High prevalence of carriage of *mcr-1*-positive enteric bacteria among healthy children from rural communities in the Chaco region, Bolivia, September to October 2016

Tommaso Giani¹, Samanta Sennati¹, Alberto Antonelli², Vincenzo Di Pilato², Tiziana di Maggio¹, Antonia Mantella², Claudia Niccoli², Michele Spinicci¹, Joaquin Monasterio³, Paul Castellanos⁴, Mirtha Martinez⁵, Fausto Contreras⁶, Dorian Balderrama Villareol¹, Esther Damiani⁶, Sdenka Maury⁶, Rodolfo Rocabado⁵, Lucia Pallecchi⁷, Alessandro Bartoloni²,⁹, Gian Maria Rossolini²,¹⁰, Niccolai², Michele Spinicci², Joaquín Monasterio³, Paul Castellanos⁴, Mirtha Martinez⁵, Fausto Contreras⁵, Dorian Balderrama

Background: The *mcr-1* gene is a transferable resistance determinant against colistin, a last-resort antimicrobial for infections caused by multi-resistant Gram-negatives. Aim: To study carriage of antibiotic-resistant bacteria in healthy school children as part of a helminth control and antimicrobial resistance survey in the Bolivian Chaco region. Methods: From September to October 2016 we collected faecal samples from healthy children in eight rural villages. Samples were screened for *mcr-1* and *mcr-2* genes. Antimicrobial susceptibility testing was performed, and a subset of 18 isolates representative of individuals from different villages was analysed by whole genome sequencing (WGS). Results: We included 337 children (mean age: 9.2 years, range: 7–11; 53% females). The proportion of *mcr-1* carriers was high (38.3%) and present in all villages; only four children had previous antibiotic exposure. One or more *mcr-1*-positive isolates were recovered from 129 positive samples, yielding a total of 173 isolates (*E. coli*). No *mcr-2* was detected. Co-resistance to other antimicrobials varied in *mcr*-positive *E. coli*. All 171 isolates were susceptible to carbapenems and ticarcillin; 41 (24.0%) were extended-spectrum β-lactamase producers and most of them (37/41) carried *blaCTX-M*-type genes. WGS revealed heterogeneity of clonal lineages and *mcr*-genetic supports. Conclusion: This high prevalence of *mcr-1*-like carriage, in absence of professional exposure, is unexpected. Its extent at the national level should be investigated with priority. Possible causes should be studied; they may include unrestricted use of colistin in veterinary medicine and animal breeding, and importation of *mcr-1*-positive bacteria via food and animals.

Background

The *mcr-1* gene is a transferable colistin resistance determinant that was first described among enterobacterial strains isolated from animals and humans in China. The gene encodes a phosphoethanolamine transferase that modifies the colistin target by addition of phosphoethanolamine to the 1′ or 4′ phosphate group of lipid A, which reduces its affinity to colistin [1,2]. Discovery of *mcr-1* was considered highly alarming, given the role that colistin has recently regained as a last-resort antibiotic for treatment of infections caused by multi-resistant Gram-negative pathogens such as carbapenem-resistant Enterobacteriales and *Acinetobacter baumannii* [1,3].

Subsequent to its discovery, several studies have revealed a global distribution of *mcr-1*, with an overall higher prevalence among *Escherichia coli*.
coli and Salmonella enterica, and occasional occurrence in other enterobacterial species. Most mcr-1-positive strains were of animal origin, and farm animals were identified as the principal reservoir of mcr-1 genes [1,4]. Investigation of archival strains dated the presence of mcr-1 back to at least the 1980s [5]. As with other resistance genes, minor allelic variants of mcr-1 have been detected [6]. More recently, additional transferable mcr genes (mcr-2, mcr-3, mcr-4, mcr-5, mcr-6, mcr-7 and mcr-8) have been reported, for which the global epidemiology remains to be clarified [7-13].

In South America, mcr-1 genes have been reported from several countries in isolates from humans, animals
and food [14-27]. Recently, the Pan American Health Organisation (PAHO) section of the World Health Organization (WHO) recommended to implement and strengthen surveillance and epidemiological investigation of plasmid-mediated transferable colistin resistance in its Member States [14]. In Bolivia, \textit{mcr-1} has thus far been reported in a \textit{Citrobacter braakii} that was isolated from a ready-to-eat food sample [21], as well as in a few clinical isolates of \textit{E. coli} referred from various departments to the National Institute of Health Laboratories (INLASA) (data not shown).

