Functional Tests in Chronic Obstructive Pulmonary Disease Part 1: Clinical Relevance and Links to the International Classification of Functioning, Disability and Health

Kim-Ly Bui1,2; André Nyberg2; François Maltais,1,2 and Didier Saey1,2

1 Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
2 Faculté de médecine, Université Laval, Québec, QC, Canada

Corresponding Author:
Didier Saey, PT, PhD
Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5
Telephone 418-656-8711 ext 2614
Fax 418-656-4509
E-mail didier.saey@rea.ulaval.ca

Source(s) of support: None

Running Head: Functional outcome measures in COPD

Key Words: Patient outcome assessment, functional capacity, functional performance, ICF

Word Count: 2866
Abstract

Chronic obstructive pulmonary disease is a major cause of morbidity and mortality worldwide and an important cause of disability. A thorough patient-centered outcome assessment, including not only measures of lung function, exercise capacity and health-related quality of life, but also of functional capacity and performance in activities of daily life, is imperative for a comprehensive management of chronic obstructive pulmonary disease. This American Thoracic Society Seminar Series is devoted to help clinicians substantiate their choice of functional outcome measures in this population. In Part 1 of this two-part Seminar Series, we aim to describe the various domains of functional status, to elucidate terms and key concepts intertwined with functioning, and to demonstrate the clinical relevance of assessing functional capacity in the context of activities of daily living, in agreement with the International Classification of Functioning, Disability and Health. We hope that a better understanding of the various defining components of functional status will be instrumental to healthcare providers to optimize chronic obstructive pulmonary disease evaluation and management, ultimately leading to improved quality of life of patients afflicted by this condition. This first paper also serves as an introduction to Part 2 of this Seminar Series, where the main functional tests available to assess upper and lower body functional capacity of these patients will be discussed.

Abstract Word Count: 215
With 210 million individuals affected worldwide, chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death. For people living with severe COPD, the disease imposed an enormous burden of disability and impaired quality of life (1).

Even though COPD is primarily a disease of the respiratory system, impaired respiratory function is only one aspect of the disability experienced by individuals with COPD. In addition to expiratory flow limitation and dyspnea, patients with COPD often have comorbidities such as cardiovascular diseases, osteoporosis, limb muscle dysfunction, and psychological disorders, all of which contribute to limited capacity and restricted participation in physical and emotional activities of daily life(2, 3), and as a consequence, to a poor health-related quality of life(4-8).

Pulmonary rehabilitation relieves dyspnea and fatigue, improves exercise capacity and emotional function, and enhances the sense of control that individuals have over their health condition(7, 9). Thus, pulmonary rehabilitation is now recognized as a core component for the management of chronic respiratory diseases (7). Because this intervention also aims to improve patients’ ability to carry out daily tasks and to fulfill their social roles, measuring patient-centered outcomes such as activities of daily life and participation - beyond the sole assessment of body structures and functions such as expiratory flows, and maximal oxygen consumption based on cardiorespiratory exercise testing- is crucial. Clinicians should thus be aware of existing and validated evaluation tools that are representative of patients’ global functioning, and not only of their exercise tolerance.

The World Health Organization recommends the use of the International Classification of Functioning, Disability and Health (ICF) to comprehensively assess the health experience of patients living with specific health conditions(10, 11). This classification uses a globally agreed-
on language and reflects the biopsychosocial model in a unified view of various dimensions of health(11).

In the first part of this two-part AnnalsATS Seminar Series, we aim to demonstrate the clinical relevance of globally assessing function in patients with COPD. In agreement with the ICF framework, the approach we advocate includes evaluation of the three distinct dimensions of bodily function; exercise capacity; functional capacity; and functional performance, in. This first paper serves as an introduction to the second part of this Seminar Series in which the main functional tests available to assess upper and lower body functional capacity and their clinical relevance in different contexts of COPD management will be discussed to help health care professionals substantiate their choice of functional tests in clinical practice or in laboratory settings.

