FINITELY PRESENTED LATTICE-ORDERED ABELIAN GROUPS WITH ORDER-UNIT

LEONARDO CABRER ‡ AND DANIELE MUNDICI†

ABSTRACT. Let G be an ℓ-group (which is short for “lattice-ordered abelian group”). Baker and Beynon proved that G is finitely presented iff it is finitely generated and projective. In the category \mathcal{U} of unital ℓ-groups—those ℓ-groups having a distinguished order-unit u—only the (\Leftarrow)-direction holds in general. Morphisms in \mathcal{U} are unital ℓ-homomorphisms, i.e., homomorphisms that preserve the order-unit and the lattice structure. We show that a unital ℓ-group (G, u) is finitely presented iff it has a basis, i.e., G is generated by an abstract Schauder basis over its maximal spectral space. Thus every finitely generated projective unital ℓ-group has a basis B. As a partial converse, a large class of projectives is constructed from bases satisfying $\bigwedge B \neq 0$. Without using the Effros-Handelman-Shen theorem, we finally show that the bases of any finitely presented unital ℓ-group (G, u) provide a direct system of simplicial groups with 1-1 positive unital homomorphisms, whose limit is (G, u).

1. Introduction

We refer to [4], [10] and [13] for background on ℓ-groups. A unital ℓ-group (G, u) is an abelian group G equipped with a translation-invariant lattice-order and a distinguished order-unit u, i.e., an element whose positive integer multiples eventually dominate each element of G. Unital ℓ-groups are a modern mathematization of the time-honored euclidean magnitudes with an archimedean unit (see [17]). By [19, Theorem 3.9], the category \mathcal{U} of unital ℓ-groups is equivalent to the equational class of MV-algebras. Thus, while the archimedean property of order-units is not definable in first-order logic, \mathcal{U} is endowed with all typical properties of equational classes: in particular, \mathcal{U} has subalgebras, quotients and products, which in general are not cartesian products, [5].

Finitely presented ℓ-groups (with or without unit) are an active topic of current research, because they have a basic proteiform reality, as computable algebraic structures, rational polyhedra, fans, finitely axiomatizable theories in many-valued logic, and finitely presented AF C^* algebras whose Murray-von Neumann order of projections is a lattice. See [11, 20, 18, 16, 21].

Morphisms in the category of ℓ-groups are lattice-preserving homomorphisms. Morphisms in the category of unital ℓ-groups are also required to preserve order-units. A unital ℓ-group (G, u) is projective if whenever $\psi: (A, a) \to (B, b)$ is a...
surjective morphism and \(\phi: (G, u) \to (B, b) \) is a morphism, there is a morphism \(\theta: (G, u) \to (A, a) \) such that \(\phi = \psi \circ \theta \). For \(\ell \)-groups, Baker [1] and Beynon [2], [3, Theorem 3.1] (also see [10, Corollary 5.2.2]) gave the following characterization: An \(\ell \)-group \(G \) is finitely generated projective iff it is finitely presented. For unital \(\ell \)-groups the \((\Rightarrow)\)-direction holds ([21, Proposition 5]). The converse direction fails in general.

Schauder bases provide the main tool to prove that an \(\ell \)-group is finitely generated projective iff it is presented by a word in the pure language of lattices, without resorting to the group structure, [16]. This strengthens the characterization by Baker-Beynon mentioned above, where lattice-group words are used, and paves the way to a full understanding of the sharp differences between measure theory in unital and in non-unital \(\ell \)-groups, [21].

For a geometric investigation of finitely presented unital \(\ell \)-groups, in [18] the notion of basis (see Definition 2.1) was introduced as a purely algebraic counterpart of Schauder bases. Specifically, in [18, Theorem 4.5] it is proved that an archimedean unital \(\ell \)-group \((G, u)\) is finitely presented iff it has a basis. The archimedean condition means that \(G \) is isomorphic to an \(\ell \)-group of real-valued functions defined on some set \(X \). In Theorem 3.1 we will prove that the archimedean assumption can be dropped, thus obtaining a characterization of finitely presented unital \(\ell \)-groups that does not mention free objects and their universal property.

As a corollary, every finitely generated projective unital \(\ell \)-group has a basis. In Section 4 we will prove a partial converse, yielding a method to construct large classes of projective unital \(\ell \)-groups.

With reference to [9] and [12], the underlying dimension group of \((G, u)\) will be considered in the final section. In Theorem 5.3 it is proved that if \((G, u)\) has a basis then its bases provide a direct system of simplicial groups with 1-1 positive unital homomorphisms, whose limit is \((G, u)\). Thus the Effros-Handelman-Shen representation theorem [6], Grillet’s theorem [15, 2.1], and Marra’s theorem [17] have a very simple proof for any such \((G, u)\).

2. Preliminaries

2.1. Unital \(\ell \)-groups and bases. A lattice-ordered abelian group (\(\ell \)-group) is a structure \((G, +, -, 0, \lor, \land)\) such that \((G, +, -, 0)\) is an abelian group, \((G, \lor, \land)\) is a lattice, and \(x + (y \lor z) = (x + y) \lor (x + z) \) for all \(x, y, z \in G \). An order-unit in \(G \) is an element \(u \in G \) with the property that for every \(g \in G \) there is \(n \in \{1, 2, 3, \ldots \} \) such that \(g \leq nu \). A unital \(\ell \)-group \((G, u)\) is an \(\ell \)-group \(G \) with a distinguished order-unit \(u \).

A map \(h: (G, u) \to (G', u') \) is said to be a unital \(\ell \)-homomorphism if it preserves the lattice as well as the group structure, and \(h(u) = u' \). By an ideal \(i \) of a unital \(\ell \)-group \((G, u)\) we mean the kernel of a unital \(\ell \)-homomorphism of \((G, u)\). We denote by MaxSpec\((G, u)\) the set of maximal ideals of \((G, u)\) equipped with the spectral topology, [4, §10]: a basis of closed sets for MaxSpec\((G)\) is given by sets of the form \(\{ p \in \text{MaxSpec}(G) \mid a \in p \} \), where \(a \) ranges over all elements of \(G \). Since \(G \) has an order-unit, MaxSpec\((G)\) is a nonempty compact Hausdorff space, [4, 10.2.2].

