Detection and Quantitation of Frauds in the Authentication of Cranberry-Based Extracts by UHPLC-HRMS (Orbitrap) Polyphenolic Profiling and Multivariate Calibration Methods

Sergio Barbosaa, Naiara Pardo-Matesa, Miriam Hidalgo-Serranoa, Javier Saurinaa,b, Lluis Puignoua,b and Oscar Núñeza,b,c,*

a Department of Chemical Engineering and Analytical Chemistry, University of Barcelona. Martí i Franquès 1-11, E08028 Barcelona, Spain.

b Research Institute in Food Nutrition and Food Safety, University of Barcelona. Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramanet, Barcelona, Spain.

c Serra Hunter Fellow. Generalitat de Catalunya (Spain).

* Corresponding author: Oscar Núñez

(Phone: 34-93-403-3706, Fax: 34-93-402-1233, e-mail: oscar.nunez@ub.edu)
Abstract

UHPLC-HRMS (Orbitrap) polyphenolic profiling was applied to the characterization, classification and authentication of cranberry-based natural and pharmaceutical products. 53 polyphenolic standards were characterized to build a user accurate mass database which was then proposed to obtain UHPLC-HRMS polyphenolic profiles by means of ExactFinder™ software. Principal component analysis results showed a good sample discrimination according to the fruit employed. Regarding cranberry-based pharmaceuticals, discrimination according to the presentation format (syrup, sachets, capsules, etc.) was also observed due to the enhancement of some polyphenols by purification and preconcentration procedures. Procyanidin A2 and homogentisic, sinapic, veratric, cryptochlorogenic and caffeic acids showed to be important polyphenols to achieve cranberry-based products discrimination against the other studied fruits. Partial least square regression allowed the determination of adulterant percentages in cranberry-fruit samples. Very satisfactory results, with adulteration quantification errors lower than 6.0% were obtained even at low adulteration levels.

Keywords: Polyphenols; Cranberry; Food characterization; Food Authentication; UHPLC; High resolution mass spectrometry; Orbitrap
INTRODUCTION

Food manufacturers and society are concerned about food product quality. Foodstuffs are complex products including, mainly, naturally occurring substances, but other compounds such as those migrating from packaging materials or those coming from technological and agrochemical processes can also be present. Typically, organoleptic and socioeconomic factors influence foodstuff consumer preferences. However, nowadays the presence of bioactive substances with healthy effects is gaining interest in the society. Unfortunately, fraudulent practices derived from food product adulterations by substitution, for instance, of the most valued components for others of lower commercial value and lower health beneficial properties are being employed to reduce food production costs.\(^1\) For example, the addition of a co-fruit (a more economic and accessible fruit) to the final fruit-based processed foodstuffs such as juices is among the most common fraudulent practices that can be found in the fruit industry.\(^2\) Fruit-based pharmaceutical preparations are also susceptible of fraudulent practices.

Cranberry (\textit{Vaccinium macrocarpon}) and its derivatives have shown several health beneficial effects based on their ability to prevent urinary tract infections by hindering the adhesion of pathogenic bacteria to the urinary tract uroepithelial cells. This bioactivity is attributed to the presence of some specific flavan-3-ol polyphenols such as proanthocyanidins (PACs). These substances are classified into A-type and B-type PACs depending on the interflavan linkage between their monomeric units. When they are linked between the C6 or C8 positions of the lower monomeric unit and the C4 position of the upper monomeric unit they are considered B-type PACs. When an additional interflavan linkage through an ether-type bond between the C7 or C5 positions of the lower monomeric unit and the C2 position of the upper monomeric unit is present, the compounds are classified as A-type PACs.\(^3\) However, only A-type PACs,
which accounts for more than 65% of the PAC content in cranberries, exhibit the bioactive activity to prevent urinary tract infections. In contrast, B-type PACs, which are found in other fruits such as blueberry, raspberry and grapes, do not show this activity. Recently, some commercial pharmaceutical preparations supposedly produced only from cranberry extracts (and commercialized to prevent urinary tract infections) are adulterated with other less expensive fruit-based extracts (obtained from grapes or blueberries) poor in the desired bioactive polyphenols. This is because the overall contents of PACs are roughly assessed in pharmaceutical laboratories by a simple colorimetric analysis based on the reaction of PACs with 4-dimethylaminocinnamaldehyde (DMAC)8,9 unable to differentiate among A- and B-type PACs. Thus, quality control of raw fruit extract materials (cranberry, blueberry, raspberry and grapes) as well as food-processed products require reliable, selective and effective methods for food authentication and for the prevention of frauds.

Nowadays, society is increasingly interested in polyphenols (aromatic secondary metabolites widely distributed into the plant kingdom) because of their great abundance in our diet, but mainly due to their role in the prevention of some diseases based on their antioxidant properties.10-12 Furthermore, apart from their contribution to sensorial attributes such as the flavor and color properties of food products,13,14 polyphenols have been recognized as relevant food descriptors. Polyphenolic content can be influenced by multiple parameters: environment climatic conditions, water availability sources, growing and cultivation techniques, the soil management practices, the degree of fruit maturation, etc. Thus, polyphenolic distribution and content can be used as analytical data to establish food authentication for correct product designations of origin (PDO) assignments and for the prevention of frauds. For instance, some fruit characteristic polyphenolic compounds have been successfully employed to detect frauds in nectars,
fruit juices and jams adulterated with cheaper fruits.2,15,16 Thus, polyphenolic profiling and fingerprinting are very promising tools for the determination of food authenticity due to their taxonomic specificity in fruits.16,17 For example, phlorizin and phloretin in the case of apples, arbutin in pears, naringenin derivatives in the case of citric fruits, and punicalagins (ellagic acid derivatives) for pomegranate, are specific polyphenols characteristic of the commented fruits.2,15,18,20 Among polyphenols, anthocyanins are abundant in berries and grapes, and they have an strong influence in both flavor and color attributes. They have also been exploited by some authors as potential markers of grape varieties,21-23 cherries,24,25 blueberries26 and other berries.27 However, in some cases, the reported anthocyanin content on some berry fruits is inconsistent, fact that is unlikely ascribed only to geographical location and environment differences. Other factors such as the sample extraction methods employed and post-harvest actions including the storage conditions are more likely to explain these differences.28,29

