Monocyte activation and acquired autoimmune protein S deficiency promote disseminated intravascular coagulation in a patient with primary antiphospholipid syndrome

Lennart Beckmann MD1 | Minna Voigtlaender MD1 | Katharina Holstein MD1 |
Maximilian Lennartz MD2 | Stefan W. Schneider MD3 | Munif Haddad MD4 |
Thomas Renné MD, PhD4 | Carsten Bokemeyer MD1 | Christina C. Rolling MD1,5 |
Florian Langer MD1

Abstract
Autoimmune protein S (PS) deficiency is a highly thrombotic, potentially life-threatening disorder. Its pathophysiological relevance in the context of primary antiphospholipid syndrome (APS) is unclear. Here, we report the case of a 76-year-old woman, who presented with a painful reticular skin erythema caused by microvascular thromboses. Disseminated intravascular coagulation (DIC) with consumptive coagulopathy was controlled only by continuous anticoagulation. While significantly elevated IgM antibodies to cardiolipin and β2-glycoprotein-I were consistent with primary APS, a function-blocking PS autoantibody of the IgG isotype was detected. Robust microvesicle (MV)-associated tissue factor (TF) procoagulant activity (PCA) was isolated from patient plasma. Moreover, patient IgG, but not IgM, induced expression of TF PCA and release of TF-bearing MVs by peripheral blood mononuclear cells from healthy donors. In primary APS, induction of monocyte TF in combination with an acquired PS inhibitor may provoke a deleterious imbalance of procoagulant and anticoagulant pathways with evolution of thrombotic DIC.

KEYWORDS
antiphospholipid syndrome, disseminated intravascular coagulation, monocytes, protein S, tissue factor

Essentials
• Deficiency of protein S (PS), a natural regulator of blood clotting, is a risk factor for thrombosis.
• An elderly woman with thrombotic skin vessel occlusions presented with severe PS deficiency.
• Patient immunoglobulins inhibited PS activity and stimulated leukocytes to promote coagulation.
• Combined PS deficiency and leukocyte activation may cause life-threatening thrombosis.
INTRODUCTION

Autoimmune protein S (PS) deficiency is a rare and potentially life-threatening disorder characterized by recurrent thromboembolism due to a defect in the natural anticoagulant protein C–protein S–thrombomodulin (PC-PS-TM) system. Acquired PS inhibitors have been associated with infections, multiple myeloma, and other autoimmune diseases, such as the antiphospholipid syndrome (APS) or systemic lupus erythematosus (SLE). In some patients, the antibodies directly interfere with PS anticoagulant activity, but in most cases they are directed against epitopes outside the catalytic domain, resulting in accelerated PS clearance.

APS is the most common acquired thrombophilia and defined by the occurrence of persistent antiphospholipid antibodies (aPL). Thrombosis involving all vascular sites can result in a life-threatening, catastrophic condition. The pathophysiology of thromboembolism in APS is multifactorial and still incompletely understood, with direct or cofactor-dependent binding of aPL to platelets, leukocytes, or endothelial cells and complement activation playing a role.

Although PS antibodies have been identified in individual patients with APS, clinical and laboratory evidence regarding their pathophysiological relevance is still scarce. Here, we provide further insight into the consequences of PS inhibition in the context of aPL positivity.

CASE DESCRIPTION

A 76-year-old woman (150 cm, 48 kg) with a history of recurrent rectal and subcutaneous hemorrhages was referred for the diagnostic workup of an acquired bleeding disorder. Bleeding had initially been attributed to anticoagulation with rivaroxaban 20 mg once daily (OD), which the patient had received for an unprovoked right-sided calf-vein thrombosis 3 months earlier. However, bleeding symptoms had persisted despite cessation of anticoagulation.

At presentation, a highly painful reticular livid skin erythema was found on the patient’s trunk (Figure 1A). Histological examination revealed leukocytoclastic vasculitis and microvascular thromboses (Figure 1B). Laboratory findings were consistent with disseminated intravascular coagulation (DIC) and consumptive coagulopathy (Table 1). Treatment of concurrent sigmoid diverticulitis did not resolve DIC, and overt malignancy was excluded. Except for slightly elevated IgM anticardiolipin antibodies (aCL), there was no laboratory evidence for an underlying autoimmune disease.

