A NOTE ON A PAPER BY WONG AND HEYDE

ALEKSANDAR MIJATOVIĆ AND MIKHAIL URUSOV

Abstract. In this note we re-examine the analysis of the paper “On the martingale property of stochastic exponentials” by B. Wong and C.C. Heyde [WH04]. Some counterexamples are presented and alternative formulations are discussed.

1. Introduction

In [WH04] the authors announce very general results about the martingale property of exponential local martingales. Since the subject matter of the paper is important, it is necessary to examine it critically. In Section 2 we describe the setting of [WH04]. In Section 3 we re-examine the analysis in [WH04] and discuss an alternative formulation of their Corollary 2. Section 4 contains counterexamples.

2. The setting in [WH04]

The main object of study in [WH04] is the stochastic exponential

\[Z_X(t) = \exp \left\{ \int_0^t X(u) \cdot dW(u) - \frac{1}{2} \int_0^t \|X(u)\|^2 \, du \right\}, \quad t \in [0, \infty), \]

\[Z_X(0) = 1, \]

where \(X(t) \in \mathbb{R}^d \) is a \(d \)-dimensional \((\mathcal{F}_t)\)-progressively measurable process and \(W \) is a \(d \)-dimensional Brownian motion defined on a given probability space \((\Omega, \mathcal{F}, P)\). The filtration \((\mathcal{F}_t)_{t \in [0, \infty)}\) is assumed to be generated by \(W \) and augmented to satisfy the usual conditions (see paragraph two on page 656 in [WH04] for these assumptions).

The stopping time \(\tau^{M_X} \) is defined by

\[\tau^{M_X} = \lim_{N \to \infty} \tau^M_X, \quad \text{where} \quad \tau^M_X = \inf \left\{ t \in [0, \infty) : \int_0^t \|X(u)\|^2 \, du \geq N \right\}, \]

with the usual convention that \(\inf \emptyset = \infty \) (see equation (2) on page 656 in [WH04]). The non-decreasing adapted process \(M_X \), defined by

\[M_X(t) := \int_0^t \|X(u)\|^2 \, du, \quad \text{for} \quad t \in [0, \infty), \]

2000 Mathematics Subject Classification. 60G44, 60G48, 60H10, 60J60.

Key words and phrases. Local martingales vs. true martingales; stochastic exponentials.
is left-continuous by the monotone convergence theorem. On the event \(\{ \tau^{M_X} < \infty \} \), at time \(\tau^{M_X} \) the process \(M_X \) either jumps to infinity if \(M_X (\tau^{M_X}) < \infty \) or tends to infinity continuously (i.e. assumes arbitrarily large values just before \(\tau^{M_X} \)) if \(M_X (\tau^{M_X}) = \infty \). A precise definition of the stochastic exponential \(Z_X \) in (1) can now be given by

\[
Z_X(t) := \exp \left\{ \int_0^{\wedge \tau^{M_X}} X(u) \cdot dW(u) - \frac{1}{2} \int_0^{\wedge \tau^{M_X}} \|X(u)\|^2 \, du \right\}, \quad \text{for } t \in [0, \infty),
\]

where we set \(Z_X(t) = 0 \) on \(\{ \tau^{M_X} \leq t, M_X (\tau^{M_X}) = \infty \} \). Note that the stochastic integral in (3) is well-defined \(\mathbb{P} \)-a.s. on \(\{ \tau^{M_X} < \infty, M_X (\tau^{M_X}) < \infty \} \) for every \(t \in [0, \infty) \), and hence, the process \(Z_X \) is continuous and takes strictly positive values on the event \(\{ \tau^{M_X} = \infty \} \cup \{ \tau^{M_X} < \infty, M_X (\tau^{M_X}) < \infty \} \). Furthermore the stochastic exponential \(Z_X \) is a continuous local martingale (the continuity at \(\tau^{M_X} \) on the event \(\{ \tau^{M_X} < \infty, M_X (\tau^{M_X}) = \infty \} \) follows by the Dambis-Dubins-Schwarz theorem, see e.g. [RY99, Ch. V, Th. 1.6]).

