Upgrade of recommended nuclear cross section data base for production of therapeutic radionuclides

F. Tárkányi1 · A. Hermanne2 · A. V. Ignatyuk3 · S. Takács1 · R. Capote4

Received: 27 July 2021 / Accepted: 2 January 2022 / Published online: 20 February 2022
© The Author(s) 2022

Abstract
The IAEA Nuclear Data Section has coordinated several actions to setup and improve a database for recommended cross sections and nuclear decay data for various charged-particle reactions that can be used for medical radionuclide production. Some of the earlier evaluations did not provide uncertainties for the recommended cross sections. Updated evaluations with uncertainty quantification for 25 reactions relevant for production of 67Cu, ^{103}Pd, $^{102m,99m}Rh$, ^{114m}In, ^{125}I, ^{169}Yb, ^{177m}Lu, ^{186}Re, ^{192}Ir and $^{210,211}At$ therapeutic radioisotopes are presented. Recommended cross-section data and their uncertainties for production of therapeutic radionuclides are available on the Web page of the IAEA Nuclear Data Section at https://nds.iaea.org/radionuclides and also at the IAEA medical portal https://nds.iaea.org/medportal.

Keywords Nuclear data · Radionuclide production · Medical radioisotopes · Nuclear reaction modelling · Accelerator production

Introduction
Optimization of radionuclide production for those isotopes of interest in medical applications are of considerable interest to IAEA. The IAEA Nuclear Data Section has hence coordinated several actions to set up a database for recommended cross-sections and associated nuclear decay data for various charged-particle reactions used for medical radionuclides production over the last 25 years. The results of these evaluations were published in webpages of the IAEA-NDS and documented in [1–7] and at numerous conferences. For most of the reactions studied these evaluations resulted in recommended cross section data with uncertainties and production yield data. For few earlier evaluations the uncertainties of the recommended cross section data are missing. Over the last 2 years an upgrade of these evaluations to include an uncertainty quantification was carried out. The results are presented in this work for 25 reactions relevant for production of 67Cu, ^{103}Pd, $^{102m,99m}Rh$, ^{114m}In, ^{125}I, ^{169}Yb, ^{177m}Lu, ^{186}Re, ^{192}Ir and $^{210,211}At$ therapeutic isotopes.

Methods of compilation, correction, selection and data fitting
The main steps of this upgrading evaluation process are:

- Survey of new or missing literature for experimental data of studied production routes.
- Correction of the published datasets for up-to-date monitor cross sections or nuclear decay characteristics.
- Selection of the data sets for fitting of all available corrected datasets considering the earlier evaluations and the results of model calculations.
- Fit of the selected experimental data using Padé approach (approximant by rational function) [8, 9].
- Deducing recommended data with uncertainties.
- Calculation of integral production yields based on recommended cross-section data.
Some additional, important comments should be repeated related to above mentioned steps:

- The experimental circumstances and the nuclear decay data used are often not documented properly in the original publications. In those cases, corrections for nuclear data are practically impossible, when the only information available is the year of publication to estimate the values of the used decay data.
- Without detailed experimental description decay data can only be corrected for the linearly contributing parameters (intensities) and correction for half-life is, in most cases, impossible.
- Systematic differences of cross sections often exist between the different publications. One of the main reasons is an improper estimation of the number of incident particles that can be determined by direct measurement of collected charge (or secondary particles) or indirectly by using monitor reactions. The proper technical base and equipment for direct charge measurement are available only at a limited number of experimental sites. To determine the beam intensity by using monitor reactions requires in principle exact knowledge of the incident energy on the monitor foils. In most cases the energy of the extracted beams is not well defined and by using only one monitor foil, especially in an energy region where the excitation function is rapidly changing, improper estimation of the beam intensity can be obtained.
- It is a well-known experimental fact that cross section data deduced from spectra measured at different times and different sample-detector distances may be systematically different (within usual 3–4% uncertainties), due to uncertainties in the efficiency of the detector and different dead-time corrections during measurements. To reduce uncertainties hence in principle the monitor and target foils should be measured practically simultaneously, which in most cases is not possible.
- The estimation of the target thickness and hence number of target atoms present, is also improper in many cases, especially for targets made by sedimentation, pressing, electro-deposition etc. Improper target preparation can result in systematic errors of the measured data, but also can be the source of scattering of the obtained data.
- An important factor in data selection is the experience of the research group in data measurement and data evaluation. Some laboratories have a proper technical background and large expertise in data measurement and reporting, proved by several earlier publications. Usually, more weight is given to results measured in these laboratories when only limited number of discrepant data points are available.
- In the evaluations the weight of each experiment is determined by the reported uncertainties, which hence deserve special attention. In reported data uncertainties difference by a factor of two are seen for laboratories having the same level of technical background and expertise. Evaluations based only on original data, without critically considering uncertainties, will often result in erroneous recommended data.
- Theoretical data and systematics can be helpful for selection of experimental data especially for decisions on very outlying data points, on overall shape of the excitation function and for systematic energy shifts. This is especially true near the threshold of the reaction as the theoretical calculations are reliable and depend only on the well-measured masses. During the data selections, these outlying data points are mostly neglected, and systematic energy shift can be only partly corrected when the data set covers a large energy range.
- The fitting process requires often additional de-selection of outlying data points, or to introduce additional “guessed” points in energy ranges not covered or represented by the reported experimental results.
- Uncertainties in the fitted results were estimated via a least-squares method with an addition of a 4% systematic uncertainty which is an expert estimate of overall unrecognized uncertainties as discussed in Ref. [10].

Detailed information on the method of collection and selection of experimental data including extensive discussion of the Padé fitting methodology and obtaining uncertainties of the fit, can be found in the introductory chapters of the IAEA related publications: [1–7].

Evaluated nuclear reactions

The summary of the evaluated reactions in the present report is collected in the Table 1 that contains the list of reactions, the number of available experimental data sets, the maximal energy of the experimental data, the number of selected data series and the parameters of the final Padé fit. The main decay data used in the evaluation of the reported radionuclides and the parameters showing their applicability in nuclear medicine are collected in Table 2.

For each radionuclide of interest, we mention shortly the possible medical applications in separate subsections. They were discussed in detail in the IAEA TRS 473 [2] and specially dedicated paper [6]. After presentation of the decay data of the reaction product the evaluation and the results for each of the reactions studied (multiple reactions possible for one medical radioisotope) are illustrated in two figures: the first figure shows all available experimental data (corrected if necessary), the second figure contains only the selected experimental data with their uncertainties and the
Padé fit that defines the recommended cross sections for the evaluated reaction. The uncertainties defined for the recommended cross sections are expressed as percentages on the secondary axis of the figure. The theoretical predictions taken from the TENDL 2017 [11] and TENDL 2019 libraries [12], based on TALYS-model code calculations, are also shown for comparison in the first figure. Integral yields for every reaction (integrated yield for a given incident energy down to the reaction threshold) are calculated from the recommended cross section data, as shown in a separate figure at the end of each subsection. The results represent the physical yields (obtained in an instantaneous irradiation time) [13, 14].