The determination of polyphenolic compounds in foodstuff is complex not only because of the food matrix but also due to the diversity of polyphenols, with a great variability of chemical structures, that may be present. In addition, polyphenols have a wide range of polarities and sizes (simple phenolic acids, tannins, etc.), and they can be found in a wide range of concentration levels.30 Thus, polyphenolic separation, determination and identification, as well as their sample extraction, are hindered by the chemical diversity within this family of compounds. The determination of polyphenols in fruit-based products is mainly addressed by liquid chromatography coupled to mass spectrometry or tandem mass spectrometry (LC-MS/(MS)) techniques. Electrospray as ionization source and triple quadrupole, ion-trap and linear ion-trap as MS analyzers are typically employed.15,30-33 Recently, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have also been described for the mass
spectrometric ionization and determination of polyphenols.34-36 Today, high resolution mass spectrometry (HRMS) techniques and the accurate mass measurements achieved with time-of-flight (TOF) and Orbitrap analyzers have also gained popularity in the characterization, identification and determination of polyphenols in foodstuffs.30,37,38

Lately, the use of polyphenolic compositional fingerprints and profiles as a source of information to achieve the classification of samples and their authentication in the prevention of frauds by means of chemometric methods is emerging.17,30,39,40 The profiling approach employs the concentrations of targeted polyphenols as data, while in the fingerprinting approach data consists on instrumental signals such as intensity counts registered as a function of retention time and \textit{m/z} values. The extraction of relevant information on descriptive and functional foodstuff characteristics to address the characterization and classification of products, and for authentication purposes, is achieved by further chemometric analysis of these data.30

This work aims at developing a UHPLC-HRMS (Orbitrap) method for the detection and quantitation of frauds in the authentication of fruit-based extracts by means of a targeted polyphenolic profiling and multivariate calibration. For that purpose, the 53-targeted polyphenols belonging to different families were fully characterized in terms of HRMS and product ion scan spectra with stepped normalized collision energies with accurate mass measurements, as well as retention time under reversed-phase separation conditions. An accurate mass database was built from such spectral and chromatographic data. Then, different classes of fruit-based (cranberry, blueberry, raspberry and grape) products including the raw fruit extracts, fruit juices and raisins, as well as commercially available cranberry-based pharmaceuticals including raw extracts, powder capsules, syrup, and sachets were analyzed after a simple sample extraction with acetone/water/hydrochloric acid (70:29.9:0.1 \textit{v/v/v}). Data corresponding
to the 53-targeted polyphenolic compounds was employed as chemical descriptors to achieve the classification of the analyzed samples by principal components analysis (PCA). Partial least squared (PLS) regression was then applied to quantify fruit adulteration levels (grape, blueberry and raspberry) in cranberry samples.

MATERIALS AND METHODS

Reagents and solutions

Unless otherwise indicated, all the standards and chemicals used in this work were of analytical grade. Fifty-three polyphenolic standards belonging to different families (phenolic acids, benzoic acids, cinnamic acids, phenolic aldehydes, phenolic terpenes, flavones, flavanols, proanthocyanidins and stilbenes) were employed, and their chemical formula, CAS number and structure are given in Table 1. All the studied polyphenols were purchased from Sigma-Aldrich (Steinhein, Germany).

LC-MS grade water, methanol, acetonitrile, formic acid (98-100%) and acetone were also purchased from Sigma-Aldrich, and hydrochloric acid (98%) was from Merck (Seelze, Germany).

Stock standard solutions of all polyphenols (~1000 mg/L) were prepared in LC-MS grade methanol in amber-glass vials. Intermediate working solutions were prepared weekly from these stock standard solutions by appropriate dilution with LC-MS grade water. All stock solutions were stored at 4 °C for not more than 1 month.

Instrumentation

Chromatographic separation was carried out on an Accela UHPLC system (Thermo Fisher Scientific, San José, CA, USA), equipped with a quaternary pump, an autosampler and a column oven. A porous-shell Ascentis® Express C18 reversed-phase
column (150 × 2.1 mm, 2.7 μm partially porous particle size) provided by Supelco (Bellefonte, PA, USA) was used for the proposed method. Separation under gradient elution based on 0.1% formic acid aqueous solution (solvent A) and acetonitrile also containing 0.1% formic acid (solvent B) was as follows: 0-1 min, isocratic conditions at 10% B; 1-20 min, linear gradient from 10 to 95% B; 20-23 min, isocratic step at 95% B; 23-24 min back to initial conditions at 10% B; and from 24 to 30 min, isocratic conditions at 10% B to re-equilibrate the column. The mobile phase flow-rate was 300 μL/min, and the injection volume employed (in full loop mode) was 10 μL.

The UHPLC system was coupled to a Q-Exactive Orbitrap HRMS system (Thermo Fisher Scientific) equipped with a heated electrospray ionization source (HESI-II) operated in negative ionization mode. Nitrogen was used as a sheath gas, sweep gas, and auxiliary gas at flow-rates of 60, 0 and 10 a.u. (arbitrary units), respectively. HESI-II heater temperature at 350 °C and capillary voltage at -2.5 kV were applied. Instrument capillary temperature was set at 320 °C, and an S-Lens RF level of 50 V was used. Q-Exactive Orbitrap HRMS system was tuned and calibrated using commercially available Thermo Fisher calibration solution every three days. The HRMS instrument was operated in full MS scan mode with a m/z range from 100 to 1,500 at a mass resolution of 70,000 full width at half-maximum (FWHM) at m/z 200, with an automatic gain control (AGC) target (the number of ions to fill the C-Trap) of 1.0E6 with a maximum injection time (IT) of 200 ms. Full MS scan mode was followed by a data-dependent scan operated product ion scan mode and applying for the fragmentation stepped normalized collision energies (NCE) of 17.5, 35 and 52.5 eV. Product ion spectra with an isolation window of 0.5 m/z and a fixed first mass of m/z 50 were registered. At this stage, a mass resolution of 17,500 FWHM at m/z 200, with an
AGC target at 2.0e5 and a maximum IT of 200 ms were employed. Data dependent scan
was triggered with an intensity threshold of 1.0E5.

