Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity

Bradley P. Coe1, Holly A. F. Stessman2, Arvis Sulovari3, Madeleine R. Geisheker1, Trygve E. Bakken3, Allison M. Lake4, Joseph D. Dougherty5, Ed S. Lein6,7, Fereydoun Hormozdiari5, Raphael A. Bernier6 and Evan E. Eichler5,7*

We combined de novo mutation (DNM) data from 10,927 individuals with developmental delay and autism to identify 253 candidate neurodevelopmental disease genes with an excess of missense and/or likely gene-disruptive (LGD) mutations. Of these genes, 124 reach exome-wide significance \((P < 5 \times 10^{-7})\) for DNM. Intersecting these results with copy number variation (CNV) morbidity data shows an enrichment for genomic disorder regions \((30/253, \text{likelihood ratio (LR)} +1.85, P = 0.0017)\). We identify genes with an excess of missense DNMs overlapping deletion syndromes (for example, KIF1A and the 2q37 deletion) as well as duplication syndromes, such as recurrent MAPK3 missense mutations within the chromosome 16p11.2 duplication, recurrent CHD4 missense DNMs in the 12p13 duplication region, and recurrent WDFY4 missense DNMs in the 10q11.23 duplication region. Network analyses of genes showing an excess of DNMs highlights functional networks, including cell-specific enrichments in the D1+ and D2+ spiny neurons of the striatum.

The importance of DNMs underlying neurodevelopmental disorders (NDDs) has been recognized for many years. Some of the strongest genome-wide evidence came from early CNV studies, which consistently showed an excess of de novo and large private CNVs in patients with autism, developmental delay (DD), and epilepsy\(^6\). Significance based on CNV recurrence was more readily achieved from smaller sample sizes because of elevated mutation rates in regions flanked by segmental duplications\(^5\) or hotspots of recurrent rearrangement near telomeres\(^7\). In many cases, the individual genes underlying the genomic disorders remain unknown.

The advent of next-generation sequencing and exome sequencing rapidly accelerated our ability to specify genes associated with potentially pathogenic de novo single-nucleotide variants (SNVs) for both DD and autism\(^8\),\(^9\), although recurrent mutations occurred more rarely\(^6,10\). Different statistical models for discovery of disease-associated genes based on recurrent SNV mutation have been developed, including those based on chimpanzee–human divergence\(^11\), trinucleotide mutation context\(^12\), and clustering of DNMs\(^13\)--\(^15\). Despite extensive CNV analyses of nearly 45,000 patients with autism and DD\(^16\)--\(^18\), few attempts have been made\(^15\)--\(^18\) to integrate the wealth of CNV data with recent exome sequencing results despite a common mutational model of dosage imbalance.

In this study, we perform an integrated meta-analysis combining DNMs from exome sequence data from individuals with autism spectrum disorder (ASD), intellectual disability (ID) and/or DD (hereafter referred to as ID/DD)\(^9\) with CNV morbidity data. Because of the significant comorbidity between ID and ASD\(^19\)--\(^22\) and the fact that cases of autism with a severe CNV are enriched in DD\(^23\), we overlay these data with known genomic disorders. The goals of this study are threefold: (1) provide an integrated list of candidate NDD genes based on multiple lines of DNM and CNV evidence; (2) compare different models of recurrent mutation; and (3) identify the most likely genes underlying pathogenic microdeletion and microduplication CNVs associated with DD.

Results

Genes enriched for de novo SNV mutation and model comparisons. We compiled de novo variation identified from exome sequencing of 10,927 cases with NDDs from the denovo-db v.1.5 database release\(^4\). This includes 5,624 cases with a primary diagnosis of ASD and 5,303 cases with a diagnosis of ID/DD collected from 17 studies\(^11,23\)--\(^38\) (Supplementary Table 1). We consider all protein-altering and LGD mutations, including frameshifts, splice donor or acceptor mutations, start losses, and stop gains. The combined set of 12,172 DNMs includes 2,357 LGD and 9,815 missense mutations.

We initially applied two statistical models. The first incorporates locus-specific transition, transversion, and indel rates and chimpanzee–human coding sequence divergence\(^14\) to estimate the number of expected DNMs, hereafter referred to as the chimpanzee–human divergence model or the CH model. The second model, denovolalyze\(^12\), estimates mutation rates based on trinucleotide context and incorporates exome depth and divergence adjustments based on macaque–human comparisons over a \(\pm 1\)-Mb window and accommodates known mutational biases, such as CpG hotspots. Both models apply their underlying mutation rate estimates to generate prior probabilities for observing a specific number and class of mutations for a given gene. While both models incorporate LGD

1Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. 2Department of Pharmacology, Creighton University Medical School, Omaha, NE, USA. 3Allen Institute for Brain Science, Seattle, WA, USA. 4Department of Genetics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA. 5Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA. 6Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA. 7Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. *e-mail: eee@gs.washington.edu
and missense probabilities, we recently modified the CH model to incorporate CADD scores\[^{39,40}\], allowing us to also specifically test for enrichment for the missense subset of the predicted most severe 0.1% of mutations (that is, CADD scores over 30, or MIS30). Such missense mutations are more likely to be functionally equivalent to an LGD mutation and have been shown to be significantly enriched in NDD cases compared with controls\[^{44}\]. To account for the sensitivity biases, we applied an upper bound baseline mutation rate assumption of 1.8 DNMs (derived from high-coverage genome sequencing data) to the CH model, which exceeds the overall DNM rate of this cohort.

Combined, the two models (union set) identify 253 candidate NDD genes with evidence of excess DNM at a false discovery rate (FDR) <5% and at least two mutations for at least one mutational category (Tables 1 and 2). This includes 145 genes with excess LGD mutations and 123 genes with excess missense mutations. Among these genes, 29 demonstrate evidence of both LGD and missense mutations (Fig. 1, Table 1, and Supplementary Table 2). In general, both models highlight similar genes (Fig. 1 and Supplementary Note), particularly for LGD events where 73.1% (106/145) of genes are shared. This finding stands in contrast with recurrent missense DNMs, where only 51.2% (63/123) of the genes overlap between the models, suggesting that additional model refinement is required to more accurately predict pathogenic missense mutations. A more stringent application of the exome-wide Bonferroni family-wise error rate (FWER) identifies a union of 124 genes (Supplementary Table 2 and Supplementary Note).

We identified additional evidence of disease association, from a comprehensive database and PubMed literature search, for 204/253 genes (Methods), indicating that 49/253 union genes (10/124 FWER union genes) presented here are novel associations (Supplementary Tables 2 and 3). Of these novel genes, 61% (30/49) demonstrate DNM in both ASD and ID/DD patients. We wish to note that neither FDR nor FWER, however, are metrics of pathogenicity, but rather thresholds of significance to identify genes for further investigation.

Because it has been well established that NDD genes are less tolerant to mutation, we categorized the full set of NDD genes into different functional groups and compared their tolerance to mutation in the general population using three metrics: residual variance to intolerance score (RVIS), probability of loss-of-function intolerance (pLI), and missense constraint scores (missense Z scores). For both pLI and missense Z scores, we utilized the ExAC subset with known neuropsychiatric cohorts removed (45,376 individuals)\[^{41}\]. For genes with an enrichment of LGD variants, we observed a significant increase in pLI scores compared to all other genes ($P = 8.3 \times 10^{-48}$, two-tailed Wilcoxon rank-sum test, ROC AUC = 0.90) (Fig. 1c).

We also observed a significant increase in missense constraint (missense Z scores) among genes with enrichment for missense variation ($P = 2.0 \times 10^{-46}$, two-tailed Wilcoxon rank-sum test, ROC AUC = 0.87) (Fig. 1f). Similarly, we observed a significant RVIS depletion for all categories in which at least two genes were identified (Fig. 1g).

