ЕКОЛОШКЕ И ФЛОРИСТИЧКЕ КАРАКТЕРИСТИКЕ НОВОГ НАЛАЗИШТА МАКЛЕНА (ACER MONSPESSULANUM L.) НА ЛОКАЛНОСТИ ГЛОГОВИТА КОСА НА БОРАЊИ

Др Цвјетићанин Раде, Универзитет у Београду – Шумарски факултет, Србија
Др Кошанин Оливера, Универзитет у Београду – Шумарски факултет, Србија
Др Перовић Марко, Универзитет у Београду – Шумарски факултет, Србија
Др Јанић Милорад, Универзитет у Београду – Шумарски факултет, Србија
MSc Љубичић Јанко, Универзитет у Београду – Шумарски факултет, Србија

Извод: У раду је описано ново налазиште маклена (Acer monspessulanum L.) на планини Борањи, у ГЈ „Источна Борања“, изнад Рогуљског потока, на гребену Глоговита коса. Маклен се појављује на надморској висини од 460 до 480 m, на југозападној и западној експозицији, на врлетном нагибу од 45° до 50°. Површина налазишта је 874 m², а координате центра налазишта су: λ=19°13′49,0″ и φ=44°25′21,33″.

На наведеном налазишту маклен се појављује у заједници црног граба и црног јасена, а обзиром да је забележен у сва три спрата, а у спрату жбуња и приземне флоре појављује се обилно, издвојена је субасоцијација са макленом (Ostrya carpinifoliae-Fraxinetum orni subass. aceretosum monspessulanii). По флористичком саставу већина биљних врста припадају субмедитеранском флорном елементу, стога ова заједница представља енклаву субмедитеранске вегетације у појасу континенталних шума букве. Заједница је азоналног карактера, условљена је орографско-едафски, појављује се на топлим експозицијама, на плиткој и скелетној рендзини на оолитским кречњацима.

Кључне речи: Acer monspessulanum L., оолитски кречњаци, рендзина, асоцијација Ostrya carpinifoliae-Fraxinetum orni subass. aceretosum monspessulanii, Борања

УВОД

Панчић (1871) је у Србији први забележио маклен (Acer monspessulanum L.) у првој српској дендрологији „Дрвеће и шибље у Србији”. Јовановић (1973) у флори Србије обрађује маклен (Acer monspessulanum L.) и наводи да је ареал ове врсте у Медитерану и јужној Европи, у северној Африци (Алжир и Мароко), од Француске до у долину Рајне и Мозела, у Румунiji до северно од Дунава (Банат), Бугарској, Грчкој и свим земљама јужне Европе. За Србију Јовановић (1973) наводи да је маклен распрострањена врста. Највећи број налазишта маклена забележио је Мишић (1981) у клисурама и кањонима источне Србије: Ђердапа, Замне, Вратне, Пека, Лазареве реке, Црне реке, Грзе, Иванштице, Моравице, Јерме, Суводолској клисури, Сврљишкој клисури, Ресавској клисури и Сићевачкој клисури. Осим у клисурама и кањонима река маклен се у источној Србији појављује на планинама Мирочу, Ртњу, на планини Гребен и на Вlashкој планини.
У источној Србији маклен је заступљен у великом броју шумских заједница и шибљака, а ова врста се најчешће појављује у деградираним храстовим шумама и шибљакама са доминацијом грабића, на кречњачкој геолошкој подлози (Мишић, 1981).

Мишић (1997) наводи да је маклен забележен у западној Србији на планини Борањи, на две локалности: Глобовити коса и Лужичко-Љубићеви планини. На овом месту маклен се појављује на кречњацима, а у близини се налази алцијума храстова и плавац (Ostryo carpinifoliae-Quercetum (B. Jovanović 1967) Tomić 1980., Syn. Helleboro-Ostryo-Quercetum Tomić 1980.)

У раду је описано ново налазиште маклена у западној Србији, које припада UTM зони 34 E 359125 и N 4920334 (слика 1). За ово налазиште у раду су приказане орографске и хемолошке услове земљишта, дефинисана је фитоценоза, приказан је флористички састав заједнице и извршено је поређење еколошких услова новог налазишта маклена са еколошким условима на два претходно забележена налазишта на планини Борањи. Резултати истраживања ће допринети његовом познавању еколошких карактеристика, с обзиром да је он у Западној Србији мало проучаван.

МАТЕРИЈАЛ И МЕТОД

Лоцирање новог налазишта маклена на планини Борањи извршено је помоћу ручног GPS уређаја Garmin GPSMAP 66st, који има тачност до 2 м. Педолошка проучавања су обављена на основу једног анализираног педолошког профиле. Аналитички поступци метода по којима су обављена теренска и лабораторијска испитивања основних земљишних особина, описана су у приручницима за испитивање земљишта ЈДПЗ-а (1966, 1997). Лабораторијска испитивања основних физичко-хемијских особина су обаљена у лабораторијама Шумарског факултета, по стандардној методологији. Од физичких особина одређен је: садржај хигроскопне воде (сушењем у сушници на температури од 105°C у трајању 6 до 8 часова) и гранулометријски састав (третирањем натријум-пирофосфатом; фракционисање земљишта извршено је комбинованим пипет методе и методе елутрације помоћу сита по Atterbergu, уз одређивање процентуалног садржаја фракција од: 2-0,2 mm, 0,2-0,06 mm, 0,06-0,02 mm, 0,02-0,006 mm, 0,006-0,002 mm и мањих од 0,002 mm). Одређивање тестуре земљишта извршено
ЕКОЛОШКЕ И ФЛОРИСТИЧКЕ КАРАКТЕРИСТИКЕ НОВОГ НАЛАЗИШТА МАКЛЕНА (Acer monspessulanum L.)

је према троуглу америчке педолошке службе (Soil Survey, 1951).

