TURN SEGMENTATION INTO UTTERANCES FOR ARABIC SPONTANEOUS DIALOGUES AND INSTANT MESSAGES

AbdelRahim A. Elmadany¹, Sherif M. Abdou² and Mervat Gheith¹

¹ Institute of Statistical Studies and Research (ISSR), Cairo University
² Faculty of Computers and Information, Cairo University

ABSTRACT

Text segmentation task is an essential processing task for many of Natural Language Processing (NLP) such as text summarization, text translation, dialogue language understanding, among others. Turns segmentation considered the key player in dialogue understanding task for building automatic Human-Computer systems. In this paper, we introduce a novel approach to turn segmentation into utterances for Egyptian spontaneous dialogues and Instance Messages (IM) using Machine Learning (ML) approach as a part of automatic understanding Egyptian spontaneous dialogues and IM task. Due to the lack of Egyptian dialect dialogue corpus the system evaluated by our corpus includes 3001 turns, which are collected, segmented, and annotated manually from Egyptian call-centers. The system achieves F₁ scores of 90.74% and accuracy of 95.98%.

KEYWORDS

Spoken Dialogue systems, Dialogues Language Understanding, Dialogue Utterances Segmentation, Dialogue Acts, Machine Learning, Natural Language Processing

1. INTRODUCTION

Build a completely Human-Computer systems and the belief that will happen has long been a favourite subject in research science. So, dialogue language understanding is growing and considering the important issues today for facilitating the process of dialogue acts classification; consequently segment the long dialogue turn into meaningful units namely utterances are increasing.

This paper refers to an utterance as a small unit of speech that corresponds to a single act[1,2]. In speech research community, utterance definition is a slightly different; it refers to a complete unit of speech bounded by the speaker's silence while, we refer to the complete unit of speech as a turn. Thus, a single turn can be composed of many utterances. Turn and utterance can be the same definition when the turn contains one utterance as defined and used in [3].

Our main motivation for the work reported here comes from automatic understanding Egyptian dialogues and IM which called “dialogue acts classification”. Dialogue Acts (DA) are labels attached to dialogue utterances to serve briefly characterize a speaker's intention in producing a particular utterance [1].

DOI: 10.5121/ijnlc.2015.4208
Egyptian turns are almost long and contains many utterances as we noticed during data collection. Consequently, we propose a novel approach to turn segmentation into utterances for Egyptian Arabic and Arabic Instant Messages (IM) namely ‘USeg’, which has not addressed before to the best of our knowledge.

USeg is a machine learning approach based on context without relying on punctuation, text diacritization or lexical cues. Whereas, USeg depends on a set of features from the annotated data that’s include morphological features which have been determined by the Morphological Analysis and Disambiguation of Arabic Tool (MADAMIRA)\(^1\) [4]. USeg is evaluated by an Arabic dialogue corpus contains spoken dialogues and instant messages for Egyptian Arabic, and results are compared with manually segmented turns elaborated by experts.

This paper is organized as follows: section 2 present the Egyptian dialect, section 3 present the background, section 4 describe the corpus used to experiment, section 5 present the proposed approach “USeg”, section 6 present the experimental setup and results; and finally the conclusion and feature works is reported in section 7.

2. ARABIC LANGUAGE

Arabic is one of the six official languages of the United Nations. According to Egyptian Demographic Center, it is the mother tongue of about 300 million people (22 countries). There are about 135.6 million Arabic internet users until 2013\(^2\).

The orientation of writing is from right to left and the Arabic alphabet consists of 28 letters. The Arabic alphabet can be extended to ninety elements by writing additional shapes, marks, and vowels. Most Arabic words are morphologically derived from a list of roots that are tri, quad, or pent-literal. Most of these roots are tri-literal. Arabic words are classified into three main parts of speech, namely nouns, including adjectives and adverbs, verbs, and particles. In formal writing, Arabic sentences are often delimited by commas and periods. Arabic language has two main forms: Standard Arabic and Dialectal Arabic. Standard Arabic includes Classical Arabic (CA) and MSA while Dialectal Arabic includes all forms of currently spoken Arabic in daily life, including online social interaction and it vary among countries and deviate from the Standard Arabic to some extent\[^5\]. There are six dominant dialects, namely; Egyptian, Moroccan, Levantine, Iraqi, Gulf, and Yemeni.