On page 656 of [WH04], in the line following the formula containing the definition of \(\tau^{M_X}_N \), the authors stipulate that their process \(X \) is stopped at \(\tau^{M_X} \), which is rather confusing because it implies \(\mathbb{P} \{ \tau^{M_X} < \infty, M_X (\tau^{M_X}) < \infty \} = 0 \) and thus restricts the generality without being essential for the setting and what follows (see, however, a more precise and detailed discussion on a related point in item 5 of Section 3). Note that the event \(\{ \tau^{M_X} < \infty, M_X (\tau^{M_X}) < \infty \} \) can in general be the entire space \(\Omega \) (e.g. take \(X \) deterministic).

Finally, it should be noted that the authors of [WH04] work on a finite time interval \([0, T]\) (see e.g. paragraph two on page 656 in [WH04]), while the setting introduced above is the infinite time horizon setting. This difference does not play a role for the exposition below but lets us quote many formulas from [WH04] exactly as they are stated there without introducing inconsistency. (There are notational inconsistencies in [WH04] related to this point: e.g. they define \(\tau^{M_X}_N \) exactly as in (2), but if one works on a finite time interval \([0, T]\) and the process \(X(t) \) is given for \(t \in [0, T] \), one should have used either the definition

\[
\inf \left\{ t \in [0, T] : \int_0^t \|X(u)\|^2 \, du \geq N \right\}
\]

or the definition

\[
\inf \left\{ t \in [0, T] : \int_0^t \|X(u)\|^2 \, du \geq N \right\} \wedge T
\]

for \(\tau^{M_X}_N \).

3. Discussion of Section 3 in [WH04]

In this section we reinspect Proposition 1 in [WH04], pointing to problems in its formulation and proof. This has consequences for the rest of the paper [WH04]. The formulation and the
proof of the main result, Theorem 1 in [WH04], both rely on Proposition 1. Further, in Definition 1 in [WH04] the central concept of a “candidate measure” is introduced. It is implicitly assumed throughout [WH04] that the defined object exists and is unique. However the “candidate measure” may not in fact exist, and if it does, it may not be unique. Thus Corollaries 1 and 2 in [WH04], which in their formulation use the notion of the “candidate measure”, are invalid. Corollary 2 in [WH04] admits an obvious well-posed reformulation, but the resulting statement, given in Corollary 2’ below, is also invalid (see Section 4 for a counterexample).

1. We first discuss Proposition 1 in [WH04], which plays the key role in [WH04] as it is used in the formulation and applied in the proof of the main result of [WH04] (Theorem 1). We start by quoting Proposition 1 of [WH04] (see Section 3, page 657).

Proposition 1 of [WH04]. Consider a \(d\)-dimensional \(\mathcal{F}_t\)-progressively measurable process \(X(t) = \xi(W(\cdot), t)\) defined possibly up to the explosion time \(\tau_{MX}\) defined by (2). Then there will also exist a \(d\)-dimensional \(\mathcal{F}_t\)-progressively measurable process \(Y(t) = \xi(W(\cdot) + \int_0^t Y(u) \, du, t)\), defined possibly up to the explosion time \(\tau_{MY}\), with

\[
\tau_{MY} = \lim_{N \to \infty} \tau_{N}^{MY},
\]

where

\[
M_Y(t) = \int_0^t \|Y(u)\|^2 \, du,
\]

\[
\tau_N^{MY} = \inf \left(t \in [0, \infty) : \int_0^t \|Y(u)\|^2 \, du \geq N \right).
\]

The formulation of Proposition 1 is misleading. Firstly, the formula “\(Y(t) = \xi(W(\cdot) + \int_0^t Y(u) \, du, t)\)” cannot be a definition of \(Y\). This is an equation in \(Y\). Secondly, the statement in the proposition that “… the process \(Y(t) = \xi(W(\cdot) + \int_0^t Y(u) \, du, t)\) defined possibly up to the explosion time \(\tau_{MY}\) ...” is followed by the definition of \(\tau_{MY}\), which is given in terms of \(Y\) that has not yet been defined.

