Fermi LAT Observation of Diffuse Gamma Rays Produced Through Interactions Between Local Intertellar Matter and High-Energy Cosmic Rays

A. A. Abd
M. Ackermann
M. Ajello
W. B. Atwood
M. Axelsson
L. Baldini
J. Ballet
G. Barbiellini
D. Bastieri
B. M. Baughman
K. Bechtol
R. Bellazzini
B. Berenji
E. Bloom
E. Bonamente
A. W. Borghaus
J. Bregeon
A. Brem
M. Briggs
P. Bruel
T. H. Burnett
G. A. Caliandaro
R. A. Cameron
P. A. Caraveo
P. Carlson
J. M. Casandjian
C. Cecchi
O. Celik
A. Chekhtman
C. C. Cheung
S. Ciprini
R. Claus
J. Cohen-Tanugi
J. Conrad
P. Cruel
S. Cutini
C. D. Dermer
A. de Angelis
F. de Palma
S. W. Digel
E. do Couto e Silva
P. S. Drell
R. Dubois
D. Dumora
C. Farnier
C. Favuzzi
S. J. Fegan
W. B. Focke
M. Frail
Y. Fukazawa
S. Funk
P. Fusco
F. Gargano
D. Gasparrini
N. Gehrels
S. Germani
B. Giebel
N. Giglietto
F. Giordano
T. Glanzman
G. Godfrey
I. A. Greiner
M.-H. Grondin
J. E. Grove
L. Guillemeot
S. Guiriec
Y. Hanabata
A. K. Harding
M. Hayashida
E. Hays
R. E. Hughes
G. Jóhannesson
A. S. Johnson
R. P. Johnson
W. N. Johnson
T. Kamae
H. Katagiri
N. Kawai
M. Kerr
J. Knödlseder
M. L. Kocian
F. Kuehn
M. Kuss
J. Lande
L. Latronico
M. Lemoine-Goumard
F. Loparco
B. Lott
M. N. Lovellette
P. Lubrano
A. Makeev
M. Nanziotta
J. E. McEnery
C. Meurer
P. F. Michelson
W. Mitthumsiri
T. Mizuno
A. A. Moiseev
C. Monte
M. E. Monzani
A. Morselli
I. V. Moskalenko
S. Murgia
P. L. Nolan
J. P. Norris
E. Nuss
T. Ohsugi
A. Okumura
N. Omodei
E. Orlando
J. F. Ormes
M. Ozaki
D. Paneque
J. H. Panetta
P. Parent
M. Pepe
M. Pesce-Rollins
F. Piron
P. Pohl
T. A. Porter
S. Raino
R. Rando
M. Razzano
A. Reimer
R. Reposeur
S. Ritz
L. S. Rochester
A. Rodriguez
F. Ryde
H. F. W. Sadrozinski
D. Sanchez
A. Sander
P. M. Szarkinson
T. L. Schalk
A. Sellerholm
D. A. Smith
P. D. Smith
G. Spandre
P. Spinelli
J. L. Starck
F. W. Stecker
M. S. Strickman
A. W. Strong
D. J. Suson
H. Tajima
H. Takahashi
T. Takahashi
T. Tanaka
J. B. Thayer
J. G. Thayer
D. J. Thompson
L. Tibaldo
D. F. Torres
G. Tosti
A. Tramacere
Y. Uchiyama
T. L. Usher
V. Vasiliev
N. Vilchez
V. Vitale
A. P. Waite
B. L. Winet
K. S. Wood
T. Ylinen
M. Ziegler

