Electronic Supplementary Information for

Theoretical Studies on the Photophysical Properties of Luminescent Pincer Type Gold(III) Arylacetylide Complexes: The Role of π-Conjugation at the Tridentate C-deprotonated Cyclometalated [C$^\text{N}$$^\text{C}$] Ligand.

Glenna So Ming Tong,* Kaai Tung Chan, Xiaoyong Chang, and Chi-Ming Che*

State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR China).

Contents

1. Experimental Details.
 a. Synthesis
 b. Characterizations
 c. X-ray data, and
 d. Spectroscopic properties
2. Computational Details
 a. State specific calculation procedures
 b. Radiative decay rate calculations
 c. Non-radiative decay rate calculations
 d. Further references
3. Further calculation results
 a. TDDFT results at the optimized S_0 geometries
 b. Radiative decay rate calculations
 c. Non-radiative decay rate calculations
 d. Justification of using PBE0 in predicting the relative energies of 3IL and 3LLCT excited states
4. Coordinates for the optimized S_0, 3IL, and 3LLCT excited states

Experimental Section.

Synthesis and characterization of complex 3-endo. Complex 3-endo was synthesized according to Scheme S1. It followed the same procedure as reported in our previous paper.[1] Except that in the procedure of (e), the mercurated product was isolated by column chromatography on SiO$_2$ using hexane: CH$_2$Cl$_2$ = 2:1 (R_f = 0.40) as the eluent. The final product was isolated as yellow powder. Yield: 54 mg (81.7%). X-ray crystal structure has been determined.[2]
Scheme S1. Synthetic scheme for complex 3-endo. (a) n-bromohexane, KOrBu, THF, reflux. (b) AlCl₃, acetic anhydride, CS₂, 40°C. (c) 3,5-di-tert-butylbenzaldehyde, NaOH, MeOH, 60°C. (d) 1-(2-oxo-2-phenylethyl)pyridinium iodide, NH₄OAc, acetic acid, methanol, reflux. (e) Hg(OAc)₂, ethanol, reflux 48 hrs; LiCl, reflux 2 hrs. (f) KAuCl₄, acetonitrile, reflux 48 hrs. (g) Cul, 1-ethynyl-4-methoxybenzene, CH₂Cl₂/NEt₃, under N₂ stir 3h.

3-endo: MS (+FAB) m/z (%): 1002.8 (100) [M⁺], 868.6 (26), 784.5 (21). ¹H NMR (400 MHz, [d₆]DMSO): δ 8.25 (d, 1H, J = 8.21 Hz, H₄), 8.21 (s, 1H, H₅), 8.20 (d, 1H, J = 8.01 Hz, H₆), 8.14 (d, 1H, J = 8.10 Hz, H₇), 8.13 (s, 1H, H₈), 7.82–7.84 (m, 2H, H¹⁰ and H¹¹), 7.76 (s, 2H, H⁶ and H⁶'), 7.60 (s, 1H, H⁷), 7.51 (d, 2H, J = 8.68 Hz, H¹⁵), 7.47 (t, 1H, J = 7.88 Hz, H³), 7.39–7.41 (m, 1H, H¹⁴), 7.37 (t, 1H, J = 8.20 Hz, H²), 7.30–7.33 (m, 2H, H¹² and H¹³), 7.01 (d, 2H, J = 8.74 Hz, H¹⁶), 3.80 (s, 3H), 3.49–3.51 (m, 2H), 1.91–1.95 (m, 2H), 1.40 (s, 18H), 0.96–0.99 (m, 12H), 0.62 (t, 6H, J = 6.47 Hz), 0.42–0.47 (m, 4H). Calcd for C₅₉H₆₆AuNO: C, 70.71; H, 6.64; N, 1.40; found: C, 70.31; H, 6.51; N, 1.45.
Table S1. Crystal data of 3-endo

Complex	3-endo
Empirical formula	C_{65}H_{80}AuNO
Formula weight	1088.26
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	11.6132(9)
b/Å	14.7425(11)
c/Å	16.9669(13)
α/°	87.393(3)
β/°	71.112(3)
γ/°	80.062(3)
Volume/Å³	2707.0(4)
Z	2
ρ calc/g/cm³	1.335
μ/mm⁻¹	5.414
F(000)	1128
Crystal size/mm³	0.06 × 0.06 × 0.02
Radiation	CuKα (λ = 1.54178)
2θ range for data collection/°	5.506 to 133.47
Index ranges	-13 ≤ h ≤ 13, -10 ≤ k ≤ 17, -19 ≤ l ≤ 20
Reflections collected	86638
Independent reflections	9371 [R_{int} = 0.0774, R_{eins} = 0.0428]
Data/restraints/parameters	9371/70/650
Goodness-of-fit on F^2	1.046
Final R indexes [I>2σ(I)]	R_f = 0.0398, wR^2 = 0.1010
Final R indexes [all data]	R_f = 0.0423, wR^2 = 0.1043
Largest diff. peak/hole / e Å⁻³	1.58/-2.79
Figure S1. ORTEP diagram of 3-endo with atomic numbering. All hydrogen atoms and solvent molecules are omitted for clarity. Thermal ellipsoids are drawn at 50 % probability level.

Table S2. Selected bond lengths and angles of 3-endo

Bond lengths (Å)	Bond angles (deg)
Au1-C1	2.063(6)
Au1-C30	2.130(5)
Au1-C31	1.947(5)
Au1-N1	1.987(3)
C31-C32	1.221(6)
C32-C33	1.443(6)
C1-Au1-N1	81.1(2)
C30-Au1-N1	80.9(1)
C30-Au1-C1	162.0(2)
C31-Au1-N1	172.8(2)
Au1-C31-C32	174.2(4)
C31-C32-C33	174.0(5)
Table S3. Photophysical data of complex 3-endo.

Complex	Medium [Temp]	UV/Vis absorption λ_{max} [nm] (ϵ [mol$^{-1}$dm3 cm$^{-1}$])	Emission		
		λ_{max} [nm]	τ [μs]	ϕ_{em}	
3-endo	DCM (298 K)	270 (56500), 305 (38500), 323 (42100), 337 (39700), 387 (8670), 409 (12100), 430 (12200)	536, 574	14.5	0.02
	EtOH : MeOH = 4 : 1 (77 K)	-	530, 576, 614 (sh)	406.5	-

Figure S2. Electronic absorption spectrum of 3-endo in dichloromethane (DCM) at room temperature at 2×10^{-5} mol dm$^{-3}$.
Figure S3. Emission spectra of 3-endo in dichloromethane (DCM) at room temperature (top) and in a glassy medium at 77K (bottom); $\lambda_{exc} = 430$ nm.
Computational Details.

In this work, the hybrid density functional, PBE0,[3] was employed for all calculations using the program package G09.[4] The 6-31G* basis set[5] is used for all atoms except Au, which is described by the Stuttgart relativistic pseudopotential and its accompanying basis set (ECP60MWB).[6] Solvent effect was also included by means of the polarizable continuum model (PCM).[7] Geometry optimizations of the singlet ground state (S₀) and the lowest triplet excited state (T₁) were respectively carried out using restricted and unrestricted density functional theory (i.e. RDFT and UDFT) formalism without symmetry constraints. Frequency calculations were performed on the optimized structures to ensure that they are minimum energy structures by the absence of imaginary frequency (i.e. NImag = 0). Stability calculations were also performed for all the optimized structures to ensure that all the wavefunctions obtained are stable.

(a) **SS-PCM energy calculations.** Vertical transition energies were computed using the linear response approximation for optical absorption calculations, but the state specific approach for emissions. [8] In an absorption process, the solvent is in equilibrium solvation with the ground state electron density but non-equilibrium solvation with the excited state electron density. Thus, LR-TDDFT should give reasonable estimate of the absorption energies. However, as mentioned in the main text, SS-TDDFT is more adequate for calculations involving an emission process.

Within the state-specific (SS) approach, the equilibrium solvation of the T₁ excited state at its equilibrium geometry is written out via “NonEq=write”:

```
%oldchk=cncauccphome_pbe0_t1.chk          chk file of optimized T₁ that is confirmed to be stable
%chk=cncauccphome_pbe0_t1ss.chk
#p pbe1pbe/chkbas geom=check guess=read scrf=(solvent=dichloromethane,read)
nosymm pop=full

Save solvent reaction field in equilibrium with T₁ density at its optimized geometry to the checkpoint file, cncauccphome_pbe0_t1ss.chk

0 3
NonEq=write
```

The ground state and the singlet excited state energy could then be computed with non-equilibrium solvation using “NonEq = read”; for example, for the singlet excited state energy calculation,

```
%oldchk=cncauccphome_pbe0_t1ss.chk
%chk=cncauccphome_pbe0_td-t1ss.chk
#p rpbe1pbe/chkbas geom=check guess=read td=(singlets,nstates=3,root=1) scrf=(solvent=dichloromethane,read,externaliteration) nosymm pop=full

S₁ energy and density with non-eqm solvation, i.e. fast polarization is solved self-consistently in a state-specific way for S₁ and the slow polarization is frozen at that in eqm with T₁ density
```
The energy that should be extracted would appear near the end of the output file:

After PCM corrections, the energy is -1265.80793189 a.u.

That is, this is the S_1 energy at the T_1 optimized geometry, with non-equilibrium solvation done in an SS approach.

Similarly, for the ground state energy calculation with non-equilibrium solvation at the T_1 excited state geometry,

And the energy of the ground state from a non-equilibrium solvation in solution is:

SCF Done: $E(RPBE1PBE) = -1265.92332980$ A.U. after 13 cycles

(b) **Radiative decay rate calculations.** The spin wavefunctions of the triplet sub-states T_1^α are expressed along the three Cartesian coordinates, x, y, and z as:

$$
\sigma_{T}^x = \frac{1}{\sqrt{2}} (\beta \beta - \alpha \alpha) \\
\sigma_{T}^y = \frac{i}{\sqrt{2}} (\beta \beta + \alpha \alpha) \\
\sigma_{T}^z = \frac{1}{\sqrt{2}} (\alpha \beta + \beta \alpha)
$$

and the singlet spin wavefunction as:

$$
\sigma_{S} = \frac{1}{\sqrt{2}} (\alpha \beta - \beta \alpha)
$$
Table S4. SOC matrix elements between the $^3(d_{x^2\pi^*})$ and $^1(d_{y^2\pi^*})$ states; $\langle S_m|H_{SOC}|T_1\rangle$

| $\langle S_m|H_{SOC}|T_1\rangle$ | $^3(d_{x^2\pi^*})$ | $^3(d_{y^2\pi^*})$ | $^3(d_{x\pi^*})$ | $^3(d_{y\pi^*})$ | $^3(d_{x\pi^*})$ |
|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $^1(d_{x^2\pi^*})$ | 0 | 0 | 0 | $-\frac{i\sqrt{3}}{2} \xi_{x^2\pi^*} c_{YZ}$ | $-\frac{i\sqrt{3}}{2} \xi_{x^2\pi^*} c_{YZ}$ |
| $^1(d_{y^2\pi^*})$ | 0 | 0 | $i \xi_{x^2\pi^*} c_{YZ} y_z$ | $-\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} x_z$ | $-\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} y_z$ |
| $^1(d_{x\pi^*})$ | 0 | $-\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} y_z$ | 0 | $\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} x_z$ | $-\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} y_z$ |
| $^1(d_{y\pi^*})$ | $-\frac{i\sqrt{3}}{2} \xi_{x^2\pi^*} c_{YZ} y_z$ | $\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} x_z$ | $-\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} x_z$ | 0 | $\frac{i}{2} \xi_{x^2\pi^*} c_{YZ} y_z$ |

Phosphorescence, being a spin-forbidden process, borrows its emission intensity by first-order perturbative interactions with the singlet excited states via spin-orbit coupling (SOC). Therefore, the singlet excited state energies should also be evaluated at non-equilibrium solvation with the emitting triplet excited state electronic density. Therefore, in principle, the SS approach is more appropriate than the LR approach for calculating the energy difference between the singlet and triplet excited states in eq.(9) of the main text. If the singlet excited state energies are computed within the LR-TDDFT, the singlet excited state energies are obtained either through non-equilibrium solvation with ground state electronic density or equilibrium solvation with the singlet excited state of interest (by specifying the “root” in the LR-TDDFT calculation). In either case, the energies obtained are not the solvent response to the emitting triplet excited state electronic density.

