Bubble Planner: Planning High-speed Smooth Quadrotor Trajectories using Receding Corridors

Yunfan Ren*, Fangcheng Zhu*, Wenyi Liu, Zhepei Wang, Yi Lin, Fei Gao and Fu Zhang

Abstract—Quadrotors are agile platforms. With human experts, they can perform extremely high-speed flights in cluttered environments. However, fully autonomous flight at high speed remains a significant challenge. In this work, we propose a motion planning algorithm based on the corridor-constrained minimum control effort trajectory optimization (MINCO) framework. Specifically, we use a series of overlapping spheres to represent the free space of the environment and propose two novel designs that enable the algorithm to plan high-speed quadrotor trajectories in real-time. One is a sampling-based corridor generation method that generates spheres with large overlapped areas (hence overall corridor size) between two neighboring spheres. The second is a Receding Horizon Corridors (RHC) strategy, where part of the previously generated corridor is reused in each replan. Together, these two designs enlarge the corridor spaces in accordance with the quadrotor’s current state and hence allow the quadrotor to maneuver at high speeds. We benchmark our algorithm against other state-of-the-art planning methods to show its superiority in simulation. Comprehensive ablation studies are also conducted to show the necessity of the two designs. The proposed method is finally evaluated on an autonomous LiDAR-navigated quadrotor UAV in woods environments, achieving flight speeds over 13.7 m/s without any prior map of the environment or external localization facility.

I. INTRODUCTION

Quadrotors are proved to be one of the most agile platforms which perform increasingly complex missions in different scenarios. However, high-speed flight in unknown environments is still an open problem. The limits on payload and onboard sensing make this task especially challenging for aerial robots [1]. To achieve high-speed flights, trajectory planning is of vital importance to ensure the safety (i.e., collision avoidance [2]), smoothness, and fast maneuvers facing unknown obstacles.

High-speed trajectory planning in unknown environments is a great challenge, especially in the replanning phase where the high quadrotor speeds require extremely agile maneuvers to avoid newly-sensed obstacles. Existing (re-)planning methods [3, 4, 5] typically consist of a frontend that aims to find a guiding path (or flight corridor) and a backend that smooths the trajectory around the guiding path (or optimizes a smooth trajectory within the corridor). The main difficulty in this framework is how to design the frontend such that the replanned guiding path (or flight corridor) is feasible: at least one dynamically-feasible and obstacle-free solution can be found in the backend optimization. A poorly-designed frontend may leave too little space for the quadrotor to avoid obstacles (e.g., decelerate or make turns), hence leaving no dynamically feasible solution in the subsequent trajectory optimization. Another difficulty is the backend optimization, which needs to perform both temporal and spatial deformation in an efficient manner such that the maximal speed can be attained.

In this paper, we propose a robust and efficient motion planning algorithm to address the above issues systematically. The overall algorithm is based on a corridor approach. In the backend, we adopt a state-of-the-art minimum control effort optimization (MINCO) framework [8] to deform the trajectory temporal and spatial parameters efficiently. Our contribution in this paper mainly lies in the frontend, including:

1) A novel sampling-based corridor generation method that preserves large corridor volume by considering the size of each sphere and their overlapped spaces. The increased corridor volume allows more space for the quadrotor to maneuver (hence succeed) at high speeds.
2) A Receding Horizon Corridors (RHC) scheme that reuses corridors in the previous planning cycle. Specif—
ically, in each replan, the first part of the flight corridor is directly from the previous planning cycle, and the second part is generated according to newly-sensed obstacles. This receding scheme ensures the corridor in each replan always contains sufficient space for the quadrotor to maneuver from its current state, significantly improving the replan process’s success rate and convergence speed under high-speed flight.

3) A real-time planning system that integrates these two designs of frontend with the MINCO backend [8]. A comprehensive benchmark comparison and an ablation study are conducted in simulation to show the superiority of our system and the effectiveness of the two designs.

4) Implementation and validation the proposed method on a fully autonomous quadrotor system. Multiple real-world tests show that our methods achieve flight speeds over 13.7 m/s (see Fig. 1).

