Lead isotope trends and sources in the atmosphere at the artificial wetland

Ling Cong 1, Jiexiu Zhai 1, Guoxin Yan 1, Jiakai Liu 1, Yanan Wu 1, Yu Wang 1, Zhenming Zhang 1Corresp. 1, Mingxiang Zhang 1Corresp.

1 College of Nature Conservation, Beijing Forestry University, Beijing, China

Corresponding Authors: Zhenming Zhang, Mingxiang Zhang
Email address: zhenmingzhang@bjfu.edu.cn, mingxiangzhang2019@163.com

With the rapid development of industry, studies on lead pollution in total suspended particulate matter (TSP) have received extensive attention. This paper analyzed the concentration and pollution sources of lead in the Cuihu Wetland in Beijing during the period of 2016–2017. The results show that the lead contents in TSP in the Cuihu Wetland were approximately equal in summer and spring, greater in winter, and greatest in autumn. The corresponding lead concentrations were 0.052 ng/m³, 0.053 ng/m³, 0.101 ng/m³, and 0.115 ng/m³, respectively. We compared the $^{206}\text{Pb}/^{207}\text{Pb}$ data with other materials to further understand the potential sources of atmospheric lead. The mean values of $^{206}\text{Pb}/^{207}\text{Pb}$ from spring to winter were 1.082, 1.098, 1.092, and 1.078, respectively. We found that the lead sources may be associated with coal burning, brake and tire wear, and vehicle exhaust emissions. We also calculated the enrichment factor values for the four seasons, and the values were all much greater than 10, indicating that the lead pollution is closely related to human activities.
Lead isotope trends and sources in the atmosphere at the artificial wetland

Ling Cong, Jiexiu Zhai, Guoxin Yan, Jiakai Liu, Yanan Wu, Yu Wang, Zhenming Zhang*, Mingxiang Zhang*

College of Nature Conservation, Beijing Forestry University, Beijing, China

Corresponding Authors:
Zhenming Zhang*, Mingxiang Zhang*
* Email address: Zhenmingzhang@bjfu.edu.cn, mingxiangzhang2019@163.com
Abstract

With the rapid development of industry, studies on lead pollution in total suspended particulate matter (TSP) have received extensive attention. This paper analyzed the concentration and pollution sources of lead in the Cuihu Wetland in Beijing during the period of 2016–2017. The results show that the lead contents in TSP in the Cuihu Wetland were approximately equal in summer and spring, greater in winter, and greatest in autumn. The corresponding lead concentrations were 0.052 ng/m3, 0.053 ng/m3, 0.101 ng/m3, and 0.115 ng/m3, respectively. We compared the 206Pb/207Pb data with other materials to further understand the potential sources of atmospheric lead. The mean values of 206Pb/207Pb from spring to winter were 1.082, 1.098, 1.092, and 1.078, respectively. We found that the lead sources may be associated with coal burning, brake and tire wear, and vehicle exhaust emissions. We also calculated the enrichment factor values for the four seasons, and the values were all much greater than 10, indicating that the lead pollution is closely related to human activities.

Keywords: Total suspended particulate matter · Lead concentration · Lead isotope ratio · EF values · Artificial wetland

1 Introduction

Air pollution especially particulate matters’ pollution has become an issue in the public eye in China (Florig 1997). Particulate matter pollution not only adversely affects human health, but also acts as a catalyst for climate change (Seaton et al. 1995; Kyotani, Iwatsuki 2002). Studies have shown a positive correlation between air pollution and respiratory system diseases like lung cancer (Dockery et al. 1993). Researchers found that atmospheric aerosols can affect cloud microphysics and indirectly cause changes in light radiation to affect climate (Charlson, Hofmann 1992; Dickerson et al. 1997). Aerosol particles are a mixture of liquid and solid materials which
contains trace metals, ions, and organic compounds and so on (Gang 2015). Total suspended particulate matters (TSP) played an important role in analyzing aerosols’ chemical constitution, studying the spatial and temporal variations, revealing the relationship with meteorological factors, and tracing sources (Cong et al. 2018; Ragosta et al. 2002). Atmospheric input of heavy metal elements has a long-term adverse impact on the geobiochemical cycle of ecosystems (Kelly et al. 1996). Therefore, it is imperative to understand the heavy metals in TSP. Trace metals such as Pb, Cd, Hg, and Cr are biologically non-functional and are highly toxic (Salt et al. 1995). Lead has been designated as one of the most dangerous environmental pollutants by the United Nations Environment Programme (Morel 2008; Shi et al. 2008). With the rapid development of industry, anthropogenic Pb has become the major source of the lead in the environment. They were widespread in the atmosphere, soil, water, plants and animals (Wang et al. 2013). It is very important to study the geochemical cycle of lead in the environment (Hao et al. 2008; Dawson et al. 2010; Bove et al. 2011; Uzu et al. 2010). Lead has four stable isotopes which can be used as a tracer of anthropogenic pollution. 206Pb, 207Pb and 208Pb are three radiogenic isotopes while 204Pb is non-radiogenic isotope. These four isotopes can be used as a “footprint” for different sources of lead pollution in the environment, especially for the human activities (Grousset et al. 1994). The inductively coupled plasma-mass spectrometry (ICP-MS) was designed for analyzing stable isotopes more precisely, especially for Pb. The development of ICP-MS made it possible to trace the sources and investigation of heavy metals in different materials. It is widely used to identify the natural sources and anthropogenic pollution (Wiederhold 2015). The unique lead isotope ratio ranges make it easier to find out the major sources of lead, even though sometimes it may be overlapped (Wang et al. 2013; Bindler et al. 1999; Bollhöfer, Rosman 2001; Veysseyre et al. 2001; Kaste et al. 2003; Zhang et al. 2007).
This makes scientists more convenient to identify and quantify the sources of lead in different
environmental samples (e.g., atmospheric deposition (Gallon et al. 2005), sediment (Dang et al.
2015), and soil (Huang et al. 2015)), as well as in organisms (Martinez-Haro et al. 2011).