1 Department of Physics Division, Naval Research Laboratory, Washington, DC 20375, USA
2 National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001, USA
3 W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA
4 Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
5 Department of Astronomy, Stockholm University, SE-106 91 Stockholm, Sweden
6 The Oskar Klein Centre for Cosmo Particle Physics, AlbaNova, SE-106 91 Stockholm, Sweden
7 Istituto Nazionale di Fisica Nucleare. Sezione di Pisa, I-56127 Pisa, Italy
8 Laboratoire Aim. CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, 91191 Gif sur Yvette, France
9 Instituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy
10 Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
11 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
12 Dipartimento di Fisica “G. Galilei,” Università di Padova, I-35131 Padova, Italy
13 Center of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
14 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy
15 Dipartimento di Fisica dei Materiali, Università degli Studi di Perugia, I-06123 Perugia, Italy
16 Dipartimento di Fisica “M. Merlini” dell’Università e del Politecnico di Bari, I-70126 Bari, Italy
17 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
18 Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau, France
19 Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
20 INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano, Italy
21 Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm, Sweden
22 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
23 George Mason University, Fairfax, VA 22030, USA
24 Laboratoire de Physique Théorique et Astroparticules, Université Montpellier 2, CNRS/IN2P3, Montpellier, France
25 Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
26 Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma), Italy
27 Dipartimento di Fisica, Università di Udine and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Gruppo Collegato di Udine, I-33100 Udine, Italy
28 Université de Bordeaux, Centre d’Etudes Nucléaires Bordeaux Gradignan, UMR 5797, Gradignan, 33175, France
29 CNRS/IN2P3, Centre d’Etudes Nucléaires Bordeaux Gradignan, UMR 5797, Gradignan, 33175, France
30 Department of Physical Sciences, Hiroshima University, Hiroshima, 739-8526, Japan; mizuno@hep1.hep.hiroshima-u.ac.jp
31 University of Maryland, College Park, MD 20742, USA
32 University of Alabama in Huntsville, Huntsville, AL 35899, USA
33 Department of Physics, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551, Japan
34 Cosmic Radiation Laboratory, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
35 Centre d’Etude Spatial des Rayonnements, CNRS/UPS, BP 44346, F-30128 Toulouse Cedex 4, France
36 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste, Italy
37 Center for Research and Exploration in Science and Space Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
38 Istituto Nazionale di Fisica Nucleare, Sezione di Roma “Tor Vergata,” I-00133 Roma, Italy
Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse γ-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200° to 260° and latitude $|b|$ from 22° to 60°) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of γ-ray point sources and inverse Compton scattering are estimated and subtracted. The residual γ-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated γ-ray emissivity is $(1.63 \pm 0.05) \times 10^{-29}$ photons s$^{-1}$sr$^{-1}$ H$^{-1}$atom$^{-1}$ and $(0.66 \pm 0.02) \times 10^{-26}$ photons s$^{-1}$sr$^{-1}$ H$^{-1}$atom$^{-1}$ above 100 MeV and above 300 MeV, respectively, with an additional systematic error of $\sim 10\%$. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within $\sim 10\%$.

Key words: cosmic rays – diffuse radiation – gamma rays: observations

1. INTRODUCTION

The diffuse high-energy γ-ray emission ($E \geq 30$ MeV) has been interpreted to be a superposition of γ-rays produced via interactions between cosmic rays (CRs) and interstellar matter, inverse Compton (IC) scattering of interstellar soft photons off CR electrons, and the extragalactic diffuse γ-ray emission. The first component, if distinguished from the others, will enable using high-energy γ-ray observations for the study of the distribution of CRs and the interstellar medium. The distribution of neutral atomic hydrogen (H\textsc{i}) is traced by 21 cm line surveys and the molecular hydrogen distribution is derived indirectly using 2.6 mm line observations of carbon monoxide (CO). The total gas column density can also be traced indirectly from extinction and reddening by dust. Thus, the spectrum and the flux of CRs can be obtained from sufficiently sensitive observations of high-energy γ-rays. The observation of diffuse γ-rays away from the Galactic plane (Galactic longitude $|b| \geq 10^\circ$) is suitable for studying local CRs, since diffuse γ-rays in such regions are less affected by contamination from strong point sources, and most of the gas along the line of sight is local. The SAS-2 (e.g., Fichtel et al. 1978) and COS-B observations (e.g., Lebrun et al. 1982) indicated a correlation between the γ-ray intensities and the total gas column densities at medium Galactic latitudes. Sreekumar et al. (1998) and Strong et al. (2004) showed a good correlation between the γ-ray intensities and model calculations in their analyses of the extragalactic diffuse emission observed by EGRET onboard the Compton Gamma-Ray Observatory. Despite these early studies, the flux and spectrum of local CRs deduced from γ-ray intensity remain uncertain, due to the possible contamination from unresolved point sources and uncertainties in modeling the IC contribution because of the large-scale height of CR electrons and the reprocessing of the interstellar radiation by dust. Although CR nuclei in the vicinity of the solar system are thought to have spectral distributions and intensities similar to those measured at the Earth as reported by a number of γ-ray observations (e.g., Hunter et al. 1997; Digel et al. 2001), data above 1 GeV, which are crucial to distinguish CR nuclei spectra from that of CR electrons, have not been good enough due to the limited photon statistics and relatively limited energy coverage of these early missions.

