Introduction

All organisms constantly interact with other organisms and the surrounding environment. Because of their sessile nature, plants cannot escape harsh environments or detrimental organisms. However, partially due to their rigid cell wall, plants are competent in dealing with a wide variety of abiotic and biotic stresses. One of the major challenges that plants face is defending against many pathogens that cause diseases in plants. Unlike animals, which have developed a circulatory system and specialized immune cells, plants rely on both conserved and unique defense mechanisms to defend themselves against pathogen infection.

Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.

The first layer of plant defense is a conserved defense mechanism shared by plants and animals. Plants and animals both have developed the ability to detect conserved small molecules associated with microbes called MAMPs, or microbe-associated molecular patterns. This first layer of immunity is called MAMP-triggered immunity (MTI). Two major MAMPs associated with plant bacterial pathogens, flagellin and EF-Tu, are recognized by the pattern recognition receptors (PRRs), FLS2 kinase and EFR kinase, respectively. Chitin is believed to be the major MAMP from plant fungal pathogens and the receptor for chitin has been shown to be a LysM domain receptor-like kinase, CERK14 or RLK1,5 in Arabidopsis. The consequence of this recognition includes activation of a Mitogen-activated protein kinase (MAPK) pathway, oxidative burst, callose deposition, and restriction of pathogen growth, etc. In order to cause diseases, plant pathogens such as fungi, oomycetes, and bacteria deliver effectors into plant cells. These effectors collectively suppress MTI; therefore, the pathogens carrying these effectors cause diseases on their host plants. During plant–pathogen coevolution, plants have developed resistance (R) proteins to recognize at least some of the effectors and activate plant defense. Effectors that are recognized by corresponding R proteins are called avirulence (Avr) proteins. A pathogen that carries an Avr protein, which triggers plant resistance, is called an avirulent pathogen. Unlike virulent pathogens, which cause diseases, avirulent pathogens trigger plant defense. Infection by an avirulent pathogen will produce rapid programmed cell death (PCD), called the hypersensitive response (HR), in the local tissue. Meanwhile, plants undergo transcriptional reprogramming and the expression of plant defense genes is activated. This second layer defense is called effector-triggered immunity (ETI). Recognition of avirulent pathogens will also generate immune signal plant hormone salicylic acid (SA) and activate systemic acquired resistance (SAR) in the whole plant. SAR is a broad-spectrum, long-lasting resistance in the whole plant after local exposure to an avirulent or virulent pathogen.

This review will be focused on ETI. In the last decade, tremendous progress has been made toward a better understanding of the molecular mechanism of ETI. Here we describe in detail the recent exciting developments on how plants deploy ETI to
combat pathogens. The current knowledge gaps and future directions will be discussed as well.

**R Proteins**

The majority of R proteins are intracellular nucleotide-binding-leucine rich repeat (NB-LRR) proteins (Fig. 1A), which are subclassified based on their variable N-terminal domain into coiled-coil (CC)-NB-LRR or toll/interleukin 1 receptor-like (TIR)-NB-LRR protein families. Some R proteins have a C-terminal extension. For example, Arabidopsis RRS1-R (resistance to Ralstonia solanacearum-resistant allele), includes a WRKY transcription factor domain following the LRR at the C-terminal (Fig. 1A). Inactive R protein binds ADP, with intramolecular interactions between its different domains. Upon induction, R proteins undergo conformational change, which releases the hidden nucleotide-binding site from intramolecular interactions in the presence of effector ligands, leading to ADP/ATP nucleotide exchange and hydrolysis in the central NBS domain. It is generally believed that ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is required for the disease resistance mediated by the TIR-NB-LRR class R proteins, while NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) plays an essential role in the activation of resistance signaling mediated by the CC-NB-LRR class of resistance proteins.

In response to pathogen infections, R proteins induce dramatic local physiological responses, including oxidative burst, production and accumulation of SA and nitric oxide (NO), and expression of pathogenesis-related (PR) genes and PCD, at the cost of altering normal physiological processes. Therefore, the activity of R proteins needs to be tightly controlled under uninfected conditions.

**Regulation of R Genes**

Some R genes only express in response to Avr effectors. Rice (Oryza sativa) R gene Xa27 is induced when challenged by Xanthomonas oryzae pv oryzae (Xoo) carrying avrXa27 effector gene. AvrXa27 belongs to the AvrBs3/PthA TAL effector family, the members of which contain repeats of 34 amino-acids with DNA-binding activity and a conserved C-terminal region with nuclear localization signal (NLS) motifs and transcription activation domains. AvrXa27 differs from other members in the same family based on the number and arrangement of the repeats, which contribute to target binding specificity. The expression of Xa27 is only detectable upon inoculation of the Xoo strain that delivers AvrXa27, while undetectable when challenged with PXO99A-ME1 strain, which has an insertion mutation in the avrXa27 gene.

RNA silencing is a central regulator that controls gene expression at the transcriptional level via DNA methylation (TGS, transcriptional gene silencing) and posttranscriptional level via direct mRNA interference mediated by small RNAs (PTGS, posttranscriptional gene silencing). Recently, RNA silencing has appeared as a key regulatory mechanism in negatively regulating expression of a cluster of R genes. It was first determined that several RPP5 locus R genes, including RPP4 and SNC1, are regulated by siRNA-mediated PTGS. Upregulation of SNC1 transcription is found in mutants, dcl4 and ago1, which abrogate RNA silencing. In addition, microRNA miR482 was shown to target many R genes in different species and subsequently cause the cleavage of R gene mRNA and production of secondary siRNAs. More recently, it has been demonstrated that RNA-DEPENDENT RNA POLYMERSASE 6 (RDR6) and miR472 play important roles in ETI and basal defenses through PTGS of a subset of R genes. Mutants of rdr6 and miR472 displayed enhanced RPS5-mediated resistance with high accumulation of RPS5 transcripts, suggesting that both RDR6 and miR472 act as negative regulators of ETI through post-transcriptional control of disease resistance genes.

**Regulation of R Protein Level and Stability**

Many R genes are expressed constitutively under uninfected conditions. Regulation of R protein level and stability is another mechanism for plants to control R protein signaling, avoiding unnecessary activation of defense responses and autoimmunity. A chaperone protein complex containing HSP90, SGT1, and RAR1 contributes to the stability and proper folding of R proteins during activation, leading to downstream signaling. In addition to its positive regulatory role as a chaperone for R proteins, SGT1b was also demonstrated to negatively regulate the accumulation of RPS5 and SNC1. An effort to screen for mutants with constitutive defense responses in npr1–1 background identified a tetratricopeptide repeat-domain containing protein-encoding gene, SUPPRESSOR OF rps4-RLD, known as SRFR1. SRFR1 functions together with SGT1 to negatively regulate the accumulation of SNC1, RPS2, and RPS4 to prevent auto-activation of plant immunity. Further study showed that F-box protein CPR1/CPR3 targets SNC1 and RPS2 for degradation through the SKP1-Cullin1-F-box (SCF) E3 ubiquitin ligase complex. Light has been demonstrated to regulate plant R protein-mediated resistance and photoreceptors are involved in this regulation. In-depth study showed that blue light receptors, CRY2 and PHOT2, stabilize R protein HRT against Turnip Crinkle Virus (TCV) infection by suppressing COP1 E3 ubiquitin ligase-mediated degradation of HRT. R proteins stay inactive and are tightly controlled under non-pathogenic conditions even though they are required for plants to initiate robust defense responses to fight back pathogen attacks.

