Serum Sortilin Is Associated with Coronary Artery Calcification and Cardiovascular and Cerebrovascular Events in Maintenance Hemodialysis Patients

Jie Xua Chan-Juan Shenb Joshua D. Ooic Yang-Shuo Tangd Zhou Xiaoa Qiong-Jing Yuana Yong Zhonga Qiao-Ling Zhoua

aDepartment of Nephrology, Xiangya Hospital, Central South University, Changsha, China; bDepartment of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China; cCentre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia; dDepartment of Ultrasonography, Xiangya Hospital, Central South University, Changsha, China

Abstract

Objective: To analyze the role of serum sortilin in coronary artery calcification (CAC) and cardiovascular and cerebrovascular events (CCE) in maintenance hemodialysis (MHD) patients. Methods: One hundred eleven patients with MHD ≥3 months were included in this study. The general data, clinical features, hematological data, and medication history of the patients were recorded. Eighty-five cases were examined by vascular color Doppler ultrasound, cardiac color Doppler ultrasound, lateral lumbar radiography, and coronary artery calcification score. The patients were followed up for a median time of 45 months. The primary endpoint was CCE or death from a vascular event, and the role of sortilin in this process was analyzed. Results: Among 85 MHD patients, 51 cases (60.00%) had different degrees of CAC. There were significant differences in diabetes, dialysis time, serum phosphorus, calcium-phosphorus product, medical history of phosphate binders, sortilin, and carotid artery plaque between 4 different degrees of calcification groups (p < 0.05). Logistic regression analysis showed that diabetes (OR = 5.475; 95% CI: 1.794–16.71, p = 0.003), calcium-phosphorus product (OR = 2.953; 95% CI: 1.198–7.279, p = 0.019), and sortilin (OR = 1.475 per 100 pg/mL; 95% CI: 1.170–1.858, p = 0.001) were independent risk factors for CAC. During the follow-up, 28 cases of 111 patients (25.23%) suffered from CCE. There were significant differences in CCE between mild, moderate, and severe CAC groups and noncalcification.

Keywords

Maintenance hemodialysis · Sortilin · Coronary artery calcification · Cardiovascular and cerebrovascular events

© 2021 The Author(s)
Published by S. Karger AG, Basel
This is an Open Access article licensed under the Creative Commons Attribution-NonCommercial-4.0 International License (CC BY-NC) (http://www.karger.com/Services/OpenAccessLicense), applicable to the online version of the article only. Usage and distribution for commercial purposes requires written permission.

Correspondence to:
Yong Zhong, zhongyong121@163.com
Qiao-Ling Zhou, qzql8315@163.com
groups ($p < 0.05$). Cox regression analysis showed that diabetes mellitus (HR 3.424; 95% CI: 1.348–8.701, $p = 0.010$), CAC (HR 5.210; 95% CI: 1.093–24.83, $p = 0.038$), and serum sortilin (HR = 8.588; 95% CI: 1.919–38.43, $p = 0.005$) were independent risk factors for CCE. Besides, we proposed a cutoff value of 418 pg/mL for serum sortilin level, which was able to predict the occurrence of CCE with 75.0% sensitivity and 71.9% specificity. The area under the curve was 0.778 (95% CI: 0.673–0.883).

Conclusion: Sortilin is newly found to be independently associated with CAC and CCE in MHD patients.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Materials and Methods

Study Subjects
This prospective study was conducted from January 2015 to September 2018. A total of 111 adult patients (21–75 years old) who had regular MHD for >3 months in the blood purification center of Xiangya Hospital of Central South University from January to March 2015 were enrolled. The expected survival time was >6 months. Patients were not eligible for study inclusion if any of the following were present: acute infection and inflammatory disease within 1 month; malignant tumor; pregnancy; mental disease; previous CCE, including angina pectoris, myocardial infarction, heart failure, arrhythmia, transient ischemia attack, and stroke; and previous renal transplantation or parathyroid gland resection. The dialysis regimen was 3 times/week or 5 times/2 weeks, 4 h/ time, calcium concentration of the dialysate was 1.5 mmol/L, blood flow was 200–280 mL/min, and the dialysate flow rate was 500 mL/min. The goal of ultrafiltration was to achieve the clinical estimated dry weight.

Baseline Data Collection
All data were abstracted retrospectively from electronic medical records and included demographic characteristics, comorbidities, laboratory findings, therapies, and outcomes. The body weight and blood pressure were measured on the morning of dialysis. The blood routine, blood lipid, high-sensitivity C-reactive protein (CRP), calcium, phosphorus, and serum iPTH were detected in the morning after dialysis. After centrifugation, 5 mL blood was separated and stored at −80°C. All samples were thawed only once before use. Circulating serum sortilin was measured using a commercial ELISA kit (Cusabio ELISA kit; Cosmo Bio, Carlsbad, CA, USA). The ELISA kit can detect sortilin levels ranged from 46.88 to 3,000 pg/mL, and the coefficient of variation of internal precision is <8%.

