An assessment of measures to reduce injuries and mortality among motorcyclists: A cross-sectional survey-based study

Hadi Fadaei, Elaheh Ainy¹, Roghayeh Paydar²

ABSTRACT

Background: Motorcyclists are one of the most vulnerable groups in road accidents. This study aimed to investigate the effective measures to reduce injuries and deaths in the most vulnerable road users’ motorcyclists in 2020.

Methods: The study was a cross-sectional study. In this study, 147 motorcycles were randomly selected from the list of all motor courier units in Tehran, which was prepared through an internet search. The required information was collected through questionnaires and interviews. The inclusion criteria had a minimum high school education and an age range of 18–65 years. The trained questioners referred to the selected courier offices and after obtaining consent to participate in the study, project questionnaire were completed.

Results: The mean age of subjects was 31.4 ± 8.0 years. All subjects were male. The purpose of the trip was going to work (84.4%). The highest percentage of leaving home time (94.6%) was observed in the morning. More than half of the subjects had a history of accidents (54.5%), and also more than half of the subjects (54.0%) had a history of an accident in their 2nd degree relatives’ families. Fourth-fifths of the studied motorcyclist (89.5%) wore helmets. Nearly half of the subjects (48.3%) always fastened their helmets strap. The highest action (72.0%) was suggested to separate the motorcycle lanes.

Conclusion: In the viewpoint of the motorcyclist, separating the motorcycle lines could be one of the most effective measurements to injury reduction. Hence, officials and planners need to pay more attention to the logical demands of motorcyclists.

Key Words: Accidental injuries, death, motorcycles, traffic accidents

INTRODUCTION

Motorcyclists are one of the most vulnerable groups in road accidents. The unsafe nature of this vehicle and its increasing use by young people were associated to an increase in road traffic accidents (RTAs).[1]

Studies show that almost all over the world, the risk of death due to RTA is higher for the vulnerable road user (motorcyclists, pedestrians, and cyclists) than car drivers.[2,3] In both high-income and low- and middle-income countries (LMIC), motorcycle users’ injuries are rising as a road safety problem.[4,5]
In Australia and New Zealand, the characteristics of fatal motorcycle accidents with roadside obstacles showed that behavioral factors such as speeding and alcohol consumption were associated to accidents.\(^6\)\(^7\) From 2000 to 2020, the highest increase in deaths due to RTA occurred in South Asia, which was more than 144%.\(^8\)

RTA-associated mortality is more than double for Colombian motorcyclists than for operators of other motorized vehicles.\(^9\) In Colombia, motorcycle casualties have become a serious public health issue. A 14-year study found that various social factors caused the deaths of more than 28,800 motorcyclists.\(^10\)

The law on compulsory use of helmets was approved by the Islamic Consultative Assembly of Iran in 1997.\(^11\) A study in Iran in 2012 showed that among motorcycle accidents, the highest number of motorcyclists were in the age range of 20–29 years, but the highest rate of death and injury was related to groups over 44 years and under 20 years. More than 82% of motorcyclists were unlicensed at the time of the accident.\(^12\) Among 320,000 injured in RTAs annually in Iran >100,000 involve motorcycle accidents, with the greatest number occurring in the capital city of Tehran. The share of motorcyclists is about five thousand, a high share of which is related to Tehran.\(^13\)

Moreover, according to Rahvar traffic police statistics in 2020, motorcyclists accounted for 46% of all RTA-associated mortality in Tehran; a fact supported by local forensic data.\(^14\)

This project surveyed motorcyclists to help identify opportunities for intervention to reduce motorcycle-associated RTAs.

METHODS

The study was a cross-sectional study. In this study, the subjects were randomly selected from motorcyclists’ address lists of all motor courier units in Tehran, prepared through internet search using list of Tehran motorized couriers keywords through Google search.\(^15\)\(^16\)

Considering the deaths due to traffic accidents which were extracted from 2017 World Road Safety Report for Iran, the share of motorcyclists was 23% (147 motorcycles) of all kinds of vehicles had to be studied.\(^17\)

The trained questioners referred to the selected courier offices, and after obtaining consent to participate in the study, project questionnaire was completed through questionnaires and interviews. Validity of initial items was evaluated after correction based on the panel suggestions, using content validity ratio and content validity index for quantitative content validity.

For reliability, test re-test was performed and internal consistency was calculated by Cronbach’s alpha coefficient that values >0.85 were considered admissible.

The inclusion criteria had a minimum high school education and an age range of 18–65 years. At first, demography, then the information of other designed questions such as “what measures” do you think are most effective in road injuries reduction? was completed. To accurately implement a briefing plan to get acquainted with how to complete the questionnaire were held for the questioners. Data were analyzed using SPSS, version 16 (IBM Corp., Armonk, USA).

