Myeloproliferative neoplasm with basophilia and abnormality of platelet-derived growth factor receptor a translocation: a case report

TO THE EDITOR: Translocation of platelet-derived growth factor receptor A (PDGFA)-protein kinase cGMP-dependent 2 (PRKG2) is uncommon in myeloproliferative neoplasms. We report a rare case of a patient presenting Philadelphia-negative myeloproliferative neoplasms with peripheral basophilia. The patient was a 38-year-old man with splenomegaly and leukocytosis. Peripheral blood examination revealed normocytic and normochromic red blood cells, no polychromasia, an increased WBC count with no toxic granulation or vacuolations, some blasts, basophilia, and an increased platelet count. Laboratory tests revealed a white blood cell count of 30,000/µL, hemoglobin level of 11.6 g/dL, and platelet count of 789,000/µL. WBCs comprised 30% segmented neutrophils, 13% lymphocytes, 1% monocytes, 4% eosinophils, and 47% basophils. Bone marrow biopsy showed estimated cellularity of ~100%, and the numbers of immature cells and basophils were increased. Multifocal fibrosis was also observed. The PDGFA-PRKG2 fusion gene was observed through next-generation gene sequencing, and targeted imatinib therapy was selected using an artificial intelligence matching algorithm. Immediately after treatment, the patient's symptoms improved immediately, and his WBC count was normalized. Our results identify the first case of PDGFA-PRKG2 fusion in an unclassified myeloproliferative neoplasm. This case also shows that the use of imatinib is very effective in treating specific myeloproliferative neoplasms with the PDGFA-PRKG2 translocation.

INTRODUCTION

Patients, occasionally meet the general criteria for classifying their condition as a myeloproliferative neoplasm (MPN) but may not meet all criteria for a particular disease or may exhibit more than one category of diagnostic characteristics. These patients can be diagnosed as MPN unclassifiable (MPN-u). Symptoms are similar to typical MPNs and usually include hepatosplenomegaly and increased numbers of white blood cells (WBCs) and platelets. A bone marrow biopsy reveals megalakaryocyte proliferation and hypercellularity in granulocytes or erythrocytes. As the disease progresses, the bone marrow becomes more fibrotic. However, in the current patient, BCR-ABL, CARL, MPL, and JAK2 gene mutations, commonly observed in MPNs, were all negative. The patient was treated with hydroxyurea and ruxolitinib due to leukocytosis, hyperbasophilia, and splenomegaly, but there was no improvement. Myeloproliferative diseases often have mutations or rearrangements of protein tyrosine kinase genes such as JAK2, FGFR1, platelet-derived growth factor receptor A (PDGFA), and PDGFRB [1, 2]. A variety of chromosomal translocations involving PDGFA have been identified revealing that it can fuse with many different partner genes. PDGFA and PDGFRB are transmembrane glycoproteins in the type III receptor tyrosine kinase family. This family also contains KIT, FLT3, and c-FMS. Platelet-derived growth factors (PDGs) include a group of mitogens comprising five dimeric forms derived from pairs of A, B, C, and D peptide chains (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD). PDGFA binds to the A, B, and C chains. PDGFRB binds to B and D chains. PDGFA and PDGFRB are transmembrane glycoproteins belonging to the type III receptor tyrosine kinase family [3]. In 2003, the FIP1L1-PDGFA mutation was described in relation to the MPN phenotype characterized by eosinophilia and mastocytosis [4]. The FIP1L1-PDGFA fusion gene was highly sensitive to low-dose imatinib; complete molecular remission could be achieved with 100 mg/day and a 300 mg/week maintenance dose [5]. To date, four PDGFA fusion genes have been identified including FIP1L1-PDGFA, BCR-PDGFA, ETV6-PDGFA, and CDK5RAP2-DGFR by the nested real-time polymerase chain reaction [6-8]. However, these mutations have been reported to exhibit clinical patterns of hyperbasophilia. In this study, we report a case of MPN-u associated with basophilia and the protein kinase cGMP-dependent 2 (PRKG2)-PDGFA translocation, which...
was improved following imatinib treatment.

