Single particle dual plasmonic effect for efficient organic solar cells

Adi Prasetio1 · Soyeon Kim1 · Muhammad Jahandar1 · Dong Chan Lim1

Received: 28 July 2020 / Accepted: 27 November 2020 / Published online: 2 January 2021
© The Author(s) 2021

Abstract
Incorporating localized surface plasmon resonance (LSPR) into organic solar cells (OSCs) is a popular method for improving the power conversion efficiency (PCE) by introducing better light absorption. In this work, we designed a one-pot synthesis of Ag@SiO2@AuNPs dual plasmons and observed an immense increase in light absorption over a wide range of wavelengths. Ag@SiO2 plays the main role in enhancing light absorption near the ultraviolet band. The silica shell can also further enhance the LSP resonance effect and prevent recombination on the surface of AgNPs. The AuNPs on the Ag@SiO2 shell exhibited strong broad visible-light absorption due to LSP resonance and decreased light reflectance. By utilizing Ag@SiO2@AuNPs, we could enhance the light absorption and photoinduced charge generation, thereby increasing the device PCE to 8.57% and J_{sc} to 17.67 mA cm$^{-2}$, which can be attributed to the enhanced optical properties. Meanwhile, devices without LSPR nanoparticles and Ag@SiO2 LSPR only showed PCEs of 7.36% and 8.18%, respectively.

Keywords Organic solar cells · Surface plasmon resonance · Light absorption · Photocurrent density

Introduction
Over the past few years, organic solar cells (OSCs) have become emerging energy harvesting devices owing to their easy fabrication, thin film active layer related to flexibility, and being semi-transparent, low-cost, room-temperature processability, and viability for large-area mass production by a roll-to-roll processing technique (Kaltenbrunner et al. 2012; Lu et al. 2015; Powell et al. 2009; Lim et al. 2018; Hoppe and Sariciftci 2004; Brabec et al. 2001; Scharber and Sariciftci 2013). A large amount of effort and importance have been devoted to improving the performance of OSCs, such as controlling the nanomorphology of the photoactive layer (Ma et al. 2014; Heeger 2014), designing new device architectures (Adam et al. 2016; He et al. 2015), and synthesizing new donor–acceptor materials (Cheng et al. 2009; Cui et al. 2019; Cao et al. 2017). Although the excellent results from these studies have greatly contributed to the development of OSCs, poor light absorption, relatively low carrier mobility, and short exciton diffusion length in the photoactive layer are still considerable issues to overcome (Heeger 2014; Siegmund et al. 2017). These issues make the active layer become very thin (~100 nm) (Qi and Wang 2013). The limit of active layer thickness diminishes light-harvesting and photoinduced charge generation, which in turn leads to a low photocurrent density and device efficiency (Qi and Wang 2013; Gupta et al. 2010).

Plasmonic nanoparticles (NPs) have been widely used for the enhancement of light-harvesting in OSCs. In the field of LSPR-based solar cells, numerous efforts have been conducted to enhance the capability of the LSPR (Ho et al. 2016; Shen et al. 2014; Choi et al. 2013; Yu et al. 2017; Kozanoglu et al. 2013; Liu et al. 2013; Jung et al. 2014). However, all these efforts have been limited to the use of metal nanoparticles (Ag or Au), which absorb a narrow wavelength. To achieve light absorption enhancement over a broad wavelength in the visible-light or infrared region, some cooperative plasmonic nanostructures from multiple metals have been reported (Lu et al. 2013; Kakavelakis et al. 2014; Gao et al. 2017). However, these results showed narrow light absorption enhancement at only different specific wavelengths and did not cover light absorption beyond 700 nm (infrared region) (Lu et al. 2013; Kakavelakis et al. 2014). Therefore, in this study, we developed a one-pot synthesis of Ag@SiO2@AuNP dual plasmonic nanostructures. By introducing AuNPs on silica shells, we found that there
was an absorption enhancement over the scale of wavelength from visible light to the infrared region, and simultaneously, there was an increased photocurrent density in the organic solar cells. The effects of AuNPs on silica shells in the ZnO buffer layers in the OSCs were investigated by fabricating poly[(4,8-bis[(2-ethylhexyl)oxy] benzo[1,2-b:4,5-b′] dithiophene-2, 6-diyl] [3-fluoro-2-[(2-ethylhexy)carbonyl] thieno[3,4-b]thiophenediyl] (PTB7): (Brabec et al. 2001; Brabec et al. 2001)-phenyl C71-butyric acid methyl ester (PC71BM)-based devices. The photovoltaic performance of Ag@SiO2@AuNP-3R-based NPs showed a significant improvement in the PCE up to 8.57% (Jsc 17.67 mA cm−2), whereas the reference device without metal nanoparticles showed a poor PCE of 7.36% (Jsc 15.62 mA cm−2).

