Magnetic excitations in multiferroic TbMnO$_3$

D. Senff,1 P. Link,2 K. Hradil,3 A. Hiess,4 L.P. Regnault,5 Y. Sidis,6 N. Aliouane,7 D.N. Argyriou,7 and M. Braden1,7

1II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
2 Forschungseinrichtung Heinz Maier-Leibnitz (FHM II), TU München, Lichtenbergstr. 1, 85747 Garching, Germany
3 Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
4 Institut Laue-Langevin, Boîte Postale 156, 38042 Grenoble Cedex 9, France
5 CEA-Grenoble, DFRM-SPSMS-MDN, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
6 Laboratoire Léon Brillouin, C.E.A./C.N.R.S., F-91191 Gif-sur-Yvette Cedex, France
7 Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany

(Dated: October 31, 2018, preprint)

The magnetic excitations in multiferroic TbMnO$_3$ have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5 meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5 meV-mode is in perfect agreement with recent infra-red-spectroscopy data giving strong support to its interpretation as an hybridized phonon-magnon excitation.

PACS numbers: 75.30.Ds, 75.47.Lx, 75.40.Gb, 75.50.Ee, 77.80.-e

The perovskite TbMnO$_3$ is a key material for the new class of multiferroic transition metal oxides, since the polarization in the ferroelectric phase is sizeable and since the magneto-electric coupling is remarkably large. The antiferro-type ordering of the single-occupied e_g-orbitals implies a ferromagnetic nearest neighbor (nn) interaction J_{FM} in LaMnO$_3$ as well as in TbMnO$_3$, but in TbMnO$_3$, a large c-axis octahedron rotation yields a sizeable overlap of the e_g-orbitals of next-nearest neighbor sites (nnn) along b rendering the associated magnetic interaction strongly antiferromagnetic, J_{nnn}. The well-defined ferromagnetic order in the a,b planes of LaMnO$_3$, therefore, becomes strongly frustrated in TbMnO$_3$ giving rise to the complex magnetic ordering which finally causes the multiferroic behavior.

At $T_N=42$ K, the Mn spins in TbMnO$_3$ order in a longitudinal spin-density wave (SDW) with a wave-vector of $\mathbf{q}=(0,0.28,0)$ in reduced lattice units of the $Pbnm$-structure. Upon further cooling, the modulation vector changes slightly until at $T_c=28$ K a second transition into a spiral phase occurs. Here, the magnetic order corresponds to an elliptic cycloid still modulated along the b-direction but with the spins rotating around the a-axis. Associated with this SDW to spiral transition into the spiral phase, the inverse of the Dzyaloshinskii-Moriya interaction implies an uniform displacement with an electric polarization given by:

$$P \propto \mathbf{r}_{ij} \times (\mathbf{S}_i \times \mathbf{S}_j) \quad (1),$$

for a pair of spins $\mathbf{S}_i, \mathbf{S}_j$ with a distance vector \mathbf{r}_{ij}. Considering the mechanism in equation (1) there is a close coupling between the dielectric properties and the magnetic excitations which should lead to hybridized phonon-magnon excitations. First evidence for such mixed excitations was recently obtained in Infra-Red (IR) optical-spectroscopy measurements, however, their role in the multiferroic behavior is unclear as their magnetic coun-

![FIG. 1: (color online) Raw-data scans at the incommensurate zone center and at the b-axis zone boundary in the spiral phase (PANDA and 4F, $k_f=1.5\text{Å}^{-1}$) a); Q-dependence of the signal b), the insert c) compares the suppression of the 4.5 meV feature with the expectation due to a Tb magnetic form factor (PUMA, $k_f=2.66\text{Å}^{-1}$). Full polarization analysis of the magnetic excitations at the incommensurate zone center and at the zone boundary (IN14, $k_f=1.5\text{Å}^{-1}$) d) and e).](image-url)
FIG. 2: Raw-data scans to determine the magnon dispersion in TbMnO$_3$ along a and c directions starting at the incommensurate zone center $(0,0.28,1)$ (PUMA, $k_i=2.662\,\text{Å}^{-1}$).

terparts have been little explored thus far.

