Implementation of Building Information Modeling (BIM) in Sarawak Construction Industry: A Review

N Zaini¹, A Ahmad Zaini¹*, S D Tamjehi¹, A W Razali¹ and H C Gui¹

¹ Department of Quantity Surveying, Faculty of Built Environment, Universiti Malaysia Sarawak (UNIMAS), Malaysia
*Corresponding author: azafzan@unimas.my

Abstract. The construction industry believes that Building Information Modeling (BIM) is a platform to transform the construction industry to a higher level by enhancing productivity and efficiency. It is proven that with BIM process execution, productivity can be enhanced through the effective collaboration process, increased return of investment, and reliable information to support the decision-making process. Efficiency can be enhanced through an integrated design process, reliable and accurate cost estimates, reduced financial risk, and reduced potential dispute. Thus, clients are gradually enforcing the use of BIM in their projects, resulting in many construction companies investing in BIM technology to fulfill clients' needs. This paper presents a review of over recent research to identify the key elements of awareness, benefits, strategies and implementation of BIM. The result reveals that the top ten (10) ranking of BIM awareness, BIM benefits, BIM challenges and BIM strategies for the industry player to implement and adopt BIM in Sarawak construction industry.

1. Introduction

The complexity of the construction process has contributed to project failure and it has been difficult to manage by parties involved. One of the major problems that repeatedly occurs during the process is lack of coordination between different professional background among construction stakeholders and other relevant parties [1]. To overcome this complexity of construction, a major evolution in technology has been achieved to attain the process easily and efficiently. Construction stakeholders must know how to deal with a fast transition of technological, a high-integrated society, and construction issues that required solution from multidisciplinary. Because of that, Building Information Modeling (BIM) has been implemented efficiently and effectively in building projects through an integrated and computerized system [2]. Over the last 10 years, the construction software platform has changed from 2D modelling to 3D modelling. Since the introduction of computer-aided design (CAD) software a few decades ago, the concept of BIM has been discussed. At that time, however, the scope of design was a three-dimensional building model enriched with some additional graphic design [3]. Over the years, BIM has adapted the ideas explored in previous decades to overshadow them. But now, BIM tools are parametric with user-defined rules that automatically improved the level of production [4]. Numerous software were developed to offer specialized solutions that could capturing all the relevant project information [5]. The implementation of BIM began with Level 0 where the CAD is used to produce drawings, then printable documents are exchanged with other disciplines. Then, for Level 1 that started in the year 2000, 2D designs are combined with 3D models. Level 1 is where most construction stakeholders in the industry apply the current level. At the beginning of 2010, the BIM...
level was increased to Level 2 where there was an additional aspect, such as Time Management and Budget Calculation, and complete coordination and partial interoperability using different CAD models. Level 3 included full cooperation and full integration between stakeholders in a cloud-based environment. BIM is primarily used as a visualization tool and the manner in which it is applied is significantly associated with the characteristics of the project. BIM is considered to be interactive tools that allow efficient project management by enhancing the planning, design and other construction activities [1]. It has been shown that the introduction of BIM has improved the performance of mission more dramatically than those linked to the enhancement of productivity [6]. BIM in government projects requires a transformation of current working practices in order to achieve higher quality of buildings performing at lower the costs [7]. In fact, the systematic the coordination of construction industry players at the early stage of design, the wider the potential to optimizing the advantages of BIM [8-9].

2. Literature Review

2.1. Significance of Building Information Modeling (BIM) in the construction industry

BIM is a latest approach towards transforming stakeholder’s thinking about how technology can enhance the level of construction and safety control [10]. In the United Kingdom, 2016 was the target year for the BIM Level 2 adoption of all procured construction projects. The construction industry’s challenge is the standardisation in working with clients and supply chain. Therefore, in United Kingdom (UK) government construction industrial strategy 2016-2020, government construction board must recognise their most effective levers to support and advance in the construction process [7]. It was one strategy BIM developed to meet this mandate and enable greater supply chain integration and the use of optimised standard processes. In addition, misunderstanding and how BIM can be implemented within multidisciplinary may be part of the major issues with the introduction of BIM [11]. Nevertheless, BIM has become prevalent in the construction industry, especially in the United States and United Kingdom. But, the usage of BIM in the local industry is still at an infancy level. Table 1 provides a study of the importance of BIM in the construction sector.