To calculate the radiative decay rate constant using the SS-TDDFT results, the metal coefficients (c_m), the CI coefficients (a_i), and the transition dipole moments (M_{cm}, M_{cm}, M_{cm}) of each singlet excited state (S_m) of interest, could be extracted from the output files of the SS-TDDFT calculations at the T_1 optimized geometry at the last step of the iterative procedure for each S_m excited state considered. For the singlet-triplet energy gap, $(E(S_m) - E(T_1))$, it should be emphasized that this is not the energy difference for the transitions, $S_m \rightarrow S_0$ and $T_1 \rightarrow S_0$, from TDDFT calculations (i.e., the section where the CI coefficients are extracted), but those with PCM corrections added, i.e., the energies mentioned in the previous section (“After PCM corrections…”).

In addition, the singlet excited state energies may shift, depending on the electron density of the emitting T_1 state. This is particularly important if there is a large difference in dipole moments between the emitting T_1 and S_m excited states in a polar medium. This means that one has to do a SS-TDDFT calculation for each singlet excited state S_m. For example, if one wants to include the first ten singlet excited states in estimating the radiative decay rate constant through eq. (9), then one has to do a SS-TDDFT calculation for each singlet excited state, i.e. a total of ten SS-TDDFT jobs (with root = 1, 2, …, 10 in the “NonEq=read” step). This could be quite a lengthy task; hence, for simplicity, only the closest-lying singlet excited state(s) that could have effective SOC perturbative interactions with the singlet excited states via spin-orbit coupling (SOC). Therefore, in principle, the SS approach is more appropriate than the LR approach for calculating the energy difference between the singlet and triplet excited states in eq.(9) of the main text. If the singlet excited state energies are computed within the LR-TDDFT, the singlet excited state energies are obtained either through non-equilibrium solvation with ground state electronic density or equilibrium solvation with the singlet excited state of interest (by specifying the “root” in the LR-TDDFT calculation). In either case, the energies obtained are not the solvent response to the emitting triplet excited state electronic density.

The SOC matrix elements are listed in Table S4.
\[
\begin{array}{cccc}
1(d_{yz}^\pi) & \frac{\sqrt{3}}{2} \sigma_y^2 \sigma_z^2 & \frac{\sqrt{3}}{2} \sigma_y^2 \sigma_z^2 & \frac{\sqrt{3}}{2} \sigma_y^2 \sigma_z^2 & \frac{\sqrt{3}}{2} \sigma_y^2 \sigma_z^2 & 0 \\
\end{array}
\]

x-component: magenta

y-component: brown

z-component: green

(c) **Non-radiative decay rates.** To calculate the Huang-Rhys factor, \(S_j \), and to simulate the emission spectrum for \((\tilde{\nu})_{fc} \), a Franck-Condon calculation is done using the keyword “freq=fc”. One could request the printing of the “shift vector” (which relates to \([\tilde{\mu}]_j \Delta Q_j \)) for the computation of \(S_j \). For a more detailed theoretical background for the Franck-Condon calculation implemented in the G09 program, please consult the references cited in G09 and its document titled “Vibrationally-resolved electronic spectra in Gaussian 09”.

Following our previous work,\[^9\] we have grouped the normal modes into 5 sets:

\[\omega_{\text{lf1}} \leq 200 \text{ cm}^{-1}, 200 < \omega_{\text{lf2}} \leq 1000 \text{ cm}^{-1}, 1000 < \omega_m \leq 1800 \text{ cm}^{-1}, \omega_{\text{C=C}} \text{, and } \omega_{\text{hf}} \geq 3000 \text{ cm}^{-1} \]

For the non-radiative decay rate calculations, \(k_B T \) is assumed to be \(~200 \text{ cm}^{-1} \).

For \(^3\text{IL} \rightarrow S_0 \) transition, the single-mode expression (eq.(11) of the main text) is used; however, for \(^3\text{LLCT} \rightarrow S_0 \) transition, as both aromatic CC/CN stretching and C=C stretching normal modes could act as effective accepting modes, the two-mode expression is used instead:\[^{10}\]

\[
k_{nr}(T_1 \rightarrow S_0) = \frac{2\pi(\frac{T_1}{H_{SOC}} | S_0 \rangle | S_0 \rangle^2}{\hbar} \exp\left(-S_C - S_M \coth\left(\frac{\hbar \omega_M}{2k_B T}\right)\right) \times \sum_{n_C} \sum_{n_M} \exp\left(-\frac{(\Delta E - n_M \hbar \omega_M - n_C \hbar \omega_C - \lambda_s)^2}{4\lambda_s k_B T}\right) \\
\quad \times \frac{S_C^{n_C}}{n_C!} \exp\left(\frac{n_M \hbar \omega_M}{2k_B T}\right) I_n\left(\frac{\hbar \omega_M}{2k_B T}\right) I_{nM}\left(\frac{\hbar \omega_M}{2k_B T}\right) \right]
\]

Here, \(S_C \) and \(n_C \) are respectively the Huang-Rhys factor and change in the vibrational quantum number of the C=C stretching normal mode (\(\hbar \omega_C = \hbar \omega_{\text{C=C}} \sim 2200–2300 \text{ cm}^{-1} \)) and \(I_{nM} \) is the modified Bessel function of order \(n_M \).

[1]. W.-P. To, K. T. Chan, G. S. M. Tong, C. Ma, W.-M. Kwok, X. Guan, K.-H. Low and C.-M. Che, Angew. Chem. Int. Ed., 2013, 52, 6648-6652.

[2]. in CCDC 1034529 (3-endo) contains the supplementary crystallographic data for this manuscript. The data can be obtained from The Cambridge Crystallographic Data Centre free of charge. URL: http://www.ccdc.cam.ac.uk/data_request/cif

[3]. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6169.

[4]. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A.;
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Revision C.01), Gaussian, Inc., Wallingford CT, 2009.

[5].(a)M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFree and J. A. Pople, J. Chem. Phys., 1982, 77, 3654; (b)P. C. Hariharan and J. A. Pople, 1973, 28, 123.

[6].(a)D. Andrae, U. Haussermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta, 1990, 77, 123-141; (b)J. M. L. Martin and A. Sundermann, J. Chem. Phys., 2001, 114, 3408-3420.

[7].M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002, 117, 43-54.

[8].R. Improta, V. Barone, G. Scalmani and M. J. Frisch, J. Chem. Phys., 2006, 125, 054103: 054101-054109.

[9].G. S. M. Tong, P. K. Chow, W.-P. To, W.-M. Kwok and C.-M. Che, Chem. Eur. J., 2014, 20, 6433-6443.

[10].B. S. Brunschwig and N. Sutin, Comments Inorg. Chem., 1987, 6, 209-235.

[11].A. Dreuw and M. Head-Gordon, Chem. Rev., 2005, 105, 4009-4037.

[12].D. Jacquemin, E. A. Perpete, I. Ciofini and C. Adamo, Acc. Chem. Res., 2009, 42, 326-334.

[13].T. Yanai, a. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.
Table S5. Calculated low-lying singlet and triplet excited state energies (λ / nm), the associated oscillator strengths (f) and the nature of the transitions at the optimized ground state (S_0) geometries of complex 1 in dichloromethane (DCM) by LR-PCM TD-PBE0 method. The values in the parentheses are the % contributions of that particular configuration state function (CSF).

	E (cm$^{-1}$)	λ (nm)	f	Major contribs	Minor contribs
T1	22041	454	0.0000	H-4\rightarrowLUMO (13%), H-1\rightarrowL+1 (46%), HOMO\rightarrowLUMO (17%)	H-10\rightarrowL+10 (2%), H-9\rightarrowLUMO (2%), H-3\rightarrowL+1 (4%), HOMO\rightarrowL+2 (3%), HOMO\rightarrowL+4 (2%)
T2	22108	452	0.0000	H-1\rightarrowLUMO (83%)	H-6\rightarrowL+1 (2%), H-4\rightarrowL+1 (4%), H-4\rightarrowL+7 (2%), H-3\rightarrowL+4 (2%)
T3	22670	441	0.0000	H-1\rightarrowL+1 (15%), HOMO\rightarrowLUMO (44%), HOMO\rightarrowL+2 (20%)	H-5\rightarrowL+5 (2%), H-4\rightarrowLUMO (5%), HOMO\rightarrowL+4 (6%)
S1	25484	392	0.2510	HOMO\rightarrowLUMO (98%)	
T4	26853	372	0.0000	H-2\rightarrowLUMO (83%)	H-7\rightarrowLUMO (3%), HOMO\rightarrowLUMO (4%), HOMO\rightarrowL+2 (4%), HOMO\rightarrowL+4 (2%)
T5	27190	368	0.0000	H-2\rightarrowLUMO (11%), HOMO\rightarrowLUMO (31%), HOMO\rightarrowL+2 (27%), HOMO\rightarrowL+4 (13%)	H-5\rightarrowL+5 (7%), HOMO\rightarrowL+6 (3%)
S2	27220	367	0.0519	H-1\rightarrowLUMO (97%)	
S3	28076	356	0.0029	H-2\rightarrowLUMO (97%)	

Figure S4. Frontier MOs of complex 1 at the optimized S_0 geometry from the LR-PCM TD-PBE0 calculation. The orbital energy and the Au character (in %) is also displayed.

MO102 (H-2) -6.6eV 11%
MO103 (H-1) -6.47eV 4%
MO104 (HOMO) -5.84eV 4%
MO105 (LUMO) -2.12eV 9%
MO106 (L+1) -1.55eV
Table S6. Calculated low-lying singlet and triplet excited state energies (λ / nm), the associated oscillator strengths (f) and the nature of the transitions at the optimized ground state (S_0) geometries of complex 2 in dichloromethane (DCM) by LR-PCM TD-PBE0 method. The values in the parentheses are the % contributions of that particular configuration state function (CSF).

