ASSOUAD-NAGATA DIMENSION OF WREATH PRODUCTS OF GROUPS

N. BRODSKIY, J. DYDAK, AND U. LANG

Abstract. Consider the wreath product $H \wr G$, where $H \neq 1$ is finite and G is finitely generated. We show that the Assouad-Nagata dimension $\dim_{AN}(H \wr G)$ of $H \wr G$ depends on the growth of G as follows:

If the growth of G is not bounded by a linear function, then $\dim_{AN}(H \wr G) = \infty$, otherwise $\dim_{AN}(H \wr G) = \dim_{AN}(G) \leq 1$.
1. Introduction

P. Nowak [18] proved that the Assouad-Nagata dimension of some wreath products $H \wr G$ is infinite, where H is finite and G is a finitely generated amenable group whose Folner function grows sufficiently fast and satisfies some other conditions suitable for applying Erschler’s result [12]. That result says the Folner function $F(H \wr G)$ of $H \wr G$ is comparable to $F(H)^{F(G)}$ and the passage from it to Assouad-Nagata dimension of $H \wr G$ is fairly complicated as it includes Property A. Thus, results of [18] apply only to amenable groups G and do not apply neither to lamplighter groups (as the Folner function of \mathbb{Z} is linear) nor to wreath products with free non-Abelian groups (as those are not amenable).

In this paper we show that the Assouad-Nagata dimension of $H \wr G$ completely depends on the linearity of the growth of G. In particular, the lamplighter groups are not finitely presented and are of Assouad-Nagata dimension 1 which solves positively the following question of [10]:

Question 1.1. Is there a finitely generated group of Assouad-Nagata dimension 1 that is not finitely presented?

2. Assouad-Nagata dimension

Let X be a metric space and $n \geq 0$. An *n-dimensional control function of X* is a function $D^n_X : \mathbb{R}_+ \to \mathbb{R}_+ \cup \infty$ with the following property:

For any $r > 0$ there is a cover $\{X_0, \ldots, X_n\}$ of X whose Lebesque number is at least r (that means every open r-ball $B(x, r)$ is contained in some X_i) and every r-component of X_i is of diameter at most $D^n_X (r)$. Two points x and y belong to the same r-component of X_i if there is a sequence $x_0 = x, x_1, \ldots, x_k = y$ in X_i such that $\text{dist}(x_j, x_{j+1}) < r$ (such a sequence will be called an r-path).
The \emph{asymptotic dimension} $\asdim(X)$ is the smallest integer such that X has an n-dimensional control function whose values are finite.

The \emph{Assouad-Nagata dimension} $\dim_{AN}(X)$ of a metric space X is the smallest integer n such that X has an n-dimensional control function that is a dilation ($D^n_X(r) = C \cdot r$ for some $C > 0$).

The \emph{asymptotic Assouad-Nagata dimension} $\asdim_{AN}(X)$ of a metric space X is the smallest integer n such that X has an n-dimensional control function that is linear ($D^n_X(r) = C \cdot r + C$ for some $C > 0$).

In case of metrically discrete spaces X (that means there is $\epsilon > 0$ such that every two distinct points have the distance at least ϵ) $\asdim_{AN}(X) = \dim_{AN}(X)$ (see [4]). In particular, in case of finitely generated groups we can talk about Assouad-Nagata dimension instead of asymptotic Assouad-Nagata dimension.

A countable group G is called \emph{locally finite} if every finitely generated subgroup of G is finite. A group G has asymptotic dimension 0 if and only if it is locally finite [20].

Notice that $\dim_{AN}(X) = 0$ if there is $C > 0$ such that for every r-path the distance between its end-points is less than $C \cdot r$. In case of groups one has the following useful criterion of being 0-dimensional:

Proposition 2.1. Let (G, d_G) be a group equipped with a proper left-invariant metric d_G (that means bounded sets are finite). If G is locally finite, then the following conditions are equivalent:

a. $\dim_{AN}(G, d_G) = 0$.

b. There is a constant $c > 0$ such that for each $r > 0$ the subgroup of G generated by $B(1, r)$ is contained in $B(1, c \cdot r)$.

