Evolution of the chemical fingerprint of biomass burning organic aerosol during aging

Amelie Bertrand1,2,*, Giulia Stefenelli3, Coty N. Jen4, Simone M. Pieber3, Emily A. Bruns3, Brice Temime-Roussel1, Jay G. Slowik3, Allen H. Goldstein4, Imad El Haddad3, Urs Baltensperger3, André S.H. Prévôt3, Henri Wortham1 and Nicolas Marchand1

1Aix Marseille Univ, CNRS, LCE, Marseille France
2Agence de l’environnement et de la Maîtrise de l’Energie, 20, avenue du Grössilé – BP 90406 49004 Angers cedex 01 France
3Laboratory of Atmospheric Chemistry, Paul Schererrer Institute, 5232, Villigen, Switzerland
Department of Environmental Sciences, Policy, and Management, University of California at Berkeley, California, United States
4Now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland

Correspondence to: Nicolas Marchand (nicolas.marchand@univ-amu.fr)
1. TAG-AMS Analysis

Figure S1: Chromatograms of biomass burning organic aerosol by TAG-AMS.
Table S1: Quantified compounds. In bold font are highlighted the compounds for which the authentic standards were available, as well the m/z used to quantify the compounds.

Compounds	m/z	Compounds	m/z
Anhydrosugars		**Alkanes**	
Levoglucosan	217, 204, 191, 333	Octadecane	43, 57, 71, 85
Mannosan	204, 217, 191, 333	Nonadecane	43, 57, 71, 86
Galactosan	204, 217, 191, 333	Eicosane	43, 57, 71, 87
		Heneicosane	43, 57, 71, 88
		Docosane	43, 57, 71, 89
		Tricosane	43, 57, 71, 90
		Tetracosane	43, 57, 71, 91
		Pentacosane	43, 57, 71, 92
		Hexacosane	43, 57, 71, 93
		Heptacosane	43, 57, 71, 94
PAHs			
Acenaphthene*	154	Vanillic Acid	267, 297, 282, 312, 223
Acenaphthylene*	152	3-Guanacylpropanol	206, 236, 326, 179
Fluorene*	166	Vanillic Aldehyde	220, 219, 250, 192, 235
Phenanthrene	178		
Anthracene	178		
Fluoranthenes*	202		
Aacenphanthenes*	202		
Pyrene	202		
Benzo[a]anthracene	228		
Chrycene	228		
Benzo[b]fluoranthene	252		
Benzo[k]fluoranthene	252		
Benzo[j]fluoranthene	252		
Benzo[e]pyrene*	252		
Benzo[a]pyrene	252		
Perylene*	252		
Oxogenated PAHs			
1,2-Acenaphthylenone	188, 139		
Benzo[b]naptho[1,2-d]fluoran*	218, 203, 189	Syringyl Acetone	239, 209, 267, 252
Benzo[b]naptho[2,3-d]fluoran*	218, 203, 189	Propionyl Syringol	223, 253, 267, 282, 297
2,3-5,6-Dibenzo[a]xanthene*	218, 203, 189	Syringe Acid	297, 312, 327, 253, 342
Benzo[k,l]xanthene*	218, 203, 189	Synapyl Aldehyde	222, 250, 280, 265
4-Oxapyrene-5-one*	220, 163, 192	Palmotoleic Acid	75, 177
9H-Fluoren-9-one*	180, 152	Palmitic Acid	117, 129, 227, 313
9,10-Anthraquinone*	152, 180, 208	Oleic Acid	117, 129, 357
Xanthene*	196, 138, 139	Stearic Acid	117, 129, 341, 359, 257
Cyclopentad[e,f]phenanthrene-4-one*	204, 176	**Nitrocatechols**	
Methylated PAHs		4-Nitrocatechol	284, 299, 73
3-methylphenanthrene	192	5-Methyl-5-Nitrocatechol	296, 313, 180, 73
2-methylphenanthrene	192	3-Methyl-5-Nitrocatechol	298, 313, 73
2-methylantracene	192	**Others**	
4,9-methylphenanthrene	192	Pyrogallol	239, 342, 73
1-methylphenanthrene	192	Nonanonic Acid	215, 117, 129, 73, 75
		Vanillic Acid	297, 298, 371
		Methylglutaric Acid	261, 199, 171, 143, 99
		Tyrosol*	179, 193, 267

The following surrogates were used:

- *Phenanthrene, Benzo[b]fluoranthene, Benzo[a]pyrene, Eicosane, Docosane, Tetracosane, Hexacosane
- *Acetosyringone, **Vanillic Acid, *Syringol, Syringaldehyde, *Coniferyl Aldehyde, *Palmitic Acid, Vanillin
Table S2: TAG-AMS detection limit of the compounds (determined on the basis of a 10 minute sampling at 2 L min\(^{-1}\)).

Compounds	LD (ng.m\(^{-3}\))	Compounds	LD (ng.m\(^{-3}\))
Levoglucosan	0.99	Nonadecane	1.40
Mannosan	0.99	Eicosane	0.68
Galactosan	0.99	Heneicosane	1.03
Acenaphtene	0.84	Docosane	1.05
Acenaphthylene	0.69	Tricosane	0.85
Fluorene	0.64	Tetracosane	0.83
Phenanthrene	0.63	Pentacosane	1.63
Anthracene	0.77	Hexacosane	1.63
Fluoranthenhene	0.44	Heptacosane	2.48
Acenaphanthenhene	0.22	Vanline	1.07
Pyrene	0.23	Acetovanilone	0.98
Benzo[a]anthracene	0.12	Vanilnic Acid	0.80
Chrysene	0.11	3-Guaiacylpropanol	1.26
Benzo[b]fluoranthene	0.37	Coniferyl Aldehyde	1.22
Benzo[k]fluoranthene	0.69	Syringaldehyde	1.10
Benzo[j]fluoranthene	0.09	Syringol	1.75
Benzo[e]pyrene	0.75	Acetosyringone	1.84
Benzo[a]pyrene	0.38	Isoeugenol	1.00
Perylene	0.76	Syringyl Acetone	0.90
1,2-Aacenaphthyleneone	0.42	Propionyl Syringol	0.96
Benzo[b]naptho[1,2-d]furan	0.17	Syringic Acid	0.38
Benzo[b]naptho[2,3-d]furan	0.17	Synapyl Aldehyde	1.05
2,3,5,6-Dibenzoxyalene	0.17	Palmitoleic Acid	5.15
Benzo[k,1]xanthene	0.17	Palmitic Acid	5.40
4-Oxyprene-5-one	0.14	Oleic Acid	0.15
9H-Fluoren-9-one	1.12	Stearic Acid	1.06
9,10-Anthraquinone	1.62	4-Nitrocatechol	1.55
Xanthone	0.26	Pyrogallol	1.56
Cyclopenta[d,e,f]phenanthrene-4one	0.14	Methylsyringol	0.09
3-methylphenanthrene	0.75	Nonanoic Acid	0.12
2-methylphenanthrene	0.76	Vanillylmandelic acid	0.23
2-methylanthracene	0.55	Methylglutaric acid	0.42
4,9-methylphenanthrene	0.58	Tyrosol	1.00
1-methylphenanthrene	0.77	5-Methyl-5-Nitrocatechol	1.51
Octadecane	1.55	3-Methyl-5-Nitrocatechol	0.89

*calculated on the basis of a 10 minutes sampling at 2 L.min\(^{-1}\)

2. Off line samples and 2D-GC analysis

Two samples were collected on quartz fiber filter for each experiment - before and during photo-oxidation - in parallel with the TAG (Figure 2). Sampling lasted for 20 minutes at a flow rate of 20 L min\(^{-1}\). The sampling line was equipped with a parallel plate charcoal denuder to remove all organic gases. Prior to their use, the filters were baked at 550 °C for 4 hours to prevent any trace contamination and stored after collection at – 4 °C.