The situation has improved significantly with the recent launch of the Fermi Gamma-ray Space Telescope on 2008 June 11. The Fermi LAT (Large Area Telescope) has a sensitivity that is more than an order of magnitude better than that of EGRET and enables resolving point sources and studying the diffuse γ-rays with unprecedented sensitivity. Recent advances of a CR propagation code GALPROP (e.g., Strong & Moskalenko 1998), which had been developed through comparisons with the EGRET data, allow us to predict and subtract IC emission and correlate γ-ray emission with interstellar matter more accurately.

In this paper, we present Fermi LAT observations of diffuse γ-rays in a mid-Galactic latitude region in the third quadrant (Galactic longitude l from 200° to 260° and $|b|$ from 22° to 60°). As discussed in the following sections, most of the gas along the line of sight is local, nearby on the scale of the Milky Way. The contribution from IC emission is only about 10% of the total diffuse emission and the LAT has already resolved five times as many γ-ray point sources as previous missions in this region. These facts enable us to evaluate the local CR flux and the spectrum with small systematic uncertainty.

52 Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.
2. OBSERVATION AND DATA REDUCTION

The LAT is the main instrument of the Fermi Gamma-ray Space Telescope. It consists of 4×4 modules (towers) built with tungsten foils and silicon microstrip detectors to measure the arrival directions of incoming γ-rays, and a hodoscopic cesium iodide calorimeter to determine the photon energies. They are surrounded by 89 segmented plastic scintillators serving as an anticoincidence detector to reject charged-particle events. Details of the LAT instrument and prelaunch expectations of the performance can be found in Atwood et al. (2009). The excellent sensitivity of the LAT is exemplified by initial publications such as Abdo et al. (2008).

Routine science operations with the LAT began on 2008 August 4. We have accumulated events from 2008 August 4 to 2009 January 31 to study diffuse γ-rays. During this time interval the LAT was operated in sky survey mode nearly all of the time; in this observing mode, the LAT scans the sky, obtaining a complete sky coverage every two orbits and relatively uniform exposures over time. We used the standard LAT analysis software, ScienceTools, version v9r11, and applied the following event selection criteria: (1) events have the highest probability of being photons, i.e., they are categorized as so-called diffuse class (Atwood et al. 2009), (2) the reconstructed zenith angles of the arrival direction of photons are selected to be less than 105°, in order to exclude periods where the Earth enters the LAT field of view, and (3) the center of the LAT field of view is within 39° from the zenith in order not to include the data taken in the pointed observation mode, because it has increased contamination from Earth albedo γ-rays. We also eliminated the period of time during which the LAT detected two bright GeV-emitting GRBs, i.e., GRB080916C (Abdo et al. 2009a) and GRB081024B (Omodei et al. 2008). We then generated count maps (using gbin in ScienceTools) and exposure maps (using gtxepscube) in 13 logarithmically sliced energy bins from 100 MeV to 9.05 GeV. A post-launch response function P6_V3_DIFFUSE, which was developed to account for the γ-ray detection inefficiencies that are correlated with trigger rate, was used in exposure calculations. These count and exposure maps were prepared in Cartesian coordinates in 0.5×0.5 binning, and then transformed into HEALPix (Górski et al. 2005) equal area sky maps of order 7. They are used below to correlate the γ-ray intensities with the column densities of atomic gas along the line of sight; the γ-ray intensity is calculated as the ratio of the counts and the exposures for each energy bin.

