Plant root and rhizome strength: Are there differences between and within species and rivers?

A.M. Gurnell,*1,4 I.V. Holloway,*1 T. Liffen,1,2 A.J. Serlet1 and G. Zolezzi3

1 School of Geography, Queen Mary University of London, London E1 4NS, United Kingdom
2 Swedish Environmental Protection Agency, Valhallavägen 195, 106 48 Stockholm, Sweden
3 Department of Civil Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Received 20 June 2018; Revised 10 August 2018; Accepted 20 August 2018

*Correspondence to: A. M. Gurnell, School of Geography, Queen Mary University of London, London E1 4NS, United Kingdom. E-mail: a.m.gurnell@qmul.ac.uk

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

ESPL
Earth Surface Processes and Landforms

ABSTRACT: The strength and architecture of roots and other below-ground organs of riparian and aquatic plants affect plant resistance to uprooting and contribute to reinforcing river bank, bar and bed materials. Therefore, root properties are an important element in models for estimating river bank stability and such models may focus on the role of plants by using root strength–diameter relationships for the particular plant species that are present.

Here we explore the degree to which there appear to be significant differences in strength–diameter relationships between and within species-specific data sets obtained for two riparian tree/shrub (Populus nigra, Salix alba) and two emergent aquatic macrophyte (Sparganium erectum, Phalaris arundinacea) species in different European river environments.

While the analysed data sets were not specifically collected to answer these research questions, the results are sufficiently compelling to make the case for the collection of a more comprehensive data set and its rigorous analysis. This would allow recommendations to be made on the degree to which (i) species-specific or more general relationships between root/rhizome strength and diameter are appropriate, (ii) such relationships are applicable within and between rivers in different geographical regions and subject to different local environmental conditions, and (iii) further (minimalist) field observations are needed to calibrate such relationships for investigations of new locales or species. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

KEYWORDS: riparian vegetation; river bank stability; root strength–diameter relationships

The strength and architecture of roots and other below-ground organs of riparian and aquatic plants affect resistance to uprooting. Therefore, they have fluvial geomorphological significance by supporting the plant’s crown so that it can form a component of the roughness of the channel perimeter, and also by reinforcing river bank, bar and bed materials. As a consequence, root properties are an important element in models for estimating river bank stability (Simon and Collison, 2002; Van de Wiel and Darby, 2007; Pollen-Bankhead and Simon, 2010; Thomas and Pollen-Bankhead, 2010) and a crucial contributor to analysis of the overall dynamics of river margins (Polvi et al., 2014; Bankhead et al., 2017). To support such modelling, measurements of the distribution of root density, diameter and area with depth within the bank profile are required, as well as root strength–diameter relationships for the plant species that are present. Examples of different types of field measurements of physical properties of roots and other below-ground organs of riparian and aquatic species can be found in the above-mentioned research, but also in many other studies including Abernethy and Rutherford (2001), Karrenberg et al. (2003), Wynn et al. (2004), Dockier and Hubble (2008), Liffen et al. (2011, 2013a), Rood et al. (2011), Pasquale et al. (2012), Vannoppen et al. (2016), Vennetier et al. (2015), and Holloway et al. (2017a, 2017b).

A key element in much of the above research is estimation of relationships between the strength and diameter of roots or other below-ground organs. Many researchers have used a root-pulling device similar to that devised by Abernethy and Rutherford (2001) to measure the axial tractive force required to cause roots of different diameter to break. They have then developed relationships between tensile strength (the force per unit cross-sectional area of the root, MPa) and root diameter (mm) for different species. Typically between 40 and 100 roots are sampled to define these species-specific relationships, but, with the notable exception of Polvi et al. (2014), little attention has been given to whether such relationships are statistically-significantly different from one another and whether environmental or other conditions might yield significantly different relationships for the same species.