II. RELATED WORKS

A. High-Speed Navigation in the Wild

Various approaches have been proposed to enable autonomous quadrotor flights in unknown environments. Florence et al. [9] propose a reactive planner, which takes depth image as input and selects the best trajectory from a pre-built motion primitives library. The work in [6] proposes an uncertainty-aware lazy search map called NanoMap on the reactive controller and achieves a maximum flight speed of 10 m/s. Although it has a low computation complexity, the pre-built set of motion primitives is relatively small, making it difficult to cover fine maneuvering skills that are necessary when the quadrotor is facing new, unexpected obstacles during high-speed flights. Similar motion primitive-based method is used (as a frontend) by Zhou et al. [10], Zhang et al. [11] and Kong et al. [12], which therefore suffer from similar drawbacks. Ye et al. [5] utilizes a frontend based on RRT* kinodynamic sampling. Similar to the motion primitive methods, the sampled states are usually in low dimensions (e.g., position and velocity) and few in numbers in order to ensure sufficient computation efficiency, making it very difficult to produce fine quadrotor maneuvers in high-speed flights. Unlike the previous methods [5, 3, 4], which typically have a frontend planning a rough path from the quadrotor’s current position to the target one and a backend which further refines the trajectory by optimization, Zhou et al. [13] proposed to plan a whole trajectory without considering any obstacle in the first stage and then locally modify the trajectory to fly around the detected obstacles. The local trajectory modification is achieved efficiently by directly incorporating a repulsive force from obstacles in the trajectory optimization cost function. The repulsive force is similar to a coarse-level distance field and hence suffers from the local minimum problem, hence unsuitable for high-speed trajectory planning. Another interesting method is proposed by Loquercio et al. [7], they use imitation learning to generate a trajectory directly from the depth image and current state. Limited by the sensing range and noise, the success rate of their methods decreases when forward speed is over 10 m/s. Compared with the methods mentioned above, our method achieves much higher flight speed in both simulation and experiments (see Fig. 2).

B. Corridor-based Trajectory Planning

Corridor-based trajectory planning methods, which use geometrical shapes to represent free space, have been popular in recent years. Chen et al. [14] build a discrete graph from an OctoMap structure [15] and directly use free cubes in OctoMap as the corridor constraints. Liu et al. [4] use polyhedrons to represent the free space, also called convex decomposition. Each cube or polyhedron on the flight corridor then imposes multiple linear hyperplane constraints in the subsequent trajectory optimization. Sphere-shaped corridors are also very commonly used. Compared with polyhedrons, a sphere imposes only one constraint in the trajectory optimization. It can often be quickly obtained by Nearest Neighbor Search (NN-Search) using a KD-Tree structure. Gao et al. [16] propose a sphere-shaped corridor generation scheme under the RRT* framework. Ji et al. [17] propose a forward-spanning-tree-based spherical corridor generation scheme. These two methods can generate corridors in a relatively short time. However, their corridor generation process only considers the connectivity of adjacent spheres. The found spheres often have small overlaps between adjacent ones, which over constrains the subsequent trajectory optimization and leaves tiny space for the quadrotor to maneuver at high speeds. Another problem is the lack of explicit consideration of the quadrotor’s current speed, the resultant flight corridor often does not contain sufficient space for the quadrotor to maneuver from its current speed. The two problems will considerably reduce the feasible solution space and cause the backend optimization to fail. In contrast, our frontend attempts to find large individual spheres and their overlaps, while the receding scheme automatically incorporates the quadrotor current speed in each replan. These two designs greatly improve the success rate and convergence speed of the subsequent trajectory optimization.

Trajectory optimization with the corridor constraint is also well studied by some recent works. Ji et al. [17] use an alternating minimization method [18] and iteratively insert waypoints to ensure that the trajectory completely falls in the corridor. However, the waypoints are selected heuristically, which leads to sub-optimal solutions. Mellinger et al. [19] use piece-wise polynomial to represent the trajectory and generate a minimum-snap trajectory by solving a quadratic programming (QP) problem. The corridor constraints are used as inequality constraints in the QP. Gao et al. [16] use B-spline to represent trajectories and formulate the corridor constraints and trajectory optimization into a second-order cone programming (SOCP) problem. Both methods solve the optimization problem with hard constraints and have quite significant computation time. Our approach is most similar to [8]. The corridor constraints are first eliminated by a C^2-continuous barrier function. Then, a spatial-temporal deformation is performed. The optimization problem is finally turned into an unconstrained one that can be solved by Quasi-Newton methods efficiently and robustly.
Fig. 3. The whole trajectory is composed of M pieces, contained in their respective sphere. The green areas B_i are the spheres. The orange areas B_{i-1} are the intersecting space of two adjacent spheres. T_i is the time allocation of each piece. d_0, d_g are the given initial and goal states.

III. PRELIMINARIES

In this section, we briefly go through the backend trajectory optimization used in our algorithm. We model the quadrotor to a non-linear dynamic system following [19], which is proved to be differential flat with flat output $\sigma = [x, y, z, \psi]^T$ with $p = [x, y, z]^T$ the quadrotor position in the world frame and ψ the yaw angle. Due to the differential flatness, it is sufficient to plan the flat output trajectory $\sigma(t)$. In this work, we only plan the position trajectory $p(t)$ and specify the yaw angle trajectory $\Phi(t)$ as the tangent direction of $p(t)$ such that the quadrotor is always facing forward during a flight.

