EXISTENCE OF THE DENSITY OF STATES
FOR ONE-DIMENSIONAL ALLOY-TYPE POTENTIALS
WITH SMALL SUPPORT

WERNER KIRSCH AND IVAN VESELIĆ

Abstract. We study spectral properties of Schrödinger operators with random potentials of alloy type on $L^2(\mathbb{R})$ and their restrictions to finite intervals. A Wegner estimate for non-negative single site potentials with small support is proven. It implies the existence and local uniform boundedness of the density of states. Our estimate is valid for all bounded energy intervals. Wegner estimates play a key role in an existence proof of pure point spectrum.

1. Model and results

We study spectral properties of families of Schrödinger operators on $L^2(\mathbb{R})$. The considered operators consist of a non-random periodic Schrödinger operator plus a random potential of Anderson or alloy type:

$$H_\omega := H_0 + V_\omega, \quad H_0 := -\Delta + V_{\text{per}}.$$

Here Δ is the Laplace operator on \mathbb{R} and $V_{\text{per}} \in L^\infty(\mathbb{R})$ is a \mathbb{Z}-periodic potential. The random potential V_ω is a stochastic process of the following form

$$V_\omega(x) = \sum_{k \in \mathbb{Z}} \omega_k u(x-k)$$

where $\{\omega_k\}_{k \in \mathbb{Z}}$ is a collection of independent identically distributed random variables, called coupling constants. Their distribution has a bounded density f with support equal to a bounded interval. The non-negative single site potential $u \in L^\infty(\mathbb{R})$ has compact support and an uniform positive lower bound on some open subset of \mathbb{R}. The potential $V := V_{\text{per}} + V_\omega$ is (uniformly in ω) bounded, hence H_ω is a selfadjoint, lower semibounded operator on the Sobolev space $W^{2,2}(\mathbb{R})$. For any interval $\Lambda_l := \Lambda_l(x) := [-l/2, l/2] + x$ we can restrict H_ω to $L^2(\Lambda_l)$ with Dirichlet boundary conditions. We denote the restriction by H^l_ω. It is again selfadjoint and lower semibounded and has discrete spectrum.

For $\mu(A) := \int_A f(x)dx$ define the product measure $P := \otimes_{k \in \mathbb{Z}} \mu$. We consider the collection $\{\omega_k\}_{k \in \mathbb{Z}}$ as an element of the probability space $(\Omega = \times_{k \in \mathbb{Z}} \mathbb{R}, P)$. The expectation w.r.t. P is denoted by E.

By the general theory of ergodic random Schrödinger operators [3, 16] we know that there exists a ω-independent set Σ such that $\sigma(H_\omega) = \Sigma$ for P-almost all ω. In the same way the spectral components $\sigma_{\text{ac}}, \sigma_{\text{sc}}$ and σ_{pp} are non-random subsets of the real line. Moreover, there exists a non-random distribution function N called the integrated density of states (IDS) which can be obtained by a macroscopic limit: Denote by

$$N^l_\omega(E) = l^{-d} \# \{|i| \lambda_i(H^l_\omega) < E\} = l^{-d} \text{Tr} P^l_\omega([-\infty, E[)$$
the finite volume IDS or normalized eigenvalue counting function of H^l_ω. Here $P^l_\omega([-\infty,E])$ denotes the spectral projection of H^l_ω on the energy interval $[-\infty,E]$. Then for all continuity points E of N:

$$N(E) = \lim_{l \to \infty} N^l_\omega(E) \quad \mathbb{P}\text{-almost surely.}$$

Our main result reads:

Theorem 1 (Wegner estimate). Let H_ω be as above. For any $E \in \mathbb{R}$ there exist a constant C such that

$$\mathbb{E} \left[\text{Tr} P^l_\omega([E-\epsilon,E]) \right] \leq C \epsilon l, \quad \forall \epsilon \geq 0. \quad (5)$$

Estimates of this type on the expectation value of the number of eigenvalues in a given energy interval go back to Wegner’s paper [23] where he considers the discrete analog of H_ω on $l^2(\mathbb{Z}^d)$. Theorem 1 proves the Lipschitz-continuity of the averaged finite volume IDS. So this function has a derivative at almost all energy values $E \in \mathbb{R}$. Using (4) this implies

Corollary 2. Under the assumptions of Theorem 1 the IDS is Lipschitz continuous. Thus its derivative, the density of states dN/dE exists for almost all $E \in \mathbb{R}$ and it is uniformly bounded on any interval $[-\infty,E]$.