Examination of a combination of constraint metrics is particularly valuable, as a small number of genes demonstrate conflicting results, such as the LGD- and missense-enriched gene MEF2C, which is involved in severe ID when disrupted by deletions or mutations\[^{45}\] and demonstrates constraint by RVIS but not by pLI (RVIS = 18.97, pLI = 2.4 \times 10^{-1}, missense Z score = 4.47). Interestingly, among genes without pLI or RVIS support, we identified established ASD and ID genes in addition to the expected potential false positives. Among the union genes, 82.6% (209/253) have no detected LGD or missense DNM in controls ($n = 2,278$ controls; Supplementary Note). The detection of control events may represent incomplete penetrance, variable expressivity, undiagnosed or subclinical controls, or benign variation (primarily in the case of missense variation). None of the recurrent control DNM genes reach exome-wide FDR significance. Although some of these are plausible candidates, disease significance should be considered with caution until additional functional and clinical data establish their role.

ASD versus ID/DD genes.

We investigated the distribution of LGD and missense mutations between the ASD and ID/DD cohorts. The majority of this NDD gene set (68.4% (173/253) of the union and 72.3% (107/148) of the intersection show evidence of DNM in both ASD and ID/DD cohorts, highlighting the utility of joint analyses. Although a small number of genes are specific or enriched for a diagnosis of ID/DD ($q < 0.01$, one-tailed Fisher’s exact test), none are statistically enriched for ASD yet (Supplementary Fig. 1). A few genes (WDFY3, DSCAM, and CHD8) trend toward ASD diagnosis. To eliminate potential ascertainment bias in discovery, we repeated the overlap analysis considering gene discovery independently in each cohort (Supplementary Note). Considering all 253 genes and the full set of NDD patients, we calculate that 17.7% (1,932/10,927) of the samples have at least one de novo event in this gene set.

The proportion of patients with a DNM is significantly higher for ID/DD (26.8% or 1,421/5,303 patients) compared to ASD (9.1% or 511/5,624 patients) ($OR = 3.66$, $P = 1.62 \times 10^{-13}$, two-tailed Fisher’s exact test). While this approach may be partially biased by the differences in DNM sensitivity between exome studies, this observation exceeds the baseline 1.58-fold excess of LGD DNM in ID/DD cohorts and thus reflects differences in heterogeneity between the disorders. Further supporting this bias of LGD events

Table 1 | Recurrent DNM gene summary and model comparison

Variant category	CH model count	denovolayerZ count	Union count (FDR (FWER))	Intersection count (FDR (FWER))	ID/DD only	ASD only
LGD and MIS30 and missense	14	NA	14 (5)	NA	4 (1)	0 (0)
LGD and MIS30	1	NA	1 (3)	NA	0 (0)	0 (0)
LGD and missense	13	22	15 (6)	21 (8)	19 (10)	3 (1)
LGD	92	108	115 (62)	85 (49)	95 (55)	31 (14)
MIS30 and missense	28	NA	31 (18)	NA	9 (7)	0 (0)
MIS30	16	NA	14 (10)	NA	0 (0)	0 (0)
Missense	46	63	63 (20)	42 (22)	56 (25)	7 (3)
Total	210	193	253 (124)	148 (79)	183 (98)	41 (18)

The number of genes reaching statistical significance for DNM enrichment in $n = 10,927$ independent samples by the CH model and denovolayerZ as well as the unions and intersections of these gene sets are shown for each mutation category (LGD, missense, MIS30). Also shown are the union counts for the ASD ($n = 5,624$ independent samples) and ID/DD ($n = 5,303$) only analyses. Counts represent genes passing an FDR q-value threshold of 0.05. Bracketed numbers represent genes passing a Bonferroni FWER correction ($P < 5 \times 10^{-5}$).
to ID/DD, Simons Simplex Collection (SSC) autism probands carrying an LGD DNM in one of the LGD genes were less likely to be high-functioning. Instead, there was an over-representation of ID (≤70 IQ, expected 753/2,445, observed 42/95) and low-to-normal IQ ranges (70<IQ<100, expected 1,018/2,445, observed 45/95) compared to the high-IQ probands (≥100 IQ, expected 674/2,445, observed 8/95) (P = 4.0 × 10−5, two-tailed likelihood ratio test) (Supplementary Table 4). Among the autism mutation carriers, we observe a nominal enrichment for increased severity of repetitive behavior (RBS-R (t(18) = 3.12, corrected P = 0.048), two-tailed independent samples t test) but were overall underpowered to further disentangle associated phenotypic features.

Network enrichment and patterns of brain expression

Examination of the 253 genes identified by the union of both statistical approaches suggests that our set is strongly enriched for functionally related networks of genes. The STRING database, for example, identifies a highly significant 1.8-fold enrichment (1,067 edges vs. 573 expected) in interactions among the 253 union genes (P < 1.0 × 10−16, one-tailed hypergeometric test). Given this high level of interconnectivity, we applied MAGI41, a gene network discovery tool, to identify potential gene clusters, functional enrichments, and additional candidate interactions and highlight the top four protein–protein interaction (PPI) and coexpression networks (modules 1–3 at P < 0.01, module 4 at P < 0.05, one-tailed permutation test) and their associated PANTHER functional enrichments (Fig. 2a–d and Supplementary Table 5–7).

Module 1 (20 genes) delineates ‘regulation of transcription from RNA polymerase II promoter’ (P = 0.0269, one-tailed Bonferroni adjusted binomial test) (Fig. 2a and Supplementary Tables 5–7) and contains 15 significant genes in addition to three candidates that do not yet reach significance (CREB1, RBBP5, CBX5) and two genes (SREK1, SMARC8B1) with no DNM in our current data set. Module 2 highlights multiple functions relating to neurotransmitter signaling (P = 0.0358; one-tailed Bonferroni adjusted binomial test) and synaptic signaling (P = 8.91 × 10−4, one-tailed Bonferroni-adjusted binomial test) (Fig. 2b and Supplementary Tables 5–7) and contains nine significant genes, ten genes that do not reach significance (DLG2, HTT, AP2A2, AP2M1, KCNJ4, KCNB1, STX1A, GRN2A, GRIN2A, and SMARCD1) and one gene with no DNM (PRKCB). Module 3 highlights the ‘transmembrane receptor protein serine/threonine kinase signaling pathway’ (P = 0.002; one-tailed Bonferroni-adjusted binomial test) (Fig. 2c and Supplementary Tables 5–7) and contains eight significant genes, 21 genes that do not reach significance, among which we see no enrichment for novel RBP targets.

Table 2 | Genes enriched for de novo variation in 10,927 ASD/ID/DD patients in denovo-db v1.5

