High order convergent multigrid methods on domains containing holes for black hole initial data

Vishnu Natchu and Richard A. Matzner
Center for Relativity, University of Texas at Austin, Austin, Texas 78712 USA
E-mail: vishnu@physics.utexas.edu, matzner2@physics.utexas.edu

Abstract. It is well known that multigrid methods are optimally efficient for solution of elliptic equations \(O(N) \), which means that effort is proportional to the number of points at which the solution is evaluated. Thus this is an ideal method to solve the initial data/constraint equations in General Relativity for (for instance) black hole interactions, or for other strong-field gravitational configurations. Recent efforts have produced finite difference multigrid solvers for domains with holes (excised regions). We present here the extension of these concepts to higher order (fourth-, sixth- and eighth-order). The high order convergence allows rapid solution on relatively small computational grids. Also, general relativity evolution codes are moving to typically fourth-order; data have to be computed at least as accurately as this same order for straightforward demonstration of the proper order of convergence in the evolution.

Our vertex-centered multigrid code demonstrates globally high-order-accurate solutions of elliptic equations over domains containing holes, in two spatial dimensions with fixed (Dirichlet) outer boundary conditions, and in three spatial dimensions with Robin outer boundary conditions. We demonstrate a “real world” 3-dimensional problem which is the solution of the conformally flat Hamiltonian constraint of General Relativity. The success of this method depends on: a) the choice of the discretization near the holes; b) the definition of the location of the inner boundary, which allows resolution of the hole even on the coarsest grids; and on maintaining the same order of convergence at the boundaries as in the interior of the computational domain.

1. Introduction

Solving Einstein’s equation in 3+1 form \[1, 2\] requires that a set of elliptic (or quasi-elliptic) constraint equations be satisfied at all times. The Bianchi identities ensure that, given a set of initial data which analytically satisfy the constraints, the subsequent analytically evolved variables will also satisfy the constraints. In numerical solutions of Einstein’s equations, however, the constraints are not preserved exactly. Thus errors will arise as the simulation proceeds, and the extent to which the numerical solutions actually reflect the true solutions of the analytic equations is an ongoing area of research (e.g., \[3, 4, 5, 6, 7\]). Apart from the issue of the accuracy of the solutions obtained, there is also the problem of numerical (in)stability, may in some cases be related to the lack of preservation of the constraints. There is active interest in constrained general relativity evolution schemes (which repeatedly solves the constraint equations during the evolution\[8, 9, 10\]).

The multigrid method is a particularly attractive method to solve elliptic equations because it is an optimal method, i.e. it requires only \(O(N) \) operations,
where N is the number of unknowns (proportional to the number of locations at which knowledge of the independent variable is required). Furthermore, the multigrid method is not especially difficult to implement. We study the multigrid problem on domains with holes, because while many formulations now can produce moving black holes without excising the holes, evolution with excision in a necessary requirement for fully studying and understanding black hole evolution. For instance, posing data for black holes with Kerr parameter a very near unity are straightforward in excised data, but very difficult to achieve in non-excised data (such as puncture data\cite{11}).

It has long been thought infeasible in practice to obtain generic results which have everywhere the same order of accuracy as the finite difference scheme employed, for domains containing holes. This argument was refuted in \cite{12} for 3D solutions of second-order accuracy. This paper addresses the problem for domains with coordinatespherical holes in the context of higher order accuracy. Multigrid provides a simple, robust method to achieve solutions in such cases.

If the multigrid solver is to be used to provide initial data for a numerical evolution code, the error of the initial solution need only be below the truncation error of the finite difference scheme used for evolution \cite{13}. However high order methods are still extremely valuable in this context because they require much smaller computational resources for the same accuracy. Thus this high order approach may dramatically lower the elliptic - solution load in constrained evolutions. Furthermore, to correctly demonstrate the convergence of evolution codes (now typically written in terms of fourth-order stencils), one must have data of at least the same order of convergence.

Finite difference techniques to solve the constraint equations are a standard activity in relativity, and the properties of the constraint equations are well known (for the Euclidean, constant-mean-curvature background and for the signs of the solutions we use here \cite{14,15,16}). We focus on the benefits of high-order multigrid implementation. The validity of our results will be established by demonstrating controlled high order convergence to known exact solutions.

