ON THE NORMALIZER OF A GROUP IN THE CAYLEY REPRESENTATION

SURINDER K. SEHGAL

Department of Mathematics
The Ohio State University
Columbus, Ohio 43210

(Received October 21, 1987)

ABSTRACT If G is embedded as a proper subgroup of X in the Cayley representation of G, then the problem of "if $N_X(G)$ is always larger than G" is studied in this paper.

KEY WORDS AND PHRASES: Cayley representation, Wreath product, permutation group.

1980 A.M.S. SUBJECT CLASSIFICATION CODE. 20B35, 20D25.

Let R be the Cayley representation (i.e., the right regular representation) of a group G given by $R(g) = \{x \mapsto g^x\}$ for all $g \in G$ and $x \in G$. Under the mapping R, the group G is embedded into a subgroup $R(G)$ of the symmetric group S_Ω, the group of permutations on the set Ω consisting of the elements of the group G. We identify $R(G)$ with G and say that G is a subgroup of S_Ω. The centralizer of G in S_Ω consists precisely of the elements of the form $\{x \mapsto g^x\}$. (See Lemma 1.) In particular, if G is abelian then G is self centralizing in S_Ω. Also, the normalizer of G in S_Ω is equal to $G \cdot \text{Aut}(G)$ where $\text{Aut}(G)$ is the full automorphism group of G (see Lemma 2).

Suppose that the group G is nonabelian. If X is a subgroup of S_Ω, containing a permutation of the type $\{x \mapsto g^x\}$ for some $g \in G - Z(G)$ such that the property

$G \not\subseteq X \subseteq S_\Omega$

holds, then it follows that $N_X(G)$ contains G properly. However, it is easy to see that any element of S_Ω which normalizes G is not always a permutation of the form $\{x \mapsto g^x\}$.

When the group G is abelian, the permutations $\{x \mapsto g^x\}$ all lie in G and so G is self centralizing in S_Ω. In this way one cannot find a group X satisfying (\ast) by the above method. However, P. Bhattacharya [1] proved that if G is any finite, abelian p group satisfying (\ast) then $N_X(G) \not\supseteq G$. P. Bhattacharya and N. Mukherjee [2] also prove that if G is any finite, nilpotent, Hall subgroup of X satisfying (\ast) and the Sylow p subgroups of G are regular for all primes p dividing the order of G, then $N_X(G) \not\supseteq G$. In other words, that X must contain an element of the outer automorphism group of G.
In this paper we will prove that if G is any abelian Hall subgroup of X, satisfying the condition (*) then $G \not\leq N_X(G)$. We will also give an example to show that the condition of being Hall subgroup is necessary in the above theorem. We will also show that if G is any nilpotent, Hall subgroup of X satisfying the condition (*) and the Sylow p subgroups P of G do not have a factor group that is isomorphic to the Wreath product of $Z_p \wr Z_p$ then $G \not\leq N_X(G)$. In particular it follows that if G is any finite p-group and does not have a factor group isomorphic to $Z_p \wr Z_p$ then $G \not\leq N_X(G)$ [i.e., the condition being a Hall subgroup is not necessary]. As a corollary it also follows that if G is any regular p-group satisfying the condition (*) then $G \not\leq N_X(G)$. We will give an example to show that the condition of G having no factor group isomorphic to $Z_p \wr Z_p$ is necessary.

Lemma 1. Let R be the right regular representation of a finite group G and L, the left regular representation of G. Under the mappings L and R, the groups $L(G)$ and $R(G)$ are subgroups of S_G and $C_{S_G}(R(G)) = L(G)$.

Proof: Let $(\xi, \eta) \in R(G), (\xi', \eta') \in L(G)$

$$
\left(\begin{array}{c}
\xi \\
\xi' \\
\eta \\
\eta'
\end{array} \right) = \left(\begin{array}{c}
\left(\begin{array}{c}
x \\
\xi x \\
hz \\
hzx
\end{array} \right) \\
\left(\begin{array}{c}
\xi' \\
x \\
\eta' \\
hz
\end{array} \right)
\end{array} \right) = \left(\begin{array}{c}
\xi \\
\xi' \\
\eta \\
\eta'
\end{array} \right).
$$

Hence $L(G) \subseteq C_{S_G}(R(G))$.

