SOLVING SEQUENTIAL LINEAR M-FRACTIONAL DIFFERENTIAL EQUATIONS WITH CONSTANTS COEFFICIENTS

V.PADMAPRIYA¹ AND M.KALIYAPPAN ²

Abstract. Fractional calculus is a powerful and effective tool for modelling nonlinear systems. The M-derivative is the generalisation of alternative fractional derivative introduced by Katugampola[6]. This M-derivative obey the properties of integer calculus. In this paper, we present the method for solving M-fractional sequential linear differential equations with constant coefficients for $\alpha \geq 0$ and $\beta > 0$. Existence and Uniqueness of the solutions for the n^{th} order sequential linear M-fractional differential equations are discussed in detail. We have present illustration for homogeneous and non homogeneous case.

Mathematics Subject Classification: 26A33, 34AXX.

1. Introduction

While L’Hospital has proposed the idea of fractional derivative in the 17th century, several researchers concerted fractional derivative in the recent centuries. Riemann-Liouville, Caputo and other fractional derivatives are defined on the basis of fractional integral form [8, 12, 13].

Recently, Khalil et al.[7] and Katugampola [6] proposed fractional derivatives in the limit form as in usual derivative such as conformable fractional derivative and alternative fractional derivative. Based on these derivative, Sousa and Oliveira [15] introduced M-fractional derivatives which satisfies properties of integer-order calculus.

Theory and applications of the sequential linear fractional differential equations involving Hadamard, Riemann-Liouville, Caputo and Conformable derivatives have been investigated in [1, 2, 3, 4, 9, 10, 11].

Lately, Gokdogan et al [5] have proved existence and uniqueness theorems for solving sequential linear conformable fractional differential equations. Unal et al [14] provide method to solve sequential linear conformable fractional differential equations with constants coefficients. In this work, We present Existence

Key words and phrases. Sequential Linear Fractional Differential Equations, M-Fractional Derivative, Existence and Uniqueness Theorem, Fractional Method of Variation of parameters.
and Uniqueness theorems and solutions of sequential linear M-fractional differential equations.

The arrangement of this paper is as following: In section 2 we present the concept of M-fractional derivative. In section 3 we provide existence and uniqueness theorems for sequential Linear M-fractional differential equations. In section 4 we propose the solutions of sequential Linear M-fractional differential equations. In section 5 we present solutions of Non-homogeneous case. Finally, Conclusion is present in section 6.

2. M-FRACTIONAL CALCULUS

In this section, we give some necessary definitions and theorems of M derivative which are explained in [15].

Definition 2.1. Let $f : [0, \infty) \to \mathbb{R}$ be a function and $t > 0$. Then for $0 < \alpha < 1$, the M-fractional derivative of f of order α is defined as

$$D_M^{\alpha,\beta} f(t) = \lim_{\epsilon \to 0} \frac{f(tE_\beta(\epsilon t^{-\alpha}) - f(t)}{\epsilon}$$

Where $E_\beta(\cdot), \beta > 0$ is Mittag-Leffler function with one parameter.

If f is M-differentiable in some interval $(0, a), a > 0$ and

$$\lim_{t \to 0^+} D_M^{\alpha,\beta} f(t)$$

exists, then we have

$$D_M^{\alpha,\beta} f(0) = \lim_{t \to 0^+} D_M^{\alpha,\beta} f(t)$$

Theorem 2.1. Let $0 < \alpha \leq 1, \beta > 0, a, b \in \mathbb{R}$ and f, g be M-differentiable at a point $t > 0$. Then

1. $D_M^{\alpha,\beta}(af + bg)(t) = aD_M^{\alpha,\beta} f(t) + bD_M^{\alpha,\beta} g(t)$ for all $a, b \in \mathbb{R}$.
2. $D_M^{\alpha,\beta}(f \cdot g)(t) = f(t)D_M^{\alpha,\beta} g(t) + g(t)D_M^{\alpha,\beta} f(t)
3. D_M^{\alpha,\beta}(\{f\})(t) = \frac{g(t)D_M^{\alpha,\beta}(f(t)-f(t))D_M^{\alpha,\beta} g(t)}{|g(t)|^2}
4. D_M^{\alpha,\beta}(c) = 0$, where $f(t) = c$ is a constant.
5. $D_M^{\alpha,\beta} t^a = \frac{a}{\Gamma(\beta+1)} t^{a-\alpha}
6. Moreover, f is differentiable, then $D_M^{\alpha,\beta} f(t) = \frac{t^{1-\alpha}}{\Gamma(\beta+1)} \frac{df(t)}{dt}$

Additionally, M-derivatives of certain functions as follows:

1. $D_M^{\alpha,\beta} \sin(\frac{1}{\alpha} t^\alpha) = \frac{\cos(\frac{1}{\alpha} t^\alpha)}{\Gamma(\beta+1)}
2. D_M^{\alpha,\beta} \cos(\frac{1}{\alpha} t^\alpha) = \frac{-\sin(\frac{1}{\alpha} t^\alpha)}{\Gamma(\beta+1)}
3. D_M^{\alpha,\beta} e^{\frac{t^\alpha}{\alpha}} = \frac{e^{\frac{t^\alpha}{\alpha}}}{\Gamma(\beta+1)}$
Theorem 2.2. Let \(a > 0 \) and \(t \geq a \). Then, the \(M \)-integral of order \(\alpha \) of a function \(f \) is defined by

\[
M I_{a}^{\alpha} f(t) = \Gamma(\beta + 1) \int_{a}^{t} \frac{f(x)}{x^{1-\alpha}} dx
\]

Theorem 2.3. Let \(a \geq 0 \) and \(0 < \alpha < 1 \). Also let \(f \) be a continuous function such that there exists \(M I_{a}^{\alpha} f \). Then

\[
D_{M}^{\alpha, \beta}(M I_{a}^{\alpha} f(t)) = f(t)
\]

Theorem 2.4. Let \(f, g : [a, b] \to \mathbb{R} \) be two functions such that \(f, g \) are differentiable and \(0 < \alpha < 1 \). Then

\[
\int_{a}^{b} f(x) D_{M}^{\alpha, \beta} g(x) dx = f(x) g(x)|_{a}^{b} - \int_{a}^{b} g(x) f(x) dx
\]

where \(d_{a} x = \frac{\Gamma(\beta+1)}{x^{1-\alpha}} dx \)

3. Existence and Uniqueness Theorem

Let linear sequential \(M \)-fractional differential equation of order \(n \alpha \)

\[
nD_{M}^{\alpha, \beta} y + p_{n-1}(t) nD_{M}^{\alpha, \beta} y + ... + p_{2}(t)^{2} D_{M}^{\alpha, \beta} y + p_{1}(t) D_{M}^{\alpha, \beta} y + p_{0}(t) y = 0 \quad (1)
\]

where \(nD_{M}^{\alpha, \beta} y = D_{M}^{\alpha, \beta} D_{M}^{\alpha, \beta} ... D_{M}^{\alpha, \beta} y \), \(n \) times