Experimental details

Preparation of Ag core NPs

A 10-mL aqueous solution of 0.1 M silver nitrate (AgNO3, Sigma-Aldrich, USA) was stirred with a magnetic bar at elevated temperatures and incorporated into a solution containing 100 mL of absolute ethanol (Sigma-Aldrich, USA) and 50 mL of deionized (DI) water. Within 5 min, 20 mL of a 1 mM polyvinylpyrrolidone (PVP) and sodium hydroxide were added to the resulting mixture, which was stirred for 20 min. Next, 5.0 mL of 0.1 M sodium hydroxide (Junsei, Japan) was added to the solution, which was then cooled to room temperature (24.0 ± 1.0 °C). Ag NPs were obtained after 2 h of reaction.

Preparation of the Ag@SiO2 NPs

The Ag@SiO2 NP solution was synthesized as follows. A mixture containing 50 mL of absolute ethanol (Sigma-Aldrich, USA), 5.0 mL of ammonia (Junsei, Japan), and 1.0 mL of TEOS (Tetraethyl orthosilicate) (Sigma-Aldrich, USA) was slowly added to the silver colloid. The resulting solution was stirred at ambient temperature (24.0 ± 1.0 °C) for 12 h. The as-prepared product was washed with ethanol three times and then dispersed in ethanol for further use.

Preparation of the Ag@SiO2@Au NPs

The photovoltaic devices were fabricated with the structure glass/ITO/ZnO/PTB7:PC71BM/MoOx/Ag. The ITO glass substrates were cleaned in deionized water, acetone, and isopropyl alcohol under ultrasonication for 1000 s each and subsequently dried in an oven. A thin film of the ZnO sol–gel was spin-coated at 2000 rpm for 40 s onto pre-cleaned ITO and then annealed at 180 °C for 10 min. Then, the substrates were transferred into an Ar-filled glove box. The Ag, Ag@SiO2, and Ag@SiO2@AuNPs were spin-coated onto the active layer at 4000 rpm for 40 s. For the active layer, the PTB7:PC71BM blend solution was prepared by dissolving 8 mg of PTB7 and 12 mg of PC71BM in 1 mL CB/DIO (0.97:0.03 v/v) and stirred for 6 h at 60 °C. The active solution was spin-coated at 1000 rpm for 40 s and dried at room temperature prior to metal deposition. A thin layer of PEDOT: PSS was spin-coated onto the active layer. Finally, 100 nm of Ag was deposited under high vacuum conditions (< 10−6 Torr). The active area of the devices was 0.38 cm2, defined by a metal mask.

The photocurrent–density (J–sV) curves of the photovoltaic devices were measured using a Keithley 2400A source unit under the calibrated AM 1.5G simulated illumination of 100 mW cm−2 in ambient air conditions. The light intensity was calibrated using a standard Si photodiode detector with a KG-5 filter. The external quantum efficiency (EQE) spectra were measured under monochromatic light with a wavelength of 300–800 nm using the EQE measurement system. A calibrated silicon photodiode was used as a reference. The optical transmittance spectra were obtained using a UV–Vis spectrometer. The surface morphology of the cathode buffer layer films was observed by atomic force microscopy (AFM).

