Calculus of Variations

Two short closed geodesics on a sphere of odd dimension

Hans-Bert Rademacher

Received: 2 August 2022 / Accepted: 5 January 2023 / Published online: 27 January 2023
© The Author(s) 2023

Abstract

We show that for an open and dense set of non-reversible Finsler metrics on a sphere S^n of odd dimension $n = 2m - 1 \geq 3$ there is a second closed geodesic with Morse index $\leq 4(m + 2)(m - 1) + 2$.

Mathematics Subject Classification 53C22 · 58E10

1 Introduction

In this paper we consider the sphere S^n of dimension $n \geq 2$ carrying a non-reversible Finsler metric f. Hence the length of a curve in general depends on the orientation. The reversibility $\lambda = \max\{f(-X); f(X) = 1\}$ was introduced in [17]. Then $\lambda \geq 1$ and $\lambda = 1$ if and only if the Finsler metric is reversible, i.e. $f(-X) = f(X)$ for all tangent vectors X. For a tangent vector $X \in TS^n$ we denote by $f_0(X) = \sqrt{g_0(X,X)}$ the length of a vector with respect to the standard Riemannian metric g_0 of constant sectional curvature 1 on S^n. Let $D = D(f)$ be the smallest positive number such that

$$D^{-1}f_0(X) \leq f(X) \leq Df_0(X)$$

holds for all tangent vectors X. We call this invariant the distortion of the Finsler metric f. Obviously $D^2 \geq \lambda$. Let $L = L(f)$ be the critical value of a generator of the non-trivial homology class $H_{n-1}(\Lambda S^n/S^1; \mathbb{Q}) \cong \mathbb{Q}$ in dimension $(n - 1)$ in the free loop space ΛS^n. Lyusternik and Fet [12] used an idea by Birkhoff to show the existence of a closed geodesic c_1 whose length $l(c_1)$ equals L and whose Morse index satisfies $\text{ind}(c_1) \leq n - 1$. Inequality (1) implies that $2\pi/D \leq L = l(c_1) \leq 2\pi D$. It follows from a result by Fet [6] that there exists a second closed geodesic for a reversible Finsler metric which is bumpy, i.e. all its closed geodesics are non-degenerate.

In this paper we consider the existence of a second closed geodesic for a non-reversible Finsler metric. On a 2-sphere with a bumpy metric there always exists a second closed
geodesic c_2 geometrically distinct from c_1 as shown in [16, (4.1)]. Bangert and Long were able to show in [2] that this statement holds for any non-reversible Finsler metric. There is a family f_μ, $\mu \in [0, 1)$, $\mu \notin \mathbb{Q}$ of Katok metrics on S^2 which are bumpy, have constant flag curvature 1 and carry exactly two geometrically distinct closed geodesics c_1, c_2 with $\text{ind}(c_1) = 1$, $\lim_{\mu \to 1} \text{ind}(c_2) = \infty$, $L(c_1) < 2\pi$, and $\lim_{\mu \to 1} L(c_2) = \infty$. Hence there exists in general only one short closed geodesic on S^2.

In higher dimensions there are many results on the existence of a second closed geodesic, cf. for example [4, 19, 20], [5, Cor. 1.2], and [1, Cor. 1.14]. Compare also the recent survey [11]. For existence results for closed geodesics in Riemannian and Finsler geometry we also refer to the surveys [13, 22]. Under curvature assumptions one can give bounds for the index of the second closed geodesic, cf. for example [18]. But we are not aware of estimates for the index of the second closed geodesic holding on an open and dense subset of metrics on an n-dimensional sphere with $n \geq 3$.

We state our main result which shows in particular that for an odd-dimensional sphere of dimension $n = 2m - 1 \geq 3$ endowed with a bumpy metric there are two geometrically distinct short closed geodesics, with index $\leq 4(m + 2)(m - 1) + 2$. More precisely we show:

Theorem 1.1 Let f be a non-reversible Finsler metric on the odd-dimensional sphere S^n of dimension $n = 2m - 1 \geq 3$ with distortion $D = D(f)$. Let p_m be the smallest prime number which is neither a divisor of $(m - 1)$ nor of m. cf. Lemma 3.3, in particular $3 \leq p_m \leq m + 2$ for all $m \geq 2$. Assume that all closed geodesics with length $\leq L_3 := 2\pi p_m D^3$ are non-degenerate. Then there are two geometrically distinct closed geodesics with index $\leq 4p_m(m - 1) + 2$ and of length $\leq L_3$.

For $n = 3, m = 2, p_3 = 3$ we obtain for the second closed geodesic c_2 on S^3 : $\text{ind} c_2 \leq 14$. For $n = 6k + 3 = 2m - 1$ resp. $m \equiv 2 \pmod{3}$ we have $p_m = 3$, hence for the second closed geodesic c_2 on S^{2m-1} : $\text{ind}(c_2) \leq 12m - 10$. The proof of Theorem 1.1 is given in Sect. 4. We use the computation of the homomorphism in homology induced by the projection of the free loop space ΛS^n onto the quotient space $\Lambda S^n/S^1$ as given in Lemma 2.1 for $n = 2m - 1$. An analogous result is not available for even dimension n. Recall that f_0 is the Finsler metric defined by the standard Riemannian metric of constant sectional curvature 1. There is a one-parameter family f_μ, $\mu \in [0, 1)$ of Finsler metrics on S^n starting at the standard metric f_0 with the following properties: For every irrational μ the metric is non-reversible and bumpy and carries exactly $2m$ geometrically distinct closed geodesics. For $n = 2m - 1$ of these closed geodesics the index is at most $6(m - 1)$ but the index of one of these closed geodesics can be arbitrarily large. This example is explained in detail in Sect. 5, these metrics were first studied by Katok, cf. [23].

The set of metrics satisfying the assumptions of Theorem 1.1 contains an open and dense subset. This follows from the following

Theorem 1.2 Let M be a compact manifold endowed with a Finsler metric f_0. For an arbitrary non-reversible Finsler metric f the distortion $D = D(f)$ is the smallest positive number satisfying Eq. (1) for all tangent vectors. For a positive number L let $\mathcal{F}_1(L)$ be the set of Finsler metrics f on M all of whose closed geodesics of length $\leq D^3(f) L$ are non-degenerate. Then $\mathcal{F}_1(L)$ is an open and dense subset of the space $\mathcal{F}(M)$ of all Finsler metrics on M with respect to the (strong) C^r-topology for $r \geq 4$.

We give the proof in Sect. 6. The essential ingredient is the bumpy metrics theorem for Finsler metrics, cf. [21, Thm. 4].

Using Theorem 1.2 we obtain from Theorem 1.1 the following
Corollary 1.3 Let \(p_m \) be the smallest prime number which is neither a divisor of \((m - 1)\) nor of \(m\). Then there is an open and dense subset of non-reversible Finsler metrics on the sphere \(S^n \) of odd dimension \(n = 2m - 1 \geq 3 \) carrying two geometrically distinct closed geodesics with index \(\leq 4p_m(m - 1) + 2 \).

2 Homology of the free loop space

Closed geodesics on \(S^n \) with a Finsler metric \(f \) are the critical points of the functional

\[
F : \Lambda S^n \to \mathbb{R}; \quad F(\sigma) := \left(\int_0^1 f^2(\sigma'(t)) \, dt \right)^{1/2},
\]
cf. [10, Sect. 1] and [16, ch. 1]. We denote by \(\Lambda = \Lambda S^n \) the free loop space, i.e. the space of \(H^1 \)-maps \(\sigma : S^1 = \mathbb{R}/\mathbb{Z} \to S^n \). The function \(F \) is up to a factor \(1/2 \) the square root of the energy functional \(E(\sigma) = 1/2 \int_0^1 f^2(\sigma'(t)) \, dt \). The functional \(F \) agrees with the length functional \(l(\gamma) = \int_0^1 f(\gamma'(t)) \, dt \) on loops parametrized proportional to arc length. The Morse index \(\text{ind}(c) \) is the maximal dimension of a subspace of the tangent space \(T_c \Lambda S^n \) on which the hessian \(d^2 F \) is negative definite, cf. for example [16, ch. 1]. For a closed geodesic \(c \) the iterations \(c^k, k \geq 1 \) with \(c^k(t) = c(kt) \) are closed geodesics, too. These closed geodesics are geometrically equivalent. Note that in general the curve \(c^{-1} \) with opposite orientation, i.e. \(c^{-1}(t) = c(-t) \), is not a closed geodesic since the metric is assumed to be non-reversible.

