Inclusive is not an adjective, it transforms development: A post-growth interpretation of Inclusive Development

Rammelt, C.F.; Gupta, J.

DOI
10.1016/j.envsci.2021.06.012

Publication date
2021

Document Version
Final published version

Published in
Environmental Science & Policy

License
CC BY

Citation for published version (APA):
Rammelt, C. F., & Gupta, J. (2021). Inclusive is not an adjective, it transforms development: A post-growth interpretation of Inclusive Development. Environmental Science & Policy, 124, 144-155. https://doi.org/10.1016/j.envsci.2021.06.012
Inclusive is not an adjective, it transforms development: A post-growth interpretation of Inclusive Development

Crelis F. Rammelt *, Joyeeta Gupta

University of Amsterdam, Department of Geography, Planning and International Development Studies, Governance and Inclusive Development, the Netherlands

ARTICLE INFO

Keywords:
Inclusive Development
Post-growth
Degrowth
Green Growth
Planetary boundaries
Access and allocation

ABSTRACT

The 2030 Sustainable Development Agenda rests on both economic growth and Inclusive Development (ID). However, since growth is entangled with socio-ecological exploitation and appropriation, it conflicts with ID where ‘inclusive’ encompasses social, ecological and relational dimensions, and fundamentally redefines ‘development’. Using Toulmin’s argumentative model, we show that: (a) inclusive green growth does not promote socio-ecological inclusion and ignores relational inclusion, as economic growth cannot be optimized towards those broader aims; (b) policies for inclusion through pro-poor ‘access’ without ‘re-allocation’ of resources are self-defeating, as inequitable allocation of wealth and of a limited environmental utilization space impoverishes the poor and transfers ecological risks to them; (c) ‘re-allocation’ requires a post-growth agenda involving a downscaling of overconsumption and overaccumulation by the global Centers, and a redefinition of development by the Peripheries; and (d) such an agenda is obstructed by the unequal distribution of wealth and political power. The only way forward is when science and social movements converge to demand system change on the streets and in the courts.

1. Introduction

The UN’s Agenda 2030 for Sustainable Development (United Nations General Assembly (UNGA, 2015) overlooks the incompatibilities of economic growth with socio-ecological inclusion (Gupta and Vegelin, 2016). While the Gross World Product (GWP) has doubled every 20 years since 1960 (WB, 2020), social injustice and environmental degradation have converged in a global multi-dimensional crisis (Cairi-i-Céspedes and Castells-Quintana, 2016). The crisis escalates, despite attempts to avert it through Sustainable Growth, Inclusive Growth, Green Growth or other variations on the theme (International Monetary Fund (IMF, 2018; United Nations Development Programme (UNDP, 2020; European Commission (EC, 2020). While many Inclusive Development (ID) scholars consider growth to be a necessary but insufficient condition for development (see review in van Gent, 2017), the emerging Amsterdam School of Governance for ID argues that perpetual economic growth is incompatible with ‘inclusion’ as a multifaceted ambition: social inclusion fails without ecological inclusion (i.e., entitlements to the ecological basis for human well-being) and relational inclusion (i.e., control over decisions that affect well-being and its basis) (Gupta et al., 2015; Gupta and Vegelin, 2016; Gupta and Pouw, 2017; Pouw and Gupta, 2017; Gupta and Bavinck, 2017; Schwartz et al., 2018; Gupta and Lebel, 2020).

This integrated understanding means that ID is a ‘paired’ concept, whereby ‘inclusive’ is not an adjective but implies a post-growth transformation of ‘development’. Post-growth scholarship connects the ecological economics critique of growth with the heterodox economics critique of unequal capitalist accumulation (Fanning et al., 2020; Rammelt, 2020), and aims for equitable and deliberate downscaling (degrowth) of overconsumption, overaccumulation and expropriation to enhance human well-being, social justice and environmental health (Research and Degrowth, 2010; Kallis, 2018). This implies varied development routes for Center and Periphery countries (i.e., Global North and Global South), and Centre and Periphery groups within those countries (Galtung, 1971).

This article elaborates on how post-growth thinking and ID are linked (Brand et al., 2017; Gupta and Pouw, 2017) by applying Toulmin’s (1958) argumentative structure (Fig. 1), which includes a claim, a justification through grounds and a warrant subjected to certain qualifiers. The claim is supported by additional backing and a rebuttal of...
counter-arguments. Our paper systematizes existing evidence and individual arguments to make the following three claims. First, growth cannot be effectively optimized towards social and ecological inclusion. Inclusive and Green Growth will therefore fail; we cannot grow ourselves out of the multi-dimensional crisis (Claim A). Second, given a limited environmental utilization space (or ‘ecospace’), ID implies transcending a focus on minimum access towards reallocating resources, responsibilities and risks (Claim B). Finally, such redistribution requires a post-growth development agenda, which calls for relational inclusion and a systemic transformation of the global economy (Claim C).

2. Claim A. Social and ecological growth optimizations are failing

In Agenda 2030, the 8th SDG of Inclusive Growth depends on and contributes to the 1st SDG of ending poverty by 2030 (United Nations General Assembly (UNGA, 2015)). Inclusive Growth is economic growth that is distributed fairly across society and creates opportunities for all (Organisation for Economic Co-operation and Development (OECD, 2012)). It relies on pro-poor strategies, such as access to value chains and re-training towards productive employment. This is expected to lift incomes above the poverty line thus leading to further economic growth (International Labour Organisation (ILO, 2012); Organisation for Economic Co-operation and Development (OECD, 2012)). However, growth is also perceived as unsustainable in the long run, unless it becomes Green Growth (Organisation for Economic Co-operation and Development (OECD, 2012); World Bank, 2012; United Nations Development Programme (UNDP, 2020)).

Green Growth is economic growth that ensures the continuous provision of environmental goods and services (Organisation for Economic Co-operation and Development (OECD, 2012)), e.g., through principles (e.g., polluter pays) and instruments (e.g., public-private partnerships or emissions trading). Its narrative perceives environmental damage as a threat to growth, which justifies its call for green investments (Green Growth Knowledge Platform (GGKP, 2020)).

We reject this Inclusive Green Growth narrative as the optimization of economic growth towards socio-ecological objectives is failing (Claim A). We divide this claim into sub-claims focusing on Inclusive Growth (Claim A1) and Green Growth (Claim A2).

2.1. Claim A1. Inclusive Growth is failing

2.1.1. Claim, grounds and warrant

Inclusive Growth proponents measure inclusion by reductions in income inequality and extreme poverty. For example, the global Gini coefficient hovered around 0.7 since 1980 with a slight decrease since 2002 (Milanović, 2013). However, this is a conservative estimate. If the incomes of the poorest percentiles increase faster than those of richer percentiles, the Gini index will show declining inequality even if the absolute gap has grown (e.g., a 20 % rise on $100 is less than a 2 % rise on $10,000). Global inequality based on absolute Gini increased from 3964 in 1975 to 6702 in 2010 (No-Zarazúa et al., 2017). Similarly, in relative terms, the average income of the richest 1 % has grown by 2.7 times less than that of the rest since 1980; in absolute terms, it has grown 10.1 times more (based on United Nations University World Institute for Development Economics Research (UNU-WIDER, 2021)).