Imaging Examination
Multislice spiral computed tomography was performed on the same day or the next day of dialysis. The CAC score (CACs) was evaluated by a trained radiologist according to the blind method and using German Siemens CaScoring software. The CACs was the calcified plaque area multiplied by the fixed coefficient (determined by the maximum pixel density). Calcified plaques were defined as lesions with CT value ≥130 HU and area ≥1 mm² [12]. The CACs was divided into 4 groups according to the Rumberger classification of CAC [13]. CACs ≤10 was defined as non-CAC, 11–100 was defined as mild CAC, 101–400 was defined as moderate CAC, and >400 was defined as severe CAC. The lateral lumbar
radiography was taken to evaluate abdominal aortic calcification. Echocardiography showed cardiac valvular calcification (ValvC), defined as bright echoes of >1 mm thickness are seen on one or more cusps of the aortic valve, mitral valve, or mitral annulus [14]. Baseline echocardiography was evaluated using the left ventricular mass index (LVMI). Left ventricular hypertrophy was scored if LVMI was >125 g/m\(^2\) in males or >120 g/m\(^2\) in females. Carotid plaque was measured by color Doppler ultrasound. The plaque was defined as a localized echo structure protruding from the lumen (echo may be uneven or accompanied by acoustic shadow), thickness ≥1.3 mm. B-ultrasound examination and reading were completed by the same ultrasound doctor in our hospital.

Follow-Up

Blood calcium, phosphorus, and iPTH were detected regularly in all patients every half a year, and drugs were adjusted according to the test results. The occurrence of CCE and survival were recorded until the 45th month or the patients’ death. The primary endpoint was defined as CCE or death from a vascular event. CCE include angina pectoris, myocardial infarction, coronary revascularization, congestive heart failure, transient ischemic attack (TIA), and stroke [15]. Angina pectoris was defined using NICE clinical guideline concerning chest pain of recent onset [16]. Myocardial infarction was defined following ESC/ACCF/AHA/WHF Expert Consensus Document (2007) [17]. Congestive heart failure is char-

Table 1. Clinical and biochemical characteristics of MHD patients with different degrees of calcification

Parameter	Non-CAC (n = 34)	Mild CAC (n = 16)	Moderate CAC (n = 20)	Severe CAC (n = 15)	p value
Age, years	44±12	52±14	49±8	52±12	0.063
Male, n (%)	12 (35.29)	9 (56.25)	13 (65.00)	10 (66.67)	0.087
BMI, kg/m\(^2\)	21.65±2.86	22.71±2.48	21.90±2.31	22.03±3.19	0.466
Current smokers, n (%)	6 (17.65)	7 (43.75)	9 (45.00)	7 (46.67)	0.076
Hypertension, n (%)	26 (76.47)	15 (93.75)	19 (95.00)	14 (93.33)	0.129
DM, n (%)	3 (8.82)	3 (18.75)	6 (30.00)	7 (46.67)	**0.024**
SBP, mm Hg	142±19	143±19	154±20	151±19	0.088
DBP, mm Hg	85±13	83±10	92±11	92±13	0.063
Dialysis, months	25 (17, 36)	24 (6, 59)	36 (24, 54)	47 (40, 90)	**0.012**
Medication history, n (%)					
CCB	23 (67.65)	12 (75.00)	18 (90.00)	13 (86.67)	0.214
ACEI/ARB	9 (26.47)	6 (37.50)	8 (40.00)	2 (13.33)	0.309
α-β-Blocker/α-blocker	21 (61.76)	8 (50.00)	13 (65.00)	11 (73.77)	0.599
β-Blocker	13 (38.24)	8 (50.00)	5 (25.00)	7 (46.67)	0.416
Calcium supplement	13 (38.24)	9 (56.25)	6 (30.00)	5 (33.33)	0.408
Vitamin D analogs	23 (67.65)	11 (68.75)	15 (75.00)	14 (93.33)	0.275
Phosphate binders	8 (23.53)	3 (18.75)	12 (60.00)	5 (33.33)	**0.024**
Hb, g/L	96±16	96±15	95±17	100±13	0.867
PLT, ×10\(^9\)/L	154±55	165±57	149±34	146±38	0.708
TG, mmol/L	1.14 (0.83, 1.87)	1.05 (0.58, 1.59)	1.63 (1.08, 2.38)	0.93 (0.62, 1.90)	0.092
TC, mmol/L	4.11±1.28	3.67±1.09	4.41±1.16	4.09±1.00	0.325
HDL-C, mmol/L	1.27±0.45	1.20±0.31	1.19±0.39	1.18±0.29	0.821
LDL-C, mmol/L	2.26±0.83	2.27±0.95	2.67±0.94	2.36±0.82	0.389
Ca, mmol/L	2.17±0.20	2.24±0.17	2.28±0.28	2.31±0.22	0.159
P, mmol/L	1.87±0.47	1.99±0.46	2.19±0.59	2.22±0.37	**0.049**
Ca × P, mmol/L\(^2\)	4.06±3.00	4.46±1.09	4.98±1.39	5.17±1.25	**0.007**
PTH, pg/mL	319 (114, 405)	425 (121, 742)	354 (123, 566)	451 (247, 825)	0.268
hs-CRP, mg/L	0.89 (0.43, 2.65)	1.92 (0.35, 8.51)	2.99 (0.53, 9.98)	1.70 (0.20, 7.78)	0.677
LVMI, g/m\(^2\)	128±46	134±28	145±37	138±31	0.336
LVH, n (%)	17 (50.00)	11 (68.75)	17 (85.00)	11 (73.33)	0.073
Carotid plaque, n (%)	11 (32.35)	10 (62.50)	15 (75.00)	12 (80.00)	**0.019**
ValvC, n (%)	7 (20.59)	4 (25.00)	4 (20.00)	9 (60.00)	0.346
AAC, n (%)	9 (26.47)	9 (56.25)	9 (45.00)	10 (66.67)	0.148