For \(f = f_0 \) we use the following notation:

\[
F_0(\sigma) := \left(\int_0^1 f^2_0(\sigma'(t)) \, dt \right)^{1/2}; \quad l_0(\sigma) = \int_0^1 f_0(\sigma'(t)) \, dt.
\]

For the sublevel sets of the functional \(F \) we use the following notation: \(\Lambda^R = \{ \sigma \in \Lambda; F(\sigma) \leq R \} \). The free loop space \(\Lambda \) carries a canonical \(S^1 \)-action by linear reparametrization of the curves, i.e. shift of the initial point. We use the following notation for quotient spaces with respect to the \(S^1 \)-action and its sublevel spaces: \(\overline{\Lambda} = \Lambda/S^1 \) and \(\overline{\Lambda}^R = \{ \sigma \in \overline{\Lambda}; F(\sigma) \leq R \} \). For the sublevel sets with respect to the functional \(F_0 \) we use the following notation: \(\Lambda^R_0 = \{ \sigma \in \overline{\Lambda}; F_0(\sigma) \leq R \} \) and \(\overline{\Lambda}^R_0 = \{ \sigma \in \overline{\Lambda}; F_0(\sigma) \leq R \} \). The set of prime closed geodesics of positive length of the standard metric \(f_0 \) equals the subset \(BS^n \subset \Lambda S^n \) of great circles which can be identified with the unit tangent bundle \(T^1 S^n \).

Then the set of closed geodesics equals the union \(\bigcup_{j \geq 1} B^j \). Here \(B^j := \{ c_j^i, c_0 \in BS^n \} \) is the set of \(j \)-fold covered great circles, i.e. great circles \(c_0 \) parametrized proportional to arc length with \(l_0(c_j^i) = j l_0(c_0) = 2\pi j \). The functional \(F_0 : \Lambda S^n \to \mathbb{R} \) is a Morse-Bott function, i.e. the subsets \(B^j \) are non-degenerate critical submanifolds. This follows since the dimension of the kernel of the hessian of a great circle equals the dimension \(2n - 1 \) of the manifold \(BS^n = T^1 S^n \). For \(n = 2m - 1 \geq 3 \) we have

\[
H_j \left(T^1 S^{2m-1}; \mathbb{Z} \right) \cong \begin{cases} \mathbb{Z} & j = 0, 2m - 2, 2m - 1, 4m - 3 \\ 0 & \text{otherwise} \end{cases}.
\]

If \(v_k : N_k \to B^k \) is the negative normal bundle of the critical submanifold \(B^k \) of dimension \(\text{ind}(c^k) = (4k - 2)(m - 1) \) with the associated disc bundle \(v_k : DN_k \to B^k \), resp. sphere bundle \(SN_k \to B^k \), then the generalized Morse lemma implies

\[
H_j \left(\Lambda_0^{2\pi k}, \Lambda_0^{2\pi(k-1)}; \mathbb{Z} \right) \cong H_j(DN_k, SN_k; \mathbb{Z}),
\]
This follows from the Gysin sequence of the Beweis Satz 4.9. Hence we obtain:

\[H_j \left(\Lambda_0^{2\pi k}, \Lambda_0^{2\pi (k-1)}; \mathbb{Z} \right) \cong H_{j-(4k-2)(m-1)} \left(T^1 S^{2m-1}; \mathbb{Z} \right). \] (2)

The functional \(F_0 \) is perfect, i.e.

\[H_j(\Lambda, \Lambda^0; \mathbb{Z}) \cong \bigoplus_{k \geq 1} H_j \left(\Lambda_0^{2\pi k}, \Lambda_0^{2\pi (k-1)}; \mathbb{Z} \right) \] (3)

which follows for \(m \geq 2 \) from the long exact homology sequence. Hence

\[H_j (\Lambda, \Lambda^0; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} ; & j = 2r(m-1); r \geq 1 \\ \mathbb{Z} ; & j = 2r(m-1) + 1, r \geq 2 \\ 0 ; & \text{otherwise} \end{cases}, \] (4)

and the homomorphism

\[H_j \left(\Lambda_0^{2\pi k}, \Lambda_0^0; \mathbb{Q} \right) \rightarrow H_j (\Lambda, \Lambda^0; \mathbb{Q}) \] (5)

induced by the inclusion is an isomorphism for all \(k \geq 1 \) and \(j < i(k+1) = (4k+2)(m-1) \).

This follows since \(i(k+1) = \text{ind}(c_{k+1}^0) = i(k) + 4(m-1) \).

The quotient space \(T^1 S^n / \mathbb{S}^1 \) of unparametrized oriented great circles can be identified with the Grassmannian \(\widetilde{G}(2, 2m-2) \) of oriented two-dimensional linear subspaces of \(\mathbb{R}^{2m} \).

The equivariant Morse Lemma implies

\[H_j \left(\Lambda_0^{2\pi k}, \Lambda_0^{2\pi (k-1)}; \mathbb{Z} \right) \cong H_j \left(\overline{D \Lambda_0^{k}}, \overline{D \Lambda_0^{k-1}}; \mathbb{Z} \right), \]

cf. [15, Sect. 4]. Here the quotient bundle \(v_k : \overline{D \Lambda_0^k} \rightarrow \overline{B_k} \) resp. \(v_k : \overline{S \Lambda_0^k} \rightarrow \overline{B_k} \) is a bundle with fibre \(D^{(k)}/\mathbb{Z}_k \) resp. \(S^{(k)-1}/\mathbb{Z}_k \). Here \(i(k) = \text{ind}(c_{k}^0) = (4k-2)(m-1) \) is the Morse index of a \(k \)-fold covered great circle \(c_0^k \) as a closed geodesic of the standard metric \(f_0 \).

Then

\[H_*(D^{(k)}/\mathbb{Z}_k, S^{(k)-1}/\mathbb{Z}_k; \mathbb{Q}) \cong H_*(D^{(k)}, S^{(k)-1}; \mathbb{Q}) \]

and the Thom isomorphism implies

\[H_*(\Lambda_0^{2\pi k}, \Lambda_0^{2\pi (k-1)}; \mathbb{Q}) \cong H_{*-i(k)} \left(\widetilde{G}(2, 2m-2), \mathbb{Q} \right). \]

Non-trivial homology only occurs in even dimensions since

\[H_j (\widetilde{G}(2, 2m-2); \mathbb{Z}) \cong \begin{cases} \mathbb{Z} ; & j = 0, 4m-4 \\ \mathbb{Z} \oplus \mathbb{Z} ; & j = 2m-2 \\ 0 ; & \text{otherwise} \end{cases}. \] (6)

This follows from the Gysin sequence of the \(S^1 \)-bundle \(T^1 S^{2m-1} \rightarrow \widetilde{G}(2, 2m) \), cf. [14, Beweis Satz 4.9]. Hence we obtain:

\[H_* \left(\overline{\Lambda}, \Lambda^0; \mathbb{Q} \right) \cong \bigoplus_{k \geq 1} H_* \left(\Lambda_0^{2\pi k}, \Lambda_0^{2\pi (k-1)}; \mathbb{Q} \right), \]
which implies
\[
H_j \left(\bar{\Lambda}, \bar{\Lambda}^0; \mathbb{Q} \right) \cong \begin{cases}
\mathbb{Q} & ; j \geq 2(m-1), j \text{ even}, j \neq 2k(m-1), k \geq 2 \\
\mathbb{Q} \oplus \mathbb{Q} & ; j = 2k(m-1), k \geq 2 \\
0 & ; \text{otherwise}
\end{cases}, \quad (7)
\]

[16, Rem. 2.5(a)]. Therefore the functional \(F_0 : \bar{\Lambda} \to \mathbb{R} \) can be seen as a perfect Morse Bott function for rational coefficients, too. In particular the homomorphism
\[
i_* : H_j \left(\bar{\Lambda}^{2\pi k}, \bar{\Lambda}^0; \mathbb{Q} \right) \to H_j \left(\bar{\Lambda}, \bar{\Lambda}^0; \mathbb{Q} \right)
\]
induced by the inclusion is an isomorphism for all \(k \geq 1 \) and \(j < i(k+1) = (4k+2)(m-1) \).