Results and discussion

Figure 1a schematically shows the synthesis process of the core–shell–seed nanoassemblies. The AgNPs (colloid silver) were prepared by mixing silver nitrate in a mixture of ethanol and deionized water under stirring at ~ 80 °C. Polyvinylpyrrolidone (PVP) and sodium hydroxide were added to the mixture solution under vigorous stirring and then cooled to room temperature. The Ag@SiO2 was prepared by mixing ammonia, ethanol, and TEOS with colloidal silver. The AgNP core with a diameter of approximately 10 nm was well covered with a thickness of approximately 6 nm, as shown in Fig. 1b, c (high-resolution transmission electron microscopy (HR-TEM) images). The clear boundary between the Ag core and silica shell is caused by the large difference in electron density. The transparent silica shell on the AgNPs can prevent oxidation on Ag and suppress quenching close to Ag due to charge tunneling (Yu et al. 2017; Yip et al. 2016). The Au seeds (Fig. 1d) were deposited on the aminofunctionalized silica surface and were grown into AuNPs (Fig. 1e) via an electroless Au-plating method. The diameter of the AuNPs on the silica shell grew after reduction. The TEM image reveals that the mean distance between the Au NPs on the silica shell was approximately 2 nm, which is much smaller than the wavelength of the incident light. To obtain the optimum LSPR effect, NPs well dispersed in ethanol were deposited on ZnO by spin-coating.
Figure 2a shows the UV–Vis absorption spectrum of the AgNPs, Ag@SiO₂ NPs, Ag@SiO₂@Au seeds, and the three different Ag@SiO₂@AuNPs (Ag@SiO₂@Au NP-1R, -2R, and -3R) solutions prepared by changing Au-plating conditions. An LSPR absorption centered at 400 nm was obtained for AgNPs, while a broader and a slight red-shift of the absorption to 420 nm for Ag@SiO₂ NPs was likely caused by the silica shell (Yu et al. 2017; Zhang et al. 2016). A red-shifted LSPR peak at 430 nm and an increase in absorption along visible light were observed, which confirms the presence of Au seeds on the surface of the silica shell. The red-shifted and strong peaks which occurred at longer wavelengths corresponded to Ag@SiO₂@AuNPs. The peaks at longer wavelengths correspond to AuNPs, which have a higher permittivity than AgNPs (Gao et al. 2017). It is expected that the strong peaks are affected by the strong interactions between the AuNPs on the silica surface. These peaks increase as the plating rate increases, corresponding to the larger size of the AuNPs. As revealed in the TEM images, the average sizes of the Au NPs were approximately 4.5, 6.7, and 10.0 nm for Ag@SiO₂@Au NP-1R, -2R, and -3R, respectively. At this size, the Au NPs act as sub-wavelength antennas for LSPR excitation. Thus, the LSPR effect dominates the absorption enhancement rather than the scattering effect (Feng et al. 2018; Morfa et al. 2008). The increasing near-electric field intensity in the active layer enhances light absorption. Moreover, the LSPR for the AuNPs smaller than ~10 nm will be altered by quantum size effects. For instance, the AuNPs on silica shells with sizes increasing from ~4.5 to ~10.0 nm showed red-shifted peaks and an increase in the light absorption. It was observed that the Ag@SiO₂@AuNP-3R solution showed a higher absorption than other devices in the range of 500–800 nm, showing a noteworthy LSPR peak at 539 nm. This peak theoretically corresponds to the light absorption of Au due to LSPR (Kakavelakis et al. 2014). The light absorption near-infrared region can harvest more photons converted into photocurrent (Dai et al. 2007; Xia et al. 2010; Vasseur et al. 2013; Li et al. 2015). Meanwhile, for the Au seeds, the LSPR is strongly quenched owing to the surface damping effect. These results agree with the previous findings that the absorption efficiency decreases as the particle size decreases (Scholl et al. 2012). Thus, the light absorption enhancement of this Au seed was hardly observed.

