Inference From Complex Networks: Role of Symmetry and Applicability to Images

Enrico Capobianco*

Institute of Data Science and Computing, University of Miami, Coral Gables, FL, United States

Symmetry is a mathematical concept only partially explored in networks, especially at the applicative level. One reason is a certain lack of interpretable inference obtained from networks. While the network systemic associations (links) between entities (nodes) emerge from the underlying dependence structure, this latter is only partially explicit via the established direct interactors and remains to a certain extent latent (distant node predicted paths). Verifiability of significant hubs, connectors, paths, and modules allows to build a knowledge base useful to infer latencies and/or validate complex associations. When symmetry is searched in images, reflection, translation and rotation are applicable transformations in n-dimensional Euclidean space that computational algorithms target. There is symmetry when original and transformed images cannot be distinguished. Once collected together, such transformations form an automorphism group, indicating a stable and robust global characteristic. It is common to step from images to quantifiable features for conducting inference. Deep learning is typically used to classify whole images reconstructed from the myriads of features in which these images are decomposed. However, with images considered at multiple scales and locations, symmetries are valuable for describing local characteristics. Casting local features into a network framework enables their associations to be explored by similarity or dissimilarity criteria. This is quite intriguing because network configurations may display topological features and connectivity patterns associated with synchronization and symmetry that reduce the redundancy of features to more compact functional descriptions. Then, identifying anomalies from unusual events, behaviors, patterns would spot network vulnerabilities and signs of symmetry breaking.

Keywords: networks, entropy, symmetry, controllability, synchronization, deep learning

INTRODUCTORY REMARKS AND METHODOLOGICAL BACKGROUND

In physical systems, symmetry commonly means invariance. Therefore, this is like to say that a system looks the same from different observation angles. Equivalently, due to the presence of intrinsic regularities, a system’s characteristic may be an observable output in correspondence with multiple interrelated inputs. As symmetries influence the system’s functionality and models allow the interpretation of the function dynamics, a general concern is model misspecification. This implies that an inference model \( m \) applied to sample data \( x \in X \) may fail due to the wrong
choice of model family $M(x, \theta)$ characterized by parameters $\theta \in \Theta$ and likelihood function $L(\theta | x)$. For example, the identifiability of parameters may be violated. Among other possible reasons, parameter non-identifiability may occur due to the presence of symmetry [1].

Formally, symmetry indicates a type of invariance such that a mathematical object remains unchanged under a set of transformations. For instance, a symmetry of a function is a transformation of the function that leaves its graph unchanged. More in general, a symmetry maps an object onto itself, thus preserving its structure. In mathematical terms, a symmetry $s: \theta \rightarrow \hat{\theta}$ is a measurable function that makes $\hat{\theta}$ in a model no longer identifiable from the given data $x$. The natural way to obviate to this effect of symmetry is to re-parameterize the model, i.e., $\theta \rightarrow \psi$, with $\psi \in \Psi$. Alternatively, one can constrain the parameters, i.e., $\theta \rightarrow \theta^\circ$. In such cases, the recourse to “symmetry breaking” solutions can be needed to augment the performance of inferential algorithms. Symmetry breaking implies that small system's fluctuations vary beyond established thresholds and that the system may cross a critical point due to the variation governing its state dynamics. Overall, this determines the system's fate because once such transition occurs, it may orient the system toward a different state compared to the initial one.

There are several types of symmetries, the most common being permutations. Some symmetries are local and grouping them leads to transformations that change the system in different ways at different places in space and time. Instead, a symmetry is global if it acts similarly at every point. The fact that for a global symmetry the corresponding parameter is constant explains why symmetry the corresponding parameter is constant explains why.
in finite time [12, 13]. This possibility can be verified quite straightforwardly in linear time-invariant systems by the so-called Kalman’s rank condition. In particular, given a canonical system \(dx = Ax + Bv\), with state vector \(x\), and \(A\) and \(B\) as state and control parameter matrices, respectively, the requirement is: \(\text{rank}[B, AB, …, A^{P-1} B] = P\). Naturally enough, a complication is when the system’s parameters are unknown. Furthermore, a common strategy to establish network controllability turns to the identification of a minimal set of driver nodes. This implies that controlling this set allows to exert control over the entire system [14].