Од хемијских особина одређене су: активна и супституциона киселост (pH у H₂O и у 0,01M CaCl₂, електрометријски помоћу апарата пе-хаметра), хидролитичка киселост (Y₁ cm³, по методу Каррен-а), сума адсорбованих базних катјона (S у cmol*kg⁻¹, метод Каррен-а), тотални капацитет адсорбције за катјона (T у cmol*kg⁻¹, рачунким путем), сума киселих катјона (T-S у cmol*kg⁻¹, рачунким путем преко хидролитичке киселости), степен засићености земљишта базама (израчунат по Hisinku у %), укупан азот (по методу Kjeldahla у %), однос угљеника према азоту (C:N, рачунким путем) и лакоприступачни фосфор и калијум (mg/100 грама земљишта), одређени су Al методом. Тип земљишта је утврђен применом „Класификације земљишта Југославије“ (Шкорић et al. 1985). Геолошка подлога је одређена на основу истраживања на терену и на бази „Основне геолошке карте Србије“, Лист „П34-123 - Зворник“, размера 1:100.000 (Мојсиловић et al. 1960-1968).

У сврху утврђивања фитоценолшке припадности на терену је урађен један фитоценолошки снимак по методу Браун-Бланкеа (Braun-Blanquet, 1964). Биљне врсте су дентификоване на основу литературних извора: “Флора Србије” (Јосифовић et al. 1972-1977, Сарић et al. 1992; Стевановић et al. 2012), „Flora Europaea“ (Tutin et al. 1964-1980.) и „Ikonographie der Flora des südöstlichen Mitteleuropa" (Javorka, Csapody 1979). Фитоценолошка припадност заједнице у којој se појављује маклен одређена је по Томић (2006). Флорни елементи су одређени по Гајићу (1980, 1984).

РЕЗУЛТАТИ ИСТРАЖИВАЊА

Маклен (Acer monspessulanum L.) је проучен на новом налазишту у Србији на планини Борањи у ГЈ „Источна Борања“ североисточно од насеља Радаљ, јудоисточно од Доње Борине и југозападно од Горње Борине (слика 2).

Слика 2. Положај новог налазишта маклена на Топографској карти R 1:200000 (*1987)
Слика 3. Положај новог налазишта маклена на планини Борањи на гребену Глоговита коса R 1:50000 (*1967)

Слика 4. Оолитски кречњаци на локалитету истраживања
ЕКОЛОШКЕ И ФЛОРИСТИЧКЕ КАРАКТЕРИСТИКЕ НОВОГ НАЛАЗИШТА МАКЛЕНА (Acer monspessulanum L.)...

Ново налазиште маклена је изнад Рогуљског потока, на гребену Глоговита коса на површини од 874 m, на надморској висини од 460 до 480 m. Маклен појављује се на југозападној и западној експозицији, на врлетном нагибу од 45° до 50°. Налазиште је облика елипсоида WGS84 чији центар има координате λ=19°13′49,0″ и φ=44°25′21,33″, а по Gauss-Krüger пројекцији припада зони 7 са координатама x=4921300 (слика 3).

Према Основној геолошкој карти Србије (Мојсиловић et al. 1960-1968) и на основу теренских истраживања утврђено је да геолошку подлогу на новом налазишту маклена чине слојевити и банковит оолитски кречњаци (слика 4.).

На основу резултата теренских и лабораторијских проучавања земљишта са истраживања подручја, према Класификацији земљишта (Шкорић et al., 1985) дефинисан је тип земљишта-рендзина (слика 5.).

Пелодолшки профил има грађу A – AC – R. Моћност A хоризонта креће се око 20 cm, богат је хумсом, мрко-црне је боје (10YR 2/2 - Minsellov атлас боја), прашки, растреш, без трагова структуре. Садржај фракције скелета је веома висок и до 80% запремине земљишта. Према гранулометријском саставу А-хоризонт је пракасти глиновита илова (табела 1).

Између гранулометријских фракција уочава се доминација фракције праха (55,80%), садржај фракције песка је упола нижи (27,60%), док је садржај честица земљишта мањих од 0,02 mm – честица глине најнижи (16,60%). Земљиште је веома скелетно, а на саму површину земљишта избијају, у великом броју, средње крупни комади кречњака. Земљиште садржи слободне карбонате и слабо је карбонатно (табела 2).

Степен засићености базама је веома висок. У профилу су присутне концентрације калцијум-карбоната које настају распадањем супстрата и које интензивно реагују при додавању раствора хлороводоничке киселине. Садржај хумуса је висок (25,94%) и указује на органогени карактер хумусно-акумулативног хоризонта. Образоване хумусне материје имају карактеристике зрелог (мул) облика. Земљиште је веома богато укупним азотом (1,05%). У погледу садржаја лакоприступачног фосфора земљиште је слабо обезбеђено, док је калијумом добро обезбеђено. Локалитет истраживања налази се

Слика 5. Рендзина на новом налазишту маклена

Табела 1. Физичке особине рендзине на Борањи

Профил	Хоризонт	Дубина (cm)	Хигроскопска вода (%)	Песак (2-0.06mm)	Прах (0.06-0.002mm)	Глина (<0.002mm)	Текстурна класа
124	A	0-20	7.55	27.60	55.80	16.60	прашкаста илова (ta1e 1).
на надморској висини од 460 до 480 m, квалитет шумске простирке је добар, као и климатски услови за трансформацију. Однос C/N (14,33) указује на то да су процеси хумификације организакних материја нешто јаче изражени у односу на процес минерализације хумуса. Висока укупна количина азота, због слабе минерализације, истовремено није гарант добре обезбеђености биљака овим макрохранљивим елементом. У складу са високим садржајем хумуса је и висок садржај хигроскопске воде 7,55%.

На основу теренских фитоценолошких истраживања (табела 3) установљено је да се маклен налази у заједници црног граба и црног јасена (Ostrya carpinifoliae-Fraxinetum orni Aichinger 1933). По Томић (2006) наведена асоцијација припада свези љубичацких шума (Quercetalia pubescentis Klika 1933) и разреду шума букве и шума храстова (Querco-Fagetea Br.-Bl. et Vlieg. 1937).