One pair of samples (primary and aged OA, experiment 5) was analyzed following the method by Isaacman et al. (2012) using a 2D-GC coupled to an Electron Impact/Vacuum Ultra Violet (VUV) light - High Resolution - Time of Flight - Mass Spectrometer (GCxGC.
EI/VUV HR-ToF-MS). The parent mass of the compounds and structural information were obtained respectively via ionization with VUV light (-10.5 eV) and EI (-70 eV).

For analysis, 0.41 cm2 punches of the filters were desorbed in a helium environment at 320 °C. The desorbed content was derivatized under a stream of MSTFA enriched helium and trapped in a Cooled Injection System (CIS) maintained at 30 °C prior to injection onto the GC columns. Compounds are first separated by volatility with a Rxi-5Sil MS Restek column then by polarity with a Rtx-200 MS Restek column. The intensity signals from each pair of filters are normalized to that of the internal standard. The normalized signal from the fresh emissions sample is then subtracted from that of the aged emissions sample. Figure 5 illustrates compounds that significantly decrease in concentration during aging (shown in green), i.e., compounds lost to the walls or reacted away. In addition, the 2D-GC analysis served to check for potential co-elution of the compounds examined in this study.

REFERENCES:

Isaacman, G., Wilson, K.R., Chan, A.W.H., Worton, D.R., Kimmel, J.R., Nah, T., Hohaus, T., Gonin, M., Kroll, J.H., Worsnop, D.R., Goldstein, A.H., 2012. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry. Anal. Chem. 84, 2335–2342.

Figure S2: Results of the 2D-GC analysis of the quartz fiber filters. (a) Chromatogram of a sample collected before lights on. (b) Chromatogram of a sample collected during aging.
3. Emission Factors and Contributions to OA
Table S3: Emission factor (in µg kg\(^{-1}\)) for primary and aged emissions

Experiment I - Stove A	Fresh	Aged
Integrated OH exposure (molecule cm\(^{-3}\) hour)	0	5.25 × 10\(^6\)
OA (mg kg\(^{-1}\))	1336	4076
OM/OC	1.8	2
EF Compounds (µg kg\(^{-1}\))		

Compound	Fresh	Aged	
Levoglucosan	249 × 10\(^3\)	219 × 10\(^3\)	
Mannosan	13 × 10\(^3\)	10 × 10\(^3\)	
Galactosan	1 × 10\(^3\)	720	
Acenaphtene	660	83	818
Acenaphthylene	1 × 10\(^3\)	1 × 10\(^3\)	
Fluorene	4 × 10\(^3\)	3 × 10\(^3\)	
Phenanthrene	1 × 10\(^3\)	752	
Anthracene	519	1 × 10\(^3\)	
Acenaphthylene	1.8	83	
Pyrene	82	37	
Benzo[a]anthracene	88	69	
Benzo[b]fluoranthrene	68	68	
Benzo[k]fluoranthrene	< LD	< LD	
Benzo[j]fluoranthene	6	4	
Benzo[e]pyrene	< LD	< LD	
Benzo[a]pyrene	< LD	< LD	
Perylene	< LD	< LD	
1.2-Acenaphthlenone	2 × 10\(^3\)	1 × 10\(^3\)	
Benzo[b]naphto[1.2-d]furan	54	135	
Benzo[b]naphto[2.3-d]furan	17	29	
Benzo[k]xanthene	6	6	
4-Oxapyrene-5-one	< LD	< LD	
9H-Fluoren-9-one	190	205	
9,10-Anthraquinone	< LD	< LD	
Xanthone	< LD	< LD	
Cyclo pent[a.d.e.f]phenanthrene	158	195	
3-methylphenanthrene	336	308	
2-methylphenanthrene	408	407	
2-methylanthracene	112	101	
4,9-methylphenanthrene	208	222	
1-methylphenanthrene	192	188	
Octadecane	371	398	
Nonadecane	672	932	
Eicosane	218	312	
Heneicosane	114	46	
Docosane	216	258	
Tricosane	82	25	
Tetracosane	53	32	
Pentacosane	103	112	
Hexacosane	45	33	
Heptacosane	66	52	
Vanillin	5 × 10\(^3\)	11 × 10\(^3\)	
Acetovanillone	1 × 10\(^3\)	3 × 10\(^3\)	
Vanillic Acid	3 × 10\(^3\)	3 × 10\(^3\)	
3-Guaiaacylpropanol	1 × 10\(^3\)	1 × 10\(^3\)	
Conyeryl Aldehyde	4 × 10\(^3\)	1 × 10\(^3\)	
Syringaldehyde	34 × 10\(^3\)	34 × 10\(^3\)	
Syringol	19 × 10\(^3\)	6 × 10\(^3\)	
Acetylsyringone	5 × 10\(^3\)	4 × 10\(^3\)	
Isoeugenol	11 × 10\(^3\)	3 × 10\(^3\)	
Syringyl Acetone	65 × 10\(^3\)	19 × 10\(^3\)	
Propionyl Syringol	7 × 10\(^3\)	4 × 10\(^3\)	
Syringic Acid	1 × 10\(^3\)	2 × 10\(^3\)	
Synapyl Aldehyde	17 × 10\(^3\)	3 × 10\(^3\)	
Palmitoleic Acid	3 × 10\(^3\)	112	
Palmitic Acid	828	614	
Oleic Acid	< LD	< LD	
Stearic Acid	363	306	
4-Nitrocanthol	751	55 × 10\(^3\)	
Pyrogallol	< LD	159	
Methylysyringol	516	331	
Vanillylmandelic acid	168	1 × 10\(^3\)	
2-methyl-2-pentanecidoic Acid	< LD	2 × 10\(^3\)	
Tyrosol	2 × 10\(^3\)	4 × 10\(^3\)	
5-Methyl-5-nitrocatechol	< LD	6 × 10\(^3\)	
3-Methyl-5-nitrocatechol	687	11 × 10\(^3\)	
Table S3: (Continued)

