Ultrasonic measurement of β-type pyrochlore oxide KOs$_2$O$_6$

Ryosuke Kamiya1, Masahito Yoshizawa1, Yoshiki Nakanishi1, Mitsuteru Nakamura1, Jun-ichi Yamaura2 and Zenji Hiroi2

1 Graduate School of Engineering, Iwate University, Morioka 020-8551, Japan
2 Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan

E-mail: yoshizawa@iwate-u.ac.jp

Abstract.

We have measured the temperature dependence of the elastic constants of KOs$_2$O$_6$ single crystal. The longitudinal elastic constant $\frac{1}{3}(C_{11} + 2C_{12} + 4C_{44})$ and the transverse one $\frac{1}{3}(C_{11} - C_{12} + C_{44})$, which are obtained by the corresponding sound velocities propagating along $<111>$ direction, show a remarkable elastic softening toward low temperatures. No elastic anomaly was observed at the superconducting transition temperature. On the other hand, an anomaly was found at $T_p = 7.5$ K. These results suggest that the irreducible representation of T_2 in T_d point group play an important role for the phase transition at T_p.

1. Introduction

Physical properties related to anharmonic vibration of atom in cage have been investigated intensively for many systems. Filled skutterudites and Clathlates show various interesting properties such as heavy electron mass, metal-insulator transition, peculiar magnetism and unconventional superconductivity. It has been believed that large anharmonic vibration, which is named rattling, is responsible for such interesting properties. Recently, β-type pyrochlore oxide AOs$_2$O$_6$ ($A = \text{Cs, Rb and K}$) has attracted much attention from view point of the correlation of superconductivity and rattling. They show superconductivity at 3.3 K, 6.3 K and 9.6 K for $A = \text{Cs [1], Rb [2, 3, 4] and K [5]}$, respectively.

In particular, KOs$_2$O$_6$ shows the highest superconducting transition temperature T_c among these compounds. Hiroi et al. reported that its superconducting property is of BCS-type s-wave strong coupling [6]. An additional anomaly was found at $T_p = 7.5$ K in the superconducting phase [7]. T_p is not affected by the magnetic field, then it has been discussed whether the rattling is responsible for the transition at T_p as well as T_c, because K ion in KOs$_2$O$_6$ is surrounded by a cage formed by K and O ions. Electronic structure and potential was calculated by Kuneš et al [8]. They showed the existence of the off-center potential having four minima sitting along neighboring K $<111>$ directions. The rattling phenomena concerning various physical properties have been investigated experimentally and theoretically for NMR and resistivity [9, 10].

We will report the elastic properties of KOs$_2$O$_6$ single crystals as a function of temperature. We found a large elastic softening at low temperatures. We will discuss the origin of the elastic anomalies, particularly the relation to T_p from the view of rattling, charge fluctuation and lattice instability.
2. Experimental

KOs$_2$O$_6$ single crystals used for the ultrasonic experiments were grown by annealing a mixture of KOsO$_4$ and OsO$_2$ at 748 K [6]. Typical size of the sample is $0.75 \times 0.5 \times 0.2$ mm3. The crystal structure of KOsO$_4$ is cubic with the space group of $Fd\bar{3}m$ [11]. Then, independent elastic constants are C_{11}, C_{12} and C_{44}. Due to a small size of the sample, we used the facet of (111) surface to glue the ultrasonic transducers. For the propagation of the sound along the $<111>$ direction, the elastic constants $C_L = \frac{1}{3}(C_{11} + 2C_{12} + 4C_{44})$ and $C_T = \frac{1}{4}(C_{11} - C_{12} + C_{44})$ can be obtained from the corresponding longitudinal and transverse sound velocities by using the relation of $C = \rho v^2$, where ρ and v are the density and the sound velocity of the sample, respectively. We have polished the (111) surfaces to remove defects or vacancies, which are produced during the crystal growth, to get better ultrasonic signals.

Ultrasonic measurements have been performed with the pulse echo apparatus by a phase comparison method. The samples used in the experiments are so thin, that we adopted the measurement techniques with a sapphire buffer rod to delay sound wave signals as well as usual method without a buffer.

