Spectroscopy of Light Baryons: Δ Resonances

Chandni Menapara and Ajay Kumar Rai
Department of Physics, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India
E-mail: chandni.menapara@gmail.com

Abstract. The spectroscopy of light, strange baryons have been an important aspect with still unknown resonances and intrinsic baryonic properties. The present document is focused on the Δ baryons unlike earlier work, here all the four isospin states have been separately obtained treating u and d quarks with different constituent masses. The theoretical framework for calculating the resonance masses is hypercentral Constituent Quark Model (hCQM). The confining potential is taken as of linear form alongwith the addition of spin-dependent as well as first order correction term. The results obtained have been compared with many varied approaches as well as experimental available states. In addition to mass spectra, Regge trajectories for (n, M^2) and (J, M^2) have been plotted. The magnetic moment as well as transition magnetic moment have been calculated using effective quark mass. The radiative decay width has been studied for Δ^+ and Δ^0 channels.

Keywords: Baryon spectroscopy, CQM, Regge trajectory, Radiative decay width

1. Introduction

The quest towards the understanding of internal dynamics of hadrons has been the driving force to hadron spectroscopy. It is a prime means for our knowledge of QCD in the low-energy regime [1]. The search for the missing resonances has lead us to explore various theoretical and phenomenological approaches to obtain the excited baryon spectrum and to observe them has been central goal of experimental facilities. The experiments at Jefferson Lab, MAMI, ELSA [2], GRAAL, HADES-GSI [3] have been striving through years to collect as much information about excited state of hadrons as possible. The upcoming facilities PANDA at FAIR-GSI shall be dedicated to light, strange baryons [4, 5, 6].

The first and foremost members of octet and decuplet families, nucleon N and delta Δ baryon have always been of interest. Various decay of strange as well as other heavy baryons are ultimately reaching to these light baryons. The isospin partners u and d
quarks have generally been treated at the same footings however, it leads to 2 and 4 respective isospin states for N and ∆. This study is motivated by our attempt to study P and N separately and now extending to all the four isospins of ∆ [8]. The possible four combinations of the symmetric wave function gives four ∆ particle with isospin I = 3/2 as:

\[
\begin{align*}
\Delta^{++} & (uuu, I_3 = \frac{3}{2}) \\
\Delta^+ & (uud, I_3 = \frac{1}{2}) \\
\Delta^0 & (udd, I_3 = -\frac{1}{2}) \\
\Delta^- & (ddd, I_3 = -\frac{3}{2})
\end{align*}
\]

Over the years, ∆s have been observed through pion-nucleon decays [9, 10] and photo-production decays. The study of ∆ is not only limited to high energy realm but also in the field of astrophysics wherein ∆s are observed in neutron stars as a puzzle too [11]. Historically, the presence of ∆(1232) has been an essential step towards color degree of freedom. Incorporating the recent additions, 8 four star, 4 three star and many other experimental status have been explored with the values ranging from J = \frac{1}{2} to J = \frac{15}{2} and still many states are awaited of confirmation of existence [12]. Not many baryons are known with such a number of states. Also, ∆ being the lightest member with the presence of electric quadrupole moment makes it interesting to dig deep into the shape and structure of the baryon [13]. Also, the MicroBooNE collaboration has recently reported ∆(1232) radiative decay through neutrino induced neutral current [14].

Other than experiments, ∆ resonances have been focused through various theoretical and phenomenological approaches. To name a few, Isgur-Karl model [15] with modified relativised approach [16], spontaneous chiral symmetry breaking through Goldstone-boson exchange [17, 18], semi-relativistic model [19], QCD SUM Rules [20], light-front model [21] and light-front relativistic [22], Lattice QCD [23] and covariant Faddeev approach [24], relativistic quark with instanton-induced forces [25] and many more. Others are also described in section 3 wherein used for comparison of the calculated data.

The paper is organized as follows: the theoretical framework describes the non-relativistic hypercentral Constituent Quark Model (hCQM) which has been employed for the present study. The results for radial and orbital resonance masses are tabulated alongwith the experimental known states as well as other theoretical and phenomenological models ranging from S to F-wave for all four ∆ partners. Later sections 4, 5, and 6 focus on Regge trajectories, magnetic moments and radiative decay widths for the calculated masses. Finally, the article is concluded with the implications drawn from the study.

