CONCAVITY AND CONVEXITY OF THE GROUND STATE ENERGY

HERBERT KOCH

Abstract. This note proves convexity resp. concavity of the ground state energy of one dimensional Schrödinger operators as a function of an endpoint of the interval for convex resp. concave potentials.

1. Main result and context

Let $I = (a, b) \subset \mathbb{R}$ an open interval, $V \in C(a, b)$ be a convex or concave potential with $\liminf_{t \to -\infty} V = \infty$ if $a = -\infty$. Consider for $t \in (a, b]$ the energy

$$E_t(u) = \int_a^t u_x^2 + Vu^2 \, dx.$$

There is a unique positive minimizer $u \in H_0^1(a, t)$ under the constraint $\|u\|_{L^2(a, t)} = 1$. It satisfies the Euler-Lagrange equation

$$-u_{xx} + Vu = \lambda(t) u$$

on (a, t) with boundary conditions $u(a) = u(t) = 0$ (and obvious modifications if $a = -\infty$). Here $\lambda(t)$ is the Lagrangian multiplier, and $\lambda(t) = E_t(u)$. The map $t \to \lambda(t)$ is the main object of interest.

Theorem 1. The map $(a, b] \ni t \to \lambda(t)$ is twice differentiable, strictly decreasing and $\lim_{t \to a} \lambda(t) = \infty$. The map $t \to \lambda(t)$ is convex if V is convex, strictly convex if V is convex and not affine, concave if V is concave and strictly concave if V is concave and not affine.

The convexity part follows from a much stronger celebrated result by Brascamp and Lieb [3]. It is related to a weaker statement in Friedland and Hayman [5] with a computer based proof there. These statements found considerable interest and use in the context of monotonicity formulas beginning with the seminal work of Alt, Caffarelli and Friedman [1]. Caffarelli and Kenig [4] prove a related monotonicity formula using the results by Brascamp-Lieb [3]. They attribute an analytic proof to Beckner, Kenig and Pipher [2] which the author has never seen. To the best knowledge of the author the the concavity statements are new.

This note has its origin in a seminar of free boundary problems at Bonn. It is a pleasure to acknowledge that it would not exist without my coorganizer Wenhui Shi.

2. A short elementary proof

Proof. Monotonicity and $\lim_{t \to a} \lambda(t) = \infty$ are an immediate consequence of the definition. We consider the equation (1) on the interval (a, t) and denote by $u(x) = u(x, t)$ the unique L^2 normalized non negative ground state with ground
state energy $\lambda = \lambda(t)$. Differentiability with respect to x and t is an elementary property of ordinary differential equations. We argue at a formal level and do not check existence of integrals resp. derivatives below, which follows from standard arguments. We differentiate the equation with respect to t, denote the derivative of with respect to t by \dot{u} and obtain
\begin{equation}
-\frac{d^2 \dot{u}}{dx^2} + V \dot{u} - \lambda \dot{u} = \dot{\lambda} u \tag{2}
\end{equation}
with boundary conditions $\dot{u}(a) = 0$ and $\dot{u}(t) = -u_x(t)$. We multiply (2) by u and integrate. Since $\|u\|_{L^2} = 1$ we obtain
\begin{equation}
\dot{\lambda} = \dot{u}(t)u_x(t) = -u_x^2(t) \tag{3}
\end{equation}
Due to the normalization \dot{u} is orthogonal to u, i.e. $\int_a^t u \dot{u} \, dx = 0$. The quotient $w = \frac{\dot{u}}{u}$ satisfies
\begin{equation}
\frac{u_x}{u}w_{xx} + \frac{u_x^2}{u^2}w - \frac{u_x^2}{u^2}w = \dot{\lambda} < 0.
\end{equation}
In particular w has no non positive local minimum. Since $w \to \infty$ as $x \to t$ there can be at most one sign change. Since \dot{u} is orthogonal to u there is exactly one sign change of \dot{u}, lets say at $t_0 < t$. We multiplying (1) by u_x and integrate to get
\begin{equation}
\dot{\lambda} = -u_x(t)^2 = \frac{1}{2} \int_a^t V' u^2 \, dx.
\end{equation}
Using the orthogonality $\int u \dot{u} \, dx = 0$ we obtain an partly implicit formula for the second derivative of λ with respect to t,
\begin{equation}
\ddot{\lambda} = \int_a^t V' u \, dx = \int_a^t (V'(x) - V'(t_0))wu^2 \, dx.
\end{equation}
Thus $t \to \lambda$ is convex if V is convex, it satisfies $\ddot{\lambda} > 0$ if V is convex and not affine (i.e. V' is not constant), it is concave if V is concave and $\ddot{\lambda} < 0$ if V is concave and not affine.

\begin{thebibliography}{9}
\bibitem{1} Hans Wilhelm Alt, Luis A. Caffarelli, and Avner Friedman. Variational problems with two phases and their free boundaries. \textit{Trans. Amer. Math. Soc.}, 282(2):431–461, 1984.
\bibitem{2} W. Beckner, C.E. Kenig, and J. Pipher. A convexity property for gaussian measures. 1998.
\bibitem{3} Herm Jan Brascamp and Elliott H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. \textit{J. Functional Analysis}, 22(4):366–389, 1976.
\bibitem{4} Luis A. Caffarelli and Carlos E. Kenig. Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. \textit{Amer. J. Math.}, 120(2):391–439, 1998.
\bibitem{5} S. Friedland and W. K. Hayman. Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. \textit{Comment. Math. Helv.}, 51(2):133–161, 1976.
\end{thebibliography}