Silver nanoparticles-decorated Preyssler functionalized cellulose biocomposite as a novel and efficient catalyst for the synthesis of 2-amino-4H-pyran and spirochromenes

Sara Saneinezhad\(^1\), Leila Mohammadi\(^2\), Vahideh Zadsirjan\(^2\), Fatemeh F. Bamoharram\(^1,2\) & Majid M. Heravi\(^2,3\)

Silver nanoparticles-decorated Preyssler functionalized cellulose biocomposite (PC/AgNPs) was prepared and fully characterized by FTIR, UV–vis, SEM, and TEM techniques. The preparation of PC/AgNPs was studied systematically to optimize the processing parameters by Taguchi method using the amount of PC, reaction temperature, concentration of silver nitrate and pH of medium. Taguchi’s L9 orthogonal (4 parameters, 4 level) was used for the experimental design. The SEM analysis confirmed the presence of the Preyssler as a white cloud as well as spherical AgNPs on the surface of cellulose. The formation of AgNPs on the surface was observed by changing of the color from yellow to deep brown and confirmed by UV–vis spectroscopy. The best yield of AgNPs forming was obtained in pH 12.5 at 80 ºC in 20 min. TEM analysis confirmed the formation of spherical AgNPs with a size of 50 nm, at the 1% wt. loading of Preyssler. This easily prepared PC/AgNPs was successfully employed as an efficient, green, and reusable catalyst in the synthesis of a wide range of 2-amino-4H-pyran and functionalized spirochromene derivatives via a one-pot, multicomponent reaction. The chief merits realized for this protocol were the utilization of commercially available or easily accessible starting materials, operational simplicity, facile work-up procedure, obtaining of high to excellent yields of the products and being done under green conditions. The catalyst could be easily separated from the reaction mixture and reused several times without observing any appreciable loss in its efficiency.

With increasing concern about environmental pollution, the development of new heterogeneous catalytic systems based on green and biodegradable solid supports have attracted much attention of chemical community. In this area, renewable and biodegradable organic polymers, biopolymers, and especially polysaccharide-supported catalysts, with or without modification of the support, such as starch, cellulose\(^1\) and hemicellulose\(^2,3\), chitosan\(^4,5\), guar-gum\(^6\), carrageenans\(^7\) and lignin\(^8\) have been gaining increased attention in the last decade. Among these heterogeneous supports, cellulose as an inexpensive and biodegradable natural biopolymer has been proved to be an attractive candidate as supporting materials. It can be used as microcrystalline cellulose, cellulose hydrogel, cellulose membrane, and cellulose microsphere etc.\(^9,12\).

Literature survey shows among different heterogeneous catalytic reactions, many investigations have been devoted to develop methodologies based on the use of metal nanoparticles supported onto cellulose due to its...
specify towards attracting metal ions13–23. Deposition of nanoparticles on the surface of biopolymers is a subject of great interest due to their potential applications in electronic devices, sensing, catalysis and bio-medical sciences. Along this line, cellulose-based catalysts coordinated metals, such as palladium, ruthenium, platinum, copper, silver, and nickel nanoparticles, have been prepared and used, continuously24–29. Direct preparation of metal nanoparticles on supports has attracted a considerable interest mainly due their potential applications in optics, electronic devices, catalysis, sensors, medical applications, etc.18,30–34 In all these reactions, metals have been tried being deposited on cellulose, directly. However due to instability of bonds between metals and cellulose, they could easily leach from cellulose after one or two reactions. To circumvent this problem, functionalization cellulose is used make cellulose-metal complexes more stable and efficient for being used as catalyst. Numerous examples of cellulose-supported organic transformations are reported in the literature35–37. For example, a catalytic system including Co(II) supported on ethylenediamine functionalized nanostructured cellulose has as an efficient and reusable catalyst for aerobic oxidation of various benzylic alcohols has been reported by Shaaban et al.38.

Additionally, in the Suzuki reaction, Due et al. developed an air-stable diphenylphosphinate-modified cellulose-supported catalyst39, and Keshropur et al. used ethylenediamine for functionalization of cellulose97. Wang et al. attached triphenylphosphine and N-methylimidazole to cellulose to make as support of Pd and used it in the Suzuki reaction98. Furthermore, thiol modified cellulose fibers–gold nanoparticles composites served as active catalysts for the reduction of 4-nitrophenol into 4-aminophenol99. Palladium supported on 2-aminoypyridine functionalized cellulose was also synthesized and fully characterized by Peibo et al.100, and its catalytic potency and recyclability were examined successfully in one of the classic name reaction for the formation of carbon–carbon bond so-called, the Suzuki reaction. In spite of all these promising and motivating achievements, the immobilization of MNPs on the inorganic functionalized celluloseic substrates persisted being low, thus, much attempt must made to develop for replacing organic functionalizing materials.

Using heteropolyacids (HPAs) as benign and environmentally green inorganic polymers, finally led to the fabrication of engineered and eco-friendly functionalized biopolymers. Preyssler heteropolyacid is a kind of heteropolymers, which comprises a cyclic assemblage of five PW\textsubscript{12}O\textsubscript{40} segments, each consequent of the spherical Keggin anion, [PW\textsubscript{12}O\textsubscript{40}]3−, through the exclusion of two groups of three corner-sharing trioxide tungsten octahedron. This sort of two PO\textsubscript{4} tetrahedron encircled by thirty trioxide tungsten, associated to each other by power and corner-sharing oxygens101. The intrinsic typical of Preyssler coordinated with metals strictly brands it as a prevalent ligand to back up different metals thus, could be used as the bridge between metals and the matrix to generate well-organized and effective catalysts44. Recently, we achieved an effective strategy for the designing and in situ synthesis of an organic–inorganic polymeric bio-composite involving functionalized microcrystalline cellulose and Preyssler HPA for immobilization of Pd nanoparticles on the surface to the formation of nanobiocomposite as surface heterogeneous composite and used it in successful degradation of azo dyes45.

Nowadays, multicomponent reactions (MCRs) have attracted much attention both in academia and industry owing to their unique synthetic efficacy, inherent atom economy, high selectivity and operational simplicity102. Several divers and interesting heterocyclic systems, particularly those which are beneficial in combinatorial chemistry as powerful tools in drug discovery, have been conveniently synthesized via MCR103. MCRs are also expedient for the practical establishment of chemical libraries of structurally related, medicinally important drug-like compounds104. Thus, the design of new MCRs have attracted enormous attention particularly in the region of drug discovery and synthesis of complex molecules and natural products. MCRs particularly those conducted in water or aqueous medium, nowadays found delight and very high respect in synthetic organic chemistry for the preparation of chemically and biologically vital compounds by justification of their eco-friendly, instinct atom-economy and green features105–104. For these reasons, MCRs which are naturally being done in one-pot fashion can vividly reduce the creation of chemical waste and show high impact of the cost starting materials, short reaction times, and afford higher overall chemical yields55–57. Among heterocyclic systems, pyran and its derivatives are recognized as a significant class of compounds, which set up the important and abundant core in different naturally occurring important compounds as well as photochromic materials58,59. They also exhibit a broad range of biological potencies such as anticancer59, antimicrobial60, antioxidant61 and antiproliferative activities62,63. 4H-Pyan derivatives are also found being powerful calcium channel blockers, which are structurally comparable to potentially active 1,4-dihydropyridines84. Furthermore, 2-amino-4H-pyrans are frequently applied in cosmetics and pigments, or also can be used as potentially biodegradable agrochemicals. The 4H-pyran derivatives containing a nitrile functional group are also valuable intermediates for the synthesis of a wide range of compounds for example, lactones, pyridones, aminopyrimidines, 1,4-dihydropyridines, pyranopyrazoles, and imidoesters65,66. Due to imperative above-mentioned properties of pyran derivatives, synthesis of this heterocyclic system stand in paramount of has gained of organic synthesis67. The most direct and frequently used synthetic approach for such heterocyclic system, comprises MCR (a three-component reaction), including an aldehyde, various alkylmalonates and diverse enolizable C–H activated acidic compounds catalyzed by homogeneous or heterogeneous catalysts such as diammonium hydrogen phosphate68, N-methylimidazole69, 4-(dimethylamino)pyridine (DMAP)70, lithium bromide71, hexamethylenetetramine72, 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU)73, potassium phthalimide-O-xylyl74, lipase75, Ce(SO\textsubscript{4})\textsubscript{2}·4H\textsubscript{2}O76, cerium(III) chloride77, tetrabutylammonium fluoride (TBAF)78, or a basic ionic liquid79. The latter is usually proceeds smoothly in glycerol80 or choline chloride-urea81, agro-waste based Water Extract of Muskmelon Fruit Shell Ash (WEMFSA)82, and amine-functionalized SiO\textsubscript{2}@Fe\textsubscript{3}O\textsubscript{4} nanoparticle83. On the other hand, spirooxindole derivatives are also striking objective in synthetic organic chemistry by benefit of their highly obviously biological potencies as well as broad-ranging efficacy as intermediates in the total synthesis of alkaloids, drug candidates, and clinical medicines84,85. Additionally, it has been found that the presence of the indole 3-carbon atom in the construction of spiroindoline derivatives can extremely increase their biological potencies86–89. As examples, 3,3-spirooxindole cores with inhibited potency have been illustrated in Fig. 190–93. For these reasons, the synthesis of these compounds has stirred up the interest
of synthetic organic chemists. Accordingly, there have been a few reports concerning MCRs for the synthesis of spirooxindole derivatives in aqueous media, using a plethora of different catalyst, for example L-proline, TEBA, and NH₄Cl have been employed in these reactions, enhancing the difficulty of purifications.