Let us now analyse the proof of Proposition 1 in [WH04] in the hope that it will shed light on its formulation. The proof operates with a process \(X_N\), which is not introduced in [WH04]. However, the formula “\(Z_X(t \wedge \tau_{MX}) = Z_{X_N}(t)\)” in the first line of the proof (which should read as “\(Z_X(t \wedge \tau_{N}^{MX}) = Z_{X_N}(t)\)”, as supported by what follows and because the authors of [WH04] refer to their Lemma 1 in the second line of the proof) makes it evident that they mean \(X_N(t) = X(t)I(t \leq \tau_{N}^{MX})\). The authors of [WH04] define a measure \(Q_N\), equivalent to \(P\), by \(Q_N(A) = \mathbb{E}_P[Z_{X_N}(T)I(A)]\) for all \(A \in \mathcal{F}_T\). (Here we corrected another misprint: in [WH04] they write “\(Q_N(X_N \in A) = \mathbb{E}_P[Z_{X_N}(T)I(X_N \in A)]\) for all \(A \in \mathcal{F}_T\)”.) Further they define a
4 ALEKSANDAR MIJATOVIĆ AND MIKHAIL URUSOV

d-dimensional Q_N-Brownian motion W^{Q_N} by the formula

$$W^{Q_N}(t) = W(t) - \int_0^t X_N(u) \, du.$$

Then, in line 2 on page 658 in [WH04] the identity

$$(4) \quad X_N(t) = \xi\left(W^{Q_N}(\cdot) + \int_0^t X_N(u) \, du, t\right) \quad \text{on } \{t \leq \tau^{M_x}_N\}$$

is stated, which is correct. However, all that follows in the proof of Proposition 1 has problems. It is stated in [WH04] that (4) “demonstrates the existence up to $\tau^{M_y}_N$ of”

$$(5) \quad Y_N(t) = \xi\left(W(\cdot) + \int_0^t Y_N(u) \, du, t\right)$$

(see page 658, line 4 in [WH04]). Firstly, it is not clear how to understand the words “up to $\tau^{M_y}_N$” since $\tau^{M_y}_N$ is defined through Y in the formulation of Proposition 1, while Y is still undefined. Secondly, this statement is incorrect because (4) is just an identity that holds for the particular processes X_N and W^{Q_N}, while (5) is an equation in Y_N, where W is the given initial Brownian motion under P. Using an argument, similar to this one in [WH04], one can conclude that the existence of a weak solution of a stochastic differential equation “demonstrates the existence of” a strong solution of the same equation, which, however, is false as is well-known; see, e.g., [KS91, Ch. 5, Ex. 3.5] or item 6 of this section. Furthermore, even if this transition from (4) to (5) were in order, one would not be able to take limits as $N \to \infty$ as suggested in [WH04] (page 658, line 6) because nothing is said about the uniqueness of Y_N satisfying (5) nor about the consistency properties of the “solutions” Y_N of (5) for different N. One must conclude that the proof of Proposition 1 in [WH04] is invalid, in whichever way one interprets the statement.

This in turn invalidates the main result: Theorem 1 on page 658 in [WH04] is misleading since its formulation and proof use the process Y from Proposition 1 of [WH04].

2. In Definition 1 on page 660 of [WH04], which we now quote, the authors “define” the measure Q^C as follows.

Definition 1 of [WH04]. A candidate measure Q^C, corresponding to the process $X(t)$ defined in Proposition 1 on the measure P, is a measure corresponding to which

$$(6) \quad X(t) = \xi\left(W^{Q_C}(\cdot) + \int_0^t X(u) \, du, t\right)$$

is defined (possibly up to the explosion time τ^{M_x}), with W^{Q_C} a Q^C-Brownian motion.

This “definition” is unclear, regarding both existence (of Q^C and W^{Q_C}) and uniqueness. In [WH04] the authors say that Q^C is well-defined by the analysis in Proposition 1, but this
argument is invalid as discussed above. Indeed, counterexamples in items 1 and 2 of Section 4 below show that both existence and uniqueness of \(Q\) "defined" in this way may fail. This in turn invalidates the next result, Corollary 1, on page 660 in [WH04].

3. We now turn our attention to Corollary 2 on page 661 in [WH04], which the authors formulate as follows.

Corollary 2 of [WH04]. Assume that \(X(t)\) is the unique weak solution up to the explosion time \(\eta_X\) of the functional SDE

\[
dX(t) = \mu(X, t) \, dt + \sigma(X, t) \, dW(t)
\]

with initial value \(X(0)\) and \(\mu(x, t) \in \mathbb{R}^d, \sigma(x, t) \in \mathbb{R}^{d \times r}\), with \(\mu(x, t), \sigma(x, t)\) progressively measurable functionals. Then

\[
\mathbb{E}_P[Z_X(T)] = Q^C(\eta_X > T),
\]

where

\[
dX(t) = (\mu(X, t) + \sigma(X, t) \cdot X(t)) \, dt + \sigma(X, t) \cdot dW^Q(t).
\]

The first minor point here is that \(X\) is \(d\)-dimensional and \(W\) is \(r\)-dimensional, while it is important in the definition of the process \(Z_X\) that \(X\) and \(W\) have the same dimension.