Experiment 2 - Stove A	Fresh	Aged
Integrated OH exposure (molecule cm⁻³ hour)	0	4.83 × 10⁶
OA (mg kg⁻¹)	1205	4145
OM/OC	1.7	1.9
EF Compounds (µg kg⁻¹)		
Levoglucosan	152 × 10³	98 × 10³
Mannosan	13 × 10³	10 × 10³
Galactosan	10 × 10³	778
Acenaphthene	851	1 × 10⁹
Acenaphthylene	2 × 10⁹	583
Fluorene	1 × 10⁹	997
Phenanthrene	4 × 10⁹	3 × 10⁹
Anthracene	694	533
Fluoranthenes	425	742
Acenaphtene	54	48
Pyrene	160	246
Benzo[a]anthracene	99	28
Chrysene	105	68
Benzo[b]fluoranthene	82	23
Benzo[k]fluoranthene	< LD	42
Benzo[j]fluoranthene	8	< LD
Benzo[e]pyrene	28	1
Benzo[a]pyrene	5	< LD
Perylene	< LD	< LD
1,2-Acenaphthylene	2 × 10⁹	2 × 10⁹
Benzo[b]napthol[1,2-d]furan	55	93
Benzo[b]napthol[2,3-d]furan	28	44
2,3,5,6-Dibenzoalene	22	31
Benzo[k,l]xanthene	12	< LD
4-Oxapyrene-5-one	20	20
9H-Fluoren-9-one	127	182
9,10-Anthraquinone	53	2
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	76	91
3-methylphenanthrene	105	92
2-methylphenanthrene	137	161
2-methylantracene	62	49
4,9-methylphenanthrene	70	89
1-methylphenanthrene	60	74
Octadecane	114	122
Nonadecane	260	285
Eicosane	127	146
Henicosane	67	117
Docosane	166	52
Tricosane	120	42
Tetracosane	105	31
Pentacosane	182	180
Hexacosane	120	112
Heptacosane	161	85
Vanillin	4 × 10³	12 × 10³
Acetovanillone	920	3 × 10³
Vanillic Acid	1 × 10³	3 × 10³
3-Guaiaacylpropanol	4 × 10³	1 × 10³
Conyferyl Aldehyde	4 × 10⁹	586
Syringaldehyde	25 × 10³	26 × 10³
Syringol	12 × 10³	5 × 10³
Acetosyringone	5 × 10³	4 × 10³
Isoegenol	7 × 10³	2 × 10³
Syringyl Acetone	79 × 10³	12 × 10³
Propionyl Syringol	6 × 10³	3 × 10³
Syringic Acid	725	1 × 10³
Synapyl Aldehyde	13 × 10³	921
Palmitoleic Acid	< LD	< LD
Palmitic Acid	< LD	401
Oleic Acid	137	5
Stearic Acid	255	212
4-Nitrocatechol	244	48 × 10³
Pyrogallol	< LD	143
Methylysinigol	888	551
Vanillylmandelic acid	192	908
2-methyl-2-pentanedioc Acid	< LD	1 × 10³
Tyrosol	2 × 10³	7 × 10³
5-Methyl-5-Nitrocatechol	84	4 × 10³
3-Methyl-5-Nitrocatechol	< LD	8 × 10³
EF Compounds (µg kg⁻¹)	Fresh	Aged
------------------------	-------	------
Levoglucosan	248 × 10³	101 × 10³
Mannosan	20 × 10⁹	9 × 10⁹
Galactosan	4 × 10⁹	3 × 10⁹
Acenaphthene	956	1 × 10⁹
Acenaphthylene	2 × 10⁹	559
Fluorene	462	545
Phenanthrene	3 × 10⁹	2 × 10⁹
Anthracene	685	491
Fluoranthene	< LD	< LD
Acephenanthrene	< LD	< LD
Pyrene	< LD	< LD
Benzo[a]anthracene	< LD	< LD
Chrysene	< LD	< LD
Benzo[b]fluoranthrene	< LD	< LD
Benzo[k]fluoranthene	< LD	< LD
Benzo[j]fluoranthene	< LD	< LD
Benzo[e]pyrene	< LD	< LD
Benzo[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acenaphthylene	2 × 10⁹	543
Benzo[b]naphthalene	< LD	< LD
Benzo[b]naphthalene	< LD	< LD
2,3,5,6-Dibenzoxalene	< LD	< LD
Benzo[k,l]xanthene	NaN	NaN
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	102	225
9,10-Anthraquinone	< LD	< LD
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	69	157
3-methylphenanthrene	48	86
2-methylphenanthrene	64	152
2-methylanthracene	9	28
4,9-methylphenanthrene	41	70
1-methylphenanthrene	47	94
Octadecane	212	159
Nonadecane	51	142
Eicosane	90	253
Henecosane	< LD	< LD
Docosane	< LD	< LD
Tricosane	< LD	< LD
Tetracosane	< LD	< LD
Pentacosane	< LD	< LD
Hexacosane	< LD	< LD
Heptacosane	< LD	< LD
Vanillin	6 × 10⁹	1.3 × 10¹
Acetovanillone	1 × 10⁹	2 × 10⁹
Vanillic Acid	1 × 10⁹	3 × 10⁹
3-Guaiaicypropanol	4 × 10⁹	770
Coniferyl Aldehyde	4 × 10⁹	577
Syringaldehyde	29 × 10⁹	19 × 10⁹
Syringol	16 × 10³	10 × 10³
Acetosyringone	5 × 10⁹	2 × 10⁹
Isoeugenol	11 × 10⁹	4 × 10⁹
Syringyl Acetone	69 × 10⁹	8 × 10⁹
Propionyl Syringol	7 × 10⁹	3 × 10⁹
Syringic Acid	656	1 × 10⁹
Synapyl Aldehyde	9 × 10⁹	723
Palmitoleic Acid	< LD	< LD
Palmitic Acid	1 × 10⁹	896
Oleic Acid	< LD	< LD
Stearic Acid	446	432
4-Nitrocatechol	118	30 × 10³
Pyrogallol	136	255
Methylosyringol	676	670
Vanillylmandelic acid	< LD	789
2-methyl-2-pentanedioc Acid	< LD	1 × 10⁹
Tyrosol	1 × 10⁹	3 × 10⁹
5-Methyl-5-Nitrocatechol	< LD	3 × 10⁹
3-Methyl-5-Nitrocatechol	151	6 × 10⁹
EF Compounds (µg kg⁻¹)	Fresh	Aged
------------------------	-------	------
Levoglucosan	59 × 10³	50 × 10³
Mannosan	5 × 10³	4 × 10³
Galactosan	1 × 10⁶	543
Acenaphthene	342	< LD
Acenaphthyline	838	221
Fluorene	254	352
Phenanthrene	1 × 10⁹	1 × 10⁹
Anthracene	243	232
Fluoranthenecarbon	470	2 × 10³
Acephenanthrene	15	34
Pyrene	151	709
Benz[a]anthracene	6	10
Chrysene	11	13
Benz[b]fluoranthene	< LD	< LD
Benz[k]fluoranthene	< LD	< LD
Benz[j]fluoranthene	< LD	< LD
Benz[e]pyrene	< LD	< LD
Benz[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acenaphthylenone	701	1 × 10⁹
Benzo[b]naphtho[1,2-d]furan	32	174
Benzo[b]naphtho[2,3-d]furan	15	71
2,3-5,6-Dibenzoazulene	8	50
Benzo[k,l]xanthene	< LD	< LD
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	70	198
9,10-Anthraquinone	< LD	< LD
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	67	138
3-methylphenanthrene	46	69
2-methylphenanthrene	59	104
2-methylantracene	13	19
4,9-methylenaphthrene	41	62
1-methylenaphthrene	43	65
Octadecane	95	262
Nonadecane	53	153
Eicosane	13	41
Henecicosane	65	307
Docosane	127	379
Tricosane	49	157
Tetracosane	43	93
Pentacosane	80	180
Hexacosane	38	86
Heptacosane	< LD	< LD
Vanillin	4 × 10⁶	1.0 × 10⁹
Acetovanillone	695	1 × 10⁹
Vanillic Acid	398	1 × 10⁹
3-Guaiacylpropanol	627	280
Coniferyl Aldehyde	542	193
Syringaldehyde	4 × 10⁹	5 × 10³
Syringol	5 × 10⁹	2 × 10⁹
Acetosyringone	866	418
Isoeugenol	3 × 10⁹	1 × 10⁹
Syringyl Acetone	10 × 10⁹	2 × 10⁹
Propionyl Syringol	2 × 10⁹	272
Syringic Acid	295	737
Synapyl Aldehyde	2 × 10⁹	226
Palmitoleic Acid	< LD	< LD
Palmitic Acid	611	908
Oleic Acid	< LD	< LD
Stearic Acid	283	447
4-Nitrocatechol	276	19 × 10³
Pyrogallol	60	241
Methylsyringol	162	116
Vanillylmandelic acid	81	679
2-methyl-2-pentanediioic Acid	< LD	< LD
Tyrosol	926	1 × 10⁹
5-Methyl-5-Nitrocatechol	< LD	2 × 10³
3-Methyl-5-Nitrocatechol	467	3 × 10³
Table S3: (Continued)

