f'g'' + g'f'', \quad M = 0, \quad N = fg'. \] (3.3)
Denoting by κ the curvature of the curve C and r_1, r_2 the principal radii of curvature of M^2. We have
\[r_1 = \kappa, \quad r_2 = \frac{g'}{f}, \] (3.4)
which are the Gauss and mean curvature of M^2 respectively. Since the relation (3.1) holds, there exists a smooth function $\varphi = \varphi(s)$ such that
\[f' = \cos \varphi, \quad g' = \sin \varphi, \] where $\varphi = \varphi(s)$. Then $\kappa = \varphi'$ and relations (3.3), (3.4) become
\[L = -\varphi', \quad M = 0, \quad N = f \sin \varphi, \] (3.5)
We put $r = \frac{1}{r_1} + \frac{1}{r_2} = \frac{2H}{K}$. Thus we have
\[r = -\left(\frac{1}{\varphi'} + \frac{f}{\sin \varphi} \right). \] (3.6)
Taking the derivative of last equation, we get
\[r' = \left(\frac{\varphi''}{\varphi'^2} + \frac{f' \cos \varphi}{\sin^2 \varphi} - \frac{\cos \varphi}{\sin \varphi} \right). \] (3.7)
From (2.4), (3.2) and (3.5) we have
\[\Delta^III p = -\frac{1}{\varphi'^2 \varphi'^2} + \frac{1}{\sin^2 \varphi} \frac{\partial^2 p}{\partial \theta^2} + \left(\frac{\varphi''}{\varphi'^3} - \frac{\cos \varphi}{\varphi' \sin \varphi} \right) \frac{\partial p}{\partial s}. \] (3.8)
Let (x_1, x_2, x_3) be the coordinate functions of the position vector x of (2.3). Then according to relation (1.2), (3.8) and taking into account (3.6) and (3.7) we find that
\[\Delta^III x_1 = \Delta^III f(s) \cosh \theta = \left(-r \sin \varphi + r' \frac{\cos \varphi}{\varphi'} \right) \cosh \theta, \] (3.9)
\[\Delta^III x_2 = \Delta^III g(s) = r \cos \varphi + r \frac{\sin \varphi}{\varphi'}. \] (3.10)
\[\Delta^{III} x_3 = \Delta^{III} f(s) \sinh \theta = \left(-r \sin \varphi + r' \cos \frac{\varphi'}{\varphi} \right) \sinh \theta. \] (3.11)

We denote by \(a_{ij}, i, j = 1, 2, 3 \), the entries of the matrix \(A \), where all entries are real numbers. By using (3.9), (3.10) and (3.11) condition (1.5) is found to be equivalent to the following system

\[\left(-r \sin \varphi + r' \cos \frac{\varphi'}{\varphi} \right) \cosh \theta = a_{11} f(s) \cosh \theta + a_{12} g(s) + a_{13} f(s) \sinh \theta, \] (3.12)

\[r \cos \varphi + r' \sin \frac{\varphi'}{\varphi'} = a_{21} f(s) \cosh \theta + a_{22} g(s) + a_{23} f(s) \sinh \theta, \] (3.13)

\[\left(-r \sin \varphi + r' \cos \frac{\varphi'}{\varphi'} \right) \sinh \theta = a_{31} f(s) \cosh \theta + a_{32} g(s) + a_{33} f(s) \sinh \theta. \] (3.14)

From (3.13) it can be easily verified that \(a_{21} = a_{23} = 0 \). On the other hand, differentiating (3.12) and (3.14) twice with respect to \(\theta \) we get that \(a_{12} = a_{32} = 0 \). So, the system is reduced to

\[\left(-r \sin \varphi + r' \cos \frac{\varphi'}{\varphi'} \right) \cosh \theta = a_{11} f(s) \cosh \theta + a_{13} f(s) \sinh \theta, \] (3.15)

\[r \cos \varphi + r' \sin \frac{\varphi'}{\varphi'} = a_{22} g(s), \] (3.16)

\[\left(-r \sin \varphi + r' \cos \frac{\varphi'}{\varphi'} \right) \sinh \theta = a_{31} f(s) \cosh \theta + a_{33} f(s) \sinh \theta. \] (3.17)

But \(\sinh \theta \) and \(\cosh \theta \) are linearly independent functions of \(\theta \), so we deduce that \(a_{13} = a_{31} = 0, a_{11} = a_{33} \). Putting \(a_{11} = a_{33} = \lambda \) and \(a_{22} = \mu \), we see that the system of equations (3.15), (3.16) and (3.17) reduces now to the following two equations

\[-r \sin \varphi + r' \cos \frac{\varphi'}{\varphi'} = \lambda f, \] (3.18)

\[r \cos \varphi + r' \sin \frac{\varphi'}{\varphi'} = \mu g. \] (3.19)

Hence the matrix \(A \) for which relation (1.5) is satisfied becomes

\[A = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \lambda \end{bmatrix}. \]

Solving the system (3.18) and (3.19) with respect to \(r \) and \(r' \), we conclude that

\[r' = \varphi' (\lambda f \cos \varphi + \mu g \sin \varphi), \] (3.20)

\[r = \mu g \cos \varphi - \lambda f \sin \varphi. \] (3.21)

