The new diagnostic threshold of hemoglobin A1c was made based on evidence from cross-sectional studies, and no longitudinal study supports its validity. To examine whether hemoglobin A1c of 6.5% or higher defines a threshold for elevated risk of incident retinopathy, we analyzed longitudinal data of 19,897 Japanese adults who underwent a health checkup in 2006 and were followed up 3 years later. We used logistic regression models and restricted cubic spline models to examine the relationship between baseline hemoglobin A1c levels and the prevalence and the 3-year incidence of retinopathy. The restricted cubic spline model indicated a possible threshold for the risk of incident retinopathy at hemoglobin A1c levels of 6.0–7.0%. Logistic regression analysis found that individuals with hemoglobin A1c levels of 6.5–6.9% were at significantly higher risk of developing retinopathy at 3 years compared with those with hemoglobin A1c levels of 5.0–5.4% (adjusted odds ratio, 2.35 [95% CI 1.08–5.11]). Those with hemoglobin A1c levels between 5.5 and 6.4% exhibited no evidence of elevated risks. We did not observe a threshold in the analysis of prevalent retinopathy. Our longitudinal results support the validity of the new hemoglobin A1c threshold of 6.5% or higher for diagnosing diabetes. Diabetes 61:3280–3284, 2012

Diabetes is an increasingly important global public health concern (1). An estimated 285 million people, or 6.4% of the world’s population, lived with diabetes in 2010, and the number is expected to grow to 438 million by 2030 (1). In the U.S., 8.3% of children and adults are living with diabetes (2); likewise, in Japan, 7.8% of the population has diabetes (3).

Recently, the International Expert Committee suggested use of a hemoglobin A1c (HbA1c) level of 6.5% or higher as the threshold for diagnosing diabetes (4,5). This criterion was subsequently adopted by the American Diabetes Association, European Association for the Study of Diabetes, and World Health Organization (4,5). In making its decision, the expert panel was informed by evidence from several cross-sectional studies that showed the association between HbA1c level and the prevalence of retinopathy (4–12). The outcome of retinopathy has been historically accepted as the best criterion for comparing glycemic measures among several complications of diabetes (13,5), because it is a specific complication of diabetes that can be measured objectively (13,14). Few longitudinal studies have examined the association between HbA1c levels and the risk of retinopathy in the general population, and these studies do not support the validity of this new diagnostic threshold (6,15–17). Many of the previous studies did not adjust for independent risk factors and confounders for retinopathy, such as age and hypertension.

To examine the validity of the new HbA1c thresholds, we tested the hypothesis that HbA1c level of 6.5% or higher would define a threshold for increased 3-year incidence of retinopathy in a large cohort of Japanese adults.
RESULTS

Study participants. Table 1 shows the baseline characteristics of the study population overall and according to HbA1c levels. Approximately 49% were men. The mean age was 51.0 years, the mean HbA1c was 5.6%, and the mean (±SD) follow-up period was 3.0 ± 0.29 years. Participants with higher HbA1c levels were more likely to be older, to be men, to smoke, to take medication for hypertension, and to have several clinical risk factors, including elevated blood pressure, higher BMI, lower HDL cholesterol, higher triglyceride, and a family history of diabetes.

Prevalence of retinopathy. Among the 20,433 participants, the crude prevalence of retinopathy was 1.2% (245/20,433). The adjusted ORs and 95% CIs for prevalent retinopathy are shown in Table 2. After initial adjustment for age and sex (model 1a), the prevalence of retinopathy was significantly higher at HbA1c levels ≥6.5% than in the reference category. After further adjustments (model 2a), this estimate was attenuated, and only HbA1c levels ≥7.0% achieved statistical significance.

Cumulative incidence of retinopathy. The crude cumulative incidence of retinopathy at 3 years was 0.85%...
(170/19,897). After initial adjustment for age and sex, there was no significant association between HbA1c value and the incidence of retinopathy at HbA1c <6.5% compared with the reference category, however, HbA1c levels of 6.5–6.9% were associated with significantly higher risk of developing retinopathy at 3 years (OR 2.35 [95% CI 1.08–5.11]; P = 0.031) (Table 3). The risk remained significantly higher after further adjusting for the confounders and other independent risk factors for retinopathy (model 2b). Our results did not alter substantially after the exclusion of those with diagnosis of diabetes at baseline in model 3b.