Significance category	Genes
LGD	ADNP*, AHDC1*, ANK2*, ANKR1D1*, ANP32A, ARID1B, ARID2, ASXL1, ASXL3*, AUT2*, BCL11A*, BRPF1*, CAPRIN1, CASZ1, CDC42BPB, CDK5, CHAMPY, CHD2, CHD8*, CLTC, CNKSR2, CNOT3, CTNNB1*, CUL3*, DLG4*, DSCAM, DVL3, EF9, EHMT1, ENO3*, EP300, FAM20A, FAM20B, FOGL2, FOXP2, GATA2D, HIST1H1H, HIVEP2, HIVEP3, HRNRNP1*, IRF2BP1, KANSL1*, KAT6A, KAT6B, KCNS3, KDM5B*, KDM6A, KDM6B, KIAA2022*, KIF17*, KMT2A*, KMT2C, LARP4, LEOP1, LEPR, MBDS*, MEIS2*, MLS3*, NAA15*, NFE2L3, NONO1, NDP5, ODC1, PDHA1*, PHF12, PHF21A, PHF6, POL2, PPM1D, PRRT2, PTCHD1, PRK1, RAI1, RPL26*, SET*, SETBP1, SETD2, SETD5*, SHANK3*, SKI3A*, SKID1, SMCA1*, SON*, SOSX5*, SPAST, SPEN, SYR2, SRCAP, SRRM2, SRP54, STAR1D9, SUV420H1, SYNGAP1, TAB2, TAB3, TCF12, TCF20, TRNCG8, TRNA2B, TRIP12, UBE3B, USP9X, VEGF1, WAC, WDFY3*, WDRA5*, WDR85, WHSC1, YHFD3*, ZBTB10, ZBTB7A, ZC4H2, ZNF292*
LGD and missense	CHD2*, CREBBP*, DYNK1*, FBXO11, FOXL1, FOXP1, HRNRNU*, MEUF2*, MYT1L*, NFX1, PGDZ*, PTEN*, PURA*, TLK2*, WDR26*
LGD and MIS30	TCF7L2*
LGD, missense and MIS30	CASK*, DDX3x*, HDAC8*, IQSEC2*, MECP2*, MED13L*, PPP2R5D*, PUPF60*, SATB2*, SCNA2*, SLC6A1, STXBP1, TBL1XR1*, TCF4*
Missense	ABI2*, ACHI*, ADAP1*, AGAP2*, AGO1*, AGO4*, AQIP*, BAP*, BTK*, C2orf42*, CAPHB*, CAPN5*, CBL1, CHD4*, CLASP1, DAF4*, DLX3*, DNMT2*, EGLN2, GABRB2*, GABRB3*, GRIA2, GRIA2*, HMGX3*, HUWE1*, IPT*, KCNN1, KCNJ6, MAPK3, MT2F*, MYO1E*, PBK*, PLCL8*, PLK5*, PPP1R*, PRKCA*, PRKDA1, PRKDE1, PRKF*, PRPS1*, PMCG4*, PTPN11*, RAC*, RFX5*, RRP*, RYR2*, SETDB1*, SF3B1*, SHISA5*, SMAD4*, SMARCD1*, SMCC*, SNACPS*, SNX5*, SUSD4*, SYT1*, TAOK1*, Tmem178A*, TMEM42*, TNP3*, TRAF7, TRAPP*, UNC80*, VAMP2*, WDF14*, YWHAH
MIS30	ACTC1*, AGO3*, CACNA1E, FAM104A4*, HIST1H2AC*, KIF5C*, PACS2*, PAPOLG*, PDKE*, SEPT10, STC1*, TAF1*, TNPO2*, U2AF2*
Missense and MIS30	CDK3*, CHD3*, COL4A3BP*, CNSK2A1*, CTTP*, DNTM2A*, DYNCH1*, EEF1A2*, ETFUD2*, GNAO1*, GRIN2B*, HECW2*, KCND3*, KCNHI3*, KNCQ2*, KNCQ3*, KIF1A*, MAP2K1*, NAA10*, NR2F1*, NR4A2*, PACS1*, PKC3A*, PPP2R1A*, RAB14*, SCNB8*, SMARC82*, TRIO*, ZMYND11*

*Gene also in the intersection set. Gene in FWER exome-wide significance (P < 5 × 10−8) set. Listing of genes reaching significance for excess of DNM in n = 10,927 independent samples at an FDR of 5% by either the denovoloser or CH model (union) for each mutational category (LGD, missense, MIS30).
development. By CSEA, the de novo gene set shows enrichment in both classes of medium spiny neurons within the striatum (striatum D1+ and D2+ medium spiny neurons Benjamini–Hochberg (BH)-corrected P = 0.013 and P = 0.011, one-tailed Fisher’s exact test) at a pSI (specificity index P value) threshold of 0.05. Additionally, we observe nominal significance for D1+ and D2+ spiny neurons (uncorrected P = 0.027 and P = 0.023, one-tailed Fisher’s exact test) at a pSI of 0.01 (Supplementary Fig. 2a), and through a further analysis of available single-cell sequencing data, two pyramidal neuron subtypes (S1PyrL5, BH P = 0.008; one-tailed Fisher’s exact test) and the hippocampus (CA1Pyr1, BH P = 0.046; one-tailed Fisher’s exact test) (Supplementary Fig. 2b and Supplementary Note).

As a final analysis, we also assessed the expression patterns of the union gene set using human RNA-seq data sets. The gene set, irrespective of class of mutation, is significantly enriched for a pan-neuronal pattern of expression when compared to control sets selected based on synonymous DNM in cases and genes with recurrent DNM in controls samples (Fig. 3 and Supplementary Fig. 3). This analysis does not highlight specific cell types compared to controls (P = 0.52, two-tailed corrected Wilcoxon rank-sum test) but does show slightly higher expression across neuronal cell types (P = 0.0001; two-tailed corrected Wilcoxon rank-sum test) even after controlling for gene length (Supplementary Fig. 3). The 253 union gene set shows a strikingly broad expression profile across adult human cortical neuron types, including GABAergic (inhibitory) and glutamatergic (excitatory) neurons, compared to control genes (Fig. 3a, Supplementary Fig. 3, and Supplementary Note).

Projected rates of gene discovery. Based on the number of genes that reach significance for DNM in our cohort of 10,927 cases, we estimate the potential yield by mutational class and the CH model. To this end, we subsampled smaller populations from our set 10,000 times each and tested for how many genes would reach significance using the CH model in a resampled cohort. We assessed logistic growth models for each mutation class and selected the best fitting model by Bayesian information criteria (BIC) to predict future performance. For genes with excess LGD DNMs, we observe what appears to be a rapid upcoming plateau in gene discovery, with an asymptote at 216 genes (95% CI 208–225) (ABIC linear model, asymptotic regression model = 259) (Fig. 4). Similarly, for genes with an excess of MIS30 DNMs, the model predicts an asymptote of only 65 genes (95% CI 63–67) (ABIC linear model, Weibull model = 250) (Fig. 4). By contrast, genes with an excess of recurrent missense mutations cannot yet be projected (Supplementary Note).

CNV intersection. In order to identify potentially dosage-sensitive genes underlying pathogenic CNVs, we intersected the 253-candidate gene set with a list of 58 genomic disorders based on previous CNV morbidity maps and the DECIPHER database (Fig. 5, Table 3 and Supplementary Table 2). Considering all genes with a de novo variant (n = 6,886), we find that 30 of 253 significant genes intersect a genomic disorder region, compared to 426 of 6,633 nonsignificant genes intersecting a disorder. This represents a significant enrichment (P = 0.0017, two-tailed Fisher’s exact test; LR + 1.85 (95% CI 1.38–2.43)) compared to expectations supporting the notion that neurodevelopmental CNVs and DNMs converge on a common genetic etiology of gene dosage imbalance. While we are underpowered to detect enrichment for any specific mutational and CNV class interactions by post hoc testing, as expected, LGD-significant genes and deletion disorders demonstrated the strongest

Fig. 1 | De novo–enriched genes and their characteristics. a–d, Results of applying both the chimpanzee–human (CH) divergence model and denovolyzeR to de novo variation in n = 10,927 independent individuals with ASD/ID/DD. The two models show considerable gene overlap (a,b) with correlated significance values (LGD Pearson r2 = 0.94, missense r2 = 0.74) (c,d). CH model LGD outliers include NONO, MEIS2, LEO1, WDR26, and CAPRINT1, and denovolyzeR LGD outliers include ZBTB18 and FAM200B (e). CH model missense (MIS) outliers include CAPN5, SNAPC5, DLX3, TMEM178A, ADAP1, SNXS, SMARCD1, WDR26, and AG04, and denovolyzeR missense outliers include ITPR1, RAC1, SETD1B, WDFY4, and UNC80 (d). e, Recurrent mutated LGD genes (TRUE, n = 145 with pLI scores) are highly enriched for genes intolerant to mutation as defined by ExAC pLI score (two-tailed Wilcoxon rank-sum test) (Supplementary Fig. 2b and Supplementary Note).

f, g, Genes significantly enriched for missense DNMs (n = 118 with missense Z scores) are outliers by the ExAC missense depletion Z scores (two-tailed Wilcoxon rank-sum test). g, Similarly, all subcategories of significant genes (n shown below each category name) are intolerant to mutation (RVIS percentile) compared to nonsignificant genes (Tukey HSD test; P values are corrected for all possible group comparisons). Boxplot edges represent quartiles 1–3; midlines indicate medians. Whiskers span from Q1–1.5×IQR.
enrichment among the four combinations ($P=0.1$, two-tailed Fisher's exact test, LR+1.77 (95%CI 1.2–2.54)). Given the known complexity of gene regulation in CNVs, we highlight candidates representing all interaction types (Table 3 and Supplementary Table 2), with the expectation that the strongest candidates will correspond to a simple model of haploinsufficiency.

