ABSTRACT:
In recent years, the healthcare system has been considered by researchers to be a high-risk area, with registered diseases above the average level compared to other economic activities. This leads to high rates of permanently reduced efficiency and premature mortality. In the present study, we looked for the determinants of negative changes in the health status of employees in pre-hospital medical care, which in addition to socio-economic, are related to the work environment and the work process. The main guidelines for really overcoming these negative trends are: occupational health activities such as creating adequate regimes of work and rest, healthy and safe working conditions, health promotion and the unifying details of the Unified Health Integrated Dossier [UHID]. This occupational medicine dossier, developed as a module of “cloud structure” of E-health in Bulgaria, allowed the study of the health status in dynamics for a retrospective period of medical and non-medical specialists in two large diagnostic counseling centers [DCC] in Varna. It was found that in the structure of momentary disease for the two DCC in the first place are diseases of the eye and its appendages – 221,74%, followed by diseases of the circulatory system -101,45% and diseases of the musculoskeletal system and connective tissue by 28,99%. UHID with occupational medicine orientation is useful both for the employers and for the control and expert structures for assessment of the health status under specific working conditions in pre-hospital medical care.

The study is supported by the National Scientific Program “e-Health in Bulgaria” [2018-2020], incl. and with financial support for participation in international scientific forums.

Keywords: point prevalence, health condition, musculoskeletal disorders, health specialists, occupational medicine

OBJECTIVE
Study with analysis of the current morbidity for assessment of the health status of medical and non-medical specialists in dynamics for 2 - year retrospective period in two diagnostic consultation centers on the territory of Varna Municipality.

TASKS
Study of the current prevalence in connection with the factors of the working environment and the organization of work during preventive examinations of the employees for a two-year period in DCC 1 and DCC 2 - Varna. Comparative analysis for assessment of the leading nosological groups, with the approaches of UHID and implementation of a preventive program for improving the health status in the specific working conditions.

MATERIALS AND METHODS
The object of the study is working medical and non-medical specialists from DCC 1 and 2 under the specific working conditions and data from periodic preventive medical examinations and tests (point prevalence – PP) for two consecutive years - from 2016 and 2018. Attached are documentary and statistical methods for collecting and processing the necessary health information. The frequency indicators of the alternative analysis were used, both per 100 workers - intensity and per 100 patients - extent. The software program product is specially developed for an individual and generalized characteristic of the negative changes in the health condition of all employees in the medical establishments. For the purposes of the study, the summarized and factorial indicators of PP were analyzed.

Volume, units, signs of the study. The object of the study is a total of 249 employees in two medical institutions for specialized outpatient care in the city of Varna. All medical and non-medical specialists have many years of experience and additional qualifications in various specialties.

The logical unit of observation is everyone working in DCC 1 and 2 for 2016 and 2018. The distribution by age is as follows: in 2016, employees over the age of 45 prevailed - 73% [72 women and 20 men/, followed by the age group of 36 - 45 years - 15%] 13 women and 6 men/ and 10% from the age
group 26 - 35 years. Non-medical specialists are 12% of the total staff for the two objects of observation represented in 10 different professions. In 2018, the structural age distribution followed with small changes that of 2016. The distribution by main occupational groups is shown in [Graphics 1].

RESULTS AND DISCUSSION

Study of momentary illness in connection with the conditions of the working environment and the organization of the labor process for 2016 and 2018 in DCC 1 and DCC 2 - Varna.

The health surveillance of the employees at high occupational risk aims at the early detection and identification of adverse health effects of various factors of the work environment and the work process; early detection and diagnosis of deviations from health status in the manifestation of occupational and socially significant diseases [1, 2, 3, 4, 5, 6, 7].

