Title
Insights into the post-transcriptional regulation of the mitochondrial electron transport chain

Tamara M. Sirey1,2 and Chris P. Ponting1

1 Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, University of Edinburgh, Edinburgh
2 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford

Address for correspondence: tamara.sirey@igmm.ed.ac.uk

Abbreviations
ETC: electron transport chain
OXPHOS: oxidative phosphorylation
miRNA: microRNA
PTGR: post-transcriptional gene regulation

Introduction
The control of metabolic homeostasis is central to maintaining the physiological function and health of an organism. A key player in the maintenance of cellular homeostasis are the semi-autonomous mitochondria, which produce ~95% of cellular ATP through the coupling of the electron transport chain (ETC) to oxidative phosphorylation (OXPHOS), by a proton electrochemical gradient across the mitochondrial inner membrane. Mitochondria also provide the environment for other metabolic pathways such as the Kreb’s cycle, β-oxidation, the urea cycle, and they also regulate Ca^{2+} homeostasis and play a key role in cellular apoptosis. Metabolic homeostasis is coordinated by a combination of key transcription factors and post-transcriptional regulatory mechanisms, including non-coding RNAs that combine to form intricate regulatory control networks. However, much remains to be understood about the role post-transcriptional processes play in the maintenance and regulation of the ETC and how they provide a further insight to the complexities underlying metabolic homeostasis.

Post-transcriptional gene regulation (PTGR) can broadly be defined as the control of gene expression at the level of RNA transcript abundance, and includes aspects of RNA biology such as transcript stability/RNA turnover, binding of the RNAs by RNA binding proteins and post-transcriptional regulation by microRNAs (miRNAs). It is known that ETC transcripts range from being moderately to highly expressed and are relatively stable [1] but little is
known regarding the role of regulatory RNAs or RNA binding proteins in the PTGR of the ETC. This review aims to provide an overview of the current evidence for post-transcriptional regulation of the mitochondrial ETC and to discuss the role PTGR may play in diseases that exhibit mitochondrial dysfunction.

The chemiosmotic coupling of the ETC to OXPHOS requires the activities of four multi-subunit enzyme complexes (Complex I [CI], NADH-ubiquinone oxidoreductase; Complex II [CII], Succinate-quinone oxidoreductase; Complex III [CIII], Cytochrome bc1 complex; Complex IV [CIV], Cytochrome c oxidase), and ATP synthase (Complex V [CV]) as the site of OXPHOS, numerous assembly proteins and two electron carriers (ubiquinone and cytochrome c). Together the complexes and electron carriers comprise the ETC that transfers electrons from NADH (at complex I) and FADH2 (at complex II) through a series of redox reactions to molecular oxygen as a final electron acceptor (at complex IV). In doing so, protons are pumped across the inner mitochondrial membrane to create a proton electrochemical gradient that is required for ATP-synthase to phosphorylate ADP to produce ATP (oxidative phosphorylation) therefore providing energy for cellular processes. In mammals the five enzyme complexes are comprised of approximately 100 separate protein subunits and are unique in the sense that their protein components are sourced from two separate genomes – the mitochondrial genome and the nuclear genome – which necessitates the coordinated (post)-transcriptional regulation of genes from both genomes. Because the mitochondrial genome only codes for 13 of these protein subunits (7 CI, 1 CII, 3 CIV and 2 CV) the majority of ETC subunit transcripts are encoded by the nuclear genome, translated in the cytoplasm and their proteins imported into the mitochondria. The efficient function of the ETC therefore requires complex layers of regulation to coordinate the expression of the protein-coding subunits, including a combination of transcriptional co-ordination, sub-cytoplasmic localization of translation and the intricate assembly of the ETC enzyme complexes.