3. DATA ANALYSIS

3.1. Subtraction of Inverse Compton and Point Sources

To distinguish γ-rays produced in the interstellar medium from others, we referred to the GALPROP prediction of IC emission and an LAT source list for 6 month data. This list was produced using a similar procedure used to obtain the LAT Bright Source List described by Abdo et al. (2009b). It covers the same period of time as that of our data set and contains 740 point sources with significance more than 5σ. We adopted positions and spectral parameters from this list (single power-law model in 100 MeV–100 GeV) to estimate and subtract the photons from point sources to diffuse γ-ray emission. GALPROP (e.g., Strong & Moskalenko 1998) is a set of programs to solve the CR transport equation within our Galaxy and predict the γ-ray emission produced via interactions of CRs with interstellar matter (nucleon–nucleon interaction and electron bremsstrahlung) and soft photons (IC scattering). IC emission is calculated from the distribution of (propagated) electrons and the interstellar radiation fields developed by Moskalenko et al. (2006). Here we adopted the IC model map with version 54.5gXvarh7S56, which was used in another Fermi LAT paper to study the diffuse γ-ray emission in $10^\circ \leq |b| \leq 20^\circ$ (Abdo et al. 2009d; Porter et al. 2009). The CR electron spectrum is adjusted to agree with the directly-measured pre-Fermi spectrum in the GALPROP model. In order to minimize the uncertainty of the contribution from IC emission on the diffuse γ-ray spectrum, we selected sky regions away from the Galactic center; the lower CR electron fluxes and interstellar radiation field will result in dimmer IC emission than that toward the Galactic center. We chose the third quadrant, Galactic longitude l from 200° to 260° and the Galactic latitude b from -60° to -22° and from 22° to 60°. The region is free of known large molecular clouds; Orion molecular clouds (Orion A and Orion B) and Monoceros molecular cloud complexes are located in the region l from 200° to 220° and b from -10° to -20°, and the Taurus/Perseus molecular clouds are in l from 150° to 185° (e.g., Dame et al. 2001; Digel et al. 1999; Digel & Grenier 2001). Therefore the

53 Available from the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc/)
54 http://healpix.jpl.nasa.gov.
55 internally available to the LAT team.
56 The GALPROP galdef ID of this version is available at the Web site http://galprop.stanford.edu.
The third EGRET catalog (Hartman et al. 1999) in this region of interest, more than five times as many sources in the LAT 6 month source list in our region (nine sources). The diffuse γ-ray spectrum, after masking sources with circular regions of 1° radius. IC emission predicted by GALPROP (54_5gXvarS) and the residual point source contributions estimated from spectral parameters given in the LAT 6 month source list are shown by dotted and solid histograms, respectively. The horizontal and vertical error bars indicate the energy ranges and 1σ statistical errors, respectively.

In Figure 1, we show γ-ray count maps above 100 MeV. There are 52 sources in the LAT 6 month source list in our region of interest, more than five times as many sources in the third EGRET catalog (Hartman et al. 1999) in this region (nine sources). The diffuse γ-ray spectrum, after masking sources with circular regions of 1° radius, is shown in Figure 2. Atomic hydrogen column density maps of the same region are given in Figure 3 (see Section 3.2 for details). In Figure 2 and figures shown hereafter (Figures 4–6), the γ-ray intensities or CR fluxes multiplied by E^2 (where E is the center of each energy bin in logarithmic scale) are presented. Also presented in Figure 2 is the contribution from IC emission predicted by GALPROP, and the spillover from point sources outside the mask regions estimated (using gtmodel) by the spectral parameters given in the source list. Both the flux of estimated IC emission and the residual point source contribution are less than 15% of the total diffuse emission above 100 MeV. We thus conclude that the uncertainty due to the IC and point source contributions is negligible after we subtract them from γ-ray data. Hereafter we analyze diffuse emission after masking point sources and subtracting IC emission and the residual contributions from point sources.

