First Non-Abelian Cohomology of Topological Groups

H. Sahleh1 and H. E. Koshkoshi2

1,2Department of Mathematics, Faculty of Mathematical Sciences, University of Guilan
P. O. Box 1914, Rasht-Iran
1E-mail: sahleh@guilan.ac.ir
2E-mail: h.e.koshkoshi@guilan.ac.ir

Abstract

Let G be a topological group and A a topological G-module (not necessarily abelian). In this paper, we define $H^0(G, A)$ and $H^1(G, A)$ and will find a six terms exact cohomology sequence involving H^0 and H^1. We will extend it to a seven terms exact sequence of cohomology up to dimension two. We find a criterion such that vanishing of $H^1(G, A)$ implies the connectivity of G. We show that if $H^1(G, A) = 1$, then all complements of A in the semidirect product $G \rtimes A$ are conjugate. Also as a result, we prove that if G is a compact Hausdorff group and A is a locally compact almost connected Hausdorff group with the trivial maximal compact subgroup then, $H^1(G, A) = 1$.

Keywords: Almost connected group, inflation, maximal compact subgroup, non-abelian cohomology of topological groups, restriction.

2000 MSC No: Primary 22A05, 20J06; Secondary 18G50.

1 Introduction

Let G and A be topological groups. It is said that A is a topological G-module, whenever G continuously acts on the left of A. For all $g \in G$ and $a \in A$ we denote the action of g on a by $^g a$.

In section 2, We define $H^0(G, A)$ and $H^1(G, A)$.

In section 3, we define the covariant functor $H^i(G, -)$ for $i = 0, 1$ from the category of topological G-modules to the category of pointed sets. Also, we define two connecting maps δ^0 and δ^1.

A classical result of Serre [6], asserts that if G is a topological group and $1 \to A \to B \to C \to 1$ a central short exact sequence of discrete G-modules then, the sequence $1 \to H^0(G, A) \to H^0(G, B) \to H^0(G, C) \to H^1(G, A) \to H^1(G, B) \to H^1(G, C) \to H^2(G, A)$ is exact.

In section 4, we generalize the above result to the case of arbitrary topological G-modules (not necessarily discrete).
We show that if G is a connected group and A a totally disconnected group then, $H^1(G, A) = 1$.

In section 5, we show that if G has an open component (for example G with the finite number of components) and for every discrete (abelian) G-module A $H^1(G, A) = 1$ then, G is a connected group.

In section 6, we show that vanishing of $H^1(G, A)$ implies that the complements of A in the (topological) semidirect product $G \ltimes A$, are conjugate.

In section 7, we prove that, if G is a compact Hausdorff group and A a locally compact almost connected Hausdorff group then there exists a G-invariant maximal compact subgroup K of A such that the natural map $\iota^*: H^1(G, K) \to H^1(G, A)$ is onto. As a result, if G is compact Hausdorff and A is a locally compact almost connected Hausdorff group with trivial maximal compact subgroup then, $H^1(G, A) = 1$.

All topological groups are arbitrary (not necessarily abelian). We assume that G acts on itself by conjugation. The center of a group G and the set of all continuous homomorphisms of G into A are denoted by $Z(G)$ and $Hom_c(G, A)$, respectively. The topological isomorphism is denoted by “\simeq”.

Suppose that A is an abelian topological G-module. Take $\tilde{C}^0(G, A) = A$ and for every positive integer n, let $\tilde{C}^n(G, A)$ be the set of continuous maps $f : G^n \to A$ with the coboundary map $\delta^n : \tilde{C}^n(G, A) \to \tilde{C}^{n+1}(G, A)$ given by

$$\delta^n f(g_1, \ldots, g_{n+1}) = g_1 f(g_2, \ldots, g_{n+1}) + \sum_{i=1}^{n} (-1)^i f(g_1, \ldots, g_ig_{i+1}, \ldots, g_{n+1}) + (-1)^{n+1} f(g_1, \ldots, g_n).$$

The nth cohomology of G with coefficients in A in the sense of Hu [5], is the abelian group

$$H^n(G, A) = \text{Ker} \delta^n / \text{Im} \delta^{n-1}.$$
\[
\beta(g) = a^{-1}\alpha(g)a, \text{ for all } g \in G.
\]

It is easy to show that \(\sim\) is an equivalence relation. Now we define

\[H^1(G, A) = \text{Der}_c(G, A)/\sim.\]

Notice 2.3. There exists the trivial continuous derivation \(\alpha_0 : G \to A\) where \(\alpha_0(g) = 1\); Hence, \(H^1(G, A)\) is nonempty. In general, \(H^1(G, A)\) is not a group. Thus, we will view \(H^1(G, A)\) as a pointed set with the basepoint \(\alpha_0\).

Note that \(H^0(G, A)\) is a subgroup of \(A\), so it is a pointed set with the basepoint 1. Also if \(A\) is a Hausdorff group, then, \(H^0(G, A)\) is a closed subgroup of \(A\).

Remark 2.4. (i) If \(A\) is an abelian group then, \(H^1(G, A)\) is the first (abelian) group cohomology in the sense of Hu, i.e., it is the group of all continuous derivations of \(G\) into \(A\) reduced modulo the inner derivations. \([5]\)

(ii) If \(A\) is a trivial topological \(G\)-module then, \(H^1(G, A) = \text{Hom}_c(G, A)/\sim.\)

Here \(\alpha \sim \beta\) if \(\exists a \in A\) such that \(\beta(g) = a^{-1}\alpha(g)a, \forall g \in G.\)

(iii) Let \(G\) be a connected group and \(A\) a totally disconnected group then, \(H^1(G, A) = 1.\)

Proof. (i) and (ii) are obtained from the definition of \(H^1(G, A).\)

(iii): If \(\alpha \in \text{Der}_c(G, A)\) then, \(\alpha(1) = 1.\) On the other hand \(G\) is a connected group and \(A\) is totally disconnected. So, \(\alpha = \alpha_0.\) Thus, \(H^1(G, A) = 1.\)

