Generalised Visual Object Counting

The goal is to count the salient objects of arbitrary semantic class in an image, i.e. open-world visual object counting, with arbitrary number of “exemplars” provided by the end users, i.e. from zero-shot to few-shot object counting.

Architecture of Counting Transformer (CounTR)

- Visual Encoder
- ViT-based Query Image Encoder
- CNN-based Exemplar Encoder
- Feature Interaction Module
- Transformer Decoder Blocks
- Visual Decoder
- Progressive Up-sampling Layers

Training Strategy

- Two-stage Training Scheme
 - Supervised Fine-tuning
 - Self-supervised Pre-training with MAE

Scalable Mosaicing

Mosaicing: a scalable pipeline for synthesizing training images.

(a) Type A: using four images.

(b) Type B: using one image.

(1) stands for crop and scale, and (2) stands for collage and blending.

Test-time Normalisation

Test-time Normalisation: A strategy to calibrate the density map.

Experiments

- **FSC-147**: A multi-class few-shot object counting dataset

Methods	Year	Backbone	# Shots	MAE	RMSE	MAE	RMSE
RepRPN-C [11]	2022	CoreNet	0	34.69	101.31	28.32	126.76
RUC [5]	2022	Pre-trained ViT	0	30.39	60.82	21.64	105.47
CounTR (ours)	2022	ViT	0	17.80	70.33	14.12	108.01
FR [7]	2019	CoreNet	3	45.45	112.53	41.64	141.04
FSOD [10]	2020	CoreNet	3	36.36	115.00	32.53	140.65
P-GSM [9]	2018	CoreNet	3	69.56	172.78	62.89	159.87
GMN [9]	2018	CoreNet	3	29.66	89.81	26.52	121.57
MAM [12]	2017	ICML2017	3	25.54	79.41	24.90	112.68
FAMN [12]	2021	CoreNet	3	23.75	69.07	22.98	99.34
BMNet [15]	2022	CoreNet	3	15.74	58.53	14.62	91.83
CounTR (ours)	2022	ViT	3	13.13	49.83	11.58	91.23

- **CARPK**: A class-specific car counting benchmark

Methods	Year	MAE	RMSE
YOLO	2016	48.89	57.55
Faster-RCNN	2015	47.45	57.39
RetinaNet	2017	16.62	22.30
FPEM	2018	51.83	51.83
CVPR2019	2019	6.77	8.52
GMN	2021	7.18	9.90
FastNet	2021	18.19	33.66
BMNet	2022	5.76	7.81

Methods	Year	MAE	RMSE
FSC-147	2022	5.55	7.45

- **Val-COCO & Test-COCO**: FSC-147 subsets from COCO

Methods	Year	MAE	RMSE
Faster-RCNN	2016	52.79	172.46
RetinaNet	2017	63.57	174.36
Mask-RCNN	2018	52.51	172.21
FastNet	2019	39.82	108.13

Methods	Year	MAE	RMSE
FSC-147	2022	83.84	10.89

- **Qualitative Results**