Section 2 assumes familiarity with the multigrid method, but a small overview is presented. Section 3 describes our new scheme for inner boundary points and presents the results for a simple problem in a 2D domain. Section 4 extends this to 3D. Section 5 summarizes our results.

2. Overview of Multigrid

Application of the multigrid method \cite{17}, on domains with holes — or on domains with “irregular boundaries” in general — has received only modest attention \cite{18}, \cite{19}; these are cell centered finite difference codes. The “BAM” code \cite{20} provides access to the multigrid method in numerical relativity. It is a vertex centered second-order code and features the ability to handle domains with multiple holes, though with restrictions on hole placement. Hawley and Matzner \cite{12} introduced a second-order vertex-centered multigrid code that accommodates arbitrary placement of excised holes. The innovation in this current paper is solution to higher convergence order (we give fourth- and sixth- order examples, and some preliminary, eighth-order results) which dramatically reduces the time and storage requirements of the elliptic solution.

The multigrid scheme \cite{17} has received considerable attention in the literature, and is the subject of numerous articles, conferences, reviews and books (e.g., \cite{21,22,23,24,25,26}). It is essentially a clever means of eliminating successive wavelength-components of the error via the use of relaxation at multiple spatial scales.
Here we give a very brief overview of the multigrid method, following the notes by Choptuik [27]. (Introductions to multigrid applications in numerical relativity are also found in Choptuik and Unruh [28] and Brandt [29].) We want to solve a continuum differential equation \(\mathcal{L}u = f \), where \(\mathcal{L} \) is a differential operator, \(f \) is some right hand side, and \(u \) is the solution we wish to obtain. We discretize this differential equation into a difference equation on some grid (or lattice) with uniform spacing \(h \):

\[
\mathcal{L}^h u^h = f^h, \tag{1}
\]

where \(u^h \) is the exact solution of this discrete equation, and \(\lim_{h \to 0} u^h = u \). The discretization \(h \) refers to the finest grid, of a hierarchy of vertex-centered grids. Each grid at multigrid level \(l \) is a square lattice having \(2^l + 1 \) grid points along each edge. The grids have uniform spacing \(h_l = 2^{-l} \) in both \(x \) and \(y \) directions, and the grid points are denoted with indices \(i \) and \(j \) in the \(x \) and \(y \) directions, respectively, e.g., \(u(ih_l, jh_l) \approx \tilde{u}^h_{i,j} \).

Rather than attempting to solve Eq. (1) directly via a costly matrix inversion, we apply an iterative solution method. At any step in the iteration, we have an approximate solution \(\tilde{u}^h \). In this iterative algorithm, the original guess \(\tilde{u}^h_{\text{old}} \) is brought closer to \(u^h \) by applying some (approximate) correction:

\[
\tilde{u}^h_{\text{new}} := \tilde{u}^h_{\text{old}} + \tilde{v}^h \tag{2}
\]

For nonlinear operators the correction is via the Full Approximation Storage (FAS) method [12, 17, 21, 22, 23, 24, 25, 26].

2.1. V-Cycles and the Full Multigrid Algorithm

The solution algorithm takes the form of a V-cycle, in which we start with an initial guess on the fine grid, at multigrid level \(l_{\text{max}} \) (the finest grid has \(2^{l_{\text{max}}} + 1 \) vertices along each edge). Then we perform some number of smoothing sweeps. A smoothing sweep is one iteration of a relaxation solver for the elliptic equation. The effect of such a step is to reduce the short wavelength error on the grid, i.e. it “smooths” the approximate solution. At this point we wish to update Eq. (2).

To accomplish this the multigrid method introduces \(I_h^h \), the restriction operator, which maps values from the fine grid to the next coarser grid via some weighted averaging operation, and \(P_h^h \), an interpolation or prolongation operator, which maps values from a coarse grid to the next finer grid via some interpolation operation. In the Full Approximation Storage multigrid method we express the correction as

\[
\tilde{u}^h_{\text{new}} := \tilde{u}^h_{\text{old}} + P_h^{2h} (u^{2h} - I_h^{2h} \tilde{u}^h). \tag{3}
\]

Eq(3) defines a coarse grid correction (CGC).

