SECONDARY METABOLITES FROM THE STEM BARKS OF RHIZOPHORA MUCRONATA LAM.

Kieu Thi Phuong Linh¹, Nguyen Huu Quan¹, Nguyen Van Chien², Nguyen Quoc Trung³, Vu Huy Thong⁴, Nguyen Van Tuyen⁵, Nguyen Phuong Thao¹*,

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
²Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
³Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
⁴University of Fire Fighting and Prevention, 243 Khuat Day Tien, Ha Noi, Viet Nam
⁵Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

*Email: thaonp@imbc.vast.vn

Received: 15 January 2020; Accepted for publication: 24 August 2020

Abstract. Using various chromatographic separations, three phenolic derivatives (1-3) and three phytosteryl glycosides (4-6) were isolated from a methanolic extract of R. mucronata Lam. stem barks. Their structures were elucidated to be cinchonain Ib (1), breynioside B (2), polystachyol (3), β-sitosterol 3-O-β-D-glucopyranoside (4), β-sitosterol 3-O-β-D-(6'-O-palmitoyl) glucopyranoside (5), and β-sitosterol 3-O-β-D-(6'-O-stearoyl)glucopyranoside (6) by detailed analysis via spectroscopic techniques (1D, 2D NMR, and ESI-MS data) as well as comparison with those reported. This is the first report of compounds 1-6 from the Rhizophora genus.

Keywords: Rhizophora mucronata, Rhizophoraceae, phenolic, phytosteryl glycoside.

Classification numbers: 1.1.1; 1.1.6.

1. INTRODUCTION

To date, more than 84 species belonging to 24 genera and 16 families of mangrove plants have been discovered across the world, which composed of a large group of different salt-tolerant plants [1, 2]. Among them, the family Rhizophoraceae belongs to a true mangrove family, which contains 24 species in four genera, including Bruguiera (7 species), Ceriops (5 species), Kandelia (2 species), and Rhizophora (10 species) [1, 3]. In recent years, Rhizophora plants have attracted extensive scientific interests in the chemical and pharmacological properties [4 - 7].
The true mangrove, *Rhizophora mucronata* Lam. is widely distributed in Southeast Asia along the coastlines of the Indian Ocean [8, 9]. This plant is used as a folk medicine in Southeast Asia to treat angina, constipation, diabetes, diarrhea, dysentery, haematuria, hemorrhage, nausea, and leprosy [10, 11]. Interestingly, the extracts and fractions of the leaves, fruits, and barks of this plant were reported to exhibit significant *in vitro* α-amylase and α-glucosidase inhibitory [12, 13], anti-arthritis [14], antibacterial [15 - 17], antidiabetic [18, 19], anti-inflammatory [14, 20, 21], anti-gastric cancer [22, 23], antihyperglycemic [24], and antioxidant [16, 18, 25 - 28] effects. According to previous phytochemical studies, besides being the source of tannins (up to 70 %) [18, 29], alkaloids [16, 21], phenolics [9], polysaccharides [30], and terpenoids [8, 22, 23, 31 - 34] have been reported from *R. mucronata*.

In our continuing search for secondary metabolites from the Vietnamese mangrove plants [35 - 37], an EtOAc fraction of *R. mucronata* stem barks was investigated on the chemical constituents. The current paper deals with detailed structure elucidation of six compounds (1-6, Figure 1) from this plant.

2. EXPERIMENTAL

2.1. General experimental procedures

The procedure and instruments used correspondingly to isolate compounds, measure optical rotation, and record Infra Red (IR), Nuclear Magnetic Resonance (NMR), Mass Spectroscopy (ESI-MS) data collection, TLC, and MPLC are similar to those described in a previous paper [38].

2.2. Plant material

![Structures of compounds 1-6 isolated from R. mucronata.](image-url)
The stem barks of *Rhizophora mucronata* Lam. were collected at Ca Mau National Park, Ca Mau province, Viet Nam in May 2018, and taxonomically identified by Dr. Nguyen The Cuong (Institute of Ecology and Biological Resources, VAST). A voucher specimen (TDPCCC-2018.03) was deposited at the Herbarium of Institute of Marine Biochemistry and Institute of Ecology and Biological Resources, VAST.

2.3. Extraction and isolation

The dried stem barks of *R. mucronata* (2.5 kg) were cut into pieces and extracted with 95% aqueous MeOH by percolation at room temperature to obtain 210 g of extract. The concentrated methanol extract was suspended in water and defatted with *n*-hexane and then was partitioned into ethyl acetate-soluble fraction.

The EtOAc fraction (E, 60 g) was separated on silica gel MPLC (column: Biotage SNAP Cartridge, KP-SIL, 100 g) using the mobile phase of CH$_2$Cl$_2$-EtOAc (0 - 5 min 50% EtOAc, 6-65 min 50 - 75% EtOAc, 66 - 75 min 100% EtOAc, 76 - 90 min 100% MeOH, 15 mL/min, 90 min) to give ten fractions (E-1 to E-10). This MPLC procedure was repeated 5 times using the same conditions before further isolation. By TLC monitoring, fraction E-6 was further separated on a silica gel column chromatography (CC), using CH$_2$Cl$_2$-MeOH (3.5 L, 50:1, 25:1, v/v) as the mobile phase, to give four subfractions (E-6.1 to E-6.4). Fractions E-6.1 and E-6.2 were combined (105 mg) and fractionated over Sephadex LH-20 (eluted with MeOH, 2.5 L) to give three subfractions (E-6.2a to E-6.2c). Compounds 3 (4.6 mg) and 5 (3.9 mg) were obtained from subfraction E-6.2b and compound 6 (5.5 mg) was obtained from subfraction E-6.2c by a silica gel CC (2L of CH$_2$Cl$_2$-MeOH, 4:1) and then by a Sephadex LH-20 column (1.5 L of CH$_2$Cl$_2$-MeOH, 1:3). In a similar process to that described above, fraction E-7 (1.05 g) was chromatographed over an open YMC*GEL column eluted with MeOH-H$_2$O (2.5L, 1 : 3, 1 : 2, v/v) to give subfraction E-7.1 and compound 4 (5.9 mg). Similarly, fraction E-10 was separated by a Sephadex LH-20 column and was eluted with a gradient solvent mixture of MeOH-H$_2$O (stepwise gradient 1 : 3, 1 : 1, 13 : 7, 3 : 1, MeOH, 4L) to yield five subfractions (E-10.1 to E-10.5), based on TLC analysis. Subfraction E-10.1 (180 mg) was separated via silica gel CC and eluted with EtOAc-MeOH (25:1, v/v) to yield three subfractions (E-10.1a to E-10.1c). Subfraction E-10.1b was subjected to silica gel CC (Φ20 mm, L800 mm with a solvent mixture of *n*-hexane-EtOAc, 1:1) and then an open YMC*GEL column (Φ15 mm, L800 mm, 65 → 100 %, H$_2$O-MeOH) to afford compound 1 (10.7 mg). Finally, when the same steps were repeated as above, compound 2 (2.1 mg) was obtained by purifying subfraction E-10.3 on YMC*GEL column (Φ20 mm, L700 mm) and followed by passing a Sephadex LH-20 column (Φ15 mm, L900 mm) using a mixture of MeOH-H$_2$O (1.5L, 1:2).

