Soil classification for sustainable agriculture

D Yusnita, A Ahmad and M S Solle

Soil Sciences Department, Agricultural Faculty, Hasanuddin University, Makassar, Indonesia

E-mail: asmitaahmad@yahoo.com

Abstract. Agriculture is one of the people’s livelihoods in Baebunta Sub-District. High activity rainfall in Luwu area could cause soil degradation and decrease nutrient in the soil. Soil type gives us information about morphological, physical and chemical characteristic and mineral content. As a medium for growing plants, the soil becomes one of the important factors in assessing the sustainability of agriculture. This study aims to classify and provide management recommendations of soil from Baebunta Sub-District in North Luwu District, South Sulawesi for sustainable agriculture. The sampling method uses catena transect, and soil analysis for physical and chemical properties, and soil minerals, as the parameter in classifying soil types from the Order to the Family Category using the USDA Soil Taxonomy system. The land uses dominant was a paddy field. The results showed that soil formed are Biotite-Quartz-Sandy Typic Endoaquepts, Orthoclase-Quartz-Loamy Skeletal Lithic Dystrudepts, Biotite-Quartz-Fine-Silt Typic Endoaquepts, Coarse-Silt Lithic Typic Endoaquepts. The soil family categories have nutrient-carrying minerals like biotite but the dominance of quartz mineral showed the need for improving management like adding the organic material for stabilizing the soil aggregates, reduce toxic mineral and nutrient leaching so that the soil can be sustainable for agriculture.

1. Introduction
Agriculture is one of the people’s livelihoods in Baebunta Sub-District. According to BPS [1], Paddy production in Baebunta District reached 35,791.11 tons / 6,035.60 ha (average 5.9 tons / ha), maize commodity reached 13,851.39 tons / 2,787.00 ha (average 4.97 tons / ha), and cocoa commodity reached 6,996.45 tons / 9,380 ha (average 0.7 tons / ha). High activity rainfall in Luwu area could cause soil degradation and decrease nutrient in soil [1,2], this situation will impact to agriculture productivity [3]. One way to assess soil fertility by indicating the characteristic of soil type [4,5]. Soil type gives us information about morphological, physical and chemical characteristic and mineral content. As a medium for growing plants, the soil becomes one of the important factors in assessing the sustainability of agriculture.

Different types of soil have an impact on the different management improvements that can be given [6–8] from Inceptisol with high resistant mineral content [9,10]. So, this study aims to classify and provide management recommendations of soil from Baebunta Sub-District in North Luwu District, South Sulawesi for sustainable agriculture.
2. Material and methods

The study site was located in the North Luwu District of South Sulawesi province with the location coordinate is 2°21’55”S-2°49’29”S and 120°5’39”E-120°20’42”E (Figure 1). Determination of the location of soil sampling locations using the catena transect method with eight soil profiles (Table 1). The parameters were; texture (Hydrometer method [11]), Cation Exchange Capacity (CEC) (NH₄OAc Extraction), C-org (organic) (Walkley and Black method), pH, Base Saturation (BS) (NH₄OAc of pH 7 Extraction), Grain Size, and Mineral (with binocular microscope identification of sand fraction). Soil classification with USDA 2014 [12] Method: Orde, Sub-Orde, Great Group, Sub-Group, and Family.

Figure 1. Location of the study area

Table 1. Soil profile characteristic

Profile	Coordinate	Elevation (m asl)	Slope (%)	Drainage	Rock Formation	Vegetation
T1	2°34’3,137” LS 120°16’13,938” BT	120	15-25	good	Tpgk	palm and grass
T2	2°35’36,590° LS 120°15’16,107” BT	41	0-8	good	Tplv	palm and shrub
T3	02°37’03,3° LS 120°17’54,1” BT	62	0-8	bad	Qa	paddy field and cocoa
T4	2°47’3,575° LS 120°14’30,586” BT	12	0-8	good	Qa	cocoa, banana, corn, and durian
T5	02°31’46,3° LS 120°14’59,6”	40	25-45	good	Tpgk	palm
T6	02°33’14,09° LS 120°16’32,09”	100	0-8	good	Tmpb	shrub and palm
T7	02°37’03,3° LS 120°17’54,1” BT	40	0-8	bad	Qa	paddy field and cocoa
T8	02°40’06,8° LS 120°20’06,2” BT	30	0-8	good	Qa	shrub and palm
3. Results and discussion

Based on rainfall data in the last ten years (2008-2018) (Meteorology, Climatology and Geophysics Region IV Makassar), the climate type of Baebunta District according to Oldeman climate classification is classified as type B climate with 9 wet months (figure 2).

![Figure 2. The climate type of Baebunta District](image)

There is three soil order that has been formed in Baebunta Sub-District, namely; Inceptisol, Oxisol, and Ultisol. The Characteristics and type of soil are presented in Table 2.