We are interested in heterocyclic chemistry especially in the synthesis of heterocycles via MCR, being synthesized in the presence of heterogeneous catalysis in water. In last few decades, our research group has focused on the heteropolyacids and their polyoxometalates-catalyzed reactions. The results of these achievements have been collected in several review articles, useful to those synthetic organic chemists who are interested in HPAs-catalyzed reactions. We have also recently reported the preparation and applications of immobilized AgNPs. Based on the points mentioned above and in continuation of our interest in exploring green heterogeneous catalysts for organic transformations resulting in the construction of the heterocyclic systems, herein we wish to report our successful attempt to apply our novel and fully characterized PC/AgNPs as an efficient and reusable catalyst in the synthesis of 4H-pyrans and spirochromenes via a one-pot three-component cyclocondensation reactions. A wide range of substrates including differently substituted benzaldehydes, isatin derivatives, andacenaphthenequinone are condensed with enolizable C-H activated compounds and alkylmalonates to afford a wide range of the desired products in good yields (Scheme 1).

Experimental

Materials and methods. Materials. All chemicals were purchased from Merck and Sigma–Aldrich Company and utilized as received. Microcrystalline cellulose (Cotton linters powder), ethanol (99.5% w/w), nitric acid (65% w/w); ammonia solution (25% w/w), tetraethyl orthosilicate (98% w/w), 3-aminopropyltriethoxysilane (95% w/w), and silver chloride were purchased from Sigma–Aldrich Company and used as received. Preyssler heteropolyacid and functionalized cellulose-Preyssler biocomposites were prepared according to our earlier work.

Instruments. The Scanning Electron Microscope (SEM) model VP-1450 (LEO, Co., Germany), was used for SEM analysis. For transmission electron microscopy (TEM) analysis, an LEO 912 AB instrument was used. The formation of AgNPs was studied by UV–vis spectra using Milton Roy, Spectronic 1,001 plus spectrophotometer. Using the ATR method, infrared absorption spectra were recorded in KBr pellets on a VERTEX-70 infrared spectrometer. Melting points were measured by an electro thermal 9,200 apparatus. IR spectra were recorded on a FT-IR Tensor 27 Spectrophotometer. All products were already known and identified by comparison of their physical (melting points) and spectral (FTIR spectra) data with those of authentic samples and found being identical.

Preparation of PC/AgNPs. In a typical reaction, 5 mL of AgNO₃ solution (1.5 mM) and PC (1.0 g in 10 mL H₂O), as a catalyst, were stirred at 50–80 °C, during vigorous stirring, hydrochloric acid or sodium hydroxide was added dropwise into the reaction mixture to adjust an appropriate pHs. After 5 min, silver nanoparticles (AgNPs) were precipitated as brown particles at pH = 6–12.5. At equal time intervals, the solutions were analyzed by a UV–vis spectroscopy to monitor the progress of the reaction.

Experimental design by Taguchi method. For experimental design, the Taguchi orthogonal array was applied. All parameters that had important impact on the preparation of AgNPs were selected as well as their levels. The amount of silver nitrate, temperature (°C), the amount of PC and pH were chosen as parameters at four levels. The concentration of silver nitrate was varied from 1.5–6 mM, the synthesis temperature was varied from 50 to 80 °C, the amount of PC was selected 0.13, 0.26, 0.52, 1 gr and the pH adjusted was between 5.5–12.5. Table 1 summarizes all of the parameters and levels used in this experiment.
Synthesis of 2-amino-4H-pyran: general procedure. A mixture of an appropriate benzaldehyde (1 mmol), malononitrile/ethyl cyanoacetate (1 mmol) various 1,3-diketones (dimedone, barbituric acid or ethyl acetoacetate) or 4-hydroxycoumarin/3-methyl-1H-pyrazol-5(4H)-one, various β-dicarbonyl compounds (1,3-diketones (dimedone, barbituric acid or ethyl acetoacetate) or 4-hydroxycoumarin/3-methyl-1H-pyrazol-5(4H)-one mediated by PC/AgNPs (mg 0.025) was refluxed in EtOH/H2O (1:1, 5 ml) for the indicated reaction time in Tables 4, 5, 6, 7, and 8. The progress of the reaction was monitored by TLC (7:3 n-hexancet/ethylacetate). Upon completion of the reaction (indicated by TLC), the mixture was filtered off under reduced pressure. The filtrate was cooled to room temperature and the precipitated solid was separated by filtration under reduced pressure. The respective product was pure enough but was further purified by crystallization from a mixture of EtOH/H2O to afford the respective desired product. The products were identified by comparison of their physical properties (melting points) as well as their FTIR spectral with those of already reported authentic compounds and found being identical.

Synthesis of spiro-2-amino-4H-pyran: general procedure. A mixture of an isatin or acenaphthenequinone (1 mmol), malononitrile or ethylcyanoacetate (1 mmol) and 1,3-diketones (dimedone, barbituric acid ethyl acetoacetate) or 4-hydroxycoumarin/3-methyl-1H-pyrazol-5(4H)-one/α-naphtol or β-naphtol (1 mmol) was refluxed in EtOH/H2O (1:1, 5 ml) for the indicated reaction time in Tables 4, 5, 6, 7, and 8. The progress of the reaction was monitored by TLC (7:3 n-hexancet/ethylacetate). Upon completion of the reaction (indicated by TLC), the mixture was filtered off under reduced pressure. The filtrate was cooled to room temperature and the precipitated solid was separated by filtration under reduced pressure. The respective product was pure enough but was further purified by crystallization from a mixture of EtOH/H2O to afford the respective desired product. The products were identified by comparison of their physical properties (melting points) as well as their FTIR spectral with those of already reported authentic compounds and found being identical.

Scheme 1. An efficient one-pot synthesis of functionalized 2-amino-4H-pyran and spirochromenes in the presence of PC/AgNPs catalyst.

Table 1. Parameters and levels used in the experiments using Taguchi robust design method with L9 orthogonal array.

Symbol	Parameters	Levels
A	pH	5.5 8.5 10.5 12.5
B	Loading PC (gr)	0.13 0.26 0.52 1
C	Temperature (°C)	50 60 70 80
D	Concentration of AgNO₃ (mM)	1.5 3 4.5 6
stirred in the presence of PC/AgNPs (mg 0.025) as a heterogeneous catalyst in H₂O/EtOH EtOH/H₂O (1:1, 5 mL) under reflux condition for an appropriate time as indicated in Tables 9 and 10. The progress of reaction was monitored by TLC (n-hexane/ethyl acetate (2:1). After completion of the reaction, the mixture was cooled to ambient temperature and the catalyst was separated by simple filtration. The filtrate was evaporated under reduced pressure and the obtained residue was crystalized from ethanol/n-hexane.

Results and discussion
The interrelationship between the existed parameters for synthesis of nanoparticles to optimize the factors is a time and labor consuming work. Therefore, using statistical experimental design and the Taguchi method, in particular, have been performed by many researchers. Taguchi method can determine the experimental conditions having the least variability as the optimum condition. Not only, it is economical for characterizing a complicated process, but also it uses fewer experiments required in order to study all levels of all input parameters.

In this research, we performed statistical experimental design and Taguchi’s robust design concurrently. The statistical experimental design can be well-thought as the fresh data analysis, and the Taguchi’s robust design can be considered as the signal to noise (S/N) data analysis. The changeability can be conveyed by signal to noise (S/N) ratio.

The effects of silver nitrate concentration, temperature, pH and different loadings PC on the UV–Vis analysis of silver nanoparticles at four different levels (1, 2, 3 and 4) were investigated in Fig. 2 and “plot” is a verb in this context.

Control factors are those design and process parameters that can be controlled in Taguchi method. Noise factors cannot be controlled during production or product use, but can be controlled during experimentation. In a Taguchi designed experiment, we manipulate noise factors to force variability to occur and from the results, identify optimal control factor settings that make the process or product robust, or resistant to variation from the noise factors. Higher values of the signal-to-noise ratio (S/N) identify control factor settings that minimize the effects of the noise factors. Main effects plot in Fig. 2 shows how each factor affects the response characteristic. A main effect exists when different levels of a factor affect the characteristic differently. In Fig. 2, the main effects plot for S/N ratio indicates that pH has the largest effect on the signal-to-noise ratio and after that, temperature shows the largest effect. The amount of PC and AgNO₃ had the same effect on the signal-to-noise ratio.

