A Design for Self Balancing Scale Model Bicycle

Umar Tsani Abdurrahman¹, Pria Sukamto¹, Mohamad Anas Sobarnas¹ and Mujiarto²

¹ Department Informatics Engineering, Sekolah Tinggi Teknologi Muhammadiyah Cileungsi, Cileungsi, Bogor, Indonesia 16820
² Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya, Indonesia

*umar.tsani@sttmileungsi.ac.id

Abstract. This research will describe the development of a self-balancing scale model bicycle. The main reason for just using a scale model instead of a full-size bicycle is to reduce development costs while maintaining the same design principle and software coding. For the hardware we are using a 1:10 metal bicycle model, Arduino Uno board for real-time balance control, GY-521 & MPU 6050 for real-time gyro and 3 axis accelerometers, and servo motor for weight balancing movement. 5-volt Li-ion battery power bank used for a power source. For coding, we use Arduino IDE for windows.

1. Introduction
Bicycle is an old invention, more than 125 years ago. But the whole balancing process of a bicycle was not completely known until recent years. Indeed the mechanism is complicated and includes balancing [1] action from the driver himself along with a couple of other forces acting from the bicycle.

To make modeling and abstraction simple we will reduce the problem onto balancing bicycles based on the inverting pendulum model. This model used with the assumption that bicycles in a rest condition. This is the same condition as an inverting pendulum where the centers of mass is high and cause an instability equilibrium. In the inverting Pendulum, this instability can overcome by moving the lowest part of the pendulum so that the entire mass changes its central mass in dynamic equilibrium.

The self-balancing apparatus today can be made possible by the availability of 3 axis accelerometer sensor chips based on MEMS (Micro Electro Mechanical Systems) [2]. The availability of MEMS sensors improve the quality of both and price / performance, due to Moore's law of microelectronics. The calculations required for this system are relatively low and available. The DC motor implemented in this model can saved from toys. Only power electronics and the pendulum has to be custom-made.

2. Literature Review
One of the successful implementations for a model bike balancing is done by Japanese company Murata named Murata Boy figure 1, a robotic bicycle [3]. With a gyro sensor and a large disc to correct any slant.
Figure 1. Murata Boy, bike and robot as one system [4]

It consists of an accelerometer/gyro sensor under the robot and a reaction wheel pendulum in the middle of the robot (figure 2.).

Figure 2. Sensor (left) and reaction wheel pendulum to balance the bike [5]

3. Modeling

Although bicycle stability is complicated, for zero velocity [6] this stability can be achieved by only use an inverting pendulum principle as a figure 3, we only use one axis x here for consideration.

Figure 3. Simplified zero speed bike balancing model

Since the most unstable condition of a bike is at velocity 0, this would tackle the biggest and foremost factor of bike balancing problem, and the dynamic can be simplified as the figure 4.
Figure 4. Dynamics of x-axis balancing stability process [7]

Dynamic balancing can be provided through actions on the reaction wheel. The reaction wheel [8] itself is modeled over an inverted pendulum [9] where it has no inherent stability, this stability is provided via a dynamic process of adjusting reaction wheel inertia as in Figure 5 [8].

![Diagram](attachment:image)

Figure 5. Reaction wheel model.

One factor that we need to consider is how high is the position of the axis of the reaction wheel from the base (lm), this actually can have a direct effect on the maximum recovery angle (theta) as can be seen in figure 6.
4. Discussion

The parameters are as below:
- \(M_{\text{bike}} = 400 \text{ gr} \) \(M_{\text{motor}} = 110 \text{ gr} \) \(M_{\text{pendulum}} = 95\text{gr} \) \(M_{\text{electronics}} = 50\text{gr} \)
- \(M_{\text{batt}} = 100\text{gr} \) so the total: \(M_{\text{Total}} = 705\text{gr} \)

The motor torque and specs are as below:
- Standard 130 Type DC Motor
- Operating Voltage: 4.5 to 9 V.
- Recommended or Rated Voltage: 6V
- Current at No Load: 70 mA (max) - No-Load Speed: 900 rpm.
- Loaded current: 250 mA (approx) - Rated Load: 10g*cm
- Motor Size: 27.5 mm x 20 mm x 15 mm

The electronics is are using Arduino Uno, IBT2 H Bridge, MPY 6050 Sensors with the diagram as below in figure 7.

