Differences between mean-field dynamics and \(N\)-particle quantum dynamics as a signature of entanglement

Christoph Weiss\(^1\) and Niklas Teichmann\(^2\)

\(^1\)Laboratoire Kastler Brossel, École Normale Supérieure, Université Pierre et Marie-Curie-Paris 6, 24 rue Lhomond, CNRS, F-75231 Paris Cedex 05, France
\(^2\)Institut Henri Poincaré, Centre Emile Borel, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France

(Dated: Submitted: 27 July 2007, published 10 April 2008)

A Bose-Einstein condensate in a tilted double-well potential under the influence of time-periodic potential differences is investigated in the regime where the mean-field (Gross-Pitaevskii) dynamics become chaotic. For some parameters near stable regions, even averaging over several condensate oscillations does not remove the differences between mean-field and \(N\)-particle results. While introducing decoherence via piecewise deterministic processes reduces those differences, they are due to the emergence of mesoscopic entangled states in the chaotic regime.

PACS numbers: 03.75.Gg, 05.45.Mt, 74.50.+r

Keywords: Chaos, mesoscopic entanglement, Bose-Einstein condensation

Experimentally it is possible to generate precisely controllable double-well potentials for Bose-Einstein condensates (BECs) (Ref. \(^1\) and references therein). A future goal for this system is the realization of mesoscopic entangled states in the chaotic regime.

\[H = -\frac{\hbar \Omega}{2} (\hat{a}_1 \hat{a}_2 + \hat{a}_1^\dagger \hat{a}_2^\dagger) + \hbar \kappa (\hat{a}_1^\dagger \hat{a}_1 \hat{a}_2^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_2 \hat{a}_1^\dagger \hat{a}_1) + \hbar (\mu_0 + \mu_1 \sin(\omega t)) \left(\hat{a}_2^\dagger \hat{a}_1^\dagger - \hat{a}_1 \hat{a}_2 \right), \] (1)

where \(\hat{a}_j\) creates (annihilates) a boson in well \(j\); \(\mu_0\) models the tilt and \(\mu_1\) the driving amplitude. Such Hamiltonians have been used for schemes of entanglement generation \(^{17,18}\); without the periodic driving, entanglement has been investigated in BECs \(^{19,20}\). Other applications include high precision measurements, many-body quantum coherence \(^{21,22}\) and spin systems \(^{23}\).

On the level of the Gross-Pitaevskii equation for the above model, a wave function is characterized by the variables \(\theta\) and \(\phi\), where \(\cos^2(\theta/2) \sin^2(\theta/2)\) is the probability of finding the condensate in well 1 (well 2) and \(\exp(i\phi)\) is the phase between the two wells. The corresponding \(N\)-particle wave-function ("atomic coherent states") \(^{24}\) with all particles in this state reads (in an expansion in the Fock-basis \(|n, N-n\rangle\) with \(n\) atoms in well 1):

\[|\theta, \phi\rangle = \sum_{n=0}^{N} \binom{N}{n}^{1/2} \cos^n(\theta/2) \sin^{N-n}(\theta/2) \times e^{i(N-n)\phi} |n, N-n\rangle. \] (2)

The mean-field dynamics can be mapped to that of a nonrigid pendulum \(^{15,22}\); including periodic driving the Hamilton function reads (\(z = \cos^2(\theta/2) - \sin^2(\theta/2)\)):

\[H_{mf} = \frac{N \kappa}{\Omega} \frac{z^2}{2} - \sqrt{1 - z^2} \cos(\phi) \]
\[- 2z \left(\frac{\mu_0}{\Omega} + \frac{\mu_1}{\Omega} \sin(\frac{\pi}{2} \tau) \right), \quad \tau = t \Omega. \] (3)

The experimentally measurable \(^{11}\) population imbalance \(z/2\) can be used to characterize the mean-field dynamics. Fig. \(^{11}\) shows typical Poincaré surfaces of section. The initial parameters were chosen such that tunneling
in the driven, tilted double-well potential is enhanced by “photon”-assisted tunneling [26] (cf. Ref. [27]). If the interaction is not too low ($N\kappa/\Omega \gtrsim 0.4 \ldots 0.6$), regular and chaotic dynamics coexist (Fig. 1a cf. 28), for low interaction the dynamics are regular (Figs. 1 b and 1c).