	Fresh	Aged
Integrated OH exposure (molecule cm\(^{-3}\) hour)		
OA (mg kg\(^{-1}\))		
	806	2033
OM/OC	1.7	2
EF Compounds (µg kg\(^{-1}\))		
Levoglucosan	110 × 10\(^3\)	58 × 10\(^3\)
Mannosan	7 × 10\(^3\)	5 × 10\(^3\)
Galactosan	2 × 10\(^3\)	1 × 10\(^3\)
Acenaphthene	304	4 × 10\(^4\)
Acenaphthylene	4 × 10\(^9\)	2 × 10\(^9\)
Fluorene	720	1 × 10\(^9\)
Phenanthrene	888	3 × 10\(^9\)
Anthracene	207	514
Fluoranthrene	648	2 × 10\(^9\)
Acephenanthrene	110	58 × 10\(^3\)
Pyrene	259	691
Benzo[a]anthracene	48	26
Chrysene	66	40
Benzo[b]fluoranthene	< LD	< LD
Benzo[k]fluoranthene	< LD	< LD
Benzo[jj]fluoranthene	< LD	< LD
Benzo[e]pyrene	< LD	< LD
Benzo[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acenaphthylene	1 × 10\(^9\)	2 × 10\(^9\)
Benzo[b]naptho[1,2-d]furan	52	178
Benzo[b]naptho[2,3-d]furan	24	83
2,3-5,6-Dibenzoalene	17	58
Benzo[k,j]xanthenne	< LD	< LD
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	96	264
9,10-Anthraquinone	< LD	< LD
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	56	124
3-methylphenanthrene	30	77
2-methylphenanthrene	39	114
2-methylanthracene	< LD	< LD
4,9-methylphenanthrene	26	72
1-methylphenanthrene	32	79
Octadecane	182	390
Nonadecane	89	204
Eicosane	165	324
Henecicosane	116	381
Docosane	266	591
Tricosane	145	262
Tetracosane	154	241
Pentacosane	287	447
Hexacosane	170	275
Heptacosane	75	87
Vanillin	7 × 10\(^9\)	12 × 10\(^9\)
Acetovanilone	1 × 10\(^9\)	2 × 10\(^9\)
Vanillic Acid	830	2 × 10\(^9\)
3-Guaiacylpropanol	2 × 10\(^9\)	710
Confyeryl Aldehyde	2 × 10\(^9\)	515
Syringaldehyde	17 × 10\(^9\)	1.1 × 10\(^9\)
Syringol	4 × 10\(^9\)	3 × 10\(^9\)
Acetosyringone	3 × 10\(^9\)	1 × 10\(^9\)
Isoeugenol	5 × 10\(^9\)	2 × 10\(^9\)
Syringyl Acetone	23 × 10\(^9\)	5 × 10\(^9\)
Propionyl Syringol	3 × 10\(^9\)	1 × 10\(^9\)
Syringic Acid	577	1 × 10\(^9\)
Synapyl Aldehyde	5 × 10\(^9\)	757
Palmitoleic Acid	< LD	< LD
Palmitic Acid	1 × 10\(^9\)	1 × 10\(^9\)
Oleic Acid	< LD	< LD
Stearic Acid	557	710
4-Nitrocatechol	2 × 10\(^9\)	29 × 10\(^9\)
Pyrogallol	113	331
Methylsyringol	157	210
Vanillylmandelic acid	48	373
2-methyl-2-pentanedioic Acid	< LD	436
Tyrosol	1 × 10\(^9\)	2 × 10\(^9\)
5-Methyl-5-Nitrocatechol	< LD	3 × 10\(^9\)
3-Methyl-5-Nitrocatechol	900	6 × 10\(^9\)
Table S3: (Continued)

