Anticoagulation in elderly patients at high risk of atrial fibrillation without documented arrhythmias

Manuel Martínez-Sellés1,*, Eusebio García-Izquierdo Jaén2, Ignacio Fernández Lozano2

1Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Universidad Complutense, CIBERCV, Madrid, Spain
2Servicio de Cardiología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain

J Geriatr Cardiol 2017; 14: 166–168. doi:10.11909/j.issn.1671-5411.2017.03.004

Keywords: Anticoagulation; Atrial fibrillation; Interatrial block; Prognosis

1 Risk of stroke in patients with high CHA2DS2-VASc and no documented arrhythmias

Recent studies have suggested that patients with high CHA2DS2-VASc-score [Congestive Heart failure, hypertension, Age ≥ 75 years (doubled), Diabetes, Stroke (doubled), Vascular disease, Age 65–74 years, Sex category (female sex)] thromboembolic complications occurred irrespective of the presence of atrial fibrillation (AF) and anticoagulant therapy may be initiated irrespective of documented AF.\cite{1,2}

In fact, Tischer, et al.,\cite{1} found that up to a score of 6, the prevalence of stroke was higher in patients with AF. However, beyond a score of 6, the prevalence of stroke was high irrespective of AF. Other authors have suggested that the risk of stroke is particularly high in the presence of arrhythmic symptoms,\cite{2} previous myocardial infarction,\cite{3} or heart failure\cite{4} therapy in patients with high CHA2DS2-VASc-score, even in the absence of documented arrhythmias. These data advocate that AF is a risk factor for ischemic stroke, but not necessarily the direct cause of it. Moreover, the causality of the association AF—ischemic stroke—is questioned by the reported lack of temporal relation between stroke events and AF paroxysms or atrial high-rate episodes detected by implantable loop recorders or devices.\cite{5–11}

2 Risk of stroke in patients with excessive atrial ectopy and short atrial runs

Atrial ectopy is a predictor of AF\cite{12} But excessive supra-ventricular ectopic activity (defined as the presence of either ≥ 30 premature atrial contractions/hour daily or any runs of ≥ 20 premature atrial contractions) is associated with an increased risk of ischemic stroke beyond manifest AF.\cite{13}

In fact, stroke is more often the first clinical presentation, rather than AF, in these subjects. Even premature atrial contractions detected on the routine screening ECG are associated with an increased risk of ischemic stroke.\cite{14,15}

3 Risk of stroke in patients with advanced interatrial block and no documented arrhythmias

Elderly patients with interatrial block (IAB) have an increased risk of dementia and stroke.\cite{16} In fact, in very elderly subjects, the rate of dementia increases gradually in subjects with a normal P wave, to those with partial IAB, advanced IAB, and AF (Figure 1). IAB, particularly advanced IAB is strongly associated with the incidence of stroke.\cite{17}

Our proposal is to combine the three previous risk factors of stroke in patients without documented arrhythmias to assess the need of anticoagulation therapy. In patients without documented arrhythmias, anticoagulant drugs could probably be used in the presence of high CHA2DS2-VASc, supra-ventricular ectopic activity, and advanced IAB with high risk of atrial arrhythmias (Bayes syndrome) to prevent cognitive impairment and embolic stroke (Table 1).\cite{18} The evidence that AF is not the final cause of stroke, just an important risk maker opens the possibility to prescribe anticoagulation to elderly patients with the three previous characteristics that increase the risk of AF and stroke: high CHA2DS2-VASc score,\cite{19} frequent atrial premature atrial beats,\cite{20,21} and advanced interatrial block. This decision seems particularly necessary in patients with structural heart disease and/or heart failure.\cite{22} The BAYES registry\cite{23} is focused in patients with structural heart disease and will contribute assess the influence of these three factors, per se and together, opening the door to perform, for the first time, a clinical trial comparing anticoagulation with placebo, to
try to change the present paradigm that makes AF necessary to prescribe anticoagulation to these patients.\cite{24,25}

4 Original data regarding the postoperative period in cardiac surgery patients

IAB is frequent in elderly patients that are treated with cardiac surgery.\cite{26} Our hypothesis was that elderly patients with IAB, especially those with advanced IAB would have an increase in the rate of postoperative AF compared to patients without IAB. These could influence the decision to anti-coagulate or not these patients and, in the case of doing so, during how much time.