Definition 2.1. Let \((G, u)\) be a unital \(\ell \)-group. A basis of \((G, u)\) is a set \(B = \{b_1, \ldots, b_n\} \) of nonzero elements of the positive cone \(G^+ = \{ g \in G \mid g \geq 0 \} \) such that
(i) \(B \) generates \(G \);
(ii) for each \(k = 1,2,\ldots \) and \(k \)-element subset \(C \) of \(B \) with \(0 \neq \bigcup \{ b \mid b \in C \} \), the set \(\{ m \in \text{MaxSpec}(G) \mid m \supseteq B \setminus C \} \) is homeomorphic to a \((k-1)\)-simplex;
(iii) it follows that the multiplicity \(m_i \) of each \(b_i \in B \) is uniquely determined.

This is an equivalent simplified reformulation of [18, Definition 4.3]. From (ii)-(iii) it follows that the multiplicity \(m_i \) of each \(b_i \in B \) is uniquely determined.

For \(n = 1,2,\ldots \) we let \(M_n \) denote the unital \(\ell \)-group of all continuous functions \(f: [0,1]^n \to \mathbb{R} \) having the following property: there are (affine) linear polynomials \(p_1,\ldots,p_m \) with integer coefficients, such that for all \(x \in [0,1]^n \) there is \(i \in \{1,\ldots,m\} \) with \(f(x) = p_i(x) \). \(M_n \) is equipped with the pointwise operations \(+,-,\wedge,\vee\) of \(\mathbb{R} \), and with the constant function 1 as the distinguished order-unit. The characteristic universal property of \(M_n \) is as follows:

Proposition 2.2. ([19, 4.16]) \(M_n \) is generated by the coordinate maps \(\pi_i: [0,1]^n \to \mathbb{R} \) together with the order-unit 1. For every unital \(\ell \)-group \((G,u)\) and elements \(g_1,\ldots,g_n \) in the unit interval \([0,u]\) of \(G \), if \(g_1,\ldots,g_n \) and \(u \) generate \(G \), then there is a unique unital \(\ell \)-homomorphism \(\psi \) of \(M_n \) onto \(G \) such that \(\psi(\pi_i) = g_i \) for each \(i = 1,\ldots,n \).

We say that \((G,u)\) is finitely presented if for some \(n = 1,2,\ldots \), \((G,u)\) is isomorphic to the quotient of \(M_n \) by a finitely generated (= singly generated = principal) ideal.

Given \(f \in M_n \) we denote \(Zf = a^{-1}(0) \) the zero set of \(f \). More generally, for every ideal \(J \) of \(M_n \) we will write

\[
ZJ = \bigcap \{ Zg \mid g \in J \}.
\]

In the particular case when \(J \) is maximal, \(ZJ \) is a singleton (because the functions in \(M_n \) separate points, [19, 4.17]), and we write

\[
\hat{J} = \text{the only element of } ZJ.
\]

For later use we record here a classical result, whose proof follows from the Hion-Hölder theorem [8, p.45-47], [4, 2.6]:

Lemma 2.3. For every unital \(\ell \)-group \((G,u)\) and ideal \(m \in \text{MaxSpec } G \) there is exactly one pair \((i_m,R_m)\) where \(R_m \) is a unital \(\ell \)-subgroup of \((\mathbb{R},1)\), and \(i_m \) is a unital \(\ell \)-isomorphism of the quotient \((G,u)/m \) onto \(R_m \). Upon identifying \((G,u)/m \) with \(R_m \) every element \(g/m \in (G,u)/m \) becomes a real number, and we can unambiguously write \(g/m \in \mathbb{R} \).

Corollary 2.4. Let \(i \) be an ideal of \(M_n \) and \(\text{MaxSpec}_{\geq i} M_n \) denote the compact set of all maximal ideals of \(\text{MaxSpec } M_n \) containing \(i \). Then the map \(\hat{Z} \) of (2) yields a homeomorphism of \(\text{MaxSpec}_{\geq i} M_n \) onto the compact set \(Zi \subseteq [0,1]^n \). The inverse of \(\hat{Z} \) is the map \(x \in Zi \mapsto m_x = \{ f \in M_n \mid f(x) = 0 \} \), and we have identical real numbers

\[
f/m = f(\hat{Z}(m)), \quad \forall f \in M_n, \quad \forall m \in \text{MaxSpec}_{\geq i} \subseteq M_n.
\]

Proof. As a matter of fact, for each \(x \in Zi \), \(m_x \) is a maximal ideal of \(M_n \). Further, for each \(f \in i \), from \(f(x) = 0 \) we get \(f \in m_x \), whence \(m_x \supseteq i \) and \(\hat{Z} m_x = x \). Let \(p \in \text{MaxSpec}_{\geq i} M_n \). Then \(Zp \subseteq Zi \) and for every \(f \in p \) with \(f(\hat{Z} p) = 0 \) we have \(p \subseteq m_{Z(p)} \) and \(\hat{Z} p \in Zi \). The assumed maximality of \(p \) is to the effect that
p = m_{\not\in (p)}$; whence \hat{Z} is a one-one map from $\operatorname{MaxSpec}_2 \mathcal{M}_n$ onto \mathbb{Z}. By definition of spectral topology, \hat{Z} is a homeomorphism. An application of Lemma 2.3 now settles the result. \hfill \Box

Corollary 2.5. The quotient map $\kappa: \mathcal{M}_n \to \mathcal{M}_n / i$ determines the homeomorphism $m \mapsto m / i$ of $\operatorname{MaxSpec}_2 \mathcal{M}_n$ onto $\operatorname{MaxSpec} \mathcal{M}_n / i$. The inverse map is given by $\kappa^{-1}(n) = \{ f \in \mathcal{M}_n \mid f / i \in n \}$ for each $n \in \operatorname{MaxSpec} \mathcal{M}_n / i$.

