SWEEPING AWAY THE MYSTERIES OF DUSTY CONTINUOUS WINDS IN ACTIVE GALACTIC NUCLEI

S. K. KEATING1,2, J. E. EVERETT3, S. C. GALLAGHER1, and R. P. DEO1

1 Department of Physics & Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada; stephanie.keating@utoronto.ca
2 Department of Astronomy & Astrophysics, University of Toronto, ON M5S 3H4, Canada
3 Department of Physics, University of Wisconsin–Madison, Madison, WI 53706-1390, USA

Received 2011 October 7; accepted 2012 January 29; published 2012 March 20

ABSTRACT

An integral part of the unified model for active galactic nuclei (AGNs) is an axisymmetric obscuring medium, which is commonly depicted as a torus of gas and dust surrounding the central engine. However, a robust, dynamical model of the torus is required in order to understand the fundamental physics of AGNs and interpret their observational signatures. Here, we explore self-similar, dusty disk winds, driven by both magnetocentrifugal forces and radiation pressure, as an explanation for the torus. Using these models, we make predictions of AGN infrared (IR) spectral energy distributions from 2 to 100 μm by varying parameters such as the viewing angle (from \(i = 0^\circ \) to 90°), the base column density of the wind (from \(N_{H,0} = 10^{23} \) to \(10^{25} \text{ cm}^{-2} \)), the Eddington ratio (from \(L/L_{\text{Edd}} = 0.01 \) to 1), the black hole mass (from \(M_{BH} = 10^8 \) to \(10^9 \text{ M}_\odot \)), and the amount of power in the input spectrum emitted in the X-ray relative to that emitted in the UV/optical (from \(\alpha_{ox} = 1.1 \) to 2.1). We find that models with \(N_{H,0} = 10^{23} \text{ cm}^{-2} \), \(L/L_{\text{Edd}} = 0.1 \), and \(M_{BH} \geq 10^8 \text{ M}_\odot \) are able to adequately approximate the general shape and amount of power expected in the IR as observed in a composite of optically luminous Sloan Digital Sky Survey quasars. The effect of varying the relative power coming out in X-rays relative to the UV is a change in the emission below \(\sim 5 \mu\text{m} \) from the hottest dust grains; this arises from the differing contributions to heating and acceleration of UV and X-ray photons. We see mass outflows ranging from \(\sim 1 \) to \(4 \text{ M}_\odot \text{ yr}^{-1} \), terminal velocities ranging from \(\sim 1900 \) to \(8000 \text{ km s}^{-1} \), and kinetic luminosities ranging from \(\sim 1 \times 10^{42} \) to \(8 \times 10^{43} \text{ erg s}^{-1} \). Further development of this model holds promise for using specific features of observed IR spectra in AGNs to infer fundamental physical parameters of the systems.

Key words: galaxies: active – galaxies: Seyfert – hydrodynamics – infrared: general – magnetohydrodynamics (MHD) – quasars: general – radiative transfer

Online-only material: color figure

1. INTRODUCTION

Active galactic nuclei (AGNs) are often set apart from other astrophysical objects by their powerful spectral energy distributions (SEDs) that radiate a substantial amount of power across the electromagnetic spectrum (e.g., Elvis et al. 1994). In addition to being powerful, AGNs are also a motley lot, known for displaying a wide range of observable characteristics among them. Objects of two types—radio loud and radio quiet—have a range of intrinsic luminosities, and may display either only narrow, or both narrow and broad spectral emission lines (Antonucci 1993).

The unified model (e.g., Antonucci 1993; Urry & Padovani 1995) is a phenomenological depiction of AGNs that posits that the nature of many of these differences, particularly the presence or absence of broad emission lines, can be explained primarily as a function of viewing angle. Pictured at the core of this model is the “central engine,” composed of the supermassive black hole (with a mass from \(\sim 10^6 \) to \(10^9 \text{ M}_\odot \)) and its sub-parsec-scale accretion disk, where matter is heated as it falls toward the black hole. Another key feature of the unified model is a structure that surrounds the accretion disk: an axisymmetric, obscuring medium, which covers many lines of sight to the accretion disk around the central black hole. This obscuring medium is commonly depicted as a torus of optically thick dusty gas, which can extend up to 100 pc (e.g., Antonucci & Miller 1985). This dusty torus, which is also the main source of infrared emission in an AGN, can block the accretion disk continuum and broad emission lines produced within the broad-line region (BLR) by obscuring them with dusty gas (e.g., Sanders et al. 1989; Barvainis 1990).

A consequence of this geometry is that when the AGN is viewed face-on, we observe a “Type 1” active galaxy displaying both narrow lines (permitted and forbidden) with line widths of hundreds of km s\(^{-1}\), as well as the broad lines emanating from the exposed hot (\(\sim 10^5 \text{ K} \)) and bright photoionized gas around the central accretion disk, with widths of thousands of km s\(^{-1}\) (Antonucci 1993). When viewed edge-on, the broad lines are obscured by the optically thick dusty torus, and we observe only the narrow lines generated on much larger scales characteristic of “Type 2” active galaxies.

As a further clue to the structure of the torus, there is observational evidence for a luminosity dependence of the fraction of Type 1 and Type 2 AGNs. For example, in a deep hard X-ray survey, Steffen et al. (2003) show that Type 1 AGNs dominate at higher luminosities, while Type 2 AGNs become an important component of the X-ray population only at lower, Seyfert-like luminosities. Similarly, Hao et al. (2005b) show that the fraction of Type 1 AGNs increases with luminosity of the [O iii] narrow emission line (see also Simpson 2005), and studies using radio-selected AGN samples consistently point to the same trend (see, e.g., Hill et al. 1996; Simpson & Rawlings 2000; Grimes et al. 2004).

Assuming the inner wall of the torus is set at the radius at which dust sublimates (e.g., Elvis et al. 1994), then that distance is farther out in luminous quasars (the more luminous relatives of Seyferts). If the height of the torus for AGNs of varying luminosities remains approximately constant, then the opening
angle of the torus must increase with luminosity. This leads to an expected dependence on luminosity in the observed fraction of Type 1 and Type 2 AGNs. Lawrence (1991) first suggested this idea, known as the “receding torus” model (though see Lawrence & Elvis 2010 for a different perspective). It is not clear why the height of the torus would be constant in all objects, but nevertheless a luminosity dependence is expected, as it would be highly unlikely for the height to vary in such a way as to produce a constant opening angle (Simpson 2005).

This highlights the need for a more fundamental understanding of the torus. As the structure at the interface between the AGN and its host galaxy, the torus plays a vital role in the make-up of a quasar. Yet in the past, it has typically been modeled as a static structure (e.g., Pier & Krolik 1992; Fritz et al. 2006; Nenkova et al. 2008a; Schartmann et al. 2008; Höning & Kishimoto 2010), which is likely only a rough approximation to the active inner region surrounding an accreting black hole. Indeed, for a geometrically thick torus to be supported hydrostatically, it must have a temperature on the order of 10⁶ K or higher; dust in such a hot, high-density environment would most certainly be destroyed (Dullemond & van Bemmel 2005). However, dust signatures such as the “infrared hump” are observed (Sanders et al. 1989), along with silicate emission and absorption features (e.g., Siebenmorgen et al. 2005; Hao et al. 2005a). Therefore, dust near the sublimation radius is certainly present in a wide variety of AGNs. One way of getting around this inconsistency is to generate a static, geometrically thick torus through infrared radiation pressure (e.g., Krolik 2007; Shi & Krolik 2008); however, this treatment neglects the effect of radiation pressure from UV photons.

One way to help us understand the structure and physics of the dusty torus is to examine the IR regime of quasar SEDs. Dust reprocesses a significant fraction of the accretion power in the UV and X-ray, and re-emits it in the infrared, acting as a sort of bolometer for the quasar. Indeed, the 1–100 μm IR “hump” of a quasar spectrum accounts for nearly 40% of the bolometric luminosity (e.g., Elvis et al. 1994; Richards et al. 2006). As commonly seen with Spitzer, AGN IR spectra also show specific structures, such as 10 μm silicate features, that any successful model must explain. While Type 2 objects commonly show silicate in absorption, emission is often observed in Type 1 objects (e.g., Siebenmorgen et al. 2005; Hao et al. 2005a).

High spatial resolution imaging adds further requirements to any successful torus model. Using the Very Large Telescope Interferometer (VLTI), Jaffe et al. (2004) obtained interferometric observations of NGC 1068 from 8.0 to 13.0 μm that show different dust temperatures found within close proximity; this hints at structure within the torus (Schartmann et al. 2005). Similarly, more recent VLTI observations (from 8.0 to 13.0 μm) of the Circinus AGN by Tristram et al. (2007) show irregular behavior (such as fluxes with rapid angular variations) that can be explained by clumpiness. Further, they find that the radial temperature dependence of the dust indicates that some of the outer dust is exposed directly to radiation from the nucleus. Together, these observations indicate that the dust distribution in the torus is of clumpy or filamentary composition.

Previous researchers have tried different approaches to model these observations of the torus; most of that work pictures the torus as made up of clouds (e.g., Nenkova et al. 2008a), while some consider a continuous structure (e.g., Krolik 2007), although most of the models are static. In the quasi-clumpy models of Dullemond & van Bemmel (2005), “clumps” represented by axisymmetric rings of material are used to understand the differences between smooth and clumpy models. Assumptions of their model include the idea that all clumps have equal optical depth and a Gaussian density profile. They found that several of their smooth and clumpy models were able to suppress the 10 μm silicate feature in emission. Thus, they note that although their results corroborate the idea that clumpy tori can account for this observational feature, it does not unequivocally confirm the idea of a clumpy torus, as families of continuous winds models can explain it as well.

The formalism of Nenkova et al. (2008a) takes into account the recent interferometric and spectroscopic results. Their model, composed of ~5–15 dusty clouds along each radial equatorial ray, is successful at explaining several puzzling aspects of AGN infrared observations. Specifically, dust on the bright side of one of their optically thick clouds is much hotter than on the dark side, and dust on the dark side of a cloud nearer the source of the illuminating continuum can be as hot as dust on the bright side of one further out. The clumpy model furthermore reproduces the behavior of the 10 μm silicate feature, namely, the lack of very deep absorption features.

Clumpy-torus models are clearly useful, Schartmann et al. (2008) found with their clumpy-torus models that the existence of the 10 μm silicate feature, whether in emission or absorption, depends on the size, optical depth, and distribution of clouds closest to the nucleus. However, the family of cloud (or clumpy) torus models described above typically neglects the dynamics of the clouds; a notable exception to this has been work on accreting clouds (see, e.g., Vollmer et al. 2004; Beckert & Duschl 2004; Schartmann et al. 2011). In addition, some researchers have postulated that these clouds are entrained in a wind (e.g., Elitzur & Shlosman 2006).

1.1. Dynamical Models of the Dusty “Torus”

The above-mentioned static models of the torus do not address the question of why the torus has the structure it does, how it lofts gas and dust up to large heights above the accretion disk, or why its covering fraction may depend on luminosity. To address these questions, a robust, dynamical model must be developed that can accurately reproduce the features that we observe in AGNs. Such dynamical models have been approached in a number of ways. One scenario, first proposed by Krolik & Begelman (1988), suggests that the torus consists of a number of optically thick clumps which orbit the central engine and collide regularly with other clumps.

In a different dynamical paradigm, Dopita et al. (1998), aiming to describe the IRAS colors of Seyfert galaxies, suggested that the torus is a large-scale accretion flow of some continuous medium toward the nucleus. This free-falling “envelope” of material rotates slowly and circularizes once it reaches the centrifugal radius. Since their lower limits on the accretion rates are well above that which would support the Eddington luminosity of the central engine, they determined that much of the infalling material would flow away from the accretion disk in a wind. Hopkins et al. (2012) have recently investigated this kind of dynamical model in numerical simulations, examining larger-scale gas flows as a possible model for the torus.

Finally, another possibility is that the torus is a dusty wind flowing from the accretion disk. Such an idea is supported by the growing evidence for gaseous outflows in many types of AGNs. Both radio-loud and radio-quiet AGNs often exhibit blueshifted absorption lines that can be broad and/or narrow; these features are evidence of outflowing material. Approximately 15%
of radio-quiet quasars display strong, blueshifted absorption features at UV resonance transitions with velocities as high as 0.1c (e.g., Reichard et al. 2003; Gibson et al. 2009). There has also been observational evidence that suggests the mass outflow rate in AGNs is nearly equal to the mass inflow rate (see, e.g., Crenshaw et al. 2003; Chartas et al. 2003).

Königl & Kartje (1994) first proposed that the torus can be explained as a disk-driven hydromagnetic wind. They were motivated to consider such winds due to their apparent success at explaining particular radiative characteristics of young stellar objects (YSOs), which are similar in some respects to those of AGNs. For example, they note that both types of objects often exhibit flat IR spectra, strong Ca II triplet lines, and broad Na D emission—observational findings that have been interpreted in terms of a strong central UV source surrounded by a disk-like, dusty mass distribution. The hydromagnetic wind model was later expanded upon by Everett (2005) to include a more realistic treatment of radiative acceleration in magnetic winds.

In addition, models where infrared radiation pushes a continuous wind vertically off of the accretion disk beyond the dust sublimation radius (e.g., Krolik 2007; Shi & Krolik 2008; Dorodnitsyn et al. 2011, 2012) have also been examined. This vertical, infrared radiation pressure may indeed be present, but the radiation force due to the central, UV-bright AGN continuum has notably more integrated power to drive dust grains than the IR continuum; whereas, for instance, Dorodnitsyn et al. (2012) find a radiation pressure on dust from infrared photons can increase the effective Eddington ratio by a factor of approximately 10–30, our calculations show that, when including the entire AGN continuum, that factor can become ~200 (this is somewhat less, but comparable to the factor of ~800 enhancement found in the early models of Königl & Kartje 1994).

This paper will focus on the dynamical model of the torus as a dusty wind, which is launched by both magnetohydrodynamical (MHD) forces as well as radiation pressure due to the accretion disk continuum. The dusty wind generated in this manner can cover a large fraction of the sky as seen from the central black hole. This model has the benefit of being more self-consistent and including the important physics of motion around the black hole and radiative acceleration. Ultimately, we wish to use this model to understand how the physical properties of dusty winds in AGNs correlate with their observable spectral signatures in the IR.

2. THE STRUCTURE OF THE TORUS AND THE WIND MODEL

Our model of the torus consists of a dusty wind driven by both hydromagnetic forces and radiative acceleration. The model and its corresponding code have been expanded upon from its original form (detailed by Königl & Kartje 1994) by Everett (2005), where a comprehensive account of the model’s components and key equations are described. In this model, we advance on Everett (2005) by adding the contour opacity of interstellar medium (ISM) dust grains, as specified by the ISM dust model in Cloudy (version 06.02.09b, last described by Ferland et al. 1998; for the dust model, see Mathis et al. 1977; van Hoof et al. 2004).

As in previous magnetocentrifugal models (see, e.g., Blandford & Payne 1982, hereafter BP82), the model assumes a parsec-scale magnetic field, approximately vertical to the accretion disk. (It is important to point out that the origin of such a field is not clear, although simulations of jet launching from AGN accretion disks seem to favor the advection of magnetic flux from large scales; this is a topic of great interest in current research; see, e.g., Hawley 2011.) With such a field, gas and dust particles orbiting in the accretion disk are subject to the centrifugal force, pointing outward along the disk, as well as the gravitational force directed inward toward the central black hole. However, a charged particle, tied to the magnetic field, will be flung outward along the magnetic field line if the centrifugal acceleration overtakes the gravitational acceleration; this can occur if the angle of the magnetic field line to the vertical is ≳30° (BP82).

As part of the assumption of self-similarity, the model requires that the density at the surface of the accretion disk scales as a function of radius, so that ρ0 ∝ r0−b and B0 ∝ r0−(b+1)/2, where the subscript “0” denotes values at the disk surface. Our particular implementation of the wind model allows for any radial scaling parameter, b, but in all of the calculations presented here, we set b = 3/2 (this is equivalent to assuming a stationary accretion disk flow, where the mass loss does not change across different decades in disk radius). Two other key parameters that are set in this model are: λ, the ratio of total specific angular momentum in the wind to that in the disk, and κ, the dimensionless ratio of mass flux to magnetic flux; as in the “standard” model of BP82, we set these parameters to λ = 30 and κ = 0.03. These parameters help set the magnetic field strength in the wind at the surface of the disk; as opposed to jet solutions of BP82, which required B ∼ 10−2−10−4 G, the strongest field in our models was of order 0.03 G at the base of the wind.

Once the wind is launched by centrifugal acceleration, it is also subject to radiative acceleration from the photons emitted from the accretion disk. The radiation pressure on the dust from the central source is very strong—even for cases where L/L_Edd = 0.1, it is approximately 10 times the force required to unbind dust from the gravitational potential (Everett et al. 2009). (Though line scattering is included in the calculation, the continuum source dominates the line-radiation pressure in the dusty medium.) Dust grains absorb radially (anisotropically) streaming photons originating in the accretion disk, and then de-excite isotropically. The force, felt by the dust particles due to conservation of momentum, feeds back on the wind structure by bending the magnetic wind radially away from the source. The radiative force therefore works in conjunction with the magnetocentrifugal forces to accelerate the wind flow off the accretion disk, and modifies the structure of the outflow.

The assumed dust composition in the model is a standard interstellar distribution, with a mixture of silicates and graphites and a continuous distribution of grain sizes. These dust grains will be destroyed at temperatures greater than their sublimation temperature, Tsub ∼ 1500 K. The wind’s innermost radius for dust driving is therefore set approximately to the dust
sublimation radius, outside of which the silicate and graphite dust can survive. The sublimation radius is dependent on a number of factors, including the bolometric luminosity and shape of the incident continuum.

Schartmann et al. (2008) note during their investigations of the dusty torus as a clumpy medium that it is important to have a variety of sublimation radii for different sizes of dust grains in order to accurately model the IR SED from the dust. Their solution was to utilize a model with three different grain species, each with five different grain sizes. Such a multi-component grain distribution would be important, but given the complexity of our models and the large amount of time required for computing each SED in even the simplified single-grain case, we will use a single grain type and sublimation radius in our first approximation.

2.1. The Model Code

The model code works in two separate steps. First, the structure of the wind is determined semi-analytically, starting with a pure MHD wind and then adding in radiation pressure from dust and atomic lines. Second, a Monte Carlo simulation uses the information about the structure of the wind to generate an SED from 0.1 to 2000 μm. As we are interested primarily in the more readily observable IR regime, we plot these results from 2 to 100 μm. Furthermore, at wavelengths < 2 μm, we cannot be certain of the accuracy of our SED calculations, as the accuracy is affected by the parameters chosen for the Monte Carlo simulation (see Section 3.1).

In more detail, the program starts by calculating the pure magnetocentrifugal wind dynamics (see Figure 1; Everett 2005) without including the effects of radiation pressure. Parameters such as the black hole mass, column density at the base of the wind, and starting location of the wind are specified here. In this phase, an estimation of the density and velocity structure of the wind as a function of height is calculated by a relatively simple semi-analytic model of the magnetocentrifugal acceleration of gas along a streamline (this is described in detail in Everett 2005). Next, Cloudy (Ferland et al. 1998) is used to calculate the photoionization of the gas and determine opacities throughout the structure of the wind, given the central continuum. With all of this information, the radiation pressure on the wind is calculated. This is exactly as described in Everett (2005), except for the addition of the opacity of dust, which is supplied via Cloudy’s “ISM” dust model. This information is passed back into the first step, where the MHD wind structure is modified accordingly. This process is iterated until convergence, which typically takes seven iterations.

Shown in Figure 2 are the gas streamlines for our fiducial model (with parameters as specified in Section 4), plotted in the z-direction along the axis of symmetry as a function of the radial (r) direction. The streamlines are shown for each iteration of the MHD radiative wind code. The radiation pressure acts to bend the streamlines radially outward, away from the central source, with each iteration, until the code converges.

The second stage of our calculation uses the Monte Carlo simulation program MC3D (Wolf 2003) to predict SEDs. The input for the simulation is the output from the MHD radiative wind code, which includes the structure of the wind and the SED of the central continuum source (we use the composite SED from Richards et al. 2006, modified to remove IR emission; see Figure 3 and Section 3.3 for more details). This input is passed to MC3D, which is a general purpose, three-dimensional Monte Carlo code that calculates heating and emission when given a central radiative source surrounded by a scattering and absorbing medium. MC3D first determines the temperature of the dust grains due to heating from the continuum and re-emission from other dust grains. In a second step, MC3D’s ray tracer is then used to create the SEDs from 0.1 to 2000 μm, which we plot from 2 to 100 μm.

3. METHODOLOGY

Initial tests for basic functionality, stability, and consistency of the code are documented in detail in Everett (2005). For
MC3D is a versatile code, with a range of customizable user-set parameters for modeling dust-temperature distributions and SEDs. We tested a number of these in order to determine an appropriate set of base parameters that maintain a reasonable degree of accuracy while minimizing the amount of time needed to generate the models.

MC3D has a number of model geometry options to choose from; because our model is axisymmetric, we utilized the fully two-dimensional model, with radial and vertical dependence for the density distribution (see Figure 4). Our default base values for testing the effects of varying these parameters were as follows: a maximum model radius, R_{out}, of 20 pc, with 30 sub-divisions (grid points) in the radial direction and 101 sub-divisions in the θ-direction, a half-opening angle, ψ, of 75$^\circ$, and 100 photon packets per wavelength. We will discuss in more detail below our tests of these parameter settings; for all of the parameter changes discussed, Figure 5 displays the differences in the SED and Table 1 details the effects on the emission at 2, 3, 6, 10, and 50 μm as compared to the default parameters.

For example, decreasing the number of photon packets per wavelength from the default of 100 down to 10 (Wolf 2003)
had little effect on the SED, but decreased the time required to compute the temperature distribution by almost a factor of five. The variation that is seen between SEDs generated with 10 or 100 photon packets per wavelength is a minor loss of accuracy in the emission from the hottest dust; the greatest difference is at 2 \(\mu \)m, where the model with 10 photon packets shows 1.61 times the emission as the model with 100 photon packets. As this loss is not relevant for our purposes—the largest discrepancy is seen at wavelengths \(\lesssim 3 \) \(\mu \)m where the accretion disk and host galaxy typically contribute significantly to the observed emission—and the increase in computation efficiency is great, we opted to use 10 photon packets per wavelength for all of our simulations.

Increasing the resolution of the grid by choosing 201 \(\theta \) sub-divisions increased the computation time for the SED by several hours, with little benefit. Again, the largest difference is seen at 2 \(\mu \)m, where the model with 201 \(\theta \) sub-divisions showed 1.11 times the emission compared with the default of 101 \(\theta \) sub-divisions.

Decreasing \(R_{\text{out}} \) to 10 pc had little effect on the time for generating the temperature distribution, but increased the time for generating SEDs by more than a factor of three. The variation that is seen between SEDs generated with 10 or 100 photon packets per wavelength for all of our simulations.

To summarize, for the rest of our models, we take the MC3D parameters as 10 photon packets per wavelength, 101 \(\theta \) sub-divisions, \(R_{\text{out}} = 20 \) pc, and \(\psi = 75^\circ \).

Table 1

Parameter Change	2 \(\mu \)m Ratio	3 \(\mu \)m Ratio	6 \(\mu \)m Ratio	10 \(\mu \)m Ratio	50 \(\mu \)m Ratio
Default	1.00	1.00	1.00	1.00	1.00
10 photons/\(\lambda \)	1.61	1.14	0.99	0.99	0.98
201 \(\theta \) divisions	1.11	1.04	1.02	0.99	1.00
\(R_{\text{out}} = 10 \) pc	1.04	1.04	1.02	0.99	0.88
\(\psi = 60^\circ \)	0.98	0.96	0.96	0.96	0.96

Note. All models are compared to the model with default base parameters of 100 photon packets per wavelength, 101 \(\theta \) sub-divisions, \(R_{\text{out}} = 20 \) pc, and \(\psi = 75^\circ \).

The relative power and shape of the SED were only slightly affected by a change in the inclination angle, with larger inclination angles showing a slightly lower normalization in the overall IR SED (see Figures 6 and 7). This indicates that the IR emission is consistent with being optically thin at most wavelengths of interest.

The integrated luminosity varied significantly with changes in the column density, with higher columns producing a higher overall infrared luminosity. We chose to maintain a fixed column density \(N_{\text{H},0} = 10^{25} \) cm\(^{-2}\), \(L/L_{\text{Edd}} = 0.01 \), \(M_{\text{BH}} = 10^6 M_\odot \), and \(\alpha_\text{ox} = 1.6 \). Luminosity is shown in units of \(\nu L_\nu \), and wavelength in units of \(\mu \)m. The SEDs display remarkably little variation with changes in the observer’s inclination angle.

3.2. Exploring the Parameter Space

Turning to more physical parameters, we have investigated variations in the final IR SED due to inclination angle of the observer (\(i \)), the base column density of the wind (\(N_{\text{H},0} \)), and changes to the central continuum shape, luminosity, and black hole mass. All parameter changes are specified before the wind structure is calculated, with the exception of the inclination angle, which is only specified when MC3D is called. We chose to run many of our models at an inclination of \(i = 60^\circ \), as choosing inclination angles smaller than that tended to increase the computation time. Table 3 details these parameters along with corresponding relevant information, such as the terminal velocity of the wind and the mass outflow rate, as calculated by the MHD wind model, as well as the kinetic luminosity of the outflows.

The relative power and shape of the SED were only slightly affected by a change in the inclination angle, with larger inclination angles showing a slightly lower normalization in the overall IR SED (see Figures 6 and 7). This indicates that the IR emission is consistent with being optically thin at most wavelengths of interest.

The integrated luminosity varied significantly with changes in the column density, with higher columns producing a higher overall infrared luminosity. We chose to maintain a fixed column density \(N_{\text{H},0} = 10^{25} \) cm\(^{-2}\) for the remaining models, as this was the only column density that could match the order of magnitude of luminosity comparable to a typical quasar (\(L \approx 10^{45} \) erg s\(^{-1}\)). Such a model generates mass outflow rates on order of 1 \(M_\odot \) yr\(^{-1}\) (see Table 3).

3.3. The Central Continuum

In order to investigate what sort of radiative output we would expect to see from the dusty wind, we specify a central input continuum that represents an approximation of the emission from the accretion disk around the black hole. We used a
Luminosity is shown in units of νL_ν central continuum (see Figure 8 for a plot of this continuum, as described by Richards et al. (2006), as a starting point for this calibrating Sloan Digital Sky Survey (SDSS) quasars, as composite created from broadband photometry of 259 optically luminous Sloan Digital Sky Survey (SDSS) quasars, as a change in shape as well as normalization, with larger inclinations showing a change in normalization, with smaller inclination angles displaying more power. At wavelengths $<5 \mu m$, the effect of decreasing the inclination angle is primarily a change in shape as well as normalization, with larger inclinations showing a steeper decrease in the amount of observable emission from the hottest dust. Luminosity is shown in units of νL_ν, and wavelength in units of μm. At wavelengths $>5 \mu m$, the effect of decreasing the inclination angle is primarily a change in normalization, with smaller inclination angles displaying more power. At wavelengths $<5 \mu m$, the effect is more pronounced, and the SEDs display a change in shape as well as normalization, with larger inclinations showing a steeper decrease in the amount of observable emission from the hottest dust.

![Figure 7](image-url)
Figure 7. Result of varying the observer’s inclination angle, i, for a model with $N_H,0 = 10^{25} \text{ cm}^{-2}$, $L/L_{Edd} = 0.01$, $M_{BH} = 10^8 M_\odot$, and $\alpha_{ox} = 1.6$. Luminosity is shown in units of νL_ν, and wavelength in units of μm. At wavelengths $>5 \mu m$, the effect of decreasing the inclination angle is primarily a change in normalization, with smaller inclination angles displaying more power. At wavelengths $<5 \mu m$, the effect is more pronounced, and the SEDs display a change in shape as well as normalization, with larger inclinations showing a steeper decrease in the amount of observable emission from the hottest dust.

Test Parameters
Model Name

n4testS1
n4testS2
n4testS3
n4testS4
n4testS5
n5testS1
n5testS2
n5testS3
n5testS4

Notes.

a Half-opening angle.
b Inclination angle.
c Base column density.
d Time to generate temperature distribution.
e Time to generate SED.

Parameter Space
Model Name

n5e1xbs6
n5e1xas6
n5e1xb6
n5e2xbs6
n5e2xas6
n5e2xb6
n5e3xbs6
n5e4xbs6
n5e4xas6
n5e4xb6
n5e1xbs6
e1m1xas6
e1m1xb6
n5e1m1s6
e4m1xas6
e4m1xb6
n5e1m2s6
e1m2xas6
e1m2xb6

Notes. All models have a base column density of $N_{H,0} = 10^{25} \text{ cm}^{-2}$.

a Black hole mass.
b Eddington ratio.
c Amount of power in optical relative to X-ray.
d Mass outflow rate.
e Terminal velocity of outflow.
f Kinetic luminosity of outflow.

with composite averaging. Nevertheless, such a composite SED serves as an excellent basis for comparison with our IR SEDs models, as a check to ensure that the power and general shape can be matched. We will be testing whether the wind model can account for the empirical IR hump.

3.3.1. Changes to the Central Continuum: α_{ox}

The spectral index α_{ox} describes the amount of energy emitted in the X-ray relative to the amount emitted in the UV/optical, and can be considered a measure of the “X-ray brightness” of a
and \(\alpha \) of for the UV luminosity of our fiducial model), and then modified tally increased the Eddington ratio to \(L/L_{\text{Edd}} \) for higher luminosities more appropriate to quasars, we incrementally increased the Eddington luminosity for a black hole of mass \(M_{\text{BH}} = 10^8 M_\odot \), \(\alpha_{\text{ox}} = 1.6 \), and \(i = 60^\circ \). Luminosity is shown in units of \(\log v L_\nu \), and wavelength in units of log Hz. The output SED for the fiducial model is denoted by the solid line. Also shown are the input SED (dotted line), the sum of the output and input SEDs (dash-dotted line), and the Richards composite SED (dashed line).

source. The parameter is defined as follows (Tananbaum et al. 1979):

\[
\alpha_{\text{ox}} = -0.384 \log \left[\frac{L_\nu(2 \text{ keV})}{L_\nu(2500 \text{ Å})} \right].
\]

Quasars have been found with a range of \(\alpha_{\text{ox}} \) values, typically varying from 1.2 to 1.8. There is an anti-correlation between \(\alpha_{\text{ox}} \) and UV luminosity, as more luminous AGNs show less X-ray emission relative to emission in the optical wavelengths (e.g., Just et al. 2007; Steffen et al. 2006). In order to test this range of \(\alpha_{\text{ox}} \) values, we selected an “average” value of 1.6 (appropriate for the UV luminosity of our fiducial model), and then modified the input continuum (see Figure 3) to reflect extreme values of \(\alpha_{\text{ox}} = 1.1 \) (much higher than average output in the X-ray), and \(\alpha_{\text{ox}} = 2.1 \) (much lower than average output in the X-ray). The X-ray modification begins at \(7 \times 10^{16} \text{ Hz} \) and extends to \(10^{19} \text{ Hz} \). The discontinuity at \(v = 7 \times 10^{16} \text{ Hz} \) is not physical, but serves to isolate the effect of the X-ray continuum from that of the far-UV.

These new continua are passed as parameters to the wind structure such as the silicate emission bumps as it is made using broadband photometry; many mid-IR spectra of luminous quasars, however, show prominent silicate emission features (see, e.g., Siebenmorgen et al. 2005; Hao et al. 2007; Netzer et al. 2007; Mason et al. 2009; Deo et al. 2011). We also note that at long wavelengths, we do not expect much of an AGN contribution from the dusty wind. Empirically, far-infrared emission of AGNs is typically weak unless the host is actively star forming (Schweitzer et al. 2006; Netzer et al. 2007). In fact, the composite SED contains little data beyond 24 \(\mu \text{m} \), with that part of the SED constructed by “gap repair,” replacing the missing data with information extrapolated from Elvis et al. (1994), who used IRAS photometry of low-redshift quasars at these wavelengths. We explore these issues in more detail in Section 5.

3.3.2. Changes to the Central Continuum: \(L/L_{\text{Edd}} \)

Initial tests of the wind model were performed with an Eddington ratio of \(L/L_{\text{Edd}} = 0.01 \). Such an Eddington ratio is characteristic of the Seyfert regime, but may not accurately describe quasar luminosities. In order to test the model at the higher luminosities more appropriate to quasars, we incrementally increased the Eddington ratio to \(L/L_{\text{Edd}} = 0.1 \) by increasing the total luminosity and keeping \(M_{\text{BH}} \) fixed. Furthermore, we tested the effects of changing black hole mass, which has the effect of changing the Eddington luminosity, since:

\[
L_{\text{Edd}} = 1.25 \times 10^{38} \left(\frac{M}{M_\odot} \right) \text{ erg s}^{-1}.
\]

We tested masses ranging from \(M_{\text{BH}} = 10^8 \text{--} 10^9 M_\odot \). We note that although the part of the code that generates the wind structure was able to accommodate such high luminosities with relative ease, the time for generating the final SED increased by a factor of three or more at higher luminosities.

4. RESULTS

As a basis of comparison for many of our results, we adopt a fiducial model with the following parameters: \(N_{\text{H},0} = 10^{25} \text{ cm}^{-2} \), \(L/L_{\text{Edd}} = 0.1 \), \(M_{\text{BH}} = 10^8 M_\odot \), \(\alpha_{\text{ox}} = 1.6 \), and \(i = 60^\circ \). The Eddington luminosity for a black hole of mass \(M_{\text{BH}} = 10^8 M_\odot \) is \(1.25 \times 10^{46} \text{ erg s}^{-1} \), giving a luminosity at 5100 Å of \(L_{5100} = 3.7 \times 10^{37} \text{ erg s}^{-1} \text{ Hz}^{-1} \) for an Eddington ratio of \(L/L_{\text{Edd}} = 0.1 \). Figure 8 shows this fiducial model, plotted with the input continuum, and the original Richards et al. (2006) composite SED. The sum of the predicted IR SED and the input SED is also displayed. The composite SED is normalized to the input SED at \(L_{5100} \), and the output SED has been integrated over 4\(\pi \) steradians to match the units of the observations.

With the base column density of \(N_{\text{H},0} = 10^{25} \text{ cm}^{-2} \), the predictions approximately match the power expected from the Richards et al. (2006) composite SED. The observed composite SED has \(\approx 82\% \) as much power radiated in the IR (from 2 to 100 \(\mu \text{m} \)) as in the optical/UV (from 2 \(\mu \text{m} \) to 1000 Å). When normalized at \(L_{5100} \), our model with the smaller column density of \(N_{\text{H},0} = 10^{24} \text{ cm}^{-2} \), \(L/L_{\text{Edd}} = 0.01 \), \(M_{\text{BH}} = 10^8 M_\odot \), \(i = 60^\circ \), and \(\alpha_{\text{ox}} = 1.6 \) has only 45% as much power radiated in the IR as in the composite optical/UV, which does not match the expected output. Our model with a higher column of \(N_{\text{H},0} = 10^{25} \text{ cm}^{-2} \) (and all other parameters as before) radiates 97% as much power in the IR as in the composite optical/UV, which is more than what is expected. Our fiducial model, with a higher column of \(N_{\text{H},0} = 10^{25} \text{ cm}^{-2} \) and a higher Eddington ratio of \(L/L_{\text{Edd}} = 0.1 \), has \(\approx 70\% \) as much power radiated in the IR as in the composite optical/UV, which is closer to the expected 82%.

While the model SEDs can account for the gross power and shape of the composite SED with the parameter values in the fiducial model, there are specific features that do not match. Specifically, the composite has more power at both shorter (2-8 \(\mu \text{m} \)) and longer (>30 \(\mu \text{m} \)) wavelengths, and the fiducial model SEDs show more prominent and sharply peaked silicate features at both 10 and 18 \(\mu \text{m} \). On this second point, note that the composite by construction smears out spectral structure such as the silicate emission bumps as it is made using broadband photometry; many mid-IR spectra of luminous quasars, however, show prominent silicate emission features (see, e.g., Siebenmorgen et al. 2005; Hao et al. 2007; Netzer et al. 2007; Mason et al. 2009; Deo et al. 2011). We also note that at long wavelengths, we do not expect much of an AGN contribution from the dusty wind. Empirically, far-infrared emission of AGNs is typically weak unless the host is actively star forming (Schweitzer et al. 2006; Netzer et al. 2007). In fact, the composite SED contains little data beyond 24 \(\mu \text{m} \), with that part of the SED constructed by “gap repair,” replacing the missing data with information extrapolated from Elvis et al. (1994), who used IRAS photometry of low-redshift quasars at these wavelengths. We explore these issues in more detail in Section 5.

4.1. Mass Outflows, Terminal Velocities, and Kinetic Luminosities

Table 3 contains information on the mass outflow rates \((dM/dt) \), terminal velocities \((v_{\text{term}}) \), and kinetic luminosities...
(\(L_{\text{kin}}\)) of each of the models. We see mass outflow rates ranging from 0.96 to 4.19 \(M_\odot\) yr\(^{-1}\), terminal velocities ranging from 1904 to 7992 km s\(^{-1}\), and kinetic luminosities ranging from \(1.13 \times 10^{42}\) to \(7.71 \times 10^{43}\) erg s\(^{-1}\). These values are strongly affected by the black hole mass of the model: the largest mass outflows, terminal velocities, and kinetic luminosities are produced by the models with the highest black hole masses, even at lower Eddington ratios.

4.2. Results of Varying Inclination Angle

Here, we examine the result of varying the inclination angle from \(i = 90^\circ\) (edge-on) to \(i = 30^\circ\) (nearly face-on). Inclination angles smaller than \(i = 30^\circ\) were not considered because of the great increase in time required to compute the SEDs. As the first phase of our parameter exploration, these models were run at luminosities \(L/L_{\text{Edd}} = 0.01\) and 0.03, lower than that of our fiducial model.

Figure 6 shows the result of varying the inclination angle for a model with \(N_{\text{H},0} = 10^{24}\) cm\(^{-2}\), \(L/L_{\text{Edd}} = 0.01\), \(M_{\text{BH}} = 10^8 M_\odot\), and \(\alpha_{\text{ox}} = 1.6\). This model is different from our fiducial model in two ways: it has both a lower column density \((N_{\text{H},0} = 10^{23}\) cm\(^{-2}\), as compared to \(N_{\text{H},0} = 10^{25}\) cm\(^{-2}\)), and a lower Eddington ratio \((L/L_{\text{Edd}} = 0.01\), as compared to \(L/L_{\text{Edd}} = 0.1\)). Table 4 details the amount of power emitted in the IR as compared to that of the optical/UV for each model, as well as the ratios of emission at 3, 6, 10, and 50 \(\mu\)m, relative to the \(i = 90^\circ\) model.

4.3. Results of Varying \(\alpha_{\text{ox}}\)

Next, we examine the effects of changing the amount of energy emitted in the X-ray relative to the amount emitted in the UV/optical, defined by parameter \(\alpha_{\text{ox}}\). Figure 9 displays the results of varying \(\alpha_{\text{ox}}\) as compared to our fiducial model, with \(N_{\text{H},0} = 10^{25}\) cm\(^{-2}\), \(L/L_{\text{Edd}} = 0.1\), \(M_{\text{BH}} = 10^8 M_\odot\), and \(i = 60^\circ\). For reference, a \(\Delta \alpha_{\text{ox}}\) value of 1.0 corresponds to a factor of \(\approx 400\) difference in X-ray luminosity at 2 keV for a set value of \(L_{2500\AA}\). The depressed X-ray emission of the X-ray faint model crudely mimics the effect of strong X-ray absorption seen in some broad absorption line quasars (e.g., Gallagher et al. 2006). The X-ray bright model with \(\alpha_{\text{ox}} = 1.1\)
The Astrophysical Journal, 749:32 (15pp), 2012 April 10

Table 6
Variations in α_{ox} for $L/L_{\text{Edd}} = 0.1$ and $M_{\text{BH}} = 10^8 M_{\odot}$

Parameter Change	$L_{\text{IR}}/L_{\text{opt/UV}}$	R_{sub} (pc)	3 μm Ratio	6 μm Ratio	10 μm Ratio	50 μm Ratio
$\alpha_{ox} = 1.1$	101.9%	1.78	1.49	1.55	1.54	1.14
$\alpha_{ox} = 1.6$	69.7%	1.57	1.00	1.00	1.00	1.00
$\alpha_{ox} = 2.1$	84.9%	1.54	1.56	1.34	1.18	1.09

Notes. The ratio $L_{\text{IR}}/L_{\text{opt/UV}}$ is the amount of power emitted in the IR from 2 to 100 μm by a certain model as compared to the amount of power emitted in the optical/UV from 2 μm to 1000 \AA by the composite continuum by Richards et al. (2006), when both are normalized at L_{Edd}. In Columns 4–7, all models are compared to the model with $\alpha_{ox} = 1.6$, $i = 60^\circ$, $N_{H,0} = 10^{25}$ cm$^{-2}$, $L/L_{\text{Edd}} = 0.1$, and $M_{\text{BH}} = 10^8 M_{\odot}$.

Figure 9. Result of varying α_{ox} for a model with $N_{H,0} = 10^{25}$ cm$^{-2}$, $L/L_{\text{Edd}} = 0.1$, $M_{\text{BH}} = 10^8 M_{\odot}$, and $i = 60^\circ$. Luminosity is shown in units of vL_{\odot} and wavelength is in units of μm. The model with $\alpha_{ox} = 1.1$ (solid line) displays the highest overall luminosity, with emission that decreases at wavelengths $<4\mu$m. The model with $\alpha_{ox} = 1.6$ (dotted line) displays a slightly lower emission than both the X-ray bright and X-ray fainter models. The model with $\alpha_{ox} = 2.1$ (dashed line) has a similar SED shape to the other models, but displays more emission at shorter wavelengths ($<4\mu$m) than either of the other models. The shape and emission for wavelengths $>50\mu$m is very similar for all models.

These results are perhaps counterintuitive, and reveal the complex role of the SED in both accelerating and heating the dust. The X-ray bright model has significantly more power available to illuminate the dusty medium, and therefore it makes sense that the IR SED is more luminous relative to the other two models. However, the relative lack of emission at the shortest wavelengths in the X-ray bright model indicates that there is a smaller volume of dust at the highest temperatures, a natural consequence of a wind that is more radially “combed out” (and hence has a narrower wedge of material near the sublimation temperature).

In addition, the dust sublimation radius, R_{sub}, is $\sim 13\%$ larger for the $\alpha_{ox} = 1.1$ models relative to the $\alpha_{ox} = 1.6$ models (see Table 9). We consider the 2\% difference in sublimation radius between the $\alpha_{ox} = 1.6$ and 2.1 runs to be the same, within the precision of the simulation.

These changes highlight the complex nature of how enhanced X-ray emission impacts winds. First, while X-rays contribute to heating, their efficiency is quite low compared with UV photons: at 300 eV (near the α_{ox} jumps), the dust opacity (scattering plus absorption) is about an order of magnitude below the UV opacity (see Figure 9 in Draine 2003). Therefore, it requires a strong increase in the X-ray flux to yield, e.g., a factor of two increase in the near-IR flux. A second effect is the increased momentum transfer per photon of X-rays versus UV light: X-rays are both more likely to scatter (versus being absorbed) and carry more momentum. Supporting this interpretation, the X-ray-faint model with $\alpha_{ox} = 2.1$ shows the strongest short ($\lesssim 4 \mu$m) wavelength emission. The UV power provides a “floor” to R_{sub}; the smaller X-ray power in the $\alpha_{ox} = 2.1$ model does not change the sublimation radius significantly relative to the $\alpha_{ox} = 1.6$ model, whereas increasing the relative X-ray power by setting $\alpha_{ox} = 1.1$ preferentially pushes out R_{sub} and accelerates the wind more rapidly. Both effects reduce the volume of dust heated to the highest temperatures, and thus the relative power coming out at the shortest IR wavelengths.

Figure 10 displays the results of varying α_{ox} for a model with $N_{H,0} = 10^{25}$ cm$^{-2}$, $L/L_{\text{Edd}} = 0.01$, $M_{\text{BH}} = 5 \times 10^8 M_{\odot}$, and $i = 60^\circ$. This model has a lower Eddington ratio than our fiducial model, as well as a higher black hole mass. The X-ray bright model with $\alpha_{ox} = 1.1$ displays the highest overall luminosity. The model with $\alpha_{ox} = 1.6$ shows a change in normalization, with less emission than the $\alpha_{ox} = 1.1$ model, and little effect on the SED shape. Table 7 shows the amount of power emitted in the IR as compared to the optical/UV for each model, as well as the ratio of emission at 3, 6, 10, and 50 μm, relative to the $\alpha_{ox} = 1.6$ model. When the Richards et al. (2006) composite is normalized to the L_{Edd} value of the...
Table 7

Parameter Change	\(L_{IR}/L_{opt/UV}\)	\(R_{sub}\) (pc)	3 \(\mu\)m Ratio	6 \(\mu\)m Ratio	10 \(\mu\)m Ratio	50 \(\mu\)m Ratio
\(\alpha_{ox} = 1.1\)	100.0%	0.58	1.75	1.63	1.50	1.27
\(\alpha_{ox} = 1.6\)	83.3%	0.49	1.00	1.00	1.00	1.00
\(\alpha_{ox} = 2.1\)	88.0%	0.50	1.20	1.13	1.04	1.00

Notes. The ratio \(L_{IR}/L_{opt/UV}\) is the amount of power emitted in the IR from 2 to 100 \(\mu\)m by a certain model as compared to the amount of power emitted in the optical/UV (from 2 \(\mu\)m to 1000 Å) by the composite continuum by Richards et al. (2006), when both are normalized at \(L_{Edd}\). For Columns 4–7, all models are compared to the model with \(\alpha_{ox} = 1.6\), \(i = 60^\circ\), \(N_{H,0} = 10^{25} \text{ cm}^{-2}\), \(L_{Edd} = 0.01\), and \(M_{BH} = 5 \times 10^8 \text{ M}_\odot\).

Figure 10. Result of varying \(\alpha_{ox}\) for a model with \(N_{H,0} = 10^{25} \text{ cm}^{-2}\), \(L_{Edd} = 0.01\), \(M_{BH} = 5 \times 10^8 \text{ M}_\odot\), and \(i = 60^\circ\). Luminosity is shown in units of \(L_\odot\) and wavelength is in units of \(\mu\)m. The X-ray bright model with \(\alpha_{ox} = 1.1\) (solid line) displays the highest overall luminosity. The model with \(\alpha_{ox} = 2.1\) (dotted line) shows an increase in luminosity at all wavelengths compared to the model with \(\alpha_{ox} = 1.6\), although it displays a slight increase in emission at wavelengths <8 \(\mu\)m.

Figure 11. Result of varying \(M_{BH}\) for a model with \(N_{H,0} = 10^{25} \text{ cm}^{-2}\), \(L_{Edd} = 0.01\), \(\alpha_{ox} = 1.6\), and \(i = 60^\circ\). Luminosity is shown in units of \(L_\odot\), and wavelength is in units of \(\mu\)m. The highest black hole mass, \(M_{BH} = 10^9 \text{ M}_\odot\) (dashed line), shows an increase in luminosity at all wavelengths compared to the model with \(M_{BH} = 5 \times 10^8 \text{ M}_\odot\) (solid line). Here, higher black hole masses produce higher overall luminosities. The higher \(M_{BH}\) models show a more peaked SED shape from 3 to 30 \(\mu\)m as compared to the \(M_{BH} = 10^8 \text{ M}_\odot\) model, as well as the overall increase in luminosity.

4.4. Result of Varying the Black Hole Mass

We examine the effects of changing the mass of the central black hole, with values from \(M_{BH} = 10^8–10^9 \text{ M}_\odot\). Altering \(M_{BH}\) also changes the Eddington luminosity (see Equation (2)). For \(M_{BH} = 10^8 \text{ M}_\odot\), the Eddington luminosity is \(L_{Edd} = 1.25 \times 10^{46} \text{ erg s}^{-1}\), which gives a luminosity at \(5100 \text{ Å}\) of \(L_{5100} = 3.7 \times 10^{28} \text{ erg s}^{-1}\text{Hz}^{-1}\) for \(L_{Edd} = 0.01\). The luminosities scale linearly with the black hole mass. In these tests, we keep \(L_{Edd} = 0.01\) fixed.

Figure 11 shows the effect of changing the black hole mass, which changes the luminosity for a fixed \(L_{Edd}\). In this situation, higher black hole masses produce overall more reduced. For example, in the \(L/L_{Edd} = 0.1\) X-ray bright model, the wind streamlines at large radii have an angle from the disk of 63° versus 74° for the lower luminosity, X-ray bright model. The more vertical wind structure of the lower luminosity models keeps the dusty wind closer to the illuminating source for longer, but apparently decreases the observed emission from the hottest dust. We consider it likely that this is an artifact of the observer’s inclination angle (see Figure 7); the more vertical (because of lower radial acceleration) wind will be more optically thick at shorter wavelengths. The view of the hottest dust is therefore obscured for an observer viewing angle of 60°.
luminous SEDs. For both $M_{\mathrm{BH}} = 5 \times 10^8 M_\odot$ and $M_{\mathrm{BH}} = 10^9 M_\odot$, the shape and normalization of the SED are affected from 2 to 40 μm as compared to the $M_{\mathrm{BH}} = 10^8 M_\odot$ model. Table 8 shows the amount of power emitted in the IR as compared to the optical/UV for each model, as well as the ratios of emission at 3, 6, 10, and 50 μm, relative to $M_{\mathrm{BH}} = 10^8 M_\odot$. The higher M_{BH} models show a more peaked SED shape from 3 to 30 μm as compared to the $M_{\mathrm{BH}} = 10^8 M_\odot$ model, as well as the overall increase in luminosity. Compared to the model with $M_{\mathrm{BH}} = 10^8 M_\odot$, the model with $M_{\mathrm{BH}} = 5 \times 10^8 M_\odot$ displays \sim60 times the emission at 10 μm and \sim80 times the emission at 50 μm, whereas the model with $M_{\mathrm{BH}} = 10^9 M_\odot$ displays \sim130 times the emission at 10 μm, and \sim40 times the emission at 50 μm. Given that the emission at these comparison wavelengths is not just scaling linearly with the luminosity (which is increasing by a factor of 5 and 10 as M_{BH} is increased by the same factors), the change in black hole mass clearly has a direct influence on the IR power.

4.5. Result of Varying L/L_{Edd}

We examine the effects of changing the Eddington ratio, L/L_{Edd}, which, for a given black hole mass, has the effect of changing the bolometric luminosity. For $M_{\mathrm{BH}} = 10^8 M_\odot$, an L/L_{Edd} ratio of 0.1 gives a luminosity at 5100 Å of $L_{5100} = 3.7 \times 10^{29}$ erg s$^{-1}$ Hz$^{-1}$; $L/L_{\mathrm{Edd}} = 0.07$ gives $L_{5100} = 2.6 \times 10^{29}$ erg s$^{-1}$ Hz$^{-1}$; $L/L_{\mathrm{Edd}} = 0.03$ gives $L_{5100} = 1.1 \times 10^{29}$ erg s$^{-1}$ Hz$^{-1}$; and an $L/L_{\mathrm{Edd}} = 0.01$ gives $L_{5100} = 3.7 \times 10^{28}$ erg s$^{-1}$ Hz$^{-1}$.

Figure 12 displays the effects of varying L/L_{Edd} (changing the luminosity). As is expected, higher L/L_{Edd} ratios display a greater luminosity as compared to lower L/L_{Edd} ratios. The $L/L_{\mathrm{Edd}} = 0.1$ and 0.07 models are very similar in shape, differing only by a normalization factor. The $L/L_{\mathrm{Edd}} = 0.03$ and 0.01 models show a marked change in SED shape as compared to the higher luminosity models, in addition to displaying a lower overall luminosity. Table 9 shows the amount of power emitted in the IR as compared to the optical/UV for each model, as well as the ratios of emission at 3, 6, 10, and 50 μm, relative to $L/L_{\mathrm{Edd}} = 0.1$. As compared to the fiducial model with $L/L_{\mathrm{Edd}} = 0.1$, the $L/L_{\mathrm{Edd}} = 0.07$ model displays around 0.8 times the emission at each wavelength examined, whereas the $L/L_{\mathrm{Edd}} = 0.03$ model displays \sim0.4 times the emission at 3 μm and 0.5 times the emission at 50 μm.

4.6. Distinguishing between M_{BH} Effects and L/L_{Edd} Effects

As changing both M_{BH} and L/L_{Edd} effectively results in a change in luminosity, one might ask whether the changes to these parameters are redundant. To isolate these effects, we plot two models with the same input luminosity, $L_{5100} = 3.7 \times 10^{29}$ erg s$^{-1}$ Hz$^{-1}$ (see Figure 13). The two plots are very similar, but not identical: the model with a higher black hole mass and lower Eddington ratio displays a higher normalization from 2 to 40 μm. These results suggest that the properties are not redundant, though running additional models for comparison would be of great benefit.

5. CONCLUSIONS AND DISCUSSION

We have investigated the parameter space of our model of the torus as a dusty magnetcocentrifugal wind with radiative acceleration. We have examined a number of interesting and important parameters and illustrated how they affect the IR SED of an AGN. We have verified that with input SEDs of bolometric luminosities $L \approx 10^{44}$–10^{46} erg s$^{-1}$ and a base column density of 10^{25} cm$^{-2}$, the code produced reasonable IR SEDs with approximately the right shape and luminosity ($L \approx 10^{43}$–10^{45} erg s$^{-1}$) as expected from the Richards et al. (2006) composite of optically luminous SDSS quasars. This is a promising result for a relatively simple model given that we have not attempted any fitting. A benefit to our model is that we are able to directly see the effects of various physical parameters on the final IR SED, which ultimately will allow us to understand the physical properties of the torus itself. By determining which physical parameters have an observable

Parameter Change	$L_{\mathrm{IR}}/L_{\mathrm{opt/UV}}$	3 μm Ratio	6 μm Ratio	10 μm Ratio	50 μm Ratio
$M_{\mathrm{BH}} = 10^8 M_\odot$	97.5%	1.00	1.00	1.00	1.00
$M_{\mathrm{BH}} = 5 \times 10^8 M_\odot$	83.3%	3.23	4.71	6.13	1.94
$M_{\mathrm{BH}} = 10^9 M_\odot$	82.6%	7.46	10.35	12.55	2.96

Notes. All models are compared to the model with $M_{\mathrm{BH}} = 10^8 M_\odot$, $\alpha_{\mathrm{ox}} = 1.6$, $i = 60^\circ$, $N_{H,0} = 10^{25}$ cm$^{-2}$, and $L/L_{\mathrm{Edd}} = 0.01$. The ratio $L_{\mathrm{IR}}/L_{\mathrm{opt/UV}}$ is the amount of power emitted in the IR from 2 to 100 μm by a certain model as compared to the amount of power emitted in the optical/UV (from 2 μm to 1000 Å) by the composite continuum by Richards et al. (2006), when both are normalized at L_{5100}. 108, 109, 01 models show a marked change in SED shape as compared to the fiducial model ($\alpha_{\mathrm{ox}} = 1.6$, $M_{\mathrm{BH}} = 10^8 M_\odot$, $L/L_{\mathrm{Edd}} = 0.01$). The two plots are very similar, but not identical: the model with a higher black hole mass and lower Eddington ratio displays a higher normalization from 2 to 40 μm. These results suggest that the properties are not redundant, though running additional models for comparison would be of great benefit.
The dotted line shows a model with $L/L_{\text{Edd}} = 0.01$. The short-wavelength ($<5 \mu m$) emission appears to be more emission than the fiducial model with $L/L_{\text{Edd}} = 0.1$.

Figure 13. Plot of models with the same input luminosity, $L_{5100} = 3.7 \times 10^{38}$ erg s$^{-1}$ Hz$^{-1}$, for different Eddington ratios and black hole masses. The solid line shows our fiducial model, with $M_{\text{BH}} = 10^8 M_\odot$ and $L/L_{\text{Edd}} = 0.1$. The dotted line shows a model with $M_{\text{BH}} = 10^9 M_\odot$ and $L/L_{\text{Edd}} = 0.01$. The two curves are not identical, with the model with $M_{\text{BH}} = 10^9 M_\odot$ and $L/L_{\text{Edd}} = 0.01$ showing relatively more power shortward of the 10 μm silicate feature.

Table 9

Parameter Change	$L_{IR}/L_{OPT/UV}$	3 μm Ratio	6 μm Ratio	10 μm Ratio	50 μm Ratio
$L/L_{\text{Edd}} = 0.1$	69.7%	1.00	1.00	1.00	1.00
$L/L_{\text{Edd}} = 0.07$	79.6%	0.80	0.79	0.78	0.84
$L/L_{\text{Edd}} = 0.03$	87.9%	0.36	0.35	0.35	0.51
$L/L_{\text{Edd}} = 0.01$	97.5%	0.16	0.12	0.096	0.36

Notes. All models are compared to the model with $L/L_{\text{Edd}} = 0.1$, $M_{\text{BH}} = 10^8 M_\odot$, $\alpha_{\text{oix}} = 1.6$, $i = 60^\circ$, and $N_{\text{H},0} = 10^{25}$ cm$^{-2}$. The value of $L_{IR}/L_{OPT/UV}$ is the amount of power emitted in the IR from 2 to 100 μm by a certain model as compared to the amount of power emitted in the optical/UV (from 2 μm to 1000 \AA) by the composite energy continuum. This illustrates the utility of models where the IR-emitting medium can respond dynamically to the input SED; in static models the incident spectrum is quickly thermalized and information on its shape is lost.

4. Higher black hole masses produce more luminous IR SEDs, for a fixed value of L/L_{Edd}. The SEDs for $M_{\text{BH}} \geq 5 \times 10^8 M_\odot$ are more peaked from ~ 3 to 30 μm as compared to the SEDs for $M_{\text{BH}} < 5 \times 10^8 M_\odot$.

5. Higher Eddington ratios produce more luminous IR SEDs. The SEDs for $L/L_{\text{Edd}} \geq 0.03$ are more peaked from ~ 3 to 30 μm as compared to SEDs for $L/L_{\text{Edd}} < 0.03$.

6. Although changes to both L/L_{Edd} and M_{BH} are effectively changes to the overall input luminosity, these effects may not be redundant, and appear to be slightly distinguishable from each other. The model with a higher black hole mass and lower Eddington ratio displays a higher normalization from 2 to 40 μm.

At present, although our model is producing approximately the right amount of power, it does not adequately reproduce the amount of expected emission in the hot dust, at wavelengths $\lesssim 8 \mu m$. This may be due in part to inclination angle effects. As discussed in Section 4.2, although inclination angle has little effect at lower column densities, it begins to show an effect at column densities of $N_{\text{H},0} = 10^{25}$ cm$^{-2}$, with smaller inclination angles displaying more power, particularly at wavelengths $<5 \mu m$. It is possible that this effect is amplified not only by an increase in column density, but by an increase in luminosity as well. We chose an inclination angle of $i = 60^\circ$ for the majority of our models in order to increase our computational efficiency, which allowed us to run more models in a shorter period of time. However, such an inclination angle is not likely to represent the average for Type 1 objects; a more characteristic choice would have been between $i = 45^\circ$ and $i = 30^\circ$. The choice of $i = 60^\circ$ means that we may be obscuring the innermost parts of the wind, and therefore missing the hottest dust, in many of our models.

Another possibility is that our assumption of an ISM dust composition is not entirely correct. We assume a single silicate dust sublimation radius, which neglects the hot graphite grains that can exist at smaller radii, and thus we are missing that emission. Further investigations into the details of our dust composition and sublimation radius are therefore required. Changing grain composition can also affect the profile of the silicate features.

The above simulations with MC3D required long run times. The fiducial model takes ~3–4 days on a four-core desktop machine to construct an SED for a single viewing/inclination angle. Further, smaller sublimation radii and smaller inclination angles require much longer run-times. For example, our fiducial model with a modified $R_{\text{sub}} = 1.5675 \times 10^{18}$ cm requires ~2–3 months.
on an eight-core desktop machine. Smaller sublimation radii translate to higher grid resolutions in the grid setup procedure for MC3D. To explore the sensitivity of our results to the effects of a smaller sublimation radius, we found it necessary to port MC3D to run on the many-core symmetric multi-processing (SMP) compute nodes of SHARCNET4. The fiducial model now takes \(\sim 19\) hr when using 32 nodes; the highest resolution run mentioned above takes slightly longer than a week.

We modified our fiducial model, setting the inner radius of the dusty wind to be \(1.5675 \times 10^8\) cm, about half that of the original fiducial model, keeping all other parameters fixed. A maximum temperature of 1615 K was reached within the dusty wind as modeled by MC3D, as opposed to approximately 800–1200 K in previous variations of the fiducial model. This model reproduces the blackbody-like shape of the near-IR emission between \(1-8\)\(\mu\)m (see above discussion). Furthermore, Königl & Kartje (1994) add in radiative acceleration only approximately; it is possible that with more realistic radiative acceleration added in, the wind accelerates off the disk quickly enough that the density drops very quickly with height, and only a very small region at the disk surface remains where we might observe silicate absorption.

Curiously, we find that the shape of our SEDs, in general, are similar to Schartmann et al.’s (2008) clumpy, face-on models, and are rather dissimilar to their continuous models (see the upper left panel in Figure 10 of Schartmann et al. 2008). We assume that they take the same parameters as described in Schartmann et al. (2005): a black hole mass of \(M_{BH} = 6.6 \times 10^7\) \(M_\odot\), and an \(L_{disk}/L_{Edd}\) value of 0.06, parameters which are descriptive of the lower luminosity Seyfert regime of AGNs. Although our models are geared more toward describing luminous quasars, their model is most comparable to our model with \(M_{BH} = 1 \times 10^8\) \(M_\odot\) and \(L_{disk}/L_{Edd} = 0.07\). Again, however, we do not see the silicate feature in absorption as they do for edge-on models.

5.1. Future Work

Future work on this model will entail refining our parameters, such as testing smaller inclination angles to determine whether we can more accurately reproduce the emission from the hottest dust. Along these lines, we aim to decrease the computation time to enable us to resolve the inner graphite-dominated region that likely gives rise to the near-IR emission. Then, we will be able to explore the importance of multiple dust components, at the necessary higher resolution. Further next steps will involve detailed comparisons of the predicted SEDs with a broad sample of IR observations, for example, from the Spitzer Space Telescope. Such in-depth comparisons will allow us to further constrain the salient parameters that we have isolated in this paper.

Currently, we are investigating the effects of increasing the “shielding gas” column density, \(N_{\text{gas}}\). The high X-ray flux from the AGN is prone to overionizing the gas in the wind. A thick layer of hot, highly ionized “shielding gas,” located interior to the wind-launching dust sublimation radius, is required in order to prevent this overionization. Such a construct was first hypothesized in the context of continuous quasar winds as the “hitchhiking gas” described by Murray et al. (1995), and later studied by Proga & Kallman (2004) and Everett (2005). Subsequent empirical evidence for the shielding gas was found in the signatures of high column density X-ray absorption in broad absorption line quasars (e.g., Gallagher et al. 2006).

We have explored a wider parameter space of this model based originally on the hydromagnetic wind model of Königl & Kartje (1994). Our results are roughly consistent with theirs, with our models displaying similar \(10\mu\)m emission to their model (labeled as “A2” in Königl & Kartje 1994), with \(M_{BH} = 10^7\) \(M_\odot\), a bolometric luminosity \(L_{bol} = 10^{44}\) erg s\(^{-1}\), and a mass outflow rate of 1.0 \(M_\odot\) yr\(^{-1}\). We do not, however, see the silicate feature in absorption, as they do with their model “A3,” with \(M_{BH} = 10^7\) \(M_\odot\), a bolometric luminosity \(L_{bol} = 10^{44}\) erg s\(^{-1}\), and a mass outflow rate of 3.0 \(M_\odot\) yr\(^{-1}\), even in our models with extremely high mass outflow rates (\(>4.0\) \(M_\odot\) yr\(^{-1}\)) and overall higher mass. Nenkova et al. (2008b) also see the silicate feature in absorption with many of their clumpy-torus models. This may in part mean that a higher resolution is required to resolve the wind, although models with a significantly increased resolution would also require an increase in computation time (see above discussion). However, Königl & Kartje (1994) hypothesized in the context of continuous quasar winds as the “hitchhiking gas” described by Murray et al. (1995), and later studied by Proga & Kallman (2004) and Everett (2005).

Subsequent empirical evidence for the shielding gas was found in the signatures of high column density X-ray absorption in broad absorption line quasars (e.g., Gallagher et al. 2006). Modifications to the MC3D code are required in order to deal with absorbed continua passing through different column densities of shielding gas to determine the effect on the dust sublimation radius and output IR SED.

Finally, another step toward perhaps more realistic models would be to simulate dusty winds of a filamentary nature. Such a

\(4\) SHARCNET is a consortium of Canadian academic institutions who share a network of high performance computers.
model may better represent the structures seen in interferometric observations of AGNs (see, e.g., Tristram et al. 2007).

We thank Dean Hines and Gordon Richards for their helpful feedback on the manuscript before submission, and the comments of the anonymous referee improved the presentation in this paper. The authors acknowledge the financial support of the National Sciences and Engineering Research Council of Canada (S.K.K., S.C.G., and R.P.D.) and the Ontario Early Researcher Award Program (S.C.G. and R.P.D.). S.K.K. gratefully acknowledges the financial support of the Ontario Graduate Scholarship program. J.E.’s work was supported by grants NSF AST-0507367, NSF AST-0907837, and NSF PHY-0215581 and NSF PHY-0821899 (to the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas). This research has made use of NASA’s Astrophysics Data System. Support for the early stages of this work, part of the Spitzer Space Telescope Theoretical Research Program, was provided by NASA through a contract issued by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

REFERENCES

Antonucci, R. 1993, ARA&A, 31, 473
Antonucci, R. R. J., & Miller, J. S. 1985, ApJ, 297, 621
Barvainis, R. 1990, ApJ, 353, 419
Beckert, T., & Duschl, W. J. 2004, A&A, 426, 445
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
Chartas, G., Brandt, W. N., & Gallagher, S. C. 2003, ApJ, 595, 85
Crenshaw, D. M., Kraemer, S. B., & George, I. M. 2003, ARA&A, 41, 117
Deo, R. P., Richards, G. T., Nikutta, R., et al. 2011, ApJ, 729, 108
Dorodnitsyn, A., Bisnovatyi-Kogan, G. S., & Kallman, T. 2011, ApJ, 741, 29
Dorodnitsyn, A., Kallman, T., & Bisnovatyi-Kogan, G. S. 2012, ApJ, 747, 8
Draine, B. T. 2003, ARA&A, 41, 241
Dullemond, C. P., & van Bemmel, I. M. 2005, A&A, 436, 47
Elitzur, M., & Silosman, I. 2006, ApJ, 648, L101
Elvis, M., Wilkes, B. J., McDowell, J. C., et al. 1994, ApJS, 95, 1
Everett, J. E. 2005, ApJ, 631, 689
Everett, J. E., Gallagher, S. C., & Keating, S. K. 2009, in AIP Conf. Proc. 1201, The Monster’s Fiery Breath: Feedback in Galaxies, Groups, and Clusters, ed. S. Heinz & E. Wilcots (Melville, NY: AIP), 56
Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998, PASP, 110, 761
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006, MNRAS, 366, 767
Gallagher, S. C., Brandt, W. N., Chartas, G., et al. 2006, ApJ, 644, 709
Gibson, R. R., Jiang, L., Brandt, W. N., et al., 2009, ApJ, 692, 755
Grimes, J. A., Rawlings, S., & Willott, C. J. 2004, MNRAS, 349, 503
Hao, L., Spoon, H. W. W., Sloan, G. C., et al. 2005a, ApJ, 625, L75
Hao, L., Strauss, M. A., Fan, X., et al. 2005b, AJ, 129, 1795
Hao, L., Weedman, D. W., Spoon, H. W. W., et al. 2007, ApJ, 655, L77
Hawley, J. F. 2011, in IAU Symp. 275, Jets at all Scales, ed. E. G. Romero, R. A. Sunyaev, & T. Belloni (Cambridge: Cambridge Univ. Press), 50
Hill, G. J., Goodrich, R. W., & Depoy, D. L. 1996, ApJ, 462, 163
Hönig, S. F., & Kishimoto, M. 2010, A&A, 523, A27
Hopkins, P. F., Hayward, C. C., Narayanan, D., & Hernquist, L. 2012, MNRAS, 420, 320
Jaffe, W., Meisenheimer, K., Röttgering, H. J. A., et al. 2004, Nature, 429, 47
Just, D. W., Brandt, W. N., Shemmer, O., et al. 2007, ApJ, 665, 1004
Königl, A., & Kartje, J. F. 1994, ApJ, 434, 446
Krolik, J. H. 2007, ApJ, 661, 52
Krolik, J. H., & Begelman, M. C. 1988, ApJ, 329, 607
Lawrence, A. 1991, MNRAS, 252, 586
Lawrence, A., & Elvis, M. 2010, ApJ, 714, 561
Mason, R. E., Levenson, N. A., Shi, Y., et al. 2009, ApJ, 693, L136
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M. 1995, ApJ, 451, 498
Nenkova, M., Sirocky, M. M., Vezić, Z., & Elitzur, M. 2008a, ApJ, 685, 147
Nenkova, M., Sirocky, M. M., Nikutta, R., Vezić, Z., & Elitzur, M. 2008b, ApJ, 685, 160
Netzer, H., Lutz, D., Schweitzer, M., et al. 2007, ApJ, 666, 806
Pier, E. A., & Krolik, J. H. 1992, ApJ, 401, 99
Proga, D., & Kallman, T. R. 2004, ApJ, 616, 688
Reichard, T. A., Richards, G. T., Hall, P. B., et al. 2003, AJ, 126, 2594
Richards, G. T., Lacy, M., Storrie-Lombardi, L. J., et al. 2006, ApJS, 166, 470
Sanders, D. B., Phinney, E. S., Neugebauer, G., et al. 1989, ApJ, 347, 29
Schartmann, M., Krause, M., & Burkert, A. 2011, MNRAS, 415, 741
Schartmann, M., Meisenheimer, K., Camenzind, M., et al. 2008, A&A, 482, 67
Schartmann, M., Meisenheimer, K., Camenzind, M., Wolf, S., & Henning, T. 2005, A&A, 437, 861
Schweitzer, M., Lutz, D., Sturm, E., et al. 2006, ApJ, 649, 79
Shi, J., & Krolik, J. H. 2008, ApJ, 679, 1018
Siebenmorgen, R., Haas, M., Krügel, E., & Schulz, B. 2005, A&A, 436, L5
Simpson, C. 2005, MNRAS, 360, 565
Simpson, C., & Rawlings, S. 2000, MNRAS, 317, 1023
Steffen, A. T., Barger, A. J., Cowie, L. L., Mushotzky, R. F., & Yang, Y. 2003, ApJ, 596, L23
Steffen, A. T., Strateva, I., Brandt, W. N., et al. 2006, AJ, 131, 2826
Tananbaum, H., Avni, Y., Branduardi, G., et al. 1979, ApJ, 234, L9
Tristram, K. R. W., Meisenheimer, K., Jaffe, W., et al. 2007, A&A, 474, 837
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
van Hoof, P. A. M., Weingartner, J. C., Martin, P. G., Volk, K., & Ferland, G. J. 2004, MNRAS, 350, 1330
Vollmer, B., Beckert, T., & Duschl, W. J. 2004, A&A, 413, 949
Wolf, S. 2003, Comput. Phys. Commun., 150, 99

The Astrophysical Journal, 749:32 (15pp), 2012 April 10.