Jurnal Keteknikan Pertanian merupakan publikasi resmi Perhimpunan Teknik Pertanian Indonesia (PERTETA) yang didirikan 10 Agustus 1968 di Bogor, berkiprah dalam pengembangan ilmu keteknikan untuk pertanian tropika dan lingkungan hayati. Jurnal ini diterbitkan dua kali setahun. Pada tahun 2010 ini Ketua Dewan Redaksi diganti menjadi Dr.Ir. Wawan Hermawan, MS. Selain itu, pada lembaga penerbit terdapat pergantian nama, dari Departemen Teknik Pertanian menjadi Departemen Teknik Mesin dan Biosistem. Penulis makalah tidak dibatasi pada anggota PERTETA tetapi terbuka bagi masyarakat umum. Lingkup makalah, antara lain: teknik sumberdaya lahan dan air, alat dan mesin budidaya, lingkungan dan bangunan, energi alternatif dan elektrifikasi, ergonomika dan elektronika, teknik pengolahan pangan dan hasil pertanian, manajemen dan sistem informasi. Makalah dikelompokkan dalam invited paper yang menyajikan isu aktual nasional dan internasional, review perkembangan penelitian, atau penerapan ilmu dan teknologi, technical paper hasil penelitian, penerapan, atau diseminasi, serta research methodology berkaitan pengembangan modul, metod, prosedur, program aplikasi, dan lain sebagainya. Pengiriman makalah harus mengikuti panduan penulisan yang tertera pada halaman akhir atau menghubungi redaksi via telp, faksimili atau e-mail. Makalah dapat dikirimkan langsung atau via pos dengan menyertakan hard- dan soft-copy, atau e-mail. Penulis tidak dikenai biaya penerbitan, akan tetapi untuk memperoleh satu eksemplar dan 10 re-prints dikenai biaya sebesar Rp 50.000. Harga langganan Rp 70.000 per volume (2 nomor), harga satuan Rp 40.000 per nomor. Pemesanan dapat dilakukan melalui e-mail, pos atau langsung ke sekretariat. Formulir pemesanan terdapat pada halaman akhir.

Penanggungjawab:
Ketua Perhimpunan Teknik Pertanian Indonesia
Ketua Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian, IPB

Dewan Redaksi:

Ketua : Wawan Hermawan
Anggota : Asep Sapei
Kudang B. Seminar
Daniel Saputra
Bambang Purwantana
Y. Aris Purwanto

Redaksi Pelaksana:

Ketua : Rokhani Hasbullah
Sekretaris : Satyanto K. Saptomo
Bendahara : Emmy Darmawati
Anggota : Usman Ahmad
I Wayan Astika
M. Faiz Syuaib
Ahmad Mulyawatullah

Penerbit:
Perhimpunan Teknik Pertanian Indonesia (PERTETA) bekerjasama dengan Departemen Teknik Mesin dan Biosistem, IPB Bogor

Alamat:
Jurnal Keteknikan Pertanian, Departemen Teknik Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian,
Kampus IPB Darmaga, Bogor 16680. Telp. 0251-8624691, Fax 0251-8623026,
E-mail: jtep@ipb.ac.id atau jurnaltep@yahoo.com. Website: ipb.ac.id/~jtep.

Rekening:
BRI, KCP-IPB, No.0595-01-003461-50-9 a/n: Jurnal Keteknikan Pertanian

Percetakan:
PT. Binakerta Adiputra, Jakarta
Effect of Heat Shock Treatment and Aloe Vera Coating on Chilling Injury Symptom in Tomato (Lycopersicon asculentum Mill.)

Pengaruh Perlakuan Heat Shock dan Pelapisan Aloe Vera Pada Gejala Chilling Injury Untuk Tomat (Lycopersicon asculentum Mill.)

