Physicochemical and Functional Quality of Tigernut Tubers (Cyperus esculentus) Composite Flour

L. Amoakoah Twum¹, A. A. Okyere¹, I. K. Asare¹, I. D. Kottoh¹, D. Duah-Bisew¹, W. Torgby- Tetteh¹ and E. A. Ayeh¹

¹Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, AE 60 Kwabenya-Accra, Ghana.

ABSTRACT

Aims: To develop composite flour from Ghana’s underutilized tigernut and evaluate its physicochemical and functional properties.

Place and Duration of Study: Samples for the tigernut composite flour were obtained from the Madina market in Accra, Ghana, in May, 2014. Laboratory and data analyses were done at the Biotechnology and Nuclear Agriculture Research Institution of the Ghana Atomic Energy Commission, Accra- Ghana.

Methodology: Tigernut samples were obtained and dried using a hot air oven, soy bean samples were blanched for 30 mins and dehulled before drying with a hot air oven. Soy bean for germination were soaked, drained and spread on a moist cotton cloth and allowed to germinate. Maize samples were roasted in a hot air oven till they became golden brown. All samples were subsequently milled into flour using a hammer mill. Tigernut, soy bean and maize flour were mixed into composite flour.
in seven different percentage ratios. Physicochemical and functional qualities of tigernut tuber composite flour were analyzed using appropriate protocols.

Results: There were significant differences in the physicochemical properties of all seven samples of tigernut composite flour. The highest mean value of moisture content recorded was 6.31±0.29% however it was within the acceptable range for flour. The highest mean values of total ash, pH and protein content recorded were 2.47±0.08%, 6.57±0.01 and 11.37±0.02% respectively. The functional properties had TMS1 recording the highest water absorption capacity mean value of 14.33±0.58% and TMS6 recording the highest bulk density and swelling power mean values of 0.86±0.03 g/cm3 and 5.40±0.14 g/g respectively. TMS4 recorded the highest solubility index mean values 27.00±2.00%.

Conclusion: Different percentage combination of tigernut, soy bean and maize significantly affect the physicochemical and functional properties of its composite flour. Utilization of tigernut in product development can cater for its underutilization and hence reduce its post harvest loses. Further work is however needed to establish its nutritional quality and shelf stability to determine the appropriate percentage combination.

Keywords: Tigernut; soy bean; composite flour; physicochemical.

1. INTRODUCTION

Tigernut (*Cyperus esculentus*) is a readily available crop in Ghana, however it is underutilized. Baseline surveys conducted by several researchers indicate that tigernut is cultivated in six out of ten regions in Ghana [1,2]. Tigernuts are basically eaten raw and had received very limited value addition or product development. The tubers contain significant amount of protein, fat, minerals, fibre, ash and vitamins [3-5], which can increase the nutritional quality of our diets. In addition, tigernut tubers could be used for the treatment of flatulence, indigestion, diarrheal, dysentery and excessive thirst [6].

Composite flour is flour prepared by mixing or blending cereals, roots, tubers or legume flour at a predetermined ratio. An important motivation for the production of composite foods is to improve nutritional quality. The benefit of producing cereal- legume composite foods may be considered as twofold: First, there is an overall increase in protein content of the composite food as compared to when the cereal forms the base. Second, there is a better amino acid balance due to the contribution of lysine by legume and methionine by cereals. Compositing affects not only nutritional quality but also functional, sensory and phytochemical quality of the final food product [7]. Legumes such as soy bean has been reported to be an excellent source of high- quality protein, low in saturated fat and free of cholesterol, in addition it has a high dietary fibre [8]. Soy bean is a rich source of vegetable protein for all including growing children. However soy bean contains an appreciable number of anti-nutrients and germination of the seed is reported to be one of the means to reduce them. Germination is a complex metabolic process during which the lipid, carbohydrate and storage proteins within the seeds are broken down in order to obtain the energy and amino acids necessary for the plant’s development [9]. Germination modify starch structure thereby reducing “dietary bulk” which is an important factor relating to child feeding [10].