Continuous variables are shown as mean±standard deviation or median and interquartile range. Categorical variables are shown as counts and percentages. p values for one-way ANOVA test or Kruskal-Wallis H test or χ\(^2\) test. Bold represents p < 0.05. MHD, maintenance hemodialysis; CAC, coronary artery calcification; DM, diabetes mellitus; SBP, systolic blood pressure; DBP, diastolic blood pressure; CCB, calcium channel blocker; Hb, hemoglobin; PLT, platelet; TG, triglyceride; TC, total cholesterol; LDL-C, LDL cholesterol; HDL-C, HDL cholesterol; PTH, parathyroid hormone; LVMI (left ventricular mass index) = LVM (left ventricular mass)/BSA (body surface area); LVH, left ventricular hypertrophy; ValvC, valve calcification; AAC, abdominal aortic calcification.
Serum sortilin levels in MHD patients with different degrees of CAC. Sortilin levels in serum were compared among 4 groups: MHD with non-CAC (n = 34), MHD with mild CAC (n = 16), MHD with moderate CAC (n = 20), and MHD with severe CAC (n = 15). Statistical significance was determined by the Kruskal-Wallis H test (***p < 0.001). MHD, maintenance hemodialysis; CAC, coronary artery calcification.

Baseline Clinical Characteristics
A total of 111 MHD patients with an average age of 49 ± 12 years were included in this study, of whom 60 (54.05%) were male. In this study, various etiologies of MHD reported in our center included chronic glomerulonephritis (58.6%), diabetes (17.2%), hypertension (10.8%), obstruction (7.2%), and others (6.3%). Among 111 MHD patients, 85 cases were examined by vascular color Doppler ultrasound, cardiac color Doppler ultrasound, lateral abdominal X-ray, and CACs. The total calcification rate of these 85 patients in this center was 76.6%, the CAC rate was 60.0%, the AAC rate was 36.5%, and the heart ValvC rate was 22.4%, which were slightly lower than the results of the dialysis calcification study (CDCS) published in 24 Chinese mainland centers in 2018 [20] perhaps because of the exclusion of the patients who had suffered CCE or parathyroid gland resection before enrollment. The range of CACs in 85 patients ranged from 0 to 3,071, with a median of 48.3. According to the Rumberger classification of CAC, there were 34 cases (40.00%) in the noncalcification group, 16 cases (18.82%) in the mild calcification group, 20 cases (23.53%) in the moderate calcification group, and 15 cases (17.65%) in the severe calcification group.

The clinical and biochemical characteristics of hemodialysis patients with different degrees of calcification are listed in Table 1. It could be seen that dialysis time, serum phosphorus, and calcium-phosphorus product levels were higher in moderate and severe CAC than their counterparts in non-CAC groups. More subjects had diabetes mellitus or carotid plaque with the aggravation of CAC. Besides, the medical history of phosphate binders was also related to the degree of calcification.