As shown in Fig. 3, given a flight corridor \mathcal{B} that consists of a sequence of overlapping spheres (each is denoted by $B_i, i = 1, \ldots, M$, see Sec. IV-A), the goal of the trajectory optimization is to find a smooth trajectory $p(t) : [0, t_M] \rightarrow \mathbb{R}^3$ over time duration t_M that connects the initial position $q_0 \in \mathbb{R}^3$ at time zero to the terminal one $q_M \in \mathbb{R}^3$ at time t_M and is completely contained in the sphere-shaped corridor \mathcal{B}.

In practice, the smoothness of the trajectory is quantitatively represented by the magnitude of its s-th order derivative $\|p^{(s)}(t)\|^2_2$ ($s = 4$ in experiments). Moreover, the trajectory $p(t)$ is usually decomposed into M pieces, each piece $p_i(t)$ is contained in sphere B_i for the time period $t \in [t_{i-1}, t_i]$, i.e.,

$$p(t) = p_i(t-t_{i-1}) \in B_i, t \in [t_{i-1}, t_i]$$ (1)

Adjacent trajectory pieces $p_i(t)$ and $p_{i+1}(t)$ should meet at the same point $q_i \in \mathbb{R}^3$ at time t_i. Moreover, the trajectory $p(t)$ should start at a given initial state d_0 (up to $(s-1)$-th order derivative) and terminate at a given goal state d_g (up to $(s-1)$-th order derivative). Considering these constraints and kinodynamic constraints (e.g., speed and acceleration), the trajectory optimization can be formulated as

$$\min_{p(t)} \int_{t_0}^{t_M} \|p^{(s)}(t)\|^2_2 dt + \rho_T t_M$$ (2a)

s.t. $p^{(0:s-1)}(0) = d_0, p^{(0:s-1)}(t_M) = d_g$ (2b)

$p(t_i) = q_i, \forall 1 \leq i < M$ (2c)

$t_{i-1} < t_i, \forall 1 \leq i \leq M$ (2d)

$\|p^{(1)}(t)\|^2_2 \leq a_{max}^2, \|p^{(2)}(t)\|^2_2 \leq a_{max}^2,$ (2e)

$p(t) = p_i(t-t_i) \in B_i, \forall 1 \leq i \leq M, t \in [t_{i-1}, t_i]$ (2f)

where ρ_T is the weight penalizing the total trajectory time t_M such that the maximal allowed speed v_{max} can be attained.

The optimization in (2) can be solved in two steps: in the first step, we fix the intermediate waypoints $q = (q_1, \ldots, q_{M-1})$ and time allocation vector $T = (T_1, \ldots, T_M)$, where $T_i \triangleq t_i - t_{i-1} > 0$, and optimize only the first part (i.e., the smoothness) of (2a) considering only the constraints in (2b) and (2c). Shown in [8], this optimization problem leads to an optimal solution where each piece $p_i(t)$ is a $(2s-1)$-th order polynomial and its coefficients are uniquely determined from (q, T), i.e.,

$$p_i(t) = c_i(q, T)^T \beta(t), t \in [0, T_i]$$ (3)

where $c_i \in \mathbb{R}^{2s \times 3}$ is the coefficient matrix depending on (q, T) and $\beta(t) = [1, t, \ldots, t^{2s-1}]^T$ is the time basis function.

In the second step, the complete problem in (2) is optimized from the class of trajectories parameterized in (3). Since the trajectory in (3) naturally satisfies the constraints in (2b) and (2c), the complete optimization only needs to consider the constraints in (2d-2f). Even this, the constrained optimization is typically time-consuming. To address this issue, the MINCO framework [8] transforms it into an unconstrained optimization problem detailed as follows. First, the time constraints in (2d) are equivalent to $T_i > 0$, which can be parameterized as $T_i = e^{\tau_i}, 1 \leq i \leq M$ that always satisfies (2d) for $\tau_i \in \mathbb{R}$. Then, the feasibility constraints (2e) and (2f) can be softly penalized in the cost function by a C^2-continuous barrier function [20]:

$$\mathcal{L}_\mu(x) = \begin{cases} 0 & \text{if } x \leq 0, \\ (\mu - x/2)(x/\mu)^3 & \text{if } 0 < x < \mu, \\ x - \mu/2 & \text{if } x \geq \mu. \end{cases}$$ (4)