Table 2 in the experimental section, shows the structure of Taguchi orthogonal robust design as well as the mean of S/N ratio for each level along with the UV–vis analysis measurements. In Fig. 2, higher values of the signal-to-noise response variable of one level, indicates a higher utility of that level than the other levels.

UV–visible results. With Taguchi experimental conditions (Table 2), including in situ one-pot synthesis of AgNPs without additional reducing agents was checked, showing a promising green catalyst with different loading of preyssler to prepare a new nanobiocomposite to catalyze the synthesis of 4H-pyran. The formation of AgNPs on the surface of PC was observed by color change from white to deep brown in solution and confirmed by UV–vis spectroscopy.

Figure 3 exhibits the UV–vis spectra of AgNPs development showing a role of pH.

The absorption band at 440 nm is appeared as the result of formation of silver nanoparticles. The increase of the absorption band alongside with an optical color variation clearly showed the Ag⁺ ions were reduced to Ag (0). Ag⁺ can fully be subjected to reduction mediated by biocomposite PC and as a result a nanobiocomposite created.
in brown color at the bottom of the reaction pot. As it can be realized, the generation of AgNPs is related to the pH of the solution, so the best pH for preparation of AgNPs is obtained 12.5 in loading of 1 gr and AgNO₃ 6 mM at 70–80 °C. The Preyssler anion make available extremely dispersed charged surfaces, that is perfect for being bounded to the metal ions through their aqueous predecessor solutions. These results suggest that Preyssler acts as reductant and stabilizer, which can lead to releasing the Preyssler in the solution and stabilizing of the AgNPs. This phenomenon strongly inhibited the deposition of AgNPs on the surface of the cellulose biocomposite. This is a common occurrence in the polyoxometalate catalysis when immobilized on different supports.

SEM analysis. Figure 4 shows the SEM images of Microcrystalline Cellulose (MCC) and PC /AgNPs. Figure 4b shows Preyssler were highly dispersed on MCC as a white cloud and excellent spherical architectures of the AgNPs. As shown in Fig. 4b, it is easy to distinguish between the PC and silver nanoparticles because of their different external morphology. It is suggested that the large interaction of Preyssler with functionalized cellulose could cause robust immobilization on cellulose with high surface density. On the other hand, the Preyssler anion provides highly distributed charged surfaces, which is ideal for binding the metal ions from their aqueous precursor solutions.

TEM analysis. The TEM image of the AgNPs (Fig. 5) created by PC nanobiocomposite shows that the AgNPs are spherical in shape and circa 50 nm diameter.

FTIR results. Figure 6a shows the FT-IR spectrum of the microcrystalline cellulose. A strong band at approximately 3,500 cm⁻¹, is related to the stretching vibration of O–H groups. The characteristic peak around 2,800 cm⁻¹ is attributed to the symmetric C–H vibrations. An adsorption band around 1,700 cm⁻¹ is due to the absorbed water. Additionally, the peaks at around 1,200, and 670 cm⁻¹ are related to the stretching vibration intermolecular ester bonding, and C–OH out-of-plane bending mode, respectively.

The existence of the Preyssler on the surface was confirmed by Fig. 6b, as we can see the existed peaks corresponds to Preyssler. Preyssler’s contains four kinds of oxygen that are in charge for the bands appeared in fingerprint region (between 1,200 and 600 cm⁻¹) in the IR spectrum of Preyssler anion. The distinctive bands of the Preyssler anion, [Na₅P₉W₉O₄₈]⁴⁻ are three different bands at 1,163 cm⁻¹, 1,079 cm⁻¹, and 1,022 cm⁻¹, due to P-O stretching, respectively. In addition, two other bands at 941 cm⁻¹ and 913 cm⁻¹ can be ascribed to W–O–W a band at 757 cm⁻¹ is attributed to W≡O and a band at 536 cm⁻¹ can be assigned to P-O bending. Interestingly, the above-mentioned bands can be weakly, strongly shifted, or even covered in changed conditions. In the spectrum of PC, an addition to band appeared at 788 cm⁻¹, assigned to (Si–O–Si), the band expected at about 1,080 cm⁻¹ (Si–O–Si) was overlapped with the bands of cellulose in the same spectral region. In addition, the sharp band at 1,480 cm⁻¹ is due to nitrate anions. Most of the absorption bands of Preyssler HPA were masked by functionalized cellulose matrix in 600–1,200 cm⁻¹.

After definite determination structure of the PC/AgNPs catalyst, it was tested as heterogeneous nanocatalyst for the preparation of 2-amino-4₃H-pyran through MCR in under green conditions (Table 3). To find the secured optimal reaction conditions, the consequence of various factors such as catalyst loading, kind of solvent and reaction temperature were examined in a model reaction comprising 4-chlorobenzaldehyde, malononitrile and barbituric acid (Table 3). Among an unlike solvent the mixture of EtOH/H₂O (1:1, 5 mL) the above reaction was found being proceeded more smoothly, completed in shorter time and giving better yield. As outlined in Table 3, for examining the influence of the catalyst on the progress of the reaction, the above mentioned model reaction was performed in the absence of the PC/AgNPs catalyst under reflux condition in a.

xp.no	A	B	C	D	Absorbance	S/N ratio (dB)
1	1	1	1	1	0.24	−12.39
2	1	2	2	2	0.13	−17.72
3	1	3	3	3	0.28	−11.05
4	1	4	4	4	0.054	−25.35
5	2	1	2	3	1.86	5.39
6	2	2	1	4	0.78	−2.15
7	2	3	4	1	0.53	−5.51
8	2	4	3	2	1.25	1.93
9	3	1	3	4	2.34	7.38
10	3	2	4	3	0.91	−0.81
11	3	3	1	2	0.61	−4.29
12	3	4	2	1	0.49	−6.19
13	4	1	4	2	0.35	−9.11
14	4	2	3	1	0.64	−3.87
15	4	3	2	4	2.94	9.36
16	4	4	1	3	0.98	−0.17
Figure 3. UV–vis spectra of AgNPs formation (a) pH = 5.5, (b) pH = 8.5, (c) pH = 10.5, (d) pH = 12.5.
a mixture of EtOH/H₂O (1:1, 5 mL). As a result, only a trace amount of product was detected (Table 3, Entry 7). Furthermore, the effect of temperature was examined and the best transformation was observed when the reaction was conducted in refluxing EtOH/H₂O (1:1, 5 mL) (Table 3, Entry 8). Besides, different solvents such as EtOH, toluene, DMF, CH₃CN, EtOH/H₂O and H₂O were also tested (Table 3, entries 1–12). Our study disclosed that EtOH/H₂O was the solvent of choice for this MCR (Table 3, Entry 9). The reaction was also performed employing different amounts of the catalyst involving 0.01, 0.025, 0.05 gr (Table 3, entries 10–12) and the results revealed that 0.025 gr of catalyst PC/AgNPs was optimal quantity of catalyst in refluxing EtOH/H₂O (Table 3, entries 9).
Accordingly, the best result was obtained by employing of 0.025 gr of PC/AgNPs as catalyst in refluxing EtOH/H₂O. Relied on the optimized reaction conditions, the catalytic activity of PC/AgNPs was examined in the synthesis of various 7-amino-tetrahydro-2H-pyran[2,3-d] pyrimidines (4a–j) via the three-component reaction of substituted aromatic aldehydes, malononitrile or ethylcyanoacetate and barbituric acid. Differently substituted benzaldehydes involving electron-releasing groups such as (4-methoxybenzaldehyde, 4-methyl benzaldehyde) and electron-withdrawing groups such as (4-nitrobenzaldehyde) were utilized successfully in this protocol to provide the desired products (4a–j) in satisfactory yields. In addition, when ethylcyanoacetate was utilized instead of malononitrile the corresponding 2-amino-4H-pyrans (4f.4j) were obtained. Delightfully, the expected products were obtained in good to excellent yields as exhibited in Table 4.

In order to extend the substrate scope of this approach, we employed dimedone instead of barbituric acid. Three-component reaction of substituted aromatic aldehydes, malononitrile or ethylcyanoacetate and dimedone mediated by PC/AgNPs refluxing EtOH/H₂O was successfully giving the expected corresponding products in satisfactory yields. The results are underlined in Table 5. As exhibited in the aforementioned table, the reaction of both electron-releasing on benzaldehydes such as 4-methylbenzaldehyde, 2-methoxybenzaldehyde, 3-methoxybenzaldehyde and 4-methoxybenzaldehyde and electron-withdrawing group on benzaldehydes such as 4-nitrobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde proceeded smoothly resulting in the construction of the corresponding products, substituted 2-amino-7,7-dimethyl-5-oxotetrahydro-4H-chromenes (5a–n) in satisfactory yield in relatively short reaction times.

