Far-ultraviolet scattering by dust in Orion

P. Shalima,1* N. V. Sujatha,1* Jayant Murthy,1* Richard Conn Henry2* and David J. Sahnow2*

1Indian Institute of Astrophysics, Bangalore 560034, India
2Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA

Accepted 2006 January 11. Received 2005 December 20; in original form 2005 October 21

ABSTRACT

We have modelled diffuse far-ultraviolet (FUV) spectrum observed by the Far Ultraviolet Spectroscopic Explorer (FUSE) near M42 as the scattering of the starlight from the Trapezium stars by dust in front of the nebula. The dust grains are known to be anomalous in Orion with \(R_V = 5.5 \) and these are the first measurements of the FUV optical properties of the grains outside of ‘normal’ Milky Way dust. We find an albedo varying from 0.3 ± 0.1 at 912 Å to 0.5 ± 0.2 at 1020 Å which is consistent with theoretical predictions.

Key words: dust, extinction – ultraviolet: ISM.

1 INTRODUCTION

The Orion Nebula (M42) was first observed as one of the brightest diffuse sources in the ultraviolet (UV) sky by Carruthers & Opal (1977). They identified this light to be due to the radiation from the bright Orion stars scattered by dust in the Orion Molecular Cloud. Further observations allowed Wen & O’Dell (1995) to suggest a model for the M42 region in which M42, itself, is a thin blister of ionized gas in front of the Orion Molecular Cloud. The scattering arises in a neutral sheet in front of the Nebula known as the Veil (O’Dell, Walter & Dufour 1992) where there is a deficiency of small grains compared to the diffuse interstellar medium (Baade & Minkowski 1937; Costero & Peimbert 1970; Cardelli & Clayton 1988).

The first observations of far-ultraviolet (FUV; 905–1187 Å) emission in this region were made by Murthy, Sahnow & Henry (2005) who used serendipitous pointings of the Far Ultraviolet Spectroscopic Explorer (FUSE) to find intensities as high as 3 \(\times \) \(10^5 \) ph cm\(^{-2}\) s\(^{-1}\) sr\(^{-1}\) Å\(^{-1}\). In this work, we have modelled these observations in order to determine the optical properties of the dust grains in the FUV. We find that the albedo of these grains varies from 0.3 ± 0.1 at 912 Å to 0.5 ± 0.2 at 1020 Å which is consistent with the theoretical predictions of Draine (2003).

2 OBSERVATIONS AND MODEL

As part of the FUSE S405/505 programme, regions of nominally blank sky were observed to allow the instrument to thermализe before realignment of the spectrograph mirrors. Murthy & Sahnow (2004) found diffuse radiation in many of these locations with the brightest being the two in the vicinity of M42 (Murthy et al. 2005). The locations and brightnesses of these two observations are listed in Table 1 and the Digital Sky Survey (DSS) map of M42 and the surrounding region is shown in Fig. 1 with the location of the FUSE observation superimposed (square).

The amount of light scattered by the dust depends on the scattering properties of the interstellar dust grains (albedo, cross-section and scattering phase function), their number density and distribution, and the relative geometry of the stars and dust. We have used the Henyey–Greenstein function (Henyey & Greenstein 1941) for the scattering phase function. Although this is a purely empirical function which may not represent the true scattering, particularly for strongly forward scattering grains (Draine 2003), it is the most prevalent in the literature.

We have used the overall morphology of M42 and the surrounding medium described in O’Dell (2001) to derive the scattering geometry (Fig. 3) for our location. Light from the Trapezium stars passes behind the foreground H\(\text{I}\) sheet (Orion’s Veil) and is scattered by dust in the edges of the H\(\text{I}\) sheet at point A, about 3 ± 1 pc from \(\theta^1 \) Ori C. Assuming that the Veil is always parallel to the molecular cloud, this distance corresponds to the distance of the Veil (Abel et al. 2004) at point A.

The strong interstellar absorption line at Ly\(\beta\) indicates a total column density of \(N(\text{H}_1) = (6.3 \pm 0.1) \times 10^{20} \) cm\(^{-2}\) (using...
the ‘hi2ools’ package of McCandliess (2003), but 21-cm observations (Condon et al. 1998) show a much smaller column density of 4.5×10^{19} cm$^{-2}$ ($\tau_{912 - 1020 \AA} \sim 0.029 - 0.033$) at Point A.1 Most of the absorption therefore arises in the medium between the Trapezium stars and the scattering location. Interestingly, the column density along the direct line of sight to the Trapezium stars [$N(\text{H}) = 3.9 \times 10^{21}$ cm$^{-2}$; Shuping & Snow (1997)] is much higher than that seen in our scattered light observation, indicating that we are actually observing light from θ^1 Ori C reflected around the foreground clouds.

