A comparison of coronary artery stenting with angioplasty for isolated stenosis of the proximal left anterior descending coronary artery: five year clinical follow up

F Versaci, A Gaspardone, F Tomai, I Proietti, A S Ghini, L Altamura, G Andò, F Crea, P A Gioffrè, L Chiariello

Background: Stent implantation for isolated stenosis of the proximal left anterior descending coronary artery (LAD) with preserved left ventricular function has been found to have a better clinical and angiographic outcome at one year than balloon angioplasty (PTCA).

Objective: To establish whether those results are maintained at five year follow up.

Methods: Patients were followed at least every six months. For those who died during follow up, data were obtained from medical records.

Main outcome measures: Freedom from death, non-fatal myocardial infarction, cerebrovascular accident, and repeated target lesion revascularisation. Secondary end points were revascularisation in a remote region and freedom from angina.

Results: Follow up was complete in all patients. At five years, the primary end point was reached more often by patients randomised to stent implantation than to PTCA (80% vs 53%; odds ratio (OR) 0.29 (95% confidence interval (CI) 0.13 to 0.69); p = 0.0034). In the PTCA group, 35% of patients underwent target lesion revascularisation vs 15% in the stent group (OR 0.33, 95% CI 0.13 to 0.80; p = 0.014). There was a trend towards increased mortality in the PTCA group than in the stent group (17% vs 7%; OR 0.36, 95% CI 0.10 to 1.21; p = 0.098). No significant differences were found between PTCA and stent groups for non-fatal myocardial infarction (8% vs 5%; OR 0.58, 95% CI 0.13 to 2.54; p = 0.46) or cerebrovascular accident (2% vs 0%).

Conclusions: In patients with isolated stenosis of the proximal LAD, a five year clinical follow up confirmed a better outcome in those treated with stenting than with PTCA.
in a patient, only the first event was counted for survival analysis.

Statistical analysis

NORMALLY distributed variables are expressed as mean (SD) and were compared using the unpaired Student t test. A χ² test with continuity correction was used to compare proportions. All statistical tests were two tailed. Discrete variables are expressed as percentages and were compared in terms of odds ratio (OR) for stented lesions v balloon dilated lesions, including 95% confidence intervals (CI) calculated by the χ² method and Fisher’s exact test. Differences between the groups were considered significant when the probability value was p < 0.05. Time to first event-free survival after stent implantation or balloon angioplasty was determined by the Kaplan–Meier method and displayed as survival curves. Comparison between curves was carried out using the Cox proportional hazard regression analysis. All statistical analysis was done using Statview (version 5.0) for Windows (SAS Institute Inc).

RESULTS

In-hospital outcome and one year follow up

As previously reported,1 there were no significant differences in baseline clinical or angiographic characteristics between the two groups. Acute angiographic and procedural success rates were similar in the two groups (two patients in the PTCA group crossed over into the stent group because of a limiting dissection). There was no difference in the incidence of major clinical events between the groups during the hospital stay. No patient had cerebrovascular complications. At one year, a primary clinical end point was reached in 65% of the patients in the PTCA group compared with 85% of those in the stent group (OR 0.33, 95% CI 0.13 to 0.81; p = 0.0179).1 The rates of restenosis and target lesion revascularisation were increased in the PTCA group compared with the stent group (40% v 19%, p = 0.02; and 32% v 10%, p = 0.0053, respectively). No differences in mortality (2% v 2%) or non-fatal myocardial infarction (5% v 3%) were observed between the two groups.

Five year follow up

Primary and secondary clinical end points are detailed in tables 2, 3, and 4. All patients enrolled in the study completed the five year follow up. The prevalence of risk factors was similar in patients undergoing PTCA and stent implantation both at baseline and at the five year follow up. Furthermore, the use of β blockers, nitrates, and statins was similar between the groups. Of the 60 patients randomised to stent implantation, 48 (80%) were free of major adverse cardiac events, compared with 32 of the 60 patients (53%) randomised to PTCA (OR 0.29, 95% CI 0.13 to 0.69; p = 0.0034) (fig 1).

A trend towards a higher total and cardiac mortality was observed in patients treated with PTCA than in those treated with stenting (17% v 7%; OR 0.36, 95% CI 0.10 to 1.21, p = 0.098; and 13% v 5%; OR 0.34, 95% CI 0.08 to 1.36, p = 0.12, respectively). There were two additional cases of target lesion revascularisation in the PTCA group (3%) versus three (5%) in the stent group (p = 0.99) (fig 2). No angiographically significant new lesions in the LAD requiring interventional treatment were observed in our patients at follow up. At the five year follow up, 26 patients in the PTCA group (52%) v 41 (73%) in the stent group were free of angina (OR 0.32, 95% CI 0.14 to 0.75; p = 0.075). The need for new revascularisation in a remote region did not differ between groups (5 v 8%; p = 0.46); in particular, it was similar in the diabetic patients in the two groups: one in the stent group and two in the PTCA group (2% v 3%; p = 0.99).