Point prevalence: In 2016 and 2018, the employees of DCC 1 - Varna underwent mandatory periodic and preventive medical examinations, according to the risk assessment and the recommendations of the occupational medicine service. 59.3% for 2016 were reviewed 65.3% for 2018 women and 40.7% men and 34.7% men from the subjected employees in DCC 1 for the studied period. The age distribution of graphics 2 and 3 is as follows: 90% of those examined in DCC 1 and 94.29% of those examined in DCC 2 are over 45 years, followed by the age group 36 - 45 years with 5% and 3.45% and 5% and 2.30% for the group of 26 - 35 years for DCC 1 and DCC 2 [Graphics 2, 3].

Graphics 1. Distribution by number and occupational groups in DCC 1 and DCC 2 by position for 2016 and 2018.

![Graphics 1](image)

DCC 1 is located in the central part of Varna, 126 medical and non-medical specialists work in the center, and it serves approximately 50,000 people or 14% of the inhabitants of Varna. DCC 2 is located in an area that serves approximately 100,000 people, employing 123 staff. This definitely shows the extreme workload of medical and other specialists and opens up opportunities for aggravating negative health.

Graphics 2. Distribution of the examined by age in DCC 1 for 2016 and 2018.

![Graphics 2](image)

The distribution of the detected patients in the different age groups to all patients is as follows: over 45 years of age are 92.75% [59 women and 13 men] in DCC 1 and 95.38% in DCC 2, followed by the age group 36 - 45 years for DCC 1 - 4.35% and for workers aged 26-35 it is 3.08%. for DCC 2 [Graphics 4, 5].

![Graphics 2](image)
Leading are the diseases identified in the examined employees of DCC 1 and DCC 2, which are related to the identified diseases in the risk assessment for their employees, physical stress, organizational and psycho-social adverse factors, and as well as family burden and lifestyle. The nosological affiliation of PP is formed not accidentally by diseases of the eye and its appendages as a pronounced part of the CNS, due on the one hand extremely visual stress in the diploma training of specialists and the increasing daily workload with personal computers and precise specialized equipment. The demographic structure of adult workers and the available presbyopia play a significant role in this finding. Naturally, the established second place of the diseases of the circulatory organs is natural against the background of the high cardiovascular morbidity of the Bulgarian population and the additionally high nervous and emotional overstrain in the work of the DCC. The third place in this structure also reflects the physical, combined with static stress and responsibilities for patients [Graphics 6, 7].

A number of non-professional factors are also important, which only, as noted in the UHID, can point to the determinants of occupational health. The weight and importance as unhealthy lifestyle and lifestyle, social and economic challenges, and differences in content and volume environmental and cultural conditions for different age groups are important for determining the prevention of established PP. [8, 9,10, 11].
This study looked at the specific impact of working conditions - the factors of the work environment and the work process in order to assess the risk in 2016. It finds the following:

In DCC 1, leading are biological agents, manual work with weights, work with hazardous chemicals as the risk is within acceptable limits and the proposed measures are: training of medical staff, the use of assistive devices in patient care and PPE when working with biological agents and chemicals [12 - 20]. For DCC 2, these are ergonomic factors, biological agents, psycho-social risk factors /stress, burnout/ and proposed measures for the use of appropriate technical means to minimize physical activity. Educating patients to prevent MSCs and back injuries is also beneficial for workers [21, 22].

Other factors are common, both for DCC 1 and DCC 2: gender - DCC are feminized groups, as in the health care system, drawn to the older age groups, style and lifestyle - bad habits and habits, established by the risk assessment and anamnestic data during the prophylactic examinations [23, 24].

The pedagogical and non-pedagogical staff from the Bulgarian school have similar results of the health condition of these medical and non-medical specialists, also established during large-scale studies in Bulgaria with the application of UHID with occupational medicine-specific characteristics. These studies confirm and develop the idea of the significant impact of working conditions on health and working capacity for a long period, which in the current working conditions of nearly 50 years, since 15 years of age [especially when students in dual education and in internships and enter different working conditions] up to 65 years to which the retirement age tends in a number of European countries.

