Spike sorting in the frequency domain with overlap detection

Dima Rinberg1
William Bialek2
Hanan Davidowitz3
Naftali Tishby4

\textit{NEC Research Institute, 4 Independence Way, Princeton, NJ 08540.}

\textit{Present addresses:}
1 Monell Chemical Senses Center, 3500 Market St. Philadelphia, PA 19104.
2 Dept. of Physics, Princeton University, Princeton, NJ 08544.
3 PharmaSeq, Inc., 1 Deer Park Dr., Suite F, Monmouth Junction, NJ 08852.
4 Institute of Computer Science and Center for Neural Computation, The Hebrew University, Jerusalem 91904, Israel.
Abstract

This paper deals with the problem of extracting the activity of individual neurons from multi-electrode recordings. Important aspects of this work are: 1) the sorting is done in two stages - a statistical model of the spikes from different cells is built and only then are occurrences of these spikes in the data detected by scanning through the original data, 2) the spike sorting is done in the frequency domain, 3) strict statistical tests are applied to determine if and how a spike should be classified, 4) the statistical model for detecting overlapping spike events is proposed, 5) slow dynamics of spike shapes are tracked during long experiments. Results from the application of these techniques to data collected from the escape response system of the American cockroach, Periplaneta americana, are presented.

Keywords

extracellular recording, clustering, overlap detection, multicellular, gaussian, waveform variability, cockroach
1 Introduction

Classical methods for exploring the mechanisms of brain function involve recording the electrical activity of single nerve cells. Much has been learned from this approach, but there are several reasons to go beyond single neuron recording [Rieke et al., 1997]. First, multineuron recording greatly increases the efficiency of studying the properties of single neurons. Second, recording simultaneously from many neurons allows access to the precise temporal relations among action potentials in multiple neurons [Usrey et al., 1998]. This can provide a testing ground for the hypothesis that these temporal relationships carry significant information. Finally, multineuron recording experiments might give us a glimpse into the collective dynamics in neural networks, e.g. the existence of multiple stable states and possibility of switching between them [Amit, 1989, Abeles and Gerstein, 1988].

This paper is concerned with one of the many technical problems that arise in trying to address the above questions, namely the problem of sorting out signals from multiple neurons as they appear on multiple electrodes [McNaughton et al., 1983, Reece and O’Keefe, 1989]. In a multineuron recording each cell can appear on multiple electrodes and multiple cells can appear on each electrode. Finding the spike times for each cell is difficult because spikes from different cells are very similar in shape, making it hard to distinguish among them. In addition, the events which might be most interesting, synchronous spiking of nearby cells, are among the most difficult
to disentangle.

2 The spike sorting problem

Throughout the nervous system, cells generate stereotyped electrical pulses termed action potentials or spikes. Thus, in the absence in the absence of noise or variability, it is expected that each neuron in the system would generate a characteristic signal at each electrode. This waveform can be viewed as a single point in signal space. In the presence of noise, however, these discrete points spread into clusters of points, each point representing a single spike. One of the objectives of the spike sorting method described here is to make a model of these clusters that is accurate enough to allow the assignment of any given voltage waveform to one of the clusters. Even though it is unlikely that all the details of the cluster model are correct, our hope is that any such errors will not hamper spike classification.

If \mathcal{V} is the set of voltages measured on all of the electrodes during a short time segment, the probability distribution of these voltages may be decomposed as

$$P(\mathcal{V}) = \sum_c P(\mathcal{V}|c)P(c),$$ \hspace{1cm} (1)

where $P(c)$ is the total probability of observing a spike from cell c and $P(\mathcal{V}|c)$ is the distribution of voltage waveforms that arise from this cell. Conversely, if a set of voltage signals \mathcal{V} is observed, the probability that it comes from
cell c can be derived from Equation (1) by applying Bayes’ rule,

$$P(c|\mathcal{V}) = \frac{P(\mathcal{V}|c)P(c)}{\sum_{c'} P(\mathcal{V}|c')P(c')}.$$ (2)

Ideally one would like assignments which are certain. Statements of the form “probably a spike from cell 2, but maybe from cell 1,” “probably a spike from cell 3, but maybe overlapping spikes from cells 4 and 5,” defeat our purpose. To avoid this type of problem the distributions $P(\mathcal{V}|c)$ and $P(\mathcal{V}|c')$ should not overlap when $c \neq c'$. Furthermore, it is hoped that if these distributions overlap only slightly, a precise model for the distribution of each cluster may not be necessary and a small number of parameters may suffice to make reliable distinctions among the clusters. If a reliable model of this form can be made, then the assignment problem is solved. Note also that, in this limit, our prior assumptions about the likelihood of different neural responses plays no role.

The approach to the clustering problem described here is as follows. First it is assumed that individual clusters $P(\mathcal{V}|c)$ have a Gaussian form in which each frequency component fluctuates independently. Next, the best possible clusters are found and the mean and variances at each frequency are calculated for every cluster. If this Gaussian model were correct, the probability that a given cluster could generate a particular waveform would depend only on the χ^2 distance between that waveform and the cluster mean, with appropriate weighting by the variances. These χ^2 values provide a set of new dimensions along which distributions should be nonoverlapping if certainty
in the assignments has been achieved. In addition, it is possible to check if the clustering is self consistent because every member waveform of a given cluster will yield a distance of $\chi^2 \approx 1$ for that cluster and $\chi^2 >> 1$ for all of the other clusters.

This combination of χ^2 below a threshold for one cluster and above threshold for all other clusters is the signature of unambiguous assignment. The reader should note that we achieve this result despite the fact that the real clusters need not obey the assumptions of our simple model. This can be seen by looking closely at the form of the resultant χ^2 distributions. The implementation of these ideas takes on the following form. First, a statistical model of the spikes from different cells is built by clustering. Second, in a completely independent stage we detect the occurrence of these spikes in the data. This is initially done for single spikes. Finally, by superimposing these statistical models, overlapping spikes are treated as well.

We emphasize once more that we are not proposing the Gaussian model as an exact model of the relevant probability distributions. On the contrary, the goal is to show that the Gaussian model suggests dimensions along which clusters are discriminable, and that the real clusters are almost perfectly discriminable along these dimensions. Once this is established, the precise form of the model is irrelevant. In cases where non-Gaussian behavior is known to be crucial, one might start with different assumptions but the general strategy would be the same: we want to exhibit explicitly the discriminability of clusters along some small number of relevant directions in waveform
space, and the starting model is just an aid to finding these dimensions. Similar ideas using a χ^2 test were proposed in recent work by Pouzat et al. [Pouzat, 2002].

3 The spike sorting algorithm

The first step is to build the set of clusters. This is done by identifying the different spike shapes in the data and constructing a statistical model for each recognized spike type. As with many other spike sorting algorithms the work described here is based on the following assumptions: a) different spikes from the same cell are very similar, b) spikes from different cells have different waveforms on at least one electrode, c) if a cell fires once, it fires many times and d) overlaps are fairly rare.

3.1 Clustering

Before the actual clustering can be done a large number of each of the different spike types is needed. To do this the data is broken into short frames. The content of each frame is then examined to see if it contains “clean” spikes which are described below. A frame refers to a set of data snippets, one from each electrode at a given time. We emphasize that during this initial pass through the data we are interested only in collecting clean representatives of every spike type and no attempt is made to deal with frames that did not obviously contain only one single spike.

The object of the clustering is to group similar spikes together. This must
work in spite of the fact that two similar spikes may be shifted slightly in time [Lewicki, 1998]. To deal with this problem great care is given to accurately aligning the spikes during the clustering process.

Objects to be clustered- While we measure time domain signals, from now on each frame, \(f \), is represented by a vector composed of the concatenated Fourier transforms of the voltage waveforms of the data from each of the \(N_e \) electrodes, \(i.e., \)

\[
S_f(\omega) = [S_{f,1}(\omega), S_{f,2}(\omega), \cdots S_{f,N_e}(\omega)].
\]

(3)

The alignment of spikes in the frequency domain is achieved simply by multiplying the Fourier components by \(e^{i\omega \tau} \) where \(\tau \) is the necessary time delay (see below). It should be noted that although the work presented here deals with sorting concatenated spectra, other objects can be sorted as well. Extensive experiments on sorting different objects were done while developing the methods described here but for our data \(S_f(\omega) \) proved to be the most useful. For example, reference [Rinberg et al., 1999] describes the sorting of transfer functions between electrodes which is independent of the spike shape. This may be of interest in cases where the spike shape can change [Fee et al., 1996b] (\(e.g., \) in bursting cells). In certain cases power spectra, which are invariant to time shifts, can be used as well.

Description of the algorithm- The clustering algorithm is outlined in Box(1). Its various steps are described below.

- **Line 1: Initialization**- First all frames are averaged yielding an av-
average signal,
\[\bar{S}_{0,e}(\omega) = \frac{1}{N_f} \sum_{f=1}^{N_f} S_{f,e}(\omega) \]
(4)
and variance,
\[\sigma_{0,e}^2(\omega) = \frac{1}{N_f} \sum_{f=1}^{N_f} |S_{f,e}(\omega) - \bar{S}_{c,e}(\omega)|^2 \]
(5)
where \(N_f \) is the number of frames, \(\omega \) is the discrete frequency index and the indices \(f, c, \) and \(e \) refer to the frame, cluster and electrode respectively. For this initial averaging the time shifts, \(\tau_f \), described below, are set to zero for all frames.

- **Loop 2: Split clusters**- In every pass, except the first, each cluster is split in two using a small random vector \(\delta_{c,e} \), i.e., \(\bar{S}_{c,e} \to \bar{S}_{c,e} \pm \delta_{c,e} \). This is repeated until some criterion is met. Establishing this criterion proved to be a difficult problem to solve generally. An a priori knowledge of the expected number of cells was found to be the most reliable criterion for stopping the cluster splitting.

- **Loop 3: Reassign frames**- This loop executes an expectation maximization algorithm. The average and variance at each frequency component of every cluster are calculated using the appropriate time delay for every member frame calculated against each cluster. The time delay \(\tau_f \) that minimizes \(\chi^2_{f,c}(\tau_f) \) is calculated against all clusters. The frame is then reassigned to the cluster that matches it most closely, i.e., the one that yields the minimum
\(\chi^2_{f,c}(\tau_f) \). This is done until the frames are distributed in such a way that these parameters no longer change [Papoulis, 1965].

- **Line 4: Finalize clusters** - After the clustering ends some clusters may actually be identical within statistical error. These are merged into a single cluster. Others might clearly contain frames of different types and are split into two clusters. Still others might contain frames that clearly do not contain spikes or perhaps contain very few spikes. These are discarded.

3.2 Detection

The end result of the clustering phase is a statistical template for all of the spike types found in the data. In the next and final phase the data is scanned to find all occurrences of each spike type. The basic idea of the detection is to cut the data into short frames and determine which cluster best describes the data in that frame and its precise timing. Spikes that are well centered in the frames are detected and subtracted from the data. The data is then reframed and the process is repeated until no single spikes remain in the data. Finally, this process is repeated for overlaps. This process is shown schematically in Figure (1).

Single spike detection - Single spike detection is done by finding the \((c, \tau_f)\) pair that minimizes

\[
\chi^2_f(c, \tau_f) = \sum_{\omega, e} \frac{1}{\sigma^2_{c,e}(\omega)} \left| S_{f,e}(\omega) - \bar{S}_{c,e}(\omega) \cdot e^{i\omega\tau_f} \right|^2
\]

(6)
for every frame. In practice Equation (6) is expanded into three terms,

\[\chi^2_f(c, \tau_f) = A(c) + B(c) + 2C(c, \tau_f), \]

\[A(c) = \sum_{\omega,e} \frac{1}{\sigma^2_{c,e}(\omega)} |\bar{S}_{c,e}(\omega)|^2, \]

\[B(c) = \sum_{\omega,e} \frac{1}{\sigma^2_{c,e}(\omega)} |S_{f,e}(\omega)|^2, \]

\[C(c, \tau_f) = \sum_{\omega,e} \frac{1}{\sigma^2_{c,e}(\omega)} \text{Re} \left(S_{f,e}(\omega) \bar{S}^*_{c,e}(\omega) \cdot e^{-i\omega \tau_f} \right). \]

\[(7) \quad (8) \quad (9) \quad (10) \]

\(A(c) \) can be calculated in advance once the frame clustering has been done. \(B(c, \tau_f) \) and \(C(c, \tau_f) \) are calculated in the detection algorithm, outlined in pseudo-code in Box (2). The main ideas are described below.

- **Line 1: Frame data**- The complete data set is broken up into nonoverlapping equal sized frames.

- **Loop 2: Process each frame**- It is assumed that a frame can contain either noise (see next section), a spike, part of a spike or an overlap of 2 spikes. Frames containing noise are discarded leaving only those containing single or multiple spike events.

- **Loop 3: Check fit to each cluster**- Here the chosen frame is compared to each cluster. Since the spike in the frame may not be centered it is necessary to align the frame to the cluster. For each frame the time delay, \(\tau_f \), that maximizes the cross correlation term, \(C(c, \tau_f) \), is found for each cluster.
• **Line 4:** Calculate $\chi^2_{f,e}(\tau_f, c)$ for all clusters- If the spike is not near the edge of the frame, i.e., $|\tau_f| < \tau_{th}$, then $B(c, \tau_f)$ is calculated yielding the final term in Equation (6). All of the terms of $\chi^2_{f,e}(\tau_f, c)$ have now been calculated yielding an estimate of the similarity of the frame to each of the clusters.

• **Line 5:** Finalize spike detection- The cluster that yields the smallest value for $\chi^2_i(\tau, c)$ is the cluster most similar to the frame being tested. It is not enough to find the cluster for which χ^2 is smallest. A fit is accepted only if $\chi^2_i(\tau, c) < \chi^2_{th}$. Frames that were not good matches to any cluster most likely contained an overlap, noise or a partial spike that will most likely be found when the frames are shifted in a later pass through the data.

Multiple spike (overlap) detection- Once all of the single spikes have been detected and removed, overlapping spikes are detected and removed as well. Here we generalize the single spike case to two spikes, thus, we look for the set of $(\tau_1, \tau_2, c_1, c_2)$ that minimizes

$$\chi^2(\tau_{f,1}, \tau_{f,2}, c_1, c_2) = \sum_{\omega,e} \frac{1}{\sigma_{c_1}^2} \left| S_{f,e}(\omega) - S_{c_1,e}(\omega) \cdot e^{i\omega \tau_{f,1}} - S_{c_2,e}(\omega) \cdot e^{i\omega \tau_{f,2}} \right|^2.$$

(11)

The algorithm used to find the clusters and time delays is very similar to that used for the single spike case with some differences. First, the minimization executed on line 3 of Box (2) is over two variables $\tau_{f,1}$ and $\tau_{f,2}$. This is computationally intensive but since there are a finite number of possible
time delays it remains manageable on a personal computer. As before many of the calculations can be performed once the cluster centers are known.

Another issue which needs to be addressed when dealing with two spikes is the calculation of $\sigma_{c_1,c_2,e}^2(\omega)$. Here we assume that there is an inherent noise in the spike shape and an additive background noise. Thus the variances are given by

$$
\sigma_{c_1,c_2,e}^2(\omega) = \sigma_{c_1,e}^2(\omega) + \sigma_{c_2,e}^2(\omega) - \sigma_n^2(\omega),
$$

where $\sigma_n^2(\omega)$ is the background noise computed from regions devoid of spikes. While this assumption is not true in general it is reasonable since the variances of the different clusters are assumed to be independent. It proved to be a reliable working model. This measure of the two-spike variance takes into account the contribution of each cluster but does not overcount the background noise.

4 Application to multi-electrode data

The techniques described above were applied to data recorded from the escape response system of the American cockroach *Periplaneta americana* [Camhi and Levy, 1989, Kolton and Camhi, 1995, Liebenthal et al., 1994, Westin et al., 1977, Camhi, 1984]. Neural activity was recorded using 8 hook electrodes attached to the two bilateral abdominal connectives. In this arrangement each electrode measures a weighted sum of the activity from the different neurons in the connective. A more detailed description of the experimental setup is given in reference [Rinberg and Davidowitz, 2002]. Typical experiments lasted for
several hours and yielded about 8 GB of raw data (see Figure 2). The aim of the work described here is to unravel the individual spike times from this multi-electrode data.

4.1 Statistical model of the clusters

Here we describe the application of the clustering algorithm described in Section 3.1 to the multielectrode cockroach data.

Frame selection—Only frames that fulfill the following criteria were collected to produce a model of the clusters: a) the signal in the middle of the frame is above some threshold, $v_{\text{mid}}^{\text{th}}$, on at least one electrode and b) the signal at the frame edges is less than some other threshold, $v_{\text{edge}}^{\text{th}}$, on all of the electrodes. This idea is illustrated in Figure 3.

The thresholds were proportional to the background noise levels. This background signal, \bar{v}_b, was the average of several averages,

$$v_b = \left(\frac{1}{N_p} \sum_{i=1}^{N_p} |v_i - \bar{v}|^2 \right)^{\frac{1}{2}},$$

(13)
calculated from regions devoid of spikes at the beginning, middle and end of the experiment (usually silences between trials when no stimulus was presented). Here v_i are the data points while the number of data points was typically about $N_p = 5 \cdot 10^4$. The thresholds described above were defined as $v_{\text{mid}}^{\text{th}} = 4 \cdot \bar{v}_b$ and $v_{\text{edge}}^{\text{th}} = 1.5 \cdot \bar{v}_b$. These thresholds worked well for our data but will likely be different for data from other experiments.

While the choice of thresholds is to some extent arbitrary, there are several guidelines that can be followed. If the threshold is set too high low energy
spikes will be missed. If it is set too low, a large cluster containing noise will appear. We have checked that lowering the thresholds does not influence the larger amplitude clusters identified by our algorithm. The setting of the threshold is thus a compromise between identifying all the small amplitude spikes and minimizing computing time.

To avoid missing spikes because of voltage drifts or overlapping tails of nearby spikes, the frames are first detrended by subtracting a linear fit to the first and last 0.5 ms of each frame.

Time shift between electrodes- Spikes appear on each electrode at different times because of the finite propagation time of the action potentials along the neurons in the connective. This is evident in the data shown in Figure [3]. Frames are thus defined with time delays between the different channels. A further complication arises from the fact that the time delays on the different electrodes may be different for different cells. An average delay was found by calculating the time of the maximum of the cross correlation of voltage traces from the different electrodes. Because these delays can change during the course of an experiment these inter-channel delays were in turn averaged from widely separated segments of data. Typically, these delays were between 0.1 and 0.8 ms depending on the positioning of the electrodes.

Frame size- To keep calculation times short, a small frame size is desirable. On the other hand, the frames have to be big enough to account for the different propagation times of the different cells. For the experiments described here frames were 3.2 ms long (64 data points).
The clustering begins after 10,000 frames containing candidate spikes have been collected. While each frame is represented by the vector defined in Equation (5) only the low frequency components (the first 16 complex numbers) of each Fourier transform were used because the higher frequencies were found to be indistinguishable from noise. Thus $S_{f,e}(\omega)$ was of dimension $\frac{1}{2} \cdot 32 \cdot N_e$ complex numbers, where N_e is the number of electrodes.

Since about 7 cells are expected on each side the clustering is stopped once 16 clusters have been found on a side. Up until this point the clustering is automatic. Some results of this automatic clustering are shown in Figure (4). Intervention is now needed to refine the clustering. To do this the χ^2 distributions of the clusters are examined manually. Clusters are then merged, split or discarded as necessary. This process could be automated, but was not deemed worth the effort. Results of the clustering after the final manual intervention are shown in Figure (5) and Figure (6).

Track slow changes - Thus far, the first $\approx 10^4$ frames have been used to establish the statistics of each cluster. The accuracy of the spike detection can be improved if the change in spike shapes are tracked during the course of a long experiment. For the cockroach experiments described here, the trial period of 100 s was chosen as the time scale upon which changes are tracked. To do this the cluster statistics $\bar{S}_{c,e}(\omega)$ and $\sigma_{c,e}(\omega)$ are updated with consecutive 100 s segments of data on a first-in, first-out basis. Once the cluster statistics have been computed, the next N "clean" frames from the data are found and are each assigned to the cluster that is closest based
on the χ^2 distance defined in Box (1). These frames are then added to these clusters while the same number of the earliest frames are removed. As usual, frames that exceed a certain χ^2 for all clusters are discarded. The cluster statistics are then recalculated, yielding dynamic clusters of time dependent spike statistics $\bar{S}_{c,e}(\omega, t)$ and $\sigma_{c,e}(\omega, t)$ that are used as the templates for the spike detection described in the next section. Results of spike shape tracking are shown in Figure (7).

4.2 Detection

For the detection phase the complete data set is broken into nonoverlapping frames containing 64 data points (3.2 ms). In practice, $B(c)$ is calculated only after zero padding the frame on the outside 2 ms. This is done to eliminate the possibility of a nearby spike, with an overlapping tail, causing $\chi^2_{f,c}(\tau_f, c)$ to be too large. $C(c, \tau_f)$ does not need to be recalculated because the clusters themselves are averages of many clean spikes and therefore inherently zero padded.

A fit is accepted only if $\chi^2(\tau, c) < \chi^2_{th}$ which was determined by the shape of the distribution. Typically $\chi^2_{th} \approx 2$, though this threshold would likely be different for other data. The probability of detecting a spike is smaller if it overlaps with the tails of nearby spikes. This problem can be greatly reduced if, once spikes have been classified, the average spike from the corresponding cluster is subtracted from the data (see Figure (11)). Every pass through the data leaves a smaller number of unclassified spikes. After each pass the data
is reframed with a time shift of $\frac{1}{4}$ frame and the process is repeated. Ideally, after 4 passes all single spike events have been detected.

Multiple spike (overlap)detection- Once all of the single spikes have been detected and removed, overlapping spikes are detected and removed as well. Figures (8 and 9) show the results of describing an overlap as single and double spike events. Notice that the automatic recognition of an event as being a two spike event is dependent on being able to reject the “best” single spike description of the event. Thus, in Figure (8), the best single spike description is quite good, and the identification of a spike from cell (b) is correct, but the value of $\chi^2 = 3.5$ is unacceptably high, as can be seen from the χ^2 distributions. Once we explore the space of two spike events we find a unique description with $\chi^2 \approx 1$ (see Figure (9)).

5 Discussion

The spike sorting method described here has several key features. First, the experimental design is such that the full waveforms from all electrodes are recorded continuously during the course of an experiment. This is an advantage over many spike sorting techniques that are based on the idea of feature clustering (see [Lewicki, 1998] for a recent review of spike sorting techniques as well as an older review in [Schmidt, 1984]). In feature clustering one or more features of the spikes (spike height, peak to peak amplitude, rise times, etc.) are extracted and clustered. Since only a few features of the spikes are used, subtle differences between spikes from different cells can be
lost. In addition, it is not a priori clear which, and how many, features to use—are there better (optimal) ones? When applied properly this technique can work well for a small number of cells but does not work well with many cells.

Another important feature of the present technique is that the construction of models for the spike shapes from individual cells (clustering) is separated from the problem of finding those spikes in the data (detection). The advantage here is that one has the leisure to look for clean examples of each spike type and thus to build a good statistical model of each spike type. Only then does one look for the occurrence of these spikes in the data. These models are time dependent in the sense that they track the change in spike shape during the course of an experiment. This has traditionally been a problem in template-matching spike sorting techniques in which a model of the spike shapes are constructed \cite{Bergman1992}. In this technique, these models are compared to a given spike and a decision is made as to whether it belongs to the class defined by this template or not. One of the more advanced implementations of this technique \cite{Lewicki1994} works well in many cases but relies heavily on a Gaussian model of the noise. Another technique \cite{Fee1996} that makes no assumptions about the waveform noise uses the spike shapes as well as refractory period statistics to classify cells. It works well with bursting cells but in its present form this technique does not treat overlaps well. This is another advantage of the separation of clustering from detection: it simplifies the problem of overlap detection.
which has traditionally been one of the most difficult parts of the spike sorting problem.

Many comparisons and computations that go into the sorting process are much easier when working in the frequency domain. The ease in which temporal alignment is achieved is one of the advantages of performing the detection in the frequency domain since sub-bin time shifts in the time domain would require resampling [Lewicki, 1998]. In the frequency domain this is done simply by multiplying the Fourier components by $e^{i\omega \tau}$ which is equivalent to a time shift of τ in the time domain. In addition, it is even possible to sort spikes from bursting cells (in which spike shapes can change drastically over short time scales) by ignoring the spike shapes entirely and sorting on transfer function ratios [Rinberg et al., 1999]. Since this is an independent type of information it can be used to check the validity of sorting results. Sorting on the full Fourier transforms of the voltage waveforms yielded excellent results for our data but other investigators will likely find other combinations that work better for their data.

The statistical methods used in this sorting program allow us to decide whether the clustered spikes really are discriminable. In addition, this statistical analysis allows us to develop more rigorous criteria for accepting or rejecting the possible detection of a spike.

Finally we note that in a typical experiment $\approx 400,000$ spikes are found. Of these 90% were found with single spike detection, 8% were found with overlap detection only 2% were events that could not be classified.
6 Summary

In this paper the problem of unraveling multielectrode neural data has been addressed. Special attention has been paid to the detection of overlapping spikes which poses obvious difficulties for any sorting method. The problem of spike sorting has been separated into two independent parts. First, a statistical model of all possible spikes found in the data is constructed. Only then are these spikes detected in the data using strict statistical criteria to quantify the quality of this detection. Overlaps are dealt with after all possible single spike events have been detected. These techniques were applied to multielectrode data from the American cockroach with good results.

7 Acknowledgements

The authors would like to thank N. Brenner and R. de Ruyter van Steveninck for many helpful suggestions and discussions.
References

[Abeles and Gerstein, 1988] Abeles, M. and Gerstein, G. (1988). Detecting spatio-temporal firing patterns among simultaneously recorded single neurons. Journal of Neurophysiology, 60:909–924.

[Amit, 1989] Amit, D. (1989). Modeling brain function. Cambridge University Press, Cambridge.

[Bergman and DeLong, 1992] Bergman, H. and DeLong, M. (1992). A personal computer based spike detector and sorter: implementation and evaluation. Journal of Neuroscience Methods, 41:187–197.

[Camhi, 1984] Camhi, J. (1984). Neuroethology, volume 174. Sinauer Assoc. Inc., Sunderland.

[Camhi and Levy, 1989] Camhi, J. and Levy, A. (1989). The code for stimulus direction in a cell assembly in the cockroach. Journal of Comparative Physiology A, 165:83–97.

[Fee et al., 1996a] Fee, M., Mitra, P. P., and Kleinfeld, D. (1996a). Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-gaussian variability. Journal of Neuroscience Methods, 69:175–188.
[Fee et al., 1996b] Fee, M., Mitra, P. P., and Kleinfeld, D. (1996b). Variability of extracellular spike waveforms of cortical neurons. Journal of Neurophysiology, 76:3823–3833.

[Kolton and Camhi, 1995] Kolton, L. and Camhi, J. (1995). Cartesian representation of stimulus direction: parallel processing by two sets of giant interneurons in the cockroach. Journal of Comparative Physiology A, 176:691–702.

[Lewicki, 1994] Lewicki, M. (1994). Bayesian modeling and classification of neural signals. Neural Computation, 6:1005–1030.

[Lewicki, 1998] Lewicki, M. (1998). A review of methods for spike sorting: the detection and classification of neural potentials. Network: Comput. Neural Syst., 9:R53–R78.

[Liebenthal et al., 1994] Liebenthal, E., Uhlmann, O., and Camhi, J. (1994). Critical parameters of the spike trains in a cell assembly: coding of turn direction by the giant interneurons of the cockroach. Journal of Comparative Physiology A, 174:281–296.

[McNaughton et al., 1983] McNaughton, B., O’Keefe, J., and Barnes, C. (1983). The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. Journal of Neuroscience Methods, 8:391–397.
[Papoulis, 1965] Papoulis, A. (1965). Probability, random variables and stochastic processes. McGraw-Hill, New York.

[Pouzat, 2002] Pouzat, C., O. Mazor, and G. Laurent (2002). Using noise signature to optimize spike-sorting and to assess neuronal classification quality. Journal of Neuroscience Methods, 122(1):43-57.

[Reece and O’Keefe, 1989] Reece, M. and O’Keefe, J. (1989). The tetrode: a new technique for multi-unit extracellular recording. Society of Neuroscience Abstracts, 15:1250.

[Rieke et al., 1997] Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1997). Spikes exploring the neural code. MIT Press, Cambridge.

[Rinberg and Davidowitz, 2002] Rinberg, D. and Davidowitz, H. (2002). A stimulus generating system for studying wind sensation in the American cockroach. Journal of Neuroscience Methods, 121:1–11.

[Rinberg et al., 1999] Rinberg, D., Davidowitz, H., and Tishby, N. (1999). Multi-electrode spike sorting by clustering transfer functions. In Advances in Neural Information Processing Systems 11, edited by M. S. Kearns, S. A. Solla, D. A. Cohn, editors. MIT Press, Cambridge.

[Schmidt, 1984] Schmidt, E. (1984). Computer separation of multi-unit neuroelectric data: A review. Journal of Neuroscience Methods, 12:95–111.
[Usrey et al., 1998] Usrey, W., Reppas, J., and Reid, R. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395:384–387.

[Westin et al., 1977] Westin, J., Langberg, J., and Camhi, J. (1977). Responses of giant interneurons of the cockroach *periplaneta americana* to wind puffs of different directions and velocities. Journal of Comparative Physiology A, 121:307–324.
Box 1: Pseudo code outline of the frame clustering algorithm. See text for details.
Frame whole data set with no overlaps

repeat get next frame, \(f \)
if frame has signal above background then

repeat for each cluster, \(c \)
find time delay, \(\tau_f \), that maximizes

\[
C(c, \tau_f) = \sum_{\omega,e} \frac{\text{Re}\left(S_{f,e}(\omega)\bar{S}_{e,c}(\omega) \cdot e^{-i\omega\tau_f}\right)}{\sigma_{c,e}^2(\omega)}
\]

if \(|\tau_f| < \tau_{th} \) then zero pad frame and calculate \(\chi^2_f(\tau_f, c) \)
until all clusters checked

find cluster, \(c \), that yields smallest \(\chi^2_f(\tau_f, c) \)
if \(\chi^2_f(\tau_f, c) < \chi^2_{th} \) keep this spike and subtract it from data
until end of data reached

Box 2: Pseudo code outline of the single spike detection algorithm. See text for details.
Figure captions

Figure 1: A schematic outline of the spike detection algorithm. Spike events are labeled a...f and are shown for only one electrode and only two cells for the sake of clarity. The detection procedure progresses from top to bottom yielding the spike times of two cells shown in bottom of the diagram. The rectangular boxes represent the frames. Note that a spike near a frame edge is not detected until the framing has shifted enough to more or less center it. Overlaps are not detected until all of the single spikes have been removed. In the work described here, both the single spike detection and the overlap detection processes consisted of 4 passes each. See text for more details.

Figure 2: Sample of the raw data used in the spike sorting. Typically, signals from 4 electrodes were recorded on each side of the abdominal connective along with 2 stimulus channels (not shown). Three channels from the right connective are shown. Data was recorded at 20 kS/s, 16 bits per channel.

Figure 3: Example showing the framing of the data from three electrodes (1-3). Grey boxes show frames that have been found to contain a candidate spike. 10,000 such frames are collected to generate a statistical model of the spikes. Each white box contains a frame that has been rejected for one or more of the following reasons: a) they contain noise, b) they contain an overlap or c) their energy is too high at the frame edges. Note that in this data there is a time shift in the appearance of the same spike on the different electrodes. This is a consequence of the spike propagation velocity but is not a necessary condition for the spike sorting techniques described here.
Figure 4: Results of the automatic frequency domain spike sorting showing four possible situations. Each row corresponds to one cluster. The center columns (labeled 1-4) show the spike shapes as they appear on different electrodes. Each trace shows 30 randomly chosen spikes from each cluster. The left column shows the average spectra of the signal from electrode 2 with the corresponding variances. \(N_{sp} \) is the number of spikes found in each cluster. The right column shows the distributions of the \(\chi^2 \) distance of all spikes to this cluster center. The shaded area (thin lines) shows the distributions for member (nonmember) spikes. Row 1 shows a good cluster clearly separated from the others. Rows 2 and 3 show clusters that overlap each other and should be merged. Row 4 shows a small cluster with no clear center which will be deleted. Its members will be reassigned to other clusters.

Figure 5: Resulting clusters after manual intervention. Some clusters from Figure 4 have been joined, others have been deleted and still others have been split, depending on the \(\chi^2 \) distribution resulting from the automatic sort. Note the clear separation of the \(\chi^2 \) distributions.

Figure 6: Cluster distribution at one frequency component in the complex plane. The circles correspond to a distance of 2\(\sigma \) from the center. Even though the clouds partially overlap for these components, they are well separated in multidimensional space.

Figure 7: The evolution of the spike shape over the course of an experiment, shown for a single cluster.

Figure 8: Attempt to describe an overlap of two spikes as a single spike event. The dotted traces at the top are the actual raw data of an overlap recorded on 4 electrodes. The middle traces show four clusters a-d. The bottom traces show \(\chi^2 \) calculated for different time shifts. The minimum \(\chi^2 \) is 3.5 found by fitting cell b with a time shift, \(\tau \approx 0 \) ms. The thin line traces at the top of the figure show this fit.
Figure 9: Same as Figure 8 except that a fit is attempted using two cells. \(\chi^2 \) is now a function of two time shifts, \(\tau_1 \) and \(\tau_2 \). The panels on the bottom show \(\chi^2 \) as a function of these two time shifts. The circles are centered at the minimum of \(\chi^2 \) for each combination of cells. The smallest \(\chi^2 \) was found for cells b and d. This fit is plotted as a thin line at the top of the figure. Note that this fit is considerably better than the best fit of any single spike event.
\[
\chi^2_{\text{min}} = 6.9
\]

\[
\chi^2_{\text{min}} = 6.0
\]

\[
\chi^2_{\text{min}} = 3.2
\]

\[
\chi^2_{\text{min}} = 5.8
\]

\[
\chi^2_{\text{min}} = 0.9
\]

\[
\chi^2_{\text{min}} = 20.8
\]