Search for supersymmetry in events with two leptons including a tau

Matthias Edelhoff¹,²,³ (on behalf of the CMS Collaboration)

¹ I. Physikalisches Institut B, RWTH Aachen, Sommerfeldstr. 14, D-52074 Aachen

Abstract. Searches for new physics in events with hadronic jets, missing transverse energy, and two leptons of which at least one is a hadronically decaying tau are presented. The result is based on a data sample corresponding to an integrated luminosity of 1 fb⁻¹ at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. No significant excess with respect to the standard model predictions is found.

1 Introduction

This article summarizes searches for physics beyond the Standard Model (BSM), analyzing $\int L\,dt \approx 1\text{fb}^{-1}$ of data recorded by the Compact Muon Solenoid Experiment (CMS). Proton-proton collisions where provided by the LHC at center of mass energies of $\sqrt{s} = 7\text{TeV}$ in 2011.

CMS conducted several searches for BSM in finale states characterized by large missing transverse energy (E_T^{miss}) and hadronic activity. On the one hand, the high E_T^{miss} signature occurs in models with weakly interacting particles that escape detection, which are favored by cosmological measurements. On the other hand, hadronic activity occurs naturally in colored particle interactions dominating BSM cross sections in proton-proton collisions. In this article we focus on finale states containing a combination of two leptons, at least one of which is required to be a hadronically decaying tau particle we focus on finale states containing a combination of two leptons, at least one of which is required to be a hadronically decaying tau particle which are favored by cosmological measurements. Both backgrounds are estimated directly from data as described in sections 3.2 and 3.3. The influence of light leptons not produced in the hard scattering (e.g. from heavy flavor decays) is small compared to that of misidentified tau leptons due to the abundance of hadronic jets in the region of interest. Contributions from rare same sign SM processes such as diboson production, double W strahlung, or double parton scattering are small and estimated using simulation.

3 Same Sign Search

Finale states with two leptons of the same charge are rare in the Standard Model (SM). Thus, the main backgrounds for this search are quark or gluon jets misidentified as a τ_h (e.g. in W+jets events) and events where the charge of one of the leptons is misidentified (e.g. in dileptonic t¯t events). Both backgrounds are estimated directly from data as described in sections 3.2 and 3.3. The influence of light leptons not produced in the hard scattering (e.g. from heavy flavor decays) is small compared to that of misidentified τ_h due to the abundance of hadronic jets in the region of interest. Contributions from rare same sign SM processes such as diboson production, double W strahlung, or double parton scattering are small and estimated using simulation.

3.1 Event Selection

The same sign search region is selected requiring $H_T > 350\text{GeV}$ and $E_T^{miss} > 80\text{GeV}$. For the requirement of two or more jets and in calculating H_T, jets with transverse momenta $p_T > 40\text{GeV}$ are considered. Leptons are required to be in $|\eta| < 2.4$ and have transverse momenta of $p_T^\ell > 10\text{GeV}$, $p_T^\ell > 5\text{GeV}$, $p_T^\ell > 15\text{GeV}$, to ensure efficient trigger selection.

3.2 Estimating Misidentified Jet Contribution

The HPS τ_h identification algorithm distinguishes hadronic jets created in the decay of a τ lepton from those created in the hadronisation of a quark or gluon by means of isolation and reconstructed particle content. Nonetheless, the selection of hadronically decaying τ leptons always includes a remaining contamination by misidentified quark or gluon jets.

In order to estimate this contamination we employ the tight-to-loose method (TL). First, we define a loose τ_h selection by relaxing the isolation requirement, in addition to...
the tight τ_b selection used in the analysis. Second, we measure the fraction f_{TL} of loose candidates, which pass the tight criteria in a sample containing predominately quark and gluon jets. Finally, we extrapolate the expected number of misidentified tight τ_b candidates from the number of observed loose candidates in the signal region.

The tight-to-loose ratio f_{TL} mainly depends on the transverse momentum and pseudorapidity of a given τ_b candidate and is measured in bins of those variables. The difference in H_T of the region where f_{TL} is measured and the search regions are minimised in the definition of the loose selection. The results of this procedure have been shown to be in good agreement with background simulation.