67Cu production

67Cu is the longest-lived radioisotope of copper, is ideally suited for both radionuclide therapy and imaging. Along with 100% β− emission, 67Cu emits gamma photons of 92 and 184 keV that are suitable for gamma scintigraphy (Fig. 1).

Product	Reaction	Exp. serie	Max. energy (MeV)	Selected-exp. serie	Padé parameters
67Cu	68Zn(p,2p)67Cu	10	430	8	Padé 8, N = 80, χ² = 1.50
	70Zn(p,α)67Cu	3	39.6	2	Padé 7 cc, N = 41, χ² = 0.88
	natZn(p,x)67Cu	4	140.5	3	Padé 9, N = 36, χ² = 0.74
	natZn(d,x)67Cu	2	48.3	2	Padé 9, N = 30, χ² = 0.85
103Pd	103Rh(p,n)103Pd	9	39.65	8	Padé 13, N = 156, χ² = 2.00
	103Rh(d,2n)103Pd	2	39.9	2	Padé 9, N = 53, χ² = 0.52
102mRh	102mRh(p,x)102mRh	2	63.86	2	Padé 7, N = 46, χ² = 1.47
102gRh	102gRh(p,x)102gRh	2	53.74	2	Padé 7, N = 36, χ² = 1.15
	102gRh(d,x)102gRh	3	39.6	3	Padé 9, N = 49, χ² = 0.87
114mIn	114Cd(p,n)114mIn	17	400	12	Padé 11, N = 122, χ² = 2.41
	114Cd(d,2n)114mIn	5	20.7	4	Padé 10, N = 61, χ² = 1.42
	116Cd(p,3n)114mIn	3	400	3	Padé 17, N = 49, χ² = 0.92
125I	125Te(p,n)125I	5	105	4	Padé 10, N = 33, χ² = 0.89
	124Te(d,n)125I	1	14.1	1	Padé 8, N = 23, χ² = 0.994
169Yb	169Tm(p,n)169Yb	4	44.9	4	Padé 8, N = 55, χ² = 1.76
	169Tm(d,2n)169Yb	4	49.8	4	Padé 7, N = 35, χ² = 0.95
177Lu	176Yb(d,p)177Yb	3	25.2	3	Padé 11, N = 54, χ² = 0.87
	176Yb(d,x)177Lu	5	39.2	5	Padé 18, N = 51, χ² = 0.452
186Re	186W(p,n)186Re	11	68.9	9	Padé 12, N = 115, χ² = 2.68
	186W(d,2n)186Re	11	49.2	8	Padé 10, N = 130, χ² = 3.31
192Ir	192Os(p,n)192Ir	3	66.5	3	Padé 10, N = 66, χ² = 1.12
	192Os(d,2n)192Ir	2	49.8	2	Padé 17, N = 32, χ² = 0.99
211At	209Bi(α,2n)211At	6	89.14	6	Padé 9, N = 150, χ² = 1.59
	209Bi(α,3n)211At	10	90	10	Padé 9, N = 101, χ² = 1.84

The 68Zn(p,2p)67Cu, 70Zn(p,α)67Cu, natZn(p,x)67Cu and natZn(d,x)67Cu production routes were evaluated.

Cross sections for production of 67Cu

68Zn(p,2p)67Cu reaction

A total of 10 data sets were found in literature: [18–29] (Fig. 2). Out of them two [28, 29] are new and were not included in the previous evaluation [2].

Only one data point at 200 MeV was reported in Mirzadeh et al [22] that was not considered in the evaluation process. The data of McGee [21] were adjusted in order to account for improved IAEA monitor data. Data of Levkovskij [23] were corrected by 0.8 to adjust to the new monitor data. No correction was done for the small contribution of the reactions on 70Zn for data measured on natZn.

Two data sets were deselected. Cohen [18] data were rejected because the authors state a very high uncertainty for their 67Cu cross-sections; Schwarzbach [28] published relative data that showed a very large scatter. Twelve data points in the energy range 35–45 MeV of Stoll [24] were
Table 2 Decay data of investigated reaction products taken from ENSDF [15]. ENSDF nuclear structure and decay data can be easily extracted, understood and studied in an attractive user-friendly manner by means of LiveChart of Nuclides [16] and NuDat [17]

Product or isomer, excitation energy, isomer spin J^π	Half life and decay mode (%)	E_{α,max} (keV)	<E_{β−}> or <E_{β+}> (keV)	Main electrons auger (AE), conversion (CE) E_e (keV) and I_e (%) in parentheses	Main gamma lines E_γ (keV) and I_γ (%) in parentheses	X-ray are indicated
^{67}\text{Cu}	61.83 h	β− 141	AE K 7.03 (1.9), CE K 90.9 (3.4)	91.266 (7.0), 93.311 (16.1), 184.577 (48.7)	91.266 (7.0), 93.311 (16.1), 184.577 (48.7)	
^{103}\text{Pd}	16.991 d	ε 100	AE L 2.39 (168), AE K 17 (18.2), CE K 16.528 (9.521), CE L 36.336 (71.237), CE M 39.121 (14.377)	39.748 (0.0683), 357.45 (0.0221), 20.074 (22.4) X-ray Kα, 20.216 (42.5) X-ray Kα	39.748 (0.0683), 357.45 (0.0221), 20.074 (22.4) X-ray Kα, 20.216 (42.5) X-ray Kα	
^{103m}\text{Rh}	56.114 min IT 100		CE L 36.343 (70), CE M 39.128 (14.3)	475.06 (95), 631.29 (56.0), 697.49 (44.0), 766.84 (34.0), 1046.59 (34.0), 1112.84 (19.0)	475.06 (95), 631.29 (56.0), 697.49 (44.0), 766.84 (34.0), 1046.59 (34.0), 1112.84 (19.0)	
^{102}\text{Rh}	207.3 d	ε 78, β+ 14.7, β− 22	AE K 16.2 (10.7)	475.06 (46)	475.06 (46)	
^{114m}\text{In}	49.51 d	IT 0.233	CE189.44 (6.71)	190.27 (15.56)	190.27 (15.56)	
^{114g}\text{In}	71.9 s	ε 99.5, β− 99.5	AE K 2.72 (0.43), AE K 19.3 (0.067)	1299.83 (0.139)	1299.83 (0.139)	
^{125}\text{I}	59.407 d	ε 100	AE L 3.19 (156.5), AE K 22.7 (19.8), CE K 3.6787 (78.1), CE L 30.5533 (10.7)	35.492 (6.68), 27.472 (73.1) X-ray Kα, 27.202 (39.6) X-ray Kα	35.492 (6.68), 27.472 (73.1) X-ray Kα, 27.202 (39.6) X-ray Kα	
^{169}\text{Yb}	32.018 d	ε 100	AE L 5.67 (161.8), AE K 40.9 (10.6), CE K 50.3896 (34.3), CE L 53.0047 (7.03), CE K 71.133 (6.16), CE L 99.663 (5.46), CE K 117.8235 (10.9), CE L 138.527 (12.86)	49.773 (52.5) X-ray Kα, 50.742 (91.6) X-ray Kα, 63.120 (43.6) X-ray Kβ	49.773 (52.5) X-ray Kα, 50.742 (91.6) X-ray Kα, 63.120 (43.6) X-ray Kβ	
^{177}\text{Yb}	1.911 h	β− 148.8	CE L 11.23 (8.64), CE K 47.6 (5.02), CE L 103.38 (6.76), CE M 111.28 (1.68), CE K 143.016 (0.57)	71.6418 (0.164), 112.9498 (6.23), 136.7245 (0.0465), 208.3662 (10.41), 249.6742 (0.1997), 321.3159 (0.2186)	71.6418 (0.164), 112.9498 (6.23), 136.7245 (0.0465), 208.3662 (10.41), 249.6742 (0.1997), 321.3159 (0.2186)	
The selected data vs the Padé fit are shown in Fig. 3.

