In silico recombinant plasmid design of pHA171 with phdABCD insertion for ethidium bromide degradation

Muhammad Ilham Fahri1*, Rabiah Musfira Alatiffa1, Sania Isma Yanti1, Indira Prakoso1, Alysha Naomi Mashitah1
1Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
*Corresponding author: Jl Veteran, Lowokwaru, Ketawanggede, Malang city, East Java 65145, Indonesia. Email: mifahri23@gmail.com

ABSTRACT
Background: Ethidium bromide is a common reagent that is used in nucleic acid staining. However, ethidium bromide has toxic and carcinogenic properties that are harmful to the environment. Phenanthrene dioxygenase (encoded by phdA, phdB, phdC, and phdD genes) in Nocardioides sp. KP7 can oxidize the phenanthridine structure to eliminate carcinogenic properties.

Objective: This study aims to visualize and predict the structure, active site, and characteristics of the phenanthrene dioxygenase using bioinformatics tools.

Methods: Plasmid design were prepared by inserting genes of interest phdA, phdB, phdC, and phdD from the NCBI database. Furthermore, several protein analysis tools were used for structure visualization, active site enzyme improvement, and protein characteristic of phenanthrene dioxygenase.

Results: The prediction results found that phenanthrene dioxygenase reacts with the ethidium bromide substrate through the interaction of Fe3+ ions with water. The solubility level of phenanthrene dioxygenase protein is 0.404, suggesting that the protein has low solubility. The protein isoelectric point (pI) is between 5.17 to 5.36, and the protein molecular weight is 121.143 kDa.

Conclusion: In silico analysis has supported that recombinant plasmid met characteristics for the construct which consists of gene interest and protein library.

Keywords: bioinformatic, bioremediation, escherichia coli, ethidium bromide, phenanthridine

Introduction
Ethidium bromide reagent used for nucleic acid staining in specimen testing for primary confirmation using gel electrophoresis purposes. Many molecular biology researchers consider this system as the highly sensitive and low-cost method to visualize DNA in agarose gel after electrophoresis [1]. However, ethidium bromide is considered a serious biohazard due to its high potential for mutagenicity, carcinogenicity, and teratogenicity [2]. According to Regulation (EU) No. 1907/2006, this material and its container must be disposed of as hazardous waste. Improper disposal of ethidium bromide has the potential to contaminate groundwater which may be used for parks, agriculture, washing or even drinking purposes. Because ethidium bromide is a potent mutagen, high priority should be put to manage the waste containing that compound [3]. Therefore, one alternative to overcome the problem is through a bioremediation strategy. Youssef et al. (2020) reported a photocatalytic degradation strategy for ethidium bromide and has successfully degraded 60% of the dye within one hour [4]. Furthermore, another bioremediation strategy should be implemented for rapid ethidium bromide degradation, such as technology with enzymes that have a highly specific compound targeted.
The use of enzymes to degrade a compound has been used in various applications. Major biodegradative enzymes are over-expressed using recombinant DNA technology [5]. Meanwhile, ethidium bromide has a phenanthridine structure which causes carcinogenic properties in ethidium bromide. Phenanthridine belongs to polycyclic aromatic hydrocarbon groups, consist of carbon and hydrogen atoms with two or more fused aromatic rings arranged in varying structural forms that make it has environmental persistence [6]. The breakdown of phenanthridine structure into other forms can be used as a form of ethidium bromide waste treatment so that it can be safer for the environment.

One of the enzymes that have the ability to change the form of phenanthridine is phenanthrene dioxygenase. Phenanthrene dioxygenase enzyme activity in *Nocardioides sp.* KP7 has the potential to oxidize the phenanthridine structure thereby reducing carcinogenic properties [7]. However, this ability still needs to be optimized. This research aims to provide a bioinformatics analysis to visualize and predict the structure, active side, and characteristics of the phenanthrene dioxygenase enzyme in *Escherichia coli* BL21 (DE3) to degrade ethidium bromide in its phenanthridine structure. Ultimately, it can be a solution for handling ethidium bromide waste through strategies bioremediation.

