ICT literacy with google suite for education (GSFE) in junior high school with different academic abilities

K Insani1,2, Suratno3,4, I Farisi5

1 SMPN 4 Situbondo, Situbondo, Indonesia.
2 Post Graduate Student of Masters in Basic Education, Faculty of Teacher Training and Education, Universitas Terbuka, Jember, Indonesia.
3 Prof, Vice Dean 1 of Faculty of Teacher Training and Education, University of Jember, Jember, Indonesia.
4 Department of Biology Education, University of Jember, Jember, Indonesia.
5 Prof, Director of Universitas Terbuka, Jember, Indonesia.

Email: khairani.insani.rani@gmail.com

Abstract. The ICT Literacy skills of the Student are very important, but in fact, the ICT Literacy skills of the student have not appropriate with the expectation. In this research, researchers tried to use the Google Suite for Education in learning to improve ICT Literacy skills of the students with different academic abilities. This research was using quantitative methods and the type of the research was quasi experimental. The research respondents consisted of two classes, namely a control class as many as 32 students and the experimental class as many as 32 students. The results showed that, after using Google Suite for Education in learning, it was found that the percentage of knowledge value of ICT Literacy ability for the high control class category is 59% for Access, 69% for Manage, 41% for Integrate, 56% for Evaluate and 44% for Create. The medium categories is 31% for Access, 19% for Manage, 38% for Integrate, 25% for Evaluate and 56% for Create. The Low categories is 9% for Access, 13% for Manage, 22% for Integrate, 19% for Evaluate and 44% for Create. The value of ICT Literacy ability skills for high control class is 53% for Access, 69% for Manage, 66% for Integrate, 75% for Evaluate and 34% for Create. The medium categories is 44% for Access, 25% for Manage, 0% for Integrate, 0% for Evaluate and 50% for Create. The Low categories is 3% for Access, 6% for Manage, 34% for Integrate, 25% for Evaluate and 16% for Create. While the experimental class it was found that the percentage of knowledge value of ICT Literacy ability for the high control class category is 72% for Access, 69% for Manage, 53% for Integrate, 84% for Evaluate and 59% for Create. The medium categories is 25% for Access, 13% for Manage, 38% for Integrate, 9% for Evaluate and 34% for Create. The Low categories is 3% for Access, 9% for Manage, 9% for Integrate, 6% for Evaluate and 6% for Create. The value of ICT Literacy ability skills for high control class category is 63% for Access, 84% for Manage, 78% for Integrate, 78% for Evaluate and 41% for Create. The medium categories is 38 % for Access, 13% for Manage, 0% for Integrate, 0% for Evaluate and 47% for Create. The Low categories is 0% for Access, 3% for Manage, 22% for Integrate, 22% for Evaluate and 13% for Create. The score of the independent sample t-test from the ICT Literacy knowledge post-test shows that there is a significant difference between the control class and the experiment with the sig (2-tailed) value is 0.046 < 0.05 (p = < 0.05). Then the score of the independent sample t-test from the ICT Literacy skills post-test shows that there is a significant difference between the control class and the experiment with the sig (2-tailed) value is 0.045 <
0.05 (p < 0.05). (RESULT) It can be concluded that the use of Google Suite For Education can improve ICT literacy knowledge and skills of Junior High School students.

1. Introduction
Changes are needed in education to create creative, innovative and competitive generations to face 4.0 industrial revolution era [9]. Optimizing information and communication technology (ICT) as an educational tool is expected to produce outputs that can adapt with changes, for a better education system. To be able to prepare students to face the 4.0 industrial revolution era, it is necessary to do a revolution and innovation in education. The efforts that made by Indonesian Education and Culture Ministry, to face of 4.0 industrial revolution era namely, 2013 Curriculum has developed the concept of education with 21st Century skills formulated into Indonesian Partnership for 21 Century Skills Standard (IP-21CSS) covers Creativity Thinking and innovation, Problem Solving and Critical Thinking, Communication and Collaboration, Information, Media and Technology Skills, Life & Career Skills [2] integrated in the planning and implementation of learning. One of the skills of the 21st Century that students must possess in facing the era of the 4.0 industrial revolution is Information media and technology skills, related to information literacy, media literacy, and ICT literacy.

Technology and Information media skills related to ICT literacy, can be developed by utilizing ICT media in learning process to produce an interactive, interesting, fun learning process, encouraging student interest in the learning process that have implications for student learning outcomes. This is related to how the material is delivered in the learning process, that can use offline or online sources, where material is saved into digital or cloud forms, so that the purpose of learning can be achieved, that have implications to the improvement of the student learning outcomes. Students become more interested in the learning process which makes it easier for them to find learning material [13].

Educational Testing Service states that is using digital technology, the tools of communication, and/or networks to access, manage, integrate, evaluate, and create information in order to function in a knowledge society [5]. According to the Educational Testing Service, there are five assessment components of ICT literacy. The five components represent a set of skills and knowledge presented in an order that shows an increase in cognitive complexity. The five components of ICT literacy are as follows:
1. Access is knowing about and knowing how to collect and/or retrieve information.
2. Manage is applying an existing organizational or classification scheme.
3. Integrate is interpreting and representing information. It involves summarizing, comparing and contrasting.
4. Evaluate is making judgments about the quality, relevance, usefulness, or efficiency of information.
5. Create is generating information by adapting, applying, designing, inventing, or authoring information.

Educational Testing Service [5] is represented by these component in Figure 1.

![Figure 1. ICT Literacy](image-url)
Google suite for education (GSFE) is a product of Google in the form of a set of productivity and collaboration tools with the Google cloud system for schools and educational institutions used to facilitate a better teaching and learning system [6].