During the last two decades we carried out several surveillance studies in the Bolivian Chaco region, documenting a high prevalence of resistance to old and more recent antibiotics in commensal and pathogenic bacteria from humans [21,28-32].

In 2016, a new surveillance study was carried out in a population of healthy school children from several rural communities in this region to investigate the prevalence of intestinal parasites and the carriage of antibiotic-resistant bacteria. Here we report about an unexpected and high rate of faecal carriage of \textit{mcr-1}-positive Enterobacterales in this population.

Methods

Study population and setting

The study population consisted of healthy school children living in eight rural communities of the Chaco region, in south-eastern Bolivia (between longitude 63°66 and 63°18 east and latitude 19°49 and 21°88 south, Figure 1). In these communities, the population lives in houses mostly constructed of mud and sticks, with packed earth floors and straw or corrugated metal roofs. There is no wired electricity and no sewage system. The main water sources are small ponds, in which animals also bathe and drink, and outdoor taps. The economy is mostly based on subsistence farming and local animal husbandry.

In each community, children were selected among those attending primary school, starting from the third year and possibly including the upper years, to achieve a number of ca 50 individuals per site whenever possible. This sample size corresponded to that recommended by WHO for cluster sampling in helminth control programmes in healthy school children [33].

Previous use of antibiotics during the last 15 days was investigated by a questionnaire administered to parents.

Laboratory analyses

Screening for \textit{mcr-1}- and \textit{mcr-2}-positive strains in faecal samples

One faecal sample for each child was collected during a two-month period from September to October 2016; the samples were transferred to the Laboratories of Camiri or Villa Montes Hospitals within 6 hours and were plated onto MacConkey agar. After incubation at 35 °C for 24 hours, the bacterial growth (representative of the total enterobacterial microbiota) was collected with a sterile swab in an Amies transport medium and was shipped to Italy. Each sample was then subcultured on MacConkey agar again, and the bacterial growth was resuspended in Brain Heart Infusion broth plus 20% (v/v) glycerol and stored at -70°C pending further analyses.

To screen for the presence of \textit{mcr-1}- and \textit{mcr-2}-positive strains, the preserved suspensions of total enterobacterial microbiota were thawed and 10 μL were inoculated onto McConkey supplemented with colistin (2 mg/L, MCC medium). After incubation at 35°C for 24 hours, a loopful of the bacterial growth (taken either from confluent growth or from isolated colonies of

Characteristics	Total (n/N)	%	\textit{mcr-1}-negative (n/N)	%	\textit{mcr-1}-positive (n/N)	%	\textit{p} value
Sex							
Male	158/337	47	100/208	48	58/129	45	0.58
Female	179/337	53	108/208	52	71/129	55	
Age (years)							
Mean (95% CI)	9.3 (9.1–9.4)	NA	9.3 (9.1–9.5)	NA	9.2 (9.0–9.5)	NA	0.81
Median (IQR)	9 (8–10)	NA	9 (8–10)	NA	9 (8–10)	NA	
Prior antibiotic use*	4/337	1	3/208	1	1/129	1	0.58

CI: confidence interval; IQR: interquartile range; NA: not applicable.

*In the last 15 days.
randomly selected individuals if co-colonisations were not detected and the two non-\textit{E. coli} isolates bore \textit{mcr}-1. For the latter, species identification was carried out by the analysis of housekeeping genes \cite{39,40}. Bacterial genomic DNA of these 18 selected \textit{mcr}-positive isolates, extracted using the phenol-chloroform method \cite{41}, was subjected to WGS with a MiSeq platform (Illumina, Inc., San Diego, California, United States (US)) using a 2x300 paired-end approach. Raw reads were assembled using SPAdes 3.5 \cite{42}. An average of 120 contigs per strain was obtained, with an average N50 of 163 Kb. Draft genomes have been deposited in the National Center for Biotechnology Information (NCBI) WGS database under the BioProject PRJNA427943 (accession numbers: PQTO00000000; PQTN00000000; PQT00000000; PQT00000000). Resistance genes and plasmid content were investigated using the ResFinder and PlasmidFinder tools available at the Center for Genomic Epidemiology at https://cge.cbs.dtu.dk/services/ResFinder/. Clonal relatedness was investigated by in silico determination of the multilocus sequence typing (MLST) profile obtained by the MLST 1.8 software (available at https://cge.cbs.dtu.dk/services/MLST/) using the assembled WGS as input data.