У спрату дрвећа, чији је склоп 0,6 средња висина стабала 7 m, средњи пречник 17 cm, највећу бројност и покровност имају црни граб (Ostrya carpinifolia 3.3) и црни јасен (Fraxinus ornus 2.2). Нешто мање је заступљен маклен (Acer monspessulanum 1.2), док су цер (Quercus cerris +) и бдест (Fraxinus ornus 2.2) је мало заступљен. Метен (Ostrya carpinifolia 3.3) је јединствени вид у спрату дрвећа.

Табела 3. Фитоценолошки снимак заједнице црног граба и црног јасена (Ostrya carpinifoliae-Fraxinetum orni Aichinger 1933)

Асоцијација	Ostrya carpinifoliae-Fraxinetum orni
Субасоцијација	aceretosum monspessulanii
Број фитоценолошког снимка	1/2020
Одељење (одсек)	31а
Надморска висина (м)	458
Експозиција	J3-3
Нагиб (°)	45-50

СПРАТ ДРВЕЋА

Склон	0,6
Средња висина (м)	7
Средњи пречник (см)	17
Средње растојање (м)	4
Ostrya carpinifolia	3,3
Fraxinus ornus	2,2
Acer monspessulanum	1,2
Quercus cerris	+
Quercus pubescens	+
ЕКОЛОШКЕ И ФЛОРИСТИЧКЕ КАРАКТЕРИСТИКЕ НОВОГ НАЛАЗИШТА МАКЛЕНА (Acer monspessulanum L.)...

СПРАТ ЖБУЊА	
Склон	0,7
Средња висина (m)	4
Fraxinus ornus	3.3
Acer monspessulanum	2.2
Euonymus verrucosus	1.2
Crataegus monogyna	1.2
Sorbus torminalis	1.2
Staphylea pinnata	+
Hedera helix	+

СПРАТ ПРИЗЕМНЕ ФЛОРЕ	
Покровност	0,6
Fraxinus ornus	3.3
Acer monspessulanum	2.2
Rosa arvensis	1.2
Euonymus verrucosus	1.2
Teucrium chamaedrys	1.2
Tilia argentea	+.2
Hedera helix	+.2
Festuca drymeia	+.2
Galium pseudoaristatum	+.2
Carex nitida	+.2
Cynanchum vincetoxicum	+.2
Crataegus monogyna	+
Quercus cerris	+
Staphylea pinnata	+
Sorbus torminalis	+
Juniperus communis	+
Helleborus odorus	+

cerris +) и медунац (Quercus pubescens +) засту-пљени са по једним стаблом.

У спрату жбуња (табела 3) чији је склон 0,7 и средња висина 4 m, најзаступљенији су црни јасен (Fraxinus ornus 3.3) и маклен (Acer monspessulanum 2.2). Мана бројност и покровност имају: брадавичаста курика (Euonymus verrucosus 1.2), једносемени глог (Crataegus monogyna 1.2), брекиња (Sorbus torminalis 1.2), бршљан (Hedera helix +) и клокочика (Staphylea pinnata +).

Покровност спрата приземне флоре је 0,6 а у овом спрату највећу бројност и покровност имају црни јасен (Fraxinus ornus 3.3) и маклен (Acer monspessulanum 2.2), а од осталих дрвена-стичних врста ове су застуљени: Rosa arvensis 2.2, Evonymus verrucosa 1.2, Tilia argentea +.2, Hedera helix +.2, Quercus cerris +, Staphylea pinnata +,
Цвјетићанин Раде, Кошанин Оливера, Перовић Марко, Јанић Милорад, Љубичић Јанко

Цвјетићанин Раде, Кошанин Оливера, Перовић Марко, Јанић Милорад, Љубичић Јанко

40

Sorbus torminalis + и Juniperus communis +. Од зељастих биљака у овом спрату појављују се: Teucrium chamaedrys 1.2, Festuca drymeia +.2, Galium pseudoaristatum +.2, Carex nitida +.2, Cynanchum vincetoxicum +.2 и Helleborus odorus + (табела 3).

Из фитоценолошког снимка види се да је маклен заступљен у сва три спрата, а да се у спрату жбуња и спрату приземне флоре појављује обилно, па је у асоцијацији црног граба и црног јасена издвојена субасоцијација са макленом (Ostryo carpinifoliae-Fraxinetum ornii Aichinger 1933 subass. aceretosum monspessulanii) (слика 6.).

Po флористичком саставу већина биљних врста у овој заједници припада субедитеранском флорном елементу (Sorbus torminalis, Rosa arvensis и Hedera helix), a једна је субпланско-субмедитеранска (Teucrium chamaedrys). На основу флористичког састава утврђено је да заједница црног граба и црног јасена са макленом представља енклаву субмедитеранске вегетације у појасу континенталних шума букве на Борањи.

ДИСКУСИЈА

Jовановић (1973) у флори Србије наводи да је маклен распрострањен у Србији, а највише налазишта маклена забележио је Мишић (1981) у клисурама и кањонима источне Србије, где се маклен појављује увек на кречњачкој геолошкој подлози. Маклен је у западној и југозападној Србији мање заступљен него у источној Србији, а на свим до сада забележеним налазиштима Гучеву (Вукићевић, 1971), Борањи, Тари, у околини Прибоја (Томић, 1980) и кањону реке Дрине (Мишић, 1981) такође се појављује на кречњачкој геолошкој подлози. Заједнице у којима се јавља маклен се образују на земљиштима која се налазе на ниском нивоу еволуционо-генетске развијености. На подручју Прибоја Томић (1980) је забележила сироземе, организне, прелазне и колувијалне рендзине, док је на Борањи установила само присуство сирозема. На новом налазишту маклен је забележен на организној рендзини. У погледу еколошко-производних карактеристика најнеповољнији услови за раст и развој маклена су на сирозему, а нешто повољнији су на организној рендзини. Прелазна рендзина у односу на организну рендзину представља мало бољу развојну стањицу и одликује се нешто већом дубином од око 30 cm, већим учешћем глине (32-65%), и нижим садржајем хумуса у односу на организно (Томић, 1980).