Samples and sample treatment

106 samples including cranberry-based natural products (21 juices, 4 fruits and 8
raisins), grape-based natural products (17 juices, 4 fruits and 8 raisins), blueberry-based
natural products (6 juices and 6 fruits), raspberry-based natural products (10 fruits), and
cranberry-based pharmaceutical preparations presented in different formats (5 raw
extracts, 11 capsules, 4 sachets and 2 syrups) were analyzed in this work. Natural fruit
products were purchased from Barcelona markets. Juice products from different
trademarks (Granini, El Corte Inglés, OceanSpray, Int-Salim and Lambda) were
employed. Raisin samples were obtained from Barcelona markets and from several
commercially available trademarks (Eroski and Hacendado). Cranberry-based
pharmaceutical raw-extracts (Cysticran 40, several lots) were obtained from Deiters
S.L. (Barcelona, Spain). Other cranberry-based pharmaceutical products (several lots) in
different formats were obtained from the next sources: raw extracts Cysticran 40 from
Naturex-DBS (Sagamore, MA, USA); sachets Cysticlean from Vita Green (Hong Kong,
China) and sachets Urell from Pharmatoka (Rueil-Malmaison, France); capsules Cystop
from Deiters, capsules Urell from Pharmatoka, capsules Cranberola Cis-control from
Arkopharma (Madrid, Spain), capsules Urosens from Salvat (Barcelona, Spain) and
capsules Monorelle from Zambon (Bresso, Italy); and syrup Urell from Pharmatoka.

An Ultra-Turrax machine from Ika (Staufen, Germany) was used to grind fruit
and raisin samples. Raisin samples were mixed with water to help the cruising.
Cranberry-based pharmaceutical syrups, fruits and raisins were freeze-dried to obtain
completely lyophilized products (Telstar LyoQuest lyophilizer, Terrasa, Spain)
following the method described by Pardo-Mates et al.3 Briefly, a 24 h gradient temperature ramp from -80 °C to room temperature, followed by 6.5 h at 40 °C, was employed for lyophilization.

Sample treatment was carried out following a previously described method with some modifications.30,32,36,41,42 Briefly, 0.1 g of sample were extracted by sonication using 10 mL of an acetone:water:hydrochloric acid (70:29.9:0.1 v/v/v) solution, and the supernatant extracts obtained after centrifugation (3500 rpm, 15 min) were filtered (0.45 µm nylon filters, Whatman, Clifton, NJ, USA) and kept at -4 °C until their analysis.

Besides, a quality control (QC) sample was prepared by mixing 50 µL of each sample extract. The QC was employed to evaluate the repeatability of the proposed method and the robustness of the chemometric results. All samples were analyzed randomly and QCs were introduced every ten samples.

Cranberry extracts (pure samples) were adulterated with different quantities of other fruits to perform authentication studies by PLS regression. Standard and unknown samples used in the PLS calibration and prediction sets were prepared using fruit extracts obtained as previously indicated. Pure extracts and cranberry-fruit adulterated extracts (from 2 to 50% adulteration levels) were employed.

Data analysis

HRMS raw data was processed by ExactFinderTM v2.0 software (Thermo Fisher Scientific) by applying a user target accurate mass database list comprising the 53 studied and characterized polyphenols. Parameters including chromatographic retention time, accurate mass errors, isotopic patterns and product ion spectra with steeped normalized collision energies were used for identification and confirmation purposes.
Stand Alone Chemometrics Software (SOLO) obtained from Eigenvector Research was employed for the calculations using PCA and PLS regression. A theoretical background description of these chemometric procedures is described elsewhere.

Data matrices to be treated by PCA consisted of the peak area values of the 53 studied polyphenolic compounds found in the analyzed samples. The dimension of the matrix was 106 samples x 53 analytes. Normalization pretreatment with respect to the overall polyphenolic concentration was applied to provide similar weights to all the samples. The structure of the maps of samples and variables was investigated using the principal components (PCs) scatter plots of scores and loadings, respectively. The distribution of samples on the PCs (plot of scores) showed patterns that may be correlated to sample properties such as the type of fruit. In contrast, the distribution of variables on the PCs (plot of loadings) showed information regarding correlations and dependences of the studied polyphenols with the fruit products.

The percentage of fruit-extract adulterants (grape, blueberry or raspberry extracts) in the cranberry-based extracts was quantified by PLS. Samples available were distributed among training (calibration) and test (validation and prediction) sets (Table 1S in the supporting information). For both training and test steps, X-data matrices consisted of the polyphenol peak area signals of the corresponding samples and the Y-data matrices contained the adulteration fruit-extract percentages.

RESULTS AND DISCUSSION

HRMS characterization of targeted polyphenolic compounds

In the present work, a total of fifty-three polyphenolic standards belonging to different families (phenolic acids, benzoic acids, cinnamic acids, phenolic aldehydes,
phenolic terpenes, flavones, flavanols, proanthocyanidins and stilbenes) were analyzed by reversed-phase chromatography using a C18 fused-core UHPLC column under universal gradient elution conditions with water and acetonitrile (both 0.1% formic acid) as mobile phase components. Before sample analysis, HRMS characterization of targeted polyphenolic compounds was performed. For that purpose, targeted polyphenols were grouped in six standard solutions (preventing isobaric compounds) and analyzed with the proposed UHPLC-HRMS method (see experimental section) in negative ESI mode. Several parameters such as chromatographic retention times, HRMS spectra (at a resolution of 70,000 FWHM) and MS/HRMS product ion scan spectra (at a resolution of 17,500 FWHM) were established, and the data is summarized in Table 2. Although several coelutions were obtained within the analyzed polyphenols, these were clearly resolved by the high-resolution power of the Q-Exactive Orbitrap HRMS instrument. Regarding HRMS spectra, in general, all studied polyphenols provided as base peak the deprotonated molecule, [M-H]-, which was then selected as the precursor ion for the MS/HRMS spectra (see as an example the HRMS spectrum of rutin in Figure 1a). As can be seen in Table 2, accurate mass measurements with errors bellow 1 ppm were obtained for almost all the analyzed compounds (49 of 53), and only 4 polyphenols (sinapic acid, epigallocatechin gallate, procyanidin C1, and protocatechuic aldehyde) showed slightly higher mass errors, although always below 5 ppm. It should be pointed out that generally no in-source fragmentation was observed during the HRMS experiments and for those cases where a slight in-source fragmentation was present the resulted signals were lower than 20% (relative abundance), hence they were not considered relevant for the intended study (see as an example the MS/HRMS spectrum of rutin in Figure 1b).
Because of the great variety of chemical structures among the studied polyphenols (see Table 1), MS/HRMS spectra were obtained by a data dependent acquisition mode based on product ion scan applying for the fragmentation stepped normalized collision energies (NCE) of 17.5, 35 and 52.5 eV. Thus, the product ion scan spectra were obtained as the average spectrum of the three collision energies. The observed fragment ions, assignments and accurate mass errors obtained are also summarized in Table 2. It should be mentioned that as the main objective of this work is to establish a fast targeted screening method to obtain discriminant polyphenolic profiles among the analyzed samples, optimal MS/HRMS conditions were not established for each compound, and data dependent scan mode was triggered only if the obtained signal for the targeted polyphenols was higher than 1.0E5. This would explain the fact that for some compounds no fragmentation was observed under the established acquisition conditions. As an example, Figure 1c shows the fragmentation pathway of rutin, one of the studied polyphenols, among others, that showed higher fragmentation under the applied conditions. Accurate mass measurements for all observed fragment ions with errors below 3.732 ppm were obtained.