3.2. Atomic Hydrogen Map

Column densities $N(\text{H}_1)$ of atomic hydrogen gas were calculated from existing radio surveys of the 21 cm line of H$_1$. We used the Leiden/Argentine/Bonn (LAB) Survey which merges the Leiden/Dwingeloo Survey (Hartman & Burton 1997) with the Instituto Argentino de Radioastronomía Survey (Arnal et al. 2000; Bajaja et al. 2005) and covers the entire sky. We applied an optical depth correction under the assumption of a uniform spin temperature of 125 K and the cosmic microwave background intensity at 1420 MHz of 2.66 K (e.g., Hunter et al. 1994). The derived H$_1$ column density maps of our region of interest are shown in Figure 3. Although major CO surveys such as the one by Dame et al. (2001) do not cover the region we analyzed, no large molecular cloud is known there and the molecular gas contribution is expected to be small due to the moderately high Galactic latitude. See the discussion by Dame et al. (2001) for the completeness of their survey. Hereafter we assume that all the gas is in atomic form and traced by 21 cm radio surveys. Column densities of H$_1$ in our region range from 1×10^{20} cm$^{-2}$ up to 18×10^{20} cm$^{-2}$ and the optical depth correction is rather small; the increase of the column densities from those for the optically thin case (infinite spin temperature) is $\lesssim 10\%$ in most directions. On the assumption of a Galactic rotation curve by Clemens (1985) for the case of $R_0 = 8.5$ kpc and $v_0 = 220$ km s$^{-1}$ (where R_0 and v_0 are the Galactocentric radius and the orbital velocity of the local group of stars, respectively), we infer that, in almost every direction in our region, more than 80% of the H$_1$ along the line of sight is within 1 kpc of the solar circle. Furthermore, by referring to the vertical density distribution of H$_1$ given by Dicky & Lockman (1990), we can conclude that more than 85% of atomic gas in the line of sight is within 1 kpc of the solar system for $|b| \geq 22^\circ$.

3.3. Correlation of γ-ray Intensities and Gas Column Densities

The LAT point-spread function (PSF) strongly depends on the photon energy (e.g., Atwood et al. 2009) and the energy dependence of the angular size needs to be taken into account in data analysis. We convolved the map of H$_1$ column densities obtained as described in Section 3.2 using the GaDGET package (Ackermann et al. 2008) with the LAT PSF for each of our energy bins; in the convolution we used the all sky map to take account of the contribution from outside the region for the analysis. Since the typical angular size of the variation of column densities is a few degrees (see Figure 3), only maps for the lowest energy bands (less than a few hundred MeV) are noticeably smeared.

The γ-ray intensities, after masking point sources with 1° circular regions and subtracting the IC emission and the residual...
point source contributions, are correlated with the H\(_i\) column densities in each energy band. Both the \(\gamma\)-ray intensity map and the H\(_i\) column density map were prepared in HEALPix equal area sky maps of order 7, whose pixel size in solid angle is 6.39 \(\times\) 10\(^{-5}\) steradian and is close to that of 0.5 \(\times\) 0.5 deg\(^2\). We found a linear relationship between \(N(\text{H} \text{I})\) and residual \(\gamma\)-ray intensities for energies from 100 MeV to 10 GeV. Above 10 GeV, the correlation is limited by photon statistics. Figure 4 shows the correlation between \(\gamma\)-ray intensities and the H\(_i\) column densities for four representative energy bands. The linear correlation indicates that point source contributions are successfully subtracted and residual \(\gamma\)-rays mostly originate from interstellar atomic gas through interactions with CRs, plus isotropic diffuse component (extragalactic diffuse \(\gamma\)-rays, the residual particle background, and a possible residual of IC emission).

By fitting the correlation in each energy band with a linear function using a \(\chi^2\) minimization, we obtained the intensity of the isotropic diffuse component and the emissivity of atomic gas as the offset and the slope, respectively, as summarized in Table 1. Making the mask region larger, to 3\(^\circ\) radius, gives consistent fit parameters within statistical errors, confirming that the contribution of point sources is well modeled and subtracted. The obtained isotropic diffuse component (offset column in Table 1) agrees within 10\%–20\% with the “Isotropic” component given in Abdo et al. (2009d; see also Porter et al. 2009) which investigates the medium-latitude diffuse emission. We note that the isotropic diffuse components obtained here and in Abdo et al. (2009d; see also Porter et al. 2009) include the residual background and thus should be regarded as an upper limit of the true extragalactic diffuse \(\gamma\)-ray emission. We also note that the adopted IC model affects the spectral shape and the intensity of our isotropic component, whereas it does not affect the emissivity significantly; modifying the IC emission by \(\pm 50\%\) changes the offsets by 6\%–7\%, but alters the slopes less than 3\% except the lowest two energy bands. A detailed study of the extragalactic diffuse emission and the residual background using data for a larger sky area is underway and will be published elsewhere (A. A. Abdo et al. 2009, in preparation).