Similarly, non-homogeneous fractional differential equation with \(M \)-derivative is

\[
nD_{M}^{\alpha, \beta} y + p_{n-1}(t) nD_{M}^{\alpha, \beta} y + ... + p_{2}(t)^{2} D_{M}^{\alpha, \beta} y + p_{1}(t) D_{M}^{\alpha, \beta} y + p_{0}(t) y = f(t) \quad (2)
\]

We define an \(n \)-th order differential operator for eqn. (1) as following

\[
L_{\alpha, \beta}[y] = n D_{M}^{\alpha, \beta} y + p_{n-1}(t) nD_{M}^{\alpha, \beta} y + ... + p_{2}(t)^{2} D_{M}^{\alpha, \beta} y + p_{1}(t) D_{M}^{\alpha, \beta} y + p_{0}(t) y = 0 \quad (3)
\]

Theorem 3.1. Let \(\Gamma(\beta+1) t^{\alpha-1} p(t), \Gamma(\beta+1) t^{\alpha-1} f(t) \in C(a, b) \) and let \(y \) be \(M \)-differentiable for \(0 < \alpha \leq 1 \) and \(\beta > 0 \). Then the initial value problem

\[
D_{M}^{\alpha, \beta} y + p(t) y = f(t) \quad (4)
\]

\[
y(t_{0}) = y_{0} \quad (5)
\]

has exactly one solution on the interval \((a, b) \) where \(t_{0} \in (a, b) \)

Proof. Using property (6) in Theorem 2.1, we have

\[
D_{M}^{\alpha, \beta} y + p(t) y = f(t)
\]

\[
\frac{t^{1-\alpha}}{\Gamma(\beta+1)} y' + p(t) y = f(t)
\]

\[
y' + \Gamma(\beta+1) t^{\alpha-1} p(t) y = \Gamma(\beta+1) t^{\alpha-1} f(t)
\]
The proof is clear from classical linear fundamental theorem existence and uniqueness. □

Theorem 3.2. If \(\Gamma(\beta+1)t^{\alpha-1}p_{n-1}(t), \ldots, \Gamma(\beta+1)t^{\alpha-1}p_1(t), \Gamma(\beta+1)t^{\alpha-1}p_0(t), \Gamma(\beta+1) \) \(f(t) \in C(a, b) \) and \(y \) be \(n \) times \(M \)-differentiable function, then a solution \(y(t) \) of the initial value problem

\[
^nD_M^{\alpha,\beta}y + p_{n-1}(t)y + \ldots + p_2(t)^2D_M^{\alpha,\beta}y + p_1(t)D_M^{\alpha,\beta}y + p_0(t)y = f(t) \quad (6)
\]

\[
y(t_0) = y_0, D_M^{\alpha,\beta}y(t_0) = y_1, \ldots, n^{-1}D_M^{\alpha,\beta}y(t_0) = y_{n-1}, a < t_0 < b \quad (7)
\]

Proof. The existence of a local solution is obtained by transform our problem into the first order system of differential equations. So, we introduce new variables

\[
x_1 = y, x_2 = D_M^{\alpha,\beta}y, x_3 = D_M^{\alpha,\beta}y, \ldots, x_n = n^{-1}D_M^{\alpha,\beta}y
\]

In this, we have

\[
D_M^{\alpha,\beta}x_1 = x_2
\]

\[
D_M^{\alpha,\beta}x_2 = x_3
\]

\[
\vdots
\]

\[
D_M^{\alpha,\beta}x_{n-1} = x_n
\]

\[
D_M^{\alpha,\beta}x_n = -p_{n-1}x_n - \ldots - p_2x_3 - p_1x_2 - p_0x_1 + f(t)
\]

The above equations can be written as the following

\[
D_M^{\alpha,\beta}X(t) + P(t)X(t) = F(t)
\]

\[
X'(t) + \Gamma(\beta+1)t^{\alpha-1}P(t)X(t) = \Gamma(\beta+1)t^{\alpha-1}F(t)
\]

The existence and uniqueness of solution (6)-(7) follows from classical theorems on existence and uniqueness for system equation. □

Theorem 3.3. If \(y_1 \) and \(y_2 \) are \(n \) times \(M \)-differentiable functions and \(c_1, c_2 \) are arbitrary numbers, then \(L_{\alpha,\beta} \) is linear.

\[
i.e., L_{\alpha,\beta}[c_1y_1 + c_2y_2] = c_1L_{\alpha,\beta}[y_1] + c_2L_{\alpha,\beta}[y_2]
\]

Proof. We can easily derived the proof of this theorem by applying same procedure in Theorem-4.3 [5] to \(M \)-derivative. □
Theorem 3.4. If \(y_1, y_2, \ldots, y_n \) are the solutions of equation \(L_{\alpha,\beta}[y] = 0 \) and \(c_1, c_2, \ldots, c_n \) are arbitrary constants, then the linear combination \(y(t) = c_1 y_1 + c_2 y_2 + \ldots + c_n y_n \) is also solution of \(L_{\alpha,\beta}[y] = 0 \).

Proof. We can easily derived the proof of this theorem by applying same procedure in Theorem-4.4[5] to \(M \)- derivative.

Definition 3.1. For \(n \) functions \(y_1, y_2, \ldots, y_n \), we define the \(M \)-Wronskain of these function to be the determinant

\[
W_{\alpha,\beta}(t) = \begin{vmatrix}
y_1 & y_2 & \cdots & y_n \\
D_M^{\alpha,\beta} y_1 & D_M^{\alpha,\beta} y_2 & \cdots & D_M^{\alpha,\beta} y_n \\
\vdots & \vdots & \ddots & \vdots \\
n^{-1} D_M^{\alpha,\beta} y_1 & n^{-1} D_M^{\alpha,\beta} y_2 & \cdots & n^{-1} D_M^{\alpha,\beta} y_n
\end{vmatrix}
\]

Theorem 3.5. Let \(y_1, y_2, \ldots, y_n \) be \(n \) solutions of \(L_{\alpha,\beta}[y] = 0 \). If there is a \(t_0 \in (a, b) \) such that \(W_{\alpha,\beta}(t_0) \neq 0 \), then \(y_1, y_2, \ldots, y_n \) is a fundamental set of solutions.