Планински масив Борање налази се на подручју северозападне Србије. И поред високе количине падавина на подручју Борање (преко 1000 mm годишње), појављује се летња суша, која је условљена карактером геолошке подложе и рељефа, тако да се њени екстремни облици испољавају посебно на кречњаку и топлим
ЕКОЛОШКЕ И ФЛОРИСТИЧКЕ КАРАКТЕРИСТИКЕ НОВОГ НАЛАЗИШТА МАКЛЕНА (Acer monspessulanum L.)...

За разлику од источне Србије Србије, где се маклен појављује у полидоминантним шумама и шикарама са доминацијом граба (Ostrya carpinifolia) у југоисточној и западној експозицији на нагибу од 10°, у источној Србији маклен је заступљен у великом броју шумских заједница и шибљака, а најчешће се појављује у деградираним храстовим шумама и шикарама са доминацијом граба (Ostrya carpinifolia). На Гучеву у сливу потока Сиге Вукићевић (1976) је забележен жиља маклен у заједници цера и црног граба (Ostrya carpinifoliae-Quercetum (B. Jovanović 67) Tomić 1980 Syn. Quercetum cerris subass. ostreyetosum) у спрату приземне флоре, на надморској висини од 720 m, на југоисточној експозицији. На планини Борањи маклен је до сада био забележен на два налазишта – у сливу Боринске реке на 400 m надморске висине, на југоисточној експозицији на нагибу од 50°, већем од другог, и на ушћу Рогуљског потока на 450 m надморске висине, на југоисточној експозицији на нагибу од 40°. На новом налазишту на планини Борањи маклен је забележен изnad Рогуљског потока на већој надморској висини, од (460 до 480 m). Ту је присутан на топлим експозицијама (југозападној и западној), слично као на првом налазишту које је забележила Томић (1980), а различито од другог налазишта које је на северној експозицији. На новом налазишту маклен је распрострањен на врлетном нагибу (40° - 50°), нешто већем него на другом налазишту (30°), а нешто мањем него на првом налазишту, чији нагиб износи 60°. За разлику од оба налазишта која је забележила Томић (1980), где се маклен појављивао само у спрату жбуња, на новом налазишту на Борањи забележен је обилно у сва три спрата (спрату дрвећа, спрату жбуња и спрату приземне флоре).

Маклен се на два налазишта у околини Прибоја (Томић, 1980) појављује у истој заједници, као и на новом налазишту на Борањи тј., у заједници црног граба и црног јасена (Ostrya carpinifoliae-Fraxinetum orni Aichinger 1933., Syn. Orno-Ostryetum (Aichinger 1933) Erker 1970), а која није била до сада констатована на Борањи.

На оба налазишта у околини Прибоја (Томић, 1980) маклен се појављује на већим надморским висинама у односу на ново налазиште на Борањи, јер је на првом налазишту у околини Прибоја забележен на 1050 m, а на другом на 700 m надморске висине. На новом налазишту на Борањи маклен се појављује на топлој експозицији, као што је случај на првом налазишту у околини Прибоја, али се на Борањи јавља на већим нагибима (40°-50°), док је нагиб терена у околини Прибоја 30°. У односу на друго налазиште у околини Прибоја нагиби су слични (40°-50°), али се овде маклен појављује на хладној (северној) експозицији. Ново налазиште маклена на планини Борањи, иако припада истој заједници црног граба и црног јасена (Ostrya carpinifoliae-Fraxinetum orni Aichinger 1933., Syn. Orno-Ostryetum (Aichinger 1933) Erker 1970) разликује се од налазишта у околини Прибоја по орографским условима.

ЗАКЉУЧЦИ

Маклен је забележен на новом налазишту на планини Борањи у ГЈ „Источна Борања“ северисточно од насеља Радаљ, јудоисточно од Доње Борине и југозападно од Горње Борине, изнад Рогуљског потока на гребену Глоговита
коса. На новом налазишту маклен се појављује на надморској висини од 460 до 480 м, на југо- западној и западној експозицији, на врлетном нагибу од 45° до 50°. Површина налазишта је 874 м², а центар налазишта има координате λ=19°13'49,0" и φ=44°25'21,33".

Геолошка подлога на новом налазишту маклена је оолитски кречњак, а земљиште је рендзина. Педолошки профил има грађу А – АС – R. Моћност А хоризонта креће се око 20 cm, богат је хумусом. Садржај фракције скелета је веома висок (до 80% запремине земљишта), а према гранулометријском саставу A-хоризонт је прашкасто глиновита иловача. Степен засићености базама је веома висок. Садржај хумуса је веома висок и указује на органогени карактер хумусно-акумулативног хоризонта, припада типу зрелаг (мул) хумуса. Земљиште је веома богато укупним азотом, добро је обезбеђено калијумом, док је слабо обезбеђено лакорприступачним фосфором.

На новом налазишту на планини Борањи маклен је забележен у асоцијацији црног граба и црног јасена, а с обзиром да је маклен заступљен у сва три спрата, а да се у спрату жбуња и спрату приземне флоре појављује, у наведеној асоцијацији издвојена је субасоцијација са макленим (Ostrya carpinifoliae-Fraxinetum orni Aichinger 1933 subass. aceretosum monspessulanii).

У флористичком саставу ове заједнице већина врста припада субмедитеранском флорном елементу, па наведена заједница представља енклаву субмедитеранске вегетације у појасу континенталних шума букве на Борањи. Заједница црног граба и црног јасена са маклением (Ostrya carpinifoliae-Fraxinetum orni Aichinger 1933 subass. aceretosum monspessulanii) је азоналног карактера и условљена је орографско-едафски, јер се појављује на топлим експозицијама, на плиткој и скелетној рендзини образованој на геолошкој подлози коју чине оолитски кречњаци.

