Study of Correlation of Cord Blood Bilirubin With Neonatal Hyperbilirubinemia.

Dr Tushar Sonawane M.B.B.S.,M.D. dept. of Pediatrics, Dr. Vasantrao Pawar Medical College, Hospital & Research, Nashik.

Dr Milind Suryawanshi M.B.B.S.,M.D. Consultant Paediatrician & Neonatalogist, Civil Hospital Chandrapur.

Dr Sagar Sonawane Associate Professor dept. of Pediatrics, Dr. Vasantrao Pawar Medical College, Hospital & Research, Nashik.

ABSTRACT

INTRODUCTION:
Neonatal hyperbilirubinemia (NIH) is a universal problem affecting nearly 60% of term and 80% of preterm neonates during first week of life. In significant number (6.5%) of babies, NIH is a cause for readmission. The present study was conducted to correlate the Cord Blood Bilirubin (CBB) level with subsequent NIH. Methods: Study was performed at the Department of Pediatrics in a Medical College Hospital and Research Centre. Intramurals delivered, 113 Healthy full-term newborns during 1-year period were prospectively enrolled. CBB was estimated. Serum Bilirubin estimation was done at 48 hours and 5 day of age and later if required. Results: Significant NIH in our study is 3.5%. Mean total bilirubin on second postnatal day was 10.58 mg/dl and on fifth postnatal day was 10.81 mg/dl. Using CBB level of ≥ 3 mg/dl as a cut-off, NIH can be predicted with sensitivity of 100%, specificity of 98.17%, positive predictive value of 66.67% and negative predictive value of 100%. Conclusion: A 100% Negative Predictive Value in the present study suggests that in Healthy Term babies (without RH and ABO incompatibility with Cord Blood Bilirubin ≤ 3 mg/dl) cord serum bilirubin can help to identify those newborns who are unlikely to require further evaluation and intervention. These newborns can be discharged with assurance to Parents. Babies with CBB level ≥ 3 mg/dl should be followed more frequently.

INTRODUCTION:
Jaundice in newborn is a very common problem. Neonatal hyperbilirubinemia (NIH) may lead to kernicterus in otherwise healthy newborns. This can be easily prevented if excessive hyperbilirubinemia for age is promptly identified and appropriately treated.12 Newborns can be screened for severity of bilirubinemia before hospital discharge which may help in early detection of the newborns at risk for excessive hyperbilirubinemia during the first week of life.4 It is difficult to predict which of these newborns are at risk for developing significant hyperbilirubinemia (Total Serum Bilirubin ≥ 15mg/dl)! Significant hyperbilirubinemia is usually found in 3% of normal term babies.5 Depending on various methods of bilirubin estimation in different laboratories, the frequency of breast feeding, ethnic makeup of people and regional variations the incidence of hyperbilirubinemia changes.2,3 The severe jaundice and kernicterus has been found in some healthy full term newborns discharged early with no apparent hemolysis.10

The American Academy of Pediatrics (AAP) recommends that newborns discharged within 48 hours should have a follow-up visit after 2-3 days to detect significant jaundice and other problems.11 Many investigators have tried to find a simple marker to predict hyperbilirubinemia and its subsequent course in newborns like cord bilirubin estimation,12, 13 bilirubin estimation during first week of life. In significant number (6.5%) of babies, NIH is a cause for readmission. The present study was conducted to correlate the Cord Blood Bilirubin (CBB) level with subsequent NIH.5

RESULTS:
The following results were made from the study. An Observation-ents or guardian. Cord blood sample is collected and is used for significant co morbidities requiring N.I.C.U. admission are excluded from our study. Written informed consent is obtained from parents or guardian. Cord blood sample is collected and is used for following investigations:

1. Hemoglobin and Hematocrit.
2. Blood group and Rh factor
3. Serum bilirubin-Total Direct Indirect
For the present study “Cord Blood Hyperbilirubinemia” is defined as cord blood total bilirubin level ≥3mg/dl. (1)Venous blood samples of the neonates are collected at 48 hours and at five days after birth.

The sample was refrigerated between 2-8 degree C till serum bilirubin estimation is done. Serum bilirubin estimation was done within 12 hours of collection of sample by Diazotized sulfanilic acid. This method for bilirubin estimation is based on principle that Bilirubin reacts with diazotized sulfanilic acid in acidic medium to form pink colored azobilirubin with absorbance directly proportional to bilirubin concentration. Direct Bilirubin, being water soluble directly react in acidic medium. However indirect or unconjugated Bilirubin is solubilized using a surfactant and then it reacts similar to direct Bilirubin. Additional investigations are done as per the case. The findings of investigations are analyzed by using statistical software.

TABLE NO.1-STUDY POPULATION AND SIGNIFICANT JAUNDICE:

Total	Significant Jaundice
Number	Percentage

IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH 343
The incidence of significant hyperbilirubinemia in our study population is 3.5%. Significant jaundice is defined as TSB ≥ 15 mg/dl at 48 hours of life.

