Weakly almost periodic functionals on the measure algebra

Matthew Daws

Leeds

October, 2009
Outline

1. Weakly almost periodic functionals
2. Hopf von Neumann algebras
3. Further directions
Let G be a locally compact group;
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.

It is often interesting just to consider a discrete group G.
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.

It is often interesting just to consider a discrete group G. Then the Haar measure is just the counting measure.
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.
It is often interesting just to consider a discrete group G. Then the Haar measure is just the counting measure.
The Haar measure on \mathbb{R} is just the Lebesgue measure.
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.

It is often interesting just to consider a discrete group G. Then the Haar measure is just the counting measure.

The Haar measure on \mathbb{R} is just the Lebesgue measure.

Let $L^1(G)$ be the usual space of integrable functions, with respect to Haar measure. We turn $L^1(G)$ into a Banach algebra with the convolution product.
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.

It is often interesting just to consider a discrete group G. Then the Haar measure is just the counting measure.

The Haar measure on \mathbb{R} is just the Lebesgue measure.

Let $L^1(G)$ be the usual space of integrable functions, with respect to Haar measure. We turn $L^1(G)$ into a Banach algebra with the convolution product.

Let $M(G)$ be the collection of all finite Borel measures on G; again equipped with the convolution product.
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.

It is often interesting just to consider a discrete group G. Then the Haar measure is just the counting measure.

The Haar measure on \mathbb{R} is just the Lebesgue measure.

Let $L^1(G)$ be the usual space of integrable functions, with respect to Haar measure. We turn $L^1(G)$ into a Banach algebra with the convolution product.

Let $M(G)$ be the collection of all finite Borel measures on G; again equipped with the convolution product. Then $L^1(G)$ is an (essential) ideal in $M(G)$.
Locally compact groups

Let G be a locally compact group; then G has a Haar measure: a left-invariant Radon measure on G.

It is often interesting just to consider a discrete group G. Then the Haar measure is just the counting measure.

The Haar measure on \mathbb{R} is just the Lebesgue measure.

Let $L^1(G)$ be the usual space of integrable functions, with respect to Haar measure. We turn $L^1(G)$ into a Banach algebra with the convolution product.

Let $M(G)$ be the collection of all finite Borel measures on G; again equipped with the convolution product. Then $L^1(G)$ is an (essential) ideal in $M(G)$. $M(G) = L^1(G)$ if and only if G is discrete.
Weakly almost periodic functionals

For \(f \in C^b(G) \) and \(s \in G \), define the left translate by

\[
C^b(G) \ni L_s(f) : r \mapsto f(s^{-1}r) \quad (r \in G).
\]
Weakly almost periodic functionals

For \(f \in C^b(G) \) and \(s \in G \), define the left translate by

\[
C^b(G) \ni L_s(f) : r \mapsto f(s^{-1}r) \quad (r \in G).
\]

We call \(f \in C^b(G) \) periodic if the left translates

\[
L_G(f) = \{ L_s(f) : s \in G \}
\]

span a finite-dimensional subspace of \(C^b(G) \).
Weakly almost periodic functionals

For \(f \in C^b(G) \) and \(s \in G \), define the left translate by

\[C^b(G) \ni L_s(f) : r \mapsto f(s^{-1}r) \quad (r \in G). \]

We call \(f \in C^b(G) \) periodic if the left translates

\[L_G(f) = \{ L_s(f) : s \in G \} \]

span a finite-dimensional subspace of \(C^b(G) \).

As \(L_G(f) \) is bounded, \(f \) periodic implies that \(L_G(f) \) is (relatively) compact.
Weakly almost periodic functionals

For $f \in C^b(G)$ and $s \in G$, define the left translate by

$$C^b(G) \ni L_s(f) : r \mapsto f(s^{-1}r) \quad (r \in G).$$

We call $f \in C^b(G)$ periodic if the left translates

$$L_G(f) = \{L_s(f) : s \in G\}$$

span a finite-dimensional subspace of $C^b(G)$. As $L_G(f)$ is bounded, f periodic implies that $L_G(f)$ is (relatively) compact.

Generalise: f is almost periodic if $L_G(f)$ is (relatively) compact.

Matthew Daws (Leeds)
Weakly almost periodic functionals

For $f \in C^b(G)$ and $s \in G$, define the left translate by

$$C^b(G) \ni L_s(f) : r \mapsto f(s^{-1}r) \quad (r \in G).$$

We call $f \in C^b(G)$ periodic if the left translates

$$L_G(f) = \{ L_s(f) : s \in G \}$$

span a finite-dimensional subspace of $C^b(G)$. As $L_G(f)$ is bounded, f periodic implies that $L_G(f)$ is (relatively) compact.

Generalise: f is almost periodic if $L_G(f)$ is (relatively) compact.

Generalise: f is weakly almost periodic if $L_G(f)$ is (relatively) compact, in the weak topology on $C^b(G)$.
A group compactification of G is a pair (H, ϕ) of a compact group H and a continuous homomorphism $\phi : G \to H$, which has dense range (but may not be injective).
A group *compactification* of G is a pair (H, ϕ) of a compact group H and a continuous homomorphism $\phi : G \rightarrow H$, which has dense range (but may not be injective).

The Bohr (or almost periodic) compactification is the maximal group compactification of G, say bG.

Replace “compact group” by “compact semitopological semigroup” (that is, separate continuity of the product) and we replace “almost periodic” by “weakly almost periodic.”
A group *compactification* of G is a pair (H, ϕ) of a compact group H and a continuous homomorphism $\phi : G \to H$, which has dense range (but may not be injective).

The Bohr (or almost periodic) compactification is the maximal group compactification of G, say bG.

Let $\text{ap}(G) \subseteq C^b(G)$ be collection of all almost periodic functions. Then $\text{ap}(G)$ is a (commutative) C^*-subalgebra of $C^b(G)$, with character space bG.
A group *compactification* of G is a pair (H, ϕ) of a compact group H and a continuous homomorphism $\phi : G \to H$, which has dense range (but may not be injective).

The Bohr (or almost periodic) compactification is the maximal group compactification of G, say βG.

Let $\text{ap}(G) \subseteq C^b(G)$ be collection of all almost periodic functions. Then $\text{ap}(G)$ is a (commutative) C^*-subalgebra of $C^b(G)$, with character space βG. There is a natural way to lift the product from G to the character space of $\text{ap}(G)$.
Links with compactifications

A group *compactification* of G is a pair (H, ϕ) of a compact group H and a continuous homomorphism $\phi : G \to H$, which has dense range (but may not be injective).

