A new complemented subspace for the Lorentz sequence spaces, with an application to its lattice of closed ideals

Ben Wallis

Abstract. We show that every Lorentz sequence space $d(w, p)$ admits a 1-complemented subspace Y distinct from ℓ_p and containing no isomorph of $d(w, p)$. In the general case, this is only the second nontrivial complemented subspace in $d(w, p)$ yet known. We also give an explicit representation of Y in the special case $w = (n^{-\theta})_{n=1}^{\infty}$ ($0 < \theta < 1$) as the ℓ_p-sum of finite-dimensional copies of $d(w, p)$. As an application, we find a sixth distinct element in the lattice of closed ideals of $\mathcal{L}(d(w, p))$, of which only five were previously known in the general case.

1 Introduction

Little is known about the complemented subspace structure of Lorentz sequence spaces $d(w, p)$. Until recently, the only nontrivial complemented subspace discussed in the literature was ℓ_p [ACL73]. Then, in [Wa20], it was shown that for certain weights w (see Theorem 2.2 below), the space $d(w, p)$ contains a 1-complemented subspace isomorphic to $(\bigoplus_{n=1}^{\infty} \ell_n^p)^p$. Up to now, these were the only nontrivial complemented subspaces known to exist.

In this short note, we show that each Lorentz sequence space admits a 1-complemented subspace Y distinct from ℓ_p (Section 2). We also give an explicit representation of Y for the case $w = (n^{-\theta})_{n=1}^{\infty}$ ($0 < \theta < 1$), as the ℓ_p-sum of finite-dimensional copies of $d(w, p)$ (Section 3). Note that this choice of $w = (n^{-\theta})_{n=1}^{\infty}$ corresponds to the classical Lorentz sequence spaces $\ell_{q,p}$ with $p/q = 1 - \theta$. Finally, as an application, we find a sixth distinct element in the lattice of closed ideals in the operator algebra $\mathcal{L}(d(w, p))$, where only five were previously known in the general case (Section 4).

Let us set up the main notation we need to use. We begin by fixing $K \in \{\mathbb{R}, \mathbb{C}\}$. Denote by Π the set of all permutations of \mathbb{N}, and denote by \mathbb{W} the set of all sequences $w = (w_n)_{n=1}^{\infty} \in c_0 \setminus \ell_1$ satisfying

$$1 = w_1 \geq w_2 \geq w_3 \geq \cdots > 0.$$
Fix $1 \leq p < \infty$ and $w \in \mathbb{W}$. For each $(a_n)_{n=1}^{\infty} \in \mathbb{K}^\mathbb{N}$, we set

$$\| (a_n)_{n=1}^{\infty} \|_{d(w, p)} := \sup_{\pi \in \Pi} \left(\sum_{n=1}^{\infty} |a_{\pi(n)}|^p w_n \right)^{1/p},$$

and let $d(w, p)$ denote the linear space of all $(a_n)_{n=1}^{\infty} \in \mathbb{K}^\mathbb{N}$ with $\| (a_n)_{n=1}^{\infty} \|_{d(w, p)} < \infty$ endowed with the norm $\| \cdot \|_{d(w, p)}$, called a Lorentz sequence space. Recall that if $(a_n)_{n=1}^{\infty} \in c_0$ then there exists a “decreasing rearrangement” $(\hat{a}_n)_{n=1}^{\infty}$ of $(|a_n|)_{n=1}^{\infty}$. In this case, the rearrangement inequality gives us

$$\| (a_n)_{n=1}^{\infty} \|_{d(w, p)} = \left(\sum_{n=1}^{\infty} \hat{a}_n^p w_n \right)^{1/p} \quad \text{for all } (a_n)_{n=1}^{\infty} \in c_0. \tag{1.1}$$

Because $d(w, p) \subset c_0$ as linear spaces (although not as normed spaces), this represents an alternative formulation of the Lorentz sequence space norm.

For each $i, k \in \mathbb{N}$, we define

$$W_k := \sum_{n=1}^{k} w_n \quad \text{and} \quad w_{i}^{(k)} := \frac{1}{W_k} \sum_{n=(i-1)k+1}^{ik} w_n,$$

and $w^{(k)} := (w_{i}^{(k)})_{i=1}^{\infty}$. It is readily apparent that $w^{(k)} \in \mathbb{W}$. When p is clear from context, we also set

$$d_{i}^{(k)} := \frac{1}{W_k^{1/p}} \sum_{n=(i-1)k+1}^{ik} d_n,$$

where $(d_{n})_{n=1}^{\infty}$ is the canonical unit vector basis for $d(w, p)$. It is routine to verify that $(d_{i}^{(k)})_{i=1}^{\infty}$ is a normalized basic sequence isometrically equivalent to the $d(w^{(k)}, p)$ basis. If necessary, we may sometimes abuse this notation; for instance, if $(j_{k})_{k=1}^{\infty}$ is a sequence in \mathbb{N}, then we could write $((d_{i}^{(j_{k})})_{i=1}^{k})_{k=1}^{\infty}$ for appropriately translated successive normalized constant-coefficient blocks of lengths j_{k}.

