Epidemiology of *Treponema pallidum*, *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, and *Herpes simplex* virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics

Background The epidemiology of sexually transmitted infections (STIs) and the role of commercial heterosexual sex networks in driving STI transmission in the Middle East and North Africa (MENA) region remain largely unknown.

Objective To characterize the epidemiology of *Treponema pallidum* (syphilis), *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, and *Herpes simplex* virus type 2 (HSV-2) among female sex workers (FSWs) in MENA using an in-depth quantitative assessment.

Methods A systematic review on ten international, regional, and country-level databases was conducted, and reported following PRISMA guidelines. Pooled prevalences of current and/or ever infection for each STI were estimated using random-effects meta-analyses. Sources of between-study heterogeneity were investigated through random-effects meta-regressions.

Results One *T. pallidum* incidence study and 144 STI prevalence studies were identified for 45,812 FSWs in 13 MENA countries. The pooled prevalence of current infection was 12.7% (95% confidence interval (CI) = 8.5%-17.7%) for *T. pallidum*, 14.4% (95% CI = 8.2%-22.0%) for *C. trachomatis*, 5.7% (95% CI = 3.5%-8.4%) for *N. gonorrhoeae*, and 7.1% (95% CI = 4.3%-10.5%) for *T. vaginalis*. The pooled prevalence of ever infection (seropositivity using antibody testing) was 12.8% (95% CI = 9.4%-16.6%) for *T. pallidum*, 80.3% (95% CI = 53.2%-97.6%) for *C. trachomatis*, and 23.7% (95% CI = 10.2%-40.4%) for HSV-2. The multivariable meta-regression for *T. pallidum* infection demonstrated strong subregional differences, with the Horn of Africa and North Africa showing, respectively 6-fold (adjusted odds ratio (AOR): 6.4; 95% CI = 2.5-16.7) and 5-fold (AOR = 5.0; 95% CI = 2.5-10.6) higher odds of infection than Eastern MENA. There was also strong evidence for declining *T. pallidum* odds of infection at 7% per year (AOR = 0.93; 95% CI = 0.88-0.98). Study-specific factors including diagnostic method, sample size, sampling methodology, and response rate, were not associated with syphilis infection. The multivariable model explained 48.5% of the variation in *T. pallidum* prevalence.

Conclusions STI infection levels among FSWs in MENA are considerable, supporting a key role for commercial heterosexual sex networks in transmission dynamics, and highlighting the health needs of this neglected and vulnerable population. Syphilis prevalence in FSWs appears to have been declining for at least three decades. Gaps in evidence persist for multiple countries.
The burden of sexually transmitted infections (STIs) and sequelae remains a major global health concern [1]. Nearly one million persons are infected with a curable STI every day [2], and about half a billion are living with Herpes simplex virus type 2 (HSV-2) [3]. The largely asymptomatic nature of STIs, particularly for women, leaves most individuals unaware of their infection [1]. STIs have been associated with HIV acquisition [4-6], and poor reproductive health outcomes including pelvic inflammatory disease, ectopic pregnancy, infertility, and perinatal deaths [1,7].

Commercial heterosexual sex networks (CHSNs) are believed to play a critical role in STI transmission [8-10]. STIs have been demonstrated as proxy biomarkers of sexual risk behaviour [11, 12], and as a powerful tool for understanding the structure of sexual networks and predicting HIV epidemic potential [11-13]. However, unlike HIV, STI epidemiology in CHSNs remains, globally, a neglected area of research [1]. Programmatically, STI surveillance among female sex workers (FSWs) continues to be weak and infection levels poorly quantified [1]. Sexual propagation of STIs along CHSNs is also poorly understood given the dearth or limited validity of self-reported sexual behaviour data [13-15].

To attend to the United Nations’ Sustainable Development Goals (SDGs) and targets [16], particularly SDG3 target of “ensuring universal access to sexual and reproductive health services” [16], and to reduce the global burden of disease attributed to STIs, the World Health Organization (WHO) has recently formulated the “Global Health Sector Strategy on STIs” [6]. The goal of this strategy is to eliminate STIs as a major public health concern by 2030 through an integrated approach for prevention and control [6]. Milestones for 2020 include achieving 70% coverage for comprehensive STI prevention services among key populations [6]. The strategy’s first strategic direction entails “understanding the STI epidemic as a basis for advocacy, political commitment, national planning, resource mobilization and allocation, implementation, and programme improvement” [6].

Despite remarkable progress in HIV research [17], and an understanding of the role of FSWs [18], people who inject drugs (PWID) [19], and men who have sex with men (MSM) [20], in the HIV epidemic in the Middle East and North Africa (MENA) region, the epidemiology of STIs and the role of CHSNs in driving STI transmission remain largely unknown [21]. The two global reviews of STI epidemiology in FSWs had no data for any of the 23 MENA countries [22,23]. A large volume of STI data in the region resides in databases that were never analyzed, or in country-level reports that were never published in the scientific literature [24,25].

Against this background, our study aimed to characterize the epidemiology of key STIs among FSWs in MENA. Details of the study methodology (including specific statistical analyses) can be found in subsequent sections.

METHODS

We conducted a systematic review and an in-depth quantitative assessment to characterize STI epidemiology among FSWs in MENA. Details of the study methodology (including specific statistical analyses) can be found in subsequent sections.

Search strategy and selection criteria

Evidence for syphilis, C. trachomatis, N. gonorrhoeae, T. vaginalis, and HSV-2 immunoglobulin G (IgG) incidence and/or prevalence among FSWs in MENA was systematically reviewed, informed by Cochrane’s Collaboration guidelines [26]. Findings were reported following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [27] (checklist in Table S1 in Online Supplementary Document). The MENA definition covers 23 countries—Afghanistan, Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates (UAE), and Yemen—based on convention in HIV research [19,20,24,25], and definitions of WHO, Joint United Nations Programme on HIV/AIDS (UNAIDS), and World Bank [24].

Systematic searches were performed up to September 20, 2018, on international databases (PubMed and Embase), regional and national databases (WHO Global Health Observatory data repository [28], WHO
Duplicate citations were identified using a reference manager, Endnote. Titles and abstracts were then screened for relevance, with relevant/potentially relevant citations undergoing full-text screening. Any document reporting an incidence and/or prevalence measure in FSWs for an STI of interest, based on primary data, was eligible for inclusion. Case reports, case series, editorials, commentaries, and reviews were excluded. Hand searching was further performed on reference lists of all relevant articles.

The term 'study' is used here to refer to a specific STI incidence or prevalence measure in a specific FSW population. Accordingly, one document/report could contribute multiple studies and one study could be published in different reports. Duplicate study results were included only once using the more detailed/recent report.

Data extraction and synthesis

Extraction was performed by HC, and double extraction by AS (extraction list in Box S2 in Online Supplementary Document). Discrepancies were settled by consensus, or by contacting authors. Full-texts in languages other than English were extracted by native speakers. Data were stratified by infection type (current vs ever (seropositivity using antibody testing)), and summarized using medians, ranges, and interquartile ranges (IQR). Definitions of infection types and details of the classification of diagnostic methods’ results into current, recent, and ever infection can be found in Table S2 in Online Supplementary Document. It was assumed, for *N. gonorrhoeae* and *T. vaginalis* studies, whenever a diagnostic method was not explicitly specified, that the diagnostic method assessed current infection.

All STI studies were extracted and reported. However, studies applying the same assay to different biological specimens from the same person were included only once in analyses, for statistical independence. This was done based on a sequential order that prioritized infection detection in endocervical swabs, followed by vaginal, then urine samples. Studies assessing prevalence using different diagnostic methods, were also included only once in analyses, with studies using polymerase chain reaction prioritized over those using culture or other methods.

Quality assessment

The quality assessment for each STI prevalence study was informed by Cochrane Collaboration guidelines (criteria in Table S3 in Online Supplementary Document) [30]. Studies were classified as having “low” vs “high” risk of bias (ROB) on each of three quality domains assessing the 1) rigor of sampling methodology (probability-based; non-probability-based), 2) response rate (≥60% or ≥60% of target sample size reached for studies using respondent-driven or time-location sampling; <60%), and 3) STI ascertainment (biological assay explicitly indicated; otherwise). Studies with missing information for a specific domain were classified as having “unclear” ROB for that domain.

Given reported limitations in HSV-2 diagnostics [31, 32], the quality of HSV-2 assays was determined by consulting with an expert advisor, Professor Rhoda Ashley-Morrow, University of Washington, Seattle. Studies where the validity of the diagnostic method could not be confirmed, were excluded from the systematic review.

Quality domains were included in meta-regression analyses (described below) to assess their impact on prevalence.

Meta-analyses

For each STI, the pooled mean prevalence of current and/or ever infection, along with the corresponding 95% confidence intervals (CIs), were estimated using meta-analysis. Overall prevalence measures were replaced by their strata where applicable. For each study, one final stratification was considered based on a pre-defined sequential order that prioritizes country of origin, followed by type of FSW, year, region, and age. Subregional and time-trend analyses were conducted as warranted by data. Variances were stabilized using Freeman-Tukey type arcsine square-root transformation [33, 34]. Weights were applied using...
the inverse-variance method [34,35], before pooling measures using a Dersimonian-Laird random-effects model [36], thereby accounting for sampling variation and for true heterogeneity [37]. Missing sample sizes for measures or their strata (<4% of all studies) were imputed using the median sample size, as calculated from studies with available information.

Heterogeneity assessment used Cochran’s Q statistic to confirm existence of heterogeneity across studies, I² to determine magnitude of between-study variation that is due to true differences in effect size (prevalence) rather than chance, and prediction intervals to estimate the 95% interval of the true effect sizes’ distribution [37,38].

Meta-analyses were implemented in R 3.4.2 (R core team, Vienna, Austria) [39].

Meta-regressions

Only syphilis had a considerable number of measures (>100) to warrant conduct of random-effects meta-regression analyses. Independent variables considered *a priori* were: country/subregion, year of data collection, infection type, diagnostic method, STI ascertainment, sample size, sampling methodology, and response rate. Details of subgrouping and justifications are in Table S4 in Online Supplementary Document. Meta-regression was conducted using the log-transformed odds of syphilis infection and corresponding variance. Factors associated with higher odds of infection at P≤0.10 in univariable analyses were included in the multivariable analysis. Factors with P≤0.05 in the multivariable model were considered as significant predictors of heterogeneity in syphilis prevalence.