MSA considered as the standard that commonly used in books, newspapers, news broadcast, formal speeches, movies subtitles,… etc. Egyptian dialects commonly known as Egyptian colloquial language is the most widely understood Arabic dialects due to a thriving Egyptian television and movie industry, and Egypt’s highly influential role in the region for much of the 20th century\[^6\]. Egyptian dialect has several large regional varieties such as Delta and Upper Egypt, but the standard Egyptian Arabic is based on the dialect of the Egyptian capital which is the most understood by all Egyptians.

\(^1\) http://nlp.ldeo.columbia.edu/madamira/
\(^2\) http://www.internetworldstats.com/stats7.htm
3. BACKGROUND

A segmentation process generally means dividing the long unit, namely “turn” into meaningful pieces or small units “non-overlapping units” namely “utterances”. Moreover, we distinguish three main approaches to turn segmentations:

- The acoustic segmentation approach is usually segmented the long input “waveform” into short pieces based on acoustic criteria features such as pauses “non-speech intervals”.
- Linguistic segmentation is segment the turn based on syntactic and semantic features such as morphological features.
- The mixed approach is used the acoustic and linguistic features.

Due to the lack of an Egyptian Arabic recognition system, manual transcription of the corpus is then required. Therefore, we focus on linguistic segmentation for Arabic spontaneous dialogues and an IM segmentation task that has several challenges:

- Essential characteristics of spontaneous speech: ellipses, anaphora, hesitations, repetitions, repairs… etc. These are some examples from our corpus:
 - A user who does repairs and apologize in his turn: السفر يوم 12 ديسمبر اسمي 11 ديسمبر (Alsfr ywm 12 dysmbr Asfh 11 dysmbr, the arrival on 12 sorry 11 December)
 - A user who repeats the negative answer and produce non-necessary information on his turn: لا لا أنا مش فاتحة حساب عنكم ولا أنا مشغول بس جوزي هو اللي يستغل (IA IA AnA m$ fAtHp HsAb Endkm wAnA mb$tgl bs jwzy hw Ally by$tgl, No No I don't have an account in your bank and I’m not an employee but my husband is an employee)
- Code Switching: using a dialect words which are derived from foreign languages by code switching between Arabic and other language such as English, France, or Germany. Here an example for user who uses foreign “English” words in his turn such as ترانزاكتشن (trAnzAkSn, Transaction) and aktf (Aktf, Active) in his turn. أممم فده متاح ولا لازم من الأولين اعمل أي ترانزاكتشن عثمان ييفي أكفت يتبذ دونمنت (Ammm fdh mtAH wIA Iazm mn IAAlw AEml Ay trAnzAkSn ElSan yby Aktf bdl dwrmt, Um this is available or I need to do any transaction to activate the dormant account)
- Deviation: Dialect Arabic words may be having some deviation such as MSA “أريد” (Aryd, want) can be “أيذى” (EAyz, want), or “ألبوز” (EAwz, want) in Egyptian dialect.
- Ambiguity: Arabic word may be having different means such as the word “علم” can be: “علم”, “flag”, “علم” “science”, “it was known”, “he knew”, “علم” “he taught” or “علم” “he was taught”. Thus, the ambiguity considers the key problem for Natural

Examples are written as Arabic (Buckwalter transliteration schema, English translation)
Language Understanding / Processing especially on the Arabic language. The word diacritization is very useful to clarify the meaning of words and disambiguate any vague spellings.

