Supplemental Material for

Fibroblast-specific IKKβ deficiency ameliorates angiotensin II-induced adverse cardiac remodeling in mice

Weiwei Lu,1 Zhaojie Meng,2 Rebecca Hernandez,2 and Changcheng Zhou2

1Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.

2Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA.

This PDF file includes:

Supplemental Figure 1-7
Supplemental Table 1-2
Supplemental Figure 1. Pharmacological inhibition of IKKβ signaling reduces angiotensin II-induced fibroblast proinflammatory and profibrogenic effects in vitro.

Cardiac fibroblasts (CFs) isolated from male IKKβF/F mice were pretreated with 5 µM of IKKβ inhibitor BMS-345541 or vehicle control for 1 hr, and then incubated with 10^{-6} M of angiotensin (Ang) II or vehicle control for 24 hr. (A) Western blot analysis of the total and phosphorylated (p) IKKβ and NF-κB subunit p65. (B) QPCR analysis of the mRNA levels of proinflammatory cytokines and profibrotic genes (n=3-4, One-way ANOVA, *P < 0.05, **P < 0.01, and ***P < 0.001). (C and D) Representative immunofluorescent images (left) and quantitation (right) of α-SMA+ cells (C) and collagen I (D) (n=3, One-way ANOVA, **P < 0.01 and ***P < 0.001; Scale bar, 100 μm).
Supplemental Figure 2. Deficiency of IKKβ in cardiac fibroblasts attenuates lipopolysaccharide-induced NF-κB activation and inflammation.

(A) Representative immunofluorescent staining of NF-κB p65 subunit in cardiac fibroblasts isolated from IKKβ^{F/F} and IKKβ^{ΔFib} mice that treated with 100 ng/ml of lipopolysaccharide (LPS) or vehicle control for 1 hr (Scale bar, 100μm). (B) QPCR analysis of the mRNA levels of proinflammatory cytokines and adhesion molecules (n=3. Two-way ANOVA **P < 0.01 and ***P < 0.001).
Supplemental Figure 3. Angiotensin II-induced mouse model of cardiac remodeling.
(A) Experimental scheme of mice subjected to 1000 ng/kg/min of angiotensin II (Ang II) or control (saline) infusion for 1 and 4 weeks. Eight-week-old male mice were intraperitoneally injected with tamoxifen (2 mg/per day) for 5 consecutive days to induce CreER^T-mediated recombination. At the age of 10 weeks, the mice were implanted with mini-osmotic pumps. (B and C) Body weight and mortality rate of male IKKβ^{F/F} and IKKβ^{ΔFib} mice after 4-week Ang II or control infusion.
Supplemental Figure 4. Fibroblast IKKβ deficiency reduces angiotensin II-induced cardiac fibroblast proliferation.

Eight-week-old male IKKβ^{F/F} and IKKβ^{ΔFib} mice were intraperitoneally injected with 2 mg tamoxifen per day for 5 days. At the age of ten weeks, those mice were infused with 1000 ng/kg/min of angiotensin II (Ang II) or vehicle control for 1 week. Representative images of immunofluorescence staining of Ki-67 and fibroblast cell marker (A) or cardiomyocyte marker (B) in the hearts of IKKβ^{F/F} and IKKβ^{ΔFib} mice (Scale bar, A, 50 μm; B, 100 μm).
Supplemental Figure 5. Deficiency of fibroblast IKKβ does not increase cell apoptosis in the heart of angiotensin II-infused mice. (A-B) Eight-week-old male IKKβ^F/F and IKKβ^ΔFib mice were intraperitoneally injected with 2 mg tamoxifen per day for 5 days. At the age of ten weeks, the mice were infused with 1000 ng/kg/min of angiotensin II (Ang II) or vehicle control for 1 week (A) or 4 weeks (B). Representative TUNEL staining of hearts from IKKβ^ΔFib and IKKβ^F/F mice. Apoptotic nuclei fluoresce red. The nuclei were visualized with DAPI (blue), and the TUNEL-positive cells were indicated by arrows (Scale bar, 100 μm).
Supplemental Figure 6. Deficiency of IKKβ abolishes the impact of angiotensin II on proliferation or apoptosis-related gene expression in cardiac fibroblasts.
Cardiac fibroblasts were isolated from male IKKβ^{F/F} and IKKβ^{ΔFib} mice, and then stimulated with 10^{-6} M of angiotensin II (Ang II) or vehicle control for 24 hr. The expression levels of genes related to proliferation and apoptosis were analyzed by QPCR (n=3, Two-way ANOVA, *P < 0.05, **P < 0.01, and ***P < 0.001).
Supplemental Figure 7. Fibroblast IKKβ deficiency modestly affects cardiac inflammation after 4 weeks of angiotensin II infusion.