The reaction wheel pendulum has a diameter of 5 cm, was a solid disc at first (figure 8a), but according to the following equation, the ring is doubling the inertia at the same mass:

So the spoke which connects axis to the outer ring has to be made as thinly as possible just enough to make the wheel rigid as in figure 8b. The radius on the equation is the average radius/center mass of the ring.

![Diagram of electronic flow](image)

Figure 7. Electronic flow from sensing position to controlling the motor [10]

![Diagram of reaction wheel solid vs optimized](image)

Figure 8. Reaction wheel solid vs optimized (minimum mass, max inertia) [11].
The H-bridge to drive the motor is L298N or MP6513 as a diagram in figure 9.

![H Bridge to drive the DC motor](image)

Figure 9. H Bridge to drive the DC motor [12]

The code for constant monitoring of the sensor and adjusting the motor is provided at a high level as in Figure 10.

![Algorithm and high-level code on Arduino IDE](image)

Figure 10. The Algorithm and high-level code on Arduino IDE

5. Conclusion
The design has been made for scale model bicycles however this design can be implemented also for a real bike or motorcycle was given a change in the DC motor with sufficient power and torque, sufficient inertia by bigger pendulum wheel and sufficient power from bigger H bridge power electronic. The inverted pendulum is sufficient to provide a self-balancing for scale model bicycle. However for a full-scale implementation a study has to be made if the design to be implemented with a human passenger.
to provide sufficient data on how to provide more stabilization from other dynamic balancing factors such as steering wheel, velocity, gyro effect from the wheels, etc.

References
[1] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L. Schwab, “Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 463, no. 2084, pp. 1955–1982, 2007.
[2] K. Dusarlapudi, K. N. Raju, M. Preeti, and A. Sastry, “Genesis of MEMS Accelerometers for Select the Optimal Accelerometer for Bio Applications,” Int. J. Innov. Technol. Explore. Eng., vol. 9, no. 2, pp. 4962–4970, 2019.
[3] J. D. G. Kooijman, A. L. Schwab, and J. P. Meijaard, “Experimental validation of a model of an uncontrolled bicycle,” Multibody Syst. Dyn., vol. 19, no. 1–2, pp. 115–132, 2008.
[4] Murata, “Murata Boy,” p. 2020, 2009.
[5] M. Boy, “MURATA BOY ’ s Capabilities,” pp. 1–2, 2020.
[6] G. Mohanarajah, “The Cubli: a cube that can jump up, balance, and ‘walk,’” pp. 3722–3727, 2013.
[7] J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic Stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, pp. 2593–2602, 2013.
[8] G. Belascuen and N. Aguilar, “Design, Modeling and Control of a Reaction Wheel Balanced Inverted Pendulum,” 2018 IEEE Bienn. Congr. Argentina, ARGENCON 2018, pp. 1–9, 2019.
[9] J. Meyer, N. Delson, and R. A. de Callafon, Design, Modeling, and Stabilization of a Moment Exchange Based Inverted Pendulum, vol. 42, no. 10. IFAC, 2009.
[10] J. C. Gamazo-Real, E. Vázquez-Sánchez, and J. Gómez-Gil, “Position and speed control of brushless dc motors using sensorless techniques and application trends,” Sensors, vol. 10, no. 7, pp. 6901–6947, 2010.
[11] M. D. Hasha, “High-Performance Reaction Wheel Optimization for Fine-Pointing Space Platforms: Minimizing Induced Vibration Effects on Jitter Performance plus Lessons Learned from Hubble Space Telescope for Current and Future Spacecraft Applications On-Orbit Satellite,” NASA Tech. Reports, no. Proceedings of the 43rd Aerospace Mechanisms Symposium, NASA Ames Research Center, pp. 373–400, 2016.
[12] S. Kivrak, H. Power, and G. Systems, “H Bridge DC Motor Driver Design and Implementation with Using dsPIC30f4011,” no. May 2017.