Cuihu wetland is the only national urban wetland park in Beijing, which has an area of 1.57 km².
It is one of the most typical artificial wetland, which is constructed to improve the environmental
conditions. Also it plays important roles in hydrological and economic aspects, especially in
keeping biological diversity. However, Cuihu wetland is open only in certain days and strictly
controls the number of tourists and their activities, which is not like other wetlands in Beijing.
Thus, Cuihu wetland is less affected by different human activities. This makes Cuihu wetland a
good place for scientific research. It is reported that artificial wetland is a long term green
technology to remove the heavy metals from the polluted areas (Huang et al. 2017), such as Pb.
It can also theoretically influence the heavy metal air pollution by increasing humidity and
decreasing temperature. The transport of particulates is associated with a series of
biogeochemical processes of chemical compounds such as heavy metals (Henderson 2002). Thus
the variation of heavy metals is also connected with the changes of meteorological factors such
as humidity and temperature. This in contrary can also provide important information about
particle cycling processes (Sun et al. 2016).

However, there were few studies focused on atmospheric lead pollution in an artificial wetland in
Beijing. On the other hand, it is difficult to make a systematic research about the lead pollution
in the particles by only knowing their total concentrations. Thus, efforts must be made to identify
the possible lead sources of the total suspended particulate matters, thus, to control and reduce
the air pollution (Zheng et al. 2004). Therefore, we studied atmospheric lead concentrations and
lead isotopic ratios in the Cuihu Wetland in Beijing. We analyzed the temporal variations of lead
in TSP in the Cuihu Wetland and compared the differences of lead pollution in atmosphere over
different regions and land use types. Another primary target of this study is to determine the
sources of lead. We measured lead isotopic ratios in TSP and calculated the enrichment factor
(EF) values over a year. Based upon the results, the study attempts to examine the effects of
human activity on Pb in the atmosphere and the potential sources of Pb in the total suspended particulate matter in the region. It is helpful for us to have a systematic acknowledgement on the lead pollution in the TSP of the air in an artificial wetland.

2 Materials and methods

2.1 Sampling site

The Cuihu wetland is a typical country wetland located north of the Shangzhuang Reservoir in the Haidian District of Beijing. The area of the Cuihu Wetland is 1.57 km2, of which approximately 0.09 km2 is water with an approximate maximum length and width of 1.9 km and 1.2 km, respectively.

The weather is rainy and hot in summer (June–September) and dry and cold in winter (December–March). Spring (March–June) and autumn (September–December) are short.

The sampling site was on Crane Island near the center of the Cuihu Wetland (Fig. 1). The island's main vegetation is willow (*Salix babylonica*), with reeds (*Phragmites communis*) growing on the more flat areas of the island.

2.2 Sampling process

An intelligent medium-flow total suspended particle sampler (TH-150, Wuhan Tianhong Instruments Co., Ltd) and Teflon filters (Beijing RyderCase Instruments Co., Ltd) were used to collect TSP. A microwave digestion system is used in the key step of the pretreatment. Samples of atmospheric particulates were digested by microwave digestion system, and Al and Pb were determined by ICP-MS. The advantages of microwave digestion system are: quick heating, strong resolution ability and short dissolution time. Besides, the digestion process is in an airtight container. It can save acid reagent and reduce the interference of impurity elements. Its
disadvantage is that it needs manual acid driving and it may induce a lower average data. The sampling flow rate was fixed at 100 L min\(^{-1}\). The filters were put in an open plastic bag and conditioned in a constant temperature (25°C) and humidity (50%) chamber for 24 h before and after sampling (Marcazzan et al. 2001). The filters were transported to and from the sampling site in sealed plastic boxes.

Ambient TSP samples were collected at the sampling site on Crane Island from September 2016 to August 2017. Three samples were collected simultaneously at the site during each of the four seasons during the year. The duration per sample was 12 h (from 08:00 to 20:00).

2.3 Chemical analysis

The determinations of lead concentration, aluminum concentration and the lead isotopic composition (\(^{206}\)Pb, \(^{207}\)Pb, and \(^{208}\)Pb) were performed via inductively coupled plasma-mass spectrometry (Bi et al. 2007; Dai, 2015). A quarter of a filter sample was first placed in a Teflon digestion vessel. Then, 8 mL of nitric acid (6%, v/v) and 2 mL of hydrogen peroxide were added to the vessel. The vessel was covered and placed in a microwave digestive system to dissolve the sample. The sample digestion was performed then. The first procedure is to heat the samples to 150°C in 10 minutes and remaining for 10 minutes. The second procedure is to heat them to 210°C in 5 minutes and remaining for 20 minutes. Then, the sample solution and filter residue mixture were transferred to a Teflon crucible to heat at 150°C until nearly dry; 5 mL of nitric acid (6%, v/v) was then added to the vessel for 15 min to dissolve the filter residue. After cooling, the solution was diluted with nitric acid (1%, v/v) and then used to determine the metal elements. Finally, the solution was measured using an ICP-MS to determine the lead and aluminum concentration and the lead isotopic composition. An international reference material (SRM 981 common Pb isotopic standard) was used for calibration and analytical control before the samples
were measured. The precision (% RDS) of the Pb isotopic ratios was typically <0.5%.

2.4 Statistical analysis

The statistical treatments of the data were performed using SigmaPlot 12.5 and the IBM SPSS Statistics 22 statistical software.

2.5 Enrichment factor analysis

We calculated the enrichment factors (EF) to identify the origin of lead and to calculate the proportions of the anthropogenic sources (Mai, Lee 2010; Yang et al. 2010). In previous studies, these measures have been effective tools to distinguish different sources of heavy metals such as natural sources and anthropogenic sources (Petaloti et al. 2006; Ayrault et al. 2010). The value of EF is calculated via the following relationship:

$$EF = \frac{([E]/[R])_{\text{sample}}}{([E]/[R])_{\text{crust}}}$$

where E is the considered element, R represents the reference element for crustal material, ([E]/[R]) sample is the concentration ratio of E to R in the aerosol sample, and ([E]/[R]) crust indicates the mean concentration ratio of E to R in the crust (Han et al. 2006).

