A double-edged sword: parental care increases risk of offspring infection by a maternally vectored parasite

Rebecca Jean A. Millena1,2 and Jay A. Rosenheim3

1RGGS, Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
2Ecology and Evolution, Entomology and Nematology, University of California Davis, Davis, CA, USA
3Department of Entomology and Nematology, and Center for Population Biology, University of California Davis, Davis, CA, USA

Parental care can protect offspring from predators but can also create opportunities for parents to vector parasites to their offspring. We hypothesized that the risk of infection by maternally vectored parasites would increase with the frequency of mother–offspring contact. Ammophila spp. wasps (Hymenoptera: Sphecidae) build nests in which they rear a single offspring. Ammophila species exhibit varied provisioning provisioning behaviours: some species enter the nest once to provision a single, large caterpillar, whereas others enter the nest repeatedly to provision with many smaller caterpillars. We hypothesized that each nest visit increases the risk of offspring parasitism by Paraxenos lugubris (Strepsiptera: Xenidae), whose infectious stages ride on the mother wasp (phoresy) to reach the vulnerable Ammophila offspring. We quantified parasitism risk by external examination of museum-curated Ammophila specimens—the anterior portion of P. lugubris protrudes between the adult host’s abdominal sclerites and reflects infection during the larval stage. As predicted, Ammophila species that receive larger numbers of provisions incur greater risks of parasitism, with nest provisioning behaviour explaining ca 90\% of the interspecific variation in mean parasitism. These findings demonstrate that parental care can augment, rather than reduce, the risk of parasite transmission to offspring.

1. Introduction

Parental care can provide important fitness benefits to offspring. By protecting offspring against natural enemies, including predators, pathogens and parasites, parents can substantially enhance the likelihood of successful offspring development [1,2]. Parental care is, however, associated with costs for the parents. Several studies have demonstrated that the costs of extended parental care can include enhanced risks of predation or parasitism for the parents [2–5].

Although it is generally expected that the offspring benefit from parental care, in some cases, parental activity associated with the care of offspring can also attract the attention of predators. Studies of nesting birds have demonstrated increased predation risk incurred by offspring with increased parental care [6]. Here we aim to examine another potential cost of parental care that may be incurred by offspring: enhanced risk of parasitism. We conduct what is, to our knowledge, the first cross-species comparison of the influence of parental care strategies on offspring parasitism risk.

Some parasites have exploited parental care to create opportunities for transmission, thereby converting the expected fitness benefits for offspring into fitness costs. This can be important either when the parent is itself infected and thus can...
be a source of infectious propagules (vertical transmission), or when the parent is uninfected but can still act as a vector of phoretic infectious stages of a parasite [7,8].

We examined the relationship between parental care and parasitism risk by studying solitary ground-nesting wasps in the genus Ammophila (Hymenoptera: Sphecidae) and their parasi-
type Paraxenos lugubris (Strepsiptera: Xenidae) [9–11]. Paraxenos is an endoparasite that causes parasitic castration of its hosts—parasitized female Ammophila adults do not exhibit normal nest-
ing behaviour, instead spending all of their time visiting flowers to imbibe nectar. When an Ammophila harbouring a mature female Paraxenos visits a flower, the Paraxenos female releases her free-living, phoretic first instar ‘triungulin’ larvae onto the flower [9,12]. This infective stage cannot directly infect adult hosts; rather, it must gain access to the vulnerable, larval stage of its host, Ammophila. The triungulin larvae wait on the flower for an adult Ammophila to visit, upon which they will attach to the wasp. If the unsuspecting wasp proves to be a female, she may then carry the parasites to her nest, where they disembark and attack her developing offspring. Thus, the mother functions as a vector of the infective stage of P. lugubris [9]. Because the nests of wasps and bees are typically highly pro-
tected, many parasites employ phoresy to gain entry, including satel-
lite flies (Diptera: Miltogrammini), meloid and rhizophorid beetles, parasitic mites, and fungal pathogens [13–16].