Google Suite For Education (GSFE) uses cloud-based storage that offers a variety of applications that can be accessed free of charge by educational institutions with an Internet connection, web browser, or on a mobile device (Windows, Apple, or Android). In educational settings, GSFE is managed through the Google Admin Console which allows for the creation and management of user accounts, services, and devices such as Chromebooks. The common applications that make up GSFE are Gmail, Google Drive, Google Docs, Google Sheets, Google Slides, Google Calendar, Google Forms, Google Drawings, Google Sites, and Google Classroom. Access to various services can be turned on and off through Google Admin Console [3,7].

This research wanted to find out the effect of the using of google suite for education from the secondary school students with different academic abilities on ICT literacy. In this study we propose the following research question: is there a significant influence in the use of google suite for education on student’s different academic abilities on ICT literacy of grade VII students in informatics at SMP Negeri 1 Situbondo.

2. Method
This research used a quantitative approach and the type of research used quasi experimental. Quantitative research is based on the philosophy of positivism which emphasizes objective phenomena that are studied quantitatively or carried out using numbers, statistical processing, structure, and controlled experiments [12]. Experimental research is research that is intended to determine whether there is a result of treatment in the subject being investigated. The way to find out is to compare one or more experimental groups that were treated with one comparison group that was not treatment [1].

In the quasi experiment method, researchers try to determine whether a treatment affects the results of a study. This influence is assessed by applying certain treatments to one group (treatment group) and not applying it to the other group (control group), then determining how the two groups determine the final outcome [4].

Quasi experimental design was used in this study, by using the nonequivalent control group design. Before the treatment was given, the group of experimental and the group of control were given a test that is a pre-test, with a view to knowing the state of the group before treatment. Then after treatment, the group of experimental and the group of control were given a test that is a post-test, to determine the state of the group after treatment [10].

In this research, group of experimental is a group of students who were given treatment using google suite for education in informatics subjects and the control group is a group of students who were not treated in informatics subjects.

Design of the research can be explained on table 1 [11].

	E	O₁	X₁	O₂
K	O₃	X₂	O₄	

E : experimental group using learning google suite for education.
K : the control group uses presentation media and modules.
O₁ : pre-test in the group of experimental.
O₂ : post-test after treatment using google suite for education in the experimental group.
O₃ : pre-test in the group of control.
O₄ : post-test after treatment using presentation media and modules in the control group.
X_1 : the treatment given to the experimental group, namely activities learning by using google suite for education.

X_2 : the treatment given to the control group was activity learning using presentation media and modules.

![Diagram of research procedure]

Figure 2. Research procedure

The first step that was taken, was to look at the condition of the SMPN 1 Situbondo, then the researchers made observations to find the problems that were in the school, after researchers found the problems contained in the researcher made the problem formulation and research objectives. The second step taken by the researcher is to determine the object of research, the objects of the research are class VII-A and class VII-B, then the researcher divides the 2 classes into experimental groups namely students of class VII-A and the control group of students class VII-B. The third step undertaken in this study is to create a research instrument in the form of a knowledge test sheet, an observation sheet of a skills test, a student and teacher questionnaire sheet and documentation. The fourth step in this research is collecting data from knowledge test results, the results of the observation skills, questionnaires, and documentation, then the data were analyzed with statistical techniques and finally making conclusions from the research results.

The research variables in this study consisted of:

Table 2. Research Variables and Data Sources
Variables
Independent Variable (X)
Dependent variable (Y)
2.1. Population
The subjects of the research were students of class VII SMP 1 Situbondo of academic year 2019/2020 consisting of 32 students of the experimental class and 32 students of the control class. The sampling technique used cluster random sampling that was done by randomly choosing two classes, the first class was the experimental class with the implementation learning using google suite for education consisting of 9 males and 23 females, and the second class was control class with the implementation learning uses media presentations and modules consisting of 13 males and 19 females.

2.2. Instruments
The instruments that were used in this study are test, questionnaires, and documentation. The test instrument consisted of pre-test and post-test which were divided into 2 namely knowledge tests and ICT literacy skills tests in working on informatics test questions, then the results were divided into 3 categories namely high, medium and low categories. Knowledge tests were carried out using 50 multiple choice question. Whereas the skills test uses a practice test observation sheet consisting of 15 indicators. The questionnaire instrument used question instruments totaling 12 question items using the Guttman scale which included statements of true (score 1) and false (score 0), the last being documentation.

2.3. Data Collection and Data Analysis
Data collection techniques were test and questionnaire techniques. Test techniques by providing pre-test and post-test knowledge and skills for control and experiment classes. While the questionnaire technique was in the form of a questionnaire instrument consisting of 12 question items given to students. Analysis of the data used in this research is quantitative analysis using t-test and ANOVA on the pre-test and post-test results. Data obtained from the results of the study are frequency, average, and standard deviation. In addition, the inferential statistics used independent sample t-test to test the difference between the experimental class and the control class [8]. The independent sample t-tests were used to compare the average scores of the two groups with a significance level of 0.05.

3. Result
Prior to showing our results, we need to test the reliability and validity of our post-test instrument. The following tables show the reliability and validity results of post-test knowledge and skills.