Inclusive Growth proponents also downplay growing inequality stating that extreme poverty is falling (Shaohua and Ravallion, 2012; United Nations (UN, 2020); based on the International Poverty Line (IPL) target of $1.90 per day (2011 PPP), global poverty fell from over ~42 % to ~9 % between 1981 and 2017, implying a drop from a 1.9 billion to 689 million poor people (based on World Bank (WB, 2021)). However, using a more ambitious and realistic Ethical Poverty Line (EPL) of $7.40 per day (2011 PPP) which significantly improves life expectancy (Edward, 2006; Woodward and Abdallah, 2016; Hickel, 2019a), the relative drop is much weaker than with the IPL (17 % instead of 33 %). More importantly, the number of people living below the EPL actually rose from 3.2 billion in 1981 to 4 billion in 2017 (based on World Bank (WB, 2021)).

Absolute numbers are more relevant to this discussion: a relative drop means nothing to those increasing numbers whose incomes are below the EPL.

Thus, Inclusive Growth’s success is based on unconvincing measurements. Proponents nevertheless assume that the poor benefit from incorporation into the world economy. However, incorporation tends to be (1) exclusive and/or (2) adverse. First, incorporation is often incomplete with Peripheries remaining economically excluded (Mosse, 2010; Hickey and du Toit, 2013). For example, only the relatively better-off farmers in Ethiopia can take on the debt and entrepreneurial risk to participate in formal commercial value-chains (Gebru, 2019). Similarly, small-scale farmers, foresters and fishers cannot afford certification schemes (Sylla, 2014; Le Manach et al., 2020). The (partially-excluded) informal economy comprises more than 60 % of the labor force (ILO, 2020). Second, incorporation may imply adverse incorporation: a situation where the livelihoods of those who are incorporated become constrained by economic, social and political relations (Hickey and du Toit, 2013). For example, Inclusive Value Chains (IVCs) in Ethiopia trap smallholders in legal contracts and dependencies on costly inputs that reduce their relative profit margins (Gebru, 2019). Bangladesh’s garment export sector might contribute to ‘lifting people out of poverty’, but also to their repression (Muhammad, 2011).

Thus, Inclusive Growth fails to re-slice a growing pie: extreme poverty (EPL headcount) and income inequality (absolute Gini) are rising. We believe Inclusive Growth is better described as ‘incorporative growth’—a process that is both exclusive (only relatively better-off or -connected groups gain access to new resources) and adverse (those who

Fig. 1. Toulmin’s argumentation structure.
are incorporated are still exploited).

2.1.2. Qualifier, backing and rebuttal

A qualifier is in order: Inclusive Growth leaves the poor behind, but this does not mean that growth itself is responsible for the inequalities (Claim C). Still, Inclusive Growth is failing and we therefore reject it as a necessary condition for ID.

To further back our claim, Inclusive Growth also fails to reduce wealth inequality, which reproduces systemic injustices (Claim C). The world’s 2153 billionaires own more wealth than the poorest 4.6 billion (Oxfam, 2020h). In India, China, Europe and the United States, the top 10% owns more than 70% of the total wealth while the bottom 50% owns less than 2% (Alvaredo et al., 2018; Oxfam, 2020b). Moreover, the top 1% increased its share from 28% (1980) to 33% (2018), while the bottom 75% had a stable share of 10% (Alvaredo et al., 2018).

Other reasons to be skeptical about IPL calculations include (see Wade, 2004; Glassman, 2012; Pogge, 2016; Hickel, 2017): (1) if poverty is measured by expenditures, then poverty reduction could result from growing debt; (2) those earning/spending close to the IPL cannot absorb price fluctuations or increases (e.g., for food), and the poor in Periphery countries already pay more than others for similar commodities (Rao, 2000; Attanasio and Frayne, 2006; Mendoza, 2011; Mussa, 2015); (3) the IPL overlooks distribution below the line, i.e., the depth of poverty; (5) the IPL ignores reduced access to merit goods (e.g., education, health care) which become subject to principles of cost-recovery. For example, every second, India’s rising health care costs push two more people into poverty (Oxfam, 2020b); and (6) the IPL ignores the loss of previously free ecosystem services (Claim B). Thus, with a focus on relative levels and a low IPL, Inclusive Growth cannot explain why poverty reduction still fails to reduce access to food, public and merit goods.

Several counter-arguments must also be tackled. First, some argue that it is premature to judge Inclusive Growth. However, it has dominated the development sector since the 1950s (Kuznets, 1956; Rostow, 1960): decades of ‘pro-poor’ growth policies have failed to meaningfully reduce inequality, as shown above and despite early warnings (Adelman and Morris, 1973). Second, proponents might accept that extreme poverty persists, but argue that Inclusive Growth enables public spending on social goals. However, the neo-liberal capitalist pursuit of growth has eroded public services (Claim C). Third, some might insist that growth is a necessary but insufficient condition, and that we must consider other social floors alongside the IPL. However, since the world economy must grow (Claim C), monetary indicators dominate over other indicators (Rammelt et al., 2018). Hypothetically, this could lead to win-win scenarios, but there are trade-offs and growth occurs at the expense of socio-ecological goals (Claims A2 and B1).

2.2. Claim A2. Green Growth is failing

2.2.1. Claim, grounds and warrant

Anthropogenic alteration of nature is leading to potentially abrupt and irreversible environmental changes (Meadows et al., 1972; World Commission on Environment and Development (WCED, 1987). We have already crossed four out of nine Planetary Boundaries (PBs) estimated at a safe distance from a potential threshold or dangerous perturbation of the Earth system: climate change, biosphere integrity, biogeochemical flows and land-use change (Rockstrom et al., 2009; Steffen et al., 2015).

In 2017, 92 billion tons of resources entered global production systems (Fig. 2) and 61 billion tons of matter and energy was discarded or emitted (de Wit et al., 2020). These are likely conservative estimates and the magnitudes have been growing over time (Krausmann et al., 2018; United Nations Environmental Programme (UNEP, 2019; UNEP and IRP, 2020).

This ever-expanding throughput of matter and energy in and out of our economies is limited. Geological deposits of abiotic and non-renewable resources are finite and the return-on-investment declines as new deposits become less accessible (Rammelt and Crisp, 2014; United Nations Environmental Programme (UNEP, 2019). Biotic resources and living renewables are limited by the magnitude of their regeneration. For example, industrial agriculture depletes soil microorganisms faster than they can regenerate (Hathaway, 2016). One-third of agricultural land is degraded and 90% could become degraded by 2050 (Food and Agriculture Organization of the United Nations (FAO, 2020). Non-living renewable resources (solar, wind and hydro-power) are limited by space and material availability (Rammelt and Crisp, 2014; United Nations Environmental Programme (UNEP, 2019). Throughput is also constrained by the limited capacity of environmental sinks to safely absorb persistent organic pollutants, plastics, greenhouse gas emissions, etc. (Rammelt and Crisp, 2014; Gupta, 2016; United Nations Environmental Programme (UNEP, 2019). This capacity is undermined by degraded wetlands, forests and soils.

