Revealing the origin of super-Efimov states in the hyperspherical formalism

Chao Gao
Institute for Advanced Study, Tsinghua University, Beijing 100084, China

Jia Wang
Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

Zhenhua Yu
Institute for Advanced Study, Tsinghua University, Beijing, 100084, China

(Dated: March 25, 2015)

Recently a field-theoretic calculation predicted a new kind of universal three-body bound states for three identical fermions with p-wave resonant interactions in two dimensions [Phys. Rev. Lett. 110, 235301 (2013)]. These states were called “super-Efimov” states due to their binding energies $E_n = E_s e^{-2\pi n/s_0 + \theta}$ obeying a dramatic double exponential scaling. The scaling $s_0 = 4/3$ was found to be universal while E_s and θ are the three-body parameters. Here we use the hyperspherical formalism and show that the super-Efimov states originate from an emergent effective potential $-1/4p^2 - (s_0^2 + 4)/\rho^2 \ln^2(\rho)$ at large hyperradius ρ. Moreover, for pairwise interparticle potentials with van der Waals tails, our numerical calculation indicates that the three-body parameters E_s and θ are also universal and the ground super-Efimov state shall cross the threshold when the 2D p-wave scattering area is about $-42.0 l^2_{vdW}$ with l_{vdW} the van der Waals length.

A landmark result of few-body physics is the Efimov bound states predicted theoretically in 1970 for three-body systems with s-wave resonant interactions in three dimensions [1]. The binding energy of the nth Efimov state scales as $E_n = E_s e^{-2\pi n/s_0}$ with s_0 a universal number and E_s the three-body parameter [1][2]. This peculiar scaling is given rise to by an emergent effective potential of the form $-(s_0^2 + 4)/\rho^2$ in the hyperspherical formalism of the three-body problem at large hyperradius ρ. Only recently, extreme experimental controllability and versatility of ultra-cold atomic gases [3–6] provides a unique opportunity to detect evidences of the Efimov states for the very first time in atomic systems. Experimentalists succeeded in realizing s-wave resonant interactions in ultra-cold atomic gases by the technique of Feshbach resonance [7], and revealed the Efimov physics through measuring atom loss rate due to three-body recombinations [8–14], atom-dimer inelastic collisions [15–16] and radio-frequency spectroscopy [17–18]. Further studies showed that even the three-body parameter E_s, which determines the absolute energy levels of the Efimov states has a universal feature for different atomic species [10, 13, 25].

The quest for universal physics at resonances beyond the paradigm of the Efimov states brought about a recent quantum field theory calculation predicting that universal bound states exist for three identical fermions with p-wave resonant interactions in two dimensions [26]. These new states have angular momentum $\ell = \pm 1$ and are called “super-Efimov” due to the fascinating scaling of their binding energies $E_n = E_s e^{-2\pi n/s_0 + \theta}$ with $s_0 = 4/3$ a universal number, and E_s and θ the three-body parameters. While the prediction of the super-Efimov states agrees with a recently proved theorem [27], understanding the origin of such universal states requests further investigation.

In this work, we use the hyperspherical formalism to study three identical fermions with p-wave resonant interactions in two dimensions. In the angular momentum $\ell = \pm 1$ channel, we show that the super-Efimov states are due to an emergent effective potential $U_{eff} \sim -1/4p^2 - (s_0^2 + 4)/\rho^2 \ln^2(\rho)$ in the large hyperradius ρ limit. We extract s_0 from U_{eff} calculated numerically at the first three p-wave resonances of three different kinds of model potentials; the extracted values of s_0 agree well with 4/3 as predicted by the field theory [26]. For pairwise interparticle potentials with a van der Waals tail, the numerically obtained binding energies of the lowest two super-Efimov states indicate that the three-body parameters E_s and θ are also universal; the ground super-Efimov state is predicted to emerge at the threshold when the 2D scattering area is about $-42.0 l^2_{vdW}$ with l_{vdW} the van de Waals length.