Meta-regressions were implemented in Stata/SE 15.1 (StataCorp, College Station, TX, USA) [40].

Figure 1. Flowchart presenting the process of study selection following PRISMA guidelines [27].

*Reasons for exclusion:
- Eligibility criteria not met (n=17)
- Full-text did not include data on relevant indicators (n=95)
- Conference abstract did not include data on relevant indicators (n=9)
- Conference abstract duplicate of a full-text included in the review (n=2)
- Duplicate of another study included in the review (n=3)

*Reasons for exclusion:
- Replaced by the full detailed reports identified through the MENA HIV/AIDS Epidemiology Synthesis Project database (n=2)
- Validity of the type-specific herpes simplex virus type 2 serology could not be confirmed (n=2)
RESULTS

Search results and scope of evidence

Figure 1 shows the study selection process based on PRISMA. The search identified a total of 11832 citations: 240 through PubMed, 1949 through Embase, and 9643 through the rest of the databases. After removing duplicates and screening of titles and abstracts, 157 reports qualified for full-text screening, of which 31 were eligible for inclusion in the systematic review.

Thirteen additional reports, two of which replaced eligible articles, and four additional STI measures, were further identified through the MENA HIV/AIDS Epidemiology Synthesis Project database. Fourteen additional syphilis prevalence measures were identified through the WHO Global Health Observatory data repository. Two studies were excluded based on consultation with Professor Rhoda Ashley-Morrow, an expert advisor in HSV-2 diagnostics, because the validity of the type-specific HSV-2 serology could not be confirmed [41,42].

In sum, 42 eligible reports and 18 additional STI measures were included in the systematic review. These yielded one syphilis incidence study, and 144 prevalence studies assessing the different STIs. The latter contributed 173 stratified measures for inclusion in meta-analyses and meta-regressions.

STI prevalence data were available for 45812 FSWs from 13 of the 23 MENA countries. Nearly two-thirds (58.9%) of prevalence studies assessed syphilis (in 29769 FSWs), 16.3% assessed C. trachomatis (in 5613 FSWs), 12.8% assessed N. gonorrhoeae (in 5230 FSWs), 8.5% assessed T. vaginalis (in 4258 FSWs), and 3.6% assessed HSV-2 IgG (in 942 FSWs). Most studies (80.8%) were conducted post-2000. Over half (51.1%) of studies reported on current infection, 30.5% on ever infection (seropositivity using antibody testing), and 1.4% on recent infection. Time of exposure was unclear for the rest of studies (17.0%).

Incidence studies

The only one identified incidence study assessed syphilis incidence in FSWs. The study was conducted in 1988 in Mogadishu, Somalia, and reported cumulative incidence at 12.5% after six months of follow-up [43].

Prevalence studies

Prevalence of current syphilis infection among FSWs ranged, across studies (n = 28), from 0%-50.8%, with a median of 9.4% (IQR: 3.0%-23.4%; Table 1). Meanwhile, seropositivity for syphilis (n = 33) antibodies ranged from 0%-69.0%, with a median of 4.2% (IQR: 1.9%-15.2%).

Current C. trachomatis infection prevalence (n = 14) ranged from 0.7%-72.9%, with a median of 7.7% (IQR = 1.7%-22.4%), while seropositivity prevalence using IgG (n = 5) ranged from 19.8%-100%, with a median of 85.8% (IQR = 46.8%-97.1%; Table 2). Two studies reported recent C. trachomatis infection (assessed using serological biomarkers) at 29.2% [79] and 95.0% [78].

Current N. gonorrhoeae infection prevalence (n = 18) ranged from 0%-14.5%, with a median of 7.6% (IQR = 1.3%-11.1%; Table 2). Current T. vaginalis infection prevalence (n = 12) ranged from 0%-19.3%, with a median of 7.0% (IQR = 4.5%-14.2%; Table 2). HSV-2 seropositivity (using IgG; n = 5) ranged from 4.7%-55.5%, with a median of 20.0% (IQR = 6.4%-39.1%; Table 3).

Quality assessment

The summarized and study-specific ROB assessments of prevalence measures are in Tables S5 and S6 in Online Supplementary Document, respectively. Briefly, nearly half of studies (44.7%) used probability-based sampling. Most studies (78.7%) indicated explicitly the biological assay used for STI ascertainment. Response rate information was missing in over half of studies (51.8%).

Overall, studies were of reasonable quality. Close to 60% of studies had low ROB on at least two quality domains, and none had high ROB on two or more domains.

Pooled mean prevalence estimates

Table 4 shows the results of meta-analyses estimating the pooled mean prevalence of current and/or ever infection for each STI. The mean prevalence of current infection was estimated at 12.7% (95% CI = 8.5%-
Country short citation	Year(s) of data collection	City/province	Sampling	Study site	Assay type	Tested (n)	Prevalence (%)	
CURRENT INFECTION								
Afghanistan:								
Todd, 2010 [44]	2006-08	Jalalabad, Kabul, Mazar-i-Sharif	Conv	NGO	RPR+ & TPHA+	520	0	
Egypt:								
MOH, 2000 [45]	1999-00	Greater Cairo	Conv	Community	RPR+ & TPHA+	52	5.8	
Iran:								
Kassaian, 2012 [46]	2009-10	Isfahan	Conv	Prison, drop-in center	RPR+	91	0	
Navadeh, 2012 [42]	2010	Kerman	RDS	Community	VDRL+	139	7.2	
Kazerooni, 2014 [41]	2010-11	Shiraz	RDS	Community	VDRL+ & FTA-ABS+	278	0	
Jahanbakhsh, 2017 [47]	2012	Tehran	Conv	Homeless shelters	RPR+	14	0	
Morocco:								
MOH, 2008 [48]	2007	Agadir, Rabat-Sale, Tanger	Conv	Clinic	VDRL+ & TPHA+	141	13.5	
MOH, 2012 [49]	2011-12	Agadir	RDS	Community	VDRL+ & TPHA+	362	21.4	
MOH, 2012 [49]	2011-12	Fes	RDS	Community	VDRL+ & TPHA+	359	18.8	
MOH, 2012 [49]	2011-12	Rabat	RDS	Community	VDRL+ & TPHA+	392	13.9	
MOH, 2012 [49]	2011-12	Tanger	RDS	Community	VDRL+ & TPHA+	318	13.3	
Pakistan:								
Baqi, 1998 [50]	1993-94	Karachi	Conv	Red-light district	VDRL+ & FTA-ABS+	81†	5.0	
Rehan, 2009 [51] & NACP, 2005 [52]	2004	Karachi	Snowball	Community	RPR+ & TPHA+	421	3.6	
Rehan, 2009 [51] & NACP, 2005 [52]	2004	Lahore	SyCS	Red-light district	RPR+ & TPHA+	387	16.0	
Shah, 2004 [53]	2004	Hyderabad	RDS	Community	RPR+ & TPHA+	157	11.5	
Hawkes, 2009 [54]	2007	Abbottabad	RDS	Community	RPR+ & TPHA+	107	2.8	
Hawkes, 2009 [54]	2007	Rawalpindi	RDS	Community	RPR+ & TPHA+	426	1.2	
Khan, 2011 [55]	2007	Lahore	RDS	Community	RPR+ & TPHA+	730	4.5	
Somalia:								
Jama, 1987 [56]	1985-86	Mogadishu	Conv	Community	VDRL+ & TPHA+	85	44.7	
Jama Ahmed, 1991 [43]	1988-89	Mogadishu	Conv	Community	VDRL/RPR+ & TPHA+	155	47.7	
Scott, 1991 [57]	1989	Kismayu, Merca	Conv	NR	RPR+ & FTA-ABS+	57	50.8	
Corwin, 1991 [58]	1990	Chismayu, Merca, Mogadishu	Conv	NR	RPR+ & FTA-ABS+	302	35.4	
Watts, 1994 [59]	1990	Chismayu, Merca, Mogadishu	Conv	NR	RPR+ & FTA-ABS+	236	30.9	
IOM, 2017 [60]	2014	Hargeisa	RDS	Community	RDT+ & RPR+	96	2.4	
Sudan:								
MOH, 2016 [61]	2015-16	Juba, South Sudan	RDS	Community	RDT+ & RPR+	832	7.3	
Tunisia:								
Bchir, 1988 [62]	1987	Sousse	Conv	NR	VDRL+ & TPHA+	42	28.6	
Ayachi, 1997 [63]	1992-94	Tunis	Conv	NR	VDRL+ & TPHA+	79	24.1	
Yemen:								
Stulhofer, 2008 [64]	2008	Aden	RDS	Community	VDRL+	244	4.9	
Country	Citation	Year(s) of data collection	City/province	Sampling	Study site	Assay type	Tested (n)	Prevalence (%)
---------	----------	---------------------------	---------------	----------	------------	------------	-----------	---------------
Afghanistan:								
NACP, 2010 [65]	2009	Kabul	RDS	Community	TPHA+	368	5.4	
NACP, 2012 [66]	2012	Herat	RDS	Community	RDT+	344	0.9	
NACP, 2012 [66]	2012	Kabul	RDS	Community	RDT+	333	0.0	
NACP, 2012 [66]	2012	Mazar-i-Sharif	RDS	Community	RDT+	355	2.0	
Algeria:								
MOH, 2009 [67]	2009	National	Conv	Sentinel surveillance	TPHA+	185	11.9	
MOH, 2009 [67]	2007	National	Conv	Sentinel surveillance	TPHA+	380	18.4	
Iran:								
Mirzaeadeh, 2016 [68]	2015	National	Conv	Community, clinic	RDT+	1,337	0.4	
Pakistan:								
Hawkes, 2009 [54]	2007	Abbottabad	RDS	Community	TPHA+	107	2.8	
Hawkes, 2009 [54]	2007	Rawalpindi	RDS	Community	TPHA+	426	1.6	
Bibi, 2010 [69]	2003	Hyderabad	Conv	Red-light district	TPHA+	50	44.0	
Raza, 2015 [70]	2014	Rawalpindi	Conv	Clinic	RDT+	NR	20.0	
Somalia:								
Jama, 1987 [56]	1985-86	Mogadishu	Conv	Community	TPHA+	85	57.6	
Jama Ahmed, 1991 [43]	1988-89	Mogadishu	Conv	Community	TPHA+	155	69.0	
Burans, 1990 [71]	NR	Mogadishu	Conv	NR	TPHA+	89	28.1	
IOM, 2017 [60]	2008	Hargeisa	RDS	Community	RDT+	237	3.4	
Sudan:								
Sudan NACP, 2012 [72]	2011	Alshamalia	RDS	Community	RDT+	305	1.5	
Sudan NACP, 2012 [72]	2011	Blue Nile	RDS	Community	RDT+	279	3.4	
Sudan NACP, 2012 [72]	2011	Gedarif	RDS	Community	RDT+	282	3.4	
Sudan NACP, 2012 [72]	2011	Gezira	RDS	Community	RDT+	296	5.4	
Sudan NACP, 2012 [72]	2011	Kassala	RDS	Community	RDT+	288	4.3	
Sudan NACP, 2012 [72]	2011	Khartoum	RDS	Community	RDT+	287	1.7	
Sudan NACP, 2012 [72]	2011	North Darfur	RDS	Community	RDT+	303	5.2	
Sudan NACP, 2012 [72]	2011	North Kordofan	RDS	Community	RDT+	296	4.1	
Sudan NACP, 2012 [72]	2011	Red Sea	RDS	Community	RDT+	293	8.9	
Sudan NACP, 2012 [72]	2011	River Nile	RDS	Community	RDT+	291	1.9	
Sudan NACP, 2012 [72]	2011	Sinnar	RDS	Community	RDT+	303	5.2	
Sudan NACP, 2012 [72]	2011	South Darfur	RDS	Community	RDT+	299	1.8	
Sudan NACP, 2012 [72]	2011	West Darfur	RDS	Community	RDT+	284	1.8	
Sudan NACP, 2012 [72]	2011	White Nile	RDS	Community	RDT+	288	4.2	
MOH, 2016 [61]	2015-16	Juba, South Sudan	RDS	Community	RDT+	832	12.0	
Tunisia:								
Behir, 1989 [62]	1987	Sousse	Conv	NR	TPHA+	42	38.1	
Ayachi, 1997 [63]	1992-94	Tunis	Conv	NR	TPHA+	79	36.7	
Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv	Clinic	TPHA+	183	2.7	
Table 1. Continued