Post-transcriptional regulation of the ETC via miRNAs
miRNAs are small (21-23 nucleotide) non-coding RNAs that post-transcriptionally regulate target genes in the cytoplasm through the activity of the multi-component RNA-induced silencing complex (RISC). This occurs by the miRNA binding via a seed region in the mature miRNA, to a miRNA recognition element in a target sequence, with canonical binding being mostly targeted to the 3′ UTR. This interaction of the miRNA with its target RNA is
recognized by the Argonaute 2 (Ago2) component of RISC and either suppresses protein production and/or initiates mRNA degradation [2].

miRNAs can confer robustness to gene expression networks is by suppressing ‘noise’ (for a review and examples see [3-5]), and by establishing gene expression thresholds which can help maintain homeostasis. At present, miRNAs are known to participate in the regulation of various metabolic pathways including insulin signaling, glucose homeostasis, and lipid homeostasis [6-7]. Nevertheless, except for a few specific examples (discussed below) little is known about the magnitude of the role that miRNAs may play in the regulation of ETC transcripts (Figure 1A).

A number of studies have reported interactions of miRNAs with ETC transcripts in different biological contexts. The brain-specific miRNA miR-338 has been shown to locally regulate cytochrome c oxidase IV (COX4, a complex IV subunit) transcript abundance in the axons of sympathetic neurons [8], thereby regulating axonal respiration. A subsequent study identified the transcript ATP5G1 as an additional target of miR-338 in axons [9], suggesting that miR-338 may be coordinately regulating the availability of multiple ETC subunit transcripts in this system.

The miRNA miR-210, which is induced under hypoxic conditions, has been demonstrated to act as part of a metabolic switch in the hypoxic response [10]. In human pulmonary artery cell lines miR-210 was initially shown to target transcripts encoding the iron-sulphur cluster assembly enzymes ISCU1/2 [10], which is a mitochondrially localized scaffold protein required for the maturation of [2Fe-2S] and [4Fe-4S] proteins [11]. By targeting ISCU1/2 the induction of miR-210 decreases the activity of Fe-S containing enzymes such as the Krebs cycle enzyme aconitase [10] and mitochondrial complex I [10, 12]. The complex II subunit SDHD has also been validated as a miR-210 target [13-15], as has the complex IV assembly factor COX10 [12] and NDUFA4 [14-16], which has recently been reassigned to complex IV [17]. These multiple miR-210 targets allow the coordinate regulation of mitochondrial respiration in response to hypoxia firstly by regulating the enzyme ISCU which has downstream effects on the Fe-S containing proteins of both the Kreb’s cycle and the electron transport chain and, secondly by directly targeting ETC subunit transcripts and assembly factors to further decrease ETC activity. In addition, in human placentas presenting with preeclampsia a 2-fold increase of miR-210 is associated with decreased
amounts of translated complexes I and IV and a decrease in the activity of complex III [18], implying an even broader role of miR-210 in the regulation of the ETC. These various targets of miR-210 are suggestive of a hypoxia-induced post-transcriptional regulatory network which acts to co-ordinately down regulate key ETC enzymes involved in the hypoxic response.

There is evidence of overlapping regulatory functions between miRNAs that share target genes. miR-210 and miR-147b are induced by hypoxia and in inflammation respectively, and promote comparable cellular effects in terms of cell migration, proliferation and apoptosis [15]. These miRNAs share a minimal 6 base seed region and both directly interact with SDHD and NDUFA4 transcripts. This miRNA functional redundancy, where different external stimuli can trigger the expression of different miRNAs acts as a ‘switch’ which leads to a common stress-related response characterised by overlapping miRNA target genes [15].

Intriguingly, both pre and mature miRNAs (termed mitomiRs) have been found localized to the mitochondria, and miRNAs have been found to be present in the mitochondria isolated from rat liver [19], mouse liver [20], 143-B cells [21], myoblasts [22], HeLa cells [23] and HEK293 cells [23]. There is little consensus, however, regarding the functionality of these miRNAs within the mitochondria, and it is important to note that only one of these studies [22] used hybridization techniques to demonstrate miRNA localization to the mitochondria therefore artefacts due to the fractionation techniques utilized cannot be precluded. The mitochondria have been proposed to act as a miRNA reservoir owing to some mitomiRs being predicted not to target the mitochondrial genome or nuclear encoded mitochondrial protein transcripts, but instead, transcripts encoding proteins involved in apoptosis, and cell proliferation and differentiation [19]. It is important to note that as of yet the targets of mitomiRs have not yet been extensively validated experimentally. Nevertheless, one miRNA, miR-181c has been shown to be functional in the mitochondria of rat cardiac myocytes where it localizes within the mitochondria and translationally regulates mt-COX1 [24]. In addition, as there is evidence that Agonaute proteins localize to the mitochondria [24-25] suggesting that the proteins required for miRNA mediated gene silencing may be present within the mitochondria. Furthermore, there is some evidence that the mitochondrial genome itself generates non-coding RNAs [21, 26], although specific mitochondrial targets remain to be validated experimentally. A deep sequencing approach identified small RNAs generated from either the mouse or the human mitochondrial genome
ranging in size from 12 – 137 nucleotides [27]. In contrast to miRNA mediated repression, these mitochondrial genome-encoded small RNAs (mitosRNAs) appear to enhance the expression of their mitochondrial host genes [27]. It remains to be determined how extensive is the mitosRNA-regulation of mitochondrial gene expression, but it could represent a further component of PTGR.