Hyperspherical formalism. — We consider three identical fermions with coordinates r_1, r_2 and r_3 interacting pairwisely through a central potential $V(r)$ of finite range r_0 in two dimensions. The potential is fine tuned such that it is at a p-wave resonance. We introduce the Jacobi coordinates $x_i = r_j - r_k$ and $y_i = 2(r_i - (r_j + r_k)/2)/\sqrt{3}$, where $\{i, j, k\}$ takes the values of $\{1, 2, 3\}$ cyclically. The hyperspherical radius is given by $\rho = \sqrt{x_1^2 + x_2^2}$, and the corresponding hyperspherical angles $\Omega_i = \{\alpha_i, \theta_{x_i}, \theta_{y_i}\}$ with $\alpha_i = \tan^{-1}(x_i/y_i)$. After separating out the center of mass part, we expand the wave-function of the system in terms of any set of hyperangles Ω_i as

$$\Psi = \sum_{\mu} \rho^{-3/2} f_{\mu}(\rho) \Phi_{\mu}(\rho, \Omega_i).$$

(1)
The angular part $\Phi_\mu(\rho, \Omega_i)$ is required to satisfy the eigenequation
\[
\hat{\Lambda}^2 + m^2 \rho^2 \sum_{j=1}^{3} V(\rho \sin \alpha_j) \Phi_\mu(\rho, \Omega_i) = \lambda_\mu(\rho) \Phi_\mu(\rho, \Omega_i),
\]
with m the mass of each fermion. Here, the total angular momentum operator is given by
\[
\hat{\Lambda} = -\frac{\partial^2}{\partial \alpha_i^2} - 2 \cot(2\alpha_i) \frac{\partial}{\partial \alpha_i} + \frac{L_\alpha^2}{\sin^2 \alpha_i} + \frac{L_\beta^2}{\cos^2 \alpha_i}.
\]

Hereafter, we use units such that $\hbar = 1$ and $m = 1$ unless stated otherwise. Consequently, the hyperradial part satisfies the coupled equations of eigen-energy E as
\[
\left[-\frac{d^2}{d\rho^2} - \frac{1}{4\rho^2} + U_\mu(\rho) - Q_{\mu\mu} - mE\right] f_\mu(\rho) = \sum_{\nu(\neq \mu)} \left[2P_{\mu\nu} \frac{d}{d\rho} + Q_{\mu\nu}\right] f_\nu(\rho),
\]
with $U_\mu(\rho) = [\lambda_\mu(\rho) + 1]/\rho^2$. The couplings $P_{\mu\nu} = \langle \Phi_\mu | \partial_{\rho} | \Phi_\nu \rangle$ and $Q_{\mu\nu} = \langle \Phi_\mu | \partial^2_{\rho} | \Phi_\nu \rangle$, with $\langle \ldots \rangle$ standing for the integration over the hyperangles, are expected to be negligible for $\mu \neq \nu$ in the large ρ limit [28] as Eq. (2) becomes decoupled, the three-body problem is reduced to a one dimensional equation, and the eigenstates with $E \rightarrow 0^+$ shall be governed by the effective potential $U_{\text{eff}} = -1/4\rho^2 + U_0 - Q_{00}$ of the shallowest attractive channel $\mu = 0$ at large hyperradius [28].

We focus on the states with total angular momentum $|\ell| = |\ell_x, \ell_y| = 1$ for which the super-Efimov states were predicted [26]. We solve the Faddeev equations derived from Eq. (2) in the regime $r_0/\rho < 1$ [28], and find for the shallowest attractive channel
\[
\lambda_0(\rho) + 1 = -\frac{Y}{\ln(\rho/r_0)} + O\left(\frac{1}{\ln^2(\rho/r_0)}\right),
\]
where the dimensionless parameter Y is given by
\[
Y = -1 - m \int_0^\infty dr \left[\frac{V(r) u_0^2(r)}{\lim_{r \to \infty} |r u_0(r)|^2}\right] dr
\]
with u_0 the zero energy p-wave two-body wave-function satisfying $[-\partial^2/(1/r) \partial_r + 1/r^2 + mV(r)] u_0(r) = 0$. An alternative expression is
\[
Y = \int_0^\infty \frac{dr \left[|\partial_r u_0(r)|^2 \right]}{\lim_{r \to \infty} |r u_0(r)|^2},
\]
which shows Y positive definite. Note that a similar logarithmic structure also appears in the scattering T-matrix in two dimensions [32].

