Genomewide gene-associated microsatellite markers for the model invasive ascidian, *Ciona intestinalis* species complex

YAPING LIN, YIYONG CHEN, WEI XIONG and AIBIN ZHAN

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China

Abstract

The vase tunicate, *Ciona intestinalis* species complex, has become a good model for ecological and evolutionary studies, especially those focusing on microevolution associated with rapidly changing environments. However, genomewide genetic markers are still lacking. Here, we characterized a large set of genomewide gene-associated microsatellite markers for *C. intestinalis* spA (= *C. robusta*). Bioinformatic analysis identified 4654 microsatellites from expressed sequence tags (ESTs), 2126 of which successfully assigned to chromosomes were selected for further analysis. Based on the distribution evenness on chromosomes, function annotation and suitability for primer design, we chose 545 candidate microsatellites for further characterization. After amplification validation and variation assessment, 218 loci were polymorphic in at least one of the two populations collected from the coast of Arenys de Mar, Spain (N = 24–48), and Cape Town, South Africa (N = 24–33). The number of alleles, observed heterozygosity and expected heterozygosity ranged from 2 to 11, 0 to 0.833 and 0.021 to 0.818, and from 2 to 10, 0 to 0.879 and 0.031 to 0.845 for the Spanish and African populations, respectively. When all microsatellites were tested for cross-species utility, only 60 loci (25.8%) could be successfully amplified and all loci were polymorphic in *C. intestinalis* spB. A high level of genomewide polymorphism is likely responsible for the low transferability. The large set of microsatellite markers characterized here is expected to provide a useful genomewide resource for ecological and evolutionary studies using *C. intestinalis* as a model.

Keywords: biological invasion, expressed sequence tags, invasive species, microevolution, microsatellite, transferability, tunicate

Received 18 March 2015; revision received 23 September 2015; accepted 21 October 2015

Introduction

In the past three decades, the introduction and spread of nonindigenous species (NIS) at a global scale have dramatically increased, mainly owing to anthropogenic activities such as those associated with global trade (e.g. Carlton & Ruiz 2005; Hulme 2009) and aquaculture (e.g. Lin et al. 2015). Numerous NIS have successfully crossed biogeographical barriers formed over millions of years, colonized a variety of new habitats, and become naturalized or even invasive in local environments (e.g. Therriault & Herborg 2008; Zhan et al. 2010; Richardson & Rejmánek 2011). Invasive species encounter high selective pressures as they rapidly spread throughout varying environments. The change of environmental conditions during biological invasions can be orders of magnitude higher and/or faster than what species would experience due to natural processes in their native habitats (Valentine et al. 2007; Therriault & Herborg 2008). Consequently, successful invaders offer great opportunities to understand rapid microevolution in response to changing environments in the wild.

The study of microevolutionary processes associated with rapidly changing environments in the wild represents one of the major challenges in ecological and evolutionary studies, especially those aiming to reveal the genetic basis of microevolution using wild populations (Gienapp et al. 2008; Hansen et al. 2012). Although signatures of microevolutionary processes are clearly visible in many adaptive traits, it is still difficult to link directional or disruptive changes to selection caused by environmental changes, mainly owing to numerous factors such as variable selection across different life stages and generations (e.g. Björklund et al. 2009; Collins & de Meaux 2009; Alía et al. 2014). In addition, environmental conditions can be complex and variable in time and space, leading to a varying degree of selective pressures
on populations (e.g. Charmantier & Garant 2005). Moreover, different genotypes may have different interactions with environments, making the evaluation of genotype–environment interaction extremely complicated in a context of rapidly changing environments (see review by Procaccini et al. 2011). Therefore, the selection of a good model, as well as sound experimental design, is crucial for the study of the genetic basis of rapid microevolution in the wild.