where μ is a constant smoothness factor (0.02 in this paper), thus a finite weight for penalty can enforce the constraint at any specified precision. As a consequence, the optimization in (2) can be turned to an unconstrained form as:

$$\min_{\tau, q} \mathcal{J} = \sum_{i=1}^{M} \left(\int_{0}^{T_i} \|p_i^{(s)}(t)\|^2_2 dt + \rho_T e^{\tau_i} \right) + \rho_{vel} \sum_{i=1}^{M} \int_{0}^{T_i} \mathcal{L}_\mu \left(\|p_i^{(1)}(t)\|^2_2 - v_{max}^2 \right) dt + \rho_{acc} \sum_{i=1}^{M} \int_{0}^{T_i} \mathcal{L}_\mu \left(\|p_i^{(2)}(t)\|^2_2 - a_{max}^2 \right) dt + \rho_c \sum_{i=1}^{M} \int_{0}^{T_i} \mathcal{L}_\mu \left(\|p_i(t) - o_i\|^2_2 - r_i \right) dt$$ (5)

where $\rho_{vel}, \rho_{acc}, \rho_c$ are the corresponding weight of maximum speed, maximum acceleration and collision-free penalty, and o_i is the center and r_i is the radius of the i-th sphere. As shown in [8], all gradient of the objective (5) with respect to waypoints q and time allocation τ can be computed analytically, so a Quasi-Newton method (i.e. LBFGS1) is used to solve the optimization problem.

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite
effectively.

IV. PLANNER

In this section, we present the frontend design that enables high-speed trajectory optimization, which is the main contribution of this paper.

A. Sphere-Shaped Corridor

As shown in Fig. 4, a sphere is defined by its center \(o \in \mathbb{R}^3 \), the nearest obstacle point \(n \in \mathbb{R}^3 \), and the radius:

\[
 r = \| o - n \|_2 - r_d
\]

(6)

where \(r_d \) is the radius of the drone. During the trajectory optimization process, each piece of trajectory is constrained in the corresponding sphere to satisfy safety constraints.

To generate a new sphere, we first build a KD-Tree with the obstacle point cloud. Then, for a given center of the sphere \(o \), a nearest neighbor search (NN-Search) is performed on that KD-Tree to find the nearest obstacle point \(n \), which then determines the radius as in (6). We call this process \textbf{GenerateOneSphere}(o), which will be used in the sequel.

B. Flight Corridor Generation

The main workflow of the flight corridor generation is described in Alg. 1, where a complete flight corridor \(B \) is generated from the given initial position \(p_0 \), goal position \(p_g \), and a global guide path \(T \) generated by A* [21]. The algorithm initializes with a largest possible sphere \(B_{\text{cur}} \) around the initial position \(p_0 \) (Line 2-3). Then, in Line 5, a local guide point \(p_h \) is selected from the guide path \(T \), which is the nearest point out of the current sphere \(B_{\text{cur}} \), and a new sphere is generated by \textbf{BatchSample}(\(p_h, B_{\text{cur}} \)) (Sec. IV-B.1) and added to \(B \). This process repeats until the goal position \(p_g \) is included in the new generated sphere (Line 8-10).

With the found flight corridor \(B \), the initial waypoint position \(q \) and time allocation \(T \) are initialized by the function \textbf{WaypointAndTimeInitialization}(B)(Sec. IV-B.2) and then optimized in the backend (Sec. III).

1) Batch sample: The problem of trajectory optimization under flight corridor constraints is highly non-convex, which means overly conservative constraints may lead to local-minimum or even infeasible solution when the quadrotor initial speed is high. Existing methods [16, 17] only considered the connectivity between two adjacent spheres. To preserve larger space for the quadrotor to maneuver hence improve the feasibility of the trajectory optimization (5) at high-speeds, we propose a novel batch sample method to generate a high-quality corridor. We consider this problem in the following aspects: (a) the volume of each sphere: a sphere with larger size can better approximate the real free space with fewer number of spheres, making the optimization problem less constrained, (b) the volume of the overlapped spaces between two adjacent spheres: as discussed in Sec. III, all waypoints of the trajectory are constrained in the intersecting space, a larger intersecting space means more freedom for the optimization process.

The sampling process is shown in Alg. 2. We first initialize the sampler \(S \) in Line 2. As shown in the orange area of Fig. 5, the sampler generates a random candidate point \(q_{\text{cand}} \in \mathbb{R}^3 \) under a 3D Gaussian distribution \(N(\mu, \Sigma) \), where the mean is set at the guide point \(\mu = p_h \) and the covariance is set as \(\Sigma = \text{diag}(\sigma_x, \sigma_y, \sigma_z), \sigma_x = \frac{1}{2} \| o_f - p_h \|_2, \sigma_z = \sigma_y = 2\sigma_x \), where \(o_f \) is the center of last sphere and the \(\sigma_x \) direction is aligned with the direction of \(o_f - p_h \).