Spectral data was employed to build a user accurate mass database of polyphenolic compounds for screening purposes with the ExactFinder™ software.

UHPLC-HRMS polyphenolic profiling

UHPLC-HRMS polyphenolic profiles of fruit-based products and cranberry-based pharmaceuticals were studied in order to see if polyphenolic profiles resulted in proper chemical data to achieve sample classification and authentication. For that purpose, a total of 106 samples were processed with a simple sample extraction method and the obtained extracts were analyzed with a C18 reversed-phase UHPLC-HRMS
method using a fused-core column and a universal gradient elution profile (see experimental section). Data was registered in HRMS full scan mode \((m/z\ 100-1500) \) and a data dependent scan mode based on product ion scan with stepped normalized collision energies. As an example, Figure 2 shows the total ion chromatogram (TIC) obtained for the cranberry pharmaceutical raw extract sample E3. Extracted ion chromatogram and HRMS spectrum are also depicted in the figure.

Once all the fruit-based and pharmaceutical sample extracts were analyzed, polyphenolic profiles were obtained by submitting the HRMS raw data to ExactFinderTM screening software and employing the user target accurate mass database list of the 53 characterized polyphenols previously commented. To simplify the obtained data, a threshold signal of 1.0E5 was set in the screening software to consider that a compound could be present in the sample. Moreover, several confirmation parameters such as accurate mass measurements (mass errors lower than 5 ppm), isotopic pattern matches (higher than 85%), product ion scan spectra, and chromatographic retention times were established. After raw data processing with ExactFinderTM software a report is provided for each sample depicting the peak areas of all the targeted polyphenols found in agreement with the established confirmation criteria (Table 2S in the supporting information shows the ExactFinderTM report obtained for the cranberry pharmaceutical raw extract sample E3).

UHPLC-HRMS polyphenolic profiles consisting of peak areas extracted by ExactFinderTM software in the fruit-based, pharmaceutical samples and QCs were then obtained.

Exploratory principal component analysis
A data matrix containing the peak area information of the UHPLC-HRMS polyphenols of all analyzed samples was built to PCA exploration. The dimension of this polyphenolic matrix was 106 samples × 53 variables. Data was autoscaled with respect to the overall polyphenolic signal to provide similar weighs to all the samples. Figure 3 shows the score plot of PC1 vs PC2. It should be commented that QCs (not shown in the figure) appeared grouped showing a good repeatability and robustness of the proposed method. As can be seen, PC1 and PC2 roughly explained 65% of the data variance and a very acceptable discrimination among sample groups depending on the fruit of origin was achieved. For example, grape-based samples are grouped at the bottom of the score plot clearly separated from the other types of samples by PC2. Among the other samples, classification seem to be more related with PC1. In general, clear groups can be distinguished among them with the exception of some blueberry-based samples that are clustered together with some of the cranberry-based samples. Anyway, cranberry fruit samples are clearly discriminated from the raspberry ones. An interesting behavior was observed with the analyzed cranberry pharmaceutical samples. Those manufactured as sachets and syrups were grouped together with cranberry-fruit samples, while raw cranberry pharmaceutical extracts and capsules were completely discriminated and perfectly separated.

To better study this behavior and taking into consideration the raspberry, blueberry and grape extracts are expected to be used as adulterants of cranberry extracts, as previously commented in the introduction section, independent PCA models between cranberry-based samples and the other three fruit families studied were evaluated. Figure 4 shows the score and loading plots of (a) PC1 vs PC2 for cranberry- and raspberry-based samples, (b) PC2 vs PC3 for cranberry- and blueberry-based samples, and (c) PC1 vs PC2 for cranberry- and grape-based samples. As can be seen, cranberry-
based samples can be clearly differentiated, in general, from the other types of fruits, showing that the UHPLC-HRMS profiling approach can be proposed as a useful method to achieve the characterization and classification of the analyzed samples, as well as for the authentication of fruit extracts regarding the type of fruit employed. By analyzing the fruit extracts in pairs, the three PCA models showed that cranberry-based pharmaceuticals can be clearly distinguished in three groups: capsules and extracts, syrups and sachets, being the latest the ones that are in the three cases grouped close to the cranberry-based fruit samples. It should be mentioned that when the study was performed against blueberry-based samples (Figure 4b), capsules and extracts were differentiated into three groups although none of them can be attributed only to either capsule nor sachet presentation formats. The great differences between the cranberry-based fruit samples with some of the cranberry-based pharmaceuticals (mainly syrups, capsules and extracts) are clearly attributed to compositional differences associated to the technological treatment to produce such products. It has been found that concentration levels of the studied polyphenols are much higher in the pharmaceuticals since raw materials are subjected to purification and preconcentration processes. Hence, quantitative differences are partly compensated by data autoscaling although qualitative differences due to the enrichment in active components occurring in the pharmaceuticals are displayed in the PCA model. This finding was attributed to the fact that the purification and preconcentration procedures followed by pharmaceutical companies in the preparation of raw extracts from cranberry-fruits enhanced the presence of some polyphenols in comparison to non-treated cranberry-fruit samples.

Loading plots revealed those polyphenols contributing more to the discrimination of the samples. In general terms, it can be said that polyphenols such as procyánidin A2, with A-type bonds, are clearly enhanced in some cranberry
pharmaceuticals such as capsules, extracts and syrups, fact which was reasonably expected as the extract purification and enrichment was focused on increasing the proportion of oligomeric PACs with respect to more simple compounds (for the same reason, procyanidin C1 and B2 were also in this part of the loading plot). Caffeic and coumaric acids were other components displaying higher proportions in the nutraceuticals. On the contrary, in the untreated cranberry-based samples comprising fresh fruits and raisins, homogentisic, sinapic and vanillic acids seemed to be abundant. Differences in the composition among raspberry and cranberry, and among blueberry and cranberry fruits were not so noticeable. More remarkable seemed to be the differences in the polyphenolics of cranberry with respect to grape, being the last class richer in gallic acid and quercetin.

