Gamma-rays from possible disk component of dark matter

K M Belotsky1, R I Budaev1,2,*, A A Kirillov1,3 and M L Solovyov1

1 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409, Russia
2 Yaroslavl State P. G. Demidov University, Sovietskaya st. 14, Yaroslavl, 150000, Russia
E-mail: *buday48@mail.ru

Abstract. We consider a dark matter model with “active” component (annihilating or decaying), that forms a disk in the Galaxy. In this work we calculate gamma-ray flux from the galactic center for given model and compare it to the observations. It was found that predicted flux with model parameters obtained in our last analysis which did not take the data on gamma-ray flux from the center into account, agrees (does not exceed) observational one. Gamma-ray fluxes for the whole sky have been obtained and compared with existing data. Unfortunately existing data include contributions from all possible gamma-ray sources in a wide energy range, what requires respective special analysis. We adopted existing data in a simple way to compare with them and obtained qualitative agreement.

1. Introduction
It is suggested now a big variety of forms of dark matter (DM), many of which go beyond habitual concept of collisionless massive particles. These are self-interacting DM (e.g., \cite{1,4} and references therein), primordial black holes (e.g., \cite{5,9}), dark disk models \cite{10,13}, DM in the form of scalar field clumps (e.g. \cite{14}) and deformed extra dimensions \cite{15}, composite multicomponent DM \cite{16,19} and others. Many attempts to build DM model are trying with its help to explain other astrophysical problems. The observed anomaly in cosmic ray (CR) positrons is one of their subject, which we focus on.

The main difficulty in explaining the positron anomaly \cite{20} involving DM is a constraint coming from the isotropic diffuse gamma-ray background (IGRB) \cite{11,13,21,26}. We are developing a model that bypasses this restriction by assuming the presence of a dark matter disk in the Galaxy \cite{11,13}. In spite on postulating of disk existence, it may naturally account for annihilation enhancement due to Sommerfeld-Gamow-Sakharov effect \cite{27,29} or classical approach applicability \cite{30,31}.

In our previous work \cite{11}, all the parameters of the model were obtained by fitting the data on cosmic positrons \cite{32} and IGRB. In this paper, we show that the expected flux of gamma rays from the galactic center (GC) is compatible with the observation \cite{33}. We also compare the estimated gamma-ray fluxes for the whole sky to the measured ones \cite{21,22,34}.

2 To whom any correspondence should be addressed.
2. Gamma radiation from the disk of dark matter

In our model \cite{11,13} we assume that the dark matter is composed of a dominant “passive” component that forms the halo, and an “active” component, which gives a signal in CR and forms a disk. In this model, the active component of DM can decay or annihilate to one of three channels: e^+e^-, $\mu^+\mu^-$ and $\tau^+\tau^-$. This is fairly conservative assumption as to final state radiation (FSR) production. One can assume more exotic model where double positron mode exists leading to two times suppression of FSR photon to positron yield ratio \cite{35,36}.

The parameters of considered here model are the mass of DM particles M_X, disk half-height h, annihilation (decay) branching ratios $Br_i \ (i = e, \mu, \tau; \sum Br_i = 1)$ and the rate of annihilation (decay) $j(\vec{s})$, defined as follows:

$$j(\vec{s}) = \begin{cases} \frac{\langle \sigma v \rangle}{4M_X^2} \rho^2(\vec{s}) & \text{(annihilation)}, \\ \frac{1}{\tau M_X} \rho(\vec{s}) & \text{(decay)}, \end{cases}$$

where $\langle \sigma v \rangle$ is the averaged over velocity annihilation cross section (for Dirac particles), τ is the lifetime of a particle in case of decay, $\rho(\vec{s})$ is the DM density at a given point \vec{s} in the Galaxy.

