INTRODUCTION

Acquired laryngotracheal stenosis (LTS) most commonly occurs as a result of prolonged tracheal intubation. The subsequent airway narrowing can result in potentially life-threatening airway obstruction. Only a small proportion of patients who undergo long-term intubation develop LTS, and LTS can occur in patients without any history of intubation; therefore, other mechanisms of injury have been proposed.

The relationship between gastroesophageal reflux (GER) and LTS is not fully understood; however, a number of studies have demonstrated an association. There is clear evidence that gastroduodenal contents are refluxed far beyond the esophagus during extraesophageal or laryngopharyngeal reflux (LPR). The three principle components of gastric refluxate are gastric acid, pepsin, and bile acids. Evidence of all three components has been found in airway bronchoalveolar lavage samples; however, bile acids in particular are increasingly identified as critical to propagation of disease in sites distant from the stomach.

LTS is thought to involve an abnormal response of epithelial cells to injury, resulting in sustained inflammation and fibrosis. This is defined by fibroblast proliferation, collagen deposition, and ultimately the formation of scar tissue in the airway. Activated fibroblasts are the principle mediators of tissue remodeling, and one of the key sources of fibroblast accumulation is thought to be epithelial–mesenchymal transition (EMT). In EMT, epithelial cells transform to activated fibroblasts, and transforming growth factor (TGF)-β1 is a recognized master switch for this process. EMT is demonstrated by downregulation of epithelial markers such as...
E-cadherin and increased expression of mesenchymal markers including fibronectin, matrix metalloproteinase (MMP)-9, and procollagen from epithelial cells. We therefore investigated the mechanisms of EMT in response to an in vitro model of biliary reflux on human primary airway epithelial cells. We hypothesized that laryngotracheal epithelial cells undergo EMT in response to bile acid stimulation, representing a potential mechanism of fibrosis and ultimately LTS.

MATERIALS AND METHODS

Cell Culture

The appropriate ethical committee and hospital institutions granted approval for the study. Human primary tracheal epithelial cells (PTECs) from the upper airways of healthy volunteers were collected via a sheathed cytology brush. The cells were pelleted and then cultured on collagen (0.03 mg/mL)-coated flasks in bronchial epithelial growth medium (Lonzza, Allendale, NJ), supplemented with penicillin/streptomycin 100 U/mL (Sigma-Aldrich, St. Louis, MO), incubated at 37°C in a 5% CO2 incubator. Medium was changed every 2 to 3 days. Upon near confluence, cells were trypsinized (Sigma-Aldrich), diluted in an equal volume of medium containing 10% fetal calf serum, centrifuged at 200 g for 7 minutes, and seeded in a new container.

Bile Acid Preparation and Challenge

The four major bile acids in the human digestive tract are cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). Bile acids (Sigma-Aldrich) were diluted in serum-free medium to achieve the concentrations for each experiment. Bile acid solutions were incubated with cells for 48 hours at 37°C in a 5% CO2 incubator. Maximal nonlethal concentration of bile acids to be used for stimulation were determined via a cell viability assay using the CellTiter-Blue viability assay (Promega Corp. Madison, WI). Cell viability was confirmed at >90% in each experimental condition.

Enzyme-Linked Immunosorbent Assays

Cell supernatant was collected and stored at -20°C. The supernatant is the media in which the cells were growing and is a standard measurement used in cell culture studies to assay biomarkers secreted by the cells. Human TGF-β1, Human MMP-9, and Pro-Collagen DuoSet enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems, Minneapolis, MN) were used according to the manufacturer’s instructions.

RNA Processing and Polymerase Chain Reaction

Human RNA was isolated from cultured cells, as directed by the RNeasy Midi Kit (Qiagen, Hilden, Germany), and the concentrations and quality were assessed by ultraviolet spectroscopy. RNA was reverse-transcribed using the Tetro cDNA synthesis kit (Bioline, London, UK) in accordance with the manufacturer’s guidelines. TaqMan primer-probes (SensiFAST Probe Hi-ROX Kit, Bioline) were used to determine the expression of genes of interest, E-cadherin (Hs01023894-m1-CDH1) and fibronectin (Hs00365052m-1FN1). The expression of each test gene was normalized against expression of a housekeeping gene, hypoxanthine-guanine phosphoribosyl transferase-1 (HPRT1) (Hs02800695-m1).