The explosion time \(\eta_X\), which appears in Corollary 2, is defined in the last paragraph on page 660 in [WH04] by

\[
\eta_X = \lim_{N \to \infty} \eta^X_N, \quad \text{where} \quad \eta^X_N = \inf \left\{ t \in [0, \infty) : \sup_{i=1, \ldots, d} |X_i(t)| \geq N \right\},
\]

\(X_i(t), i = 1, \ldots, d\) are components of \(X(t)\). Let us add at this point that both \(\tau^{M_X}\) and \(\eta_X\) are termed "the explosion time" in [WH04] (see e.g. the above formulations of Proposition 1 and Definition 1 quoted from [WH04]), which is confusing because these stopping times can be different even in the setting of Corollary 2 (e.g. take an appropriate deterministic \(X\)). In our paper only \(\eta_X\) is called "the explosion time" with the exception of the statements that we quote from [WH04].

We conclude that Corollary 2 of [WH04] is also invalid, as it is unclear what the measure \(Q^C\) represents.

4. We now seek a well-posed reformulation of Corollary 2 of [WH04]. There is a natural candidate, as follows (though this is still incorrect, as we show next). Since \(W^{Q^C}\) is assumed to be a \(Q^C\)-Brownian motion and SDE (9) is announced to hold, it is natural to suggest the following:
Corollary 2’. Let X be a unique in law possibly explosive weak solution of the SDE

$$dX(t) = \mu(X,t) \, dt + \sigma(X,t) \cdot dW(t)$$

on some filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ with initial value $X(0)$ and $\mu(x,t) \in \mathbb{R}^d$, $\sigma(x,t) \in \mathbb{R}^{d \times d}$, where $\mu(x,t), \sigma(x,t)$ are progressively measurable functionals. Consider the process

$$Z_X(t) = \exp \left\{ \int_0^{\eta_X} X(u) \cdot dW(u) - \frac{1}{2} \int_0^{\eta_X} \|X(u)\|^2 \, du \right\}, \quad \text{for } t \in [0, \infty),$$

where we set $Z_X(t) = 0$ for $t \geq \eta_X$ on the event $\{\int_0^{\eta_X} \|X(u)\|^2 \, du = \infty\}$. Assume further that \tilde{X} is a unique in law possibly explosive weak solution of the SDE

$$d\tilde{X}(t) = (\mu(\tilde{X},t) + \sigma(\tilde{X},t) \cdot \tilde{X}(t)) \, dt + \sigma(\tilde{X},t) \cdot d\tilde{W}(t)$$

on some filtered probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, (\tilde{\mathcal{F}}_t), \tilde{\mathbb{P}})$ with the same initial value $X(0)$. Then

$$\mathbb{E}_\mathbb{P}[Z_X(T)] = \tilde{\mathbb{P}}(\eta_X > T),$$

where η_X is the explosion time of \tilde{X}.

Let us point out the difference between Corollary 2 and Corollary 2’ in that in the latter the existence of unique in law weak solution is assumed for each SDE separately, possibly on different probability spaces, while in the former both measures \mathbb{P} and \mathbb{Q}^C are stated to be on the same space and the process X is claimed to solve the two SDEs under the two measures respectively.