With reference to symmetry, what reported in [15] is relevant for the focus on network controllability but considering the impact of individual rather than global dynamics, thus departing from network topology. In real-world networks, assumptions like the independence of parameters must be relaxed to face the presence of dependence and even interdependence structure. Thus, a global symmetry aspect is a characteristic to consider in assessing both single and combined networks, and establishing the highest possible controllability, i.e., the lowest number of critical nodes, becomes a primary goal in applications. Intuitively, specific hub or module dynamics may remain locally informative but become less relevant for controllability scopes compared with the densities at which they present at network scale, which reflects their possible influence. Figure 1 reconciles the main concepts in this section.

Nevertheless, real networks complexity may be reduced by considering node-specific hidden variables that once transformed may reveal latent symmetries. Such transformations may extend to statistical ensembles designed through families of stochastic networks [16]. For the networks partition \(N = [N_1, N_2, …, N_Q]\) and the associated probabilities assigned to each of them \(Pr(N) = [Pr(N_1), Pr(N_2),…,Pr(N_Q)]\), it holds that \(\sum N Pr(N) = \sum_q \Pr(N_q) = 1\) for \(q = 1, Q\). These networks will be stochastically symmetric under a transformation if each member network has the same properties under the transformation. An associated entropy optimization problem is the one searching for the \(Pr(N)\) that maximizes the Shannon-Gibbs entropy:

\[
E_{SG} = -\sum_N Pr(N)\log Pr(N)
\]

This problem usually involves a topologically constrained network, particularly when the ensemble network functions as a null model (more details on probability functions and entropies can be found in [8]).

**COMPUTATIONAL ASPECTS OF NETWORK SYMMETRY**

Symmetry exerts several types if influences (see Figure 2). A first main question generally addressed is how to quantify the redundancy that is due to the presence of symmetry in a network. One way is through the compression ratio [17], a measure that compares the full network \(N\) to its quotient \(Q\) (counting one node per orbit) computed in two possible ways as either:

\[
C^1 r = (n_N/n_Q)^2
\]

where the ratio is between the number of nodes \(n_N\) and the number of orbits \(n_Q\) in the full network, or

\[
C^2 r = l_N/l_Q
\]

this time with edges \(l_N\) and \(l_Q\) (representing average connectivity) used in a sparse network.

It is between these two measures that the redundancy of an arbitrary network can fluctuate. A direct compression of symmetry is also possible, through the quotient matrix \(Q(A)\), obtained from the adjacency matrix \(A\) and the characteristic matrix \(S\) (i.e., referred to the network partition associated to the quotient):

\[
Q(A) = S^T AS
\]

Importantly, symmetry leaves also a spectral signature through the presence of peaks in the spectral density, to which redundant eigenvectors are associated, i.e.,

\[
\rho(\lambda) = 1/N \sum_{i=1,N} \delta(\lambda - \lambda_i)
\]

or a sum of Dirac delta functions with \(\lambda_i\) as the largest eigenvalue [4]. When the spectrum of a network adjacency matrix is considered, symmetries differentiate according to whether a symmetric structure is present, for then the eigenvalues can be decomposed into two classes: a) with redundant eigenvalues, in correspondence to eigenvectors localized on the symmetric structure and b) with non-redundant eigenvalues, i.e., whose eigenvectors have identical values in all elements that correspond to nodes in the same orbit. As an alternative, similar results were obtained for the Jacobian matrix in a food web model [18].

Looking beyond partitions from nodes to orbits, one can consider equitable partitions in which two node clusters have a special relationship, one in which each node of one cluster has exactly the same number of neighbor nodes in the other cluster. Interestingly, this complementary partition has relevance for synchronous patterns, as in both types of partitions nodes in the same cluster can synchronize and in different clusters cannot [19].