By the Čebyšev inequality (5) implies

$$\mathbb{P} \left\{ \omega \in \Omega \mid \sigma(H^l_\omega) \cap [E-\epsilon,E] \neq \emptyset \right\} \leq C \epsilon l, \quad \forall \epsilon \geq 0. \quad (6)$$

For the application to the proof of localization only this form of the estimate is needed.

Theorem 3 (Localization). Let H_ω be as in Theorem 1 and $E \in \partial\sigma(H_\omega)$ any lower spectral edge. Then there exists an $\epsilon > 0$ such that H_ω has \mathbb{P}-almost surely pure point spectrum in $[E,E+\epsilon]$ with exponentially decaying eigenfunctions.

We thus recover a result from [14], whose proof uses different methods. In the present note we prove only Theorem 1, while the proof of Theorem 3 can be found in the Diploma thesis [21]. It uses the multiscale analysis of Fröhlich and Spencer [6] in the version of von Dreifus and Klein [22]. Apart from the Wegner estimate (5), a key ingredient is the Lifshitz asymptotics of the IDS derived by Mezincescu in [15] as well as a finite–infinite volume comparison lemma for the IDS [15, Lem. 4.2]. A detailed discussion of localization can be found e.g. in [18] and the literature cited there. Section 3.4 of this monograph shows that Theorem 3 can actually be strengthened to imply dynamical localization. For one-dimensional random operators there are several other techniques at disposal to prove localization, cf. e.g [8, 3, 16, 2] and the references therein.

Remark 4. By assumption we have some open set O and $\kappa > 0$ such that $u \geq \kappa \chi_O$. For some $s > 0$ the set $O \subset \mathbb{R}$ contains a cube Λ_s of sidelength s. By shifting the origin of \mathbb{R} we can therefore assume that Λ_s has its center at 0 and thus $u \geq \kappa \chi_{\Lambda_s(0)}$. Moreover, by rescaling f and u we assume $\kappa = 1$. Note that by adding a part of the periodic potential to V_ω we may assume without loss of generality that the support of f starts at 0, i.e. $\text{supp } f = [0,\omega_+]$ for some $\omega_+ > 0$.

Recently there has been increased interest in Wegner estimates for single site potentials u that change sign [13, 19, 20, 9]. However even for nonnegative u with small support the situation is not clearly understood. By "small support" we mean that

$$\sum_{k \in \mathbb{Z}} u(x-k) \quad (7)$$
is not bounded away from zero by a positive constant. Such potentials in arbitrary space dimension are considered e.g. in [13, 10, 1, 12, 5]. However, the derived Wegner estimates are valid only at spectral boundaries.\footnote{See, however, the recent [4].}

Let us finish this section by mentioning that so far there is no Wegner estimate proven without the uniform positivity of \(|u|\) on some open set. Namely, nothing is known in the case
\begin{equation}
0 \leq u \in L^2_0(\R), \quad |\{x \mid u(x) > 0\}| > 0
\end{equation}
where \(|\cdot|\) denotes Lebesgue measure. Property (8) implies the existence of some \(\kappa > 0\) such that \(U_\kappa := \{x \mid u(x) > \kappa\}\) has positive measure. However \(U_\kappa\) need not contain an open set.