Effective potential.— In the regime $r_0/\rho \ll 1$, if Q_{00} can be neglected, $U_{\text{eff}} + 1/4\rho^2 \sim -Y/\rho^2 \ln(\rho/r_0)$ would give rise to shallow bound states whose energies E_n, scale as $\ln |E_n| \sim -(n\pi)^2/2Y$. Surprisingly Ref. [30] argued that $Q_{00} \sim -Y/\rho^2 \ln(\rho/r_0)$; the leading orders of U_0 and Q_{00} shall cancel. This cancellation would result in $U_{\text{eff}} + 1/4\rho^2 = U_0 - Q_{00} \sim 1/\rho^2 \ln^2(\rho/r_0)$ in which case super-Efimov states become possible.

The involved hyperangle integral of Q_{00} seems to preclude evaluating it analytically to order $1/\rho^2 \ln^2(\rho/r_0)$. Hence we obtain U_{eff} by calculating U_0 and Q_{00} numerically with three kinds of model potentials: the Leonard-Jones (LJ), Gaussian (GS), Pöschl-Teller (PT).

The red solid lines are for the first p-wave resonances of the three potentials, and the blue ones for the second, and the green ones for the third. The dashed line is $\rho^2 U_{\text{eff}} + 1/4 = -[(4/3)^2 + 1/4]/\ln^2(\rho/r_0)$. The model potentials are all tuned at a shallow resonance. We solve Eq. (2) by using the modified Smith-Whitten coordinates, which have been successfully applied to three-body systems in both three dimensions [33–37] and two dimensions [38, 39]. The details of constructing the Smith-Whitten coordinates and the corresponding hyperspherical representation can be found in Refs. [38] and [40].

Figure (1) shows the resultant numerical results of U_{eff} at the first three p-wave resonances of the three model potentials, which all converge to a universal form $-1/4\rho^2 - [(4/3)^2 + 1/4]/\rho^2 \ln^2(\rho/r_0)$ when ρ/r_0 is large. We fit the data of $\rho^2 U_{\text{eff}} + 1/4$ by the series $-\sum_{n=2}^4 c_n \ln^{-n}(\rho/r_0)$ in the range $\rho/r_0 \in [30, 500]$. We define $s_0^2 \equiv c_2 - 1/4$. Likewise Tab. (1) shows that all fitted values of s_0 agree with $4/3$ within $\sim 4\%$. Similarly we fit the data for
\(\rho^2 U_0\) and \(\rho^2 Q_{00}\) separately by \(-\sum_{n=1}^{3} c_n \ln^{-n}(\rho/r_0)\) in the same range. As shown in Tab. 1, fitted \(c_1\) of both \(U_0\) and \(Q_{00}\) and \(Y\) calculated by the analytic result Eq. (6) show good agreement within \(\sim 6\%\), the difference between which nevertheless quantifies the overall error of our numerical data and the fitting scheme.

Our calculation indicates that when \(\rho/r_0\) is large, the three-body system is subject to an emergent effective potential

\[
U_{\text{eff}}(\rho) = -\frac{1}{4\rho^2} - \frac{s_0^2 + 1/4}{\rho^2 \ln^{-2}(\rho/r_0)}.
\]

Given such a potential, one can use the WKB approximation (or other methods) to show that the binding energies of shallow bound states have the super-Efimov form \(E_n = E_\ast \exp(-2\rho/n_s + \theta)\). Our numerical results of \(s_0\) agrees well with the universal scaling factor 4/3 predicted by Ref. [20]. Thus we show that the universal super-Efimov states originate from the universal effective potential Eq. (3).