It is consolidated nowadays as a practice the fact to extensively use Deep Learning (DL) in image applications. It is rarer to find symmetry at the core of studies, despite the relevance [20]. An interesting study [21] of generative adversarial networks (GAD) has exploited horizontal symmetry (usually not considered in such form) by adopting two methods, one checking what symmetry loss allows generated images and flipped versions to be classified the same way, and another that inverts the flipped images aiming at reconstructing with minimal distortion. Another convolutional neural
neural networks (CNN) study [22] inspired by primary visual cortex processes has investigated the impact of symmetry constraints in convolutional layers for image classification. As a result, similar performance was found in a setting with reduced number of parameters due to replacement of random weights by symmetry constraints during backpropagation.

Interestingly, the imposition of symmetry constraints to reduce the number of parameters was assessed in another study [23] in which accuracy loss was absolutely limited even in overparameterized settings (both CNN and recurrent neural networks or RNN) from CIFAR, ImageNet etc. As a general remark, data paucity and non-standard statistical settings (non-independently identically distributed, unsupervised etc.)
have suggested to embed learning architectures with invariance under symmetry transformations. In a study [24] on probabilistic symmetry, a link with functional symmetry was established such that the structure of networks could be completely characterized by invariance usable to construct both stochastic and deterministic solutions.

Different applications have been presented by two further studies. One study [25] was centered on a spreading model in a setting of multilayer networks that considers non-equilibrium phase transition when either susceptible-infected-susceptible or susceptible-infected-recovered spreading dynamics being integrated. Using a biased diffusion process among different layers, the discontinuous transition goes together with a spontaneous symmetry breaking in occupation probabilities of individuals in each layer. Another interesting study [26] was proposed on the symmetry of weighted brain networks to decipher the roles of individual brain areas and the redundancy of connectivity. The structural symmetry of every pair of nodes in the network was quantified by the isomorphism of the residual graphs. Then, fMRI was performed on subjects with a condition, i.e., inattentive type of Attention Deficit Hyperactivity Disorder, showing the emergence of higher level of network symmetry compared to the development group. As a methodological note, symmetry levels threshold-sensitivity was observed.

**IMAGE NETWORKS AND ROLE OF SYMMETRY**

Radiomics [27–29] promotes the role of images as mineable data [30]. These are features providing the medical imaging community with a wealth of quantitative information usable for diagnosis, therapy evaluation, patient risk profiling and stratification. The literature of radiomics is dense of applications centered on pipelines that leverage machine learning (ML) implementation of feature selection and image fusion methods. Especially the DL community found in radiomics a precious source of data and a testing ground for ML and statistical methods. In turn, the advent of this discipline has stimulated increasingly integrative research on cancer biology, genomics and clinics with unprecedented scale and resolution depth [31]. Thus, it has become possible to investigate the complex hierarchical organization of medical images.

The key factor is designing DL and ML solutions targeted to a synthesis of various types of measurements and predictions, either assembled together in the attempt to concentrate information or distributed across network layers in order to reconcile all the differently channeled information into scores. These two types of approach, concentric one and distributed the other, may present quite different symmetry scenarios, despite a differentiation occurs according to the achievable precision, thus depending on imaging technologies and combination of modalities together with data gaps.

From a modeling standpoint, and by keeping symmetry in mind, transfer learning (TL) [32–36] and ensemble modeling (EM) seems especially relevant. The TIL’s paradigm is that features may be learned in a certain application domain and then applied to different domains. The role of symmetry could be an important criterion to judge generalizability first and feasibility after, for then leaving to the ability of TL leveraging other similarity aspects (related or not to symmetry). EM seems to match well the distributed approach discussed earlier by suggesting strategies for weighting scores and predictions from different models. However, data features gathered at a variety of spatiotemporal resolutions are hard to integrate into interpretable predictive models. Quite evidently, there is strong need to identify and measure heterogeneity in spatial and time, and then cross-correlate all types of imaging features.

Structural symmetry is central to human brain functions and thus the functional activities of areas that are symmetric at an anatomic level can be strongly correlated, even if the areas are distant in space. Experiments in [9] studied symmetry in the human brain via coupled anatomical (DW-MRI data) and functional (fMRI) connectivity graphs defined on the same set of 90 cortical areas. Interestingly from a network standpoint the fact the relevance of anatomical symmetry in neural synchronization because determining correlated functional modules across distant locations. At one end anatomically symmetric regions obtained via clustering of nodes with phase at stationary state, at the other end a functional network with links indicating statistically significant correlations between the time-series of cortical areas. For two nodes in spatially separated regions showing no anatomical connection it appeared symmetry and strong synchronization from fMRI. For other two nodes from spatially adjacent regions and anatomically connected a gap in phase emerged together with lack of fMRI synchronized patterns.