Serum Sortilin Levels and CAC
The serum levels of sortilin in noncalcification, mild calcification, moderate, and severe coronary calcification groups were 339.1 ± 144.6, 400.1 ± 137.4, 520.5 ± 214.2, and 648.9 ± 337.2 pg/mL, respectively (Fig. 1). Next, we transformed sortilin into sortilin/100 and included it in the logistic regression equation with diabetes history, dialysis time, blood phosphorus, calcium-phosphorus product, medicine history of phosphate binders, and carotid plaque. The results showed that diabetes, calcium-phosphorus product, and sortilin are independently related to CAC (Fig. 2). For every 100 pg/mL increase of sortilin, the risk of CAC increased by 1.475 times. The risk of CAC increased by 2.953 times...
with the increase of 1 (mmol/L)² calcium-phosphorus product. Besides, CAC risk in patients with diabetes was 5.475 times higher than that in patients without diabetes.

Serum Sortilin Levels and CCE

During the follow-up period of 45 months, 28 patients suffered from CCE. Fifteen MHD patients died during the period of follow-up: 8 patients died from vascular disorder, 5 died from infection, 1 died from liver cancer, and 1 died from severe malnutrition. The number of patients who suffered from angina pectoris, myocardial infarction, congestive heart failure, transient ischemic attack, and stroke was 12, 3, 18, 2, and 2, respectively (Fig. 3). Then, we compared the variables in subjects with or without CCE (Table 2). The subjects who had suffered from CCE had longer dialysis time and higher calcium-phosphorus product \((p < 0.05) \). Diabetes mellitus, carotid plaque, and AAC all contributed to the occurrence of CCE in this study \((p < 0.05) \). Besides, the serum sortilin level in patients with CCE was

Table 2: OR and p value of CCE variables

Variable	OR (95% CI)	p value
Dialysis	1.017 (1.000–1.035)	0.056
DM	0.135 (0.016–1.122)	0.064
Phosphate binder	0.851 (0.312–2.317)	0.752
Carotid plaque	1.475 (1.170–1.858)	0.001
Ca*P	1.643 (0.622–4.342)	0.316
Sortilin per 100 pg/mL	2.953 (1.198–7.279)	0.031
DM	5.475 (1.794–16.714)	0.003

Fig. 2. Forest map of CAC multivariate logistic regression analysis. Sortilin was transferred into sortilin/100 before regression analysis. After univariate analysis, multivariate logistic regression analysis was performed by the forward (LR) method. CAC, coronary artery calcification.

Fig. 3. Details of CCE. The bar chart (left) and Venn diagram (right) showed the number of patients who suffered from angina pectoris, myocardial infarction, congestive heart failure, transient ischemic attack, and stroke. CCE, cardiovascular and cerebrovascular events.
significantly higher than that in patients without CCE (603.3 ± 263.9 vs. 347.7 ± 169.5 pg/mL, p < 0.001) (Fig. 4).

As shown in Table 3, the multivariable Cox regression analysis showed that the risk of CCE in patients with sortilin ≥396 pg/mL was 8.588 times higher than that in patients with sortilin <396 pg/mL (95% CI: 1.919–38.43, p = 0.005). Compared with non-CAC patients, the risk of CCE in patients with CAC was 5.210 times higher (95% CI: 1.093–24.83, p = 0.038). Besides, diabetes mellitus was independently associated with the risk of CCE (HR 3.424; 95% CI: 1.348–8.701, p = 0.010). Before Cox analysis, all indicators were judged to meet the equal proportional hazards.

In addition, we proposed a cutoff value of 418 pg/mL for serum sortilin level, which was able to predict the occurrence of CCE with 75.0% sensitivity and 71.9% specificity. The area under the curve was 0.778 (95% CI: 0.673–0.883), as shown in Figure 5a. The percentage of CCE free of the serum sortilin subgroup in MHD patients is shown in Table 2.

