ABSTRACT

Objective: The objective of this study was to evaluate nasal changes in different age groups and to detect gender difference in nasal dimensions.

Materials and Methods: Clinical measurement and profile photographic records of 279 randomly selected subjects were obtained for the evaluation of nasal changes. Thirty-nine subjects were excluded, and the final sample consisted of 240 subjects. The subjects were divided into four groups by age: Group 1 (16–20 years), Group 2 (21–30 years), Group 3 (31–40 years), and Group 4 (41–50 years). Each group was further subdivided on the basis of gender. Data were collected and analyzed by two-way multivariate analysis of variance with Duncan’s multiple range post hoc test.

Results: In both males and females, nasal height and breadth increased with age except nasal index and nasolabial angle. More nasal changes were seen in males as compared to females of the same age group.

Conclusions: Nonconsistent age-related changes were found for nasal index and nasolabial angle. The rest of the nasal parameters increased with age and differ between the genders. Larger nasal changes were seen in males as compared to females of the same age group.

Keywords: Different age groups, gender, nasal changes

INTRODUCTION

Expansion in the facial skeleton is a continuous process and it occurs throughout the life,[14] but there are certain facial measurements that progressively increase with age.[7,8] The shape of the nose is a distinctive feature of the human face, and it is believed that the dimensions of the nose change throughout the life even after the growth ceases. Previously there were lots of studies done, which showed that older persons have larger noses than younger one of the same gender and ethnic groups.[9,13] Nowadays, treatment of the patient is based on soft-tissue paradigm for the overall benefit of the patients of any age group.[14] In the modern orthodontic era, the esthetic outcome is critical for the patient, but the primary goal should remain the same to achieve the ideal occlusion of the patient of any age. With age, along with all physiological changes, there are many skeletal and soft-tissue cellular changes seen that affect the related soft tissues, related muscles, and their functions.[6,11,15,16] With age, the shape of the nose has been changed according to literature.[10-12] As in this era, adult patients in orthodontics are increased, so that knowledge of changes in nasal morphology with age is essential for diagnosis and treatment planning to achieve stable esthetically pleasing results. Knowledge of age-related changes in nasal dimensions in different genders is important as facial soft tissues played a social, functional, and esthetic role.[17-22] Reference data are necessary for the management of facial deformities and surgical reconstructions and to obtain harmonious facial features with sound functionality.[22-25] Overall, for the last several years,
there are lots of quantitative data that are available on the age-related changes in nasal dimension during growth and development for the different ethnic groups.\textsuperscript{[21,26-29]} Apart from several studies on this topic, there has been very limited literature available in the Indian population comparing age differences in nasal changes between the genders. Because of a lack of literature related to gender and age differences, a cross-sectional study was performed to evaluate the nasal changes in different age groups and different genders. Hence, according to nasal changes, an orthodontist can determine and decide the position of teeth in relation to age to provide the more natural appearance of the achieved results.

**MATERIALS AND METHODS**

The present study was conducted on randomly selected 279 subjects from the students, residents, staff, faculty, and parents/guardians of patients at our university, to evaluate nasal changes in different age groups and different genders. The study was approved from the institutional ethical committee (vide letter no -265/Ethics/R-cell-18/24-9-18). Clinical measurements with digital caliper and profile photographic records of these randomly selected 279 subjects were taken who willingly consented to participate in the study. Out of 279, 39 subjects were excluded from the study, so that the final sample consisted of 240 subjects with age range of 16 to 50 years. Exclusion criteria were age <16 years and more than 50 years, gross facial asymmetry, irregular lips, and no history of nasal prosthesis. Two hundred and forty subjects were divided into four age groups on the basis of age, namely Group 1 (16 – 20 years), Group 2 (21 – 30 years), Group 3 (31 – 40 years), and Group 4 (41 – 50 years), with each group consisting of thirty males and thirty females. All measurements were taken with a subject sitting on a chair in a relaxed mood and head in anatomical position. The nasal height (NH) was measured by using a digital caliper, from nasion to subnasale [Figure 1 and Table 1]. Nasal breadth (NB) was measured at right angle to the NH from right ala to left ala (which is the maximum breadth of the nose) [Figure 2 and Table 1]. Nasal index was calculated as NB/NH×100.\textsuperscript{[29]} The nasolabial angle\textsuperscript{[30]} was calculated by angle between a line tangent to the base of the nose and a line tangent to the upper lip [Figure 3 and Table 1]. The measurement was done individually and cross-checked to prevent the intra- and inter-observer errors. All measured data were summarized into mean standard deviation, and all groups were compared by age and genders. By using analysis of variance (ANOVA), groups were compared by age and gender. As ANOVA showed statistical significance, the Duncan’s multiple range post hoc test was done to ascertain the homogeneity of variance by Levene’s test to determine which groups were significant from the others.