No.	E (cm$^{-1}$)	λ (nm)	f	Major contribs	Minor contribs
T1	19149	522	0	H-1->LUMO (11%), H-1->L+1 (47%), H-1->L+2 (12%)	H-6->LUMO (2%), H-2->LUMO (3%), H-2->L+1 (3%), H-2->L+2 (3%), H-1->L+3 (2%), HOMO->LUMO (2%), HOMO->L+1 (3%)
T2	22044	454	0	H-2->LUMO (24%), H-2->L+1 (19%)	H-7->L+8 (2%), H-6->LUMO (5%), H-6->L+1 (4%), H-5->LUMO (6%), H-1->LUMO (9%), H-1->L+2 (2%), HOMO->LUMO (9%), HOMO->L+5 (2%)
T3	22522	444	0	HOMO->LUMO (49%), HOMO->L+5 (11%)	H-8->L+7 (3%), H-6->LUMO (2%), H-2->LUMO (6%), H-2->L+1 (3%), H-1->L+1 (2%), HOMO->L+2 (5%), HOMO->L+3 (8%)
T4	24715	405	0	H-5->LUMO (15%), H-2->LUMO (24%), H-2->L+1 (15%), H-1->L+2 (10%)	H-12->LUMO (2%), H-5->L+3 (3%), H-4->L+6 (3%), H-1->LUMO (6%), H-1->L+1 (4%), HOMO->L+3 (3%), HOMO->L+5 (4%)
S1	24954	401	0.2737	HOMO->LUMO (97%)	
T5	25090	399	0	H-2->LUMO (15%), H-1->LUMO (55%)	H-5->LUMO (4%), H-5->L+3 (2%), H-4->L+6 (2%), H-2->L+2 (2%), H-1->L+2 (6%)
T6	26062	384	0	H-5->LUMO (18%), H-2->LUMO (11%), H-2->L+1 (21%)	H-8->L+7 (2%), H-6->LUMO (3%), H-5->L+3 (5%), H-4->L+6 (8%), HOMO->LUMO (7%), HOMO->L+2 (2%), HOMO->L+3 (3%), HOMO->L+5 (6%)
T7	27003	370	0	H-3->LUMO (10%), HOMO->LUMO (25%), HOMO->L+5 (16%)	H-8->L+7 (5%), H-5->LUMO (8%), H-5->L+3 (2%), H-4->L+6 (4%), H-1->LUMO (6%), HOMO->L+2 (4%), HOMO->L+3 (6%), HOMO->L+8 (2%)
S2	27050	370	0.2623	H-2->LUMO (27%), H-1->LUMO (68%)	
T8	27257	367	0	H-3->LUMO (81%)	H-9->LUMO (2%), H-5->LUMO (2%), H-3->L+1 (2%), H-3->L+3 (2%), HOMO->LUMO (3%), HOMO->L+5 (2%)
S3	27609	362	0.028	H-2->LUMO (68%), H-1->LUMO (26%)	HOMO->L+1 (2%)
S4	28139	355	0.0021	H-3->LUMO (96%)	
MO Number	Name	Energy (eV)	Character (%)		
-----------	--------	-------------	---------------		
MO166	H-3	-6.59	11		
MO167	H-2	-6.50	5		
MO168	H-1	-6.23	1		
MO169	HOMO	-5.81	4		
MO170	LUMO	-2.19	7		
MO171	L+1	-1.74	1		

Figure S5. Frontier MOs of complex 2 at the optimized S_0 geometry from the LR-PCM TD-PBE0 calculation. The orbital energy and the Au character (in %) is also displayed.
Table S7. Calculated low-lying singlet and triplet excited state energies (λ / nm) with $\lambda > 300$ nm, the associated oscillator strengths (f) and the nature of the transitions at the optimized ground state (S_0) geometries of complex 3-exo in dichloromethane (DCM) by LR-PCM TD-PBE0 method. The values in the parentheses are the % contributions of that particular configuration state function (CSF).

	E (cm⁻¹)	λ (nm)	f	Major contribs	Minor contribs
T1	19235	520	0	H-1->LUMO (55%), H-1->L+1 (27%)	H-5->LUMO (7%), H-5->L+1 (7%), H-3->L+1 (9%), HOMO->LUMO (8%)
T2	21713	461	0	H-3->LUMO (14%), H-1->LUMO (18%), H-1->L+1 (20%)	H-9->L+8 (2%), H-3->LUMO (2%), H-1->L+1 (5%), HOMO->L+2 (9%), HOMO->L+3 (8%), HOMO->L+5 (7%), HOMO->L+8 (2%)
T3	22427	446	0	HOMO->LUMO (54%)	H-5->L+1 (2%), H-1->LUMO (2%), H-1->L+1 (5%), HOMO->L+2 (9%), HOMO->L+3 (8%), HOMO->L+5 (7%), HOMO->L+8 (2%)
S1	24447	409	0.1645	H-1->LUMO (84%), HOMO->LUMO (11%)	H-3->LUMO (3%)
S2	24932	401	0.3078	H-1->LUMO (10%), HOMO->LUMO (87%)	
T4	25514	392	0	H-6->LUMO (34%), H-4->L+6 (10%)	H-6->L+2 (9%), H-5->LUMO (2%), H-4->L+4 (2%), H-3->LUMO (3%), H-1->L+1 (4%), H-1->L+3 (2%), HOMO->L+2 (4%), HOMO->L+3 (2%), HOMO->L+5 (3%)
T5	26681	375	0	H-2->LUMO (92%)	H-10->LUMO (2%), H-2->L+2 (2%)
T6	26759	374	0	HOMO->LUMO (20%), HOMO->L+5 (10%)	H-12->LUMO (2%), H-9->L+7 (2%), H-9->L+8 (2%), H-8->LUMO (2%), H-3->L+1 (9%), H-1->LUMO (5%), H-1->L+1 (2%), H-1->L+2 (3%), H-1->L+3 (4%), HOMO->L+1 (2%), HOMO->L+2 (6%), HOMO->L+3 (8%), HOMO->L+5 (3%), HOMO->L+8 (2%)
T7	26981	371	0	HOMO->LUMO (11%)	H-12->LUMO (2%), H-11->LUMO (2%), H-3->LUMO (2%), H-9->L+8 (2%), H-6->L+2 (4%), H-6->L+4 (2%), H-5->L+1 (3%), H-4->L+6 (7%), H-3->LUMO (2%), H-3->L+1 (6%), H-1->LUMO (6%), H-1->L+1 (4%), H-1->L+2 (3%), H-1->L+3 (4%), HOMO->L+2 (3%), HOMO->L+3 (3%), HOMO->L+5 (4%)
T8	27314	366	0	H-3->LUMO (40%), H-1->L+1 (18%)	H-12->L+1 (4%), H-5->LUMO (8%), H-3->L+1 (2%), H-1->LUMO (5%), H-1->L+3 (2%), H-1->L+10 (2%)
S3	27705	361	0.0001	H-2->LUMO (97%)	
Figure S6. Frontier MOs of complex 3-exo at the optimized S_0 geometry from the LR-PCM TD-PBE0 calculation. The orbital energy and the Au character (in %) is also displayed.
Table S8. Calculated low-lying singlet and triplet excited state energies (\(\lambda / \text{nm}\)) with \(\lambda > 300 \text{ nm}\), the associated oscillator strengths (\(f\)) and the nature of the transitions at the optimized ground state (\(S_0\)) geometries of complex 3-endo in dichloromethane (DCM) by LR-PCM TD-PBE0 method. The values in the parentheses are the % contributions of that particular configuration state function (CSF).

HOMO in 227 E (cm\(^{-1}\))	\(\lambda\) (nm)	\(f\)	Major contribs	Minor contribs
				H-12->LUMO (2%), H-1->L+2 (2%), H-1->L+4 (2%)
T1 19337	517	0	H-1->LUMO (54%), H-1->L+1 (28%)	
T2 21609	463	0	H-2->LUMO (11%), H-1->LUMO (18%), H-1->L+1 (22%)	H-7->L+1 (3%), H-6->LUMO (4%), H-4->LUMO (5%), H-4->L+1 (4%), H-3->LUMO (3%), H-3->L+1 (3%), H-2->L+1 (7%), HOMO->LUMO (5%)
T3 22314	448	0	HOMO->LUMO (69%)	H-9->L+8 (2%), H-2->LUMO (2%), H-1->L+1 (2%), HOMO->L+2 (4%), HOMO->L+3 (3%), HOMO->L+4 (4%), HOMO->L+5 (4%), HOMO->L+6 (2%)
S1 23499	426	0.0671	HOMO->LUMO (96%)	
S2 24564	407	0.2505	H-1->LUMO (93%)	H-2->LUMO (3%)
T4 25235	396	0	HOMO->LUMO (17%), HOMO->L+3 (11%), HOMO->L+5 (16%)	H-9->L+8 (7%), H-6->LUMO (3%), HOMO->L+2 (6%), HOMO->L+4 (9%), HOMO->L+6 (8%), HOMO->L+7 (8%), HOMO->L+8 (2%)
T5 25640	390	0	H-6->LUMO (27%), H-6->L+2 (10%), H-3->LUMO (15%)	H-7->LUMO (4%), H-5->L+5 (5%), H-5->L+6 (8%), H-4->LUMO (3%), H-2->LUMO (2%), H-1->L+1 (2%), HOMO->LUMO (2%)
T6 26691	375	0	H-2->LUMO (35%), H-1->LUMO (17%), H-1->L+1 (17%)	H-12->L+1 (2%), H-3->LUMO (6%), H-2->L+2 (2%)
T7 26978	371	0	H-2->LUMO (11%), H-2->L+1 (15%)	H-12->LUMO (4%), H-10->LUMO (2%), H-7->L+1 (3%), H-6->LUMO (4%), H-6->L+2 (2%), H-5->L+5 (2%), H-5->L+6 (3%), H-4->L+9 (2%), H-3->L+1 (3%), H-1->LUMO (3%), H-1->L+2 (7%), H-1->L+4 (6%), H-1->L+9 (4%)
T8 28155	355	0	H-7->LUMO (20%), H-4->LUMO (20%), HOMO->L+1 (11%)	H-7->L+1 (2%), H-6->LUMO (4%), H-4->L+1 (3%), H-3->LUMO (7%), H-2->LUMO (7%), H-1->L+1 (5%), H-1->L+2 (3%)
T9 28425	352	0	H-3->LUMO (16%), HOMO->L+1 (64%)	H-6->LUMO (3%), H-2->LUMO (6%)
S3 28623	349	0.0053	HOMO->L+1 (97%)	
T10 28716	348	0	H-4->LUMO (13%), H-3->LUMO (33%), HOMO->L+1 (19%)	H-7->LUMO (9%), H-2->LUMO (5%), H-1->L+1 (2%), HOMO->LUMO (2%)
S4 29756	336	0.0356	H-2->LUMO (87%)	H-3->LUMO (2%), H-1->LUMO (2%)
Figure S7. Frontier MOs of complex 3-endo at the optimized S_0 geometry from the LR-PCM TD-PBE0 calculation. The orbital energy and the Au character (in %) is also displayed.

Table S9. CI coefficients of the HOMO \rightarrow LUMO and H−1 \rightarrow LUMO transitions from the LR-PCM TD-PBE0 calculation of the first singlet excited state at the optimized ground state geometries of complexes depicted in Chart 1 of the main text.

CI coefficients of S_1	1	2	3-exo	3-endo
HOMO \rightarrow LUMO	0.70139	0.69767	0.23644	0.68544
H−1 \rightarrow LUMO	0	0.07379	0.64616	0.09113
Radiative decay rate calculation results. For the 3IL excited state, the singlet excited state that could have appreciable SOC is 1LLCT as the HOMO and H–1 are orthogonal. For complexes 1 and 2, the lowest-lying 1LLCT excited state is S_1 and k_r is calculated for $m = 1$ for these two complexes using eq.(9) of the main text. On the other hand, for complexes 3-exo and 3-end, the closest-lying 1LLCT excited state is S_2; hence, for these two complexes, both S_1 and S_2 are included in the k_r calculations.

Similarly, for the 3LLCT excited state of complexes 1 and 3-end, the singlet excited state that could have appreciable SOC is 1IL/1MLCT. For complex 1, S_3 is of the character 1IL/1MLCT from the NonEq SS-TDDFT calculation, and it is found to be mainly of “H–4” \rightarrow L transition (“H–4” in the NEQ SS-TDDFT calculation of the S_1 excited state; this orbital becomes H–1 in the NonEq SS-TDDFT calculation of the S_3 excited state). But S_4, though also a 1LLCT and is derived from a “H–2” \rightarrow L transition (“H–2” in the NEQ SS-TDDFT calculation of the S_1 excited state; this orbital becomes H–1 in the NonEq SS-TDDFT calculation of the S_4 excited state), could also has significant SOC with the 3LLCT excited state of complex 1 because this H-2 has the Au(d) orbital orthogonal to the HOMO, see Figure S8. Therefore, in estimating the k_r of 3LLCT \rightarrow S_0 of complex 1 using eq.(9) of the main text, both $m = 3$ and 4 are considered to be the main states that contribute to the radiative decay rate.

