Research paper

Vezf1 regulates cardiac structure and contractile function

Jere Paavola,1, Tarja Alakoski,1, Johanna Ulvila,1, Teemu Kilpio,1,2, Juuso Sirén,1, Sanni Perttuna,1, Suneeta Narumanchi,1, Hong Wang,1,2, Ruizhu Lin,1,2, Katja Porvarinen,1, Juhani Junttila,1,2, Heikki Huikko,1,2, Katarina Immonen,1, Päivi Lakkisto,1,2, Johanna Magga,1, Ilkka Tikkanen,1,2, Risto Kerkel1

1. Introduction

Cardiovascular diseases are a global health problem and the leading cause of death in the Western world [1]. Sustained increase in cardiac workload, due to cardiovascular pathologies such as systemic hypertension, myocardial infarction (MI) and valvular heart disease, induces cardiac hypertrophy as an adaptive response allowing the heart to maintain cardiac output. Prolonged cardiac hypertrophy, however, predisposes to heart failure, which is characterized by diverse cellular adaptations associated with dysregulation of cardiomyocyte Ca2+ transient kinetics. Gene ontology enrichment analysis indicates that Vezf1 regulates cardiac muscle contraction and dilated cardiomyopathy related genes and we identify cardiomyocyte Myh7/MHC as key target for Vezf1. We further identify a key role for an MCAT binding site in the Myh7 promoter regulating the response to Vezf1 knockdown and show that TEAD-1 is a binding partner of Vezf1.

Transcription factors, such as GATA-4, NKX2.5 and myocyte enhancer factor 2 (MEF2) have been shown to be nodal for cardiovascular development and later identified to play a role in the postnatal heart [4,5]. GATA-4, for example, is highly expressed during development and reactivated during cardiac pathologies regulating both endothelial cell and cardiomyocyte function [6,7]. A gene trap screen for early cardiovascular genes has previously identified a zinc finger transcription factor, Vezf1 [8]. Vezf1 encodes a nuclear protein containing six zinc finger motifs of the C2H2-type (krüppel-like) and a proline-rich transcriptional transactivation domain and it is highly conserved among vertebrates. In embryos, according to its name, Vezf1 has been shown to be expressed in endothelial cells as well as in mesodermal and neuronal tissues [9,10]. In one study, Vezf1 expression has also been detected in various adult human tissues, including the heart [8]. Human Vezf1 (also known as ZNF161 or DB1) functions as a bona fide transcription factor activating the endothelin-1 promoter [11].
Upstream of Vezf1, RhoB-GTP has been shown to regulate VEZF1-mediated transcription [12]. A role for Vezf1 in epigenetic gene regulation has also been suggested [13]. Vezf1-null mice are embryonic lethal, the main defects being in the vascular endothelium [9]. In a genome-wide quantitative trait loci mapping in zebrafish, Vezf1 was identified as a candidate gene causing genetic susceptibility to cardiovascular toxicity induced by dioxin-like compounds, suggesting a role for Vezf1 in the vertebrate heart [14]. The Vezf1 gene is located in the long arm of chromosome 17. Deletions in this area (17q21–17q24) have been reported to result in growth retardation, global developmental delay and specific musculoskeletal defects including congenital heart disease [15]. Overall, Vezf1 is poorly characterized and its possible role in the postnatal heart remains to be determined.

Zebrafish (Danio rerio) is a powerful model for studying the molecular and cellular mechanisms of cardiovascular diseases, as these are highly similar between zebrafish and other vertebrates [16]. Here we set out to investigate the role of Vezf1 in healthy and stressed myocardium. We find that Vezf1 gene expression is decreased in diseased human myocardium and in mouse hearts subjected to MI. Our experimental data shows that Vezf1 is required for hemodynamic stress-induced increase in cardiac growth and contractile function. Vezf1 is expressed in adult cardiomyocytes, binds transcription factor TEAD-1 and directly regulates expression of cardiomyopathy related genes.

Implications of the available evidence
Our data indicates a novel role for Vezf1 in regulating cardiac structure and function and provides a potential therapeutic target for alleviating development of heart failure.

2. Materials and methods

2.1. Human cardiac samples

The human MI samples were obtained from the Fingesture study, which has stored both clinical and autopsy data from sudden cardiac death (SCD) victims between 1998 and 2018 in Northern Finland (n = 4031) [17]. The study complies with the Declaration of Helsinki and was approved by the Ethics Committee of the Northern Ostrobotnia Hospital District. The National Authority for Medicolegal Affairs (Valvira) approved the review of postmortem data by the investigators. All victims were autopsied at the Department of Forensic Medicine, University of Oulu, Oulu, Finland and subjects with a history and findings of diseased coronary arteries at autopsy were considered cases with coronary artery disease. Samples of healthy cardiac tissue were collected from autopsies of traffic accident victims with no evidence of cardiovascular disease. Heart failure-related datasets GSE5406 and GSE1145 were obtained from the Gene Expression Omnibus database.