This follows since \(i(k+1) = \text{ind}(c_0^{k+1}) = i(k) + 4(m-1) \).

Lemma 2.1 \(n = 2m - 1, m \geq 2 \). Let \(a_k \in H_{4k(m-1)}(\Lambda, \Lambda^0; \mathbb{Z}) \cong \mathbb{Z}, k \geq 1 \) be a generator. Then the canonical projection \(\rho : (\Lambda, \Lambda^0) \to (\bar{\Lambda}, \bar{\Lambda}^0) \) induces an injective homomorphism
\[
\rho_* : H_{4k(m-1)}(\Lambda, \Lambda^0; \mathbb{Z}) \cong \mathbb{Z} \to H_{4k(m-1)}(\bar{\Lambda}, \bar{\Lambda}^0; \mathbb{Z})
\]
with \(\rho_*(a_k) = k\tilde{a}_k \neq 0 \) and \(\tilde{a}_k \) is not a torsion element.

Proof The projection \(\rho : \Lambda \to \bar{\Lambda} \) induces the homomorphism
\[
\rho_* : H_{4k(m-1)}(\Lambda, \Lambda^0; \mathbb{Z}) \cong \mathbb{Z} \to H_{4k(m-1)}(\bar{\Lambda}, \bar{\Lambda}^0; \mathbb{Z})
\]
The homomorphism
\[
\rho_* : H_{4k(m-1)}(\Lambda^{2\pi k}, \Lambda^{2\pi(k-1)}; \mathbb{Z}) \to H_{4k(m-1)}(\bar{\Lambda}^{2\pi k}, \bar{\Lambda}^{2\pi(k-1)}; \mathbb{Z})
\]
can be expressed by the homomorphism
\[
\rho_* : H_{4k(m-1)}(DN_k, SN_k; \mathbb{Z}) \cong \mathbb{Z} \to H_{4k(m-1)}(\bar{DN}_k, \bar{SN}_k; \mathbb{Z})
\]
which is a multiplication with the number \(k \), i.e. for a generator \(a'_k \) with \(0 \neq a'_k \in H_{4k(m-1)}(DN_k, SN_k; \mathbb{Z}) \cong \mathbb{Z} \) we have \(\rho_*(a'_k) = ks\tilde{a}_k \) for a generator \(\tilde{a}_k \in H_{4k(m-1)}(\bar{DN}_k, \bar{SN}_k; \mathbb{Z}) \) and an integer \(s > 0 \). This follows since the homomorphism
\[
H_{4k(m-1)}(D^{4k(m-1)}, S^{4k(m-1)-1}; \mathbb{Z}) \cong \mathbb{Z} \to H_{4k(m-1)}(D^{4k(m-1)}/Z_k, S^{4k(m-1)-1}/Z_k; \mathbb{Z}) \cong \mathbb{Z}
\]
induced by the canonical projection is a multiplication by \(k \). This follows since the isometric \(\mathbb{Z}_k \)-action on the disc \(D^{4k(m-1)} \) is free on an open and dense subset, which we see as follows: For any divisor \(d|k, d < k \) we have the following inequality for the indices of coverings \(c_0^k \) of a great circle \(c_0 \) : \(\text{ind}(c_0^d) < \text{ind}(c_0^k) \). Actually one can show \(s = 1 \), i.e. \(\rho_*(a_k) = k\tilde{a}_k \).

This follows from the Gysin sequence of the \(S^1 \)-bundle \(T^1S^{2m-1} \to \bar{G}(2, 2m - 2) \) and Eq. (6).

Remark 2.2 The \(S^1 \)-action on \(\Lambda \) induces the homomorphism
\[
\Delta : H_{4k(m-1)}(\Lambda, \Lambda^0; \mathbb{Z}) \cong \mathbb{Z} \cdot a_k \to H_{4k(m-1)+1}(\Lambda, \Lambda^0; \mathbb{Z})
\]
cf. [8, (17.1)]. The homomorphism is used to define the *Batalin Vilkovisky algebra*, cf. [3, Thm. 5.4].
It can be expressed as composition $\Delta = \tau \circ \rho_\ast$ of the homomorphism

$$\rho_\ast : H_{4k(m-1)}(\Lambda, \Lambda^0; \mathbb{Z}) \cong \mathbb{Z} \cdot a_k \rightarrow H_{4k(m-1)}(\overline{\Lambda}, \overline{\Lambda}^0; \mathbb{Z})$$

induced by the canonical projection and the transfer map

$$\tau : H_{4k(m-1)}(\overline{\Lambda}, \overline{\Lambda}^0; \mathbb{Z}) \rightarrow H_{4k(m-1)+1}(\Lambda, \Lambda^0; \mathbb{Z}) \cong \mathbb{Z} \cdot \tilde{a}_k .$$

Hence we obtain $\Delta(a_k) = \tau(\rho_\ast(a_k)) = k\tilde{s}\tilde{a}_k$ for a positive integer \tilde{s} and a generator $\tilde{a}_k \in H_{4k(m-1)+1}(\Lambda, \Lambda^0; \mathbb{Z})$. The homomorphism can be computed, cf. [14, Satz 4.13] resp. [10, Lem. 6.2], it follows that $\tilde{s} = 2$.

Remark 2.3 Since c is prime and since for all divisors q of r with $q < r$ the inequality $\text{ind}(c^q) < \text{ind}(c^r)$ holds, we can conclude that for $r \geq 1$ the following holds: There are generators

$$s_r, t_r \in H_\ast(\Lambda^{rL}, \Lambda^{(r-1)L}; \mathbb{Z}) ; \quad s_r \in H_\ast(\overline{\Lambda}^{rL}, \overline{\Lambda}^{(r-1)L}; \mathbb{Z})$$

with $\deg(s_r) = \deg(S_r) = \deg(t_r) - 1 = \text{ind}(c^r) = j$ such that the induced projection

$$\rho_\ast : H_j(\Lambda^{rL}, \Lambda^{(r-1)L}; \mathbb{Z}) \cong \mathbb{Z} \cdot s_r \rightarrow H_j(\overline{\Lambda}^{rL}, \overline{\Lambda}^{(r-1)L}; \mathbb{Z}) \cong \mathbb{Z} \cdot S_r$$

satisfies

$$\rho_\ast(s_r) = r \cdot S_r ,$$

cf. [15, Sect. 3]. This will be crucial in the Proof of Theorem 1.1 given in Sect. 4. For the transfer homomorphism

$$\Delta : H_j(\Lambda^{rL}, \Lambda^{(r-1)L}; \mathbb{Z}) \cong \mathbb{Z} \cdot s_r \rightarrow H_{j+1}(\overline{\Lambda}^{rL}, \overline{\Lambda}^{(r-1)L}; \mathbb{Z}) \cong \mathbb{Z} \cdot t_r$$

one obtains $\Delta(s_r) = r \cdot t_r$.