**RESULTS**

Tables 2 and 3 show the results, and NH increases significantly with age in both males and females and NB increases with age in both males and females except in Group 2 and Group 3 females. Nasal index increases with age except in Group 2 and Group 3 males and females, and nasolabial angle decreases with age in both males and females. Nasal index showed nonconsistent pattern between the groups [Table 2]. On comparison [Table 3], NH was found to be significantly higher in Group 1 and Group 2 males and females, and Group 1 and Group 4 males were also showed significant changes, whereas in females, the rest of the comparison is nonsignificant. NB parameter of Group 4 in both males and females was significantly higher as compared to Group 1 males and females. Group 3 and 4 males were significantly higher as compared to Group 2, whereas Group 4 females were significantly higher than Group 2 females. Nasal index ratio of Group 4 in both males and females is significantly higher as compared to Group 1 males and females. Group 3 and

---

**Table 1: Measurements used in the study**

| Measurements          | Description                                                                 |
|-----------------------|-----------------------------------------------------------------------------|
| NH                    | NH was measured from the nasion to the anterior nasal spine                |
| NB                    | NB was measured as the maximum horizontal distance across the nasal aperture |
| Nasal index           | Nasal index was calculated as NB/NH×100                                     |
| Nasolabial angle      | Angle between the tangent to upper lip and nasal tip: The nasolabial angle  |

**NB:** Nasal breadth, **NH:** Nasal height

**Table 2: Descriptive statistics and significance of mean differences nasal measurements between males and females by Duncan’s multiple range post hoc test**

| Measurements          | Groups       | Sex (mean±SD)                  | P       |
|-----------------------|--------------|--------------------------------|---------|
|                       | Male         | Female                        |         |
| NH (mm)               | Group 1      | 50.01±2.55                    | <0.001***|
|                       | Group 2      | 54.22±1.02                    | <0.001***|
|                       | Group 3      | 57.10±4.12                    | <0.001***|
|                       | Group 4      | 58.11±3.12                    | <0.0008**|
|                       | Group 1      | 31.02±3.22                    | 0.832   |
|                       | Group 2      | 32.84±1.21                    | 0.738   |
|                       | Group 3      | 33.34±2.34                    | 0.247   |
|                       | Group 4      | 34.86±2.55                    | 0.354   |
|                       | Group 1      | 60.02±1.88                    | 0.743   |
|                       | Group 2      | 58.13±2.43                    | 0.453   |
|                       | Group 3      | 57.56±4.01                    | 0.278   |
|                       | Group 4      | 62.65±5.11                    | 0.479   |
| Nasolabial angle (deg)| Group 1      | 96.06±3.15                    | 0.116   |
|                       | Group 2      | 94.53±1.98                    | 0.204   |
|                       | Group 3      | 92.43±5.31                    | 0.674   |
|                       | Group 4      | 90.15±3.22                    | 0.453   |

**Post hoc Duncan test.*** Moderately significant, ***P<0.001 Highly significant, NS: Nonsignificant, SD: Standard deviation.
4 males were significantly higher as compared to Group 2, whereas Group 4 females were significantly higher than Group 2 females. Nasolabial angle of Group 2 and Group 3 in both males and females was significantly higher as compared to Group 1 males and females, and in Group 4, only males were significantly higher as compared to Group 2. Overall, in most occasions, male parameters of nasal changes were higher than those observed in females.

**DISCUSSION**

As the nasal growth changes with age and it plays a very important part in various fields like in orthodontics for diagnosis and treatment planning, forensic, plastic surgery, ENT, etc., Nowadays, adult patients are very concerned for their esthetics in both the genders as the current society is esthetically oriented. It is essential for an orthodontist, a plastic surgeon, and other specialists to have a good knowledge of the growth prediction of facial soft tissues to deliver better orthodontic and orthopedic interventions, age estimation, and facial reconstruction. Therefore, a detailed knowledge of age-related changes in facial dimensions and relative positions of facial features in different ages and sexes is required. In this study, a digital caliper was used as it does not compress facial skin during measurements. The nose is one of the parts of body which shows very characteristic changes during the racial evolution. According to Subtelny, the nose experiences more growth in vertical dimensions than in anteroposterior dimensions in both males and females in their spurt years. There is a spurt in males’ nasal growth from 10 to 16 years with a peak around 13–14 years. According to previous studies, boys and males had larger noses than females and showed different age-related changes and sexual dimorphism in nasal dimensions with age. In this study, we found that NH increased in both sexes from 16 to 50 years [Table 2], and an increase in NH could be attributed to the vertical dimension of the nose. Previous studies also showed that NH doubled from birth to adolescence, and it had the fastest growth with age. With age, lots of changes occur in the human body both internally and externally. Face is the structure, where age-related changes were noticed early because there are lots of modifications that occur at microscopic level in the cartilages, muscles, skin elasticity, etc. Nasal tip showed very much age-related changes because of loss of muscle tone, and increased flaccidity, and redundancy. On comparison of NH between the groups [Table 3], there was a significant difference between groups except Group 2 versus Group 3 and Group 3 versus Group 4 males and Group 1 versus Group 3, Group 1 versus Group 4, Group 2 versus Group 3, and Group 3 versus Group 4 females. NB was analyzed and increased in males and females insignificantly [Table 2], and on comparison between the groups, it was found a significant difference between Group 1 versus Group 4, Group 2 versus Group 4 males and Group 1 versus Group 3, Group 1 versus Group 4, Group 2 versus Group 3, and Group 3 versus Group 4 females.
Table 3: Comparisons of nasal measurements between the four age groups within males and within females (Duncan’s multiple range post hoc test)