Proof. The routine proof follows by combining Lemma 2.3 with [4, 2.3.8]. \hfill \Box

2.2. Rational polyhedra and unimodular triangulations

We will make use of a few elementary notions and techniques of polyhedral topology. We refer to the first chapters of [7] for background. By a *rational polyhedron* we understand a finite union of simplexes $P = S_1 \cup \cdots \cup S_t$ in \mathbb{R}^n such that the coordinates of the vertices of every simplex S_i are rational numbers. For every simplicial complex Σ the point-set union of the simplexes of Σ is called the *support* of Σ and is denoted $|\Sigma|$. The support of any rational point $v \in \mathbb{R}^n$ is called the *denominator* of v, denoted $\operatorname{den}(v)$. The integer vector $\hat{v} = \operatorname{den}(v)(v, 1) \in \mathbb{Z}^{n+1}$ is called the *homogeneous correspondent* of v. An m-simplex $U = \operatorname{conv}(w_0, \ldots, w_m) \subseteq [0, 1]^n$ is said to be *unimodular* if it is rational and the set of integer vectors $\{\hat{w}_0, \ldots, \hat{w}_m\}$ can be extended to a basis of the free abelian group \mathbb{Z}^{n+1}. A simplicial complex is said to be a *unimodular triangulation* (of its support) if all its simplexes are unimodular.

As a remainder of the relevance of unimodular triangulations, recall that the homogeneous correspondent of a unimodular triangulation is known as a regular (or, nonsingular) fan [7, 22].

The following results show the connection among rational polyhedra zero-sets of McNaughton maps and ideals in \mathcal{M}_n.

Proposition 2.6. [18, 4.1.5.1] Letting $P \subseteq [0, 1]^n$, the following are equivalent:

- (i) P is a rational polyhedron.
- (ii) $P = |\Delta|$ for some unimodular triangulation Δ.
- (iii) there is unimodular triangulation ∇ of $[0, 1]^n$ such that $P = \bigcup\{S \in \nabla: S \subseteq P\}$.
- (iv) $P = Zf$ for some $f \in \mathcal{M}_n$.

Lemma 2.7. Let i be an ideal of \mathcal{M}_n. Then the following are equivalent:

- (i) i is principal.
- (ii) there exists $f \in i$ such that $Zi = Zf$.

Proof. For the non trivial direction, let $f \in i$ such that $Zi = Zf$. It is no loss of generality to suppose $0 \leq f$. We must verify that, for all $0 \leq g \in \mathcal{M}_n$, $g \in i \iff g \leq kf$ for some $k = 1, 2, \ldots$. The \Rightarrow-direction follows from the fact that $f \in i$. For the \Leftarrow-direction, let Λ, be a rational triangulation of $[0, 1]^n$, f and g are linear over each $S \in \Lambda$. Let $\{v_1, \ldots, v_s\}$ be the vertices of Λ. Since $Zf = Zi \subseteq Zg$, $f(v_i) = 0$ implies $g(v_i) = 0$. Then there exists an integer $m_i > 0$ such that $m_i f(v_i) \geq f(v_i)$ for each $i = 1, \ldots, s$. Letting $m = \max(m_1, \ldots, m_s)$, the desired result follows from the linearity of f and g over each simplex of Λ. \hfill \Box
3. FINITELY PRESENTED UNITAL ℓ-GROUPS AND BASIS

Theorem 3.1. A unital ℓ-group \((G, u)\) is finitely presented iff it has a basis.

The \((\Rightarrow)\)-direction of Theorem 3.1 is proved in [18, 5.2]. To prove the \((\Leftarrow)\)-direction let \(B = \{b_1, \ldots, b_n\}\) be a basis of \((G, u)\), with multiplicities \(m_1, \ldots, m_n\). Let \(\kappa: M_n \rightarrow (G, u)\) be the unique unital ℓ-homomorphism extending the map \(\pi_i \mapsto b_i\), as given by Proposition 2.2. Let the ideal \(i\) of \(M_n\) be defined by \(i = \ker(\kappa)\). By Definition 2.1(i), \(\kappa\) is onto \(G\), thus \((G, u) \cong M_n / i\).

For any \(E \subseteq B\) we define the simplex \(T_E \subseteq [0,1]^n\) by

\[
T_E = \text{conv}\{e_i/m_i \mid b_i \in E\},
\]

where \(e_i\) is the \(i\)th standard basis vector of \(\mathbb{R}^n\). From Definition 2.1(ii) it follows that \(\kappa(\sum_i m_i \pi_i) = \sum_i m_i \kappa(\pi_i) = \sum_i m_i b_i = u\) whence, defining the function \(a \in M_n\) by \(a = |1 - \sum_i m_i \pi_i|\),

\[
0 \leq a \in i, \text{ and } Za = T_B.
\]

Let \(k = 1, 2, \ldots\). Then by a \(k\)-cluster of \(B\) we understand a \(k\)-element subset \(C\) of \(B\) such that \(\bigwedge C \neq 0\). We denote by \(\mathcal{B}^{\leq k}\) the set of all clusters of \(B\). For each \(C \in \mathcal{B}^{\leq k}\), displaying the complementary set \(B \setminus C\) as \(\{b_{j_1}, \ldots, b_{j_s}\}\), we define the function \(a_C \in M_n\) by

\[
a_C = \pi_{j_1} \lor \ldots \lor \pi_{j_s}, \quad (a_C = 0 \text{ in case } C = \emptyset).\]

We then have

\[
T_B \cap Za_C = T_C.
\]

We next observe

\[
\bigwedge_{C \in \mathcal{B}^{\leq k}} a_C \in i.
\]

By (7), the result is trivial if \(B\) is a cluster in \(\mathcal{B}^{\leq k}\). If this is not the case, let \(b_{i_C} \in B \setminus C\) for each \(C \in \mathcal{B}^{\leq k}\). If \(D = \{b_{i_C} : C \in \mathcal{B}^{\leq k}\} \in \mathcal{B}^{\leq k}\), then \(b_{i_D} \in D\), which is a contradiction. Therefore,

\[
\kappa(\bigwedge_{C \in \mathcal{B}^{\leq k}} \pi_{i_C}) = \bigwedge_{C \in \mathcal{B}^{\leq k}} b_{i_C} = 0,
\]

i.e., \(\bigwedge_{C \in \mathcal{B}^{\leq k}} \pi_{i_C} \in i\). Since each \(b_{i_C} \in B \setminus C\) is arbitrary, (9) now follows from the distributivity of the underlying lattice of \((G, u)\).