Taking the derivative of (3.21), we find

\[r' = \frac{1}{2} (\mu - \lambda) \cos \varphi \sin \varphi. \] (3.22)

We distinguish now the following cases:

Case I. \(\mu = \lambda = 0 \). Thus, according to (3.21) we have \(r = 0 \). Consequently \(H = 0 \). Therefore \(M^2 \) is minimal and the corresponding matrix \(A \) is the zero matrix.
Case II. \(\mu = \lambda \neq 0 \). Then from (3.22) we have \(r' = 0 \). If \(\varphi' = 0 \), then \(M^2 \) would consist only of parabolic points, which has been excluded. Therefore we find that
\[
f(s) \cos \varphi + g(s) \sin \varphi = 0,
\]
or
\[
ff' + gg' = 0.
\]
Then \(f^2 + g^2 = c^2 \), \(c \in \mathbb{R} \) and \(M^2 \) is obviously satisfies the equation \(x^2 + y^2 - z^2 = c^2 \) which is the pseudosphere \(S^2_1(c) \) of \(E^3_1 \).

Case III. \(\lambda \neq 0, \mu = 0 \). Then the system (3.18), (3.19) is equivalently reduced to
\[
-r \sin \varphi + r' \frac{\cos \varphi}{\varphi'} = \lambda f(s),
\]
\[
r \cos \varphi + r' \frac{\sin \varphi}{\varphi'} = 0.
\]
From (3.21) we have
\[
r + \lambda f \sin \varphi = 0. \tag{3.23}
\]
On differentiating (3.23) and taking into account (3.20) with \(\mu = 0 \), we obtain
\[
\lambda f \varphi' \cos \varphi + \lambda \cos \varphi \sin \varphi + \lambda f \varphi' \cos \varphi = 0
\]
or
\[
\varphi' = -\frac{\sin \varphi}{2f}.
\]
From (3.23), (3.6) and the last equation, we get
\[
\frac{f}{\sin \varphi} + \lambda f \sin \varphi = 0
\]
or
\[
f(1 + \lambda \sin^2 \varphi) = 0.
\]
A contradiction. Hence, there is no surface of revolution with parametric representation \(\mathbf{2.1} \) of \(E^3_1 \) satisfying \(\mathbf{1.5} \).

Case IV. \(\lambda = 0, \mu \neq 0 \). Then equations (3.18), (3.19) reduced to
\[
-r \sin \varphi + r' \frac{\cos \varphi}{\varphi'} = 0,
\]
\[
r \cos \varphi + r' \frac{\sin \varphi}{\varphi'} = \mu g. \tag{3.24}
\]
From (3.21) we have
\[
r - \mu g \cos \varphi = 0. \tag{3.25}
\]
Taking the derivative of (3.25) and taking into account (3.20) with \(\lambda = 0 \), we find
\[
\mu g \varphi' \sin \varphi - \mu \cos \varphi \sin \varphi + \mu g \varphi' \sin \varphi = 0
\]
or
\[
\varphi' = \frac{\cos \varphi}{2g}. \tag{3.26}
\]
Taking the derivative of (3.26), we find
\[
3 \varphi' \sin \varphi + 2g \varphi'' = 0. \tag{3.27}
\]
On account of (3.24), (3.6) and (3.7) it is easily verified that
\[
\varphi'' = \frac{\varphi'^2}{\sin \varphi} (\mu g \varphi' + 2 \cos \varphi). \tag{3.28}
\]
Inserting (3.26) and (3.28) in (3.27) we conclude

\[3 + \left(\frac{1}{2} \mu - 1 \right) \cos^2 \phi = 0. \]

Here we have also a contradiction.

Case V. \(\lambda \neq 0, \mu \neq 0 \). We write equations (3.18) and (3.19) as follows

\[
\frac{\sin \phi}{\phi'} + \frac{f}{\sin^2 \phi} + \frac{\phi'' \cos \phi}{\phi^3} - \frac{\cos^2 \phi}{\phi' \sin \phi} - \lambda f = 0, \tag{3.29}
\]

\[
\frac{\phi'' \sin \phi}{\phi'^3} - \frac{2 \cos \phi}{\phi'} - \mu g = 0. \tag{3.30}
\]

From (3.30) we have relation (3.28). By eliminating \(\phi'' \) from (3.29) we get

\[
\frac{1}{\phi'} + \frac{\mu g \cos \phi}{\sin \phi} + \frac{f}{\sin^2 \phi} = 0. \tag{3.31}
\]

On differentiating the last equation and using (3.28) we find

\[
2 \mu g \phi' \sin \phi + 2 f \phi' \cos \phi + 2 \cos \phi \phi' - (\mu - \lambda) \cos \phi = 0. \tag{3.32}
\]

Multiplying (3.31) by \(\frac{2 \phi'}{\sin \phi} \) and (3.32) by \(-\cos \phi \) we obtain

\[
\frac{2}{\sin^2 \phi} - \frac{2 \mu g \phi' \cos \phi}{\sin^2 \phi} - \frac{2 f \phi'}{\sin^3 \phi} - \frac{2 \lambda \phi' f}{\sin \phi} = 0, \tag{3.33}
\]

\[
- \frac{2 \mu g \phi' \cos \phi}{\sin^2 \phi} - \frac{2 f \phi' \cos^2 \phi}{\sin^3 \phi} - \frac{2 \cos^2 \phi}{\sin^2 \phi} + (\mu - \lambda) \cos^2 \phi = 0. \tag{3.34}
\]