2.2. Zebrafish

Larvae of the wild-type Turku strain of zebrafish [18,19] were maintained and bred according to Westerfield [20] at the Biomedical Helsinki Zebrafish Unit. 2–4 days post fertilization (dpf) zebrafish were used for the experiments. Zebrafish larvae were maintained in E3 medium (5.0 mM NaCl, 0.4 mM CaCl₂, 0.3 mM MgSO₄ and 0.2 mM KCl) and treated with isoprenaline (Iso) (Sigma-Aldrich, St. Louis, MO) when desired. For heart resection, zebrafish were anesthetized in 0.03% tricaine. Zebrafish without heart resection were euthanized in 0.03% tricaine followed by addition of ice. Experiments on zebrafish were performed in accordance with protocols approved by the National Animal Experiment Board of Finland (ESAVI/4131/04.10.07/2017). Vezf1 splice-blocking morpholino antisense oligonucleotides (SBMO) 5'-CATTGGCCTGCTGGATGGAGAAAGA-3', Vezf1 translation-blocking MO (TBMO) 5'-ATGAACCTCAGCTGGCCATTGC-3' and random control oligo (control) 5'-N were from Gene Tools, LLC (Philomath, OR). Dosage was determined by titration; 3–4 ng for SBMO and 5–7 ng for TBMO. After confirming similar findings with both morpholinos in phenotype as well as in cardiac physiology, experiments were done with SBMOS, as they better allowed simultaneous qPCR experiments. For the rescue experiments 250 pg of capped Vezf1 mRNA was co-injected with SBMO.

2.3. TUNEL

Zebrafish hearts at 4 dpf were dissected, fixed in 4% paraformaldehyde (PFA) and washed for PBS. The samples were stained with ApopTag Red In Situ Apoptosis Detection Kit (Millipore, Burlington, MA). Mef-2 antibody (SC-313, RRID: AB:631,920, Santa Cruz Biotechnology, Dallas, TX) and Dapi (Thermo Fisher Scientific, Waltham, MA). Anti-rabbit Alexa Fluor 488 antibody (A-11,008, RRID: AB:143,165, Thermo Fisher Scientific) was used as secondary antibody. Images were obtained with a Zeiss LSM 880 microscope and classified with ImageJ. Samples were reviewed and classified by ImageJ and quantified with ImageJ 1.43 u software (RRID: SCR_003070, NIH, Bethesda, MD).

2.4. Ventricular cardiomyocyte size and number

Hearts were dissected from 4 dpf zebrafish larvae and fixed in 4% PFA and washed in PBS + 0.1% Triton. Hearts were stained with Mef-2 (SC-313, RRID: AB:631,920) and ZN-5 (RRID: AB:10,013,770, Zebrafish International Resource Center) antibodies overnight at +4 °C. Anti-rabbit Alexa Fluor 594 (A-11,012, RRID: AB:141,359) and anti-mouse Alexa Fluor 488 (A-11,001, RRID: AB:2,534,069, Thermo Fisher Scientific) were used as secondary antibodies. Images were captured with a Zeiss Axioscope Z1 microscope by using a Hamamatsu ORCA-R2 camera (Hamamatsu Photonics, Japan) and quantified with ImageJ. The size of cardiomyocytes in the postnatal heart was determined.

Evidence before this study
Transcription factor Vezf1 has been shown to play an important role in angiogenesis and lymphangiogenesis especially during embryonic development.

Added value of this study
In our study, we find that Vezf1 is necessary for hemodynamic stress-induced increase in cardiac growth and contractile function. Vezf1 is expressed in adult cardiomyocytes, binds transcription factor TEAD-1 and directly regulates expression of cardiomyopathy related genes.

Research in context

Our data indicates a novel role for Vezf1 in regulating cardiac structure and function and provides a potential therapeutic target for alleviating development of heart failure.
2.5. Transmission electron microscopy

Whole zebrafish were fixed in 1% glutaraldehyde and 4% formaldehyde in 0.1 M phosphate buffer, postfixed in 1% osmium tetroxide, dehydrated in acetone and embedded in Epon LX 112 (Ladd Research Industries). Thin sections were cut with a Leica Ultracut UCT ultramicrotome, stained in uranyl acetate and lead citrate and examined in a Philips CM100 transmission electron microscope. The images were captured using a Morada CCD camera (Olympus Soft Imaging Solutions).

2.6. Cardiac physiology and vasculature

The heart function of 2 dpf and 4 dpf larvae was recorded and analyzed from the recorded videos as described earlier [21]. Briefly, larvae were anesthetized in 0.008% tricaine solution and mounted on 3% methylcellulose. Heart and vascular videos were recorded with an Olympus IX70 microscope (Olympus, Tokyo, Japan), a Hamamatsu ORCA-Flash 4.0 camera and HCImage software (RRID:SCR_015041, Hamamatsu Photonics, Shizuoka, Japan) and analyzed with ImageJ. Dieters and distances of vascular structures were measured from the zebrafish trunk from the area where the dorsal aorta (DA) and the posterior cardinal vein (PCV) are parallel. The distance between intersegmental vessels (ISVs) was measured from 3–5 locations of the zebrafish trunk, and the average calculated.

2.7. Ca2+ cycling in zebrafish hearts

For Ca2+ imaging, hearts from 3 dpf larvae were loaded with 55 𝜇M Fura2 (Thermo Fisher Scientific) for 30 min and then de-esterified for 20 min as described [21]. The hearts were perfused with Tyrode’s solution and paced with 10 ms bipolar pulses at 1.25 Hz by using a SIU-102 Stimulus Isolation Unit (Warner Instruments, Hamamatsu Photonics, Shizuoka, Japan) and analyzed with ImageJ. Optical fluorescence signals were substracted before quantifying the fluorescence in relation to baseline fluorescence (F1/F0). Resting Ca2+ concentration and Ca2+ transient amplitude are presented as Fura2 340/380 ratio units. Data were analyzed with HCImage and Axon Clampfit 9.2 (Molecular Devices, San Jose, CA) softwares. Only hearts that appeared unharmed after isolation and showed spontaneous beating with normal atrioventricular conduction were included in the analyses.