In our analysis to evaluate whether the relationship between baseline HbA1c levels and prevalence of retinopathy is nonlinear, we found that the nonlinear relationship was significant (P for curve = 0.08) (Fig. 1). For the outcome of incident retinopathy, however, the nonlinear relationship was statistically significant (P = 0.001), suggesting a possible threshold around HbA1c levels between 6.0 and 7.0%. We observed a dose-response relationship between higher HbA1c levels and increased risk of incident retinopathy at HbA1c ≥6.5%. The restricted cubic spline analysis for the non-diabetic subpopulation yielded similar findings (data not shown).

DISCUSSION

We found that Japanese adults with HbA1c levels of 6.5–6.9% were at significantly higher risk of developing retinopathy at 3 years than were those with HbA1c levels of 5.0–5.4%, whereas the risks did not increase among those with HbA1c levels <6.5%. To the best of our knowledge, this is the first longitudinal study supporting the validity of the new diagnostic threshold of HbA1c recommended by the International Expert Committee (5,11). In contrast, we did not observe an explicit threshold effect of HbA1c in the analyses of the prevalent retinopathy.

Although there have been several longitudinal studies examining the association between HbA1c levels and the risk of retinopathy, most of those studies were limited to samples treated for diabetes (29,34–38). There have been only a few small longitudinal studies of general non-diabetic populations (6,15–17). Possibly because of small sample sizes, results from these previous studies did not support the current HbA1c threshold for diagnosing diabetes (6,15–17). In the Pima Indian study (N = 927), investigators found that the risk of incident retinopathy increased only at HbA1c levels of 9.1% (6). Only HbA1c data were available at that time (HbA1c measurements were unavailable), and no adjustments were made for hypertension and other independent risk factors for retinopathy in that study (6). The longitudinal study (N = 233) by van Leiden et al. (15) found that the risk of developing retinopathy was significantly higher in the highest tertile of HbA1c (HbA1c 5.8–13.1%) relative to the lowest tertile (HbA1c 4.3–5.2%). Because of small sample size, these investigators collapsed HbA1c levels from 5.8 to 13.1% into a single category. Selvin et al. (16) examined the risk of retinopathy among participants from the Atherosclerosis Risk in Communities study. The overall sample size of this study was large (N = 11,357), but repeated retinal examinations were performed in only 767 people. These investigators were unable to detect a statistically significant association with HbA1c value.

![Table 2](https://example.com/table2.png)

Table 2

Adjusted ORs and 95% CIs for the prevalence of retinopathy across different baseline HbA1c levels

HbA1c (%)	N	No. of cases (%)	OR	95% CI	P	Model 1a*	N	No. of cases (%)	OR	95% CI	P	Model 2a†	
<5.0	1,719	10 (0.6)	1.17	0.60–2.29	0.65	1.08	0.55–2.12	0.83	1,692	10 (0.6)	1.20	0.61–2.36	0.60
5.0–5.4	9,300	67 (0.7)	1.00	Ref.	Ref.	1.00	Ref.	Ref.	9,170	65 (0.7)	1.00	Ref.	Ref.
5.5–5.9	6,376	76 (1.2)	1.14	0.81–1.59	0.46	1.16	0.82–1.63	0.40	6,188	72 (1.2)	1.12	0.79–1.58	0.54
6.0–6.4	2,046	26 (1.3)	0.91	0.57–1.46	0.71	0.88	0.54–1.42	0.59	1,893	21 (1.1)	0.80	0.48–1.34	0.39
6.5–6.9	416	17 (4.1)	2.63	1.50–4.59	0.0007	1.81	0.98–3.37	0.060	268	5 (1.9)	1.18	0.46–3.03	0.73
≥7.0	576	49 (8.5)	5.69	3.82–8.47	<0.0001	3.02	1.71–5.34	<0.0001	130	5 (3.9)	3.00	1.14–7.84	0.026

Statistically significant results at P < 0.05 are indicated in boldface. *Adjusted for age and sex. †Adjusted for age, sex, hypertension, diagnosis of diabetes, HDL and LDL cholesterol, log-transformed triglyceride, BMI, alcohol consumption, smoking status, and family history of diabetes. ‡Adjusted for all the variables in model 2a, with the exception of the diagnosis of diabetes.
significant threshold in the association of HbA1c with the incidence of retinopathy, possibly because of the lack of power. Recently, Massin et al. (17) studied 700 participants from the Data from an Epidemiological Study on the Insulin Resistance Syndrome study, in which participants were followed up for 10 years, and proposed an HbA1c threshold of 6.0%. Because retinopathy was not evaluated at baseline in this study, however, they were not able to examine the incidence of retinopathy (17).