2.2. Building Information Modeling (BIM) in the Malaysian Construction Industry

In Malaysia, industry players need to have an environment and specific vision for them to enjoyed the benefits of BIM [16]. Encouragement from the local authorities and close coordination among industrial practitioners are one of the criteria to success. The queries appear as to whether all construction stakeholders in Malaysia are well aware of this and how much the grasp BIM in the Malaysia construction industry. Besides that, in Malaysia, the development of BIM is still in its infancy level, but it has get serious attention from different disciplines. In Sarawak, the most prominent challenges to the implementation of BIM are related to the high initial costs, lack of knowledge and training [17]. As a result, the government has made a number of efforts to encourage BIM development such as BIM Roadmap. BIM has also become a state agenda through Construction Industry Transformation Plan (CITTP) 2016-2020 with initiatives and mandates aimed at increasing productivity and efficiency in Malaysian construction industry to a higher level [4]. However, a numbers of challenges in implementing BIM remain, including costs, industry capacity, information requirements, lack of knowledge, lack of client demand and low BIM maturity level [18]. Construction players should be alert of the positive results of BIM in guide them strengthen the construction process. It is known that BIM is still new in the Malaysian construction industry. BIM is seen as high cost technology, but it has been shown to give a better clarification on the issues happened in construction.

2
Authors	Field of study	Issue	Key findings	Research gaps
Lu et al. [12]	BIM for Green Buildings	As the utility of BIM has been recognized in the construction industry, there is an urgent need to review the update of the study on the relation between BIM and green buildings is urgently needed.	Give significant guidelines for the construction practitioners to improve the relation between BIM and green building in construction development.	Not touch on the awareness of BIM but focusing on how to establish the guideline for building practitioners to implement BIM towards green building development.
Ghaffarianhoseini et al. [13]	Benefits, Understanding, risk and challenges of BIM implementation	The low level of BIM adoption tends to be related to the threats and barriers that potentially impede its usefulness.	Lack of demand, cost and ability were the main reasons of not implementing BIM. The difficulties of BIM and lack of BIM expert is a major concern.	Shows recommendation on why future use of BIM could be established. But, no comparison towards conventional methods. Not touch on the case studies that have implemented BIM.
Tan et al. [14]	Barriers in BIM adoption in China’s construction industry	The advantages of BIM remain abstract without overcoming any important obstacles in an appropriate manner.	Revealing significant difficulties to implement BIM in China and designing an effective three-level strategy to promote potential BIM implementation	Limited to 12 barriers from previous studies. Though the barriers have been discussed, there is scarcity of discussion on the advantages and strategy to implement BIM among construction stakeholder.
Singh et al. [15]	BIM and Stakeholder Management in UK Construction Industry	The BIM approach is transform the conventional approach of the construction industry, where there were many construction projects have not accomplished their goals because of inadequate management system among stakeholders.	BIM has an enormous potential for construction stakeholders where trust, technology, communication, people, collaboration, and stakeholder engagement are key to managing stakeholders in BIM projects.	Limited to the purpose of BIM in relation to construction stakeholders.

