Sinking Feed Efficiency in Growth Performance, Feed Conversion Ratio (FCR) and Yield of Tilapia (*Oreochromis niloticus*) at Different Stocking Densities

Md. Hashibur Rahman* and Md. Nasirul Islam

1Bangladesh Fisheries Research Institute, Headquarters, Mymensingh, Bangladesh.
2Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJFAR/2021/v14i530305

Editor(s):
(1) Dr. Vijai Krishna Das, Kamla Nehru Institute of Physical and Social Sciences, India.
Reviewers:
(1) Hafsan, Universitas Islam Negeri Alauddin, Indonesia.
(2) Meltem Manasirli, Cukurova University, Turkey.

Complete Peer review History: https://www.sdiarticle4.com/review-history/73620

Received 29 June 2021
Accepted 09 September 2021
Published 14 September 2021

ABSTRACT

The efficiency of feed is considered as one of the most crucial factors that affects the growth performance, feed conversion ratio and yield as well. The study was aimed to compare the growth parameters of tilapia at different stocking densities to detect the efficiency of sinking feed assessing the growth trends at various sampling stages. To evaluate the comparative yield, the study was carried out in twelve concrete tanks under an outdoor laboratory shed. Tilapia (*Oreochromis niloticus*) fry was released at the rate of 8 fry per tank as per the recommended stocking density of 320 fishes/decimal and 4 fry per tank equivalent to the stocking density of 160 fishes/decimal in intensive and semi-intensive aquaculture system, respectively. To evaluate the growth trends sinking feed was used for feeding the fish during the experimental period for T1 (Intensive) and T2 (Semi-intensive), respectively. The feed was supplied in each with three replications at the rate of 20%, 15%, and 10% of the body weight of fish, respectively. The daily ration of feed was delivered to fish dividing into two parts daily. Aeration facilities using air stone aerator were installed for 24 hours. To assume the consecutive growth trends, weight of fish was recorded in 3 days interval to have better understanding on the yield performance in relation to the
feed conversion ratio (FCR). Water quality parameters i.e., temperature and dissolved oxygen (DO) were recorded two times daily. The final weight gains of fish were 133.77±5.65 gm and 50.70±2.40 gm for T1 and T2, respectively. The mean percent weight gain of tilapia was higher in T1 (1127.25±0.00) than T2 (518.51±0.00 gm). Feed conversion ratio (FCR) in T1 and T2 were 1.97±0.11 and 1.70±0.07, respectively. The specific growth rates (SGR) of tilapia in T1 4.90±3.03 and 4.78±3.83 considering the data at the beginning and the end of the production cycle, respectively. Higher total production was obtained in T1 (1070.19 gm) than T2 (610.00 gm) with 100% survival in both the treatments. The present study reveals that, the efficiency of sinking feed was higher in T1 than T2 and farmers might be suggested to practice tank-based intensive aquaculture system to get higher production in a short period of time.

Keywords: Sinking feed; stocking density; growth performance; feed conversion ratio (FCR); specific growth rate (SGR).

1. INTRODUCTION

Aquaculture is considered as one of the most promising resources of animal proteins and contributing a significant role in foreign exchange earnings, nutrition supply and in our national economy. Now-a-days, fish production shifting to aquaculture as inland fisheries production has escalated over the years, but the productivity per hectare water area is not yet attained at its optimum [1]. Aquaculture contributes around half of the fish for direct human consumption in Bangladesh and is set to grow further to replenish the nutritional gap. The contribution of fisheries sector in 2019-20 was 3.50% to the total GDP of the country and approximately 25.72% to agricultural GDP [1]. Aquaculture plays an important role to enhance fish production, to ensure food security, alleviating poverty due to the depletion of the natural fish stocks [2]. Millions of people are getting engaged in aquaculture production with majority involved in small-scale production [3]. Tilapia is considered as significant fish species due to its excellent stability in aquaculture production which may reduce the gap of accelerating worldwide demand for protein sources [4].

The competition between aquaculture and other agricultural sectors is increasing in the context of land and water use. Therefore, intensive aquaculture is growing fast and practiced to enhance cumulative fish production in the context of population growth and declining land resource. Moreover, fish productions per unit area much higher in intensive and semi-intensive aquaculture system. To fulfill the animal protein demand for growing population in Bangladesh these culture systems may be a commendable alternative to enhance fish production since fish contributes about 60% of animal protein to our daily food [1]. Aquaculture system can be integrated into water conservation and management systems and tank culture can be an effective way of overcoming the problem of water shortages in the upcoming days. These improved methods of tank-based aquaculture system can be an efficient way to utilize scare water resources effectively and farmers will get higher production in a small parcel of land [5].

To assess the growth trends and yield in relation to feed conversion ratio (FCR) is very important. Commonly used equation considers the initial and final weight over time but the intermediate data remain unused. Therefore, the result is not accurate enough to understand the growth of fish in the intermediary stages of a production cycle [6]. Therefore, due to lack of the appropriate modeling to evaluate the growth of fish at different stage in relation to feed supplement, this study is likely to be effective to develop a relationship between feed and stocking density having direct effect on growth, maintenance and survival of fish.