Likewise, for the 3LLCT excited state of complex 3-end, both the 1IL/1MLCT and 1LLCT singlet excited states were considered to be the two major S_m excited states contributing to the radiative decay rates. Therefore, NonEq SS-TDDFT calculations were also performed for the S_3 (mainly of 1IL/1MLCT character and is derived from H–1 \rightarrow L and H–5 \rightarrow L transitions) and S_4 (mainly of 1LLCT character and is derived from “H–3” \rightarrow L transition; “H–3” in the NEQ SS-TDDFT calculation of the S_1 excited state and becomes H–2 in the NonEq SS-TDDFT calculation of the S_4 excited state)

Figure S8. MO surfaces relevant to the SOC calculation of the 3LLCT excited state of complex 1. The relative MO orders are those obtained from a NEQ SS-TDDFT calculation of the S_1 excited state.

Figure S9. MO surfaces relevant to the SOC calculation of the 3LLCT excited state of complex 3-end. The relative MO orders are those obtained from a NEQ SS-TDDFT calculation of the S_1 excited state.
Non-radiative decay rate calculations. Basically, the FCF’s were calculated using eq.(11) of the main text. For complex 3-endo, as the Huang-Rhys factor for the low-frequency modes, i.e., \(\omega_{lf1} \leq 200 \text{ cm}^{-1} \) \((\text{vide infra}) \), eq.(S1) would be used:

\[
k_{nr}(T_1\rightarrow S_0) = \frac{2\pi}{\hbar} \left| \left. H_{SOC} \right|_{S_0} \right|^2 \sum_{n_M}^{\infty} \exp \left(- \frac{(\Delta E - n_M \hbar \omega_M - \lambda_s)^2}{4\lambda k_B T} \right) \exp \left(- S_M \right) S_M^{n_M} \]

(S1)

where \(\lambda \) includes contributions from both solvent modes and the low-frequency normal modes \((\omega_{lf1} \leq 200 \text{ cm}^{-1}) \), i.e.,

\[
\lambda = \lambda_s + \lambda_{lf1}
\]

(S2a)

\[
\lambda_{lf1} = \sum_{j \in lf1} S_j \hbar \omega_j
\]

(S2b)

Table S10. Average normal mode \(\omega_A \) (cm\(^{-1}\)) and the corresponding Huang-Rhys factor \(S_A \) and reorganization energy \(\lambda_A \) (cm\(^{-1}\)) of \(^3\text{IL} \rightarrow S_0 \) transition of complex 1.

\(\omega_{lf1} \) (cm\(^{-1}\))	\(\omega_A \)	\(S_A \)	\(\lambda_A \)
\(\omega_{lf1} \leq 200 \text{ cm}^{-1} \)	76	0.21	15.9
200 < \(\omega_{lf2} \leq 1000 \text{ cm}^{-1} \)	579	0.56	327
1000 < \(\omega_M \leq 1800 \text{ cm}^{-1} \)	1467	1.75	2570
\(\omega_{hf} \geq 3000 \text{ cm}^{-1} \)	3182	0.00	6.43

Table S11. Average normal mode \(\omega_A \) (cm\(^{-1}\)) and the corresponding Huang-Rhys factor \(S_A \) and reorganization energy \(\lambda_A \) (cm\(^{-1}\)) of \(^3\text{IL} \rightarrow S_0 \) transition of complex 2.

\(\omega_{lf1} \) (cm\(^{-1}\))	\(\omega_A \)	\(S_A \)	\(\lambda_A \)
\(\omega_{lf1} \leq 200 \text{ cm}^{-1} \)	18	0.90	16.2
200 < \(\omega_{lf2} \leq 1000 \text{ cm}^{-1} \)	373	0.99	368
1000 < \(\omega_M \leq 1800 \text{ cm}^{-1} \)	1508	1.47	2223
\(\omega_{hf} \geq 3000 \text{ cm}^{-1} \)	3114	0.00	10.3

Table S12. Average normal mode \(\omega_A \) (cm\(^{-1}\)) and the corresponding Huang-Rhys factor \(S_A \) and reorganization energy \(\lambda_A \) (cm\(^{-1}\)) of \(^3\text{IL} \rightarrow S_0 \) transition of complex 3-exo.

\(\omega_{lf1} \) (cm\(^{-1}\))	\(\omega_A \)	\(S_A \)	\(\lambda_A \)
\(\omega_{lf1} \leq 200 \text{ cm}^{-1} \)	72	0.76	54.4
200 < \(\omega_{lf2} \leq 1000 \text{ cm}^{-1} \)	619	0.70	435
1000 < \(\omega_M \leq 1800 \text{ cm}^{-1} \)	1483	1.29	1917
\(\omega_{hf} \geq 3000 \text{ cm}^{-1} \)	3147	0.00	2.13
Is PBE0 calculation reliable in predicting the relative energies of the \(3^{\text{LLCT}}\) and \(3^{\text{IL}}\) excited states?

Global hybrid functionals are known to fail in zero-overlap charge transfer transition.\(^{[11]}\) However, it has also been shown that TD-PBE0 can also provide accurate descriptions with partial charge transfer character, without resorting to range-separated hybrid density functionals.\(^{[12]}\) To confirm that our present calculation results using the PBE0 functional are valid, we have also done SS-TDDFT calculation using the same basis set but a long-range corrected density functional, CAM-B3LYP\(^{[13]}\) for complex 1. It was found that with the CAM-B3LYP functional at the PBE0 optimized triplet excited state geometries, the \(3^{\text{LLCT}}\) excited state is only ~0.04 eV above the \(3^{\text{IL}}\) excited state using the unrestricted formalism (UDFT); when SS-TDDFT was employed, the \(3^{\text{LLCT}}\) excited state was found to be ~0.05 eV below the \(3^{\text{IL}}\) excited state. That is, even with a long-range corrected functional, the TD-CAMB3LYP results also showed that the \(3^{\text{LLCT}}\) excited state is slightly lower-lying than the \(3^{\text{IL}}\) excited state. Therefore, the \(3^{\text{LLCT}}\) excited state is a thermally accessible excited state that contributes to the fast non-radiative decay rate of complex 1.

Table S13. Average normal mode \(\omega_A\) (cm\(^{-1}\)) and the corresponding Huang-Rhys factor \(S_A\) and reorganization energy \(\lambda_A\) (cm\(^{-1}\)) of \(3^{\text{IL}} \rightarrow S_0\) transition of complex \(3\text{-endo}\).

\(\omega_l\)	\(\omega_A\)	\(S_A\)	\(\lambda_A\)
\(\omega_{lf} \leq 200\) cm\(^{-1}\)	53	1.33	69.9
\(200 < \omega_{lf} \leq 1000\) cm\(^{-1}\)	625	0.74	462
\(1000 < \omega_M \leq 1800\) cm\(^{-1}\)	1501	1.27	1906
\(\omega_{hf} \geq 3000\) cm\(^{-1}\)	3137	0.00	1.16

Table S14. Optimized \(S_0\) structures of complex 1.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1 79 0	0.011802	0.025754	0.050905		
2 6 0	0.033738	-0.242844	2.099473		
3 7 0	1.998046	-0.022517	0.334485		
4 8 0	-8.679474	0.249951	-1.075167		
5 6 0	-1.918426	0.077301	-0.225173		
6 6 0	-3.129049	0.112220	-0.399538		
7 6 0	-4.540640	0.152312	-0.598238		
8 6 0	-5.430142	-0.067671	0.471986		
9 1 0	-5.029683	-0.270935	1.461025		
---	---	---	-----	-----	-----
10	6	0	-6.799179	-0.028823	0.280546
11	1	0	-7.484991	-0.198882	1.105240
12	6	0	-7.329502	0.232917	-0.990429
13	6	0	-6.463536	0.454401	-2.065754
14	1	0	-6.846662	0.658823	-3.059449
15	6	0	-5.087967	0.412221	-1.863146
16	1	0	-4.421111	0.584999	-2.703099
17	6	0	-1.012383	-0.356589	3.011030
18	1	0	-2.038678	-0.305470	2.655946
19	6	0	-0.760610	-0.536252	4.373795
20	1	0	-1.590954	-0.623305	5.070352
21	6	0	0.549083	-0.604145	4.845197
22	1	0	0.743074	-0.743197	5.904909
23	6	0	1.613420	-0.493561	3.956000
24	1	0	2.631689	-0.546497	4.332694
25	6	0	1.365785	-0.314747	2.591340
26	6	0	2.443496	-0.192015	1.597493
27	6	0	3.820954	-0.230589	1.809461
28	1	0	4.222809	-0.366266	2.806660
29	6	0	4.671148	-0.091767	0.715878
30	1	0	5.745844	-0.119882	0.869039
31	6	0	4.168465	0.082529	-0.570647
32	1	0	4.839638	0.189803	-1.414635
33	6	0	2.786604	0.115559	-0.752513
34	6	0	2.036971	0.284407	-2.007085
35	6	0	2.664103	0.444002	-3.246782
36	1	0	3.748364	0.449082	-3.323670
37	6	0	1.897016	0.598370	-4.397287
38	1	0	2.385888	0.722570	-5.359352
39	6	0	0.506071	0.592944	-4.311609
Table S15. Optimized S_0 structures of complex 2.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	79	0	-0.084471 0.321506 0.044532		
2	7	0	-0.054457 0.273884 2.048074		
3	6	0	1.922044 -0.080445 0.318458		
4	6	0	2.934288 -0.253487 -0.591986		
5	1	0	2.721484 -0.188753 -1.657421		
6	6	0	4.272848 -0.517500 -0.188052		
7	6	0	5.320497 -0.693836 -1.124292		
8	1	0	5.090903 -0.626145 -2.185144		
9	6	0	6.605769 -0.945688 -0.702927		
10	1	0	7.400528 -1.078614 -1.431915		
11	6	0	6.902571 -1.033054 0.676255		
12	1	0	7.921781 -1.232120 0.995444		
13	6	0	5.907198 -0.867048 1.609831		
14	1	0	6.129771 -0.933063 2.672369		
15	6	0	4.573692 -0.606155 1.205067		
16	6	0	3.528790 -0.428332 2.142560		
---	---	---	----	----	----
17	1	0	3.772115	-0.497161	3.200614
18	6	0	2.240030	-0.172662	1.724024
19	6	0	1.122763	0.026866	2.659678
20	6	0	1.152017	-0.016684	4.049639
21	1	0	2.077105	-0.245813	4.565689
22	6	0	-0.023007	0.202744	4.781191
23	6	0	-1.215154	0.459868	4.088009
24	1	0	-2.127929	0.660442	4.636871
25	6	0	-1.218299	0.489108	2.698485
26	6	0	-2.356109	0.737994	1.799000
27	6	0	-3.650721	0.985855	2.266228
28	1	0	-3.861685	1.004725	3.332429
29	6	0	-4.683547	1.210904	1.361913
30	1	0	-5.688401	1.403300	1.726976
31	1	0	-5.234483	1.364295	-0.712794
32	6	0	-4.425745	1.188511	-0.007581
33	6	0	-3.133948	0.940878	-0.478736
34	1	0	-2.945564	0.926048	-1.549401
35	6	0	-2.081477	0.712992	0.404157
36	6	0	-0.116728	0.366438	-1.905781
37	6	0	-0.139156	0.393530	-3.128904
38	6	0	-0.163855	0.423475	-4.554562
39	6	0	-1.345118	0.713848	-5.252708
40	1	0	-2.253463	0.919111	-4.693365
41	6	0	-1.379790	0.745191	-6.643016
42	1	0	-2.313464	0.974402	-7.144710
43	6	0	-0.215605	0.481899	-7.371297
44	6	0	0.973795	0.189759	-6.689433
45	1	0	1.869524	-0.012357	-7.269315
46	6	0	0.998167	0.161534	-5.306964
---	---	---	---	---	---
47	1	0	1.925334	-0.066024	-4.788808
48	8	0	-0.136490	0.485228	-8.721830
49	6	0	-1.311430	0.774964	-9.453352
50	1	0	-1.030106	0.724876	-10.506007
51	1	0	-2.099739	0.038978	-9.253212
52	1	0	-1.687339	1.780013	-9.225932
53	6	0	-0.007600	0.164229	6.258458
54	6	0	-1.097733	-0.355817	6.962974
55	6	0	1.096247	0.648421	6.967270
56	6	0	-1.102573	-0.402385	8.358387
57	1	0	-1.940304	-0.756997	6.406096
58	6	0	1.127127	0.625914	8.363038
59	1	0	1.928548	1.076454	6.414866
60	6	0	0.018412	0.095396	9.032472
61	1	0	0.028180	0.068936	10.114758
62	6	0	-2.311734	-0.990652	9.092033
63	6	0	-3.568977	-0.184663	8.725230
64	6	0	-2.503954	-2.455564	8.665995
65	6	0	-2.147142	-0.953190	10.613738
66	1	0	-3.463204	0.864070	9.025655
67	1	0	-3.769691	-0.208995	7.648729
68	1	0	-4.445317	-0.599535	9.237500
69	1	0	-1.624353	-3.057041	8.922495
70	1	0	-3.372480	-2.885522	9.179210
71	1	0	-2.673530	-2.549185	7.588008
72	1	0	-2.038733	-1.379598	11.086749
73	1	0	-1.283585	-1.540862	10.945997
74	1	0	-2.032356	0.070896	10.987390
75	6	0	2.350588	1.176380	9.102489
76	6	0	3.597568	0.382135	8.679752
Table S16. Optimized S_0 structures of complex 3-exo.