Table 1. Review on importance of BIM in construction sector.
3. Research Methodologies
This paper is focused on the findings of a much broader study involving a fair, logical point of view on the approach to the analysis and method of collecting data. The approaches of positivism have been applied in this research which consist of literature review, questionnaire survey, interviews and in depth comparative analysis. Through this approach, researchers to study on the awareness, benefits, challenges and strategies in implementing BIM in Sarawak construction industry. The researcher might explore more on the top ten (10) of BIM awareness, BIM benefits, BIM challenges and BIM strategies for the industry player to implement and adopt BIM in Sarawak construction industry. This allows the researcher the ability to interrelate with the stakeholders, thus understanding the organization’s issue; the essence stakeholder’s relationship during the decision-making process to implement BIM approach. Thus, by integrating positivism approach, a strong desire to increase the level of BIM implementation in Sarawak by providing the top ten (10) factors of awareness, benefits, challenges and strategies.

The research methodology employed in this study was to review the literature on BIM awareness, BIM benefits, BIM challenges and BIM strategies for the industry player to implement and adopt BIM. The choice of literature ranged five (5) years latest publication which since 2015 to 2019. The review was referring to the articles published from various recognized journal such as Journal of Engineering Design and Technology, Journal of Renewable and Sustainable Energy Reviews, Journal of Cleaner Production, Journal of Automation in Construction, Journal of Applies Mechanics and Materials, Journal Engineering Construction & Architectural Management, International Journal of Marketing Studies, and Journal of Organisation, Technology and Management in Construction. The analysis should concentrate on the factors that cause low level of acceptance towards BIM in construction industry. The peer-reviewed literature should be the author’s primary source of knowledge in presenting the top ten (10) key awareness, benefits, challenges and strategies for strengthening the implementation of BIM.

4. Findings and Discussion
Due to lack of BIM acceptance among construction players, it has been identified that there is an urgent need to increased knowledge and awareness of BIM in the industry [19]. However, the awareness among construction players in Malaysia is still way behind compared to Singapore and Hong Kong. Table 2 shows the top ten (10) of keys of awareness and benefits of BIM in construction industry.

Table 2. Top 10 ranking of awareness and benefits of BIM.

Awareness of BIM	Authors	Benefits of BIM	Authors
Internet	[20][21][22][23]	Improve Maintenance Process	[24][25][26]
Friend & Colleagues	[27]	Improve Value Engineering	[11]
Seminar	[28][27][29][30]	Improve Productivity	[31][32]
BIM-ArchiCAD	[33][22][34]	Facilitate Design, Construction, and Maintenance of Projects	[35]
BIM-AutoDesk Revit	[21][20]	Reduce Material Waste	[36][37][38]
BIM-Bentley	[23][39]	Better Production Quality	[40]
BIM Glodon CubiCost	[41]	Performing Through Sustainability Analyses in Design Stage	[5][42]
BIM-AutoDesk Naviswork	[43][21]	Provide Accurate Quantities for Building Materials and Components	[44][45]
BIM-AutoDesk BIM 360 Glue	[46][47]	On-Site Verification and Tracking	[48]
BIM-Tekla Structure	[49][23]	Early Design Error Identification	[23]
In the construction industry, not everything goes well according to plan. There are always challenges. However, new challenges bring along opportunities for innovation and improvements. Table 3 shows the top ten (10) ranking of challenges and strategies to increase the level of BIM adoption in construction industry.

Table 3. Top 10 ranking of challenges and strategies of BIM adoption

Challenges of BIM Adoption	Research	Strategies of BIM Adoption	Research
High Cost of BIM Implementation	[50][51][52]	Subsidizing the price of BIM software	[9][53]
Low Awareness of BIM causing fear and uncertainty	[54][55]	Undertaking BIM training and seminar	[53][1][56][57]
Difficulties in the employment of skilled BIM manpower	[58]	Improve internet and power supply infrastructure	[59][60]
Lack of National BIM Guidelines and Standard	[44][9][2]	Enhance the cooperation between BIM experts, academia and researchers to educate and expose BIM to the young generations	[53]
High Cost of Maintenance and Technical Support Issues	[61]	State compliance to incorporate BIM in construction projects	[28]
Lack of Government Involvement	[62]	Early understanding of BIM implementation by top management in the organisation	[54][34]
Steep Learning Curve and Time-Consuming for BIM Complexity	[2][32]	Encouragement from top managerial in the organization to implement BIM	[1]
Lack of Support and Commitment to Top Management	[29][27][43][2]	The government should provide national BIM standard and guidelines	[63]
Integration, Storage and Compatibility Issues	[20][23]	Strategic approach framework is needed to help builders to adopt BIM	[64]
Unconvinced of BIM Benefits and Competitive Advantages	[65]	Employ competent staff to operate BIM software	[29][66]

