Density dependent effective interactions
and recollections of the Rutgers-Princeton years

T. T. S. Kuo
Dept. of Physics and Astronomy, Stony Brook Univ., Stony Brook, NY 11794-3800, USA
E-mail: thomas.kuo@stonybrook.edu

Abstract. The density-dependent effective interactions given by the new Brown-Rho (new-BR) scalings and chiral three-nucleon force \(V_{3N} \) are compared with the empirical density-dependent force of the Skyrme interactions. The new-BR scaling is based on a Skyrmion-half-Skyrmion model where nuclear matter is treated as a Skyrmion matter for density smaller than a transition density \(n_{1/2} \approx 0.32 \text{fm}^{-3} \), while a half-Skyrmion matter for density greater. In this model, the meson mass, nucleon mass and meson-nucleon coupling are all scaled with density, making the resulting two-nucleon interaction density dependent. By integrating out a participating nucleon over the Fermi sea, Holt, Kaiser and Weise have obtained an effective three-nucleon force \(\bar{V}_{3N} \) which is also a density-dependent two-nucleon interaction. The equation of state for symmetric nuclear matter given by the new-BR-scaled \(V_{2N}, \bar{V}_{3N} \), and (unscaled-\(V_{2N} \) + a Skyrme-type density-dependent force) are all found to be closely similar to each other.

1. Introduction

I have known Aldo for a very long time, starting from 1964 when he was a postdoc at the Rutgers University and I was one at the Princeton University. Rutgers and Princeton are located at nearby townships, separated by merely about 20 miles. Their nuclear physics groups were both very active and worked closely together. We had two joint seminars every week: Monday afternoon seminar at Rutgers and Thursday night Bull Session (which lasted typically more than 3 hours) at Princeton. The faculty members in these groups were A. Arima, Ben Bayman, Gerry Brown, J. de Boer, Ruby Sherr, Igal Talmi, George Temmer,... and among the young postdocs were Joe Ginocchio, Tony Green, G. Sartoris, Chun Wa Wong, Larry Zamick,... in addition to Aldo and me. We were having very good times together, including the well-remembered Rutgers-Princeton nuclear-physics soccer games.

At one of the joint seminars, the then newly developed Skyrme effective interaction was discussed. This interaction is of the form (see e.g. [1])

\[
V_{sky} = \sum_{i<j} V(i,j) + \sum_{i<j<k} V_{3b}(i,j,k),
\]

\[
V_{3b} = t_3 \delta(\vec{r}_i - \vec{r}_j)\delta(\vec{r}_j - \vec{r}_k),
\]

\[
\rightarrow \frac{t_3}{6}(1 + x_3 P_3)\delta(\vec{r}_1 - \vec{r}_2)\rho(\vec{r}_{av}) \equiv D_{sky}
\]

(1)

where the last term \(D_{sky} \) is a ‘density-dependent’ zero-range nucleon-nucleon interaction. (Note that the strength of \(D_{sky} \) is typically rather strong such as \(t_3 \approx 14000 \text{ MeV fm}^6 \).[1]) Where does...
D_{sky} come from? There were many discussions about this question at the seminar. At that
time, I think nobody had an answer, except that it was empirically needed for nuclear saturation.
(In other words, without this term the nuclear matter calculated with V_{sky} can not reproduce
empirical nuclear matter saturation energy of $E_0/A \simeq -16$ MeV and density $n_0 \simeq 0.16$ fm$^{-3}$.)

After so many years, I think we are making progress toward answering the above question.
As to be described later, density-dependent effective interactions are generated by both the
Brown-Rho scalings [2–7] and/or chiral three-nucleon force V_{3N}[8, 9]. It is of interest to study if
the effects of such interactions can be reproduced, to certain extents, by a Skyrme-type empirical
density dependent force. We shall do so in this report. The organization of the present report
is as follows. In Section 2 we shall describe the new-BR scaling [7] and briefly discuss its
density dependent effects to nuclear matter and neutron stars. In Section 3 a similar description
will be presented for the chiral three-nucleon force. We shall compare the density-dependent
effects from new-BR scaling, chiral three-nucleon force, and an empirical Skyrme-type density
dependent force. A summary will also be included in this section.