Due to inadequate knowledge regarding on ideal stocking density and feeding strategy culture of fish on a small-scale basis has often failed. The highest section of the production cost lies in feed, with protein containing the most expensive component in the production unit [7]. However, to improve fish culture at commercial level, it is important to establish an appropriate culture technique and management strategy that is based on identification of the daily feeding frequency and growth parameters observation [8]. In aquaculture, feeding is crucial for its viability and success like other form of husbandry [9]. Feed cost is considered as one of the largest operational costs in aquaculture system [10]. It is important to suggest the optimum feeding rate for economic production of fish to reduce the wastage of feed. In general, the feeding regime
and growth of fish are very much related to make a propitious production from the defined culture unit. Thus, the feeding strategy and proper demonstration of supplementary feed may provide a clue for maximum growth because the feeding frequency contribute to feed efficiency and growth response [11]. Tilapia (*Oreochromis niloticus*) is usually known as commercially important species for aquaculture throughout the world for its stability and hardness [12]. Thus, culture of tilapia in tank-based might provide an effective way of inducing a positive approach towards tilapia culture in Bangladesh.

The study was carried out in intensive and semi-intensive aquaculture system in tanks feeding with sinking feed to assess the growth and production of tilapia; and to determine the specific growth rate (SGR) of tilapia focusing on different intermediate sampling stages to have better understanding on growth trends. As commercial fish feed is easily available at market the results can help the fish farmers to decide on the culture technology in accordance with their economic affordability.

Based on the above aforementioned context, this experiment was conducted to determine the growth performance of tilapia at different stocking density and various sampling stages to find out the effective strategy to increase the production of fish in tank-based aquaculture system.

2. MATERIALS AND METHODS

2.1 Experimental Tanks

Twelve square-shaped concrete tanks were constructed with a well-controlled security system so that outsiders can't interfere with or hinder the cultivation system. Water supply and exchange facility was also satisfactory there. Each tank is of length 1m, width 1m and depth 1.2 m and water volume in each tank was 1 X 1 X 1 =1m³. Among the twelve tanks, six tanks were used to study the growth and production, particularly specific growth rate (SGR) of tilapia in intensive rearing and remaining six tanks were used for semi-intensive culture of fish. Tilapia was fed with floating feed to have better understanding on the growth performance in different stocking density. Air stone aerators were applied to provide sufficient oxygen powered by electricity. A single air stone was allocated for each tank. The aerator motors were attached with the main structure of the roof of the shed. The aeration was operated for 24 hours during the experimental period.

2.2 Experimental Design and Layout

Monosex male tilapia (*O. niloticus*) fry was used as experimental species. For the experiment, two treatments were designed namely T₁ and T₂ and there were three replications for each. Fry was released at the rate of 8 fry per tank that equivalent to the stocking density of 320 fish per decimal or about 80,000 per hectare and 4 fry per tank that equivalent to the stocking density of 160 fish per decimal.

2.3 Selection of Feed and Feeding Frequency

Sinking types of commercial pellet feed named as 'Quality Feed' were used. The proximate composition of feed is shown in Table 2. In first 30 days of the experiment, the size feed used for feeding the fish was 0.25 mm. Then the pellets of 0.5 mm were used to fed the fish during the rest experimental period.

2.4 Feeding Strategy

The daily ration of fish was adjusted with the body weight. The total amount of ration was divided into two parts and half was supplied to the fish in the morning (9:30am) and the rest half was delivered in the afternoon (4:30pm). The daily ration was calculated as the following rate in the Table 3.

2.5 Study of Growth Parameters of Fish

For evaluating the growth of fish, different growth parameters such as length gain (cm), weight gain (g), percent (%) weight gain, specific growth rate (SGR % per day) and production (kg/ha/100 days) were taken into consideration and were measured using the following formula. The length and weight of fish were measured using centimeter scale and electric balance (Model; HKD-620AS-Led) in grams.

\[
\text{Weight gain (gm)} = \text{Mean final weight (gm)} - \text{Mean initial weight (gm)}
\]

\[
\text{Percent (%) weight gain} = \frac{(\text{Mean final weight} - \text{Mean initial weight (gm)})}{\text{Mean initial weight (gm)}} \times 100
\]

\[
\text{SGR (%) per day} = \frac{\log W2 - \log W1}{T2-T1} \times 100
\]
Survival rate = \(\frac{\text{No. of harvested fish}}{\text{No. of fish stocked}} \times 100 \)

Production = No. of fishes harvested × average final weight increases of fishes

2.6 Study of Water Quality Parameters

Water quality parameters (i.e., temperature, DO, pH) of the experimental tanks were recorded very intensively two times daily. Different physiochemical parameters were measured using digital DO meter (Model: CE 225908) in mg/l. Water temperature was measured by using digital thermometer in °C and pH was recorded by digital pH meter.