The Bohr (or almost periodic) compactification is the maximal group compactification of G, say bG.

Let $ap(G) \subseteq C^b(G)$ be collection of all almost periodic functions. Then $ap(G)$ is a (commutative) C^*-subalgebra of $C^b(G)$, with character space bG. There is a natural way to lift the product from G to the character space of $ap(G)$.

Replace “compact group” by “compact semitopological semigroup” (that is, separate continuity of the product) and we replace “almost periodic” by “weakly almost periodic”.
For a Banach algebra \mathcal{A}, a functional $\mu \in \mathcal{A}^*$ is (weakly) almost periodic if the orbit

$$\{ a \cdot \mu : a \in \mathcal{A}, \|a\| = 1 \}$$

is relatively (weakly) compact in \mathcal{A}. Here \mathcal{A} acts on \mathcal{A}^* in the usual way.
For Banach algebras

For a Banach algebra \mathcal{A}, a functional $\mu \in \mathcal{A}^*$ is (weakly) almost periodic if the orbit

$$\{ a \cdot \mu : a \in \mathcal{A}, \|a\| = 1 \}$$

is relatively (weakly) compact in \mathcal{A}. Here \mathcal{A} acts on \mathcal{A}^* in the usual way. Write $\text{wap}(\mathcal{A})$ or $\text{ap}(\mathcal{A})$.
For a Banach algebra \mathcal{A}, a functional $\mu \in \mathcal{A}^*$ is (weakly) almost periodic if the orbit

$$\{a \cdot \mu : a \in \mathcal{A}, \|a\| = 1\}$$

is relatively (weakly) compact in \mathcal{A}. Here \mathcal{A} acts on \mathcal{A}^* in the usual way. Write $\text{wap}(\mathcal{A})$ or $\text{ap}(\mathcal{A})$.

A bounded approximate identity argument shows that

$$\text{ap}(L^1(G)) = \text{ap}(G), \quad \text{wap}(L^1(G)) = \text{wap}(G),$$

where $C^b(G) \subseteq L^\infty(G) = L^1(G)^*$.

(See Ulger, 1986, or Wong, 1969, or Lau, 1977.)
For Banach algebras

For a Banach algebra \mathcal{A}, a functional $\mu \in \mathcal{A}^*$ is (weakly) almost periodic if the orbit

$$\{ a \cdot \mu : a \in \mathcal{A}, \|a\| = 1 \}$$

is relatively (weakly) compact in \mathcal{A}. Here \mathcal{A} acts on \mathcal{A}^* in the usual way. Write $\text{wap}(\mathcal{A})$ or $\text{ap}(\mathcal{A})$.

A bounded approximate identity argument shows that

$$\text{ap}(L^1(G)) = \text{ap}(G), \quad \text{wap}(L^1(G)) = \text{wap}(G),$$

where $C^b(G) \subseteq L^\infty(G) = L^1(G)^*$. (See Ulger, 1986, or Wong, 1969, or Lau, 1977).
For Banach algebras

For a Banach algebra \mathcal{A}, a functional $\mu \in \mathcal{A}^*$ is (weakly) almost periodic if the orbit
$$\{a \cdot \mu : a \in \mathcal{A}, \|a\| = 1\}$$
is relatively (weakly) compact in \mathcal{A}. Here \mathcal{A} acts on \mathcal{A}^* in the usual way. Write $wap(\mathcal{A})$ or $ap(\mathcal{A})$.

A bounded approximate identity argument shows that
$$ap(L^1(G)) = ap(G), \quad wap(L^1(G)) = wap(G),$$
where $C^b(G) \subseteq L^\infty(G) = L^1(G)^*$. (See Ulger, 1986, or Wong, 1969, or Lau, 1977).

$wap(\mathcal{A})$ has interesting links with the Arens products on \mathcal{A}^{**}.
For Banach algebras

For a Banach algebra \mathcal{A}, a functional $\mu \in \mathcal{A}^*$ is (weakly) almost periodic if the orbit

$$\{ a \cdot \mu : a \in \mathcal{A}, \|a\| = 1 \}$$

is relatively (weakly) compact in \mathcal{A}. Here \mathcal{A} acts on \mathcal{A}^* in the usual way. Write $\text{wap}(\mathcal{A})$ or $\text{ap}(\mathcal{A})$. A bounded approximate identity argument shows that

$$\text{ap}(L^1(G)) = \text{ap}(G), \quad \text{wap}(L^1(G)) = \text{wap}(G),$$

where $C^b(G) \subseteq L^\infty(G) = L^1(G)^*$. (See Ulger, 1986, or Wong, 1969, or Lau, 1977).

$\text{wap}(\mathcal{A})$ has interesting links with the Arens products on \mathcal{A}^{**}. In general, little can be said about $\text{wap}(\mathcal{A})$ and $\text{ap}(\mathcal{A})$.
Measure algebras

What can we say about $\text{ap}(M(G))$ or $\text{wap}(M(G))$?

To be more precise: the history above was backwards. To show that $\text{wap}(L^1(G))$ is a subalgebra of $L^\infty(G)$ requires the result that $\text{wap}(L^1(G)) = \text{wap}(G)$, and then an application of Grothendieck's repeated limit criterion for weak compactness.
Measure algebras

What can we say about $\text{ap}(M(G))$ or $\text{wap}(M(G))$?
To be more precise: the history above was backwards.
What can we say about \(\text{ap}(M(G)) \) or \(\text{wap}(M(G)) \)?

To be more precise: the history above was backwards. To show that \(\text{wap}(L^1(G)) \) is a subalgebra of \(L^\infty(G) \) requires the result that \(\text{wap}(L^1(G)) = \text{wap}(G) \), and then an application of Grothendieck’s repeated limit criterion for weak compactness.
A representation of G is a group homomorphism $\pi : G \to \text{iso}(E)$, the isometry group of a Banach space E, which is weak operator topology continuous.

$\hat{\pi}(f) = \int_G f(s) \pi(s) \, ds$,

Bounded approximate identities allows you to build π from $\hat{\pi}$.
A representation of G is a group homomorphism $\pi : G \to \text{iso}(E)$, the isometry group of a Banach space E, which is weak operator topology continuous.