The vase tunicate, *Ciona intestinalis* species complex, represents a good model for the study of microevolution associated with rapidly changing environments in the wild (Procaccini et al. 2011; Zhan et al. 2015). Phylogenetic and phylogeographical studies have demonstrated that *C. intestinalis* is a species complex consisting of at least four morphologically cryptic but genetically distinct species (spA-D; Caputi et al. 2007; Nydam & Harrison 2007; Zhan et al. 2010). Further analyses suggested that *C. intestinalis* species complex might have radiated sometime during the late Miocene in the brackish Sarmatian or Pontian seas (Zhan et al. 2010). While *C. intestinalis* spC and spD largely remain restricted to their native ranges in the Mediterranean Sea and Black Sea, respectively, highly invasive species including *C. intestinalis* spA (= *C. robusta*; Brunetti et al. 2015) and spB have disjunct global distributions (Caputi et al. 2007; Nydam & Harrison 2007; Zhan et al. 2010). Since the 1930s, these two invasive species have rapidly spread and successfully colonized habitats with dramatically different environmental conditions. For example, they can survive at a wide range of water temperatures from −1 to 35 °C and salinities from 12 to 40 ‰ (Dybern 1967; Carver et al. 2003; Therriault & Herborg 2008). In addition, *C. intestinalis* has a small genome (<160 MB), and the whole genome of spA has been sequenced and assembled (Dehal et al. 2002; Satou et al. 2008). The rapid spread globally, wide distribution in dramatically different environments, and its small genome makes *C. intestinalis* a good model to answer many fundamental questions associated with rapid microevolution at the genome level (Satoh et al. 2003; Procaccini et al. 2011). However, genomewide genetic markers are still lacking in *C. intestinalis*.

Here, we aimed to develop genomewide microsatellite markers for the model invasive ascidian *C. intestinalis*. Compared to microsatellites derived from genomic resources (i.e. genomic microsatellites), microsatellites mined from expressed sequence tags (ESTs; i.e. EST-microsatellites) have several advantages such as relatively high transferability among related species, a low level of null alleles, and linkage to genes under selection (see review by Ellis & Burke 2007). Consequently, in this study we mined *C. intestinalis* spA ESTs to identify microsatellites and then assigned all microsatellites back to chromosomes based on the genome assembly version 2.0 at the Joint Genome Institute (JGI) website and the KH assembly of Satou et al. (2008). Based on the evenness of distribution of microsatellites on chromosomes, functional annotation and suitability for primer design, we chose a set of 545 microsatellites across the whole genome. We further characterized the polymorphism of the candidate microsatellite loci using two populations: one was collected from a representative location of the likely evolutionary origin of *C. intestinalis* while the other was sampled from the recently invaded range. In addition, we tested the cross-species utility of the characterized microsatellite markers in another invasive species of *C. intestinalis* species complex, *C. intestinalis* spB.

Materials and methods

Data mining, annotation and microsatellite selection

We downloaded all EST sequences of *C. intestinalis* spA from the Joint Genome Institute (JGI) website (http://genome.jgi.doe.gov/Cioin2/Cioin2.download.ftp.html). All downloaded EST sequences were clustered using CD-HIT-EST (Huang et al. 2010) with the sequence identity parameter of 95% to rule out redundant sequences. Nonredundant EST sequences were mined for microsatellites using sciroko version 3.4 (Kofler et al. 2007) with the parameters of seven repetitions for di-, five repetitions for tri-, and four repetitions for tetra- and hexanucleotide repeats.

For putative function determination and annotation, EST-bearing microsatellite sequences were subjected to BLASTX and BLASTN against the NCBI databases. Sequences with sufficient flanking regions and known functions were preferentially selected for mapping on chromosomes of *C. intestinalis*. The well assembled genome (i.e. genome assembly version 2.0, http://genome.jgi.doe.gov/pages/blast.jsf?db=Cioin2) and the KH assembly by Satou et al. (2008) were employed as the reference for mapping the chromosomal distribution using BLAST. The chromosomal locations of microsatellites were drawn using software MAPCHART version 2.2 (Voorrips 2002). EST-bearing microsatellite sequences successfully assigned to chromosomes were preferentially used in this study. Based on the distribution pattern, especially evenness within and among chromosomes, we chose candidate microsatellites for primer design, validation and polymorphism assessment.

