Liquid biopsy of gastric cancer patients: Circulating tumor cells and cell-free nucleic acids

Masahiro Tsujiura, Daisuke Ichikawa, Hirotaka Konishi, Shuhei Komatsu, Atsushi Shiozaki, Eigo Otsuji

INTRODUCTION

Gastric cancer (GC) is the fourth most common cancer...
and the second leading cause of cancer-related death in the world\cite{9}. Although recent improvements in diagnostic techniques and peri-operative management have resulted in an increase in the early detection of GC and a decrease in its mortality in the past decades, a total of 986600 new GC cases and 738000 deaths are estimated to have occurred in 2008 worldwide\cite{10}. Several factors seem to restrict diagnostic and therapeutic strategy for treatment of GC and, consequently, to incur the insufficient survival rate: (1) a lack of satisfactory diagnostic assays for early detection of GC; (2) an absence of valuable prognostic indicators; (3) the insufficient effectiveness of current treatments including surgery and chemotherapy for GC patients with advanced stages; and (4) poorly understood mechanisms of tumor progression and resistance to treatments, and a consequent deficiency of targeted therapy. Therefore, the importance of developing useful diagnostic and monitoring tools should be emphasized to improve the clinical outcome of patients with GC.

In the past few decades, numerous studies have demonstrated the potential utility of blood-based biomarkers such as circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs)\cite{11,12,13}. These promising markers are considered to possess great potential and could facilitate therapeutic strategies for cancer including the following: early detection of diseases, predication of prognostic outcome, monitoring of tumor dynamics and development of novel targeted treatments.

Generally, tumor-linked genetic alterations are investigated using tissue samples from surgical or biopsy specimens. These procedures cannot be conducted routinely owing to their invasive nature especially in recurrent and/or metastatic cases with anatomical and/or clinical difficulties. Moreover, a result acquired from a single biopsy can provide only spatiotemporally restricted information and may fail to reflect its heterogeneity and inconsistent tumor characteristics. Detecting CTCs and cfNAs could serve as a “liquid biopsy” for cancer patients, which would be less invasive compared to surgical or endoscopic biopsy and allow us to have repeated samplings and to track the current status of tumor characteristics, such as therapeutic efficiency and resistance. From these viewpoints, the concept of “liquid biopsy” may lead to a better understanding of the genetic landscape in both primary and metastatic lesions as well as the opportunity for tracing genomic evolution.

In this article, we review the historical backgrounds, characterizations and recent developments of both CTCs and cfNAs in cancer research including GC and discuss future perspectives.

BIOLOGY AND DETECTION OF CTCs

In 1869, Ashworth reported the presence of CTCs for the first time in a case of a metastatic cancer patient, in whom cells similar to those in the primary tumors were found in the blood at autopsy\cite{14}. Since then, various studies have demonstrated the identification and characterization of CTCs in peripheral blood of patients with various malignancies, validating Ashworth’s previous remarks. Generally, CTCs are considered to appear at very low concentrations in the peripheral blood of cancer patients, usually a single tumor cell in a background of millions of blood cells\cite{15,16}. Thus, the accurate detection of CTCs with sufficient sensitivity and specificity has been a major technical challenge for researchers (Figure 1).

Techniques for the isolation and enrichment of CTCs

The approaches of CTC isolation/enrichment can be mainly categorized into two groups: (1) physical methods; and (2) biological methods. Isolation based on physical properties does not require the immunological labeling of CTCs because it depends on the characteristics of CTCs, such as size, density, electric charge, migratory capacity and deformability. These methods include density gradient centrifugation, filtration, and dielectrophoresis. Several filtration-based approaches have been developed based on the concept that the majority of CTCs derived from epithelial cancers are generally larger in diameter than other blood cells\cite{17,18}. However, significant variations in cell size within an individual patient as well as in different types of tumor cells have been reported\cite{19,20,21}. Therefore, new approaches using multiple filters have been investigated to resolve those issues and achieve the accurate enrichment of CTCs\cite{22,23}. While those new approaches are likely to possess great promise in isolating CTCs, further validation studies should be conducted to verify their significance.

Biological methods are another popular approach for the isolation of CTCs, which rely on immunological antibody-based capture of CTCs. In general, this assay involves positive selection with antibodies against tumor-associated antigens, such as epithelial cell adhesion (EpCAM) and cytokeratins (CKs), as well as negative selection with antibodies against the common leukocyte antigen CD45. In particular, EpCAM has been demonstrated to be over expressed and to function as an oncoene in human epithelial cancers including GC\cite{24,25,26}. Among several technologies based on antibody-based isolation, the CellSearch system (Veridex) is the most widely used separation system. In this platform, immunomagnetic beads coated with anti-EpCAM antibodies capture CTCs, followed by immunostaining with both positive markers, which are CK8/18/19 for cytoplasmic epithelial markers and 4',6-diamidino-2-phenylindole hydrochloride for nucleic acids, and a negative marker, leukocyte-specific marker CD45. Accumulating studies have demonstrated the usefulness of the CellSearch system as diagnostic and prognostic indicator in patients with metastatic disease. To date, it is the only technology that has been approved by the United States Food and Drug Administration for the detection of CTCs in the peripheral blood of patients with metastatic breast, prostate and colon cancers\cite{27,28,29}.

CTCs are generally thought to be quite heterogeneous in both phenotype and genotype, and only a few cells with malignant features could develop into metastatic...
During the journey toward the development of a metastatic lesion, some CTCs might undergo the epithelial-to-mesenchymal transition (EMT), which is characterized by decreased expression of epithelial markers and the acquisition of mesenchymal features. The EMT has been proposed to be frequently related with cancer aggressiveness and might increase the ability of tumor cells to migrate. Although the identification of EMT-like cancer cells in the bloodstream and its relevance to cancer dissemination is currently under evaluation, assays targeting only epithelial cells may miss the most invasive and potentially significant subpopulation with respect to cancer progression. Therefore, alternative enrichment approaches with different epithelial antigens or negative selection methods aimed to avoid the biased selection of CTC population might be advantageous.

Tumor-specific markers, such as human epidermal growth factor 2 (HER2), prostate-specific antigen (PSA), mucin-1/2 (MUC1/2) and carcinoembryonic antigen (CEA), have also been implemented to capture CTCs more specifically and adapt to the heterogeneity of CTCs in immunological approaches. More recently, a microfluidic-based device, called the “CTC-Chip”, has been developed for CTC cell detection strategies with a significant increase in yield and purity. Using this new technology, in which whole blood is flowing through chips with automatically optimized flow kinetics, microposts coated with anti-EpCAM antibodies capture CTCs directly from small volumes of blood samples. The CTCs are then stained with secondary antibodies against either CKs or tissue-specific markers, such as PSA in prostate cancer or HER2 in breast cancer, followed by automated scanning of the microposts. Several studies have demonstrated the potent usefulness of this method due to its enhanced sensitivity and specificity, in that the higher number of isolated CTCs facilitates dynamic monitoring during a time course of cancer therapies. Moreover, recent technological progress has allowed for the isolation and analysis of single intact CTCs. These remarkable approaches should have major impacts and further under-

![Flow chart of current and potential applications of circulating tumor cell and circulating cell-free nucleic acids technologies.](image)

Figure 1 Flow chart of current and potential applications of circulating tumor cell and circulating cell-free nucleic acids technologies. Circulating tumor cells (CTCs): The blood samples from cancer patients are processed through various isolation/enrichment and detection techniques. A new in vivo approach allows the enrichment of CTCs directly from a peripheral vein of patients, using a wire functionalized by attachment of epithelial cell adhesion antibodies. CTCs are usually captured along with contaminating leukocytes. Various detection methods are utilized to detect the rare cell population in the bloodstream. Circulating cell-free nucleic acids (cfNAs): Plasma/serum are generally isolated with centrifuge techniques and subsequently processed for the extraction of specific nucleic acids. Cancer-specific alterations are most commonly analyzed in circulating DNA. Circulating mRNA has attracted increasing attention because of its stability in plasma/serum. More recently, long non-coding RNA in plasma was also evaluated as a potent biomarker in gastric cancer patients. CGH: Comparative genome hybridization; FACS: Fluorescence activated cell sorter; FISH: Fluorescence in situ hybridization; FAST: Fiberoptic array scanning technology; EPISPOT: Epithelial immunospot; qRT-PCR: Quantitative real-time polymerase chain reaction; LOH: Loss of heterozygosity.
standing of the biology and significance of those heterogeneous populations.

Although most of these technologies have used blood samples in vitro, a new revolutionary in vivo approach allows the enrichment of CTCs directly from a peripheral vein of patients (Figure 1). In this system, a structured medical Seldinger guidewire is functionalized with the attachment of EpCAM antibodies. The device is inserted into a peripheral vein, which enables the capture of a large number of CTCs from up to 1.5 L of blood over the duration of 30 min. Despite its potent utility, a large-scale study is required to verify its relevance and to eliminate the possibility of adverse effects.