Sutrisno¹, Y. Aris Purwanto², Ismi M. Edris³, Olly S. Hutabarat⁴, Sugiyono⁵

Abstract

This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment on Chilling Injury (CI) symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculentum Mill.). Heat Shock Treatment (HST) was conducted at three different levels of length, which were, 20, 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC) were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock; AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

Keywords: ion leakage, chilling injury, climacteric, shelf-life

Diterima: 2 Desember 2009; Disetujui: 22 Maret 2010

Introduction

It is well known that storage kat below room temperature and above freeze temperature may extend horticultural crops shelf life. Meanwhile, some physiological disorders were occurred in a number of horticultural crops due to its temperature condition. Failure to ripen, skin lesions and susceptibility to decay are typical symptoms of Chilling Injury (CI) (Lurie et al. 1997). Symptoms of CI include increased membrane permeability and a resultant increase in leakage of cellular constituents (Murata 1990; Sharom et al. 1994 in Saltveit 2005). The rate of ion leakage from excised tissue into an isotonic aqueous solution is a useful measure of the severity of chilling-induced increase in membrane permeability (King and Ludford 1983; Saltveit 2002 in Saltveit 2005). Ion leakage has been used as an indicator of damage to the plasma membrane and CI (Marangoni, Palma and Stanley 1996). The extent of injury depends on the environment to which the tissue was previously exposed, the type of tissue (e.g. meristematic, vegetative, root, stem, leaf and unripe or ripe fruit), temperature and length of exposure, and post-chilling conditions (Saltveit 2005). This phenomenon is especially important in postharvest handling and storage, as the use of low temperature is the most effective method to extend storage life of many products.

The application of a moderate heat treatment deeply modified postharvest metabolism which delay fruit ripening and decrease fruit decay (Vicente et al. 2006). A short-term treatment in water at 39–45°C appears to be an effective, inexpensive and environmentally safe method that reduces CI and decay (McDonald et al. 1999). In recent years, there have been several reports on the use of pre-storage heat treatments to reduce CI in horticultural crops exposed to low temperatures.

Aloe vera gel can be used as an edible coating to prolong quality and safety of fruits and vegetables. Maintaining sweet cherry quality using Aloe Vera Coating (AVC) was effective to reduce weight loss and lower respiration rate during postharvest storage (Romero et al. 2006). Polysaccharide edible coating has been widely applied as a means of permeable membrane to extend self life by reduce respiration rate. Aloe vera consists of polysaccharide functional component which enable to delay fresh horticulture deterioration by controlling water losses and prevent exchange of chemical component which dissolved in water.

¹ Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Technology, Bogor Agricultural University. Email: kensutrisno@yahoo.com
² Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Technology, Bogor Agricultural University. Email:y_aris_purwanto@yahoo.com
³ Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Technology IPB, Email: ismi.edris@gmail.com
⁴ Faculty of Agriculture, University of Hasanuddin
⁵ Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Technology, Bogor Agricultural University.
Research data reported in this paper were undertaken to determine the effect of length in Heat Shock Treatment (HST) and AVC treatment to CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.).

**Materials and Methods**

**Plant Material**

Mature green tomatoes were harvested from grower in Goalpara, Sukabumi in the morning and transported one day after harvested to the laboratory for four hours where the fruits were placed at ambient temperature. Upon arrival at the laboratory, fruits were threatened by HST and AVC.

**Application of Heat Shock Treatments and Aloe Vera Coating**

HST for mature green tomatoes was applied by soaking fruits into single hot water maintained at temperature ranging from 39°C to 48°C for 15 min to 6 h (McDonald et al. 1999; Saltveit 2005; Baloch et al. 2006). Tomato was trimmed by 1 cm x 1 cm x 1 cm and soaked into 40 ml aqueous solution maintained at 42°C for 20 min, 40 min and 60 min.

AVC was performed by immersing for 5 min in a solution of aloe vera diluted 1:3 with distilled water at 20°C and then being air-dried (Romero et al. 2006). Fruits were coated by edible aloe vera gel where fruits were immersed into 200 ppm chlorine solvent for 30 min.

**Application of Low Storage**

After exposed into 42°C and coated using aloe vera, in separate treatments, fruits were stored at 5°C and 10°C for 20 days. Fruits with non HST and AVC then stored at ambient temperature which were performed for control. Every 1 d storage, each sample was removed in to ambient temperature for 5 h to measure total electrical conductivity and quality properties.

**Measurement of Chilling Injury and Quality Properties**

CI was determined by increasing of ion leakage during storage on chilled temperature which was reflected by total electrical conductivity. Periodically, the conductivity of the solution was measured every 20 min for 300 min at ambient temperature using electrical conductivity meter (D-24 HORIBA). In the end, sample was gently shaken using blender for 2 min to dissolve ion into aqueous solution to measure total electrical conductivity.