2. Theoretical Formalism

In a constituent quark model, the baryons are considered as system of three constituent quarks, wherein all the effects are parametrized in the form of larger con-
Spectroscopy of Light Baryons: Δ Resonances

constituent quark mass compared to that of a valence quark. These constituent quarks are described as valence quarks dressed with gluons and quark-antiquark pairs and all the other interaction leading to the total baryon mass. Here one such constituent quark model with hypercentral and non-relativistic formalism has been employed. In our earlier work, the constituent quark mass for u and d quarks were taken to be similar \[26, 27, 28, 29, 30, 31, 32, 33\]. In the relativistic model for the study of strange hyperons through quark-diquark, u and d are considered with similar constituent quark mass \[34\]. However, in the present work, the u and d constituent quarks masses have been modified respectively as \(m_u = 290\) and \(m_d = 300\) which allowed us to segregate the four isospin states of Δ baryon.

The three body interaction of quarks inside a baryon is described in the form of Jacobi coordinates ρ and λ which are obtained based on inter-quark distance r_i.

\[
\rho = \frac{1}{\sqrt{2}}(r_1 - r_2); \quad \lambda = \frac{1}{\sqrt{6}}(r_1 + r_2 - 2r_3) \tag{1}
\]

The hypercentral Constituent Quark Model (hCQM) is reached through hyperradius x and hyperangle ξ.

\[
x = \sqrt{\rho^2 + \lambda^2}; \quad \xi = \arctan\left(\frac{\rho}{\lambda}\right) \tag{2}
\]

The potential to account for confinement and asymptotic freedom of quarks within a baryon is taken to be Coulomb-like part and a linear term as a confining part. As the model itself suggests, the potential is solely depended on the hyperradius x. It is noteworthy here that x indirectly is being contributed with the three-body interaction.

\[
V(x) = -\frac{\tau}{x} + \alpha x \tag{3}
\]

To take into account the possible angular momentum quantum number J, spin-dependent terms are also added to the earlier potential terms.

\[
V_{SD}(x) = V_{SS}(x)(\mathbf{S}_\rho \cdot \mathbf{S}_\lambda) + V_{\gamma S}(x)(\gamma \cdot \mathbf{S}) + V_T \times [S^2 - \frac{3(\mathbf{S} \cdot \mathbf{x})(\mathbf{S} \cdot \mathbf{x})}{x^2}] \tag{4}
\]

Here, $V_{SS}(x)$, $V_{\gamma S}(x)$ and $V_T(x)$ are spin-spin, spin-orbit and tensor terms respectively \[35\].

\[
V_{SS}(x) = \frac{1}{3m_\rho m_\lambda} \nabla^2 V_V \tag{5}
\]

\[
V_{\gamma S}(x) = \frac{1}{2m_\rho m_\lambda x}(3 \frac{dV_V}{dx} - \frac{dV_S}{dx}) \tag{6}
\]

\[
V_T(x) = \frac{1}{6m_\rho m_\lambda}(3 \frac{d^2V_V}{dx^2} - \frac{1}{x} \frac{dV_V}{dx}) \tag{7}
\]

where V_V and V_S are the vector and scalar part of potential. In addition to above terms, a first order correction term with $\frac{1}{m}$ dependence has also been incorporated.

\[
V^1(x) = -C_FC_A\frac{\alpha_s^2}{4\pi^2} \tag{8}
\]
Spectroscopy of Light Baryons: Δ Resonances

where C_F and C_A are Casimir elements of fundamental and adjoint representation. Thus the hyper-radial part of the wave-function as determined by hypercentral Schrodinger equation is \[36\, 37\]

\[
\left[\frac{d^2}{dx^2} + \frac{5}{x} \frac{d}{dx} - \frac{\gamma(\gamma + 4)}{x^2} \right] \psi(x) = -2m[E - V(x)]\psi(x) \quad (9)
\]

Here γ replaces the angular momentum quantum number by the relation as $l(l + 1) \rightarrow \frac{15}{4} + \gamma(\gamma + 4)$. The final Hamiltonian is as follows:

\[
H = \frac{p^2}{2m} + V(x) + V_{SD}(x) + V^1(x) \quad (10)
\]

The Schrodinger equation with the hyper-radial part is numerically solved for calculating the excited state masses \[38\]. Details of the model can be found in articles \[27\, 33\].

