Moutard type transformation for matrix generalized analytic functions and gauge transformations

R. G. Novikov and I. A. Taimanov

There has recently been considerable progress in the theory of Darboux–Moutard type transformations for two-dimensional linear differential systems with applications to geometry, spectral theory, and soliton equations (see [1]–[4], for instance). In the present note we derive such a transformation for the matrix generalized function system

\[\partial_\tau \Psi + A \Psi + B \overline{\Psi} = 0, \]

where \(\partial_\tau = \partial/\partial_\tau \), and the coefficients \(A \) and \(B \) and the solutions \(\Psi \) are \(N \times N \) matrix functions defined on an open simply connected domain \(D \) in \(\mathbb{C} \). In particular, this generalizes the transformation for \(N = 1 \) found in [4] with \(A = 0 \). In addition, we show that the Moutard type transformation for a system of the form (1) with \(B = 0 \) is equivalent to a gauge transformation for the connection \(\nabla_\tau = \partial_\tau + A \). In turn, our studies show that the Moutard type transformation for (1)) with \(A = 0 \) can be treated as a proper analogue of the indicated gauge transformation.

As for \(N = 1 \), the system (1) can be reduced to the system

\[\partial_\tau \Psi + B \overline{\Psi} = 0, \]

that is, to (1) with \(A = 0 \), by the gauge transformation

\[\Psi \rightarrow \tilde{\Psi} = g^{-1} \Psi, \quad B \rightarrow \tilde{B} = g^{-1} B \overline{g}, \quad \partial_\tau g + A g = 0, \quad \det g \neq 0. \]

We say that the system

\[\partial_\tau \Psi^+ - \overline{\Psi}^+ B = 0 \]

is conjugate to (2) (see [5] for a similar definition for \(N = 1 \)).

We have the following result.

Theorem 1. The systems (2) and (3) are covariant, that is, are mapped into systems of the same type, with respect to the Moutard type transformation

\[\Psi \rightarrow \tilde{\Psi} = \Psi - F \omega_{F,F^+}^{-1} \omega_{\Psi,F^+}, \quad \Psi^+ \rightarrow \tilde{\Psi}^+ = \Psi^+ - \omega_{\Psi^+,\Psi} \omega_{F,F^+}^{-1} F^+, \]

\[B \rightarrow \tilde{B} = B + F \omega_{F,F^+}^{-1} F^+, \]

where \(F \) and \(F^+ \) are arbitrary fixed solutions of (2) and (3), respectively,

\[\partial_\tau \omega_{\Psi^+,\Psi} = \Phi^+ \overline{\Phi}, \quad \text{Re} \omega_{\Psi^+,\Psi} = 0 \]

for \(\Phi \) and \(\Phi^+ \) satisfying equations (2) and (3), and \(\det \omega_{F,F^+} \neq 0 \).

This work was done during the visit of the second author to the Centre de Mathématiques Appliquées of École Polytechnique in July 2016 and was supported by the Russian Science Foundation (grant no. 14-11-00441).

AMS 2010 Mathematics Subject Classification. Primary 35A30, 58J72.

DOI: https://doi.org/10.1070/RM9741.

© 2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.
To find ω_{Φ, Φ^+} satisfying (5) we use also the fact that $\partial_z \omega_{\Phi, \Phi^+} = -\overline{\Phi}^+ \Phi$. Moreover, our definition of ω_{Φ, Φ^+} is self-consistent up to a purely imaginary matrix integration constant in view of the identity $\partial_z \Phi^+ \Phi = -\partial_z \Phi^+ \Phi$. The last equality follows from the systems (2) and (3) for Φ and Φ^+, respectively. Recall that the domain D is simply connected.

For given $\omega_{F, F^+}, \omega_{\Phi, F^+}$, and ω_{F, Φ^+}, Theorem 1 is proved by straightforward computations.

In addition, for the system

$$
\partial_z \Psi + A \Psi = 0,
$$

that is, for (1) with $B = 0$, the following result holds.

Proposition 1. The system (6) is covariant under the following Moutard type transformation:

$$
\Psi \rightarrow \tilde{\Psi} = \Psi - F \tilde{\omega}_{F, F^+}^{-1} \omega_{\Phi, F^+}, \quad A \rightarrow \tilde{A} = A + F \tilde{\omega}_{F, F^+}^{-1} F^+,
$$

where F is an arbitrary fixed solution of (6), F^+ is an arbitrary fixed matrix function,

$$
\partial_z \tilde{\omega}_{F, F^+} = F^+ \Phi
$$

for any matrix function Φ, and $\det \tilde{\omega}_{F, F^+} \neq 0$.

Equations (7) and (8) are analogues of (4) and (5). However, in contrast to (5) we do not require the matrix functions $\tilde{\omega}_{F, F^+}$ to be purely imaginary. Equation (8) is solvable for $\tilde{\omega}_{F, F^+}$, and Proposition 1 is proved by straightforward computations.

Remark. Let A, \tilde{A}, Ψ, F, F^+, and $\tilde{\omega}_{\Phi, F^+}$ be the same as in Proposition 1. Let $g = 1 - F \tilde{\omega}_{F, F^+}^{-1} \Lambda$, with $\Lambda \Psi = \Lambda A + F^+$. Then $\partial_z (g \Psi) + \tilde{A}(g \Psi) = 0$. This is proved by straightforward computations, and it shows that for invertible g the transformation $A \rightarrow \tilde{A}$ reduces to a gauge transformation.

Bibliography

[1] D. Yu, Q. P. Liu, and S. Wang, *J. Phys. A* 35:16 (2002), 3779–3785.

[2] И. А. Тайманов, С. П. Царев, *TMФ* 157:2 (2008), 188–207; English transl., I.A. Taimanov and S.P. Tsarev, *Theoret. and Math. Phys. *157:2 (2008), 1525–1541.

[3] И. А. Тайманов, *Матем. заметки* 97:1 (2015), 129–141; English transl., I.A. Taimanov, *Math. Notes* 97:1 (2015), 124–135.

[4] П. Г. Гриневич, Р. Г. Новиков, *Функциональный анализ и его приложения* 50:2 (2016), 81–84; English transl., P.G. Grinevich and R.G. Novikov, *Funct. Anal. Appl.* 50:2 (2016), 150–152.

[5] И. Н. Векуа, *Обобщенные аналитические функции*, 2-е изд., Наука, М. 1988, 510 с.; English transl. of 1st ed., I.N. Vekua, *Generalized analytic functions,*
Roman G. Novikov
CNRS, Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau, France; Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences
E-mail: novikov@cmap.polytechnique.fr

Iskander A. Taimanov
Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
E-mail: taimanov@math.nsc.ru

Presented by V. M. Buchstaber
Accepted 20/JUL/16
Translated by THE AUTHORS