2.7 Data Analysis

Statistical analysis was done to evaluate the effect of the two treatments on the growth of fish were significant or not. Independent sample T-Test was performed to test the significance of difference among different water quality parameters. The entire statistical test was conducted by using SPSS (Statistical Package for Social science) version 16. The graph was prepared by using both MS Excel and SPSS.

3. RESULTS

3.1 Fish Growth performance

3.1.1 Final weight

The initial weight of individual tilapia was 10.90±0.19 gm and 0.96±0.07 gm for T₁ and T₂, respectively. The final mean weight of each fish was for T₁ 133.77±5.65 gm and 50.70±2.40 gm for T₂, respectively with having significant difference (p<0.05) between the treatments.

3.1.2 Weight gain

The average weight gain of tilapia for T₁ was 122.87±5.65 gm and for T₂ was 49.74±2.40 gm, respectively. The difference in weight gain is notably remarkable between two treatments. The weight gain of tilapia was higher in T₁ than T₂. This frequent observation was performed to find out where the maximum growth was taken place in the production cycle of two different feeding systems. In term of weight gain, in the most sampling stages, the performance in T₁ was significantly (p<0.05) higher than T₂. The higher weight gain in T₁ was observed from the 5th sampling. However, it was remarkable increment growth after about a month (Sampling stage 4, Table 4).

3.1.3 Percent weight gain (%)

The mean percent weight gains of fishes were 1127.25±0.00 and 518.51±0.00 for the treatments T₁ and T₂, respectively. The higher percent weight (1127.25%) was found in T₁ where lower (518.51%) was in T₂.

3.1.4 Specific growth rate (SGR % per day)

The specific growth rates (SGR) of tilapia in T₁ and T₂ were found 4.90 ±3.03 and 4.78±3.83, respectively. The SGR between the treatments was significantly difference (p>0.05) in term of weight gain. The present study indicated the growth rate in different sampling stages of tilapia more frequently which are generally not determined considering the initial and harvesting weight data, and the intermediate data are excluded. The SGR of T₁ was shown increasing gradually. After that, at the last sampling stage, average trend of SGR was observed (Figs. 3 and 4). More specifically, the significant higher specific growth rates were observed at the middle stage (In between 4th June and 18th June) of the experiment and also in later stages (Table 4 and Fig. 1).

The SGR at the initial stage started from the higher range in T₁ compared to T₂ (Fig. 2 and Fig. 3).

3.1.5 Feed conversion ratio (FCR)

The feed conversion ratio was calculated taking the total feed used into consideration in the experiment. Feed conversion ratio values of sinking feed used for feeding the fish in T₁ and T₂, respectively were 1.97±0.11 and 1.70±0.07 (Fig. 4).

3.1.6 Total production (g/cm³)

The total productions of tilapia at the end of the study were 1070.19±0.00g and 610.00 ±0.00 g per cm³ in T₁ and T₂, respectively. The production was higher in the T₁ than that of T₂ (Fig. 5).

3.1.7 Water quality parameters

The mean values of tested water quality parameters such as temperature and DO of the experimental ponds are presented in Table 5. There was no significant difference (p<0.05) in
the temperature in morning and evening in both treatments. The difference of dissolved oxygen content was very low between two treatments. The dissolved oxygen contents in both treatments were similar because aerators were installed in all the tanks.

Table 1. Design and layout of the experimental tank

Treatment	Replication	Stocking density (fry/tank)	Average initial weight (g)	Treatment	Replication	Stocking density (fry/tank)	Average initial weight (g)
T1	R1 (t1)	6.92		R1 (t1)	0.82		
	R2 (t2)	6.97		R2 (t2)	0.89		
	R3 (t3)	7.28	8	R3 (t3)	4		
	R1 (t4)	15.92		R1 (t4)	0.93		
	R2 (t5)	13.61		R2 (t5)	1.06		
	R3 (t6)	14.72		R3 (t6)	1.36		

Table 2. Proximate composition of sinking feed as per labeling on the feed bag

Proximate composition	Sinking feed (%)
Moisture	11
Protein	25
Fat	7
Starch	-
Fibre	-
Ash	-
Calcium	2.5
Phosphorus	1.0

Table 3. Feeding chart for the experimental fish

Days	Amount of feed (% of the total body weight of fish)
1st 30 days	20%
2nd 30 days	15%
Final 30 days	10%

Fig. 1. Specific growth rate at various sampling stages
Table 4. Specific growth rate (SGR) at 3 days interval