Statistical Analysis

Data from three technical and three biological replicates were analysed using GraphPad Prism v6 (GraphPad Software, Inc., La Jolla CA). All data are represented as mean ± standard error of the mean (SEM), and n expressed the number of repeat experiments that were performed. For experimental comparison of 3 or more groups, repeated measures one-way analysis of variance was used, followed by Bonferroni post-hoc test, which compares all pairs of groups. In line with convention, P values of <0.05 were considered significant. In this study, * refers to P<0.05; ** refers to P<0.01; and *** refers to P<0.001.

RESULTS

Effect of Bile Acids on an Epithelial Marker E-Cadherin

After 48-hour bile acid stimulation, real-time polymerase chain reaction (RT-PCR) analysis of E-cadherin expression in PTECs demonstrated a significant (P<0.001) decrease at 1 μmol/L and 10 μmol/L of CA and CDCA, in addition at 10 μmol/L of LCA. CA at concentration 1 and 10 μmol/L induced threefold decreases, showing no concentration-dependency effect. CDCA at 1 and 10 μmol/L caused a twofold decrease, showing no concentration-dependency effect. LCA at 10 μmol/L caused a twofold decrease in E-cadherin. No significant decrease was observed in cells stimulated with 1 μmol/L LCA. Interestingly, there was significant increase at both concentrations of DCA, showing a negative concentration dependency effect (Fig. 1A).

Effect of Bile Acids on Mesenchymal Marker Fibronectin

Fibronectin expression was found to be significantly increased in PTEC, measured via RT-PCR. It was found that CA at 1 and 10 μmol/L caused a threefold increase, and 10 μmol/L LCA caused a threefold increase in fibronectin, showing no concentration dependency effect. CDCA at 1 μmol/L caused a threefold increase, and CDCA at 10 μmol/L caused a fourfold increase in fibronectin, showing no clear concentration dependency effect. DCA at 1 μmol/L caused a threefold increase in fibronectin. No significant increase was observed in cells stimulated with 1 μmol/L LCA (Fig. 2B).

Effect of Bile Acids on TGF-β1, MMP-9, and Procollagen Expression in Cell Supernatant

We demonstrated a significant increase in expression of TGF-β1 in the cell supernatant of PTEC after 48 hours of exposure to all bile acids at 1 μmol/L and 10 μmol/L (Fig. 2A). Similarly, all bile acids at concentrations of 1 μmol/L and 10 μmol/L (except CA at 1 μmol/L) showed a significant increase in MMP-9 expression in the cell supernatant (Fig. 2B). Procollagen was significantly increased after LA challenge at 1 μmol/L and 10 μmol/L and at 10 μmol/L with DCA challenge. Production of procollagen after stimulation with DCA at 1 μmol/L, LCA at 1 and 10 μmol/L, and CDCA 1 and 10 μmol/L...
did not increase significantly. Moreover, exposure to 5 ng/mL TGF-β1 caused a significant increase in MMP-9 and procollagen protein production (Fig. 2C).

DISCUSSION

We have demonstrated a potential role of bile acids in the development of EMT, a process that is implicated in airway fibrosis and subsequently in laryngotracheal stenosis (LTS). We utilized human primary tracheal epithelial cells (PTECs), challenged with levels of bile acids in the range previously shown to be physiologically relevant by Sereg-Bahar et al. in previous work, which has shown that the mean levels of bile acids in patients with LPR were 2.1 ± 3.0 μmol/L. To our knowledge, this is the first study to investigate a possible role of bile acids in upper airway fibrosis using primary cells. The potential relationship between GER disease and LTS has been suggested by several observational studies. Bile acids have also been implicated in EMT in the lower airway.