Proof. We need to show that if \(y(t) \) is a solution of \(L_{\alpha,\beta}[y] = 0 \), then we can write \(y(t) \) as a linear combination of \(y_1, y_2, \ldots, y_n \).

\[
i.e, y = c_1 y_1 + c_2 y_2 + \ldots + c_n y_n
\]

so the problem reduces to finding the constants \(c_1, c_2, \ldots, c_n \). These constants are found by solving the following linear system of \(n \) equations

\[
\begin{align*}
c_1 y_1(t_0) + c_2 y_2(t_0) + \ldots + c_n y_n(t_0) &= y(t_0) \\
c_1 D_M^{\alpha,\beta} y_1(t_0) + c_2 D_M^{\alpha,\beta} y_2(t_0) + \ldots + c_n D_M^{\alpha,\beta} y_n(t_0) &= D_M^{\alpha,\beta} y(t_0) \\
\vdots \\
c_1^{n-1} D_M^{\alpha,\beta} y_1(t_0) + c_2^{n-1} D_M^{\alpha,\beta} y_2(t_0) + \ldots + c_n^{n-1} D_M^{\alpha,\beta} y_n(t_0) &= n^{-1} D_M^{\alpha,\beta} y(t_0)
\end{align*}
\]

Using Cramers rule, we can find

\[
c_i = \frac{W_{\alpha,\beta}^i(t_0)}{W_{\alpha,\beta}(t_0)}, 1 \leq i \leq n
\]

Since \(W_{\alpha,\beta}(t_0) \neq 0 \), it follows that \(c_1, c_2, \ldots, c_n \) exist. \(\square \)

Theorem 3.6. Let \(y_1, y_2, \ldots, y_n \) be \(n \) solutions of \(L_{\alpha,\beta}[y] = 0 \). Then

1. \(W_{\alpha,\beta}(t) \) satisfies the differential equation \(D_M^{\alpha,\beta} W_{\alpha,\beta} + p(n-1) W_{\alpha,\beta} = 0 \)
2. If \(t_0 \) is any point in \((a, b) \), then

\[
W_{\alpha,\beta}(t) = W_{\alpha,\beta}(t_0) e^{-\Gamma(\beta+1) \int_{t_0}^{t} x^{\alpha-1} p_{n-1}(x) dx}
\]

Further, if \(W_{\alpha,\beta}(t_0) \neq 0 \) then \(W_{\alpha,\beta}(t) \neq 0 \) for all \(t \in (a, b) \)
Proof. (1) Let us introduce new variables

\[x_1 = y, x_2 = D_M^{\alpha,\beta} y, x_3 = 2D_M^{\alpha,\beta} y, \ldots, x_n = n-1D_M^{\alpha,\beta} y \]

From this, we have

\[D_M^{\alpha,\beta} x_1 = x_2 \]
\[D_M^{\alpha,\beta} x_2 = x_3 \]
\[\vdots \]
\[D_M^{\alpha,\beta} x_{n-1} = x_n \]

\[D_M^{\alpha,\beta} X(t) = P(t)X(t) \]

We have

\[D_M^{\alpha,\beta} W_{\alpha,\beta}(t) = (a_{11} + a_{22} + \ldots + a_{nn})W_{\alpha,\beta}(t) \]

In our case

\[a_{11} + a_{22} + \ldots + a_{nn} = -p_{n-1}(t) \]

So,

\[D_M^{\alpha,\beta} W_{\alpha,\beta}(t) + p_{n-1}(t)W_{\alpha,\beta}(t) = 0 \]

(2) The above differential equation can be solved by the method of integrating factor, we have

\[W_{\alpha,\beta}(t) = W_{\alpha,\beta}(t_0)e^{-\Gamma(\beta+1)\int_{t_0}^{t} x^{\alpha-1}p_{n-1}(x)dx} \]

Thus the proof of theorem is completed. \(\square \)

Theorem 3.7. If \(\{y_1, y_2, \ldots, y_n\} \) is a fundamental set of solutions of \(L_{\alpha,\beta}[y] = 0 \) where \(\Gamma(\beta+1)t^{\alpha-1}p_{n-1}(t) \ldots \Gamma(\beta+1)t^{\alpha-1}p_1(t), \Gamma(\beta+1)t^{\alpha-1}p_0(t) \in C(a, b) \), then \(W_{\alpha,\beta}(t) \neq 0 \) for all \(t \in (a, b) \).

Proof. By applying procedure in Theorem-4.8 [5] to \(M \)-derivative, we can easily prove this theorem. \(\square \)

Theorem 3.8. Let \(\Gamma(\beta+1)t^{\alpha-1}p_{n-1}(t), \ldots, \Gamma(\beta+1)t^{\alpha-1}p_1(t), \Gamma(\beta+1)t^{\alpha-1}p_0(t) \in C(a, b) \). The solution set \(\{y_1, y_2, \ldots, y_n\} \) is a fundamental set of solutions to the equation \(L_{\alpha,\beta}[y] = 0 \) if and only if the functions \(y_1, y_2, \ldots, y_n \) are linearly independent.
Proof. By applying procedure in Theorem-4.9 [5] to M-derivative, we can easily prove this theorem. □

Theorem 3.9. Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions of the equation (1) and y_p be any particular solution of the non homogeneous equation (2). Then the general solution of the equation is $y = c_1y_1 + c_2y_2 + ... + c_ny_n + y_p$

Proof. Let $L_{\alpha,\beta}$ be the differential operator and $y(t)$ and $y_p(t)$ be the solutions of the non homogeneous equation $L_{\alpha,\beta}[y] = f(t)$. If we take $u(t) = y(t) - y_p(t)$, then by linearity of $L_{\alpha,\beta}$ we have,

$$L_{\alpha,\beta}[u] = L_{\alpha,\beta}[y(t) - y_p(t)] = L_{\alpha,\beta}[y(t)] - L_{\alpha,\beta}[y_p(t)] = f(t) - f(t) = 0$$

Then $u(t)$ is a solution of the homogenous equation $L_{\alpha,\beta}[y] = 0$. Then by Theorem 3.4

$$u(t) = c_1y_1(t) + c_2y_2(t) + ... + c_ny_n(t)$$

i.e,

$$y(t) - y_p(t) = c_1y_1(t) + c_2y_2(t) + ... + c_ny_n(t)$$

Then

$$y(t) = c_1y_1(t) + c_2y_2(t) + ... + c_ny_n(t) + y_p(t)$$

□

4. Solution of Homogeneous Case

Consider the n times M-differentiable function y for $\alpha \in (0,1]$ and $\beta > 0$. The homogeneous sequential linear fractional differential equation with M-derivative is

$$^{n}D_{\alpha}^{\beta}y + p_{n-1}(t)^{n-1}D_{\alpha}^{\beta}y + ... + p_2(t)^2D_{\alpha}^{\beta}y + p_1(t)D_{\alpha}^{\beta}y + p_0(t)y = 0 \quad (8)$$

where $^{n}D_{\alpha}^{\beta}y = D_{\alpha}^{\beta}D_{\alpha}^{\beta} ... D_{\alpha}^{\beta}y$ n times, and the coefficients $p_0, p_1, ..., p_{n-1}$ are real constants.