Many genomic disorders intersect with a single DNM-enriched gene, confirming a known CNV gene association, including KANSL1 (Koolen–de Vries)\(^{30}\), SHANK3 (Phelan–McDermid)\(^{31}\), RA11 (Smith–Magenis)\(^{32}\), NSD1 (Sotos)\(^{33}\), WHSC1 (Wolf–Hirschhorn)\(^{34}\), BCL11A (2p15–16.1 microdeletion)\(^{55}\), BCL11A (2p15–16.1 microdeletion)\(^{55}\), and BCL11A (2p15–16.1 microdeletion)\(^{55}\), which has been linked to multiple malformations, and DD and is located in the 17q23 deletion region\(^{67}\). Genes enriched for recurrent missense DNM, WWHAG, and GABBR3, colocalize to the Williams–Beuren distal and Prader–Willi deletion/duplication regions, respectively\(^{66–70}\).

Finally, we also consider as part of this analysis the 14 regions identified as significant for CNV burden\(^{18}\) and identify five candidate intersections (Table 3). These include SATB2 in the 2q33.1 region\(^{67,71}\), MEF2C, which demonstrated focal deletions, functions at cortical synapses and has been independently linked to hypersensitivity and epilepsy\(^{23,72}\); CHD4 in the 12p13 duplication region, which has been linked by both a genome-wide association study (GWAS) and DNM to an ID syndrome\(^{67}\); and WDFY4 in the 10q11.23 duplication region, which appears to be a novel finding at this time. A second category of CNVs are those that intersect more than a single gene (Table 3 and Supplementary Table 2). The 2q33.1 region contains several potentially high-impact candidates, including HECW2, which has been linked to neurodevelopmental delay, ID and epilepsy by missense mutations\(^{75,76}\); SATB2, which has been independently identified by focal CNVs\(^{76,77}\); ABI2, which is a candidate for autosomal recessive ID\(^{77}\); and S3BI, which interacts directly with the ID gene PQBP1 (ref. 78). Similarly, in the 2p15–p16.1 deletion region we identify both the primary gene BCL11A\(^{55}\) as well as a second candidate gene in the minimal
Fig. 3 | Expression in human cortical neurons. a,b Heatmaps demonstrating a broad pattern of inhibitory and excitatory neuronal expression (median log2 (CPM + 1)) in the union gene set (n = 253 independent genes) compared to control genes (n = 156 independent genes). Expression level is indicated by a color gradient from low expression (dark blue) to high (orange). Rows represent individual genes and are ordered by the number of clusters (transcriptomic defined cell types) with expression (median CPM ≥ 1), and columns represent 41 inhibitory neuronal, 24 excitatory neuronal, and 6 glial transcriptional clusters, each representing a distinct cell type. c,d The number of inhibitory and excitatory clusters with expression in NDD genes (union n = 253, LGD n = 145, MIS n = 123, MIS30 n = 59) compared to controls (synonymous (SYN) n = 101, control n = 156 independent genes). The signal is strongest for NDD genes with the most severe missense mutations (MIS30). Boxplot edges represent quartiles 1–3; midlines indicate medians. Whiskers span from Q1 – 1.5 IQR to Q3 + 1.5 IQR.

Discussion
Exome sequencing of parent–child trios is a particularly powerful tool for the identification of genes, which when disrupted lead to pediatric NDD. The use of two DNM models, the CH model and denovolyzeR, identifies a high-confidence intersection (n = 148 genes) and a comprehensive union set (253 genes), which reach significance by one or both models. An advantage of using both models is that we identify high-risk candidate genes unique to each model (n = 75 additional genes), including several in which DNMs have already been associated with neurodevelopmental disease. Examination of this gene set in the context of the general population (that is, ExAC) confirms that this set list is enriched for genes that are constrained in the general population (LDG pLI P = 8.3 × 10−58, missense Z score P = 2.0 × 10−44, two-tailed Wilcoxon rank-sum test, RVIS P < 1 × 10−7 to 2.0 × 10−3, Bonferroni adjusted Tukey HSD test) (Fig. 1).

While intolerance metrics are useful to enrich for pathogenic genes, our analysis suggests caution in strict application of a specific cutoff or even a single metric. Several known pathogenic genes are borderline by only one intolerance score, whereas several are poorly constrained by both metrics (for example, MECP2 and Rett syndrome; RVIS = 32.4, pLI = 0.66). For example, we identified 20 genes that are intolerant to mutation by pLI but not RVIS...
Table 3 | Intersection between pathogenic CNVs and recurrently mutated genes

Gene symbol	LGD de novo variants	Missense de novo variants	MIS30 de novo variants	Genomic disorders																							
	(n = 10,927)	(n = 5,624)	(n = 5,303)																								
	All	ASD	ID/DD	All	ASD	ID/DD	All	ASD	ID/DD	All	ASD	ID/DD	All	ASD	ID/DD	All	ASD	ID/DD	All	ASD	ID/DD	All	ASD	ID/DD	All	ASD	ID/DD
Significant in Morbidity Map* (37 disorders)																											
MAPK3	0	0	3	2	1	1	0	MIS	16p11.2-deletion	DEL and DUP																	
KANSL1	8	0	8	1	0	0	0	LGD	17q21.31-deletion	DEL and DUP																	
KIF1A	0	0	11	1	10	9	0	MIS	2q37-deletion	DEL and DUP																	
EHMT1	9	0	9	3	0	2	1	LGD	9q34-deletion	DEL and DUP																	
SHANK2	10	6	4	1	0	0	0	LGD	None	DEL and DUP																	
PHF21A	2	1	1	0	0	0	0	LGD	None	Category 1																	
GABRB3	1	1	0	6	2	4	0	MIS	None	Category 1																	
RAI1	3	1	2	3	2	1	0	LGD	None	Category 1																	
NSD1	8	1	7	5	2	3	1	LGD	None	Category 1																	
WHSC1	4	1	3	2	1	1	0	LGD	None	Category 1																	
21 Additional genomic disorders																											
SIN3A	3	0	3	2	1	0	1	LGD	15q24 deletion	None																	
CTC	4	0	4	2	0	2	1	LGD	17q23 deletion	None																	
PPMID	8	1	7	0	0	0	0	LGD	17q23.3p23.2 deletion	None																	
BCCTA	6	2	4	3	0	3	0	LGD	2p15-16.1 microdeletion syndrome	None																	
PAPOLG	0	0	0	3	3	0	3	LGD	2p15-16.1 microdeletion syndrome	None																	
POUSF3	2	0	2	2	0	2	0	LGD	2q11.2q13 deletion	None																	
RXF8	0	0	0	3	2	1	0	LGD	2q11.2q13 deletion	None																	
HECW2	1	0	1	9	2	7	7	LGD	2q33.1	Category 1																	
SATB2b	9	0	9	6	0	6	5	LGD	2q33.1	Category 1																	
ABI2	0	0	0	3	2	1	1	LGD and MIS	None	Category 1																	
SFRB1	0	0	0	5	3	2	1	LGD	None	Category 1																	
CAPN15	0	0	0	3	0	3	1	LGD	None	Category 1																	
SMCTA	8	0	8	2	0	2	1	LGD	None	Category 1																	
HUE1	0	0	9	0	9	3	0	LGD	None	Category 1																	
WDR46	8	0	8	2	1	1	0	LGD	None	Category 1																	
MECP2	11	4	7	7	0	7	4	LGD	None	Category 1																	
CREBBP	3	0	3	13	3	10	1	LGD and MIS	None	Category 1																	
SUV420H1	7	4	3	3	3	0	1	LGD	None	Category 1																	
YWHAG	0	0	0	3	1	2	1	LGD	SHANK2 FGs deletion	None																	
AUTS2	4	0	4	1	1	0	0	LGD	Wms-distal duplication	None																	