Sampling No.	Sampling day/stage	Average SGR in Treatment 1 (Mean ±SD)	Average SGR in Treatment 2 (Mean ±SD)
01	14 May,17	3.00±0.562	7.07±5.26
02	18 May,17	3.63±1.204	5.45±7.90
03	22 May,17	3.89±2.784	6.49±7.25
04	26 May,17	8.46±2.099	2.36±9.80
05	30 May,17	5.44±0.479	3.54±4.40
06	03 Jun, 17	3.96±1.335	4.43±2.44
07	07 Jun, 17	3.78±1.781	2.98±0.61
08	11 Jun, 17	9.01±3.120	11.74±1.62
09	15 Jun, 17	5.89±2.173	9.78±3.05
10	19 Jun, 17	4.63±0.297	8.76±1.88
11	23 Jun, 17	5.32±1.109	5.78±1.41
12	27 Jun, 17	5.66±0.706	16.43±2.27
13	01 July, 17	5.76±5.729	8.54±3.62
14	05 July, 17	4.97±1.786	5.76±2.99
15	09 July, 17	6.23±1.299	5.67±1.57
16	13 July, 17	5.52±1.251	7.87±1.18
17	17 July, 17	4.24±0.667	6.54±0.92
18	21 July, 17	3.74±1.623	2.87±0.78
19	25 July, 17	3.69±0.610	3.76±1.40
20	29 July,17	2.86±0.595	2.34±1.60

Fig. 2. Specific growth rate of tilapia in intensive culture system (T1)

4. DISCUSSION

At the end of the experiment, the mean weight of the fish in T1 was 133.77±5.65 gm and 50.70±2.40 gm in T2. In this present study, the difference in weight gain was found between the treatments. The mean initial weight of the tilapia in T1 was 10.90±0.19 gm and in T2 was 0.96±0.07. The weight gain was higher in T1 which might be due to the fact that fish had taken more amount of feed than almost similar level of water quality [13].

The SGR of tilapia in T1 was initially lower than T2 and the value decreased with the culture period in a regular fashion. The lowest value of SGR in T1 was recorded in between 4th and 18th June (Fig. 1) and at the end of the experiment.
the trend line of SGR was observed about to elevate. The mean value of SGR in T_1 and T_2 were 4.90 ± 3.03 and 4.78 ± 3.83, respectively. From these data, the specific growth rate of tilapia in T_1 was higher than T_2 in first 30 days (around) and in the middle stage both SGR increased simultaneously. On the other hand, the value of SGR in T_2 was higher at the first stages of the growth than T_1. Then it was decreasing in trend and started falling rapidly from the 5th sampling stage. The trend line of both SGR was also in downward direction at the end of the experiment (Figs. 2 and 3). It might be due to that after particular stages of weight gain, the fish did not like to take floating feed from the surface layer of water by expending energy rather preferred sinking feed from the bottom. However, it required further research for a long duration in different seasonality to unpack the fact. Overall, it could be argued that use of sinking feed in tilapia farming is more effective in the early and middle stages.

Fig. 3. Specific growth rate of tilapia in semi-intensive culture system (T_2)

Fig. 4. Feed conversion ratio in T_1 and T_2

Table 5. Water temperature of experimental tanks

Water quality parameters	Intensive	Semi-intensive				
	Treatments	Morning	Evening	Treatments	Morning	Evening
Temperature $(^\circ C)$	T_1	25.71 ± 1.45	27.31 ± 1.57	T_2	26.78 ± 1.59	27.67 ± 1.67
DO (mg/l)	T_1	6.75 ± 0.83	6.37 ± 0.79	T_2	6.88 ± 0.81	6.84 ± 0.82
Feed conversion ratio (FCR) was calculated to evaluate the utilization of feed that was given to the fish. The expected FCR for tilapia ranges from 1.5 to 2.0 [14]. The FCRs of tilapia in present study were 1.97±0.11 and 1.70±0.07 in T1 and T2, respectively. The FCR in T2 was within expected range but in case of T1, it was higher than the accepted value (Fig. 4). In this experiment, feed was given following general method of body weight percentage consideration, not considering the satiation level. For this, the supplied feed might remain unused. That is why the feed conversion ratio (FCR) of T1 was higher than expected level as the total amount of delivered feed was taken into consideration during calculating the FCR. This higher FCR found in T1 case of pre-determined feeding system (not satiation level) correlates with the findings of lower SGR in the later of the culture period. This further confirms that farmers using sinking feed with pre-determined estimation of the required amount of ration derived from percent body weight, waste the high-cost feed and money.

Hussain et al. [15] recorded survival rate of tilapia ranged from 82 to 90%. The survivability of tilapia in the present study was 100%. In this study, the highest survivability might be the cumulative result of good water quality parameters due to weekly water exchange, quality feed uses and proper maintenance during culture. This result of 100% survival in both the treatments confirms that indoor tank-based aquaculture systems can be developed in Bangladesh where land is getting scarce.

Dissolved oxygen concentration is an important water quality parameter that affects the growth and survival process of fish. Reduction in dissolved oxygen content has negative effects on growth, reproduction and other biological activities of fish and very low dissolved oxygen content is lethal to fish. Balarin and Hatton [19] reported that tilapia can tolerate dissolved oxygen concentration as low as 0.1 mg/l. In the present study, the mean average oxygen content of T1 was 6.57±0.79 and 6.64±0.82 during morning and evening, respectively. Higher level
of dissolved oxygen concentration was recorded in the experimental tanks as a result of aerator installation.

