Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Prevalence of symptoms of depression, anxiety, insomnia, posttraumatic stress disorder, and psychological distress among populations affected by the COVID-19 pandemic: A systematic review and meta-analysis

Jude Mary Cénat a,*, Camille Blais-Rochette a, Cyrille Kossigan Kokou-Kpolou b, Pari-Gole Noorishad a, Joana N. Mukunzi a, Sara-Emilie McIntee a, Rose Darly Dalexis c, Marc-André Goulet a, Patrick R. Labelle d

a School of psychology, University of Ottawa, Ontario, Canada
b Department of Psychology University Picardie Jules Verne, Amiens, France
c Interdisciplinary School of Health Sciences, University of Ottawa, Ontario, Canada
d Library, University of Ottawa, Ontario, Canada

ARTICLE INFO
Keywords: COVID-19, Depression, Anxiety, Insomnia, Posttraumatic stress disorder, Psychological distress

ABSTRACT
Objective: We conducted a systematic review and meta-analysis to estimate the pooled prevalence of depression, anxiety, insomnia, PTSD, and Psychological distress (PD) related to COVID-19 among affected populations.

Methods: We searched articles in Medline, Embase, APA PsycInfo, CINAHL, Scopus, and Web of Science. Random-effects meta-analyses on the proportions of individuals with symptoms of depression, anxiety, insomnia, PTSD, and PD were generated and between-group differences for gender, healthcare workers (HCWs), and regions where studies were conducted.

Results: A total of 2189 articles were screened, 136 full-text articles were assessed for eligibility. Fifty-five peer-reviewed studies met inclusion criteria for the meta-analysis (N=189,159). The prevalence of depression (k=46) was 15.97% (95%CI, 13.24-19.13). The prevalence of anxiety (k=54) was 15.15% (95%CI, 12.29-18.54). The prevalence of insomnia (k=14) was 23.87% (95%CI, 15.74-34.48). The prevalence of PTSD (k=13) was 21.94% (95%CI, 9.37-43.31). Finally, the prevalence of psychological distress (k=19) was 13.29% (95%CI, 8.80-19.57). Between-group differences were only found in HCWs (z=2.69, p < 0.05) who had a higher prevalence of insomnia than others.

Conclusions: Findings suggest that the short-term mental health consequences of COVID-19 are equally high across affected countries, and across gender. However, reports of insomnia are significantly higher among HCWs than the general population.

1. Introduction

On March 11, 2020, the World Health Organization (WHO) officially declared the Coronavirus disease 2019 (COVID-19, also known as SARS-CoV-2) outbreak as a pandemic (World Health Organization, 2020). This pandemic provoked unprecedented public health measures aimed at preventing the spread of the virus: confinement of more than half of the world’s population, closure of schools and universities, social and physical distancing, and the declaration of health emergencies in many countries (Jernigan, 2020; Prem et al., 2020; Qiu et al., 2020). On November 14, 2020, more than 53,78 million confirmed cases of COVID-19 were identified worldwide, causing more than 1.3 million deaths (John Hopkins University, 2020).

Previous studies have shown that infectious disease outbreaks are associated with mental health symptoms and disorders (e.g., depression, anxiety, posttraumatic stress disorder, insomnia) in survivors, family members, healthcare workers (HCW), and members of affected communities (Cénat et al., 2020b, 2020d; Kóita et al., 2017; Lehmann et al., 2015; Mohammed et al., 2015). A meta-analysis has shown the major consequences of Ebola disease on mental health (Cénat et al., 2020b). Although having a lower fatality case rate than Ebola, this pandemic is associated with considerable deaths worldwide and studies conducted...
among affected populations have shown major risk factors for the mental health of affected populations (Cénat et al., 2021; Lai et al., 2020; Lee et al., 2020; Lei et al., 2020b, 2020d; Liu et al., 2020a; Lu et al., 2020; Mazza et al., 2020; Moccia et al., 2020; Moghanibashi-Mansourieh, 2020; Nguyen et al., 2020). These factors include anxiety and stress associated with the risk of being infected, death of loved ones, infection of loved ones, containment measures, social isolation and loneliness, physical and emotional fatigue of HCW, massive job loss, financial insecurity and poverty, excessive consumption of information from the media, and the vulnerability of certain groups in high-income countries (HICs) and low- and middle-income countries (LMICs) (Ahmed et al., 2020; Al-Rabiaah et al., 2020; Bo et al., 2020; Cai et al., 2020; Cao et al., 2020; Cénat et al., 2021; Chen et al., 2020; Chew et al., 2020; Du et al., 2020; Gao et al., 2020; Hao et al., 2020a, 2020b; Huang and Zhao, 2020; Lai et al., 2020; Lee et al., 2020; Lei et al., 2020; Moccia et al., 2020; Moghanibashi-Mansourieh, 2020; Nguyen et al., 2020; Pappa et al., 2020; Rogers et al., 2020). These studies and others also revealed that all these elements constitute risk factors that can contribute to mental health problems such as anxiety, depression, insomnia, somatization, social phobia, PTSD, OCD, self-harm, and suicidal ideations and behaviors (Cao et al., 2020; Cénat, 2020a; Cénat et al., 2021; Du et al., 2020; Gao et al., 2020; Hao et al., 2020a, 2020b; Huang and Zhao, 2020; Lai et al., 2020; Lee et al., 2020; Lei et al., 2020; Moccia et al., 2020; Moghanibashi-Mansourieh, 2020; Nguyen et al., 2020; Pappa et al., 2020; Rogers et al., 2020).