During storage, respiration rate; weight loss; Solid Soluble Content (SSC); firmness and color were measured. Fruit firmness was determined using rheometer CR-300, maximum load 2 kg, vertical pericarp surface 10 mm and pin diameter 5 mm. Weight loss was measured using digital scale to determine the initial and the final weight in each day. SSC was measured using ATAGO refractometer PR-201. Color was measured using chromameter.

**Statistical Analysis**

Statistical analysis was applied in order to see the significance level between treatments include HST and AVC; and also temperature storage to quality parameters include weight loss, firmness and SSC at the same maximum day of sample shelf life in each treatments. Each measurement was repeated three times. Variance analysis using Duncan Multiple Range Test (DMRT) with SAS was applied to perform statistical analysis.

**Results and Discussion**

**Ion Leakage and Respiration Rate**

Both treatments, HST and AVC, reflected lower ion leakage changes at storage of 5°C than at 10°C. Ion leakage from mature green tomatoes gradually decreased following storage at 5°C, but it increased drastically at 10°C storage (Fig. 1). On day of 19, there was significant different of total conductivity between storage at 5°C and 10°C. Thus showed that treatments using HST and AVC were more effective to prevent CI on lower temperature storage, which was 5°C. Marangoni et al. (1996) reported that ion leakage increased drastically only after transfer to higher temperatures. Tomatoes chilled for 20 days at 5°C did not show increases in ion leakage. Damage to cells and tissues of tomato fruits occurred primarily

![Figure 1. Total conductivity for heat shock treatment and aloe vera coating at: a) 5°C and b) 10°C](image-url)
during exposure to the chilling temperature, while development of injury symptoms mainly occurred upon removal from chilling to a warm, non-chilling temperature (Jing et al. 2009). Both storage at 5°C and 10°C, HST for 20 min produced the lowest total conductivity after removal. A short heat treatment on strawberry fruit quality and shelf-life could be partly due to the higher protection against oxidative molecules generated during fruit senescence or pathogen attack (Vicente et al. 2006).

In each treatment during storage, HST and AVC, greater temperature storage increased respiration rate and longer HST period delayed climacteric peak (Fig. 2). Climacteric peak on storage temperature was conditioned at 5°C on HST 20 min; 40 min and 60 min; AVC; control occurred at day 4, day 5, day 7, day 6, day 5 respectively. Where the storage conditioned at 10°C, climacteric peak occurred at day 3, day 2, day 4, day 5, day 3, respectively. Respiration rates represented by production rate of CO₂ of tomato treated at 5°C were considerably lower than those treated by 10°C and ambient temperature. Heat water treatment increased respiration and ethylene evolution (McDonald et al. 1999).

**Quality Properties**

As mentioned above, statistical analysis was conducted at the same maximum day in each treatment, obtained at the 5th day. Table 1 represents DMRT value for each treatment. Treatments and temperature storage were significantly affected the weight loss percentage at day 5. HST for 20 min at ambient temperature was higher and significantly different from other treatment. Higher temperature increased percentage of weight loss (data not shown). Treatment with AVC showed no significantly different value.

At the early storage period, SSC started to increase then decreased (Fig. 3). Thus showed fruit climacteric phase character. Each treatment involved HST, AVC and low temperature storage significantly affected SSC at day 5 but there were no significantly different for each treatment. Similar

![Figure 2](image-url)

**Figure 2.** Respiration rate (ml.kg⁻¹.h⁻¹) of tomato under HST and AVC treatments before storage at: a) 5°C and b) 10°C
to SSC, firmness was either showed that each treatment was significantly affected but there were no significantly different for each treatment. In the end of storage, fruits with unheated and uncoated treatments had the lowest value for both SSC and firmness. CI is related with the damage of cell structure under chilling stress. Ultra structural membranes were well prevented from chilling damage by hot water treatment (Jing et al. 2009).

Lightness (L) for HST and AVC at low temperature increased by value of 58.15 to 63.38, while at ambient temperature decreased by value of 64.07 to 58.76. At low temperature, L value measured for each HST 20 min, 40 min, 60 min, AVC and control were 58.84 to 62.92 (5°C) and 58.26 to 63.38 (10°C), 61.43 to 61.19 (5°C) and 60.78 to 61.52 (10°C), 59.11 to 61.64 (5°C) and 61.74 to 62.01 (10°C), 60.23 to 60.91 (5°C) and 63.05 to 62.28 (10°C) respectively. In the early storage period, a* value increased raised to red while b* value decreased raised to dark yellow.