Combinations of local food crops using simple technologies are economical and help meet the body’s nutritional needs. Different composition of banana, soy bean and maize using simple technology recorded appreciable levels of minerals, crude protein and carbohydrate as well as low moisture content [11]. The main objective of this study was to develop a composite flour product from Ghana’s underutilized tiger nut and evaluate its physicochemical and functional properties.

2. METHODOLOGY

2.1 Sample Preparation

A 2000 grams of tigernut, maize and soy bean each were purchased from a local market in Accra, Ghana.

2.1.1 Tigernut flour preparation

Tigernut tubers (yellow type) were sorted to remove damaged and other extraneous materials and then washed with portable water mixed with NaCl for decontamination. The tigernut sample
was dried in an air oven at 65°C for 24 hours and then milled into 25 µm particle size flour using the hammer mill. The milled tigernut flour was stored at -4°C till all analyses were done [12].

2.1.2 Soy bean flour

Soy bean was sorted to remove all debris from the beans and washed under running water. The samples were blanched for 30 mins to remove the beany flavour and bitterness from the bean. After blanching, the soy bean samples were drained and put under running water to allow for easy dehulling. Dehulled soy bean samples were dried in a mechanical dryer at 60°C overnight. Dried soy bean samples were milled into 25 µm particle size flour using the hammer mill. The milled soy bean flour was stored at -4°C till all analyses were done.

2.1.3 Germinated soy bean flour

After cleaning and removal of broken seeds and extraneous materials, the soy bean were washed and soaked in 4-times its volume of potable water for 12 hours at 30°C. The seeds were drained, spread on a moist cotton cloth and allowed to germinate at 30±2°C for 72 hours. The germinated soy bean seeds were blanched for 30 mins with portable tap water twice its volume and then dehulled. The dehulled germinated soy beans were dried in an air oven at 65°C for 24 hours and then milled using a hammer mill and sieved through 25 µm aperture size to obtain germinated soy bean flour [13]. The milled germinated soy flour was stored at -4°C till all analyses were performed.

2.1.4 Preparation of maize flour

Maize samples obtained were sorted to remove all debris. The maize samples were roasted in a hot air oven at 80°C till it turned golden brown and cooked. The roasted maize was milled into 25 µm particle size flour using a hammer mill. The milled maize flour was stored at -4°C till all analyses were performed.

2.1.5 Composite flour formulation

Tigernut, soy bean and maize flour samples were mixed in seven different ratios: TMS1, TMS2, TMS3, TMS4, TMS5, TMS5b and TMS6 as shown in Table 1. This was based on a modified FAO/WHO recommendation [14] of soy bean usage in composite flour for children. A total of 500 grams of each formulation was prepared and used for various laboratory analyses.

2.2 Physicochemical Properties

2.2.1 Determination of moisture in Tigernut composite flour (air oven method)

Five grams of the flour samples was weighed into clean dried petri dish according to AOAC method for moisture analysis [15]. The weighed samples were put in an air oven (Gallenkamp 300 series, England) previously heated to 130±30°C. The oven was provided with an opening for ventilation. The samples were dried to a constant weight at a maintained temperature of 130±30°C for a period of 24 hours. The dish was covered while still in the oven and transferred to a desiccator with activated desiccants and weighed soon after reaching room temperature. The petri-dishes with the dried samples were reweighed immediately at the end of the cooling period of 30 mins and the moisture content calculated from the relation:

\[\% \text{Moisture} = \left(\frac{\text{Weight of test samples} - \text{Weight of sample after drying}}{\text{Weight of test samples}} \right) \times 100 \]

2.2.2 Total ash content

The total ash content of the tigernut flour samples was determined using the dry Ashing method [15]. Two grams of the sample (on dry matter basis) was weighed into a porcelain crucible. The crucibles containing the samples were placed in a high temperature muffle furnace (Carbolite, England) heated to 600°C for 6 hours. The ash content was then determined and expressed as:

\[\text{Percentage ash} = \left(\frac{\text{Mass of ash}}{\text{Mass of dry sample}} \right) \times 100. \]