Proof. a) \implies b). Consider a constant $K > 0$ such that for each $r > 0$ all r-components of G have diameter less than $K \cdot r$. Notice that if $g \in G$ belongs to r-component of 1 and $h \in B(1, r)$, then $d_G(g, gh) = d_G(1, h) < r$, so gh lies in the r-component of 1. Therefore the subgroup generated by $B(1, r)$ is contained in $B(1, K \cdot r)$.

b) \implies a). Let G_r be the subgroup of G generated by $B(1, r)$. Consider two different left cosets $y \cdot G_r$ and $z \cdot G_r$ of G_r in G. If $d_G(yg, zh) < r$ for some $g, h \in G_r$, then $f = h^{-1}z^{-1}yg \in B(1, r) \subset G_r$, so $y = z(hfg^{-1})$, a contradiction. That means each r-component of G is contained in a left coset of G_r and its diameter is less than $2cr$, i.e. $\dim_{AN}(G, d_G) = 0$.

Let us generalize r-paths as follows:

By an r-\emph{cube} in a metric space X we mean a function $f : \{0, 1, \ldots, k\}^n \to X$ with the property that the distance between $f(x)$ and $f(x + e_i)$ is less than r for all $x \in \{0, 1, \ldots, k\}^n$ such that $x + e_i \in \{0, 1, \ldots, k\}^n$. Here e_i belongs to the standard basis of \mathbb{R}^n.

A sufficient condition for $\dim_A(X)$ being positive is the existence, for every $C > 0$, of an r-path joining points of distance at least $C \cdot r$. The purpose of the remainder of this section is to find a similar sufficient condition for $\dim_A(X) \geq n$.

Lemma 2.2. Consider the set $X = \{0,1,\ldots,k\}^n$ equipped with the l_1-metric. Suppose $X = X_1 \cup \ldots \cup X_n$. If the open $(n+1)$-ball of every point of X is contained in some X_i, then a 2-component of some X_i contains two points whose i-coordinates differ by k.

Proof. Let us proceed by contradiction and assume all 2-components of each X_i do not contain points whose i-coordinates differ by k. Create the cover A_i, $1 \leq i \leq n$, of the solid cube $[0,k]^n$ by adding unit cubes to A_i whenever all vertices of it are contained in X_i. Given $i \in \{1,\ldots,n\}$ consider the two faces L_i and R_i of $[0,k]^n$ consisting of points whose i-th coordinate is 0 and k respectively. Let B_i be the complement of the $\frac{1}{4}$-neighborhood of $A_i \cup L_i \cup R_i$. Notice that B_i separates between L_i and R_i. Indeed, if $L_i \cup R_i$ belongs to the same component of the $\frac{1}{4}$-neighborhood of $A_i \cup L_i \cup R_i$, then one can find a $\frac{1}{2}$-path in A_i between points in X_i whose i-coordinates differ by k. Picking points in X_i in the same unit cubes as vertices of the path one gets a 2-path in X_i between points in X_i whose i-th coordinates differ by k.

Now we get a contradiction as $\bigcap_{i=1}^n B_i = \emptyset$ in violation of the well-known result in dimension theory about separation (see Theorem 1.8.1 in [13]).

Corollary 2.3. Suppose X is a metric space with an $(n-1)$-dimensional control function $D_X^{n-1} : \mathbb{R}_+ \to \mathbb{R}_+ \cup \infty$. For any r-cube $f : \{0,1,\ldots,k\}^n \to X$ there exist two points a and b in $\{0,1,\ldots,k\}^n$ whose i-th coordinates differ by k for some i and $\text{dist}(f(a), f(b)) \leq D_X^{n-1}(n \cdot r)$.