Adulteration prediction by partial least square regression

The applicability of UHPLC-HRMS polyphenolic profiles for the authentication and quantitation of fraud levels of adulterant fruit extracts by PLS was also evaluated. For that purpose, cranberry-fruit extracts were adulterated with extracts of the other three fruits (blueberry, raspberry and grapes) at different concentration levels (2, 2.5, 5, 6, 7, 12, 20 and 50%). Triplicates of all the adulterations as well as of 100% pure fruit extracts were prepared. 50% adulteration was prepared in quintuplicate to evaluate data reproducibility. All sample extracts were then processed with the proposed sample treatment procedure and extract solutions analyzed with the UHPLC-HRMS method to obtain the polyphenolic profiles as previously explained. The calibration set (Table 1S in supporting information) was first employed to establish the PLS model as indicated in the experimental section. Venetian blinds cross validation method, considering 3 data splits, was used to estimate the number of latent variables (LV) used for the method.
assessments. The performance of both calibration and prediction steps to predict adulterant percentages was studied under the selected model conditions. Figure 5 shows, as an example, the results obtained after applying the established PLS model for the prediction of grape adulterant levels in a cranberry fruit extract. Calibration and prediction errors obtained in all the adulteration cases studied are given in Table 3. As can be seen, very good quantitation of adulterant contents was obtained, with calibration errors in all cases below 0.01%, and prediction errors in the range of 2.71-5.96%. It should be considered that the proposed PLS models were evaluated for predicting values of low adulteration levels (2.5, 6 and 12%), demonstrating the appropriate performance of the developed method.

The results obtained in this work demonstrate that UHPLC-HRMS polyphenolic profiles by a simple screening of a home-made accurate mass database can be employed to achieve the characterization, classification and authentication of cranberry-based products and pharmaceuticals adulterated with more economic fruit-based extracts. HRMS provided, moreover, high selectivity and confirmation power to identify polyphenolic bioactive compounds that can be proposed as future biomarkers to address authentication issues of natural food-based products.

Conflict of Interest

There are no conflicts of interest to declare.

Acknowledgements

Authors wished to thank Deiters S.L. Company for providing some cranberry-based raw material extracts and several commercial cranberry-based pharmaceutical preparations.
Supporting Information description: Table S1: Samples Employed in the Training (Calibration) and Test (Prediction and Validation) Sets for Partial Least Squares Regression; Table S2: ExactFinderTM Report for the Cranberry Pharmaceutical Raw Extract Sample E3.

References

(1) Moore, J. C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. *J. Food Sci.* **2012**, *77*(4), R118–R126.

(2) Abad-García, B.; Garmón-Lobato, S.; Sánchez-Ilárduya, M. B.; Berrueta, L. A.; Gallo, B.; Vicente, F.; Alonso-Salces, R. M. Polyphenolic contents in Citrus fruit juices: Authenticity assessment. *Eur. Food Res. Technol.* **2014**, *238*(5), 803–818.

(3) Pardo-Mates, N.; Vera, A.; Barbosa, S.; Hidalgo-Serrano, M.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Characterization, classification and authentication of fruit-based extracts by means of HPLC-UV chromatographic fingerprints, polyphenolic profiles and chemometric methods. *Food Chem.* **2017**, *221*, 29–38.

(4) Foo, L. Y.; Lu, Y.; Howell, A. B.; Vorsa, N. The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. *Phytochemistry* **2000**, *54*(2), 173–181.

(5) Krueger, C. G.; Reed, J. D.; Feliciano, R. P.; Howell, A. B. Quantifying and characterizing proanthocyanidins in cranberries in relation to urinary tract health. *Anal. Bioanal. Chem.* **2013**, *405*(13), 4385–4395.

(6) Gu, L.; Kelm, M. A.; Hammerstone, J. F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R. L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. *J. Nutr.* **2004**, *134*(3), 613–617.
Howell, A. B.; Reed, J. D.; Krueger, C. G.; Winterbottom, R.; Cunningham, D. G.; Leahy, M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. *Phytochemistry* **2005**, *66* (18 SPEC. ISS.), 2281–2291.

Feliciano, R. P.; Shea, M. P.; Shanmuganayagam, D.; Krueger, C. G.; Howell, A. B.; Reed, J. D. Comparison of isolated cranberry (Vaccinium macrocarpon Ait.) proanthocyanidins to catechin and procyanidins A2 and B2 for use as standards in the 4-(dimethylamino)cinnamaldehyde assay. *J. Agric. Food Chem.* **2012**, *60* (18), 4578–4585.

Prior, R. L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Paynef, M. J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. *J. Sci. Food Agric.* **2010**, *90* (9), 1473–1478.

Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. *Am. J. Clin. Nutr.* **2004**, *79*, 727–747.

Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. *Crit. Rev. Food Sci. Nutr.* **2005**, *45* (4), 287–306.

Bach-Faig, A.; Berry, E. M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F. X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. *Public Health Nutr.* **2011**, *14*, 2274–2284.

Lesschaeve, I.; Noble, A. C. Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. *Am. J. Clin. Nutr.* **2005**, *81*, 3305–3355.

Boulton, R. B. The Copigmentation of Anthocynins and Its Role in the Color of Red Wine: Comments on a Critical Review. *Am. J. Enol. Vitic.* **2001**, *52* (2), 67–
(15) Abad-García, B.; Garmón-Lobato, S.; Berrueta, L. A.; Gallo, B.; Vicente, F. On-line characterization of 58 phenolic compounds in Citrus fruit juices from Spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry. *Talanta* **2012**, *99*, 213–224.

(16) Fügel, R.; Carle, R.; Schieber, A. Quality and authenticity control of fruit purées, fruit preparations and jams - A review. *Trends Food Sci. Technol.* **2005**, *16* (10), 433–441.

(17) Barbosa, S.; Pardo-Mates, N.; Puignou, L.; Núñez, O.; The Role of Polyphenols and Polyphenolic Fingerprinting Profiles in the Characterization and Authentication of Natural Food Products, in Taylor, J.C. (Ed.), Advances in Chemistry Research, Volume 40, Nova Science Publishers, Inc., New York, USA, **2017**, pp 1-58.

(18) Alonso-Salces, R. M.; Ndjoko, K.; Queiroz, E. F.; Loset, J. R.; Hostettmann, K.; Berrueta, L. A.; Gallo B.; Vicente, F. On-line characterisation of apple polyphenols by liquid chromatography coupled with mass spectrometry and ultraviolet absorbance detection. *J. Chromatogr. A* **2004**, *1046*, 89–100.

(19) Qu, W.J; Breksa, A.P.; Pan, Z.L.; Ma, H.L. Quantitative determination of major polyphenol constituents in pomegranate products. *Food Chem.* **2012**, *132*, 1585–1591.

