Transversity Form Factors and Generalized Parton Distributions of the pion in chiral quark models

Abstract The transversity Generalized Parton Distributions (tGPDs) and related transversity form factors of the pion are evaluated in chiral quark models, both local (Nambu–Jona-Lasinio) and non-local, involving a momentum-dependent quark mass. The obtained tGPDs satisfy all a priori formal requirements, such as the proper support, normalization, and polynomiality. We evaluate generalized transversity form factors accessible from the recent lattice QCD calculations. These form factors, after the necessary QCD evolution, agree very well with the lattice data, confirming the fact that the spontaneously broken chiral symmetry governs the structure of the pion also in the case of the transversity observables.

Keywords structure of the pion · generalized parton transversity distributions of the pion · pion transversity form factors · chiral quark models
This presentation is based on our two recent papers [13; 29], where more results and details may be found. The tGPDs are the least-explored Generalized Parton Distributions (for extensive reviews see [5; 31; 6] and references therein). For the quark sector they correspond to the hadronic matrix elements of the tensor quark bilinears, $q(x)\sigma^{\mu\nu}q(0)$, and are the maximum-helicity chirally odd objects. Information on these rather elusive entities comes from the recent lattice determination [7] of the pion transversity form factors (tFFs), defined via moments of tGPDs in the Bjorken x variable. That way the lattice calculations provide a direct path to verify the underlying models for quantities which are very difficult to be accessed experimentally.

Our analysis consist of two distinct parts: 1) the model determination of tFFs and tGPDs of the pion and 2) the QCD evolution. For the first part and within a non perturbative setup we apply chiral quark models which have proven to be very useful in the determination of the soft matrix elements entering various high-energy processes [21; 50; 22; 27; 45; 28; 1; 47; 48; 15; 36; 42; 45; 54; 5; 43; 26; 52; 51; 11; 55; 10; 16; 17; 40]. We use the standard local Nambu–Jona-Lasinio (NJL) model with the Pauli-Villars regularization [49] and two versions of the nonlocal models, where the quark mass depends on the virtuality: the instanton-motivated model [23] and the Holdom-Terning-Verbeek (HTV) model [35] (these variants differ in the form of the quark-pion vertex).

The second ingredient is the QCD evolution where renormalization improved radiative and perturbative gluonic corrections are added to the low energy matrix element. The scale where the quark model calculation is carried out can be identified with the help of the momentum fraction carried by the quarks. According to phenomenological extractions [53; 34] as well as lattice calculations [4], the valence quarks carry about 50% of the total momentum at the scale $\mu = 2$ GeV. In quark models, having no explicit gluon degrees of freedom, the valence quarks carry 100% of the momentum. This allows us to fix the quark model scale, μ_0, such that upon evolution to 2 GeV the fraction drops to $47 \pm 2\%$. The result of the LO DGLAP evolution is $\mu_0 = 313 \pm 20$ MeV. This perturbative renormalization scale is unexpectedly and rather uncomfortably low. Yet, the prescription has been favorably and independently confirmed by comparing to a variety of other high-energy data or lattice calculations (see [12] and references therein). Moreover, the NLO DGLAP modifications have been shown to yield moderate corrections as well [22]. To summarize, “our approach = chiral quark models + QCD evolution”.

The pion u-quark tFFs, $B_{ini}^{\pi u}$ (t), can be defined in a manifestly covariant way (see, e.g., [24]) with the help of two auxiliary four-vectors, a and b, satisfying $a^2 = (ab) = 0$ and $b^2 \neq 0$. Then

$$\langle \pi^+(p')|\pi(0)i\sigma^{\mu\nu}a_\mu b_\nu \left(i\not{D} a \right)^{n-1}u(0)|\pi^+(p)\rangle = (a \cdot P)^{n-1} \sum_{i=0, \text{even}}^{n-1} \left(2\xi \right)^i B_{ni}^{\pi u} (t),$$

with the skewness parameter defined as $\xi = -a \cdot q/(2a \cdot P)$ (we use the so-called symmetric kinematics).

