Quality of Life Status and Influencing Factors Among Patients with Deep Vein Thrombosis

Jing Huang1,2, Xiao-yan Liu1,2, Zhou-peng Wu3, Yu-kui Ma3

1Department of Vascular Surgery, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, People’s Republic of China; 2Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People’s Republic of China; 3Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China

Correspondence: Zhou-peng Wu, Department of Vascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxuexiang Wuhou District, Chengdu, Sichuan, People’s Republic of China, Email lzwzp19@163.com

Objective: The objective of the study was to describe the quality of life (QoL) status and investigate the influencing factors of QoL among patients with deep vein thrombosis (DVT).

Methods: A retrospective analysis at a single center was performed, and the clinical data of 161 patients with DVT admitted to West China Hospital of Sichuan University from June 2019 to June 2020 were collected with the Villalta scale, Hospital Anxiety and Depression Scale (HADS), and Chronic Venous Insufficiency Questionnaire (CIVIQ). The relationship between QoL and influencing factors, including characteristics, course of DVT, postthrombotic syndrome (PTS), psychological status, and behaviors, was analyzed by Student’s t-test, analysis of variance and multiple linear regression.

Results: A total of 161 patients who completed all the questionnaires between 2019 and 2020 were included, and 110 patients (68%) were male. The mean QoL score acquired by the CIVIQ scale was 74.18±8.44, and the results showed significant differences between patients of different ages, genders, behaviors and psychological statuses (P < 0.05). Multiple regression analysis showed that age (P = 0.024), negative mood (P < 0.001), CCI index (P < 0.001), PTS (P < 0.001) and regular exercise (P = 0.002) influenced the CIVIQ scale evaluation model, in which exercise regularly was a protective factor for QoL, and age, negative mood, CCI index and PTS were risk factors for QoL.

Conclusion: The QoL of DVT patients was impaired and associated with age, mood, CCI index and PTS. Regular exercise is beneficial for improving the quality of life of DVT patients.

Keywords: deep vein thrombosis, quality of life, influencing factors

Introduction

DVT is the abnormal condensation of blood in a deep vein, typically in the lower leg,1 which is known as VTE2 combined with pulmonary embolism (PE). VTE is the main cause3 of the global disease burden and is characterized by high morbidity and a high mortality rate. It can also cause bleeding, recurrent venous thrombosis, PTS, persistent breathing difficulties, pulmonary hypertension and other complications.4,5 PTS develops in 40–60% of patients following a proximal DVT of the lower limb and results in chronic manifestations including pain, heaviness, swelling, itching, and ulcers.6 While increasing the burden of medical expenses, the outcomes also have a substantial impact on the psychological and physical health, well-being, and daily functioning of patients, and threatens the life of patients following VTE.

Traditional measures of morbidity and mortality are limited in describe and quantify the impact of illness, particularly chronic illness, and various generic and disease-specific instruments have been constructed to assess the overall and multidimensional outcomes.7 The increasing awareness of those chronic sequelae, together with an increased using of patient reported outcome measures to assess the impact of illness, has highlighted the utility of studying QoL in patients with DVT.8

According to the WHO, QoL is regarded as “… an individual’s perception of his/her position in life in the context of the culture and value systems in which he/she lives, and in relation to his/her goals, expectations, standards and
concerns”. It is a broad-ranging concept, consists of individuals’ physical health, social relationships, environmental, level of independence, psychological, and spiritual components, and used for the evaluation of patients’ own health status and disease burden to reflect the clinical efficacy, disease prognosis and health economy. QoL is useful in medical decision making for ensuring improvement of the life domains who deems most important, can fully and effectively reflect the patient’s health status, and also an outcome measure for chronic venous disease to allow for consistent reporting and comparison between studies.

The tools currently used to assess QoL among VTE patients include generic and disease-specific instruments. Studies before involving QoL assessment of DVT patients mostly adopt generic instruments such as the Medical Outcome Survey Short-Form 36 items (SF-36) and the Medical Outcome Survey Short-Form 12 items (SF-12), which can be used irrespective of illness but may lack the sensitivity to capture disease specific aspects and to detect clinically-relevant changes over time. Therefore, disease-specific QoL measures is recommended in clinical trials.