A systematic review and meta-analysis on different coronaviruses (SARS, MERS, and SARS-CoV2) showed that 14 to 61% of infected individuals face serious psychiatric and neuropsychiatric problems (such as depression, impaired memory, insomnia and sleep disorders, anxiety, and PTSD, etc.) during the illness, and 14.8 to 76.9% experience these problems afterwards (Rogers et al., 2020). On May 8, 2020, a meta-analytic review conducted on COVID-19 HCW in Asian countries examined anxiety, depression, and insomnia (Pappa et al., 2020a). Estimates of the pooled prevalence was 23.20% for anxiety, 22.8% for depression, and 34.32% for insomnia. These results can be explained by the stressors and anxieties faced by HCW in their work environment, including the fear of being infected and of infecting their loved ones or colleagues, the rapid deaths of patients, as well as emotional and physical fatigue. It also showed the need for systematic reviews on the general population to develop and implement both prevention and intervention mental health programs based on initial evidence. Another systematic review showed that relatively high rate of anxiety, depression, posttraumatic stress disorder and psychological distress symptoms among population affected by COVID-19 in multiple countries (Xiong et al., 2020).

Conducted in a global mental health perspective, the main objective of this systematic review and meta-analysis is to analyze the impacts of the COVID-19 pandemic on the mental health of affected populations to help develop and implement mental health programs based on initial evidence. Specifically, it aims to (1) analyze the pooled prevalence of depression, anxiety, insomnia, PTSD, and psychological distress (PD) in the general population; (2) examine differences in the pooled prevalence of these problems among HCW compared to the general population; (3) analyze gender-based differences in the pooled prevalence of investigated mental health problems; and (4) as the pandemic has disproportionately affected different parts of the world, this systematic review also aims to analyze differences in mental health problems according to the geographical regions in which the studies were conducted.

2. Methods

This meta-analysis follows methods described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins et al., 2019) as well as guidelines presented in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher et al., 2009).

2.1. Protocol and registration

We registered this meta-analysis with PROSPERO (CRD42020185613) to avoid unnecessary replication.

2.2. Identification and selection of studies

This meta-analysis focuses on mental health consequences of the COVID-19 pandemic. Scholarly journal articles that reported prevalence for mental health disorders or symptoms were selected. A social sciences research librarian with experience in planning systematic reviews assisted in drafting, developing, and implementing a search strategy to find pertinent published articles in APA PsycInfo (Ovid), Medline (Ovid), Embase (Ovid), CINAHL (Ebsco), Scopus, and Web of Science. The search strategy itself was designed, in part, by examining reviews related to COVID-19 (Lalonde, 2020; Nussbaumer-Streit et al., 2020) and reviews focused on psychological distress (Thakkumpurath et al., 2008; Wade et al., 2016), by consulting COVID-19 search strategies used by other information professionals and compiled by the Medical Library Association (Nussbaumer-Streit et al., 2020), and through discussions with members of the research team. The final search strategy includes pertinent keywords and was executed on May 12, 2020. No limits or restrictions were used in any of the database searches (the complete search strategy is available as supplementary material). Some authors were contacted by email to obtain clarifications or additional information on their article.

2.3. Inclusion and exclusion criteria

Published peer-reviewed journal articles were included if they met the following criteria: (1) were published in either French or English, (2) had empirical data on the prevalence of mental health symptoms or disorders collected during the COVID-19 pandemic. There were no restrictions in terms of age or the type of population studied (e.g., HCW, patients, non-patients).

2.4. Steps for selection

A total of 4572 references were identified across all six databases and were imported into Covidence™. Pairs of coders (CKKK, PGN, JMC, RDD, SEM, JMC) were involved in all selection steps (e.g., sorting of articles, data extraction, assessment of quality). Each pair of coders was responsible for half of the articles at each step of the process. Disagreements in screening and coding within a team were resolved by discussion between the two coders. Once duplicates were removed after importing references in Covidence™, the titles and abstracts of 2189 references were screened. Of these 2189, 130 full-text references were screened. Following this step, a total of 60 articles were included and 46 articles passed the quality evaluation step. Four additional articles that were published after the initial search were added to the final pool of articles. Five articles were found in the reference list of a previous meta-analysis on COVID-19 (Pappa et al., 2020b). The present meta-analysis is based on a total of 55 articles. From these, 68 independent samples or sub-samples were kept for the meta-analysis. The screening process is recorded in the PRISMA chart (Fig. 1).

2.5. Data extraction and management

Sample characteristics of the 68 independent samples included in the meta-analysis are summarized in Table 1 and were the following: author names, month of publication (all articles were submitted or published in 2020, except for the samples that were sent by email to the team), gender, country, type of sample (general population or HCW), assessment tools used for depression, anxiety, insomnia, psychological distress, and PTSD.
2.6. Quality assessment

We used the Joanna Briggs Institute (JBI) checklist for prevalence studies (Martin, 2017) to evaluate the quality of the 68 retained independent samples. The evaluation criteria were: (1) appropriateness of the sample frame; (2) recruitment procedure; (3) adequacy of the sample size; (4) description of subjects and setting; (5) coverage of the identified sample; (6) validity of the methods used to identify the mental health symptoms or disorders; (7) reliability of the methods used to identify mental health symptoms or disorders; (8) adequacy of statistical analyses; and (9) response rate. Articles were assigned one point per criterion met, for a maximum of 9 points. Articles were excluded if their total score was less than 5 points (no included articles received a rating lower than 5). There were 55 articles remaining after this step and 14 articles were removed because they had less than 5 out of 9 on the JBI checklist.