The symbol $\not{D} = \not{D} - igA^\beta$ denotes the QCD covariant derivative, and $\not{D}^2 = \frac{1}{2} \left(\not{D}^\beta - \not{D}^{\beta} \right)$. Further, p' and p are the initial and final pion momenta, $P = \frac{1}{2}(p' + p)$, $q = p' - p$, and $t = -q^2$. The factor $1/m_\pi$ is introduced by convention in order to have dimensionless form factors. Finally, the bracket $[\ldots]$ denotes the antisymmetrization in the vectors a and b. The tFFs defined in (1) apply to the u-quarks, while the tFFs for the d-quarks follow from the isospin symmetry, $B_{ni}^{\pi u} (t) = (-1)^n B_{ni}^{\pi d} (t)$. The definition of the corresponding tGPD is [3]

$$\langle \pi^+(p')| \bar{u}(-a)i\sigma^{\mu\nu}a_\mu b_\nu u(a) \mid \pi^+(p)\rangle = \frac{(a \cdot b \cdot p')}{m_\pi} \int_{-1}^{1} dX \ e^{-iX P \cdot a} E_T^{\pi u} (X, \xi, t),$$

where we do not write explicitly the gauge link operator needed to keep the color gauge invariance. The tFFs are related to the Mellin moments of the tGPD,

$$\int_{-1}^{1} dX X^{n-1} E_T^{\pi u} (X, \xi, t) = \sum_{i=0, \text{even}}^{n-1} \left(2\xi \right)^i B_{ni}^{\pi u} (t),$$

displaying the polynomiality property. Thus, the information carried by tGPDs is contained in (infinitely many) tFFs. Some of them ($n = 1, 2$) have been calculated on Euclidean lattices [7].
The transversity form factors of the pion, $B_{10}^{\pi,u}(t)$ and $B_{20}^{\pi,u}(t)$, evaluated at $m_\pi = 600\text{MeV}$ in the local NJL model (left panel) and in nonlocal models (right panel, solid line – HTV model, dashed line – instanton model) and compared to the lattice data.\(^7\)

Fig. 1 The transversity form factors of the pion, $B_{10}^{\pi,u}(t)$ and $B_{20}^{\pi,u}(t)$, evaluated at $m_\pi = 600\text{MeV}$ in the local NJL model (left panel) and in nonlocal models (right panel, solid line – HTV model, dashed line – instanton model) and compared to the lattice data.\(^7\)

The details concerning the chiral quark models and parameters used have been presented in \([13, 25]\). The calculation of the tFFs and tGPDs is made through the use of standard techniques at the one-quark-loop level, which corresponds to the large-N_c limit with confinement neglected.

Next, we describe the LO DGLAP-ERBL evolution. For the case of tFFs the procedure is very straightforward, as it gives a triangular-matrix multiplicative structure (see, e.g., \([8]\)). Explicitly, with the short-hand notation $B_{ni} = B_{n_i}^a(t; \mu)$ and $B_{ni}^u = B_{n_i}^{u_a}(t; \mu_0)$, we have

$$
\begin{align*}
B_{10} & = L_1B_{10}^0, \quad B_{32} = \frac{1}{5}(L_1 - L_3)B_{10}^0 + L_3B_{32}^0, \\
\vdots \\
B_{20} & = L_2B_{20}^0, \quad B_{42} = \frac{3}{4}(L_2 - L_4)B_{20}^0 + L_4B_{42}^0, \\
\vdots \\
B_{30} & = L_3B_{30}^0, \quad B_{52} = \frac{2}{3}(L_3 - L_5)B_{30}^0 + L_5B_{52}^0, \\
\vdots
\end{align*}
$$

(4)

We define

$$
L_n = \left(\frac{\alpha(\mu)}{\alpha(\mu_0)} \right)^{\frac{\gamma_n^T}{2\beta_0}},
$$

(5)

The anomalous dimensions in the transversity channel are given by $\gamma_n^T = \frac{32}{3} \sum_{k=1}^n 1/k - 8$, $\beta_0 = \frac{11}{3} N_c - \frac{4}{3} N_f$, and the running coupling constant is $\alpha(\mu) = 4\pi/(\beta_0 \log(\mu^2/A_{QCD}^2))$, with $A_{QCD} = 226\text{MeV}$ for $N_c = N_f = 3$.

