STRICT S-NUMBERS OF THE VOLterra OPERATOR

ÖZLEM BAKŞI1,2, TAQSEER KHAN1,3, JAN LANG1, AND VÍT MUSIL1,4

Abstract. For Volterra operator $V: L^1(0,1) \to C[0,1]$ and summation operator $\sigma: \ell^1 \to c$, we obtain exact values of Approximation, Gelfand, Kolmogorov, Mityagin and Isomorphism numbers.

1. INTRODUCTION AND MAIN RESULTS

Compact operators and their sub-classes (nuclear operators, Hilbert-Schmidt operators, etc.) play a crucial role in many different areas of Mathematics. These operators are studied extensively but somehow less attention is devoted to operators which are non-compact but close to the class of compact operators. In this work we will focus on such operators.

First, consider the Volterra operator V, given by

$$Vf(t) = \int_0^t f(s) \, ds, \quad (0 \leq t \leq 1), \quad \text{for } f \in L^1(0,1). \quad (1.1)$$

When V is regarded as an operator from L^p into L^q, $(1 < p, q < \infty)$, it is a compact operator, however in the limiting case, when V maps L^1 into the space C of continuous functions on the closed unit interval, the operator is bounded, with the operator norm $\|V\| = 1$, but non-compact. It is worth mentioning that, despite being non-compact or even weakly non-compact, this operator possesses some good properties as being strictly singular (follows from [BG89], or see [Lef17]). This makes Volterra operator, in the above-mentioned limiting case, an interesting example of a non-compact operator “close” to the class of compact operators. The focus of our paper will be on obtaining exact values of strict s-numbers for this operator.

Volterra operator was already extensively studied. Let us briefly recall those results related to our work. The first credit goes to V. I. Levin [Lev38], who computed explicitly the norm of V between two L^p spaces ($1 < p < \infty$) and described the extremal function which is connected with the function \sin^p. Later on, E. Schmidt in [Sch40] extended this result for $V: L^p \to L^q$, where $1 < p, q < \infty$. This operator was also studied in the context of Approximation theory [Pin85b, Kol36, Tih60, TB67, BS67, Pin85a].

Date: March 29, 2018.

2010 Mathematics Subject Classification. Primary 47B06, Secondary 47G10.

Key words and phrases. Integral operator, summation operator, s-numbers.

This research was partly supported by the United States – India Educational Foundation (USIEF) and by the grant P201-13-14743S of the Grant Agency of the Czech Republic.
Later a weighted version of this operator was studied in connection with Brownian motion \cite{LL02}, Spectral theory \cite{EE04, EE87} and Approximation theory \cite{EL11}.

Recently, sharp estimates for Bernstein-numbers of V in the limiting case were obtained in \cite[Theorem 2.2]{Lef17}, more specifically,

$$b_n(V) = \frac{1}{2n-1} \text{ for } n \in \mathbb{N},$$

and also the estimates for the essential norm can be found in recent preprint \cite{AHLM16}.

In our paper, we will compute exact values of all the remaining strict s-numbers, i.e., Approximation, Gelfand, Kolmogorov, Mityagin and Isomorphism numbers denoted by a_n, c_n, d_n, m_n and i_n respectively (for the exact definitions see Section 2). Our main result reads as follows.

Theorem 1.1. Let $V : L^1(0,1) \to C[0,1]$ be defined as in (1.1). Then

$$a_n(V) = c_n(V) = d_n(V) = \frac{1}{2} \text{ for } n \geq 2$$

and

$$m_n(V) = i_n(V) = \frac{1}{2n-1} \text{ for } n \in \mathbb{N}.$$

If we also include the result (1.2) concerning the Bernstein numbers, we see that all the strict s-numbers of V split between two groups. The upper half (1.3) remains bounded from below while the lower half (1.4) converges to zero. This phenomenon for this operator was already observed; for instance compare \cite{BS67} and \cite{BG89}, and for weighted version see \cite{EL07} and \cite{EL06}.

