An isogeometric approach for size-dependent buckling analysis of FGM nanoplates

P Phung-Van\(^1\), M Abdel-Wahab\(^1\), H Nguyen-Xuan\(^2\)

1 Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Faculty of Engineering and Architecture, Ghent University, Belgium
2 Center for Interdisciplinary Research in Technology, Hutech University, Ho Chi Minh City, Vietnam

Abstract. In this paper, a suitable and simple computational formulation based on Isogeometric Analysis (IGA) integrated with higher-order shear deformation theory (HSDT) is introduced for size-dependent buckling analysis of functionally graded material (FGM) nanoplates. The material properties of FGM based on the Mori–Tanaka schemes and the rule of mixture are used. The differential nonlocal equations are utilized to take into account size effects. The nonlocal governing equations are approximated according to IGA based on HSDT, which satisfies naturally the higher-order derivatives continuity requirement in weak form of FGM nanoplates. The effect of nonlocal approach on the behaviors of the FGM nanoplates with several volume fraction exponents is investigated to show the reliability of the proposed method.

1. Introduction

There has recently been a fast growth in applications of nanoscale structures, which are primarily concerned with fabrication of FGMs. FGM nano-plates, as specific nanostructures, have been applied in the engineering and technology sectors. Therefore, the understanding of the behaviours of the FGM nano-plates is essential for the development of nanostructures because of their huge potential applications in the real life. In continuum mechanics, one of the well-known theories, which includes small scale effects with a good agreement and accuracy with molecular dynamics (MD) simulations, is the nonlocal continuum theory of Eringen [1]. Finite Element method (FEM) is a very well known numerical techniques and has been used for a wide range of applications [2-15]. Using FEM, Demir and Civalek [16] investigated small scale effects on vibration response of microtubules. The free vibration and buckling analyses of FG nano-plate using Navier solution subjected to thermal load were reported in Ref. [17]. Effect the beam thickness reduction on bending behaviour of micro-beams was observed in Ref. [18]. The mechanical behaviour for homogenous nonlinear micro beams [19], FG nonlinear micro beams [20]. A nonlinear micro beams model based on the strain gradient elasticity is introduced in Refs. [21, 22]. Size-dependent free analysis of FGM square plate based on FSDT was reported by Natarajan et al. [23]. Size-dependent analysis of FG nano-plates using IGA based on quasi-3D theory is recently examined in Ref [24]. Recently, Phung-Van et al. studied static and free vibration analyses of FG-CNTRC nano-plates [25] and nonlinear transient analysis of FGM nanoplates [26]. Furthermore, mechanical behaviours of FGM composite plates based on the local continuum theory have recently been published in Refs. [27-43]. This paper hence aims to develop a size-dependent buckling analysis of FGM nano-plates by a combination of IGA and the nonlocal continuum theory based on HSDT. In particular, we show that IGA based on HSDT fulfilling C2-continuity requirements can easily achieve the higher-order derivatives in the framework of the

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

IOP Conf. Series: Journal of Physics: Conf. Series 842 (2017) 012085 doi:10.1088/1742-6596/842/1/012085
nonlocal continuum theory, which is of interest in this study. Size effects based on Eringen [1] in the differential nonlocal equations are performed. The effect of nonlocal approach on the behaviors of the FGM nanoplates with various volume fraction exponents are discussed in details.

2. Functional graded materials
A functionally graded material nanoplate made of ceramic and metal is considered in this research. The properties materials based on the rule of mixture can be given as:

\[
P(z) = (P_c - P_m) V_c + P_m ; \quad V_c = \left(\frac{1}{2} + \frac{z}{h}\right)^n \quad (n \geq 0) ; \quad V_m = 1 - V_c
\]

where \(m\) and \(c\) represent the metal and ceramic constituents, respectively, \(P\) refers to the effective material properties including the thermal conductivity \(k\), \(\nu\) Poisson’s ratio, \(\rho\) density, \(E\) Young’s modulus and \(\alpha\) thermal expansion. \(V_m\) and \(V_c\) are the volume fraction of the metal and ceramic, respectively, \(z\) is the thickness coordinate of plate and varies from \(-t/2\) to \(t/2\) and \(n\) is the volume fraction exponent.