We have adopted two types of piezoelectric transducers. LiNbO$_3$ 36$^\circ$ Y-cut transducer was used for generating and detecting longitudinal sound, and LiNbO$_3$ X-cut and quartz AC-cut transducers for transverse sound. It is because LiNbO$_3$ transducer has so high piezoelectric constant, that it may generate longitudinal wave as well as transverse one even when we use the transverse transducers. On the other hand, quartz transducers emits pure transverse wave, although their piezo-electric efficiency is lower and they are hard to get good ultrasonic signals. We did not obtain the absolute value of the sound velocity, due to a small size of the sample.

3. Results

Figure 1 shows the temperature dependence of the longitudinal elastic constant C_L below 100 K, and the transverse one C_T below 28 K. The C_L and C_T increase gradually with decreasing temperature. No elastic anomaly was found at the superconducting transition temperature at 9.6 K. However, they show a remarkable elastic softening toward low temperatures, and an anomaly was found at $T_p = 7.5$ K. In the both C_L and C_T measurements, the buffer rod and LiNbO$_3$ transducer were used. Amount of the anomaly in the elastic constants is 0.7 % and 2.2 % for C_L and C_T, respectively. We have also measured C_T by using quartz transducer. We have got almost the same temperature dependence of the transverse sound velocity for the both transducers. The amount is similar to that by LiNbO$_3$, although the amount of the anomaly

![Figure 1. (a) Temperature dependence of the longitudinal elastic constant C_L below 100 K. The inset shows the low temperature data without magnetic field and in 3T by (red) open circles and (green) diamonds (♦), respectively.](image-url)
depends on various experimental conditions such as the usage of the buffer, strictly speaking.

The inset of Fig. 1 shows the temperature dependence of C_L below 15 K in the magnetic field of 3 T and without field. No difference is found between them, including the details around T_c and T_p. The anomaly at T_p is not influenced by the magnetic field. It may suggest that T_p is related to a structural instability and not due to electronic origin.

4. Discussion and concluding remarks

We would like to discuss the origin of the low temperature elastic softening. No elastic anomaly at T_c suggests that the Grüneisen parameter for T_c is small. On the other hand, the Grüneisen parameter for T_p is considerably large. Where does the low temperature elastic softening come from? Longitudinal elastic constant C_L consists of C_{44} and bulk modulus $C_B = \frac{1}{3}(C_{11} + 2C_{12})$, and transverse C_T contains C_{44} and $C_E = \frac{1}{2}(C_{11} - C_{12})$. When the elastic softening appears only in C_L and not in C_T, the origin of the softening should be attributed to C_B. On the other hand, the C_E should be responsible when C_T shows an anomaly solely. In our experiment, it would be clear that the elastic mode responsible for the softening is C_{44}, because both C_L and C_T show elastic anomalies.

We tried to fit the experimental data by Jahn-Teller formula of $C = C_0 \frac{T-T_c}{T-T_Q}$, where T_c and T_Q are a critical temperature and a quadrupolar temperature, respectively \[12\]. The observed anomalies can be fitted well by this formula, as shown by solid curves in Fig. 2(a) and (b) for C_L and C_T, respectively. The parameters for the longitudinal elastic constant were evaluated as follows: $C_0 = 1.0001$, $T_c = 7.302$ K and $T_Q = 7.300$ K for C_L, and $C_0 = 1.0006$, $T_c = 7.570$ K and $T_Q = 7.560$ K for C_T. This Jahn-Teller formula is brought from a bilinear coupling between the order parameter and the strain. Therefore, the low temperature elastic softening comes from the fluctuation of the order parameter, which has the same symmetry as the strain.

Potassium (K) ion in the cage occupies T_d site symmetry. Recently, Hattori and Tsunetsugu proposed a mechanism of the transition at T_d by focusing a particularity of T_d symmetry \[13\]. Since the point group T_d has no inversion symmetry, the irreducible representation of total symmetry A_1 has a base function of xyz symmetry. This type of the symmetry belongs to A_{2u} representation in O_h point group, and would be a possible candidate of the order parameter that measures the degree of the off-center potential. However, the observed elastic anomaly cannot

![Figure 2](image-url)
be explained by the order parameter fluctuation of A_1, because it does not contain the elastic strain for C_{44} as a base function.