A total of 3 data sets were found in literature: [23, 28, 30]. None of these sets are new and were already evaluated in TRS 473 [2]. The data in Schwarzbach [28] are only relative and were normalized at low energies, but as the resulting values are very different from the TENDL predictions they were excluded.

Table 2 (continued)

Product or isomer, excitation energy, isomer spin Jπ	Half life and decay mode (%)	Eα,max (keV)	<Eβ−> or <Eβ+> (keV)	Main electrons auger (AE), conversion (CE) Eγ (keV) and Iγ (%) in parentheses	Main gamma lines Eγ (keV) and Iγ (%) in parentheses X-ray are indicated		
177mLu 970.176 keV (Jπ = 23/2−)	160.4 d	β− 40.39	AE L 6.180 (126.1)	105.3589 (12.68), 112.9498 (21.4), 128.5027 (16.04), 153.2842 (16.54), 174.3988 (12.47), 204.1050 (13.51), 208.3662 (55.4), 228.4838 (35.9), 281.7868 (13.97), 327.6829 (18.43), 378.5036 (29.40), 418.5388 (21.72)			
186Re	3.7186 d	β− 346.7	AE K 44.80 (5.9)	295.96 (28.71), 308.45 (29.70), 316.51 (82.86), 468.07 (47.84), 604.41 (8.216), 612.46 (5.34), 884.54 (0.29)			
192Ir	73.829 d	β− 178.9	AE K 47.60 (17.2)	210At 8.1 h	α 0.175	5524.0	245.3 (79), 1181.4 (99), 1436.7 (29.0), 1483.3 (46.5), 1599.5 (13.4)
210Po	138.376 d	5304.3	AE 5524.0	211At 7.214 h	α 41.80	5869.5	669.78 (0.0037), 742.72 (0.001)
211Po	0.516 s	7450.3	AE 5869.5	211mPo 25.3 s	α 100	8883	363.0 (0.016), 1064.9 (0.015)
211Po	0.516 s	7450.3	AE 8883	7450.3 25.3 s	α 100	887.8 (0.551)	

Fig. 1 67Cu decay scheme

excluded due to systematic errors in that energy range (information from authors). The selected data vs the Padé fit are shown in Fig. 3.

70Zn(p,d)67Cu reaction

A total of 3 data sets were found in literature: [23, 28, 30] (Fig. 4). None of these sets are new and were already evaluated in TRS 473 [2]. The data in Schwarzbach [28] are only relative and were normalized at low energies, but as the resulting values are very different from the TENDL predictions they were excluded.
Fig. 2 $^{68}\text{Zn}(p,2p)^{67}\text{Cu}$ reaction: all experimental data and TENDL predictions.

Fig. 3 $^{68}\text{Zn}(p,2p)^{67}\text{Cu}$ reaction: selected experimental works and Padé fit (solid line) with total derived uncertainties, including 4% systematic uncertainty (dashed line, right hand scale).
Fig. 4 70Zn(p,α)67Cu reaction: all experimental data and TENDL predictions

Fig. 5 70Zn(p,α)67Cu reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)
The two last, discrepant, points of Kastleiner et al [30] were excluded (large difference from TENDL predictions showing rising cross sections at this energy) as shown in Fig. 5. Fit made till 30 MeV.

\text{natZn}(p,x)^{67}\text{Cu reaction}

This reaction on natural targets was not evaluated earlier. A total of four data sets can be derived from literature: \cite{23,25,28,30} and are compared with TENDL evaluations in Fig. 6.

Schwarzbach \cite{28} data (see remark on normalisation above) were deselected as they are scattered and contradicting the Bonardi \cite{25} data.

Levkovskij \cite{23} and Kastleiner \cite{30} data, measured on \text{70Zn}, were normalised to \text{natZn} below the \((p,2p)\) threshold and were included. Levkovskij \cite{23} data were corrected due to outdated monitor reaction data. The selected and corrected data vs the Padé fit are shown in Fig. 7.
Fig. 8 $^{\text{nat}}\text{Zn}(d,x)^{67}\text{Cu}$ reaction: all experimental data and TENDL predictions.

Fig. 9 $^{\text{nat}}\text{Zn}(d,x)^{67}\text{Cu}$ reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale).
Fig. 10 Yield calculated from the recommended cross sections for 67Cu production

Fig. 11 The 103Pd and 103Rh decay scheme

Fig. 12 The 102mRh and 102sRh decay scheme
\textbf{natZn(d,x)67Cu reaction}

A total of 2 data sets were found in literature: Tárkányi [31] and Khandaker [32] and are compared with TENDL evaluations in Fig. 8. Both sets were selected and fitted (Fig. 9). This reaction was not evaluated earlier.

\textbf{Integral yields for production of 67Cu}

The integral yields calculated on the basis of fitted cross-sections for production of 67Cu are collected in Fig. 10.

\textbf{103Pd and 102Rh production}

Palladium-103 (T\textsubscript{1/2} = 16.991 d) decaying 100\% by electron capture, accompanied by emission of Auger electrons and low energy X-rays, is extensively used in the treatment of prostate cancer and ocular melanoma. Applied mostly in brachytherapy form.

Rhodium-102 (metastable and ground state) is an important radioisotopic impurity generated during production of 103Pd.

The simplified decay schemes of 103Pd and 103mRh are shown in Fig. 11, and those for the co-produced 102mRh and 102gRh in Fig. 12.

The 103Rh(p,n)103Pd, 103Rh(d,2n)103Pd, 103Rh(p,x)102mRh, 102Rh, 103Rh(d,x)102mRh, 102Rh production routes were evaluated.

\textbf{Cross sections for production of 103Pd and 102m,9Rh}

A total of 9 data sets were found in literature: [33–41], which are compared to TENDL evaluations in Fig. 13. The work by Bramblett [36] is to be considered new as it was not included in the previous evaluation.

The set of Mukhamedov [39] was de-selected because of the differences in shape compared with all other excitation functions just above the threshold energy.

The highest energy point of Albert [34] is outlying and was not considered for the fitting.