Global demand for ecological resources and services in 2016 exceeded by 1.69 what the Earth could regenerate that year (Global Footprint Network (GFN, 2020). We increase this deficit by liquidating stocks of ecological resources and accumulating waste, at the expense of current and future claims on the ecospace. Indeed, produced capital increased at an annual average rate of 3.8%, while natural capital decreased by 0.7% (United Nations Environmental Programme (UNEP, 2018).

Throughput growth is therefore incompatible with a safe and limited ecospace, which has implications for economic growth. Innovation can partially reduce throughput and decouple economic growth from environmental impacts (United Nations Environmental Programme (UNEP, 2011). However, decoupling has been relative: energy consumption and consumption emissions are merely growing at a slower rate than GWP (Fig. 3). Similarly, the 27% increase in bio-capacity through 50 years of efforts to improve land productivity (World Wildlife Fund (WWF, 2016) could not compensate for humanity’s increasing footprint of 190% over the same time period (Lin et al., 2018). Increased productivity implies increased inputs (e.g., irrigation water, fertilizer) and wastes (e.g., nitrogen emissions, eutrophication) (Hathaway, 2016; Food and Agriculture Organization of the United Nations (FAO, 2020). Green Growth ultimately requires lasting absolute decoupling where environmental impacts decrease while GWP grows. This has not happened—and is unlikely to happen, as we argue below.

Economic growth confronts us with the limits of a shrinking ecospace (Gupta, 2016). The ecospace shrinks when: (a) demand (GWP) doubles every ~20 years, (b) resource availability dwindles (e.g., when resources

Fig. 2. Material and energetic flows (in billion tons per year) for the global economy in 2017 (adapted from de Wit et al., 2020, based on UNEP and IRP, 2020).
run out or when exploitation exceeds regeneration), and (c) when the carrying capacity of sinks is overwhelmed (e.g., through climate change; Gupta, 2016). Green Growth does not resolve this incompatibility: there has been no absolute decoupling. This debunks the Green Growth narrative on ecological terms and further questions whether growth is necessary for ID.

2.2.2. Qualifier, backing and rebuttal

We acknowledge the scientific uncertainties in quantifying PBs, but the evidence of cumulative and irreversible ecological damage is overwhelming (United Nations Environmental Programme (UNEP, 2019). Our argument against absolute decoupling is further backed by strong long-term correlations between the growth rates of GWP, primary energy consumption (Pearson correlation coefficient: 0.88) and consumption emissions (0.84) (Fig. 4).

Some might counterclaim that absolute decoupling may still happen as a further improvement on relative decoupling. However, the opposite has happened since 2002: the growth rate of domestic resource extraction has exceeded that of GWP (Krausmann et al., 2018). The correlations indicate deeper causal links between growth and throughput as efficiency gains are overtaken by increasing demand (i.e., the Jevons' paradox). Dematerialization solutions since the industrial revolution have usually been temporary, reflecting a lag between the resource/cost reduction and production increase (Bunker, 1996; Bringezu et al., 2004). Also, while innovations can (temporarily) reduce throughput, others hasten depletion: industrial agriculture precipitates soil degradation, fishing techniques accelerate dwindling fish stocks, etc. (Rammelt and Crisp, 2014; Rammelt and van Schie, 2016; United Nations Environmental Programme (UNEP, 2019).

Thermodynamics present another fundamental impediment to absolute decoupling. If resource efficiency and waste recycling could be endlessly increased and expanded, then GWP could grow indefinitely at that same rate without any increase in throughput (Hahnel, 2012). However, thermodynamic laws impose restrictions on efficiency and recycling potentials: recycling will always require energy and will always generate wastes (Rammelt and Crisp, 2014; Korhonen et al., 2018). While the global economy is far from 100 % recycling (Fig. 2), limits will be encountered long before that—most evidently for scattered matter such as carbon emissions, fertilizer runoff, microplastics, etc. Moreover, increasing recycling requires increasing energy (from a shrinking eco-space), and energy itself cannot be recycled. To counteract all of these inexorable dissipative losses and inefficiencies, fresh matter and energy inflows are inevitably required. This also applies to circular, biobased, doughnut and other green economies. These too will ultimately lead to unsustainable levels of depletion, pollution and waste if economic growth is not checked (Rammelt and Crisp, 2014; Korhonen et al., 2018).

The ‘zero-waste’ processes on which Green Growth relies are not only thermodynamically constrained, but also face practical and economic challenges as: (1) declining qualities of recycled materials may not meet existing industrial standards (Campbell-Johnston et al., 2019); (2) phasing out fossil fuels could lead to stranded assets worth $185 trillion (Linquiti and Cogswell, 2016) particularly in Periphery countries (Boo and Gupta, 2019); and (3) transferring waste recovery to ‘cheaper’ Peripheries increases their socio-ecological burdens (Claim B).

Finally, proponents might argue that Green Growth enables investing in natural capital (e.g., payments for ecosystem services), which becomes a benign driver for growth (United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP, 2020) and is integrated into economic decision-making through market valuation

Fig. 3. Growth of GWP, primary energy consumption and consumption emissions (based on data from World Bank (WB, 2020 and British Petroleum (BP, 2020).

Fig. 4. Growth rates of GWP, primary energy consumption and consumption emissions (based on data from World Bank (WB, 2020 and British Petroleum (BP, 2020).
techniques. The value of ecosystem services or Nature’s Contributions to People (NCPs) (Díaz et al., 2018) was estimated at US$ 125 trillion (using 2011 prices) in 2007—more than double the GWP for that year (Costanza et al., 2014). However, human activity has already eroded over 60% of NCPs beyond recovery (Maron et al., 2017). Negative externalities are high and rising: natural disasters have amounted to US$ 1.4 trillion in damages between 2005–15; air pollution led to a welfare loss of US$ 5 trillion per annum; degraded land potentially cost US$ 4–20 trillion per annum; etc. (Costanza et al., 2014; United Nations Environmental Programme (UNEP, 2019). Internalizing these negative externalities would bankrupt a green economy, while externalizing enables short-term profit maximization despite ongoing transgression of PBs (Claim B).

2.3. Summary Claim A

Claim A reveals the flawed narrative of continued economic growth as an escape from today’s socio-ecological crisis. First, Inclusive Growth is not redistributive: it increases the pie but does not re-slice it. Narrow ‘pro-poor’ incorporation has led to unequal outcomes: exclusion and adverse inclusion (Fig. 5). Second, Green Growth fails to make growth compatible with a limited ecospace: relative decoupling of economic and biophysical growth rates has not led, nor will it lead to absolute decoupling (Fig. 6). Optimizing growth is therefore not a solution to the ID challenges of social and environmental inclusion. Rather, growth must be problematized: development is qualitative change; growth is quantitative expansion—although the two are linked (Claim C).