Al is abundant in the earth’s crust and is frequently used as a reference element (Han et al. 2006; Taylor, McLennan 1995; Duan et al. 2012). We calculated the EFs using the value of Al in Chinese soil in 1990, due to the stability and lack of anthropogenic sources. Many of the studies were focused on the concentration changes of different heavy metals. They usually measured the concentrations in surface soils. We found that in 1990, it has been measured of the Al and Pb concentrations of parent rock that Al was 6.62 %, and Pb was 26 mg/kg (Wei et al. 1991). If EF approaches unity, the parent rock is the predominant source of the element. Operationally, given
the local variation in the soil composition, if EF > 10, it can be assumed that the anthropogenic pollution is the primary source of the elemental abundance (Basha et al. 2010).

3 Results

3.1 Concentration of lead in atmosphere particles

Figures 2 and 3 show TSP and Pb concentrations (±SE) in the samples, respectively. The concentrations of TSP were more than 1000 times greater than the Pb concentrations. The summer season has the lowest concentrations of TSP at 68.867 ng/m3. The highest concentrations are seen in winter at 244.213 ng/m3. The TSP concentration in spring is higher than that in autumn, with values of 171.528 ng/m3 and 101.042 ng/m3, respectively. However, the seasonal trend is slightly different for TSP and lead. The average concentrations of lead in the four seasons vary from 0.052 ng/m3 to 0.115 ng/m3. The lowest concentration of lead was recorded during summer and spring followed by winter, while the highest concentration was found during autumn at 0.115 ng/m3. The concentrations in spring and summer were 0.052 ng/m3 and 0.053 ng/m3, respectively. The concentration was approximately 0.101 ng/m3 in winter. Even though the concentrations in autumn and winter are higher than those in spring and summer, the only significant difference is between autumn and summer ($P < 0.05$). There were no significant differences between the other seasons.

3.2 Sources of atmospheric lead

The lead isotope compositions in the four seasons are shown in Table 1. In general, the samples show a wide range of lead isotope ratios, ranging from 36.145 to 37.949 for 208Pb/204Pb, from 2.094 to 2.206 for 208Pb/206Pb, from 15.129 to 15.773 for 207Pb/204Pb, from 16.490 to 18.121 for 206Pb/204Pb, and from 1.061 to 1.168 for 206Pb/207Pb (Table 1). 206Pb/207Pb is relatively important
in studying the sources of lead in the environment, as it can be determined precisely. The $^{206}\text{Pb}/^{207}\text{Pb}$ isotope ratio revealed differences in the behavior in different seasons at the sampling site.

3.3 Enrichment factors

Figure 4 shows the EFs of lead for TSP in the four seasons using Al as the reference element. The EFs represent the enrichment or depletion of lead in the samples. If an element's EF value is less than 10, it can be considered to be a crustal (or topsoil) source that is primary caused by soil- or rock-weathered dust blowing into the atmosphere. If the EF value is much greater than 10, e.g., tens to tens of thousands, the element is likely enriched and reflects not just the contribution of crustal material but may also be related to contributions from different human activities.

The EF values in TSP for each season varied substantially from 214 (summer) to 9623 (autumn). The average EF value of lead is 805 in spring, 557 in summer, 5133 in autumn, and 3008 in winter.

4 Discussion

4.1 Variations of lead concentrations in TSP

The Cuihu Wetland is a typical country wetland in Beijing and is little affected by outside conditions in comparison with some industrial sites, which are influenced by heavy metals and related to manufacturing processes. The average lead concentrations in Cuihu Wetland were enough low which were even below the safe limits of the international agencies. The WHO and USEPA standard for atmospheric lead is 0.500 ng/m3 (Health 2000). During the present study, the average concentration of lead (0.080 ng/m3) was found to be below the limits of the WHO
and USEPA standard. The reason for the lower concentration of lead in the atmospheric particulate matter in Cuihu may be self-purification of the wetlands and its distance from large industrial areas. Even though there is a main road which is a practice road for driving school students and a road to transport sand from one sand mining plant. This makes the lead concentrations lower than in areas with many factories or other sources of lead pollution. In addition, the difference between the lead concentrations in the local atmosphere and the WHO level may be due to the different situations of the climate especially the metrological data during the research. We can refine the experimental data by performing additional repetitions and increasing the number of samples.

Variations in average lead levels showed the following sort during the study period: levels in summer were approximately equal to levels in spring, levels in winter were greater, and levels in autumn were the greatest, which is slightly different from a study in Islamabad during the period of 2004–2005, were the levels in summer were approximately equal to the levels in spring, levels in autumn were greater, and levels in winter were greatest (Shah & Shaheen et al. 2008). The results show that the metal content is inversely proportional to temperature. Even though the concentration of lead in autumn is higher than that in winter, the difference between them is not significant (Kim et al. 1997; Kim et al. 2002; Mishra et al. 2004). Studies have found positive relationships of lead with relative humidity and negative relationships of lead with the temperature (Jonsson et al. 2004; Kim et al. 1997). Other studies show that the wind speed appreciably affects the spread of trace metals. For example, it is shown that the wind speed affects the dilution of lead in the environment (Ki et al. 2002; Vallius et al. 2005; Fang et al. 2002; Ragosta et al. 2002). Furthermore, studies show that the rainfall scavenging is of great efficiency in removing heavy metals from the atmosphere (Mircea et al. 2000).
Data for lead concentrations in the Cuihu Wetland and other sites are listed in Table 2. We selected nine different types of sampling sites. The lead concentration in the Cuihu Wetland is approximately 4–8 times higher than those in wetlands in Taiwan, with values of 0.010 ng/m3 and 0.025 ng/m3, respectively (Guo & et al. 2010; Fang & Chang 2012). The annual concentration of lead in the Cuihu Wetland is similar to that in Haeng Goo Dong, Korea, which was sampled in a grassland (Kim 2004). Another study of lead in TSP in Beijing had a concentration of 0.690 ng/m3, which exceeds the limit of the WHO and USEPA standard. Okuda et al. (2008) conclude that coal combustion as a major source of some anthropogenic metals. During 1995-2004 there is a large amount of coal for heating supply and residential use in Beijing. Even though that the location for coal combustion for urban residential heating has changed from the domestic stove to large heating supply facilities in recent years. It is also estimated that there is an annual increase in Pb concentration. On the other hand, nonferrous metal smelters are also possible sources. However, efforts must be made to lower the lead concentration. The lead concentrations in forests were very low, followed by grasslands (Wang et al. 2016; Kim 2004; Quiterio et al. 2006). Lead concentrations appeared higher in industrial areas (Ki et al. 2002; Shaheen et al. 2005; Shah, Shaheen 2007). However, this also depends on the meteorological parameters when the samples were collected and levels are very different in different cities.