Techniques for the detection and identification of CTCs

After enrichment of CTCs, identification procedures are conducted to investigate their genetic and biological profiles in detail. Various methodologies for this process have been advocated and developed in the past few decades, ranging from cytometric/protein-based approaches to polymerase chain reaction (PCR)-based approaches. The former approaches involve conventional methods, such as immunostaining for specific markers, fluorescence in situ hybridization (FISH) and comparative genomic hybridization, and newly developed methods, such as fiberoptic array scanning technology with high throughput in CTC screening and epithelial immunospot, which can detect proteins secreted from CTCs.

PCR-based detection of CTCs has evolved remarkably, especially after the introduction of the quantitative RT-PCR (qRT-PCR) technique, which can minimize possible false-positive results by using a certain “cutoff value” during the analysis process. Identification of appropriate DNA/RNA-based markers expressed by CTCs is considered critical in order to enhance the specificity and reliability of its detection. Therefore, conventional markers for CTCs, such as CKs and CEA, and other diverse markers have been investigated towards their possible clinical application in several malignancies. CTC-related markers and the introduction of profile analysis including microRNAs (miRNAs) features also might be useful to resolve these issues.

CTC detection in patients with GC and its clinical relevance

To date, many researchers have tried to detect CTCs in patients with GC and demonstrated its relevance to biological and oncogenic functions using various approaches. Table 1 represents a summary of previous reports, especially focusing on methodologies, targeted molecules and detection rates. Since its introduction, RT-PCR technology has become the most widely used approach to achieve a satisfactory detection rate despite the extremely low concentration of CTCs in the bloodstream. However, a high sensitivity of RT-PCR may cause an increase in false positive detection even in healthy controls. Therefore, some researchers have utilized multiple detection markers in an mRNA-based assay and suggested its potent usefulness. Of particular note, Wu et al have developed a sensitive assay using a high-throughput colorimetric membrane array, in which multiple markers, such as human telomerase reverse transcriptase (TERT), cytokeratin 19 (CK19), CEA and MUC1, are measured simultaneously and the combination of four markers serves as a prognostic indicator for overall survival and postoperative recurrence/metastasis in GC. Recently, non-coding RNAs, such as miRNAs and Piwi-interacting RNAs (piRNAs), have been proven to alter their expression in carcinogenesis and tumor progression, so these cancer-specific alterations have been reported to be useful for the detection of CTCs in GC. However, some of those reports, in which a mononuclear cell layer was used to isolate total RNA, may not reflect miRNAs originating only from CTCs because the possibility of contamination by leukocyte-originated RNAs cannot be excluded. The presence of miRNAs originating from peripheral blood cells has been demonstrated in the blood of both cancer patients and normal individuals, and furthermore, contamination from those miRNAs has been observed even for circulating cell-free miRNA analysis. Those issues should be addressed before proceeding to clinical practice, and moreover, exhaustive exploration to identify more sensitive miRNA/piRNA-related markers might be desirable to achieve an accurate assay.

Recurrence and metastasis are the most critical factors not only for predicting clinical outcome but also for the quality of life in patients with GC. As summarized in Table 2, accumulating reports have suggested the significance of CTC detection as a prognostic indicator by various approaches, including both the CellSearch System and RT-PCR/qRT-PCR methods. Hiraia et al examined CTCs in 130 gastrointestinal cancer patients involving 44 GC patients using the CellSearch System. Their results demonstrated that the metastatic GC patients with ≥ 2 CTCs (n = 15) had a significantly shorter overall survival rate than the metastatic GC patients with < 2 CTCs (n = 12) (P = 0.039). In a prospective study, Matsusaka et al also evaluated the relevance of CTCs to chemotherapy and clinical outcome using the CellSearch System. Their results showed that GC patients with ≥ 4 CTCs at 2 and 4 wk after the initiation of chemotherapy had significantly shorter overall survival and progression-free survival in comparison with GC patients with < 4 CTCs, whereas CTC status at baseline (i.e., before the initiation of chemotherapy) had no statistical association with clinical outcomes. These findings may imply the close relationship of CTC status and treatment response.

The majority of the studies using RT-PCR/qRT-PCR methods, which are also widely used for prognosis analysis, have relatively small numbers of cases. Under such circumstances, Mimori et al focused on one candidate marker, membrane type 1 matrix metalloproteinase (MT1-MMP) mRNA levels, based on results from cDNA microarray analysis, and consequently validated its relevance in a subsequent qRT-PCR based study involving more than 800 GC patients. As a result, MT1-MMP
Characteristic and number of patients	Control (n)	Detection method	Detection rate/statistic value	Ref.						
Pre or post treatment										
1-IV	9 (PB)	RT-PCR	CEA mRNA	22.2%	Funaki et al[133]					
1-IV	20 (PB)	RT-PCR	CEA mRNA	0%	(Pt.)					
1-IV	49 (PB)	RT-PCR	CK19 mRNA	0%	(Ctrl.)					
1-IV	30 (PB)	RT-PCR	CK20 mRNA	0%	(Pt.)					
Inoperable/metastatic	34 (PB)	RT-PCR	CEA mRNA	0%	(Ctrl.)					
I, II, III, IV	35 (PB)	RT-PCR	CK19 mRNA	0%	(Pt.)					
I-IV	52 (PB)	RT-PCR	CK19 mRNA	9.6%	(Pt.)					
			CK20 mRNA	9.6%	(Pt.)					
				1%	(Pt.)					
I-IV	41 (PB)	RT-PCR	CEA mRNA	22.2%	Nishida et al[64]					
(36 with curative surgery)				33.3%	(during curative surgery)					
(5 with inoperable)				80%	(inoperable Pt.)					
I-IV	57 (PA)	RT-PCR	CEA mRNA	17.5%	Miyazono et al[68]					
49 (PV)				18.4%	PA: 17.5%					
51 (SVC)				21.6%	PV: 18.4%					
					SVC: 21.6%					
EGC, III (paired, after surgery during surgery and follow-up)	29 (PB)	RT-PCR	CEA mRNA	22.2%	(before curative surgery)					
					(after surgery)					
					Total: 24.1%					
					III: 26.7%					
					IIIb: 34.4%					
					Total: 34.4%					
I-IV	106 (PB)	RT-PCR	CEA mRNA	40.6%	(Ctrl.)					
(during surgery)										
I-IV	41 (PB)	RT-PCR	CEA mRNA	24.4%	Koike et al[64]					
I-IV	46 (PB)	qRT-PCR	CK20 mRNA	27.8%	Friederichs et al[64]					
(18 EGJ cancer)					(Pt. with EG cancer)					
(28 with GC)					(tumor-free Ctrl.)					
					(with benign GI disease)					
I-IV	59 (PB)	qRT-PCR	CEA mRNA	21.4%	Ikuguchi et al[64]					
				0%	(Pt. with GC)					
				1%	(tumor-free Ctrl.)					
					(before surgery)					
					(after surgery)					
I-IV	70 (PB)	RT-PCR	CK20 mRNA	36.6%	Illert et al[64]					
(41 with curative resection)					(Pt. with curative resection)					
(29 with residual tumor)					(Pt. with residual tumor)					
I-III	46 (PB)	RT-PCR	CEA mRNA	52.2%	Seo et al[64]					
(paired, before and after surgery)				19.6%	(after surgery)					
I-IV	52 (PB)	RT-PCR	c-Met mRNA	61.5%	Uem et al[64]					
			MUC1 mRNA	5.6%	(Pt.)					
				71.2%	(Ctrl.)					
				8.3%	(Pt.)					
I-IV	42 (PB)	RT-PCR	hTERT mRNA	61.9%	Wu et al[64]					
			CK19 mRNA	69.0%	(Pt.)					
			CK20 mRNA	3.3%	(Pt.)					
				61.9%	(Pt.)					
Tani et al. [147]	CK19 mRNA↑	P = 0.0127	(before surgery)	Tani et al. [147]	CK19 mRNA↑	P = 0.0022	(after surgery)			
------------------	------------	-------------	------------------	------------------	------------	-------------	----------------			
41 (PB)	64	(paired, before and after chemotherapy)	No data for Ctrl.	21.9% (before chemotherapy)	0% (Ctrl.)	Wu et al. [44]	81.3% (Pt.)			
1—IV	101 (PB)	64	(paired, before and after chemotherapy)	No data for Ctrl.	21.2% (after chemotherapy)	26.8% (TDB sample)	Kolodziejczyk et al. [146]	55.6% (metastatic GC)	Hiraiwa et al. [55]	98.6% (metastatic GC)
1—IV	101 (PB)	80	(2 wk after chemotherapy)	No data for Ctrl.	18.8% (metastatic GC)	32.7% (baseline)	Matsuoka et al. [26]	13.7% (metastatic GC)	Bertazzoli et al. [150]	97.1% (metastatic GC)
1—IV	101 (PB)	14	(4 wk after chemotherapy)	No data for Ctrl.	30% (metastatic GC)	18.8% (baseline)	Matsuoka et al. [26]	18.8% (metastatic GC)	Bertazzoli et al. [150]	97.1% (metastatic GC)
1—IV	101 (PB)	29	(control samples were used the calibrator source)	AUC = 0.772	(Pt.) 45.5%	47.8% (baseline)	Matsuoka et al. [26]	32.7% (preoperative)	Bertazzoli et al. [150]	97.1% (preoperative)
1—IV	101 (PB)	64	(control samples were used the calibrator source)	AUC = 0.772	(Pt.) 45.5%	47.8% (baseline)	Matsuoka et al. [26]	32.7% (preoperative)	Bertazzoli et al. [150]	97.1% (preoperative)
1—IV	101 (PB)	64	(control samples were used the calibrator source)	AUC = 0.772	(Pt.) 45.5%	47.8% (baseline)	Matsuoka et al. [26]	32.7% (preoperative)	Bertazzoli et al. [150]	97.1% (preoperative)
1—IV	101 (PB)	64	(control samples were used the calibrator source)	AUC = 0.772	(Pt.) 45.5%	47.8% (baseline)	Matsuoka et al. [26]	32.7% (preoperative)	Bertazzoli et al. [150]	97.1% (preoperative)
mRNA levels in peripheral blood were indicated to be an independent factor for determining recurrence and distant metastasis of GC \((P = 0.0018)\).