Cinchonain Ib (1): Dark yellow, amorphous powder; [α]$_D^{19}$=−19.6 (c 0.15, MeOH); UV (MeOH) λ$_{max}$ (log ε) 214 (4.67), 2.83 (3.98), and 335 (3.39) nm; IR (KBr) ν$_{max}$ 3361, 1746, 1612, 1521, 1447, 1361, and 1199 cm$^{-1}$; 1H NMR (500 MHz, CD$_3$OD) and 13C NMR (125 MHz, CD$_3$OD) spectroscopic data, see Table 1; ESI-MS m/z 453 [M + H]$^+$ (C$_{22}$H$_{20}$O$_6$) and 475 [M + Na]$^+$ (C$_{22}$H$_{20}$NaO$_6$). C$_{24}$H$_{20}$O$_8$, M = 452.

Breynioside A (2): Colorless needles; mp. 245 - 246 °C; [α]$_D^{19}$=−21.5 (c 0.15, MeOH); UV (MeOH) λ$_{max}$ (log ε) 216 (3.94), 258 (4.04) nm; IR (KBr) ν$_{max}$ 3370, 1698, 1605, 1510, 1280, 1199, and 1048 cm$^{-1}$; 1H NMR (500 MHz, CD$_3$OD) and 13C NMR (125 MHz, CD$_3$OD) spectroscopic data, see Table 2; ESI-MS m/z 391 [M - H]$^-$ (C$_{15}$H$_{19}$O$_9$), C$_{15}$H$_{20}$O$_9$, M = 392.

Polystachyol (3): White, amorphous powder; UV λ$_{max}$ (MeOH) (log ε) 230 (4.02) and 276 (3.47) nm; IR(KBr) ν$_{max}$ 3393, 1695, 1605, 1517, 1504, 1368, 1464, 1221, and 1116 cm$^{-1}$; 1H
β-Sitosterol 3-O-β-D-glucopyranoside (4): White, amorphous powder; mp. 284 - 285 °C; [α] \text{D}^21 = 29.7 (c 0.20, MeOH); UV (MeOH) \lambda_{\text{max}} 200 and 192 nm; IR (KBr) ν\text{max} 3401 - 3415, 2914, 2875, 1340-1465, and 1021-1160 cm-1; 1H NMR (500 MHz, pyridine-d\textsubscript{5}): δ\text{H} 0.91 (1H, m, H-1a), 1.68 (1H, m, H-1b), 1.71 (1H, m, H-2a), 2.11 (1H, m, H-2b), 3.94 (1H, m, H-3), 2.41 (1H, m, H-4a), 2.69 (1H, m, H-4b), 5.35 (1H, t, J = 2.5 Hz, H-6), 1.31 (1H, m, H-7a), 1.46 (1H, m, H-7b), 1.32 (1H, m, H-8), 0.82 (1H, m, H-9), 1.38 (2H, overlapped signals, H-11), 1.09 (1H, m, H-12a), 1.92 (1H, m, H-12b), 0.89 (1H, m, H-14), 0.99 (1H, m, H-15a), 1.49 (1H, m, H-15b), 1.20 (1H, m, H-16a), 1.79 (1H, m, H-16b), 1.06 (1H, m, H-17), 0.61 (3H, s, H-18), 0.89 (3H, s, H-19), 1.31 (1H, m, H-20), 0.93 (3H, d, J = 6.5 Hz, H-21), 1.01 (1H, m, H-22a), 1.32 (1H, m, H-22b), 1.19 (2H, overlapped signals, H-23), 0.92 (1H, m, H-24), 1.60 (1H, m, H-25), 0.84 (3H, d, J = 7.0 Hz, H-26), 0.87 (3H, d, J = 7.0 Hz, H-27), 1.22 (2H, overlapped signals, H-28), 0.81 (3H, t, J = 7.5 Hz, H-29); Glc: 4.95 (1H, d, J = 7.5 Hz, H-1), 3.98 (1H, dd, J = 9.0, 7.5 Hz, H-2), 4.23 (1H, t, J = 9.0 Hz, H-3'), 3.34 (1H, t, J = 9.0 Hz, H-4'), 4.21 (1H, m, H-5'), 4.27 (1H, dd, J = 12.0, 5.0 Hz, H-6'a), and 4.58 (1H, dd, J = 12.0, 2.0 Hz, H-6'b); 13C NMR (125 MHz, pyridine-d\textsubscript{5}): δ\text{C} 37.3 (C-1), 29.9 (C-2), 78.2 (C-3), 39.1 (C-4), 140.7 (C-5), 121.7 (C-6), 31.8 (C-7), 31.9 (C-8), 50.1 (C-9), 36.1 (C-10), 21.0 (C-11), 39.7 (C-12), 42.3 (C-13), 56.6 (C-14), 24.3 (C-15), 28.3 (C-16), 56.0 (C-17), 11.7 (C-18), 19.2 (C-19), 36.7 (C-20), 19.0 (C-21), 33.9 (C-22), 26.1 (C-23), 45.8 (C-24), 29.3 (C-25), 18.8 (C-26), 19.7 (C-27), 23.2 (C-28), 11.9 (C-29); G1c: 102.2 (C-1'), 74.8 (C-2'), 78.0 (C-3'), 71.3 (C-4'), 77.9 (C-5'), and 62.3 (C-6'); ESI-MS m/z 575 [M - H] (C\textsubscript{15}H\textsubscript{29}O\textsubscript{6}), C\textsubscript{15}H\textsubscript{28}O\textsubscript{5}, M = 576.