A representation of $L^1(G)$ is a contractive Banach algebra homomorphism $\hat{\pi} : L^1(G) \to \mathcal{B}(E)$.
A representation of G is a group homomorphism $\pi : G \to \text{iso}(E)$, the isometry group of a Banach space E, which is weak operator topology continuous.

A representation of $L^1(G)$ is a contractive Banach algebra homomorphism $\hat{\pi} : L^1(G) \to \mathcal{B}(E)$.

Johnson: There is a bijection between (non-degenerate) representations of G and (non-degenerate) representations of $L^1(G)$.
A representation of G is a group homomorphism $\pi : G \to \text{iso}(E)$, the isometry group of a Banach space E, which is weak operator topology continuous.

A representation of $L^1(G)$ is a contractive Banach algebra homomorphism $\hat{\pi} : L^1(G) \to B(E)$.

Johnson: There is a bijection between (non-degenerate) representations of G and (non-degenerate) representations of $L^1(G)$.

$$\hat{\pi}(f) = \int_G f(s) \pi(s) \, ds,$$
A representation of G is a group homomorphism $\pi : G \rightarrow \text{iso}(E)$, the isometry group of a Banach space E, which is weak operator topology continuous.

A representation of $L^1(G)$ is a contractive Banach algebra homomorphism $\hat{\pi} : L^1(G) \rightarrow \mathcal{B}(E)$.

Johnson: There is a bijection between (non-degenerate) representations of G and (non-degenerate) representations of $L^1(G)$.

$$\hat{\pi}(f) = \int_{G} f(s)\pi(s) \, ds,$$

Bounded approximate identities allows you to build π from $\hat{\pi}$.

Matthew Daws (Leeds) Measure algebras and WAP October, 2009 8 / 25
“Multiplying” functionals

Given \(\pi : G \to \text{iso}(E) \), a coefficient functional of \(\pi \) is

\[
F \in C^b(G), \quad F(s) = \langle \mu, \pi(s)x \rangle \quad (s \in G),
\]

where \(\mu \in E^* \) and \(x \in E \). Write \(F = \omega_{\pi,\mu,x} \).
“Multiplying” functionals

Given $\pi : G \to \text{iso}(E)$, a coefficient functional of π is

$$F \in C^b(G), \quad F(s) = \langle \mu, \pi(s)x \rangle \quad (s \in G),$$

where $\mu \in E^*$ and $x \in E$. Write $F = \omega_{\pi,\mu,x}$. Given $\pi_i : G \to \text{iso}(E_i)$ and $F_i = \omega_{\pi_i,\mu_i,x_i}$, we define

$$\pi = \pi_1 \otimes \pi_2 : G \to \text{iso}(E_1 \otimes E_2), \quad s \mapsto \pi_1(s) \otimes \pi_2(s),$$
“Multiplying” functionals

Given $\pi : G \rightarrow \text{iso}(E)$, a coefficient functional of π is

$$F \in C^b(G), \quad F(s) = \langle \mu, \pi(s)x \rangle \quad (s \in G),$$

where $\mu \in E^*$ and $x \in E$. Write $F = \omega_{\pi, \mu, x}$.

Given $\pi_i : G \rightarrow \text{iso}(E_i)$ and $F_i = \omega_{\pi_i, \mu_i, x_i}$, we define

$$\pi = \pi_1 \otimes \pi_2 : G \rightarrow \text{iso}(E_1 \otimes E_2), \quad s \mapsto \pi_1(s) \otimes \pi_2(s),$$

and then

$$(F_1 F_2)(s) = \langle \mu_1 \otimes \mu_2, \pi(s)(x_1 \otimes x_2) \rangle \quad (s \in G).$$
“Multiplying” functionals

Given $\pi : G \to \text{iso}(E)$, a coefficient functional of π is

$$F \in C^b(G), \quad F(s) = \langle \mu, \pi(s)x \rangle \quad (s \in G),$$

where $\mu \in E^*$ and $x \in E$. Write $F = \omega_{\pi, \mu, x}$.

Given $\pi_i : G \to \text{iso}(E_i)$ and $F_i = \omega_{\pi_i, \mu_i, x_i}$, we define

$$\pi = \pi_1 \otimes \pi_2 : G \to \text{iso}(E_1 \otimes E_2), \quad s \mapsto \pi_1(s) \otimes \pi_2(s),$$

and then

$$(F_1 F_2)(s) = \langle \mu_1 \otimes \mu_2, \pi(s)(x_1 \otimes x_2) \rangle \quad (s \in G).$$

Mantra: Multiplication of coefficient functionals is the same as tensoring representations.
“Multiplying” functionals

Given $\pi : G \to \text{iso}(E)$, a coefficient functional of π is

$$F \in C^b(G), \quad F(s) = \langle \mu, \pi(s)x \rangle \quad (s \in G),$$

where $\mu \in E^*$ and $x \in E$. Write $F = \omega_{\pi,\mu,x}$.

Given $\pi_i : G \to \text{iso}(E_i)$ and $F_i = \omega_{\pi_i,\mu_i,x_i}$, we define

$$\pi = \pi_1 \otimes \pi_2 : G \to \text{iso}(E_1 \otimes E_2), \quad s \mapsto \pi_1(s) \otimes \pi_2(s),$$

and then

$$(F_1 F_2)(s) = \langle \mu_1 \otimes \mu_2, \pi(s)(x_1 \otimes x_2) \rangle \quad (s \in G).$$

Mantra: Multiplication of coefficient functionals is the same as tensoring representations.

This is exactly the proof that the Fourier-Stieltjes algebra is an algebra (all coefficient functionals of unitary representations).
Young, Kaiser and Interpolation

The celebrated theorem of Davis, Figiel, Johnson and Pełczynski tells us the weakly compact operators are precisely the operators which factor through reflexive Banach spaces.
The celebrated theorem of Davis, Figiel, Johnson and Pełczynski tells us the weakly compact operators are precisely the operators which factor through reflexive Banach spaces.

Young adapted the proof to Banach algebras; Kaiser recast it in the language of interpolation spaces.
Young, Kaiser and Interpolation

The celebrated theorem of Davis, Figiel, Johnson and Pełczyński tells us the weakly compact operators are precisely the operators which factor through reflexive Banach spaces.

Young adapted the proof to Banach algebras; Kaiser recast it in the language of interpolation spaces.