Intriguingly, some groups have reported time-dependent changes in the detection rate of CTCs during the peri-operative time course\([58-61]\). Those changes may imply the possibility of monitoring the tumor dynamics; however, the biological and clinical meaning of CTCs still remains unknown and controversial. In fact, incontrollable events, including both increase and decrease in CTC detection rates during surgical maneuvers, have been proposed so far\([58-61]\). This discrepancy might be partially explained by a wide variety of measurement parameters, from the methodology itself to targeted markers, patient background/properties and sample conditions.

In summary, recent technological advances have provided considerable progress and interest in the detection of CTCs in various cancers, including GC. Although previous studies have shown a potent usefulness of CTC detection as a novel diagnostic and prognostic assay in cancer patients, little remains known about the biological features and fundamental roles of these cells. Detailed characterization of CTCs and well-designed experiments should resolve current underlying issues and provide the opportunity for clinical impact in cancer therapy.

BIOLOGY AND DETECTION OF CELL-FREE NUCLEIC ACIDS

The study of cfNAs has a considerably long history since it was first reported in 1948 by Mandel and Metz\([62]\), who successfully detected nucleic acids in human plasma. Unfortunately, their work attracted little attention at that time owing to a lack of sufficient understanding of that innovative concept. Regarding malignant disease, in 1977, Leon et al\([63]\) first reported the presence of cell-free DNA (cfDNA) in the serum of cancer patients. Furthermore, they also mentioned its potent function as a clinical indicator, showing decreased cfDNA levels in response to radiotherapy. In 1989, Vasioukhin et al\([64]\) successfully detected cfDNA with neoplastic characteristics and proposed the first evidence suggesting that tumors can shed DNA into the circulation. This hypothesis was further strengthened by two studies in 1994, in which NRAS mutations in the plasma of patients with myelodysplastic syndrome or acute myelogenous leukemia, and KRAS mutations in the plasma or serum of patients with pancreatic cancer\([65]\), were detected. Those findings opened up a new field in the exploration of circulating nucleic acids, and many meritorious studies have demonstrated the biological function of cfNAs and their potential as novel biomarkers regarding DNA, mRNA and miRNAs (Figure 1).

In regard to the origin of circulating nucleic acids, two main potent release mechanisms, called “passive” and “active”, are advocated to date. The passive mechanism involves the release of nucleic acids originated from apoptotic and necrotic cells into the bloodstream. Macrophages and phagocytes play an important role in phagocytosis of necrotic and apoptotic cells and can release digested nucleic acids into the microenvironment\([66,67]\). In contrast, it is reported that fragments of cellular nucleic acids can be actively released\([68,69]\). Although the active secretion into the circulation remains enigmatic, one potential explanation is that cancer cells would release nucleic acids to transform the targeted recipient cells at distant locations\([70-72]\). In addition to those two mechanisms, cfNAs might be released by CTCs, however, there appears to be a huge gap between the amount of cfNAs and the rarity of CTCs in the bloodstream as described in the previous section. Thus, this hypothesis has been controversial so far.

Circulating cell-free DNA in plasma/serum

The study of circulating cfDNA in the plasma/serum involves the measurement of the total volume of circulating DNA as well as the detection of cancer-related genetic/epigenetic aberrations, which include microsatellite instability, loss of heterozygosity, genetic polymorphisms, point mutations, methylation, deletion/amplification/translocation of chromosome and integrity (i.e., the ratio of longer DNA fragment to shorter one based on the different cleavage process between apoptosis and necrosis\([73]\)). The latter approach is generally recognized to be able to cover a wider range of oncogenic alterations in various cancers and to possess more potent application in the clinical setting than the former one, partly because cfDNA can be released into the bloodstream and is

CK20 mRNA	TFF1 mRNA	MUC2 mRNA	miR-21↑	miR-200c↑	miR-421↑
37.1%	31.4%	22.9%	(Pt.)	(Pt.)	(Pt.)
100% (PB)	0% (PB)	2% (PB)	No detection in controls	AUC = 0.853	AUC = 0.715
37.1%	31.4%	22.9%	(Pt.)	(Pt.)	(Pt.)
100% (PB)	0% (PB)	2% (PB)	No detection in controls	AUC = 0.853	AUC = 0.715
37.1%	31.4%	22.9%	(Pt.)	(Pt.)	(Pt.)

AUC: Area under the receiver operating characteristic curve; BM: Bone marrow; EGC: Early gastric cancer; EGJ: Esophagogastric junction; GI: Gastrointestinal; MAH: Membrane-array hybridization; PA: Peripheral artery; PB: Peripheral blood; PVS: Portal vein; SVC: Superior vena cava; TDB: Tumor-draining blood; N/A: Not available; qRT-PCR: Quantitative real-time polymerase chain reaction; FACS: Fluorescence activated cell sorter; ICC: Intracellular cytokine flow cytometry.
Table 2 Prognostic value of circulating tumor cells in gastric cancer

Characteristic and number of patients	Detection method	Statistic value	Ref.	
17 (non-responsive to chemotherapy)	RT-PCR CK19 mRNA	OS	$P = 0.014$	Yeh et al. [55]
57 1-IV	RT-PCR CEA mRNA	Liver metastasis recurrence	$P < 0.001$	Miyazono et al. [9]
106 1-IV	RT-PCR CEA mRNA	Recurrence/metastasis	$P = 0.02$	Sumikawa et al. [64]
46 1-IV (with curative resection)	qRT-PCR CK20 mRNA	2-year-survival OS	$P = 0.03$	Friederichs et al. [140]
41 1-IV	RT-PCR CK20 mRNA	OS	$P = 0.0363$	Illert et al. [144]
46 1-III	RT-PCR CEA mRNA	Recurrence	$P < 0.00022$	CEA after surgery (+) (a)
52 1-IV	RT-PCR C-Met mRNA	OS	$P = 0.015$	Seo et al. [45]
42 1-IV	RT-PCR C-Met mRNA	OS	$P = 0.0178$	Uen et al. [90]
64 1-IV	MAH hTERT/CK19/CEA/MUC1	Recurrence/metastasis	$P = 0.0018$	Uen et al. [90]
27 Metastatic	CellSearch System EpCAM EpCAM CK8/18/19	OS	$P = 0.0223$	Hiraiwa et al. [143]
69 1-IV (with curative resection)	qRT-PCR CK19 mRNA	OS	$P < 0.001$	Koga et al. [18]
810 1-IV	RT-PCR MT1-MMP	OS	$P < 0.001$	Mimori et al. [157]
55 1-IV	RT-PCR ELISA Survivin mRNA	OS	$P < 0.001$	Yie et al. [140]
70 1-IV	qRT-PCR Survivin mRNA	OS	$P < 0.001$	Bertaza et al. [134]
51 Advanced	Cell search system EpCAM EpCAM CK8/18/19	PFS (2 wk after chemotherapy)	$P = 0.001$	Matsusaka et al. [96]
48 4 wk after chemotherapy	OS	PFS (2 wk after chemotherapy)	$P < 0.001$	(b)
123 1-IV	qRT-PCR CEA mRNA	Recurrence DFS	$P = 0.001$	Qiu et al. [52]
30 1-IV (after curative surgery)	qRT-PCR CK18 mRNA	RFS	$P = 0.001$	Saad et al. [151]
95 1-IV	qRT-PCR B7-H3 mRNA	OS	$P = 0.02$	Arigami et al. [156]
98 1-IV	RT-PCR Survivin mRNA	DFS	$P = 0.001$	Cao et al. [151]
52 1-IV	qRT-PCR miR-200c	OS	$P = 0.016$	Valladares-Ayerbe et al. [151]