It was mentioned in an earlier publication [2] that a systematic difference in cross sections was found depending on if X-lines, or γ-lines were used for the activity measurement. This discrepancy could not be explained by a recent unpublished review of 103Pd decay data although for X-lines absolute intensities are calculated, while γ-ray abundances are measured. For the present report we used cross sections derived from X-ray measurement, except for the datasets of [34, 35, 38] that rely on neutron measurements.

The uncertainty for data of Sudar [41] was increased up to 10\% (selected data vs. Padé fit are shown in Fig. 14).

\textbf{103Rh(p,x)102m,9Rh reaction}

For formation of the ground and metastable state of 102Rh by proton induced reactions on 103Rh, the two data sets found in literature were used for fitting: [40, 42]. The data
by Tárkányi [42], both for production of ^{102}mRh and ^{102}gRh, are new. All data and the fitted data vs the Padé fit are shown in Figs. 15 and 16, respectively.

$^{103}\text{Rh}(p,x)^{102}\text{mRh}$ reaction

Two data sets were found in the literature published by [40] and are compared with TENDL evaluations in Fig. 17. Tárkányi 40 data have large uncertainties in the overlapping high energy region and were normalized to Hermanne [42] data by a factor of 0.7 before the fit was undertaken. Corrected data are shown in Fig. 18 versus the Padé fit.

For formation of ^{103}Pd by deuteron induced reactions on ^{103}Rh, the two data sets found in literature were used for fitting: [43–45] (Fig. 19). The set of Tárkányi [45] is new and was not considered in the earlier evaluation. The data reported in Ditrói [46] are identical to those in Tárkányi [45] and were excluded from the compilation. In the earlier evaluation the X-ray data were selected. In the last unpublished review of decay data, a small change was made for γ-ray probability. The Tárkányi data [45] relying on γ-measurements are systematically lower than the

Fig. 14 $^{103}\text{Rh}(p,n)^{103}\text{Pd}$ reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)

Fig. 15 $^{103}\text{Rh}(p,x)^{102}\text{mRh}$ reaction: all experimental data and TENDL predictions
Hermanne [43, 44] X-ray data and the Tárkányi [45] corrected gamma data were selected and used for fitting as shown in Fig. 20.

A few low energy points of Ditrói [46] below the threshold were deselected.

The collected and the selected data vs the Padé fit for production of 102mRh are shown in Figs. 21 and 22, and for production of 102gRh in Figs. 23 and 24, respectively.

103Rh(d,x)102mRh, 102gRh reactions

A total of 3 data sets were found in literature for formation of the ground and metastable state of 102Rh by deuteron irradiation of 103Rh: [43, 44, 46, 47]. The values reported in Hermanne [47] and Ditrói [46] data are new.

A few low energy points of Ditrói [46] below the threshold were deselected.

The collected and the selected data vs the Padé fit for production of 102mRh are shown in Figs. 21 and 22, and for production of 102gRh in Figs. 23 and 24, respectively.
Integral yields for production of ^{103}Pd, ^{102m}Rh and ^{102g}Rh

The deduced integral yields for the (p,n) and $(d,2n)$ reactions leading to ^{103}Pd are shown in Fig. 25.

Four calculated integral yields of the $^{103}\text{Rh}(p,x)^{102g}\text{Rh}$, $^{103}\text{Rh}(p,x)^{102m}\text{Rh}$, $^{103}\text{Rh}(d,x)^{102m}\text{Rh}$ and $^{103}\text{Rh}(d,x)^{102g}\text{Rh}$ reactions are shown in Fig. 26.

^{114m}In production

The radionuclide ^{114m}In ($T_{1/2} = 49.51$ d), being a longer-lived analogue of ^{111}In, is of potential interest in Auger and conversion electron therapy for longer lasting therapeutic studies with use of its compounds of appropriately slow kinetics.

The decay scheme and the decay data are shown in Fig. 27 and Table 2.
Evaluated nuclear reactions

The $^{114}\text{Cd}(p,n)^{114m}\text{In}$, $^{114}\text{Cd}(d,2n)^{114m}\text{In}$ and $^{116}\text{Cd}(p,3n)^{114m}\text{In}$ reactions were evaluated.

$^{114}\text{Cd}(p,n)^{114m}\text{In}$ reaction

A total of 17 data sets were found in literature: [48–62] (Fig. 28). Two sets are new as they were not included in the previous evaluation: Hermanne [57] and Zarubin [62].

Five datasets were de-selected: Zaitseva [55] (obtained on ^{nat}Cd target, shows a systematic shift to the higher energies),
Abramovich [53] (refer to sum of metastable + ground state cross sections), Nieckarz [51] (high energy measurements), Mirzaei [56] (data are theoretical results obtained from ALICE code, no experimental data for 114mIn), and Said [59] (measured on enriched target, the large deviation from other sets is probably caused by an unreliable target thickness determination).

The collected and the selected data vs the Padé fit for the 114Cd($p,n)^{114m}$In reaction are shown in Figs. 28 and 29, respectively.

114Cd($p,n)^{114m}$In reaction

A total of 5 data sets were found in literature: [56, 63–65] (Fig. 30). No new data were found since the last evaluation. The set of Tárkányi [65] was corrected by a factor of 0.9 after re-analysing and using the Cu + d monitor reactions instead of the Fe + d reactions. The data of Mirzaei [56] were deselected. The absolute cross-section values are too small comparing to Tárkányi [65] and to Nassiff [63]. The absolute cross-section values are also too small for the simultaneously measured 111In. Two data points of Nassiff [63] above 17 MeV were deselected.
The data measured on natCd target of Tárkányi [60] contains the contribution from the 113Cd(d,n)114m+gIn reaction. According to the Alice IPPE calculation this contribution can be neglected (estimated 113Cd(d,n)114m+gIn is around 5–10\% in the important low energy range, for 114mIn alone is even smaller). No correction was done for this contribution considering that the data measured on 114Cd targets and derived from natCd targets show excellent agreement and the uncertainty on the absolute values is in both cases in the 12–15\% range.

As the threshold for 116Cd(d,4n)114In is 19.6 MeV, we used normalized data obtained on natCd up to 20.7 MeV. The collected and the selected data vs the Padé fit for the

![Graph](image_url)

Fig. 24 103Rh(d,x)102gRh reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)

![Graph](image_url)

Fig. 25 Yields calculated from the recommended cross sections for 103Pd production
Fig. 26 Yield calculated from the recommended cross sections for 103Rh(p,x)102m,gRh and 103Rh(d,x)102m,gRh reactions.

![Graph showing yield calculations](image)

Fig. 27 114mIn decay scheme

5+ \[\overset{49.51 \text{ d}}{\longrightarrow} \overset{114m}{\text{In}} \]

1+ \[\overset{96.75\%}{\longrightarrow} \overset{71.9 \text{ s}}{\text{In}} \]

0+ \[\overset{99.50\%}{\longrightarrow} \overset{0.5\%}{\text{EC}} \]

\[\text{EC} \quad \overset{0.0034\%}{\longrightarrow} \text{Sn} \]

Fig. 28 114Cd(p,n)114mIn reaction: all experimental data and TENDL predictions.

![Graph showing cross-sections](image)
114Cd(p,n)114mIn reaction are shown in Figs. 30 and 31, respectively.