In an interesting study [37], non-contrast (nc) CT images with follow-up magnetic resonance diffusion-weighted (MR-DW) images have supported evidence on the differentiation between ischemic and healthy brain tissue through quantification of symmetry. Stroke spots were identified by spatially aligning MR-DW images to the corresponding ncCT images. An interesting observation is that three methods (AdaBoost, Support Vector Machines, Decision Trees) were used to classify, but a basic limitation in terms of accuracy remained when comparing the textures only between the stroke lesions while considering as normal the contralateral regions. Despite the symmetrical acute strokes would be uncommon, other ischemic lesions or pathologies might be present in the contralateral region and require selection of features ad hoc for differentiating stroke regions from normal ones.

In the above example networks were not used, but in general our ability to carry or block information through a network depends on its topology. Especially when the conductivity or information transfer is considered then spatial symmetry becomes central together with its density or average number of links per node and topological dimension [38]. Therefore, an alternative method of classification ideally fitting the experiments in would involve encoding equivariance in learning [39]. In order to approximate invariance to a class of transformations of the input, a neural network would need training via with data augmentation (see [40], and related references in this work). With enough capacity, the network may learn such invariances but without guarantee of generalization.
The specific patterns of synchronization detectable in a network provide information about the underlying couplings dynamics and when considered in all their relationships can well characterize the system under study. Even with non-linear dynamics interaction regimes become identifiable and the network structure inferable from similarity and connectivity. Co-existing complex synchronized dynamics male a network stable and robust against external factors (stressors/perturbations) and heterogeneous motifs are probes for functional connectivity, particularly when stable as they become an invariant feature (i.e., consistency of synchronization patterns). Thus, the relationship between network symmetries and the consistency of the synchronization patterns, particularly with coupling inducing global synchronization and resulting in symmetrical networks reflected onto functional ones, as shown in the brain context (see [11] for all details and related references).

**DISCUSSION**

We keep a final point for discussion. Identifying anomalies from unusual events, behaviors, patterns can be useful to spot network vulnerabilities and may reveal presence of symmetry breaking. Conversely, the control of large dynamical complex networks may depend on the identification of just a few input nodes or modules. Therefore, by keeping in mind what the targets are, the results from exerting control through networks can be quite sufficiently achievable, although only approximately.

The identification of symmetries in a complex network remains important in order to decipher its organizational principles and rules. It is key to understand the role of symmetries in reconstructing or controlling network dynamics [41]. It is important to decompose a network in two possible ways: one into observable/controllable vs. unobservable/uncontrollable sub-networks, and another one into symmetry-driven vs. non-symmetry-driven sub-networks. Finally, it is key to study how network components synchronize or desynchronize because network functionalization depends on such coupled dynamics. Naturally enough, the problems are always much harder in non-linear networks as observability and controllability must deal with more complex dependence relationships.

The last considerations go to the application domain. Symmetry has several impacts on very transformative fields like robotics, computer vision, computer graphics, medical image analysis, radiomics all characterized by coupling artificial intelligence and machine learning with geometry, group theory, graphs, statistics etc. Recognizing symmetries is instrumental to the retrieval of structure from redundant noisy systems, therefore a statistical problem too, which brings in lots of other applications and many possible model frameworks (see for instance examples from network medicine applied to cancer data of various complexities [31]).

**DATA AVAILABILITY STATEMENT**

The original contributions presented in the study are included in the article/supplementary materials, further inquiries can be directed to the corresponding author/s.

**AUTHOR CONTRIBUTIONS**

The author confirms being the sole contributor of this work and has approved it for publication.

**FUNDING**

Support for study & research activity in network science is acknowledged from NIH AWD-005216 GRANT GR013673 and NSF 19-500 GRANT; DMS 1918925/1922843 (years 2019-22).