	Fresh	Aged
Integrated OH exposure (molecule cm\(^{-3}\) hour)	0	5.25 \times 10^6
OA (mg kg\(^{-1}\))	531	2317
OM/OC	1.8	2
EF Compounds (µg kg\(^{-1}\))		
Levoglucosan	160 \times 10^9	101 \times 10^9
Mannosan	11 \times 10^9	9 \times 10^9
Galactosan	1 \times 10^9	1 \times 10^9
Acenaphthene	709	2 \times 10^6
Acenaphthylene	594	249
Fluorene	292	484
Phenanthrene	2 \times 10^9	2 \times 10^9
Anthracene	412	314
Fluoranthene	495	1 \times 10^9
Acephenanthrene	17	18
Pyrene	169	452
Benzo[a]anthracene	20	16
Chrysenene	28	23
Benzo[b]fluoranthene	< LD	< LD
Benzo[k]fluoranthene	< LD	< LD
Benzo[j]fluoranthene	< LD	< LD
Benzo[e]pyrene	< LD	< LD
Benzo[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acenaphthylene	1 \times 10^9	2 \times 10^9
Benzo[b]napth[1,2-d]furan	39	107
Benzo[b]napth[2,3-d]furan	19	50
2,3,5,6-Dibenzoalene	11	35
Benzo[k,l]xanthene	< LD	< LD
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	109	189
9,10-Anthraquinone	< LD	< LD
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	72	97
3-methylphenanthrene	67	74
2-methylphenanthrene	81	103
2-methylanthracene	19	22
4,9-methylphenanthrene	45	65
1-methylphenanthrene	39	64
Octadecane	139	299
Nonadecane	72	121
Eicosane	31	70
Heneicosane	96	230
Docosane	179	397
Tricosane	106	171
Tetracosane	< LD	< LD
Pentacosane	187	251
Hexacosane	116	140
Heptacosane	51	60
Vanillin	5 \times 10^9	1.1 \times 10^9
Acetovanillone	961	2 \times 10^9
Vanillic Acid	1 \times 10^9	2 \times 10^9
3-Guaiacylpropanol	2 \times 10^9	643
Coniferyl Aldehyde	1 \times 10^9	347
Syringaldehyde	14 \times 10^9	13 \times 10^9
Syringol	7 \times 10^9	5 \times 10^9
Acetosyringone	2 \times 10^9	2 \times 10^9
Isoeugenol	6 \times 10^9	3 \times 10^9
Syringyl Acetone	34 \times 10^9	6 \times 10^9
Propionyl Syringol	4 \times 10^9	3 \times 10^9
Syringic Acid	782	1 \times 10^9
Synapyl Aldehyde	5 \times 10^9	575
Palmitoleic Acid	< LD	< LD
Palmitic Acid	713	822
Oleic Acid	< LD	< LD
Stearic Acid	348	469
4-Nitrocatechol	< LD	44 \times 10^9
Pyrogallol	70	339
Methylsyringol	485	365
Vanillylmandelic acid	54	1 \times 10^9
2-methyl-2-pentanediolic Acid	< LD	529
Tyrosol	2 \times 10^9	2 \times 10^9
5-Methyl-5-Nitrocatechol	130	4 \times 10^9
3-Methyl-5-Nitrocatechol	507	8 \times 10^9
Table S3: (Continued)	Fresh	Aged
Integrated OH exposure (molecule cm\(^{-3}\) hour)	0	5.60 × 10\(^6\)
OA (mg kg\(^{-1}\))	651	3562
OM/OC	1.8	2
EF Compounds (µg kg\(^{-1}\))		
Levoglucosan	202 × 10\(^3\)	121 × 10\(^3\)
Mannosan	16 × 10\(^3\)	10 × 10\(^3\)
Galactosan	3 × 10\(^3\)	2 × 10\(^3\)
Acenaphthene	1 × 10\(^3\)	2 × 10\(^3\)
Acenaphthylene	2 × 10\(^3\)	489
Fluorene	535	582
Phenanthrene	1 × 10\(^3\)	2 × 10\(^3\)
Anthracene	229	188
Fluoranthene	301	1 × 10\(^3\)
Acephenanthrene	9	15
Pyrene	113	349
Benzo[a]anthracene	15	13
Chrysene	25	26
Benzo[b]fluoranthene	< LD	< LD
Benzo[k]fluoranthene	< LD	< LD
Benzo[j]fluoranthene	< LD	< LD
Benzo[e]pyrene	< LD	< LD
Benzo[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acenaphthylene	2 × 10\(^9\)	2 × 10\(^9\)
Benzo[b]naptho[1,2-d]furan	28	75
Benzo[b]naptho[2,3-d]furan	9	43
2,3,5,6-Dibenzo[c,e]pyrene	9	29
Benzo[k,l]xanthene	< LD	< LD
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	95	177
9,10-Anthraquinone	< LD	< LD
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	54	80
3-methylphenanthrene	44	69
2-methylphenanthrene	54	97
2-methylanthracene	25	57
4,9-methylphenanthrene	30	58
1-methylphenanthrene	33	60
Octadecane	203	272
Nonadecane	79	131
Eicosane	162	244
Heneicosane	73	246
Docosane	181	418
Tricosane	75	158
Tetracosane	93	120
Pentacosane	183	222
Hexacosane	65	81
Heptacosane	48	50
Vanillin	7 × 10\(^3\)	14 × 10\(^3\)
Acetovanillone	934	2 × 10\(^9\)
Vanillic Acid	1 × 10\(^3\)	3 × 10\(^3\)
3-Guaiacylpropanol	3 × 10\(^3\)	931
Coniferyl Aldehyde	2 × 10\(^3\)	687
Syringaldehyde	20 × 10\(^3\)	17 × 10\(^3\)
Syringol	12 × 10\(^3\)	6 × 10\(^3\)
Acetosyringone	4 × 10\(^3\)	2 × 10\(^3\)
Isoeugenol	15 × 10\(^3\)	5 × 10\(^3\)
Syringyl Acetone	52 × 10\(^3\)	9 × 10\(^3\)
Propionyl Syringol	6 × 10\(^3\)	3 × 10\(^3\)
Syringic Acid	994	188
Synapyl Aldehyde	9 × 10\(^3\)	905
Palmitoleic Acid	< LD	< LD
Palmitic Acid	1 × 10\(^3\)	843
Oleic Acid	< LD	< LD
Stearic Acid	506	416
4-Nitrocatechol	509	65 × 10\(^3\)
Pyrogallol	112	430
Methylsyringol	274	557
Vanillylmandelic acid	110	1 × 10\(^3\)
2-methyl-2-pentanedic acid	88	1 × 10\(^3\)
Tyrosol	1 × 10\(^3\)	3 × 10\(^3\)
5-Methyl-5-Nitrocatechol	< LD	4 × 10\(^3\)
3-Methyl-5-Nitrocatechol	830	10 × 10\(^3\)
Table S3: (Continued)

EF Compounds (µg kg⁻¹)	Fresh	Aged
Levoglucosan	4.9 × 10⁹	2.2 × 10⁹
Mannosan	6 × 10⁹	3 × 10⁹
Galactosan	582	175
Acenaphthene	619	940
Acenaphylene	924	173
Fluorene	783	729
Phenanthrene	981	792
Anthracene	219	115
Fluoranthrene	1 × 10⁹	2 × 10⁹
Acaenophanthenone	783	729
Pyrene	381	543
Benzo[a]anthracene	8	5
Chrysene	15	10
Benzo[b]fluoranthenone	< LD	< LD
Benzo[k]fluoranthenene	< LD	< LD
Benzo[j]fluoranthenene	< LD	< LD
Benzo[e]pyrene	< LD	< LD
Benzo[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acenaphthylene	783	729
Benzo[b]napthal[1,2-d]furan	74	121
Benzo[b]napthal[2,3-d]furan	28	50
2,3-5,6-Dibenzoazalene	17	33
Benzo[k,l]anthracene	< LD	< LD
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	122	132
9,10-Anthraquinone	< LD	< LD
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	161	125
3-methylphenanthrene	93	47
2-methylphenanthrene	139	77
2-methylanthracene	31	16
4,9-methylphenanthrene	83	44
1-methylphenanthrene	115	53
Octadecane	96	140
Nonadecane	69	74
Eicosane	142	189
Heneicosane	110	183
Docosane	179	242
Tricosane	93	100
Tetracosane	46	47
Pentacosane	85	87
Hexacosane	35	29
Heptacosane	< LD	< LD
Vanillin	5 × 10⁶	6 × 10⁶
Acetovanillnone	1 × 10⁹	954
Vanillic Acid	476	737
3-Guaiacylpropanol	625	185
Conyferly Aldehyde	344	120
Syringaldehyde	7 × 10⁹	5 × 10⁹
Syringol	2 × 10⁹	1 × 10⁹
Acetosyringone	741	260
Isoeugenol	3 × 10⁹	684
Syringyl Acetone	6 × 10⁹	1 × 10⁹
Propionyl Syringol	2 × 10⁹	890
Syringic Acid	382	444
Synapyl Aldehyde	2 × 10⁹	123
Palmitoleic Acid	< LD	< LD
Palmitic Acid	326	396
Oleic Acid	< LD	< LD
Stearic Acid	211	196
4-Nitrocatechol	2 × 10⁹	9 × 10⁹
Pyrogallol	65	133
Methylsyringol	543	133
Vanillylmandelic acid	38	129
2-methyl-2-pentanedioic Acid	5	91
Tyrosol	2 × 10⁹	1 × 10⁹
5-Methyl-5-Nitrocatechol	424	1 × 10⁹
3-Methyl-5-Nitrocatechol	693	2 × 10⁹