Напомена: Овај рад је реализован у оквиру Уговора о финансирању научноистраживачког рада НИО у 2021. години, који је Универзитет у Београду-Шумарски факултет закључио са Министраством просвеће, науке и технолошког развоја Републике Србије. Евиденциона број пројекта је 451-03-9/2021-14/2000169.
ECOLOGICAL AND FLORISTIC CHARACTERISTICS OF A NEW MONTPELLIER MAPLE (Acer monspessulanum L.)...

Dr Sci Cvjetičanin Rade, University of Belgrade-Faculty of Forestry, Serbia
Dr Košanin Olivera, University of Belgrade-Faculty of Forestry, Serbia
Dr Perović Marko, University of Belgrade-Faculty of Forestry, Serbia
Dr Janić Milorad, University of Belgrade-Faculty of Forestry, Serbia
MSc Ljubičić Janko, University of Belgrade-Faculty of Forestry, Serbia

Abstract: A new montpellier maple (*Acer monspessulanum* L.) site was described in this paper, located on mountain Boranja, in forest management unit „Istočna Boranja“, above Roguljski potok, on Glogovita kosa ridge. Montpellier maple occurs on elevations between 460 and 480 m a.s.l., on southwestern and western aspect, on very steep slopes with inclination 45° to 50°. The site area is 874 m2, and coordinates of site centre are: $\lambda=19°13'49.0''$ and $\phi=44°25'21.33''$.

In this site, Montpellier maple occurs in a plant community of hop-hornbeam and manna ash, and considering that Montpellier maple was recorded in all three layers, and that it occurs abundantly in shrub and ground layers, a subassociation with montpellier maple was set apart (*Ostryo carpinifoliae-Fraxinetum orni* subass. *aceretosum monspessulanii*). According to floristic composition, most plant species belong to the submediterranean floral type, so this community represents an enclave of submediterranean vegetation in the belt of continental beech forests. The community is of azonal character, orographically-edaphically conditioned, and occurs in warmer aspects, on shallow and skeletal rendzina on oolithic limestones.

Key words: *Acer monspessulanum* L., oolithic limestones, rendzina, *Ostryo carpinifoliae-Fraxinetum orni* subass. *aceretosum monspessulanii*, Boranja

INTRODUCTION

Pančić (1871) first recorded Montpellier maple (*Acer monspessulanum* L.) in Serbia in the first Serbian dendrology „Trees and shrubs in Serbia“. Jovanović (1973) in „Flora of Serbia V“ cites that the distribution of montpellier maple is in Mediterranean and Southern Europe, Northern Africa (Algeria and Morocco), from France to Rhein and Mosel valley, in Romanian Banat, Bulgaria, Greece and all Southern European countries. Jovanović (1973) notes that this maple is widespread species in Serbia. Most montpellier maple localities in Serbia were recorded by Mišić (1981) in gorges and canyons of Eastern Serbia: Đerdap, Zamna, Vratna, Pek, Lazareva reka, Crna reka, Grza, Ivanštica, Moravica, Jerma, Suvodolska, Svrliška, Resavska and Sičevačka gorges. Apart from gorges and canyons, montpellier maple occurs in Eastern Serbia on the mountains of Miroč, Rtanj, Greben and Vlaška.

In Eastern Serbia, montpellier maple is represented in a wide number of forest and bush plant communities, and it occurs mostly in degraded oak forests and shrublands, dominated by oriental hornbeam, on limestone bedrock (Mišić, 1981). Mišić (1997) notes that montpellier maple was recorded on Kosovo and Metohija in a community of oriental hornbeam with woundwort (*Carpinetum orientalis scardicum* Krasn. 1974.) distributed around Prizren and Istok in foot-slope of mountains: Paštrik, Junička, Streočka, Maja-Ljubenča mountain and Poklen. In these sites, montpellier maple occurs on limestones, while on Koznik (Koznička boka, Ljubičevski potok, Mrasarski potok) it occurs on seprentinite in shrubland of European forsythia and milkwort (*Polygalo-Forsythietum europae* Blačić et Krasnič 1971).
Montpellier maple is less frequent in western and southwestern Serbia, and it was recorded on Gučevo (Vukićević, 1971), Boranja, Tara, near Priboj (Tomić, 1980) and the river Drina canyon (Mišić, 1981). On Boranja mountain, this maple was, so far, recorded in two sites (Tomić, 1980), both in a plant community of oaks and hop-hornbeam (Ostrya carpinifoliae-Quercetum (B. Jovanović 1967) Tomić 1980., Syn. Hellebororo-Ostryo-Quercetum Tomić 1980).

The new montpellier maple site in western Serbia, in the locality Glogovita kosa on Boranja mountain was described in this paper, which belongs to the UTM zone 34 Е 359125 and N 4920334 (Figure 1). The orographic and edaphic site conditions were presented for this site, the plant community was defined, its floristic composition was described and comparison of ecological conditions of this montpellier maple site with those in the two previously known sites on Boranja was made. The results of this research will contribute to a better knowledge of montpellier maple distribution and its ecological and coenological characteristics, considering that it was insufficiently researched in western Serbia.

MATERIAL AND METHODS

Locating of new montpellier maple on Boranja was done by handy GPS device Garmin GPSMAP 66st, with an accuracy of 2 m.

Soil research was done on the basis of one analysed soil profile. Analytical method treatments, according to which field and laboratory soil research was made, are described in guidebooks for soil research JDZP (1966, 1997). The laboratory researches of the basic physical-chemical properties were done in laboratories of the Faculty of Forestry, University of Belgrade, by standard methodology. The analysed physical properties are: hygroscopic water content (drying in kiln on temperature 105°C during 6 to 8 hours) and granulometric composition (treating of samples by sodium-pyrophosphate, soil fractioning by combining the pipette method and the elutration method using sieve by Aterberg, with determining the following percentage fraction contents: 2-0.2 mm, 0.2-0.06 mm, 0.06-0.02 mm, 0.02-0.006 mm, 0.006-0.002 mm and less than 0.002 mm). The determination of soil texture was done by the American soil survey triangle (Soil Survey, 1951).