3 \(H^i(G, -)\) as a Functor and the Connecting Map \(\delta^i\) for \(i = 0, 1\)

In this section we define two covariant functors \(H^0(G, -)\) and \(H^1(G, -)\) from the category of topological \(G\)-modules \(G\mathcal{M}\) to the category of pointed sets \(\mathcal{PS}.\)

Furthermore, We will define the connecting maps \(\delta^0\) and \(\delta^1.\)

Let \(A, B\) be topological \(G\)-modules and \(f : A \to B\) a continuous \(G\)-homomorphism. We define \(H^i(G, f) = f^*_i : H^i(G, A) \to H^i(G, B), i = 0, 1,\) as follows:

For \(i = 0,\) take \(f_0^* = f|_{A^G}.\) This gives a homomorphism from \(H^0(G, A)\) to \(H^0(G, B),\) since \(f\) is a homomorphism of \(G\)-modules. So if \(a \in A^G,\) then, \(gf(a) = f(ga) = f(a),\) for each \(g \in G.\) Hence, \(f(a) \in B^G,\) i.e., \(f_0^*\) is well-defined.
For simplicity, we write α instead of $[\alpha] \in H^1(G, A)$.

If $\alpha \in H^1(G, A)$, then, take $f^*_i(\alpha) = f \circ \alpha$. Now if $g, h \in G$, then,

$$f^*_i(\alpha)(gh) = f(\alpha(gh)) = f(\alpha(g) \alpha(h)) = f(\alpha(g)) f(\alpha(h)) = f^*_i(\alpha)(g) f^*_i(\alpha)(h).$$

Thus, $f^*_i(\alpha)$ is a continuous derivation.

Moreover, if $\alpha, \beta \in H^1(G, A)$ are cohomologous then, there is $a \in A$ such that $\beta(g) = a^{-1} \alpha(g)^g a$. Hence, $f(\beta(g)) = f(a)^{-1} f(\alpha(g))^g f(a)$. So, $f^*_i(\alpha) \sim f^*_i(\beta)$.

The fact that $H^1(G, _)$ is a functor follows from the definition of f^*_i, ($i = 0, 1$).

Also $H^0(G, _)$ is a covariant functor from $G\mathcal{M}$ to the category of topological groups $\mathcal{T}G$.

Suppose that $1 \longrightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} C \longrightarrow 1$ is an exact sequence of topological G-modules and continuous G-homomorphisms such that ι is an embedding. Thus, we can identify A with $\iota(A)$.

Now we define a coboundary map $\delta^0 : H^0(G, C) \to H^1(G, A)$.

Let $c \in H^0(G, C)$, $b \in B$ with $\pi(b) = c$. Then, we define $\delta^0(c)$ by $\delta^0(c)(g) = b^{-1}g b, \forall g \in G$. It is obvious that $\delta^0(c)$ is a continuous derivation. Let $b' \in B$, $\pi(b') = c$. Then, $b' = b a$ for some $a \in A$. So,

$$(b')^{-1}g b' = a^{-1} b^{-1} g b a = a^{-1} \delta^0(c)(g)^g a.$$

Thus, the derivation obtained from b' is cohomologous in A to the one obtained from b, i.e., δ^0 is well-defined.

Now, suppose that $0 \longrightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} C \longrightarrow 1$ is a central exact sequence of G-modules and continuous G-homomorphisms such that ι is a homeomorphic embedding and in addition π has a continuous section $s : C \to B$, i.e., $\pi s = Id_C$.

We construct a coboundary map $H^1(G, C) \xrightarrow{\delta^1} H^2(G, A)$. Here $H^2(G, A)$ is defined in the sense of Hu [5]. By assumption $\iota(A) \subset Z(B)$, so, A is an abelian topological G-module.

Let $\alpha \in H^1(G, C)$ and $s : C \to B$ be a continuous section for π. Define $\delta^1(\alpha)$ via $\delta^1(\alpha)(g, h) = s \alpha(g)^g (s \alpha(h))(s \alpha(gh))^{-1}$. It is clear that $\delta^1(\alpha)$ is a continuous map.

We show that $\delta^1(\alpha)$ is a factor set with values in A, and independent of the choice of the continuous section s. Also δ^1 is well-defined.

Since α is a derivation, we have:

$$\pi(\delta^1(\alpha)(g, h)) = \pi(s \alpha(g)^g (s \alpha(h))(s \alpha(gh))^{-1}) = \alpha(g)^g \alpha(h)(\alpha(gh))^{-1} = 1.$$

Thus, $\delta^1(\alpha)$ has values in A.

\[H. Sahleh et al.\]
Next, we show that $\delta^1(\alpha)$ is a factor set, i.e.,

$$
\delta^1(\alpha)(h, k)\delta^1(\alpha)(g, hk) = \delta^1(\alpha)(gh, k)\delta^1(\alpha)(g, h), \ \forall g, h, k \in G. \ \ (3.1)
$$

First we calculate the left hand side of (3.1). For simplicity, take $b_g = s\alpha(g)$, $\forall g \in G$. Since $A \subset Z(B)$, thus,

$$
g\delta^1(\alpha)(h, k)\delta^1(\alpha)(g, hk) = g(b_h b_k b_{hk}^{-1})(b_g g b_{gh} b_{ghk}^{-1}) = b_g g(b_h b_k b_{hk}^{-1}) b_{gh} b_{ghk}^{-1}$$

$$= b_g g(b_h b_k) g b_{hk} b_{ghk}^{-1} = b_g g b_h b_k b_{ghk}^{-1}.
$$

On the other hand,

$$\delta^1(\alpha)(gh, k)\delta^1(\alpha)(g, h) = (b_{gh} g b_k b_{ghk}^{-1})(b_g b_{gh} b_{ghk}^{-1}) = b_g b_{gh} b_h b_{ghk}^{-1}.$$

Therefore, $\delta^1(\alpha)$ is a factor set.