Proof. Consider a cover $X = X_1 \cup \ldots \cup X_n$ of X of Lebesque number at least $n \cdot r$ such that $n \cdot r$-components of each X_i are of diameter at most $D_X^{n-1}(n \cdot r)$. The cover $\{0,1,\ldots,k\}^n = f^{-1}(X_1) \cup \ldots \cup f^{-1}(X_n)$ has the property that the open $(n+1)$-ball of every point is contained in some $f^{-1}(X_i)$, so by Corollary 2.2 a 2-component (in the l_1-metric) of some $f^{-1}(X_i)$ contains two points a and b whose i-coordinates differ by k. Therefore $f(a)$ and $f(b)$ belong to the same r-component of X_i and $\text{dist}(f(a), f(b)) \leq D_X^{n-1}(n \cdot r)$. We need an upper bound on the size of r-cubes f in terms of dimension control functions and the Lipschitz constant of f^{-1}. One should
view the next result as a discrete analog of the fact that one cannot embed I^n into an $(n - 1)$-dimensional topological space.

Corollary 2.4. Suppose X is a metric space with an $(n - 1)$-dimensional control function $D_X^{n-1} : \mathbb{R}_+ \to \mathbb{R}_+ \cup \infty$. If $f : \{0, 1, \ldots, k\}^n \to X$ is an r-cube, then $k \leq D_X^{n-1}(n \cdot r) \cdot \text{Lip}(f^{-1})$.

Proof. By [2.3] there is an index $i \leq n$ and points a and b whose i-coordinates differ by k such that $\text{dist}(f(a), f(b)) \leq D_X^{n-1}(n \cdot r)$. Since $k \leq \text{dist}(a, b) \leq \text{Lip}(f^{-1}) \cdot \text{dist}(f(a), f(b)) \leq D_X^{n-1}(n \cdot r) \cdot \text{Lip}(f^{-1})$, we are done. \hfill \blacksquare

3. Wreath Products

Let A and B be groups. Define the action of B on the direct product A^B (functions have finite support) by

$$bf(\gamma) := f(b^{-1} \gamma),$$

for any $f \in A^B$ and $\gamma \in B$. The **wreath product** of A and B, denoted $A \wr B$, is the semidirect product $A^B \rtimes B$ of groups A^B and B. That means it consists of ordered pairs $(f, b) \in A^B \times B$ and $(f_1, b_1) \cdot (f_2, b_2) = (f_1(b_1f_2), b_1b_2)$.

We will identify $(1, b)$ with $b \in B$ and $(f_a, 1)$ with $a \in A$, where f_a is the function sending $1 \in B$ to a and $B \setminus \{1\}$ to 1. This way both A and B are subgroups of $A \wr B$ and it is generated by B and elements of the form $b \cdot a \cdot b^{-1}$. That way the union of generating sets of A and B generates $A \wr B$.

The *lamplighter group* L_n is the wreath product $\mathbb{Z}/n \wr \mathbb{Z}$ of \mathbb{Z}/n and \mathbb{Z}.

If $g \in G$ and $a \in H \setminus \{1\}$, then $g \cdot a \cdot g^{-1} \in K$ will be called the a-bulb indexed by g or the (g, a)-bulb. A bulb is a (g, a)-bulb for some $a \in H$ and some $g \in G$.

Consider the wreath product $H \wr G$, where H is finite and G is finitely generated. Let K be the kernel of $H \wr G \to G$. K is a locally finite group (the direct product of $|G|$ copies of H). In case H is finite we choose as a set of generators of $H \wr G$ the union of $H \setminus \{1\}$ and a set of generators of G.

Lemma 3.1. Suppose $n > 1$. Any product of bulbs indexed by mutually different elements $g_i \in G$, $i \in \{1, \ldots, n\}$, has length at least n.

