Review Article

Medicinal Plants in the Prevention and Treatment of Colon Cancer

Paola Aiello,1,2 Maedeh Sharghi,3 Shabnam Malekpour Mansourkhani,4 Azam Pourabbasi Ardekan,5 Leila Jouybari,6 Nahid Daraei,7 Khadijeh Peiro,8 Sima Mohamadian,9 Mahdiyeh Rezaei,9 Mahdi Heidari,5 Ilaria Peluso10,1
Fereshteh Ghorat,10 Anupam Bishayee11, and Wesam Kooti5

1Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
2Department of Physiology and Pharmacology “V. Erspamer”, La Sapienza University of Rome, Rome, Italy
3Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
4Department of Biology, School of Science, Shiraz University, Shiraz, Iran
5Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
6Nursing Research Center, Guolestan University of Medical Sciences, Gorgan, Iran
7Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
8Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
9Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
10Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
11Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA

Correspondence should be addressed to Anupam Bishayee; abishayee@gmail.com and Wesam Kooti; wesamkooti@gmail.com

Received 8 March 2019; Accepted 3 July 2019; Published 4 December 2019

Guest Editor: Ana S. Fernandes

Copyright © 2019 Paola Aiello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The standard treatment for cancer is generally based on using cytotoxic drugs, radiotherapy, chemotherapy, and surgery. However, the use of traditional treatments has received attention in recent years. The aim of the present work was to provide an overview of medicinal plants effective on colon cancer with special emphasis on bioactive components and underlying mechanisms of action. Various literature databases, including Web of Science, PubMed, and Scopus, were used and English language articles were considered. Based on literature search, 172 experimental studies and 71 clinical cases on 190 plants were included. The results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo models. Various anticancer mechanisms of these medicinal plants include induction of superoxide dismutase, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reducing the expression of PI3K, P-Akt protein, and MMP as well; reduction of antiapoptotic Bcl-2 and Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1 and cyclin E. Plant compounds also increase both the expression of the cell cycle inhibitors p53, p21, and p27, and the BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vitro models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.
1. Introduction

An uncontrolled growth of the body’s cells can lead to cancer. Cancer of the large intestine (colon) is one of the main cause of death due to cancer. While the numbers for colon cancer are somewhat equal in women (47,820) and men (47,700), it will be diagnosed in (16,190) men (23,720) more than women. Multiple factors are involved in the development of colorectal cancer, such as lack of physical activity [1], excessive alcohol consumption [2], old age [3], family history [4], high-fat diets with no fiber and red meat, diabetes [5], and inflammatory bowel diseases, including ulcerative colitis and Crohn’s disease [6].

Prevention of colorectal cancer usually depends on screening methods to diagnose adenomatous polyps which are precursor lesions to colon cancer [7]. The standard treatment for cancer is generally based on using cyto-toxic drugs, radiotherapy, chemotherapy, and surgery [8]. Apart from these treatments, antiangiogenic agents are also used for the treatment and control of cancer progression [9].

Colon cancer has several stages: 0, I, II, III, and IV. Treatment for stages 0 to III typically involves surgery, while for stage IV and the recurrent colon cancer both surgery and chemotherapy are the options [10]. Depending on the cancer stage and the patient characteristics, several chemotherapeutic drugs and diets have been recommended for the management of colorectal cancer. Drugs such as 5-fluorouracil (5-FU), at the base of the neoadjuvant therapies folfox and folfoxi, are used together with bevacizumab, panitumumab, or cetuximab [7].

Chemotherapy works on active cells (live cells), such as cancerous ones, which grow and divide more rapidly than other cells. But some healthy cells are active too, including blood, gastrointestinal tract, and hair follicle ones. Side effects of chemotherapy occur when healthy cells are damaged. Among these side effects, fatigue, headache, muscle pain, stomach pain, diarrhea and vomiting, sore throat, blood abnormalities, constipation, damage to the nervous system, memory problems, loss of appetite, and hair loss can be mentioned [11].

Throughout the world, early diagnosis and treatment of cancer usually increase the individual’s chances of survival. But in developing countries, access to effective and modern diagnostic methods and facilities is usually limited for most people, especially in rural areas [12]. Accordingly, the World Health Organization (WHO) has estimated that about 80% of the world population use traditional treatments [13]. One of these treatments is phytotherapy, also known as phytomedicine, namely, the use of plants or a mixture of plant extracts for the treatment of diseases. The use of medicinal plants can restore the body’s ability to protect, regulate, and heal itself, promoting a physical, mental, and emotional well-being [14–16]. Various studies have shown the therapeutic effects of plants on fertility and infertility [17], hormonal disorders, hyperlipidemia [18], liver diseases [19], anemia [20], renal diseases [21], and neurological and psychiatric diseases [22]. Therefore, due to all the positive effects showed by medicinal plants, their potential use in cancer prevention and therapy has been widely suggested [23–25].

Since the current treatments usually have side effects, plants and their extracts can be useful in the treatment of colon cancer with fewer side effects. The aims of this review are to present and analyse the evidence of medicinal plants effective on colon cancer, to investigate and identify the most important compounds present in these plant extracts, and to decipher underlying molecular mechanisms of action.

2. Literature Search Methodology

This is a narrative review of all research (English full text or abstract) studies conducted on effective medicinal plants in the treatment or prevention of colon cancer throughout the world. Keywords, including colon cancer, extract, herbs, plant extracts, and plants, were searched separately or combined in various literature databases, such as Web of Science, PubMed, and Scopus. Only English language articles published until July 2018 were considered.

In the current narrative review, studies (published papers) were accepted on the basis of inclusion and exclusion criteria. The inclusion criterion was English language studies, which demonstrated an effective use of whole plants or herbal ingredients, as well as studies which included standard laboratory tests. In vivo and in vitro studies that were published as original articles or short communications were also included. The exclusion criteria included irrelevancy of the studies to the subject matter, not sufficient data in the study, studies on mushrooms or algae, and the lack of access to the full text. Reviews, case reports/case series, and letters to editors were also excluded but used to find appropriate primary literature.

The abstracts of the studies were reviewed independently by two reviewers (authors of this study) on the basis of the inclusion and exclusion criteria. In case of any inconsistency, both authors reviewed the results together and solved the discrepancy. Data extracted from various articles were included in the study and entered into a check list after the quality was confirmed. This check list included some information: authors’ name, year of publication, experimental model, type of extract and its concentration or dose, main components, and mechanisms of action (if reported).

3. Results

3.1. Medicinal Plants and Colon Cancer. Overall, 1,150 articles were collected in the first step and unrelated articles were excluded later on according to title and abstract evaluation. Moreover, articles that did not have complete data along with congress and conference proceedings were excluded. Accordingly, a total of 1,012 articles were excluded in this step. Finally, 190 articles fulfilled the criteria and were included in this review. These papers were published within 2000-2017. A total of 190 plants were
included in this study. Based on literature search, 172 experimental studies and 71 clinical cases were included.

Overall, results indicate that grape, soybean, green tea, garlic, olive, and pomegranate are the most effective plants against colon cancer. In these studies, fruits, seeds, leaves, and plant roots were used for in vitro and in vivo studies.

3.1.1. In Vitro Studies. Out of 172 studies, 75 were carried out on HT-29, 60 on HCT116, and 24 on Caco-2 cells (Table 1). On HT-29 cells, both Allium sativum root extracts and Camellia sinensis leaf extracts induced cell apoptosis by two different mechanisms, respectively. In fact, the former showed inhibition of the PI3K/Akt pathway, upregulation of PTEN, and downregulation of Akt and p-Akt expression, while the latter was involved in attenuation of COX-2 expression and modulation of NFκB, AP-1, CREB, and/or NF-IL-6. Moreover, an antiproliferative activity has also been detected in Olea europaea fruit extracts, which increased caspase 3-like activity and were involved in the production of superoxide anions in mitochondria. An antiproliferative activity, by means of a blockage in the G2/M phase, has also been reported in Caco-2 cells by Vitis vinifera fruit extracts. Concerning HCT116 cells, several plants, such as American ginseng and Hibiscus cannabinus, induced cell cycle arrest in different checkpoints.

3.1.2. Studies in Animal Models. The most used animal model is the murine one (Tables 2(a) and 2(b)). In particular, studies were carried out above all on HT-29 and HCT116 cells. The effects of the different medicinal plants and their extracts are essentially the same detected in in vitro studies. In particular, plant extracts were able to induce apoptosis and inhibit proliferation and tumor angiogenesis by regulating p53 levels and checkpoint proteins with consequent cell cycle arrest and antiproliferative and antiapoptotic effects on cancerous cells.

The main mechanisms of action of medicinal plants are summarized in Figure 1.

In in vitro studies, it has been found that grapes, which contain substantial amounts of flavonoids and procyanidins, play a role in reducing the proliferation of cancer cells by increasing dihydroceramides and p53 and p21 (cell cycle gate keeper) protein levels. Additionally, grape extracts triggered antioxidant response by activating the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2) [27].

Grape seeds contain polyphenolic and procyanidin compounds, and their reducing effects on the activity of myeloperoxidase have been shown in in vitro and in vivo studies. It has been suggested that grape seeds could inhibit the growth of colon cancer cells by altering the cell cycle, which would lead eventually to exert the caspase-dependent apoptosis [180].

Another plant that attracted researchers’ attention was soybean, which contain saponins. After 72 h of exposure of colon cancer cells to the soy extract, it was found that this extract inhibited the activity and expression of protein kinase C and cyclooxygenase-2 (COX-2) [34]. The density of the cancer cells being exposed to the soy extract significantly decreased. Soybeans can also reduce the number of cancer cells and increase their mortality, which may be due to increased levels of Rab6 protein [216].

Green tea leaves have also attracted the researchers’ attention in these studies. Green tea leaves, with high levels of catechins, increased apoptosis in colon cancer cells and reduced the expression of the vascular endothelial growth factor (VEGF) and its promoter activity in in vitro and in vivo studies. The extract increased apoptosis (programmed cell death) by 1.9 times in tumor cells and 3 times in endothelial cells compared to the control group [182]. In another in vitro study, the results showed that green tea leaves can be effective in the inhibition of matrix metalloproteinase 9 (MMP-9) and in inhibiting the secretion of VEGF [183].

Garlic was another effective plant in this study. Its roots have allin and organosulfur compounds. In an in vitro study, they inhibited cancer cell growth and induced apoptosis through the inhibition of the phosphoinositide 3-kinase/Akt pathway. They can also increase the expression of phosphatase and tensin homolog (PTEN) and reduce the expression of Akt and p-Akt [32]. Garlic roots contain S-allylcysteine and S-allylcysteine, which are known to exhibit anticancer properties. The results of a clinical trial on 51 patients, whose illness was diagnosed as colon cancer through colonoscopy, and who ranged in age from 40 to 79 years, suggest that the garlic extract has an inhibitory effect on the size and number of cancer cells. Possible mechanisms suggested for the anticancer effects of the garlic extract are both the increase of detoxifying enzyme soluble adenylly cyclase (SAC) and an increased activity of glutathione S-transferase (GST). The results suggest that the garlic extract stimulates mouse spleen cells, causes the secretion of cytokines, such as interleukin-2 (IL2), tumor necrosis factor-α (TNF-α), and interferon-γ, and increases the activity of natural killer (NK) cells and phagocytic peritoneal macrophages [200].

The results of in vitro studies on olive fruit showed that it can increase peroxide anions in the mitochondria of HT-29 cancer cells due to the presence of 73.25% of malasinc acid and 25.75% of oleic acid. It also increases caspase 3-like activity up to 6 times and induces programmed cell death through the internal pathway [217]. Furthermore, the olive extract induces the production of reactive oxygen species (ROS) and causes a quick release of cytochrome c from mitochondria to cytosol.