3. Theoretical formulation

3.1 Nonlocal elasticity theory
Eringen [1] exhibited an equivalent form of differential equations of nonlocal stress at any points \(x\) as follows:

\[
(1 - \mu \nabla^2) \sigma_{ij} = t_{ij}
\]

where \(\mu = e_0 l\), \(0 \leq \mu \leq 4\) is the small-scale effect; \(l\) is an internal characteristic length; \(e_0\) is material constant and \(\nabla^2 = \partial^2 / \partial x^2 + \partial^2 / \partial y^2\) is the Laplace operator.

3.2 Displacement field
The displacement field can be expressed as follows [44]:

\[
\begin{align*}
 u(x, y, z) &= u_0 + z \beta_x + cz^3 \left( \beta_x w_x \right) \\
v(x, y, z) &= v_0 + z \beta_y + cz^3 \left( \beta_y w_y \right), \quad \left(-h/2 \leq z \leq h/2\right) \\
w(x, y, z) &= w_0
\end{align*}
\]

where \(c = 4/3h^2\).

The Green strain-displacement relations are now given as

\[
\varepsilon = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \gamma_{xy} \end{bmatrix}^T = \varepsilon_m + z \chi_1 + z^3 \chi_2 \quad ; \quad \gamma = \begin{bmatrix} \gamma_{xx} & \gamma_{xy} \end{bmatrix}^T = \varepsilon_x + z^2 \chi_x
\]

where

\[
\begin{bmatrix} \varepsilon_m \\ \varepsilon_x \end{bmatrix} = \begin{bmatrix} u_{0,x} & v_{0,y} \\ u_{0,y} & v_{0,x} \end{bmatrix} \quad ; \quad \chi_1 = \begin{bmatrix} \beta_{x,x} \\ \beta_{y,y} \end{bmatrix} \quad ; \quad \chi_2 = \begin{bmatrix} \beta_{x,x} + w_{0,xx} \\ \beta_{x,y} + w_{0,xy} \\ \beta_{y,y} + 2w_{0,yy} \end{bmatrix} \quad ; \quad \chi_x = \begin{bmatrix} \beta_x + w_{0,x} \\ \beta_y + w_{0,y} \end{bmatrix} \quad ; \quad \chi_3 = 3c \begin{bmatrix} \beta_{x,x} + w_{0,xx} \\ \beta_{x,y} + w_{0,xy} \\ \beta_{y,y} + 2w_{0,yy} \end{bmatrix}
\]

3.3 Isogeometric analysis
The displacement field of the plate can be expressed as:

\[
u^h(\xi, \eta) = \sum_{i=1}^{n_k} R_i(\xi, \eta) d_i
\]

where \(d_i = [u_{0,i} \ v_{0,i} \ \beta_{x,i} \ \beta_{y,i} \ w_i]^T\) is the vector of degrees of freedom associated with the control point \(I\), and \(R_i\) is the shape function as defined in Ref [45].

The in-plane and shear strains can be expressed as:

\[
\begin{bmatrix} \varepsilon_0 & \chi_1 \chi_2 \end{bmatrix}^T = \sum_{i=1}^{n_k} \begin{bmatrix} B_{i}^0 & B_{i}^{1x} & B_{i}^{1y} & B_{i}^{2x} & B_{i}^{2y} \end{bmatrix}^T d_i = \sum_{i=1}^{n_k} \begin{bmatrix} B_{i}^{n} & B_{i}^{m} \end{bmatrix}^T d_i
\]
The governing algebraic equations for buckling analysis can be obtained as follows