DISCUSSION

In most of the neonates hyperbilirubinemia is a common problem. During the 1st week of life jaundice is seen in approximately 60% of term infants and 80% of preterm infants. Under normal circumstances, the umbilical cord serum indirect bilirubin is 1-3 mg/dl and rises at a rate of <5 mg/dl/day; thus jaundice becomes visible on the 2nd or 3rd day, usually peaking between the 2nd and 4th days at 5-6 mg/dl and decreasing to <2 mg/dl between the 5th and 7th days of life. (3)

Our study presumption was that a high serum bilirubin level at birth would also predict a high peak later in life. Our aim was to quantify the relationship between Cord blood bilirubin with peak serum bilirubin levels of the first five days. We chose cord blood estimation for initial serum bilirubin estimation as it is easy and a noninvasive way and the results are available within few hours after birth.

Keeping these factors in mind our study was conducted on healthy full term neonates with non-hemolytic jaundice. We have considered peak serum bilirubin level >15 mg/dl as "hyperbilirubinemia" since specific treatment is usually considered at or above this level. However, some neonatologists initiate phototherapy at slightly lower serum bilirubin levels, especially if they suspect a rising trend. Therefore, we have also predicted treatment with phototherapy.

TABLE NO.2-COMPARISON OF CORD SERUM BILIRUBIN AND SIGNIFICANT JAUNDICE

Studies	Year	No. Of Cases	Umbilical cord bilirubin	Incidence of Hyperbilirubinemia
Rosenfeld J et al(2)	1986	-	< 2 mg	4%
Knausen et al	1989	291	< 1.17 mg/1.75 mg	2.9%
Rataj et al	1994	800	≤ 1 mg% >2.5 mg%	2.4%
Suchonska B et al	2004	-	< 1 mg%	0%
Bernaldo et al	2004	380	≥2 mg	5.3%
Amar T et al	2005	200	>2 mg/dl	9.5%
Kaupfer et al	2005	1100	< 1.17 1.75 – 2.34 mg	0%
Present study	2012	113	< 3 mg	0%

Other studies also reported the relation between raising levels of cord bilirubin and increased incidence of significant hyperbilirubinemia in later life. In ABO and non-ABO situation raised cord blood bilirubin indicates ongoing hemolysis while in mothers womb. These babies are more likely to develop Hyperbilirubinemia.

TABLE NO.3-Studies on the predictive ability of cord blood bilirubin level and the neonatal hyperbilirubinemia

Studies	Cut off Cord Serum bilirubin (mg/dl)	Cut off Neonatal Hyperbilirubinemia (mg/dl)	Sensitivity	Specificity	Positive Predictive Value	Negative Predictive Value
Amar Taksande et al(2005)	≥2	≥17	89.5%	85%	38.8%	98.7%
Knausen (1989)	≥2.35	≥15	13%	99%	85%	72%
Zakia Nahar et al(2009)	≥2.5	≥17	77%	98.6%	9%	96%
Sun et al(2007)	≥2	≥17	68%	45%	85%	50%
Rady Satrya et al(2009)	≥2.5	≥12.9	90.5%	85%	9%	96%
Present (2012)	≥3	≥15	100%	98.17%	66.67%	100%

In the present study using serum bilirubin levels ≥ 3 mg/dL in the cord blood, hyperbilirubinemia could be predicted with sensitivity of 100%, specificity of 98.17%, and positive predictive value of 66.67% and Negative predictive value of 100%.

CONCLUSION:

In postnatal wards hyperbilirubinemia is one of the common problems seen. Neonatal hyperbilirubinemia occurs in 5-10% of healthy term infants. Up to 4% of term newborns who are readmitted to the hospital during their first week of life, approximately 85% are readmitted for jaundice.

A 100% Negative Predictive Value in the present study suggests that in healthy term babies (without RH and ABO incompatibility with Cord Blood Bilirubin < 3 mg/dl) cord serum bilirubin can help to identify those newborns who are unlikely to require further evaluation and intervention. Babies with Cord Blood Bilirubin level ≥ 3 mg/dl should be followed more frequently to reduce morbidity and mortality due to neonatal hyperbilirubinemia.

Our study sample did not have a heterogeneous group of neonates. This is the strength of our study. It means that the Prediction test (48 hrs TSB ≥15 mg/dl) developed by us can be applied to the neonates of local rural population on whom it was developed. Thus prediction of neonatal hyperbilirubinemia will have widespread implication especially in our rural setup.
REFERENCE