The pomegranate fruit contains numerous phytochemicals, such as punicalagins, ellagitannins, ellagic acid, and other flavonoids, including queretin, kaempferol, and luteolin glycosides. The results of an in vitro study indicate the anticancer activity of this extract through reduction of phosphorylation of the p65 subunit and subsequent inhibition of nuclear factor-κB (NFκB). It also inhibits the activity of TNF receptor induced by Akt, which is needed for the activity of NFκB. The fruit juice can considerably inhibit the expression of TNF-α-inducing proteins (TIP) in the COX-2 pathway in cancer cells [43]. The effective and important compounds in pomegranate identified in these 104 studies are flavonoids, polyphenol compounds, such as caffic acid, catechins, saponins, polysaccharides, triterpenoids,
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
Fruit Vitis vinifera	Fruit	HCT116	NM	Lyophilized	Hydroxycinnamic acids, proanthocyanidins, stilbenoids	Increase of dihydrosphingolipids, sphingolipid mediators involved in cell cycle arrest, and reduction of the proliferation rate	(i) Increase of p53 and p21 cell cycle gate keepers (ii) Activation of the transcriptional factor Nrf2	[26, 27]	
Fruit Vitis vinifera	Fruit	Caco-2	365 mg/g	Methanolic	Catechin, epicatechin, quercetin, gallic acid	Antiproliferative activity and direct initiation of cell death	(i) Increased crypt depth (ii) Inhibited cell viability and decreased histological damage score	Blockage in the G2/M phase	[28, 29]
Seed Vitis vinifera	Seed	Caco-2	10–25 μg/mL	Aqueous	Procyanidins	Reduced MPO (myeloperoxidase) activity	NM	[29]	
Skin Vitis vinifera	Skin	NM	7.5, 30, 60 μg/mL	Methanolic	4′-Geranyl oxyferulic acid	NM	(i) Increment of p53, Bax/Bcl-2 ratio, and cleaved PARP (ii) Inhibition of Wnt/β-catenin signaling	[30]	
Seed Vitis vinifera	Seed	Colon cancer stem cells	6.25, 12.5, 25 μg/mL	NM	(+)-catechin, (−)-epicatechin	NM	(i) Induction of apoptosis and cell cycle arrest (ii) Upregulation of PTEN and downregulation of Akt and p-Akt expression	[31]	
Allium sativum	Root	HT-29	20, 50, 100 mg/mL	Ethanolic	NM	Induction of apoptosis and cell cycle arrest	(i) Inhibition of the PI3K/Akt pathway (ii) Upregulation of PTEN and downregulation of Akt and p-Akt expression	[32]	
Seed Allium sativum	Seed	Caco-2, SW620, HT-29	12.5 μg/mL	Aqueous	Anthoxanthin	Cell death and significant reduction of cell density	Enhancement of Rab6 protein levels	[33]	
Glycine max	Seed	HT-29	240, 600 ppm	Crude	Saponin	Suppression of PKC activation and increase of alkaline phosphatase activity	(i) Suppression of the degradation of IκBα in PMA-stimulated cells (ii) Downregulation of COX-2 and PKC expressions	[33]	
Seed Glycine max	Seed	HT-29	NM	Crude	Saponin	NM		[34]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
-----------------	------------	-----------	------	----------------	---------------------	----------------	------------	------------	
Camellia sinensis	Leaf	HT-29	0, 10, 30, 50 μM	Aqueous	Catechin, epigallocatechin gallate	Increased caspase 3-like activity to 6-fold	(i) Suppression of ERK-1 and ERK-2 activation (ii) Suppression of VEGF expression (iii) Increased expression levels of caspases 3, 7, 8, 9	[35]	
	Leaf	Caco-2, HT-29	300 μM	Aqueous	Flavan-3-ol (catechin & aurone) & polyphenols (theadensol B)	Reduced cell growth in both cell lines	(i) Limited G2/M cell cycle phase (ii) Depressed cyclooxygenase-2 expression (iii) Suppression of β-catenin/TCF signaling (iv) Promotion of the entry into subG1 phase	[38]	
	Leaf	HT-29	68-80 μg/mL	Hot water extract	Flavan-3-ol (catechin & aurone) & polyphenols (theadensol B)	Reduced cell growth in both cell lines	(i) Limited G2/M cell cycle phase (ii) Depressed cyclooxygenase-2 expression (iii) Suppression of β-catenin/TCF signaling (iv) Promotion of the entry into subG1 phase	[38]	
Olea europaea	Fruit	HT-29	150, 55.5, 200 and 74 μmol/L	Methanolic and chloroform	Oleic acid, linoleic acid, gamma-linolenic acid, lignans, flavonoids, secoiridoids	Inhibitory activity	(i) Increased caspase-3-like activity to 6-fold (ii) Production of superoxide anions in the mitochondria (iii) Reduced proliferation	[37]	
	Fruit, leaf	HT-29	100–600 μmol/L	Methanolic & hexane	Oleic acid, linoleic acid, gamma-linolenic acid, lignans, flavonoids, secoiridoids	Reduced cell growth in both cell lines	(i) Limited G2/M cell cycle phase (ii) Depressed cyclooxygenase-2 expression (iii) Suppression of β-catenin/TCF signaling (iv) Promotion of the entry into subG1 phase	[38]	
	Fruit	Caco-2	50 μM	Aqueous	Phenolic compounds, authentic hydroxyl tyrosol (HT)	Reduced cell growth in both cell lines	(i) Limited G2/M cell cycle phase (ii) Depressed cyclooxygenase-2 expression (iii) Suppression of β-catenin/TCF signaling (iv) Promotion of the entry into subG1 phase	[38]	
	Fruit	HT-115	25 μg/mL	Hydroethanolic	Phenolic compounds, authentic hydroxyl tyrosol (HT)	Reduced cell growth in both cell lines	(i) Limited G2/M cell cycle phase (ii) Depressed cyclooxygenase-2 expression (iii) Suppression of β-catenin/TCF signaling (iv) Promotion of the entry into subG1 phase	[38]	
	Olive mill wastewater	HT-29, HT-115, C12-26	0.2-2,000 μg/mL	Ethanolic	Tyrosol, hydroxytyrosol, oleuropein, rutin, quercetin and glucoside forms of luteolin and apigenin	Reduced cell growth in both cell lines	(i) Limited G2/M cell cycle phase (ii) Depressed cyclooxygenase-2 expression (iii) Suppression of β-catenin/TCF signaling (iv) Promotion of the entry into subG1 phase	[42]	
Punica granatum	Juice	HT-29	50 mg/L	Aqueous	Ellagitannins, punicalagin	Inhibition of cancer cell proliferation	(i) Suppressed TNFR-induced COX-2 protein expression (ii) Reduced phosphorylation of the p65 subunit and binding to the NFκB response element (iii) Slightly decreased development of tubules from digested cell bodies (iv) Reduction of the number of cell connections	[43]	
	Seed	LS174	65.2 μg/mL	Supercritical fluid	Punic acid, p-tocopherol, a-tocopherol	Cytotoxic activity		[44]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
-----------------------	------------	-------------------	-------	-----------------	--	--	--	------------	
Glycyrrhiza glabra	Root	HT-29	12.2 and 31 μg/mL	Ethanolic	Licochalcone	NM	Increase of the protein levels of proapoptotic Bax	[37]	
Opuntia ficus-indica	Fruit	Caco-2	115 μM	Aqueous	Betalain pigment indicaxanthin	Apoptosis of proliferating cells	(i) Demethylation of the tumor suppressor p16INK4a gene promoter		
(ii) Reactivation of the silenced mRNA expression and accumulation of p16INK4a	[38]								
Fruit (HT-29 & Caco-2 & NIH 3T3 as control)		Against HT-29 (4.9 μg/mL) against Caco-2 (8.2 μg/mL)	Alkaline hydrolysis with NaOH	Isorhamnetin glycosides (IG5 and IG6)-phenol	Cell death through apoptosis and necrosis	Increased activity of caspase 3/7	[45]		
Piper betle	Leaf	HT-29 and HCT116	2000 μg/mL	Aqueous	Hydroxychavicol	Antioxidant capacity and induction of a greater apoptotic effect	(i) Scavenging activity		
(ii) Formation of electrophilic metabolites	[41, 46]								
Fragaria xananassa	Fruit	HT-29	0.025, 0.05, 0.25, 0.5%	Ethanolic	Ascorbate, ellagic acid	Decreased proliferation of HT-29 cells	Increase in the levels of 8OHA and decrease in the levels of 8OHG	[40]	
Sasa quelpaertensis	Leaf	HT-29, HCT116	0, 100, 200, 300 mg/L	Ethanolic	p-Coumaric acid, tricin	Inhibited colony formation	Nonadherent sphere formation suppressed CD133+ & CD44+ population	[41]	
Salvia chinensis	Stem	HCT116, COLO 205	10, 20, 40, 60, 80, 100 mg/L	Polyphenolic	Terpenoids, phenolic acid, flavonoids, dibenzylcyclooctadiene	Apoptosis & loss of mitochondrial membrane	Induced G0/G1 cell cycle	[42]	
Rubus idaeus L	Fruit	HT-29, HT-115, Caco-2	3.125, 6.25, 12.5, 25, 50 mg/L	Aqueous	Polyphenol, anthocyanin, ellagitannin	NM	Decreased population of cells in G1 phase	[47]	
		LoVo	50 μL	NM	Inhibited proliferation of LoVo	Suppression of the NFκB pathway	[48]		
			(i) Short-term assay: four 10-fold dilutions (100 to 0.1 mg/L)	Ethanolic	Curcumin (diferuloylmethane)	NM	Inhibited formation of HCT116 spheroids	[49]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
Eleutherococcus senticosus	Root	HCT116	12.5, 25, 50, 100	Methanolic	Eleutherosides, triterpenoid saponins, glycosans	NM	Activation of natural killer cells and thus enhancement of immune function	[50]
Tabernaemontana divaricata L.	Leaf	HT-29, HCT15	10, 30, 100 mg/L	Ethyl acetate, chloroform, methanolic	Alkaloids	NM	Inhibited the unwinding of supercoiled DNA	[45]
Millingtonia hortensis	Root, flower, leaf	RKO	50, 100, 200, 400, 800 mg/L	Aqueous	Phenylethanoid glycoside, squalene, salidroside, 2-phenyl rutinoside	Apoptosis induction	(i) Increase of fragmented DNA	[46]
	Powder	RKO	200, 400, 800 μg/mL	Aqueous	Water soluble compounds	Antiproliferative effect	NM	[51]
Thai purple rice	Seed	Caco-2, Cat. No. HTB-37	16.11 μg/mL	Methanol acidified	Cyanidin-3-glucoside and peonidin-3-glucoside, anthocyanins, phenolic compounds	(i) Antioxidation of anthocyanins and phenols	NM	[52]
Annona muricata	Leaf	HCT116, HT-29	11.43 ± 1.87 μg/ml and 8.98 ± 1.24 μg/ml	Ethanolic	Alkaloids, acetogenins, essential oils	Block of the migration and invasion of HT-29 and HCT116 cells	(i) Cell cycle arrest at G1 phase	[53]
	NM	HT-29, HCT116	<4, <20 μg/mL	EtOAc	Annopentocin A, annopentocin B, annopentocin C, cis- and trans-annomuricin-D-ones, annomuricin E	NM	Suppression of ATP production and NADH oxidase in cancer cells	[54]
Pistacia lentiscus L. var. chia	Leaf	HCT116	NM	Ethanolic	Resin, known as Chios mastic gum (CMG)	Causes several morphological changes typical of apoptosis in cell organelles	(i) Induction of cell cycle arrest at G1 phase	[55]
	Resin	HCT116	100 μg/mL	Hexane	Caryophyllene	Induction of the anoikis form of apoptosis in human colon cancer HCT116 cells	(ii) Activation of pro-caspases 8, 9, 3	
American ginseng (Panax quinquefolius)	Biological constituents	HCT116	0-20 mg/mL	Aqueous	Ginseng (GE) or its ginsenoside (GF) and polysaccharide (PS)	Proliferation was inhibited by GE, GF, and PS in wild-type and p21 cells	(i) Cells arrest in G0/G1 phase and increment of p53 and p21 proteins	[57]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-------------------------	------------	-------------	-------------------	-----------------	--	--	--	------------
Purple-fleshed potatoes	Fruit	Colon cancer stem cells	5.0 μg/mL	Ethanol, methanol, ethyl acetate	Anthocyanin, β-catenin, cytochrome c	Critical regulator of CSC proliferation and its downstream proteins (c-Myc and cyclin D1) and elevated Bax and cytochrome c	(i) Cytochrome c levels were elevated regardless of p53 status	
(ii) Mitochondria-mediated apoptotic pathway								
(iii) Suppressed levels of cytoplasmic and nuclear β-catenin	[58]							
Phaseolus vulgaris	Leaf	HT-29	NM	Ethanolic	Polysaccharides, oligosaccharides	Changes in genes involved or linked to cell cycle arrest	(i) Inactivation of the retinoblastoma phosphoprotein	
(ii) Induction of G1 arrest								
(iii) Suppression of NF-jB1								
(iv) Increase in EGR1 expression	[59]							
Opuntia spp.	Fruit	HT-29	5.8 ± 1.0, 7.5 ± 2.0 , 12 ± 1% (V/V)	Hydroalcoholic	Betacyanins, flavonoids (isorhamnetin derivatives) and phenolic acids (ferulic acid)	NM	Induced cell cycle arrest at different checkpoints—G1, G2/M, and S	[60]
Suillus luteus	NM	HCT15	400 μg/mL	Methanolic	Protocatechuic acid, cinnamic acid, α-tocopherol, β-tocopherol, mannositol, trehalose, polysaturated fatty acids, monounsaturated fatty acids, saturated fatty acids	Increase in the cellular levels of p-H2A.X, which is suggestive of DNA damage	(i) Inhibition of cell proliferation in G1 phase	
(ii) Increase in the cellular levels of p-H2A.X	[61]							
Poncirus trifoliata	Leaf	HT-29	0.63 μM	Aqueous (in acetone)	β-Sitosterol, 2-hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester	Arrest of cell growth was observed with β-sitosterol	NM	[62]
Rosmarinus officinalis L.	Leaf	SW 620, DLD-1	0-120 μg/mL	Methanolic	Polyphenols	Antiproliferative effect of 5-FU	(i) Upregulation of VLDLR gene as the principal contributor to the observed cholesterol accumulation in SC-RE-treated cells	
(ii) Downregulation of several genes involved in G1-S	[63]							
	Leaf	HT-29	SC-RE 30 μg/mL and CA 12.5 μg/mL	Ethanolic	Polyphenols (carnosic acid (CA) and carnosol)	Activation of Nrf2 transcription factor and common regulators, such as XBP1 (Xbp1) gene related to the unfolded protein response (UPR)	[64]	
Scientific name	Parts used	Cell line(s)	Concentration(s)	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-----------------	------------	-------------	------------------	-----------------	--------------------	-----------------	------------	------------
NM	HT-29	10, 20, 30, 40, 50, 60, 70 μg/mL	NM	Carnosic acid, camosol, rosmarinic acid, rosmanol	NM	(i) Prooxidative capability by increasing the intracellular generation of ROS (ii) Activation of Nrf2	[65]	
Carthamus tinctorius	Leaf	HGUE-C-1, HT-29, and SW480	20–40 mg/mL	CO2 supercritical fluid extract	Carnosic acid, camosol, and betulinic acid	NM	(i) Reduced expression of Bcl-2 (ii) Reduced expression levels of iNOS and COX-2	[66]
Glehnia littoralis	Leaf	HT-29	50 mg/mL	Methanolic	Phenylethanoid glycosides, diacetyl-O-isoverbascoside, diacetyl-O-betonyoside A, and diacetyl-O-betonyoside A	Exhibited antimutagenic activity	(i) Increased lipophilicity of molecules seemed to be responsible for enhanced cytotoxicity (ii) Antiproliferative activity is determined by the number of acetyl groups and also by their position in the aliphatic rings	[67]
Mentha spicata	Leaf	RCM-1	12.5 μg/mL	N-Hexane	Acetic acid 3-methylthio propyl ester (AMTP), methyl thio propionic acid ethyl ester (MTP-E)	Exhibited antimutagenic activity	(i) Antiangiogenetic properties (ii) All fractions showed the anti-VEGF secretion activity	[69]
Euphorbia longana Lam.	Seed	SW 480	0–100 μg/mL	Ethanolic	Corilagin, gallic acid, ellagic acid	Release and expression of VEGF indicated that all fractions showed the anti-VEGF secretion activity	[70]	
Sutherlandia frutescens	Flower	Caco-2	1/50 dilution of the ethanolic extract	Ethanolic	Amino acids, including L-arginine and L-canavanine, pinitol, flavonoids, and triterpenoid saponins as well as hexadecanoic acid and γ-sitosterol	Disruption of the key molecules in the PI3K pathway thereby inducing apoptosis	Decrease in cell viability and increment in pyknosis as well as loss in cellular membrane integrity	[71]
