Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis

Sarah Fliegel, Ines Brand, Rainer Spanagel and Hamid R Noori*

Abstract

Purpose: In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol.

Methods: Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry.

Results: For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified.

Conclusions: In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.

Keywords: Microdialysis, Glutamate, GABA, Meta-analysis, Rat brain, Ethanol administration, Alcohol withdrawal

Background

In vivo microdialysis methods have been developed to study the quantity of the chemical composition of interstitial tissue fluids. This technique has been used to observe the extracellular neurotransmitter release in various brain regions of different species. Usually these studies first establish a baseline level of a specific neurotransmitter and subsequently investigate alterations in extracellular neurotransmitter concentrations in response to the administration of a certain drug or other manipulation.

Numerous microdialysis studies focus on amino acids, in particular glutamate and GABA, as these neurotransmitters are the key players in the excitatory and inhibitory network of the central nervous system (CNS) and are involved in a variety of neuropsychiatric diseases, including substance abuse and alcohol use disorders (Kalivas, 2009; Spanagel, 2009).
In recent years, the glutamate theory of alcoholism has emerged as a major theory in the addiction research field. In a seminal publication, David Lovinger and colleagues (Lovinger et al. 1989) demonstrated that N-methyl-D-aspartate (NMDA) receptor function was inhibited by ethanol. Further research using site-directed mutagenesis experiments identified putative binding sites for ethanol molecules at the NMDA receptor (for review, see Spanagel, 2009). Thus, the first level of interaction of alcohol with brain function concerns the NMDA receptor (but also the γ-aminobutyric acid A (GABA_A) receptor and other primary targets of ethanol in the brain; for an overview, see Vengeliene et al., 2008). The NMDA receptor is a ligand-gated ion channel with a heteromeric assembly of NR1, NR2 (A-D), and NR3 subunits, and genetic variants that affect the vulnerability to alcohol dependence within the genes encoding these subunits have been identified (Schumann et al., 2008; Domart et al., 2012; Tsai and Coyle, 2012).

In addition to this direct interaction with the NMDA receptor, acute alcohol administration also affects glutamatergic neurons at the synaptic and cellular level and thereby releases glutamate. Although numerous microdialysis studies have examined the alcohol-induced glutamate release process, its concentration-dependency is less clear. It is further proposed that through various neuroadaptive responses that restore homeostasis, chronic alcohol consumption leads to an enhanced activity of the glutamatergic system in alcohol-dependent individuals (Tsai and Coyle, 1998; Spanagel and Kiefer, 2008; Ding et al., 2012). This glutamate-induced hyperexcitability within the CNS is uncovered during alcohol withdrawal. Acute alcohol withdrawal responses, which typically occur after discontinuation of prolonged and excessive alcohol ingestion, are associated with increased central glutamatergic transmission. Several studies employing brain microdialysis experiments in alcohol-dependent animals have shown augmented extracellular glutamate levels in various brain sites that correlate with the intensity of the withdrawal response (Rossetti and Carboni, 1995; Gass and Olive, 2008; Gass et al., 2011). This finding also translates into the human situation, as alcoholics undergoing acute withdrawal exhibit increased glutamate brain levels, as measured by magnetic resonance spectroscopy (Hermann et al., 2012).

As previously mentioned, other receptors or ion channels expressed within the CNS also have putative alcohol binding sites. In particular, the function of GABA_A receptors is enhanced by ethanol. The GABA_A receptor/chloride channel complex is a pentameric ligand-gated ion channel and the major inhibitory neurotransmitter receptor in the mammalian brain. Several subunits have been identified, with the majority of GABA_A receptors composed of α, β, γ and δ subunits (Barnard et al., 1998; Rewal et al., 2012). Using different receptor constructs, putative ethanol binding sites in the transmembrane domains of the α/β subunits of the GABA_A receptor have been identified (Milhic et al., 1997), and genetic variants within the genes encoding these subunits have been shown to affect the vulnerability to alcohol dependence (Cui et al., 2012; Frank et al., 2012; Uhart et al., 2012). Finally, some microdialysis studies have shown that acute alcohol also affects GABA release (Koob, 2004). Thus, consistent with the neuroadaptive changes that occur in the glutamatergic system, similar alterations might also occur in the GABAergic system following chronic alcohol administration.

Despite the important advantages of microdialysis measurements, the low spatiotemporal resolution remains a major drawback of these investigations. However, recent studies on the modeling of acute and chronic drug effects (Noori, 2012; Noori et al., 2012a) suggest that in silico analysis of the neurochemical processes provides complimentary information to overcome the experimental difficulties, particularly by enabling the observation of the dynamical multi-dimensional interactions of different transmitter systems with high spatiotemporal resolution. These computational methods rely on microdialysis results as initial setup parameters. Thus, comprehensive insights on the dynamical behavior of the extracellular concentrations of these neurochemical systems are of particular importance for understanding the neurobiology of alcohol abuse and alcoholism by conventional or in silico approaches. We have introduced a neurocircuitry (Noori et al., 2012a) that provides the foundation of such computational models. Using systematic data mining and clustering methods, we have identified specific brain regions and neurotransmitter systems, including glutamate and GABA, that are critical for understanding the spatiotemporal effects of drugs, especially alcohol, on the neurochemical mechanisms and processes in the rodent brain.

The main objective of the present study is to provide universally valid basal amino acid (glutamate and GABA) concentrations and their alterations due (i) to the administration of acute ethanol and (ii) during withdrawal, as measured by in vivo microdialysis experiments. Our previous studies (Frank et al., 2008; Noori et al., 2012b; Brand et al., 2013) suggest that meta regression analysis presents a suitable framework to approach this aim. Here, we use a similar strategy as in these studies and apply equivalent data mining and analytic methods.

Meta-analysis describes the integration of several primary studies using quantitative and statistical methods (Glass, 1976; Smith and Glass, 1977). The
intention is to summarize the results of a large collection of individual studies in order to give a universally valid statement on specific topics. In particular, the effectiveness of a specific treatment or measure is investigated.

Methods

Data mining

A literature search was conducted on PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). No particular journal was preferred. The search included the specific brain region and the transmitter of interest as well as the keywords “rat” and “microdialysis”. Literature search for alcohol administration also included the keyword “ethanol” and “alcohol”. The selection criteria further included (i) rats of the age between 2 and 15 months and (ii) drug-naïve rats. Articles that did not comply with these criteria had to be excluded. Out of approximately 5000 publications, 245 publications fulfilled the selection criteria. In a second search we included “withdrawal”. Out of 43 publications, 11 publications fulfilled our stringent selection criteria for this additional meta-analysis.