Ammophila wasps dig single-celled nests in which they rear a single offspring, providing it with caterpillars as food. Ammophila spp. have highly varied offspring provision-

behave: some Ammophila species provide a single, large caterpillar to each offspring, whereas other species pro-

vision each nest with multiple, small caterpillars [12,17,18]. Single-prey provisioning produces just one point of contact between the mother and offspring before the nest is sealed for the larva’s development, whereas multiple-prey provi-

dioning produces multiple points of contact [1,8]. Female Ammophila do clean the nest during their provisioning trips, and cleaning trips have been shown to remove some parasite larvae or adults from the nest [19,20]. We hypothesize that multiple contacts between the Ammophila mother and her off-

spring may still increase parasitism risk for the offspring if the increased parasite exposure more than offsets the increased nest cleaning activity associated with multiple provi-

sioning visits. To test this hypothesis, we conducted a comparative test of parasitism risk versus nest provisioning behaviour for 16 species of Ammophila found in California.

2. Material and methods

We gathered records of the provisioning behaviour for Californian species of Ammophila from the literature. Using ‘Ammophila’ and ‘provisioning’ as terms, we conducted searches via the Web of Science, BIOSIS and Google Scholar search engines. We sup-

plemented the published literature with our own unpublished field observations. When multiple provisioning records existed for a species, we calculated an average across the studies to produce a single estimate for the mean prey provisioned. To quantify parasit-

ism risk, we examined all specimens of Ammophila housed in the Bohart Museum of Entomology, University of California, Davis. This Ammophila collection had been curated by A. Menke, who described many of these species [21], producing a high degree of confidence in the species identifications of all specimens examined. Parasitized Ammophila specimens stored in the Strepsiptera collections were also included in our dataset. Paraxenos lugubris develops as an endoparasite, but its anterior end protrudes visibly from the abdomen of its host as it completes its development, allowing parasitism to be recorded in museum-preserved specimens (figure 1). This trait allowed us to convert an extensive museum col-

lection of specimens into a large, comparative dataset quantifying parasitism. We examined each specimen with a stereomicroscope and scored the presence or absence of Paraxenos. Wasps were scored as parasitized when they had a female Paraxenos still present in their abdomen, or when they had a male Paraxenos either still pre-

sent and enclosed in a pupal casing, or previously emerged from the abdomen, leaving behind a still-visible pupal exoskeleton (winged males emerge from their host to seek out females for mating, whereas the wingless females never leave their hosts). We also recorded Ammophila wing length as an index of host size, and the col-

lection date for each specimen. Only species whose ranges include California were chosen for use in this study, as these species were reliably well represented in the museum’s holdings. Our final data-

set included all 16 species for which established estimates of mean prey provisioned were available (table 1). We scored a total of 8957 specimens collected between 1902 and 2009.

We analysed parasitism data with a generalized linear mixed-effects model with binomial variance and a logistic link function, using the R package lme4 [29] (electronic supplementary material, table S1). The model included the mean number of prey provisioned, month and size as fixed effects, species ID and collection location (county) as random effects, and parasitism (yes or no) as a response. The two continuous predictor variables, host wasp size and the mean number of caterpillars provisioned per nest, were not signifi-

ically correlated across species (r = 0.207, N = 16, p = 0.44). We included county in the model as a random effect to control for any possible spatial variation in parasitism rates. We also ran an ANOVA using the R package car [30] to evaluate the main effects of each variable in the model. To ensure the statistical independence of our species-level observations, we conducted phylogenetic con-

trasts on a subset of our data with the R package ape [31]. These analyses were based on a molecular phylogeny of the tribe Ammophilia published by Field et al. (2011), which includes 10 of the 16 Ammophila species in our main dataset: A. azteca, A. aberti, A. dysnica, A. uraria, A. femurrubra, A. nigricans, A. marshi, A. stangei, A. c. Wrightii and A. procera [17]. All statistical modelling code is available in the electronic supplementary material, appendix.

3. Results

The mean number of prey provisioned per offspring exerts a dominant influence on parasitism risk in Ammophila spp. (GLMM, effect for provision number: 0.425 ± 0.0390 (s.e.), z = 10.9, p < 0.0001; figure 2), explaining more than 90% of the observed interspecific variation in parasitism. Mean host size had no significant influence on observed parasitism (GLMM, effect for size: −0.055 ± 0.049, z = −0.650, p = 0.52). Seasonal variation in parasitism was observed (ANOVA, p < 0.0001), with lower parasitism rates observed in wasps collected in April, May and August when compared to January as a reference level (electronic supplementary material, table S1). Phylogenetic contrasts performed with the reduced dataset of 10 Ammophila species confirmed a significant effect on parasitism of the number of caterpillars provisioned per nest (1.064 ± 0.192, z = 0.00853, p < 0.0001; electronic supplementary material, figure S2).

