Case report

Azygos vein lacerations, a rare injury from high-impact chest trauma: Two cases and a review of the literature

Christine Li a,*, Katherine Martin a,b,c,d, David Read a,b,c,d

a Department of General Surgical Specialties, Royal Melbourne Hospital, 300 Grattan Street, Parkville, Victoria 3050, Australia
b Trauma Service, Level 6 East, The Royal Melbourne Hospital, 300 Grattan Street, Melbourne, Victoria 3050, Australia
c Department of Surgery, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
d Australasian Trauma Society, PO Box 576, Crows Nest, New South Wales 1585, Australia

ARTICLE INFO

Keywords:
Azygos vein
Trauma
Thoracic trauma

ABSTRACT

Introduction: Thoracic trauma is a significant cause of mortality, being responsible for 25% of trauma deaths. Despite this, traumatic azygos vein injuries are a rare occurrence with only 35 previously published cases in medical literature. A review of the literature demonstrates a mortality rate of 43%. Management of this condition requires early recognition and surgical intervention. We present two cases of azygos vein laceration out of 15,897 major trauma patients over a 21-year period from 1999 to 2020 at a Level One Trauma Service in Australia. This case series is compliant with the SCARE Guidelines 2020 [2].

1. Introduction

Thoracic trauma is a significant cause of morbidity and mortality, being responsible for 25% of trauma deaths [1]. Despite this, traumatic azygos vein injuries are a rare occurrence with only 35 previously published cases in medical literature. A review of the literature demonstrates a mortality rate of 43%. Management of this condition requires early recognition and surgical intervention. We present two cases of azygos vein laceration out of 15,897 major trauma patients over a 21-year period from 1999 to 2020 at a Level One Trauma Service in Australia. This case series is compliant with the SCARE Guidelines 2020 [2].

2. Presentation of case one

The first case was a previously well 38-year-old male involved in a dirt-bike accident, falling approximately 8 m from a jump and landing prone. He lost consciousness at the scene, which spontaneously improved to a Glasgow Coma Scale (GCS) score of 14 on arrival of ambulance crew.

On arrival to the emergency department (ED), he was found to be haemodynamically unstable with a heart rate of 140 bpm, blood pressure of 70/40 mmHg and oxygen saturation of 98% on 15 L of oxygen. Additionally, his trachea was deviated to the right with decreased chest wall movement and air entry on the left and left-sided subcutaneous emphysema.

A left intercostal catheter (ICC) was inserted for presumed tension pneumothorax with slight haemodynamic instability. Both patients survived to hospital discharge. Discussion: Of the 37 cases of azygos vein injury, including our two, 36 were due to blunt trauma and one from penetrating trauma. Sixteen survived to hospital discharge, producing a 43% mortality rate. Only one of these survivors was managed non-operatively, the remainder underwent emergency thoracotomy and azygos vein ligation. The mortality rate reduced to 31% in those who underwent thoracotomy (n = 29). Presentation was predominantly with shock (83%) and right hemithorax white-out on chest x-ray (81%).

Conclusion: Azygos vein injuries are a rare but important cause of thoracic haemorrhage in high-impact blunt trauma. They are often fatal, so management relies on expedient transfer to theatre.
A literature search of Ovid Medline and PubMed was performed using keywords “azygos vein” and “trauma”. This identified 24 case reports and case series, describing 35 cases of traumatic azygos vein injuries. Table 1 presents a summary of the known cases since it was first identified in 1978 [4].

Azygos vein lacerations are predominantly a blunt force injury, with only one reported case due to penetrating trauma [5]. The mechanism of injury is believed to be a sudden deceleration force that causes, firstly, an abrupt increase in venous pressure by compression of the heart against the sternum, or compression of the abdominal cavity [6,7]. Secondly, an axial or rotational force on the mobile azygos arch as it is pulled by the decelerating heart while being fixed posteriorly by the intercostal veins [4,8,9]. Salizzoni [6] also proposed nearby vertebral fracture or subluxation as another mechanism, however most azygos vein injuries occur without associated vertebral injuries (Table 1).