In Eq(3), \(u^{2h} \) is the exact solution to (1) on the next coarser grid. However, we may approximately solve for the coarser grid \(\tilde{u}^{2h} \simeq u^{2h} \) by repeating Eq. (3) on the coarse grid, which then refers to the next (even) coarser grid. We continue smoothing and restricting to coarser grids until we arrive at a grid coarse enough to solve the resulting coarse grid equation ‘exactly’ (i.e., to machine precision), at minimal computational cost. Equation (3) can then be used to correct the next finer grid solution. We can thus iteratively correct the solutions on each next finer grid, perhaps with additional smoothing operations performed before moving to each finer grid. One may carry out a number of smoothing sweeps at a given refinement level before proceeding to solve on the next coarser grid (pre-sweeps), and a (perhaps different) number of post-sweeps after solving on the next coarser grid. We use the
same numbers of pre- and the same number of post- sweeps at every level, though the numbers could in principle be varied at different levels.

On all grids except the coarsest grid, we only smooth the error, and we solve the difference equation exactly only on the coarsest grid. In practice we solve the coarse grid difference equation by relaxation, which is cheap on the coarsest grid. The entire process, as described is called a V-cycle. A full solution may consist of one or more V-cycles.

3. Solution of a Nonlinear Poisson Equation in 2D

We solve the equation
\[
\frac{\partial^2}{\partial x^2} u(x, y) + \frac{\partial^2}{\partial y^2} u(x, y) + \sigma u^2(x, y) = f(x, y),
\]
(4)
on a domain Ω with coordinate ranges [0, 0] to [1, 1], and subject to Dirichlet conditions at the outer boundary: \(u(x, y)|_{\partial \Omega} = 0\). The function \(f(x, y)\) is chosen such that the solution is
\[
u(x, y) = \sin(\pi x) \sin(\pi y),
\]
(5)

Inner Boundary Conditions

We have added features to handle holes in the domain. In [12] the inner boundary is given by the outer edge of the points comprising the excision mask. This has the consequence that the “size” of the excision region (i.e., the area of the convex hull of the data points comprising the mask) on finer grids is always equal to or greater than the size of the excision region on coarser grids. Here we present a novel modification of the inner boundary algorithm: at the inner boundary we insert a new set of points into the grid, and apply Dirichlet boundary conditions (the exact solution) to these points. The boundary conditions are applied at each level. This has the effect of keeping the size of the excised region essentially constant at all levels.

These extra points are added at each level at every location at which a grid line intersects the exact inner boundary location. The new boundary points specify the exact solution to the inner boundary conditions. The neighboring grid points use this new point in their smoothing and stencil operations taking care to account for the irregular grid size caused by adding this point. Figure 1 illustrates this. Note that this has the important result that the hole is resolved on even the coarsest grid. We will find that this approach dramatically reduces the solution error in domains with holes. Although Figure 1 shows a circular excision centered on a grid point, we have verified that convergence is maintained even for arbitrary placement of the excision circle (or sphere, in 3D).

Smoothing Operations

Except on the coarsest grid, we do not attempt to solve the difference equation. Instead we use a few sweeps of a relaxation method. This is called smoothing. A “red-black” Gauss-Seidel Newton iteration is used to relax the solution (smooth the error). For all points that have a regular spacing \(h\) with their neighbors (interior points) this is the traditional method. The values of \(h\) differ by a factor of 2 between “adjacent”
grid levels. For these 2D examples we use a second-order discretization. On interior points, Eq(4) is discretized as

\[r_{GS} = h^{-2} (\tilde{u}_{i+1,j} + \tilde{u}_{i-1,j} + \tilde{u}_{i,j+1} + \tilde{u}_{i,j-1} - 4\tilde{u}_{i,j}) + \sigma \tilde{u}_{i,j}^2 - f_{i,j} \]

\[\tilde{u}_{i,j}^{\text{new}} = \tilde{u}_{i,j}^{\text{old}} - \frac{r_{GS}}{2\sigma \tilde{u}_{i,j} - 4h^{-2}} \]

But for points where the spacings are not regular, we introduce new notation here. Define \(h_{i,\pm \frac{1}{2},j} \) as the spacing in the \(x \) direction between points at \(i, j \) and \(i \pm 1, j \), similarly \(h_{i,\mp \frac{1}{2},j} \) is the spacing between \(i, j \) and \(i - 1, j \). Note that there can be multiple substitutions for an excised grid point, so we choose a particular one, and the associated \(h_{i,\pm \frac{1}{2},j} \).