β-Sitosterol 3-O-β-D-(6'-O-palmitoyl)glucopyranoside (5): White, amorphous powder; mp. 168 - 170 °C; [α] \text{D}^21 = 32.3 (c 0.25, MeOH); IR (KBr) ν\text{max} 3401 - 3410, 2905 - 2914, 2852, 1739, 1170, and 1022 cm-1; 1H NMR (500 MHz, CDC\textsubscript{3}): δ\text{H} 1.06 (1H, m, H-1a), 1.84 (1H, m, H-1b), 1.29 (1H, overlapped signal, H-2), 3.56 (1H, m, H-3), 2.27 (1H, m, H-4a), 2.34 (1H, m, H-4b), 5.35 (1H, d, J = 5.0 Hz, H-6), 1.93 (1H, m, H-7a), 1.24 (1H, m, H-7b), 1.26 (1H, m, H-8), 0.89 (1H, m, H-9), 1.48 (2H, overlapped signals, H-11), 1.17 (1H, m, H-12a), 2.01 (1H, m, H-12b), 0.98 (1H, m, H-14), 1.38 (1H, m, H-15a), 1.59 (1H, m, H-15b), 1.27 (1H, m, H-16a), 1.83 (1H, m, H-16b), 1.15 (1H, m, H-17), 0.68 (3H, s, H-18), 1.00 (3H, s, H-19), 1.38 (1H, m, H-20), 0.91 (3H, d, J = 6.5 Hz, H-21), 1.02 (1H, m, H-22a), 1.36 (1H, m, H-22b), 1.57 (2H, overlapped signals, H-23), 0.91 (1H, m, H-24), 1.23 (1H, overlapped signal, H-25), 0.87 (3H, d, J = 7.0 Hz, H-26), 0.86 (3H, d, J = 7.0 Hz, H-27), 1.29 (2H, overlapped signals, H-28), 0.84 (3H, t, J = 7.5 Hz, H-29); 3-Glc: 4.38 (1H, d, J = 7.5 Hz, H-1'), 3.40 (1H, dd, J = 9.0, 7.5 Hz, H-2'), 3.58 (1H, t, J = 9.0 Hz, H-3'), 3.34 (1H, t, J = 9.0 Hz, H-4'), 3.46 (1H, m, H-5'), 4.45 (1H, dd, J = 12.0, 5.0 Hz, H-6'a), and 4.26 (1H, dd, J = 12.0, 2.0 Hz, H-6'b); 6'-Palmitoyl: 2.37 (2H, t, J = 7.5 Hz, H-2'), 1.62 (2H, overlapped signals, H-3'), 1.20 - 1.38 (overlapped signals, H-4'' - H-14''); 1.28 (2H, overlapped signals, H-15'), 0.85 (3H, t, J = 7.0 Hz, H-16'); 13C NMR (125 MHz, CDC\textsubscript{3}): δ\text{C} 37.2 (C-1), 29.6 (C-2), 79.6 (C-3), 38.9 (C-4), 140.3 (C-5), 122.1 (C-6), 31.9 (C-7), 31.9 (C-8), 50.2 (C-9), 36.1 (C-10), 21.0 (C-11), 39.7 (C-12), 42.3 (C-13), 56.7 (C-14), 24.3 (C-15), 28.2 (C-16), 56.1 (C-17), 11.8 (C-18), 19.3 (C-19), 36.7 (C-20), 19.0 (C-21), 33.9 (C-22), 26.1 (C-
Secondary metabolites from the stem barks of Rhizophora mucronata Lam.

23), 45.8 (C-24), 29.1 (C-25), 18.8 (C-26), 19.8 (C-27), 23.0 (C-28), 11.9 (C-29); 3-Glc: 101.2 (C-1'), 73.5 (C-2'), 76.0 (C-3'), 70.1 (C-4'), 73.9 (C-5'), 63.2 (C-6'); 6'-Palmitoyl: 174.5 (C-1'''), 34.2 (C-2''), 24.9 (C-3''), 29.2 - 29.7 (C-4'' - C-14''), 22.6 (C-15''), and 14.1 (C-16''); ESI-MS m/z 837 [M + Na]⁺ (C₃₅H₅₀NaO₇⁺), 574 [M - C₁₆H₃₀O]⁺, 414 [M - palmitoyl - glucosyl]⁺, 397 [M - C₂₂H₄₁O₃]⁺, and 240 [M - C₃₅H₆₂O₅]⁺; C₃₅H₅₀O₁₇, M = 814.