2.7. Meta-analysis

Random effects meta-analyses were generated based on the proportions of individuals with symptoms or disorders (depression, anxiety, insomnia, psychological distress, and PTSD) among samples of people affected by the COVID-19 pandemic using the “metaphor” package in R Version 4 (Viechtbauer, 2010). Random effects account for the heterogeneity among the studies. Logit transformed proportions were used and transformed back for ease of interpretation into a forest plot. The binomial-normal model was indicated as it gives unbiased estimates and a good coverage of confidence intervals for meta-analyses with proportions (Hamza et al., 2008; Stijnen et al., 2010).

3. Results

The prevalence of mental health symptoms/disorders (depression, anxiety, insomnia, PTSD, psychological distress) were analyzed in 68 independent samples (N=189,159). Most studies were conducted in China (k=45) and on the general population (k=41), the rest of the studies were on other countries and on HCW, respectively. The data allowed for comparisons between the general population and HCW for all the mental health symptoms and for comparisons between male and female genders and geographical regions (China and other countries) for depression and anxiety.

3.1. Depression

Fig. 2A shows a forest plot of the pooled prevalence of depression in people during the COVID-19 pandemic (k=46, N=105,468). The pooled prevalence of depression among participants is 15.97% CI 95% (13.24%-19.13%). The Kendall’s tau rank order correlation is not significant (τ= -0.01, p>0.05), indicating an absence of asymmetry in the funnel plot. This result provides evidence that there is no publication bias in the present meta-analysis. There is heterogeneity in the results...
Fig. 2A shows that there are no differences in the prevalence of depression between citizens \((k=28, 17.05, 95\% \text{ CI } [13.03;22.01])\) and HCW \((k=18, 13.75, 95\% \text{ CI } [11.04;16.96])\), \((z=-1.24, p>0.05)\). Fig. 2B shows that there is no difference in the prevalence of depression in studies conducted in China \((k=34, 16.23, 95\% \text{ CI } [13.02;20.04])\) compared to studies conducted in other countries \((k=12, 16.92, 95\% \text{ CI } [11.78;23.70]), (z=0.20, p>0.05)\). Fig. 2C indicates that there are no differences in the prevalence of depression between males \((k=9,19.05, 95\% \text{ CI } [11.17;30.57])\) and females \((k=9, 22.93, 95\% \text{ CI } [15.16;33.14]), (z=-0.57, p>0.05)\).
3.2. Anxiety

Fig. 3A shows a forest plot of the pooled prevalence of anxiety in people during the COVID-19 pandemic ($k=54, N=121,373$). The pooled prevalence of anxiety among participants is 15.15% [95% CI [12.29%;18.54%]). The Kendall’s tau rank order correlation is not significant ($r_{\tau}=-.20, p<0.05$), indicating the presence of asymmetry in the funnel plot. This result provides evidence of publication bias in the present meta-analysis. There is heterogeneity in the results ($I^2=99.58\%$) (Higgins et al., 2003). Fig. 3A indicates that there are no differences in the prevalence of anxiety between citizens ($k=31, 14.62, 95\% CI [10.69;19.69]$) and HCW ($k=23, 15.86, 95\% CI [12.22;20.33]$), ($z$ =
Fig. 3B shows that there is no difference in the prevalence of anxiety in studies conducted in China ($k=33, 13.49, 95\% CI [9.90;18.11]$) compared to studies conducted in other countries ($k=18, 19.02, 95\% CI [15.01;23.80]$), ($z=1.78, p>0.05$). However, we might lack statistical power to detect a difference between the two groups.

Fig. 3C shows that there are no differences in the prevalence of anxiety between males ($k=6, 14.19, 95\% CI [7.14;26.23]$) and females ($k=6, 17.87, 95\% CI [9.64;30.73]$), ($z=-0.51, p>0.05$).
3.3. Insomnia

Fig. 4A shows a forest plot of the pooled prevalence of insomnia in people during the COVID-19 pandemic (k=14, N= 42,169). The pooled prevalence of insomnia among participants is 23.87% CI 95% [15.74%;34.48%]. The Kendall’s tau rank order correlation is not significant (rτ = -0.12, p>0.05), which indicates that there is no asymmetry in the funnel plot. This result provides evidence that there is no publication bias in the present meta-analysis. There is heterogeneity in the results (I² = 99.73) (Higgins et al., 2003). Fig. 4A indicates a difference in the prevalence of insomnia between citizens (k=8, 16.45, 95% CI [8.39;29.74]) and HCW (k=6, 36.52, 95% CI [32.99;40.20]), (z