Theorem

\[\mu \in \text{wap}(A^*) \text{ if and only if there exists a reflexive Banach space } E, \text{ a representation } \pi : A \to \mathcal{B}(E), \text{ and } x \in E, \mu \in E^* \text{ with} \]

\[\langle \mu, a \rangle = \langle \mu, \pi(a)(x) \rangle \quad (a \in A). \]
The celebrated theorem of Davis, Figiel, Johnson and Pełczyński tells us the weakly compact operators are precisely the operators which factor through reflexive Banach spaces.

Young adapted the proof to Banach algebras; Kaiser recast it in the language of interpolation spaces.

Theorem

\[\mu \in \text{wap}(A^*) \text{ if and only if there exists a reflexive Banach space } E, \text{ a representation } \pi : A \to B(E), \text{ and } x \in E, \mu \in E^* \text{ with} \]

\[\langle \mu, a \rangle = \langle \mu, \pi(a)(x) \rangle \quad (a \in A). \]

So \(F \in \text{wap}(L^1(G)) \) if and only if \(F \) is the coefficient functional of a representation on a reflexive Banach space.
Reflexive tensor products

Let E and F be reflexive Banach spaces. There exists a norm on $E \otimes F$ such that:

1. $\|x \otimes y\| = \|x\|\|y\|$ for $x \in E, y \in F$;
2. Given $T \in \mathcal{B}(E)$ and $S \in \mathcal{B}(F)$, the map $T \otimes S$ is bounded, with norm $\|T\|\|S\|$;
3. the completion is reflexive.
Reflexive tensor products

Let E and F be reflexive Banach spaces. There exists a norm on $E \otimes F$ such that:

1. $\|x \otimes y\| = \|x\| \|y\|$ for $x \in E, y \in F$;
2. Given $T \in B(E)$ and $S \in B(F)$, the map $T \otimes S$ is bounded, with norm $\|T\| \|S\|$;
3. the completion is reflexive.

So:

- $\text{wap}(L^1(G))$ is the space of coefficient functionals on reflexive spaces;
- Multiplication is the same as tensoring;
- Reflexive spaces are stable under tensoring.
Reflexive tensor products

Let E and F be reflexive Banach spaces. There exists a norm on $E \otimes F$ such that:

1. $\|x \otimes y\| = \|x\|\|y\|$ for $x \in E, y \in F$;
2. Given $T \in \mathcal{B}(E)$ and $S \in \mathcal{B}(F)$, the map $T \otimes S$ is bounded, with norm $\|T\|\|S\|$;
3. the completion is reflexive.

So:

- $\text{wap}(L^1(G))$ is the space of coefficient functionals on reflexive spaces;
- Multiplication is the same as tensoring;
- Reflexive spaces are stable under tensoring.

So $\text{wap}(L^1(G))$ is a subalgebra of $C^b(G)$.
The measure algebra

There is a measure space X such that $M(G) = L^1(X)$ as Banach spaces.
The measure algebra

There is a measure space X such that $M(G) = L^1(X)$ as Banach spaces.
Seemingly no way to express the convolution product on $M(G)$ in terms of X.
The measure algebra

There is a measure space X such that $M(G) = L^1(X)$ as Banach spaces.
Seemingly no way to express the convolution product on $M(G)$ in terms of X.
For example, no link between representations of $M(G)$ and a “representation” of X.
The measure algebra

There is a measure space X such that $M(G) = L^1(X)$ as Banach spaces.
Seemingly no way to express the convolution product on $M(G)$ in terms of X.
For example, no link between representations of $M(G)$ and a “representation” of X.
Change categories!
The measure algebra

There is a measure space X such that $M(G) = L^1(X)$ as Banach spaces.

Seemingly no way to express the convolution product on $M(G)$ in terms of X.

For example, no link between representations of $M(G)$ and a “representation” of X.

Change categories!

Look at Hopf von Neumann algebras and corepresentations.
Hopf von Neumann algebras

A (commutative) Hopf von Neumann algebra is a pair \((L^\infty(X), \Gamma)\) where \(\Gamma : L^\infty(X) \to L^\infty(X \times X)\) is a unital, normal, \(*\)-homomorphism which is co-associative:
A (commutative) Hopf von Neumann algebra is a pair \((L^\infty(X), \Gamma)\) where \(\Gamma : L^\infty(X) \to L^\infty(X \times X)\) is a unital, normal, \(*\)-homomorphism which is co-associative:

\[
\begin{array}{ccc}
L^\infty(X) & \xrightarrow{\Gamma} & L^\infty(X \times X) \\
\downarrow \Gamma & & \downarrow \text{id} \otimes \Gamma \\
L^\infty(X \times X) & \xrightarrow{\Gamma \otimes \text{id}} & L^\infty(X \times X \times X)
\end{array}
\]

As \(\Gamma\) is normal, it drops to give a contraction \(L^1(X) \times L^1(X) \to L^1(X \times X)\). Then \(\Gamma\) is co-associative if and only if this product is associative.
A (commutative) Hopf von Neumann algebra is a pair \((L^\infty(X), \Gamma)\) where \(\Gamma : L^\infty(X) \to L^\infty(X \times X)\) is a unital, normal, \(*\)-homomorphism which is co-associative:

\[
\begin{array}{ccc}
L^\infty(X) & \xrightarrow{\Gamma} & L^\infty(X \times X) \\
\downarrow \Gamma & & \downarrow \text{id} \otimes \Gamma \\
L^\infty(X \times X) & \xrightarrow{\Gamma \otimes \text{id}} & L^\infty(X \times X \times X)
\end{array}
\]

As \(\Gamma\) is normal, it drops to give a contraction

\[
L^1(X) \times L^1(X) \xrightarrow{\Gamma^*} L^1(X \times X) \xrightarrow{\Gamma^*} L^1(X).
\]
Hopf von Neumann algebras

A (commutative) Hopf von Neumann algebra is a pair \((L^\infty(X), \Gamma)\) where \(\Gamma : L^\infty(X) \to L^\infty(X \times X)\) is a unital, normal, \(\ast\)-homomorphism which is co-associative:

\[
\begin{array}{ccc}
L^\infty(X) & \overset{\Gamma}{\longrightarrow} & L^\infty(X \times X) \\
\downarrow \Gamma & & \downarrow \text{id} \otimes \Gamma \\
L^\infty(X \times X) & \overset{\Gamma \otimes \text{id}}{\longrightarrow} & L^\infty(X \times X \times X)
\end{array}
\]

