Unary automatic graphs: an algorithmic perspective

BAKHADYR KHOUSSAINOV†, JIAMOU LIU† and MIA MINNES‡

†Department of Computer Science, University of Auckland, Auckland, New Zealand
Emails: bmk@cs.auckland.ac.nz; jliu036@aucklanduni.ac.nz
‡Department of Mathematics, Cornell University, Ithaca, NY, USA
Email: minnes@math.mit.edu

Received 31 January 2008

This paper studies infinite graphs produced from a natural unfolding operation applied to finite graphs. Graphs produced using such operations are of finite degree and automatic over the unary alphabet (that is, they can be described by finite automata over the unary alphabet). We investigate algorithmic properties of such unfolded graphs given their finite presentations. In particular, we ask whether a given node belongs to an infinite component, whether two given nodes in the graph are reachable from one another and whether the graph is connected. We give polynomial-time algorithms for each of these questions. For a fixed input graph, the algorithm for the first question is in constant time and the second question is decided using an automaton that recognises the reachability relation in a uniform way. Hence, we improve on previous work, in which non-elementary or non-uniform algorithms were found.

1. Introduction

We study the algorithmic properties of infinite graphs that result from a natural unfolding operation applied to finite graphs. The unfolding process always produces infinite graphs of finite degree. Moreover, the class of resulting graphs is a subclass of the class of automatic graphs. As such, any element of this class possesses all the known algorithmic and algebraic properties of automatic structures. An equivalent way to describe these graphs employs automata over a unary alphabet (see Theorem 4.5). Therefore, we call this class of graphs unary automatic graphs of finite degree.

In recent years there has been increasing interest in the study of structures that can be presented by automata. The underlying idea in this line of research consists of using automata (such as word automata, Büchi automata, tree automata and Rabin automata) to represent structures and study logical and algorithmic consequences of such presentations. Informally, a structure $\mathcal{A} = (A; R_0, \ldots, R_m)$ is automatic if the domain A and all the relations R_0, \ldots, R_m of the structure are recognised by finite automata (precise definitions are given in the next section). For instance, an automatic graph is one whose set of vertices and set of edges can each be recognised by finite automata. The idea of automatic structures was introduced initially by Hodgson (Hodgson 1976) and was later rediscovered by Khoussainov and Nerode (Khoussainov and Nerode 1995). Automatic structures possess a number of nice algorithmic and model-theoretic properties. For example, Khoussainov and Nerode proved that the first-order theory of any automatic structure is decidable (Khoussainov and Nerode 1995). This result is extended by adding
the \exists^{∞} (there are infinitely many) and $\exists^{n,m}$ (there are m many mod n) quantifiers to the first-order logic (Blumensath and Grädel 2004; Khoussainov et al. 2005). Blumensath and Grädel proved a logical characterisation theorem stating that automatic structures are exactly those definable in the following fragment of the arithmetic ($\omega; +, \leq, \leq_2$), where $+$ and \leq have their usual meanings and \leq_2 is a weak divisibility predicate for which $x \leq_2 y$ if and only if x is a power of 2 and divides y (Blumensath and Grädel 2004). Automatic structures are closed under first-order interpretations. There are descriptions of automatic linear orders and trees in terms of model theoretic concepts such as Cantor–Bendixson ranks (Rubin 2004). Also, Khoussainov, Nies, Rubin and Stephan have characterised the isomorphism types of automatic Boolean algebras (Khoussainov et al. 2004); Thomas and Oliver have given a full description of finitely generated automatic groups (Oliver and Thomas 2005). Some of these results have direct algorithmic implications. For example, the isomorphism problem for automatic well-ordered sets and Boolean algebras is decidable (Khoussainov et al. 2004).

There is also a body of work devoted to the study of resource-bounded complexity of the first-order theories of automatic structures. For example, on the one hand, Grädel and Blumensath constructed examples of automatic structures whose first-order theories are non-elementary (Blumensath and Grädel 2004). On the other hand, Lohrey (2003) proved that the first-order theory of any automatic graph of bounded degree is elementary. It is worth noting that when both a first-order formula and an automatic structure \mathcal{A} are fixed, determining if a tuple \bar{a} from \mathcal{A} satisfies $\phi(\bar{x})$ can be done in linear time.

Most of the results concerning automatic structures, including the ones mentioned above, demonstrate that in various concrete senses automatic structures are not complex from a logical point of view. However, this intuition can be misleading. For example, Khoussainov et al. (2004) showed that the isomorphism problem for automatic structures is Σ_1^1-complete. This tells us informally that there is no hope for a description (in a natural logical language) of the isomorphism types of automatic structures. Also, Khoussainov and Minnes (2008) provides examples of automatic structures whose Scott ranks can be as high as possible, fully covering the interval $[1, \omega^{CK}_1 + 1]$ of ordinals (where ω^{CK}_1 is the first non-computable ordinal). They also show that the ordinal heights of well-founded automatic relations can be arbitrarily large ordinals below ω^{CK}_1.

In this paper we study the class of unary automatic graphs of finite degree. Since these graphs are described by the unfolding operation (Definition 4.4) on the pair of finite graphs (D, F), we use this pair to represent the graph. The size of this pair is the sum of the sizes of the automata that represent these graphs. In the study of algorithmic properties of these graphs, one deals directly with the pair (D, F). We are interested in the following natural decision problems:

— **Connectivity Problem:** Given an automatic graph \mathcal{G}, decide if \mathcal{G} is connected.

— **Reachability Problem:** Given an automatic graph \mathcal{G} and two vertices x and y of the graph, decide if there is a path from x to y.

If we restrict our attention to the class of finite graphs, these two problems are decidable and can be solved in linear time on the sizes of the graphs. However, we are interested in
infinite graphs, so much more work is needed to investigate these problems. In addition, we also pose the following two problems:

— **Infinity Testing Problem**: Given an automatic graph G and a vertex x, decide if the component of G containing x is infinite.

— **Infinite Component Problem**: Given an automatic graph G, decide if G has an infinite component.

Unfortunately, for the class of automatic graphs, all of the above problems are undecidable. In fact, one can provide exact bounds on this undecidability. The connectivity problem is Π^0_2-complete; the reachability problem is Σ^0_1-complete; the infinite component problem is Σ^0_3-complete; and the infinity testing problem is Π^0_2-complete (Rubin 2004).

Since all unary automatic structures are first-order definable in $S1S$ (the monadic second-order logic of the successor function), it is not hard to prove that in this case all the problems above are decidable (Blumensath 1999; Rubin 2004). Direct constructions using this definability in $S1S$ yield algorithms with non-elementary time since one needs to transform $S1S$ formulas into automata (Buchi 1960). However, we provide polynomial-time algorithms for solving all the above problems for this class of graphs. Note that these polynomial-time algorithms are based on deterministic input automata.

We will now give an outline of the rest of this paper by explaining the main results. Section 2 introduces the main definitions needed, including the concept of automatic structure. Section 3 singles out unary automatic graphs and provides a characterisation theorem (Theorem 3.4). Section 4 introduces unary automatic graphs of finite degree. The main result is Theorem 4.5, which provides an explicit algorithm for building unary automatic graphs of finite degree. This theorem is used throughout the paper. Section 5 is devoted to deciding the infinite component problem. The main result is given by the following theorem.

Theorem 5.1. The infinite component problem for a unary automatic graph of finite degree G is solved in $O(n^3)$, where n is the number of states of the deterministic finite automaton recognising G.

In Section 5 we make use of the concept of oriented walk for finite directed graphs.

Section 6 is devoted to deciding the infinity testing problem. The main result is given by the following theorem.

Theorem 6.1. The infinity testing problem for unary automatic graph of finite degree G is solved in $O(n^3)$, where n is the number of states of the deterministic finite automaton A recognising G. In particular, when A is fixed, there is a constant time algorithm that decides the infinity testing problem on G.

The fact that there is a constant time algorithm when A is fixed will be made clear in the proof. The value of the constant is polynomial in the number of states of A.