Let the function \(f^* \in M_n\) be defined by

\[
f^* = a \lor \bigwedge_{C \in \mathcal{B}^{\leq k}} a_C.
\]

From (6) and (9) it follows that

\[
0 \leq f^* \in i,
\]

and from (8),

\[
Zf^* = Za \cap \bigcup_{C \in \mathcal{B}^{\leq k}} Za_C = \bigcup_{C \in \mathcal{B}^{\leq k}} T_C.
\]
From (11) we immediately have
\[Z f^* \supseteq \mathcal{Z} i. \] (13)

To prove the converse inclusion, for each cluster \(K \) of \(\mathcal{B} \) we set
\[\text{apo}(K) = \{ n \in \text{MaxSpec} M_n / i \mid n \supseteq \mathcal{B} \setminus K \}. \] (14)
For each \(n \in \text{MaxSpec} M_n / i \), letting \(C_n \) be the cluster of all \(b \in \mathcal{B} \) such that \(b \notin n \), it follows that \(\mathcal{B} \setminus C_n \subseteq n \), whence \(n \in \text{apo}(C_n) \). Thus, \(\bigcup_{C \in \mathcal{B}^{\geq}} \text{apo}(C) \supseteq \text{MaxSpec} M_n / i \). Since the converse inclusion holds by definition, we have
\[\text{MaxSpec} M_n / i = \bigcup_{C \in \mathcal{B}^{\geq}} \text{apo}(C). \] (15)
For each \(K \in \mathcal{B}^{\geq} \), we denote by \(\text{apo}_K(K) \) the inverse image of \(\text{apo}(K) \) under the composition of the homeomorphisms \(x \mapsto m_x \mapsto m_x / i \) of Corollaries 2.4 and 2.5, where \(m_x = \{ f \in M_n \mid f(x) = 0 \} \). In other words,
\[\text{apo}_K(K) = \{ x \in \mathcal{Z} i \mid m_x / i \in \text{apo}(K) \}. \] (16)
From (12)-(15) we get
\[\bigcup_{C \in \mathcal{B}^{\geq}} \text{apo}_K(C) = \mathcal{Z} i \subseteq Z f^* = \bigcup_{C \in \mathcal{B}^{\geq}} T_C. \] (17)

This inclusion can be refined as follows:

Claim 1: For each cluster \(C \) of \(\mathcal{B} \), \(\text{apo}_K(C) \subseteq T_C \).

As a matter of fact, by (14) and condition (iii) of Definition 2.1 we have
\[\text{apo}(C) = \{ n \in \text{MaxSpec} M_n / i \mid b / n = 0, \forall b \in \mathcal{B} \setminus C \} \]
\[= \{ n \in \text{MaxSpec} M_n / i \mid m_i b_{i_1} + \cdots + m_i b_{i_t} = 1 \}, \] (18)
for each cluster \(C = \{ b_{i_1}, \ldots, b_{i_t} \} \) of \(\mathcal{B} \). By Lemma 2.3, for each \(m \in \text{MaxSpec} \mathcal{Z} M_n \) the unital \(\ell \)-group \(\frac{\mathcal{M}_n}{m} \) and its isomorphic copy \(\frac{\mathcal{M}_n}{m / i} \) are canonically isomorphic to the same unital \(\ell \)-subgroup of \((\mathbb{R}, 1) \). Thus for each \(f \in M_n \) we have identical real numbers \(\frac{f / m}{n / i} \), \(\forall n \in \text{MaxSpec} M_n / i \),
\[f / n / i = f(\mathcal{Z}(k^{-1}(n))), \ \forall n \in \text{MaxSpec} M_n / i, \] (19)
or equivalently,
\[f(x) = \frac{f / m_x}{n / i}, \ \forall x \in \mathcal{Z} i. \] (20)
Combining (16) with (18), we obtain \((y_1, \ldots, y_n) \in \text{apo}_K(C) \) if and only if
\[m_{i_1} b_{i_1} + \cdots + m_{i_t} b_{i_t} \]
\[= \frac{(m_{i_1} y_{i_1} + \cdots + m_{i_t} y_{i_t}) / i}{m_x / i} = 1. \]
Now recalling (5), by (20) we obtain
\[\text{apo}_K(C) = \{ (y_1, \ldots, y_n) \in \mathcal{Z} i \mid m_{i_1} y_{i_1} + \cdots + m_{i_t} y_{i_t} = 1 \} \subseteq T_C, \] (21)
thus settling Claim 1.

Actually, a stronger result holds:

Claim 2: For every cluster \(C \) of \(\mathcal{B} \), \(\text{apo}_K(C) = T_C \).
The proof is by induction on the number l of elements of C.

Base case: $l = 1$. Then for a unique $j \in \{1, \ldots, n\}$ we have $C = \{b_j\} = \{\pi_j/i\}$. Condition (ii) in Definition 2.1 is to the effect that apo(C) contains exactly one element n. By Lemma 2.3, n is the only maximal ideal of $M_{n/i}$ such that $0 = b/n$ for all $b \neq b_j$; by (18), n is uniquely determined by the condition $1 = m_jb_j/n = (m_j\pi_j/i)/n$. Letting $z \in Z$ be the image of n in apo$_R(C)$, by (5) and Claim 1 we have $z = e_j/m_j$. We conclude that apo$_R(C) = \{e_j/m_j\} = \{e_j\}$. Therefore, the proof of Theorem 3.1 is thus complete.