44.2 Sources of lead from nature and human activities

Regardless of the lead sources (lithogenic or anthropogenic), the average 206Pb/207Pb ratio in the four seasons followed the order: summer (1.098) > autumn (1.092) > spring (1.082) > winter (1.078). It is indicated that the geochemical background Pb has relatively high 206Pb/207Pb (approximately 1.200), while low 206Pb/207Pb ratios may indicate potential anthropogenic inputs (Lee et al. 2007). Thus, it could be inferred that in winter one source with low 206Pb/207Pb ratio
dominates over others.

The lead isotope compositions of the TSP are helpful to further understand the potential sources of atmospheric lead. We compared the \(^{206}\text{Pb}/^{207}\text{Pb}\) and \(^{208}\text{Pb}/^{206}\text{Pb}\) data with that of other materials (Table 3). Due to the Th-rich environment in China, relatively high \(^{208}\text{Pb}\) abundances may interfere with estimations of contributions from alkyl lead additives (Chen et al. 2005). Therefore, in the following discussion, we give priority to the influence of \(^{206}\text{Pb}/^{207}\text{Pb}\). The results show that the average ratios of TSP in spring are in the range of 1.063–1.098, which is closest to leaded vehicle exhaust (Mukai et al. 1993). In addition, the \(^{206}\text{Pb}/^{207}\text{Pb}\) isotope ratios in autumn are 1.061–1.132, which are similar to those in spring. The \(^{208}\text{Pb}/^{206}\text{Pb}\) analysis results are consistent with those of \(^{206}\text{Pb}/^{207}\text{Pb}\). Chen et al. (2015) conclude that the \(^{206}\text{Pb}/^{207}\text{Pb}\) ratios from leaded gasoline range from 1.097 to 1.116. Moreover, Han et al. (2016) indicate that the average \(^{206}\text{Pb}/^{207}\text{Pb}\) isotope ratio of unleaded vehicle exhaust is 1.147. It seems plausible to assume that the Pb pollution may derive from both the leaded and unleaded gasoline via atmospheric deposition. The Cuihu Wetland is very close to a road, which is a training route for a driving school that has more students in spring and autumn. This indicates that traffic plays an important role in lead emissions. However, unleaded gasoline has been widely promoted in China, which makes high concentrations of lead controversial. Before unleaded gasoline was introduced, lead has been widely released into the environment via leaded gasoline used in vehicles over several decades. Those Pb is of high possibility to be settled into the soil. Such concentrations may be due to the high lead emissions that entered the atmosphere over the past decades, resulting in a relatively high concentration of lead in the soil along the roadside. The movement of vehicles can act to re-suspend dust containing lead into the air (Shah et al. 2006; Ragosta et al. 2002; Kim et al. 2002; Shah & Shaheen 2008). It is thought that the sand mining plant near the Cuihu
Wetland also plays an important role in increasing the lead concentration. Lead isotope ratios of Chinese coal are reported to vary widely (Mukai et al. 2001). It is interesting that the lead contents in coal are enough low, while they are high in the coal combustion dust samples. This may be due to the fact that combustion process has a "concentration effect" on the emission of lead into the atmosphere (Chen et al. 2005). The $^{206}\text{Pb}/^{207}\text{Pb}$ isotope ratios in summer ranged from 1.069 to 1.168, which reflects several factors, such as leaded vehicle exhaust, unleaded vehicle exhaust, and coal. The $^{208}\text{Pb}/^{206}\text{Pb}$ ratios indicate that the major source of lead is coal. In winter, the isotope ratios of and $^{208}\text{Pb}/^{206}\text{Pb}$ were 1.069–1.200 and 2.160–2.202, respectively. Han et al. (2016) has reported that Pb from coal appeared to be larger than 1.17. It is one of the indicators that one of the sources of lead is coal (Han et al. 2016). Besides, coal is used as winter heating in Cuihu wetland. The $^{206}\text{Pb}/^{207}\text{Pb}$ values indicate the contribution of three sources: coal, metallurgic dust, and industrial sources. Meanwhile, the $^{208}\text{Pb}/^{206}\text{Pb}$ values are very close to those of coal. Increased coal burning in winter is therefore the main source of lead. Trace elements were released into the atmosphere throughout coal combustion via bottom ash, fly ash and gaseous phase. The release of heavy metals depends on the composition of the coal and also on gas temperature and residence time in the flue gas (Mariepierre Pavageau et al. 2002). Studies have also shown that more than 50% of lead in coal may be released into the atmosphere during normal coal pyrolysis processes (Zajusz-Zubek & Konieczyński 2003). This reminds us that it is of great significance to control the combustion and emission process in ways of reducing the lead pollution in the air.