So far, we have been neglecting the contribution from CR interactions with ionized hydrogen (H\(_{\text{II}}\)). The low-density ionized gas is unobservable, but can be inferred from dispersion measures of pulsar signals in the radio band. According to the model of Cordes & Lazio (2002), in the region we are studying, \(N(\text{H} \text{II})\) is only (1–2) \(\times\) 10\(^{20}\) cm\(^{-2}\) and fairly smooth. We thus conclude that the contribution from ionized gas does not affect the obtained emissivity significantly.

4. DISCUSSION

With the approach described in Section 3, we succeeded in decoupling diffuse \(\gamma\)-rays related to the local atomic gas from point sources, the IC emission, and the isotropic diffuse component. The derived differential \(\gamma\)-ray emissivity from...
the local atomic gas is given in Figure 5. The systematic uncertainty of the effective area of the response we used (P6_V3_DIFFUSE) is estimated to be 10%, 5%, and 20% at 100 MeV, 560 MeV, and 10 GeV, respectively, and depend on the energy linearly in a logarithmic scale. This systematic uncertainty is comparable with the statistical error, and is indicated by the shaded area in the figure. The integral emissivity above 100 MeV and 300 MeV is \((1.63 \pm 0.05) \times 10^{-26} \text{ photons s}^{-1} \text{sr}^{-1} \text{ H}^{-\text{atom}^{-1}}\) and \((0.66 \pm 0.02) \times 10^{-26} \text{ photons s}^{-1} \text{sr}^{-1} \text{ H}^{-\text{atom}^{-1}}\), respectively, with an additional systematic uncertainty of \(~10\%\). These values can be compared with those reported by early measurements. SAS-2 (Fichtel et al. 1978) obtained about \(3 \times 10^{-26}\) photons s\(^{-1}\)sr\(^{-1}\) H–atom\(^{-1}\) and COS-B (Lebrun et al. 1982) reported \((1.67 \pm 0.24) \times 10^{-26}\) photons s\(^{-1}\)sr\(^{-1}\) H–atom\(^{-1}\) above 100 MeV. The EREG analysis of various directions toward large molecular clouds (Digel et al. 2001) gives \((1.65–2.4) \times 10^{-26}\) photons s\(^{-1}\)sr\(^{-1}\) H–atom\(^{-1}\) and \((0.71–1.0) \times 10^{-26}\) photons s\(^{-1}\)sr\(^{-1}\) H–atom\(^{-1}\) above 100 MeV and 300 MeV, respectively. While most of these early measurements are consistent with the LAT data, the emissivity obtained by the LAT is much improved in photon statistics and energy range.

We can give constraints on the local CR spectrum by comparing the obtained emissivity with the model calculation of interactions between CRs and interstellar matter. Many evaluations of the \(\gamma\)-ray production due to CR interactions in the interstellar medium have been made, including Stecker (1973, 1989), Dermer (1986a, 1986b), Bertsch et al. (1993), Dermer (1986a, 1986b), Bertsch et al. (1993), Mori (1997), Kamae et al. (2006), and Huang et al. (2007). In the calculation of neutral pion production and decay \(\gamma\)-rays, most authors have computed the \(\gamma\)-ray flux produced through interactions of high-energy CR protons with target protons. The effects of heavy nuclei in both CRs and the target matter are usually taken into account as a so-called nuclear enhancement factor \(\epsilon_M\) to multiply the proton–proton \(\gamma\)-ray yield. Although the predicted \(\gamma\)-ray spectra from proton–proton interactions assuming the same CR proton spectrum agree well \((\leq10\%)\) among these works (e.g., Kamae et al. 2006), the nuclear enhancement factors differ by up to \(~30\%\); the factors range from 1.45 to 1.80–2.0 as compiled by Mori (2009). Among them, Dermer (1986a, 1986b) gives the lowest \(\epsilon_M\) of 1.45 and Mori (2009) gives the highest \(\epsilon_M\) of 1.84 at the CR proton kinetic energy of 10 GeV. His higher value of \(\epsilon_M\) is attributed to the adoption of recent CR spectral formulae by Honda et al. (2004) and the inclusion of nuclei heavier than He in both the interstellar medium and the CR spectra. We thus regard \(\epsilon_M\) by Mori (2009) as the most reliable.