\[r_{GS} = \frac{2}{h_{i,\pm \frac{1}{2},j} + h_{i,\mp \frac{1}{2},j}} \left(\frac{(\tilde{u}_{i+1,j} - \tilde{u}_{i,j})}{h_{i,\pm \frac{1}{2},j}} + \frac{(\tilde{u}_{i-1,j} - \tilde{u}_{i,j})}{h_{i,\mp \frac{1}{2},j}} \right) \]

\[+ \frac{2}{h_{i,j+\frac{1}{2}} + h_{i,j-\frac{1}{2}}} \left(\frac{(\tilde{u}_{i,j+1} - \tilde{u}_{i,j})}{h_{i,j+\frac{1}{2}}} + \frac{(\tilde{u}_{i,j-1} - \tilde{u}_{i,j})}{h_{i,j-\frac{1}{2}}} \right) \]
High order multigrid methods

\[f_u = (\frac{1}{h_{i+\frac{1}{2},j}} + \frac{1}{h_{i-\frac{1}{2},j}}) \frac{2}{h_{i+\frac{1}{2},j} + h_{i-\frac{1}{2},j}} + (\frac{1}{h_{i,j+\frac{1}{2}}} + \frac{1}{h_{i,j-\frac{1}{2}}}) \frac{2}{h_{i,j+\frac{1}{2}} + h_{i,j-\frac{1}{2}}} \]

(8)

\[\tilde{u}_{i,j}^{\text{new}} = \tilde{u}_{i,j}^{\text{old}} - \frac{\nabla u_{i,j} - f_u}{2\sigma u_{i,j} - f_u} \]

(9)

Note that because of the unequal spacing, Eqs (8-10) are in fact only first-order near the inner excision boundary. For 2D we find that this does not contaminate the high order convergence of the solutions.

Restriction and Prolongation Operators

The restriction operator \(I^{2h}_h \) we use is the so-called “half-weighted” average on normal interior points, in which coarse grid values (indexed by \(I \) and \(J \) for clarity) are a weighted average of the fine grid values over a nearby region of the physical domain:

\[\tilde{u}^{2h}_{I,J} = I^{2h}_h \tilde{u}^h = \frac{1}{2} \tilde{u}^h_{i,j} + \frac{1}{8} \left[\tilde{u}^h_{i+1,j} + \tilde{u}^h_{i-1,j} + \tilde{u}^h_{i,j+1} + \tilde{u}^h_{i,j-1} \right] \]

(11)

where \(i = 2I - 1 \) and \(j = 2J - 1 \).

For the prolongation operator \(P_h^{2h} \), we use simple bilinear interpolation.

3.1. 2D Results

We solve Eq (4) with \(\sigma = 1 \). We take \(l_{\text{max}} = 7 \) (the finest grid has \(2^7 + 1 = 129 \) vertices along an edge), and \(l_{\text{min}} = 2 \) (the coarsest grid has \(2^2 + 1 = 5 \) vertices along an edge). Figure 2 is a plot of the error over the entire domain, with no holes in the domain. Most implementations of multigrid with irregular inner boundaries end up with higher errors than ones without the holes, but the extra inner boundary condition might also help “tie the solution down”. Figure 3 shows solution error for a domain with an excised region (and inner boundary) of radius \(r = 0.129 \). The scales of Figures 2 through 4 are matched, so it is easy to see that the error decreases. Also note that the error is very tightly bounded close to the inner boundary; evidently the inner boundary condition is reducing the maximum error in the domain. Figure 4 which shows the solution error when the domain contains two holes, confirms this.

Figure 5 shows the average error over the domain for 1 and 2 V-cycles (2 pre and 2 post smoothing runs) with and without a hole. We need 2 V-cycles to achieve second-order convergence. As noted above, the error for the runs with holes is smaller than in the base runs (runs without holes).

Figure 6 is a similar plot comparing the base runs with runs over domains with two holes. Again the error is lower than the base run without holes.