This injury carries a 43% in-hospital all-cause mortality rate. By comparison, the mortality rate for those who underwent thoracotomy was only 31%, demonstrating the importance of urgent surgery in these patients. There has been only one case of successful conservative management of a presumed azygos vein laceration described by Medermott
where diagnosis was made on a CT scan demonstrating a right paratracheal haematoma at the level of the azygos vein.

The presentation of this injury is characterised by haemodynamic shock (83%) and right-sided chest whiteout on CXR (81%) following significant blunt trauma. Other CXR findings can include a widened mediastinum (n = 4) and bilateral chest whiteout (n = 4).

Most patients were managed operatively with a thoracotomy (78%). A number of documented approaches have been successful, including right anterolateral (n = 4), right posterolateral (n = 3), median sternotomy (n = 2) and clamshell (n = 2). All of these patients survived to discharge.

5. Conclusion

Traumatic azygos vein laceration is a very rare injury, with only two cases presenting to our service out of 15,897 major trauma patients over a 21-year period. However, this injury carries a significant mortality risk and the diagnosis must be considered in any blunt trauma patient who

Table 1

Case	Author (year)	Age/sex	Mechanism	Haemodynamic status	CXR	VB fractures	Location	Management	Outcome
1	Spagliardi (1978)	50F	MVC	Shock	RHTx	-	-	OT	Discharged
2	Salizzoni (1980)	50F	MVC	Shock	RHTx	-	-	OT	Discharged
3	Baldwin (1984)	28F	MVC	Shock (SBP 80)	WM	Azygos/SVC junction	OT (R thoracotomy & median sternotomy)	Discharged	
4	Shera (1986)	25F	MVC	Shock	RHTx	-	-	OT	Discharged
5	Coates (1987)	63F	MVC	Shock	RHTx	Azys/SVC arch 3 cm from SVC	OT (R anterolateral)	Discharged	
6	Snyder (1989)	52F	MVC	Shock (SBP 80)	RHTx	-	-	OT	Discharged
7	Walsh (1991)	41M	Fall (9 m)	Shock	RHTx	-	-	OT	Death
8	Shkrun (1991)	23M	Fall (17 m)	Shock	WM	Level of T5	OT	Death	
9	Baldwin (1992)	19M	MVC	Shock	RHTx	None	Level of T4	OT	Death
10	Coates (1993)	41F	MVC	Shock (SBP 60)	RHTx	Mid-azygos arch	OT (R anterolateral)	Discharged	
11	Butler (1995)	23F	MVC	Shock (SBP 76)	RHTx	Azys arch	OT	Discharged	
12	Sugimoto (1994)	44M	Ped vs car	Shock (SBP 80)	WM	None	Azys arch	OT	Discharged
13	Cagin (1998)	18F	MVC	Shock	RHTx	-	-	OT	Discharged
14	Sharma (1999)	75F	MVC	Shock (SBP 56)	RHTx	None	OT	Discharged	
15	Bowles (2000)	36F	MVC	Shock (SBP 76)	RHTx	-	-	OT	Discharged
16	Endara (2001)	26M	Cross bow	Stable	RHTx	-	-	OT	Discharged
17	Nguyen (2006)	21M	MVC	Shock	RHTx	None	Azygos/intercostal veins	OT (R postero lateral)	Discharged
18	Drac (2007)	36M	Ped vs car	Shock (SBP 70)	RHTx	-	Azys arch 1 cm from SVC	OT (R anterolateral)	Discharged
19	Bowles (2009)	36F	MVC	Shock (SBP 130)	RHTx	-	-	OT	Discharged
20	Endara (2010)	28M	MVC	Shock (SBP 90)	RHTx	-	-	OT	Discharged
21	Cao (2012)	60M	Hit by heavy object	Shock	RHTx	-	-	OT	Discharged
22	McDermott (2012)	48M	MVC	Stable (SBP 100)	WM, RHTx	None	-	Conservative	Discharged
23	Yang (2014)	52F	CPR	-	RHTx	None	-	OT	Death
24	Papadomanolakis (2016)	50F	MVC	-	HTx	C6, T6	-	Dead on arrival	
25	Endara (2010)	28M	MVC	Stable (SBP 115)	HTx	None	-	Dead on arrival	
26	Cao (2012)	60M	Hit by heavy object	Shock	RHTx	-	-	OT	Discharged
27	McDermott (2012)	48M	MVC	Stable (SBP 100)	WM, RHTx	None	-	Conservative	Discharged
28	Bowles (2009)	36F	MVC	Stable (SBP 90)	RHTx	-	-	OT	Discharged
29	Cao (2012)	60M	Hit by heavy object	Shock	RHTx	-	-	OT	Discharged
30	Laohathai (2019)	33F	MVC	Stable	RHTx (CT)	None	Azys arch	OT (R postero lateral)	Discharged
31	Case 1	38M	MVC	Shock (SBP 70)	RHTx	T3, L4	Azys arch	OT (clamshell)	Discharged
32	Case 2	81F	MVC	Stable (SBP 115)	RHTx	None	Azys arch/superior intercostal vein junction	OT (clamshell)	Discharged