The similar results continue to hold for the sequence spaces and for the discrete analogue of V, namely for the operator $\sigma : \ell^1 \to c$, defined as

$$\sigma(x)_k = \sum_{j=1}^k x_j, \quad (k \in \mathbb{N}), \quad \text{for } x \in \ell^1,$$

where we denoted $x = \{x_j\}_{j=1}^\infty$ for brevity. The operator is well-defined and bounded with the operator norm $\|\sigma\| = 1$. It is shown in \cite[Theorem 3.2]{Lef17} that

$$b_n(\sigma) = \frac{1}{2n-1} \text{ for } n \in \mathbb{N}.$$

We have the next result.

Theorem 1.2. Let $\sigma : \ell^1 \to c$ be the operator from (1.5). Then

$$a_n(\sigma) = c_n(\sigma) = d_n(\sigma) = \frac{1}{2} \text{ for } n \geq 2$$

and

$$m_n(\sigma) = i_n(\sigma) = \frac{1}{2n-1} \text{ for } n \in \mathbb{N}.$$

The proofs are provided at the end of Section 3.
2. BACKGROUND MATERIAL

We shall fix the notation in this section, although we mostly work with standard notions from functional analysis.

2.1. Normed linear spaces. For normed linear spaces X and Y, we denote by $B(X,Y)$ the set of all bounded linear operators acting between X and Y. For any $T \in B(X,Y)$, we use just $\|T\|$ for its operator norm, since the domain and target spaces are always clear from the context. By B_X, we mean the closed unit ball of X and, similarly, S_X stands for the unit sphere of X. It is well-known fact that B_X is compact if and only if X is finite-dimensional.

Let Z be a closed subspace of the normed space X. The quotient space X/Z is the collection of the sets $[x] = x + Z = \{x + z; z \in Z\}$ equipped with the norm

$$\|[x]\|_{X/Z} = \inf\{\|x - z\|_X; z \in Z\}.$$

We sometimes adopt the notation $\|x\|_{X/Z}$ when no confusion is likely to happen. Recall the notion of canonical map $Q_Z: X \to X/Z$, given by $Q_Z(x) = [x]$.

By the Lebesgue space L^1, we mean the set of all real-valued, Lebesgue integrable functions on $(0, 1)$ identified almost everywhere and equipped with the norm

$$\|f\|_1 = \int_0^1 |f(s)| \, ds.$$

The space of real-valued, continuous functions on $[0, 1]$, denoted by C, enjoys the norm

$$\|f\|_\infty = \sup_{0 \leq t \leq 1} |f(t)|.$$

The discrete counterpart to L^1 is the space of all summable sequences, ℓ^1, where

$$\|x\|_1 = \sum_{j=1}^{\infty} |x_j|$$

and, similarly to the space C, we denote by c the space of all convergent sequences endowed with the norm

$$\|x\|_\infty = \sup_{j \in \mathbb{N}} |x_j|.$$

Here and in the latter, we use the abbreviation $x = \{x_j\}_{j=1}^{\infty}$ for the sequences and we write them in bold font. Note that we also consider only real-valued sequence spaces.

All the above-mentioned spaces are complete, i.e., they form Banach spaces.

2.2. s-numbers. Let X and Y be Banach spaces. To every operator $T \in B(X,Y)$, one can attach a sequence of non-negative numbers $s_n(T)$ satisfying for every $n \in \mathbb{N}$ the following conditions

(S1) $\|T\| = s_1(T) \geq s_2(T) \geq \cdots \geq 0,$
(S2) $s_n(T+S) \leq s_n(T) + \|S\|$ for every $S \in B(X,Y),$
(S3) $s_n(B \circ T \circ A) \leq \|B\|s_n(T)\|A\|$ for every $A \in B(X_1, X)$ and $B \in B(Y, Y_1),$
(S4) $s_n(\text{Id}: \ell^2_n \to \ell^2_n) = 1,$
(S5) $s_n(T) = 0$ whenever rank $T < n.$
The number $s_n(T)$ is then called the n-th s-number of the operator T. When $(S4)$ is replaced by a stronger condition

(S6) $s_n(\text{Id}: E \to E) = 1$ for every Banach space E, dim $E = n$,

we say that $s_n(T)$ is the n-th strict s-number of T.