FIGURE 1 Skin manifestations and clinical course of DIC and antiphospholipid antibodies (aPL). (A) At initial presentation, a highly painful reticular livid skin erythema on the patient’s trunk indicated microvascular thromboses. (B) Histopathological analysis of a skin biopsy specimen revealed nonspecific leukocytoclastic vasculitis of smaller dermal (left panel) and thrombotic occlusions of larger subcutaneous vessels (right panel). (C) Initial time course of plasma D-dimer and fibrinogen during anticoagulation with the low-molecular-weight heparin enoxaparin. Each arrow indicates administration of 20 mg of enoxaparin. (D, E) The aPL profile was routinely assessed during follow-up. Time courses for cardioliopin antibodies (aCL) (D) and β2-glycoprotein I-antibodies (anti-β2GPI) (E) are shown.
disease (Table 1, Table S1). An empirical short-term course of oral corticosteroids had no effect. Screening for other aPL was negative (Figure S1).

DIC was controlled only by uninterrupted anticoagulation with the low-molecular-weight heparin (LMWH) enoxaparin (Figure 1C). Prolongation of administration intervals resulted in immediate relapse of consumptive coagulopathy. Following DIC stabilization with enoxaparin, the patient was reexposed to rivaroxaban 20 mg OD (Figure S2A), under which the coagulopathy spontaneously relapsed with painfully reduced acral perfusion and elevated plasma D-dimers. Since long-term administration of LMWH was deemed unfeasible, the patient was switched to oral apixaban 5 mg twice daily, with the rationale of twice-daily dosing offering improved protection against DIC. However, painful skin erythema coinciding with a rise in plasma D-dimers reoccurred, indicating insufficient control of coagulation (Figure S2A). Administration intervals of apixaban were shortened to 5 mg every 6 to 8 hours, resulting in sustained DIC control without clinically relevant bleeding (Figure S2A). Accidental omission of single doses of apixaban, however, prompted an immediate relapse of painful skin erythema, and random blood samples taken during apixaban intake revealed a close inverse correlation between anti-Xa activity and plasma D-dimer levels (Figure S2B).

Over the course of treatment, increasing titers of IgM aCL and β2-glycoprotein-I antibodies (anti-β2GPI) were compatible with definite APS (Table 1, Figure 1D,E). Activated protein C (APC) resistance in the absence of F5 gene mutation, Leiden, indicated an acquired defect in the PC-PS-TM system (Table 1, Table S1). While PS antigen was normal, PS activity was severely reduced. Mixing studies (Figure 2A, Figure S3A,B) and spiking of normal human plasma (NHP) with patient IgM (Figure 2B, Figure S3C) or IgG (Figure 2C, Figure S3D) revealed the presence of an inhibitory IgG autoantibody against PS. In addition, significant microvesicle (MV)-associated tissue factor (TF)-specific procoagulant activity (PCA) was detected in patient plasma (Figure 2D), suggesting that aPL-mediated monocyte activation contributed to DIC evolution.

TABLE 1 Laboratory workup of the patient

	Admission	1.5	3	Reference range
Blood counts				
Hemoglobin, g/dL	10.6	12.3	11.7	12.3-15.3
Leukocytes, 1 × 10⁹/L	9.0	5.4	7.0	3.8-11.0
Platelets, 1 × 10⁹/L	166	324	308	150-350
Coagulation parameters				
Prothrombin time, %	45.4	104.2	97.0	80-130
INR	1.52	0.99	1.0	0.85-1.15
aPTT, s	42.5	32.6	32	25-38
Thrombin time, s	45.9	16.5	23	16-22
Fibrinogen, g/L	0.47	2.57	1.89	1.8-4.0
D-dimer, mg/L	>34	1.51	1.69	<0.5
Antithrombin, %	95.0	110.2	116	70-130
PC antigen, %	n.d.	108.2	83.8	65-140
PC activity, %	34.2	40.2	26.0	70-140
Total PS antigen, %	n.d.	73.0	82.0	55-125
Free PS antigen, %	69.2	96.0	80.4	60-130
PS activity, %	21	13.9	<8.0	55-125
Ratio APC resistance	1.7	1.7	1.7	>2.2