MVC: motor vehicle crash; MBC: motorbike crash; RHTx: right haemothorax; WM: widened mediastinum; SVC: superior vena cava; OT: operating theatre; -: not stated.

[10], where diagnosis was made on a CT scan demonstrating a right paratracheal haematoma at the level of the azygos vein.

The presentation of this injury is characterised by haemodynamic shock (83%) and right-sided chest whiteout on CXR (81%) following significant blunt trauma. Other CXR findings can include a widened mediastinum (n = 4) and bilateral chest whiteout (n = 4).

Most patients were managed operatively with a thoracotomy (78%). A number of documented approaches have been successful, including right anterolateral (n = 4), right posterolateral (n = 3), median sternotomy (n = 2) and clamshell (n = 2). All of these patients survived to discharge.

5. Conclusion

Traumatic azygos vein laceration is a very rare injury, with only two cases presenting to our service out of 15,897 major trauma patients over a 21-year period. However, this injury carries a significant mortality risk and the diagnosis must be considered in any blunt trauma patient who
presents with haemodynamic instability and right-sided chest white-out on CXR. The mainstay of treatment is an urgent thoracotomy.

Sources of funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval

Case reports are exempt from ethical approval in our institution.

Consent

Written informed consent was obtained from the patients for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

Author contribution

Christine Li – data collection, literature review, manuscript writing.
David Read – critical revisions.
Katherine Martin – critical revisions.

Research registration

N/A.

Guarantor

Christine Li.

Declaration of competing interest

No conflicts of interest are declared.

References

[1] Health VDo, Thoracic Trauma Victoria [updated 28 May 2021. Available from, State of Victoria, Australia, 2021 https://trauma.reach.vic.gov.au/guidelines/ thoracic-trauma/introduction,
[2] R.A. Agha, T. Franchi, C. Sohrabi, G. Mathew, A. Kerwan, Group S, The SCARE 2020 guideline: updating consensus Surgical CAse REport (SCARE) guidelines, Int. J. Surg. 84 (2020) 226–230,
[3] Trauma Co, ATLS Advanced Trauma Life Support, 10 ed., American College of Surgeons, Chicago, IL, 2018,
[4] E. Spaglazed, D. Palombo, A case of isolated rupture of the azygos vein, Minerva Cardioangiol. 26 (9) (1978) 637–639,
[5] S.A. Endara, A.A. Xabregas, C.S. Butler, M.J. Zonta, J. Avramovic, Major mediastinal injury from crossbow bolt, Ann. Thorac. Surg. 72 (6) (2001) 2106–2107,
[6] M. Salizzoni, F. Ardissone, P. Borasio, Poli M. Dei, Isolated rupture of the azygos vein caused by contusive thoracic trauma, Minerva Chir. 35 (17) (1980) 1255–1256,
[7] D.A. Butler, R.F. Schneider, M. Jadali, Traumatic injury to the azygos vein: case report, J. Trauma 39 (4) (1995) 761–762,
[8] R.T. Thurman, R. Roettger, Intrapleural rupture of the azygos vein, Ann. Thorac. Surg. 53 (4) (1992) 697–699,
[9] C.L. Snyder, S.D. Eyer, Blunt chest trauma with transection of the azygos vein: case report, J. Trauma 29 (6) (1989) 889–890,
[10] C. McDermott, G. O’Connor, E. McGovern, G. McMahon, Conservative management of azygos vein rupture in blunt thoracic trauma, Case Rep. Crit. Care 2012 (2012), 147614.