The reachability problem is addressed in Section 7. This problem has been studied in Bouajjani et al. (1997), Esparza et al. (2000) and Thomas (2002) using the class of pushdown graphs. A pushdown graph is the configuration space of a pushdown automaton. Unary automatic graphs are pushdown graphs (Thomas 2002). Bouajjani et al. (1997),
Esparza et al. (2000) and Thomas (2002) proved that for a pushdown graph \mathcal{G}, given a node v, there is an automaton that recognises all nodes reachable from v. The number of states in the automaton depends on the input node v. This result implies that there is an algorithm that decides the reachability problem on unary automatic graphs of finite degree. However, there are several issues with this algorithm. The automata constructed by the algorithm are not uniform in v in the sense that different automata are built for different input nodes v. Moreover, the automata are non-deterministic. Hence, the size of the deterministic equivalent automata is exponential in the size of the representation of v. Section 7 provides an alternative algorithm to solve the reachability problem on unary automatic graphs of finite degree uniformly. This new algorithm constructs a deterministic automaton A_{Reach} that accepts the set of pairs $\{(u, v) \mid \text{there is a path from } u \text{ to } v\}$. The size of A_{Reach} only depends on the number of states of the automaton n, and constructing the automaton requires polynomial time in n. The practical advantage of such a uniform solution is that when A_{Reach} is built, deciding whether node v is reachable from u by a path takes only linear time (details are in Section 7). The main result of Section 7 is given by the following theorem.

Theorem 7.1. Suppose \mathcal{G} is a unary automatic graph of finite degree represented by a deterministic finite automaton \mathcal{A} of size n. There exists a polynomial-time algorithm that solves the reachability problem on \mathcal{G}. For inputs u, v, the running time of the algorithm is $O(|u| + |v| + n^4)$.

Finally, Section 8 solves the connectivity problem for \mathcal{G}.

Theorem 8.1. The connectivity problem for unary automatic graph of finite degree \mathcal{G} is solved in $O(n^3)$, where n is the number of states of the deterministic finite automaton recognising \mathcal{G}.

2. Preliminaries

A finite automaton \mathcal{A} over an alphabet Σ is a tuple (S, i, Δ, F), where S is a finite set of states, $i \in S$ is the initial state, $\Delta \subseteq S \times \Sigma \times S$ is the transition table and $F \subseteq S$ is the set of final states. A computation of \mathcal{A} on a word $\sigma_1 \sigma_2 \ldots \sigma_n$ ($\sigma_i \in \Sigma$) is a sequence of states, say q_0, q_1, \ldots, q_n, such that $q_0 = i$ and $(q_i, \sigma_{i+1}, q_{i+1}) \in \Delta$ for all $i \in \{0, 1, \ldots, n - 1\}$. If $q_n \in F$, the computation is successful and we say that automaton \mathcal{A} accepts the word. The language accepted by the automaton \mathcal{A} is the set of all words accepted by \mathcal{A}. In general, $D \subseteq \Sigma^*$ is FA recognisable, or regular, if D is the language accepted by some finite automaton. In this paper we always assume the automata are deterministic. For two states q_0, q_1, the distance from q_0 to q_1 is the minimum number of transitions required for \mathcal{A} to go from q_0 to q_1.

To formalise the notion of a relation being recognised by an automaton, we define synchronous n-tape automata. Such an automaton can be thought of as a one-way Turing machine with n input tapes. Each tape is semi-infinite, having written on it a word in the alphabet Σ followed by a succession of \diamond symbols. The automaton starts in the initial state, simultaneously reads the first symbol of each tape, changes state, simultaneously...
reads the second symbol of each tape, changes state, and so on, until it reads \diamond on each tape. The automaton then stops and accepts the n-tuple of words if and only if it is in a final state.

More formally, we write Σ_\diamond for $\Sigma \cup \{ \diamond \}$ where \diamond is a symbol not in Σ. The convolution of a tuple $(w_1, \ldots, w_n) \in \Sigma^*$ is the string $\otimes (w_1, \ldots, w_n)$ of length $\max_i |w_i|$ over the alphabet $(\Sigma_\diamond)^n$ that is defined as follows: the kth symbol is $(\sigma_1, \ldots, \sigma_n)$ where σ_i is the kth symbol of w_i if $k \leq |w_i|$, and is \diamond otherwise. The convolution of a relation $R \subset \Sigma^*$ is the relation $\otimes R \subset (\Sigma_\diamond)^n$ formed as the set of convolutions of all the tuples in R. An n-ary relation $R \subset \Sigma^*$ is FA recognisable, or regular, if its convolution $\otimes R$ is recognisable by a finite automaton.

A structure \mathcal{S} consists of a countable set D called the domain and some relations and operations on D. We may assume that \mathcal{S} only contains relational predicates since operations can be replaced with their graphs. We write $\mathcal{S} = (D, R_1, \ldots, R_k, \ldots)$ where R_i^D is an n_i-ary relation on D. The relations R_i are sometimes called basic or atomic relations. We assume that the function $i \mapsto n_i$ is always computable. A structure \mathcal{S} is automatic over alphabet Σ if its domain $D \subset \Sigma^*$ is finite automaton recognisable and there is an algorithm that for each i produces an n_i-tape automaton recognising the relation $R_i^D \subset (\Sigma^*)^n$. A structure is said to be automatic if it is automatic over some alphabet. If \mathcal{B} is isomorphic to an automatic structure \mathcal{S}, we say \mathcal{S} is an automatic presentation of \mathcal{B} and that \mathcal{B} is automatically presentable.

An example of an automatic structure is the word structure $(\{0, 1\}^*, L, R, E, \leq)$, where for all $x, y \in \{0, 1\}^*$, $L(x) = x0$, $R(x) = x1$, $E(x, y)$ if and only if $|x| = |y|$, and \leq is the lexicographical order. The configuration graph of any Turing machine is another example of an automatic structure. Examples of automatically presentable structures are $(\mathbb{N}, +)$, (\mathbb{N}, \leq), (\mathbb{N}, S), the group $(\mathbb{Z}, +)$, the order on the rational (\mathbb{Q}, \leq) and the Boolean algebra of finite and co-finite subsets of \mathbb{N}. Consider the first-order logic extended by \exists^ω (there exist infinitely many) and $\exists^{n,m}$ (there exist n many mod m, where n and m are natural numbers) quantifiers. We denote this logic by $FO + \exists^\omega + \exists^{n,m}$. We will use the following theorem without explicit reference to it.

Theorem 2.1 (Khoussainov and Nerode 1995). Let \mathcal{A} be an automatic structure. There exists an algorithm that, given a formula $\phi(\bar{x})$ in $FO + \exists^\omega + \exists^{n,m}$, produces an automaton that recognises exactly those tuples \bar{a} from the structure that make ϕ true. In particular, the set of all sentences of $FO + \exists^\omega + \exists^{n,m}$ that are true in \mathcal{A} is decidable.

3. **Unary automatic graphs**

We now turn our attention to the subclass of the automatic structures that is the focus of this paper.

Definition 3.1. A structure \mathcal{A} is unary automatic if it has an automatic presentation whose domain is 1^* and whose relations are automatic.

Examples of unary automatic structures are (ω, S) and (ω, \leq). Some recent work on unary automatic structures includes a characterisation of unary automatic linearly ordered
sets, permutation structures, graphs and equivalence structures (Khoussainov and Rubin 2001; Blumensath 1999). For example, unary automatic linearly ordered sets are exactly those that are isomorphic to a finite sum of orders of type ω, ω^* (the order of negative integers) and finite n.

Definition 3.2. A *unary automatic graph* is a graph (V, E) whose domain is 1^* and whose edge relation E is regular.

We use the following example to illustrate the fact that this class of graphs is the best possible. Consider the class of graphs with all vertices being of the form 1^*2^* for some alphabet $\Sigma = \{1, 2\}$. At first sight, graphs of this form may have an intermediate position between unary and general automatic graphs. However, the infinite grid $G_2 = \{\mathbb{N} \times \mathbb{N}, \{(i, j), (i, j + 1) \mid i, j \in \mathbb{N}\}, \{(i, j), (i + 1, j) \mid i, j \in \mathbb{N}\}\}$ can be coded automatically over 1^*2^* by $(i, j) \rightarrow 1^i2^j$, and MSO($G_2$) is not decidable (Wöhrel and Thomas 2004). In particular, counter machines can be coded into the grid, so the reachability problem is not decidable.

Convention. To eliminate bulky exposition, we make the following assumptions in the rest of this paper:

— The automata under consideration are viewed as deterministic. Hence, when we write ‘automata’, we mean ‘deterministic finite automata’.
— All structures are infinite unless explicitly specified otherwise.
— The graphs are undirected. The case of directed graphs can be treated in a similar manner.