Combining (3.33) and (3.34) we conclude that

\[
(\mu - \lambda) \cos^2 \phi - 2(\lambda - 1) \frac{f \phi'}{\sin \phi} + 2 = 0 \tag{3.35}
\]

or

\[
\frac{(\mu - \lambda) \cos^2 \phi}{\phi'} - 2(\lambda - 1) \frac{f}{\sin \phi} + \frac{2}{\phi'} = 0. \tag{3.36}
\]

Taking the derivative of the above equation and using (3.22) and (3.28) we find

\[
2(\mu + 1) \cos \phi + (\mu - \lambda) \mu g \phi' \cos^2 \phi - 2(\lambda - 1) \frac{f \phi' \cos \phi}{\sin \phi} + 2 \mu g \phi' = 0. \tag{3.37}
\]

Multiplying (3.35) by \(-\cos \phi \), and adding the resulting equation to (3.36) we get

\[
2 \mu \cos \phi + (2 + (\mu - \lambda) \cos^2 \phi) \mu g \phi' - (\mu - \lambda) \cos^3 \phi = 0
\]

or

\[
2 \mu \cos^2 \phi + (2 + (\mu - \lambda) \cos^2 \phi) \mu g \phi' \cos \phi - (\mu - \lambda) \cos^4 \phi = 0. \tag{3.38}
\]

On account of (3.31) we find

\[
\mu g \phi' \cos \phi = \lambda f \phi' \sin \phi - \frac{f \phi'}{\sin \phi} - 1. \tag{3.39}
\]

Eliminating \(\mu g \phi' \cos \phi \) from (3.37) by using (3.38), equation (3.37) reduces to

\[
2 \mu \cos^2 \phi - (\mu - \lambda) \cos^4 \phi + (2 + (\mu - \lambda) \cos^2 \phi) \left((\lambda \sin^2 \phi - 1) \frac{f \phi'}{\sin \phi} - 1 \right) = 0. \tag{3.39}
\]
But from (3.35) we have

\[\frac{f \varphi'}{\sin \varphi} = \frac{(\mu - \lambda) \cos^2 \varphi + 2}{2(\lambda - 1)}. \] (3.40)

Obviously \(\lambda \neq 1 \) because otherwise, from (3.35) we would have

\[(\mu - \lambda) \cos^2 \varphi + 2 = 0. \]

A contradiction. Now, by inserting (3.40) in (3.39) we obtain

\[
-\lambda(\mu - \lambda)^2 \cos^4 \varphi + (\mu - \lambda)((\mu - \lambda)(\lambda - 1) - 6\lambda + 2) \cos^2 \varphi \\
+ 6\mu(\lambda - 1) - 2\lambda(\lambda + 1) = 0.
\]

This relation, however, is valid for a finite number of values of \(\varphi \). So in this case there are no surfaces of revolution with the required property. So we proved the following

Theorem 1. Let \(x : M^2 \to E_3 \) be a surface of revolution given by (2.1). Then \(x \) satisfies (1.5) regarding to the third fundamental form if and only if the following statements hold true

- \(M^2 \) is the pseudosphere \(S^2_1(c) \) of real radius \(c \),
- \(M^2 \) has zero mean curvature.

Type II. The parametric representation of \(M^2 \) is given by (2.2). Then the tangent vector of the revolving curve is

\[\langle x', x' \rangle = f'^2 - g'^2 = \pm 1. \]

We assume that

\[f'^2 - g'^2 = 1, \quad \forall s \in (a, b). \] (3.41)

Then the components of the first and second fundamental forms are respectively

\[E = 1, \quad F = 0, \quad G = f'^2, \]

\[L = f'g'' - g'f'', \quad M = 0, \quad N = fg'. \]

From the equation (3.41) it is obviously clear that there exist a smooth function \(\varphi = \varphi(s) \) such that

\[f' = \cosh \varphi, \quad g' = \sinh \varphi. \]

On the other hand we have

\[r_1 = \kappa = \varphi', \quad r_2 = \frac{g'}{f} = \frac{\sinh \varphi}{f} \]

and

\[K = r_1r_2 = \frac{\kappa g'}{f} = \frac{f''}{f} = \frac{\varphi' \sinh \varphi}{f}, \quad 2H = r_1 + r_2 = \varphi' + \frac{\sinh \varphi}{f}. \]

Here we have

\[r = \frac{1}{\varphi} + \frac{f}{\sinh \varphi}. \] (3.42)

Taking the derivative of last equation, we get

\[r' = -\frac{\varphi''}{\varphi^2} - \frac{f \varphi' \cosh \varphi}{\sinh^2 \varphi} + \frac{\cosh \varphi}{\sinh \varphi}. \] (3.43)
On the other hand

\[\Delta^{III} p = -1 - \frac{\partial^2 p}{\partial r^2} - \frac{1}{\sinh^2 \varphi} \frac{\partial^2 p}{\partial \theta^2} + \left(\frac{\varphi''}{\varphi^3} - \frac{\cosh \varphi}{\varphi''} \right) \frac{\partial p}{\partial s}. \]