Country short citation	Year(s) of data collection	City/province	Sampling	Study site	Assay type	Tested (n)	Prevalence (%)
Afghanistan:							
WHO, 2018 [28]	2010	NR	NR	NR	NR	NR	8.7
MENA HIV ESP, 2013 [74]	2012	Kabul	NR	NR	NR	440	5.7
WHO, 2018 [28]	2017	NR	NR	NR	NR	2,457	1.3
Algeria:							
WHO, 2018 [28]	2013	Oran	NR	NR	NR	27	7.4
WHO, 2018 [28]	2014	Saida	NR	NR	NR	24	29.2
WHO, 2018 [28]	2016	NR	Conv	VCT	NR	183	14.2
WHO, 2018 [28]	2017	NR	Conv	VCT	NR	81	16.0
Djibouti:							
WHO, 2015 [1]	2014	4 urban sites	NR	NR	NR	361	5.0
Iran:							
WHO, 2018 [28]	2008	NR	NR	NR	NR	NR	1.6
Moayedi-Nia, 2016 [75]	2012-13	Tehran	RDS	Community	NR	161	0
Jordan:							
WHO, 2015 [1]	2008	NR	NR	NR	NR	NR	6.7
Morocco:							
Khattabi, 2005 [76]	2004	National	Conv	Prison	NR	332	9.6
Khattabi, 2005 [76]	2004	National	Conv	Clinic	NR	272	12.1
Khattabi, 2005 [76]	2004	Grand Casablanca	Conv	STI clinic	NR	143	9.0
Bennani, 2006 [77]	2005	National	Conv	Prison	NR	102	11.8
Bennani, 2006 [77]	2005	National	Conv	Clinic	NR	143	13.3
WHO, 2018 [28]	2008	NR	NR	NR	NR	NR	16.9
Pakistan:							
MENA HIV ESP, 2010 [24]	2007	NR	NR	NR	NR	NR	23.5
Somalia:							
WHO, 2018 [28]	2017	Bossaso	RDS	Community	NR	860	2.7
Sudan:							
WHO, 2018 [28]	2016	National	RDS	Community	NR	4,123	4.1
WHO, 2018 [28]	2017	South Sudan	RDS	Community	NR	1,244	14.4
Yemen:							
WHO, 2018 [28]	2010	Hodeida	RDS	Community	NR	301	0

Conv – convenience, FTA-ABS – fluorescent treponemal antibody absorption test, IOM – International Organization for Migration, MENA HIV ESP – MENA HIV/AIDS Epidemiology Synthesis Project database, MOH – Ministry of Health, NACP – National AIDS Control Program, NGO – non-governmental organization, NR – not reported, RDS – respondent-driven sampling, RDT – rapid diagnostic test, RPR – rapid plasma regain, STI – sexually transmitted infection, SyCS – systematic cluster sampling, TPHA – Treponema pallidum haemagglutination assay, VCT – voluntary counseling and testing center, VDRL – venereal disease research laboratory

*The table is sorted, for each country, by data collection year(s) then city/province.
†Sample comprised of 77 FSWs and 4 transgender women.
‡Ever infection indicates seropositivity using antibody testing.
Table 2. Prevalence of *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, and *Trichomonas vaginalis* among FSWs in the Middle East and North Africa

Country short citation	Year(s) of data collection	City/province	Sampling	Study site	Specimen	Assay type	Tested (n)	Prevalence (%)
CURRENT INFECTION								
Chlamydia trachomatis								
Algeria:								
Kadi, 1989 [78]	NR	NR	Conv	Clinic	Endocervical	IFAT	44	45.5
Egypt:								
MOH, 2000 [45]	1999-00	Cairo	Conv	Community	Urine	NAAT	52	7.7
Iran:								
Darougar, 1983 [79]	NR	Bandar Abbas, Tehran	Conv	Clinic	Endocervical	Culture	116	6.9
Kazerooni, 2014 [41]	2010-11	Shiraz	RDS	Community	Vaginal	NAAT	278	9.0
Mirzazedeh, 2016 [68]	2015	National	Conv	Clinic, community	Vaginal	NAAT	1337	6.0
Morocco:								
MOH, 2008 [48]	2007	Agadir, Rabat, Sale, Tanger	Conv	Clinic	Endocervical & urine	NAAT	141	22.7
MOH, 2012 [49]	2011-12	Agadir	RDS	Community	Endocervical	NAAT	368	22.4
Pakistan:								
Rehan, 2009 [51]	2004	Karachi	Snowball	Community	Vaginal	NAAT	348	5.2
Rehan, 2009 [51]	2004	Lahore	SyCS	Red-light district	Vaginal	NAAT	283	11.0
Hawkins, 2009 [54]	2007	Abbottabad	RDS	Community	Endocervical	NAAT	107	0.9
Hawkins, 2009 [54]	2007	Rawalpindi	RDS	Community	Endocervical	NAAT	426	1.7
Khan, 2011 [55]	2007	Lahore	RDS	Community	Endocervical	NAAT	730	7.7
Somalia:								
IOM, 2017 [60]	2014	Hargeisa	RDS	Community	Urine	NAAT	90	0.7
Tunisia:								
Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv	Clinic	Endocervical	NAAT	188	72.9
Neisseria gonorrhoeae								
Egypt:								
MOH, 2000 [45]	1999-00	Cairo	Conv	Community	Urine	NAAT	52	7.7
Iran:								
Kazerooni, 2014 [41]	2010-11	Shiraz	RDS	Community	Vaginal	Culture	278	1.4
Navadeh, 2012 [42] & WHO, 2011 [80]	2010	Kerman	RDS	Community	NR	NRT	144	0.0
Nasirian, 2017 [81]	2013-14	Isfahan	Conv	Harm reduction	Endocervical	NAAT	99	9.1
Nasirian, 2017 [81]	2013-14	Isfahan	Conv	Harm reduction	Urine	NAAT	99	0.0
Taghizadeh, 2015 [82]	2014	San	Conv	Drop-in center	NR	NRT	117	1.0
Mirzazedeh, 2016 [68]	2015	National	Conv	Clinic, community	Vaginal	NAAT	1337	1.3
Morocco:								
MOH, 2008 [48]	2007	Agadir, Rabat, Sale, Tanger	Conv	Clinic	Endocervical & urine	NAAT	141	10.6
MENA HIV ESP, 2010 [24]	NR	NR	NR	NR	NR	NRT	348	9.8
MOH, 2012 [49]	2011-12	Agadir	RDS	Community	Endocervical	NAAT	368	11.7
Pakistan:								
Rehan, 2009 [51]	2004	Karachi	Snowball	Community	Vaginal	NAAT	348	9.8
Rehan, 2009 [51]	2004	Lahore	SyCS	Red-light district	Vaginal	NAAT	383	12.3
Country short citation	Year(s) of data collection	City/province	Sampling	Study site	Specimen	Assay type	Tested (n)	Prevalence (%)
------------------------	---------------------------	---------------	----------	------------	----------	------------	------------	----------------
Hawkes, 2009 [54]	2007	Abbottabad	RDS	Community	Endocervical	NAAT	107	1.9
Hawkes, 2009 [54]	2007	Rawalpindi	RDS	Community	Endocervical	NAAT	426	2.0
Khan, 2011 [55]	2007	Lahore	RDS	Community	Endocervical	NAAT	730	7.5

Somalia:
- Burans, 1990 [71] NR Mogadishu Conv NR NR Culture 89 11.2
- IOM, 2017 [60] 2014 Hargeisa RDS Community Urine NAAT 91 0.4

Tunisia:
- NACP, 2005 [83] 2005 NR NR NR NR NR† NR 12.0-17.0%
- Znazen, 2010 [73] 2007 Gabes, Sousse, Tunis Conv Clinic Endocervical Culture 188 3.7
- Znazen, 2010 [73] 2007 Gabes, Sousse, Tunis Conv Clinic Endocervical NAAT 188 11.2