Parameter	CCE (n = 28)	Non-CCE (n = 83)	p value
Age, years	48 (44, 55)	49 (40, 58)	0.983
Male, n (%)	16 (57.14)	44 (53.01)	0.827
BMI, kg/m²	21.80 (19.45, 24.25)	21.30 (20.00, 23.00)	0.538
Current smokers, n (%)	10 (35.71)	27 (32.53)	0.818
Hypertension, n (%)	25 (89.29)	69 (83.13)	0.554
DM, n (%)	9 (32.14)	11 (13.25)	0.043
SBP, mm Hg	147 (136, 163)	145 (133, 164)	0.659
DBP, mm Hg	89±12	88±12	0.792
Dialysis, months	40 (25, 64)	24 (12, 38)	0.001
Medication history, n (%)			
CCB	21 (75.00)	65 (78.31)	0.795
ACEI/ARB	9 (32.14)	26 (31.33)	0.990
α,β-Blocker/α-blocker	17 (60.71)	53 (63.86)	0.823
β-Blocker	14 (50.00)	29 (34.94)	0.182
Calcium supplement	8 (28.57)	36 (43.37)	0.187
Vitamin D analogs	22 (78.57)	51 (61.45)	0.113
Phosphate binders	14 (50.00)	24 (28.92)	0.064
Hb, g/L	99±14	95±18	0.311
PLT, ×10⁹/L	150±40	159±51	0.400
TG, mmol/L	1.18 (0.73, 2.15)	1.26 (0.93, 1.79)	0.796
TC, mmol/L	4.34±1.18	4.05±1.13	0.247
HDL-C, mmol/L	1.32±0.36	1.21±0.37	0.185
LDL-C, mmol/L	2.59±0.99	2.34±0.82	0.188
Ca, mmol/L	2.29 (2.10, 2.39)	2.24 (2.08, 2.35)	0.498
P, mmol/L	2.09±0.47	1.89±0.50	0.056
CaxP, mmol/L²	4.94±1.16	4.20±1.29	0.008
PTH, pg/mL	450 (292, 727)	289 (130, 483)	0.062
hs-CRP, mg/L	2.69 (0.63, 8.28)	1.30 (0.40, 7.42)	0.292
LVMI, g/m²	146±40	129±37	0.056
LVH, n (%)	21 (75.00)	33 (57.89)	0.154
Carotid plaque, n (%)	22 (78.57)	22 (38.60)	0.001
ValvC, n (%)	8 (28.57)	11 (19.30)	0.409
AAC, n (%)	16 (57.14)	18 (31.58)	0.034
CAC, n (%)	22 (78.57)	30 (52.63)	0.032

Continuous variables are shown as mean±standard deviation or median and interquartile range. Categorical variables are shown as counts and percentages. p values for unpaired t test or Mann-Whitney test or χ² test. Bold represents p < 0.05. CCE, cardiovascular and cerebrovascular events; DM, diabetes mellitus; SBP, systolic blood pressure; DBP, diastolic blood pressure; CCB, calcium channel blocker; Hb, hemoglobin; PLT, platelet; TG, triglyceride; TC, total cholesterol; LDL-C, LDL cholesterol; HDL-C, HDL cholesterol; PTH, parathyroid hormone; LVMI (left ventricular mass index) = LVM (left ventricular mass)/BSA (body surface area); LVH, left ventricular hypertrophy; ValvC, valve calcification; AAC, abdominal aortic calcification; CAC, coronary artery calcification.
in Figure 5b ($p < 0.001$). The Kaplan-Meier analysis showed a significant difference in the CCE occurrence in MHD patients with sortilin ≥390 pg/mL compared to sortilin ≤390 pg/mL MHD patients.

Discussion

Calcification of vessels, especially the coronary artery, is highly prevalent in MHD patients and has been associated with an increased CV risk as well as with all-cause mortality [21–23]. Although existing evidence hints toward the contribution of VC in CV mortality and CVD morbidity in dialysis recipients, there is still a need and interest to continuously determine and monitor VC’s burden and its risk factors. Several studies in cardiology suggest that sortilin may be related to VC and CV events, but none has done any relevant research in the field of kidney disease. Therefore, this study aimed to assess the potential role of serum sortilin in CAC and CCE, along with identifying other risk factors. We surprisingly found that serum sortilin level is positively correlated with CAC in MHD patients. Besides, we showed an incidence of new CCE of 25.2% in MHD patients during the 45-month follow-up, and serum sortilin was independently associated with the CCE.

In this study, we compared the data of the CAC-negative group and different degrees of the CAC-positive group first. We found that CAC was related to dialysis time, DM, blood phosphorus, calcium-phosphorus product, and carotid plaque. Nondialysis diabetes patients also have high CACs, which further confirmed that diabetes is a risk factor for CAC [24]. Hyperglycemia, hyperinsulinemia, oxidative stress, and abnormal adipokines may be the causes of diabetic vascular disease. Metabolic disorders of calcium and phosphorus are universal and crucial in VC of MHD patients. This study showed 22.1% of patients with serum phosphorus concentration >7.0 mg/dL (2.26 mmol/L) and 66.9% of patients with serum phosphorus concentration >5.5 mg/dL (1.78 mmol/L), which is consistent with the Chinese dialysis achievement and practice model study (DOPPS) published in 2019 [25]. DOPPS I and II studies have confirmed that phosphorus and calcium-phosphorus product were independent risk factors for CV events [26, 27]. All these results suggest that serum phosphorus is essential in VC and CV events, while serum phosphorus management in MHD patients in China is not ideal [25, 28]. Optimization of MBD management, especially phosphorus-related indicators, may have a good impact on the prognosis of MHD patients. However, AAC and ValvC did not show a linear trend with the aggravation of CAC, which was inconsistent with previous studies [20, 29, 30]. The reason for this is unclear. Further studies with a large number of patients will be done to explore this point.