Next, we prove that $\delta^1(\alpha)$ is independent of the choice of the continuous section. Suppose that s and u are continuous sections for π. Take $b_g = s\alpha(g)$ and $b_g' = u\alpha(g)$, for a fixed $\alpha \in Der_c(G, C)$. Since $\pi(b_g') = \alpha(g) = \pi(b_g)$, then, $b_g' = b_g a_g$ for some $a_g \in A$. Obviously the function $\kappa : G \to A$, defined by $\kappa(g) = a_g$, is continuous. Thus,

$$
(\delta^1)'(\alpha)(g, h) = b_g b_h b_{gh} = b_g \kappa(g) g b_h \kappa(h)(\kappa(gh))^{-1} b_{gh}^{-1}$$

$$= (\kappa(g) g \kappa(h)(\kappa(gh))^{-1})(b_g g b_h b_{gh}^{-1}) = \delta^1(\kappa)(g, h)\delta^1(\alpha)(g, h),$$

where $\delta^1(\kappa)(g, h) = g\kappa(h)(\kappa(gh))^{-1} \kappa(g)$.

The coboundary map $\bar{\delta}^1 : \bar{C}^1(G, A) \to \bar{C}^2(G, A)$ is defined as in [5]. Consequently, $\delta^1(\kappa)$ and $(\delta^1)'(\kappa)$ are cohomologous.

Suppose that α and β are cohomologous in $Der_c(G, A)$. Then, there is $c \in C$ such that $\beta(g) = c^{-1}\alpha(g)^g c$, $\forall g \in G$.

Let $s : C \to A$ be a continuous section for π. Since

$$\pi(s(c^{-1}\alpha(g)^g c)) = \pi(s(c)^{-1} s\alpha(g)^g s(c)),$$

then, there exists a unique $\gamma(g) \in ker\pi = A$ such that

$$\gamma(g)(s(c)^{-1} s\alpha(g)^g s(c)) = s(c^{-1}\alpha(g)^g c).$$

It is clear that the map $\gamma : G \to A$, $g \mapsto \gamma(g)$ is continuous. Therefore,

$$\delta^1(\beta)(g, h) = s\beta(g) g s\beta(h) (s\beta(gh))^{-1}$$

$$= s(c^{-1}\alpha(g)^g c) g s(c^{-1}\alpha(h)^h c) (s(c^{-1}\alpha(gh)^{gh} c))^{-1}$$

$$= \gamma(g)[s(c)^{-1} s\alpha(g)^g s(c)] \gamma(h)(s(c)^{-1} s\alpha(h)^h s(c)) (\gamma(gh)[s(c)^{-1} s\alpha(gh)^{gh} s(c)])^{-1}$$
= \gamma(g)\gamma(gh)^{-1}\gamma(g)[s(c)^{-1}sa(g)gs(c)] = \gamma(g)[s(c)^{-1}sa(gh)gs(c)]^{-1}

= \delta^1(\gamma)(g, h)[s(c)^{-1}sa(g)gs(hs(c)) = \delta^1(\gamma)(g, h)[\delta^1(a)(g, h)].

The last equality is obtained from the fact that \(\delta^1(\alpha, h) \in A \subset Z(B)\) and \(s(c) \in B\). Now, note that \(\delta^1(\alpha)\) is cohomologous to \(\delta^1(\beta)\), when \(\alpha\) is cohomologous to \(\beta\). Thus, \(\delta^1\) is well-defined.

4 A Cohomology Exact Sequence

Let \((X, x_0), (Y, y_0)\) be pointed sets in \(\mathcal{PS}\) and \(f : (X, x_0) \rightarrow (Y, y_0)\) a pointed map, i.e., \(f : X \rightarrow Y\) is a map such that \(f(x_0) = y_0\). For simplicity, we write \(f : X \rightarrow Y\) instead of \(f : (X, x_0) \rightarrow (Y, y_0)\). The kernel of \(f\), denoted by \(\text{Ker}(f)\), is the set of all points of \(X\) that are mapped to the basepoint \(y_0\). A sequence \((X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)\) of pointed sets and pointed maps is called an exact sequence if \(\text{Ker}(g) = \text{Im}(f)\).

Theorem 4.1. (i) Let \(\begin{array}{c}
1 \rightarrow A \xrightarrow{i} B \xrightarrow{\pi} C \xrightarrow{\delta} 1
\end{array}\) be a short exact sequence of topological \(G\)-modules and continuous \(G\)-homomorphisms, where \(i\) is homeomorphic embedding. Then, the following is an exact sequence of pointed sets,

\[
\begin{array}{cccc}
0 & \rightarrow & H^0(G, A) & \xrightarrow{i_0^*} \rightarrow \ H^0(G, B) & \xrightarrow{\pi_0^*} \rightarrow \ H^0(G, C) \\
\lower{1ex}\longrightarrow & \longrightarrow & \longrightarrow & \longrightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
\delta_0^* & \rightarrow & H^1(G, A) & \xrightarrow{i_1^*} \rightarrow \ H^1(G, B) & \xrightarrow{\pi_1^*} \rightarrow \ H^1(G, C) \\
\longrightarrow & \longrightarrow & \longrightarrow & \longrightarrow \\
\end{array}
\]

(ii) In addition, if \(i(A) \subset Z(B)\), and \(\pi\) has a continuous section, then

\[
\begin{array}{cccc}
0 & \rightarrow & H^0(G, A) & \xrightarrow{i_0^*} \rightarrow \ H^0(G, B) & \xrightarrow{\pi_0^*} \rightarrow \ H^0(G, C) \\
\lower{1ex}\longrightarrow & \longrightarrow & \longrightarrow & \longrightarrow \\
\delta_0^* & \rightarrow & H^1(G, A) & \xrightarrow{i_1^*} \rightarrow \ H^1(G, B) & \xrightarrow{\pi_1^*} \rightarrow \ H^1(G, C) & \xrightarrow{\delta_1^*} \rightarrow \ H^2(G, A) \\
\longrightarrow & \longrightarrow & \longrightarrow & \longrightarrow & \longrightarrow \\
\end{array}
\]

is an exact sequence of pointed sets.