It becomes clear that it is necessary to adhere to the WHO idea for determining and stimulating the influence of the sanogenic factors of the environment, incl. labor, which find a place in the overall system of health care in the country and specifically in UHID with occupational health. Not insignificant are the normative documents and especially those for PP, such as the ordinance for prophylactic examinations, the ordinance for medical examination and prophylaxis and the ordinance for the occupational medicine services.
CONCLUSIONS

1. Personal integrated analysis of point prevalence, with detection of early or asymptomatic diseases on the one hand and on the other to confirm old diseases, combined with the incidence of temporary disability and trauma, allows to study scientifically sound level and trends of the health of workers under specific conditions at work, with the medical specialists from the outpatient care. This provides opportunities for observations for a long period in which the real levels, structure, dynamics with trends and features of the negative changes in the health status of employees in the healthcare system are established.

2. For outpatient medical care with specific working conditions, it is essential to establish the point prevalence of these workers, as for two large DCCs with over 150,000 served population, we found:

- the results of two periods of prophylactic examinations for two medical institutions are high in levels of PP as the disease structure does not differ significantly, the leading are a class of diseases of the eye and its appendages, followed by diseases of the circulatory system and musculoskeletal system and connective tissue.

- the relative share of sick women and of the age groups over 45 years with an upward trend is higher, which apart from the sex - age structure of the employees in the two centers is of significant importance the leading factors of the work environment and work process.

3. The established indicators of PP with a significant number of organs and systems in the two diagnostic - consultation centers show the need for personalized medicine, with a specific determination of the causes of these diseases, both from the external environment and endogenous factors.

REFERENCES:

1. Occupational Medicine in Europe: Scope and Competencies. Contributors to the report present at the WHO workshop held on 27–28 May 1999 in Bilthoven, Netherlands. Editors: MacDonald E, Baranski B, Wilf Jord. [Internet]

2. Borisov V. [Methodology of social hygiene: Problems and trends.] Medicine and physical education. 1990. p.212 [in Bulgarian]

3. Vodenicharov Ts, Popova S. [Social Medicine.] Ecoperint. 2009. p.238. [in Bulgarian]

4. European Agency for Safety and Health at Work. Factsheet 68 - Expert forecast on Emerging Biological Risks related to Occupational Safety and Health. osha.europa.eu. 09/06/2007. [Internet]

5. European Agency for Safety and Health at Work. Factsheet 84 - Expert forecast on Emerging Chemical Risks related to Occupational Safety and Health. osha.europa.eu. 27/09/2009. [Internet]

6. Lyubomirova K, Tsacheva N. [Occupational Medicine and Public Health. Part Three: Statistics in Occupational Medicine.] MU-Sofia. 2015. pp.152-174. [in Bulgarian]

7. Nikolova R. [Approbation of the method for Analysis of Cardiac Variability in models for neuro-sensory occupational stress and its methodological improvement.] [Dissertation] National Center for Hygiene, Medical Ecology and Nutrition. Sofia. 1993. [in Bulgarian]

8. Tsacheva N, Lyubomirova K, Nikolova R, Prodanova Y, Evsatieva S, Miteva I, et al. [Occupational medicine: Terminological dictionary.] Medical University - Sofia. 2013. p.90. [in Bulgarian]

9. Tsacheva N. [Occupational Medicine in the Republic of Bulgaria: Theory, Methodology, Practice.] [Dissertation] Faculty of Public Health, Medical University – Sofia. 2014. p.180. [in Bulgarian]

10. Tsacheva N. [Practical methodology for analysis and assessment of the health status of insured employees.] Sofia. 2002. [in Bulgarian]

11. Pelissier C, Fontana L, Fort E, Agard JP, Couprie F, Delaygue B, et al. Occupational risk factors for upper-limb and neck musculoskeletal disorder among healthcare staff in nursing homes for the elderly in France. Ind Health. 2014; 52(4):334-46. [PubMed]

12. Lamy S, Descatha A, Sobaszek A, Caroly S, De Gaudemaris R, Lang T. Role of the work-unit environment in the development of new shoulder pain among hospital workers: a longitudinal analysis. Scand J Work Environ Health. 2014 Jul;40(4):400-10. [PubMed]

