The Input/Output Complexity of Sparse Matrix Multiplication

Rasmus Pagh1, Morten Stöckel2

1IT University of Copenhagen, 2University of Copenhagen

SIAM LA, October 26 2015
Sparse matrix multiplication
Problem description

Upper bound
Size estimation
Partitioning
Outputting from partitions
Summary

Lower bound
Technique used
Bounding #phases
Overview

- Let A and C be matrices over a semiring \mathbb{R} with N nonzero entries in total.
- The problem: Compute matrix product $[AC]_{i,j} = \sum_k A_{i,k} C_{k,j}$ with Z nonzero entries.
- Central result: Can be done in (for most of parameter space) optimal $\tilde{O} \left(\frac{N \sqrt{Z}}{B \sqrt{M}} \right)$ I/Os.
Cancellation of elementary products

We say that we have *cancellation* when two or more summands of $[AC]_{i,j} = \sum_k A_{i,k} C_{k,j}$ are nonzero but the sum is zero. Our algorithm handles such cases.
Motivation

Lots of applications. Some of them:

- Computing determinants and inverses of matrices.
- Bioinformatics.
- Graphs: counting cycles, computing matchings.
The semiring I/O model, 1

- A word is big enough to hold a matrix element plus its coordinates.
- Internal memory that holds M words and disk of infinite size.
- One I/O: Transfer B words from disk to internal memory.
- Cost of an algorithm: Number of I/Os used.
- Operations allowed: Semiring operations, copy and equality check.
The semiring I/O model, 2

- We make no assumptions about cancellation.
- To produce output: must invoke `emit(.)` on every nonzero output entry once.
- Matrices are of size $U \times U$.
- \tilde{O} suppresses polylog factors in U and N.
Our results, 1

- Let A and C be $U \times U$ matrices over semiring \mathbb{R} with N nonzero input and Z nonzero output entries. There exist algorithms 1 and 2 such that:
 1. emits the set of nonzero entries of AC with probability at least $1 - 1/U$, using $\tilde{O} \left(N \sqrt{Z} / (B \sqrt{M}) \right)$ I/Os.
 2. emits the set of nonzero entries of AC, and uses $O \left(N^2 / (MB) \right)$ I/Os.
- Previous best [Amossen-Pagh, ’09]: $\tilde{O} \left(N \sqrt{Z} / (BM^{1/8}) \right)$ I/Os (boolean matrices \implies no cancellation).
Our results, 2

Let A and C be $U \times U$ matrices over semiring \mathbb{R} with N nonzero input and Z nonzero output entries. There exist algorithms 1 and 2 such that:

1. emits the set of nonzero entries of AC with probability at least $1 - 1/U$, using $\tilde{O} \left(N\sqrt{Z}/(B\sqrt{M}) \right)$ I/Os.

2. emits the set of nonzero entries of AC, and uses $O \left(N^2/(MB) \right)$ I/Os.

There exist matrices that require $\Omega \left(\min \left(\frac{N^2}{MB}, \frac{N\sqrt{Z}}{B\sqrt{M}} \right) \right)$ I/Os to compute all nonzero entries of AC.
Output size estimation

Size estimation tool: Given matrices A and C with N nonzero entries, compute ε-estimate of number of nonzeros of each column of AC using $\tilde{O}(\varepsilon^{-3}N/B)$ I/Os.

Fact (Bender et al, ’07)

For dense $1 \times U$ vector y and sparse $U \times U$ matrix S we can compute yS in $\tilde{O}(\text{nnz}(S)/B)$ I/Os.
Distinct elements and matrix size

- Distinct elements: Given frequency vector x of size n where x_i denotes the number of times element i occurs, then $F_0 = \sum_i |x_i|^0$.
- Fundamental problem in streaming: Estimate F_0 without materializing x.
- Observation: The distinct elements of AC is $\text{nnz}(AC)$.
- Good news: use existing machinery. Size $O(\varepsilon^{-3} \log n \log \delta^{-1}) \times n$ matrix F exists s.t Fx gives F_0 whp [Flajolet-Martin, ’85].
Output estimation

\[F \text{ is } \epsilon^{-3} \log \delta^{-1} \log U \times U. \]
\[A \text{ and } C \text{ are } U \times U. \]
To get size estimate we must compute:

\[F \times A \times C \]
Output estimation

F is $\varepsilon^{-3} \log \delta^{-1} \log U \times U$.

A and C are $U \times U$.