Induction Step: $l + 1$. Let us write $C = \{b_{i_0}, \ldots, b_{i_t}\}$. Since every l-element subset C' of C is a cluster of \mathcal{B}, by induction hypothesis apo$_R(C') = T_{C'}$. $T_{C'}$ is known as a facet of T_C. By Claim 1, apo$_R(C)$ is a nonempty subset of T_C containing all facets of T_C. Further, apo$_R(C)$ is homeomorphic to an l-simplex, because so is its homeomorphic copy apo(C), by condition (ii) in Definition 2.1. Observe that T_C is contractible (i.e., T_C is continuously shrinkable to a point). By way of contradiction, suppose apo$_R(C)$ is a proper subset of T_C. Then a classical result in algebraic topology shows that apo(C) is not contractible. Thus apo$_R(C)$ is not homeomorphic to any l-simplex, a contradiction showing apo$_R(C) = T_C$, and settling Claim 2.

Combining Claim 2 and (17), we can write

$$Z f^* = \bigcup_{C \in \mathcal{B}^*} T_C = Z_1.$$ \hspace{1cm} (22)

Recalling Lemma 2.7 it follows that i is the ideal generated by f^*. By (4), (G, u) is finitely presented. The proof of Theorem 3.1 is thus complete. \hfill \square

4. A CLASS OF PROJECTIVE UNITAL ℓ-GROUPS

In Theorem 4.2 below we will construct a large class of projective unital ℓ-groups. For the proof we prepare

Lemma 4.1. Let $S = \conv(x_1, \ldots, x_k) \subseteq [0, 1]^n$ be a unimodular $(k - 1)$-simplex and $v \in \{0, 1\}^n$ a vertex of $[0, 1]^n$. Then for every $Y \subseteq \{x_1, \ldots, x_k\}$ there is a matrix $M \in \mathbb{Z}^{n \times n}$ and a vector $b \in \mathbb{Z}^n$ such that

$$M x_i + b_i = \begin{cases} v & \text{if } x_i \in Y, \\ x_i & \text{otherwise.} \end{cases} \hspace{1cm} (23)$$

Proof. Since S is unimodular, the set $\{\bar{x}_1, \ldots, \bar{x}_k\}$ of homogeneous correspondents of x_1, \ldots, x_k can be extended to a basis $\{\bar{x}_1, \ldots, \bar{x}_k, q_{k+1}, \ldots, q_{n+1}\}$ of the free abelian group \mathbb{Z}^{n+1}. The $(n + 1) \times (n + 1)$ matrix D with column vectors $\bar{x}_1, \ldots, \bar{x}_k, q_{k+1}, \ldots, q_{n+1}$ is invertible and $D^{-1} \in \mathbb{Z}^{(n+1) \times (n+1)}$. For each $i = 1, \ldots, t$ let $c_i \in \mathbb{Z}^{n+1}$ be defined by

$$c_i = \begin{cases} \text{den}(x_i)(v, 1) & \text{if } x_i \in Y, \\ \bar{x}_i & \text{otherwise.} \end{cases}$$

Let $C \in \mathbb{Z}^{(n+1) \times (n+1)}$ be the matrix whose columns are given by the vectors $c_1, \ldots, c_k, q_{k+1}, \ldots, q_{n+1}$. Since D and C have the same $(n + 1)$th row,

$$CD^{-1} = \begin{pmatrix} M \\ 0, \ldots, 0 \end{pmatrix}$$

where
for some $n \times n$ integer matrix M and vector $d \in \mathbb{Z}^n$. For each $i = 1, \ldots, k$ we then have $(CD^{-1})\bar{x}_i = (CD^{-1})\text{den}(x_i)(x_i,1) = \text{den}(x_i)(Mx_i + d,1)$. By definition, $(CD^{-1})\bar{x}_i = c_i = \text{den}(x_i)(v,1)$ if $x_i \in Y$ and $(CD^{-1})\bar{x}_i = \bar{x}_k = \text{den}(x_i)(x_i,1)$ otherwise. Thus (23) is satisfied. □

Theorem 4.2. Suppose the unital ℓ-group (G, u) has a basis \mathcal{B} with $\wedge \mathcal{B} \neq 0$. Suppose at least one of the multiplicities of \mathcal{B} is equal to 1. Then (G, u) is projective.

Proof. By assumption, \mathcal{B} itself is a basis of (G, u) with multiplicities $1 = m_1 \leq m_2 \leq \ldots \leq m_n$. We keep the notation of the proof of Theorem 3.1. In particular, $T_\mathcal{B} = \text{conv}(e_1, e_2/m_2, \ldots, e_n/m_n)$, where, as the reader will recall, e_i denotes the ith basis vector in $[0, 1]^n$ such that $T_\mathcal{B}$ is a union of simplexes of Δ, and all vertices of (every simplex of) Δ have rational coordinates.

We next define the function $f : [0, 1]^n \to [0, 1]^n$ by stipulating that, for each vertex v of Δ,

$$f(v) = \begin{cases} v & \text{if } v \in T_\mathcal{B} \\ e_1 & \text{if } v \not\in T_\mathcal{B} \end{cases}$$

(24)

and f is linear over each simplex of Δ. Then f is a continuous map and $f| T_\mathcal{B}$ is the identity map on $T_\mathcal{B}$. For any simplex S of Δ, let ∂S denote the set of extremal points of S. Since f is linear over S and $f(v) \in T_\mathcal{B}$ for each $v \in \partial S$, we have $f(S) = f(\text{conv}(\partial S)) = \text{conv}(f(\partial S)) \subseteq \text{conv}(T_\mathcal{B}) = T_\mathcal{B}$, whence

$$f([0, 1]^n) = T_\mathcal{B}.$$

(25)

We have thus shown that $f \circ f = f$ and f is a continuous retraction of $[0, 1]^n$ onto $T_\mathcal{B}$ which is linear on each simplex of Δ.