Melissa officinalis	Leaf	HT-29, T84	346, 120 μg/mL	Ethanolic	Phenolic acids (rosmarinic acid, coumaric acid, caffeic acid, protocatechuic acid, ferulic acid, chlorogenic acid), flavonoids, sesquiterpenes, monoterpenes, triterpenes	(i) Inhibited proliferation of colon carcinoma cells (ii) Induced apoptosis through formation of ROS (iii) G2/M cell cycle arrest (iv) Cleavage of caspases 3 and 7 (v) Induced phosphatidylserine externalization in colon carcinoma cells (vi) Induced formation of ROS in colon carcinoma cells	[72]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
--------------------------------	------------	-----------	-----------	----------------	--------------------	----------------	------------	------------
Sargassum cristafolium	Leaf	HT-29	500 mg/mL	Ethanolic	Fucoidans	(i) Reduction of free radicals (ii) DPPH radical scavenging	Accumulation of cells in G0/G1 phase	[73]
Hedyotis diffusa	NM	HT-29	400 mg/mL	Ethanolic and then DMSO	Octadecyl (E)-p-coumarate, P-E-methoxy-cinnamic acid, ferulic acid, scopoletin, succinic acid, aurantiamide acetate, rubiadin	Suppress tumor cell growth and induce the apoptosis of human CRC cells	(i) Block G1/S progression (ii) Induce the activation of caspases 9 and 3 (iii) Inhibit IL-6-mediated STAT3 activation (iv) Downregulate the mRNA and protein expression levels of cyclin D1, CDK4, Bcl-1, and Bax	[74]
Zingiber officinale Roscoe	Peel	LoVo	100 mg/mL	Ethanolic	Linoleic acid methyl ester, a-zingiberene, and zingiberone	Interesting antiproliferative activity against colorectal carcinoma	NM	[75]
Scutellaria barbata	Leaf	LoVo	413.3 mg/L	Methanolic	Scutellarein, scutellarin, carthamidin, isocarthamidin, wogonin	Induce cell death in the human colon cancer cell line	Increase in the sub-G1 phase and inhibition of cell growth	[76]
Pistacia atlantica, Pistacia lanticaus	Resin	HCT116	100 μg/mL	Hexane extract	Caryophyllene	Induce the anoikis form of apoptosis in human colon cancer HCT116 cells	(i) Induce G1 phase arrest (ii) Loss of adhesion to the substrate	[56]
Citrus reticulata	Peel	SNU-C4	100 μg/mL	Methanolic	Limonene, geranial, neral, geranyl acetate, geraniol, β-carophyllene, neryl, neryl acetate	Induce the apoptosis on SNU-C4, human colon cancer cells	Expression of proapoptotic gene, Bax, and major apoptotic gene, caspase 3	[77]
Echinacea pallida, Echinacea angustifolia, Echinacea purpurea	Root	COLO320	150 mg/mL	Hexane	Caffeic acid derivatives, alkylamides, polyacetylenes, polysaccharides	Induce apoptosis and promote nuclear DNA fragmentation	(i) Induce apoptosis by increasing caspase 3/7 activity (ii) Promote nuclear DNA fragmentation	[78]
Nasturtium officinale	Leaf	HT-29	50 μL/mL	Methanolic	Phenethyl isothiocyanate, 7-methylsulfinylthiopyl, 8-methylsulfinyl	(i) Inhibition of initiation, proliferation, and metastasis	(i) Inhibited DNA damage (ii) Accumulation of cells in S phase of the cell cycle	[79]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-----------------	------------	-----------	-------	-----------------	---------------------	----------------	------------	------------
Polysiphonia	NM	SW-480,	20 and 40 μg/mL	Methanolic	2,5-Dibromo-3,4-dihydroxybenzyl n-propyl ether	Potentially could be used as a chemopreventive agent against colon cancer	(i) Inhibited Wnt/β-catenin pathway (ii) Repressed CRT in colon cancer cells (iii) Downregulated cyclin D1 (iv) Activated the NFκB pathway	[80]
Aristolochia debilis	Stem	HT-29	200 μg/mL	Methanolic	Aristolochic acid, nitrophenanthrene carboxylic acids	Inhibition of proliferation and induction of apoptosis in HT-29 cells	(i) Induction of sub-G1 cell cycle (ii) Generation of ROS and decrease of the MMP (iii) Bax overexpression and increase of Bax/Bcl-2 ratio	[81]
Myrtaceae	Leaf	HCT116	100 μg/mL (in vitro), 200 and 100 μg/disc (in vivo)	Methanolic	Phenols, flavonoid, betulinic acid	Strong inhibition of microvessel outgrowth	(i) Inhibition of tube formation on Matrigel matrix (ii) Inhibition of HUVECS migration (iii) Decreased nutrient and oxygen supply	[82]
Spica prunellae	Leaf	HT-29	200 mg/mL (in vitro), 600 mg/mL (in vivo)	Ethanollic	Rosmarinic acid	Inhibits CRC cell growth	(i) Suppresses STAT3 phosphorylation (ii) Regulates the expression of Bcl-2, Bax, cyclin D1, CDK4, VEGF-A, and VEGFR-2	[83]
Phytolacca americana	Root	HCT116	3200 μg/mL	Ethanollic	Jaligonic acids, kaempferol, quercetin, quercetin 3-glucoside, isoquercitrin, ferulic acid	Control of growth and spread of cancer cells	Reduction in the expressions of MYC, PLAU, and TEK	[84]
Morus alba	Leaf	HCT15	13.8 μg/mL	Methanolic	Epicatechin, myricetin, quercetin hydrate, luteolin, kaempferol, ascorbic acid, gallic acid, pelargonidine, p-coumaric acid	Cytotoxic effect on human colon cancer cells (HCT15)	(i) Apoptosis induction also involved in the downregulation of INOS (ii) Fragmentation of DNA (iii) Upregulation of caspase 3 activity	[85]
Rhodiola imbricata	Leaf	HT-29	200 μg/mL	Acetone and methanolic	Phenols, tannins, and flavonoids	(i) Antioxidant activity (ii) Inhibited proliferation of HT-29 cells	(i) Scavenge free radicals (ii) DPPH radical scavenging activity (iii) Increased metal chelating activity	[86]
Asiasarum heterotropoides F.	Dried A. radix	HCT116	20 mg/mL	Ethanollic	Asarinin and xanthoxyzol	Inhibition of the growth of HCT116 cells	(i) Caspase-dependent apoptosis (ii) Regulation of p53 expression at transcription level	[87]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-------------------------	------------	-----------------	-------------	-----------------	---	---	--	------------
Podocarpus elatus	Fruit	HT-29	500 mg/mL	Methanolic	Phenolic and anthocyanin	Reduction of proliferation of colon cancer cells	(i) Cell cycle delay in S phase (ii) 93% downregulation of telomerase activity and decrease in telomere length (iii) Induced morphological alterations to HT-29 cells	[88]
Echinacea purpurea	Flower	Caco-2, HCT116	0–2,000 mg/mL	Hydroethanolic	Cichoric acid	(i) Inhibition of proliferation (ii) Decreased telomerase activity in HCT116 cells	Induce apoptosis by increasing significantly caspase 3/7 activity and promote nuclear DNA fragmentation (i) Increase significantly caspase 3/7 activity (ii) Promote nuclear DNA fragmentation	[89]
	Root	COLO320	150 mg/mL	Hexanic	Caffeic acid derivatives, alkylamides, polyacetylenes, polysaccharides			[78]
Hop (Humulus lupulus L.), Franseria artemisioides	Leaf	NM	100 mg/kg b.w./day	Aqueous	Coumarin, lignans, quinones	30% reduction of tumor-induced neovascularization		[90]
	NM	Caco-2	NM	Ethanolic	Phenolic compounds, flavonoid, diterpenes			[91]
	Fruit	NL-17	0, 50, 100, 150 μg/mL	Methanolic	α-Mangostin (xanthone)		(i) Induction of caspase 3 and caspase 9 activation (ii) Induced cell cycle arrest at G1/G0 phase	[92]
	Stem, bark	HT-29	50 μg/mL	Chlormform-soluble	β-Mangostin, garchinone D, cratoxynanthone	Cytotoxic activity against HT-29 human colon cancer	Inhibition of p50 and p65 activation	[93]
Annona squamosa Linn	Leaf	HCT116	8.98 μg/mL	Crude, Aq ethyl acetate	Acetogenins (annoreticuin & isoannoreticuin) and alkaloids dopamine, salsolin, and coclurine	Inhibition of growth and proliferation of tumor cells	(i) Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release (ii) Activation of caspases 3/7, 8, and 9	[94]
Derris scandens	Stem	HT-29	5–15 μg/mL	Ethanolic	Benzyls and isoflavones (genistein, coumarins, scandinone)	Apoptosis and mitotic catastrophe of human colon cancer HT-29 cells	(i) Inhibition of α-glucosidase activity (ii) Scavenge free radicals	[95]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---------------------	-----------------------------	----------------	-------------	-----------------	---	--	--	------------
Eupatorium cannabinum	Aerial parts	HT-29	25 μg/mL	Ethanolic	Pyrrolizidine alkaloids (senecionine, senkirkine, monocrotaline, echimidine)	Induced alteration of colony morphology	(i) Upregulation of p21 and downregulation of NCL, FOS, and AURKA (ii) Mitotic disruption and nonapoptotic cell death via upregulation of Bcl-xl, limited TUNEL labeling, and nuclear size increase	[96]
Sorghum bicolor	The dermal layer of stalk	HCT116 & colon cancer stem cells	>16 and 103 μg/mL	Phenolic-rich ethanolic, acetone	Apigeninidin & luteolinidin	Antiproliferative	Target p53-dependent and p53-independent pathways (i) Elevation of caspase 3/7 activity (ii) Decrease in β-catenin, cyclin D1, c-Myc, and survivin protein levels (iii) Suppression of Wnt/β-catenin signaling in a p53-dependent (dermal layer) and partial p53-dependent (seed head) manner	[97]
Hibiscus cannabinus	Seed	HCT116	KSE	Ethanolic	Gallic acid, p-hydroxybenzoic acid, caffeic acid, vanillic acid, syringic acid, and p-coumaric and ferulic acids	Cytotoxic activity against human colon cancer HCT116 cells	Apoptosis via blockade of mid G1-late G1-S transition thereby causing G1 phase cell cycle arrest	[99]
Salix aegyptiaca L.	Bark	HCT116 & HT-29	300 μg/mL	Ethanolic	Catechin, salicin, catechol and smaller amounts of gallic acid, epigallocatechin gallate (EGCG), quercetin, coumarine acid, rutin, syringic acid, and vanillin	Anticarcinogenic effects in colon cancer cells	Apoptosis via inhibition of phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase signaling pathways	[100]
Rubus coreanum	Fruit	HT-29	400 μg/mL	Aqueous	Polyphenols, gallic acid, sanguine	Induction of apoptosis	(i) Induced activity of caspases 3, 7, and 9 (ii) Cleavage of poly(adenosine diphosphate-ribose) polymerase	[101]
Codonopsis lanceolata	Root	HT-29	200 μg/mL	N-Butanol fraction	Tannins, saponins, polyphenolics, alkaloids	Apoptosis in human colon tumor HT-29 cells	(i) Induced G0/G1 arrest (ii) Enhancement of expression of caspase 3 and p53 and of the Bax/Bcl-2 ratio	[102]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-----------------	------------	-----------	-------	-----------------	---	--	--	------------
Gleditsia sinensis	Thorn	HCT116	800 μg/mL	Aqueous	Flavonoid, lupine acid, ellagic acid glycosides	(i) Increase in p53 levels (ii) Downregulation of the checkpoint proteins, cyclin B1, Cdc2, and Cdc25c	Inhibition of proliferation of colon cancer cells	[90]
	Thorn	HCT116	600 μg/mL	Ethanolic	NM	(i) Caused cell cycle arrest at G2/M phase together with a decrease of cyclin B1 and Cdc2 (ii) Progression from G2/M phase	Inhibitory effect on proliferation of human colon cancer HCT116 cells	[91]
Ligustrum lucidum	Fruit	DLD-1	50 μg/mL	Aqueous	Oleanolic acid, ursolic acid	Inhibited proliferation	(i) Reduction of Tbx3 rescued the dysregulated P14ARF-P53 signaling	[94]
Zingiber officinale	Rhizome	HCT116	5 μM	Ethanolic	6-Paradol, 6- and 10-dehydrogingerdione, 6- and 10-gingerdione, 6- and 8- and 10-gingerol, 6-methylnigerol, zingerone, 6-hydroxyshogaol, 6-, 8-, 10-dehydroshogaol, diarylheptanoids	Inhibitory effects on the proliferation of human colon cancer cells	(i) Arrest at G0/G1 phase (ii) Reduced DNA synthesis	[103]
Grifola frondosa	Fruit	HT-29	10 ng/mL	Aqueous	Phenolic compounds (pyrogallol, caffeic acid, myricetin, protocatechuic acid)	Inhibition of TNBS-induced rat colitis	Induced cell cycle progression in G0/G1 phase	[104]
Cucumaria frondosa	The enzymatically hydrolyzed epithelium of the edible	HCT116	<150 μg/mL	Hydroalcoholic	Monosulphated triterpenoid glycoside frondoside A, the disulphated glycoside frondoside B, the trisulphated glycoside frondoside C	Inhibition of human colon cancer cell growth with a decrease in Cdc25c and increase in p21WAF1/CIP (ii) Apoptosis associated with H2AX phosphorylation and caspase 2	(i) Inhibition at S and G2-M phases	[105]
Rolandra fruticosa	Leaf & twigs	HT-29	10 and 5 mg/kg/day	Methanic	Sesquiterpene lactone (13-acetoxyrolandrolide)	Antiproliferative effect against human colon cancer cells	Inhibition of the NFκB pathway, NFκB subunit p65 (RelA), upstream mediators IKKβ and oncogenic K-ras	[106]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---------------------------------	----------------	---------------	----------------	-----------------	--	---	---	------------
Cydonia oblonga Miller	Leaf & Fruit	Caco-2	250–500 μg/mL	Methanolic	Phenolic compound (flavonol and flavone heterosides, 5-O-cafeoylquinic acid)	Antiproliferative effect against human kidney and colon cancer cells	(i) Suppression of factor activation, nuclear factor-kB (NFκB) activation, protein-1 (AP-1) transcription factor, mitogen protein kinases (MAPKs), protein kinases (PKs), namely PKC, growth-factor receptor- (GFR-) mediated pathways and angiogenesis	[107]
							(ii) Cell cycle arrest and induction of apoptosis, antioxidant, and anti-inflammatory effects	
Morchella esculenta	Fruits	HT-29	820 mg/mL	Methylene chloride	Steroids (mainly ergosterol derivatives) & polysaccharides & galactomannan	Antioxidant activity in HT-29 colon cancer cells	Induction of apoptosis via mitochondrial pathway by downregulation of Bcl-2 protein levels, caspase 3 activation, and subsequent PARP cleavage	[108]
Sedum kamtschaticum	Aerial part	HT-29	0–0.5 mg/mL	Methanolic	Buddlejasaponin IV	Induced apoptosis in HT-29 human colon cancer cells		[109]
Ginseng and *Glycyrrhiza glabra*	Leaf	HT-29	500 μL	Aqueous	Uracil, adenine, adenosine, Li-glycyrrhetinic acid, quiritin	NM	Antiproliferative effect determination of the protein levels of p21, cyclin D1, PCNA, and cdk-2, which are the key regulators for cell cycle progression	[110]
Orostachys japonicus	Leaf & stem	HT-29	2 mg/mL	Aqueous	Flavonoids, triterpenoids, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, polysaccharide	Antiproliferation in HT-29 colon cancer cells	Inhibited proliferation at G2 point of the cell cycle and apoptosis via tumor suppressor protein p53	[111]
Ginkgo biloba	Fruit & leaf	HT-29	20–320 mg/L	Aqueous	Terpene lactones and flavonoid glycosides	(i) Inhibited progression of human colon cancer cells	Increase in caspase 3 activities and elevation in p53 mRNA reduction in Bcl-2 mRNA	[112]
Oryza sativa	Seed	HT-29, SW 480, HCEC	100 μg/mL	Ethyl acetate	Phenolic compound (tricin, ferulic acid, caffeic acid, and methoxycinnamic acid)	Inhibition of the human colon cancer cell growth	(i) Induced apoptosis by enhanced activation of caspases 8 and 3 (ii) Decrease of the number of viable SW480 and HCEC cells (iii) Reduced colony-forming ability of these cells	[113]