International Classification of Functioning, Disability and Health (ICF)

Based on the work of Nagi(12, 13), the ICF was developed by the World Health Organization to provide a comprehensive framework of definitions and structures for rehabilitation(14), allowing a patient-centered outcome assessment, including not only body structures and functions but also patient functioning in activities and participation. In this model, the whole health experience of the individual is considered, rather than a limited focus on pathophysiological aspects of diseases.
The Five Domains of Function and Disability

As illustrated in Figure 1, the ICF framework presents functioning and disability of an individual with a given health condition as the interaction between five different domains: body functions and structures, activities, participation, environmental and personal factors.

Body function and structure domain refers to the anatomical and physiological functions of the different body systems. Deficits in this domain are called “impairments” (e.g. airflow obstruction, muscle weakness, poor cardiorespiratory fitness). The activity domain describes the ability of an individual to perform specific and isolated tasks. Decrements in this domain are called “limitations” and describe the difficulty that an individual experiences when performing a particular task in a controlled environment (e.g. walking up a sloping surface, putting down objects, raising up objects to a higher level) (11).

The participation domain describes one’s ability to be involved in life situations. Participation restrictions describe the reduced ability of a person to maintain normal role functions and interact with society (e.g. performing different tasks in a given time for a remunerated employment, engaging in recreational or leisure activities, taking care of plants in- or outdoors) (11).

Finally the contextual factors, which include the environmental (e.g. air quality, products or substances for personal consumption) and personal (e.g. age, psychosocial status, ethnicity) factors are directly linked to the first three domains and complete this framework. Unlike other existing classifications, ICF sets the ground for a standard language when describing disability (15). This language standardization is relevant and important to describe the functioning of patients with COPD and improve communication between all individuals who could potentially
be involved (e.g. patients, families, health and social professionals, researchers, and policy-makers) in the development of a comprehensive interdisciplinary rehabilitation plan of care (15). Therefore, guidelines in COPD management and rehabilitation could appropriately be designed and put into action based on this ICF framework.

The Comprehensive Core Set

In 2004, 17 experts from eight countries with various professional backgrounds developed an ICF Comprehensive Core Set for multidisciplinary assessment in patients with obstructive lung diseases (under which COPD is the most representative worldwide) (16). This Core Set has been developed from a formal decision-making and consensus process integrating evidence gathered from preliminary studies including a Delphi exercise, a systematic review and an empirical data collection using the ICF checklist(16). It includes 19 categories from the domain “body functions”, five from “body structures”, 24 from “activities and participation”, and 23 from “environmental factors”. Personal factors were not classified by this initiative (16).

According to the Comprehensive ICF Core Set, the most frequent impairments in body structures and functions in patients with COPD are the structure and function of respiratory system (100%), exercise tolerance (100%), structure of cardiovascular system (83%), sensations associated with cardiovascular and respiratory functions (92%), limb muscle function (50%) and structure of the trunk (50%) (16). The most frequent limitations in activities and participation were walking (100%), moving around (100%), carrying out daily routine (58%), doing housework (58%) and dressing (50%)(16). In line with the focus of this paper, relevant ICF components adapted from this Core Set and that are commonly assessed in COPD are presented in Figure 2.
Assessment of Physical Components of Functional Status in Patients with COPD

While recognizing that environmental and personal factors (which includes psychosocial factors) associated with chronic respiratory diseases have an impact on functional status and participation in daily activities, this Seminar Series puts the emphasis on the physical dimension of functional status. Regarding the physical components of functioning, the ICF framework and Core Sets lead to the evaluation of three closely interrelated but distinct concepts: exercise capacity, functional capacity and functional performance (Figure 3), each of them referring to a specific domain (body structure and function, activities, and participation, respectively).

Exercise capacity refers to one’s physiological maximal response to exercise (e.g.: maximal oxygen consumption or heart rate) or the body structure’s maximal ability to fulfill its own function (e.g.: maximal voluntary contraction of a skeletal muscle). *Functional capacity* is defined as one’s maximal potential to realize a functional activity in a standardized environment (e.g.: walking distance during the 6-minute walk test).