Continued
Table 3 | Intersection between pathogenic CNVs and recurrently mutated genes (continued)

Gene symbol*	LGD de novo variants	Missense de novo variants	MIS30 de novo variants	Union CH model and denovolyzeR	Genomic disorders
	All (n=10,927)	All (n=5,624)	All (n=5,303)	All (n=10,927)	All (n=5,624)
SATB2	9	0	6	0	5
MEF2C	4	0	5	1	0
CHD4	1	0	8	1	2
WDF4	0	0	5	4	1

*DECIPHER syndrome classification system; see URLs. **SATB2 is significant both by focal deletions and as part of the 2q33.1 region. DNM counts and significance categories from n=10,927 independent samples are shown for genes from the union significance set (n=253 genes denovolyzeR or CH model FDR ≤ 5%) that intersect a previously established genomic disorder region. *Bolded gene symbols represent confirmation of known CNV associations. SD, segmental duplication; DEL, deletion; DUP, duplication.

(RVIS > 20). Some of these are well-established genes (for example, KANSL1 and the Koolen–de Vries syndrome)\(^{46}\), and the basis for this discrepancy is unknown but may relate to the fact that part of the gene is duplicated, complicating genome-wide analyses of this discrepancy is unknown but may relate to the fact that part of the gene is duplicated, complicating genome-wide analyses.

Among targets poorly constrained by both metrics, the Bohring–Opitz syndrome gene, ASXL1, was recently highlighted for the presence of somatic mosaic variants in the ExAC population (from which both the RVIS and pLI score are derived)\(^{47}\).

Our projection estimates indicate that gene discovery based on recurrent LGD or severe missense mutations (MIS30) will soon plateau (Fig. 3). Clinical interpretation of patients with the only DNM in a previously unobserved gene will remain a challenge. Partitioning patients based on additional phenotypic criteria, sub-selecting genes based on functional pathway enrichment\(^{48}\), integration of inherited variation (for example, TADA)\(^{49}\) and targeting a small number of genes in much larger cohorts\(^{50,51}\) are all potential strategies for associating specific genes with a phenotype under these conditions. For example, analysis of this set of DNMs in the context of MAGI modules further identified key functional categories, including neurotransmitter and synaptic signaling and INK and MAPK cascades. This analysis identifies 46 genes with DNMs among the four modules that do not yet reach significance but are likely to represent functionally important targets for future screens.

In contrast to LGD and MIS30 DNM, the number of genes that will be identified by missense DNM generally has not yet begun to approach an asymptote. Sample sizes are just now beginning to reach the level at which signatures of recurrence and missense clustering are being detected for a relatively modest number of genes, most of which are only nominally significant\(^{14,15}\). We propose that this class of mutation (less severe or clustered missense DNMs) represents the most promising reservoir for future gene discovery but will require much larger whole-exome and whole-genome data sets to tease apart. As the number of exomes grows for both ASD and DD, the maintenance and curation of de novo databases will be especially important in this regard\(^{20}\).

Previous studies have implicated larger CNVs and increased mutation burden with more-severe phenotypic outcomes, and here we observe that the majority of DNMs in the 253 genes originates from ID/DD (|3:1, Supplementary Table 2). Importantly, DNMs enriched genes significantly overlap known pathogenic CNV regions (P = 0.0017, two-tailed Fisher’s exact test, LR +1.85 (95% CI 1.38–2.43)), thus supporting a common genetic etiology. These specific targets have offered both independent confirmation of existing single-gene associations (for example, KANSL1 in the 17q21.31 region), additional support for candidate genes (MAPK3 in the 16p11.2 region), and further support for potentially oligogenic effects with multiple compelling candidate genes (HECW2, SATB2, ABI2 and SF3B1 in the 2q33.1 deletion region). This is consistent with findings suggesting a role for multiple hits in ASD\(^{18,19}\). Among the genes with recurrent mutation and CNV intersection, MAPK3 is particularly interesting with respect to the chromosome 16p11.2 microduplication. Several functional studies on 16p11.2 deletion and duplication mice as well as Drosophila models have suggested that MAPK3 is a key regulator of the syndrome being downstream of other ASD target genes, involved in axon targeting and regulation of cortical cytoarchitecture, and being the most topologically important gene in the region by PPIs\(^{16–18}\). Our analysis builds on these studies by providing evidence of recurrent missense mutation enrichment in human NDDs.

Finally, it is interesting that the 253 genes we highlight in this meta-analysis demonstrate a pan-neuronal expression pattern with the majority of genes being expressed in all GABAergic (inhibitory) and glutamatergic (excitatory) neuron types (Fig. 3), suggesting these genes have the potential to alter many paths in the adult cortical circuit. While the majority of genes are broadly expressed across neuronal cell types, a subset demonstrates evidence of specific expression. More specifically, we observed enrichment for genes specifically expressed in the D1\(^{+}\) (19 genes) and D2\(^{+}\) (18 genes) medium spiny neurons of the striatum (13 genes are shared in the D1\(^{+}\) and D2\(^{+}\) lists) in mouse brain (Supplementary Fig. 2a). Previously, Dougherty and colleagues highlighted this particular brain region based on a survey of genes reported as autism candidate risk genes\(^{48}\). Using a CSEA, we now extend this observation to NDD genes enriched for recurrent DNM. Remarkably, a similar enrichment was recently reported in autistic individuals with multiple DNMs in coding and putative noncoding regulatory DNA\(^{45}\). We also observe a similar signature for genes where nominal significance has been observed for clustered DNMs. While many of the genes enriched for D1\(^{+}\) and D2\(^{+}\) expression are not exclusive to the striatum and are more broadly expressed (as demonstrated by the enrichment signal at the lowest specificity threshold), the striatum has been implicated in ID and autism pathology by numerous studies\(^{46–49}\). The striatum is particularly compelling, as it has been linked to repetitive behaviors\(^{46}\) that are core to the autism phenotype and to genes known to be involved in DD, including CHD8, SHANK3, FOXP2, and KCNA4 (refs. 89,90,92,93,94). While the striatum is most strongly linked to autism core phenotypes, our observation of enrichment in a more general DD cohort suggests that, while the general bias of cortex genes to ID and striatum genes to ASD\(^{92}\) still holds, the diverse expression patterns of genes across the brain at complex developmental time points may have substantial functional
overlap among subtypes of NDDs that will require deep phenotyping and imaging to tease apart.

In conclusion, the 253 genes that show evidence for recurrent DNM represent a starting point for further functional and phenotypic investigations. Of these genes, 124 reach a strict GWAS threshold of significance strongly arguing that DNMs in these genes contribute significantly to disease. Overall, the genes we highlight demonstrate strong conservation, refine pathogenic CNVs, define distinct functional pathways, and support the role of striatal networks in the pathogenicity of both ASD and ID/DD. Strikingly, the majority of the genes identified in this study present with DNMs in both ASD and ID/DD. While we expect a degree of diagnostic overlap, our results support a common genetic etiology among broad neurodevelopmental phenotypes. These genes are candidates for a genotype-first paradigm, in which downstream follow-up of patients with the same de novo—disrupted gene is likely to provide additional insight into unique phenotypic features associated with these different genetic subtypes and additional support for their role in NDD.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41588-018-0288-4.