Proof. Consider $x = (g_1a_1g_1^{-1}) \cdot \ldots \cdot (g_na_ng_n^{-1}) \in K$. If its length is smaller than n, then $x = x_1 \cdot b_1 \cdot x_2 \cdot b_2 \cdot \ldots \cdot x_k \cdot b_k \cdot x_{k+1}$, where $k < n$ and $b_i \in H$, $x_i \in G$ for all i. We can rewrite x as $(y_1 \cdot b_1 \cdot y_1^{-1}) \cdot (y_2 \cdot b_2 \cdot y_2^{-1}) \cdot \ldots \cdot (y_k \cdot b_k \cdot y_k^{-1}) \cdot y$, where $y_1 = x_1$. Since $x \in K$, $y = 1$.

Now we arrive at a contradiction by looking at projections of K onto its summands. □

Lemma 3.2. Suppose $r > 1$. Any element of K of length less than r is a product of bulbs indexed by elements of G of length less than r.

Proof. Any element of K of length less than r has $x_1a_1x_2a_2\ldots x_ka_kz$ as a minimal representation, so it can be rewritten as

$$(x_1a_1x_1^{-1})(x_1x_2a_2x_2^{-1}x_1^{-1})\ldots(x_1\ldots x_ka_kx_k^{-1}\ldots x_1^{-1}).$$

Therefore the bulbs involved are indexed by elements of G of length less than r. □

In case of the lamplighter group L_2 there is a precise calculation of length of its elements in [6]. We need a generalization of those calculations.

Lemma 3.3. Let H be finite. Suppose the subgroup \mathbb{Z} generated by $t \in G$ is of finite index n and there are generators $\{t, g_1, \ldots, g_n\}$ of G such that every element g of G can be expressed as $g_i \cdot t^{e(g)}$ for some i.

1. Every element of K can be expressed as a product of (h_i, a_i)-bulbs, $i = 1, \ldots, k$, such that $h_i \neq h_j$ for $i \neq j$.
2. The length of such product is at most $n(k + 2 + 4 \max\{|e(h_i)|\})$.

Proof. Observe the product of the (g, a)-bulb and the (g, b)-bulb is the $(g, a \cdot b)$-bulb, so every product of bulbs can be represented as a product of (h_i, a_i)-bulbs, $i = 1, \ldots, k$, such that $h_i \neq h_j$ for $i \neq j$. We will divide those bulbs in groups determined by $h_i \cdot t^{-e(h_i)}$. Since there are at most n groups, it suffices to show that if $h_i \cdot t^{-e(h_i)} = g$ for all i, then the length of the product x of (h_i, a_i)-bulbs is at most $k + 2 + 4 \max\{|e(h_i)|\}$. We may order h_i so that the function $i \to e(h_i)$ is strictly increasing. Now,

$$g^{-1} \cdot x \cdot g = \prod_{i=1}^{k} t^{e(h_i)} \cdot a_i \cdot t^{-e(h_i)} = t^{e(h_1)} \cdot a_1 \cdot t^{-e(h_1) + e(h_2)} \cdot a_2 \cdot \ldots \cdot a_k \cdot t^{-e(h_k)}$$

and its length is at most $k + |e(h_1)| + e(h_k) - e(h_1) + |e(h_k)| \leq k + 4 \max\{|e(h_i)|\}$. Therefore the length of x is at most $k + 2 + 4 \max\{|e(h_i)|\}$. □

4. Dimension control functions of wreath products

Recall that the *growth* γ of G is the function counting the number of points in the open ball $B(1, r)$ of G for all $r > 0$. Notice that γ being bounded by a linear function is independent on the choice of generators of G.
The next result relates the growth function of G to dimension control functions of the kernel of the projection $H \wr G \to G$.