a: 2 test/Fisher’s exact test; b: Kaplan-Meier survival curves, Log-rank test/Breslow-Wilcoxon test; c: Logistic regression model (multivariate); d: Multivariate Cox proportional hazard regression model. DFS: Disease-free survival; MAH: Membrane-array hybridization; OS: Overall survival; PFS: Progression-free survival; qRT-PCR: Quantitative real-time polymerase chain reaction; RFS: Relapse-free survival.
detectable in the plasma/serum in healthy humans. In fact, numerous reports have demonstrated the detection of genetic and epigenetic alterations in circulating DNA in the plasma/serum in cancer patients. Furthermore, in colorectal cancer, recent two reports clearly demonstrated a correlation between acquired resistance to the anti-EGFR antibody drugs, such as cetuximab and panitumumab, and the emergence of KRAS mutations, which was successfully detected and monitored in the blood of patients under treatment. Misale et al. also indicated the potential of cfDNA to monitor tumor dynamics more sensitively compared to conventional assays, showing that KRAS mutant alleles were confirmed in the blood of a cetuximab-treated patient 10 mo earlier than radiographic examinations. Moreover, Leary et al. have recently analyzed individual tumor-specific DNA translocations in paired solid tumor and circulating cfDNA samples using next-generation sequencing technology and consequently demonstrated the feasibility of personalized biomarkers, enabling a so-called “tailor-made” therapeutic strategy. In summary, moving toward the development and future application in the clinical setting, the accumulated evidence has proven the potent usefulness of cfDNA for the detection of disease as well as for the assessment of residual disease, recurrence, and secondary resistance.

Detection of circulating DNA in patients with GC and its clinical relevance

Previous reports regarding circulating cfDNA in GC patients are summarized in Table 3. Among those reports, a few studies with respect to the concentration of circulating cfDNA are found, in which a housekeeping gene, beta-actin, and a non-coding genomic DNA repeat sequence, ALU, were evaluated. In contrast, the detection of methylated DNA in plasma/serum appears to be the most widely used approach in GC, which was usually investigated by methylation specific-PCR (MSP) or quantitative methylation specific-PCR (qMSP) assays. In 2002, Lee et al. first reported the potent application of detecting methylated DNA of death-associated protein kinase, E-cadherin, GSTP1, p15 and p16 in the serum of GC patients. Thereafter, technological advances and the exploration of more sensitive and specific genes have provided the accumulated evidence in this field. In detail, comprehensive analyses by methylation CpG island microarray have suggested the possibility of more significant genes for detecting methylated DNA. Most recently, Ling et al. clearly demonstrated the potential usefulness of detecting methylated XAF1 DNA as a diagnostic as well as prognostic biomarker with satisfactory degrees of specificity and sensitivity. Specifically, methylated XAF1 DNA in serum was detected in 69.8% (141/202) of the GC patients and none of the healthy individuals (0/88) with an area under the receiver operating characteristic curve (AUC) of 0.909 in a receiver operating characteristic (ROC) curve analysis for discrimination of the two groups and was significantly correlated with poorer prognosis in GC (P < 0.001, disease-free survival, Kaplan-Meier survival curves, Log-rank test).

Concerning genetic alterations in other types of cancers, the relationships with tumor-specific gene alteration such as HER2 in breast cancer and adenosomatous polyposis coli in colorectal cancer have been revealed even in circulating cfDNA. In GC, Park et al. investigated gene amplification of MYC in the plasma of GC patients and showed that the plasma MYC/GAPDH ratio was significantly higher in the GC patients than that in the healthy controls (P < 0.001) and correlated with the tissue MYC/GAPDH ratio (P = 0.009), and tissue MYC status by FISH (P = 0.024). In contrast, among GC patients with a 2+ or 3+ score in a HER2 IHC assay, Lee et al. reported that no significant association was observed between the HER2 level in plasma and the copy number variation in tumor tissue determined by FISH. Although it is unclear why there was a discrepancy between these two results, it may be partially explained by the inappropriate employment of reference genes and the heterogeneity of GC tissues. The investigation of circulating cfDNA relating to genetic aberration in GC remains in its infancy. Therefore, further evidence is expected to address current controversial issues and develop this field.

Circulating cell-free mRNA in plasma/serum

The presence of RNase in plasma/serum had long been known, and furthermore, the RNase concentration in serum was reported to be elevated in cancer patients in the 1970s. Given that mRNA in plasma/serum might be more fragile than DNA and susceptible to degradation by RNase, it was not clear whether mRNA could exist in plasma/serum with sufficient integrity to allow amplification, although several reports had previously suggested the possible presence of RNA in serum forming a complex with protelipids. In 1999, two groups reported the successful detection of cell-free RNA such as tyrosinase mRNA in serum of patients with malignant melanoma and Epstein-Barr virus-associated RNA associated in plasma of patients with nasopharyngeal carcinoma. Subsequently, many studies have demonstrated the presence of specific mRNA in plasma/serum and its potent clinical relevance in patients with a variety of cancers. At present, it is considered that mRNA in plasma/serum may be protected from degradation by packaging in secretory membrane vesicles, such as exosomes, microvesicles and multivesicles, which are released from cellular surfaces into the bloodstream.

Circulating cell-free miRNA in plasma/serum

In the past decade, circulating cell-free miRNAs in plasma/serum have attracted increasing attention among investigators in various types of research field including oncology. The discovery of miRNA dates back to 1993, when Lee et al. found that a short RNA product encoded by the lin-4 gene inhibited the translation of its putative target, lin-14 mRNA, with partial sequence complementarity during a study of Caenorhabditis elegans (C.
Table 3 Circulating cell-free DNA in gastric cancer

Characteristic and number of patients	Controls (n)	Plasma/serum Detection method	Detection rate/statistic value	Ref.				
Unresectable	198	Serum/MSP	82.8% (GC)	Ren et al[152]				
	78 (peptic ulcer)	Immuno-PCR	7.7% (peptic ulcer)					
	118 (chronic gastritis)	Semi quantitative PCR	5.9% (chronic gastritis)					
	236 (healthy donors)		0.8% (healthy donors)					
			\(P < 0.01 \)					
N/A	51	Serum/mSP	100%	Lo et al[159]				
	30 (gastritis)	qPCR	92.9%					
	197 (healthy controls)	EBV DNA	26.1%	Kanyama et al[89]				
			No detection in controls					
I-Ⅳ	54	Serum/MSP	48.1%	Lee et al[80]				
	30	DAP-kinase	36.7%					
		E-cadherin	18.3%					
		GSTP1	23.9%					
		p15	51.9%					
		p16	55.6%					
		p16 + E-cadherin + RARb	57.4%					
		E-cadherin	14.8%					
		p16 + E-cadherin + RARb + E-cadherin	41.6%					
I-Ⅳ	60	Serum/MSP	27.0%	Kanyama et al[89]				
	16	p16	23.8%					
		No detection in controls	17.5%					
		E-cadherin	24.4%					
		RARb	22.0%					
		p16 + E-cadherin + RARb + E-cadherin	22.0%					
I-Ⅳ	109	Serum/MSP	22.0%	Ichikawa et al[84]				
	10	p16	27.0%					
		E-cadherin	18.3%					
		p16 + E-cadherin + RARb	23.9%					
		E-cadherin	36.7%					
		No detection in controls	51.9%					
I-Ⅳ	63	Serum/MSP	23.3%	Koike et al[42]				
	10	p16	No detection in controls					
		E-cadherin	22.0%					
		RARb	22.0%					
		p16 + E-cadherin + RARb + E-cadherin	14.6%					
I-Ⅳ	60	Serum/mSP	No detection in controls	Leung et al[42]				
	22	qMSP	Four markers combined					
		APC	16.7%					
		E-cadherin	13.3%					
		hMLH1	41.7%					
		TIMP3	16.7%					
		No detection in controls	55%					
		RARb	13.6%					
		p16 + E-cadherin + RARb + E-cadherin	51.6%					
		APC + E-cadherin	13.6%					
		p16 + E-cadherin + RARb	47.7%					
		No detection in controls	\(P = 0.006 \)					
		Methylation (+) vs (-)	(b)					
I-Ⅳ	109	Serum/MSP	23.8%	Ikoma et al[204]				
	10	RARb	47.7%					
		p16 + E-cadherin + RARb + E-cadherin	41.7%					
I-Ⅳ	53	Plasma/mSP	23.8%	Sai et al[84]				
	21	qPCR	\(P = 0.03 \)					
		β-actin (102 bp)	\(P < 0.0001 \)					
		No detection in controls	AUC = 0.75					
		DNA integrity (253 bp/102 bp)	\(P = 0.07 \)					
N/A	4	Serum/MSP	100%	Tan et al[414]				
	10	RUNX3	50%					
		p16	25%					
		RASSF1A	25%					
		CDH1	25%					
I/IV	No.	No.	Type	Method	Gene	Control	Tani et al. [147]	Tsujiura M et al. Liquid biopsy of gastric cancer patients
------	-----	-----	------	--------	------	---------	----------------	--
I/IV	52	20	Serum	MSP	p16	9.6%	0%	Abbassazadegan et al. [165]
					E-cadherin	9.6%	60.9% (Pt. with p16 methylation in primary tumor)	
I/IV	52	50	Serum	MSP	p16 + E-cadherin + RARb	23.1%	(all Pt.)	
					p16	26.9%	(Ctrl.)	
I/IV	20	22	Plasma	Fluorescence-based assay	MSP	DNA concentration↑	Pt. (n = 20) vs Ctrl. (n = 22) (Validation 1)	
				DNA concentration↑	MGMT	70%	Pt. (Ctrl.)	
					p15	36.4%	(Pt.)	
					hMLH1	50%	(Ctrl.)	
						18.2%	(Pt.)	
						25%	(Ctrl.)	
						9.1%	(Pt.)	
						24.0%	(Pt.)	
I/IV	47	30	Serum	MSP	RASSF1A	23.1%	10% (benign gastric disease)	
						3.3%	(healthy controls)	
I/IV	57	79	Plasma	qPCR	MYC/ GAPDH↑	36.4%	55% (Pt.)	
						19.0%	(Ctrl.)	
						0%	Pt. (n = 57) vs Ctrl. (n = 29) (Validation 2)	
I/IV	65	50	Serum	qMSP	RUNX3	29.2%	29.2% (Pt.)	
						0%	(Ctrl.)	
						10%	Pt. (n = 65) vs Ctrl. (n = 50) (Validation 1)	
I/IV	65	40	Serum	MSP	DLEC1	33.8%	3.3% (benign gastric disease)	
						5%	(healthy controls)	
I/IV	73	20	Serum	qMSP	TFPI2	9.6%	0% (healthy controls)	
						0%	(Ctrl.)	
						5%	Correlation with LN meta. (a)	
						P = 0.004	Correlation with distant meta. (a)	
I/IV	65	80	Plasma	qMSP	SLC19A3	29.2%	0% (validation 1)	
						5%	Pt. (n = 45) vs Ctrl. (n = 60) (Validation 2)	
I/IV	46	30	Serum	Methylation CpG island microarray	MSP	56.5%	AUC = 0.841 (Validation 1)	
						3.3%	(Ctrl.)	
						10%	Pt. (n = 20) vs Ctrl. (n = 20) (Validation 2)	
I/IV	58	30	Serum	MeDIP	FAM5C	31.0%	70.7% Pre- vs post-operation	
						70.7%	P < 0.001 Pre- vs post-operation (GC Pt.)	
						77.6%	(Healthy controls)	
						10% (gastric precancerous lesions)		
Detection of circulating cell-free RNA in patients with GC and its clinical relevance