Next, we examined the three-component reaction of different aromatic aldehydes, malononitrile or ethylcyanoacetate and 4-hydroxycoumarin in the presence of PC/AgNPs as an effective catalyst in EtOH/H₂O under reflux condition. The 2-amino-5-oxo-4,5-dihydropyran[3,2-c]chromenes were efficiently obtained in good to excellent yields (Table 6).
Figure 6. FTIR spectra of (a) MCC, (b) PC.

Table 3. Optimization of reaction conditions for the synthesis of 7-amino-5-(4-chlorophenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyran[2,3-d] pyrimidine-6-carbonitrile (4b) via MCR.

Entry	Solvent	Temperature	Catalyst amount (mol%)	Time (min)	Yield (%)
1	DMF	Reflux	0.025	180	70
2	CH₃CN	Reflux	0.025	100	65
3	toluene	Reflux	0.025	110	60
4	CH₂Cl₂	Reflux	0.025	180	45
5	H₂O	Reflux	0.025	120	40
6	EtOH	Reflux	0.025	120	60
7	EtOH/H₂O	Reflux	–	420	Trace
8	EtOH/H₂O	Reflux	0.025	20	95
9	EtOH/H₂O	rt	0.025	120	85
10	EtOH/H₂O	Reflux	0.01	90	70
11	EtOH/H₂O	Reflux	0.05	60	95
12	EtOH/H₂O	Reflux	0.05	90	95
Table 4. Synthesis of pyrano[2,3-\(d\)] pyrimidine derivatives in the presence of PC/AgNPs as catalyst via MCR.

Entry	Ar	X	Time (min)	Product	Yield (%)	m.p. (ºC) Obs	m.p. (ºC) Lit
1	C\(_6\)H\(_5\)	CN	25	4a	91	222–224	221–224\(^{24}\)
2	4-Cl-C\(_6\)H\(_4\)	CN	20	4b	96	262–264	263–265\(^{26}\)
3	4-OMe-C\(_6\)H\(_4\)	CN	18	4c	95	267–269	266–270\(^{22}\)
4	4-NO\(_2\)-C\(_6\)H\(_4\)	CN	13	4d	90	238–240	238–240\(^{26}\)
5	4-Cl-C\(_6\)H\(_4\)	CN	15	4e	91	227–228	226–227\(^{22}\)
6	4-Cl-C\(_6\)H\(_4\)	CO\(_2\)Et	18	4f	86	224–226	225\(^{12}\)
7	4-OMe-C\(_6\)H\(_4\)	CO\(_2\)Et	15	4g	85	298–299	297–298\(^{16}\)
8	4-NO\(_2\)-C\(_6\)H\(_4\)	CO\(_2\)Et	15	4h	80	290–292	289–293\(^{16}\)
9	4-Cl-C\(_6\)H\(_4\)	CO\(_2\)Et	13	4i	95	>300	>300\(^{16}\)
10	C\(_6\)H\(_5\)	CO\(_2\)Et	25	4j	83	208–210	206–210\(^{12}\)

Table 5. Three-component reaction for the preparation of 2-amino-7,7-dimethyl-5-oxotetrahydro-4\(H\)-chromenes (5a–n) in the presence of PC/AgNPs.

Entry	Ar	X	Time (min)	Product	Yield (%)	m.p. (ºC) Obs	m.p. (ºC) Lit
1	C\(_6\)H\(_5\)	CN	35	5a	82	222–224	222–224\(^{16}\)
2	4-Cl-C\(_6\)H\(_4\)	CN	12	5b	96	212–214	213–215\(^{16}\)
3	4-Me-C\(_6\)H\(_4\)	CN	18	5c	92	212–215	214–216\(^{18}\)
4	4-OMe-C\(_6\)H\(_4\)	CN	13	5d	90	201–203	201–202\(^{78}\)
5	2-OMe-C\(_6\)H\(_4\)	CN	13	5e	90	204–206	203–205\(^{75}\)
6	3-OMe-C\(_6\)H\(_4\)	CN	14	5f	92	187–189	188–190\(^{74}\)
7	4-NO\(_2\)-C\(_6\)H\(_4\)	CN	12	5g	89	182–184	181–184\(^{19}\)
8	4-OH-C\(_6\)H\(_4\)	CN	20	5h	85	211–212	210–212\(^{11}\)
9	4-Me-C\(_6\)H\(_4\)	CO\(_2\)Et	35	5i	78	154–156	156–157\(^{122}\)
10	4-OMe-C\(_6\)H\(_4\)	CO\(_2\)Et	30	5j	74	130–132	130–133\(^{13}\)
11	4-NO\(_2\)-C\(_6\)H\(_4\)	CO\(_2\)Et	25	5k	70	180–182	181–183\(^{11}\)
12	4-Cl-C\(_6\)H\(_4\)	CO\(_2\)Et	20	5l	85	151–153	150–152\(^{12}\)
13	3-NO\(_2\)-C\(_6\)H\(_4\)	CO\(_2\)Et	28	5m	81	155–156	156–157\(^{74}\)
14	C\(_6\)H\(_5\)	CO\(_2\)Et	50	5n	75	159–160	158–160\(^{12}\)
In order to establish the generality of this strategy, we conducted the three-component reaction of various substituted benzaldehydes, malononitrile/ethylcyanoacetate and 3-methyl-1H-pyrazol-5(4H)-one in the presence of PC/AgNPs in refluxing EtOH/H₂O. As can be seen in Table 7, the desired products, 6-amino-3-methyl-1,4-dihydropyrano[2,3-c]pyrazoles (7a–l) were obtained in high yields.

The three-component reaction of various aromatic aldehydes, malononitrile and ethylacetoacetate was successfully accomplished in the presence of PC/AgNPs in refluxing EtOH/H₂O to give ethyl 6-amino-5-cyano-2-methyl-4H-pyran-3-carboxylates (8a–g) in good yields (Table 8).

A reasonable mechanism for the synthesis of pyrano[2,3-d]pyrimidinones was proposed as depicted in Scheme 2. It is presumed that, at first the PC/Ag NPs activates the carbonyl group of the aromatic aldehyde by H protonation. Next, the Knoevenagel condensation of activated aromatic aldehyde with malononitrile (2) occurs by the loss of one H₂O molecule forming arylidenemalononitrile (13). In the second step, the nucleophilic (Michael) addition of the enolizable 1,3-dicarbonyl to arylidenemalononitrile generates intermediates (14). To end, tautomerization gives the corresponding products (tetrahydrobenzo[b]pyrans and pyrano[2,3-d]pyrimidinones) (15).

In the following, we successfully investigated the catalytic potency of the PC/AgNPs in the synthesis of ethyl 6-amino-5-cyano-2-methyl-4H-pyran-3-carboxylates via three-component reaction involving isatin and its derivatives such as isatin and 5-chloro, malononitrile /ethylcyanoacetate and 1,3-dicarbonyl compounds such as dixedone, barbituric acid, ethylacetoacetate, α-naphtol, β-naphtol, 4-hydroxyqumarin and 3-methyl-1H-pyrazol-5(4H)-one.

To examine the scope and limitation of this catalyzed MCR, isatins such as isatin and 5-chloroisatin, acenaphthenequinone, malononitrile or ethylcyanoacetate and cyclic ketones such as barbituric acid, dixedone, 3-methyl-1H-pyrazol-5(4H)-one and 4-hydroxyqumarin, acyclic 1,3-dicarbonyl compounds such as ethylacetoacetate, α-naphtol/β-naphtol, 4-hydroxyqumarin, barbituric acids, and 3-methyl-1H-pyrazol-5(4H)-one were selected for justification of the library of a series of products (Tables 9 and 10). We first investigated the reaction of isatin, and malononitrile with dixedone/ barbituric acid/ethyl acetacetate or 4-hydroxyqumarin/3-methyl-1H-pyrazol-5(4H)-one or α-naphtol/β-naphtol. As it was evident from Table 9, this MCR proceeded smoothly, leading to construction of the desired products (10a–u) in high to excellent yields in relatively short reaction times.
Table 7. Three-component reaction for the preparation of 6-amino-3-methyl-1,4-dihydropyrano[2,3-c]pyrazoles (7a–l) catalyzed by PC/AgNPs.

Entry	Ar	X	Time (min)	Product	Yield (%)	m.p. (ºC) Obs	m.p. (ºC) Lit
1	C₆H₅	CN	30	7a	86	244–246	244–246
2	4-Cl–C₆H₄	CN	12	7b	95	231–233	232–234
3	4-OMe–C₆H₄	CN	15	7c	94	173–175	174–175
4	4-NO₂–C₆H₄	CN	17	7d	96	196–198	195–196
5	4-OH–C₆H₄	CN	25	7e	90	224–226	224–227
6	4-Me–C₆H₄	CN	16	7f	89	214–216	215–217
7	2-NO₂–C₆H₄	CN	18	7g	89	220–222	220–222
8	3-NO₂–C₆H₄	CN	13	7h	91	193–195	193–195
9	3-Br–C₆H₄	CN	25	7i	94	222–224	223–224
10	3-NO₂–C₆H₄	CO₂Et	15	7j	92	179–182	180–182
11	4-OCH₃–C₆H₄	CO₂Et	20	7k	85	163–166	166–168
12	4-NO₂–C₆H₄	CO₂Et	25	7l	84	244–246	244–246

Table 8. Multicomponent reaction for the synthesis of ethyl 6-amino-5-cyano-2-methyl-4H-pyran-3-carboxylates (8a–g) catalyzed by PC/AgNPs.