Then in Line 3-9, a total number of \(K \) points (called a batch) are randomly sampled with \(S \), each has its score computed by the function \textbf{ComputeScore}(\(B_{\text{cand}} \)) defined below:

\[
 \text{Score} = \rho_r V_{\text{cand}} + \rho_p V_{\text{inter}}
\]

(7)

where \(\rho_r, \rho_p \in \mathbb{R}_+ \) are positive weights, \(V_{\text{cand}} \) is the volume of the candidate sphere \(B_{\text{cand}} \) and \(V_{\text{inter}} \) is the overlapped volume between \(B_{\text{cand}} \) and \(B_f \). Finally, the best sphere with the highest score is selected in Line 13.

As shown in Fig. 6, compared with Gao [16], the proposed method can better approximate the real free space with fewer
Algorithm 2: BatchSample()

1. Notation: Last sphere \(B_f \); Guide point \(p_h \); Best sphere in this round \(B_{\text{best}} \); Random sampler \(S \); Maximum sample num \(K \); Safe distance \(r_d \); Priority queue sorted by sphere’s score: \(Q \).

2. Input: \(B_f, p_h, K \)

3. Output: \(B_{\text{best}} \)

4. Initialize: \(S.\text{init}(B_f, p_h), k = 0 \);

5. while \(k < K \) do

6. \(p_{\text{rand}} = S.\text{GetOneRandomSample}() \);

7. \(B_{\text{rand}} = \text{GenerateOneSphere}(p_{\text{rand}}) \);

8. \(B_{\text{rand}}.\text{Score} = \text{ComputeScore}(B_{\text{rand}}) \);

9. \(Q.\text{PushBack}(B_{\text{rand}}) \);

10. \(k = k + 1 \);

11. end

12. if \(Q.\text{empty}() \) then

13. return BatchSampleFailed;

14. end

15. \(B_{\text{best}} = Q.\text{top}() \);

16. \endwhile

17. return BatchSampleFailed;

18. \endalgo

Fig. 6. Corridor generation comparison. (a) The corridor generated by our proposed method in one test (b) The corridor generated by Gao et al. [16] in the same test. (c) The comparison of overlapped volume between two adjacent spheres over 100 tests. (d) The volume of each sphere over 100 tests. The shaded area denotes the minimum and maximum value over 100 tests.

1. spheres and larger sphere sizes. Furthermore, our algorithm has lower computational complexity than Gao’s approach, which uses an RRT-like method and takes samples from the whole space. Our process follows a coarse-to-fine manner, where we first use A* to find the shortest path and then take batch samples only around this path. In this way, the sample space, hence computation time, is significantly reduced. We test 100 times in the same environment shown in Fig. 6. The proposed method only takes an average 0.74 ms to generate the corridor, while Gao’s method takes an average 100 ms.

2. **Waypoint and Time Initialization:** For a given flight corridor \(B \), we adopt a Default Initialization strategy, where the waypoint are initialized as the center of the overlap space between two adjacent spheres (pink points in Fig. 7(b)), and the time allocation is initialized as \(T_i = \frac{||q_i - q_{i-1}||}{v_{\text{max}}} \).

3. **Receding Horizon Corridors in Replan**

 During a high-speed flight in an unknown environment, the quadrotor needs to replan frequently to avoid newly sensed obstacles. We use a distance-triggering replanning strategy. Specifically, the trajectory is planned (both frontend corridor generation and backend optimization) in a fixed distance \(D \) (i.e., planning horizon) depending on the sensing range. Denote the position of last replan as \(p_{\text{last}} \) and current quadrotor position as \(p_{\text{curr}} \). The replan process is triggered if \(||p_{\text{last}} - p_{\text{curr}}||_2 > \gamma \cdot D \), where \(\gamma \in [0, 1] \) is a constant ratio.

A major challenge in the replan occurs when the quadrotor speed is high, which requires sufficient space for the quadrotor to maneuver such that the newly sensed obstacles can be avoided successfully. Corridor generation without considering the quadrotor’s current state [4, 16, 17] often causes too small feasible region in the trajectory optimization (2), which is difficult (or even impossible) to solve (e.g., by optimizing (5)). Another problem is that with the increase of the current speed, the objective function becomes highly non-convex. As described in Sec. III, our optimization problem is turned into an unconstrained one. The non-convexity of the objective function may cause the optimization with the Default Initialization to easily stuck at a bad local minimum which violates the collision-free or kinodynamic constraints.