The present study aimed to find out the crucial points in the growth performance of fish and production performance in accordance with the different stocking densities to have better understanding on growth trends at various sampling stages. These results may help the fish farmers to decide on the culture technology in accordance with their economic affordability.

5. CONCLUSION

Due to lack of proper knowledge on specific growth rate at different stages of fish growth and production, tilapia farmers in Bangladesh practicing inefficient feeding systems wasting high-cost floating feed. In this experimental, the proper amount of feed needed for the fish culture in different stages of growth can be calculated by knowing the specific growth rate (SGR). It was found that total production was increased with the increase of stocking density. Overall, this study suggests that tank-based aquaculture can be developed in the indoor system that can ensure 100% survival. This study reveals an outstanding clarification on the growth performance of fish in different sampling stages and thus the wastage of feed at the final stages of the culture period can be retarded due to the proper demonstration of feed. From the experiment, it might be suggested that the higher stocking density (320 fish per decimal) performed the better results in comparison with low stocking density and further study is needed to explore the cost-benefit analysis of tilapia farming in tank-based aquaculture system to assist the farmers to achieve higher amount of fish from a small parcel of land.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. DOF. Jatio Matshya Saptaho Shankalan, Department of Fisheries, Ministry of Fisheries and Livestock, Dhaka, Bangladesh. 2020;144-145.
2. Alhassan EH, ED Abarike and CL Ayisi, 2012. Effects of stocking density on the growth and survival of Oreochromis niloticus cultured in hapas in a concrete tank. African J. Agricl. Res., 7: 2405-2411.
3. Subasinghe R, Ahmad I, Kassam L, Krishnan S, Nyandat B, Padiyar A, Phillips M, Reantaso M, Miao W, Yamamoto K. Protecting small-scale farmers: a reality within a globalized economy? In: RP Subasinghe, JR Arthur, DM Bartley, SSD Silva, M Halwart, N Hishamunda, CV Mohan and P Sorgeloos (Editors), Farming the Waters for People and Food. Proceedings of the Global Conference on Aquaculture 2010, Phuket, Thailand. 22–25 September 2010, FAO, Rome and NACA (Network of Aquaculture Centres in Asia-Pacific), Bangkok. 2012;705-717.
4. Romano N, Ng WK. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture. 2013; 4:1-35.
5. Smith ES, Phelps RP. Reproductive efficiency, fry growth and response of Nile Tilapia. PD/ACRSP Fourteen Annual Technical Report. 2001;8.
6. Lugert V, Georg T, Jen T, Carsten S, Joachim K. A review on fish growth calculation: multiple functions in fish production and their specific application. Reviews in Aquaculture. 2016; 8:30-42.
7. Pandian TJ. Protein requirements of fish and prawns cultured in Asia. In: De Silva (Ed.), Fish Nutrition Research in Asia. Proceedings of the 3rd Asian Fish Nutrition Network Meeting, Asian Fisheries Society, Philippines. 1989;11-22.
8. Phillips TA, Summerfelt RC, Clayton RD. Feeding frequency effects on water quality and growth of walleye fingerlings in intensive culture. Progress Fish-Culturist. 1998; 60:1-8.4.
9. Lovell RT. Feeding practices. In: Nutrition and feeding of channel catfish, Southern Cooperative series. 1977;218: 50-55.

10. De Silva SS, Davy FB (1992) Fish nutrition research for semi-intensive culture system in Asia. Asia Fisheries Science 5(1992): 129-144.

11. Jarboe HH, Grant WJ. The influence of feeding time and frequency on the growth, survival, feed conversion and body composition of channel catfish, Ictalurus punctatus, cultured in a three tier, close recirculating raceway. J. Appl. Aquaculture. 1997;7(1):13-62.

12. Chowdhury DK. Optimal feeding rate for Nile tilapia (Oreochromis niloticus), M.Sc thesis, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, UK. 2011;1-76.

13. Roy R. Effects of stocking density on the growth and survival of GIFT Tilapia fed on formulated diet, MS Thesis, Department of Aquaculture, Bangladesh Agricultural University, Mymensingh;2009.

14. Watanabe WO, Losordo TM, Fitzsimmons K, Hanley F. Tilapia production systemin the Americas: technical advances, trends and challenges. Reviews in Fisheries Science. 2002;10(3-4):465-498.

15. Hussain MG, Rahman MA, Aktheruzzaman M. A study on the production of O. niloticus (Linnaeus) under intensive system in Bangladesh. Bangladesh J. Fish Res. 1987;1(2):19-23.

16. Rana KMS. Development of black soldier fry larve rearing technique to supplement fish feed, MS Thesis, Department of Aquaculture, Bangladesh agricultural University, Mymensingh;2014.

17. Khan S, Hossain MS, Hossain MM. Production and economics of GIFT strain of tilapia (Oreochromis niloticus) in small seasonal ponds. Progressive Agriculture.2008;19(1):97-104.

18. Battes K, Constantia L, Valencive N, Lordache L, Tarus T.: Carp culture in floating cages. Bulletin of Correct Piscis. 1979;1(1-2):68-95.