In this letter we present the results of inelastic neutron scattering (INS) experiments to unravel the magnetic excitations in TbMnO$_3$, in particular the low-energy modes relevant for the multiferroic behavior whose characters were determined using longitudinal polarization analysis. The excellent agreement with the IR studies strengthens the evidence for mixed excitations.

A \sim900 mm3 large untwinned single crystal of TbMnO$_3$ was grown using an image furnace. The crystal exhibits the magnetic transitions at 42 and 28 K in agreement with previous studies. INS experiments were performed on various triple-axis spectrometers: on 4F (cold neutrons, Laboratoire Léon Brillouin), on PANDA (cold neutrons) and PUMA (thermal beam, both at the Forschungsreaktor München II) and using full polarization analysis with the CRYOPAD setup on IN14 (cold neutrons, Institut Laue Langevin). Measurements were taken in the ferroelectric (T=17 and 23 K), in the paraelectric SDW and in the paramagnetic phases.

Fig. 1 shows scans taken at the incommensurate zone center $Q= (0,0.28,1)$ and at the zone boundary in b direction in the spiral phase at $T=17$ K. Typical scans to determine the dispersion along the a and c-directions are shown in Fig. 2; along these directions the frequencies rapidly increase. In all scans we find an excitation at 4.5 meV which in agreement with the interpretation in reference can be identified as a Tb crystal-field excitation, since it does not disperse and since it exhibits a weaker dependence on the length of the scattering vector, $|Q|$, compared to the other contributions. The $|Q|$-dependence, furthermore, is in good agreement with the Tb magnetic form factor, see Fig. 1 c).

Fig. 3 shows the magnon dispersion of TbMnO$_3$ obtained in the spiral (T=23 and 17 K) and in the paraelectric SDW phase (T=32 K). The dotted lines in Fig. 3 denote the magnon dispersion measured in LaMnO$_3$. Only along the antiferromagnetic c-direction, LaMnO$_3$ and TbMnO$_3$ exhibit a qualitatively similar dispersion. Along the a,b plane, the dispersion is essentially flattened in TbMnO$_3$. The upper cut-off energy in TbMnO$_3$ amounts to \sim8 meV, whereas magnon energies in LaMnO$_3$ extend up to 33 meV. The pronounced softening of the magnon frequencies for wave vectors along the ferromagnetic planes reflects the frustrating spin interactions and the weakened nearest neighbor interaction D. The magnons in TbMnO$_3$ are broadened, and we find evidence for a splitting of excitations even in the SDW phase, which, however, requires further studies. Tentatively, we may describe the dispersion along a and c in a $S=2$ Heisenberg model with a single magnon branch including single-ion anisotropy D. Thereby, we obtain the interaction parameters $J_{FM}=0.15(1)$ meV (nearest neighbors along the a,b planes) and $J_{AFM}=-0.31(2)$ meV (neighbors along c) and $D=-0.09(1)$ meV. These values should be compared to the values of $J_{FM}=0.83$ meV and $J_{AFM}=-0.58$ meV observed in LaMnO$_3$. In the spiral phase, mode splitting is observed throughout the Brillouin zone and a more sophisticated model to fully describe the spin-exciton dispersion is needed.

Concerning the high-energy part of the dispersion, our data agree qualitatively with the study of the magnon dispersion by Kajimoto et al., but the splitting in the excitations has not been analyzed in reference, probably due to the fact that this group did not analyze the dispersion starting at the incommensurate zone center. In addition, we have explored in detail the low-energy part of the dispersion at the incommensurate zone center and the soft branches along the b-direction. As seen in Fig. 1 and in the dispersion along the b direction shown in Fig. 3 a), there are actually three low-energy branches emerging out of $Q= (0,0.28,1)$. In view of the magnetoelectric effect, these are the most relevant modes. The unpolarized data in Fig. 1 a) show the three contributions (plus the Tb crystal field at 4.5 meV), but this type of data does not allow us to determine unambiguously the polarization of the different contributions in spite of the many different Brillouin zones explored.