We solve these problems by a Receding Horizon Corridors (RHC) strategy shown in Fig. 7. The key is to reuse a few spheres from the previous planning cycle in current replan. Concretely, when a new replan is triggered, the nearest future waypoint \(d_{rp} \) in \(q \) is selected as the initial state. A few spheres after \(d_{rp} \) will be reused to constitute the first part of the new corridor, followed by newly generated spheres reaching the current planning horizon \(D \). This receding scheme ensures the corridor in each replan always contains sufficient space for the quadrotor to maneuver from its current state (since the current quadrotor state is on the previous trajectory, which is contained in the previous corridor), hence significantly enlarging the feasible region in the backend trajectory optimization. In experiments, we reuse spheres that fall within a certain distance (e.g., 3m) of the current quadrotor position \(p_{\text{curr}} \). Furthermore, to speed up the trajectory optimization and mitigate the local minimum issue, the waypoints \(q \) and time allocation \(T \) contained in the reused corridor, which were optimized in the previous planning cycle, are used to initialize the current trajectory optimization (i.e., Hot Initialization). The waypoints and time allocation in the newly generated spheres are still initialized by the default scheme (Sec. IV-B.2).
success rate of each, and the results of other baseline are directly obtained from [7]. Noting that in [7], the maximum mass-normalized thrust of the simulated drone is limited to 35.3 m/s², while we limit our simulated drone to 15 m/s². As can be seen, our approach outperforms others in all cases, even with a lower thrust limit. Moreover, compared with Loquercio et al. [7], the proposed method generates much smoother trajectories, which is usually easier to track (see Fig. 8).

B. Ablation Study

To further validate each module of the proposed method, we compare our method in detail with Gao et al. [16], which generates sphere-shaped corridors in an RRT* style and optimizes a minimal snap trajectory with fixed time allocation. We use the same simulated map configuration mentioned in Sec.V-A, but further add tests with \(\delta = 1/12 \) (super high). The key three elements of our approach includes the trajectory optimization in Sec. III (MINCO), the frontend corridor generation in Sec. IV-B (Front), and the receding horizon corridors strategy (RHC) in Sec. IV-C. A series of ablation studies are performed, and the results are shown in Fig. 10. Gao is the original version from [16]. This method fails to generate trajectory with speed over 2 m/s due to the inability to optimize time allocation in the backend. To fix this issue, we replace the backend of Gao by MINCO (Gao+MINCO) and compare it with our full algorithm (Front+MINCO+RHC). The performances of the two are very close, showing that MINCO can generate more aggressive trajectories and that our frontend alone does not improve the success rate much. Furthermore, we incorporate the RHC strategy to the method Gao (Gao + MINCO + RHC) and compare it with our full algorithm (both frontend and RHC). As can be seen, each method with RHC has a significantly higher success rate at high speeds on all map densities, verifying the effectiveness of the RHC strategy. Moreover, our full algorithm with our frontend (Ours(Front + MINCO + RHC)) achieves a higher success rate than Gao with the same MINCO and RHC strategy (Gao+MINCO+RHC), showing the effectiveness of our frontend in the overall planning system.

C. Run Time Analysis

In this section, we compare the run time of the proposed method with the baseline. We test our method both on the desktop computer, with a 2.90 GHz Intel i7-10700 CPU, and an onboard computer with a 1.1 GHz Intel i7-10710U CPU. The baseline FastPlanner [3] and Gao [16] are tested on the same desktop computer. The test environment is a simulated forest with \(\delta = 1/2 \) shown in Fig. 8(b). The computation time is divided into two parts: mapping and planning. For FastPlanner, the mapping process includes building a Euclidean signed distance field (ESDF), and planning includes frontend path-search and backend trajectory optimization. For Gao’s method, the mapping process includes a static KD-Tree update, and the planning includes corridor generation and SOCP optimization. For the proposed method, the mapping includes the update of an OctoMap [15] (no ray-casting)
and an incremental KD-Tree (i.e., ikd-tree [22]). The planning includes frontend A* search, corridor generation, and trajectory optimization. As shown in Table I, the proposed method enjoys much lower computational complexity, which can replan at over 50 Hz even on the onboard platform.