Now suppose $(\xi, \eta) \in S_G$, and (ξ, η) centralizes $R(G)$. So $(\xi, \eta)' = (\xi, \eta)'(\xi, \eta)'(\xi, \eta)'(\eta, \xi)'$. And $(\xi, \eta)'(\xi, \eta)' = (\xi, \eta)'(\xi, \eta)'$.

Since $(\xi, \eta) \in S_G$, so $x'g = (xg)'g^{-1}$ for all $x, g \in G$.

Hence $x' = (xg)'g^{-1}$. Now plug in $g = x^{-1}$. So $x' = 1' \cdot x$. Thus $(\xi, \eta)' = (1', \xi, \eta) \in L(G)$. Hence $C_{S_G}(R(G)) = L(G)$.

Lemma 2: With the same notation as in Lemma 1, we have $N_{S_G}(R(G)) = R(G) \cdot Aut(G)$.

Proof: Let $(\xi, \eta) \in Aut(G)$ then $(\xi, \eta) \in S_G$,

$$
\left(\begin{array}{c}
\xi \\
\xi' \\
\eta \\
\eta'
\end{array} \right) = \left(\begin{array}{c}
\xi' \xi \\
x \\
xg \\
xg
\end{array} \right) = \left(\begin{array}{c}
\xi' \\
x \\
xg \\
xg
\end{array} \right) = \left(\begin{array}{c}
\xi' \\
x \\
xg \\
xg
\end{array} \right).
$$

Hence $Aut(G) \subseteq N_{S_G}(R(G))$. Conversely, let (ξ, η) be an arbitrary element of $N_{S_G}(G)$. Let $a = 1'$. So $(\xi, \eta^{-1})R(G)$. Let $O = (\xi, \eta^{-1})R(G)$. So O sends 1 to 1. Now $(\xi, \eta^{-1})^{-1} = (\xi, \eta) \in R(G)$. So $(\xi, \eta^{-1}) = (\xi, \eta^{-1})(\xi, \eta) = (\xi, \eta^{-1})(\xi, \eta)$ since it lies in $R(G)$, i.e., $(xg)^O = x^O \cdot g^O$. Plug in $x = 1$, we get $g^O = (xg)^O = x^O \cdot g^O \Rightarrow O$ is an automorphism of $G \Rightarrow N_{S_G}(R(G)) = R(G) \cdot Aut(G)$.

Lemma 3: Let G be any finite group satisfying the condition (*). Then for any $\alpha \in \Omega$

(i) $G \cap X_\alpha = \{e\}$

(ii) $X = G \cdot X_\alpha$

(iii) X_α is core free, i.e., it does not contain any non-identity normal subgroup of X.

Proof: Recall that here G is identified with $R(G)$ in $G \leq X \leq S_G$. Since R is the right regular representation of G, so $R(g)$ does not fix any $\alpha \in \Omega$ except when $g = e$. So $G \cap X_\alpha = \{e\}$.
\{e\}. Also \(X\) acts transitively on \(\Omega\), \(\{\alpha^X\} = |\Omega| = |G|\). Now \([X : X_\alpha] = |\alpha^X| = |G|\). So \(X = G \cdot X_\alpha\). For part (iii) suppose \(N \triangleleft X\) and \(N \subseteq X_\alpha\). So \(N \subseteq \cap_{x \in X} x^{-1}X_\alpha x\), i.e., if \(n\) is an arbitrary element of \(N\), then \(n\) can be written as \(n = x^{-1}ux\) for all \(x \in X\) and some \(u \in X_\alpha\). Here \(u\) depends on \(x\), i.e., \(x \cdot n = u \cdot x\) or \(\alpha^u n = \alpha^x\) since \(u\) fixes \(\alpha\), i.e., \(n\) fixes \(\alpha^x\) for all \(x \in X\), but \(X\) acts transitively on \(\Omega \Rightarrow n\) fixes every element of \(X \Rightarrow n = e \Rightarrow N = \{e\}\).