The subsequent variables (i.-vii.) were obtained from the publications and used for further analysis:

i. Weight, age, gender and consciousness of the rats (if anaesthetics applied: agent and dose).
ii. Number of the animals used in each experiment.
iii. Absolute basal glutamate and GABA values.
 Different units were converted into molarity (nM).
iv. Sample time in min and perfusion rate in μl/min.
v. Peak % baseline (= highest divergence between maximum peak and baseline value) and peak time.
vi. Coordinates of probe placements according to the stereotaxic atlas of (Paxinos and Watson, 2007), Pellegrino et al. (Pellegrino and Cushman 1979), or König and Klippel (1974) as well as the shape, length and outer diameter of the probe membrane (mm), the calcium concentration and pH value of the Ringer solution or artificial CSF (mM), and the neurochemical detection assays.

vii. Doses of ethanol applied, as well as the route of administration (intravenous (i.v.) and intraperitoneal (i.p.) injections or local infusions).

Statistical analysis

Usually a meta-analysis observes an entire experiment. Although we considered only selected values, we did not lose the relation to the experiment in total. The mean basal values are not collected from only one animal that means numbers, percentages etc. are associated to the whole experiment. We conducted the meta-analysis using fixed effect model (Hedges and Olkin, 1985), which utilizes the inverse of the number of animals of the studies as the weights to calculate a weighted average \[\bar{x} = \frac{1}{N} \sum_{i=1}^{k} n_i x_i, \] where \(\bar{x} \) represents the weighted average value as the weighted sum of the products of the mean values \(x_i \) from each experiment \(i \) (within a time interval of [0; 300] minutes) and the number of animals used in that particular study \(n_i \) and \(N = \sum_{i=1}^{k} n_i \) denoting the total number of animals considered in the meta-analysis of the \(k \) studies. To guarantee the robustness of this model, we have analyzed the datasets statistically with respect to the experimental parameters by one-way analysis of variance (ANOVA) using the Holm-Bonferroni method with a global level of significance of \(\alpha < 0.05 \) and identified significant heterogeneity factors.

One purpose of the analysis was to get the mean basal value of the two neurotransmitters glutamate and GABA measured in a defined brain region. According to our defined neurocircuitry for modelling acute and chronic effects of alcohol 19 brain regions were taken into consideration - from caudal to rostral: olfactory bulb (OB), prefrontal cortex (PFC), insula (Ins), nucleus accumbens (NAC), caudate putamen (CPu), septal region (S), bed nucleus of stria terminalis (BNST), globus pallidus (GP), hypothalamus (HyT), amygdala (Amy), habenula (Hb), hippocampus (Hc), thalamus (Th), subthalamic nucleus (STh), substantia nigra (SN), ventral tegmental area (VTA), raphe nuclei (R), locus coeruleus (LC), and pons (Pn). As mentioned above, weighted values (concerning the number of rats, which were taken in one experiment) were used for calculation in order to get an average basal value. In addition to systematically examine those baseline values the second objective was the “peak % baseline” after acute administration of alcohol (i.p., i.v., s.c., local). A dose-dependent correlation analysis was conducted using the variables peak % baseline, peak time and the given dose of ethanol to determine the functional relationship between administered dose of ethanol and the alteration of glutamate and GABA concentrations, respectively. The third objective was the estimation of “peak % baseline” and “peak time” during alcohol withdrawal.

To analyse the data, one-way analysis of variance (ANOVA) using Holm-Bonferroni method with a global level of significance of \(\alpha < 0.05 \) were performed. If any significance emerged, the respective weighted average basal value and standard error were calculated separately. Additionally forest plots were used to illustrate the influence of ethanol on the baseline values of glutamate in the prefrontal cortex and the nucleus accumbens. This graphical representation is a scattergram of the variables “experiment” and “average basal value” and “peak % baseline”, respectively.
Results

Baseline values for extracellular glutamate and GABA concentrations in different areas of the rat brain

Literature search revealed 245 publications that fulfilled the selection criteria for baseline values of glutamate and GABA. Out of these 43.3% were published before the year 2000, 51.8% between 2000 and 2010 and 4.5% after 2010. Altogether 6932 animals were used in these experiments. Average basal values, as well as the statistical distribution (i.e., median, maximum and minimum) are represented in Table 1 (glutamate) and Table 2 (GABA) for 18 different brain regions respectively (for the habenula no data could be retrieved from Pubmed). The forest plots (Figures 1 and 2) represent the basal values of glutamate in the PFC and the NAc, respectively. Rapid microelectrode measurements of glutamate in the PFC (Hascup et al., 2010), glutamate measurements with oxidase-coated biosensors in the AMY and NAc (Gass et al., 2011) as well as a variety of control experiments (Timmerman and Westerink, 1997; Sun et al., 2011) suggest the neuronal origin of these concentrations.

Numerous experimental variables are known to have an impact on the relative recovery of an analyte and thereby influence the concentration per sample and the baseline values measured. Most critical parameters are the flow rate of the perfusate, probe size, the composition of the perfusate - particularly the Ca2+ concentration, and the analytical technique for determining the neurotransmitter concentrations. The statistical distribution of these parameters within our datasets (Table 3) suggests a dense distribution of the parameters around their averages and a lack of significant heterogeneity in the applied ranges. ANOVA performed on the weighted averages with respect to these parameters reflected this absence of variance and suggests the robustness of our analysis in agreement with previous studies (Frank et al., 2008; Noori et al., 2012b; Brand et al., 2013). This result is not in contrast to the previous experimental observation but underlines the awareness of the study designers of the importance of these parameters. This was particularly reflected in the choice of the shape of the probes (99% I-shaped) and the transmitter detection systems. Almost all studies (98%) used high performance liquid chromatography (HPLC) and fluorescence detection systems for glutamate quantifications, whereas the vast majority of the studies measuring GABA utilize HPLC and coulometric electrochemical detection assays. However, it should also be mentioned that the majority of the studies used in the present study did not report the time point of measurement with respect to circadian rhythms. Recent studies (Castaneda et al., 2004; Hampp et al., 2008) suggest that the neurotransmitter levels measured by in vivo microdialysis are under the control of the circadian clock and vary with the time of the day. The lack of information on this issue in most of the publications might have a non-negligible impact on our analysis.