Functional performance refers to the ability to complete “the physical, psychological, social, occupational, and spiritual activities that people actually do in the normal course [and context] of their lives to meet basic needs, fulfill usual roles, and maintain their health and well-being” (e.g.: ability to get dressed without help) (7, 17). Functional performance thus refers to participation in daily life activities and is usually performed at a level that does not require nor meet maximal exercise capacity. Examples of commonly used outcomes and associated tests hinged on the ICF components and categorized according to the different key concepts to which they refer are presented in Table 1. A greater physiological exercise capacity will likely
result in a greater maximal potential ability to realize functional activities and thus patients should perform a daily functional task more easily, e.g. in a lesser time, with less dyspnea (better functional performance).

Exercise Capacity

In patients with COPD, exercise tolerance tests include the incremental or constant walking or cycling tests, measurement of voluntary or nonvoluntary maximal muscle contractions, spirometry, and field walking tests. Exercise tolerance tests are often used to assess objectively a patient’s exercise capacity and response to, and efficacy of, pulmonary rehabilitation.

Table 1 presents examples of exercise capacity tests for various body structures and functions. Field walking tests are, however, primarily considered to assess functional capacity, as explained in the next section. Often used as a surrogate to determine functional capacity, maximal exercise tests- such as incremental and constant cycling and walking tests- are usually performed with comprehensive monitoring of cardiopulmonary variables, providing precise indications of maximal and submaximal exercise capacity and of the physiological responses to exercise, in addition to being useful for prognostication of patients with respiratory diseases (18).

Exercise capacity tests are especially useful for quantifying exercise tolerance, determining mechanisms of and contributors to exercise limitation, and prescribing the exercise training regimen to be used during pulmonary rehabilitation. They can predict co-existing or alternative conditions, as well as patients’ prognosis in terms of the likelihood of exacerbations, hospitalizations, and even mortality (4, 19, 20). However, they do not evaluate
limitations (activities domain) or the ability to perform daily activities (participation domain) of the ICF Framework (18). Thus, in addition to maximal exercise tests, activity and participation domains need to be addressed with specific tests as representative as possible of one’s functional status.

Functional Capacity

Field walking tests are low-cost, require little equipment, and are considered to be more reflective of daily life than laboratory-based treadmill or cycle ergometer tests. Although these tests were developed to evaluate functional capacity and indicate one’s maximal ability to conduct a functional activity (in that case walking), they can also measure exercise capacity by providing physiological measures when cardiopulmonary variables are monitored (body functions).

The most recognized test is the self-paced 6-minute walk test(7, 19-21), which has been used in many clinical trials of pulmonary rehabilitation in COPD(22). The incremental shuttle walk test and the endurance shuttle walk test are externally paced field walking tests(23, 24). These two tests are considered more standardized than the 6-minute walk test since the walking speed is set and thus less influenced by motivation, self-selected pacing, or variability of instructions provided. The incremental shuttle walk test is a true symptom-limited maximal exercise capacity test since the distance walked relates strongly to peak aerobic capacity(25). The endurance shuttle walk test is a constant walking speed test performed at a set speed based on performance during the incremental shuttle walk test: it cannot, therefore, be conducted independently from the latter. The outcome of the total distance covered in these
two tests is also a good indicator of one’s functional capacity since it presents the maximal
distance that a person can walk at a given speed.

Because a large variability in individual goals and physical limitations is present in
patients with chronic respiratory diseases, walking may not always be a significant functional
activity for the individual patient. Indeed, a large study suggested that up to one-third of
individuals with COPD do not describe walking as an important goal(8). In this context, there is
a growing interest in the use of functional tests that evaluate patient’s functional capacity in
activities other than walking. These tests were often designed and developed for aging
populations, but their use is also gaining popularity in chronic respiratory diseases.

To be reflective of functional performance and to adequately assess functional capacity,
functional tests need to be performed in a standardized environment and should include
components of the ICF focusing on physical functional activities such as maintaining a standing
position, changing basic body position, walking and moving, as well as carrying, moving and
handling objects as referred to in the ICF Chapter 4–Mobility(11). The most commonly used or
recommended tests to assess upper and lower body functional capacity and functional
performance in patients with COPD are listed in Table 2. Their specific methodologies,
metrological characteristics, strengths and weaknesses are reviewed in depth in Part 2 of this
Seminar Series.

