Orientation Recognition Performance Evaluation of GT-511C3 Fingerprint Sensor

D A Jatmiko¹, S U Prini²

¹Department of Informatics Engineering, Universitas Komputer Indonesia, Indonesia
²Research Center for Electronics and Telecommunication (PPET), Indonesian Institute of Sciences, Jalan Sangkuriang Komplek LIPI Gedung 20 Dago, Bandung 40135, Indonesia

Email: didit@email.unikom.ac.id

Abstract. The purpose of this research is evaluating GT-511C3 fingerprint sensor recognition performance using different orientation. The GT-511C3 is an embedded fingerprint sensor which has an increased memory capacity up to 200 different fingerprints. The module is small and easy to mount using two mounting tabs on the side of the sensor and have False Acceptance Rate (FAR) < 0.001% and False Rejection Rate (FRR) < 0.1%. Based on the test results, the GT-511C3 sensor has high recognition performance for all orientation testing scenarios, using five fingerprints as test objects, all fingerprints are able to be recognized in all orientations (0°, 90°, 180° and 270°) quickly (515-750ms). These results can later be used as recommendations for the best implementation of sensor module GT-511C3.

1. Introduction

Fingerprint sensors can be implemented for various purposes such as resident identity cards, door lockers, attendant machine [1], smartphone locks, biometric identification and forensics [2]. The GT-511C3 is an embedded fingerprint sensor which has an increased memory capacity up to 200 different fingerprints. The module is small and easy to mount using two mounting tabs on the side of the sensor and have False Acceptance Rate (FAR) < 0.001% and False Rejection Rate (FRR) < 0.1%[3]. Physical details of GT-511C3 sensor can be seen in Figure 1.

Figure 1. GT-511C3 sensor module [4].
False Acceptance Rate (FAR) and False Rejection Rate (FRR) used to determine the similarity of fingerprint data into databases when matching [2][5–7], FAR and FRR are needed to determine the application of fingerprint biometric systems [8–11], in addition to ease of user required fingerprint scanning capabilities with a variety of orientations, some studies use locally adaptive methods [11][12] and high resolution optical sensor with adaptive mean filter [13][14] to accommodate this need. This paper attempts to test and show the performance of the GT-511C3 sensor in a various orientation.

The purpose of this research is evaluating GT-511C3 fingerprint sensor recognition performance using different orientation. The GT-511C3 is embedded fingerprint sensor which has an increased memory capacity up to 200 different fingerprints. The module is small and easy to mount using two mounting tabs on the side of the sensor and have False Acceptance Rate (FAR) < 0.001% and False Rejection Rate (FRR) < 0.1%.

2. Method
2.1. Wiring module
The module used in this paper consists of 2 main modules, namely the GT-511C3 sensor module and FTDI USB to TTL converter, the sensor module uses USART 3.3V TTL serial communication [1][3]. Detailed sensor pinout can be seen in Figure 2.

![Figure 2. Pinout (left) and assembly version (right) [4].](image-url)

2.2. Testing Software and Orientation Scanning
The testing software is part of the SDK[4], developed using C ++ Language, the main function in the testing software used in this study is Enrol, Verify (1:1), Identify (1: N), and Delete All. Interface of testing software can be seen in Figure 3.
The scanning orientation to be tested is 0°, 90°, 180° and 270°, this angle is chosen because it represents the extreme angle when the user is scanning the fingerprint so that the test results are expected to be able to show the best and worst performance. Detailed orientation of scanning can be seen in Figure 4.

Figure 3. GUI of testing software

Figure 4. Orientation testing scenario
3. Results and Discussion
In this research, testing is carried out through 3 stages as well as describe below:

1. Enrolling 5 fingerprints (ID0-ID4) with zero angles,
2. Verify (1: 1) and
3. Identify (1: N),

The fingerprint reading test scenario uses 5 fingerprints and each fingerprint gets 4 reading orientation/angles (0°, 90°, 180° and 270°). Based on testing, the results obtained are:

1. Thumb (ID0): in this test, the sensor is able to detect all reading orientations with the fastest reading time of 516ms at orientation 0°.
2. Index finger (ID1): in this test, the sensor is able to detect all reading orientations with the fastest reading time of 531ms at orientation 180°.
3. Middle finger (ID2): in this test, the sensor is able to detect all reading orientations with the fastest reading time of 516ms at orientation 270°.
4. Ring finger (ID3): in this test, the sensor is able to detect all reading orientations with the fastest reading time of 515ms at orientation 270°.
5. Little finger (ID4): in this test, the sensor is able to detect all reading orientations with the fastest reading time of 593ms at orientation 180°.