(3.44)

According to relation (2.2) and (3.44) we find that

\[\Delta^{III} x_1 = \Delta^{III} f(s) \cos \theta = \left(- r \sinh \varphi - r' \frac{\cosh \varphi}{\varphi'} \right) \cos \theta, \]

\[\Delta^{III} x_2 = \Delta^{III} f(s) \sin \theta = \left(- r \sinh \varphi - r' \frac{\cosh \varphi}{\varphi'} \right) \sin \theta, \]

\[\Delta^{III} x_3 = \Delta^{III} g(s) = - r \cosh \varphi - r' \frac{\sinh \varphi}{\varphi'}. \]

Let now \(\Delta^{III} \mathbf{x} = A \mathbf{x} \). Thus, as in the former paragraph, we find

\[\begin{pmatrix} - r \sinh \varphi - r' \frac{\cosh \varphi}{\varphi'} \end{pmatrix} \cos \theta = a_{11} f(s) \cos \theta + a_{12} f(s) \sin \theta + a_{13} g(s), \]

\[\begin{pmatrix} - r \sinh \varphi - r' \frac{\cosh \varphi}{\varphi'} \end{pmatrix} \sin \theta = a_{21} f(s) \cos \theta + a_{22} f(s) \sin \theta + a_{23} g(s), \]

\[- r \cosh \varphi - r' \frac{\sinh \varphi}{\varphi'} = a_{31} f(s) \cos \theta + a_{32} f(s) \sin \theta + a_{33} g(s). \]

Applying the same algebraic methods, used in the previous type, this system of equations reduced to

\[- r \sinh \varphi - r' \frac{\cosh \varphi}{\varphi'} = \lambda f, \]

(3.45)

\[- r \cosh \varphi - r' \frac{\sinh \varphi}{\varphi'} = \mu g, \]

(3.46)

where \(a_{11} = a_{22} = \lambda, a_{33} = \mu, \lambda, \mu \in R \). Solving the system (3.45) and (3.46) with respect to \(r \) and \(r' \), we conclude that

\[r' = \varphi' (- \lambda f \cosh \varphi + \mu g \sinh \varphi), \]

(3.47)

\[r = \lambda f \sinh \varphi - \mu g \cosh \varphi. \]

(3.48)

Similarly, we have the following five cases according to the values of \(\lambda, \mu \).

Case I. \(\lambda = \mu = 0 \). Thus from (3.48) we conclude that \(r = 0 \). Consequently \(H = 0 \). Therefore \(M^2 \) is minimal and the corresponding matrix \(A \) is the zero matrix.

Case II. \(\mu = \varphi \neq 0 \). Then from (3.47) we have \(r' = 0 \). If \(\varphi' = 0 \), then \(M^2 \) would consist only of parabolic points, which has been excluded. Therefore we find that

\[- f \cosh \varphi + g \sinh \varphi = 0, \]

or

\[- f f' + gg' = 0. \]

Then \(g^2 - f^2 = \pm c^2, c \in R \) and therefore, \(M^2 \) is obviously either the pseudosphere \(S^2_1(c) \) of real radius \(c \), given by the equation \(x^2 + y^2 - z^2 = c^2 \), or the pseudosphere \(H^2_1(c) \) with imaginary radius, given by \(x^2 + y^2 - z^2 = -c^2 \).

Case III. \(\lambda \neq 0, \mu = 0 \). Then the system (3.45), (3.46) is reduced to

\[- r \sinh \varphi - r' \frac{\cosh \varphi}{\varphi'} = \lambda f(s), \]
\[r \cosh \varphi + r' \sinh \varphi = 0. \]

From (3.48) we have
\[r - \lambda f \sinh \varphi = 0. \] (3.49)

On differentiating (3.49) and taking into account (3.47) with \(\mu = 0 \), we obtain
\[\varphi' = - \frac{\sinh \varphi}{2f}. \]

From (3.42), (3.48) and the last equation, we get
\[f(1 - \lambda \sin^2 \varphi) = 0. \]

A contradiction. Hence, there are no surfaces of revolution with parametric representation (2.2) of \(E^3_1 \) satisfying (1.5).

Case IV. \(\lambda = 0, \mu \neq 0 \).

We write equations (3.45) and (3.46) as follows
\[- \sinh \varphi \varphi' + \frac{f}{\sinh^2 \varphi} + \frac{\varphi'' \cosh \varphi}{\sinh^2 \varphi} - \frac{\cosh^2 \varphi}{\varphi' \sinh \varphi} - \lambda f = 0, \] (3.55)

\[\frac{\varphi'' \sinh \varphi}{\varphi' \sinh \varphi} - \frac{2 \cosh \varphi}{\varphi' - \mu g} = 0. \] (3.56)

From (3.56) we have relation (3.54). By eliminating \(\varphi'' \) from (3.55) we get
\[\frac{1}{\varphi' \sinh \varphi} + \frac{\mu g \cosh \varphi}{\sinh \varphi} + \frac{f}{\sinh^2 \varphi} - \lambda f = 0. \] (3.57)