Figures 2 through 6 demonstrate the dramatic improvement obtained by our new inner boundary treatment. In particular Figure 5 describes the error for precisely the same problem as that treated in Figure 3 of ref [12]. The only difference is the inner boundary treatment. In [12], Figure 3 the error fluctuates and the maximum occurs near the hole; maximum error \(\sim 0.7 \times 10^{-3} \). The error near the inner boundary also shows noticeable imprinting from the cartesian grid. This is achieved for eight
High order multigrid methods

Figure 2. A plot of the solution error $e = |u - \tilde{u}^h|$ for the 2D case. We present a second-order solution with no holes to provide a metric for comparison for the rest of the results. $l_{\text{max}} = 7$ (the finest grid has $2^7 + 1 = 129$ vertices along an edge), and $l_{\text{min}} = 2$ (the coarsest grid has $2^2 + 1 = 5$ vertices along an edge). 2 V-cycle and 2 pre- and 2 post-CGC smoothing sweeps.

multigrid levels (finest grid of $2^8 + 1 = 257$ vertices along an edge). In this present work, Figure (3), the error near the hole is quite small and smooth and shows no noticeable rectangular character. The maximum error across the grid is $\sim 0.1 \times 10^{-4}$ (more than an order of magnitude smaller than that of [12]). This is accomplished with only seven multigrid levels.

Clearly the new inner boundary treatment (inserting new points), with the important feature of resolving the hole on every grid, dramatically outperforms the previous inner boundary method, which applied boundary conditions only at regular grid points (thus giving a "rouglier" – more "lego-like" definition of the inner boundary).

While there are many ways this work may be improved, it is encouraging that even without mesh refinement it represents a dramatic improvement in accuracy.

4. 3D Simulations

The Hamiltonian constraint for a single black hole in a conformally flat background geometry yields the following equation:

$$\nabla^2 u(x, y, z) - K^2 u^5(x, y, z) + \frac{A^2}{u^7(x, y, z)} = f(x, y, z),$$

This is Poisson equation with two nonlinear terms: ∇^2 is the usual Laplacian in Euclidean space. K^2 and A^2 are arbitrary positive real constants related to the rate
of expansion for the 3-space for which (12) is the constraint equation. $f(x, y, z)$ is related to the energy density in the 3-space, and can be chosen such that the resulting $u(x, y, z)$ has some known (exact) form by which we can check our numerical results. We adjust the matter source term $f(x, y, z)$ such that the solution is $1 + 2M/r$. We choose $M = 1$ and $K, A = 1$.

For all the 3D simulations we use the domain $[-5.0, -5.0, -5.0]$ to $[5.0, 5.0, 5.0]$ and a hole of radius $r_{\text{max}} = 1.29$.

For the outer boundary in the 3D code to solve the conformally flat background, we apply the Robin condition. The Robin boundary condition is

$$\frac{\partial (r(u - 1))}{\partial r} = 0$$

This Robin condition is standard condition used in relativity ([12]). We choose to follow Alcubierre [30] and [12] and take derivatives only in direction normal to the faces of our cubical domain. Since the stencil for the differencing about a boundary point is not symmetric about the boundary point we need an extra point to maintain second order accuracy. We do so for second order differencing, and for higher order runs we include the required number points in the stencil to match the order to that of the interior points.

Restriction and Prolongation Operators
Figure 4. Solution error for 2D simulation with two holes (second-order discretization). $t_{\text{max}} = 7$, $t_{\text{min}} = 2$, 2 V-cycle and 2 pre- and 2 post-CGC smoothing sweeps.

Figure 5. Average error with and without a central hole in the 2D case. The two “no hole” lines lie atop one another.
We use the half-weighted restriction operator on normal interior points, with a weight of $1/12$ for each neighborhood point along each of the x, y, z direction.

$$\tilde{u}_{i,j,k}^{2h} = \tilde{u}_{i,j,k}^{h} = \frac{1}{2} \tilde{u}_{i,j,k}^{h} + \frac{1}{12} \left(\tilde{u}_{i+1,j,k}^{h} + \tilde{u}_{i-1,j,k}^{h} + \tilde{u}_{i,j+1,k}^{h} + \tilde{u}_{i,j-1,k}^{h} + \tilde{u}_{i,j,k+1}^{h} + \tilde{u}_{i,j,k-1}^{h} \right),$$ \hspace{1cm} (13)

where $i = 2I - 1$ and $j = 2J - 1$. For points near the boundary, we adjust the weight to take account of the different spacing.

More complicated restriction operators are often used which include weighing all the points on a cube centered around the coarse grid point. The results of our simulation are not sensitive to the restriction operator used, so we prefer the simple half-weighted one described above. For the prolongation operator I_{2h}^h, we continue to use trilinear interpolation.