DISCUSSION

Our findings indicate that in symptomatic patients with isolated proximal stenosis of the LAD and preserved left ventricular function, primary stent implantation resulted in a more favourable clinical outcome than PTCA at five years, confirming a persistent benefit of stent implantation over PTCA beyond the first 12 months.

Table 1 Baseline angina characteristics of 120 patients included in intention to treat analysis, according to treatment group

Exertional angina
Class I
Class II
Class III
Class IV
Unstable angina
Class IIb
Class IIIb

Figure 1 Kaplan–Meier event-free survival curves (defined as freedom from death, myocardial infarction, cerebrovascular accident, and target lesion revascularisation) of the two study groups at the five year follow up. At one year, the primary clinical end point was reached in 85% of the patients randomised to stent implantation (solid line) and in 65% of the patients randomised to PTCA (dashed line). The difference in the overall incidence of the primary end point, which was significant at one year, remained its significance at five years (80% in the stent group v 53% in the PTCA group, p = 0.0034).

www.heartjnl.com
So far the longest follow up of patients randomised to PTCA or stent implantation has been in the Benestent-I study. In that study, at the five year follow up there were significant differences between PTCA and stenting for the rate of target lesion revascularisation. Disease progression in non-stented vessels accounted for the majority of late revascularisations. In addition, in a four year follow up Betriu and colleagues showed that most of the repeated procedures (84%) were carried out in the first six months.

Long term follow up of non-randomised trials of patients treated with Palmaz-Schatz stents have confirmed that the progressive increase in repeated revascularisation over longer periods can be attributed to progression of coronary disease at other sites rather than to late impairment of the stented vessel.

In our study, in the time interval between 13 months and five years after the procedure, there were only two additional cases of target lesion revascularisation in the PTCA group (3%) and three (5%) in the stent group, suggesting that the advantage of coronary stenting over PTCA is limited to the first 12 months. Moreover, after the first year, the likelihood of the disease progressing is quite low, and similar between treated and remote coronary vessels.

In our trial we found that the incidence of total and cardiovascular mortality was similar to previous studies, including patients with proximal LAD stenosis undergoing

Table 2 Primary clinical endpoints

Event-free survival	Angioplasty (n = 60)	Stent (n = 60)	p Value	OR	95% CI
1 to 12 months	39 65	51 85	0.0179	0.33	0.13 to 0.81
13 to 60 months	32 53	48 80	0.0034	0.29	0.13 to 0.69

All causes of death	Angioplasty (n = 60)	Stent (n = 60)	p Value	OR	95% CI
1 to 12 months	1 2	1 2	0.99		
13 to 60 months	9 15	3 5	0.08		

| Total | 10 17 | 4 7 | 0.098 | 0.36 | 0.10 to 1.21 |

Cardiac death	Angioplasty (n = 60)	Stent (n = 60)	p Value	OR	95% CI
1 to 12 months	1 2	1 2	0.99		
13 to 60 months	7 12	2 3	0.10		

| Total | 8 13 | 3 5 | 0.12 | 0.34 | 0.08 to 1.36 |

Non-cardiac death	Angioplasty (n = 60)	Stent (n = 60)	p Value	OR	95% CI
1 to 12 months	2* 3	1† 2	0.99		
13 to 60 months	2 3	1 2	0.99		

| Total | 5 8 | 3 5 | 0.46 | 0.58 | 0.13 to 2.54 |

CVA	Angioplasty (n = 60)	Stent (n = 60)	p Value	OR	95% CI
1 to 12 months	0 0	0 0	0.99		
13 to 60 months	1 2	0 0	0.99		

| Total | 1 2 | 0 0 | 0.99 | | |

TLR	Angioplasty (n = 60)	Stent (n = 60)	p Value	OR	95% CI
1 to 12 months	19 32	6 10	0.0053		
13 to 60 months	2 3	3 5	0.99		

| Total | 21 35 | 9 15 | 0.014 | 0.33 | 0.13 to 0.80 |

*Mean (SD).