5. Conclusions
BIM is a useful digital approach for anyone who involves in the construction industry. There is no question that over the years, the idea of collaborative work has become increasingly more popular. That is why all construction stakeholders must be aware of the different BIM maturity levels. Since then, BIM has been used as construction management tools by the industry player to enhance coordination, exchanging information as well as effectiveness of the documentation in construction projects. This study offered some new insights into some of the explanations for low levels of awareness, poor acceptance and negative perceptions of the BIM in the Sarawak Construction Industry.

6. References
[1] Latiffi A A, Mohd S and Rakiman U S 2015 Potential Improvement of Building Information Modeling (BIM) Implementation in Malaysian Construction Projects The 12th IFIP International Conference on Product Lifecycle Management (IFIP) (Doha, Qatar)
[2] Aizat K, Jamal A, Mohammad M F, Hashim N and Mohamed M R 2019 Challenges of Building Information Modelling (BIM) from the Malaysian architect’s perspective MATEC Web Conf. 266 1-9

[3] Gamil Y and Ismail A R 2019 Awareness and challenges of building information modelling (BIM) implementation in the Yemen construction industry J. Eng. Des. Technol. 17 5 1077–1084

[4] CIDB Malaysia 2015 Construction Industry Transformation Programme 2016–2020 Retrieved on February, 22 2020 from http://www.citp.my

[5] Chong X W and Lee C 2017 A Mixed Review of the Adoption of Building Information Modelling (BIM) for sustainability J. Clean. Prod. 142 4114–4126

[6] Cao D, Guangbin W, Heng L, Martin S, Ting H and Weiyu Z 2015 Practices and effectiveness of Building Information Modeling in construction project in China, Autom. Constr. 49 113–122

[7] The Infrastructure and Projects Authority 2016 Government Construction Strategy 2016-2020 (United Kingdom: The Infrastructure and Projects Authority)

[8] Osman J, Sharifah M, Syed K and Razakaspian A 2015 Building Information Modelling: Proposed adoption model for quantity surveying firms, Int. Conf. Inf. Technol. Soc. 8151–165

[9] Rogers J, Chong H and Christopher P 2015 Adoption of building information modelling technology (BIM) perspectives from Malaysian engineering consulting services firms Eng. Constr. Archit. Manag. 22 424–445

[10] Zhou H, Sun J, Wu Y and Chen H 2018 Research on BIM Application in construction based on the Green Building Idea International Conference on Humanities and Advanced Education Technology (ICHAET 2018) (Guangzhou)

[11] Shin J, Kim I and Choi J 2016 BIM-based Work Environment of Value Engineering in Sustainable Construction BIM-based Work Environment of Value Engineering in Sustainable Construction Adv. Sci. Technol. Lett. 141 79–83

[12] Lu Y, Wu Z, Chang R and Li Y 2017 Building Information Modeling (BIM) for green buildings: A critical review and future directions Autom. Constr. 83 134–148

[13] Ghaffarianhoseini A., Tookey J, Ghaffarianhoseini A, Naismith N, Azhar S, Efimova O and Raahemifar K 2017 Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges Renew. Sustain. Energy Rev. 75 1046–1053

[14] Tan T, Chen K, Xue F, and Lu W 2019 Barriers to Building Information Modelling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach J. Clean. Prod. 219 949–959