Most of the experiments used Sprague–Dawley (43.4%) and Wistar rats (42.3%). A smaller percentage used Lister-Hooded (2.4%) and Long-Evans (3.1%) rats. Statistical analysis shows statistically significant differences of average basal values of rat strain in several brain regions. Most of them occurred between Wistar and Sprague–Dawley rats (strain differences shown in Table 1 and 2). In particular, GABA levels in the PFC and CPu were significantly different between Sprague–Dawley and Wistar rats (F\textsubscript{1,6} = 6.03; resp. F\textsubscript{1,10} = 4.76; P < 0.05). Furthermore, glutamate levels showed a statistically significant difference between Sprague–Dawley and Wistar rats in the GP (F\textsubscript{1,5} = 9.11; p < 0.05), the SN (F\textsubscript{1,9} = 4.67; P < 0.05), and the VTA (F\textsubscript{2,8} = 4.26; P < 0.05). In general, the average basal values seem not to depend on gender. However, with the exception of measurements in the OB, which were performed only on female animals (n = 100), the majority of the remaining studies (96.5%) used male rats. Hence, statistical analysis did not reveal any gender-specific significant differences, but due to the low number of female rats it is difficult to draw any certain conclusion. In order to minimize age-related variations, only values obtained from adult animals (between 2 and 10 months of age) were considered for the analysis. The weight of the animals was Gaussian normal distributed around 300 g. The dominant part of the experiments (78%) was conducted on awake, conscious and freely moving animals. In the remaining studies, animals were maintained under anaesthesia during the experiment, which often induced statistically significant effects on the basal neurotransmitter concentrations (Table 4). Previous studies (Lillrank et al., 1994; Rozza et al., 2000; Dong et al., 2006; Westphalen and Hemnings, 2006) already suggest a significant impact of the anaesthetics on the forebrain glutamate and GABA levels. Our analysis further supports the suggestion that the application of different anaesthetics such as halothane, urethane and pentobarbital increase the level of glutamate significantly in Th (F\textsubscript{1,6} = 80.12; P < 0.05), SN (F\textsubscript{1,14} = 6.3; P < 0.05), and VTA (F\textsubscript{1,10} = 83.53; P < 0.05). In addition, chloral hydrate appeared to also have enhancing effects on the GABA release in the SN (F\textsubscript{1,4} = 216.28; P < 0.05) (Table 4).

Alcohol-induced glutamate and GABA release in different areas of the rat brain

Our literature search revealed 17 publications that were in agreement with our selection criteria for acute ethanol exposure. Out of these, 66 values were extracted. Altogether 529 animals were used in the experiments. Observation of seven brain regions fulfilled the selection
Brain region	Glutamate: average basal value ± sEM [nM]	Median	Max	Min
Olfactory Bulb (30)	3857 ± 2057	4681	3307	6055
Prefrontal Cortex (445)	1182 ± 236	1290	3500	105
Insular Cortex (6)	1750 ± 320	-	-	-
Nucleus Accumbens (661)	2135 ± 382	623	12379	10
Caudate Putamen (675)	1009 ± 166	735	8100	25
Bed Nucleus of Stria Terminalis (7)	830 ± 70	-	-	-
Globus Pallidus	433 ± 153	400	673	171

Table 1: Average basal values (nM) of glutamate in awake animals as well as the statistical distribution of the data

<i>(i.e., median, maximum and minimum)</i>
criteria: AMY, GP, HC, NAc, PFC, CPu, and VTA. In general, alcohol was administered via three routes: (i) almost 90% of the experiments used intraperitoneal (i.p.) injections in a dose between 0.5 and 3.0 g/kg body weight; (ii) local infusion (100–1000 mM) of alcohol in 8% of the studies; and (iii) the remaining experiments applied ethanol orally (20% ethanol). The average magnitude of increase/decrease comparing to the baseline concentrations (peak % baseline) and the average peak time are presented in the Tables 5 and 6. The correlation analysis shows a non-uniform (region-dependent) interaction between ethanol and the release of glutamate and GABA. In particular, ethanol-induced alterations in glutamate concentrations appear to depend on the network properties such as the connectivity of the brain regions within the neurocircuitry for modelling drug effects.

Table 2 Average basal values (nM) of GABA in awake animals as well as the statistical distribution of the data (i.e. median, maximum and minimum)

Brain region	GABA: average basal value ± SEM [nM]	Median	Max	Min
Olfactory Bulb (30)	73 ± 46	61	80	43
Prefrontal Cortex	34 ± 12	32	50	25
Sprague–Dawley (131)				
Wistar (80)	89 ± 33	118	170	10
Nucleus Accumbens (167)	90 ± 22	33	764	13
Caudate Putamen	17 ± 5	19	130	6
Sprague–Dawley (341)				
Wistar (300)	78 ± 22	110	660	1
Septal Region (17)	640 ± 420	488	775	200
Bed Nucleus of Stria Terminalis (7)	110 ± 20	-	-	-
Globus Pallidus (198)	21 ± 6	19	83	7
Hypothalamus (56)	29 ± 10	17	92	5
Amygdala (128)	56 ± 20	16	830	2
Hippocampus (302)	97 ± 19	95	2500	1
Thalamus (100)	228 ± 70	60	870	8
Subthalamic Nucleus (33)	9 ± 5	9	9	9
Substantia Nigra (454)	18 ± 4	15	145	4
Ventral Tegmental Area (202)	16 ± 6	23	43	8
Locus Coeruleus (6)	6 ± 1	-	-	-
Pons (26)	90 ± 7	-	-	-

OB: Guevara–Guzman et al. Guevara-Guzman et al. (2000) PFC: Ballini et al. (2008); Del Arco and Mora (1999); Del Arco and Mora (2000); Del Arco and Mora (2002); Grobin and Deutch (1998); Harte and O’Connor (2004); Hernandez et al. (2008); Huang et al. (2008); Ouchi et al. (2004); Petkova-Kirova et al. (2008) Pistis et al. (2002); Welty and Shoblock (2009); Yamamura et al. (2009a); You et al. (1996a); You et al. (1996b); You et al. (2007) Pistis et al. (2002); Welty and Shoblock (2009); Yamamura et al. (2009a); You et al. (1996a); You et al. (1996b); You et al. (2007) Pistis et al. (2002); Welty and Shoblock (2009); Yamamura et al. (2009a); You et al. (1996a); You et al. (1996b); You et al. (2007)
Figure 1 Forest-plot of the basal glutamate values in the prefrontal cortex as measured in 24 experiments, ordered by year of publication. Row 1 indicates the weighted average basal value and its standard error of mean (±SEM). The vertical line extends the weighted mean in order to compare the extracted data. 2 Hashimoto et al. (1995); 3 Stephans and Yamamoto (1995); 4 Robert et al. (1996); 5,6 Selim and Bradberry (1996); 7 Del Arco and Mora (1999); 8 Timmerman et al. (1999); 9 Del Arco and Moral (2000); 10 Del Arco and Mora (2002); 11 Pistis et al. (2002); 12 Harte and O'Connor (2004); 13 Giovannini et al. (2005); 14 Abekeawa et al. (2006); 15 Calcagno et al. (2006); 16 Hugues et al. (2007); 17 Ballini et al. (2008); 18 Hernandez et al. (2008); 19 Huang et al. (2008); 20 Welty and Shoblock (2009); 21 Yamamura et al. (2009a); 22 Li et al. (2010a); 23 Lupinsky et al. (2010); 24 Carli et al. (2011); 25 Ohoyama et al. (2011).