2.2.3 pH

Ten (10) grams of the sample was weighed into a clean, dry erlenmeyer flask and 100 ml distilled water was added. The mixture was shaken until particles were evenly suspended and free of lumps. The mixture was digested for 30 mins with frequent shaking. The mixture was allowed to stand for 10 mins for the particles to settle. The supernatant was decanted into the 250 ml beaker, and the pH was determined using a pH meter [15].
Table 1. Percentage Composition for formulation of tigernut, soy bean and maize composite flour

Sample code	Percentage (%) composition		
	Tiger nut flour	Maize flour	Soy bean flour
TMS1	50	25	25
TMS2	60	25	15
TMS3	50	30	20
TMS4	70	20	10
TMS5	30	45	25
TMS6	20	55	25

TMS- Tigernut, Soy bean and Maize, TMS5_b contains germinated soybean flour

2.2.4 Titratable acidity

About 10.0 grams of the sample was weighed into a clean, dry Erlenmeyer flask and 100 ml distilled water was added. The mixture was shaken until particles were evenly suspended and free of lumps. The mixture was homogenized for 30 mins with constant shaking. The mixture was allowed to stand for 10 mins for the particles to settle. The supernatant was decanted into the 250 ml beaker and immediately titrated with 0.1N NaOH, using 0.3 ml phenolphthalein. Titratable acidity was expressed as percentage lactic acid [15].

2.3 Functional Properties

2.3.1 Water absorption capacity (WAC)

Water absorption capacity of the flour samples was determined using the method described by [16] as modified by [17]. About 1.0 grams (db) of the sample was dispersed in 10 ml distilled water and the suspension stirred using a magnetic stirrer for 5 mins. The suspension was centrifuged at 3500 rpm for 30 mins and the supernatant measured in a 10 ml graduated cylinder. The density of the water is taken as 1.0 g/cm³. The water absorption capacity (%) was calculated as the difference between the initial volume of water added to the sample and the volume of the supernatant expressed in percentage.

2.3.2 Bulk density

A calibrated centrifuge tube was weighed and filled with the samples to the 5 ml mark by constant tapping until there was no further change in volume. The contents were weighed and the difference in weight was noted. The bulk density of the sample was calculated by dividing the difference in weight by the volume [18].

2.3.3 Swelling power and solubility

The swelling power and solubility determinations were carried out based on method described by [19] with slight modifications. One gram of sample was weighed (on dry matter basis) into a previously weighed 40 ml capacity centrifuge tube and 40 ml of distilled water added. The suspension was stirred uniformly and gently to avoid excess force that might rupture the granules. The suspension was heated in a thermostatically controlled water bath at 85°C for 30 mins, with constant stirring. The tubes were removed from the water bath, wiped and allowed to dry and cool to room temperature. The tubes were centrifuged at 2200 rpm for 15 mins. The supernatants were poured into a weighed crucible and evaporated to dryness in an oven at 105°C. The dried supernatant was weighed after cooling and the weight was used to calculate the solubility. The sedimented paste was weighed and the value used to calculate the swelling power.

2.4 Data Analysis

A factorial design was used for the study. Analysis of variance was conducted to assess whether significant (p < 0.05) differences exist between the composite samples using Statgraphics centurion software version XVI. The Least Significant Difference (LSD) at 95% confidence level was computed to ascertain the differences between samples.