[15] Singh S, Chinyio E, and Suresh S 2018 The implementation of stakeholder management and Building Information Modelling (BIM) in UK construction projects Proceeding of the 34th Annu. ARCOM Conf. (Belfast)

[16] Gardezi S S S, Shafiq N, Nurudinn M F, Farhan S A and Umar U A 2014 Challenges for implementation of building information modeling (BIM) in Malaysian construction industry Appl. Mech. Mater. 567 559–564

[17] Wong S S and Yew Z U 2017 Barriers in Implementing Building Information Modelling (BIM) In Quantity Surveying Firms Proceeding of the 21st Annual Pacific Asian Quantity Surveyors Congress (Vancouver, BC Canada) pp 24-29

[18] Doan D T, Ghaffarianhoseini A, Naismith N, Zhang T, Ghaffarianhoseinim A and Tookey T 2017 A critical comparison of green building rating systems Build. Environ. 123 243–260

[19] Chileshe N 2014 Awareness, Usage And Benefits Of Building Information Modelling (BIM) Adoption-The Case Of South Australian Construction Organizations Proceedings 28th Annual ARCOM Conference (Edinburgh)

[20] Rezgui Y, Beach T and Rana O. 2013 A Governance Approach for BIM Management Across Lifecycle and Supply Chains Using Mixed-Modes of Information Delivery J. Civ. Eng. Manag. 19 239–258

[21] Porwal A and Hewage K. N. 2013 Automation in Construction Building Information Modelling (BIM) partnering framework for public construction projects Autom. Constr. 31 204–214
[22] Bin Zakaria Z, Mohamed Ali N, Tarmizi Haron A, Marshall-Ponting A J and Abdul Hamid Z 2013 Exploring the adoption of Building Information Modelling (BIM) in the Malaysian construction industry: A qualitative approach Int. J. Res. Eng. Technol. 2 384-395

[23] Xiangyu H C and Yi W 2015 BIM-Enabled Structural Design: Impacts and Future Developments in Structural Modelling, Analysis and Optimisation Processes BIM-Enabled Structural Design: Impacts and Future Developments in Structural Modelling, Analysis and Optimisation Processes Arch. Comput. Methods Eng. 22 135–151

[24] Chen W, Chen K, Cheng J C, Wang Q and Gan V J 2018 BIM-based framework for automatic scheduling of facility maintenance work orders Autom. Constr. 91 15–30

[25] Cecconi F R, Moretti N, Maltese S, and Tagliahue L C 2019 Advances in Informatics and Computing in Civil and Construction Engineering (Switzerland: Springer Nature) pp 371–378

[26] Ilter D and Ergen E 2016 BIM for building refurbishment and maintenance: current status and research directions Struct. Surv. 33 228-256

[27] Kugbeadjo W, Suresh S and Renukappa S 2016 BIM awareness and readiness of postgraduate built environment students in West Midlands universities, UK Going north for sustainability: leveraging knowledge and innovation for sustainable construction and development (London: IBEA Publications Ltd.) pp 531–543

[28] Latiffi A A, Mohd S, Kasim N and Fathi M S 2013 Building Information Modeling (BIM) application in Malaysian construction industry J. Constr. Eng. M. 2 1–6

[29] Yusuf B Y, Embi M R and Ali K N 2017 Academic Readiness for Building Information Modelling (BIM) Integration to Higher Education Institutions (HEIs) in Malaysia International Conference on Research and Innovation System (Langkawi, Malaysia)

[30] Lu J and Liao X 2018 3D Model of A retaining structure and a construction schedule based on BIM Adv. Res. 163 464–467

[31] Nath T, Attarzadeh M, Tiong R L., Chidambaram C and Yu Z 2015 Productivity improvement of precast shop drawings generation through BIM-based process re-engineering Autom. Constr. 54 54–68