- **Lack of Resources:** The not existence and the lack of tagged Arabic Spontaneous Dialogues and Instance Messages corpora for Egyptian Arabic corpus make turn segmentation task far more challenging. Since manual construction of tagged corpus is time-consuming and expensive [25], it is difficult to build large tagged corpus for Arabic dialogues acts and turn segmentation. So, the researchers had to build their own resources for testing their approaches. Consequently, we built our corpus and used it for both training and testing (see section 4).

The most of turn segmentation into utterances approaches such as[7-10] are developed and tested on non-Arabic languages such as English, Germany or France. There are few works interested in Arabic dialogue acts classification; these works have defined and used the user’s turn as an *utterance* without any segmentation such as [3,11-15]. However, there are some approaches used for Arabic text segmentation based on linguistic approaches either rule-based such as [16-18] or machine learning based such as [19]. These approaches mainly rely on punctuation indicators/marks, conjunctions, text diacritization or/and lexical cues. In addition, it is designed and applied on MSA text such as newspapers and books, which are completely different from Arabic spontaneous dialogues and IM, which are considered an informal [20].

4. Corpus Construction

We built our own corpus namely JANA, which has manually dialogues turns segmented into utterances and annotated with dialogue acts schema. JANA is a multi-genre corpus of Arabic dialogues labeled for Arabic Dialogues Language Understanding (ADLU) at utterance level ant it comprises spontaneous dialogues and IM for Egyptian dialect. Building JANA corpus proceeds in three stages:

1. In the first stage, we collected/recorid 200 dialogues manually from different genre call centers such as Banks, Flights, Mobile Network Providers (MNP), and MNP’s online-support using Egyptian native speakers since August 2013; these dialogues consist of human-human conversation and instant messages about inquiries regarding providing service from call centers such as create a new bank account, service request, balance check and flight reservation.

2. In the second stage, we are randomly choice 52 spoken dialogues from recorded dialogues and 30 IM dialogues as the first release of JANA corpus. The selected phone calls of spoken dialogues are recorded manually with an average duration of two hours of talking time after removing ads and waiting times from phone calls. Moreover, these phone calls are transcribed using Transcriber⁴ toolkit.

3. In the third stage, turns are segmented into utterances manually and the utterances are tagged with DAs labels which reported by [21] manually.

⁴ Available at http://trans.sourceforge.net/en/presentation.php
Table 1. Main characteristics of the first release of JANA corpus

Total Number of Dialogues	82	
Spoken Dialogues Number		
	-----	26
Banks		
	-----	26
Flights		
Written Dialogues (Chats) Number	30	

Mobile Network Operators		
Total Number of Turns	3,001	
Number of Segmented Turns	1,091	
Number of Utterances from Segmented Turns	2,815	
Total Number of Utterances	4,725	
Words	20,113	
Words per Turn	6.7	
Words per Utterance	4.3	

The first release of JANA consists of approximately 3001 turns with average 6.7 words per turn, contains 4725 utterances with average 4.3 words per utterance, and 20311 words; and it will be made freely available to academic and nonprofit research. Moreover, the most important characteristics of JANA corpus are shown in Table 1 and a sample of turn’s segmentation and utterance’s DAs annotation is shown in Table 2. In addition, dialogue sample before segmentation and DAs annotation process is shown in Table 3.