Three-body parameters

In the case of Efimov states, the three-body parameter \(\tilde{E}_\ast\) is originally believed to be not universal and to be determined by short-range interaction details [2]. Surprisingly recent experiments of ultracold atomic gases found \(\tilde{E}_\ast\) rather universal (in van der Waals units) [21]. Subsequent theoretical calculations [21, 24-25] inspired by this new discovery soon confirmed that when the long range tail of the two-body interaction is dominated by the van der Waals form \(V(\rho) \rightarrow -C_6/\rho^6\), \(\tilde{E}_\ast\) is universally determined by the van der Waals length \(\ell_{vdW} \equiv (m C_6)^{1/4}/2\) or equivalently the van der Waals energy \(E_{vdW} \equiv -1/m\ell_{vdW}^2\). It is natural to ask the question: whether the three-body parameters for super-Efimov states \(E_\ast\) and \(\theta\) are also universal, if the two-body interaction has the long-range tail \(-C_6/\rho^6\)?

We use two-body model potentials \(V_k^\ast(r) = -C_6/r^6 [1 - (\beta_n/r)^k]\) to study the three-body parameters numerically. The short-range parameter \(\beta_n\) is tuned such that there are \(n\) \(p\)-wave two-body bound states including the shallowest one at threshold. These two-body model potentials have the same long-range van der Waals tail, but very different short-range interactions determined by \(\beta_n\) and \(k\). The first evidence of universality is the effective potential \(U_{\text{eff}}\) at short range as shown in Fig. 2, where a universal repulsive core rises up at about \(\rho \approx 2.2\ell_{vdW}\); it seems that the short range details of these different two-body model potentials have little effect on those of the three-body effective potential \(U_{\text{eff}}\).

Applying the numerical treatment similar to Ref. [37], we obtain the three-body super-Efimov ground state energies \(E_g\) for different \(V_k^\ast(r)\) which are shown to be quite universal in Fig. 3. Interestingly, the values of \(E_g \approx -0.05 E_{vdW}\) is close to the universal Efimov ground state energies [21]. In addition, we extrapolate \(U_{\text{eff}}\) to very large distances and calculate the energies \(E_{g,1}^{\text{ad}}\) and \(E_{g,1}^{\text{vd}}\) of both the ground and the first excited super-Efimov states for \(V_k^\ast(r)\) within the adiabatic hyperspherical approximation (neglecting \(P_0\) and \(Q_{00}\) for \(\nu \neq 0\)). Table [IV] shows that while the ground state energies \(E_{g,1}^{\text{ad}}\) have good agreement with the full calculations \(E_g\), the first excited state energies \(E_{g,1}^{\text{vd}}\) have extremely small values (of order \(10^{-14} E_{vdW}\)), implying that a full calculation will be extremely challenging. Nevertheless, from \(E_{g,1}^{\text{ad}}\) and \(E_{g,1}^{\text{vd}}\), the three-body parameters \(\theta\) and \(\xi [\equiv \ln(\tilde{E}_\ast/E_{vdW})]\) are shown in the inset of Fig. 3 to be very universal, if we express the super-Efimov energies as \(E/E_{vdW} = \exp[-2\exp(4\pi r/3 + \theta) + \xi]\). We attribute the universality of \(\theta\) and \(\xi\) to the same mechanism as in Efimov states that the three-body wave functions of super-Efimov states have so small amplitude at small \(\rho(\lesssim \ell_{vdW})\) that other than the van de Waals tail of \(V(r)\), short distance details of interactions have negligible effect [21].
-4.651 \times 10^{-2} -4.254 \times 10^{-2} -0.969 \times 10^{-14} -1.496 -2.709
-4.415 \times 10^{-2} -4.429 \times 10^{-2} -1.232 \times 10^{-14} -1.502 -2.672
-3.941 \times 10^{-2} -4.785 \times 10^{-2} -1.995 \times 10^{-14} -1.517 -2.601

old, we find that the crossing point A three-body continuum. Extrapolating p to approximately -5.0, the error bars of E_g for $n = 2, 3$ quantify the finite lifetime of the state due to its decaying into atom-dimer states.