Table 3. The Test Result of the Validity Post-test Knowledge Question Control Class: Correlations

No	r_count	Validity	No	r_count	Validity
1	0.429	valid	26	0.386	valid
2	0.473	valid	27	0.379	valid
3	0.367	valid	28	0.088	not valid
4	0.407	valid	29	0.395	valid
5	0.354	valid	30	0.390	valid
6	0.414	valid	31	-	not valid
7	0.354	valid	32	0.393	valid
8	0.047	not valid	33	0.360	valid
Based on Table 3, to find out the validity of the question items, Pearson correlation values (r_{count}) compared with $r_{table} = 0.349$ (df = $n - 2 = 32 - 2 = 2$). If $r_{count} > r_{table}$ then the question item can be said to be valid. Validity can also be seen through the significance value (Sig. 2-tailed). If value Sig. 2-tailed < 0.05 then the question item is valid. There are 45 items that are valid and 5 items of invalid questions are numbers 8, 10, 28, 31 and 34.

	r_{count}	Valid		r_{count}	Valid
9	0.443	valid	34	0.057	not valid
10	0.096	not valid	35	0.443	valid
11	0.431	valid	36	0.370	valid
12	0.418	valid	37	0.382	valid
13	0.365	valid	38	0.483	valid
14	0.420	valid	39	0.442	valid
15	0.427	valid	40	0.458	valid
16	0.380	valid	41	0.531	valid
17	0.429	valid	42	0.502	valid
18	0.357	valid	43	0.405	valid
19	0.353	valid	44	0.362	valid
20	0.351	valid	45	0.398	valid
21	0.415	valid	46	0.418	valid
22	0.372	valid	47	0.462	valid
23	0.447	valid	48	0.502	valid
24	0.402	valid	49	0.463	valid
25	0.373	valid	50	0.429	valid

Table 4. The Test Result of the Reliability Question:
Reliability Statistics of the Control Class

Cronbach's	Alpha	N of Items
	.750	50

Based on Table 4, it can be seen that the overall reliability value is 0.750 is greater than 0.6. Therefore $r_{count} > r_{table}$. It concludes that the instrument items are reliable.

Table 5. The Test Result of the Validity Post-test Knowledge Question
Experimental Class: Correlations

No	r_{count}	Validity	No	r_{count}	Validity
1	0.429	valid	26	0.482	valid
2	0.406	valid	27	0.126	not valid
3	0.437	valid	28	0.399	valid
4	0.382	valid	29	0.421	valid
5	0.418	valid	30	0.528	valid
6	0.381	valid	31	0.429	valid
7	0.441	valid	32	0.561	valid
8	0.369	valid	33	0.377	valid
9	0.410	valid	34	0.551	valid
10	0.446	valid	35	0.425	valid
Based on Table 5, to find out the validity of the question items, Pearson correlation values (r_{count}) compared with $r_{\text{table}} = 0.349$ (df = n – 2 = 32 – 2 = 2). If $r_{\text{count}} > r_{\text{table}}$ then the question item can be said to be valid. Validity can also be seen through the significance value (Sig. 2-tailed). If value Sig. 2-tailed < 0.05 then the question item is valid. There are 46 items that are valid and 4 items of invalid questions are numbers 24, 27, 44, and 48.

Table 6. The Result of the Reliability Post-test Knowledge Question: Reliability Statistics of the Experimental Class

Cronbach's Alpha	N of Items
0.831	50

Based on Table 6, it can be seen that the overall reliability value is 0.831 is greater than 0.6. Therefore $r_{\text{count}} > r_{\text{table}}$. It concludes that the instrument items are reliable. Furthermore, we will show the distribution of knowledge and skills ICT Literacy of both control and experimental classes based on their pre-test and result as follows.
Based on the results of the pre-test analysis between the two classes, it can be seen both classes have the same variance. The results showed the knowledge value of ICT Literacy ability for the high control class category is 25% for Access, 34% for Manage, 31% for Integrate, 44% for Evaluate and 25% for Create. The medium categories is 50% for Access, 38% for Manage, 41% for Integrate, 19% for Evaluate and 44% for Create. The Low categories is 25% for Access, 28% for Manage, 28% for Integrate, 38% for Evaluate and 31% for Create. While the experimental class it was found that the percentage of knowledge value of ICT Literacy ability for the high experimental class category is 22% for Access, 28% for Manage, 16% for Integrate, 41% for Evaluate and 19% for Create. The medium categories is 44% for Access, 38% for Manage, 59% for Integrate, 22% for Evaluate and
66% for Create. The Low categories is 34% for Access, 34% for Manage, 25% for Integrate, 38% for Evaluate and 16% for Create.

The results of both classes can be seen in Figure 2 and Figure 3. With this distribution, this will help our knowledge to interpret the significant influence of google suite for education on students' ICT literacy knowledge.

![Figure 5. The Distribution of Students’ ICT Literacy Skills of the Control Class based on Pre-Test Result](image)

![Figure 6. The Distribution of Students’ ICT Literacy Skills of the Experimental Class based on Pre-Test Result](image)

Based on the results of the pre-test analysis between the two classes, it can be seen both classes have the same variance. The results showed the value of ICT Literacy ability skills for the high control class category is 19% for Access, 41% for Manage, 44% for Integrate, 63% for Evaluate and 38% for Create. The medium categories is 72% for Access, 47% for Manage, 0% for Integrate, 0% for Evaluate and 38% for Create. The Low categories is 9% for Access, 13% for Manage, 56% for
Integrate, 38% for Evaluate and 25% for Create. While the experimental class it was found that the percentage of knowledge value of ICT Literacy ability for the high experimental class category is 13% for Access, 63% for Manage, 69% for Integrate, 63% for Evaluate and 9% for Create. The medium categories is 78% for Access, 34% for Manage, 0% for Integrate, 0% for Evaluate and 34% for Create. The Low categories is 9% for Access, 31% for Manage, 31% for Integrate, 38% for Evaluate and 56% for Create.

