Helicobacter fennelliae Bacteremia
Three Case Reports and Literature Review

Sho Saito, MD, Mika Tsukahara, MT, Kiyofumi Ohkus, PhD, and Hanako Kurai, MD

Abstract: Helicobacter fennelliae is a gram-negative, spiral bacillus that appears as thin-spread colonies on sheep blood agar and is similar to Helicobacter cinaedi. H fennelliae is diagnosed by genetic testing, which is not readily available in all laboratories. Therefore, H fennelliae bacteremia has only been reported sporadically, and little is known about its clinical characteristics.

We describe 3 cases of H fennelliae bacteremia with gastrointestinal symptoms, including nausea, vomiting, and diarrhea. Isolates could be differentiated from H cinaedi by biochemical reaction testing, including nitrate reduction and alkaline phosphatase hydrolysis.

INTRODUCTION

Helicobacter fennelliae was first described in 1985 as a new Campylobacter species isolated from asymptomatic, homosexual men with enteritis and proctitis.1 This organism was subsequently reorganized as a Helicobacter species based on 23S rRNA hybridization studies in 1991. 2 Helicobacter species are gram-negative, spiral bacteria that are categorized into 2 groups: gastric Helicobacter and enterohelial Helicobacter. 3 H fennelliae is an enterohelial Helicobacter that causes bacteremia and appears as thin-spread colonies on sheep blood agar. This organism is fastidious and difficult to culture, and its features are similar to Helicobacter cinaedi. In addition, H fennelliae is diagnosed by genetic testing, such as 16s rRNA sequencing, which is not readily available in all laboratories. Therefore, H fennelliae bacteremia has been reported only sporadically, and little is known about its clinical characteristics.

We report 3 cases of H fennelliae bacteremia that could be differentiated from H cinaedi by biochemical reaction testing and provide a review of the literature.

CASE PRESENTATION

Case 1
A 77-year-old Japanese female with cervical cancer and malignant pleural effusion presented at our hospital. She had a radical hysterectomy for treatment of cervical cancer 1 year prior and had received 3 courses of paclitaxel and nedaplatin. She developed bilateral lower extremity lymphedema 3 days before presentation and low back pain, nausea, and vomiting the day before. Her body temperature was 36.6 °C, heart rate was 105 beats/min, and blood pressure was 93/57 mm Hg. The physical examination revealed tenderness in the upper part of the abdomen, costovertebral angle tenderness, and pitting edema in the lower leg, but was otherwise unremarkable. Blood tests obtained on admission revealed a white blood cell count of 11,730 cells/μL with 97% neutrophils, a C-reactive protein level of 40.5 mg/dL, a blood urea nitrogen level of 58.2 mg/dL, and a creatinine level of 1.39 mg/dL. After 2 sets of blood cultures were obtained, she was treated for dehydration with 1 g of intravenous cefepime, 3 times a day. Five days later, spiral-shaped, gram-negative bacilli, a shape suggestive of Helicobacter spp, were isolated from both aerobic blood cultures. Intravenous antibiotic therapy was changed from cefepime to 2 g of ampicillin 4 times a day to treat suspected H cinaedi bacteremia. After the patient showed improvement of her general condition, intravenous ampicillin was switched to oral amoxicillin on the 12th day after admission for treatment of enteritis and bacteremia, and antibiotics were given for a total of 18 days. No recurrence was observed during the 18-month follow-up.

Case 2
A 51-year-old Japanese female with esophageal cancer, liver metastasis, and malignant pleural effusion presented at our hospital. She had received 2 courses of cisplatin and fluorouracil, and radiotherapy. Two days before hospitalization, she had developed anorexia accompanied by nausea and vomiting. Her body temperature was 36.5 °C, heart rate was 98 beats/min, blood pressure was 96/58 mm Hg, and SpO2 was 90%. The physical examination was otherwise unremarkable. Blood tests obtained on admission revealed a white blood cell count of 14,210 cells/μL with 97% neutrophils, a C-reactive protein level of 7.71 mg/dL, a blood urea nitrogen level of 22.0 mg/dL, and a creatinine level of 0.88 mg/dL. Two sets of blood cultures were obtained, and 5 days later, bacteria with a shape suggestive of Helicobacter spp were isolated from both blood cultures. The patient was administered 1.5 g of ampicillin/
sulbactam intravenously, 4 times a day. However, she died due to an underlying disease 27 days after hospital admission.