1. Piazza AJ, Stoll BJ. Jaundice and Hyperbilirubinemia in the Newborn. In Kliegman RM, Behrman RE, Jenson HB, Stanton BF eds. Nelson text book of Pediatrics: 19 th Ed. New Delhi: Saunders Elsevier, 2012; 1:403–612. | 2. Penn AA, Ermann DR, Hahn JS. Kernicterus in full term infant. Pediatrics. 1994 Jun 6; 93:1003-6. | 3. Stevenson DK. Kernicterus in a full-term infant: the need for in creased vigilance.Pediatrics. 1995; 95:779. | 4. Newman TB, Maisels MJ. Does hyperbilirubinemia damage the brain of healthy full-term infants? ClinPerinatol. 1996; 17:311-135. | 5. Maisels MJ, Newman TB. Kernicterus in Otherwise Healthy Breast-fed Term Newborns. Pediatrics. 1995 Oct; 96:730–33. | 6. Martin CR, Cloherty JP. Neonatal Hyperbilirubinemia. In Cloherty JP, Eisenberg EC, Stark AR eds. Manual of neonatal care 6th Ed. New Delhi: Wolters Kluwer, 2008; 304 –339. | 7. Bahl L, Sharma R, Sharma J. Etiology of Neonatal Jaundice in Shimla. Indian Pediatr. 1994 Oct; 31:1273-78. | 8. Murku S, Majumudhar S, Marwaha N. Risk factors of Kernicterus in term babies with Non haemolytic Jaundice. Indian Pediatr. 2001 Jul; 38(7):757-62. | 9. Mojar VA, Ahn C, Sneed S. Accuracy of clinical judgment in neonatal jaundice. Arch PediatrAdolesc Med.2000, 154:391–394. | 10. Newman TB, Maisels MJ. Does hyperbilirubinemia damage the brain of healthy full-term infants? ClinPerinatol. 1996; 17:311-135. | 11. Stevenson DK and Ergas Z. Hospital readmission due to neonatal hyperbilirubinemia. Pediatrics. 1996; 96:727-29. | 12. American Academy of Pediatrics Clinical Practice Guideline and Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn Infant or more weeks of Gestation. Pediatrics. 2004 July 1; 114:297-316. | 13. Bernaldo AJN. Bilirubin dosage in cord blood: could it predict neonatal hyperbilirubinemia?. Sao Paulo Med J 2004 May 6; 122(3):99-103. | 14. Knupfer M, Pulzer F, Gebauer C, Robel-Tillig E, Vogtmann C. Predictive value of umbilical cord blood bilirubin for postnatal hyperbilirubinemia. ActaPaediatr. 2005 May; 94(5):584-7. | 15. Awasthi S, Behman H. Early prediction of neonatal hyperbilirubinemia. Indian J Pediatr. 1996; 63:331-39. | 16. Alpay F., Sarici SU, Tosuncuk HD, Serdar MA, Ioann N, Gokcey E, The Value of First Day Bilirubin Measurement in Predicting the Development of Significant Hyperbilirubinemia in Healthy Term Newborns. Pediatrics. 2000 Aug; 106(2)p:16. | 17. Agarwal R, Desrari AK. Unconjugated Hyperbilirubinemia in Newborn. Indian Pediatr. 2002 Aug 17; 39:30-42. | 18. Runde S, Grower N. Predicting neonatal hyperbilirubinemia using first day serum bilirubin levels. Indian J Pediatr. 2010 Feb; 77:147-50. | 19. Bhal L, Sharma R, Sharma J. Etiology of Neonatal Jaundice in Shimla. Indian Pediatr. 1994 Oct; 31:1273-78. | 20. Palmer DC, Drew JH. Jaundice a 10 year review of 41000 live born infants. AustPediatr. 1983 Jun; 19(2):86-89. | 21. Phuapradit W, Chaturachinda K, Anutlamai S. Risk Factors for Neonatal Hyperbilirubinemia.J Med Assoc Thai.1993 Aug; 76(8):124-8. | 22. Assar Taksande, Krishna Vilhekar, Manish Jain, PratitZade, SachitaAtkari, SherinVerkey. Prediction of the development of neonatal hyperbilirubinemia by increased umbilical cord blood bilirubin. IndMedica 2005; 9(1): 5-9. | 23. Rosenfeld J. Umbilical cord bilirubin levels as predictor of subsequent hyperbilirubinemia. J FamPract. 1986 Dec; 23:556-58. | 24. Knudsen A. Prediction of the development of neonatal jaundice by increased umbilical cord blood bilirubin. Acta pediatr Scandin. 1899 Mar; 78(2):317-21. | 25. Waller J, Kornacka M, Kornack E. Usefulness of measuring bilirubin levels in cord blood for predicting hyperbilirubinemia in newborns. Ginekol Pol. 2004 Oct; 75(10):279-86. | 26. Suchonska R, Woiwog M, Bohlworska K, Marianszko L. Concentration of bilirubin in the umbilical blood as an indicator of hyperbilirubinemia in newborns. Ginekol Pol. 2004 Oct; 75(12):529-53. | 27. ZakiaNahar MD. Shahidukkah, Abdul Mannan, Sanjoy Kumar Dey, UjjalMitra, SM Selimuzzaman: The value of umbilical cord blood bilirubin measurement in predicting the development of significant hyperbilirubinemia in healthy Newborn. Bangladesh J Child Health Care 2009; Vol 33(2):150-54. | 28. Sun G, Wang YL, Liang JF, Hu LZ. Predictive value of umbilical cord blood bilirubin level for subsequent neonatal jaundice. ZhonghuaErKeZaZhi. 2007 Nov; 45(11):848-52. | 29. Rudy Satrya, SjarifHidayat Effendi, Dida AkhmadGiurinda. Correlation between cord blood bilirubin level and incidence of hyperbilirubinemia in term newborn. PaediatricaIndonesiana 2009; 49(6): 349-354.