Microsatellite validation and polymorphism assessment

All selected sequences were subjected to PCR primer design using Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA, USA): primer length...
was between 19 and 25 bp with an expected product size between 100 and 400 bp. All selected microsatellites were amplified at a range of annealing temperatures (45–60 ºC) in four individuals and checked in 2% agarose gels. The microsatellites that showed appropriate amplification were further subjected to polymorphism assessment using two populations collected from the coast of Arenys de Mar, Spain (N = 24–48) and Cape Town, South Africa (N = 24–33). Based on our phylogenetic and phylogeographical analyses, the Spanish population is one representative of the likely native range of C. intestinalis whereas the South African population represents the recently invaded range (Zhan et al. 2010). Genomic DNA was extracted from approximately 10 mg of siphon tissues according to the method of Waters et al. (2000). DNA concentration and quality was assessed using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

PCR was carried out using a three-primer system according to Schuelke (2000). All forward primers were 5’-tailed with the M13(-29) forward sequence (5’-CACGACGTGTAACACGAC-3’) and used in combination with an M13 primer of the same sequence but 5’-labelled with one of the four fluorescent dyes: 6-carboxyfluorescein (6-FAM), hexachlorofluorescein (HEX), carboxytetramethylrhodamine (TMR) or carboxy-X-rhodamine (ROX). The PCR amplification was carried out in 96-well PCR plates with 12.5 µL reaction volume containing approximately 40 ng of genomic DNA, 1 × PCR buffer, 0.2 mM of each dNTP, 1.5 mM of Mg²⁺, 0.5 pmol M13-tailed forward primer, 1 pmol reverse primer and 1 pmol fluorescently labelled M13 primer, and 0.25 unit of Taq DNA polymerase (Takara Bio Inc.). The cycling PCR profile consisted of an initial denaturation at 95 ºC for 5 min, followed by 35 cycles of 95 ºC for 30 s, a locus-specific annealing temperature (Appendices S1 and S2, Supporting Information) for 30 s, and 72 ºC for 30 s, with a final extension at 72 ºC for 5 min. Amplified fragments were separated using an ABI 3730xl automated sequencer (Applied Biosystems, Foster City, CA, USA) with GeneScan™,500 LIZ™ as the internal size standard (Applied Biosystems). The alleles were scored using GeneMapper™ software version 4.0 (Applied Biosystems).

Diversity indices including the number of alleles (A), observed heterozygosity (H₀) and the expected heterozygosity (Hₑ) were calculated using FSTAT version 2.9.3.2 (Goudet 2001). The presence of null allels was evaluated using the software MICRO-CHECKER version 2.2.0 (Van Oosterhout et al. 2004). The probability of significant deviation from Hardy–Weinberg equilibrium (HWE) was assessed using the Markov chain-based method (Guo & Thompson 1992) implemented in GENEPOP version 3.4 (Raymond & Rousset 1995). Significance criteria were adjusted for the number of simultaneous tests using the standard Bonferroni correction.

Cross-species utility

All selected microsatellite loci for C. intestinalis spA were tested for cross-species utility in C. intestinalis spB. The validation and polymorphism assessment procedures were performed using the same protocols as those for C. intestinalis spA mentioned above. The polymorphism assessment was based on a population (N = 24) collected from the coast of Salzhaff, Germany (Zhan et al. 2010).

Results

Data mining and distribution of microsatellites on chromosomes

Among the 684 393 EST sequences deposited at the JGI website, we identified 155 591 nonredundant ESTs after removing redundant sequences using CD-HIT-EST. A total of 4654 (3.0%) microsatellite-containing EST sequences were identified based on the mining criteria from all nonredundant ESTs (Table 1). In general, the occurrence frequency of microsatellites decreased as the motif repeat number increased across all types of motifs (Fig. 1a), and 90.5% of microsatellites had fewer than 12 repeats (Fig. 1b).

The most abundant repeat motif was tri- (48.8%), followed by di- (25.5%) and pentanucleotide (12.6%; Table 1 and Fig. 2). Among all repeat motifs, AAC was the most abundant, accounting for 23.2% and 47.5% of all identified microsatellites and trinucleotides, respectively (Fig. 2). Also, the dinucleotide AT showed a high abundance, accounting for 13.9% and 54.6% of all repeat motifs and dinucleotides, respectively (Fig. 2). By contrast, the GC motif was extremely rare, only accounting for 0.4% of all dinucleotide motifs and only 0.1% of all motifs (Fig. 2).

