Crystal structure of morpholin-4-ium cinnamate

Graham Smith

Acta Cryst. (2015). E71, o850–o851
Crystal structure of morpholin-4-ium cinnamate

Graham Smith

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia. *Correspondence e-mail: g.smith@qut.edu.au

Received 10 October 2015; accepted 11 October 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the anhydrous salt formed from the reaction of morpholine with cinnamic acid, C₆H₆NO⁺·C₈H₇O₂⁻, the acid side chain in the trans-cinnamate anion is significantly rotated out of the benzene plane [C—C—C—C torsion angle = 158.54 (17)°]. In the crystal, one of the the aminium H atoms is involved in an asymmetric three-centre cation–anion N—H···O-atom acceptors of the anion. The second aminium-H atom forms an inter-species N—H···O hydrogen-bonding interaction with the two carboxylate O-atom acceptors of the anion. The second aminium-H atom forms an inter-species N—H···Ocarboxylate hydrogen bond. The result of the hydrogen bonding is the formation of a chain structure extending along [100]. Chains are linked by C—H···O interactions, forming a supramolecular layer parallel to (111).

Keywords: crystal structure; salt; morpholinium; cinnamate; hydrogen bonding.

CCDC reference: 1430629

1. Related literature

For background on morpholine compounds and the structure of an aliphatic morpholine salt, see: Kelley et al. (2013). For the structures of analogous morpholine salts of some aromatic acid analogues, see: Chumakov et al. (2006); Ishida et al. (2001a,b,c); Smith & Lynch (2015).

2. Experimental

2.1. Crystal data

C₆H₆NO⁺·C₈H₇O₂⁻
Mr = 235.27
Triclinic, P T
a = 5.7365 (7) Å
b = 9.7526 (10) Å
c = 11.7760 (11) Å
α = 103.270 (8)°
β = 93.468 (9)°
γ = 105.493 (10)°
V = 612.69 (12) Å³
Z = 2
Mo Kα radiation
μ = 0.09 mm⁻¹
T = 200 K
0.52 x 0.24 x 0.05 mm

2.2. Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
Tmin = 0.965, Tmax = 0.990

2.3. Refinement

R[F² > 2σ(F²)] = 0.043
wR(F²) = 0.100
S = 1.01
2393 reflections
160 parameters
2 restraints

H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.15 e Å⁻³
Δρmin = −0.15 e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A
N18–H11B···O14A⁺	0.94 (2)	1.77 (2)	2.7052 (17)	170 (2)
N18–H12B···O134⁺	0.94 (2)	1.73 (2)	2.6643 (17)	172 (2)
N18–H12B···O14A⁺	0.94 (2)	2.57 (2)	3.1868 (17)	123 (1)
C4A–H4A···O48A⁺	0.95	2.46	3.393 (2)	167
C6B–H62B···O134A⁺	0.99	2.37	3.234 (2)	145

Symmetry codes: (i) x + 1, y, z; (ii) x − 2, y − 1, z − 1; (iii) −x + 2, −y + 1, −z + 1.

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Acknowledgements

GS acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5397).
References

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl.
Cryst. 26, 343–350.

Chumakov, Y. M., Simonov, Y. A., Grosav, M., Crisan, M., Bocelli, G.,
Yakovenco, A. A. & Lyubetsky, D. (2006). Central Eur. J. Chem. 4, 458–475.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Ishida, H., Rahman, B. & Kashino, S. (2001a). Acta Cryst. C57, 1450–1453.

Ishida, H., Rahman, B. & Kashino, S. (2001b). Acta Cryst. E57, o627–o629.

Ishida, H., Rahman, B. & Kashino, S. (2001c). Acta Cryst. E57, o630–o632.

Kelley, S. P., Narita, A., Holbrey, J. D., Green, K. D., Reichert, W. M. & Rogers,
R. D. (2013). Cryst. Growth Des. 13, 965–975.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, G. & Lynch, D. E. (2015). Acta Cryst. E71, submitted [Paper reference
SU5227].