Threshold crossing.— In ultra-cold atomic gases, the three-body recombination resonances observed experimentally in the vicinity of Feshbach resonances occur where Efimov state energies cross the three-body continuum threshold, and serve as first evidences of Efimov physics [8–14, 19]. Here we tune the depth of the Lenard-Jones two-body model potential around the nth p-wave resonance, and calculate the ground super-Efimov state energy E_g as a function of 2D p-wave scattering area A. For small scattering wave vector q, the 2D p-wave scattering phase shift $\delta(q)$ is given by $\cot \delta(q) = -1/Aq^2$. Figure 4 shows that when A is tuned to large and negative values, E_g becomes shallower and eventually hit the three-body continuum. Extrapolating E_g to the threshold, we find that the crossing point $A_g^{(-)}$ is at -45.9_{vdW}^2, -42.1_{vdW}^2, and -42.0_{vdW}^2 near the 1st, 2nd, and 3rd p-wave resonance respectively. The magnitude of $A_g^{(-)}$ complies with the linear dimension of the ground super-Efimov state at resonance. The convergence of $A_g^{(-)}$ to approximately -42.0_{vdW}^2 is reminiscent of the Efimov physics in which the three-body parameters becomes more universal for two-body potentials that can support more bound states [21]. Recent successful realization of “quasi” 2D Fermi gases [42, 44] opens up the prospect of experimental study of the super-Efimov physics in atomic gases. It will be worth examining how the super-Efimov physics would be affected by the strong confinement applied to produce the “quasi” 2D gases in future investigations.

Acknowledgments.— We thank S. Moroz, Y. Nishida, H. Zhai, X. Cui, Z. Shi, S. Tan, Y. Castin, C.H. Greene, J.P. D’Incao and R. Coté for discussions. ZY acknowledges support from the INT program “Universality in Few-Body Systems: Theoretical Challenges and New Directions” (INT 14-1), during which part of the work was carried out. This work is supported by Tsinghua University Initiative Scientific Research Program, NSFC under Grant No. 11104157, No. 11474179, and No. 11204152, No. 11004118, No. 11174176, No. 11204153, and NKBRSFC under Grant No. 2011CB921500.

