COMPARING THE EFFECT OF SECOND-GENERATION ANTIPSYCHOTICS VERSUS SELECTIVE SEROTONIN REUPTAKE INHIBITORS IN REFRACTORY OBSESSIVE-COMPULSIVE DISORDER: A SYSTEMATIC REVIEW OF THE PAST, PRESENT, AND FUTURE CLINICAL TRIALS

MEHDI SAYYAH1, FAKHER RAHIM2
1Department of Psychiatry, Faculty Member of Education Development Center (EDC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 2Department of Molecular Medicine, Health Research Institute, Research Center of Thalassemia & Hemoglobinopathies, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Email: Bioinfo2003@gmail.com

ABSTRACT

Objective: In this concise and systematic review, the trend of using major medication modalities prescribed for refractory obsessive-compulsive disorder (OCD), including serotonin-specific reuptake inhibitors (SSRIs) and second-generation antipsychotics (SGAs) are discussed.

Methods: We systematically searched PubMed and Cochrane Central Register of Controlled Trials (CENTRAL) systematically using Mesh terms. OCD is extremely disabling and associated with considerable depression and other serious psychiatric illnesses.

Results: Through databases, we found 78 randomized clinical trials (RCTs), which included selective SSRI compared with routine drug therapy or placebo. Out of these 78 studies, 62 studies were conducted on adult patients with OCD, comprising 7,920 cases. While only 16 RCTs were performed on children and adolescents with OCD, including 1,313 people. We found 24 clinical trial studies related to SGAs, which were conducted on adult patients with OCD, including 992 cases.

Conclusion: As our data showed among the SSRIs, fluvoxamine has been particularly well studied and used in RCTs in both children and adolescents with OCD. According to the summary of our review, it will be better when therapists use SGAs in the early treatment programs of refractory OCD. Thus, considering our reviewed, it seems that the first choice of early treatment programs of refractory OCD is fluvoxamine in combination with quetiapine or aripiprazole.

Keywords: Obsessive-compulsive disorder, Refractory, Second-generation antipsychotic drugs, Selective serotonin reuptake inhibitors.

INTRODUCTION

Obsessive-compulsive disorder (OCD) is a mental health condition with an unwanted, unpleasant thought, image, or urge that repeatedly enters a person’s mind. OCD affects about 2-3% of people over the course of their lifetimes [1,2]. OCD is the result of common psychological/social and genetic factors interaction [3]. In the biological factors could mention the serotonin disorder in the brain, which for the treatment of this aspect, drug treatment is recommended to set serotonin in the brain.

Drug treatment is one of the most common methods of treatment of acute agitation in patients with clinical mental health disorders. Antipsychotic drugs are, therefore, used in the acute treatment, chronic psychotic disorders, and other psychiatric conditions [4,5]. First-generation antipsychotic medications (FGAs), which are also known as classical neurolepitic or traditional antipsychotics, which typically used to treat psychosis such as schizophrenia, acute mania, agitation, and other psychiatric conditions [6]. The FGAs act through blocking the dopamine (DAT) D2 receptor, which leads to the development of a subsequent series of new antipsychotics [7]. According to the potency of FGAs in binding to DAT D2 receptor, these drugs divided into two categories include low and high potency groups [8,9]. Some of the reported complications compose dyskinesia, hyperkinesia, and involuntary movements in the face and extremities [10]. Second-generation antipsychotic drugs (SGAs) that were introduced in 1989, which is also known as atypical antipsychotics are generally lower risk of extrapyramidal side effects compared with FGAs [10]. However, these drugs generally cause higher rates of weight gain and life shortening metabolic disturbances, although side effects of any medication profile are different [11].

Selective serotonin reuptake inhibitors (SSRI), deal with neurochemical imbalance that is the key reason in mental health disorders [12,13]. People with acute mental health condition, suffer from a lack of serotonin in certain areas of the brain [14]. Serotonin is a chemical neurotransmitter that plays an important role in the mood regulation, is one of the key factors in lack of balance in mood disorders such as anxiety and depression [15]. SRII has serotonin reuptake reduction in specific neurons, causing an increase in the brain serotonin and reduce the symptoms of mental health disorders. SSRI, in general, are safer than others but have their own side effects, which are usually sexual, metabolic, and gastrointestinal [16-18].

In patients with OCD, the response to medication should be evaluated after a time period of about 8-12-w. This time is usually more than the time period of the response to medication in patients with depression (3-4 w). Of course, the time may vary slightly, but mainly in the OCD treatment, the patient needs more time and dosage as well.

The main goal of medication is to reduce obsessive thoughts and actions so that the patient can naturally reduce activity and performance. Usually, 25-35% in the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) considered as a favorable clinical response [19]. Currently, about 40% to 60% of patients show significant improvement by taking first SSRI drug, but few responses to drugs are very high [20,21].

The latest available systematic reviews on antipsychotic therapies in resistant OCD are done from 2005 to 2006 [22,23]; thus, many new relevant researches have been published, an update of the current available literature seems necessary. We aimed to systematically...
evaluate the effects of SSRI compared with SGAs considering all published randomized clinical trials (RCT) studies for people with OCD.

Pharmacology

It seems that the FGAs and SGAs inhibit postsynaptic DAT D2 receptors in the brain. Several studies attest to the role of DAT D2 receptors in the antipsychotic drugs activity, including connections between these drugs and receptor and the clinical potency. Functional imaging studies show that 60-65% of DAT D2 receptors should be tackled by the effect of antipsychotic medications [24,25]. SGAs also bind to serotonin receptor that increase their affinity for connection to DAT D2 receptors, which this effect is not seen in the FGAs [26]. Largely for this reason, serotonin receptors may reduce the risk of extrapyramidal side effects of most second-generation drugs, known as atypical antipsychotics, compared to the first-generation agents, especially in case of high potency drugs [27]. SSRIs primarily inhibit serotonin transporter (SERT) and the uptake of serotonin (5-HT) in the brain. These drugs also have controversial effects on DAT and norepinephrine transporters (NET). SSRI play a role in improving depression symptoms through inhibiting the binding of the neurotransmitter, serotonin (5-HT), to SERT, which results in increased 5-HT concentration and it’s binding to postsynaptic receptors.

METHODS

Types of studies

We included all double-blind, randomized controlled trials.

Types of participants

We included studies in which people with a primary diagnosis of OCD according to Diagnostic and Statistical Manual-III (DSM-III)/DSM-IV or International Classification of Diseases-10 both children and adults. We did not exclude any OCD trials in participants with a serious concomitant medical illness.

Types of interventions

SGAs and SSRIs could be given as a monotherapy or as adjunctive therapy compared with placebo or other antidepressants. There were no limits in terms of study duration.

Search methods for identification of studies

We searched PubMed and Cochrane Central Register of Controlled Trials (CENTRAL) systematically up to 29/01/2016. The search terms used were: ((Obsess* or compuls* or OCD) and “atypical antipsychotic” or “second-generation antipsychotic” or “second-generation antipsychotic” and ((obsess* or compuls* or OCD) and “atypical antipsychotic” or “second-generation antipsychotic” or “second-generation antipsychotic” or “SSRI”)). We also searched www.clinicaltrials.gov using search terms for intervention and condition, e.g., SGAs AND OCD, SSRI and OCD. No language restrictions were applied.

RESULTS

SSRI in refractory OCD

Through databases, we found 78 RCTs, which included SSRI compared with routine drug therapy or placebo (Table 1). Out of these 78 studies, 62 studies were conducted on adult patients with OCD, comprising 7920 cases. While only 16 RCTs were performed on children and adolescents with OCD, including 1313 people.