(20) Raja, M.; Hernandez-Revellles, J.; Hernandez-Cassou, S.; Saurina, J. Determination of polyphenols in the pear pulp matrix by solvent extraction and liquid chromatography with UV-Vis detection. *Anal. Methods* **2014**, *6* (24), 9769–9776.
(21) Garcia-Beneytez, E.; Cabello, F.; Revilla, E. Analysis of grape and wine anthocyanins by HPLC-MS. *J. Agric. Food Chem.* **2003**, *51*, 5622–5629.

(22) Ortega-Regules, A.; Romero-Cascales, I.; Lopez-Roca, J.M.; Ros-Garcia, J.M.; Gomez-Plaza, E. Anthocyanin fingerprint of grapes: environmental and genetic variations. *J. Sci. Food Agric.* **2006**, *86* (10), 1460–1467.

(23) Mazzuca, P.; Ferranti, P.; Picariello, G.; Chianese, L.; Addeo, F. Mass spectrometry in the study of anthocyanins and their derivatives: differentiation of Vitis vinifera and hybrid grapes by liquid chromatography electrospray ionization mass spectrometry and tandem mass spectrometry. *J. Mass Spectrom.* **2005**, *40*, 83–90.

(24) Ballistreri, G.; Continella, A.; Gentile, A.; Amenta, M; Fabroni, S.; Rapisarda, P. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. *Food Chem.* **2013**, *140*, 630–638.

(25) Liu, Y.; Liu, X.Y.; Zhong, F.; Tian, R.R.; Zhang, K.C.; Zhang, X.M.; Li, T.H. Comparative Study of Phenolic Compounds and Antioxidant Activity in Different Species of Cherries. *J. Food Sci.* **2011**, *76*, C633–C638.

(26) Rodriguez-Mateos, A.; Cifuentes-Gomez, T.; Tabatabae, S.; Lebras, C.; Spencer, J.P.E. Procyanidin, Anthocyanin, and Chlorogenic Acid Contents of Highbush and Lowbush Blueberries. *J. Agric. Food Chem.* **2012**, *60*, 5772–5778.

(27) Johnson, M.C.; Tres, M.D.; Thomas, A.L.; Rottinghaus, G.E.; Greenlief, C.M. Discriminant Analyses of the Polyphenol Content of American Elderberry Juice from Multiple Environments Provide Genotype Fingerprint. *J. Agric. Food Chem.* **2017**, *65*, 4044–4050.

(28) Blackhall, M. L.; Berry, R.; Davies, N. W.; Walls, J. T. Optimized extraction of
anthocyanins from Reid Fruits’ Prunus avium ‘Lapins’ cherries. *Food Chem.*

2018, 256, 280–285.

(29) Ongkowijoyo, P.; Luna-Vital, D. A.; Gonzalez de Mejia, E. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. *Food Chem.* 2018, 250, 113–126.

(30) Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. *TrAC Trends Anal. Chem.* 2016, 88, 1–24.

(31) Ignat, I.; Volf, I.; Popa, V. I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. *Food Chem.* 2011, 126, 1821–1835.

(32) Puigventós, L.; Navarro, M.; Alechaga, É.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Determination of polyphenolic profiles by liquid chromatography-electrospray-tandem mass spectrometry for the authentication of fruit extracts. *Anal. Bioanal. Chem.* 2015, 407 (2), 597–608.

(33) Hamed, A. I.; Al-Ayed, A. S.; Moldoch, J.; Piacente, S.; Oleszek, W.; Stochmal, A. Profiles analysis of proanthocyanidins in the argun nut (Medemia argun - An ancient Egyptian palm) by LC-ESI-MS/MS. *J. Mass Spectrom.* 2014, 49 (4), 306–315.

(34) Rauha, J. P.; Vuorela, H.; Kostiainen, R. Effect of eluent on the ionization efficiency of flavonoids by ion spray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization mass spectrometry. *J. Mass Spectrom.* 2001, 36 (12), 1269–1280.

(35) Riffault, L.; Colas, C.; Destandau, E.; Pasquier, L.; André, P.; Elfakir, C. Non-targeted molecular characterisation of a rose flower ethyl acetate extract using
ultra-HPLC with atmospheric pressure photoionisation and quadrupole time-of-flight MS/MS. *Phytochem. Anal.* **2015**, *26* (3), 189–201.

(36) Parets, L.; Alechaga, É.; Núñez, O.; Saurina, J.; Hernández, S.; Puignou, L.

Ultrahigh pressure liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry for the determination of polyphenolic profiles in the characterization and classification of cranberry-based pharmaceutical preparations and natural ext. *Anal. Methods* **2016**, *8*, 4363–4378.

(37) Iswaldi, I.; Gómez-Caravaca, A. M.; Arráez-Román, D.; Uberos, J.; Lardón, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Characterization by high-performance liquid chromatography with diode-array detection coupled to time-of-flight mass spectrometry of the phenolic fraction in a cranberry syrup used to prevent urinary tract diseases, together with a study of its antibacter. *J. Pharm. Biomed. Anal.* **2012**, *58* (1), 34–41.

(38) Vallverdú-Queralt, A.; Jáuregui, O.; Medina-Remón, A.; Andrés-Lacueva, C.; Lamuela-Raventos, R. M. Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry. *Rapid Commun. Mass Spectrom.* **2010**, *24*, 2986–2992.

(39) Hu, C.; Xu, G. Mass-spectrometry-based metabolomics analysis for foodomics. *TrAC - Trends Anal. Chem.* **2013**, *52*, 36–46.

(40) Ibáñez, C.; García-Cañas, V.; Valdés, A.; Simó, C. Novel MS-based approaches and applications in food metabolomics. *TrAC - Trends Anal. Chem.* **2013**, *52*, 100–111.

(41) Wallace, T. C.; Giusti, M. M. Extraction and normal-phase HPLC-fluorescence-
electrospray MS characterization and quantification of procyanidins in cranberry extracts. *J. Food Sci.* 2010, 75 (8), 690–696.

(42) Puigventós, L.; Núñez, O.; Saurina, J. HPLC Fingerprints for the Authentication of Cranberry-Based Products Based on Multivariate Calibration Approaches. *Curr. Anal. Chem.* 2017, 13 (3), 256–261.

(43) SOLO software, Eigenvecto Research, http://www.eigenvector.com/software/solo.htm (Accessed on 6th November 2017).