Our study has several limitations. First, the retinal images were graded in single-field photographs per eye in this study. Multiple photographic fields per eye would have improved the sensitivity of the funduscopic examinations. Second, our study sample was composed exclusively of native Japanese, so whether our results generalize to other populations is unclear. It is noteworthy that in the DETECT-2 project, which pooled studies from the U.S., Australia, India, Japan, and Singapore, they found no racial difference in optimal HbA1c threshold (12). Third, we did not take into account the possible effect of hemoglobinopathies on HbA1c values. However, the prevalence of hemoglobinopathies in Japan is reported to be as low as 0.04% (39) and is therefore likely to have little impact on our overall findings. Finally, the detection of an inflection point in the relation between HbA1c and retinopathy may not in itself establish the optimal threshold for clinicians to use in the diagnosis and treatment of diabetes. The optimal threshold for any patient is the level at which the benefits of diagnosis and treatment exceed harms for that patient. If there were only benefits and no harm in diagnosing and treating diabetes, the inflection point would represent the level of HbA1c. However, when the benefits of diagnosis and treatment of diabetes are small, the optimal diagnostic threshold may be higher than the inflection point we observed.

Our longitudinal study is the first to date to suggest a threshold of risk for incident retinopathy at a 6.5% HbA1c level. These findings support the validity of the new diagnostic HbA1c threshold for diabetes recently adopted by the American Diabetes Association, the European Association for the Study of Diabetes, and the World Health Organization (5,12). Additional longitudinal studies are needed to validate these findings in other populations.

ACKNOWLEDGMENTS
Y.T. is supported by Shigeaki Hinohara, MD, Primary Care Fellowship at Beth Israel Deaconess Medical Center (Boston, MA), Joint Japan/World Bank Graduate Scholarship Program, and St. Luke’s Life Science Institute (Tokyo, Japan). C.C.W. is supported by a midcareer mentorship award from the National Institutes of Health (Grant K24-DK-087932). J.B.M. is supported by National Institute for Diabetes and Digestive and Kidney Diseases (Grant K24-DK-080140). R.B.D. is supported by Harvard Catalyst, The Harvard Clinical and Translational Science Center (NIH Award UL1-RR-025758 and financial contributions from Harvard University and its affiliated academic health care centers).

No potential conflicts of interest relevant to this article were reported.

Y.T., O.T., T.F., W.C.T., and C.C.W. developed the study concept, developed the design, and interpreted the data. Y.T., R.B.D., and F.I. conducted statistical analyses. Y.T., J.B.M., W.C.T., and C.C.W. drafted the manuscript. All the authors revised the manuscript critically for important intellectual content and approved the final manuscript. Y.T. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Parts of this study were presented as an oral presentation at the 34th Annual Meeting of the Society of General Internal Medicine, Phoenix, Arizona, 4–7 May 2011. The authors thank Donald Halstead, Harvard School of Public Health, for help with preparing the manuscript. The authors also thank Toshiko Kawakita and Sachiko Ohde, St. Luke’s International Hospital, Tokyo, Japan, for collecting the data.

REFERENCES
1. International Diabetes Foundation. IDF Diabetes Atlas. 4th ed. Brussels, International Diabetes Federation, 2010
2. American Diabetes Association. Diabetes Statistics [Internet]. Alexandria, VA, American Diabetes Association. Available from http://www.diabetes.org/diabetes-basics/diabetes-statistics/. Accessed 15 April 2011
3. Health Service Bureau. Japanese Ministry of Health Labour and Welfare: The National Health and Nutrition Survey in Japan. Tokyo, Japanese Ministry of Health Labour and Welfare, 2007
NEW HbA1c THRESHOLD AND 3-YEAR INCIDENCE OF RETINOPATHY

4. American Diabetes Association. Standards of medical care in diabetes—2010 [erratum in Diabetes Care 2010;33:692]. Diabetes Care 2010;33(Suppl. 1):S11–S61

5. International Expert Committee. International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327–1334

6. McCance DR, Hanson RL, Charles MA, et al. Comparison of tests for glycated haemoglobin and fasting and two hour plasma glucose concentrations as diagnostic methods for diabetes. BMJ 1994;308:1323–1328

7. Engelgau MM, Thompson TJ, Herman WH, et al. Comparison of fasting and 2-hour glucose and HbA1c levels for diagnosing diabetes. Diagnostic criteria and performance revisited. Diabetes Care 1997;20:785–791

8. Wong TY, Cheung N, Tay WT, et al. Prevalence and risk factors for diabetic retinopathy: the Singapore Malay Eye Study. Ophthalmology 2008;115:1869–1875

9. Wong TY, Liew G, Tapp RJ, et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes; three population-based cross-sectional studies. Lancet 2008;371:793–794

