First-principles study of half-metallicity in semi-hydrogenated BC$_3$, BC$_5$, BC$_7$, and B-doped graphone sheets

Yi Ding1*, Yanli Wang2*, Jun Ni3, Lin Shi4, Siqi Shi2, Chaorong Li2, Weihua Tang2

Abstract

Using first principles calculations, we investigate the electronic structures of semi-hydrogenated BC$_3$, BC$_5$, BC$_7$, and B-doped graphone sheets. We find that all the semi-hydrogenated boron-carbon sheets exhibit half-metallic behaviors. The magnetism originates from the non-bonding p_z orbitals of carbon atoms, which cause the flat bands to satisfy the Stoner criterion. On the other hand, boron atoms weaken the magnetic moments of nearby carbon atoms and act as holes doped in the sheets. It induces the down shift of the Fermi level and the half-metallicity in semi-hydrogenated sheets. Our studies demonstrate that the semi-hydrogenation is an effective route to achieve half-metallicity in the boron-carbon systems.

Introduction

Since the discovery of graphene [1], two-dimensional (2D) nano-sheet structures have attracted lots of research in the condensed matter physics. Graphene is a monolayer carbon hexagonal sheet, in which both α and β sites of the hexagon are occupied by carbon atoms [2]. Owing to the equivalence of two carbon sites, the graphene sheet is a semi-metal with the massless Dirac-like electronic excitation [3]. When the graphene sheet connects with Si monolayer, this Dirac-like electronic structure is maintained [4]. While the graphene sheet is epitaxially grown on the SiC substrate, two carbon sites become inequivalent and a band gap is opened [5]. Recently, several chemical methods have been reported for the high-yield production of graphene [6,7]. The graphene-based transistors also develop fast, and those carbon-based nanomaterials are considered as candidates for the post-silicon electronics [8,9].

Since the perfect graphene sheet is a semi-metal with zero band gap [2], the hydrogenation is used as an effective way for the chemical functionalization of graphene [10]. The fully hydrogenated graphene sheet, called as graphane, is a semiconductor with a band gap of 3.5 eV [11-14]. In the experiments, by exposing graphene under hydrogen plasma surroundings, the graphane sheet has already been synthesized [15]. When some hydrogen atoms are removed from the graphane sheet, the magnetism will appear in those hydrogen vacancies [16]. The large area of hydrogen vacancies can even form the graphene nanoroads or quantum dots in the graphane sheets [17,18]. Under the external electric field, hydrogen atoms are pushed away from one side of the graphane sheet, while the others are still retained at the other side, which forms the semi-hydrogenated graphene sheet [19]. The previous theoretical study has shown that this semi-hydrogenated graphene, which is referred to graphone, is a ferromagnetic semiconductor with a small band gap [20]. Using the angle-resolved photoemission spectroscopy, researchers have found that the patterned one-side hydrogen adsorption can induce a band gap for the graphene sheet on the Ir (111) surface [21].

Besides the graphene sheet, the semi-hydrogenation can also tune the properties of other graphene-like 2D sheets. For example, the semi-hydrogenated BN sheet becomes a ferromagnetic metal [22], and the semi-hydrogenated SiC sheet becomes an antiferromagnetic semiconductor [23]. By coevaporation of boron and carbon atoms, hexagonal-like boron carbides are formed...
with the boron content being less than 50% [24]. Moreover, the graphene-like BC$_3$ sheet can be grown on the NbB$_2$ (0001) surface by an epitaxial method [25]. In our previous study, we have found that the fully hydrogenation leads to the semiconductor-metal transitions in the BC$_3$, BC$_5$, and BC$_7$ sheets [26]. Since the semi-hydrogenation can cause spin polarization in the 2 D sheets and the ordered boron-carbon compounds have rich electronic properties, the semi-hydrogenated boron-carbon sheets will be expected to exhibit interesting electronic and magnetic behaviors. It is also promising for the research on the B-doped effects on the semi-hydrogenated sheets. Thus, we perform first principles calculations to investigate the electronic structures of semi-hydrogenated BC$_3$ (H-BC$_3$), BC$_5$ (H-BC$_5$), BC$_7$ (H-BC$_7$), and B-doped graphene sheets in this article.