The two lowest tGFFs available from the lattice data, $B_{10}^{\pi,u}$ and $B_{20}^{\pi,u}$, evolve multiplicatively as follows:

$$
B_{n0}^{\pi,u}(t; \mu) = B_{n0}^{\pi,u}(t; \mu_0) \left(\frac{\alpha(\mu)}{\alpha(\mu_0)} \right)^{\frac{\gamma_n^T}{2\beta_0}},
$$

(6)

which numerically gives

$$
B_{10}^{\pi,u}(t; 2\text{GeV}) = 0.75B_{10}^{\pi,u}(t; \mu_0), \quad B_{20}^{\pi,u}(t; 2\text{GeV}) = 0.43B_{20}^{\pi,u}(t; \mu_0).
$$

(7)

Note a stronger reduction for B_{20} compared to B_{10} as the result of the evolution. In the chiral limit and at $t = 0$

$$
B_{10}^{\pi,u}(t = 0; \mu_0)/m_\pi = \frac{N_c M}{4\pi^2 f_\pi^2}, \quad B_{20}^{\pi,u}(t = 0; \mu) = \frac{1}{3} \left(\frac{\alpha(\mu)}{\alpha(\mu_0)} \right)^{8/27}.
$$

(8)

The results of the model calculation followed by evolution are presented in Fig. 1. We note a very good agreement with the data for the NJL model, as well as for the non-local HTV model.
The symmetric (left panel) and antisymmetric (right panel) tGPDs of the pion at $t = 0$ and $\xi = 1/3$, evaluated in the NJL model in the chiral limit at the quark-model scale $\mu_0 = 313$ MeV (solid lines) and evolved to the scales $\mu = 2$ GeV (dashed lines) and 1 TeV (dotted lines).

The agreement for the instanton model is worse, which shows that the calculation can be used to discriminate between various approaches.

Next, we show the results for the full tGPD. Having explored the t-dependence in tFFs, here we set $t = 0$ and focus on the X behavior for fixed $\xi = 1/3$ or $\xi = 0$. Since the evolution is different for the symmetric and antisymmetric combinations, we explore the isovector and isoscalar tGPDs:

$$
E_{T}^{I=1}(X, \xi, Q^2) \equiv E_{T}^{S}(X, \xi, Q^2) = E_{T}^{S}(X, \xi, Q^2) + E_{T}^{A}(-X, \xi, Q^2),
$$

$$
E_{T}^{I=0}(X, \xi, Q^2) \equiv E_{T}^{A}(X, \xi, Q^2) = E_{T}^{S}(X, \xi, Q^2) - E_{T}^{A}(-X, \xi, Q^2).
$$

The evolution has been carried out with the method involving the Gegenbauer moments [38, 41, 37]. The results for $\xi = 1/3$ in the NJL model are shown in Fig. 2. The curves are conventionally normalized in such a way that at the quark model scale

$$
\int_0^1 dX E_{T}^{S}(X, \xi, t = 0; \mu_0)/N = \frac{1 + \xi}{2}. \quad (9)
$$

We note the decreasing, shifting to lower X, effect of the QCD evolution. In Fig. 3 we compare the result in the NJL model (left panel) and the nonlocal instanton model (right panel). Except for different end-point behavior (see [29 for details), the results are qualitatively very similar.