Comparing these two groups of patients revealed that fluvoxamine was most frequent drugs used in adults; hence, most frequent drugs used in children were sertraline (Fig. 1).

Of 78 studies, fluvoxamine was the most frequent drugs used in patients with refractory OCD with 26 (33.33%) frequency followed by paroxetine, sertraline, and fluoxetine (Fig. 2).

Four SSRIs have been approved for the adult OCD treatment by the FDA so far, including fluvoxamine, fluoxetine, sertraline, and paroxetine. Among these five SSRIs, only four drugs have also been approved for treatment of pediatric OCD, including clomipramine, fluoxetine, fluvoxamine, and sertraline [102]. Fluvoxamine is one of the SSRI drugs, which is primarily used to treat OCD, social anxiety disorder, major depression, management of obesity, and bulimia, schizophrenia, and panic disorder. Many researchers believe that the imbalance in neurotransmitters causes depression and other mental disorders. Fluvoxamine inhibits serotonin reuptake that causes mania and euphoria. Furthermore, fluvoxamine has also been approved by the Food and Drug Administration (FDA) for the OCD treatment. Antidepressants such as fluvoxamine may increase the risk of suicide in children and young adults even in the first few weeks of consumption. This drug was the first SSRI licensed for use in adults, as well as for children, in OCD in the United States and Japan [103]. A number of RCT studies have confirmed the efficacy of fluvoxamine in improving the symptoms of OCD, and subsequently reducing the disruption it causes in daily life as well [28,33,39,42,44,46]. Trend of using SSRI in RCTs on refractory OCD also showed a decreasing pattern for fluvoxamine and paroxetine (Fig. 3).

No SSRI has been verified to be more effective than others in patients with OCD. Nevertheless, patients may individually respond more satisfactorily to one SSRI than to another. The most effective SSRI in any given patient is difficult to predict. Therefore, considering cost, available formulations, side effect profile, and half-life may help the selection. Among different SSRIs, currently only generic forms of clomipramine, citalopram, fluoxetine, fluvoxamine, and paroxetine are available.

SGAs in refractory OCD

We searched PubMed and Cochrane Central Register of Controlled Trials (CENTRAL), which lead us to 24 clinical trial studies (Table 2). These 24 trials were conducted on adult patients with OCD, including 992 cases.

Of 24 studies, risperidone and quetiapine were the most frequent SGA drugs used in patients with refractory OCD with 8 (33.33%) frequencies in both (Fig. 4).

The trend of using SGAs in RCTs on refractory OCD also showed an increasing pattern only for aripiprazole, whereas in the case of olanzapine and quetiapine was decreasing (Fig. 5).
mixed SSRI and SGAs in refractory OCD

Through our search, we included only 4 RCTs with 252 participants on SGAs plus SSRIs in refractory OCD patients (Table 3). All trials investigated the effects of adding SGAs to SSRIs with the duration of more than 6-w.

DisCusSion

Drug treatment is one of the most common methods of treatment of patients with clinical mental health disorders such as OCD. Although using SSRI drug in trials is beneficial with a selective efficacy in OCD, up to 40% to 60% of OCD patients claim no satisfactory outcome [20,21]. As yet little is known about the efficacy and side effects of SGAs and SSRIs in people suffering from OCD.

Due to the irrational and excessive nature of OCD, the treatment of refractory OCD is the major concern of psychiatrists. Unfortunately, despite advance in therapy and developing new and effective treatment modalities in the treatment of OCD, majority of patients suffering from OCD and at an increased risk of developing the disorder. One of the reasons can be the diverse nature of OCD. Considering DSM-III, DSM-III-R, and DSM-IV, OCD was classified as an anxiety disorder; whereas in ICD-10, this disorder was separated from the anxiety disorders. Recent advances in understanding illness anxiety have led to the question of whether OCD should no longer be classified as anxiety disorders in DSM-V or not [131,132].

According to the trials reviewed in this article can say that both fluvoxamine and quetiapine are the drug of choice and first-line agents in the early treatment of OCD. However, due to the growing trend of aripiprazole seems that soon this antipsychotic agent replaced the use of quetiapine in the treatment of refractory OCD. As the treatment of refractory OCD generally requires high doses of SSRIs, this higher dose increases the side effects, especially loss of sexual drive [133].
Table 1: Summary of recent clinical trials that was found by initial search

Design	Outcome	Study arms	Participant*	Author, year, country
Randomized double-blind clinical trial	Y-BOCS score, patient characteristics predictive of assignment compliance	FLU BT	48 patients with OCD resistant to a BT	Landsheer et al. 2015, Netherlands [28]
A multi-site, parallel, double-blind randomized, placebo controlled trial	CGI-SA, CY-BOCS, CGI-SI	PBO	44 youths with OCD	Bussing et al. 2015, USA [29]
Randomized controlled trial	CY-BOCS total score, clinical response	SER CBT	54 children and adolescents (age 7-17 years) with primary OCD	Skarpfedinsson et al. 2015, Norway [30]
Randomized, parallel assignment, single blind clinical trial	CGI-SA, CY-BOCS, CGI-SI	MT MT+CBT	124 youth (aged 7 to 17 years) with primary OCD	Coneka et al. 2014, USA [31]
Double-blind clinical trial	DUOCS	FLX FLX+CBT	30 cases with OCD	Giasuddin et al. 2013, Bangladesh [32]
Randomized double-blind placebo-controlled trial	Y-BOCS score, efficacy, tolerability YBOCS	FLU PBO	42 patients with OCD	Humble et al. 2013, Sweden [34]
Double-blind placebo-controlled randomized clinical trial	YBOCS	PAR PBO	36 adults with OCD	Jakubovský et al. 2013, Germany [35]
Randomized clinical trial	TEASAP score	SER PBO	56 youth (aged 7-17) with OCD	Bussing et al. 2013, USA [36]
Randomized placebo-controlled clinical trial	YBOCS	FLX CBT	29 adult patients with OCD	Hoexter et al. 2013, Brazil [37]
Randomized controlled trial	YBOCS	FLU CBT	31 adult patients with OCD	Sayyah et al. 2012, Iran [38]
Randomized, double-blind controlled clinical trial	YBOCS	FLX CBT	118 subjects with OCD	van Balkom et al. 2012, Netherlands [39]
Randomized, single-blind clinical trial	Y-BOCS score, obsessions	SER CBT	46 patients with a primary OCD	Hoexter et al. 2012, Brazil [40]
Randomized double-blind placebo-controlled trial	Y-BOCS score, symptoms of obsessions and compulsions YBOCS-SC	CEL+FLU PBO+FLU	50 patients with OCD	Borges et al. 2011, Brazil [41]
Randomized, placebo-controlled trial	Y-BOCS score, side effects	YBOCS-SC	112 youth (aged 7-17) with OCD	García et al. 2010, USA [43]
Randomized double-blind placebo-controlled trial	Y-BOCS score, side effects	FLU S.M	35 patients with OCD	Sayyah et al. 2010, Iran [44]
Double-blind randomized clinical trial	YBOCS	FLX PBO	42 adult patients with OCD	Soltani et al. 2010, Iran [45]
Randomized, controlled trials	YBOCS	FLU PAR	44 adults with OCD	Matsunaga et al. 2009, Japan [46]
Randomized, double blind, fixed-doses	CY-BOCS, CGI	FLX CIT	29 children and adolescents (7-18 years) with OCD	Alaghband-Rad et al. 2009, Canada [47]
Randomized double-blind placebo-controlled	Y-BOCS score, efficacy, tolerability YBOCS, CGI-I	ESC PBO	466 adults with OCD	Stein et al. 2008, South Africa [48]
Randomized to open label	Y-BOCS score, efficacy, tolerability YBOCS, CGI-I	FLU+GBP	40 patients with IC-IUD	Onder et al. 2008, Turkey [49]