2. New Brown-Rho scaling
In the early version of the Brown-Rho scaling [2, 6] (to be referred to as the old-BR scaling), the
scaling function $\Phi(n)$ of the form

$$\Phi(n) = \frac{m^*}{m} = 1 - C \frac{n}{n_0}, \quad C \simeq 0.15$$

(2)
is employed. Here m^* denotes the meson mass in nuclear medium of density n, and m in free
space. n_0 is the nuclear-matter saturation density (0.16 fm$^{-3}$). This scaling has had important
and desirable effects in density region near n_0. With its inclusion, nuclear matter calculations
have given satisfactory saturation properties [10, 11]. It has also played a key role in shell-model
calculations for the extra-long life time (~ 5000yrs) of the $^{14}C - ^{14}N$ β-decay [12].

The above scaling is clearly meant for low densities only. (For instance, the above $\Phi(n)$ is
undefined at high n.) In fact the nuclear equation of state (EOS) at densities considerably higher
than n_0 is still, by far, largely uncertain. The new-BR scaling is an attempt of studying the
high-density nuclear EOS, which is needed for describing neutron-star properties. It is based on
a Skyrmon-half-Skyrmion lattice model [13, 14] where nuclear matter is found as composed of
Skyrmions at densities below the transition density $n_{1/2}$, while as half-Skyrmions for densities
above. It has been estimated that $n_{1/2}$ lies typically between 1.3 and $2n_0$ [15].

A first application of this Skyrmon-half-Skyrmion model to nuclear matter and neutron
stars was carried out in [7]. In this model we have Skyrmions for $n \leq n_{1/2}$ (Region I) and
half-Skyrmions for $n < n_{1/2} < n_\chi$ (Region II), where the chiral restoration density n_χ is set to
be $10n_0$. The scaling functions for these two regions are different. We have for region-I

$$\frac{m^*_M}{m_M} = \Phi_I(n), \quad \Phi_I(n) = \frac{1}{1 + c_I \frac{n}{n_0}} \quad \text{(mesons, nucleons)},$$

$$\frac{g^*_m}{g} = 1 \quad \text{(coupling constants unscaled)},$$

(3)

and for region-II

$$\frac{m^*_M}{m_M} = \Phi_{II}(n), \quad \Phi_{II}(n) = \frac{1}{1 + c_{II} \frac{n}{n_0}} \quad \text{(mesons)},$$

$$\frac{m^*_N}{m_N} = y(n) \simeq 0.8 \quad \text{(nucleons)}, \quad \frac{g^*_m}{g} = \Phi_{II}(n) \quad \text{(coupling constant $g_{N\rho}$)}.$$
Some differences between the above scaling and that of the old-BR scaling [10–12] may be mentioned. In the old-BR scaling, only the mass and cut-off parameter of the ρ, σ and ω mesons are scaled. In addition to these scalings, the nucleon mass and the nucleon-ρ coupling constant $g_{N\rho}$ are also scaled in new-BR as indicated above. Furthermore, in new-BR the scalings in regions I and II, are different, having parameters c_I and c_{II} for the two regions.

![Diagrams](image)

Figure 1. Diagrams included in the all-order $pphh$ ring-diagram summation.

We have used a V_{low-k} ring-diagram method [7, 10, 11] to calculate the nuclear EOS with the new-BR scaling. In this method the $pphh$ ring diagrams as shown in figure 1 are summed to all orders. There diagram (a), (b) and (c) are respectively a 1st-, 4-th- and 8-th-order $pphh$ ring diagram. Our method reduces to a V_{lowk} Hartree-Fock (HF) method if we include only diagram (a). Each vertex of the diagrams is a V_{lowk} interaction [16–19] derived from the Bonn potential [20] with its parameters scaled with density according to the new-BR scaling. (We have employed the Bonn potential as its nucleon-mass parameter can be conveniently scaled.)

![Graph](image)

Figure 2. The EOS for symmetric nuclear matter calculated with new-BR scaling.