The choice of model parameters at which the positron anomaly is described and there is no contradiction with data on IGRB and on gamma-ray flux from the GC, is performed by minimizing the following expression for the χ^2:

$$\chi^2 = \sum_{i=1}^{k} \left(\frac{F(E_i, p) - F_{i, \text{exp}}}{\sigma_i} \right)^2 + \sum_{j=1}^{m} \theta \left(\Phi(E_j, p) - \Phi_{j, \text{exp}} \right) \left(\frac{\Phi(E_j, p) - \Phi_{j, \text{exp}}}{\sigma_j} \right)^2 + \theta \left(\Psi(E, p) - \Psi_{\text{exp}} \right) \left(\frac{\Psi(E, p) - \Psi_{\text{exp}}}{\sigma} \right)^2 \right. \right. \right.$$

Here i and j denote indices of experimental points in AMS-02 and Fermi-LAT data respectively, k and m are the numbers of data points included in the analysis, p denotes the set of model parameters listed above, $F(E_i, p)$, $\Phi(E_j, p)$ and $\Psi(E, p)$ are respectively the cosmic positron fraction, IGRB and the gamma-ray flux from the GC, predicted by the model, $F_{i, \text{exp}}$, $\Phi_{j, \text{exp}}$ and Ψ_{exp} are the corresponding experimental values with $\sigma_{(i,j)}$ being the errors, and θ is the Heaviside step-function. Note that simultaneous accounting for all terms in equation (2) in the procedure of minimizing χ^2 provides more flexible test criterion \cite{37}.

The gamma-ray flux is calculated as follows:

$$\Phi(E) = \frac{1}{4\pi \Delta \Omega} \int \frac{S(b, l)}{\Delta \Omega} \int d\cos(b) \int dl j(s, b, l) \sum_i Br_i f_i^j(E),$$

where l and b are the galactic longitude and latitude, $f_i^j(E)$ is the differential energy spectrum of prompt photons, produced in the i-th channel, $S(b, l)$ is the distance to the disk “border”, $\Delta \Omega$ is the solid angle.

In this paper we consider the case of annihilation; the case of decay does not differ fundamentally.

For dark disk the following density profile is used \cite{38}:

$$\rho(R, z) = \rho_0 e^{-R/R_c} e^{-z/z_c},$$

where R and z are the cylindrical galactic coordinates, $R_c = 7$ kpc, $z_c = 0.4$ kpc, and ρ_0 is the constant obtained from the condition $\rho_{loc} \equiv \rho(r_\odot = 8.5 \text{ kpc}) = 0.39$ GeV/cm3.

\[\text{IOP Conf. Series: Journal of Physics: Conf. Series 798 (2017) 012084} \]
Figure 1. The predicted gamma-ray flux at energy 100 GeV (left) and the ratio model/experiment (right) for the whole sky. l, b denotes galactic longitude and latitude, respectively. Left panel shows $\log_{10}(f)$ with the flux f given in MeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$.

In figure 1 the obtained gamma-ray map is shown. Left and right panels correspond to the pure theoretical flux and its ratio to the experimental one [21][22][34]. Experimental data represent full gamma-ray fluxes integrated in energy $E > 3$ GeV.

Since expected gamma-ray flux from the GC virtually coincides with experimental flux at $E \sim 100$ GeV, we rescale the whole map as the ratio:

$$\frac{\int_{3 \text{ GeV}}^{\infty} \Psi_{\text{exp}}(E)\,dE}{\int_{3 \text{ GeV}}^{\infty} \Psi(E)\,dE}. \quad (5)$$

In other words, with such rescaling, we get the ratio model/experiment (right panel in figure 1) equals one at the GC. Now if this value is greater (less) than one means that the theoretical flux (does not) exceed(s) the measured one at high energy (where model/experiment ratio is the highest). It is true under a rough assumption that the energy spectra shape does not change in angle coordinates. Note that black spots in the right panel of figure 1 correspond to point-like gamma-ray sources.

As one can see from figure 1, the ratio model/experiment is around one by varying from GC to poles within just one order of magnitude, while the model and experimental fluxes solely change within 5–7 orders of magnitude. From one side, such comparison result favours the model, but from other side, it means that more refined analysis is required to verify the model.