In calculating the neutral pion production, we used the proton–proton interaction formalism by Kamae et al. (2006). They gave parameterized formulae of the \(\pi^0\) inclusive cross section and decay \(\gamma\)-ray spectra for arbitrary proton kinetic energies from 0.488 GeV to 512 TeV. We adopted the proton local interstellar spectrum (LIS) from the GALPROP model with S4_5gXvarh7S and calculated the \(\gamma\)-ray spectrum from nucleon–nucleon interactions using formulae given by Kamae et al. (2006) under the assumption of the nuclear enhancement

Table 1

A Summary of Fit Parameters with 1 Sigma Statistical Errors

Energy (GeV)	Offset (10\(^{-4}\) MeV\(^2\) s\(^{-1}\) cm\(^{-2}\) sr\(^{-1}\) MeV\(^{-1}\))	Slope (10\(^{-24}\) MeV\(^2\) s\(^{-1}\) sr\(^{-1}\) MeV\(^{-1}\))	\(\chi^2\) dof	Data/Model counts
0.10–0.14	15.40 ± 0.54	1.04 ± 0.14	21.90/13	11799/11678
0.14–0.20	17.10 ± 0.40	1.67 ± 0.10	18.12/14	27891/27738
0.20–0.28	16.70 ± 0.36	1.91 ± 0.09	13.47/14	31718/31564
0.28–0.40	15.83 ± 0.36	2.11 ± 0.10	16.92/14	28987/28850
0.40–0.56	13.81 ± 0.39	2.33 ± 0.10	6.65/14	22718/22073
0.56–0.80	12.57 ± 0.41	2.20 ± 0.11	16.17/15	16137/16063
0.80–1.13	11.44 ± 0.44	2.17 ± 0.12	12.26/15	11421/11368
1.13–1.60	10.23 ± 0.49	1.88 ± 0.13	9.06/14	7364/7327
1.60–2.26	9.25 ± 0.54	1.72 ± 0.15	13.16/14	4765/4733
2.26–3.20	8.44 ± 0.58	1.15 ± 0.16	10.56/12	2764/2747
3.20–4.53	7.12 ± 0.64	1.10 ± 0.17	15.07/11	1733/1712
4.53–6.40	6.44 ± 0.75	1.12 ± 0.21	11.35/11	1158/1144
6.40–9.05	5.51 ± 0.77	0.71 ± 0.21	9.92/9	678/664

Notes.

* Degree of freedom.

* Data and model total counts after masking point sources with circular regions of 1\(^{\circ}\) radius. We believe that the small \((\leq1\%)\) excesses of the data counts over the model counts are due to unresolved point sources or interstellar matter not traced by 21 cm line surveys.
no known large molecular cloud. Most of the atomic hydrogen is within 1 kpc of the solar system, and thus the region is suitable for studying the γ-ray emissivity of the local atomic gas and CR spectra in the neighborhood of the solar system. Thanks to the excellent performance of the LAT and recent developments of the CR propagation code and the interstellar radiation field model in GALPROP, we reliably estimated and subtracted the contribution from point sources and IC emission. The residual γ-ray intensities exhibit a linear relationship with the atomic gas column densities from 100 MeV to 10 GeV, indicating that non-isotropic γ-rays are produced through interactions of CRs with interstellar atomic gas. The measurement of the emissivity of local atomic hydrogen has already surpassed those by past missions in photon statistics and the energy range. It agrees with the prediction from CR spectra assumed, indicating that the CR nuclei spectra in the vicinity of the solar system in regions analyzed are close to the LIS inferred from direct measurements at the Earth within \sim10%. Low energy CR electron/positron spectra are suggested to be compatible with our assumption.

The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase from the following agencies is also gratefully acknowledged: the Istituto Nazionale di Astrofisica in Italy and the K. A. Wallenberg Foundation in Sweden.

Some of the results in this paper have been derived using the HEALPix (Górski et al. 2005) package.
REFERENCES

Abdo, A. A., et al. 2008, Science, 322, 1218
Abdo, A. A., et al. 2009a, Science, 323, 1688
Abdo, A. A., et al. 2009b, ApJS, 183, 46
Abdo, A. A., et al. 2009c, Phys. Rev. Lett., 102, 181101
Abdo, A. A., et al. 2009d, Phys. Rev. Lett., submitted

