Comparison of CO₂ Reduction Performance with NH₃ and H₂O between Cu/TiO₂ and Pd/TiO₂

Akira Nishimura 1,*, Ryouga Shimada 1, Yoshito Sakakibara 1, Akira Koshio 2 and Eric Hu 3

Abstract: The aim of this study is to clarify the effect of doped metal type on CO₂ reduction characteristics of TiO₂ with NH₃ and H₂O. Cu and Pd have been selected as dopants for TiO₂. In addition, the impact of molar ratio of CO₂ to reductants NH₃ and H₂O has been investigated. A TiO₂ photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO₂ film and Pd/TiO₂ film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO₂ reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO₂ reduction performance with Cu/TiO₂ under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO₂/NH₃/H₂O = 1:1:1 while that without UV light is the highest when the molar ratio of CO₂/NH₃/H₂O = 1:0.5:0.5. It is revealed that the CO₂ reduction performance of Pd/TiO₂ is the highest for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO₂ produced under the illumination condition of Xe lamp with UV light was 10.2 μmol/g, while that for Pd/TiO₂ was 5.5 μmol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO₂ produced under the illumination condition of Xe lamp without UV light was 2.5 μmol/g, while that for Pd/TiO₂ was 3.5 μmol/g. This study has concluded that Cu/TiO₂ is superior to Pd/TiO₂ from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.

Keywords: CO₂ reduction; Cu/TiO₂ photocatalyst; Pd/TiO₂ photocatalyst; molar ratio of reductants

1. Introduction

Because of large concerns around the world, the global warming problem is a hot area of R&D. Each country has set a goal to reduce the amount of CO₂ emissions. In Japan, the prime minister has declared the intent to reduce the effective CO₂ emissions to zero by 2050. However, the global mean concentration of CO₂ in atmosphere had increased up to 410 ppmV in September 2019, which was 25 ppmV increase from the value in 2009 [1]. Therefore, development of technologies which can reduce the amount of CO₂ in the atmosphere the is urgently required.

Solar conversion of CO₂ to fuel seems a promising procedure to solve the global warming problem for sustainable development of society. Solar energy, is the form of direct solar irradiation, is widely available and it is imperative to utilize it for solar fuel production [2]. One pathway to realize solar conversion of CO₂ is photochemical reactions. According to a literature survey by the authors, photocatalysts can convert CO₂ into fuel...
species such as CO, CH₄, CH₃OH, etc. [3-5]. TiO₂ is a popular photocatalyst used for CO₂ reduction since it is convenient to obtain, inexpensive, and has strong resistance to chemicals and corrosion [6]. Pure TiO₂ can only function under UV light illumination which represent only 4% of the energy available in solar radiation [4]. CO₂ reduction performance is thus greatly improved if the TiO₂ or modified TiO₂ can function under visible light illumination.

Some studies have reported on the development of various modified TiO₂ forms [3-5]. The modifications included loading TiO₂ with Au, Ag, Pd, Pt, Rh, Ir or bimetals (e.g., Ag-Au and Au-Pt) [7]. A hierarchical pore network and morphology to prepare the bio-templated TiO₂ catalyst [8], heteroleptic iridium complex supported on graphite carbon nitride [9], TiO₂ synthesis using superficial fluid technology [10] and N-doped reduced graphene oxide promoted nano TiO₂ [11] were attempted modifications to prepare TiO₂ to respond to visible light. According to a review paper on the surface modification of TiO₂ to enhance its CO₂ reduction performance [12], there are many approaches for the surface modification of TiO₂ such as impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading. As an example of impurity doping, the CH₃OH production of Cu/TiO₂ increased with an increase in the amount of Cu doping, while the over-doping of Cu would lead to high defect density in the TiO₂, resulting in degradation of the CO₂ reduction performance [12]. Therefore, there is the optimum ratio of dopant to enhance the CO₂ reduction performance of photocatalyst. As to an example of heterojunction construction, it was reported that the photocatalytic CO₂ reduction performance over Cu/TiO₂ hollow nanoparticles was much better than that of pure TiO₂ and Cu₂O [12]. On the other hand, another recent review paper reported that not only Cu₂O but also Cu₂O/TiO₂ hybrid photocatalyst exhibited a higher CO₂ reduction performance compared to pure TiO₂ [13]. Cu₂O which has a small band gap energy (2.4 V) can help the absorption efficiency in the visible range of the solar spectrum. In addition, Cu₂O can promote the CO₂ reduction performance by concomitantly increasing the electron-hole separation efficiency. It was also reported that Cu₂O/TiO₂ proceeded the photocatalytic reaction, resulting in the increase in the selective formation of CO under the illumination condition of light whose wave length was over 305 nm.

Though various metals have been used for doping, the reductant which is a partner for CO₂ reduction is also important. According to the literatures survey by the authors, H₂O or H₂ were normally used as the reductants for CO₂ reduction [2,7]. The reaction scheme to reduce CO₂ with H₂O can be summarized as shown below according to the previous studies [14-16]:

Photocatalytic reaction

\[\text{TiO}_2 + h\nu \rightarrow h^+ + e^- \] \hspace{1cm} (1)

Oxidation

\[2\text{H}_2\text{O} + 4h^+ \rightarrow 4\text{H}^+ + \text{O}_2 \] \hspace{1cm} (2)

Reduction

\[\text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{CO} + \text{H}_2\text{O} \] \hspace{1cm} (3)

\[\text{CO}_2 + 8\text{H}^+ + 8e^- \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \] \hspace{1cm} (4)

The reaction scheme to reduce CO₂ with H₂ can be summarized as follows [17]:

Photocatalytic reaction

\[\text{TiO}_2 + h\nu \rightarrow h^+ + e^- \] \hspace{1cm} (5)

Oxidation

\[\text{H}_2 \rightarrow 2\text{H}^+ + 2e^- \] \hspace{1cm} (6)

Reduction

\[\text{CO}_2 + e^- \rightarrow \text{CO}_2^- \] \hspace{1cm} (7)

\[\text{CO}_2^- + \text{H}^+ + e^- \rightarrow \text{HCOO}^- \] \hspace{1cm} (8)
In the reduction process, the same number of H⁺ and e⁻ are necessary. Since the doping metal emits the electron which is contributed to prevent the recombination of h⁺ and e⁻ [17], the number of H⁺ should be arranged. Therefore, the combination of doped metal type and reductants is important.