3. Conclusion

In this work we continue the development of the dark matter model with a disk component in the Galaxy, which can explain the positron anomaly without contradiction to data on gamma radiation. Earlier we compared prediction with IGRB, which represents the flux averaged over high latitudes with exclusion of known sources contribution. Here we take into account data on gamma-ray flux from the GC and all other galactic coordinates but including all contributions and integrated over wide energy range (except GC). Our adopting the presented data in a simple way allowed to compare model predictions and experimental data. On the basis of such comparison one may conclude that the model does not explicitly contradict to data and that more refined analysis is required to verify the model.
Acknowledgments
The authors express their special thanks to M. N. Laletin, on the basis of whose work this one is done. The work of MEPhI group was supported by MEPhI Academic Excellence Project (agreement with the Ministry of Education of the Russian Federation № 02.a03.21.0005, 27.08.2013), K.A.A. by a grant from the Russian Science Foundation (№ 15-12-10039), K.M.B., R.I.B. and M.L.S. by the RFBR grant № 14-22-03048.

References
[1] Petraki K, Postma M and de Vries J 2016 arXiv:1611.01394
[2] Sepp T et al. 2016 arXiv:1603.07324
[3] Heikinheimo M et al. 2016 Int. J. of Mod. Phys. D 1730007
[4] Carr B, Kühnel F and Sandstad M 2016 Phys. Rev. D 94(8) 083504
[5] Kawasaki M et al. 2016 Phys. Rev. D 94(8) 083523
[6] Grobov A V, Rubin S G and Shalamova V Y 2014 Adv. High Energy Phys. 2014 319218
[7] Belotsky K and Kirillov A J. of Cosm. and Astr. Phys. 2015 041
[8] Belotsky K M, Kirillov A A and Rubin S G 2015 Int. J. of Mod. Phys. D 24 1545005
[9] Belotsky K M, Kirillov A A and Rubin S G 2015 Int. J. of Mod. Phys. D 24 1545005
[10] Randall L and Scholtz J 2015 J. of Cosm. and Astr. Phys. 2015 057
[11] Belotsky K M, Kirillov A A and Rubin S G 2015 Int. J. of Mod. Phys. D 24 1545005
[12] Belotsky K et al. 2016 arXiv:1606.01271
[13] Alekseev V V et al. 2016 J. Phys. Conf. Ser. 675 012023
[14] Alekseev V V et al. 2016 J. Phys. Conf. Ser. 675 012026
[15] Grobov A et al. 2015 Phys. Proc. 74 28 – 31
[16] Gani V A, Dmitriev A E and Rubin S G 2015 International Journal of Modern Physics D 24
[17] Khlopov M Y and Kouvaris C 2008 Phys. Rev. D 78(6) 065040
[18] Khlopov M Y 2006 JETP Lett. 83 1–4
[19] Khlopov M 2014 Int. J. of Mod. Phys. A 29 1443002
[20] Foot R 2014 Int. J. of Mod. Phys. A 29 1430013
[21] Adriani O et al. 2009 Nature 458 607–9
[22] Ackermann M et al. 2014 Phys. Rev. D 89 083506
[23] Ackermann M et al. 2015 Astrophys. J. 799 86
[24] Ando S and Ishiwata K 2015 JCAP 1505 024
[25] Liu W et al. 2016 arXiv:1602.01012
[26] Gamow G 1928 Zeitschrift fur Physik 51 204–12
[27] Sommerfeld A 1931 Ann. Phys. 403 257–330
[28] Sakharov A D 1948 JETP 18 631–5
[29] Belotsky K M, Esipova E A and Kirillov A A 2015 Phys. Proc. 74 24 – 7
[30] Belotsky K M, Esipova E A and Kirillov A A 2016 Physics Letters B 761 81–6
[31] Aguilar M et al. 2013 Phys. Rev. Lett. 110 141102
[32] Ajello M et al. 2016 Astrophys. J. 819(1) 44
[33] Virtual Observatory on the Net generating images of any part of the sky at wavelengths in all regimes from Radio to Gamma-Ray http://skyview.gsfc.nasa.gov/
[34] Belotsky K et al. 2014 Advances in High Energy Physics 2014 214258
[35] Belotsky K et al. 2015 Int. J. Mod. Phys. D 24 1545004–47
[36] Belotsky K et al. 2015 Int. J. Mod. Phys. D 24 1545004–47
[37] Alekseev V V et al. to be published in Phys. Atom. Nucl.
[38] Read J I et al. 2008 Mon. Not. Roy. Astron. Soc. 389 1041–57