Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements

Javier Espinoza 1,2, Cristian Medina 1,2, Alejandra Calabi-Floody 3, Elsa Sánchez-Alonso 3, Gonzalo Valdés 3 and Andrés Quiroz 1,2,*

1 Chemical Ecology Laboratory, Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 4811230, Chile; javier.espinoza@ufrontera.cl (J.E.); cristian.medina@ufrontera.cl (C.M.)
2 Biotechnological Research Center Applied to the Environment (CIBAMA), University of La Frontera, Temuco 4811230, Chile
3 Department of Civil Works Engineering, University of La Frontera, Temuco 4811230, Chile; alejandra.calabi@ufrontera.cl (A.C.-F); elsa.sanchez@ufrontera.cl (E.S.-A.);
gonzalo.valdes@ufrontera.cl (G.V.)
* Correspondence: andres.quiroz@ufrontera.cl

Received: 26 September 2020; Accepted: 10 November 2020; Published: 17 November 2020

Abstract: Conventional asphalt mixtures used for road paving require high manufacturing temperatures and therefore high energy expenditure, which has a negative environmental impact and creates risk in the workplace owing to high emissions of pollutants, greenhouse gases, and toxic fumes. Reducing energy consumption and emissions is a continuous challenge for the asphalt industry. Previous studies have focused on the reduction of emissions without characterizing their composition, and detailed characterization of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) in asphalt fumes is scarce. This communication describes the characterization and evaluation of VOCs and SVOCs from asphalt mixtures prepared at lower production temperatures using natural zeolite; in some cases, reclaimed asphalt pavement (RAP) was used. Fumes were extracted from different asphalt mix preparations using a gas syringe and then injected into hermetic gas sample bags. The compounds present in the fumes were sampled with a fiber and analyzed by gas-liquid chromatography coupled to mass spectrometry (GC/MS). In general, the preparation of warm mix asphalts (WMA) using RAP and natural zeolite as aggregates showed beneficial effects, reducing VOCs and SVOCs compared to hot mix asphalts (HMA). The fumes captured presented a similar composition to those from HMA, consisting principally of saturated and unsaturated aliphatic hydrocarbons and aromatic compounds but with few halogenated compounds and no polycyclic aromatic hydrocarbons. Thus, the paving mixtures described here are a friendlier alternative for the environment and for the health of road workers, in addition to permitting the re-use of RAP.

Keywords: warm mix asphalt; natural zeolite; fumes; VOCs and SVOCs; hydrocarbons

1. Introduction

The most widely used construction material in the world for constructing the surface courses of road pavement structures is hot mix asphalt (HMA); however, the construction and rehabilitation of paved asphalt roads produce a negative environmental impact. Pavement rehabilitation projects generate residues from milling the upper layers of asphalt-paved roads, called reclaimed asphalt pavement (RAP). These residues consist of aggregates and asphalt binder, which can be used as raw
material for new asphalt mixtures. The use of RAP is nowadays a common sustainable practice in the pavement industry; it saves on virgin construction materials and construction costs [1], and it also reduces the environmental impacts related to residue accumulation and the use of virgin raw materials [2]. Generally, there are three methods of pavement recycling: cold recycling, hot recycling, and full-depth reclamation, depending on whether pavement damage is structural or not [3].

On the other hand, the manufacture and laying of asphalt paving require high temperatures (between 150–180 °C) and therefore high energy consumption. In the process, the environment and workers are exposed to anthropogenic greenhouse gases and the massive toxic fumes emitted when asphalt mixtures are manufactured, transported, laid, and compacted at high temperatures [4–7]. Thus, the reduction of asphalt emissions related to production, mixing, transportation, and paving is a continuous issue and a challenge for the asphalt industry [8]. Growing international pressure to reduce fossil fuel consumption and greenhouse gas emissions has led the scientific and technical communities to develop a number of cleaner and more sustainable new technologies for asphalt materials [9,10].

One alternative method to reduce energy consumption and the emission of greenhouse gases and toxic fumes is to decrease the production temperature of asphalt mixtures by the development of warm mix asphalt (WMA) [9,11,12]. WMA is generally produced at between 110 and 140 °C, thirty degrees cooler than HMA [8]. Asphalt mixes with lower production and compaction temperatures are more environmentally friendly and economical [13]. One of the most commonly used processes for temperature-reduction is the incorporation of waxes [8,11,14,15] and synthetic or natural zeolites into asphalt mixes [16]. The temperature-reduction mechanism of zeolites is associated with the addition of water to WMA. Due to their honeycomb microstructure, crystallized zeolites can preserve water within their micropores and release it gradually when heated to above boiling point, when it creates foam. This reduces the viscosity of the asphalt mixture, increases its workability, and facilitates coating at lower temperatures [17–19]. Moreover, the quantity and mode of water release from zeolite are affected by the structure of the zeolite, its textural properties, and its crystallo-chemical characteristics [20]. Synthetic zeolite is prepared hydro-thermally by crystallizing a finely powdered hydrated sodium aluminum silicate; it retains from 18% up to 22% (by mass) of its water content, which is released when the temperature is increased above 85 °C. Natural zeolites are microporous, hydrated aluminosilicates generally used as commercial adsorbents. Clinoptilolite and phillipsite are the natural zeolites more commonly found in nature. In the synthetic mineral group, ZSM-5, X, Y, A, and NaP1 zeolite types are those most frequently found [21,22]. Both natural zeolites (clinoptilolite-type) and Na-P1 (GIS-gismondine zeolite minerals) and Linde A (LTA) structure-type synthetic zeolites are used to reduce the manufacture temperatures of mineral-asphalt mix [13,18,19].

The manufacture of bitumens involves oxidation of residue from the vacuum distillation of petroleum. During the vacuum distillation to produce the raw material for bitumen, as well as the oxidation process with hot air, the bitumen material deposited on heating parts undergoes partial thermal cracking; this results in the formation of unsaturated and aromatic compounds such as carbonyl sulfide, carbon disulfide, hydrogen sulfide, water vapor, etc. [23]. These compounds undergo further transformations, yielding different volatile compounds as well as ketones, aldehydes, organic acids, phenols and phenol derivatives, and organosulfur and organonitrogen compounds. A part of the produced volatile compounds is removed from the reactor using hot air, yielding exhaust gases, which undergo depuration in an alkaline aqueous solution or absorption in wash oil [24,25]. The residual volatile organic compounds (VOCs) in the bitumen material are emitted during storage [26–29], transport [30], manufacture of mineral-bitumen mixtures [31–36], roof impregnation [33,37–41], and road paving [42–54]. They can also be released from the post-oxidative effluents [55].

The typical compounds found in asphalt fumes include VOCs, polycyclic aromatic hydrocarbons (PAHs), volatile organosulfur and organonitrogen compounds (VSCs and VNCs), nitrogen oxides (NOx), sulfur oxides (SOx), CO2 and carbon monoxide (CO), particulates, aliphatic and aromatic hydrocarbons, and oxygenated volatile organic compounds (O-VOCs). O-VOCs, involving alcohols,
ketones, aldehydes, esters, ethers, phenols, carboxylic acids, and their derivatives are very malodorous and toxic [23,56,57].

Strict environmental regulations imposed on refineries have led to a rising number of analytical procedures, allowing detailed identification of groups of compounds released into the atmosphere [56]. However, relatively little is known in detail about the presence of VOCs and semi-volatile organic compounds (SVOCs) in asphalt fumes because their content depends on crude oil and asphalt composition [23]. Furthermore, there is no standardized methodology for capturing and analyzing VOCs and SVOCs in asphalt fumes.