Let $G = (V, E)$ be an automatic graph. Let \mathcal{A} be an automaton recognising E. We will now establish some terminology for the automaton \mathcal{A}. The general shape of \mathcal{A} is given in Figure 1. All the states reachable from the initial state by reading inputs of type $(1, 1)$ are called $(1, 1)$-*states*. A tail in \mathcal{A} is a sequence of states linked by transitions without repetition. A loop is a sequence of states linked by transitions such that the last state coincides with the first one, and with no repetition in the middle. The set of $(1, 1)$-states is a disjoint union of a tail and a loop. We call the tail the $(1, 1)$-*tail* and the loop the $(1, 1)$-*loop*. Let s be a $(1, 1)$ state. All the states reachable from s by reading inputs of type $(1, \bigcirc)$ are called $(1, \bigcirc)$-*states*. This collection of all $(1, \bigcirc)$-states is also a disjoint union of a

Fig. 1. A typical unary graph automaton
tail and a loop (see the figure), called the $(1,\circ)$-tail and the $(1,\circ)$-loop, respectively. The $(\circ,1)$-tails and $(\circ,1)$-loops are defined in a similar manner.

We say that an automaton is standard if the lengths of all its loops and tails equal some number p, called the loop constant. If A is a standard automaton recognising a binary relation, it has exactly $2p$ $(1,1)$-states. On each of these states, there is a $(1,\circ)$-tail and a $(\circ,1)$-tail of length exactly p. At the end of each $(1,\circ)$-tail and $(\circ,1)$-tail there is a $(1,\circ)$-loop and $(\circ,1)$-loop, respectively, of size exactly p. Therefore, if n is the number of states in A, then $n = 8p^2$.

Lemma 3.3. Let A be an n state automaton recognising a binary relation E on 1^*. There exists an equivalent standard automaton with at most $8n^2n$ states.

Proof. Let p be the least common multiple of the lengths of all loops and tails of A. An easy estimate shows that p is no more than n^2. One can transform A into an equivalent standard automaton whose loop constant is p. Hence, there is a standard automaton equivalent to A whose size is bounded above by $8n^2n$. \[\square\]

We can simplify the general shape of the automaton using the fact that we consider undirected graphs. Indeed, we need only consider transitions labelled by $(\circ,1)$. To see this, given an automaton with only $(\circ,1)$ transitions, to include all symmetric transitions, add a copy of each $(\circ,1)$ transition that is labelled with $(1,\circ)$.

We now recall a characterisation theorem of unary automatic graphs given in Rubin (2004). Let $B = (B,E_B)$ and $D = (D,E_D)$ be finite graphs. Let R_1, R_2 be subsets of $D \times B$, and R_3, R_4 be subsets of $B \times B$. Consider the graph D followed by ω many copies of B, ordered as B^0, B^1, B^2, \ldots. Formally, the vertex set of B^i is $B \times \{i\}$, and we write $b^i = (b,i)$ for $b \in B$ and $i \in \omega$. The edge set E^i of B^i consists of all pairs (a^i, b^j) such that $(a,b) \in E_B$. We define the infinite graph, $\text{unwind}(B,D,R)$, as follows:

1. The vertex set is $D \cup B^0 \cup B^1 \cup B^2 \cup \ldots$;
2. The edge set contains $E_D \cup E^0 \cup E^1 \cup \ldots$ as well as the following edges, for all $a,b \in B$, $d \in D$, and $i,j \in \omega$:
 - (d,b^0) when $(d,b) \in R_1$, and (d,b^{i+1}) when $(d,b) \in R_2$,
 - (a^i,b^{j+1}) when $(a,b) \in R_3$, and (a^i,b^{i+2j}) when $(a,b) \in R_4$.

Theorem 3.4 (Rubin 2004). A graph is unary automatic if and only if it is isomorphic to $\text{unwind}(B,D,D)$ for some parameters B, D and R. Moreover, if A is a standard automaton representing D, the parameters B,D,R can be extracted in $O(n^2)$; otherwise, the parameters can be extracted in $O(n^5)$, where n is the number of states in A.

4. **Unary automatic graphs of finite degree**

A graph is of finite degree if there are at most finitely many edges from each vertex v. An automaton A recognising a binary relation over $\{1\}$ is said to be a one-loop automaton if its transition diagram contains exactly one loop, the $(1,1)$-loop. The general structure of one-loop automata is given in Figure 2.
We will always assume that the lengths of all the tails of the one-loop automata are no bigger than the size of the \((1,1)\)-loop. The following is an easy proposition, which we state without proof.

Proposition 4.1. Let \(G = (V,E)\) be a unary automatic graph. Then \(G\) is of finite degree if and only if there is a one-loop automaton \(A\) recognising \(E\).

By Lemma 3.3, transforming a given automaton to an equivalent standard automaton may blow up the number of states exponentially. However, there is only polynomial blow up if \(A\) is a one-loop automaton.

Lemma 4.2. If \(A\) is a one-loop automaton with \(n\) states, there exists an equivalent standard one-loop automaton with loop constant \(p \leq n\).

Proof. Let \(l\) be the length of the loop in \(A\), and \(t\) be the length of the longest tail in \(A\). Let \(p\) be the least multiple of \(l\) such that \(p \geq t\). It is easy to see that \(p \leq l + t \leq n\). One can transform \(A\) into an equivalent standard one-loop automaton whose loop constant is \(p\).

Note that the equivalent standard automaton has \(2p\) \((1,1)\)-states. From each of them there is a \((1,\cdot)\)-tail of length \(p\) and a \((\cdot,1)\)-tail of length \(p\). Hence the automaton has \(4p^2\) states. By the above lemma, we always assume the input automaton \(A\) is standard. In the rest of the paper, we will state all results in terms of the loop constant \(p\) instead of \(n\), the number of states of the input automaton. Since \(p \leq n\), for any constant \(c > 0\), an \(O(p^c)\) algorithm can also be viewed as an \(O(n^c)\) algorithm.

Given two unary automatic graphs of finite degree \(G_1 = (V,E_1)\) and \(G_2 = (V,E_2)\) (where we recall the convention that the domain of each graph is \(1^*\), we can form the **union graph** \(G_1 \cup G_2 = (V,E_1 \cup E_2)\) and the **intersection graph** \(G_1 \cap G_2 = (V,E_1 \cap E_2)\). Automatic graphs of finite degree are closed under these operations. Indeed, let \(A_1\) and \(A_2\) be one-loop automata recognising \(E_1\) and \(E_2\) with loop constants \(p_1\) and \(p_2\), respectively. The standard construction that builds automata for the union and intersection operations produces a one-loop automaton whose loop constant is \(p_1 \cdot p_2\). We now introduce another operation. Consider the new graph \(G'_1 = (V,E'_1)\), where the set \(E'_1\) of edges is defined as follows: a pair \((1^n,1^m)\) is in \(E'\) if and only if \((1^n,1^m) \notin E\) and \(|n-m| \leq p_1\). The relation \(E'_1\) is recognised by the same automaton as \(E_1\), but modified so that all \((\cdot,1)\)-states that are
Fig. 3. Unary automatic graph of finite degree $G_{\eta \sigma^\omega}$

final are declared non-final, and all the $(\diamond, 1)$-states that are non-final are declared final. Thus, we have the following proposition.

Proposition 4.3. If G_1 and G_2 are automatic graphs of finite degree, then so are $G_1 \oplus G_2$, $G_1 \otimes G_2$, and G_1'.

Now our goal is to recast Theorem 3.4 for graphs of finite degree. Our analysis will show that, in contrast to the general case for automatic graphs, the parameters B, D, and \bar{R} for graphs of finite degree can be extracted in linear time.

Definition 4.4 (Unfolding operation). Let $D = (V_D, E_D)$ and $F = (V_F, E_F)$ be finite graphs. Consider the finite sets Σ_D, Σ_F consisting of all mappings $\eta : V_D \to P(V_F)$, and Σ_F consisting of all mappings $\sigma : V_F \to P(V_F)$. Any infinite sequence $\alpha = \eta \sigma_0 \sigma_1 \ldots$ where $\eta \in \Sigma_D$ and $\sigma_i \in \Sigma_F$ for each i defines the infinite graph $G_\alpha = (V_\alpha, E_\alpha)$ as follows:

- $V_\alpha = V_D \cup \{(v, i) \mid v \in V_F, i \in \omega\}$.
- $E_\alpha = E_D \cup \{(d, (v, 0)) \mid v \in \eta(d)\}$
 $\cup \{(v, v') \mid (v, v') \in E_F, i \in \omega\}$
 $\cup \{(v, v', i + 1) \mid v' \in \sigma_i(v), i \in \omega\}$.