19. Balarin JD, Hatton JP. Tilapia: A guide to their biology and culture in Africa. Unit of Aquatic Pathology, University of Stirling, Scotland. 1979;174.
APPENDICES

Appendix 1. T-Test showing the level of significance in terms of difference in initial and final weight gain of the two treatments (T_1 and T_2)

Levene’s Test for Equality of Variances	t-test for Equality of Means								
F	Sig.	t	Df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
--	------	-------	----	-----------------	-----------------	------------------------	--		
VAR00001 Equal variances assumed	2.799	.190	-11.373	4	.000	-7.69333	.67644	-9.57145	-5.81522
Equal variances not assumed	-11.373	2.114	.006	-7.69333	.67644	-10.45862	-4.92805		

Independent Samples Test

Levene’s Test for Equality of Variances	t-test for Equality of Means								
F	Sig.	t	Df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
--	------	-------	----	-----------------	-----------------	------------------------	--		
VAR00002 Equal variances assumed	.068	.191	-8.533	4	.001	-41.08667	4.81530	-54.45608	-27.71725
Equal variances not assumed	-8.533	3.973	.001	-41.08667	4.81530	-54.49161	-27.68172		

Appendix 2. T-Test showing the level of significance in terms of difference in average weight gain for three (3) days interval during experimental period between T_1 and T_2

Levene’s Test for Equality of Variances	t-test for Equality of Means									
F	Sig.	t	Df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference			
--	------	-------	----	-----------------	-----------------	------------------------	--			
VAR00001 Equal variances assumed	5.657	.980	-4.282	4	.013	-11.93000	2.78583	-18.68471	-4.19529	
Equal variances not assumed	-4.282	2.006	.050	-11.93000	2.78583	-23.88094	.02094			
Independent Samples Test	Levene’s Test for Equality of Variances	t-test for Equality of Means								
--------------------------	--	-----------------------------								
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
VAR00002	Equal variances assumed	2.520	.120	-10.752	4	.000	-14.590000	1.35698	-18.26577	-10.9243
	Equal variances not assumed			-10.752	2.158	.007	-14.590000	1.35698	-20.03834	-9.14166
	Equal variances assumed	6.806	.940	-9.463	4	.001	-16.220000	1.71413	-19.97918	-11.46082
	Equal variances not assumed			-9.463	2.283	.007	-16.220000	1.71413	-22.78403	-9.65597
	Equal variances assumed	3.378	.924	-12.470	4	.000	-15.81333	1.26810	-19.33416	-12.29251
	Equal variances not assumed			-12.470	2.610	.002	-15.81333	1.26810	-20.21232	-11.41435
Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00005	Equal variances assumed	6.770	.855	-8.613	-21.02667	2.44135	-27.80495 -14.24838
	Equal variances not assumed	-8.613	4	.009	-21.02667	2.44135	-30.44696 -11.60637

Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00006	Equal variances assumed	13.220	.154	-7.226	-22.51667	3.11627	-31.16881 -13.86453
	Equal variances not assumed	-7.226	4	.018	-22.51667	3.11627	-35.79126 -9.24208

Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00007	Equal variances assumed	15.087	.133	-5.589	-28.13667	5.03406	-42.11344 -14.15989
	Equal variances not assumed	-5.589	4	.005	-28.13667	5.03406	-49.75783 -6.51551
Independent Samples Test

Levene’s Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference									
VAR00008							Lower	Upper								
							Equal variances assumed	5.392	.158	-4.182	4.027	.014	-35.71333	8.53954	-59.42289	-12.00377
							Equal variances not assumed	-4.182	.051	-35.71333	8.53954	-71.98654	.55987			

Levene’s Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference									
VAR00009							Lower	Upper								
							Equal variances assumed	9.344	.649	-6.606	2.171	.003	-43.32333	6.55809	-61.53150	-25.11517
							Equal variances not assumed	-6.606	.018	-43.32333	6.55809	-69.51496	-17.13170			

Levene’s Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference									
VAR00010							Lower	Upper								
							Equal variances assumed	12.687	.396	-13.532	2.027	.000	-55.83667	4.12634	-73.36286	-38.31047
							Equal variances not assumed	-13.532	.005	-55.83667	4.12634	-73.36286	-38.31047			
VAR00011	Equal variances assumed	Equal variances not assumed														
----------	--------------------------	----------------------------														
F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference									
6.361	.057	-19.800	4	.000	-62.04000	3.13335	Lower: -70.73956, Upper: -53.34044									
		-19.800	2.148	.002	-62.04000	3.13335	Lower: -74.66874, Upper: -49.41126									

VAR00012	Equal variances assumed	Equal variances not assumed					
F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
11.093	.087	-7.714	4	.002	-52.72333	6.83453	Lower: -71.69904, Upper: -33.74763
		-7.714	2.099	.014	-52.72333	6.83453	Lower: -80.84479, Upper: -24.60188