To get size estimate we must compute:

$$(F \times A) \times C$$

Due to associativity: Pick cheap order.

Analysis: $\varepsilon^{-3} \log \delta^{-1} \log U$ invocations of dense vector sparse matrix black box: $\tilde{O}(\varepsilon^{-3}N/B)$ I/Os.

Note: Works with cancellation, contrary to previous size estimation.
Matrix mult partitioning, 1
Matrix mult partitioning, 1
Matrix mult partitioning, 2

\[A \times C = \sum \]

\[\times \quad + \quad \times \quad + \quad \times \quad + \quad \times \]
Partitioning the matrices

- What we want: Split matrices into disjoint colored groups s.t. every color combination has at most M nonzero output entries.
- Problem: Can’t be done.
- Instead: Color rows of A using c colors. For each c groups of rows, do an independent coloring with c colors of columns of C.

![Coloring Example]

[140x265]Upper bound
[187x265]Partitioning

Pagh, Stöckel ITU, DIKU October 26 2015 14 / 30
Partitioning the matrices, 2

Overview of how to partition matrices A and C:

1. Pick number of colors $c = \sqrt{\frac{\text{nnz}(AC) \log U}{M}} + O(1)$

2. Recurse: Split A into A_1 and A_2 where it holds: $\text{nnz}(A_1C) \approx \frac{\text{nnz}(AC)}{2}$ and $\text{nnz}(A_2C) \approx \text{nnz}(AC)$.

3. After $\log c + O(1)$ recursive levels we have $O(c)$ disjoint colored groups of rows of A.

4. For each of those groups: Repeat procedure for columns of C.

5. The key point: $O(c^2)$ problems of size $\text{nnz}(AC)/c^2 = O(M/\log U)$.
Getting the correct subproblem size

Say we can do splits of A into A_1, A_2 s.t.

1. $\text{nnz}(A_1C) \in [(1 - \log^{-1} U) \text{nnz}(AC')/2; (1 + \log^{-1} U) \text{nnz}(AC')/2]$.

2. $\text{nnz}(A_2C) \in [(1 - \log^{-1} U) \text{nnz}(AC')/2; (1 + \log^{-1} U) \text{nnz}(AC')/2]$.

Assume biggest possible positive error: after q recursions have problem output size $\text{nnz}(AC')(1/2 + 1/(2 \log U))^q$. Then after $\log c^2 + O(1)$ recursions:

$$\text{nnz}(AC') \left(\frac{1}{2} + \frac{1}{2 \log U} \right)^{\log c^2} \leq \text{nnz}(AC') 2^{-\log c^2} e^{\frac{\log c^2}{\log U}}$$

$$\leq \text{nnz}(AC') O(1)/c^2 = O(M/\log U)$$
How to compute the split

How to do relative error $1/\log U$ splits: Use size estimation tool: For any set r of rows we have access to \hat{z}_i’s s.t.

$$(1-\log^{-1} U) \text{nnz} \left(\sum_{i \in r} [AC]_{i*} \right) \leq \sum_{i \in r} \hat{z}_i \leq (1+\log^{-1} U) \text{nnz} \left(\sum_{i \in r} [AC]_{i*} \right).$$

Splitting A into A_1 and A_2:

1. Let $\hat{Z} = \sum_i \hat{z}_i$.
2. Add rows from A to A_1 until $\sum_{i \in A_1} \hat{z}_i \geq \hat{Z}/2$.
3. The row that y overflows A_1: Compute $y \times C$ directly.
4. Add remaining rows to A_2.
I/O cost of splitting

I/O cost:

- Initial size est: $\tilde{O}(N/B)$.
- Partition A: c dense-vector-sparse-matrix: $\tilde{O}(cN/B)$.
- For the c A-partitions: one size est of total $\tilde{O}(N/B)$ and c DVSM of total $\tilde{O}(cN/B)$.
- Total: $\tilde{O}(cN/B) = \tilde{O}\left(\frac{N\sqrt{\text{nnz}(AC)}}{B\sqrt{M}}\right)$ since $c = \sqrt{\frac{\text{nnz}(AC)\log U}{M}}$.
Are we done?
Status