Our main tool for finding complemented subspaces of $d(w, p)$ is the fact that every constant-coefficient block basic sequence of a symmetric basis spans a 1-complemented subspace (cf., e.g., [LT77, Proposition 3.a.4]). We will use this well-known fact freely and without further reference.

2 Lorentz sequence spaces contain at least two nontrivial complemented subspaces

The first discovery of a nontrivial complemented subspace in $d(w, p)$ came almost half a century ago, with the following result.

Theorem 2.1 ([ACL73, Lemma 1]) \quad Fix $1 \leq p < \infty$ and $w \in \mathbb{W}$, and let

$$x_i = \sum_{n=p_{i-1}+1}^{p_i} a_n d_n, \quad i \in \mathbb{N},$$
form a seminormalized block basic sequence in \(d(w, p) \). If \(a_n \to 0 \), then \((x_i)_{i=1}^\infty \) admits a subsequence equivalent to \(\ell_p \) and complemented in \(d(w, p) \).

By taking sufficiently long constant-coefficient blocks, it follows that \(d(w, p) \) contains a \(1 \)-complemented copy of \(\ell_p \). Much later was shown the following.

Theorem 2.2 ([Wa20, Theorem 4.3]) Let \(1 \leq p < \infty \) and \(w = (w_n)_{n=1}^\infty \in \mathbb{W} \). If

\[
\inf_{k \in \mathbb{N}} \frac{\sum_{n=1}^{2k} w_n}{\sum_{n=1}^{k} w_n} = 1,
\]

then \(d(w, p) \) admits a \(1 \)-complemented subspace spanned by constant-coefficient blocks and isomorphic to \((\bigoplus_{n=1}^\infty \ell_\infty^p) \).

Thanks in large part to the ideas of William B. Johnson, our main result in this section is to generalize this to all Lorentz sequence spaces, as follows.

Theorem 2.3 Let \(1 \leq p < \infty \) and \(w \in \mathbb{W} \). Then, there exists an increasing sequence \((N_k)_{k=1}^\infty \in \mathbb{N}^\mathbb{N} \) such that \((d^{(N)}_{i=1})_{k=1}^\infty \) spans a \(1 \)-complemented subspace \(Y \) which contains no isomorph of \(d(w, p) \) and which is not isomorphic to \(\ell_p \).

To prove it, we need a few preliminaries.

Lemma 2.4 If \(1 < p < \infty \), then every complemented subspace of \(L_p[0,1] \) with a subsymmetric basis \((x_n)_{n=1}^\infty\) is isomorphic to either \(\ell_p \) or \(\ell_2 \).

Proof The case \(p = 2 \) is trivial, because every complemented subspace of \(L_2[0,1] \) is isomorphic to \(\ell_2 \). For the case \(p > 2 \), recall from [KP62, Corollary 6] that every seminormalized basic sequence in \(L_p[0,1], p \in (2, \infty) \), admits a subsequence equivalent to \(\ell_p \) or \(\ell_2 \), and so because \((x_n)_{n=1}^\infty\) is also subsymmetric, then it is in fact equivalent to \(\ell_p \) or \(\ell_2 \). In case \(1 < p < 2 \), because \((x_n)_{n=1}^\infty\) is complemented in \(L_p[0,1] \), its corresponding sequence of biorthogonal functionals \((x_n^*)_{n=1}^\infty\) is contained in \(L_p'[0,1] \), where \(\frac{1}{p} + \frac{1}{p'} = 1 \). Because \(p' > 2 \), a subsequence of \((x_n^*)_{n=1}^\infty\) is equivalent to \(\ell_{p'} \) or \(\ell_2 \), whence by subsymmetry \((x_n)_{n=1}^\infty\) is equivalent to \(\ell_p \) or \(\ell_2 \).

Lemma 2.5 Let \(X \) be a Banach space whose canonical isometric copy in \(X^{**} \) is complemented. Then, for any free ultrafilter \(U \) on \(\mathbb{N} \), the canonical copy of \(X \) in \(X^U \) is complemented in \(X_U \).