We define an r^n-order differential operator for eqn. (1) as following

$$L_{\alpha,\beta}[y] = ^nD_{\alpha}^{\beta}y + p_{n-1}^{n-1}D_{\alpha}^{\beta}y + ... + p_2^{2}D_{\alpha}^{\beta}y + p_1D_{\alpha}^{\beta}y + p_0y = 0 \quad (9)$$

If $y_1(t), y_2(t), ..., y_n(t)$ are linearly independent solutions of Eqn.(1), then general solution is

$$y = c_1y_1(t) + c_2y_2(t) + ... + c_ny_n(t)$$

where $c_1, c_2, ..., c_n$ are arbitrary constants.

Lemma 4.1. Suppose that $L_{\alpha,\beta}[]$ is a linear operator with constant coefficients and $\alpha \in (0,1]$ and $\beta > 0$, then for $t > 0$

$$L_{\alpha,\beta}[e^{\frac{\Gamma(\beta+1)}{\alpha}r^\alpha}] = P_n(r)[e^{\frac{\Gamma(\beta+1)}{\alpha}r^\alpha}]$$

Where $P_n(r) = r^n + p_{n-1}r^{n-1} + ... + p_0$ and r is a real or complex constant.
Lemma 4.2.

Let \(D_M^{\alpha, \beta} y = r e^{r \Gamma(\beta+1)} t^\alpha \) be the characteristic equation. From Theorem 3.3 it follows that

\[
D_M^{\alpha, \beta} y = r e^{r \Gamma(\beta+1)} t^\alpha, \quad \ldots, \quad D_M^{n, \beta} y = r^n e^{r \Gamma(\beta+1)} t^\alpha
\]

(10)

Proof.

\(M \)-derivatives of \(y = e^{r \Gamma(\beta+1)} t^\alpha \) are

\[
D_M^{\alpha, \beta} y = r e^{r \Gamma(\beta+1)} t^\alpha, \quad D_M^{\alpha, \beta} y = r^2 e^{r \Gamma(\beta+1)} t^\alpha, \quad \ldots, \quad D_M^{n, \beta} y = r^n e^{r \Gamma(\beta+1)} t^\alpha
\]

We substitute

\[
y = e^{r \Gamma(\beta+1)} t^\alpha, \quad \text{and Eqn.}(10) \text{ in } L_{\alpha, \beta}[y]
\]

\[
L_{\alpha, \beta}[e^{r \Gamma(\beta+1)} t^\alpha] = \left(r^n D_M^{\alpha, \beta} + p_{n-1} D_M^{\alpha, \beta} + \ldots + p_2 D_M^{\alpha, \beta} + p_1 D_M^{\alpha, \beta} + p_0 \right) e^{r \Gamma(\beta+1)} t^\alpha
\]

\[
= (r^n + P_{n-1} r^{n-1} + \ldots + P_0) e^{r \Gamma(\beta+1)} t^\alpha
\]

Hence, the proof is completed. \(\square \)

The solution to the equation (8) is \(y = e^{r \Gamma(\beta+1)} t^\alpha \).

It follows from Eqn.\((9)\) and Lemma 3.1 that

\[
L_{\alpha, \beta}[e^{r \Gamma(\beta+1)} t^\alpha] = p_n(r) e^{r \Gamma(\beta+1)} t^\alpha = 0
\]

Where \(P_n(r) = r^n + P_{n-1} r^{n-1} + \ldots + P_0 \) is called as the characteristic polynomial. For all \(r \), we have \(e^{r \Gamma(\beta+1)} t^\alpha \neq 0 \). Hence \(P_n(r) = 0 \).

Here

\[
r^n + P_{n-1} r^{n-1} + \ldots + P_0 = 0
\]

(11)

is called as the characteristic equation.

Lemma 4.2. Let \(r \) be a root of the characteristic equation \((11)\), then

\[
\frac{\partial}{\partial r} \left(L_{\alpha, \beta}[e^{r \Gamma(\beta+1)} t^\alpha] \right) = L_{\alpha, \beta}[e^{r \Gamma(\beta+1)} t^\alpha]
\]

and

\[
\frac{\partial^l}{\partial r^l} e^{r \Gamma(\beta+1)} t^\alpha = \left(\Gamma(\beta+1) t^\alpha \right)^l e^{r \Gamma(\beta+1)} t^\alpha \]

\(l \) is integer.

Proof. From Theorem 3.3 it follows that \(L_{\alpha, \beta}[\cdot] \) is linear and also \(\frac{\partial}{\partial r} \) is linear by property of classical derivative. Hence

\[
\frac{\partial}{\partial r} \left(L_{\alpha, \beta}[e^{r \Gamma(\beta+1)} t^\alpha] \right) = L_{\alpha, \beta}[e^{r \Gamma(\beta+1)} t^\alpha]
\]

Additionally, from classical derivative, it follows that

\[
\frac{\partial^l}{\partial r^l} e^{r \Gamma(\beta+1)} t^\alpha = \left(\Gamma(\beta+1) t^\alpha \right)^l e^{r \Gamma(\beta+1)} t^\alpha
\]

\(\square \)

Lemma 4.3. If \(r_1 \) is a root of multiplicity of \(\mu_1 \) of the characteristic equation \((11)\), then the functions \(y_{1,l}(t) \), where \(l = 0, 1, \ldots, \mu_1 - 1 \) such that

\[
y_{1,l} = \left(\Gamma(\beta+1) t^\alpha \right)^l e^{r_1 \Gamma(\beta+1)} t^\alpha
\]

are solutions of Eq.\((8)\).
Proof. Consider \(L_{\alpha,\beta} \left[\frac{e^{\Gamma(\beta+1)} t^\alpha}{\alpha} \right] \) = \(p_n(r) e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \). From Lemma 4.2 and applying classical Leibniz rule it follows that

\[
\begin{align*}
\left\{ L_{\alpha,\beta} \left[\frac{\partial^j}{\partial r^j} e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \right] \right\}_{r=r_1} = & \left\{ \frac{\partial^j}{\partial r^j} \left[L_{\alpha,\beta} \left[e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \right] \right] \right\}_{r=r_1} = \left\{ \frac{\partial^j}{\partial r^j} \left[p_n(r) e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \right] \right\}_{r=r_1} \\
\left\{ L_{\alpha,\beta} \left[\frac{\partial^j}{\partial r^j} e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \right] \right\}_{r=r_1} = & \sum_{j=0}^{l} \binom{l}{j} \left[\frac{\partial^{l-j}}{\partial r^{l-j}} e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \right]_{r=r_1} \frac{\partial^j}{\partial r^j} \left[P_n(r) \right]_{r=r_1}
\end{align*}
\]

Since \(\frac{\partial^j}{\partial r^j} \left[P_n(r) \right]_{r=r_1} = 0 \) for \(j = 0, 1, ..., \mu_1 - 1 \)

\[
\left\{ L_{\alpha,\beta} \left[\frac{\partial^j}{\partial r^j} e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \right] \right\}_{r=r_1} = 0
\]

From Lemma 4.2

\[
\left\{ L_{\alpha,\beta} \left[\left(\frac{\Gamma(\beta+1)}{\alpha} t^\alpha \right)^l e^{\frac{r(\beta+1)}{\alpha} t^\alpha} \right] \right\}_{r=r_1} = 0
\]

\[
L_{\alpha,\beta} \left[y_{1,l}(t) \right] = 0
\]

Hence \(y_{1,l}(t) \) are solutions of Eq.(8). □

Corollary 4.1. Let \(r_j, j = 1, 2, ..., k \) be distinct roots of multiplicity \(\mu_j, j = 1, 2, ..., k \) of the characteristic Eq.(5). Then the following functions

\[
\bigcup_{j=1}^{k} \left\{ \left(\frac{\Gamma(\beta+1)}{\alpha} t^\alpha \right)^l e^{\frac{r_j(\beta+1)}{\alpha} t^\alpha} \right\}_{l=0}^{\mu_j-1}
\]

are linearly independent solutions of Eq.(8).