**The Recognition between R Proteins and Pathogen Effectors**

The first step for plants to activate an effective ETI upon infection from pathogens carrying avirulence genes is to recognize those Avr effectors that have been delivered into plant cells. Effector proteins usually interfere with plant basal resistance, or
MTI, to help pathogens overcome plant resistance. Plants have evolved distinct mechanisms to recognize effectors. The direct interaction between a plant R protein and an Avr effector protein can be demonstrated by a recent example in Arabidopsis, where R protein RRS1-R recognizes effector protein PopP2 from a causal agent of bacterial wilt, R. solanacearum (Fig. 1B). Molecular evidence was provided to show the direct protein-protein interactions between RRS1-R and PopP2 in Arabidopsis-resistant Nd-1 ecotype, and RRS1-R was shown to translocate into nucleus after PopP2 binding to regulate downstream gene expression (Fig. 1B). Direct recognition was also shown by the recognition of fungal effector AvrPita from Magnaporthe grisea by the rice R protein Pi-ta to trigger a signal transduction cascade that led to resistance. AvrPita is predicted to encode a neutral zinc metalloprotease. A variant of AvrPita, AvrPita 176, which lacks the N-terminal secretory signal and pro-protein sequences of AvrPita, elicited Pi-ta-dependent resistance responses when transiently expressed inside rice cells. Yeast two-hybrid and in vitro binding assays showed direct interaction between AvrPita176 and the Pi-ta leucine-rich repeat domain. A recent study showed direct recognition of multiple effectors by the same R protein, which usually happens through indirect recognition. Evidence was provided to show that two distinct effectors, Avr1-CO39 and AvrPta, from rice blast fungal pathogen M. oryzae interacted directly with rice R protein RGA5, which worked in pair with RGA4 to induce resistance. However, only a few cases of direct recognition between an R protein and an Avr effector have been demonstrated, even though direct recognition possibly contributes to gene-specific evolution diversity of both R and Avr genes, while indirect recognition imposes selection against the biological function of Avr effectors.

The guard model has been developed to explain indirect recognition between R proteins and Avr effectors in plant, in which a target host protein is manipulated by pathogen effectors and the perturbation of the target protein is monitored by plant R proteins. Plant RPM1-INTERACTING PROTEIN 4 (RIN4) has
been shown to play a crucial role in the recognition of AvrRpm1 and AvrRpt2 by the corresponding plant R proteins, RPM1 and RPS2, respectively.\textsuperscript{40,41} (Fig. 1C). RPM1 perceives the phosphorylation of RIN4, while RPS2 senses the disappearance of RIN4 protein.\textsuperscript{40,41} Recent studies showed that a receptor-like cytoplasmic interaction of RIN4, while RPS2 senses the disappearance of RIN4

hybrid, protein mutagenesis and infection assays that strongly

invasion.\textsuperscript{47,48} Independently evolved virulence effectors targeting

RIN4 controls stomatal apertures through associated plasma

membrane H(+)-ATPases, AHA1 and AHA2, to resist pathogen

invasion.\textsuperscript{47,48} Independently evolved virulence effectors targeting

hub proteins, such as RIN4, in plant immune system networks enable the plant to respond to infections by monitoring these hub proteins with a relatively limited number of R proteins.\textsuperscript{49,50} Another example of a guarded hub protein is EDS1, which was assumed to constitute a common downstream signaling component of several TIR-NBS-LRR proteins based on genetic studies.\textsuperscript{51} EDS1 was recently shown to be a target for AvrRps4 and HopA1 effectors, and was guarded by RPS4, RPS6, and SNC1 resistance proteins.\textsuperscript{52,53}

Some of the plant target proteins evolved into decoys, which were no longer biologically functional, but remained to be the targets for pathogen effectors and guardees for plant R proteins. ZED1 in Arabidopsis is a nonfunctional kinase that interacts with and is acetylated by HopZ1a, a type III effector from Pseudomonas syringae that triggers ZAR1-mediated defense responses. HopZ1a is an acetyltransferase that is hypothesized to target kinases to promote pathogen virulence. Conserved domain analysis of the protein sequence indicated that ZED1 is a kinase, however, showed no kinase activity in phosphorylation assays. ZED1 interacts with both HopZ1a and ZAR1, and is required for the recognition of HopZ1a by the ZAR1 to induce a robust immune response to limit bacteria growth. Thus, ZED1 very likely evolved as a decoy to trap HopZ1a and lure it to the ZAR1 resistance-complex.\textsuperscript{54} Even though the decoy model is supported by multiple cases, it is arguable that discrimination between the decoy model and the guard model remains challenging and requires further experimental evidences.\textsuperscript{55} An interesting case involves tomato (Solanum lycopersicum) protein kinase Pto, which is targeted by the corresponding Avr effector, AvrPto, from P. syringae pv tomato. It was first described as an example for direct recognition supported by evidence from the yeast two-hybrid, protein mutagenesis and infection assays that strongly indicated direct physical interaction between Pto and AvrPto.\textsuperscript{56-59} Further study showed the involvement of NBS-LRR protein Prf in AvrPto-Pto triggered immune response, leading to Pto kinase being considered as a guardee monitored by Prf resistance protein.\textsuperscript{60} More recent work proposed that Pto acts as a decoy in competition with FLS2 for AvrPto binding.\textsuperscript{61,62} FLS2 is a receptor kinase which recognizes bacterial MAMP flagellin to trigger MTI and is believed to be the real target of AvrPto.\textsuperscript{63}

The knowledge of a unique way of recognition between a plant R protein and a pathogen Avr effector came from studies on transcription activation-like (TAL) effectors from Xanthomonas pathovars. These effectors enter the nucleus and bind to promoters to alter the expression of target genes in order to promote virulence. AvrBs3 from X. campestris pv vesicatoria targets the promoter of UPA20, which is a master regulator gene of cell enlargement in pepper, to help bacterial proliferation.\textsuperscript{64} AvrBs3 is recognized by Bs3, a protein product of the R gene B3, which shares a similar promoter sequence to AvrBs3 target genes,\textsuperscript{65,66} and thus can be induced by AvrBs3 (Fig. 1D). No Bs3 expression was detected in the absence of AvrBs3 in different plant tissues, indicating that Bs3 is not functional for normal cellular activities,\textsuperscript{65,66} and likely a decoy to trap AvrBs3 to initiate Bs3-mediated resistance.\textsuperscript{67}

**Nuclear Function of R Proteins**

Nuclear localization of several R proteins is essential for ETI, which leads to transcriptional activation of defense signaling. Deslandes et al. identified TIR-NB-LRR-WRKY protein RRS1-R to be the first R protein that has been shown to localize in the nucleus.\textsuperscript{68} The presence of a C-terminal WRKY domain suggested a biological function for RRS1-R in the nucleus. Sequence analysis further showed that RRS1-R has an NLS signal.\textsuperscript{58} Indeed, it has been shown that RRS1-R localized into the nucleus and its nuclear localization is dependent on the type III effector PopP2, which is recognized by the R protein RRS1-R.\textsuperscript{35} RRS1-R was found to physically interact with its cognate effector PopP2 and to co-localize with PopP2 in the plant nucleus.\textsuperscript{35} More clearly through quantitative fluorescence lifetime imaging, it is illustrated that barley (Hordeum vulgare) mildew R protein A10 (MLA10), recognizing effector AvrA10, traffics from the cytoplasm into the nucleus where its CC domain interacts with transcription factors HvWRKY1/2 and MYB6 in the nucleus to activate downstream transcriptional reprogramming.\textsuperscript{69} P. syringae type III effector AvrRps4 is recognized by resistance protein RPS4 and triggers ETI. The cell has cytoplasmic and nucleoplasmic pools of EDS1, which must accumulate in the nucleus for RPS4 to trigger proper immunity processes.\textsuperscript{32-38} After injection into plant cells, AvrRps4 is cleaved to trigger RPS4-mediated signaling, which results in nuclear localization of RPS4 to interact with RRS1-R, a resistance receptor with a C-terminal WRKY transcription factor DNA-binding domain, to promote immunity.\textsuperscript{71,72} RPS4 is believed to be a receptor that intercepts targeting of EDS1 by effectors.\textsuperscript{52} This interception and subsequent nuclear localization of RPS4-AvrRps4 triggers EDS1 to activate EDS1-dependent resistance genes, mounting an ETI response.