4.3 Enrichment factors of lead

It is obvious that lead in the atmospheric particles came from anthropogenic sources. The highest EF value is found in autumn samples, which also had the highest lead concentration. It can be
seen that the EF variation is similar to the trend in the Pb concentrations, which is autumn > winter > spring > summer. These findings indicate that the variation in lead is closely related to human activities. The lead sources are associated with coal burning, brake and tire wear, vehicle exhaust emissions, and the metal industry (Hieu, Lee 2010; Xu et al. 2013). One possible reason for the high EF values is that the Cuihu Wetland is fairly close to a main road, which is a training route for a driving school. This may increase the opportunity for pollution via brake and tire wear and vehicle exhaust emissions. However, coal burning in autumn and winter also leads to an increase in lead from anthropogenic sources. Other studies have also shown a similar lead enrichment in other places of China (Pan et al. 2015). One study surveyed the EFs in TSP measured at five sites from 2009 to 2010. The results showed that lead was highly enriched in TSP samples in Beijing, Tianjin, Baoding, Tangshan, and Xinglong, with EFs exceeding 100. These high EFs indicate that the lead is of anthropogenic origin, is a key tracer of coal burning (Degen 1963), and is rich in particles emitted from fossil fuels and biofuel burning (Christian et al. 2009; Wang et al. 2008).

Enrichment factors have been widely used to evaluate the anthropogenic/natural contributions of trace elements (Duce et al. 1975; Polidori et al. 2009). However, the size distribution of the particulate matters or soil samples was another important factor that affects the enrichment of lead (Farao et al. 2014; Li et al. 2013). Therefore, more efforts must be done to figure out the effect of the size distribution to the sources of lead.

5 Conclusions
This study showed that the lead concentrations in TSP vary from 0.055 ng/m3 to 0.115 ng/m3 during a year. The average lead concentrations exhibited the following pattern during the study period: the level in summer was approximately equal to that in spring, levels in winter were greater, and levels in autumn were greatest. The lead isotope ratio proved to be a useful tool to characterize the source of the atmospheric lead contamination. Regardless of the lead source, the average $^{206}\text{Pb}/^{207}\text{Pb}$ ratio in the four seasons followed the order: summer (1.098) > autumn (1.092) > spring (1.082) > winter (1.078). We also calculated the EF values in TSP for each season. These findings indicate that the variation in lead is closely related to human activities. The sources of lead may be associated with coal burning, brake and tire wear, vehicle exhaust emissions, and the metal industry. We found several possible ways that human activities affect the lead in the environment. However, further effort is needed to decrease and remove such pollution.

Acknowledgments

The authors acknowledge the constructive comments provided by both the reviewers and editors.
Ayrault, S., Senhou, A., Moskura, M., Gaudry, A.: Atmospheric trace element concentrations in total suspended particles near Paris, France. Atmospheric Environment 44(30), 3700-3707 (2010)

Basha, S., Jhala, J., Thorat, R., Goel, S., Trivedi, R., Shah, K., Menon, G., Gaur, P., Mody, K.H., Jha, B.: Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmospheric Research 97(1–2), 257-265 (2010)

Bi, X., Feng, Y., Wu, J., Wang, Y., Zhu, T.: Source apportionment of PM 10 in six cities of northern China. Atmospheric Environment 41(5), 903-912 (2007)

Bindler, R., Brännvall, M.L., Renberg, I., Emteryd, O., Grip, H.: Natural lead concentrations in pristine boreal forest soils and past pollution trends: A reference for critical load models. Environmental Science & Technology 33(19), 3362-3367 (1999)

Bollhöfer, A., Rosman, K.J.R.: Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochimica Et Cosmochimica Acta 65(11), 1727-1740 (2001)

Bove, M.A., Ayuso, R.A., Vivo, B.D., Lima, A., Albanese, S.: Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania). Journal of Geochemical Exploration 109(1–3), 38-50 (2011)

Charlson, R.J., Hofmann, D.J.: Climate forcing by anthropogenic aerosols. Science 255(5043), 423-430 (1992)

Chen, J., Tan, M., Li, Y., Zhang, Y., Lu, W., Tong, Y., Zhang, G., Li, Y.: A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmospheric Environment 39(7), 1245-1253 (2005)

Christian, T.J., Yokelson, R.J., Cárdenas, B., Molina, L.T., Engling, G., Hsu, S.C.: Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry & Physics Discussions 9(2), 565-584 (2009)

Cong, L., Zhang, H., Zhai, J., Yan, G., Wu, Y., Wang, Y., Ma, W., Zhang, Z., Chen, P.: The Blocking Effect of Atmospheric Particles by Forest and Wetland at Different Air Quality Grades in Beijing China. Environmental technology, 1-25 (2018). doi:10.1080/09593330.2018.1561759

Dai, Q.L.: Characterization and Source Identification of Heavy Metals in Ambient PM10 and PM2.5 in an Integrated Iron and Steel Industry Zone Compared with a Background Site. Aerosol & Air Quality Research 15(3), 875-887 (2015)

Dang, D.H., Schäfer, J., Brachpapa, C., Lenoble, V., Durrieu, G., Dutruch, L., Chiffoleau, J.F., Gonzalez, J.L., Blanc, G., Mullot, J.U.: Evidencing the Impact of Coastal Contaminated Sediments on Mussels Through Pb Stable Isotopes Composition. Environmental Science & Technology 49(19), 11438-11448 (2015)

Dawson, J.J.C., Tetzlaff, D., Carey, A.M., Raab, A., Soulsby, C., Killham, K., Meharg, A.A.: Characterizing Pb mobilization from upland soils to streams using 206Pb/207Pb isotopic ratios. Environmental Science & Technology 44(1), 243-249 (2010)

Degen, W.: 05/00862 Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler. Monatshefte Für Mathematik 67(3), 200-224 (1963)

Dickerson, R.R., Kondragunta, S., Stenchikov, G., Civerolo, K.L., Doddridge, B.G., Holben, B.N.:
The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278(5339), 827-830 (1997)

Dockery, D.W., Pope, C.A., Xu, X., ., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., Speizer, F.E.: An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329(24), 1753 (1993)

Duan, J., Tan, J., Wang, S., Hao, J., Chai, F.: Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. Journal of Environmental Sciences 24(1), 87-94 (2012)

Duce, R.A., Hoffman, G.L., Zoller, W.H.: Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural? Science 187(4171), 59-61 (1975)

Fang, G.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.P., Yang, I.L., Chen, M.H.: Characterization of particulate, metallic elements of TSP, PM(2.5) and PM(2.5-10) aerosols at a farm sampling site in Taiwan, Taichung. Science of the Total Environment 308(1–3), 157-166 (2003)