Methods

Bioinformatic searching database

This research was carried out within *in silico* studies using bioinformatic databases such as National Center for Biotechnology Information (NCBI), the Protein Data Bank (PDB), the European Molecular Biology Laboratory (EMBL-EBI), and GenBank (NCBI, EMBL-EBI) repository of DNA sequences.
In *silico* recombinant plasmid design of pHA171

(NCBI) and Snapgene. To construct the plasmid model, we chose *Nocardoides sp*, KP7 as bacterial strain that has a phenanthrene degradation gene sequence such as *phdA*, *phdB*, *phdC*, and *phdD* genes. Genes were constructed in *Escherichia coli* BL21 (DE3) with T7 as main promoter which is found in snapgene database. *E. coli* BL21 (DE3) can be used as a host due to growth fast and cultivate easily for gene expression [8]. DNA recombinant model consists of restriction enzymes, T4 DNA ligase, purification tags such as three base ATG start codon and three base TGA stop codon, FNDG Tat signal peptide, three bases GSG for the linker, 6-His affinity tag, Flag peptide tag, and TEV protease tag [9]. All of these components were designed at Benchling as a bioinformatics tool.

Plasmid recombinant construction

Recombinant plasmids were prepared by inserting genes of interest, *phdA*, *phdB*, *phdC*, and *phdD* genes are collected from the NCBI database. These sequences were converted to a txt file before exporting into Benchling to reconstruct the recombinant plasmid. Restriction enzyme was chosen at the sites of 2400 bp (*Ndel*) and 6630 bp (*HindIII*). The gene clusters were located between *Ndel* and *HindIII* to help to find the restricted site when an experiment *in vitro* is carried out. T7 promoter and Ribosome Binding Site (RBS) sequence were designed before gene clusters (Figure 1). The ATG start codon was added after the promoter for initiating translation and also FNDG tat, 6 his-tags, and a linker were added before *phdA*. Plasmid expression vector pHA171 has several features including *ampR* gene for the screening process and RBS as a ribosome attachment site in the translation process. The reconstructed plasmid may be transformed into *E. coli* BL21 (DE3) as host for screening process using blue-white screening techniques.

Protein prediction analysis

Amino acid sequences of phenanthrene dioxygenase were analyzed using *in silico* approaches. Several protein analysis tools were used for structure visualization, active site enzyme improvement, and protein characteristic determination: i) Open Predict Protein platform to predict secondary structure, ii) ExPaSy and Swiss model to predict tertiary structure, iii) PROTTER platform to predict transmembrane protein, iv) Kyte-Doolittle Hydropathy Plot to analyze protein hydrophobicity, v) Protein-SOL to analyze protein solubility, vi) ExPaSy tool to characterize physicochemical characteristics such as isoelectric point and molecule weight of the protein. In each platform, amino acid sequences of phenanthrene dioxygenase from NCBI were entered into the platform.

Results

phdABCD plasmid construction

A secondary database was used to simulate dry laboratory genetic engineering constructs
Table 1. Suitable plasmid for phenanthrene dioxygenase [10]

Plasmid (Vector)	Genes	Source	Enzyme
pHA171 (pT7-7)	phdABCD	Nocardoides sp. KP7	Phenanthrene dioxygenase
pJHF3051 (pUC119)	todC1C2BA	Pseudomonas putida F1	Toluene dioxygenase
pKF6622 (pUC1118)	bphA1A2A3A4	Pseudomonas Pseudoalcaligenes KF707	Biphenyl dioxygenase
pKF6256 (pUC118)	todC1::bphA2A3A4	P. putida F1, P. pseudoalcaligenes KF707	Toluene/biphenyl dioxygenase