Some symptoms such as excessive water loss and skin lesion can develop during prolonged storage at chilling temperatures (Jing et al. 2009). The mechanisms by which pre-storage heat treatment reduces CI are still not very clear. Protective treatments such as temperature conditioning and heat shocks that are applied before chilling are thought to make tissue more resistant to the physiological damage that occurs during chilling. Heat treatment induces the synthesis of heat-shock protein, which is thought to act as chaperones that could be responsible for protein folding, assembly, translocation and degradation in many normal cellular processes, as well as assisting in protein refolding under stress conditions (Wang et al. 2004 in Jing et al. 2009).

Conclusion

Hot water treatment and aloe vera coating were more effective to reduce chilling injury symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. Extended period of heat shock treatment; aloe vera coating and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. Heat shock treatment for 20 min at ambient temperature was significantly different to other treatment.

References

Baloch, M.S., T.Marimoto, and K.Hatou. 2006. Postharvest heat stress application to reduce water loss in tomato during storage. Agricultural Engineering International: the CIGR Ejournal VIII: 1-13.
Jing, Y., F.Mao-run, Z.Yu-ying, and M.Lin-chun. 2009. Reduction of chilling injury and ultrastructural damage in cherry tomato fruits after hot water treatment. Agricultural Sciences in China 8(3): 304-310.
Lurie, S., M.Laamim, Z.Lapsker, and E.Fallik. 1997. Heat treatments to decrease chilling injury in tomato fruit: Effect of lipids, pericarp lesions and fungal growth. Physiological Planatrum 100: 297-302.
Marangoni, A.G., T.Palma, and D.W.Stanley. 1996. Review: Membrane effects in postharvest physiology. Postharvest Biology and Technology 7: 193-217.
McDonald, R.E., T.G.McCollum, and E.A.Baldwin. 1999. Temperature of water heat treatments influences tomato fruit quality following low temperature storage. Postharvest Biology and Technology 16: 147-155.
Romero, D.M, N.Alburquerque, J.M.Valverde, F.Guillen, D.Valero, and M.Serrano. 2006. Postharvest sweet cheery quality and safety maintenance by Aloe vera treatment: A new edible coating. Postharvest Biology and Technology 39: 93-100.
Saltveit, M.E. 2005. Influence of heat shock on the kinetics of chilling-induced ion leakage from tomato pericarp discs. Postharvest Biology and Technology 36: 87-92.
Vicente, A.R, G.A. Martinez, A.R. Chaves, and P.M. Civello. 2006. Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biology and Technology 40: 116-122.

Figure 3. Solid Soluble Content (°Brix) changes during storage under treatments: a) 5°C and b) 10°C
Jurnal Keteknikan Pertanian merupakan media publikasi untuk tulisan asli yang belum pernah diterbitkan di dalam jurnal ilmiah nasional maupun internasional, dan berkaitan dengan teknik pertanian (agricultural engineering) secara luas.

1. Pedoman Umum

Naskah termasuk Abstract diketik menggunakan program Microsoft Word huruf Times New Roman 12 point (font 12), ukuran kertas A4 (21x29.5cm). Pias 3 cm, spasi 1.5, maksimum 15 halaman termasuk tabel dan gambar serta diberi nomor halaman pada sudut bawah sebelah kanan. Tabel dan gambar diletakkan pada akhir naskah atau pada lembar dan file terpisah. Pengiriman naskah bisa melalui pos berupa CD berisi file softcopy atau melalui e-mail. Bila dikirim melalui pos, ditujukan ke alamat:

Redaksi Jurnal Keteknikan Pertanian
Departemen Teknik Mesin dan Biosistem,
Fakultas Teknologi Pertanian, IPB.
Kampus IPB Dramaga, Bogor 16690.
E-mail: jtep@ipb.ac.id atau jurnaltep@yahoo.com

2. Susunan Naskah

Naskah disusun dalam urutan Judul, Penulis dan alamat instansinya, Abstract, Pendahuluan, Bahan dan Metode, Hasil dan Pembahasan, Kesimpulan, Daftar Pustaka, Tabel dan Gambar. Naskah undangan tidak harus mempunyai susunan seperti tersebut di atas.