Using data sets collected with the same root-pulling device for four different species (two riparian tree-shrub species (Populus nigra (abbreviated Pr), Salix alba (Sa)) and two
aquatic macrophyte species (*Sparganium erectum* (Se), *Phalaris arundinacea* (Pa)) growing in different European river environments (Table I, Figure 1), we consider the evidence for different inter- and intra-species contrasts in root/rhizome strength–diameter relationships. Because our data sets were not collected specifically for this purpose, we cannot answer these questions with confidence. However, we provide an initial indication of whether it would be profitable to gather and analyse a larger purpose-designed data set. Such a data set could support a more robust assessment that could establish the degree to which different root/rhizome strength–diameter relationships are actually needed for different species or for the same species under different environmental conditions.

A General Linear Modelling approach was used to investigate the degree to which tensile strength (MPa, dependent variable) showed a statistically significant response to organ diameter (mm, independent variable) according to species and/or environmental conditions. Power relationships are usually estimated between these variables, and so the variables were \log_{10} transformed prior to linear regression models being estimated between the dependent variable (tensile strength) and the independent variable (diameter). A simple regression model was estimated from the entire data set (Table I, Figure 1), and a series of multiple regression models were estimated to explore the degree to which significantly different models were appropriate for characterising different subsets of the data. In these analyses, species/river combinations (Pn, Sa, Se, Pa), species groups (trees, aquatic plants), moisture status (wet, dry), root condition (dead, living) or month of measurement (Apr, May, Jun, Aug, Sep, Oct_Nov) were identified using dummy variables which took the value 1 when the tensile strength–diameter observations related to a particular case (e.g. a species–river combination, a species group, moisture status, root condition, month of observation) and 0 when they did not. For each multiple regression analysis, in addition to root diameter, relevant dummy variables were incorporated as independent variables, as were interactions between the dummy variables and root diameter. In this way it was possible to test whether different species or conditions (i.e. species/river combination, species group, moisture status, root condition or month of measurement) were best described by regression models with different intercept and/or slope coefficients from other conditions and thus whether a different tensile strength–diameter relationship was appropriate for a particular condition. Each multiple regression model was estimated using a stepwise procedure to select the combination of independent variables that achieved the highest coefficient of determination, adjusted for the degrees of freedom of the model ($R^2(\text{adj})$) while including only independent variables whose slope coefficient was statistically significant ($P<0.05$) (Table II). All analyses were performed using Minitab 18 software.

First, we analysed the data set for *Populus nigra* (*n* = 156) to consider whether different relationships may be needed to characterise a single species under different environmental conditions. These data, which show considerable scatter (Figure 1), were collected from nine different sites distributed across three different reaches of the Tagliamento River, Italy. Each reach was approximately 2 km in length and the reaches were spaced approximately 4 km and 28 km apart. Previous research has separated these nine sites into two distinct groups – wet and dry sites – according to soil moisture conditions (Holloway et al., 2017a) and has shown distinct differences in the vertical profiles of root density and root area ratio according to whether data were collected at the wet or dry sites. However, no significant difference was found in the relationship between root

Table I. Data sets analysed

Species Group	River	Season of sampling	Number of sampling locations	Total sample size	Number of roots	Number of rhizomes
Populus nigra	Tagliamento, NW Italy	Summer	9 (5 dry, 3 wet, 1 no moisture data) within 3 different river reaches	154	154 (69 dead)	0
Salix alba	Adige tributary, N Italy	Summer	1	52	52	0
Sparganium erectum	Blackwater, southern UK	Autumn	1	220	20	200
Phalaris arundinacea	Adige tributary, N Italy	Summer	1	50	18	32

Figure 1. Observations and significant power relationships estimated between tensile strength and diameter of roots and rhizomes for (A) two plant groups and (B) two tree species (*P. nigra*, *S. alba*) and two emergent aquatic macrophyte species (*S. erectum*, *P. arundinacea*) measured on four different rivers.
tensile strength and diameter according to moisture conditions, suggesting that root tensile strength is insensitive to this environmental property, despite the fact that root profiles show distinct differences. Since 65 intact but dead roots were included in the 156 roots analysed, it was also possible to investigate whether root condition affected the root tensile strength–diameter relationship. This analysis revealed no significant difference in the intercept but a steeper decline in the tensile strength of dead roots as root diameter increased. However, $R^2(\text{adj})$ only increased slightly (from 0.168 to 0.179), indicating only a modest increase in the explanatory power of the model.