4. Discussion

Ammophila species with more numerous nest provisioning visits incur an increased risk of parasitism by Paraxenos

Downloaded from https://royalsocietypublishing.org/ on 06 June 2022
lugubris, a parasite that exploits the mother wasp as a vector for its triungulin larvae. Singly provisioning species had parasitism rates ranging from zero to 0.33%, whereas Ammophila aberti, with the highest mean number of caterpillars provisioned per offspring (8.5, table 1), had the highest parasitism rate (9.8%). Importantly, we can infer unambiguously that this positive correlation reflects an influence of wasp provisioning on parasitism risk, rather than an influence of parasitism on wasp nesting behaviour, because parasitized wasps are castrated by the parasite and do not nest. This host–parasite system reveals that parental care can be a double-edged sword—while Ammophila spp. mothers can often protect their offspring from parasites and predators, they can also act as vectors of the infectious stages of Paraxenos, elevating the parasitism risk for their offspring.

Given that vertical transmission of pathogens is a major pathway of infection for parasites and pathogens [32–34], our results suggest that parasitism risk for offspring is likely to be an underappreciated cost of parental care.

It is possible that parasitized Ammophila specimens might have been under- or over-represented in the specimens saved by the museum. However, we think it is unlikely that any possible bias would have been connected to the parental care traits of the host species, which would have been unknown to the collectors in virtually all cases.

Five out of the seven singly provisioning species had no observed parasitism. This may reflect either that the true parasitism rate is too small to be detected in our samples, or that...
these species are not actually hosts for *P. lugubris*. Almost all of the species studied here were not previously documented as hosts for *Paraxenos* [10], and thus we cannot rely on the published literature to establish the full host range for this parasite. The basis for the extremely low parasitism rates observed for singly provisioning species is at present not fully explained. One way to quantify this deficit of expected parasitism for singly provisioning species is to note that the y-intercept of the linear regression shown in figure 2 is significantly negative, rather than being near zero, as would be expected if parasitism risk were directly proportional to the number of prey provisioned. Research exploring the cues used by the triungulin larvae of *Paraxenos* to disembark from their phoretic hosts may be needed to answer this question.

We similarly do not know the basis for the observed seasonal (monthly) variation in observed parasitism. There may be

Table 1. Nest provisioning behaviours for each of 16 species of *Ammophila* whose ranges include California and for which estimates were available in the literature. Multiple provisioning records were averaged for eight species: *A. aberti*, *A. azteca*, *A. dysmica*, *A. harti*, *A. juncea*, *A. placida*, *A. pruinosa* and *A. urinaria*.

Ammophila species	mean prey provisioned per offspring	sources
A. aberti	8.5	Jiménez-Jiménez [22], Parker [1], Menke [23], Powell [24] and Evans [12]
A. azteca	7.5	Rosenheim (unpublished data), Bohart and Menke [25] and Menke [23]
A. boharti	1	Rosenheim (unpublished data)
A. dysmica	1.75	Rosenheim [19,26]
A. femurrubra	2	image and records taken by Melton in 2014, https://bugguide.net/node/view/1055016
A. harti	5	Hager & Kurzcewski [27], Parker [1], Menke [23] and Evans [12]
A. juncea	1.5	Parker [1], Menke [23] and Evans [12]
A. marshi	1	Rosenheim (unpublished data)
A. nigricans	1	Parker [1], Menke [23] and Evans [12]
A. placida	3	Menke [23] and Evans [12]
A. proceria	1	Parker [1], Menke [23] and Evans [12]
A. pruinosa	7.5	Parker [1], Menke [23], Evans [12] and Hicks [28]
A. stangei	1	Rosenheim (unpublished data)
A. urinaria	3.5	Parker [1], Menke [23] and Evans [12]
A. wrightii	1	Parker [1] and Menke [23]
A. zanthoptera	1	Parker [1] and Evans [12]

Figure 2. Parasitism data for 16 North American *Ammophila* species. Data points for singly provisioning species with zero parasitism were jittered along the x-axis for visibility. Shaded area represents the 95% confidence interval for the linear regression. Numbers in the legend indicate how many specimens were scored for each species.
seasonal variation in the activity of Paraxenos that shapes these patterns; however, our data reveal only when the parasitized adults were collected, not when the parasites initially penetrated the host nest. It is difficult to connect the timing of the parasitism event with the timing of emergence of the parasitized adult, especially for multivoltine Ammophila species. Some helpful information has been published by Kairinhambmy et al. [9] on the seasonal activity and life cycle of P. lugubris attacking Ammophila, but an explanation for the temporal variation in parasitism risk documented here requires further study [9].