114Cd(d,2n)114mIn reaction

A total of 3 data sets were found in literature: [51, 64, 66]. The sets of Nieckarz [51] and Hermann [66] are new and were not used in the previous evaluation as shown in Fig. 32. All data were selected and fitted and are shown vs the Padé fit in Fig. 33.

116Cd(p,3n)114mIn reaction

Calculated integral yields of the 114Cd(p,n)114mIn, 114Cd(d,2n)114mIn and 116Cd(p,3n)114mIn reactions are shown in Fig. 34.

125I production

The long-lived iodine isotope 125I (T1/2 = 59.41 d) is an intense Auger electron emitter. It is commonly used in radio-immunoassay.
Fig. 31 114Cd(d,2n)114mIn reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)

Fig. 32 116Cd(p,3n)114mIn reaction: all experimental data and TENDL predictions
The decay scheme and the decay data are shown in Fig. 35 and Table 2.

The 125Te(p,n)125I reaction and the 124Te(d,n)125I production routes were evaluated.

125Te(p,n)125I reaction

A total of five data sets were found in literature: [67–71] (see Fig. 36).

Three datasets are new and were not used in the previous evaluation [2]: [68–70].

The single discrepant data point of Zweit [68] was deselected due to its low cross-section value.

The lowest energy outlying data point of Al-Azony [70] was removed. The selected data and the Padé fit are shown in Fig. 37.
Three data sets measured by Bastian [72] on highly enriched 124Te and by Zaidi [73] and Hermanne [74] on tellurium target with natural isotopic composition were found in literature (Fig. 38). Zaidi [73] and Hermanne [74] data were not considered relevant here due to the low threshold (3.2 MeV) of the contaminating 125Te($d,2n$)125I reaction, so those data are not shown in Fig. 38. Selected data are shown vs the Padé fit in Fig. 39.

Integral yields for production of 125I

Calculated integral yields of the 125Te(p,n)125I and 124Te(d,n)125I reactions are shown in Fig. 40.

169Yb production

169Yb emits a low-energy photon spectrum, evaluated for use in high dose rate brachytherapy.

The decay scheme and the decay data are shown in Fig. 41 and Table 2.

The 169Tm(p,n)169Yb and 169Tm($d,2n$)169Yb reactions were evaluated.

Cross sections for production of 169Yb

Four data sets measured by [75–78] were found in literature. Two of them are new and were not considered in the
previous evaluation: [77, 78]. All data sets were selected and compared with TENDL predictions in Fig. 42.

The data in Spahn [76] were normalized considering the systematic trend of the other selected datasets. Two outlying data points of Birattari [75] near the maximum were excluded from the figure and uncertainties were increased up to 10%. The fitted data versus the Padé fit are shown in Fig. 43.

169Tm(d,2n)169Yb reaction

A total of four data sets were found in literature: [79–83] and are compared to TENDL libraries in Fig. 44. The results of [80–83] are new as they were not considered in the earlier evaluation. All data sets were selected for fitting without changes and are shown vs the Padé fit in Fig. 45.
Integral yields for production of 169Yb

Calculated integral yields of the 169Tm(p,n)169Yb and 169Tm($d,2n$)169Yb reactions are shown in Fig. 46.

177Lu production

The ground state of 177Lu is one of the most important novel therapeutic $\beta^−$ emitters that also emits low energy gammas for imaging and localization with gamma cameras (a
Fig. 41 169Yb decay scheme

\[
\begin{array}{c}
1/2^- & 46 \text{ s} \\
\downarrow & \\
7/2+ & \text{IT 100%} \\
\downarrow & \\
^{169}\text{Yb} & 32.018 \text{ d} \\
\downarrow & \\
& \text{EC 100%} \\
\downarrow & \\
1/2+ & \\
\end{array}
\]

Fig. 42 169Tm(p,n)169Yb reaction: all experimental data and TENDL predictions

Fig. 43 169Tm(p,n)169Yb reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)
The simplified decay scheme and the decay data are shown in Fig. 47 and collected in Table 2. The $^{176}\text{Yb}(d,p)^{177}\text{Yb}$ reaction was evaluated.

A total of 4 data sets were found in literature for formation of the parent radionuclide ^{177}Yb: [84–87] and are compared to TENDL evaluations in Fig. 48. The data sets of Tárkányi [85] and Khandaker [87] are new. All data series were selected for fitting and are compared versus the Padé fit in Fig. 49.

$^{176}\text{Yb}(d,p)^{177}\text{Yb}$ reaction

A total of 5 data sets were found in literature: [84, 85, 87–89]. The results by [85–88] are new as they were published after the earlier evaluation. All available data are compared to TENDL libraries in Fig. 50.

Fig. 44 $^{169}\text{Tm}(d,2n)^{169}\text{Yb}$ reaction: all experimental data and TENDL predictions

Fig. 45 $^{169}\text{Tm}(d,2n)^{169}\text{Yb}$ reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)
The data sets of Tarkanyi [85, 86] are deselected as they are significantly different within the uncertainty limits of the three other datasets that agree very well. The selected data are compared with the Padé fit in Fig. 51.

Calculated integral yields of the 176Yb(d,p)177Yb and 176Yb(d,x)177gLu reactions are shown in Fig. 52.
186gRe production

The radionuclide 186gRe provides both high-abundance β⁻ particle emissions to deliver high doses, and low-energy γ-rays suitable for imaging.

The simplified decay scheme and the decay data are presented on Fig. 53 and Table 2. The 186 W(p,n)186gRe and 186 W(d,2n)186gRe reactions were evaluated.
A total of 11 data sets were found in literature: [90–102] and are compared with TENDL libraries in Fig. 54. Four sets are new and were reported after the last evaluation: [98–101].

The reason of large systematic disagreements was not found during detailed investigation of the reported experimental methods and data evaluation methods. Systematic behavior of the excitation functions in the same atomic mass range was also studied. The data by Shigeta [90], Zhang [92], Khandaker [98], and Tarkanyi [94] were deselected as they show too high or too low cross-section values, respectively. Lapi data [97] were normalized at the maximum to get more data points to fit near the maximum. Selected data vs the Padé fit are compared in Fig. 55.

A total of 11 data sets were found in literature: [103–114] which are compared with TENDL evaluations in Fig. 56. Three datasets are new since the last evaluation: [112–114].

Three sets were deselected: Manenti [104] and Duchemin [106] (unusual shape, too high cross-section values) and Alekseev [110] (shifted in energy).

The too low cross-section point at 15.7 MeV of Zhenlan [105] was not taken into account for fitting. The selected data and the Padé fit are shown in Fig. 57.

186 W(p,n)186Re reaction

A total of 11 data sets were found in literature: [90–102] and are compared with TENDL libraries in Fig. 54. Four sets are new and were reported after the last evaluation: [98–101].

The reason of large systematic disagreements was not found during detailed investigation of the reported experimental methods and data evaluation methods. Systematic behavior of the excitation functions in the same atomic mass range was also studied. The data by Shigeta [90], Zhang [92], Khandaker [98], and Tarkanyi [94] were deselected as they show too high or too low cross-section values, respectively. Lapi data [97] were normalized at the maximum to get more data points to fit near the maximum. Selected data vs the Padé fit are compared in Fig. 55.