Table 1: Continued.
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
Cnidium officinale Makino	Root	HT-29	305.024/mL	Ethanolic	Osthole, auraptenol, imperatorin	Inhibited proliferation of human colon cancer cells (HT-29)	Inhibition of the cellular proliferation via G0/G1 phase arrest of the cell cycle and induced apoptosis	[114]	
Cnidium officinale Makino	Root	HT-29	0.1-5 mg/mL	Aqueous	N-(3-(Aminomethyl)benzyl)acetamidine	Inhibited the invasiveness of cytokine-treated HT-29 cells through the Matrigel-coated membrane in a concentration-dependent manner	(i) Reduction of HT-29 cell invasion through the Matrigel (ii) Inhibited cytokine-mediated NO production, iNOS expression, and invasiveness of HT-29 cells (iii) Inhibited MMP-2 activity	[115]	
Long pepper (PLEX)	Fruit	HT-29 and HCT116	0.10 mg/mL	Ethanolic	Piperidine alkaloids, piperamides, piperlongumine	(i) Induction of apoptosis, following DNA fragmentation in HT-29 colon cancer cells in a time-dependent manner (ii) Induced caspase-independent apoptosis	Induced whole cell ROS production	[116]	
Achyranthes aspera	Root	COLO 205	50-100 and 150-200 μg/mL	Ethanolic (EAA) and aqueous (AAA) root extracts Aqueous	Phenolic compounds	(i) Enhanced growth inhibitory effects of AAA towards COLO 205 cells in contrast to EAA (ii) Stimulatory role of AAA in the activation of cell cycle inhibitors	(i) Triggered mitochondrial apoptosis pathway and S phase cell cycle arrest (ii) Increased levels of caspase 9, caspase 3, and caspase 3/7 activity	[117]	
Thymus vulgaris	Leaf	HCT116	0.2, 0.4, 0.6, 0.8 mg/mL		Carvacrol and thymol	Inhibited proliferation, adhesion, migration, and invasion of cancer cells		[118]	
Dictyopteris undulata	NM	SW480	40 μg/mL	Ethanolic	Cyclozonarone benzoquinone		Induced apoptosis by reducing Bcl-2 levels, upregulating Bax, and disrupting the mitochondrial membrane potential, leading to the activation of caspases 3 and 9	[119]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
----------------------------------	-------------------	-------------	----------------------	-----------------	---	--	--	------------	
Dendrobium microspermae	NM	HCT116	0.25, 0.5, 1.0 mg/mL	Methanolic	NM	NM	Upregulation of Bax and caspases 9 and 3 and downregulation of Bcl-2 expression of genes	[120]	
Cannabis sativa	Dry flower & leaf	DLD-1 and HCT116	0.3–5 μM	Methanolic	Cannabidiol, phytocannabinoids	Reduced cell proliferation in a CB1-sensitive	(i) Reduced AOM-induced preneoplastic lesions and polyps (ii) Inhibited colorectal cancer cell proliferation via CB1 and CB2 receptor activation	[121]	
Phoenix dactylifera L.	Fruit	Caco-2	0.2 mg/mL	Aqueous	Phenolic acids (gallic, protocatechuic, hydroxybenzoic, vanillic, isovanillic, syringic, caffeic, ferulic, sinapic, p-coumaric, isoferulic), flavonoid glycosides (quercetin, luteolin, apigenin, and kaempferol), and anthocyanidins	Increasing beneficial bacterial growth and inhibition of proliferation of colon cancer cells	(i) Inhibited cell proliferation of SW480 and CT26 by promoting apoptosis as indicated by nuclear chromatin condensation and DNA fragmentation (ii) Induced caspase 9 activity which further activated caspase 3 and poly(ADP-ribose) polymerase cleavage, leading the tumor cells to apoptosis	[122]	
Melia toosendan	Fruit	SW480, CT26	0, 10, 20, 30, 50 μg/mL	Ethanolic	Triterpenoids, flavonoids, polysaccharide, limonoids	NM	(i) Induction of a p53 pattern-dependent caspase 3 activation with a full G2/M stop (ii) Induced remarkable delay in S/G2 phase transit with entry into mitosis	[123]	
Crocus sativus L.	Flower	HCT116	0.25, 0.5, 1, 2, 4 μg/mL	Ethanolic	Carotenoid, pigment, crocin, crocetin	Induced DNA damage and apoptosis	(i) Induction of a p53 pattern-dependent caspase 3 activation with a full G2/M stop (ii) Induced remarkable delay in S/G2 phase transit with entry into mitosis	[124]	
	Tepals and leaf	Caco-2	0.42 mg/mL	NM	Polyphenols, glycosides of kaempferol, luteolin, and quercetin	Proliferation of Caco-2 cells was greatly inhibited	(i) Inhibited the cellular proliferation of HT-29 cells via G2/M phase arrest of the cell cycle (ii) Induced apoptotic cell death via ROS generation (iii) Accumulation of caspase 3 transcripts of HT-29 cells	[125]	
Lufla echinata	Fruit	HT-29	50, 100, and 200 μg/mL	Methanolic	Amarytin, echinat, saponins, hentiacontane, gypoxigenin, cucurbitacin B, daticacin, 2-O-β-D-glucopyranosyl cucurbitacin B, and 2-O-β-D-glucopyranosyl cucurbitacin S	Increase in the population of apoptotic cells	(i) Inhibited the cellular proliferation of HT-29 cells via G2/M phase arrest of the cell cycle (ii) Induced apoptotic cell death via ROS generation (iii) Accumulation of caspase 3 transcripts of HT-29 cells	[126]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
-----------------	------------	-----------	-------	-----------------	---------------------	----------------	------------	------------	
Vitis aestivalis hybrid	Fruits (wine)	CCD-18Co	25, 50, 100 μg/mL	NM	Polyphenolics	NM	(i) Decreased mRNA expression of lipopolysaccharide- (LPS-) induced inflammatory mediators NFκB, ICAM-1, VCAM-1, and PECAM-1 (ii) Enhanced expression of miR-126 (iii) Decreased gene expression and reduced activation of the NFκB transcription factor, NFκB-dependent (iv) Decrease in ROS 113MAH	[127]	
Xylopia aethiopica	Dried fruit	HCT116	0, 5, 10, 15, 20, 25, 30 μg/mL	Ethanolic	Ent-15-oxokaur-16-en-19-oic acid (EOKA)	NM	(i) Induced DNA damage, cell cycle arrest in G1 phase, and apoptotic cell death	[128]	
Sorghum	Grain	ER-β; nonmalignant young adult mouse colonocytes	1, 5, 10, 100 μg/mL	Aqueous	Flavones (luteolin and apigenin), 3-deoxyanthocyanins naringenin (eriodictyol and naringenin)	Reduced cell growth via apoptosis	Increased caspase 3 activity	[129]	
Panax notoginseng (Burk.) F.H. Chen	Root	LoVo and Caco-2	0, 100, 250, and 500 μg/mL	Alcoholic	Saponin, ginsenoside	NM	Delay in progression of the G0/G1, S, or G2/M cell cycle phases	[131]	
Brassica oleracea L. var. Italica	Broccoli florets	HCT116	0, 1, 2.5, 5, 10 μg/mL	Ethanolic	Glucoiberin, 3 hydroxy-4(α-L-rhamnopyranosyloxy), benzyglucosinolate 4-vinyl-3-pyrazolidinone 4-(methyl sulphinyl), butyl thiourea, β-thiogluoside N-hydroxysulphates	NM	NM	[132]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
---------------------------------	------------	-----------	-------------------	-----------------	--	--	---	------------	
Cistanche desertica	Dried stem	SW480	In vivo: 0.4 g/kg/day; In vitro: 100 μg/mL	Aqueous	Polysaccharides, phenylethanoid glycosides	(i) Decreased number of mucosal hyperplasia and intestinal helicobacter infection (ii) Increased number of splenic macrophage, NK cells, and splenic macrophages	Decreased frequency of hyperplasia and *H. hepaticus* infection of the intestine	[133]	
Chaenomeles japonica	Fruit	Caco-2 and HT-29	10, 25, 50, 75, 100, 125, 150 μM CE	NM	Procyanidins	NM	(i) Inhibited growth and lysed SW480, COLO, and WiDr (ii) Induction of massive cytoplasmic vacuoles	[134]	
Prunus mume	Fruit	SW480, COLO, and WiDr	150, 300, and 600 μg/mL	Hydrophobic	Triterpenoid saponins	NM	(i) Induced DNA fragments (ii) Increased the levels of p27, p53, cyclin B1, active-caspase 3, and Bax (iii) Decreased the levels of Cdk1, pro-caspase 9, Bcl-2 and NF-κB, p65, and p50	[135]	
Solanum lyratum	NM	COLO 205	50, 100, 200, 300, 400 μg/mL	EtOH	β-Lycotetraosyl	Induced S phase arrest and apoptosis	(i) Increase in the expression of proapoptotic proteins such as p53, p21, and Bax (ii) Inhibition of the antiapoptotic protein Bcl-2 (iii) Decrease in cyclin D1 protein	[136]	
Onopordum cynaraecephalum	Aerial parts	HCT116, HT-29	0, 0.04, 0.12, 0.2, 0.4, 1.2 mg/mL; 0, 0.2, 0.4, 1.2, 2.0, 3.0 mg/mL	Aqueous	Flavonoids, lignans, and sesquiterpene lactones	NM	(i) Inhibition of transcription of TCF/β-catenin (ii) Decrease in the level of nuclear β-catenin protein	[137]	
Eleutherine palmifolia	Bulbs	SW480	2.5, 5, 10 μg/mL	MeOH	Eleutherin, isoeleutherin	NM	(i) Inhibition of Akt, p70S6K, and ERK phosphorylation (ii) Induction of caspase 3 activity, PARP-1 cleavage, DNA fragmentation, G0/G1 cell cycle arrest by reducing the expression of cyclins D, A, and E	[138]	
Asparagus officinalis	Spears	HCT116	76 μg/mL	Acetone	Steroidal saponins (HTSA-1, HTSAP-2, HTSAP-12, HTSAP-6, HTSAP-8)	NM	(i) Inhibition of Akt, p70S6K, and ERK phosphorylation (ii) Induction of caspase 3 activity, PARP-1 cleavage, DNA fragmentation, G0/G1 cell cycle arrest by reducing the expression of cyclins D, A, and E	[139]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
---------------------------	------------	---------------	-------------	-----------------	--------------------	--	---	------------	
Phyllanthus emblica L.	Seed, pulp	HCCSCs, HCT116	200 μg/mL	Methanolic	Trigonelline, naringin, kaempferol, embinin, catechin, isorhamnetin, quercetin	(i) Suppressed proliferation (ii) Induced apoptosis independent from p53 stemness property (in HCCSCs) (iii) Antiproliferative properties	(i) Suppressed cell proliferation and expression of c-Myc and cyclin D1 (ii) Induced intrinsic mitochondrial apoptotic signaling pathway	[140]	
Red grape	NM	HT-29, HCT116	0.9-2.0 mg/mL	Hydroethanolic	Delphinidin glycosides, quercetin derivatives, delphinidin-3-O-glucoside (high), cyanidin-3-O-glucoside	(i) Highest growth inhibition (ii) Increased the percentage of apoptotic cells	(i) Downregulation of apoptotic proteins, such as cIAP-2, livin, survivin, and XIAP (ii) Inhibition of tyrosine kinase	[130]	
Black lentil	NM	HT-29, HCT116	0.9-2.0 mg/mL	Hydroethanolic	Delphinidin glycosides, procyanidin B1, delphinidin-3-O-glucoside (high), cyanidin-3-O-glucoside	(i) Significantly arrested HT-29 cells in G1 (ii) Highest growth inhibition (iii) Increased percentage of apoptotic cells	(i) Downregulation of apoptotic proteins, such as cIAP-2, livin, survivin, and XIAP (ii) Inhibition of tyrosine kinase	[130]	
Graptopetalum paraguayense	Leaf	Caco-2, BV-2	0.2, 0.4, 0.6, 0.8, 1.0 mg/mL	Hydroethanolic	Oxalic acid, hydroxybutanedioic acid, gallic acid, quercetin, chlorogenic acid glucans with fucose, xylose, ribose (GW100) arabinobio-hammoglactans (GW100E)	(i) Great potential in antiproliferation (ii) Significant immunomodulatory activities on BV-2 cells and interleukin-6 (IL-6) (GW 100)	(i) Scavenging α, α-diphenyl-β-pircyhydrazyl radicals (DPPH) (GW100E excelled in scavenging DPPH), 2,2-azino-bis [3-ethylbenothiazoline-6-sulfonic acid] radicals (ABTS), superoxide anions (O2) (GW 100) (ii) Significant inhibition of tumor necrosis factor-a (TNF-a), scavenging ABTS and O2	[141]	
Butea monosperma	Flower	SW480	200, 370 μg/mL	Floral	n-Butanol	Significant antiproliferative effect	(i) Significantly down regulated the expression of Wnt signaling proteins such as β-catenin, APC, GSK-3β, cyclin D1, and c-Myc (ii) Increased intracellular level of ROS	[142]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
--------------------------	------------	-----------	-------------	-----------------	--	--	--	------------	
Rehmannia glutinosa	NM	CT26	5, 20, 80 μM	NM	Catalpol	Inhibited proliferation and growth invasion of colon cancer cells	(i) Downregulated MMP-2 and MMP-9 protein expressions (ii) Reduction in the angiogenic markers	[143]	
Telectadium dongnaiense	Bark	HCT116	1.5, 2.0 μg/mL	MeOH extract	4-Dicaffeoylquinic acid, quercetin 3-rutinoside, petiplocin	NM	(i) Inhibition of β-catenin/TCF transcriptional activity and effects on Wnt/β-catenin (ii) Downregulation of the expression of Wnt target genes	[144]	
Gloriosa superba	Root	SW620	30 ng/mL	Protein hydrolysate extract	Protein hydrolysate	NM	(i) Upregulation of p53 (ii) Downregulation of NFκB	[145]	
Rowelia serrata	Resin	HT-29	100, 150 μg	Methanolic	Boswellic acid	Decreased cell viability	(i) Reduction in mPGES-1, VEGF, CXCR4, MMP-2, MMP-9, HIF-1, PGE2 expression (ii) Increment in the caspase 3 activity (iii) Inhibition of cell migration and vascular sprout formation	[146]	
Typhonium flagelliforme	Leaf	WiDr	70 μg/mL	Ethyl acetate	Glycoside flavonoid, isovitexin, alkaloids	NM	Inhibition of COX-2 expression	[28]	
Dispyros kaki	Fruit	HT-29	2,000 μg/mL	Hydroacetone extract	Polyphenol	Impaired cell proliferation and invasion	(i) Possession of high DPPH scavenging activity and effective capacity for iron binding (ii) Inhibition of NO radical, linoleic acid peroxidation, protein glycation, and oxidative damage	[147]	
Carpobrotus edulis	Leaf	HCT116	1,000 mg/mL	Hydroethanolic	Gallic acid, quercetin, sinapic acid, ferulic acid, luteolin 7-o-glucoside, hyperoside, isoorientin, ellagic acid,isorhamnetin 3-O-rutinoside	Inhibited proliferation	(i) 11-Hydroxy-12-methoxydihydrokavain, 11-hydroxy-12-methoxymethoxydihydrokavain, prenyl caffeate, pinostrobin chalcone, 11-methoxytetrahydroxyyangonin, awaine, mehysticin, dihydromethysticin, 5,6,7,8-tetrahydroxyyangonin, kavain, 7,8-dihydrokavain, yangonin, desmehystoxyyangonin, flavokawain B	[148]	
Piper methysticum	Root	HT-29	10, 20, 30, 50 μg/mL	Aqueous	11-Hydroxy-12-methoxydihydrokavain, 11-hydroxy-12-methoxydihydrokavain, prenyl caffeate, pinostrobin chalcone, 11-methoxytetrahydroxyyangonin, awaine, mehysticin, dihydromethysticin, 5,6,7,8-tetrahydroxyyangonin, kavain, 7,8-dihydrokavain, yangonin, desmehystoxyyangonin, flavokawain B	Inhibited the growth	NM	[26]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
--------------------	------------	-----------	-------------	------------------------------	---	------------------------------	---	------------	
Salvia balloti flora	Ground aerial parts	CT26	6.76 μg/mL	*Hexane-washed chloroform extract*	19-Deoxyicetexone, 7,20-dihydroanastomosine, icetexone, 19-deoxyisoicetexone	Cytotoxic activity	(i) Considerable loss of MMP (ii) Decreased in mitochondria function (iii) Increased cytochrome c in the cytosol (iv) Induced ROS/oxidative stress (v) Increased autophagy	[149]	
Tinospora cordifolia	Stem	HCT116	1, 10, 30, 50 μM	*Hydroalcoholic*	Clerodane furano diterpene glycoside, cordifoliosides A and B, sitosterol, ecldosterone, 7β,15,16-diepoxy-4α, 6β-dihydroxy-13(16),14-clerodadiene-17,12:18,1-diode	Induced chromatin condensation and fragmentation of nuclei of few cells	(i) Scavenging capacity towards ROO and HOCl (ii) Inhibition of nitroso compound formation	[150]	
Euterpe oleracea	Fruit	NM	35 μg/mL	*Hydroethanolic*	Vanillic acid, orientin, isoorientin	NM	(i) DNA fragmentation, PARP-1 cleavage, caspase 9 activation, downregulation of Bcl-2 and upregulation of Bax	[151]	
Salvia miltiorrhiza	NM	HCT116	7.4 ± 1.0, 4.4 ± 0.5 μg/mL	*Ethanolic*	Diterpene quinone	Decreased levels of pro-caspases 3 and 9	(i) DNA fragmentation, PARP-1 cleavage, caspase 9 activation, downregulation of Bcl-2 and upregulation of Bax	[152]	
Coffea	Bean	HCT116	1 mg/mL	*Aqueous*	Chlorogenic acid complex (CGA7)	NM	(i) DNA fragmentation, PARP-1 cleavage, caspase 9 activation, downregulation of Bcl-2 and upregulation of Bax	[153]	
Illicium verum	Fruit	HCT116	10 mg/mL	*Ethanolic*	Gallic acid quercetin	Induction of apoptosis and inhibition of key steps of metastasis	NM	(i) DNA fragmentation, PARP-1 cleavage, caspase 9 activation, downregulation of Bcl-2 and upregulation of Bax	[154]
García propinqua Craib	Leaf	HCT116	NM	*CH2Cl2 extract*	Benzophenones, xanthones, and caged xanthones	Potent inhibitory cytotoxicities	NM	(i) DNA fragmentation, PARP-1 cleavage, caspase 9 activation, downregulation of Bcl-2 and upregulation of Bax	[155]
	Stem, bark	HCT116	14.23, 23.95 μM	*MeOH, CH3Cl2 and EtOAc extract*	Xerophenone A, doiutungacarinones A and B, sampsonione, 7β-H-11-benzoyl-5α-xydroxy-6, 10-tetramethyl-1-(3-methyl-2-butanyl)-tetracyclotetradecane-2,12,14-trione, hypersampsonone M, assiguxanthone A (cudraxanthone Q), 40 10-O-methylxanthone V1	Potent inhibitory cytotoxicities	NM	(i) DNA fragmentation, PARP-1 cleavage, caspase 9 activation, downregulation of Bcl-2 and upregulation of Bax	[156]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
---------------------------------	------------	-----------	---------------	-----------------	--	--	--	------------	
Malus pumila Miller cv. Annurca	Fruit	Caco-2	400 mg/L	Methanolic	Chlorogenic acid, (+)catechin, (-)epicatechin, isoquercetin, rutin, phlorizin, procyanidin B2, phloretin, quercetin	WNT inhibitors and reduced WNT activity elicited by WNT5A	NM	[157]	
Malus domestica cv. Limoncella	Fruit	Caco-2	400 mg/L	Methanolic	Chlorogenic acid, (+)catechin, (-)epicatechin, isoquercetin, rutin, phlorizin, procyanidin B2, phloretin, quercetin	WNT inhibitors and reduced WNT activity elicited by WNT5A	NM	[157]	
Coix lacryma-jobi var. ma-yuen	Leaf	HCT116	0.5, 1 mg/mL	Aqueous	Coixspirolactam A, coixspirolactam B, coixspirolactam C, coixlactam, methyl dioxindole-3-acetate	Inhibited migration, invasion, and adhesion via repression of the ERK1/2 and Akt pathways under hypoxic conditions	NM	[158]	
Mesua ferrea	Stem, bark	HCT116, HT-29	3.3, 6.6, and 11.8 μg/mL	NM	Fractions (α-amyrin, SF-3, n-Hex) Downregulation of multiple tumor promoters	Upregulation of p53, Myc/Max, and TGF-β signaling pathways	[159]		
Taraxacum	Root	SGC7901, BGC823	3 mg/mL	Aqueous	NM	NM	Proliferation and migration through targeting IncRNA-CCAT1	[160]	
Portulaca oleracea	Leaf	HT-29 CSCs	2.25 μg/mL	Alcoholic	Oxalic, malic acid	NM	Inhibited expression of the Notch1 and β-catenin genes, regulatory and target genes that mediate the Notch signal transduction pathway	[161]	
Hordeum vulgare L.*	NM	HT-29	NM	Aqueous & juice	Protein, dietary fiber, the B vitamins, niacin, vitamin B6, manganese, phosphorus, carbohydrates (i) Inhibited proliferation of cancer cells (ii) Cytotoxic activity	Free radical scavenging activity	[162]		
Paraconiothyrium sp.	NM	COLO 205 and KM12	12.5 μM	Methyl ethyl ketone extract	n-Hexane, CH₂Cl₂, EtOAc, and MeOH fractions (A–D) (i) Growth inhibitory activity (ii) Antiproliferative effect	NM	[163]		
Mentha×piperita	Leaf	HCT116	5, 10, 20, 30, 40, 50 μg/mL	Aqueous	Polyphenols	NM	Inhibited replication of DNA and transcription of RNA which induce the ROS	[164]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
--------------------------------------	------------	-----------	-----------	-----------------	--	----------------	---	------------	
Mammea longifolia Planch. and Triana	Fruit	SW-480	25, 50, 100 μg/mL	Methanolic	NM	NM	Mitochondria-related apoptosis and activation of p53	[165]	
Rollinia mucosa (Jacq.) Baill.	NM	HCT116, SW-480	<4, <20 μg/mL	EtOH	Rollitacin, jimenezin, membranacin, desacytlyuvarkin, laherradurin	Cytotoxic activity	NM	[54]	
Anuma diversifolia Saff.	NM	SW-480	0.5 μg/mL	NM	Cherimolin-2	Cytotoxic activity	NM	[54]	
A. purpurea Moc. et Sessé ex Dunal	NM	HT-29	1.47 μg/mL	CHCl₃-MeOH	Purpurediolin, purpurenin, annoglaucin, annonacin A	Cytotoxic activity	NM	[54]	
Viguiera decurrens (A.Gray) A. Gray	NM	NM	3.6 μg/mL	Hex; EtOAc MeOH	β-Sitosterol-3-O-β-D-glucopyranoside, β-D-glucopyranosyl oleanolate,	Cytotoxic activity	NM	[54]	
Helianthella quinquenervis (Hook.) A. Gray	NM	HT-29	2-10 μg/mL	NM	Demethylenecalin	Cytotoxic activity	NM	[54]	
Smallanthus maculatus (Cav.) H. Rob.	NM	HCT15	<20 μg/mL	Acetone	Fraction F-4, fraction F-5, ursolic acid	Cytotoxic activity	NM	[54]	
Bursera fagaroides (Kunth) Engl.	NM	HP6	1.8×10⁻⁴ to 280 μg/mL	Hydroalcoholic	Podophyllotoxin, β-peltatin-A methyl ether, 5'-desmethoxy-β-peltatin-A methyl ether, desmethoxy-yatein, deoxypodophyllotoxin, burseranin, acetyl podophyllotoxin	NM	(i) Inhibitor of microtubules (ii) Ability to arrest cell cycle in metaphase	[54]	
Viburnum jucundum C.V. Morton	NM	HCT15	<20 μg/mL	Acetone	Ursolic acid	Cytotoxic activity	NM	[54]	
Hemiangium excelsum (Kunth) A.C.Sm.	NM	HCT15	<10 (μg/mL)	MeOH	PE; EtOAc; MeOH	Cytotoxic activity	NM	[54]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
-----------------	------------	-----------	-------	-----------------	---------------------	---------------	------------	------------	
Hyptis pectinata (L.) Poit.	NM	Col2	<4, <20 μg/mL	NM	Pectinolide A, pectinolide B, pectinolide C, α-pyrone, boronolide, deacetylepigmine	Cytotoxic activity	NM	[54]	
H. verticillata Jacq.	NM	Col2	<4, <20 μg/mL	NM	Dehydro-β-peltatin, methyl ether dibenzylbutyrolactone, (-)-yatein, 4′-demethyl-deoxyphyllostoxin	Nonspecific cytotoxic activity	NM	[54]	
H. suaveolens (L.)	NM	HF6	2.8-12 μg/mL	Chloroform and butanol	β-Apocircopodophyllin	Nonspecific cytotoxic activity	NM	[54]	
Salvia leucantha Cav.	Leaf, root, stem	HF6, HT-29, HCT15	14.9, 12.7, 9.9 μg/mL	CHCl3	Salvileucalin B, Hex: leaf, Hex: stem, DCM: leaf, DCM: stem	Cytotoxic activity	NM	[54]	
Vitex trifolia L.	NM	HCT15	3.5 to <1 (μg/mL)	Hexane and dichloromethane		Cytotoxic activity	NM	[54]	
Persea americana Mill.	NM	HT-29	<4 μg/mL and <20 μg/mL	Ethanol	1,2,4-trihydroxynonadecan, 1,2,4-trihydroxyheptadec-16-ene, 1,2,4-trihydroxyheptadec-16-yne	Cytotoxic activity	NM	[54]	
Linum scabra	Roots, aerial parts	HF6	0.2, 0.5, 2.3 μg/mL	Chloroform and butanol	DCM: MeOH, 6MPTOXPTOX		(i) Induction of cell cycle arrest in G2/M (ii) Inhibition of tubulin polymerization	[54]	
Phoradendron rathenbachianum (Seem.) Oliv.	NM	HCT15	3.6, 3.9, and 4.3 μg/mL	NM	Moronic acid	Cytotoxic activity	NM	[54]	
Cuphea aquipetala Cav.	NM	HCT15	18.70 μg/mL	Acetone		Cytotoxic inactivity	NM	[54]	
Galphimia glauca Cav.	NM	HCT15	0.63, 0.50, 1.99 μg/mL	EtOH, MeOH, aqueous		Cytotoxic activity	NM	[54]	
Mimulus glabratus Kunth	NM	HF6	12.64 μg/mL	MeOH		Cytotoxic activity	NM	[54]	
Picramnia antidesma Sw.	NM	HCT15	0.6 to 4.5 μM	EtOH, aqueous, picramnioside E, picramnioside D		Cytotoxic activity	NM	[54]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
---------------------------------	-------------------------	--------------------	---------------	----------------	--	-------------------	---	------------	
Penstemon barbatus (Cav.) Roth	NM	HF6	15.19 μg/mL	MeOH	NM	Cytotoxic activity	NM	[54]	
P. campanulatus (Cav.) Willd.	NM	HF6	6.74 μg/mL	MeOH	NM	Cytotoxic activity	NM	[54]	
Veronica americana Schwein.ex Benth.	NM	HF6	0.169 and 1.46 μg/mL	MeOH	NM	Cytotoxic activity	NM	[54]	
Zea mays L.	NM	HCT116, SW-480, SW-620	NM	NM	13-Hydroxy-10-oxy-trans-11-octadecenoic acid	Cytotoxic activity	NM	[54]	
Calabrina macrocarpa (Cav.) G. Don	NM	HCT15	10, 21, 9.1 μg/mL	PE, EtOAc, MeOH	Phytosterols (campesterol, stigmasterol, and β-sitosterol), gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), linoleic acid	Cytotoxic activity	NM	[54]	
Coix lacryma-jobi Seed, endosperm, and hull	HT-29	0.1–1,000 μg/mL	Methanolic, hexane	PE, EtOAc, MeOH	Phytosterols (campesterol, stigmasterol, and β-sitosterol), gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), linoleic acid	Cytotoxic activity	NM	[166]	
Abutilon indicum Leaf	HT-29	210 μg/mL	Aqueous		Flavonoids (4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, 2-ethoxy-4-vinylphenol, NN′-dimethylglycine, lup-20(29)-en-3-one, linolenin, 1-mono-, 9-hexadecenoic acid methyl ester, linolenic acid methyl ester), phenolic (amino acids, terpenoids, fatty acids, methyl palmitoleate)	NM	(i) Induced apoptosis through the activation of caspases 3, 8, 9 (ii) Modulated activation of mitogen and protein kinases, p38, and c-Jun NH2-terminal kinase	[167]	
Galla rhois	NM	HCT116, HT-29	12.5, 25, 50, 100, 200 μg/mL	Aqueous with steaming process	Gallo tannins	Increased contents of gallic acid and ellagic acid	NM	(i) Induced apoptosis through the activation of caspases 3, 8, 9 (ii) Modulated activation of mitogen and protein kinases, p38, and c-Jun NH2-terminal kinase	[168]
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
--------------------------------------	------------	-----------	-------------	-----------------	--------------------------------------	---	---	------------	
Artemisia annua Linné	Powder	HCT116	20, 30, 40, 60, 80, 100 μg/mL	Ethanollic	Phenolic compounds	Inhibited cell viability and increased LDH release	(i) PTEN/p53/PDK1/Akt signal pathways through PTEN/p53 induce apoptosis (ii) Increased apoptotic bodies, caspase 3 and 7 activation (iii) Regulated cytochrome c translocation to the cytoplasm and Bax translocation to the mitochondrial membrane	[169]	
Nelumbo nucifera stamen	Powder	HCT116	100, 200, 400 μg/mL	Ethanollic crude	NM	NM	(i) Increased the sub-G1 population, mRNA levels of caspases 3 and 8, levels of IκBα and caspase 9 (ii) Modulated the Bcl-2 family mRNA expression (iii) Reduced the mRNA levels of NFκB	[170]	
Corn silk	NM	LoVo, HCT116	1.25, 2.5, 5, 10, 20 μg/mL	Aqueous	Proteins, polysaccharides, flavonoid, vitamins, tannins, alkaloids, mineral salts, steroids	NM	(i) Increase in the Bax, cytochrome c, caspases 3 and 9 levels	[171]	
Lycium barbarum L.	Powder	HT-29	1, 2, 3, 4, 5 μg/mL	NM	Neoxanthin, all-trans-β-cryptoxanthin, polysaccharides, carotenoids, flavonoids	NM	(i) Upregulation of p53 and p21 expression (ii) Downregulation of the CDK2, CDK1, cyclin A, and cyclin B expression (iii) Arrest in the G2/M phase of cell cycle	[172]	
Chrysobalanus icaco L.	Freeze-dried fruit	HT-29	1, 2.5, 5, 10, 20 μg/mL	Crude ethyl acetate	Delphinidin, cyanidin, petunidin, and peonidin	NM	(i) Increased intracellular ROS production (ii) Decreased TNF-α, IL-1β, IL-6, and NFκB1 expressions	[173]	
Zanthoxylum piperitum De Candolle	Fruit	Caco-2, DLD-1	200 μg/mL	Aqueous	NM	NM	(i) Increased the phosphorylation of c-Jun N-terminal kinase (JNK)	[174]	
Celtis aetnensis (Tornah) Strobl (Ulmaceae)	Twigs	Caco-2	5, 50, 100, 250, or 500 μg/mL	Methanollic	Flavonoid and triterpenic compounds	NM	(i) Increase in the levels of ROS (ii) Decrease in RSH levels and expression of HO-1	[175]	
Scientific name	Parts used	Cell line	Conc.	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
-----------------------	------------	-----------	---------------------	--	--	--	---	------------	
Rosa canina	Peel and pulp	Caco-2	62.5, 125, 250, 500 μg/mL	*Total extract (fraction 1), vitamin C (fraction 2), neutral polyphenols (fraction 3), and acidic polyphenols (fraction 4)*	Polyphenols	Decreased production of reactive oxygen species (ROS)	NM	[176]	
Rhazya stricta	Leaf	HCT116	47, 63, 79, and 95 μg/cm²	*Crude alkaloid*	Alkaloids	NM	(i) Downregulated DNA-binding and transcriptional activities of NFκB and AP-1 proteins		
(ii) Increase in Bax, caspases 3/7 and 9, p53, p21 and Nrf-2 levels									
(iii) Decrease in expression of ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin, and VEGF	[177]								
Green coffee	NM	Caco-2	10-1,000 μg/mL	NM	5-Caffeoylquinic acid (5-CQA), 3,5-dicaffeoylquinic acid (3,5-DQQA), ferulic acid (FA), caffeic acid (CA), dihydrocaffeic acid (DHCA), dihydroferulic acid (DHFA)	Reduced viability of cancer cells	NM	[178]	
Flourensia microphylla	Leaf	HT-29	NM	*Ethanolic and acetone*	Phenolic compounds	NM	(i) Inhibition of IL-8		
(ii) Activation of apoptosis by the increment of the Bax/Bcl-2 ratio and expression of TNF family | [179] |