By Lemma 4.1, the coefficients of each linear piece of f are integers. Therefore, the map $\varphi : \mathcal{M}_n \to \mathcal{M}_n$ given by

$$\varphi(g) = g \circ f.$$

(26)

is well defined. It follows straightforwardly that φ is a unital ℓ-homomorphism. Since $f \circ f = f$ then $\varphi \circ \varphi = \varphi$. In other words, φ is an idempotent endomorphism of \mathcal{M}_n. Stated otherwise, the unital ℓ-subgroup $\varphi(\mathcal{M}_n)$ of \mathcal{M}_n is a retraction of \mathcal{M}_n.

Applying now the universal property of \mathcal{M}_n, (Proposition 2.2) one sees that \mathcal{M}_n is projective. A routine exercise using the fact that $\varphi(\mathcal{M}_n)$ is a retraction of \mathcal{M}_n shows that $\varphi(\mathcal{M}_n)$ is projective.

To conclude the proof it is enough to show that $\varphi(\mathcal{M}_n)$ is unitally ℓ-isomorphic to (G, u). In proving the (\Leftarrow)-direction of Theorem 3.1 we have seen that (G, u) is unitally ℓ-isomorphic to \mathcal{M}_n/i, for some ideal i having following characterization:

$$i = \left\{ g \in \mathcal{M}_n \mid Zg \supseteq \bigcup_{C \in \mathcal{B} \setminus \{1\}} T_C \right\} = \{ g \in \mathcal{M}_n \mid Zg \supseteq T_\mathcal{B} \}.$$

Letting $\ker(\varphi)$ be the kernel of φ, by (25) and (26) we have

$$g \in \ker(\varphi) \iff g \circ f = 0 \iff g(f([0, 1]^n)) = \{0\} \iff g(T_\mathcal{B}) = \{0\} \iff Zg \supseteq T_\mathcal{B} \iff g \in i.$$

Therefore, $(G, u) \cong \mathcal{M}_n/i = \mathcal{M}_n/\ker(\varphi) \cong \varphi(\mathcal{M}_n)$, and the proof is complete. □
5. The underlying dimension group of a unital ℓ-group with a basis

In the category \mathcal{P} of partially ordered abelian groups with order-unit, [13, p.12] objects are pairs (G, u), where G is a partially ordered abelian group and u is an order-unit of G. A morphism $\phi: (G, u) \to (H, v)$ of \mathcal{P} is a unital (i.e., unit-preserving) positive (in the sense that $\phi(G^+ \subseteq H^+)$ homomorphism.

Following [13, p.47], by a unital simplicial group we understand an object of \mathcal{P} that is isomorphic (in \mathcal{P}) to the free abelian group \mathbb{Z}^n for some integer $n > 0$ equipped with the product ordering: $(x_1, \ldots, x_n) \geq 0$ iff $x_i \geq 0 \ \forall i = 1, \ldots, n$.

A unital dimension group (G, u) is an object of \mathcal{P} such that $G = G^+ - G^-$, sums of intervals are intervals, and $kg \in G^+ \Rightarrow g \in G^+$, for any $g \in G$ and integer $k > 0$. For short, G is directed, Riesz, and unperforated, [13, p.44]. In [9, §2] one can find several characterizations of the Riesz property. By Elliott classification theory [12], countable unital dimension groups are complete classifiers of AF algebras, the norm limits of ascending sequences of finite-dimensional C^*-algebras, all with the same unit.

Given a unital ℓ-group (G, u) let $(G, u)_{\text{dim}}$ denote the underlying group of (G, u) equipped with the same positive cone $G^+ +$ and order-unit u, but forgetting the lattice structure of (G, u). Then $(G, u)_{\text{dim}}$ is a unital dimension group. Thus in particular, every unital simplicial group is a unital dimension group. Since the properties of directedness, Riesz, and unperforatedness are preserved by direct limits, then direct limits of unital simplicial groups are unital dimension groups.

The celebrated Effros-Handelman-Shen theorem [6], [13, 3.21] (also see Grillet’s theorem [15, 2.1] in the light of [14, Remark 3.2]) states the converse: for every unital dimension group (G, u) we can write

$$(G, u) \cong \varinjlim \{ \phi_{ij}: (\mathbb{Z}^n, u_i) \to (\mathbb{Z}^n, u_j) \mid i, j \in I \}$$

for some direct system of unital simplicial groups and unital positive homomorphisms in \mathcal{P}. For dimension groups of the form $(G, u)_{\text{dim}}$, with (G, u) a unital ℓ-group, Marra [17] proved that the maps ϕ_{ij} can be assumed to be 1-1.

A further simplification occurs when (G, u) has a basis: as a matter of fact, in Theorem 5.3 below we will prove that the set of bases of (G, u) is rich enough to provide a direct system of unital simplicial groups and 1-1 unital homomorphisms such that $(G, u)_{\text{dim}}$ is the limit of this system in the category \mathcal{P}. To this purpose, given a basis $B = \{b_1, \ldots, b_n\}$ of a unital ℓ-group (G, u) we let

$$\text{grp} B = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$$

denote the group generated by B in (the underlying group of) G. Similarly,

$$\text{sgr} B = \mathbb{Z}_{\geq 0}b_1 + \cdots + \mathbb{Z}_{\geq 0}b_n$$

will denote the semigroup generated by B together with the zero element.

Assuming, as we are doing throughout the rest of this paper, that the elements of B are listed in some prescribed order, by definition of B the n-tuple of multiplicities $m_B = (m_1, \ldots, m_n)$ is uniquely determined by the n-tuple (b_1, \ldots, b_n).