3. Results and Discussions

Using the above potential model, the masses are computed for 1S-5S, 1P-3P, 1D-2D, 1F states including few states from 1G, 1H and 1I which were not obtained earlier. The excited states are recalculated for all these isospin states of Δ baryon and compared with various results as shown in the table below.

The models for comparison vary in wide range starting from some early works to recent ones. Recently all light and strange baryons have been studied through Bethe Ansatz method with U(7) by an algebraic method \[39\]. The earlier algebraic method has been discussed by R. Bijker et.al. to study baryon resonances in terms of string-like model \[40\]. A. V. Anisovich et. al. has reproduced the N and Δ spectrum using the multichannel partial wave analysis of pion and photo-induced reactions \[41\]. The quark-diquark model using Gursey Radicati-inspired exchange interaction has been studied \[42, 43\]. The semi-relativistic constituent quark model, classification number describing baryon mass range \[44\], mass formula obtained by Klempt \[45\], dynamical chirally improved quarks by BGR \[46\] are among various models.

As the present work has attempted to separate the isospin states of all four Δ baryons, the ground state masses nearly vary by 2 MeV for each one but within the PDG range. A similar trend is observed in higher radial excited states of S-wave. The 2S mass predicted is very much near to the algebraic model \[39\].

The negative parity states have states ranging from 4 to 1 star status by PDG. It is observed from the table that with increase in J value, the predicted masses are under-predicted. However, not many models have different masses for every spin-parity state. In case of F-wave, $J = \frac{7}{2}$ state is the only known by PDG. The present masses are nearly 100 MeV below the range and hardly any comparison is obtained.
State	J^P	Δ^{++}	Δ^+	Δ^0	Δ^-	PDG [12]	Status	[39]	[18]	[42]	[43]	[19]	[37]	[45]	[15]	[16]	[44]	[46]
1S		1228	1230	1232	1235	1230-1234	****	1245	1232	1235	1247	1231	1232	1232	1232	1230	1232	1344 ± 27
2S		1603	1606	1610	1615	1500-1640	****	1609	1659.1	1714	1689	1658	1727	1625	1600			
3S		1922	1926	1932	1941	1870-1970	***	2090.2	1930	2042	1914	1921	1935	1920				
4S		2241	2248	2257	2270	2256	-	-	-	-	-	-	-	-	-	-	-	-
5S	+	2559	2570	2584	2602	2579	-	-	-	-	-	-	-	-	-	-	-	-
1P		1618	1625	1630	1634	1625-1630	****	1711	1667.2	1673	1830	1737	1573	1645	1685	1555	1454 ± 140	
1P		1585	1591	1596	1603	1593-1730	****	1709	1667.2	1673	1830	1737	1573	1720	1685	1620	1570 ± 67	
1P		1542	1546	1552	1561	1550	-	-	-	-	-	-	-	-	-	-	-	-
2P		1943	1944	1955	1965	1956	1840-1920***	2003	1910	1910	1900	1914 ± 322						
2P		1907	1911	1921	1903	1919	1940-2060**	1910	1910	1940								
2P		1859	1868	1874	1885	1871	1900-2000***	2003	1910	1908	1945							
3P		2262	2271	2280	2295	2280	-	*	-	2150								
3P		2226	2235	2246	2260	2242	-	-	-	-								
3P		2179	2188	2199	2213	2193	-	-	-	-								
1D		1898	1898	1911	1919	1905	1850-1950****	1851	1873.5	1930	1827	1891	1953	1895	1910	1751 ± 190		
1D		1860	1862	1873	1882	1868	1870-1970****	1936	2090.2	1930	2042	1914	1921	1935	1920			
1D		1808	1814	1823	1832	1818	1855-1910****	1934	1873.5	1930	2042	1891	1901	1895	1905			
1D		1744	1753	1760	1771	1756	1915-1950****	1932	1873.5	1930	2042	1891	1955	1950	1950			
2D	+	2221	2221	2234	2247	2227	-	-	-	2211 ± 126								
2D	+	2179	2184	2196	2210	2190	-	-	-	2204 ± 82								
2D	+	2127	2135	2146	2160	2140	2015	**	2200									
2D	+	2062	2073	2084	2098	2078	-	-	-	-								
1F		2146	2153	2160	2181	2165	-	-	-	2373 ± 140								
1F		2092	2099	2108	2126	2108	-	-	-	-								
1F		2024	2033	2043	2058	2037	2150-2250***	2200										
1F		1942	1953	1966	1975	1952	-	-	-	-								
1G	11 +	2132	2145	2162	2178	2300-2500****												
1H	13 +	2326	2339	2362	2379	2794	**	-	-									
1H	15 +	2512	2529	2554	2581	2990	**	-	-	-								
All the spin states for 1D are experimentally established. Here also our results for higher spin state are under-predicted compared to all other models and experiment but quite in accordance for lower J values. The resonance masses for 1G ($\frac{11}{2}$), 1H ($\frac{13}{2}$) and 1I ($\frac{15}{2}$) which were not present in previous work, have now been incorporated. However, these three states are under-predicted compared to PDG.