To further investigate the plasmonic characteristics of the AgNPs, Ag@SiO₂ NPs, and Ag@SiO₂@AuNPs, we simulated the field distribution using the finite-difference time-domain (FDTD) method. It can be used to easily determine the electromagnetic field distribution around nanoparticles, nanorods, and other nanostructures by adjusting the size, number, and material as well as the environmental properties (Dhawan et al. 2009; Yang et al. 2010). Figure 2b shows a field snapshot image for Ag@SiO₂ with a 413 nm monochromatic wave as the input source (amplitude: 1 Vm⁻¹) and a plot for the near-electric field intensity (Vm⁻¹) vs. time (ns) obtained from the marked position (i). A field snapshot image of Ag@SiO₂@AuNP-3R with a 539 nm monochromatic wave as input is shown in Fig. 2c. The plot is for the
Localized SPs were generated for wavelengths of 413 nm for Ag/SiO2 and 539 nm for Ag@SiO2@AuNP-3R. By incorporating AuNPs on the silica shell, the number of near-electric field intensity sites increases. Moreover, the near-electric field intensity with respect to time at the marked position was also investigated. The spectra show that, upon incorporation of the AuNPs on the silica shell, the field intensity is four times higher than that without the AuNPs.

We fabricated PTB7:PC71BM-based OSCs to investigate the superior light collection capability of the Ag@SiO2@AuNPs on device performance. The photovoltaic devices were fabricated with the structure glass/ITO/ZnO/PTB7:PC71BM/PEDOT:PSS/Ag, as shown in Fig. 3a. The Ag@SiO2@AuNPs are positioned in the ZnO nanoripple layer, as shown in the AFM image in Fig. 3b. We also fabricated a device with Ag NPs as a reference. The current density–voltage (J–V) characteristics are shown in Fig. 3c. The Ag@SiO2@AuNP-3R device, the best device, achieved a PCE of 8.57% (Jsc of 15.97 mA cm−2, Voc 0.77 V, FF of 0.62), whereas the OSC device with the Ag@SiO2 NPs’ device showed a PCE of 8.18% (Jsc of 16.25 mA cm−2, Voc of 0.73 V, FF of 0.69). The Ag reference device exhibited a PCE of only 7.36%, Jsc of 15.97 mA mA cm−2, FF of 0.62, and Voc of 0.74 V. The photovoltaic performance obtained from the J–V measurement is summarized in Table 1. We used external quantum efficiency (EQE) to analyze the optical and electrical responses upon the incorporation of NPs in OSCs. Figure 3d shows EQE spectra as a function of the wavelength of OSCs with and without NPs (reference device) in the ZnO layer. To ease the EQE analysis, we provide EQE enhancement as a function of the wavelength, as shown in Fig. 3e. The photocurrent generation over a wide range of ~400–700 nm generally increased after the incorporation of Au NPs on the silica shell. A significant EQE enhancement was observed in the range of 470–580 nm, which was closely aligned with the absorption spectra. Moreover, the IPCE exceeds 70% in the range 650 nm < λ < 680 nm, confirming a noticeable EQE enhancement in the range of 600–740 nm. These results strongly agree with the reflectance and absorption measurement results. The three broad and noteworthy EQE enhancements of the Ag@SiO2@Au NPs are in good agreement with the calculated absorption enhancement (Δα) from reflectance measurements. The absorption enhancement spectra are shown in Fig. 3f. This proves that the EQE enhancement is mostly improved by better light absorption. Moreover, generated hot electrons from the gold conduction band and the excited plasmons may induce more effective electron–hole separation.