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Crystal structure of morpholin-4-ium cinnamate

Graham Smith

S1. Comment

Morpholine (tetrahydro-2H-1,4-oxazine) forms salts with organic acids, and the crystal structures of a limited number of these with either aliphatic acids, e.g. the acetate (Kelley et al., 2013) or aromatic acids, e.g. the 4-nitrobenzoate (Chumakov et al., 2006), have been reported. With the salts of the aromatic acids, particularly those with non-associative substituent groups, cation–anion \(N-H \cdots O \) hydrogen-bonding interactions generate either one-dimensional chains or discrete cyclic heterotetrameric structures. In the present work, the title morpholinium salt of cinnamic acid, C\(_4\)H\(_{10}\)NO\(^+\) C\(_9\)H\(_7\)O\(_2\)\(^-\) was prepared and its structure is reported herein.

The asymmetric unit of the title salt comprises a morpholinium cation (\(B \)) and a cinnamate anion (\(A \)), (Fig. 1). In the trans- cinnamate anion, the acid side chain is significantly rotated out of the benzene plane [defining torsion angle C\(_6\)A—C\(_1\)A—C\(_{11}\)A—C\(_{12}\)A = 158.54 (17)°]. In the crystal, a primary asymmetric three-centre \(R_2^1(4) \) N\(_1\)B—H···(O, O\(_i\)) \(\text{carboxyl} \) hydrogen-bonding interaction is present [N···O = 2.6643 (17) and 3.1868 (17) Å] (Table 1). The hydrogen-bonding extension involves the second aminium H atom of the cation to the carboxyl O14\(_A\) acceptor of the anion, resulting in a one-dimensional ribbon structure extending along \(a \) (Fig. 2). Present also in the structure are minor weak inter-unit C—H···O interactions. C4\(_A\)—H···O4\(_B\); C6\(_B\)—H···O13\(_A\). No \(\pi-\pi \) interactions are present in the structure.

These ribbon structures are similar to those found in the morpholinium salt of one of the five isomeric chloro-nitrobenzoic acids (2,4-) (Ishida et al., 2001a). In the other four isomers [(2,5-), (4,3-), (4,2-), (5,2-)] (Ishida, 2001a, 2001b, 2001c), the cyclic heterotetrameric structures are found. However, among a set of four morpholinium salts of phenoxyacetic acid analogues (Smith & Lynch, 2015), there are four one-dimensional polymers and one cyclic heterotetramer.

S2. Experimental

The title compound was prepared by the dropwise addition of morpholine at room temperature to a solution of cinnamic acid (150 mg) in ethanol (10 ml). Room temperature evaporation of the solution gave an oil which was redissolved in ethanol, finally giving thin colourless plates of the title compound from which a specimen was cleaved for the X-ray analysis.

S3. Refinement

Hydrogen atoms were placed in calculated positions [C—H\(_{\text{aromatic}}\) = 0.95 Å or C—H\(_{\text{methylene}}\) = 0.99 Å] and were allowed to ride in the refinements, with \(U_{eq}(H) = 1.2 U_{eq}(C) \). The aminium H atoms were located in a difference-Fourier analysis and were allowed to refine with distance restraints [\(d(N-H) = 0.92 \) (2) Å and \(U_{eq}(H) = 1.2 U_{eq}(N) \)]
Figure 1
The atom-numbering scheme and the molecular conformation of the morpholinium anion (B) and the cinnamate cation (A) in the title salt, with displacement ellipsoids drawn at the 40% probability level. The cation–anion hydrogen bonds are shown as dashed lines.

Figure 2
The one-dimensional hydrogen-bonded polymeric structure extending along a. For symmetry codes, see Table 1.
Morpholin-4-ium 3-phenylprop-2-enoate

Crystal data

\[
C_{10}H_{10}NO^+\cdot C_9H_7O_2^- \\
M_r = 235.27 \\
\text{Triclinal, } P\overline{1} \\
\text{Hall symbol: - P 1} \\
a = 5.7365 (7) \text{ Å} \\
b = 9.7526 (10) \text{ Å} \\
c = 11.7760 (11) \text{ Å} \\
\alpha = 103.270 (8) ^\circ \\
\beta = 93.468 (9) ^\circ \\
\gamma = 105.493 (10) ^\circ \\
V = 612.69 (12) \text{ Å}^3 \\
Z = 2 \\
F(000) = 252 \\
D_\text{c} = 1.281 \text{ Mg m}^{-3} \\
\text{Mo } K\alpha \text{ radiation, } \lambda = 0.71073 \text{ Å} \\
\text{Cell parameters from 1133 reflections} \\
\theta = 3.6–28.4^\circ \\
\mu = 0.09 \text{ mm}^{-1} \\
T = 200 \text{ K} \\
\text{Plate, colourless} \\
0.52 \times 0.24 \times 0.05 \text{ mm} \\
\]