Table 1 Statistics for microsatellites (SSRs) in expressed sequence tags (ESTs) of Ciona intestinalis spA

Motif	No. of SSRs	Percentage (%)	Average repeat number	No. of SSRs per Mbp
Dinucleotide	1188	25.5	13.2	12.6
Trinucleotide	2270	48.8	6.1	24.1
Tetranucleotide	362	7.8	5.2	3.8
Pentanucleotide	586	12.6	3.6	6.2
Hexanucleotide	248	5.3	3.6	2.6
Total	4654	100	–	9.9
For all 4654 microsatellite-containing ESTs, we removed 1211 sequences with short flanking region(s), as these sequences were not suitable for primer design. Afterwards, the remaining 3533 sequences were subjected to chromosomal location assignment based on both the genome assembly version 2.0 at the Joint Genome Institute website (http://genome.jgi.doe.gov/Cioin2/Cioin2.home.html) and Satou et al.'s (2008) KH assembly available from the Ensembl website (http://asia.ensembl.org/Ciona_intestinalis/Info/Index?db=core). A total of 3043 (86.1%) sequences showed significant hits, 2181 and 862 of which were successfully assigned to chromosomes and scaffolds defined by the genome assembly version 2.0, respectively. For the 2181 sequences successfully mapped on chromosomes, we removed significant clusters by selection of representative sequences in each cluster (25 kb segment as a window for checking clusters). Finally, 1065 candidate microsatellite-containing sequences on chromosomes were selected for further analysis (Appendix S3A, Supporting Information). The number of candidate microsatellites on chromosomes 1–14 was 135, 93, 122, 74, 80, 37, 95, 91, 124, 54, 61, 27 and 72, respectively (Appendices S3A and S4, Supporting Information; chromosome 11 was not included in the genome assembly version 2.0). In general, these microsatellites were relatively evenly distributed on chromosomes (Appendices S3 and S4, Supporting Information). When all 3533 sequences were analysed based on the KH assembly, a total of 3441 sequences (96.8%) showed significant hits, 2126 of which were successfully mapped to chromosomes (Appendix S3B, Supporting Information), and 242, 182, 181, 138, 136, 69, 195, 202, 230, 117, 135, 141, 37 and 121 were relatively evenly distributed on chromosomes 1–14 (Figs 3 and 4).

Microsatellite selection and validation

Based on the distribution pattern on each chromosome, we chose a total of 441 microsatellites that were suitable for primer design. In addition, we randomly chose 104 microsatellite-containing ESTs that were assigned to scaffolds for primer design. The selected 545 candidate microsatellites covered all available 14 chromosomes (except for chromosome 11, Figs 3 and 4; Appendix S3) and all repeat motifs including 112, 381, 45, 1 and 6 loci for di-, tri-, tetra-, penta- and hexanucleotides, respectively.

After validation tests, a total of 432 (79.3%) loci could be amplified successfully, 308 of which showed amplicons <550 bp. For the remaining 124 microsatellites, amplicons were larger than 550 bp, which were likely due to the presence of intron(s) in genomic DNA. Because the amplicons were too large to be genotyped using the 3730xl genetic analyzer, we therefore removed them from further assessment. Further tests on the 308 selected loci showed that PCR amplification of 75 loci was unstable and/or amplified poorly across multiple individuals in the populations surveyed. We discarded these loci from our microsatellite panel, leaving us with 233 loci for further consideration (Fig. 4; Appendix S4, Supporting Information).
Polymorphism assessment and functional annotation