** Trafficking of R Proteins between the Nucleus and Cytoplasm**

Intracellular movement of different proteins between the cytoplasm and nucleus is an important feature in plant immunity.\textsuperscript{73,74} Recent studies revealed that nucleo-cytoplasmic
trafficking though nuclear pore complexes plays an important role for R protein nuclear localization and the proper function of R proteins. In an effort to discover key components involved in R protein function, several mos (modifier of SNC1) mutants were identified in a suppressor screen in gain of function snc1 (Arabidopsis suppressor of npr1–1, constitutive 1) mutant, which showed a phenotype of constitutively activated plant defense due to a mutation in the TIR-NB-LRR R gene SNC1.\(^\text{77}\) Among them, three MOS proteins that are important for nuclear pore function were required for the functions of R proteins. MOS3 is required for basal resistance and proper SNC1 function. mos3–1 mutant suppressed the constitutive activation of resistance phenotype in snc1 plants. Green fluorescent protein (GFP) tagging of MOS3 showed localization of MOS3-GFP to the nuclear envelope. Due to similarities in sequence between MOS3 and nucleoporin 96, it is likely that MOS3 encodes a nucleoporin that plays a central role in the nuclear transport of SNC1.\(^\text{76}\) MOS6 encodes importin α3, which is instrumental in transport across the nuclear envelope. When MOS6 protein was tagged with GFP on the C-terminus, the GFP fluorescence signal was concentrated in the nucleus, supporting the nuclear localization pattern necessary for an importin protein. The mos6 mutant partially suppresses the constitutive defense phenotype in snc1 mutant plants, and mos6 mutant plants were more susceptible to a virulent oomycete pathogen.\(^\text{77}\) MOS7 is homologous to nuclear pore complex component Nup88 in humans and Drosophila. MOS7 C-terminus GFP fusion protein showed accumulation at the nuclear rim. SNC1 has a nuclear localization sequence; however, in mos7–1 mutant, nuclear accumulation of SNC1 resistance protein is diminished.\(^\text{76}\) NPR1 and EDS1 plant basal resistance proteins also have reduced localization to the nucleus in mos7 mutants.\(^\text{78}\) Thus, MOS3, MOS6, and MOS7 have a central role in R protein nuclear localization.\(^\text{76}\)

**Plant Defense Responses Associated with ETI**

Localized programmed cell death

The striking characteristic of ETI is the hypersensitive response, which exhibits a rapid induction of programmed cell death at the local infection site (localized PCD). The primary purpose of this cell death is to kill biotrophic pathogens, which have to obtain nutrients from living cells. PCD has been classified into two different types, autolytic-PCD and nonautolytic-PCD,\(^\text{79}\) with distinct characteristics. Autolytic-PCD involves the release of hydrolases from vacuoles, leading to a rapid cytoplasm clearance and localized cell death. Nonautolytic-PCD, however, does not release hydrolases that clear the cytoplasm even when the permeability of tonoplasts is persistently increased.\(^\text{79}\) The cell death upon the activation of R protein signaling was described as a process of releasing vacuolar antibacterial proteins into the apoplastic space, resulting from the fusion of the central vacuole membrane and plasma membrane,\(^\text{80}\) and thus is likely nonautolytic-PCD.\(^\text{81}\)

Regulation of localized PCD by salicylic acid concentration gradient and NPR proteins

PCD in Arabidopsis is under regulation by SA, NPR1, and SA receptors NPR3 and NPR4. Low level of SA suppresses cell death, while over-accumulation of SA induces cell death. When infected by an avirulent pathogen, the plants undergo PCD at the local infection sites. In an area up to 3.5 mm away from the center of cell death zone on Nicotiana tabacum L. leaves, the level of SA is 8-fold higher than in the zone 3.5–6.5 mm from the center.\(^\text{82}\) NPR1 is a suppressor of cell death. NPR3 and NPR4, as BTB/POZ domain proteins, interact with both NPR1 and Cullin 3 E3 ligase and function as adaptor proteins to facilitate the poly-ubiquitination and subsequent degradation of NPR1 protein by the 26S proteasome.\(^\text{83}\) NPR4 has a high affinity for SA while NPR3 has a low affinity for SA. High SA level at the center of cell death zone disrupts the interaction between NPR1 and NPR4, but favors the interaction between NPR1 and NPR3. NPR3 then promotes degradation of NPR1 to a level that is not sufficient to suppress cell death. In neighboring cells, the intermediate level of SA disrupts NPR1–NPR4 interaction, but is not high enough to promote NPR1–NPR3 interaction, so neither NPR3 nor NPR4 can mediate the degradation of NPR1. As a result, the high level of NPR1 in these neighboring cells suppresses the spreading of cell death and interacts with transcription factors to activate plant defense responses.\(^\text{83}\)

**ROS and cell death**

It is generally believed that the onset of HR is due to elevated level of reactive oxygen species (ROS). One major way of generating ROS during plant–pathogen interactions is through NADPH oxidases, which are called respiratory burst oxidase homologs (RBOHs) in plants. Cell death is greatly reduced in Arabidopsis atrbohD mutant and atrbohD/F double mutant plants compared with that in wild type plants following infection by an avirulent bacterial pathogen,\(^\text{84}\) indicating that RBOHs and ROS are required for cell death induced by avirulent pathogens (Fig. 2). However, the relationship between ROS production and cell death is far more complicated than originally thought. For example, when infected with an avirulent oomycete pathogen, Arabidopsis atrbohD/F double mutant plants exhibited more cell death even though the ROS was eliminated.\(^\text{84}\) When challenged by bacterial AvrRpm1, Arabidopsis nca1 (no catalase activity 1) and cat2 (catalase 2) mutants, which were supposed to have elevated ROS, surprisingly showed reduced cell death.\(^\text{85}\) This result suggests the presence of additional pathways downstream of catalase other than through ROS in regulating cell death. The biological connection between ROS and PCD thus remains to be further studied.

**Autophagy and cell death**

One important discovery related to ETI is the finding that PCD is regulated by autophagy (Fig. 2). Liu et al. showed that downregulation of autophagy genes ATG6 and ATG7 in Nicotiana benthamiana caused extended cell death when these plants were infected by TMV.\(^\text{86}\) Later, the same group showed AvrRpm1-induced HR in ATG6 antisense plants also spread to uninfected tissue.\(^\text{87}\) Both studies support a function for
autophagy genes to restrict PCD to infection sites and negatively regulate PCD. However, a different study showed that ATG7 and ATG9 knockout plants exhibited suppressed initiation of TIR-NB-LRR type R proteins-mediated EDS1-dependent cell death, while CC-NB-LRR type R proteins-mediated NDR1-dependent cell death is autophagy-independent. Therefore, autophagic cell death regulated by ATG7 and ATG9 contributes to PCD mediated by certain type R proteins. This dual role of autophagy in PCD is partially explained by studies from a third group, which showed that the positive or negative role of autophagy in PCD is dependent on the age of the plant leaves and photoperiod conditions used in the assays. Only older leaves of atg5 mutant plants showed spread RPM1-mediated cell death, which is believed to be a result of excessive ROS production and over-accumulation of SA. In addition, the role of autophagy in PCD is dependent on the photoperiod conditions (Fig. 2), as atg2 mutant plants showed reduced cell death under short-day conditions, and exaggerated cell death when short-day-grown plants were moved to long-day conditions. Furthermore, autophagy-dependent cell death has been demonstrated to be regulated by ROS and catalase (Fig. 2). It will be of interest to the field of plant-microbe interactions to uncover the molecular mechanism underlying the regulatory role for autophagy in PCD.