Note that the original definition of s-numbers, which was introduced by Pietsch in \cite{Pie74}, uses the condition (S6) which was later modified to accommodate wider class of s-numbers (like Weyl, Chang and Hilbert numbers). For a detailed account of s-numbers, one is referred for instance to \cite{Pie07}, \cite{CS90} or \cite{EL11}.

We shall briefly recall some particular strict s-numbers. Let $T \in B(X,Y)$ and $n \in \mathbb{N}$. Then the n-th Approximation, Gelfand, Kolmogorov, Isomorphism, Mityagin and Bernstein numbers of T are defined by

\[
 a_n(T) = \inf_{F \in B(X,Y), \text{rank } F < n} \|T - F\|,
\]
\[
 c_n(T) = \inf_{M \subseteq X, \text{codim } M < n} \sup_{x \in B_M} \|T x\|_Y,
\]
\[
 d_n(T) = \inf_{N \subseteq Y, \text{dim } N < n} \sup_{x \in B_N} \|T x\|_{Y/N},
\]
\[
 i_n(T) = \sup \|A\|^{-1} \|B\|^{-1},
\]
\[
 m_n(T) = \sup_{\rho \geq 0} \sup_{N \subseteq Y, \text{codim } N \geq n} Q_N T B_X \supseteq \rho B_Y / N,
\]

where the supremum is taken over all Banach spaces E with dim $E \geq n$ and $A \in B(Y, E)$, $B \in B(E, X)$ such that $A \circ T \circ B$ is the identity map on E,

\[
 b_n(T) = \sup_{M \subseteq X, \text{dim } M \geq n} \inf_{x \in S_M} \|T x\|_Y,
\]

respectively.

3. Proofs

Lemma 3.1. Let $n \in \mathbb{N}$. Then we have the following lower bounds of the Isomorphism numbers of V and σ.

(i) \[
 i_n(V) \geq \frac{1}{2n - 1};
\]

(ii) \[
 i_n(\sigma) \geq \frac{1}{2n - 1}.
\]
Proof. (i) Let $n \in \mathbb{N}$ be fixed. We shall construct a pair of maps A and B such that the chain

$$\ell^1_{w,n} \xrightarrow{B} L^1 \xrightarrow{V} C \xrightarrow{A} \ell^1_{w,n}$$

forms the identity on $\ell^1_{w,n}$. Here $\ell^1_{w,n}$ is the n-dimensional weighted space ℓ^1 with the norm given by

$$\|x\|_{\ell^1_{w,n}} = \sum_{k=1}^{n} w_k |x_k|.$$

For the purpose of this proof, we choose $w_k = 2$ for $1 \leq k \leq n - 1$ and $w_n = 1$.

Now, define $A: C \to \ell^1_{w,n}$ by

$$(Af)_k = (2n - 1) f \left(\frac{2k - 1}{2n - 1} \right), \quad (1 \leq k \leq n), \quad \text{for } f \in C.$$

Obviously, A is bounded with the operator norm $\|A\| = (2n - 1)^2$.

In order to construct the mapping B, consider the partition of the unit interval into subintervals $I_1, I_2, \ldots, I_{2n-1}$ of the same length, i.e.

$$I_k = \left[\frac{k - 1}{2n - 1}, \frac{k}{2n - 1} \right] \quad \text{for } 1 \leq k \leq 2n - 1,$$

and define

$$B(x) = \sum_{k=1}^{n-1} x_k \left(\chi_{I_{2k-1}} - \chi_{I_{2k}} \right) + x_n \chi_{I_{2n-1}}.$$

Clearly $B(x)$ is integrable for every $x \in \ell^1_{w,n}$, B is bounded and the operator norm satisfies

$$\|B\| = \frac{1}{2n - 1}.$$

One can observe that the composition $A \circ V \circ B$ is the identity mapping on $\ell^1_{w,n}$ and by the very definition of the n-th Isomorphism number we have

$$i_n(V) \geq \|A\|^{-1}\|B\|^{-1} = \frac{1}{2n - 1}$$

which completes the proof.

