1. Hyperexponential model of On-Off Source

The On-Off Source Model of human speech is composed of two periods, where On period belongs to the active periods in human speech and the Off period belongs to the silence. There are two main states On and Off and the source switches from one state to another.

Talk-spurt duration is modelled by the variable T_1 and pause duration is modelled by the variable T_2. The probability densities of T_1 and T_2 are modelled by two weighted geometric distribution functions.

Every increment of these variables T_1 and T_2 is equal to 5 ms and then the average talk-spurt duration is $ET_1 = 227$ms and the average pause duration is $ET_2 = 596$ms (see [1]).

$$T_1 - f_1(k) = c_1(1 - U_1)U_1^{k-1} + c_2(1 - U_2)U_2^{k-1}$$

$c_1 = 0.60278, \quad c_2 = 0.39817$

$U_1 = 0.92446, \quad U_2 = 0.98916$

$$T_2 - f_2(k) = d_1(1 - W_1)W_1^{k-1} + d_2(1 - W_2)W_2^{k-1}$$

$d_1 = 0.76693, \quad d_2 = 0.23307$

$W_1 = 0.89700, \quad W_2 = 0.99791$

for $k = 0, 1, 2, \ldots$

The best approximation of these processes is the Hyperexponential model. The discrete geometrical distributions are approximated by continuous exponential ones and the rest of this model has completely the same nature as the geometrical one. In the new model we can keep the same averages.

ON: $T_1 - f_1(t) = c_1\alpha_1e^{-\alpha t} + c_2\alpha_2e^{-\alpha t}$

$c_1 = 0.60278, \quad c_2 = 0.39817, \quad \alpha_1 = 0.01511, \quad \alpha_2 = 0.00217$

OFF: $T_2 - f_2(t) = d_1\mu_1e^{-\mu t} + d_2\mu_2e^{-\mu t}$

$d_1 = 0.76693, \quad d_2 = 0.23307, \quad \mu_1 = 0.02060, \quad \mu_2 = 0.00042$

Fig. 3 and Fig. 4 show approximation of hypergeometrical distributions (points) by hyperexponential distributions for On and Off periods.

We construct a transmission diagram of Markov model of On-Off Source (loops are omitted):

The rate matrix of this Markovov chain is

$$Q_0 = \begin{pmatrix} -\alpha_1 & 0 & d_1\alpha_1 & d_2\alpha_1 \\ 0 & -\alpha_2 & d_1\alpha_2 & d_2\alpha_2 \\ c_1\mu_1 & c_2\mu_1 & \mu_1 & 0 \\ c_1\mu_2 & c_2\mu_2 & 0 & \mu_2 \end{pmatrix}$$
We solve the balance equations \(\pi \cdot Q_0 = 0 \), where \(\pi = (\pi_1, \pi_2, \pi_3, \pi_4) \):

\[
\pi_1 = \frac{c_2 \alpha_1}{c_1 \alpha_1} \pi_1 \\
\pi_2 = \frac{d_1 \alpha_1}{c_1 \mu_1} \pi_1 \\
\pi_3 = \frac{d_1 \alpha_2}{c_1 \mu_2} \pi_1 \\
\pi_4 = \frac{d_1 \alpha_2}{c_1 \mu_2} \pi_1
\]

We compute the probability \(\pi_1 \) from the normalisation condition \(\sum_{i=1}^{4} \pi_i = 1 \):

\[
\pi_1 = \frac{c_1 \alpha_2 \mu_1 \mu_2}{c_1 \alpha_2 \mu_1 \mu_2 + c_2 \alpha_1 \mu_1 \mu_2 + d_1 \mu_2 + d_2 \mu_1 \alpha_1 \alpha_2}
\]

The probabilities for real parameters of VoIP are \(\pi = (0.04902, 0.22546, 0.04579, 0.67973) \).

Let \(P_{ON} \) and \(P_{OFF} \) be probabilities that the Source is in state On or Off:

\[
P_{ON} = \pi_1 + \pi_2 = 0.27448 \\
P_{OFF} = \pi_3 + \pi_4 = 0.72552
\]

Notice that these probabilities are very similar to those in the Exponential model (see [3], \(P_{ON} = 0.27586 \) and \(P_{OFF} = 0.72414 \)). But in the Hyperexponential model we have a more detailed structure of On-Off source than in the Exponential model.

