A note on connectivity preserving splitting operation for matroids representable over $GF(p)$

Prashant Malavadkar1, Sachin Gunjal2 and Uday Jagadale3

School of Mathematics and Statistics, MIT World Peace University, Pune 411 038, India.

e-mail: 1. prashant.malavadkar@mitwpu.edu.in, 2. sachin.gunjal@mitwpu.edu.in, 3. uday.jagdale@mitwpu.edu.in

Abstract

The splitting operation on a p-matroid does not necessarily preserve connectivity. It is observed that there exists a single element extension of the splitting matroid which is connected. In this paper, we define the element splitting operation on a p-matroids which is a splitting operation followed by a single element extension. It is proved that the element splitting operation on connected p-matroid yields a connected p-matroid. We give a sufficient condition to yield Eulerian p-matroids from Eulerian p-matroids under the element splitting operation. A sufficient condition to obtain hamiltonian p-matroid by applying the element splitting operation on p-matroid is also provided.

Keywords: p-matroid; element splitting operation; Eulerian matroid; connected matroid; hamiltonian matroid; elementary lift.

AMS Subject Classification: 05B35; 05C50; 05C83

1 Introduction

We discuss loopless and coloopless p-matroids, by p-matroid we mean a vector matroid $M \cong M[A]$ for some matrix A of size $m \times n$ over the field $F = GF(p)$, for prime p.

We denote the set of column labels of M (viz. the ground set of M) by E, the set of circuits of M by $C(M)$, and the set of independent sets of M by $I(M)$. For undefined, standard terminology in graphs and matroids, see Oxley [12].

Malavadkar et al. [8] defined the splitting operation for p-matroids as:

Definition 1.1. Let $M \cong M[A]$ be a p-matroid on the ground set E, $\{a, b\} \subset E$, and $\alpha \neq 0$ in $GF(p)$. The matrix $A_{a,b}$ is constructed from A by appending an extra row to A which has coordinates equal to α in the columns corresponding to the elements a, b, and zero elsewhere. Define the splitting matroid $M_{a,b}$ to be the vector matroid $M[A_{a,b}]$. The transformation of M to $M_{a,b}$ is called the splitting operation.

A circuit $C \in C(M)$ containing $\{a, b\}$ is said to be a p-circuit of M, if $C \in C(M_{a,b})$. And if C is a circuit of M containing either a or b, but it is not a circuit of $M_{a,b}$, then
we say C is an np-circuit of M. For $a, b \in E$, if the matroid M contains no np-circuit then splitting operation on M with respect to a, b is called trivial splitting.

Note that the class of connected p-matroids is not closed under splitting operation.

Example 1.2. The vector matroid $M \cong M[A]$ represented by the matrix A over the field $GF(3)$ is connected, whereas the splitting matroid $M_{1,4} \cong M[A_{1,4}]$ is not connected.

$$
A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
$$

$$
A_{1,4} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}
$$

It is interesting to see that the vector matroid $M'_{1,4} \cong M[A'_{1,4}]$, which is a single element extension of $M_{1,4}$, is connected.

$$
A'_{1,4} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
$$

This example motivates us to investigate the question: If M is a connected p-matroid and $M_{a,b}$ is the splitting matroid of M, then does there exist a single element extension of the splitting matroid that is connected? In the next section, we answer this question by defining the element splitting operation on a p-matroid M which is splitting operation on M followed by a single element extension.

2 Element Splitting Operation

In this section, we define the element splitting operation on a p-matroid M and characterize its circuits.

Definition 2.1. Let $M \cong M[A]$ be a p-matroid on the ground set E, $\{a, b\} \subset E$, and $M_{a,b}$ be the corresponding splitting matroid. Let the matrix $A_{a,b}$ represents $M_{a,b}$ on $GF(p)$. Construct the matrix $A'_{a,b}$ from $A_{a,b}$ by adding an extra column to $A_{a,b}$, labeled as z, which has the last coordinate equal to $\alpha \neq 0$ and the rest are equal to zero. Define
the element splitting matroid \(M'_{a,b} \) to be the vector matroid \(M[A'_{a,b}] \). The transformation of \(M \) to \(M'_{a,b} \) is called the element splitting operation.