As for the discrete case (ii), we consider the chain

$$\ell^\infty_n \xrightarrow{B} \ell^1 \xrightarrow{\sigma} C \xrightarrow{A} \ell^\infty_n$$

where ℓ^∞_n stands for the n-dimensional space ℓ^∞, A is given by

$$A(x)_k = x_{2k-1}, \quad (1 \leq k \leq n), \quad \text{for } x \in c$$

and B satisfies

$$B(y) = (y_1, -y_1, \ldots, y_{n-1}, -y_{n-1}, y_n, 0, 0, \ldots) \quad \text{for } y \in \ell^\infty_n.$$
Both A and B are bounded, the composition $A \circ \sigma \circ B$ forms the identity on ℓ^∞_n and thus
\[
i_n(\sigma) \geq \|A\|^{-1}\|B\|^{-1} = \frac{1}{2n - 1},
\]
since $\|A\| = 1$ and $\|B\| = 2n - 1$.

\[\square\]

Lemma 3.2. Let $n \in \mathbb{N}$ then we have the following estimates of the Mityagin numbers of V and σ.

(i)
\[
m_n(V) \leq \frac{1}{2n - 1};
\]

(ii)
\[
m_n(\sigma) \leq \frac{1}{2n - 1}.
\]

Proof. (i) Fix some $n \in \mathbb{N}$ and any $0 < \varrho < m_n(V)$. By the definition of the n-th Mityagin number, there is a subspace of C, say N, such that $\text{codim} N \geq n$ and
\[
\{ \sigma f \in L^1; \text{span}\{Vf\} \cap N = \{0\} \} \supseteq \varrho B_{L^1/C/N}.
\]

Define
\[
E = \{ f \in L^1; \text{span}\{Vf\} \cap N = \{0\} \}
\]
and observe that, since V is injective, E is a subspace of dimension at most n and satisfies
\[
\{ \sigma f \in L^1; \text{span}\{Vf\} \cap N = \{0\} \} \supseteq \varrho B_{L^1/C/N}.
\]
Thus, by (3.1) and (3.2), we have
\[
\|Vf\|_{\infty} \geq \|Vf\|_{C/N} \geq \varrho \quad \text{for } f \in S_E,
\]
and hence
\[
\|Vf\|_{\infty} \geq \varrho \|f\|_1 \quad \text{for } f \in E.
\]
Therefore, thanks to [Lef17, Lemma 2.4],
\[
\varrho \leq \frac{1}{2n - 1}
\]
and the lemma follows by taking the limit $\varrho \to m_n(V)$.

(ii) The exact analogy holds in the discrete case, as for every $0 < \varrho < m_n(\sigma)$ one can find a n-th dimensional subspace E in ℓ^1, such that
\[
\|\sigma(x)\|_{\infty} \geq \varrho \|x\|_1 \quad \text{for } x \in E.
\]
The assertion (3.3) then also holds by [Lef17, Lemma 2.4] and its discrete modification in the proof of [Lef17, Theorem 3.2].

\[\square\]

Lemma 3.3. Let $n \geq 2$ then the following lower bounds of the Kolmogorov numbers of V and σ hold.

(i)
\[
d_n(V) \geq \frac{1}{2};
\]
\(d_n(\sigma) \geq \frac{1}{2} \).