Trichomonas vaginalis

Egypt:
- MOH, 2000 [45] 1999-00 Cairo Conv Community Urine NAAT 52 19.2

Iran:
- Vafaei, 2015 [84] 2009-11 Shiraz Conv Clinic, drop-in center Endocervical Wet mount 85 8.2
- Navadeh, 2012 [42] & WHO, 2011 [80] 2010 Kerman RDS Community NR NR† 144 1.4
- Nasirian, 2017 [81] 2013-14 Isfahan Conv Harm reduction Endocervical NAAT 99 0.0
- Nasirian, 2017 [81] 2013-14 Isfahan Conv Harm reduction Urine NAAT 99 0.0†
- Mirzagadeh, 2016 [68] 2015 National Conv Clinic, community Vaginal NAAT 1337 11.9

Morocco:
- MOH, 2008 [48] 2007 Agadir, Rabat Sak, Tanger Conv Clinic Endocervical & vaginal Culture 141 14.9
- MOH, 2012 [49] 2011-12 Agadir RDS Community Vaginal NAAT 367 11.8

Pakistan:
- Rehan, 2009 [51] 2004 Karachi Snowball Community Vaginal Culture 386 5.2
- Rehan, 2009 [51] 2004 Lahore SyCS Red-light district Vaginal Culture 384 19.3
- Hawkes, 2009 [54] 2007 Abbottabad RDS Community Vaginal NAAT 107 5.7
- Hawkes, 2009 [54] 2007 Rawalpindi RDS Community Vaginal NAAT 426 4.3
- Khan, 2011 [55] 2007 Lahore RDS Community Vaginal Culture 730 5.1

RECENT INFECTION

Chlamydia trachomatis

Algeria:
- Kadi, 1989 [78] NR NR Conv Clinic Serum MIF>1:64¶ 44 95.0

Iran:
- Darougar, 1983 [79] NR Bandar Abbas, Tehran Conv Clinic Serum MIF-IgM 154 29.2

EVER INFECTION

Chlamydia trachomatis

Algeria:
- Kadi, 1989 [78] NR NR Conv Clinic Serum MIF-IgG 44 100
Table 2. Continued

Country short citation	Year(s) of data collection	City/province	Sampling	Study site	Specimen	Assay type	Tested (n)	Prevalence (%)
Iran:								
Darougar, 1983 [79]	NR	Bandar Abbas, Tehran	Conv Clinic	Serum	MIF-IgG	154	94.2	
Kasaian, 2012 [46]	2009-10	Isfahan	Conv	Drop-in center	Serum	ELISA-IgG	91	19.8
Tunisia								
Bchir, 1988 [62]	1987	Sousse	Conv	NR	Serum	MIF>1:16	42	73.8
Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv Clinic	Serum	MIF-IgG	183	85.8	

UNCLEAR

Chlamydia trachomatis:

Country short citation	Year(s) of data collection	City/province	Sampling	Study site	Specimen	Assay type	Tested (n)	Prevalence (%)
Iran:								
Navadeh, 2012 [42] & WHO, 2011 [80]	2010	Kerman	RDS Community	NR	NR	144	2.9	
MENA HIV ESP, 2010 [24]								

Conv = convenience, ELISA – enzyme-linked immunosorbent assay, IFAT – indirect immunofluorescence antibody test, IgG – immunoglobulin G, IgM – immunoglobulin M, IOM – International Organization for Migration, MENA HIV ESP – MENA HIV/AIDS Epidemiology Synthesis Project database, MIF – micro-immunofluorescence, MOH – Ministry of Health, NAAT – Nucleic acid amplification test, NR – not reported, RDS – respondent-driven sampling, SyCS – systematic cluster sampling, WHO – World Health Organization

The table is sorted for each country by data collection year(s) then city/province.

†For Neisseria gonorrhoeae and Trichomonas vaginalis studies, whenever the diagnostic method was not explicitly specified, it was assumed that the diagnostic method assessed current infection.

‡Studies reported in the systematic review, but not included in analyses considering the priority order followed for selecting studies applying the same assay to different biological specimens.

§Range reported based on several studies whose abstracts or full-texts could not be retrieved (mid-point: 14.5%).

‖Studies reported in the systematic review, but not included in analyses as prevalence was also assessed using NAAT.

¶Reported in study as recent infection.

*Ever infection indicates seropositivity using antibody testing.

Table 3. Prevalence of Herpes simplex virus type 2 (HSV-2) immunoglobulin G (IgG) sero-markers among FSWs in the Middle East and North Africa

Country short citation	Year(s) of data collection	City/province	Sampling	Study site	Specimen	Assay type	Tested (n)	Prevalence (%)
Pakistan:								
Hawkes, 2009 [54]	2007	Abbottabad	RDS Community	Serum	ELISA-IgG	107	4.7	
Hawkes, 2009 [54]	2007	Rawalpindi	RDS Community	Serum	ELISA-IgG	426	8.0	
Syria:								
Ibrahim, 2000 [85]	1995-98	Damascus	Conv Cheap hotels & prison	Serum	MEIA-IgG	101	22.8	
Ibrahim, 2000 [85]	1995-98	Damascus	Conv Bars	Serum	MEIA-IgG	125	20.0	
Tunisia:								
Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv Clinic	Serum	ELISA-IgG	183	55.5	

Conv = convenience, ELISA – enzyme-linked immunosorbent assay, MEIA – micro-enzyme immunoassay, RDS – respondent-driven sampling
17.7%) for syphilis, 14.4% (95% CI = 8.2%-22.0%) for *C. trachomatis*, 5.7% (95% CI = 3.5%-8.4%) for *N. gonorrhoeae*, and 7.1% (95% CI = 4.3%-10.5%) for *T. vaginalis*.

The mean prevalence of ever infection was estimated at 12.8% (95% CI = 9.4%-16.6%) for syphilis, 80.3% (95% CI = 53.2%-97.6%) for *C. trachomatis*, and 23.7% (95% CI = 10.2%-40.4%) for HSV-2 IgG.

There was strong evidence for heterogeneity in effect size (here, prevalence). *P* for Cochran’s Q statistic was always <0.0001. *I*² was >90% in all meta-analyses, indicating that most variability is due to true differences in effect size across studies, rather than being due to chance. Prediction intervals were also wide affirming high heterogeneity.

Additional meta-analyses at the subregional level indicated the mean prevalence of current syphilis infection at 3.0% (95% CI = 0.9%-9.2%) in Eastern MENA, 17.6% (95% CI = 14.2%-21.3%) in North Africa, and 27.8% (95% CI = 15.2%-42.4%) in the Horn of Africa (Table S7 in Online Supplementary Document). There was also a tendency for a decline in current infection prevalence post-2010 (Table S8 and Figure S1A in Online Supplementary Document). For the rest of the STIs, the number of studies was small and the CIs were wide and overlapping to warrant conclusive statement about the temporal trend (Table S8 in Online Supplementary Document).

Predictors of variability in syphilis infection

Country/subregion, year of data collection, diagnostic method, sample size, sampling methodology, and response rate were associated with higher odds of syphilis infection in the univariable meta-regression analyses. These were, therefore, included in the multivariable model (Table 5). About a third of the variability was explained by each of year of data collection and subregion (adjusted R-squared: 34.6% and 31.5%, respectively). Meanwhile, no evidence for an association with infection type (current infection; ever infection), or STI ascertainment (biological assay explicitly indicated; otherwise) was found.

The multivariable analysis showed strong evidence for subregional differences, with Horn of Africa and North Africa showing, respectively, 6-fold (adjusted odds ratio (AOR): 6.4; 95% CI = 2.5-16.7) and 5-fold (AOR = 5.0; 95% CI = 2.5-10.6), higher odds of syphilis infection than Eastern MENA.

There was also strong evidence for a temporal trend of decreasing odds of infection at 7% per year (AOR = 0.93; 95% CI = 0.88-0.98; linearity dictated by data (Figure S1 in Online Supplementary Document) over the last three decades. Although this trend was noted in all subregions, individual subregion meta-regressions were not always powered to detect statistical significance (not shown).

No evidence for an association with diagnostic method, sample size, sampling methodology, and response rate was identified in the multivariable model. The multivariable model explained 48.5% of variation in syphilis prevalence.

DISCUSSION

We provided, to our knowledge, the first detailed assessment of the epidemiology of key STIs in FSWs in MENA, a neglected key population. Our findings indicated substantial STI prevalence, several folds higher than that among the general population [2,13,24,86]. These findings suggest a major role for CHSNs in driving STI transmission in MENA. We further found large heterogeneity in syphilis infection levels by subregion within MENA, as well as a trend of decreasing odds of infection by ~7% per year – less than the 17% [86] annual decline needed to achieve the target of 90% reduction in syphilis incidence by 2030 [6].

Despite the significant infection burden, STI surveillance and response in MENA continue to be rudimentary [21], and far below the coverage targets of WHO Global Health Sector Strategy for STIs [6]. Infected individuals are often identified through routine case notifications with surveillance/testing being largely limited to HIV [21,24,87], and sexual health programs, where they exist, cater to general population women rather than women at high risk [24].

Although our expansive search identified considerable evidence at the regional-level, including data that will appear in the scientific literature for the first time, evidence varied by country. Over half of countries had no data on any of the STIs in this key population, less than a third had data on *C. trachomatis, N. gonorrhoeae*, or *T. vaginalis*, and only three countries had data on HSV-2 IgG (Table 1, Table 2 and Table 3). This outcome is of concern, given the considerable, yet preventable, STI infection burden among FSWs in the region (Table 4), and the major “core group” role that CHSNs play in STI transmis-
Table 4: Results of meta-analyses on prevalence studies for *Treponema pallidum* (syphilis), *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, and *Herpes simplex virus type 2* (HSV-2) among FSWs in the Middle East and North Africa