It should be noted that the miRNA pool do not bind just mRNAs, but potentially other non-coding transcripts such as expressed pseudogenes, long non-coding RNAs (RNAs >200 nucleotides in length with no coding capacity) and circular RNAs. These transcripts can thus act as miRNA decoys, or competitive endogenous RNAs (ceRNAs), by binding miRNAs that would otherwise bind specific target mRNAs; these mRNAs are thus derepressed [28-30]. There is the potential for the miRNA-mediated regulation of ETC subunits to be buffered by a miRNA:mRNA:IncRNA network which maintains cellular homeostasis.

Post-transcriptional regulation of the ETC via binding of ETC transcripts to RNA binding proteins
Both nuclear and mitochondrially encoded ETC transcripts can also bind and be sequestered by RNA binding proteins (RBPs). These are not only numerous and diverse, but they also have various cellular functions ranging from RNA modification in the nucleus (splicing, polyadenylation, 5’ capping), mRNA export, mRNA turnover, mRNA localisation and translation [31]. Recently, the FASTK family of FAS-activated serine/threonine kinases have been identified as non-canonical RNA binding proteins implicated in mitochondrial physiology [32-34]. FASTKD4 (FAS-activated serine/threonine kinase D4) has been shown to mediate the turnover of a subset of mitochondrially encoded transcripts [35], whilst FASTKD2 (FAS-activated serine/threonine kinase D2), acts as an RNA binding protein that interacts with the mitochondrially encoded transcripts 16S ribosomal RNA (RNR2) and the complex I subunit ND6 [36]. Deletion of FASTKD2 results in aberrant processing and expression of both RNR2 and ND6 with a subsequent decrease in activity of all respiratory complexes, with the exception of complex II [36] (Figure 1B). FASTKD2-mediated post-transcriptional regulation of these genes is a critical cellular process because homozygous nonsense mutations in the FASTKD2 gene are associated with mitochondrial encephalomyopathy [33].
Other RNA binding proteins have been shown to promote the expression of ETC subunits. In HeLa cells, it has been demonstrated that YB-1 (Y-box-binding protein-1) regulates the translation of a subset of nuclear encoded ETC subunits by recruiting mRNAs from inactive ribonucleoprotein particles to active polyosomes [37]. The ability of YB-1 to act as a translational activator depends on the amount of YB-1 bound to the target mRNA. For example, after siRNA mediated YB-1 depletion the protein expression levels of complex I (NDUFA9, NDUFA8), complex II (SDHB) and complex III (UQCRFS1) subunits were increased by approximately 50%, with a concomitant increase in respiratory chain activity [37] (Figure 1C) suggesting that YB-1 is an important mediating factor for modulating the translation of ETC subunits.

In mice, the RNA binding protein Lin28a is a repressor of let-7 miRNA biogenesis, but it also regulates mRNA translation independently [38]. In mouse embryonic fibroblasts and mouse pinnae LIN28a binds to, and enhances the translation of, transcripts encoding the complex I subunits Ndufb3 and Ndufb8, and the complex II subunit Sdha, in addition to glycolytic and Krebs cycle transcripts [39]. This Lin28a mediated translational upregulation results in an increase in mitochondrial respiration, and is part of the Lin28-mediated reprogramming of metabolism that enhances tissue repair [39] (Figure 1D).