Proof. (i): We prove the exactness term by term.

1. Exactness at \(H^0(G, A)\): This is clear, since \(i\) is one to one.

2. Exactness at \(H^0(G, B)\): Since \(\pi_0^*\delta_0^* = (\pi i)_0^* = 1\), then, \(\text{Im}(i_0^*) \subset \text{Ker}(\pi_0^*)\). Now we show that \(\text{Ker}(\pi_0^*) \subset \text{Im}(i_0^*)\). If \(b \in \text{Ker}(\pi_0^*)\), then, \(\pi(b) = 1\)
and \(b \in H^0(G, B) \). There is an \(a \in A \) such that \(\iota(a) = b \). Moreover, \(\iota(ga) = \iota(a) \), \(\forall g \in G \). So, \(ga = a, \forall g \in G \), since \(\iota \) is one to one. Thus, \(a \in H^0(G, A) \). Hence, \(b \in \text{Im}(\iota_b^*) \).

3. Exactness at \(H^0(G, C) \): Take \(c \in \text{Im}(\pi_b^*) \). So, \(c = \pi(b) \) for some \(b \in H^0(G, B) \). Thus, \(\delta^0(c)(g) = b^{-1}g \). Hence, \(\delta^0(c) \sim \alpha_0 \). Conversely, if \(\delta^0(c) \sim \alpha_0 \), then, there is \(a_1 \in A \) such that \(\delta^0(c)(g) = a_1^{-1}a_1, \forall g \in G \). Let \(c = \pi(b) \) for some \(b \in B \). Then, by definition of \(\delta^0(c)(g) \), there is \(a_2 \in A \) such that \(b^{-1}g = a_2^{-1}\delta^0(c)(g)a_2, \forall g \in G \). So, \(b(a_1a_2)^{-1} \in H^0(G, B) \). Since \(\pi_0(b(a_1a_2)^{-1}) = c \), then, \(c \in \text{Im}\pi_b^* \).

4. Exactness at \(H^1(G, A) \): Let \(c \in H^0(G, C) \). Then, there is \(b \in B \) such that \(\pi(b) = c \). So,

\[
i_1^*\delta^0(c)(g) = \iota(\delta^0(c)(g)) = \iota(b^{-1}g) = b^{-1}g.
\]

Consequently, \(i_1^*\delta^0(c) \sim \beta_0 \), where \(\beta_0(g) = 1, \forall g \in G \). Conversely, let \(\alpha \in \text{Ker}i_1^* \). Then, there is \(b \in B \) such that \(\iota\alpha(g) = b^{-1}g, \forall g \in G \). So, \(\pi(b^{-1}g) = 1, \forall g \in G \). Take \(c = \pi(b) \). Hence, \(c \in \text{Ker}i_1^* \). Thus, \(\delta^0(c) \sim \iota(\alpha) = \alpha \).

5. Exactness at \(H^1(G, B) \): Since \(\pi_1^*i_1^* = (\pi\iota)_1^* = 1 \), then, \(\text{Im}\pi_1^* \subset \text{Ker}\pi_1^* \).

Conversely, let \(\beta \in \text{ker}\pi_1^* \). Then, there is \(c \in C \) such that \(\pi\beta(g) = c^{-1}g \), for all \(g \in G \). Let \(b \in B \) and \(c = \pi(b) \). Therefore, \(\pi(\beta(g)) = \pi(b^{-1}g) \), \(\forall g \in G \). On the other hand, the map \(\tau : A \to A, a \mapsto b^{-1}ab \), is a topological isomorphism, because \(A \) is a normal subgroup of \(B \). So, for every \(g \in G \) there is a unique element \(a_g \in G \) such that \(\beta(g) = (b^{-1}a_gb)(b^{-1}g) \). Thus, \(\beta(g) = b^{-1}a_g g b, \forall g \in G \). Hence, \(a_g = b\beta(g)g b^{-1}, \forall g \in G \). Obviously, the map \(\alpha : G \to A \) via \(\alpha(g) = a_g \) is a continuous derivation, and \(i_1^*(\alpha) \sim i_1^*(\beta) = \beta \).

(ii): It is enough to show the exactness at \(H^1(G, C) \). Let \([\beta] \in H^1(G, B) \) and \(s \) be a continuous section for \(\pi \). Then, there is a continuous map \(z : G \to A \) such that \(s\pi\beta(g) = \beta(g)z(g) \). Thus,

\[
\delta^1(\pi^*_1(\beta))(g, h) = s(\pi\beta(g))g s(\pi\beta(h))(s(\pi\beta(gh)))^{-1} = \beta(g)g \beta(h) \beta(gh)^{-1} \delta^1(z)(g, h) = \delta^1(z)(g, h).
\]

So, \(\text{Im}\pi_1^* \subset \text{Ker}\delta^1 \). Conversely, let \([\gamma] \in \text{ker}\delta^1 \). Then, there is a continuous function \(\alpha \in \tilde{C}^1(G, A) \) such that \(\delta^1(\gamma) = \tilde{\delta}^1(\alpha) \). Thus,

\[
s\gamma(g)^g s\gamma(h)(s\gamma(gh))^{-1} = g\alpha(h)\alpha(gh)^{-1} g\alpha(h), \forall g, h \in G.
\]

Assume \(\beta(g) = s\gamma(g)\alpha(g)^{-1}, \forall g \in G \). Since \(A \subset Z(B) \), then, \(\beta \) is a continuous derivation from \(G \) to \(B \). Also \(\pi\beta = \gamma \). Hence, \(\pi_1^*([\beta]) = [\gamma] \).