3. RESULTS AND DISCUSSION

3.1 Physicochemical Properties of Tigernut Composite Flour

Results for the physicochemical properties are presented in Table 2. There were significant (P<0.05) difference in all the data analysed for
the physicochemical properties. Moisture content values ranged from 5.52±0.06% to 6.57±0.21%, with the highest value recorded for TMS5 and TMSb, having the lowest moisture content. TMS5 recorded the highest ash content of 2.45±0.05% and the lowest being TMS5b with 2.05±0.05% ash content. The highest pH content was recorded in TMS4 having a value of 6.57±0.02 with TMS6 recording the lowest value of 6.42±0.01. TMS5 had the highest protein content of 11.37±0.2% whilst TMS3 recorded 8.29±0.02% protein content.

The moisture content of the samples was within the Codex recommendation for flour product of 8% [20]. The low moisture content has a positive effect on shelf stability, as moisture could lead to product spoilage due to oxidation reactions and microbial growth. High moisture content promotes microbial and insect growth which can affect the quality of the tigernut composite flour [21]. TMS5b, which contain germinated soy bean and 30% tiger nut recorded the lowest moisture content however TMS5 which also contain the same percentage of tiger nut recorded the highest percentage moisture. The total percentage Ash contents of the different tiger nut composite flour were high and were significantly different from each other. A similar research work on infant feed based on soy bean seed and tigernut tubers also recorded a similar range of ash content range [22]. The Ash content represents the total amount of minerals present in foods substance after heating. Composite flour generally has high ash content due to the different combination of ingredients [23-25]. TMS3 which had 50% tigernut and 20% soy bean recorded the highest percentage ash content whilst TMS5 with 30% tigernut and 25% soy bean recorded the lowest percentage ash. However TMS5b with the germinated soy bean and same percentage composition as TMS5 recorded a high Ash content. Germinated seeds generally absorb moisture therefore the mineral content of the water can affect the ash content of the germinated seed. The high ash content in TMS3 may be due to the high ratio of tigernut and soy bean to maize as both have been reported to be good source of minerals. The pH content of the flour was within the normal pH range for food. A research study of banana composite flour [11] recorded similar pH values. TMS5 which had 20% soy bean and 30% tigernut had the highest crude protein content, however the same percentage composition but with germinated soy bean recorded a low percentage crude protein. This is a result of the breakdown of storage protein within the seed in order to obtain the energy and amino acid necessary for the plants development [9]. TMS3 recorded the lowest crude protein content, however it had 20% soy bean and 50% tiger nut content, TMS4 which had 10% soy bean and 70% tigernut surprisingly had a crude protein content higher that TMS3. TMS4 had 20% maize whilst TMS3 had 30% maize. It’s not clear if the maize content contributed to the percentage crude protein content. Germination is reported to increase moisture and crude protein content in germinated seed flour [26-29], however this study recorded otherwise this could be due to the time and temperature of germination and drying method of the germinated soy bean.

3.2 Functional Properties of Tigernut Composite Flour

The analysed data for functional properties for all the samples are presented in Table 3 below. There were significant differences (P<0.05) in all the samples for the various analyses for the functional properties except for water absorption capacity of the tigernut composite flour which had no significant difference. TMS1 had the highest water absorption capacity of

Sample code	Moisture (%)	Ash (%)	pH	Protein (%)
TMS1	5.74±0.1	2.35±0.13	6.50±0.12	10.37±0.15
TMS2	6.21±0.31	2.35±0.09	6.50±0.02	9.18±0.05
TMS3	6.31±0.29	2.67±0.10	6.46±0.01	8.29±0.02
TMS4	5.94±0.23	2.17±0.03	6.57±0.02	9.40±0.22
TMS5	6.57±0.21	2.05±0.05	6.54±0.01	11.37±0.02
TMS5b	5.52±0.06	2.47±0.08	6.46±0.01	9.92±0.25
TMS6	6.01±0.13	2.32±0.03	6.42±0.01	10.57±0.11
LSD	0.3650	0.1417	0.0127	0.1641

Note: Means in a column with different letters are significantly different (P < 0.05) from each other. Values are mean±SD of three replicates (n = 3)
Table 3. Functional properties of tigernut, maize and soy bean composite flour