3. Judul

Judul memberikan subyek penelitian dengan ringkas dan dicetak tebal (bold) dengan huruf kapital pada setiap awal kata, kecuali untuk kata depan dan kata sambung. Untuk naskah dalam Bahasa Indonesia harus disertai judul dalam Bahasa Inggris yang dicetak miring (italic). Judul dalam Bahasa Indonesia tidak lebih dari 14 kata dan dalam Bahasa Inggris tidak lebih dari 10 kata. Nama lengkap, nama lembaga afiliasi serta alamat para penulis, ditulis secara berurutan di bawah Judul. Tambahkan alamat email pada nama penulis untuk korespondensi.

4. Abstract dan Kata Kunci

Abstract menggambarkan esensi isi keseluruhan tulisan dan di dalamnya tidak terdapat kutipan pustaka. Abstract ditulis dalam bahasa Inggris dan dalam satu paragraf tidak lebih dari 200 kata. Kata kunci ditulis setelah Abstract maksimum 5 kata, masing-masing dalam bahasa Inggris dan Indonesia. Kata kunci yang ditulis pertama merupakan kata kunci yang terpenting.

5. Naskah Utama

Penulisan sub judul utama (Pendahuluan, Bahan dan Metode, Hasil dan Pembahasan, Kesimpulan dan Ucapan Terima Kasih) menggunakan huruf kapital pada setiap awal kata, kecuali untuk kata depan dan kata sambung. Pendahuluan menjelaskan alasan mengapa penelitian dilakukan, perumusan dan pemecahan masalah, status ilmiah (state of the art) penelitian-penelitian terdahulu serta tujuan dan hasil penelitian yang diharapkan.

Bahan dan Metode menjelaskan bagaimana penelitian dilakukan atau cara-cara untuk mencapai tujuan penelitian.

Hasil dan Pembahasan mencantumkan data yang diperoleh, analisis data, temuan-temuan yang spesifik serta perbandingannya dengan penelitian-penelitian terdahulu secara berurutan sesuai dengan urutan dalam tujuan. Hindari penyajian tabel dan gambar dari data yang sama.

Sub-sub judul ditulis dengan huruf kapital pada setiap awal kata, kecuali untuk kata depan dan kata sambung. Kata/kalimat dalam bahasa asing ditulis miring. Nama organisma harus diikuti dengan nama ilmiahnya secara lengkap pada pengungkapan...
pertama. Singkatan pertama kali ditulis di dalam kurung setelah kata-kata yang disingkatnya. Penulisan angka menggunakan US System seperti: 1,000,000 menyatakan satu juta dan 2.5 menyatakan dua lima per sepuluh. Sistem satuan yangdigunakan adalah SI Unit: cgs (centimeter, gram, second/detik). Simbol/notasi ditulis menggunakan huruf miring dan disertai keterangananya pada pengungkapan pertama. Persamaan diberi nomor urut yang dituliskan di belakang persamaan dan di dalam tanda kurung.

6. Tabel dan Gambar

Tabel ditulis dalam halaman terpisah setelah halaman terakhir dari naskah. Di dalam naskah cantumkan nomor dan judul tabel pada paragraf dimana tabel tersebut akan ditempatkan.

Contoh pada naskah:

......Sifat fisik bahan pada masing-masing kadar air ditunjukkan pada Tabel 1.

[Tabel 1. Berat jenis lada berdasarkan kadar air]

Contoh pada halaman tabel:

| Kadar Air (%) | Bulk density (g/cm³) | Seed density (g/cm³) |
|---------------|---------------------|----------------------|
| 10.84         | 0.6423              | 11.492               |
| 17.80         | 0.6043              | 10.868               |

Gambar dibuat hitam putih (B/W) atau greyscale dalam lembaran terpisah pada halaman terakhir setelah halaman tabel. Apabila ukurannya besar, gambar dapat disimpan dalam file terpisah yang lain (.jpg, .gif, .wmf atau .emf). Di dalam naskah cantumkan nomor dan nama gambar pada paragraf dimana gambar tersebut akan diletakkan.