![Graph showing the ablation study of the proposed method. The green line is the proposed method (Ours(Front+MINCO+RHC)). The blue line (Gao) is the original version of Gao et al.’s work [16]. The yellow line (Gao+MINCO) uses corridor generation from [16], but with trajectory optimization replaced by MINCO in Sec.III. The purple line (Ours(Front+MINCO)) is our method without the RHC strategy. The red line (Gao+MINCO+RHC) uses Gao et al.’s corridor generation method and the same MINCO optimization and RHC strategy as ours.](image)

Table I

Method	Components	\(\mu\) [ms]	\(\sigma\) [ms]	Total [ms]
Fast-Planner [3]	Mapping	38.20	6.90	42.92
	Planning	4.72	1.60	6.32
Gao [16]	Mapping	12.78	3.69	16.41
	Planning	154.23	40.60	194.83
Ours	Mapping	3.16	0.76	3.92
	Planning	1.53	0.63	2.16
Ours (onboard)	Mapping	8.97	6.51	15.48
	Planning	4.34	2.33	6.67

D. Real-world Experiments

To verify our planning method in real-world environments, we build a LiDAR-based quadrotor platform. The platform has a total weight of 1.45 kg and can produce a maximum thrust over 60 N, resulting in a thrust-to-weight ratio of 4.1. For localization and mapping, we use the Livox Mid360 LiDAR and PixHawk flight controller’s built-in IMU running FAST-LIO2 [23] (the sensors are initialized by LI-Init [24]), which provides 100 Hz high-accuracy state estimation and 25 Hz point cloud. The trajectory tracking controller is an on-manifold model predictive controller [25], the planning horizon is set to \(D = 15\) m and replan ratio \(\gamma = 0.4\). All perception, planning, and control algorithm are running on an Intel NUC with CPU i7-10710U in real-time. We have done 12 experiments in a forest environment with maximal speed ranging from 5 m/s to 14 m/s. All the experiments succeeded except one due to a controller failure. Fig. 11 shows the experimental environment and all the trajectories colored by their speed. As can be seen, our planner is robust by accomplishing all the tests in the real-world environment. Fig. 1 shows the third person of the quadrotor in one flight. More quantitatively, Table II summarizes the detailed trajectory profiles including the trajectory executing time, total length, average and maximum speed. As can be seen, our method achieves an average speed up to 8.11 m/s and a maximum speed of 13.7 m/s. To the best of our knowledge, this is the highest speed that a fully autonomous quadrotor can achieve in a real-world, cluttered, and unknown environment (see Fig. 2). More visual illustration of the experiments is shown in our video².

Fig. 12 shows the speed and acceleration profiles of two typical flights, called Test 1 (long trajectory length) and Test 2 (high flight speed). For Test 1, we limit the maximum speed to 8 m/s and the maximum acceleration to 8 m/s². In Test 2, a more agile flight is performed where the maximum speed is 14 m/s and the maximum acceleration is 10 m/s². As can be seen, both speed and acceleration constraints are well satisfied.

VI. Conclusion and Future Work

In this paper, we propose a novel motion planning algorithm that generates smooth, collision-free, and high-speed

²https://youtu.be/7tQCV6KBzSY
Fig. 12. The norm of velocity and acceleration. The executed trajectory of Test 1 is about 111.18 m, and Test 2 is about 41.61 m. The average speed is about 7 m/s for both test, and the maximum speed is over 15.7 m/s in Test 2.

trajectories in real-time. The whole planning system can work with fully onboard sensing, and computation at a replan frequency over 50 Hz. To enable high-speed flight in the wild, we proposed two novel designs. One is a sampling-based sphere-shaped corridor generation method, which can generate high-quality corridors (i.e., larger size and bigger overlaps) in a relatively short time. Another is a Receding Horizon Corridors strategy, which fully utilizes previously generated corridors and the optimized trajectory. With these designs, the proposed method significantly increases the replan success rate in high-speed cases.

One limitation of our algorithm is that the reused corridors from last planning cycle are not guaranteed to be obstacle-free due to newly sensed obstacles that may be occluded in previous LiDAR measurements. This will cause the reused corridor to be discarded and hence occasionally lower the success rate when the environment is extremely cluttered. This limitation can be overcome by placing the first few corridors of a (re-)plan in known free spaces (instead of free and unknown spaces), so that these free corridors can be safely reused in the next planning cycle. Restraining the first few spheres in free spaces also enables the planning of a safe backup trajectory like [1] which guarantees a safe flight. In the future, we will explore these designs and extend the method to more different missions and environments.

ACKNOWLEDGMENT

The authors gratefully acknowledge DJI for fund support and Livox Technology for equipment support during the whole project. The authors would like to thank Guozheng Lu and Wei Xu for the helpful discussions.