The following two corollaries are immediate consequences of Theorem 4.1.

Corollary 4.2. Let \(A \xrightarrow{i} B \xrightarrow{\pi} C \xrightarrow{1} 1 \) be a short exact sequence of discrete \(G \)-modules, and \(G \)-homomorphisms then, there is the exact sequence \((i) \) of pointed sets.
Corollary 4.3. Let \(0 \to A \xrightarrow{\iota} B \xrightarrow{\pi} C \to 1 \) be a central short exact sequence of discrete \(G \)-modules and \(G \)-homomorphisms then, there is the exact sequence (ii) of pointed sets.

Remark 4.4. If we restrict ourselves to the discrete coefficients then, Corollary 4.2 and Corollary 4.3 are the same as Proposition 36 and Proposition 43 in [6, Chapter I], respectively.

Lemma 4.5. Let \(G \) be a connected group, and \(A \) a totally disconnected abelian topological \(G \)-module. Then, \(H^n(G, A) = 0 \) for every \(n \geq 1 \).

Proof. Consider the coboundary maps \(\tilde{\delta}^n : \tilde{C}^n(G, A) \to \tilde{C}^{n+1}(G, A) \). Since \(G \) is connected and \(A \) is totally disconnected then, \(G \) acts trivially on \(A \), and the continuous maps from \(G^n \) into \(A \) are constant. If \(n \) is an even positive integer then, one can see that \(\text{Ker} \tilde{\delta}^n = \tilde{C}^n(G, A) \) and \(\text{Im} \tilde{\delta}^{n-1} = \tilde{C}^n(G, A) \). Thus, \(H^n(G, A) = \frac{\text{Ker} \tilde{\delta}^n}{\text{Im} \tilde{\delta}^{n-1}} = \frac{\tilde{C}^n(G, A)}{\tilde{C}^{n}(G, A)} = 0 \). Now suppose that \(n \) is odd. It is easy to check that \(\text{Ker} \tilde{\delta}^n = 0 \). Consequently, \(H^n(G, A) = 0 \).

Remark 4.6. The existence of continuous section in theorem 4.1 is essential.

For example, consider the central short exact sequence of trivial \(S^1 \)-modules:

\[
0 \to \mathbb{Z} \xrightarrow{\iota} \mathbb{R} \xrightarrow{\pi} S^1 \to 1,
\]

here \(\pi \) is the exponential map, given by \(\pi(t) = e^{2\pi it} \) and \(\iota \) is the inclusion map. This central exact sequence has no continuous section. For if it has a continuous section then by [1, Lemma 3.5], \(\mathbb{R} \) is homeomorphic to \(\mathbb{Z} \times S^1 \). This is a contradiction since \(\mathbb{R} \) is connected but \(\mathbb{Z} \times S^1 \) is disconnected. Thus, \(\text{Hom}_c(S^1, \mathbb{R}) = 0 \). Now by Lemma 4.5, \(H^1(S^1, \mathbb{Z}) = H^1(S^1, \mathbb{R}) = H^2(S^1, \mathbb{Z}) = 0 \), On the other hand, \(H^1(S^1, S^1) = \text{Hom}_c(S^1, S^1) \neq 0 \). Thus, we don’t obtain the exact sequence (4.2).

5 Connectivity of Topological Groups

In this section by using the inflation and the restriction maps, we find a necessary and sufficient condition for connectivity of a topological group \(G \).
Definition 5.1. Let A be a topological G-module and A' a topological G'-module. Suppose that $\phi : G' \to G$, $\psi : A \to A'$ are continuous homomorphisms. Then, we call (ϕ, ψ) a cocompatible pair if

$$\psi(\phi(g')a) = g'\psi(a), \forall g' \in G', \forall a \in A.$$

For example, if N is a subgroup of G and A a topological G-module then, $(1, Id_A)$ is a cocompatible pair, where $1 : N \to G$ is the inclusion map and Id_A is the identity map. Also, suppose that $\pi : G \to G/N$ is the natural projection and $j : A^N \to A$ is the inclusion map. Then, (π, j) is a cocompatible pair.

Note that a cocompatible pair (ϕ, ψ) induces a natural map as follows:

$$\text{Der}_c(G, A) \to \text{Der}_c(G', A')$$

by $\alpha \mapsto \psi \alpha \phi$,

which induces the map:

$$(\phi, \psi)^* : H^1(G, A) \to H^1(G', A')$$

by $[\alpha] \mapsto [\psi \alpha \phi]$.

Definition 5.2. Let N be a subgroup of G and A a topological G-module. Suppose that $\iota : N \to G$ is the inclusion map. The induced map $(\iota, Id_A)^*$ is called the restriction map and it is denoted by $\text{Res}^1 : H^1(G, A) \to H^1(N, A)$.

Definition 5.3. Let N be a normal subgroup of G and A a topological G-module. Suppose that $\pi : G \to G/N$ is the natural projection and $j : A^N \to A$ is the inclusion map. The induced map $(\pi, j)^*$ is called the inflation map and it is denoted by $\text{Inf}^1 : H^1(G/N, A^N) \to H^1(G, A)$.

Note that if A is an abelian topological G-modules then, Inf^1 and Res^1 are group homomorphisms.

Lemma 5.4. Let A be a topological G-module, and N a normal subgroup of G. Then,

(i) $H^1(N, A)$ is a G/N-set. Moreover, if A is an abelian topological G-module then, $H^1(N, A)$ is an abelian G/N-module.

(ii) $\text{Im Res}^1 \subset H^1(N, A)^{G/N}$.

Proof. (i) Since N is a normal subgroup of G, then, there is an action of G on $\text{Der}_c(N, A)$ as follows:

For every $g \in G$ we define $g\alpha = \tilde{\alpha}, \forall g \in G$, with $\tilde{\alpha}(n) = g\alpha(g^{-1}n), n \in N$.