Case 3
A 74-year-old Japanese female with pancreatic cancer and lymph node metastasis, who had received 2 courses of gemcitabine and nanoparticle albumin–bound paclitaxel, was admitted to our hospital due to persistent fever and a positive blood culture. One week before hospitalization, 2 sets of blood cultures were obtained, and spiral-shaped, gram-negative bacilli were isolated from one of the blood cultures after 5 days. Her body temperature on admission was 36.4 °C, heart rate was 63 beats/min, and blood pressure was 112/50 mm Hg. She had a history of diarrhea and pasty stools. Additionally, she noted mild pain in both knees, and pitting edema in the lower leg was observed; however, the physical examination was otherwise unremarkable. Initial laboratory findings included a white blood cell count of 10,800 cells/μL with 76% neutrophils, a C-reactive protein level of 8.24 mg/dL, a blood urea nitrogen level of 16.7 mg/dL, and a creatinine level of 0.77 mg/dL. She was administered 2 g of ampicillin intravenously, 4 times a day. Ampicillin was switched to oral amoxicillin on the 4th day after intravenous treatment, and antibiotics were given for a total of 6 weeks. Her follow-up blood cultures were all negative, and no recurrence had been observed at follow-ups.

Blood culture samples were processed using the Bactec FX system (Becton, Dickinson and Company, Sparks, MD). Microaerobic cultures were performed with chocolate II agar (Kyokuto Pharmaceutical, Tokyo, Japan) and Trypto soy agar II with sheep blood (Kyokuto Pharmaceutical, Tokyo, Japan) for 6 days at 37 °C in a moist microaerobic atmosphere (5% O2, 10% CO2, 0% H2, 85% N2) generated by the TE-HER CAMPYLO INCUBATOR HZC-3 (Hirasawa Works, Tokyo, Japan). *H. fennelliae* infection was suspected when blood cultures demonstrated thin-spread colonies and gram-negative spiral bacilli (Figures 1 and 2). The isolates were then identified by DNA sequencing of the 16S rRNA genes for *H. fennelliae* and were also tested for nitrate reduction and alkaline phosphatase hydrolysis using the Api campy identification system (bioMerieux Vitek, Tokyo, Japan), which can be performed in general hospitals (Table 1).

The study protocol was approved by the institutional review board of the Shizuoka Cancer Center Hospital. The patient consent requirement was waived due to the retrospective nature of the study.

DISCUSSION
According to a growing number of studies and advances in genetic analysis, such as 16S rRNA gene sequencing, the number of reports of *H. fennelliae* bacteremia has been steadily growing throughout the last decade. However, few reports have assessed the clinical characteristics or the treatment of patients with *H. fennelliae* bacteremia. We describe 3 cases of *H. fennelliae* bacteremia that were differentiated from *H. cinaedi* by biochemical reaction testing and provide a literature review. To the best of our knowledge, this is the first review of *H. fennelliae* bacteremia.

Clinical characteristics of *H. fennelliae* bacteremia are summarized in Table 2.

TABLE 1. Differential Characteristics of *H. fennelliae* and *H. cinaedi*

Taxon	Nitrate Reduction	Alkaline Phosphatase Hydrolysis	Catalase Production	Urease Activity
H. fennelliae	–	+	+	–
H. cinaedi	+	–	–	+