Antiphospholipid antibodies

	Admission	1.5	3	Reference range
IgM aCL, U/mL	17	66	146	<10
IgG aCL, U/mL	1.7	<0.5	1.0	<10
IgM anti-β2GPI, U/mL	0.3	<0.9	19	<7
IgG anti-β2GPI, U/mL	<0.1	<0.6	<0.6	<7
LA	Negative	Negative	Negative	Negative

aCL, anticardiolipin; anti-β2GPI, anti-β2-glycoprotein-I; APC, activated protein C; aPTT, activated partial thromboplastin time; INR, international normalized ratio; LA, lupus anticoagulant; n.d., not determined; PS, protein S.

*Protein C (PC) activity was assessed with a clotting-based assay.
in the context of PS inhibition. While patient IgM had no effect (Figure S4A), patient IgG specifically amplified TF PCA expression (Figure 2E) and release of TF-bearing MVs (Figure 2F) by peripheral blood mononuclear cells, an effect that was significantly inhibited by the protein disulfide isomerase (PDI) inhibitor rutin (Figure 2G).

At the time of this report, follow-up of the patient is 6 years, with still no evidence for an underlying rheumatologic, infectious, vascular, or malignant disease. Because intensified oral anticoagulation with apixaban was efficacious and well tolerated, we have so far decided against further immunosuppressive therapy (eg, with rituximab).

3 DISCUSSION

In our patient, concomitant occurrence of two distinct acquired thrombophilies, APS and autoimmune PS deficiency, induced a severe imbalance of procoagulant and anticoagulant pathways, which resulted in thrombotic DIC and required uninterrupted anticoagulation at (supra)therapeutic dosages.

Previous studies have established PS inhibitors as an independent risk factor for thrombosis. In most cases, PS inhibitors occurred transiently following an infection and were attributed to cross-reacting pathogen-specific antibodies. In our patient, the inhibitor persisted over the entire observation period of 6 years, indicating an autoimmune rather than a para-infectious phenomenon.

PC activity was also reduced on several occasions (Table 1), and spiking of NHP with patient IgG resulted in a minor decrease in PC activity (Figure S3D). While PC activity in clotting-based assays depends on PS cofactor function, PS is dispensable in chromogenic PC activity assays. Since patient IgG also interfered with chromogenic PC activity (Figure S3D), we cannot exclude the possibility that the patient additionally had an IgG PC inhibitor, contributing to the procoagulant state.

Although PS deficiency predisposes to thrombosis, additional procoagulant stimuli are usually required to trigger clot formation. In secondary APS, coexisting deficiencies in the PC-PS-TM system are associated with an increased thromboembolic risk, but data regarding primary APS are missing. In our patient, elevated aPL beyond an otherwise unremarkable autoantibody profile were detected (Figure 1D,E, Table S1). Because aPL persisted over several...
years (Figure 1D,E) and immunosuppressive therapy with prednisolone was ineffective, both a transient autoimmune epiphenomenon and secondary APS are highly unlikely.

Primary APS is associated with a continuous state of low-grade inflammation initiated by cofactor-dependent and -independent effects of aPL, including intravascular TF production and release of procoagulant MVs. Consistent with aPL-mediated monocyte activation, abundant MV-associated TF was detected in patient plasma (Figure 2F). Notably, despite the development of significant IgM aPL titers during follow-up, the capability of inducing TF PCA expression and release of TF-bearing MVs by peripheral blood mononuclear cells (PBMCs) was restricted to patient IgG (Figure 2D, Figure S4A). While the pathophysiologic relevance of IgM aPL remains controversial, a plethora of additional cofactor-dependent and lipid-reactive aPL, albeit not part of the established diagnostic criteria, have been described. Such aPL might not have been captured by the applied screening ELISA and routine laboratory tests, but might have contributed to IgG-mediated procoagulant effects.