Table 2. Fully turns segmented and DAs tagged sample from JANA corpus

Turn ID	Persons	Utterance ID	Utterances	Dialogue Act	
T1	Operator	U1	Arabic: Buckwalter: English: An As jy by NSBG	SelfIntroduce	
		U2	Arabic: Buckwalter: English: $ryf AlmSr $yf	SelfIntroduce	
		U3	Arabic: Buckwalter: English: msA’Alxyr Good afternoon	Greeting	
T2	Customer	U4	Arabic: Buckwalter: English: Alw	Taking_Request	
		U5	Arabic: Buckwalter: English: msA’Alxyr Good afternoon	Greeting	
T3	Operator	U6	Arabic: Buckwalter: English: msA’Alnwr Good afternoon	Greeting	
Turn ID	Persons	Arabic:	Buckwalter:	English:	Turns
---------	---------	---------	-------------	---------	-------
T1	Operator	جزاء الخير، بنك مصر احمد مع حضرتك	msa' Alxyr bnk mSr AHmd mE HDrk	Good evening, Banque Misr, Ahmed speaking	
T2	Customer	السلام عليكم	AlslAm Elykm	Hello	
T3	Operator	عليكم السلام	Elykm AlslAm	Hello	
T4	Customer	معا محمد سفوت علي	mEk mhmd Sfwt Ely	Mohamed Safwat Ali speaking	
T5	Operator	تمام اهلا يا اساتذة محمد	tmAm AhlA ya AstA* mhmd	Ok, welcome Mr. Mohamed	
T6	Customer	كنت آسفز أسأل عن خطوات الاشتراك في خدمة الإنترنت البنكى	knt EAwc As l HDrk En xTwAt AlAstrAk fy xdmn AtAtnrnt Albnky	I want to ask about the steps to participate in online banking	
Arabic:	English:				
--------	---------				
تطوير الاتصالات البنكية استاد محمد حضرانك تشترا في الفرع لحضرانك ويتم طلب الاتصال في خدمة الأولادين للبنك بخطوات حضرانك في أسبوع عمل يتم أصدار بورزليادي.					

Online banking steps Mr. Mohamed, you can go to the nearest branch of your presence and fill the request to participate in the online service. After two weeks, we will send you the username and the password.

Arabic:	English:
بيكفي فيه بورزليادي وبايورد وكده صم	

I’ll take username and password, right?

Arabic:	English:
لا شكرنا	لا شكرنا

Thank you for calling and goodbye

5. METHODOLOGY

Support Vector Machine (SVM) is a supervised machine learning that has been shown to perform well on text classification tasks, where data is represented in a high dimensional space using sparse feature vectors [22,23]. Moreover, the SVM is robust to noise and the ability to deal with a large number of features effectively [24]. The SVM classifier is trained to discriminate between
examples of each class, and those belonging to all other classes combined. During testing, the classifier scores on an example, are combined to predict its class label [25].

USeg is a SVM approach which a Machine learning based involve a selected set of features, extracted from segmented and annotated datasets, which is used to generate a statistical model for segmentation prediction. We used YamCha SVM toolkit5 that converts the text segmentation task to a text chunking task.

There are three processes to do as preprocessing the input turns before running the USeg classifier. These processes are:

1. **Normalization:** to avoid writing errors from the transcription, we normalized the transcribed turns (unified Arabic characters) as
 a. Convert Hamza-under-Alif “ى”, Hamza-over-Alif “ی”, and Madda-over-Alif “ی” to Alif “ی”
 b. Convert Teh-Marbuta “س” to Heh “س”
 c. Convert Alif-Maksura “س” to Yeh “س”.

2. Split “ـ” (w, and) from the original words: Sometimes the writers write the conjunction “ـ” (w, and) concatenated to the next word. For instant, “وqAl، and he talked” (wqAl, and he talked) the original word “qAl” (qAl, he talked) is concatenated with the conjunction “ـ” (w, and). To detect and split this “ـ” (w, and) from the original words; we build a tool, namely Wawanizer, which is a lookup-table based classifier contains approximately 22K normalized word extracted from news articles and tweets (113,969 Arabic words).

3. The turns are transliterated from Arabic to Latin based ASCII characters using the Buckwalter transliteration scheme6.

There are two phases has employed for carrying out the classification task in our approach, training phase and test phase. The training phase generates the classification model using a set of classification features. In the test phase, the classification model is utilized to predict a class for each token (word).

In the training phase, each word is represented by a set of features and its actual segmentation state (either “B-Seg” to indicate that word is a segment/utterance start or “I-Seg” to indicate that word is inside the segment/utterance) in order to produce an SVM model that’s able to predict the start of a segment / utterance. Thus, the first step in our approach is to extract the significant features from the training data. Consequently, we study the impact of the features individually by using only one feature at a time and measure the classifier’s performance using the F-measure metric. Finally, according to the performance achieved, we select the optimized features for the proposed approach “USeg”.