Classical analysis techniques have been used for compound identification, such as gas-liquid chromatography coupled to mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC), depending on the analyte. Kitto et al. [58] evaluated the emission of VOCs and SVOCs from hot asphalt mixtures by HPLC and GC/MS. HPLC analysis indicated the presence of naphthalene, acenaphthene, fluorene, phenanthrene, and anthracene as the most prevalent compounds. Benzene, toluene, ethylbenzene, and saturated carbon chains from 10 to 18 atoms were identified by gas-liquid chromatography (GC). Tang et al. [59] captured toxic fumes from asphalt preparations by solid-phase microextraction (SPME) and later identified the compounds desorbed by GC/MS, such as PAHs, fluorene (5.8 ng/µL), phenanthrene (12.9 ng/µL), 2-methyl-phenanthrene (10.1 ng/µL), and 9-methylphenanthrene (10.4 ng/µL), etc. Gasthauer et al. [34] characterized toxic fumes by GC/MS and evaluated the effect of the emission temperature. The authors tracked characteristic fragments of compound families, reporting naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, fluorene, phenanthrene, and anthracene, among others. Additionally, Wang et al. [60] identified PAHs in asphalt fumes by GC/MS, such as naphthalene (1.15 ng/m³), acenaphthylene (6.93 ng/m³), and 2-bromonaphthalene (22.02 ng/m³), etc. A recent study reported the reduction of airborne emissions and the identification of more than 200 volatile compounds by headspace-gas chromatography-mass spectrometry (HS-GC/MS) from WMA manufactured using organic waxes [8]. During the production of bitumens, large volumes of strongly toxic post-oxidative effluents are generated; these have to be treated and the content of individual groups of pollutants monitored to evaluate the effectiveness of treatment [55]. The determination of concentrations and concentration changes of VOCs [25], O-VOCs [55,56], VSCs [61], VNCs [62], carboxylic acids [63], and monoaromatic and PAHs [64] in wastewater has been described.

According to the above publications, efforts to produce new asphalt mixtures that are friendlier to the environment and to workers are being intensified. In this communication, we characterize and evaluate VOCs and SVOCs in fumes emitted from asphalt mixtures prepared at reduced production temperatures using clinoptilolite-modernite natural zeolite as an additive and RAP for partial replacement of natural aggregates (fluvial aggregates).

2. Materials and Methods

2.1. Asphalt Mixture Preparation and Fume Capture

Asphalt mixtures were designed in the laboratory according to the Marshall Method [65], following the approach for a surface layer, to obtain the optimum proportion of asphalt mix components. The mixtures were not compacted because this is not necessary for fume capture. Raw materials were mixed in a sealed cylindrical reactor (6 L) coupled to a manual stirring system to prevent fumes from leaking. Fluvial aggregates, mainly composed of dolomite, basalt, andesite, rhyolites, sandstone, quartz, and quartzite (12.5 mm sieve size; semi-dense type IV-A-12 aggregate gradation); conventional asphalt binder (CA-24), with absolute viscosity of 3077 P (60 °C, 300 mm Hg) and a density of 1.04 kg/m³; and natural clinoptilolite-modernite zeolite (Chemical composition: SiO₂: 64.19%, TiO₂: 0.51%, Al₂O₃: 11.65%, Fe₂O₃: 2.53%, MnO: 0.03%, MgO: 0.66%, CaO: 3.42%, Na₂O: 0.75%, K₂O: 1.60%, P₂O₅: 0.03%, PₓC: 14.64%) were added to the reactor and treated according to the conditions provided in Table 1. Each asphalt mixture was prepared in triplicate. The RAP used came from milling works of surface course. In order to reduce the heterogeneity of the recycled mixtures, they were fabricated with two
fractions of RAP, as recommended by Solaimanian and Tahmoressi [66]. The RAP fractions used were 0/5 mm and 5/20 mm. The RAP gradation, the bitumen content for both RAP fractions and the characteristics of binder recovered from the RAP before fractioning, details of the fluvial aggregates, the asphalt binder used, and the mix design properties have all been published previously [67], and the research concluded that these warm mix asphalt and recycled warm mix asphalt performed well in rutting, cracking resistance, fatigue, and moisture damage tests.

Table 1. Raw materials and manufacturing temperatures for asphalt mixtures samples.

Mixture	Composition (g)	Natural Aggregates Temperature (°C)	Asphalt Binder Temperature (°C)	RAP Temperature (°C)	Production Temperature of Mixes (°C)				
	Natural Aggregates	Asphalt Binder Added	Natural Zeolite	Reclaimed Asphalt Pavement (RAP)					
P-155	4.000	216	0	0	155	155	-	155	
Z0.3-135	4.000	216	12	0	135	155	-	135	
Z0.6-135	4.000	216	24	0	135	155	-	135	
PR10-155	3600	207.6	0	400 (10% of the aggregates)	142	155	25	155	
Z0.6-R10-125	3600	207.6	24	800 (10% of the aggregates)	142	155	25	125	
PR20-155	3200	199.2	0	800 (20% of the aggregates)	169	155	25	155	
Z0.6-R20-135	3200	199.2	24	1200 (20% of the aggregates)	169	155	25	135	
PR30-155	2800	194.4	0	1200 (30% of the aggregates)	202	155	25	155	
Z0.6-R30-145	2800	194.4	24	1200 (30% of the aggregates)	202	155	25	145	

The mixtures were stirred and heated on a magnetic hot plate stirrer for 5 min and allowed to rest for 2 min before fume capture. The fumes (100 mL) were captured using a gas syringe and transferred to hermetic Tedlar gas sampling bags (SKC Inc., Pittsburgh, PA, USA) with a polypropylene valve (Figure 1). Three fume samples were collected from each asphalt mixture.

The mixtures presented in Table 1 are as follows: P-155: hot mix asphalt produced at 155 °C; Z0.3-135: warm mix asphalt with 0.3% natural zeolite produced at 135 °C; Z0.6-135: warm mix asphalt with 0.6% natural zeolite produced at 135 °C; PR10-155: hot mix asphalt with 10% RAP, produced at 155 °C; Z0.6-R10-125: recycled warm mix asphalt with 0.6% natural zeolite and 10% RAP, produced at 125 °C; PR20-155: hot mix asphalt with 20% RAP, produced at 155 °C; Z0.6-R20-135: recycled warm mix asphalt with 0.6% natural zeolite and 20% RAP, produced at 135 °C; PR30-155: hot mix asphalt with 30% RAP, produced at 155 °C; Z0.6-R30-145: recycled warm mix asphalt with 0.6% natural zeolite and 30% RAP, produced at 145 °C. For all mixes, the asphalt binder was added at 155 °C and the RAP at ambient temperature (25 °C). For mixes with RAP, overheating of the natural aggregates was necessary. Contact between the RAP and the overheated natural aggregates produced the desired mixing temperature.

2.2. Sampling of VOCs and SVOCs from Asphalt Mixture Fumes by SPME

The chemical contents of the asphalt mixture fumes were sampled using the system shown in Figure 1. A side valve on a 500-mL three-neck round-bottom flask containing a magnetic bar was linked to an air pump by a Teflon hose. The central neck was fitted with an exchangeable screw-cap and Teflon septum. The other side valve was connected by a Teflon hose to a Tedlar gas sampling bag containing a sample of fumes. The three-neck round-bottom flask was purged to vacuum using the pump. The valve connected to the fume sample bag was then opened, transferring the fume sample to the evacuated round-bottom flask. The fume was stirred (1500 rpm) using a
magnetic stirrer bar and heated to 50 °C to favor convection. Sampling was carried out with a divinylbenzene/polydimethylsiloxane (DVB-PDMS)-coated fiber (65 µm) and a manual SPME holder (Supelco Analytical, Bellefonte, PA, USA). This fiber is suitable for applications of SPME for non-polar organic compounds, such as benzene, toluene, ethylbenzene and xylenes, and polycyclic aromatic hydrocarbons (PAHs), etc. [68]. The SPME fiber was exposed to the fume sample for 30 min by manual insertion through the central neck septum of the round-bottom flask. Finally, the SPME fiber was inserted into the CG injection port for 1 min at 250 °C for sample desorption. The process was repeated three times for each fume sample.