A device with a glass/ITO/ZnO/PTB7:PC71BM/PEDOT:PSS/Ag was used to investigate the absorption in the active layer. As shown in Fig. 4a, the reflectance of the Ag@SiO2@AuNP-3R device decreases over a wide range of ~400 to ~700 nm, corresponding to enhanced absorption in the active layer. To clarify the LSPR effect of the NPs, the ZnO layer was characterized by Raman spectroscopy. As shown in the Raman spectra in Fig. 4b, no shift was observed after the incorporation of the AuNPs. However, the Raman intensity increased drastically. This noticeable increase is attributed to surface-enhanced Raman scattering (SERS). This enhancement proves the near-field enhancement of the NPs.

Conclusion

In conclusion, compared with the untreated and Ag@SiO2 devices, incorporating the Au NPs on the Ag@SiO2 shell effectively enhanced the light absorption and reduced the
reflectance in the active layer, resulting in superior photoinduced charge generation. Therefore, a high J_{sc} and PCE were achieved without sacrificing FF. The PCE increased from 7.36% for the device without the NPs to 8.57% for the device with Ag@SiO₂@AuNP-3R, and a significant enhancement of over 16% was obtained. This finding suggests that enhancing light absorption in the active layer with the incorporation of AuNPs on silica shells is an effective way to improve device performance.

Table 1 Photovoltaic performance of inverted OPVs with or without the plasmonic core–shell metal nanoparticles incorporated into the ZnO layers

Type of NPs	Voc (V)	J_{sc} (mA cm\(^{-2}\))	FF	PCE (%)
Reference (without NPs)	0.74	15.97	0.62	7.36
Ag@SiO₂	0.73	16.25	0.69	8.18
Ag@SiO₂@AuNP-1R	0.76	17.23	0.64	8.34
Ag@SiO₂@AuNP-2R	0.77	17.58	0.62	8.39
Ag@SiO₂@AuNP-3R	0.77	17.67	0.63	8.57
Acknowledgements This work was supported by Korea Institute of Materials Science (KIMS) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (2018201010636A, Development of energy harvesting materials and modules for independent power source for smart sensors and 20173030014180, Development of transparent flexible metal grid electrode films for solar cell application). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2020M3H4A3081820).