Functional Performance

Because of the large variability in the impact of COPD on given individuals, none of the
functional capacity tests could possibly be considered as the perfect surrogate of real functional
status and functional performance of patients with COPD. Moreover, since functional performance should be considered as a whole with context (which includes physical and social environments), no laboratory-based tests are fully representative of patients’ true ability to fulfill their social roles since laboratory and often clinical contexts obviously differ on several aspects (e.g. distractions, physical environment, direct or indirect pressure from evaluators) from real life situations in which patients usually perform their activities.

In order to have a better idea of all the intricate dimensions that are involved, functional performance could be assessed using both direct observation of daily life activities in patients’ real environment and/or questionnaires such as the Pulmonary Functional Status and Dyspnea Questionnaire(26), the Pulmonary Functional Status Scale (short form) (27), the London Chest Activity of Daily Living (28) and the Canadian Occupational Performance Measure (29).

It is also feasible to quantify physical activity in daily life (defined as the totality of voluntary movements produced by skeletal muscles during every day functioning (30)). activity, in both healthy adults (30, 31) and those with chronic obstructive pulmonary diseases(32). As previously detailed(3), various technologies have been developed in recent years, integrating various motion sensors to different devices such as pedometers, watches (e.g. Fitbit(33)), and activity monitors(34-36) to quantify duration, frequency and intensity of physical activity.

Pedometers are portable devices usually worn at the belt/hips height counting the number of steps taken by an individual during the day.

The main advantages of pedometers are a low cost (37-39), an ease of use, easy-to-view data and good insight in the patients’ daily functional status(40). These devices may however underestimate the level of physical activity in patients walking at low speed where pedometers
may be less sensitive to detect movements(41, 42). Furthermore, pedometers give only a
glimpse of functional performance in daily life situations that involve walking activities and do
not capture other significant functional activities for patients. Numerous watches that keep
track of the number of steps taken in the day, calories spent, and distance walked for example,
were also recently put on the market but validation studies are still lacking. The reader is
invited to refer to the recently published European Respiratory Society statement on physical
activity(43) which provides a comprehensive review of the topic.

Clinical Relevance of Assessing Activities Limitations Using Functional Tests

The present article highlights the need for understanding the specific utility of functional tests
to assess activity limitations as also considered in a recent perspective by Nyberg and
colleagues(44). In patients with COPD, exercise capacity during cycling or walking tests is often
used as a surrogate for functional performance; however, in agreement with the ICF developed
by the World Health Organization, exercise capacity is only one aspect of functioning. Because
these laboratory or field tests evaluating exercise capacity do not provide an adequate
assessment of the limitations when performing significant daily activities, the use of functional
tests is encouraged for a comprehensive management of patients with COPD. By allowing
identification of specific limitations in tasks that are relevant to daily living such as standing,
carrying or handling objects, functional tests should lead to better individualized rehabilitation
interventions that should also be more effective in translating their benefits in daily life,
ultimately resulting in optimized health status and quality of life for the patients.
Because functional tests have been specifically designed to assess the ability of an individual to perform specific tasks of daily living in a controlled environment, they are suited in COPD to link how impaired body structure and function translates into reduced participation and ability to interact adequately within the society. These functional tests should be particularly useful in the context of pulmonary rehabilitation where improving functional status and participation in daily life is actively sought (7). Interestingly, many of these tests have demonstrated responsiveness to pulmonary rehabilitation (45-51), and could be used to assess the response to this therapeutic intervention.

The complexity of some functional tests (such as the walking or the Glittre ADL-tests) in terms of design and requirement for specific equipment limits their use to specialized teams. These tests should be conducted by physiotherapists or exercise specialists who are trained to administer exercise and functional tests in COPD. Pulmonary function and exercise laboratories, where exercise testing procedures are often performed, may offer appropriate clinical settings for the administration of these functional tests.