3.3 Estimating Misidentified Charge Contribution

Backgrounds due to charge misidentification arise from the relative abundance of SM processes with two leptons of opposite charge, at least one of which is an electron or hadronically decaying τ. The contribution of muons with misidentified charge is found to be negligible. The misreconstruction of Electron charge occurs due to energy loss in the tracking volume. Furthermore, τ_b charge misidentification occurs in three prong τ_b decays, when a track form the background is wrongly associated with the τ_b object.

To estimate the impact of these effects, we compare the number of opposite- and same sign dilepton pairs near the Z resonance. The Drell-Yan (DY) signal is fitted in the dilepton invariant mass spectrum alongside backgrounds form misidentified leptons and other SM processes. We identify the probability f_{LL}^τ of lepton charge misidentification as the ratio of dilepton pairs reconstructed with the same sign to those reconstructed with opposite sign.

For electrons we measure $f_{LL}^\tau = 2 \cdot 10^{-3}$ ($3 \cdot 10^{-3}$) in the ECAL barrel (endcap). Differences arise due to differences in the amount of tracker material in front of the ECAL crystals.

For three prong τ_b decays we measure $f_{LL}^\tau = 7.1 \pm 1.0_{\text{stat}} \pm 2.5_{\text{syst}}$ %.

Again results from this data driven background estimation are in agreement with background simulation.

3.4 Results

A summary of the predicted background and the observed yield in the search region is given in Table 1. We do not observe evidence of an event yield in excess of the SM based predictions and set 95% CL upper limits (UL) on the number of observed BSM events. The hybrid frequentist-bayesian CL_s method is applied, including nuisance parameters and the signal strength maximizing the ratio of the signal with background and background only likelihoods.

4 Opposite Sign Search

In contrast to the same sign search there are several SM processes, such as DY and $t\bar{t}$ decays, with final states containing two leptons of opposite charge. The background from DY processes can be sufficiently suppressed by the choice of search region. However, contributions from $t\bar{t}$ decays remain. For the channels $e\tau_b$ and $\mu\tau_b$, those are estimated from data as described in section 4.2. Naturally backgrounds due to misidentified quark and gluon jets remain and are estimated as described in section 4.2. Furthermore, the fully hadronic final state $\tau_b\tau_b$ is treated differently than the other final states: Here we define background enriched sideband regions for each considered background. In this instance f_{TL}^τ is taken from simulation. Backgrounds are predicted extrapolating from the number of loose candidates in a background enriched sideband to the search region.

4.1 Event Selection

For the final states containing a light lepton ($e\tau_b$ and $\mu\tau_b$) two search regions are defined (Fig. 4). For brevity we focus on the high E^{miss}_T region ($H_T > 300$ GeV and $E^{miss}_T > 200$ GeV). Jets with transverse momenta $p_T > 30$ GeV are considered in H_T and the two jet requirement. All leptons are selected to have $|\eta| < 2.1$ and $p_T > 20$ GeV.

For the $\tau_b\tau_b$ final state two jets of transverse momenta $p_T > 100$ GeV are required and instead of E^{miss}_T the correlated variable $H^{miss}_T = |\sum p_T^\text{jets}| > 200$ GeV is used, for jets satisfying $p_T^\text{jets} > 30$ GeV. This is done to minimize turn-on effects due to the trigger selection. As the HPS τ_b identification and transverse momentum requirement ($p_T^\tau > 15$ GeV) are relaxed, in order to maximize the statistical significance of the result.
4.2 Estimating Dileptonic $t\bar{t}$ Contribution

We use the dilepton transverse momentum ($p_T(\ell\ell)$) method to estimate the contribution of dileptonic $t\bar{t}$ events in the signal region of opposite sign $e\tau$ and $\mu\tau$ events. We estimate the contribution of $t\bar{t}$ events to the corresponding light lepton channels (ee, $e\mu$, and $\mu\mu$), following the idea [8] that the variable $p_T(\ell\ell)$ can be used to model $E_T^{miss} = p_T(\nu\nu)$ [9].