Although the homeobox proteins are well known as transcription factors, some also function as translational regulators by interacting with the eukaryotic translation initiation factor eIF4E [40]. Exogenous application of the homeobox protein engrailed-1 (En-1) enhances the translation of the core mitochondrial subunits Ndufs1 and Ndufs3, which leads to a 20% increase in the activity of complex I (Figure 1E). In turn, this protects mouse midbrain dopaminergic neurons against the complex I inhibitor used to model Parkinson’s disease, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [41]. It also doubles striatal dopamine concentrations, an effect that is dependent upon the translation of Ndufs1 [41].

Together, this experimental evidence suggests that miRNAs and RNA binding proteins post-transcriptionally regulate nuclear-encoded mitochondrial subunits and contribute centrally to the regulation and homeostatic control of energy metabolism.

High-throughput detection of miRNAs and ETC targets
Genome scale technologies have recently been implemented to identify differentially expressed miRNAs and/or miRNA targets. miRNA microarrays were to identify miRNAs that are differentially regulated during mouse aging in combination with global proteomic profiling strategy to identify differentially expressed proteins [42]. This strategy identified 27 miRNAs that were upregulated with a concomitant decrease in the expression of 10 ETC proteins (complex III: UQCR2, UQCRB, UQCRFS1; complex IV: COX5A, COX5B, COX7A2; ATP synthase: ATP5B, ATP5F1, ATP5H, ATP5O) in ageing mice. A similar approach using miRNA and mRNA microarrays was taken to identify differentially expressed miRNAs and target genes in neural precursors derived from human umbilical cord mesenchymal stem cells [43]. This study identified miR-34a as a miRNA involved in neurogenesis, and demonstrated that expression of miR-34a expression results in the downregulation of at least eight ETC subunits (Complex I: Ndufa3, Ndufb2, Ndufb7, NdufS6; Complex III: UQCR; Complex IV: Ndufa4; Complex V: ATP5F1, ATP5G3).

Many studies are now combining high throughput sequencing with different approaches that investigate RNA interactions with proteins, specifically Argonaute proteins (e.g. HITS-CLIP, PAR-CLIP, CLASH), to identify miRNA-target interactions (for a review of RNA-protein interaction technology see [44]). These studies are investigating miRNA:target interactions at a transcriptome-wide scale and therefore provide an excellent resource of potential miRNA:mRNA interactions that can be mined to identify targets for further investigation. Table 1 illustrates examples of datasets where potentially novel ETC:miRNA interactions have been identified.

These high-throughput techniques provide a broad transcriptome-wide overview of potential miRNA:target interactions. Nevertheless, confidence in the validity of the proposed interactions requires subsequent experimental validation.

Does PTGR of the ETC play a central role in mitochondrial dysfunction?

Whilst much is understood about the biochemical mechanisms underlying oxidative phosphorylation, in situations of mitochondrial dysfunction, where mitochondria fail to generate appropriate amounts of ATP in response to energy demands, little is known about the underlying causes. Mitochondrial dysfunction is an important pathophysiological feature of many apparently disparate diseases including neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases [45-47], mental health disorders [48-49], type II
diabetes [50] and heart disease [51]. Inherited mutations in protein coding genes are often not sufficient to explain the prevalence of sporadic cases of these diseases, and increased susceptibility to complex neurodegenerative and neuropsychological disorders are likely to be the product of multiple mutations. Given the etiological complexity of these diseases, it is possible that mutations in PTGR networks regulating the ETC may contribute to the observed pathologies.

Concluding statement

The extent to which PTGR influences the activity of the ETC has yet to be fully elucidated. However, there is clear experimental evidence that both miRNAs and RNA binding proteins have the potential to play significant post-transcriptional regulatory roles in different disease contexts. If we add to this post-transcriptional network other non-coding RNAs, such as the ceRNAs, we begin to envisage a complex post-transcriptional network that can respond rapidly to stimuli to preserve homeostasis. Importantly, a better understanding of these networks could help to determine what roles they may play in diseases that manifest defects in energy metabolism and could help identify much needed new drug targets for treating mitochondrial dysfunction.