Other functional tests such as the sit-to-stand test, the timed-up and go test, and the 4-meter gait speed test, require minimal equipment and space and could be used in primary care settings. The specific context, the information sought through the measurement and patients’ limitations and own objectives should all be considered when choosing a functional test over another. These issues are detailed in Part 2 of this Seminar Series, in which the main functional tests commonly used or recommended to assess upper and lower body functional capacity in patients with COPD and in laboratory settings are discussed, based on the knowledge of the constructs and validated properties of the tests.
Acknowledgements

The authors thank Marc Perron, PT, M.Sc. for his review, opinions, and expertise regarding the International Classification of Functioning, Disability and Health.
References

1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist Sa, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine. 2007;176(6):532-55. doi: 10.1164/rccm.200703-456SO.

2. Schönhofer B, Ardes P, Geibel M, Köhler D, Jones PW. Evaluation of a movement detector to measure daily activity in patients with chronic lung disease. European Respiratory Journal. 1997;10(12):2814-9. doi: 10.1183/09031936.97.10122814.

3. Pitta F, Troosters T, Spruit Ma, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2005;171(9):972-7. doi: 10.1164/rccm.200407-855OC.

4. Decramer M, Vestbo J, Bourbeau J, Celi BRHDSC, Varela MVL, Nishimura M, et al. Global Initiative for Chronic Obstructive Lung Disease: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2014.

5. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigané R, et al. An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. American journal of respiratory and critical care medicine. 2014;189(9):e15-e62. doi: 10.1164/rccm.201402-0373ST.

6. Nici L, Donner C, Wouters E, ZuWallack R, Ambrosino N, Bourbeau J, et al. American Thoracic Society/European Respiratory Society Statement on Pulmonary Rehabilitation. American Journal of Respiratory and Critical Care Medicine. 2006;173(May):1390-413. doi: 10.1164/rccm.200508-1211ST.

7. Spruit Ma, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American thoracic society/European respiratory society statement: Key concepts and advances in pulmonary rehabilitation. American Journal of Respiratory and Critical Care Medicine. 2013;188(8):e13-64. doi: 10.1164/rccm.201309-1634ST.

8. Annegarn J, Meijer K, Passos VL, Stute K, Wiechert J, Savelberg HHCM, et al. Problematic Activities of Daily Life are Weakly Associated With Clinical Characteristics in COPD. Journal of the American Medical Directors Association. 2012;13(3):284-90. doi: 10.1016/j.jamda.2011.01.002.

9. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database of Syst Rev. 2015(2):212-. doi: 10.1002/14651858.

10. World Health O, editor International Classification of Functioning, Disability and Health (ICF) 20012001; Geneva.
11. World Health O. Towards a Common Language for Functioning, Disability and Health ICF. International Classification. 2002;1149:1-22.

12. Nagi SZ. A study in the evaluation of disability and rehabilitation potential: concepts, methods and procedures. American Journal of Public Health and the 1964;54(9):1568-79. doi: 10.2105/AJPH.54.9.1568.

13. Nagi S. Some Conceptual Issues in Disability and Rehabilitation. In: Sussman M, editor. Washington DC: American Sociological Association; 1965. p. 110-3.

14. Stier-Jarmer M, Grill E, Müller M, Strobl R, Quittan M, Stucki G. Validation of the Comprehensive ICF Core Set for Patients in Geriatric Post-Acute Rehabilitation Facilities. Journal of Rehabilitation Medicine. 2011;43(2):113-22. doi: 10.2340/16501977-0617.

15. Jácome C, Marques A, Gabriel R, Figueiredo D. Chronic obstructive pulmonary disease and functioning: implications for rehabilitation based on the ICF framework. Disability and rehabilitation. 2013;35(18):1534-45. doi: 10.3109/09638288.2012.745625.

16. Stucki A, Stoll T, Cieza A, Weigl M, Giardini A, Wever D, et al. ICF Core Sets for obstructive pulmonary diseases. Journal of Rehabilitation Medicine. 2004;36(SUPPL. 44):114-20. doi: 10.1080/16501960410016794.

17. Leidy N. Functional status and the forward progression of merry-go-rounds: toward a coherent analytical framework. 1994. p. 196-202.

18. Palange P, Ward Sa, Carlsen KH, Casaburi R, Gallagher CG, Gosselink R, et al. Recommendations on the use of exercise testing in clinical practice. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2007;29(1):185-209. doi: 10.1183/09031936.00046906.