On differentiating the last equation and using (3.54) we find
\[\frac{2 \mu g \varphi'}{\sinh^3 \varphi} + \frac{2 f \varphi' \cosh \varphi}{\sinh^3 \varphi} + \frac{2 \cosh \varphi}{\sinh^2 \varphi} - (\mu - \lambda) \cosh \varphi = 0. \] (3.58)
Multiplying (3.57) by \(\frac{2\varphi'}{\sinh^2 \varphi} \) and (3.58) by \(-\cosh \varphi\) we obtain
\[
\frac{2}{\sinh^2 \varphi} + \frac{2\mu g \varphi' \cosh \varphi}{\sinh^2 \varphi} + \frac{2f \varphi' \cosh \varphi}{\sinh^2 \varphi} - \frac{2\lambda \varphi' f}{\sinh \varphi} = 0, \tag{3.59}
\]
\[-\frac{2\mu g \varphi' \cosh \varphi}{\sinh^2 \varphi} - \frac{2f \varphi' \cosh^2 \varphi}{\sinh^2 \varphi} - \frac{2 \cosh^2 \varphi}{\sinh^2 \varphi} + (\mu - \lambda) \cosh^2 \varphi = 0. \tag{3.60}\]
Combining (3.59) and (3.60) we conclude that
\[
(\mu - \lambda) \cosh^2 \varphi - 2(\lambda + 1) \frac{f \varphi'}{\sinh \varphi} - 2 = 0 \tag{3.61}
\]
or
\[
\frac{(\mu - \lambda) \cosh^2 \varphi}{\varphi'} - 2(\lambda + 1) \frac{f}{\sinh \varphi} - \frac{2}{\varphi'} = 0. \tag{3.61}
\]

Taking the derivative of the above equation and using (3.54) we find
\[
2(\mu + 1) \cosh \varphi + (\mu - \lambda) \mu g \varphi' \cosh^2 \varphi - 2(\lambda + 1) \frac{f \varphi' \cosh \varphi}{\sinh \varphi} - 2\mu g \varphi' = 0. \tag{3.62}\]
Multiplying (3.61) by \(-\cosh \varphi\), and adding the resulting equation to (3.62) we get
\[
2(\mu + 2) \cosh \varphi - (2 - (\mu - \lambda) \cos^2 \varphi) \mu g \varphi' - (\mu - \lambda) \cosh^3 \varphi = 0
\]
or
\[
2(\mu + 2) \cosh^2 \varphi - (2 - (\mu - \lambda) \cosh^2 \varphi) \mu g \varphi' \cos \varphi - (\mu - \lambda) \cos^4 \varphi = 0. \tag{3.63}\]
On account of (3.57) we find
\[
\mu g \varphi' \cosh \varphi = \lambda f \varphi' \sinh \varphi - \frac{f \varphi'}{\sinh \varphi} - 1. \tag{3.64}\]
Eliminating \(\mu g \varphi' \cosh \varphi\) from (3.63) by using (3.64), we get
\[
2(\mu + 2) \cosh^2 \varphi - (\mu - \lambda) \cosh^4 \varphi - (2 - (\mu - \lambda) \cosh^2 \varphi) ((\lambda \sinh^2 \varphi - 1) \frac{f \varphi'}{\sinh \varphi} - 1) = 0. \tag{3.65}\]
But from (3.61) we have
\[
\frac{f \varphi'}{\sinh \varphi} = \frac{2 - (\mu - \lambda) \cosh^2 \varphi}{2(\lambda + 1)}. \tag{3.66}\]
Obviously \(\lambda \neq -1\) because otherwise, from (3.61) we would have
\[
(\mu - \lambda) \cosh^2 \varphi - 2 = 0.
\]
A contradiction. Now, by inserting (3.66) in (3.65) we obtain
\[
-\lambda(\mu - \lambda)^2 \cos^6 \varphi + (\mu - \lambda)((\mu - \lambda)(\lambda - 1) + 4\lambda) \cos^4 \varphi + (6\lambda^2 - 2\lambda - 2\mu - 2\lambda\mu + 8) \cos^2 \varphi + 8(\lambda + 1) = 0.
\]
This relation, however, is valid for a finite number of values of \(\varphi\). So in this case there are no surfaces of revolution with the required property. So we proved the following

Theorem 2. Let \(x : M^2 \rightarrow E^3_1\) be a surface of revolution given by (2.2). Then \(x\) satisfies (1.5) regarding to the third fundamental form if and only if the following statements hold true

\[
\text{...}
\]
• M^2 is the pseudosphere $S^2(c)$ of real or imaginary radius c,
• M^2 has zero mean curvature.

Type III. The parametric representation of M^2 is given by (2.3), i.e.,
$$\mathbf{x}(s, \theta) = (f(s) + \frac{1}{2} s^2 h(s), g(s) + \frac{1}{2} s^2 h(s), \theta h(s)),$$
where $h(s) = f(s) - g(s) \neq 0$. Since M^2 is non-degenerate, $f'(s)^2 - g'(s)^2$ never vanishes, and so $h'(s) = f'(s) - g'(s) \neq 0$ everywhere. Now, we may take the parameter in such a way that $h(s) = -2s$.