Proposition 5.1. Let $B = \{b_1, \ldots, b_n\}$ be a basis of a unital ℓ-group (G, u). Let

$$G_B = (\text{grp} B, \text{sgr} B, u)$$
denote the group \(\text{grp} \mathcal{B} \) equipped with the positive cone \(\text{sgr} \mathcal{B} \) and with the distinguished element \(u = \sum m_i b_i \). Let
\[
\mathbb{Z}_B = (\mathbb{Z}^n, (\mathbb{Z}^+)^n, m_B)
\]
be the standard simplicial group of rank \(n \), with the \(n \)-tuple \(m_B \) as a distinguished element. Then

1. \(\mathcal{B} \) is a free generating set of the free abelian group \(\text{grp} \mathcal{B} \) of rank \(n \).
2. \(G^+ \cap \text{grp} \mathcal{B} = \text{sgr} \mathcal{B} \).
3. The map \(b_i \mapsto e_i \) uniquely extends to an isomorphism \(\psi_B : \text{grp}_B \cong \mathbb{Z}^n \).
4. \(\psi_B \) is in fact an isomorphism (in the category \(\mathcal{P} \)) of \(G_B \) onto \(\mathcal{Z}_B \), whence \(G_B \) is a unital simplicial group, called the basic group of \(\mathcal{B} \); further, \(\mathcal{B} \) is the set of atoms (= minimal positive nonzero elements) of \(G_B \); thus if \(\mathcal{B}' \neq \mathcal{B} \) is another basis of \((G, u) \) then \(G_B \neq G_{B'} \).

Proof. (1) By condition (ii) in the definition of \(\mathcal{B} \), no nonzero linear combination of the elements of \(\mathcal{B} \) is zero in (the \(\mathbb{Z} \)-module) \(G \). It is well known that \(G \) is torsion-free. Thus \(\mathcal{B} \) is a free generating set in \(\text{grp} \mathcal{B} \), and \(\text{grp} \mathcal{B} \) is free abelian of rank \(n \).

To prove (2), suppose \(g \in G^+ \cap \text{grp} \mathcal{B} \), and write \(g = \sum_{i=1}^n l_i b_i \) for suitable integers \(l_1, \ldots, l_n \). Fix now \(j \in \{1, \ldots, n\} \) and let \(n_j \) be the only maximal ideal of \(G \) such that \(b_k \in n_j \) for all \(k \neq j \), as given by condition (ii) in the definition of \(\mathcal{B} \).

By condition (iii) we have
\[
0 \leq \sum_{i=1}^n l_i b_i \Rightarrow 0 \leq \sum_{i=1}^n l_i b_i = \sum_{j=1}^n \frac{l_j b_j}{n_j} = \sum_{j=1}^n \frac{m_j}{n_j},
\]
whence \(0 \leq l_j \) for all \(j \), and \(g \in \text{sgr} \mathcal{B} \). The converse inclusion is trivial.

To prove (3) it is enough to note that the map \(b_i \mapsto e_i \) is a one-one correspondence between the free generating set \(\mathcal{B} \) of \(\text{grp} \mathcal{B} \) and the free generating set \(\{e_1, \ldots, e_n\} \) of \(\mathbb{Z}^n \).

Concerning (4). It is easy to see that \(\mathcal{B} \) is the set of atoms of \(G_B \), and \(\{e_1, \ldots, e_n\} \) is the set of atoms of the simplicial group \((\mathbb{Z}^n, (\mathbb{Z}^+)^n) \). Thus \(\psi_B \) is an isomorphism of \(G_B \) onto \((\mathbb{Z}^n, (\mathbb{Z}^+)^n) \), and \(G_B \) is simplicial. Trivially, \(\psi_B \) preserves the order-unit. So \(G_B \) is a unital simplicial group which is isomorphic (in \(\mathcal{P} \)) to \(\mathcal{Z}_B \). The rest is clear.

Given two bases \(\mathcal{B}' \) and \(\mathcal{B} \) of a unital \(\ell \)-group \((G, u) \) we say that \(\mathcal{B}' \) refines \(\mathcal{B} \) if \(\mathcal{B} \subseteq \text{sgr} \mathcal{B}' \).

From the foregoing proposition we immediately obtain.

Proposition 5.2. Let \(\mathcal{B}' = \{b'_1, \ldots, b'_{n'}\} \) and \(\mathcal{B} = \{b_1, \ldots, b_n\} \) be bases of a unital \(\ell \)-group \((G, u) \) such that \(\mathcal{B}' \) refines \(\mathcal{B} \). We then have:

1. For each \(i = 1, \ldots, n \), the element \(b_i \) is expressible as a linear combination \(b_i = m_{1i} b'_1 + \cdots + m_{ni} b'_{n'} \), for uniquely determined integers \(m_{ki} \geq 0 \), \(k = 1, \ldots, n' \).
2. The \(n' \times n \) integer matrix \(M_{BB'} \), whose entries are the \(m_{ki} \), has rank equal to \(n \).
(3) The inclusion map $G_B \to G_{B'}$ induces the unital positive 1-1 homomorphism
\[\phi_{BB'} : (y_1, \ldots, y_n) \in \mathbb{Z}^n \mapsto (z_1, \ldots, z_n') = M_{BB'} (y_1, \ldots, y_n) \in \mathbb{Z}^{n'} \]
of (\mathbb{Z}_B, m_B) into $(\mathbb{Z}_{B'}, m_{B'})$, and we have a commutative diagram
\[
\begin{array}{ccc}
G_B & \xrightarrow{\text{inclusion}} & G_{B'} \\
\downarrow{\psi_B} & \nearrow{\phi_{BB'}} & \downarrow{\psi_{B'}} \\
(\mathbb{Z}_B, m_B) & \xrightarrow{} & (\mathbb{Z}_{B'}, m_{B'})
\end{array}
\] (27)

Theorem 5.3. Suppose the unital ℓ-group (G, u) has a basis. We then have:

1. Any two basic groups G_B, G_F of (G, u) are jointly embeddable (by unit preserving, order preserving inclusions) into some basic group $G_{B'}$ of (G, u).
2. We then have a direct system $\{\phi_{BB'} : (\mathbb{Z}_B, m_B) \to (\mathbb{Z}_{B'}, m_{B'})\}$ of unital simplicial groups and unital positive 1-1 homomorphisms in P, indexed by all pairs B, B' of bases of (G, u) such that $B \subseteq \text{sgr} B'$.
3. Further, $\lim \{\phi_{BB'} : (\mathbb{Z}_B, m_B) \to (\mathbb{Z}_{B'}, m_{B'})\} \cong (G, u)_{\dim}$. \[\text{Proof.} \]