19. Spruit Ma, Polkey MI, Celli B, Edwards LD, Watkins ML, Pinto-Plata V, et al. Predicting Outcomes from 6-Minute Walk Distance in Chronic Obstructive Pulmonary Disease. Journal of the American Medical Directors Association. 2012;13(3):291-7. doi: 10.1016/j.jamda.2011.06.009.

20. Spruit MA, Watkins ML, Edwards LD, Vestbo Jr, Calverley PMA, Pinto-Plata V, et al. Determinants of poor 6-min walking distance in patients with COPD: The ECLIPSE cohort. Respiratory Medicine. 2010;104(6):849-57. doi: 10.1016/j.rmed.2009.12.007.

21. Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM. Two-, six-, and 12-minute walking tests in respiratory disease. British medical journal (Clinical research ed). 1982;284(6329):1607-8. doi: 10.1136/bmj.284.6329.1607.

22. Lacasse Y, Goldstein R, Tj L, Martin S. Pulmonary rehabilitation for chronic obstructive pulmonary disease (Review). 2009(4).

23. Singh SJ, Morgan MD, Scott S, Walters D, Hardman aE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019-24. doi: 10.1136/thx.47.12.1019.
24. Revill SM, Morgan MD, Singh SJ, Williams J, Hardman AE. The endurance shuttle walk: a new field test for the assessment of endurance capacity in chronic obstructive pulmonary disease. Thorax. 1999;54(3):213-22. doi: 10.1136/thx.54.3.213.

25. Singh SJ, Morgan MDL, Hardman AE, Rowe C, Bardsley PA. Comparison of oxygen uptake during a conventional treadmill test and the shuttle walking test in chronic airflow limitation. European Respiratory Journal. 1994;7:2016-20. doi: 10.1183/09031936.94.07112016.

26. Lareau SC, Carrieri-Kohlman V, Janson-Bjerklie S, Roos PJ. Development and testing of the Pulmonary Functional Status and Dyspnea Questionnaire (PFSDQ). Heart Lung. 1994;23(3):242-50.

27. Weaver TE, Narsavage GL, Guilfoyle MJ. The Development and Psychometric Evaluation of the Pulmonary Functional Status Scale: an Instrument to Assess Functional Status in Pulmonary Disease. Journal of cardiopulmonary rehabilitation. 1998;18(2):105-11.

28. Garrod R, Bestall JC, Paul EA, Wedzicha JA, Jones PW. Development and validation of a standardized measure of activity of daily living in patients with severe COPD: The London chest activity of daily living scale (LCADL). Respiratory Medicine. 2000;94(6):589-96. doi: 10.1053/rmed.2000.0786.

29. Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. The Canadian Occupational Performance Measure: An outcome measure for occupational therapy. 1990. p. 82-7.

30. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh Ma, Minson CT, Nigg CR, Salem GJ, et al. Exercise and physical activity for older adults. Medicine and Science in Sports and Exercise. 2009;41(7):1510-30. doi: 10.1249/MSS.0b013e3181e3181a0c95c.

31. Riebe D, Franklin BA, Thompson PD, Garber CE, Whitfield GP, Magal M, et al. Updating ACSM’s Recommendations for Exercise Preparticipation Health Screening. Special Communications: Roundtable Consensus Statement. 2015;47(11):2473-9. doi: 10.1249/MSS.0000000000000664.

32. Hernandes NA, Teixeira DdC, Probst VS, Brunetto AF, Ramos EMC, Pitta F. Profile of the level of physical activity in the daily lives of patients with COPD in Brazil. Jornal Brasileiro de Pneumologia. 2009;35(10):949-56. doi: 10.1590/S1806-37132009001000002.

33. Diaz KM, Krupka DJ, Chang MJ, Peacock J, Ma Y, Goldsmith J, et al. Fitbit®: An accurate and reliable device for wireless physical activity tracking. International Journal of Cardiology. 2015;185:138-40. doi: 10.1016/j.ijcard.2015.03.038.

34. Hill K, Dolmage TE, Woon L, Goldstein R, Brooks D. Measurement properties of the SenseWear armband in adults with chronic obstructive pulmonary disease. Thorax. 2010;65(6):486-91. doi: 10.1136/thx.2009.128702.