Proof. Corollary 4.1 follows from Lemma 4.3 and Theorem 3.5. □

Lemma 4.4. If \(r_1 \) and \(\bar{r}_1 \) (\(r_1 = a + ib, b \neq 0 \)) are complex roots of multiplicity \(\sigma_1 \) of the characteristic equation (11), then for \(l = 0, 1, ..., \sigma_1 - 1 \), the functions

\[
y_{1,l}(t) = \left(\frac{\Gamma(\beta+1)}{\alpha} t^\alpha \right)^l e^{\frac{r_1(\beta+1)}{\alpha} t^\alpha} \left[\cos \left(\frac{b\Gamma(\beta+1)}{\alpha} t^\alpha \right) + isin \left(\frac{b\Gamma(\beta+1)}{\alpha} t^\alpha \right) \right]
\]

and

\[
y_{2,l}(t) = \left(\frac{\Gamma(\beta+1)}{\alpha} t^\alpha \right)^l e^{\frac{r_1(\beta+1)}{\alpha} t^\alpha} \left[\cos \left(\frac{b\Gamma(\beta+1)}{\alpha} t^\alpha \right) - isin \left(\frac{b\Gamma(\beta+1)}{\alpha} t^\alpha \right) \right]
\]

are linearly independent solutions of Eq.(8).

Proof. Since \(r_1 = a + ib \) is a root of multiplicity \(\sigma_1 \) of the characteristic equation (11), From Lemma 4.3 and using Eulers identity it follows that, the functions

\[
y_{1,l}(t) = \left(\frac{\Gamma(\beta+1)}{\alpha} t^\alpha \right)^l e^{\frac{(a+ib)(\beta+1)}{\alpha} t^\alpha}
\]
\[y_{1,l}(t) = \left(\frac{\Gamma(\beta + 1)}{\alpha} t^\alpha \right)^l e^{\frac{\alpha r_l^{(\beta+1)}}{\alpha} t^\alpha} \left[\cos \left(\frac{b \Gamma(\beta + 1)}{\alpha} t^\alpha \right) + i \sin \left(\frac{b \Gamma(\beta + 1)}{\alpha} t^\alpha \right) \right] \]

are solutions of the Eq. (8). Similarly, for \(\tilde{r}_l = a - ib \), the functions

\[y_{2,l}(t) = \left(\frac{\Gamma(\beta + 1)}{\alpha} t^\alpha \right)^l e^{\frac{(a - ib) \Gamma(\beta+1)}{\alpha} t^\alpha} \]

are solutions of the Eq. (8). Hence proof is completed. \(\square \)

Corollary 4.2. If \(\{ r_j, \tilde{r}_j \}_{j=1}^m \), \(r_j = a_j + ib_j, b_j \neq 0 \) distinct 2m roots of multiplicity \(\{ \sigma_j \}_{j=1}^m \) of the characteristic equation (11), then, the functions

\[\bigcup_{j=1}^m \left\{ \left(\frac{\Gamma(\beta + 1)}{\alpha} t^\alpha \right)^l e^{\frac{a_j r_j^{(\beta+1)}}{\alpha} t^\alpha} \cos \left(\frac{b_j \Gamma(\beta + 1)}{\alpha} t^\alpha \right) + \sin \left(\frac{b_j \Gamma(\beta + 1)}{\alpha} t^\alpha \right) \right\} \]

and

\[\bigcup_{j=1}^m \left\{ \left(\frac{\Gamma(\beta + 1)}{\alpha} t^\alpha \right)^l e^{\frac{a_j \tilde{r}_j^{(\beta+1)}}{\alpha} t^\alpha} \cos \left(\frac{b_j \Gamma(\beta + 1)}{\alpha} t^\alpha \right) - \sin \left(\frac{b_j \Gamma(\beta + 1)}{\alpha} t^\alpha \right) \right\} \]

are solutions of the Eq. (8). Hence proof is completed. \(\square \)

Theorem 4.1. If \(\{ r_j \}_{j=1}^k \) are distinct k roots of multiplicity \(\{ \mu_j \}_{j=1}^k \) and \(\{ \lambda_j, \bar{\lambda}_j \}_{j=1}^m \), \(\lambda_j = a_j + ib_j, b_j \neq 0 \) are distinct 2m roots of multiplicity \(\{ \sigma_j \}_{j=1}^m \) of the characteristic equation (11) such that \(\sum_{j=1}^k \mu_j = 2 \sum_{j=1}^m \sigma_j = n \), then the functions

\[\bigcup_{j=1}^k \left\{ \left(\frac{\Gamma(\beta + 1)}{\alpha} t^\alpha \right)^l e^{r_j^{(\beta+1)}} t^\alpha \right\}^{\mu_j-1} \]

\[\bigcup_{j=1}^m \left\{ \left(\frac{\Gamma(\beta + 1)}{\alpha} t^\alpha \right)^l e^{a_j \tilde{r}_j^{(\beta+1)}} t^\alpha \right\}^{\sigma_j-1} \]

and

\[\bigcup_{j=1}^m \left\{ \left(\frac{\Gamma(\beta + 1)}{\alpha} t^\alpha \right)^l e^{a_j \tilde{r}_j^{(\beta+1)}} t^\alpha \right\}^{\sigma_j-1} \]

are the fundamental set of solutions of the equation (8).
Proof. The proof of the Theorem 4.1 is follows from Corollary 4.1, Corollary 4.2 and Theorem 3.5. □

Example 4.1.

$$2D_M^{\alpha,\beta}y + 4D_M^{\alpha,\beta}y + 3y = 0 \quad (12)$$

The characteristic equation of (12) is

$$r^2 + 4r + 3 = 0$$

Therefore, the roots are $$r = -3$$ and $$r = -1$$

Hence, the general solution is

$$y(t) = c_1e^{-3\Gamma(\beta+1)/\alpha} + c_2e^{-\Gamma(\beta+1)/\alpha}$$

Example 4.2.