Though various metals have been used for doping, Cu and Pd are favorite candidates [2]. Cu can improve TiO₂ photoactivity and selectivity in the CO₂ photocatalytic application [2]. Cu can extend the absorption band to 400–800 nm [18,19] which covers the whole visible light range. It was reported that Cu/TiO₂ was superior to pure TiO₂. Cu/Cu⁺ fabricated Ti³⁺/TiO₂ can produce 8 µmol/g of CH₄ which is 2.6 times more than in the case of Ti³⁺/TiO₂ [20]. Cu/TiO₂ prepared by a facile solvothermal method had yields of CO and CH₄ up to 4.48 µmol/g and 5.34 µmol/g, which are 10 times higher than those of TiO₂ [21]. It was reported that the synthesized Cu₂O/TiO₂ showed a performance of 3.5 µmol/g of CO production while that of TiO₂ was 0.1 µmol/g [18]. These results [18,20,21] were achieved by CO₂ reduction with H₂O under visible light illumination conditions. On the other hand, Pd can also extend the absorption band to 400–800 nm [22,23], which covers the whole visible light range. Pd/TiO₂ exhibited a higher reduction performance to produce hydrocarbons and H₂ compared to pure TiO₂ [22–24]. This is due to the work function of Pd, which reflects its electron donating or accepting ability. In addition, it is thought that Pd loaded on TiO₂ functions to increase the efficiency of photogenerated electrons for the formation of reductive products. Pd/TiO₂ nanowire produced 50.4 µmol/g of CO and 26.7 µmol/g of CH₄ which were an improvement by 54% and 7%, respectively, compared to those of TiO₂ nanowire [25]. The other study reported that the production of Pd/TiO₂ was 3.50 µmol/g which was 2.5 times as large as that of pure TiO₂ [26]. Pd/TiO₂ prepared by a photochemical deposition method exhibited 0.28 µmol/g of CH₄ which was 14 times as large as that of pure TiO₂ (Degussa P-25) [27]. These results [25–27] were obtained from CO₂ reduction with H₂O under the visible light illumination conditions.

Though there are some reports on CO₂ reduction with H₂O or H₂ [3,27], the effect of NH₃ having 3H⁺, which is superior to H₂O and H₂, on CO₂ reduction performance of photocatalyst is not investigated yet with the exception of the previous studies conducted by Nishiura et al. using Fe [28] or Cu [29]. In addition, other doped metals have not been investigated yet from the viewpoint of comparison of several metal ion types. When the combination of CO₂/NH₃/H₂O is considered, the ion number of dopants is important to match the number of electrons emitted from the dopant with H⁺ as shown in the reaction scheme. The same number of electrons and H⁺ is necessary to produce fuel. The reaction scheme to reduce CO₂ with NH₃ can be summarized as shown below [15,30]:

Photocatalytic reaction

\[\text{TiO}_2 + h\nu \rightarrow h^+ + e^- \] (12)

Oxidation

\[2\text{NH}_3 \rightarrow \text{N}_2 + 3\text{H}_2 \] (13)
\[\text{H}_2 \rightarrow 2\text{H}^+ + 2e^- \] (14)

Reduction

\[\text{H}^+ + e^- \rightarrow \text{H} \] (15)
\[\text{CO}_2 + e^- \rightarrow \text{CO}_2^- \] (16)
\[\text{CO}_2^- + \text{H}^+ + e^- \rightarrow \text{HCOO}^- \] (17)
\[\text{HCOO}^- + \text{H}^+ \rightarrow \text{CO} + \text{H}_2\text{O} \] (18)
\[\text{CO}_2 + 8\text{H} + 8e^- \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \] (19)
It is thought that the total amount of electron which is needed for photochemical reaction is large due to the combination of two H\(^+\) suppliers such as NH\(_3\) and H\(_2\)O, according to the reaction scheme. Since Pd has a high reduction performance \([23,24,31]\) which can assist the progress of reduction reaction in CO\(_2\) reduction with NH\(_3\) and H\(_2\)O, this study selected Pd as a dopant as well as Cu.

The purpose of this study was to clarify the effect of doped metal type on the CO\(_2\) reduction characteristics of TiO\(_2\) with NH\(_3\) and H\(_2\)O. The CO\(_2\) reduction performance with NH\(_3\) and H\(_2\)O using Cu/TiO\(_2\) or Pd/TiO\(_2\) coated on netlike glass fiber as photocatalyst has been investigated under the illumination conditions of a Xe lamp with or without UV light. In the study, the ratio of CO\(_2\)/NH\(_3\)/H\(_2\)O has been set at 1:1:1, 1:0.5:1, 1:1:0.5, 1:1:0.5, 2:3:3, 3:8:12, respectively, to determine the optimum molar ratio of CO\(_2\)/NH\(_3\)/H\(_2\)O to produce CO or CH\(_4\) with Cu or Pd electrode. According to the reaction scheme to reduce CO\(_2\) with H\(_2\)O or NH\(_3\), shown above, the theoretical molar ratio of CO\(_2\)/H\(_2\)O to produce CO or CH\(_4\) should be 1:1 or 1:4, respectively, while that of CO\(_2\)/NH\(_3\) to produce CO or CH\(_4\) should be 3:2, 3:8, respectively. Therefore, this study assumes that the molar ratio of CO\(_2\)/NH\(_3\)/H\(_2\)O = 3:2:3 and 3:8:12 are theoretical molar ratios to produce CO and CH\(_4\), respectively.

2. Materials and Method

2.1. Preparation of Cu/TiO\(_2\) and Pd/TiO\(_2\) Photocatalyst

TiO\(_2\) film was prepared by sol-gel and dip-coating process \([29]\). [(CH\(_3\))\(_2\)CHO]_\(_4\)Ti (purity of 95 wt%, Nacalai Tesque Co., Kyoto, Japan) of 0.3 mol, anhydrous C\(_2\)H\(_5\)OH (purity of 99.5 wt%, Nacalai Tesque Co., Kyoto, Japan) of 2.4 mol, distilled water of 0.3 mol, and HCl (purity of 35 wt%, Nacalai Tesque Co., Kyoto, Japan) of 0.07 mol were mixed for preparing TiO\(_2\) sol solution. This study coats TiO\(_2\) film on netlike glass fiber (SILIGLASS U, Nihonmuki Co., Kyoto, Japan) by a sol-gel and dip-coating process. Glass fiber having diameter of about 10 \(\mu\)m weaved as a net is collected to give a diameter of approximately 1 mm. The pore diameter of the glass fiber and the specific surface area are approximately 1 nm and 400 m\(^2\)/g, respectively from the specifications of the netlike glass fiber. The netlike glass fiber is composed of SiO\(_2\) (96 wt%). The opening space of the net glass is approximately 2 mm × 2 mm. Since the netlike glass fiber has porous characteristics, the netlike glass fiber can capture TiO\(_2\) film easily during the sol-gel and dip-coating process. Additionally, we can expect that CO\(_2\) is more easily absorbed by the prepared photocatalyst due to the porous characteristics of the netlike glass fiber. This study cut the netlike glass fiber into disc forms having a diameter and thickness of 50 mm and 1 mm, respectively. The netlike glass disc was dipped into a TiO\(_2\) sol solution at the speed of 1.5 mm/s and pulled up at the fixed speed of 0.22 mm/s. After that, the net was dried out and fired under a controlled firing temperature (\(FT\)) and firing duration time (\(FD\)) to fasten TiO\(_2\) film on the base material. This study set \(FT\) and \(FD\) at 623 K and 180 s, respectively.