Splitting and element splitting operations on binary matroids are closely studied in [7, 9, 10, 13, 14, 15, 16]. A matroid \(L \) is a lift of the matroid \(M \), if there exists a matroid \(N \), and \(X \subseteq E(N) \) such that \(N/X = M \) and \(N \setminus X = L \). If \(X \) is a singleton set, then \(L \) is called an elementary lift of \(M \). In the following result, Mundhe et al. [11] showed the equivalence of splitting matroid with elementary lift for binary matroids:

Lemma 2.2. Let \(M \) and \(L \) be binary matroids. Then \(L \) is an elementary lift of \(M \) if and only if \(L \) is isomorphic to \(M_T \) for some \(T \subseteq E(M) \).

Lemma 2.2 can be extended to \(p \)-matroids by using the similar arguments used to prove it in [11]. Thus a splitting matroid \(M_{a,b} \) of \(p \)-matroid \(M \) is an elementary lift of \(M \). In-depth study on lifted graphic matroid is done in [2, 3, 5].

Remark 2.3. \(\text{rank}(A) < \text{rank}(A'_{a,b}) = \text{rank}(A) + 1 \). If the rank functions of \(M \) and \(M'_{a,b} \) are denoted by \(r \) and \(r' \), respectively, then \(r(M) < r'(M'_{a,b}) = r(M) + 1 \).

Let \(C = \{v_1, v_2, \ldots, v_k\} \), where \(v_i, i = 1, 2, \ldots, k \) are column vectors of the matrix \(A \), be an \(np \)-circuit of \(M \) containing only \(a \). Assume \(v_1 = a \), without loss of generality. Then there exist non-zero scalars \(\alpha_1, \alpha_2, \ldots, \alpha_k \in GF(p) \) such that \(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k \equiv 0 \pmod{p} \). Let \(\alpha_z \in GF(p) \) be such that \(\alpha_z + \alpha_1 \equiv 0 \pmod{p} \). Note that \(\alpha_z \neq 0 \). Then in the matrix \(A'_{a,b} \), we have \(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k + \alpha_z z \equiv 0 \pmod{p} \). Therefore the set \(C \cup z = \{v_1, v_2, \ldots, v_k, z\} \) is a dependent set of \(M'_{a,b} \). If both \(a, b \in C \), then by the similar arguments, we can show that \(C \cup z \) is a dependent set of \(M'_{a,b} \).

In the next Lemma, we characterize the circuits of \(M'_{a,b} \) containing the element \(z \).

Lemma 2.4. Let \(C \) be a circuit of \(p \)-matroid \(M \). Then \(C \cup z \) is a circuit of \(M'_{a,b} \) if and only if \(C \) is an \(np \)-circuit of \(M \).

Proof. First assume that \(C \cup z \) is a circuit of \(M'_{a,b} \). If \(C \) is not an \(np \)-circuit of \(M \), then it is a \(p \)-circuit of \(M \), and hence it also is a circuit of \(M_{a,b} \) and \(M'_{a,b} \), as well. Thus we get a circuit \(C \) contained in \(C \cup z \), a contradiction.

Conversely, suppose \(C \) is an \(np \)-circuit of \(M \). Then \(C \) is an independent set of \(M'_{a,b} \). As noted earlier, \(C \cup z \) is a dependent set of \(M'_{a,b} \). On the contrary, assume that \(C \cup z \) is not a circuit of \(M'_{a,b} \), and \(C_1 \subseteq C \cup z \) be a circuit of \(M'_{a,b} \).

Case 1: \(z \notin C_1 \). Then \(C_1 \) is a circuit contained in \(C \), which is contradictory to the fact that \(C \) is independent in \(M'_{a,b} \).

Case 2: \(z \in C_1 \). Then \(C_1 \setminus z \) is a dependent set of \(M \) contained in the circuit \(C \) which is not possible. Thus we get \(C \cup z \) is a circuit of \(M'_{a,b} \).