Plasmid pHA171 can be used as a vector for the phdABCD gene that obtained from Nocardoides sp. KP7. Saito et al. (2000) described that plasmid pHA171 was transformed into Escherichia coli BL21 (DE3) to observe tricyclic-fused aromatic heterocycles [11]. The results indicate the phenanthrene dioxygenase can convert phenanthrene/phenanthridine into compounds that less toxic-carcinogenic. Thus, E. coli BL21 (DE3) is suitable for host transformant and pHA171 as a plasmid for the genetic engineering process. In the plasmid design, phdA is located at 2456-3805 bp, phdB is located at 3843-4364 bp, phdC is located at 7275-7484 bp, phdD is located at 7481-8725 bp (Figure 2).

The plasmid pHA171 have been met characters for gene recombination. The characters were modeled in Benchling by assembling the marker ampR, promoter, gene of interest, and site of restriction. ampR was found in plasmid as a selectable marker to help gene selection during the screening process. This plasmid has a suitable T7 promoter for the host E. coli BL21 (DE3) and a Ribosome Binding Site (RBS) as a place for attaching ribosomes to initiate the translation of the phdABCD gene. Restriction sites...
were introduced to insert the phdABCD gene into the plasmid pHA171. In this mapping, the location of the restriction sites known is NdeI at 2400 bp and HindIII at 3876 bp. The phdABCD insert region is the most suitable site for gene insertion because it is located after the T7 and RBS promoter. After the phdABCD was inserted into the plasmid, the restriction site must be reattached to T4 ligase. The final result of the plasmid design is pHA171 as a recombinant plasmid for ethidium bromide degradation.

Recombinant plasmid mapping has ORF pHA171 (6667 bp) containing 2558-6088 sites that include cluster locations of the phenanthrene/phenanthridine (phdABCD) gene (Figure 2). A gray bar showed the length of the nucleotide base of the inserted gene. The arrows indicate the direction of translation. The orange represents the phdA gene, a subunit of the oxygenase component; blue indicates the phdB gene, a subunit of the oxygenase component; green indicates the phdC gene, a component of ferredoxin; and the purple indicates the phdD gene, a component of ferredoxin reductase [11].

Prediction of the protein secondary structure

According to Predict Protein tool, the phenanthrene dioxygenase has 1105 amino acids length. The secondary structure consists of 26.43% beta-strand, 19.55% alpha-helix, and 54.03% loops (Figure 3A). The solvent accessibility was 57.19% buried, 31.49% exposed, and 11.31% intermediate (Figure 3B). From this analysis, the buried condition is more dominant than exposed condition, suggesting that phenanthrene dioxygenase has low solubility. Amino acids that have hydrophobic properties are buried, while amino acids that have hydrophilic properties are protrude to the surface and can be easily accessed by solvents [12]. Table 2 shows amino acids composition of phenanthrene dioxygenase.

Prediction of the protein tertiary structure

Three-dimensional (3D) visualization of the tertiary structure of phenanthrene dioxygenase protein was carried out using ExPaSy. Visualization of the tertiary structure of the protein can be used to find the location of the protein ligands.
This ligand functions as the active site of the phenanthrene dioxygenase to bind to the ethidium bromide substrate. Figure 4A shows two prediction models, that model 1 has an indication rate of 37.31%, while model 2 is 58.19% towards the target amino acid sequence phenanthrene dioxygenase. In the structure of model 1, the location of the ligands is not found, so that protein interactions can be identified, while model 2 has two types of ligands that cannot be determined as the active site of the enzyme.