REFERENCES

[1] Jesus Tordesillas, Brett T Lopez, Michael Everett, and Jonathan P How. Faster: Fast and safe trajectory planner for navigation in unknown environments. IEEE Transactions on Robotics, 38(2):922–938, 2021.
[2] Sunan Huang, Rodney Swee Huat Teo, and Kok Kiong Tan. Collision avoidance of multi unmanned aerial vehicles: A review. Annual Reviews in Control, 48:147–164, 2019.
[3] Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu, and Shaojie Shen. Robust and successful quadrotor trajectory generation for fast autonomous flight. IEEE Robotics and Automation Letters, 4(4):3529–3536, 2019.
[4] Sikang Liu, Michael Waterson, Kartik Mohita, Ke Sun, Subhrajit Bhattacharya, Camillo J Taylor, and Vijay Kumar. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments. IEEE Robotics and Automation Letters, 2(3):1688–1695, 2017.
[5] Hongkai Ye, Xin Zhou, Zhepei Wang, Chao Xu, Jian Chu, and Fei Gao. TGK-Planner: An efficient topology guided kinodynamic planner for autonomous quadrotors. IEEE Robotics and Automation Letters, 6(2):494–501, 2021.
[6] Peter R Florence, John Carter, Jake Ware, and Russ Tedrake. Nanomap: Fast, uncertainty-aware proximity queries with lazy search over local 3d data. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 7631–7638. IEEE, 2018.
[7] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza. Learning high-speed flight in the wild. Science Robotics, 6(59):eabg5810, 2021.
[8] Zhepei Wang, Xin Zhou, Chao Xu, and Fei Gao. Geometrically constrained trajectory optimization for multicopters. IEEE Transactions on Robotics, 2022.
[9] Pete Florence, John Carter, and Russ Tedrake. Integrated perception and control at high speed: Evaluating collision avoidance maneuvers without maps. In Proceedings of the Twelfth International Workshop on the Algorithmic Foundations of Robotics (WAFR 2016), 2016.
[10] Sikang Liu, Nikolay Atanasov, Kartik Mohita, and Vijay Kumar. Search-based motion planning for quadrotors using linear quadratic minimum time control. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 2872–2879. IEEE, 2017.
[11] Ji Zhang, Chen Hu, Rushat Gupta Chadha, and Sanjiv Singh. Falco: Fast, likelihood-based collision avoidance with extension to human-guided navigation. Journal of Field Robotics, 37(8):1300–1313, 2020.
[12] Fanze Kong, Wei Xu, Yixi Cai, and Fu Zhang. Avoiding dynamic small obstacles with onboard sensing and computation on aerial robots. IEEE Robotics and Automation Letters, 6(4):7869–7876, 2021.
[13] Xin Zhou, Zhepei Wang, Hongkai Ye, Chao Xu, and Fei Gao. EGO-Planner: An ESDF-free gradient-based local planner for quadrotors. IEEE Robotics and Automation Letters, 6(2):478–485, 2021.
[14] Jing Chen, Kunyue Su, and Shaojie Shen. Real-time safe trajectory generation for quadrotor flight in cluttered environments. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 1678–1685. IEEE, 2015.
[15] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard. OctoMap: An efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots, 34(3):189–206, 2013.
[16] Fei Gao, William Wu, Wenliang Gao, and Shaojie Shen. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments. Journal of Field Robotics, 36(4):710–733, 2019.
[17] Jialin Ji, Zhepei Wang, Yingjian Wang, Chao Xu, and Fei Gao. Mapless-planner: A robust and fast planning framework for aggressive autonomous flight without map fusion. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 6315–6321. IEEE, 2021.
[18] Zhepei Wang, Xin Zhou, Chao Xu, Jian Chu, and Fei Gao. Alternating minimization based trajectory generation for quadrotor aggressive flight. IEEE Robotics and Automation Letters, 5(3):4836–4843, 2020.
[19] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control for quadrotors. In 2011 IEEE international conference on robotics and automation, pages 2520–2525. IEEE, 2011.
[20] Zhepei Wang, Chao Xu, and Fei Gao. Robust trajectory planning for spatial-temporal multi-drone coordination in large scenes. arXiv preprint arXiv:2109.08403, 2021.
[21] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.
[22] Yixi Cai, Wei Xu, and Fu Zhang. ikd-tree: An incremental kd tree for robotic applications. arXiv preprint arXiv:2102.10808, 2021.
[23] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Transactions on Robotics, 2022.
[24] Fangcheng Zhu, Y unfan Ren, and Fu Zhang. Robust real-time lidar-inertial initialization. arXiv preprint arXiv:2202.11096, 2022.
[25] Guozheng Lu, Wei Xu, and Fu Zhang. Model predictive control for trajectory tracking on differentiable manifolds. arXiv preprint arXiv:2106.15233, 2021.