3 Morse theory for a metric with only one closed geodesic

In this section we study non-reversible Finsler metrics on S^{2m-1} for which all closed geodesics with length $\leq 2\pi p_m D^3(f)$ are geometrically equivalent to the closed geodesic c of length $L = l(c)$. We will show that this assumption determines the sequence $\text{ind}(c^r)$, $rL \leq 2\pi p_m D^3$ completely.

Lemma 3.1 Let f be a non-reversible Finsler metric on the sphere S^n, $n \geq 2$ with distortion $D = D(f)$. We assume that all closed geodesics with length $\leq 2\pi D$ are non-degenerate. Then there exists a prime closed geodesic c whose length satisfies $L := l(c) \leq 2\pi D$ and with $\text{ind}(c) \leq n - 1$.

Proof Equation (1) implies that $\Lambda^\ast \subset \Lambda^D$. Since

$$H_{n-1}(\Lambda^\ast, \Lambda^0; \mathbb{Q}) \rightarrow H_{n-1}(\Lambda, \Lambda^0; \mathbb{Q}) \cong \mathbb{Q}$$

is an isomorphism, cf. Eq. (5), we conclude that the homomorphism

$$H_{n-1}(\Lambda^D, \Lambda^0; \mathbb{Q}) \rightarrow H_{n-1}(\Lambda, \Lambda^0; \mathbb{Q}) \cong \mathbb{Q}$$

\(\square\) Springer
is surjective, i.e. \(\dim H_{n-1}(\Lambda^{2 \pi D}, \Lambda^0; \mathbb{Q}) \geq 1 \). It follows from the Morse inequalities for the space \(\Lambda^{2 \pi D} \) that there is a closed geodesic \(c \) with length \(l(c) \leq 2 \pi D \) and index \(\text{ind}(c) \leq n - 1 \), cf. [16, Sect. 2].

We later use the following

Assumption 3.2 For \(m \geq 2 \) let \(p_m \) be the smallest prime number which does not divide \((m - 1)\) nor \(m \), cf. Lemma 3.3. Given a non-reversible Finsler metric \(f \) on a sphere of dimension \(n = 2m - 1 \geq 3 \) with distortion \(D = D(f) \) we assume that all closed geodesics \(\gamma \) with \(L(\gamma) \leq L_3 := 2 \pi p_m D^3 \) are non-degenerate and that all closed geodesics with length \(\leq L_3 = 2 \pi p_m D^3 \) and index \(\leq 4 p_m (m - 1) + 2 \) are geometrically equivalent.

Hence we conclude from Lemma 3.1 that there is a prime closed geodesic \(c \) such that every closed geodesic \(\gamma \) with \(l(\gamma) \leq L_3 = 2 \pi p_m D^3 \) and \(\text{ind}(\gamma) \leq 4 p_m (m - 1) + 2 \) is up to the choice of the initial point a covering of the closed geodesic \(c \), i.e. there is a positive integer \(r \geq 1 \) and an element \(z \in S^1 = \mathbb{R}/\mathbb{Z} = [0, 1]/\{0, 1\} \) such that \(\gamma = z.c^r \). Here, \(z.c(t) = c(t + z) \) defines the canonical \(S^1 \)-action on the free loop space \(\Lambda = \Lambda S^n \) leaving the functional \(F \) invariant.

Lemma 3.3 For \(m \geq 2 \) denote by \(p_m \) the smallest prime number, which is neither a divisor of \((m - 1)\) nor of \(m \). Then \(p_2 = 3 \), \(p_3 = 5 \), and for \(m \geq 4 \): \(3 \leq p_m \leq m + 1 \).

Proof For \(m \leq 5 \) we have: \(p_2 = 3 \), \(p_3 = 5 \), \(p_4 = 5 \). Assume \(m \geq 5 \). If \(m \equiv 2 \pmod{3} \) then \(p_m = 3 \). If \(m - 2 \neq 2^s \) for some \(s \) choose a prime factor \(q \geq 3 \) of \(m - 2 \geq 4 \). If \(m - 2 = 2^s \), choose a prime factor \(q \geq 3 \) of \(m + 1 \). Then \(p_m \leq q \leq m + 1 \), and hence \(3 \leq p_m \leq m + 2 \) for all \(m \geq 2 \). \(\square \)

The invariant \(\gamma_c \in \{\pm 1/2, \pm 1\} \) of a prime closed geodesic is defined as follows: \(\gamma_c = \pm 1 \) if and only if \(\text{ind}(c^2) - \text{ind}(c) \) is even and \(\gamma_c > 0 \) if and only if \(\text{ind}(c) \) is even, cf. [16, Def. 1.6].

Lemma 3.4 Let Assumption 3.2 be satisfied, i.e. there exists a prime closed geodesic \(c \) with \(L = l(c) \leq 2 \pi D \) such that all closed geodesics \(\gamma \) with length \(l(\gamma) \leq 2 \pi p_m D^3 \) and index \(\text{ind}(\gamma) \leq 4 p_m (m - 1) + 2 \) are geometrically equivalent to \(c \), cf. Lemma 3.1.

We use the following notation for Betti numbers of the quotients \(\Lambda^{2 \pi D p_m} \) and \(\Lambda^{2 \pi D^3 p_m} \) of the sublevel sets by the canonical \(S^1 \)-action:

\[
\overline{\beta}_j := \dim H_j \left(\Lambda^{2 \pi D p_m}, \Lambda^0; \mathbb{Q} \right), \quad \overline{\beta}^*_j := \dim H_j \left(\Lambda^{2 \pi D^3 p_m}, \Lambda^0; \mathbb{Q} \right).
\]

Let \(L_1 = 2 \pi p_m D \), \(L_3 = 2 \pi p_m D^3 = L_1 D^2 \) and let

\[
v_j := \# \{1 \leq r \leq L_1/L; \text{ind}(c^r) = j, r \equiv 1 \pmod{2} \text{ or } \gamma_c = \pm 1\}
\]

\[
v_j^* := \# \{1 \leq r \leq L_3/L; \text{ind}(c^r) = j, r \equiv 1 \pmod{2} \text{ or } \gamma_c = \pm 1\}.
\]

Then for all even \(j \leq 4 p_m (m - 1) + 2 \):

\[
\overline{\beta}_j = v_j; \quad \overline{\beta}^*_j = v_j^*
\]

and \(\overline{\beta}_j = \overline{\beta}^*_j = 0 \) for all odd \(j \leq 4 p_m (m - 1) + 2 \).
Proof We conclude from \cite[Sec. 2]{16} and \cite[Def. 1.6]{16} or \cite[Sec. 2]{19}:

Let \(v_j(c') = b_j(\Lambda^L, \Lambda^{r-1}; \; \mathbb{Q}) \). If \(l(c') = rl(c) \leq L_3 \) we conclude from Assumption 3.2 for all \(j \leq 4p_m(m-1) + 2 \) : \(v_j(c') \in \{0, 1\} \) with \(v_j(c') = 1 \) if and only if \(j = \text{ind}(c') \) and \(r \) is odd or \(\text{ind}(c^2) \equiv \text{ind}(c) \pmod{2} \). It follows that for \(1 \leq r \leq L_3/L : \)

\[
 v_j(c') = 1 \Rightarrow j = \text{ind}(c') \equiv \text{ind}(c) \pmod{2}. \tag{11}
\]

The Morse inequalities for the functional \(F \) on the space \(\Lambda^{L_1} = \Lambda^{L_3} S^n \) resp. \(\Lambda^{L_3} S^n \) give a relation between the number of (homologically visible) critical points \(v_j \), resp. \(v^*_j \) with index \(j \) and length \(l \leq L_1 \), resp. \(\leq L_3 \) with the Betti numbers \(\overline{b}_j \), resp. \(\overline{b}^*_j \). We obtain:

\[
 v_j = \overline{b}_j + q_j + q_{j-1} \quad \text{resp.} \quad v^*_j = \overline{b}^*_j + q^*_j + q^*_{j-1}
\]

for a non-negative sequence \(q_j, j \geq 0 \), resp. \(q^*_j, j \geq 0 \), cf. \cite[Sec. 2]{16}. Equation (11) implies the following for all \(j \leq 4p_m(m-1) + 2, j \equiv 1 \pmod{2} \)

\[
 v_j = v^*_j = 0 \tag{12}
\]

and \(q_j = q^*_j = 0 \) for all \(j \). Here we have used that under the assumptions of the Lemma there is up to geometric equivalence only one closed geodesic of length \(\leq 2\pi p_m D^3 \), and that an iterate \(c' \) can have non-trivial local homology in degree \(j \) only for even \(j \), cf. Eq. (11).