The determined chemical properties were: active and substitutional acidity (pH in H₂O and in 0.01M CaCl₂, determined electrometrically by pH meter), hydrolitical acidity (Y₁ cm³, by the Kappen method), the sum of adsorbed alkali cations (S in cmol*kg⁻¹, the Kappen method), total capacity of adsorption for cations (T in cmol*kg⁻¹), sum of acidic cations (T-S in cmol*kg⁻¹, calculated according to hydrolitical acidity), soil saturation level by alkalies (calculated after Hissink in %), the total sum of nitrogen (by the Kjeldahl method %), carbon to nitrogen ratio (C:N) and the content of accessible phosphorus and potassium (mg/100 g of soil, calculated by the Al method). Soil type was determined using „Soil classification of Yugoslavia“ by Škorić et al. (1985). The geological bedrock was determined by field research and „Basic soil map of Serbia“, sheet „L34-123 - Zvornik“, scale 1:100.000 (Mojsilović et al. 1960-1968).
ECOLOGICAL AND FLORISTIC CHARACTERISTICS OF A NEW MONTPELLIER MAPLE (Acer monspessulanum L.)...

For establishing coenological affiliation one phytocoenological releve was produced in the field, according to the Braun-Blanquet method (Braun-Blanquet, 1964). Plant species were determined by literature sources: “Flora of Serbia” (Josifović et al. 1972-1977; Sarić et al. 1992; Stevanović et al. 2012), „Flora Europaea“ (Tutin et al. 1964-1980.) and „Ikonographie der flora des südöstlichen Mitteleuropa“ (Javorka, Csapody 1979). The coenological affiliation of the community in which montpellier maple occurs, was determined after Tomić (2006). The floral elements were determined after Gajić (1980, 1984).

RESULTS

Montpellier maple (Acer monspessulanum L.) was investigated in a new site in Serbia, on Boranja mountain in forest management unit „Istočna Boranja“ near Radalj settlement, southeast from Donja Borina and southwest from Gornja Borina (Figure 2).

The new montpellier maple site is located above the Roguljski stream, on Glogovita kosa ridge, on an area of 874 m², and elevation between 460 to 480 m. Montpellier maple occurs in the southwestern and western aspect, on very steep inclination of 45° to 50°. The site is of elliptical shape WGS84, where the centre has coordinates λ=19°13’49.0” and φ=44°25’21.33”, and according to Gauss-Krüger the projection belongs to zone 7 with coordinates y 7359515 and x 4921300 (Figure 3).

According to the „Basic geological map of Serbia“ (Mojsilović et al. 1960-1968) and according to field research it is determined that the geological bedrock in the new site is layered and banked oolithic limestones (Figure 4).

On the basis of the results of field and laboratory soil research, the soil type was defined as rendzina according to the Soil classification after Škorić et al. (1985) (Figure 5).

The soil profile has a structure A – AC – R. The potency of horizon A is around 20 cm, rich in humus, the colour is brown-blackish (10YR 2/2 –

Figure 2. The location of the new montpellier maple site on the topographic map, scale R 1:200000 (*1987)
Figure 3. The location of the new montpellier maple site on Boranja Mt. on Glogovita kosa ridge R 1:50000 (*1967)

Figure 4. Oolitic limestones in the research locality
The alkali saturation level is very high. The concretions of calcium carbonate are present in the soil profile, formed by substrate decomposition and react intensively by adding a solution of hydrochloric acid. The humus content is high (25.94%), which indicates organic character of the topsoil. Formed humus matters have characteristics of mul humus type. The soil is very rich in nitrogen (1.05%). It is very poorly supplied with readily available phosphorus, while it is well supplied with potassium. The research locality is situated on an altitude ranging from 460 to 480 m a.s.l, the quality of duff is good, as well as the climatic conditions for transformation. The C/N ratio (14.33) indicates that humification processes of organic material are somewhat more pronounced compared to the process of humus mineralisation. High total nitrogen content, due to poor mineralisation, does not guarantee good supply of this micronutrient to plants. In line with the high humus content, hygroscopic water content is also high (7.55%).

On the basis of the field phytocoenological research (Table 3), it is ascertained that montpellier maple occurs in the plant community of hop-hornbeam and manna ash (Ostrya carpinifoliae-Fraxinetum orni Aichinger 1933). According to Tomić (2006), the mentioned community belongs to the alliance of hop-hornbeam and manna ash forests (Fraxino orni-Ostryon carpinifoliae Tomažič 1940), to the order of thermophilous broadleaved forests (Quercetalia pubescentis Klika 1933) and the class of beech and oak forests (Querco-Fagetea Br.-Bl. et Vlieg. 1937).

The tree layer has a 0.6 canopy, the average tree height is 7 m, and the average diameter is 17 cm. The highest frequency and coverage in this

Table 1. Physical properties of the rendzina on Boranja

Profile	Horizon	Depth (cm)	Hygroscopic water (%)	Sand (2.0-0.06mm)	Silt (0.06-0.002mm)	Clay (<0.002mm)	Texture class
124	A	0-20	7.55	27.60	55.80	16.60	silty loam
layer have hop-hornbeam (*Ostrya carpinifolia* 3.3) and manna ash (*Fraxinus ornus* 2.2). Montpellier maple is slightly less distributed (*Acer monspessulanum* - 1.2), while turkey oak (*Quercus cerris*) and downy oak (*Quercus pubescens*) occur in one releve each.

In the shrub layer (Table 3), with a 0.7 canopy and an average height of 4 m, the most frequent species are manna ash (*Fraxinus ornus* 3.3) and montpellier maple (*Acer monspessulanum* 2.2). The species which occur with a lower frequency are: warted spindle-tree (*Euonymus verrucosus* 1.2), common hawthorn (*Crataegus monogyna* 1.2), checker tree (*Sorbus torminalis* 1.2), common ivy (*Hedera helix* +) and European bladdernut (*Staphylea pinnata* +). The ground layer coverage is 0.6, the highest frequency have manna ash (*Fraxinus ornus* 3.3) and montpellier maple (*Acer monspessulanum* 2.2), and other wood species present are: *Rosa arvensis* 2.2, *Evonymus verrucosa* 1.2, *Tilia tomentosa* + , *Hedera helix* + , *Quercus cerris* + , *Staphylea pinnata* +, *Sorbus terminalis* + and *Juniperus communis* +. The herbacious plants present in this layer are: *Teucrium chamaedrys* 1.2, *Festuca drymeia* +, *Galium pseudoaristatum* +, *Carex nitida* +, *Cynanchum vincetoxycum* + and *Helleborus odorus* + (Table 3).