For the parameters corresponding to the Poincaré surface of section in Fig. 1a, Fig. 2a displays the differences between N-particle and mean-field dynamics by numerically calculating (using the Shampine-Gordon-routine [29]) the time-average of the (experimentally measurable [1]) population imbalance $\langle J_z \rangle / N$ which corresponds to the mean-field $\langle z/2 \rangle$:

$$\frac{\langle J_z \rangle}{N} = \frac{1}{NT} \int_0^T dt \frac{1}{2} \langle \psi | \hat{a}_1^\dagger \hat{a}_1 - \hat{a}_2^\dagger \hat{a}_2 | \psi \rangle ,$$

(4)

where for $\langle J_z \rangle / N = \pm 0.5$ the entire condensate is in the left, respectively, right well. Each point represents an initial condition [2]. The differences are small if the mean-field dynamics are regular (cf. Fig. 1a) while they can be rather large in the chaotic regime (up to half the theoretical limit, $\max\{|z/2 - \langle J_z \rangle / N|\} = 1$). Most of the deviations between N-particle dynamics and mean-field dynamics in Fig. 2a lie within twice the root-mean-square (r.m.s.)-fluctuations of the N-particle dynamics. However, contrary to the preliminary results of Ref. [13], for many initial conditions in the (classically) chaotic regime the differences can be very small; they are large near the boundaries of stable regions.

In Fig. 2b, the time-averaged r.m.s.-fluctuations of $\langle J_z \rangle / N$ reproduce many features displayed in the Poincaré section in Fig. 1a. Note that the values for the r.m.s.-fluctuations are well above those expected for $N = 100$ particles in an atomic coherent state, $\sin(\theta)/(2\sqrt{N}) \leq 0.05$, thus clearly indicating that more than one atomic coherent state is involved. Bose-Einstein condensates of $N \approx 100$ have been realized experimentally [30], both the validity of the two-mode approximation will be better and life-times of mesoscopic entangled states will be longer than in larger condensates. However, even when the calculation is repeated for $N = 1000$ particles, the differences in the chaotic regime remain. As the (non-linear) Gross-Pitaevskii equation does not allow any superpositions, decoherence should reduce the differences between mean-field and quantum dynamics.

In this Letter, we use a piecewise deterministic process (PDP) (Ref. [31], cf. [32]) to model decoherence. To avoid to have to introduce decoherence also on the mean-field level (the atomic coherent states [2]) become orthogonal in the limit $N \to \infty$, we use the projection on the atomic coherent states [24]:

$$1 = \frac{N + 1}{4\pi} \int d\theta \sin(\theta) \int d\phi \langle \theta, \phi \rangle \langle \theta, \phi \rangle .$$

(5)

Now, the PDP simplifies to having jumps on one of the atomic coherent states [2] after time t with probability

$$p_{\text{jump}} = 1 - \exp(-\alpha t) , \quad \alpha = \text{const.} > 0 ,$$

(6)

and Hamiltonian dynamics [1] between jumps. The state on which the wave-function is projected is determined by the probability distribution

$$p_{\theta, \phi} d\Omega = \frac{N + 1}{4\pi} |\langle \psi | \theta, \phi \rangle|^2 \sin(\theta) d\theta d\phi .$$