NM: not mentioned.
Table 2

(a) Efficacy of medicinal plants on colon cancer in *in vivo* models

Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
Vitis vinifera Seed	*In vivo* (murine)	Caco-2	*In vivo*: 400–1,000 mg/kg					
In vitro: 10–25 µg/mL	*Aqueous*	Procyanidins	(i) Increased crypt depth and growth inhibitory effects					
(ii) Inhibited cell viability								
(iii) Significantly decreased the histological damage score	Reduced MPO (myeloperoxidase) activity	[180]						
Skin	*In vivo*	HT-29, SW480	5 mg/kg	*Aqueous*	NM	NM	Decreased VEGF, TNF, MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, and MMP-13 protein expression	[181]
Seed	*In vivo*	NM	7.5, 30, 60 µg/mL	*Methanolic*	4′-Geranyloxyferulic acid	NM	NM	(i) Suppressed proliferation, sphere formation, nuclear translocation of β-catenin and Wnt/β-catenin signaling
(ii) Elevated p53, Bax/Bcl-2 ratio, and cleaved PARP and mitochondrial-mediated apoptosis	[30]							
Seed	*In vivo* (murine)	NM	0.12% w/w	NM	Catechin, epicatechin	NM	NM	
Camellia sinensis Leaf	*In vivo* (murine)	HT-29	*In vitro*: 0, 10, 30, 50 µM per day	*Aqueous*	Catechin, epigallocatechin gallate	1.9-fold increase in tumor endothelial cell apoptosis	Inhibited the ERK-1 and ERK-2 activation, VEGF expression, and VEGF promoter	[182]
In *vivo* (murine)	HCT116	0.5%	NM	NM	Reduced basement membrane	Inhibition of MMP-9 and VEGF secretion	Inhibition of edema formation correlated to attenuation of COX-2 expression and promoter analysis revealed	[183]
In *vivo* (murine)	Caco-2, HT-29	300 µM	*Aqueous* (TF-2, TF-3, TF-1)	Theaflavins	Induced apoptosis of human colon cancer cells			[36]
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
Sasa quelpaertensis	Leaf	*In vivo*	HT-29, HCT116, 0, 100, 200, 300 mg/L	Ethanol	p-Coumaric acid, tricin	Inhibition of colony formation	(i) Nonadherent sphere formation suppressed CD133+ & CD44+ population	[41]
							(ii) Downregulated expression of cancer stem cell markers	
Anoectochilus	NM	*In vivo*	CT26, oral dose of 50 & 10 mg/mouse per day	Aqueous	Kinsenoside	Stimulated proliferation of lymphoid tissues	Activation of phagocytosis of peritoneal macrophages	[185]
Purple-fleshed potatoes	Fruit	*In vivo*	Colon cancer stem cells, 5.0 μg/mL	Ethanol, methanol, ethyl acetate	Anthocyanin, β-catenin, cytochrome c	Reduction in colon CSCs number and tumor incidence	(i) Increase in cytochrome c levels from p53 status and maybe mitochondria-mediated apoptosis	[58]
							(ii) Suppressed levels of cytoplasmic and nuclear β-catenin	
Phaseolus vulgaris	Leaf	*In vivo*	HT-29, Nm	Ethanol	Polysaccharides, oligosaccharides	Induction of apoptosis and inhibit proliferation	(i) Inactivation of the retinoblastoma phosphoprotein	[59]
							(ii) Induced G1 arrest	
							(iii) Suppression of NF-jb1	
							(iv) Increase in EGR1 expression	
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---------------------------------	------------	-----------	---------------------	-----------------	---	--	---	------------
Rosmarinus officinalis L.	Leaf	*In vivo*	HT-29	SC-RE	Polyphenols (carnosic acid (CA) and carnosol)	(i) Activation of Nrf2 transcription factor		
(ii) Activated common regulators, such as XBP1 (Xbp1) gene, SREBF1/SREBF2 (Srebp1/2), CEBPA and NR1I2 (Pxr) genes								
	Leaf	*In vivo* (rat)	NM	NM	Ethanolic	Rosmanol and its isomers, carnosol, rosmadial, carnosic acid, and 12-methoxycarnosic acid, carnosic acid, carnosol		
Interactions with the gut microbiota and by a direct effect on colonocytes with respect to the onset of cancer or its progression	(i) Activation of TNF-α, Fas-L, caspases							
(ii) Truncated Bid and cytochrome c								
(iii) Decreased phosphorylation of Akt and Mtor								
(iv) Promoted expression of microtubule-associated protein 1 light chain 3-H1 and AVO formation	[186]							
Wasabia japonica	Rhizomes	*In vivo*	COLO 205	Methanolic	6-(Methylsulfonyl)hexyl isothiocyanate	Anticolon cancer properties through the induction of apoptosis and autophagy	(i) LDH release	
(ii) ROS generation								
(iii) Collapse in mitochondrial membrane potential								
(iv) Cytochrome c leakage								
(v) Activation of caspase 9 and caspase 3	[187]							
Zingiberaceae	Rhizome	HT-29	HT-29	Dichloromethanic	Turmerone	Suppressed the proliferation of HT-29 colon cancer cells		
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---	---	---	---	---	---	---	---	---
Panax quinquefolius	Root	*In vivo* (murine)	NM	30 mg/kg	Ethanolic	Ginsenosides (protopanaxadiol or protopanaxatriol)	Attenuated azoxymethane/DSS-induced colon carcinogenesis by reducing the colon tumor number and tumor load	(i) Reduced experimental colitis (ii) Attenuated on AOM/DSS-induced colon carcinogenesis (iii) Proinflammatory cytokines activation (iv) Suppressed DSS (v) Downregulated inflammatory cytokine gene expression
Myrtaceae	Leaf	*In vivo* (murine)	HCT116	100 μg/mL (in vitro) 200 and 100 μg/disc (in vivo)	Methanolic	Phenolics, flavonoids, betulenic acid	Inhibition of tumor angiogenesis	(i) Inhibition of angiogenesis of tube formation on Matrigel matrix and HUVECS migration (in vitro) (ii) Decreased nutrient and oxygen supply and consequently tumor growth and tumor size (in vivo) (iii) Increased extent of tumor necrosis
Spica prunellae	Leaf	*In vivo*	HT-29	200 mg/mL (in vitro), 600 mg/mL (in vivo)	Ethanolic	Rosmarinic acid	Induction of apoptosis and inhibition of cell proliferation and tumor angiogenesis	(i) Induced apoptosis (ii) Inhibited cancer cell proliferation and angiogenesis STAT3 phosphorylation (iii) Regulated expression of Bcl-2, Bax, cyclin D1, CDK4, VEGF-A, and VEGFR-2 (in vivo)
Gymnaster koraiensis	Aerial part	*In vivo* (murine)	NM	500 μmol/kg	Ethanolic	Gymnasterkoreaynes B, C, E, 2,9,16-heptadecatrien-4,6-dyne-8-ol	Anti-inflammatory and cancer preventive activities	(i) Significant decrease in expression of COX-2 (ii) Increase in serum IL-6
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---------------------	------------------	----------------------------	---------------	-----------------	---	---	--	------------
Allium fistulosum	Edible portions	*In vivo* (murine) CT26	50 mg/kg b.w.	*Hot water*	p-Coumaric acid, ferulic acid, sinapic acid, quercitrin, isoquercitrin, quercetol, kaempferol	Suppression of tumor growth and enhanced survival rate of test mice	(i) Decreased expression of inflammatory molecular markers	
(ii) Down regulated expression of MMP-9 and ICAM								
(iii) Metabolite profiling and candidate active phytochemical components	[190]							
Annona squamosa Linn	Leaf	*In vivo* (animal) HCT116	8.98 μg/mL	*Crude ethyl acetate*	Acetogenins (annoreticuin & isoannoreticuin) and alkaloids dopamine, salsololin, and coclaurine	(i) Inhibited growth and proliferation of tumor cells	Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release, and caspases 3/7, 8, 9 activation	[191]
Eupatorium cannabinum	Aerial parts	*In vivo* (murine) HT-29	25 μg/mL	*Ethanol*	Pyrrolizidine alkaloids (senecionine, senkirkine, monocrotaline, echimidine)	Cytotoxicity against colon cancer cells	(i) Upregulation of p21 and downregulation of NCL, FOS, and AURKA, indicating reduced proliferation capacity	
(ii) Mitotic disruption and nonapoptotic cell death via upregulation of Bcl-xL	[96]							
Flacourtia indica	Aerial parts	*In vivo* (murine) HCT116	500 μg/mL	*Methanolic*	Phenolic glucoside (flacourtin, 4′-benzoylpoliothrysoside)	Antiproliferative and proapoptotic effects in HCT116 cells	Apoptosis via generation of ROS and activation of caspases (PARP)	[192]
Sorghum bicolor	The dermal layer of stalk	*In vivo* (murine) HCT116 & colon cancer stem cells	>16 and 103 μg/mL	*Phenolic, acetone*	Apigeninidin & luteolinidin	Antiproliferative effect	(i) Target p53-dependent and p53-independent pathways	[97]
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---	---	---	---	---	---	---	---	---
Gleditsia sinensis	Thorn	*In vivo*	HCT116	800 μg/mL	Aqueous	Inhibited proliferation of colon cancer	(i) Increased p53 levels (ii) Downregulation of the checkpoint proteins, cyclin B1, Cdc2, and Cdc25c	[90]
	Thorn	*In vivo*	HCT116	600 μg/mL	Ethanol	Inhibitory effect on the proliferation of human colon cancer HCT116 cells	(i) Caused G2/M phase cell cycle arrest	[91]
Zingiber officinale	Rhizome	*In vitro*	HCT116	5 μM	Ethanol	Inhibitory effects on the proliferation of human colon cancer cells	(i) Arrest of G0/G1 phase (ii) Reduced DNA synthesis (iii) Induced apoptosis	[103]
		in vivo	HCT116	<150 μg/mL	Hydroalcoholic	Monosulphated triterpenoid glycoside frondoside A, the disulphated glycoside frondoside B, the trisulphated glycoside frondoside C	(i) Inhibition at S and G2-M phase with a decrease in Cdc25c (ii) Increase in p21WAF1/CIP (iii) Apoptosis associated with H2AX phosphorylation and caspase 2	[105]
Cucumaria frondosa	The enzymatically hydrolyzed epithelium of the edible	*In vivo*	HCT116	<150 μg/mL	Hydroalcoholic	Monosulphated triterpenoid glycoside frondoside A, the disulphated glycoside frondoside B, the trisulphated glycoside frondoside C	(i) Inhibition at S and G2-M phase with a decrease in Cdc25c (ii) Increase in p21WAF1/CIP (iii) Apoptosis associated with H2AX phosphorylation and caspase 2	[105]
Rolandra fruticosa	Leaf & twigs	*In vivo*	HT-29	10 and 5 mg/kg/day	Methanolic	Sesquiterpene lactone (13-acetoxyrolandrolide)	(i) Inhibition of the NFκB pathway, subunit p65 (RelA) and upstream mediators IKKβ and oncogenic K-ras	[106]
Cydonia oblonga Miller	Leaf & fruit	*In vivo*	Caco-2	250–500 μg/mL	Methanolic	Phenolic compound (flavonol and flavone heterosides, 5-O-cafeoylquinic acid)	(i) Suppression of NFκB activation, activator (AP-1), mitogen-activated protein kinases, namely, PKC, (GFR)-mediated pathways (ii) Cell cycle arrest (iii) Induction of apoptosis, antioxidant, and anti-inflammatory effects	[107]
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-----------------	------------	-------	------	-----------------	---------------------	-----------------	------------	------------
Sedum kamtschaticum	Aerial part	*In vivo* (murine)	HT-29	0–0.5 mg/mL	Methanolic	Buddlejasaponin IV	Induced apoptosis in HT-29 human colon cancer cells	(i) Induced apoptosis via mitochondrial-dependent pathway triggered by downregulation of Bcl-2 protein levels, caspase 3 activation, and subsequent PARP cleavage
Ganoderma lucidum	Caps & stalks	*In vivo* (murine)	HT-29	0–0.1 mg/mL	Triterpene extract (hot water) extract	Polysaccharides (mainly glucans & glycoproteins), triterpenes (ganoderic acids, ganoderic alcohols, and their derivatives)	Cytokine expression inhibited during early inflammation in colorectal carcinoma	Induced autophagy through inhibition of p38 mitogen-activated kinase and activation of farnesyl protein transferase (FPT)
Ginkgo biloba	Fruit & leaf	*In vivo* (murine)	HT-29	20–320 mg/L	Aqueous	Terpene lactones and flavonoid glycosides	Inhibited progression of human colon cancer cells induced HT-29 cell apoptosis	(i) Activation in caspase 3, reduction in Bcl-2 expression, and elevation in p53 expression
Rubus occidentalis	Fruit	*In vivo* (murine)	JB6 Cl 41	25 μg/mL	Methanolic	β-Carotene, α-carotene, ellagic acid, ferulic acid, coumaric acid	Inhibited tumor development	(i) Impaired signal transduction pathways leading to activation of AP-1 and NFB RU-ME fraction
Oryza sativa	Seed	*In vivo* (murine)	HT-29, SW 480, HCEC	100 μg/mL	Ethyl acetate extract	Phenolic compound (tricin, ferulic acid, caffeic acid, and methoxycinnamic acid)	Inhibited growth of human colon cancer cells	(i) Induction of apoptosis by enhanced activation of caspases 8 and 3 (ii) Decreased the number of viable SW480 and HCEC cells
Cistanche deserticola	Dried stem	*In vivo* (murine)	SW480	0.4 g/kg/day	Aqueous	Polysaccharides, phenylethanoid glycosides	Decreased mucosal hyperplasia and helicobacter infection	(i) Increased number of splenic macrophages and NK cells (ii) Decreased frequency of hyperplasia and *H. hepaticus* infection of the intestine
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-------------------------------	------------	--------------------------------	--------------	-----------------	--	--	--	-------------
Rehmannia glutinosa	NM	*In vivo* (male C57BL6 mice and Sprague-Dawley rats)	CT26	NM	NM	Catalpol	(i) Inhibited proliferation, growth, and expression of angiogenic markers	[143]
	Olive mill wastewater	*In vivo* (murine)	NM	NM	Methanolic	Hydroxytyrosol	Interferes with tumor cell growth	NM
Olea europaea	Leaf	*In vivo* (xenograft model) (murine)	HCT116, HCT8	0, 5, 10, 20, 30, 50, and 70 µg/mL	Phenolic	Oleuropein and hydroxytyrosol	(i) Activation of caspases 3, 7, and 9 (ii) Decrease of mitochondrial membrane potential and cytochrome c release (iii) Increase in intracellular Ca2+ concentration	[196]
Ginkgo biloba L.	Leaf	*In vivo* (rat)	NM	Methanolic	Flavonoid glycosides, terpene lactones, and ginkgolic acids	(i) Suppressed tumor cell proliferation, promoted apoptosis, and mitigated inflammation	NM	[197]
Rhus trilobata Nutt.	NM	*In vivo* (hamster)	NM	Aqueous	Tannic acid, gallic acid	Cytotoxic activity		[54]
Annona diversifolia Saff.	NM	*In vivo* (mice)	SW-480	1.5, 7.5 mg/kg/day	NM	Laherradurin		[54]
A. muricata L.	NM	*In vivo* (rat)	NM	EtOAc	A, B, and C, and cis- and trans-annomuricin-D-ones	Cytotoxic activity		[54]
Plumeria acutifolia Poir.	NM	*In vivo* (hamster)	NM	Aqueous	NM	Cytotoxic activity		[54]
Lasianthaea podocephala (A. Gray) K. M. Becker	NM	*In vivo* (hamster)	NM	Aqueous	NM	Cytotoxic activity		[54]
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
-------------------------------------	------------	---------------	--------------	-----------------	---	-------------------	-----------------------------	------------
Flourensia cernua DC.	NM	*In vivo* (hamster)	350 mg/kg/day	*Aqueous*	Flavonoids, sesquiterpenoids, monoterpenoids, acetylenes, \(p \)-acetophenones, benzopyrans, benzofurans	Cytotoxic activity	NM	[54]
Ambrosia ambrosioides (Cav.) W. W. Payne	NM	*In vivo* (hamster)	400 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Alnus jorullensis Kunth	NM	*In vivo* (hamster)	175 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Dimorphocarpa wislizeni (Engelm.) Rollins	NM	*In vivo* (hamster)	100 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Euphorbia pulcherrima Willd. ex Klotzsch	NM	*In vivo* (hamster)	200 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Acalypha monostachya Cav.	NM	*In vivo* (hamster)	400 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Crotalaria longirostrata Hook. & Arn.	NM	*In vivo* (hamster)	400 mg/kg/day, 350 mg/kg/day	*EtOH-CHCl₃*		Cytotoxic activity	NM	[54]
Asterohyptis stellulata (Benth.) Epling	NM	*In vivo* (hamster)	50 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Acacia constricta A. Gray	NM	*In vivo* (hamster)	400 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Holodiscus dumosus A. Heller	NM	*In vivo* (hamster)	350 mg/kg/day	*Aqueous*		Cytotoxic activity	NM	[54]
Butea monosperma	Flower	*In vivo* (rat)	HT-29	*n-Butanol extract*	Isocoreopsin, butrin, and isobutrin	Free radical scavenging and anticancer activities	NM	[198]
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---------------------	------------	------------------------------	--------------------	-----------------	--	--------------------------------------	--------------------------------------	------------
Taraxacum spp.	Root	*In vivo* (xenograft murine model)	HT-29, HCT116	Aqueous	α-Amyrin, β-amyrin, lupeol, and taraxasterol	Induced programmed cell death	NM	[199]

*NM: not mentioned.

(b) Other effects of medicinal plants in *in vivo* models

Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
Allium sativum	Root	*In vivo* (murine)	NM	Ethanolic	Allicin, S-allylmethanethiol, and S-acetylmercaptocysteine	Significantly suppressed both the size and number of colon adenomas	Enhancement of detoxifying enzymes: SAC and GST activity	[200]
			2.4 mL of daily					
		In vivo	Caco-2	Aqueous	Phenolic compounds, authentic hydroxyl tyrosol (HT)	(i) Effect of OPE and HT on CB1 associated with reduced proliferation of Caco-2 cells	Increase in Cnr1 gene expression, CB1 protein levels	[201]
			50 μM					
Olea europaea	Fruit	*In vivo* (murine)	HT115	Hydroethanolic	Phenolic compounds (p-hydroxyphenyl ethanol, pinoresinol & dihydroxyphenyl ethanol)	NM	Inhibition via reduced expression of a range of α5 & β1	[184]
			25 μg/mL					
Origanum vulgate L.	Leaf	*In vivo* (murine)	NM	Aqueous	Rosmarinic acid, caffeic acid, flavonoids	Antioxidant status	(i) Increased LPO products and activity of SOD and CAT enzymes and GST and GPx activity	[202]
			20, 40, 60 mg·kg⁻¹				(ii) Antioxidant and anticancerogenic effect	
Hazelnut	Skin	*In vivo*	NM	Aqueous	Flavan-3-ols, in monomeric and polymeric forms, and phenolic acids	(i) Decreased circulating levels of free fatty acids and triglycerides	Increase of the total antioxidant capacity of plasma	[203]
			The flow rate 0.21 mL/min and injection volume 9.4 μL					
Apples and apple juice	Fruit	*In vivo*	NM	Aqueous	Phenolic acids, flavonoids, tannins, stilbenes, curcuminoids	NM	NM	[204]
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
--------------------------	------------	---------------	---------------	-----------------	---	--	--	------------
Grifola frondosa	Fruit	*In vivo* (murine)	HT-29	10 ng/mL	Aqueous	Phenolic compounds (pyrogallol, caffeic acid, myricetin, protocatechuic acid, etc.)	Inhibition of TNBS-induced rat colitis	(i) Induced cell cycle progression in G0/G1 phase and apoptotic death [104]
Ruta chalepensis	Leaf	*In vivo* (human)	NM	250 μg/mL	Ethanolic	Rutin, gallic acid, catechin hydrate, naringin	Oxidative profile in patients with colon cancer	NM [205]
Cannabis sativa	Dry flower & leaf	*In vivo* (murine)	DLD-1, and HCT116	0.3–5 μM	Methanolic	Cannabidiol, phytocannabinoids	(i) Reduced cell proliferation in a CB1-sensitive and AOM-induced preneoplastic lesions and polyps	
(ii) Inhibition of colorectal cancer cell proliferation via CB1 and CB2 receptor activation	[121]							
Melatoosendan	Fruit	*In vivo* (murine)	SW480, CT26	0, 10, 20, 30, 40, 50 μg/mL	Ethanolic	Triterpenoids, flavonoids, polysaccharides, limonoids	(i) Inhibited cell proliferation of SW480 and CT26 by promoting apoptosis as indicated by nuclear chromatin condensation and DNA fragmentation	
(ii) Induced caspase 9 activity which further activated caspase 3 and poly(ADP-ribose) polymerase cleavage, leading the tumor cells to apoptosis	[123]							
Smallanthus sonchifolius	Root	*In vivo* (murine)	NM	73.90, 150.74, 147.65, and 123.26 mg/kg	Aqueous	Fructans	Reduction incidence of colon tumors expressing altered β-catenin	[206]
Punica granatum	Peel	*In vivo* (adult male Wistar rats)	NM	4.5 g/kg	Methanolic	Gallic acid, protocatechuic acid, catechin, rutin, ellagic acid, punicalagin	(i) Reduction in TGF-β, Bcl-2, EGF, CEA, CCSA-4, MMP-7 and in COX-2, cyclin D1, survivin content	
(ii) Downregulated expression of β-catenin, K-ras, c-Myc genes	[207]							
Linum usitatissimum	Seed	*In vivo* (male Sprague-Dawley rats)	NM	500 mg/kg	Alkaline	Secoisolariciresinol diglucoside, carbohydrates, proteins, and tannins	Reduced the serum fasting glucose levels	Significantly reduced the HbA1c, insulin levels, and proinflammatory cytokines
Diospyros kaki	Fruit	*In vivo* (male)	NM	15 mg/kg	Hydroacetone	Polyphenol	(i) Decreased attenuation of colon length in Decreased expression of COX-2 and iNOS in the colonic tissue	[147]
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References
---	---	---	---	---	---	---	---	---
Muntingia calabura	Leaf	*In vivo* (rat)	NM	50, 250, 500 mg/kg	Methanolic	Rutin, gallic acid, ferulic acid, and pinocembrin	Reduction of the colonic oxidative stress, increasing the antioxidants levels possibly via the synergistic action of several flavonoids	NM
Portulaca oleracea	NM	*In vivo* (murine)	HT-29 CSCs	2.25 μg/mL	Alcoholic	Polysaccharides	Regulatory and target genes that mediate the Notch signal transduction pathway	Inhibition of expression of the Notch1 and β-catenin genes
Aloe vera	Gel	*In vivo* (murine)	NM	400 mg/kg/day	Gel	Polysaccharides		
Artemisia annua Linné	Powder	*In vivo* (xenograft murine model)	HCT116	20, 40 mg/kg/day	Ethanolic	Phenolic compounds		