![Diagram of fume capture and volatile organic compound (VOC) and semi-volatile organic compound (SVOC) sampling system.](image)

Figure 1. Diagram of fume capture and volatile organic compound (VOC) and semi-volatile organic compound (SVOC) sampling system.

2.3. Analysis of Asphalt Mixture Fumes

Fume samples were analyzed by GC and GC/MS using a Thermo Electron Model Focus GC (Thermo Fisher Scientific Inc., Waltham, MA, USA) coupled to a DSQ Thermo Electron quadrupole mass spectrometer with an integrated data system (Xcalibur 2.0, Thermo Fisher Scientific Inc., Waltham, MA, USA). A BPX-5 capillary column of 30 m length (0.25 µm film thickness × 0.25 mm i.d., SGE Forte, Trajan Scientific and Medical, Ringwood, VIC, Australia) was used for compound separation. The operating conditions were as follows: on-column injection; temperature of the injector, transfer line, and detector, 250 °C; oven temperature program: hold at 40 °C for 2 min, increase to 250 °C at 5 °C min⁻¹, and next hold at 250 °C for 5 min. He at 1.00 mL min⁻¹ was the carrier gas. The mass detector employed an ionization energy of 70 eV. Recording conditions employed a scan time of 1.5 s and a mass range of 30 up to 400 amu. The compounds were identified by comparison of their mass spectra with those in the NIST ver. 2.0 library database (NIST, Gaithersburg, MD, USA) and by comparison of their calculated retention index with those reported in the literature [69] for the same type of stationary phase. Calculated retention indices were determined by means of the retention time of C9–26 n-alkane standards (100 µg/mL in hexane) (Sigma-Aldrich, St. Louis, MO, USA) using the equation described by Kovats and Keulemans [70].
2.4. Statistical Analysis

The statistical software Statistix 10 (Tallahassee, FL, USA) was used to analyze the data. The Shapiro–Wilk Test was used to test whether data conform to a normal distribution. When data were normally distributed, the differences in the abundances of groups of VOCs and SVOCs emitted by different asphalt mixtures were analyzed using a one-way ANOVA test ($p \leq 0.05$) with a post hoc Tukey HSD test. The results were expressed as means and their corresponding standard errors.

3. Results and Discussion

Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) in fumes from warm mix asphalts produced using natural zeolite and RAP were characterized and evaluated. Between 57 and 81 compounds were identified in fumes captured from the asphalt mixtures, corresponding to 70.8%, 76.8%, 70.6%, 79.3%, 77.9%, 74.8%, 76.5%, 74.3%, and 73.3% of the compounds detected in P-155, Z0.3-135, Z0.6-135, PR10-155, Z0.6-R10-125, PR20-155, Z0.6-R20-135, PR30-155, and Z0.6-R30-145, respectively. The compound identification compiled in Table 2 was confirmed by comparing the calculated retention indices with those available in the literature [69]. In general, the chemical compounds identified in sample fumes were saturated and unsaturated aliphatic hydrocarbons, cyclic hydrocarbons, aromatic and chlorinated compounds, alcohols, aldehydes, and ketones. Saturated aliphatic hydrocarbons were the principal class of compound emitted in the fumes, representing over 43.7% of the total compounds detected in all samples, which is consistent with the literature concerning VOC formation from bitumen production [23]; they were followed by aromatic compounds (6.1% up to 10.5%) and alkenes (4.5% up to 8.1%), as shown in Figure 2. Heptane, 2-methylheptane, octane, 2,3-dimethylheptane, 4-methylcyclooctane, nonane, 3-ethyl-2-methylheptane, decane, and undecane were the most abundant compounds among all samples, as also reported by Wang et al. [71].

The predominance of saturated aliphatic hydrocarbons could indicate fewer oxidized bitumens, considering the partial thermal cracking and further transformations when bitumen mass was deposited on heating elements [23].

The saturated and unsaturated aliphatic hydrocarbons were C5–C16 and C5–C11 linear and branched alkanes and alkenes, respectively. Aromatic compounds included methyl- and ethyl-substituted C6 compounds, such as toxic benzene [72], toluene [73], and xylene [74] derivates. Cyclic compounds included methyl- and ethyl-substituted C4–C6 compounds and toxic chlorinated compounds, namely tri-chlorine and tetra-chlorine C1–C2 compounds [75] (Table 2). Chemical compounds in these fume profiles are similar to those described by Boczkaj et al. [23], in which VOCs from bitumens were analyzed by dynamic head-space gas chromatography coupled to mass spectrometry (DH-GC-MS). Boczkaj et al. [23] identified forty-four compounds at most, of which alkanes and aromatic compounds were the most abundant. Fifteen of these 44 compounds identified were VOCs and SVOCs identified in fumes in the present study, including C6–C14 saturated aliphatic hydrocarbons, toluene, and benzene derivates. Based on studies of bitumen effluents, it is evident that very sensitive, selective detectors are required for detailed analysis of the VNCs and VSCs in asphalt fumes at low concentration levels by GC. For a large number of VNCs, detectors such as nitrogen-phosphorus detector (NPD) [76], chemiluminescent nitrogen detector (CLND) [77], or surface ionization detector (SID) [78] must be used; while flame photometric detector (FPD) [79,80], pulsed flame photometric detector [24,81], sulfur chemiluminescence detector [82], or atomic emission detector [83] must be used for sulfur compounds [61,62].
Table 2. Chemical composition of fumes from WMA and HMA by GC/MS.