(Contd...)
Table 1: (Continued)

Design	Outcome	Study arms	Follow-up	Participant*	Author, year, country
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PAR	12 week	91 outpatients with OCD	Denys et al. 2007, Netherlands [50]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	12 week	100 patients with OCD	Khan et al. 2007, Pakistan [51]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	466 adults with OCD	Stein et al. 2007, South Africa [52]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	320 patients with OCD	Fineberg et al. 2007, UK [53]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	117 outpatients with OCD	Ninan et al. 2007, USA [54]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	40 subjects (9 and 17 years) with OCD 90 patients with OCD	Asbahr et al. 2005, Brazil [55]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	31 patients with OCD	Nakao et al. 2005, Japan [56]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	112 patients (7-17 years) with a primary OCD	Denys et al. 2005, Netherlands [57]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	37 adult patients with OCD	Geller et al. 2004, USA [58]
A randomized, double-blind placebo-controlled trial randomized, double-blind study	Y-BOCS	PBO	24 week	207 Children (7-11 years of age) and adolescents (12-17 years of age) with a primary OCD	Tenneij et al. 2004, USA [59]
A randomized, single-blind clinical trial A randomized, double-blind placebo-controlled trial randomized, double-blind placebo-controlled trial Open-label clinical trial	Y-BOCS	PBO	12 week	49 adult patients with OCD 191 patients with a primary OCD	Pallanti et al. 2004, Italy [60]
A randomized, single-blind clinical trial A randomized, double-blind placebo-controlled trial randomized, double-blind placebo-controlled trial Open-label clinical trial	Y-BOCS	PBO	12 week	49 adult patients with OCD 191 patients with a primary OCD	Kamijima et al. 2004, Japan [61]
A randomized, single-blind clinical trial A randomized, double-blind placebo-controlled trial randomized, double-blind placebo-controlled trial Open-label clinical trial	Y-BOCS	PBO	12 week	49 adult patients with OCD 191 patients with a primary OCD	Fux et al. 2004, Israel [62]
A randomized, single-blind clinical trial A randomized, double-blind placebo-controlled trial randomized, double-blind placebo-controlled trial Open-label clinical trial	Y-BOCS	PBO	12 week	49 adult patients with OCD 191 patients with a primary OCD	Neziroglu et al. 2004, USA [63]
A randomized, single-blind clinical trial A randomized, double-blind placebo-controlled trial randomized, double-blind placebo-controlled trial Open-label clinical trial	Y-BOCS	PBO	12 week	49 adult patients with OCD 191 patients with a primary OCD	Hollander et al. 2003, USA [64]
A randomized, single-blind clinical trial A randomized, double-blind placebo-controlled trial randomized, double-blind placebo-controlled trial Open-label clinical trial	Y-BOCS	PBO	12 week	49 adult patients with OCD 191 patients with a primary OCD	Hollander et al. 2003, USA [65]
Table 1: (Continued)

Design	Outcome	Study arms	Follow-up	Participant*	Author, year, country
Double-blind, fixed-dose, parallel trial	long-term efficacy, safety, and impact on relapse prevention	PAR	24 week	3105 outpatients with OCD	Hollander et al. 2003, USA [71]
A randomized, double-blind, placebo-controlled trial	Y-BOCS, HAM	PAR, VEN	12 week	150 patients with primary OCD	Denys et al. 2003, Netherlands [72]
Randomized, double-blind study	Y-BOCS score, efficacy	PAR	12 week	140 patients with primary OCD	Denys et al. 2003, Netherlands [73]
A randomized, double-blind, placebo-controlled trial	Y-BOCS, CGI	PAR	16 week	193 adult OCD patients	Hollander et al. 2003, USA [74]
A randomized, double-blind, placebo-controlled trial	Y-BOCS, CGI	FLU	8 week	43 young OCD patients	Liebowitz et al. 2002, USA [76]
A randomized, single-blind, controlled trial	Y-BOCS, CGI	PAR	12 week	73 OCD patients	Albert et al. 2002, Italy [77]
Open-label trial	Y-BOCS	CIT	12 week	39 OCD patients	Pallanti et al. 2002, Italy [21]
Randomized, single-blind, placebo controlled study	Y-BOCS score, efficacy	FLU	52 week	130 patients with primary OCD**	Romano et al. 2001, USA [88]
A randomized, double-blind, controlled trial	YBOCS, CGI	SER	24 week	150 patients were OCD	Bergeron et al. 2002, Canada [79]
A large randomized placebo-controlled trial	YBOCS, CGI	CIT	12 week	71 patients were OCD	Stein et al. 2001, South Africa [80]
Open-label treatment	YBOCS, BABS	SER	16 week	71 patients were OCD	Eisen et al. 2001, USA [81]
A double-blind, placebo-controlled	CY-BOCS, CGI-S, CGI-I	SER	12 week	132 Children (6-12 years; n=72) and adolescents (13-18 years; n=65) with OCD	Cook et al. 2001, USA [82]
A randomized, double-blind, controlled trial	CY-BOCS	FLU	13 week	103 Children (7-17 years) with OCD	Geller et al. 2001, USA [83]
A randomized, double-blind, controlled trial	YBOCS, BAABS	PAR	12 week	36 patients were OCD	Humble et al. 2001, Sweden [84]
A randomized, double-blind, placebo-controlled, multicenter study	CY-BOCS	FLU	10 week	120 Children (7-17 years) with OCD	Riddle et al. 2001, USA [85]
A randomized, double-blind, placebo-controlled study	Y-BOCS	FLU	10 week	33 patients with OCD	Peter et al. 2000, Germany [86]
A randomized, double-blind, placebo-controlled trial	Y-BOCS, HAM-A, MADRS	PAR	6 week	14 treatment-resistant OCD patients	Dannon et al. 2000, Israel [87]
Randomized, double-blind study	Children’s Y-BOCS score, NIMH-OCs, CGI-S, CGI-I scores	FLU	12 week	10 children/adolescents with OCD	Neziroglu et al. 2000, USA [88]
A randomized, double-blind, placebo-controlled, multicenter study	CY-BOCS, HAM-A, MADRS	SER	12 week	166 patients with OCD	Hoehn-Saric et al. 2000, USA [89]
Randomized, open-label trial	Y-BOCS	CIT	12 week	Sixteen adult outpatients with OCD	Pallanti et al. 1999, Italy [90]
Open-label trial	CY-BOCS, HAM, CI	PAR	12 week	20 OCD outpatients (8 to 17 years)	Rosenberg et al. 1999, USA [91]
Double-blind placebo-controlled trial	YBOCS, CGI	FLX	8 week	53 patients with OCD	Zitterl et al. 1999, Austria [92]

(Contd...)
Table 1: (Continued)