Compliance with ethical standards

Conflict of interest The authors declare no competing financial interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adam G, Munkhbat B, Denk P, Ulbricht C, Hrelescu C, Scharber MC (2016) Different device architectures for bulk-heterojunction solar cells. Front Mater 3
Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26
Cao Q, Xiong W, Chen H, Cai G, Wang G, Zheng L, Sun Y (2017) Design, synthesis, and structural characterization of the first dithienocyclopentacarbazole-based n-type organic semiconductor and its application in non-fullerene polymer solar cells. J Mater Chem A 5:7451–7461
Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923
Choi H, Lee J-P, Ko S-J, Jung J-W, Park H, Yoo S, Park O, Jeong J-R, Park S, Kim JY (2013) Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett 13:2204–2208
Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Feng J, Wei Z, Gao F, Hou J (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10:2515
Dai J, Jiang X, Wang H, Yan D (2007) Organic photovoltaic cells with near infrared absorption spectrum. Appl Phys Lett 91:253503
Dhawan A, Norton SJ, Gerhold MD, Vo-Dinh T (2009) Comparison of FDTD numerical computations and analytical multipole expansion method for plasmons-active nanosphere dimers. Opt Express 17:9688–9703
Gupta D, Mukhopadhyay S, Narayan KS (2010) Fill factor in organic solar cells: photophysical investigations. Polymers 10:123
Gao Y, Jin F, Su Z, Zhao H, Luo Y, Chu B, Li W (2017) Cooperative plasmon enhanced organic solar cells with thermal coevaporated Au and Ag nanoparticles. Org Electron 48:336–341
Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26:10–28
Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945
Jung K, Song HJ, Lee G, Ko Y, Ahn K, Choi H, Kim JY, Ha K, Song J, Lee JK, Lee C, Choi M (2014) Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 8:2590–2601
Kakavelakis G, Stratakis E, Kymakis E (2014) Synergetic plasmonic effect of Al and Au nanoparticles for efficiency enhancement of air processed organic photovoltaic devices. Chem Commun 50:5285–5287
Kaltenbrunner M, White MS, Głowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3:770
Kozanoglu D, Apaydin DH, Cirpan A, Esenturk EN (2013) Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org Electron 14:1720–1727
Li W, An Y, Wienk MM, Janssen RAJ (2015) Polymer–polymer solar cells with a near-infrared spectral response. J Mater Chem A 3:6756–6760
Lim DC, Jeong JH, Hong K, Nho S, Lee J-Y, Hoang QV, Lee SK, Pyo K, Lee D, Cho S (2018) Semi-transparent plastic solar cell based on oxide-metal-oxide multilayer electrodes. Prog Photovolt 26:188–195
Liu CM, Chen CM, Su YW, Wang SM, Wei KH (2013) The dual localized surface plasmonic effects of gold nanodots and gold nanoparticles enhance the performance of bulk heterojunction polymer solar cells. Org Electron 14:2476–2483
Lu L, Luo Z, Xu T, Yu L (2013) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13:59–64
Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666–12731
Ma W, Tumbleston JR, Ye L, Wang C, Hou J, Ade H (2014) Quantification of nano- and mesoscale phase separation and relation to donor and acceptor quantum efficiency, Jsc, and FF in polymer: fullerene solar cells. Adv Mater 26:4234–4241
Morfa AJ, Rowlen KL, Reilly TH, Romero MI, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92:013504
Powell C, Bender T, Lawryshyn Y (2009) A model to determine financial indicators for organic solar cells. Sol Energy 83:1977–1984
Qi B, Wang J (2013) Fill factor in organic solar cells. Phys Chem Chem Phys 15:8972–8982
Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38:1929–1940
Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421
Shen W, Tang J, Yang R, Cong H, Bao X, Wang Y, Wang X, Huang Z, Liu J, Huang L, Jiao J, Xu Q, Chen W, Belfiore LA (2014) Enhanced efficiency of polymer solar cells by incorporated Ag–SiO2 core–shell nanoparticles in the active layer. RSC Adv 4:4379–4386
Siegmund B, Sajjad MT, Widmer J, Ray D, Koerner C, Riede M, Leo K, Samuel IDW, Vandewal K (2017) Exciton diffusion length and charge extraction yield in organic bilayer solar cells. Adv Mater 29:1604424
Vasseur K, Broch K, Ayzen AL, Rand BP, Cheyins D, Frank C, Schreiber F, Toney MF, Froyen L, Heremans P (2013) Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells. ACS Appl Mater Inter 5:8505–8515
Xia X, Wang S, Jia Y, Bian Z, Wu D, Zhang L, Cao A, Huang C (2010) Infrared-transparent polymer solar cells. J Mater Chem 20:8478–8482
Yang Z, Li Q, Ruan F, Li Z, Ren B, Xu H, Tian Z (2010) FDTD for plasmonics: applications in enhanced Raman spectroscopy. Chin Sci Bull 55:2635–2642
Yip CT, Liu X, Hou Y, Xie W, He J, Schlücker S, Yuan LD, Huang H (2016) Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: a generic yet controllable effect. Nano Energy 26:297–304
Yu P, Yao Y, Wu J, Niu X, Rogach AL, Wang Z (2017) Effects of plasmonic metal core–dielectric shell nanoparticles on the broad-band light absorption enhancement in thin film solar cells. Sci Rep 7:7696
Zhang R, Zhou Y, Peng L, Li X, Chen S, Feng X, Guan Y, Huang W (2016) Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. Sci Rep 6:25036

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.