\[ (K - \lambda K_{eq})d = 0 \]

where

\[
B^m_I = \begin{bmatrix}
R_{1,x} & 0 & 0 & 0 & 0 \\
0 & R_{1,y} & 0 & 0 & 0 \\
R_{2,x} & 0 & 0 & 0 & 0 \\
0 & 0 & R_{2,y} & 0 & 0 \\
0 & 0 & 0 & R_{2,z} & 0 \\
0 & 0 & 0 & 0 & R_{2,z}
\end{bmatrix},
B^d_I = \frac{1}{2} \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
B^{b2}_I = \begin{bmatrix}
0 & 0 & 0 & R_{1,x} & 0 \\
0 & 0 & 0 & 0 & R_{1,y} \\
0 & 0 & 0 & 0 & R_{1,z} \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
B^4_I = \begin{bmatrix}
0 & 0 & 0 & 0 & R_I \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

The governing algebraic equations for buckling analysis can be obtained as follows

\[ (K - \lambda K_{eq})d = 0 \]

where

\[
K = \int_{\Omega} \left( B^{mab} \right)^T D_{mab} B^{mab} + (B')D_{j} B' \right) d\Omega
\]

\[
K_{eq} = \int_{\Omega} \left[ (B^e)^T - \lambda \nabla^2 (B^e)^T \right] N_i B^e d\Omega
\]

in which

\[
D_{mab} = \begin{bmatrix}
A & B & E \\
B & D & F \\
E & F & H
\end{bmatrix},
B'_j = \begin{bmatrix}
0 & 0 & R_{1,x} & 0 & 0 \\
0 & 0 & 0 & R_{1,y} & 0 \\
0 & 0 & 0 & 0 & R_{1,z}
\end{bmatrix}
\]

\[
A_{ij}, B_{ij}, D_{ij}, E_{ij}, F_{ij}, H_{ij} = \int_{-h/2}^{h/2} \left( I, z, z^2, f(z), zf(z), f^2(z) \right) C_{ij} dz, \quad i, j = 1, 2, 6
\]

\[
D_{ij} = \int_{-h/2}^{h/2} \left[ f'(z)^2 \right] C_{ij} dz, \quad i, j = 4, 5
\]

It can be seen that second and third order derivatives are included in stiffness and buckling matrixes, respectively. The order of the basic functions is at least three. Hence, it is clear that NURBS basic function is the most suitable for calculating size-dependent analysis of nanoplate structures.

4. Numerical results

In this study, the critical buckling loads \( \bar{P}_{cr} = P_{cr} R^2 / D_m \) of Al/Al2O3 circular plate (radius \( R = 10 \), \( h = 0.34 \)) are performed. Table 1 shows Non-dimensional buckling load of simply supported and clamped circle nanoplate. It can be observed that the present results match well with the reference solution [24].

Table 1. Material properties of FGM plates.

| BCs  | \( \mu \) | Model          | \( n \) |
|------|--------|----------------|-------|
|      |        |                | 0     | 1     | 2     | 5     | 10    |       |
| SSSS | 0      | Quasi-3D [24]  | 23.1059 | 10.0048 | 8.5094 | 7.0907 | 6.1583 |
|      |        | HSDT-Present   | 22.7565 | 9.6263  | 8.1811 | 6.7891 | 6.0381 |
|      | 1      | Quasi-3D [24]  | 22.1473 | 9.5755  | 8.1448 | 6.7891 | 5.8991 |
|      |        | HSDT-Present   | 21.8371 | 9.2172  | 7.8328 | 6.6045 | 5.7871 |
| CCCC | 0      | Quasi-3D [24]  | 82.3402 | 33.5902 | 28.5574 | 24.4165 | 21.6023 |
|      |        | HSDT-Present   | 79.3204 | 31.5156 | 26.7567 | 23.1807 | 20.7108 |
|      | 1      | Quasi-3D [24]  | 71.7287 | 29.2705 | 24.8837 | 21.2721 | 18.8188 |
|      |        | HSDT-Present   | 69.1652 | 27.4808 | 23.3311 | 20.2129 | 18.0593 |
5. Conclusions
In this paper, a simple and effective approach using IGA based on HSDT for size-dependent buckling analysis of FGM nanoplates. The material properties of FGM based on the Mori–Tanaka schemes and the rule of mixture are considered. The differential nonlocal equations are utilized to take into account effect of the size-dependent. The buckling nonlocal governing equations of motion is approximated according to IGA based on HSDT, which satisfies naturally the 3rd derivatives of displacement field. The effects of volume fraction exponent and small scale parameter on nonlinear transient of FGM nanoplates are also performed. Numerical results proved high accuracy and reliability of the present method in comparison with other available numerical approaches.