After the coating of TiO\(_2\), this study loaded Cu or Pd on the TiO\(_2\) coated netlike glass fiber by a pulse arc plasma gun method \([29]\) emitting nanosized Cu or Pd particles uniformly under an applied high voltage potential difference. The pulse number can control the quantity of metal loaded on TiO\(_2\). This study set the pulse number at 100. This study applied an ARL-300 pulse arc plasma gun device (ULVAC, Inc., Chigasaki, Japan) with a Cu or Pd electrode whose diameter was 10 mm for Cu or Pd loading, respectively. After the netlike glass fiber coated with TiO\(_2\) was set in the evacuated vessel of the pulse arc plasma gun device, the Cu or Pd electrode emitted nanosized Cu or Pd particles by applying a voltage potential difference of 200 V. The pulse arc plasma gun can evaporate Cu or Pd electrodes into fine particle form over the target in a concentric area whose diameter is 100 mm under the condition that the distance between Cu or Pd electrode and the target is set to be 160 mm. Due to the distance between Cu or Pd electrode and TiO\(_2\) film of 150 mm, these conditions can uniformly spread Cu or Pd particles over the TiO\(_2\) film.
2.2. Characterization of Cu/TiO$_2$ and Pd/TiO$_2$ Film

This study evaluated the structure and crystallization characteristics of Cu/TiO$_2$ film and Pd/TiO$_2$ film by SEM (JXA-8530F, produced by JEOL Ltd., Tokyo, Japan), EPMA (JXA-8530F, produced by JEOL Ltd., Tokyo, Japan) [29], TEM (JEM-2100/HK, JEOL Ltd., Tokyo, Japan), EDX (JEM-2100F/HK, JEOL Ltd., Tokyo, Japan), STEM (JEM-ARM200F, JEOL Ltd., Tokyo, Japan), EDS (JEM-ARM200F, JEOL Ltd., Tokyo, Japan) and EELS (JEM-ARM2007 Cold, produced by JEOL Ltd., Tokyo, Japan) [32].

These measuring instruments use electrons to characterize materials, meaning that the samples should conduct electricity. Because the netlike glass disc used for base material to coat Cu/TiO$_2$ or Pd/TiO$_2$ film can’t conduct electricity, a carbon vapor was deposited by a dedicated device (JEE-420, produced by JEOL Ltd., Tokyo, Japan) on the netlike glass discs before characterization. The thickness of the carbon deposited on samples is controlled to be approximately 20–30 nm. The electrode emits the electrons to the sample by setting the acceleration voltage of 15 kV and the current at 3.0×10^{-8} A in order to analyze the external structure of samples by SEM. After the X-ray characteristics are analyzed by EPAM, the concentration of chemical elements is clarified referring to the relationship between the characteristic X-ray energy and the atomic number. SEM and EPMA have a spatial resolution of 10 nm. The EPMA analysis can help clarify the structure of the prepared photocatalysts as well as to measure the quantity of loaded metal within TiO$_2$ film on the netlike glass disc as base material. The electron probe emits electrons to the sample at the acceleration voltage of 200 kV, when the inner structure of the sample is analyzed by TEM and STEM. The size, thickness and structure of loaded Cu and Pu were evaluated by TEM and STEM, respectively. The X-ray characteristics of the sample is detected by EDX and EDS at the same time, so the concentration distribution of chemical element in the thickness direction of the samples is known. The size, thickness and structure of loaded Cu and Pd were evaluated by TEM and STEM, respectively. The characterization of X-ray is detected by EDX and EDS at the same time, resulting in that the concentration distribution of chemical elements in the thickness direction of the samples is analyzed. EELS is used to detect elements as well as to determine the oxidation states of transition metals. The EELS characterization was determined by a JEM-ARM200F system equipped with GIF Quantum having 2048 ch. The dispersion of 0.5 eV/ch for the full width ad half maximum of the zero loss peak was measured in this study.

2.3. CO$_2$ Reduction Experiment

Figure 1 illustrates the experimental set-up of the reactor consisting of a stainless tube with dimensions of 100 mm (H.) \times 50 mm ($I.D.$.), Cu/TiO$_2$ film coated on netlike glass disc having the scale of 50 mm (D.) \times 1 mm (t.) positioned on a Teflon cylinder having dimensions of 50 mm (H.) \times 50 mm (D.), a quartz glass disc of 84 mm ($D.$) \times 10 mm (t.), a sharp cut filter cutting off the light whose wavelength is below 400 nm (SCF-49.5C-42L, produced by Sigma Koki Co. Ltd., Tokyo, Japan), a 150 W Xe lamp (L2175, produced by Hamamatsu Photonics K. K., Hamamatsu, Japan), mass flow controller and CO$_2$ gas cylinder [29]. The reactor size to charge CO$_2$ is 1.25×10^{-4} m3. The light of Xe lamp which is positioned on the top of the stainless tube illuminates Cu/TiO$_2$ film or Pd/TiO$_2$ coated on the netlike glass disc through the sharp cut filter and the quartz glass disc that are located on the top of the stainless tube. Xe lamp has the wavelength of light ranged from 185 nm to 2000 nm. The sharp cut filter can get rid of UV from the Xe lamp, resulting that the wavelength of light illuminating to Cu/TiO$_2$ film or Pd/TiO$_2$ film ranges from 401 nm to 2000 nm with the filter. In this study, the average light intensity of Xe lamp without and with the sharp cut filter is 58.7 mW/cm2 and 47.1 mW/cm2, respectively.
Figure 1. Experimental set-up for CO$_2$ reduction (In this Figure, 1: Xe lamp, 2. Edge cut filter, 3. Quartz glass disc, 4. Stainless tube, 5. Gas sampling tap, 6. Photocatalyst, 7. Teflon cylinder, 8. Valve, 9. CO$_2$ gas cylinder (99.995 vol%)).