Received: 4 December 2017; Accepted: 23 October 2018; Published online: 17 December 2018

References
1. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).
2. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).
3. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).
4. de Vries, B. B. et al. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77, 606–616 (2005).
5. Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).
6. de Vries, B. B. et al. Clinical studies on submicroscopic subtelomeric rearrangements: a checklist. J. Med. Genet. 38, 145–150 (2001).
7. Firth, H. V. & Wright, C. F. The Deciphering Developmental Disorders (DDD) study. Dev. Med. Child Neurol. 53, 702–703 (2011).
8. O’Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).
9. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).
10. Steensma, H. A. et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515–526 (2017).
11. O’Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).
12. Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).
13. Turner, T. N. et al. Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns. Hum. Mol. Genet. 24, 5995–6002 (2015).
14. Geisheker, M. R. et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 20, 1043–1051 (2017).
15. Lehevedel, S. H. et al. Spatial clustering of de novo missense mutations identifies candidate neurodevelopmental disorder-associated genes. Am. J. Hum. Genet. 101, 478–484 (2017).
16. Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).
17. Kaminsky, E. R. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13, 777–784 (2011).
18. Coe, B. P. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071 (2014).
19. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).
20. Turner, T. N. et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 45, D804–D811 (2017).
21. Matson, J. L. & Shoemaker, M. Intellectual disability and its relationship to autism. Spectrum disorders. Res. Dev. Disabil. 30, 1107–1114 (2009).
22. American Psychiatric Association Diagnostic and statistical manual of mental disorders, 5th edition: (DSM–5) (APA Publishing, Arlington, 2013).
23. Issifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).
24. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).
25. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).
26. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).
27. Halfvarson, J. et al. Mutations in HEC2 are associated with intellectual disability and epilepsy. J. Med. Genet. 53, 697–704 (2016).
28. Hashimoto, R. et al. Whole-exome sequencing and neurite outgrowth analysis in autism spectrum disorder. J. Hum. Genet. 61, 199–206 (2016).
29. Krumm, N. et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47, 582–588 (2015).
30. Lee, H., Lin, M. C., Kornblum, H. I., Papazian, D. M. & Nelson, S. F. Exome sequencing identifies de novo gain of function mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum. Mol. Genet. 23, 3481–3489 (2014).
31. Lehevedel, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).
32. Michaelson, J. J. et al. Whole-genome sequencing in autism identifies hotspots for de novo germline mutation. Cell 151, 1431–1442 (2012).
33. Moreno-Ramos, O. A., Olavives, A. M., Haider, N. B., de Autismo, L. C. & Lattig, M. C. Whole-exome sequencing in a South American cohort highlights ALDH1A3, FOXN1 and retinoic acid regulation pathways to autism spectrum disorders. PLoS ONE. 10, e0135927 (2015).
34. Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674–1682 (2012).
35. RK, C. Y. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).
36. Tavassoli, T. et al. De novo SCN2A splice site mutation leads to autism in a boy with Autism spectrum disorder. BMC Med. Genet. 15, 35 (2014).
37. Turner, T. N. et al. Genome sequencing of autism-affect ed families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98, 58–74 (2016).
38. Yuen, R. K. et al. Genome-wide characteristics of de novo mutations in autism. NPG Genom. Med. 1, 160271–1602710 (2016).
39. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
40. Wang, T. et al. De novo genetic mutations among a Chinese autism spectrum disorder cohort. Nat. Commun. 7, 13316 (2016).
41. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
42. Le Meur, N. et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J. Med. Genet. 47, 22–29 (2010).
43. Hormozdiari, F., Penn, O., Borenstein, E. & Eichler, E. E. The discovery of integrated gene networks for autism and related disorders. Genome Res. 25, 142–154 (2015).
70. Guella, I. et al. De novo mutations in YWHAG cause early-onset epilepsy. *Am. J. Hum. Genet.* 101, 645–649 (2017).

71. Halder, D. et al. Suppression of Sin3A activity promotes differentiation of neural progenitor cells. *Nucleic Acids Res.* 45, 6729–6741 (2017).

72. Harrington, A. J. et al. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. *eLife* 5, e20559 (2016).

73. Paciorekowski, A. R. et al. MEF2C haploinsufficiency features consistent hyperkiniveness, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. *Neurogenetics* 14, 99–111 (2013).

74. Kohannim, O. et al. Discovery and replication of gene influences on brain structure using LASSO regression. *Front. Neurosci.* 6, 115 (2012).

75. Weiss, K. et al. De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. *Am. J. Hum. Genet.* 99, 934–941 (2016).

76. Berkó, E. R. et al. De novo missense variants in HECW2 are associated with neurodevelopmental delay and hypotonia. *J. Med. Genet.* 54, 43–50 (2017).

77. Harripegoda, R. et al. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. *Hum. Psychopath.* 23, 973–984 (2018).

78. Wang, Q., Moore, M. J., Adelmant, G., Marto, J. A. & Silver, P. A. PQBPI, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth. *Genes Dev.* 27, 615–626 (2013).

79. Levy, I. J. et al. Molecular and clinical delineation of 2p15p16.1 microdeletion syndrome. *Am. J. Med. Genet. A* 173, 2081–2087 (2017).

80. Dheedene, A., Maes, M., Vergult, S. & Menten, B. A de novo POU3F3 deletion in a boy with intellectual disability and dysmorphisms. *Am. J. Med. Genet. B Neuropsychiatr.* 167A, 28–40 (2014).

81. Carlson, C. M. et al. Pathogenic ASXL1 somatic variants in reference databases complicate germline variant interpretation for Bohring-Opitz Syndrome. *Hum. Mutat.* 38, 517–523 (2017).

82. He, X. et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. *PLoS Genet.* 9, e1003671 (2013).

83. Weiss, K. D. M. et al. Limitations of rare, noncoding variation to autism spectrum disorder from sequencing of 2,076 genomes in quartet families. *BioRxiv* https://doi.org/10.1101/127043 (2017).

84. Turner T. N. et al. Genomic patterns of de novo mutation in simplex autism. *Cell* 171, 710–722.e12 (2017).

85. Park, S. M., Park, H. R. & Lee, J. H. MAPK3 at the autism-linked human 16p11.2 locus influences precise synaptic target selection at drosophila larval neuromuscular junctions. *Mol. Cells* 40, 151–161 (2017).

86. Pucilowska, J. et al. The 16p11.2 deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked to the ERK MAPK pathway. *J. Neurosci.* 35, 3190–3200 (2015).

87. Blinzy, K. D. et al. Reverse of dendritic phenotypes in 16p11.2 microduplication mouse models reveals brain region specific changes relevant to autism spectrum disorder. *Front. Mol. Neurosci.* https://doi.org/10.3389/fnmol.2017.00026 (2017).

88. Balsters, J. H., Mantini, D. & Wenderoth, N. Connectivity-based network parcellation reveals distinct cortico-striatal connectivity fingerprints in autism spectrum disorder. *Neuroimage* 170, 412–423 (2018).

89. Shohat, S., Ben-David, E. & Shifman, S. Varying intolerance of gene pathways to mutualistic classes explain genetic convergence across neuropsychiatric disorders. *Cell Rep.* 22, 2217–2227 (2017).

90. Kaya, N. et al. KCNA4 deficiency leads to a syndrome of abnormal striatum, congenital cataract and intellectual disability. *J. Med. Genet.* 53, 786–792 (2016).

91. Flanagan, M. & LeClair, K. Shared motivational functions of ventral striatum D1 and D2 medium spiny neurons. *J. Neurosci.* 37, 6177–6179 (2017).

92. Sanders, S. J. First glimpses of the neurobiology of autism spectrum disorder. *Care. Opin. Genet. Dev.* 33, 80–92 (2015).