2.8. Neonatal rat ventricular cardiomyocytes

Neonatal rat ventricular cardiomyocytes (NRVMs) were isolated from 2 to 4-day old Sprague-Dawley (SD) rats. Rats were euthanized by quick decapitation and ventricles were collected into 2 mg/ml collagenase type 2 solution (Worthington, Lakewood, NJ) prepared in 1xPBS with 50 𝜇M CaCl2. The heart fragments were incubated for 5 min at +37 °C with stirring, and thereafter the collagenase solution was discarded. 5 ml of collagenase solution was added and incubated for 20 min at +37 °C with stirring and the collagenase solution was collected through 100 𝜇m nylon cell strainer (BD, Franklin Lakes, NJ) to DMEM/F-12 (Sigma-Aldrich) containing 30% fetal bovine serum (Thermo Fisher Scientific) and 1% penicillin-streptomycin (PS). This process was repeated 5 times. The cells were next pelleted (200 g, 5 min) and washed with DMEM/F-12 supplemented with 10% FBS and 1% PS. To reduce the number of contaminating non-muscle cells, the cells were pre-plated onto culture dishes (BD) for 2 h at 37 °C in humidified atmosphere with 5% CO2. Isolated NRVMs were plated and incubated in DMEM/F-12 supplemented with 10% FBS and 1% PS overnight. siRNA transfections were performed one day after cell isolation and experiments were started 2–4 days after transfection. For hypoxia experiments, four days after siRNA transfections cells were incubated in DMEM supplemented with 10 mM deoxyglucose and 1 mM sodium dithionite (Honeywell-Fluka, Morris Plains, NJ), and kept in a C-Chamber (BioSpherix, Parish, NY) and oxygen levels controlled at 0.1% with a ProOx C21 controller (BioSpherix). Control (normoxia) cells were incubated in DMEM (Thermo Fisher Scientific) supplemented with 10 mM glucose.

2.9. Adult ventricular cardiomyocytes

Mouse ventricular cardiomyocytes, cardiac endothelial cells and fibroblasts were isolated from 8-week old c57BL/6 mice as described previously [22]. Adult rat ventricular cardiomyocytes (ARVMs) were isolated from 8–12 weeks old male SD rats by retrograde perfusion and enzymatic digestion using collagenase type 2 (Worthington) as previously described [23]. After 2 h incubation, non-attached cells were gently removed and cells were transfected with desired siRNAs. Experiments were started 24–48 h after transfection. Ca2+ transients from cultured ARVMs were measured as previously described [24]. For measurement of adult rat cardiomyocyte size, isolated ARVMs were plated on laminin coated glass chamber slides and treated with isoprenaline (1 𝜇M) when appropriate. For measurement of cardiomyocyte size, cells were fixed with 4% paraformaldehyde, blocked with 10% PBS in PBS and stained with Alexa Fluor 488 Phalloidin (Thermo Fisher Scientific). The cells were viewed with a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan), and captured with an ORCA-Flash 4.0 camera and NIS-Elements AR 4.30.01 software (RRID: SCR_014329, Nikon). Only rod-shaped cardiomyocytes were measured.

2.10. RNA interference

Specific Vezf1 siRNAs (Vezf1A 5 ’-CCCAAACULUCUUUCUGUCUt-3’ and Vezf1B 5 ’-GCUAAGUACUAACACUGUTt-3’), Tead1 siRNAs (Tead1A 5 ’-AGACCGAGUACCGAGUUUU-3’ and Tead1B 5 ’-GAGUACCGAGUACCGAGUUt-3’) and negative control siRNA (SIC001, Sigma-Aldrich) were transfected into the NRVMs and ARVMs at 100 nM concentration by using Lipofectamine 2000 (Thermo Fisher Scientific) as transfection reagent. During transfections NRVMs were incubated in Opti-MEM® I (Thermo Fisher Scientific) for 24 h and thereafter the cells were incubated in serum free medium. ARVMs were transfected for 18 h and thereafter incubated in cMEM (Thermo Fisher Scientific) supplemented with Earle’s salt containing 0.01% BSA, 10 mM HEPES, 1 x insulin-transferrin-selenium, 10 mM BDM, 2 mM l-glutamine and 1% PS.

2.11. Plasmids

β-MHC promoter luciferase reporter constructs were a kind gift from Fadia Haddad and are previously described [5]. The activities of β-MHC promoter luciferase reporter and Renilla luciferase plasmids were analyzed using Dual-luciferase Reporter Assay System (Promega, Madison, WI) 48 h after transfection. For Vezf1 expression plasmid, coding sequence of mouse Vezf1 (NM_016686.4) was cloned into pcDNA3.1 vector using BamHI cloning site. An empty pcDNA3.1 vector was used as control. Plasmids were transfected into the NRVMs and ARVMs using Lipofectamine 2000 as transfection reagent.