Lemma 4: (Core Theorem): Let \(H\) be any subgroup of \(G\) with \([G : H] = n\), then \(G/\text{core } H\) is isomorphic to a subgroup of \(S_n\) where \(\text{core } H\) is the largest normal subgroup of \(G\) which is contained in \(H\).

Proof: Let \(\Omega\) be the set of distinct right cosets of \(H\) in \(G\), i.e.,
\[
\Omega = \{Hg_1, Hg_2, \ldots, Hg_n\}
\]
Then the mapping \(\sigma\) defined by \(\sigma(g) = \left(\begin{array}{c}Hg_1 \\ Hg_2 \end{array} \right)\) is a transitive permutation representation of \(G\) of degree \(n\) with Kernel of \(\sigma = \text{core } H\).

Theorem 5: Let \(G\) be a finite abelian, Hall subgroup of \(X\), satisfying the condition (*). Then \(N_X(G) \supseteq G\).

Proof: Suppose the result is false, i.e., there exists a subgroup \(X\) of \(S_\Omega\) satisfying \(G \leq X \leq S_\Omega\) and \(N_X(G) = G\). Amongst all subgroups of \(S_\Omega\) containing \(G\) properly, pick \(X\) to be smallest. In other words, \(G\) is a maximal subgroup of \(X\). Let \(|G| = p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_t^{\alpha_t}\) with \(p_i\) distinct primes. Let \(P_i\) be Sylow \(p_i\) subgroups of \(G\) for \(i = 1, 2, \ldots, t\). Since \(G\) is a maximal subgroup of \(X\), so \(N_X(P_i) = G\) or \(N_X(P_i) = X\). Renumber the \(p_i\)'s if necessary and say \(N_X(P_i) = G\) for \(i = 1, \ldots, t\) and \(N_X(P_i) = X\) for \(i = t + 1, \ldots, t\). For \(i = 1, \ldots, t\), \(N_X(P_i) = C_X(P_i) = G\). So by Burnside Lemma \(X\) has a normal \(P_i\) complement. For \(j = t + 1, \ldots, t\), \(P_j \triangleleft X \Rightarrow C_X(P_j) \triangleleft X \Rightarrow C_X(P_j) = X = N_X(P_j)\). So \(X\) has a normal \(P_i\) complement \(M_i\) for all \(i \Rightarrow X_\alpha = \bigcap_{i=1}^t M_i\). \(X_\alpha \triangleleft S\) which is a contradiction to Lemma 3.

In the case where \(G\) is abelian, but not Hall subgroup of \(X\), the result is not true as illustrated by the following example.

Example 6: Let \(X = Z_3 \times Z_3 = (a) \times (b, c) | b^3 = c^2 = 1, c^{-1}bc = b^{-1}\).

Let \(G = Z_3 \times Z_2 = (a) \times (c) \cong Z_6\). Let \(H\) be the subgroup of \(X\) of order 3 generated by the ordered pair \((a, b)\). Then \(H\) is not normal in \(X\) since \((e, c)\) does not normalize \(H\). So \(H\) is core free, of index 6 in \(X\). By Lemma 4, \(G \not\leq X \leq S_6\). Now \(G\) is abelian, not Hall subgroup of \(X\) and \(N_X(G) = G\).

Theorem 7: Let \(G\) be a finite, nilpotent, Hall subgroup of \(X\), satisfying the condition (*). Suppose that the Sylow \(p_i\) subgroups \(P_i\) of \(G\) do not have a factor group isomorphic to the Wreath product of \(Z_p \wr Z_p\) for all primes \(p\) dividing the order of \(G\). Then \(N_X(G) \supseteq G\).

Proof: Suppose the result is false, i.e., there exists a subgroup \(X\) of \(S_\Omega\) satisfying \(G \leq X \leq S_\Omega\) and \(N_X(G) = G\). Amongst all subgroups of \(S_\Omega\) containing \(G\) properly, pick \(X\) to be smallest. In other words \(G\) is a maximal subgroup of \(X\). Let \(|G| = p_1^{\alpha_1}p_2^{\alpha_2} \ldots p_t^{\alpha_t}\), here \(p_i\) are all distinct primes. Since \(G\) is nilpotent, so \(G = P_1 \times P_2 \times \ldots \times P_t\) where \(P_i\) are Sylow \(p_i\) subgroups of \(G\). So we have either \(N_X(P_i) = G\) or \(N_X(P_i) = X\). Renumber the \(p_i\)'s if necessary and say \(N_X(P_i) = G\) for \(i = 1, \ldots, t\) and \(N_X(P_i) = X\) for \(i = t + 1, \ldots, t\).