Thus G_α is obtained by taking D together with an infinite disjoint union of F such that edges between D and the first copy of F are put according to the mapping η, and edges between successive copies of F are put according to σ_i.

Figure 3 illustrates the general shape of a unary automatic graph of finite degree that is built from D, F, η, and σ^ω, where σ^ω is the infinite word $\sigma \sigma \sigma \ldots$.

Theorem 4.5. A graph of finite degree $G = (V, E)$ possesses a unary automatic presentation if and only if there exist finite graphs D, F and mappings $\eta : V_D \to P(V_F)$ and $\sigma : V_F \to P(V_F)$ such that G is isomorphic to $G_{\eta \sigma^\omega}$.

Proof. Let $G = (V, E)$ be a unary automatic graph of finite degree. Let \mathcal{A} be an automaton recognising E. We can easily transform \mathcal{A} into a one-loop automaton in linear time on the number of states of \mathcal{A}. So we will assume that \mathcal{A} is a one-loop automaton with loop constant p. We construct the finite graph D by setting $V_D = \{q_0, q_1, \ldots, q_{p-1}\}$, where q_0 is the starting state, q_0, \ldots, q_{p-1} are all states on the $(1, 1)$-tail such that q_i is reached from q_{i-1} by reading $(1, 1)$ for $i > 0$, and for $0 \leq i < j < p$, $(q_i, q_j) \in E_D$ if and only if there is a final state q_f on the $(\diamond, 1)$-tail out of q_i, and the distance from q_i to q_f is $j - i$. We construct the graph F similarly by setting $V_F = \{q_0', \ldots, q_{p-1}'\}$ where q_0', \ldots, q_{p-1}' are all states on the $(1, 1)$-loop. The edge relation E_F is defined in a similar way to E_D.
The mapping \(\eta : V_\mathcal{G} \to P(V_\mathcal{F}) \) is defined for any \(m,n \in \{0,\ldots,p-1\} \) by putting \(q'_n \) in \(\eta(q_m) \) if and only if there exists a final state \(q_f \) on the \((\alpha,1)\)-tail out of \(q_m \) and the distance from \(q_m \) to \(q_f \) equals \(p + n - m \). The mapping \(\sigma \) is constructed in a similar manner by reading the \((\alpha,1)\)-tails out of the \((1,1)\)-loop. It is clear from this construction that the graphs \(\mathcal{G} \) and \(G_{\eta_\sigma} \) are isomorphic.

Conversely, consider the graph \(G_{\eta_\sigma} \) for some \(\eta \in \Sigma_\mathcal{G} \) and \(\sigma \in \Sigma_\mathcal{F} \). Assume that \(V_\mathcal{G} = \{q_0,\ldots,q_{p-1}\} \), \(V_\mathcal{F} = \{q'_0,\ldots,q'_{p-1}\} \). A one-loop automaton \(\mathcal{A} \) recognising the edge relation of \(G_{\eta_\sigma} \) is constructed as follows. The \((1,1)\)-tail of the automaton is formed by \(\{q_0,\ldots,q_{p-1}\} \) and the \((1,1)\)-loop is formed by \(\{q'_0,\ldots,q'_{p-1}\} \), both in natural order. The initial state is \(q_0 \). If for some \(i < j \), \(\{q_i,q_j\} \in E_\mathcal{F} \), we put a final state \(q_f \) on the \((\alpha,1)\)-tail starting from \(q_i \) such that the distance from \(q_i \) to \(q_f \) is \(j - i \). If \(q'_j \in \eta(q_i) \), we repeat the process but make the corresponding distance \(p + j - i \). The set of edges \(E_\mathcal{F} \) and mapping \(\sigma \) are treated in a similar manner by putting final states on the \((\alpha,1)\)-tails from the \((1,1)\)-loop.

Again we see that \(\mathcal{A} \) represents a unary automatic graph that is isomorphic to \(G_{\eta_\sigma} \).

The proof of the above theorem also gives us the following corollary.

Corollary 4.6. If \(\mathcal{G} \) is a unary automatic graph of finite degree, the parameters \(\mathcal{G}, \mathcal{F}, \sigma \) and \(\eta \) can be extracted in \(O(p^2) \) time, where \(p \) is the loop constant of the one-loop automaton representing the graph. Furthermore, \(|V_\mathcal{F}| = |V_\mathcal{G}| = p \).

5. Deciding the infinite component problem

Recall that the graphs are undirected. A *component* of \(\mathcal{G} \) is the transitive closure of a vertex under the edge relation. The infinite component problem asks whether a given graph \(\mathcal{G} \) has an infinite component.

Theorem 5.1. The infinite component problem for unary automatic graph of finite degree \(\mathcal{G} \) is solved in \(O(p^3) \), where \(p \) is the loop constant of the automaton recognising \(\mathcal{G} \).

By Theorem 4.5, let \(\mathcal{G} = G_{\eta_\sigma} \). Note that it is sufficient to consider the case in which \(\mathcal{D} = \emptyset \) (hence \(\mathcal{G} = G_{\eta_\sigma} \)) since \(G_{\eta_\sigma} \) has an infinite component if and only if \(G_{\eta_\sigma} \) has one.

Let \(\mathcal{F}^i \) be the \(i \)th copy of \(\mathcal{F} \) in \(\mathcal{G} \). Let \(x^i \) be the copy of vertex \(x \) in \(\mathcal{F}^i \). We construct a finite directed graph \(\mathcal{F}^\sigma = (V^\sigma,E^\sigma) \) as follows. Each node in \(V^\sigma \) represents a distinct connected component in \(\mathcal{F} \). For simplicity, we assume that \(|V^\sigma| = |V_\mathcal{F}| \) and hence use \(x \) to denote its own component in \(\mathcal{F} \). The case in which \(|V^\sigma| < |V_\mathcal{F}| \) can be treated in a similar way. For \(x,y \in V_\mathcal{F} \), put \((x,y) \in E^\sigma \) if and only if \(y' \in \sigma(x') \) for some \(x' \) and \(y' \) that are in the same component as \(x \) and \(y \), respectively. Constructing \(\mathcal{F}^\sigma \) requires finding connected components of \(\mathcal{F} \), and hence takes time \(O(p^3) \). To prove the above theorem, we make essential use of the following definition. See also Hell and Nešetřil (2004).

Definition 5.2. An *oriented walk* in a directed graph \(G \) is a subgraph \(\mathcal{P} \) of \(G \) that consists of a sequence of nodes \(v_0,\ldots,v_k \) such that for \(1 \leq i \leq k \), either \((v_{i-1},v_i)\) or \((v_i,v_{i-1})\) is an arc in \(G \), and for each \(0 \leq i \leq k \), exactly one of \((v_{i-1},v_i)\) and \((v_i,v_{i-1})\) belongs to \(\mathcal{P} \). An oriented walk is an *oriented cycle* if \(v_0 = v_k \) and there are no repeated nodes in \(v_1,\ldots,v_k \).
In an oriented walk \mathcal{P}, an arc (v_i, v_{i+1}) is called a forward arc and (v_{i+1}, v_i) is called a backward arc. The net length of \mathcal{P}, denoted $\text{disp}(\mathcal{P})$, is the difference between the number of forward and backward arcs. Note that the net length can be negative. The next lemma establishes a connection between oriented cycles in \mathcal{F}^σ and infinite components in \mathcal{G}.

Lemma 5.3. There is an infinite component in \mathcal{G} if and only if there is an oriented cycle in \mathcal{F}^σ such that the net length of the cycle is positive.

Proof. Suppose that there is an oriented cycle \mathcal{P} from x to x in \mathcal{F}^σ of net length $m > 0$. For all $i \geq p$, \mathcal{P} defines the path P_i in \mathcal{G} from x^i to x^{i+1} where P_i lies in $\mathcal{F}^{i-p-1} \cup \cdots \cup \mathcal{F}^{i+p}$. Therefore, for a fixed $i \geq p$, all vertices in the set $\{x^{jm+i} \mid j \in \omega\}$ belong to the same component of \mathcal{G}. In particular, this implies that \mathcal{G} contains an infinite component.