Design	Outcome	Study arms	Follow-up	Participant*	Author, year, country
Double-blind placebo-controlled trial	YBOCS, CGI	FLU PBO	10 week	50°C patients	Mundo et al. 1999, Italy [93]
Randomized, placebo-controlled study	Anxiety Discomfort Scale, Y-BOCS score, the Padua Inventory-Revised YBOCS, CGI	FLU CT	16 week	117 patients with primary OCD	van Balkom et al. 1998, Netherlands [94]
Double-blind placebo-controlled trial	YBOCS	FLX PBO	12 week	14°C patients	Greenberg et al. 1998, USA [95]
Randomized, double-blind, placebo-controlled trial	CY-BOCS, NIMH, GOCI, CGI	SER PBO	12 week	107 children (6 to 12 years) and 80 adolescents (13 to 17 years) with OCD	March et al. 1998, USA [96]
Randomized, double-blind, placebo-controlled trial	YBOCS	FLU PBO	8 week	60°C patients	Mundo et al. 1997, Italy [99]
Multicenter, placebo-controlled, fixed-dose trial	Y-BOCS	FLX PBO	10 week	35 patients with primary OCD	Ackerman et al. 1998, USA [98]
Randomized, single-blind, placebo controlled study	Y-BOCS, NIMH-OC scale, the CGIIS Scale, and the HRS for depression	FLU CIT	10 week	30 patients with primary OCD	Mundo et al. 1997, Italy [99]
Double-blind controlled trial	Y-BOCS and CGI IS scales	FLU CLO	8 week	26 individuals with OCD	Milanfranchi et al. 1997, Italy [100]
Double-blind controlled trial	Y-BOCS and CGI IS scales	FLU CLO	8 week	55 individuals with OCD	López-Ibor et al. 1996, Spain [101]

*The diagnosis of OCD based on DSM-IV-TR and a Y-BOCS score of≥21, on DSM-IV-TR and a Y-BOCS score of≤19. Y-BOCS: Yale-brown obsessive compulsive scale, MEM: Memantine, FLX: Fluoxetine, CIT, Including citalopram, ESC: Escitalopram, FLU: Fluvoxamine, PAR: Paroxetine, CLO: Clomipramine, VEN: Venlafaxine, HDS: Hamilton depression scale, DS: Depressive symptoms, CGI: Clinical global improvement, PIN: Pindolol, CT: Cognitive therapy, GIT: Citalopram, HRS: Hamilton rating scale, CLO: Clomipramine, BT: Behavior therapy.

Table 2: Summary of recent clinical trials that was found by initial search

Design	Outcome	Study arms	Follow-up	Participant*	Author, year, country
A pilot randomized, placebo-controlled trial	Y-BOCS score obsessions	RIL PBO	12 week	38 patients with OCD	Pittenger et al. 2015, USA [104]
A randomized, placebo-controlled trial	Y-BOCS social adjustment scale-SR, quality of life, HDS, BABS	RIS PBO	8 week	100 patients with at least moderate OCD severity	Foa et al. 2015, USA [105]
Randomized clinical trial	YBOCS	RIS PBO	12 week	36 adults (aged 18-70 years) with OCD 34 patients (aged 24-67 years) with OCD	Simpson et al. 2013, USA [106]
Double-blind, placebo-controlled, pilot trial	YBOCS, CGIIS	PLP PBO	8 week	39 adult patients with OCD	Storch et al. 2013, USA [107]
Double-blind, randomized, placebo clinical trial	YBOCS	APZ PBO	12 week	201 patients (20-70 years) with OCD	Sayyah et al. 2012, Iran [108]
Double-blind, randomized, placebo-controlled trial	YBOCS	APZ PBO	16 week	201 patients (20-70 years) with OCD	Muscatello et al. 2011, Italy [109]
Randomized, single-blind clinical trial	YBOCS	APZ RIS	12 week	90 patients (18-65 years) with OCD	Sevi et al. 2011, Turkey [110]
Randomized, open-label trials	YBOCS, CGI	QPE CLO	12 week	21 adults with OCD	Diniz et al. 2010, Brazil [111]
Randomized, double-blind, placebo-controlled trial	YBOCS	QPE PBO	12 week	40 patients with primary OCD	Kordon et al. 2008, Germany [112]
Outcome

OLP evaluated the efficacy of antipsychotic agents in 44 adults with OCD. PBO 30 adult patients with OCD. 40 patients with a primary OCD. 10 week 16 adult OCD patients. PBO+FLU PBO 12 week 16 outpatients with OCD. Shapira PBO PBO PBO RIS YBOCS PBO 54 patients with a primary OCD. 12 week PBO PBO PBO Denys YBOCS QPE 8 week 21 adult OCD patients. 8 week Open-label, add-on trial YBOCS, CGI QPE PBO 12 week 21 adult OCD patients. Open-label trial YBOCS QPE PBO 8 week 10°CD patients. A single-blind, placebo-controlled study YBOCS, CGI QPE PBO 8 week 27 patients were refractory OCD. 12 week Open-label trial YBOCS QPE PBO 12 week 20 refractory OCD outpatients. A randomized, double-blind, placebo-controlled study YBOCS RIS PBO 12 week 36 refractory OCD outpatients. Open-label trial CY-BOCS CGI OLP PBO 8 week 10 patients with OCD. Weiss et al. 1999, USA [126]

*The diagnosis of OCD based on DSM-IV-TR and a Y-BOCS score of ≥21. All patients were treated with 1 of the 2 following selective serotonin reuptake inhibitors: Fluvoxamine or sertraline Y-BOCS: Yale-brown obsessive compulsive scale, RIL: Rutinose, PBO: Placebo, RIS: Risperidone, BABIS: Brown assessment of beliefs, CGI: Clinical global impression, PPL: Paliperidone, CGIIS: Clinical global impression improvement and severity, SMTC: Stress management training condition, APE: Aripiprazole, QPE: Quetiapine, HDS: Hamilton depression scale, OLP: Olanzapine

Table 2: Summary of recent clinical trials that was found by initial search

Design	Outcome	Study arms	Follow-up	Participant*	Author, year, country
Randomized, placebo-controlled, clinical trial	Y-BOCS	QPE+QPE	10 week	46 adult patients with OCD	Valkink et al. 2012, Netherlands [117]
Randomized, double-blind controlled clinical trial	Y-BOCS	QPE+FLX, CIT+FLX	12 week	54 patients with a primary OCD	Diniz et al. 2011, Brazil [128]
Randomized, controlled trial	YBOCS	EX/RP, SMT	12 week	108 patients with OCD	Simpson et al. 2008, USA [129]
Double-blind, placebo-controlled	YBOCS	OLP+FLU	6 week	44 adults with OCD	Shapira et al. 2004, USA [130]

*The diagnosis of OCD based on DSM-IV-TR and a Y-BOCS score of ≥21. Y-BOCS: Yale-brown obsessive compulsive scale, FLX: Fluoxetine, CIT: Citalopram, QPE: Quetiapine, FLX: Fluoxetine, SMT: Stress management training, PBO: Placebo, EX/RP: Exposure/ritual prevention therapy

cognitive impairment. He also reported that this drug is associated with a low risk of sexual dysfunction, suicidality, and withdrawal reactions; thus, it is a safe SSRI agent even in overdose and has no considerable impact on cardiovascular system and body weight [103]. In a systematic review, Bloch et al. evaluated the efficacy of antipsychotic agents in treatment-refractory OCD on nine studies involving 278 participants. They claimed that there is sufficient evidence in the literature about the efficacy of haloperidol and risperidone, whereas evidence of the efficacy of quetiapine and olanzapine is unconvincing [22]. Contrary to their claims, we showed there sufficient evidence in the literature on
risperidone, as well as quetiapine and olanzapine. The difference may be due to the difference in the date limitation in the search strategy. Recently, Veale et al. in a systematic review and meta-analysis on 14 RCTs including risperidone, quetiapine, olanzapine, and aripiprazole [134]. They concluded that a low dose of risperidone and aripiprazole can be used cautiously as an antipsychotic agent in non-responders to SRIs. In other reviews, Arrangunt and Reddy reported that antipsychotic agents, especially risperidone and aripiprazole have shown the best evidence in refractory patients with OCD [135].