Theorem 4.1. Suppose G and H are finitely generated and K is the kernel of the projection $H \wr G \to G$ equipped with the metric induced from $H \wr G$. If γ is the growth function of G and D^{n-1}_K is an $(n-1)$-dimensional control function of K, then the integer part of $\frac{\gamma(r)}{n}$ is at most $D^{n-1}_K(3nr)$.

Proof. Given $k \geq 1$ we will construct a $3r$-cube $f: \{0,k\}^n \to K$ similarly to the way paths in the Cayley graph of K are constructed. There, it suffices to label the beginning vertex and all the edges and that induces labeling of all the vertices. In case of our $3r$-cube we label the origin by $1 \in K$ and each edge from x to $x + e_i$, e_i being an element of the standard basis of \mathbb{R}^n, will be labeled by $x(j,i)$, where j is the i-th coordinate of x. It remains to choose $x(j,i)$, $1 \leq i \leq n$ and $0 \leq j \leq k-1$. Given $r > 0$ consider mutually different elements $g(j,i)$, $1 \leq i \leq n$ and $0 \leq j \leq k-1$ of G whose length is smaller than r, where k is the integer part of $\frac{\gamma(r)}{n}$. Pick $u \in H \setminus \{1\}$ and put $x(j,i) = g(j,i) \cdot u \cdot g(j,i)^{-1}$. By 3.1 one has $\text{Lip}(f^{-1}) \leq 1$, so $k \leq D^{n-1}_K(3nr)$ by 2.4.

If H is finite, then the kernel K of the projection $H \wr G \to G$ is locally finite and it has a 0-dimensional control function D^0_K attaining finite values (K is equipped with the metric induced from $H \wr G$). Let us relate D^0_K to the growth of G.

Theorem 4.2. Suppose G is finitely generated and $H \neq \{1\}$ is finite. Let K be the kernel of the projection $H \wr G \to G$ equipped with the metric induced from $H \wr G$. If γ is the growth function of G, then $D^0_K(r) := (2r+1)\gamma(r)$ is a 0-dimensional control function of K.

Proof. It suffices to show that r-component of 1 in K is of diameter at most $(2r+1)\gamma(r)$ as any r-component of K is a shift of the r-component containing 1. By 3.2 any element of $B(1,r)$ in K is a product of bulbs indexed by elements of G of length less than r. Therefore any product of elements in $B(1,r)$ is a product of bulbs indexed by elements of G of length less than r and such product can be reduced to a product of at most $\gamma(r)$ such bulbs. Each of them is of length at most $2r+1$, so the length of the product is at most $(2r+1) \cdot \gamma(r)$. ■

Theorem 4.3 (cf. [7 Proposition 4.2]). Suppose G is finitely generated and $\pi: G \to I$ is a retraction onto its subgroup I with kernel K. K is equipped with the metric induced from a word metric on G so that generators of I are included in the set of generators of G. If D^n_I is an
n-dimensional control function of I and D_K^n is a 0-dimensional control function of K, then
\[D_I^n(r) + D_K^n(r + 2D_I^n(r)) \]
is an n-dimensional control function of G.

Proof. Given $r > 0$ express I as $I_0 \cup \ldots \cup I_n$ so that r-components of I_i have diameter at most $D_I^n(r)$. Consider $G_i = \pi^{-1}(I_i)$. If $g_1 \cdot 1, \ldots, g_i \cdot x_m$ is an r-path in G_i, then $h_1 = \pi(g_1) \cdot 1, \ldots, h_m = \pi(g_1) \cdot y_m$ form an r-path in I_i (here $y_j = \pi(x_j)$), so $l(y_j) \leq D_I^n(r)$ for all j. Consider $z_j = x_j \cdot y_j^{-1} \in K$. Notice $\text{dist}(z_j, z_{j+1}) < r + 2D_I^n(r)$. Therefore, $\text{dist}(1, z_m) \leq D_K^n(r + 2D_I^n(r))$ resulting in $l(x_m) \leq D_K^n(r + 2D_I^n(r)) + D_I^n(r)$ and $\text{dist}(g_1, g_1 \cdot x_m) \leq D_I^n(r) + D_K^n(r + 2D_I^n(r))$ which completes the proof. \[\blacksquare\]

Definition 4.4 (cf. [15, Section VI.B]). Let f and g be functions from R_+ to R_+. We say that f weakly dominates g if there exist constants $\lambda \geq 1$ and $C \geq 0$ such that $g(t) \leq \lambda f(\lambda t + C) + C$ for all $t \in R_+$.