Proof Let \(q : X \to X^{**} \) denote the canonical embedding, and define the norm-1 linear operator \(V : \ell_\infty(X) \to X^{**} \) by the rule

\[
V(x_n)_{n=1}^\infty = \liminf_{n \to \infty} q x_n,
\]

which exists by the weak\(^*\)-compactness of \(B_{X^{**}} \) together with the fact that if \(K \) is a compact Hausdorff space, then for each \((k_n)_{n=1}^\infty \in K^\mathbb{N}\), the (unique) limit \(\lim_U k_n \)
exists in K. Note that if $\lim_{n} x_{n} = 0$, then $V(x_{n})_{n=1}^{\infty} = 0$, and so V induces an operator $\tilde{V} : X^{\ell} \to X^{\star\star}$ which agrees with V along the diagonal. In particular, \tilde{V} sends the canonical copy of X in X^{ℓ} isomorphically to the canonical copy of X in $X^{\star\star}$.

Theorem 2.6 Fix $1 \leq p < \infty$, and let $(x_{n})_{n=1}^{\infty}$ be a basis for a Banach space X whose canonical copy in $X^{\star\star}$ is complemented. If the finite-dimensional spaces $[x_{n}]_{n=1}^{N}$, $N \in \mathbb{N}$, are uniformly complemented in $L_{p}(\mu)$ for some measure μ, then X is complemented in $L_{p}[0, 1]$.

Proof Let $X_{N} = [x_{n}]_{n=1}^{N}$ and $P_{N} : X \to X_{N}$ the projection onto X_{N}. By uniform complementedness of X_{N}, we can find uniformly bounded linear operators $A_{N} : X_{N} \to L_{p}(\mu)$ and $B_{N} : L_{p}(\mu) \to X_{N}$ such that $B_{N}A_{N}$ is the identity on X_{N}. Let \mathcal{U} be any free ultrafilter on \mathbb{N}. Define the bounded linear operators $A : X \to L_{p}(\mu)^{\ell}$ by the rule $Ax = (A_{N}P_{N}x)_{\mathcal{U}}$, and $B : L_{p}(\mu)^{\ell} \to X^{\ell}$ by $B(y_{N})_{\mathcal{U}} = (B_{N}y_{N})_{\mathcal{U}}$. Let $x \in \operatorname{span}(x_{n})_{n=1}^{\infty}$, so that, for some $k \in \mathbb{N}$,

$$BAx = (P_{1}x, \ldots, P_{k}x, x, x, \ldots)_{\mathcal{U}} = x^{\ell}.$$

By continuity, BA is the canonical injection of X into X^{ℓ}. Because its range is complemented by Lemma 2.5, we have the identity on X factoring through $L_{p}(\mu)^{\ell}$.

It was proved in [He80, Theorem 3.3] that ultrapowers preserve L_{p} lattice structure, and in particular $L_{p}(\mu)^{\ell}$ is isomorphic to $L_{p}(\nu)$ for some measure ν. Although $L_{p}(\nu)$ itself is nonseparable, we could pass to the closed sublattice generated by AX to find a space isomorphic to a separable L_{p} containing a complemented copy of X. Due mostly to a famous result of Lacey and Wojtaszczyk, it is known that separable and infinite-dimensional L_{p} spaces are isomorphic to either ℓ_{p} or $L_{p}[0, 1]$ [JL01, Section 4, p. 15]. This means an isomorph of X is complemented in $L_{p}[0, 1]$.

An immediate corollary to Lemma 2.4 and Theorem 2.6 is as follows.

Corollary 2.7 Let $1 < p < \infty$ and $w \in \mathbb{W}$. Then, no $L_{p}(\mu)$ space contains uniformly complemented copies of $[d_{n}]_{n=1}^{N}$, $N \in \mathbb{N}$.

Now, we are ready to prove the main result of this section, Theorem 2.3.

Proof Fix $k \in \mathbb{N}$, and note that $(d_{i}^{(k)})_{i=1}^{N_{k}}$ is isometric to the $d(w^{(k)}, p)$ basis. Consider the case where $p = 1$. Then, we can choose the N_{k}’s large enough that each $(d_{i}^{(k)})_{i=1}^{N_{k}}$ fails to be k-equivalent to $\ell_{1}^{N_{k}}$, and hence $((d_{i}^{(k)})_{i=1}^{N_{k}})_{k=1}^{\infty}$ fails to be equivalent to ℓ_{1}. As ℓ_{1} has a unique unconditional basis by a result of Lindenstrauss and Pełczyński, it follows that Y is not isomorphic to ℓ_{1}.

Next, consider the case where $1 < p < \infty$. By Corollary 2.7, we can select N_{k}’s large enough that $[d_{i}^{(k)}]_{i=1}^{N_{k}}$ fails to be k-complemented in ℓ_{p}. As $[d_{i}^{(k)}]_{i=1}^{N_{k}}$’s are all 1-complemented in Y, that means Y is not isomorphic to ℓ_{p}.