In order to convert the H1 column densities into effective dust densities, we have used the dust cross-sections per hydrogen atom

\footnote{1 The 21-cm intensities have been converted to H1 column densities using the ratio of van der Werf & Goss (1989) for the material in the envelope of the molecular cloud.}

$^\text{3 RESULTS AND DISCUSSION}$

We have plotted our derived albedos as circles in Fig. 4 corresponding to $g = 0.55$. Because we only have observations at a single location, where the scattering angle is about 48$^\circ$, it was not possible for us to constrain g and we assumed the value, $g = 0.55 \pm 0.25$ derived by Sujatha et al. (2005) for locations in Ophiuchus. The error bars on the albedos for each value of g, include the observational errors as well as the uncertainties in the exact location of the scattering cloud. Within the assumed range of g, the albedo varies from 0.3 ± 0.1 at $912 \AA$ to 0.5 ± 0.2 at $1020 \AA$. The maximum allowed albedo corresponds to $g = 0.8$, while the minimum corresponds to $g = 0.4$. As mentioned above, the dust grains are anomalous in Orion with a depleted population of small grains with respect to the general interstellar medium, perhaps due to the destruction and selective acceleration of the small grains by the stellar radiation combined with their coagulation into large grains (Cardelli & Clayton 1988).

However, the measured albedo is really a weighted average over all the different dust sizes and hence is only mildly dependent tabulated by Draine (2003) for an $R_V = A_V / [E(B - V)]$ of 5.5, characteristic of the interstellar dust in Orion (Cardelli, Clayton & Mathis 1989; Fitzpatrick 1999). We note that Draine’s cross-sections assume the standard gas-to-dust ratio of Bo\text{"h}lin, Savage & Drake (1978); however, this is 2.06 times higher than the ratio observed in Orion (Shuping & Snow 1997). We have therefore reduced the dust cross-sections per hydrogen atom by this factor.

In summary, we have assumed that the observed emission is due to the scattering of the light from the Trapezium stars by a scattering layer of thickness 4.5×10^{19} cm$^{-2}$ at a distance of approximately 3 pc from θ^1 Ori C. The radiation from the Trapezium stars has been attenuated by a column density of 6.3×10^{20} cm$^{-2}$, using an extinction curve corresponding to $R_V = 5.5$.

The observed spectrum (Fig. 2) includes many lines, both absorption and emission, of molecular hydrogen (France & McCandliess 2005) as well as the H1 Lyman series of absorption lines. In order to deduce the level of the dust scattered emission, we masked out these features and applied a 50-point median filter to the data (dark line in Fig. 2). We then calculated the dust scattered radiation as a function of the optical constants a and g using single scattering (since $\tau < 1$) and compared the intensities with the observations to constrain the values of the parameters. Beyond 1020 Å the observed radiation is contaminated by fluorescent emission of H2 because of which we were unable to derive the optical constants.

$^\text{Data set} \quad l \quad b \quad \text{Time} \quad \text{Intensity (1100 Å)}$ (1100 Å)

\begin{tabular}{cccc}
S4054601 & 208.8 & −19.3 & 10 565 & 2.93 ± 0.03 \\
S4054602 & 208.8 & −19.3 & 5696 & 2.95 ± 0.04
\end{tabular}

$^\text{Table 1. FUSE observations.}$

$^\text{Figure 1. DSS map of the region with the brightest stars (asterisks) and the FUSE location (filled square) overplotted.}$$^\text{Figure 2. Observed diffuse spectrum from Murthy et al. (2005). The assumed dust scattering continuum is overplotted as a dark line.}$

$^\text{Figure 3. Schematic representation of the distribution of dust at the location showing the path (arrow) taken by the observed photons from the Trapezium stars towards the observer. The figure is not to scale.}$

$^\text{Figure 4. Observed diffuse spectrum from Murthy et al. (2005). The assumed dust scattering continuum is overplotted as a dark line.}$

$^\text{3 RESULTS AND DISCUSSION}$

We have plotted our derived albedos as circles in Fig. 4 corresponding to $g = 0.55$. Because we only have observations at a single location, where the scattering angle is about 48$^\circ$, it was not possible for us to constrain g and we assumed the value, $g = 0.55 \pm 0.25$ derived by Sujatha et al. (2005) for locations in Ophiuchus. The error bars on the albedos for each value of g, include the observational errors as well as the uncertainties in the exact location of the scattering cloud. Within the assumed range of g, the albedo varies from 0.3 ± 0.1 at $912 \AA$ to 0.5 ± 0.2 at $1020 \AA$. The maximum allowed albedo corresponds to $g = 0.8$, while the minimum corresponds to $g = 0.4$.