After filling CO$_2$ gas of 99.995 vol% purity in the reactor which was pre-evacuated by a vacuum pump for 15 min, the valves positioned at the inlet and the outlet of reactor were closed in the CO$_2$ reduction experiment with NH$_3$ + H$_2$O. After that, we confirmed that the pressure and gas temperature in the reactor at 0.1 MPa and 298 K, respectively. Then, we injected NH$_3$ aqueous solution (NH$_3$; 50 vol%), which was changed depending on the planed molar ratio, into the reactor via gas sampling tap, and turned on Xe lamp at a time. Due to the heat of infrared light components illuminated from Xe lamp, the injected NH$_3$ aqueous solution vaporized completely in the reactor. The temperature in the reactor reached at 343 K within an hour and it was maintained at approximately 343 K during the experiment. We changed the molar ratio of CO$_2$/NH$_3$/H$_2$O at 1:1:1, 1:0.5:1, 1:1:0.5, 1:0.5:0.5, 3:2:3, 3:8:12, respectively. The reacted gas in the reactor was extracted by gas syringe via gas sampling tap and it was analyzed by FID gas chromatography (GC353B, GL Science, Tokyo, Japan) and a methanizer (MT221, GL Science, Tokyo, Japan). The FID gas chromatograph and methanizer have a minimum resolution of 1 ppmV.

3. Results and Discussion

3.1. Characterization Analysis of Cu/TiO$_2$ and Pd/TiO$_2$ Film

Figures 2 and 3 show SEM and EPMA images of Cu/TiO$_2$ and Pd/TiO$_2$ film coated on netlike glass disc, respectively. Black and white SEM images at 1500 times magnification were obtained in this study, which were also used for EPAM analysis. As to the EPMA image, the concentrations of each element in observation area are displayed by diverse colors. Light colors, e.g., white, pink, and red are used to display a large amount of an element. On the other hand, dark colors like black and blue are used to display a small amount of element. According to Figures 2 and 3, it is observed that TiO$_2$ film having teeth-like shape coated on the netlike glass fiber is formed irrespective of pulse number. Since the thermal conductivity of Ti and SiO$_2$ at 600 K are 19.4 W/(m·K) and 1.82 W/(m·K), respectively [33], the temperature distribution of TiO$_2$ solution adhered on the net like
glass disc was not even during the firing process. Thermal expansion and shrinkage around netlike glass fibers occurred, resulting in the formation of thermal cracks within the TiO$_2$ film. Therefore, it is believed that TiO$_2$ film on netlike glass fiber has a teeth-like form. In addition, it was found that nanosized Cu and Pd particles were loaded on TiO$_2$ film uniformly. The observation area which is the center of netlike glass disc having the diameter of 300 μm was analyzed by EPMA to measure the amount of loaded Cu or Pd within the TiO$_2$ film. The ratio of Cu or Pd to Ti is calculated by averaging the data detected in this area. The weight percentage of element Cu within Cu/TiO$_2$ film was 1.62 wt%, while the weight percentage of element Pd within Pd/TiO$_2$ film was 1.64 wt%. The weight percentages of loaded Cu and Pd were almost the same, indicating that pulse arc plasma gun method could control the amount of metal doped on TiO$_2$ irrespective of metal type. On the other hand, total weights of Cu/TiO$_2$ and Pd/TiO$_2$ which were measured by an electron balance and averaged among 10 samples are 0.05 g and 0.07 g, respectively.

![Figure 2](image1.jpg)
Figure 2. SEM and EPMA results of Cu/TiO$_2$ film coated on netlike glass disc.

![Figure 3](image2.jpg)
Figure 3. SEM and EPMA results of Pd/TiO$_2$ film coated on netlike glass disc.

Figures 4 and 5 show TEM and EDX images of Cu/TiO$_2$ film, respectively. EDX analysis was carried out using TEM images taken at 15,000 times magnification. It is observed from Figure 5 that Cu particles are distributed in the TiO$_2$ film. Although many
Cu particles are loaded on the upside of TiO$_2$ film, it is not confirmed that a Cu layer is formed [32].

Figure 4. TEM images of Cu/TiO$_2$ film.

Figure 5. EDX images of Cu/TiO$_2$ film (Left: Ti, Center: O, Right: Cu).

Figure 6 shows STEM and EDS results of Pd/TiO$_2$ film coated on the netlike glass disc. A 250,000 times magnification STEM image was used in the EDS. It is observed from the STEM image that Pd is coated on the TiO$_2$ film, which is confirmed by EDS images, too. It is also observed that the layers of Pd and Ti are separated. It is seen that the thickness of the Pd coated is approximately 60 nm. The observation area is small compared to EPMA images shown in Figure 3, suggesting that nano-sized Pd particles are loaded on TiO$_2$ dispersedly [34].

Figure 7 shows the EELS spectra of Cu in Cu/TiO$_2$ film. According to this figure, peaks at around 932 eV and 952 eV can be observed. Compared to a report investigating the spectral peaks of Cu$_2$O and CuO [35], the EELS spectra of Cu$_2$O matches Figure 7. Therefore, Cu in Cu/TiO$_2$ prepared in this study exists as Cu$^+$ ion in Cu$_2$O. It was reported that Cu$^+$ was more active than Cu$^{2+}$ [36]. Consequently, it is expected that Cu$^+$ plays a role in enhancing the CO$_2$ reduction performance.

Figure 8 shows EELS spectra of Pd in Pd/TiO$_2$ film which displays peaks at around 540 eV. Comparing the spectra peaks of Pd nanowire with that of Pd metal and PdO [28], it is seen that the EELS spectra of Pd metal matches that in Figure 8. Therefore, it can be thought that Pd in Pd/TiO$_2$ prepared in this study exists as Pd metal. Since the photore-
duction performance of Pd/TiO$_2$ was higher than that of PdO/TiO$_2$ [31,37], it is confirmed that the desirable Pd/TiO$_2$ without oxidation was prepared in this study.

![STEM and EDS result of Pd/TiO$_2$ film coated on netlike glass disc.](image)

Figure 6. STEM and EDS result of Pd/TiO$_2$ film coated on netlike glass disc.

![EELS spectra of Cu in Cu/TiO$_2$.](image)

Figure 7. EELS spectra of Cu in Cu/TiO$_2$.

![EELS spectra of Pd in Pd/TiO$_2$.](image)

Figure 8. EELS spectra of Pd in Pd/TiO$_2$.

3.2. CO$_2$ Reduction Characteristics of Cu/TiO$_2$

Tables 1 and 2 list the changes in molar quantity of CO per unit weight of photocatalyst for Cu/TiO$_2$ film coated on netlike glass disc with the time under the condition of Xe lamp
illumination with and without UV light, respectively. In these tables, the impact of molar ratio of CO$_2$, NH$_3$ and H$_2$O is also evaluated. In addition, fuels other than CO were not detected in this study. Before this experiment, a blank test under the condition of CO$_2$/NH$_3$/H$_2$O or CO$_2$/H$_2$O without Xe lamp illumination had been carried out as a reference, resulting that no fuel was detected as expected. As to the reproducibility of experiments, this study shows the data from averaging three experiments. Tables 1 and 2 also list the maximum value of molar quantity of CO per unit weight of photocatalyst which is written in bold font.