Table 2. Chemical properties of the rendzina on Boranja

Profile	Horizon	Depth (cm)	pH (H2O)	pH (CaCl2)	CaCO3 (%)	Humus (%)	C (%)	N (%)	C/N	Available P2O5 (mg/100g)	Available K2O (mg/100g)
124	A	0-20	7.04	6.68	1.17	25.94	15.05	1.05	14.33	8.34	21.39

Table 3. Phytocoenological releve of the hop-hornbeam and manna ash community (*Ostrya carpinifoliae-Fraxinetum orni* Aichinger 1933)

Association	*Ostrya carpinifoliae-Fraxinetum orni* acretosum monspessulanii
Phytocoenological releve number	1/2020
Compartmen	31a
Elevation (m)	458
Aspect	J3-3
Inclination (°)	45-50

TREE LAYER

Canopy	0.6
Medium height (m)	7
Medium diameter (cm)	17
Medium distance (m)	4
Ostrya carpinifolia	3.3
Fraxinus ornus	2.2
Acer monspessulanum	1.2
Quercus cerris	+
Quercus pubescens	+
The phytocoenological releve shows that montpellier maple occurs in all three layers, and that it is abundant in the shrub and ground layers, so the subassociation with montpellier maple was set apart within the association of hop-hornbeam and manna ash (*Ostrya carpinifoliae-Fraxinetum ornii* Aichinger 1933 subass. *aceretosum monspessulanii*) (Figure 6).

According to the floristic composition, most plants belong to submediterranean floral elements, five of them are typical submediterranean (*Acer monspessulanum, Fraxinus ornus, Ostrya carpinifolia, Quercus pubescens and Festuca drymeia*), and one species is eastern submediterranean (*Quercus cerris*). Four species belong to intermediate submediterranean floral elements, three of them belong to the subatlantic-submediterranean (*Sorbus torminalis, Rosa arvensis* and *Hedera helix*), and one to the subpontic-submediterranean (*Teucrium chamaedrys*).
floral elements. On the basis of the floristic composition, it is determined that the community of hop-hornbeam and manna ash represents an enclave of submediterranean vegetation in the belt of continental beech forests on Mt. Boranja.

DISCUSSION

Jovanović (1973) notes in „Flora of Serbia V“ that montpellier maple is widespread in Serbia, and most of its localities were recorded by Mišić (1981) in gorges and canyons of eastern Serbia, where it always occurs on limestone bedrock.

Montpellier maple is less frequent in western and southwestern Serbia, and on all so far recorded localities: Gučevo (Vukićević, 1971), Boranja, Tara, near Priboj (Tomić, 1980) and river Drina canyon (Mišić, 1981) it also occurs on limestones. Plant communities in which montpellier maple occurs form on soils of low level of evolutive-genetic development. In the Priboj area, Tomić (1980) recorded regosols, organic, intermediate and coluvial rendzinas, while on Boranja she determined only regosols. In the new site on Mt. Boranja, montpellier maple was recorded on organic rendzina. Considering ecological-productive characteristics, the most unfavourable conditions for montpellier maple development are on regosol, while they are somewhat more favourable on organic rendzina. Intermediate rendzina is at a little better stage of development compared to organic rendzina and is characterized by a slightly higher depth of around 30 cm, higher clay content (32-65%), and lower humus content (Tomić, 1980).

The mountain massif of Boranja is located in western Serbia. Despite the high precipitation level in the Boranja area (above 1000 mm yearly), summer drought occurs, which is caused by the character of geological bedrock and relief, so its extreme forms manifest especially on limestone and warmer aspects with high inclinations. High inclinations, limestone bedrock, the occurrence of erosion process and continual removal of soil material cause retarded genesis and forming of poorly developed and shallow soils, as regosols and rendzinas.

Montpellier maple in eastern Serbia is represented in various forest and shrub communities, and it occurs most frequently in degraded oak forests and shrublands with the dominance of oriental hornbeam (Mišić, 1981).

In contrast to eastern Serbia, where montpellier maple occurs in polidominant forests and shrublands dominated by oriental hornbeam (*Carpinus orientalis*), in western Serbia it mostly occurs in forests where hop-hornbeam (*Ostrya carpinifolia*) is the dominant species. In Gučevo, in the watershed of the Siga stream, Vukićević (1976) recorded montpellier maple in the community of turkey and downy oaks (*Ostryo carpinifoliae-Quercetum* B. Jovanović 67) Tomić 1980 Syn. *Quercetum cerris* subass. *ostreytosum*, in the ground layer, on elevation 720 m a.s.l, in southeastern aspect and an inclination of 10°.

In the area of Mt. Tara, Tomić (1980) recorded montpellier maple in the plant community of beech and hop-hornbeam (*Ostryo-Fagetum moesiaceae* B. Jovanović 1976., syn. *Aceri-Ostryo-Fagetum* B. Jovanović 1976), in the shrub layer,
at an elevation of 850 m, in the northwestern aspect, at an inclination of 35°.

On Boranja mountain, montpellier maple was, so far, recorded in two localities – in the basin of the Borinska river and the Bućevo stream, in the plant community of oaks and hop-hornbeam \((Ostryo carpinifoliae-Quercetum)\) (B. Jovanović 1967 Tomić 1980., syn. Hellebor-\(Ostryo-Quercetum)\). In both sites, Montpellier maple occurs only in the shrub layer, at an elevation of 400 m a.s.l. In the first site, it occurs in the southern aspect at an inclination of 60°, and in the second site in the southwestern aspect at an inclination of 30° (Tomić, 1980).