$$2D_M^{\alpha,\beta}y - 4D_M^{\alpha,\beta}y + 4y = 0 \quad (13)$$

The characteristic equation of (13) is

$$r^2 - 4r + 4 = 0$$

The roots are $$r_1, r_2 = 2$$

Hence, the general solution is

$$y(t) = (c_1 + c_2 \Gamma(\beta+1)/\alpha) e^{2\Gamma(\beta+1)/\alpha}$$

Example 4.3.

$$2D_M^{\alpha,\beta}y + 4D_M^{\alpha,\beta}y + 5y = 0 \quad (14)$$

The characteristic equation of (14) is

$$r^2 + 4r + 5 = 0$$

The roots are $$r_1 = -2 + i$$ and $$r_2 = -2 - i$$

Hence, the general solution is

$$y(t) = e^{-2\Gamma(\beta+1)/\alpha} \left[\cos \left(\frac{\Gamma(\beta+1)\alpha}{\alpha} t^\alpha \right) + i \sin \left(\frac{\Gamma(\beta+1)\alpha}{\alpha} t^\alpha \right) \right]$$

5. Solution of Non-Homogeneous Case

In this section, Method of variation of parameters is applied to derive the particular solution of the equation.

$$nD_M^{\alpha,\beta}y + p_{n-1}(t)D_M^{\alpha,\beta}y + \ldots + p_2(t)D_M^{\alpha,\beta}y + p_1(t)D_M^{\alpha,\beta}y + p_0(t)y = f(t) \quad (15)$$

where $$y$$ is $$n$$ times $$M$$-differentiable function for $$\alpha \in (0,1]$$ and $$\beta > 0.$$
Theorem 5.1. If \(u(t) \) is a solution of homogeneous case of the equation (15) such that

\[
u(t) = \sum_{i=1}^{n} c_i y_i(t)
\]

then particular solution of the equation (15) is

\[
v(t) = \sum_{i=1}^{n} c_i(t) y_i(t)
\]

Where \(c_1(t), c_2(t), ..., c_n(t) \) provide following system of equations

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)y_i(t) = 0
\]

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)D_{M}^{\alpha,\beta} y_i(t) = 0
\]

\[
\vdots
\]

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)n^{-2}D_{M}^{\alpha,\beta} y_i(t) = 0
\]

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)n^{-1}D_{M}^{\alpha,\beta} y_i(t) = f(t)
\]

Proof. The solution of the equation (15) is in the form

\[
v(t) = \sum_{i=1}^{n} c_i(t) y_i(t)
\]

The \(M \)-derivative of \(v(t) \) for \(\alpha \in (0, 1] \) and \(\beta > 0 \) will be

\[
D_{M}^{\alpha,\beta} v(t) = \sum_{i=1}^{n} c_i(t)D_{M}^{\alpha,\beta} y_i(t) + \sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)y_i(t)
\]

Applying the first condition \(\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)y_i(t) = 0 \), we obtain

\[
D_{M}^{\alpha,\beta} v(t) = \sum_{i=1}^{n} c_i(t)D_{M}^{\alpha,\beta} y_i(t)
\]

If we calculate the \(M \)-derivative of \(D_{M}^{\alpha,\beta} v(t) \) for \(\alpha \in (0, 1] \) and \(\beta > 0 \), then we get

\[
2 D_{M}^{\alpha,\beta} v(t) = \sum_{i=1}^{n} c_i(t)D_{M}^{\alpha,\beta} y_i(t) + \sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)D_{M}^{\alpha,\beta} y_i(t)
\]
Apply second condition \(\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t) D_{M}^{\alpha,\beta} y_i(t) = 0 \), we obtain

\[
2 D_{M}^{\alpha,\beta} v(t) = \sum_{i=1}^{n} c_i(t)^2 D_{M}^{\alpha,\beta} y_i(t)
\]

By continuing in this way, we get

\[
n^{-1} D_{M}^{\alpha,\beta} v(t) = \sum_{i=1}^{n} c_i(t)^{n-1} D_{M}^{\alpha,\beta} y_i(t) + \sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)^{n-2} D_{M}^{\alpha,\beta} y_i(t)
\]

We substitute \(v(t), 2 D_{M}^{\alpha,\beta} v(t), ..., n D_{M}^{\alpha,\beta} v(t) \) in the equation (15), we have

\[
\sum_{i=1}^{n} c_i(t)^n D_{M}^{\alpha,\beta} y_i(t) + \sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)^{n-1} D_{M}^{\alpha,\beta} y_i(t) + p_{n-1} \sum_{i=1}^{n} c_i(t)^{n-1} D_{M}^{\alpha,\beta} y_i(t) + ... + p_1 D_{M}^{\alpha,\beta} y_i(t) + p_0 y_i(t) = f(t)
\]

Since \(y_1(t), y_2(t), ..., y_n(t) \) are solutions of homogeneous case of equation (8), then

\[
\sum_{i=1}^{n} c_i(t)^{n-1} D_{M}^{\alpha,\beta} y_i(t) = f(t)
\]

We obtain \(n^{th} \) condition as

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)^{n-1} D_{M}^{\alpha,\beta} y_i(t) = f(t)
\]

Hence we obtain the following system

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)y_i(t) = 0
\]

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)D_{M}^{\alpha,\beta} y_i(t) = 0
\]

\[
\vdots
\]

\[
\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)^{n-2} D_{M}^{\alpha,\beta} y_i(t) = 0
\]
\[\sum_{i=1}^{n} D_{M}^{\alpha,\beta} c_i(t)^{n-1} D_{M}^{\alpha,\beta} y_i(t) = f(t) \]

Solving the above system (17) provides \(D_{M}^{\alpha,\beta} c_i(t), i = 1, 2, ..., n \). Therefore we can write the particular solution of equation (15) as

\[v(t) = \sum_{i=1}^{n} c_i(t)y_i(t) \]

Example 5.1.

\[2D_{M}^{\alpha,\beta} y + 4D_{M}^{\alpha,\beta} y + 3y = f(t) \]

(a) Let \(f(t) = e^{2\alpha} \). For \(v(t) = c_1(t)e^{-\frac{3\Gamma(\beta+1)}{\alpha} t} + c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha} t} \), the system of equations are built by the conditions as following

\[D_{M}^{\alpha,\beta} c_1(t)e^{-\frac{3\Gamma(\beta+1)}{\alpha} t} + D_{M}^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha} t} = 0 \]

\[-3D_{M}^{\alpha,\beta} c_1(t)e^{-\frac{3\Gamma(\beta+1)}{\alpha} t} - D_{M}^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha} t} = e^{2\alpha} \]