Table 1. Comparison of molar quantity of CO per unit weight of photocatalyst for Cu/TiO$_2$ under the illumination condition of Xe lamp with UV light (unit: μmol/g).

Time [h]	0	3	6	9	12	15	18	21	24	48	72	96
CO$_2$:NH$_3$:H$_2$O = 1:1:1	0.6	0.8	0.9	0.9	1.0	1.2	1.4	2.0	1.9	1.5	1.2	
CO$_2$:NH$_3$:H$_2$O = 1:0.5:1	0.9	1.0	1.3	1.1	1.4	1.6	1.1	1.0	0.7	0.9	1.1	
CO$_2$:NH$_3$:H$_2$O = 1:1:0.5	0.8	1.4	1.7	1.6	1.4	1.2	1.1	1.0	1.3	1.0	1.6	
CO$_2$:NH$_3$:H$_2$O = 1:0.5:0.5	0.5	1.2	1.4	1.4	2.1	2.5	1.7	1.3	1.7	2.3	1.7	
CO$_2$:NH$_3$:H$_2$O = 3:2:3	0.5	1.1	1.6	1.4	0.9	1.3	1.5	2.2	1.4	1.1	1.3	
CO$_2$:NH$_3$:H$_2$O = 3:8:12	0.4	1.1	1.5	1.0	0.7	0.6	0.9	0.9	1.1	1.5	1.4	

It can be seen from Table 1 that the CO$_2$ reduction performance for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:1:1 is the highest where the molar quantity of CO per unit weight of photocatalyst is 10.2 μmol/g at 6 h. According to the reaction scheme of CO$_2$ reduction with H$_2$O or NH$_3$ shown above, the theoretical molar ratio of CO$_2$/H$_2$O to produce CO or CH$_4$ is 1:1 or 1:4, respectively. In addition, the theoretical molar ratio of CO$_2$/NH$_3$ to produce CO or CH$_4$ is 3:2, 3:8, respectively. Based on these theoretical molar ratios, the molar ratio of CO$_2$/NH$_3$/H$_2$O = 3:2:3 should be the theoretical molar ratio to produce CO. However, it is revealed that the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:1:1, which exhibits the highest performance of CO production as shown in Table 1, is different from the theoretical molar ratio assumed. Since the ionized Cu doped with TiO$_2$ can provide free electrons to be used for the reduction reaction process [38,39], the theoretically required quantity of the reactant NH$_3$ and H$_2$O is reduced from the values according to the theoretical reaction scheme with TiO$_2$ i.e., CO$_2$/NH$_3$/H$_2$O = 3:3:3 to 3:2:3. It is also observed from Table 1 that the produced CO decreases after reaching a maximum value. It is believed that the decrease in the produced CO was caused by the reoxidation reaction with CO and O$_2$ [40], and not caused by the deactivation of the photocatalyst.

As to the impact of NH$_3$ on CO$_2$ reduction characteristics using Cu/TiO$_2$, the authors’ previous study [30] had drawn the following conclusions: Comparing the concentration change of CO along the time under the Xe lamp with UV light for the molar ratio of CO$_2$/H$_2$O = 1:1 to that for the molar ratios of CO$_2$/NH$_3$/H$_2$O = 1:1:1, 1:0.5:1, 3:2:3, it is observed that the concentration of formed CO for the molar ratio of CO$_2$/H$_2$O = 1:1 shows the peak soon after the start of illumination of Xe lamp and decreases gradually. It is also observed that the concentration of formed CO for the molar ratios of CO$_2$/NH$_3$/H$_2$O = 1:1:1, 1:0.5:1, 3:2:3 are larger than that for the molar ratio of CO$_2$/H$_2$O.
Therefore, the CO$_2$ produced to the molar ratio of CO$_2$/H$_2$O = 1:1. Therefore, it is revealed that the combination of NH$_3$ and H$_2$O, that is, the existence of NH$_3$ is effective for the promotion of the CO$_2$ reduction performance of prepared photocatalyst. On the other hand, comparing the concentration change of CO along the time under the Xe lamp with UV light for the molar ratio of CO$_2$/H$_2$O = 1:0.5 to that for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:0.5:0.5, it is observed that the concentration of formed CO for the molar ratio of CO$_2$/H$_2$O = 1:0.5 shows the peak soon after the start of illumination of Xe lamp and decreases gradually, which displays the same tendency as the result for the molar ratio of CO$_2$/H$_2$O = 1:1. It is also observed that the concentration of CO for the molar ratios of CO$_2$/NH$_3$/H$_2$O = 1:1:0.5 and 1:0.5:0.5 are larger than that for the molar ratio of CO$_2$/H$_2$O = 1:0.5. In addition, the concentration of formed CO keeps some value approximately without rapid decrease before 24 h for CO$_2$/NH$_3$/H$_2$O conditions compared to the molar ratio of CO$_2$/H$_2$O = 1:0.5. According to the reaction scheme to reduce CO$_2$ with NH$_3$ as shown above, the more reaction step is needed to produce CO since NH$_3$ should be converted into H$_2$ at first. Consequently, it is believed that the time to produce CO is longer compared to the molar ratio of CO$_2$/H$_2$O = 1:0.5. Moreover, comparing the concentration change of formed CO along the time under the Xe lamp with UV light for the molar ratio of CO$_2$/H$_2$O = 3:12 to that for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 3:8:12, it is observed that the concentration of formed CO for the molar ratio of CO$_2$/H$_2$O = 3:12 shows the peak soon after the illumination of Xe lamp and decreases gradually. In addition, the concentration of formed CO restarts to increase gradually and decrease again. This trend is different from the other CO$_2$/H$_2$O condition. The ratio of H$_2$O is larger in this condition compared to the others, which indicates larger reductants provided for reduction reaction. Therefore, it is thought to keep CO production even though the oxidation reaction with CO and O$_2$ starts, which is the reason for the decrease in concentration of CO. Furthermore, it is also observed that the concentration of formed CO for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 3:8:12 is larger than that for the molar ratio of CO$_2$/H$_2$O = 3:12. Consequently, it is revealed that the combination of NH$_3$ and H$_2$O, that is, the existence of NH$_3$, is effective for promotion of the CO$_2$ reduction performance of prepared photocatalyst for all conditions of CO$_2$/NH$_3$/H$_2$O. When comparing the highest quantity produced CO in the case of CO$_2$/NH$_3$/H$_2$O = 3:8:12 to that in the case of CO$_2$/H$_2$O = 3:12, it is confirmed that the highest produced CO in the case of molar ratio of CO$_2$/NH$_3$/H$_2$O = 3:8:12 is approximately three times as large as that in the case of molar ratio of CO$_2$/H$_2$O = 3:12. Consequently, it is clear that NH$_3$ could promote CO$_2$ reduction performance of Cu/TiO$_2$.