Assume that $k(s) = g(s) - s$, then
$$f(s) = k(s) - s \quad g(s) = k(s) + s,$$
(see for example, [29]). Therefore M^2 can be reparametrized as follows
$$\mathbf{x}(s, \theta) = (k - s - \theta^2 s, k + s - \theta^2 s, -2s\theta),$$
with the profile curve given in (3.67) becomes
$$\mathbf{r}(s) = (0, k(s) - s, k(s) + s).$$

By using the tangent vector fields, \mathbf{x}_s and \mathbf{x}_θ of M^2, we get the components of the first fundamental form of it as
$$E = 4k'(s), \quad F = 0, \quad G = 4s^2.$$

Now, let M^2 be spacelike surface, i.e., $k'(s) > 0$. Then, the timelike unit normal vector field \mathbf{N} of M^2 is given by
$$\mathbf{N} = \frac{1}{2\sqrt{k'}}(\theta^2 + 1, \theta^2 - 1, 2\theta) + \frac{\sqrt{k'}}{2}(1, 1, 0).$$
(3.69)

Then the components of the second fundamental forms are given by
$$L = -\frac{k''}{\sqrt{k'}}, \quad M = 0, \quad N = \frac{2s}{\sqrt{k'}}.$$
Thus the relation (2.31) becomes
$$\Delta^{III}p = -\frac{4k'^2}{k''\partial^2 s^2} - k'\frac{\partial^2 p}{\partial \theta^2} + 2k'(2k'' - k'^2)\frac{\partial p}{\partial s}. \quad (3.70)$$

According to relations (2.3) and (3.70) we find that
$$\Delta^{III}x_1 = \Delta^{III}(k-s-s^2) = \frac{2k'}{k''}(2k'' - k'^2)(k' - 1 - \theta^2) - \frac{4k'^2}{k''} + 2sk',$$
$$\Delta^{III}x_2 = \Delta^{III}(k+s-s^2) = \frac{2k'}{k''}(2k'' - k'^2)(k' + 1 - \theta^2) - \frac{4k'^2}{k''} + 2sk',$$
$$\Delta^{III}x_3 = \Delta^{III}(-2s\theta) = -\frac{4k'}{k''}(2k'' - k'^2)\theta.$$

Let now $\Delta^{III}x = Ax$. Then
$$\frac{2k'}{k''}(2k'' - k'^2)(k' - 1 - \theta^2) - \frac{4k'^2}{k''} + 2sk' = a_{11}(k - s - \theta^2) + a_{12}(k + s - \theta^2) + a_{13}(-2s\theta),$$
(3.71)
\[
\frac{2k'}{k'^3} \left((2k'k''' - k''^2)(k' + 1 - \theta^2) - \frac{4k'^2}{k''} + 2sk' \right) =
\begin{align*}
a_{21}(k - s - s\theta^2) + a_{22}(k + s - s\theta^2) + a_{23}(-2s\theta), \\
- \frac{4k'}{k'^3} \left((2k'k''' - k''^2) \theta \right) = a_{31}(k - s - s\theta^2) + a_{32}(k + s - s\theta^2) + a_{33}(-2s\theta).
\end{align*}
\] (3.72)

Regarding the above equations as polynomials in \(\theta \), so from the coefficients of (3.73) we get
\[
(a_{31} + a_{32})s = 0,
\] (3.74)
\[
\frac{2k'}{k'^3} \left((2k'k''' - k''^2) \right) = a_{33}s,
\] (3.75)
\[
(a_{32} - a_{31})s + (a_{31} + a_{32})k = 0.
\] (3.76)

From the coefficients of (3.72) we find
\[
\frac{2k'}{k'^3} \left((2k'k''' - k''^2) \right) = (a_{21} + a_{22})s,
\] (3.77)
\[
a_{23}s = 0,
\] (3.78)
\[
\frac{2k'}{k'^3} \left((2k'k''' - k''^2) \right) = (a_{11} + a_{12})s,
\] (3.79)
\[
a_{13}s = 0.
\] (3.80)

From the coefficients of (3.74) we get
\[
\left(a_{23} - a_{21} \right) s + \left(a_{22} - a_{21} \right) k = 0,
\] (3.81)
\[
\left(a_{13} - a_{12} \right) s + \left(a_{12} - a_{11} \right) k = 0.
\] (3.82)

Moreover, by considering (3.75) and (3.83) in (3.79) and (3.82), respectively, we get
\[
\left(a_{23} - a_{21} \right) s + \left(a_{22} - a_{21} \right) k = 0.
\] (3.83)

From (3.83) and (3.84) we find
\[
\begin{align*}
a_{12} &= a_{33} - a_{11}, \\
a_{21} &= a_{33} - a_{22}.
\end{align*}
\] (3.87)
Taking into account relations (3.86) and (3.87), we get
\[a_{11} + a_{22} = 2a_{33}. \]

We put \(a_{11} = \lambda \) and \(a_{22} = \mu \), so the matrix \(A \) for which relation (15) is satisfied takes finally the following form
\[
A = \begin{bmatrix}
\lambda & \frac{1}{2}(\mu - \lambda) & 0 \\
\frac{1}{2}(\lambda - \mu) & \mu & 0 \\
0 & 0 & \frac{1}{2}(\lambda + \mu)
\end{bmatrix}.
\]

Hence system of equations [(3.84), ..., (3.82)] reduces to the following two equations
\[
\frac{2k'}{k''}(2k'k''' - k''^2) = a_{33}s, \tag{3.88}
\]
\[
(a_{33} + 2)k's + 2a_{12}s - \frac{4k'^2}{k''} - a_{33}k = 0, \tag{3.89}
\]
where, as we mention before, \(a_{33} = \frac{1}{2}(\lambda + \mu) \) and \(a_{12} = \frac{1}{2}(\mu - \lambda) \).