As \(\Gamma\) is normal, it drops to give a contraction

\[
L^1(X) \times L^1(X) \longrightarrow L^1(X \times X) \overset{\Gamma^*}{\longrightarrow} L^1(X).
\]

Then \(\Gamma\) is co-associative if and only if this product is associative.
The motivating example is $L^\infty(G)$ with the map

$$
\Gamma : L^\infty(G) \rightarrow L^\infty(G \times G);
\Gamma(F)(s, t) = F(st) \quad (F \in L^\infty(G), s, t \in G).
$$
Examples

The motivating example is $L^\infty(G)$ with the map

$$\Gamma : L^\infty(G) \to L^\infty(G \times G);$$

$$\Gamma(F)(s, t) = F(st) \quad (F \in L^\infty(G), s, t \in G).$$

Then Γ_* induces the usual convolution product on $L^1(G)$.
The motivating example is $L^\infty(G)$ with the map

$$
\Gamma : L^\infty(G) \rightarrow L^\infty(G \times G);
\Gamma(F)(s, t) = F(st) \quad (F \in L^\infty(G), s, t \in G).
$$

Then Γ_* induces the usual convolution product on $L^1(G)$.

As $M(G) = C_0(G)^*$, we can lift the product from $C_0(G)$ to $M(G)^* = C_0(G)^{**}$, so $M(G)^*$ becomes a commutative von Neumann algebra.
The motivating example is $L^\infty(G)$ with the map

$$\Gamma : L^\infty(G) \rightarrow L^\infty(G \times G);$$

$$\Gamma(F)(s, t) = F(st) \quad (F \in L^\infty(G), s, t \in G).$$

Then Γ_* induces the usual convolution product on $L^1(G)$.

As $M(G) = C_0(G)^*$, we can lift the product from $C_0(G)$ to $M(G)^* = C_0(G)^{**}$, so $M(G)^*$ becomes a commutative von Neumann algebra.

We can lift the product from $M(G)$ to a co-associative map on $M(G)^*$, turning $M(G)^*$ into a Hopf von Neumann algebra.
A suitable generalisation of a representation is a \textit{co-representation} of $(L^\infty(X), \Gamma)$.

The von Neumann algebra $L^\infty(X) \otimes B(H)$ has predual $L^1(X)^{\hat{\otimes} T}(H)$, the projective tensor product of $L^1(X)$ and the trace-class operators on H.
Representations?

A suitable generalisation of a representation is a co-representation of \((L^\infty(X), \Gamma)\).

A co-representation of \(L^\infty(X)\) on a Hilbert space \(H\) is an element \(W \in L^\infty(X) \overline{\otimes} B(H)\) (von Neumann tensor product);
Representations?

A suitable generalisation of a representation is a *co-representation* of \((L^\infty(X), \Gamma)\).

A co-representation of \(L^\infty(X)\) on a Hilbert space \(H\) is an element \(W \in L^\infty(X) \hat{\otimes} \mathcal{B}(H)\) (von Neumann tensor product); with

\[(\Gamma \otimes \text{id}) W = W_{13} W_{23} \in L^\infty(X \times X) \hat{\otimes} \mathcal{B}(H).\]
Representations?

A suitable generalisation of a representation is a *co-representation* of \((L^\infty(X), \Gamma)\).

A co-representation of \(L^\infty(X)\) on a Hilbert space \(H\) is an element \(W \in L^\infty(X) \otimes B(H)\) (von Neumann tensor product); with

\[(\Gamma \otimes \text{id}) W = W_{13} W_{23} \in L^\infty(X \times X) \otimes B(H).\]

Here \(W_{23}(x_1 \otimes x_2 \otimes x_3) = x_1 \otimes W(x_2 \otimes x_3).\)
Representations?

A suitable generalisation of a representation is a *co-representation* of \((L^\infty(X), \Gamma)\).

A co-representation of \(L^\infty(X)\) on a Hilbert space \(H\) is an element \(W \in L^\infty(X) \otimes B(H)\) (von Neumann tensor product); with

\[(\Gamma \otimes \text{id}) W = W_{13} W_{23} \in L^\infty(X \times X) \otimes B(H).\]

Here \(W_{23}(x_1 \otimes x_2 \otimes x_3) = x_1 \otimes W(x_2 \otimes x_3)\). \(W_{13} = \chi W_{23} \chi\) where \(\chi(x_1 \otimes x_2 \otimes x_3) = x_2 \otimes x_1 \otimes x_3\).
Representations?

A suitable generalisation of a representation is a *co-representation* of $(L^\infty(X), \Gamma)$.

A co-representation of $L^\infty(X)$ on a Hilbert space H is an element $W \in L^\infty(X) \bar{\otimes} B(H)$ (von Neumann tensor product); with

$$(\Gamma \otimes \text{id}) W = W_{13} W_{23} \in L^\infty(X \times X) \bar{\otimes} B(H).$$

Here $W_{23}(x_1 \otimes x_2 \otimes x_3) = x_1 \otimes W(x_2 \otimes x_3)$. $W_{13} = \chi W_{23} \chi$ where

$\chi(x_1 \otimes x_2 \otimes x_3) = x_2 \otimes x_1 \otimes x_3$.

The von Neumann algebra $L^\infty(X) \bar{\otimes} B(H)$ has predual

$L^1(X) \hat{\otimes} \mathcal{T}(H)$,

the *projective tensor product* of $L^1(X)$ and the trace-class operators on H.
Co-representations

\[L^\infty(X) \overline{\otimes} B(H) = (L^1(X) \widehat{\otimes} \mathcal{T}(H))^* = B(L^1(X), B(H)), \]
Co-representations

\[L^\infty(X) \widehat{\otimes} \mathcal{B}(H) = (L^1(X) \widehat{\otimes} \mathcal{T}(H))^* = \mathcal{B}(L^1(X), \mathcal{B}(H)), \]

via the dual pairing

\[\langle T, f \otimes \tau \rangle = \langle T(f), \tau \rangle \quad (T \in \mathcal{B}(L^1(X), \mathcal{B}(H)), f \in L^1(X), \tau \in \mathcal{T}(H)) \]
Co-representations

\[L^\infty(X) \bar{\otimes} \mathcal{B}(H) = (L^1(X) \widehat{\otimes} \mathcal{I}(H))^* = \mathcal{B}(L^1(X), \mathcal{B}(H)), \]

via the dual pairing

\[\langle T, f \otimes \tau \rangle = \langle T(f), \tau \rangle \quad \left(T \in \mathcal{B}(L^1(X), \mathcal{B}(H)), \right. \]
\[\left. f \in L^1(X), \tau \in \mathcal{T}(H) \right) \]