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	79	0	0.018801	0.099452	0.041414
2	7	0	0.017803	0.101186	2.043292
3	6	0	2.060191	0.059409	0.360590
4	6	0	0.025914	0.092290	-1.910309
5	6	0	-3.081496	0.169336	-0.542610
6	1	0	-2.872661	0.163059	-1.609646
7	6	0	-4.405377	0.200218	-0.096847
8	1	0	-5.219037	0.218013	-0.817915
9	1	0	-5.718255	0.232535	1.613110
10	6	0	-4.688594	0.208524	1.267742
11	6	0	-3.649424	0.185937	2.192753
12	1	0	-3.879786	0.193151	3.255088
13	6	0	-2.323226	0.154517	1.750978
14	6	0	-1.175607	0.129606	2.672861
---	----	----	-----------	---------	---------
15	6	0	-1.191101	0.123554	4.063071
16	1	0	-2.133958	0.117859	4.597882
17	6	0	0.017757	0.085714	4.773367
18	6	0	1.225420	0.058447	4.063254
19	1	0	2.167549	0.056827	4.599311
20	6	0	1.212780	0.067861	2.671365
21	6	0	2.360290	0.053598	1.754272
22	6	0	3.687549	0.039373	2.208291
23	1	0	3.910386	0.038055	3.273324
24	6	0	4.716050	0.030815	1.281608
25	6	0	4.428719	0.032708	-0.095087
26	6	0	3.108680	0.046765	-0.553739
27	1	0	2.892645	0.050654	-1.619722
28	6	0	5.695214	0.022159	-0.827493
29	6	0	5.956654	0.018142	-2.197442
30	1	0	5.145045	0.022590	-2.920848
31	6	0	7.282384	0.008261	-2.625791
32	1	0	7.505385	0.004959	-3.689321
33	6	0	8.328388	0.002552	-1.699530
34	1	0	9.356929	-0.005157	-2.050420
35	6	0	8.065498	0.006773	-0.327422
36	1	0	8.887796	0.002532	0.384700
37	6	0	6.746585	0.016638	0.106196
38	6	0	0.062996	0.072480	-4.559810
39	6	0	1.282688	0.037757	-5.264245
40	6	0	1.307695	0.025566	-6.646862
41	1	0	2.247929	-0.001391	-7.189654
42	6	0	0.111429	0.047663	-7.377155
43	6	0	-1.109762	0.082537	-6.697150
44 1 0 -2.050031 0.100361 -7.237178					
45 6 0 -1.124236 0.094617 -5.306123					
46 1 0 -2.076696 0.121598 -4.784447					
47 1 0 2.215829 0.020166 -4.708316					
48 6 0 0.039543 0.083689 -3.133929					
49 6 0 6.214792 0.024987 1.529014					
50 6 0 6.504532 -7.636690 2.205237					
51 1 0 6.858242 -8.465106 2.205237					
52 1 0 6.939400 -7.762353 1.206122					
53 1 0 6.856590 -7.734540 2.105865					
54 6 0 6.881305 -6.285761 2.801592					
55 1 0 7.972460 -6.227563 2.921354					
56 1 0 6.459502 -6.199695 3.813119					
57 6 0 6.405982 -5.106362 1.958203					
58 1 0 6.830435 -5.189616 0.946595					
59 1 0 5.314311 -5.165414 1.834758					
60 6 0 6.773819 -3.749362 2.550376					
61 1 0 7.865506 -3.691174 2.674811					
62 1 0 6.348082 -3.668023 3.561850					
63 6 0 6.297140 -2.571854 1.704363					
64 1 0 6.730524 -2.648560 0.697980					
65 1 0 5.207697 -2.634302 1.576963					
66 6 0 6.664964 -1.225411 2.319027					
67 1 0 7.755623 -1.169707 2.446277					
68 1 0 6.237906 -1.158604 3.330255					
69 6 0 6.671396 1.283036 2.304637					
70 1 0 6.235154 1.234854 3.312927					
71 1 0 7.760449 1.218878 2.441498					
72 6 0 6.321300 2.623537 1.666934					
73 1 0 6.774508 2.686032 0.668318					
---	---	---	---	---	---
74	1	0	5.234745	2.688659	1.517420
75	6	0	6.784238	3.810942	2.507276
76	1	0	6.334751	3.739407	3.507614
77	1	0	7.873157	3.751840	2.656267
78	6	0	6.939271	6.373164	2.652723
79	1	0	8.030820	6.304294	2.764926
80	1	0	6.751805	7.274954	2.054764
81	6	0	6.437189	5.156357	1.874270
82	1	0	5.345734	5.229012	1.754518
83	1	0	6.856833	5.185792	0.858726
84	6	0	6.296151	6.547059	4.024976
85	1	0	6.645051	7.465096	4.511091
86	1	0	6.529892	5.712115	4.694949
87	1	0	5.203940	6.608966	3.940680
88	6	0	-2.022652	0.145831	0.361181
89	8	0	0.241044	0.032949	-8.723733
90	6	0	-0.939204	0.051974	-9.502409
91	1	0	-1.524403	0.961653	-9.320421
92	1	0	-0.613115	0.035019	-10.543126
93	1	0	-1.564089	-0.827292	-9.303637
94	6	0	0.018097	0.073485	6.251255
95	6	0	0.934373	-0.717929	6.949956
96	6	0	-0.897818	0.852355	6.964277
97	6	0	0.947483	-0.748209	8.345959
98	1	0	1.623754	-1.341942	6.387354
99	6	0	-0.909526	0.858437	8.360673
100	1	0	-1.588578	1.485166	6.413311
101	6	0	0.019391	0.049448	9.025462
102	1	0	0.019913	0.040030	10.108238
103	6	0	-1.912125	1.745366	9.105251
Table S17. Optimized S₀ structures of complex 3-endo.