CONCLUSION AND PERSPECTIVES

As our trends show, fluvoxamine was the most frequent SSRI used in patients with refractory OCD followed by paroxetine, sertraline, and fluoxetine. Hence, risperidone and quetiapine were the most frequent SGA drugs used in patients with refractory OCD. According to the summary of our review, it seems that the first choice of early treatment programs of refractory OCD will be fluvoxamine in combination with quetiapine or aripiprazole. Recently, the treatment of patients with OCD has improved dramatically. OCD is extremely disabling and associated with considerable depression and other serious psychiatric illnesses. Therefore, this disease represents an important area of medical need.

The well-known disadvantages of the traditional antipsychotics have resulted in becoming the SRIs first-line treatment for many mental health disorders such as OCD. As our data showed among the SRIs, fluvoxamine has been particularly well studied and used in RCTs in both children and adolescents with OCD. According to the summary of our review, it will be better when therapists use SRIs in the early treatment programs of refractory OCD. Thus, considering our reviewed, it seems that the first choice of early treatment programs of refractory OCD is fluvoxamine in combination with quetiapine or aripiprazole.

REFERENCES

1. Russio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 2010;15(1):53-63.
2. Maia TV, Cooney RE, Peterson BS. The neural bases of obsessive-compulsive disorder in children and adults. Dev Psychopathol 2008;20(4):1251-83.
3. Monzani B, Rijsdijk F, Harris J, Mataix-Cols D. The structure of genetic and environmental risk factors for dimensional representations of DSM-5 obsessive-compulsive spectrum disorders. JAMA Psychiatry 2014;71(12):1829.
4. Leo RJ, Regno PD. Atypical antipsychotic use in the treatment of psychosis in primary care. Prim Care Companion J Clin Psychiatry 2000;2(6):194-204.
5. Roopadevi H, Ramesh K, Nagabushan H. Pattern of psychotropic prescription in a tertiary care teaching hospital: A critical analysis. Asian J Pharm Clin Res 2015;8(5):252-5.
6. O’Brien A. Comparing the risk of tardive dyskinesia in older adults with first-generation and second-generation antipsychotics: A systematic review and meta-analysis. Int J Geriatr Psychiatry 2016;31:683-93.
7. Freedman R. Schizophrenia. N Engl J Med 2003;349(18):1738-49.
8. Miller R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part II. Curr Neuropharmacol 2009;7(4):315-30.
9. Miller R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part I. Curr Neuropharmacol 2009;7(4):302-14.
10. Peluso MJ, Lewis SW, Barnes TR, Jones PB. Extrapyramidal motor side-effects of first- and second-generation antipsychotic drugs. Br J Psychiatry 2012;200(5):387-92.
11. Boydla HN, Procyslyn RM, Pang CC, Hawkes E, Wong D, Jin CH, et al. Metabolic side-effects of the novel second-generation antipsychotic reugs aripiprazole and iloperidone: A comparison with olanzapine. PLoS One 2013;8(1):e53459.
12. Parneri L, Amici S, Lanari A, Gallai V. Pharmacological treatment of non-cognitive disturbances in dementia disorders. Mech Ageing Dev 2001;122(16):2063-78.
13. Barri A, Eagle DM, Mar AC, Robinson ES, Robbins TW. Dissociative effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology (Berl) 2009;205(2):273-83.
14. Klinek V, Robgovier B, Stockmeier CA, Ordway GA. Serotonin transporter and MAO-B levels in monoamine nuclei of the human brainstem are normal in major depression. J Psychiatr Res 2003;37(5):387-97.
15. Montoya A, Bruins R, Katzman MA, Blier P. The noradrenergic paradox: Implications in the management of depression and anxiety. Neuropsychopharmacol Dis Treat 2016;12:541-57.
16. Damsa C, Bumb A, Bianchi-Demicheli F, Vidal-H despert R, Sterck R, Andreoli A, et al. “Dopamine-dependent” side effects of selective serotonin reuptake inhibitors: A clinical review. J Clin Psychiatry 2004;65(8):1064-78.
17. Gregorion RS, Golden KA, Bahce A, Goodman C, Kwong WJ, Khan ZM. Antidepressant-induced sexual dysfunction. Ann Pharmacother 2002;36(10):1577-89.
18. Cheng YL, Hu HY, Lin XH, Luo JC, Peng YL, Hou MC, et al. Use of SSRI, but not SNRI, increased upper and lower gastrointestinal bleeding: A nationwide population-based cohort study in Taiwan. Medicine (Baltimore) 2015;94(46):e2022.
19. Selective serotonin reuptake inhibitors in obsessive-compulsive disorder. Drug Ther Bull 1995;33(6):47-8.
20. Pallanti S, Queirolo L. Treatment-refractory obsessive-compulsive disorder: Methodological issues, operational definitions and therapeutic lines. Progr Neuro-Psychopharmacol Biol Psychiatry 2006;30(3):400-12.
21. Pallanti S, Hollander E, Bienstock C, Koran L, Leckman J, Marazziti D, Mato P, et al. Treatment non-response in OCD: Methodological issues and operational definitions. Int J Neuropsychopharmacol 2002;5(2):181-91.
22. Bloch MH, Landeros-Weisenberger A, Kelmendi B, Coric V, Bracken MB, Leckman JF. A systematic review: Antipsychotic augmentation with treatment-refractory obsessive-compulsive disorder. Mol Psychiatry 2006;11(7):622-32.
23. Skapnikas P, Papatheodorou T, Mavreas V. Antipsychotic augmentation of serotonergic antidepressants in treatment-resistant obsessive-compulsive disorder: A meta-analysis of the randomized controlled trials. Eur Neuropsychopharmacol 2007;17(2):79-93.
24. Fujita M, Verhoef NP, Varrone A, Zoghbi SS, Baldwin RM, Jatlow PA, et al. Imaging extrastriatal dopamine D2 receptor occupancy by endogenous dopamine in healthy humans. Eur J Pharmacol 2000;387(2):179-88.
25. Shendre V, Sahane R, Lawar M, Hamdulay N, Langote H. Evaluation of anti-compulsive effect of ethanolic extract of chtoria ternatea in mice. Asian J Pharm Clin Res 2012;5 Suppl 3:310.
26. Karoki T, Nagao N, Nakahara T. Neuropsychopharmacology of second-generation antipsychotic drugs: A validity of the serotonin-dopamine hypothesis. Prog Brain Res 2008;172:199-212.
27. Divac N, Prostran M, Jakovcevski I, Cerovac N. Second-generation antipsychotics and extrapyramidal adverse effects. Biomed Res Int 2014;2014:656370.
28. Landheer JA, Smitt JH, van Oppen P, van Balkom AJ. Assignment refusal and its relation to outcome in a randomized controlled trial comparing Cognitive Therapy and Fluvoxamine in treatment-resistant patients with obsessive compulsive disorder. Psychiatry Res 2015;226(1):198-203.
29. Bussing R, Reid AM, McNamara JP, Meyer JM, Guzik AG, Mason DM, et al. A pilot study of actigraphy as an objective measure of SSRI activation symptoms: Results from a randomized placebo controlled psychopharmacological treatment study. Psychiatry Res 2015;225(3):440-5.
30. Skarpheinsson G, Weidle B, Thomsen PH, Dahl K, Torp NC, Nissen JB, et al. Continued cognitive-behavior therapy versus sertraline for children and adolescents with obsessive-compulsive disorder that were non-responders to cognitive-behavior therapy: A randomized controlled trial. Eur Child Adolesc Psychiatry 2015;24(5):591-602.
31. Conuela CA, Walther MR, Freeman JB, Garcia AM, Sapuya J, Khamna M, et al. Tic-related obsessive-compulsive disorder (OCD): Phenomenology and treatment outcome in the Pediatric OCD Treatment Study II. J Am Acad Child Adolesc Psychiatry 2014;53(12):1308-16.
32. Giassadin NA, Nahar JS, Morshid NM, Baldara VP, Sobhan MA. Efficacy of combination of fluoxetine and cognitive behavioral therapy and fluoxetine alone for the treatment of obsessive compulsive disorder. Pak J Pharm Sci 2015;28(4):1589-92.
study. J Psychiatr Res 2013;47(2):175-80.