This project has employed a comparative approach to test the hypothesis that parental care can amplify, rather than reduce, parasitism risk to offspring when parents can vector parasites to their offspring. Strygesipteran parasites may be especially valuable for comparative studies of host–parasite interactions, because data collection for a large number of host species over long time periods and with deep sample sizes for each host species is feasible. The insect specimens that have been curated in entomology museums preserve this record of parasitism. The ease of data collection will allow researchers to merge historical and contemporary data sets, providing more thorough analyses. This study joins many others demonstrating the key role of museums as repositories for key biological data [35–37].

References

1. Parker FD, Tepedino VJ, Vincent DL. 1980 Observations on the provisioning behavior of Ammophila oberti Haldeman (Hymenoptera: Sphecidae). Psyche 87, 249–258. (doi:10.1155/1980/15868)

2. Wong JW, Meunier J, Koelliker M. 2013 The influence of parasite pressure on the seasonal activity and life cycle of Ammophila dysmica (Hymenoptera: Sphecidae) en Baja California Sur, México. Act. Zoo. Mex. 23, 226–230. (doi:10.21829/azm.2008.242719)

3. Smith C, Wootton RJ. 1995 The costs of parental care under the risk of predation: how the hypothesis that parental care can amplify, rather than reduce, parasitism risk to offspring when parents can vector parasites to their offspring. Strygesipteran parasites may be especially valuable for comparative studies of host–parasite interactions, because data collection for a large number of host species over long time periods and with deep sample sizes for each host species is feasible. The insect specimens that have been curated in entomology museums preserve this record of parasitism. The ease of data collection will allow researchers to merge historical and contemporary data sets, providing more thorough analyses. This study joins many others demonstrating the key role of museums as repositories for key biological data [35–37].

4. Agrawal AF, Combs N, Brodie ED. 2005 Insights into mediated parent to offspring transmission in an avian malaria-like parasite. Mol. Ecol. 14, 1355–1363. (doi:10.1111/mec.13115)

5. Arundell KL, Wedell N, Dunn AM. 2014 The influence of parasite pressure on the seasonal activity and life cycle of Ammophila dysmica (Hymenoptera: Sphecidae): influence of parasite pressure. Ann. Ent. Soc. Am. 107, 739–749. (doi:10.1093/aes/80.6.739)

6. Ghalambor CK, Peluc SI, Martin TE. 2013 Plasticity of parental care under the risk of predation: how much should parents reduce care? Biol. Lett. 9, 20130154. (doi:10.1098/rsbl.2013.0154)

7. Reguera P, Giméndez M. 1999 Predation costs associated with parental care in the golden egg bug Phytomorpha laciniosa (Heteroptera: Coreidae). Behav. Ecol. 10, 541–544. (doi:10.1093/beheco/10. 5.541)

8. Chakarov N, Linke B, Boemer M, Goesmann A, Krüger O, Hoffman J. 2015 Apparent vector-mediated parent to offspring transmission in an avian malaria-like parasite. Mol. Ecol. 24, 1355–1363. (doi:10.1111/mec.13115)

9. Kairinhambmy J, Lechery GK, Mcmahon DP, Byson AL, Johnston JS. 2012 A free ride and lunch: stylization in the solitary hunting wasp, Ammophila fe RaMady Murray and A. pictipes (Walsh) (Hymenoptera: Sphecidae) by Panaxenos lugubris Pierce (Strygesiptera). Proc. Ent. Soc. N. 114, 464–475.

10. Cook JL. 2013 Annotated catalog of the order Strygesiptera of the World. Trans. Am. Ent. Soc. 145, 121–267. (doi:10.3157/061.145.0202)

11. Wojciech P. 2020 Catalog of Sphecidae (Hymenoptera, Apoidea, Sphecidae). San Francisco, CA: California Academy of Sciences.