No.	RT (min)	RI calc	Compound	P-155	Z0.6-135	Z0.3-135	Z0.6-10R10-125	PR10-155	Z0.6-20R-135	PR-30-135	Z0.6-30R-145	
1	1.38	-	Pentane	-	-	3.86	-	2.86	-	2.41		
2	1.66	-	2-Methylpentane	-	1.28	2.97	-	1.38	2.24	1.40	1.25	
3	1.73	-	3-Methylpentane	-	1.09	-	0.47	-	0.63	-	0.53	
4	1.75	-	2-Methyl-1-pentene	-	2.56	2.51	-	1.33	-	1.56	-	
5	1.79	-	cis-1-Ethyl-2-methylcyclopropane	-	-	-	2.62	1.40	1.83	-		
6	1.84	-	Hexane	6.28	8.66	8.14	3.94	7.79	5.49	6.00	6.38	4.68
7	1.88	-	Trichloromethane	10.06	5.99	12.12	5.15	23.00	2.55	4.27	7.77	9.43
8	2.45	-	2-Methylhexane	3.99	2.60	5.50	12.35	2.29	6.29	8.47	2.48	2.57
9	2.58	-	3-Methylhexane	5.80	3.68	4.77	6.56	4.06	4.71	3.88	5.62	2.75
10	2.75	-	1-Heptene	6.09	4.55	5.77	3.88	4.92	4.71	4.40	5.00	3.09
11	2.91	-	Heptane	18.92	12.64	16.44	10.98	13.46	13.43	12.35	14.53	11.03
12	2.99	-	2-Heptene	-	2.26	1.39	-	2.34	1.60	1.24	2.15	1.68
13	3.12	-	3-Heptene	-	0.57	0.59	-	0.53	0.21	0.44	0.59	0.43
14	3.22	-	Methylcyclohexane	2.38	1.80	2.07	1.54	1.83	2.00	1.64	2.13	1.57
15	3.29	-	Methyl isobutyl ketone	1.06	1.20	1.24	1.03	0.39	0.44	0.66	0.35	
16	3.57	-	1,2,4-Trimethylcyclopentane	-	0.06	-	-	4.06	3.86	-	-	
17	3.77	-	3-Methylpentanal	7.25	4.78	4.44	-	4.46	5.49	3.67	-	
18	3.87	-	Toluene	6.20	6.05	4.48	5.62	5.59	3.89	3.43	6.95	3.40
19	3.99	-	3-Ethyl-2-methylpentane	4.41	4.55	4.96	4.23	4.06	4.63	3.76	5.38	4.16
20	4.10	-	2-Methylheptane	1.47	12.21	14.25	10.52	12.18	13.47	11.72	14.65	11.23
21	4.26	-	3-Methylheptane	9.62	7.51	7.97	2.46	7.22	8.20	5.70	9.60	6.97
22	4.40	-	Hexanal	4.03	1.85	1.35	5.89	5.89	1.98	1.36	4.16	1.23
23	4.50	-	2-Methyl-1-heptene	3.19	2.66	2.40	2.01	2.59	2.35	2.03	3.44	2.00
24	4.60	-	1-Octene	7.89	6.34	5.65	5.29	6.21	5.58	4.77	6.90	4.52
25	4.82	-	Tetrachloroethylene	-	130.40	18.63	-	0.66	0.56	-	-	
26	4.87	-	Octane	33.63	22.23	24.74	24.05	27.88	23.25	19.63	29.48	18.97
27	5.02	-	3-Octene	-	-	-	-	3.40	2.94	2.23	-	2.34
28	5.15	-	2-Octene	1.79	1.44	1.04	-	1.19	1.18	0.83	1.56	0.94
29	5.32	-	4-Hydroxy-4-methyl-2-pentanone	4.79	4.16	3.82	5.99	11.48	3.04	7.06	3.48	5.39
30	5.44	-	2,4-Dimethylheptane	2.22	1.64	1.72	-	1.70	1.91	1.72	2.12	1.82
31	5.60	-	2,6-Dimethylheptane	7.90	2.90	2.76	-	3.14	2.98	2.71	3.48	2.55
32	5.70	-	1,1,3-Trimethylcyclohexane	5.64	4.56	3.54	-	3.53	3.73	2.78	4.85	3.39
33	5.81	-	3,5-Dimethylheptane	-	1.09	-	-	0.96	1.16	0.91	1.19	1.03
34	6.31	-	2,3-Dimethylheptane	23.27	19.55	13.21	19.39	17.64	14.84	12.12	22.24	12.53
No	RT	RI calc	Compound	Concentration in Mixtures (ppm)								
----	----	---------	---------------------------------------	----------------------------------								
				P-155	Z0.3-135	Z0.6-135	PR10-155	Z0.6-R10-125	PR20-155	Z0.6-R20-135	PR-30-155	Z0.6-R30-145
35	6.54	-	4-Methylloctane	15.06	11.52	8.96	6.31	10.51	9.93	8.14	12.89	8.37
36	6.74	-	3-Methylloctane	12.70	8.51	7.45	9.71	9.16	8.55	6.82	11.59	7.13
37	6.90	-	p-Xylene	5.31	4.63	2.64	5.00	4.49	2.84	2.13	5.49	2.25
38	7.07	-	Heptanal	9.88	6.45	4.83	6.70	5.80	4.34	-	4.75	
39	7.21	-	1-Nonene	9.25	7.24	4.74	7.04	7.88	5.55	4.55	8.84	4.48
40	7.36	-	2-Butoxyethanol	-	1.68	22.34	7.25	12.29	1.24	1.27	1.46	1.02
41	7.55	900	Nonane	44.14	30.57	21.98	28.07	30.83	23.21	20.67	42.23	22.32
42	7.65	904	4-Nonene	4.58	2.70	1.63	-	2.91	2.05	1.81	4.40	2.25
43	7.83	911	3,7-Dimethyl-1-octene	1.54	-	-	1.55	1.27	1.00	1.88	1.09	-
44	8.26	928	Propylcyclohexane	2.47	2.88	1.19	-	1.64	1.18	1.02	2.83	1.10
45	8.31	930	3,5-Dimethylcyclooctane	2.82	2.03	1.37	-	2.07	1.69	1.36	3.12	1.41
46	8.56	939	2,6-Dimethylcyclooctane	12.73	9.60	6.90	10.51	9.62	7.66	6.16	14.37	6.59
47	8.76	946	3-Ethyl-2-methylheptane	16.58	13.42	8.90	12.88	13.45	9.94	8.02	18.03	8.62
48	8.88	950	4-Methyl-1-octene	3.67	3.04	1.82	3.89	3.15	2.06	1.67	4.17	1.81
49	8.93	952	1-Ethyl-3-methylbenzene	3.42	10.97	1.42	6.09	3.96	1.37	1.21	3.89	1.33
50	9.04	955	1-Ethyl-2-methylbenzene	10.03	2.80	2.02	10.95	2.92	2.04	1.65	5.38	1.91
51	9.37	966	4-Methylnonane	11.69	12.11	5.71	11.96	10.88	5.16	3.55	14.52	4.00
52	9.47	970	2-Methylnonane	10.76	10.44	5.82	11.22	10.42	5.84	5.05	11.85	4.87
53	9.65	975	3-Methylnonane	6.69	6.92	3.15	6.32	6.13	3.35	2.77	8.49	2.69
54	9.89	983	1-Ethyl-2-methylbenzene	7.49	10.43	5.13	13.01	9.15	4.08	3.53	14.44	2.62
55	10.15	991	2-Methyl-1-nonenone	-	-	-	-	3.17	2.07	1.26	-	-
56	10.16	991	1-Decene	3.72	5.18	1.50	6.18	4.58	1.71	1.33	4.35	1.35
57	10.29	995	1-Methyl-2-propylcyclohexane	-	5.29	-	-	1.31	0.69	0.55	2.56	0.61
58	10.41	999	cis-3-Decene	-	-	-	4.20	2.98	1.32	1.14	4.23	1.08
59	10.54	1003	Decane	38.29	37.00	19.42	42.08	38.18	16.47	14.80	57.26	14.48
60	10.73	1011	1,2,3-Trimethylbenzene	2.81	-	-	1.27	0.84	0.72	3.54	0.69	-
61	11.24	1029	2,6-Dimethylcyclohexane	11.31	11.11	6.02	12.30	10.02	4.45	3.59	22.17	4.59
62	11.46	1037	Pentylcyclopentane	1.52	2.91	-	3.60	1.33	0.50	0.46	2.98	0.00
63	11.67	1044	3,7-Dimethylcyclohexane	2.24	3.65	1.10	6.24	2.19	-	0.69	5.73	0.68
64	12.26	1064	5-Methyldecane	4.41	5.75	1.04	7.19	4.78	1.61	1.32	7.98	1.45
Table 2. Cont.