Experiment 8 - Stove B

Integrated OH exposure (molecule cm⁻³ hour)	Fresh	Aged
OA (mg kg⁻¹)	117	550
OM/OC	1.9	2.1

Experiment 8 - Stove B
Table S3: (Continued)

Experiment 9 - Stove C	Fresh	Aged
Integrated OH exposure (molecule cm\(^{-3}\) hour)	0	4.19 × 10\(^6\)
OA (mg kg\(^{-1}\))	115	59
OM/OC	1.7	2
EF Compounds (µg kg\(^{-1}\))		
Levoglucosan	51 x 10\(^3\)	28 x 10\(^3\)
Mannosan	8 x 10\(^3\)	4 x 10\(^3\)
Galactosan	742	239
Acenaphthene	74	465
Acenaphthylene	372	139
Fluorene	97	115
Phenanthrene	317	552
Anthracene	66	102
Fluoranthene	399	732
Acephepanthrene	11	15
Pyrene	138	295
Benzo[a]anthracene	14	13
Chrysene	26	23
Benzo[b]fluoranthene	< LD	< LD
Benzo[k]fluoranthene	< LD	< LD
Benzo[j]fluoranthene	< LD	< LD
Benzo[e]pyrene	< LD	< LD
Benzo[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acencapthylene	296	362
Benzo[b]naphto[1,2-d]furan	29	66
Benzo[b]naphto[2,3-d]furan	14	28
2,3,5,6-Dibenzoalcohol	10	20
Benzo[k,l]xanthene	3	4
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	44	74
9,10-Anthraquinone	< LD	< LD
Xanthone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	33	41
3-methylphenanthrene	16	19
2-methylphenanthrene	27	31
2-methylanthracene	4	5
4,9-methylphenanthrene	14	17
1-methylphenanthrene	16	21
Octadecane	65	142
Nonadecane	44	66
Eicosane	79	161
Heneicosane	81	146
Docosane	102	188
Tricosane	66	85
Tetracosane	34	37
Pentacosane	67	84
Hexacosane	24	17
Heptacosane	26	14
Vanillin	3 x 10\(^3\)	4 x 10\(^3\)
Acetovanillone	488	538
Vanillic Acid	352	499
3-Guaiaicylpropanol	116	68
Coniferyl Aldehyde	174	83
Syringaldehyde	2 x 10\(^3\)	2 x 10\(^3\)
Syringol	925	585
Acetosyringone	219	113
Isoeugenol	1 x 10\(^3\)	249
Syringyl Acetone	1 x 10\(^3\)	484
Propionyl Syringol	506	532
Syringic Acid	240	260
Synapyl Aldehyde	628	95
Palmitoleic Acid	< LD	< LD
Palmitic Acid	1 x 10\(^3\)	502
Oleic Acid	< LD	< LD
Stearic Acid	267	180
4-Nitrocatechol	< LD	7 x 10\(^3\)
Pyrogallol	23	85
Methylsyringol	28	25
Vanillylmandelic acid	107	108
2-methyl-2-pentandioic Acid	< LD	17
Tyrosol	362	281
5-Methyl-5-Nitrocatechol	< LD	396
3-Methyl-5-Nitrocatechol	< LD	685
Table S3: (Continued)

EF Compounds (µg kg⁻¹)	Fresh	Aged
Levoglucosan	28×10³	16×10³
Mannosan	4×10⁹	3×10⁹
Galactosan	187	
Acenaphthene	265	248
Acenaphthylene	408	89
Fluorene	70	69
Phenanthrene	374	535
Anthracene	52	48
Fluoranthenone	234	462
Acephenanthrene	9.10	
Pyrene	90	191
Benzo[a]anthracene	19	16
Chrysene	25	24
Benzo[b]fluoranthene	<LD	<LD
Benzo[k]fluoranthene	<LD	<LD
Benzo[j]fluoranthene	<LD	<LD
Benzo[e]pyrene	<LD	<LD
Benzo[a]pyrene	<LD	<LD
Perylene	<LD	<LD
1,2-Acenaphthyleneone	235	252
Benzo[b]naphtho[1,2-d]furan	22	43
Benzo[b]naphtho[2,3-d]furan	11	21
2,3,5,6-Dibenzo[a]pyrene	9	14
Benzo[k,l]xanthene	4	
4-Oxapyrene-5-one	<LD	<LD
9H-Fluoren-9-one	34	56
9,10-Anthraquinone	<LD	<LD
Xanthone	<LD	<LD
Cyclopenta[d,e,f]phenanthrene	19	26
3-methylphenanthrene	12	15
2-methylphenanthrene	17	23
2-methylanthracene	5	3
4,9-methylphenanthrene	13	15
1-methylphenanthrene	11	15
Octadecane	56	95
Nonadecane	28	40
Eicosane	55	77
Henecicosane	50	100
Docosane	94	146
Tricosane	60	60
Tetracosane	27	25
Pentacosane	62	56
Hexacosane	14	12
Heptacosane	16	14
Vanillin	2×10⁹	1×10⁹
Acetovanillone	314	349
Vanillic Acid	316	421
3-Guaiaicypropanol	<LD	67
Coniferyl Aldehyde	144	70
Syringaldehyde	2×10⁹	1×10⁹
Syringol	658	323
Acetosyringone	167	90
Isoeugenol	335	17
Syringyl Acetone	547	301
Propionyl Syringol	643	392
Syringic Acid	207	240
Synapyl Aldehyde	300	128
Palmitoleic Acid	<LD	<LD
Palmitic Acid	314	241
Oleic Acid	<LD	<LD
Stearic Acid	168	105
4-Nitrocatechol	<LD	7×10³
Pyrogallol	30	64
Methylsyringol	21	14
Vanillymendelic acid	23	39
2-methyl-2-pentanedioc Acid	<LD	7
Tyrosol	153	157
5-Methyl-5-Nitrocatechol	62	327
3-Methyl-5-Nitrocatechol	19	428
EF Compounds (µg kg⁻¹)	Fresh	Aged
------------------------	-------	------
Levoglucosan	26 × 10³	22 × 10³
Mannosan	5 × 10⁹	4 × 10⁹
Galactosan	754	323
Acenaphthene	314	431
Acenaphylene	1 × 10⁹	183
Fluorene	130	96
Phenanthrene	484	631
Anthracene	77	93
Fluoranthene	248	360
Acenaphanthenre	12	11
Pyrene	108	152
Benz[a]anthracene	27	22
Chrysene	36	31
Benzo[b]fluoranthrene	< LD	< LD
Benzo[k]fluoranthene	< LD	< LD
Benzo[j]fluoranthene	< LD	< LD
Benzo[e]pyrene	< LD	< LD
Benzo[a]pyrene	< LD	< LD
Perylene	< LD	< LD
1,2-Acenaphthylene	470	373
Benzo[b]naphtho[1,2-d]furan	26	37
Benzo[b]naphtho[2,3-d]furan	13	18
2,3-5,6-Dibenzo[a]pyrene	10	13
Benzo[k,l]anthracene	< LD	< LD
4-Oxapyrene-5-one	< LD	< LD
9H-Fluoren-9-one	43	56
9,10-Anthraquinone	< LD	< LD
Xanthenone	< LD	< LD
Cyclopenta[d,e,f]phenanthrene	20	23
3-methylphenanthrene	12	15
2-methylphenanthrene	18	22
2-methylyanthracene	3	1
4,9-methylphenanthrene	10	13
1-methylphenanthrene	11	13
Octadecane	83	91
Nonadecane	35	40
Eicosane	93	101
Heneicosane	83	99
Docosane	133	141
Tricosane	65	65
Tetracosane	38	29
Pentacosane	73	60
Hexacosane	18	13
Heptacosane	< LD	< LD
Vanillin	2 × 10⁶	3 × 10⁶
Acetovanillone	295	469
Vanillic Acid	404	627
3-Guaiacylpropanol	70	98
Coniferyl Aldehyde	158	108
Syringaldehyde	2 × 10⁹	2 × 10⁹
Syringol	913	433
Acetosyringone	160	123
Isoeugenol	404	95
Syringyl Acetone	366	404
Propionyl Syringol	411	479
Syringic Acid	233	335
Synapyl Aldehyde	305	209
Palmitoleic Acid	< LD	< LD
Palmitic Acid	383	351
Oleic Acid	< LD	< LD
Stearic Acid	131	149
4-Nitrocatechol	180	11 × 10³
Pyrogallol	40	89
Methylsyringol	19	14
Vanillylmandelic acid	< LD	59
2-methyl-2-pentanedioc Acid	< LD	8
Tyrosol	93	115
5-Methyl-5-Nitrocatechol	61	508
3-Methyl-5-Nitrocatechol	261	790
Table S4: pWLC contribution of the compounds to the total OA mass concentration at different times of the photo-oxidative process.