Conversely, suppose there is an infinite component D in \mathcal{G}. Since \mathcal{F} is finite, there must be some x in $V_\mathcal{F}$ such that there are infinitely many copies of x in D. Let x^i and x^j be two copies of x in D such that $i < j$. Consider a path between x^i and x^j. We can assume that on this path there is at most one copy of any vertex $y \in V_\mathcal{F}$ apart from x (otherwise, choose x^j to be the copy of x in the path that has this property). By definition of \mathcal{G}_{ω^0} and \mathcal{F}^σ, the node x must be on an oriented cycle of \mathcal{F}^σ with net length $j - i$.

Proof of Theorem 5.1. By the equivalence in Lemma 5.3, it suffices to provide an algorithm that decides if \mathcal{F}^σ contains an oriented cycle with positive net length. Notice that the existence of an oriented cycle with positive net length is equivalent to the existence of an oriented cycle with negative net length. Therefore, we give an algorithm that finds oriented cycles with non-zero net length.

For each node x in \mathcal{F}^σ, we search for an oriented cycle of positive net length from x by creating a labelled queue of nodes Q_x that are connected to x.

ALG:Oriented-Cycle

1. Pick node $x \in \mathcal{F}^\sigma$ for which a queue has not been built yet. Initially, the queue Q_x is empty. Let $d(x) = 0$, and put x into the queue. Mark x as unprocessed. If queues have been built for each $x \in \mathcal{F}^\sigma$, stop the process and return NO.

2. Let y be the first unprocessed node in Q_x. If there are no unprocessed nodes in Q_x, return to (1).

3. For each of the nodes z in the set $\{z \mid (y, z) \in E^\sigma \text{ or } (z, y) \in E^\sigma\}$, do the following:

 (a) If $(y, z) \in E^\sigma$, set $d'(z) = d(y) + 1$; if $(z, y) \in E^\sigma$, set $d'(z) = d(y) - 1$. (If both hold, do steps (a), (b), (c) first for (z, y) and then for (y, z).)

 (b) If $z \notin Q_x$, set $d(z) = d'(z)$, put z into Q_x and mark z as unprocessed.

 (c) If $z \in Q_x$:

 (i) If $d(z) = d'(z)$, move to the next z.

 (ii) If $d(z) \neq d'(z)$, stop the process and return YES.

3. Mark y as processed and go back to (2).

An important property of this algorithm is that when we are building a queue for node x and are processing z, both $d(z)$ and $d'(z)$ represent net lengths of paths from x to z.

We claim that the algorithm returns YES if and only if there is an oriented cycle in \mathcal{F}^σ with non-zero net length. Suppose the algorithm returns YES. Then there is a base node
x and a node z such that \(d(z) \neq d'(z)\). This means that there is an oriented walk \(P\) from x to z with net length \(d(z)\), and there is an oriented walk \(P'\) from x to z with net length \(d'(z)\). Consider the oriented walk \(P'\overleftarrow{\rightarrow}P\), where \(P\) is the oriented walk \(P'\) in the reverse direction. Clearly this is an oriented walk from x to z with net length \(d(z) - d'(z) \neq 0\). If there are no repeated nodes in \(P'\overleftarrow{\rightarrow}P\), it is the required oriented cycle. Otherwise, let y be a repeated node in \(P'\overleftarrow{\rightarrow}P\) such that no nodes between the two occurrences of y are repeated. Consider the oriented walk between these two occurrences of y. If it has a non-zero net length, it is our required oriented cycle; otherwise, we disregard the part between the two occurrences of y and make the oriented walk shorter without altering its net length.

Conversely, suppose there is an oriented cycle \(P = x_0, \ldots, x_m\) of non-zero net length where \(x_0 = x_m\). However, we assume in order to show a contradiction that the algorithm returns \(NO\). Consider how the algorithm acts when we pick \(x_0\) at step (1). For each \(i \in \{0, 1, \ldots, m\}\), one can prove the following statements by induction on \(i\):

\[(\ast)\] \(x_i\) always gets a label \(d(x_i)\).
\[(\ast\ast)\] \(d(x_i)\) equals the net length of the oriented walk from \(x_0\) to \(x_i\) in \(P\).

By the description of the algorithm, \(x_0\) gets the label \(d(x_0) = 0\). Suppose the statements hold for \(x_i\), \(0 \leq i < m\), then at the next stage, the algorithm labels all nodes in \(\{z \mid (z, x_i) \in E^\sigma\text{ or } (x_i, z) \in E^\sigma\}\). In particular, it calculates \(d'(x_{i+1})\). By the induction hypothesis, \(d'(x_{i+1})\) is the net length of the oriented walk from \(x_0\) to \(x_{i+1}\) in \(P\). If \(x_{i+1}\) has already had a label \(d(x_{i+1})\) and \(d(x_{i+1}) \neq d'(x_{i+1})\), the algorithm would return \(YES\). So \(d(x_{i+1}) = d'(x_{i+1})\).

By assumption on \(P\), \(d(x_m) \neq 0\). However, since \(x_0 = x_m\), the induction gives that \(d(x_m) = d(x_0) = 0\). This is a contradiction, so the above algorithm is correct.

In summary, the following algorithm solves the infinite component problem. Suppose we are given an automaton (with loop constant \(p\)) that recognises the unary automatic graph of finite degree \(G\). Recall that \(p\) is also the cardinality of \(V_{\mathcal{F}}\). We first compute \(\mathcal{F}^\sigma\), in time \(O(p^2)\). Then we run Oriented-Cycle to decide whether \(\mathcal{F}_{\mathcal{F}}\) contains an oriented cycle with positive net length. For each node \(x\) in \(\mathcal{F}^\sigma\), the process runs in time \(O(p^2)\). Since \(\mathcal{F}^\sigma\) contains \(p\) number of nodes, this takes time \(O(p^3)\).

Note that Lemma 5.3 holds for the case when \(|V_{\mathcal{F}}| > |\mathcal{F}/\sim_{\text{comp}}|\), so the above algorithm can be slightly modified to apply to this case also.

6. Deciding the infinity testing problem

We next turn our attention to the infinity testing problem for unary automatic graphs of finite degree. Recall that this problem asks for an algorithm that, given a vertex \(v\) and a graph \(G\), decides if \(v\) belongs to an infinite component. We prove the following theorem.

Theorem 6.1. The infinity testing problem for unary automatic graph of finite degree \(G\) is solved in \(O(p^3)\), where \(p\) is the loop constant of the automaton \(\mathcal{A}\) recognising \(G\). In particular, when \(\mathcal{A}\) is fixed, there is a constant time algorithm that decides the infinity testing problem on \(G\).

For a fixed input \(x^i\), we have the following lemma.
Lemma 6.2. If x^i is connected to some y^j such that $|j - i| > p$, then x^i is in an infinite component.

Proof. Suppose such a y^j exists. Take a path P in G from x^i to y^j. Since p is the cardinality of V_x, there is $z \in V_x$ such that z^s and z^t appear in P with $s < t$. Therefore all nodes in the set $\{z^{s+(t-s)m} \mid m \in \omega\}$ are in the same component as x^i.

Let $i^* = \min \{p, i\}$. To decide if x^i and y^j are in the same component, we run a breadth first search in G starting from x^i and going through all vertices in $F^{i-i'}, \ldots, F^{i+p}$. The algorithm is as follows:

ALG: FiniteReach
1. Let $i^* = \min \{p, i\}$.
2. Initialise the queue Q to be empty. Put the pair $(x, 0)$ into Q and mark it as unprocessed.
3. If there are no unprocessed pairs in Q, stop the process. Otherwise, let (y, d) be the first unprocessed pair. For arcs e of the form (y, z) or (z, y) in E^σ, do the following:
 (a) If e is of the form (y, z), let $d' = d + 1$; if e is of the form (z, y), let $d' = d - 1$.
 (b) If $-i^* \leq d' \leq p$ and (z, d') is not in Q, put (z, d') into Q and mark (z, d') as unprocessed.
4. Mark (y, d) as processed and go to (2).