\textbf{Statistical analysis}

Statistical analysis of the data was performed with STATA 11.0 (StataCorp, College Statio, Texas, US). Frequencies and percentages with 95\% confidence intervals (CI) for categorical variables, medians and interquartile ranges (IQR) for continuous variables were calculated. Mann–Whitney test was used to compare median age. Chi-squared test was used to investigate the association of \textit{mcr}-1 carriage with sex and prior antibiotic use. Results were considered significant when the \textit{p} value was \textless 0.05.

\textbf{Ethical statement}

Written informed consent was always obtained from parents or legal guardians. The investigation was planned and carried out within a collaboration

Table 2
Susceptibility of \textit{mcr}-1-positive \textit{Escherichia coli} isolates to various antimicrobials, Chaco, Bolivia, September–October 2016 (\textit{n} = 171)
AMC

n
72
62

\textit{AMC}: amoxicillin/clavulanate (clavulanate at fixed concentration of 4 mg/L); \textit{CAZ}: ceftazidime; \textit{CIP}: ciprofloxacin; \textit{COL}: colistin; \textit{CTX}: cefotaxime; \textit{ERT}: ertapenem; \textit{FEP}: cefepime; \textit{GEN}: gentamicin; \textit{MEM}: meropenem; \textit{PTZ}: piperacillin/tazobactam (tazobactam at fixed concentration of 4 mg/L); \textit{TIG}: tigecycline.

Numbers and percentages of susceptible isolates are given.
Table 3
Features of *mcr*-1-positive isolates subjected to whole genome sequencing analysis, Chaco, Bolivia, September–October 2016 (n = 18)

Community	Isolate code	Subject code	Species	Additional resistance traits(a)	Acquired resistance genes(b)	ST(c)	mcr variant and genetic context(d)	mcr contig size (bp)
Palmarito	12A	1	Escherichia coli	AMC; GEN; CIP	blaTEM-1B; aac (3)-Iv; aph (4)-la; fosA3; floR; qnrB19; tet(A)	48	mcr-1-pap-Isap1(IncI2)	61,600
	12B	E. coli	GEN; CIP		blaTEM-1B; aac (3)-Iv; aph (4)-la; strA; strB; ctaA1; floR; aqA1; aqB1; sul2; tet(A)	744	mcr-1-pap-Isap1(IncI2)	60,992
	155A	2	E. coli	FS*		ND	mcr-1-pap-Isap1(IncI2)	60,547
	155B	2	E. coli	AMC; CIP	blaTEM-1B; aadA1; aadA2; strA; strB; ctaA1; floR; qnrB19; sul2; sul3; tet(A); dfrA8	206	mcr-1-unk1	2,943
	86A	3	E. coli	AMC; CIP	blaTEM-1B; strA; strB; floR; qnrB19; sul2; tet(A); dfrA1	7,570	mcr-1-unk1	2,942
	86B	3	E. coli	AMC; CIP	blaTEM-1B; aadA1; aadA2; strA; strB; cmaA1; floR; sul2; sul3; tet(A); teiB; dfrA1; dfrA12	2,936	mcr-1.5-pap-ISap1(IncHI1)	13,7897
	67A	4	Citrobacter	*europeaeus*		NA	mcr-1-pap-Isap1(IncI2)	60,321
San Antonio del Parapetí	173A	5	E. coli	AMC; GEN; CAZ; CTX; FEP; (ESBL)	blaCTX-M-55; aadA1; aadA2; rmtB; fosA3; cmaA1; floR; qnrB19; sul2; sul3; tet(A)	1,286	mcr-1-unk1	6,134
	173B	5	E. coli	AMC; GEN; CAZ; CTX; FEP; (ESBL)	blaCTX-M-55; blaTEM-1B; aadA1; aadA2; rmtB; cmaA1; floR; qnrB19; sul2; sul3; tet(A)	1,286	mcr-1-unk1	2,863
Tetapalu/Kurupaity	224A	6	E. coli	AMC	aadA1; aadA2; strA; strB; cmaA1; floR; qnrB19; sul2; sul3; tet(A); teiB; dfrA14	2,705	mcr-1-pap-Isap1(IncHI1)	52,737
	224B	6	E. coli	AMC	blaTEM-1B; aadA1; aadA2; strA; strB; cmaA1; floR; qnrB19; sul2; sul3; tet(A); teiB; dfrA14	7,570	mcr-1-pap-Isap1(IncHI1)	52,737
	306A	7	E. coli	AMC	blaTEM-1B; aph(3')-la; aadA1; strA; strB; ctaA1; floR; qnrB19; sul2; sul3; tet(A); teiB; dfrA14	69	mcr-1-pap-Isap1(IncHI1)	63,921
	306B	7	E. coli	AMC	blaTEM-1B; blaOXA-1; aadA1; sul2; tet(X)	69	mcr-1-pap-Isap1(IncHI1)	63,921
	301B	8	Enterobacter	hormaechei		ND	-	63,943
Palmar Chico	286A	9	E. coli	AMC	blaTEM-1B; aadA1; floR; sul3; tet(A); tet(C); dfrA1	117	mcr-1-pap-Isap1(IncHI1)	59,748
	295B	10	E. coli	FS*		ND	mcr-1-pap-Isap1(IncHI1)	56,317
Capirendita	274A	11	E. coli	AMC; GEN; CTX; FEP (ESBL)	blaTEM-1B; aac (3)-Iv; aadA1; aph(3')-la; cmaA1; floR; qnrB19; sul2; sul3; tet(A); teiM; dfrA12	7,571	mcr-1-unk1	2,943
	274B	11	E. coli	AMC; GEN; CTX; FEP (ESBL)	blaCTX-M-55; blaTEM-1B; aphA1-1; aadA1; strA; strB; fosA3; cmaA1; floR; qnrB19; qnrVC4; sul2; sul3; tet(A); dfrA14	3,056	mcr-1-pap-Isap1(IncHI1)	60,652