DIC severity appeared to correlate with aPL titers in our patient. While at initial presentation prophylactic to intermediate dosages of LMWH followed by rivaroxaban 20 mg OD were sufficient to control coagulation activation, 5 mg of apixaban every 6 to 8 hours were required with increasing aPL titers (Figure 1D,E, Figure S2A). Of note, D-dimers significantly correlated with apixaban plasma concentrations (Figure S2B), further indicating a continuous procoagulant state requiring uninterrupted anticoagulation.

While direct oral anticoagulants (DOACs) are safe and efficacious for the treatment and secondary prevention of venous thromboembolism in the general population, their role in thrombotic APS is less clear. In high-risk patients with APS, DOACs might be associated with increased rates of arterial thromboses compared to vitamin K antagonists (VKAs). We have decided against VKAs because of the highly variable dose-response relationship, the unfavorable pharmacokinetic and pharmacodynamic profile, and the potential risk of further impairing the PC-PS-TM system through downregulation of vitamin K-dependent coagulation inhibitors PC and PS. We have previously shown that prophylactic dosages of apixaban improved clinical symptoms and hemostatic parameters in two patients with chronic DIC due to a vascular cause. Further studies are needed to investigate whether intense anticoagulation with apixaban is safe and efficacious in APS with a severe thrombotic phenotype due to a dysfunctional PC-PS-TM system.

Adjunct treatment strategies may be required in patients with APS, in whom anticoagulants (with or without antiplaletae agents) are insufficient to control coagulation activation, with PDI being a promising target. In APS, β2GPI is under direct oxidoreductive control of PDI, and induction of monocyte TF by cofactor-independent aPL was linked to extracellular PDI activity. Consistently, coincubation with rutin partially reversed the stimulatory effect of patient IgG on PBMC TF PCA (Figure 2G). It is thus tempting to speculate that PDI inhibition represents a promising novel treatment strategy in APS that specifically prevents thrombosis but does not impair hemostasis.

Taken together, autoimmune PS deficiency is a rare but serious complication in primary APS that can lead to a highly prothrombotic state characterized by a detrimental imbalance of procoagulant and anticoagulant pathways. In these patients, intense anticoagulation is required to sufficiently control coagulation.

ACKNOWLEDGMENTS

The authors thank Anita Schulenkorf and Carina Lehr for excellent technical assistance.

AUTHOR CONTRIBUTIONS

LB, CCR, and FL designed the study, analyzed data, and wrote the first draft of the manuscript. MV designed experiments, analyzed data, and critically revised the manuscript. KH, ML, SWS, MH, TR, and CB analyzed data and critically revised the manuscript. All authors reviewed the final version of the manuscript and gave approval for its submission.

RELATIONSHIP DISCLOSURE

MV has received travel support from Bristol-Myers Squibb. KH has received personal fees for lectures or consultancy and/or research support from Bayer, Bristol-Myers Squibb, and Pfizer. CB has received personal fees for consultancy from Bayer, Bristol-Myers Squibb, and Sanofi. FL has received personal fees for lectures or consultancy and/or research support from Bayer, Bristol-Myers Squibb, Pfizer, and Sanofi. LB, ML, SWS, MH, TR, and CCR declare no conflicts of interest.