Note that any y^j is reachable from x^i on the graph G restricted on $F^{i-i'}, \ldots, F^{i+p}$ if and only if after running FiniteReach on the input x^i the pair $(y, j-i)$ is in Q. When running the algorithm we only use the exact value of the input i when $i < p$ (we set $i^* = p - 1$ whenever $i \geq p$), so the running time of FiniteReach is bounded by the number of edges in G restricted to F^0, \ldots, F^{2p}. Hence the running time is $O(p^3)$. Let $B = \{y \mid (y, p) \in Q\}$.

Lemma 6.3. Let $x \in V_x$. Then x^i is in an infinite component if and only if $B \neq \emptyset$.

Proof. Suppose a vertex $y \in B$. Then there is a path from x^i to y^{i+p}. By Lemma 6.2, x^i is in an infinite component. Conversely, if x^i is in an infinite component, there must be some vertices in F^{i+p} reachable from x^i. Take a path from x^i to a vertex y^{i+p} such that y^{i+p} is the first vertex in F^{i+p} appearing on this path. Then $y \in B$.

Proof of Theorem 6.1. We assume the input vertex x^i is given by tuple (x, i). The above lemma suggests a simple algorithm to check whether x^i is in an infinite component.

ALG: InfiniteTest
1. Run FiniteReach on vertex x^i, computing the set B while building the queue Q.
2. For every $y \in B$, check if there is edge $(y, z) \in E^\sigma$. Return YES if one such edge is found; otherwise, return No.

Running FiniteReach takes $O(p^3)$ and checking for edge (y, z) takes $O(p^2)$. The running time is therefore $O(p^3)$. Since x is bounded by p, if \mathcal{A} is fixed, checking whether x^i belongs to an infinite component takes constant time.
7. Deciding the reachability problem

Suppose \mathcal{G} is a unary automatic graph of finite degree represented by an automaton with loop constant p. The *reachability problem* on \mathcal{G} is formulated as follows: given two vertices x^i, y^j in \mathcal{G}, decide if x^i and y^j are in the same component. We prove the following theorem.

Theorem 7.1. Suppose \mathcal{G} is a unary automatic graph of finite degree represented by an automaton \mathcal{A} of loop constant p. There exists a polynomial-time algorithm that solves the reachability problem on \mathcal{G}. For inputs u,v, the running time of the algorithm is $O(|u| + |v| + p^4)$.

We restrict consideration to the case when $\mathcal{G} = \mathcal{G}_{n^{\sigma^{\omega}}}$. The proof can be modified slightly to work in the more general case $\mathcal{G} = \mathcal{G}_{n^{\sigma^{\omega}}}$. Since, by Theorem 6.1, there is an $O(p^3)$-time algorithm to check if x^i is in a finite component, we can work on the two possible cases separately. We first deal with the case when the input x^i is in a finite component. By Lemma 6.2, x^i and y^j are in the same (finite) component if and only if after running FiniteReach on the input x^i, the pair $(y, j - i)$ is in the queue Q.

Corollary 7.2. If all components of \mathcal{G} are finite and we represent (x^i, y^j) as $(x^i, y^j, j - i)$, there is an $O(p^3)$-algorithm deciding if x^i and y^j are in the same component.

Now suppose that x^i is in an infinite component. We start with the following question: given $y \in V_{\mathcal{G}}$, are x^i and y^j in the same component in \mathcal{G}? To answer this, we present an algorithm that computes all vertices $y \in V_{\mathcal{G}}$ whose i^{th} copy lies in the same \mathcal{G}-component as x^i. The algorithm is similar to FiniteReach, except that it does not depend on the input i. Step 3 (b) in the algorithm is changed to the following:

3. (b) If $-p \leq d' \leq p$ and (z,d') is not in Q, put (z,d') into Q and mark (z,d') as unprocessed.

We use this modified algorithm to define the set $\text{Reach}(x) = \{y \mid (y, 0) \in Q\}$. Intuitively, we can think of the algorithm as a breadth first search through $\mathcal{F}^{0} \cup \cdots \cup \mathcal{F}^{2p}$ originating at x^p. Therefore, $y \in \text{Reach}(x)$ if and only if there exists a path from x^p to y^p in \mathcal{G} restricted to $\mathcal{F}^{0} \cup \cdots \cup \mathcal{F}^{2p}$.

Lemma 7.3. Suppose x^i is in an infinite component. The vertex y^j is in the same component as x^i if and only if y^j is also in an infinite component and $y \in \text{Reach}(x)$.

Proof. Suppose y^j is in an infinite component and $y \in \text{Reach}(x)$. If $i \geq p$, the above observation implies that there is a path from x^i to y^j in $\mathcal{F}^{i-p} \cup \cdots \cup \mathcal{F}^{i+p}$. So it remains to prove that x^i and y^j are in the same component even if $i < p$.

Since $y \in \text{Reach}(x)$, there is a path P in \mathcal{G} from x^p to y^p. Let ℓ be the least number such that $\mathcal{F}^{\ell} \cap P \neq \emptyset$. If $i \geq p - \ell$, it is clear that x^i and y^j are in the same component. Thus, we assume that $i < p - \ell$. Let z be such that $z^\ell \in P$. Then P is $P_1 P_2$ where P_1 is a path from x^p to z^ℓ and P_2 is a path from z^ℓ to y^p. Since x^i is in an infinite component, it is easy to see that x^p is also in an infinite component. There exists an $r > 0$ such that all vertices in the set $\{x^{p+rm} \mid m \in \omega\}$ are in the same component. Similarly, there is an $r' > 0$
such that all vertices in \(\{ y^{p+r'} \mid m \in \omega \} \) are in the same component. Consider \(x^{p+r'} \) and \(y^{p+r'} \). There is a path \(P'_1 \) from \(x^{p+r'} \) to \(z^{r'+r'} \) analogous to the path \(P_1 \). Similarly, there is a path \(P'_2 \) from \(z^{r'+r'} \) to \(y^{p+r'} \). We describe another path \(P' \) from \(x^{p} \) to \(y^{p} \) as follows. \(P' \) first goes from \(x^{p} \) to \(x^{p+r'} \), then goes along \(P'_1 P'_2 \) from \(x^{p+r'} \) to \(y^{p+r'} \) and finally goes to \(y^{p} \). Notice that the least \(\ell' \) such that \(\mathcal{T}_{p'} \cap P' \neq \emptyset \) must be larger than \(\ell \). We can iterate this procedure of lengthening the path between \(x^{p} \) and \(y^{p} \) until \(i < p - \ell' \), as is required to reduce to the previous case.

To prove the implication in the other direction, we assume that \(x^{i} \) and \(y^{i} \) are in the same infinite component. Then \(y^{i} \) is, of course, in an infinite component. We want to prove that \(y \in \text{Reach}(x) \). Let \(i = \min\{p,i\} \). Suppose there exists a path \(P \) in \(\mathcal{G} \) from \(x^{i} \) to \(y^{i} \) that stays in \(\mathcal{F}^{i-\ell} \cup \cdots \cup \mathcal{F}^{i+p} \). Then, indeed, \(y \in \text{Reach}(x) \). On the other hand, suppose no such path exists. Since \(x^{i} \) and \(y^{i} \) are in the same component, there is some path \(P \) from \(x^{i} \) to \(y^{i} \). Let \(\ell(P) \) be the largest number such that \(P \cap \mathcal{F}^{\ell(P)} \neq \emptyset \). Let \(\ell'(P) \) be the least number such that \(P \cap \mathcal{F}^{\ell'(P)} \neq \emptyset \). We are in one of two cases: \(\ell(P) > i + p \) or \(\ell'(P) < i - p \). We will prove that if \(\ell(P) > i + p \), there is a path \(P' \) from \(x^{i} \) to \(y^{i} \) such that \(\ell(P') < \ell'(P) \) and \(\ell'(P') \geq i - p \). The case in which \(\ell'(P) < i - p \) can be handled in a similar manner.