Data collection

Oxford Diffraction Gemini-S CCD-detector	4253 measured reflections
Radiation source: Enhance (Mo) X-ray source	2393 independent reflections
Graphite monochromator	1860 reflections with I > 2\sigma(I)
Detector resolution: 16.077 pixels mm\(^{-1}\)	
\(\omega\) scans	
Absorption correction: multi-scan	
(CrysAlis PRO; Agilent, 2014)	
\(T_{\min} = 0.965, T_{\max} = 0.990\)	

Refinement

Refinement on \(F^2\)
Least-squares matrix: full
\(R[F^2] = 0.043\)
\(wR(F^2) = 0.100\)
\(S = 1.01\)
2393 reflections
160 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
\(H\) atoms treated by a mixture of independent and constrained refinement
\(\Delta/\sigma)_{\text{max}} < 0.001\)
\(\Delta\rho_{\text{max}} = 0.15 \text{ e Å}^{-3}\)
\(\Delta\rho_{\text{min}} = -0.15 \text{ e Å}^{-3}\)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of \(F^2\) against ALL reflections. The weighted R-factor \(wR\) and goodness of fit \(S\) are based on \(F^2\), conventional R-factors \(R\) are based on \(F\), with \(F\) set to zero for negative \(F^2\). The threshold expression of \(F^2 > 2\sigma(F^2)\) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on \(F^2\) are statistically about twice as large as those based on \(F\), and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å\(^2\))

O13A	0.72059 (18)	0.32720 (13)	0.51574 (9)	0.0370 (4)
O14A	0.50422 (18)	0.43517 (12)	0.63746 (10)	0.0323 (4)
C1A	0.0669 (3)	0.04440 (16)	0.29775 (13)	0.0256 (5)

Acta Cryst. (2015). E71, o850–o851

sup-3
Atomic displacement parameters (Å²)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
O13A	0.0181 (6)	0.0508 (8)	0.0320 (7)	0.0093 (5)	−0.0013 (5)	−0.0075 (6)
O14A	0.0217 (6)	0.0368 (7)	0.0304 (6)	0.0073 (5)	−0.0001 (5)	−0.0048 (5)
C1A	0.0255 (8)	0.0211 (8)	0.0289 (9)	0.0061 (7)	−0.0022 (7)	0.0063 (7)
C2A	0.0265 (8)	0.0251 (9)	0.0334 (9)	0.0043 (7)	−0.0008 (7)	0.0035 (7)
C3A	0.0259 (9)	0.0273 (9)	0.0516 (12)	0.0036 (7)	−0.0029 (8)	0.0075 (8)
C4A	0.0375 (10)	0.0242 (9)	0.0453 (11)	0.0036 (8)	−0.0174 (8)	0.0026 (8)
C5A	0.0522 (11)	0.0299 (10)	0.0279 (9)	0.0099 (9)	−0.0062 (8)	0.0026 (8)
C6A	0.0349 (9)	0.0279 (9)	0.0312 (9)	0.0069 (8)	0.0013 (7)	0.0065 (7)
C11A	0.0213 (8)	0.0277 (9)	0.0294 (9)	0.0065 (7)	0.0021 (6)	0.0080 (7)
C12A	0.0191 (8)	0.0311 (9)	0.0303 (9)	0.0072 (7)	0.0019 (6)	0.0039 (7)
C13A	0.0213 (8)	0.0295 (9)	0.0261 (9)	0.0076 (7)	0.0007 (6)	0.0064 (7)
O4B	0.0518 (8)	0.0356 (7)	0.0241 (6)	0.0068 (6)	−0.0002 (5)	0.0001 (5)
N1B	0.0185 (6)	0.0305 (8)	0.0222 (7)	0.0066 (6)	−0.0013 (5)	−0.0007 (6)
Atom	U1	U2	U3	U12	U13	U23
-------	------	------	------	------	------	------
C2B	0.0287 (8)	0.0269 (9)	0.0361 (10)	0.0057 (7)	0.0024 (7)	0.0085 (8)
C3B	0.0402 (10)	0.0363 (10)	0.0286 (9)	0.0101 (8)	-0.0011 (7)	0.0088 (8)
C5B	0.0380 (10)	0.0257 (9)	0.0351 (10)	0.0009 (8)	0.0011 (8)	0.0032 (8)
C6B	0.0296 (9)	0.0280 (9)	0.0321 (9)	0.0082 (7)	0.0045 (7)	0.0085 (7)