The identification of bile acids as a potential factor in LTS is important because this may allow novel therapeutics for the prevention or treatment of LTS to be utilized in high-risk patients, such as people undergoing long-term intubation. Those undergoing long-term intubation may already be on acid suppression therapy, such as proton pump inhibitors. However, these agents may not alter the activity or concentration of bile acids in refluxate. Bile acids have a broad range of activity in nonacidic environments, making their involvement in lung pathophysiology biologically plausible. Barrier agents such as alginates or other novel targeted therapies might therefore be needed to fully protect from biliary reflux.

We have demonstrated that all four bile acids commonly identified in human refluxate have a role to some degree in airway EMT pathways. At each stage in the EMT process, we demonstrated characteristic changes with bile acid challenges on primary tracheal epithelial cells. Increased expression of TGF-β1 is considered the master switch of EMT. E-cadherin is critical in epithelial polarity maintenance and therefore the development of tight junctions. Acquisition of the mesenchymal phenotype is characterized by an increase in the mesenchymal marker, fibronectin, which plays a role in tissue repair, cell migration and adhesion, and a number of other processes. EMT is also characterized by expression of MMP-9, a type IV collagenase and part of the EMT proteome that degrades basement membranes. Collagen type IV forms the reticular basement membrane upon which epithelial cells lie. By disrupting the basement membrane of airway epithelium, MMPs can cause inflammation, translocation, and further EMT, as marked by procollagen production from challenged epithelial cells.

Our findings show that E-cadherin gene expression levels did not decrease after stimulation with 1 μmol/L LCA, which may represent a threshold effect. The concentration of BAs that reach the upper airway may be at high concentration, however. It has been shown that the mean levels of bile acids in patients with LPR were 2.1 ± 3.0 μmol/L and that levels of total bile acids of >10 μmol/L were measured in individual patients.

The results of this study indicate that RT-PCR analysis of E-cadherin expression revealed a significant increase at both concentrations of DCA, showing a negative concentration-dependency effect. We think this is of
potential significance. One speculation we could make is that the challenge of epithelial cells by some individual bile acids may augment epithelial marker expression.

The results of this study indicate that fibronectin gene expression levels did not increase after stimulation with 10 \(\mu\)mol/L DCA, which contrasted with a significant upregulation with 1 \(\mu\)mol/L DCA. Of note, it has been shown that bile acids inhibit intracellular function as they accumulate. This does not kill the cell but reduces the rate of all cellular processes such as protein synthesis.\(^{20}\) Overall, our data makes a case for further studies of an underresearched area and for the investigation of individual bile acids because our work shows clear differences in the response of PTECs to the different bile acids that we evaluated.

This is also illustrated by our finding of procollagen protein after stimulation of human subglottic cells with DCA at 1 \(\mu\)mol/L and CA at 1 and 10 \(\mu\)mol/L, contrasting with our data for CDCA 1 and 10 \(\mu\)mol/L, in which procollagen did not increase significantly.

Our findings are further supported by Karagianni-dis et al.,\(^{21}\) who confirmed increased TGF-\(\beta1\), a key EMT marker, in benign tracheal stenosis biopsies. Further studies have demonstrated links between aspiration of gastric refluxate and progression of a number of lower airway fibrotic diseases, including cystic fibrosis, lung transplant rejection, chronic obstructive pulmonary disease, and pulmonary fibrosis.\(^{12,18}\) Furthermore, EMT is strongly implicated in laryngotracheal malignancies, and further investigation of the role of bile acids in these cancers is needed.\(^{22}\)

Cells were also stimulated with 5 ng/mL TGF-\(\beta1\) as a positive control in our study. This followed preliminary work in which we established that 5 ng/mL was an optimum concentration of TGF-\(\beta1\) to stimulate primary PTECs and cell lines. Published studies also suggest that 5 ng/mL of TGF-\(\beta1\) induces morphological changes in immortalized cell lines.\(^{23-25}\) The mechanism by which TGF-\(\beta1\) upregulates MMP-9 and procollagen has not been fully established. The signal-inducing flow initiated by the binding of TGF-\(\beta1\) to its receptors may be directly responsible.\(^{26,27}\) Moreover, TGF-\(\beta1\) may upregulate some mediators that regulate MMP-9 (e.g., nitric oxide) that can increase MMP-9 activity.\(^{28}\)

This is an in vitro study, and has obvious limitations for direct extrapolation into the in vivo environment. There is currently no clear evidence quantifying the concentrations of individual bile acids in the laryngopharynx or trachea during or after reflux events.