Transcriptional Reprogramming of Defense-Responsive Genes

WRKY transcription factors

ETI is a strong plant immune response associated with extensive transcriptional reprogramming that involves numerous transcriptional regulators (Fig. 2). Dynamic recruitment of transcriptional regulators into R protein-mediated signaling pathways has emerged as an important signaling event after the recognition of Avr effectors during ETI. Many WRKY transcription factors have been shown to play pivotal roles in regulating defense responses. TIR type R protein RRS1-R/WRKY52, which contains a C-terminal WRKY domain, interacts with the R. solanacearum type III effector PopP2 in the nucleus. RRS1-R/WRKY52 is identical to SENSITIVE TO LOW HUMIDITY 1 (SLH1), which, when inactive, functions as a transcription repressor of many downstream defense genes including PR1, PR2, PR5, EDS1, and PHYTOALEXIN-DEFICIENT4 (PAD4). Upon recognition of PopP2, RRS1-R/WRKY52 induces resistance signaling, possibly by suppressing the negative function of its WRKY DNA-binding domain, or through activation of other positive transcription regulators (Fig. 2). Future research on identification of the RRS1-R/
Figure 2 (See previous page). Plant defense responses associated with ETI. Reactive oxygen species (ROS) production plays important roles in plant defense response during ETI (left). Plasma membrane-localized NADPH oxidases contribute to the production of ROS in plant apoplast, which triggers programmed cell death (PCD). In plants, these NADPH oxidase are called respiratory burst oxidase homologs (RBOHs). Catalase is an anti-oxidative enzyme that prevents accumulation of peroxisomal ROS. CAT2 (Catalase 2) and NCA1 (no catalase activity 1), which are required for catalase activities in plants, should in theory prevent PCD. However, both CAT2 and NCA1 contribute to autophagy-dependent PCD. In addition to the primary pro-death function of autophagy, autophagy downregulates ROS signaling in older plants or under long day condition. Autophagy limits PCD by a negative feedback pathway. Integrated model depicts selected transcriptional regulators associated with diverse R proteins to control the expression of defense genes (right). Association of R protein RRS1-R (WRKY52) with its cognate effector causes activation of defense genes, perhaps through derepression of transcriptional activity of WRKY domain or activation of other regulators. Upon avr pathogen infection, diverse activated R proteins MLA10, Pb1, SNC1, RPS4, and N are able to activate HvMYB6, OsWRKY45, TPR1, AtSPL6, and NbSPL6, respectively through protein-protein interactions, thus resulting in induction of defense genes. After perception of specific effector, MLA10 associates with HvWRKY1/2 repressors and thereby de-repress immune response. In addition, activated MLA10 enables to release HvMYB6 from HvWRKY1 repressor, which antagonistically associates with DNA binding domain of HvMYB6. The corepressor TPR1 represses transcription of two negative regulators of plant defense (DND1 and DND2), leading to induction of defense responses. Transcription of two tomato SIWRKY72 genes (SIWRKY72a and SIWRKY72b) are upregulated in defense response triggered by Mi-1 and these genes are required in Mi-1-mediated resistance. Both MED14 and MED16 are involved in induction of a large number of defense genes and resistance to RPT2. Blue lines indicate that diverse R proteins activate (arrows) or repress (truncated lines) activities of corresponding transcriptional regulators after perception of avr effectors. Dark red lines indicate that representative transcriptional (co)factors positively (arrows) or negatively (truncated lines) regulate transcription of downstream defense genes. Simple model for ELP2, SDG8 and MORC1 (CRT1)-mediated epigenetic control of transcriptome reprogramming in ETI is shown below. The histone acetyltransferase (HAT) activity of ELP2 for histone acetylation positively regulates defense genes including NPR1, NPR2, PR5, EDS1, and PAD4. In addition, as a DNA demethylase, it reduces DNA methylation levels in NPR1 promoter and PAD4 coding regions after infection of Pst DC3000avrpt2, resulting in induction of NPR1 and PAD4. The histone lysine methyltransferase SDG8, which trimethylated histone 3 lysine 36 (H3K36), is required for induction of LA25 (RPS4-like) and RPM1 R genes. Loss of SDG8 increases monomethylated H3K36 levels that probably is a general mark for transcription repression of a subset of defense genes including RPM1. MORC1 (CRT1) causes heterochromatin condensation and is required for RPM1-mediated defense signaling. Avr Effectors, avirulence proteins; R, resistance proteins; PM, plasma membrane; RBOH, respiratory burst oxidase homolog; CAT2, catalase 2; SNC1, no catalase activity 1; ROS, reactive oxygen species; PCD, programmed cell death; RPM1, a CC-NB-LRR protein conferring resistance to Pseudomonas syringae pv Maculicola 1 (RPM1); RRS1-R, recessive resistance to Ralstonia solanacearum 1; MLA10, mildew A10 R protein; Pb1, Panicule blast 1; Mi-1, tomato cultivar Motelle; SNC1, a TIR-NB-LRR R protein identified from suppressor of npr-1, constitutive 1 (SNC1); RPS4, resistance to P. syringae 4; N, Nicotiana TIR-NB-LRR receptor N; RPT2, resistance to P. syringae pv tomato 2; HvWRKY1/2, OsWRKY45 and SIWRKY72a/b, WRKY DNA-binding domain transcription factors (SiwRKY72a and SiwRKY72b). WRKY DNA-binding domain transcription factors in Hordeum vulgare (Hv), Oryza sativa (Os) and Solanum lycopersicum (Sl); HvMYB6, R2R3 type MYB6-like transcription factor; MED14/16, mediator 14/16; NbSPL6 and AtSPL6, Squamosa promoter binding protein-like 6 (SPL6) transcription factors in Nicotiana benthamiana (Nb) and Arabidopsis thaliana (At); TPR1 (MOS10), Topless-related 1 (modifier of sncl, 10); DND1/2, Defense no Death1/2; eLP2, Elongator subunit 2; SDG8, SET (Su(var)3–9, e[z] and Trithorax conserved) DOMAIN GROUP 8; MORC1 (CRT1), Microchiridia 1 [MORC1] ATPase (promised recognition of TCV-1 [CRT1]); Me, methylation; Ac, acetylation.

WRKY52/SLH1 interacting components and target genes will facilitate better understanding of the regulatory role of RRS1-R in plant defense signaling.

In barley, HvWRKY1/2 TFs interact with R protein MLA10 upon activation by avirulence A10 effector (Fig. 2). Silencing and overexpression experiments have shown that these WRKY TFs act as transcriptional repressors of basal defense during compatible and incompatible interaction with pathogens, indicating that repression of these WRKY TFs-mediated negative regulation of MAMP-induced genes could be a way to trigger the MLA-mediated defense responses. Likewise, the homologs of HvWRKY1/2 in Arabidopsis, known as AtWRKY18/40, have been identified in repressing basal defense responses to virulent hemibiotrophic P. syringae and virulent powdery mildew pathogen Golovinomyces orontii. AtWRKY18 and AtWRKY40 repress the expression of positive regulators of defense by direct binding to the W-box cis-elements in the promoters of these regulator genes such as EDS1, APETALA2/Thyethylene Responsive Factor (AP2/ERF)-type TF gene RRT1 and JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8). Indeed, MLA10 interacts with two antagonistically acting TFs, HvWRKY1 transcription repressor and HvMYB6 transcription activator. The activated MLA10 can release the positive regulator HvMYB6 from HvWRKY1 repression to initiate downstream transcriptional reprogramming during innate immune response (Fig. 2). Additional defense genes directly modulated by WRKY1-MYB6 will need to be defined. These findings demonstrated that MLA10 activates defense gene transcription by interferring with WRKY repressors through direct interaction and releasing transcription activators from WRKY repression.