After all 233 selected loci were subjected to polymorphism assessment, 218 loci (93.6%) were polymorphic in at least one of the two populations (Appendix S1, Supporting Information). The average number of alleles/locus was comparable in the two populations, 3.48 alleles/locus for the Spanish population versus 3.49 alleles/locus for the African population. The number of alleles ranged from two to 11 and two to 10 for the Spanish and African populations, respectively. The observed heterozygosity (H_o) varied from 0 to 0.833 for the Spanish population and 0 to 0.879 for the African population, whereas expected heterozygosity (H_e) ranged from 0.021 to 0.818 for the Spanish population and 0.031 to 0.845 for the African population (Appendix S1, Supporting Information). After Bonferroni correction, 44 loci (20.2%) and 32 loci (14.7%) were found to depart significantly from Hardy–Weinberg equilibrium in Spanish and African populations, respectively, 44 and 31 of which exhibited heterozygote deficiency with MICRO-CHECKER tests suggesting null alleles for 44 and 29 of them (Appendix S1, Supporting Information).

After all 218 polymorphic microsatellite-containing ESTs were subjected to BLAST searches against NCBI databases, a total of 193 (88.5%) microsatellite-containing EST sequences were successfully annotated and covered a wide range of genes with various functions (Appendix S1, Supporting Information). In summary, BLASTX/TBLASTX recovered 128 significant matches to the nonredundant protein database, while BLASTN showed significant hits for 65 of the remaining 90 (Appendix S1, Supporting Information).

Cross-species utility

When all 233 microsatellites were subjected to the cross-species utility test in C. intestinalis spB, we detected a low level of transferability. Only 60 loci (25.8%) could be successfully amplified and all loci were polymorphic in C. intestinalis spB (Appendix S2, Supporting Information). The number of alleles varied from two to 15 alleles per locus, with an average of 4.2 alleles/locus. The

![Fig. 3](image-url) The total number of microsatellites, markers selected for assessment, and polymorphic markers located on each chromosome of Ciona intestinalis spA. Chromosomal location was assessed by BLAST against the KH assembly of Satou et al. (2008) (but see Appendix S4, Supporting Information, for the chromosomal location defined based on the genome assembly version 2.0 at the Joint Genome Institute (JGI) website).
Fig. 4 The chromosomal locations of the 177 gene-associated polymorphic microsatellite markers for *Ciona intestinalis* spA. Numbers on the left represent the chromosomal location for each microsatellite marker based on the KH assembly of Satou *et al.* (2008). The names of microsatellite markers were labelled on the right.
observed heterozygosity (H_e) ranged from 0 to 0.864, whereas expected heterozygosity (H_e) ranged from 0.082 to 0.900 (Appendix S2, Supporting Information). A total of 19 loci (31.7%) were found to deviate significantly from Hardy–Weinberg equilibrium after Bonferroni correction for multiple tests, all of which showed heterozygote deficiency and the presence of null alleles based on the MICRO-CHECKER test (Appendix S2, Supporting Information).

Discussion

Owing to the unique evolutionary position between vertebrates and invertebrates and ease of manipulation, C. intestinalis has served as a model system in evolutionary and developmental biology for more than one century (see Procaccini et al. 2011 and references therein). Recent findings, especially those in invasion biology, have shown that C. intestinalis can successfully colonize habitats with dramatically different environmental conditions, such as a wide range of salinities and temperatures (Dybern 1967; Carver et al. 2003; Therriault & Herborg 2008). In addition, C. intestinalis possess broad tolerance of ecophysiological parameters, such as eutrophic conditions following anthropization (Procaccini et al. 2011). All these findings have promoted C. intestinalis as a good model for studying the genetic basis of microevolution in rapidly changing environments (Procaccini et al. 2011; Zhan et al. 2015). To facilitate ecological and evolutionary studies using C. intestinalis as a model, we developed a large set of genomewide gene-associated microsatellite markers in this study.

Microsatellite development from ESTs versus genome sequencing data

Genomic resources have increased as sequencing technologies have rapidly developed over the past decade. Many sequencing-based projects, such as those for sequencing transcriptomes and whole genomes, have been completed or are under way in a large number of species. Sequences derived from these projects have proven to be a valuable resource for development of molecular markers such as microsatellites. A large number of microsatellites have been successfully developed by mining data derived from completed sequencing-based projects in numerous species such as turbot Scophthalmus maximus (Navajas-Pérez et al. 2012) and Brassica crops (Shi et al. 2014).