As summarized in Table 4, the number of previous reports regarding circulating mRNA in GC patients is small compared with those regarding other types of cancers and with those concerning circulating DNA in GC. However, as Kang et al. recently reported that the detection of plasma hTERT mRNA can serve as a potential marker for diagnosis and prognosis of GC patients, increased insight and evidence about circulating mRNA might facilitate the development of this field.

Since the potent utility of determining miRNAs in the plasma of GC patients was first reported by our group in 2011[12], many studies have demonstrated the significance of circulating miRNAs as novel biomarkers (Table 5). Still, the immaturity of the field has led to several issues concerning its actual introduction in clinical settings. To date, there has been no consensus regarding how inter- and intra-individual variations can affect the results, which sample (i.e., plasma or serum) is more favorable for diagnosis and prognosis of GC patients, increased insight and evidence about circulating mRNA might facilitate the development of this field.

Methylation specific-PCR (qMSP).

Table 1: miRNA expression in GC patients

LN	N/A	Pt. with 2+/3+ score in HER2 IHC assay	Pt.	Ctrl.	Pt.	Ctrl.	Pt.	Ctrl.
Serum	ATP4B	AUC = 0.784	64%	0%	64%	0%	64%	0%
Serum	Vimentin	P = 0.018	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)
Serum	SOX17	OS: P = 0.049	64.4%	0%	64.4%	0%	64.4%	0%
Serum	XAF1	AUC = 0.909	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)

Table 2: miRNA expression in GC patients

LN	N/A	Pt. with 2+/3+ score in HER2 IHC assay	Pt.	Ctrl.	Pt.	Ctrl.	Pt.	Ctrl.
Serum	ATP4B	AUC = 0.784	64%	0%	64%	0%	64%	0%
Serum	Vimentin	P = 0.018	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)
Serum	SOX17	OS: P = 0.049	64.4%	0%	64.4%	0%	64.4%	0%
Serum	XAF1	AUC = 0.909	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)

Table 3: miRNA expression in GC patients

LN	N/A	Pt. with 2+/3+ score in HER2 IHC assay	Pt.	Ctrl.	Pt.	Ctrl.	Pt.	Ctrl.
Serum	ATP4B	AUC = 0.784	64%	0%	64%	0%	64%	0%
Serum	Vimentin	P = 0.018	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)
Serum	SOX17	OS: P = 0.049	64.4%	0%	64.4%	0%	64.4%	0%
Serum	XAF1	AUC = 0.909	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)	(Pt.)	(Ctrl.)
increasing owing to recent advances in bioinformatic analysis, making it more difficult to obtain a meticulous understanding of each miRNA. Although comprehensive approaches by genome-wide profiling can address those problems to some extent, a further large-scale validation with well-established methods seems to be required in this area as well.

To overcome obstacles due to inter-individual variations, our group tried to identify candidate miRNAs by comparing miRNA profiles between pre- and post-operative samples in the same individuals. Because miRNAs are involved in various non-cancerous cell biology including physiological modulation and pathological disruption of basic pathways, the existence of inter-individual differences can be strongly suspected based on miRNA expression. As a result, two miRNAs, miR-451 and miR-486, were selected based on this strategy and their significant value in discriminating between GC patients and healthy controls was clearly demonstrated with an AUC of 0.96 and 0.92 in ROC curve analysis for miR-451 and miR-486, respectively. We suggest that the miRNAs isolated by these concepts could be valuable biomarkers for the effective detection of early cancer and recurrence because the change of these miRNAs can be affected by the reduction of the volume of cancer tissue and is therefore directly related to tumor existence.

Most recently, our group published new observations in which long non-coding RNAs (lncRNAs) in the plasma of GC patients were successfully detected. Specifically, three lncRNAs (H19, HOX antisense intergenic RNA and metastasis associated lung adenocarcinoma transcript-1) stably exist in plasma from both GC patients and healthy controls. Plasma H19 levels were significantly higher in the patient group than the control group and decreased postoperatively, implying the possible use of H19 levels as a novel diagnostic marker in GC. LncRNAs are defined as non-protein coding transcripts longer than 200 nt lacking significant open reading frames and involved in fundamental cellular processes, such as RNA processing, gene regulation, chromatin modification, gene transcription, and post-transcriptional gene regulation based on RNA sequence complementary interactions. Detailed investigations have shown that lncRNAs can exhibit developmental and tissue specific expression patterns as well as aberrant regulation in a variety of diseases, including GC. Explorations of a novel type of RNA can provide more intriguing aspects in this research field.

CONCLUSION

Although the concept of “liquid biopsy” possesses great potential in detection and monitoring of diseases as previously described in detail, several hurdles should be
Table 5 Circulating cell-free microRNA/long non-coding RNA in gastric cancer

Characteristic and number of patients	Controls (n)	Plasma/serum	Detection method	Detection rate/statistic value	Ref.
miR-145†	69	Plasma	qRT-PCR	P = 0.01	
miR-21†	60	Plasma	qRT-PCR	P = 0.016	Tsujiura et al[125]
miR-21‡	60	Plasma	qRT-PCR	P = 0.01	Konishi et al[126]
miR-187††	40	Serum	qRT-PCR	P = 0.0016	Liu et al[127]
miR-371-5p†	40	Serum	qRT-PCR	P = 0.009	Liu et al[128]
miR-378†	82	Serum	Microarray	AUC = 0.74	Song et al[129]
miR-376c†	82	Serum	qRT-PCR	AUC = 0.71	
miR-444†	82	Serum	qRT-PCR	AUC = 0.71	
miR-196a	20	Plasma	qRT-PCR	P = 0.012	Tsai et al[130]
miR-20a‡	30	Plasma	qRT-PCR	P = 0.003	
miR-21†	39	Serum	qRT-PCR	P = 0.001	Wang et al[131]
miR-21†	39	Serum	qRT-PCR	P = 0.001	Wang et al[132]
miR-375†	20	Serum	miRNA microarray	P = 0.001	Zhang et al[133]
miR-195-5p†	20	Plasma	qRT-PCR	P = 0.059	Gorur et al[134]
miR-211†	79	Plasma	miRNA microarray	P = 0.001	Kim et al[135]
miR-146a†	79	Plasma	miRNA microarray	P = 0.001	Kim et al[135]
miR-148a†	79	Plasma	miRNA microarray	P = 0.001	Kim et al[135]
CISH: P = 0.0451					

Note: Detection rate/statistic value is based on the comparison of microRNA expression levels between different groups. P-values indicate the significance of the differences.
overcome before translating it into clinical settings. One of the most important issues is the lack of consensus in technical approaches, which involves various aspects of the methodologies, such as preferable sample type, storage conditions, candidate molecules and suitable detection techniques. Moreover, technical errors may introduce contaminated cells or molecules into experimental samples, which could cause misunderstandings and statistical errors. Therefore, the standardization of techniques throughout all experimental steps should be emphasized.