Entry	Ar	X	Time (min)	Product	Yield (%)	m.p. (ºC) Obs	m.p. (ºC) Lit
1	C₆H₅	CN	42	8a	78	195–197	195–196
2	4-Cl–C₆H₄	CN	20	8b	87	175–177	170–172
3	4-OMe–C₆H₄	CN	22	8c	84	142–144	142–144
4	4-NO₂–C₆H₄	CN	17	8d	86	177–178	176–178
5	4-OH–C₆H₄	CN	40	8e	83	176–177	175–177
6	4-Me–C₆H₄	CN	25	8f	84	177–178	177–179
7	3-NO₂–C₆H₄	CN	23	8g	80	171–173	171–173
To further establish the substrate scope of this reaction catalyzed by PC/AgNPs, isatins were employed as substrates and reacted with ethylcyanoacetate and dimedone/ barbituric acid/ethylacetoacetate or 4-hydroxycoumarin/3-methyl-1H-pyrazol-5(4H)-one or α-naphtol/β-naphtol.

Pleasantly, it was found that the expected products (10a–u) were provided in excellent yields. Furthermore, we successfully examined the other derivative of isatin namely 4-chloroisatin.

The three-component reaction of isatin, and malononitrile/ethylcyanoacetate with dimedone/ barbituric acid/ethyl acetoacetate or 4-hydroxycoumarin/3-methyl-1H-pyrazol-5(4H)-one or α-naphtol/β-naphtol in which gave the expected desired products (10a–u) in satisfactory yields (Table 9). Irrespective of the influence of nature of substituent on the isatin, the desired products were provided in high yields. When acenaphthenequinone (11) was used the desired spiro-4H-pyrans (12a–j) were also produced in good yield (Table 10). Noticeably, the reaction with ethylcyanoacetate required longer reaction times than those with malononitrile, which was perhaps because of their lower reactivity (Table 10).

The process represents a typical sequential cascade reaction in which the isatin (9), at first, condenses with malononitrile (2) to give isatylidene malononitrile (16) in the presence of PC/AgNPs in refluxing EtOH/water. This step was considered as a rapid Knoevenagel condensation. Next, intermediate (17) is attacked via Michael addition of 1,3-dicarbonyl compound (3) to afford the intermediate (18) with subsequent cycloaddition of hydroxyl group to the cyano moiety to give the desired product (19) (Scheme 3). Indeed, the reaction is a cascade reaction via combination of two famous name reactions so called Knoevenagel condensation/Michael addition.

To present the advantages of our novel catalyst, its catalytic activity was compared with the other catalysts reported for the aforementioned MCRs, hitherto (Table 11). The catalytic potency of our novel catalyst (PC/AgNPs) was compared with the same recently reported MCR, involving acenaphthenequinone, malononitrile and dimedone for the preparation of 2’-amino-tetrahydro-2H-spiro[acenaphthylene-1,4’-chromene]-3’-carbonitrile (12b) with various catalysts such as CaCl₂, Fe₃O₄@Cs-SO₃H, Na₂EDTA, HAuCl₄·3H₂O, Meglumine, FeO₃, HEEA, Cu(OAc)₂·H₂O, Amph-400CI (IRA-400 CI), FeO₃@CS-SO₃H NPs, C₆(DABCO-SO₃H)·4Cl, 1-butyl-3-methylimidazolium hydroxide ([bmm][OH]), Carbon–SO₃H, DBU, (SB-DBU)Cl, PEG-Ni nanoparticle-catalyzed, trisodiumcitrate dehydrate, with that of PC/AgNPs novel...
Entry	R	Ar	X	Time (min)	Product	Yield (%)	m.p. (°C) Obs	m.p. (°C) Lit
1	H		CN	8	10a	95	276–279	278–280¹⁴⁸
2	H		CN	10	10b	96	286–288	286–287¹⁴⁹
3	H		CN	30	10c	89	292–294	292–294¹⁵⁰
4	H		CN	15	10d	96	280–282	281–283¹⁵¹
5	H		CN	40	10e	89	255–257	255–256¹⁵²
6	H		CN	20	10f	87	222–224	220–222¹⁵³
7	H		CN	18	10g	78	234–235	233–235¹⁵⁴
8	H		CO₂Et	15	10h	78%	258–260	260¹⁵⁵
9	H		CO₂Et	30	10i	93%	268–270	269–271¹⁵⁶
10	H		CO₂Et	35	10j	78%	252–254	251–253¹⁵⁷
11	H		CO₂Et	25	10k	85%	284–287	285–287¹⁵⁸
12	H		CO₂Et	60	10l	73%	174–176	176¹⁵⁹
13	H		CO₂Et	40	10m	82%	228–230	229¹⁶⁰

Continued
Table 9. Synthesis of spiro-2-amino-4\(H\)-pyrans (spirochromenes) (10a–u) in the presence of PC/AgNPs via MCR.

Entry	R	Ar	X	Time (min)	Product	Yield (%)	m.p. (°C) Obs	m.p. (°C) Lit
14	Cl		CN	93	10n	8	288–290	289–290¹⁵⁶
15	Cl		CN	96	10o	10	292–294	291–293¹⁵⁷
16	Cl		CN	92	10p	18	> 300	> 300¹⁵⁸
17	Cl		CN	96	10q	30	230–232	230–232¹⁵⁸
18	Cl		CN	91	10r	40	263–266	263–265¹⁵⁸
19	Cl		CN	89	10s	20	> 300	> 300¹⁵⁹
20	Cl		CO\(_2\)Et	89	10t	25	269–272	271–272¹⁶¹
21	Cl		CO\(_2\)Et	95	10u	20	245–247	246–248¹⁶²

![Chemical reaction diagram]

9a-b: R = H
9b: R = Cl
2a: X = CN
2b: X = CO\(_2\)Et
10a-n: R = H
10o-u: R = Cl

Note: Data ranges and exact values are indicated where available.
Entry	Ar	X	Time (min)	Product	Yield (%)	m.p. (°C) Obs	m.p. (°C) Lit
1		CN	8	12a	93	> 300	> 300\(^{155}\)
2		CN	10	12b	94	267–270	268–270\(^{162}\)
3		CN	15	12c	91	291–294	288–292\(^{163}\)
4		CN	10	12d	93	297–299	298–299\(^{164}\)
5		CN	35	12e	85	> 300	> 300\(^{145}\)
6		CN	25	12f	84	> 300	> 300\(^{177}\)
7		CO\(_2\)Et	20	12g	89	> 300	> 300\(^{142}\)
8		CO\(_2\)Et	25	12h	90	261–265	259–262\(^{162}\)
9		CO\(_2\)Et	35	12i	81	238–241	240–242\(^{166}\)
10		CO\(_2\)Et	20	12j	86	246–249	247–248\(^{162}\)

Table 10. Synthesis of ethyl 6-amino-5-cyano-2-methyl-4H-pyran-3-carboxylates (12a–j) in the presence of PC/AgNPs via MCR.
catalyst. The results showed that in comparison to other catalysts, our novel catalyst, is superior relative to other tested or reported catalysts from different points of view. Furthermore, our approach gave the desired products in better yield and shorter reaction times. From the green chemistry point of view, the recyclability of the this new nano catalyst as well as employing H₂O/EtOH as green solvent system render this catalyst green and environmentally benign, favorable for using it in industrial scale (Table 11).

Scheme 3. Suggested mechanism for the synthesis of spiro derivatives (19).
Table 11

The comparison of the catalytic activity of PC/AgNPs with previously reported catalysts for the preparation of 2′-amino-tetrahydro-2H-spiro[acenaphthylene-1,4′-chromene]-3′-carbonitrile (12b).