35. Cavalheri V, Donária L, Ferreira T, Finatti M, Camillo CA, Cipulo Ramos EM, et al. Energy expenditure during daily activities as measured by two motion sensors in patients with COPD. Respiratory Medicine. 2011;105(6):922-9. doi: 10.1016/j.rmed.2011.01.004.
36. Patel Sa, Benzo RP, Slivka Wa, Sciurba FC. Activity monitoring and energy expenditure in COPD patients: a validation study. Copd. 2007;4(2):107-12. doi: 10.1080/15412550701246658.

37. Le Masurier GC, Tudor-locke C. Comparison of pedometer and accelerometer accuracy under controlled conditions. Medicine and Science in Sports and Exercise. 2003;35(5):867-71. doi: 10.1249/01.MSS.0000064996.63632.10.

38. Tudor-Locke C, Williams JE, Reis JP, Pluto D. Utility of pedometers for assessing physical activity: construct validity. Sports medicine (Auckland, NZ). 2004;34(5):281-91. doi: 321204 [pii] ET - 2002/09/20.

39. Schneider PL, Crouter SE, Lukajic O, Bassett DR. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Medicine and Science in Sports and Exercise. 2003;35(10):1779-84. doi: 10.1249/01.MSS.0000089342.96098.C4.

40. O'Donnell DE, Gebke KB. Activity restriction in mild COPD: A challenging clinical problem. International Journal of COPD. 2014;9:577-88. doi: 10.2147/COPD.S62766.

41. Bassett DRJ, Ainsworth BE, Leggett SR, Mathien C, Main JA, Hunter DC, et al. Accuracy of five electronic pedometers for measuring distance walked. Medicine & Science in Sports & Exercise. 1996;28(8):1071-7.

42. Dallas MI, McCusker C, Haggerty MC, Rochester CL, Zuwallack R. Using pedometers to monitor walking activity in outcome assessment for pulmonary rehabilitation. Chronic respiratory disease. 2009;6(4):217-24. doi: 10.1177/1479972309346760.

43. Watz H, Pitta F, Rochester CL, Garcia-aymerich J, Zuwallack R, Troosters T, et al. An official European Respiratory Society statement on physical activity in COPD. Eur Respir J. 2014;44:1521-37. doi: 10.1183/09031936.00046814.

44. Nyberg A, Saey D, Maltais F. Why and How Limb Muscle Mass and Function Should Be Measured in Patients with COPD. Annals of the American Thoracic Society. 2015:1-26. doi: 10.2136/sssaj2013.02.0065.

45. Holland aE, Spruit Ma, Troosters T, Puhan Ma, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society Technical Standard: field walking tests in chronic respiratory disease. European Respiratory Journal. 2014;44:1428-46. doi: 10.1183/09031936.00150314.

46. Beauchamp MK, O'Hoski S, Goldstein RS, Brooks D. Effect of pulmonary rehabilitation on balance in persons with chronic obstructive pulmonary disease. Archives of Physical Medicine and Rehabilitation. 2010;91(9):1460-5. doi: 10.1016/j.apmr.2010.06.021.

47. Jones SE, Kon SSC, Canavan JL, Patel MS, Clark AL, Nolan CM, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015-20. doi: 10.1136/thoraxjn1-2013-203576.

48. Singh SJ, Puhan Ma, Andrianopoulos V, Hernandes Na, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society:
measurement properties of field walking tests in chronic respiratory disease. European Respiratory Journal. 2014;44:1447-78. doi: 10.1183/09031936.00150414.

49. Kon SSC, Canavan JL, Nolan CM, Clark AL, Jones SE, Cullinan P, et al. The 4-metre gait speed in COPD: Responsiveness and minimal clinically important difference. European Respiratory Journal. 2014;43:1298-305. doi: 10.1183/09031936.00088113.

50. Skumlien S, Hagelund T, Bjørtuft O, Ryg MS, Bjørtuft Ø, Ryg MS. A field test of functional status as performance of activities of daily living in COPD patients. Respiratory medicine. 2006;100(2):316-23. doi: 10.1016/j.rmed.2005.04.022.