Sexually Transmitted Infection	Studies	Samples	Reported Prevalence	Pooled Mean Prevalence	Heterogeneity Measures				
Treponema pallidum (syphilis)	Current infection:								
N†	Tested	Positive	Median‡ (%)	Range‡ (%)	Estimate (%)	99% CI	Q§ (P)	121%; 99% CI	Prediction interval¶ (95%)
34	7103	842	10.8	0.2-62.0	12.7	8.5-17.7	1045.3 (P<0.0001)	96.8 (96.2-97.4)	-0.0-48.8
Chlamydia trachomatis									
16	4608	512	8.4	0.7-76.2	14.4	8.2-22.0	611.4 (P<0.0001)	97.5 (96.9-98.1)	-0.0-53.6
Neisseria gonorrhoeae									
20	5230	301	7.9	0.1-75.8	7.7	6.3-9.2	2482 (P<0.0001)	92.3 (91.6-93.0)	-0.0-21.6
Trichomonas vaginalis									
13	4258	397	7.1	0.1-93.0	8.1	6.8-9.5	1647 (P<0.0001)	92.7 (90.3-95.0)	-0.0-23.7
Recent infection:									
Treponema pallidum (syphilis)									
34	7103	842	10.8	0.2-62.0	12.7	8.5-17.7	1045.3 (P<0.0001)	96.8 (96.2-97.4)	-0.0-48.8
Chlamydia trachomatis									
14	4258	397	7.1	0.1-93.0	8.1	6.8-9.5	1647 (P<0.0001)	92.7 (90.3-95.0)	-0.0-23.7
Treponema pallidum (syphilis)									
50	9968	710	7.0	0.2-93.0	12.8	9.4-16.0	1261.0 (P<0.0001)	96.1 (95.5-96.7)	-0.0-45.2
Treponema pallidum (syphilis)									
6	514	395	84.7	7.9-100.0	80.3	53.2-97.6	213.0 (P<0.0001)	97.7 (96.4-98.3)	-0.0-100.0
Herpes simplex virus type 2 IgG									
8	942	188	20.3	5.7-35.9	23.7	15.3-32.0	185.0 (P<0.0001)	96.4 (94.9-97.5)	-0.0-84.9
Unclear									
22	12698	771	8.9	0.2-92.2	7.8	5.1-10.7	391.3 (P<0.0001)	96.4 (95.9-97.2)	-0.0-25.7
Chlamydia trachomatis									
29	32	11.0	2.9-19.1	11.0	7.9-14.4	198 (P<0.0001)	96.4 (95.9-97.2)	-0.0-25.7	

CI – confidence interval, FSWs – female sex workers, IgG – immunoglobulin G, P – P-value
†Missing sample sizes for measures (or their strata) were imputed using the median sample size calculated from studies with available information (only two stratified measures for *Neisseria gonorrhoeae*, one stratified measure for *Chlamydia trachomatis*, one stratified measure for current syphilis infection, 5 stratified measures of unclear syphilis infection, had their sample size imputed, that is 5% of all data).
‡Medians and ranges were calculated based on the stratified prevalence measures.
‖I2 – a measure assessing the magnitude of between-study variation that is due to differences in effect size (here, prevalence) across studies.
¶Prediction interval: a measure estimating the 95% interval of the distribution of true effect sizes (here, prevalence measures).
**Meta-analyses were performed if at least three studies were available.
††Ever infection indicates seropositivity using antibody testing.

This phenomenon may have been a consequence of a shorter period of engagement [18], decreased condom use because of a higher risk of STIs [96], or increased condom use to prevent unwanted pregnancies [18]. This may have been also a consequence of a shorter period of engagement [18], increased condom use because of a higher risk of STIs [96], or increased condom use to prevent unwanted pregnancies [18].
Table 5. Results of meta-regression analyses to identify associations and sources of between-study heterogeneity in syphilis prevalence in the Middle East and North Africa (MENA)

Factors	Studies	Samples	Univariable Analyses	Multivariable Analysis*				
	Total N	Total n	OR† (95% CI)	P	Variance explained R2 (%)	AOR† (95% CI)	P	P‡ of LR test
Country/subregion								
Eastern MENA	28	10865	1.00	<0.001	31.52	1.00	<0.001	
Egypt, Jordan, Yemen	4	881	0.89 (0.15-5.10)	0.893	0.66 (0.13-3.28)	0.609		
North Africa	48	12,394	5.34 (2.45-11.61)	<0.001	5.01 (2.37-10.61)	<0.001		
Horn of Africa	26	5629	21.63 (8.89-52.69)	<0.001	6.40 (2.45-16.69)	<0.001		
Year of data collection†	106	29,769	0.88 (0.85-0.91)	<0.001	0.03 (0.88-0.98)	0.005	0.005	
Infection type								
Current	34	7103	1.00	0.515	0.00			
Ever**	50	9968	1.25 (0.52-3.00)	0.622	–	–	–	
Unclear	22	12,698	0.69 (0.23-2.04)	0.501	–	–	–	
Diagnostic method								
RPR/VDRL	29	6095	1.00	<0.001	22.44	1.00	0.474††	
TPHA	28	17,811	2.17 (0.86-5.45)	0.090	1.29 (0.54-3.07)	0.558		
RDT	23	8707	0.17 (0.06-0.45)	<0.001	0.46 (0.18-1.18)	0.104		
Not specified	22	12,698	0.43 (0.16-1.16)	0.094	0.75 (0.24-2.33)	0.614		
STI ascertainment								
Biological assay not reported	23	13,066	1.00	0.28†	0.15			
Biological assay explicitly indicated	83	16,703	1.66 (0.65-4.20)	0.284	–	–	–	
Sample size								
<100 participants	42	1960	1.00	<0.001	20.02††	1.00		
≥100 participants	64	27,809	0.16 (0.08-0.32)	<0.001	1.60 (0.62-4.15)	0.329	0.329	
Sampling methodology								
Non-probability/unclear sampling	66	12,555	1.00	<0.001	18.73††	1.00		
Probability-based sampling	40	17,214	0.16 (0.08-0.34)	<0.001	0.63 (0.25-1.63)	0.339	0.339	
Response rate								
<60%/unclear	69	18,400	1.00	<0.001	10.23††	1.00		
≥60%	37	11,369	0.25 (0.12-0.54)	0.001	0.73 (0.29-1.84)	0.495	0.495	

AOR – adjusted odds ratio, CI – confidence interval, FTA-ABS – fluorescent treponemal antibody absorption test, LR – likelihood ratio, OR – odds ratio, P – P-value, RDT – rapid diagnostic test, RPR – rapid plasma regain, STI – sexually transmitted infection, TPHA – Treponema pallidum haemagglutination assay, VDRL – venereal disease research laboratory.

*Adjusted R² in the multivariable model: 48.46%.
†An increment of 0.1 was added to number of events when generating log odds of syphilis infection. This is because 8 stratified measures had zero events.
‡Factors with P≤0.1 were eligible for inclusion in the multivariable analysis.
§Factors with P<0.05 in the multivariable model were considered as significant predictors.
‖Countries were grouped based on geography and similarity in prevalence levels.
¶Missing values for year of data collection (only one stratified measure) were imputed using data for year of publication adjusted by the median difference between year of publication and median year of data collection for studies with complete information.
**Ever infection indicates seropositivity using antibody testing.
††The high R² was investigated and found to be due to confounding with year of data collection. Most studies with sample size ≥100 were conducted in recent years.
‡‡The high R² was investigated and found to be due to confounding with country and year of data collection. Studies with non-probability sampling were mostly from the Horn of Africa. These studies tended also to be conducted in earlier years.
§§The high R² was investigated and found to be due to confounding with year of data collection. Most studies with response rate ≥60% were conducted in recent years.
duration of active syphilis infection in FSWs or their sex partners [96,97], possibly because of improvements in syphilis diagnostics and treatment, or because of widespread use of antibiotics (including for non-STI infections, which sometimes may cure concurrent syphilis) [86].

This being said, recent surveillance data seems also to suggest an increase in syphilis incidence and/or prevalence in other sexual networks or in specific settings, such as among MSM [98-100], and even among reproductive-age women in few countries where congenital syphilis appears to be rising [101,102]. Contributors to these trends may include behavioral factors, such as more sexual partners and unprotected sex among MSM, as well as contextual factors, and possibly even biological factors [99,100,102-104].

Prevalence measures for syphilis and for C. trachomatis in FSWs in MENA were comparable to global levels [22,23], but prevalence measures for N. gonorrhoeae and T. vaginalis leaned towards the lower end of the global range [22,23]. Even though the risk environment among FSWs in MENA seems less conducive to STI transmission, as compared to other regions [18], STI prevalence levels are substantial, perhaps aided by poor access to health care and prevention interventions [21,24,105], as well as absence of enabling environments for this vulnerable population, in a context of criminality [106,107] and stigma [108-110].

While interventions aiming at promoting safer sex, such as condom use, and STI etiological diagnosis and treatment, in high risk populations are widely accepted and advocated for [6,111-114], STI syndromic case management and presumptive treatment have been increasingly subject to criticism amid growing concerns about their role in promoting pathogens’ antimicrobial resistance (AMR) [111,115-119]. Indeed, substantial AMR prevalence and multiple drug resistant strains have been found in gonococcal isolates from FSWs in sub-Saharan Africa [120,121] and elsewhere [122]. This suggests that despite the effectiveness of targeted STI treatment services in reducing STI incidence and prevalence, their appropriateness and sustainable implementation will need to be informed by surveillance and monitoring, notably for AMR, and thus may vary across settings [111,122]. This further supports WHO efforts towards building a global business case for accelerating development of STI vaccines as a fundamental solution to STI drug resistance [123-125].

This study is limited by the quantity and quality of available data. STI prevalence among FSWs remains unknown in over half of countries. While there was considerable evidence for syphilis, less evidence was found for C. trachomatis, N. gonorrhoeae, T. vaginalis, and HSV-2, limiting our ability to conduct advanced meta-analyses—meta-regressions were carried out only for syphilis. Though, for syphilis prevalence, the differences between current vs ever (seropositivity using antibody testing) infection, as well as the differences between diagnostics, were consistent with the findings of a large global analysis for the general population [86], the confidence intervals were wide owing to the smaller number of studies (Table 5). Several measures were based on routine data reporting, and did not include sufficient documentation of study methodology. There was also a wide array of diagnostics used for STI ascertainment, which may have affected observed prevalence.

Available studies may not be representative of the wider population of FSWs, or could be subject to biases, such as selection bias or detection bias. Of note, however, that there was no evidence that any of the assessed study-specific quality domains (Tables S5-S6 in Online Supplementary Document), including sampling methodology, response rate, and explicit indication of the assay used for infection ascertainment, had an effect on prevalence in the multivariable meta-regression (Table 5). Despite limitations, our study provided a detailed synthesis of STI epidemiology in FSWs in MENA, in a background of lack of evidence for this region [22,23]. A significant volume of published and unpublished data was identified and analyzed, and for the first time.