Hence

\[
 v_j = \overline{b}_j; \quad v^*_j = \overline{b}^*_j \tag{13}
\]

for all \(j \leq 4p_m(m-1) + 2 \).

For a topological pair \((X, A)\) with singular homology \(H_j(X, A; \mathbb{Z}) \) with integer coefficients let \(\text{Tor}_j \subset H_j(X, A) \) be the torsion submodule. We denote by \(FH_j(X, A; \mathbb{Z}) = H_j(X, A; \mathbb{Z})/\text{Tor}_j \) the associated free module. Then \(H_j(X, A; \mathbb{Q}) \cong H_j(X, A; \mathbb{Z}) \otimes \mathbb{Q} \cong FH_j(X, A; \mathbb{Z}) \otimes \mathbb{Q} \).

Lemma 3.5 If the Finsler metric \(f \) on \(S^{2m-1} \) satisfies Assumption 3.2 and \(p = p_m \) then the homomorphism

\[
 H_j \left(\Lambda^{2\pi p D}, \Lambda^0; \mathbb{Q} \right) \longrightarrow H_j \left(\Lambda, \Lambda^0; \mathbb{Q} \right)
\]

induced by the inclusion is an isomorphism for all \(j \leq 4p(m-1) + 2 \). Using the notation from Lemma 3.4 we obtain for the Betti numbers \(\overline{b}_j := \dim H_j(\Lambda, \Lambda^0, \mathbb{Q}) \) for all \(j \leq 4p(m-1) + 2 \) :

\[
 \overline{b}_j = \overline{b}_j. \tag{14}
\]

Proof From the definition of the distortion given in Eq. (1) we obtain the following inclusions:

\[
 \Lambda_0^{2\pi p} \subset \Lambda^{2\pi p D} \subset \Lambda_0^{2\pi p D^2} \subset \Lambda^{2\pi p D^3} \tag{15}
\]

and

\[
 \overline{\Lambda}_0^{2\pi p} \subset \overline{\Lambda}^{2\pi p D} \subset \overline{\Lambda}_0^{2\pi p D^2} \subset \overline{\Lambda}^{2\pi p D^3}.
\]

It follows that the composition

\[
 H_j \left(\overline{\Lambda}_0^{2\pi p}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}^{2\pi p D}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}_0^{2\pi p D^2}, \overline{\Lambda}^0; \mathbb{Q} \right) \cong H_j \left(\Lambda, \Lambda^0; \mathbb{Q} \right) \tag{16}
\]
is an isomorphism for \(j \leq 4p(m - 1) + 2 \), cf. Eq. (7) and the arguments below. Therefore we conclude that the homomorphism

\[
i_{1*} : H_j \left(\overline{\Lambda}^{2\pi p D}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}, \overline{\Lambda}^0; \mathbb{Q} \right)
\]

induced by the inclusion is surjective for \(j \leq 4p(m - 1) + 2 \) since \(4p(m - 1) + 2 < i(p + 1) = (4p + 2)(m - 1) \). From Assumption 3.2 and Lemma 3.4 we conclude

\[
H_j \left(\overline{\Lambda}^{2\pi p D}, \overline{\Lambda}^0; \mathbb{Q} \right) = H_j \left(\overline{\Lambda}^{2\pi p D^3}, \overline{\Lambda}^0; \mathbb{Q} \right) = 0
\]

for all odd \(j \leq 4p(m - 1) + 2 \).

If the homomorphism given in Eq. (17) is not injective for some \(j \leq 4p(m - 1) + 2 \) then there is a non-trivial class

\[
Z \in H_j \left(\overline{\Lambda}^{2\pi p D} S^n, \overline{\Lambda}^0 S^n; \mathbb{Q} \right)
\]

with \(\deg(Z) = j \leq 4p(m - 1) + 2 \) such that \(i_{1*}(Z) = 0 \).

We consider the homomorphisms induced by the respective inclusions

\[
i_{2*} : H_j \left(\overline{\Lambda}^{2\pi p D}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}^{2\pi p D^2}, \overline{\Lambda}^0; \mathbb{Q} \right)
\]

\[
i_{3*} : H_j \left(\overline{\Lambda}^{2\pi p D^2}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}^{2\pi p D^3}, \overline{\Lambda}^0; \mathbb{Q} \right)
\]

\[
i_{4*} : H_j \left(\overline{\Lambda}^{2\pi p D^3}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}, \overline{\Lambda}^0; \mathbb{Q} \right)
\]

Then \(i_{1*} = i_{4*} \circ i_{3*} \circ i_{2*} \). Since the homomorphism

\[
i_{4*} \circ i_{3*} : H_j \left(\overline{\Lambda}^{2\pi p D^2}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}, \overline{\Lambda}^0; \mathbb{Q} \right)
\]

is an isomorphism for all \(j \leq 4p(m - 1) + 2 \), cf. Eq. (16), we conclude that \(Z \) lies in the kernel of the homomorphism

\[
i_{3*} \circ i_{2*} : H_j \left(\overline{\Lambda}^{2\pi p D}, \overline{\Lambda}^0; \mathbb{Q} \right) \longrightarrow H_j \left(\overline{\Lambda}^{2\pi p D^3}, \overline{\Lambda}^0; \mathbb{Q} \right),
\]

i.e. \((i_3 \circ i_2)_* \)(Z) = 0. The exactness of the long homology sequence of the triple \((\overline{\Lambda}^{2\pi p D^3} S^n, \overline{\Lambda}^{2\pi p D} S^n, \overline{\Lambda}^0 S^n) \) implies that there exists a non-trivial class

\[
Y \in H_{j+1} \left(\overline{\Lambda}^{2\pi p D^3} S^n, \overline{\Lambda}^{2\pi p D} S^n; \mathbb{Q} \right)
\]

with \(\partial_s Y = Z \). Here \(\partial_s \) is the boundary operator of the long homology sequence of the triple. But since \(j \) is even this leads to a contradiction to Eq. (18).

Let \(L = F(c) = l(c) \) be the length of the prime closed geodesic \(c \). Then we obtain for the Betti numbers \(b_j(c') = \text{rk} H_j(\overline{\Lambda}^{rL}, \overline{\Lambda}^{(r-1)L}; \mathbb{Z}) \) of the critical group of \(c' \), \(r \leq L_3/L \):

\[
b_k(c') = \begin{cases} 1 & : k = \text{ind}(c'), r \text{ odd, or } \gamma = 1 \\ 1 & : k = \text{ind}(c') + 1, r \text{ odd, or } \gamma = 1 \\ 0 & : \text{otherwise} \end{cases}
\]
The Betti numbers $\overline{b}_k(c^r) = \text{rk} H_k(\Lambda^{r} L, \Lambda^{(r-1)L}; \mathbb{Z}) = \dim H_k(\Lambda^{r} L, \Lambda^{(r-1)L}; \mathbb{Q})$ of the S^1-critical group of c^r for $r \leq L_3/L$:

$$\overline{b}_k(c^r) = \begin{cases}
1 & ; k = \text{ind}(c^r), \gamma_c = 1 \text{ or } r \text{ odd} \\
0 & ; \text{otherwise}
\end{cases}.$$

The Betti numbers $b_k = \text{rk} H_k(\Lambda S^n, \Lambda^0 S^n; \mathbb{Z}) = \dim H_k(\Lambda S^n, \Lambda^0 S^n; \mathbb{Q})$ are given by

$$b_k = \begin{cases}
1 & ; k = 2s(m - 1), s \geq 1 \\
1 & k = 2s(m - 1) + 1, s \geq 2 \\
0 & k \text{ otherwise}
\end{cases}.$$

cf. Eq. (4). The Betti numbers $\overline{b}_k = \text{rk} H_k(\Lambda S^{2m-1}, \Lambda^0 S^{2m-1}; \mathbb{Z}) = \dim H_k(\Lambda S^{2m-1}, \Lambda^0 S^{2m-1}; \mathbb{Q})$ of the S^1-quotient space are as follows:

$$\overline{b}_k = \begin{cases}
2 & k = 2s(m - 1), s \geq 2 \\
1 & k \geq 2m - 2, k \text{ even}, k \neq 2s(m - 1), s \geq 2 \\
0 & k \text{ otherwise}
\end{cases}.$$

\text{(21)}

cf. Eq. (7).