Authors	Number of people with disorder	Total	Prevalence [95% CI]
China			
Ahmed et al.	203	1074	0.19 [0.17, 0.21]
Cao et al.	238	71413	0.03 [0.03, 0.04]
Chen et al.	8	105	0.08 [0.04, 0.15]
Du et al. (a)	27	134	0.20 [0.14, 0.28]
Du et al. (b)	28	134	0.21 [0.15, 0.29]
Gao et al.	1101	4572	0.23 [0.21, 0.24]
Guo et al.	554	11118	0.05 [0.05, 0.06]
Hao, F. et al.	21	185	0.11 [0.08, 0.17]
Huang & Zhao	2540	7236	0.35 [0.34, 0.36]
Lei et al.	560	1257	0.45 [0.42, 0.47]
Lei et al.	40	1593	0.03 [0.02, 0.03]
Li, G. et al.	1101	4369	0.25 [0.24, 0.27]
Li, Y. et al.	585	3637	0.16 [0.15, 0.17]
Liu, C. et al.	1111	512	0.02 [0.01, 0.04]
Liu, Z. et al.	749	4679	0.16 [0.15, 0.17]
Lu et al. (A)	521	2042	0.26 [0.24, 0.27]
Ni et al. (A)	47	214	0.22 [0.17, 0.28]
Ni et al. (B)	376	1577	0.24 [0.22, 0.26]
Tan et al. (B)	26	673	0.04 [0.03, 0.05]
Tan et al. (C)	5	122	0.04 [0.02, 0.09]
Wang, C. et al. (a)	376	1304	0.29 [0.26, 0.31]
Wang, C. et al. (b)	349	1210	0.29 [0.26, 0.31]
Wang, S. et al.	9	123	0.07 [0.04, 0.13]
Wang, Y. et al.	4	600	0.01 [0.00, 0.02]
Xie et al.	337	1784	0.19 [0.17, 0.21]
Zhang, C. et al.	202	1563	0.13 [0.11, 0.15]
Zhang, J. et al.	40	205	0.20 [0.15, 0.26]
Zhang, S. et al.	23	98	0.23 [0.16, 0.33]
Zhang, W.-R. et al.	228	2182	0.10 [0.09, 0.12]
Zhou, J. et al.	527	2065	0.26 [0.24, 0.27]
Zhou, S.-J. et al.	836	8079	0.10 [0.10, 0.11]
Zhu, S. et al.	434	2279	0.22 [0.20, 0.23]
Zhu, Z. et al.	1218	5062	0.24 [0.23, 0.25]
China only k = 33, $I^2 = 99.67			0.13 [0.10, 0.18]

Others			
Al–Rabaeen et al.	8	174	0.05 [0.02, 0.09]
Chew et al.	79	906	0.09 [0.07, 0.11]
Lee, Jobe, & Mathis	314	1237	0.25 [0.23, 0.28]
Mazza et al.	517	2766	0.19 [0.17, 0.20]
Moghanibashi–Mansourieh	2053	10754	0.19 [0.18, 0.20]
Ozamiz–Etexbarria	181	976	0.19 [0.16, 0.21]
Ozdn et al.	155	343	0.20 [0.16, 0.26]
Rossi et al.	3700	18147	0.20 [0.19, 0.21]
Tan et al. (A)	68	470	0.14 [0.12, 0.18]
Zhang, S. (Bolivia)	43	240	0.18 [0.14, 0.23]
Zhang, S. (Ecuador)	53	252	0.20 [0.16, 0.27]
Zhang, S. (Iran)	73	521	0.21 [0.17, 0.26]
Zhang, S. (Iran2)	85	304	0.23 [0.20, 0.26]
Zhang, S. (Iran3)	61	139	0.24 [0.20, 0.28]
Zhang, S. (Malaysia)	79	655	0.12 [0.10, 0.15]
Zhang, S. (Pakistan)	101	629	0.16 [0.13, 0.20]
Zhang, S. (Peru)	35	220	0.16 [0.12, 0.21]
Zhang, S. et al. (a)	85	304	0.28 [0.23, 0.33]
Others only k = 18, $I^2 = 98.89			0.19 [0.15, 0.24]

Wald test: $Z = 1.78, \ p = 0.075$
Authors	Month of publication	Total sample size	Gender	Country	Sample	Depression assessment	Anxiety assessment	Insomnia assessment	PTSD assessment	Psychological distress assessment	Quality evaluation
Ahmed et al.	April	1074	46.8%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Al-Rabiaah et al.	January	174	53.2%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist for DSM-5; PCL-5	Psychological General Well-Being questionnaire (PGWB)	8
Bo et al.	March	714	50.9%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	6
Cai et al.	April	1521	75.5%	China	HCW	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist for DSM-5; PCL-5	Psychological General Well-Being questionnaire (PGWB)	9
Cao et al.	March	7143	69.6%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Casagrande et al.	May	2291	74.6%	Italy	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist for DSM-5; PCL-5	Psychological General Well-Being questionnaire (PGWB)	9
Chen et al.	March	105	90.5%	China	HCW	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Chew et al.	April	906	64.3%	India & Singapore	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9	
Du et al. (a)	March	134	60.5%	China	HCW	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Du et al. (b)	April	134	60.5%	China	HCW	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Gao et al.	April	4872	67.7%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Guo et al.	March	11118	74.8%	China	HCW	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Hao, J. et al.	February	504	52.4%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Hao, P. et al.	April	185	64.3%	China	HCW	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Huang & Zhao	March	7236	54.6%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Kokou-Kpolou et al.	May	556	75.3%	France	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Lai et al.	March	1257	76.7%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9
Lee, Jobe, & Mathis	April	1237	45.1%	United States	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9	
Lei et al.	April	1593	61.3%	China	General Population	Beck Depression Inventory (BDI)	Beck Anxiety Inventory (BAI)	General Anxiety 7-item (GAD-7)	PTSD Checklist–Civilian Version (PCL-C)	Symptom Check List 90 (SCL-90)	9