Differing from the majority of WRKY TFs, OsWRKY45 is a transcriptional activator and positively regulates rice resistance to panicle blast (Fig. 2). A CC-NB-LRR family R protein Pb1 stabilizes OsWRKY45 to avoid its degradation in a ubiquitin proteasome system. It is possible that the stabilization of OsWRKY45 enhances its transcriptional activity and upregulates expression level of its encoding gene OsWRKY45, and also OsWRKY46 and RDX genes in blast resistance. In tomato, two SIWRKY72 type TFs were also shown to positively regulate basal resistance and resistance mediated by R protein Motelle (Mi-1) (Fig. 2). SPL6 transcription factor and TPR1 corepressor

Similar to the function of WRKY TFs in R protein Pb1 and Mi-1-mediated resistance, SQUAMOSA PROMOTOR BINDING PROTEIN (SBP) domain-containing transcription factor SPL6 and corepressor TPR1 have been shown to play positive roles in TIR-NB-LRR R proteins, N and SNC1, -mediated plant defense responses, respectively (Fig. 2). SPL6 has been shown to directly bind to N protein and is required for N-mediated resistance to TMV. Arabidopsis SPL6 homolog, AtSPL6, activates expression of a subset of defense genes. It is required for TIR-NB-LRR type R protein RPS4-mediated resistance, but not required for the signaling of CC-NB-LRR type R proteins RPM1 and RPS2, suggesting that the regulatory role of SPL6 in ETI might be specific. The transcription corepressor Topless-related1
the expression of several defense genes (i.e., NPR1 possesses histone acetyltransferase activity, which is essential for defense genes, likely through histone modification.110 Being a RPS4-mediated resistance to pathogens and kinetically induces as a major positive regulator of ETI, which promotes RPS2 and PR2 genes and other defense-related genes in axtl mutant. Remarkably, another histone methyltransferase, SET DOMAIN GROUP 8 (SDG8), which epigenetically upregulates expression of a TIR-NB-LRR (RPS4-like) gene in a gene-specific manner, was shown to be required for RPM1-mediated resistance in Arabidopsis112 (Fig. 2).

A conserved tetrapeptide repeat (TPR) domain-containing protein known as SRFR1, similar to transcription repressors in other organisms, negatively regulates multiple NB-LRR R proteins and might work to suppress target genes by directing the precatalysis of nucleosomes.113 Another conserved transcription cofactor, AtTIP49a, was shown to interact with the N-terminal half of RPM1 (CC-NB-LRR) and RPP5 (TIR-NB-LRR), and may act as a negative regulator of two RPP (for Resistance to Peronospora parasitica) proteins-dependent disease resistance.114 TIP49a was initially found to be associated with the TATA binding protein (TBP) complex. TBP complex negatively regulates the transcription of oncogene c-myc, which contributes to cancer genesis and is induced by hepatitis C-virus infection,115 through modification of chromatin involved in the recruitment of histone deacetylases.116 Thus, it will be interesting to study other examples of the recruitment of SRFR1 or TIP49a, as well as chromatin-remodeling complexes, to specific target genes in plants.

Chromatin superstructure
Mutation of Microchridia (MORC) family ATPase genes, AtMORC1 and AtMORC6, results in the induction of DNA-methylated genes and transposable elements without affecting the DNA and histone methylation status. Based on data from Hi-C analysis, a method to study three-dimensional architecture of genomes,117 the atmorcl and atmorc6 mutants both showed decondensation of pericentromeric DNA regions.118 AtMORCI is the same gene as CRT1, which was found to be required for disease resistance to TCV mediated by HRT.119 In addition, CRT1 physically interacts with several R proteins including RPS2, Rx, and RPP8, and also R protein chaperone HSP90.120 Silencing of CRT1 homolog in N. benthamiana caused reduced cell death triggered by Pto and RPM1, and crtl mutant plants showed compromised R gene-mediated defense responses20 (Fig. 2). Taken together, these studies suggest that regulation of chromosome superstructure plays an important role in proper function of ETI.

Future Perspectives

There is no doubt that many recent discoveries have helped the community to gain a much better understanding of ETI. Tremendous progress has been made in unraveling the molecular mechanisms of ETI, especially in the recognition of Avr effectors, activation of R proteins and transcriptional reprogramming of plant defense genes. New models, including guard hypothesis and decoy model, have been developed to explain the recognition mechanism of Avr effectors by R proteins, along with the discovery and characterization of new effectors and their corresponding R proteins. However, details of these recognition events at the molecular level remain to be further studied. The resolution of molecular structures of Avr and R proteins will increase our understanding of the interactions between Avr and R proteins,

(TPR1; previously identified as modifier of snc1, 10 [MOS10]), which interacts with SNC1 in vivo and in vitro, has been shown to be a positive regulator to activate SNC1-mediated resistance.111 Two negative regulators of plant defense, Defense no Death 1 (DND1) and Defense no Death 2 (DND2), were among dozens of genes that are suppressed by TPR1 in defense responses.110 Thus, the repression of negative regulators is implicated in SNC1-mediated downstream transcriptional reprogramming in ETI.

The Mediator complex
The Mediator (MED) complex is a conserved transcription regulator in eukaryotes, which acts as an adaptor between TFs and the RNA polymerase II (RNAPII) to regulate transcriptional reprogramming.106 The core of mediator consists of more than 20 subunits, which are organized into three modules, namely head, middle and tail. To date, many characterized Mediator subunits (MED8, MED14, MED15, MED16, MED19a, MED21, and MED25) in Arabidopsis have been functionally characterized in plant immunity.91,107,108 Two tail module subunits, MED14 and MED16, function as positive regulators in ETI91,109 (Fig. 2). Both the med14 and med16 mutants were deficient in transcriptional reprogramming induced by avirulent bacterial pathogen P. syringae pv tomato (Pst) DC3000 (avrRpt2), and conferred susceptibility to both Pst DC3000 (avrRpt2) and Pst DC3000. Interestingly, the number of affected genes was smaller in med14 mutant plants than in med16 mutant post Pst DC3000 (avrRpt2) infection.109 These data imply that MEDI14 and MED16 might regulate plant defense gene expression using different mechanisms during ETI.