Entry	Catalyst	Catalyst amount (gr)	Time (min)	Temperature	Solvent	Yield (%)	Refs
1	CaCl2	0.02	50	r.t	Ultrasonic	96	164
2	Fe₃O₄@Cs-SO₃H	0.02	300	Reflux	H₂O/EtOH	98	163
3	Na₂EDTA	0.01	10	70 °C	Solvent-free	94	165
4	HAuCl₄·₃H₂O	0.05	30	70 °C	PEG 400	96	166
5	Meglumine	0.05	20	r.t	H₂O/EtOH	93	155
6	Fe₂O₃	0.02	240	90 °C	Solvent-free	84	162
7	HEAA	0.02	60	90 °C	H₂O	92	168
8	Cu(OAc)₂·H₂O	0.02	300	80 °C	Solvent-free	84	169
9	Amb-400CI (IRA-400 Cl)	0.02	10	Reflux	H₂O	95	170
10	Fe₃O₄@CS-SO₃H NPs	0.02	5	r.t	H₂O/EtOH	92	171
11	C₄(DABCO-SO₃H)₂·4Cl	0.01	12	90 °C	H₂O	98	172
12	1-butyl-3-methylimidazolium hydroxide ([bmim]OH)	0.01	20	r.t	Solvent-free	92	173
13	Carbon-SO₃H	0.01	180	Reflux	EtOH	91	174
14	DBU	0.01	15	Reflux	H₂O	88	175
15	(SB-DBU)Cl	0.025	10	r.t	EtOH	98	176
16	PEG-Ni nanoparticle	0.0235	10	r.t	PEG	93	177
17	trisodium citrate dihydrate	0.01	300	r.t	H₂O/EtOH	92	178
18	PC/AgNPs	0.025	10	Reflux	H₂O/EtOH	94	This work

Figure 7. Typical reusability of our new catalyst in the preparation of 7-amino-5-(4-chlorophenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4b).
Reusability of catalyst. The revocability and reusability of the catalyst were also studied. To the purpose the nucleophilic condensation between 4-chlorobenzaldehyde, malononitrile and barbituric acid under optimized conditions was chosen as a model reaction for the preparation of 7-amino-5-(4-chlorophenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyran[2,3-d]pyrimidine-6-carbonitrile (4b). After first run, the catalyst was separated by simple filtration under reduced pressure, washed with ethanol. Next, the recovered catalyst was reused in the next run under the same reaction conditions in the model reaction. This investigation showed that the catalyst could be recovered and reused at least three times without significant loss of its catalytic activity (Fig. 7). Worthy to mention that Fig. 8 shows the comparison between the FT-IR PC/AgNPs and reused catalyst.

Conclusions

In conclusion, the above-presented research opened a gateway to a facile and rapid in situ preparation of Ag nanoparticles immobilized onto the functionalized microcrystalline cellulose/Preysler heteropolyacid. It was tested as an eco-friendly, benign, and green nanobiocomposite heterogeneous catalyst. The opportunity of collecting three green materials including inorganic polymers, cellulose matrices and nanoparticles can open a green gateway in forthcoming requests such as the design and engineering of green and eco-friendly catalysts based on poly-functionalized polymers. The Taguchi robust design strategy was also employed for the optimization...
of the experimental parameters for the first time to obtain nanoparticle. The operating factors involved in this process were the concentration of silver nitrate, different loadings PC, pH, and temperature. Absorption spectra of AgNPs showed peak at 440 nm and broadening of peak showed that the particles are poly dispersed. Optimal conditions involved in this study were: performing the reaction in 80 °C, concentration of silver nitrate = 6 mM, pH = 12.5 and loading PC = 1gr. The results obtained under the aforementioned conditions were in good agreement with the data analyzed by Taguchi robust design method. The results of UV–vis absorption undoubtedly confirm the above findings.

Novel PC/AgNPs was successfully employed as catalyst in the synthesis of biologically active 2-amino-4H-pyran and spirochromenones. The PC/AgNPs were fully characterisation by using standard techniques. The above mentioned catalyst was used in reflowing EtOH/H2O providing the corresponding products in good to high yield. The catalyst was recovered and reused for three times without a significant decrease in its efficiency. Other advantages of this catalytic system were that reactions could be performed under mild reaction conditions and in very short reaction times, along with easy product and catalyst separation. This catalyst showed high stability and durability under optimal reaction conditions. The leaching of the AgNPS from the heterogenized catalyst was also found being minimal.

Received: 28 March 2020; Accepted: 14 July 2020
Published online: 03 September 2020