Figure 2 Forest-plot of the basal value of glutamate in the nucleus accumbens as measured in 28 experiments, ordered by year of publication. Row 1 indicates the weighted average basal value and its standard error of mean (±SEM). The vertical line extends the weighted mean in order to compare the extracted data. 2 Dahchour et al. (1994); 3 Selim and Bradberry (1996); 4 You et al. (1998); 5 Dalley et al. (1999); 6,7,8 Segovia et al. (1999); 9 Fu et al. (2000); 10 Queremont et al. (2000); 11 Dawson et al. (2001); 12 Giorgetti et al. (2001); 13,14 Hemmati et al. (2001); 15 You et al. (2001); 16 Saulskaya and Mikhailova (2002); 17 Zangen and Hyodo (2002); 18 Hotspenpiller and Wolf (2003); 19 Mikhailova (2003); 20 Xi et al. (2003a); 21 Quarta et al. (2004); 22 Saulskaya and Soloviova (2004); 23 Shou et al. (2004); 24 Saulskaya and Mikhailova (2005); 25 Ito et al. (2006); 26 Lallemand et al. (2006); 27 Hernandez (2008); 28 Huang et al. (2008); 29 Li et al. (2010b).
Table 3 Statistical distribution of the microdialysis procedure parameters within the meta-analyzed datasets

Parameter	Average	Median	Max	Min
Flow Rate (\(\mu\)l/min)	1.7	2.0	4.0	0.5
\(\text{Ca}^{2+}\) (mM)				
aCSF (53%)	1.2	1.2	2.5	0.57
Ringer Solution (30%)	1.9	2.2	3.4	1.0
Krebs-Ringer-Phosphate Solution (9%)	1.5	1.2	3.4	1.0
Modified Ringer Solution (7%)	1.4	1.2	2.3	1.0
Dubeccco Phosphate Buffer Saline (1%)	1.2	1.2	1.2	1.2
pH-value (Perfusate)	7.4	7.4	7.4	6.0
Probe Size				
Length (mm)	2.3	2.0	5.0	1.0
Outer Diameter (mm)	0.3	0.3	0.6	0.15

The compliance of the average values and the median in the flow rates and in the different calcium concentrations within the composition of perfusates suggest a lack of heterogeneity and a high level of standardization in the general experimental design of microdialysis measurements.

Table 4 Significantly different average basal values (nM) of glutamate and GABA (in comparison to Tables 1 and 2) in anesthetized rats

Brain region/ transmitter (number of animals)	Average basal value ± SEM	Median	Max	Min
Thalamus/Glu (8)	6600 ± 300	-	-	-
Substantia Nigra/Glu (16)	684 ± 259	699	863	440
Ventral Tegmental Area/ Glu (12)	4607 ± 392	-	-	-
Ventral Tegmental Area/ GABA (6)	226 ± 79	-	-	-

Glu-Th: Juhasz et al. (1997) Glu-SN: Bustamante et al. (2002); Herrera-Marschitz et al. (1996); Windels et al. (2000); Windels et al. (2005); You, et al. (1996a); You et al. (1996b) Glu-VTA: You et al. (2001) GABA-VTA: Winter et al. (2008).

Table 5 Average ethanol-induced alterations of glutamate and GABA as measured by in vivo microdialysis experiments

EtOH dosis (g/kg)	0.5	1.0	2.0	3.0
Brain region/transmitter (number of animals)	Peak % baseline (Peak time [min])			
Prefrontal Cortex/Glu (44)	145 (40)	154 (57)	160 (20)	
Nucleus Accumbens/Glu (186)	160 (53)	126 (49)	80 (80)	
Nucleus Accumbens/GABA (82)	135 (58)	97 (65)	73 (90)	
Caudate Putamen/Glu (11)	138 (NN)	61 (20)		

Glu-PFC: Selim and Bradberry (1996); Glu-NAc: Dahchour et al. (1994); Dahchour et al. (1996); Kashkin and De Witte (2004); Selim and Bradberry (1996); Yan et al. (1998) GABA-NAc: Dahchour et al. (1994); Dahchour et al. (1996); Glu-CPu: Carboni et al. (1993); Smith et al. (2004).

Table 6 Local infusion of ethanol in the AMY enhances GABA levels significantly, while glutamate release remains almost unchanged (Glu: Roberto et al. (2004b) GABA: Roberto et al. (2004a))

EtOH dosis (mM)	100	300	1000
Amygdala/Glu	110	104	113
Amygdala/GABA	127	-	182
This observation is best reflected in the analysis of the PFC, NAc and CPu (Figure 3). While ethanol increases the glutamate concentrations in the PFC in a dose-dependent fashion, it simultaneously decreases the extracellular levels of glutamate in the NAc and CPu. In contrast GABA concentrations were elevated in the NAc following the same doses of alcohol.

Alcohol withdrawal-induced glutamate and GABA release in different areas of the rat brain
On the basis of our selection criteria for ethanol withdrawal, 11 articles (n = 104 rats) were extracted. All studies used freely moving male rats with a strain distribution of 55% Wistar and 45% Sprague Dawley animals. The experiments measured the amino acids alterations in an interval of [2; 12] hours after last exposure to alcohol within different brain regions (Table 7 and Figure 4) with significant enhancements of extracellular glutamate and GABA levels due to acute ethanol withdrawal.

Discussion
To investigate the effects of a specific drug on amino acid release in the rat brain, in vivo microdialysis is an ideal method. Nevertheless, experimental parameters should be defined more precisely, as they can largely vary between different publications; however, there are no universal instructions concerning the number of animals, gender, age, doses of applied drugs, state of consciousness and weight in these studies. Our meta-analysis shows general robustness of the observations for glutamate and GABA release with respect to experimental parameters such as gender and state of consciousness of the animals, and provides universal references for the basal concentrations of glutamate and GABA in a number of brain regions. However, the observed statistical differences of glutamate and GABA neurotransmission in specific brain regions as a consequence of the administration of anaesthetics and strain of the animals suggest particular caution in establishing baseline measurements with respect to these variables.

Our analysis further reflects the highly complex mechanisms underlying the actions of ethanol on the release properties of amino acids. While different doses of ethanol enhance the basal levels of glutamate in the PFC (Table 4 and Figure 3), the magnitude of the alterations appear to be nonlinearly dependent on the applied...
doses. In addition, the negative correlation of the administered doses of ethanol and the changes in amino acid concentrations in the dorsal and ventral striatum suggest the involvement of feedback mechanisms and the activation of additional secondary regulatory processes in the subcortical brain structures by alcohol (Noori et al., 2012a).

In general, the multi-scale involvement of glutamate and GABA in information processing in the brain (from synaptic to network interactions) and the interactions between these transmitters make it difficult to identify the key components of the ethanol-induced alterations. In light of these difficulties, in silico experiments might represent an alternative strategy to capture the dynamical complexity of these interactions and provide further neurobiological insights on the relevant processes that are not measurable simultaneously in real-world experiments.

Conclusion

In conclusion, this meta-analysis approach may be helpful for the optimal systematic design of future in vivo microdialysis and in silico experiments on neurotransmitter release and ethanol-related processes, to therefore attain a better comparability between those studies. Furthermore, the basal extracellular concentrations of glutamate and GABA in 18 different brain sites, as well as the quantitative and qualitative measures for the acute action of ethanol on these neurotransmitters provide the necessary setup parameters for in silico studies.