In figure 2 we present two EOSs so calculated for symmetric nuclear matter. Two choices for the transition density are used, $n_{1/2} = 2n_0$ (A) and $n_{1/2} = 1.5n_0$ (B). As seen, the calculation without new-BR scaling (C) is unable to describe the nuclear matter saturation properties (it saturates at at density $\sim 2.5n_0$ and $E_0/A \simeq -22MeV$). The region-I scaling parameters of $c_I(\rho) = c_I(N) = 0.130$, $c_I(\sigma) = 0.121$ and $c_I(\omega) = 0.139$ were used; these values are determined.
by fitting the empirical nuclear matter properties. The coupling constant $g_{N\rho}$ is not scaled in region I, while it is scaled in region II. The EOS of figure 2 gives saturation properties $E_0/A = -15.0$ MeV, saturation density $n_{sat} = 0.93n_0$ and compression modulus $K = 206$ MeV.

In the $n > n_{1/2}$ region, the meson scaling parameters are taken to be the same as in region I, namely $c_{II} = c_I$. But a different scaling is used for nucleons: in region II we use $m^*_N/m_N = y(n) = 0.77$ (0.78) respectively for $n_{1/2} = 2n_0$ ($1.5n_0$). These values are used to make the values of E_0/A just below and above $n_{1/2}$ approximately equivalent. But their slopes are clearly discontinuous at $n_{1/2}$, implying a Skyrmion half-Skyrmion phase transition there. In figure 3 we display the pressure-density EOS calculated with new-BR. ($p(n) = n[d\epsilon(n)/dn] - \epsilon(n)$, ϵ being the energy density.) As seen, there is discontinuity at $n_{1/2}$. In fact from the results of figure 3, the Skyrmion half-Skyrmion coexistence region can be determined. For instance, this coexistence region is $~1.7n_0 < n < ~2.4n_0$ for the $n_{1/2} = 2n_0$ case.

![Figure 3](image-url)

Figure 3. Pressure in symmetric nuclear matter calculated with new-BR scaling.

In figure 3 our calculated pressure is compared with the empirical constraint of Danielewicz et al. [21]. It is encouraging that our calculated pressure is generally within the range allowed by the constraint. It would be very useful to check experimentally theSkyrmion half-Skyrmion phase transition. This may require much effort, as to locate the pressure 'kink' near $n_{1/2}$ would need a highly precise, and difficult, experimental determination of the nuclear matter pressure there. As another check of our EOS, we have also performed neutron star calculations using the new-BR EOS [7]. The calculated mass and radius of the maximum-mass neutron star are $(M = 2.39M_\odot, R = 10.9\text{km})$ for $n_{1/2} = 2.0n_0$, and $(M = 2.38M_\odot, R = 10.9\text{km})$ for $n_{1/2} = 1.5n_0$. These masses are considerably larger than the observed masses of $1.97 \pm 0.04M_\odot$ [22] and $2.01 \pm 0.04M_\odot$ [23], indicating that our new-BR neutron EOS is probably too stiff.

3. Chiral three-nucleon force and summary

As we see from the preceding section, nuclear matter calculations with the new-BR scaled V_{2N} can satisfactorily describe nuclear matter saturation properties but not so with the unscaled V_{2N}. Can the calculations using V_{2N} (unscaled) plus V_{3N} also give satisfactory nuclear saturation
properties? In this section we shall address this question. We employ the lowest-order (NNLO) chiral V_{3N} of the form $V_{3N} = V_{3N}^{2\pi} + V_{3N}^{1\pi} + V_{3N}^{ct}$ where

$$V_{3N}^{(2\pi)} = \sum_{i\neq j\neq k} g_A^2 \frac{\bar{\sigma}_i \cdot \bar{q}_i \bar{\sigma}_j \cdot \bar{q}_j}{8 f^2 \left(\frac{q_i^2 + m_i^2}{2} \right) \left(\frac{q_j^2 + m_j^2}{2} \right)} F_{ijk}^{\alpha \beta} \bar{\sigma}^\alpha_i \bar{q}_i \bar{\sigma}^\beta_j \bar{q}_j,$$