(continued on next page)
Study Authors	Date	Sample Size	Country	General Population	Self-Rating Depression Scale (SDS)	Self-Rating Depression Scale (SDS)	Self-Rating Anxiety Scale (GAD-7)	Self-Rating Anxiety Scale (GAD-7)	Insomnia Severity Index (ISI)	WHO 20-item Self-Reporting Questionnaire (SRQ-20)
Li, G. et al.	May	4369	China	HCW	9-item Patient Health Questionnaire (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	Athens Insomnia Scale (AIS)	Kessler 6-item (K-6) Psychological Distress Scale		
Li, X. et al.	May	948	China	HCW						
Li, Yuchen et al.	May	1442	China	General Population					Kessler 6-item (K-6) Psychological Distress Scale	
Li, Yun et al.	May	3637	China	General Population	9-item Patient Health Questionnaire (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	Insomnia Severity Index (ISI)			
Liu, N. et al.	March	285	China	General Population			PTSD Checklist for DSM-5 (PCL-5)			
Liu, C. et al.	March	512	China	HCW			Zung Self-rating Anxiety Scale (SAS)			
Liu, Z. et al.	May	4679	China	HCW	Zung Self-rating Depression Scale (SDS)			WHO 20-item Self-Reporting Questionnaire (SRQ-20)		
Lu et al. (A)	April	2042	China	HCW		Hamilton Anxiety Scale				
Lu et al. (B)	April	257	China	HCW		Hamilton Depression Scale	Hamilton Anxiety Scale	Hamilton Anxiety Scale	Hamilton Anxiety Scale	Hamilton Anxiety Scale
Mazza et al.	May	2766	Italy	General Population	Depression, Anxiety and Stress Scale-21 (DASS-21)					
Mocci et al.	April	500	Italy	General Population						
Moghannabi-Mansourieh	April	10754	Iran	General Population	Depression, Anxiety and Stress Scale-21					
Nguyen et al.	March	3947	Vietnam	General Population	Patient Health Questionnaire 9-item (PHQ-9)					
Ni et al. (A)	May	214	China	HCW	Patient Health Questionnaire 2-item (PHQ-2)	General Anxiety Disorder 2-item (GAD-2)				
Ni et al. (B)	May	1577	China	General Population	Patient Health Questionnaire 2-item (PHQ-2)	General Anxiety Disorder 2-item (GAD-2)				
Ozamiz-Exebarria	April	976	Spain	General Population						
Ozdin et al.	May	343	Turkey	General Population	Hospital Anxiety and Depression Scale (HADS)					
Qi et al.	March	1306	China	HCW			Athens Insomnia Scale (AIS)			
Qiu et al.	March	52730	China	General Population						

(continued on next page)
Table 1 (continued)

Study	Month	Country	Sample Size	Population	Measure of Distress	COVID-19 Distress Distress Index (CPDI)				
Rossi et al.	May	Italy	18147	General Population	7-item Patient Health Questionnaire (PHQ-9)	9-item Patient Health Questionnaire (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	7-item Insomnia Severity Index (ISI)	Global Psychotrauma Screen, post-traumatic stress symptoms subscale (GPS-PTSS)	9
Shacham et al.	April	Israel	338	HCW	Depression, Anxiety and Stress Scale-21 (DASS-21)	Depression, Anxiety and Stress Scale-21 (DASS-21)	Impact of Events Scale-Revised (IES-R)	6		
Tan et al. (a)	April	Singapore	470	HCW	Depression, Anxiety and Stress Scale-21 (DASS-21)	Depression, Anxiety and Stress Scale-21 (DASS-21)	Impact of Events Scale-Revised (IES-R)	8		
Tan et al. (b)	April	China	673	General Population	Depression, Anxiety and Stress Scale-21 (DASS-21)	Depression, Anxiety and Stress Scale-21 (DASS-21)	Impact of Events Scale-Revised (IES-R)	8		
Tang et al.	May	China	2485	General Population	Patient Health Questionnaire 9-item (PHQ-9)	Self-rating anxiety scale (SAS)	Pittsburgh sleep quality index (PSQI)	9		
Wang, Y. et al.	March	China	600	General Population	Depression, Anxiety and Stress Scale-21 (DASS-21)	Depression, Anxiety and Stress Scale-21 (DASS-21)	Impact of Events Scale-Revised (IES-R)	9		
Wang, C. et al. (a)	April	China	1304	General Population	Depression, Anxiety and Stress Scale-21 (DASS-21)	Depression, Anxiety and Stress Scale-21 (DASS-21)	Impact of Events Scale-Revised (IES-R)	7		
Wang, C. et al. (b)	March	China	1210	General Population	Depression, Anxiety and Stress Scale-21 (DASS-21)	Depression, Anxiety and Stress Scale-21 (DASS-21)	Impact of Events Scale-Revised (IES-R)	7		
Wang, S. et al.	May	China	123	HCW	Self-rating anxiety scale (SAS)	Pittsburgh sleep quality index (PSQI)	9			
Xie et al.	April	China	1784	General Population	Screen for Child Anxiety Related Emotional Disorders	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (Bolivia)	Unpublished	Bolivia	240	HCW	General Anxiety Disorder 7-item (GAD-7)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (Ecuador)	Unpublished	Ecuador	252	HCW	General Anxiety Disorder 7-item (GAD-7)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (Iran)	Unpublished	Iran	521	General Population	Patient Health Questionnaire 9-item (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (Iran2)	Unpublished	Iran	304	HCW	Patient Health Questionnaire 9-item (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (Iran3)	Unpublished	Iran	139	General Population	Patient Health Questionnaire 9-item (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (Malaysia)	Unpublished	Malaysia	655	General Population	General Anxiety Disorder 7-item (GAD-7)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (middle)	Unpublished	Multi- countries	474	General Population	Patient Health Questionnaire 9-item (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		
Zhang, S. (Pakistan)	Unpublished	Pakistan	629	HCW	General Anxiety Disorder 7-item (GAD-7)	General Anxiety Disorder 7-item (GAD-7)	Unpublished sample sent by author	9		