[32] Teo A. L. Evelyn, O. George, I. K. Tjandra, and H. Kim 2015 The potential of Building Information Modelling (BIM) for improving productivity in Singapore construction Proceedings of the 31st Annual Conferences (Nottingham, UK)

[33] Ahmed S 2018 Barriers to Implementation of Building Information Modelling (BIM) to the Construction Industry: A Review J. Civ. Eng. Constr. 2 pp 107–113

[34] Enegbuma W I and Ali K N 2011 A Preliminary Study on Building Information Modelling (BIM) Implementation in Malaysia Proceedings of 3rd International Postgraduate Conference on Infrastructure and Environment (Hong Kong)

[35] Dakhil A and Underwood J 2016 BIM benefits-maturity relationship awareness among UK construction Proceedings of the First International Conference of the BIM Academic Forum (Glasgow)

[36] Mall A 2019 Reducing Material Waste with The Application Of Building Information Modelling (BIM)Master Thesis (Durban University of Technology) pp 93 - 103

[37] Liu Z, Osmani M, Demian P and Baldwin A 2015 A BIM-aided construction waste minimisation framework Autom. Constr. 59 1–23

[38] Akinade O, Oyedele L O, Munir K, Bilal M and Ajayi S 2016 Evaluation criteria for construction waste management tools: towards a holistic BIM framework Int. J. Sustain. Build. Technol. urban Dev. 7 3–21

[39] Xu Y, Zhang J, Li D and Ao C 2019 BIM Model Integration of Concrete and Steel Structures in Assembled Substations Adv. Comput. Sci. Res. 91 65–70

[40] Doumbouya L, Gao G and Guan C 2016 Adoption of the Building Information Modeling (BIM) for Construction Project Effectiveness: The Review of BIM Benefits American J. of Civil Engineering and Architecture 4 74–79
[41] Ismail N A A, Adnan H and Bakhry N A 2019 Building Information Modelling (BIM) Adoption by Quantity Surveyors: A Preliminary Survey from Malaysia Building Information Modelling (BIM) Adoption by Quantity Surveyors: A Preliminary Survey from Malaysia IOP Conf. Ser. Earth Environ. Sci. 267 052041

[42] Olawumi T and Chan D W M 2018 Identifying and Prioritizing the Benefits of Integrating BIM and Sustainability Practices in Construction Projects: A Delphi Survey of International Experts Sustain. Cities Soc. 40 16–27

[43] Matthews J, Love P E D, Heinemann S, Chandler R, Rumsey C and Olatunj O 2015 Automation in Construction Real time progress management: Re-engineering processes for cloud-based BIM in construction, Autom. Constr. 58 38–47

[44] Smith P 2016 Project cost management with 5D BIM, Procedia - Soc. Behav. Sci. 226 193–200

[45] Davidson J, Fowler J, Pantazis C, Sannino M, Walker J, Sheikhkoshkar M and Rahimian F P 2019 Integration of Virtual Reality Applications with BIM for Facilitating Real Time Bill of Quantities during Design Phases: A Proof of Concept Study Front. Eng. Manag. 293 1–14

[46] Getuli V, Ventura S M, Capone P and Ciribini A L C 2016 Field BIM and Supply Chain Management in Construction: an On-going Monitoring System Creative Construction Conference (Budapest, Hungary) pp 620–625

[47] Getuli V, Mastrolembo S, Capone P and Ciribini A L C 2016 A BIM-based construction supply chain framework for monitoring progress and coordination of site activities Procedia Eng. 164 542–549

[48] Zielinski R and Wojtowicz M 2019 Different BIM levels during the design and construction stages on the example of public utility facilities Comput. Technol. Eng. 020075 020075-1-020075–8

[49] Benghi C and Greenwood D 2018 Constraints in authoring bim components: results of longitudinal interoperability tests Contemporary Strategies and Approaches in 3D Information Modeling (Pennsylvania: IGI Global) chapter 2 pp 27-51