The results of both classes can be seen in Figure 4 and Figure 5. With this distribution, this will help our knowledge to interpret the significant influence of Google Suite for education on students' ICT literacy ability skills.

Now, we will analysis the homogeneity test and normality test, and finally, we will analyze the google suite for education significantly influences students' ICT literacy knowledge and ICT literacy skills abilities by using the independent sample t-test.

Table 7. The Analysis of the Homogeneity of ICT Literacy Knowledge pre-test:

	Levene Statistic	df1	df2	Sig.
pretest	0.000	1	62	0.988

Based on the output table of the Test of Homogeneity of Variances in Table 7, the significance value (Sig) of the ICT literacy knowledge pre-test in class VII-A and class VII-B is 0.988 because the value of Sig. 0.988 > 0.05, then as the basis for decision making in the homogeneity test above, it can be concluded that the variance of the ICT Literacy Knowledge pre-test data in class VII-A and Class VII-B homogeneous students.

Table 8. Average pre-test scores of ICT literacy knowledge in control and experimental classes

class	N	Mean	Std. Deviation	Std. Error Mean
pretest				
control	32	60.3125	13.54666	2.39473
experimental	32	59.125	13.17806	2.32957

Table 8 shows that the average value of the pre-test ICT literacy knowledge of the control class (VII-B) was 60.3125 (SD = 13.54666) while the average pre-test score of ICT literacy knowledge of the experimental class (VII-A) was 59.125 (SD = 13.17806)

Table 9. The Analysis of the Homogeneity of ICT Literacy Skills pre-test:

	Levene Statistic	df1	df2	Sig.
pretest skills	0.011	1	62	0.918

Based on the output table of the Test of Homogeneity of Variances in Table 9, it is known that the significance value (Sig) of the ICT literacy skills pre-test in class VII-A and Class VII-B is 0.918 because the value of Sig. 0.918 > 0.05, then as the basis for decision making in the homogeneity test above, it can be concluded that the variance of the ICT literacy skills of the pre-test data in the control class and experimental class are homogeneous.
Table 10. Average pre-test scores of ICT literacy skills in control and experimental classes

Group Statistics	class	N	Mean	Std. Deviation	Std. Error Mean
pretest_skills	control	32	60.4063	14.02730	2.47970
	experimental	32	59.4375	13.80027	2.43957

Table 10 shows that the average score of the control class ICT literacy skills pre-test (VII-B) is 60.4063 (SD = 14.02730) while the average pre-test scores of the experimental class ICT literacy skills (VII-A) is 59.4375 (SD = 13.80027).

Based on the homogeneity test results above, it can be determined the pre-test results between classes VII-A and VII-B are homogeneous, with the provisions of class VII-B being the control class and VII-A being the experimental class.

Now it is time to analyze the result on post-test by using the inferential statistic. We start by analyzing the normality test.

Table 11. Test the normality of ICT literacy knowledge post-test

One-Sample Kolmogorov-Smirnov Test	posttest_control	posttest_experimental
N	32	32
Normal Parameters\(^{a,b}\)		
Mean	72,1875	79,1250
Std. Deviation	13,88765	13,35314
Most Extreme Differences		
Absolute	,135	,210
Positive	,087	,110
Negative	,135	,210
Kolmogorov-Smirnov Z	,764	1,189
Asymp. Sig. (2-tailed)	,603	,118

The normality test results in Table 11 show the significance value of the control class (VII-B) is 0.603 and the significance value of the experimental class (VII-A) is 0.118. The significance value of the two classes is greater than 0.05 so it can be concluded that both are normally distributed.

Table 12. Average post-test scores of ICT literacy knowledge in control and experimental classes

Group Statistics	class	N	Mean	Std. Deviation	Std. Error Mean
posttest_knowledge	control	32	72,1875	13,88765	2.45501
	experimental	32	79,1250	13,35314	2.36052

Table 12 shows that the average value of the post-test ICT literacy control class knowledge is 72,1875 (SD = 13,88765) while the average pre-test ICT literacy skills of the experimental class is 79.1250 (SD = 13,335314).
Table 13. Normality Test post-test ICT literacy skills

Normal Parameters	Posttest_skills_control	Posttest_skills_experimental
Mean	70,9063	78,2500
Std. Deviation	14,30398	14,38637
Most Extreme Differences		
Absolute	1,144	2,260
Positive	1,121	1,158
Negative	-1,144	-2,260

Kolmogorov-Smirnov Z, 1,813, 1,469
Asymp. Sig. (2-tailed), 0,523, 0,057

a. Test distribution is Normal.
b. Calculated from data.

The normality test results in Table 13 show the significance value of the control class (VII-B) is 0,523 and the significance value of the experimental class (VII-A) is 0,057. The significance value of the two classes is greater than 0,05 so it can be concluded that both are normally distributed.

Table 14. Average post-test scores of ICT literacy skills in the control and experimental classes

Group Statistics	class	N	Mean	Std. Deviation	Std. Error Mean
posttest_skills	control	32	70,9063	14,30398	2,52861
	experimental	32	78,2500	14,38637	2,54318

Table 14 shows that the average value of the post-test ICT literacy skills of the control class (VII-B) is 70,9063 (SD = 14,30398) while the average post-test scores of the ICT literacy skills of the experimental class (VII-A) is 78,25 (SD = 13,338637).