AMC: amoxicillin/clavulanate (clavulanate at fixed concentration of 4 mg/L); CAZ: ceftazidime; CIP: ciprofloxacin; COL: colistin; CTX: cefotaxime; ESBL: extended-spectrum β-lactamase; FEP: ceftepime; FS: fully susceptible; GEN: gentamicin; NA: not applicable; ND: none detected; ST: sequence type; unk: unknown.

(a) All isolates were resistant to colistin; additional resistance traits referred to the panel of tested drugs reported in Table 2.

(b) Acquired resistance genes as determined by analysis with the ResFinder software.

(c) Sequence-types were assigned using the Warwick scheme (http://enterobase.warwick.ac.uk/species/index/ecoli).

(d) If the gene was linked with a known plasmid backbone, the plasmid replicon type is reported in brackets.

(e) The isolate was susceptible to all tested agents except colistin.

(f) In these cases it was not possible to reveal the nature of flanking regions due to the presence of repeated sequences flanking the gene.

For each isolate, the epidemiological data, additional resistance profile, acquired resistance genes content, sequence type and mcr genetic context are reported.
agreement between the Ministry of Health of the Plurinational State of Bolivia and the University of Florence, Italy, and with the support of the Guaraní political organisation (Asamblea del Pueblo Guaraní). Ethical approval for the study was obtained from the above-mentioned institutions (see Acknowledgements section).

Results
Faecal specimens were obtained from 337 healthy school children in eight rural communities of the Bolivian Chaco region (Figure 1). Children (179 females; 53%); were aged 7 to 11 years (mean: 9.2 years). Previous antibiotic exposure was only reported for four children.

mcr-1 carriage
All 337 samples of enterobacterial microbiota yielded some growth (from scanty to vigorous) on the MCC medium, and 129 (38.3%) yielded a positive result for mcr-1. Positive samples were detected in children from each village, although at variable rates (range: 19.1–80.5%; Figure 1). No mcr-2 genes were detected. One or more mcr-1-positive isolates were recovered from each of the 129 samples, yielding a total of 173 positive isolates, including 171 E. coli, one Citrobacter spp. and one Enterobacter spp.. Multiple mcr-1-positive isolates from the same sample consisted of either two or three E. coli isolates of different colonial morphology and RAPD profile (in 32 and 5 samples, respectively), or in an E. coli plus an Enterobacter spp. (in one sample). No differences were found in the demographic characteristics, sex or age, of children carrying mcr-1-positive Enterobacterales or children without mcr-1 carriage (Table 1), nor were there any differences in the living conditions of the communities with different proportions of carriers (data not shown).

Antimicrobial susceptibility of mcr-1-positive isolates
Colistin susceptibility testing showed that the majority (n = 170; 98.3%) of the mcr-1-positive isolates were resistant to colistin (MIC range: 4–8 mg/L), while only three E. coli (from different villages) were colistin-susceptible (all with an MIC of 2 mg/L) (Table 2). Sequencing of mcr amplicons from the latter isolates showed identity with mcr-1, suggesting that the colistin susceptible phenotype was not due to mutations inactivating the gene. Variable resistance rates to other antimicrobial agents were observed, including fluoroquinolones, expanded-spectrum cephalosporins, β-lactamase plus inhibitor combinations and gentamicin. All isolates were susceptible to carbapenems and tigecycline (Table 2).