It can be seen from Table 2 that the CO$_2$ reduction performance for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:0.5:0.5 is the highest where the molar quantity of CO per unit weight of photocatalyst is 2.5 µmol/g. In addition, Table 2 also reveals that the amount of total reductants required is smaller than that in the case with UV light shown in Table 1. When the Xe lamp is illuminated without UV light, the light intensity and wavelength range of light are smaller and narrower respectively, compared to the condition with UV light as described above. According to the reaction scheme of CO$_2$ reduction with H$_2$O or NH$_3$ that an electron is produced by the photochemical reaction which is influenced by the light illumination condition. Additionally, H$^+$ whose amount is the same as that of electron is needed to produce CO. Since the number produced electrons might be smaller due to the less light input without UV, it is believed that the numbers of required H$^+$ are small. Therefore, the CO$_2$ reduction performance for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:0.5:0.5 was the highest, while total reductants required were smaller than that in the case with UV light.

Tables 3 and 4 show the trends in molar quantity of CO per unit weight of photocatalyst (Pd/TiO$_2$) under the condition of Xe lamp illumination with and without UV light, respectively. Tables 3 and 4 also list the maximum value of molar quantity of CO per unit weight of photocatalyst which is written in bold font. It is seen from Table 3 that the highest CO$_2$ reduction performance reached at the illumination time of Xe lamp with UV
light of 12 h irrespective of molar ratio of CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O. Though it is observed from Table 3 that the molar quantity of CO per unit weight of photocatalyst for the molar ratio of CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O = 3:2:3 has the highest value at the illumination time of 12 h, the molar quantity of CO per unit weight of photocatalyst decreased rapidly after 12 h. In these figures, the impact of molar ratio of CO\textsubscript{2}, NH\textsubscript{3} and H\textsubscript{2}O is also presented. Additionally, the other fuels except for CO were not detected in this study. Before the experiment, a blank test without Xe lamp illumination had been carried out as a reference, resulting that no fuel was detected as expected. As to the reproducibility of experiments, this study shows the data from three averaged experiments.

Table 3. Comparison of molar quantity of CO per unit weight of photocatalyst for Pd/TiO\textsubscript{2} under the illumination condition of Xe lamp with UV light (unit: µmol/g).

Time [h]	0	3	6	9	12
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:1:1	0	1.6	5.5	5.0	2.8
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:0.5:1	0	1.4	1.4	0	0.1
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:1:0.5	0	2.1	1.1	1.1	1.4
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:0.5:0.5	0	2.0	1.5	0.8	1.2
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 3:2:3	0	1.5	1.6	1.4	2.4
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 3:8:12	0	1.7	1.2	1.8	1.1

Table 4. Comparison of molar quantity of CO per unit weight of photocatalyst for Pd/TiO\textsubscript{2} under the illumination condition of Xe lamp without UV light (unit: µmol/g).

Time [h]	0	24	48	72	96
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:1:1	0	1.7	3.5	3.2	3.1
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:0.5:1	0	1.8	2.0	2.1	2.5
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:1:0.5	0	2.5	2.3	3.1	1.6
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 1:0.5:0.5	0	2.5	1.4	2.0	2.0
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 3:2:3	0	1.6	1.6	3.0	2.8
CO\textsubscript{2}:NH\textsubscript{3}:H\textsubscript{2}O = 3:8:12	0	1.7	1.7	1.5	1.8

According to Table 3, with the UV illumination, the CO\textsubscript{2} reduction performance for the molar ratio of CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O = 1:1:1 is the highest where the molar quantity of CO per unit weight of photocatalyst is 5.5 µmol/g. Though this study assumes that the molar ratio of CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O = 3:2:3 is the theoretical molar ratios to produce CO, it is revealed that the optimum molar ratio of CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O is 1:1:1. Additionally, the molar ratio exhibiting the highest CO\textsubscript{2} reduction performance for Pd/TiO\textsubscript{2} is the same as that for Cu/TiO\textsubscript{2}. As described above, since the ionized Cu doped with TiO\textsubscript{2} can provide free electron to be used for the reduction reaction process [39], the theoretically required quantity of the reductants of NH\textsubscript{3} and H\textsubscript{2}O is reduced from the values according to the theoretical reaction scheme i.e., CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O = 3:3:3 to 3:2:3. According to the EELS spectra analysis as shown above, it is believed that Pd in Pd/TiO\textsubscript{2} prepared in this study was in the form of Pd metal, which is different from Cu+ ion in Cu/TiO\textsubscript{2} prepared in this study.

Moreover, it can be seen from Table 4 that, without UV light illumination, the CO\textsubscript{2} reduction performance for the molar ratio of CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O = 1:1:1 is the highest where the molar quantity of CO per unit weight of photocatalyst is 3.5 µmol/g. This optimum molar ratio (1:1:1) without UV light illumination is the same as the optimum molar ratio with UV light illumination. However, it is different from the optimum molar ratio obtained with Cu/TiO\textsubscript{2} photocatalyst. Pd acts as an electron-transfer mediator, rapidly transferring the photoexcited electrons from the conduction band of Pd/TiO\textsubscript{2} and the photoexcited electrons are transported to the surface of Pd/TiO\textsubscript{2} [24]. Although Cu can also act as an electron-transfer mediator, Pd might conduct the higher performance compared to Cu. As a result, Pd/TiO\textsubscript{2} exhibits better CO\textsubscript{2} reduction performance than Cu/TiO\textsubscript{2} under the
visible light illumination condition [24]. The amount of light absorbed by Pd might be enough even the smaller light input under the illumination condition of Xe lamp without UV light. As a result, the required amount of needed H⁺ for CO₂ reduction without UV light is not smaller than the case with UV light, which is different from the case of Cu/TiO₂ without UV light. Consequently, the CO₂ reduction performance with Pd/TiO₂ at the molar ratio of CO₂/NH₃/H₂O = 1:1:1 is the highest for Pd/TiO₂ even the illumination condition of Xe lamp without UV light.