Center Number	Atomic Number	Atomic Type	Coordinates (Å)			
			X	Y	Z	
104	6	0	-1.645288	3.217426	8.749333	
105	6	0	-3.341673	1.370648	8.681083	
106	6	0	-1.810232	1.593162	10.625325	
107	1	0	-0.634105	3.515963	9.048776	
108	1	0	-1.746493	3.400810	7.674218	
109	1	0	-2.360350	3.866818	9.268621	
110	1	0	-3.562706	0.325807	8.927485	
111	1	0	-4.067674	2.005149	9.203403	
112	1	0	-3.497000	1.504356	7.605238	
113	1	0	-2.551688	2.240949	11.106107	
114	1	0	-2.010546	0.564430	10.946670	
115	1	0	-0.822950	1.885827	11.000842	
116	6	0	1.949764	-1.649150	9.074040	
117	6	0	1.678117	-3.114653	8.695216	
118	6	0	3.379356	-1.271794	8.652408	
119	6	0	1.851964	-1.520661	10.596521	
120	1	0	0.667021	-3.415357	8.992751	
121	1	0	1.775551	-3.280592	7.616929	
122	1	0	2.392956	-3.774363	9.201703	
123	1	0	3.603709	-0.231310	8.913771	
124	1	0	4.104803	-1.915861	9.163676	
125	1	0	3.532043	-1.390139	7.574370	
126	1	0	2.593558	-2.177115	11.065161	
127	1	0	2.054737	-0.497304	10.933130	
128	1	0	0.865175	-1.817485	10.970028	
1	79	0	-0.008708	-0.097263	0.000965	
---	----	----	-------------	-------------	------------	
2	7	0	-0.009251	-0.119995	2.009559	
3	6	0	2.100433	-0.068407	0.338541	
4	6	0	-0.272270	-0.055309	-1.934969	
5	8	0	-1.846117	0.279886	-8.558806	
6	6	0	-2.048085	-0.148422	0.333096	
7	6	0	-3.103660	-0.161868	-0.574312	
8	1	0	-2.892441	-0.140405	-1.639370	
9	6	0	-4.427488	-0.201325	-0.130253	
10	1	0	-5.238243	-0.210965	-0.854635	
11	6	0	-4.714848	-0.227913	1.232836	
12	1	0	-5.744977	-0.258405	1.576125	
13	6	0	-3.677017	-0.214784	2.158150	
14	1	0	-3.907205	-0.235753	3.220072	
15	6	0	-2.349960	-0.174930	1.718770	
16	6	0	-1.205976	-0.155916	2.637328	
17	6	0	-1.235688	-0.159506	4.025144	
18	1	0	-2.184078	-0.161603	4.549747	
19	6	0	-0.034059	-0.120492	4.746564	
20	6	0	1.174197	-0.080202	4.043620	
21	1	0	2.109400	-0.077310	4.589937	
22	6	0	1.173592	-0.081214	2.648877	
23	6	0	-0.044941	-0.121907	6.224281	
24	6	0	-0.964962	-0.909821	6.921941	
25	1	0	-1.650317	-1.537993	6.359013	
26	6	0	-0.987525	-0.930726	8.318028	
27	6	0	-0.065301	-0.127106	8.998481	
28	1	0	-0.073379	-0.129129	10.081270	
29	6	0	0.866489	0.679366	8.334635	
---	---	---	----------	----------	----------	
30	6	0	0.864127	0.664028	6.938309	
31	1	0	1.556609	1.295346	6.387835	
32	6	0	2.335242	-0.059157	1.754522	
33	6	0	3.622251	-0.041499	2.307621	
34	1	0	3.756570	-0.030881	1.354522	
35	6	0	4.738371	-0.042988	1.491178	
36	1	0	5.737613	-0.032922	1.917766	
37	6	0	4.542895	-0.063586	0.115201	
38	6	0	5.555802	-0.083968	-0.933354	
39	6	0	6.949393	-0.084646	-0.855867	
40	1	0	7.458221	-0.072612	0.104886	
41	6	0	7.682668	-0.114764	-2.039170	
42	1	0	8.768740	-0.119115	-2.001805	
43	6	0	7.031745	-0.136242	-3.276493	
44	1	0	7.618274	-0.157223	-4.191325	
45	6	0	5.637452	-0.131330	-3.348827	
46	1	0	5.141702	-0.148175	-4.316999	
47	6	0	4.901666	-0.105143	-2.170164	
48	6	0	3.395862	-0.090841	-1.992247	
49	6	0	3.247662	-0.072016	-0.464557	
50	6	0	-0.602485	-0.014305	-3.112177	
51	6	0	-0.934224	0.039564	-4.498223	
52	6	0	-1.827268	-0.881252	-5.064821	
53	1	0	-2.270154	-1.646900	-4.434103	
54	6	0	-2.155791	-0.838327	-6.416285	
55	1	0	-2.848098	-1.571096	-6.816098	
56	6	0	-1.593839	0.144968	-7.235710	
57	6	0	-0.701983	1.074869	-6.684029	
58	1	0	-0.273766	1.833101	-7.333052	
59	6	0	-0.376092	1.021233	-5.340711	
index	x	y	z	v1	v2	v3
-------	-----	----	-----	-----	-----	-----
60	1	0	0.318229	1.746015	-4.925257	
61	6	0	-2.742173	-0.635641	-9.156833	
62	1	0	-3.739923	-0.572682	-8.705295	
63	1	0	-2.373779	-1.665962	-9.079160	
64	1	0	-2.803752	-0.353086	-10.208588	
65	6	0	-1.994277	-1.827279	9.045300	
66	6	0	1.861842	1.573823	9.079965	
67	6	0	3.295191	1.201613	8.666542	
68	1	0	3.518148	0.158791	8.919647	
69	1	0	4.015841	1.841183	9.190092	
70	1	0	3.456840	1.330426	7.591021	
71	6	0	1.751443	1.430025	10.600266	
72	1	0	0.761153	1.721890	10.968377	
73	1	0	2.488191	2.082740	11.081622	
74	1	0	1.952881	0.403700	10.928562	
75	6	0	1.592159	3.042873	8.713822	
76	1	0	1.698775	3.220093	7.638204	
77	1	0	2.302102	3.697797	9.233210	
78	1	0	0.578297	3.339742	9.005783	
79	6	0	-3.421139	-1.450483	8.614008	
80	1	0	-3.645912	-0.408627	8.869488	
81	1	0	-4.150109	-2.091582	9.124004	
82	1	0	-3.567822	-1.573289	7.535653	
83	6	0	-1.904378	-1.691221	10.567601	
84	1	0	-0.919559	-1.986413	10.947606	
85	1	0	-2.648561	-2.345142	11.035681	
86	1	0	-2.108618	-0.666194	10.898152	
87	6	0	-1.722204	-3.294978	8.675476	
88	1	0	-1.814570	-3.466605	7.597634	
89	1	0	-2.440282	-3.951221	9.181864	
---	---	---	-----	-----	-----	
90	1	0	-0.712920	-3.595181	8.979605	
91	6	0	2.776632	-1.354342	-2.631587	
92	1	0	1.690654	-1.303744	-2.507122	
93	1	0	2.963858	-1.303477	-3.714617	
94	6	0	3.289872	-2.688022	-2.097237	
95	1	0	4.378032	-2.756515	-2.234717	
96	1	0	3.111257	-2.744775	-1.014335	
97	6	0	2.620617	-3.879474	-2.777190	
98	1	0	2.789031	-3.821649	-3.863164	
99	1	0	1.531298	-3.814008	-2.635156	
100	6	0	3.114435	-5.228353	-2.263381	
101	1	0	4.203197	-5.296655	-2.407853	
102	1	0	2.948037	-5.287080	-1.177175	
103	6	0	2.441816	-6.419329	-2.939627	
104	1	0	2.607180	-6.359047	-4.024735	
105	1	0	1.354462	-6.350202	-2.793732	
106	6	0	2.942111	-7.762212	-2.420782	
107	1	0	4.021446	-7.870591	-2.583654	
108	1	0	2.443476	-8.599436	-2.922110	
109	1	0	2.759525	-7.861528	-1.343745	
110	6	0	2.805471	1.174781	-2.655929	
111	1	0	2.988124	1.095746	-3.738265	
112	1	0	1.719575	1.152425	-2.526128	
113	6	0	3.350935	2.507808	-2.152887	
114	1	0	3.169940	2.596051	-1.072557	
115	1	0	4.440804	2.546243	-2.287791	
116	6	0	2.713427	3.698074	-2.864928	
117	1	0	1.621656	3.659557	-2.731178	
118	1	0	2.890657	3.613004	-3.947935	
119	6	0	3.232064	5.047011	-2.376088	
Table S18. Optimized 3IL state of complex 1.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	79	0	-0.008307 0.009540 -0.001996		
2	6	0	-0.006560 -0.012111 2.061108		
3	7	0	1.952548 -0.003598 0.314321		
4	8	0	-8.695390 0.088496 -1.236058		
5	6	0	-1.940565 0.023746 -0.307881		
6	6	0	-3.150029 0.034213 -0.496730		
7	6	0	-4.559625 0.047220 -0.712028		
8	6	0	-5.459652 0.044541 0.372173		
9	1	0	-5.068777 0.031641 1.385575		
10	6	0	-6.826906 0.058347 0.164432		
11	1	0	-7.520047 0.056502 1.000512		
12	6	0	-7.345812 0.075408 -1.137594		
13	6	0	-6.469898 0.077893 -2.227301		
14	1	0	-6.843966 0.090641 -3.245076		
---	---	---	-------	-------	-------
15	6	0	-5.096165	0.063965	-2.008010
16	1	0	-4.421785	0.066211	-2.859695
17	6	0	-1.058691	-0.016764	2.974647
18	1	0	-2.082996	-0.008436	2.610601
19	6	0	-0.813782	-0.032160	4.348939
20	1	0	-1.648492	-0.035536	5.045783
21	6	0	0.494325	-0.043380	4.838743
22	1	0	0.676485	-0.055366	5.909382
23	6	0	1.564458	-0.039224	3.954230
24	1	0	2.579787	-0.048045	4.341360
25	6	0	1.325490	-0.023712	2.573568
26	6	0	2.394885	-0.018485	1.574993
27	6	0	3.781795	-0.027364	1.813463
28	1	0	4.161267	-0.038940	2.827966
29	6	0	4.678155	-0.021064	0.710594
30	1	0	5.747247	-0.028650	0.894442
31	6	0	4.199576	-0.005618	-0.573205
32	1	0	4.882200	-0.001241	-1.416127
33	6	0	2.783860	0.004439	-0.812610
34	6	0	2.098244	0.021405	-2.024581
35	6	0	2.737215	0.033081	-3.317571
36	1	0	3.821033	0.029553	-3.387259
37	6	0	1.977331	0.048871	-4.450418
38	1	0	2.459817	0.057646	-5.423878
39	6	0	0.551800	0.054256	-4.381179
40	1	0	-0.027437	0.066815	-5.299713
41	6	0	-0.096264	0.043664	-3.137461
42	1	0	-1.182936	0.048219	-3.102285
43	6	0	0.615588	0.027596	-1.952816
44	6	0	-9.264285	0.107296	-2.530324
Table S19. Optimized \(^3\)IL state of complex 2.

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	79	0	-0.064775	0.018658	0.006848
2	7	0	-0.062408	0.020342	1.998853
3	6	0	1.979370	-0.013737	0.332691
4	6	0	3.025655	-0.036032	-0.568605
5	1	0	2.813286	-0.036340	-1.636018
6	6	0	4.413647	-0.060133	-0.158471
7	6	0	5.445391	-0.084657	-1.077850
8	1	0	5.210420	-0.086362	-2.139674
9	6	0	6.805033	-0.107543	-0.662688
10	1	0	7.594392	-0.126653	-1.407406
11	6	0	7.104919	-0.104985	0.686265
12	1	0	8.139229	-0.122200	1.017613
13	6	0	6.075727	-0.080262	1.639633
14	1	0	6.317763	-0.078747	2.699376
15	6	0	4.714987	-0.057790	1.247281
16	6	0	3.666413	-0.033602	2.173272
17	1	0	3.898742	-0.029659	3.234232
18	6	0	2.266880	-0.013551	1.729360
19	6	0	1.160692	0.006469	2.621378
20	6	0	1.170635	0.004295	4.031829
21	1	0	2.114733	-0.038485	4.563363
---	---	---	---	---	---
22	6	0	-0.026093	0.016682	4.742282
23	6	0	-1.250571	0.030596	4.034584
24	1	0	-2.189058	0.072487	4.574577
25	6	0	-1.241559	0.032250	2.642470
26	6	0	-2.397292	0.052916	1.728619
27	6	0	-3.721424	0.073098	2.174824
28	1	0	-3.946413	0.074258	3.238338
29	6	0	-4.765064	0.092278	1.253707
30	1	0	-5.793482	0.108441	1.603362
31	1	0	-5.304174	0.105753	-0.829553
32	6	0	-4.487662	0.090810	-0.111625
33	6	0	-3.164869	0.069986	-0.563205
34	1	0	-2.960416	0.068667	-1.631084
35	6	0	-2.103387	0.050949	0.336825
36	6	0	-0.056558	0.016415	-1.947883
37	6	0	-0.035049	0.013899	-3.172092
38	6	0	-0.005027	0.010990	-4.597414
39	6	0	-1.188992	0.037225	-5.349266
40	1	0	-2.143803	0.060167	-4.831762
41	6	0	-1.168016	0.034537	-6.740119
42	1	0	-2.105764	0.055417	-7.284397
43	6	0	0.056436	0.005045	-7.414750
44	6	0	1.249427	-0.021392	-6.679063
45	1	0	2.192116	-0.044183	-7.217774
46	6	0	1.218027	-0.018424	-5.296641
47	1	0	2.148505	-0.039117	-4.736512
48	8	0	0.192315	-0.000319	-8.760567
49	6	0	-0.984233	0.023718	-9.544889
50	1	0	-0.653000	0.013879	-10.584060
51	1	0	-1.609755	-0.857018	-9.355047
52 1 0 -1.570437 0.932034 -9.359535
53 6 0 -0.022297 0.008481 6.220767
54 6 0 -0.979460 -0.727506 6.925988
55 6 0 0.937773 0.734617 6.932292
56 6 0 -0.989761 -0.755520 8.322250
57 1 0 -1.707230 -1.310257 6.367402
58 6 0 0.959256 0.736086 8.328528
59 1 0 1.658784 1.330182 6.378402
60 6 0 -0.012541 -0.016260 8.998571
61 1 0 -0.009042 -0.025474 10.081324
62 6 0 -2.043986 -1.591834 9.054244
63 6 0 -3.448363 -1.129433 10.576445
64 6 0 -1.862263 -3.072510 8.681073
65 6 0 -1.938328 -1.463979 10.576445
66 1 0 -3.606742 -0.075275 8.887189
67 1 0 -3.609939 -1.244831 7.555377
68 1 0 -4.211797 -1.723493 9.149032
69 1 0 -0.871730 -3.432998 8.981590
70 1 0 -2.616844 -3.685566 9.188629
71 1 0 -1.967541 -3.235793 7.603139
72 1 0 -2.718316 -2.072590 11.047538
73 1 0 -0.971398 -1.818355 10.951758
74 1 0 -2.079161 -0.428954 10.909066
75 6 0 2.017735 1.560346 9.068014
76 6 0 3.419463 1.107754 8.627196
77 6 0 1.831640 3.047493 8.724111
78 6 0 1.923574 1.404170 10.588347
79 1 0 3.581568 0.049657 8.862642
80 1 0 3.572062 1.241677 7.550981
81 1 0 4.186090 1.694257 9.147686
Table S20. Optimized 3I state of complex 3-exo.