Without loss of generality, we assume \(\ell'(P) = i \) since otherwise we can change the input \(x \) and make \(\ell'(P) = i \). Let \(z \) be a vertex in \(\mathcal{F} \) such that \(z^{\ell(P)} \in P \). Thus \(P = P_1 P_2 \) where \(P_1 \) is a path from \(x^{i} \) to \(z^{\ell(P)} \) and \(P_2 \) is a path from \(z^{\ell(P)} \) to \(y^{i} \). Since \(\ell(P) > i + p \), there must be some \(s^{j} \) and \(s^{j+k} \) in \(P_1 \) such that \(k > 0 \). For the same reason, there must be some \(t^{m} \) and \(t^{m+n} \) in \(P_2 \) such that \(n > 0 \). Therefore, \(P \) contains paths between any consecutive pair of vertices in the sequence \((x^{i}, s^{j}, z^{p}, t^{m+n}, t^{m}, y^{i}) \). Consider the following sequence of vertices:

\[
(x^{i}, s^{j}, t^{m+n-k}, t^{m-k}, s^{i-k-n}, t^{m}, y^{i}).
\]

It is easy to check that there exists a path between each pair of consecutive vertices in the sequence. Therefore, the above sequence describes a path \(P' \) from \(x^{i} \) to \(y^{i} \). It is easy to see that \(\ell(P') = \ell(P) - n \). Also, since \(\ell'(P) = i \), we have \(\ell'(P') > i - p \), so \(P' \) is our desired path.

In the following we abuse notation by using \(\text{Reach} \) and \(\sigma \) on subsets of \(V_{\mathcal{G}} \). We inductively define a sequence \(\text{Cl}_{0}(x), \text{Cl}_{1}(x), \ldots \) such that each \(\text{Cl}_{k}(x) \) is a subset of \(V_{\mathcal{G}} \). Let \(\text{Cl}_{0}(x) = \text{Reach}(x) \) and for \(k > 0 \), we define \(\text{Cl}_{k}(x) = \text{Reach}(\sigma(\text{Cl}_{k-1}(x))) \). The following lemma is immediate from this definition.

Lemma 7.4. Suppose \(x^{i} \) is in an infinite component. Then \(x^{i} \) and \(y^{j} \) are in the same component if and only if \(y^{j} \) is also in an infinite component and \(y \in \text{Cl}_{j-i}(x) \).

We can use the above lemma to construct a simple-minded algorithm that solves the reachability problem on inputs \(x^{i}, y^{j} \).

ALG: NaïveReach

1. Check if each of x^i, y^j are in an infinite component of G (using the algorithm of Theorem 6.1).
2. If exactly one of x^i and y^j is in a finite component, return NO.
3. If both x^i and y^j are in finite components, run FiniteReach on input x^i and check if $(y, j - i)$ is in Q.
4. If both x^i and y^j are in infinite components, compute $Cl_{j-i}(x)$. If $y \in Cl_{j-i}(x)$, return YES; otherwise, return NO.

We now consider the complexity of this algorithm. The set $Cl_0(x)$ can be computed in time $O(p^3)$. Given $Cl_{k-1}(x)$, we can compute $Cl_k(x)$ in time $O(p^3)$ by computing Reach(y) for any $y \in \sigma(Cl_{k-1}(x))$. Therefore, the total running time of NaïveReach on input x^i, y^j is $(j - i) \cdot p^3$. We now want to replace the multiplication with addition and hence tweak the algorithm.

From Lemma 6.3, x^i is in an infinite component in G if and only if FiniteReach finds a vertex y^{i+p} connecting to x^i. Now suppose that x^i is in an infinite component. We can use FiniteReach to find such a y, and a path from x^i to y^{i+p}. There must be two vertices z^{i+j}, z^{i+k} with $0 \leq j < k \leq p$ on this path. Let $r = k - j$. Note that r can be computed from the algorithm. It is easy to see that all vertices in the set $\{x^{i+mr} | m \in \omega\}$ belong to the same component.

Lemma 7.5. $Cl_0(x) = Cl_r(x)$.

Proof. By definition, $y \in Cl_0(x)$ if and only if x^p and y^p are in the same component of G. Suppose that there exists a path in G from x^p to y^p. Then there is a path from x^{p+r} to y^{p+r}. Since x^p and x^{p+r} are in the same component of G, x^p and y^{p+r} are in the same component. Hence $y \in Cl_r(x)$.

For the reverse inclusion, suppose $y \in Cl_r(x)$. Then there exists a path from x^p to y^{p+r}. So x^{p+r} and y^{p+r} are in the same component and thus x^p and y^p are in the same component since $r \leq p$.

Using the above lemma, we define a new algorithm Reach on inputs x^i, y^j by replacing Step 4 in NaïveReach with:

4. If x^i and y^j belong to infinite components, compute $Cl_0(x), \ldots, Cl_{r-1}(x)$. If $y \in Cl_k(x)$ for $k < r$ such that $j - i = k \mod r$, return YES; otherwise, return NO.

Proof of Theorem 7.1. We assume input vertices are given as x^i and y^j. By Lemmas 7.4 and 7.5, the algorithm Reach returns YES if and only if x^i and y^j are in the same component. Since $r \leq p$, calculating $Cl_0(x), \ldots, Cl_{r-1}(x)$ requires time $O(p^4)$, so the running time of Reach on input x^i, y^j is $O(i + j + p^4)$.

Notice that, in fact, the algorithm produces a number $k < p$ such that in order to check if x^i, y^j ($j > i$) are in the same component, we need to test if $j - i < p$ and if $j - i = k \mod p$. Therefore, if G is fixed and we compute $Cl_0(x), \ldots, Cl_{r-1}(x)$ for all x beforehand, it takes linear time to decide whether two vertices u, v belong to the same component.

The above proof can also be used to build an automaton that decides reachability uniformly.
Corollary 7.6. Given a unary automatic graph of finite degree G represented by an automaton with loop constant p, there is a deterministic automaton with at most $2p^4 + p^3$ states that solves the reachability problem on G. The time required to construct this automaton is $O(p^5)$.

Proof. For all $0 \leq x < p$, $i \in \omega$, let string 1^{ip+x} represent vertex x^i in G. Suppose $ip + x \leq jp + y$. We construct an automaton A_{reach} that accepts $(1^{ip+x}, 1^{ip+y})$ if and only if x^i and y^j are in the same component in G.

1. A_{reach} has a $(1,1)$-tail of length p^2. Let the states on the tail be $q_0, q_1, \ldots, q_{p^2-1}$, where q_0 is the initial state. These states represent vertices in $F_0, F_1, \ldots, F_{p^2-1}$.
2. There is a $(1,1)$-loop of length p from q_{p^2-1}. We use $q_0', q_1', \ldots, q_{p-1}'$ to denote the states on the loop, which represent vertices in F_p.
3. For $0 \leq x, i < p$, there is a $(1,1)$-tail from q_{ip+x} of length $p^2 - x$. We use $q_{ip+x}', q_{ip+x}'', \ldots, q_{ip+x}'^{p^2-x}$ to denote the states on this tail, which represent vertices in $F_{ip+1}, F_{ip+2}, \ldots, F_{ip+p^2-1}$.
4. For $0 \leq x, i < p$, if x^i is in an infinite component, there is a $(1,1)$-loop of length $r \times p$ from $q_{ip+x}'^{p^2-x}$. We use $q_{ip+x}', q_{ip+x}'', \ldots, q_{ip+x}'^{p^2-x}$ to denote the states on this loop, which represent vertices in $F_{ip+1}, F_{ip+2}, \ldots, F_{ip+p^2-1}$.
5. For $0 \leq x \leq p$, if x^p is in a finite component, there is a $(1,1)$-tail from q_0' of length p^2.
 We use q_0', q_1', \ldots, q_p' to denote these states, which represent vertices in F_p, \ldots, F_{2p-1}.
6. If x^p is in an infinite component, from q_0', there is a $(1,1)$-loop of length $r \times p$. We use q_0', q_1', \ldots, q_p' to denote these states.

The final (accepting) states of A_{reach} are defined as follows:

1. States $q_0, q_1, \ldots, q_{p^2-1}, q_0', q_1', \ldots, q_p'$ are final.
2. For $i < p$, if x^i is in a finite component, run the algorithm FiniteReach on input x_i and declare state q_{ip+x^i}' final if $(y, j) \in Q$.
3. For $i < p$, if x^i is in an infinite component, compute $Cl_0(x), \ldots, Cl_{r-1}(x)$.
 a. Make state q_{ip+x^i}' final if y^{i+j} is in an infinite component and $y \in Cl_j(x)$.
 b. Make state q_{ip+x^i}' final if $y \in Cl_j(x)$.
4. If x^p is in a finite component, run the algorithm FiniteReach on input x^p and make state q_{ip+x^p}' final if $(y, j) \in Q$.
5. If x^p is in an infinite component, compute $Cl_0(x), \ldots, Cl_{r-1}(x)$. Declare state q_{ip+x^p}' final if $y \in Cl_j(x)$.