Studies have shown that scores of QoL in patients following DVT was significant lower comparing to population norms or matched controls with no history of DVT, and QoL in patients with DVT for four months was impaired and comparable to patients suffering from chronic diseases of the heart, lung, or joints. What’s worse, compared to other patients with chronic vascular diseases (CVD), DVT patients seem to have poorer QoL. However, a meta-analysis of patients with a history of DVT showed that QoL scores were comparable to population norms one year after an episode of DVT, and a longitudinal study showed that QoL in patients following DVT improved over time. Many studies have shown that PTS damages the QoL of patients following acute DVT. Factors have been found to be associated with impaired QoL such as the course of disease, age, obesity, comorbidity, location and extent of the thrombus, and socioeconomic status, have been assessed to a limited extent and their association with impaired QoL has been inconsistent across studies.

Due to cultural differences between homelands and abroad and because the assessment results of quality of life with the same tool may be different in different regions, foreign research results cannot reflect the status in China. Therefore, the aim of this review is to present the status of QoL and associated factors among DVT patients in China. The results may contribute to design of a better management system for those patients and improve their QoL.

Methods
Participants
This cross-sectional study recruited DVT patients treated at West China Hospital, Sichuan University from June 2019 to June 2020. The inclusion criteria met the DVT diagnostic standards of standards for the diagnosis and efficacy of clinical diseases, and patients could be communicated with. The exclusion criteria were patients with mental disorders, cognitive disorders or incomplete medical records in the hospital information system.

Sample Size
Based on the rule of thumb suggested by Harrell, at least 10 subjects per variable in the linear regression model. With the Consideration of a 10% rate of invalid questionnaires, the sample size was estimated as 150.

Data Collection
The data were collected after patient discharge from the hospital for 3 to 6 months. We collected age, gender, marital status, culture, occupation, family income, course of disease, and comorbidity through the hospital information system and investigated smoking history, exercise habits, Villalta scale, psychological status and quality of life through telephone interviews. Before telephone interviews, unified training should be conducted to standardize the language of the investigator, and then the investigator should explain the items of the Villalta scale and other questionnaires. The investigator should check whether the patient has corresponding symptoms and guide the patients to choose the options that accord with their own situation.

The definition of the criterion was as follows: smoking history refers to the existence of continuous smoking of cigarettes for 6 months or more. Regular physical exercise was defined as 30 min of moderate exercise 3 times/wk.
Instruments

Charlson Comorbidity Index (CCI)

The score standard refers to the CCI score of Roffman in 2016, which involves 17 diseases.

Villalta Scale

The Villalta scale was developed for the diagnosis, grading, prediction, and follow-up of postthrombotic syndrome (PTS), which consists of five patient-rated venous symptoms (pain, cramps, heaviness, paresthesia, pruritus) and six clinician-rated physical signs (pretibial edema, skin induration, hyperpigmentation, pain during calf compression, venous ectasia, redness). The signs on the Villalta scale are scored from 0 (=absent) to 3 (=severe) and are summed for the total score (range 0–33). A total score <5 indicates no PTS, 5–9 points indicates mild PTS, 10–14 points indicates moderate PTS, and ≥15 points is classified as severe PTS.

Hospital Anxiety and Depression Scale, HADS

The HADS is a 14-question instrument that measures anxiety and depression. Each item is scored between 0 (no impairment) and 3 (severe impairment), with a maximum score of 21. A total score of anxiety/depression subscale ≥ 8 means that the patient has anxiety and depression, and total score of HADS ≥ 9 means that the patient is combined with bad emotions.

The Chronic Venous Insufficiency Questionnaire, CIVIQ

The CIVIQ contains 20 items, including four dimensions: level of pain (pain in ankle or legs, limitation in work or daily activities because of leg problem, sleep bad because of leg problem, the limitation because of leg problem in work or daily activities while standing for a long time), physical (the limitation because of leg problem in work or daily activities while climbing stairs, kneeling, walking briskly, and doing housework), social impairment (the limitation because of leg problem in work or daily activities while travel by car, bus or plane, going to discos, weddings, parties, cocktails, and doing exercises) and psychological (feeling nervous, tired, irritable, being a burden to others, embarrassed to show legs, difficult to get going in the morning, hard for long standing or stretching, limp, unwilling to go out). Each item is scored between 1 (most serious) and 5 (lightest), with a maximum score of 100. Higher scores represent higher QoL due to DVT, and a total score ≥ 80 is divided into groups with satisfactory QoL.

