Molecular characterization of Umbre virus (Bunyaviridae)
Pragya D Yadav, Akhilesh C Mishra and Devendra T Mourya*

Abstract
Umbre (UMB) virus was first isolated from India in 1955 and classified as Orthobunyavirus (Turlock serogroup). Eight isolates of this virus, isolated from Culex mosquitoes were characterized on the basis of partial glycoprotein (G2) gene. Twenty-six percent differences at nucleotide level while 17% differences at amino acid level were noted within different isolates. Phylogenetic data shows that this virus represents a distinct group within the genus Orthobunyavirus.

Findings
The viruses of Bunyaviridae family are spherical particles, range 80 to 120 nm in diameter and share a common genetic organization of three predominantly negative stranded RNA segments (S, M and L). Based on antigenic, genetic and ecological relatedness, the Bunyaviruses are divided into five genera. The genus Orthobunyavirus includes approximately 60 viruses, which are known to cause disease in humans (Elliot, 1996). Virological surveillance of these viruses depends primarily on detecting the viruses in arthropod vector populations in nature. Although, serological test like immunoassays are available for antigen detection for a few viruses, cross-reaction in closely related viruses cannot be ignored (Artsob et al., 1984; Hildreth et al., 1982).

UMB viruses used in this study are listed in (Table 1) along with their geographical origin, host source and year of isolation. The available eight strains of this virus was procured from the virus registry of National Institute of Virology, Pune and propagated in VeroE-6 cells. Cytopathic effect (CPE) was observed during 4th - 6th post infection day. Infected cells were harvested, centrifuged and supernatant was used for molecular characterization of the virus.

RNAs were isolated using chloroform, isoamylalcohol and further purified using RNAaid kit (Biogene), according to the manufacturer's instructions. RNAs were dissolved in 50 μl nuclease free water. Different sets of primers were used to amplify partial N, L and M gene. Partial M gene of 570 bp could be amplified using primer pair M14C and M619R, as described by Bowen et al., (2001), represents the nucleotide sequences of the N-terminal half.
Table 1: Details of the virus strains used in the current study

Strain no.	Year of isolation	Host association	Place of isolation	Accession No.
G-1424	1955	Culex bitaeniornychus	Umbre, Maharashtra	EU697948
G-7441	1956	Cx. vishnui	Kammavanpet, Tamil Nadu	EU697945
G-8335	1956	Cx. vishnui	Minnal, Tamil Nadu	EU697946
G-9601	1956	Cx. vishnui	Sulari, Tamil Nadu	EU697947
G-16283	1957	Cx. vishnui	Sathuperi, Tamil Nadu	EU678356
G-16310	1957	Cx. vishnui	Sathuperi, Tamil Nadu	EU697942
631308	1963	Cx. vishnui	Vellore, Tamil Nadu	EU697944
809365	1980	Cx. vishnui	Muduvadi, Karnataka	EU697943

of the G2 glycoprotein. Superscript III single step RT-PCR with Platinum Taq DNA polymerase kit (Invitrogen) was used for amplification of partial M gene according to the manufacturer’s instructions.

Amplified products were detected in 2% agarose gel after staining with ethidium bromide in Tris/acetate/EDTA buffer (TAE). A desired size of 575 bp product was purified using QIAquick gel extraction kit (Qiagen), as per manufacturer’s instructions. The sequences of amplified products were determined by using ABI PRISM BigDye Terminator V3.1 cycle sequencing ready reaction kit (Applied Biosystems). Amplification primers were used to sequence the amplified products. Cycle sequencing PCR program was used for 96°C-1 min, 96°C-10 sec, 50°C-5 sec and extension of 2 min at 60°C for 30 cycles.

The partial M gene sequence was curedt with the help of KODON Software and aligned with known Gene Bank sequences of Bunyamwera serogroup, California serogroup, and Kaeng Khoi viruses using clastal W program. Phylogenetic analysis was performed using Mega 3.0 by using neighbor-joining algorithm with thousand bootstrap values.

Partial M gene sequences showed maximum homology with Bunyamwera serogroup virus. Nucleotide and amino acid similarity within eight isolates varied from 74–100% and 83–99% respectively. Isolate G1424 and 809365 come together with 6% and 1% difference of nucleotide and amino acid respectively, while other six isolates club together with 5% nucleotide and 4% amino acid differences (Figure 1). Nucleotide and amino acid homology in UMB viruses ranged from 49–75% and 25–84% respectively, while other six isolates club together with 6% and 1% difference of nucleotide and 83–99% respectively. Isolate G1424 and 809365 not only highly homologues on the genomic level but also in their cell infectivity pattern. These two strains took more time to show CPE in comparison of other six isolates. Complete genome sequencing may shed light, why these two isolates are separate from other six, which club together despite isolated from two different mosquito species.