Bott’s formula for the sequence $(\text{ind}(c^r))_{r \geq 1}$ of indices of the iterates c^r implies (cf. for example [19]):

$$\text{ind}(c^r) \geq \text{ind}(c), r \geq 1.$$

\text{(22)}

Lemma 3.4, Eqs. (22) and (21) imply that $\text{ind}(c) = n - 1$ and that the sequence $\text{ind}(c^r)$ is monotone increasing, i.e. for all $r \geq 1$:

$$\text{ind}(c^{r+1}) \geq \text{ind}(c^r).$$

\text{(23)}

cf. [20] or [19]. Bott’s formula implies that $v_j > 0$ resp. $v_j^* > 0$ for $j \leq 4p(m - 1) + 2$ holds only for even j. Since

$$v_j = v_j^* = \overline{\beta}_j = \overline{\beta}_j^* = 0$$

\text{(24)}

for all odd $j \leq 4p(m - 1) + 2$ the Morse inequalities take the simple form for all $j \leq 4p(m - 1) + 2$, cf. Eq. (13):

$$v_j = \overline{\beta}_j = \overline{\beta}_j; v_j^* = \overline{\beta}_j^*.$$

\text{(25)}

If $\gamma_c = 1/2$, i.e. if $\text{ind}c^2 = 2m - 1 = \text{ind}c + 1$, we obtain from Bott’s formula for $\text{ind}(c^r)$ that the sequence $\text{ind}(c^r), r \geq 1$ is strictly monotone increasing. But $\overline{b}_{4m-4} = 2$, cf. Eq. (21). This contradicts Eq. (25). Hence $\gamma_c = 1$, resp. $\text{ind}(c^2) = 2m$. The sequence $\text{ind}(c^r)_{1 \leq r \leq L_1/L}$ is uniquely determined by Eq. (23) and Eq. (25):

$$(\text{ind}(c^r))_{r \geq 1} = (2m - 2, 2m, 2m + 2, \ldots, 4m - 6, 4m - 4, 4m - 4, 4m - 2, \ldots, 6m - 8, 6m - 6, 6m - 6, 6m - 4, \ldots)$$

From Lemma 3.5 and Eq. (21) we conclude

$$\overline{b}_{4p(m - 1)} = \dim H_{4p(m - 1)}\left(\Lambda^{2\pi p D}, \Lambda^0; \mathbb{Q}\right) = \overline{b}_{4p(m - 1)} = 2.$$

Therefore we obtain the following, cf. [20, Eq. (13)]:
Lemma 3.6 If Assumption 3.2 holds then for \(p = p_m \) we have
\[
\text{ind} \left(c(2p-1)m \right) = \text{ind} \left(c(2p-1)m+1 \right) = 4p(m - 1). \tag{26}
\]
and \(l(c(2p-1)m+1) = ((2p - 1)m + 1)L \leq 2\pi pD. \)

Lemma 3.7 If Assumption 3.2 holds, \(p = p_m \) then for all \(j \leq 4p(m - 1) + 1 : \)
\[
H_j \left(\Lambda^{2\pi pD^3}, \Lambda^{2\pi pD}; \mathbb{Q} \right) = 0; \quad H_j \left(\prod^{2\pi pD^3}, \Lambda^{2\pi pD}; \mathbb{Q} \right) = 0, \tag{27}
\]
and the homomorphism
\[
H_j \left(\Lambda^{2\pi pD}, \Lambda^0; \mathbb{Q} \right) \rightarrow H_j(\Lambda, \Lambda^0, \mathbb{Q}) \tag{28}
\]
induced by the inclusion is an isomorphism for all \(j \leq 4p(m - 1). \)

Proof Since \(\text{ind}(c^r) \geq 4p(m - 1) + 2 \) for all \(r \geq (2p - 1)m + 2 \) it also follows that for \(j \leq 4p(m - 1) + 1 : v_j = v^*_j \), hence Eq. (27) follows, cf. Lemma 3.6. The inclusion Eq. (15) together with the isomorphism (3) imply that the homomorphism (28) is an isomorphism for \(j \leq 4p(m - 1). \)

\[\square \]

4 Proof of Theorem 1.1

In this proof we use as coefficient ring for homology the ring \(\mathbb{Z} \) of integers if not otherwise stated. We assume that Assumption 3.2 holds and derive a contradiction. Let \(p = p_m \). Because of the Morse inequalities (25) and Lemma 3.5 we obtain for \(j \leq 4p(m - 1) + 2 : \)
\[
FH_j(\Lambda, \Lambda^0; \mathbb{Z}) \cong FH_j(\Lambda^{2\pi pD^3}, \Lambda^0) \cong \bigoplus_{rL \leq 2\pi pD} FH_j(\Lambda^rL, \Lambda^{(r-1)L}). \]

We have shown that \(\text{ind}(c) = 2m - 2 \), \(\text{ind}(c^2) = 2m \) and \(\text{ind}(c(2p-1)m) = \text{ind}(c(2p-1)m+1) = 4p(m - 1), \) cf. Eq. (26). It also follows that \(((2p - 1)m + 1)L \leq 2\pi pD \).

Let \(s_{(2p-1)m}, s_{(2p-1)m+1} \) denote generators of the local critical groups, cf. Eq. (8). It follows that
\[
H_{4p(m-1)}(\Lambda^{((2p-1)m+1)L}, \Lambda^{((2p-1)m-1)L})
\]
\[
\cong H_{4p(m-1)}(\Lambda^{((2p-1)m+1)L}, \Lambda^{(2p-1)mL}) \oplus H_{4p(m-1)}(\Lambda^{(2p-1)mL}, \Lambda^{((2p-1)m-1)L})
\]
\[
\cong \mathbb{Z} \cdot s_{(2p-1)m+1} \oplus \mathbb{Z} \cdot s_{(2p-1)m}.
\]

We consider the following commutative diagram, the vertical homomorphisms are induced by inclusions, the horizontal ones by the canonical projection with respect to the \(S^1 \)-action:
\[
\begin{array}{ccc}
H_{4p(m-1)}(\Lambda^{((2p-1)m+1)L}, \Lambda^{((2p-1)m-1)L}) & \xrightarrow{\rho_1} & FH_{4p(m-1)}(\Lambda^{((2p-1)m+1)L}, \Lambda^{((2p-1)m-1)L}) \\
\uparrow h_{1*} & & \uparrow j_1* \cong \\
H_{4p(m-1)}(\Lambda^{((2p-1)m+1)L}, \Lambda^0) & \xrightarrow{\rho_2} & FH_{4p(m-1)}(\Lambda^{((2p-1)m+1)L}, \Lambda^0) \\
\cong h_{2*} & & \cong j_2* \\
H_{4p(m-1)}(\Lambda, \Lambda^0) & \xrightarrow{\rho_{0*}} & FH_{4p(m-1)}(\Lambda, \Lambda^0) \\
\end{array}
\]