Ethical Issues

All patients provided written informed consent, and the study was conducted in accordance with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This study was approved by the research ethics committee of the hospital [2018-WCE10326].

Data Analysis

SPSS ver. 24.0 (SPSS Inc., Chicago, IL, USA) was used, continuous variables were presented using the mean and standard deviation (SD) or median and interquartile range (IQR), while frequencies and percentages were summarized for categorical variables. Differences between groups were analyzed using Student’s t-test or analysis of variance. Multiple linear regression was used to identify the predictive factors for the quality of life of patients with DVT, and a two-tailed P value of < 0.05 was considered statistically significant for all analyses.

Results

Characteristics, Behaviors and Emotions of Participants

Of the 161 initially enrolled patients, 161 VTE patients, including 110 males and 51 females, completed the telephone evaluation, with a mean age of 58.70 ± 8.61 years.

The average CIVIQ score was 74.12 ± 8.43 among the patients (Table 1). Comparing the CIVIQ scores in patients with different degrees of education, marriage, complications, relapse, compliance, and smoking, there were no significant differences (p > 0.05). Female patients had a higher CIVIQ score than male patients (p= 0.002). Patients with severe
Patient Characteristics	Mean (IQR)*	Frequency (%)	CIVID Mean(SD)	t/F	P-value
Age, years	Median	Frequency (%)			
<65 years	58.7(31.0–79.0)	119	75.87±6.92	4.738	< 0.001
≥65 years	69.14±10.25	42			
Gender	3.227	0.002			
Male	75.54±8.33	110			
Female	71.06±7.88	51			
Degree of education	1.615	0.202			
Primary school and below	72.90±9.73	68			
Junior high school - High school	75.48±7.67	67			
Undergraduate degree and above	73.81±6.05	26			
Marital status	0.412	0.689			
Married	74.19±8.42	151			
Unmarried	73.00±8.88	10			
PTS	12.509	< 0.001			
No	75.85±8.24	84			
Light	74.78±6.38	59			
Middle	65.10±6.67	10			
Severe	62.38±10.51	8			
CCI index	14.817	< 0.001			
1	76.51±6.84	123			
2	67.18±9.28	17			
3	67.45±9.56	11			
4	65.67±1.63	6			
5	61.00±8.43	4			
Recurrence	1.736	0.114			
Yes	69.20±11.30	10			
No	74.51±8.10	151			
Compliance	0.129	0.869			
Fine	74.21±6.23	77			
Bad	74.04±9.56	84			
Smoke	1.142	0.255			
Yes	72.26±9.44	23			
No	74.43±8.24	138			
Regular exercise	3.437	0.001			
Yes	70.33±8.38	42			
No	75.45±8.06	119			
Course of disease	7.384	< 0.001			
<3 months	63.92±9.97	12			
3–6 months	74.32±7.44	37			
6–12 months	76.25±7.96	24			
>12 months	74.84±7.89	88			
Negative emotions	10.213	< 0.001			
Yes	66.12±6.29	49			
No	77.62±6.89	112			
CIVIQ	74.1(42.0–90.0)				

Notes: Continuous variables are expressed as median with interquartile ranges. Discrete variables are expressed as number (%).

Abbreviations: PTS, post-thrombotic syndrome; CCI, Charlson comorbidity index; CIVIQ, the chronic venous insufficiency questionnaire; IQR, interquartile range*.

*https://doi.org/10.2147/PPA.S353128

DovePress
PTS, alcohol intake, anxiety, depression, negative mood and without regular exercise had a lower CIVIQ score ($p<0.05$, Figure 1).

Influencing Factors of QoL in DVT Patients in Multivariable Analysis

Age, sex, PTS score, smoking history, irregular exercise, CCI index, course of disease and adverse mood conditions were used as independent variables, and the CIVIQ score was used as the dependent variable. The multivariate model indicated that age, negative mood, PTS degree, CCI index and regular exercise had significant associations with the QoL of DVT patients. Age had a negative effect on the CIVIQ score ($\beta = 0.119$, $P = 0.024$). Patients with negative mood ($\beta = -7.776$, $P < 0.001$), higher PTS degree ($\beta = -3.316$, $P < 0.001$), higher score of CCI index ($\beta = -2.199$, $P < 0.001$), longer course of DVT ($\beta = 1.046$, $P = 0.016$) and without regular exercise ($\beta = -3.340$, $P = 0.002$) were more likely to have worse quality of life (Table 2).