Fang, G.C., Chang, C.Y.: Monitoring ambient air pollutants and apply Woods' model in the prediction seasonal dry deposition at Chang-Hua (urban) and Kao-Mei (wetland) county, Taiwan. Toxicology & Industrial Health 30(8), 728 (2012)

Fang, G.C., Wu, Y.S., Huang, S.H., Rau, J.Y.: Dry deposition (downward, upward) concentration study of particulates and heavy metals during daytime, nighttime period at the traffic sampling site of Sha-Lu, Taiwan. Toxicology & Industrial Health 18(8), 405 (2002)

Farao, C., Canepari, S., Perrino, C., Harrison, R.M.: Sources of PM in an Industrial Area: Comparison between Receptor Model Results and Semiempirical Calculations of Source Contributions. Aerosol & Air Quality Research 14(6), 1558-1572(i (2014)

Florig, H.K.: China's air pollution risks. Environmental Science & Technology 31(6), 274A-275A (1997)

Gallon, C., Tessier, A., Gobeil, C., Beaudin, L.: Sources and chronology of atmospheric lead deposition to a Canadian Shield lake: Inferences from Pb isotopes and PAH profiles. Geochimica Et Cosmochimica Acta 69(13), 3199-3210 (2005)

Gang, Jiuhai: Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology 18(1), 135-143 (2015)

Grousset, F.E., Quetel, C.R., Thomas, B., Buat-Menard, P., Donard, O.F., Bucher, A.: Transient pb isotopic signatures in the Western European atmosphere. Environmental Science & Technology 28(9), 1605-1608 (1994)

Guor-Cheng Fang, Winn-Jung Huang, Yuh-Shen Wu, Chia-Ching Lin, Yi-Liang Huang: Atmospheric Particulate and Metallic Elements at Five Characteristic Sampling Sites in Taiwan. Environmental Forensics 11(4), 293-299 (2010)

Han, L., Gao, B., Wei, X., Xu, D., Gao, L.: Spatial distribution, health risk assessment, and isotopic composition of lead contamination of street dusts in different functional areas of Beijing, China. Environmental Science and Pollution Research 23(4), 3247-3255 (2016). doi:10.1007/s11356-015-5535-y

Hao, Y., Guo, Z., Yang, Z., Fan, D., Fang, M., Li, X.: Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions. Environmental Pollution 156(3), 1325-1331 (2008)

Health, O.E.: Guidelines for air quality. Geneva World Health Organization (2000)
Henderson, G.M.: New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203(1), 1-13 (2002). doi:https://doi.org/10.1016/S0012-821X(02)00809-9

Hieu, N.T., Lee, B.K.: Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmospheric Research 98(2-4), 526-537 (2010)

Huang, X., Zhao, F., Yu, G., Song, C., Geng, Z., Zhuang, P.: Removal of Cu, Zn, Pb, and Cr from Yangzte Estuary Using the Phragmites australis Artificial Floating Wetlands. BioMed Research International,2017,(2017-6-22) 2017(4), 6201048 (2017)

Huang, Y., Li, T., Wu, C., He, Z., Japenga, J., Deng, M., Yang, X.: An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials 299, 540-549 (2015)

Jonsson, P., Bennet, C., Eliasson, I., Lindgren, E.S.: Suspended particulate matter and its relations to the urban climate in Dar es Salaam, Tanzania. Atmospheric Environment 38(25), 4175-4181 (2004)

Kaste, J.M., Friedland, A.J., Stürup, S.: Using Stable and Radioactive Isotopes To Trace Atmospherically Deposited Pb in Montane Forest Soils. Environmental Science & Technology 37(16), 3560-3567 (2003)

Kelly, J., Thornton, I., Simpson, P.R.: Urban Geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry 11(1–2), 363-370 (1996)

Kim, K.H., Lee, J.H., Jang, M.S.: Metals in airborne particulate matter from the first and second industrial complex area of Taejon city, Korea. Environmental Pollution 118(1), 41-51 (2002)

Kim, K.H.: Relationships between spatial and temporal variabilities in airborne metal distributions in Won Ju City, Korea. Environment International 29(7), 901-906 (2004)

Kim, K.H., Kim, D.S., Lee, T.J.: The temporal variabilities in the concentrations of airborne lead and its relationship to aerosol behavior. Atmospheric Environment 31(20), 3449-3458 (1997)

Kim, K.H., Lee, H.S., Yoon, Y.H., Yun, S.T., Ro, C.U., Oh, J.M.: Studies of Spatial Variabilities of Airborne Metals Across Four Different Land-Use Types. Water Air & Soil Pollution 138(1-4), 7-24 (2002)

Kyotani, T., Iwatsuki, M.: Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofu city, Japan. Atmospheric Environment 36(4), 639-649 (2002). doi:https://doi.org/10.1016/S1352-2310(01)00494-0

Lee, C.S.L., Li, X.-D., Zhang, G., Li, J., Ding, A.-J., Wang, T.: Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmospheric Environment 41(2), 432-447 (2007). doi:https://doi.org/10.1016/j.atmosenv.2006.07.035

Li, R., Wiedinmyer, C., Hannigan, M.P.: Contrast and correlations between coarse and fine particulate matter in the United States. Science of the Total Environment s 456–457(7), 346-358 (2013)

Mai, T.N., Lee, B.K.: Size Distribution and Source Identification of Airborne Particulate Matter.
Marcuzzan, G.M., Vaccaro, S., Valli, G., Vecchi, R.: Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment 35(27), 4639-4650 (2001)

Mariepierre Pavageau, Christophe Pécheyran, †, E.M.K., Anne Morin, A., †, O.F.X.D.: Volatile Metal Species in Coal Combustion Flue Gas. Environmental Science & Technology 36(7), 1561-1573 (2002)

Martinez-Haro, M., Taggart, M.A., Martín-Doimeadiós, R.R., Green, A.J., Mateo, R.: Identifying sources of Pb exposure in waterbirds and effects on porphyrin metabolism using noninvasive fecal sampling. Environmental Science & Technology 45(14), 6153-6159 (2011)