[50] Mehran D 2016 Exploring the Adoption of BIM in the UAE construction industry for AEC firms Procedia Eng. 145 1110–1118

[51] Liu S, Xie B, Tivendale L and Liu C 2015 Critical Barriers to BIM Implementation in the AEC Industry Int. J. Mark. Stud. 7 162

[52] Yamamura S, Fan L and Suzuki Y 2017 Assessment of urban energy performance through integration of BIM and GIS for smart city planning Procedia Eng. 180 1462–1472

[53] Kiani I, Sadeghifam A N, Ghomi S K, Kadiri A and Marsono B 2015 Barriers to Implementation of Building Information Modeling in Scheduling and Planning Phase in Iran Aust. J. Basic Appl. Sci. 9 91–97

[54] Sunil K, Pathirage C and Underwood J 2017 Factors impacting Building Information Modelling (BIM) implementation in cost monitoring and control 13th International Postgraduate Research Conference (IPGRC): conference proceedings (Salford)

[55] Lee C Y, Chong H Y and Wang X 2018 Enhancing BIM performance in EPC projects through integrative trust-based functional contracting model J. Constr. Eng. Manag. 144 06018002

[56] Chan D, Olawumi T and Ho A 2019 Critical success factors for building information modelling (BIM) implementation in Hong Kong Eng. Constr. Archit. Manag. 26 1838 - 1854

[57] Husain A H, Razali H M and Eni S 2018 Stakeholders’ expectations on building information modelling (BIM) concept in Malaysia Prop. Manag. 36 400–422

[58] Sinoh S S, Othman F and Ibrahim Z 2018 Factors affecting success and difficulty to adopt Building Information Modelling (BIM) among construction firms in Sabah and Sarawak Mater. Sci. Eng. 431 082012

[59] Liu Y, Van Nederveen S and Hertogh M 2017 Government’s perspective on BIM and sustainability in transport infrastructure in Europe and China Life-Cycle Eng. Syst. Emphas. Sustain. Civ. Infrastruct. - 5th Int. Symp. Life-Cycle Eng. IALCCE 2016 (Delft, The Netherlands)
[60] Fang Y, Cho Y K, Zhang S and Perez E 2016 Case Study of BIM and Cloud-Enabled Real-Time RFID Indoor Localization for Construction Management Applications J. Constr. Eng. Manag. 142 15016003

[61] Tahir M M, Haron N A, Alias A N Harun I B 2018 Improving Cost and Time Control in Construction Using Building Information Model (BIM): A Review, Sci. Technol. 26 21–36

[62] Kim K P, Ma T, Baryah A S, Zhang C and Hui K M 2018 Investigation of Readiness for 4D and 5D BIM Adoption in the Australian Construction Industry Manag. Rev. An Int. J. 11 43

[63] Ahuja R, Jain M, Sawhney A and Arif M 2016 Adoption of BIM by architectural firms in India: technology–organization–environment perspective Archit. Eng. Des. Manag. 2 pp 311–330

[64] Mohd S, Brahim J, Latiffi A A, Fathi M S and Harun A N 2017, Developing Building Information Modelling (BIM) Implementation Model for Project Design Team Proceeding International Conference on Innovation and Management 2016 (Kuala Lumpur)

[65] Abu Bakar M, Ibrahim Y, Kado D and Bala K 2014 Contractors Perception of the Factors Affecting Building Information Modelling (BIM) Adoption in the Nigerian Construction Industry Proceedings of the 2014 International Conference on Computing in Civil and Building Engineering (Orlando)

[66] Gerges M, Austin S, Mayouf M, Ahiakwo O, Jaeger M, Saad A and El Gohary T 2017 An investigation into the implementation of Building Information Modeling in the Middle East J. Inf. Technol. Constr. 22 1–15

Acknowledgement
This paper is supported by Universiti Malaysia Sarawak (UNIMAS) Special Top-Down Grant Project ID : F02/SpTDG/1729/2018.