Here, we exploit the fact that in dileptonic $t\bar{t}$ decays the p_T distributions of the leptons are related to those of the neutrinos via the common boosts from the intermediate top and W decays. This relation is governed by the well understood W polarization, which can be reliably accounted for.

Contamination by events which stem from Z decays is first reduced by a $76 < m_H < 106$ GeV and a $E_T^{miss} > 50$ GeV requirement. The remaining contribution is then predicted and subtracted using the same procedure as in Ref. [10]. The bias of the $p_T(\ell\ell)$ distribution due to the E_T^{miss} requirement is measured and accounted for.

Finally, lepton universality allows us to extrapolate from the light lepton channels to the τ_ℓ channels in question. In this, τ_ℓ reconstruction efficiency, acceptance, and branching ratios are taken from simulation.

4.3 Results

A summary of the observed event yields and the data driven background predictions in the search regions is given in Table 2. We observe no excess of events over the SM predictions. Also these predictions are shown to be in agreement with SM expectations from simulation.

We proceed to evaluate three benchmark scenarios, referred to as LM1, LM2 and LM13, of the minimal supersymmetric extension of the standard model (cMSSM) [11]. The parameter values for [LM1, LM2, LM13] are $m_0 = [60, 185, 270]$, $m_{1/2} = [250, 350, 218]$, $\tan\beta = [10, 35, 40]$, $A_0 = [0, 0, -553]$, and $\mu > 0$ [12]. We place 95% confidence level upper limits on the cross section of those scenarios using again the CLS method (Table 2). The combination of the three channels takes differences in search regions and correlations of the uncertainties into account.

Table 3. Summary of model cross sections as well as expected and measured 95% upper limits as derived through the CLS method.

Model	$\sigma_{95\%}^{NLO}$ [pb]	$\sigma_{95\%}^{exp.}$ [pb]	$\sigma_{95\%}^{meas.}$ [pb]
LM1	6.6	2.4 ± 1.4	2.8
LM2	0.8	0.6 ± 0.3	0.6
LM13	9.8	1.2 ± 1.0	1.5

All three scenarios are ruled out by the presented results. Furthermore we publish [2] additional information to allow testing of specific BSM models against these results.

5 Conclusion

Searches for physics beyond the standard model with τ_ℓ final states using ≈ 1 fb$^{-1}$ of integrated luminosity are summarized. Dominant backgrounds are estimated from the data taking the challenges of the hadronic r final state into account. No deviation from the SM is found and 95% CL upper limits are computed.

References

1. CMS Collaboration, Search for new physics with same-sign isolated dilepton events with jets and missing energy. CMS Physics Analysis Summary CMS-PAS-SUS-11-010, 2011.
2. CMS Collaboration, Search for supersymmetry in all-hadronic events with tau leptons. CMS Physics Analysis Summary CMS-PAS-SUS-11-007, 2011.
3. CMS Collaboration, Particle Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^miss. CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.
4. M. Cacciari et. al., The Anti-k(t) jet clustering algorithm. JHEP 0804 (2008) 063, 2008.
5. CMS Collaboration, Performance of tau reconstruction algorithms in 2010 data collected with CMS. CMS Physics Analysis Summary CMS-PAS-TAU-11-001, 2011.
6. CMS Collaboration, The CMS experiment at the CERN LHC. JINST 0803:S08004, 2008.
7. Particle Data Group Collaboration "Review of Particle Physics." J. Phys. G 37, 2010.
8. V. Pavlunin, Modeling missing transverse energy in V+jets at CERN LHC. Phys.Rev. D81:035005, 2011.
9. CMS Collaboration, Search for supersymmetry in events with opposite-sign dileptons and missing energy, CMS Physics Analysis Summary CMS-PAS-SUS-11-011, 2011.
10. CMS Collaboration, First Measurement of the Cross Section for Top-Quark Pair Production in Proton-Proton Collisions at sqrt(s)=7 TeV. Phys.Rev. B695:424-443, 2011.
11. S. Martin, A Supersymmetry primer. arXiv:hep-ph/9709356, 6, 1997.
12. CMS Collaboration, CMS technical design report, volume II: Physics performance. J. Phys. G 34:995-1579, 2007.