Even with the small difference in the isospin state masses, this study is expected to aid in the decay channel studies as in the decay of heavy baryons, the final products are the light baryons. In addition, the light strange baryons play important role in other areas including astrophysics to understand the composition of celestial bodies. With these obtained masses, we have attempted to study the Regge trajectories as well as magnetic moments of Δ baryon.

4. Regge Trajectory

Regge trajectories have known to be an important property to be explored in spectroscopic studies [47, 48]. The linear relation of total angular momentum quantum number J as well as principle quantum number n with the square of resonance mass M^2 is at the base. The plotting of all the natural and unnatural parity states allows us to locate if a given state is in accordance with the assigned J^P value.

\[J = aM^2 + a_0 \]
\[n = bM^2 + b_0 \]

So, here figures 1 to 8 depicts the Regge trajectories for all the four isospin partners. It is noteworthy that all the calculated points fits well on the linear curve and are non-intersecting. This is expected to allow us to put an unknown experimental state on a given line to predict its J^P value.

Figure 1: Regge trajectory $n \rightarrow M^2$ for Δ^{++} **Figure 2:** Regge trajectory $J \rightarrow M^2$ for Δ^{++}
Spectroscopy of Light Baryons: Δ Resonances

Figure 3: Regge trajectory $n \to M^2$ for Δ^+

Figure 4: Regge trajectory $J \to M^2$ for Δ^+

Figure 5: Regge trajectory $n \to M^2$ for Δ^0

Figure 6: Regge trajectory $J \to M^2$ for Δ^0

Figure 7: Regge trajectory $n \to M^2$ for Δ^-

Figure 8: Regge trajectory $J \to M^2$ for Δ^-
Spectroscopy of Light Baryons: Δ Resonances

Table 2: Comparison of calculated magnetic moments with various models (All data in units of μ_N)

Baryon	μ_{cal}	Exp [12]	[50]	[50]	[58]	[52]	[52]	[59]	[60]	[51]
Δ^{++}	4.58	6.14	5.43	5.97	5.21	4.56	4.68	5.267	5.90	5.390
Δ^+	2.34	2.7	2.72	2.76	2.45	2.28	2.36	2.430	2.90	2.383
Δ^0	0.05	-	0	-0.46	-0.30	0	-0.025	-0.407	-	-0.625
Δ^-	-2.28	-	-2.72	-3.68	-3.06	-2.28	-2.34	-3.245	-2.90	-3.632

5. Magnetic Moment

The electromagnetic property of baryons plays an important role in theoretical and experimental aspects. Baryon magnetic moment assists in the understanding of internal structure of baryon. The short lifetime of decuplet baryons make it difficult to obtain their magnetic moments. It is noteworthy that baryon magnetic moments are not just the contributions of those carried by valence quarks but orbital excitations, sea quarks, relativistic effects, meson cloud effect and other effects [49].

Baryon magnetic moments have been studied through various models over the years. H. Dahiya et. al. have employed chiral quark model incorporating sea quark polarizations and orbital angular momentum through Cheng-Li mechanism [50, 51].