93. Schreweis, C. et al. Humanized Fopp2 accelerates learning by enhancing transitions from declarative to procedural performance. *Proc. Natl. Acad. Sci. USA* 111, 14253–14258 (2014).

94. Chen, Y. C. et al. Fopp2 controls synaptic wiring of corticostratial circuits and vocal communication by opposing Mez2. *Nat. Neurosci.* 19, 1513–1522 (2016).

95. Messman, H. A., Bernier, R. & Eichler, E. E. A genotype-first approach to defining the subtypes of a complex disease. *Cell* 156, 872–877 (2014).

96. Bernier, R. et al. Disruptive CHD8 mutations define a subset of autism early in development. *Cell* 158, 263–276 (2014).

97. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic Acids Res.* 38, W214–W220 (2010).
Acknowledgements
We wish to thank T. Turner and J. Shendure for helpful discussion and T. Brown for edits. This research was supported, in part, by the following: the Simons Foundation Autism Research Initiative (SFARI 303241) and US National Institutes of Health (NIH R01MH101221) to E.E.E. The J.D.D. laboratory is supported by a NARSAD Independent Investigator Award from the Brain and Behavior Research Foundation and NIH grant SR01MH107515-03. We are grateful to all of the families at the participating Simons Simplex Collection (SSC) sites, as well as the principal investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, R. Goen-Kochel, E. Hanson, D. Grice, A. Klin, D. Ledbetter, C. Lord, C. Martin, D. Martin, R. Mazim, J. Miles, O. Ousley, K. Pelphrey, B. Peterson, J. Piggot, C. Saulnier, M. State, W. Stone, J. Sutcliffe, C. Walsh, Z. Warren, E. Wijsman). E.E.E. is supported by the Howard Hughes Medical Institute.

Author contributions
B.P.C. and E.E.E. designed the study. B.P.C. performed the primary statistical data analysis. B.P.C., H.A.F.S., and M.R.G. curated DNMs and performed enrichment analyses. A.S. assisted with statistical analyses and interpretation. R.A.B. performed phenotype analysis. T.E.B. and E.S.L. performed the human expression analysis. A.M.L. and J.D.D. performed CSEA on cortex and assisted with additional CSEA and TSEA. F.H. performed the gene network analysis. B.P.C and E.E.E wrote the manuscript. All authors have read and approved the final version of the manuscript.

Competing interests
E.E.E. is on the scientific advisory board of DNAnexus, Inc.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41588-018-0288-4.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to E.E.E.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Nature Genetics

Methods

Data set. We analyzed de novo single-nucleotide and indel variants from whole-exome sequencing (WES) data generated for 10,927 cases with neurodevelopmental diagnoses of ASD or ID/DD compiled in the denovo-db v.1.5 release (Supplementary Table 1). The subset of denovo-db v.1.5 cohorts used was specifically chosen to avoid potential sample overlap, as described in Geisheker et al. and in the release documentation for denovo-db v.1.5 (see URLs). Briefly, we first assumed minimal overlap between studies based in Europe and America and studies with exclusion criteria, including participation in another study (for example, SSC and the Autism Sequencing Consortium or ASC). This was supported by screening for individuals with shared mutational sites and second events. We excluded studies from The Autism Simplex Collection or TASC due to known sample overlaps; additionally, we utilized only the more recent MNSNG data set to avoid redundant annotations. All variants were annotated to RefSeq transcripts using SnipEff and collapsing to the most severe variant across isoforms. Variants were further binned into LGD (stop loss/gain, splice and frameshift), missense or synonymous categories for analysis. While these data are derived from a diverse set of WES platforms with differing sensitivities, our DNMs-based analysis assumed samples to have perfect sensitivity. The combined set of 12,172 DNMs includes 2,357 LGD variants for analysis. While these data are derived from a diverse set of WES platforms, we utilized only the more recent MSSNG data set to avoid redundant samples. From The Autism Simplex Collection or TASC due to known sample overlaps.

Statistics. All standard statistical tests not reported by a described application (Methods) were performed using the R statistical language (v3.2.4), and nonparametric tests were used whenever possible. Wilcoxon rank-sum tests were used for distribution comparisons, with the exception of the Tukey Honest Significant Difference test for RVS testing across all categories and t test for IQ comparisons. Fisher's exact test was used for all count comparisons. Likelihood ratio tests for goodness of fit were performed using one million multinomial sampling simulations. Multiple testing correction was applied when appropriate using either the Benjamini-Hochberg FDR or Benferroni FWER as described in the relevant sections.

Recurrent variant analysis. Enrichment of de novo LGD and missense variation per gene was calculated using two statistical models. The CH model, as previously described, was run using the default setting and assuming a baseline rate of 1.8 de novo variants per individual (Supplementary Table 1). We note that ID/DD cohorts tend to have higher DNMs rates than ASD cohorts, potentially relating to a combination of both technical (chosen sensitivity, platform differences) and biological biases, with the DDS cohort demonstrating the highest DNMs rate among large cohorts. We anticipated that false positives would be randomly distributed and not enriched within specific genes. Observing coding DNMs (LGD or missense) rates in the exome studies ranged from 0.87 to 1.36 among the large cohorts (Supplementary Table 1). While these variances in DNM rate probably influence our results, all rates were below the 1.8 DNMs per individual rate used in the CH model; thus, overall, our statistics are conservative. Furthermore, we ran a recently published modified version that separately tests for enrichment of variants with CADD v.1.3 scores of 30 and higher, which are predicted to be the most damaging of missense variation. Similarly, denovooyzer used R (package version v0.2.0) was run using default settings. Each test (LGD, missense, MIS30) was individually adjusted to a q value by the Benjamini-Hochberg procedure based on the number of genes in the model (exome wide) and genes with a q value < 0.05 and a DNM count of two or more were considered for the union set. Wherever necessary, gene symbols were adjusted to match those used in the individual models (CH model, denovooyzer, CSEA). In cases in which no model was generated for a gene of interest, 'no model' is indicated in the significance column of Supplementary Table 2. Each analysis was corrected genome-wide for the number of genes present in the corresponding models (18,946 for CH model and 19,618 for denovooyzer).

Although the q value threshold should control the FDR within a single list, the combination of two models has the potential to increase the upper bound of the FDR for both the union and intersection. Although we assume that the FDR should remain at 5% on average, the upper limits to the merged FDRs can be defined as follows:

\[
FDR_{\text{CH,Add}} \leq \frac{FDR_{\text{CH}} + FDR_{\text{Add}}}{2} \quad \text{if} \quad |A| \geq 2 \quad \text{AND} \quad |A \cap B| \geq FDR_{\text{Add}} \quad \text{AND} \quad |A \cap B| \geq FDR_{\text{CH}}
\]

Application of these upper bounds estimates the maximal error rates in the unions as LGD FDR < 8.59%, missense FDR < 7.56%. As MIS30 is only examined by one model, its estimated FDR remains at 5%. Similarly, we estimate the maximal error rates in the intersections as LGD FDR < 5.75%, missense FDR < 6.75%. We wish to stress that we anticipate these to be upper bounds. In addition to the described treatment, to increase the stringency of our union set, we excluded any gene with a single DNM from further consideration. As a result, we discarded q values for 1,183 LGD, 4,246 missense, and 1,083 MIS30 genes, of which 113 reach corrected significance but are primarily small genes. This represents elimination of ~5–15% of genes further reducing the number of DNM. Despite this likely enrichment for false positives, 11 of 13 single-hit genes have been previously implicated in an NDD (Supplementary Table 2) and are thus potentially of interest for future studies with additional samples.