So \(W \in L^\infty(X) \bar{\otimes} \mathcal{B}(H) \) induces \(\pi : L^1(X) \rightarrow \mathcal{B}(H); \)
Co-representations

\[L^\infty(X) \widehat{\otimes} \mathcal{B}(H) = (L^1(X) \widehat{\otimes} \mathcal{T}(H))^* = \mathcal{B}(L^1(X), \mathcal{B}(H)), \]

via the dual pairing

\[\langle T, f \otimes \tau \rangle = \langle T(f), \tau \rangle \]

\[\left(T \in \mathcal{B}(L^1(X), \mathcal{B}(H)), f \in L^1(X), \tau \in \mathcal{T}(H) \right) \]

So \(W \in L^\infty(X) \widehat{\otimes} \mathcal{B}(H) \) induces \(\pi : L^1(X) \to \mathcal{B}(H) \); \(W \) is a corepresentation if and only if \(\pi \) is a (Banach algebra) representation.
Tensoring co-representations

Given $\pi_i : L^1(X) \to \mathcal{B}(H_i)$ representations, the tensored representation

$$\pi = \pi_1 \otimes \pi_2 : L^1(X) \to \mathcal{B}(H_1 \otimes H_2),$$

is associated to

$$W_{12}^{(1)} W_{13}^{(2)} \in L^\infty(X) \overline{\otimes} \mathcal{B}(H_1) \overline{\otimes} \mathcal{B}(H_2).$$
Tensoring co-representations

Given \(\pi_i : L^1(X) \to \mathcal{B}(H_i) \) representations, the tensored representation

\[
\pi = \pi_1 \otimes \pi_2 : L^1(X) \to \mathcal{B}(H_1 \otimes H_2),
\]

is associated to

\[
W_{12}^{(1)} W_{13}^{(2)} \in L^\infty(X) \overline{\otimes} \mathcal{B}(H_1) \overline{\otimes} \mathcal{B}(H_2).
\]

A coefficient functional associated to \(\pi \) is

\[
\langle F, a \rangle = \langle \mu, \pi(a)(x) \rangle = \langle (\text{id} \otimes \omega_{\mu,x}) W, a \rangle \quad (a \in L^1(X)),
\]
Tensoring co-representations

Given \(\pi_i : L^1(X) \to B(H_i) \) representations, the tensored representation

\[
\pi = \pi_1 \otimes \pi_2 : L^1(X) \to B(H_1 \otimes H_2),
\]

is associated to

\[
W_{12}^{(1)} W_{13}^{(2)} \in L^\infty(X) \overline{\otimes} B(H_1) \overline{\otimes} B(H_2).
\]

A coefficient functional associated to \(\pi \) is

\[
\langle F, a \rangle = \langle \mu, \pi(a)(x) \rangle = \langle (\text{id} \otimes \omega_{\mu,x}) W, a \rangle \quad (a \in L^1(X)),
\]

where \(\omega_{\mu,x} \in \mathcal{I}(H) \) is the normal functional

\[
B(H) \to \mathbb{C}; \quad T \mapsto \langle \mu, T(x) \rangle.
\]
For reflexive spaces?

So multiplying coefficient functionals is equivalent to “multiplying” co-representations.
For reflexive spaces?

So multiplying coefficient functionals is equivalent to “multiplying” co-representations.
At least on Hilbert spaces!
For reflexive spaces?

So multiplying coefficient functionals is equivalent to “multiplying” co-representations.
At least on Hilbert spaces!
So we need a co-representation theory for reflexive Banach spaces!
Weak*-tensor products

Fix a reflexive space E. We define $L^\infty(X) \bar{\otimes} B(E)$ to be the weak*-closure of $L^\infty(X) \otimes B(E)$ inside $B(L^2(X, E))$. That is, the closure of $L^\infty(X) \otimes E$ for some norm. Using the approximation property for $L^1(X)$, we can show that $B(L^1(X)) \approx B(E) = L^\infty(X) \otimes B(E)$. Then co-representations all still work, and are compatible with our way of tensoring reflexive spaces.
Weak*-tensor products

Fix a reflexive space E. We define $L^\infty(X)\bar{\otimes}\mathcal{B}(E)$ to be the weak*-closure of $L^\infty(X) \otimes \mathcal{B}(E)$ inside $\mathcal{B}(L^2(X, E))$. Here $L^2(X, E)$ is a vector-valued L^2 space.
Weak*-tensor products

Fix a reflexive space E. We define $L^\infty(X) \overline{\otimes} \mathcal{B}(E)$ to be the weak*-closure of $L^\infty(X) \otimes \mathcal{B}(E)$ inside $\mathcal{B}(L^2(X, E))$.

Here $L^2(X, E)$ is a vector-valued L^2 space.

That is, the closure of $L^2(X) \otimes E$ for some norm.
Weak*-tensor products

Fix a reflexive space E. We define $L^\infty(X) \overline{\otimes} \mathcal{B}(E)$ to be the weak*-closure of $L^\infty(X) \otimes \mathcal{B}(E)$ inside $\mathcal{B}(L^2(X, E))$. Here $L^2(X, E)$ is a vector-valued L^2 space. That is, the closure of $L^2(X) \otimes E$ for some norm.

Using the approximation property for $L^1(X)$, we can show that

$$\mathcal{B}(L^1(X), \mathcal{B}(E)) \cong L^\infty(X) \overline{\otimes} \mathcal{B}(E).$$
Fix a reflexive space E. We define $L^\infty(X)\overline{\otimes}\mathcal{B}(E)$ to be the weak*‐closure of $L^\infty(X) \otimes \mathcal{B}(E)$ inside $\mathcal{B}(L^2(X, E))$. Here $L^2(X, E)$ is a vector‐valued L^2 space. That is, the closure of $L^2(X) \otimes E$ for some norm. Using the approximation property for $L^1(X)$, we can show that

$$\mathcal{B}(L^1(X), \mathcal{B}(E)) \cong L^\infty(X)\overline{\otimes}\mathcal{B}(E).$$

Then co‐representations all still work, and are compatible with our way of tensoring reflexive spaces.
Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(\text{wap}(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(\text{wap}(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that \(\text{wap}(L^1(X))\) is closed and self-adjoint.
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(wap(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that \(wap(L^1(X))\) is closed and self-adjoint. Need to show that given \(F_1, F_2 \in wap(L^1(X))\), we have \(F_1F_2 \in wap(L^1(X))\).
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(\text{wap}(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that \(\text{wap}(L^1(X))\) is closed and self-adjoint. Need to show that given \(F_1, F_2 \in \text{wap}(L^1(X))\), we have \(F_1F_2 \in \text{wap}(L^1(X))\).