Let us look at the case \(i = 1, \ldots, t\). We have \(N = N_X(P_i) = G\). By Yoshida's transfer theorem [3], \(X\) has normal \(p_i\) complement \(M_i\).

Let \(M = \cap_{i=1}^t M_i\). So \(p_i \mid |M|\) for \(i = 1, \ldots, t\). Now for \(j = t + 1, \ldots, t\), \(N_X(P_j) = X\). So \(P_j \triangleleft X\) which implies that \(C_X(P_j) \triangleleft X\) and \(P_jC_X(P_j) \triangle X\) and \(G \subseteq P_j \cdot C_X(P_j) \Rightarrow P_jC_X(P_j) = X\).
For $\alpha \in \Omega$, by Lemma 3 $X = G \cdot X_\alpha$; $G \cap X_\alpha = 1$; $|G|, |X_\alpha| = 1 \Rightarrow X_\alpha \subseteq C_X(P_\ell) \cap M \Rightarrow X_\alpha \subseteq C_M(P_\ell)$ for $f = \ell + 1, \ldots, t$. $|M| = p_\ell^{a_\ell+1} \cdots p_t^{a_t} \cdot |X_\alpha| \Rightarrow X_\alpha \Delta M \Rightarrow X_\alpha$ is a characteristic subgroup of $M \Delta G \Rightarrow X_\alpha \Delta G$, which is a contradiction to Lemma 3.

As an immediate corollary to the theorem, we get the result of P. Bhattacharya and N. Mukherjee [2].

Corollary 8: Let G be a finite, regular p subgroup of X and satisfies the condition (*), then $N_X(G) \not\geq G$.

Proof: If G is not a Hall subgroup of X then G is properly contained in a Sylow p subgroup of X and so $N_X(G) \not\geq G$. So we can assume that G is a Hall subgroup of X. Now G being a regular p group $\Rightarrow G$ does not have a factor group isomorphic to $Z_p \wr Z_p$. So Theorem 7 proves the result.

Corollary 9: Let G be a finite, nilpotent, Hall subgroup of X, satisfying the condition (*). Suppose further that Sylow p subgroups of G are regular for all primes p dividing the order of G then $N_X(G) \not\geq G$.

Corollary 10: Let G be a finite p group, satisfying the condition (*). Suppose that G does not have a factor group isomorphic to $Z_p \wr Z_p$, then $G \not\leq N_X(G)$.

The condition that the Sylow p subgroups of G in Theorem 6 have the property that it has no homomorphic isomorphic to $Z_p \wr Z_p$ is necessary. See example below.

Example: Let X be the simple group of order 168. Let $G \in Syl_2(X)$. Then $G \cong Z_2 \wr Z_2$ so G is nilpotent, Hall subgroup of X. Since $H = \text{the normalizer of a Sylow 7 subgroup has index 8}$, so by Lemma 4, $G \subseteq X \subseteq S_6$, i.e., G satisfies the condition (*) but $N_X(G) = G$.

References

1. P. Bhattacharya, On the normalizer of a group in the Cayley representation, Bull. Austrian Math. Soc. 25 (1982) 81-84.
2. P. Bhattacharya and N. Mukherjee, On the normalizer of a subgroup of a finite group and the Cayley embedding; J. of Pure and Applied Algebra 33 (1984) 253-257.
3. T. Yoshida, Character theoretic transfer; J. of Algebra 52, (1978) 1-38.
4. B. Huppert, Endliche Gruppen I (Springer, New York, 1967).
5. M. ISSACS, Character Theory of Finite Groups. (Academic Press 1976).
6. H. Zassenhaus, The Theory of Groups (Chelsea, 1956).
Submit your manuscripts at http://www.hindawi.com