34. Humble MB, Uvnäs-Moberg K, Engström I, Bejer S. Plasma oxytocin changes and anti-obssusive response during serotonin reuptake inhibitor treatment: A placebo controlled study. BMC Psychiatry 2013;13:344.

35. Jakubovski E, Diniz JB, Valério C, Fossa-luza V, Belotto-Silva C, Gorenstein C, et al. Clinical predictors of long-term outcome in obsessive-compulsive disorder: Depress Anxiety 2013;30(8):763-72.

36. Bussing R, Murphy TK, Storch EA, McNamara JP, Read AM, Garvan CW, et al. Psychometric properties of the treatment-emergent activation and suicidality assessment profile (TEASAP) in youth with OCD. Psychiatry Res 2013;205(3):253-61.

37. Hoexter MQ, Dougherty DD, Shavit RG, D’Alcante CC, Duran FL, Lopes AC, et al. Differential prefrontal gray matter correlates of treatment response to fluoxetine or cognitive-behavioral therapy in obsessive-compulsive disorder. Eur Neuropsychopharmacol 2013;23(7):569-80.

38. Sayyah M, Olapoor A, Saeedabadi YS, Yazdan Parast R, Malayeri A. Evaluation of oral zinc sulfate effect on obsessive-compulsive disorder: A randomized placebo-controlled clinical trial. Nutrition 2012;28(9):892-5.

39. Van Balkom AJ, Emmelkamp PM, Eikelenboom M, Hoogendoorn AW, Smit JH, van Opperen P. Cognitive therapy versus fluvoxamine as a second-line treatment in obsessive-compulsive disorder nonresponsive to first-step behavior therapy. Psychiatr Psychotherom 2012;81(6):366-74.

40. Hoexter MQ, de Souza Duran FL, D’Alcante CC, Dougherty DD, Shavit RG, AC, et al. Gray matter volumes in obsessive-compulsive disorder before and after fluoxetine or cognitive-behavioral therapy: A randomized clinical trial. Neuropsychopharmacology 2012;37(3):734-45.

41. Borges CP, Meyer E, Ferrião YA, Souza FP, Sousa MB, Cordioli AV. Cognitive-behavioral group therapy versus sertraline for obsessive-compulsive disorder: Five-year follow-up. Psychother Psychothem 2011;80(4):249-50.

42. Sayyah M, Boostani H, Pakseresh S, Malayeri A. A preliminary randomized double-blind clinical trial on the efficacy of celecoxib as an adjuvant in the treatment of obsessive-compulsive disorder. Psychiatry Res 2011;189(3):403-6.

43. Garcia AM, Sapyta JJ, Moore PS, Freeman JB, Franklin ME, March JS, et al. Predictors and moderators of treatment outcome in the Pediatric Obsessive Compulsive Treatment Study (POTS I). J Am Acad Child Adolesc Psychiatry 2010;49(10):1024-33.

44. Sayyah M, Boostani H, Pakseresh S, Malayeri A. Comparison of Silybum marianum (L.) Gaertn. with fluoxetine in the treatment of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2010;34(6):516-5.

45. Soltani F, Sayyah M, Feizy F, Malayeri A, Siahpoosh A, Motlagh I. A double-blind, placebo-controlled pilot study of ondansetron for patients with obsessive-compulsive disorder. Hum Psychopharmacol 2010;25(6):509-13.

46. Matsunaga H, Nagata T, Hayashida K, Ohyu K, Kiriike N, Stein DJ. A long-term trial of the effectiveness and safety of atypical antipsychotic agents in augmenting SSRI-refractory obsessive-compulsive disorder. J Clin Psychiatry 2009;70(6):863-8.

47. Alaghband-Rad J, Hamishoostoty M. A randomized controlled clinical trial of citalopram versus fluoxetine in children and adolescents with obsessive-compulsive disorder (OCD). Eur Child Adolesc Psychiatry 2009;18(3):131-5.

48. Stein DJ, Carey PD, Lochner C, Seedat S, Fineberg N, Andersen EW. Escitalopram in obsessive-compulsive disorder: Response of symptom dimensions to pharmacotherapy. CNS Spectr 2008;13(6):492-8.

49. Onder E, Tural U, Gökbakan M. Does gabapentin lead to early response versus relapse: The pharmacotherapeutic goal for obsessive-compulsive disorder. Int Clin Psychopharmacol 2007;22(6):313-22.

50. Sousa MB, Isolan LR, Oliveira RR, Manfro GG, Cordioli AV. A randomized clinical trial of cognitive-behavioral group therapy and sertraline in the treatment of obsessive-compulsive disorder. J Clin Psychiatry 2006;67(7):1133-9.

51. Ninan PT, Koran LM, Kie C, Davidson JR, Rasmussen SA, Zajecka JM, et al. High-dose sertraline strategy for nonresponders to acute treatment: Obsessive-compulsive-targeted augmentation: A multicenter double-blind trial. J Clin Psychiatry 2006;67(1):15-22.

52. Denys D, Fluitman S, Kavelaars A, Heijnen C, Westenberg HG. Effects of paroxetine and venlafaxine on immune parameters in patients with obsessive-compulsive disorder. Psychoneuroendocrinology 2006;31(3):355-60.

53. van Opperen P, van Balkom AJ, de Haan E, van Dyck R. Cognitive therapy and exposure in vivo alone and in combination with fluvoxamine in obsessive-compulsive disorder: A 5-year follow-up. J Clin Psychiatry 2005;66(11):1410-6.

54. Hollander E, Kaplan A, Schneider J, Yang H, Li D, Koran LM, et al. Neurololgical soft signs as predictors of treatment response to selective serotonin reuptake inhibitors in obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci 2005;17(4):472-7.

55. Asbahr F, Castillo AR, Ito LM, Letore MR, Moreira MN, Lotufo-Neto F. Cognitive therapy versus sertraline in obsessive-compulsive disorder responders to drug treatment. J Clin Psychiatry 2005;66(9):1169-75.

56. Nakatani E, Nakagawa A, Nakao T, Yoshizato C, Nabeymama M, Kudo A, et al. A randomized controlled trial of Japanese patients with obsessive-compulsive-disorder – effectiveness of behavior therapy and fluvoxamine. Psychiatr Psychothem 2005;74(5):269-76.

57. Rufer M, Hand I, Aslebben H, Braatz A, Ortman J, Katkenbamp B, et al. Long-term course and outcome of obsessive-compulsive patients after cognitive-behavioral therapy in combination with either fluvoxamine or placebo: A 7-year follow-up of a randomized double-blind trial. Eur Arch Psychiatry Clin Neurosci 2005;255(2):121-8.

58. Pediatric OCD Treatment Study (POTS) Team. Cognitive-behavior therapy, sertraline, and their combination for children and adolescents with obsessive-compulsive disorder. The Pediatric OCD Treatment Study (POTS) randomized controlled trial. JAMA 2004;292(16):1969-76.