While the data for *Populus nigra*, *Salix alba* and *Phalaris arundinacea* were all collected in summer, measurements for *Sparganium erectum* were collected in different months between April and November at the same site, providing an opportunity to investigate whether the rhizomes of this species ($n = 200$) show significant changes in tensile strength through the growing season. Once again, there was considerable scatter in the data (Figure 1) and the analysis revealed no significant difference among months apart from a reduction in the intercept term for May, which was associated with only a modest increase in the adjusted $R^2(\text{adj})$ to 0.875 (from 0.858 for the two species groups) and there is little difference between the two root–river combinations, with *Salix alba* showing a significantly lower intercept term but with no difference in the slope of the relationships for the two species. Whether the difference in the models can be attributed to species and/or river environment, it is remarkably small and suggests that it might be possible to use combined relationships for some tree-shrub species (such as the Salicaceae family), particularly when they are growing in a similar environmental setting. However, distinct differences in both intercept and slope coefficients are found between the *Sparganium erectum* and *Phalaris arundinacea* relationships, which may be attributable to the different species considered but could also be related to the very different river environments in which the measurements were made. Further measurements for both species on the same river could help to untangle these factors.

In summary, despite the different river environments as well as species investigated, our analyses suggest that generalised tensile strength–diameter relationships might be achievable. In particular, we have shown that:

1. The same species (*Populus nigra*) growing in contrasting sites where differences in soil moisture have been shown to strongly affect root density profiles and rooting depth, shows no difference in its tensile strength–diameter relationship, although root vigour may have some effect on this relationship.
2. The same species (*Sparganium erectum*) growing at the same site shows distinct differences in the number and vertical profile of rhizomes through the annual growth cycle but remarkably little change in its tensile strength–diameter relationship.
3. Two tree species (*Salix alba*, *Populus nigra*) growing on different rivers show no difference in the gradient of their relationship between root tensile strength and diameter. Although the intercept terms differed, it would be interesting
to test the degree to which this reflected a difference in river environment rather than species. A data set drawn from a single river but covering several species would support testing of genuine differences among tree species and whether relationships could be generalised to the family rather than species level.

4. Two aquatic species showed distinct differences in their tensile strength–diameter relationships that may be attributable to species and/or river. However, it is worth stressing that *Sparganium erectum* is a true aquatic species that rarely grows beyond continuously inundated sites whereas *Phalaris arundinacea* is a wetland grass species that is found mainly at and above the water’s edge. Furthermore, these species come from different families (Sparganiaceae, Poaceae). Therefore, it would be worth exploring whether plants occupying similar habitats or from the same family show greater similarities than the two species explored in our analysis.

In conclusion, gathering species-specific root/rhizome strength–diameter data is extremely time consuming and, as is clear from Figure 1, high residual variance is typical around estimated tensile strength–diameter relationships even for a single species at a single location. This raises the question of whether single species relationships are necessary. The preliminary analyses presented here suggest that considerable savings in field effort might result from a more rigorous analysis of a more comprehensive data set, to test the following hypotheses:

(i) Sufficiently reliable root/rhizome tensile strength–diameter relationships can be estimated to family level, removing the need for species-specific relationships.

(ii) Such family relationships are robust at least across rivers in the same catchment (and possibly the same biogeographical region).

(iii) Such family relationships are robust through all seasons of the year.

Acknowledgements—We thank the United States Department of Agriculture, Agricultural Research Service (USDA, ARS), who, through a collaborative research project with Andrew Simon and Natasha Bankhead funded by the UK Natural Environment Research Council (Grant NE/FO14597/1), built and supplied the root pulling device. The research by Alyssa Serlet and James Holloway was funded by the SMART Joint Doctoral Programme (Science for the Management of Rivers and their Tidal systems), which is financed by the Erasmus Mundus Programme of the European Union.