(continued on next page)
Table 1 (continued)

Study	Sample/Country	Year/Percentage	Domain	Measure/Scale	Score/Notes
Zhang, S. (Peru)	Unpublished sample sent by author	220 Peru HCW	General Anxiety Disorder 7-item (GAD-7)	0	Unpublished sample sent by author
Zhang, S. (senior)	Unpublished sample sent by author	182 Multi-countries General Population	Patient Health Questionnaire 9-item (PHQ-9)	General Anxiety Disorder 7-item (GAD-7)	0 Unpublished sample sent by author
Zhang, S. et al. (a)	May 304 58.6% Iran HCW	General Anxiety Disorder 7-item (GAD-7)	Patient Health Questionnaire 4-item (PHQ-4)	Kessler 6-item Psychological Distress Scale (K-6)	6
Zhang, Y. et al.	March 263 59.7% China HCW	General Anxiety Disorder 7-item (GAD-7)	Patient Health Questionnaire 4-item (PHQ-4)	Impact of Events Scale-Revised (IES-R)	7
Zhang, W.-R. et al.	April 2182 64.2% China HCW	General Anxiety Disorder 7-item (GAD-7)	General Anxiety Disorder 2-item (GAD-2)	Insomnia Severity Index (ISI)	8
Zhang, C. et al.	April 1563 82.73% China HCW	General Anxiety Disorder 7-item (GAD-7)	Generalized Anxiety Disorder scale (GAD-7)	Impact of Events Scale-Revised (IES-R)	9
Zhang, J. et al.	April 205 56.1% China General Population	General Anxiety Disorder 7-item (GAD-7)	Patient Health Questionnaire 9-item (PHQ-9)	Kessler 6-item Psychological Distress Scale (K-6)	6
Zhang, S. et al. (b)	May 369 45% China General Population	General Anxiety Disorder 7-item (GAD-7)	Generalized Anxiety Disorder scale (GAD-7)	Insomnia Severity Index (ISI)	6
Zhou, J. et al.	April 2065 N/A China General Population	General Anxiety Disorder 7-item (GAD-7)	Generalized Anxiety Disorder scale (GAD-7)	Insomnia Severity Index (ISI)	6
Zhou, S. J. et al.	April 8079 53.5% China General Population	General Anxiety Disorder 7-item (GAD-7)	Generalized Anxiety Disorder scale (GAD-7)	Generalized Anxiety Disorder Scale (GAD-7)	9
Zhu, S. et al.	April 2279 59.7% China General Population	General Anxiety Disorder 7-item (GAD-7)	Generalized Anxiety Disorder Scale (GAD-7)	9	
Zhu, Z. et al.	February 5062 85% China HCW	General Anxiety Disorder 7-item (GAD-7)	Patient Health Questionnaire-9 (PHQ-9)	Generalized Anxiety Disorder Scale (GAD-7)	6

Note. All articles were published or submitted in 2020, except for the unpublished data.
A) All studies for insomnia and comparison between citizens and healthcare workers

Authors	Number of people with disorder	Total	Prevalence [95% CI]
Citizens			
Casagranande et al.	1308	2291	0.57 [0.55, 0.59]
Hao, F. et al.	21	185	0.11 [0.08, 0.17]
Huang & Zhao	1317	7236	0.18 [0.17, 0.19]
Kokou–Kpolou et al.	106	556	0.19 [0.16, 0.23]
Li, Yun et al.	953	3637	0.26 [0.25, 0.28]
Rossi et al.	1301	18147	0.07 [0.07, 0.08]
Tan et al. (b)	16	673	0.02 [0.01, 0.04]
Zhou, J. et al.	541	2065	0.25 [0.24, 0.28]
Citizens only	k = 8, i² = 99.82		0.16 [0.08, 0.30]

Healthcare Workers			
Lai et al.	427	1257	0.34 [0.31, 0.37]
Li, X. et al.	311	948	0.33 [0.30, 0.36]
Qi et al.	594	1306	0.45 [0.43, 0.48]
Wang, S. et al.	47	123	0.38 [0.30, 0.47]
Zhang, C. et al.	564	1563	0.36 [0.34, 0.38]
Zhang, W–R. et al.	739	2182	0.34 [0.32, 0.36]
Healthcare workers only	k = 6, i² = 89.45		0.37 [0.33, 0.40]