Acknowledgements
P. Phung-Van would like to acknowledge the financial support of the Special Research Fund (BOF) of Ghent University (BOF16/PDO/88)

References
[1] Eringen AC 1983 *Journal of Applied Physics* 54(9) 4703-4710
[2] Yue T and Abdel Wahab M 2017 *Tribology International* 107 274-282
[3] Pereira K, Yue T and Abdel Wahab M 2017 *Tribology International* 110 222-231
[4] Martínez JC, Vanegas Useche LV and Wahab MA 2017 *International Journal of Fatigue* 100, Part 1 32-49
[5] Kumar D, Biswas R, Poh LH and Abdel Wahab M 2017 *Tribology International* 109 124-132
[6] Bhatti NA and Abdel Wahab M 2017 *Tribology International* 109 552-562
[7] Yue T and Abdel Wahab M 2016 *Materials 9* 597; doi:10.3390/ma9070597
[8] Resende Pereira KdF, Bordas S, Tomar S, Trobec R, Depolli M, Kosec G and Abdel Wahab M 2016 *Materials 9* 639; doi:10.3390/ma9080639
[9] Ferjaoui A, Yue T, Abdel Wahab M and Hojati-Talemi R 2015 *International Journal of Fatigue* 73 66-76
[10] Yue T and Abdel Wahab M 2014 *Wear* 321 53-63
[11] Noda N-A, Chen X, Sano Y, Wahab MA, Maruyama H, Fujisawa R and Takase Y 2016 *MATERIALS & DESIGN* 96 476-489
[12] Gadala I, Abdel Wahab M and Alfantazi A 2016 *MATERIALS & DESIGN* 97 287-299
[13] Wang C, Sun Q, Abdel Wahab M, Zhang X and Xu L 2015 *Waste Management* 43 19-27
[14] Vanegas-Useche L, Abdel Wahab M and Parker G 2015 *Waste Management* 43 28-36
[15] Junyan Ni and Wahab MA 2017 *Computers & Structures* 186 35-49
[16] Demir C and Civalek O 2013 *Applied Mathematical Modelling* 37(22) 9355-9367
[17] Ansari R, Ashrafi M, Pourashraf T and Sahmani S 2015 *Acta Astronaut* 109 42-51
[18] Lam DCC, Yang F, Chong ACM, Wang J and Tong P 2003 *Journal of the Mechanics and Physics of Solids* 51(8) 1477-1508
[19] Asghari M, Kahrobaiy MH and Ahmadian MT 2010 *International Journal of Engineering Science* 48(12) 1749-1761
[20] Ke LL, Wang YS, Yang J and Kitipornchai S 2012 *International Journal of Engineering Science* 50(1) 256-267
[21] Rajabi F and Ramezani S 2012 *Archive of Applied Mechanics* 82 363-376
[22] Ghayesh MH, Amabili M and Farokhi H 2013 *International Journal of Engineering Science* 63 52-60
[23] Natarajan S, Chakraborty S, Thangavel M, Bordas SPA and Rabczuk T 2012 *Computational Materials Science* 65 74-80
[24] Nguyen NT, Hui D, Lee J and Nguyen-Xuan H 2015 *Computer Methods in Applied Mechanics and Engineering* 297 191-218
[25] Phung-Van P, Lieu X Q, Nguyen-Xuan H and Abdel-Wahab M 2017 *Composite Structures* 166 120-135