We denote the collection of circuits described in Lemma 2.4 by \(C_z \).
Theorem 2.5. Let M be a p-matroid on the ground set E and $\{a,b\} \subset E$. Then $\mathcal{C}(M'_{a,b}) = \mathcal{C}(M_{a,b}) \cup \mathcal{C}_z$.

Proof. The inclusion $\mathcal{C}(M_{a,b}) \cup \mathcal{C}_z \subset \mathcal{C}(M'_{a,b})$ follows from the Definition [2.1] and Lemma [2.4]. For the other inclusion, let $C \in \mathcal{C}(M'_{a,b})$. If $z \notin C$, then $C \in \mathcal{C}(M_{a,b})$. Otherwise, $C \in \mathcal{C}_z$.

Example 2.6. Consider the matroid R_8, the vector matroid of the following matrix A over field $GF(3)$.

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}, \quad A'_{3,5} = \begin{pmatrix} 1 & 0 & 0 & 2 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

For $a = 3, \ b = 5$ and $\alpha = 1$ the representation of element splitting matroid $M'_{3,5}$ over $GF(3)$ is given by the matrix $A'_{3,5}$. The collection of circuits of $M, M_{3,5}$ and $M'_{3,5}$ is given in the following table.

Circuits of M	Circuits of $M_{3,5}$	Circuits of $M'_{3,5}$
$\{1,2,3,4,5\}$, $\{1,2,7,8\}, \{1,4,6,7\}$	$\{1,2,3,4,5\}$, $\{1,2,7,8\}$, $\{1,4,6,7\}$	$\{1,2,3,4,5\}$, $\{1,2,7,8\}$
$\{2,4,6,8\},\{3,5,6,7,8\}$	$\{2,4,6,8\},\{3,5,6,7,8\}$	$\{2,4,6,8\},\{3,5,6,7,8\}$
$\{1,2,3,5,6,7\}$, $\{1,2,3,5,6,8\}$	$\{1,2,3,5,6,7\}$, $\{1,2,3,5,6,8\}$	$\{1,2,3,5,6,7\}$, $\{1,2,3,5,6,8\}$
$\{1,3,4,5,6,8\}$, $\{1,3,4,5,7,8\}$	$\{1,3,4,5,6,8\}$, $\{1,3,4,5,7,8\}$	$\{1,3,4,5,6,8\}$, $\{1,3,4,5,7,8\}$
$\{2,3,4,5,6,7\}$, $\{2,3,4,5,7,8\}$	$\{2,3,4,5,6,7\}$, $\{2,3,4,5,7,8\}$	$\{2,3,4,5,6,7\}$, $\{2,3,4,5,7,8\}$
$\{1,2,3,4,6\}$, $\{1,2,3,4,7\}$	$\{1,2,3,4,6\}$, $\{1,2,3,4,7\}$	$\{1,2,3,4,6\}$, $\{1,2,3,4,7\}$
$\{1,2,3,4,8\}, \{1,2,5,6\}$	$\{1,2,3,4,8\}, \{1,2,5,6\}$	$\{1,2,3,4,8\}, \{1,2,5,6\}$
$\{1,3,5,7\}, \{1,3,6,8\}$	$\{1,3,5,7\}, \{1,3,6,8\}$	$\{1,3,5,7\}, \{1,3,6,8\}$
$\{1,4,5,8\}, \{1,5,6,7,8\}$	$\{1,4,5,8\}, \{1,5,6,7,8\}$	$\{1,4,5,8\}, \{1,5,6,7,8\}$
$\{2,3,5,8\}, \{2,3,6,7\}$	$\{2,3,5,8\}, \{2,3,6,7\}$	$\{2,3,5,8\}, \{2,3,6,7\}$
$\{2,4,5,7\}, \{2,5,6,7,8\}$	$\{2,4,5,7\}, \{2,5,6,7,8\}$	$\{2,4,5,7\}, \{2,5,6,7,8\}$
$\{3,4,5,6\}, \{3,4,7,8\}$	$\{3,4,5,6\}, \{3,4,7,8\}$	$\{3,4,5,6\}, \{3,4,7,8\}$
$\{4,5,6,7,8\}$	$\{4,5,6,7,8\}$	$\{4,5,6,7,8\}$
2.1 Independent sets, Bases and Rank function of $M'_{a,b}$

In this section, we describe independent sets, bases and rank function of $M'_{a,b}$. Denote the set $I_z = \{ I \cup z : I \in \mathcal{I}(M) \}$.