Genome-wide association studies recently have shown a strong association between 1p13 locus and CVD [31–33]. The 1p13.3 locus contains 4 genes, CELSR2, PSRC1, MYBPHL, and SORT1. Sortilin encoded by the SORT1 gene is a multiligand sorting receptor, which has the functional characteristics of the vacuolar protein sorting 10 protein domain family. It is mainly located on the anti-Golgi network (TGN) and acts as a lysosome sorting receptor, which helps separate new synthetic protein cargo from the anti-Golgi network to the early endosome [34]. Sortilin can also transport soluble lysosomal proteins to lysosomes [35]. A small fraction of sortilin (about 10%) is located on the cell membrane and binds and internalizes various ligands through receptor-mediated endocytosis [36]. Emerging evidence suggests a significant role of sortilin in the pathogenesis of CVD and metabolic diseases, including type II diabetes mellitus by regulating insulin resistance [37, 38], atherosclerosis caused by arterial wall inflammation [9], dyslipidemia of lipoprotein metabolism, and VC [39–41].

Previous studies related to sortilin mainly focused on its lipid metabolic activity outside the brain. However, recent studies have shown that the effect of sortilin on
vascular inflammation and calcification might have nothing to do with lipids [9, 11, 42]. A clinical research of Goettsch et al. [39] demonstrated that sortilin serum levels were positively correlated with CRP, TC, and LDL-C levels, whereas when CRP, TC, or LDL-C levels were added to the multivariate model, along with other known AAC risk factors, the sortilin-AAC association remained significant. Furthermore, treatment with statins or fibrates did not alter the association between serum sortilin and AAC, suggesting that the observed association between high serum sortilin and severe AAC may not be associated with lipid abnormalities. This is in line with our results, which indicate that sortilin is an independent risk factor for CAC. Goettsch et al. [11] also reported reduced atherosclerotic VC in mice lacking sortilin, and they had demonstrated that sortilin is a crucial component of extracellular vesicles required for their calcification propensity. Besides, Sun et al. [40] showed that sortilin could mediate the aggregation of matrix vesicles in the early calcification stage. Hence, serum sortilin levels are likely to reflect the susceptibility to calcification.

There is increasing evidence suggesting that sortilin is independent of the CV effects of cholesterol. Ogawa et al. [43] showed that plasma sortilin levels had significant

Table 3. Cox regression analysis for influencing factors of CCE in MHD patients

Variable	p value	Hazard ratio	95% of hazard ratio	
			lower	upper
Diabetes mellitus	0.010	3.424	1.348	8.701
Dialysis, months	0.056	1.013	1.000	1.026
Ca × P, mmol/L²	0.647	0.902	0.578	1.405
Sortilin	0.005	8.588	1.919	38.43
Carotid plaque	0.120	2.301	0.804	6.580
CAC	0.038	5.210	1.093	24.83
Abdominal aortic calcification	0.104	2.182	0.852	5.591

Before Cox analysis, all the indicators included in the regression analysis were judged to meet the equal proportional hazards. Sortilin was divided into 2 groups in the regression analysis: ≥396 or <396 pg/mL. CCE, cardiovascular and cerebrovascular events; MHD, maintenance hemodialysis; CAC, coronary artery calcification.

Fig. 5. Serum sortilin levels and CCE. a ROC curve analysis of the ability of sortilin to predict cardiovascular events. AUC = 0.778, p < 0.001. b Kaplan-Meier analysis of the percentage of CCE free in the serum sortilin subgroup of MHD patients. The percentage of CCE free is shown in the blue line for sortilin ≥390 pg/mL and the green line for sortilin <390 pg/mL in MHD patients. The time is expressed as months. Statistical significance was determined by the log-rank (Mantel-Cox) test. CCE, cardiovascular and cerebrovascular events; MHD, maintenance hemodialysis.
positive associations with CV risk factors: LDL-C, TG, and serum uric acid in patients with hypertension, dyslipidemia, and/or diabetes without coronary artery disease. One published study of the Framingham Heart Study [44] demonstrated that the neurotensin and pro-neurotensin receptor (sortilin receptor 1) is associated with an increased incidence of CV events. The study also reported that diabetes, dialysis time, and serum sortilin levels were independently associated with the occurrence of CCE. Besides, a study of 745 elderly community male residents showed that after adjusting for potential confounding factors (including CRP, TC, and LDL-C), high serum sortilin levels were associated with a 3-fold increase in the risk of adverse CCE, independent of traditional Framingham risk factors [39]. In conclusion, the intervention of sortilin may have a substantial impact on CVD since it acts at multiple levels simultaneously.