2.12. RNA isolation, cDNA synthesis and qRT-PCR analysis

Trizol (Thermo Fisher Scientific) was used for isolation of RNA from human cardiac tissue samples and an EZNA Total RNA kit I (Omega Bio-tek, Norcross, GA) from isolated cardiomyocytes and from crushed zebrafish larvae. Nuclease-Free water (Thermo Fisher Scientific) was used to dissolve the RNA pellets or eluate the RNA from isolation columns when using the EZNA kit. For cDNA synthesis Transcriptor first strand cDNA synthesis kit (Roche, Basel, Switzerland) was used according to manufacturer’s instructions. The relative mRNA levels were
analyzed with quantitative RT-PCR (qRT-PCR). When using fluorogenic probes, the qRT-PCR reaction mixtures contained 1 μl of the fluorogenic probe (Sigma-Aldrich), 2.5 μl of each forward and reverse primer (5 μM stock, Sigma-Aldrich), 2 μl of nuclease-free water (Thermo Fisher Scientific) and 12.5 μl of Fast Start Universal Probe Master (Roche). When using SYBR reagent, the qRT-PCR reaction mixtures contained 2.5 μl of each forward and reverse primer, 2.5 μl of nuclease-free water (2 μM stock, Thermo Fisher Scientific) and 12.5 μl of SYBR Green PCR Master Mix (Thermo Fisher Scientific). For the qRT-PCR plate, 20 μl of the qRT-PCR reaction mix was added together with 5 μl of template cDNA. The sequences of the forward and reverse primers and the fluorogenic probes used for gene-specific cDNA detection are listed in Table S1. The qRT-PCR analyses were done with a 7300 Real Time PCR System (Thermo Fisher Scientific).

2.13. Protein isolation, immunoprecipitation and immunoblotting

Rat cardiac cells and rat left ventricular tissue samples were lysed into 20 mM Tris–HCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton-X100, 2.5 mM sodium pyrophosphate, 1 mM b-glycerophosphate and 1 mM Na3VO4 (pH 7.5) supplemented with 1 mM 1,4-dithiothreitol, 50 mM sodium fluoride, 1:100 protease inhibitor cocktail 1 (Sigma-Aldrich) and 1:100 phosphatase inhibitor cocktail 3 (Sigma-Aldrich). For immunoprecipitation a Pierce Crosslink IP Kit was used according to manufacturer’s instructions (Thermo Fisher Scientific). 250 μg of total protein from rat left ventricular samples was immunoprecipitated with 5 μg of Vezf1 antibody (RRID: AB_10606448, SAB2102675, Sigma-Aldrich). Cell lysates and immunoprecipitation eluates were loaded on SDS–PAGE (12%) and transferred to nitrocellulose membranes using Trans-Blot TurboTM Transfer Kit (BIO-RAD, Hercules, CA) together with Trans-Blot TurboTM Transfer System (BIO-RAD) according manufacturer’s instructions. The membranes were then blocked with 1:1 ratio of Odyssey® Blocking Buffer (LI-COR Biosciences, Lincoln, NE) and TBS-Tween buffer (50 mM Tris base, 200 mM NaCl, 0.05% Tween 20, pH 7.4) for 1 h at room temperature (RT). Primary antibody incubations were performed in 1:1 ratio of Odyssey® Blocking and TBS-Tween buffer, overnight at +4 °C. Primary antibodies used were 1:1000 λ-MHC (MAB1628, RRID: AB_2,282,287, Merck, Darmstadt, Germany), 1:1000 skeletal alpha actin (Ska, ab28052, RRID: AB_867,491, Abcam, Cambridge, United Kingdom), 1:1000 atrial natriuretic peptide (ANP, custom made), 1:2000 Vinculin (ab18058, RRID: AB_444,215, Abcam), 1:500 TEAD-1 (610,922, RRID: AB_398,237, BD) and 1:1,000,000 glyceraldehyde 3-phosphate dehydrogenase (GAPDH, MAB374, RRID: AB_2,107,445, Millipore). The following day, membranes were washed three times and incubated with appropriate secondary antibody in 1:1 ratio of Odyssey® Blocking and TBS-Tween buffer for 1 h at RT. The secondary antibodies used were 1:5000 Alexa Fluor 680 (A21076, RRID: AB_2,535,736, Thermo Fisher Scientific) and 1:5000 Alexa Fluor 790 (A11371, RRID: AB_2,534,144, Thermo Fisher Scientific). Odyssey Fc Imaging System (LI-COR Biosciences) and Image Studio 4.0 software were used to visualize the blots.

2.14. RNA sequencing analysis

RNA sequencing of RNA samples from neonatal rat ventricular cardiomyocytes was performed by the Finnish Microarray and Sequencing Centre’s (Turku centre for Biotechnology, Turku, Finland) analysis service. All the analyses were performed with R language and environment for statistical computing version 3.2 (2015–04–16) and the bioinformatics related Bioconductor module version 3.2.

2.15. Statistical analysis

Data presentations were drawn and statistical analyses were performed using GraphPad Prism6 (California, United States). Data in the graphs are presented as mean ± SD. Normally distributed data was analyzed with Student’s T-test or in case of multiple groups, with one-way ANOVA followed by Tukeys post hoc test. If normality was not possible to verify, data was analyzed with Mann Whitney U test in case of two groups and with Kruskal-Wallis followed by Dunn’s post hoc test in case of three or more groups. P < 0.05 was considered significant.