In model 2, the ligands are the Fe$^{3+}$ ion and the FES ion (Fe$^{2+}$/S), which each ligand has a different location and type of bonding interactions. From the tertiary structure visualization, phenanthrene dioxygenase may require O$_2$ to break the ethidium bromide aromatic chain (Figure 4B). Therefore, the interaction of Fe$^{3+}$ ion ligands with water is a

Table 2. Amino acids composition of phenanthrene dioxygenase

Amino acid	Percentage	Amino acid	Percentage
L (Leucine)	10.05%	N (Asparagine)	2.35%
V (Valine)	9.5%	Q (Glutamine)	2.62%
G (Glycine)	9.5%	H (Histidine)	2.44%
A (Alanine)	9.86%	M (Methionine)	2.35%
P (Proline)	5.07%	Y (Tyrosine)	2.26%
E (Glutamic acid)	6.24%	F (Phenylalanine)	3.8%
R (Arginine)	8.6%	W (Tryptophan)	1.99%
D (Aspartic acid)	7.24%	I (Isoleucine)	2.53%
T (Threonine)	5.43%	K (Lysine)	1.27%
S (Serine)	5.61%	C (Cysteine)	1.27%

(Source: predictprotein.org)
ligand that has the potential to bind phenanthridine substrates to ethidium bromide [13].

Transmembrane protein prediction

PROTTER visualization showed that there was no alpha-helix protein phenanthrene dioxygenase at the transmembrane location. By this prediction model, protein is located in the intracellular (Figure 5), implying that the phenanthrene dioxygenase interact with ethidium bromide as an enzyme inside the cell. PROTTER analysis might be representative of proteomic data and integrated experimentally identified of the protein [14].

Analysis of hydrophobicity and solubility of proteins

The Kyte-Doolittle scale was used to detect hydrophobic areas in proteins. The greater the number (positive) on the plot scale, the more hydrophobic the amino acid is. Figure 6 shows a graph of the hydrophobicity value of each amino acid. Based on the amino acid composition calculation, the hydrophobicity value of phenanthrene was negative. It is predicted that the phenanthrene dioxygenase protein tends to be hydrophobic.

Protein solubility is an important characteristic in order to optimize protein performance. The increase in solubility is related to a decrease in molecular weight and an increase in the number of polar groups. Protein-Sol free website was used to predict protein solubility based on protein sequence (https://protein-sol.manchester.ac.uk/). The scaled solubility value (QuerySol) is the predicted solubility. The population average for the experimental dataset (PopAvrSol) is above 0.45, and therefore any scaled solubility value greater than 0.45 is predicted to have a higher solubility than the average soluble *E. coli* protein from the experimental solubility dataset Niwa *et al.* (2009), and any protein with a lower scaled solubility value is predicted to be less soluble [15]. The prediction was displayed that the protein solubility of protein is 0.36, while the pl is 5.28. KmR means K (lysine) minus R (arginine), the score was used as another option to know the solubility of the protein (Figure 7). In this result, KmR score is negative, therefore the protein tends to have low solubility.

Prediction of isoelectric point and molecular weight

Based on the pl/MW prediction using ExPASy, it was found that the estimated isoelectric point of the protein was 5.17, while the molecular weight of the protein was 121143.89 grams/mol or equal to 121.143 kDa (Table 3). Based on pl prediction using Protein Calculator, isoelectric point estimation of phenanthrene dioxygenase was 5.36. The protein charge at pH = pl is 0, at pH> pl is negative, and at pH <pl is positive. Solution of SDS-PAGE
In silico recombinant plasmid design of pHA171

that contains different pH than protein pl may cause changes in protein charge that can affect the protein separation process during electrophoresis. Therefore, the use of a solution with a pH that corresponds to the protein isoelectric point is an important thing to be considered. Based on the results of the two predictions, it can be concluded that in general the phenanthrene dioxygenase protein is suitable at pH 5.17-5.36.