\(F_i\) associated to \(\pi_i : L^1(X) \to B(E_i)\),
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(\text{wap}(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that \(\text{wap}(L^1(X))\) is closed and self-adjoint. Need to show that given \(F_1, F_2 \in \text{wap}(L^1(X))\), we have \(F_1 F_2 \in \text{wap}(L^1(X))\).

\(F_i\) associated to \(\pi_i : L^1(X) \to \mathcal{B}(E_i)\), associated to \(W^{(i)} \in L^\infty(X) \otimes \mathcal{B}(E_i)\).
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(\text{wap}(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that \(\text{wap}(L^1(X))\) is closed and self-adjoint. Need to show that given \(F_1, F_2 \in \text{wap}(L^1(X))\), we have \(F_1 F_2 \in \text{wap}(L^1(X))\).

\(F_i\) associated to \(\pi_i : L^1(X) \to \mathcal{B}(E_i)\), associated to \(W^{(i)} \in L^\infty(X) \otimes \mathcal{B}(E_i)\).

Then can take product \(W = W^{(1)} W^{(2)} \in L^\infty(X) \otimes \mathcal{B}(E_1 \otimes E_2)\),
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The wap\((L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that wap\((L^1(X))\) is closed and self-adjoint. Need to show that given \(F_1, F_2 \in \text{wap}(L^1(X))\), we have \(F_1F_2 \in \text{wap}(L^1(X))\).

\(F_i\) associated to \(\pi_i : L^1(X) \to B(E_i)\), associated to \(W^{(i)} \in L^\infty(X) \overline{\otimes} B(E_i)\).

Then can take product \(W = W^{(1)}W^{(2)} \in L^\infty(X) \overline{\otimes} B(E_1 \otimes E_2)\), induces \(\pi : L^1(X) \to B(E_1 \otimes E_2)\).
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(\text{wap}(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that \(\text{wap}(L^1(X))\) is closed and self-adjoint. Need to show that given \(F_1, F_2 \in \text{wap}(L^1(X))\), we have \(F_1 F_2 \in \text{wap}(L^1(X))\).

\(F_i\) associated to \(\pi_i : L^1(X) \to \mathcal{B}(E_i)\), associated to \(W^{(i)} \in L^\infty(X) \otimes \mathcal{B}(E_i)\).

Then can take product \(W = W^{(1)} W^{(2)} \in L^\infty(X) \otimes \mathcal{B}(E_1 \otimes E_2)\), induces \(\pi : L^1(X) \to \mathcal{B}(E_1 \otimes E_2)\), induces \(F_1 F_2\). \(\square\)
A result!

Theorem

Let \((L^\infty(X), \Gamma)\) be a commutative Hopf von Neumann algebra. The \(wap(L^1(X))\) is a \(C^*\)-subalgebra of \(L^\infty(X)\).

Proof.

Easy to see that \(wap(L^1(X))\) is closed and self-adjoint. Need to show that given \(F_1, F_2 \in wap(L^1(X))\), we have \(F_1F_2 \in wap(L^1(X))\).

\(F_i\) associated to \(\pi_i : L^1(X) \rightarrow B(E_i)\), associated to \(W^{(i)} \in L^\infty(X) \boxtimes B(E_i)\).

Then can take product \(W = W^{(1)}W^{(2)} \in L^\infty(X) \boxtimes B(E_1 \otimes E_2)\), induces \(\pi : L^1(X) \rightarrow B(E_1 \otimes E_2)\), induces \(F_1F_2\).

The analogous result for \(ap(L^1(X))\) is easy, once you think in terms of \(\Gamma\) (and not just look at \(L^1(X)\)).
But what is $\text{wap}(M(G))$?

For $L^1(G)$, we have that $\text{wap}(L^1(G)) = \text{wap}(G) = C(K)$ where K is some compact semigroup, which we can characterise in terms of G.
But what is \(\text{wap}(M(G)) \)?

For \(L^1(G) \), we have that \(\text{wap}(L^1(G)) = \text{wap}(G) = C(K) \) where \(K \) is some compact semigroup, which we can characterise in terms of \(G \). We know that \(\text{wap}(M(G)) = C(K) \) for some \(K \). It would be natural that \(\Gamma \) somehow induce a map \(K \times K \to K \).
But what is $\text{wap}(M(G))$?

For $L^1(G)$, we have that $\text{wap}(L^1(G)) = \text{wap}(G) = C(K)$ where K is some compact semigroup, which we can characterise in terms of G. We know that $\text{wap}(M(G)) = C(K)$ for some K. It would be natural that Γ somehow induce a map $K \times K \to K$.

But we only expect separate continuity, so we cannot expect something simple, like Γ restricting to a map $C(K) \to C(K \times K)$.
But what is \(\text{wap}(M(G)) \)?

For \(L^1(G) \), we have that \(\text{wap}(L^1(G)) = \text{wap}(G) = C(K) \) where \(K \) is some compact semigroup, which we can characterise in terms of \(G \).

We know that \(\text{wap}(M(G)) = C(K) \) for some \(K \). It would be natural that \(\Gamma \) somehow induce a map \(K \times K \rightarrow K \).

But we only expect \textit{separate} continuity, so we cannot expect something simple, like \(\Gamma \) restricting to a map \(C(K) \rightarrow C(K \times K) \).