It should be remarked that T_d is particularly interesting. The polar vector with the symmetry of $\{x, y, z\}$, which is the basis of T_{1u} for O_h, and the elastic strain with the symmetry of $\{yz, zx, xy\}$ for C_{44} belong to the same irreducible representation (Table 1). According to the potential calculation of β-type pyrochlore oxide by Kunčes and Pikett, KOs$_2$O$_6$ has a shallow off-centered potential among this family. The excited multiplet, that is thought to be triplet, is lifted at 8K from the ground state singlet [14].

Such singlet-triplet system with small energy separation would bring about the elastic softening, which is mainly due to the excited state. This paper cannot deny a participation of C_B and C_E in the elastic softening. However, our experiment shows clearly C_{44} to play a relevant role. It will be a key to the solution of T_p transition, particularly the relation to the rattling phenomena.

Table 1. Irreducible representations, their base functions and corresponding elastic constants of point group T_d and O_h.

T_d	O_h	Base functions	Elastic constant
A_1	A_{1g}, A_{2u}	r^2, $x^4 + y^4 + z^4 - \frac{3}{2} r^4$, xyz	$C_B = \frac{1}{9} (C_{11} + 2C_{12})$
A_2	A_{2g}, A_{1u}	$x^4 (x^2 - y^2) + y^4 (z^2 - x^2) + z^4 (x^2 - y^2)$, $(A_{2g}) \times x y z$	
E	E_g, E_u	$\{u, v\}, \{x y z v, -x y z u\}$	$C_E = \frac{1}{2} (C_{11} - C_{12})$
T_1	T_{1g}, T_{2u}	$\{y z \alpha, z x \beta, y x \gamma\}$, $\{x \alpha, y \beta, z \gamma\}$	C_{44}
T_2	T_{2g}, T_{1u}	$\{y z, x z, x y\}$, $\{x, y, z\}$	

$u \equiv 2z^2 - x^2 - y^2$, $v \equiv \sqrt{3} (x^2 - y^2)$
$\alpha \equiv y^2 - z^2$, $\beta \equiv z^2 - x^2$, $\gamma \equiv x^2 - y^2$

Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas ”Heavy Electrons” (No. 20102007) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References
[1] Yonezawa S, Muraoka Y and Hiroi Z 2004 J. Phys. Soc. Jpn. 73 1655
[2] Yonezawa S, Muraoka Y, Matsushita Y and Hiroi Z 2004 J. Phys. Soc. Jpn. 73 819
[3] Kazakov S M, Zhigadlo N D, Brühwiler M, Batlogg B, and Karpinski J 2004 Supercond. Sci. Technol. 17 1169
[4] Brühwiler M, Kazakov S M, Zhigadlo N D, Karpinski J and Batlogg B 2004 Phys. Rev. B 70 020503(R)
[5] Yonezawa S, Muraoka Y, Matsushita Y and Hiroi Z 2004 J. Phys. Condens. Matter 16 L9
[6] Hiroi Z, Yonezawa S, Nagano Y and Yamaura J, 2007 Phys. Rev. B 76 014523
[7] Hiroi Z, Yonezawa S and Yamaura J 2005 J. Phys. Soc. Jpn. 74 1682
[8] Kunčes J, Jeong T and Pikett W E 2004 Phys. Rev. B 70 174510
[9] Yoshida M, Arai K, Kaido R, Takigawa M, Yonezawa S, Muraoka Y and Hiroi Z 2007 Phys. Rev. Lett. 98 197002
[10] Dahm T and Ueda K 2007 Phys. Rev. Lett. 99 187003
[11] Yamaura J, Yonezawa S, Muraoka Y and Hiroi Z 2005 J. Solid State Chem. 179 336
[12] Thalmeier P and Lüthi B 1993 Handbook on the Physics and Chemistry of Rare Earths Vol. 14, ed K A Gschneidner Jr and L Eyring (Amsterdam: Elsevier) p 245
[13] Hattori K and Tsunetsugu H 2009 J. Phys. Soc. Jpn. 78 013603
[14] Kunčes J and Pikett W E 2006 Physica B 378-380 898