In conclusion, STI levels among FSWs are considerable, supporting a key role for CHSNs in STI transmission dynamics in MENA, and highlighting the public health needs of this neglected and vulnerable population. Despite the progress in our epidemiological understanding, major gaps persist, with no evidence being available for over half of MENA countries. With the limited STI surveillance [24,126], and the focus of programmatic response on case management and syndromic approach, rather than being evidence-informed and grounded on etiological studies [24,126], there is a critical need to expand STI surveillance and the broader STI research agenda. STI testing should be part of IBBSS studies, as well as part of voluntary counseling and testing services for HIV [91,93]. Interventions should factor research findings to ensure adequate and efficient resource allocation. Without such expansion of STI efforts, it will not be possible to monitor infection trends, or to inform a public health response that attends to the WHO Global Health Sector Strategy on STIs [6].
Acknowledgements: The authors gratefully acknowledge Professor Rhoda Ashley-Morrow from the University of Washington, for her support in assessing the quality of Herpes simplex virus type 2 diagnostic methods. The authors also gratefully acknowledge Ms. May Al-Kassar for her assistance with study diagnostics, and Ms. Adona Canlas for her assistance with locating full-texts of articles. The authors further gratefully acknowledge the Department of Reproductive Health and Research at the World Health Organization, for making syphilis routine data reporting available for public use, through the Global Health Observatory data repository. Ethics approval deemed as not required for this research by the Research Governance & Integrity Office at the London School of Hygiene and Tropical Medicine.

Funding: This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of Qatar Foundation). Infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at the Well Cornell Medicine-Qatar. Salary for HAW was from the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement (K012126/1). The statements made herein are solely the responsibility of the authors.

Authorship contributions: HC conceived and designed the study, conducted the systematic review of the literature, performed the data analyses, and wrote the first draft of the article. AS double extracted the data. EM contributed to the title and abstract screening of regional and country-level databases. HAW contributed to study design, data analyses, and drafting of the article. LJA contributed to study design, data analyses, and drafting of the article. All authors contributed to discussion and interpretation of the results and writing of the manuscript. All authors have read and approved the final manuscript.

Competing interests: The authors have completed the Unified Competing Interest form at www.icmje.org/coiDisclosure.pdf (available on request from the corresponding author) and declare no competing interests.

Additional material
Online Supplementary Document

1 World Health Organization. Report on globally sexually transmitted infection surveillance 2015. Geneva, Switzerland: World Health Organization, 2016.
2 Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2013;10:e0143304. Medline:26646541 doi:10.1371/journal.pone.0143304
3 Looker KJ, Magaret AS, Turner KM, Vickerman P, Gottlieb SL, Newman LM. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One. 2015;10:e114989. Medline:25608026 doi:10.1371/journal.pone.0114989
4 Johnson LF, Lewis DA. The effect of genital tract infections on HIV-1 shedding in the genital tract: A systematic review and meta-analysis. Sex Transm Dis. 2008;35:946-59. Medline:18685546 doi:10.1097/OLQ.ob013e3181812d15
5 Cohen MS. Sexually transmitted diseases enhance HIV transmission: No longer a hypothesis. Lancet. 1996;351 Suppl 3-5:7. Medline:95271212 doi:10.1016/S0140-6736(98)00002-2
6 World Health Organization. Global health sector strategy on sexually transmitted infections, 2016-2021. Geneva, Switzerland: World Health Organization, 2016 Contract No.: WHO/RHR/16.09.
7 World Bank, Centers for Disease Prevention and Control. Sexually transmitted infections in developing countries. 2009. Accessed.
8 Thomas JC, Tucker MJ. The development and use of the concept of a sexually transmitted disease core. J Infect Dis. 1996;174 Suppl 2:S134-43. Medline:8843243 doi:10.1093/infdis/174.Supplement_2.S134
9 Kilmarx PH. Global epidemiology of HIV. Curr Opin HIV AIDS. 2009;4:240-6. Medline:19532059 doi:10.1097/COH.0b013e3282a06db
10 Brunham RC, Plummer FA. A general model of sexually transmitted disease epidemiology and its implications for control. Med Clin North Am. 1990;74:1339-52. Medline:2246943 doi:10.1016/S0025-7125(16)30489-9
11 Omori R, Abu-Raddad LJ. Sexual network drivers of HIV and herpes simplex virus type 2 transmission. AIDS. 2017;31:1721-32. Medline:28514276 doi:10.1097/QAD.0000000000001542
12 Kouyoumian SP, Heijnen M, Chaabna K, Mumtaz GR, Omori R, Vickerman P, et al. Global population-level association between herpes simplex virus 2 prevalence and HIV prevalence. AIDS. 2018;32:1343-52. Medline:29794495 doi:10.1097/QAD.0000000000001828
13 Abu-Raddad LJ, Schiffer JT, Ashley R, Mumtaz G, Alsallaq RA, Akala FA, et al. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa. Epidemics. 2010;2:173-82. Medline:21352788 doi:10.1016/j.epidem.2010.08.003
14 Omori R, Abu-Raddad LJ. Population sexual behavior and HIV prevalence in sub-Saharan Africa: Missing links? IJID. 2016;44:1-3. Medline:26780269 doi:10.1016/j.ijid.2016.01.005
15 Lee RM, Renzetti CM. The problems of researching sensitive topics. Am Behav Sci. 1990;33:510-28. doi:10.1177/0002764290033005002
REFERENCES

16 United Nations. Transforming our world: The 2030 agenda for sustainable development. 2015 A/RES/70/1.

17 Saba HF, Kouyoumjian SP, Muntaz GR, Abu-Raddad LJ. Characterising the progress in HIV/AIDS research in the Middle East and North Africa. Sex Transm Infect. 2013;89 Suppl 3:i5-9. Medline:23596206 doi:10.1136/sextrans-2012-050888

18 Chemaitelly H, Weiss HA, Thomas SL, Calvert C, Harfouche M, Abu-Raddad LJ. HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: Systematic review, meta-analyses, and meta-regressions. BMC Med. 2019;17:119. Medline:31230594 doi:10.1186/s12916-019-1349-y

19 Muntaz GR, Weiss HA, Thomas SL, Rione S, Setayesh H, Riedner G, et al. HIV among people who inject drugs in the Middle East and North Africa: Systematic review and data synthesis. PLoS Med. 2014;11:e1001663. Medline:24937136 doi:10.1371/journal.pmed.1001663

20 Muntaz G, Hilmi N, McFarland W, Kaplan RL, Akala FA, Semini I, et al. Are HIV epidemics among men who have sex with men emerging in the Middle East and North Africa?: A systematic review and data synthesis. PLoS Med. 2010;8: e1000444. Medline:21829329 doi:10.1371/journal.pmed.1000444

21 Abu-Raddad LJ, Ghanem KG, Feizzadeh A, Setayesh H, Calleja JM, Riedner G. HIV and other sexually transmitted infection in the Middle East and North Africa: Promising progress? Sex Transm Infect. 2013;89 Suppl 3:i1-4. Medline:24191291 doi:10.1136/sextrans-2013-051373

22 Cwikel JG, Lazer T, Press F, Lazer S. Sexually transmissible infections among female sex workers: An international review with an emphasis on hard-to-access populations. Sex Health. 2008;5:9-16. Medline:18361849 doi:10.1071/S0956462408000423

23 Platt L, Grenfell B, Fletcher A, Sorhaindo A, Jolley E, Rhodes T, et al. Systematic review examining differences in HIV, sexually transmitted infections and health-related harms between migrant and non-migrant female sex workers. Sex Transm Infect. 2013;89:311-9. Medline:23112339 doi:10.1136/sextrans-2012-050491

24 Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. World Bank/UNAIDS/WHO Publication, editor. Washington DC: The World Bank Press; 2010.

25 Abu-Raddad LJ, Hilmi N, Muntaz G, Benkirane M, Akala FA, Riedner G, et al. Epidemiology of HIV infection in the Middle East and North Africa. AIDS. 2010;24:55-23. Medline:20610949 doi:10.1097/01.aids.0000386729.56683.33

26 Higgins JPT, Green S. Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions. Chichester, England; Hoboken, NJ: Wiley-Blackwell; 2015.

27 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. Medline:19621072 doi:10.1371/journal.pmed.1000097

28 World Health Organization. Global health observatory data repository. 2018. Available: http://apps.who.int/gho/data/node.main.A1360STI?lang=en

29 International AIDS Society. Abstract archives of International AIDS Society conferences. Found at: http://wwwabstract-archive.org/. Last accessed on 28th of July 2018.

30 Higgins JPT, Green S. Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions. Chichester, England; Hoboken, NJ: Wiley-Blackwell; 2008.

31 Ashley RL, Militoni J, Lee F, Nahmias A, Corey L. Comparison of western blot (immunoblot) and glycoprotein G-specific immunodot enzyme assay for detecting antibodies to herpes simplex virus types 1 and 2 in human sera. J Clin Microbiol. 1988;26:662-9. Medline:2835389

32 Ashley RL. Performance and use of HSV type-specific serology test kits. Herpes. 2002;9:38-45. Medline:12106510

33 Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat. 1950;21:607-11. doi:10.1214/aoms/1177729756

34 Miller JJ. The inverse of the Freeman–Tukey double arcsine transformation. Am Stat. 1978;32:138.

35 Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67:974-8. Medline:23963506 doi:10.1136/jech-2013-203104

36 DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88. Medline:3802833 doi:10.1016/0197-2456(86)90046-2

37 Borenstein M. Introduction to meta-analysis. Chichester, U.K.: John Wiley & Sons; 2009.

38 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539-58. Medline:12111919 doi:10.1002/sim.1186

39 R core team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

40 StataCorp. Stata statistical software: Release 15.1. College Station, TX: StataCorp LP; 2017.

41 Kazerooni PA, Motazedian N, Motamedifar M, Sayadi M, Sabet M, Lari MA, et al. The prevalence of human immunodeficiency virus and sexually transmitted infections among female sex workers in Shiraz, south of Iran: By respondent-driven sampling. Int J STD AIDS. 2014;25:155-61. Medline:23970644 doi:10.1177/0956462413496227

42 Navadeh S, Mirzazadeh A, Moussavi L, Haghdoo S, Fahimfar N, Sedaghat A. HIV, HSV2 and syphilis prevalence in female sex workers in Kerman, South-East Iran; using respondent-driven sampling. Iran J Public Health. 2012;41:60-5. Medline:23641392

43 Ahmed HJ, Omar K, Adan SY, Guled AM, Grillner L, Bygdeman S. Syphilis and human immunodeficiency virus seroconversion during a 6-month follow-up of female prostitutes in Mogadishu, Somalia. Int J STD AIDS. 1991;2:119-23. Medline:2043703 doi:10.1177/095646249100200209

www.jogh.org • doi: 10.7189/jogh.09.020408 17 DECEMBER 2019 • VOL. 9 NO. 2 • 020408
44 Todd CS, Nasir A, Stanekzai MR, Bautista CT, Botros BA, Scott PT, et al. HIV, hepatitis B, and hepatitis C prevalence and associated risk factors in sex workers, drug users, and prisoners in Sindh, Pakistan. J Acquir Immune Defic Syndr. 2009;52:257-64. doi:10.1097/QAI.0b013e3181955601

45 Ministry of Health and Population, National AIDS Program. Evaluation of selected reproductive health infections in various Egyptian population groups in Greater Cairo. Cairo, Egypt: 2000.