Lemma 2.7. Let $M \cong M[A]$ be a p-matroid with the ground set E and $M'_{a,b}$ be its element splitting matroid. Then $\mathcal{I}(M'_{a,b}) = \mathcal{I}(M_{a,b}) \cup I_z$.

Proof. Notice that $\mathcal{I}(M_{a,b}) \cup I_z \subseteq \mathcal{I}(M'_{a,b})$. For other inclusion, assume $T \in \mathcal{I}(M'_{a,b})$. If $z \notin T$, then $T \in \mathcal{I}(M_{a,b})$. And if $z \in T$, then $T \setminus \{z\} \in \mathcal{I}(M_{a,b})$. That is $T = I \cup z$ for some $I \in \mathcal{I}(M_{a,b})$.

Case 1: $I \in \mathcal{I}(M)$. Then $T \in I_z$.

Case 2: $I = C \cup I'$ where C is an np-circuit of M and $I' \in \mathcal{I}(M)$. Then by Lemma 2.4, $C \cup z$ is a circuit of $M'_{a,b}$ contained in T, a contradiction.

Lemma 2.8. Let M be a p-matroid and $\{a, b\} \subset E$. Then $\mathcal{B}(M'_{a,b}) = \mathcal{B}(M_{a,b}) \cup B_z$, where $B_z = \{ B \cup z : B \in \mathcal{B}(M) \}$.

Proof. It is easy to observe that $\mathcal{B}(M_{a,b}) \cup B_z \subseteq \mathcal{B}(M'_{a,b})$. Next assume that $B \in \mathcal{B}(M'_{a,b})$. Then $\text{rank}(B) = \text{rank}(M) + 1$. If B contains z, then $B \setminus z$ is an independent set of $M_{a,b}$ of size $\text{rank}(M)$. Then by similar arguments given in the proof of Lemma 2.7, $B = I \cup z$, for some $I \in \mathcal{I}(M)$. Therefore $B \setminus z$ is a basis of M and $B \in B_z$. If $z \notin B$, then B is an independent set of size $\text{rank}(M) + 1$. Therefore $B \in \mathcal{B}(M_{a,b})$.

In the following lemma, we provide the rank function of $M'_{a,b}$ in terms of the rank function of M.

Lemma 2.9. Let r and r' be the rank functions of the matroids M and $M'_{a,b}$, respectively. Suppose $S \subseteq E(M)$. Then $r'(S \cup z) = r(S) + 1$, and

$$r'(S) = r(S), \quad \text{if } S \text{ contains no np-circuit of } M; \text{ and}$$

$$= r(S) + 1, \quad \text{if } S \text{ contains an np-circuit of } M. \quad (1)$$

Proof. The equality $r'(S \cup z) = r(S) + 1$ follows from the definition. The proof of the Equation(1) is discussed in Corollary 2.13 of [8].
3 Connectivity of element splitting p-matroids

Let M be a matroid having the ground set E, and k be a positive integer. The k-separation of matroid M is a partition $\{S,T\}$ of E such that $|S|, |T| \geq k$ and $r(S) + r(T) - r(M) < k$. For an integer $n \geq 2$, we say M is an n-connected if M has no k-separation, where $1 \leq k \leq n - 1$.

In the following theorem, we provide a necessary and sufficient condition to preserve the connectedness of a p-matroid under element splitting operation.

Theorem 3.1. Let M be a connected p-matroid on the ground set E. Then $M'_{a,b}$ is a connected p-matroid on the ground set $E \cup \{z\}$ if and only if $M_{a,b}$ is the splitting matroid obtained by applying non-trivial splitting operation on M.