Diversity of the mcr-1-positive isolates
WGS analysis of the subset of 18 mcr-1-positive isolates confirmed the identification of the two non-E. coli isolates as Citrobacter europaeanus and Enterobacter hormaechei, respectively (Table 3), two species in which mcr-1 was not previously reported.

In silico MLST analysis of the 16 E. coli isolates revealed a considerable diversity, with only a few isolates from different villages belonging to the same sequence type (ST). All but one of the couples isolated from the same individual belonged to different STs (Table 3).

Analysis of the acquired resistance genes showed a remarkable diversity and a variety of patterns (Table 3). The number of known acquired resistance genes varied from 0 to 16 (median: 9). Overall, the resistance gene content was consistent with the susceptibility profile. The three ESBL-positive E. coli isolates carried the bla_{CTX-M-55} variant previously reported in Bolivia [29]. Analysis of the mcr-1 carrying contigs revealed that in 13 isolates the mcr-1 gene was linked to backbone regions typical of IncFII or IncHI plasmids, suggesting a plasmid location, with some plasmid diversity. In the remaining five isolates, it was not possible to determine the nature of flanking regions due to the presence of repeated sequences flanking the gene (Table 3).

Discussion
Our study revealed a very high prevalence of carriage of mcr-1-positive strains among healthy children living in rural communities of the Bolivian Chaco. Carriage of mcr-1-positive strains in healthy humans has been investigated in a limited number of studies, mostly from Asian countries [41-53]. The prevalence rates detected in such studies have usually been low (≤5%), except in a group of chicken farmers from Vietnam, where a 34.7% carriage rate of mcr-1-positive E. coli was detected and attributed to professional exposure to mcr-1-positive animals [45]. Therefore, to our best knowledge, we present the highest rate of mcr-1 carriage thus far reported in healthy humans.

In our study, professional exposure could be excluded as a reason for the high prevalence of mcr-1 carriage, as well as human use of colistin. Overall, only four children had prior exposure to antibiotics and the use of colistin in Bolivia is occasional and limited to infections by some multi-drug resistant pathogens in large urban hospitals (data not shown). However, colistin is available with no restrictions for veterinary use and in animal breeding [54], and we hypothesise that this could have played a major role in the selection of colistin-resistant strains in the animal population and the environment. Moreover, the introduction of mcr-positive strains via imported food and/or food-producing animals from countries where their prevalence was found to be high (e.g. Brazil) [15,22] could also represent a source of such strains. Poor sanitation and close contact with animals, which characterise the studied setting, may lead to a high level of environmental contamination and facilitate cross-transmission of colistin-resistant strains and colistin resistance genes between different environments, resulting in a high prevalence in humans who are not directly exposed to the drug.

In our case, only a minority of the mcr-positive isolates showed resistance to other antimicrobials, and
no carbapenem resistance was detected, leaving a number of therapeutic options in case of infection. However, the potential risk of spread of the mcr-1 gene to extensively resistant isolates through transferable plasmids mechanisms should not be underestimated.

Genomic analysis of a subset of the mcr-1-positive E. coli isolates, representative of different communities and of different isolates from the same child, revealed a remarkable heterogeneity in terms of clonal lineages and genetic supports. Therefore, the observed epidemiological scenario could not be ascribed to the expansion of a single mcr-1-positive clone, nor even to the spread of a single plasmid. The diversity of the genetic background of the mcr-1 genes underlined the ability of this gene to transfer itself among different clones (and even different species) and plasmids. Interestingly, we detected for the second time in South America the mcr-1.5 variant, previously described in an E. coli strain from Argentina [23].

Our study has some limitations. First, the presence of animal or environmental reservoirs of mcr-positive isolates and the direct transmission between humans and animals/environment could not be demonstrated, since we did not collect any samples from animals or the environment. Second, apart from mcr-2, we did not search for other recently described mcr-variants that could be responsible for resistance observed in other isolates. Third, the study was designed as a cross-sectional survey, in which one sample from each individual was collected. It would be interesting to investigate the prevalence of mcr-1 carriage in adults and the duration of carriage over time to understand if and how much humans could represent a major reservoir in this setting. It would also be interesting to further characterise, in more detail, the plasmid supports of the mcr-1 and other resistant determinants. Investigations on these aspects are underway.

