Antifungal Activity of Soil Streptomyces Isolates Against Cryptococcus Neoformans

Görkem DÜLGERa, *, Başaran DÜLGERb

a Department of Medical Biology, Faculty of Medicine, Düzce University, Düzce, TURKEY
b Department of Biology, Faculty of Arts and Science, Düzce University, Düzce, TURKEY

* Corresponding author’s e-mail address: gorkemdulger@yandex.com
DOI: 10.29130/dubited.862551

ABSTRACT

In this study, 26.5% of 128 different isolates of Streptomyces recovered from soils in Duzce province, Turkey showed antifungal activity against Cryptococcus neoformans ATCC 90112. Considering the diameter of the inhibition zone formed on the agar plate, isolates were divided into four sections: section 1 (5-10 mm, slightly-active); section 2 (11-15 mm, moderately-active), section 3 (16-25 mm, highly-active) and section 4 (26-35 mm, ultra-active). It is determined that 3 isolates in section 4 may be a source of novel antibiotic against Cryptococcosis.

Keywords: Streptomyces, Antifungal activity, Cryptococcus neoformans
I. INTRODUCTION

Antimicrobial compounds are produced by quite a lot of organisms (bacteria, fungi and plants), the Actinomycetes are the most capable of these groups of organisms [1]. Approximately 23,000 bioactive secondary metabolites manufacturing by microorganisms have been reported, and more than 10,000 of these compounds are produced by Actinomycetes, representing 45% of all bioactive microbial metabolites discovered [2].

Many scientists today are looking for new antibiotics from different habitats. In addition, the investigations on Actinomycetes are quite insufficient in Turkey. Quite a few studies have so far been done to isolate and evaluate Actinomycetes. The purpose of this study is to isolate, characterize and screen antibiotic-manufacturing Streptomyces species from the soil samples. Besides, the purpose was to determine the antifungal effects of the isolates against Cryptococcus neoformans ATCC 90112.

II. MATERIALS AND METHODS

A. SAMPLING, ISOLATION AND CHARACTERIZATION

Soil sampling, collection, isolation and characterization of Streptomyces were done according to the procedure described by Saadoun and Al-Momani [3].

B. ANTIFUNGAL ACTIVITY

Antifungal activity was performed by Bauer-Kirby method [4] against Cryptococcus neoformans ATCC 90112. Isolates were developed on Oatmeal Agar (Oxoid) for fourteen days, then three discs (6 mm in diameter) were transplanted to Nutrient Agar (Oxoid) previously inoculated with the test microorganism and incubated at 27±0.1 °C. Inhibition zones were visually detected after 48 h. The extent of the inhibitory effect of the active isolates was divided into 4 sections according to the diameter of the inhibition zone on the agar and as follows: section 1 (5-10 mm, slightly-active); section 2 (11-15 mm, moderately-active), section 3 (16-25 mm, highly-active) and section 4 (26-35 mm, ultra-active).

III. RESULTS AND DISCUSSION

Actinomycetes are the top antimicrobial compound manufacturers [5]. The primary antibiotic manufacturing microorganisms used by the pharmaceutical industry are species belonging to the Streptomyces genus. In addition, these strains are responsible for over 60% of known antibiotics. In addition, 15% of it consists of species related to other Actinomycetes genera [6], [7].

The importance of antibiotics in antifungal therapy prompted us to determine the activity of these isolates against Cryptococcus neoformans ATCC 90112. As shown in Table 1, the antifungal activity against Cryptococcus neoformans ATCC 90112 was shown by 26.5% of the Streptomyces isolates. Those isolates that shown high activity (16-35 mm inhibition zones) were distributed into 4 sections and were further characterized culturally and morphologically (Table 2). Test results revealed that most of the isolates (16 isolates, 47%) were belonged to section 1 (5-10 mm), followed by section 2 (12 isolates), (11-15 mm, %32), section 3 (4 isolates), (16-25 mm, 11.7%) and section 4 (3 isolates), (26-35 mm, 8.8%), respectively.