Integrated molecule (molecule cm⁻³)	OH exposure hour	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6
Levoglucosan (min - max)		29.18	20	20	14	10	13	9
Mannosan (min - max)		3.19	0.5	0.18	0.5	0.18	0.5	0.18
Galactosan (min - max)		0.19	0.44	0.16	0.11	0.14	0.04	0.03
Aacenaphthylene (min - max)		0.15	0.06	0.07	0.07	0.05	0.03	0.05
Anthracene (min - max)		0.08	0.04	0.03	0.03	0.02	0.02	0.02
Fluoranthen (min - max)		0.22	0.07	0.14	0.13	0.12	0.16	0.16
Aacenaphthene (min - max)		0.08	0.04	0.03	0.03	0.02	0.02	0.02
Pyrene (min - max)		0.08	0.02	0.05	0.05	0.04	0.07	0.05
Benzo[a]anthracene (min - max)		0.01	0.01	0.01	0.01	0.01	0.01	0.01
Chrysene (min - max)		0.01	0.01	0.01	0.01	0.01	0.01	0.01
Benzo[b]fluoranthene (min - max)		0.01	0.01	0.01	0.01	0.01	0.01	0.01

Primary Compounds (% OA)

Integrated molecule (molecule cm⁻³)	OH exposure hour	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6
Levoglucosan (min - max)		29.18	20	20	14	10	13	9
Mannosan (min - max)		3.19	0.5	0.18	0.5	0.18	0.5	0.18
Galactosan (min - max)		0.19	0.44	0.16	0.11	0.14	0.04	0.03
Aacenaphthylene (min - max)		0.15	0.06	0.07	0.07	0.05	0.03	0.05
Anthracene (min - max)		0.08	0.04	0.03	0.03	0.02	0.02	0.02
Fluoranthen (min - max)		0.22	0.07	0.14	0.13	0.12	0.16	0.16
Aacenaphthene (min - max)		0.08	0.04	0.03	0.03	0.02	0.02	0.02
Pyrene (min - max)		0.08	0.02	0.05	0.05	0.04	0.07	0.05
Benzo[a]anthracene (min - max)		0.01	0.01	0.01	0.01	0.01	0.01	0.01
Chrysene (min - max)		0.01	0.01	0.01	0.01	0.01	0.01	0.01
Benzo[b]fluoranthene (min - max)		0.01	0.01	0.01	0.01	0.01	0.01	0.01
Table S4: (Continued)

Integrated OH exposure (molecule cm\(^{-3}\) hour)	0 n = 11	> 0 - 0.5 \(\times\) 10\(^6\) n = 6	0.5 - 2 \(\times\) 10\(^6\) n = 11	2 - 4 \(\times\) 10\(^6\) n = 17	4 - 6 \(\times\) 10\(^6\) n = 15	6 - 7.5 \(\times\) 10\(^6\) n = 8	7.5 - 9 \(\times\) 10\(^6\) n = 2							
Benzo[k]fluoranthene	BDL	< 0.01	< 0.01	< 0.01	< 0.01	BDL	BDL	BDL						
Benzo[j]fluoranthene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	BDL	BDL	BDL						
Benzo[e]pyrene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	BDL	BDL	BDL						
Benzo[a]pyrene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	BDL	BDL	BDL						
Perylene	BDL													
1,2-Acenaphthylene	0.31	0.14	0.15	0.10	0.08	0.11	0.08							
Benzo[b]naphtho[1,2-d]furan	0.02	< 0.01	0.01	0.01	< 0.01	0.02	0.01							
Benzo[b]naphtho[2,3-d]furan	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01							
2,3-5,6-Dibenzoxalene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01							
Benzo[k,l]xanthene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01							
4-Oxapyrene-5-one	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	BDL	BDL	BDL						
9H-Fluoren-9-one	0.03	0.01	0.02	0.02	0.01	0.02	0.02							
9,10-Anthraquinone	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	BDL	BDL	BDL						
Xanthone	BDL													
Integrated OH exposure (molecule cm3 hour)	0 n = 11	n = 6	0.5 - 2 x 106	n = 11	0.5 - 4 x 106	n = 17	2 - 4 x 106	n = 15	4 - 6 x 106	n = 8	6 - 7.5 x 106	n = 2	7.5 - 9 x 106	n = 4
---	---------	------	-----------------	-------	-----------------	------	----------------	-------	-----------------	------	-----------------	------	-----------------	------
Cyclopenta[e,f]phenanthrene-4-one	0.03	< 0.01	0.01		0.01	< 0.01	0.01		0.01	< 0.01	0.01	< 0.01	0.01	< 0.01
3-methylphenanthrene	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-methylphenanthrene	0.03	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-methylnaphthalene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4,9-dimethylphenanthrene	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-methylphenanthrene	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Octadecane	0.05	0.02	0.03		0.03		0.02		0.03		0.02		0.02	
Nonadecane	0.03	0.01	0.01	< 0.01	< 0.01	< 0.01	0.01		0.01		0.02		0.02	
Eicosane	0.04	0.01	0.03	0.02	0.02	0.03	0.03		0.02		0.02		0.02	
Heneicosane	0.04	0.01	0.03	0.02	0.02	0.03	0.03		0.02		0.02		0.02	
Docosane	0.06	0.02	0.04	0.04	0.03	0.05	0.03		0.05		0.03		0.03	
Aceenaphthene	0.03	0.09	0.14	0.12	0.09	0.14	0.09		0.14		0.09		0.09	
Tetracosane	0.02	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pentacosane	0.04	0.01	0.02	0.02	0.01	0.02	0.02	< 0.01	0.02	< 0.01	0.02	< 0.01	0.02	< 0.01