186 W(d,2n)186Re reaction

A total of 11 data sets were found in literature: [103–114] which are compared with TENDL evaluations in Fig. 56. Three datasets are new since the last evaluation: [112–114].

Three sets were deselected: Manenti [104] and Duchemin [106] (unusual shape, too high cross-section values) and Alekseev [110] (shifted in energy).

The too low cross-section point at 15.7 MeV of Zhenlan [105] was not taken into account for fitting. The selected data and the Padé fit are shown in Fig. 57.
Integral yields for production of 186Re

Calculated integral yields of the 186 W(p,n)186Re and 186 W(d,2n)186Re reactions are shown in Fig. 58.

192Ir production

The 192Ir has good decay properties for therapy (high intensity beta radiation and long half-life), but it emits undesirable high-energy gammas difficult for shielding. It is commonly used in brachytherapy. The simplified decay scheme and the decay data are presented in Fig. 59 and Table 2.

Cross sections for production of $^{192m1+9}$Ir

The reactions 192Os(p,n)$^{192m1+9}$Ir and 192Os(d,2n)$^{192m1+9}$Ir were evaluated.

A total of four data sets were found in literature: [115–118] and were compared with TENDL evaluations in Fig. 60. The two sets by Szelecsenyi and Hermanne [117, 118] are new since the last evaluation. All data sets were selected and fitted and are compared vs the Padé fit in Fig. 61.
Fig. 54 $^{186}\text{W}(p,n)^{186}\text{Re}$ reaction: all experimental data and TENDL predictions

Fig. 55 $^{186}\text{W}(p,n)^{186}\text{Re}$ reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)
Fig. 56 $^{186}W(d,2n)^{186}\text{Re}$ reaction: all experimental data and TENDL predictions

Fig. 57 $^{186}W(d,2n)^{186}\text{Re}$ reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)
Two experimental data sets were published and compared to TENDL evaluations in Fig. 62. Both datasets were selected for fitting: [119, 120] Fitted data versus the Padé fit are shown in Fig. 63.

The data series of Hermanne [120] is new and was not included into the earlier evaluation.

\[\text{Integral yields for production of } ^{192}\text{m}^{1+g}\text{Ir} \]

Calculated integral yields of the \(^{192}\text{Os}(p,n)^{192m1+g}\text{Ir}\) and \(^{192}\text{Os}(d,2n)^{192m1+g}\text{Ir}\) reactions are shown in Fig. 64.
211At production

211At is one of the most promising α-particle emitting radionuclides for targeted radionuclide therapy using short penetration, high linear energy transfer and great biological effectiveness of the α-particles. 210At is an impurity that leads to production of radio-toxic 210Po. The decay schemes of 211At and 210At are shown in Figs. 65 and 66 and their decay data are collected in Table 2.

The 209Bi(α,2n)211At and 209Bi(α,3n)210At reactions were evaluated.
Cross sections for production of $^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$ and $^{209}\text{Bi}(\alpha,3n)^{210}\text{At}$

$^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$ reaction

A total of seven data sets were found in literature: [121–127] (in Refs. [126] and [127] two data sets were reported: by direct measurement and through decay of ^{211}Po). Comparison of available data versus TENDL evaluations is shown in Fig. 67. No new data were reported since the last evaluation in [2]. The data by Stickler [124] were deselected, due to significantly lower cross-section values. Fitted data versus the Padé fit are shown in Fig. 68.

$^{209}\text{Bi}(\alpha,3n)^{210}\text{At}$ reaction

A total of 13 data sets were found in literature: [121–132] (two data sets were reported in [126, 127]: by direct measurement and through decay of ^{210}Po). Available data are compared with TENDL evaluations in Fig. 69. No new data were published since the last evaluation. The data by Rat-tan [128] were deselected because they show significantly lower cross-section values, similarly data above 38 MeV of incident α-energy from Rizvi [130] were also deselected due
Fig. 64 Yield calculated from the recommended cross sections for 192Os($p,n)^{192}$Ir and 192Os($d,2n)^{192}$Ir reactions

Fig. 65 Decay scheme of 211At, 211mPo and 211Po
to too low and scattered cross-section values. The selected
data were fitted and are compared vs the Padé fit in Fig. 70.

Summary

New evaluations were performed on 25 reactions for production of 67Cu, 103Pd, 102mRh, 114mIn, 125I, 169Yb, 177Lu, 186Re, 192Ir and 210,211At therapeutic radioisotopes by upgrading the compilations with new experimental data and to get uncertainties of the recommended data. The experimental data were compared with theoretical predictions taken from the TENDL-2017 and TENDL-2019 libraries. A Padé fitting method was applied for the selected evaluated data-sets to deduce recommended data and their uncertainties. Based on recommended production data integral yields were calculated. Recommended cross-section data and their

Integral yields for production of 211At and 210At

Calculated integral yields of the 209Bi(α,2n)211At and 209Bi(α,3n)210At reactions are shown in Fig. 71.
Fig. 68 209Bi($\alpha,2n$)211At reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)

Fig. 69 209Bi($\alpha,3n$)210At reaction: all experimental data and TENDL predictions
uncertainties for production of therapeutic radionuclides are available on the Web page of the IAEA Nuclear Data Section at https://nds.iaea.org/radionuclides and also at the IAEA medical portal https://nds.iaea.org/medportal. These data have importance for radionuclide production and can be used to validate nuclear reaction models.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in

Fig. 70 209Bi(α,3n)210At reaction: selected experimental works (with uncertainties) and Padé fit with derived uncertainties (dashed line, right hand scale)

Fig. 71 Yield calculated from the recommended cross sections for 209Bi(α,2n)211At and 209Bi(α,3n)210At reactions
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gul K, Hermann A, Mustafa MG, Nortier FM, Oblozinsky P, Qaim SM, Scholten B, Shubin Y, Takács S, Tárkányi FT, Zhuang Y (2001) Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions IAEA Technical Report IAEA-TECDOC-1211, May 2001, Vienna.

2. Béták E, Caldeira AD, Capote R, Carlson BV, Choi HD, Guimaraës FB, Ignatyuk AV, Kim SK, Kirta S, Kovalev SF, Menapace E, Nichols AL, Nortier M, Pompeia P, Qaim SM, Sholten B, Shubin Yu N, Sublet J-Ch, Tárkányi F (2011) Nuclear data for production of therapeutic radionuclides (Technical Editors S.M. Qaim, F. Tárkányi, R. Capote) Technical Report Series No. 473, IAEA, Vienna, 2011.

3. Hermann A, Ignatyuk AV, Capote R, Carlson BV, Engle JW, Kellett MA, Kitsi B, Kim G, Kondev KG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Tárkányi FT, Verpelli M (2018) Reference cross sections for charged-particle monitor reactions. Nucl Data Sheets 148:338–382.