3. Claim B. Redistributing for access is self-defeating

If we embrace justice principles for redistributing the ecospace (Gupta, 2016), then how and to what extent do we redistribute? Do we aim at securing access to eradicate the worst deprivations in line with Agenda 2030, or do we go further towards a just allocation of available resources? We define access as the ability of individuals to secure minimum resources for survival, either through markets, public services, welfare programs or community resources. Allocation goes further and refers to the distribution of resources, risks and responsibilities (Gupta and Lebel, 2020).

The Inclusive Growth narrative focuses on access through formal employment combined with pro-poor monetary policies (Claim A). ID broadens the focus by including non-monetary poverty (United Nations (UN, 2020) or social floors (Raworth, 2013, 2017), which can be clustered as access to goods and services (water, education, etc.), NCPs (clean air, pollinators, etc.) and decision-making (participation, procedural justice, etc.) (Gupta and Lebel, 2020).

Without undermining the importance of securing social floors, we now argue that prioritizing minimum access is self-defeating unless more ambitious redistribution efforts are pursued (Claim B). We support this claim by examining access to commodities (market goods and services) (Claim B1) and to NCPs (Claim B2).

3.1. Claim B1. Unequal distribution undermines access to commodities

3.1.1. Claim, grounds and warrant

The global food system illustrates how unequal allocation undermines access. The first Millennium Development Goal (MDG) called for halving undernourishment and claimed a 45% decline in the MDG period (Food and Agriculture Organization of the United Nations (FAO et al., 2015). However, undernourishment was defined as insufficient calorific intake lasting for one year or longer and only for a sedentary lifestyle which the poor cannot afford (Lappe et al., 2013; Pogge, 2016). Taking an ‘intense activity’ threshold, worldwide hunger headcount has been increasing (Hickel, 2017). Unequal allocation is in part responsible for this failure. Agricultural markets respond to purchasing power and steer production in malnourished regions towards prosperous consumer markets (Sen, 1983; Patel, 2009; Azizi, 2020). In an integrated world economy, unequal allocation undermines access to food—but also water, energy and other basics (Gupta and Azizi, 2020). This problem is reinforced by the ongoing widening of global income/wealth gaps (Claim A), but also by degraded local ecosystems and climate change (Claim B2) and the expansion of unregulated markets (Claim C).

Unequal allocation also undermines access to productive assets. To be excluded from the process of incorporation means not only to be ‘left behind’, but to ‘be pushed further behind’. For example, IVCs in Ethiopia tend to exclude asset-poor households (Claim A1) who then miss out on access to a range of newly-available resources (inputs, knowledge, credit, etc.). On top of that, they lose access to previously shared resources, e.g., land, labor, draft animals and equipment because ‘included’ households require those resources in the IVCs. By decimating informal in-kind exchange relationships, IVCs contributes to the poor abandoning their own production and joining an underpaid labor force (Gebru, 2019), which helps explain the rise of precarious informal employment (Claim A).

Thus, unequal allocation undermines access to consumer goods and productive assets. Incorporation into the formal economy is therefore not only exclusive and adverse (Claim A), but also potentially ‘invasive’ as it encroaches on informal independent production and drives people into informal dependent and underpaid waged-employment, which further undermines access. Without redistribution, efforts to guarantee minimum access remains an uphill battle.

3.1.2. Qualifier, backing and rebuttal

Our claim does not imply (a) that poverty will be reduced through income redistribution, as other cultural or political factors may trap people into poverty; or (b) that efforts towards minimum access should...
not be pursued from a rights perspective. The point is that both forms of redistribution (access and allocation) must happen at the same time.

Informality is easily condemned for failing to raise incomes above the IPL (International Labour Organisation (ILO, 2012), but the formal sector is in part responsible as the IVCs illustrate. To further back this argument, the formal sector actually encourages outsourcing and/or subcontracting to a precariously informal sector (Phillips, 2011; Breman, 2016; Williams and Lansky, 2013).

Several counter-arguments must also be tackled. Proponents of incorporation might argue that even if incorporation is adverse, the benefits outweigh the costs (e.g., the garment industry worker in Bangladesh would have been worse off without the opportunity). However, this perspective ignores how incorporation destroys informal alternatives (as illustrated with the food system). One might assume that we must step up our efforts to incorporate the poor more fairly. However, the current system will not allow that to happen effectively, e.g., when profit maximization seeks cost externalization (Claim C). Some might disagree with our starting point that Inclusive Growth narratives are narrowly focused on minimum access and social floors. Indeed, Agenda 2030 also aims at reducing inequality with SDG10 (United Nations General Assembly (UNGA, 2015). However, the target is a relative reduction which does not close the absolute income gap (Claim A), and there is no target for reducing inequality between countries.

3.2. Claim B2. Unequal distribution undermines access to ecospace

3.2.1. Claim, grounds and warrant

We now turn to the ecological side of the argument: how unequal allocation undermines access to the ecospace and its NCPs. The current distribution of the ecospace is deeply skewed. About 84% of the world’s farms control 12% of the arable land (<2 ha per farm), while the richest 1% control 65% of the land (>50 ha per farm) (International Assessment of Agricultural Knowledge, S. and T. for D. (IAASTD, 2019). In combination with income inequalities, ecospace inequality (in land, air, water, etc.) undermines access to NCPs that could otherwise support social floors. For example, livestock rearing takes up almost 80% of global agricultural land (Ritchie, 2017) for consumption by high-income Centers at the cost of NCPs for the Peripheries (Ritchie and Roser, 2017; Food and Agriculture Organization of the United Nations (FAO et al., 2016; World Health Organisation (WHO, 2018). Per capita benefits from land-use flow from Peripheries to Centers (Irigmam and Holmberg, 2016), as the market allocates commodities based on affordability (Claim B1). High-income countries thus use six times their bio-capacity share (World Wildlife Fund (WWF, 2016; Global Footprint Network (GFN, 2020), with urban areas in high income countries having an even higher per capita footprint (Pesaresi et al., 2016).

Access to NCPs is further threatened when growth creates scarcity, limits are approached and the costs of resource extraction go up. This drives the rich to grab and commodify previously free NCPs through privatization and commercial exploitation of lands (for cash crops), forests (for timber), waterways (for irrigation and industry) and other ecosystems. Not only are the income benefits of this growth unequally spread (Claim A), the private accumulation of the ecospace dispossesses the poor and hurts productive life outside of the formal economy: pastoralists lose access to grazing land, subsistence fisherfolk lose access to waterbodies, forest dwellers lose access to forest products, etc.

A similar logic applies to waste and pollution outflows (as opposed to resource inflows). As PBs are breached, increased clean-up costs are externalized through ‘pollution havens’ that undermine ecosystems and NCPs in the Peripheries (Cole, 2004; Candau and Diemensch, 2017). For example, Centre nations transfer socio-ecological burdens to the Peripheries through the export of plastic and electronic wastes (Cotta, 2020).