It remains to show that Y contains no isomorph of $d(w, p)$. Suppose toward a contradiction that it does. As $(d_{n})_{n=1}^{\infty}$ is weakly null (cf., e.g., [ACL73, Proposition 1]), we can use the gliding hump method together with symmetry to find a normalized
A new complemented subspace for the Lorentz sequence spaces block sequence of \(((d_i^{(k)})_{i=1}^{N_k})_{k=1}^{\infty}\) equivalent to \((d_n)_{n=1}^{\infty}\). However, every such block sequence is also a block sequence w.r.t. \((d_n)_{n=1}^{\infty}\) with coefficients tending to zero. By Theorem 2.1, it follows that \((d_n)_{n=1}^{\infty}\) admits a subsequence equivalent to \(\ell_p\), which is impossible.

3 A special case

In this section, we show that when \(w = (n^{-\theta})_{n=1}^{\infty}\) for some fixed \(0 < \theta < 1\), the space \(Y\) described in Theorem 2.3 can be chosen to be isomorphic to the space

\[
Y_{w,p} := \left(\bigoplus_{N=1}^{\infty} D_N \right)_p,
\]

where \(D_N := [d_n]_{n=1}^{N}\), for each \(N \in \mathbb{N}\). As usual, we require some preliminaries.

Lemma 3.1 Let \(0 < \theta < 1\) and \(j, k \in \mathbb{N}\). Then,

\[
\left(\frac{j+1}{k+1} \right)^{1-\theta} - \left(\frac{j+1}{k} \right)^{1-\theta} \leq \frac{\sum_{n=j+1}^{j+k} n^{-\theta}}{\sum_{n=1}^{k} n^{-\theta}} \leq \frac{(j/k+1)^{1-\theta} - (j/k)^{1-\theta}}{2^{1-\theta} - 1}.
\]

Proof Observe that the map

\[
f(t) = (1 + 1/t)^{1-\theta} - (1/t)^{1-\theta}
\]

is increasing on \([1, \infty)\) and hence has a minimum \(f(1) = 2^{1-\theta} - 1\). Hence,

\[
\left(\frac{j+1}{k+1} \right)^{1-\theta} - \left(\frac{j+1}{k} \right)^{1-\theta} \leq \frac{(j+k+1)^{1-\theta} - (j+1)^{1-\theta}}{k^{1-\theta} - \theta}
\]

\[
= \int_{j+1}^{j+k+1} t^{-\theta} dt
\]

\[
\leq \int_{1}^{k} t^{-\theta} dt
\]

\[
= \frac{\sum_{n=j+1}^{j+k} n^{-\theta}}{\sum_{n=1}^{k} n^{-\theta}}
\]

\[
\leq \frac{\int_{j}^{j+k} t^{-\theta} dt}{\int_{1}^{k+1} t^{-\theta} dt}
\]

\[
= \frac{(j+k)^{1-\theta} - j^{1-\theta}}{(k+1)^{1-\theta} - 1}
\]

\[
= \frac{(j/k+1)^{1-\theta} - (j/k)^{1-\theta}}{(1 + 1/k)^{1-\theta} - (1/k)^{1-\theta}}
\]

\[
\leq \frac{(j/k+1)^{1-\theta} - (j/k)^{1-\theta}}{2^{1-\theta} - 1}.
\]
Lemma 3.2 Let \(0 < \theta < 1\) and \(w = (w_n)_{n=1}^\infty = (n^{-\theta})_{n=1}^\infty \in \mathbb{W}\). Then,
\[
\frac{1 - \theta}{2} \cdot w_i \leq w_i^{(k)} \leq \frac{2 - 2^\theta}{2^{1-\theta} - 1} \cdot w_i \quad \text{for all } i, k \in \mathbb{N}.
\]
In particular, if \(1 \leq p < \infty\), then there is a constant \(C \in [1, \infty)\), depending only on \(\theta\), such that
\[
(d_n)_{n=1}^\infty \preceq C (d_i^{(k)})_{i=1}^\infty \quad \text{for all } k \in \mathbb{N}.
\]