In fact, $\tilde{\alpha}$ is continuous and we have:

$$\tilde{\alpha}(mn) = g\alpha(g^{-1}(mn)) = g\alpha(g^{-1}m^{-1}n) = g\alpha(g^{-1}m)n\alpha(g^{-1}n) = \tilde{\alpha}(m)n\tilde{\alpha}(n),$$
whence, \(\tilde{\alpha} \in \text{Der}_c(N, A) \). It is clear that \(g^h\alpha = g^{(h\alpha)} \). Moreover, if \(A \) is an abelian group, it is easy to verify that \(g(\alpha\beta) = g\alpha g\beta \). Now suppose that \(\alpha \sim \beta \). Then, there is an \(a \in A \) with \(\beta(n) = a^{-1}\alpha(n)n a, \forall n \in N \). Thus, for every \(g \in G, n \in N \),

\[
g\beta(g^{-1}n) = g a^{-1}(g\alpha(g^{-1}n))g(\alpha^{-1}n a).
\]

Therefore,

\[
\tilde{\beta}(n) = (ga)^{-1}\tilde{\alpha}(n)(ga), \text{i.e., } \tilde{\alpha} \sim \tilde{\beta}.
\]

Thus, the action of \(G \) on \(\text{Der}_c(N, A) \) induces an action of \(G \) on \(H^1(N, A) \). It is sufficient to show for every \(m \in N, m\alpha \sim \alpha \). In fact, for every \(n \in N \)

\[
m\alpha(m^{-1}n) = m\alpha(m^{-1}nm) = m(\alpha(m^{-1})m^{-1}\alpha(n)m^{-1}n\alpha(m)) = m\alpha(m^{-1})\alpha(n)n\alpha(m) = \alpha(m)^{-1}\alpha(n)n\alpha(m).
\]

Thus, \(\tilde{\alpha} \sim \alpha \).

(ii) By a similar argument as in (i), we have

\[
g\alpha(g^{-1}n) = \alpha(g)^{-1}\alpha(n)n\alpha(g), \forall g \in G, n \in N
\]

whence, \(g^N(\alpha) \sim \alpha, \forall gN \in G/N \).

Lemma 5.5. Let \(N \) be a normal subgroup of a topological group \(G \) and \(A \) a topological \(G \)-module. Then, there is an exact sequence

\[
1 \longrightarrow H^1(G/N, A^N) \xrightarrow{\text{Inf}^1} H^1(G, A) \xrightarrow{\text{Res}^1} H^1(N, A)^{G/N}.
\]

Proof. The map \(\text{Inf}^1 \) is one to one: If \(\alpha, \beta \in \text{Der}_c(G/N, A^N) \) and \(\text{Inf}^1[\alpha] = \text{Inf}^1[\beta] \), then, \(\alpha\pi \sim \beta\pi \). Thus, there is an \(a \in A \) such that \(\beta\pi(g) = a^{-1}\alpha\pi(g)g\alpha, \forall g \in G \). Hence, \(\beta(gN) = a^{-1}\alpha(gN)g\alpha, \forall gN \in G/N \). On the other hand, if \(g \in G \), then, \(\alpha(gN) = \beta(gN) = 1 \), and hence, \(a \in A^N \). This implies that \((g\alpha)^n = g\alpha, \forall g \in G \). Consequently, \(\alpha \sim \beta \), i.e., \(\text{Inf}^1 \) is one to one.

Now we show that \(\text{KerRes}^1 = \text{ImInf}^1 \). Since \(\text{Res}^1\text{Inf}^1[\alpha] = [\alpha(\pi\iota)] = 1 \), then, \(\text{ImInf}^1 \subset \text{KerRes}^1 \).

Let \([\alpha] \in \text{KerRes}^1 \). Then, there is an \(a \in A \) such that \(\alpha(n) = a^{-1}n a, \forall n \in N \). Consider the continuous derivation \(\beta \) with \(\beta(g) = aa^{-1}g\), \(\forall g \in G \). Since \(\beta(n) = 1, \forall n \in N \) then, \(\beta \) induces the continuous derivation \(\gamma : G/N \to A \) via \(\gamma(gN) = \beta(g) \). Also \(\text{Im}\gamma \subset A^N \), since for all \(n \in N \),

\[
n\gamma(gN) = n\beta(g) = \beta(g)g\beta(g^{-1}ng) = \beta(g) = \gamma(gN).
\]

Hence, \(\text{Inf}^1[\gamma] = [\gamma\pi] = [\beta] = [\alpha] \). Consequently, \(\text{KerRes}^1 \subset \text{ImInf}^1 \).
Lemma 5.6. Let G be a topological group and A a topological G-module. Suppose that A is totally disconnected and G_0 the identity component of G. Then, the map

$$H^1(G/G_0, A) \xrightarrow{Inf^1} H^1(G, A)$$

is bijective.

Proof. Since G_0 acts trivially on A, then, $A^{G_0} = A$. On the other hand, $H^1(G_0, A) = 1$. Thus, by Lemma 5.5, the sequence

$$0 \longrightarrow H^1(G/G_0, A) \xrightarrow{Inf^1} H^1(G, A) \longrightarrow 0$$

is exact.

Theorem 5.7. Let G be a topological group which has an open component. Then, G is connected iff $H^1(G, A) = 1$ for every discrete abelian G-module A.

Proof. Assume G is a connected group and A a discrete abelian G-module. Since every discrete G-module A is totally disconnected then, $H^1(G, A) = 1$. Conversely, Suppose that $H^1(G, A) = 1$, for every discrete abelian G-module A. By Lemma 5.6, $H^1(G/G_0, A) = 1$, for every discrete abelian G-module A. Since G/G_0 is discrete, then, the cohomological dimension of G/G_0 is equal to 0 which implies that $G/G_0 = 1$ [4, Chapter VIII], i.e., $G = G_0$.