N°	RT	RT calc	Compound	Concentration in Mixtures (ppm)								
				P-155	Z0.3-135	Z0.6-135	PR10-155	Z0.6-R10-125	PR20-155	Z0.6-R20-135	PR-30-155	Z0.6-R30-145
65	12.35	1067	2,3-Dimethylnonane	4.53	6.68	1.75	8.98	5.30	1.54	1.25	8.48	1.38
66	12.46	1070	2-Methyldecane	5.94	8.58	1.96	11.39	6.65	1.97	1.21	11.37	1.81
67	12.64	1076	3-Methyldecane	5.58	7.59	2.29	10.16	5.99	2.18	1.70	9.77	1.79
68	13.30	1096	1-Undecene									
69	13.51	1103	Undecane	24.91	35.09	7.14	49.90	27.63	9.31	7.48	41.81	7.79
70	14.37	1135	2,3-Dimethyldecane		-	-	11.16	5.47	1.54	1.25	7.50	1.13
71	14.51	1140	1,2,4,5-Tetramethylbenzene	2.28	5.77	1.10	6.12	2.86	0.98	0.69	3.77	0.52
72	15.17	1163	2,6-Dimethylundecane									
73	15.26	1166	4-Methylundecane									
74	15.37	1169	2-Methylundecane	1.87	3.25	0.79	5.01	2.17	0.67	0.50	2.40	0.37
75	16.05	1191	2,3-Dimethylundecane		3.82	-	3.32	1.63	0.73	0.53	-	-
76	16.21	1197	1,2-Benzisothiazole		1.27	0.10	4.94	2.95	4.15	-	-	0.85
77	16.43	1204	Dodecane	9.02	13.71	2.29	23.43	10.79	1.00	3.43	10.23	3.14
78	16.77	1218	2,6-Dimethylundecane	3.06	5.38	2.69	5.58	3.73	-	0.63	0.98	0.60
79	18.43	1278	2-Butyl-1-octanol	1.59	0.61	3.08	1.33	0.59	0.23	0.49	0.21	-
80	19.09	1301	Tridecane	2.41	2.98	0.83	5.52	2.38	1.17	0.73	1.19	0.47
81	21.66	1400	Tetradecane	0.33	0.35	0.26	0.86	0.46	-	0.25	0.13	0.06
82	24.11	1500	Pentadecane		0.12	0.17	0.37	0.20	-	0.28	-	0.34
83	26.38	1597	Hexadecane		-	-	-	0.08	-	-	-	0.24

Identified compounds (%)
70.79 76.76 70.63 79.32 77.86 74.76 76.52 74.34 73.29

RT: Retention time (min); Rcalc: Calculated retention index; %: Relative abundance, considering only the compounds identified in each extract.
All twenty-eight compounds were also identified in the asphalt mixture fumes analyzed in the present process due to the hydrophobicity and low water solubility of PAHs and their propensity for low method avoids production of these compounds.

The absence of PAHs in the sample could indicate that the preparation used in the present study (Figure 1). Exposed SPME fibers have been used for determining PAHs in a conventional exposed fiber coating mode [99], which is comparable to the methodology used in the present study (Figure 1). Exposed SPME fibers have been used for determining PAHs directly in tailpipes [98,100]. The absence of PAHs in the sample could indicate that the preparation method avoids production of these compounds.

A similar study has been carried out to analyze VOCs in air from the paving and compaction stages of HMA; twenty-eight compounds were identified in the air samples, of which toluene, 4-ethyltoluene, xylene, 1,3,5-trimethylbenzene, and ethylbenzene were the most abundant [84]. All twenty-eight compounds were also identified in the asphalt mixture fumes analyzed in the present study. Additionally, Chong et al. [84] described the presence of chlorinated compounds such as tetrachloroethylene, chloromethane, and 1,2-dichloroethane, among many others, of which only tetrachloroethylene was identified in the present study. Moreover, Sharma and Lee [16] determined the presence of other chlorinated compounds such as di- and trichloroethane derivates, chloroform, carbon tetrachloride, and tri- and tetrachloroethylene derivates in atmospheric samples taken from HMA and WMA, of which only chloroform (trichloromethane) was identified in the present study.

Although polycyclic aromatic hydrocarbons (PAHs) are commonly present in hot mix asphalts [23,85], none were detected in the present study even though DVB/PDMS fibers were used to trap volatile compounds. Fibers containing DVB and PDMS layers have been found to be suitable for PAH analyses [59,67,86,87]. Quantification of PAHs is a complex, expensive, and time-consuming process due to the hydrophobicity and low water solubility of PAHs and their propensity for low recovery levels due to losses during sampling and sample preparation [87]. Gas-phase PAH sampling and sample preparation is usually performed by trapping on different types of sorbents materials and filters such as polyurethane foam (PUF) [88,89], XADs [90], Teflon [91], and Carbopack C [92], and by subsequent extraction with organic solvents. Thermal desorption or solid phase microextraction (SPME) are widely used as an alternative to those methods [87]. Currently, SPME-based methods are used for sampling and quantitative analysis of PAHs in water [93], soil [94–97], and air [98]. The SPME-based method involves different PAH capturing methods followed by thermal extraction of analytes using a thermogravimetric analyzer to Tedlar bags and determination of concentration by SPME in a conventional exposed fiber coating mode [99], which is comparable to the methodology used in the present study (Figure 1). Exposed SPME fibers have been used for determining PAHs directly in tailpipes [98,100]. The absence of PAHs in the sample could indicate that the preparation method avoids production of these compounds.
VOCs and SVOCs listed in Table 2 were classified on the basis of their chemical structure into seven groups of chemical compounds. The major groups of VOCs and SVOCs emitted by the prepared asphalt mixtures are compared in Figure 3.

In general, asphalt mixtures prepared at lower temperatures emitted fewer saturated and unsaturated aliphatic hydrocarbons and aromatic compounds than asphalt mixtures produced at higher temperatures. The addition of zeolite allows lower manufacturing temperatures to be used [18,19,101], and asphalt mixtures containing 0.6% natural zeolite produced fewer saturated and unsaturated aliphatic hydrocarbons and aromatic compounds than mixtures containing 0–0.3% zeolite—although Z0.6-R10-125 emitted significantly more unsaturated aliphatic hydrocarbons than the standard mixture (zeolite-free PR10-155). Additionally, among the asphalt mixtures prepared with RAP, all mixtures containing 0.6% natural zeolite produced fewer saturated and unsaturated aliphatic hydrocarbons and aromatic compounds than the standard mixtures (P-155, PR10-155, PR20-155, and PR30-155), saturated aliphatic hydrocarbons and aromatic compounds emissions increased slightly when RAP was added at concentrations of 10% and 30% but significantly decreased when 20% RAP was added. However, the incorporation of 0.6% natural zeolite into the mixture with 10–30% RAP produced a substantial decrease in emissions. These results are consistent with the incorporation of synthetic zeolites into asphalt mixtures to decrease the production temperatures and thus produce fewer fumes; this agrees with Report FHWA/OH-2009/08 of the Ohio Research Institute for Transportation and the Environment [102], in which the production of VOCs from three WMAs were measured. The WMAs were prepared with the following different materials: Aspha-min (contains zeolite with 20–21%
of water), Sasobit (a sasol wax, commercially known as FT hard wax), and Evotherm (a chemical material not described by the authors). Aspha-min WMA, containing zeolite at 0.3% by mass of the mix, and Sasobit WMA both show substantial reductions in VOCs of 62.8% and 51.3%, respectively, compared to conventional HMA. On the other hand, Evotherm WMA shows a substantial increase in VOCs, over two and a half times compared to conventional HMA \cite{102}. Similarly, Sharma and Lee \cite{16} demonstrated that the VOCs identified in atmospheric samples taken from HMA and WMA decreased with the use of synthetic zeolites as additives, compared to VOC emissions from mixes without additives at 180, 140, and 120 °C. The reduction in VOC emissions increased continuously as the zeolite dosage was increased from 2% to 6%.