46 Kassaian N, Ataei B, Yaran M, Babak A, Shoaei P, Ataei M. HIV and other sexually transmitted infections in women with illegal social behavior in Isfahan, Iran. Int J STD AIDS. 2012;23:466-72. doi:10.1258/ijst.2011.11-0011

47 Jahantabakhsh E, Bagheri Amir F, Sedaghat A, Fahimfar N, Mostafavi E. Prevalence of HAV Ab, HEV (IgG), HSV2 IgG, and syphilis among sheltered homeless adults in Tehran, 2012. Int J Health Policy Manag. 2017;6:225-30. doi:10.15171/ijhpm.2017.74

48 Royaume du Maroc-Ministere de la Sante. Etude de prevalence des IST chez les femmes qui consultent pour pertes vaginales et/ou douleurs du bas ventre. Rabat, Maroc: Programme National de lutte contre les IST/SIDA, 2008.

49 Ministry of Health-Morocco, The Joint United Nations Programme on HIV/AIDS (UNAIDS), The Global Fund. HIV integrated behavioral and biological surveillance surveys-Morocco 2011: Female sex workers in Agadir, Fes, Rabat and Tanger. Morocco: 2012.

50 Baqi S, Nabi N, Hasan SN, Khan AJ, Pasha O, Kayani N, et al. HIV antibody seroprevalence and associated risk factors in sex workers, drug users, and prisoners in Sindh, Pakistan. J Acquir Immune Defic Syndr. 2009;52:257-64. doi:10.1097/QAI.0b013e3181955601

51 Rehan N, Bokhari A, Nizamani NM, Jackson D, Naqvi HR, Qayyum K, et al. National study of reproductive tract infections among high risk groups of Lahore and Karachi. J Coll Physicians Surg Pak. 2009;19:228-31. doi:10.1136/jcp.2008.033910

52 Ministry of Health-Pakistan National AIDS Control Program. National study of reproductive tract and sexually transmitted infections: A survey of high risk groups in Lahore and Karachi, Pakistan. 2005.

53 Shah AS, Memon MA, Soomro S, Kazi N, Kristensen S, editors. Seroprevalence of HIV, syphilis, hepatitis B and hepatitis C among female commercial sex workers in Hyderabad, Pakistan. International AIDS Conference, C12368; 2004.

54 Hawkes S, Collumbien M, Platt L, Laak N, Rizvi N, Andrews A, et al. HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: A cross-sectional prevalence survey. Sex Transm Infect. 2009;85:i88-96. doi:10.1136/sti.2008.033910

55 Khan MS, Unemo M, Zaman M, Lundborg CS. HIV, STI prevalence and risk behaviours among women selling sex in Lahore, Pakistan. BMC Infect Dis. 2011;11:119. doi:10.1186/1471-2334-11-119

56 Jama H, Hederstedt B, Osman S, Omar K, Issa A, Bygdeleman S. Syphilis in women of reproductive age in Mogadishu, Somalia: Serological survey. Genitourin Med. 1988;64:396-7. doi:10.1136/sti.64.6.396-a

57 Scott DA, Corwin AL, Constantine NT, Omar MA, Guled A, Yusef M, et al. Low prevalence of human immunodeficiency virus-1 (HIV-1), HIV-2, and human T cell lymphotropic virus-1 infection in Somalia. Am J Trop Med Hyg. 1991;45:653-9. doi:10.4269/ajtmh.1991.45.653

58 Corwin AL, Olson JG, Omar MA, Razaki A, Watts DM. HIV-1 in Somalia: Prevalence and knowledge among prostitutes. AIDS. 1991;5:902-4. doi:10.1097/00042560-199107000-00023

59 Watts DM, Corwin AL, Omar MA, Hyams KC. Low risk of sexual transmission of hepatitis C virus in Somalia. Trans R Soc Trop Med Hyg. 1994;88:55-6. doi:10.1097/00002030-199107000-00023

60 International Organization for Migration (IOM). Integrated biological and behavioural surveillance survey among vulnerable women in Hargeisa, Somaliland. Geneva, Switzerland: 2017.

61 Government of the Republic of South Sudan-Ministry of Health. A bio-behavioral HIV survey of female sex workers in South Sudan. South Sudan: 2016.

62 Bchir A, Jenni L, Saadi M, Milevanovic A, Brahim H, Catalan F. Markers of sexually transmitted diseases in prostitutes in central Tunisia. Genitourin Med. 1988;64:396-7. doi:10.1136/sti.64.6.396-a

63 Ayachi F, Chekrid A, Lagha N, Ben Hamida A, Amamou H, Ben Mahmoud R. Seroprevalence rate of syphilis in 3 groups of sexually active tunisian women. [French]. Med Mal Infect. 1997;27:913-4. doi:10.1016/S0399-077X(97)80249-1

64 Stuhlhofer A, Bozicevic I. HIV bio-behavioural survey among female sex workers in Aden, Yemen. 2008.

65 National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project. Integrated behavioral & biological surveillance (IBBS) in Afghanistan: Year 1 report. Kabul, Afghanistan: 2010.

66 National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project. Integrated behavioral & biological surveillance (IBBS) in selected cities of Afghanistan: Findings of 2012 IBBS survey and comparison to 2009 IBBS survey. Kabul, Afghanistan: National AIDS Control Program; 2012.

67 Ministere de la Sante et de la Population et de la Reforme Hospitaliere. Direction de la Prevention Comite National de Lutte contre les IST/VIH/SIDA. Plan national strategique de lutte contre les IST/VIH/Sida 2008-2012. Geneva, Switzerland: Ministere de la Sante et de la Population et de la Reforme Hospitaliere; 2009.

68 Mirzaaazadeh A, Shokooohi M, Khaje zhazemi R, et al, editors. HIV and sexually transmitted infections among female sex workers in Iran: Findings from the 2010 and 2015 national surveillance conferences. 21st International AIDS Conference, Durban, South Africa, 7/18-22, ePoster, Abstract TUPEC175; 2016.

69 Bibi I, Devrajani BR, Shah SZA, Soomro MH, Jatoi MA. Frequency of syphilis in female sex workers at red light area of Hyderabad, Pakistan. J Pak Med Assoc. 2010;60:353-6. doi:10.20527605

70 Raza M, Ikram N, Saeed N, Wahed U, Kamran M, Iqbal R, et al. HIV/AIDS and syphilis screening among high risk groups. J Rawal Med Coll. 2015;19:11-4.
REFERENCES

71 Burans JP, Fox E, Omar MA, Farah AH, Abbass S, Yusef S, et al. HIV infection surveillance in Mogadishu, Somalia. East Afr Med J. 1990;67:466-72. Medline:2226225

72 Sudan National AIDS Control Program. Integrated bio-behavioral HIV surveillance (IBBS) among female sex workers and men who have sex with men in 15 states of Sudan, 2011-2012. 2012.

73 Znazen A, Frihka-Gargouri O, Berrajah L, Bellaloua S, Hakim H, Gueldana N, et al. Sexually transmitted infections among female sex workers in Tunisia: High prevalence of Chlamydia trachomatis. Sex Transm Infect. 2010;86:500-5. Medline:20656718 doi:10.1136/sti.2010.042770

74 Additional country-level data provided through the MENA HIV/AIDS Epidemiology Synthesis Project database by the World Health Organization Regional Office for the Eastern Mediterranean. 2013.

75 Moayedi-Nia S, Bayat Jozani Z, Esmaeeli Djavid G, Entekhabi F, Bayanolahg S, Saatian M, et al. HIV, HCV, HBV, HSV, and syphilis prevalence among female sex workers in Tehran, Iran, by using respondent-driven sampling. AIDS Care. 2016;28:487-90. Medline:26565671 doi:10.1080/09540121.2015.1109582

76 Khattabi H, Alami K. Surveillance sentinelle du VIH: Resultats 2004 et tendances de la seroprevalence du VIH. Morocco. 2005.

77 Bennani A., Alami K. Surveillance sentinelle du VIH: Resultats 2005 et tendances de la seroprevalence du VIH. 2006.

78 Kadi Z, Bouguermouch A, Ait-Mokhtar N, Allouache A, Ziat A, Orfilla J. Genital chlamydia infections. A seroepidemiologic study in Algiers. [French]. Arch Inst Pasteur Alger. 1989;57:73-82. Medline:2489406

79 Darougar S, Aramesh B, Gibson JA, Treherne JD, Jones BR. Chlamydial genital infection in prostitutes in Iran. Br J Ven Dis. 1983;59:53-5. Medline:6824908 doi:10.1136/sti.59.1.53

80 World Health Organization. HIV surveillance systems: Regional update 2011. Geneva: WHO; 2011.

81 Nasirian M, Kianersi S, Hoseini SG, Kassaian N, Yaran M, Shoaei P, et al. Prevalence of sexually transmitted infections and their risk factors among female sex workers in Isfahan, Iran: A cross-sectional study. J Int Assoc Provid AIDS Care. 2017;16:608-14. Medline:29017347 doi:10.1097/QCO.0b013e32834204bf

82 Taghizadeh H, Taghizadeh F, Fathi M, Reihani P, Shirdee N, Rezaee SM. Drug use and high-risk sexual behaviors of women at a drop-in center in mazandaran province, Iran, 2014. JIPBS. 2015;9:e1047-55. Medline:26288640 doi:10.17795/jipbs1047

83 Programme de Lutte contre les IST/SIDA. Analyse de la situation et de la reponse au VIH/SIDA en Tunisie. Tunisia: 2005.