* Electronic address: huazhenyu2000@gmail.com

[1] V. Efimov, Phys. Lett. B 33 563 (1970); Yad. Fiz. 12, 1080 (1970) [Sov. J. Nucl. Phys. 12, 589 (1971)]; Nucl. Phys. A 210, 157 (1973).
[2] E. Braaten, and H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[3] D. S. Petrov, arXiv:1206.5752
[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
[5] M. Saffman, T. G. Walker and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
[6] J. Dalibard, F. Gerbier, and G. Juzeliunas, and P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011).
[7] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[8] T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Engeser, A.D. Lange, K. Pilch, A. Jaakkola,
H.-C. Nägerl and R. Grimm, Nature **440**, 315 (2006).
[9] T. B. Ottenstein, T. Lompe, M. Kohnen, A.N. Wenz, and S. Jochim, Phys. Rev. Lett. **101**, 203202 (2008).
[10] S. E. Pollack, D. Dries, and R.G. Hulet, Science **326**, 1683 (2009).
[11] N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Phys. Rev. Lett. **103**, 163202 (2009).
[12] J. H. Huckans, J. R. Williams, E. L. Hazlett, R. W. Stites, and K. M. O’Hara, Phys. Rev. Lett. **102**, 165302 (2009).
[13] J. R. Williams, E. L. Hazlett, J. H. Huckans, R. W. Stites, Y. Zhang, and K. M. O’Hara, Phys. Rev. Lett. **103**, 130404 (2009).
[14] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and D. S. Jin, Phys. Rev. Lett. **108**, 145305 (2012).
[15] S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schöbel, H.-C. Nägerl, R. Grimm, Nature Phys. **5**, 227 (2009).
[16] T. Lompe, T. B. Ottenstein, F. Serwane, K. Viering, A. N. Wenz, G. Zürn, S. Jochim, Phys. Rev. Lett. **105**, 103201 (2010).
[17] T. Lompe, T. B. Ottenstein, F. Serwane, A. N. Wenz, G. Zürn, S. Jochim, Science **330**, 940 (2010).
[18] S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, and M. Ueda, Phys. Rev. Lett. **106**, 143201 (2011).
[19] N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Phys. Rev. Lett. **105**, 103203 (2010).
[20] M Berninger, A Zenesini, B. Huang, W. Harm, H.-C. Nägerl, F. Ferlaino, R. Grimm, Phys. Rev. Lett. **107**, 120401 (2011).
[21] J. Wang, J. P. D’Incao, B.D. Esry, and C. H. Greene, Phys. Rev. Lett. **108**, 263001 (2012).
[22] Y. Wang, J. Wang, J. P. D’Incao, and C.H. Greene, Phys. Rev. Lett. **109**, 243201 (2012).
[23] C. Chin, arXiv:1111.1484
[24] R. Schmidt, S. P. Rath, and W. Zwerger, Eur. Phys. J. B **85**, 886 (2012).
[25] P. Naidon, S. Endo, and M. Ueda, Phys. Rev. Lett. **112**, 105301 (2014).
[26] Y. Nishida, S. Moroz, and D. T. Son, Phys. Rev. Lett. **110**, 235301 (2013).
[27] D. K. Gridnev, J. Phys. A **47**, 505204 (2014).
[28] E. Nielsen, D. V. Fedorov, A. S. Jensen, and E. Garrido, Phys. Rep. **347**, 373 (2001).
[29] For the Leonard-Jones, Gaussian, and Pöschl-Teller two-body model potentials, we find numerically $P_\nu \sim 1/\rho \ln^2(\rho)$ and $Q_\nu \sim 1/\rho^2 \ln^2(\rho)$ for $\nu \neq 0$ when ρ is large; the effect of these channel couplings shall be equivalent to introduce corrections $\sim 1/\rho^2 \ln^2(\rho)$ to U_{eff}, which thus is negligible.
[30] A.G. Volosniev, D. V. Fedorov, A. S. Jensen and N. T. Zinner, J. Phys. B **47**, 185302 (2014).
[31] Y. Castin, private communication.
[32] J. Levinsen, N. R. Cooper, and V. Gurarie, Phys. Rev. A **78**, 063616 (2008).
[33] B. R. Johnson, J. Chem. Phys. **73**, 5051 (1980).
[34] B. Lepetit, Z. Peng, A. Kuppermann, Chem. Phys. Lett. **166**, 572 (1990).
[35] C. D. Lin, Phys. Rep. **257**, 1 (1995).
[36] H. Suno and B. D. Esry, Phys. Rev. A **78**, 062701 (2008).
[37] J. Wang, J. P. D’Incao and C. H. Greene Phys. Rev. A **84**, 052721 (2011).
[38] J. P. D’Incao and B. D. Esry, Phys. Rev. A **90**, 042707 (2014).
[39] J. P. D’Incao, F. Anis, and B. D. Esry, arXiv: 1411.2321.
[40] J. Wang, J. P. D’Incao, Y. Wang and C. H. Greene, Phys. Rev. A **86**, 062511 (2012).
[41] C. M. Bender and S. A Orszag, *Advanced Mathematical Methods for Scientists and Engineers*, (McGraw-Hill Book Company, 1978).
[42] K. Martyianov, V. Makhalov, and A. Turlapov, Phys. Rev. Lett. **105**, 030404 (2010).
[43] P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hu, M. Mark, S. Hoinka, M. Lingham, P. Hannaford, C.J. Vale, Phys. Rev. Lett. **106**, 105304 (2011).
[44] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, and M. Köhl, Phys. Rev. Lett. **106**, 105301 (2011).