Discussion

In line with other studies, our results demonstrate significant impairment in QoL, and the mean CIVIQ score of 161 patients following DVT was 74.12 ± 8.43. A survey including 100 DVT patients showed that the mean CIVIQ score of patients was 71.52 to 78.65. The mean CIVIQ score was 71.8–77.0 among 278 patients with acute DVT. Female patients had a higher CIVIQ score than male patients, but sex was not a factor affecting quality of life. Giustozzi and Utne found a connection between QoL and sex in DVT patients with the EQ-5D and the Venous Insufficiency Epidemiological and Economic Studies - the quality of life/symptom (the VEINES-QoL/sym) questionnaire, respectively. We ascribe this disparity to the gender difference of the study populations.

Our results showed no connection between recurrence, marital status, educational level and QoL. Previous study also indicated that recurrence is not related to the QoL of DVT patients, but some study showed that recurrence is a predictor of QoL among VTE patients, which may be related to the different baseline data of these studies. Only 9 recurrent patients in this study were not able to indicate the relationship between recurrence and QoL. Wik investigated 131 female patients with DVT using the VEINES-QoL/sym and found that education level and marital status were...
Table 2 Multiple Linear Regression for Influencing Factors of Quality of Life

Characteristics	β	SE	Beta	t	P	β [95% CI]
Constant	88.421	4.158		21.267	< 0.001	80.206 to 96.635
Age	-0.119	0.052	-0.122	-2.279	0.024	-0.222 to -0.016
Negative mood	-7.776	1.090	-0.426	-7.132	< 0.001	-9.930 to -5.622
PTS	-3.316	0.557	-0.319	-5.952	< 0.001	-4.417 to -2.215
CCI index	-2.199	0.517	-0.249	-4.252	< 0.001	-3.221 to -1.177
Regular exercise	-3.340	1.058	-0.175	-3.158	0.002	-5.430 to -1.250
Course of DVT (years)	1.046	0.429	0.127	2.440	0.016	0.199 to 1.893
Gender	-1.056	1.036	-0.058	-1.019	0.310	-3.103 to -0.016

Notes: Gender (female=1, male=2), PTS (no=1, mild=2, moderate=3, severe=4), Course of DVT (within 3 months=1, 3–6 months=2, 6–12 months=3, longer than 12 months=4), Regular exercise (no=1, yes=2), Negative mood (no=1, yes=2). \(R^2=0.616, F=26.891, P<0.01. \)

Abbreviations: PTS, post-thrombotic syndrome; CCI, Charlson comorbidity index; CI, confidence interval.

There are several limitations to this study. First, 68.3% of the patients were male and 6.2% of patients were unmarried, denoting a rather homogenous study population, which limited our ability to determine the potential effects of gender/spouse/recurrence characteristics in our analyses. In addition, patients were only sampled from Southwest China, which limits its external validity. Due to a lack of data in other areas, the sample may not be representative of general DVT patients in China. Despite this, our research has provided valuable new data on the relationships among the Villalta scale, emotion status, comorbidities, regular exercise and QOL measures, and the results may still be generalizable to patients from the areas mentioned above.
Conclusion
The QoL of DVT patients is impaired. Age, negative emotions, PTS, CCI index and regular exercise were related to physical status. Early management, including health education, self-management in the whole course, psychological assessment at follow-up and personalized intervention aiming to improve the cognitive level of patients, could be enhanced to improve the QoL of DVT patients.

Disclosure
All authors declare no competing interests in this work.