CD-1 mice)

- (ii) Reduced mortality rate
- (iii) Reduction of the extent of visible injury (ulcer formation) and mucosal hemorrhage

(i) Via inhibition of the cell cycle progression
(ii) Induction of cellular factors, such as extracellular signal-regulated kinases 1/2, cyclin-dependent kinase 4, and cyclin D1; on the other hand, PAG increased the expression of caudal-related homeobox transcription factor 2

(i) Induced apoptosis via PTEN/p53/PDK1/Akt signal pathways through PTEN/p53
(ii) Inhibited cell viability and increased LDH release and apoptotic bodies, caspase 3 and 7 activation, and reduced mitochondria membrane potential
(iii) Regulated cytochrome c translocation to the cytoplasm and Bax translocation to the mitochondrial membrane
(iv) Regulation of proteins
Scientific name	Parts used	Model	Dose	Type of extract	Important compounds	Cellular effect	Mechanisms	References	
Hordeum vulgare	Powder	*In vivo* (xenograft murine model)	HT-29	2 g/kg and 1 g/kg	*Aqueous (fermented)*	β-Glucan, protein, amino acids, phenolic compounds	NM	(i) Promoted tumor apoptosis by upregulating the mRNA expression of Bax and caspase 3 and downregulating the mRNA expression of Bcl-2 and cyclin D1 (ii) Decreased mRNA expression of Bcl-2 and cyclin D1 (iii) Upregulated expressions levels of Bax and caspase 3	[211]
Dendrophthoe pentandra	Leaf	*In vivo* (murine)	NM	125, 250, 500 mg/kg	*Ethanolic*	Quercetin-3-rhamnose	NM	(i) Decreased the levels of IL-22, MPO levels, proliferation of epithelial cells (ii) Inhibited S phase of the cell cycle (iii) Upregulated p53 wild-type gene expression	[212]
Aquilaria crassna	Stem, bark	*In vivo* (murine)	HCT116	2,000 mg/kg/day 100, 200 mg/kg	NM	Resin and essential oils	NM	NM	[213]
Berberis integerrima	NM	*In vivo* (murine)	NM	50 and 100 mg/kg	*Hydroalcoholic*	NM	NM	NM	[214]
Salix aegyptiaca	Bark	*In vivo* (murine)	NM	100 and 400 mg/kg	*Ethanolic*	Catechin, catechol, and salicin	NM	Decreased level of EGFR, nuclear β-catenin, and COX-2	[215]
alkaloids, glycosides, and phenols, such as quercetin and luteolin, and kaempferol and luteolin glycosides.

In a systematic review of the plants being studied, some mechanisms were mainly common, including the induction of apoptosis by means of an increase of expression and levels of caspase 2, caspase 3, caspase 7, caspase 8, and caspase 9 in cancer cells, increasing the expression of the proapoptotic protein Bax and decreasing the expression of the anti-apoptotic proteins.

Many herbal extracts block specific phase of the cell cycle. For instance, the extract prepared from the leaves of Annona muricata inhibits the proliferation of colon cancer cells and induces apoptosis by arresting cells in the G1 phase [53]. They can also prevent the progress of the G1/S phase in cancer cells [74]. In general, the herbal extracts reported here have been able to stop cancer cells at various stages, such as G2/M, G1/S, S phase, G0/G1, and G1 phase, and could prevent their proliferation and growth.

Other important anticancer mechanisms are the increase of both p53 protein levels and transcription of its gene. Even the increase of p21 expression is not without effect [137]. In an in vitro study on the Garcinia mangostana roots, the results were indicative of the inhibitory effect of the extract of this plant on p50 and P65 activation [93]. Moreover, reduction of cyclin D1 levels and increase of p21 levels are among these mechanisms [137], as well as inhibition of NFκB.
and reduction of the transcription of its genes, which contribute to reduce the number of cancerous cells [127]. Other important anticancer mechanisms are the inhibition of COX-2, as well as the reduction of the protein levels in this pathway [34]. In addition to this, in some cases, the inhibition of MMP-9 can be mentioned as the significant mechanism of some herbal extracts to kill cancer cells [183].

4. Conclusion and Perspectives

The findings of this review indicate that medicinal plants containing various phytochemicals, such as flavonoids, polyphenol compounds, such as caffeic acid, catechins, saponins, polysaccharides, triterpenoids, alkaloids, glycosides, and phenols, such as quercetin and luteolin, and kaempferol and luteolin glycosides, can inhibit tumor cell proliferation and induce apoptosis.

Plants and their main compounds affect transcription and cell cycle via different mechanisms. Among these pathways, we can point to induction of superoxide dismutase to eliminate free radicals, reduction of DNA oxidation, induction of apoptosis by inducing a cell cycle arrest in S phase, reduction of PI3K, P-Akt protein, and MMP expression, reduction of antiapoptotic Bcl-2, Bcl-xL proteins, and decrease of proliferating cell nuclear antigen (PCNA), cyclin A, cyclin D1, cyclin B1, and cyclin E. Plant compounds also increase the expression of both cell cycle inhibitors, such as p53, p21, and p27, and BAD, Bax, caspase 3, caspase 7, caspase 8, and caspase 9 proteins levels. In general, this study showed that medicinal plants are potentially able to inhibit growth and proliferation of colon cancer cells. But the clinical usage of these results requires more studies on these compounds in in vivo models. Despite many studies’ in vivo models, rarely clinical trials were observed among the studies. In fact, purification of herbal compounds and demonstration of their efficacy in appropriate in vivo models, as well as clinical studies, may lead to alternative and effective ways of controlling and treating colon cancer.

Conflicts of Interest

There is no conflict of interest regarding the publication of this paper.

Authors’ Contributions

Dr. Paola Aiello and Maedeh Sharghi contributed equally to this work. Shabnam Malekpour Mansourkhani and Azam Pourabbasi Ardekan contributed equally to this work.

Acknowledgments

The authors appreciate and thank Dr. Moahammad Firouzbakht for his cooperation in draft editing.

References

[1] A. J. M. Watson and P. D. Collins, "Colon cancer: a civilization disorder," Digestive Diseases, vol. 29, no. 2, pp. 222–228, 2011.
[2] R. R. Huxley, A. Ansary-Moghaddam, P. Clifton, S. Czernichow, C. L. Parr, and M. Woodward, "The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence," International Journal of Cancer, vol. 125, no. 1, pp. 171–180, 2009.
[3] D. J. Schultz, N. S. Wickramasinghe, M. M. Ivanova et al., "Anacardic acid inhibits estrogen receptor α-DNA binding and reduces target gene transcription and breast cancer cell proliferation," Molecular Cancer Therapeutics, vol. 9, no. 3, pp. 594–605, 2010.
[4] L. E. Johns and R. S. Houlston, "A systematic review and meta-analysis of familial colorectal cancer risk," The American Journal of Gastroenterology, vol. 96, no. 10, pp. 2992–3003, 2001.
[5] J. A. Meyerhardt, P. J. Catalano, D. G. Haller et al., "Impact of diabetes mellitus on outcomes in patients with colon cancer," Journal of Clinical Oncology, vol. 21, no. 3, pp. 433–440, 2003.
[6] I. Terzić, S. Grivennikov, E. Karin, and M. Karin, "Inflammation and colon cancer," Gastroenterology, vol. 138, no. 6, pp. 2101–2114.e5, 2010.
[7] H. J. Schmoll, E. van Cutsem, A. Stein et al., "ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making," Annals of Oncology, vol. 23, no. 10, pp. 2479–2516, 2012.
[8] M. S. O'Reilly, T. Boehm, Y. Shing et al., "Endostatin: an endogenous inhibitor of angiogenesis and tumor growth," Cell, vol. 88, no. 2, pp. 277–285, 1997.
[9] E. Pasquier, M. Carré, B. Pourroy et al., "Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway," Molecular Cancer Therapeutics, vol. 3, no. 10, pp. 1301–1310, 2004.
[10] Board PDQATE, Colon Cancer Treatment (PDQ®): Health Professional Version. PDQ Cancer Information Summaries, National Cancer Institute (US), Bethesda, MD, USA, 2002.
[11] http://www.cancer.net/navigating-cancer-care/how-cancer-treated/chemotherapy/side-effects-chemotherapy.
[12] A. D. Edgar, R. Levin, C. E. Constantinou, and L. Denis, "A critical review of the pharmacology of the plant extract of Pygeum africanum in the treatment of LUTS," Neurourology and Urodynamics, vol. 26, no. 4, pp. 458–463, 2007.
[13] J. W. Holaday and B. A. Berkowitz, "Antiangiogenic drugs: insights into drug development from endostatin, avastin and thalidomide," Molecular Interventions, vol. 9, no. 4, pp. 157–166, 2009.
[14] W. Kooti and N. Daraei, "A review of the antioxidant activity of celery (Apium graveolens L.)," Journal of Evidence-Based Complementary & Alternative Medicine, vol. 22, no. 4, pp. 1029–1034, 2017.
[15] H. Z. Marzouni, N. Daraei, N. Sharafi-Ahvaezi, N. Kalani, and W. Kooti, "The effect of aqueous extract of celery leaves (Apium graveolens) on fertility in female rats," World Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 5, pp. 1710–1714, 2016.
[16] R. Sharma and S. Jain, "Cancer treatment: an overview of herbal medicines," World Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 8, pp. 222–230, 2014.

[17] M. Ghasemiboron, E. Mansori, M. Asadi-Samani et al., “Effect of ointment with cabbage, pomegranate peel, and common plantain on wound healing in male rat," Journal of Shahrekord University of Medical Sciences, vol. 15, no. 6, pp. 92–100, 2014.

[18] W. Kooti, M. Ghasemiboroon, M. Asadi-Samani et al., "The effects of hydro-alcoholic extract of celery on lipid profile of rats fed a high fat diet," Advances in Environmental Biology, vol. 8, no. 9, pp. 325–330, 2014.

[19] A. L. Zahoor, L. Yaqoob, S. K. Shaukat, A. W. Aijaz, and I. R. Mohd, "Hepatoprotective medicinal plants used by the Gond and Bhill tribes of District Raisen Madhya Pradesh, India," Journal of Medicinal Plants Research, vol. 9, no. 12, pp. 400–406, 2015.

[20] E. Mansouri, W. Kooti, M. Bazvand et al., "The effect of hydro-alcoholic extract of Foeniculum vulgare Mill on leukocytes and hematological tests in male rats," Jundishapur Journal of Natural Pharmaceutical Products, vol. 10, no. 1, article e18396, 2015.

[21] S.-Y. Wu, J.-L. Shen, K.-M. Man et al., "An emerging translational model to screen potential medicinal plants for nephrolithiasis, an independent risk factor for chronic kidney disease," Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 972958, 7 pages, 2014.

[22] K. Saki, M. Bahmani, M. Rafieian-Kopaei et al., "The most common native medicinal plants used for psychiatric and neurological disorders in Urmia city, northwest of Iran," Asian Pacific Journal of Tropical Disease, vol. 4, pp. S895–S901, 2014.

[23] M. Asadi-Samani, W. Kooti, E. Aslani, and H. Shirzad, "A systematic review of Iran's medicinal plants with anticancer effects," Journal of Evidence-Based Complementary & Alternative Medicine, vol. 21, no. 2, pp. 143–153, 2016.

[24] A. Bishayee and G. Sethi, "Bioactive natural products in cancer prevention and therapy: progress and promise," Seminars in Cancer Biology, vol. 40–41, pp. 1–3, 2016.

[25] K. I. Block, C. Gyllenhaal, L. Lowe et al., "Designing a broad-spectrum integrative approach for cancer prevention and treatment," Seminars in Cancer Biology, vol. 35, pp. S276–S304, 2015.

[26] L. S. Einbond, A. Negrin, D. M. Kulakowski et al., "Traditional preparations of kava (Piper methysticum) inhibit the growth of human colon cancer cells in vitro," Phytomedicine, vol. 24, pp. 1–13, 2017.

[27] P. Signorelli, C. Fabiani, A. Brizzolari et al., "Natural grape extracts regulate colon cancer cells malignancy," Nutrition and Cancer, vol. 67, no. 3, pp. 494–503, 2015.

[28] A. Setiawati, H. Immanuel, and M. T. Utami, "The inhibition of Typhonium flagelliforme Lodd. Blume leaf extract on COX-2 expression of WiDr colon cancer cells," Asian Pacific Journal of Tropical Biomedicine, vol. 6, no. 3, pp. 251–255, 2016.

[29] M. J. Jara-Palacios, D. Hernanz, T. Cifuentes-Gomez, M. L. Escudero-Gilete, F. J. Heredia, and J. P. E. Spencer, "Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity," Food Chemistry, vol. 183, pp. 78–82, 2015.

[30] S. Genovese, F. Epifano, G. Carlucci, M. C. Marcotullio, M. Curini, and M. Locatelli, "Quantification of 4′-geranyloxyferulic acid, a new natural colon cancer chemopreventive agent, by HPLC-DAD in grapefruit skin extract," Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 2, pp. 212–214, 2010.

[31] L. Reddivari, V. Charreppalli, S. Radhakrishnan et al., "Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis," BMC Complementary and Alternative Medicine, vol. 16, no. 1, p. 278, 2016.

[32] M. Dong, G. Yang, H. Liu et al., "Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway," Biomedical Reports, vol. 2, no. 2, pp. 250–254, 2014.

[33] Y. J. Oh and M. K. Sung, "Soybean saponins inhibit cell proliferation by suppressing PKC activation and induce differentiation of HT-29 human colon adenocarcinoma cells," Nutrition and Cancer, vol. 39, no. 1, pp. 132–138, 2001.

[34] H.-Y. Kim, R. Yu, J.-S. Kim, Y.-K. Kim, and M.-K. Sung, "Antiproliferative crude soy saponin extract modulates the expression of IκBα, protein kinase C, and cyclooxygenase-2 in human colon cancer cells," Cancer Letters, vol. 210, no. 1, pp. 1–6, 2004.

[35] F. Hajiajhaalipour, M. S. Kanthimathi, J. Sanusi, and J. Rajjarieswaran, "White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage," Food Chemistry, vol. 169, pp. 401–410, 2015.

[36] A. Gosslau, D. L. En Jao, M.-T. Huang et al., "Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo," Molecular Nutrition & Food Research, vol. 55, no. 2, pp. 198–208, 2011.

[37] S. Y. Park, E. J. Kim, H. J. Choi et al., "Anti-carcinogenic effects of non-polar components containing licochalcone A in roasted licorice root," Nutrition Research and Practice, vol. 8, no. 3, pp. 257–266, 2014.

[38] F. Naselli, L. Tesoriere, F. Caradonna et al., "Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16INK4A gene in human colorectal carcinoma (Caco-2) cells," Biochemical and Biophysical Research Communications, vol. 450, no. 1, pp. 652–658, 2014.

[39] P. L. Ng, N. F. Rajab, S. M. Then et al., "Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells," Journal of Zhejiang University-SCIENCE B, vol. 15, no. 8, pp. 692–700, 2014.

[40] M. E. Olsson, C. S. Andersson, S. Oredsson, R. H. Berglund, and K. E. Gustavsson, "Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries," Journal of Agricultural and Food Chemistry, vol. 54, no. 4, pp. 1248–1255, 2006.

[41] S. J. Min, J. Y. Lim, H. R. Kim, S. J. Kim, and Y. Kim, "Sasa quelpaertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo," International Journal of Molecular Sciences, vol. 16, no. 12, pp. 9976–9997, 2015.

[42] Q. Zhao, X. C. Huo, F. D. Sun, and R. Q. Dong, "Polyphenol-rich extract of Salvia chinesis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the
G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells,” *Molecular Medicine Reports*, vol. 12, no. 4, pp. 4843–4850, 2015.

[43] L. S. Adams, N. P. Seeram, B. B. Aggarwal, Y. Takada, D. Sand, and D. Heber, “Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells,” *Journal of Agricultural and Food Chemistry*, vol. 54, no. 3, pp. 980–985, 2006.

[44] S. Đurđević, K. Savšek, J. Živkovic et al., “Antioxidant and cytotoxic activity of fatty oil isolated by supercritical fluid extraction from microwave pretreated seeds of wild growing *Punica granatum* L.,” *The Journal of Supercritical Fluids*, vol. 133, no. 1, pp. 225–232, 2018.

[45] T. S. Thind, S. K. Agrawal, A. K. Saxena, and S. Arora, “Studies on cytotoxic, hydroxyl radical scavenging and topoisomerase inhibitory activities of extracts of *Tabernaemontana divaricata* (L.) R.Br. ex Roem. and Schult.,” *Food and Chemical Toxicology*, vol. 46, no. 8, pp. 2922–2927, 2008.

[46] S. Tansuwanwong, H. Yamamoto, K. Imai, and U. Vinithkumkuen, “Antiproliferation and apoptosis on RKO colon cancer by *Millingtonia hortensis*,” *Plant Foods for Human Nutrition*, vol. 64, no. 1, pp. 11–17, 2009.

[47] E. M. Coates, G. Popa, C. I. R. Gill et al., “Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer,” *Journal of Carcinogenesis*, vol. 6, no. 1, p. 4, 2007.

[48] J. God, P. L. Tate, and L. L. Larcom, “Red raspberries have antioxidant effects that play a minor role in the killing of stomach and colon cancer cells,” *Nutrition Research*, vol. 30, no. 11, pp. 777–782, 2010.

[49] K. Dimas, C. Tsimploulis, C. Houchen et al., “An ethanol extract of Hawaiian turmeric: extensive in vitro anticancer activity against human colon cancer cells,” *Alternative Therapies in Health and Medicine*, vol. 21, Supplement 2, pp. 46–54, 2015.

[50] S. A. Cichello, Q. Yao, A. Dowell, B. Leury, and X. Q. He, “Proliferative and inhibitory activity of Siberian ginseng (Eleutherococcus senticosus) extract on cancer cell lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b,” *Asian Pacific Journal of Cancer Prevention*, vol. 16, no. 11, pp. 4781–4786, 2015.

[51] S. Tansuwanwong, Y. Hiroyuki, I. Kohzoh, and U. Vinithkumkuen, “Induction of apoptosis in RKO colon cancer cell line by an aqueous extract of *Millingtonia hortensis*,” *Asian Pacific Journal of Cancer Prevention*, vol. 7, no. 4, pp. 641–644, 2006.

[52] R. Chattongpisut, S. J. Schwartz, and J. Yongswatdigul, “Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human colon cancer cells,” *Food Chemistry*, vol. 188, pp. 99–105, 2015.

[53] S. Z. Moghadamtousi, H. Karimian, E. Rouhollahi, M. Paydar, M. Fadaeinasab, and H. Abdul Kadir, “*Annona muricata* leaves induce G1 cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells,” *Journal of Ethnopharmacology*, vol. 156, pp. 277–289, 2014.