3. Results

3.1. Vezf1 expression is decreased in diseased human myocardium

To determine the potential role for Vezf1 in human cardiac disease, we analyzed two different microarray data sets of human heart failure samples (accession numbers GSE5406 and GSE1145) comparing healthy donor hearts to ischemic and idiopathic cardiomyopathy transplantation hearts. We found that Vezf1 expression is decreased by 20% (P < 0.05) and by 25% (P < 0.01) in idiopathic cardiomyopathy, and by 25% (P < 0.01) and 16% (P = 0.07) in ischemic cardiomyopathy compared to the control hearts in GSE5406 and GSE1145, respectively (Fig. 1A). To confirm the findings from the microarray data sets, we analyzed for Vezf1 gene expression in hearts of SCD victims with ischemic heart disease. Heart samples of age-matched victims of traffic accidents without a history or post mortem evidence of cardiovascular disease served as controls. We found that Vezf1 expression is decreased by 43% in hearts of SCD cases with ischemic heart disease compared to control hearts (Fig. 1B, P < 0.05). We then analyzed for Vezf1 expression in hearts of mice subjected to experimental heart failure models and found that LV Vezf1 expression is decreased at 3, 5 and 7 days after MI, but no difference is observed at 5 or 10 weeks after MI (Fig. 1C).

3.2. Vezf1 regulates vasculogenesis and angiogenesis

To investigate the role of Vezf1 in cardiovascular biology, we used morpholin (MO) antisense oligonucleotides to deplete Vezf1 in zebrafish. Microinjection of zebrafish embryos with SBMO antisense oligonucleotides resulted in 95% decrease in Vezf1 expression at 1 dpf (p < 0.0001). Molecular mechanisms regulating vessel formation in zebrafish are highly similar to those in humans and optical transparency of developing zebrafish allows high-resolution optical imaging of vascular structures [26]. Analysis of vascular structures in zebrafish at 4 dpf shows that Vezf1 knockdown has no effect on DA and PCV diameters and reverse primers and the fluorogenic probes used for gene-specific cDNA detection are listed in Table S1. The qRT-PCR analyses were done with a 7300 Real Time PCR System (Thermo Fisher Scientific).
ventricular size at 2 dpf and completely abolishes the isoprenaline-induced increase in ventricular diastolic area at 4 dpf (Fig. 4B). Vezf1 knockdown does not affect cardiac systolic function analyzed at 2 dpf and 4 dpf, but abrogates the isoprenaline-induced enhancement of cardiac contractile function at 4 dpf (Fig. 4C and D). Ventricular relaxation is prolonged in Vezf1 KD hearts at 2 dpf and Vezf1 knockdown also inhibits the isoprenaline-induced shortening of the relaxation time at 4 dpf (Fig. 4E). The defects in isoprenaline-induced ventricular growth and contractility in Vezf1 KD zebrafish culminate in marked decreases in both stroke volume and cardiac output compared to control hearts (Fig. 4F and G). Injection of capped Vezf1 RNA results in full or partial rescue of the phenotype induced by Vezf1 knockdown (Fig. 4B–G). We then performed Ca²⁺ imaging on 3 dpf isolated zebrafish hearts using Fura2 as calcium indicator. We found Vezf1 KD and control MO ventricles to show similar resting Ca²⁺ concentration, Ca²⁺ transient amplitude, and Ca²⁺ transient decay time (Fig. 4H). No significant arrhythmias were observed.

3.5. Vezf1 is expressed in adult cardiomyocytes and regulates cardiomyocyte growth and shortening

We thus observed that Vezf1 knockdown in zebrafish resulted in reduced cardiac growth and lack of contractile response to β-adrenergic stress, whereas no difference was observed in Ca²⁺ kinetics. This prompted us to investigate if Vezf1 could serve a direct role in cardiomyocytes. Data derived from studies of embryonic mouse tissues suggest that Vezf1 is primarily expressed in endothelial cells [8]. To investigate if Vezf1 is expressed in adult cardiomyocytes, we fractionated resident cardiac cells from adult mouse myocardium to obtain endothelial cell, fibroblast and cardiomyocyte fractions. qRT-PCR analysis for expression of eNOS, Col1A1 and α-MHC indicated high purity of fractioned endothelial cells, fibroblasts and cardiomyocytes, respectively (Fig. 5A). qRT-PCR analysis for Vezf1 in resident cardiac cells shows that Vezf1 is expressed equally in all three resident cardiac cell types (Fig. 5B).

To study the biological function of Vezf1 in cardiomyocytes, we depleted Vezf1 in adult rat ventricular cardiomyocytes by RNAi, which resulted in 70% decrease in Vezf1 mRNA level compared to the control siRNA treated cells (Fig. 5C, p < 0.0001). Microscopy analysis of cardiomyocyte size shows that depletion of Vezf1 by two different siRNAs significantly attenuates isoprenaline-induced increase in cardiomyocyte size (Fig. 5D). Vezf1 siRNA treated cardiomyocytes also display significantly shorter sarcomere length compared to control cells after 24 h of isoprenaline treatment (Fig. 5E). We then analyzed the effect of Vezf1 depletion on Ca²⁺ handling in isolated cardiomyocytes. Similar to findings in zebrafish in vivo, Vezf1 knockdown in adult rat cardiomyocytes has no effect on Ca²⁺ transient kinetics (Fig. 5F). However, Vezf1 knockdown significantly attenuated cardiomyocyte shortening (Fig. 5F). While Vezf1 knockdown in zebrafish did not induce apoptosis at baseline or following hemodynamic stress, we addressed the role of Vezf1 in regulating cardiomyocyte viability under hypoxic stress. We found that Vezf1 depletion has no effect on cardiomyocyte viability in normoxic conditions and analysis for cardiomyocyte death immediately after 4 h of hypoxia, or after 5 h or 24 h reperfusion shows no difference between the Vezf1 siRNA and control siRNA treated cells (Fig. 5G).