To test this hypothesis, we studied prospectively 465 patients who underwent cardiac surgery, had sinus rhythm, and no previous history of AF. We compared a subset of 102 elderly patients (aged 75 or older; mean age 79.5 ± 3.8 years) with 363 patients aged < 75 years. Advanced IAB was more frequent among the elderly, and absence of IAB was more likely to be found among younger patients (Figure 2). As expected, the incidence of postoperative AF was higher among elderly patients than in those below 75 years (57.8% vs. 31.4%, respectively; \(P < 0.001\)). Elderly patients with IAB had almost the double rate of postoperative AF than those without IAB (66.1% vs. 33.3%, respectively; \(P = 0.06\)).

Considering that postoperative AF has been proven to be linked with a higher risk of complications (including stroke and overall mortality),\cite{27} the detection of IAB prior to cardiac surgery could be seen, also in this scenario, as a risk marker not only for the development of postoperative AF, but also for the development of short and long-term complications. In fact, postoperative AF is associated with AF recurrence on long-term follow-up.\cite{28,29} Although strong evidence is lacking regarding the potential benefits of long-term anticoagulation in patients with AF after cardiac surgery, the presence of IAB, particularly advanced IAB, could support the need to use anticoagulant therapy in these patients. Elderly patients undergoing cardiac surgery can be defined as a population with an elevated prevalence of IAB and at high risk of postoperative AF and subsequent complications. Thus, long-term anticoagulation after postoperative AF in this group of patients may provide more relevant benefits than in other groups of patients, although this statement needs to be addressed with further well-designed clinical trials.

5 Conclusions

Even in the absence of documented arrhythmias, the risk of AF is probably enough to merit anticoagulation in elderly patients with high CHA\textsubscript{2}DS\textsubscript{2}-VASc-score, excessive atrial ectopy or short atrial, and advanced IAB. These three variables should be included in the assessment of advanced-age patients in different clinical settings, including patients who undergo cardiac surgery.

References

1 Tischer Ts, Schneider R, Lauschke J, \textit{et al.} Prevalence of atrial fibrillation in patients with high CHADS\textsubscript{2} and CHA\textsubscript{2}DS\textsubscript{2}-VASc-scores: anticoagulate or monitor high-risk patients? \textit{Pacing Clin Electrophysiol} 2014; 37: 1651–1657.
2 Zuo ML, Liu S, Chan KH, et al. The CHADS2 and CHA2DS2-VASc scores predict new occurrence of atrial fibrillation and ischemic stroke. J Interv Card Electrophysiol 2013; 37: 47–54.

3 Lau KK, Chan PH, Yiu KH, et al. Assessment of the CHADS2 and CHA2DS2-VASc scores in post-myocardial infarction patients: Risk of new occurrence of atrial fibrillation and ischemic stroke. Cardiol J 2014; 21: 474–483.

4 Melgaard L, Gorst-Rasmussen A, Lane DA, et al. Assessment of the CHADS2-VASc Score in predicting ischemic stroke, thromboembolism, and death in patients with heart failure with and without atrial fibrillation. JAMA 2015; 314: 1030–1038.

5 James R, Atul V, Halperin JL, et al. Premature atrial ectopic activity and increased risk of atrial fibrillation. PACE 2014; 37: 1080–1086.

6 Gladstone D, Spring M, Dorian P, et al. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med 2014; 370: 2467–2477.

7 Sanna T, Diener HC, Passman R, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 2014; 370: 2478–2486.

8 Benezet-Mauecos J, Rubio JM, Farré J. Atrial high rate episodes in patients with dual-chamber cardiac implantable electronic devices: unmasking silent atrial fibrillation. J Am Heart J 2014; 167: 22–27.

9 Glotzer TV, Daoud EG, Wyse DG, et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol 2009; 2: 474–480.

10 Hohnloser SH, Capucci A, Fain E, et al. Asymptomatic atrial fibrillation and stroke prevention in pacemaker patients and the atrial fibrillation reduction atrial pacing Trial (ASSERT). Am Heart J 2006; 152: 442–447.

11 Martin DT, Bersohn MM, Waldo AL, et al. IMPACT Investigators. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur Heart J 2015; 36: 1660–1668.