Limitations

Despite the numerous advantages of meta-analysis approaches, their main problem remains the lack of essential information in the publications. Many potentially important articles had to be excluded from our analysis because crucial information was missing, such as the number of animals used or standard errors of the mean. In addition, it should be noted that in the majority of studies, circadian rhythmicity was not considered and thus the time point of the measurement was oftentimes excluded. Recent studies (Casteneda et al., 2004; Hampp et al., 2008) indicate that there is a relationship between the concentrations of neurotransmitters, as measured by in vivo microdialysis, and the time of measurement (day/night).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SF, IB and HRN carried out the data mining and statistical analysis and drafted the manuscript. RS and HRN designed the study and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the Bundesministerium für Bildung und Forschung (NGFN Plus; FKZ: 01GQ08152, FKZ: 01GQ08155 see under www.ngfn-alkohol.de and Spanagel et al., 2010; FKZ: 01GQ08151) and the Bernstein Center for Computational Neuroscience initiative; FKZ: 01GQ1003B).

Received: 12 February 2013 Accepted: 7 May 2013 Published: 17 May 2013
References
Abarca C, Silva E, Sepulveda MJ, Oliva P, Contreras E (2000) Neurochemical changes after morphine, dizocilpine or riluzole in the ventral-posterolateral thalamic nuclei of rats with hyperalgesia. Eur J Pharmacol 403:67–74
Abelkai A, Itto K, Koyama T (2006) Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex. Naunyn Schmiedebergs Arch Pharmacol 374:177–193
Ampe B, Massie A, D’Haens J, Ebingue G, Michotte Y, Same S (2007) NMDA-mediated release of glutamate and GABA in the subthalamic nucleus is mediated by dopamine: an in vivo microdialysis study in rats. J Neurochem 103:1063–1074
Anderson JI, DiMicco JA (1992) The use of microdialysis for studying the regional effects of pharmacological manipulation on extracellular levels of amino acids—some methodological aspects. Life Sci 51:623–630
Azuma S, Kodama T, Honda K, Inoue S (1996) State-dependent changes of extracellular glutamate in the medial preoptic area in freely behaving rats. Neurosci Lett 214:179–182
Ballini C, Corte LD, Pazzagli M, Colivicchi MA, Pepeu G, TiptonKF, Giovanni MG (2008) Extracellular levels of brain aspartate, glutamate and GABA during an inhibitory avoidance response in the rat. J Neurochem 106:1035–1043
Banerjee PK, Sneed OC 3rd (1995) Presynaptic gamma-hydroxybutyric acid (GHB) and gamma-aminobutyric acid (GABA) receptor-mediated release of GABA and glutamate (GLU) in rat thalamic ventrobasal nucleus (VB); a possible mechanism for the generation of absence-like seizures induced by GHB. J Pharmacol Exp Ther 273:1534–1543
Bantilan MG, Yorkene BK (2004) Serotonin-GABA interactions modulate MDMA-induced mesolimbic dopamine release. J Neurosci 91852–859
Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Bigno G, Braestrup, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313
Bartaglia G, Morin JS, Scheppe DD (1997) In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci Lett 229:161–164
Bert L, Parrot S, Robert F, Desvignes C, Denoroy L, Suaud-Chagny MF, Renaud B (1997) The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 87:171–180
Bigno SS, Staggs MS (1997) Dopamine and glutamate control each other’s release in the basal ganglia: a microdialysis study of the entopeduncular nucleus and substantia nigra. Neurosci Biobehav Rev 21:497–504
Bigno SS, Pearce BB, Fowler LJ, Whltin PS (1992) The effect of sodium valproate on extracellular GABA and other amino acids in the rat ventral hippocampus: an in vivo microdialysis study. Brain Res 594:138–142
Bigno SS, Fowler LJ, Whltin PS, Staggs MS (1995) Impulse-dependent and tetrodotoxin-sensitive release of GABA in the rat's substantia nigra measured by microdialysis. Brain Res 684:172–178
Bigno SS, Fowler LJ, Whltin PS, Staggs MS (1997) Extracellular levels of glutamate and aspartate in the entopeduncular nucleus of the rat determined by microdialysis: regulation by striatal dopamine D2 receptors via the indirect striatal output pathway? Brain Res 753:163–175
Boulet S, Lacombe E, Carenci F, Feuerstein C, Gsambato-Faure V, Poupard A, Savasta M (2006) Subthalamic stimulation-induced forelimb dyskinesia is linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci 26:10776–10786
Bourdarias AJ, Deutz AJ (1994) The effects of haloperidol and clozapine on extracellular GABA levels in the prefrontal cortex of the rat: an in vivo microdialysis study. Cereb Cortex 4:69
Brand I, Flegel S, Spanagel R, Noori HR (2013) Global ethanol-induced enhancements of monoaminergic neurotransmission: A meta-analysis study. Alcohol Clin Exp Res, In press
Bustamante O, Oyo ZB, Castel MN, Johansson S, Goiny M, Tenerius L, Hkofelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654
Carbono S, Isola R, Gessa GL, Rossetti ZL (1993) Ethanol prevents the glutamate release induced by N-methyl-D-aspartate in the rat striatum. Neurosci Lett 152:133–136
Carli M, Calcagno E, Mainolli P, Mainini E, Invernezzi RW (2011) Effects of antipsychotics, clonazepam, and haloperidol in a model of cognitive deficit of schizophrenia in rats: relationship with glutamate release in the medial prefrontal cortex. Psychopharmacology (Berl) 214:639–652
Castaneda TR, de Prado BM, Prieto D, Mora F (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat modulation by light. J Physiol 36:177–185
Chapman MA, See RE (1996) Differential effects of unique profile antipsychotic drugs on extracellular amino acids in the ventral pallidum and globus pallidus of rats. J Pharmacol Exp Ther 277:1586–1594
Clinciers R, Gheuens S, Smolders I, Meurs A, Ebingue G, Michotte Y (2005) In vivo modulatory action of extracellular glutamate on the anticonvulsant effects of hippocampal dopamine and serotonin. Epilepsia 46:828–836
Cowen M, Chen F, Jarrott B, Lawrence AJ (1998) Effects of acute ethanol on GABA release and GABA(A) receptor density in the rat mesolimbic system. Pharmacol Biochem Behav 59:51–57
Cui WY, Seneviratne C, Gu J, Li MD (2012) Genetics of GABAergic signaling in nicotine and alcohol dependence. Hum Genet 131:843–855
Dahchour A, De Witte P (1999a) Effect of repeated ethanol withdrawal on glutamate microdialysis in the hippocampus. Alcohol Clin Exp Res 23:1698–1703
Dahchour A, De Witte P (1999b) Acamprosate decreases the hypermetolity during repeated ethanol withdrawal. Alcohol 18:77–81
Dahchour A, De Witte P (2000) Taurine blocks the glutamate increase in the nucleus accumbens microdialysate of ethanol-dependent rats. Pharmacol Biochem Behav 65:345–350
Dahchour A, De Witte P (2003) Excitatory and inhibitory amino acid changes during repeated episodes of ethanol withdrawal an in vivo microdialysis study. Eur J Pharmacol 459:171–178
Dahchour A, Quertemont E, De Witte P (1994) Acute ethanol increases taurine but neither glutamate nor GABA in the nucleus accumbens of male rats: a microdialysis study. Alcohol Alcohol 29:485–487
Dahchour A, Quertemont E, De Witte P (1996) Taurine increases in the nucleus accumbens microdialysate after acute ethanol administration to naive and chronically alcoholised rats. Brain Res 735:9–19
Dahchour A, De Witte P, Bolo N, Nedelec JF, Muzet M, Durbin P, Macher JP (1998) Central effects of acamprosate: part 1. Acamprosate blocks the glutamate increase in the nucleus accumbens microdialysate in ethanol withdrawn rats. Psychiart 82:107–114
Dahchour A, Hoffmann A, Deitrich R, De Witte P (2000) Effects of ethanol on extracellular amino acid levels in high- and low-alcohol sensitive rats: a microdialysis study. Alcohol Alcohol 35:548–553
Dalby NO (2000) GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39:2399–2407
Dalley JW, Thomas KL, Howes SR, Tsai TH, Aparicio-Legarra MI, Reynolds GP, Everitt BJ, Robbins TW (1999) Effects of excitotoxic lesions of the rat prefrontal cortex on CREB regulation and presynaptic markers of dopamine and amino acid function in the nucleus accumbens. Eur J Neurosci 11:1265–1274
Dawson LA, Nguyen HQ, Li P (2001) The 5-HT1(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropeyropharmacology 25:662–668
Dawson LA, Nguyen HQ, Li P (2003) Potentiation of amphetamine-induced changes in dopamine and 5-HT by a 5-HT(6) receptor antagonist. Brain Res Bull 59:513–521
de Groote L, Linthorst AC (2007) Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neurosci 148:794–805
Del Arco A, Mora F (1999) Effects of endogenous glutamate on extracellular concentrations of GABA, dopamine, and dopamine metabolites in the prefrontal cortex of the freely moving rat: involvement of NMDA and AMPA/KA receptors. Neurochem Res 24:1027–1035
Del Arco A, Mora F (2000) Endogenous dopamine potentiates the effects of glutamate on extracellular GABA in the prefrontal cortex of the freely moving rat. Brain Res Bull 53:339–345
Del Arco A, Mora F (2002) NMDA and AMPA/kainate glutamateergic agonists increase the extracellular concentrations of GABA in the prefrontal cortex of the freely moving rat: modulation by endogenous dopamine. Brain Res Bull 57:623–630
Del Arco A, Castaneda TR, Mora F (1998) Amphetamine releases GABA in striatum of the freely moving rat: involvement of calcium and high affinity transporter mechanisms. Neuropharmacology 37:199–205

Ding ZM, Rodd ZA, Engleman EA, Bailey JA, Lahiri DK, McBride WJ (2012) Alcohol drinking and deprivation alter basal extracellular glutamate concentrations and clearance in the mesolimbic system of alcohol-prefering (P) rats. Addict Biol. doi:10.1111/j.1360-0443.2011.00219.x, Epub ahead of print

Dornant MC, Benyamina A, Lemoine A, Bourgain C, Biecla L, Debuire B, Reynaud M, Saffroy R (2012) Association between a polymorphism in the promoter of a glutamate receptor subunit gene (GRIN2A) and alcoholism. Addict Biol 17:783–785

Dong HF, Fukuda S, Murata E, Higuchi T (2006) Excitatory and inhibitory actions of isoflurane on the cholinergic ascending arousal system of the rat. Anesthesiology 104:122–133

Ericson M, Chau P, Clarke RB, Adermark L, Söderpalm B (2011) Rising taurine and domart MC, Benyamina A, Lemoine A, Bourgain C, Biecla L, Debuire B, Reynaud M, Saffroy R (2012) Association between a polymorphism in the promoter of a glutamate receptor subunit gene (GRIN2A) and alcoholism. Addict Biol 17:783–785

Frangi K, Harte M, Ungetstedt U, WT OC (2002) A dual probe characterization of dialysate amino acid levels in the medial prefrontal cortex and ventral tegmental area of the awake freely moving rat. J Neurosci Meth 119:109–119

Fu Y, Matta SG, Gao W, Brower VG, Sharp BM (2000) Systemic nicotine stimulates dopamine release in nucleus accumbens; re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J Pharmaco Exp Ther 294:458–465

Galeffi F, Bianchi L, Bolam JP, Della Corte L (2003) The effect of 6-hydroxydopamine lesions on the release of amino acids in the direct and indirect pathways of the basal ganglia: a dual microdialysis probe analysis. Eur J Neurosci 18:856–868

Gass JT, Olive MF (2008) Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 75:218–265

Gass JT, Sinclair CM, Cleva RM, Wijdhold JJ, Olive MF (2011) Alcohol-seeking behavior is associated with increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by glutamate-oxidase -coated biosensors. Addict Biol 16:215–228

Giorgetti M, Hotsenpiller G, Ward P, Teppen T, Wolf ME (2001) Amphetamine-induced plasticity of AMPA receptors in the ventral tegmental area: effects on extracellular levels of dopamine and glutamate in freely moving rats. J Neurosci 21:6362–6369

Giovannini MG, Mutolo D, Bianchi L, Michelassi A, Pepeu G (1994) NMDA receptor antagonists decrease GABA outflow from the septum and increase acetylcholine outflow from the hippocampus: a microdialysis study. J Neurosci 14:1338–1346

Giovannini MG, Rakovska A, Della Corte L, Bianchi L, Pepeu G (1998) Activation of non-NMDA receptors stimulates acetylcholine and GABA release from dorsal hippocampus: a microdialysis study in the rat. Neurosci Lett 243:152–156

Giovannini MG, Rakovska A, Benton RS, Pazzaglia M, Bianchi L, Pepeu G (2001) Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106:43–53

Giovannini MG, Pazzaglia M, Malmberg-Aiello P, Della Corte L, Rakovska AD, Cerbai F, Casamenti F, Pepeu G (2005) Inhibition of acetylcholine-induced activation of extracellular regulated protein kinase prevents the encoding of an inhibitory avoidance response in the rat. Neuroscience 136:15–32

Glass GW (1976) Primary, secondary and meta-analysis of research. Educ Res 5:3–8

Grobin AC, Deutch AF (1998) Dopaminergic regulation of extracellular gamma-aminobutyric acid levels in the prefrontal cortex of the rat. J Pharmacol Exp Ther 285:350–357

Guevara-Guzman R, Barrera-Mera B, De La Riva C, Kendrick MW (2000) Release of classical transmitters and nitric oxide in the rat olfactory bulb, evoked by vaginocervical stimulation and potassium, varies with the oestrus cycle. Eur J Neurosci 12:880–888

Guzman-Ramos K, Osorio-Gomez D, Moreno-Castilla P, Bermudez-Rattoni F (2010) Off-line concomitant release of dopamine and glutamate involvement in taste memory consolidation. J Neurochem 114:226–236

Hamp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meier JH, Albrecht U (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18:678–683

Harte M, O’Connor WT (2004) Evidence for a differential medial prefrontal dopamine D1 and D2 receptor regulation of local and ventral tegmental glutamate and GABA release: a dual probe microdialysis study in the awake rat. Brain Res 1071:120–129

Harto M, O’Connor WT (2005) Evidence for a dual probe microdialysis study in the awake rat. Brain Res 1017:120–129

Harte M, O’Connor WT (2004) Evidence for a differential medial prefrontal dopamine D1 and D2 receptor regulation of local and ventral tegmental glutamate and GABA release: a dual probe microdialysis study in the awake rat. Brain Res 1017:120–129

Harte M, O’Connor WT (2005) Evidence for a selective prefrontal cortical GABA(B) receptor-mediated inhibition of glutamate release in the ventral tegmental area: a dual probe microdialysis study in the awake rat. Neuroscience 130:215–222

Hauscup DE, Hansot NA, Stephens M, Pomereau F, Huettel P, Gratton A, Gerhardt GA (2010) Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem 115(6):1608–1620

Hashimoto A, Oka T, Nishikawa T (1995) Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Synapse 22:345–352

Hatipetros T, Yamamoto BK (2006) Dopaminergic and GABAergic modulation of glutamate release from rat subthalamic nucleus efferents to the substantia nigra. Brain Res 1076:60–67

Hazzell AS, Butterworth RF, Halim AM (1993) Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J Neurochem 61:1155–1158
58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 959:243–250

Melendez RI, Hicks MP, Cagle SS, Kailvas PW (2005) Ethanol exposure decreases glutamate uptake in the nucleus accumbens. Alcohol Clin Exp Res 29:226–233

Mells MR, Succi S, Mancia MS, Cortis L, Argiolas A (2004) Extracellular excitatory amino acids increase in the paraventricular nucleus of male rats during sexual activity: main role of N-methyl-D-aspartic acid receptors in erectile function. Eur J Neurosci 19:2569–2575

Milic SC, Ye Q, Wick MJ, Koltschine VV, Krasowski MD, Finse SS, Mascia MP, Valenzuela CF, Hanson KJ, Greenblatt EP, Harris RA, Hanson NL (1997) Sites of alcohol and volatile anesthetic action on GABA(A) and glycine receptors. Nature 389:385–389

Mihalkova MO (2003) Comparison of changes in glutamate levels in the nucleus accumbens of the rat brain during food consumption in conditions of blockade of dopamine D1 and D2 receptors. Neurosci Behav Physiol 33:431–434

Molchanova S, Koobi P, Oja SS, Saransaari P (2004a) Intersitial concentrations of amino acids in the rat striatum during global forebrain ischemia and potassium-evoked spreading depression. Neurochem Res 29:1519–1527

Molchanova S, Oja SS, Saransaari P (2004b) Characteristics of basal taurine release in the rat striatum measured by microdialysis. Amino Acids 27:261–268

Morales-Villagran A, Tappa R (1996) Preferential stimulation of glutamate release by 4-aminoopyridine in rat striatum in vivo. Neurochem Int 28:35–40

Morari M, O'Connor WT, Ungerstedt U, Fuxe K (1993) N-methyl-D-aspartic acid differentially regulates extracellular dopamine, GABA, and glutamate levels in the dorsolateral neostriatum of the halothane-anesthetized rat: an in vivo microdialysis study. J Neurochem 60:1884–1893

Morari M, O'Connor WT, Ungerstedt U, Fuxe K (1994) Dopamine D1 and D2 receptor antagonism differentially modulates stimulation of striatal neurotransmitter levels by N-methyl-D-aspartic acid. Eur J Pharmacol 256:23–30

Morari M, O'Connor WT, Ungerstedt U, Bianchi C, Fuxe K (1996) Functional neuroanatomy of the nigrostrial and striatongrial pathways as studied with dual probe microdialysis in the awake rat-II. Evidence for striatal N-methyl-D-aspartate receptor regulation of striatongrial GABAergic transmission and motor function. Neuroscience 72:89–97

Oreiro-Garcia MT, Vazquez-Illanes MD, Sierra-Paredes G, Sierra-Marcuno G (2007) Orexin A and orexin B reduce extracellular glutamate levels in the dorsal raphe nucleus of the rat. Brain Res 1150:185–191

Ohoyama K, Yamamura S, Hamaguchi T, Nakagawa M, Motomura E, Shiroyama T, Tani T, Okada M (2011) Effect of novel atypical antipsychotic, bolaniserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur J Pharmacol 653:47–57

Page 14 of 16
Robert F, Bert L, Lambas-Senas L, Denory L, Renaud B (1996) In vivo monitoring of extracellular noradrenaline and glutamate from rat brain cortex with 2-min microdialysis sampling using capillary electrophoresis with laser-induced fluorescence detection. J Neurosci Meth 70:153–162
Robert M, Madamba SG, Stouffer DG, Parsons LH, Siggins GR (2004a) Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci 24:10103–10106
Robert M, Schweitzer P, Madamba SG, Stouffer DG, Parsons LH, Siggins GR (2004b) Acute and chronic ethanol alter glutamatergic transmission in rat central amygdala: an in vitro and in vivo analysis. J Neurosci 24:1594–1603
Robert M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M, Cottone P, Madamba SG, Stouffer DG, Zorrilla EP, Kooij GF, Siggins GR, Parsons LH (2010) Corticocortical release of factor-induced amygdala gamma-aminobutyric Acid release plays a key role in alcohol dependence. Biol Psychiat 67:831–839
Rosales MG, Martinez-Fong D, Morales R, Nunez A, Flores G, Gongora-Alfaro JL, Florian B, Aces J (1997) Reciprocal interaction between glutamate and dopamine in the parietal cortex of the rat substantia nigra: a microdialysis study. Neuroscience 89:803–819
Rosi S, Giovannini MG, Lestage PJ, Munoz C, Corte LD, Pepeu G (2004) 18986, a positive modulator of AMPA receptors with cognition-enhancing properties, increases ACh release in the hippocampus of young and aged rat. Neurosci Lett 361:120–123
Rossetti ZL, Carboni S (1995) Ethanol withdrawal is associated with increased extracellular glutamate in the rat striatum. Eur J Pharmacol 283:177–183
Rowley HL, Marsden CA, MartinKF (1995) Differential effects of phenoxy- and sodium valproate on seizure-induced changes in gamma-aminobutyric acid and glutamate release in vivo. Eur J Pharmacol 294:541–546
Rozza A, Masoero E, Favalli L, Lanza E, Govoni S, Rizzo V, Montalbetti L (2000) Influence of different anaesthetics on extracellular aminoacids in rat brain. J Neurosci Meth 101:165–169
Saelström Baum S, Huebner A, Krimphove M, Morgenstern R, Badawy AA, Klaasen K, Hanke J, Gudelsky GA, Karayannis T (2001) Acute and chronic ethanol increases extracellular glutamate in the rat central amygdala: an in vitro and in vivo analysis. J Neurosci Meth 105:70–77
Sato M, Agyo Y, Koda K, Nakamura S, Kawasaki T, Babi A, Matsuda T (2007) Role of postsynaptic serotonin1A receptors in risperidone-induced increase in acetylcholine release in rat prefrontal cortex. Eur J Pharmacol 559:155–160
Saikayka NB, Mikhaliova MO (2002) Feeding-induced decrease in extracellular glutamate level in the rat nucleus accumbens: dependence on glutamate uptake. Neuroscience 112:791–801
Saikayka NB, Mikhaliova MO (2005) Vesicular and non-vesicular glutamate release in the nucleus accumbens in conditions of a forced change of behavioral strategy. Neurosci Behav Physiol 35:677–683
Saikayka NB, Solovieva NA (2004) Tetrodotoxin-dependent glutamate release in the rat nucleus accumbens during concurrent presentation of appetitive and conditioned aversive stimuli. J Neurosci Meth 140:15–21
Sayin U, Timmenman W, Westerink BH (1995) The significance of extracellular GABA in the substantia nigra of the rat during seizures and anticonvulsant treatments. Brain Res 669:67–72
Schumann G, Johann M, Frank J, Preuss U, Dahmen N, Laucht M, Rietschel M, Rujescu D, Sartorius A, Sticher G, Schütz G, Sommer WH, Sprengel R, Walter H, Wichmann E, Wierken T, Wurst W, Zimmer A (2010) An integrated genome research network for studying the genetics of alcohol addiction. Adv Genet 73:153–169
Sembja J, Sakai M, Miyoshi R, Kito S (1995) N-G-monomethyl-L-arginine, an inhibitor of nitric oxide synthase, increases extracellular GABA in the striatum of the freely moving rat. Neuroreport 6:1426–1428
Shimizu K, Matusbara K, Uezono T, Kimura K, Shiono H (1998) Reduced dorsal hippocampal glutamate release significantly correlates with the spatial memory deficits produced by benzodiazepines and ethanol. Neuroscience 82:701–706
Shou M, Smith AD, Shackman JG, Peris J, Kennedy RT (2004) In vivo monitoring of amino acids by microdialysis sampling with on-line derivatization by naphthelene-2,3-dicarboxydiylide and rapid micellar electrophoretic capillary chromatography. J Neurosci Meth 138:189–197
Singewald N, Zhou GY, Schneider C (1995) Release of excitatory and inhibitory amino acids from the locus coeruleus of conscious rats by cardiovascular stimuli and various forms of acute stress. Brain Res 704:42–50
Siizmore GM, Co C, Smith JE (2000) Ventral pallidal extracellular fluid levels of dopamine, serotonin, gamma amino butyric, and glutamate during cocaine self-administration in rats. Psychopharmacology (Berl) 150:391–398
Skorzewska A, Bidzinski A, Hamed A, Lehnert M, Tuzynska D, Sobolewska A, Szyndler J, Maciejak P, Wiloskow-Stanek A, Flaimik A (2009) The effect of CRF and alpha-helical CRF(9–41) on rat fear responses and amino acids release in the central nucleus of the amygdala. Neuropharmacology 57:148–156
Smith ML, Glass GV (1977) Meta-analysis of psychotherapy outcome studies. Am Psychiat 327:52–760
Smith SE, Sharp T (1994) An investigation of the origin of extracellular GABA in rat nucleus accumbens measured in vivo by microdialysis. J Neurol Transm Gen Sect 97:161–171
Smith AM, Watson CJ, Frantz K, Shepherd B, Kennedy RT, Peris J (2004) Differential increase in tauine levels by low-dose ethanol in the dorsal and ventral striatum revealed by microdialysis with on-line capillary electrophoresis. Alcohol Clin Exp Res 28:1028–1038
Sommer W, Rimondini R, O’Connor W, Hanson AC, Ungeestert U, Fuxe K (1996) Intrastriatally injected c-fos antisense oligonucleotide interferes with striatogiral but not striatopallidal gamma-aminobutyric acid transmission in the conscious rat. Proc Natl Acad Sci USA 93:14134–14139
Sotomayor-Zarate R, Araya KA, Pereira P, Blanco E, Quirno G, Pozo S, Carreno P, Andres M, Forray M, Gyngil K (2010) Activation of GABA-B receptors induced by systemic amphetamine abolishes dopamine release in the lateral septal nucleus. J Neurochem 114:1678–1686
Spanagel R (2000) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:459–705
Spanagel R, Kiever F (2008) Drugs for Relapse Prevention of Alcoholism – 10 Years of Progress. Trends Pharmacol Sci 29:109–115
Spanagel R, Bartsch D, Bros B, Dahmen N, Deussing J, Eils R, Endo G, Gallina J, Gebicke-Haerter P, Heinz A, Kiever F, Jager W, Mann K, Matthäus F, Nötken M, Rietschel M, Sartorius A, Schultz G, Sommer WH, Sprengel R, Walter H, Wichmann E, Wierken T, Wurst W, Zimmer A (2010) An integrated genome research network for studying the genetics of alcohol addiction. Addict Biol 15:369–379
Stephanis SE, Yamamoto BY (1995) Effect of repeated methamphetamine administrations on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res 700:99–108
Succu S, Nascia MS, Sanna F, Melis T, Argiolas A, Melis MR (2006) The cannabinoid CB1 receptor antagonist SR 141716A induces penile erection by increasing extra-cellular glutamic acid in the paraventricular nucleus of male rats. Behav Brain Res 169:274–281
Sullivan ME, Hall SR, Milne B, Jhamandas K (2000) Suppression of acute and chronic opioid withdrawal by a selective soluble guanylyl cyclase inhibitor. Brain Res 859:54–56
Sun JY, Yang JY, Wang F, Wang JY, Song W, Su GY, Dong YX, Wu CF (2011) Tetrodotoxin inhibits nitric oxide synthase, increases extracellular GABA in the striatum of the freely moving rat. Neuroreport 6:1426–1428
Takeda A, Sotogaku N, Oku N (2002) Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience 114:699–704
Takeda A, Sotogaku N, Oku N (2003) Influence of manganese on the release of neurotransmitters in rat striatum. Brain Res 965:279–282
Takeda A, Mimami A, Seki Y, Oku N (2004) Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus. J Neurosci Res 75:225–229
Tanaka Y, Han H, Hagishita T, Fukui F, Liu G, Ando S (2004) alpha-Salicylicsterol enhances the depolarization-induced release of acetylcholine and glutamate in rat hippocampus: in vivo microdialysis study. Neurosci Lett 357:9–12