Springer
Here we also allow $\alpha = 0$, which implies $\beta = \pm 1$ resp. $\beta = 0$, which implies $\alpha = \pm 1$. By Eq. (10) we have

$$\rho_1(s_{(2p-1)m+1}) = (\alpha = 0), \quad \rho_1(s_{(2p-1)m}) = (\alpha = 1).$$

Since $\bar{s}_{(2p-1)m+1}, \bar{s}'_{(2p-1)m}$ form a basis for $FH_{p(m-1)}(\Lambda, \Lambda^0)$ there are integers $w, z \in \mathbb{Z}$ with

$$\bar{a}_p = w\bar{s}_{(2p-1)m+1} + z\bar{s}'_{(2p-1)m}.$$

We obtain the following explicit description of the last commutative diagram with respect to the given basis elements

$$\begin{array}{c}
\mathbb{Z}s_{(2p-1)m+1} \oplus \mathbb{Z}s_{(2p-1)m} \\
\mathbb{Z}a'_p \\
\mathbb{Z}d_p
\end{array} \xrightarrow{(\alpha, \beta)} \begin{array}{c}
\mathbb{Z}s_{(2p-1)m+1} \oplus \mathbb{Z}s_{(2p-1)m} \\
\mathbb{Z}s'_{(2p-1)m+1} \oplus \mathbb{Z}s'_{(2p-1)m}
\end{array} \xrightarrow{\rho_1} \begin{array}{c}
\mathbb{Z}s_{(2p-1)m+1} \oplus \mathbb{Z}s_{(2p-1)m} \\
\mathbb{Z}s'_{(2p-1)m+1} \oplus \mathbb{Z}s'_{(2p-1)m}
\end{array} \xrightarrow{\rho_2} \begin{array}{c}
\mathbb{Z}s'_{(2p-1)m+1} \oplus \mathbb{Z}s'_{(2p-1)m}
\end{array} \xrightarrow{\rho} \begin{array}{c}
\mathbb{Z}s''_{(2p-1)m+1} \oplus \mathbb{Z}s''_{(2p-1)m}
\end{array} \xrightarrow{\rho} \begin{array}{c}
\mathbb{Z}s''_{(2p-1)m+1} \oplus \mathbb{Z}s''_{(2p-1)m}
\end{array}

We conclude from this diagram

$$\rho_*(a_p) = p\bar{a}_p = p\left(w\bar{s}'_{(2p-1)m+1} + z\bar{s}'_{(2p-1)m}\right).$$
\[j_{2\star} \rho_{2\star} h_{2\star}^{-1}(a_p) = j_{2\star} \rho_{2\star}(a_p) = j_{2\star} j_{1\star}^{-1} \rho_{1\star} h_{1\star}(a_p) \]
\[= j_{2\star} j_{1\star}^{-1} \rho_{1\star} (\alpha \cdot s_{(2p-1)m+1} + \beta \cdot s_{(2p-1)m}) \]
\[= \alpha((2p-1)m+1) \cdot s_{(2p-1)m+1} + \beta(2p-1)m \cdot s_{(2p-1)m}. \]

Since \(s_{(2p-1)m+1} \) and \(s_{(2p-1)m} \) form a basis we obtain:
\[pw = ((2p-1)m+1)\alpha ; \quad pz = (2p-1)m\beta \]

which is equivalent to
\[p(2m\alpha - w) = (m-1)\alpha ; \quad p(2m\beta - z) = m\beta. \quad (29) \]

Equation (29) implies that \(p \) is a common divisor of the numbers \(\alpha \) and \(\beta \) since \(p = p_m \) neither divides \(m \) nor \(m-1 \), cf. Lemma 3.3.

But the numbers \(\alpha, \beta \) are by assumption coprime, hence we arrive at a contradiction. Note that this argument is also valid for the cases \(\alpha = 0, \beta = \pm 1 \), resp. \(\alpha = \pm 1, \beta = 0 \).

5 Katok metrics

Choose numbers \(p_1 < \ldots < p_m \) which are relatively prime and let \(p = p_1 \cdots p_m \).

Let
\[R(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \]

be the rotation in \(\mathbb{R}^2 \) with angle \(\phi \). Let \(\mathbb{R}^{2m} = V_1 \oplus \ldots \oplus V_m \) be an orthogonal decomposition into 2-dimensional subspaces and let \(A(t) \in SO(2m) \) be the 1-parameter family of isometries of \(S^{2m-1} \) with \(A(t)|V_j = R(pt/p_j), \ j = 1, \ldots, m \). This one-parameter group of isometries generates a Killing field \(V \) on \(S^{2m-1} \) with norm
\[\|V\| = a(p_1, \ldots, p_m) = p \left(\sum_{j=1}^{m} p_j^{-2} \right)^{1/2}. \]

For \(\mu < a(p_1, \ldots, p_m)^{-1} \) we define the Killing field \(V_\mu = \mu V \) with \(\|V_\mu\| < 1 \). Then the sphere bundle determined by \(\{ \xi \in T_1 S^n : \|\xi - V_\mu(x)\| = 1 \} \) determines the unit sphere bundle of a non-reversible Finsler metric \(f_\mu \). These metrics are called Katok metrics, cf. [23, p.139] or Zermelo deformation of the standard metric [7]. For the flow \(\psi_t \) of the Killing field \(V_\mu \) the geodesics of the Finsler metric \(f_\mu \) are of the form \(t \mapsto \psi_t(c(t)) \) for a great circle \(c(t) \) on \(S^n \). For irrational \(\mu \) the Katok metric \(f_\mu \) determined by the Killing field \(V_\mu \) has exactly \(2m \) closed geodesics \(c_j^\pm \), \(j = 1, \ldots, m \) with \(c_j^\pm(t) = c_j^\pm(-t) \) for all \(t \), cf. [23, p.139] and [7]. These are the great circles invariant under the flow \(\psi_t \). Since \(\mu \) is irrational these metrics are bumpy. As remarked in [7, 17] these metrics have constant flag curvature 1. The lengths \(l(c_j^\pm) \), \(j = 1, \ldots, m \) of the closed geodesics \(c_j^\pm \) are given by
\[l(c_j^\pm) = \frac{2\pi}{1 \pm \frac{1}{p_j \mu}}, \ j = 1, \ldots, m . \]

The distortion is given by:
\[D = \lambda = \frac{1}{1 - \max\{\|V_\mu(x)\|, x \in S^n\}} = \frac{1}{1 - \mu a(p_1, \ldots, p_m)}. \]
If we choose \(p_1 = 1 \) then for an arbitrary \(N \in \mathbb{N} \) one can choose \(N < p_2 < \ldots < p_m \) and an irrational \(\mu \) satisfying
\[
\frac{1}{p} \frac{N-1}{N} < \mu < \frac{1}{a(1, p_2, \ldots, p_m)}.
\]
This implies that \(l(c_{j_1}^-) \geq 2\pi N \), \(\text{ind}(c_{j_1}^-) \geq 2N(m-1) \) and the distortion satisfies \(D \geq N \). One can also show that \(l(c_{j_2}^+) < 2\pi \), \(\text{ind}(c_{j_2}^+) \leq 4(m-1) \), \(1 \leq j \leq m \) and for \(2 \leq j \leq m \) we obtain \(l(c_{j_1}^-) < 2\pi N/(N-1) \), \(\text{ind}(c_{j_1}^-) \leq 6(m-1) \).

For \(n = 3 \), \(m = 2 \) we obtain for any \(N \) a bumpy Katok metric \(f_\mu \) with exactly four closed geodesics \(c_1^+, c_2^+ \) with the following (in)equalities for the indices resp. lengths of these closed geodesics: \(l(c_1), l(c_2) < 2\pi \), \(\text{ind}(c_1) = 2 \), \(\text{ind}(c_2) = 4 \), \(l(c_2^{-1}) \leq 2\pi N/(N-1) \); \(\text{ind}(c_2^{-1}) \in \{4, 6\} \), and \(l(c_2^{-1}) \geq 2\pi N \), \(\text{ind}(c_2^{-1}) \geq 2N(m-1) \).