Species/Cell line	Technique	Number of miRNA:ETC transcript interactions	Non-redundant Number of ETC transcripts identified	Non-redundant Number of miRNAs
Human HEK293 cells [52]	CLASH	295	74	104
Human 293S and HeLa cells [53]	HITS-CLIP	422	27	307
Human HIV-1 infected C8166 T cells or TZM-bl epithelial cells [54]	PAR-CLIP	249	14	231
Human HEK 293 cells [55]	PAR-CLIP	229	18	210

Table 1. Example of potentially novel miRNA interactions with ETC transcripts identified from high throughput screening datasets of RNA:protein interactions. Datasets were downloaded from miRTarBase [56].
Figure legend

Figure 1. Summary of the post-transcriptional gene regulation mechanisms known to regulate ETC transcript abundance. A) Schematic representation of the ETC complexes indicating which transcripts have known miRNA mediated regulation that has a downstream biochemical effect. B) Down-regulation of the RNA binding protein FASTKD2 results in a decrease in activity of all mitochondrial complexes that contain mitochondrially encoded subunits. C) Down-regulation of the RNA binding protein YB-1 results in release of ETC transcripts from RNPs and subsequent recruitment to the polysomes for translation, leading to increases in catalytic activity of all complexes. D) Lin28A binds to and enhances the translation of some ETC transcripts leading to an overall increase in mitochondrial respiration. E) The homeobox transcription factor En-1, through an interaction with the eukaryotic translation initiation factor eIF4E, specifically enhances the translation of two mitochondrial complex I transcripts, leading to an increase in complex I enzymatic activity.