We have employed longitudinal polarization analysis yielding important additional information : in the spin-flip scattering channel only those excitations are detected whose polarization is perpendicular to the chosen neutron-polarization axis. We have performed the experiment with the a direction vertical to the scattering plane using the CRYOPAD-device on IN14. The setup yielded a remarkable precision with a flipping ratio of $I^{NSF}_a: I^{SF}_a = 35$ and an accuracy of about 2% in the transverse polarization terms. With the three neutron-polarization directions : parallel to Q, (x), parallel to a, (z), and perpendicular to both Q and a, (y), one may distinguish between excitations polarized perpendicular to the spiral plane in TbMnO$_3$ (i.e. perpendicular to the b,c plane, S_{\perp}) and those polarized within the spiral plane (i.e. in the b,c plane, $S_{||}$). In the spin-flip (x)-channel the sum of both magnetic contributions appear, whereas the spin-flip (y) and (z) channels measure only the S_{\perp} and the $S_{||}$ contribution, respectively. By subtracting the intensities obtained in different channels one directly obtains S_{\perp} and $S_{||}$ without any background assumption. The two contributions S_{\perp} and $S_{||}$ are separated in the lower part of Fig. 1. At the incommensu-
two magnetic excitations with a spin polarization per-
sides the sliding mode and the phonons, there are indeed
has been discussed recently by Katsura et al. \[18\]. Be-
nates from the inverse Dzyaloshinski Moriya interaction
ition of a multiferroic system where ferroelectricity origi-
gies of 1.08(8) and 2.46(9) meV. The low-energy excita-
perfectly circular an anisotropy term can explain a finite
where \(\mathbf{R}_i \) is the position vector of the spin \(\mathbf{S}_i \). An
polarized magnetic excitation at the incommensurate
zone center necessarily possesses the same modulation
along \(b \), however the oscillating part can be in-phase ei-
ther with the \(b \) component (cosine term in equation (2),
see Fig. 3d) (ii)) or with the \(c \) component (sine term in
equation (2), see Fig. 3d) (i)). The arising polarization
patterns are distinct : in the first case the spiral plane
rotates around the \(c \) direction and it rotates around \(b \)
in the second case. Correspondingly, the cross product
\(\mathbf{S}_i \times \mathbf{S}_j \) between neighboring spins rotates around the \(c \)
direction and around the \(b \) direction in these cases. Since
the modulation vector or \(\mathbf{r}_{ij} \) in equation (1) remain
always parallel \(b \), the rotation of the \(\mathbf{S}_i \times \mathbf{S}_j \) cross
through the magnon has a strong linear coupling to the
polarization in the second case, which we label \(\omega_- \) fol-
lowing reference \[18\]. The \(\omega_- \)-excitation is the Goldstone
boson of the multiferroic phase, it may shift to finite en-
ergy due to anisotropy terms. It is a magnon-phonon
hybridization with the phonon describing the electronic
polarization along the \(a \) direction. The other transverse
magnon couples only quadratically, and thus weakly, to
the polarization. It weakly modulates the static polarization
parallel to \(c \). Both magnons posses finite frequencies
due to anisotropy effects.

Recently, Pimenov et al. \[13\] have reported the ob-
servation of a low-energy excitation in IR spectroscopy
studies of GdMnO\(_3\) and TbMnO\(_3\) which could be fully
suppressed by applying an external magnetic field. They
interpreted this excitation as an electromagnon, the hy-
bridized magnetic and phononic excitation. This result
 together with the analysis given in reference \[18\] agree
perfectly with our INS study of the magnetic excitations.
The electromagnon feature seen by Pimenov et al. at
20cm\(^{-1}\)=2.48 meV agrees with one of the low-lying mag-
netic excitations in the \(S_\perp \) contribution. We, therefore,
tentatively attribute the 2.46 meV neutron-scattering
excitation to the \(\omega_- \) Goldstone boson. According to the
analysis given above, this mode should couple to the po-
larization in the \(a \)-direction, which is indeed the direction
of electric field in the IR experiment sensing the lattice
part of the excitation. In TbMnO\(_3\) the spiral order might
be more complex than the ideal circular cycloid consid-
ered in equation (2); therefore the characters of the two
\(S_\perp \)-polarized magnetic excitations might weakly mix ren-
dering both IR-active. It is interesting to note that also
the energy of the lower \(S_\perp \) mode agrees perfectly with the
- though weaker - feature in the IR response at 1.24
meV in reference \[13\]. We emphasize, that associating
the 2.46 meV neutron-scattering excitation with the \(\omega_- \)
mode only bases on the comparison with the IR results;
actually one might expect this mode to exhibit a lower
energy since it describes the flip of the spiral into the
\(a \), \(b \)-plane which seems to occur in TbMnO\(_3\) under field
as well as in related ReMnO\(_3\) \[2, 6, 15\].