When comparing ESTs with genomic data especially those derived from whole-genome sequencing, usually ESTs are preferentially used to develop microsatellite markers (see review by Ellis & Burke 2007). EST-microsatellites have many advantages over genomic microsatellites, such as a high level of cross-species portability and cleaner results for scoring owing to fewer null alleles (see review by Ellis & Burke 2007). For example, EST-microsatellites were found to be more than three times as transferable across species as compared with genomic microsatellites in Helianthus spp. (Pashley et al. 2006). These advantages of EST-microsatellites largely come from the conserved nature of flanking regions of EST-microsatellites (see review by Li et al. 2002 and references therein). Consistent with many studies, the EST-microsatellite markers developed in this study showed a low level of null alleles (Zhan et al. 2010, 2012). Under the circumstance of a highly polymorphic genome of C. intestinalis, such a low level of null alleles is derived from both careful selection and assessment of markers (such as removal of loci with poor amplification) and from the strategy of microsatellite development, that is microsatellite development through ESTs, rather than genomic resources (see below the section for more detail).

For C. intestinalis, sequence data from both whole-genome sequencing and EST projects are available (http://genome.jgi.doe.gov/Cioin2/Cioin2.home.html). Compared to microsatellites derived from ESTs, microsatellites mined from the whole-genome sequencing project were more abundant and relatively easily located on chromosomes. However, our trials showed that more than 68.5% of genomic microsatellites had poor amplification success across multiple individuals (48 of 70 loci randomly selected and tested, unpublished data). Such poor amplification was improved in EST-microsatellites, accounting for 24.4% of total characterized microsatellites (i.e. 75 of 308 loci, these loci were removed from our microsatellite panel, see the Results section). The poor amplification problem is likely due to a high level of genomewide polymorphism in C. intestinalis: as high as 1.2% based on single nucleotide polymorphisms and insertions/deletions as estimated by the whole-genome sequencing project (Dehal et al. 2002). Such a high level of polymorphism leads to frequent occurrence of mismatches in primer annealing sites (i.e. presence of null alleles), resulting in poor amplification success across individuals.

Poor cross-species utility within C. intestinalis species complex

Microsatellite markers have been well accepted to be transferable across related genera, especially for those with conserved flanking regions such as EST-microsatellites. For example, a test based on 34 loci showed that >99% loci could be successfully transferred among 24 bird species, including the pair between chicken and zebra finch, close to maximum divergence within birds (Dawson et al. 2010). However, an unpredictably low level of cross-amplification success was reported in some taxonomic groups, such as a 21% within genus amplifica-
tion success rate among ranid frog species (Primmer & Merilä 2002). Similarly, we detected a low cross-species utility rate: only 25.8% of microsatellite loci were transferable within C. intestinalis species complex in this study.

Although many factors can contribute to the success of cross-species utility of microsatellite markers (see review by Barbará et al. 2007), recent studies showed that there was a correlation between cross-species amplification success and genetic divergence between source-target species in several taxonomic groups, such as birds (Moodley et al. 2015), fish (Carreras-Carbonell et al. 2008), bats (Jan et al. 2012) and amphibians (Hendrix et al. 2010). In general, a markedly decreased amplification success was observed with increased phylogenetic distance from the source species. Primmer et al. (2005) conducted a comprehensive survey for birds, cetaceans and frogs, and found a similar trend across taxa, showing approximately 50% of the loci amplifying at a source-target species with divergence time of 8.5–24.0 million years ago (Ma). However, recent studies showed that the cross-species amplification success rate varied among taxonomic groups. For example, a survey in bats showed very little success above 20 Ma divergence time (Jan et al. 2012); however, cross-amplification success rate of 65% was detected in salamander species with more than 30 Ma (Hendrix et al. 2010). For C. intestinalis species complex, phylogenetic studies indicated that the species complex might have radiated sometime during the late Miocene in the brackish Sarmatian (10.5–8.2 Ma) or Pontian (8.2–6.3 Ma) seas (Zhan et al. 2010). Based on the divergence time and estimation derived from related studies, we expected a cross-amplification success rate of >50%. However, the success rate of 25.8% obtained in this study was far below what we expected.