3.6. Vezf1 regulates cardiomyopathy related genes

To identify the molecular targets of Vezf1 in cardiomyocytes, we performed RNA sequencing analysis of samples from Vezf1 siRNA treated NRVMs. We found that Vezf1 silencing resulted in significant regulation of 1144 transcripts (FDR < 0.05, ArrayExpress accession E-MTAB-7124). 28 transcripts were upregulated and 53 transcripts downregulated by more than 2-fold (FDR < 0.05, Table S2). KEGG pathway analysis of the differentially expressed genes identified 14
gene functions including cardiac muscle contraction and dilated cardiomyopathy. The only pathway significantly enriched in Reactome pathway analysis was muscle contraction. Among the genes most significantly regulated by Vezf1, were cardiac muscle contraction and cardiomyopathy related genes Myh7 (b-MHC), Atp1a2, and Acta1 (Ska) (Table S2). qPCR analysis of RNA samples from NRVMs confirmed that transcription of Myh7 and Atp1a2 were decreased and Ska mRNA levels were increased in response to Vezf1 knockdown (Fig. S5). RNA sequencing further showed that a number of MCAT element containing genes were significantly regulated by Vezf1 in rat cardiomyocytes, including Myh7, Atp1a2, Tcap, Myh11, Cacng7, Acta1, Tnnc2, MYH6, cardiac troponin T and cardiac troponin C (Table S2, ArrayExpress accession E-MTAB-7124).

To investigate if Vezf1 knockdown affects stress-induced expression of cardiomyopathy related genes, we treated NRVMs with isoproterenol for 24 h. We found that knockdown of Vezf1 in NRVMs prevented both basal and isoproterenol-induced expression of b-MHC (Fig. 5G). Vezf1 silencing enhanced isoproterenol-induced skeletal alpha actin (Acta1, Ska) expression, but had no effect on either basal or isoproterenol-induced expression of ANP (Fig. 5G).
To investigate whether Vezf1 targets the same genes in zebrafish, qPCR analysis of zebrafish samples at 1 dpf showed that Vezf1 knockdown decreased expression of vMHC (zebrafish orthologue for β-MHC) by 92% compared to controls (Fig. S6). Expression of Ska, on the other hand, was significantly increased in Vezf1 KD zebrafish hearts (Fig. S6). Consequently, the vMHC/Ska mRNA ratio was diminished in hearts of Vezf1 KD zebrafish (Fig. S6).

3.7. Vezf1 regulates β-MHC promoter luciferase reporter

To evaluate if Vezf1 regulates β-MHC promoter activity, NRVMs were co-transfected with five different β-MHC promoter luciferase reporter constructs (−171 to −3500 bp) together with Vezf1 siRNA or control siRNA. We found that Vezf1 siRNA treatment decreases the relative luciferase activity of β-MHC promoters by 52–80% with the most pronounced effect in the −408 β-MHC reporter construct (Fig. 6A). The five β-MHC promoter luciferase reporter constructs (−171 to −3500 bp) were then co-transfected with mouse Vezf1 plasmids or empty pGL3-basic plasmids. We found that overexpression of Vezf1 leads to a significant increase in the activity of the −914 β-MHC and −3500 β-MHC promoter luciferase constructs (Fig. S7). Overexpression of Vezf1 also results in an increase in cardiomyocyte size and augments β-MHC expression, but that did not reach significance (Fig. S7).

3.8. Vezf1 targets an MACT binding site within the β-MHC promoter and interacts with TEAD-1

To investigate the mechanism by which Vezf1 regulates β-MHC gene expression, we performed mutational analysis of the −408 β-MHC promoter construct. As RNA sequencing identified a number of genes with MCAT binding sites regulated by Vezf1, we utilized two −408 β-MHC promoter constructs with MCAT site mutations (Δβe2 and Δβe3) [26,27]. In addition, a −408 β-MHC promoter construct with mutation of a constitutive repressive site was utilized (Δβe1) [27]. The activities of the mutated −408 β-MHC promoter constructs were then investigated in control siRNA and Vezf1 siRNA treated NRVMs. In control siRNA treated NRVMs, the Δβe1 construct shows 90% increase in activity compared to the wild-type −408 β-MHC promoter construct (Fig. 6B), whereas the Δβe2 and Δβe3 constructs show 40–50% decrease in luciferase activity. In Vezf1 siRNA treated NRVMs, responses to Δβe1 and Δβe2 mutations are similar to those of control siRNA treated cells (Fig. 6C). However, unlike control siRNA treated cells, the mutation of an MCAT binding site at −211 to −189 (Δβe3) has no effect in Vezf1 silenced cells. These data thus indicate that Vezf1 targets the βe3 site of the β-MHC promoter. Comparisons of the relative responses to the −408 β-MHC promoter mutations in control siRNA and Vezf1 siRNA treated cells are shown in Fig. 6D. MCAT motifs in the Myh7 gene are binding sites for transcriptional enhancer factors (TEADs/TEFs) [28]. To investigate whether Vezf1 regulation of Myh7 involves binding of Vezf1 to TEFs, we immunoprecipitated rat LV lysates with Vezf1 antibody and analyzed for co-immunoprecipitation of TEF factors. We found that Vezf1 binds TEAD-1 in hearts in vivo (Fig. 6E). The specificity of the 40 kD TEAD-1 band was further confirmed by knockdown of TEAD-1 with two different siRNAs in neonatal rat cardiomyocytes (Fig. 6F).