Table 3 Secondary clinical endpoints (exertional angina class and drug treatments) and risk factors at the five year follow up

Angina class	Angioplasty (n = 50)	Stent (n = 56)	p Value	OR	95% CI
Asymptomatic	26 52	41 73	0.075	0.32	0.14 to 0.75

Exertional angina

Class	Angioplasty (n = 50)	Stent (n = 56)	p Value	OR	95% CI
Class I	13 26	6 11	0.13		
Class II	4 8	3 5	0.13		
Class III	6 12	5 9	0.13		
Class IV	1 2	1 2	0.13		

Unstable angina

Angina class	Angioplasty (n = 50)	Stent (n = 56)	p Value	OR	95% CI
Ejection fraction (%)*	53 (10)	56 (9)	0.16		

Current drugs

Angina class	Angioplasty (n = 50)	Stent (n = 56)	p Value	OR	95% CI
Aspirin	48 96	53 95	0.11		
Ticlopidine	2 4	3 5	0.11		
Calcium antagonists	18 36	18 32	0.11		
Nitric oxide	18 36	16 29	0.11		
HMG-CoA reductase	22 44	24 43	0.11		
Diuretics	3 6	4 7	0.11		
ACE inhibitors	26 52	24 43	0.11		
Diabetes mellitus	8 16	9 16	0.11		
Current smoking	8 18	8 14	0.11		

*Mean (SD).

ACE, angiotensin converting enzyme; CI, confidence interval; HMG CoA, hydroxymethylglutaryl-coenzyme A reductase; LAD, left anterior descending coronary artery; OR, odds ratio.
of patients is mandatory, and a comparison of the results of such treatment with the best surgical treatment is now warranted.

ACKNOWLEDGEMENTS

We are indebted to Mrs Teresa Palumbo, Miss Paola D’Alessandro, Mr Alessandro Pesola, and Miss Fortuna Sciaudone for their competent nursing support.

Authors’ affiliations

F Versaci, A Gaspardone, F Tomai, I Priotto, A S Ghini, L Altamura, G Ando, P A Gioffré, L Chiaro, Division of Cardiac Surgery, Università Tor Vergata, Rome, Italy
F Crea, Institute of Cardiology, Università Cattolica del Sacro Cuore, Rome, Italy

REFERENCES

1 Versaci F, Gaspardone A, Tomai F, et al. A comparison of coronary-artery stenting with angioplasty for isolated lesions of the proximal coronary artery. J Am Coll Cardiol 1997;30:138–44.
2 Kiemeneij F, Serruys PW, Macaya C, et al. Continuing benefit of coronary stenting versus balloon angioplasty: five-year clinical follow-up of Benestent-II trial. J Am Coll Cardiol 2001;37:1598–603.
3 Betria A, Masotti M, Serra A, et al. Randomized comparison of coronary stent implantation and balloon angioplasty in the treatment of the novo coronary artery lesions (START). A four-year follow-up. J Am Coll Cardiol 1999;34:1498–506.
4 Choussat R, Kersy C, Black A, et al. Long-term (>8 years) outcome after Palmaz-Schatz stent implantation. Am J Cardiol 2001;88:10–16.
5 Lahm RJ, Carrozza JP, Berger C, et al. Long-term (4 to 6-year) outcome of Palmaz-Schatz stenting: paucity of late clinical stent-related problems. J Am Coll Cardiol 1999;34:820–6.
6 Kimura T, Yokoi H, Nakagawa Y, et al. Three-year follow-up after implantation of metallic coronary-artery stents. N Engl J Med 1996;334:561–6.
7 O’Keefe JH, Kreeger TR, Jones PG, et al. Isolated left anterior descending coronary artery disease: percutaneous transluminal coronary angioplasty versus stenting versus left internal mammary artery bypass grafting. Circulation 1999;100(suppl II):I-114–18.
8 Jones RH, Kesler K, Phillips HR, et al. Long-term survival benefit of coronary artery bypass grafting and percutaneous transluminal angioplasty in patients with coronary artery disease. J Thorac Cardiovasc Surg 1996;111:1013–25.
9 Greenbaum AB, Califf RM, Jones RH, et al. Comparison of medicine alone, coronary angioplasty, and left internal mammary artery-coronary artery bypass for one-vasal proximal left anterior descending coronary artery disease. J Am Coll Cardiol 2000;36:1322–5.
10 van Dijk D, Tierney AP, Jansen EW, et al. Early outcome after off-pump versus on-pump coronary bypass surgery: results from a randomized study. Circulation 2001;104:1761–6.
11 Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002;346:1773–80.
12 Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 2001;358:527–33.
13 Moliterno DJ, Yakubov SJ, Dilhabest PM, et al. Outcomes at 6 months for the direct comparison of trilobed and afoxbimab during percutaneous coronary revascularisation with stent placement: the TARGET follow-up study. Lancet 2002;360:355–60.
14 Serruys PW, de Feyter P, Macaya C, et al. Fluavastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA 2002;287:3215–22.
15 Gaspardone A, Versaci F, Priore I, et al. Effect of atorvastatin (80 mg) initiated at the time of coronary artery stent implantation on C-reactive protein and six-month clinical events. Am J Cardiol 2002;90:786–9.
16 Versaci F, Gaspardone A, Tomai F, et al. Immunosuppressive therapy for the prevention of restenosis after coronary artery stent implantation (IMPRESS study). J Am Coll Cardiol 2002;40:1935–42.