(44) Massart, J.; Vandeginste, D.L.; Buydens, B.G.M.; de Jong, L.M.C.; Lewi, S.; Smeyers-Verbeke, P.J. Handbook of Chemometrics and Qualimetrics, J. Chem. Inf. Comput. Sci., 1997.

The authors thank the financial support received from the Spanish Ministry of Economy and Competitiveness under the projects CTQ2014-56324-C2-1-P and CTQ2015-63968-C2-1-P and from the Agency for Administration of University and Research Grants (Generalitat de Catalunya, Spain) under the projects 2017SGR-171 and 2017SGR-310.
Figure captions

Figure 1. (a) HRMS spectrum, (b) MS/HRMS spectrum and (c) fragmentation pathway of rutin.

Figure 2. UHPLC-HRMS total ion chromatogram (TIC) for cranberry pharmaceutical raw extract sample E3, and extracted ion chromatogram and HRMS spectrum of procyanidin A2 in the same sample.

Figure 3. PCA score plot of PC1 vs PC2 obtained using UHPLC-HRMS polyphenolic profiles of all the analyzed samples.

Figure 4. PCA score and loading plots of (a) PC1 vs PC2 for cranberry- and raspberry-based samples, (b) PC2 vs PC3 for cranberry- and blueberry-based samples, and (c) PC1 vs PC2 for cranberry- and grape-based samples.

Figure 5. PLS model applied to the quantitation of the grape percentage on cranberry-fruit extracts adulterated when using UHPLC-HRMS polyphenolic profiles.
Table 1. Chemical Structures and Classification of the Studied Polyphenols.

Compounds	Formula	CAS number	Structure
Phenolic acids			
4-Hydroxybenzoic	C7H6O3	99-96-7	
\(p\)-Coumaric	C9H8O3	501-98-4	
Sinapic	C11H12O5	530-59-6	
Vanillic	C8H8O4	121-34-6	
Homovanillic	C9H10O4	306-08-1	
Homogentisic acid	C8H4O4	451-13-8	
Chlorogenic acid	C16H18O9	327-97-9	
Cryptochlorogenic acid	C16H18O9	905-99-7	
Gallic	C7H6O5	149-91-7	
Ferulic	C10H10O4	537-98-4	
Gentisic	C7H4O2	490-79-9	
Caffeic	C9H8O4	331-39-5	
Syringic	C9H10O5	530-57-4	
Rosmarinic acid	C18H15O8	20283-92-5	
Flavones			
Fisetin	C15H10O6	528-48-3	
Taxifolin	C15H12O7	480-18-2	
Rutin	C27H30O16	207671-50-9	
Quercetin	C15H14O9	6151-25-3	
Table 1. Chemical Structures and Classification of the Studied Polyphenols (continuation).

Compounds	Formula	CAS number	Structure
Quercitrin	C_{21}H_{20}O_{11}	522-12-3	![Structure](image1.png)
Nepetin-7-glucoside	C_{22}H_{22}O_{12}	569-90-4	![Structure](image2.png)
Hesperidin	C_{28}H_{34}O_{15}	520-26-3	![Structure](image3.png)
Cirsimaritin	C_{17}H_{14}O_{6}	6601-62-3	![Structure](image4.png)
Myricetin	C_{15}H_{10}O_{8}	529-44-2	![Structure](image5.png)
Luteolin-7-O-β-d-glucuronide	C_{21}H_{16}O_{12}	38934-20-2	![Structure](image6.png)
Genkwanin	C_{18}H_{12}O_{5}	437-64-9	![Structure](image7.png)
Morin	C_{15}H_{10}O_{7}	654055-01-3	![Structure](image8.png)
Kaempferol	C_{15}H_{10}O_{6}	520-18-3	![Structure](image9.png)
Quercetin	C_{15}H_{10}O_{7}	117-39-5	![Structure](image10.png)
Homoplantaginin	C_{22}H_{22}O_{11}	17680-84-1	![Structure](image11.png)

Flavanols

(+)-Catechin	C_{15}H_{14}O_{6}	7295-85-4	![Structure](image12.png)
(-)-Epicatechin	C_{15}H_{14}O_{6}	490-46-0	![Structure](image13.png)
(-)-Epigallocatechin gallate	C_{22}H_{16}O_{11}	989-51-5	![Structure](image14.png)

Phenolic terpenes

| Carnosic acid | C_{20}H_{26}O_{4} | 3650-09-07 | ![Structure](image15.png) |
| Anemosapogenin | C_{30}H_{40}O_{4} | 85999-40-2 | ![Structure](image16.png) |
Table 1. Chemical Structures and Classification of the Studied Polyphenols (continuation).