In conclusion we wish to stress that the absolute predictions for the multiplicatively evolved B_{10} and B_{20} agree remarkably well with the lattice results, supporting the assumptions of numerous calculations following the same “chiral-quark-model + QCD evolution” scheme. It would also be interesting to access the tGPDs directly through the use of the transverse-lattice techniques [14, 18, 19, 20].
34. Gluck M, Reya E, Schienbein I (1999) Pionic parton distributions revisited. Eur Phys J C10:313–317, hep-ph/9903288
35. Holzlom B, Terning J, Verbeek K (1990) Chiral lagrangian from quarks with dynamical mass. Phys Lett B245:612–618, DOI 10.1016/0370-2693(90)90700-G
36. Holt RJ, Roberts CD (2010) Distribution Functions of the Nucleon and Pion in the Valence Region. Rev Mod Phys 82:2993–3044, DOI 10.1103/RevModPhys.82.2993, 1002.4666
37. Kirch M, Manashov A, Schafer A (2005) Evolution equation for generalized parton distributions. Phys Rev D72:114,006, DOI 10.1103/PhysRevD.72.114006, hep-ph/0509330
38. Kivel N, Mankiewicz L (1999) Conformal string operators and evolution of skewed parton distributions. Nucl Phys B557:271–295, hep-ph/9903531
39. Kivel N, Mankiewicz L (1999) On scale dependence of QCD string operators. Phys Lett B458:338–346, hep-ph/9905342
40. Kotko P, Praszalowicz M (2009) Pion-to-photon transition distribution amplitudes in the non-local chiral quark model. Acta Phys Polon B40:123, 0803.2847
41. Manashov A, Kirch M, Schafer A (2005) Solving the leading order evolution equation for GPDs. Phys Rev Lett 95:012,002, DOI 10.1103/PhysRevLett.95.012002, hep-ph/0503109
42. Nguyen T, Bashir A, Roberts CD, Tandy PC (2011) Pion and kaon valence-quark parton distribution functions. Phys Rev C83:062,201, DOI 10.1103/PhysRevC.83.062201, [1102.2448
43. Noguera S, Vento V (2006) Pion parton distributions in a non-local lagrangian. Eur Phys J A28:227–236, hep-ph/0505102
44. Petrov VY, Polyakov MV, Ruskov R, Weiss C, Goeke K (1999) Pion and photon light-cone wave functions from the instanton vacuum. Phys Rev D59:114,018, DOI 10.1103/PhysRevD.59.114018, hep-ph/9807229
45. Polyakov MV, Weiss C (1999) Skewed and double distributions in pion and nucleon. Phys Rev D60:114,017, hep-ph/9902451
46. Praszalowicz M, Rostworowski A (2001) Pion light cone wave function in the non-local NJL model. Phys Rev D64:074,003, DOI 10.1103/PhysRevD.64.074003, hep-ph/0105188
47. Praszalowicz M, Rostworowski A (2002) Pion generalized parton distributions in the non-local NJL model. In: proc. of the XXXVIIth Rencontres de Moriond, hep-ph/0205177
48. Praszalowicz M, Rostworowski A (2003) Pion generalized distribution amplitudes in the nonlocal chiral quark model. Acta Phys Polon B34:2699–2730, hep-ph/0302269
49. Ruiz Arriola E (1991) The Low-energy expansion of the generalized SU(3) NJL model. Phys Lett B253:430–435, DOI 10.1016/0370-2693(91)91074-1
50. Ruiz Arriola E (2001) Parton distributions for the pion in a chiral quark model. In: W Melnitchouk et al (ed) proc. of the workshop Lepton Scattering, Hadrons and QCD, Adelaide, Australia, 2001, World Scientific, Singapore, hep-ph/0107087
51. Ruiz Arriola E (2002) Pion structure at high and low energies in chiral quark models. (v). Acta Phys Polon B33:4443–4479, hep-ph/0210007
52. Ruiz Arriola E, Broniowski W (2002) Pion light-cone wave function and pion distribution amplitude in the nambu-jona-lasinio model. Phys Rev D66:094,016, hep-ph/0207266
53. Sutton PJ, Martin AD, Roberts RG, Stirling WJ (1992) Parton distributions for the pion extracted from drell-yan and prompt photon experiments. Phys Rev D45:2349–2359
54. Theussl L, Noguera S, Vento V (2004) Generalized parton distributions of the pion in a bethe- salpeter approach. Eur Phys J A20:483–498, nucl-th/0211036
55. Tiburzi BC (2005) Estimates for pion photon transition distributions. Phys Rev D72:094,001, DOI 10.1103/PhysRevD.72.094001, hep-ph/0508112