Mircea, M., Stefan, S., Fuzzi, S.: Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions. Atmospheric Environment 34(29), 5169-5174 (2000). doi:https://doi.org/10.1016/S1352-2310(00)00199-0

Mishra, V.K., Kim, K.H., Hong, S., Lee, K.: Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula. Atmospheric Environment 38(24), 4069-4084 (2004)

Morel, F.M.M.: The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology 6(3), 318 - 324 (2008)

Mukai, H., Atsushi Tanaka, A., Fujii, T., And, Y.Z., Hong, Y., Tang, J., Guo, S., Xue, H., Sun, Z., Jiti Zhou, A.: Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites. Environ.sci.technol 35(6), 1064 (2001)

Mukai, H., Furuta, N., Fujii, T., Ambe, Y., Sakamoto, K., Hashimoto, Y.: Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environ.sci.technol 27(7), 1347-1356 (1993)

Okuda, T., Katsuno, M., Naoi, D., Nakao, S., Tanaka, S., He, K., Ma, Y., Lei, Y., Jia, Y.: Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere 72(6), 917-924 (2008)

Pan, Y., Tian, S., Li, X., Sun, Y., Li, Y., Wentworth, G.R., Wang, Y.: Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Science of the Total Environment 537, 9 (2015)

Petaloti, C., Triantafyllou, A., Kouimtzis, T., Samara, C.: Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece. Chemosphere 65(11), 2233-2243 (2006)

Polidori, A., Cheung, K.L., Arhami, M., Delfino, R.J.: Relationships between size-fractionated indoor and outdoor trace elements at four retirement communities in Southern California. Atmospheric Chemistry & Physics Discussions 9(14), 4521-4536 (2009)

Quiterio, S.L., Loyola, J., Jr, A.P., Viviane, V., Arbilla, G.: Particulate matter and associated metal levels in a conservation area in the remaining tropical forest of Mata Atlântica, Brazil. Bulletin of Environmental Contamination & Toxicology 77(5), 651 (2006)

Ragosta, M., Caggiano, R., D’Emilio, M., Macchiato, M.: Source origin and parameters influencing levels of heavy metals in TSP, in an industrial background area of Southern Italy. Atmospheric Environment 36(19), 3071-3087 (2002)
Salt, D.E., Blaylock, M., Kumar, N.P., Dushenkov, V., Ensley, B.D., Chet, I., Raskin, I.: Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/technology 13(5), 468 (1995)

Seaton, A., ., Macnee, W., ., Donaldson, K., ., Godden, D., . Particulate air pollution and acute health effects. Lancet 345(8943), 176-178 (1995)

Shah, M.H., Shaheen, N.: Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan. Journal of Hazardous Materials 147(3), 759-767 (2007)

Shah, M.H., Shaheen, N.: Annual and Seasonal Variations of Trace Metals in Atmospheric Suspended Particulate Matter in Islamabad, Pakistan. Water Air & Soil Pollution 190(1-4), 13-25 (2008)

Shah, M.H., Shaheen, N., Jaffar, M.: Characterization, Source Identification and Apportionment of Selected Metals in TSP in an Urban Atmosphere. Environmental Monitoring & Assessment 114(1-3), 573 (2006)

Shaheen, N., Shah, M.H., Jaffar, M.: A Study of Airborne Selected Metals and Particle Size Distribution in Relation to Climatic Variables and their Source Identification. Water Air & Soil Pollution 164(1-4), 275-294 (2005)

Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., Teng, J.: Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution 156(2), 251 (2008)

Sun, W.P., Han, Z.B., Hu, C.Y., Pan, J.M.: Source composition and seasonal variation of particulate trace element fluxes in Prydz Bay, East Antarctica. Chemosphere 147, 318-327 (2016)

Tan, M.G., Zhang, G.L., Li, X.L., Zhang, Y.X., Yue, W.S., Chen, J.M., Wang, Y.S., Li, A.G., Li, Y., Zhang, Y.M.: Comprehensive study of lead pollution in Shanghai by multiple techniques. Analytical Chemistry 78(23), 8044-8050 (2006)

Taylor, S.R., Mclennan, S.M.: The geochemical evolution of the continental crust. Review of Geophysics 33(2), 241-265 (1995)

Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., Dumat, C.: Foliar Lead Uptake by Lettuce Exposed to Atmospheric Falloutins. In: 2010, pp. 504-505

Vallius, M., Janssen, N.A., Heinrich, J., Hoek, G., Ruuskanen, J., Cyrys, J., Van, G.R., de Hartog, J.J., Kreyling, W.G., Pekkanen, J.: Sources and elemental composition of ambient PM(2.5) in three European cities. Science of the Total Environment 337(1–3), 147-162 (2005)

Veysseyre, A.M., Bollhöfer, A.F., Rosman, K.J., Ferrari, C.P., Bousquet, C.F.: Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios. Environmental Science & Technology 35(22), 4463 (2001)

Wang, C., Wang, J., Yang, Z., Mao, C., Ji, J.: Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock–pedosphere–irrigated riverwater–cereal–atmosphere from the Yangtze River delta region, China. Chemosphere 93(9), 1927-1935 (2013)

Wang, H., Zhuang, Y., Wang, Y., Sun, Y., Yuan, H., Zhuang, G., Hao, Z.: Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. Journal of Environmental Sciences 20(11), 1323-1327 (2008)

Wang, J., Pan, Y., Tian, S., Chen, X., Wang, L., Wang, Y.: Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmospheric Research
Wei, F., Yang, Z., Jiang, D., Liu, Z., Sun, B.: Basic statistics and characteristics of background values of soil elements in China. China environmental monitoring(1), 1-6 (1991)

Wiederhold, J.G.: Metal Stable Isotope Signatures as Tracers in Environmental Geochemistry. Environmental Science & Technology 49(5), 2606-2624 (2015)

Xu, L., Yu, Y., Yu, J., Chen, J., Niu, Z., Yin, L., Zhang, F., Liao, X., Chen, Y.: Spatial distribution and sources identification of elements in PM2.5 among the coastal city group in the Western Taiwan Strait region, China. Science of the Total Environment 442(1), 77-85 (2013)