Sample code	Water absorption capacity (%)	Bulk density (g/cm³)	Swelling power (g/g)	Solubility index (%)
TMS1	14.33±0.58ᵃ	0.78±0.04ᵃ	3.98±0.58ᵃ	19.67±8.51ᵃ
TMS2	14.33±1.53ᵃ	0.79±0.03ᵃ	4.80±0.39ᵇ	26.67±2.52ᵇ
TMS3	13.67±1.53ᵃ	0.76±0.03ᵃ	4.64±0.13ᵇ	18.80±3.61ᵇ
TMS4	14.33±1.53ᵃ	0.78±0.01ᵃ	4.30±0.39ᵇ	27.00±2.00ᶜ
TMS5	14.00±2.00ᵃ	0.79±0.01ᵃ	4.55±0.28ᵇ	18.50±0.50ᵃ
TMS6ᵇ	13.67±1.53ᵃ	0.84±0.05ᵇ	5.05±0.20ᶜ	20.00±2.65ᵇ
TMS6	12.67±0.58ᵃ	0.86±0.03ᶜ	5.40±0.14ᵈ	16.67±2.08ᵃ
LSD	2.4766	0.0495	0.5874	6.8547

ᵃᵇᶜ Means in a column with different letters are significantly different (P < 0.05) from each other. Values are mean ± SD of three replicates (n = 3)

Water absorption capacity (WAC) indicates the ability of a sample to absorb water. A sample’s ability to absorb water is dependent on its protein content [29]. However, WAC mean values obtained were not based on its protein content but might be due to the nature of the starches present [16]. High WAC is also attributed to the loose structure of the starch polymers in the samples whilst low WAC indicates the compactness of the starch structure. The ability of flour to absorb water is reported to have a significant correlation with its starch content [30].

Swelling Power (SP) and Solubility index are inversely related. Solubility index increases with decreasing swelling power. Swelling power is the ability of starch to imbibe water whilst solubility is a measure of the dextrinization of starches. TMS6 which had the highest swelling power recorded the lowest solubility index. However TMS1 recorded the lowest swelling power but not the highest solubility index. The individual samples have their own response to functional and physicochemical properties. This may account for the differences in the values obtained. There were significant differences in the values obtained for both the swelling power and solubility index of the tigernut composite flour. The amount of lipid in a starch sample can affect its swelling power and solubility index. Lipids establish connection with amylose and increase its molecular mass which causes the blocking of the binding water molecules, preventing the swelling of granule and distribution of the amylose [35-38]. Tigernut and soy bean have high fat content, this justifies the values obtained in this present work. TMS6 which recorded the lowest swelling power of 3.98±0.58 g/g and a solubility index value of 19.67±8.51%.
highest swelling power and solubility index had
20% tigernut and 25% soy bean whilst TMS1 had
lower swelling power which was as a result of its
50% tigernut and 25% soy bean content.
Germination of soybean affected the swelling
and solubility index of the tigernut composite flour. TMS5 and TMS5b, which had the
same percentage composition of the individual
samples recorded different swelling power and
solubility index mean values and are statistically
different. Germination is reported to increase
solubility and swelling power. A study on the
effect of processing on functional properties of
jackfruit seed flour showed that germinated
samples recorded the highest mean values for
both swelling power and solubility index among
five processing methods [39]. Another study
reported that germination decreases the water
soluble index and swelling power of flours [39].
However differences in swelling power and
solubility index of starchy materials can be
attributed to starch contact, the presence of
impurities (e.g. protein and lipids) and pre-
treatment and processing history [39,40].

4. CONCLUSION

Results from this study show that different
percentage composition of tigernut, soy bean
and maize had different physicochemical and
functional properties. In this study TMS5b
recorded good physicochemical and function
property mean values necessary for porridge
making. Tigernut is quite abundant in Ghana,
however it is underutilized, hence product
development and value addition such as this can
help reduce post-harvest losses and also
improves the income of tigernut farmers. This
research had proven that composite flour can be
made from tigernut, however more research into
its nutritional, anti-nutritional content and shelf
stability should be established.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Tetteh JP, Ofori E. A baseline system of
Tigernut (Cyperus esculantus) production
in the Kwahu South District of Ghana. J
Agric Sci. 1998;31(1):211-216.
2. Dakogre T. Morphological characterization and
evaluation of tigernut in Ghana.