Another studies include effective quark mass and screened charge formalism [52], light cone QCD Sum rule [53], chiral perturbation theory [54], lattice QCD [55], statistical model [56], through new quark relation using mass differences and ratio [57] and many more.

In the present article, effective quark mass which is different from that of constituent quark mass has been used to obtain the magnetic moment of all four Δ isospins. The effective quark mass is given as

$$m_{eff}^q = m_q(1 + \frac{\langle H \rangle}{\sum_q m_q})$$

(13)

The magnetic moment is obtained using

$$\mu_B = \sum_q \langle \phi_{sf}|\mu_{qz}|\phi_{sf} \rangle$$

(14)

Here ϕ_{sf} is the spin-flavour wave function.

$$\mu_{qz} = \frac{e_q}{2m_{eff}^q}\sigma_{qz}$$

(15)

The spin flavour wave function is obtained based on the symmetric configurations of u and d quarks in case of Δ. The recent experimental value of $\mu(\Delta^{++})$ is 6.14 which is higher compared to our results. Also, it is evident for other states, the result is quite in accordance with other approaches.
Table 3: Transition magnetic moment (in μ_N)

Decay	Transition moment (in μ_N)	[62]	[52]	[13]	[63]
$\Delta^+ \rightarrow P\gamma$	2.47	3.87	2.63	3.32	-2.76
$\Delta^0 \rightarrow N\gamma$	-2.48				

6. Transition Magnetic Moment

The low-lying baryon decuplet to octet transition also play a key part in the intrinsic spin properties of baryons including deformation. As discussed in above section, many approaches have been used to obtain transition magnetic moment as well as radiative decay widths of decuplet baryons. The generalized form for transition magnetic moment is obtained by changing the spin flavour wave function for $S = \frac{3}{2}$ to $S = \frac{1}{2}$ [61],

$$\mu(B_{\frac{3}{2}+} \rightarrow B_{\frac{1}{2}+}) = \langle B_{\frac{1}{2}+}, S_z = \frac{1}{2} | \mu_z | B_{\frac{3}{2}+}, S_z = \frac{1}{2} \rangle$$

(16)

And the radiative decay width is obtained as follows,

$$\Gamma_R = \frac{q^3}{m_p^2} \frac{2}{2J + 1} \frac{e^2}{4\pi} |\mu_{\frac{3}{2}+} \rightarrow \frac{1}{2}+|^2$$

(17)

where q is the photon energy, m_p is the proton mass and J is the initial angular momentum. In the present article, we study the transition of $\Delta^+ \rightarrow P\gamma$ and $\Delta^0 \rightarrow N\gamma$. The expressions for both these channels shall be as

$$\frac{2\sqrt{2}}{3}(\mu^eff_u - \mu^eff_d) \quad \& \quad \frac{2\sqrt{2}}{3}(\mu^eff_d - \mu^eff_u)$$

(18)

Here, the effective mass is a geometric mean of those for spin $\frac{1}{2}$ and $\frac{3}{2}$ as

$$m^eff_i = \sqrt{m^{3/2}_i m^{1/2}_i}$$

(19)

The separate masses for P and N are taken from our previous article [8] as 938 and 948 MeV respectively. $M_{\Delta^+} = 1230$ MeV and $M_{\Delta^0} = 1232$ MeV The radiative decay width obtained using equation (17) is 0.63 MeV and 0.59 MeV for Δ^+ and Δ^0 respectively. Our results for fraction of 0.54% and 0.5% are well in accordance with the experimental range of 0.55-0.65%.

7. Conclusion

The idea of separately exploring the isospin states of Δ baryon has been implemented in the present work which is a modification to earlier calculated masses. The constituent quark masses for u and d quarks have been treated differently to obtain the radial and orbital excited state masses using the non-relativistic hypercentral Constituent Quark Model (hCQM). The potential incorporated consists of linear confining term, spin-dependent terms and first order correction terms.
The results have been compared with those of Particle Data Group (PDG) and with other approaches discussed above. The comparison have shown that low-lying states are well in accordance with experimental range. However, the higher J^P value states for a given principle quantum number under-predicts as compared to PDG. The results are expected to aid in future experiments to determine missing resonances and in various decay channels.