Proof. (i) Fix arbitrary \(n \geq 2 \) and \(\varepsilon > 0 \). By the very definition of the \(n \)-th Kolmogorov number, there exists a subspace of \(C \), say \(N \), such that \(\dim N < n \) and
\[
 d_n(V) + \varepsilon \geq \sup_{f \in B_{L^1}} \| Vf \|_{C/N}. \tag{3.4}
\]
Let us define the trial functions
\[
f_k = 2^{k+1} \chi_{(2^{-k-1}, 2^{-k})}, \quad (k \in \mathbb{N}). \tag{3.5}
\]
There is \(\| f_k \|_1 = 1 \) for every \(k \in \mathbb{N} \). Now, by the definition of the quotient norm, to every \(Vf_k \) one can attach a function \(g_k \in N \) in a way that
\[
 \| Vf_k - g_k \|_\infty \leq \| Vf_k \|_{C/N} + \varepsilon. \tag{3.6}
\]
Observe that the set of all the functions \(g_k \) is bounded in \(N \). Indeed, by (3.4) and (3.6),
\[
 \| g_k \|_\infty \leq \| Vf_k - g_k \|_\infty + \| Vf_k \|_\infty \leq \| Vf_k \|_{C/N} + \varepsilon + \| V \|_1 \leq d_n(V) + 2\varepsilon + 1
\]
for every \(k \in \mathbb{N} \). Thus, since \(N \) is finite-dimensional, there is a convergent subsequence of \(\{ g_k \} \) which we denote \(\{ g_k \} \) again. Hence \(g_k \) converges to, say, \(g \in N \), i.e. there is an index \(k_0 \) such that \(\| g_k - g \|_\infty < \varepsilon \) for every \(k \geq k_0 \). The limiting function \(g \) then satisfies
\[
 \| Vf_k - g \|_\infty \leq \| Vf_k - g_k \|_\infty + \| g_k - g \|_\infty \leq \| Vf_k \|_{C/N} + 2\varepsilon
\]
for \(k \geq k_0 \) and thus
\[
 \sup_{k \geq k_0} \| Vf_k - g \|_\infty \leq d_n(V) + 3\varepsilon. \tag{3.7}
\]
Next, we estimate the left hand side of (3.7) by taking the value attained at zero, i.e.
\[
 \sup_{k \geq k_0} \| Vf_k - g \|_\infty \geq \sup_{k \geq k_0} | Vf_k(0) - g(0) | = | g(0) |, \tag{3.8}
\]
or at the points \(2^{-k} \), i.e.
\[
 \sup_{k \geq k_0} \| Vf_k - g \|_\infty \geq \sup_{k \geq k_0} | Vf_k(2^{-k}) - g(2^{-k}) | \geq |1 - g(0)|, \tag{3.9}
\]
where we used that \(g \) is continuous. Combining (3.7), (3.8) and (3.9), we get
\[
 d_n(V) + 3\varepsilon \geq \max \{| g(0) |, 1 - | g(0) | \} \geq \frac{1}{2}.
\]
Therefore \(d_n(V) \geq 1/2 \) by the arbitrariness of \(\varepsilon \).

(ii) The proof needs just slight modifications here. Instead of functions \(f_k \), one can use the canonical vectors \(e^k = (0, \ldots, 0, 1, 0, \ldots) \), where the element 1 is placed at the \(k \)-th coordinate. If we follow the previous lines, we find close points \(y^k \in N \), their limit \(y \) in \(c \) and we end up with
\[
 \sup_{k \geq k_0} \| \sigma(e^k) - y \|_\infty \leq d_n(\sigma) + 3\varepsilon. \tag{3.10}
\]
Now, we estimate the supremum in (3.10) by taking the k-th coordinate, i.e.

$$\sup_{k \geq k_0} \| \sigma(e^k) - y \|_\infty \geq \sup_{k \geq k_0} |\sigma(e^k)_k - y_k| \geq |1 - \lim_{k \to \infty} y_k|,$$

or by taking the coordinate $k - 1$, i.e.

$$\sup_{k \geq k_0} \| \sigma(e^k) - y \|_\infty \geq \sup_{k \geq k_0} |\sigma(e^k)_{k-1} - y_{k-1}| \geq |\lim_{k \to \infty} y_k|,$$

and the conclusion follows. □

Lemma 3.4. Let $n \geq 2$ then the estimates of Gelfand numbers of V and σ read as

(i)
$$c_n(V) \geq \frac{1}{2};$$

(ii)
$$c_n(\sigma) \geq \frac{1}{2}.$$

Proof. (i) Let $n \geq 2$ and $\varepsilon > 0$ be fixed. By the definition of the n-th Gelfand number, we can find a subspace M in L^1 having codim $M < n$ and satisfying

$$c_n(V) + \varepsilon \geq \sup_{f \in B_M} \| Vf \|_\infty. \quad (3.11)$$

The proof will be finished once we show that the supremum in (3.11) is at least one half. We make use the step functions f_k, ($k \in \mathbb{N}$), defined by (3.5) in the proof of Lemma 3.3. Recall that $\| f_k \|_1 = 1$, $\| f_k - f_l \|_1 = 2$ and $\| V f_k - V f_l \|_\infty = 1$ for $k \neq l$. Note that the quotient space L^1/M is of finite dimension thus, the projected sequence $\{[f_k]\}$ is bounded and hence there is a Cauchy subsequence, which we denote $\{[f_k]\}$ again. Now, let $\eta > 0$ be fixed. We have