CASE
A 38-year-old man presented to the Konyang University Hospital (Deajeon, South Korea) on March 10, 2017, with abdominal pain that started 2 months before, and thrombocytosis was identified at a local clinic. At the time of admission, the patient had a blood pressure of 130/90 mmHg, heart rate of 78 beats per minute, respiratory rate of 20 breaths per minute, and body temperature of 37°C. There was no significant previous medical history of hypertension, diabetes mellitus, or tuberculosis. On physical examination, we observed organomegaly in the right upper quadrant of the abdomen. However, there was no enlargement of the cervical, axillary, or inguinal lymph nodes. Other examinations were unremarkable. Laboratory tests showed WBCs at 30,300/μL, hemoglobin at 9.4 g/dL, and platelets at 836,000/μL. White blood cells were composed of 24% segmented neutrophils, 17% lymphocytes, 1% monocytes, 3% eosinophils, and 51% basophils. The reticulocyte count was within the normal range. Leukemic blasts were observed in 2% of the cells. Coagulation tests revealed a prothrombin time of 16.4 seconds and an activated partial thromboplastin time of 35.5 seconds. He had a fibrinogen level of 3.13 g/L, D-dimer level of 2.1 μg/mL, and antithrombin activity of 72% (not suggestive of disseminated intravascular coagulation). Peripheral blood showed normocytic and normochromic red blood cells, no polychromasia, a normal WBC count with no toxic granulation or vacuolations, and an increased platelet count. The serum lactate dehydrogenase level was 832 U/L (normal range, 120-240 U/L). The total bilirubin level was 1.04 mg/dL (normal range, 0-0.4 mg/dL). Results for other blood factors, including creatinine and bicarbonate, and liver function tests, were unremarkable. Computed tomography revealed hepatosplenomegaly (16 cm) without an intrasplenic mass. Bone marrow aspiration revealed no particles or peripheral dilution, and immature cells were observed occasionally (Fig. 1). Bone marrow biopsy showed estimated cellularity of approximately 100%, which was hypercellular for the patient’s age. In cellular areas, trilineage hematopoiesis was observed, along with increased numbers of basophils and immature cells. In addition, there were increased numbers of dysplastic megakaryocytes, and diffuse fibrosis was observed in multiple focal areas throughout the bone marrow space (Fig. 2). The \textit{JAK2} V617F, and \textit{BCR/ABL1} mutations were not detected with the real-time polymerase chain reaction. In chromosome analysis, of the 20 metaphase cells that could be observed, all cells were subjected to 46, XY normal karyotype. The initial formal pathologic diagnosis was deferred, so the patients received hydroxyurea 200 mg twice daily. However, leukocytosis continued, and the basophilia did not improve. The WBC count eventually increased to 88,000/μL, and a bone marrow biopsy was performed again. The second formal pathologic diagnosis was MPN with myelofibrosis. The patient additionally received 20 mg ruxolitinib phosphate twice daily. Although the WBC count decreased to 32,000/μL, basophilia persisted. Various symptoms, such as splenomegaly, basophilia, and leukocytosis continued after more than a year of treatment. Finally, the patient was able to undergo next-generation gene sequencing (NGS). Targeted sequencing was performed for translocation detection using the HemaSCAN panel (Level.1), which includes the whole exomes of 427 cancer-associated genes, and the intronic regions of 23 genes. The sequencing library was constructed with DNA extracted from bone marrow.

Fig. 1. Bone marrow aspiration demonstrating a lack of particles and peripheral dilution. Immature cells are occasionally noted (×200).

Fig. 2. Trephine bone marrow biopsy showing approximately 60% cellularity, with increased atypical megakaryocytes and fibrosis (Hematoxylin & Eosin staining, ×200).
Table 1. Results of next generation gene sequencing before imatinib treatment. PRKG2-PDGFRα translocation with 33.6% variant allele frequency and breakpoints at exon 10 of PRKG2 and exon 12 of PDGFRα.