In conclusion, our findings prompt the need to rapidly monitor the extent of human and animal carriage rates and environmental contamination by mcr genes with a one-health approach, and to introduce policies banning the non-therapeutic use of colistin. This was also recently highlighted by the PAHO/WHO, which encouraged the implementation of animal-human surveillance, as well as actions to prevent and control the spread of mcr-positive microorganisms, such as the monitoring of colistin use in human food production [14]. In Europe, knowledge of mcr carriage among healthy individuals is still limited [47,53]. While available data suggest a very low occurrence, it will be interesting to study human and animal carriage rates and environmental contamination in different countries and settings.

Acknowledgements

The Bolivian Ministry of Health and the Regional Health Departments approved the study design, including its ethical aspects; the Guaraní political organization (Asamblea del Pueblo Guaraní) supported the field work and conducted the interviews.

Conflict of interest

None declared.

Authors’ contributions

TG and SS analysed the data and drafted the manuscript; AA, VDP, CN did the molecular analysis and genome sequencing; TM, AM and LP produced phenotypic data and handled the samples; MS, MM, FC, JM, PC, DBV, ED, SM and RR collected the samples and participated in the coordination of the survey; AB and GMR coordinated the survey and edited the manuscript.

References

1. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557-96. https://doi.org/10.1128/CMR.00064-16 PMID: 28275006
2. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161-8. https://doi.org/10.1016/S1473-3099(15)00424-7 PMID: 26603172
3. Giamarello H. Epidemiology of infections caused by polymyxin-resistant pathogens. Int J Antimicrob Agents. 2016;68(6):614-21. https://doi.org/10.1016/j.ijantimicag.2016.09.025 PMID: 27865627
4. Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016;71(8):2066-70. https://doi.org/10.1093/jac/dkw274 PMID: 27342545
5. Shen Z, Wang Y, Shen Y, Shen J, Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis. 2016;16(3):293. https://doi.org/10.1016/S1473-3099(16)00066-X PMID: 26973308
6. Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IW, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018;23(6):17-00672. https://doi.org/10.2807/1560-7917.ES.2018.23.6.00672 PMID: 29439754
7. Xavier BB, Lammens C, Kuhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016;21(27):30280. https://doi.org/10.2807/1560-7917.ES.2016.21.27.30280 PMID: 27469487
8. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli, MBio. 2017;8(4):e01166-17. https://doi.org/10.1128/mbio.01166-17 PMID: 28813346
9. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017;22(31):30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589 PMID: 28797329
10. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposable-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017;72(2):337-44. https://doi.org/10.1093/jac/dkw337 PMID: 28962028
11. AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2017;72(1):2795-9. https://doi.org/10.1093/jac/dkx286 PMID: 29092227
12. Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella
pneumoniae. J Antimicrob Chemother. 2018;73(7):1791-5. https://doi.org/10.1093/jac/dky111 PMID: 2992147

13. Wang X, Wang Y, Zhou Y, Li L, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Escherichia coli in China. J Antimicrob Chemother. 2018;73(1):122-7. https://doi.org/10.1093/jac/dkx307 PMID: 2990789

14. Pan American Health Organization (PAHO)/World Health Organization (WHO). Epidemiological Alert: Enterobacteriaceae with plasmid-mediated transferable colistin resistance, public health implications in the Americas, 10 June 2016. Washington, D.C./Geneva: PAHO/WHO; 2016. Available from: http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&Itemid=708&gid=35007&lang=en

15. Fernandes MR, Moura Q, Sartori L, Silva KC, Kunha MP, Esposito F, et al. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Euro Surveill. 2016;21(17):30242. https://doi.org/10.2807/1560-7917.ES.2016.21.17.30242 PMID: 2716857

16. Rapoport M, Faccone D, Pasteran F, Ceriana V, Tijet N, Faccone D, Rapoport M, Seah C, Pasterán F, Ceriana V, et al. First description of mcr-1-mediated colistin resistance in human infections caused by Escherichia coli in Latin America. Antimicrob Agents Chemother. 2016;60(6):4412-3. https://doi.org/10.1128/AAC.00573-16 PMID: 2709018

17. Delgado-Blas JF, Ovejero CM, Abadía-Patlín L, González-Zorn B. Coexistence of mcr-1 in blaNDM-1 in Escherichia coli from Venezuela. J Antimicrob Chemother. 2018;73:6536-8. https://doi.org/10.1093/jac/dky111 PMID: 2991241

18. Dalmolin TV, Martins AF, Zavascki AP, de Lima-Morales D, Barbosa AM, et al. MCR-1-mediated mcr-1 and blaCTX-M genes in infected migratory birds. J Antimicrob Chemother. 2017;72(4):1255-6. PMID: 28031274