$$V_{3N}^{(1\pi)} = -\sum_{i\neq j\neq k} \frac{g_A CD}{8 f^4 \Lambda} \bar{\sigma}_j \cdot \bar{q}_j \bar{\sigma}_i \cdot \bar{q}_i \bar{\tau}_i \cdot \bar{\tau}_j,$$

$$V_{3N}^{(ct)} = \sum_{i\neq j\neq k} \frac{cE}{2 f^4 \Lambda} \bar{\tau}_i \cdot \bar{\tau}_j,$$

where $g_A = 1.29$, $f_\pi = 92.4$ MeV, $\Lambda = 700$ MeV, $m_\pi = 138.04$ MeV/c^2, $\bar{q}_i = \bar{p}_i - \bar{p}_i$ is the difference between the final and initial momentum of nucleon i and

$$F_{ijk}^{\alpha \beta} = \delta_{\alpha \beta} \left(-4 c_1 m_i^2 + 2 c_3 \bar{q}_i \cdot \bar{q}_j \right) + c_4 \bar{\sigma}_i \cdot (\bar{q}_i \times \bar{q}_j).$$

The parameters $c_1 = -0.76$ GeV$^{-1}$, $c_3 = -4.78$ GeV$^{-1}$, $c_4 = 3.96$ GeV$^{-1}$ are well known, constrained by low-energy NN phase shifts. But the parameters c_D and c_E are not well determined. A range of c_D and c_E values on the Navratil curve can all fit well the binding energies of 3H and 3He.

By integrating out one participating nucleon over the Fermi sea, Holt, Kaiser and Weise have reduced V_{3N} to a density-dependent 2-body force \bar{V}_{3N}. Comparing with V_{3N}, \bar{V}_{3N} is much more convenient for nuclear matter calculations. Briefly speaking, they are related by

$$V_{3N} = \frac{1}{36} \Sigma(123) |V_{3N}| 456) a_3^+ a_2^+ a_1^+ a_4 a_5 a_6,$$

$$\bar{V}_{3N} = \frac{1}{4} \Sigma(12) |D_{2N}| 45) a_2^+ a_1^+ a_4 a_5,$$

$$\langle ab|D_{2N}|cd\rangle = \sum_{h\leq k_F} \langle abh|V_{3N}|cdh\rangle.$$

It is seen that \bar{V}_{3N} is a density (k_F) dependent 2-body interaction. Note well there is a n-body counting factor $C(nb)$ to be included in calculations: We have $C(nb) = \left(1, \frac{1}{2}, \frac{1}{3}\right)$ respectively for (2-, 1-, 0-) body vertices. Thus the vertex in (a) of figure 1 is $(V_{2N} + \bar{V}_{3N}/3)$, and each vertex in (b) and (c) is $(V_{2N} + \bar{V}_{3N})$.

We have performed ring-diagram nuclear matter calculations with $(V_{2N} + \bar{V}_{3N})$. The parameters c_D and c_E of \bar{V}_{3N} (see Eqs.(6-7)) are not well known; they can have a range of values as allowed by the Navratil curve. We have used several sets of allowed c_D and c_E parameters in our ring-diagram nuclear matter calculations and found that the allowed parameters $c_D=3.0$ and $c_E=0.2$ are a 'best-fit' choice (among the several sets calculations we have made) in reproducing nuclear saturation properties. We have used these parameters in the present calculation, and with them the saturation properties given by the $(V_{2N} + \bar{V}_{3N})$ EOS are $(E_0/A = -15.6$ MeV, $n_{sat} = 0.98 n_0$, $K = 132$ MeV). Neutron star calculations using the $(V_{2N} + \bar{V}_{3N})$ EOS have also been carried out. The mass and radius of the maximum-mass neutron star so obtained are $(1.99 M_\odot, 9.85$ km); that these values are both smaller than the new-BR results mentioned earlier (near figure 3) indicates the new-BR neutron EOS is stiffer than the corresponding $(V_{2N} + \bar{V}_{3N})$ EOS especially at high densities.