Center Number	Atomic Number	Atomic Type	X	Y	Z	
1	79	0	0.014062	-0.018325	-0.011838	
2	7	0	0.013628	-0.026455	1.975212	
3	6	0	2.045165	-0.016403	0.292460	
4	6	0	0.013952	-0.009457	-1.968938	
5	6	0	-3.084980	-0.015835	-0.591285	
6	1	0	-2.876826	-0.014137	-1.658516	
7	6	0	-4.407593	-0.015531	-0.144027	
8	1	0	-5.222484	-0.013804	-0.864068	
9	1	0	-5.720356	-0.016834	1.567556	
10	6	0	-4.690364	-0.017112	1.222113	
11	6	0	-3.651107	-0.019134	2.145870	
12	1	0	-3.880127	-0.020000	3.208572	
13	6	0	-2.323842	-0.020176	1.703565	
14	6	0	-1.171281	-0.021812	2.616193	
15	6	0	-1.187898	-0.025331	4.006480	
16	1	0	-2.132732	-0.052103	4.536819	
17	6	0	0.032231	-0.037359	4.736316	
18	6	0	1.228259	-0.040628	4.033652	
19	1	0	2.169853	-0.019808	4.571721	
20	6	0	1.235983	-0.033639	2.620183	
21	6	0	2.349068	-0.022688	1.751758	
22	6	0	3.714058	-0.014225	2.203255	
23	1	0	3.937899	-0.015101	3.267108	
24	6	0	4.712874	-0.000388	1.283823	
25	6	0	4.423098	0.000749	-0.142294	
26	6	0	3.079378	-0.006908	-0.601807	
27	1	0	2.869829	-0.003005	-1.669095	
28	6	0	5.653743	0.013537	-0.849079	
29	6	0	5.915022	0.016946	-2.236987	
30	1	0	5.098155	0.009025	-2.953192	
31	6	0	7.231006	0.030030	-2.665893	
32	1	0	7.452404	0.032603	-3.729414	
33	6	0	8.288378	0.039992	-1.741185	
34	1	0	9.313303	0.050233	-2.100776	
35	6	0	8.037663	0.037028	-0.361710	
36	1	0	8.867772	0.045399	0.340519	
37	6	0	6.729849	0.023797	0.083815	
38	6	0	0.032940	0.008743	-4.619222	
39	6	0	1.246388	0.037874	-5.334809	
40	6	0	1.259976	0.048630	-6.717822	
41	1	0	2.195929	0.071333	-7.268270	
42	6	0	0.057962	0.030386	-7.438338	
43	6	0	-1.157253	0.001059	-6.747821	
44	1	0	-2.102236	-0.013764	-7.279742	
45	6	0	-1.160186	-0.009342	-5.356524	
46	1	0	-2.108569	-0.031957	-4.827224	
47	1	0	2.184482	0.052307	-4.787083	
48	6	0	0.020723	-0.001363	-3.193093	
Index	Type	Mass	Xcoordinate	Ycoordinate	Zcoordinate	
-------	------	------	-------------	-------------	-------------	
49	6	0	6.214609	0.020132	1.513762	
50	6	0	6.631569	-7.636955	2.113423	
51	1	0	6.996763	-8.466050	2.729849	
52	1	0	7.072790	-7.744029	1.114948	
53	1	0	5.545903	-7.752242	2.008259	
54	6	0	6.982659	-6.286598	2.726524	
55	1	0	8.072150	-6.210939	2.851528	
56	1	0	6.555220	-6.219151	3.737048	
57	6	0	6.490370	-5.106334	1.894151	
58	1	0	6.918763	-5.171931	0.882927	
59	1	0	5.400132	-5.181655	1.767383	
60	6	0	6.835213	-3.750115	2.501761	
61	1	0	7.925693	-3.674478	2.626983	
62	1	0	6.407803	-3.686530	3.513633	
63	6	0	6.338956	-2.571848	1.668483	
64	1	0	6.768645	-2.634036	0.659176	
65	1	0	5.249377	-2.647894	1.546370	
66	6	0	6.691402	-1.226064	2.293416	
67	1	0	7.781916	-1.152562	2.412149	
68	1	0	6.269339	-1.171982	3.307078	
69	6	0	6.652075	1.287151	2.284179	
70	1	0	6.227118	1.228817	3.296373	
71	1	0	7.743745	1.247078	2.407293	
72	6	0	6.261728	2.616124	1.646014	
73	1	0	6.697279	2.684600	0.639624	
74	1	0	5.171335	2.655585	1.514243	
75	6	0	6.710178	3.817854	2.473363	
76	1	0	6.278745	3.740011	3.481041	
77	1	0	7.802415	3.784671	2.604530	
78	6	0	6.806351	6.383148	2.605270	
			1st Column	2nd Column	3rd Column	
----	---	---	------------	------------	------------	
79	1	0	7.900738	6.340107	2.701433	
80	1	0	6.589163	7.277297	2.005951	
81	6	0	6.321038	5.151386	1.839861	
82	1	0	5.226451	5.197480	1.737311	
83	1	0	6.723875	5.186069	0.817690	
84	6	0	6.179603	6.548793	3.986068	
85	1	0	6.514981	7.476598	4.463007	
86	1	0	6.441741	5.722420	4.656191	
87	1	0	5.085205	6.585958	3.917547	
88	6	0	-2.023639	-0.018355	0.311913	
89	8	0	0.176467	0.043003	-8.786652	
90	6	0	-1.010534	0.027314	-9.554605	
91	1	0	-1.630744	0.908973	-9.351487	
92	1	0	-0.693904	0.041858	-10.598329	
93	1	0	-1.597594	-0.879979	-9.366421	
94	6	0	0.018723	-0.037998	6.213300	
95	6	0	0.963263	-0.777376	6.933009	
96	6	0	-0.938730	0.703216	6.913633	
97	6	0	0.971577	-0.784035	8.329211	
98	1	0	1.682423	-1.380277	6.384517	
99	6	0	-0.963251	0.724674	8.309876	
100	1	0	-1.655630	1.296257	6.351578	
101	6	0	0.000293	-0.025761	8.993498	
102	1	0	-0.007496	-0.021693	10.076229	
103	6	0	-2.016754	1.568195	9.034843	
104	6	0	-1.815867	3.048792	8.671149	
105	6	0	-3.421366	1.122798	8.596122	
106	6	0	-1.928508	1.432115	10.557429	
107	1	0	-0.824553	3.397379	8.982955	
108	1	0	-1.908882	3.218524	7.593077	
Center	Atomic Number	Atomic Number	Type	X	Y	Z
--------	---------------	---------------	------	-------	-------	-------
109	1	0	0	-2.568819	3.667372	9.174461
110	1	0	0	-3.594043	0.069571	8.845448
111	1	0	0	-4.183927	1.723467	9.106360
112	1	0	0	-3.569800	1.243440	7.517788
113	1	0	0	-2.707483	2.045907	11.023484
114	1	0	0	-2.082378	0.396869	10.883495
115	1	0	0	-0.962154	1.775319	10.944478
116	6	0	0	2.013400	-1.623574	9.075442
117	6	0	0	1.809737	-3.107496	8.727360
118	6	0	0	3.424805	-1.189831	8.646884
119	6	0	0	1.909542	-1.468955	10.595322
120	1	0	0	0.813392	-3.447795	9.032085
121	1	0	0	1.913951	-3.290700	7.652503
122	1	0	0	2.554083	-3.723316	9.246624
123	1	0	0	3.599813	-0.134552	8.885785
124	1	0	0	4.178979	-1.787999	9.172328
125	1	0	0	3.584195	-1.323776	7.571653
126	1	0	0	2.681639	-2.079478	11.076909
127	1	0	0	2.063040	-0.430356	10.910810
128	1	0	0	0.938163	-1.804767	10.976094

Table S21. Optimized 3IL state of complex 3-endo.
			x	y	z
5	8	0	-2.052723	0.257162	-8.541897
6	6	0	-2.043829	-0.039108	0.326712
7	6	0	-3.106802	-0.072070	-0.573417
8	1	0	-2.902911	-0.059343	-1.640149
9	6	0	-4.426372	-0.120947	-0.120262
10	1	0	-5.241891	-0.145087	-0.839135
11	6	0	-4.705661	-0.139694	1.245928
12	1	0	-5.733571	-0.178158	1.595233
13	6	0	-3.662806	-0.109838	2.163985
14	1	0	-3.885361	-0.127151	3.227651
15	6	0	-2.338103	-0.059512	1.715950
16	6	0	-1.184659	-0.026932	2.619052
17	6	0	-1.208282	-0.027195	4.008199
18	1	0	-2.156747	-0.031489	4.532435
19	6	0	0.005158	0.022745	4.742909
20	6	0	1.199416	0.072125	4.040030
21	1	0	2.136541	0.079940	4.584453
22	6	0	1.210516	0.069856	2.625731
23	6	0	-0.011695	0.013165	6.219394
24	6	0	-0.946156	-0.764351	6.911449
25	1	0	-1.640592	-1.377396	6.342695
26	6	0	-0.975038	-0.795753	8.307348
27	6	0	-0.040548	-0.016817	8.999472
28	1	0	-0.052596	-0.027707	10.082134
29	6	0	0.906819	0.778245	8.343631
30	6	0	0.904715	0.779341	6.947380
31	1	0	1.605618	1.409208	6.405606
32	6	0	2.330038	0.104064	1.768057
33	6	0	3.665221	0.172635	2.321501
34	1	0	3.795528	0.240255	3.396422
---	---	---	--------	--------	--------
35	6	0	4.749037	0.146728	1.513792
36	1	0	5.754369	0.191458	1.922638
37	6	0	4.546733	0.060590	0.099241
38	6	0	5.533317	0.002452	-0.911047
39	6	0	6.944410	-0.002480	-0.824383
40	1	0	7.443648	0.043859	0.139353
41	6	0	7.677551	-0.070219	-1.995830
42	1	0	8.763151	-0.076224	-1.954939
43	6	0	7.033555	-0.132401	-3.243763
44	1	0	7.630017	-0.185161	-4.150173
45	6	0	5.634140	-0.127162	-3.33956
46	1	0	5.152610	-0.174788	-4.307693
47	6	0	4.887520	-0.060248	-2.173163
48	6	0	3.380937	-0.033036	-2.008489
49	6	0	3.218689	0.032351	-0.482292
50	6	0	-0.616071	0.081337	-3.136420
51	6	0	-0.959047	0.112044	-4.520556
52	6	0	-0.196007	-0.578572	-5.473586
53	1	0	0.671675	-1.144705	-5.147207
54	6	0	-0.527524	-0.558371	-6.824884
55	1	0	0.086921	-1.108437	-7.529218
56	6	0	-1.641747	0.168201	-7.254978
57	6	0	-2.413076	0.866918	-6.316423
58	1	0	-3.275429	1.427241	-6.665636
59	6	0	-2.078811	0.836743	-4.974427
60	1	0	-2.685095	1.381282	-4.256053
61	6	0	-1.308344	-0.436853	-9.522943
62	1	0	-1.308999	-1.517838	-9.336229
63	1	0	-0.272817	-0.077797	-9.569433
64	1	0	-1.802517	-0.235198	-10.474266
---	---	---	---------	---------	---------
65	6	0	-2.001156	-1.680209	9.022828
66	6	0	1.915815	1.648932	9.099260
67	6	0	3.343510	1.262064	8.679950
68	1	0	3.551695	0.213000	8.919680
69	1	0	4.074002	1.884590	9.210562
70	1	0	3.505534	1.401630	7.605844
71	6	0	1.805638	1.487518	10.617929
72	1	0	0.820685	1.790274	10.991493
73	1	0	2.553437	2.122091	11.106682
74	1	0	1.990769	0.453863	10.932630
75	6	0	1.667198	3.126473	8.753128
76	1	0	1.775021	3.316151	7.679755
77	1	0	2.386655	3.764630	9.280444
78	1	0	0.657775	3.433654	9.049865
79	6	0	-3.419171	-1.279387	8.584313
80	1	0	-3.629099	-0.235284	8.843324
81	1	0	-4.161704	-1.911239	9.086392
82	1	0	-3.560479	-1.394490	7.504430
83	6	0	-1.920444	-1.554019	10.546562
84	1	0	-0.943589	-1.867583	10.932416
85	1	0	-2.679042	-2.197648	11.005882
86	1	0	-2.109491	-0.527252	10.880788
87	6	0	-1.749645	-3.150130	8.647208
88	1	0	-1.836017	-3.313921	7.567668
89	1	0	-2.481525	-3.798293	9.144385
90	1	0	-0.747347	-3.467517	8.957151
91	6	0	2.762719	-1.313610	-2.610965
92	1	0	1.676550	-1.255263	-2.492119
93	1	0	2.958125	-1.297230	-3.694011
94	6	0	3.273253	-2.628401	-2.029478
----	----	----	----------	----------	----------
95	1	0	4.362317	-2.701284	-2.159884
96	1	0	3.088793	-2.647115	-0.946141
97	6	0	2.607625	-3.842712	-2.671196
98	1	0	2.775155	-3.818052	-3.758702
99	1	0	1.518451	-3.776799	-2.529646
100	6	0	3.108055	-5.172627	-2.116065
101	1	0	4.197057	-5.240088	-2.259279
102	1	0	2.942395	-5.198282	-1.028593
103	6	0	2.440734	-6.387198	-2.754559
104	1	0	2.603528	-6.358840	-3.841381
105	1	0	1.353404	-6.319933	-2.608245
106	6	0	2.950040	-7.710759	-2.196396
107	1	0	4.029721	-7.817722	-2.357958
108	1	0	2.455425	-8.565502	-2.671371
109	1	0	2.769715	-7.778751	-1.116585
110	6	0	2.805851	1.218453	-2.709676
111	1	0	3.000326	1.113465	-3.787566
112	1	0	1.718732	1.204206	-2.588573
113	6	0	3.357621	2.556292	-2.226727
114	1	0	3.162217	2.666658	-1.150743
115	1	0	4.449976	2.582491	-2.347781
116	6	0	2.741182	3.738792	-2.969150
117	1	0	1.647619	3.710807	-2.851361
118	1	0	2.933399	3.633315	-4.047483
119	6	0	3.264091	5.091091	-2.494549
120	1	0	3.072972	5.196151	-1.415985
121	1	0	4.357660	5.121649	-2.613685
122	6	0	2.644845	6.274880	-3.231638
123	1	0	1.552545	6.241671	-3.113394
124	1	0	2.837199	6.170635	-4.308903
Table S22. Optimized 3LLCT state of complex 1.