Although various studies have been reported on screening and identification of Streptomyces from all around Turkey and the other countries, reviewing provided data has demonstrated that not yet
A comprehensive survey on this issue has been conducted. In the literature scanning, Eighteen percent of 116 *Streptomyces* isolates obtained from lands in the north of Jordan were found to have activity against *Candida albicans*. *Streptomyces* isolates were divided into 3 groups according to the diameter of the inhibition zone on the agar plate, and it was revealed that the group 3 (16 ± 35 mm) was quite active [3]. In previous study, 356 *Streptomyces* isolates were obtained from soil samples in the Aegean and East Black Sea regions of Turkey. 36% of these isolates were determined to be effective against *S. aureus* (20.78%), *E. coli* (2.52%), *M. luteus* (18.25%), *M. smegmatis* (22.47%) and *B. subtilis* (12.07%) [8]. In another study, 74 *Streptomyces* were isolated from the soil samples of Mugla province, Turkey. Antagonistic effect in 45.9% of the isolates was observed. 15 isolates showed potential antibacterial effects against coagulase-negative *Staphylococcus* (CoNS). In addition, it was determined that 5 isolates were found to have a strong antimicrobial effect against coagulase negative *Staphylococcus* (CoNS) and the yeast cultures (forming an inhibition zone at < 20 mm) [9]. In another study on the subject, 44 Actinomycetes isolates from sediments of Caspian Sea were isolated and their antimicrobial studies was revealed by the cross streak method against two Gram positive bacteria and four Gram negative bacteria. While MN38 isolate had shown a strong antimicrobial effect against *S. aureus* (20.0±0.5 mm), *B. subtilis* (27.0±0.2 mm), and *E. coli* (20.0±0.3 mm). MN39 isolate showed highly efficient activity against *E. coli* (23.0±0.4 mm), *B. subtilis* (23.0±0.2 mm), *K. pneumonia* (24±0.1 mm), MN3 isolate was active against *P. aeruginosa* (20.0±0.2mm) [10]. With references to the findings obtained in this research are similar to those reported in the mentioned studies. More detailed characterization researches were carried out on the section 4 isolates belonging to potential antimicrobial effect in order to determine their secondary metabolites.

Table 1. Activity of different Streptomyces isolated against Cryptococcus neoformans ATCC 90112

Colour series	Number of isolates a	Cryptococcus neoformans
Grey	38 (29.6%)	12 (31.5%)
White	19 (14.8%)	5 (14.7%)
Yellow	21 (16.4%)	7 (20.5%)
Green	17 (13.2%)	3 (8.8%)
Red	5 (3.9%)	4 (11.7%)
Blue	2 (1.5%)	0 (0)
Variable b	15 (11.7%)	0 (0)
NAM c	11 (8.5%)	3 (8.8%)
TOTAL	128 (100%)	34 (26.5%)

a Numbers in parenthesis represent the percentage out of the total
b Variable colour: Pink, orange or violet
c NAM: No aerial mycelium

Cryptococcus neoformans is the agent in cryptococcal infections. It is an encapsulated yeast fungus that is common in nature. It enters the human body through the respiratory tract and causes cryptococcosis. It creates an infection in the lungs in healthy individuals that progresses with symptoms and signs similar to flu and passes spontaneously. The agent that multiplies in the lungs of immunocompromised people mixes with the blood and creates widespread infections. Although fungi can settle in all systems, it tends to settle mostly in the central nervous system (CNS). The most common clinical form is meningocencephalitis. Cryptococcosis is fatal if not treated properly. The classic drug in treatment is amphotericin B [11], [12]. The results obtained from this study indicated
that *Streptomyces* isolates especially the section 4 strains possessed significant antifungal effect against *C. neoformans* ATCC 90112. Our findings clearly indicate that the section 4 strains have strong effects against *C. neoformans* ATCC 90112.