13. Bernal D, Campos-Serina J, Tobias A, Vargas-Prada S, Benavides FG, Serra C. Work-related psycho-social risk factors and musculoskeletal disorders in hospital nurses and nursing aides: a systematic review and meta-analysis. Int J Nurs Stud. 2015 Feb;52(2):635-48. [PubMed]

14. Clausen T, Andersen LL, Holtermann A, Jorgensen AFB, Aust B, Rugulies R. Do self-reported psychosocial working conditions predict low back pain after adjustment for both physical work load and depressive symptoms? A prospective study among female eldercare workers. Occup Environ Med. 2013 Aug;70(8):538-44. [PubMed]

15. Andersen LL, Burdorf A, Fallentin N, Persson R, Jakobsen MD, Mortensen OS, et al. Patient transfers and assistive devices: prospective cohort study on the risk for occupational back injury among healthcare workers. Scand J Work Environ Health. 2014 Jan;40(1):74-81. [PubMed]

16. Andersen LL, Vinstrup J, Villadsen E, Jay K, Jakobsen MD. Physical and Psycho-social Work Environmental Risk Factors for Back Injury among Healthcare Workers: Prospective Cohort Study. Int J Environ Res Public Health. 2019 Nov 15;16(22):4528. [PubMed]

17. Hegewald J, Berge W, Heinrich P, Staudte R, Freiberg A, Scharfe J, et al. Do Technical Aids for Patient Handling Prevent Musculoskeletal Complaints in Health Care Workers? A Systematic Review of Intervention Studies. Int J Environ Res Public Health. 2018 Mar 9;15(3):476. [PubMed]

18. Burdorf A, Koppelaa E, Evanoff B. Assessment of the impact of lifting device use on low back pain and musculoskeletal injury claims among nurses. Occup Environ Med. 2013 Jul;70(7):491-7. [PubMed]
19. Risør BW, Casper SD, Andersen LL, Sorensen J. A multi-component patient-handling intervention improves attitudes and behaviors for safe patient handling and reduces aggression experienced by nursing staff: A controlled before-after study. Appl Ergon. 2017 Apr;60:74-82. [PubMed]

20. Yassi A, Cooper JE, Tate RB, Gerlach S, Muir M, Trottier J, et al. A randomized controlled trial to prevent patient lift and transfer injuries of health care workers. Spine. Spine (Phila Pa 1976). 2001 Aug 15;26(16):1739-46. [PubMed]

21. Trinkoff AM, Le R, Geiger-Brown J, Lipscomb J, Lang G. Longitudinal relationship of work hours, mandatory overtime, and on-call to musculoskeletal problems in nurses. Am J Ind Med. 2006 Nov;49(11):964-71. [PubMed]

22. E-fact 28 - Patient handling techniques to prevent MSDs in health care. EU-OSHA. 11/01/2008. [Internet]

23. Nordang K, Hall-Lord M-L, Farup PG. Burnout in healthcare professionals during reorganizations and downsizing. A cohort study in nurses. BMC Nurs. 2010 Jun 4;9:8. [PubMed]

24. Kivimaki M, Vahtera J, Ferrie JE, Hemingway H, Pentti J. Organisational downsizing and musculoskeletal problems in employees: a prospective study. Occup Environ Med. 2001 Dec;58(12):811-7. [PubMed]

Please cite this article as: Hristova L, Tzacheva N, Nikolova R, Grigorov V. Retrospective dynamic study of the current morbidity of medical and non-medical specialists in pre-hospital health care. J of IMAB. 2021 Apr-Jun;27(2):3741-3746. DOI: https://doi.org/10.5272/jimab.2021272.3741

Received: 05/08/2020; Published online: 26/05/2021

Address for correspondence:
Assoc. Prof. Lidiya Hristova, MD, PhD
Department of Occupational Medicine, Faculty of Public Health, Medical University- Sofia;
8, Byalo more Str., 4th floor, 48, Sofia, Bulgaria
E-mail: lidiahristoff@gmail.com,