Chromatin modifications
Rapid transcriptional changes in ETI can be extensively influenced by modulation of chromatin configuration utilizing different mechanisms, such as methylation of cytosine residues located in DNA, posttranslational modifications of histones and ATP-dependent chromatin remodeling. The Arabidopsis Elongator complex subunit2 (ELP2) was recently postulated as a genomic DNA demethylase, which is typically required for the demethylation and induction of NPR1 and PAD4 genes in response to avirulent DC3000 (avrRpt2) infection107 (Fig. 2). Also, ELP2 possesses histone acetyltransferase activity, which is essential for the expression of several defense genes (i.e., NPR1, PR2, PR5, EDS1, and PAD4)107 (Fig. 2). In fact, ELP2 has been confirmed as a major positive regulator of ETI, which promotes RPS2 and RPS4-mediated resistance to pathogens and kinetically induces defense genes, likely through histone modification.110 Being a histone methyltransferase, Arabidopsis ATX1, a Trithorax (TRX) family protein, mediates the methylation of lysine 4 in histone H3 protein through its set (named after three Drosophila proteins SUPPRESSOR OF VARIEGATION 3–9 [SU[VAR] 3–9], ENHANCER OF ZESTE [E[Z]] and TRX-containing domain, and is responsible for the upregulation of defense genes (i.e., WRKY70, PR1, and R genes).111 Infection assays showed that axtl mutant was resistant to Pst DC3000 hrcC mutant strain rather than virulent DC3000, indicating that ATX1 is a positive regulator of basal resistance.111 However, the potential role of ATX1 in ETI remains to be further determined, considering the altered expression of TIR-NB-LRR R genes and other defense-related genes in axtl mutant. Remarkably, another histone methyltransferase, SET DOMAIN GROUP 8 (SDG8), which epigenetically upregulates expression of a TIR-NB-LRR (RPS4-like) gene in a gene-specific manner, was shown to be required for RPM1-mediated resistance in Arabidopsis112 (Fig. 2).
and their biological roles. For example, a structural study of the molecular basis for plant immunity activated by AvrPto confirmed the inhibition of Pto kinase activity by AvrPto.121 This study challenged a widely held hypothesis that AvrPto activates Pto kinase activity and helped with a better understanding of Pto-mediated defense signaling. Structural studies of Avr and R proteins will also make it more accurate to predict potential interactions between Avr and R proteins. R proteins undergo conformational changes upon activation. Alteration of intramolecular interaction between its different domains results in the binding of ADP to inactive R proteins and the binding of ATP to active R proteins. The model for the activation of R protein by an ATP/ADP molecular switch is largely based on their similarities to animal nucleotide-binding oligomerisation domain (NOD) proteins.123,124 More data from structural studies of plant R proteins are needed to support the legitimacy of this model. Furthermore, structural studies of purified R protein complexes before and after pathogen infection could be the key to understanding the dynamics of R protein functions. Knowledge of the crystal structure of R proteins with their corresponding partners in their inactive and active status will greatly benefit the understanding of the ETI initiation.

Activation of R proteins leads to extensive transcriptional reprogramming of plant defense genes. Plant transcriptional regulators related to ETI comprise not only canonical DNA-binding TFs that act as transcription activators or repressors, but also cofactors including coactivators and corepressors that associate with DNA-binding and transcription regulatory components to fine-tune host transcription during ETI. Characterized transcription regulators have been shown to play crucial roles in manipulating transcriptional reprogramming of many defense-responsive genes through dynamic interaction with cognate R proteins and recruitment of factors to modify chromatin structure. However, novel transcription regulators and their specific regulatory roles in plant defense signaling remain to be discovered. Further decryption of interplay between different transcriptional and posttranscriptional modifications (e.g., methylation, acetylation, S-nitrosylation, phosphorylation, and ubiquitinylination) will shed light on the regulatory network of plant immunity. It is also noteworthy that extensive transcriptional changes during ETI may require alteration of chromatin configuration through orchestrating transcription associated factors, histone modification, and chromatin remodelers. Thus, to better understand the precise role of epigenetic regulation of R protein-mediated resistance, a study utilizing both classic genetic analysis and cutting-edge systemic approaches will be extremely helpful and necessary.

To better control plant disease in the field, one potential application of the knowledge we gained so far is to construct transgenic crop plants expressing exogenous R genes to reduce the risk of infection of the host plants by certain pathogens. However, overexpression of R genes in transgenic plants carries a tremendous fitness cost. One possible strategy to bypass this problem is to introduce R genes into crop plants under the control of pathogen inducible promoters. Furthermore, introducing an exogenous R gene could potentially expose plants to new diseases caused by necrotrophic pathogens. Lorang et al. recently reported that victorin effector from necrotrophic fungal pathogen Cochliobolus victoriae, which kills plants to obtain nutrients, binds to the target protein TRX-h5 to activate R protein LOV1-mediated cell death in order to cause diseases in Arabidopsis.125 This provided an excellent example of a necrotrophic pathogen taking advantage of cell death caused by ETI. This area of research is a new emerging theme in plant-pathogen interaction research. Another study showed that effector ToxA, from necrotrophic fungal pathogen Stagonospora nodorum, promotes the susceptibility of host plants by inducing Tns1-dependent cell death.126 Tn1 encodes a protein similar to R protein with a serine/threonine protein kinase (S/T) domain and NBS-LRR domains.126 It is likely that more examples of this kind of interaction between a pathogen and host plant will be discovered soon. As discussed by Lorang et al., while scientists explore the possibility of utilizing R proteins to control plant diseases, it is also possible that the newly introduced R proteins will be targeted by effectors from necrotrophic pathogens, and benefit necrotrophic pathogen infections.125

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Reference
1. Hamann T. Plant cell wall integrity maintenance as an essential component of bioric stress response mechanisms. Front Plant Sci 2012; 3:77; PMID:22629279; http://dx.doi.org/10.3389/fpls.2012.00077
2. Underwood W. The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 2012; 3:85; PMID:22639669; http://dx.doi.org/10.3389/fpls.2012.00085
3. Agris GN, Beckerman J. Agris’ Plant Pathology, 6th ed. 2011.
4. Miyazaki A, Albert P, Shinya T, Desaki Y, Ichimura K, Shishido K, Narusaka Y, Kawakami N, Kaku H, Shibuya N, CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 2007; 104:19613-8; PMID:18042724; http://dx.doi.org/10.1073/pnas.0705147104
5. Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 2008; 20:471-81; PMID:18243776; http://dx.doi.org/10.1105/tpc.107.056754
6. Boller T, Felix G. A renaissance of effectors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009; 60:379-406; PMID:19400727; http://dx.doi.org/10.1146/annurev.arplant.57.032905.105346
7. Alfano JR, Collmer A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking haptins, Avr proteins, and death. J Bacteriol 1997; 179:5655-62; PMID:9294418
8. Dang HJ, Dietrich RA, Richberg MH. Death Don’t Have No Mercy: Cell Death Programs in Plant- Microbe Interactions. Plant Cell 1996; 8:1793-807; PMID:12239362; http://dx.doi.org/10.1105/tpc.10.1793
9. Caplan J, Padmanabhan M, Dinesh-Kumar SP. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 2009; 3:126-35; PMID:18329612; http://dx.doi.org/10.1016/j.chom.2008.02.010
10. Bhattacharjee S, Garner CM, Gassmann W. New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Front Plant Sci 2013; 4:364; PMID:24062762; http://dx.doi.org/10.3389/fpls.2013.00364
11. Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol 2004; 42:185-209; PMID:15283655; http://dx.doi.org/10.1146/annurev.phyto.42.040803.140421
12. Fu QZ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 2013; 64:839-63; PMID:23373699; http://dx.doi.org/10.1146/annurev-arplant-042811-105606
13. Takken FL, Albrecth M, Taneling W. Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 2006; 9:883-90; PMID:16713729; http://dx.doi.org/10.1016/j.pbi.2006.05.009
Lukasik E, Takken FL. STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 2009; 12:427-36; PMID:19394891; http://dx.doi.org/10.1016/j.opb.2009.03.001

Aarts N, Metz M, Holub E, Staskawicz BJ. Daniels MJ.Pathogen requirement for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 1998; 95:10306-11; PMID:9707645; http://dx.doi.org/10.1073/pnas.95.17.10306

Levy M, Edelbaum O, Sela I. Tobacco mosaic virus regulates the expression of its own resistance gene. N. Plant Physiol 2004; 135:2392-7; PMID:15299123; http://dx.doi.org/10.1105/tp.104.044859

Rudwan O, Mouzezay S, Nicolaus P, Bouzidi MF. Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmodara halstedii. J Exp Bot 2005; 56:567-75; PMID:15545294; http://dx.doi.org/10.1093/jxb/er010

Yoshimura S, Yamanouchi U, Katayose Y, Toki S. The HSP90-SGT1 chaperone complex regulates nucleotide binding site-leucine-rich repeats (LRR) protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes in Arabidopsis. Plant Physiol 2010; 153:888-93; PMID:20685810; http://dx.doi.org/10.1104/pp.110.167379