Fig. 2. (A) ELISA of TGF\(\beta1\) levels in culture medium produced by tracheal epithelial cells from the subglottic area, cells treated with LCA, DCA, CA, and CDCA. Statistical analysis was conducted by one-way ANOVA (n = 6). (B) ELISA of MMP-9 production from tracheal epithelial cells from the subglottic area cell line treated with LCA, DCA, CA, and CDCA. Statistical analysis was conducted by one-way ANOVA (n = 6). (C) ELISA of procollagen production from tracheal epithelial cells from the subglottic area treated with LCA, DCA, CA, and CDCA. Statistical analysis was conducted by one-way ANOVA (n = 6).

Bars represent mean (\(\pm\) SEM) values of each group.

*\(P<0.05\), **\(P<0.01\), ***\(P<0.001\).

ANOVA = analysis of variance; CA = cholic acid; CDCA = chenodeoxycholic acid; DCA = deoxycholic acid; ELISA = enzyme-linked immunosorbent assays; LCA = lithocholic acid; MMP-9 = matrix metalloproteinase 9; SEM = standard error of the mean; TGF = transforming growth factor.
used concentrations that were maximally stimulating without any significant loss of cell viability, and that have previously been demonstrated to be physiologically relevant in LPR patients in whom total bile acid levels of up to 10 umol/L were measured.

Further investigations of the dose response relationship over a broader range of concentrations would thus be of interest in future studies, combined with measurements of individual bile acids in the upper airway.

CONCLUSION

We have demonstrated that bile acids can induce markers of EMT in PTECs, a process that may underlie the development of LTS because bile acids come in contact with this region of the airway in reflux disease. This in vitro study suggests a potential causative or synergistic role of bile acids in the development of acquired LTS. Crucially, biliary reflux is a highly treatable target with this region of the airway in reflux disease. Further investigations of the dose response relationship over a broader range of concentrations would thus be of interest in future studies, combined with measurements of individual bile acids in the upper airway.

Acknowledgment

Author contributions. Adil Aldhahrani: acquisition of data, analysis and interpretation of data, drafting of manuscript; Jason Powell: analysis and interpretation of data, drafting of manuscript; Shameem Ladak: acquisition of data; Mahmoud Ali: acquisition of data; Bernard Verdon: acquisition of data; Simi Ali: study supervision and molecular biology; Jeffery Pearson: study supervision, study concept and design, drafting of manuscript; Chris Ward: study supervision, study concept and design, drafting of manuscript.