β-Sitosterol 3-O-β-D-(6'-O-stearyl)glucopyranoside (6): White, amorphous powder; mp. 288 - 290 °C; [α]D -11.9 (c 0.15, MeOH); IR (KBr) vₘₐₓ 3400 - 3410, 2986 - 2910, 2851, 1739, 1169, and 1023 cm⁻¹; ¹H NMR (500 MHz, pyridine-d₅): δH 0.93 (1H, m, H-1a), 1.69 (1H, m, H-1b), 1.71 (1H, m, H-2a), 2.12 (1H, m, H-2b), 3.92 (1H, m, H-3), 2.45 (1H, m, H-4a), 2.70 (1H, m, H-4b), 5.32 (1H, d, J = 5.0 Hz, H-6), 1.33 (1H, m, H-7a), 1.20 (1H, m, H-7b), 1.89 (1H, m, H-8a), 1.21 (1H, m, H-8b), 0.87 (1H, m, H-9), 1.39 (2H, overlapped signals, H-11), 1.06 (1H, m, H-12a), 1.97 (1H, m, H-12b), 0.92 (1H, m, H-14), 1.01 (1H, m, H-15a), 1.52 (1H, m, H-15b), 1.23 (1H, m, H-16a), 1.31 (1H, m, H-16b), 1.07 (1H, m, H-17), 0.63 (3H, s, H-18), 0.90 (3H, s, H-19), 1.34 (1H, m, H-20), 0.95 (3H, d, J = 6.5 Hz, H-21), 1.03 (1H, m, H-22a), 1.39 (1H, m, H-22b), 1.22 (2H, overlapped signals, H-23), 0.96 (1H, m, H-24), 1.63 (1H, overlapped signal, H-25), 0.82 (3H, d, J = 7.0 Hz, H-26), 0.97 (3H, d, J = 7.0 Hz, H-27), 1.24 (2H, overlapped signals, H-28), 0.63 (3H, t, J = 7.0 Hz, H-29); Glc: 4.99 (1H, d, J = 7.5 Hz, H-1'), 4.01 (1H, dd, J = 9.0, 7.5 Hz, H-2'), 4.26 (1H, t, J = 9.0 Hz, H-3'), 4.19 (1H, t, J = 9.0 Hz, H-4'), 4.25 (1H, m, H-5'), 4.50 (1H, dd, J = 12.0, 2.5 Hz, H-6'), 4.32 (1H, dd, J = 12.0, 5.5 Hz, H-6'); 6'-Stearyl: 2.48 (2H, t, J = 7.5 Hz, H-2'), 1.02 (1H, m, H-3'a), 1.53 (1H, m, H-3'b), 1.25 - 1.39 (overlapped signals, H-4''' - H-16'''), 1.41 (2H, overlapped signals, H-17''), 0.83 (3H, t, J = 7.0 Hz, H-18''); ¹³C NMR (125 MHz, pyridine-d₅): δC 37.4 (C-1), 29.8 (C-2), 78.2 (C-3), 39.2 (C-4), 140.8 (C-5), 121.8 (C-6), 32.0 (C-7), 31.9 (C-8), 50.2 (C-9), 36.3 (C-10), 21.2 (C-11), 39.8 (C-12), 42.4 (C-13), 56.7 (C-14), 24.4 (C-15), 28.4 (C-16), 56.1 (C-17), 11.8 (C-18), 19.3 (C-19), 36.8 (C-20), 19.1 (C-21), 34.1 (C-22), 26.3 (C-23), 45.9 (C-24), 29.4 (C-25), 19.8 (C-26), 23.3 (C-28), 11.8 (C-29); Glc: 102.4 (C-1'), 75.0 (C-2'), 78.1 (C-3'), 71.4 (C-4'), 78.1 (C-5'), 62.5 (C-6'); 6'-Stearyl: 174.5 (C-1'), 34.1 (C-2'), 24.9 (C-3'), 29.4 - 29.8 (overlapped signals, C-4'' - C-16''), 22.6 (C-17''), 14.1 (C-18''); ESI-MS m/z 574 [M - C₁₆H₃₀O]⁺, 397 [M - C₂₂H₄₅O₃]⁺, and 268 [M - C₃₅H₆₂O₅]⁺, C₃₅H₅₀O₁₇, M = 842.

3. RESULTS AND DISCUSSION

Compound 1 was isolated as a dark yellow, amorphous powder. Its molecular formula was determined to be C₃₅H₅₀O₇ based on a protonated molecular ion peak at m/z 453 [M + H]⁺ and a sodium adduct molecular ion peak at m/z 475 [M + Na]⁺ in the ESI-MS data (consistent with 15 degrees of unsaturation). Analysis of the ¹H, ¹³C NMR, and HSQC spectroscopic data of 1 (Table 1) displayed signals for all 20 protons and 24 carbons, suggesting the presence of a flavan-3-ol skeleton in the molecule which could be determined from the characteristic signals of an AMX₂-type [δH 4.91 (1H, br s, H-2)/δC 80.2 (C-2), 4.22 (1H, m, H-3)/δC 67.0 (C-3), and 2.84 (1H, dd, J = 17.0, 2.5 Hz, H-4a), 2.95 (1H, dd, J = 17.0, 4.5 Hz, H-4b)/δC 29.2 (C-4)], while the presence of an aromatic singlet signal [δH 6.23 (s, H-6)/δC 96.4 (C-6)] was attributed to a pentasubstituted system in the flavan A-ring. Additionally, the occurrence of two ABX spin-spin systems [δH 6.85 (1H, d, J = 2.0 Hz, H-2')/δC 115.0 (C-2'), 6.70 (1H, d, J = 8.5 Hz, H-5')/δC 115.9 (C-5'), 6.63 (1H, dd, J = 8.5, 2.0 Hz, H-6')/δC 119.3 (C-6'), and 6.64 (1H, d, J = 2.0 Hz, H-2')/δC 115.03 (C-2'), 6.71 (1H, d, J = 8.5 Hz, H-5')/δC 116.5 (C-5'), 6.56 (1H, dd, J = 8.5, 2.0 Hz, H-6')/δC 119.4 (C-6')] demonstrates the characteristics of two 1,3,4-trisubstituted phenyl groups which exhibited the presence of the 3',4'-dihydroxyflavan B-ring. Based on these data,
the presence of the flavan-3-ol skeleton related to that of (−)-epicatechin (fragment A) [39 - 42], along with signals for a dehydrocaffeoyl group [δ_H 4.47 (1H, dd, J = 7.0, 2.0 Hz, H-α)/δ_C 35.1 (C-α)], a methylene [δ_H 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βa), 3.01 (dd, J = 16.0, 7.0 Hz, H-βb)/δ_C 38.3 (C-β)] (fragment B, phenylpropanoid-substituted), was also observed in the 1D NMR data.