Table 3. pI/Mw value by using ExPaSy

pH	Protein calculator tool	ExPaSy	
		Charge	pI/MW
4.00		93.6	
4.50		52.7	
5.00		16.1	
5.50		-4.5	
6.00		-15.9	
6.50		-25.5	
7.00		-33.7	5.17-5.36/121.143 kDa
7.50		-39.1	
8.00		-43.4	
8.50		-48.7	
9.00		-55.1	
9.50		-63.3	
10.00		-75.0	

Discussion

Phenanthrdine is a compound that is a derivative of phenanthrene. Hence, phenanthrdine has a similar structure to phenanthrene. The difference between these two molecules is the presence of an N atom in the phenanthrdine [16]. Phenanthrene degradation pathways using bacterial metabolism have been studied previously.

In general, phenanthrene will be oxidized to 3,4-dihydroxyphenanthrene which is then converted into 1-hydroxy-2-naptholic acid. Furthermore, 1-hydroxy-2-naptholic acid undergoes two degradation pathways, namely the phthalic acid pathway and the naphthalene pathway. In the phthalic acid pathway, 1-hydroxy-2-naptholic acid undergo ring degradation to form o-phthalic acid and protocatechuic acid then form pyruvic acid which eventually enters the tricarboxylic acid (TCA) cycle. On the other hand, in the naphthalene pathway, 1-hydroxy-2-naptholic acid will undergo oxidative decarboxylation to form 1,2-dihydroxynaphthalene, then undergo meta-degradation to form salicylic acid. Salicylic acid then becomes catechol or gentisic acid. Both catechol and gentisic acid can undergo ring degradation to form intermediate compounds in the TCA cycle [17].

Bacterial cells carrying the phdABCD gene are able to efficiently change the substrate of phenanthrene
and phenanthidine [10]. *E. coli* which carries the *phdABCD* gene can degrade phenanthidine and convert it into three main products, namely cis-1,2-dihydroxy-1,2-dihydrophenanthridine, cis-9,10-dihydroxy-9,10-dihydrophenanthridine, and 10-hydroxy-phenanthridine (Figure 8). That study showed that recombinant cells are able to convert phenanthridine into an oxygenated form which allow to further degradation reactions. Therefore, these recombinant cells function as bioremediation agents for ethidium bromide which contains phenanthidine structure.

The study of the designed plasmid and phenanthrene dioxygenase protein analysis impact future research by providing the knowledge about databases that are able to use in development bioremediation, especially ethidium bromide degradation. This study contributes to give a model to improve bioremediation application and to solve toxic chemical waste that release after laboratory works. For the first place, this research aims to apply *in silico* study by using some prediction tools to simulate, visualize, and measure physicochemical characteristics from an amino acid sequence [18]. The important point is using computations to make it easier to better knowing about molecular properties and biological systems [19].

Conclusion

The prediction analysis phenanthrene dioxygenase reacts with the ethidium bromide substrate through the interaction of Fe$^{3+}$ ions with water. The solubility level is 0.404 which indicates that the protein has low solubility. Protein isoelectric point (pI) is between 5.17 - 5.36, and molecular weight is 121.143 kDa. Visualization of the protein structure could be a benchmark for understanding physicochemical within wet experiments to improve *in silico* study and obtain an ideal expectation in a real laboratory.

Acknowledgment

The authors would like to express sincere gratitude towards Fenty Nurtyastuti Eka and
Mochamad Nurcholis for the support and guidance for preparing this paper.

Declaration of interest

The authors declare no conflict of interest.

Author contribution

Conceptualization, M.I.F., R.M.A., and A.N.M.; Methodology, M.I.F and R.M.A.; Investigation, M.I.F., R.M.A., S.I.Y., I.P., and A.N.M.; Writing – Original Draft, M.I.F. and A.N.M.; Writing – Review & Editing, S.I.Y., R.M.A., and I.P.; Resources, M.I.F, R.M.A., S.I.Y., I.P., and A.N.M.; Supervision, F.N.E. and M.N.