Solving the above system of equations and using M-integral we obtain

\[c_1(t) = \frac{\Gamma(\beta+1) e^{\frac{2\alpha + 3\Gamma(\beta+1)}{\alpha} t}}{4\alpha + 3\alpha t} \]

\[c_2(t) = \frac{\Gamma(\beta+1) e^{\frac{2\alpha + 3\Gamma(\beta+1)}{\alpha} t}}{4\alpha + 2\alpha t} \]

Then particular solution \(v(t) \) is

\[v(t) = \frac{\Gamma(\beta+1)^2}{4\alpha^2 + 8\alpha \Gamma(\beta+1) + 3\alpha^2 (\beta+1)^2} e^{2\alpha} \]

(b) Let \(f(t) = 2t^{2\alpha} + t^\alpha - 3. \) The system of equations for this case is

\[D_{M}^{\alpha,\beta} c_1(t)e^{-\frac{3\Gamma(\beta+1)}{\alpha} t} + D_{M}^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha} t} = 0 \]

\[-3D_{M}^{\alpha,\beta} c_1(t)e^{-\frac{3\Gamma(\beta+1)}{\alpha} t} - D_{M}^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha} t} = 2t^{2\alpha} + t^\alpha - 3 \]

Solve this system of equations, we have

\[c_1(t) = \frac{-1}{3} t^{2\alpha} e^{\frac{3\Gamma(\beta+1)}{\alpha} t} + \left(\frac{4\alpha - 3\Gamma(\beta+1)}{18\Gamma(\beta+1)} \right) t^\alpha e^{\frac{3\Gamma(\beta+1)}{\alpha} t} \]

\[+ \left(\frac{-4\alpha^2 + 3\alpha \Gamma(\beta+1) + 27\Gamma(\beta+1)^2}{54\Gamma(\beta+1)^2} \right) e^{\frac{3\Gamma(\beta+1)}{\alpha} t} \]

\[c_2(t) = t^{2\alpha} e^{\frac{\Gamma(\beta+1)}{\alpha} t} + \left(\frac{\Gamma(\beta+1) - 4\alpha}{2\Gamma(\beta+1)} \right) t^\alpha e^{\frac{\Gamma(\beta+1)}{\alpha} t} \]

\[+ \left(\frac{4\alpha^2 - (\alpha \Gamma(\beta+1) + 3\Gamma(\beta+1)^2)}{2\Gamma(\beta+1)^2} \right) e^{\frac{\Gamma(\beta+1)}{\alpha} t} \]

Hence, particular solution \(v(t) \) is obtained by

\[v(t) = \frac{2}{3} t^{2\alpha} + \left(\frac{3\Gamma(\beta+1) - 16\alpha}{9\Gamma(\beta+1)} \right) t^\alpha e^{\frac{\Gamma(\beta+1)}{\alpha} t} + \left(\frac{52\alpha^2 - 12\alpha \Gamma(\beta+1) - 27\Gamma(\beta+1)^2}{27\Gamma(\beta+1)^2} \right) e^{\frac{\Gamma(\beta+1)}{\alpha} t} \]
(c) Let \(f(t) = \sin(2t^\alpha) \). The system of equations for this case is

\[
D_M^{\alpha,\beta} c_1(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} + D_M^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} = 0
\]

\[
-3D_M^{\alpha,\beta} c_1(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} - D_M^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} = \sin(2t^\alpha)
\]

Solve this system of equations, we have

\[
c_1(t) = \frac{-3\Gamma(\beta+1)^2}{8\alpha^2 + 18\Gamma(\beta+1)^2} e^{\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} \sin(2t^\alpha) + \frac{\alpha\Gamma(\beta+1)}{4\alpha^2 + 9\Gamma(\beta+1)^2} e^{\frac{3\Gamma(\beta+1)}{\alpha}t^\alpha} \cos(2t^\alpha)
\]

\[
c_2(t) = \frac{\Gamma(\beta+1)^2}{8\alpha^2 + 2\Gamma(\beta+1)^2} e^{\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} \sin(2t^\alpha) - \frac{\alpha\Gamma(\beta+1)}{4\alpha^2 + \Gamma(\beta+1)^2} e^{\frac{3\Gamma(\beta+1)}{\alpha}t^\alpha} \cos(2t^\alpha)
\]

Hence, particular solution \(v(t) \) is obtained by

\[
v(t) = \frac{-4\alpha^2\Gamma(\beta+1)^2 + 3\Gamma(\beta+1)^4}{16\alpha^4 + 40\alpha^2\Gamma(\beta+1)^2 + 9\Gamma(\beta+1)^4} \sin(2t^\alpha)
\]

\[
-\frac{8\alpha\Gamma(\beta+1)^3}{16\alpha^4 + 40\alpha^2\Gamma(\beta+1)^2 + 9\Gamma(\beta+1)^4} \cos(2t^\alpha)
\]

(d) Let \(f(t) = e^{2t^\alpha} t^\alpha \). The system of equations for this case is

\[
D_M^{\alpha,\beta} c_1(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} + D_M^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} = 0
\]

\[
-3D_M^{\alpha,\beta} c_1(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} - D_M^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} = e^{2t^\alpha} t^\alpha
\]

Solve this system of equations, we have

\[
c_1(t) = \frac{-\Gamma(\beta+1)}{4\alpha + 6\Gamma(\beta+1)} t^\alpha e^{\frac{2\alpha + 3\Gamma(\beta+1)}{\alpha}t^\alpha} + \frac{\alpha\Gamma(\beta+1)}{2(2\alpha + 3\Gamma(\beta+1))^2} e^{\frac{2\alpha + 3\Gamma(\beta+1)}{\alpha}t^\alpha}
\]

\[
c_2(t) = \frac{-\Gamma(\beta+1)}{4\alpha + 2\Gamma(\beta+1)} t^\alpha e^{\frac{2\alpha + \Gamma(\beta+1)}{\alpha}t^\alpha} - \frac{\alpha\Gamma(\beta+1)}{2(2\alpha + \Gamma(\beta+1))^2} e^{\frac{2\alpha + \Gamma(\beta+1)}{\alpha}t^\alpha}
\]

Hence, particular solution \(v(t) \) is obtained by

\[
v(t) = \frac{\Gamma(\beta+1)^2}{4\alpha^2 + 8\alpha\Gamma(\beta+1) + 3\Gamma(\beta+1)^2} t^\alpha e^{2t^\alpha} - \frac{4\alpha^2\Gamma(\beta+1)^2 + 4\alpha\Gamma(\beta+1)^3}{(4\alpha^2 + 8\alpha\Gamma(\beta+1) + 3\Gamma(\beta+1)^2)^2} e^{2t^\alpha}
\]

(e) Let \(f(t) = e^{-4t^\alpha} \). Take \(\alpha \neq \frac{3}{4} \) and \(\alpha \neq \frac{1}{4} \), the system of equations for this case is

\[
D_M^{\alpha,\beta} c_1(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} + D_M^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} = 0
\]

\[
-3D_M^{\alpha,\beta} c_1(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} - D_M^{\alpha,\beta} c_2(t)e^{-\frac{\Gamma(\beta+1)}{\alpha}t^\alpha} = e^{-4t^\alpha}
\]