59. Geller DA, Wagner KD, Emslie G, Murphy T, Carpenter DJ, Wetherhold E, et al. Paroxetine treatment in children and adolescents with obsessive-compulsive disorder: A randomized, multicenter, double-blind, placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 2004;43(11):1387-96.

60. Pallanti S, Quercioli L, Bruscoli M. Response acceleration with mirtazapine augmentation of citalopram in obsessive-compulsive disorder patients without prominent depression: A pilot study. J Clin Psychiatry 2004;65(10):1394-9.

61. Kamijima K, Murasaki M, Asai M, Higuchi T, Nakajima T, Taga C, et al. Paroxetine in the treatment of obsessive-compulsive disorder: Randomized, double-blind, placebo-controlled study in Japanese patients. Psychiatry Clin Neurosci 2004;58(4):427-33.

62. Fux M, Benjamin J, Nemets B. A placebo-controlled cross-over trial of adjunctive EPA in OCD. J Psychiatr Res 2004;38(3):323-5.

63. Neziruglo F, Pinto A, Yariyua-Tobias JA, McKay D. Overvalued ideas as a predictor of fluvoxamine response in patients with obsessive-compulsive disorder. Psychiatry Res 2004;125(1):53-60.

64. Hollander E, Baldini Rossi N, Sood E, Pallanti S. Risperidone augmentation in treatment-resistant obsessive-compulsive disorder: A double-blind, placebo-controlled study. Int J Neuropsychopharmacol 2003;6(4):397-401.

65. Hollander E, Allen A, Steiner M, Wheaton DE, Oakes R, Burnham DB; Paroxetine OCD Study Group. Acute and long-term treatment and prevention of relapse of obsessive-compulsive disorder with paroxetine. J Clin Psychiatry 2003;64(9):1113-21.

66. Hollander E, Fiedberg I, Wasserman S, Allen A, Birnbaum M, Koran LM. Venlafaxine in treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry 2003;64(5):546-50.

67. Denys D, van der Wee N, van Megen HJ, Westenberg HG. A double-blind comparison of venlafaxine and paroxetine in obsessive-compulsive disorder. J Clin Psychopharmacol 2003;23(6):568-75.

68. Denys D, van Megen HJ, Westenberg HG. Emerging skin-picking...
behaviour after serotonin reuptake inhibitor-treatment in patients with obsessive-compulsive disorder: Possible mechanisms and implications for clinical care. J Psychopharmacol 2003;17(1):127-9.

74. Geller DA, Biederman J, Stewart SE, Mullin B, Farrell C, Wagner KD, et al. Impact of serotonergic risk on treatment response to paroxetine in pediatric obsessive-compulsive disorder: Is the use of exclusion criteria empirically supported in randomized clinical trials? J Child Adolesc Psychopharmacol 2003;13 Suppl 1:S19-29.

75. Lolland E, Koran L, Goodman WK, Greist JH, Ninan PT, Yang H, et al. A double-blind, placebo-controlled study of the efficacy and safety of controlled-release fluvoxamine in patients with obsessive-compulsive disorder. J Clin Psychiatry 2003;64(6):640-7.

76. Liebowitz MR, Turner SM, Piccinni J, Beidel DC, Clarvit SR, Davies SO, et al. Fluoxetine in children and adolescents with OCD: A placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 2002;41(12):1431-8.

77. Albert U, Aguglia E, Maina G, Boggetto F. Venlafaxine versus clomipramine in the treatment of obsessive-compulsive disorder: A preliminary single-blind, 12-week, controlled study. J Clin Psychiatry 2002;63(11):1004-9.

78. Romano S, Goodman W, Tamura R, Gonzales J. Long-term treatment of obsessive-compulsive disorder after an acute response: A comparison of fluoxetine versus placebo. J Clin Psychopharmacol 2001;21(4):425-30.

79. Bergeron R, Ravindran AV, Chaput Y, Goldner E, Swinson R, van Ameringen MA, et al. Sertraline and fluoxetine treatment of obsessive-compulsive disorder: Results of a double-blind, 6-month treatment study. J Clin Psychopharmacol 2002;22(2):148-54.

80. Stein DJ, Montgomery SA, Kasper S, Tanghj P. Predictors of response to pharmacotherapy with citalopram in obsessive-compulsive disorder. Int Clin Psychopharmacol 2001;16(6):357-61.

81. Eisen JL, Rasmussen SA, Phillips KA, Price LH, Davidson J, Geller DA, et al. Long-term sertraline treatment for obsessive-compulsive disorder in children and adolescents: A randomized, controlled clinical trial. J Am Acad Child Adolesc Psychiatry 2001;40(7):739-48.

82. Geller DA, Hoog SL, Heiligenstein JH, Ricardi RK, Tamura R, Gonzales J. Long-term sertraline treatment of obsessive-compulsive disorder after an acute response: A double-blind, placebo-controlled study. Int J Psychopharmacol 2001;10(3):165-9.

83. Riddle MA, Reave EA, Yaryura-Tobias JA, Yang HM, Claghorn JL, Gaffney G, et al. Fluvoxamine for children and adolescents with obsessive-compulsive disorder: A randomized, controlled, multicenter trial. J Am Acad Child Adolesc Psychiatry 2001;40(2):222-9.

84. Liddle PR, et al. Multicenter double-blind comparison of sertraline and desipramine for concurrent obsessive-compulsive and major depressive disorders. Arch Gen Psychiatry 2000;57(1):76-82.

85. Pallanti S, Quercioli L, Paiva RS, Koran LM. Citalopram for treatment-resistant obsessive-compulsive disorder. Eur Neuropsychopharmacol 2000;10(3):165-9.

86. Geller DA, Hoog SL, Heiligenstein JH, Ricardi RK, Tamura R, Gonzales J. Long-term sertraline treatment of obsessive-compulsive disorder after an acute response: A double-blind, placebo-controlled study. J Am Acad Child Adolesc Psychiatry 2001;40(7):739-48.

87. Neuro psychopharmacology of serotonergic neurotransmission. Arch Gen Psychiatry 2000;57(1):76-82.

88. Zohar J. Pindolol augmentation in treatment-resistant obsessive-compulsive disorder. J Clin Psychopharmacol 2000;20(1):46-52.

89. Simpson HB, Fox, TF, Biederman J, Huppert JD, Cahill S, Maher MJ, et al. Cognitive-behavioral therapy vs risperidone for augmenting serotonin reuptake inhibitors in obsessive-compulsive disorder: A randomized clinical trial. JAMA Psychiatry 2013;70(11):1190-9.

90. March JS, Biederman J, Wolkow R, Safferman A, Mardekian J, Cook EH, et al. Sertraline in children and adolescents with obsessive-compulsive disorder. JAMA Psychiatry 2013;70(11):1190-9.

91. Greenberg BD, Benjamin J, Martin JD, Keuler D, Huang SJ, Altamura AC, et al. Combination of behaviour therapy with fluvoxamine in comparison with behaviour therapy and placebo. Results of a multicentre study. Br J Psychiatry Suppl 1989;103:71-8.

92. Ackerman DL, Greenfield S, Bystritsky A. Clinical characteristics of response to fluoxetine treatment of obsessive-compulsive disorder. J Clin Psychopharmacol 1998;18(3):185-92.

93. Mundo E, Bareggi SR, Pirola R, Bellodi L, Smeraldi E. Long-term pharmacotherapy of obsessive-compulsive disorder: A double-blind study. J Clin Psychopharmacol 1997;17(1):4-10.

94. Dell’Osso B, Altamura AC, Mundo E, Marazziti D, Haddow E. Diagnosis and treatment of obsessive-compulsive disorder and related disorders. Int J Clin Pract 2007;61(1):98-104.