6 Complements and First Cohomology

Let G and A be topological groups. Suppose that $\chi : G \times A \to A$ is a continuous map such that $\tau_g : A \to A$, defined by $\tau_g(a) = \chi(g, a)$, is a homeomorphic automorphism of A and the map $g \mapsto \tau_g$ is a homomorphism of G into the group of homeomorphic automorphisms, $Aut_h(A)$, of A. By $G \ltimes \chi A$ we mean the (topological) semidirect product with the group operation, $(g, a)(h, b) = (gh, \tau_h(a)b)$, and the product topology of $G \times A$. Sometimes for simplicity we denote $G \ltimes \chi A$ by $G \ltimes A$ and view G and A as topological subgroups of $G \ltimes A$ in a natural way. So every element e in $G \ltimes N$ can be written uniquely as $e = gn$ for some $g \in G$ and $n \in N$.

Let $E = G \ltimes N$. A subgroup X of E such that $E \simeq X \ltimes N$ is called a complement of N in E. Indeed, any conjugate of G is a complement.

We show that the complements of N in E correspond to continuous derivations from G to N. If X is any complement, for every $g \in G$, then, g^{-1} has a unique expression of the form $g^{-1} = xn$ where $x \in X$ and $n \in N$. Define $\alpha_X : G \to N$ by $\alpha_X(g) = n$. Obviously, $\alpha_X(g) = \pi_2|_G(g^{-1})$, where
\(\pi_2 : X \ltimes N \to N \) is given by \(\pi_2(x,n) = n \). Hence, \(\alpha_X \) is continuous. Now if \(g_i \in G \) then, \(g_i^{-1} = x_i n_i \) for some \(x_i \in X \), \(n_i \in N \), \(i = 1, 2 \). We have:

\[
(g_1 g_2)^{-1} = g_2^{-1} g_1^{-1} = x_2 n_2 x_1 n_1 = x_2 x_1^{n_1^{-1} x_1^{-1}} n_2 = x_2 x_1 n_1^{g_1 g_2}.
\]

By definition of \(\alpha \), \(\alpha_X(g_1 g_2) = \alpha_X(g_1)^{g_2} \alpha_X(g_2) \), i.e., \(\alpha_X \in \text{Der}_c(G,N) \).

Conversely, suppose that \(\alpha : G \to N \) is a continuous derivation. Then, \(X_\alpha = \{ \alpha(g)g | g \in G \} \subset E \) is a corresponding complement to \(\alpha \) in \(E \). Obviously, the continuous map \(\kappa : g \mapsto \alpha(g)g \), is a homomorphism. Suppose that \(\pi_1 : G \ltimes N \to G \) is given by \(\pi_1(g,n) = g \). Hence, \(\pi_1|_{X_\alpha} : X_\alpha \to G \) is the inverse of \(\kappa \), since \(\pi_1|_{X_\alpha}(\alpha(g)g) = \pi_1|_{X_\alpha}(g^{\kappa^{-1} n}) = g, \forall g \in G \). Thus, \(X_\alpha \cong G \).

Define the map \(\chi : X_\alpha \times N \to N \) by \(\chi(\alpha(g)g) = g^g n \), for all \(g \in G, n \in N \). Clearly, \(\chi \) is a continuous map. Hence, \(X_\alpha \ltimes N \cong G \ltimes N = E \).

In fact we have proved the following theorem.

Theorem 6.1. Let \(G \) be a topological group and \(N \) a topological \(G \)-module. Then, the map \(X \mapsto \alpha_X \) is a bijection from the set of all complements of \(N \) in \(G \ltimes N \) onto \(\text{Der}_c(G,N) \).

Theorem 6.2. If \(A \) is a topological \(G \)-module then, there is a map from \(H^1(G,A) \) onto the set of conjugacy classes of complements of \(A \) in \(G \ltimes A \). Moreover, if \(A \) is an abelian group then, this map is one to one.

Proof. Suppose that \(X \) and \(Y \) are the complements of \(A \) in \(G \ltimes A \) such that \(\alpha_X \sim \alpha_Y \). Hence, there is \(a \in A \) such that \(\alpha_Y(g) = a^{-1} \alpha_X(g)^a, \forall g \in G \). Thus, for each \(g \in G \), we have \(\alpha_Y(g)g = a^{-1} \alpha_X(g)^a g a = a^{-1} \alpha_X(g) ga \). This implies that \(X = a^{-1} Y \).

Moreover, suppose that \(A \) is an abelian group and \(X \) and \(Y \) are conjugate complements. So, \(X = n^y Y \) for some \(n \in N \). If \(g \in G \), then, \(\alpha(g)g \in X \) where \(\alpha_X \) is a continuous derivation arising from \(X \). Hence, \(\alpha_X(g)g = n^y \) for some \(y \in Y \). Now \(n^y = [n,y]y \), so, \(\alpha_X(g)g = [n,y]y \), which shows that

\[
[n,g] = n g n^{-1} g^{-1} = n (\alpha_X(g)^n y) n^{-1} (\alpha_X(g)^n y)^{-1} = n (\alpha_X(g)) n y n^{-1} y^{-1} (\alpha_X(g))^{-1} = (n \alpha_X(g))(n y n^{-1} y^{-1}) (n^{-1} \alpha_X(g))^{-1} = [n,y] = n^y y^{-1},
\]

because \(A \) is an abelian group. Therefore,

\[
g^{-1} = y^{-1} [n,y]^{-1} \alpha_X(g) = y^{-1} (y^n y^{-1} \alpha_X(g)) = y^{-1} (y \alpha_X(g)^n y^{-1}).
\]

Thus, by definition of \(\alpha_Y \), we get \(\alpha_Y(g) = y \alpha_X(g)^n y^{-1} \). Consequently, \(\alpha_X \sim \alpha_Y \).

As an immediate result, we have the following corollary.
Corollary 6.3. Let A be a topological G-module and $H^1(G, A) = 1$. Then, the complements of A in $G \ltimes A$ are conjugate.