4. Discussion

Vezf1 has previously been associated with regulation of endothelial cell function. However, the role of Vezf1 in cardiac biology remains unknown. In the current study, we found that Vezf1 expression is decreased in LV samples of patients with idiopathic and ischemic cardiomyopathy, and in mice subjected to experimental MI. Studies in zebrafish show that Vezf1 is necessary for isoprorenaline-
induced compensatory ventricular hypertrophy and increase in ventricular systolic function. Analysis of cardiac tissues showed that Vezf1 knockdown decreases cardiomyocyte size, but does not affect cardiomyocyte viability. In agreement with findings in zebrafish, Vezf1 depletion in isolated cardiomyocytes has no effect on cardiomyocyte viability, but decreases cardiomyocyte shortening and cardiomyocyte growth in response to isoprenaline. The defective contractile response to isoprenaline stimuli in zebrafish prompted us to investigate if Vezf1 knockdown affects Ca\(^{2+}\) cycling. However, Vezf1 knockdown either in zebrafish or in isolated cardiomyocytes did not affect Ca\(^{2+}\) transient kinetics.

Analysis for Vezf1 target genes identified Myh7 as a key regulatory target in cardiomyocytes and this was further confirmed with a notable reduction in Myh7/\(\beta\)-MHC expression at the protein level. Strikingly, analysis for zebrafish ventricular MHC (vMHC) expression at 1 dpf (when Vezf1 deletion had not yet induced a cardiac phenotype) showed 92% reduction in vMHC expression. In zebrafish, vMHC is the likely orthologue of the mammalian \(\beta\)-MHC/Myh7, with its
Fig. 5. Vezf1 is expressed in adult cardiomyocytes and regulates cardiomyocyte growth and cardiomyopathy related genes. (A) qRT-PCR analysis of the expression of endothelial nitric oxide synthase (eNOS), collagen type I alpha 1 chain (Col1a1), and alpha myosin heavy chain 6 (α-MHC) mRNAs in pools of fractionated resident mouse cardiac cells. eNOS, Col1a1 and α-MHC were used as markers for endothelial cells (Endo), fibroblasts (Fibro), and cardiomyocytes (Myo), respectively. n = 5. (B) qPCR analysis of Vezf1 mRNA levels in cardiomyocytes and fibroblasts relative to that in the endothelial cells. n = 5. (C) Adult rat ventricular cardiomyocytes were transfected with Vezf1 siRNA (100 nM) or Control siRNA (100 nM) and 3 days later RNA samples were collected. Shown is qRT-PCR analysis for expression of Vezf1. Results are normalized to expression of 18S (18S ribosomal RNA); n = 6. (D and E) Adult rat ventricular cardiomyocytes were transfected with two distinct Vezf1 siRNAs (100 nM) or Control siRNA (100 nM) and 1 day later cells were stimulated with isoproterenol (Iso, 1 μM) for 48 h where indicated. (D) Shown is microscopy analysis for cardiomyocyte size. Ctrl siRNA n = 8, Vezf1 A siRNA n = 9, Vezf1 B siRNA n = 10; Ctrl siRNA + Iso n = 10, Vezf1 A siRNA + Iso n = 15, Vezf1 B siRNA + Iso n = 13. (E) Shown is microscopy analysis for sarcomere length (μm). Ctrl siRNA n = 14, Vezf1 A siRNA n = 18; Ctrl siRNA + Iso n = 22, Vezf1 B siRNA + Iso n = 25. (F) Neonatal rat ventricular cardiomyocytes were transfected with Vezf1 siRNA (100 nM) or control siRNA (100 nM) and 2 days later cells were treated with Iso (1 μM) for 24 h. Shown is qRT-PCR analysis for expression of Vezf1, β-MHC (myosin heavy chain beta-subunit), Ska (skeletal alpha actin), ANP (atrial natriuretic peptide) and β-MHC versus Ska ratio. Results are normalized to expression of 18S (18S ribosomal RNA); n = 4. (H-I) Neonatal rat ventricular cardiomyocytes were transfected with Vezf1 siRNA (100 nM) or control siRNA (100 nM) and 3 days later cells were treated with either vehicle, phenylephrine (PE, 100 μM) or basic fibroblast growth factor (FGF, 20 ng/ml) for 48 h. (H) Shown is immunoblot analysis for β-MHC, ANP, GAPDH, Ska and Vinculin. (I) Shown is β-MHC versus Ska ratio from immunoblot quantification. n = 4. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as mean ± SD.
Fig. 6. Vezf1 targets an MCAT binding site within β-MHC promoter and interacts with TEAD-1. (A) Neonatal rat ventricular cardiomyocytes (NRVMs) were transfected with β-MHC promoter (−171 to −3500 bp) luciferase reporter constructs together with Vezf1 siRNA (100 nM) or control siRNA (100 nM). 3 days later, relative luciferase activities were analyzed. Firefly luciferase activities were normalized to renilla luciferase activity and expressed as relative to the activity of respective β-MHC promoter luciferase construct treated with control siRNA. n = 4. (B–D) NRVMs were transfected with an intact −408 β-MHC promoter construct or with −408 β-MHC promoter construct containing either Δβe1, Δβe2 or Δβe3 mutation together with (B) control siRNA (100 nM) (n = 6–8) or (C) Vezf1 siRNA (100 nM) (n = 3–7). 3 days later, relative luciferase activities of the different lengths of β-MHC promoter constructs were analyzed. Firefly luciferase activities were normalized to renilla luciferase and the data are expressed as relative to that of the wild-type −408 β-MHC promoter construct activity. (D) Comparison of relative change in luciferase activity of −408 β-MHC Δβe1, Δβe2 or Δβe3 promoter construct to that of wild-type −408 β-MHC promoter luciferase construct in control siRNA and Vezf1 siRNA treated cells. n = 3–8. (E) Adult rat left ventricular (LV) tissue samples were immunoprecipitated with Vezf1 antibody or control IgG. Shown is immunoblot analysis for Transcription enhancer factor-1 (TEAD-1) in immunoprecipitates and LV lysates. (F) NRVMs were transfected with two distinct TEAD-1 siRNAs (100 nM) or control siRNA (100 nM) and 3 days later protein samples were collected. Shown is immunoblot analysis for TEAD-1 in rat LV lysates and in NRVMs. *P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as mean ± SD.
Interaction of Vezf1 with TEAD-1 actually indicates that cell type-specific transcriptional cofactors participate in Vezf1-mediated transcriptional regulation.