95. Irons J. Fluvoxamine in the treatment of anxiety disorders. Neuropsychopharmacol 1996;2(2):111-8.

96. Dell’Osso B, Altamura AC, Mundo E, Marazziti D, Haddow E. Diagnosis and treatment of obsessive-compulsive disorder and related disorders. Int J Clin Pract 2001;55(8):1075-84.

97. Foa EB, Simpson HB, Rosenfeld D, Liebowitz MR, Cahill SP, Huppert JD, et al. Six-month outcomes from a randomized trial augmenting serotonin reuptake inhibitors with exposure and response prevention or risperidone in adults with obsessive-compulsive disorder. J Clin Psychopathol 2011;26(4):440-6.

98. Foa EB, Simpson HB, Rosenfeld D, Liebowitz MR, Huppert JD, Cahill S, Maher MJ, et al. Cognitive-behavioral therapy vs risperidone for augmenting serotonin reuptake inhibitors in obsessive-compulsive disorder: A randomized clinical trial. JAMA Psychiatry 2013;70(11):1190-9.

99. Sayyah M, Sayyah M, Boostani H, Ghaffari SM, Hoseini A. Effects of aripiprazole augmentation in treatment-resistant obsessive-compulsive disorder (a double blind clinical trial). Depress Anxiety 2012;29(10):850-4.

100. Sayyah and Rahim Asian J Pharm Clin Res, Vol 10, Issue 1, 2017, 150-161
severe obsessive-compulsive disorder: A double-blind, randomized, placebo-controlled study. J Clin Psychopharmacol 2008;28(5):550-4.

113. de Geus F, Denys D, Westenberg HG. Effects of quetiapine on cognitive functioning in obsessive-compulsive disorder. Int Clin Psychopharmacol 2007;22(2):77-84.

114. Buchsbaum MS, Hollander E, Pallanti S, Baldini Rossi N, Pitholi J, Newmark R, et al. Positron emission tomography imaging of risperidone augmentation in serotonin reuptake inhibitor-refractory patients. Neuropsychobiology 2006;53(3):157-68.

115. Erzegovesi S, Guglielmo E, Siliprandi F, Bellodi L. Low-dose risperidone augmentation of fluvoxamine treatment in obsessive-compulsive disorder: A double-blind, placebo-controlled study. Eur Neuropsychopharmacol 2005;15(1):69-74.

116. Li X, May RS, Tolbert LC, Jackson WT, Flournoy JM, Baxter LR. Risperidone and haloperidol augmentation of serotonin reuptake inhibitors in refractory obsessive-compulsive disorder: A crossover study. J Clin Psychiatry 2005;66(6):736-43.

117. Bogan AM, Koran LM, Chuong HW, Vapnik T, Bystritsky A. Quetiapine augmentation in obsessive-compulsive disorder resistant to serotonin reuptake inhibitors: An open-label study. J Clin Psychiatry 2005;66(1):73-9.

118. Carey PD, Vythilingum B, Seedat S, Muller JE, van Ameringen M, Stein DJ. Quetiapine augmentation of SSRIs in treatment refractory obsessive-compulsive disorder: A double-blind, randomised, placebo-controlled study [ISRCTN83050762]. BMC Psychiatry 2005;5:5.

119. Denys D, de Geus F, van Megen HJ, Westenberg HG. A double-blind, randomized, placebo-controlled trial of quetiapine addition in patients with obsessive-compulsive disorder refractory to serotonin reuptake inhibitors. J Clin Psychiatry 2004;65(8):1040-8.

120. Bystritsky A, Ackerman DL, Rosen RM, Vapnik T, Gorbis E, Maidment KM, et al. Augmentation of serotonin reuptake inhibitors in refractory obsessive-compulsive disorder using adjunctive olanzapine. Neuropsychobiology 2006;53(4):565-8.

121. D’Amico G, Cedro C, Muscatello MR, Pandolfo G, Di Rosa AE, Zoccali R, et al. Olanzapine augmentation of paroxetine-refractory obsessive-compulsive disorder. Progro Neuro Psychopharmacol Biol Psychiatry 2003;27(4):619-23.

122. Denys D, van Megen H, Westenberg H. Quetiapine addition to serotonin reuptake inhibitor treatment in patients with treatment-refractory obsessive-compulsive disorder: An open-label study. J Clin Psychiatry 2002;63(8):700-3.

123. Atmaca M, Kaloglu M, Terzan E, Gecci O. Quetiapine augmentation in patients with treatment resistant obsessive-compulsive disorder: A single-blind, placebo-controlled study. Int Clin Psychopharmacol 2002;17(3):115-9.

124. Pfanner C, Marazziti D, Dell’Osso L, Presta S, Gemignani A, Milanfranchi A, et al. Risperidone augmentation in refractory obsessive-compulsive disorder: An open-label study. Int Clin Psychopharmacol 2000;15(5):297-301.

125. McDougle CJ, Epperson CN, Petlon GH, Waszylink S, Price LH. A double-blind, placebo-controlled study of risperidone addition in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 2000;57(8):794-801.

126. Weiss EL., Potenza MN, McDougle CJ, Epperson CN. Olanzapine addition in obsessive-compulsive disorder refractory to selective serotonin reuptake inhibitors: An open-label case series. J Clin Psychiatry 1999;60(8):524-7.

127. Vulink NC, Westenberg HG, van Nieuwerburgh F, Deforce D, Fluitman SB, Meinardi JS, et al. Catechol-O-methyltransferase gene expression is associated with response to citalopram in obsessive-compulsive disorder. Int J Psychiatry Clin Pract 2012;16(4):277-83.

128. Diniz JB, Shavitt RG, Fossatulia V, Koran L, Pereira CA, Miguel EC. A double-blind, randomized, controlled trial of fluoxetine plus quetiapine or clobazepam versus fluoxetine plus placebo for obsessive-compulsive disorder. J Clin Psychopharmacol 2011;31(6):763-8.

129. Simpson HB, Foa EB, Liebowitz MR, Ledley DR, Huppert JD, Caihl S, et al. A randomized, controlled trial of cognitive-behavioral therapy for augmenting pharmacotherapy in obsessive-compulsive disorder. Am J Psychiatry 2008;165(5):621-30.

130. Shapira NA, Ward HE, Mandoki M, Murphy TK, Yang MC, Blier P, et al. A double-blind, placebo-controlled trial of olanzapine addition in fluoxetine-refractory obsessive-compulsive disorder. Biol Psychiatry 2004;55(5):553-5.

131. Stein DJ, Fineberg NA, Bienvenu OJ, Denys D, Lochner C, Nestadt G, et al. Should OCD be classified as an anxiety disorder in DSM-V? Depress Anxiety 2010;27(6):495-506.

132. Harding KJ, Skritskaya N, Doherty E, Fallon BA. Advances in understanding illness anxiety. Curr Psychiatry Rep 2013;15(2):311-7.

133. Franz AP, Paim M, Araujo RM, Rosa Vde O, Barbosa IM, Blaya C, et al. Treating refractory obsessive-compulsive disorder: What to do when conventional treatment fails? Trends Psychiatry Psychother 2013;35(1):24-35.

134. Veale D, Miles S, Smallcombe N, Ghezai H, Goldacre B, Hodoss J. Atypical antipsychotic augmentation in SSRI treatment refractory obsessive-compulsive disorder: A systematic review and meta-analysis. BMC Psychiatry 2014;14:317.

135. Arumugham SS, Reddy JY. Augmentation strategies in obsessive-compulsive disorder. Expert Rev Neurother 2013;13(2):187-202.