5 Available at http://chasen.org/~taku/software/yamcha/
6 http://languageblog.ldc.upenn.edu/mlyd/morph/buckwalter.html
5.1. Features Selection

Feature selection refers to the task of identifying a useful subset of features chosen to represent elements of a larger set.

- **Contextual word:** The features of a sliding window, including a word n-gram that includes the candidate word, along with previous and following words. For instance, in the training corpus the word “عايز” (EAyz, want) appears frequently before a user’s request that indicate a request act or new segment/utterance. Therefore, the classifier will use this information to predict a new segment/utterance after this word.

- **Part-Of-Speech (POS):** A value indicating the POS tag is a conjunction, noun, or proper noun such as:
 - **Conjunctions:** For instance, in the training corpus the conjunction “لكن” (lkn, but) appears frequently before a user’s request that indicate a new segment/utterance. Also, the conjunction “و” (w, and) is considered as anomaly, that can define a new segment/utterance or not, the classifier handles this problem using sliding window from conjunction along with previous and following words. For instance, “عايز اعرف أزاي افتح حساب و أيه الإجراءات اللازمة لعمل ده” (EAy AErfr AzAY AftH HsAb w Ayh Al<jrA'At AllAzmp IEml dh, I want to open an account and what is required steps). In this example conjunction “و” (w, and) separate between two segments/utterances, but here “أيه الفرق بين الحساب الجاري و التوفير” (Ayh Alfrq bny AlHsAb AljAry w Altwfyr, what is the difference between current and saving accounts) the conjunction “و” (w, and) not considered a segment/utterances separator.

 - **Noun or Proper noun:** a binary value defines the word/token is a noun or proper noun. For instance, in the training corpus the service operator introduce himself and his organization comes directly after greeting such as “بسم الله الرحمن الرحيم” (msA Alxyr Al>hly fwn >Hmd sAmy, Good evening Al-Ahly Phone Ahmed Samy). So, we need to segment this turn into two utterance one includes greeting and the other includes self-introduce.

- **Previous Predicted tags:** The previous words tags of turn can help to can help to anticipate the next the candidate/current word tag. So, we adjust that the SVM predict the tag of the current word using the features and previous predicted tags. The SVM tags can be B-Seg or I-Seg (begin of segment/utterance or inside the segment/utterance). For instance, in the training corpus the word “عايز” (EAyz, want) is frequently indicating to new segment/utterance. Sometimes can appears after pronouns that’s means the start of the segment/utterance beginning from the pronoun, not from the word “عايز” (EAyz, want) such as “أتلك مازور اشترك في الانترنت البينكي” (AnA kni EAyz A$trk fy AlAntnt Albnky, I want to register for internet banking).
6. EXPERIMENTS AND RESULTS

In order to measure the effect of complexity of each dialogues domain (Banks, Flights, and Mobile Network Operators) on classification accuracy, we experiment on each dialogue domain separately and one experiment to overall combined data. We split each domain based on dialogue turn boundary into 70% training dataset, 20% development dataset (DEV), and the 10% test dataset as shown in Table 4. The results are reported using standard metrics of Accuracy (Acc), Precision (P), Recall (R), and the F1 score (F1)\(^7\).

Table 4. Corpus training, development (DEV) and test datasets

Domain	Datasets	Dialogues	Turns	Utterances	
Spoken					
Banks	DEV	4	115	193	
	Test	5	226	368	
	Training	17	782	1,234	
Flights	DEV	5	145	242	
	Test	7	224	364	
	Training	14	773	1,186	
IM	Mobile Network Operators	DEV	3	75	109
	Test	5	197	272	
	Training	22	464	757	
Total		82	3,001	4,725	

In the training stage, the training is applied on the training dataset using selected features set and the results are analyzed to determine the best features set. The development stage is performed using the DEV dataset to define the best feature set which used in the test stage. In the test stage, the classifier is applied on the test dataset and the results are reported and discussed.