\section{Proof of Theorem 1}

Let us denote with \(\rho : \R \to [0,1]\) a smooth, monotone function with \(\rho = 1\) on \([\epsilon, \infty]\) and \(\rho = 0\) on \([-\infty, -\epsilon]\). The \(n\)-th eigenvalue of the operator \(H^j_n\) is denoted by \(E^j_n(\omega)\). We estimate similarly as in [10, page 509]
\[
\mathbb{E} \left[\text{Tr} P^j_\omega((E - \epsilon, E + \epsilon]) \right] \leq \int \cdots \int \prod_{k \in \Lambda^+} f(\omega_k) \sum_{n \in \mathbb{N}} \int_{-2\epsilon}^{2\epsilon} d\theta \rho(E^j_n(\omega) - E + \theta).
\]
Here \(\Lambda^+ := \{k \in \mathbb{Z} \mid \text{supp } u(-k) \text{ intersects } \Lambda\}\) while \(\Lambda := \mathbb{Z} \cap \Lambda^1\). The above line can be bounded using the estimates from Section 3 by
\begin{equation}
C_1 \sum_j \int \cdots \int \prod_{k \in \Lambda^+ \setminus j} f(\omega_k) \sum_{n \in \mathbb{N}} \int_{-2\epsilon}^{2\epsilon} d\theta \sum_{j \in \Lambda} \frac{\partial \rho(E^j_n(\omega) - E + \theta)}{\partial \omega_j} \sum_{n \in \mathbb{N}} \int_{-2\epsilon}^{2\epsilon} d\theta \int d\omega_j f(\omega_j) \frac{\partial \rho(E^j_n(\omega) - E + \theta)}{\partial \omega_j}.
\end{equation}

Using Beppo Levi’s theorem. Denote by \(H^j(j, \omega_+\) the operator \(H^j_\omega\) where the random variable \(\omega_j\) has been set to its maximum value \(\omega_+\), and similarly \(H^j(j, 0)\). The eigenvalues of the two above operators are abbreviated by \(E^j_n(j, \omega_+)\), resp. \(E^j_n(j, 0)\). Using monotonicity we estimate from above the sum over \(n\) in the second line of (9) by
\begin{equation}
\|f\|_{\infty} \sum_{n \in \mathbb{N}} \int_{-2\epsilon}^{2\epsilon} d\theta \left\{ \rho(E^j_n(j, \omega_+) - E + \theta) - \rho(E^j_n(j, 0) - E + \theta) \right\}
\end{equation}

Let the single site potential \(u\) be supported in \([-R, R]\]. Introduce now the operators \(H^j_{\omega}^*, * = D, N\) which coincide with \(H^j_\omega\) up to additional Dirichlet, respectively Neumann b.c. at the points \(j - R\) and \(j + R\). Their eigenvalues are \(E^j_{n*}(j, \omega_+)\). By Dirichlet-Neumann bracketing, the braces in (10) are bounded by
\begin{equation}
\rho(E^j_{n*}D(j, \omega_+) - E + \theta) - \rho(E^j_{n*}N(j, 0) - E + \theta).
\end{equation}

As \(H^j_{\omega}^* = H^j_{\omega} \oplus H^c_{\omega}\) is a direct sum of two operators acting on \(L^2(j - R, j + R)\) and \(L^2(\Lambda_1 \setminus \{j - R, j + R\})\) the sum over the terms in (11) can be separated:
\begin{equation}
\sum_n \rho(E^j_{n*}D(j, \omega_+) - E + \theta) - \rho(E^j_{n*}N(j, 0) - E + \theta).
\end{equation}
\begin{equation}
+ \sum_n \rho(E^j_{n*}D(j, \omega_+) - E + \theta) - \rho(E^j_{n*}N(j, 0) - E + \theta).
\end{equation}
Since the the difference in the boundary conditions is a rank two perturbation in resolvent sense (see e.g. [17]), the interlacing theorem says that the first term in (12) is bounded by \(\rho(E^j_{n*}N(j, \omega_+) - E + \theta)\). A telescoping argument bounds the
whole sum in (12) by twice the total variation of ρ, which is equal to one. The sum in (13) we estimate by

$$\text{Tr} \left[\chi_{|E-3\varepsilon,\infty)}(H_\omega^{j,D}(j,\omega_+)) - \chi_{|E+3\varepsilon,\infty)}(H_\omega^{j,N}(j,0)) \right]$$

$$\leq 2 + \text{Tr} \left[\chi_{|E-3\varepsilon,\infty)}(H_\omega^{j,D}(j,0) + \|u_j\|_\infty) - \chi_{|E+3\varepsilon,\infty)}(H_\omega^{j,D}(j,0)) \right] \leq C_2,$$

where the constant C_2 depends only on $E + 3\varepsilon$, V_{per,ω_+} and u, cf. [11]. The proof of Theorem 1 is finished by the the upper bound on (9):

$$C_1\|f\|_\infty \sum_{j \in \Lambda} \int \cdots \int \prod_{k \in \Lambda^+ \setminus \Lambda} f(\omega_k) \, d\omega_k (C_2 + 2) 4\varepsilon l = 4C_1(C_2 + 2)\|f\|_\infty \varepsilon l.$$