Transgressing PBs therefore triggers unjust impact allocation: environment-related disasters have affected 1.7 billion people between 2005-2015; air and water pollution are responsible for 8.4 million annual deaths; declining fish supplies threaten the protein security of 3.1 billion people; degraded land affects 3.2 billion poor farmers (United Nations Environmental Programme (UNEP, 2019). This adds environmental explanations to the earlier economic explanations for the Peripheries’ loss of access (Claim B1). The Centers are less affected as global supply chains can be redirected when local boundaries are breached. About 70% of the world’s poor do not have this flexibility, being directly dependent on NCPs (The Economics of Ecosystems and Biodiversity (TEEB, 2010), having lower adaptive capacity (Gupta et al., 2020) and having less access to welfare services to cushion the impacts (Claim C).

Thus, there are growing inequities: (1) allocation of and access to the ecospace and its NCPs, (2) impacts from a shrinking/degrading ecospace, and (3) capacity to adapt to and compensate for emerging environmental risks. These inequities result from deregulated markets in the context of growing inequality (Claim B1) as well as ecological factors. As we approach biophysical limits (Claim A), scarcity leads to higher extraction and clean-up costs. In an unequal world, this triggers resource grabs and negative externalities.

3.2.2. Qualifier, backing and rebuttal

There are other potential responses to limits besides privatization, which can also undermine access: exclusion and securitization. Impending resource constraints might trigger the monopolization of resources via Hardinian life-boat ethics of exclusion and the use of hegemonic power (Gupta, 2019). Increasingly, states make bilateral agreements with suppliers of strategic minerals, or refuse to export/share strategic resources (e.g., water, rare earths, etc.) that become securitized (Fischhendler and Katz, 2013; Gupta and Bosch, in press). These responses have exclusionary effects on Periphery nations. Within nations, such exclusionary approaches marginalize the poor and (illegal)
The call for re-allocation is not an appeal to the rich to be generous to the poor; it is a call for compensation of past and present injustices including: the unfair distribution of profit in global supply chains; the acquisitions of land, water and minerals through force or distress; and the increased exposure to risks through air, land, water pollution and biodiversity loss for which the poor are hardly responsible. When systems of appropriation undermine systems of provisioning (Fanning et al., 2020), exclusion becomes unbearable and incorporation (as wage-laborers, not as independent producers) increasingly inescapable. The Peripheries become trapped in market systems that threaten basic access (Claim B1).

Many perceive focus on overpopulation, or on the conflated forces of overpopulation plus overconsumption, as the driver for environmental scarcity (Meadows et al., 1972). However, scarcity is still primarily driven by a slow-growing population in the Centres for the satisfaction of boundless demands rather than by a fast-growing population in the Peripheries for the satisfaction of basic needs (Toth and Szigeti, 2016).

Thus, unless unequal allocation is reduced, access problems will escalate (Gupta and Lebel, 2020). First, incorporation processes reduce access to adequate and affordable commodities (e.g., by facilitating flows or resources towards higher purchasing powers and by decimating informal resource exchange) (Fig. 7). Second, in a shrinking ecospace, higher extraction and clean-up costs trigger privatization (e.g., resource grabbing) and negative externalities (e.g., waste dumping) that undermine access to essential NCPs and transfer risks to the Periphery (Fig. 8). ID relies on access as well as a just allocation of resources, responsibilities and risks. Allocation is politically challenging: a focus on redistribution policies at the national level, including cash transfers through income taxes, reallocating fossil-fuel subsidy or reallocating surplus military spending. Adopting those policies at the global level could take care of more than 92 % of the poverty gap (Hoy and Sumner, 2016).

The added environmental impact from achieving access must therefore be compensated by reductions elsewhere—and this must happen globally. As mentioned, achieving the social floor for income based on the IPL would already add climate impacts. Achieving this floor on the basis of a more convincing Ethical Poverty Line (EPL) (Claim A) would overshoot PBs by 64–166 % (Hickel, 2019b). With an IPL of $10 (2011 PPP), which is associated with permanent escape from poverty, only ~17 % of the global poverty gap could be covered through redistribution policies at the national level, including cash transfers through income taxes, reallocating fossil-fuel subsidy or reallocating surplus military spending. Adapting those policies at the global level could take care of more than 92 % of the poverty gap (Hoy and Sumner, 2016).

Claim C. Redistribution requires system change

Attempting to eradicate severe deprivations through minimum access is a never-ending struggle without equitable allocation of economic and ecological resources (Claim B). We submit that redistribution (towards just allocation) can only be achieved through system change (Claim C). We support this with two sub-claims: there will be no re-allocation without degrowth (Claim C1) and no degrowth without system change (Claim C2).

4.1. Claim C1. Redistribution requires degrowth

Building on planetary boundaries (Steffen et al., 2015) and social floors (Raworth, 2013), O’Neill et al. (2018) and Hickel (2019b) estimated the environmental pressure arising from achieving universal access. They conclude that realizing social floors for all without redistribution would further breach PBs. However, the authors observe that certain social floors (nutrition, energy, sanitation and income) could be met with relatively less biophysical pressure compared to others (democratic quality, equality, social support, secondary education and life satisfaction). For example, the social floor for income is achieved when 95 % of the population lives above the IPL of $1.90 (2015 PPP). The median level of CO2 emissions for countries achieving this social floor is 3.55 times higher than the allocated emissions threshold (Fig. 9). However, the median level of emissions for countries who meet the life satisfaction floor is 5.66 times higher (based on O’Neill et al., 2018).

Thus, the realization of social floors would result in further biophysical transgressions. The only way to achieve a good life for all within PBs is through greater global redistribution. In a limited ecospace, overshoot nations and populations must significantly reduce, i.e., degrow, their biophysical claims. This impacts not only on their consumption but also on their investment patterns (Claim C2).

4.1.1. Claim, grounds and warrant

Building on planetary boundaries (Steffen et al., 2015) and social floors (Raworth, 2013), O’Neill et al. (2018) and Hickel (2019b) estimated the environmental pressure arising from achieving universal access. They conclude that realizing social floors for all without redistribution would further breach PBs. However, the authors observe that certain social floors (nutrition, energy, sanitation and income) could be met with relatively less biophysical pressure compared to others (democratic quality, equality, social support, secondary education and life satisfaction). For example, the social floor for income is achieved when 95 % of the population lives above the IPL of $1.90 (2015 PPP). The median level of CO2 emissions for countries achieving this social floor is 3.55 times higher than the allocated emissions threshold (Fig. 9). However, the median level of emissions for countries who meet the life satisfaction floor is 5.66 times higher (based on O’Neill et al., 2018).

Thus, the realization of social floors would result in further biophysical transgressions. The only way to achieve a good life for all within PBs is through greater global redistribution. In a limited ecospace, overshoot nations and populations must significantly reduce, i.e., degrow, their biophysical claims. This impacts not only on their consumption but also on their investment patterns (Claim C2).

4.1.2. Qualifier, backing and rebuttal

To qualify our claim, the debate about whether or not the impacts of social floors will be considerable depends on the variable in question. For example, in terms of energy redistribution the added impact would not be that high (Oswald et al., 2021).

Not knowing the exact magnitudes of dangerous thresholds and limits (Claim A), we cannot know how much the Centers should...
downscale. However, the required level is likely to be higher than what has been suggested above. Without degrowth, universal access would already add significant impact. Since achieving access requires reallocation (Claim B), the degrowth imperative is even stronger. Fair allocation would add further impacts: humanity would need 3.13 Earths if no-one consumed less than the average Northern European today (Global Footprint Network (GFN, 2020)).