BIBLIOGRAPHY

1. Lorenz RR. Adult laryngotracheal stenosis: etiology and surgical management. Curr Opin Otolaryngol Head Neck Surg 2003;11:467–472.
2. Gelbard A, Francis DO, Sandulache VC, Simmons JC, Donovan DT, Ongkasuwon J. Causes and consequences of adult laryngotracheal stenosis. Laryngoscope 2015;125:1137–1143.
3. Monnier P, Dikkers FG, Eckel H, et al. Preoperative assessment and classification of benign laryngotracheal stenosis: a consensus paper of the European Laryngological Society. Eur Arch Otorhinolaryngol 2015;272:2885–2896.
4. Koufman JA. The otolaryngologic manifestations of gastroesophageal reflux disease (GERD): a clinical investigation of 225 patients using ambulatory 24-hour pH monitoring and an experimental investigation of the role of acid and peptic acid in the development of laryngeal injury. Laryngoscope 1991;101:1–78.
5. Maronion NC, Azadeh H, Waugh P, Hillel A. Association of laryngotracheal reflux disease and subglottic stenosis. Ann Otol Rhinol Laryngol 2001;110:606–612.
6. Walner DL, Stern Y, Gerber ME, Baldwin C, Baldwin CY, Cotten RT. Gastroesophageal reflux in patients with subglottic stenosis. Arch Otolaryngol Head Neck Surg 1998;124:551–555.
7. Ford CN. Evaluation and management of laryngopharyngeal reflex. JAMA 2005;294:1534–1540.
8. Merati AL, Lim HJ, Uhalp SO, Tohijl RJ. Meta-analysis of upper probe measurements in normal subjects and patients with laryngopharyngeal reflex. Ann Otol Rhinol Laryngol 2005;114:177–182.
9. Wang L, Liu X, Liu YL, et al. Correlation of pepsin-measured laryngopharyngeal reflux disease with symptoms and signs. Otolaryngol Head Neck Surg 2010;143:765–771.
10. Sereg-Bahar M, Jerin A, Jansa R, Stabuc B, Hocevar-Boltezar I. Pepsin and bile acids in saliva in patients with laryngopharyngeal reflux: a prospective comparative study. Clin Otolaryngol 2015;40:234–239.
11. Chen B, Cai HR, Xue S, You WJ, Liu B, Jiang HD. Bile acids induce activation of alveolar epithelial cells and lung fibroblasts through farnesoid X receptor-dependent and independent pathways. Respirology 2016;21:1075–1080.
12. Brodie M, Aseeri A, Lordan JL, et al. Bile acid aspiration in people with cystic fibrosis before and after lung transplantation. Eur Respir J 2018;46:1820–1823.
13. Mark EJ, Meng F, Kradin RL, Mathisen DJ, Matsubara O. Idiopathic tracheal stenosis: a clinicopathologic study of 63 cases and comparison of the pathology with chondromalacia. Am J Surg Pathol 2008;32:138–144.
14. Namita DR, Ma G, Samad I, et al. Papacycin inhibits human laryngotracheal stenosis-derived fibroblast proliferation, metabolism, and function in vitro. Otolaryngol Head Neck Surg 2015;152:881–888.
15. Tian B, Li X, Kalita M, et al. Analysis of the TGF-β1-induced program in primary airway epithelial cells shows essential role of NF-κB/RelA signaling network in type II epithelial mesenchymal transition. BMC Genomics 2015;16:529.
16. Walker TC, Park SJ, Yanagawa J, Dubinett SM. Inflammation and lung cancer: the role of epithelial–mesenchymal transition. In: Dubinett SM, ed., Inflammation and Lung Cancer. New York, NY: Springer; 2015: 23–68.
17. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003;112:1776–1784.
18. Meyer KC. Gastroesophageal reflux and lung disease. Expert Rev Respir Med 2015;9:383–385.
19. Miettinen PJ, Eber P, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994;127:2031–2036.
20. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 2002;110:905–911.
21. Karagiannidis C, Velankar S, Obertritter R, Macha JN, Linder A, Prengler L. High-level expression of matrix-associated transforming growth factor-beta1 in benign airway stenosis. Chest 2006;129:1298–1304.
22. Acheva A, Eklund E, Lemola E, Siiskonen T, Launonen V, Kamarainen M. Lack of epithelial-to-mesenchymal transition induction in two bronchial epithelial cell lines after alpha and gamma irradiation. Int J Low Radiat 2015;10:116–133.
23. Camara J, Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibrocillin and TNF-α. Fibrogenesis Tissue Repair 2010;3:2.
24. Liu J, Hu G, Chen D, et al. Suppression of SCARAS by Snail is essential for EMT-associated cell migration of A549 cells. Oncogenesis 2013;2:e73.
25. Doerner AM, Zuraw BL. TGF-β-induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir Res 2009;10:100.
26. Mahmood MQ, Reid D, Ward C, et al. Transforming growth factor (TGF) β1 and Smad signalling pathways: a likely key to EMT-associated COPD pathogenesis. Respir Physiol Neurobiol 2017;22:133–140.
27. Jolly MK, Ward C, Eapen MS, et al. Epithelial mesenchymal transition (EMT), a spectrum of states: role in lung development, homeostasis and disease. Dev Dyn 2017. doi: 10.1002/dvdy.24543.
28. Murrell GAC, Jang D, Williams RJ. Nitric oxide activates metalloproteinase enzymes in articular cartilage. Biochem Biophys Res Commun 1995;206:15–21.