Proof. First assume that $M'_{a,b}$ is a connected p-matroid on the ground set $E \cup \{z\}$. On the contrary, suppose $M_{a,b}$ is obtained by applying trivial splitting operation. Then M contains no np circuits with respect to the splitting by elements a,b. Now, let $S = \{z\}$ and $T = E$. Then $r'(S) + r'(T) - r'(M'_{a,b}) = 1 + r(E) - (r(M) + 1) = 0 < 1$ gives a 1-separation of $M'_{a,b}$, which is a contradiction.

For converse part, assume that $M_{a,b}$ is the splitting matroid obtained by applying non-trivial splitting operation on M. Suppose that, $M'_{a,b}$ is not connected. It means $M'_{a,b}$ has 1-separation, say $\{S,T\}$. Then $|S|, |T| \geq 1$ and

$$r'(S) + r'(T) - r'(M'_{a,b}) < 1.$$

(2)

Case 1: Assume $S = \{z\}$. Then T contains an np circuit. Then Equation (2) gives, $1 + (1 + r'(T)) - r'(M) - 1 < 1 \implies r'(T) < r'(M)$, which is not possible.

Case 2: Assume $|S| \geq 2$, $z \in S$. If T contains no np-circuit then Equation (2) yields, $(r(S \setminus z) + 1) + r(T) - r(M) - 1 < 1$, that is $r(S \setminus z) + r(T) - r(M) < 1$. Therefore $\{S \setminus z, T\}$ gives 1-separation of M, a contradiction. Further, if T contains an np-circuit, then $r'(S) = r(S \setminus z) + 1$, $r'(T) = r(T) + 1$. By Equation (2) we get $(r(S \setminus z) + 1) + (r(T) + 1) - r(M) - 1 < 1$, which gives $r(S \setminus z) + r(T) - r(M) < 0$, which is not possible. So in either case such separation does not exist. Therefore $M'_{a,b}$ is connected. \[\square\]

In Example 2.6 the p-matroid $R_8 \cong M[A]$ and its element splitting p-matroid $M'_{3,5} \cong M[A'_{3,5}]$ both are connected. In the next result we give a necessary and sufficient condition to preserve 3-connectedness of a p-matroid under the element splitting operation.

Theorem 3.2. Let M be a 3-connected p-matroid. Then $M'_{a,b}$ is 3-connected p-matroid if and only if for every $t \in E(M)$ there is an np-circuit of M not containing t.

Proof. Let $M'_{a,b}$ be 3-connected p-matroid. On contrary, if there is an element $t \in E(M)$ contained in every np-circuit of M. Take $S = \{z,t\}$ and $T = E \setminus S$. Then
r'(S) + r'(T) - r'(M'_{a,b}) = r(\{t\}) + 1 + r(T) - r(M) - 1 = r(\{t\}) + r(T) - r(M) = 1 < 2.
Because, in this case, t \in cl(T) hence r(T) = r(M). That is \{S,T\} forms a 2-separation of M'_a,b, a contradiction.
For converse part suppose, for every t \in E(M) there is an np-circuit of M not containing t. On the contrary assume that M'_a,b is not a 3-connected matroid. Then there exists a k separation, for k \leq 2, of M'_a,b. By Theorem 3.1. k can not be equal to 1. For k = 2, let \{S,T\} be a 2-separation of M'_a,b. Then \{S,T\} is a partition of E \cup \{z\} such that |S|, |T| \geq 2 and
\r'(S) + r'(T) - r'(M'_{a,b}) < 2. (3)

Case 1 : Suppose S = \{z,t\}, t \in E(M). By hypothesis, T contains an np-circuit not containing t. Then Equation 3 gives, (r(\{t\}) + 1 + (1 + r(T)) - r(M) - 1 < 2 \implies r(t) + r(T) - r(M) < 1. Thus \{\{t\},T\} forms a 1-separation of M, which is a contradiction.

Case 2 : Suppose z \in S and |S| \geq 3. If T contains no np-circuit then Equation 3 yields (r(S \setminus z) + 1 + r(T) - r(M) - 1 < 2 \implies r(S \setminus z) + r(T) - r(M) < 2. Therefore \{S \setminus z, T\} gives a 2-separation of M, a contradiction.