Several more factors may be responsible for such a low level of transferability of microsatellites among congeneric species for marine invertebrates. The unique biological characteristics, such as large population size and high mutation rate, could likely contribute to the low transferability. Despite that the correlation between cross-species amplification success and genetic divergence between source-target species was detected in several species such as oysters, the success rate decreased more sharply as the genetic divergence increased. For example, among 86 microsatellite markers originally developed for the Pacific oyster Crassostrea gigas, 83 (96.5%) were likely to be useful for the Portuguese oyster C. angulata, 71 (82.6%) for the Kumamoto oyster C. sikamea, 31 (36.0%) for the Suminoe oyster C. ariakensis, and only 11 (12.8%) for the Eastern oyster C. virginica. C. angulata is the closest relative of the C. gigas with the divergence of several hundred thousand years, followed by C. sikamea (2.3 Ma) and C. ariakensis (3.6 Ma). For the pair of C. gigas and C. virginica, the divergence time was estimated as approximately 5 Ma, the success rate was as low as 12.8% (Hedgecock et al. 2004). Similarly, the low cross-utilility rate at the genome level in C. intestinalis might be derived from high mutation rate in the AT-rich genome (~65% AT content; Dehal et al. 2002). In addition, C. intestinalis has a short generation time – usually two or three generations each year (Dybern 1965). The short generation time can potentially build up a high level of genetic divergence among congeneric species in a relatively short period of evolutionary time. Owing to these factors, mutations in flanking regions of microsatellites (i.e. mismatches in PCR primer annealing sites) can be common among related species, leading to a low level of cross-species amplification success. Consequently, both evolutionary and biological characteristics should be considered when estimating and testing cross-species utility of microsatellite markers among related species.

Conclusions

In this study, we successfully developed and characterized a large set of genomewide gene-associated microsatellite markers for a model invasive ascidian, Ciona intestinalis. These genetic markers were relatively evenly distributed across the whole genomes. As C. intestinalis has become a good model for the study of microevolution associated with rapidly changing environments in the wild, the large number of loci developed here, as well as the large proportion of the genome represented, makes this marker set a valuable resource for genomewide survey to identify genomic regions and/or genes under selection.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31272665) and 100-Talent Program of the Chinese Academy of Sciences to AZ.

References

Alta R, Chambel R, Notivol E, Climent J, González-Martínez SC (2014) Environment-dependent microevolution in a Mediterranean pine (Pinus pinaster Aiton). BMC Evolutionary Biology, 14, 200.

Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Molecular Ecology, 16, 3759–3767.

Björklund M, Ranta E, Kaitala V, Bach LA, Lundberg P, Stenseth NC (2009) Quantitative trait evolution and environmental change. PLoS ONE, 4, e4521.
A.Z. conceived the project, Y.L., Y.C. and W.X. conducted the laboratory work, Y.L. analyzed the data, Y.L. and A.Z. wrote the manuscript, and all authors reviewed and commented on the manuscript.

Data accessibility

All EST-microsatellites were mined from the public database at the Joint Genome Institute (JGI) website at http://genome.jgi.doe.gov/Cioin2/Cioin2.home.html. The chromosomal locations of the 2126 gene-associated microsatellites for Ciona intestinalis spA have been uploaded as online supplemental material (Appendix S3). All raw genotyping data for both Ciona intestinalis spA and spB were deposited at DRYAD entry doi: 10.5061/dryad.dm98k.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1 Characterization of 218 microsatellite loci for Ciona intestinalis spA.

Appendix S2 Characterization of 60 successfully cross-amplified microsatellite loci for Ciona intestinalis spB.

Appendix S3 The chromosomal location of gene-associated microsatellites for Ciona intestinalis spA.

Appendix S4 The chromosomal locations of the 163 gene-associated polymorphic microsatellite markers for Ciona intestinalis spA.

Appendix S5 The locations of the 41 gene-associated polymorphic microsatellite markers for Ciona intestinalis spA on each scaffold based on the KH assembly of Satou et al. (2008) available from the Ensembl website (http://asia.ensembl.org/Ciona_intestinalis/Info/Index?db=core).