Contoh pada naskah:

.....(paragraf sebelumnya)

[Gambar 1. Perubahan suhu dengan waktu proses pengendalian]

.....(paragraf sesudahnya)

7. Daftar Pustaka

Daftar pustaka mencantumkan pustaka-pustaka bermutu (primer, mutakhir dan relevan) yang dirujuk saja. Pustaka diiketik berdasarkan urutan alfabet dari nama akhir (nama keluarga) penulis pertama dan tahun. Apabila terdapat beberapa pustaka yang ditulis yang sama, tambahkan huruf ’a’, ’b’ dan seterusnya di belakang tahun. Pustaka dari internet hanya boleh dilakukan bila berasal dari lembaga yang resmi.

Berikut beberapa contoh penulisan pustaka:

Jurnal:
Suhardiyanto, H., M.M. Fuad dan Y. Widiningrum.2007. Analisis pindah panas pada pendinginan dalam tanah untuk sistem hidroponik. Jurnal Keteknikan Pertanian Vol.21 (4):355-362.

Prosiding:
Fukuda, T., Y. Nakano, Kuroda, S. Takeuchi, B.I.Setiawan, A. Sapei and F. Nurrochmad.2001. Water manajemen and water quality of paddy area in Cidanau watershed at West Java. Proceedings of the 1st Seminar: Toward Harmonization between Development and Environmental Conservation in Biological Production, Tokyo, February 21-23, 2001. p 201-205.

Buku:
Morga, R.P.C.1996. Soil Erosion and Conservation. 2nd Ed. Longman. Harlow

Bab dalam buku:
Howell, T.A., F.K. Alijiiburi, H.M. Gitlin, I. Pai Wu, A.W.Warrick dan P.A.C. Raats. 1980. Design and operation of trickle (drip) irrigation, in Jensen, M.E.(Ed.). Design and Operation of Farm Irrigation System. ASAE. Michigan. p 663-717.

Skripsi/Tesis/Disertasi:
Arifanto, T. 2002. Teknik perbaikan filter fisik dan filter kimia pada sistem resirkulasi pembenihan ikan patin. (Skripsi). Departemen Teknik Pertanian Fakultas Teknologi Pertanian, IPB. Bogor.
FORMULIR PEMESANAN JURNAL KETEKNIKAN PERTANIAN

Kepada Yth.
Sekertariat Jurnal Keteknikan Pertanian,
Departemen Teknik Mesin dan Biosistem
Fakultas Teknologi Pertanian
Institut Pertanian Bogor
Kampus IPB Darmaga, Bogor 16680
Tel: 0251-8624691 ; Fax: 0251-8623026
Email: jtep@ipb.ac.id & jurnaltep@yahoo.com; Website: http://web.ipb.ac.id/~jtep/

Bersama ini, saya

| Nama  |  |
|-------|---|
|Alamat |  |
| Telp. |  |
| HP    |  |
| Email |  |

1. Memesan Jurnal Keteknikan Pertanian: *(Harga Rp 40.000,- per eksemplar, belum termasuk ongkos kemas dan kirim)*

| Vol/No/Tahun |  |
|--------------|---|
| Jumlah       |  |

2. Memesan re-prints Jurnal Keteknikan Pertanian: *(Harga Per set (10 eksemplar) Rp 50.000,- belum termasuk ongkos kemas dan kirim)*

| Judul  |  |
|--------|---|
| Penulis|  |
| Vol/No/Tahun |  |
| Jumlah |  |

3. Berlangganan Jurnal Keteknikan Pertanian: *(Harga Rp 70.000,- belum termasuk ongkos kemas dan kirim)*

| Mulai Tahun |  |
|-------------|---|
| Sampai Tahun|  |
| Jumlah      |  |

Pembayaran kami lakukan melalui wesel pos ke alamat redaksi/transfer, ke Rekening No.0595-01003461-50-9, BRI KPC IPB, a/n Jurnal Keteknikan Pertanian². Bersama ini disampaikan bukti pembayarannya³.

Pemesan,

[    ]

---

¹ Formulir pemesanan ini dapat di-download di http://web.ipb.ac.id/~jtep/
² Coret yang salah satu
³ Pengiriman hanya dilakukan setelah Sekretariat menerima bukti pembayaran