4. Tárkányi FT, Ignatyuk AV, Capote R, Carlson BV, Engle JW, Kellett MA, Kitsi B, Kim G, Kondev KG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Tárkányi FT, Verpelli M (2019) Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters. J Radioanal Nucl Chem 319:487–531.

5. Tárkányi FT, Ignatyuk AV, Capote R, Carlson BV, Engle JW, Kellett MA, Kitsi B, Kim G, Kondev KG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Tárkányi FT, Verpelli M (2019) Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J Radioanal Nucl Chem 319:533–666.

6. Engle JW, Ignatyuk AV, Capote R, Carlson BV, Hermann A, Kellett MA, Kitsi B, Kim G, Kondev KG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Tárkányi FT, Verpelli M (2019) Recommended nuclear data for production of selected therapeutic radionuclides. Nuclear Data Sheets 155:56–74.

7. Hermann A, Tárkányi FT, Ignatyuk AV, Takács S, Capote R (2021) Upgrade of IAEA recommended data of selected nuclear reactions for production of PET and SPECT isopes. Nuclear Data Sheets 173:285–308.

8. Padé HE (1892) Sur la représentation d’une fonction par des fractions rationnelles. Ann L’École Norm. 9(3):3–93.

9. Vinogradov VN, Gai EV, Rabotnov NS (1987) Analytical approximation of data in nuclear and neutron physics. Energoatomizdat, Moscow.

10. Capote R, Badikov S, Carlson AD, Duran I, Gunsing F, Neudecker D, Pronyaev VG, Schillebeeckx P, Schnabel G, Smith DL, Wallner A (2020) Unrecognized sources of uncertainties (USU) in experimental nuclear data. Nuclear Data Sheets 1(163):191–227.

11. Koning AJ, Rochman D, Sublet JC (2017) TENDL-2017 TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl_2017/tendl2017.html.

12. Koning AJ, Rochman D, Sublet JC, Dzyziuk N, Fleming M, Van der Marck S (2019) TENDL: complete nuclear data library for innovative nuclear science and technology. Nuclear Data Sheets. 155:1–55.

13. Bonardi M (1987) The contribution to nuclear data for biomedical radioisotope production from the Milan cyclotron facility. In: Proceedings of the IAEA consultants’ meeting on data requirements for medical radioisotope production, Tokyo, Japan, INDC(NDS)-195/GZ, (ed. K. Okamoto) 1988, pp 98–112. International Atomic Energy Agency (IAEA).

14. Otuka N, Takács S (2015) Definitions of radioisotope thick target yields. Radiochim Acta 103(1):1–6.

15. Evaluated Nuclear Structure Data File (ENSDF). Available online at http://www.nndc.bnl.gov/ensdf/. Developed and maintained by the International Network of Nuclear Structure and Decay Data Evaluators (NNSD) (see nds.iaea.org/ndsdl/).

16. LiveChart of Nuclides, IAEA decay data retrieval code. Available online at nds.iaea.org/livechart/.

17. NuDat, Brookhaven National Laboratory, USA. Decay data retrieval code. Available online at http://www.nndc.bnl.gov/nudat3/.

18. Cohen BL, Newman E, Handley TL (1955) (p, p+n) and (p,2p) cross sections in medium weight elements. Phys Rev 99:723–727 (EXFOR: B0049).

19. Morrison DL, Caretto AA Jr (1964) Recoil study of the 62Zn(n,p)63Cu reaction. Phys Rev 133:B1165–B1170 (EXFOR: R0047).

20. Morrison DL, Caretto AA (1962) Excitation functions of (p, x) reactions. Phys Rev 127:1731–1738 (EXFOR: C0697).

21. McGee T, Rao CL, Saha GB, Yafee L (1970) Nuclear interactions of 54Sc and 60Zn with protons of medium energy. Nucl Phys A 150:11–29 (EXFOR: B0053).

22. Mirzadeh S, Mausner LF, Srivastava SC (1986) Production of no-carrier added 67Cu. Appl Radiat Isot 37:29–36 (EXFOR: 12970).

23. Levkovskij VN (1991) Activation cross section nuclides of average masses (A = 40–100) by protons and alpha-particles with average energies (E = 10–50 MeV). Moscow, Russia (EXFOR: A0510).

24. Stoll T, Kasteliner S, Shubin YN, Coenen HH, Qaim SM (2002) Excitation functions of proton induced reactions on 66Zn from threshold up to 71 MeV with specific reference to the production of 65Cu. Radiochim Acta 90:309–313 (EXFOR: O1002).

25. Bonardi ML, Groppi F, Mainardi HS, Kokhanyu VM, Lapshina EV, Mebel MV, Zhiukov BL (2005) Cross-section studies on 66Cu with zinc target in the proton energy range from 141 down to 31 MeV. J Radioanal Nucl Chem 264:101–105 (EXFOR: O1310).

26. Szelcscényi F, Steyn GF, Dolley SG, Kovács Z, Vermeulen C, van der Walt TN. New cross-section data on the 68Zn(p,2p)67Cu nuclear reaction: production possibility of 67Cu used for internal radiotherapy. In: 15th Pacific Basin Nuclear Conf. (Proc. Conf. Sydney, 2006), CD-ROM (EXFOR: no).

27. Szelcscényi F, Steyn GF, Dolley SG, Kovács Z, Vermeulen C, van der Walt TN (2009) Investigation of the 68Zn(p,2p)67Cu nuclear reaction: new measurements up to 40 MeV and compilation up to 100 MeV. Nucl Instrum Meth Phys Res B 267:1877–1881 (EXFOR: D0574).

28. Schwarzbach R, Zimmermann K, Novak-Hofer I, Schubiger PA (2001) A comparison of Cu-67 production by proton (67- to 12-MeV) induced reaction on Zn-68/ Zn-70. J Labelled Compd Radiopharmaceut 44:S809–S811. https://doi.org/10.1002/jlc.25804410284 (EXFOR: O1369).

29. Pupillo G, Sounalet T, Michel N, Moua L, Esposito J, Haddad EV, Mebel MV, Zhuikov BL, Mebel MV, Zhuikov BL (2005) Cross-section studies on 66Cu with zinc target in the proton energy range from 141 down to 31 MeV. J Radioanal Nucl Chem 264:101–105 (EXFOR: O1310).