12 Kumarathurai P, Mouridsen MR, Mattsson N, et al. Atrial ectopy and N-terminal pro-B-type natriuretic peptide as predictors of atrial fibrillation: a population-based cohort study. Europace. DOI: 10.1093/europace/euw017. Published Online First: May 18, 2016.

13 Larsen BS, Kumarathurai P, Falkenberg J, et al. Excessive atrial ectopy and short atrial runs increase the risk of stroke beyond incident atrial fibrillation. J Am Coll Cardiol 2015; 66: 232–241.

14 O’Neal WT, Kamel H, Kleindorfer D, et al. Premature atrial contractions on the screening electrocardiogram and risk of ischemic stroke: the reasons for geographic and racial differences in stroke study. Neuroepidemiology 2016; 47: 53–58.

15 Ołoma U, He F, Shaffer ML, et al. Premature cardiac contractions and risk of incident ischemic stroke. J Am Heart Assoc 2012; 1: e002519.

16 Martinez-Sellés M, Massó-van Roesssel A, Álvarez-García J, et al. Interatrial block and atrial arrhythmias in centenarians: Prevalence, associations, and clinical implications. Heart Rhythm 2016; 13: 645–651.

17 O’Neal WT, Kamel H, Zhang ZM, et al. Advanced interatrial block and ischemic stroke: the atherosclerosis risk in communities study. Neurology 2016; 87: 352–356.

18 Martinez-Sellés M, Fernández Lozano I, Baranchuk A, et al. Should patients at high risk of atrial fibrillation receive anti-coagulation? Rev Esp Cardiol 2016; 69: 374–376.

19 Wu JT, Wang SL, Chu YJ, et al. CHADS2 and CHA2DS2-VASc scores predict the risk of ischemic stroke outcome in patients with interatrial block without atrial fibrillation. J Atheroscler Thromb. DOI: 10.5551/jat.34900. Published online first: Jun 15, 2016.

20 Acharya T, Tringali S, Bhullar M, et al. Frequent atrial premature complexes and their association with risk of atrial fibrillation. Am J Cardiol 2015; 116: 1852–1857.

21 Binici Z, Intzilakis T, Nielsen OW, et al. Excessive supraventricular ectopic activity and increased risk of atrial fibrillation and stroke. Circulation 2010; 121: 1904–1911.

22 Alvarez-Garcia J, Roessela MV, Vives-Borrasa M, et al. Prevalence, clinical profile and short-term prognosis of interatrial block in patients admitted for worsening of heart failure [abstract]. J Am Coll Cardiol 2016; 67: 1435.

23 Martinez-Sellés M, Baranchuk A, Eloua R, de Luna AB. Rationale and design of the BAYES (Interatrial Block and Yearly Events) registry. Clin Cardiol. DOI: 10.1002/clc.22647. Published online first: Nov 24, 2016.

24 Bayes de Luna A, Baranchuk A, Martinez-Sellés M, Platonov PG. Anticoagulation in patients at high risk of stroke without documented atrial fibrillation. Time for a paradigm shift? Ann Noninvasive Electrocardiol. DOI: 10.1111/anec.12417. Published online first: Dec 16, 2016.

25 Chhabra L, Gowdar S. Interatrial block to guide the thromboembolic prevention strategy: should it be the next step? Am J Cardiol. DOI: 10.1016/j.amjcard.2016.05.029. Published online first: May 18, 2016.

26 Conde D, van Oosten EM, Hamilton A, et al. Prevalence of interatrial block in patients undergoing coronary bypass graft surgery. Int J Cardiol 2014; 171: e98–e99.

27 Saxena A, Dinh DT, Smith JA, et al. Usefulness of postoperative atrial fibrillation as an independent predictor for worse early and late outcomes after isolated coronary artery bypass grafting (multicenter Australian study of 19,497 patients). Am J Cardiol 2012; 109: 219–225.

28 Pillarissetti J, Patel A, Bommama S, et al. Atrial fibrillation following open heart surgery: long-term incidence and prognosis. J Interv Card Electrophysiol 2014; 39: 69–75.

29 El-Chami MF, Merchant FM, Smith P, et al. Management of New-Onset Postoperative Atrial Fibrillation Utilizing Insertable Cardiac Monitor Technology to Observe Recurrence of AF (MONITOR-AF). Pacing Clin Electrophysiol 2016; 39: 1083–1089.