| Comparison            | NH (mm) | NB (mm) | Nasal index (percentage) | Nasolabial angle (degree) |
|-----------------------|---------|---------|--------------------------|---------------------------|
|                       | Male    | Female  | Male         | Female | Male    | Female | Male    | Female |
| Group 1 versus Group 2| 0.004** | 0.006** | 0.232        | 0.439  | 0.035   | 0.242  |
| Group 1 versus Group 3| 0.003** | 0.218   | 0.372        | 0.844  | 0.003** | 0.002**|
| Group 1 versus Group 4| 0.021*  | 0.131   | 0.004**      | 0.003**| 0.004** | 0.002**|
| Group 2 versus Group 4| 0.423   | 0.322   | 0.031*       | 0.024* | 0.034   | 0.453  |
| Group 3 versus Group 4| 0.44*   | 0.31*   | 0.035*       | 0.022* | 0.045*  | 0.36*  |

*Just significant, **Moderately significant, NS: Nonsignificant, NB: Nasal breath, Nasal height

Changes in nasal dimensions increase with age, and it differs between the genders. Males have more nasal changes as compared to females in all aspects. NH and breadth increase with age, and it differs between the genders. Nonconsistent age-related patterns were found for nasal index in all groups. Nasolabial angle decreases with age as NH increases more than NB in both genders.

CONCLUSIONS

- Changes in nasal dimensions increase with age, and it differs between the genders
- Males have more nasal changes as compared to females in all aspects
- NH and breadth increase with age, and it differs between the genders
- Nonconsistent age-related patterns were found for nasal index in all groups
- Nasolabial angle decreases with age as NH increases more than NB in both genders.

Declaration of patient consent

The authors declare that they have obtained consent from patients. Patients have given their consent for their images and other clinical information to be reported in the journal. Patients understand that their names will not be published and due efforts will be made to conceal their identity but anonymity cannot be guaranteed.
There are no conflicts of interest.