**ACKNOWLEDGMENTS**

The author thanks colleagues and scholars for deep discussion on these topics at participated seminars and talks. The author thanks two reviewers for their comments on a first draft of the paper. Support for study & research activity in network science is acknowledged from NIH AWD-005216 GRANT GR013673 NSF-NIH grant DMS-1922843.

**REFERENCES**

1. Nishihara R, Minka T, Tarlow D. Detecting parameter symmetries in probabilistic models. arXiv [Preprint] arXiv:1312.5386v1 (2013).
2. Sevim V, Rikvold PA. Effects of preference for attachment to low-degree nodes on the degree distributions of a growing directed network and a simple food-web model. Phys Rev E Stat Nonlin Soft Matter Phys. (2006) 73(5 Pt 2):056115. doi: 10.1103/PhysRevE.73.056115
3. Xiao Y, MacArthur BD, Wang H, Xiong M, Wang W. Network quotients: structural skeletons of complex systems. Phys Rev E. (2008) 78:046102. doi: 10.1103/PhysRevE.78.046102
4. MacArthur BD, Sanchez-Garcia RJ. Spectral characteristics of network redundancy. Phys Rev E (2009) 80:026117. doi: 10.1103/PhysRevE.80.026117
5. Wang H, Yan G, Xiao Y. Symmetry in world trade network. J Syst Sci Complex. (2009) 22:280–90. doi: 10.1007/s11424-009-9163-9
6. Xiao YH, Wu WT, Wang H, Xiong M, Wang W. Symmetry-based structure entropy of complex networks. Phys A. (2008) 387:2611–19. doi: 10.1016/j.physa.2008.01.027
7. Garrido A. Symmetry in complex networks. Symmetry. (2011) 3:1–15. doi: 10.3390/sym3010001
8. Garlaschelli D, Ruzzenenti F, Basosi R. Complex networks and symmetry I: a review. Symmetry. (2010) 2:1683–709. doi: 10.3390/sym2031683
9. Nicosia V, Valencia M, Chavez M, Diaz-Guilera A, Latora V. Remote synchronization reveals network symmetries and functional modules. Phys Rev Lett. (2013) 110:174102. doi: 10.1103/PhysRevLett.110.174102
10. Pecora LM, Sorrentino F, Hagerstrom AM, Murphy TE, Roy R. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat Commun. (2014) 5:4079. doi: 10.1038/ncomms5079
11. Malagarriga D, Villa AEP, Garcia-Ojalvo J, Pons AJ. Consistency of heterogeneous synchronization patterns in complex weighted networks. Chaos. (2017) 27:031102. doi: 10.1063/1.4977972
12. Kalman RE. Mathematical description of linear dynamical systems. J SIAM Control Ser A. (1963) 1:152–92. doi: 10.1137/0301010
13. Luenberger DG. Introduction to Dynamic Systems: Theory, Models and Applications. New york, NY: John Wiley & Sons, Inc., (1979). p. 446.
14. Liu YY, Slotine JJ, Barabasi AL. Controllability of complex networks. Nature. (2011) 473:167–73. doi: 10.1038/nature10011
15. Zhao C, Wang WX, Liu YY, Slotine JJ. Intrinsic dynamics induce global symmetry in network controllability. Sci Rep. (2015) 5:8422. doi: 10.1038/srep08422
16. Marras E, Travaglione A, Capobianco E. Sub-modular resolution analysis by network mixture models. Stat Appl Genet Mol Biol. (2010) 9:19. doi: 10.2202/1544-6115.1523
17. Garcia RJS. Exploiting symmetry in network analysis. Commun Phys. (2020) 3:87.
18. Aufderheide H, Rudolf L, Gross T. Mesoscale symmetries explain dynamical equivalence of food webs. New J Phys. (2012) 14:105014. doi: 10.1088/1367-2630/14/10/105014
19. Siddique AB, Pecora L, Hart JD. Symmetry and input cluster synchronization in networks. Phys Rev E. (2018) 97:042217. doi: 10.1103/PhysRevE.97.042217
20. Griffin LD. Symmetries of 1-D Images. J Math Imaging Vis. (2008) 31:157–64. doi: 10.1007/s10851-008-0078-1
21. Makkapati V, Patro A. Enhancing Symmetry in GAN Generated Fashion Images. Cambridge: Springer International Publishing (2017). p. 405–10. doi: 10.1007/978-3-319-71078-5_34