2. Steady-state Analysis of Token Bucket System

The Token Bucket System is related to VoIP problems. We have formed the steady-state analysis of VoIP under the Token Bucket Control. Our main problems will be to compute the probability characteristics of TBS and to find relation between probability of packet loss and bucket depth. At first we will analyze the working of TBS in general.

There is a flow of packets entering the TBS. The Token Bucket System is generating tokens (marks) and then it marks each packet with one of them. Only the marked packets will go through network. For practical reasons we can assume a limited bucket with depth "\(n \)". When the bucket is empty (there are no tokens), the TBS cannot mark any packet, which is lost then. Let \(P_{on} \) be probabilities of this random phenomenon and we will call it "probability of packet loss".

We will deal with the Hyperexponential model of On-Off Source of human speech (see above). When the Source is in On state it starts generating flow of packets, which represents human speech. The packet rate in usual VoIP systems (using G.729A) is 50 p/s. We will assume that the flow of packets is modelled by Poisson process \(N_{p}(t) \) with rate \(\eta = 0.05 \text{p/ms} \).

In general there can be any token rate. Usually it is the same as an average number of packets entering the TBS. The flow of tokens will be modelled by Poisson process \(N_{b}(t) \) with a rate \(\Lambda \):

\[
\Lambda = \eta \cdot P_{ON} + 0 \cdot P_{OFF} = 50 \text{ p/s} \cdot 0.27448 = 13.724 \text{ p/s} = 0.01372 \text{ p/ms}
\]
In the Token Bucket System we have three elementary random phenomena entering the packet, generating token and switching between On-Off states in Source. We have assumed that each of them is Poisson process, and because of that we can model this TBS by Markov chain.

Probability of an increasing number of tokens in the bucket by one during "short" time Δt is $P(N_t(\Delta t) = 1) = \lambda \Delta t + o(\Delta t)$. If the bucket contains k tokens, probability of a decreasing number of tokens in the bucket by one during "short" time Δt is $P(N_t(\Delta t) = 1) = \eta \Delta t + o(\Delta t)$. If there is an arriving packet and the bucket is empty, we cannot mark it and this packet is lost. Probability of packet loss was named P_{lo}.

We will construct a transition diagram of the whole system. Component columns of the diagram refer to a number of tokens in the token bucket. We assigned this as "k-level" for $k = 0, \ldots, n$. For easy reading loops in the transition diagram are omitted:

Let X_k and Y_k be probabilities that in the TBS are k tokens and Source is in On states and let Z_k and W_k be probabilities that in the TBS are also k tokens, but Source is in Off states. Let P_k be a probability of k-level. We see that $P_0 = X_0 + Y_0 + Z_0 + W_0$ and $P_n = X_0 + Y_0$. Taking from the Theory of Markov Chains [2] we can write the following balance equations for state probabilities of steady-state Markov chain:

for $k = 0$
$$0 = -(\lambda + \alpha_1) X_0 + c\mu_1 Z_0 + c\mu_2 W_0 + \eta X_1$$
$$0 = -(\lambda + \alpha_2) Y_0 + c\mu_1 Z_0 + c\mu_2 W_0 + \eta Y_1$$
$$0 = d_1 \alpha_1 X_0 + d_1 \alpha_1 Y_0 - (\lambda + \mu_1) Z_0$$
$$0 = d_2 \alpha_1 X_0 + d_2 \alpha_2 Y_0 - (\lambda + \mu_2) W_0$$

for $k = 1, \ldots, n - 1$
$$0 = \lambda X_{k-1} - (\lambda + \alpha_1 + \eta) X_k + c\mu_1 Z_k + c\mu_2 W_k + \eta X_{k+1}$$
$$0 = \lambda Y_{k-1} - (\lambda + \alpha_2 + \eta) Y_k + c\mu_1 Z_k + c\mu_2 W_k + \eta Y_{k+1}$$
$$0 = \lambda Z_{k-1} + d_1 \alpha_1 X_k + d_1 \alpha_2 Y_k - (\lambda + \mu_1) Z_k$$
$$0 = \lambda W_{k-1} + d_2 \alpha_1 X_k + d_2 \alpha_2 Y_k - (\lambda + \mu_2) W_k$$

for $k = n$
$$0 = \lambda X_{k-1} - (\alpha_1 + \eta) X_n + c\mu_1 Z_n + c\mu_2 W_n$$
$$0 = \lambda Y_{k-1} - (\alpha_2 + \eta) Y_n + c\mu_1 Z_n + c\mu_2 W_n$$
$$0 = \lambda Z_{k-1} + d_1 \alpha_1 X_n + d_1 \alpha_2 Y_n - \mu_1 Z_n$$
$$0 = \lambda W_{k-1} + d_2 \alpha_1 X_n + d_2 \alpha_2 Y_n - \mu_2 W_n$$