References

1. Huang, K. et al. Catalytic behaviors of silica-supported starch–polysulfosiloxane–Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone. React. Funct. Polym. Polym. 50, 199–203 (2002).
2. Chen, W., Zhong, L., Peng, X., Lin, J. & Sun, R. J. C. Xylan-type hemicelluloses supported terpyridine–palladium (II) complex as an efficient recyclable catalyst for Suzuki-Miyaura reaction. Cellulose 21, 125–137 (2014).
3. Wu, C., Peng, X., Zhong, L., Li, X. & Sun, R. J. R. Green synthesis of palladium nanoparticles via branched polymers: a bio-based nanocomposite for C–C coupling reactions. RSC Adv. 6, 32202–32211 (2016).
4. Baig, R. N. & Varma, R. S. Copper on chitosan: a recyclable heterogeneous catalyst for azide–alkyne cycloaddition reactions in water. Green Chem. 15, 1839–1843 (2013).
5. Baig, R. N., Nadagouda, M. N. & Varma, R. S. Ruthenium on chitosan: a recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides. Green Chem. 16, 2122–2127 (2014).
6. Kumar, A., Jerrry, S., Saxena, A. & Mozumdar, S. Copper nanopaticulates in Guar-gum: a recyclable catalytic system for the Huigsen [3+2]-cycoaddition of azides and alkynes without additives under ambient conditions. Green Chem. 14, 1298–1301 (2012).
7. Rostamnia, S., Doustkhah, E., Baghban, A. & Zeynizadeh, B. Seaweed-derived j-carrageenan: modified j-carrageenan as a green recyclable catalyst in the multicomponent synthesis of aminophosphonates and polyhydroxilines. Appl. Polym. Sci. 133 (2016).
8. Wu, L., Xie, H., Yu, X. & Liu, E. Lignin-based green catalyst for the chemical fixation of carbon dioxide with epoxides to form cyclic carbonates under solvent-free conditions. ChemCatChem 5, 1328–1333 (2013).
9. Jin, H., Nishiyama, Y., Wada, M. & Kuga, S. Nanofibrillar cellulose aerogels. Colloid Surf. A 240, 63–67 (2004).
10. Ma, Z. & Ramakrishna, S. Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J. Membr. Sci. 319, 23–28 (2008).
11. Zhang, Y. et al. Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent. Carbohydr. Polym. 88, 931–938 (2012).
12. Yin, S.-J. et al. Metabolic responses and arginine kinase expression of juvenile catfish (SILPA purplea) under salinity stress. Int. J. Biol. 113, 881–888 (2018).
13. Atilla, S., Ferraria, A. M., do Rego, A. M. B. & Boufi, S. C. P. Controlled surface modification of cellulose fibers by amino derivatives using N, N'-carbonyldiimidazole as activator. Carbohydr. Polym. 77, 553–562 (2009).
14. Barud, H. S. et al. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng. C 28, 515–518 (2008).
15. Legnani, C. et al. Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517, 1016–1020 (2008).
16. Drocat, N. et al. Cellulose nanocrystals: a new chlorin carrier designed for photodynamic therapy: Synthesis, characterization and potent anti-tumoural activity. Photodagagnosis Photodyn. Ther. 2, 137 (2011).
17. Drocat, N., Barriere, M., Granet, R., Sol, V. & Krausz, P. High yield preparation of purpurin-18 from Spirulina maxima. Dyes Pigm. 88, 125–127 (2011).
18. Drocat, N. et al. Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J. Nanoparticle Res. 13, 1557–1562 (2011).
19. El-Shishaty, R. M., Asiri, A. M. & Al-Otaibi, M. M. Synthesis and spectroscopic studies of stable aqueous dispersion of silver nanoparticles. Spectrochim. Acta A 79, 1505–1510 (2011).
20. Ibrahim, A. S., El-Shishaty, M. M., Zhong, W., Caldwell, R. B. & Liou, G. I. A2a adenosine receptor (A2AAR) as a therapeutic target in diabetic retinopathy. Am. J. Pathol. 178, 2136–2145 (2011).
21. Gemail, K. S., El-Shishtawy, A., El-Alfy, M., Ghoneim, M. & Abd El-Bary, M. J. O. A. G. Assessment of aquifer vulnerability to industrial waste water using resistivity measurements. A case study, along El-Gharbyia main drain, Nile Delta. Egypt. J. Appl. Geophy. 75, 140–150 (2011).
22. Ferraria, A. M., Boufi, S., Battaglini, N., Botelho do Rego, A. M. & ReiVilar, M. J. L. Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26, 1996–2001 (2010).
23. El-Shishaty, R. M., Asiri, A. M., Abdelwahed, N. A. & Al-Otaibi, M. M. In situ production of silver nanoparticles on cotton fabric and its antimicrobial evaluation. Cellulose 18, 75–82 (2011).
24. Jumwal, N., Sodhi, R. K., Gupta, P. & Paul, S. Nano Pd (0) supported on cellulose: a highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzylic alcohols under liquid phase catalysis. Int. J. Biol. Macromol. 49, 930–935 (2011).
25. Reddy, K. R., Kumar, N. S., Sreedhar, B. & Kantam, M. L. N. Arillation of nitrogen heterocycles with aryl halides and arylboronic acids catalyzed by cellulose supported copper (0). J. Mol. Catal. A Chem. 256, 136–141 (2006).
26. Song, Z., Wang, H., Niu, Y., Liu, X. & Han, J. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. Front. Chem. Sci. Eng. 9, 461–466 (2015).
27. Huang, Y. et al. Simple preparation of carbonized bacterial cellulose–Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Mater. Lett. 128, 93–96 (2014).
28. Fu, J., Li, D., Li, G., Huang, F. & Wei, Q. Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol. J. Electroanal. Chem. 738, 92–99 (2015).
29. Harrad, M. A. et al. Colloidal nickel (0)–carboxymethyl cellulose particles: a biopolymer-inorganic catalyst for hydrogenation of nitro-aromatics and carbonyl compounds. Catal. Commun. 32, 92–100 (2013).
30. Baker, G. A. & Moore, D. S. Progress in plasmogenic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal. Chem. 382, 1751–1770 (2005).
31. Hetrick, E. M. & Schoenfisch, M. H. Reducing implant-related infections: active release strategies. Chem. Soc. Rev. 35, 780–789 (2006).
32. Rotello, V. M. Nanoparticles: Building Blocks for Nanotechnology (Springer, Berlin, 2004).
33. Shipway, A. N., Katz, E. & Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1, 18–52 (2000).
34. Serp, P., Corrias, M. & Kalck, P. Carbon nanotubes and nanofibers in catalysis. J. Org. Chem. 76, 2958–2975 (2011).
35. Chen, S.-L., Huang, X.-J. & Xu, Z.-K. Functionalization of cellulose nanofiber mats with phthalocyanine for decolorization of reactive dye wastewater. Cellulose 18, 1295 (2011).
36. Chen, S.-L., Huang, X.-J. & Xu, Z.-K. Effect of a spacer on phthalocyanine functionalized cellulose nanofiber mats for decolorizing reactive dye wastewater. Cellulose 19, 1351–1359 (2012).
37. Keshipour, S., Shojai, S. & Shaabani, A. Palladium nano-particles supported on ethylenediamine-functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose 20, 973–980 (2013).
38. Shaabani, A., Keshipour, S., Hamidzad, M. & Seyyedhamzeh, M. Cobalt (II) supported on ethylenediamine-functionalized cellulose as a green, efficient and reusable catalyst for esterification of salicylic acid with aliphatic and benzylic alcohols. Appl. Catal. A Gen. 302, 42–47 (2006).
39. D’Souza, D. M. & Mueller, T. J. Multi-component syntheses of heterocycles by transition-metal catalysis.
40. Wang, X., Xu, Y., Wang, F. & Wei, Y. Functionalized cellulose-supported triphenylphosphine and its application in Suzuki coupling reactions. J. Appl. Polym. 132, 41427–41435 (2015).
41. Asghar, S. et al. Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21, 395–405 (2014).
42. Hu, P., Dong, Y., Wu, X. & Wei, Y. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: an efficient and efcofriendly catalyst for the Suzuki cross-coupling reaction. Front. Chem. Sci. Eng. 10, 389–395 (2016).
43. Banomoharam, F. F.; Heravi, M. M.; Roshani, M.; Jahangir, M. & Gharib, A. A. J. A. C. A. G. Preyssler catalysts, [NiP2W10O40]12−: a green, efficient and reusable catalyst for esterification of salicylic acid with aliphatic and benzylic alcohols. Appl. Catal. A Gen. 302, 42–47 (2006).
44. Saneinezhad, S. et al. Functionalized cellulose-preyssler heteropolyacid bio-composite: an engineered and green matrix for selective, fast and in-situ preparation of Pd nanostructures: synthesis, characterization and application. Arab. J. Chem. 13, 4644–4660 (2020).
45. Kalathil, S. & Chaudhuri, R. G. J. M. Hollow palladium nanoparticles facilitated biodegradation of an azo dye by electrically active biofilms. Materials 9, 653 (2016).
46. Cioc, R. C., Ruijter, E. & Orru, R. V. Multicomponent reactions: advanced tools for sustainable organic synthesis.
47. D’Souza, D. M. & Mueller, T. J. Multi-component syntheses of heterocycles by transition-met-al catalysis. Chem. Soc. Rev. 36, 1095–1108 (2007).
48. Tijedor, D. & Garcia-Tellado, F. Chemo-differentiating ABB’ multicomponent reactions. Privileged building blocks. Chem. Soc. Rev. 36, 484–491 (2007).
49. Padwa, A. Domino reactions of rhodium (II) carboxides for alkaloid synthesis. Chem. Soc. Rev. 38, 3072–3081 (2009).
50. Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res. 42, 463–472 (2009).
51. Li, C.-J. Organic reactions in aqueous media with a focus on carbon–carbon bond formations: a decade update. Chem. Rev. 110, 3095–3166 (2010).
52. D’Souza, D. M. & Mueller, T. J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev. 36, 484–491 (2007).
53. Patil, S. A. & Patel, M. P. et al. New substituted 4H-chromenes as anticancer agents. Bioorg. Med. Chem. Lett. 22, 4458–4461 (2012).
54. Makawana, R. J., Patel, M. P. & Patel, R. G. Synthesis and antimicrobial evaluation of new pyranol[4, 3-b]pyran and pyranol[3,2-c] chromene derivatives bearing a 2-thiophenoxynylene nucleus. Arch. Pharm. Chem. 345, 314–322 (2012).
55. Saundane, A. R., Vijaykumar, K. & Vajinath, A. V. Synthesis of novel 2-amino-4′-(5′-substituted 2′-phenyl-1H-indol-3-yl)-6-aryl-4H-pyran-3-carbonitrile derivatives as antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 23, 1978–1984 (2013).
56. Baker, G. A. et al. Synthesis of new chromeno-annulated cis-fused pyran derivatives via domino Knoevenagel–Hetero-Diels–Alder reactions and their biological evaluation towards antiproliferative activity. MedChemComm 3, 652–658 (2012).
57. Bejanik, N. K. et al. Synthesis of new chromeno-annulated cis-fused pyran[4, 3-c] isoxazole derivatives via intramolecular nitrene cycloaddition and their cytotoxicity evaluation. Bioorg. Med. Chem. Lett. 23, 4061–4066 (2013).
58. Shipway, S. et al. Antagonism of L-type Ca2+ channels CaV1.3 and CaV1.2 by 1,4-dihydropyrimidines and 4H-pyrans as dihydropyrimidine mimics. Bioorg. Med. Chem. 21, 4365–4373 (2013).
59. Kumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyran and 2-amino-5-oxo-6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem. 44, 3805–3809 (2009).
60. Litvinov, Y. M. & Shestopalov, A. M. Synthesis, structure, chemical reactivity, and practical significance of 2-amino-4H-pyran. Adv. Heterocycl. Chem. 103, 175–260 (2011).
61. Jinjin, T. & Hongyun, G. New progress in the synthesis of pyrane derivatives via multicomponent reactions. Chin. J. Org. Chem. 31, 2009–2018 (2011).
68. Balalaei, S., Baraarianian, M., Sheikh-Ahmadi, M., Hekmat, S. & Salehi, P. Diammonium hydrogen phosphate: an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. *Synth. Commun.* 37, 1097–1108 (2007).

69. Lian, X.-Z., Huang, Y., Li, Y.-Q. & Zheng, W.-J. A green synthesis of tetrahydrobenzo[b]pyran derivatives through three-component condensation using N-methylimidazole as organocatalyst. *Monatsh. Chem.* 139, 129–131 (2008).

70. Khan, A. T., Lal, M., Ali, S. & Khan, M. M. One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. *Tetrahedron Lett.* 52, 5327–5332 (2011).

71. Sun, W.-B., Zhang, P., Fan, J., Chen, S.-H. & Zhang, Z.-H. Lithium bromide as a mild, efficient, and recyclable catalyst for the one-pot synthesis of tetrahydro-4H-chromene derivatives in aqueous media. *Synth. Commun.* 40, 587–594 (2010).

72. Wang, H.-J., Lu, J. & Zhang, Z.-H. Highly efficient three-component, one-pot synthesis of dihydropyran [3,2-c] chromene derivatives. *Monatsh. Chem.* 141, 1107–1112 (2010).

73. Khurana, J. M., Nand, B. & Saluja, P. D. DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes and 2-amino-4H-benzof[g]chromenes in aqueous medium. *Tetrahedron* 66, 5637–5641 (2010).

74. Dekamin, M. G., Eslami, M. & Maleki, A. Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of 2-amino-4H-chromene derivatives in water. *Tetrahedron* 69, 1074–1085 (2013).

75. Xu, J.-C., Li, W.-M., Zheng, H., Lai, Y.-F. & Zhang, P.-F. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. *Tetrahedron* 67, 9582–9587 (2011).