REFERENCES

1. Hall RL, Hall DA. Geographic variation of native people along the pacific coast. Hum Biol 1995;40:407-26.
2. Gonzalez-Ulloa M, Flores ES. Senility of the face – Basic study to understand its causes and effects. Plast Reconstr Surg 1965;36:239-46.
3. Hellman M. Changes in the human face brought about by development. Int J Orthod 1927;13:475.
4. Todd TW. Thickness of the white male cranium. Anat Rec 1924;27:245.
5. Lasker GW. The age factor in bodily measurements of adult male and female Mexicans. Hum Biol 1953;25:50-63.
6. Garn SM, Rohmann CG, Wagner B, Ascoli W. Continuing bone growth throughout life: A general phenomenon. Am J Phys Anthropol 1967;26:313-7.
7. Behrens RG. Growth in the Aging Craniofacial Skeleton. Ann Arbor: University of Michigan Center for Human Growth and Development; 1985.
8. Bartlett SP, Grossman R, Whitaker LA. Age-related changes of the craniofacial skeleton: An anthropometric and histologic analysis. Plast Reconstr Surg 1992;90:592-600.
9. Last RJ. Anatomy Applied and Regional. 6th ed. Edinburgh; New York: Churchill Livingstone; 1981. p. 398-403.
10. Gualdi-Russo E. Longitudinal study of anthropometric changes with aging in an urban Italian population. Homo 1998;49:241-59.
11. Pecora NG, Baccetti T, McNamara JA Jr. The aging craniofacial complex: A longitudinal cephalometric study from late adolescence to late adulthood. Am J Orthod Dentofacial Orthop 2008;134:496-505.
12. Zankl A, Eberle L, Molinari L, Schinzel A. Growth charts for nose length, nasal protrusion, and philtrum length from birth to 97 years. Am J Med Genet 2002;111:388-91.
13. Sforza C, Grandi G, Menezes MD, Tagartia GM, Ferrario VF. Age- and sex-related changes in the normal human external nose. Forensic Sci Int 2010;204:205.e1-9.
14. Sarver DM, Ackerman MB. Dynamic smile visualization and quantification: Part I. Evolution of the concept and dynamic records for smile capture. Am J Orthod Dentofacial Orthop 2003;124:4-12.
15. Nanda RS, Meng H, Kapila S, Goorhuis J. Growth changes in the soft tissue facial profile. Angle Orthod 1990;60:177-90.
16. Lee MM. Physical and structural age changes in human skin. Anat Rec 1957;129:473-93.
17. Burstone CJ. Lip posture and its significance in treatment planning. Am J Orthod 1967;53:262-84.
18. Sforza C, Peretta R, Grandi G, Ferronato G, Ferrario VF. Soft tissue facial planes and masticatory muscle function in skeletal class III patients before and after orthognathic surgery treatment. J Oral Maxillofac Surg 2008;66:691-8.
19. Heidari H, Mahmoudzadeh-Sagheb H, Khammar T, Khammar M. Anthropometric measurements of the external nose in 18-25-year-old Sistani and Baluch aborigine women in the southeast of Iran. Folia Morphol 2009;68:88-92.
20. Smith SL, Buschagh PH. Midsagittal facial soft-tissue growth of French Canadian adolescents. Am J Hum Biol 2002;14:457-67.
21. Coleman SR, Grover R. The anatomy of the aging face: Volume loss and changes in 3-dimensional topography. Aesth Surg J 2006;26:54-9.
22. Genevoc JS, Sinclair PM, DeChow PC. Development of the nose and soft tissue profile. Angle Orthod 1990;60:191-8.
23. Prahlandersen B, Ligthelm-Bakker AS, Wattel E, Nanda R. Adolescent growth changes in soft tissue profile. Am J Orthod Dentofacial Orthop 1995;107:476-83.
24. Troncoso PJ, Suazo GI, Cantin LM, Zavando MD. Sexual dimorphism in the nose morphology in adult Chilean. Int J Morphol 2008;26:577-42.
25. Burke PH, Hughes-Lawson CA. Stereophotogrammetric study of growth and development of the nose. Am J Orthod Dentofacial Orthop 1989;96:144-51.
26. Ferrario VF, Sforza C, Poggio CE, Schmitz JH. Three-dimensional study of growth and development of the nose. Cleft Palate Craniofac J 1997;34:309-17.
27. Uzun A, Akbas H, Bilgic S, Emirzeoglu M, Bostanci O, Sahin B, et al. The average values of the nasal anthropometric measurements in 108 young Turkish males. Auris Nasus Larynx 2006;33:31-5.
28. Stephan CN, Henneberg M, Sampson W. Predicting nose projection and pronasale position in facial approximation: A test of published methods and proposal of new guidelines. Am J Phys Anthropol 2003;122:240-50.
29. Romo T, Abraham MT. The ethnic nose. Facial Plastic Surg 2003;19:269-78.
30. Legan HL, Burrstone CJ. Soft tissue cephalometric analysis for orthognathic surgery. J Oral Surg 1980;38:744-51.
31. Subtelny JD. A longitudinal study of soft tissue facial structures and their profile. Am J Orthod 1959;45:481-507.
32. Hall RL. Energetics of nose and mouth breathing, body size, body composition, and nose volume in young adult males and females. Am J Hum Biol 2005;17:321-30.
33. Ozdemir ST, Sigirli D, Ercan I, Cankur NS. Photographic facial soft tissue analysis of healthy Turkish young adults: Anthropometric measurements. Aesthetic Plast Surg 2009;33:175-84.
34. Posen JM. A longitudinal study of the growth of the nose. Am J Orthod 1967;53:74-56.
35. Farkas LG, Eiben OG, Sivkov S, Tompson B, Katj MJ, Forrest CR. Anthropometric measurements of the facial framework in adulthood: Age-related changes in eight age categories in 600 healthy white North Americans of European ancestry from 16 to 90 years of age. J Craniofac Surg 2004;15:288-98.
36. Penna V, Stark GB, Eisenhardt SU, Bannasch H, Iblher N. The aging lip: A comparative histological analysis of age-related changes in the upper lip complex. Plast Reconstr Surg 2009;124:624-8.
37. Agnihotri G, Singh D. Craniofacial anthropometry in newborns and infants. Iran J Pediatr 2007;17:332-8.
38. Available from: http://www.craniofacialplasticsurgery.com [Last accessed on 2015 Dec 25].
39. Manohar MR, Goswami P. The nose and its clinical implication: An Overview. CODS J Dent 2015;7:71-5.
40. Roelofse MM, Steun M, Becker PJ. Photo identification: Facial metrical and morphological features in South African males. Forensic Sci Int 2008;177:168-75.