Meanwhile, the other testing results are:

1. Thumb (ID0): in this test, the sensor is able to detect all reading orientations with the latest reading time of 719ms at orientation 180°.
2. Index finger (ID1): in this test, the sensor is able to detect all reading orientations with the latest reading time of 718ms at orientation 0°.
3. Middle finger (ID2): in this test, the sensor is able to detect all reading orientations with the latest reading time of 703ms at orientation 90°.
4. Ring finger (ID3): in this test, the sensor is able to detect all reading orientations with the latest reading time of 735ms at orientation 0°.
5. Little finger (ID4): in this test, the sensor is able to detect all reading orientations with the latest reading time of 750ms at orientation 750°.

As a result, the fastest time obtained at Ring finger (ID3) which is 515ms, while the latest reading time obtained at Ring finger (ID4) which is 750ms. Average value of fastest and latest reading time tend to be synchronous in the amount of ~500 ms and ~700ms. In this experiments, it can be concluded that reading orientation does not affect recognition performance. It only the reading time has changed. More details can be seen in Table 1.
Table 1. Orientation recognition performance

Finger	Orientation	Success/Failed	Time (ms)
Thumb (ID0)	0°	Success	547
	90°	Success	516
	270°	Success	547
	180°	Success	719
	0°	Success	718
Index finger (ID1)	90°	Success	703
	270°	Success	687
	180°	Success	531
	0°	Success	702
Middle finger (ID2)	90°	Success	703
	270°	Success	516
	180°	Success	531
	0°	Success	735
Ring finger (ID3)	90°	Success	547
	270°	Success	515
	180°	Success	718
	0°	Success	750
Little finger (ID4)	90°	Success	734
	270°	Success	735
	180°	Success	593

4. Conclusions
Based on the test results, the GT-511C3 sensor has high recognition performance for all orientation testing scenarios, using five fingerprints as test objects, all fingerprints are able to be recognized in all orientations quickly, thus this sensor is suitable for use as biometric based authentication. Best time used for matching fingerprints is on the ring finger (ID3) which is 515ms.

5. Acknowledgment
I acknowledge myself and S U Prini for conducting the research and being the main contributor in this paper. A special credit goes to Rocket Division by Universitas Komputer Indonesia (UNIKOM), which facilitate tools and infrastructure in this research.

References
[1] Prini S U and Iskandar H R 2018 Desain Dan Implementasi Sistem Absensi Mahasiswa Menggunakan Fingerprint Berbasis Mikrokontroler Jurnal Teknik 17(19–26)
[2] Maltoni D, Maio D, Jain A and Prabhakar S 2009 Handbook of Fingerprint Recognition (London: Springer-Verlag)
[3] Sapes J and Solsona F 2016 FingerScanner: Embedding a Fingerprint Scanner in a Raspberry Pi Sensors 16(220)
[4] Chan H Y B 2019 Fingerprint Scanner Hookup Guide - learn.sparkfun.com Fingerprint Scanner Hookup Guide
[5] Nugroho A S 2013 Memahami False Match & False Non Match Corat-coret Anto S. Nugroho
[6] Nugroho A S 2015 Memahami FMR & FNMR pada sistem biometrics Corat-coret Anto S. Nugroho

[7] Nugroho A S 2017 Representasi informasi pada sidik jari Corat-coret Anto S. Nugroho

[8] Galbally J, Cappelli R, Lumini A, Gonzalez-de-Rivera G, Maltoni D, Fierrez J, Ortega-Garcia J and Maio D 2010 An evaluation of direct attacks using fake fingers generated from ISO templates Pattern Recognition Letters 31(725–32)

[9] Yoshida T and Hangai S A Study on Accuracy and Problems in using ISO/IEC 19794-2 Finger Minutiae Formats for Automated Fingerprint Verification 5

[10] Xi S and Geng W 2018 Fast Algorithm of Fingerprint Singularity Region Enhancement 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC) 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC) pp 400–4

[11] Gottschlich C, Tams B and Huckemann S 2017 Perfect Fingerprint Orientation Fields by Locally Adaptive Global Models IET Biometrics 6(183–90)

[12] Surya A A K, Nugroho A S and Lim C 2011 Evaluation of fingerprint orientation field correction methods 2011 International Conference on Advanced Computer Science and Information Systems 2011 International Conference on Advanced Computer Science and Information Systems pp 353–8

[13] Han K, Wang Z and Chen Z 2018 Fingerprint Image Enhancement Method based on Adaptive Median Filter 2018 24th Asia-Pacific Conference on Communications (APCC) 2018 24th Asia-Pacific Conference on Communications (APCC) pp 40–4

[14] BommiReddiGali A and Sudhish P S 2018 An Optical High Resolution Fingerprint Reader for Children 2018 International Conference on Bioinformatics and Systems Biology (BSB) 2018 International Conference on Bioinformatics and Systems Biology (BSB) pp 1–5