$$\| f_k - f_l \|_{L^1/M} < \eta \quad (3.12)$$

for k and l sufficiently large. Let us denote $f = \frac{1}{2} (f_k - f_l)$ for these k and l. Thanks to (3.12) and the definition of quotient norm, one can find a function $g \in M$ such that

$$\| f - g \|_1 \leq \eta.$$

On setting

$$h = \frac{g}{1 + \eta},$$

we have

$$\| h \|_1 \leq \frac{1}{1 + \eta} (\| f \|_1 + \| f - g \|_1) \leq 1,$$
whence $h \in B_M$. Next

$$\|Vh\|_{\infty} \geq \frac{1}{1+\eta}(\|Vf\|_{\infty} - \|V(f - g)\|_{\infty})$$

$$\geq \frac{1}{1+\eta}\left(\frac{1}{2} - \|V\||f-g\|_{1}\right)$$

$$\geq \frac{1}{1+\eta}\left(\frac{1}{2} - \eta\right),$$

thus

$$\sup_{f \in B_M} \|Vf\|_{\infty} \geq \frac{1}{1+\eta}\left(\frac{1}{2} - \eta\right)$$

and the lemma follows, since $\eta > 0$ was arbitrarily chosen.

The proof of the discrete counterpart (ii) is completely analogous, once we consider the canonical vectors e^k instead of f_k, hence we omit it. \square

Lemma 3.5. Let $n \geq 2$. Then we have the following upper bounds of the Approximation numbers of V and σ.

(i) \[a_n(V) \leq \frac{1}{2}; \]

(ii) \[a_n(\sigma) \leq \frac{1}{2}. \]

Proof. (i) Consider the one-dimensional operator $F: L^1 \to C$ given by

$$Ff(t) = \frac{1}{2} \int_0^1 f(s) \, ds, \quad (0 \leq t \leq 1), \quad \text{for } f \in L^1.$$

Then F is a sufficient approximation of V. Indeed,

$$\|Vf - Ff\|_{\infty} = \sup_{0 \leq t \leq 1} \left| \int_0^t f(s) \, ds - \frac{1}{2} \int_0^1 f(s) \, ds \right|$$

$$= \sup_{0 \leq t \leq 1} \left| \frac{1}{2} \int_0^t f(s) \, ds - \frac{1}{2} \int_t^1 f(s) \, ds \right|$$

$$\leq \sup_{0 \leq t \leq 1} \frac{1}{2} \int_0^t |f(s)| \, ds + \frac{1}{2} \int_t^1 |f(s)| \, ds$$

$$= \frac{1}{2} \|f\|_1$$

and therefore

$$a_n(V) \leq \|V - F\| \leq \frac{1}{2}.$$

In order to show (ii), choose the operator

$$\varrho(x)_k = \frac{1}{2} \sum_{j=1}^{\infty} x_j, \quad (k \in \mathbb{N}), \quad \text{for } x \in \ell^1.$$
This is a well-defined one-dimensional operator and, by the calculations similar to above, \(\|\sigma - \varrho\| \leq 1/2 \). The proof is complete.

Now, we are at the position to prove the main results.

Proof of Theorem 1.1. Let \(n \geq 2 \) be fixed. Since \(a_n(V) \) is the largest between all \(s \)-numbers, we immediately obtain the inequalities \(a_n(V) \geq c_n(V) \) and \(a_n(V) \geq d_n(V) \).

Using Lemma 3.5 with Lemma 3.4 and Lemma 3.3 we obtain
\[
\frac{1}{2} \geq a_n(V) \geq c_n(V) \geq \frac{1}{2} \quad \text{and} \quad \frac{1}{2} \geq a_n(V) \geq d_n(V) \geq \frac{1}{2}
\]
respectively. This gives (1.3).