Yang, Y., Wang, Y., Huang, W., Hu, B., Wen, T., Zhao, Y.: Size Distributions and Elemental Compositions of Particulate Matter on Clears Hazy and Foggy days in Beijing, China. Advances in Atmospheric Sciences 27(3), 663-675 (2010)

Yongming, H., Peixuan, D., Junji, C., Posmentier, E.S.: Multivariate Analysis of Heavy Metal Contamination in Urban Dusts of Xi’an, Central China. Science of the Total Environment 355(1–3), 176-186 (2006)

Zajusz-Zubek, E., Konieczyński, J.: Dynamics of trace elements release in a coal pyrolysis process. Fuel 82(10), 1281-1290 (2003)

Zhang, G.L., Yang, F.G., Zhao, W.J., Zhao, Y.G., Yang, J.L., Gong, Z.T.: Historical change of soil Pb content and Pb isotope signatures of the cultural layers in urban Nanjing. Catena 69(1), 51-56 (2007)

Zheng, J., Tan, M.G., Shibata, Y., Tanaka, A., Li, Y., Zhang, G.L., Zhang, Y.M., Shan, Z.: Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmospheric Environment 38(8), 1191-1200 (2004).

doi:10.1016/j.atmosenv.2003.11.004
Figure 1

Position of the sampling site
Figure 2

Seasonal variations in TSP (±SE) expressed in ng/m3 during the study period.
Figure 3

Seasonal variations in the lead concentrations (±SE) expressed in ng/m3 during the study period.
Figure 4

Lead enrichment factors during the study period
Table 1 (on next page)

Lead isotope compositions
	Spring	Summer	Autumn	Winter
$^{208}\text{Pb}/^{204}\text{Pb}$ Mean	36.773	37.033	36.795	36.596
Range	36.710–36.888	36.471–37.949	36.145–37.559	36.233–37.166
$^{208}\text{Pb}/^{206}\text{Pb}$ Mean	2.184	2.162	2.171	2.189
Range	2.165–2.204	2.094–2.197	2.112–2.206	2.160–2.202
$^{207}\text{Pb}/^{204}\text{Pb}$ Mean	15.568	15.600	15.529	15.517
Range	15.443–15.688	15.429–15.761	15.129–15.732	15.350–15.773
$^{206}\text{Pb}/^{204}\text{Pb}$ Mean	16.838	17.134	16.957	16.720
Range	16.678–16.971	16.758–18.121	16.490–17.787	16.505–17.034
$^{206}\text{Pb}/^{207}\text{Pb}$ Mean	1.082	1.098	1.092	1.078
Range	1.063–1.098	1.069–1.168	1.061–1.132	1.069–1.100
Table 2 (on next page)

Lead concentrations in TSP in the Cuihu Wetland and other sites worldwide
City	Size	Pb (ng/m³)	Season	Character	Reference
Shenyang, China	TSP	0.115	2013–2014	Farmland	(Wang et al. 2016)
Hailun, China	TSP	0.037	2013–2014	Farmland	(Wang et al. 2016)
Taichung, Taiwan	TSP	0.574	2002	Farmland	(Fang et al. 2003)
Tongyu, China	TSP	0.031	2013–2014	Grassland	(Wang et al. 2016)
Haeng Goo Dong, Korea	TSP	0.084	1991–1995	Grassland	(Kim 2004)
Taejon, Korea	TSP	0.260	2002	Industrial	(Ki et al. 2002)
Islamabad	TSP	0.214	2003	Industrial	(Shaheen et al. 2005)
Islamabad	TSP	0.128	2004	Industrial	(Shah, Shaheen 2007)
Quan-xing, Taiwan	TSP	0.015	2010	Industrial	(Guor-ChengFang et al. 2010)
Chang-hua, Taiwan	TSP	0.019	2010	Downtown	(Guor-ChengFang et al. 2010)
Taiwan	TSP	0.180	2004	Downtown	(Fang et al. 2002)
Beijing, China	TSP	0.690	2005	Residential	(Okuda et al. 2008)
He-mei, Taiwan	TSP	0.016	2010	Residential	(Guor-ChengFang et al. 2010)
Islamabad, Pakistan	TSP	0.144	2004–2005	Urban area	(Wang et al. 2016)
Chang-Hua, Taiwan	TSP	0.034	2009–2010	Urban area	(Fang, Chang 2012)
Changbai Mountain, China	TSP	0.018	2013–2014	Forest	(Wang et al. 2016)
Ilha Grande, Brazil	TSP	0.001	2005	Forest	(Quiterio et al. 2006)
Bei-shi, Taiwan	TSP	0.044	2010	Suburban/Coastal	(Guor-ChengFang et al. 2010)
Gao-Mei, Taiwan	TSP	0.025	2009–2010	Wetland	(Fang, Chang 2012)
Gao-mei, Taiwan	TSP	0.010	2010	Wetland	(Guor-ChengFang et al. 2010)
Beijing, China	TSP	0.080	2016–2017	Wetland	This study
Table 3 (on next page)

Isotope ratios and the elemental content of possible additional lead sources
Materials	$^{206}\text{Pb}/^{207}\text{Pb}$	$^{208}\text{Pb}/^{206}\text{Pb}$	Reference
Leaded vehicle exhaust	1.11	2.194	(Mukai et al. 1993)
Unleaded automobile exhaust	1.131–1.164	2.106–2.142	(Tan et al. 2006)
Coal	1.153–1.182	2.090–2.220	(Mukai et al. 2001)
Metallurgic dust	1.161–1.185	2.054–2.100	(Tan et al. 2006)
Industrial sources	1.176	2.1	(Mukai et al. 2001)
TSP (Spring)	1.063–1.098	2.165–2.204	This study
TSP (Summer)	1.069–1.168	2.094–2.197	This study
TSP (Autumn)	1.061–1.132	2.112–2.206	This study
TSP (Winter)	1.069–1.200	2.160–2.202	This study