Table 1. 1H and 13C NMR spectroscopic data for 1 and 2 (in CD3OD).

Position	δ_C^a	δ_H^b mult. (J in Hz)	Position	δ_C^a	δ_H^b mult. (J in Hz)
2	80.2	4.91 br s	1	152.3	-
3	67.0	4.22 m	2	4.47 (1H, dd, J = 7.0, 2.0 Hz, H-α)	
4	29.2	2.95 dd (17.0, 4.5)	3	119.6	6.96 d (9.0)
5	157.2	-	4	153.9	-
6	96.4	6.23 s	1''	103.7	4.75 d (7.5)
7	152.0	-	2''	74.9	3.48 dd (9.0, 7.5)
8	106.1	-	3''	78.2	3.50 dd (9.0, 9.0)
9	153.5	-	4''	72.1	3.45 (9.0)
10	105.2	-	5''	75.5	3.74 ddd (9.0, 7.0, 2.0)
1''	131.6	-	6''	65.1	4.70 dd (11.5, 2.0)
2''	115.0	6.85 d (2.0)	1''	122.2	-
3''	146.3	-	2''	132.9	7.92 d (9.0)
4''	145.9	-	3''	116.2	6.88 d (9.0)
5''	115.9	6.70 d (8.5)	4''	163.6	-
6''	119.3	6.63 ddd (8.5, 2.0)	7''	167.9	-
1''	152.2	-			
2''	115.3	6.64 d (2.0)			
3''	145.8	-			
4''	145.1	-			
5''	116.5	6.71 d (8.0)			
6''	119.4	6.56 ddd (8.0, 2.0)			
α	35.1	4.47 dd (7.0, 2.0)			
β	38.3	3.01 dd (16.0, 7.0)			
-COO-	170.7	-			

*a125 MHz, b500 MHz. Assignments were confirmed by HMQC and HMBC experiments.

Moreover, the signal for a carbonyl carbon (δ_C 170.7) was conspicuously observed in the 13C NMR data and was assigned through a J_C,H correlation between the carbonyl signal (δ_C 170.7) and H-β (δ_H 2.89/3.01). This relationship was supported by the HMBC experiments, in which correlations were observed for the resonances between δ_H 4.47 (1H, dd, J = 7.0, 2.0 Hz, H-α) and 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βa)/3.01 (dd, J = 16.0, 7.0 Hz, H-βb) with δ_C 170.7 (C=O). On the other hand, the location of a pyranone ring fused to the A-ring at C-8 and C-7 was further observed by the HMBC correlations between δ_H 4.47 (1H, dd, J = 7.0, 2.0 Hz, H-α) with δ_C 152.0 (C-7)/106.1 (C-8), between δ_H 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βa)/3.01 (dd, J = 16.0, 7.0 Hz H-βb) with δ_C 106.1 (C-8), as well as between δ_H 6.23 (1H, s, H-6) with δ_C 152.0 (C-7) and δ_C 106.1 (C-8) (Figure 2). The β-configuration of H-α on the pyranone ring in 1 was determined by analyzing its spin-coupling pattern and based on the generally comparable NMR data with previous reports [39 - 42]. The chemical shifts of C-α (δ_C 35.1)/δ_H 4.47 (1H, dd, J = 7.0, 2.0 Hz,
Secondary metabolites from the stem barks of Rhizophora mucronata Lam.

H-α) and C-β (δC 38.3)/δH 2.89 (1H, dd, J = 16.0, 2.0 Hz, H-βα)/δH 3.01 (dd, J = 16.0, 7.0 Hz, H-ββ) in I corresponded well to signals observed in the NMR spectra of corbulain Ia [δC 35.3] (C-α)/δH 4.44 (1H, dd, J = 7.0, 1.5 Hz, H-α) and 38.4 (C-β)/δH 2.85 (1H, dd, J = 16.0, 1.5 Hz, H-βα)/δH 3.01 (dd, J = 16.0, 7.0 Hz, H-ββ) and different from the NMR spectra of corbulain Ib with α-configuration [δC 35.5] (C-α)/δH 4.52 (1H, dd, J = 7.0, 1.5 Hz, H-α) and 38.6 (C-β)/δH 2.85 (1H, dd, J = 16.5, 1.5 Hz, H-βα)/δH 3.01 (dd, J = 16.5, 7.5 Hz, H-ββ) [40]. These data indicated the presence of a β-configuration of H-α in I. Moreover, cinchonain Ia and cinchonain Ib were first described by Nonaka and Nishioka [41] and their structures were revised by Chen et al. [42] based on NOESY experiments and CD data. To date, the structure of cinchonain Ib was accepted to show in Figure 1. From the above evidence, the structure of I was determined as cinchonain Ib. This compound was previously obtained from the barks of Cinchona succirubra [41], Castanopsis hystrix [42], and Trichilia catigua [40].

Compound 2 was obtained as colorless needles, with a negative optical rotation [α]D 21.5 (c 0.5, MeOH). Its molecular formula was found to be C18H20O9 (10 indices of hydrogen deficiency) via the 13C-NMR spectroscopic data and a negative ESI-MS ion peak at m/z 391 [M-H]-. Analysis of the 1H-NMR spectroscopic data of 2 showed four doublets assignable to a symmetrical 1,4-disubstituted aromatic ring [δH 6.96 (2H, d, J = 9.0 Hz, H-2/H-6)/δH 6.63 (2H, d, J = 9.0 Hz, H-3/H-5)] (fragment A) and 7.92 (2H, d, J = 9.0 Hz, H-2'/H-6'])/δH 6.88 (2H, d, J = 9.0 Hz, H-3'/H-5') (fragment B), together with one glucosidic moiety [δC 103.7 (C-1'), 74.9 (C-2'), 78.2 (C-3'), 72.1 (C-4'), 75.5 (C-5'), and 65.1 (C-6')] as evidenced by the presence of an anomeric proton signal [δH 4.75 (1H, d, J = 7.5 Hz, H-1')], and other proton signals [δH 3.48 (1H, dd, J = 9.0, 7.5 Hz, H-2'), 3.50 (1H, dd, J = 9.0, 9.0 Hz, H-3'), 3.45 (1H, t, J = 9.0 Hz, H-4'), 3.74 (1H, m, H-5'), 4.36 (1H, dd, J = 11.5, 7.0 Hz, H-6'a), and 4.70 (1H, dd, J = 11.5, 2.0 Hz, H-6'b)].