Ackermann, M., Jøhannesson, G., Digel, S., Moskalenko, I. V., Porter, A., Reimer, O., & Strong, A. 2008, in AIP Conf. Proc. 1085, High Energy Gamma-ray Astronomy, ed. F. A. Aharonian, W. Hofmann, & F. Rieger (Melville, NY: AIP), 763
Alcaraz, J., et al. 2000a, Phys. Lett. B., 472, 215
Alcaraz, J., et al. 2000b, Phys. Lett. B., 484, 10
Arnal, E. M., Bajaja, E., Larrarte, J. J., Morras, E., & Pöppel, W. G. L. 2000, A&A, 142, 25
Arwood, W. B., et al. 2009, ApJ, 697, 1071
Bajaja, E., Arnal, E. M., Larrarte, J. J., Morras, R., Pöppel, W. G. L., & Kalberla, P. M. W. 2005, A&A, 440, 767
Barwick, S. W., et al. 1998, ApJ, 498, 779
Bertsch, D. L., Dame, T. M., Fichtel, C. E., Hunter, S. D., Sreekumar, P., Stacy, J. G., & Thaddeus, P. 1993, ApJ, 416, 587
Clemens, D. P. 1985, ApJ, 295, 422
Cordes, J. M., & Lazio, T. J. W. 2002, arXiv:astro-ph/0207156
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
Dermer, C. D. 1986a, ApJ, 307, 47
Dermer, C. D. 1986b, A&A, 157, 223
Dicky, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
Digel, S. W., & Grenier, A. 2001, in AIP Conf. Proc. 587, Gamma-Ray Astrophysics, ed. S. Ritz, N. Gehrels, & C. R. Shrader (Melville, NY: AIP), 538
Digel, S. W., Aprile, E., Hunter, S. D., Mukherjee, R., & Xu, F. 1999, ApJ, 520, 196
Digel, S. W., Grenier, I. A., Hunter, S. D., Dame, T. M., & Thaddeus, P. 2001, ApJ, 555, 12

Fichtel, C. E., Simpson, G. A., & Thompson, D. J. 1978, ApJ, 222, 833
Gleeson, N., & Axford, W. I. 1968, ApJ, 154, 1011
Görski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, B., & Bartelmann, M. 2005, ApJ, 622, 759
Hartman, R. C., et al. 1999, ApJS, 123, 79
Hartmann, D., & Burton, W. B. 1997, Atlas of Galactic Neutral Hydrogen (Cambridge: Cambridge Univ. Press)
Honda, M., Kajita, T., Kasahara, K., & Midorikawa, S. 2004, Phys. Rev. D, 70, 043008
Huang, C.-Y., Park, S.-E., Pohl, M., & Daniels, C. D. 2007, Astropart. Phys., 27, 429
Hunter, S. D., Digel, S. W., de Geus, E. J., & Kanbash, G. 1994, ApJ, 436, 216
Hunter, S. D., et al. 1997, ApJ, 481, 205
Kamae, T., Carlsson, N., Mizuno, T., Abe, T., & Koi, T. 2006, ApJ, 647, 692
Koch, H. W., & Motz, J. W. 1959, Rev. Mod. Phys., 31, 920
Lebrun, F., et al. 1982, A&A, 107, 390
Mori, M. 1997, ApJ, 478, 225
Mori, M. 2009, Astropart. Phys., 31, 341
Moskalenko, I. V., Porter, T. A., & Strong, A. W. 2006, ApJ, 640, 155
Omodei, N., et al. 2008, GRB Coordinates Network, 8407
Porter, T., Moskalenko, I. V., Strong, A. W., Orlando, E., & Bouchet, L. 2008, ApJ, 682, 400
Porter, T., et al. 2009, arXiv:0907.0294
Sanuki, T., et al. 2000, ApJ, 545, 1135
Shikaze, Y., et al. 2007, Astropart. Phys., 28, 154
Sreekumar, P., et al. 1998, ApJ, 494, 523
Stecker, F. W. 1973, ApJ, 185, 499
Stecker, F. W. 1989, in Cosmic Gamma Rays, Neutrinos and Related Astrophysics, ed. M. M. Shapiro & J. P. Wefel (Dordrecht: Kluwer), 85
Strong, A. W., & Moskalenko, I. V. 1998, ApJ, 509, 212
Strong, A. W., Moskalenko, I. V., & Reimer, O. 2000, ApJ, 537, 763
Strong, A. W., Moskalenko, I. V., & Reimer, O. 2004, ApJ, 613, 956