(7)
by the curves (to the mean-field dynamics. Many dots lie in the area defined
regime: Fig. 4 shows that, at least for
\(\Delta J_z \) reaches 5). A perfect agreement cannot be expected as the
peaks of the differences between mean-field and quantum dynamics by a factor of
therein). This decreases the peaks of the differences between mean-field and quantum
distribution (7) (see Fig. 4, cf. Refs. [2, 35] and references
To numerically identify if a given wave-function \(\psi \) is in a mesoscopic superposition, we start by searching the
atomic coherent states (2) are
states (see the explanation before Eq. (2)): \[|\psi_{sp}\rangle = \eta \left(|\theta_1, \phi_1 \rangle + e^{i\gamma}|\theta_2, \phi_2 \rangle \right) , \ 0 \leq \gamma \leq 2\pi \]
If both parts hardly overlap, \(|\langle \theta_1, \phi_1 |\theta_2, \phi_2 \rangle | \ll 1 , \) the normalization \(\eta \approx 1/\sqrt{2} \) and \(|\psi_{sp}\rangle \) is a highly entangled
expected as the averaged probability distribution on the mean-field level is always added whereas in quantum mechanics also
destructive interference can occur.

On the level of quantum dynamics, the differences could be due to either a distribution of many atomic
cohert states - or maybe even mesoscopic superpositions.
For our model all mesoscopic quantum superpositions of all \(N \) particles being either in one quantum state or in
another can be expressed as a sum of two atomic coherent

\[\langle \theta_1, \phi_1 \rangle \text{ and } |\theta_2, \phi_2 \rangle \text{ should hardly overlap, the second maximum } m_2 = (|\psi|\theta_2, \phi_2 \rangle |^2 \text{ is searched out}
outside the set R1. The set R2 is defined analogously to R1 by \(|\langle \theta, \phi |\theta_1, \phi_1 \rangle |^2 > 10^{-3} \text{ (cf. Fig 5c)}\). As both parts of the
mesoscopic superposition |\psi\rangle = |0, \phi_1 \rangle \text{ and } |\pi, \phi_2 \rangle \rangle \text{ (cf. Fig 5c)}\) such a state is a
bimodal distribution (for \(N \to \infty \): two delta-peaks).

To numerically identify if a given wave-function \(\psi \) is in a mesoscopic superposition, we start by searching the
atomic coherent state \(|\theta_1, \phi_1 \rangle \) for which \(|\langle \psi |\theta, \phi \rangle |^2 \) reaches its maximum, \(m_1 \). Around \(|\theta_1, \phi_1 \rangle \rangle \text{ we define the set R1}
by \(|\langle \theta, \phi |\theta_1, \phi_1 \rangle |^2 > 10^{-3} \text{ (cf. Fig 5c)}\). As both parts of the
mesoscopic superposition \(|\psi\rangle \rangle \text{ should hardly overlap, the second maximum } m_2 = (|\psi|\theta_2, \phi_2 \rangle |^2 \text{ is searched out}
outside the set R1. The set R2 is defined analogously to R1 by \(|\langle \theta, \phi |\theta_2, \phi_2 \rangle |^2 > 10^{-3} \). The fidelity \(|\langle \psi |\psi_{sp} \rangle |^2 \) still is a function of \(\gamma \), taking its maximum and excluding large
overlaps (\(R1 \cap R2 \neq \emptyset \)) yields:
\[p_{\text{fid}} = \begin{cases} 0 & : R1 \text{ and R2 overlap} \\ \frac{1}{2} (\sqrt{m_1} + \sqrt{m_2})^2 & : \text{else} \end{cases} \]

Yet, this only indicates entanglement if \(p_{\text{fid}} > 0.5 \). With
\[\sigma_{\text{ent}} = \frac{m_2}{m_1} p_{\text{fid}}, \quad \sigma_{\text{ent}} \leq p_{\text{fid}} \]
even values of \(\sigma_{\text{ent}} \leq 0.5 \) can identify mesoscopic superpositions (Fig. 5c). In Fig. 5a, the maximum value of
entanglement (evaluated at \(\tau = 5 \) and 10) is plotted as a function of the initial condition \((\theta_0, \phi_0)\) within the
chaotic regime (left), entanglement generation happens on faster time-scales than in the regular regime (right); for longer time-scales (Fig. 5b) the entanglement in the
entire chaotic regime is more pronounced. It reaches particularly high values near initial conditions with large
differences in the time-averaged population imbalances.
at times \(\tau\) in Fig. 1.a (left column) and as in Fig. 1.c (right column).