[54] N. J. Jacobo-Herrera, F. E. Jacobo-Herrera, A. Zentella-Dehesa, A. Andrade-Cetto, M. Heinrich, and C. Perez-Plasencia, “Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer,” *Journal of Ethnopharmacology*, vol. 179, pp. 391–402, 2016.

[55] K. V. Balan, J. Prince, Z. Han et al., “Antiproliferative activity and induction of apoptosis in human colon cancer cells treated in vitro with constituents of a product derived from *Pistacia lentiscus* L. var. *chia*,” *Phytochemistry*, vol. 14, no. 4, pp. 263–272, 2007.

[56] K. V. Balan, C. Demetzos, J. Prince et al., “Induction of apoptosis in human colon cancer HCT116 cells treated with an extract of the plant product, Chios mastic gum,” *In Vivo*, vol. 19, no. 1, pp. 93–102, 2005.

[57] M. L. King and L. L. Murphy, “Role of cyclin inhibitor protein p21 in the inhibition of HCT116 human colon cancer cell proliferation by American ginseng (*Panax quinquefolius*) and its constituents,” *Phytotherapy*, vol. 17, no. 3–4, pp. 261–268, 2010.

[58] V. Charepalli, L. Reddivari, S. Radhakrishnan, R. Vadde, R. Agarwal, and J. K. P. Vanamala, “Anthocyanin-containing purple-fleshed potatoes suppress colon tumorigenesis via elimination of colon cancer stem cells,” *The Journal of Nutritional Biochemistry*, vol. 26, no. 12, pp. 1641–1649, 2015.

[59] R. Campos-Vega, R. G. Guevara-Gonzalez, B. L. Guevara-Olvera, B. Dave Oomain, and G. Loarca-Piña, “*Bean* (*Phaseolus vulgaris* L.) polysaccharides modulate gene expression in human colon cancer cells (HT-29),” *Food Research International*, vol. 43, no. 4, pp. 1057–1064, 2010.

[60] A. T. Serra, J. Poejo, A. A. Matias, M. R. Bronze, and C. M. M. Duarte, “Evaluation of *Opuntia* spp. derived products as anti-proliferative agents in human colon cancer cell line (HT29),” *Food Research International*, vol. 54, no. 1, pp. 892–901, 2013.

[61] T. dos Santos, C. Tavares, D. Sousa et al., “*Stellulas lutes* manetholic extract inhibits cell growth and proliferation of a colon cancer cell line,” *Food Research International*, vol. 53, no. 1, pp. 476–481, 2013.

[62] G. K. Jayaprakasha, K. K. Mandadi, S. M. Poulou, Y. Jadegoud, G. A. Nagana Gowda, and B. S. Patil, “Inhibition of colon cancer cell growth and antioxidant activity of bioactive compounds from *Poncirus trifoliata* (L.) Raf,” *Bioorganic & Medicinal Chemistry*, vol. 15, no. 14, pp. 4923–4932, 2007.

[63] M. González-Vallinas, S. Molina, G. Vicente et al., “Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells,” *Pharmacological Research*, vol. 72, pp. 61–68, 2013.

[64] A. Valdés, G. Sullini, E. Ibáñez, A. Cifuentes, and V. García-Cañas, “Rosemary polyphenols induce unfolded protein response and changes in cholesterol metabolism in colon cancer cells,” *Journal of Functional Foods*, vol. 15, pp. 429–439, 2015.

[65] A. Valdés, K. A. Artemenko, J. Bergquist, V. García-Canas, and A. Cifuentes, “Comprehensive proteomic study of the antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using nanoliquid chromatography–orbitrap MS/MS,” *Journal of Proteome Research*, vol. 15, no. 6, pp. 1971–1985, 2016.

[66] A. Pérez-Sánchez, N. Sánchez-Marzo, M. Herranz-López, E. Barrajón-Catalán, and V. Micol, “Rosemary (*Rosmarinus officinalis* L) extract increases ROS and modulates Nrf2 pathway in human colon cancer cell lines,” *Free Radical Biology & Medicine*, vol. 108, p. S79, 2017.

[67] Y. R. Um, C.-S. Kong, J. I. Lee, Y. A. Kim, T. J. Nam, and Y. Seo, “Evaluation of chemical constituents from *Glehnia littoralis* for antiproliferative activity against HT-29 human colon cancer cells,” *Process Biochemistry*, vol. 45, no. 1, pp. 114–119, 2010.
A. Panyathep, T. Chewonarin, K. Taneyhill, Y.-J. Surh, and L. A. Boyd, M. J. McCann, Y. Hashim, R. N. Bennett, C. I. R. M. A. Encalada, S. Rehecho, D. Ansorena, I. Astiasarán, R. Y. Nakamura, Y. Hasegawa, K. Shirota et al., A. Chicca, B. Adinolfi, E. Martinotti et al., A. Boyd, A. F. A. Aisha, Z. Ismail, K. M. Abu-Salah, J. M. Siddiqui, G. Ghafar, and A. M. S. Abdul Majid, "Syzygium campanulatum" korth methanolic extract inhibits angiogenesis and tumor growth in nude mice, BMC Complementary and Alternative Medicine, vol. 13, no. 1, 2013.

W. Lin, L. Zheng, Q. Zhaung et al., "Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway," BMC Complementary and Alternative Medicine, vol. 13, no. 1, 2013.

L. Maness, I. Göktepe, H. Chen, M. Ahmedna, and S. Sang, "Impact of Phytolacca americana extracts on gene expression of colon cancer cells," Phytotherapy Research, vol. 28, no. 2, pp. 219–223, 2014.

M. Deepa, T. Sureshkumar, P. K. Satheeshkumar, and S. Priya, "Antioxidant rich Morus alba leaf extract induces apoptosis in human colon and breast cancer cells by the downregulation of nitric oxide produced by inducible nitric oxide synthase," Nutrition and Cancer, vol. 65, no. 2, pp. 305–310, 2013.

R. Senthilkumar, T. Parimelazhagan, O. P. Chaurasia, and R. B. Srivastava, "Free radical scavenging property and anti-proliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells," Asian Pacific Journal of Tropical Medicine, vol. 6, no. 1, pp. 11–19, 2013.

S.-M. Oh, J. Kim, J. Lee et al., "Anticancer potential of an ethanol extract of Asiasari radix against HCT-116 human colon cancer cells in vitro," Oncology Letters, vol. 5, no. 1, pp. 305–310, 2013.

E. L. Symonds, I. Konczak, and M. Fenech, "The Australian fruit Illawarra plum (Podocarpus elatus Endl., Podocarpaceae) inhibits telomerase, increases histone deacetylase activity and decreases proliferation of colon cancer cells," British Journal of Nutrition, vol. 109, no. 12, pp. 2117–2125, 2013.

Y. L. Tsai, C. C. Chiu, J. Yi-Fu Chen, K. C. Chan, and S. D. Lin, "Cytotoxic effects of Echinacea purpurea flower extracts and cichoric acid on human colon cancer cells through induction of apoptosis," Journal of Ethnopharmacology, vol. 143, no. 3, pp. 914–919, 2012.

S.-J. Lee, K. Park, S.-D. Ha, W.-J. Kim, and S.-K. Moon, "Gleditsia sinensis thorn extract inhibits human colon cancer cells: the role of ERK1/2, G2/MPhase cell cycle arrest and p53 expression," Phytotherapy Research, vol. 24, no. 12, pp. 1870–1876, 2010.

S. J. Lee, Y. H. Cho, H. Kim et al., "Inhibitory effects of the ethanol extract of Gleditsia sinensis thorns on human colon cancer HCT116 cells in vitro and in vivo," Oncology Reports, vol. 22, no. 6, pp. 1505–1512, 2009.

N. Kosom, K. Ichikawa, H. Utsumi, and P. Moongkarndi, "In vivo toxicity and antitumor activity of mangosteen extract," Journal of Natural Medicines, vol. 67, no. 2, pp. 255–263, 2013.

A.-R. Han, J.-A. Kim, D. D. Lantvit et al., "Cytotoxic xanthone constituents of the stem bark of Garcinia mangostana (mangosteen)," Journal of Natural Products, vol. 72, no. 11, pp. 2028–2031, 2009.

J.-F. Zhang, M.-I. He, Qi Dong et al., "Aqueous extracts of Fructus Ligustri Lucidi enhance the sensitivity of human
colorectal carcinoma DLD-1 cells to doxorubicin-induced apoptosis via Tbx3 suppression,” *Integrative Cancer Therapies*, vol. 10, no. 1, pp. 85–91, 2011.

[95] A. Hematulin, K. Ingkaninan, N. Limpeanchob, and D. Sagan, “Ethanolic extract from Derris scandens Benth mediates radiosensitization via two distinct modes of cell death in human colon cancer HT-29 cells,” *Asian Pacific Journal of Cancer Prevention*, vol. 15, no. 4, pp. 1871–1877, 2014.

[96] E. Ribeiro-Varandas, F. Ressurreição, W. Viegas, and M. Delgado, “Cytotoxicity of *Eupatorium cannabinum* L. ethanolic extract against colon cancer cells and interactions with bisphenol A and doxorubicin,” *BMC Complementary and Alternative Medicine*, vol. 14, no. 1, 2014.

[97] A. R. Massey, L. Reddivari, and J. Vanamala, “The dermal layer of sweet sorghum (Sorghum bicolor) stalk, a byproduct of biofuel production and source of unique 3-deoxyxanthocyanidins, has more antiproliferative and proapoptotic activity than the pith in p53 variants of HCT116 and colon cancer stem cells,” *Journal of Agricultural and Food Chemistry*, vol. 62, no. 14, pp. 3150–3159, 2014.

[98] A. R. Massey, L. Reddivari, S. Radhakrishnan et al., “Pro-apoptotic activity against cancer stem cells differs between different parts of sweet sorghum,” *Journal of Functional Foods*, vol. 23, pp. 601–613, 2016.

[99] Y. H. Wong, W. Y. Tan, C. P. Tan, K. Long, and K. L. Nyam, “Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines,” *Asian Pacific Journal of Tropical Biomedicine*, vol. 4, Supplement 1, pp. S510–5515, 2014.

[100] S. Enayat, M. S. Ceyhan, A. A. Basaran, M. Gursel, and S. Banerjee, “Anticancerigogenic effects of the ethanolic extract of Salix aegyptiaca in colon cancer cells: involvement of Akt/PKB and MAPK pathways,” *Nutrition and Cancer*, vol. 65, no. 7, pp. 1045–1058, 2013.

[101] E. J. Kim, Y.-J. Lee, H.-K. Shin, and J. H. Y. Park, “Induction of apoptosis by the aqueous extract of *Rubus coreanum* in HT-29 human colon cancer cells,” *Nutrition*, vol. 21, no. 11-12, pp. 1141–1148, 2005.

[102] L. Wang, M. L. Xu, J. H. Hu, S. K. Rasmussen, and M.-H. Wang, “Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells – involvement of ROS generation and polyamine depletion,” *Food and Chemical Toxicology*, vol. 49, no. 1, pp. 149–154, 2011.

[103] S. Sang, J. Hong, H. Wu et al., “Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingeria officinalis relative to gingerols,” *Journal of Agricultural and Food Chemistry*, vol. 57, no. 22, pp. 10645–10650, 2009.

[104] J. S. Lee, S.-Y. Park, D. Thapa et al., “Grifola frondosa water extract alleviates intestinal inflammation by suppressing TNF-α production and its signaling,” *Experimental and Molecular Medicine*, vol. 42, no. 2, pp. 143–154, 2010.

[105] N. B. Janakiram, A. Mohammed, Y. Zhang et al., “Chemo-preventive effects of *Frondanol* A5, a Cucumaria frondosa extract, against rat colon carcinogenesis and inhibition of human colon cancer cell growth,” *Cancer Prevention Research*, vol. 3, no. 1, pp. 82–91, 2010.

[106] L. Pan, D. D. Lantvit, S. Riswan et al., “Bioactivity-guided isolation of cytotoxic sesquiterpenes of *Rolandra fruticosa*,” *Phytochemistry*, vol. 71, no. 5-6, pp. 635–640, 2010.

[107] M. Carvalho, B. M. Silva, R. Silva, P. Valen tá, P. B. Andrade, and M. L. Bastos, “First report on *Cydonia oblonga* Miller anticaner potential: differential antiproliferative effect against human kidney and colon cancer cells,” *Journal of Agricultural and Food Chemistry*, vol. 58, no. 6, pp. 3366–3370, 2010.

[108] J. A. Kim, E. Lau, D. Tay, and E. J. C. de Blanco, “Antioxidant and NF-κB inhibitory constituents isolated from *Morchella esculenta*,” *Natural Product Research*, vol. 25, no. 15, pp. 1412–1417, 2011.

[109] J. E. Kim, W. Y. Chung, K. S. Chun et al., “*Pleurospermum kamtschaticum* extract induces apoptosis via mitochondrial pathway and NAG-1 expression in colon cancer cells,” *Bioscience, Biotechnology, and Biochemistry*, vol. 74, no. 4, pp. 788–792, 2014.

[110] S. C. W. Sze, K. L. Wong, W. K. Liu et al., “Regulation of p21, MMP-1, and MDR-1 expression in human colon carcinoma HT29 cells by Tian Xian Liquid, a Chinese medicinal formula, in vitro and in vivo,” *Integrative Cancer Therapies*, vol. 10, no. 1, pp. 58–69, 2011.

[111] D. S. Ryu, G. O. Baek, E. Y. Kim, K. H. Kim, and D. S. Lee, “Effects of polysaccharides derived from *Orostachys japonicus* on induction of cell cycle arrest and apoptotic cell death in human colon cancer cells,” *BMB Reports*, vol. 43, no. 11, pp. 750–755, 2010.

[112] X.-H. Chen, Y.-X. Miao, X.-J. Wang et al., “Effects of *Ginkgo biloba* extract EGb761 on human colon adenocarcinoma cells,” *Cellular Physiology and Biochemistry*, vol. 27, no. 3-4, pp. 227–232, 2011.

[113] E. A. Hudson, P. A. Dinh, T. Kokubun, M. S. Simonnds, and A. Gescher, “Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells,” *Cancer Epidemiology, Biomarkers & Prevention*, vol. 9, pp. 1163–1170, 2000.

[114] J. de la Cruz, D. H. Kim, and S. G. Hwang, “Anti cancer effects of *Cnidium officinale* Makino extract mediated through apoptosis and cell cycle arrest in the HT-29 human colorectal cancer cell line,” *Asian Pacific Journal of Cancer Prevention : APJCP*, vol. 15, no. 13, pp. 5117–5121, 2014.

[115] K.-S. Nam, B. G. Ha, and Y. H. Shon, “Effect of *Cnidii Rhizoma* on nitric oxide production and invasion of human colorectal adenocarcinoma HT-29 cells,” *Oncology Letters*, vol. 9, no. 1, pp. 483–487, 2015.

[116] P. Ovadje, D. Ma, P. Tremblay et al., “Evaluation of the efficacy & biochemical mechanism of cell death induction by Piper longum extract selectively in vitro and in vivo models of human cancer cells,” *PLoS One*, vol. 9, no. 11, article e113250, 2014.

[117] S. Arora and S. Tandon, “Achyranthas aspera root extracts induce human colon cancer cell (COLO-205) death by triggering the mitochondrial apoptosis pathway and S phase cell cycle arrest,” *The Scientific World Journal*, vol. 2014, Article ID 129697, 15 pages, 2014.

[118] A. al-Menhali, A. al-Rumaihi, H. al-Mohammed et al., “Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells,” *Journal of Medicinal Food*, vol. 18, no. 1, pp. 54–59, 2015.

[119] K. A. Kang, J. K. Kim, Y. J. Jeong, S.-Y. Na, and J. W. Hyun, “Dictyopteris undulata extract induces apoptosis via induction of endoplasmic reticulum stress in human colon cancer cells,” *Journal of Cancer Prevention*, vol. 19, no. 2, pp. 118–124, 2014.

[120] X. Zhao, P. Sun, Y. Qian, and H. Suo, “*D. candidum* has in vitro anticancer effects in HCT-116 cancer cells and exerts
in vivo anti-metastatic effects in mice,” *Nutrition Research and Practice*, vol. 8, no. 5, pp. 487–493, 2014.

[121] B. Romano, F. Borrelli, E. Pagano, M. G. Cascio, R. G. Pertwee, and A. A. Izzo, “Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabinoids,” *Phytomedicine*, vol. 21, no. 5, pp. 631–639, 2014.

[122] N. Eid, S. Enani, G. Walton et al., “The impact of date palm fruits and their component polyphenols, on gut microbiota composition, bacterial metabolites and colon cancer cell proliferation,” *Journal of Nutritional Science*, vol. 3, no. 46, pp. 1–9, 2014.

[123] X.-L. Tang, X. Y. Yang, Y. C. Kim et al., “Protective effects of the ethanolic extract of Melia toosendan fruit against colon cancer,” *Indian Journal of Biochemistry & Biophysics*, vol. 49, no. 3, pp. 173–181, 2012.

[124] K. Bajbouj, J. Schulze-Luehrmann, S. Diermeier, A. Amin, and R. Schneider-Stock, “The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines,” *BMC Complementary and Alternative Medicine*, vol. 12, no. 1, 2012.

[125] R. Sánchez-Vioque, O. Santana-Méridas, M. Polissiou et al., “Polyphenol composition and in vitro antiproliferative effect of corn, tepal and leaf from Crocus sativus L. on human colon adenocarcinoma cells (Caco-2),” *Journal of Functional Foods*, vol. 24, pp. 18–25, 2016.

[126] L.-H. Shang, C.-M. Li, Z.-Y. Yang, D.-H. Che, J.-Y. Cao, and Y. Yu, “Luffa echinata Roxb. induces human colon cancer cell (HT-29) death by triggering the mitochondrial apoptosis pathway,” *Molecules*, vol. 17, no. 5, pp. 5780–5794, 2012.

[127] G. Angel-Morales, G. Noratto, and S. Mertens-Talcott, “Red wine polyphenols reduce the expression of inflammation markers in human colon-derived CDD-18Co myofibroblast cells: potential role of microRNA-126,” *Food & Function*, vol. 3, no. 7, pp. 745–752, 2012.

[128] A. T. Choumessi, M. Danel, S. Chassaing et al., “Characterization of the antiproliferative activity of Xylopia aethiopica,” *Cell Division*, vol. 7, no. 1, pp. 8–8, 2012.

[129] L. Yang, K. F. Allred, B. Geera, C. D. Allred, and J. M. Awika, “Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes,” *Nutrition and Cancer*, vol. 64, no. 3, pp. 419–427, 2012.

[130] C. Mazewski, K. Liang, and E. Gonzalez de Mejia, “Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays,” *Food Chemistry*, vol. 242, pp. 378–388, 2018.

[131] N.-W. He, Y. Zhao, L. Guo, J. Shang, and X.-B. Yang, “Antioxidant, antiproliferative, and pro-apoptotic activities of a saponin extract derived from the roots of *Panax notoginseng* (Burk.) F.H. Chen,” *Journal of Medicinal Food*, vol. 15, no. 4, pp. 350–359, 2012.

[132] F. A. Hashem, H. Motawea, A. E. el-Shabrawky, K. Shaker, and S. el-Sherbini, “Myrosinase hydrolyses of Brassica oleracea L. var. *italica* reduce the risk of colon cancer,” *Phytotherapy Research*, vol. 26, no. 5, pp. 743–747, 2012.

[133] Y. Jia, Q. Guan, Y. Guo, and C. du, “Reduction of inflammatory hyperplasia in the intestine in colon cancer-prone mice by water-extract of Cistanche deserticola,” *Phytotherapy Research*, vol. 26, no. 6, pp. 812–819, 2012.

[134] S. Gorlach, W. Wagner, A. Podscdeek, K. Szewczyk, M. Koziołkiewicz, and J. Dastych, “Procyanidins from Japanese quince (*Chaenomeles japonica*) fruit induce apoptosis in human colon cancer Caco-2 cells in a degree of polymerization-dependent manner,” *Nutrition and Cancer*, vol. 63, no. 8, pp. 1348–1360, 2011.