In summary, our data shows that in addition to regulating angiogenesis, Vezf1 is expressed in cardiomyocytes and directly regulates genes involved in cardiac contractile function and dilated cardiomyopathy. We further find that zebrafish Vezf1 is necessary for hemodynamic stress-induced increase in cardiac contractile function and loss of Vezf1 results in greater propensity towards heart failure. Molecular analysis for Vezf1 function in cardiomyocytes identifies TEAD-1 as a binding partner of Vezf1. These data thus identify previously unappreciated biological functions for Vezf1 in cardiomyocytes. However, further studies are needed to evaluate the significance of decreased Vezf1 expression in diseased human myocardium and to understand cell type-specific effects of Vezf1 in the adult heart.

Acknowledgments

We thank Marja Arbelius, Kirsi Salo; Ilkka Miinalainen and staff of the BCO Electron Microscopy Core; and staff of the Zebrafish Unit and the Biomedicum Imaging Unit for excellent technical assistance.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.ebiom.2019.102608.

References

[1] Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017;70(1):1–25.
[2] van Berlo JH, Maillet M, Molkenst JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 2013;123(1):37–45.
[3] Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiovascular function: maintenance of cardiac function and causative roles in heart failure. Circ Res 2014;114(3):565–71.
[4] Pikkarainen S, Tokola H, Kerkela R, Ruskoaho H. GATA transcription factors in the cardiovascular system. J Bio Med 2004;63(2):196–207.
[5] Akazawa H, Komuro I. Cardiac transcription factor Csx/Nkx2-5: its role in cardiac development and diseases. Pharmacol Ther 2005;107(2):252–68.
[6] Oka T, Mailler M, Watt AJ, et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 2006;98(6):837–45.

[7] Heinkele J, Auger-Messier M, Xu J, et al. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest 2007;117(11):3198–201.

[8] Xiong JW, Leahy A, Lee HH, Stuhlmann H. Vezf1: a zinc finger transcription factor restricted to endothelial cells and their precursors. Dev Biol 1999;206(2):123–41.

[9] Kuhnert F, Campagnolo L, Xiong JW, et al. Dosage-dependent requirement for mouse Vezf1 in vascular system development. Dev Biol 2005;283(1):140–56.

[10] Zou Z, Ocaya PA, Sun H, Kuhnert F, Stuhlmann H. Targeted Vezf1-null mutation impairs vascular structure formation during embryonic stem cell differentiation. ArteriosclerThrombVascBiol 2010;30(7):1378–88.

[11] Aitsebaomo J, Kingsley-Kallesen ML, Wu Y, Quertermous T, Patterson C. Vezf1/DB1 is an endothelial cell-specific transcription factor that regulates expression of the endothelin-1 promoter. J Biol Chem 2001;276(42):39197–205.

[12] Gerald D, Adini I, Shechter S, et al. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. NatCommun 2013;4:2824.

[13] Gowher H, Stuhlmann H, Felsenfeld G. Vezf1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt3b. Genes Dev 2008;22(15):2075–84.

[14] Waits ER, Nebert DW. Genetic architecture of susceptibility to PCB126-induced developmental cardiotoxicity in zebrafish. ToxSci 2011;122(2):466–75.

[15] Mickelson EC, Robinson WP, Hrynchak MA, Lewis ME. Novel case of del(17)(q23.1q23.3) further highlights a recognizable phenotype involving deletions of chromosome 17(q21q24). Am J Med Genet 1997;71(3):275–9.

[16] Gut P, Reischauer S, Stanier DYR, Arnaut R. Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol Rev 2017;97(3):889–938.

[17] Hookana E, Junttila MJ, Ikkonen KS, et al. Comparison of family history of sudden cardiac death in nonsmoking and ischemic heart disease. Circ Arhythm Electrophysiol 2012;5(4):757–61.

[18] Sundvik M, Kudo H, Toivonen P, Rovoz S, Chen YC, Panula P. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. PASEB 2011;25(12):4338–47.

[19] Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminoergic systems in zebrafish (Danio rerio). J Comp Neurol 2001;440(4):342–77.

[20] Wester K, Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminoergic systems in zebrafish (Danio rerio). 4th editor Eugene: University of Oregon Press; 2000.

[21] Dash SN, Narumanchi S, Paavola J, et al. Sept7b is required for the subcellular organization of cardiomyocytes and cardiac function in zebrafish. Am J Physiol Heart Circ Physiol 2017;312(5):H1085–95.

[22] Kerkela R, Karikas S, Stabio Z, et al. Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. MolCell Biol 2013;33(16):3321–9.