VAR00013	Equal variances assumed	Equal variances not assumed					
F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
4.656	.763	-7.730	4	.002	-60.08667	7.77283	Lower: -81.66751, Upper: -38.50582
		-7.730	2.527	.008	-60.08667	7.77283	Lower: -87.66411, Upper: -32.50922
Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
VAR00014	7.083	.745	-9.675	4	.001	-63.68667	6.58265	-81.96303, -45.41030
	Equal variances assumed	Equal variances not assumed						
		-9.675	2.345	.006	-63.68667	6.58265	-88.37131, -39.00202	

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
VAR00015	3.373	.861	-9.295	4	.001	-66.45000	7.14933	-86.29972, -46.60028
	Equal variances assumed	Equal variances not assumed						
		-9.295	2.507	.005	-66.45000	7.14933	-91.95284, -40.94716	

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
VAR00016	1.430	.777	-8.391	4	.001	-64.45000	7.68075	-85.77517, -43.12483
	Equal variances assumed	Equal variances not assumed						
		-8.391	2.587	.006	-64.45000	7.68075	-91.25960, -37.64040	
Independent Samples Test

Levene's Test for Equality of Variances

	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00017								
	2.512	.351	-16.316	4	.000	-59.60333	3.65302	-69.74575 - 49.46092
			-16.316	2.748	.001	-59.60333	3.65302	-71.85574 - 47.35093

t-test for Equality of Means

	F	Sig.	t	df	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
VAR00017								
	.886	.845	-15.385	4	.000	-54.48333	3.54138	-64.31579 - 44.65088
			-15.385	3.595	.000	-54.48333	3.54138	-64.76871 - 44.19795

Independent Samples Test

Levene's Test for Equality of Variances

	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00018								
	.318	.184	-9.459	4	.001	-49.16667	5.19763	-63.59759 - 34.73574
			-9.459	3.757	.001	-49.16667	5.19763	-63.97324 - 34.36009

t-test for Equality of Means

	F	Sig.	t	df	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
VAR00019								
	.318	.184	-9.459	4	.001	-49.16667	5.19763	-63.59759 - 34.73574
			-9.459	3.757	.001	-49.16667	5.19763	-63.97324 - 34.36009
Appendix 3. T-Test showing the level of significance in terms of difference in average specific growth rate (SGR) for the three (3) days interval during experimental period between T_1 and T_2

	Levene’s Test for Equality of Variances	t-test for Equality of Means	95% Confidence Interval of the Difference	Lower	Upper						
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Mean Difference	Std. Error Difference	Lower	Upper
VAR00001	.963	.137	-.924	4	.408	-2.89667	3.13515	-11.60123	5.80790		
	Equal variances assumed		Equal variances not assumed								
	Equal variances assumed		Equal variances not assumed								
	.963	.137	-.924	4	.408	-2.89667	3.13515	-11.60123	5.80790		
	Equal variances assumed		Equal variances not assumed								
	Equal variances assumed		Equal variances not assumed								
	.963	.137	-.924	4	.408	-2.89667	3.13515	-11.60123	5.80790		
	Equal variances assumed		Equal variances not assumed								
	Equal variances assumed		Equal variances not assumed								
Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
Equal variances assumed	0.00	0.320	0.527	4	.626	-6.8000	-1.2914 - 4.26504
Equal variances not assumed	-0.527	3.953	0.627	4	-6.8000	1.2914	-4.28179 - 2.92179

Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
Equal variances assumed	1.818	0.553	2.236	4	.089	4.28000	-1.03418 - 9.59418
Equal variances not assumed	2.236	2.761	0.119	4	4.28000	1.91402	-2.12126 - 10.68126

Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
Equal variances assumed	2.622	0.686	-1.981	4	.119	2.88667	-6.33211 - 1.55878		
Equal variances not assumed	-1.981	2.109	0.179	4	-2.88677	1.45706	-8.85664 - 3.08230		
Independent Samples Test	Levene’s Test for Equality of Variances	t-test for Equality of Means							
--------------------------	---------------------------------------	-----------------------------							
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
								Lower	Upper
VAR00006									
Equal variances assumed	2.086	.491	.751	4	.494	.93333	1.24241	-2.51614	4.38281
Equal variances not			.751	2.801	.511	.93333	1.24241	-3.18474	5.05140
assumed									
Independent Samples									
Test	Levene’s Test for Equality of Variances	t-test for Equality of Means							
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
								Lower	Upper
VAR00007									
Equal variances assumed	4.919	.251	-3.160	4	.034	-3.37000	1.06640	-6.33079	-.40921
Equal variances not			-3.160	2.441	.067	-3.37000	1.06640	-7.24918	.50918
assumed									
Independent Samples									
Test	Levene’s Test for Equality of Variances	t-test for Equality of Means							
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
								Lower	Upper
VAR00008									
Equal variances assumed	3.026	.243	1.356	4	.247	3.37667	2.49046	-3.53795	10.29128
Equal variances not			1.356	2.719	.277	3.37667	2.49046	-5.03312	11.78646
Independent Samples Test