10. Sahanayagam C, Liew G, Tai ES, et al. Relationship between glycated haemoglobin and microvascular complications: is there a natural cut-off point for the diagnosis of diabetes? Diabetologia 2009;52:1279–1289

11. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010;33(Suppl. 1):S62–S69

12. Colagiuri S, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K; DETECT-2 Collaboration Writing Group. Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care 2011;34:145–150

13. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997;20:1183–1197

14. McCance DR, Hanson RL, Pettitt DJ, Bennett PH, Hadden DR, Knower WC, Diagnosing diabetes mellitus—do we need new criteria? Diabetologia 1997;40:247–255

15. van Leiden HA, Dekker JM, Moll AC, et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch Ophthalmol 2003;121:245–251

16. Selvin E, Ning Y, Steffes MW, et al. Glycated hemoglobin and the risk of kidney disease and retinopathy in adults with and without diabetes. Diabetes 2011;60:298–305

17. Massin P, Lange C, Tichet J, et al.; DESIR (Data From an Epidemiological Study on the Insulin Resistance Syndrome) Study Group. Hemoglobin A1c and fasting plasma glucose levels as predictors of retinopathy at 10 years: the French DESIR study. Arch Ophthalmol 2011;129:188–195

18. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995;18:258–268

19. Fukuda M. Classification and treatment of diabetic retinopathy. Diabetes Res Clin Pract 1994;29(Suppl. 1):S171–S176

20. Wong J, Moloney LA, Constantino M, Twigg SM, Yue DK. Timing is everything: age of onset influences long-term retinopathy risk in type 2 diabetes, independent of traditional risk factors. Diabetes Care 2008;31:1985–1990

21. Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 2000;321:412–419

22. Chaturvedi N, Sjoelige AK, Stephenson JM, et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet 1998;351:28–31

23. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effect of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE sub-study. See http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(00)12323-7/fulltext [erratum in Lancet 2000;356:560]. Lancet 2000;355:250–259

24. Chaturvedi N, Sjoelige AK, Porta M, et al.; EURODIAB Prospective Complications Study. Markers of insulin resistance are strong risk factors for retinopathy incidence in type 1 diabetes. Diabetes Care 2001;24:284–289

25. Porta M, Sjoelige AK, Chaturvedi N, et al.; EURODIAB Prospective Complications Study Group. Risk factors for progression to proliferative diabetic retinopathy in the EURODIAB Prospective Complications Study. Diabetologia 2001;44:2203–2209

26. Moss SE, Klein R, Klein BE. Ten-year incidence of visual loss in a diabetic population. Ophthalmology 1994;101:1061–1070

27. Chew YE, Klein ML, Ferris FL 3rd, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 1996;114:1079–1084

28. Keech AC, Mitchell P, Summanen PA, et al.; FIELD study investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007;370:1687–1697

29. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 2001;44:156–163

30. Moss SE, Klein R, Klein BE. Association of cigarette smoking with diabetic retinopathy. Diabetes Care 1991;14:119–126

31. Moss SE, Klein R, Klein BE. The association of alcohol consumption with the incidence and progression of diabetic retinopathy. Ophthalmology 1994;101:1962–1968

32. Harrell FE Jr, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 1988;80:1198–1202

33. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989;8:551–561

34. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. Ophthalmology 1988;95:1070–1074

35. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989;8:551–561

36. Chaturvedi N, Sjoelige AK, Porta M, et al.; EURODIAB Prospective Complications Study. Markers of insulin resistance are strong risk factors for retinopathy incidence in type 1 diabetes. Diabetes Care 2001;24:284–289

37. Porta M, Sjoelige AK, Chaturvedi N, et al.; EURODIAB Prospective Complications Study Group. Risk factors for progression to proliferative diabetic retinopathy in the EURODIAB Prospective Complications Study. Diabetologia 2001;44:2203–2209

38. Moss SE, Klein R, Klein BE. Ten-year incidence of visual loss in a diabetic population. Ophthalmology 1994;101:1061–1070

39. Chew YE, Klein ML, Ferris FL 3rd, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 1996;114:1079–1084

40. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989;8:551–561

41. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. Ophthalmology 1988;95:1070–1074

42. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989;8:551–561

43. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 2008;115:1859–1868

44. Klein R, Lee KE, Gangnon RE, Klein BE. The 25-year incidence of visual impairment in type 1 diabetes mellitus the Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology 2010;117:63–70

45. Harano T. Hemoglobinopathy in Japan: detection and analysis (Japanese). Rinsho Byori 1998;47:215–223