FIG. 5: (color online) Entanglement (10) for parameters as in Fig. 2.a. We obtained qualitatively similar results also for larger BECs.

To conclude, generation of mesoscopic entangled states can be a signature of quantum chaos for a BEC in a periodically driven double well potential. We investigated the driving near multi-“photon” tunneling resonances [29] which were recently observed experimentally for a BEC in an optical lattice [30]. While decoherence can lead to a “chaotic” behavior similar to the predictions of the Gross-Pitaevskii equation, the differences between quantum dynamics and mean-field dynamics are due to the emergence of mesoscopic superpositions. If the mean-field dynamics are chaotic, the entanglement generation is accelerated and its values are enhanced.

We thank H. P. Breuer, Y. Castin, A. Eckardt and M. Holthaus for insightful discussions. Funding by the EU is gratefully acknowledged (CW: contract MEIF-CT-2005-019755).

* Electronic address: weiss@theorie.physik.uni-oldenburg.de

References

[1] R. Gati and M. K. Oberthaler, J. Phys. B 40, R61 (2007).

[2] R. Uttermann et al., Phys. Rev. E 49, 273 (1994).

[3] F. K. Abdullaev and R. A. Kraenkel, Phys. Rev. A 62, 023613 (2000).

[4] S. Ghose et al., Phys. Rev. E 64, 056119 (2001).

[5] C. Lee et al., Phys. Rev. A 64, 053604 (2001).

[6] F. L. Moore et al., Phys. Rev. Lett. 75, 4598 (1995).

[7] M. B. d’Arcy et al., Phys. Rev. Lett. 87, 074102 (2001).

[8] C. E. Creffield et al., Phys. Rev. E 73, 066202 (2006).

[9] F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 1992).

[10] H.-P. Breuer et al., Phys. Rev. E 61, 4883 (2000).

[11] I. Garcia-Mata et al., Phys. Rev. Lett. 98, 120504 (2007).

[12] S. Ghose and B. C. Sanders, Phys. Rev. A 70, 062315 (2004).

[13] D. Braun, Dissipative Quantum Chaos and Decoherence (Springer, Berlin, 2001).

[14] M. Greiner et al., Nature 419, 51 (2002).

[15] N. Teichmann et al., Nonlinear Phenomena in Complex Systems 9, 254 (2006).

[16] H. J. Lipkin et al., Nucl. Phys. 62, 188 (1965); G. J. Milburn et al., Phys. Rev. A 55, 4318 (1997).

[17] N. Teichmann and C. Weiss, EPL 78, 10009 (2007).

[18] C. E. Creffield, Phys. Rev. Lett. 99, 110501 (2007).

[19] A. Micheli et al., Phys. Rev. A 67, 030607 (2003).

[20] K. W. Mahmud et al., J. Phys. B 36, L265 (2003).

[21] C. Lee, Phys. Rev. Lett. 97, 150402 (2006).

[22] C. Lee et al., EPL 81, 60006 (2008).

[23] S. Dusuel and J. Vidal, Phys. Rev. B 71, 224420 (2005).

[24] L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, Cambridge, 1995).

[25] A. Smerzi et al., Phys. Rev. Lett. 79, 4950 (1997).

[26] A. Eckardt et al., Phys. Rev. Lett. 95, 200401 (2005).

[27] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).

[28] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1983).

[29] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations (Freeman, San Francisco, 1975).

[30] C.-S. Chuu et al., Phys. Rev. Lett. 95, 260403 (2005).

[31] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Clarendon Press, Oxford, 2006).

[32] J. Dalibard et al., Phys. Rev. Lett. 68, 580 (1992).

[33] A higher \(\alpha\) leads to a larger statistical spread. \(\alpha\) includes the influence of the environment; it would, e.g., be larger for larger BECs.

[34] A. D. Martin et al., Phys. Rev. Lett. 98, 020402 (2007).

[35] M. P. Strzys et al, New J. Phys. 10, 013024 (2008).

[36] C. Sias et al., Phys. Rev. Lett. 100, 040404 (2008).