The selected features are tested on window size within ranges from -1/+1 to -5/+5. We found that a context size of -2/+2 (two previous word and two subsequent word) with three of previous predicted tags achieves the best performance in this task.

Table shows the results for each domain (Banks, Flights, and Mobile Networks Operators). These results and the overall experiment shows that USeg classifier yield high performance and efficiency in Arabic dialect dialogue turn segmentation into utterances task.

\[F_1 = \frac{2PR}{P+R} \]
Table 5. Testing Results

Domain	P	R	F$_1$	Acc
Spoken Banks	97.47	83.70	90.06	95.91
Flights	96.38	80.50	87.72	94.44
IM Mobile Network	96.57	82.72	89.11	95.47
Operators				
Overall Experiment	96.84	85.36	90.74	95.98

In this work, we reported some difficulties that we faced.

- The f (f_a) and b (b_a) conjunctions are considered as the most complex type of conjunctions that cannot detected by any POS tagger such as $bHAwl$, I’m trying) consist of b (b_a) + $HAwl$, trying)

- In IM, sometimes the writers write the Arabic word in Franco-Arabic style. For instance, the word “A7med” express the person's name Ahmed and “3ayz” express a dialect word “E4yz” (E4yz, want).

7. CONCLUSION

In this paper, we present a machine-learning approach using SVM to solve the problem of automatic Arabic dialogues turns segmentation into utterances task as a part of Arabic dialogues understanding task for Egyptian dialect; namely, USeg. In addition, we present JANA corpus that a multi-genre corpus of Arabic dialogues labeled in Arabic Dialogues Language Understanding at utterance level ant it is comprised spontaneous dialogues and IM for Egyptian dialect.

The results obtained that USeg classifier is very promising. To the best of our knowledge, these are the first results reported for turn segmentation into utterances task for Egyptian dialect. We are currently trying to generalize USeg by applying it in news text domain and social networks text domain such as twitter.
REFERENCE