30. Kastleiner S, Coenen HH, Qaim SM (1999) Possibility of production of 67Cu at a small sized cyclotron via the (p, α) reaction on enriched 70Zn. Radiochim Acta 84:107–110 (EXFOR: 00738).
31. Tárkányi F, Takács S, Ditró F, Hermann A, Sonck M, Shubin Yu (2004) Excitation functions of deuteron induced nuclear reactions on natural zinc up to 50 MeV. Nucl Instrum Meth Phys Res B 217:531–550 (EXFOR:D4144)

32. Khandaker MU, Haba H, Murakami M, Otsuka N (2015) Production cross-sections of long-lived radionuclides in deuteron-induced reactions on natural zinc up to 23 MeV. Nucl Instrum Methods Phys Res B 346:8–16 (EXFOR:E2473)

33. Blaser JP, Boehm F, Marmier P, Scherrer P (1951) Anregungsfunktionen und Wirkungsquerschnitte der (p, n)-Reaktion (II). Helv Phys Acta 24:441–464 (EXFOR: P0033)

34. Albert RD (1959) (p, n) cross section and proton optical-model parameters in the 4 to 5.5 MeV energy region. Phys Rev 115:925–927 (EXFOR: T0130)

35. Johnson CH, Galonsky A, Inskeep CN (1951) Anregungsfunktionen und Wirkungsquerschnitte der (p, n)-Reaktion (II). Helv Phys Acta 24:441–464 (EXFOR: F0001)

36. Harper PV, Lathrop K, Need JL (1961) The thick target yield and excitation function for the 103Rh(p,n)103Pd reaction relevant to the production of 111In and 114mIn from the separated isotopes of cadmium using 70 to 400 MeV protons. Phys Rev 178:1887–1893 (EXFOR: C0345)

37. Skakun YA, Kljuichev AP, Rakivnenko YuN, Romanj IA (1975) Excitation functions of (p, n)- and (p,2n)-reactions on cadmium isotopes Izv. Rossiiiskoi Akademii Nauk. Ser Fiz. 39:24–30 (EXFOR: A0001)

38. Abramovitch SN, Guzhoviskij BY, Zvengiordiki AG, Trusillo SV (1975) Isobaric analog resonances appearing during elastic scattering of protons and in the (p,n) reaction of 110Cd, 112Cd, 114Cd, 116Cd nuclei Izv. Rossiiiskoi Akademii Nauk Ser Fiz. 39:1688–1694 (EXFOR: A0129)

39. Zaitseva NG, Knoket O, Kowalew A, Micecz P, Rurcz E, Khalkin VA, Ageev VA, Klyuchnikov AA, Kuzina LA, Linev AF (1990) Excitation functions and yields for 111In production using 13.14.4aCd(p,x)111In reactions with 65 MeV protons. Appl Radiat Isot 41:177–183 (EXFOR: A0506)

40. Mazarie M, Afarideh H, Haji-Saeid SM, Ardehen K (1999) Production of 111In by irradiation of natural cadmium with deuterons and protons in NRCAM cyclotron. In: International conference on cyclotrons and their applications (Proc. Int. Conf. Caen, 1998), (Baron E., Lievin M., Eds), Institute of Physics Publishing, Bristol, pp 65–67 (EXFOR: no)

41. Zarubin PP, Serejeev VO (2001) Study of (p,n) reaction on 114Cd nucleus. Bull Russ Acad Sci Phys 65:1753 (EXFOR: F0687)

42. Tárkányi F, Takács S, Hermann A, Van Der Winkel P, Van Der Zwart R, Shakun Ye A, Shubin YuN, Kovalev SF (2000) Investigation of the production of the therapeutic radioisotope 114mIn through proton and deuteron induced nuclear reactions on cadmium. Radiocimica Acta 93:561–570 (EXFOR: D4160)

43. Said SA, Elmugharbey EK, Asfour FI (2006) Experimental investigation and nuclear model calculations on proton-induced reactions on highly enriched 114Cd at low energies. Appl Radiat Isot 64:1655–1660 (EXFOR: O1502)

44. Tárkányi F, Ditró F, Takács S, Csisik J, Hermann A, Uddin S, Shubin YuN (2004) Study of activation cross sections of deuteron induced reactions on rhodium up to 40 MeV. Nucl Instrum Meth Phys Res B 217:531–550 (EXFOR:D4144)

45. Hermanne A, Tárkányi F, Takács S, Ditró F (2015) Extension of activation cross section data of deuteron induced nuclear reactions on rhodium up to 50 MeV. Nucl Instrum Meth Phys Phys Res B 362:110–115 (EXFOR: D4337)

46. Blaser JP, Boehm F, Marmier P, Peaslee DC (1951) Fonctions d’exuction de la reaction (p, n) I. Helv Phys Acta 24:3–38 (EXFOR: B0048)

47. Blaser JP, Boehm F, Marmier P, Peaslee DC (1951) Fonctions d’exuction de la reaction (p, n) II. Helv Phys Acta 24:3–38 (EXFOR: B0048)

48. Hermanne A, Tárkányi F, Takács S (2015) Extension of activation cross section data of deuteron induced nuclear reactions on rhodium up to 50 MeV. Nucl Instrum Meth Phys Phys Res B 362:110–115 (EXFOR: D4337)
123. Deconninck G, Longrée M (1974) Fonctions d’excitation des réactions induites par particules alpha sur 209Bi entre 40 et 100 MeV. Annales de la Société Scientifique de Bruxelles T88:341 (EXFOR: D0204)

124. Stickler JD, Hofstetter KJ (1974) Comparison of 3He-, 4He-, and 12C-induced nuclear reactions in heavy-mass targets at medium excitation energies (I). Experimental cross sections. Phys Rev C 9:1064–1071 (EXFOR: D0493)

125. Lambrecht RM, Mirzadeh S (1985) Cyclotron isotopes and radiopharmaceuticals—XXXV astatine-211. Int J Appl Rad Isot 36:443–450 (EXFOR: A0249)

126. Hermann A, Tárányi F, Takács S, Szücs Z, Shubin YuN, Dityuk AI (2005) Experimental study of the cross-sections of α-particle induced reactions on 209Bi. Appl Rad Isot 63:1–9 (EXFOR: O1272)

127. Hermann A, Tárányi F, Takács S, Szücs Z (2005) Experimental study of the cross sections of alpha-particle induced reactions on 209Bi. In: Int. Conf. Nucl. Data for Science and Technology, Santa Fe, USA, 26 Sep – 1 Oct 2004, Proceedings, Editors: R.C. Haight, P. Talou, T. Kawano, AIP (AIP Conference Proceedings 769), pp 957–960 (EXFOR: O1272)

128. Rattan SS, Singh RJ, Sahakundu SM, Prakash S, Ramuniah MV (1986) Alpha particle induced reactions of 209Bi and 65Cu and 63Cu. Radiochim Acta 39:61–63 (EXFOR: A0353)

129. Rattan SS, Chakravarty N, Ramaswami A, Singh RJ (1992) Alpha particle induced reactions of 209Bi at 55.7 and 58.6 MeV. Radiochimica Acta 57:7–10 (EXFOR: O1300)

130. Rizvi IA, Bhardwaj MK, Afzal Ansari M, Chaubey AK (1990) Non-equilibrium reaction mechanism in alpha-particle induced excitation function for 209Bi up to 60 MeV. Appl Rad Isot 41:215–219 (EXFOR: O1492)

131. Singh NL, Mukherjee S, Somayajulu DRS (1994) Non-equilibrium analysis of (a, xn) reactions on heavy nuclei. Nuovo Cimento A 107:1635–1645 (EXFOR: O1119)

132. Patel HB, Shah DJ, Singh NL (1999) Study of (a, xn) reactions on 169Tm, 181Ta and 209Bi up to 70 MeV. Nuovo Cimento 112:1439–1452 (EXFOR: D0491)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.