References

1 Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W. and Selbach, M. (2011) Global quantification of mammalian gene expression control. Nature. 473, 337-342
2 Ha, M. and Kim, V. N. (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15, 509-524
3 Felix, M. A. and Barkoulas, M. (2015) Pervasive robustness in biological systems. Nat Rev Genet. 16, 483-496
4 Ebert, M. S. and Sharp, P. A. (2012) Roles for microRNAs in conferring robustness to biological processes. Cell. 149, 515-524
5 Herranz, H. and Cohen, S. M. (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev. 24, 1339-1344
6 Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim, M. H. and Stoffel, M. (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 474, 649-653
7 Dumortier, O., Hinault, C. and Van Obberghen, E. (2013) MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 18, 312-324
8 Aschrafi, A., Schwechter, A. D., Mameza, M. G., Natera-Naranjo, O., Gioio, A. E. and Kaplan, B. B. (2008) MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. 28, 12581-12590
9 Aschrafi, A., Kar, A. N., Natera-Naranjo, O., MacGibeny, M. A., Gioio, A. E. and Kaplan, B. B. (2012) MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci. 69, 4017-4027
10 Chan, S. Y., Zhang, Y. Y., Hemann, C., Mahoney, C. E., Zweier, J. L. and Loscalzo, J. (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 10, 273-284
11 Tong, W. H. and Rouault, T. (2000) Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 19, 5692-5700
12 Chen, Z., Li, Y., Zhang, H., Huang, P. and Luthra, R. (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 29, 4362-4368
13 Puisségur, M. P., Mazure, N. M., Bertero, T., Pradelli, L., Grosso, S., Robbe-Sermesant, K., Maurin, T., Lebrigand, K., Cardinaud, B., Hofman, V., Fourné, S., Magnone, V., Ricci, J. E., Pouyssegur, J., Gounon, P., Hofman, P., Barbry, P. and Mari, B. (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 18, 465-478
14 Grosso, S., Doyen, J., Parks, S. K., Bertero, T., Paye, A., Cardinaud, B., Gounon, P., Lacas-Gervais, S., Noel, A., Pouyssegur, J., Barbry, P., Mazure, N. M. and Mari, B. (2013) MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 4, e544
15 Bertero, T., Grosso, S., Robbe-Sermesant, K., Lebrigand, K., Henaoui, I. S., Puisségur, M. P., Fourné, S., Zaragosi, L. E., Mazure, N. M., Ponzio, G., Cardinaud, B., Barbry, P., Rezzonico, R. and Mari, B. (2012) "Seed-Milarity" confers to hsa-miR-210 and hsa-miR-147b similar functional activity. PLoS One. 7, e44919
16 Giannakakis, A., Sandaltzopoulos, R., Greshock, J., Liang, S., Huang, J., Hasegawa, K., Li, C., O'Brien-Jenkins, A., Katsaros, D., Weber, B. L., Simon, C., Coukos, G. and Zhang, L. (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 7, 255-264
17 Balsa, E.,Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M. O. and Enríquez, J. A. (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab. 16, 378-386
18 Muralimanoharan, S., Maloyan, A., Mele, J., Guo, C., Myatt, L. G. and Myatt, L. (2012) MiR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta. 33, 816-823
19 Kren, B. T., Wong, P. Y., Sarver, A., Zhang, X., Zeng, Y. and Steer, C. J. (2009) MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 6, 65-72
20 Bian, Z., Li, L. M., Tang, R., Hou, D. X., Chen, X., Zhang, C. Y. and Zen, K. (2010) Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 20, 1076-1078
21 Mercer, T. R., Nep, S., Dinger, M. E., Crawford, J., Smith, M. A., Shearwood, A. M., Haugen, E., Bracken, C. P., Rackham, O., Stamatoyannopoulos, J. A., Filipovska, A. and Mattick, J. S. (2011) The human mitochondrial transcriptome. Cell. 146, 645-658
22 Barrey, E., Saint-Auret, G., Bonnamy, B., Damas, D., Boyer, O. and Gidrol, X. (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One. 6, e20220
23 Sripada, L., Tomar, D., Prajapati, P., Singh, R. and Singh, A. K. (2012) Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One. 7, e44873
24 Das, S., Ferlito, M., Kent, O. A., Fox-Talbot, K., Wang, R., Liu, D., Raghavachari, N., Yang, Y., Wheelan, S. J., Murphy, E. and Steenbergen, C. (2012) Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 110, 1596-1603
25 Bandiera, S., Ruberg, S., Girard, M., Cagnard, N., Hanein, S., Chretien, D., Munnich, A., Lyonnet, S. and Henrion-Caude, A. (2011) Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One. 6, e20746
26 Bandiera, S., Mategot, R., Girard, M., Demongeot, J. and Henrion-Caude, A. (2013) MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med. 64, 12-19
27 Ro, S., Ma, H. Y., Park, C., Ortogero, N., Song, R., Hennig, G. W., Zheng, H., Lin, Y. M., Moro, L., Hsieh, J. T. and Yan, W. (2013) The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 23, 759-774

28 Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J. and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 465, 1033-1038

29 Cesana, M., Cacciarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Bramante, A. and Bozzi, I. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147, 358-369

30 Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K. and Kjems, J. (2013) Natural RNA circles function as efficient microRNA sponges. Nature. 495, 384-388

31 Glisovic, T., Bachorik, J. L., Yong, J. and Dreyfuss, G. (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977-1986

32 Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B. M., Strein, C., Davey, N. E., Humphreys, D. T., Preiss, T., Steinmetz, L. M., Rijgsveld, J. and Henze, M. W. (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 149, 1393-1406

33 Ghezzi, D., Saada, A., D’Adamo, P., Fernandez-Vizarra, E., Gasparini, P., Tiranti, V., Elpeleg, O. and Zeviani, M. (2008) FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. Am J Hum Genet. 83, 415-423

34 Simarro, M., Gimenez-Cassina, A., Kedersha, N., Lazaro, J. B., Adelmant, G. O., Marto, J. A., Rhe, K., Tisdale, S., Danial, N., Benarafa, C., Orduna, A. and Anderson, P. (2010) Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration. Biochem Biophys Res Commun. 401, 440-446

35 Wolf, A. R. and Mootha, V. K. (2014) Functional genomic analysis of human mitochondrial RNA processing. Cell Rep. 7, 918-931

36 Popow, J., Alleaume, A. M., Curk, T., Schwarzl, T., Sauer, S. and Hentze, M. W. (2015) FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation. RNA. 21, 1873-1884