[1] N. Webb, "Cue-Based Dialogue Act Classification," Ph.D. dissertation, Department of Computer Science, University of Sheffield, England, 2010.
[2] D. Traum and P. A. Heeman, "Utterance units in spoken dialogue," in Dialogue processing in spoken language systems, ed. Berlin Heidelberg: Springer, 1997, pp. 125-140.
[3] M. Graja, M. Jaoua, and L. H. Belguith, "Discriminative Framework for Spoken Tunisian Dialect Understanding," presented at the 2nd International Conference on Statistical Language and Speech Processing, SLSP 2014, 2013.
[4] A. Pasha, M. Al-Badrashiny, M. Diab, A. E. Kholy, R. Eskander, N. Habash, M. Pooleery, O. Rambow, and R. M. Roth, "MADAMIRA: A Fast, Comprehensive Tool for Morphological Analysis and Disambiguation of Arabic," presented at the Language Resources and Evaluation Conference (LREC 2014), 2014.
[5] M. Elmahdy, G. Rainer, M. Wolfgang, and A. Slim, "Survey on common Arabic language forms from a speech recognition point of view," In Proceeding of International conference on Acoustics (NAG-DAGA), 2009, pp. 63-66.
[6] O. F. Zaidan and C. Callison-Burch, "Arabic dialect identification," Computational Linguistics, vol. 52 (1), 2012.
[7] J. Ang, Y. Liu, and E. Shriberg, "Automatic Dialog Act Segmentation and Classification in Multi-party Meetings," In Proceeding of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05), 2005, pp. 1061 - 1064.
[8] E. Ivanovic, "Automatic utterance segmentation in instant messaging dialogue," In Proceeding of The Australasian Language Technology Workshop, 2005, pp. 241-249.
[9] M. Zimmermann, Y. Liu, E. Shriberg, and A. Stolcke, "Toward Joint Segmentation and Classification of Dialog Acts in Multi-party Meetings," In Proceeding of Proc. Multimodal Interaction and Related Machine Learning Algorithms Workshop (MLMI –05), 2005.
[10] L. Ding and C. Zong, "Utterance segmentation using combined approach based on bi-directional N-gram and maximum entropy," Proceedings of the second SIGHAN workshop on Chinese language processing. Association for Computational Linguistics, vol. 17 2003.
[11] L. Shala, V. Rus, and A. Graesser, "Automatic Speech Act Classification In Arabic," In Proceeding of Subjetividad y Procesos Cognitivos Conference 2010, pp. 284-292.
[12] Y. Bahou, L. H. Belguith, and A. B. Hamadou, "Towards a Human-Machine Spoken Dialogue in Arabic," In Proceeding of Workshop on HLT & NLP within the Arabic world: Arabic Language and local languages processing: Status Updates and Prospects, at the 6th Language Resources and Evaluation Conference (LREC’08), Marrakech, Maroc, 2008.
[13] C. Lhioui, A. Zouaghi, and M. Zrigui, "A Combined Method Based on Stochastic and Linguistic Paradigm for the Understanding of Arabic Spontaneous Utterances," In Proceeding of CICLing 2013, Computational Linguistics and Intelligent Text Processing Lecture Notes in Computer Science, Samos, Greece, 2013, pp. 549-558.
[14] M. Hijjawi, Z. Bandar, and K. Crockett, "User’s Utterance Classification Using Machine Learning for Arabic Conversational Agents," In Proceeding of 5th International Conference on Computer Science and Information Technology (CSIT), 2013, pp. 223-232.
[15] M. Hijjawi, Z. Bandar, K. Crockett, and D. Mclean, "ArabChat: an Arabic Conversational Agent," In Proceeding of 6th International Conference on Computer Science and Information Technology (CSIT), 2014, pp. 227-237.
[16] L. Belguith, L. Baccour, and G. Mourad, "Segmentation de textes arabes basée sur l'analyse contextuelle des signes de ponctuations et de certaines particules," In Proceeding of 12th Conference on Natural Language Processing (TALN’2005), 2005, pp. 451-456.
[17] A. A. Touri, H. Mathkour, and W. Al-Sanea, "Semantic-Based Segmentation of Arabic Texts. ," Information Technology Journal, vol. 7 (7), 2008.
[18] I. Keskes, F. Benamara, and L. H. Belguith, "Clause-based Discourse Segmentation of Arabic Texts," In Proceeding of The eighth international conference on Language Resources and Evaluation (LREC), Istanbul, 2012.

[19] I. Khalifa, Z. A. Feki, and A. Farawila, "Arabic Discourse Segmentation Based on Rhetorical Methods," International Journal of Electric & Computer Sciences IJECS-IJENS, vol. 11 (01), 2011.

[20] A. A. Elmadany, S. M. Abdou, and M. Gheith, "Recent Approaches to Arabic Dialogue Acts Classifications," 4th International Conferences on Natural Language Processing (NLP-2015) - Computer Science & Information Technology (CS & IT) Series, vol. 5 (4), pp. 117–129, 2015.

[21] A. A. Elmadany, S. M. Abdou, and M. Gheith, "Arabic Inquiry-Answer Dialogue Acts Annotation Schema," IOSR Journal of Engineering (IOSRJEN), vol. 04 (12-V2), pp. 32-36, 2014.

[22] T. Kudo and Y. Matsumoto, "Chunking with support vector machines," In Proceeding of NAACL-01, 2001.

[23] Y. Kudo and Y. Matsumoto, "Use of Support Vector Learning for Chunk Identification " In Proceeding of CoNLL, Lisbon, Portugal, 2000, pp. 142-144.

[24] M. A. Meselhi, H. M. A. Bakr, I. Ziedan, and K. Shaalan, "A Novel Hybrid Approach to Arabic Named Entity Recognition," presented at the The 10th China Workshop on Machine Translation (CWMT 2014), 2014.

[25] S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and D. Jurafsky, "Support vector learning for semantic argument classification," Machine Learning 60, vol. Machine Learning (1-3), pp. 11-39, 2005.