Eight-week-old male IKKβ^{F/F} and IKKβ^{ΔFib} mice were intraperitoneally injected with 2 mg tamoxifen per day for 5 days. At the age of ten weeks, those mice were infused with angiotensin II (Ang II) at the dose of 1000 ng/kg/min for 4 weeks. (A) QPCR analysis of the mRNA levels of inflammatory cytokines and adhesion molecules in the heart of male IKKβ^{F/F} and IKKβ^{ΔFib} mice (n=5-6, Two-way ANOVA, *P < 0.05, **P < 0.01 and ***P < 0.001). (B) Representative images of immunofluorescence staining of CD68 in the heart of IKKβ^{F/F} and IKKβ^{ΔFib} mice (n=3, Scale bar, 100 μm).
Supplemental Table 1. Echocardiographic parameters of male IKKβ F/F or IKKβ ΔFib mice after 4-week infusion of angiotensin II

Parameters	Control (Saline)	Ang II (1000 ng/kg/min)		
	IKKβ F/F	IKKβ ΔFib	IKKβ F/F	IKKβ ΔFib
HR (bpm)	359.9±17.55	418.66±13.89	407±16.66	406.1±26.7
IVSd (mm)	0.81±0.03	0.79±0.03	1.05±0.04 ***	0.89±0.04 #
IVSs (mm)	1.38±0.03	1.29±0.05	1.50±0.05	1.51±0.05
LVPWd (mm)	0.62±0.02	0.7±0.02	1.03±0.05 ***	0.80±0.03 ###
LVPWs (mm)	1.09±0.03	1.03±0.03	1.36±0.04 ***	1.18±0.04 ##
LVIDd (mm)	3.82±0.07	3.86±0.09	4.16±0.06 **	3.76±0.12 #
LVIDs (mm)	2.56±0.10	2.75±0.08	3.14±0.09 ***	2.52±0.10 ###
EF (%)	66.95±1.22	64.52±2.27	42.73±1.63 ***	67.31±2.56 ###
FS (%)	36.55±0.94	35±1.69	20.84±0.95 ***	37.08±1.91 ###

P < 0.01, *P <0.001, compared to IKKβ F/F mice infused with control; #P < 0.05, ##P < 0.01, ###P <0.001, compared to IKKβ F/F mice infused with Ang II (n=8-12).

Ang II, angiotensin II; HR, heart rate; IVSd, Inter-ventricular septum diameter at end-Diastole; IVSs, Inter-ventricular septum diameter at end-Systole; LVPWD, Left Ventricular Posterior Wall at end-Diastole; LVPWS, Left Ventricular Posterior Wall at end-Systole; LVIDD, Left Ventricular Internal Dimension at end-Diastole; LVIDS, Left Ventricular Internal Dimension at end-Systole; EF, ejection fraction; FS, Fractional Shortening.
Supplemental Table 2 Primer sequences for quantitative PCR.

Name	Sequence	Name	Sequence
IKKβ	Forward 5'-GAGCTCAGCCCAAAGACAG-3'	CTGF	Forward 5'-GGGCTCTTCTGCGATTTG-3'
	Reverse 5'-AGGTTCGATCCCCTGCTTG-3'		Reverse 5'-ATCCAGGCAATGCTCAGT-3'
CD68	Forward 5'-CTTCCCCACAGGAGCACAG-3'	CCR2	Forward 5'-GGGTCAAGACCACTCAGT-3'
	Reverse 5'-ATGTTGCAGAGGCCAGAAGG-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
F4/80	Forward 5'-GACAGAGGAGCAGAGTGTTTCTG-3'	CXCR2	Forward 5'-GTGCTCCGGTTTATAAGATG-3'
	Reverse 5'-TTGTGCCTTACGCGCGTGTT-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
IL-6	Forward 5'-TAGTCATCACCTGAGAAGTGTTCTC-3'	CCL4	Forward 5'-ATCCACTTCTGCTGCTTCTG-3'
	Reverse 5'-AGGTTCTGCATCCCCTGCTTG-3'		Reverse 5'-GTGCTCCGGTTTATAAGATG-3'
MCP-1	Forward 5'-TTAAGACCTGGAAGATGAGGG-3'	CDK2	Forward 5'-CTCGACAGCAGATGCTGCT-3'
	Reverse 5'-GGGTCATGATCCCTATGTGG-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
TNFα	Forward 5'-CCAGCTCTTCAGAGAGCTTCTC-3'	Cyclin D1	Forward 5'-TGACAGGCTGAACTGCTG-3'
	Reverse 5'-AACCTGCTCTGGCAGAAGGCAG-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
IL-1β	Forward 5'-GCAACTGTTCTCAGCTCAGT-3'	c-myc	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-ATCTTTTGGGTTCGCTAAGCT-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
ICAM-1	Forward 5'-GTGATCCCTGGCGCTGGTG-3'	Cyclin A	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-GGGAAGAAGTTACAGGATGTTG-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
VCAM-1	Forward 5'-TACAGCTCCAAAGATTCTG-3'	Cyclin B1	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-CTATGCTAATCACCAGCTCTG-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
GAPDH	Forward 5'-AATCCTGGGATGTTGAGG-3'	Cyclin B2	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-GGATGCTCAAGGATGTTG-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
α-SMA	Forward 5'-TCCAGCCGCGTGAATTCCGATA-3'	P21	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-GGCCACACGAGCAGCTGCCT-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
TGF β	Forward 5'-CAAGGGGTACCCAGCAGACT-3'	P27	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-ATGGTTGCTGATCCGGCTC-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
Col1a1	Forward 5'-ATCCCTGGCGATGCTGAT-3'	Bid	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-CCACAGCAGTCGCTGATG-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
Col3a1	Forward 5'-CATGACTGGTCCGCAATGGA-3'	BNIP3	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-ATTCCGCTTATTTGATCCCA-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
Periostin	Forward 5'-CTTGGCCCTTATATGTGCT-3'	Gadd45β	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-AACAGCTGTCGAAATGAC-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'
p53	Forward 5'-CTTCTCGAAGGAGCACAGGATTTTC-3'	NLRP3	Forward 5'-GCCAGGATGCTGTTGTTG-3'
	Reverse 5'-AAGCAGGCTGAAAGGGATTTTC-3'		Reverse 5'-GCCAGGATGCTGTTGTTG-3'