76. Islami, M. R. & Mosaddegh, E. Ce(SO₄)₂·4H₂O as a recyclable catalyst for an efficient, simple, and clean synthesis of 4H-benz[b]pyrans. *Phosphorus Sulfur. Silicon Relat. Elem.* 184, 3134–3138 (2009).

77. Sabitha, G., Arundhathi, K., Sudhakar, K., Sastry, B. & Yadav, J. Cerium (III) chloride–catalyzed one-pot synthesis of 3,3-dimethylbutane. *Synth. Commun.* 39, 433–442 (2009).

78. Wang, L.-M. & Todunda, S. Diammonium hydrogen phosphate: an efficient and recyclable catalyst for the one-pot synthesis of 3,3-dimethylbutane. *Synth. Commun.* 39, 433–442 (2009).

79. Ranu, B. C., Banerjee, S. & Roy, S. A task specific basic ionic liquid, [bmIm] OH-promoted efficient, green and one-pot synthesis of 2-arylquinoline derivatives. *Indian J. Chem.* 47B, 1108–1112 (2008).

80. Safaei, H., Shekouhy, M., Rahmankar, S. & Shirinfeh, A. Glycerol-modified CuO: a reusable and adaptable medium for the catalyst-free one-pot three-component synthesis of 4H-pyranes. *Chem. Abstr.* 14, 1696–1704 (2012).

81. Revanna, C. et al. Practical and green protocol for the synthesis of substituted 4H-chromenes using room temperature ionic liquid choline chloride–urea. *J. Heterocyclic Chem.* 49, 851–855 (2012).

82. Hiremath, P. B. & Kantharaju, K. J. C. An efficient and facile synthesis of 2-amino-4H-pyran & tetrahydrobenzo[b]pyrans catalysed by WEMSFA at room temperature. *ChemistrySelect* 5, 1896–1901 (2020).

83. Singh, P., Yadav, P., Mishra, A. & Awashthi, S. K. J. A. O. Green and mechachemical-one-pot multicomponent synthesis of bioactive 2-amino-4H-benzof[g]pyrans via highly efficient amine-functionalized SiO₂@ Fe₃O₄ nanoparticles. *ACS Omega* 5, 4223–4232 (2020).

84. Williams, R. M. & Cox, R. J. Paraflannelamines, breviamidines, and asperparalines: laboratory synthesis and biosynthesis. An interim report. *Acc. Chem. Res.* 36, 127–139 (2003).

85. Galliford, C. V. & Scheit, K. A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. *Angew. Chem.* 46, 8784–8785 (2007).

86. Shaaban, A., Samadi, S. & Rahmati, A. One-pot, three-component condensation reaction in water: an efficient and improved procedure for the synthesis of pyran annulated heterocyclic systems. *Synth. Commun.* 37, 491–499 (2007).

87. Sundberg, R. *The Chemistry of Indoles: Part I* (Academic Press, New York, 1996).

88. Hoalihan, W. & Brown, R. *The Chemistry of Indoles: Part I* (Academic Press, New York, 1996).
108. Khaghaninejad, S. & Heravi, M. M. Paal-Knorr reaction in the synthesis of heterocyclic compounds. Adv Heterocycl Chem. 111, 95–146 (2014).

109. Heravi, M. M., Rajabzadeh, G., Bamoharram, F. F. & Seifi, N. An eco-friendly catalytic route for synthesis of 4-amino-pyrazole[3,4-d]pyrimidine derivatives by Keggin heteropolyacids under classical heating and microwave irradiation. J. Mol. Catal. B, 256, 238–241 (2006).

110. Heravi, M. M. & et al. Solvent-free multicomponent reactions using the novel N-sulfonic acid modified poly (styrene-maleic anhydride) as a solid acid catalyst. J. Mol. Catal. Chem. 392, 173–180 (2014).

111. Heravi, M. M. & Daraie, M. Heterogeneous catalytic three-component one-pot synthesis of novel 8F-[1,3]dioxolo[4,5-g]chromenes by basic alumina in water. Monatsh. Chem. 145, 1479–1482 (2014).

112. Heravi, M. M., Hashemi, E., Behesti, S. Y. A., Ahmadi, S. & Hosseinnejad, T. PdCl2 on modified poly (styrene-co-maleic anhydride): A highly active and recyclable catalyst for the Suzuki–Miyaura and Sonogashira reactions. J. Mol. Catal. Chem. 394, 74–82 (2014).

113. Mirsaefai, S., Heravi, M. M., Ahmadi, S., Moslemi, M. H. & Hosseinnejad, T. In situ prepared copper nanoparticles on modified KT-5 as an efficient recyclable catalyst and its applications in click reactions in water. J. Mol. Catal. Chem. 402, 100–108 (2015).

114. Sadjadi, S. & Heravi, M. M. Recent advances in applications of POMs and their hybrids in catalysis. Appl. Organomet. Chem. 32, e4413 (2018).

115. Sabajian, S., Nemati, F., Nahzomi, H. T. & Heravi, M. M. Silver (I) dithiocarbamate on modified magnetic cellulose: synthesis, density functional theory study and application. Carbohydr. Polym. 184, 221–230 (2018).

116. Sadjadi, S., Heravi, M. M. & Malmir, M. Green bio-based synthesis of Fe2O3@SiO2-IL/Ag hollow spheres and their catalytic utility for ultrasonic-assisted synthesis of propargylamines and benzene[6]furans. Appl. Organomet. Chem. 32, e4029 (2018).

117. Ghanbarian, M., Beheshtiha, S. Y. S., Heravi, M. M., Mirzaei, M., Zadsirjan, V. & Lotfian, N. Nano-sized Nd-Ag@polyoxometalate catalyst for catalyzing the multicomponent Hantzsch and Biginelli reactions. J. Clust. Sci. 1–12 (2019).

118. Sadjadi, S., Malmir, M. & Heravi, M. M. A green approach to the synthesis of Ag-doped nano magnetic γ-Fe2O3@SiO2-CD core–shell hollow spheres as an efficient and heterogeneous catalyst for ultrasonic-assisted A1 and KA2 coupling reactions. RSC Adv. 7, 36807–36818 (2017).

119. Heravi, M. M., Sadjadi, S., Osikooin, H. A., Sazari, R. H. & Bamoharram, F. F. Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles. Catal. Commun. 9, 504–507 (2008).

120. Pourmohammad, N., Heravi, M. M., Ahmadi, S. & Hosseinnejad, T. In situ preparation and characterization of novel Cu-functionalized poly[(methyl methacrylate)-co-maleimide] as an efficient heterogeneous catalyst in the regioselective synthesis of 1,2,3-triazoles via click reaction: experimental and computational chemistry. Appl. Organomet. Chem. 33, e4967 (2019).

121. Bamoharram, F., Roshani, M., Alizadeh, M., Razzavi, H. & Moghaddas, S. A. Novel oxidation of aromatic aldehydes catalyzed by Preyssler’s anion, [Na5P5W30O110]4–. J. Braz. Chem. Soc. 17, 505–509 (2006).

122. Sabour, P., Peyrovi, M. H. & Hajimohammadi, M. Al-HMS-20 catalyzed synthesis of pyrano[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines via three-component reaction. Res. Chem. Intermed. 41, 1343–1350 (2015).

123. Seyyedi, N., Shirini, F. & Langarudi, M. S. N. DAACOF-based ionic liquids: green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media. RSC Adv. 6, 44630–44640 (2016).

124. Aliabadi, R. S. & Mahmoodi, N. O. Green and efficient synthesis of pyranopyrazoles using [bmim][OH−] as an ionic liquid catalyst for catalyzing the multicomponent Hantzsch and Biginelli reactions. ACS Sustain. Chem. Eng. 7, 85877–85884 (2019).

125. Bihani, M., Bora, P. & Askari, H. Amberlyst A21 catalyzed chromatography-free method for multicomponent synthesis of dihydro-2-pyranopyrazoles. J. Mol. Catal. Chem. 339, 147–154 (2017).

126. Mecadon, H., Rohman, M. R., Rajbangshi, M. & Myrboh, B. γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-aryl-3-methyl-2,4-dihydro-2,3-cyano-5-carboxylates in aqueous medium. Tetrahedron Lett. 52, 2523–2525 (2011).

127. Paul, S. et al. Uncapped SmO2 quantum dot catalyzed cascade assembly of four components: a rapid and green approach to the pyrano[2,3-c]pyrazole and spiro-2-oxindole derivatives. Tetrahedron 70, 6088–6099 (2014).
Acknowledgements
The authors appreciate partial financial supports from Alzahra University. M.M.H. is also thankful to Iran National Science Foundation (INSF) for the individual given grant. In addition, F.B. is also thankful to Mashhad Branch, Islamic Azad University.

Author contributions
S.S. and F.F.B. prepared and identified the silver nanoparticles. L.M. and V.Z. synthesized and identified spirochromenes. M.M.H. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-70738-z.

Correspondence and requests for materials should be addressed to F.F.B. or M.M.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020