Owing to recent remarkable technological developments, novel revolutionary approaches including an in vitro CTC isolation system[^32] and multi-detectable array have been introduced into this research field. However, some issues raised by those advances should be addressed properly. Although multi-detection approaches can facilitate exhaustive screenings and provide us with various types of information, the important considerations are which molecules should be selected as a tumor marker and how the result of an individual patient obtained by multiple detection panels should be effectively utilized. Of course, the cost and practicality of each assay should also be taken into consideration to some extent.

In summary, the science of CTCs and circulating cfNAs remains in its infancy. Despite numerous approaches and techniques that have been advocated to accomplish the ultimate goal, that is, the development of a useful, sensitive and real-time monitoring system from the blood, few proposals have been translated into clinical practice. Large-scale studies and further understanding of their biology and significance could resolve those problems and enhance their utility as biomarkers. Consequently, the development of novel biomarkers based on CTCs and cfNAs could provide many benefits for cancer patients including the improvement of clinical outcomes in the near future.

REFERENCES

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90 [PMID: 21296855 DOI: 10.3322/caac.201077]
2. Alix-Panabière C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chim Acta 2011; 412: 897-902 [PMID: 21890067 DOI: 10.1016/j.cca.2011.07.004]
3. van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, den Toonder JM. Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res 2011; 71: 5955-5960 [PMID: 21986640 DOI: 10.1158/0008-5472.CAN-11-1254]
4. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013; 10: 472-484 [PMID: 23836314 DOI: 10.1038/nrclinonc.2013.110]
5. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11: 426-437 [PMID: 21525808 DOI: 10.1038/nrc3066]
6. Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 1869; 14: 146-149
7. Ghossein RA, Bhattacharya S, Rosai J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin Cancer Res 1999; 5: 1950-1960 [PMID: 10473071]
8. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004; 10: 6897-6904 [PMID: 15501967 DOI: 10.1182/1078-0432.CCR-04-0379]
9. Zheng S, Lin H, Liu JQ, Balic M, Datar R, Cote RJ, Tai YC. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 2007; 1162: 154-161 [PMID: 17561026 DOI: 10.1016/j.chroma.2007.05.064]
10. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Marrinucci D, Hoon DS, Pantel K. Case study of the morphology variation of circulating tumor cells. Hum Pathol 2013; 44: 944-950 [PMID: 23626725 DOI: 10.1016/j.humpath.2013.01.013]
Tsujura M et al. Liquid biopsy of gastric cancer patients

2007; 38: 514-519 [PMID: 17188328 DOI: 10.1016/j.humpath.2006.08.027]

14 Tan SJ, Yobas L, Lee GY, Ong CN, Lim CT. Microdevic-e for the isolation and enumeration of cancer cells from blood. Biomicrofluidics 2009; 3: 1-6 [PMID: 19388387 DOI: 10.1063/1.3100454-0903-9]

15 Mohamed H, Murray M, Turner JR, Caggana M. Isolation of tumor cells using size and deformation. J Chromatogr A 2009; 1216: 8289-8295 [PMID: 19497576 DOI: 10.1016/j.jchroma.2009.05.036]

16 Munz M, Baeuerle PA, Gires O. The emerging role of Ep-CAM in cancer and stem cell signaling. Cancer Res 2009; 69: 5627-5629 [PMID: 19584271 DOI: 10.1158/0008-5472.CAN-09-0654]

17 van der Gun BT, Melchers LJ, Ruiter MJH, de Leij LF, McLaughlin PM, Rots MG. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 2010; 31: 1193-1211 [PMID: 20837599 DOI: 10.1093/carcin/bgp187]

18 Wenqi D, Li W, Shanshan C, Bei C, Yafei Z, Feihu B, Jie L, Daiming F. EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. J Cancer Res Clin Oncol 2009; 135: 1277-1285 [PMID: 19294417 DOI: 10.1007/s00432-009-0659-5]

19 Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351: 781-791 [PMID: 15317891 DOI: 10.1097/NEJMoa040766]

20 Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Canadell J, Tanaka E, Li W, Shanshan C, Bei C, Yafei Z, Feihu B, Jie L, Daiming F. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 2007; 13: 7053-7058 [PMID: 18056182 DOI: 10.1158/1078-0432.CCR-07-1506]

21 Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006; 12: 4218-4224 [PMID: 16857794 DOI: 10.1158/1078-0432.CCR-05-2821]

22 Riethdorf S, Fritsche H, Müller V, Rau T, Schindbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: validation study of the CellSearch system. Clin Cancer Res 2007; 13: 920-928 [PMID: 17289866 DOI: 10.1158/1078-0432.CCR-06-1695]

23 Sastre J, Maestro ML, Puente J, Veganzones S, Alfonso R, Rafaela S, García-Saenz JA, Vidaurreta M, Martín M, Arroyo M, Sanz-Casla MT, Díaz-Rubio E. Circulating tumor cells in metastatic progression of breast cancer patients. Breast Cancer Res Treat 2009; 116: 781-790 [PMID: 19010150 DOI: 10.1007/s10549-008-9540-3]

24 Thompson RJ, Havig J. The social aspects of EMT-MET plasticity. Nat Med 2011; 17: 1048-1049 [PMID: 21909019 DOI: 10.1038/nm.2437]

25 Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserna E, Dierdichs S, Lafiare AJ, Bell DW, Dugmarthy S, Muzikansky A, Irinia D, Settlement J, Tompkins RG, Lynch TJ, Toner M, Haber DA. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 2008; 359: 366-377 [PMID: 18596266 DOI: 10.1056/NEJMoa0800668]

26 Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Dignamothy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007; 450: 1235-1239 [PMID: 18907410 DOI: 10.1038/nature06385]

27 Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L, Inserna EJ, Ulman M, Springer S, Nakamura Z, Moore AL, Tsukrov DI, Kempner ME, Dahl DM, Wu CL, Laiatre AJ, Smith MR, Tompkins RG, Sequist LV, Toner M, Haber DA, Maheswaran S. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2010; 2: 25ra23 [PMID: 20424012 DOI: 10.1126/scitranslmed.3004030]
Tsujiura M et al. Liquid biopsy of gastric cancer patients

pared to a unique gene in plasma/serum DNA: evidence for a preferential release from viable cells. Ann N Y Acad Sci 2001; 941: 258-264 [PMID: 11708488]

69 Stroun M, Lysyj E, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313: 139-142 [PMID: 11642451]

70 Trejo-Becerril C, Pérez-Cárdenas E, Tája-Chayeb L, Anker P, Herrera-Goeifert R, Medina-Velázquez LA, Hidalgo-Miranda A, Pérez-Montiel D, Chávez-Blanco A, Cruz-Velázquez J, Díaz-Chávez J, Gaxioli M, Duertas-González A. Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One 2012; 7: e52754 [PMID: 22851775 DOI: 10.1371/journal.pone.0052754]

71 García-Olmo DC, Domínguez C, García-Arranz M, Anker P, Stroun M, García-Verdugo JM, García-Olmo D. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res 2010; 70: 560-567 [PMID: 20068178 DOI: 10.1158/0008-5472.CAN-09-5513]

72 Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285: 17442-17452 [PMID: 20353945 DOI: 10.1074/jbc.M110.117821]

73 Wang BG, Huang HY, Chen YC, Bristow RE, Kassaei K, Lee HE, Park do J, Jung EJ, Song J, Kim HH, Park JL, Kim HJ, Choi BY, Lee HC, Jang HR, Song KS, Noh SM, Kim SY, Han DS, Kim YS. Quantitative analysis of cell-free DNA in the plasma of gastric cancer patients. Oncol Lett 2012; 3: 921-926 [PMID: 22741019 DOI: 10.3892/oal.2012.592]

74 Lee TL, Leung WK, Chan MW, Ng EK, Tong JH, Lo KW, Chung SC, Sung JJ, To KF. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin Chim Acta 2013; 419: 30-33 [PMID: 23484797 DOI: 10.1016/j.cca.2012.10.015]

75 van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernardi R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2001; 402: 536-540 [PMID: 11283860 DOI: 10.1038/35010108]

76 van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernardi R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2001; 402: 536-540 [PMID: 11283860 DOI: 10.1038/35010108]

77 Zhang Y, Chen L, Li J, Yu B, Su L, Chen X, Yu Y, Yan M, Liu B, Zhu Z. Hypermethylated DNA as potential biomarkers for gastric cancer diagnosis. Clin Biochem 2011; 44: 1405-1411 [PMID: 21945024 DOI: 10.1016/j.clinbiochem.2011.09.006]