4.1. Second-order convergence

Smoothing Operator

Again similar to the 2D case, we have to make exceptions for the interior points near the boundary. With regular spacing the usual estimate used to calculate ∇^2 is done as follows; thus in each direction, (say x), the second derivative is

$$\frac{\partial^2 \tilde{u}}{\partial x^2} = h^{-2} (\tilde{u}_{i+1,j} + \tilde{u}_{i-1,j} - 2\tilde{u}_{i,j}) + O(h^2).$$ \hspace{1cm} (14)
For irregular spacings a simple modification would be

\[
\frac{\partial^2 \tilde{u}}{\partial x^2} = \frac{2}{h_{i+\frac{1}{2},j} + h_{i-\frac{1}{2},j}} \left(\frac{\tilde{u}_{i+1,j} - \tilde{u}_{i,j}}{h_{i+\frac{1}{2},j}} + \frac{\tilde{u}_{i-1,j} - \tilde{u}_{i,j}}{h_{i-\frac{1}{2},j}} \right) + O(h). \tag{15}
\]

However because of the irregular spacing in Eq. (15) the error during smoothing and hence the final solution near the inner boundary will be first-order instead of second. (This problem should not exist for traditional implementations that maintain a regular grid spacing.) Unlike the 2D case, we have found it essential in the 3D case to have consistent differencing order at the boundary; otherwise smooth convergence at the desired order could not be achieved. Thus, in order to maintain second-order error bounds near the boundary, we include an extra interior point. So a total of four points \((\tilde{u}(x), \tilde{u}(x + h), \tilde{u}(x + 2h), \tilde{u}(x + 3h))\) are used to calculate the second derivative in each of \(x, y, z\) coordinates. Then we solve the Taylor expansions for \(\frac{\partial^2 \tilde{u}}{\partial x^2}\).

\[
\tilde{u}(x + h_1) = \tilde{u}(x) + \frac{\partial \tilde{u}}{\partial x} h_1 + \frac{\partial^2 \tilde{u}}{\partial x^2} h_1^2 + \frac{\partial^3 \tilde{u}}{\partial x^3} h_1^3 + O(h_1^4) \tag{16}
\]

\[
\tilde{u}(x + h_2) = \tilde{u}(x) + \frac{\partial \tilde{u}}{\partial x} h_2 + \frac{\partial^2 \tilde{u}}{\partial x^2} h_2^2 + \frac{\partial^3 \tilde{u}}{\partial x^3} h_2^3 + O(h_2^4) \tag{17}
\]

\[
\tilde{u}(x + h_3) = \tilde{u}(x) + \frac{\partial \tilde{u}}{\partial x} h_3 + \frac{\partial^2 \tilde{u}}{\partial x^2} h_3^2 + \frac{\partial^3 \tilde{u}}{\partial x^3} h_3^3 + O(h_3^4) \tag{18}
\]

As we can see in Fig. 7, we maintain second-order convergence on all points.

4.2 Fourth-order convergence

Given the success in second-order convergence we now attempt to extend this to fourth order. We find successful fourth-order convergence by increasing the size of the smoothing stencil to five points in each \((x, y, z)\) direction:

\[
\frac{\partial^2 \tilde{u}}{\partial x^2} = \frac{h^{-2}}{12} (16(\tilde{u}_{i+1,j} + \tilde{u}_{i-1,j}) - (\tilde{u}_{i+2,j} + \tilde{u}_{i-2,j}) - 30\tilde{u}_{i,j}) + O(h^4). \tag{19}
\]

Notice that we increase the order of accuracy of the smoothing operator only. We do not modify the interpolation or prolongation operators.

For points near the boundary we need to include one additional point, and describing the Taylor expansions. The Taylor equations for the values over a total of six points can then be solved for \(\frac{\partial^2 \tilde{u}}{\partial x^2}\) to \(O(h^4)\) accuracy.