We want to solve the balance equations $p \cdot Q = 0$, where $p = (X_0, Y_0, Z_0, W_0, \ldots, X_n, Y_n, Z_n, W_n)$. The rate matrix Q is more complicated, so we will write it to the block matrix:

\[Q = \begin{pmatrix}
\lambda & \ldots & 0 & 0 & \ldots & 0 \\
0 & \lambda & \ldots & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \lambda & \ldots \\
0 & \ldots & \ldots & \ldots & 0 & \lambda \\
0 & \ldots & \ldots & \ldots & 0 & 0 \\
\end{pmatrix} \]
We assigned Q_0 as rate matrix of the Hyperexponential On-Off Source. It can be easily seen that:

$$A_0 = A + \Gamma, \quad A_n = A + \Lambda \quad \text{and} \quad Q_0 = \Gamma + A + \Lambda$$

We can determine recurrent formulas for the probabilities W_i and Z_k:

$$\begin{align*}
(\lambda + \mu_2)W_0 &= d_1\alpha_1Y_0 + d_2\alpha_2X_0
\lambda + \mu_2)W_k &= d_1\alpha_1Y_k + d_2\alpha_2X_k + \lambda W_{k-1} \quad k = 1, \ldots, n - 1
\mu_2W_n &= d_1\alpha_1Y_n + d_2\alpha_2X_n + \lambda W_{n-1}
\end{align*}$$

But the equations for probabilities Y_i and X_i are very complicated:

$$\begin{align*}
\eta_1X_1 + c_1\mu_2W_0 + c_1\mu_2Z_0 &= (\lambda + \alpha_i)X_0
\eta_1X_{k+1} + c_1\mu_2W_k + c_1\mu_2Z_k + \eta Y_k &= (\lambda + \alpha_i)X_k + \lambda W_{k-1} + \lambda Z_{k-1} + \lambda Y_{k-1} \quad k = 1, \ldots, n - 1
\end{align*}$$

If we assign $p_{on}^n = X^n + Y^n$ and $p_{off}^n = Z^n + W^n$, we have these interesting relations:

$$p_{on}^n = \frac{\lambda}{\eta} \cdot p_{off}^{n-1} + \frac{\lambda}{\eta} p_{on}^{n-1} \quad k = 1, \ldots, n$$

3. TBS with real parameters of VoIP

To deduce an explicit formula for probability of packet loss $P_{on} = P_{on}(n) = X_0 + Y_0$ is unreal, but there is no problem to compute values of P_{on} for real parameters of our Token Bucket System with the Exponential On-Off Source:

$$c_1 = 0.60278 \quad c_2 = 0.39817$$
$$\alpha_1 = 0.01511 \text{ ms}^{-1} \quad \alpha_2 = 0.00217 \text{ ms}^{-1}$$
$$d_1 = 0.76693 \quad d_2 = 0.23307$$
$$\mu_1 = 0.02060 \text{ ms}^{-1} \quad \mu_2 = 0.00042 \text{ ms}^{-1}$$
$$\lambda = 0.01372 \text{ p/ms} \quad \eta = 0.05 \text{ p/ms}$$

For example the reader can see for himself the difference between $n = 4$ and $n = 5$:

n	X_0	Y_0	Z_0	W_0	P_0
0	0.0237	0.1507	0.0153	0.0113	0.2010
1	0.0098	0.0453	0.0116	0.0150	0.0817
2	0.0060	0.0164	0.0075	0.0167	0.0466
3	0.0048	0.0079	0.0050	0.0177	0.0354
4	0.0046	0.0051	0.0064	0.6191	0.6352

n	X_0	Y_0	Z_0	W_0	P_0
0	0.0222	0.1475	0.0146	0.0108	0.1951
1	0.0091	0.0444	0.0111	0.0143	0.0789
2	0.0054	0.0162	0.0070	0.0158	0.0444
3	0.0042	0.0080	0.0046	0.0167	0.0335
4	0.0040	0.0052	0.0034	0.0174	0.0300
5	0.0041	0.0041	0.0049	0.6047	0.6178
For real use it is enough to have the bucket depth \(n = 1, \ldots, 10 \). Now we will increase the bucket depth \(n \) and calculate characteristics of models:

- \(P_{l}(n) \) – probability of packet loss or probability of an empty bucket in time of arriving packet
- \(\lambda \cdot P_{l}(n) \) – average number of lost packets
- \(P_{f} \) – probability of full bucket (bucket will refuse tokens)
- \(EK \) – average bucket depth
- \(EK/n \) – token bucket usage

4. Relation between Probability of packet loss and Token Bucket depth

The most interesting characteristic is probability of packet loss \(P_{l}(n) \). In Fig. 7 we compared the values of probability of packet loss \(P_{l}(n) \) for the Exponential model and Hyperexponential model (see [3]).

![Fig. 7: Compared between exponential and hyperexponential model](image)

The approximation by hyperexponential distributions is the best approximation and therefore the Hyperexponential Model of TBS is more accurate in modelling the real TBS than the Exponential model, but for computation of state probabilities we had to use numerical methods.

The approximation by exponential distributions is not so “good”, but for this model we have gained recurrent formulas for state probabilities and values of characteristics that we get from the Exponential model can be used as lower estimation of characteristics of the real TBS.

Now we use approximation by the regression function \(f(n) \) by the least squares method to find relation between Probability of packet loss \(P_{l}(n) \) and the Token Bucket depth \(n \). The Regression function must satisfy these conditions to gain solid approximation:

\[
\lim_{n \to \infty} f(n) = 0, \ \exists a, b, f(n_{0}) = 0 \quad \text{and} \quad \forall n_{1} < n_{2}: f(n_{1}) > f(n_{2})
\]

If we want few parameters of regression function, there is an ideal exponential function \(f(n) = a e^{bn} \).

We will measure the quality of approximation by the square root of sum residuals:

\[
\varepsilon = \sqrt{\sum_{k=1}^{n} [P_{l}(k) - f(k)]^2}
\]

For real use it is enough to have the bucket depth \(n = 1, \ldots, 10 \). Then the exponential regression function is \(f(n) = 0.2025 e^{-0.0312n} \) with \(\varepsilon = 0.0144 \) and with the mean error \(\varepsilon/n = 0.0014 \).
The exponential function is approximation (except \(n = 1 \)) with a maximum error \(4.4 \times 10^{-3} \). If we are satisfied with this precision, we can exchange \(P_{th}(n) \) for \(f(n) \) for \(n = 2, \ldots, 10 \).

If we use the bucket depth \(n = 10, \ldots, 100 \), the exponential regression function is \(f_{th}(n) = 0.1621, e^{0.0119n} \) with \(\varepsilon = 0.0807 \) and with the mean error \(\Delta f/n = 0.0008 \).

This approximation is very “good” for the depth \(n = 11, \ldots, 100 \) with a maximum error \(6.4 \times 10^{-3} \).

For real use we are satisfied with the function:

\[
\begin{align*}
 f(n) &= 0.2745 & \text{for } n = 0 \\
 &= 0.2079 & \text{for } n = 1 \\
 &= 0.2025 \cdot e^{-0.0312n} & \text{for } n = 2, \ldots, 10 \\
 &= 0.1621 \cdot e^{-0.0119n} & \text{for } n = 11, \ldots, 100
\end{align*}
\]

5. Conclusion

We executed steady-state analysis of Hyperexponential model of Token Bucket System and created balance equations for states of Markov chain. Analytical solution led to complicated recurrent formulas for state probabilities. Therefore we used numerical methods to compute probability of a losing packet. We approximated these results using the exponential function. Finally we obtained the function for direct calculation of this probability.

References:

[1] ITU-T Recommendation P. 59, Artificial Conversational Speech, 1993.
[2] PEŠKO & SMIEŠKO, J.: Stochastics Models of Operation Analysis (in Slovak), Žilinska univerzita, Žilina 1999.
[3] SMIEŠKO, J.: Exponential Model of Token Bucket System, Communications - Scientific Letters of the University of Žilina, 4/2003, 66–70.