5. Before we proceed with Corollary 2’ let us point out a further inconsistency in the formulation of Corollary 2 in [WH04], which is also fixed in the formulation of Corollary 2’. In the formulation of Corollary 2 the authors of [WH04] go beyond their setting. Namely, allowing X to be explosive is inconsistent with their definition of τ_M^X and stipulation that the process X is stopped at τ_M^X. This is particularly relevant if e.g. we have

$$\eta_X < \infty \quad \text{P-a.s.} \quad \text{and} \quad \int_0^{\eta_X} \|X(u)\|^2 \, du < \infty \quad \text{P-a.s.},$$

since in this case [2] does not define τ_M^X (unless it is specified what X is after η_X; note that it may happen that the limit $\lim_{t \uparrow \eta_X} X(t)$ does not exist). It is easy to see that [13] is indeed possible (take e.g. an appropriate deterministic X, which corresponds to zero matrix σ in [7]; in item [4] of Section 4 we also give a stochastic example, where [13] holds). Thus, if [13] holds and the behaviour of X after η_X is not specified (which is the case in the setting of Corollary 2 in [WH04]), then τ_M^X is undefined, Z_X is also undefined (the authors of [WH04] define Z_X via [3]; see Section 2 in [WH04]), and hence, the left-hand side of [8] is undefined as well.
In the proof of Corollary 2 on page 661 in [WH04] the authors claim that $\eta^X = \tau^{M_X}$ a.s., which is incorrect as we have just seen that τ^{M_X} may be undefined in the setting of Corollary 2 in [WH04]. Moreover, even if the behaviour of X after η^X were specified (so that τ^{M_X} were well-defined), then the claim $\eta^X = \tau^{M_X}$ a.s. would be also incorrect (e.g. if (13) holds and we specify $X(t) = 0$ for $t \geq \eta^X$, then $\tau^{M_X} = \infty > \eta^X$ P-a.s.). In order to define Z_X in the setting of Corollary 2 in [WH04] one needs to use formula (11), in which case no problems arise and the behaviour of X after η^X is not essential at all.

6. Furthermore, it should be emphasised that Corollary 2, as stated in [WH04], goes beyond the setting of [WH04] also in another respect, and hence, even if there were no issues with Proposition 1, Definition 1 and other issues with Corollary 2 discussed above, Corollary 2 in [WH04] could not be proved as claimed. Recall that a solution (or a weak solution) of the SDE
\[
dX(t) = \mu(X,t) \, dt + \sigma(X,t) \, dW(t), \quad X(0) = x_0,
\]
is a pair of adapted processes (X, W) on some filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ such that W is an (\mathcal{F}_t)-Brownian motion,
\[
\int_0^t (|\mu(X,u)| + \sigma^2(X,u)) \, du < \infty \quad P\text{-a.s.,} \quad t \in [0, \infty),
\]
and
\[
X(t) = x_0 + \int_0^t \mu(X,u) \, du + \int_0^t \sigma(X,u) \, dW(u) \quad P\text{-a.s.,} \quad t \in [0, \infty).
\]
(For notational simplicity, we consider only one-dimensional X and W and define only a non-explosive solution here because this is all that we need for the argument with Tanaka’s SDE below.) Note that the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ in this definition may differ from the one described in Section 2. A strong solution (X, W) of this SDE is a solution such that the process X is adapted to the filtration generated by the Brownian motion W (see [RY99] Ch. IX, § 1] for the employed terminology). It is easy to show that Tanaka’s SDE
\[
(14) \quad dX(t) = \text{sgn} \ X(t) \, dW(t), \quad X_0 = 0,
\]
where
\[
\text{sgn} \ x = \begin{cases}
1 & \text{if } x > 0, \\
-1 & \text{if } x \leq 0,
\end{cases}
\]
In the formula in lines 2 and 3 of the proof of Corollary 2 in [WH04] it is stated that η^X and τ^{M_X} have the same law (note that the mentioned formula is claimed to hold for any T). However, since it is clear that $\eta^X \leq \tau^{M_X}$ a.s. (provided it is specified what X is after η^X, to be able to speak about τ^{M_X}), this claim amounts to $\eta^X = \tau^{M_X}$ a.s.
has a unique in law weak solution (and, moreover, X is a Brownian motion by Lévy’s characterisation theorem for any solution (X, W) of (14)). However, there exists no strong solution of (14): for any solution (X, W) we have
\[W(t) = \int_0^t \text{sgn} \, X(u) \, dX(u) \quad \text{P-a.s. for all } t \geq 0, \]
and hence, by [Ry99, Ch. VI, Cor. 2.2], the filtration generated by W coincides with that generated by $|X|$, which is strictly smaller than the filtration generated by X, as X is a Brownian motion. Thus, X cannot be adapted to the filtration generated by W. This argument implies that a solution of Tanaka’s SDE cannot be expressed as $X(t) = \xi(W(\cdot), t)$, for a progressively measurable functional ξ, and hence does not satisfy the assumptions of Proposition 1 and Theorem 1 in [WH04]. To summarize the last point, even if all other results in [WH04] were beyond reproach, the weak existence, which is assumed in Corollary 2 in [WH04], would be an insufficient assumption to support the conclusions of Corollary 2 by using their method. The authors of [WH04] should have assumed existence of a strong solution of (7) in Corollary 2.