3.3. The Quantum Efficiency Evaluation

Quantum efficiency is a well-known criterion used to indicate the photocatalytic activity and efficiency [41]. The quantum efficiency is generally calculated by the following equations [34, 42]:

\[
\eta = \left(\frac{N_{\text{output}}}{N_{\text{input}}} \right) \times 100 \tag{20}
\]

\[
N_{\text{input}} = \left(I \times t \times \lambda \times A_{\text{re}} \right) / \left(h \times c \right) \tag{21}
\]

\[
N_{\text{output}} = N_{\text{CO}} M_{\text{CO}} N_{A} \tag{22}
\]

where \(\eta \) is the quantum efficiency [%], \(N_{\text{input}} \) is the number of protons absorbed by photocatalyst [-], \(N_{\text{output}} \) is the photon number used in photocatalytic reaction [-], \(I \) is the light intensity of UV light [W/cm²], \(t \) is the time illuminating UV light [s], \(\lambda \) is the wave length limit of light to trigger the photocatalytic reaction by photocatalyst [m], \(A_{\text{re}} \) is the reaction surface area of photocatalyst assumed to be equal to the surface area of netlike glass disc [cm²], \(h \) is Plank’s constant (= 6.626 × 10⁻³⁴) [J·s], \(c \) is light speed (= 2.998 × 10⁸) [m/s], \(N_{\text{CO}} \) is the electron number required to form CO of a molecular (=2) [-], \(M_{\text{CO}} \) is the molar number of formed CO [mol], \(N_{A} \) is Avogadro’s number (= 6.022 × 10²³) [1/mol]. In this study, \(I \) averaged during all experiments where the illumination condition of Xe lamp with and without UV light were 58.7 mW/cm² and 47.1 mW/cm², respectively. \(t \) under both Xe lamp illumination condition with and without UV light were 345,600 s (96 h) in the case of Cu/TiO₂ with UV light and without UV light as well as in the case of Pd/TiO₂ without UV light, while \(t \) under both Xe lamp illumination condition with UV light was 43,200 s (12 h).

Figures 9 and 10 show the comparison of quantum efficiencies among different molar ratios of CO₂/NH₃/H₂O for Cu/TiO₂ under the condition of Xe lamp illumination with and without UV light, respectively. It is revealed from Figures 9 and 10 that the highest quantum efficiency under the condition of Xe lamp illumination with and without UV light is obtained for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 and 1:0.5:0.5, respectively, which agrees with the results shown in Tables 1 and 2. Comparing the quantum efficiencies shown in Figures 9 and 10, the highest quantum efficiency of 1.96 × 10⁻⁴ is obtained when the Xe lamp with UV light is illuminated. If illumination time, \(t \) for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 with UV light is 6 h when the highest molar quantity of CO per unit weight of photocatalyst is obtained, the highest quantum efficiency for Cu/TiO₂ is 3.14 × 10⁻³.

Figures 11 and 12 show the comparison of quantum efficiencies among different molar ratios of CO₂/NH₃/H₂O for Pd/TiO₂ under the condition of Xe lamp illumination with and without UV light, respectively. Figures 11 and 12 reveal that the highest quantum efficiency under the condition of Xe lamp illumination with and without UV light is obtained for the molar ratio of CO₂/NH₃/H₂O = 1:1:1, which agrees with the results shown in Tables 3 and 4. Comparing the quantum efficiencies shown in Figures 11 and 12, the highest quantum efficiency of 4.20 × 10⁻⁴ is obtained with UV light. If \(t \) is set at 96 h which is the same time as the case of Cu/TiO₂, the highest quantum efficiency for Pd/TiO₂ under the condition of Xe lamp illumination with UV light is 0.53 × 10⁻⁴.
Figure 9. Comparison of quantum efficiency among different molar ratios for Cu/TiO$_2$ under the illumination condition of Xe lamp with UV light.

Figure 10. Comparison of quantum efficiency among different molar ratios for Cu/TiO$_2$ under the illumination condition of Xe lamp without UV light.

Figure 11. Comparison of quantum efficiency among different molar ratios for Pd/TiO$_2$ under the illumination condition of Xe lamp with UV light.
Figure 12. Comparison of quantum efficiency among different molar ratios for Pd/TiO$_2$ under the illumination condition of Xe lamp without UV light.

According to the previous study [39], Cu/TiO$_2$ (2 wt% of Cu) photocatalyst performed the quantum efficiency of producing CO of 1.56×10^{-2} in the case of CO$_2$/H$_2$O with UV light. Another study reported that Cu/TiO$_2$ (1 wt% of Cu) performed the quantum efficiency of 1.41×10^{-2} in the case of CO$_2$/H$_2$O with UV light [43]. As to Pd/TiO$_2$, there is no previous study evaluating quantum efficiency of CO production, except for the report [26] which estimated the quantum efficiency of producing CH$_4$ of 1.49 with Pd/TiO$_2$ (1 wt% of Pd) and NaOH solution as the reductant.

The quantum efficiency obtained in the current study is lower than that obtained in previous studies. The reason is thought to be that the total amount of electron needed in this study for photochemical reaction is too large due to the combination of two H$^+$ supplies i.e., NH$_3$ and H$_2$O. It is thought that, (i) capturing the maximum visible light region, and (ii) draining the photogenerated charges on light irradiation towards Cu/TiO$_2$ surface [44], which may be possible ways to improve the quantum efficiency.

This study has confirmed that Cu/TiO$_2$ is superior to Pd/TiO$_2$ from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency. As the next step, it can be considered to improve the CO$_2$ reduction performance of TiO$_2$ with NH$_3$ and H$_2$O further. Combination of different doped metals is one way to promote the CO$_2$ reduction performance further in the near future. According to the previous studies [42,45,46], the co-doped TiO$_2$ such as PbS-Cu/TiO$_2$, Cu-Fe/TiO$_2$, Cu-Ce/TiO$_2$, Cu-Mn/TiO$_2$, Cu-CdS/TiO$_2$ and Au-Pd/TiO$_2$ were able to promote the CO$_2$ reduction performance of TiO$_2$ with H$_2$O. For the combination of CO$_2$/NH$_3$/H$_2$O, the ion number of the dopant had better match the number of electrons emitted from the dopant with that of H$^+$ according to the reaction scheme shown above. The same number of electrons and H$^+$ is necessary to produce fuel from CO$_2$. Although this study dopes only one metal in order to promote the CO$_2$ reduction performance using TiO$_2$, co-doping metals, which have larger positive ions compared to Cu, can provide a positive effect to promote the CO$_2$ reduction performance with NH$_3$ and H$_2$O. Therefore, it is expected that the CO$_2$ reduction performance will be promoted by the combination of different doped metals in the case of CO$_2$/NH$_3$/H$_2$O.

4. Conclusions

From the investigation in this study, the following conclusions can be drawn:

(1) TiO$_2$ film coated on netlike glass fiber was teeth like. Cu and Pd particles were loaded on TiO$_2$ film uniformly. It is confirmed that the pulse arc plasma gun method can control the amount of metal doped on TiO$_2$ irrespective of metal type.
Cu in Cu/TiO$_2$ prepared in this study exists as Cu$^+$ ion in Cu$_2$O. Pd in Pd/TiO$_2$ prepared in this study exists as Pd metal.

In the case of Cu/TiO$_2$ under the illumination condition of Xe lamp with UV light, the CO$_2$ reduction performance for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:1:1 was the highest where the molar quantity of CO per unit weight of photocatalyst was up to 10.2 mol/g.