Proof We can assume \(i, k \geq 2\). Observe that
\[
t \mapsto t - (t - 1)^{1-\theta} \cdot t^\theta
\]
is decreasing on \([2, \infty)\), and hence has the maximum \(2 - 2^\theta\). Furthermore, the function
\[
t \mapsto t - (t - 1/2)^{1-\theta} \cdot t^\theta
\]
is decreasing on \([2, \infty)\) and hence has infimum
\[
\lim_{t \to \infty} (t - (t - 1/2)^{1-\theta} \cdot t^\theta) = \frac{1 - \theta}{2}.
\]
Thus, by the above, and applying Lemma 3.1 with \(j = k(i - 1)\),
\[
\frac{1 - \theta}{2} \cdot i^{-\theta} \leq \left(i - (i - 1/2)^{1-\theta} \cdot i^\theta \right) i^{-\theta}
\]
\[
= i^{1-\theta} - (i - 1/2)^{1/\theta}
\]
\[
\leq (i + 1/k)^{1-\theta} - (i - 1 + 1/k)^{1/\theta}
\]
\[
\leq \frac{\sum_{n=(i-1)k+1}^{ik} n^{-\theta}}{\sum_{n=1}^{k} n^{-\theta}}
\]
\[
\leq \frac{i^{1-\theta} - (i - 1)^{1-\theta}}{2^{1-\theta} - 1}
\]
\[
= \frac{i - (i - 1)^{1-\theta} \cdot i^\theta}{2^{1-\theta} - 1} \cdot i^{-\theta}
\]
\[
\leq \frac{2 - 2^\theta}{2^{1-\theta} - 1} \cdot i^{-\theta}. \quad \blacksquare
\]

Remark 3.3 Suppose \(x = \sum_{n \in A} a_n d_n\) and \(y = \sum_{n \in B} b_n d_n\) for finite and disjoint sets \(A, B \subset \mathbb{N}\), where \((a_n)_{n \in A}\) and \((b_n)_{n \in B}\) are sequences of scalars. Then,
\[
\|x + y\|^p \leq \|x\|^p + \|y\|^p.
\]

Lemma 3.4 Let \((j_k)_{k=1}^\infty\) be a sequence of positive integers, and, for each \(k\), set
\[
J_k = j_1 + 2j_2 + 3j_3 + \cdots + k j_k.
\]
Suppose that there are constants $A, B \in (0, \infty)$ such that
\begin{equation}
\tag{3.1}
w_i^{(j_k)} \leq Aw_i
\end{equation}
and
\begin{equation}
\tag{3.2}
Bw_i \leq \frac{1}{W_{j_k}} \sum_{n=J_{k-1}+j_k}^{J_{k-1}+j_k} w_n,
\end{equation}
for all $i = 1, \ldots, k$ and all $k \in \mathbb{N}$. Then, $((d_i^{(j_k)})_{i=1}^\infty)_{k=1}^\infty$ is equivalent to the canonical $Y_{w,p}$ basis.

Proof Due to (3.1), we have $((d_i^{(j_k)})_{i=1}^k) \leq_A d(w, p)^k$. Now, using Remark 3.3, for any finitely supported scalar sequence $((a_i^{(k)})_{i=1}^k)_{k=1}^\infty$,
\[
\left\| \sum_{k=1}^\infty \sum_{i=1}^k a_i^{(k)} d_i^{(j_k)} \right\|_p \leq A \left\| \sum_{k=1}^\infty \sum_{i=1}^k a_i^{(k)} d_i^{(j_k)} \right\|_p \leq A^p \sum_{k=1}^\infty \left\| (a_i^{(k)})_{i=1}^k \right\|_{d(w,p)}^p = A^p \left\| ((a_i^{(k)})_{i=1}^k)_{k=1}^\infty \right\|_{Y_{w,p}}^p.
\]

For the reverse inequality, let $(\hat{a}_i^{(k)})_{i=1}^k$ denote the decreasing rearrangement of $(|a_i^{(k)}|)_{i=1}^k$. Then, applying (3.2),
\[
\left\| \sum_{k=1}^\infty \sum_{i=1}^k a_i^{(k)} d_i^{(j_k)} \right\|_p \geq \left\| \sum_{k=1}^\infty \sum_{i=1}^k \hat{a}_i^{(k)} d_i^{(j_k)} \right\|_p \geq B \sum_{k=1}^\infty \sum_{i=1}^k \hat{a}_i^{(k)} w_i \geq B \left\| ((a_i^{(k)})_{i=1}^k)_{k=1}^\infty \right\|_{Y_{w,p}}^p.
\]

Theorem 3.5 Let $(j_k)_{k=1}^\infty$ and $(J_k)_{k=1}^\infty$ be as in Lemma 3.4. Suppose there is $M \in [1, \infty)$ such that
\[
\frac{J_{k-1}}{j_k} \leq M, \quad \text{for all } k = 2, 3, 4, \ldots.
\]
Then, $((d_i^{(j_k)})_{i=1}^k)_{k=1}^\infty$ is equivalent to the canonical $Y_{w,p}$ basis.