Next, let \(n \) be arbitrary. Due to \(i_n(V) \) being the smallest strict \(s \)-number, we have that \(i_n(V) \leq b_n(V) \) and also \(i_n(V) \leq m_n(V) \). For the lower bound, we use Lemma 3.1 while for the upper, we make use of Lemma 3.2 and the result of Lefèvre, [Lef17]. This gives (1.4).

Proof of Theorem 1.2. The proof follows along exactly the same lines as that of Theorem 1.1 and hence omitted.

References

[AHLM16] I. A. Alam, G. Habib, P. Lefèvre, and F. Maalouf. Essential norms of Volterra and Cesàro operators on Müntz spaces. arXiv:1612.03218, 2016.

[BG89] J. Bourgain and M. Gromov. Estimates of Bernstein widths of Sobolev spaces. In *Geometric aspects of functional analysis (1987–88)*, volume 1376 of Lecture Notes in Math., pages 176–185. Springer, Berlin, 1989.

[BS67] M. Š. Birman and M. Z. Solomjak. Piecewise polynomial approximations of functions of classes \(W^\alpha_p \). Mat. Sb. (N.S.), 73 (115):331–355, 1967.

[CS90] B. Carl and I. Stephani. *Entropy, compactness and the approximation of operators*, volume 98 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.

[EE87] D. E. Edmunds and W. D. Evans. *Spectral theory and differential operators*. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications.

[EE04] D. E. Edmunds and W. D. Evans. *Hardy operators, function spaces and embeddings*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004.

[EL06] D. E. Edmunds and J. Lang. Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case. *Math. Nachr.*, 279(7):727–742, 2006.

[EL07] D. E. Edmunds and J. Lang. Bernstein widths of Hardy-type operators in a non-homogeneous case. *J. Math. Anal. Appl.*, 325(2):1060–1076, 2007.

[EL11] D. E. Edmunds and J. Lang. *Eigenvalues, embeddings and generalised trigonometric functions*, volume 2016 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011.
[Kol36] A. Kolmogoroff. über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. *Ann. of Math. (2)*, 37(1):107–110, 1936.

[Lef17] P. Lefèvre. The Volterra operator is finitely strictly singular from L^1 to L^∞. *J. Approx. Theory*, 214:1–8, 2017.

[Lev38] V. I. Levin. On a class of integral inequalities. *Recueil Mathématiques*, 4(46):309–331, 1938.

[LL02] M. A. Lifshits and W. Linde. Approximation and entropy numbers of Volterra operators with application to Brownian motion. *Mem. Amer. Math. Soc.*, 157(745):viii+87, 2002.

[Pie74] A. Pietsch. s-numbers of operators in Banach spaces. *Studia Math.*, 51:201–223, 1974.

[Pie07] A. Pietsch. *History of Banach spaces and linear operators*. Birkhäuser Boston, Inc., Boston, MA, 2007.

[Pin85a] A. Pinkus. n-widths in approximation theory, volume 7 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1985.

[Pin85b] A. Pinkus. n-widths of Sobolev spaces in L^p. *Constr. Approx.*, 1(1):15–62, 1985.

[Sch40] E. Schmidt. über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet. *Math. Ann.*, 117:301–326, 1940.

[TB67] V. M. Tihomirov and S. B. Babadžanov. Diameters of a function class in an L_p-space ($p \geq 1$). *Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk*, 11(2):24–30, 1967.

[Tih60] V. M. Tihomirov. Diameters of sets in functional spaces and the theory of best approximations. *Russian Math. Surveys*, 15(3):75–111, 1960.

E-mail address, Ö. Bakşi: baksi@yildiz.edu.tr
E-mail address, T. Khan: taqi.khan91@gmail.com
E-mail address, J. Lang: lang@math.osu.edu
ORCiD: 0000-0003-1582-7273
E-mail address, V. Musil: musil@karlin.mff.cuni.cz
ORCiD: 0000-0001-6083-227X

1Department of Mathematics, Ohio State University, Columbus OH, 43210-1174 USA
2Yildiz Technical University, Faculty of Art and Science, Department of Mathematics, Istanbul, Turkey
3Aligarh Muslim University, Aligarh, U.P.-202002, India
4Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic