Hepatocellular adenoma associated with familial adenomatous polyposis coli

Keisuke Inaba, Takanori Sakaguchi, Kiyotaka Kurachi, Hiroki Mori, Hong Tao, Tosio Nakamura, Yasuo Takehara, Satoshi Baba, Masato Maekawa, Haruhiko Sugimura, Hiroyuki Konno

Keisuke Inaba, Department of Surgery, Iwata City Hospital, Iwata 438-8500, Japan
Keisuke Inaba, Takanori Sakaguchi, Kiyotaka Kurachi, Tosio Nakamura, Hiroyuki Konno, Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
Hiroki Mori, Hong Tao, Satoshi Baba, Haruhiko Sugimura, Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
Yasuo Takehara, Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
Masato Maekawa, Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan

Author contributions: Inaba K and Sakaguchi T treated the patient and wrote the manuscript; Kurachi K and Nakamura T treated the patient and helped to draft the report; Takehara Y reviewed the radiological features of the case; Tao H and Maekawa M examined the genetic alterations; Mori H, Baba S and Sugimura H contributed to the pathological examination and decided the final pathological diagnosis; Konno H was responsible for the patient management and supervised and approved the final manuscript.

Supported by The Japan Society for the Promotion of Science, No.17790258 and No.22591502
Correspondence to: Keisuke Inaba, MD, Department of Surgery, Iwata City Hospital, 512-3 Okubo, Iwata 438-8500, Japan. kinaba@hospital.iwata.shizuoka.jp
Telephone: +81-538-385000 Fax: +81-538-385050
Received: February 21, 2012 Revised: August 27, 2012 Accepted: October 22, 2012
Published online: November 27, 2012

Abstract

Hepatocellular adenoma (HCA) is a benign liver tumor that most frequently occurs in young women using oral contraceptives. We report a rare case of HCA in a 29 years old female with familial adenomatous polyposis (FAP). The first proband was her sister, who underwent a total colectomy and was genetically diagnosed as FAP. A tumor, 3.0 cm in diameter, was detected in the right lobe of the liver during a screening study for FAP. A colonoscopy and gastroendoscopy revealed numerous adenomatous polyps without carcinoma. The patient underwent a total colectomy and ileo-anal anastomosis and hepatic posterior sectoriectomy. The pathological findings of the liver tumor were compatible with HCA. The resected specimen of the colon revealed multiple colonic adenomatous polyps. Examination of genetic alteration revealed a germ-line mutation of the adenomatous polyposis coli (APC) gene. Inactivation of the second APC allele was not found. Other genetic alterations in the hepatocyte nuclear factor 1 alpha and β-catenin gene, which are reported to be associated with HCA, were not detected. Although FAP is reported to be complicated with various neoplasias in extracolic organs, only six cases of HCA associated with FAP, including the present case, have been reported. Additional reports will establish the precise mechanisms of HCA development in FAP patients.

Key words: Hepatic adenoma; Familial adenomatous polyposis coli; Extrahepatic manifestation; Adenomatous polyposis coli gene; Hepatocyte nuclear factor 1 alpha

Peer reviewer: Tsung-Jung Lin, MD, Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, 11 F, No. 10, Sec. 4, Renai Rd., Da-an District, Taipei 106, Taiwan, China

Inaba K, Sakaguchi T, Kurachi K, Mori H, Tao H, Nakamura T, Takehara Y, Baba S, Maekawa M, Sugimura H, Konno H. Hepatocellular adenoma associated with familial adenomatous polyposis coli. World J Hepatol 2012; 4(11): 322-326 Available from: URL: http://www.wjgnet.com/1948-5182/full/v4/i11/322.htm DOI: http://dx.doi.org/10.4254/wjh.v4.i11.322
INTRODUCTION
Hepatocellular adenoma (HCA) is a benign liver tumor that usually arises in women who are over 30 years old and have used oral contraceptives for over 5 years. Other risk factors associated with HCA have been described, including glycogen-storage diseases, androgens, anabolic steroids, diabetes mellitus, some drugs and pregnancy.

Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease caused by a mutation in the adenomatous polyposis coli (APC) gene. FAP is characterized by the early onset of multiple colorectal adenomatous polyps, with an inevitable progression to carcinoma if left untreated. Additionally, FAP is known to be associated with extracolic neoplasms in various other organs; adenomas and carcinomas of the upper gastrointestinal tract, desmoid tumors and thyroid carcinomas. Due to familial screening and prophylactic colectomies, the prognosis of FAP patients has improved. Thus, extracolic tumors have become more important causes of mortality. Duodenal or periampullary cancer and desmoids are the two main causes of mortality after a total colectomy. Other rare extracolic manifestations include cancers of the thyroid, liver, bile ducts and central nervous system. HCA is rare for FAP-associated extracolic neoplasms.

Herein, we report a rare case of HCA concomitant with FAP. She had no history of oral contraceptive use or other risk factors for HCA. We summarize previous case reports and consider HCA arising in FAP patients.

CASE REPORT
A 29 years old Japanese woman was called for familial surveillance of FAP because her 27 years old sister had undergone a total colectomy due to the diagnosis of ascending colon cancer arising from FAP, already confirmed by gene analysis. Her 46 years old father died of gastric cancer but FAP was uncertain. Her son had suffered from hepatoblastoma which had been resected when he was 18 mo old. Her preoperative clinical laboratory tests, including liver function, were normal. Serologically, serum hepatitis B and hepatitis C virus markers were negative. Serum levels of alpha-fetoprotein and des-gamma-carboxy prothrombin were also within normal ranges. Preoperative computed tomography (CT) showed a tumor in the posterior sector of the right lobe, measuring 28 mm in diameter. The tumor showed a slight inhomogeneous low density area on the unenhanced scan when compared with the surrounding liver parenchyma (Figure 1). The tumor was well enhanced in the early phase after the contrast medium injection. The tumor became indistinguishable in the late phase. Although the tumor was not detectable on T1-weighted magnetic resonance imaging (MRI), it was detected as a low density area in the posterior sector on T2-weighted MRI (Figure 1). The tumor was indiscernible in the arterial phase, but became a hypo-intense area in the hepato-biliary phase after gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid enhancement on T1-weighted MRI. No obvious capsular formation or visible central scars were observed (Figure 2). Hepatic arteriography showed a tumor stain without any abnormalities in vascular structure or angioplan. A total colonoscopy revealed numerous polyps of various sizes throughout the colon and rectum but no obvious colorectal carcinoma was found. Gastroendoscopy also found thick polyps without carcinoma.

On the basis of clinical features and previous literature, we performed a total colectomy and ileoanal anastomosis and hepatic posterior sectoriectomy on December 2008. Macroscopically, numerous polyps of various sizes, including one lateral spreading tumor in the ascending colon, were found in the mucosal surface of the resected colon specimen. In the cut surface of the resected liver specimen, the tumor grossly showed a faint yellow tumor without hemorrhage or necrosis. The
tumor showed an ill-defined border and was unencapsulated (Figure 3A). The surrounding liver tissue seemed to be normal parenchyma.

Histologically, multiple colorectal polyps were adenomas with mild to moderate cellular atypia. A lateral spreading tumor was a tubular adenoma with severe atypia. The liver tumor consisted of low-grade atypical hepatocytes, without cellular mitosis or changes in cellular density and structures. Fatty deposition in the tumor cells was ubiquitously remarkable. Neither biliary structures nor portal triads were present within the tumor (hematoxylin-eosin stain, original magnification ×40 in B and ×200 in C); D: β-catenin was immunohistochemically detected on the cytomembrane. Neither aberrant nuclear nor cytoplasmic accumulations were found (original magnification ×100).
esis of this patient, genetic alterations of the germ-line and somatic genes were examined. Sequencing of the germ-line APC gene revealed a transition from ACG to ATG at codon 499 in exon 11. No loss of the APC gene in HCA cells was demonstrated by fluorescence in situ hybridization (data not shown). No additional somatic mutation of the APC gene was found in the HCA. Moreover, a mutation of the hepatocyte nuclear factor 1 alpha (HNF1α) gene, which is reported to be related to HCA[13], was not detected.

The postoperative course was uneventful without any complications, and the patient was discharged twenty days after the operation. Follow-up CT scans revealed no signs of recurrence and other abdominal extracolic lesions 3 years after surgery.

DISCUSSION

HCA is usually found in healthy young women, especially those who use oral contraceptives for a long time. More than 750 HCA cases have been reported since the first report, showing a possible etiological association between HCA and contraceptives[2-5]. Glycogen-storage diseases, androgens, anabolic steroids, diabetes mellitus, some drugs and pregnancy have been reported as other causal factors for HCA[2-5]. However, the present patient did not have any known exogenous or endogenous pathogenic factors, except for FAP.

Patients with FAP can develop extracolic lesions such as desmoid tumors, adenomas and carcinomas of the upper gastrointestinal tract[6]. An increased risk of hepatic tumors, mainly hepatoblastoma and hepatocellular carcinoma[8-20], has also been shown in FAP patients. Hepatoblastomas develop in young patients with FAP at least 100 times more frequently than in the general population[8]. Kurahashi et al[9] reported a biallelic mutation in the APC gene in hepatoblastoma developed in a FAP patient showing a germline mutation in APC. In fact, this patient's son had hepatoblastoma at the age of 18 mo but the precise genetic information of the hepatoblastoma has not been obtained.

Reported cases of HCA's arising in FAP patients are extremely rare. According to our literature review, only seven cases, including our case, have been reported (Table 1)[5,10-14].

Five of these patients were female and two were male. Among them, one patient used oral contraceptives[12,13] and another had a medical history of androgenic steroid use for the treatment of anaplastic anemia[13]. HCA containing HCC in a male FAP patient was recently presented[14].

The germ-line mutation of the APC gene was examined in four cases, including our patient[5,12]. Bala et al[11] suggested that inherited mutations in the APC gene between codon 1444 and 1578 significantly increase the risk of developing extraintestinal tumors, including liver tumors. However, the other APC gene mutation occurred at different codons in 3 cases[10,12], including the present case (Table 1). Biallelic inactivation of the APC gene was described in two cases[10,11] (Table 1). In the first case, loss of the wild-type APC allele, which caused hemizygosity of the inherited mutation, was demonstrated[11]. A somatic 4-bp insertion was detected at codon 1516 in another case[11]. These findings suggest that the relationship between the APC gene anomaly and HCA is more complicated than initially expected.

Recently, genotype/phenotype classifications of HCA have drawn attention as a noticeable phenomenon from the aspects of pathogenesis and pathological tumorigenesis[21-23]. In their reports, HCAs are classified into four categories: (1) HCAs with mutations of the HNF1α gene (H-HCA, 35%-40%); (2) HCAs with mutations of the β-catenin gene (β-HCA, 10%-15%); (3) inflammatory HCAs with mutation of the IL6ST gene (I-HCA, 40%-50%); and (4) HCAs without markers (unclassified HCA, less than 5%-10%). Our patient showed no symptoms or signs of an inflammatory syndrome. Additionally, the HCA in the present case morphologically lacked the typical characteristics of I-HCA, such as inflammatory infiltrates, sinusoidal dilatation and numerous thick arteries[20-21]. The β-catenin gene was supposed to be normal[24,25] because β-catenin was immunohistochemically detected only around the cytomembrane, without aberrant nuclear and cytoplasmic staining distributed in random and heterogeneous patterns (Figure 3D). Thus, the tumor is not β-HCA. In our case, histopathological characteristics of the liver tumor were closely compatible for H-HCA (Figure 3B and C) since H-HCAs are pathologically characterized by marked lipid deposition in tumor cells without

Table 1 Reported cases of primary hepatocellular adenoma associated with familial adenomatous polyposis

Case	Age/gender	Location	No. of tumors	Size (cm)	Treatment	Oral contration	Steroid use	Mutated codon in the APC gene	Disorder in the somatic gene of HCA
Bala et al[9]	2/F	Right lobe	Solitary	10	Resection	(-)	(-)	1451	Loss of wild-type allele of APC, mutation of p53
Nakao et al[10]	20/F	Left lobe	Multiple	5.5	Observation	(-)	(+)	ND	ND
Bläker et al[11]	27/F	ND	ND	ND	ND	ND	ND	ND	1156
Jeannot et al[12]	37/F	Right lobe	Solitary	7	Resection	(+)	(-)	1062	Mutation of HNF1α
Okamura et al[13]	27/M	Left lobe	Solitary	8.5	Resection	(-)	(-)	ND	ND
Toiyama et al[14]	25/M	Left lobe	Solitary	5.5	Resection	(-)	(-)	ND	499
This case	29/F	Right lobe	Solitary	3	Resection	(-)	(-)	(2)	

1Case 6 is hepatocellular carcinoma within hepatocellular adenoma (HCA) in a familial adenomatous polyposis patient. APC: Adenomatous polyposis coli; ND: Not described; HNF1α: Hepatic nuclear factor 1 alpha; F: Female; M: Male.
cytological abnormalities or inflammatory infiltrates\(^{21-23}\). However, no HNF1 gene mutation was identified (data not shown). Although this tumor may be categorized as an unclassified HCA, further investigation of tumorigenesis is necessary\(^{20}\).

In conclusion, we reported here a rare case of HCA arising in a female FAP patient. Because of its rarity, the pathogenesis of HCAs in patients with FAP remains undefined. More cases should be examined to establish the genetic alterations associated with benign hepatic tumorigenesis in FAP patients. Results may shed light on a breakthrough for hepatocellular carcinogenesis\(^{20}\).

ACKNOWLEDGMENTS

The authors would like to thank Shinji Kageyama (present address Genetic Lab. Co., Ltd., Sapporo) for genetic sequencing and Kyoko Nagura for technical assistance on fluorescence in situ hybridization.