Some have counter-argued that if we redistribute income equally in a no-growth scenario, incomes in the Centres would have to be cut by about two-thirds, which would dramatically hurt workers standards of living (Milanović, 2017). However, the degrowth call is not for full equality, but for less inequality via redistribution (Gough, 2020).

Some might also counter-argue that downscaling consumption and investment in/by the Centres would threaten production, which largely occurs in the Peripheries. How this affects employment is an important question, but not a reason to dismiss degrowth. First, it would be wrong, a priori, to assume that the benefits of incorporation outweigh the costs (Claim B). Second, reduced overconsumption in/by the Centres could also free up resources to achieve social floors in the Peripheries. Aggregate economic growth flourishes through socio-ecological exploitation (Claim C2). The Centres must therefore not only reduce their consumption, but also their exploitative grip on the ecospace. Only then can Periphery nations claim a just share and (potentially) identify context-specific development routes that maximize well-being and preserve healthy ecosystems (Gupta, 2014; Gerber and Raina, 2018) “The real degrowth problem in the periphery is overcoming imperial linkages” (Magdoff and Foster, 2011:32).

Finally, a common critique is that degrowth is unrealistic. Degrowth is anything but straightforward as it challenges the fundamentals of deregulated markets and hegemonic discourses (Claim C2). However, it is the belief in unchecked growth that suffers from unrealistic expectations (Claim A).

4.2. Claim C2. Degrowth requires system change

4.2.1. Claim, grounds and warrant

The failures of Green and Inclusive Growth do not necessarily make growth directly responsible. However, we now argue that growth is a systemic goal and predicated on exploitation, expropriation and externalization.

In capitalist economies, agents compete for larger shares of the surplus, e.g., shareholders versus stakeholders; government taxes versus business profits; profits versus wages; profits versus interest payments; etc. (Eagleton, 2018). In this competition, it is politically easier to enlarge the pie than to redistribute it. Moreover, the obstruction of growth leads the current system into crisis (Latouche, 2009; Magdoff and Foster, 2011).

Several tendencies emerge as the system battles the obstacles to growth. First, poverty is (re)produced. Early capitalism resolved resource shortages through colonization, expropriation and privatization (Harvey, 2014), which still occur today in the global rush for land, water, genetic material, etc. (Romanin Jacur et al., 2015). While some expand and grab, others loose access to the ecospace (Claim B2). Second, financial wealth accumulates by appropriating the surpluses generated by direct producers (Harvey, 2014). To maximize this, manufacturing is automated or outsourced to countries with lower wages and legal standards (Eagleton, 2018). However, too much impoverishment backfires by weakening productivity and consumption (Eagleton, 2018). An exclusive focus on minimum wages and access therefore fits the capitalist framing of development; income and wealth distribution do not (Pasgaard and Dawson, 2019). Third, capitalism encroaches on alternative ways of creating, delivering and utilizing wealth, such as by states
deficit problems in Periphery economies that depend on the export of financialization, volatility of speculative capital and recurrent fiscal austerity (Claim A1). Weakened states cannot deliver services and increasingly depend on public-private partnerships, which further stimulates the profit-maximizing logic. This leads to a vicious circle where lean states promote themselves as tax havens and/or lower their environmental/labor standards in order to attract capital. Meanwhile, corporations increase their ability to externalize costs and minimize their liability for harm. These dynamics are both the cause and effect of an increased concentration of financial wealth (Claim A1) and of power over the global economy (Vitali et al., 2011). This imbalance subverts democratic processes through ever-stronger lobbies (Centre for Equity Studies (CES, 2016) and obstructs structural change.

Thus, the pursuit of economic growth is a systemic impulse in capitalism, and neoliberalism adds fuel to the fire. Any slow-down of accumulation is a potential crisis and is used to further weaken social and environmental standards. Unsafe and unjust growth is therefore an inherent propensity. A relatively small wealthy class perpetuates unequal distribution in a shrinking ecospace—not just through its own consumption footprint, but through the economic, financial, regulatory and political systems that this class reproduces. Degrowth therefore implies a post-capitalist transition (Feola, 2020).

4.2.2. Qualifier, backing and rebuttal

The wealthy class does not necessarily lack in goodwill (Hoek, 2018), but they operate in competitive trade and investment environments where there is little space to effectively tackle the systemic challenges outlined above. Meanwhile, the Peripheries are unable to demand redistribution against the interests of the powerful on which they depend, e.g., for employment or access to NCPs (Rammelt et al., 2014) or access to capital and markets (Ghosh, 2019) or in global treaty negotiations (Hickel, 2017).

As a further backing, the growth imperative also leads to increasing financialization, volatility of speculative capital and recurrent fiscal deficit problems in Periphery economies that depend on the export of primary commodities (Acosta, 2013).

A proposed alternative to a post-growth transition is to repeal neoliberalism and develop a more inclusive or progressive form of capitalism (Stiglitz, 2019). These proposals align closely with Inclusive and Green Growth, which have failed (Claim A). The fact that it has brought millions so much wealth, health and opportunities is a weak argument for preserving a system that simultaneously destroys the living conditions of a much larger group.

4.3. Summary Claim C

Even if Inclusive Growth could achieve universal access (which is doubtful, see Claims A and B), the accompanying resource demands would lead to further transgressions of the ecospace. Since Green Growth will not deliver absolute decoupling (Claim A), the imperative for redistribution of the limited ecospace implies downscaling biophysical throughput in (or by) the Centers and a redefinition of development in (or by) the Peripheries (Claim C1) (Fig. 10). However, degrowth is incompatible with the (neoliberal) capitalist impulse to grow. The system’s propensity to grow unequally and unsustainably hinders the downscaling that is required for a just allocation of the ecospace. Such downscaling therefore requires a fundamental systemic change through relational inclusiveness (Claim C2) (Fig. 11).

5. Conclusions

In this article, we have argued that Agenda 2030 rests on irreconcilable processes of economic growth (which builds on social exploitation, environmental destruction and political exclusion) and Inclusive Development (ID) (which calls for social, ecological and relational inclusion).

While the term ‘inclusive’ has been appropriated as ‘pro-poor’ in the capitalist growth narrative, we capture it back. From a post-growth perspective, ‘inclusive’ redefines and transforms ‘development’. We began arguing that the optimization of economic growth is failing. Inclusive and Green Growth do not promote socio-ecological inclusion and ignore relational inclusion. We have shown that addressing inclusion through ‘access’ policies without addressing the ‘re-allocation’ of resources is self-defeating as inequitable allocation of wealth and ecospace increasingly impoverishes the poor and transfers ecological risks to them. Pro-poor policies can therefore engender pro-rich outcomes. We then argued that a transition towards the achievement of social, ecological and relational inclusiveness implies a downscaling of overconsumption and overaccumulation by the Centers. This implication challenges how hegemonic structures promote a vicious cycle of lean states, privatization and externalization.