Calculation details

First principles calculations are performed by the VASP code [27]. The approach is based on an iterative solution of the Kohn-Sham equation of the density function theory in a plane-wave set with the projector-augmented wave pseudopotentials. In our calculations, the Perdew-Burke-Ernzerhof (PBE) exchange-correlation (XC) functional of the generalized gradient approximation is adopted. We set the plane-wave cutoff energy to be 520 eV and the convergence of the force on each atom to be less than 0.01 eV/Å. The optimizations of the lattice constants and the atomic coordinates are made by the minimization of the total energy. The supercells are used to simulate the isolated sheet and the sheets are separated by larger than 12 Å to avoid interlayer interactions. The Monkhorst-Pack scheme is used for sampling the Brillouin zone. In the calculations, the structures are fully relaxed with a mesh of $5 \times 5 \times 1$, and the mesh of k space is increased to $7 \times 7 \times 1$, in the static calculations. In the spin-polarized calculations, both the ferromagnetic (FM) and antiferromagnetic (AFM) states are constructed for the initial magnetic structures of the H-BC$_x$ ($x = 3, 5, 7$) sheets. However, the artificial AFM state always converges to the FM state after optimization.

Results and discussion

Figure 1 shows the structures of the graphene and H-BC$_3$ sheets. In the graphene sheet, hydrogen atoms only bond with the carbon atoms at β sites (C_β), not the carbon atoms at α sites (C_α). After semi-hydrogenation, the lattice constant of graphene is increased, which is 2.75% larger than that of graphene. The calculated C-C and C-H bond lengths are 1.50 and 1.16 Å, respectively, which agree well with the previous study [20]. Owing to the inequivalence of C_α and C_β atoms, graphene is a semiconductor. As shown in Figure 1c, it has an indirect band gap of 0.48 eV, which is also in good accordance with the results by Zhou et al. [20]. In the H-BC$_3$ sheet, only the C_β atoms are bonding with hydrogen atoms, since under normal chemical potential, the hydrogen atoms prefer to bonding with carbon atoms in the BC$_3$ sheet [26]. We have also calculated the conformation in which all the C_β and B_β atoms bond with hydrogen atoms. The binding energy of this conformation is -1.40 eV/H, which is 0.13 eV/H less stable than the H-BC$_3$ sheet shown in Figure 1b. The calculated B-C, C-C, and C-H bond lengths of the H-BC$_3$ sheet are 1.53, 1.49, and 1.14 Å, respectively, and the lattice constant is 6.59% larger than that of graphene. Different from graphene, the C-H bonds tilt to the nearby boron atoms in the H-BC$_3$ sheet. These tilting C-H bonds, together with the elongated lattice constant, decrease the repulsion between the hydrogen atoms and lead to a high binding energy of -1.53 eV/H for the H-BC$_3$ sheet.

The band structure of the H-BC$_3$ sheet is shown in Figure 1d. Different from the semiconducting graphene, the H-BC$_3$ sheet exhibits a half-metallic character. There are two at bands crossing the Fermi level for the spin-up electrons. On the other hand, for the spin-down electrons, it opens a band gap of 1.76 eV. The half-metal gap, defined as the difference between the Fermi level and topmost occupied spin-down band, is 1.18 eV for the H-BC$_3$ sheet. We have also checked the half-metallicity of the H-BC$_3$ sheet with different XC functionals. Figure 2 displays the calculated densities of states (DOSs) by the Ceperly-Alder functional form of the local density approximation and the hybrid XC functional of Heyd-Scuseria-Ernzerhof. Both calculations confirm the half-metallic behavior of the H-BC$_3$ sheet.

In order to gain more insight into the half-metallicity, we plot the spin density distribution and partial DOSs of the H-BC$_3$ sheet as shown in Figure 2. The figure indicates that the magnetism is mainly from the p_z orbitals of C_α atoms. The C_α atom is not hydrogenated in the H-BC$_3$ sheet. It has an unpaired p-electron localized in the non-bonding p_z orbital, which contributes to the flat bands near the Fermi level. The at bands lead to large DOSs flat the Fermi level, which are beneficial to satisfy the Stoner criterion, $\ln(E_F) > 1$ and induce the ferromagnetism in the semi-hydrogenated sheet [28]. For the graphene sheet, there are also flat bands near the Fermi level as shown in Figure 1c, which cause spin polarization of those unhydrogenated C_α atoms [20]. However, owing to the existence of boron atoms, the magnetism of H-BC$_3$ sheet is weakened. For the same calculated units in Figure 1, the graphene sheet has a total magnetic moment of $4\mu_B$, while the H-BC$_3$ sheet has only $1\mu_B$. Using the Bader analysis [29], we obtain that the boron atom transfers 1.27 e to the surrounding C_α atoms. Each C_α atom contributes $0.79\mu_B$ in the
graphene sheet, while in the H-BC₃ sheet it decreases to 0.31 μB because of the charge transfers from nearby boron atoms. Considering that the boron element is one electron less than the carbon one, the boron atoms behave like holes doped in the semi-hydrogenated sheets. It leads to the down shift of the Fermi level, which crosses the spin-up bands. Consequently, the H-BC₃ sheet becomes a half-metal.