Along the \(b \) direction the three low-energy branches
can be followed till the incommensurate zone bound-
ary and even beyond in the spiral phase. The disper-
rate zone center, the excitation with the lowest en-
ery of 0.2(1) meV is \(b \), \(c \) polarized. Since one may exclude a
longitudinal spin excitation in this high-moment ordered
structure, this mode must be attributed to the trans-
verse magnon polarized in the spiral plane. This mode
is the sliding mode of the modulated magnetic structure
its polarization scheme is shown in Fig 3d)(iii). It has
no impact on equation (1) describing the magnetoelec-
tric coupling. Therefore, it should not be relevant for the
multiferroic behavior. Since the spiral in TbMnO\(_3\) is not
perfectly circular an anisotropy term can explain a finite
energy of the sliding mode in addition to pinning effects.

In the \(S_\perp \) channel, there are two contributions at ener-
gies of 1.08(8) and 2.46(9) meV. The low-energy excita-
tion of a multiferroic system where ferroelectricity origi-
nates from the inverse Dzyaloshinski Moriya interaction
has been discussed recently by Katsura et al. \[18\]. Be-
sides the sliding mode and the phonons, there are indeed
two magnetic excitations with a spin polarization per-
pendicular to the spiral plane (\(b \), \(c \) plane in the case of
TbMnO\(_3\)) corresponding to \(S_\perp \). These modes are il-
lustrated in Fig. 3d) i) and ii). For simplicity, we assume
that the phase shift between the \(b \) and the \(c \) components
of the spiral in TbMnO\(_3\) is exactly \(\pi/2 \) and that the two
coefficients are of equal size, i.e. the spiral is circular.
Then, one may describe the magnetic order by :

\[
\mathbf{S}_i = S \cdot \cos(\mathbf{q}_{\text{spiral}} \cdot \mathbf{R}_i) \cdot \mathbf{e}_y + S \cdot \sin(\mathbf{q}_{\text{spiral}} \cdot \mathbf{R}_i) \cdot \mathbf{e}_z \quad (2),
\]

and the two \(\alpha \)-polarized modes, (i) and (ii), and the sliding mode
of the spiral, (iii), see text.
FIG. 4: (color online) Temperature dependence of the magnetic scattering at the incommensurate zone center determined with unpolarized neutrons (PUMA, \(k_i=2.662 \text{ Å}^{-1}\) constant) a) and with polarized neutrons (IN14, \(k_f=1.5 \text{ Å}^{-1}\) constant) c); the inset b) shows the magnetic elastic scattering at \(Q=(0,1.72,1)\) as function of temperature.

sion unambiguously shows that anisotropy terms play a dominant role in \(\text{TbMnO}_3\); they appear to determine the sequence of magnetic phases as function of temperature and magnetic field. Introducing the frustrating \(J_{nnn}\) interaction into the non-frustrated magnon dispersion along \(b\), see insert in Fig. 3a), one may understand the \(b\)-dispersion in the incommensurate phase. The frustration generates a dispersion minimum whose position as well as the analysis of the exchange energy in the ordered state allow one to estimate the interaction ratio to be of the order of \(J_{nnn}/J_{FM}=0.8\). The finite energies of both the \(\omega_-\) feature and the other \(a\)-polarized zone-center magnetic excitation arise from either a single-ion anisotropy, from exchange anisotropy or from the electron-lattice coupling. More experimental and theoretical efforts are, however, needed in order to fully characterize the aspects arising from folding the magnon dispersion into the incommensurate ordering.