78 Chen L, Su L, Li J, Zheng Y, Yu B, Yu Y, Yan M, Gu Q, Zhu Z, Liu B. Hypermethylated FAM5C and MYLK in serum as diagnosis and pre-warning markers for gastric cancer. Dis Markers 2012; 32: 195-202 [PMID: 22377736 DOI: 10.3233/DMA-2011-0877]

79 Ling QZ, Lv P, Lu XX, Yu JL, Han J, Ying LS, Zhu X, Zhu WY, Fang XH, Wang S, Wu YC. Circulating methylated XAF1 DNA Indicates Poor Prognosis for Gastric Cancer. PLoS One 2013; 8: e67195 [PMID: 23826230 DOI: 10.1371/journal.pone.0067195]

80 Gevenslieben H, García-Murillás I, Graesser MK, Schiavon G, Osip O, Parton M, Smith IE, Ashworth A, Turner NC. Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res 2013; 19: 3276-3284 [PMID: 23657122 DOI: 10.1158/1078-0432.CCR-12-2368]

81 Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li H, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Bovee J. Liquid circulating tumor DNA as current biomarker for gastric cancer. JAMA 2017; 318: 1199-1209 [PMID: 23847979 DOI: 10.1001/jama.2012.12362]

82 Chan KC, Jiang P, Zheng YW, Liao GJ, Sun H, Wong J, Siu SS, Chan WC, Chan SL, Chan AT, Lai PB, Chiu RW, Lo YM. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumor heterogeneity by massively parallel sequencing. Clin Chem 2013; 59: 211-224 [PMID: 23065472 DOI: 10.1373/clinchem.2012.196014]

83 Castells A, Puig P, Mora J, Boadas J, Boix L, Urrell E, Solé M, Capella G, Lluis F, Fernández-Cruz L, Navarro S, Fàrré A. K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic value. J Clin Oncol 1999; 17: 579-584 [PMID: 10908602]

84 Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012; 486: 537-540 [PMID: 22722843 DOI: 10.1038/nature11219]

85 Misale S, Yaeger R, Hubor S, Scala E, Janakiraman M, Liska D, Valotta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S, Zancon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena D, Di Nicolantonio F, Solit D, Bardelli A. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012; 486: 532-536 [PMID: 22722830 DOI: 10.1038/nature11156]

86 Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, De La Vega FM, Kinzler KW, Vogelstein B, Diaz LA, Velculescu VE. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2010; 2: 20ra14 [PMID: 20371490 DOI: 10.1126/scitranslmed.3007020]

87 Sai S, Ichikawa D, Tomita H, Ikoma D, Tani N, Ikoma H, Kikuchi S, Fujiwara H, Ueda Y, Otsuji E. Quantification of plasma cell-free DNA in patients with gastric cancer. Anti-cancer Res 2007; 27: 2747-2751 [PMID: 17695442]

88 Park JL, Kim HJ, Choi BY, Lee HC, Jang HR, Song KS, Noh SM, Kim SY, Han DS, Kim YS. Quantitative analysis of cell-free DNA in the plasma of gastric cancer patients. Oncol Lett 2012; 3: 921-926 [PMID: 22741019 DOI: 10.3892/oal.2012.592]

89 Lee TL, Leung WK, Chan MW, Ng EK, Tong JH, Lo KW, Chung SC, Sung JJ, To KF. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin Chim Acta 2002; 318: 167-174 [PMID: 11708488 DOI: 10.1016/S0007-4572(01)00746-7]
Tsujisu M et al. Liquid biopsy of gastric cancer patients

blood-based markers for cancer detection. Natl Acad Sci USA 2008; 105: 10513-10518 [PMID: 18663219 DOI: 10.1073/pnas.0804549105]

113 Chen X, Iba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang Y, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang C. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18: 997-1006 [PMID: 18766170 DOI: 10.1038/cr.2008.282]

114 Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pfezza B, Boulwood T, Wainscoat JS, Hatton CS, Harris AL. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 672-675 [PMID: 18338758 DOI: 10.1111/j.1365-2457.2008.07077.x]

115 Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei W. Mature mir-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 2008; 14: 2588-2592 [PMID: 18451220 DOI: 10.1158/1078-0432.CCR-07-0666]

116 Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY. Secreted monocytic mir-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39: 133-144 [PMID: 20603881 DOI: 10.1016/j.molcel.2010.06.010]

117 Arroyo JD, Chevillet JR, Kroh EM, Ryu IK, Pritchard CC, Gibson DF, Mitchell PS, Berrett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JP, Tewari M. Argonaut2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Natl Acad Sci USA 2011; 108: 5003-5008 [PMID: 21383194 DOI: 10.1073/pnas.100955108]

118 Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13: 423-433 [PMID: 21423178 DOI: 10.1038/rc.2011.10]

119 Turchinovich A, Wozt L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39: 7223-7233 [PMID: 21609964 DOI: 10.1093/nar/gkr254]

120 Zernecke A, Bidzechkov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRN-NA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Cell Death Differ 2012; 19: 1159-1170 [PMID: 22822904 DOI: 10.1038/cdd.2011.71]

121 Ichikawa D, Komatsu S, Konishi H, Otsuki E. Circulating microRNA in digestive tract cancers. Gastroenterology 2012; 142: 1074-1078.e1 [PMID: 22433392 DOI: 10.1016/j.gastro.2012.03.008]

122 Reid G, Kirschner MB, van Sandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. J Exp Clin Cancer Res 2011; 30: 193-208 [PMID: 21145252 DOI: 10.1186/j.jcritrevonc.2011.10.004]

123 Kang Y, Zhang J, Sun P, Shang J. Circulating cell-free human telomerase reverse transcriptase mRNA in plasma and its potential diagnostic and prognostic value for gastric cancer. Int J Clin Oncol 2013; 18: 478-486 [PMID: 22527847 DOI: 10.1007/s10147-012-0405-9]

124 Tsujiru M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, Konishi H, Morimura R, Deguchi F, Fujihara W, Okamoto K, Otsuki E. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer 2010; 102: 1174-1179 [PMID: 20234369 DOI: 10.1038/sj.bjc.6605680]

125 Konishi H, Ichikawa D, Komatsu S, Shiozaki A, Tsujiru M, Takeshita H, Morimura R, Nagata H, Arita T, Kawaguchi T, Hirashima S, Fujurawa H, Okamoto K, Otsuki E. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br J Cancer 2010; 102: 1174-1179 [PMID: 20234369 DOI: 10.1038/sj.bjc.6605680]
Tsujiura M et al. Liquid biopsy of gastric cancer patients

J Cancer 2012; 106: 740-747 [PMID: 22262318 DOI: 10.1038/bjc.2011.588]

126 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297 [PMID: 14734438]

127 Ambros V. The functions of animal microRNAs. Nature 2004; 431: 350-355 [PMID: 15372042 DOI: 10.1038/nature02871]

Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, Kawaguchi T, Hirajima S, Nagata H, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res 2013; 33: 3185-3193 [PMID: 23898077 DOI: 33/8/3185]

Orom UA, Derrien T, Beringer M, Gumiérdy K, Gardini A, Bussotti G, Lai F, Zytynicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010; 143: 46-58 [PMID: 20887892 DOI: 10.1016/j.cell.2010.09.001]

130 Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155-159 [PMID: 19188922 DOI: 10/nrgr2512]

131 Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 2012; 279: 3159-3165 [PMID: 22776265 DOI: 10.1111/j.1742-4658.2012.08694.x]

132 Yang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, Fang G. Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol 2013; 139: 437-445 [PMID: 23146345 DOI: 10.1007/s00432-012-1324-x]

133 Funaki NO, Tanaka J, Kasamatsu T, Oshhio G, Hosotani R, Okino T, Imaamura M. Identification of carcinoembryonic antigen mRNA in circulating peripheral blood of pancreatic carcinoma and gastric carcinoma patients. Life Sci 1996; 59: 2187-2199 [PMID: 8950323]

134 Mori M, Mimori K, Ueo H, Karimine N, Barnard GF, Sugimachi K, Akiyoshi T. Molecular detection of circulating solid cancer cells in the peripheral blood: the concept of early systemic disease. Int J Cancer 1996; 68: 739-743 [PMID: 8980176]

135 Aihara T, Nozugi S, Ishikawa O, Furukawa H, Hiratsuka M, Ohigashi H, Nakamori S, Monden M, Imaoka S. Detection of pancreatic and gastric cancer cells in peripheral and portal blood by amplification of keratin 19 mRNA with reverse transcriptase-polymerase chain reaction. Int J Cancer 1997; 72: 408-411 [PMID: 9247282]

136 Goeth E, Vogel J, Rodler C, Juhil H, Marxsen J, Krüger U, Hennesses D, Kremer B, Kalthoff H. Comparative analysis of bone marrow and venous blood isolates from gastrointestinal cancer patients for the detection of disseminated tumour cells using reverse transcription PCR. Cancer Res 1997; 57: 3106-3110 [PMID: 9242433]

137 Yeh KH, Chen YC, Yeh SH, Chen CP, Lin JT, Cheng AL. Detection of circulating cancer cells by nested reverse transcriptase-polymerase chain reaction of cytokeratin-19 (K19)-positive clinical significance in advanced gastric cancer. Anticancer Res 1998; 18: 1285-1286 [PMID: 9615082]

138 Noh YH, Im G, Ku JH, Lee YS, Ahn MJ. Detection of tumor cell contamination in peripheral blood by RT-PCR in gastrointestinal cancer patients. J Korean Med Sci 1999; 14: 623-628 [PMID: 10642939]

139 Majima T, Ichikura T, Takayama E, Chochi K, Mohizuki H. Detecting circulating cancer cells using reverse transcriptase-polymerase chain reaction for cytokeratin mRNA in peripheral blood from patients with gastric cancer. Jpn J Clin Oncol 2000, 30: 499-503 [PMID: 11159920]

140 Noh YH, Kim JA, Lim GR, Ro YT, Koo JH, Lee YS, Han DS, Park HK, Ahn MJ. Detection of circulating tumor cells in patients with gastrointestinal tract cancer using RT-PCR and its clinical implications. Exp Mol Med 2001, 33: 8-14 [PMID: 11322488 DOI: 10.1086/emn.2001.2]

142 Sumikura S, Ishigami S, Natsuose S, Miyazono F, Tokuda K, Nakajo A, Okumura H, Matsumoto M, Hokita S, Aikou T. Disseminated cancer cells in the blood and expression of sialylated antigen in gastric cancer. Cancer Lett 2003; 200: 77-83 [PMID: 14550944838]

143 Knie H, Ichikawa D, Ikoma H, Otsuji E, Kitamura K, Yamagishi H. Comparison of methylation-specific polymerase chain reaction with reverse transcriptase-polymerase chain reaction in peripheral blood of gastric cancer patients. J Surg Oncol 2004; 87: 182-186 [PMID: 15334633 DOI: 10.1002/jso.20106]

144 Friederichs J, Gertler R, Rosenberg R, Nährig J, Führer K, Holzmann B, Dittler HJ, Dahm M, Thorban S, Nekarda H, Siwertz JR. Prognostic impact of CK-20-positive cells in peripheral venous blood of patients with gastrointestinal carcinoma. World J Surg 2005; 29: 422-428 [PMID: 15770378 DOI: 10.1007/s00268-004-7662-3]

145 Illert B, Fein M, Otto C, Cording F, Stehle D, Thiade A, Timmermann W. Disseminated tumor cells in the blood of patients with gastric cancer are an independent predictive marker of poor prognosis. Scand J Gastroenterol 2005; 40: 843-849 [PMID: 16109661 DOI: 10.1080/0036552051015557]

146 Seo JO, Choi CW, Kim BS, Shin SW, Kim YH, Kim JS, Lee SW, Choi JH, Park YT, Mok YJ, Kim CS, Kim JS. Follow-up study of peripheral blood carcinoembryonic antigen mRNA using reverse transcription-polymerase chain reaction as an early marker of clinical recurrence in patients with curatively resected gastric cancer. Am J Clin Oncol 2005; 28: 24-29 [PMID: 15688505]
Detection of RASSFL1 promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. *World J Gastroenterol* 2008; 14: 3074-3080 [PMID: 18494082]

Chen Z, Fan JQ, Li J, Li QS, Yan Z, Jia XK, Liu WD, Wei LJ, Zhang FZ, Gao H, Xu JP, Deng XM, Dai J, Zhou HM. Promoter hypermethylation correlates with the Hsfl-1 silencing in human breast and gastric cancer. *Int J Cancer* 2009; 124: 739-744 [PMID: 19006069 DOI: 10.1002/jicr.2396]

Sakakura C, Hamada T, Miyagawa K, Nishio M, Miyashita A, Nagata H, Ida H, Yazumi S, Otsuji E, Chiba T, Ito K, Ito Y. Quantitative analysis of tumor-derived methylated RUNX3 sequences in the serum of gastric cancer patients. *Anticancer Res* 2009; 29: 2619-2625 [PMID: 19596337 DOI: 29/7/2619]

Zhang Y, Ye X, Geng J, Chen L. Epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in gastric and colorectal adenocarcinoma. *Hepatogastroenterology* 2010; 57: 1614-1619 [PMID: 21443130]

Kibi H, Goto T, Shirahata A, Saito M, Kigawa G, Nemoto H, Sanada Y. Detection of TFF2 methylation in the serum of gastric cancer patients. *Anticancer Res* 2011; 31: 3835-3838 [PMID: 22110206]

Ng EK, Leung CP, Shin VY, Wong CL, Ma ES, Jin HC, Chu KM, Kwong A. Quantitative analysis and diagnostic significance of methylated SLCA9A3 DNA in the plasma of breast and gastric cancer patients. *PLoS One* 2011; 6: e22233 [PMID: 21789241 DOI: 10.1371/journal.pone.0022233]

Raja UM, Gopal G, Rajkumar T. Intraepithelial DNA methylation concomitant with repression of ATFB and ATPA4A gene expression in gastric cancer is a potential serum biomarker. *Asian Pac J Cancer Prev* 2012; 13: 5563-5568 [PMID: 23317218]

Shirahata A, Sakuraba K, Kitamura Y, Yokomizo K, Gotou T, Saitou M, Kigawa G, Nemoto H, Sanada Y, Kibi H. Detection of vimentin methylation in the serum of patients with gastric cancer. *Anticancer Res* 2012; 32: 791-794 [PMID: 22999955]

Balgkouranidou I, Karayiannakis A, Matthaios D, Bolanaki H, Tripaniasis G, Tentes AA, Liandiou E, Chatzaki E, Fiska A, Lambropoulou M, Kolios G, Kakolyris S. Analysis of SOX37 DNA methylation in cell free DNA from patients with operable gastric cancer. Association with prognostic variables and survival. *Clin Chem Lab Med* 2013; 51: 1505-1510 [PMID: 23403728 DOI: 10.1515/cclinm-2012-0320]

Xu W, Zhou H, Qian H, Bu X, Chen D, Gu H, Zhu W, Yan Y, Mao F. Combination of circulating CXC4R4 and Bmi-1 mRNA in plasma: A potential novel tumor marker for gastric cancer. *Med Mol Rep* 2009; 2: 765-771 [PMID: 21475899 DOI: 10.3892/ mmr_00001701]

Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H, Zhuang R, Deng T, Liu H, Yin J, Wang S, Zen K, Ba Y, Zhang CY. A five-microRNA signature identified from genome-wide microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. *Eur J Cancer* 2011; 47: 784-791 [PMID: 21112772 DOI: 10.1016/j.ejca.2010.05.025]

Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W, Ma Y, Xiao H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. *Cancer Lett* 2012; 316: 196-203 [PMID: 22169097 DOI: 10.1016/j.canlet.2011.10.034]

Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, Yuasa Y, Kang D, Kim YS, You WC. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. *PLoS One* 2012; 7: e33608 [PMID: 22452036 DOI: 10.1371/journal.pone.0033608]

Tsujii et al. Liquid biopsy of gastric cancer patients
Tsujiura M et al. Liquid biopsy of gastric cancer patients

Cancer Res Clin Oncol 2012; 138: 1659-1666 [PMID: 22638884 DOI: 10.1007/s00432-012-1244-9]

182 Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang L, Zhao C, Tao Y, Xu W. Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer. Mol Med Rep 2012; 5: 1514-1520 [PMID: 22406928 DOI: 10.3892/mmr.2012.828]

183 Zhang WH, Gui JH, Wang CZ, Chang Q, Xu SP, Cai CH, Li YN, Tian YP, Yan L, Wu B. The identification of miR-375 as a potential biomarker in distal gastric adenocarcinoma. Oncol Res 2012; 20: 139-147 [PMID: 23461060]

184 Gorur A, Balci Fidanci S, Dogruer Unal N, Ayaz L, Akbayir S, Yildirim Yaroglu H, Durlik M, Serin MS, Tamer L. Determination of plasma microRNA for early detection of gastric cancer. Mol Biol Rep 2013; 40: 2091-2096 [PMID: 23212612 DOI: 10.1007/s11033-012-2267-7]

185 Kim SY, Jeon TY, Choi CI, Kim DH, Kim DH, Kim GH, Ryu DY, Lee BE, Kim HH. Validation of circulating miRNA biomarkers for predicting lymph node metastasis in gastric cancer. J Mol Diagn 2013; 15: 661-669 [PMID: 23806809 DOI: 10.1016/j.jmoldx.2013.04.004]

186 Komatsu S, Ichikawa D, Tsujiura M, Konishi H, Takeshita H, Nagata H, Kawaguchi T, Hirajima S, Arita T, Shiozaki A, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res 2013; 33: 271-276 [PMID: 23267156]

187 Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, Zhu ZG. MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol 2013; 108: 89-92 [PMID: 23733518 DOI: 10.1002/jso.23358]

P- Reviewers: Streba CT, Zhu YL S- Editor: Gou SX L- Editor: A E- Editor: Zhang DN