(1) By Theorem 3.1, (G, u) is finitely presented, and for some $n = 1, 2, \ldots$ we have
\[(G, u) \cong M_n / j, \quad \text{for some principal ideal } j \text{ of } M_n. \] (28)
Suppose j is generated by $f \in M_n$. Recalling the notation ZF for the zero set of f, a variant of [10, 5.2] shows that $M_n / j \cong M_n / Zf$. A fortiori, (G, u) is archimedean. From the abstract De Concini-Procesi lemma [18, 5.4] it follows that B and F have a joint refinement B'. Direct inspection of the proof therein, shows that B' is obtained from B by finitely many applications of the following operation: replace a 2-cluster $\{b, c\}$ of a basis A, by the three elements $b \wedge c, b - (b \wedge c), c - (b \wedge c)$. The result is a basis A' such that $A \subseteq \text{sgr} A'$. Thus $B \subseteq \text{sgr} B'$. The desired conclusion now follows from Proposition 5.2.

The proof of (2) now immediately follows from Proposition 5.2.

Concerning (3), in view of (27) it is sufficient to prove that $G = \bigcup \{\text{grp} B | B \text{ a basis of } (G, u)\}$ and that $G^+ = \bigcup \{\text{sgr } B | B \text{ a basis of } (G, u)\}$. Since $G = G^+ - G^+$, only the latter identity must be proved. In other words, we must prove:

For every $p \in G^+$, (G, u) has a basis B such that $p \in \text{sgr } B$. \[\text{As remarked above, we have a unital } \ell\text{-isomorphism } \omega : (G, u) \cong M_n / Zf. \] By [18, 4.5], ω induces a 1-1 correspondence between bases of the archimedean unital ℓ-group (G, u) and Schauder bases H_Δ of M_n / Zf, where Δ ranges over unimodular triangulations of the rational polyhedron Zf. Trivially, $B \subseteq \text{sgr } B'$ iff $\omega(B) \subseteq \omega(B')$. Thus (29) boils down to proving that for every $0 \leq g \in M_n / Zf$ there is a unimodular triangulation Δ of Zf such that $g \in \text{sgr } H_\Delta$. Let B be a unimodular triangulation of Zf such that g is linear over every simplex of Δ. The existence of Δ is ensured by [20, 1.2]. Since every linear piece of g has integer coefficients, for each vertex v of Δ we can write $g(v) = n_v / \text{den}(v)$ for some $0 \leq n_v \in \mathbb{Z}$. As in the final part of the proof of Theorem 3.1, let $h_v : \Delta \to \mathbb{R}$ denote the Schauder hat of Δ at v. Let the function $\overline{g} \in \text{sgr } H_\Delta \subseteq M_n / Zf$ be defined by
\[\overline{g} = \sum \{n_v h_v | v \text{ a vertex of } \Delta\}. \]
Then $\overline{g}(v) = g(v)$ for each vertex v of Δ and \overline{g} is linear over each simplex of Δ. It follows that $\overline{g} = g$, which completes the proof. □

References

[1] K. A. Baker, Free vector lattices, Canad. J. Math., 20:58–66, 1968.
[2] W. M. Bebeyon, Duality theorems for finitely generated vector lattices, Proc. London Math. Soc., (3) 31:114–128, 1975.
[3] W. M. Bebeyon, Applications of duality in the theory of finitely generated lattice-ordered abelian groups, Canad. J. Math., 29(2):243–254, 1977.
[4] A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux Réticulés, Springer Lecture Notes in Mathematics, Vol. 608, 1977.
[5] A. Dvurečenskij, C. W. Holland, Top varieties of generalized MV-algebras and unital lattice-ordered groups, Comm. Algebra, 35: 3370–3390, 2007.
[6] E. G. Effros, D.E. Handelman, C.-L. Shen, Dimension groups and their affine representations, American J. Math., 102: 385–407, 1980.
[7] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Springer-Verlag, New York, 1996.
[8] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford, 1963.
[9] L. Fuchs, Riesz groups, Ann. Scuola Normale Superiore Pisa, (3) 19: 1-34, 1965.
[10] A.M.W. Glass, Partially ordered groups, World Scientific, Singapore, 1999.
[11] A.M.W. Glass, F. Point. Finitely presented abelian lattice-ordered groups, In: Algebraic and Proof-Theoretical Aspects of Non-classical Logics, Springer Lecture Notes in Artificial Intelligence, 4460, (2007), pp.160–193.
[12] K. R. Goodearl, Notes on Real and Complex C^*-Algebras, Shiva Math. Series, Vol. 5, Birkhäuser, Boston, 1982.
[13] K. R. Goodearl, Partially Ordered Abelian Groups with Interpolation, AMS Math. Surveys and Monographs, Vol. 20, 1986.
[14] K. R. Goodearl, F. Wehrung, Representations of distributive semilattices in ideal lattices of various algebraic structures, Algebra Universalis, 45: 71–102, 2001.
[15] P.A. Grillet, Directed colimits of free commutative semigroups, J. Pure and Applied Algebra, 9: 73–87, 1976.
[16] C. Manara, V. Marra, D. Mundici Lattice-ordered abelian groups and Schauder bases of unimodular fans, Trans. Amer. Math. Soc. 359(4): 1593-1604.
[17] V. Marra, Every abelian ℓ-group is ultrahomomorphic, Journal of Algebra, 225:872-884, 2000.
[18] V. Marra, D. Mundici, The Lebesgue state of a unital abelian lattice-ordered group, Journal of Group Theory, 10 : 655-684, 2007.
[19] D. Mundici, Interpretation of AF C^*-algebras in Łukasiewicz sentential calculus, J. Functional Analysis, 65: 15–63, 1986.
[20] D. Mundici, Farey stellar subdivisions, ultrahomomorphic groups, and K_0 of AF C^*-algebras, Advances in Mathematics, 68:23–39, 1988.
[21] D. Mundici, The Haar theorem for lattice-ordered abelian groups with order unit, Discrete and continuous dynamical systems, 21: 537-549, 2008.
[22] T.Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, New York, 1988.