Gou M, Shi Z, Zhu Y, Bao Z, Wang G, Hua J. The F-box protein CPR1/CPR50 negatively regulates R protein SNC1 accumulation. Plant J 2012; 69:411-20; PMID:22076323; http://dx.doi.org/10.1111/j.1365-313X.2011.08799.x

Genoud T, Buchala AJ, Chua NH, Métraux JA, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama MJ, Parker JE. Different requirements for EDS1 and EDS1-MEDiator1 in controlling disease resistance protein stability in Arabidopsis. Cell 2011; 103:8888-93; PMID:21873206; http://dx.doi.org/10.1016/j.cell.2011.02.0313.x

Zhao Z, Pink B, Mueller MJ, Berger S. Light conditions influence specific defense responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. PLoS Plants 2004; 1:2191-12; PMID:15291611; http://dx.doi.org/10.1371/journal.pbio.0010214

Griebel T, Zeier J. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 2008; 147:3464-70; http://dx.doi.org/10.1105/tp.108.119503

Wu L, Yang HQ. CYTOCHROME C1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 2010; 3:539-48; PMID:20053798; http://dx.doi.org/10.1093/mp/ssp107

Deslandes L, Olivier J, Peeters N, Feng DX, Khoundamoth L, Bouchet C, Sommich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type II effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 2010; 107:13538-43; PMID:20624951; http://dx.doi.org/10.1073/pnas.1004529107

Jia Y, McAdams SA, Bryan GT, Hershey HP. Arabidopsis R protein-mediated resistance to Pseudomonas syringae via NPR1. PLoS Pathog 2009; 5:e1000346; PMID:19423774; http://dx.doi.org/10.1371/journal.ppat.1000346

Ito H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 2003; 15:299-309; PMID:12653474; http://dx.doi.org/10.1105/tpc.12.11.2019

Liu J, Elmore JM, Coaker G. Investigating the functions of the RIN4 protein complex during plant innate immune responses. Plant Signal Behav 2009; 4:1107-10; PMID:20514222; http://dx.doi.org/10.4161/psb.4.11.92944

Liu J, Elmore JM, Fungshang AT, Palengren MG, Staskawicz BJ, Coaker G. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 2009; 7:e1000319; PMID:19564897; http://dx.doi.org/10.1371/journal.pbio.1000319

Mackey D, Holt BF 3rd, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 2002; 108:743-54; PMID:11954429; http://dx.doi.org/10.1016/S0092-8674(02)01080-3

Liu J, Elmore JM, Lin ZJ, Coaker G. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 2011; 9:137-46; PMID:21326096; http://dx.doi.org/10.1016/j.chom.2011.01.010

Chung EH, da Cunha L, Wu AJ, Gao Z, Cherkis K, Afzal AJ, Mackey D, Dangl JL. Specific choline phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor. Plants Cell Host Microbe 2011; 9:137-56; PMID:21326095; http://dx.doi.org/10.1016/j.chom.2011.01.009

Axtell MJ, Staskawicz BJ. Initiation of RPS2-specifed disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 2003; 112:369-77; PMID:12585126; http://dx.doi.org/10.1016/S0092-8674(03)00096-9

Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DeRoy S, Dangl JL, Mackey D. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 2005; 121:749-59; PMID:15935761; http://dx.doi.org/10.1016/j.cell.2005.03.025

Axtell MJ, Chisholm ST, Dahlbeck D, Staskawicz BJ. Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cytosine protease. Mol Microbiol 2003; 49:1937-46; PMID:12959019; http://dx.doi.org/10.1046/j.1365-2958.2003.03666.x

Liu J, Elmore JM, Coaker G. The functions of the RIN4 protein complex during plant innate immune responses. Plant Signal Behav 2009; 4:1107-10; PMID:20514222; http://dx.doi.org/10.4161/psb.4.11.92944

Liu J, Elmore JM, Fuglsang AT, Palengren MG, Staskawicz BJ. Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cytosine protease. Mol Microbiol 2003; 49:1937-46; PMID:12959019; http://dx.doi.org/10.1046/j.1365-2958.2003.03666.x

Heidrich K, Wirthmüller L, Tasset C, Pouzet C, Eide C, Pether CM, Croker SB, Veneklaas EJ, Adams M, Boller T. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 2011; 334:1405-8; PMID:22158819; http://dx.doi.org/10.1126/science.1203659

Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 2012; 12:89-100; PMID:22727771; http://dx.doi.org/10.1038/nri3414

Wiemer M, Feya BJ, Parker JE. Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 2005; 8:383-9; PMID:15939664; http://dx.doi.org/10.1016/j.pbi.2005.05.010

Heidrich K, Wirthmüller L, Tasset C, Pether CM, Deslandes L, Parker JE. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 2011; 334:1401-4; PMID:22158818; http://dx.doi.org/10.1126/science.1211641

Bhattacharjee S, Halane MK, Kim SH, Gausmann W. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 2011; 334:1405-8; PMID:22158819; http://dx.doi.org/10.1126/science.1211592
54. Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jingree JR, Wang PW, Lo T, Youn JY, Guttman DS, et al. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci U S A 2013; 110:18722-7; PMID:24170858; http://dx.doi.org/10.1073/pnas.1315520110

55. van der Hoorn RA, Kamoun S. From Guard to Decoy: a new model for perception of plant pathogen effecors. Plant Cell 2008; 20:2009-17; PMID:18723576; http://dx.doi.org/10.1105/tpc.108.060394

56. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Grau J, Bonas U, Lahaye T. Recognition of bacterial effector acts as a plant transcription factor targeting receptor kinases. Curr Biol 2008; 18:74-80; PMID:18158241; http://dx.doi.org/10.1016/j.cub.2007.12.020

57. Tang X, Frederick RD, Zhou J, Halterman DA, Jia R, Grau J, Bonas U, Lahaye T. The Arabidopsis ZED1 pseudokinase is a novel membrane fusion-mediated plant immunity effector. Proc Natl Acad Sci U S A 2013; 110:18722-7; PMID:24170858; http://dx.doi.org/10.1073/pnas.1312520110

58. Sheen DH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science 2007; 315:1098-103; PMID:17185563; http://dx.doi.org/10.1126/science.1136372

59. García AV, Blanvillain-Baufumé S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JD. The Pseudomonas syringae effector protein, AvrRps4, requires in plants processing and the KRVY domain to function. Plant J 2009; 57:1079-91; PMID:19054367; http://dx.doi.org/10.1111/j.1365-313X.2008.03718.x

60. Sheen JQ, Schulze-Lefert P. Symptom in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO J 2007; 26:4293-301; PMID:17853890; http://dx.doi.org/10.1038/sj.emboj.7601854

61. Deslandes L, Rivas S. The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signal Behav 2011; 6:42-8; PMID:21528201; http://dx.doi.org/10.4161/psb.6.1.13978

62. Li Y, Tessaro MJ, Li X, Zhang Y. Regulation of the expression of plant resistance gene Sncl1 by a protein with a conserved BAT2 domain. Plant Physiol 2010; 153:1425-34; PMID:2049546; http://dx.doi.org/10.1104/pp.110.156240

63. Zhang Y, Li X. A putative nucleoporin 96k Is required for both basal defense and constitutive resistance mediated by the WRKY transcription factor npr1-1,constitutive 1. Plant Physiol 2005; 138:2315-25; PMID:16161300; http://dx.doi.org/10.1104/pp.105.064519

64. Palma K, Zhang Y, Li X. An importin alpha homolog, MOS6, plays an important role in plant immunity. Plant Physiol 2009; 150:1648-55; PMID:19459232; http://dx.doi.org/10.1104/pp.109.142777