Figure 2. Key HMBC correlations of I and 2.

Moreover, the anomeric proton signal of H-1' was attributed to a β-glucosyl unit (a trans-diaxial configuration of H-1' and H-2') from the coupling constant (J1,2' = 7.5 Hz). Furthermore, analysis of the 13C-NMR and HSQC spectroscopic data of 2 revealed the presence of 19 carbon signals, including a carbonyl (δC 167.9) and 12 aromatic carbon atoms, along with signals from one hexose moiety (Table 1). The sugar moiety was confirmed as β-D-glucose, which was linked to the aglycones at C-1 (fragment A) and C-7" (fragment B) positions in 2. This assignment was supported by the HMBC experiments, in which correlations were observed for the resonances between δH 4.75 (H-1')/δH 4.36/δH 4.70 (H-6') with C-1 (δC 152.3) and C-7" (δC 167.9). Additionally, the locations of two hydroxyl groups were assigned to C-4 and C-4" positions, respectively, which were implied by the HMBC correlations between δH 6.96 (H-2/H-6) and 6.63 (H-3/H-5) with δC 153.9 (C-4); δH 7.92 (H-2'/H-6') and 6.88 (H-3'/H-5') with δC 163.6 (C-4") (Figure 2).

659
These spectroscopic data suggested that 2 was a phenolic glycoside with a glucosyl unit and two 4-hydroxybenzoyl moieties [43]. By comparing the NMR spectroscopic data of 2 with reported literature, 2 was determined as 4-hydroxyphenyl 1-O-β-D-[6'-O-(p-hydroxybenzoyl)] glucopyranoside (breynioside A) [43]. This compound was previously obtained from the leaves of *Breynia officinalis* [43].

Compound 5 was obtained as a white, amorphous powder with the molecular formula C₃₁H₅₀O₇, as determined by the positive-ion sodiated HR-ESI-MS peak (m/z 837.6586 ([M + Na])⁺, calcd. for C₃₁H₅₀NaO₇, 837.6584). The IR spectrum of 5 showed characteristic hydroxyl (3401 - 3410 cm⁻¹), ester (1739 cm⁻¹), and C-O (1170 and 1022 cm⁻¹) group absorption bands. The ¹H NMR spectrum of 5 indicated the presence of six methyl groups and a trisubstituted double bond. The anomeric proton [δ_H 4.38 (1H, d, J = 7.5 Hz, H-1')] suggested a sugar moiety bonded to the aglycone via a β-glycosidic linkage. Additionally, the presence of a long-chain aliphatic moiety was indicated by an overlapped triplet methyl signal [δ_H 0.85 (1H, t, J = 7.0 Hz, H-16′)] and methylene groups. These findings show that 5 is a C-29 steroidal glucoside derivative [44, 45]. The ¹³C NMR spectrum of 5 revealed 51 carbon signals, 29 of which were assigned to a steroidal moiety, six to one monosaccharide moiety, and the remaining fatty acid group. The presence of six methyl groups, an oxymethine group, a pair of olefinic methine carbons, together with one glucoside moiety was observed in the ¹³C NMR spectrum. The ¹³C NMR data together with the spin-coupling pattern of the sugar proton signals ([J₁,₂ = 9.0 Hz, J₂,₃ = 9.0 Hz, and J₂,₄ = 9.0 Hz]), indicated a β-D-glucopyranosyl moiety. Moreover, signals at δ_C 174.5 (C=O, C-1"), 34.2 (CH₂, C-2"), 24.9 (CH₂, C-3"), 29.2 - 29.7 (CH₃; overlapped signals, C-4" - C-14"), 22.6 (CH₂, C-5"), and 14.1 (CH₃, C-6") were assigned to a long aliphatic chain of a fatty acid.

![Figure 3. Key HMBC (→) and COSY (●●●) correlations of 5.](image)

Three partial fragments of 5 were revealed using a combination of 2D NMR HMBC and ¹H-¹H COSY spectrum. A downfield shift was observed for δ_C 63.2 (C-6′), as well as an HMBC correlation of δ_H 4.45/4.26 (H-6′) with δ_C 174.5 (C=O) confirming (6′→1") glycosidic linkage between the glucosyl moiety and the aliphatic chain at C-6' position. Finally, the obvious downfield shift of δ_C 79.6 (C-3) suggested that the glucosyl moiety was at C-3, which was verified by an HMBC correlation between δ_H 4.38 (H-1") and δ_C 79.6 (C-3) and the proton sequence H-1/H-2/H-3/H-4 in the ¹H-¹H COSY spectrum (Figure 3). The prominent fragment ions in the (+)-EI-MS spectrum at m/z 574 [M - C₁₆H₁₂O]⁺ (6'-deoxy-sitosterolglucoside), 414 [M - palmitoyl - glucosyl]⁺, 397 [M - C₂₃H₁₄O₂]⁺ (3-deoxyxysterol), and 240 [M - C₅,H₂O₂]⁺ (deoxy-C16 fatty acid part) were observed. These NMR spectroscopic and mass data showed the presence of one sitosterol-type glucoside and one palmitoyl group in the structure of 5. By comparing the NMR spectroscopic data of 5 with reported literature, 5 was determined to be β-sitosterol 3-O-β-D-(6′-O-palmitoyl)glucopyranoside [45].
Secondary metabolites from the stem barks of Rhizophora mucronata Lam.