Further, if T contains an np-circuit, then r'(S) = r(S \setminus z) + 1, r'(T) = r(T) + 1. By Equation 3 we get (r(S \setminus z) + 1) + (r(T) + 1) - r(M) - 1 < 2 \implies r(S \setminus z) + r(T) - r(M) < 1. Thus, \{S \setminus z, T\} gives a 1-separation of M, a contradiction. So in either case such partition does not exist. Therefore M'_a,b is 3-connected.

4 Applications

For Eulerian matroid M on the ground set E there exists disjoint circuits C_1, C_2, \ldots, C_k of M such that E = C_1 \cup C_2 \cup \ldots \cup C_k. We call the collection \{C_1, C_2, \ldots, C_k\} a circuit decomposition of M.

Let \{a,b\} \subset E. We say a circuit decomposition \tilde{C} = \{C_1, C_2, \ldots, C_k\} of M an ep-decomposition of M if it contains exactly one np-circuit with respect to the a,b splitting of M. In the next proposition, we give a sufficient condition to yield Eulerian p-matroids from Eulerian p-matroids after the element splitting operation.

Proposition 4.1. Let M be Eulerian p-matroid and a,b \in E. If M has an ep-decomposition, then M'_{a,b} is Eulerian p-matroid.

Proof. Let \tilde{C} = \{C_1, C_2, \ldots, C_k\} be an ep-decomposition of M and C_1 be an np-circuit in it. Then C_1 \cup z is a circuit of M'_{a,b}. Thus \{C_1 \cup z, C_2, \ldots, C_k\} is the desired circuit decomposition of M'_{a,b}.

Proposition 4.2. Let M'_{a,b} is Eulerian p-matroid and \tilde{C} = \{C_1, C_2, \ldots, C_k\} be a circuit
decomposition of $M'_{a,b}$. If \tilde{C} contains no member which is a union of an np-circuit and an independent set of M, then M is Eulerian and has an ep-decomposition.

Proof. Assume, without loss of generality, $z \in C_1$. Then $C_1 \in C_z$ and $C_1 \setminus z$ is an np-circuit of M. We will show $C_1 \setminus z$ contains both a and b. On the contrary assume that $C_1 \setminus z$ contains only a. Then $b \in C_i$ for some $i \in \{2, 3, \ldots, k\}$. Since C_i is also a circuit of $M'_{a,b}$ containing only b, by Theorem 2.10 of [8] it must be a union of an np-circuit and an independent set of M, which is a contradiction to the hypothesis. Therefore $C_1 \setminus z$ contains both a and b and the collection $\{C_1 \setminus z, C_2, \ldots, C_k\}$ forms an ep-decomposition of M.

In Example 2.6, the matroid R_8 is Eulerian with ep-decomposition $E = C_1 \cup C_2$, where $C_1 = \{2, 4, 6, 8\}$ is a p-circuit and $C_2 = \{1, 3, 5, 7\}$ is an np-circuit. An element splitting matroid $M'_{3,5}$ is also Eulerian with circuit decomposition $E \cup z = C_1 \cup (C_2 \cup z)$.

M. Borowiecki [1] defined hamiltonian matroid as a matroid containing a circuit of size $r(M) + 1$. This circuit is called the hamiltonian circuit of the matroid M. In the next corollary, we give a sufficient condition to yield hamiltonian matroid from hamiltonian matroid after the element splitting operation.

Corollary 4.3. If M is hamiltonian matroid with an np-circuit of size $r(M) + 1$, then $M'_{a,b}$ is hamiltonian.

Proof. Let C be an np-circuit of M of size $r(M) + 1$. Then by Proposition 2.4, $C \cup z$ is a circuit in $M'_{a,b}$ of size $r(M) + 2$.

In Example 2.6, the matroid $R_8 \cong M[A]$ is hamiltonian and its element splitting matroid $M'_{3,5} \cong M[A'_{3,5}]$ is also hamiltonian.