References
1. Olaf M, Cooney R. Deep venous thrombosis. Emerg Med Clin North Am. 2017;35(4):743–770. doi:10.1016/j.emc.2017.06.003
2. Cushman M. Epidemiology and risk factors for venous thrombosis. Semin Hematol. 2007;44(2):62–69. doi:10.1053/j.seminhematol.2007.02.004
3. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease 2010. Lancet. 2012;380(9859):2095–2128. doi:10.1016/S0140-6736(12)61728-0
4. Prandoni P, Kahn SR. Postthrombotic syndrome: prevalence, prognostication and need for progress. Br J Hematol. 2009;145(3):286–295. doi:10.1111/j.1365-2141.2009.07601.x
5. Klok FA, van der Hulle T, den Exter PL, Lankeit M, Huisman MV, Konstantinides S. The post PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 2014;28(6):221–226. doi:10.1016/j.brre.2014.07.003
6. Ashrani AA, Heit JA. Incidence and cost burden of post-thrombotic syndrome. J Thromb Thrombolysis. 2009;28(4):465–476. doi:10.1007/s11239-009-0309-3
7. Padberg F Jr. Regarding “Evaluating outcomes in chronic venous disorders of the leg: development of a scientifically rigorous, patient-reported measure of symptoms and quality of life.” J Vasc Surg. 2003;37(4):911–912. doi:10.1067/mva.2003.202
8. Kahn SR, Julian JA, Kearon C, et al. Quality of life after pharmacomechanical catheter-directed thrombolyis for proximal deep venous thrombosis. J Vasc Surg Venous Lymphat Disord. 2020;8(1):8–23. doi:10.1016/j.jvsv.2019.03.023
9. World Health Organization: WHOQOL. Measuring quality of life. Available from: http://www.who.int/healthinfo/survey/whoqol-qualityoflife/en/. Accessed March 30, 2022.
10. Berghout M, van Exel J, Leensvaart L, Cramm JM. Healthcare professionals’ views on patient-centered care in hospitals. BMC Health Serv Res. 2015;15:385. doi:10.1186/s12913-015-1049-z
11. Guyatt GH, Feeny DH, Patrick DL. Measuring health-related quality of life. Ann Intern Med. 1993;118(8):622–629. doi:10.7326/0003-4819-118-8-199304150-00009
12. Chen YF, Liu BY, Shi XJ, Zhang HQ, Xu YY, Liang LJ. Effectsof wechatcombinedwith homevisit continuouscareon complianceand qualityof life. J Clin Nurs Pract. 2017;127:278–285. doi:10.1016/j.diabres.2016.10.018
13. Kahn SR, Julian JA, Kearon C, et al. Quality of life after pharmacomechanical catheter-directed thrombolyis for proximal deep venous thrombosis. J Vasc Surg Venous Lymphat Disord. 2020;8(1):8–23. doi:10.1016/j.jvsv.2019.03.023
14. Delis KT, Bountouroglou D, Mansfield AO. Venous claudication in iliofemoral thrombosis: long-term effects on venous hemodynamics, clinical status, and quality of life. Ann Surg. 2004;239(1):118–126. doi:10.1097/01.sla.00000103067.10695.74
15. van Korlaar IM, Vossen CY, Rosendaal FR, et al. The impact of venous thrombosis on quality of life. Thromb Res. 2004;114(1):11–18. doi:10.1016/j.thromres.2004.04.007
16. van Korlaar IM, Vossen CY, Rosendaal FR, et al. The impact of venous thrombosis on quality of life. Thromb Res. 2004;114(1):11–18. doi:10.1016/j.thromres.2004.04.007
17. Utne KK, Tavoly M, Wik HS, et al. Health-related quality of life after deep vein thrombosis. Springerplus. 2016;5(1):1278. doi:10.1186/s40064-016-2949-z
18. Kahn SR, Ducruet T, Lampeng DL, et al. Prospective evaluation of health-related quality of life in patients with deep venous thrombosis. Arch Intern Med. 2005;165(10):1173–1178. doi:10.1001/archinte.165.10.1173
19. Kahn SR, M’Lan CE, Lampeng DL, et al. The influence of venous thromboembolism on quality of life and severity of chronic venous disease. J Thromb Haemost. 2004;2(12):2146–2151. doi:10.1111/j.1538-7836.2004.00957.x
20. Lozano Sanchez FS, Gonzalez-Porras JR, Diaz Sanchez S, et al. Investigators: negative impact of deep venous thrombosis on chronic venous disease. Thromb Res. 2013;131(4):e123–e126. doi:10.1016/j.thromres.2013.01.011