Table 15. Google suite for education t-test results on ICT literacy knowledge capabilities

Independent Samples Test
Levene's Test for Equality of Variances
F

posttest_knowledge

Table 15 shows that the significance value of the t-test sig. (2-tailed) of the independent sample t-test the value of ICT literacy knowledge post-test was 0,046 (p < 0,05). This shows that google suite for education significantly influences students' ICT literacy knowledge abilities.
Table 16. Google suite for education t-test results on the ability of ICT literacy skills

Independent Samples Test	t-test for Equality of Means		
	Std. Error	95% Confidence Interval of the Difference	
	Difference		
posttest_skills			
Equal variances assumed	.058	-2.048 62 .045 -7.34375 3.58631	-14.51268 -1.17482
Equal variances not assumed	-2.048 61.998 .045 -7.34375 3.58631	-14.51268 -1.17482	

Table 16 shows that the significance value of the t-test sig. (2-tailed) of the independent sample t-test the post-test ICT literacy skills score was 0.045 (p < 0.05). This shows that google suite for education significantly influences students' ICT literacy skills.

3.1 Differences in ICT Knowledge Based on ICT Literacy Skills

Table 17. Differences in ICT Knowledge Based on ICT Literacy Skills: Descriptives

Descriptives	95% Confidence Interval for Mean			
Ability	Lower Bound	Upper Bound	Minimum	Maximum
High	70.9566	85.4434	48.00	96.00
Medium	75.3892	87.8108	68.00	94.00
Low	-51.0620	203.0620	66.00	86.00
Total	74.3107	83.9393	48.00	96.00

Table 17 shows that the average ICT knowledge of students with high ICT literacy skills is 78.2, the average ICT literacy knowledge of students with moderate ICT literacy skills is 81.6 and the average ICT literacy knowledge of students with low ICT literacy skills is 76.

Table 18. Homogeneity Test of ICT Literacy Knowledge

Test of Homogeneity of Variances				
Ability	Levene Statistic	df1	df2	Sig.
	7.402	2	29	.471

Before continuing the test it is necessary to test the homogeneity of ICT literacy knowledge of students with high, medium and low ICT literacy skills because one of Anova's assumptions is the same variance. From table 18 Test of Homegeneity of Variance it can be seen that the test results show that the variants of the three groups are the same (sig. = 0.471), so the Anova test is valid to test this relationship.
Table 19. ANOVA test

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	97,900	2	48,950	0.261	0.772
Within Groups	5429,600	29	187,228		
Total	5527,500	31			

Next to see if there are differences in the ICT literacy knowledge of the three students in the ICT literacy skills group. We see table 19 ANOVA, from that table in column Sig. a value of 0.772 was obtained. Thus at the real level = 0.05 we reject H1, so the conclusion reached is that there is no significant difference in the average ICT literacy ability of students based on the three groups of ICT literacy skills. This indicates that in the experimental class, the use of Google Suites has the same effect in increasing students' ICT literacy knowledge based on ICT literacy skills.

3.2 Differences in ICT Literacy Knowledge Based on Indicators and Categories

Table 20. Descriptives

Indicator	Category	Mean	Std. Deviation	N
acces	high	85,500	7,83612	22
	medium	65,3750	10,50085	8
	low	54,500	9,19239	2
	Total	78,5312	13,62395	32
manage	high	88,5455	8,86259	22
	medium	63,7500	15,55405	8
	low	45,500	13,43503	2
	Total	79,6563	17,61526	32
integrate	high	91,000	15,04280	22
	medium	62,7500	27,86062	8
	low	16,500	23,33452	2
	Total	79,2813	27,72007	32
evaluate	high	89,0455	9,85358	22
	medium	67,6250	16,58689	8
	low	50,000	9,89949	2
	Total	81,2500	16,88481	32
create	high	87,0909	13,45507	22
	medium	64,6250	16,52649	8
	low	41,500	12,02082	2
	Total	78,6250	19,47662	32
Total	high	88,2364	11,29661	110
	medium	64,8250	17,42808	40
	low	41,6000	17,68992	10
	Total	79,4688	19,41695	160

Table 20 shows that the mean scores and standard deviations of students' ICT literacy knowledge based on indicators and categories.
Table 21. Test of Homogeneity of Variances
Levene's Test of Equality of Error Variances

	F	df1	df2	Sig.
	1.570	14	145	.094

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + indicator + category + indicator * category

Before continuing the test it is necessary to test the homogeneity of students' ICT literacy knowledge based on indicators and categories because one of Anova's assumptions is the same variance. From the Test of Homogeneity of Variances table it can be seen that the test results show that the variants of the three groups are the same (sig. = 0.094), so the Anova test is valid for testing this relationship.

Table 22. Tests of Between-Subjects and Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	33625,491	14	2401,821	13,232	.000
Intercept	282592,211	1	282592,211	1556,813	.000
indicator	1292,894	4	323,224	1,781	.136
category	31373,814	2	15686,907	86,420	.000
indicator * category	2096,990	8	262,124	1,444	.183
Error	26320,352	145	181,520		
Total	1070391,000	160			
Corrected Total	59945,844	159			

a. R Squared = .561 (Adjusted R Squared = .519)

Furthermore, to test the hypothesis can be obtained from Table 22 Tests of Between-Subjects and Effects.

Line hypothesis (indicator):
In the indicator bar, the significance value (Sig.) = 0,136 > 0,05 (Alpha). This means that H0 is accepted, there is no difference in knowledge based on indicators.

Column Hypothesis (category):
In the category bar, the significance value (Sig.) = 0,000 < 0,05 (Alpha). That means H1 is accepted, there are differences in ICT literacy knowledge by category.