More interestingly, the half-metallicity appears not only in the H-BC₃ sheet, but also in other semi-hydrogenated boron-carbon sheets. Figure 3 shows the electronic structures of the H-BC₅ and H-BC₇ sheets.
Figure 3 The electronic structures of the H-BC$_5$ and H-BC$_7$ sheets. (Color online) The structures, energy bands, and DOSs of (a,c,e) the H-BC$_5$ and (b,d,f) the H-BC$_7$ sheets. The calculated units are delineated by dotted lines, and the spin density distributions are shown in (a,b). The Fermi level is indicated as the line at $E = 0$ eV.

Figure 4 The electronic structures of the B-doped graphene sheet. (Color online) (a) The structures and (b) DOSs of the B-doped graphene sheets. The calculated units are delineated by dotted lines and the spin density distributions are shown in (a). The Fermi level is indicated as the line at $E = 0$ eV.
The magnetism is also mainly localized at the C\(_{\alpha}\) atoms of those sheets. In the H-BC\(_5\) sheet, the C\(_{\alpha}\) atom has a magnetic moment of 0.31\(\mu_B\). On the other hand, in the H-BC\(_7\) sheet, the atomic magnetic moments become 0.34 and 0.72, respectively. To model the B-doped graphene sheet, one C atom is replaced by the B atom in a 4 × 4 unit cell, yielding a B-doped concentration of 3.125%. Figure 4a displays that the doped boron atom weakens the magnetism of three neighboring C\(_{\alpha}\) atoms. Comparing with the perfect graphene sheet, the total magnetic moment is reduced by 2\(\mu_B\) after boron doping. The B-doped graphene sheet also presents a half-magnetic behavior as shown in Figure 4b.

Table 1 listed the calculated results. All the semi-hydrogenated boron-carbon sheets are half-metals. We find that the different boron contents have two effects on the stabilities of half-metallic sheets: on the one hand, with the increase of the boron contents, the binding energies increase because of the decreased repulsion between hydrogen atoms with the elongated lattice constants. On the other hand, the boron atoms weaken the nearby C\(_{\alpha}\) magnetic moments, which decreases the \(p-p\) interactions between them. Thus, the energy gain of the ferromagnetic state decreases with the increase of the boron contents. Comparing with the normal room temperature (25 meV), the half-metallicities of the H-BC\(_3\), H-BC\(_5\), and H-BC\(_7\) sheets are still stable.

Conclusions
In summary, we find that all the semi-hydrogenated BC\(_3\), BC\(_5\), BC\(_7\), and B-doped graphene sheets are half-metals. The magnetism originates from the non-bonding \(p_z\) orbitals of C\(_{\alpha}\) atoms. The boron atoms weaken the nearby C\(_{\alpha}\) magnetic moments, and cause the Fermi level to shift into the spin-up states. A half-metal gap is opened in the spin-down bands, the value of which is about 1-2 eV depending on the boron contents. Owing to the promising half-metallicity, the semi-hydrogenated boron-carbon sheets have potential applications in spintronics and nanodevices.

Abbreviations
AFM: antiferromagnetic; DoSs: densities of states; FM: ferromagnetic; PBE: Perdew-Burke-Ernzerhof.

Acknowledgements
Some of the calculations were performed in the Beijing Computing Center (BCC) of China. Y. Ding acknowledges the support from Hangzhou Normal University (HZNU), and BCC. Y. Wang acknowledges the support from the Science Foundation of Zhejiang Sci-Tech University (ZSTU) (Grant No. 0913847-Y). J. Ni acknowledges the support from the National Science Foundation of China (NSFC) (Grant No. 10974107). Y. Ding would like to thank Dr. Baoxing Li, Dr. Chao Cao, and the HZNU College of Science HPC Center for their assistance.

Authors’ contributions
YD and YW conceived the idea, performed the calculations, analyzed the data, and wrote the manuscript. JN, LS, SS, CL, and WT participated in the study. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 21 October 2010 Accepted: 1 March 2011
Published: 1 March 2011

References
1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306:666-669.
2. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK: The electronic properties of graphene. Rev Mod Phys 2009, 81:109-162.
3. Geim AK: Graphene: Status and Prospects. Science 2009, 324:1530-1534.
4. Zhang Y, Liu SJ: Binding Graphene Sheets Together Using Silicon: Graphene/Silicon Superlattice. Nanoscale Res Lett 2010, 5:805-808.
5. Zhou SY, Iyengar GH, Fedorov AV, First PN, de Heer WA, Lee DH, Guinea F, Neto AHC, Lanzara A: Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 2007, 6:670-775.
6. Rao CNR, Sood AK, Subrahmanyan KS, Govindaraj A: Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Ed 2009, 48:7752-7777.
7. Lee BJ, Yu HY, Jeong GH: Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application. Nanoscale Res Lett 2010, 5:1768-1773.
8. Avouris P, Chen Z, Perebeinos V: Carbon-based electronics. Nat Nanotechnol 2007, 2:605-615.
9. Schweizer F: Graphene transistors. Nature Nanotechnol 2010, 5:487-496.
10. Boukhvalov DW, Katsnelson MI: Chemical functionalization of graphene. J Phys: Condens Matter 2009, 21:344205.
11. Sofo JO, Chaudhari AS, Barber GD: Graphane: A two-dimensional hydrocarbon. Phys Rev B 2007, 75:153401.
12. Boukhvalov DW, Katsnelson MI, Lichtenstein AI: Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 2008, 77:035427.
13. Li YF, Zhou Z, Shen PW, Chen ZF: Structural and Electronic Properties of Graphane Nanoribbons. J Phys Chem C 2009, 113:15043-15045.
14. Xu K, Xu Z: Strain effects on basal-plane hydrogenation of graphene: A first-principles study. Appl Phys Lett 2010, 96:033103.
15. Elías DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferran AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS: Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 2009, 323:610-613.
16. Sahin H, Ataca C, Ciraci S: Magnetization of graphane by dehydrogenation. Appl Phys Lett 2010, 95:223510.
17. Singh AK, Yakobson BI: Electronics and Magnetism of Patterned Graphene Nanoroads. Nano Lett 2009, 9:1540-1543.
18. Singh AK, Penev ES, Yakobson BI: Vacancy Clusters in Graphane as Quantum Dots. ACS Nano 2010, 4:3510-3514.
19. Zhou J, Wu MM, Zhou X, Sun Q: Tuning electronic and magnetic properties of graphene by surface modification. Appl Phys Lett 2009, 95:103108.
20. Zhou J, Wang Q, Sun Q, Chen XS, Kawai K, Jena P: Ferromagnetism in semihydrogenated graphene sheet. Nano Lett 2009, 9:3867-3870.
21. Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi MF, Lizzit S, Pedersen TG, Hofmann P, Hornekar L: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Mater 2010, 9:315-319.
22. Wang Y: Electronic properties of two-dimensional hydrogenated and semihydrogenated hexagonal boron nitride sheets. Phys Status Solidi (RRL) 2010, 4:34-36.
23. Xu B, Yin J, Xia YD, Wan XG, Liu ZG: Ferromagnetic and antiferromagnetic properties of the semihydrogenated SiC sheet. Appl Phys Lett 2010, 96:14311.
24. Caretti I, Gago R, Albella JM, Jimenez I: Boron carbides formed by coevaporation of B and C atoms: Vapor reactivity, BxC1-x composition, and bonding structure. Phys Rev B 2008, 77:174109.
25. Yanagiwara H, Tanaka T, Ishida Y, Matsue M, Rokuta E, Otani S, Oshima C: Phonon Dispersion Curves of a BC3 Honeycomb Epitaxial Sheet. Phys Rev Lett 2004, 93:177003.
26. Ding Y, Ni J: Tuning Electronic Properties of Hydro-Boron-Carbon Compounds by Hydrogen and Boron Contents: A First Principles Study. J Phys Chem C 2009, 113:18468-18472.
27. Kresse G, Furthmüller J: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996, 6:15-50.
28. Wu M, Zhang Z, Zeng XM: Charge-injection induced magnetism and half-metallicity in single-layer hexagonal group III/V (BN, BP, ALN, AIP) systems. Appl Phys Lett 2010, 97:093109.
29. Tang W, Sanville E, Henkelman G: A grid-based Bader analysis algorithm without lattice bias. J Phys: Condens Matter 2009, 21:084204.

doi:10.1186/1556-276X-6-190
Cite this article as: Ding et al: First-principles study of half-metallicity in semi-hydrogenated BC3, BC5, BC7, and B-doped graphene sheets. Nanoscale Research Letters 2011 6:190.

Submit your manuscript to a SpringerOpen journal and benefit from:
- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com