Solve this system of equations, we have

\[
c_1(t) = \frac{\Gamma(\beta+1)}{8\alpha - 6\Gamma(\beta+1)} e^{\frac{\Gamma(\beta+1) - 4\alpha}{\alpha}t^\alpha}
\]
\[c_2(t) = \frac{\Gamma(\beta + 1)}{2\Gamma(\beta + 1) - 8\alpha} e^{\frac{\Gamma(\beta + 1) - 4\alpha}{\alpha}} t^\alpha \]

Hence, we obtain particular solution \(v(t) \) as following:

\[v(t) = \frac{\Gamma(\beta + 1)^2}{16\alpha^2 - 16\alpha\Gamma(\beta + 1) + 3\Gamma(\beta + 1)^2} e^{-4t^\alpha} \]

Take \(\alpha = \frac{3}{4} \) and \(v(t) = c_1(t)e^{-4\Gamma(\beta + 1)t^{\frac{3}{4}}} + c_2(t)e^{-\frac{4\Gamma(\beta + 1)}{3}t^{\frac{3}{4}}} \)

The system of equations is

\[D^\frac{3}{4}_M c_1(t)e^{-4\Gamma(\beta + 1)t^{\frac{3}{4}}} + D^\frac{3}{4}_M c_2(t)e^{-\frac{4\Gamma(\beta + 1)}{3}t^{\frac{3}{4}}} = 0 \]

\[-3D^\frac{3}{4}_M c_1(t)e^{-4\Gamma(\beta + 1)t^{\frac{3}{4}}} - D^\frac{3}{4}_M c_2(t)e^{-\frac{4\Gamma(\beta + 1)}{3}t^{\frac{3}{4}}} = e^{-4t^\frac{3}{4}} \]

We solve the above equation, \(c_1(t) = -\frac{\Gamma(\beta + 1)}{6 + 6\Gamma(\beta + 1)} e^{(-4+4\Gamma(\beta + 1))t^{\frac{3}{4}}} \) and \(c_2(t) = \frac{\Gamma(\beta + 1)}{6 + 2(\beta + 1)} e^{(-12+4\Gamma(\beta + 1))t^{\frac{3}{4}}} \) is obtained.

The particular solution is \(v(t) = -\frac{\Gamma(\beta + 1)^2}{9 - 12\Gamma(\beta + 1) + 3\Gamma(\beta + 1)^2} e^{-4t^\frac{3}{4}} \)

Take \(\alpha = \frac{1}{4} \) and \(v(t) = c_1(t)e^{-12\Gamma(\beta + 1)t^{\frac{1}{4}}} + c_2(t)e^{-4\Gamma(\beta + 1)t^{\frac{1}{4}}} \)

The system of equations is

\[D^\frac{1}{4}_M c_1(t)e^{-12\Gamma(\beta + 1)t^{\frac{1}{4}}} + D^\frac{1}{4}_M c_2(t)e^{-4\Gamma(\beta + 1)t^{\frac{1}{4}}} = 0 \]

\[-3D^\frac{1}{4}_M c_1(t)e^{-12\Gamma(\beta + 1)t^{\frac{1}{4}}} - D^\frac{1}{4}_M c_2(t)e^{-4\Gamma(\beta + 1)t^{\frac{1}{4}}} = e^{-4t^\frac{1}{4}} \]

We solve the above equation, \(c_1(t) = -\frac{\Gamma(\beta + 1)}{2 + 6\Gamma(\beta + 1)} e^{(-4+12\Gamma(\beta + 1))t^{\frac{1}{4}}} \) and \(c_2(t) = \frac{\Gamma(\beta + 1)}{2 + 2(\beta + 1)} e^{(-4+4\Gamma(\beta + 1))t^{\frac{1}{4}}} \) is obtained.

The particular solution is \(v(t) = -\frac{4\Gamma(\beta + 1)^2}{4 - 6\Gamma(\beta + 1) + 12\Gamma(\beta + 1)^2} e^{-4t^\frac{1}{4}} \)

6. Conclusion

In this paper, Existences and Uniqueness theorems for sequential linear \(M \)-fractional differential equations are presented. We give solution of \(M \)-fractional differential equations with constants for homogeneous case using fractional exponential function and for non homogeneous case, we applied method of variation of parameters.

References

[1] Basik, Marek, Numerical scheme for a two-term sequential fractional differential equation, Prace Naukowe Instytutu Matematykii Informatyki Politechniki Czstochowskiej 10.2 (2011) 17-29.
[2] B. Bonilla, Margarita Rivero, Juan J. Trujillo, On systems of linear fractional differential equations with constant coefficients, Applied Mathematics and Computation 187.1 (2007) 68-78.

[3] Bonilla, Blanca, Margarita Rivero, and Juan J. Trujillo, Linear differential equations of fractional order, Advances in fractional calculus, Springer Netherlands, (2007) 77-91.

[4] M. B. Finan, A Second Course in Elementary Ordinary Differential Equations, Arkansas Tech University, 2013.

[5] A. Gkdoan, E. nal and E. elik, Existence and Uniqueness Theorems for Sequential Linear Conformable Fractional Differential Equations, Miskolc Mathematical Notes, 17(No 1) (2016)267-279. DOI:10.18514/MMN.2016.1635.

[6] U.N. Katugampola, A new fractional derivative with classical properties. arXiv:1410.6535v2, (2014).

[7] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, M., A new Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014) 6570.

[8] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Math. Studies., North-Holland, New York, 2006.

[9] Kilbas, Anatoly A, α-Analytic solutions of some linear fractional differential equations with variable coefficients, Applied mathematics and computation 187.1 (2007): 239-249.

[10] Klimek M, Sequential fractional differential equations with Hadamard derivative, Communications in Nonlinear Science and Numerical Simulation 16.12 (2011): 4689-4697.

[11] G. B. Loghmani, S. Javanmardi, Numerical methods for sequential fractional differential equations for Caputo operator, Bull. Malays. Math. Sci. Soc. (2) 35.2 (2012).

[12] K.S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equations, J. Wiley and Sons, New York, 1993.

[13] I. Podlubny, Fractional Differential Equations, Academic Press, USA, 1999.

[14] E. Unal, A. Gkdoan, E. elik, General solution to sequential linear conformable fractional differential equations with constant coefficients. arXiv:1602.01452v1 [math.CA] (2016).

[15] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the local M-derivative, Progress in Fractional Differentiation and Applications, 4, No. 4 (2018) 479-492.

1 Research Scholar, VIT University, Chennai Campus, India
E-mail address: v.padmapriya2015@vit.ac.in

2 Division of Mathematics, School of Advanced Sciences, VIT University, Chennai Campus, India
E-mail address: kaliyappan.m@vit.ac.in