Our results are noteworthy because we included subjects who used strict criteria to minimize possible bias. We excluded subjects who were treated with statins. Preclinical in vivo evidence suggests that pitavastatin or pravastatin treatment for 8 months can reduce circulating sortilin levels by 8 and 16%, respectively [45]. Therefore, statins have an impact on circulating sortilin levels, and we eliminated this bias by including only those who did not receive statins [46].

Limitations

Our research has some limitations. First of all, we do not have data on the presence of sortilin SNPs. It has been reported that some SNPs in the 1p13.3 region, especially rs646776, rs599839, rs12740374, have a great impact on the expression of the SORT1 gene and the function of sortilin protein [32, 47]. Therefore, sortilin polymorphism may be associated with the occurrence of CV events. Second, this study is a single-center prospective study with small sample size. We did not make further analysis of CAC, AAC, and ValvC. Finally, the recommended threshold of sortilin for predicting CCE has relatively low sensitivity and specificity, so we cannot predict the occurrence of CCE only based on serum sortilin level. Large-scale prospective cohort studies are necessary to confirm the usefulness of circulating sortilin in predicting CCE and the possibility of combining other indicators to predict CCE.

Conclusion

Sortilin may be a newly found protein that is independently associated with CAC and CCE in MHD patients.

Acknowledgments

The authors thank all the staff of the Department of Nephrology and the nursing staff for their dedicated assistance to patient sample collection. They also thank all the members who participated in this study.

Statement of Ethics

This study adhered to the principles of the Declaration of Helsinki II and was approved by the Medical Ethics Committee of Xiangya Hospital, Central South University (Ethical Code: 201512568). Written informed consent was obtained from all the study participants.

Conflict of Interest Statement

The authors declare that they have no conflicts of interest.

Funding Sources

This study was funded by the National Natural Science Foundation of China (81470933 and 81173401).

Author Contributions

Jie Xu participated in research design, data collection, statistical analysis, and manuscript drafting. Zhou Xiao and Qiong-Jing Yuan participated in data collection, Yang-Shuo Tang provided technical support such as B-ultrasound, and Qiao-Ling Zhou participated in the research design and article review and offered financial support. Chanjuan Shen, Joshua D. Ooi, and Yong Zhong were involved in data analysis and article review. All authors have read and approved the final version of the manuscript.

References

1. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.
2. Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J, et al. US renal data system 2015 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2016;67(3 Suppl 1):Svi. S1–305.
3. Vervloet M, Cozzolino M. Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int. 2017;91(4):808–17.
4. Sigrist MK, Taal MW, Bungay P, McIntyre CW. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin J Am Soc Nephrol. 2007;2(6):1241–8.
8 Patel KM, Strong A, Tohyama J, Jin X, Moger CT, Billheimer J, et al. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res. 2015; 116(5):789–96.

9 Mortensen MB, Kjobjy M, Gunnersen S, Larsen JV, Palmfeldt J, Falk E, et al. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis. J Clin Invest. 2016; 126(4):1323–36.

10 Blondeau N, Béaud-Dufour S, Lebrun P, Hivelin C, Coppola T. Sortilin in glucose homeostasis from accessory protein to key player? Front Pharmacol. 2018; 9:1561.

11 Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest. 2016; 126(4):5317–22.

12 Agatston AS, Janowitz WR, Hildner FJ, Zasmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990; 15(4):827–32.

13 Broderick LS, Shemesh J, Wilensky RL, Eckert GJ, Zhou X, Torres WE, et al. Measurement of coronary artery calcium with dual-slice helical CT compared with coronary angiography: evaluation of CT scoring methods, interobserver variations, and reproducibility. AJR Am J Roentgenol. 1996; 167(2):439–44.

14 Liu ZH; China Dialysis Calcification Study Group. Vascular calcification burden of Chinese patients with chronic kidney disease: metabolic profile of a cohort study. BMC Nephrol. 2015; 16:129.

15 Goicoechea M, Garcia de Vinuesa S, Verdalles M, Goicoechea M, Garcia de Vinuesa S, Verdalles M, et al. Molecular identification of a novel candidate receptor sortilin-a culprit in cardiovascular and neurological diseases. J Mol Med. 2014; 92(9):905–11.

16 Nilsson SK, Christensen S, Raarup MK, Ryan RO, Nielsen MS, Ollevcrona G. Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J Biol Chem. 2008; 283(38):35990–605.

17 Carlo AS, Nykjaer A, Willnow TE. Sorting receptor sortilin—a culprit in cardiovascular and neurological diseases. J Mol Med. 2014; 92(9):905–11.