A. Annotated variants

GeneA	GeneB	cnt_ReadA	cnt_ReadB	Total_read	ChrA	ChrB	Read_posA	Read_posB	Direction
PDGFRα	PRKG2	154	129	283	chr4:55141064	chr4:82065407	NM_006206 Exon(12/23)_Frame(0/1)	NM_006259 Exon(10/19)_Frame(2/2)	PRKG2→PDGFRα

B. Known variants

Gene	Refseq ID	Exon	DNA change	AA change	Func	ChrPos	Read depth	VAF	COSMIC	dbSNP
MKI67	NM_02417 exon14	c.9670C>T	p.R3224W	nonsynonymous SNV	chr10:129899557	1746	42.55%	COSM916078	rs754802357	
MCU2	NM_002457 exon30	c.5336A>C	p.K1786Q	nonsynonymous SNV	chr11:1093537	697	8.03%	COSM4145288	rs80200693	
LRRK2	NM_198578 exon11	c.1256C>T	p.A419V	nonsynonymous SNV	chr12:40646786	1020	44.41%	COSM147473	rs34594948	
BCL7A	NM_020993 exon4	c.359A>C	p.N120T	nonsynonymous SNV	chr14:37722105	724	46.56%	COSM5880386	rs34821485	
WDR90	NM_145294 exon16	c.1804C>T	p.R602W	nonsynonymous SNV	chr16:7056675	758	44.2%	COSM3273238	rs20169983	
PALB2	NM_024675 exon4	c.925A>G	p.I309V	nonsynonymous SNV	chr16:23646710	1054	43.93%	COSM5854150	rs14805346	
ZNF24	NM_006965 exon3	c.427C>T	p.L143F	nonsynonymous SNV	chr18:32919934	1170	45.5%	COSM3957351	rs3809683	

INDEL:

Gene	Refseq ID	Exon	DNA change	AA change	Func	ChrPos	Read depth	VAF	COSMIC	dbSNP
MSH6	NM_000179 exon10	c.4065_4066insTTGA	p.T1355fs frameshift insertion	chr2:48033981	764	40.45%	COSM3186044	NA		

C. Novel Variants

Gene	Refseq ID	Exon	DNA change	AA change	Func	ChrPos	Read depth	VAF	COSMIC	dbSNP
SDHC	NM_003001 exon2	c.25G>A	p.V9I	nonsynonymous SNV	chr1:3408	689	55.15%	rs77476886	NA	
ALK	NM_004304 exon18	c.3035C>T	p.T1012M	nonsynonymous SNV	chr2:820	1332	46.1%	rs35073634	NA	
ERBB4	NM_005235 exon24	c.2935C>G	p.R979G	nonsynonymous SNV	chr2:671	1177	45.2%	rs57419784	NA	
BARD1	NM_000465 exon4	c.722C>G	p.S241C	nonsynonymous SNV	chr2:5876	2397	46.06%	rs3738885	NA	
HIST1H2B	NM_021058 exon1	c.215A>G	p.E72G	nonsynonymous SNV	chr2:315	1660	47.89%	NA	NA	
KDM4C	NM_015061 exon18	c.2447G>A	p.R816Q	nonsynonymous SNV	chr2:7103707	1054	43.36%	rs180710573	NA	
ABL1	NM_007313 exon10	c.1601T>C	p.V534A	nonsynonymous SNV	chr2:5917	559	40.97%	rs776483252	NA	
NUP98	NM_0016320 exon11	c.1192A>G	p.S398G	nonsynonymous SNV	chr2:621	937	46.42%	rs14430269	NA	
PTPRO	NM_003067 exon17	c.2648A>T	p.Y895F	nonsynonymous SNV	chr2:3813	1553	49.45%	rs75952574	NA	
FANCA	NM_000135 exon42	c.4232C>T	p.P1411L	nonsynonymous SNV	chr16:5318	1230	45.61%	rs201494304	NA	
GTSE1	NM_016426 exon9	c.1688G>C	p.R563T	nonsynonymous SNV	chr2:2515	1135	47.84%	rs760482340	NA	
PCLO	NM_033026 exon2	c.1561C>G	p.P521A	nonsynonymous SNV	chr7:396	618	14.24%	NA	NA	
Table 2. Results of next generation gene sequencing after imatinib treatment. The oncogenic mutation (PRKG2-PDGFRA translocation) has disappeared.