In a certain sense one can say that these examples show that the minimal number of short closed geodesics on a sphere of dimension \(n = 2m-1 \) resp. \(n = 2m \) is \(2m-1 \). Here short closed geodesics possess an a priori bound for the index.

6 Genericity statement

The set \(\mathcal{F}(T) \) of Finsler metrics on a compact manifold \(M \) for which all closed geodesics of length \(\leq T \) are non-degenerate is an open and dense subset of the space \(\mathcal{F} = \mathcal{F}(M) \) of Finsler metrics on \(M \) with the strong \(C^r \)-topology for \(r \geq 4 \), cf.[21, Thm. 4].

Proof of Theorem 1.2 Let \(f_1 \in \mathcal{F}_1(L) \), hence by definition all closed geodesics of the Finsler metric \(f_1 \) of length \(\leq D^3(f_1) L \) are non-degenerate. Let \(\phi_1 : TM \rightarrow TM \) be the geodesic flow of the Finsler metric \(f_1 \). If \(\tau : TM \rightarrow M \) is the tangent bundle projection then \(\tau(\phi_1(v)) \) is the geodesic \(c_v \) determined by the initial condition \(c_v(0) = v \). Let \(HM = (TM - M)/\mathbb{R}^+ \) be the bundle of oriented directions in the tangent bundle \(TM \). We consider instead of the geodesic flow \(\phi_1 : TM \rightarrow TM \) the map \(\Phi_1 : HM \rightarrow HM \) with \(\Phi_1(v) = \phi_1(v/\|v\|) \), hence the geodesic \(t \in [0, 1] \mapsto \tau(\Phi_1(v)) \in M \) is parametrized by arc length. If \(\Phi_1(v) \) is a periodic flow line of period \(a \), then \(t \in [0, a] \mapsto \tau(\Phi_1(v)) \) is a closed geodesic of length \(a \). The minimal period is then the length of the underlying prime closed geodesic.

Let \(\Phi_i(v_1), \ldots, \Phi_i(v_N) \) be the periodic flow lines of the geodesic flow \(\Phi_1 : HM \rightarrow HM \) corresponding to the closed geodesics of period (resp. length) \(a_1, \ldots, a_N \) which satisfy \(a_i \leq D(f_1)^3 L \).

Then there is an open neighborhood \(U \subset \mathcal{F} \) of \(f_1 \) such that the following holds: There are continuous maps \(v_i : f \in U \mapsto v_i(f) \in HS^n \), \(a_i : f \in U \mapsto a_i(f) \in (0, \infty), i = 1, 2, \ldots, N \) with \(v_i = v_i(f_1), a_i = a_i(f_1), i = 1, \ldots, N \) such that for all \(f \in U \) the sets \(\Phi_i(v_i(f)): t \in [0, a_i(f)], i = 1, 2, \ldots, N \) are periodic and non-degenerate flow lines of the geodesic flow of \(f \) of period \(a_1(f), \ldots, a_N(f) \) and there are no further periodic flow lines of \(f \) of length \(\leq D^3(f) L \). This holds since the distortion
\[
f \in \mathcal{F} \mapsto D(f) \in (0, \infty)
\]
is a continuous function. Hence the set \(\mathcal{F}_1(L) \) is an open subset of \(\mathcal{F} \).

Choose \(T = 2D^3(f) L \). Since \(\mathcal{F}(T) \) is a dense subset of \(\mathcal{F} \) we find a sequence \((f_k)_{k \geq 2} \subset \mathcal{F}(T) \) converging to \(f_1 \). Since the function given in Eq. (30) is continuous it follows that also \(\mathcal{F}_1(L) \) is dense in \(\mathcal{F} \).

\(\square \)
Acknowledgements I am grateful to Nancy Hingston for helpful discussions about the topic of the paper. And the suggestions and comments of the anonymous referee helped a lot to improve the paper.

Funding Open Access funding enabled and organized by Projekt DEAL. The author has no relevant financial or non-financial interests to disclose.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abreu, M., Gutt, J., Kang, J., Macarini, L.: Two closed orbits for non-degenerate Reeb flows. Math. Proc. Cambridge Phil. Soc. 170, 625–660 (2021)
2. Bangert, V., Long, Y.: The existence of two closed geodesics on every Finsler 2-sphere. Math. Ann. 346, 335–366 (2010)
3. Chas, M., Sullivan, D.: String topology, Preprint (1999). arXiv:math/9911159
4. Duan, H., Long, Y.: Multiple closed geodesics on bumpy Finsler spheres. J. Diff. Eq. 233, 221–240 (2007)
5. Duan, H., Long, Y., Wang, W.: Two closed geodesics on compact simply-connected bumpy Finsler manifolds. J. Differ. Geom. 104, 275–289 (2015)
6. Fet, A.I.: A periodic problem in the calculus of variations. Dokl. Akad. Nauk. SSSR (N.S.) 160, 287–289 (1965). (Russian)=Soviet Math. 6, 85–88 (1965)
7. Foulon, P., Matveev, V.: Zermelo deformation of Finsler metrics by Killing vector fields. Electron. Res. Announc. Math. Sci. 25, 1–7 (2018)
8. Goresky, M., Hingston, N.: Loop products and closed geodesics. Duke Math. J. 150, 117–209 (2009)
9. Hingston, N.: Equivariant Morse theory and closed geodesics. J. Differ. Geom. 19, 85–116 (1984)
10. Hingston, N., Rademacher, H.B.: Resonance for loop homology of spheres. J. Differ. Geom. 93, 133–174 (2013)
11. Liu, S., Wang, W.: A review of the index method in closed geodesic problem. Acta Math. Sin. Engl. 38, 85–96 (2022)
12. Lyusternik, L.A., Fet, A.I.: Variational problems on closed manifolds. Dokl. Akad. Nauk SSSR (N.S.) (Russian) 81, 17–18 (1951)
13. Oancea, A.: Morse theory, closed geodesics, and the homology of free loop spaces, In: Free Loop Spaces in Geometry and Topology, IRMA Lect. Math. Theor. Phys., vol. 24, pp. 67–109, with an appendix by U. Hryniewicz, Eur. Math. Soc., Zürich (2015)
14. Rademacher, H. B.: Der Äquivariante Morse-Kettenkomplex des Raums der geschlossenen Kurven. Bonner Math. Schr. 187 (1987)
15. Rademacher, H.B.: On the equivariant Morse chain complex of the space of closed curves. Math. Z. 201, 279–302 (1989)
16. Rademacher, H.B.: On the average indices of closed geodesics. J. Differ. Geom. 29, 65–83 (1989)
17. Rademacher, H.B.: A sphere theorem for non-reversible Finsler metrics. Math. Ann. 328, 373–387 (2004)
18. Rademacher, H.B.: Existence of positively curved Finsler manifolds. Ergod. Theory Dyn. Syst. 27, 957–969 (2007)
19. Rademacher, H.B.: The second closed geodesic on Finsler spheres of dimension $n \geq 2$. Trans. Am. Math. Soc. 362, 1413–1421 (2010)
20. Rademacher, H.B.: Bumpy metrics on spheres and minimal index growth. J. Fixed Point Theory Appl. 19, 289–298 (2017)
21. Rademacher, H.B., Taimanov, I.A.: The second closed geodesic, the fundamental group, and generic Finsler metrics. Math. Z. 302, 629–640 (2022)
22. Taimanov, I.A.: The type numbers of closed geodesics. Regul. Chaot. Dyn. 15, 84–100 (2010)
23. Ziller, W.: Geometry of the Katok examples. Ergod. Theory Dyn. Syst. 3, 135–157 (1982)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.