Two functions are weakly equivalent if each weakly dominates the other.

Theorem 4.5. Suppose G is finitely generated infinite group and $H \neq \{1\}$ is finite. Let γ be the growth function of G and D_G^n be an n-dimensional control function of G. Then for any $k \geq n$ there is a k-dimensional control function of $H \wr G$ which is weakly dominated by $(D_G^n(t) + t) \cdot \gamma(D_G^n(t) + t)$. Also, for any $k \geq n$ every k-dimensional control function of $H \wr G$ weakly dominates the function γ.

Proof. Notice that γ dominates a linear function and combine 4.2 and 4.3 To get the estimate from below, notice that a k-dimensional control function of $H \wr G$ works as a k-dimensional control function of the kernel K, and apply 4.1 \[\blacksquare\]

Our next result gives a better solution to Question 2 in [18].

Corollary 4.6. Suppose G is a finitely generated group of exponential growth and $H \neq \{1\}$ is finite. If $\dim_{AN}(G) \leq n$ then for any $k \geq n$ the k-dimensional control function of $H \wr G$ is weakly equivalent to the function 2^t (i.e. there is a k-dimensional control function of $H \wr G$ weakly dominated by 2^t and every such control function weakly dominates 2^t).

Corollary 4.7. Let F_2 be the free non-Abelian group of two generators. For every $n \geq 1$ the n-dimensional control function of $Z/2tF_2$ is weakly equivalent to the function 2^t (i.e. there is an n-dimensional control function of $Z/2tF_2$ weakly dominated by 2^t and every such control function weakly dominates 2^t).
Proof. Notice that the function \(f(t) = 2^t \) is weakly equivalent to the growth function of \(F_2 \) and \(\dim_{AN}(F_2) = 1 \).

5. Assouad-Nagata dimension of wreath products

Suppose \(G \) is finitely generated and \(H \neq 1 \) is finite. If \(\dim_{AN}(G) = 0 \), then \(G \) is finite and so is \(H \wr G \). In such case \(\dim_{AN}(H \wr G) = 0 = \dim_{AN}(G) \). Therefore it remains to consider the case of infinite groups \(G \).

Theorem 5.1. Suppose \(G \) is an infinite finitely generated group and \(H \) is a finite group. If the growth of \(G \) is bounded by a linear function, then \(\dim_{AN}(K) = 0 \) and \(\dim_{AN}(H \wr G) = \dim_{AN}(G) = 1 \).

Proof. Notice that 4.2 does provide a 0-dimensional control function for \(K \). However, it may not be bounded by a linear function, so we have to do more precise calculations.

\(G \) is a virtually nilpotent group by Gromov’s Theorem (see [13] or Theorem 97 in [17]). Let \(F \) be a nilpotent subgroup of \(G \) of finite index. Pick elements \(a_i, i = 1, \ldots, k \), of \(G \) such that \(G = \bigcup_{i=1}^{k} a_i \cdot F \) and pick a natural \(n \) satisfying \(|a_i| \leq n \) for all \(i \leq k \). Every two elements of \(F \) can be connected in \(G \) by a 2-path. From each point of the path (other than initial and terminal points) one can move to \(F \) by distance at most \(n \) (by representing that point as \(a_i \cdot x \) for some \(x \in F \)). Therefore we can create a \((2n + 2)\)-path in \(F \) joining the original points. That means \(F \) is generated by its elements of length at most \(2n + 1 \).