Interaction hypothesis (indicator * category):
In the indicator line * category, the significance value (Sig.) = 0,183 > 0,05 (Alpha). This means that H0 is accepted, there is no interaction between indicators and categories.
3.3 Post Hoc Test
Post hoc tests are performed if there is H1 received. In this study, the column hypothesis (category), H1 is accepted, which means that there are differences in ICT literacy knowledge by category. The Post Hoc Test aims to see which categories are different.

Table 23. Multiple Comparisons

posttest_knowledge							
LSD (I)	category	(J)	category	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval
high	medium	23,4114*	2.48760	.000	18.4947	28.3280	
low	46.6364*	4.49996	13.1810	55.4315			
medium	high	-23,4114*	2.48760	.000	-28.3280	-18.4947	
low	23,2250*	4.76340	13.1810	32.6397			
low	high	-46.6364*	4.49996	.000	-55.4315	-37.8412	
medium	low	-23,2250*	4.76340	.000	-32.6397	-13.8103	

Based on observed means.
* The mean difference is significant at the .05 level.

Table 23 shows that for the categories all values can be obtained Sig. = 0.000. That shows the three categories are different. High categories differ from medium categories, high categories differ from low categories, and medium categories differ from low categories.

3.4 Differences in ICT Literacy Skills Based on ICT Literacy Knowledge

Table 24. Descriptives

ICT_literacy_skills	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean			
					Lower Bound Upper Bound Minimum	Maximum		
high	22	78.6364	14.27801	3.04408	72.3059	84.9669	47.00	100.00
medium	8	76.7500	16.94318	5.99032	62.5851	90.9149	47.00	93.00
Low	2	80.0000	9.89949	7.00000	-8.9434	168.9434	73.00	87.00
Total	32	78.2500	14.38637	2.54318	73.0632	83.4368	47.00	100.00

Table 24 shows that the average ICT literacy skills of students with high ICT literacy knowledge is 78,6364, the average ICT literacy skills of students with moderate ICT literacy knowledge is 76,75 and the average ICT literacy skills of students with low ICT literacy knowledge is 78,250.

Table 25. Test of Homogeneity of Variances

ICT_literacy_skills	Levene Statistic	df1	df2	Sig.
				.957

Before continuing the test it is necessary to test the homogeneity of ICT literacy skills of students with high, medium, and low ICT literacy knowledge because one of Anova's assumptions is the same variance. From table 25 Test of Homogeneity of Variance it can be seen that the test results show that
the variants of the three groups are the same (sig. = 0.396), so the Anova test is valid to test this relationship.

Table 26. ANOVA

ICT_literacy_skills	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	27,409	2	13,705	0.062	0.940
Within Groups	6388.591	29	220,296		
Total	6416.000	31			

Next to see if there are differences in ICT literacy skills of the three students in the ICT literacy knowledge group. We see table 26 ANOVA, from that table in column Sig. a value of 0.940 was obtained. Thus at the real level = 0.05 we reject H1, so the conclusion obtained is that there is no significant difference in the average ICT literacy skills of students based on the three ICT literacy knowledge groups. This indicates that in the experimental class, the use of google suite for education has the same effect in improving students' ICT literacy abilities based on ICT literacy knowledge.

3.5 Differences in ICT Literacy Skills Based on Indicators and Categories

Table 27. Descriptives

Indicator	Category	Mean	Std. Deviation	N
acces	High	85,700	13,53008	20
	Medium	63,300	15,18808	10
	Low	58,500	12,02082	2
	Total	77,000	17,75642	32
manage	High	91,250	12,23401	20
	Medium	70,000	19,72027	10
	Low	37,500	53,03301	2
	Total	81,250	22,89527	32
Integrate	High	90,000	30,77935	20
	Medium	60,000	51,63978	10
	Low	50,000	70,71068	2
	Total	78,125	42,00134	32
evaluate	high	90,000	30,77935	20
	medium	70,000	48,30459	10
	low	.0000	.00000	2
	Total	78,125	42,00134	32
Create	high	86,800	16,58661	20
	medium	60,100	21,29397	10
	low	50,000	24,04163	2
	Total	76,156	22,78810	32
Total	high	88,750	22,01899	100
	medium	64,680	33,70668	50
	low	39,200	37,75006	10
	Total	78,131	30,91622	160

Table 27 Descriptives shows the mean scores and standard deviations of students' ICT literacy skills based on indicators and categories.
Before continuing the test it is necessary to test the homogeneity of students' ICT literacy skills based on indicators and categories because one of Anova's assumptions is the same variance. From table 28 Test of Homogeneity of Variance it can be seen that the test results show that the variants of the three groups are the same (sig. = 0.473), so the Anova test is valid to test this relationship.

Table 28. Test of Homegeneity of Variance

Levene's Test of Equality of Error Variances

F	df1	df2	Sig.
0.725	14	145	.473

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + indicator + category + indicator * category

Table 29. Tests of Between-Subjects and Effects

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	41233,094	14	2945,221	3,856	.000
Intercept	285433,207	1	285433,207	373,735	.000
Indicator	2147,443	4	536,861	.703	.591
category	35479,014	2	17739,507	23,227	.000
indicator * category	5277,055	8	659,632	.864	.549
Error	110741,150	145	763,732		
Total	1128693,000	160			

Corrected Total 151974,244 159

a. R Squared = .271 (Adjusted R Squared = .201)

Furthermore, to test the hypothesis can be obtained from Table 29 Tests of Between-Subjects and Effects.

Line hypothesis (indicator):
In the indicator bar, the significance value (Sig.) = 0.591 > 0.05 (Alpha). This means that H0 is accepted, there is no difference in ICT literacy skills based on indicators.