51. Hill CJ, Denchy L, Holland AE, McDonald CF. Measurement of Functional Activity in Chronic Obstructive Pulmonary Disease: The Grocery Shelving Task. Journal of Cardiopulmonary Rehabilitation and Prevention. 2008(28):402-9. doi: 10.1080/15412550701480414.
Figure Legends:

Figure 1: The World Health Organization's International Classification of Functioning, Disability and Health framework (11)

Figure 2: Adapted from the ICF Comprehensive Core Set from Stuki et al.(16). Components in bold include examples of commonly used outcomes in COPD and are presented with examples of associated tests and outcomes in Table 2.

Figure 3: Key concepts of exercise capacity, functional capacity and functional performance framework. Adapted from (17).
Table 1: Examples of commonly used outcomes in COPD and associated tests hinged on the ICF components

Exercise capacity	**Functional capacity**	**Functional performance**				
Body structures and functions	**Activities**	**Tests**	**Outcomes**	**Tests & Questionnaires**	**Outcome(s)**	
Respiration function	Walking	6MWT, ESWT, ...	Maximal distance walked, time walked at the given speed, ...	Recreation and leisure	Pedometer, ...	Number of daily steps (physical activity quantification), ...
Exercise tolerance function	Moving around (climbing)	Glittre ADL-test, 3MST, SCPT, ...	Time to complete five laps, number of steps ascended and descended, time and velocity during the ascension, ...	Carrying out daily routine	Pulmonary Functional Status and Dyspnea Questionnaire, ...	Level of dyspnea during daily activities, ...
Muscle function (power, endurance)	Changing basic body position	5STS, GST, TUG, ...	Tests duration, ...	Dressing, remunerative employment, recreation and leisure...	Canadian Occupational Performance Measure, ...	Ability (score on a 1-10 scale) to perform significant problematic activities, ...
Structure of lower extremity: muscles of the thigh	Computed tomography, bioelectrical impedance, biopsy...	Muscle mass, mid-thigh cross-sectional area, ...	Lifting and carrying objects	Number of rings moved, test duration and weight of the heaviest bar lifted, ...	Complex interpersonal interactions, remunerative employment...	London Chest Activity of Daily Living, ...
---|---|---|---|---|---|---|---
3MST=3-minute constant rate step test; 5STS=5-repetition sit-to-stand; 6MWT=6-minute walk test; 6PBRT=6-minute pegboard and ring test; CPET=incremental cardiopulmonary exercise test; ESWT=endurance shuttle walk test; FEV1=forced expiratory volume in one second; FVC=forced vital capacity; Glittre ADL-test= Glittre Activities of Daily Life test; GST=Grocery shelving test; IC=inspiratory capacity; SCPT=Stair climb power test; TLC=total lung capacity; TUG=Timed up and go; UULEX=Unsupported upper limb exercise test; VO2max=maximal oxygen consumption
Table 2: Functional tests commonly used in COPD and further described in the second part of this Seminar Series

Test	Description
3MST	3-Minute constant rate Step Test
4MGS	4-Meter Gait Speed
5STS	5-Repetition Sit-to-Stand
6MST	6-Minute Step Test of free cadence
6MWT	6-minute walk test
6PBRT	6-Minute Pegboard and Ring Test
BBS	Berg Balance Scale
ESTW	Endurance Shuttle Walk Test
Glittre ADL-test	Glittre Activities of Daily Life-test
GST	Grocery Shelving Task
SCPT	Stair Climb Power Test
SPPB	Short Physical Performance Battery
TUG	Timed-Up and Go
UULEX	Unsupported Upper-Limb Exercise Test
The World Health Organization's International Classification of Functioning, Disability and Health framework

(11)

Figure 1

200x116mm (96 x 96 DPI)
Adapted from the ICF Comprehensive Core Set from Stuki et al. (16). Components in bold include examples of commonly used outcomes in COPD and are presented with examples of associated tests and outcomes in Table 2.

Figure 2

289x187mm (96 x 96 DPI)
Key concepts of exercise capacity, functional capacity and functional performance framework. Adapted from (17).

Figure 3
185x94mm (72 x 72 DPI)