(Continued)
Table S4: (Continued)

Integrated OH exposure (molecule cm⁻³)	0	> 0 - 0.5 x 10⁶	0.5 - 2 x 10⁶	2 - 4 x 10⁶	4 - 6 x 10⁶	6 - 7.5 x 10⁶	7.5 - 9 x 10⁶	
n = 11		(< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Hexacosane	0.02	(< BDL	(< BDL	(< BDL	(< BDL	(< BDL	(< BDL	
Heptacosane		(< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
3-Guaiacylpropanol		(0.04 - 0.14	(0.02 - 0.11	(0.02 - 0.08	(0.02 - 0.04	(0.02 - 0.03)	(0.02 - 0.03)	
Coniferyl Aldehyde		(0.05 - 0.12	(0.02 - 0.08	(0.01 - 0.07	(0.01 - 0.04	(0.01 - 0.04)	(0.01 - 0.04)	
Syringaldehyde		(0.04 - 0.46	(0.01 - 0.14	(0.01 - 0.14	(0.01 - 0.05	(0.01 - 0.02)	(0.01 - 0.02)	
Syringol		(0.24 - 2.42	(0.10 - 1.21	(0.09 - 0.48	(0.09 - 0.30	(0.10 - 0.29)	(0.09 - 0.17)	
Methylsyringol		(0.13 - 0.55	(0.05 - 0.12	(0.02 - 0.08	(0.01 - 0.07	(0.01 - 0.04	(0.01 - 0.04)	
Acetosyringone		(0.18 - 0.66	(0.06 - 0.29	(0.04 - 0.17	(0.04 - 0.08	(0.02 - 0.09	(0.03 - 0.06)	(0.04 - 0.06)
Isoeugenol		(0.09 - 0.29	(0.01 - 0.18	(0.01 - 0.16	(0.01 - 0.12	(0.01 - 0.12	(0.05 - 0.12)	
Syringyl Acetone		(0.13 - 2.65	(0.01 - 0.76	(0.01 - 0.18	(0.01 - 0.12	(0.01 - 0.12	(0.06 - 0.12)	
Propionyl Syringol		(0.29 - 2.71	(0.18 - 0.69	(0.16 - 0.33	(0.14 - 0.41	(0.15 - 0.35	(0.15 - 0.34)	
Synapyl Aldehyde		(0.04 - 0.45	(0.16 - 0.47	(0.05 - 0.35	(0.02 - 0.26	(0.02 - 0.26	(0.06 - 0.14)	
Palmitoleic Acid		(0.02 - 9.02	< 0.01	BDL	BDL	< 0.01	< 0.01	
Palmitic Acid		(0.02 - 1.06	(0.01 - 0.63	(0.01 - 0.31	(0.01 - 0.26	(0.01 - 0.25	(0.01 - 0.27)	
Table S4: (Continued)

Integrated (molecule)	OH cm⁻³	exposure hour	0 (n = 11)	> 0 - 0.5 x 10⁶ (n = 6)	0.5 - 2 x 10⁶ (n = 11)	2 - 4 x 10⁶ (n = 17)	4 - 6 x 10⁶ (n = 15)	6 - 7.5 x 10⁶ (n = 8)	7.5 - 9 x 10⁶ (n = 2)	
Oleic Acid				< 0.01 (BDL - 0.01)	BDL	BDL				
Stearic Acid				0.11	0.05	0.06	0.04	0.03	0.05	0.02

Non-conventional Primary Compounds (% OA)

Vanillin	1.66	0.8	1.06	0.86	0.62	1.01	0.7		
	(0.34 - 4.22)	(0.33 - 1.69)	(0.27 - 2.46)	(0.23 - 1.86)	(0.20 - 1.51)	(0.20 - 2.05)	(0.20 - 1.19)		
Acetovanillone	0.29	0.13	0.17	0.14	0.14	0.14	0.1		
	(0.04 - 0.07)	(0.06 - 0.25)	(0.05 - 0.40)	(0.05 - 0.26)	(0.04 - 0.86)	(0.05 - 0.26)	(0.05 - 0.16)		
Vanillic Acid	0.24	0.12	0.16	0.14	0.1	0.14	0.09		
	(0.09 - 0.46)	(0.06 - 0.18)	(0.05 - 0.37)	(0.05 - 0.26)	(0.06 - 0.26)	(0.07 - 0.12)			
Syringic Acid	0.17	0.09	0.11	0.08	0.06	0.08	0.05		
	(0.05 - 0.53)	(0.04 - 0.13)	(0.03 - 0.20)	(0.03 - 0.19)	(0.02 - 0.15)	(0.04 - 0.14)	(0.06 - 0.07)		
Pyrogallol	0.02	0.02	0.03	0.02	0.02	0.02	0.01		
	(BDL - 0.06)	(BDL - 0.04)	(< 0.01 - 0.05)	(< 0.01 - 0.09)	(< 0.01 - 0.06)	(< 0.01 - 0.04)	(< 0.01 - 0.02)		
Tyrosol	0.36	0.16	0.17	0.12	0.09	0.12	0.15		
	(0.11 - 1.29)	(0.09 - 0.28)	(0.07 - 0.70)	(0.06 - 0.31)	(0.05 - 0.19)	(0.07 - 0.20)	(0.07 - 0.12)		

Secondary Compounds (% OA)

4 Nitroctecoh	0.19	0.81	1.68	2.43	1.77	1.92	1.05		
	(BDL - 1.37)	(0.40 - 1.41)	(0.84 - 1.83)	(0.71 - 6.27)	(0.70 - 4.11)	(0.97 - 5.85)	(0.96 - 1.14)		
4-Methyl-5-Nitroctechol	0.05	0.15	0.2	0.18	0.14	0.15	0.11		
	(BDL - 0.36)	(0.07 - 0.26)	(0.05 - 0.30)	(0.07 - 0.28)	(0.06 - 0.23)	(0.10 - 0.19)	(0.08 - 0.13)		
3-Methyl-5-Nitroctechol	0.15	0.48	0.45	0.32	0.25	0.24	0.19		
	(BDL - 0.59)	(0.30 - 0.57)	(0.17 - 0.94)	(0.14 - 0.95)	(0.12 - 0.42)	(0.20 - 0.34)	(0.18 - 0.20)		
Vanillylmandelic acid	0.02	0.08	0.06	0.04	0.03	0.03	0.02		
	(BDL - 0.09)	(0.03 - 0.16)	(0.02 - 0.17)	(0.02 - 0.16)	(0.03 - 0.05)	(0.02 - 0.05)	(0.02 - 0.02)		
Methylglutaric acid	< 0.01	0.02	0.02	0.02	0.02	0.02	0.02		
	(BDL - 0.01)	(< 0.01 - 0.02)	(< 0.01 - 0.08)	(< 0.01 - 0.07)	(< 0.01 - 0.06)	(< 0.01 - 0.04)	(< 0.01 - 0.02)		

Sum from the contribution of all compounds averaged within the bins