REFERENCES

1. Reddy KR, Schiff ER. Approach to a liver mass. Semin Liver Dis 1993; 13: 423-435
2. Choi BY, Nguyen MH. The diagnosis and management of benign hepatic tumors. J Clin Gastroenterol 2005; 39: 401-412
3. Labrune P, Tricche P, Duvallier J, Chevalier P, Odièvre M. Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature. J Pediatr Gastroenterol Nutr 1997; 24: 276-279
4. Noels JE, van Aalten SM, van der Windt DJ, Kok NF, de Man RA, Terkivatan T, Ijiermans JN. Management of hepatocellular adenoma during pregnancy. J Hepatol 2011; 54: 553-558
5. Okamura Y, Maeda A, Matsunaga K, Kanemoto H, Furukawa H, Sasaki K, Yamaguchi S, Usaka K. Hepatocellular adenoma in a male with familial adenomatous polyposis coli. J Hepatobiliary Pancreat Surg 2009; 16: 571-574
6. Lynch HT, Thorson AG, McComb RD, Franklin BA, Tinley ST, Lynch JF. Familial adenomatous polyposis and extracolonic cancer. Dig Dis Sci 2001; 46: 2325-2332
7. Belchetz LA, Berk T, Bapat BV, Cohen Z, Gallinger S. Changing causes of mortality in patients with familial adenomatous polyposis. Dis Colon Rectum 1996; 39: 384-387
8. Galle TS, Juel K, Bülow S. Causes of death in familial adenomatous polyposis. Scand J Gastroenterol 1999; 34: 808-812
9. Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis 2009; 4: 22
10. Bläker H, Sutter C, Kadmon M, Otto HF, Von Knebel-Doeberitz M, Gebert J, Helmkamp BM. Analysis of somatic APC mutations in rare extracellular tumors of patients with familial adenomatous polyposis coli. Genes Chromosomes Cancer 2004; 41: 93-98
11. Bala S, Wünsch PH, Ballhausen WG. Childhood hepatocellular adenoma in familial adenomatous polyposis: mutations in adenomatous polyposis coli gene and p53. Gastroenterology 1997; 112: 919-922
12. Jeannot E, Wendum D, Paye F, Mourra N, de Toma C, Fléjou JF, Zucman-Rossi J. Hepatocellular adenoma displaying a HNF1alpha inactivation in a patient with familial adenomatous polyposis coli. J Hepatol 2006; 45: 883-886
13. Nakao A, Sakagami K, Nakata Y, Komazawa K, Animoto T, Nakashima K, Isozaki H, Takakura N, Tanaka N. Multiple hepatic adenomas caused by long-term administration of androgenic steroids for aplastic anemia in association with familial adenomatous polyposis. J Gastroenterol 2000; 35: 557-562
14. Toiyama Y, Inoue Y, Yasuda H, Yoshiyama S, Araki T, Miki C, Kusunoki M. Hepatocellular adenoma containing hepatocellular carcinoma in a male patient with familial adenomatous polyposis coli: Report of a case. Surg Today 2011; 41: 1442-1446
15. Laumonier H, Bioulac-Sage P, Laurent C, Zucman-Rossi J, Balabaud C, Trillard H. Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology 2008; 48: 808-818
16. Tao H, Shinmura K, Yamada H, Maekawa M, Osawa S, Takayanagi Y, Okamoto K, Terai T, Mori H, Nakamura T, Sugimura H. Identification of 5 novel germline APC mutations and characterization of clinical phenotypes in Japanese patients with classical and attenuated familial adenomatous polyposis. BMC Res Notes 2010; 3: 305
17. Baum JK, Bookstein JJ, Holtz F, Klein EW. Possible association between benign hepatomas and oral contraceptives. Lancet 1973; 2: 926-929
18. Hughes LJ, Michels VV. Risk of hepatoblastoma in familial adenomatous polyposis. Am J Med Genet 1992; 43: 1023-1025
19. Kurahashi H, Takami K, Oue T, Kusafukuma T, Okada A, Tawa A, Okada S, Nishisho I. Biallelic inactivation of the APC gene in hepatoblastoma. Cancer Res 1995; 55: 5007-5011
20. Su LK, Abdalla EK, Law CH, Kohlmann W, Rashid A, Vau- they JN. Biallelic inactivation of the APC gene is associated with hepatocellular carcinoma in familial adenomatous polyposis coli. Cancer 2001; 92: 332-339
21. Bioulac-Sage P, Balabaud C, Zucman-Rossi J. Subtype classification of hepatocellular adenoma. Dig Surg 2010; 27: 39-45
22. Bioulac-Sage P, Laumonier H, Couchy G, Le Bail B, Sa Cunha A, Rullier A, Laurent C, Blanc JF, Cubel G, Trillard H, Zucman-Rossi J, Balabaud C, Saric J. Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience. Hepatology 2009; 50: 481-489
23. Bioulac-Sage P, Laumonier H, Laurent C, Zucman-Rossi J, Balabaud C. Hepatocellular adenoma: what is new in 2008. Hepatol Int 2008; 2: 316-321
24. Bioulac-Sage P, Rebouissou S, Thomas C, Blanc JF, Saric J, Sa Cunha A, Rullier A, Cubel G, Couchy G, Imbeaud S, Balabaud C, Zucman-Rossi J. Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 2007; 46: 740-748
25. Zucman-Rossi J, Jeannot E, Nhieu JT, Scoaze JC, Guettier C, Rebouissou S, Baqc Y, Leteurte E, Paradis V, Michalak S, Wendum D, Chiche L, Fabre M, Mellotte L, Laurent C, Partensky C, Castaing D, Zafraeni ES, Laurent-Puig P, Balabaud C, Bioulac-Sage P. Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 2006; 43: 515-524
26. Sasaki M, Yoneda N, Kitamura S, Sato Y, Nakamura Y. Characterization of hepatocellular adenoma based on the phenotypic classification: The Kanazawa experience. Hepatol Res 2011; 41: 982-988