As a summary, let us compare the three EOSs in figure 4. The results from new-BR($n_{1/2} = 2n_0$) and $(V_{2N} + \bar{V}_{3N})$ are remarkably similar to each other, especially for densities
near n_0. Nuclear matter calculations with V_{2N} alone are unable to give satisfactory saturation properties, and this shortcoming can be amended by including either new-BR or V_{3N}. There may be some underlying equivalence between new-BR and V_{3N}, and its further study will be interesting as well as useful. In figure4, we also compare the above EOSs with the EOS given by (unscaled-$V_{2N} + D_{sky}$) with $t_3=5000$ MeV (see equation(1)). It is a ‘surprise’ that all three are in good qualitative agreement. That the density dependent effects on symmetric nuclear matter from new-BR and/or V_{3N} may be well reproduced by an empirical density-dependent force of the Skyrme type is an encouraging result, indicating that new-BR and/or V_{3N} may provide a microscopic foundation for the empirical Skyrme force.

4. Acknowledgements

I wish to express my sincere gratitude to Aldo for inviting me to this beautiful ’11th International Spring Seminar on Nuclear physics’. I also wish to applaud him for having worked so hard in organizing all these 11 seminars (I have attended 10 of them) as well as for his many important contributions to nuclear physics. Aldo has indeed done a lot for all of us. I thank H. Dong, Jeremy Holt, H.K. Lee, R. Machleidt and Mannque Rho for years of close and pleasant collaboration. This work is supported in part by the U.S. Department of Energy under Grant No. DF-FG02-88ER40388.

References

[1] Ring P and Schuck P, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980)
[2] Brown G E, Rho M 1991 Phys. Rev. Lett 66 2720
[3] Hatsuda T and Lee S H 1992 Phys. Rev. C 46 R34
[4] Brown G E, Rho M 1996 Phys. Rep. 269 333
[5] Brown G E, Rho M 2002 Phys. Rep. 363 85
[6] Brown G E, Rho M 2004 Phys. Rep. 396 1
[7] Dong H, Kuo T T S, Lee H K, Machleidt R, Rho M 2013 Phys. Rev. C 87, 054332
[8] Holt J W, Kaiser N and Weise W 2009 Phys. Rev. C 79, 054331
[9] Holt J W, Kaiser N and Weise W 2010 Phys. Rev. C 81, 0240021
[10] Siu L W, Holt J W, Kuo T T S and Brown G E 2009 Phys. Rev. C 79, 0540004
[11] Dong H, Kuo T T S and Machleidt R 2009 Phys. Rev. C 80, 065803
[12] Holt J W, Brown G E, Kuo T T S, Holt J D and Machleidt R 2008 Phys. Rev. Lett 100, 062501
[13] Golhaber A S and Manton N S 1987 Phys. Lett. B198, 231
[14] Lee H K, Park B Y and Rho M 2011 Phys. Rev. C 83, 025206
[15] Park B Y, Min D P, Rho M and Vento V 2002 Nucl. Phys. A 707, 381; Lee H Jet al. 2003 Nucl. Phys. A 723, 427, Rho M, arXiv:0711.3895 [nucl-th]
[16] Bogner S K, Kuo T T S and Coraggio L 2001 Nucl. Phys. A 684 432
[17] Bogner S K, Kuo T T S, Coraggio L, Covello A and Itaco N 2002 Phys. Rev. C 65 051301R
[18] Bogner S K, Kuo T T S and Schwenk A 2003 Phys. Rep. 386 1
[19] Holt J D, Kuo T T S and Brown G E 2004 Phys. Rev. C 69 034329
[20] Machleidt R Computational Nuclear Physics 2–Nuclear Reactions (Langanke, Maruhn, Koonin, eds., Springer NY 1993), Chap.1, p.1
[21] Danielewicz P, Lacey R, and Lynch W A 2002 Science 298, 1592
[22] Demorest P B et. al 2010 Nature Vol. 467 1081
[23] Antoniadis J et. al 2013 Science 340 1223232
[24] Rentmeester M C M, Timmermans R G E and de Swart J J 2003 Phys. Rev. C 67 044001
[25] Navratil P, Gueorguiev V G, Vary J P, Ormand W E and Nogga A 2007 Phys. Rev. Lett 99, 042501