In the present study, emissions of saturated aliphatic hydrocarbons were reduced by 3.3% (Z0.3-135) up to 58.9% (Z0.6-R30-145); unsaturated aliphatic hydrocarbons by 0.1% (Z0.3-135) up to 45.3% (Z0.6-R30-145); and aromatic compounds by 17.5% (Z0.6-R20-135) up to 62.3% (Z0.6-R30-145) in warm mix asphalts and zeolite-amended WMAs. On the other hand, WMAs produced greater emissions of chlorinated compounds (Figure 3) than the hot mixtures, from 21.3% (Z0.6-R30-145) to 1256.0% (Z0.3-135), probably because the competitive adsorption of water significantly decreased the adsorption by zeolites of chlorinated compounds such as tetrachloroethylene \cite{103,104}. However, all the asphalt mixtures studied produced fewer chlorinated compounds compared with the literature \cite{16,84}.

Thus, considering the lower production of toxic aromatic and chlorinated compounds compared with the literature, and the fact that PAHs were not detected, the WMAs prepared in the present study should be less harmful to paving workers and the environment than HMA.

4. Conclusions

In this research, asphalt mixtures modified with clinoptilolite-modernite natural zeolite and RAP reduced the temperatures required for asphalt mixture production, as reported by Topal et al. \cite{18} and Woszuk and Franus \cite{13,19}, resulting in the decreased emanation of major VOCs and SVOCs, and thus toxic fumes. Emissions of saturated and unsaturated aliphatic hydrocarbons and aromatic compounds were reduced in warm mix asphalts and zeolite-amended WMAs. Specifically, Z0.6-R20-135 and Z0.6-R30-145 produced the lowest emissions of saturated and unsaturated aliphatic hydrocarbons and aromatic compounds. The absence of polycyclic aromatic hydrocarbons indicated that the preparation technique would avoid the production of these toxic compounds; however, further experiments are needed to establish this conclusion. Although WMAs produced greater emissions of chlorinated compounds than the hot mixtures, all the asphalt mixtures studied produced fewer chlorinated compounds compared with the literature \cite{16,84}. This is one of the few reports showing the chemical composition released from asphalt fumes. All the results indicate that manufacturing warm mix asphalts using natural zeolite and RAP is a valuable alternative to hot mix asphalts because it is both more environmentally friendly and less harmful to the health of paving workers.

Author Contributions: Conceptualization, A.C.-F., E.S.-A., and G.V.; formal analysis, J.E. and C.M.; investigation, A.C.-F., E.S.-A., and G.V.; methodology, J.E., C.M., A.C.-F., E.S.-A., G.V., and A.Q.; project administration, A.C.-F., E.S.-A., and G.V.; writing—original draft, J.E., C.M., and A.Q.; writing—review and editing, J.E., A.C.-F., E.S.-A., G.V., and A.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research and the APC were funded by CONICYT-FONDEF IDeA, grant number 15I10235.

Acknowledgments: The authors would like to acknowledge CONICYT-FONDEF IDeA (grant number 15I10235), which provided support for this research at Universidad de La Frontera; CONICYT-FONDECYT (grant number 1141245); CONICYT-Postdoctoral FONDECYT (grant number 3180532); Vicerrectoría de Investigación y Postgrado VRIP-UFRO; and Bitumex Sur, the company associated with the project.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
References

1. Wang, Y.; Leng, Z.; Li, X.; Hu, C. Cold recycling of reclaimed asphalt pavement towards improved engineering performance. *J. Clean. Prod.* **2018**, *171*, 1031–1038. [CrossRef]

2. Raposeiras, A.; Movilla, D.; Vargas, A.; Bilbao, R.; Cifuentes, C. Evaluation of Marshall stiffness, indirect tensile stress and resilient modulus in asphalt mixes with reclaimed asphalt pavement and copper slag. *Rev. Ing. Constr.* **2017**, *32*, 15–24. [CrossRef]

3. Ghanizadeh, A.R.; Rahrovan, M.; Bafghi, K.B. The effect of cement and reclaimed asphalt pavement on the mechanical properties of stabilized base via full-depth reclamation. *Constr. Build Mater.* **2018**, *161*, 165–174. [CrossRef]

4. Guidimetta, J.M.; Cooley, L.A., Jr.; Brown, E.R. *Workability of Hot Mix Asphalt*. NCAT Rep. 03-03; Auburn University: Auburn, AL, USA, 2002.

5. Linch, K.D. Respirable Concrete Dust—Silicosis Hazard in the Construction Industry. *Appl. Occup. Environ. Hyg.* **2002**, *17*, 209–221. [CrossRef] [PubMed]

6. McCLean, M.D.; Rinehart, R.D.; Ngo, L.; Eisen, E.A.; Kelsey, K.T.; Herrick, R.F. Inhalation and dermal exposure among asphalt paving workers. *Ann. Occup. Hyg.* **2004**, *48*, 663–671.

7. European Asphalt Pavement Association (EAPA). EAPA Position Paper on the Use of Warm Mix Asphalt. 2010. Available online: https://eapa.org/wp-content/uploads/2018/07/the_use_of_warm_mix_asphalt_january_2010.pdf (accessed on 10 November 2020).

8. Autelitano, F.; Bianchi, F.; Giuliani, F. Airborne emissions of asphalt/wax blends for warm mix asphalt production. *J. Clean. Prod.* **2017**, *164*, 749–756. [CrossRef]

9. Capitão, S.; Picado-Santos, L.; Martinho, F. Pavement engineering materials: Review on the use of warm-mix asphalt. *Constr. Build Mater.* **2012**, *36*, 1016–1024. [CrossRef]

10. Rubio, M.D.C.; Moreno, F.; Martínez-Echevarría, M.J.; Martínez, G.; Vásquez, J.M. Warm mix asphalt: An overview. *J. Clean. Prod.* **2013**, *41*, 1–6. [CrossRef]

11. Rubio, M.D.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. *J. Clean. Prod.* **2012**, *24*, 76–84. [CrossRef]

12. Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An overview of the emerging warm mix asphalt technology. *Int. J. Pavement Eng.* **2014**, *15*, 79–94. [CrossRef]

13. Woszuk, A.; Franus, W. Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. *Constr. Build. Mater.* **2016**, *114*, 556–563. [CrossRef]

14. Pérez-Martínez, M.; Moreno-Navarro, F.; Martín-Marin, J.; Ríos-Losada, C.; Rubio-Gámez, M.C. Analysis of cleaner technologies based on waxes and surfactant additives in road construction. *J. Clean. Prod.* **2014**, *65*, 374–379. [CrossRef]

15. Qin, Q.; Farrar, M.J.; Pauli, A.T.; Adams, J.J. Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders. *Fuel* **2014**, *115*, 416–425. [CrossRef]

16. Sharma, A.; Lee, B. Novel nanocomposite of Ca(OH)$_2$-incorporated zeolite as an additive to reduce atmospheric emissions of PM and VOCs during asphalt production. *Environ. Sci. Nano* **2017**, *4*, 613–624. [CrossRef]

17. Sengoz, B.; Topal, A.; Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. *Constr. Build. Mater.* **2013**, *43*, 242–252. [CrossRef]

18. Topal, A.; Sengoz, B.; Kok, B.V.; Yilmaz, M.; Dokandari, P.A.; Oner, J.; Kaya, D. Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives. *Constr. Build. Mater.* **2014**, *57*, 38–44. [CrossRef]

19. Woszuk, A.; Franus, W. A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. *Appl. Sci.* **2017**, *7*, 293. [CrossRef]