84 Vafaee H, Asadi N, Foroughinia L, Salehi A, Kuhnavard S, Akbarzadeh M, et al. Comparison of abnormal cervical cytology from the early HIV period is correlat in the mid-1990s? Epidemics. 2014;8:9-17. Medline:25240899 doi:10.1016/j.epidem.2014.06.001

85 Ibrahim AI, Kouwatli KM, Obeid MT. Frequency of herpes simplex virus in Syria based on type-specific serological as say. Saudi Med J. 2000;21:355-60. Medline:11533818

86 Smolak A, Rowley J, Nagelkerke N, Kassebaum NJ, Chico RM, Korenromp EL, et al. Trends and predictors of syphilis prevalence in the general population: Global pooled analyses of 1103 prevalence measures including 136 million syphilis tests. Clin Infect Dis. 2018;66:1184-91. Medline:29136161 doi:10.1093/cid/cix975

87 Bozicevic I, Riedner G, Calleja JM. HIV surveillance in MENA: Recent developments and results. Sex Transm Infect. 2013;89 Suppl 3:iii11-6. Medline:23434789 doi:10.1136/sextrans-2012-050849

88 Vandepitte J, Lyerla R, Dallabetta G, Crabbè F, Alary M, Buve A. Estimates of the number of female sex workers in different regions of the world. Sex Transm Infect. 2006;82 Suppl 3:iii18-25. Medline:16735288 doi:10.1136/sti.2006.020081

89 Kouyoumjian SP, El Rhilani H, Latifi A, El Kettani A, Chemaitelly H, Alami K, et al. Mapping of new HIV infections and impact of select interventions. IJJID. 2018;69:4-12. Medline:29957370 doi:10.1016/j.ijjid.2017.12.013

90 Muntaz GR, Riedner G, Abu-Raddad LJ. The emerging face of the HIV epidemic in the Middle East and North Africa. Curr Opin HIV AIDS. 2014;9:183-91. Medline:24445372 doi:10.1097/COH.0000000000000038

91 World Health Organization. Strategies and laboratory methods for strengthening surveillance of sexually transmitted infections 2012. Geneva, Switzerland: World Health Organization, 2012.

92 Munro N, Holte-McKenzie M, Ahmed S, Archibald CP, Blanchard JF, Thompson LH. Second-generation HIV surveillance in Pakistan: Policy challenges and opportunities. Sex Transm Infect. 2013;89 Suppl 3:iii11-6. Medline:23220785 doi:10.1136/sextrans-2012-050773

93 Reintjes R, Wiessing L. 2nd-generation HIV surveillance and injecting drug use: Uncovering the epidemiological iceberg. Int J Public Health. 2007;52:166-72. Medline:17958283 doi:10.1007/s00038-007-5123-0

94 Awad SF, Abu-Raddad LJ. Could there have been substantial declines in sexual risk behavior across sub-Saharan Africa in the mid-1990s? Epidemics. 2014;8:9-17. Medline:25240899 doi:10.1016/j.epidem.2014.06.001

95 Kenyon CR, Osbak K, Buyze J, Chico RM. The changing relationship between bacterial STIs and HIV prevalence in South Africa - an ecological study. Int J STD AIDS. 2015;26:556-64. Medline:25122576 doi:10.1177/0956462415463902

96 Osbak KK, Rowley JT, Kassebaum NJ, Kenyon CR. The prevalence of syphilis from the early HIV period is correlated With peak HIV prevalence at a country level. Sex Transm Dis. 2016;43:255-7. Medline:26967303 doi:10.1097/OLQ.0000000000000422

97 Kenyon CR, Osbak K, Tsoumanis A. The global epidemiology of syphilis in the past century - a systematic review based on antenatal syphilis prevalence. PLoS Negl Trop Dis. 2016;10:e0004711. Medline:27167068 doi:10.1371/journal.pntd.0004711

98 Turner JD, Cohen MS. Chlamydia's syphilis epidemic: epidemiology, proximate determinants of spread, and control responses. Curr Opin Infect Dis. 2011;24:50-5. Medline:21150594 doi:10.1097/QCO.0b013e32834204bf

99 Stamm LV. Global challenge of antibiotic-resistant Treponema pallidum. Antimicrob Agents Chemother. 2010;54:583-9. Medline:19805553 doi:10.1128/AAC.01095-09
100 Mohammed H, Mitchell H, Sile B, Duffell S, Nardone A, Hughes G. Increase in sexually transmitted infections among men who have sex with men, England, 2014. Emerg Infect Dis. 2016;22:88-91. Medline:26689861 doi:10.3201/ eid2201.151331

101 Centers for Disease Control and Prevention. Increase in incidence of congenital syphilis — United States, 2012–2014. Atlanta, USA: 2015.

102 Chen ZQ, Zhang GC, Gong XD, Lin C, Gao X, Liang GJ, et al. Syphilis in China: Results of a national surveillance programme. Lancet. 2007;369:132-8. Medline:17223476 doi:10.1016/S0140-6736(07)60074-9

103 Tucker JD, Cohen MS. China’s syphilis epidemic: Epidemiology, proximate determinants of spread, and control responses. Curr Opin Infect Dis. 2011;24:50-5. Medline:21150594 doi:10.1097/QCO.0b013e32834240bf

104 Slotey JE, Cohen SE. Syphilis transmission: a review of the current evidence. Sex Health. 2015;12:103-9. Medline:25702043 doi:10.1071/SH14174

105 Al-Thani A, Abdul-Rahim H, Alabsi E, Al-Hadeethi A, Al-Suwaidi J, Al-Kindi S, et al. Prevalence of Chlamydia trachomatis infection in the general population of women in Qatar. Sex Transm Infect. 2013;89:iii57-60. Medline:23863874 doi:10.1136/sextrans-2013-051169

106 Abu-Raddad LJ, Akala FA, Semini R, Riedner G, Wislon D, Tawil O. Policy notes. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO publication. Washington DC: The World Bank Press; 2010.

107 Jenkins C, Rinaldo DA. HIV/AIDS in the Middle East and North Africa: The costs of inaction. Washigton, D.C.: The World Bank; 2003.

108 Mohebbi MR. Female sex workers and fear of stigmatisation [2]. Sex Transm Infect. 2005;81:180-1. Medline:15800100 doi:10.1136/sti.2004.010512

109 Dejong J, Mortagy I. The struggle for recognition by people living with HIV/AIDS in Sudan. Qual Health Res. 2009;19:1562-7. Medline:19608961 doi:10.1177/10497323083149832

110 Mayaud P, Mabey D. Approaches to the control of sexually transmitted infections in developing countries: old problems and modern challenges. Sex Transm Infect. 2004;80:174-82. Medline:15169997 doi:10.1136/sti.2002.004101

111 Grund JM, Bryant TS, Jackson I, Curran K, Bock N, Toledo C, et al. Association between male circumcision and women's biomedical health outcomes: A systematic review. Lancet Glob Health. 2017;5:e1113-22. Medline:29025633 doi:10.1016/S2214-109X(17)30369-8

112 Morris BJ, Hankins CA. Effect of male circumcision on risk of sexually transmitted infections and cervical cancer in women. Lancet Glob Health. 2017;5:e1054-5. Medline:29025620 doi:10.1016/S2214-109X(17)30386-8

113 World Health Organization. Implementing comprehensive HIV/STI programmes with sex workers. Geneva, Switzerland: WHO; 2013.

114 Wi T, Labra MM, Ndowa F, Bala S, Nyanzvi P, et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017;14:e1002344. Medline:28686231 doi:10.1371/journal.pmed.1002344

115 Lewis DA. Global resistance of Neisseria gonorrhoeae: When theory becomes reality. Curr Opin Infect Dis. 2014;27:62-7. Medline:24275696 doi:10.1097/QCO.0000000000000025

116 Bolan GA, Sparling PF, Wasserheit JN. The emerging threat of untreatable gonococcal infection. N Engl J Med. 2012;366:485-7. Medline:22316442 doi:10.1056/NEJMep0112456

117 Sarkis J, Sattler J, Papp JR, Del Rio C, Holmes KK, et al. Neisseria gonorrhoeae antimicrobial susceptibility surveillance - The Gonococcal Isolate Surveillance Project, 27 sites, United States, 2014. MMWR Surveill Summ. 2016;65:1-19. Medline:27541503 doi:10.15585/mmwr.ss6507a1

118 Suay-Garcia B, Perez-Gracia MT. Future prospects for Neisseria gonorrhoeae treatment. Antibiotics (Basel). 2018;7:E49. Medline:29914071 doi:10.3390/antibiotics7020049

119 Mason PR, Wawer M, Sewry CA, Masire W, Serwadda D, et al. Antimicrobial resistance in gonococci isolated from patients and from commercial sex workers in Harare, Zimbabwe. Int J Antimicrob Agents. 1997;9:175-9. Medline:9552714 doi:10.1016/S0924-8579(97)00052-6

120 Ssemwangi D, Ndombi N, Iyagboh F, Magambo B, Kapata A, Bukunya J, et al. Transmitted antiretroviral drug resistance among drug-naive female sex workers with recent infection in Kampala, Uganda. Clin Infect Dis. 2012;54 Suppl 4:S339-42. Medline:22544200 doi:10.1093/cid/cir937

121 Abraha M, Egli-Gany D, Low N. Epidemiological, behavioural, and clinical factors associated with antimicrobial-resistant gonorrhoea: a review. F1000Res. 2017;8:400. Medline:29636908 doi:10.12688/f1000research.13600.1

122 Gottlieb SL, Low N, Newman LM, Bolan G, Kamb M, Brotet N. Toward global prevention of sexually transmitted infections (STIs): the need for STI vaccines. Vaccine. 2014;32:1527-35. Medline:24581979 doi:10.1016/j.vaccine.2013.07.087

123 Gottlieb SL, Deal CD, Giersing B, Rees H, Bolan G, Johnston C, et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: Update and next steps. Vaccine. 2016;34:2939-47. Medline:27105564 doi:10.1016/j.vaccine.2016.03.111

124 Brotet N, Fruth U, Deal C, Gottlieb SL, Rees H. participants of the STIVTC. Vaccines against sexually transmitted infections: the way forward. Vaccine. 2014;32:1630-7. Medline:24480024 doi:10.1016/j.vaccine.2014.01.053

125 World Health Organization Office for the Eastern Mediterranean Region (WHO-EMRO). Technical paper on the regional strategy for STI prevention and control in the Eastern Mediterranean Region of WHO presented at the regional committee 55. Unpublished.