Let \(\{F_i\} \) be the lower central series of \(F \) and let \(d_i \) be the rank of \(F_i/F_{i+1}, i \geq 0 \). Since the growth of \(F \) is also linear, Bass’ Theorem (see [2] or Theorem 103 in [17]) stating that the growth of \(F \) is polynomial of degree \(d = \sum_{i=0}^{\infty} (i + 1) \cdot d_i \) implies that \(d_0 = 1 \) and all the other ranks \(d_i \) are 0. Hence the abelianization of \(F \) is of the form \(\mathbb{Z} \times A \), \(A \) being a finite group, and the commutator group of \(F \) is finite. Therefore \(F \) is virtually \(\mathbb{Z} \) and that means \(G \) is virtually \(\mathbb{Z} \) as well.

Let \(n \) be the index of \(\mathbb{Z} \) in \(G \) and pick elements \(g_1, \ldots, g_n \) of \(G \) such that any element of \(G \) can be expressed as \(g_i \cdot t^k \) for some \(i \leq n \) and some \(k \), where \(t \) is the generator of \(\mathbb{Z} \subset G \). Without loss of generality we may assume that the set of generators of \(G \) chosen to compute the word length \(l(w) \) of elements \(w \in H \wr G \) is \(t, g_1, \ldots, g_n \). For \(H \) we choose all of \(H \setminus \{1\} \) as the set of generators.

We need existence of \(C > 0 \) such that \(\frac{|w|}{C} \leq l(t^k) \leq |k| \) for all \(k \). It suffices to consider \(k > 0 \). Since the number of points in \(B(1_G, 4) \) is
finite, there is $C > 0$ such that $t^u \in B(1_G, 4)$ implies $|u| \leq C$. Now, if
$l(t^k) = m$ and $t^k = x_1 \cdot \ldots \cdot x_m$, where $l(x_i) = 1$, then there are $u(i)$ such that dist$(x_1 \cdot \ldots \cdot x_i, t^{u(i)}) \leq 1$ for all $i \leq k$ (we choose $u(m) = k$ obviously). Therefore dist$(t^{u(i)}, t^{u(i+1)}) \leq 3$ and $u(i + 1) - u(i) \leq C$.
Now $k = u(m) = (u(m) - u(m-1)) + \ldots + (u(2) - u(1)) + u(1) \leq C \cdot m$ implying $l(t^k) = m \geq \frac{k}{C}$.

By \underline{3.2} any element of K of length less than r is a product of bulbs
indexed by elements of G of length less than $r > 1$. If $l(g_i \cdot t^k) < r$,
then $l(t^k) < r + 1 < 2r$ and $|k| \leq C \cdot l(t^k) \leq 2Cr$. Therefore there are
at most $n \cdot 4Cr$ such words and any product of such bulbs is of length
at most $n(4Crn + 2 + 2Cr) \leq r(4Crn^2 + 2n + 2Cn)$ by \underline{3.3}.

Therefore the group generated by $B(1, r)$ in K is contained in $B(1, Lr)$,
where $L = 4Crn^2 + 2n + 2Cn$, and dim$_{AN}(K) = 0$ by \underline{2.1}. Using
the Hurewicz Theorem for Assouad-Nagata dimension of K, we get
dim$_{AN}(H \wr G) \leq \dim_{AN}(G) = 1$ (one can also use \underline{1.3}). Since $H \wr G$
is infinite, its Assouad-Nagata dimension is positive and dim$_{AN}(H \wr G) =
\dim_{AN}(G) = 1$.

Corollary 5.2. If the growth of G is not bounded by a linear function and $H \neq 1$, then dim$_{AN}(H \wr G) = \infty$.