Table 2. Characteristics of sections 1, 2, 3 and 4 of *Streptomyces* isolates

Strain no	Cultural characters^a	Spore chain	Antibiosis^b		
	AM	ME	RP	SP	Cryptococcus neoformans
A1	Gray	+	+	+	Spiral
A2	Gray	+	+	-	Spiral
A3	Gray	-	+	+	Flexous
A4	Gray	-	+	+	Flexous
A5	Gray	+	+	+	Flexous
A6	Gray	+	+	-	Spiral
A7	Gray	+	+	-	Flexous
A8	Gray	-	+	+	Spiral
A9	Gray	-	+	+	Spiral
A10	Gray	-	+	-	Spiral
A11	Gray	+	+	-	Spiral
A12	Gray	+	+	-	Spiral
B1	White	-	-	-	Flexous
B2	White	-	+	-	Retinaculum apertum
B3	White	-	-	-	Rectus
B4	White	-	+	-	Flexus
B5	White	-	-	-	Flexus
C1	Yellow	-	-	-	Rectus
C2	Yellow	+	+	-	Flexous
C3	Yellow	+	+	+	Spiral
C4	Yellow	+	+	-	Spiral
C5	Yellow	-	-	-	Rectus
C6	Yellow	-	+	-	Spiral
C7	Yellow	-	+	-	Flexous
D1	Green	-	-	-	Retinaculum apertum
D2	Green	-	+	-	Flexus
D3	Green	-	-	-	Retinaculum apertum
E1	Red	-	+	-	Flexus
E2	Red	-	+	+	Flexous
E3	Red	-	-	-	Spiral
E4	Red	-	+	-	Flexous
E5	Red	-	+	-	Spiral
F1	NAM^c	-	-	-	NAM^c
F2	NAM^c	-	+	+	NAM^c
F3	NAM^c	-	+	+	NAM^c

^a AM: Aerial mycelium colour; ME: Melanin pigment; RP: Reverse pigment; SP: Soluble pigment

^b Numbers in parenthesis represent the group activity to the diameter of inhibition zone, section 1 (5-10 mm); section 2 (11-15 mm), section 3 (16-25 mm) and section 4 (26-35 mm).

^c NAM: No aerial mycelium
IV. CONCLUSION

As can be understood from recent literature reviews, secondary metabolites obtained from Actinomycetes are in the center of attention due to their various biological effects such as antioxidant, antitumor, antifungal, antibacterial and antiviral. In this context, three isolates of section 4 (26-35 mm) may be a source of novel antibiotics. Further studies on group 4 are needed in order to determine for secondary metabolites.

V. REFERENCES

[1] G. Gebreselema, M. Feleke, S. Samuel, R. Nagappan, “Isolation and characterization of potential antibiotic producing Actinomycetes from water and sediments of Lake Tana Ethiopia,” Asian Pacific Journal of Tropical Biomedicine, vol. 3, pp. 426-35, 2013.

[2] J. Berdy, “Bioactive microbial metabolites: a personal view,” The Journal of Antibiotics, vol. 58, no.1, pp. 1-26, 2005.

[3] I. Saadoun, F. Al-Momani, “Stephymycetes from Jordan soils active against Agrobacterium tumefaciens,” Actinomycetes, vol. 8, pp. 29-36, 1997.

[4] A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turk, “Antibiotic susceptibility testing by a standardized single disk method,” American Journal of Clinical Pathology, vol. 45, pp. 493-496, 1966.

[5] H.M. Atta, “Production, purification, physico-chemical characteristics and biological activities of antifungal antibiotic produced by Streptomyces antibioticus, AZ-Z710,” American-Eurasian Journal of Scientific Research, vol. 5, no.1, pp. 39-49, 2010.

[6] S. Ramesh, N. Mathivanan, “Screening of marine Actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes,” World Journal of Microbiology and Biotechnology, vol. 25, pp. 2103–2111, 2009.

[7] P. R. Jensen, P.G. Williams, D.C. Oh, L. Zeigler, W. Fenical, “Species-specific secondary metabolite production in marine Actinomycetes of the genus Salinispora,” Applied and Environmental Microbiology, vol. 73, pp. 1146–1152, 2007.

[8] A. A. Denizci, “Ege ve Doğu Karadeniz bölgesi topraklarından izole edilen aktinomisetlerden antibakteriyal antibiyotikleri aranması ve üretimi üzerine bir araştırma”, Doktora Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, 1996.

[9] N. Sahin, A. Ugur, “Investigation of the antimicrobial activity of some Streptomyces isolates,” Turkish Journal of Biology, vol. 27, pp. 79-84, 2003.

[10] M. Mohsni, H. Norouzi, J. Hamedi, A. Roohi, “Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea,” International Journal of Molecular and Cellular Medicine, vol. 2, no.2, pp. 65-71, 2013.

[11] C. Coelho, A.L. Bocca, A. Casadevall, “The tools for virulence of Cryptococcus neoformans.” Advances in Applied Microbiology, vol. 87, pp. 1-41, 2014.

[12] R. Inci, “Kriptokok infeksiyonları,” Flora, vol. 13, no. 2, pp. 61-71, 2008.