A. Annotated variants

Gene	Refseq ID	Exon	DNA change	AA change	Func	ChrPos	Read depth	VAF	COSMIC	dbsSNP
MKI67	NM_002417	exon14	c.9670C>T	p.R3224W	nonsynonymous SNV	chr10:1298	2254	41.33%	COSM916078	rs754802357
ZNF24	NM_006965	exon3	c.427C>T	p.L143F	nonsynonymous SNV	chr18:3291	1447	44.3%	COSM5854150	rs148053646

B. Known variants

Gene	Refseq ID	Exon	DNA change	AA change	Func	ChrPos	Read depth	VAF	COSMIC	dbsSNP
MKI67	NM_002417	exon13	c.4991_4992del	frameshift insertion	chr10:1299	3486	2.35%	COSM916119	rs145960091	

C. Novel variants

Gene	Refseq ID	Exon	DNA change	AA change	Func	ChrPos	Read depth	VAF	COSMIC	dbsSNP
SDHC	NM_003001	exon2	c.25G>A	p.V9I	nonsynonymous SNV	chr1:16129	633	52.45%		rs77476866
ERBB4	NM_005235	exon24	c.2935C>G	p.R979G	nonsynonymous SNV	chr2:21228	1620	44.88%		rs574197848
BARD1	NM_000465	exon4	c.722C>G	p.S241C	nonsynonymous SNV	chr2:21564	2889	46.49%		rs3738885
FGFR4	NM_0002011	exon13	c.1817G>A	p.R606Q	nonsynonymous SNV	chr5:17652	243	48.56%		rs757092386
HIST1H2BJ	NM_002011	exon1	c.215A>G	p.E72G	nonsynonymous SNV	chr6:27100	2154	50.0%		NA
ABL1	NM_007313	exon10	c.1601T>C	p.V334A	nonsynonymous SNV	chr9:13375	718	42.9%		rs776483252
NUP98	NM_0016320	exon11	c.1192A>G	p.S398G	nonsynonymous SNV	chr11:3747	1283	45.91%		rs144302699
PTPRO	NM_0003667	exon17	c.2648A>T	p.Y895F	nonsynonymous SNV	chr12:1571	1521	48.06%		rs759525747
FANCA	NM_000135	exon42	c.4232C>T	p.P1411L	nonsynonymous SNV	chr16:8980	1747	46.48%		rs201494304
GTSE1	NM_0016426	exon9	c.1688G>C	p.R563T	nonsynonymous SNV	chr22:4672	1415	46.08%		rs760482340
RUNX1	NM_0001754	exon9	c.1270T>G	p.S424A	nonsynonymous SNV	chr21:3616	225	25.33%		NA
a compositionally activated fusion tyrosine kinase. The breakpoint of FIP1L1 has been observed at various positions, but the PDGFRA breakpoint is specific to exon 12, which encodes part of the protein-protein interaction module with two fully conserved tryptophans containing the JM region. As a result, automatic prohibition activities are suspended, leading to disruption of its autoinhibitory activity [9]. Although FIP1L1-PDGFR occurs in a small number of patients with phenotypic features of systemic mastocytosis or hypereosinophilic syndrome, the presence of this mutation reliably predicts complete hematological and molecular responses to imatinib therapy [10]. In addition, PDGFRA activation associated with chronic eosinophilic leukemia is described by karyotypically apparent fusion mutations such as KIF5B-PDGFRA (t(4;10)(q12p11)) [11], BCR-PDGFRA, t(4;22)(q12;q11) [12], and CDK5RAP2-PDGFR, ins(9;4) (q33q12q25) [13].

KIF5B is the third PDGFRB partner gene identified after BCR and FIP1L1, and encodes kinesin family member 5b, a microtubule-based motor involved in organ transport. The KIF5B protein is composed of three structural regions: an N-terminal region that hydrolyzes ATP and binds microtubules, a large central helicoid region, and a C-terminal region that interacts with other proteins, blood vessels, and membrane organs. The KIF5B-PDGFR fusion protein contains most of the first two structural domains of KIF5B, including six of the seven coil domains and the entire kinase domain of PDGFRA [11].

CDK5 regulatory subunit-related protein 2 (CDK5RAP2) encodes a protein that is thought to be involved in regulating the formation and stability of microtubules from the centrosome. A new mRNA in-frame fusion between exon 13 of the CDK5RAP2 gene, and truncated PDGFRA exon 12, were identified by rapid amplification of cDNA ends with the polymerase chain reaction. The CDK5RAP2-PDGFR4 protein, which is composed of 1,003 amino acids, preserves both the tyrosine kinase domain of PDGFRA and several potential dimerization domains of CDK5RAP2 [13]. In 1994, the Golub and Gililand groups described ETV6-PDGF fusion as the first of these fusion genes in patients with chronic myelomonocytic leukemia with eosinophilia and t(5;12) [14]. This gene encodes a protein that belongs to the serine/threonine protein kinase family of proteins. The encoded protein then binds to and inhibits the activation of several receptor tyrosine kinases. Alternate splicing results in multiple transcript variants encoding distinct isoforms whose regulatory N-termini differ in length but whose C-terminal catalytic domains are identical.