Proof Due to Lemma 3.4, it suffices to show that (3.2) and (3.1) both hold. To do this, fix an arbitrary $k \in \mathbb{N}$. We may assume, without loss of generality, that $j_k \geq 2$.
Now, by Lemma 3.1,
\[
\frac{1}{W_{jk}} \sum_{n=J_{k-1} + (i-1)j_k + 1}^{J_{k-1} + (i-1)j_k + 1} w_n \geq \left(\frac{J_{k-1} + (i-1)j_k + 1}{j_k} - \frac{J_{k-1} + (i-1)j_k + 1}{j_k} \right)^{1-\theta}.
\]
\[
= \left(\frac{J_{k-1} + i + 1}{j_k} - \frac{J_{k-1} + i - 1 + 1}{j_k} \right)^{1-\theta}.
\]
\[
\geq \left(\frac{J_{k-1} + i}{j_k} - \frac{J_{k-1} + i - 1 + 1}{j_k} \right)^{1-\theta}.
\]
\[
= i^{\theta} \left[\left(\frac{J_{k-1} + i}{j_k} \right)^{1-\theta} - \left(\frac{J_{k-1} + i - 1}{j_k} \right)^{1-\theta} \right].
\]
Applying the Mean Value Theorem to the function \(x \mapsto (\phi + x)^{1-\theta}, \phi \in [1, \infty), \) we can find \(x_\phi \in (-1/2, 0) \) such that
\[
\phi^{1-\theta} - (\phi + x_\phi)^{1-\theta} = \frac{(1-\theta)(\phi + x_\phi)^{-\theta}}{2} = \frac{(1-\theta)x^{-\theta}}{2}.
\]
Hence, letting \(\phi = J_{k-1}/j_k + i, \) we have
\[
i^{\theta} \left[\left(\frac{J_{k-1} + i}{j_k} \right)^{1-\theta} - \left(\frac{J_{k-1} + i - 1}{j_k} \right)^{1-\theta} \right] \geq i^{\theta} \left[\frac{(1-\theta)(J_{k-1}/j_k + i)^{-\theta}}{2} \right].
\]
\[
1 - \theta \left(\frac{i}{J_{k-1}/j_k + i} \right)^{\theta} \geq \frac{1-\theta}{2} \left(\frac{1}{M+1} \right)^{\theta}.
\]
This proves (3.2), and (3.1) follows immediately from Lemma 3.2.

Taking inductively \(j_1 = 1 \) and \(j_{k+1} = J_k, \) the following is now immediate.

Corollary 3.6 Let \(1 \leq p < \infty, \ 0 < \theta < 1, \) and \(w = (w_n)_{n=1}^{\infty} = (n^{-\theta})_{n=1}^{\infty} \in \mathbb{W}. \) Then, \(d(w, p) \) admits a 1-complemented subspace isomorphic to \(Y_{w, p}. \)

4 Application to the lattice of closed ideals

In [KPSTT12], it was shown (among other results) that the lattice of closed ideals for the operator algebra \(\mathcal{L}(d(w, p)) \) can be put into a chain:

\[
\{0\} \not\subseteq \mathcal{K}(d(w, p)) \not\subseteq SS(d(w, p)) \not\subseteq S_{d(w, p)}(d(w, p)) \not\subseteq \mathcal{L}(d(w, p)).
\]

Here, \(\mathcal{K} \) denotes the compact operators, \(SS \) the strictly singular operators, and \(S_{d(w, p)} \) the ideal of operators which fail to be bounded below on any isomorph of \(d(w, p). \) While, in [Wa20, Corollary 2.7], for the special case where \(1 < p < 2 \) and \(w \in \mathbb{W} \cap \ell_2/(\ell_2), \) a chain of distinct closed ideals with cardinality of the continuum were identified lying between \(\mathcal{K}(d(w, p)) \) and \(SS(d(w, p)), \) for the general case, the only distinct elements known were those of the above chain.
For an operator T, let \mathcal{J}_T denote the class of operators factoring through T. If Z is any Banach space, we then set $\mathcal{J}_Z = \mathcal{J}_{Id_Z}$. By Theorem 4.3 below, we can extend the chain above as follows:

$$\{0\} \not\subseteq \mathcal{K}(d(w, p)) \not\subseteq SS(d(w, p)) \not\subseteq (\overline{\mathcal{J}_p} \vee SS)(d(w, p))$$

$$\not\subseteq S_{d(w, p)}(d(w, p)) \not\subseteq \mathcal{L}(d(w, p)).$$

Furthermore, by [KPSTT12, Corollary 3.2 and Theorem 5.3] together with the fact that $d(w, p)$ has the approximation property, any additional distinct closed ideals in the above chain must lie between $\mathcal{K}(d(w, p))$ and $SS(d(w, p))$, or else between $(\overline{\mathcal{J}_p} \vee SS)(d(w, p))$ and $S_{d(w, p)}(d(w, p))$, although there may be other ideals in the lattice which are not a part of the chain.