3. Single site potentials of small support

In this section we prove the uniform lower bound

$$(14) \quad \sum_{k \in \Lambda} \frac{\partial E_n^j(\omega)}{\partial \omega_k} \geq C_4(I) > 0$$

for all eigenvalues E_n^j of H_ω inside a bounded energy interval I. The bound $C(I)$ does not depend on the sidelength $l \in \mathbb{N}$ and on the eigenvalue index $n \in \mathbb{N}$. By the chain rule

$$\sum_{j \in \Lambda} \frac{\partial \rho(E_n^j(\omega) - E + \theta)}{\partial \omega_k} = \rho'(E_n^j(\omega) - E + \theta) \sum_{k \in \Lambda} \frac{\partial E_n^j(\omega)}{\partial \omega_k}$$

(14) implies the estimate needed in Section 2:

$$\rho'(E_n^j(\omega) - E + \theta) \leq C_4(I)^{-1} \sum_{j \in \Lambda} \frac{\partial \rho(E_n^j(\omega) - E + \theta)}{\partial \omega_j}.$$

To infer the lower bound (14) set $S = \bigcup_{k \in \Lambda} (\Lambda_\varepsilon(k))$ and apply the Hellman-Feynman theorem. For a normalized eigenfunction ψ_n corresponding to $E_n^j(\omega)$:

$$\sum_{k \in \Lambda} \frac{\partial E_n^j(\omega)}{\partial \omega_k} = \sum_{k \in \Lambda} \langle \psi_n, u(\cdot - k)\psi_n \rangle \geq \int_S |\psi_n|^2.$$

If the integral on the right hand side would extend over the whole of Λ_ε it would be equal to 1 due to the normalization of ψ_n. A priori the integral over S could be much smaller, but the following Lemma shows that this is not the case.

Lemma 5. Let I be a bounded interval and $s > 0$. There exists a constant $c > 0$ such that

$$\int_{\Lambda_\varepsilon(k)} |\psi|^2 \geq c \int_{\Lambda_\varepsilon(k)} |\psi|^2$$

for all $l \in \mathbb{N}$, all $k \in \Lambda_\varepsilon$ and for any eigenfunction ψ corresponding to an eigenvalue $E \in I$ of H_ω.

Thus $\int_S |\psi|^2 \geq c \int_{\Lambda_\varepsilon} |\psi|^2$ with the same constant as in Lemma 5.

Proof. For

$$(15) \quad \phi(y) := \int_{\Lambda_\varepsilon(k+y)} dx \, |\psi(x)|^2 = \int_{\Lambda_\varepsilon(k)} dx \, |\psi(x-y)|^2$$

one has

$$\left| \frac{\partial}{\partial y} \phi(y) \right| = \left| \int_{\Lambda_\varepsilon(k)} dx \, \left[\frac{\partial}{\partial y} \psi(x-y) \right] \psi(x-y) + \int_{\Lambda_\varepsilon(k)} dx \, \psi(x-y) \frac{\partial}{\partial y} \psi(x-y) \right|$$

$$\leq 2 \|\psi\|_{L^2(\Lambda_\varepsilon(k+y))} \|\psi\|_{L^2(\Lambda_\varepsilon(k+y))}.$$
Sobolev norm estimates (e.g. Theorems 7.25 and 7.27 in [7]) imply
\[\| \psi' \|_{L^2(\Lambda_s(k+y))} \leq C_5 \| \psi \|_{L^2(\Lambda_s(k+y))} + \| \psi'' \|_{L^2(\Lambda_s(k+y))}. \]

By the eigenvalue equation we have
\[(16) \quad \left| \frac{\partial}{\partial y} \phi(y) \right| \leq C_6 \| \psi \|_{L^2(\Lambda_s(k+y))} = C_6 \phi(y), \quad C_6 = C_0(\| V - E \|_\infty). \]

Gronwall’s Lemma implies \(\phi(y) \leq \exp(C_6|y|) \phi(0) \) and thus
\[\int_{\Lambda_s(k)} |\psi|^2 \leq e^{C_6 s^{-1}} \int_{\Lambda_s(k)} |\psi|^2. \]

At the Conference in Taxco we learned from J.M. Combes that there is an article in preparation together with P. Hislop and F. Klopp with slightly weaker results as in this work applying also to the higher dimensional case [4].