The Regge trajectories have been plotted for (n,M^2) and (J,M^2) which are following the linear nature. This allows us to identify a given state for its spin-parity assignment on the Regge line. The magnetic moment for Δ^{++} and Δ^+ are only known through PDG and the results vary within $1\mu_N$ similarly for all other compared models. The magnetic moment for electromagnetic transition of channels $\Delta^+ \rightarrow P\gamma$ and $\Delta^0 \rightarrow N\gamma$ are well in accordance with other approaches. The radiative decay width giving 0.54% and 0.5% also fall around 0.55-0.65% range.

Thus, a non-relativistic CQM with linear confinement potential has provided us with a number of resonance masses with all possible spin-parity assignments. Differentiating the isospin resonance masses shall be important to study strong, weak and electromagnetic decay channels. This work is expected to support the upcoming experimental facilities at PANDA [4, 5, 6, 7].

8. Acknowledgement

The authors are thankful to the organizers of 10th International Conference on New Frontiers in Physics (ICNFP 2021) for providing with an opportunity to present our work. Also, Ms. Chandni Menapara would like to acknowledge the support from the Department of Science and Technology (DST) under INSPIRE-FELLOWSHIP scheme for pursuing this work.

References

[1] Crede V and Roberts W 2013 Rept. Prog. Phys. 76 076301 [arXiv:1302.7299 [hep-ph])
[2] Thoma U et al [CB-ELSA Collaboration] 2008 Phys Lett B 659 87–93 [arXiv:0707.3592v4 [hep-ph])
[3] Adamczewski-Musch J et al [HADES Collaboration] 2017 Phys. Rev. C 95 065205
[4] Abazov V et al [PANDA Collaboration] 2022 Prospects for Spin-Parity Determination of Excited Baryons via the $\Xi^+ K^-$ Final State with PANDA [arXiv:2201.03852 [hep-ex])
[5] Barruca G et al [PANDA Collaboration] 2021 Eur. Phys. J. A 57 184
[6] Singh B et al [PANDA Collaboration] 2019 J. Phys. G: Nucl. Part. Phys. 46 045001
[7] Singh B et al [PANDA Collaboration] 2016 Nucl. Phys. A 954 323-340
[8] Menapara C and Rai A K 2022 EPJ Web of Conferences 258 03004
[9] Barnicha A, Lopez Castro G and Pestieau J 1996 Nucl. Phys. A 597 623-635
[10] Pedroni E et al 1978 Nucl. Phys. A 300 321-347
Spectroscopy of Light Baryons: Δ Resonances