As mentioned above, the dust grains are anomalous in Orion with a depleted population of small grains with respect to the general interstellar medium, perhaps due to the destruction and selective acceleration of the small grains by the stellar radiation combined with their coagulation into large grains (Cardelli & Clayton 1988).

However, the measured albedo is really a weighted average over all the different dust sizes and hence is only mildly dependent...
on 24 July 2018

4 CONCLUSIONS

We have modelled the intense diffuse light observed near M42 by Murthy et al. (2005) as the starlight from the Trapezium stars scattered by interstellar dust in Orion’s Veil, a sheet of neutral hydrogen in front of the Orion Nebula. Most of the absorption seen in the spectrum is due to the material between the Trapezium and the scattering location and is much less than the absorption along the direct line of sight to the Trapezium.

Table 3. Previous determinations.

Location	Wavelength (Å)	Albedo (±)	g	Reference
NGC 7023	1000	0.42 ± 0.04	0.75	Witt et al. (1993)
NGC 2023	1100	0.35 ± 0.05	0.85	Burgh et al. (2002)
Ophiuchus	1100	0.40 ± 0.10	0.55 ± 0.25	Sujatha et al. (2005)

If we fix g at 0.55, the albedo of the interstellar grains increases from a value of $0.3 ± 0.02$ at 912 Å to $0.5 ± 0.03$ at 1020 Å, close to previously observed values but with a different R_V. On the other hand, if we assume a g of 0.85, as observed by Burgh et al. (2002), the albedo increases from $0.40 ± 0.02$ to $0.68 ± 0.03$. We have restricted our analysis up to 1020 Å since molecular hydrogen fluorescence contaminates the spectrum longward of 1020 Å. These observations are the first of dust grains with an R_V significantly different from the Galactic norm in the FUV; however, we do not find a significant difference in the optical properties.

ACKNOWLEDGMENTS

We thank an anonymous referee for useful comments and suggestions which have helped in improving the quality and presentation of this paper. We thank Kevin France for a careful reading of the manuscript and for useful suggestions. We also thank Dr. Sunetra Giridhar and Dr. P. Manoj for helpful discussions. This research has made use of the SIMBAD data base, operated at CDS, Strasbourg, France.

REFERENCES

Abel N. P., Brogan C. L., Ferland G. J., O’Dell C. R., Shaw G., Troland T. H., 2004, ApJ, 609, 247
Baade W., Minkowski R. L., 1937, ApJ, 86, 119
Bohlin R. C., Savage B. D., Drake J. F., 1978, ApJ, 224, 132
Burgh E. B., McCandliss S. R., Feldman P. D., 2002, ApJ, 575, 240
Calzetti D., Bohlin R. C., Gordon K. D., Witt A. N., Bianchi L., 1995, ApJ, 446, L97
Cardelli J. A., Clayton G. C., 1988, AJ, 95, 516
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Carruthers G. R., Opal C. B., 1977, ApJ, 217, 95
Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
Costero R., Peimbert M., 1970, BOTT, 5, 229
Draine B. T., 2003, ApJ, 598, 1017
Fitzpatrick E. L., 1999, PASP, 111, 63
France K., McCandliss S. R., 2005, ApJ, 629, L97
Henney L. C., Greenstein J. L., 1941, ApJ, 93, 70
McCandliss S. R., 2003, PASP, 115, 651
Murthy J., Sahu N. G., Henry R. C., 2005, ApJ, 618, 99
O'Dell C. R., 2001, ARA&A, 39, 99
O’Dell C. R., Walter D. K., Dufour R. J., 1992, ApJ, 399, L67
Shapley R. Y., Snow T. P., 1997, ApJ, 480, 272
Sujatha N. V., Shalima P., Murthy J., Henry R. C., 2005, ApJ, 633, 257
van der Werf P. P., Goss W. M., 1989, A&A, 224, 209
Wen Z., O'Dell C. R., 1995, ApJ, 438, 784
Witt A. N., Petersohn J. K., Holberg J. B., Murthy J., Dring A., Henry R. C., 1993, ApJ, 410, 714

This paper has been typeset from a TeX/LaTeX file prepared by the author.

© 2006 The Authors. Journal compilation © 2006 RAS, MNRAS 367, 1686–1688