12. Menke AS. 2020 A revision of the North American species of the communal bee Andrena agilissima (Hymenoptera: Andrenidae). Ph.D. thesis, University of California, Davis.

13. Spofford MG, Kurczewski FE. 1990 Comparative larvipositional behaviours and cephaloparisan frequencies of Nearctic species of Miltogrammini (Diptera: Sarcoptagidae). J. Nat. Hist. 24, 731–755. (doi:10.1111/j.1096-3642.1990.tb00751.x)

14. Polidori C, Scanni B, Scamoni E, Giovanetti M, Andrietti F, Paxton RJ. 2005 Satellite flies (Leucophora personata, Diptera: Anthomyiidae) and other dipteran parasites of the communal bee Andrena agilissima (Hymenoptera: Andrenidae) on the island of Elba, Italy. J. Nat. Hist. 39, 2745–2758. (doi:10.1111/j.1096-3508.2005.00114210)

15. Saalf-Gershenz LS, Millar JG. 2006 Phoretic nest parasites use sexual deception to obtain transport to their host’s nest. Proc. Natl Acad. Sci. USA 103, 14 039–14 044. (doi:10.1073/pnas.0603901103)

16. Danforth BN, Minckley RL, Neff JL, Fawcett F. 2019 The solitary bees: biology, evolution, conservation. Princeton, NJ: Princeton University Press.

17. Fied J, Ohl M, Kennedy M. 2011 A molecular phylogeny for digger wasps in the tribe Ammophilini (Hymenoptera, Apoidea, Sphecidae). Syst. Ent. 36, 732–740. (doi:10.1111/j.1365-3113.2010.00591.x)

18. Fied J, González-Voyer A, Boulton RA. 2020 The evolution of parental care strategies in subsocial wasps. Behav. Ecol. Sociobiol. 74, 78. (doi:10.1007/s00265-020-02853-w)

19. Rosenheim JA. 1987 Nesting behavior and biometrics of a solitary ground-nesting wasp, Ammophila dy nius (Hymenoptera: Sphecidae): influence of parasite pressure. Ann. Ent. Soc. Am. 80, 739–749. (doi:10.1093/aesa/80.6.739)

20. Rosenheim JA. 2021 A solitary ground-nesting wasp truncates its parental investment in response to detection of parasites. Ecol. Lett. 46, 394–405. (doi:10.1111/eol.12981)

21. Menke AS. 2020 The Ammophila of North Central America (Hymenoptera, Sphecidae). Bisbee, AZ: Ammophila Press.

22. Jiménez-Jiménez ML, Palacios-Canteli C. 2008 Historia natural de la anidación de Ammophila oberti Haldeman (Hymenoptera: Sphecidae) en Baja California Sur, México. Act. Zoo. Mex. 24, 227–230. (doi:10.21829/azm.2008.242719)

23. Menke AS. 1965 A revision of the North American Ammophila (Hymenoptera, Sphecidae). Ph.D. thesis, University of California, Davis.

24. Powell JA. 1964 Additions to the knowledge of the nesting behavior of North American Ammophila (Hymenoptera: Sphecidae). J. KS Ent. Soc. 57, 203–239.
25. Bohart RM, Menke AS. 1976 Sphecid wasps of the world: a generic revision. Berkeley, CA: University of California Press.

26. Rosenheim JA. 1990 Aerial prey caching by solitary ground-nesting wasps: a test of the predator defense hypothesis. J. Ins. Beh. 3, 241–250. (doi:10.1007/BF01417915)

27. Hager BJ, Kurczewski FE. 1986 Nesting behaviour of Ammophila hartii (Fernald) (Hymenoptera: Sphecidae). Am. Midl. Nat. 116, 7–2. (doi:10.2307/2425933)

28. Hicks CH. 1935 Notes on rare western sphecid wasps. Pan. Pac. Ent. 11, 97–102.

29. Bates D et al. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. (doi:10.18637/jss.v067.i01)

30. Fox J et al. 2012 Package ‘car’. Companion to applied regression. Vienna, Austria: R Foundation for Statistical Computing. R package version 3.0.11.