- Where we are: have $c^2 = \frac{\text{nnz}(AC) \log U}{M}$ subproblems with output $\leq M/\log U$.
- Central cancellation difficulty: Intermediate results can be much larger than M.
- Our I/O aim: $\tilde{O}(cN/B)$, hence we can’t pay for those cancelling inner products.
- Solution: Compute a particular polynomial and allow polynomially small error probability.
Compressed matrix mult intuition

\[A_i C_j \]
Compressed matrix mult intuition

A_iC_j
Compressed matrix mult intution

$A_i C_j$
Compressed matrix mult

- Let $r = \frac{M}{\log U}$ be the number of output entries in a subproblem.
- We can perform compressed matrix mult in $4r$ space by computing a $O(r)$-degree polynomial [Pagh, '12].
- Need $O(\log U)$ repetitions to get high probability.
Algorithm summary

I/O cost of steps taken:

- Initial size est: $\tilde{O}(N/B)$.
- Partition into c^2 problems with output $M/\log U$: $\tilde{O}(cN/B)$.
- Compute and emit all subproblems: $\tilde{O}(cN/B)$.
- Total: $\tilde{O}(cN/B) = \tilde{O}\left(\frac{N\sqrt{\text{nnz}(AC)}}{B\sqrt{M}}\right)$ since $c = \sqrt{\frac{\text{nnz}(AC)\log U}{M}}$.
We will show: $\Omega \left(\frac{N}{B} \min \left(\sqrt{\frac{Z}{M}}, \frac{N}{M} \right) \right)$ I/Os needed.

Argument type follows “phase argument” [Hong and Kung, '81] – divide execution in phases of M/B I/Os.

Double memory to be $2M$: There now exists equivalent execution where reads and writes are ordered.

This allows us to argue: For a specific computation, how good is the best possible execution.
Our hard instance: Dense matrices A is $\sqrt{Z} \times \frac{N}{\sqrt{Z}}$ and C is $\frac{N}{\sqrt{Z}} \times \sqrt{Z}$.

Notice: $\text{nnz}(A) + \text{nnz}(C) = \Theta(N)$ and $\text{nnz}(AC) = \Theta(Z)$.

Crucial due to semiring operations: Every stored element is always either:

1. an input entry
2. entry from a partial sum

We are now ready to argue about number of phases needed to create two types of output.
Bounding direct outputs

- **Direct outputs**: All needed entries are stored — requires two $\frac{N}{\sqrt{Z}}$-size vectors to be stored.
- At most $\frac{2M\sqrt{Z}}{N}$ vectors fit in memory, thus at most $\frac{M^2Z}{N^2}$ direct outputs possible.
- To output $\frac{Z}{2}$ of this type: $(\frac{Z}{2})/\frac{M^2Z}{N^2} = (\frac{N}{M})^2$ phases needed, hence $\Omega\left(\frac{N^2}{BM}\right)$ I/Os.
Bounding indirect outputs

- **Indirect outputs**: Output entries for which an elementary product is written in some phase.
- In space $2M$, the number of elementary products stored and computed is at most $(2M)^{3/2}$ [Irony et al, '04].
- To output $\mathbb{Z}/2$ of this type: $\mathbb{Z}/2 \cdot N/\sqrt{Z} = N\sqrt{Z}/2$ elementary products to be computed.
- Number of phases needed: $\frac{N\sqrt{Z}/2}{(2M)^{3/2}}$, thus $\Omega\left(\frac{N\sqrt{Z}}{B\sqrt{M}}\right)$ I/Os.
Lower bound summary

- To do $Z/2$ direct: $\Omega \left(\frac{N^2}{BM} \right)$ I/Os.
- To do $Z/2$ indirect: $\Omega \left(\frac{N\sqrt{Z}}{B\sqrt{M}} \right)$ I/Os.
- Since at least $Z/2$ of either is needed, lower bound becomes minimum of the two.
Concluding remarks

- Size estimation: Supports cancellation and uses $\tilde{O}(\varepsilon^{-3} N/B)$ I/Os.
- Algorithm 1: $\tilde{O}\left(\frac{N\sqrt{Z}}{(B\sqrt{M})}\right)$ I/Os.
- Algorithm 2: $O\left(\frac{N^2}{MB}\right)$ I/Os.
- Lower bound: $\Omega\left(\min\left(\frac{N^2}{MB}, \frac{N\sqrt{Z}}{\sqrt{MB}}\right)\right)$ I/Os.

Open: Remove monte carlo (and log factors).
The Input/Output Complexity of Sparse Matrix Multiplication

Rasmus Pagh1, Morten Stöckel2

1IT University of Copenhagen, 2University of Copenhagen

SIAM LA, October 26 2015