19. Tijet N, Faccone D, Rapoport M, Ribeiro TG, Novais Â, Branquinho R, Machado E, Peixe L, Ribeiro JA, et al. Colistin-resistant mcr-1-positive Escherichia coli on chicken meat as a reservoir of colistin-resistant mcr-1 colistin resistance gene from ready-to-eat food from a market in the Chaco region of Bolivia. J Antimicrob Chemother. 2017;72(7):2127-9. https://doi.org/10.1093/jac/dkx078 PMID: 28797330

20. Centurion L, Nardin L, Pallen M, Fennell T, Mekalanos JJ. Colistin-resistant mcr-1 positive Escherichia coli on public beaches, an infectious threat emerging in recreational waters. Antimicrob Agents Chemother. 2017;61(8):4027-8. https://doi.org/10.1128/AAC.00278-17 PMID: 28379321

21. Tijet N, Faccone D, Rapoport M, Seach P, Pasteran F, Ceriana V, Pallaè F, et al. Molecular characteristics of mcr-1-carrying plasmids and new mcr-1 variant recovered from polyclonal clinical isolates from urinary tract infections in the Bolivian Chaco. Int J Antimicrob Agents. 2018;51(2):254-60. https://doi.org/10.1016/j.ijantimicag.2017.11.006 PMID: 29146009

22. Bartoloni A, Riccobono E, Magnelli D, Villagran AL, Di Maggio T, Mantella A, et al. Methicillin-resistant Staphylococcus aureus in hospitalized patients from the Bolivian Chaco. Int J Infect Dis. 2015;35:205-9. https://doi.org/10.1016/j.ijid.2014.12.006 PMID: 25486009

23. Bi Z, Berglund B, Sun Q, Nilsson M, Chen B, Tärnberg M, et al. Silent dissemination of colistin-resistant Escherichia coli clinical isolates from urinary tract infections in the Bolivian Chaco. J Antimicrob Chemother. 2017;72(1):305-8. https://doi.org/10.1093/jac/dky071 PMID: 28438940

24. Guglielmetti P, et al. Patterns of antimicrobial use and new mcr-1 variant recovered from polyclonal clinical isolates from urinary tract infections in the Bolivian Chaco. J Antimicrob Chemother. 2017;72(1):305-8. https://doi.org/10.1093/jac/dky071 PMID: 28438940

25. Bartoloni A, Sennati S, Di Maggio T, Mantella A, Riccobono E, Strohmeyer M, et al. Antibacterial susceptibility and emerging resistance determinants (blaCTX-M, rmtB, flaA3) in clinical isolates from urinary tract infections in the Bolivian Chaco. Int J Antimicrob Agents. 2016;43:1-6. https://doi.org/10.1016/j.ijantimicag.2015.12.008 PMID: 26689494

26. Ortega-Paredes D, Barba P, Zúñiga J, coE. Colistin-resistant mcr-1-positive Escherichia coli strains carrying IncX4 plasmid-borne mcr-1 colistin resistance gene from healthy children in Bolivia and Peru. Antimicrob Agents Chemother. 2004;48(12):4556-61. https://doi.org/10.1128/AAC.48.12.4556-4561.2004 PMID: 15561825

27. World Health Organization (WHO)/Department of control of neglected tropical diseases. Helminth infection in school-aged children, a guide for managers of control programs. Geneva: WHO; 2012. Available from: http://www.who.int/neglected_diseases/resources/en/

28. Coppi M, Cannatelli A, Antonelli A, Baccani I, Di Pilato V, Sennati S, et al. A simple phenotypic method for screening of MCR-1-mediated colistin resistance. Clin Microbiol Infect. 2018;24(2):S1198-743X(17)30457-3

29. Pacheco AB, Guth BE, Soares KC, Nishimura L, de Almeida DF, Ferreira LC. Random amplification of polymorphic DNA reveals serotype-specific clonal clusters among enterotoxigenic Escherichia coli strains isolated from humans. J Clin Microbiol. 1997;35(6):1521-5. PMID: 9163473

30. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0. V8x19: EUCAST; 1 Jan 2018. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf

31. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guideline for the detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Version 2.0. V2x10: EUCAST; July 2016. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf

32. Gianì T, Antonelli A, Caltagirone M, Mauri C, Nicchi J, Arena F, et al. Driving-lactamase gene polymorphism in Enterobacteriaceae from Italian nationwide surveillance, October 2013: KPC-carbapenemase spreading among outpatients. Euro Surveill. 2017;22(31):30583. https://doi.org/10.2807/1560-7917.ES.2017.22.31.17170358 PMID: 28797330

33. Ribeiro TG, Novais Â, Branquinho R, Machado E, Peixe L. Phylogeny and comparative genomics unveils independent diversification trajectories of qnrB and genetic platforms within particular Citrobacter species. Antimicrob Agents Chemother. 2015;59(10):5951-8. https://doi.org/10.1128/AAC.00277-15 PMID: 26619406

34. Chavda KD, Chen L, Fouts DE, Sutton G, Brinkac L, Jenkins SG, et al. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure, and resistance mechanisms. MBio. 2015;6(7):e02093-16. https://doi.org/10.1128/mBio.02093-16 PMID: 27965456

35. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1989.