3. Ade-Omowaye B, Akinwande BA,
Bolarinwa IF, Adebiyi AO. Evaluation of
tigernut (Cyperus esculantus) wheat
composition flour and bread. Afr J of Food
Sci. 2008;2(1):087-091
4. Alobo AP, Ogbogo PO. Selected
properties of tigernut starch as affected by
physical and chemical modification.
Proceeding of the 31st Annual NIFST
conference, Abuja, Nigeria; 2007.
5. Oladela AK, Aina JO. Chemical
composition and functional properties of
flour produced from two varieties of
tigernut (Cyperus esculantus). Afr J of Bio.
2007;6(21):2473-2476.
6. Chavallier A. The encyclopedia of
medicinal plants. Dorling Kindersley
London; 1996
7. Gyebi DK, Minnaar A. Legume composite
flours and baked goods: Nutritional,
functional, sensory and phytochemical
qualities. Flour and Breads and their
fortification in Health and Disease
prevention. Elsevier Inc. 2011:193-194
8. Mateos-Aparico I, Redonlo CA,
Villanueva-Suarez MJ, Zapata-Revilla
MA. Soy bean a promising health source.
Nut Hos. 2008;23(1):305-312
9. Jachmanian L, Perifanova-Nemska M,
Grompona MA, Mukherjee KD. Germination rapessed as biocatalyst:
Hydrolysis of exogenous and endogenous
triacylglycerols. J Agri Food chem.
1995;43(1):2992:2996
10. Brandzaeg B. Nutritional and technological
evaluation of malted flour from ragi,
sorghum and green gram for local
processing of supplementary and weaning
foods “report to the World hunger program,
post- harvest food conservation and
processing. The United Nations University,
Tokyo; 1979.
11. Amoakoah Twum L, Kottoh ID, Asare IK,
Torgby-Tetteh W, Buckman ES, Adu-
Gyamfi A. Physicochemical and
elemental analyses of banana composite
flour for infants. British J of Appl Sci and
Tech. 2015;6(3):276-284
12. Ade-Omowaye BIO, Akinwande BA,
Bolarinwa IF, Adebiyi AO. Evaluation of
tigernut (Cyperus esculantus) - wheat
composite flour and bread. Afr J of food
and Sci. 2008;2(1):87-91.
13. Akapo SO, Oguntade AT, Ogundare OF. Nutritional evaluation of food formulation prepared from soy bean, sorghum and crayfish. Nig Food J. 1995;13(1):1-4.
14. Food and Agriculture Organization/ World Health Organization. Codex Standards for Food Special dietary uses including foods for infants and children and related code of hygiene practices. 1982;1:15-58.
15. AOAC. Official Method of Analysis. 17th ed. Association of official analytical chemists, Washington D.C., U.S.A; 2000.
16. Sathe SK, Desphande SS, Salunke DK. Functional properties of winged beans (Phosphocarpus tetragonolobus (2) D C) Protein. J. Food Sci. 1982;47(1):503-509.
17. Adebowale YA, Adeyemi IA, Oshodi AA. Functional and physicochemical properties of flour of six Mucuna species. Afr J. 2005;4(12):1461-1468.
18. Narayana K, Narasinga RMS. Functional properties of raw and heat processed winged bean flour. J. Food Sci. 1992;47(1):1534-1538.
19. Leach HW, McCowen DL, Schoch TL. Swelling and solubility patterns of various starch structure of starch granule. Cereal Chem. 1959;36(1):534-544.
20. Codex standard for wheat flour. Codex Stan. 1995;1:152.
21. Muhammad N, Masood SB, Fagir M, Anjum, Kamran S, Rashid M. Effect of moisture on the shelf life of wheat flour. Intern J of Agric & Bio. 2003;4(4):458-459.