All Studies | k = 14, N = 42,169, i² = 99.73 | | 0.24 [0.16, 0.34] |

Wald test: Z = 2.69, p = 0.007

B) All studies for PTSD and comparison between citizens and healthcare workers

Authors	Number of people with disorder	Total	Prevalence [95% CI]
Citizens			
Bo et al.	687	714	0.96 [0.95, 0.97]
Casagranande et al.	174	2291	0.08 [0.07, 0.09]
Hao, F. et al.	39	185	0.21 [0.16, 0.28]
Liu, N. et al.	20	285	0.07 [0.05, 0.11]
Rossi et al.	6604	18147	0.36 [0.36, 0.37]
Tan et al. (c)	126	673	0.19 [0.16, 0.22]
Tang et al.	67	2485	0.03 [0.02, 0.03]
Wang, C. et al. (b)	651	1210	0.54 [0.51, 0.57]
Zhang, Y. et al.	20	263	0.08 [0.05, 0.11]
Citizens only	k = 9, i² = 99.83		0.22 [0.08, 0.50]

Healthcare Workers			
Chew et al.	34	906	0.04 [0.03, 0.05]
Lai et al.	899	1257	0.72 [0.69, 0.74]
Tan et al. (a)	36	470	0.09 [0.06, 0.10]
Zhang, C. et al.	585	1563	0.37 [0.35, 0.40]
Healthcare workers only	k = 4, i² = 99.72		0.21 [0.05, 0.57]

All Studies | k = 13, N = 30,449, i² = 99.85 | | 0.22 [0.09, 0.43] |

Wald test: Z = -0.09, p = 0.932

Fig. 4. Forest plot of pooled prevalence of insomnia, PTSD, and psychological distress and distress, and comparisons between citizens and healthcare workers.
2.69, *p* < 0.05). HCW have a higher prevalence of insomnia than citizens.

3.4. Posttraumatic stress disorder (PTSD)

Fig. 4B shows a forest plot of the pooled prevalence of PTSD in people during the COVID-19 pandemic (k=13, N=30,449). The pooled prevalence of PTSD among participants is 21.94% CI 95% [9.37%;43.31%]. The Kendall’s tau rank order correlation is not significant (*r* _τ_ = -0.08, *p* > 0.05), which indicates that there is no asymmetry in the funnel plot. This result provides evidence that there is no publication bias in the present meta-analysis. There is heterogeneity in the results (*I*^2^ = 99.85) (Higgins et al., 2003). Fig. 4B shows no difference in the prevalence of PTSD between citizens (k=9, 22.43, 95% CI [7.62;50.32]) and HCW (k=4, 20.91, 95% CI [5.01;57.00]), (*z* = -0.9, *p* > 0.05).

3.5. Psychological distress

Fig. 4C shows a forest plot of the pooled prevalence of psychological distress in people during the COVID-19 pandemic (k=19, N=68,155). The pooled prevalence of psychological distress among participants is 13.29% CI 95% [8.80%;19.57%]. The Kendall’s tau rank order correlation is not significant (*r* _τ_ = -0.08, *p* > 0.05), indicating an absence of asymmetry in the funnel plot. This result provides evidence that there is no publication bias in the present meta-analysis. There is heterogeneity in the results (*I*^2^ = 99.60) (Higgins et al., 2003). Fig. 4C indicates no difference in the prevalence of psychological distress between citizens (k=10, 10.19, 95% CI [4.63;20.96]) and HCW (k=9, 16.88, 95% CI [13.02;21.61]), (*z* = 1.27, *p* > 0.05).

4. Discussion

Conducted with a global mental health perspective, the objective of this systematic review and meta-analysis was to analyze the impacts of COVID-19 on the mental health of affected populations to help implement programs based on initial evidence. The results showed that the most studied mental health problems during COVID-19 are depression, anxiety, insomnia, PTSD, and PD. We conducted meta-analyses on the prevalence of these five mental health problems. This meta-analysis includes 68 independent samples and sub-samples that indicate that pandemic-affected populations have significantly higher prevalence of depression, anxiety, insomnia, PTSD, and PD compared to the general population under normal circumstances. First, compared to what was observed in the latest WHO study on common mental health disorders, prevalence of depression in populations affected by COVID-19 is more than three times higher (15.97%) than in the general population (4.4%); while it is four times higher for anxiety (15.15% vs. 3.6%); and five times higher for PTSD (21.94% vs. 4%) (Kessler et al., 2017; Liu et al., 2017; World Health Organization, 2017). These prevalence rates are also higher than those usually observed in the general population (Atwoli et al., 2015; Dorrington et al., 2014; Grove et al., 2011; Guo et al., 2016; Kessler et al., 2017; Liu et al., 2017; Slade et al., 2011; Stein et al., 2017; Vilagut et al., 2016; Weinberger et al., 2018; World Health Organization, 2017). Results also showed significantly higher prevalence of insomnia and PD in populations affected by COVID-19 compared to the general population (Cao et al., 2017; Ford et al.,
health problems. For example, the prevalence of insomnia that is more than two times higher among HCW is a predictor of depression and fear associated with the pandemic, containment measures, high losses, and uncertainty about the future (Nicola et al., 2020).