18 Skin KP, Spence LM, Kendall JM, Adams PC, Timpin A, Chest Pain Guideline Development Group. NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Heart. 2010;96(12):974–8.

19 Thygesen K, Alpert JS, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur Heart J. 2007; 28(22):2525–38.

20 Vaney BW, Akiba T, Albert JM, McCarthy JT, Kerr PG, Mendelsohn DC, et al. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis. 2004;44(5 Suppl 2):34–8.

21 Tentori F, Blayney MJ, Albert JM, Gillespie BW, Kerr PG, Bommer J, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis. 2008;52(3):519–30.

22 Li D, Zhang L, Zuo L, Jin CG, Li WG, Chen JB. Association of CKD-MBD markers with all-cause mortality in prevalent hemodialysis patients—a cohort study in Beijing. PLoS One. 2012; 17(12):e0168537.

23 Doppki GA, Davenport DL, Monier-Fauge MC, Sorrell VL, Malluche HH. Coronary artery calcification in CKD-5D patients is tied to adverse cardiac function and increased mortality. Clin Nephrol. 2016; 86(2016)(12):291–302.

24 Kambara K, Fujii H, Nakai K, Kono G, Soto G, Nishii T, et al. Relationship between cardiac calcification and left ventricular hypertrophy in patients with chronic kidney disease at hemodialysis initiation. Heart Vessels. 2017; 32(9):1109–16.

25 O’Donnell CJ, Kavousi M, Smith AV, Kardia SL, Feitosa MF, Hwang SJ, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124(5):2585–64.

26 Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010; 466(7307):714–9.

27 Smith JG, Luk K, Schulz CA, Engert JC, Do R, Hindy G, et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA. 2014;312(17):1764–71.

28 Petersen CM, Nielsen MS, Nykjaer A, Jacobsen L, Tommerup N, Rasmussen HH, et al. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem. 1997; 272(6):3599–605.

29 Carlo AS, Nykjaer A, Willnow TE. Sorting receptor sortilin—a culprit in cardiovascular and neurological diseases. J Mol Med. 2014;92(9):905–11.

30 Nilsson SK, Christensen S, Raarup MK, Ryan RO, Nielsen MS, Ollevcrona G. Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J Biol Chem. 2008; 283(38):25920–7.

31 Rabinovich L, Fishman S, Hubel E, Thurm T, Park WJ, Pężowski-Jung Y, et al. Sortilin deficiency improves the metabolic phenotype and reduces hepatic steatosis of mice subjected to diet-induced obesity. J Hepatol. 2015;62(1):175–81.

32 Biscetti F, Bonadia N, Santini F, Angelini F, Nardella E, Pitocco D, et al. Sortilin levels are associated with peripheral arterial disease in type 2 diabetic subjects. Cardiovasc Diabetol. 2019;18:5.

33 Goetsch C, Iwata H, Hutcheson JD, O’Donnell CJ, Chapurlat R, Cook NR, et al. Sortilin sortilin associates with aortic calcification and cardiovascular risk in men. Arterioscler Thromb Vasc Biol. 2017;37(5):1005–11.

512

Kidney Dis 2021;7:503–513
DOI: 10.1159/000517304
40 Sun Z, Wang Z, Li L, Yan J, Shao C, Bao Z, et al. RAGE/galectin-3 yields intraplaque calcification transformation via sortilin. Acta Diabetol. 2019;56(4):457–72.
41 Goettsch C, Kjolby M, Aikawa E. Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arterioscler Thromb Vasc Biol. 2018;38(1):19–25.
42 Jones GT, Bown MJ, Gretarsdottir S, Romaine SP, Helgadottir A, Yu G, et al. A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol Genet. 2013;22(14):2941–7.
43 Ogawa K, Ueno T, Iwasaki T, Kujiraoka T, Ishihara M, Kunimoto S, et al. Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors. Atherosclerosis. 2016;249:110–5.
44 Januzzi JL, Lyass A, Liu Y, Gaggin H, Trebnick A, Maisel AS, et al. Circulating proneurotensin concentrations and cardiovascular disease events in the community: the Framingham heart study. Arterioscler Thromb Vasc Biol. 2016;36(8):1692–7.
45 Nozue T, Hattori H, Ogawa K, Kujiraoka T, Iwasaki T, Michishita I. Effects of statin therapy on plasma proprotein convertase subtilisin/kexin type 9 and sortilin levels in statin-naive patients with coronary artery disease. J Atheroscler Thromb. 2016;23(7):848–56.
46 Hu D, Yang Y, Peng DQ. Increased sortilin and its independent effect on circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) in statin-naive patients with coronary artery disease. Int J Cardiol. 2017;227:61–5.
47 Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40(2):189–97.