The use of stencils that include these additional points could create problems with the the red-black sweeping of the Gauss smoothing. Points updated in the red sweep can immediately be used in calculations for other points within the same sweep. Thus with these additional points Gauss smoothing can introduce a bias in the direction of the sweep that could affect the error. We in fact observed this bias. We correct this bias as follows, in a sort of red-black Jacobi method. We assume a red-black labeling of the vertices (every nearest neighbor of a red is a black, every nearest neighbor of a black is a red). We then compute the update of each red vertex, using as many points as appropriate to the the discretization order, but these updated red values are stored in a separate auxiliary grid (rather than being written back into the original grid as would be done in the Gauss procedure). After all red points are updated, they are all copied back into the original grid. Then the black points are similarly updated, stored in an auxiliary grid, and then copied back into the original grid. The extra memory required to hold intermediate results is not a concern since other steps in the multigrid always require extra work arrays, which are available for use at this time.
Notice that we increase the order of accuracy of the smoothing operator only. We do not modify the interpolation or prolongation operators. A further complication is that with larger stencils of high-order methods, there may not be enough “room” on the coarsest grid to construct the stencil. An obvious solution is to ensure that the coarsest grid is sufficiently fine that that the stencils do fit. Instead, we use the following approach: If there is insufficient room to construct a stencil at the desired order, we drop back to the next highest order that does fit. In practice this means the solution on the coarsest grid is always second (or even first) order.

Regardless of the simplifications, increasing only the order of the smoothing, and even dropping back to low-order differencing on coarse grids, this approach has yielded fourth-order solutions. Figure 8 shows the fourth-order convergence we get with the combination of the new stencils and modified red-black smoothing. Figure 9 shows a comparison between the second-order and fourth-order methods of the error norms produced. We do need a larger number of V-cycles and/or smoothing cycles to get fourth-order convergence, compared to the second-order case. We have not yet attempted to reduce or optimize this, but with fourth-order convergence the error behavior is so much better than with lower-order schemes that the extra time spent on additional V-cycles is not a matter of concern.

A plot of the errors across the entire domain is useful to visualize the performance of the second-order and fourth-order methods. Figures 10 and 11 are plot of the error across the central slice of the domain. The error is highest close to the inner boundary but the fourth-order runs contain the error to a very small neighborhood of the inner boundary, and the maximum error is a factor $\sim 10^2$ smaller than that for the second-order solution.

4.3. Sixth-, and higher-order convergence

The work was further extended to convergence of higher order than fourth. We include additional points into the stencil to explore sixth- and eighth-order convergence. The results are shown in Figure 12. We see that, if a sufficiently large number of levels is included, good convergence behavior is obtained to eighth order. It appears that the number of refinement levels to achieve convergence increases with the convergence order.

5. Conclusions and further work

The main ideas presented in this paper are

- We augment the grid for each level by
 - Finding the intersection between every grid line at each level with the inner boundaries (holes).
 - At each of these points we insert a additional boundary grid point, whose solution in the Dirichlet boundary conditions is known a priori.

We have demonstrated explicitly in the second-order 2D implementation that this procedure leads to much improved error at the inner boundary. The essential feature appears to be resolving the hole on every grid.

- Since the grid spacings near the inner boundaries are now not fixed, we modified the Gauss-Seidel Newton iteration (used to smooth the error) to take one
High order multigrid methods

Figure 7. Error norms. Stencils are chosen for second-order convergence and plots with different numbers of V-cycles, pre and post smoothings are presented. The two 4 Vcycle average error plots lie atop one another.

Figure 8. Error norms. The stencils chosen here should give fourth-order convergence.
additional neighboring grid point in each of x, y, z coordinates to maintain the relaxation accuracy.

- We achieve good convergence for a second-order implementation. And, by increasing the order of the smoothing operator (only) and even with a drop back to lower order on the coarsest grids, we find good convergence at fourth- and sixth-order. We have demonstrated a remarkably simple implementation to provide fourth- and sixth-order elliptic solutions.

Problems with this approach are

- One of the planned applications of the code is in constrained evolution. The manner in which we introduce grid points leads to some grid spacings near the boundary that are much smaller than the regular grid spacing. This may cause violations of the Courant-Friedrichs-Levy (CFL) constraint on the time steps for evolution.

- The complexity of the data structures and of the coding increases for higher order so that parallelizing this code without introducing bugs might be difficult.

Some of the results of this work have not yet been investigated to completely understand the behavior. For example, we do not fully understand why we need 4 V-cycles for convergence in the 3D runs, nor have we fully understood the number of levels required to insure higher-order convergence.
High order multigrid methods

Figure 10. Plot of error over a central slice $x = 0.0$. Second-order convergence run. $l_{\text{max}} = 7$, $l_{\text{min}} = 2$, 4 V-cycle and 4 pre- and 4 post-CGC smoothing sweeps.