Based on the spectroscopic analysis and comparison with literature values, the remaining compounds were identified as polystachiol (3) [46], β-sitosterol 3-O-β-D-glucopyranoside (4) [47], and β-sitosterol 3-O-β-D-(6′-O-stearoyl)glucopyranoside (6) [45]. Compound 3 is widely distributed throughout the plants, e.g., Aphanamixis polystachya [46], Sorbus lanata (D. Don.) Schauer [48], Byttneria aspera Colebr [49]. It is not usually of systematic significance but could be important in helping differentiate R. mucronata from other species of Rhizophora. Of the three phytosteryl glycosides (4-6) isolated from R. mucronata, compound 4 was previously isolated from Brassica rapa sb. sp. campestris and Aloe barbadensis [47], Humulus lupulus [50], while compound 6 was previously isolated from Typha latifolia [51] and Lycium chinense [45].

4. CONCLUSIONS

Six compounds, including cinchonain Ib (1), breynioside B (2), polystachiol (3), β-sitosterol 3-O-β-D-glucopyranoside (4), β-sitosterol 3-O-β-D-(6′-O-palmitoyl)glucopyranoside (5), and β-sitosterol 3-O-β-D-(6′-O-stearoyl)glucopyranoside (6), were isolated from a methanolic extract of R. mucronata stem barks. The structure determination of these isolates was accomplished using comprehensive spectroscopic methods and comparison with those reported. This is the first report of compounds 1-6 from the Rhizophora genus.

Acknowledgments. This research is funded by a grant from the Vietnam Academy of Science and Technology (code: TDPCCC.04/18-20). The authors are grateful to MSc. Dang Vu Luong (Institute of Chemistry, VAST) for measurement of the NMR spectra and Dr. Nguyen The Cuong (Institute of Ecology and Biological Resources, VAST) for taxonomic classification of plant.

REFERENCES

1. Wu J., Xiao Q., Xu J., Li M.Y., Pana J.Y., Yang M. H. - Natural products from true mangrove flora: source, chemistry and bioactivities. Natural Product Reports 25 (2008) 955-981.
2. Chen Y., Hou Y., Guo Z., Wang W., Zhong C., Zhou R., Shi S. - Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. Plos One (2015) e.0145058.
3. Nebula M., Harisankar H. S., Chandramohanakumar. N. - Metabolites and bioactivities of Rhizophoraceae mangroves. Natural Products and Bioprospecting 3 (2013) 207-232.
4. Ramalingam V., Rajaram R. - Enhanced antimicrobial, antioxidant and anticancer activity of Rhizophora apiculata: an experimental report. Biotech 8 (2018) 1-13.
5. Gao M. Z., Yuan X. Y., Cheng M. C., Xiao H. B., Bao S. X. - A new diterpenoid from Rhizophora apiculata. Journal of Asian Natural Products Research 13 (2011) 776-779.
6. Selvaraj G., Kaliamurthi S., Thirugnasambandan R. - Effect of glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and their mechanism of action: in vivo and in silico studies. Phytomedicine 23 (2016) 632-640.
7. Rahima A. A., Rocca E., Steinmetz J., Kassima M. J., Ibrahima M. S., Osman H. - Antioxidant activities of mangrove Rhizophora apiculata bark extracts. Food Chemistry 107 (2008) 200-207.
8. Madhu A., Raoa A. S. C. V. A., Sushmaa S., Gowri P. M., Raju T. V. - Isomeric ent-labdane-type diterpenoids from the stems of Rhizophora mucronata. Helvetica Chimica Acta 97 (2014) 1531-1538.
9. Taniguchi K., Funasaki M., Kishida A., Sadhu S. K., Ahmed F., Ishibashi M., Ohsaki A. - Two new coumarins and a new xanthone from the leaves of *Rhizophora mucronata*. Bioorganic & Medicinal Chemistry Letters 28 (2018) 1063-1066.

10. Bandaranayake W. M. - Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes 2 (1998) 133-148.

11. Goltenboth F., Timotius K. H., Milan P. P., Margraf J. - Ecology of insular Southeast Asia: the indonesian archipelago. Amsterdam: Elsevier 1st ed (2006)

12. Trinh B. T. D., Staerk D., Jager A. K. - Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Journal of Ethnopharmacology 186 (2016) 189-195.

13. Hardoko, Puspitasari Y. E., Suprayitno E. - Glucosidase inhibitory activities of *Rhizophora mucronata* fruitpowder. International Journal of ChemTech Research 8 (2015) 211-215.

14. Kumari C. S., Yasmin N., Hussain M. R., Babuselvam M. - *In vitro* anti-inflammatory and anti-arthritic property of *Rhizophora mucronata* leaves. International Journal of Pharma Sciences and Research 6 (2015) 482-485.

15. Powar P. S., Gaikwad D. K., Bhoite A. S. - Antibacterial activity of mangrove bark against plant pathogenic bacteria. Indian Journal of Advances in Plant Research 1 (2014) 12-14.

16. Gurudeeban S., Ramanathan T., Satyavani K. - Antimicrobial and radical scavenging effects of alkaloid extracts from *Rhizophora mucronata*. Pharmaceutical Chemistry Journal 47 (2013) 50-53.

17. Baskaran R., Mohan P. M. - *In vitro* antibacterial activity of leaf extracts of *Rhizophora mucronata* L. against multi drug resistant *Vibrio* spp. isolated from marine water Lobster's larvae hatcheries. Indian Journal of Geo-Marine Sciences 41 (2012) 218-222.

18. Hardoko, Sasmrito B. B., Puspitasari Y. E. - Antidiabetic and antioxidant activities of tannin extract of *Rhizophora mucronata* leaves. Journal of Chemical and Pharmaceutical Research 8 (2016) 143-148.

19. Hardoko, Suprayitno E., Puspitasari Y. E., Amalia R. - Study of ripe *Rhizophora mucronata* fruit flour as functional food for antidiabetic. International Food Research Journal 22 (2015) 953-959.

20. Ray M., Adhikari A., Sur T. K., Besra S. E., Biswas S., Das A. K. - Evaluation of anti-inflammatory potential of ethanolic extract of the leaves of *Rhizophora mucronata*, a Sunderban mangrove. International Journal of Research and Development in Pharmacy & Life Sciences 6 (2017) 2506-2516.