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	79	0	-0.018347	-0.024757	-0.022465
2	6	0	-0.017241	0.153699	2.044697
3	7	0	1.933000	0.002689	0.308858
4	8	0	-8.558832	-0.334461	-1.525588
5	6	0	-1.911320	-0.059789	-0.345502
6	6	0	-3.137214	-0.086833	-0.559892
7	6	0	-4.503741	-0.125340	-0.802177
8	6	0	-5.211719	-1.363174	-0.793789
9	1	0	-4.665691	-2.278736	-0.592238
10	6	0	-6.558113	-1.394942	-1.036750
11	1	0	-7.114942	-2.326064	-1.035140
12	6	0	-7.260936	-0.193639	-1.300969
13	6	0	-6.579968	1.043535	-1.313127
14	1	0	-7.109737	1.967286	-1.513366
15	6	0	-5.227524	1.070790	-1.067178
16	1	0	-4.691992	2.014463	-1.073533
17	6	0	-1.107025	0.229838	2.915633
18	1	0	-2.119864	0.197420	2.523453
19	6	0	-0.909598	0.348175	4.290446
---	---	---	---	---	---
20	1	0	-1.766781	0.406598	4.956811
21	6	0	0.389219	0.391640	4.810660
22	1	0	0.543447	0.483795	5.882606
23	6	0	1.483453	0.317327	3.963186
24	1	0	2.487802	0.351521	4.379046
25	6	0	1.304388	0.197942	2.573482
26	6	0	2.385680	0.115089	1.612742
27	6	0	3.749608	0.135043	1.843809
28	1	0	4.120718	0.221844	2.860305
29	6	0	4.647257	0.043411	0.769603
30	1	0	5.717015	0.059193	0.951119
31	6	0	4.157222	-0.068291	-0.540171
32	1	0	4.845555	-0.138995	-1.376718
33	6	0	2.793470	-0.088606	-0.772340
34	6	0	2.092538	-0.195680	-2.035757
35	6	0	2.723390	-0.301875	-3.288097
36	1	0	3.809236	-0.308806	-3.349127
37	6	0	1.972754	-0.397775	-4.449325
38	1	0	2.474835	-0.479191	-5.409870
39	6	0	0.574386	-0.389985	-4.387581
40	1	0	-0.012818	-0.465108	-5.299584
41	6	0	-0.068827	-0.286252	-3.155319
42	1	0	-1.154806	-0.281528	-3.119530
43	6	0	0.669768	-0.188790	-1.973466
44	6	0	-9.356093	0.814839	-1.805453
45	1	0	-10.367345	0.437724	-1.949755
46	1	0	-9.011497	1.310829	-2.717709
47	1	0	-9.337305	1.512715	-0.963078

Table S23. Optimized 3LLCT state of complex 3-endo.
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	79	0	0.015212 -0.018864 -0.007959		
2	7	0	0.009539 -0.014986 1.969964		
3	6	0	2.114780 -0.000814 0.357798		
4	6	0	-0.248915 -0.017403 -1.913068		
5	8	0	-2.147165 0.023195 -8.395920		
6	6	0	-2.038704 -0.048332 0.338203		
7	6	0	-3.091132 -0.055468 -0.580920		
8	6	0	-2.886553 -0.048639 -1.647016		
9	6	0	-4.415563 -0.070693 -0.147857		
10	1	0	-5.221017 -0.076062 -0.878117		
11	6	0	-4.706750 -0.078180 1.219433		
12	1	0	-5.739116 -0.088392 1.558672		
13	6	0	-3.676985 -0.071403 2.147165		
14	1	0	-3.912069 -0.076177 3.208661		
15	6	0	-2.336293 -0.057251 1.728045		
16	6	0	-1.202159 -0.054626 2.632652		
17	6	0	-1.220980 -0.084195 4.009368		
18	6	0	-2.176521 -0.087394 4.523297		
19	6	0	-0.020198 -0.066562 4.757531		
20	6	0	1.191439 -0.021386 4.033551		
21	1	0	2.133148 -0.044560 4.570874		
22	6	0	1.205001 -0.002828 2.651924		
23	6	0	-0.034027 -0.106266 6.225792		
24	6	0	-1.067137 -0.755133 6.919803		
25	1	0	-1.844696 -1.255184 6.348371		
26	6	0	-1.097381 -0.811653 8.313660		
			x-coordinate	y-coordinate	z-coordinate
---	---	---	--------------	--------------	--------------
27	6	0	-0.056696	-0.198500	9.021850
28	1	0	-0.064404	-0.236052	10.103768
29	6	0	0.993921	0.461511	8.372311
30	6	0	0.985828	0.498019	6.977330
31	1	0	1.771600	1.034867	6.452382
32	6	0	2.356231	0.012791	1.773303
33	6	0	3.663742	0.038402	2.291012
34	1	0	3.816461	0.055128	3.366527
35	6	0	4.758090	0.041762	1.452318
36	1	0	5.766423	0.059184	1.857913
37	6	0	4.540684	0.020513	0.073812
38	6	0	5.533518	0.012477	-0.991999
39	6	0	6.928874	0.023326	-0.943191
40	1	0	7.455824	0.041975	0.007788
41	6	0	7.641103	0.009455	-2.140817
42	1	0	8.727886	0.017457	-2.121351
43	6	0	6.971151	-0.014661	-3.366647
44	1	0	7.540820	-0.025242	-4.292237
45	6	0	5.574047	-0.025231	-3.411197
46	1	0	5.060231	-0.043524	-4.370215
47	6	0	4.861210	-0.011657	-2.220015
48	6	0	3.357458	-0.016812	-2.012733
49	6	0	3.237898	0.001869	-0.479810
50	6	0	-0.601958	-0.025022	-3.108270
51	6	0	-0.982802	-0.034151	-4.441329
52	6	0	-1.179393	-1.265559	-5.128350
53	1	0	-1.018944	-2.194524	-4.590982
54	6	0	-1.566394	-1.289118	-6.446812
55	1	0	-1.710882	-2.238155	-6.949310
56	6	0	-1.772163	-0.069582	-7.129687
---	---	---	----	----	----
57	6	0	-1.578286	1.166124	-6.463574
58	1	0	-1.744472	2.081573	-7.021597
59	6	0	-1.193277	1.185424	-5.150915
60	1	0	-1.044068	2.127013	-4.632997
61	6	0	-2.370021	-1.163087	-9.157023
62	1	0	-3.170068	-1.762250	-8.712544
63	1	0	-1.450934	-1.751663	-9.232096
64	1	0	-2.670746	-0.820109	-10.145714
65	6	0	-2.245002	-1.548111	9.013770
66	6	0	2.127236	1.152095	9.139275
67	6	0	3.477352	0.556384	8.707789
68	1	0	3.520418	-0.516442	8.928444
69	1	0	4.297386	1.048407	9.245164
70	1	0	3.655881	0.686897	7.635140
71	6	0	1.960821	0.982680	10.655823
72	1	0	1.070750	1.427028	11.038502
73	1	0	2.834503	1.485352	11.152695
74	1	0	2.020269	-0.072605	10.951895
75	6	0	2.112999	2.656741	8.823180
76	1	0	2.248486	2.848048	7.753361
77	1	0	2.923178	3.165069	9.360517
78	1	0	1.163547	3.110931	9.129505
79	6	0	-3.582231	-0.895579	8.626616
80	1	0	-3.611071	0.153574	8.943104
81	1	0	-4.414788	-1.420911	9.110639
82	1	0	-3.751285	-0.925474	7.544920
83	6	0	-2.121982	-1.510906	10.539650
84	1	0	-1.201966	-1.995513	10.886384
85	1	0	-2.967052	-2.046673	10.986948
86	1	0	-2.138053	-0.485073	10.925554
---	---	---	---	---	---
117	1	0	1.536566	3.716112	-2.732272
118	1	0	2.788591	3.677602	-3.967404
119	6	0	3.140675	5.115839	-2.401564
120	1	0	2.978381	5.201539	-1.316764
121	1	0	4.229727	5.165040	-2.550686
122	6	0	2.482821	6.300226	-3.103339
123	1	0	1.394902	6.249038	-2.954013
124	1	0	2.645741	6.214135	-4.187184
125	6	0	3.001986	7.647284	-2.614751
126	1	0	2.822985	7.772011	-1.539861
127	1	0	2.513391	8.479979	-3.133186
128	1	0	4.082296	7.737684	-2.781886