Rota conjectured that the family of matroids that are representable over finite fields has only finitely many excluded minors [6]. For example, the 4-point line, $U_{2,4}$, is the only excluded minor for the class of binary matroids. In the following example, we demonstrate that there exist a splitting of the ternary matroid $U_{2,4}$, which yields a graphic matroid.

Example 4.4. Let the matrix A represents the ternary matroid $U_{2,4}$ and the vector matroid of $A_{1,3}$ represents the splitting matroid $M[A_{1,3}]$.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}, \quad A_{1,3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \quad A'_{1,3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Observe that
• the splitting matroid $M[A_{1,3}]$ is binary and matrix $B = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ gives its binary representation.

• $A'_{1,3}/5 = U_{2,4}$.

However, the element splitting operation on $U_{2,4}$ does not give a binary matroid. With this observation, we propose the following question:

For a given ternary matroid M, does there always exist a pair of elements $\{a, b\}$ in $E(M)$ such that the splitting matroid $M_{a,b}$ is binary (graphic)?

Funding Details:
The Authors received no financial support for this work.

Conflict of Interest:
The authors report there are no competing interests to declare.

References

[1] Borowiecki M., Kennedy John W., Syslo Maciej M., Graph Theory, in : Lecture Notes in Mathematics, Elsevier Science Ltd., 1981.

[2] Chen R., Geelen J., Infinitely many excluded minors for frame matroids and for lifted-graphic matroids, J. Comb. Theory, Ser. B, 133, (2018), 46–53.

[3] Chen R., Whittle G., On recognizing frame and lifted-graphic matroids, J. Graph Theory 87(1), (2018), 72–76.

[4] Fleischner H., Eulerian graphs and related topics, Part 1, Vol 1, North Holland, Amsterdam (1990).

[5] Funk D., Mayhew D., On excluded minors for classes of graphical matroids, Discrete Math., 341(6), (2018), 1509–1522.

[6] Geelen J., Gerards B., Whittle G., Solving Rota’s conjecture, Not. Am. Math. Soc., 61(7), (2014) 736–743.

[7] Malavadkar P. P., Dhotre S. B., and Shikare M. M., Forbidden-minors for the class of cographic matroids which yield the graphic element splitting matroids, Southeast Asian Bull. Math. 43(1) (2019) 105-119.

[8] Malavadkar P.P., Jagadale U.V., and Gunjal S. S., On the circuits of splitting matroids representable over $GF(p)$, (Preprint).
[9] Malavadkar P.P., Shikare M.M., and Dhotre S.B., A characterization of n-connected splitting matroids, *Asian-European J. Math.* 7 (4)(2014), 1-7.

[10] Mills A., On the cocircuits of a splitting matroid, *Ars Comb.*, 89, (2008), 243–253.

[11] Mundhe G., Borse Y. M., Dalvi K.V., On graphic elementary lifts of graphic matroids, *Discrete Mathematics*, 345 (10) (2022), 113014.

[12] Oxley J. G., Matroid theory, *Oxford University Press*, Oxford (1992).

[13] Raghunathan T. T., Shikare M. M., and Waphare B. N., Splitting in a binary matroid, *Discrete Mathematics*, 184 (1998), 267-271.

[14] Shikare M. M., Splitting lemma for binary matroids, *Southeast Asian Bull. Math.*, 32 (2008), 151-159.

[15] Shikare M. M., The element splitting operation for graphs, binary matroids and its applications, *The Math. Student*, 80 (2010), 85-90.

[16] Shikare M. M. and Azadi G., Determination of bases of a splitting matroid, *European J. Combin.*, 24 (2003), 45-52.

[17] Tutte W. T., Lectures on matroids, *J. Res. Nat. Bur. Standards*, B69 (1965), 1-47.

[18] Tutte W. T., Connectivity in matroids, *Canad. J. Math.*, 18 (1966), 1301-1324.

[19] Wagner D.K., Bipartite and Eulerian minors, *European J. Combin.*, 74(2018), 1-10.

[20] Welsh D. J. A., Euler and bipartite matroids, *J. Combin. Theory*, 6 (1969), 375-377.