Geometric parameters (Å, °)

Bond/Angle	Value
C3B—O4B—C5B	109.75 (12)
C2B—N1B—C6B	111.05 (12)
C6B—N1B—H11B	110.9 (10)
C2B—N1B—H12B	107.7 (10)
H11B—N1B—H12B	109.8 (14)
C2B—N1B—H11B	107.0 (10)
C6B—N1B—H12B	110.3 (10)
C2A—C1A—C11A	121.67 (14)
C6A—C1A—C11A	120.00 (15)
C2A—C1A—C6A	118.33 (15)
C1A—C2A—C3A	120.55 (16)
C2A—C3A—C4A	120.46 (17)
C3A—C4A—C5A	119.55 (16)
C4A—C5A—C6A	120.21 (16)
C1A—C6A—C5A	120.88 (16)
C1A—C11A—C12A	126.79 (16)
C11A—C12A—C13A	123.45 (16)
O13A—C13A—O14A	123.98 (15)
O13A—C13A—O14A	118.14 (14)
O14A—C13A—C12A	117.87 (15)
C1A—C2A—H2A	110.00
C3A—C2A—H2A	120.00
C4A—C3A—H3A	110.00
C2A—C3A—H3A 120.00 H51B—C5B—H52B 108.00
C3A—C4A—H4A 120.00 N1B—C6B—H61B 110.00
C5A—C4A—H4A 120.00 N1B—C6B—H62B 110.00
C6A—C5A—H5A 120.00 C5B—C6B—H61B 110.00
C4A—C5A—H5A 120.00 C5B—C6B—H62B 110.00
C5A—C6A—H6A 120.00 H61B—C6B—H62B 108.00
C3B—O4B—C5B—C6B 61.19 (17) C1A—C2A—C3A—C4A −0.7 (3)
C5B—O4B—C3B—C2B −61.29 (17) C2A—C3A—C4A—C5A 1.0 (3)
C2B—N1B—C6B—C5B 54.09 (17) C3A—C4A—C5A—C6A 0.2 (3)
C6B—N1B—C2B—C3B −54.46 (17) C4A—C5A—C6A—C1A −1.8 (3)
C2A—C1A—C6A—C5A 2.1 (2) C1A—C11A—C12A—C13A 178.94 (15)
C6A—C1A—C11A—C12A 158.54 (17) C11A—C12A—C13A—O13A −5.0 (2)
C11A—C1A—C6A—C5A −178.16 (16) C11A—C12A—C13A—O14A 175.97 (16)
C2A—C1A—C11A—C12A −21.7 (3) N1B—C2B—C3B—O4B 57.95 (17)
C6A—C1A—C2A—C3A −0.8 (2) O4B—C5B—C6B—N1B −57.43 (18)
C11A—C1A—C2A—C3A 179.41 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1B—H11B···O14A^ii	0.94 (2)	1.77 (2)	2.7052 (17)	170 (2)
N1B—H12B···O13A	0.94 (2)	1.73 (2)	2.6643 (17)	172 (2)
N1B—H12B···O14A	0.94 (2)	2.57 (2)	3.1868 (17)	123 (1)
C4A—H4A···O4B^ii	0.95	2.46	3.393 (2)	167
C11A—H11A···O13A	0.95	2.48	2.812 (2)	101
C6B—H62B···O13A^iii	0.99	2.37	3.234 (2)	145

Symmetry codes: (i) x+1, y, z; (ii) x−2, y−1, z−1; (iii) −x+2, −y+1, −z+1.