21. Lubberts B, Paulino Pereira NR, Kabrel C, Kuter DI, DiGiovanni CW. What is the effect of venous thromboembolism and related complications on patient reported health-related quality of life? A meta-analysis. Thromb Haemost. 2016;116(3):417–431. doi:10.1160/TH16-02-0152
22. Kahn SR, Shbaklo H, Lampeng DL, et al. Determinants of health-related quality of life during the 2 years following deep vein thrombosis. J Thromb Haemost. 2008;6(7):1105–1112. doi:10.1111/j.1538-7836.2008.03002.x
23. Haig Y, Enden T, Slagsvold CE, et al. Determinants of early and long-term efficacy of catheter-directed thrombolysis in proximal deep vein thrombosis. J Vasc Interv Radiol. 2013;24(1):17–26. doi:10.1016/j.jvitr.2013.04.026
24. Marvig CL, Verhofen TI, de Boer A, et al. Quality of life in patients with venous thromboembolism and atrial fibrillation treated with coumarin anticoagulants. Thromb Res. 2015;136(1):69–75. doi:10.1016/j.thromres.2015.06.026
25. Wik HS, Enden TR, Jacobsen AF, Sandset PM. Long-term quality of life after pregnancy-related deep vein thrombosis and the influence of socioeconomic factors and comorbidity. J Thromb Haemost. 2011;9(10):1931–1936. doi:10.1111/j.1538-7836.2011.04468.x
26. Lloyd AJ, Dewilde S, Noble S, Reimer E, Lee AYY. What impact does venous thromboembolism and bleeding have on cancer patients’ quality of Life? Value Health. 2018;21(4):449–455. doi:10.1016/j.jval.2017.09.015
27. Harrell FE Jr Regression Modeling Strategies. Springer-Verlag; 2001.
28. Zhao JW, Zhao G, Hua CF, et al. Self-reported smoking behaviors and toxicant exposure assessment in adult Chinese smokers. Tob Sci Tech. 2020;54(4):57–65.
29. Park S, Kim K, Lee BK, Ahn J. A healthy diet rich in calcium and vitamin c is inversely associated with metabolic syndrome risk in Korean adults from the KNHANES 2013–2017. *Nutrients*. 2021;13(4):1312. doi:10.3390/nu13041312
30. Roffman CE, Buchanan J, Allison GT. Charlson comorbidities index. *J Physiother*. 2016;62(3):171. doi:10.1016/j.jphys.2016.05.008
31. Kahn SR, Partsch H, Vedantham S, et al. Definition of postthrombotic syndrome of the leg for use in clinical investigations: a recommendation for standardization. *J Thromb Haemost*. 2009;7(5):879–883. doi:10.1111/j.1538-7836.2009.03294.x
32. Zheng LL, Wang YL, Li YY, et al. Mid-and long-term outcome of catheter-directed thrombolysis combined with endovascular therapy in acute deep venous thrombosis. *Chin J Vascular Surg*. 2015;9(2):102–105.
33. Liu CP, Chen HW, Wu SH, et al. A survey of anxiety and depression in patients taking warfarin due to venous thromboembolism. *Chin J Ger Heart Brain Vessel Dis*. 2011;13(11):1008–1010. doi:10.3969/j.issn.1009-0126.2011.11.015
34. Zuhany K, Otto M. Assessing BDNF as a mediator of the effects of exercise on depression. *J Psychiatr Res*. 2020;123:114–118. doi:10.1016/j.jpsychires.2020.02.003
35. Gerber M. Physical activity in employees with differing occupational stress and mental health profiles: a latent profile analysis. *Psychol Sport Exerc*. 2014;15(6):649–658. doi:10.1016/j.psychsport.2014.07.012
36. Zhang Q, Yu Y, Yang T. Clinical effect of cognitive behavioral Intervention on the cognitive level and quality of life in patients with venous thromboembolism. *Chin J Pract Nurs*. 2017;33(26):2001–2006. doi:10.3760/cma.j.issn.1672-7088.2017.26.001

Publish your work in this journal

Patient Preference and Adherence is an international, peer-reviewed, open access journal that focusing on the growing importance of patient preference and adherence throughout the therapeutic continuum. Patient satisfaction, acceptability, quality of life, compliance, persistence and their role in developing new therapeutic modalities and compounds to optimize clinical outcomes for existing disease states are major areas of interest for the journal. This journal has been accepted for indexing on PubMed Central. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/patient-preference-and-adherence-journal