36. Ankevich A, Nurr S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):545-77. https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599

37. BI Z, Berglund B, Sun Q, Nilsson M, Chen B, Tärnberg M, et al. Prevalence of the mcr-1 colistin resistance gene in extended-spectrum ß-lactamase-producing Escherichia coli from human faecal samples collected in 2012 in rural Badakhshan Province, China. Int J Antimicrob Agents. 2017;49(4):493-7. https://doi.org/10.1016/j.ijantimicag.2016.12.018 PMID: 28263896
44. Purohit MR, Chandran S, Shah H, Diwan V, Tamhankar AJ, Stålsby Lundborg C. Antibiotic resistance in an Indian rural community: a ‘One-Health’ observational study on commensal coliform from humans, animals, and water. Int J Environ Res Public Health. 2017;14(4):386-13. https://doi.org/10.3390/ijerph14040386 PMID: 28383517

45. Trung NV, Matamoros S, Carrique-Mas JJ, Nghia NH, Nhung NT, Chieu TTB, et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam. Emerg Infect Dis. 2017;23(3):529-32. https://doi.org/10.3201/eid2303.161553 PMID: 28221105

46. Zhong LL, Zhang YF, Doi Y, Huang X, Zhang XF, Zeng KJ, et al. Co-production of MCR-1 and NDM-1 by colistin-resistant Escherichia coli isolated from a healthy individual. Antimicrob Agents Chemother. 2016;61(1):6. PMID: 27821458

47. Zurfluh K, Stephan R, Widmer A, Poirel L, Nordmann P, Nüesch HJ, et al. Screening for fecal carriage of MCR-producing Enterobacteriaceae in healthy humans and primary care patients. Antimicrob Resist Infect Control. 2017;6(28):28. https://doi.org/10.1186/s13756-017-0186-3 PMID: 28316780

48. Lu X, Hu Y, Luo M, Zhou H, Wang X, Du Y, et al. MCR-1, a New MCR variant carried by an IncP plasmid in a colistin-resistant Salmonella enterica Serovar Typhimurium isolate from a healthy individual. Antimicrob Agents Chemother. 2017;61(5):e02632-16-13.

49. Wang Y, Tian GB, Zhang R, Shen Y, Tyrrell JM, Huang X, et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis. 2017;17(4):390-9. https://doi.org/10.1016/S1473-3099(16)30527-8 PMID: 28139431

50. Zhang X-F, Doi Y, Huang X, Li H-Y, Zhong L-L, Zeng K-J, et al. Possible transmission of mcr-1-harbouring Escherichia coli between companion animals and human. Emerg Infect Dis. 2016;22(9):1679-81. https://doi.org/10.3201/eid2209.160464 PMID: 27191649

51. Zhang R, Huang Y, Chan EW, Zhou H, Chen S, Zhang R, et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis. 2016;16(3):291-2. https://doi.org/10.1016/S1473-3099(16)30062-1 PMID: 26973306

52. Chen K, Chan EW, Xie M, Ye L, Dong N, Chen S. Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. Euro Surveill. 2017;22(39):17-00206.

53. Gröndahl-Yli-Hannukela K, Lönnqvist E, Kallonen T, Lindholm L, Jalava J, Rantakokko-Jalava K, et al. The first human report of mobile colistin resistance gene, mcr-1, in Finland. APMIS. 2018;126(5):413-7. https://doi.org/10.1111/apm.12834 PMID: 29696722

54. Servicio Nacional de Sanidad Agropecuaria e Inocuidad Alimentaria (SENASAG). [National Service of Agricultural Health and Food Safety]. Registro de Productos de Uso Veterinario e Insumos Pecuarios. [Registration of Products for Veterinary Use and Livestock Supplies]. Bolivia: SENASAG; 2018. Spanish. Available from: http://190.129.48.189/epg/productsVeterinarios.html

License and copyright
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors or their affiliated institutions, 2018.