The inset of Fig. 4 shows the spin-flip signal at the \((0,1.72,1)\) magnetic Bragg reflection which essentially depends on the \(c\)-component of the ordered moments; its temperature dependence clearly shows the drastic increase of the \(c\)-component in the spiral phase \([\text{18}]\). The temperature dependence of the spectra obtained at the incommensurate zone center, see Fig. 4, show that the two well-separated \(a\)-polarized excitations in the spiral phase merge into a broad signal upon heating into the SDW phase. In analogy to the discussion of the low-lying excitations in the spiral phase, one may expect several contributions in the SDW phase as well. Single-ion anisotropy causes a finite energy for the transverse magnetic excitations and will yield a splitting for polarization parallel \(a\) and \(c\). Furthermore, there will be a separation due to the phase of the oscillating part which may be either in-phase with the SDW or shifted by \(\pi/2\). The in-phase modes are irrelevant for the magnetoelectric coupling at least within the Dzyaloshinskii-Moriya scenario of equation (1) since they lead to a collinear spin structure. In contrast, the two \(\pi/2\)-phase modes may couple with electric polarization even in the paraelectric SDW phase for both magnetic polarizations. Besides the broadening of the neutron signal in the SDW phase, there is a temperature driven change in the spectral weights for the different polarizations. There is still a low-lying \(S_{||}\) contribution in the SDW phase in agreement with the character of the transition into the spiral phase where ordered moments are displaced parallel to the \(c\) direction. This low-lying \(S_{||}\) signal can be considered as the quasi-soft mode associated with the SDW to spiral transition. This mode should be strongly coupled to the polarization along \(c\). The total spectral weight of the \(a\)- or \(S_{||}\)-polarized contributions, however, seems not to be focused in a single mode but extends to higher energies. Comparing the response in the \(S_{||}\)-channel in both phases, one may conclude that the \(\omega_-\) mode is little changing across the transition, whereas the other \(S_{||}\)-contribution softens in the SDW phase. These findings agree once more with the IR studies, where the electromagnon for fields along \(a\) persists into the paraelectric SDW phase.

In conclusion the INS studies of the magnetic excitations in multiferroic \(\text{TbMnO}_3\) with and without polarization analysis allow us to identify the frequencies and character of the low-energy modes associated with the magnetoelectric coupling. The good agreement of the observed frequencies with those of recent IR studies give strong support to the interpretation as a magnon-phonon hybridized electromagnon mode.

Work at Universität zu Köln was supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 608. We thank N. Nagaosa and M. Mostovoy for interesting discussions.

\[\text{[1]}\] T. Kimura et al., Nature (London) 426, 55 (2003).
\[\text{[2]}\] T. Goto et al., Phys. Rev. Lett. 92, 257201 (2004).
\[\text{[3]}\] N. Hur et al., Nature (London) 430, 541 (2004).
\[\text{[4]}\] G. Lawes et al., Phys. Rev. Lett. 93, 247201 (2004).
\[\text{[5]}\] T. Kimura et al., Phys. Rev. B 71, 184441 (2005).
\[\text{[6]}\] Kimura et al., Phys. Rev. B 68, 060403(R) (2003).
\[\text{[7]}\] J. Blasco et al., Phys. Rev. B 62, 5609 (2000).
\[\text{[8]}\] S. Quezel et al., Physica B & C 86, 916 (1977).
\[\text{[9]}\] M. Kenzelmann et al., Phys. Rev. Lett. 95, 087206 (2005).
\[\text{[10]}\] H. Katsura et al., Phys. Rev. Lett. 95, 057205 (2005).
\[\text{[11]}\] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
\[\text{[12]}\] I.A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).

\[\text{[13]}\] A. Pimenov et al., Nature physics 2, 97 (2006).
\[\text{[14]}\] R. Kajimoto et al., J. Phys. Soc. Jpn. 74, 2430 (2005).
\[\text{[15]}\] N. Aliouane et al., Phys. Rev. B 73, 020102 (2006).
\[\text{[16]}\] F. Moussa et al., Phys. Rev. B 54, 15149 (1996).
\[\text{[17]}\] R.M. Moon et al., Phys. Rev. 181, 920 (1969).
\[\text{[18]}\] H. Katsura et al., condmat/0602547 (2006).