7. The discussion above leads to the question of whether Corollary 2 holds. Or, at least, whether such a statement holds under the stronger assumptions that X and \tilde{X} are pathwise unique strong solutions of SDEs (10) and (12). A counterexample in item 3 of Section 4 shows that the answer is negative. Moreover, X and \tilde{X} are pathwise unique strong solutions of those SDEs in that counterexample.

4. Counterexamples

1. We start with two counterexamples to Definition 1 in [WH04]. Let us take $d = 1$, fix a finite time horizon $T \in (0, \infty)$, and consider $\Omega = C([0, T], \mathbb{R})$ the space of continuous functions $[0, T] \rightarrow \mathbb{R}$. Let W be the coordinate process on Ω, P the Wiener measure, $(\mathcal{F}_t)_{t \in [0, T]}$ the filtration generated by W and augmented to satisfy the usual conditions, and $\mathcal{F} = \mathcal{F}_T$, so that we are in the setting of [WH04].

First we show that the measure Q^C in Definition 1 in [WH04] may not be unique. Indeed, take $\xi(\cdot, \cdot) \equiv 0$, so that $X \equiv 0$ as well (recall that X is defined by the formula $X(t) = \xi(W(\cdot), t)$). Note that, for any $\lambda \in \mathbb{R}$, the process
\[W^\lambda(t) = W(t) - \lambda t, \quad t \in [0, T], \]
is an $(\mathcal{F}_t, P^\lambda)$-Brownian motion, where the measure P^λ is given by
\[\frac{dP^\lambda}{dP} = \exp \left\{ \lambda W(T) - \frac{\lambda^2}{2} T \right\}. \]
Clearly, any measure P^λ (and, in fact, many other measures) can be considered as Q^C because (6) is satisfied with $W^{Q^C} = W^\lambda$, which is a P^λ-Brownian motion as required in Definition 1.

2. Now we show that the measure Q^C in Definition 1 in [WH04] may not exist. We consider the filtered probability space as above and a strictly increasing continuous function $f : \mathbb{R} \to \mathbb{R}$ with

$$
\lim_{x \to -\infty} f(x) = 1 \quad \text{and} \quad \lim_{x \to \infty} f(x) = 2.
$$

Let us define a progressively measurable functional $\xi(\omega, t), \omega \in \Omega = C([0, T], \mathbb{R}), t \in [0, T]$, by

$$
\xi(\omega, t) = \begin{cases}
 f\left[\frac{\omega(t)}{T-t}\right] & \text{if } t \in [0, T), \\
 0 & \text{if } t = T,
\end{cases}
$$

which gives us the process $X(t) = \xi(W(\cdot), t)$, $t \in [0, T]$.

Let us prove that there exists no measure Q^C satisfying Definition 1 in [WH04]. Since $X(t) = f(W(t))/(T-t), t \in [0, T)$, and f is strictly increasing, trajectories of X determine trajectories of W uniquely. In particular, if (6) holds, the process W^{Q^C} should satisfy

$$
W^{Q^C}(t) = W(t) - \int_0^t X(u) \, du, \quad t \in [0, T).
$$

It follows that

$$
\lim_{t \to T} W^{Q^C}(t) = -\infty \text{ for any } \omega \in \Omega
$$

(recall (15), (16) and note that $W(t) \to W(T) \in \mathbb{R}$ as $t \uparrow T$ for any $\omega \in \Omega$ because W is the coordinate process on the space of continuous functions), hence there does not exist a measure Q^C on (Ω, \mathcal{F}) such that W^{Q^C} is a Q^C-Brownian motion.