One can show that A_{reach} is the desired automaton. To compute the complexity of building A_{reach}, we summarise the computation involved:

1. For all x^i in $F_0 \cup \cdots \cup F_p$, decide whether x^i is in a finite component. This takes time $O(p^5)$ by Theorem 6.1.
2. For all x^i in $F_0 \cup \cdots \cup F_p$ such that x^i is in a finite component, run FiniteReach on input x^i. This takes time $O(p^5)$ by Corollary 7.2.
3. For all $x \in V_G$ such that x^p is in an infinite component, compute the sets $Cl_0(x), \ldots, Cl_{r-1}(x)$. This requires time $O(p^5)$ by Theorem 7.1.

Therefore, the running time required to construct A_{reach} is $O(p^5)$. □
8. Deciding the connectivity problem

Finally, we present a solution to the connectivity problem on unary automatic graphs of finite degree. Recall that a graph is connected if there is a path between any pair of vertices. The construction of \(A_{\text{Reach}} \) in the last section suggests an immediate solution to the connectivity problem.

ALG: NaïveConnect

1. Construct the automaton \(A_{\text{Reach}} \).
2. Check if all states in \(A_{\text{Reach}} \) are final states. If this is the case, return \(\text{YES} \); otherwise, return \(\text{NO} \).

The above algorithm takes time \(O(p^5) \). Note that \(A_{\text{Reach}} \) provides a uniform solution to the reachability problem on \(G \). Given the ‘regularity’ of the class of infinite graphs we are studying, it is reasonable to believe there is a more intuitive algorithm that solves the connectivity problem. It turns out that this is the case.

Theorem 8.1. The connectivity problem for unary automatic graph of finite degree \(G \) is solved in \(O(p^3) \), where \(p \) is the loop constant of the automaton recognising \(G \).

Note that if \(G \) does not contain an infinite component, \(G \) is not connected, so we assume that \(G \) contains an infinite component \(C \).

Lemma 8.2. For all \(i \in \mathbb{N} \), there is a vertex in \(F^i \) belonging to \(C \).

Proof. Since \(C \) is infinite, there is a vertex \(x^i \) and \(s > 0 \) such that all vertices in \(\{x^{i+ms} \mid m \in \omega\} \) belong to \(C \) and \(i \) is the least such number. By minimality, \(i < s \). Take a walk along the path from \(x^{i+s} \) to \(x^i \). Let \(y^s \) be the first vertex in \(F^s \) that appears on this path. It is easy to see that \(y^0 \) must also be in \(C \), so \(C \) has a non-empty intersection with each copy of \(F \) in \(G \).

Pick an arbitrary \(x \in V_F \) and run \(\text{FiniteReach} \) on \(x^0 \) to compute the queue \(Q \). Set \(R = \{y \in V_F \mid (y,0) \in Q\} \).

Lemma 8.3. Suppose \(G \) contains an infinite component. Then \(G \) is connected if and only if \(R = V_F \).

Proof. Suppose there is a vertex \(y \in V_F - R \). Then there is no path in \(G \) between \(x^0 \) to \(y^0 \), since otherwise we can shorten the path from \(x^0 \) to \(y^0 \) using an argument similar to the proof of Lemma 7.3 and show the existence of a path between \(x^0 \) to \(y^0 \) in the subgraph restricted on \(F^0, ..., F^p \). Therefore \(G \) is not connected. Conversely, if \(R = V_F \), every set of the form \(\{y \in V_F \mid (y,i) \in Q\} \) for \(i \geq 0 \) equals \(V_F \). Thus, by Lemma 8.2, all vertices are in the same component.

Proof of Theorem 8.1. By the above lemma, the following algorithm decides the connectivity problem on \(G \):

ALG: Connectivity

1. Use the algorithm proposed by Theorem 5.1 to decide if there is an infinite component in \(G \). If there is no infinite component, stop and return \(\text{NO} \).
2 Pick an arbitrary $x \in V_F$, run FiniteReach on x_0 to compute the queue Q.
3 Let $C = \{y \mid (y, 0) \in Q\}$. If $C = V_F$, return YES; otherwise, return NO.

Solving the infinite component problem takes $O(p^3)$ by Theorem 5.1. Running algorithm FiniteReach also takes $O(p^3)$, so Connectivity takes $O(p^3)$. \hfill \square

9. Conclusion

In this paper we have addressed algorithmic problems for graphs of finite degree that have automata presentations over a unary alphabet. We have provided polynomial-time algorithms that solve the connectivity, reachability, infinity testing and infinite component problems. In our future work we plan to improve these algorithms for other stronger classes of unary automatic graphs. We also point out that there are many other algorithmic problems for finite graphs that can be studied for the class of unary automatic graphs. These, for example, may concern finding spanning trees for automatic graphs, studying the isomorphism problems and other related issues.

Acknowledgements

The authors would like to thank the referees for their suggestions for improving this paper.

References

Blumensath, A. (1999) Automatic Structures, Diploma Thesis, RWTH Aachen.
Blumensath, A. and Grädel, E. (2004) Finite presentations of infinite structures: Automata and interpretations. *Theory of Computing Systems* **37** 642–674.
Bouajjani, A., Esparza, J. and Maler, O. (1997) Reachability analysis of pushdown automata: Application to model-checking. In: Proceedings of CONCUR ’97. *Springer-Verlag Lecture Notes in Computer Science* **1243** 135–150.
Büchi, J. R. (1960) On a decision method in restricted second-order arithmetic. In: Nagel, E., Suppes, P. and Tarski, A. (eds.) *Proc. International Congress on Logic, Methodology and Philosophy of Science*, Stanford University Press 1–11.
Caucal, D. (2002) On infinite graphs having a decidable monadic theory. In: Diks, K. and Rytter, W. (eds.) Proc. 27th MFCS. *Springer-Verlag Lecture Notes in Computer Science* **2420** 165–176.
Esparza, J., Hansel, D., Rossmanith, P. and Schwoon, S. (2000) Efficient algorithms for model checking pushdown systems. In: Proc. CAV 2000. *Springer-Verlag Lecture Notes in Computer Science* **1855** 232–247.
Hell, P. and Nešetřil, J. (2004) *Graphs and Homomorphisms*, Oxford University Press.
Hodgson, B. R. (1976) *Théories décidables par automate fini*, Ph.D. thesis, University of Montréal.
Khoussainov, B. and Minnes, M. (2008) Automatic structures and their complexity (extended abstract). In: Proc. TAMC’08. *Springer-Verlag Lecture Notes in Computer Science* (to appear).
Khoussainov, B. and Nerode, A. (1995) Automatic presentation of structures. *Springer-Verlag Lecture Notes in Computer Science* **960** 367–392.
Khoussainov, B., Nies, A., Rubin, S. and Stephan, F. (2004) Automatic structures: richness and limitations. In: Proc. 19th LICS 44–53.
Khoussainov, B. and Rubin, S. (2001) Graphs with automatic presentations over a unary alphabet. *Journal of Automata, Languages and Combinatorics* 6 (4) 467–480.

Khoussainov, B., Rubin, S. and Stephan, F. (2005) Automatic linear orders and trees. *ACM Trans. Comput. Log.* 6 (4) 675–700.

Libkin, L. (2004) *Elements of finite model theory*, Springer-Verlag.

Lohrey, M. (2003) Automatic structures of bounded degree. In: Proc. 10th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). *Springer-Verlag Lecture Notes in Artificial Intelligence* 2850 344–358.

Oliver, G. P. and Thomas, R. M. (2005) Automatic presentations for finitely generated groups. In: V. Diekert and B. Durand (eds.) Proc. 22nd STACS. *Springer-Verlag Lecture Notes in Computer Science* 3404 693–704.

Rabin, M. O. (1969) Decidability of second-order theories and automata on infinite trees. *Trans. Amer. Math. Soc.* 141 1–35.

Rubin, S. (2004) *Automatic Structures*, Ph.D. Thesis, University of Auckland.

Thomas, W. (2002) A short introduction to infinite automata. In: Proceedings of the 5th International Conference Development in Language Theory. *Springer-Verlag Lecture Notes in Computer Science* 2295 130–144.

Wöhrle, S. and Thomas, W. (2004) Model Checking Synchronized Products of Infinite Transition Systems. In *Proc. 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)* 2–11.