Column Hypothesis (category):
In the category bar, the significance value (Sig.) = 0.000 < 0.05 (Alpha). That means H1 is accepted, there are differences in ICT literacy skills by category.

Interaction hypothesis (indicator * category):
In the indicator line * category, the significance value (Sig.) = 0.549 > 0.05 (Alpha). This means that H0 is accepted, there is no interaction between indicators and categories.
3.6 Post Hoc Test

Post hoc tests are performed if there is H1 received. In this study, the column hypothesis (category), H1 is accepted, which means that there are differences in ICT literacy skills by category. The Post Hoc Test aims to see which categories are different.

Table 30. Multiple Comparisons

posttest_ ICT_literacy_skills LSD	Multiple Comparisons	Mean Difference (I - J)	Std. Error	Sig.	95% Confidence Interval
high	medium	24,0700	4,78664	.000	14,6094 - 33,5306
high	low	49,5500*	9,16573	.000	31,4343 - 67,6657
medium	high	-24,0700*	4,78664	.000	-33,5306 - 14,6094
medium	low	25,4800	9,57329	.009	6,5588 - 44,4012
low	high	-49,5500*	9,16573	.000	-67,6657 - 31,4343
low	medium	-25,4800*	9,57329	.009	-44,4012 - 6,5588

Based on observed means.

The error term is Mean Square(Error) = 763,732.

* The mean difference is significant at the .05 level.

Table 30 shows that for the categories all values can be obtained Sig. = 0,000. That shows the three categories are different. High categories differ from medium categories, high categories differ from low categories, and medium categories differ from low categories.

Furthermore, we will show the distribution of knowledge and skills ICT Literacy of both control and experimental classes based on their post-test and result as follows.

Figure 7. Distribution of Students’ ICT Literacy Knowledge of the Control Class based on Post-Test Results
Figure 8. Distribution of Students' ICT Literacy Knowledge of the Experimental Class based on Post-Test Results

Figure 9. The Distribution of Students’ ICT Literacy Skills of the Control Class based on Post-Test Result
3.7 Questionnaire accuracy of learning with Google Suite For education

The questionnaire is used to determine the accuracy of use in learning. Prior to showing our results, we need to test the reliability and validity of our questionnaire instrument. The following tables show the reliability and validity results of questionnaire instrument.

Table 31. The Test Result of the Validity Google Suite For Education Questionnaire
Experimental Class: Correlations

No	r_count	Validity
1	0,421	valid
2	0,469	valid
3	0,362	valid
4	0,641	valid
5	0,408	valid
6	0,370	valid
7	0,362	valid
8	0,377	valid
9	0,352	valid
10	0,465	valid
11	0,521	valid
12	0,371	valid

Based on Table 31, to find out the validity of the question items, Pearson correlation values (r_{count}) compared with $r_{table} = 0,349$ (df = n – 2 = 32 – 2 = 2). If $r_{count} > r_{table}$ then the question item can be said to be valid. Validity can also be seen through the significance value (Sig. 2-tailed). If value Sig. 2-tailed < 0,05 then the question item is valid. In the Correlations Table above, it can be seen that all items are valid.

Figure 10. The Distribution of Students’ ICT Literacy Skills of the Experimental Class based on Post-Test Result
Table 32. The Test Result of the Reliability Question: Reliability Statistics of the Experimental Class

Reliability Statistics	Cronbach’s Alpha	N of Items
	.685	12

Based on Table 32, it can be seen that the overall reliability value is 0.685 is greater than 0.6. Therefore \(r_{\text{count}} > r_{\text{table}} \). It concludes that the instrument items are reliable.

Table 33. The Test Result of the Validity Google Suite For Education Questionnaire Control Class: Correlations

Number Test	\(r_{\text{hitung}} \)	Validitas
1	0.450	valid
2	0.427	valid
3	0.423	valid
4	0.425	valid
5	0.438	valid
6	0.575	valid
7	0.444	valid
8	0.357	valid
9	0.441	valid
10	0.385	valid
11	0.429	valid
12	0.571	valid

Based on Table 33, to find out the validity of the question items, Pearson correlation values (\(r_{\text{count}} \)) compared with \(r_{\text{table}} = 0.349 \) (df = n – 2 = 32 – 2 = 2). If \(r_{\text{count}} > r_{\text{table}} \) then the question item can be said to be valid. Validity can also be seen through the significance value (Sig. 2-tailed). If value Sig. 2-tailed < 0.05 then the question item is valid. In the Correlations Table above, it can be seen that all items are valid.

Table 34. The Test Result of the Reliability Question: Reliability Statistics of the Control Class

Reliability Statistics	Cronbach’s Alpha	N of Items
	.607	12

Based on Table 34, it can be seen that the overall reliability value is 0.607 is greater than 0.6. Therefore \(r_{\text{count}} > r_{\text{table}} \). It concludes that the instrument items are reliable.

Now, we will analyze the homogeneity test and the normality test, and finally, we will analyze the google suite for education significantly appropriate for use in learning by using independent sample t-tests.
The normality test results in Table 35 show the significance value of the control class is 0.064 and the significance value of the experimental class is 0.058. The significance value of the two classes is greater than 0.05 so it can be concluded that both are normally distributed.

Table 36 shows that the average value of the google suite for education questionnaire of the control class is 66.5313 (SD = 14.33692) while the average post-test scores of the google suite for education questionnaire of the experimental class is 73.6563 (SD = 13.30440).

Table 37 shows that the significant differences between the two classes (control and experimental) obtained from the significance value 0.042 (p < 0.05). While the significance value t-test sig. (2-tailed) from the independent sample t-test the post-test value is 0.044 (p < 0.05). This shows that the use of google suite for education in learning is appropriate.
4. Discussion
This research was conducted to determine the effect of using google suite for education on students' different academic abilities on ICT literacy of junior high school students. The findings of this research showed that the using of google suite for education has a significant influence on improving ICT literacy of students in terms of knowledge and skills.

The results show after the using Google Suite for Education in learning, based on the post-test result, it showed the knowledge value of ICT literacy ability for the control class with the high category is 59% for Access, 69% for Manage, 41% for Integrate, 56% for Evaluate and 44% for Create. The medium categories is 31% for Access, 19% for Manage, 38% for Integrate, 25% for Evaluate and 56% for Create. The Low categories is 9% for Access, 13% for Manage, 22% for Integrate, 19% for Evaluate and 0% for Create. While the experimental class it was found that the percentage of knowledge value of ICT literacy ability for the experimental class with the high category is 72% for Access, 78% for Manage, 53% for Integrate, 84% for Evaluate and 59% for Create. The medium categories is 25% for Access, 13% for Manage, 38% for Integrate, 9% for Evaluate and 34% for Create. The Low categories is 3% for Access, 9% for Manage, 9% for Integrate, 6% for Evaluate and 6% for Create. The results of both classes can be seen in Figure 7 and Figure 8. It can be seen that the ICT literacy knowledge of the experimental class is superior to the control class.

Furthermore, based on the results of the post-test, it showed the skills value of ICT literacy ability for the control class with the high category is 53% for Access, 69% for Manage, 66% for Integrate, 75% for Evaluate and 34% for Create. The medium categories is 44% for Access, 25% for Manage, 0% for Integrate, 0% for Evaluate and 50% for Create. The Low categories is 3% for Access, 6% for Manage, 34% for Integrate, 25% for Evaluate and 16% for Create. While the experimental class it was found that the percentage of skills value of ICT literacy ability for the experimental class with the high category is 63% for Access, 84% for Manage, 78% for Integrate, 78% for Evaluate and 41% for Create. The medium categories is 38% for Access, 13% for Manage, 0% for Integrate, 0% for Evaluate and 47% for Create. The Low categories is 0% for Access, 3% for Manage, 22% for Integrate, 22% for Evaluate and 13% for Create. The results of both classes can be seen in Figure 9 and Figure 10. It can be seen that the ICT literacy skills of the experimental class is superior to the control class.

From these results, the experimental class students showed higher ICT literacy skills in knowledge and skills compared to the class of control.

Furthermore, according to the results of the google suite for education questionnaire, it showed the average value of the google suite for education questionnaire from the experimental class was greater than the control class (Table 36), and based on the results of the t-test (Table 37) shows the significant differences between the two classes (control and experimental) obtained from the significance value 0.042 (p < 0.05). While the significance value t-test sig. (2-tailed) from the independent sample t-test the post-test value is 0.044 (p < 0.05). This shows that the use of google suite for education in learning is appropriate.

5. Conclusion
According to the results of the study, google suite for education has a significant influence on the ICT literacy abilities of students with different academic abilities in both knowledge and skills. Students, in the experimental class, demonstrate ICT literacy abilities in knowledge and skills higher than in the control class. Finally, we can claim that the use of Google Suite for Education can increase ICT literacy of students with different academic abilities.

Acknowledgment
I wish to thank for the support from SMPN 1 Situbondo, Universitas Terbuka Jember, University of Jember, and all the people whose assistance was a milestone in the completion of this research.
References

[1] Arikunto S 2000 Research Management (Jakarta: PT. Rineka Cipta) p 272
[2] Ariyana Y, Pudjiastuti A, Bestary R and Zamroni 2018 A Handbook for Oriented Learning on Higher Level Thinking Skills (Jakarta: Direktorat Jenderal Guru dan Tenaga Kependidikan Kementerian Pendidikan dan Kebudayaan) p 22
[3] Bartolo P 2017 Integrating Google Apps And Google Chromebooks Into The Core Curriculum: A Phenomenological Study Of The Lived Experience Of Public School Teachers (Lynchburg, VA : Dissertation, Doctor of Education Liberty University) p 29
[4] Creswell J W 2014 Research Design, Qualitative, Quantitative, and Mixed Methods Approaches Translator Achmad Fawaid (Yogyakarta: Pustak Pelajar) p 19
[5] Educational Testing Service 2007 Digital Transformation A Framework for ICT Literacy: AReport of the International ICT Literacy Panel, ETS: New Jersey, p.iii.
[6] EIKON Technology Understanding G Suite Education and its Benefits 2018 Downloaded 12 May 2019
[7] Google (n.d.) Google for education: A solution built for teachers and students retrieved from
[8] Hinton, P.R., McMurray, I., & Brownlow, C 2004. SPSS Explained. Routledge Inc, New York.
[9] Schwab Klaus 2016 The Fourth Industrial Revolution Geneva: World Economic Forum.
[10] Sugiyono 2010 Qualitative Quantitative Research Methods and R&D (Bandung: Alfabeta) p 75
[11] Sugiyono 2011 Qualitative Quantitative Research Methods and R&D (Bandung: Alfabeta) p 79
[12] Sukmadinata N S 2010 Educational Research Methods (Bandung: Remaja Rosdakarya) p 53
[13] Susanti W and Jalinus N 2018 Analysis of E-Learning Based Learning with Cloud Computing Technology JOISIE Journal Of Information System And Informatics Engineering, vol. 2, No. 2, 49-56.