TWITTER

Thomas Renne

REFERENCES

1. Amiral J, Seghatchian J. Revisiting the activated protein C-protein S-thrombomodulin ternary pathway: impact of new understanding on its laboratory investigation. Transfus Apher Sci. 2019;58(4):538-544. https://doi.org/10.1016/j.transci.2019.06.008
2. D’Angelo A, Della Valle P, Crippa L, Pattarini E, Grimaldi LM, Viganò DS. Brief report: autoimmune protein S deficiency in a boy with severe thromboembolic disease. N Engl J Med. 1993;328(24):1753-1757. https://doi.org/10.1056/NEJM199306173282405
3. Josephson C, Nuss R, Jacobson L, et al. The varicella-autoantibody syndrome. Pediatr Res. 2001;50(3):345-352. https://doi.org/10.1203/00006450-200109000-00009
4. Deitcher SR, Erban JK, Limentani SA. Acquired free protein S deficiency associated with multiple myeloma: a case report. Am J Hematol. 1996;51(4):319-323. https://doi.org/10.1002/ (SICI)1096-8652(199604)51:4<319:AID-AJH12>3.0.CO;2-9
5. Erkan D, Zhang HW, Shirky RC, Merrill JT. Dual antibody reactivity to beta2-glycoprotein I and protein S: increased association with thrombotic events in the antiphospholipid syndrome. Lupus. 2002;11(4):215-220. https://doi.org/10.1191/0961233202lu178oa
6. Bertolaccini ML, Sanna G, Ralhan S, et al. Antibodies directed to protein S in patients with systemic lupus erythematosus: prevalence and clinical significance. Thromb Haemost. 2003;90(4):636-641. https://doi.org/10.1160/TH03-03-0151
7. D’Angelo A, Viganò DS. Protein S deficiency. Haematologica. 2008;93(4):498-501. https://doi.org/10.3324/haematol.12691
8. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306. https://doi.org/10.1111/j.1538-7836.2006.01753.x

9. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010-2021. https://doi.org/10.1056/NEJMra1705454

10. Carmi O, Berla M, Shoenfeld Y, Levy Y. Diagnosis and management of catastrophic antiphospholipid syndrome. Expert Rev Hematol. 2017;10(4):365-374. https://doi.org/10.1080/17474086.2017.1300522

11. Giannakopoulos B, Krilis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med. 2013;368(11):1033-1044. https://doi.org/10.1056/NEJMra1112830

12. Roshan TM, Stein N, Jiang XY. Comparison of clot-based and chromogenic assay for the determination of protein C activity. Blood Coagul Fibrinolysis. 2019;30(4):156-160. https://doi.org/10.1097/MBC.000000000000086

13. Muller-Calleja N, Hollerbach A, Hauser F, Canisius A, Orning C, Lackner KJ. Antiphospholipid antibody-induced cellular responses depend on epitope specificity: implications for treatment of antiphospholipid syndrome. J Thromb Haemost. 2017;15(12):2367-2376. https://doi.org/10.1111/jth.13865

14. Muller-Calleja N, Ritter S, Hollerbach A, Falter T, Lackner KJ, Ruf W. Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies. Blood Adv. 2018;2(9):979-986. https://doi.org/10.1182/bloodadvances.2018017095

15. Kelchtermans H, Pelkmans L, de Laat B, Devreeese KM. IgG/IgM antiphospholipid antibodies present in the classification criteria for the antiphospholipid syndrome: a critical review of their association with thrombosis. J Thromb Haemost. 2016;14(8):1530-1548. https://doi.org/10.1111/jth.13379

16. Oosting JD, Derksen RH, Bobbink IW, Hackeng TM, Bouma BN, de Groot PG. Antiphospholipid antibodies directed against a combination of phospholipids with prothrombin, protein C, or protein S: an explanation for their pathogenic mechanism? Blood. 1993;81(10):2618-2625.

17. Cohen AT, Hamilton M, Bird A, et al. Comparison of the NON-VKA oral anticoagulants apixaban, dabigatran, and rivaroxaban in the extended treatment and prevention of venous thromboembolism: systematic review and network meta-analysis. 2016.

18. Pengo V, Denas G, Zoppellaro G, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018;132(13):1365-1371. https://doi.org/10.1182/blood-2018-04-848333

19. Janjetovic S, Holstein K, Dicke C, Bokemeyer C, Langer F. Apixaban for the treatment of chronic disseminated intravascular coagulation: a report of two cases. Hamostaseologie. 2019;39(3):294-297. https://doi.org/10.1055/s-0038-1675386

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Beckmann L, Voigtlaender M, Holstein K, et al. Monocyte activation and acquired autoimmune protein S deficiency promote disseminated intravascular coagulation in a patient with primary antiphospholipid syndrome. Res Pract Thromb Haemost. 2021;5:e12559. https://doi.org/10.1002/rth2.12559