Finally, we have argued that relational inclusion is undermined because the Centers have no incentive for system change and because Periphery states have become captive, complicit or marginalized. There

Fig. 10. Redistribution requires degrowth.
is a structural imbalance not just in human living conditions, but also in the power to decide over those conditions (Galtung, 1971). The only way forward is when post-growth science and social movements converge to demand system change on the streets and in the courts (Escobar, 2015; Demaria and Kothari, 2017; Gerber and Raina, 2018).

Author statement

The authors were both involved in the data collection/analysis and in designing/writing the article. The funding source had no involvement in this.

Declaration of Competing Interest

The authors report no declarations of interest

Acknowledgements

This publication is part of a Future Earth’s Earth Commission’s work on planetary targets. The authors would like to thank the following funders – the Global Challenges Foundation, the Global Environment Facility – CG 110221, Tiina and Antti Herlin Foundation, Gordon and Betty Moore (10045), MAVA Foundation (20065), OAK Foundation (OFIF-20-103) and Porticus (GR-071952). We also thank the editor and two anonymous reviewers for their constructive comments.

References

Acosta, A., 2013. Extractionsim and neoextractivism: two sides of the same curse. In: Lang, M., Mokrani, D. (Eds.), Beyond Development: Alternative Visions from Latin America. Transnational Institute, Amsterdam.

Adelman, I., Morris, C.T., 1973. Economic Growth and Social Equity in Developing Countries. Stanford University Press.

Alvaredo, F., Chancel, L., Piketty, T., Saez, E., Zucman, G., 2018. World Inequality Report 2018. Belknap Press.

Attanasi, O., Frayne, C., 2006. Do the Poor Pay More. https://ecommons.cornell.edu/bitstream/handle/1813/55021/2006_WP6_Attanasio_Frayne.pdf?sequence=1.

Azizi, D., 2020. Access and allocation in food governance, a decadual view 2008–2018. Int. Environ. Agreem.: P. 20 (2020), 323–338. https://doi.org/10.1007/s10784-020-09481-9.

Bergmann, L., Holmberg, M., 2016. Land in motion. Ann. Am. Assoc. Geogr. 106 (4), 932–956. https://doi.org/10.1080/00045608.2016.1145537.

Box, K., Gupta, J., 2019. Stranded assets and stranded resources: implications for climate change mitigation and North-South issues. Energy Res. Soc. Sci. 56, 101215 https://doi.org/10.1016/j.erss.2019.05.025.

Brand, U., Boos, T., Brad, A., 2017. Degrowth and post-extractivism: two debates with suggestions for the inclusive development framework. Curr. Opin. Environ. Sustain. 24, 36–41. https://www.sciencedirect.com/science/article/pii/S187734517300179.

Brennan, J., 2016. At Work in the Informal Economy of India: a Perspective from the Bottom up. Delhi. https://ideas.repec.org/b/cox/oobooks/9780199467716.html.

Bringezu, S., Schütz, H., Steger, S., Baudisch, J., 2004. International comparison of resource use and its relation to economic growth: the development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Ecol. Econ. 51 (1), 97–124. https://doi.org/10.1016/j.ecolecon.2004.04.010.

British Petroleum (BP), 2020. Statistical Review of World Energy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

Bunker, S.G., 1996. Raw material and the global economy: overtimes and distortions in industrial ecology. Soc. Nat. Resour.: Int. J. 9 (4), 419–429. https://doi.org/10.1080/08941929609380984.

Cairo-i-Cèspedes, G., Castells-Quintana, D., 2016. Dimensions of the current systemic crisis: capitalism in short circuit. Prog. Dev. Stud. 16 (1), 1–23. https://doi.org/10.1080/14649934.2015.10982206.

Campbell-Johnston, K., Cate, J., Efird-Petrovic, M., Gupta, J., 2019. City level circular transitions: barriers and limits in Amsterdam, Utrecht and The Hague. J. Clean. Prod. 235, 1252–1259. https://doi.org/10.1016/j.jclepro.2019.06.106.

Candau, F., Diemetsch, E., 2017. Pollution haven and corruption paradigm. J. Environ. Manage. 85 (2017), 171–192. https://doi.org/10.1016/j.jeem.2017.05.005.

Centre for Equity Studies (CES), 2016. India Exclusion Report 2016. Yoda Press.

Cobham, A., Janzé, P., 2018. Global distribution of revenue loss from corporate tax avoidance: re-estimation and country results. J. Int. Dev. 30 (2), 206–232. https://doi.org/10.1002/jid.3348.

Cole, M.A., 2004. Trade, the pollution haven hypothesis and the environmental Kuznets curve: examining the linkages. Ecol. Econ. 48 (1), 71–81. https://doi.org/10.1016/j.ecolecon.2003.09.007.

Costanza, R., de Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S., Turner, R.K., 2014. Changes in the global value of ecosystem services. Glob. Environ. Change. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002.

Cotta, B., 2020. What goes around, comes around? Access and allocation problems in Global North–South waste trade. Int. Environ. Agreem. P. 20 (2020), 255–269. https://doi.org/10.1007/s10784-020-09479-3.

de Wit, M., Hoogzaad, J., von Daniels, C., 2020. Circularity Gap Report 2020. Circle Economy.

Demaria, F., Kothari, A., 2017. The Post-Development Dictionary agenda: paths to the pluriverse. Third World Q. 38 (12), 2588–2599.

Díaz, S., Pasqual, U., Stenseke, M., Martín-López, B., Watson, R., Molnár, Z., Hill, R., Chan, K., Baste, I., Brauman, K., 2018. Assessing nature’s contributions to people. Science 359 (6373), 270–272. https://doi.org/10.1126/science.aap8826.

Eagleton, T., 2018. Why Marx Was Right. Yale University Press.

Edward, P., 2006. The ethical poverty line: a moral quantification of absolute poverty. Third World Q. 27 (2), 377–393. https://doi.org/10.1080/01436590500432739.

Escobar, A., 2015. Degrowth, postdevelopment, and transitions: a preliminary conversation. Sustain. Sci. 10 (3), 451–462.

European Commission (EC), 2020. Green Growth and Circular Economy. https://ec.europa.eu/environment/green-growth/index_en.htm.

Fanning, A.L., O’Neill, D.W., Bürch, M., 2020. Provisioning systems for a good life within planetary boundaries. Glob. Environ. Change 64, 102135. https://doi.org/10.1016/j.gloenvcha.2020.102135.

Foça, G., 2020. Capitalism in sustainability transitions research: a critical review. Environ. Innov. Soc. Transit. 35 (2020), 241–250. https://doi.org/10.1016/j.eis.2019.08.005.

Fischhendler, I., Katz, D., 2013. The use of “security” jargon in sustainable development discourse: evidence from UN Commission on Sustainable Development. Int. Environ. Agreem. P. 13 (2013), 321–342. https://doi.org/10.1007/s10784-012-9192-2.

Food and Agriculture Organization of the United Nations (FAO), 2020. World Soil Day - 5 December 2019 Overview and Key Results. FAO.