Received: 25 March 2021
Accepted: 14 August 2021
Published online: 21 August 2021

References

1. Motohashi K. Development of highly sensitive and low-cost DNA agarose gel electrophoresis detection systems, and evaluation of non-mutagenic and loading dye-type DNA-staining reagents. PLoS One. 2019;14: e0222209. doi:10.1371/journal.pone.0222209

2. Saeidnia S, Abdollahi M. Are other fluorescent tags used instead of ethidium bromide safer? Daru. 2013;21: 71. doi:10.1186/2008-2231-21-71

3. Li Z, Chang P-H, Jiang W-T, Liu Y. Enhanced removal of ethidium bromide (EtBr) from aqueous solution using rectorite. J Hazard Mater. 2020;384: 121254. doi:10.1016/j.jhazmat.2019.121254

4. Youssef A, El-Ella Hussein Gad A, Ghannam H, Zedan A, Aboulthana W, Al-Sherbini A-S. Synthesis of high efficient CS/PVDC/TiO2-Au nanocomposites for photocatalytic degradation of carcinogenic ethidium bromide in sunlight. Egypt J Chem. 2020;63: 5–9. doi:10.1186/s42168-020-01987-2313

5. Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: A review. J Environ Manage. 2018;210: 10–22. doi:10.1016/j.jenvman.2017.12.025

6. Jia X, He Y, Jiang D, Liu C, Lu W. Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval. Biochem Eng J. 2019;148: 214–223. doi:10.1016/j.beij.2019.05.010

7. Wu Y, Xu Y, Zhou N. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons. Front Environ Sci Eng. 2020;14: 14. doi:10.1007/s11783-019-1193-5

8. Chen H, Huang R, Zhang Y-HP. Systematic comparison of co-expression of multiple recombinant thermophilic enzymes in Escherichia coli BL21(DE3). Appl Microbiol Biotechnol. 2017;101: 4481–4493. doi:10.1007/s00253-017-8206-8

9. Vandemoortele G, Eyckerman S, Gevaert K. Pick a tag and explore the functions of your pet protein. Trends Biotechnol. 2019;37: 1078–1090. doi:10.1016/j.tibtech.2019.03.016

10. Shindo K, Ohnishi Y, Chun HK, Takahashi H, Hayashi M, Saito A, et al. Oxidation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci Biotechnol Biochem. 2001;65: 2472–2481. doi:10.1271/bbb.65.2472

11. Saito A, Iwabuchi T, Harayama S. A novel phenanthrene dioxygenase from Nocardioles sp. Strain KP7: expression in Escherichia coli. J Bacteriol. 2000;182: 2134–2141. doi:10.1128/JB.182.8.2134-2141.2000

12. Wu W, Wang Z, Cong P, Li T. Accurate prediction of protein relative solvent accessibility using a balanced model. BioData Min. 2017;10: 1. doi:10.1186/s13040-016-0121-5

13. Pathak S, Agarwal AV, Pandey VC. Phytoremediation—a holistic approach for remediation of heavy metals and metalloids. Bioremediation of Pollutants. Elsevier; 2020. pp. 3–16. doi:10.1016/B978-0-12-819025-8.00001-6

14. Omasits U, Ahrens CH, Müller S, Wollscheid B. Proter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30: 884–886. doi:10.1093/bioinformatics/btt607

15. Niwa T, Ying B-W, Saito K, Jin W, Takada S, Ueda T, et al. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci USA. 2009;106: 4201–4206. doi:10.1073/pnas.0811922106

16. Wainwright M, Dyes, trypanosomiasis and DNA: a historical and critical review. Biotech Histochem. 2010;85: 341–354. doi:10.3109/10520290903297528

17. Samanta SK, Chakraborti AK, Jain RK. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol. 1999;53: 98–107. doi:10.1007/s002530051623

18. Tu M, Cheng S, Lu W, Du M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry. 2018;105: 7–17. doi:10.1016/j.trac.2018.04.005

19. Bartocci E, Lió P. Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol. 2016;12: e1004591. doi:10.1371/journal.pcbi.1004591