In the case of Pd/TiO$_2$ under the illumination condition of Xe lamp with UV light, the CO$_2$ reduction performance for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:0.5:0.5 was the highest where the molar quantity of CO per unit weight of photocatalyst was 2.5 mol/g.

In the case of Cu/TiO$_2$ under the illumination condition of Xe lamp without UV light, the CO$_2$ reduction performance for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:1:1 was the highest where the molar quantity of CO per unit weight of photocatalyst was up to 5.5 mol/g.

In the case of Pd/TiO$_2$ under the illumination condition of Xe lamp without UV light, the CO$_2$ reduction performance for the molar ratio of CO$_2$/NH$_3$/H$_2$O = 1:1:1 was the highest where the molar quantity of CO per unit weight of photocatalyst was up to 3.5 mol/g.

As to Cu/TiO$_2$, the highest quantum efficiency was 1.96×10^{-4} under the illumination condition of Xe lamp with UV light. On the other hand, it was 3.14×10^{-3} if t was set at 6 h when the highest molar quantity of CO per unit weight of photocatalyst was obtained.

As to Pd/TiO$_2$, the highest quantum efficiency was 4.20×10^{-4} under the illumination condition of Xe lamp with UV light. On the other hand, it was 0.53×10^{-4} if t was set at 96 h which was the same illumination time of Xe lamp as Cu/TiO$_2$.

Author Contributions: Conceptualization, A.N.; data curation, R.S. and Y.S.; methodology, A.K.; writing-original draft preparation, A.N.; writing-review, E.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available for all figures and tables.

Conflicts of Interest: The author declares no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Global Monitoring Laboratory. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/global/html (accessed on 15 December 2020).
2. Tahir, M.; Amin, N.S. Advances in Visible Light Responsive Titanium Oxide-based Photocatalysts for CO$_2$ Conversion to Hydrocarbon Fuels. Energy Conv. Manag. 2013, 76, 192–214. [CrossRef]
3. Matavos-Aramyan, S.; Soukhakian, S.; Jazebizadeh, H.M.; Moussavi, M.; Hojjati, M.R. On Engineering Strategies for Photoselective CO$_2$ Reduction—A through Review. Appl. Mater. Today 2020, 18, 100499. [CrossRef]
4. Remiro-Buenamanana, S.; Garcia, H. Photoassisted CO$_2$ Conversion to Fuels. ChemCatChem Minirev. 2019, 11, 342–356. [CrossRef]
5. Abdullah, H.; Khan, M.M.R.; Ong, H.R.; Yaakob, Z. Modified TiO$_2$ Photocatalyst for CO$_2$ Photocatalytic Reduction: An Overview. J. CO2 Utilizat. 2017, 22, 15–32. [CrossRef]
6. Tahir, M.; Amin, N.S. Indium-doped TiO$_2$ Nanoparticles for Photocatalytic CO$_2$ Reduction with H$_2$O Vapors to CH$_4$. Appl. Catal. B Environ. 2015, 162, 98–109. [CrossRef]
7. Sohn, Y.; Huang, W.; Taghipour, F. Recent Progress and Perspectives in the Photocatalytic CO$_2$ Reduction of Ti-oxide-based Nanomaterials. Appl. Surface Sci. 2017, 396, 1696–1711. [CrossRef]
8. Hashermizadeh, I.; Golovko, V.B.; Choi, J.; Tsang, D.C.W.; Yip, A.C.K. Photocatalytic Reduction of CO$_2$ to Hydrocarbons Using Bio-templated Porous TiO$_2$ Architectures under UV and Visible Light. Chem. Eng. J. 2018, 347, 64–73. [CrossRef]
36. Liu, L.; Gao, F.; Zhao, H.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO$_2$ catalysts for enhanced CO$_2$ photoreduction efficiency. *Appl. Catal. B Environ.* **2013**, *134–135*, 349–358. [CrossRef]

37. Nishimura, A.; Inoue, T.; Sakakibara, Y.; Hirota, M.; Koshio, A.; Hu, E. Impact of Pd loading on CO$_2$ reduction performance over Pd/TiO$_2$ with H$_2$ and H$_2$O. *Molecules* **2020**, *25*, 1468. [CrossRef]

38. Jensen, J.; Mikkelsen, M.; Krebs, F.C. Flexible substrates as basis for photocatalytic reduction of carbon dioxide. *Sol. Energy Mater. Sol. Cells* **2011**, *95*, 2949–2958. [CrossRef]

39. Paulino, P.N.; Salim, V.M.M.; Resende, N.S. Zu-Cu promoted TiO$_2$ photocatalyst for CO$_2$ reduction with H$_2$O under UV light. *Appl. Catal. B Environ.* **2011**, *95*, 2949–2958. [CrossRef]

40. Tahir, M.; Amin, N.A.S. Photo-induced CO$_2$ reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO$_2$ nanocatalyst. *Int. J. Hydrogen Energy* **2017**, *42*, 15507–15522. [CrossRef]

41. Hoque, M.A.; Guzman, G.J. Photocatalytic activity: Experimental features to report in heterogeneous photocatalysis. *Materials* **2018**, *11*, 1990. [CrossRef]

42. Nahar, S.; Zain, M.F.; Kadhum, A.A.H.; Hasan, H.A.; Hasan, M.R. Advances in photocatalytic CO$_2$ reduction with water: A review. *Materials* **2017**, *10*, 629. [CrossRef]

43. Li, Y.; Wang, W.N.; Zhan, Z.; Woo, M.H.; Wu, C.Y.; Biswas, P. Photocatalytic reduction of CO$_2$ with H$_2$O on Mesoporous Silica Supported Cu/TiO$_2$ Catalysts. *Appl. Catal. B Environ.* **2010**, *100*, 386–392. [CrossRef]

44. Razzaq, A.; Ali, S.; Asif, M.; In, S.I. Layered double hydroxide (LDH) based photocatalysts: An outstanding strategy for efficient photocatalytic CO$_2$ conversion. *Catalyst* **2020**, *10*, 1185. [CrossRef]

45. Olowoyo, J.O.; Kumar, M.; Dash, T.; Saran, S.; Bhandari, S.; Kumar, U. Self-organized copper impregnation and doping in TiO$_2$ with enhanced photocatalytic conversion of H$_2$O and CO$_2$ to fuel. *Int. J. Hydrogen Energy* **2018**, *43*, 19468–19480. [CrossRef]

46. Jiao, J.; Wei, Y.; Zhao, Y.; Zhao, Z.; Duan, A.; Liu, J.; Pang, Y.; Li, J.; Jiang, G.; Wang, Y. AuPd/3DOM-TiO$_2$ catalysts for photocatalytic reduction of CO$_2$: High efficient separation of photogenerated charge carriers. *Appl. Catal. B Environ.* **2017**, *209*, 228–239. [CrossRef]