21. Manigandan V., Gurudeeban S., Satyavani K., Ramanathan T. - Molecular docking studies of *Rhizophora mucronata* alkaloids against neuroinflammatory marker cyclooxygenase 2. International Journal of Biological Chemistry 8 (2014) 91-99.

22. Palaniyandi T., Sivaji A., Thiruganasambhandam R., Natarajan S., Hari R. - *In vitro* antigastric cancer activity of squalene, a triterpenoid compound isolated from *Rhizophora mucronata* mangrove plant leaves against AGS cell line. Pharmacognosy Magazine 14 (2018) 369-376.

23. Nohong S., Ahmad N. H., Sahidin A. - α-Amyrin and β-sitosterol from bark extract of *Rhizophora mucronata* Lamk. and their cytotoxic activities against HeLa cell line. International Research Journal of Pharmacy 9 (2018) 75-79.
Secondary metabolites from the stem barks of Rhizophora mucronata Lam.

24. Aljaghthmi O. H., Heba H. M., Zeid I. M. A. - Antihyperglycemic properties of mangrove plants (Rhizophora mucronata and Avicennia marina): an overview. Advances in Biological Research 11 (2017) 161-170.

25. Vigneswaran T., Mohamed H. S. M., Doss A. - Determination of in-vitro antioxidant activity of leaf extracts of Rhizophora mucronata Lam. (Rhizophoraceae). Journal of Pharmacognosy and Phytochemistry 7 (2018) 2251-2255.

26. Vigneswaran T., Mohamed H. S. M., Doss A. - Antioxidant and free radical scavenging properties of Rhizophora mucronata Lam. stem. Journal of Scientific Research in Pharmacy 7 (2018) 133-137.

27. Kaur S., Yacoob S. A. M., Venktraman A., Nagarajan Y., Vasudevan S., Punniyamoorthy B. - Proximate composition and in vitro antioxidant properties of Rhizophora mucronata plant part extract. Asian Journal of Green Chemistry 3 (2019) 345-353.

28. Babu K. N., Rao Y. N., Rao M. P., Rao K. H. - Antioxidant activity of extract of Rhizophora mucronata leaf. International Journal of ChemTech Research 11 (2018) 201-208.

29. Nurulhuda M. N., Chew L. T., Mohd N. M. Y., Abdul R. M. A. - Tannin properties of Rhizophora mucronata barks of different ages. Holz als Rohund Werkstoff 48 (1990) 381-383.

30. Premanathan M., Kathiresan K., Yamamoto N., Nakashima H. - In vitro anti-human immunodeficiency virus activity of polysaccharide from Rhizophora mucronata Poir. Biotechnology and Biochemistry 63 (1999) 1187-1191.

31. Rohini R. M., Das A. K. - Triterpenoids from the stem bark of Rhizophora mucronata. Natural Product Research 24 (2010) 197-202.

32. He L., Wang Y., Wang Q. - Research advance in chemical constituents and pharmacological activities of mangrove Rhizophora mucronata. Zhongcaoyao 35 (2004) 5-7.

33. Laphookhieo S., Karalai C., Ponglimanont C. - New sesquiterpenoid and triterpenoids from the fruits of Rhizophora mucronata. Chemical & Pharmaceutical Bulletin 52 (2004) 883-885.

34. Hridya V. K., Godson P. S., Chandrasekar N. - Chromatographic identification of two biologically important triterpenoids from the chloroform extract of Rhizophora mucronata. Acta Chromatographica 24 (2012) 123-129.

35. Dat L. D., Thao N. P., Tai B. H., Luyen B. T. T., Kim S., Koo J. E., Koh Y. S., Cuong N. T., Thanh N. V., Cuong N. X., Nam N. H., Kiem P. V., Minh C. V., Kim Y. H. - Chemical constituents from Kandelia candel with their inhibitory effects on pro-inflammatory cytokines production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs). Bioorganic & Medicinal Chemistry Letters 25 (2015) 1412-1416.

36. Dat L. D., Thao N. P., Tai B. H., Luyen B. T. T., Yang S. Y., Kim S., Koo J. E., Koh Y. S., Cuong N. T., Nam N. H., Thanh N. V., Kiem P. V., Minh C. V., Kim Y. H. - Anti-inflammatory triterpenes and glyceryl glycosides from Kandelia candel (L.) Druce. Natural Product Sciences 21 (2015) 150-154.

37. Vinh L. B., Nguyet N. T. M., Thanh C. D., Huong T. T., Tram L. H., Thong N. V., Minh N. H., Thao N. P., Hwang I., Yang S. Y., Kim Y. H. - Chemical constituents of
Vietnamese mangrove *Hibiscus tiliaceus* with antioxidant and alpha-glucosidase inhibitory activity. Natural Product Research (2019) https://doi.org/10.1080/14786419.14782019.11672065.

38. Luyen N. T., Binh P. T., Tham P. T., Hung T. M., Dang N. H., Dat N. T., Thao N. P. - Wedtrolisides A and B, two new diterpenoid glycosides from the leaves of *Wedelia trilobata* (L.) Hitchc. with α-amylase and α-glucosidase inhibitory activities. Bioorganic Chemistry 85 (2019) 319-324.

39. Pizzolatti M. G., Vensona A. F., Júnior A. S., Smânia E. d. F. A., Braz-Filho R. - Two epimeric flavalignans from *Trichilia catigua* (Meliaceae) with antimicrobial activity. Zeitschrift für Naturforschung 57 (2002) 183-187.

40. Zeng X., Li C. Y., Wang H., Qiu Q., Qi G., He X. - Unusual lipids and acylglucosylsterols from the roots of *Livistona chinensis*. Phytochemistry Letters 6 (2013) 36-40.

41. Greca M. D., Monaco P., Previter L. - Stigmasterols from Typha latifolia. Journal of Natural Products 53 (1990) 1430-1435.