[11] Sahoo H S, Mishra R N, Panda P K and Barik N 2017 Δ isobars in hyperon stars in a modified quark meson coupling model (arXiv:1702.02310 [nucl-th])
[12] Zyla P A et al [Particle Data Group] 2020 Prog. Theor. Exp. Phys. 2020 083C01
[13] Ramalho G, Pena M T and Stadler A 2012 Phys. Rev. D 86 093022
[14] Abratenko P et al [MicroBooNE Collaboration] 2021 Search for Neutrino-Induced Neutral Current Δ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis (arXiv:2110.00409 [hep-ex])
[15] Isgur N and Karl G 1978 Phys. Rev. D. 18 4187
[16] Capstick S and Isgur N 1986 Phys. Rev. D 86 093022
[17] Glozman L, Papp Z and Plessas W 1996 Phys. Lett. B 381 311
[18] Ghalenovi Z and Moazzen M 2017 Eur. Phys. J. Plus 132 354
[19] Aslanzadeh M and Rajabi A A 2017 Int. J. Mod. Phys. E26 1750042
[20] Menapara C, Shah Z and Rai A K 2021 Chin. Phys. C 45 034102
[21] Voloshin M B 2008 Few Body Syst. 59 56 (arXiv:0804.0768 [nucl-th])
[22] Azaauryan I G and Burkert V D 2012 Phys. Rev. C 85 055202 (arXiv:1201.5759 [hep-ph])
[23] Edwards R G, Dudek J J, Richards D G and Wallace S J 2011 Phys. Rev. D 83 074508
[24] Sanchis-Alepuz H and Fischer C S 2014 Phys. Rev. D 90 9 096001
[25] Loring U, Metsch B and Petry H R 2001 Eur. Phys. J. A 10 395-446
[26] Shah Z, Gandhi K and Rai A K 2019 Chin. Phys. C 43 034102 (arXiv:1812.04858 [hep-ph])
[27] Menapara C, Shah Z and Rai A K 2021 Chin. Phys. C 45 023102
[28] Menapara C and Rai A K 2021 Chin. Phys. C 45 063108
[29] Menapara C, Shah Z and Rai A K AIP Conf.Proc. 2220 140014
[30] Menapara C and Rai A K 2020 DAE Symp. Nucl. Phys. 64 673-674
[31] Gandhi K and Rai A K 2020 Eur. Phys. J. Plus 135 213
[32] Gandhi K, Z Shah and Rai A K 2018 Eur. Phys. J. Plus 133 (12), 1-9
[33] Z. Shah and A. K. Rai 2018 Few-Body Syst 59 112
[34] Faustov R N and Galkin V O 2015 Phys. Rev. D 92 5 054005
[35] Voloshin M B 2008 Prog. Part. Nucl. Phys. 61 455-511
[36] Giannini M M and Santopinto E 2015 Chin. J. Phys. 53 020301
[37] Giannini M M and Santopinto E and Vassallo A 2001 Eur. Phys. J. A 12 447-452
[38] Lucha W and Schobers F 1997 Int. J. Modern Phys. C. 10 607
[39] Amiri N, Ghapanvari M and Jafarizadeh M A 2021 Eur. Phys. J. Plus 141 136
[40] Bijker R, Ferretti J, Galata G, Garcia-Tecocoatzi H and Santopinto E 2016 Phys. Rev. D. 94 074040
[41] Anisovich A V, Beck R, Klempt E, Nikonov N A, Sarantsev A V and Thoma U 2012 Eur. Phys. J. A 48 15
[42] Santopinto E 2005 Phys. Rev. C 72 022201(R)
[43] Santopinto E and Ferretti J 2015 Phys. Rev. C 92 025202
[44] Chen Y and Ma B Q 2008 Chin. Phys. Lett. 25 3920
[45] Klempt E 2002 Phys. Rev. C 66 058201
[46] Engel G P, Lang C B, Mohler D and Schaefer A [BGR Collaboration] 2013 Phys. Rev. D. 87 074504
[47] Shah Z, Thakkar K and Rai A K Eur. Phys. J. C 76 530
[48] Shah Z and Rai A K 2017 Eur. Phys. J. A 53 195
[49] Liu J, Jun He and Dong Y B 2005 Phys. Rev. D 71 094004
[50] Dahiya H and Gupta M 2003 Phys. Rev. D 67 114015
[51] Girdhar A, Dahiya H and Randhawa M 2015 Phys. Rev. D 92 3 033012
[52] Dhiri R and Verma R C 2009 Phys. Rev. D 42 243
[53] Aliev T M and Zamiralov V S 2015 Adv. High Energy Phys. 2015 406875
[54] Flores-Mendieta R 2009 Phys. Rev. D 80 094014
[55] Lee F X, Kelly R, Zhou L and Wilcox W 2005 Phys. Lett. B 627, 71
Spectroscopy of Light Baryons: \(\Delta \) Resonances

[56] Kaur A and Upadhyay A 2016 Eur. Phys. J. A 52 105
[57] Karliner M and Lipkin H J 2007 Phys. Lett. B 650 185–192
[58] Linde J, Ohlsson T and Snellman H 1998 Phys. Rev. D 57 5916-5919
[59] Singh H, Kumar A and Dahiya H 2020 Eur. Phys. J. Plus 135 422
[60] Buchmann A J, Hester J A and Lebed R F Phys. Rev. D 66 056002
[61] Fayyazuddin and Aslam M J 2020 Radiative Baryonic Decay \(B^*(\frac{3}{2}) \rightarrow B(\frac{1}{2}) + \gamma \) in Constituent Quark Model: A Tutorial (arXiv:2011.06750 [hep-ph])
[62] Dahiya H 2018 Chin. Phys. C 42 9 093102
[63] Hong S 2007 Phys. Rev. D 76 094029