Proof. Let γ be the growth of G in some set of generators. Suppose
dim$_{AN}(K) < n < \infty$, so it has an $(n - 1)$-dimensional function of the form
$D^n_{K^{-1}}(r) = C \cdot r$ for some $C > 0$. By \underline{4.1} one has $\gamma(r)/n \leq C \cdot 3nr + 1$. Thus $\gamma(r) \leq n \cdot (3Cn + 1)$ and the growth of G is bounded
by a linear function, a contradiction. ■

Problem 5.3. Suppose G is a locally finite group equipped with a
proper left-invariant metric d_G. If dim$_{AN}(G, d_G) > 0$, is dim$_{AN}(G, d_G)$
infinite?

References

[1] P. Assouad, *Sur la distance de Nagata*, C. R. Acad. Sci. Paris Ser. I Math. 294
(1982), no. 1, 31–34.

[2] H. Bass, *The degree of polynomial growth of finitely generated nilpotent groups*,
Proc. of London Math. Society, 25 (1972), pp. 603–614.

[3] G. Bell and A. Dranishnikov, *A Hurewicz-type theorem for asymptotic dimension
and applications to geometric group theory*, Trans. Amer. Math. Soc. 358
(2006), no. 11, 4749–4764.

[4] N. Brodskiy, J. Dydek, J. Higes, A. Mitra, *Nagata-Assouad dimension via Lipschitz extensions*, preprint [ArXiv:math.MG/0601226].

[5] N. Brodskiy, J. Dydek, M. Levin, A. Mitra, *Hurewicz Theorem for Assouad-
Nagata dimension*, preprint [ArXiv:math.MG/0605416].

[6] S. Cleary, J. Taback, *Dead end words in lamplighter groups and other wreath products*, Q. J. Math. 56 (2005), no. 2, 165–178.
[7] A.N. Dranishnikov, *Groups with a polynomial dimension growth*, Geom. Dedicata 119 (2006), 1–15.

[8] A.N. Dranishnikov, J. Smith, *Asymptotic dimension of discrete groups*, Fund. Math. 189 (2006), 27–34.

[9] A.N. Dranishnikov, J. Smith, *On asymptotic Assouad-Nagata dimension*, preprint ArXiv: math.MG/0607143

[10] J. Dydak, J. Higes, *Asymptotic cones and Assouad-Nagata dimension*, preprint ArXiv:math.MG/0610338.

[11] R. Engelking, *Dimension Theory*, PWN, Warszawa, 1978.

[12] A. Erschler, *On Isoperimetric Profiles of Finitely Generated Groups*, Geom. Ded. 100 (2003), 157–171.

[13] M. Gromov, *Groups of polynomial growth and expanding maps*, Publ. Math. IHES 53 (1981), 53–73.

[14] M. Gromov, *Asymptotic invariants for infinite groups*, in Geometric Group Theory, vol. 2, 1–295, G. Niblo and M. Roller, eds., Cambridge University Press, 1993.

[15] P. de la Harpe, *Topics in geometric group theory*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. vi+310 pp.

[16] U. Lang, T. Schlichenmaier, *Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions*, IMRN International Mathematics Research Notices (2005), no. 58, 3625–3655.

[17] M. Kapovich, *Lectures on Geometric Group Theory*, preprint (as of September 28, 2005).

[18] P.W. Nowak, *On exactness and isoperimetric profiles of discrete groups*, preprint.

[19] J. Roe, *Lectures on coarse geometry*, University Lecture Series, 31. American Mathematical Society, Providence, RI, 2003.

[20] J. Smith, *On Asymptotic Dimension of Countable Abelian Groups*, Topology Appl. 153 (2006), no. 12, 2047–2054.

University of Tennessee, Knoxville, TN 37996, USA

E-mail address: brodskiy@math.utk.edu

University of Tennessee, Knoxville, TN 37996, USA

E-mail address: dydak@math.utk.edu

Eidgen Technische Hochschule Zentrum, CH-8092 Zürich, Switzerland

E-mail address: lang@math.ethz.ch