22. Dzhezyan G, Cecotti H. SymNet: symmetrical filters in convolutional neural networks. arXiv. (2019) 187:102786.
23. Hu SX, Zagoruyko S, Komodakis N. Exploring weight symmetry in deep neural networks. Comput Vis Image Und. (2019) 187:102786. doi: 10.1016/j.cviu.2019.07.006
24. Bloem-Reddy B, Teh YW. Probabilistic symmetry and invariant neural networks. arXiv [Preprint] arXiv:1901.06082v1 (2020).
25. An N, Chen H, Ma C, Zhang H. Spontaneous symmetry breaking and discontinuous phase transition for spreading dynamics in multiplex networks. New J Phys. (2018) 20:125006. doi: 10.1088/1367-2630/aaaf60
26. Hu C, El Fakhri G, Li Q. Evaluating structural symmetry of weighted brain networks via graph matching. Med Image Comput Comput Assist Interv. (2014) 17(Pt 2):733–40. doi: 10.1007/978-3-319-10470-6_91
27. Lambin P, Rios-Velasquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. (2012) 48:441–6. doi: 10.1016/j.ejca.2011.11.036
28. Parekh V, Jacoby MA. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev. (2016) 1:207–26. doi: 10.1080/23808993.2016.1164013
29. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169
30. Hosny A, Parmar C, Coreller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLOS Med. (2018) 15:e1002711. doi: 10.1371/journal.pmed.1002711
31. Capobianco E, Dominietto M. From medical imaging to radiomics: role of data science for advancing precision health. J Pers Med. (2020) 10:15. doi: 10.3390/jpm10010015
32. Sevakula RK, Singh V, Verma NK, Kumar C, Cui Y. Transfer learning for molecular cancer classification using deep neural networks. IEEE/ACM Trans Comput Biol Bioinform. (2019) 16:2089–100. doi: 10.1109/TCBB.2018.2822803
33. Kensen A, Harrison PJ, Sjouwstra C, Franco I, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Res. (2019) 25:11. doi: 10.1158/1078-0432.CCR-18-2495
34. Xu Y, Hosny A, Zaleznik R, Parmar C, Coreller T, Franco I, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Res. (2019) 25:11. doi: 10.1158/1078-0432.CCR-18-2495
35. Matus JD, Britto AD, Oliveira LES, Koerich AL. “Double Transfer Learning for Breast Cancer Histopathologic Image Classification,” In: 2019 International Joint Conference on Neural Networks (IJCNN), Budapest 2019. 1–8. doi: 10.1109/IJCNN.2019.8852092.
36. Yang Y, Yan LF, Zhang X, Han Y, Nan HY, Hu YC, et al. Glioma grading on conventional MR images: a deep learning study with transfer learning. Front Neurosci. (2018) 12:804. doi: 10.3389/fnins.2018.00804
37. Peter R, Korfakiats, P, Blezek D, Betia AO, Stepans-Busakowska I, Horinek D, et al. A quantitative symmetry-based analysis of hyperacutec ischemic stroke lesions in noncontrast computed tomography. Med Phys. (2017) 44:192–9. doi: 10.1002/mp.12015
38. Zhukov DO, Andrianova EG, Lesko SA. The influence of a network’s spatial symmetry, topological dimension, and density on its percolation threshold. Symmetry. (2019) 11:920. doi: 10.3390/sym11070920
39. Sander Dielemann S, Fauve J, Kavukcuoglu K. Exploiting cyclic symmetry in convolutional neural networks. JMLR’16: Proceedings of the 33rd International Conference on Machine Learning (New York, NY, 2016) p. 1889–98.
40. Whalen AJ, Brennan SN, Sauer TD, Schift SJ. Observability and controllability of nonlinear networks: the role of symmetries. Phys Rev X. (2015) 5:011005. doi: 10.1103/PhysRevX.5.011005
41. Capobianco E. Next generation networks: featuring the potential role of emerging applications in translational oncology. J Clin Med. (2019) 8:E664. doi: 10.3390/jcm8050664

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Capobianco. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.