Solving the system of equations (3.88) and (3.89) with respect to \(\lambda \) and \(\mu \) we find
\[
\lambda = \frac{k'(2s - k + sk')}{s^2k''} \left(\frac{2k'k''}{k''^2} - 1 \right) - \frac{2k'^2}{sk''} + k', \tag{3.90}
\]
\[
\mu = \frac{k'(2s + k - sk')}{s^2k''} \left(\frac{2k'k''}{k''^2} - 1 \right) + \frac{2k'^2}{sk''} - k'. \tag{3.91}
\]

Case I. \(\lambda = \mu = 0 \). Thus from (3.90) and (3.91) we conclude that \(k = as^3 + b \) with \(a > 0 \), \(b \) is a constant and \(s \neq 0 \). Consequently, \(H = 0 \). Therefore \(M^2 \) is minimal and the corresponding matrix \(A \) is the zero matrix.

Case II. \(\lambda = \mu \neq 0 \). Thus from Case I, \(k \neq as^3 + b \). Now, from (3.53) we get \(a_{23} = 0 \), and so
\[
\frac{(k - sk')(2k'k''' - k''^2)}{s^2k''} + \frac{2k'}{sk''} - 1 = 0, \tag{3.92}
\]
whose solution is \(k(s) = \pm \frac{c^2}{4s} \). By considering (3.68), we conclude \(r \) is a spherical curve and so the surface \(M^2 \) is an open piece of the pseudo-sphere \(S^2_1(0, c) \) or the hyperbolic space \(\mathbb{H}^2(0, c) \).

Case III. \(\lambda \neq 0, \mu = 0 \). By considering the last assumption in (3.91), i.e. \(\mu = 0 \), we have
\[
\frac{2k'}{sk''} \left(\frac{2k'k''}{k''^2} - 1 \right) = \frac{k'(-k + sk')}{s^2k''} \left(\frac{2k'k''}{k''^2} - 1 \right) - \frac{2k'^2}{sk''} + k'.
\]

By substituting this into (3.90), we get
\[
\lambda = \frac{4k'}{sk''} \left(\frac{2k'k''}{k''^2} - 1 \right),
\]
where \(\lambda \) is non-zero function. Since there is no \(k \) function to implement in both conditions, so there is no surface of revolution that fulfills these conditions.

Case IV. \(\lambda = 0, \mu \neq 0 \). Similarly, we get a contradiction as in Case III.

Case V. \(\lambda \neq \mu \) and \(\lambda \neq 0, \mu \neq 0 \). In this case, the above two relations (3.90) and (3.91) are valid only when \(\lambda \) and \(\mu \) are functions of \(s \). Thus there are no surfaces of revolution with the required property. So we proved the following:
Theorem 3. Let \(x : M^2 \rightarrow E_3^1 \) be a surface of revolution given by (2.3). Then \(x \) satisfies (1.5) regarding to the third fundamental form if and only if the following statements hold true:

- \(M^2 \) has zero mean curvature,
- \(M^2 \) is an open piece of the pseudo sphere \(S^2_1(0, c) \) of real radius \(c \),
- \(M^2 \) is an open piece of the hyperbolic space \(\mathbb{H}^2_1(0, c) \) of real radius \(c \).

Finally, as we know that the minimal surfaces of revolution with non-lightlike axis are congruent to a part of the catenoid and also with lightlike axis are congruent to a part of the surface of Enneper, (see for more details [35]). Now, by combining Theorem 1, Theorem 2, Theorem 3 and [35]:

Theorem 4. (Classification) Let \(x : M^2 \rightarrow E_3^1 \) be a surface of revolution satisfying (1.5) regarding the third fundamental form. Then \(M \) is one of the following:

- \(M^2 \) is an open part of catenoid of the 1st kind, the 2nd kind, the 3rd kind, the 4th kind or the 5th kind.
- \(M^2 \) is an open part of the surface of Enneper of the 2nd kind or the 3rd kind.
- \(M^2 \) is an open part of the pseudo sphere \(S^2_1(0, c) \) centered at the origin with radius \(c \).
- \(M^2 \) is an open part of the hyperbolic space \(\mathbb{H}^2_1(0, c) \) centered at the origin with radius \(c \).