H. fennelliae = Helicobacter fennelliae, H. cinaedi = Helicobacter cinaedi.
Author	Year	Age, Sex	Background	Clinical Features	Diagnosis	Antimicrobials	
Skirrow et al⁴	1993	NR, male	NR	Fever	NR	NR	
		NR, male	Hepatitis		NR	NR	
Kiehlbauch et al⁵	1995	NR, female	NR		DNA-DNA hybridization	Ampicillin/ Sulbactam/Ceftazidime	
Hsueh et al⁶	1999	48, male	Cirrhosis	Fever, shaking drowsiness, hypotension	NR	NR	
			diabetes mellitus		Gas chromatogram	Ampicillin/ Sulbactam/Ceftazidime	
Asahara et al⁷	2008	NR	NR		23S rRNA	Imipenem	
Omata et al⁸	2011	60, female	SLE, femoral	Fever, lower extremity rash	NR	Imipenem	
Inui et al⁹	2011	46, female	None	Fever, abdominal pain, proctitis	NR	Ceftriaxone	
Smuts and Lastovica¹⁰	2011	NR, female	NR		16S rRNA, rpoB	--Azithromycin	
		5, male	Diarrhea, acidosis		16S rRNA, rpoB	NR	
		6, male	Fever, gastroenteritis		16S rRNA, rpoB	NR	
		8, female	Pneumonia		16S rRNA, rpoB	NR	
Nishida et al¹¹	2013	56, male	Alcoholic liver disease	Fever, headache, stiff neck meningitis	16S rRNA	Ceftriaxone	
Otani et al¹²	2013	55, female	SLE, lupus nephritis	Cellulitis	NR	Cefazolin	
Nagamatsu et al¹³	2013	73, male	Lung cancer	Fever, recurrent bacteremia	16S rRNA	Ampicillin/ Sulbactam/Cefepime	
			NR		Ampicillin/ Sulbactam/Cefepime	Ampicillin/Sulbactam/Ampicillin	
Maehara et al¹⁴	2013	50, male	Renal transplantation	Fever, chill abdominal pain	Genetic analysis	NR	
			Malignant lymphoma		NR	NR	
Rimbaira et al¹⁵	2013	NR	Malignant lymphoma		16, 23S rRNA	NR	
			Autoimmune disease		16, 23S rRNA	NR	
Yoshizaki et al¹⁶	2014	64, male	Renal failure	Recurrent bacteremia, bacterial pericarditis	Genetic analysis	Ceftriaxone	
Miyagi et al¹⁷	2014	50s, male	Lymphoplasmacytic lymphoma	Fever, recurrent bacteremia	16S rRNA	--Piperacillin 16S rRNA	
Clarithromycin			NR		--Ceftazidime Cefepime	Ampicillin/Ampicillin/Sulbactam/Ampicillin	
Present case	2014	77, female	Cervical cancer	Low back pain, nausea, vomiting	16S rRNA	--Ceftazidime Cefepime	Ampicillin/Ampicillin/Sulbactam/Ampicillin
Present case		51, female	Esophageal cancer	Nausea, vomiting	16S rRNA	--Amoxicillin	
Present case		74, female	Pancreatic cancer	Fever, diarrhea, arthralgia	16S rRNA	--Amoxicillin	

NR = not reported, SLE = systemic lupus erythematosus.
cellulitis (1 case), rash (1 case), meningitis (1 case), bacterial pericarditis (1 case), and fever (10 cases). Gastrointestinal symptoms were common; however, cellulitis was not as common in patients with H. fennelliae bacteria as it is in those with H. cinaedi bacteria.18 However, 3 cases of recurrent bacteremia have been identified in previous reports,12,16,17 which were similar to those of H. cinaedi.18,19 No deaths have been reported due to H. fennelliae bacteremia in the current or previous cases.