UMB virus strain G 1424 and 809365 not only highly homologues on the genomic level but also in their cell infectivity pattern. These two strains took more time to show CPE in comparison of other six isolates. Complete genome sequencing may shed light, why these two isolates are separate from other six, which club together despite isolated from two different mosquito species.

Turlock and Umbre virus are distinct from each other based on neutralization test (Calisher et al., 1984). Availability of more sequences of Turlock group may answer about placement of this group of viruses. Bunyaviruses being three segmented RNA viruses have the capacity to reassort their segments into new genetically distinct viruses, if the target cells are subject to dual infection. The possibility of drift, shift and UMB virus evolution towards an emerging disease pathogen cannot be predicted based on partial sequences. Complete genome sequencing of UMB virus can possibly suggest whether there is any reassortment between three genes of this virus as known for Ngeri, Batai and Jatobal virus (Briese et al., 2006; Yanase et al., 2006; Saeed et al., 2001).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PDY performed the PCR and sequencing. ACM helped in preparation of manuscript. DTM and PDY designed, coordinated the study and prepared the manuscript.
Acknowledgements
The authors are thankful to Department of Science and Technology, Delhi for providing the funds and thanks to Mr. Rajen Lakra for technical help during the study.

References
1. Artsob H, Spence LP, Thing C: Enzyme-linked immunosorbent assay typing of California serogroup viruses isolated in Canada. J Clin Microbiol 1984, 20:276-280.
2. Bowen MD, Trappier SG, Sanchej AJ, Meyer RF, Goldsmith CS, Zeki SR, Dunster LM, Peters CJ, Ksiazek TG, Nichol ST: A reassortant bunyavirus isolated from acute hemorrhagic fever cases in Kenya and Somalia RVF task Force. Virology 2001, 291:185-190.
3. Briese T, Bird B, Kapono K, Nichol ST, Lipkin WI: Batai and Ngeri viruses, M segment reassortment and association with severe febrile disease outbreaks in East Africa. J Virol 2006, 80(11):5627-5630.
4. Calisher CH, Laznick J, Wolf KL, Muth DJ: Antigenic relationships among Turlock serogroup Bunyaviruses as determined by neutralization test. Acta Virol 1984, 28:148-151.

Figure 1
Phylogenetic comparison of partial M RNA segments of the Umbre virus with other Orthobunyaviruses. Using Mega 3.0 software Neighbor-joining analysis performed with 1000 bootstrap replicates. Umbre virus forms a separate group within Orthobunyaviruses. Partial M segment source are: Umbre virus strain no G-16310 (EU697942), 809365 (EU697943), 631308 (EU697944), G-7441 (EU697945), G-8335 (EU697946), G-9601 (EU697947), G-1424 (EU697948) and G-16283 (EU678356).
5. Chandy S, Mitra S, Sathish N, Vijayakumar TS, Abraham OC, Jesudason MV, Abraham P, Yoshimatsu K, Arikawa J, Sridharan G: A pilot study for serological evidence of hantavirus infection in human population in south India. *Indian J Med Res* 2005, 122:211-215.

6. Dandawate CN, Rajagopalan PK, Pavri KM, Work TH: Virus isolations from mosquitoes collected in North Arcot District, Madras State and Chittoor district, Andhra Pradesh between November 1955 and October 1957. *Indian J Med Res* 1969, 57:1420-1426.

7. Elliott RM, The Bunyaviridae: Concluding remarks and future prospects. In *The Bunyaviridae* Edited by: Elliott RM. New York: Plenum Press; 1996:295-333.

8. Hildreth SW, Beaty BJ, Meegan JM, Frazier CL, Shope RE: Detection of La Crosse arbovirus antigen in mosquito pools, application of chromogenic and fluorogenic enzyme immunoassay systems. *J Clin Microbiol* 1982, 15:877-884.

9. Joshi MV, Geervarghese G, Joshi GD, Ghodke YS, Mourya DT, Mishra AC: Isolation of Ganjam virus from ticks collected off domestic animals around Pune, Maharashtra. *J Med Entomol* 2005, 42:204-206.

10. Saeed MF, Li L, Wang H, Weaver SC, Barrett ADT: Phylogeny of the Simbu serogroup of the genus Bunyavirus. *J Gen Virol* 2001, 82:2173-2181.

11. Yanase T, Kato T, Yamakawa, Takayoshi K, Nakamura K, Kokuba T, Tsuda TM: Genetic characterization of Batai virus indicates a genomic reassortment between orthobunyaviruses in nature. *Arch Virol* 2006, 151:2253-2260.