20. Woszuk, A.; Zofka, A.; Bandura, L.; Franus, W. Effect of zeolite properties on asphalt foaming. *Constr. Build. Mater.* **2017**, *139*, 247–255. [CrossRef]

21. Franus, W.; Wdowin, M.; Franus, W. Synthesis and characterization of zeolites prepared from industrial fly ash. *Environ. Monit. Assess.* **2014**, *186*, 5721–5729. [CrossRef]

22. Franus, M.; Wdowin, M.; Bandura, L.; Franus, W. Removal of environmental pollutions using zeolites from fly ash: A review. *Fresenius Environ. Bull.* **2015**, *24*, 854–866.
46. Gamble, J.F.; Nicolich, M.J.; Barone, N.J.; Vincent, W.J. Exposure-response of asphalt fumes with changes in pulmonary function and symptoms. *Scand. J. Work Environ. Health* 1999, 25, 186–206. [CrossRef] [PubMed]

47. Burstyn, I.; Kromhout, H. Are all the members of a paving crew uniformly exposed to bitumen fume, organic vapour and benzo(a)pyrene? *Risk Anal.* 2000, 20, 653–663. [CrossRef] [PubMed]

48. Gamble, J.F.; Nicolich, M.J.; Barone, N.J.; Vincent, W.J. Exposure-response of asphalt fumes with changes in pulmonary function and symptoms. *Risk Anal.* 2000, 20, 653–663. [CrossRef] [PubMed]

49. Posniak, M. Polycyclic aromatic hydrocarbons in the occupational environment during exposure to bitumen fumes for inhalation studies in rats—Part I: Workplace samples and validation criteria. *Ann. Occup. Hyg.* 2006, 50, 789–804. [PubMed]

50. Preiss, A.; Koch, W.; Kock, H.; Elend, M.; Raabe, M.; Pohlmann, G. Collection, validation and generation of bitumen fumes for inhalation studies in rats—Part I: Workplace samples and validation criteria. *Ann. Occup. Hyg.* 2006, 50, 789–804. [PubMed]

51. Hugener, M.; Emmenegger, L.; Mattrel, P. Hot-recycling of tar-containing asphalt pavements emission measurements in the laboratory and in the field. *Road Mater. Pavement Des.* 2010, 11, 29–46. [CrossRef]

52. Breuer, D.; Hahn, J.-U.; Hober, D.; Emmel, C.; Musanke, U.; Ruhl, R.; Spickenheuer, A.; Raulf-Heimsoth, M.; Brüning, T. Characterization of asphalt fume composition under simulated road paving conditions by GC/MS and microflow LC/Quadrupole Time-of-Flight MS. *Anal. Chem.* 2001, 73, 3691–3700. [CrossRef] [PubMed]

53. Boczkaj, G.; Makos, P.; Przyjazny, A. Application of dynamic headspace and gas chromatography–mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen. *J. Sep. Sci.* 2016, 39, 2604–2615. [CrossRef] [PubMed]

54. Raulf-Heimsoth, M.; Pesch, B.; Rühl, R.; Brüning, T.; Ahrens, W.; Merzenich, H.; et al. Estimating exposures in the asphalt industry for an international epidemiological cohort study of cancer risk. *Am. J. Ind. Med.* 2003, 43, 3–17. [CrossRef] [PubMed]

55. Spickenheuer, A.; Ruhl, R.; Hober, D.; Raulf-Heimsoth, M.; Marczynski, B.; Welge, P.; Breuer, D.; Gabriel, S.; Musanke, U.; Rode, P.; et al. Levels and determinants of exposure to vapours and aerosols of bitumen. *Arch. Toxicol.* 2011, 85, S1–S20. [CrossRef]

56. Boczkaj, G.; Makos, P.; Przyjazny, A. Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents. *Anal. Methods* 2016, 8, 3570–3577. [CrossRef]

57. Thives, L.P.; Ghisi, E. Asphalt mixtures emission and energy consumption: A review. *Renew. Sustain. Energy Rev.* 2017, 72, 473–484. [CrossRef]

58. Ahrens, W.; Merzenich, H.; et al. Estimating exposures in the asphalt industry for an international epidemiological cohort study of cancer risk. *Am. J. Ind. Med.* 2003, 43, 3–17. [CrossRef] [PubMed]

59. Tang, B.; Isacsson, U. Chemical characterization of oil-based asphalt release agents and their emissions. *Fuel* 2006, 85, 1232–1241. [CrossRef]

60. Wang, J.; Lewis, D.M.; Castranova, V.; Frazer, D.G.; Goldsmith, T.; Tomblyn, S.; Simpson, J.; Stone, S.; Afshari, A.; Siegel, P.D. Characterization of asphalt fume composition under simulated road paving conditions by GC/MS and microflow LC/Quadrupole Time-of-Flight MS. *Anal. Chem.* 2001, 73, 3691–3700. [CrossRef] [PubMed]

61. Boczkaj, G.; Makos, P.; Fernandes, A.; Przyjazny, A. New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds. *J. Sep. Sci.* 2016, 39, 3946–3956. [CrossRef]

62. Boczkaj, G.; Makos, P.; Fernandes, A.; Przyjazny, A. New procedure for the examination of the degradation of volatile organonitrogen compounds during the treatment of industrial effluents. *J. Sep. Sci.* 2017, 40, 1301–1309. [CrossRef]

63. Makos, P.; Fernandes, A.; Boczkaj, G. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography–mass spectrometry. *J. Chromatogr. A* 2017, 1517, 26–34. [CrossRef]

64. Makos, P.; Fernandes, A.; Boczkaj, G. Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid–liquid microextraction with gas chromatography–mass spectrometry. *J. Sep. Sci.* 2018, 41, 2360–2367. [CrossRef]

65. American Society for Testing and Materials (ASTM D3549). *Standard Test Method for Thickness or Height of Compacted Bituminous Paving Mixture Specimens*; American Society for Testing and Materials: West Conshohocken, PA, USA, 2011.
Sustainability 2020, 12, 9546

66. Solaimanian, M.; Tahmoressi, M. Variability analysis of hot-mix asphalt concrete containing high percentage of reclaimed asphalt pavement. Transp. Res. Rec. J. Transp. Res. Board 1996, 1543, 13–20. [CrossRef]

67. Valdes-Vidal, G.; Calabi-Floody, A.; Sanchez-Alonso, E. Performance evaluation of warm mix asphalt involving natural zeolite and reclaimed asphalt pavement (RAP) for sustainable pavement. Constr. Build. Mater. 2018, 174, 576–585. [CrossRef]

68. Ouyang, G. 8-SPME and Environmental Analysis. In Handbook of Solid Phase Microextraction, 1st ed.; Pawliszyn, J., Ed.; Elsevier: Waltham, MA, USA, 2012; pp. 251–290.

69. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007.

70. Kovats, E.; Keulemans, A.I.M. The Kovás Index System. Anal. Chem. 1964, 36, 31A–41A.

71. Wang, H.; Geppert, H.; Fischer, T.; Wieprecht, W.; Möller, D. Determination of Volatile Organic and Polycyclic Aromatic Hydrocarbons in Crude Oil with Efficient Gas-Chromatographic Methods. J. Chromatogr. Sci. 2014, 53, 1–8. [CrossRef] [PubMed]

72. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Benzene; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2007.

73. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Toluene; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2017.

74. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Xylenes; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2007.