Identification of novel genes. To address novelty, we considered statistically significant genes as defined by five recent publications involving large-scale exome, whole-genome, or targeted sequencing (DeRubem et al., Sanders et al., an in press revised version of Steffeman et al., Yen et al., DDD 2017 (ref. 33)) and three well-curated databases (OMIM, SFARI Gene and ID Gene Database Project; see URLs; all database queries were made on 02/19/2018). We undertook the following approach to 'novel' as we define them by comparing our sets of 253 significant genes. Any gene listed as significant (regardless of thresholds or alternative methods of significance (CNV integration, private variation, inherited variation)) in any of these data sets was not considered 'novel' in our data set. Additionally, we considered SFARI genes of any score category as known. For the 80/253 genes not 'known' by this initial screen, we followed up with literature searches for evidence of any link to case reports or human studies of ID, autism or mental retardation or DD. For 49/80 genes, no evidence was found through the PubMed search; this represents our most conservative set of 'novel' genes (Supplementary Table 3). While this pool is the most likely to contain false positive findings, 10 of these 49 genes were also significant under an FWER correction (SAMC3, SNX5, TNPO2, ADAP1, CAPN15, CHD3, TMEFF2, AG034, SNAPC5 and ANP32A). Clinical evidence, even single case reports, adds credence to our gene list as high-confidence candidates for NDD pathology.

Network analysis. Identification of clustered gene modules was performed using the MAGI (merging affected genes into integrated networks) enrichment tool with default settings, followed by visualization incorporating co-expression and physical interaction data from geneMANIA. Significance for MAGI modules was performed by permuting DNMs across genes according to their mutation rates in the CH model 100 times and enumerating the number of random modules with scores greater than or equal to the module of interest.

Expression analysis in mouse. Functional enrichment was examined using the CSEA and TSEA tools. CSEA was additionally applied to candidate genes using single-cell transcriptomic profiling data from mouse cortex and hippocampus using custom R scripts. Raw mrRNA count data were downloaded from the Linnarson lab (see URLs), and only genes with at least 25 total molecules and at least 1 molecule in ≥ 100 cells were retained. Molecule counts were then incremented by a pseudo-count of 0.125 and reads per kilobase of transcript per million mapped reads (RPKM) normalized. RPKMs were averaged over each of the 47 cell subclasses identified by the authors using the BackSPIN clustering algorithm. Significantly enriched transcripts in each subclass were identified using the psl package, with a minimum expression value of 3 RPKM and default settings otherwise.

Expression analysis in humans. 15,928 single nuclei were isolated from the middle temporal gyrus of adult post-mortem brains of three human donors and profiled with RNA-sequencing. Raw read (fastq) files were aligned to the GRCh38 human genome sequence (Genome Reference Consortium, 2011) with the ReSeq transcriptome version GRCh38.p2 (current as of 4/13/2015). For alignment, Illumina sequencing adapters were clipped from the reads using the fastqMCF program (ea-utils, see URLs). After clipping, the paired-end reads were mapped using Spliced Transcripts Alignment to a Reference (STAR) with default settings. Unsupervised clustering identified 71 distinct transcriptic clusters, including 4 GABAergic (inhibitory) neuronal, 24 glutamatergic (excitatory) neuronal, 22 non-neuronal cell types (unpublished). For each gene, the expression pattern was characterized as the number of cell types with appreciable expression (median counts per million (CPM) > 1) in three broad classes: inhibitory and excitatory neurons and glia. Heatmaps were constructed of log-normalized expression (log2CPM + 1) of NDD risk gene across cell types and the number of inhibitory and excitatory neuronal and glial types that expressed NDD risk genes and control genes were quantified and visualized as empirical cumulative
distributions. Distributions were compared with two-sided Wilcoxon rank-sum tests for each broad class of cell types, and P values were Bonferroni corrected for multiple testing. A cell type specificity or marker score (beta) was defined for all genes to measure how binary expression was among clusters, independent of the number of clusters labeled. First, the proportion (x) of samples in each cluster that expressed a gene above background level (CPM > 1) was calculated. Then, scores were defined as the squared differences in proportions between all pairs (i,j) of n clusters normalized by the sum of absolute differences plus a small constant (ε) to avoid division by zero. Scores ranged from 0 to 1, and a perfectly binary marker had a score equal to 1.

$$\beta = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_j)^2}{\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j| + \varepsilon}$$

Shapiro–Wilk tests rejected (P < 0.05) the null hypothesis that distributions were normally distributed of cell type counts for each broad class, maximum average expression, and marker scores. Therefore, distributions were compared with two-sided Wilcoxon rank-sum tests, and P values were Bonferroni-corrected for multiple testing.

Projected rates of gene discovery. Prediction of future LGD and missense variation discovery rates was determined by sampling (with replacement) populations of 100 to 10,900 cases 10,000 times each and calculating DNM statistics using the CH model. The number of genes with two or more mutations and a q value below 0.05 were then enumerated for each simulation, and linear as well as logistic growth models were fit to each curve, with the best model being chosen via BIC. Model fits and confidence bounds were performed using the base stats and propagate (see URLs) packages in the R statistical language.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
All variant data in this study are available to download from denovo-db v.1.5 (http://denovo-db.gs.washington.edu/). Human MTG single-nucleus RNA-seq data and clusters can be downloaded from the Allen Institute for Brain Science website at http://celltypes.brain-map.org/download.

References
101. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
102. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

n/a	Confirmed
☐ 样本大小 (n) for each experimental group/condition, given as a discrete number and unit of measurement	☑
☐ An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly	☐
☑ The statistical test(s) used AND whether they are one- or two-sided	☑
☐ Only common tests should be described solely by name; describe more complex techniques in the Methods section.	☑
☐ A description of all covariates tested	☑
☐ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	☑
☑ A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)	☑
☑ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted	☑
☑ Give P values as exact values whenever suitable.	☑
☐ For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	☑
☑ For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	☑
☑ Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated	☑
☐ Clearly defined error bars	☑
☑ State explicitly what error bars represent (e.g. SD, SE, CI)	☑

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection All samples were obtained through the denovodb v. 1.5 web server (denovo-db.gs.washington.edu/)

Data analysis: We utilized two published algorithms (CH, and denovolyzer R package version 0.2.0) for detecting enrichment of de novo variation. Both have been previously described in cited manuscripts. All additional statistics were calculated using standard functions in the R statistical environment (v3.2.4).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All variant data in this study is available to download from denovo-db v.1.5 (see URLs). Human MTG single-nucleus RNA-seq data and clusters can be downloaded from the Allen Institute for Brain Science web site: http://celltypes.brain-map.org/download.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [x] Life sciences
- [] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
The sample size represents all published samples with de novo variation in neurodevelopmental disorders that were available through denovo-db at the time of the study (v1.5). Sample size was chosen to be as large as possible to maximize power.

Data exclusions
We selected samples with diagnoses of autism or intellectual disability or developmental delay and associated unaffected individuals. Samples from epilepsy-only studies were not included as they did not match our target phenotypes of autism or intellectual disability or developmental delay.

Replication
This study is based on a meta-analysis of genetic data and no experimental (biological) assays were used.

Randomization
This study represents a meta-analysis of published de novo variation in neurodevelopmental cases. All cases were assigned to either a bulk group of ASD or ID/DD based on the primary dataset’s description.

Blinding
As this meta-analysis primarily represents a single group enrichment, test blinding was neither possible nor performed.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a	Involved in the study
[X]	Unique biological materials
[X]	Antibodies
[X]	Eukaryotic cell lines
[X]	Palaeontology
[X]	Animals and other organisms
[]	Human research participants

Methods

n/a	Involved in the study
[X]	ChiP-seq
[X]	Flow cytometry
[X]	MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics
All studies present in this meta-analysis are described in their source manuscripts. Briefly, samples represent childhood genetic profiling of individuals with broad neurodevelopmental diagnoses of ASD (n=5,624), ID, or DD (ID/DD n= 5,303). Additional
Recruitment

As this study is a meta-analysis no patient recruitment was performed.