31. Paradis E et al. 2019 ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. R package version 5.6.1.

32. Fine PE. 1975 Vectors and vertical transmission: an epidemiologic perspective. Ann. NY Acad. Sci. 266, 173–194. (doi:10.1111/j.1749-6632.1975.tb35099.x)

33. Shoop WL. 1991 Vertical transmission of helminths: hypobiosis and amphiparatenes. Paras. Today 7, 51–54. (doi:10.1016/0169-4758(91)90189-U)

34. Bua J, Volta BJ, Velazquez EB, Ruiz AM, Rissio AM, Cardoni RL. 2012 Vertical transmission of Trypanosoma cruzi infection: quantification of parasite burden in mothers and their children by parasite DNA amplification. Trans. R. Soc. Trop. Med. Hyg. 106, 623–628. (doi:10.1016/j.trstmh.2012.03.015)

35. Blaimer BB, Lloyd MW, Guillory WX, Brady SG. 2016 Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS ONE 11, e0161531. (doi:10.1371/journal.pone.0161531)

36. Meineke EK, Davies TJ, Daru BH, Davis CC. 2019 Biological collections for understanding biodiversity in the Anthropocene. Phil. Trans. R. Soc. B 374, 20170386. (doi:10.1098/rstb.2017.0386)

37. Raxworthy CJ, Smith BT. 2021 Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol. Evol. 36, P1049–P1060. (doi:10.1016/j.tree.2021.07.009)

38. Millena RJA, Rosenheim JA. 2022 Data from: A double-edged sword: parental care increases risk of offspring infection by a maternally vectored parasite. Dryad Digital Repository. (doi:10.5061/dryad.qnk98sfjg)

39. Millena RJA, Rosenheim JA. 2022 A double-edged sword: parental care increases risk of offspring infection by a maternally vectored parasite. FigShare. (doi:10.6084/m9.figshare.c.5989958)
Table S1
Generalized linear mixed model (GLMM) examining predictors of parasitism of *Ammophila* spp. by the strepsipteran parasite *Paraxenos lugubris*. No effect for December is reported because no specimens were collected during the month.

Family: binomial (logit)
Formula: parasitism ~ mean_prey_provisioned + month + size + (1 | county) + (1 | species_id)

	AIC	BIC	logLik	deviance	df.resid
	2023.2	2129.7	-996.6	1993.2	8885

Scaled residuals:
Min 1Q Median 3Q Max
-1.3796 -0.1723 -0.0778 -0.0483 20.4641

Random effects:
Groups Name Variance Std.Dev.
county (Intercept) 2.151e+00 1.466789
species_id (Intercept) 1.132e-05 0.003365

Number of obs: 8900, groups: county, 408; species_id, 16

Fixed effects:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|--------------|----------|------------|---------|----------|
| (Intercept) | -3.81391 | 1.55060 | -2.460 | 0.01391 * |
| mean_prey_provisioned | 0.42523 | 0.03900 | 10.903 | < 2e-16 *** |
| february | -1.21956 | 2.28454 | -0.534 | 0.59346 |
| march | -19.02527| 58.73114 | -0.324 | 0.74598 |
| april | -4.13294 | 1.67859 | -2.462 | 0.01381 * |
| may | -4.03884 | 1.56078 | -2.588 | 0.00966 ** |
| june | -2.36130 | 1.51532 | -1.558 | 0.11917 |
| july | -2.18309 | 1.51440 | -1.442 | 0.14943 |
| august | -3.20239 | 1.52115 | -2.105 | 0.03527 * |
| september | -2.42127 | 1.51787 | -1.595 | 0.11067 |
| october | -1.81854 | 1.54327 | -1.178 | 0.23865 |
| november | -1.73756 | 1.63696 | -1.061 | 0.28848 |
| size | -0.03189 | 0.04906 | -0.650 | 0.51571 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
$y = 1.2 x$

$R = 0.9, p = 0.00085$
Table S2
ANOVA reporting main effects for predictors of *Ammophila* parasitism in the generalized linear mixed model

Analysis of Deviance Table (Type II Wald chisquare tests)

Predictor	Chisq	Df	Pr(>Chisq)
mean_prey_provisioned	118.8772	1	< 2.2e-16 ***
month	50.0499	10	2.613e-07 ***
size	0.4225	1	0.5157

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1