7 Vanishing of $H^1(G, A)$

Let G be a compact Hausdorff group and A a topological G-module. Suppose that A is an almost connected locally compact Hausdorff group. Then, we prove there exists a G-invariant maximal compact subgroup K of A, and for every such topological submodule K, the natural map $t_1^*: H^1(G, K) \to H^1(G, A)$ is onto. In addition, as a result, If A has trivial maximal compact subgroup then, $H^1(G, A) = 1$.

Recall that G is almost connected if G/G_0 is compact where G_0 is the connected component of the identity of G.

Definition 7.1. An element $g \in G$ is called periodic if it is contained in a compact subgroup of G. The set of all periodic elements of G is denoted by $P(G)$.

Definition 7.2. A maximal compact subgroup K of a topological group G is a subgroup K that is a compact space in the subspace topology, and maximal amongst such subgroups.

If a topological group G has a maximal compact subgroup K, then, clearly gKg^{-1} is a maximal compact subgroup of G for any $g \in G$. There exist topological groups with maximal compact subgroups and compact subgroups which are not contained in any maximal one [3]. Note that if G is almost connected then, $P(G/G_0) = G/G_0$.

Lemma 7.3. Let G be a locally compact topological group such that $P(G/G_0)$ is a compact subgroup of G/G_0, and K a maximal compact subgroup of G. Then, any compact subgroup of G can be conjugated into K [3, Theorem 1].

Lemma 7.4. Let G be a compact group and A a topological G-module such that A is a locally compact almost connected, and let C be a G-invariant compact subgroup of A. Then, there exists a G-invariant maximal compact subgroup K of A which contains C.

Proof. Let $E = G \times A$, be the semidirect product of A and G with respect to the action of G on A. Note that topologically E is the product of A and G. We first observe that E/E_0 is almost connected. Let A_0, G_0 and E_0 be the components of A, G and E, respectively. It is easily seen that $E_0 = A_0 \times G_0$. Also $E/(A_0 \times G_0)$ is homeomorphic to the compact space $A/A_0 \times G/G_0$. Hence, E/E_0 is compact. Consequently, E is almost connected. Now, by assumption, C is a G-invariant compact subgroup of A. Thus, $G \ltimes C$ is a compact subgroup.
of E. Since E is almost connected, there exists a maximal compact subgroup L of E which contains $G \ltimes C$. Let $K = L \cap A$. Since K is a closed subspace of L, then, K is compact. Also L contains G. Thus, L is G-invariant. In fact, for every $g \in G$ and every $\ell \in L$, we have $g\ell = g\ell g^{-1} \in L$. This immediately implies that K is G-invariant, since A is G-invariant. Let K' be a compact subgroup of G. By Lemma 7.3, there is $e \in E$ such that $eK'e^{-1} \subset L$. Thus, $eK'e^{-1} \subset L \cap A = K$. But there exist $g \in G$ and $a \in A$ such that $e = ga$. Thus, $aK'a^{-1} \subset g^{-1}Kg = g^{-1}K = K$. Therefore, K is a G-invariant maximal compact subgroup of A which contains C.

Theorem 7.5. Let G be a compact Hausdorff group and A a topological G-module. Let A be an almost connected locally compact Hausdorff group. Then, there exists a G-invariant maximal compact subgroup K of A, and for every such topological submodule K, the natural map $\iota_1^* : H^1(G,K) \to H^1(G,A)$ is onto.

Proof. By Lemma 7.4, there exists a G-invariant maximal compact subgroup K of A. Also $G \ltimes K$ is a maximal compact subgroup of $G \ltimes A$ [2, Theorem 1.1]. Let $\alpha : G \to A$ be a continuous derivation. Then, define the continuous homomorphism $\kappa : G \to G \ltimes A$ via $g \mapsto \alpha(g)g$. Since κ is a continuous homomorphism then, $\kappa(G)$ is a compact subgroup of $G \ltimes A$. By Lemma 7.3 there is $ag \in G \ltimes A$ such that $(ag)\kappa(G)(ag)^{-1} \subset G \ltimes K, \forall x \in G$. This is equivalent to $(ag)\alpha(x)x(a^{-1})^{-1} \subset G \ltimes K, \forall x \in G$. Hence, for all $x \in G$, $g[a^{-1}a\alpha(x)x(a^{-1})]gxy^{-1} \in G \ltimes K$. Since K is G-invariant then, $(g^{-1}a)\alpha(x)x(g^{-1}a^{-1}) \subset K, \forall x \in G$. Now define $\beta : G \to K$ by $\beta(x) = (g^{-1}a)\alpha(x)x(g^{-1}a^{-1}), \forall x \in G$. Hence, $\iota_1^*([\beta]) = [\alpha]$, i.e., ι_1^* is onto map.

Corollary 7.6. Let G be a compact Hausdorff group and A a topological G-module. Let A be an almost connected locally compact Hausdorff group with the trivial maximal compact subgroup. Then, $H^1(G,A) = 1$.

Proof. It is clear.

References

[1] R.C. Alperin and H. Sahleh, Hopf’s formula and the Schur multiplicator for topological groups, *Kyungpook Math. Journal*, 31(1) (1991), 35-71.

[2] J. An, M. Liu and Z. Wang, Nonabelian cohomology of compact lie groups, *J. Lie Theory*, 19(2009), 231-236.

[3] R.W. Bagley and M.R. Peyrovian, A note on compact subgroups of topological groups, *Bull. Austral. Math. Soc.*, 33(1986), 273-278.
[4] K.S. Brown, *Cohomology of groups*, Graduate Texts in Mathematics, Springer Verlag, Berlin/ New York, 87(1982).

[5] S.T. Hu, Cohomology theory in topological groups, *Michigan Math. J.*, 1(1) (1952), 11-59.

[6] J.-P. Serre, *Galois cohomology*, Springer-Verlag, Berlin, (1997).