References

[1] J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band edges for random Schrödinger operators, Helv. Phys. Acta **70** (1997), no. 1-2, 16–43. MR **98h**:82028

[2] D. Buschmann and G. Stolz, Two-parameter spectral averaging and localization for non-monotonic random Schrödinger operators, Trans. Amer. Math. Soc. **353** (2001), no. 2, 635–653 (electronic). MR 1 804 511

[3] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators, Birkhäuser, Boston, 1990.

[4] J. M. Combes, P. D. Hislop, and F. Klopp, Hölder continuity of the integrated density of states for some random operators at all energies, www.ma.utexas.edu/mp_arc preprint, 2002.

[5] J. M. Combes, P. D. Hislop, and S. Nakamura, The \(L^p \)-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random Schrödinger operators, Commun. Math. Phys. **70** (2001), no. 2, 113–130.

[6] J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. **88** (1983), 151–184.

[7] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1983.

[8] I.Ya. Goldsheid, S.A. Molchanov, and L.A. Pastur, A pure point spectrum of the stochastic one-dimensional Schrödinger operator, Functional Anal. Appl. **11** (1977), 1–10.

[9] P. D. Hislop and F. Klopp, The integrated density of states for some random operators with non-sign definite potentials, www.ma.utexas.edu/mp_arc preprint no. 01-139, 2001.

[10] W. Kirsch, Wegner estimates and Anderson localization for alloy-type potentials, Math. Z. **221** (1996), 507–512.

[11] W. Kirsch and F. Martinelli, On the density of states of Schrödinger operators with a random potential, J. Phys. A: Math. Gen. **15** (1982), 2139–2156.

[12] W. Kirsch, P. Stollmann, and G. Stolz, Localization for random perturbations of periodic Schrödinger operators, Random Oper. Stochastic Equations **6** (1998), no. 3, 241–268, available at www.ma.utexas.edu/mp_arc, preprint no. 96-409. MR **99e**:82038

[13] F. Klopp, Localization for some continuous random Schrödinger operators, Commun. Math. Phys. **167** (1995), 553–569.

[14] S. Kotani and B. Simon, Localization in general one-dimensional random systems II: continuum Schrödinger operators, Commun. Math. Phys. **112** (1987), 103–119.

[15] G. A. Mezincescu, Internal Lifshitz singularities for one dimensional Schrödinger operators, Commun. Math. Phys. **158** (1993), 315–325.

[16] L. A. Pastur and A. L. Figotin, Spectra of random and almost-periodic operators, Springer Verlag, Berlin, 1992.

[17] B. Simon, Spectral analysis of rank one perturbations and applications, CRM Lecture Notes Vol. 8 (Amer. Math. Soc., Providence, RI) (L. Rosen J. Feldman, R. Froese, ed.), 1995, pp. 109–149.

[18] P. Stollmann, Caught by disorder: A course on bound states in random media, Progress in Mathematical Physics, vol. 20, Birkhäuser, July 2001.

[19] G. Stolz, Non-monotonic random Schrödinger operators: the Anderson model, J. Math. Anal. Appl. **248** (2000), no. 1, 173–183. MR 1 772 589
[20] I. Veselić, Wegner estimate for some indefinite Anderson-type Schrödinger operators with differentiable densities, preprint 2000, www.ma.utexas.edu/mparc/, and Wegner estimate and the density of states of some indefinite alloy type Schrödinger operators, to appear in Let. Math. Phys.

[21] I. Veselić, Lokalisierung bei zufällig gestörten periodischen Schrödingeroperatoren in Dimension Eins, Diplomarbeit, Ruhr-Universität Bochum, 1996, available at http://www.ruhr-uni-bochum.de/mathphys/ivan/.

[22] H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124 (1989), 285–299.

[23] F. Wegner, Bounds on the DOS in disordered systems, Z. Phys. B 44 (1981), 9–15.

Fakultät für Mathematik, Ruhr-Universität Bochum, Germany and SFB 237 "Unordnung und große Fluktuationen"

URL: http://www.ruhr-uni-bochum.de/mathphys/