References

Abernethy B, Rutherford ID. 2001. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. *Hydrological Processes* 15(1): 63–79.

Bankhead NL, Thomas RE, Simon A. 2017. A combined field, laboratory and numerical study of the forces applied to, and the potential for removal of, bar top vegetation in a braided river. *Earth Surface Processes and Landforms* 42(3): 439–459.

Docker BB, Hubble TCT. 2008. Quantifying root-reinforcement of river bank soils by four Australian tree species. *Geomorphology* 100(3–4): 401–418.

Holloway JV, Rillig MC, Gurnell AM. 2017a. Physical environmental controls on riparian root profiles associated with black poplar (*Populus nigra* L.) along the Tagliamento River, Italy. *Earth Surface Processes and Landforms* 42: 1262–1273.

Holloway JV, Rillig MC, Gurnell AM. 2017b. Underground Riparian Wood: Buried Stem and Coarse Root Structures of Black Poplar (*Populus nigra* L.). *Geomorphology* 279: 188–198.

Karrenberg S, Blaser S, Kollmann J, Speck T, Edwards PJ. 2003. Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. *Functional Ecology* 17(2): 170–177.

Liffen T, Gurnell AM, O’Hare MT. 2013b. Profiling the below ground biomass of an emergent macrophyte using an adapted ingrowth core method. *Aquatic Botany* 110: 97–102.

Liffen T, Gurnell AM, O’Hare MT, Pollen-Bankhead N, Simon A. 2011. Biomechanical properties of the emergent aquatic macrophyte *Sparganium erectum*: Implications for fine sediment retention in low energy rivers. *Ecological Engineering* 37(11): 1925–1931.

Liffen T, Gurnell AM, O’Hare MT, Pollen-Bankhead N, Simon A. 2013a. Associations between the morphology and biomechanical properties of *Sparganium erectum*: implications for survival and ecosystem engineering. *Aquatic Botany* 105: 18–24.

Pasquale N, Perona P, Francis R, Burlando P. 2012. Effects of streamflow variability on the vertical root density distribution of willow cutting experiments. *Ecological Engineering* 40: 167–172.

Pollen-Bankhead N, Simon A. 2010. Hydrologic and hydraulic effects of riparian root networks on streambank stability: is mechanical root-reinforcement the whole story? *Geomorphology* 116(3): 353–362.

Polvi LE, Wohl E, Merritt DM. 2014. Modeling the functional influence of vegetation type on streambank cohesion. *Earth Surface Processes and Landforms* 39: 1245–1258.

Rood S, Bigelow S, Hall A. 2011. Root architecture of riparian trees: river cut-banks provide natural hydraulic excavation, revealing that cottonwoods are facultative pheatephytes. *Trees* 25(5): 907–917.

Simon A, Collison AJC. 2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. *Earth Surface Processes and Landforms* 27(5): 527–546.

Thomas RE, Pollen-Bankhead N. 2010. Modeling root-reinforcement with a fiber-bundle model and Monte Carlo simulation. *Ecological Engineering* 36(1): 47–61.

Van De Wiel MJ, Darby SE. 2007. A new model to analyse the impact of woody riparian vegetation on the geotechnical stability of riverbanks. *Earth Surface Processes and Landforms* 32(14): 2185–2198.

Vanoppen W, Poesen J, Peeters P, De Baets S, Vandevoorde B. 2016. Root properties of vegetation communities and their impact on the erosion resistance of river dikes. *Earth Surface Processes and Landforms* 41(14): 2038–2046.

Vennetier M, Zanetti C, Meriaux P, Mary B. 2015. Tree root architecture: new insights from a comprehensive study on dikes. *Plant and Soil* 387(1-2): 81–101.

Wynn TM, Mostaghimi S, Burger JA, Harpold AA, Henderson MB, Henry LA. 2004. Variation in root density along stream banks. *Journal of Environmental Quality* 33(6): 2030–2039.