Compounds	Formula	CAS number	Structure	
Rosmanol	C_{20}H_{26}O_{5}	80225-53-2	![Structure](image1)	
Betulinic acid	C_{30}H_{46}O_{3}	472-15-1	![Structure](image2)	
Asiatic acid	C_{30}H_{48}O_{5}	464-92-6	![Structure](image3)	
Carnosol	C_{20}H_{28}O_{4}	5957-80-2	![Structure](image4)	
12-methoxycarnosic acid	C_{21}H_{30}O_{4}	3650-09-07	![Structure](image5)	
Proanthocyanidins				
Procyanidin A2	C_{30}H_{24}O_{12}	41743-41-3	![Structure](image6)	
Procyanidin B2	C_{30}H_{26}O_{12}	29106-49-8	![Structure](image7)	
Procyanidin C1	C_{45}H_{38}O_{18}	37064-30-5	![Structure](image8)	
Stilbenes				
Polydatin	C_{20}H_{22}O_{8}	65914-17-2	![Structure](image9)	
Resveratrol	C_{14}H_{12}O_{3}	501-36-0	![Structure](image10)	
Phenolic aldehydes				
3,4-dihydroxybensaldehyde	C_{7}H_{6}O_{4}	139-85-5	![Structure](image11)	
Syringaldehyde	C_{9}H_{10}O_{4}	134-96-3	![Structure](image12)	
Compounds	Formula	CAS number	Structure	
---------------	---------	------------	-----------	
Vanillin	C₆H₈O₃	121-33-5	![Structure of Vanillin](image)	
Benoic acids				
Veratric acid	C₈H₁₀O₄	93-07-2	![Structure of Veratric acid](image)	
Cinnamic acids				
trans-Cinnamic acid	C₉H₇O₂	140-10-3	![Structure of trans-Cinnamic acid](image)	
Other Phenolics				
Tyrosol	C₈H₁₀O₂	501-94-0	![Structure of Tyrosol](image)	
Arbutin	C₁₂H₁₆O₇	497-76-7	![Structure of Arbutin](image)	
Ethyl gallate	C₉H₁₀O₅	831-61-8	![Structure of Ethyl gallate](image)	
Umbelliferon	C₉H₆O₃	93-35-6	![Structure of Umbelliferon](image)	
Ellagic acid	C₁₄H₆O₈	746-66-4	![Structure of Ellagic acid](image)	
Compounds	RT (min)	Chemical formula	HRMS spectrum	MS/HRMS spectrum
---------------------------	----------	------------------	---------------	------------------
Phenolic acids			[M-H] m/z	
4-Hydroxybenzoic acid	4.1	C₆H₆O₃	137.02442	-1.022
p-Coumaric acid	5.8	C₆H₆O₃	163.04007	-0.123
Sinapic acid	6.2	C₇H₇O₅	223.0612	-1.390
Vanillic acid	4.6	C₆H₆O₄	167.03498	-0.659
Homovanillic acid	4.9	C₆H₆O₄	181.05063	0.718
Homogenistis acid	2.1	C₇H₇O₅	167.03498	-0.778
Chlorogenic acid	3.8	C₆H₆O₅	353.08781	0.028
Cryptochlorogenic acid	4.2	C₆H₆O₅	353.08781	0.397
Gallic acid	1.5	C₆H₆O₅	169.01425	0.177
Ferulic acid	6.3	C₆H₆O₃	193.05063	0.518
Gentisic acid	4.3	C₆H₆O₃	153.01933	-0.915
Caffeic acid	4.7	C₆H₆O₃	179.03498	-1.341
Syringic acid	4.8	C₆H₆O₃	197.04555	0.660
Rosmarinic acid	7.2	C₆H₆O₃	359.07724	-0.058
Flavones			[M-H] m/z	
Fisetin	7.4	C₆H₆O₃	285.04046	0.596
Taxifolin	6.5	C₆H₆O₃	303.05103	0.561
Rutin	5.8	C₂H₂O₁₀₂	609.14611	0.886
Quercitrin	6.7	C₂H₂O₁₁	447.09328	0.224
Nepetin-7-glucoside	6.3	C₂H₂O₁₁	477.10385	-0.084
Hesperidin	6.8	C₂H₂O₁₁	609.18249	0.378
Cirsimartirin	11.2	C₆H₁₀O₄	313.07176	0.479
Myricetin	4.7	C₂H₂O₄	317.03029	0.252
Genkwanin	12.5	C₂H₂O₄	283.06120	-0.035
Morin	8.0	C₂H₂O₇	301.03528	-0.266
Kaempferol	9.9	C₂H₂O₇	285.04046	0.035
Quercetin	6.5	C₂H₂O₇	301.03538	-0.133

Table 2. HRMS and MS/HRMS (Product Ion Spectra) of the Studied Polyphenolic Compounds.
Compound	Mr.	M/z (Calc)	M/z (Exp)	Error (ppm)				
Carnosic acid	17.1	C_{9}H_{14}O_{4}	331.19148	331.19145	-0.91	287.20172	[M-H-C_{6}H_{5}O_{2}]^{-}	0.232
Anemosapogenin	15.5	C_{10}H_{16}O_{4}	471.34798	471.34788	-0.212	17.1		
Rosmanol	11.8	C_{6}H_{10}O_{3}	345.17075	345.17062	-0.377	6.0		
Betulimic acid	20.0	C_{9}H_{14}O_{3}	455.35307	455.35318	0.245	9.1		
Asiatic acid	12.5	C_{10}H_{14}O_{3}	487.34290	487.34293	0.062	10.0		
Carnosol	15.2	C_{9}H_{14}O_{4}	329.17583	329.17599	0.486	14.0		
12-Methoxycarnosic acid	18.2	C_{10}H_{16}O_{4}	345.20713	345.20695	-0.521	16.9		
Procyanidin A2	6.5	C_{19}H_{22}O_{12}	575.11950	575.11996	0.800	21.7		
Procyanidin B2	2.7	C_{19}H_{22}O_{12}	577.13515	577.13525	0.173	21.7		
Procyanidin C1	5.1	C_{23}H_{26}O_{13}	865.19854	865.19998	1.664	28.3		

Phenolic aldehydes

Compound	Mr.	M/z (Calc)	M/z (Exp)	Error (ppm)		
Syringaldehyde	6.0	C_{6}H_{10}O_{3}	181.05063	181.05073	0.552	9.1
Vanilin	5.8	C_{6}H_{10}O_{3}	151.04007	151.03984	-1.506	10.0

Benzoic acids

Compound	Mr.	M/z (Calc)	M/z (Exp)	Error (ppm)		
Veratic acid	7.6	C_{6}H_{10}O_{3}	181.05063	181.05065	0.110	10.0

Cinnamic acids

Compound	Mr.	M/z (Calc)	M/z (Exp)	Error (ppm)		
Trans-Cinnamic acid	9.2	C_{6}H_{10}O_{3}	147.04515	147.04525	0.680	10.0

Other Phenolics

Compound	Mr.	M/z (Calc)	M/z (Exp)	Error (ppm)		
Tyrosol	4.9	C_{6}H_{10}O_{2}	137.06080	137.06071	-0.657	9.3
Arbutin	1.3	C_{6}H_{10}O_{2}	271.08233	271.08229	-0.148	10.0
Ethyl gallate	5.9	C_{6}H_{10}O_{2}	197.04555	197.04542	-0.660	11.7
Umbelliferon	6.3	C_{6}H_{10}O_{2}	161.02442	161.02438	-0.248	11.7
Ellagic acid	6.0	C_{6}H_{10}O_{2}	300.99999	300.99991	0.066	11.7
Table 3. Prediction Errors by PLS Regression in the Quantification of Cranberry-fruit Extracts Adulterated with Raspberry-, Blueberry-, and Grape-fruit Extracts.

Adulterant	Number of latent variables	Calibration error	Prediction error
Grape	3	<0.01%	2.86%
Blueberry	3	<0.01%	2.71%
Raspberry	3	<0.01%	5.96%
Figure 1

(a)

(b)

(c)

[Chemical Structures]
Figure 2
Figure 3
Figure 5

Scatter plot of actual vs calculated grape percentages in the validation of the calibration model

\[y = 0.9995x + 0.0143 \]
\[R^2 = 0.9995 \]

Scatter plot of actual vs calculated grape percentages in the validation of prediction

\[y = 0.903x + 1.8475 \]
\[R^2 = 0.9189 \]