Figure 11. Plot of error over a central slice $x = 0.0$. Fourth-order run. $l_{\text{max}} = 7$, $l_{\text{min}} = 2$, 4 V-cycle and 4 pre- and 4 post-CGC smoothing sweeps.
Figure 12. Plot of error norms.

Figure 13. Comparison of average error, and the maximum error over the entire domain, which is always located near the inner boundary, the plot clearly shows that error at the boundary is also controlled to consistent order.

6. Acknowledgments

This work was supported by NSF grant PHY 0354842, and by NASA grant NNG04GL37G.

[1] Arnowitt R, Deser S, Misner C W 1962 in *Gravitation: An Introduction to Current Research*, L. Witten ed. Wiley
[2] York J W 1979 in *Sources of Gravitational Radiation*, L. Smarr ed., Cambridge University Press.
[3] Siebel F and Hübner P. 2001 *Phys. Rev.* D64 024021
[4] Calabrese G, Pullin J, Sarbach O, Tiglio M, and Reula O. 2003 *Commun. Math. Phys.* 240 377-395 [gr-qc/0209017]
[5] Tiglio M 2003 [gr-qc/0304062]
[6] Yoneda G and Shinkai H 2003 *Class. Quant. Grav.* 20 L31
Alcubierre M, Allen G, Bona C, Fiske F, Goodale T, Guzman F S, Hawke I, Hawley S H, Husa S, Kopitz M, Lechner C, Pollney D, Rideout D, Salgado M, Schnetter E, Seidel E, Shinkai H, Shoemaker D, Szilágyi B, Takahashi R and Winicour J 2003 Class. Quant. Grav. 21 589 gr-qc/0305023.

Schnetter E 2003 Ph.D. dissertation, University of Tübingen. In preparation.

Meier D L 2003 Private communication.

Anderson M and Matzner R A 2003 Found. Phys. 35 1477-1495. gr-qc/0307055.

S. Dain, C. O. Lousto, and Takahashi 2003 Phys. Rev. D65 104038.

Hawley, Scott H., and Matzner, Richard A. 2004 “Tips for implementing multigrid methods on domains containing holes” Class. Quant. Grav. 21 805-822; gr-qc/0306122.

Choptuik M W 2002 Personal communication, Dec. 2

Choquet-Bruhat Y, Isenberg J and York, J W 2000 Phys. Rev. D61 084034

Dain S 2001 Phys. Rev. D64, 124002.

Maxwell D 2004, Commun. Math. Phys. 253 561-583 [gr-qc/0307117].

Brandt A 1977 Math. of Computation 31 333.

Johansen H and Colella P 1998 J. Comp. Phys. 147 60.

Udaykumar H S, Mittal R, Rampunggoon P and Khanna A 2001 J. Comp. Phys. 174 345.

Brandt S and Brügmann B 1997 Phys. Rev. Lett. 78. See also Brügmann B 1998 in Eighteenth Texas Symposium on Relativistic Astrophysics and Cosmology, Chicago, 1996, eds. A. Olinto, J. Frieman, and D. Schramm, World Scientific Publishing, Singapore

Brandt A 1982 in Lecture Notes in Mathematics 960 (Multigrid Methods) W. Hackbusch and U. Trottenburg, eds, Academic Press, New York/London, 53-147.

Hackbusch W 1985 Multi-Grid Methods and Applications, Springer Series in Comp. Math. 4, Springer Verlag

Stüben K and Trottenburg U 1982 in Multigrid Methods: Proceedings of Köln-Porz, 1981, W. Hackbusch and U. Trottenberg, eds, Springer-Verlag Berlin

Wesseling P 1980 in Numerical Analysis. Proceedings, Dundee 1979 G.A. Watson, ed.. Lecture Notes in Mathematics 773 Springer-Verlag, Berlin 164

Wesseling P 1992 An Introduction to Multigrid Methods, Wiley, Chilchester (Available online at http://www.mgnet.org/mgnet-books-wesseling.html)

Briggs W L, Henson V E and McCormick S F 2000 A Multigrid Tutorial, 2nd ed.

Choptuik M W 1999 Lecture notes, Taller de Verano 1999 de FENOMEC: Numerical Analysis with applications in Theoretical Physics.

Choptuik M W and Unruh W G 1986 Gen. Rel. Grav. 18 813

Brandt A 1988 Class. Quantum Grav. 5 713

Alcubierre M 2003 Personal communication, Feb. 18