References

[1] H. Al-Zoubi, S. Stamatakis, Ruled and quadric surfaces satisfying \(\triangle^{III} x = Ax \), J. Geom. Graph. 20 (2016), 147-157.
[2] H. Al-Zoubi, S. Stamatakis, W. Al Mashaleh and M. Awadallah, Translation surfaces of coordinate finite type, Indian J. Math. 59 (2017), 227-241.
[3] H. Al-Zoubi, Tubes of finite \(II \)-type in the Euclidean 3-space, WSEAS Trans. Math. 17 (2018), 1-5.
[4] H. Al-Zoubi, S. Al-Zu’bi, S. Stamatakis and H. Almimi, Ruled surfaces of finite Chen-type. J. Geom. Graph. 22 (2018), 15-20.
[5] H. Al-Zoubi, K. M. Jaber, S. Stamatakis, Tubes of finite Chen-type, Comm. Korean Math. Soc. 33 (2018), 581-590.
[6] H. Al-Zoubi, M. Al-Sabbagh, S. Stamatakis, On surfaces of finite Chen \(III \)-type, Bull. Belgian Math. Soc. 26 (2019), 177-187.
[7] H. Al-Zoubi, A. Dababneh, M. Al-Sabbagh, Ruled surfaces of finite \(II \)-type, WSEAS Trans. Math. 18 (2019), 1-5.
[8] H. Al-Zoubi, H. Alzaareer, T. Hamadneh, M. Al Rawajbeh, Tubes of coordinate finite type Gauss map in the Euclidean 3-space, Indian J. Math. (accepted).
[9] H. Al-Zoubi, T. Hamadneh, Surfaces of revolution of finite \(III \)-type, arXiv: 1907.12390v2, Oct (2019).
[10] H. Al-Zoubi, On the Gauss map of quadric surfaces, arXiv: 1905.00962v1, (2019).
[11] H. Al-Zoubi, W. Al Mashaleh, Surfaces of finite type with respect to the third fundamental form, IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, April 9-11, (2019).
[12] H. Al-Zoubi, M. Al-Sabbagh, Anchor rings of finite type Gauss map in the Euclidean 3-space, International Journal of Mathematical and Computational Methods 5 (2020), 9-13.
[13] H. Al-Zoubi, T. Hamadneh, Quadric surfaces of coordinate finite type Gauss map, arXiv 2006.04529v1, May (2020).
[14] H. Al-Zoubi, T. Hamadneh, Surfaces of coordinate finite \(II \)-type, arXiv: 2005.05120v1, May (2020).
[15] H. Al-Zoubi, F. Abed Al-Fattah, M. Al-Sabbagh, surfaces of finite \(III \)-type in the Euclidean 3-space, WSEAS Trans. Math. 20 (2021), 729-735.
[16] C. Baikoussis, L. Verstraelen, The Chen-Type of the Spiral Surfaces, Results. Math., 28 (1995), 214-223.
[17] Ch. Baikoussis, F. Denever, P. Emprechts, L. Verstraelen, On the Gauss map of the cyclides of Dupin, Soochow J. Math., 19 (1993), 417-428.
[18] Ch. Baikoussis, B.-Y. Chen, L. Verstraelen, Ruled Surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), 341-349.
[19] Ch. Baikoussis, L. Verstraelen, On the Gauss map of translation surfaces, Rend. Semi. Mat. Messina Ser II (in press).
[20] Ch. Baikoussis, L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Semi. Mat. Messina Ser II 16 (1993), 31-42.
[21] M. Bekkar, H. Zoubir, Surfaces of Revolution in the 3-Dimensional Lorentz-Minkowski Space Satisfying $\Delta x^i = \lambda^i x^i$, Int. J. Contemp. Math. Sciences, 3, no. 24 (2008), 1173 - 1185.
[22] F. Denever, R. Deszcz, L. Verstraelen, The compact cyclides of Dupin and a conjecture by B.-Y Chen, J. Geom. 46 (1993), 33-38.
[23] F. Denever, R. Deszcz, L. Verstraelen, The Chen type of the noncompact cyclides of Dupin, Glasg. Math. J. 36 (1994), 71-75.
[24] F. Dillen, J. Pass, L. Verstraelen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica 18 (1990), 239-246.
[25] O. Garay, On a certain class of finite type surfaces of revolution, Kodai Math. J. 11 (1988), 25-31.
[26] O. Garay, An extension of Takahashi's theorem, Geometriae dedicate 34 (1990), 105-112.
[27] H. Huck, U. Simon, R. Roitzsch, W. Vortisch, R. Walden, W. Wendt, Beweismethoden der Differentialgeometrie im Grossen, Lecture Notes in Mathematics. Vol. 335 (1973).
[28] G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta^I x = A x$, J. Geom. 81 (2004), 81 – 92.
[29] U.-H. Ki, D.-S. Kim, Y. H. Kim, Y.-M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), 317–338.
[30] Y. H. Kim, C. W. Lee, and D. W. Yoon, On the Gauss map of surfaces of revolution without parabolic points, Bull. Korean Math. Soc. 46 (2009), No. 6, pp. 1141–1149.
[31] B. Senoussi, H. Al-Zoubi, Translation surfaces of finite type in Sol3, Comment. Math. Univ. Carolin. 61 (2020), 237–256.
[32] S. Stamatakis, H. Al-Zoubi, On surfaces of finite Chen-type, Results. Math. 43 (2003), 181-190.
[33] S. Stamatakis, H. Al-Zoubi, Surfaces of revolution satisfying $\Delta^I x = A x$, J. for Geom. and Graphics, 14 (2010), 181-186.
[34] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.
[35] I. Van De Woestijne, Minimal surfaces of 3-dimensional Minkowski space, In: Morvan, J.M., et al (eds.) Geometry and Toplogy of Submanifolds, vol. II, World Scientific, Singapore, 1990, 344-369.