[26] Phung-Van P, Ferreira AJM, Nguyen-Xuan H and Abdel-Wahab M 2017 *Composites Part B Engineering* 118 125-134
[27] Phung-Van P, Nguyen-Thoi T, Luong-Van H and Lieu-Xuan Q 2014 *Computer Methods in Applied Mechanics and Engineering* 270 15-36
[28] Phung-Van P, Nguyen-Thoi T, Dang-Trung H and Nguyen-Minh N 2014 *Composite Structures* 111 553-565
[29] Nguyen-Thoi T, Bui-Xuan T, Phung-Van P, Nguyen-Hoang S and Nguyen-Xuan H 2014 KSCE Journal of Civil Engineering 18(4) 1072-1082
[30] Phung-Van P, Nguyen-Thoi T, Luong-Van H, Thai-Hoang C and Nguyen-Xuan H 2014 Computer Methods in Applied Mechanics and Engineering 272 138-159
[31] Phung-Van P, Thai CH, Nguyen-Thoi T and Nguyen-Xuan H 2014 Composites Part B-Engineering 60 227-238
[32] Luong-Van H, Nguyen-Thoi T, Liu GR and Phung-Van P 2014 Engineering Analysis with Boundary Elements 42 8-19
[33] Nguyen-Thoi T, Luong-Van H, Phung-Van P, Rabczuk T and Tran-Trung D 2013 International Journal for Composite Materials 3(A) 19-27
[34] Phung-Van P, Luong-Van H, Nguyen-Thoi T and Nguyen-Xuan H 2014 International Journal for Numerical Methods in Engineering 98(13) 988-1014
[35] Phung-Van P, Nguyen-Thoi T, Le-Dinh T and Nguyen-Xuan H 2013 Smart Materials and Structures 22(9)
[36] Nguyen-Thoi T, Rabczuk T, Lam-Phat T, Ho-Huu V and Phung-Van P 2014 Theoretical and Applied Fracture Mechanics 72 150-163
[37] Phung-Van P, Nguyen-Thoi T, Tran LV and Nguyen-Xuan H 2013 Computational Materials Science 79 857-872
[38] Phung-Van P, Tran LV, Ferreira AJM, Nguyen-Xuan H and Abdel-Wahab M 2017 Nonlinear Dynamics 87(2) 879-894
[39] Phung-Van P, Nguyen LB, Tran LV, Dinh TD, Thai CH, Bordas SPA, Abdel-Wahab M and Nguyen-Xuan H 2015 International Journal of Non-Linear Mechanics 76 190-202
[40] Phung-Van P, De Lorenzis L, Thai CH, Abdel-Wahab M and Nguyen-Xuan H 2015 Computational Materials Science 96 495-505
[41] Nguyen-Thoi T, Luong-Van H, Phung-Van P, Rabczuk T and Tran-Trung D 2013 International Journal of Composite Materials 3(A) 19-27
[42] Tran LV, Phung-Van P, Lee J, Wahab MA and Nguyen-Xuan H 2016 Composite Structures 140 655-667
[43] Tran Vinh L, Lee J, Ly HA, Abdel Wahab M and Nguyen-Xuan H 2015 International Journal of Mechanical Sciences 96-97 65-78
[44] Reddy JN 1984 Journal of Applied Mechanics-Transactions of the Asme 51(4) 745-752
[45] Cottrell JA, Hughes TJR and Bazilevs Y 2009 Isogeometric analysis, towards integration of CAD and FEA ed editors. Wiley