The second objective of this study was to compare mental health problems between HCW and other populations affected by COVID-19. Results showed that there were no significant differences in depression, anxiety, PTSD, and PD. These results are consistent with previous studies that have shown that during epidemics and crises (e.g., SARS, Ebola), HCW generally have the same level or fewer mental health problems than community members (Cénat et al., 2020b, 2020d, 2020c; Lancee et al., 2008; Lehmann et al., 2015; Pappa et al., 2020b). However, longitudinal studies need to be conducted to determine whether this non-differentiation between HCW and the general population is related to temporary coping strategies associated with being on the front lines. After the pandemic ends, HCW may develop more severe mental health problems. For example, the prevalence of insomnia that is more than two times higher among HCW is a predictor of depression and suicidal ideation (Cukrowicz et al., 2006).

The third objective of this study was to test for gender differences in the prevalence of mental health problems. The data allowed comparisons for depression and anxiety. While a higher prevalence of anxiety and depression was expected in females, surprisingly, there were no gender differences. Available data have not always allowed for the evaluation of gender differences during past epidemics (Cénat et al., 2020d). Studies conducted during this pandemic have shown that males and females experience stressors in similar ways (Cao et al., 2020).

Studies conducted in China, both with very large and small samples, have also found no gender differences (Cao et al., 2020; Chen et al., 2020; Huang and Zhao, 2020). However, studies in the Middle East and the West have shown that women are at greater risk of developing mental health problems during COVID-19 (Mazza et al., 2020; Moccia et al., 2020b; Mohanabashi-Mansourieh, 2020). These observations should be investigated longitudinally because confirmation of this pattern could lead to questions about the association between cultural gender roles and the development of mental health problems.

As the pandemic has disproportionately affected different parts of the world, the final objective of this study was to analyze differences in mental health problems according to the regions in which the studies were conducted. We wanted to compare studies from Asia, Europe, and North America. Since most of the studies were from China, we were only able to analyze differences between China and other countries as a whole, and only for depression and anxiety. The global nature of this pandemic offers the possibility of analyzing the phenomenology of psychopathology between countries.

5. Limitations

While this study provides findings that will guide research and the development of better mental health programs during and after the pandemic, it has some limitations. The first is that the pandemic is still ongoing. Articles are written quickly and do not always document essential aspects that would allow us to analyze differences between groups. In addition, new publications are published daily, but this study was necessary to allow mental health programs to be developed based on early evidence. The second limitation of this study is that most of the published research comes from China. This is because China is the first country to have faced the pandemic. Also, although we only retained studies with high cut-off scores and valid measures, a large heterogeneity was found in the results. A recent meta-analysis on mental health problems in populations affected by Ebola disease and others on HCW during the COVID-19 pandemic had a similar finding (Cénat et al., 2020b; Pappa et al., 2020b; Xiong et al., 2020). The disproportionate spread of COVID-19, associated consequences, and differences between scales used to measure mental health problems are all factors that may explain this heterogeneity. Moreover, very few studies have been conducted among survivors of COVID-19, especially those who developed severe symptoms. These studies could have allowed for an analysis of probable differences within groups affected by COVID-19. Finally, the lack of studies in low- and middle-income countries prevents a more global perspective in this study.

6. Future directions

The greatest strength of this study is that it identifies a range of avenues for future research. First, this article shows the need for longitudinal studies to better understand the impacts of COVID-19 on survivors, gender, geographical regions, etc. Second, these studies should also analyze socio-demographic characteristics to highlight the differences that may exist between groups, and identify those most at risk to facilitate the development of programs based on their specific needs. Also, studies should explore mental health problems specifically among HCW on a longitudinal basis, while comparing with the rest of the population. This will allow us to observe whether being in the heat of the moment acts as a protective factor in the short term as in the long term, HCW present more health problems than the rest of the population. Future studies should also pay special attention to survivors, especially those who have developed severe symptoms or who have been on artificial ventilators. Finally, studies should also analyze whether differences exist depending on the measures used to assess mental health problems. This will help identify the best tools to accurately measure mental health problems.

7. Conclusions

This study shows that regardless of gender, group or region, the current pandemic is impacting the mental health of affected populations. Indeed, all groups have a high prevalence of depression, anxiety, insomnia, PTSD, and PD. Thus, this study provides initial evidence for the implementation of mental health prevention and intervention programs that provide holistic care to affected individuals. Special attention must be paid to infected individuals and those who have developed severe symptoms to make healthcare as minimally traumatic as possible for them and their families, while respecting measures to prevent the spread of the virus. Also, programs must be developed quickly for HCW to address the mental health problems associated with the pandemic and to prevent them in the long term.

Finally, research is necessary to identify and document all aspects of the pandemic that impact mental health including social inequalities, the vulnerability of children and adolescents, the resilience of LMICs, confinement, traumatic characteristics of COVID-19-related deaths (Bhopal, 2020; Cénat, 2020a, Cénat, 2020b; Cénat and Daelxie, 2020; Daelxie and Cénat, 2020; Holmes et al., 2020; Kokou-Kpolou et al., 2020; Li et al., 2020b; Xiong et al., 2020). Research must help build more resilient populations and healthcare systems in the face of epidemics by providing sufficient evidence to develop both surveillance, prevention and intervention programs during and after this worldwide crisis (Cénat, 2020c; Collin-Vézina et al., 2020; Holmes et al., 2020; Liu et al., 2020b).

Funding

None

Declaration of Competing Interest

No conflict of interest for any author.