Soil Profile and Land Use	Soil Characteristic	Soil Classification
Profile T1: Soil depth 0-80 cm, good drainage, the texture of sandy clay loam, CEC ≤ 15cmol/kg, Base Saturation ≥ 35%, C-organic content 1.85%, pH 5, dominant minerals: biotite and quartz	Order: Inceptisol with the cambic horizon, Sub-Order: Udepts, Great Group: Dystrudepts, Sub-Group: Typic Dystrudepts, Family: Biotite-Quartz Skeletal Medial Sandy Typic Dystrudepts	
Profile T2: Soil depth 0-180 cm, good drainage, the texture of sandy clay loam, CEC ≤ 15cmol/kg, Base Saturation ≤ 35%, C-organic content of 1.6%, pH 4.2, dominant minerals: quartz and oxide	Order: Oxisol with the oxic horizon, Sub-Order: Haploperox, Great Group: Typic Haploperox, Family: Quartz-Oxide Sandy Typic Haploperox	
Profile T3: soil depth 0-65 cm, good drainage, the texture of sandy clay loam CEC value ≥ 15cmol / kg, base saturation ≤ 35%, C-organic C 1.72%, pH 4.6, dominant minerals: biotite and quartz	Order: Inceptisol with Umbric horizon, Sub-Order: Aquepts, Great Group: Endoaquepts, Sub-Group: Typic Endoaquepts	

Table 2. Characteristics and classification of soil in Baebunta Sub-District
Profile T4: soil depth 0-65 cm, good drainage, the texture of sandy clay loam CEC value ≥ 15 cmol / kg, base saturation $\leq 35\%$, C-organic C 1.72%, pH 4.6, dominant minerals: orthoclase and quartz

Order: Inceptisol with the cambic horizon, Sub-Order: Uderts, Great Group: Dystrudepts, Sub-Group: Lithic Dystrudepts, Family: Orthoclase-Quartz Sceletal Loamy Lithic Dystrudepts

Profile T5: Soil depth 0-120 cm, good drainage, the texture of sandy clay loam, CEC ≤ 15 cmol / kg, Base Saturation 35%-38%, C-organic content 1.93%, pH 4.2, dominant minerals: quartz

Order: Ultisol with Argilic horizon, Sub-Order: Udults, Great Group: Hapludults, Sub-Group: Inceptic Hapludults, Family: Quartz Fine Inceptic Hapludults

Profile T6: Soil depth 0-80 cm, good drainage, the texture of sandy clay loam, CEC ≤ 15 cmol / kg, Base Saturation $\geq 35\%$, C-organic content 1.27%, pH 4.6, dominant minerals: muscovite and quartz

Profile T7: Soil depth 0-70 cm poor drainage, the texture of sandy clay loam CEC value ≥ 15 cmol/kg, base saturation $\leq 35\%$, C-organic content 1.6%, pH 4.6, dominant minerals: biotite and quartz

Profile T8: Soil depth 0-90 cm poor drainage, silty clay texture, CEC value ≤ 15 cmol/kg, Base saturation $\geq 35\%$, C-organic content 1.66%, pH 5.2, dominant minerals: biotite and quartz

Order: Inceptisol with the cambic horizon, Sub-Order: Aquents, Great Group: Endoaquepts, Sub-Group: Typic Endoaquepts, Family: Biotite-Quartz Silty Fine Typic Endoaquepts

Paddy field land use in Baebunta Sub-District is classified into land suitability evaluation that is a highly suitable class to the moderately suitable class [13] with soil types were Biotite-Quartz Sandy Typic Endoaquepts and Biotite-Quartz Silty Fine Typic Endoaquepts. The content of biotite minerals as nutrient-carrying minerals for plants [14] shows that the soil is still quite potent in developing paddy fields, but the presence of quartz mineral content indicates that the soil has undergone an intensive leaching process [15] that requires fertilization management, especially liming to raise soil pH, and the addition of solid organic matter to increase the weathering of biotite minerals so that nutrients become available to the plants, and can improve soil aggregate, and chelate a toxic cations in the soil [16].
Palm land use in Baebunta Sub-District has a moderately suitable class for land suitability evaluation [13]. For soil types, Biotite-Quartz Skeletal Medial Sandy Typic Dystrudepts and Biotite-Quartz Silty Coarse Lithic Typic Endoaquepts, require management liming to increase pH and the addition of solid organic matter to increase the weathering of biotite minerals [17], improve soil aggregate and reduce nutrient leaching processes [18]. The soil type Quartz-Oxide Sandy Typic Haploperox, Quartz Fine Inceptic Hapludults, and Mucovite-Quartz Sandy Ruptic Ulthic Dystrudepts, require the addition of solid and liquid organic matter to be able to chelate iron and aluminum cations of mineral oxide in the soil that can toxic the plants [16], increasing the charge negative soil because the soil with dominant mineral oxide has more positive charge, as well as the addition of chemical fertilizers because the soil is dominant with resistant minerals. Soils in area that have >15% slope need cover crops management to decrease soil erosion.