22. Emmanuel-Ikpema CA, Ekepeyoung IO, Igile GO. Nutritional and sensory characterization of an infant food based on soy bean seeds (Glycine max) and tigernut tubers (Cyperus esculanta) British J. of Appl. Sci. & Tech. 2015;2(4):356-366.
23. Malleshi NG, Daodu MA, Chandrasekhar A. Development of weaning food formulation based on mataling and roller drying of sorghum and cowpea, Int. J. Food Sci. Tech. 1999;24(1):511-519.
24. Iwe MO, Onuoh JO. Functional and sensory properties of soy bean and sweet potatoes flour mixture. Lembenson Wens U Tech. 1992;3(1):367-368.
25. Kouakou B, Kouadio EJPN, Ahipo DE, Saltett KK, Tano K, Gago G. Effect of processing method and blend on some physicochemical properties and digestibility of flours made from selected cereal and legumes. Int J. Bio Chem Sci. 2009;3(5):1151-1160.
26. Mostafa MM, Rahma EH. Chemical and nutritional changes in soy bean during germination. Food chem. 1987;23(4):257-275.
27. Dagnia SG, Pettersson DS, Bell RR, Flanagan FV. Germination alters the chemical composition and protein quality of Lupin seeds. J. of Sci and Food Agric. 1992;60(4):419-423.
28. Rumiyati A, James P, Vijay J. effect of germination on the nutritional and protein profile of Australian sweet Lupin (Lupinus angustifolius L.). Food and Nutr Sci. 2012;3(1):621-626.
29. Kinsella JE. Functional properties of protein in foods: A survey critical review. Food Sci Nutr. 1976;7(1):219-280.
30. Mbofun CMF, Aboubakar YN, Njintang A, Abdou B, Balaam F. Physicochemical and functional properties of six varieties of Taro (Colocasia esculanta) L. Schott flour. J. of Food Tech. 2006;4(2):1342-1350.
31. Ijarotimi OS. Influence of germination and fermentation on chemical composition, protein quality and physical properties of wheat flour (Triticumaetivum) J. Cereal Oil Seed. 2012;3(3):35-42.
32. Onimawo AI, Egbekum KM. Comprehensive food science and nutrition. Revised edition Ambik Publishers, Benin city 95.
33. Omueti OO, Jaiyeola B, Otegbayo, Ajomole K, Afolabi O. Development and quality evaluation of low cost high protein weaning foods type: Browena and propalm from soy bean (Glycine Max) groundnut (Arachis hypogea) and Crayfish (Macrobrachin spp). British Food J. 2009;3(2):196-204.
34. Karuna D, Noel G, Dilip K. Production and use of raw potato flour in Mauritanian traditional foods. Food & Nuti Bull. 1996;17(2):12-14.
35. Meredith D, Dengate HW, Marisson WR. The lipid of various of wheat starch granules. Starch. 1978;30(1):119-125.
36. Swinkels JJM. Sources of starch, its chemistry and physics. In GMA Van Beynum, Roles JA (Eds) starch conversion technology (pp 15-45) New York: Marcell Dekker, Inc.
37. Bjorck J, Eliassan AC, Drews A. Some nutritional properties of starch and dietary fiber in beryl difference levels of amylase. Cereal chem. 1990;67(4):327-333.
38. Eke-Ejiofor J, Beleya EA, Onyenorah NI. The effect of processing methods on the
39. Jangchud K, Phimolsiripol Y, Haruthai TV. Physicochemical properties of sweet potato flour and starch as affected by blanching and processing. Starch/Starke. 2003;55(1):258-264.
40. Luckana B, Yuthana P. Physicochemical and functional properties of starch and germinated flour from doliohos lablab. Food and Appl Bios J. 2013;1(2):67-80.