37 Matsumoto, S., Uchiumi, T., Tanamachi, H., Saito, T., Yagi, M., Takazaki, S., Kanki, T. and Kang, D. (2012) Ribonucleoprotein Y-box-binding protein-1 regulates mitochondrial oxidative phosphorylation (OXPHOS) protein expression after serum stimulation through binding to OXPHOS mRNA. Biochem J. 443, 573-584

38 Shyh-Chang, N. and Daley, G. Q. (2013) Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 12, 395-406

39 Shyh-Chang, N. and Daley, G. Q. (2013) Lin28: primal regulator of growth and metabolism in stem cells. In Cell Stem Cell ed.)^eds.). pp. 395-406, Elsevier

40 Topisirovic, I. and Borden, K. L. (2005) Homeodomain proteins and eukaryotic translation initiation factor 4E (eIF4E): an unexpected relationship. Histol Histopathol. 20, 1275-1284

41 Alvarez-Fischer, D., Fuchs, J., Castagner, F., Stettler, O., Massiani-Beaudoin, O., Moya, K. L., Bouillot, C., Oertel, W. H., Lombes, A., Faigle, W., Joshi, R. L., Hartmann, A. and Prochiantz, A. (2011) Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nat Neurosci. 14, 1260-1266

42 Li, N., Bates, D. J., An, J., Terry, D. A. and Wang, E. (2011) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging. 32, 944-955

43 Chang, S. J., Weng, S. L., Hsieh, J. Y., Wang, T. Y., Chang, M. D. and Wang, H. W. (2011) MicroRNA-34a modulates genes involved in cellular motility and oxidative...
phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genomics. 4, 65
44 Konig, J., Zarnack, K., Luscombe, N. M. and Ule, J. (2011) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet. 13, 77-83
45 Janetzky, B., Hauck, S., Youdim, M. B., Riederer, P., Jellinger, K., Pantucek, F., Zochling, R., Boissel, K. W. and Reichmann, H. (1994) Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett. 169, 126-128
46 Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P. and Marsden, C. D. (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem. 54, 823-827
47 Canevari, L., Clark, J. B. and Bates, T. E. (1999) beta-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 457, 131-134
48 Rosenfeld, M., Brenner-Lavie, H., Ari, S. G., Kavushansky, A. and Ben-Shachar, D. (2011) Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry. 69, 980-988
49 Andreazza, A. C., Shao, L., Wang, J. F. and Young, L. T. (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 67, 360-368
50 Lowell, B. B. and Shulman, G. I. (2005) Mitochondrial dysfunction and type 2 diabetes. Science. 307, 384-387
51 Heather, L. C., Carr, C. A., Stuckey, D. J., Pope, S., Morten, K. J., Carter, E. E., Edwards, L. M. and Clarke, K. (2010) Critical role of complex III in the early metabolic changes following myocardial infarction. Cardiovasc Res. 85, 127-136
52 Helwak, A., Kudla, G., Dudnakova, T. and Tollervey, D. (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 153, 654-665
53 Karginov, F. V. and Hannon, G. J. (2013) Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 27, 1624-1632
54 Whisnant, A. W., Bogerd, H. P., Flores, O., Ho, P., Powers, J. G., Sharova, N., Stevenson, M., Chen, C. H. and Cullen, B. R. (2013) In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. MBio. 4, e000193
55 Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Haussler, J., Berninger, P., Rothballer, A., Ascano, M., Jr., Jungkamp, A. C., Munschauer, M., Ulrich, A., Wardle, G. S., Dewell, S., Zavolan, M. and Tuschl, T. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 141, 129-141
56 Chou, C. H., Chang, N. W., Shrestha, S., Hsu, S. D., Lin, Y. L., Lee, W. H., Yang, C. D., Hong, H. C., Wei, T. Y., Tu, S. J., Tsai, T. R., Ho, S. Y., Jian, T. Y., Wu, H. Y., Chen, P. R., Lin, N. C., Huang, H. T., Yang, T. L., Pai, C. Y., Tai, C. S., Chen, W. L., Huang, C. Y., Liu, C. C., Weng, S. L., Liao, K. W., Hsu, W. L. and Huang, H. D. (2016) miRtarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 44, D239-247