Detailed pathophysiology of the developing H. fennelliae infection has not yet been demonstrated. However, acute mucosal inflammation was observed in rectal biopsies from pig-tailed macaque monkeys that developed diarrhea in response to H. fennelliae infection.20 In addition, general and specific mechanisms for immune evasion and suppressor cells in H. fennelliae have been identified in previous reports,13,16,17 which were similar to those of H. cinaedi.20

REFERENCES

1. Totten PA, Fennell CL, Tenover FC, et al. Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J Infect Dis. 1985;151:131–139.
2. Vandamme P, Falsen E, Rossau R, et al. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of treatment of Acrobacter gen. nov. Int J Syst Bacteriol. 1991;41:88–103.
3. Rimbaru M, Matsu M, Mori S, et al. Draft genome sequence of Helicobacter fennelliae strain MRY12-0050, isolated from a bacteremia patient. Genome Announc. 2013;1:e00512–e00513.
4. Skirrow MB, Jones DM, Sutcliffe E, et al. Campylobacter bacteremia in England and Wales, 1981–1991. Epidemiol Infect. 1993;110:567–573.
5. Kielbasa JA, Brenner DJ, Cameron DN, et al. Genotypic and phenotypic characterization of Helicobacter cinaedi and Helicobacter fennelliae strains isolated from humans and animals. J Clin Microbiol. 1995;33:2940–2947.

4. Skirrow MB, Jones DM, Sutcliffe E, et al. Campylobacter bacteremia in England and Wales, 1981–1991. Epidemiol Infect. 1993;110:567–573.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
Meeting of the Japanese Society for Clinical Microbiology. Nagoya: The Japanese Society for Clinical Microbiology, Nihon Rinsyou Biseibutagaku Zasshi, 2013; 23:255.

15. Rimbara E, Mori S, Kim H, et al. Helicobacter cinaedi and Helicobacter fennelliae transmission in a hospital from 2008 to 2012. J Clin Microbiol. 2013;51:2439–2442.

16. Yoshizaki M, Matsumoto K, Kanaya A, et al. Identification of Helicobacter species by gene analysis in a patient receiving hemodialysis [Helicobacter zoku niyoru kansensyou wo hassyousi kinsyu no idensikaiski wo okonatta ketuekitouseikikan no nirei] [abstract P-2-605]. In: Program and abstracts of the 59th Congress of the Japanese Society for Dialysis Therapy. Kobe: The Japanese Society for Dialysis Therapy, Nihon Touseki Igakukai Zasshi, 2014; 47:904.

17. Miyagi C, Ohshiro T, Tamaki Y, Goeku C, Ohkusu K. A case of Helicobacter fennelliae bacteremia [Ketuekibaiyou kara Helicobacter fennelliae ga kensyutu sareta tirei] [abstract 038]. In: Program and abstracts of the 49th Japanese Association of Medical Technologists Congress Kyushu and Okinawa. Okinawa: The Japanese Association of Medical Technologists, Nichiriringi Kyusyusibu Igakukensa Gakkai, 2014:98.

18. Araoka H, Baba M, Kimura M, et al. Clinical characteristics of bacteremia caused by Helicobacter cinaedi and time required for blood cultures to become positive. J Clin Microbiol. 2014;52:1519–1522.

19. Uckay I, Garbino J, Dietrich PY, et al. Recurrent bacteremia with Helicobacter cinaedi: case report and review of the literature. BMC Infect Dis. 2006;6:86.

20. Flores BM, Fennell CL, Kuller L, et al. Experimental infection of pig-tailed macaques (Macaca nemestrina) with Campylobacter cinaedi and Campylobacter fennelliae. Infect Immun. 1990;58:3947–3953.

21. Mestrovic T, Ljubin-Sternak S, Sviben M. Potential role of enterohepatic Helicobacter species as a facilitating factor in the development of Chlamydia trachomatis proctitis. Med Hypotheses. 2013;81:481–483.

22. Kawamura Y, Tomida J, Morita Y, et al. Clinical and bacteriological characteristics of Helicobacter cinaedi infection. J Infect Chemother. 2014;20:517–526.

23. Fox JG, Chien CC, Dewhirst FE, et al. Helicobacter canadensis sp. nov. isolated from humans with diarrhea as an example of an emerging pathogen. J Clin Microbiol. 2000;38:2546–2549.

24. Tanaka T, Goto M, Okuzumi K, et al. Isolation and identification of Helicobacter cinaedi and H. cinaedi-like organisms isolated from blood culture in practical laboratory procedures. Kansenshogaku Zasshi. 2007;81:700–706.