The PRKG2 gene encodes a protein that belongs to the serine/threonine protein kinase family of proteins. The encoded protein binds to and inhibits the activation of several receptor tyrosine kinases and plays a role in regulating fluid balance in the intestine. Membrane-bound proteins are regulators of the intestinal secretion, bone growth, and renal secretion. Diseases associated with PRKG2 include chromosome 4Q21 deletion syndrome and cystic fibrosis. Among its related pathways are Sertoli-Sertoli cell junction dynamics and signaling by G-protein coupled receptors [15]. The PRKG2-PDGFRB fusion gene associated with t(4;5)(q21;q33) has been reported previously in only a few patients that presented with systemic mastocytosis, basophilia, thrombocytopenia, and massive splenomegaly, with a myeloid neoplasm and PRKG2-PDGFRB rearrangement [16]. Our case, together with those cases in the literature, suggests an association between PDGFR-PRKG2 and basophilia without mastocytosis. Our patient responded well to imatinib therapy. Further studies are needed to determine if the PDGFR-PRKG2 fusion is harbored by basophils, which would suggest that cases may represent a distinct clonal disorder. In conclusion, this case highlights the fact that patients with PDGFR-PRKG2 fusion respond favorably to imatinib. Genetic analysis by NGS in ambiguous blood cancers is essential for identifying appropriate targeted treatment, and further research is warranted.

Correspondence to: Jong Gwon Choi
Department of Internal Medicine, Myunggok Medical Research Center, 158 Gwanjoedong-ro, Daejeon 35365, Korea

E-mail: jabuss@naver.com

Received on Jul. 31, 2021; Revised on Sep. 24, 2021; Accepted on Dec. 24, 2021

https://doi.org/10.5045/br.2022.202113

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

REFERENCES

1. Gatter KC, Warnke RA, Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press, 1991:177-8.

2. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev 2008;22:1276-312.

3. Heinrich MC, Corless CL, Duensing A, et al. PDGFR activating mutations in gastrointestinal stromal tumors. Science 2003;299:708-10.

4. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFR and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348:1201-14.

5. Jovanovic JV, Score J, Waghorn K, et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-
74 Letters to the Editor

Fig. 1. Pneumonia shown on chest radiograph and CT scan taken day 1 was completely gone on radiograph and CT scan taken day 78.

TO THE EDITOR: A 62-year-old lady visited the emergency room for diarrhea followed by fever in December 2020 when she had leukocytosis (187,400/μL with 72% neutrophils) and pneumonia predominantly at the lower lobes (Fig. 1). She looked relatively well with no respiratory distress in WHO performance score of I, but febrile up to 39.0°C. Pallor, jaundice, lymphadenopathy, and bleeding tendency were absent. Heart rate was rapid and regular without murmurs. Crackles were heard on the lung bases. The abdomen was scaphoid with a palpable spleen. The remainder of the physical exam was unremarkable. A diagnosis of chronic myeloid leukemia (CML) in the chronic phase was immediately made using peripheral blood polymerase chain reaction (PCR) for the BCR-ABL fusion gene and later by marrow study. Pneumonia was confirmed to be coronavirus disease 2019 (COVID-19) by reverse transcription (RT)-PCR of a nasopharyngeal swab for severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS CoV-2 RNA). Her fever ranged from 38.1 to 39.0°C, lasted for 3 days, and disappeared right after starting remdesivir. Following remdesivir treatment at 100 mg for five consecutive days, imatinib was started at 600 mg daily, higher than the usual dose, for the risk of leukostatic hemorrhage. The drug was continued and reduced to 400 mg QD on the 13th day as leukocyte count returned to normal (Fig. 2). She tolerated imatinib very well and the drug did not deteriorate the clinical course of COVID-19. She was COVID-19 positive via RT-PCR for 6 weeks and became negative when her pneumonia resolved. Pneumonia was completely gone after two and a half months (Fig. 1).

There has been concern about the susceptibility for con-