75. Henschler, D. Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of Chlorine in Organic Molecules. Angew. Chem. Int. Ed. Engl. 1994, 33, 1920–1935. [CrossRef]

76. Ábalos, M.; Bayona, J.M.; Ventura, F. Development of a solid-phase microextraction GC-NPD procedure for the determination of free volatile amines in wastewater and sewage-polluted waters. Anal. Chem. 1999, 71, 3531–3537. [CrossRef]

77. Tomkin, B.A.; Griest, W.H.; Higgins, C.E. Determination of N-nitrosodimethylamine at part-per-trillion levels in drinking waters and contaminated groundwaters. Anal. Chem. 1995, 67, 4387–4395. [CrossRef]

78. Takahashi, S.; Nagamura, F.; Sasaki, M.; Fujii, T. Gas chromatography with surface ionization detection of nitro pesticides. Chem. Pap. 2009, 63, 613–616. [CrossRef]

79. Hwang, Y.; Matsuo, T.; Hanaki, K.; Suzuki, N. Identification and quantification of sulfur and nitrogen containing odorous compounds in wastewater. Water Res. 1995, 29, 711–718. [CrossRef]

80. Lu, X.; Fan, C.; Shang, J.; Deng, J.; Yin, H. Headspace solid-phase microextraction for the determination of volatile sulfur compounds in odoriferous hyper-eutrophic freshwater lakes using gas chromatography with flame photometric detection. Microchem. J. 2012, 104, 26–32. [CrossRef]

81. Lestremau, F.; Desauziers, V.; Fanlo, J.-L. Headspace SPME followed by GC-MS for the analysis of malodorous sulfur compounds in liquid industrial effluents. Anal. Bioanal. Chem. 2004, 378, 190–196. [CrossRef] [PubMed]

82. Sun, J.; Hu, S.; Sharma, K.R.; Keller-Lehmann, B.; Yuan, Z. An efficient method for measuring dissolved VOSCs in wastewater using GC-SCD with static headspace technique. Water Res. 2014, 52, 208–217. [CrossRef] [PubMed]

83. Pedersen-Bjergaard, S.; Asp, T.N.; Vedde, J.; Carlberg, G.E.; Greibrokk, T. Identification of chlorinated sulfur compounds in pulp mill effluents by GC-MS and GCAED. Chromatographia 1993, 35, 193–198. [CrossRef]

84. Chong, D.; Wang, Y.P.; Guo, H.; Lu, Y.A.M. Volatile Organic Compounds Generated in Asphalt Pavement Construction and Their Health Effects on Workers. J. Constr. Eng. Manag. 2014, 140, 04013051. [CrossRef]

85. Song, Y.R.; Wang, C.X.; Zhang, Y.Z. Determination of the chemical composition in asphalt aqueous solutions by SPE and GC/MS. Petrol. Sci. Technol. 2011, 29, 1590–1595. [CrossRef]

86. Sulej-Suchomska, A.M.; Polkowska, Z.; Chmiel, T.; Dymerski, T.M.; Kokot, Z.J.; Namieśnik, J. Solid phase microextraction–comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry: A new tool for determining PAHs in airport runoff water samples. Anal. Methods 2016, 8, 4509–4520. [CrossRef]

87. Baimatova, N.; Koziel, J.A.; Kenessov, B. Passive sampling and analysis of naphthalene in internal combustion engine exhaust with retracted SPME device and GC-MS. Atmosphere 2017, 8, 130. [CrossRef]

88. Mandalakis, M.; Taspakis, M.; Tsoga, A.; Stephanou, E.G. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos. Environ. 2002, 36, 4023–4035. [CrossRef]
89. Tsapakis, M.; Stephanou, E.G. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: Study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ. Pollut. 2005, 133, 147–156. [CrossRef]
90. Possanzini, M.; di Palo, V.; Gigliucci, P.; Tomasi Scianò, M.C.; Cecinato, A. Determination of phase-distributed PAH in Rome ambient air by denuder/GC-MS method. Atmos. Environ. 2004, 38, 1727–1734. [CrossRef]
91. Bezabeh, D.Z. Screening of aerosol filter samples for PAHs and Nitro-PAHs by laser desorption ionization TOF Mass Spectrometry. Aerosol Sci. Technol. 1999, 30, 288–299. [CrossRef]
92. Bertoni, G.; Tappa, R.; Cecinato, A. Environmental monitoring of semi-volatile polycyclic aromatic hydrocarbons by means of diffusive sampling devices and GC-MS analysis. Chromatographia 2001, 53, 312–316. [CrossRef]
93. Lesellier, E. Extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) by solid phase micro-extraction/supercritical fluid chromatography (SPME/SFC). Analusis 1999, 27, 363–368. [CrossRef]
94. Cam, D.; Gagni, S.; Meldolesi, L.; Galletti, G. Determination of polycyclic aromatic hydrocarbons in sediment using solid-phase microextraction with gas chromatography-mass spectrometry. J. Chromatogr. Sci. 2000, 38, 55–60. [CrossRef] [PubMed]
95. Doong, R.; Chang, S.; Sun, Y. Solid-phase microextraction and headspace solid-phase microextraction for the determination of high molecular-weight polycyclic aromatic hydrocarbons in water and soil samples. J. Chromatogr. Sci. 2000, 38, 528–534. [CrossRef] [PubMed]
96. Wang, Y.; Zhang, J.; Ding, Y.; Zhou, J.; Ni, L.; Sun, C. Quantitative determination of 16 polycyclic aromatic hydrocarbons in soil samples using solid-phase microextraction. J. Sep. Sci. 2009, 32, 3951–3957. [CrossRef] [PubMed]
97. Tuncel, S.G.; Topal, T. Multifactorial optimization approach for determination of polycyclic aromatic hydrocarbons in sea sediments of Turkish Mediterranean coast. Am. J. Anal. Chem. 2011, 2, 783–794. [CrossRef]
98. Pacenti, M.; Lofrumento, C.; Dugheri, S.; Zoppi, A.; Borsi, I.; Speranza, A.; Boccalon, P.; Arcangeli, G.; Antonucci, A.; Castellucci, E.M. Physicochemical characterization of exhaust particulars from gasoline and diesel engines by solid-phase micro extraction sampling and combined Raman microspectroscopic/fast gas-chromatography mass spectrometry analysis. Eur. J. Inflamm. 2009, 7, 25–37. [CrossRef]
99. Ballesteros, R.; Hernández, J.J.; Lyons, L.L. Determination of PAHs in diesel particulate matter using thermal extraction and solid phase micro-extraction. Atmos. Environ. 2009, 43, 655–662. [CrossRef]
100. Koziel, J.A.; Ondzielowski, M.; Pawliszyn, J. Sampling and analysis of airborne particulate matter and aerosols using in-needle trap and SPME fiber devices. Anal. Chem. 2001, 73, 47–54. [CrossRef]
101. Marinković, M.; Milović, T.; Matić, V. Zeolite as Additive in Warm Mix Asphalt. In Proceedings of the 5th International Conference, Contemporary Achievements in Civil Engineering (SERBIA), Subotica, Serbia, 21 April 2017. [CrossRef]
102. Sargand, S.; Figueroa, J.L.; Edwards, W.; Al-Rawwashdeh, A.S. Performance Assessment of Warm Mix Asphalt (WMA) Pavements (Report FHWA/OM-2009/08); Ohio University: Athens, OH, USA, 2009.
103. Prakash, D.S.; Athota, K.V.; Greene, H.L.; Vogel, C.A. Sorption and Catalytic Destruction of Chlorinated VOCs Using Fresh and Dealamminated Y and ZSM-5 Zeolites. AIChE Symp. Ser. 1995, 309, 1–17.
104. Farrell, J.; Manspeaker, C.; Luo, J. Understanding competitive adsorption of water and trichloroethylene in a high-silica Y zeolite. Microporous Mesoporous Mater. 2003, 59, 205–214. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.