Levene’s Test for Equality of Variances	t-test for Equality of Means									
F	**Sig.**	**t**	**df**	**Sig. (2-tailed)**	**Mean Difference**	**Std. Error Difference**	**95% Confidence Interval of the Difference**			
VAR00009	**Equal variances assumed**	.383	.210	-.006	4	.995	-.02333	3.77299	-10.49883	10.45216
	Equal variances not assumed									
VAR00010	**Equal variances assumed**	.647	.064	-1.692	4	.166	-1.18667	.70136	-3.13396	.76063
	Equal variances not assumed									
VAR00011	**Equal variances assumed**	.268	.458	.939	4	.401	1.60000	1.70350	-3.12968	6.32968
	Equal variances not assumed									
Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference			
VAR00012	Equal variances assumed	.142	.665	1.371	4	.242	1.11333	.81214	-1.14154	3.36821
	Equal variances not assumed			1.371	3.615	.249	1.11333	.81214	-1.23960	3.46627

t-test for Equality of Means

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference			
VAR00003	Equal variances assumed	9.203	.580	.926	4	.407	3.87667	4.18668	-7.74743	15.50076
	Equal variances not assumed			.926	2.122	.447	3.87667	4.18668	-13.18224	20.93558

Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference			
VAR00014	Equal variances assumed	4.730	.563	.968	4	.388	1.38667	1.43306	-2.59214	5.36547
	Equal variances not assumed			.968	2.308	.423	1.38667	1.43306	-4.05375	6.82708

t-test for Equality of Means
Independent Samples Test

Levene's Test for Equality of Variances	t-test for Equality of Means								
F	**Sig.**	**t**	**df**	**Sig. (2-tailed)**	**Mean Difference**	**Std. Error Difference**	**95% Confidence Interval of the Difference**		
Equal variances not assumed	**Lower**	**Upper**							
VAR00015	3.508	.549	1.761	4	.153	1.86000	1.05638	-1.07297	4.79297
VAR00016	6.214	.552	3.011	4	.040	2.88000	.95653	.22424	5.53576
VAR00017	6.524	.087	1.742	4	.157	3.50667	2.01334	-2.08327	9.09661

Rahman and Islam; AJFAR, 14(5): 1-26, 2021; Article no. AJFAR.73620
Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00018		3.083	.914				
		3.004	4	.040	2.77333	.92328	.20990 - 5.33677
		3.004	2.155	.087	2.77333	.92328	-.93785 - 6.48451

Equal variances assumed

Equal variances not assumed

t-test for Equality of Means

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00018		.000	.854				
		5.261	4	.006	2.38667	.45368	1.12706 - 3.64627
		5.261	3.991	.006	2.38667	.45368	1.12596 - 3.64737

Equal variances assumed

Equal variances not assumed

Independent Samples Test

Levene's Test for Equality of Variances

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00020		1.699	.944				
		6.884	4	.002	2.68333	.38981	1.60103 - 3.76563
		6.884	2.710	.009	2.68333	.38981	1.36404 - 4.00263

Equal variances assumed

Equal variances not assumed

t-test for Equality of Means

F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference
VAR00020		.000	.854				
		6.884	4	.006	2.38667	.45368	1.12706 - 3.64627
		6.884	3.991	.006	2.38667	.45368	1.12596 - 3.64737

Equal variances assumed

Equal variances not assumed
Appendix 4. T-Test showing the level of significance in terms of difference in water temperature during experimental period between T_1 and T_2

Independent Samples Test

	Levene's Test for Equality of Variances	t-test for Equality of Means							
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
								Lower	Upper
VAR00001	1.845	.175	1.399	484	.162	.20165	.14409	-.08148	.4877
			1.399	478.194	.162	.20165	.14409	-.08148	.4878
	Equal variances assumed								
	Equal variances not assumed								

Independent Samples Test

	Levene's Test for Equality of Variances	t-test for Equality of Means							
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference	
								Lower	Upper
VAR00002	2.801	.095	1.367	484	.172	.19053	.13939	-.08334	.46441
			1.367	473.889	.172	.19053	.13939	-.08336	.46443
Appendix 5. T-Test showing the level of significance in terms of difference in dissolved oxygen (DO) during experimental period between T₁ and T₂

	Independent Samples Test									
	Levene’s Test for Equality of Variances	t-test for Equality of Means								
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
VAR00001	Equal variances assumed	.007	.934	3.424	484	.001	.27613	.08065	.11767	.43459
	Equal variances not assumed			3.424	483.875	.001	.27613	.08065	.11767	.43459
		Equal variances assumed	Equal variances not assumed							
	Independent Samples Test									
	Levene’s Test for Equality of Variances	t-test for Equality of Means								
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
VAR00002	Equal variances assumed	3.809	.052	4.791	484	.000	.33185	.06926	.19576	.46795
	Equal variances not assumed			4.791	481.814	.000	.33185	.06926	.19576	.46795

© 2021 Rahman and Islam; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/73620