65. Hofius D, Schulze-Laren T, Joensen J, Tutiagiannis JD, Petersen NH, Matssson O, Jørgensen LB, Jones JD, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009; 137:773-83; PMID:19459252; http://dx.doi.org/10.1016/j.cell.2009.02.036

66. Yoshimoto K, Fikuma Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shiras K. Nuclear receptor regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate response in Arabidopsis. Plant Cell 2009; 21:2914-27; PMID:19773385; http://dx.doi.org/10.1105/tpc.109.086035

67. Elmore JM, Lin CZ, Coaker G. Plant NB-LRR transcription factors in disease signaling: upstreams and downstreams. Curr Opin Plant Biol 2011; 14:365-71; PMID:21459303; http://dx.doi.org/10.1016/j.copbio.2011.03.011

68. Vinas S, Deslandes L. Nuclear components and dynamics during plant innate immunity. Front Plant Sci 2013; 4:481; PMID:23419451; http://dx.doi.org/10.3389/fpls.2013.00481

69. Eulgem T, Somssich IE. Networks of WRKY transcription factors in disease sensing. Curr Opin Plant Biol 2011; 14:366-71; PMID:21764023; http://dx.doi.org/10.1016/j.copbio.2010.07.020

70. Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity. Plant Physiol 2009; 150:1648-55; PMID:19420325; http://dx.doi.org/10.1104/pp.109.148369

71. Lahaye T. Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends Plant Sci 2004; 9:1-4; PMID:14729210; http://dx.doi.org/10.1016/j.tplants.2003.11.002
97. Tasser C, Bernoux M, Jauneau A, Pouzer C, Bitté C, Kieffer-Jacqaudin S, Rivas S, Marco Y, Deslandes L. Autocatalysis of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 2010; 6:e1001202; PMID:2124938; http://dx.doi.org/10.1371/journal.ppat.1001202

98. Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S. www.landesbioscience.com Virulence 721

99. Pandey SP, Roccaro M, Schön M, Logemann E, Mathur S, Vyas S, Kapoor S, Tyagi AK. The reproduction and abiotic stress. Plant Physiol 2011; 157:1609-27; PMID:22021418; http://dx.doi.org/10.1104/pp.111.188300

100. Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen QH. BARL-MAA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 2013; 25:1158-73; PMID:23522068; http://dx.doi.org/10.1105/tpc.113.109942

101. Inoue H, Hayashi N, Matsushita A, Xiongqian L, Nakayama A, Sugano S, Jiang CJ, Takatsuji H. Blast resistance of CC-NB-LRR protein Pbl is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci U S A 2013; 110:9577-82; PMID:23696671; http://dx.doi.org/10.1073/pnas.122255110

102. Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, Takatsuji H. The nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J 2012; (Forthcoming); PMID:23013464

103. Bhartari KK, Atamian HS, Kaloshian I, Elagim T. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant J 2010; 63:229-40; PMID:20499007; http://dx.doi.org/10.1111/j.1365-313X.2010.04323.x

104. Padmanabhan MS, Ma S, Burch-Smith TM, Czymbek K, Huijer P, Dinesh-Kumar SP. Novel positive regulatory role for the SPL6 transcription factor in the N-TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 2013; 9:e1003235; PMID:23516666; http://dx.doi.org/10.1371/journal.ppat.1003235

105. Zhu Z, Xu F, Zhang Y, Cheng YT, Wiermer M, Li J, Zhang Y. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci U S A 2010; 107:13960-5; PMID:20867714; http://dx.doi.org/10.1073/pnas.1002828107

106. Mathur S, Vyas S, Kapoor S, Tyagi AK. The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol 2011; 157:1609-27; PMID:22021418; http://dx.doi.org/10.1104/pp.111.188300

107. Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador DM, Mou Z. The Arabidopsis elongator complex subunit2 epigenetically regulates plant immune responses. Plant Cell 2013; 25:762-76; PMID:23456600; http://dx.doi.org/10.1105/tpc.113.109916

108. Caillaud MC, Asai S, Ballapalli G, Piquerez S, Fabro G, Jones JD. A downy mildew effector attenuates salicylic Acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol 2013; 11:e1001752; PMID:24339748; http://dx.doi.org/10.1371/journal.pbio.1001752

109. DeFraia CT, Zhang X, Mou Z. Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. Plant J 2010; 64:912-23; PMID:21143673; http://dx.doi.org/10.1111/j.1365-313X.2010.04345.x

110. Palma K, Thorgrimsen S, Malikový F, IEN1 differentially regulates defense gene expression in plant immune responses. Plant J 2013; 75:484-97; PMID:23607369; http://dx.doi.org/10.1111/jep.12216

111. Alvarez-Venegas R, Abdallat AA, Guo M, Alfaro JR, Avramova Z. Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2007; 2:106-13; PMID:17965588; http://dx.doi.org/10.4161/epi.2.2.4404

112. Holt BF 3rd, Boyes DC, Ellerström M, Siefers N, Stoermann B, Niemeyer I, et al. A unique wheat disease resistance-like factor 1 bound to ADP. Nature 2005; 434:926-30; PMID:15345807; http://dx.doi.org/10.1038/nature03465

113. Kromer JS, Waring KA, Rothmeier S, et al. A downy mildew effector attenuates the innate immunity of Arabidopsis and tobacco. Plant Cell 2010; 22:918-36; PMID:20332378; http://dx.doi.org/10.1105/pp.109.071662

114. Leipe DD, Koonin EV, Aravind L. Mi-1. Plant J 2010; 63:229-40; PMID:20409007; http://dx.doi.org/10.1111/j.1365-313X.2010.04323.x

115. Holt BF 3rd, Royces DC, Ellerstrom M, Siefers N, Stoermann B, Niemeyer I, et al. A unique wheat disease resistance-like factor 1 bound to ADP. Nature 2005; 434:926-30; PMID:15345807; http://dx.doi.org/10.1038/nature03465

116. Leipe DD, Koonin EV, Aravind L. Mi-1. Plant J 2010; 63:229-40; PMID:20409007; http://dx.doi.org/10.1111/j.1365-313X.2010.04323.x

117. Kim SH, Kwon SI, Bhattacharjee S, Gassmann W. Regulation of defense gene expression by Arabidopsis SRER1. Plant Signal Behav 2009; 4:149-50; PMID:19649106; http://dx.doi.org/10.4161/psb.4.2.7682

118. Moissiard G, Cokus SJ, Cary J, Feng S, Billi AC, et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science 2012; 336:1448-51; PMID:22555433; http://dx.doi.org/10.1126/science.1221472

119. Kang HG, Kuhl JC, Kachroo P, Klessig DF. CRT1, an Arabidopsis ATPhase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus. Cell Host Microbe 2008; 3:48-57; PMID:18191974; http://dx.doi.org/10.1016/j.chom.2007.11.006

120. Kang HG, Oh CS, Sato M, Katagiri F, Glazebrook J, Takahashi H, Kachroo P, Martin GB, Klessig DF. Endosome-associated CRT1 functions early in resistance gene-mediated defense signaling in Arabidopsis and tobacco. Plant Cell 2010; 22:918-36; PMID:20332378; http://dx.doi.org/10.1105/pp.109.071662

121. Yabuta S, Izumikawa J, Yamauchi S, et al. A downy mildew effector attenuates the innate immunity of Arabidopsis and tobacco. Plant Cell 2010; 22:918-36; PMID:20332378; http://dx.doi.org/10.1105/pp.109.071662

122. Van Berkum NL, Lieberman-Aiden E, Williams I, Imakaev M, Ninke A, Mirny LA, Dekker J, Lander ES. Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 2010; doi:10.3791/1869; PMID:20461051