To prove Theorem 4.3, we need a couple of preliminary results.

Proposition 4.1 Let X and Z be an infinite-dimensional Banach spaces such that $Z^2 \cong Z$, and X fails to be isomorphic to a complemented subspace of Z. Then, $\mathcal{J}_Z(X)$ is a proper ideal in $\mathcal{L}(X)$. Furthermore, if $P \in \mathcal{L}(X)$ is a projection with image isomorphic to Z, then

$$\mathcal{J}_P(X) = \mathcal{J}_Z(X).$$

Proof Because $Z^2 \cong Z$, [KPSTT12, Lemma 2.2] guarantees that $\mathcal{J}_Z(X)$ is an ideal in $\mathcal{L}(X)$. Suppose toward a contradiction that $Id_X \in \mathcal{J}_Z(X)$. Then, $Id_X = AB$ for operators $A \in \mathcal{L}(Z, X)$ and $B \in \mathcal{L}(X, Z)$. By [KPSTT12, Lemma 2.1], BX is complemented in Z and isomorphic to X, which contradicts our hypotheses. It follows that $\mathcal{J}_Z(X)$ is a proper ideal in $\mathcal{L}(X)$. Recall that the closure of a proper ideal in a unital Banach algebra is again proper; in particular, $\overline{\mathcal{J}_Z}(X)$ is a proper ideal in $\mathcal{L}(X)$.

To prove the “furthermore” part, assume $A \in \mathcal{L}(Z, X)$ and $B \in \mathcal{L}(X, Z)$. Let $Q : Z \to X$ be the canonical embedding, so that $PQ = Id_Z$ and hence $AB = APQB \in \mathcal{J}_P(X)$. It follows that $\mathcal{J}_Z(X) \subseteq \mathcal{J}_P(X)$, and the reverse inclusion is even more obvious. \[\square\]

For the next result, \mathcal{F} denotes the class of finite-rank operators and \mathcal{E} the class of inessential operators. Recall also that a basis \mathcal{B} is called semисpreading whenever every subsequence of \mathcal{B} is dominated by \mathcal{B} itself. In particular, the unit vector basis of ℓ_p is semisprading.

Proposition 4.2 ([LLR04, Corollary 3.8]) Let Z be a Banach space with a semispreading basis (z_n), and let X be a Banach space with basis (x_n) such that any seminormalized block sequence of (x_n) contains a subsequence equivalent to (z_n) and spanning a complemented subspace of X. Then,

$$\{0\} \not\subseteq \mathcal{F}(X) = \mathcal{K}(X) = \mathcal{E}(X) \subseteq \overline{\mathcal{J}_Z}(X),$$

and any additional distinct closed ideals must lie between $\overline{\mathcal{J}_Z}(X)$ and $\mathcal{L}(X)$.

In the proof of what follows, we use the fact that if \mathcal{I} and \mathcal{J} are ideals in $\mathcal{L}(X)$, then $\overline{\mathcal{I} \vee \mathcal{J}} = \overline{\mathcal{I}} + \overline{\mathcal{J}}$.

Theorem 4.3 Fix $1 \leq p < \infty$ and $w \in \mathbb{W}$. Let Y be as in Theorem 2.3, and $P_Y \in \mathcal{L}(d(w, p))$ any continuous linear projection onto Y. Then,

$$P_Y \in S_{d(w, p)}(d(w, p)) \cap (\overline{\mathcal{J}_Y} \vee SS)(d(w, p)).$$

Proof Let $P_{\ell_p} \in \mathcal{L}(d(w, p))$ be any projection onto an isomorphic copy of ℓ_p spanned by basis vectors of Y. (Such a copy exists by Theorem 2.1.) By Theorem 2.3, Y contains no isomorph of $d(w, p)$ and hence $P_Y \in S_{d(w, p)}(d(w, p))$. Because $S_{d(w, p)}(d(w, p))$ is the unique maximal ideal in $\mathcal{L}(d(w, p))$, and $\mathcal{J}_{P_{\ell_p}}(d(w, p)) = \mathcal{J}_{\ell_p}(d(w, p))$ by Proposition 4.1, it is sufficient to prove that $P_Y \notin (\overline{\mathcal{J}_{P_{\ell_p}}} \vee SS)(d(w, p))$.