In the new site on Mt. Boranja this species was recorded above the Roguljski stream at a higher elevation (460 to 480 m). There, it is present in warmer aspects (southwestern and southeastern), similar to the first site recorded by Tomić (1980), different from the second site, which is in the northern aspect. Montpellier maple in this new site is situated on very steep slopes (40° - 50°), slightly higher than in the second site (30°), and slightly lower than in the first site, where the inclination is 60°. In contrast to both sites recorded by Tomić (1980) where montpellier maple occurs only in the shrub layer, in the new site on Mt. Boranja maple occurs abundantly in all three layers (tree, shrub and ground layers).

Montpellier maple in two sites near Priboj (Tomić, 1980) occurs in the same community as on Mt. Boranja, i.e. in the community of hop-hornbeam and manna ash \((Ostryo carpinifoliae-Fraxinetum orni)\) Aichinger 1933., Syn. Orno-Ostryetum (Aichinger 1933) Erker 1970), which was not so far recorded on Mt. Boranja.

In both sites near Priboj (Tomić, 1980), montpellier maple occurs at higher elevations than in the new site on Mt. Boranja, because it is recorded at an elevation of 1050 m a.s.l. in the first site, and 700 m a.s.l. in the second site. Montpellier maple in the new site on Mt. Boranja occurs in a warm aspect, like in first site near Priboj, but on higher inclinations (40°-50°), than in the site near Priboj (30°). Compared to the second site near Priboj, the inclinations are similar (40°-50°), but montpellier maple here occurs in the cold (northern) aspect. Although it belongs to the same community of hop-hornbeam and manna ash \((Ostryo carpinifoli-ae-Fraxinetum orni)\), the new montpellier site on Mt. Boranja differs from sites near Priboj by orographic conditions.

CONCLUSION

Montpellier maple was recorded in a new site on Boranja mountain in forest management unit „Istočna Boranja“, northeastern from settlement Radalj, southeastern from Donja Borina and south-western from Gornja Borina, above the Roguljski stream, on Glogovita kosa ridge. It occurs at elevations ranging from 460 to 480 m a.s.l, in the southwestern and western aspect, on a very high inclination from 45° to 50°. The area of the new site is 874 m². Its centre has coordinates \(\lambda=19^\circ13'49.0''\) and \(\phi=44^\circ25'21.33''\).

The geological bedrock is made of oolitic limestones, and the soil type is rendzina. The soil profile has structure А – АC – R. The potency of horizon A is around 20 cm, and it is rich in humus. The skeletal fraction content is very high (up to 80% of soil volume), and according to the granulometric composition, this horizon is silty-clayey loam. The alkali saturation level is very high. The humus content is high and indicates organic character of the topsoil, which belongs to the ripe (mul) humus. The soil is rich in total nitrogen, well supplied with potassium, while it is poorly supplied with readily available phosphorus.

Montpellier maple was recorded in the community of hop-hornbeam and manna ash in the new site on Mt. Boranja. Considering that montpellier maple is present in all three layers, and that it is abundant in shrub and ground layers, a subassociation with montpellier maple was set apart in this association \((Ostryo carpinifoliae-Fraxinetum orni)\) Aichinger 1933 subass. aceretosum monspessulanii).

In the floristic composition of this community, most species belong to submediterranean floral elements, so this community represents an enclave of submediterranean vegetation in the belt of continental beech forests on Mt. Boranja. The community of hop-hornbeam and manna ash with montpellier maple \((Ostryo carpinifoli-ae-Fraxinetum orni)\) Aichinger 1933 subass. acere-
tosum monspessulanii has azonal character and it is orographically-edaphically conditioned, because it occurs in warm aspects, on shallow and skeletal rendzina produced on oolithic limestone bedrock.

Remark: This paper was realized within the Agreement on finansing NIO scientific work in the year 2021, which the University of Belgrade - Faculty of Forestry concluded with the Ministry of education, science and technological development of Republic of Serbia. Record number of the project is 451-03-9/2021-14/2000169.

ЛИТЕРАТУРА / REFERENCES

Braun-Blanquet, J. (1964): Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer. Wien. 865 str.

Gajić, M. (1980): Pregled vrsta flore SR Srbije sa biljnogeografskim oznakama. Glasnik Šumarskog fakulteta. Serija A-Šumarstvo 54. Beograd. Str. 111.-141.

Gajić, M. (1984): Florni elementi SR Srbije. In: Janković, M, Pantić, N, Mišić, V, Diklić, N, Gajić, M: Vegetacija SR Srbije I. Srpska akademija nauka i umetnosti, odeljenje prirodno-matematičkih nauka. Beograd. Str 317.-397.

Jávorka, S., Csapody, V. (1979): Ikonographie der Flora des südöstlichen Mitteleuropa. Akadémiai kiadó, Budapest.

Jовановић, Б. (1973): Фамилија: Aceraceae. Род: Acer . Флора СР Србије, Књ. V. САНУ, Одељење природно-математичких наука. Београд. Стр. 72-103.

Josifović, M. (ed.) (1972-1977): Flora Srbije III-IX. Srpska akademija nauka i umetnosti, odeljenje prirodno-matematičkih nauka, Beograd.

Mišić, V. (1981): Šumska vegetacija klisura i kanjona istočne Srbije. Institut za biološka istraživanja „Siniša Stanković“. Beograd. Str. 328.

Mišić, V. (1981): Šumska vegetacija klisura i kanjona istočne Srbije. Institut za biološka istraživanja „Siniša Stanković“. Beograd. Str. 328.

Tutin, T, Heywood, W, Burges, N, Valentine, D, Walters, S, Webb, D. (eds.) (1964-1980): Flora Europaea I-V, Cambridge at the University press.
ECOLOGICAL AND FLORISTIC CHARACTERISTICS OF A NEW MONTPELLIER MAPLE (*Acer monspessulanum* L.)...