Cocoa plant land use in Baebunta Sub-District has land suitability evaluation in a marginally suitable class [13], with the soil type is Othoclase-Quartz Sceletal Loamy Lithic Dystrudepts that require liming management to increase soil pH, the addition of solid organic matter to improve soil aggregate [18], to reduce nutrient leaching, to increase the negative charge of the soil in order to maintain nutrients in the soil [19], and the addition of chemical fertilizers because the soil does not contain nutrient-carrying minerals. The soil type of Biotite-Quarzt Silty Fine Typic Endoaquepts requires liming management to increase soil pH, and the addition of solid organic matter to increase weathering of biotite minerals in the soil, and to improve soil aggregate so that the soil drainage become good condition and can increase the production.

4. Conclusions
Soil family categories still contain biotite mineral as nutrient-carrying minerals, but the high content of quartz minerals in the soil requires management in the form of adding organic material and liming to maintain soil fertility, increase aggregate stability and reduce nutrient leaching, so that the soil can be sustainable for agriculture.

References
[1] BPS 2018 Kecamatan Baebunta dalam Angka (kabupaten Luwu Utara: Badan Pusat Statistik Kabupaten Luwu Utara)
[2] Ahmad A, Lopulisa C, Imran A and Baja S 2019 Rainfall erosivity in climate changes and the connection to landslide events Rainfall erosivity in climate changes and the connection to landslide events Earth Environ. Sci. 280 1–8
[3] Ahmad A, Lopulisa C, Imran A M and Baja S 2018 Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region : A case study from South Sulawesi , Indonesia Earth and Environmental Science (IOP Publishing) pp 1–7
[4] Hu C 2002 Managing Soil Fertility for Sustainable Agriculture in Taihang Mountain Piedmont, North China Regional Water and Soil Assesement for Managing Sustainable Agriculture in Cihna and Australia pp 165–72
[5] Naharia, Setyanto, Arsyad, Burhan and Aswad 2018 The effect of water regime and soil management on methane (CH4) emission of rice field. Earth Environ. Sci.
[6] White P J, Crawford J W and Cruz D 2012 Soil Management for Sustainable Agriculture Appl. Environ. Soil Sci. 1–3
[7] Amaliyah S, Hariyanto S and Purnohasuki H 2018 Growth responses of Rhizophora apiculata Blume in different soil and sediment conditions AACL Bioflux 11 379–86
[8] Sari G L and Trihadimingrum Y 2018 Petroleum Hydrocarbon Pollution in Soil and Surface Water by Public Oil Fields in Wonocolo Sub-district , Indonesia J. Ecol. Eng. 19 184–93
[9] Pena-Venegas R, Rubiano-Sanabria Y and Pena-Quinones A 2013 Definition of Agricultural Management Units in an Inceptisol of the Casanare Department (Colombia) Definición de Unidades de Gestión Agrícola en un Inceptisol del departamento de Casanare Colombia Definición de Unidades de Gestão Agrícola em um Cambissol ORINOQUIA 17 230–7
[10] Bortolanza D R and Klein V A 2016 Soil Chemical and Physical Properties on an Inceptisol after Liming (Surface and Incorporated) Associated with Gypsum Application Rev. Bras. Ciência
do Solo 40 1–13
[11] BPT 2005 Analisis kimia tanah, tanaman, air dan pupuk
[12] USDA (United Stated Department of Agriculture) 2014 Kunci Taksonomi Tanah (Soil Taxonomy Keys) (Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian. 663 hal.)
[13] BBPPSDL 2011 Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian (Jakarta, Indonesia: Kementerian Pertanian)
[14] Bali I, Ahmad A and Lopulisa C 2018 Identifikasi mineral pembawa hara untuk menilai potensi kesuburan tanah J. Ecosolum 1 81–100
[15] Kemnitz H and Lucke B 2019 Catena Quartz grain surfaces – A potential microarchive for sedimentation processes and parent material identification in soils of Jordan Catena 176 209–26
[16] Kwiatkowska-malina J 2017 Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals Appl. Soil Ecol. 123 542–5
[17] Drever J I and Vance G F 1994 Role of Soil Organic Acids in Mineral Weathering Processes Organic Acids in Geological Processes pp 138–61
[18] Diacono M, Montemurro F, Diacono M and Montemurro F 2010 Long-term effects of organic amendments on soil fertility. A review Agron. Sustain. Dev. 30 401–22
[19] Khan S K and Kar S 2018 Surface charge is a function of organic carbon content and mineralogical compositions of soil Eurasian J Soil Sci 7 59–63