Food and Agriculture Organization of the United Nations (FAO), International Fund for Agricultural Development (IFAD), World Food Programme (WFP), 2016. The State of Food Insecurity in the World 2015. Food and Agriculture Organisation of the United Nations (FAO), International Fund for Agricultural Development (IFAD), World Food Programme (WFP), 2016. The State of Food and Agriculture Organisation.

Galtung, J., 1971. Structural theory of imperialism. J. Peace Res. 8 (2), 81–117. https://doi.org/10.1177/0017908620900201.

Fig. 11. Degrowth requires system change.
Rammelt, C., Manud, Z., Boes, J., Manud, F., 2014. Toxic injustice in the Bangladesh water sector: a social inequalities perspective on arsenic contamination. Water Policy 16 (S2), 121–136. https://doi.org/10.1080/13653085.2014.103.

Rammelt, C., Leung, M., Gebra, K., 2018. The exclusive nature of inclusive productive employment in the rural areas of northern Ethiopia. Work Employm. Soc. 32 (6), 1044–1060. https://doi.org/10.1177/0950017017716882.

Rao, V., 2009. Price heterogeneity and “real” inequality: a case study of prices and poverty in rural South India. Rev. Income Wealth 46 (2), 201–211.

Ravorth, K., 2013. Defining a safe and just space for humanity. In: W. I. (Ed.), State of the World 2013, pp. 28–38. https://link.springer.com/chapter/10.5822/978-1-61991-458-1_3.

Ravorth, Kate, 2017. Doughnut Economics: Seven Ways to think like a 21st-Century Economist. Chelsea Green Publishing.

Research, Degrowth, 2010. Degrowth declaration of the Paris 2008 conference. J. Clean.Prod. 18 (6), 523-524. https://doi.org/10.1016/j.jclepro.2010.01.012.

Reuter, T., 2017. Seeds of life, seeds of hunger: corporate agendas, seed sovereignty and agricultural development (Indonesia, East Timor). Anthropol. Food. http://journals.openedition.org/soi/8135.

Ritchie, H., 2017. How much of the World’s Land Would We Need in Order to Feed the Global Population with the Average Diet of a Given Country? - Our World in Data. https://ourworldindata.org/agricultural-land-by-global-diets.

Ritchie, H., Roer, M., 2017. Meat and Dairy Production - Our World in Data. https://ourworldindata.org/meat-production.

Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin III, F., Lambin, E., Lenton, T., Scheffer, M., Folke, C., Schellnhuber, H., 2009. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14 (2), 1–32 (32p).

Romanin Jacur, F., Bonfanti, A., Seatzu, F., 2015. Natural Resources Grabbing: an International Law Perspective. Brill Nijhoff.

Roth, W., 1965. The Stages of Economic Growth: a Non-Communist Manifesto. Cambridge University Press.

Ruth-Lovell, S., Doyle, D., Hawkins, K., 2019. Consequences of Populism Memo for The Team Populism.

Schwartz, K., Gupta, J., Tutsausua, M., 2018. Inclusive development and urban water services. Habitat Int. 73, 96–100. https://doi.org/10.1016/j.habitatint.2018.02.006.

Sen, A., 1983. Poverty and Famines: An Essay on Entitlement and Deprivation. Oxford University Press.

Shaoohu, S., Ravallion, M., 2012. An Update to the World Bank’s Estimates of Consumption Poverty in the Developing World. Development Research Group, World Bank.

Stiglitz, J., 2012. The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach. Conclusions and Recommendations of TEEB, Press, Progress.

Toulmin, S., 1958. The Uses of Argument. Cambridge University Press.

United Nations (UN), 2020. Goal 1: End Poverty in All Its Forms Everywhere – United Nations Sustainable Development. https://www.un.org/sustainabledevelopment.

United Nations Development Programme (UNDP), 2020. Inclusive Sustainable Development. https://www.undp.org/content/undp/en/home/2030-agenda-for-sustainable-development/sustainable-development.html.

United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP), 2020. Green Growth and Green Economy. https://www.unescap.org/our-work/environment-development/green-growth-green-economy/about.

United Nations Environmental Programme (UNEP), 2011. In: Fischer-Kowalski, M., Svitil, M. (Eds.), Decoupling: Natural Resource Use and Environmental Impacts from Economic Growth. UNEP.

United Nations Environmental Programme (UNEP), 2018. Inclusive Wealth Report 2018. UNEP.

United Nations Environmental Programme (UNEP), 2019. Global Environment Outlook 6. Cambridge University Press.

United Nations Environmental Programme (UNEP), International Resource Panel (IRP), 2020. Global Material Flows Database. https://www.resourcepanel.org/global-matериал-flows-database.

United Nations General Assembly (UNGA), 2015. Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1. Division for Sustainable Development Goals.

United Nations University World Institute for Development Economics Research (UNU-WIDER), 2021. World Income Inequality Database. https://www.wider.unu.edu/database/wid.

Van Gem, S., 2017. Beyond Buzzwords: What is –inclusive Development-. INCLUDE. Vitali, S., Glattfelder, J., Battiston, S., 2011. The network of global corporate control. PLoS One 6 (10), 1–36. https://doi.org/10.1371/journal.pone.0025995.

Wade, R., 2004. Is globalization reducing poverty and inequality? World Dev. 32 (4), 567-589. https://doi.org/10.1016/j.wde.2003.09.005.

Woodward, D., Abdallah, S., 2010. Redefining Poverty: A Rights Based Approach. New Internationalist.

Woodward, D., Abdallah, S., 2010. Redefining Poverty: A Rights Based Approach. New Internationalist.

World Bank (WB), 2012. From Growth to Inclusive Green Growth: The Economics of Sustainable Development. http://www.worldbank.org/en/news/feature/2012/05/09/growth-to-inclusive-green-growth-economics-sustainable-development.

World Bank (WB), 2020. World Development Indicators. http://data.worldbank.org/indicator/NY.GDP.MKTP.CD.

World Bank (WB), 2021. PovcalNet: An Online Analysis Tool for Global Poverty Monitoring. http://research.worldbank.org/PovcalNet/home.aspx.

World Health Organisation (WHO), 2018. Obesity and Overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.

World Wildlife Fund (WWF), 2016. Living Planet Report 2016. Risk and Resilience in a New Era. WWF.

Woodward, D., Abdallah, S., 2010. Redefining Poverty: A Rights Based Approach. New Internationalist.

Wright, E., 2018. The continuing relevance of the Marxist tradition for transcending capitalism. TripleC 16 (2), 490–500. https://doi.org/10.3126/triplec-v16i2.968.

World Bank (WB), 2020. World Development Indicators. http://data.worldbank.org/indicator/NY.GDP.MKTP.CD.

World Bank (WB), 2021. PovcalNet: An Online Analysis Tool for Global Poverty Monitoring. http://research.worldbank.org/PovcalNet/home.aspx.

World Commission on Environment and Development (WCED), 1987. In: Brundtland, G. (Ed.), Our Common Future. Oxford University Press.

World Health Organisation (WHO), 2018. Obesity and Overweight. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.

World Wildlife Fund (WWF), 2016. Living Planet Report 2016. Risk and Resilience in a New Era. WWF.