3. We proceed with a counterexample to Corollary 2’. Let $\mu(x) = |x|^\alpha$, for any fixed $\alpha > 3$, and $\sigma(x) \equiv 1$. The process $X(t)$, with the state space \mathbb{R} and starting value $X(0) \in \mathbb{R}$, can be defined as a strong solution of the SDE

$$
dX(t) = |X(t)|^\alpha \, dt + dW(t)
$$

up to the explosion time η^X. The existence of a strong solution up to η^X and pathwise uniqueness are guaranteed by Itô’s existence and uniqueness theorem since the coefficients of the SDE are locally Lipschitz (see [RY99, Ch. IX, Ex. 2.10]). It follows from Example 3.1 of [MU10b] that the process

$$
Z_X(t) = \exp\left\{ \int_0^{t \wedge \eta^X} X(u) \, dW(u) - \frac{1}{2} \int_0^{t \wedge \eta^X} X^2(u) \, du \right\}, \quad t \in [0, \infty)
$$
\(Z_X(t) = 0 \) for \(t \geq \eta^X \) on \(\{ \int_0^\eta^X X^2(u) \, du = \infty \} \); see, however, formula (19) below) is a martingale (in fact, it is even a uniformly integrable martingale). Hence, we have
\[
E_P[Z_X(T)] = 1 \quad \text{for all } T \geq 0.
\]

In this case, SDE (12) has the form
\[
d\tilde{X}(t) = \left(|\tilde{X}(t)|^\alpha + \tilde{X}(t) \right) \, dt + d\tilde{W}(t).
\]

(18)

Its coefficients are locally Lipschitz and therefore there exists a pathwise unique strong solution up to the explosion time \(\tilde{\eta} \). The process \(\tilde{X} \) explodes to \(+\infty \) in finite time, which follows from Feller’s test for explosions (see [KS91, Ch. 5, Th. 5.29 and Prop. 5.32]). By time-homogeneity of SDE (18),
\[
\tilde{P} \left(\eta^\tilde{X} > T \right) < 1 \quad \text{for all } T > 0,
\]
which now contradicts the claim in Corollary 2’.

Note that since SDE (18) has a pathwise unique strong solution, we can construct a solution of this SDE on the same probability space that supports the solution of SDE (17) with the same Brownian motion \(W \) as in (17). This means that the reason why Corollary 2’ does not hold is not due to the fact that the solutions of SDEs (10) and (12) are allowed to exist on distinct probability spaces; in fact this reason is deeper. See [MU10a] for more details on this point.

4. Finally, as promised in Section 3, we demonstrate that (13) is possible. Namely, (13) holds in the example in item 3 of this section. Indeed, by Feller’s test for explosions, \(P \)-almost all trajectories of \(X \) explode at \(+\infty \), and hence, \(\eta^X < \infty \) \(P \)-a.s. We now need to prove that
\[
\int_0^{\eta^X} X_s^2 \, ds < \infty \quad P\text{-a.s.}
\]

(19)
in this example. The property (19) is equivalent to \(Z_X(\eta^X) > 0 \) \(P \)-a.s., which is in turn equivalent to the property
\[
Z_X(\infty) > 0 \quad P\text{-a.s.}
\]

(20)

(note that \(Z_X \) is stopped at \(\eta^X \)). It remains to note that (20) holds in the case when the process \(X \) is given by (17) (with \(\alpha > 3 \) as above), which follows from Theorem 2.2 in [MU10a]. Namely, condition (II) in Theorem 2.2 in [MU10a] is satisfied.

References

[KS91] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

[MU10a] Aleksandar Mijatović and Mikhail Urusov. Deterministic criteria for the absence of arbitrage in diffusion models. To appear in Finance and Stochastics, 2010.
[MU10b] Aleksandar Mijatović and Mikhail Urusov. On the martingale property of certain local martingales. To appear in *Probability Theory and Related Fields*, 2010.

[RY99] Daniel Revuz and Marc Yor. *Continuous Martingales and Brownian Motion*, volume 293 of *Grundlehren der Mathematischen Wissenschaften*. Springer-Verlag, Berlin, third edition, 1999.

[WH04] Bernard Wong and C. C. Heyde. On the martingale property of stochastic exponentials. *J. Appl. Probab.*, 41(3):654–664, 2004.

Department of Statistics, University of Warwick, UK
E-mail address: a.mijatovic@warwick.ac.uk

Institute of Mathematical Finance, Ulm University, Germany
E-mail address: mikhail.urusov@uni-ulm.de