Next, we claim that $P_Y \notin (\overline{\mathcal{J}_{P_{\ell_p}}} \vee SS)(d(w, p))$ only if $Id_Y \notin (\overline{\mathcal{J}_{\ell_p}} \vee SS)(Y)$. To prove it, fix $\varepsilon > 0$, and suppose there are $A, B \in \mathcal{L}(d(w, p))$ and $S \in SS(d(w, p))$ such that

$$\|AP_{\ell_p}B + S - P_Y\| < \varepsilon.$$

Let $J_Y : Y \to d(w, p)$ be an embedding satisfying $P_Y J_Y = J_Y$, or $P_Y J_Y = Id_Y$ when viewed as an operator in $\mathcal{L}(Y)$. Composing P_Y on the left and J_Y on the right, we have

$$\|P_Y AP_{\ell_p}BJ_Y + P_Y SJ_Y - Id_Y\|_{\mathcal{L}(Y)} < \|P_Y\| \cdot \varepsilon \cdot \|J_Y\|.$$

On the other hand, because $AP_{\ell_p} = A|_{\ell_p} P_{\ell_p}$ and $P_{\ell_p} = P_{\ell_p} P_Y$, we have

$$P_Y AP_{\ell_p}BJ_Y = (P_Y A|_{\ell_p}) P_{\ell_p} (P_Y B|_{\ell_p}),$$

and hence

$$\|(P_Y A|_{\ell_p}) P_{\ell_p} (P_Y B|_{\ell_p}) + P_Y SJ_Y - Id_Y\|_{\mathcal{L}(Y)} < \|P_Y\| \cdot \varepsilon \cdot \|J_Y\|.$$

Because $\mathcal{J}_{\ell_p}(Y) = \mathcal{J}_{P_{\ell_p}}(Y)$ by Proposition 4.1, where P_{ℓ_p} is likewise viewed as an operator in $\mathcal{L}(Y)$, from the above together with the ideal property of SS, the claim follows.

Let $B_Y = \{(d_i^{(k)})_{i=1}^{N_k}\}_{k=1}^{\infty}$ denote the canonical basis of Y from Theorem 2.3. Note that because B_Y is made up of constant coefficient blocks of (d_n) of increasing length, any seminormalized blocks of B_Y will contain a subsequence equivalent to ℓ_p by Theorem 2.1. In fact, in [CL74, Lemma 15], this result was refined to show that we can choose that subsequence to span a complemented subspace of $d(w, p)$, and hence of Y itself. We can therefore apply Theorem 4.2 to conclude that $SS(Y) \subset \overline{\mathcal{J}_{\ell_p}}(Y)$. Meanwhile, again by Proposition 4.1, $\overline{\mathcal{J}_{\ell_p}}(Y)$ is a proper ideal in $\mathcal{L}(Y)$, which means $Id_Y \notin \overline{\mathcal{J}_{\ell_p}}(Y)$. Hence, $P_Y \notin (\overline{\mathcal{J}_{P_{\ell_p}}} \vee SS)(d(w, p))$ as desired. \hfill \blacksquare

References

[ACL73] Z. Altshuler, P. G. Casazza, and B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces. Israel J. Math. 15(1973), no. 2, 140–155.
[CL74] P. G. Casazza and B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces II. Israel J. Math. 17(1974), 191–218.
A new complemented subspace for the Lorentz sequence spaces

[He80] S. Heinrich, *Ultraproducts in Banach space theory*. J. Reine Angew. Math. 313(1980), 72–104.

[JL01] W. B. Johnson and J. Lindenstrauss, *Basic concepts in the geometry of Banach spaces*. In: W. B. Johnson and J. Lindenstrauss (eds.), Handbook of the geometry of Banach spaces, Vol. 1, Elsevier, Amsterdam, 2001, pp. 1–84.

[KP62] M. I. Kadec and A. Pelczyński, *Bases, lacunary sequences and complemented subspaces in the spaces L_p*. Studia Math. 21(1962), 161–176.

[KPSTT12] A. Kaminska, A. I. Popov, E. Spinu, A. Tcaciuc, and V. G. Troitsky, *Norm closed operator ideals in Lorentz sequence spaces*. J. Math. Anal. Appl. 389(2012), no. 1, 247–260.

[LLR04] N. J. Laustsen, R. J. Loy, and C. J. Read, *The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces*. J. Funct. Anal. 214(2004), 106–131.

[LT77] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces I, sequence spaces*, Springer, Berlin, 1977.

[Wa20] B. Wallis, *Closed ideals of operators acting on some families of sequence spaces*. Banach J. Math. Anal. 14(2020), no. 1, 98–115.

Division of Math/Science/Business, Kishwaukee College, Malta, IL 60150, USA

e-mail: benwallis@live.com