Not clear that co-representations give much insight.
Weakly compact operators

We have that

\[L^\infty(X \times X) = L^\infty(X) \varprojlim L^\infty(X) = (L^1(X) \hat{\otimes} L^1(X))^* = B(L^1(X), L^\infty(X)). \]
Weakly compact operators

We have that

\[L^\infty(X \times X) = L^\infty(X) \hat{\otimes} L^\infty(X) = (L^1(X) \hat{\otimes} L^1(X))^* = B(L^1(X), L^\infty(X)). \]

Let \(\mathcal{W}(L^1(X), L^\infty(X)) \) be the collection of all weakly-compact operators \(L^1(X) \to L^\infty(X) \).
Weakly compact operators

We have that

\[\ell^\infty(X \times X) = \ell^\infty(X) \overline{\otimes} \ell^\infty(X) = (\ell^1(X) \hat{\otimes} \ell^1(X))^* = \mathcal{B}(\ell^1(X), \ell^\infty(X)). \]

Let \(\mathcal{W}(\ell^1(X), \ell^\infty(X)) \) be the collection of all weakly-compact operators \(\ell^1(X) \to \ell^\infty(X) \).

Again using factorisation results, it is possible to show:

Theorem

Identify \(\mathcal{B}(\ell^1(X), \ell^\infty(X)) \) with \(\ell^\infty(X \times X) \). Then \(\mathcal{W}(\ell^1(X), \ell^\infty(X)) \) is a subalgebra of \(\ell^\infty(X \times X) \).
Weakly compact operators

We have that

\[L^\infty(X \times X) = L^\infty(X) \overline{\otimes} L^\infty(X) = (L^1(X) \hat{\otimes} L^1(X))^* = \mathcal{B}(L^1(X), L^\infty(X)). \]

Let \(\mathcal{W}(L^1(X), L^\infty(X)) \) be the collection of all weakly-compact operators \(L^1(X) \rightarrow L^\infty(X) \).

Again using factorisation results, it is possible to show:

Theorem

Identify \(\mathcal{B}(L^1(X), L^\infty(X)) \) with \(L^\infty(X \times X) \). Then \(\mathcal{W}(L^1(X), L^\infty(X)) \) is a subalgebra of \(L^\infty(X \times X) \).

This immediately implies that \(\text{wap}(L^1(X)) \) is a subalgebra!
Semitopological semigroups

Recall that a topological semigroup K is *semitopological* if the product is separately continuous.
Recall that a topological semigroup K is *semitopological* if the product is separately continuous.

Theorem

Let $(L^\infty(X), \Gamma)$ be a commutative Hopf von Neumann algebra. Let K be the character space of $wap(L^1(X))$. Then Γ naturally induces a semigroup product on K turning K into a compact semitopological semigroup.
For the measure algebra

We can apply this to $\text{wap}(M(G)) \cong C(K)$.
For the measure algebra

We can apply this to \(\text{wap}(M(G)) \cong C(K) \).

We now know that \(K \) is, naturally, a compact semitopological semigroup.
For the measure algebra

We can apply this to $\text{wap}(M(G)) \cong C(K)$.

We now know that K is, naturally, a compact semitopological semigroup.

But what can we say about K? It would be good to have an abstract characterisation of K in terms of G.
Non-commutative issues

I initially thought about these problems for *non-commutative* Hopf von Neumann algebras,
Non-commutative issues

I initially thought about these problems for non-commutative Hopf von Neumann algebras, specifically for locally compact quantum groups.
Non-commutative issues

I initially thought about these problems for *non-commutative* Hopf von Neumann algebras, specifically for locally compact quantum groups.

Let \((M, \Gamma)\) be a Hopf von Neumann algebra; let \(M_*\) be the predual of \(M\); let \(E\) be a reflexive (operator) space.

1. What is a good replacement for \(L_2(X, E)\)? Maybe Pisier's notion of vector-valued non-commutative \(L^p\) spaces? But does \(M\) act nicely on these?

2. Lacking the approximation property, can we show that \(\text{CB}(M_*, \text{CB}(E))\) is equal to \(M_* \otimes \text{CB}(E)\)? (True if \(E\) is a Hilbert space).

3. How to tensor two reflexive operator spaces?
Non-commutative issues

I initially thought about these problems for non-commutative Hopf von Neumann algebras, specifically for locally compact quantum groups. Let (M, Γ) be a Hopf von Neumann algebra; let M^* be the predual of M; let E be a reflexive (operator) space.

1. What is a good replacement for $L^2(X, E)$?
Non-commutative issues

I initially thought about these problems for non-commutative Hopf von Neumann algebras, specifically for locally compact quantum groups. Let \((M, \Gamma)\) be a Hopf von Neumann algebra; let \(M^*\) be the predual of \(M\); let \(E\) be a reflexive (operator) space.

1. What is a good replacement for \(L^2(X, E)\)? Maybe Pisier’s notion of vector-valued non-commutative \(L^p\) spaces?
Non-commutative issues

I initially thought about these problems for non-commutative Hopf von Neumann algebras, specifically for locally compact quantum groups. Let \((M, \Gamma)\) be a Hopf von Neumann algebra; let \(M^\ast\) be the predual of \(M\); let \(E\) be a reflexive (operator) space.

1. What is a good replacement for \(L^2(X, E)\)? Maybe Pisier’s notion of vector-valued non-commutative \(L^p\) spaces? But does \(M\) act nicely on these?
Non-commutative issues

I initially thought about these problems for non-commutative Hopf von Neumann algebras, specifically for locally compact quantum groups. Let \((M, \Gamma)\) be a Hopf von Neumann algebra; let \(M^\ast\) be the predual of \(M\); let \(E\) be a reflexive (operator) space.

1. What is a good replacement for \(L^2(X, E)\)? Maybe Pisier’s notion of vector-valued non-commutative \(L^p\) spaces? But does \(M\) act nicely on these?

2. Lacking the approximation property, can we show that \(\text{CB}(M^\ast, \text{CB}(E))\) is equal to \(M^\ast \overline{\otimes} \text{CB}(E)\)? (True if \(E\) is a Hilbert space).
Non-commutative issues

I initially thought about these problems for non-commutative Hopf von Neumann algebras, specifically for locally compact quantum groups.

Let \((M, \Gamma)\) be a Hopf von Neumann algebra; let \(M^*\) be the predual of \(M\); let \(E\) be a reflexive (operator) space.

1. What is a good replacement for \(L^2(X, E)\)? Maybe Pisier’s notion of vector-valued non-commutative \(L^p\) spaces? But does \(M\) act nicely on these?

2. Lacking the approximation property, can we show that \(CB(M^*, CB(E))\) is equal to \(M^* \hat{\otimes} CB(E)\)? (True if \(E\) is a Hilbert space).

3. How to tensor two reflexive operator spaces?