[135] S. Mori, T. Sawada, T. Okada, T. Ohsawa, M. Adachi, and K. Keichi, “New anti-proliferative agent, MK615, from Japanese apricot *Prunus mume* induces striking autophagy in colon cancer cells in vitro,” *World Journal of Gastroenterology*, vol. 13, no. 48, pp. 6512–6517, 2007.

[136] S. C. Hsu, J. H. Lu, C. L. Kuo et al., “Crude extracts of *Solanum lycam* induced cytotoxicity and apoptosis in human colon adenocarcinoma cell line (Colo 205),” *Anticancer Research*, vol. 28, no. 2A, pp. 1045–1054, 2008.

[137] N. el-Najjar, N. Saliba, S. Talhouk, and H. Gali-Muhtasib, “*Onopordum cynarochephalum* induces apoptosis and protects against 1,2 dimethylhydrazine-induced colon cancer,” *Oncology Reports*, vol. 17, no. 6, pp. 1517–1523, 2007.

[138] X. Li, T. Ohtsuki, T. Koyano, T. Kowithayakorn, and M. Ishibashi, “New *Wnt*-β-catenin signaling inhibitors isolated from *Eletherine palmifolia*,” *Chemistry*, vol. 4, no. 4, pp. 540–547, 2009.

[139] S. Jaramillo, F. J. G. Muriana, R. Guillen, A. Jimenez-Araujo, R. Rodriguez-Arcos, and S. Lopez, “Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells,” *Journal of Functional Foods*, vol. 26, pp. 1–10, 2016.

[140] R. Vadhde, S. Radhakrishnan, H. Eranda Karunathilake Kurundu, L. Reddivari, and J. K. P. Vanamala, “*Indian gooseberry* (*Emblica officinalis* Gaertn.) suppresses cell proliferation and induces apoptosis in human colon cancer stem cells independent of p53 status via suppression of c-Myc and cyclin D1,” *Journal of Functional Foods*, vol. 25, pp. 267–278, 2016.

[141] L. Ai, Y.-C. Chung, K.-C. G. Jeng et al., “Antioxidant hydrocolloids from herb *Graptoputalum paraguayense* leaves show anti-colon cancer cells and anti-inflammatory potential,” *Food Hydrocolloids*, vol. 73, pp. 51–59, 2017.

[142] N. Polachi, B. Subramaniyan, P. Nagaraja, R. Kiangia, and M. Ganeshan, “Extract from *Butea monosperma* inhibits β-catenin/Tcf signaling in SW480 human colon cancer cells,” *Gene Reports*, vol. 10, pp. 79–89, 2018.

[143] P. Zhu, Y. Wu, A. Yang, X. Fu, M. Mao, and Z. Liu, “Catalpol suppressed proliferation, growth and invasion of CT26 colon cancer by inhibiting inflammation and tumor angiogenesis,” *Biomedicine & Pharmacotherapy*, vol. 95, pp. 68–76, 2017.

[144] W. K. Kim, D. H. Bach, H. W. Ryu et al., “Cytotoxic activities of *Tectarum dongnaiense* and its constituents by inhibition of the Wnt/β-catenin signaling pathway,” *Phytomedicine*, vol. 34, pp. 136–142, 2017.

[145] P. Buchhart, A. Khamwut, C. Sinthvahanich, S. Ratanapo, Y. Poovorawan, and N. P. T.-Thienprasert, “Partially purified Gloriosa superba superba peptides inhibit colon cancer cell viability by inducing apoptosis through p53 upregulation,” *The American Journal of the Medical Sciences*, vol. 354, no. 4, pp. 423–429, 2017.

[146] T. Ranjan, R. M. Saidijam, S. Moradkhani, and R. Najafi, “Methanolic extract of *Boswellia serrata* exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells,” *Prostaglandins & Other Lipid Mediators*, vol. 131, pp. 1–8, 2017.
against colon cancer cells,

R. Direito, A. Lima, J. Rocha et al., “Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway,” Tumour Biology, vol. 39, no. 7, 2017.

A. Czerwonka, K. Kawka, K. Cykier, M. K. Lemieszek, and W. Rzeski, “Evaluation of anticancer activity of water and juice extracts of young Hordeum vulgare in human cancer cell lines HT-29 and A549,” Annals of Agricultural and Environmental Medicine : AAEM, vol. 24, no. 2, pp. 345–349, 2017.

N. Cho, T. T. Ransom, J. Sigmund et al., “Growth inhibition of colon cancer and melanoma cells by versilol derivatives from a Paracynothrix species,” Journal of Natural Products, vol. 80, no. 7, pp. 2037–2044, 2017.

C. Yang, M. Wang, J. Zhou, and Q. Chi, “Bio-synthesis of peppermint leaf extract polyphenols capped nano-platinum and their in-vitro cytotoxicity towards colon cancer cell lines (HCT 116),” Materials Science and Engineering: C, vol. 77, pp. 1012–1016, 2017.

C. Li, Y. Jeong, and M. Kim, “Mammea longifolia Planch. and Triana fruit extract induces cell death in the human colon cancer cell line, SW480, via mitochondria-related apoptosis and activation of p53,” Journal of Medicinal Food, vol. 20, no. 5, pp. 485–490, 2017.

A. Manosroi, M. Sainakham, C. Chankhampan, W. Manosroi, and J. Manosroi, “In vitro anti-cancer activities of Job’s tears (Coix lachryma-jobi Linn.) extracts on human colon adenocarcinoma,” Saudi Journal of Biological Sciences, vol. 23, no. 2, pp. 248–256, 2016.

R. Mata, J. R. Nakkala, and S. R. Sadras, “Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells,” Colloids and Surfaces B: Biointerfaces, vol. 143, pp. 499–510, 2016.

N. H. Yim, M. J. Gu, Y. H. Hwang, W. K. Cho, and J. Y. Ma, “Water extract of Galla Rhois with steaming process induces cell death in human colon cancer cell line, SW480, via mitochondria-related apoptosis and activation of p53,” Journal of Medicinal Food, vol. 20, no. 5, pp. 485–490, 2017.

E. J. Kim, G. T. Kim, B. M. Kim, E. G. Lim, S. Y. Kim, and Y. M. Kim, “Apoptosis-induced effects of extract from Artemisia annua Linne by modulating PTEN/p53/PDK1/Akt/signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells,” BMC Complementary and Alternative Medicine, vol. 17, no. 1, p. 236, 2017.

X. Zhao, X. Feng, C. Wang, D. Peng, K. Zhu, and J. L. Song, “Anticancer activity of Nelumbo nucifera stamen extract in human colon cancer HCT-116 cells in vitro,” Oncology Letters, vol. 13, no. 3, pp. 1470–1478, 2017.

H. Guo, H. Guan, W. Yang et al., “Pro-apoptotic and anti-proliferative effects of corn silk extract on human colon cancer cell lines,” Oncology Letters, vol. 13, no. 2, pp. 973–978, 2017.

H. J. Hsu, R. F. Huang, T. H. Kao, B. S. Inbaraj, and B. H. Chen, “Preparation of carotenoid extracts and nanoemulsions from Lycium barbarum L. and their effects on growth of HT-29 colon cancer cells,” Nanotechnology, vol. 28, no. 13, article 135103, 2017.
[173] V. P. Venancio, P. A. Cipriano, H. Kim, L. M. G. Antunes, S. T. Talcott, and S. U. Mertens-Talcott, “Cocculum (Chryso-
balanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells,” Food & Function, vol. 8, no. 1, pp. 307–314, 2017.

[174] R. Nozaki, T. Kono, H. Bochimoto et al., “Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells,” Oncotarget, vol. 7, no. 43, pp. 70437–70446, 2016.

[175] R. Acquaviva, V. Sorrenti, R. Santangelo et al., “Effects of an extract of Celtis aetnensis (Tornarb.) Strobil twigs on human colon cancer cell cultures,” Oncology Reports, vol. 36, no. 4, pp. 2298–2304, 2016.

[176] S. Jimenez, S. Gascon, A. Luquin, M. Laguna, C. Aycin-
Azpilicueta, and M. J. Rodriguez-Yoldi, “Rosa canina extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer cell lines,” PLoS One, vol. 11, no. 7, article e0195136, 2016.

[177] A. I. Elkady, R. A. Hussein, and S. M. El-Assouli, “Harmal extract induces apoptosis of HCT116 human colon cancer cells, mediated by inhibition of nuclear factor-xB and activa-
tor protein-1 signaling pathways and induction of cytotoxic-
tive genes,” Asian Pacific Journal of Cancer Prevention : APJCP, vol. 17, no. 4, pp. 1947–1959, 2016.

[178] M. Amigo-Benavent, S. Wang, R. Mateos, B. Sarria, and L. Bravo, “Antiproliferative and cytotoxic effects of green cof-
tee and yerba mate extracts, their main hydroxyxyninic acids, methylxanthine and metabolites in different human cell lines,” Food and Chemical Toxicology, vol. 106, Part A, pp. 125–138, 2017.

[179] D. J. de Rodriguez, D. A. Carrillo-Lomeli, N. E. Rocha-Guzmán et al., “Antioxidant, anti-inflammatory and apoptotic effects of Flourensia microphylla on HT-29 colon cancer cells,” Industrial Crops and Products, vol. 107, pp. 472–481, 2017.

[180] K. Y. Cheah, G. S. Howarth, and S. E. P. Bastian, “Grape seed extract dose-responsively decreases disease severity in a rat model of mucositis; Concomitantly Enhancing Chemothera-
pic Effectiveness in Colon Cancer Cells,” PLoS ONE, vol. 9, no. 1, article e85184, 2014.

[181] M. M. Derry, K. Raina, R. Agarwal, and C. Agarwal, “Charac-
terization of azoxymethane-induced colon tumor metastasis to lung in a mouse model relevant to human sporadic colo-
rectal cancer and evaluation of grape seed extract efficacy,” Experimental and Toxicologic Pathology, vol. 66, no. 5–6, pp. 235–242, 2014.

[182] Y. D. Jung, M. S. Kim, B. A. Shin et al., “EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells,” British Journal of Cancer, vol. 84, no. 6, pp. 844–850, 2001.

[183] M. W. Roomi, V. Ivanov, T. Kalinovsky, A. Niedzwiecki, and M. Rath, “In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human colon cancer cell HCT 116 xenografts in nude mice: evaluation of tumor growth and immunohistochemistry,” Oncology Reports, vol. 13, no. 3, pp. 421–425, 2005.

[184] Y. Z. H.-Y. Hashim, J. Worthington, P. Allsopp et al., “Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo,” Food & Function, vol. 5, no. 7, pp. 1513–1519, 2014.

[185] C. C. Tseng, H. F. Shang, L. F. Wang et al., “Antitumor and immunostimulating effects of Aneocochilus formosanus Hayata,” Phytomedicine, vol. 13, no. 5, pp. 366–370, 2006.

[186] S.-W. Hsuan, C.-C. Chyau, H.-Y. Hung, J.-H. Chen, and F.-P. Chou, “The induction of apoptosis and autophagy by Wasabia japonica extract in colon cancer,” European Journal of Nutrition, vol. 55, no. 2, pp. 491–503, 2016.

[187] E. Rouihollahi, S. Zorochnian Moghadamteousi, M. Paydar et al., “Inhibitory effect of Curcuma purpurascens Bl. rhizome on HT-29 colon cancer cells through mitochondrial-
dependent apoptosis pathway,” BMC Complementary and Alternative Medicine, vol. 15, no. 1, p. 15, 2015.

[188] C. Yu, X.-D. Wen, Z. Zhang et al., “American ginseng attenu-
ates azoxymethane/dextran sulfate-induced colon carcinogenesis in mice,” Journal of Ginseng Research, vol. 39, no. 1, pp. 14–21, 2015.

[189] S. M. Butler, M. A. Wallig, C. W. Nho et al., “A polyacetylene-
rich extract from Gymnaster koraiensis strongly inhibits colitis-associated colon cancer in mice,” Food and Chemical Toxicology, vol. 53, pp. 235–239, 2013.

[190] P. Arulselvan, C.-C. Wen, C.-W. Lan, Y.-H. Chen, W.-C. Wei, and N.-S. Yang, “ Dietary administration of scal-
lion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice,” PLoS One, vol. 7, no. 9, article e4658, 2012.

[191] D. S. Wang, G. H. Rizwani, H. Guo et al., “Annona squamosa Linn: cytotoxic activity found in leaf extract against human tumor cell lines,” Pakistan Journal of Pharmaceutical Sciences, vol. 27, no. 5, pp. 1559–1563, 2014.

[192] K.-W. Park, J. Kundu, I. G. Chae, S. C. Bachar, J.-W. Bae, and K.-S. Chun, “Methanol Extract of Flacourtia indica Aerial Parts Induces Apoptosis via Generation of ROS and Activ-
ation of Caspases in Human Colon Cancer HCT116 Cells,” Asian Pacific Journal of Cancer Prevention, vol. 15, no. 17, pp. 7291–7296, 2014.

[193] A. Thyagarajan, A. Jedinak, H. Nguyen et al., “Triterpenes from Ganoderma lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK),” Nutrition and Cancer, vol. 62, no. 5, pp. 630–640, 2010.

[194] C. Huang, Y. Huang, J. Li et al., “Inhibition of benzo(a)pyrene diol-epoxide-induced transactivation of activated protein 1 and nuclear factor xB by black raspberry extracts,” Cancer Research, vol. 62, no. 23, pp. 6857–6863, 2002.

[195] B. Bassani, T. Rossi, D. de Stefano et al., “Potential chemopre-
ventive activities of a polyphenol rich purified extract from olive mill wastewater on colon cancer cells,” Journal of Functional Foods, vol. 27, pp. 236–248, 2016.

[196] W. Zeriouh, A. Nani, M. Belarbi et al., “Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway,” PLoS One, vol. 12, no. 2, article e0170823, 2017.

[197] H. H. Ahmed, H. S. El-Abbar, E. A. K. Hassanin, N. F. Abdelkader, and M. B. Shalaby, “ Ginkgo biloba L. leaf extract offers multiple mechanisms in bridling N-methylisothiourea - mediated experimental colorectal cancer,” Biomedicine & Pharmacotherapy, vol. 95, pp. 387–393, 2017.

[198] B. Subramaniyan, N. Polachi, and G. Mathan, “Isocoureospin: an active constituent of n-butanol extract of Butea mono-
sperma flowers against colorectal cancer (CRC),” Journal of Pharmaceutical Analysis, vol. 6, no. 5, pp. 318–325, 2016.

[199] P. Ovadje, S. Ammar, J. A. Guerrero, J. T. Arnason, and S. Pandey, “Dandelion root extract affects colorectal cancer proliferation and survival through the activation of multiple
death signalling pathways,” Oncotarget, vol. 7, no. 45, pp. 73080–73100, 2016.

[200] S. Tanaka, K. Haruma, M. Yoshihara et al., “Aged garlic extract has potential suppressive effect on colorectal adenomas in humans,” The Journal of Nutrition, vol. 136, no. 3, pp. 8218–8265, 2006.

[201] A. di Francesco, A. Falconi, C. di Germanio et al., “Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms,” The Journal of Nutritional Biochemistry, vol. 26, no. 3, pp. 250–258, 2015.

[202] T. Srihari, M. Sengottuvelan, and N. Nalini, “Dose-dependent effect of oregano (Origanum vulgare L.) on lipid peroxidation and antioxidant status in 1,2-dimethylylhydrazine-induced rat colon carcinogenesis,” The Journal of Pharmacy and Pharmacology, vol. 60, no. 6, pp. 787–794, 2008.

[203] A. Caimari, F. Puiggròs, M. Suárez et al., “The intake of a hazelnut skin extract improves the plasma lipid profile and reduces the lithocholic/deoxycholic bile acid faecal ratio, a risk factor for colon cancer, in hamsters fed a high-fat diet,” Food Chemistry, vol. 167, pp. 138–144, 2015.

[204] L. Pan, F. Will, N. Frank, H. Dietrich, H. Bartsch, and C. Gerhauser, “Natural cloudy apple juice and polyphenol-enriched apple juice extract prevent intestinal adenoma formation in the APCMin/+ model for colon cancer prevention,” European Journal of Cancer Supplements, vol. 4, no. 1, pp. 55–56, 2006.

[205] R. Acquaviva, L. Iauk, V. Sorrenti et al., “Oxidative profile in patients with colon cancer: effects of Ruta chalepensis L.,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 2, pp. 181–191, 2011.

[206] N. A. de Moura, B. F. Gaetano, K. Sivieri et al., “Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells,” Food and Chemical Toxicology, vol. 50, no. 8, pp. 2902–2910, 2012.

[207] H. H. Ahmed, H. S. El-Abbar, E. A. K. Hassanin, N. F. Abdelkader, and M. B. Shalaby, “Punica granatum suppresses colon cancer through downregulation of Wnt/β-catenin in rat model,” Revista Brasileira de Farmacognosia, vol. 27, no. 5, pp. 627–635, 2017.

[208] N. R. Shah and B. M. Patel, “Secoisolaricresinol diglucoside rich extract of L. usitatissimum prevents diabetic colon cancer through inhibition of CDK4,” Biomedicine & Pharmacotherapy, vol. 83, pp. 733–739, 2016.

[209] N. L. Md Nasir, N. E. Kamsani, N. Mohtarrudin, F. Othman, S. F. Md Tohid, and Z. A. Zakaria, “Anticarcinogenic activity of Muntingia calabura leaves methanol extract against the azoxymethane-induced colon cancer in rats involved modulation of the colonic antioxidant system partly by flavonoids,” Pharmaceutical Biology, vol. 55, no. 1, pp. 2102–2109, 2016.

[210] S. A. Im, J. W. Kim, H. S. Kim et al., “Prevention of azoxymethane/dextran sodium sulfate-induced mouse colon carcinogenesis by processed Aloe vera gel,” International Immunopharmacology, vol. 40, pp. 428–435, 2016.

[211] F. Yao, J. Y. Zhang, X. Xiao, Y. Dong, and X. H. Zhou, “Antitumor activities and apoptosis-regulated mechanisms of fermented barley extract in the transplantation tumor model of human HT-29 cells in nude mice,” Biomedical and Environmental Sciences, vol. 30, no. 1, pp. 10–21, 2017.

[212] A. T. Endharti, A. Wulandari, A. Listyana, E. Norahmawati, and S. Permana, “Dendrophthoe pentandra (L.) Miq extract effectively inhibits inflammation, proliferation and induces p53 expression on colitis-associated colon cancer,” BMC Complementary and Alternative Medicine, vol. 16, no. 1, p. 374, 2016.

[213] S. S. Dahham, L. E. A. Hassan, M. B. K. Ahamed, A. S. A. Majid, A. M. S. A. Majid, and N. N. Zulkepli, “In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassana),” BMC Complementary and Alternative Medicine, vol. 16, no. 1, p. 236, 2016.

[214] M. R. Malayeri, A. Dadkhah, F. Fatemi et al., “Chemotherapeutic effect of Berberis integerrima hydroalcoholic extract on colon cancer development in the 1,2-dimethyl hydrazine rat model,” Zeitschrift für Naturforschung C, vol. 71, no. 7–8, pp. 225–232, 2016.

[215] A. Bounaama, S. Enayat, M. S. Ceyhan, H. Moulahoum, B. Djerdjouri, and S. Banerjee, “ Ethanolic extract of bark from Salix aegyptica ameliorates 1,2-dimethylylhydrazine-induced colon carcinogenesis in mice by reducing oxidative stress,” Nutrition and Cancer, vol. 68, no. 3, pp. 495–506, 2016.

[216] Q. Zhu, J. Meisinger, D. H. V. Thiel, Y. Zhang, and S. Mobarhan, “Effects of soybean extract on morphology and survival of Caco-2, SW620, and HT-29 cells,” Nutrition and Cancer, vol. 42, no. 1, pp. 131–140, 2002.

[217] M. E. Juan, U. Wenzel, V. Ruiz-Gutierrez, H. Daniel, and J. M. Planas, “Olive fruit extracts inhibit proliferation and induce apoptosis in HT-29 human colon cancer cells,” The Journal of Nutrition, vol. 136, no. 10, pp. 2553–2557, 2006.