RESULTS

Demographic data are presented in Table 1. The mean age of the subjects was 31.4 ± 8.0 years. All subjects were male, and the mean family size was 4.3 ± 1.1 persons, with 84 (57.3%) being married, 60 (41.3%) single, and 3 (1.4%) classified as “other.” Ninety five (66.4%) were the primary sources of household income (i.e., breadwinners), and the majority were self-employed 97 (67.8%). The greatest number of participants had an education level of 12 years – 85 (59.4%), and the lowest percentage was in high school (<12 years) – 28 (19.6%).

Monthly income ranged from 5 to 15-million Iranian rials (IRR). Nearly half of participants reported having a private home (69, 48.3%), whereas the remainder were tenants or did not report having a home [Table 2].

The purpose of the travel at the time of the RTA was greatest for going to work, and least for entertainment or leisure, and occurred more frequently in the morning [Table 2]. More than half of participants had a personal or family (to 2nd degree relatives) history of RTA [Table 3], with 30.3% resulting in patient hospitalization.

Only 13.3% of participants had governmentally medical insurance, with 68.5% of the people had nongovernmentally medical (supplementary) insurance [Table 3]. The majority of participants wore helmets [89.5%; Table 4], but only 48.3% fastened the helmet straps.

Table 1: Demographic information of studied motorcyclist

Variables	Mean ± SD	Minimum	Maximum	Mode
Age	31.4 ± 8.0	19	50	29
Family size	4.31 ± 1.1	2	8	5
Gender, n (%)				
Male	147 (100)			
Female	0			
Marital status, n (%)				
Married	61 (41.3)			
Single	84 (57.3)			
Others	2 (1.4)			

SD: Standard deviation
Risk reduction measures are presented in Table 5. The most effective measures were (1) making separate motorcycle lanes, followed by (2) making separate pedestrian lanes, (3) widening the road, and (4) separate the bicycle lanes. The least effective measures were building pedestrian bridges and underpasses.

DISCUSSION

The study showed that in the viewpoint of motorcyclists separating the motorcycle lanes could be one of the most effective measures to injury reduction, a finding supported by similar studies. Our finding was in line with mentioned studies.

This study found that the highest percentage of the purpose of the trip was going to work among the subjects. In Latin American cities, motorcycles had a low cost compared to other means of transportation. The vulnerability of motorcyclists to traffic injuries and death showed the need to make motorcycle travel safer, and improving public transportation was essential. Motorcycles are considered the main means of transportation in Nigeria where its use for commercial purposes has significantly affected the economy and society. The speed of urbanization in the country is one of the effective factors in increasing the use of motorcycles. In our country, the motorcycle is mostly used for work and was considered a high-risk job. Therefore, to reduce RTA as a health priority, it is necessary to consider effective measures to reduce accidents. In this study, the highest percentage of leaving home time was observed in the morning. The highest percentage of return home time was observed at night and midnight. Heydari et al. reported that due to the rush hours of the morning, whether on the way back from night work or when leaving home to work, this rush hour increases traffic congestion and increases the speed of driving on the roads and the possibility of an accident increased. Shajith reported that >57% of RTAs occurred at night. Young motorcyclists are involved in accidents, and the risk of death increased with their age. Prior studies have reported that RTAs are more frequent during the summer months, and on weekends, with rates being lower on the holidays. In this study, more than half of participants had a personal or family history of RTAs, which is consistent with other published reports.

Konlan et al. reported that more than two-thirds of motorcyclists in the Central Tongu District, Ghana, had a history of accidents in the past year before the study. Among all RTAs, 30.3% needed to be hospitalized. About forth-fifths of studying motorcyclist wore helmets. Nearly half of the subjects always fastened their helmets strap. Liang et al. study showed that mortality rates, length of hospital stay, or intensive care unit admission was not significantly different between adolescents and adults. A significant percentage of adolescents did not wear helmets compared to adults. Among motorcyclists that did not wear helmets, the Glasgow Coma Scale score was significantly lower. Shavaleh et al. reported that most road traffic injuries occurred in motorcyclists and has the most head injuries in the body. Therefore, to reduce motorcycle RTAs and prevent head injuries among them, helmet using and promote safety behaviors among motorcyclists should be strictly enforced. 13.3% of the studied people had insurance. More than two-thirds of the people had supplementary

Table 2: Purpose of daily travel, leave, and return home time of studied motorcyclist

Variables	n (%)
The purpose of the trip Work	124 (84.4)
Study	10 (6.8)
Other	13 (8.8)

Table 3: Having a history of accidents in the individual and in the family, the need for hospitalization and having various types of insurance in the motorcyclist

Variables	Yes, n (%)	No, n (%)
Accident history	86 (54.5)	61 (37.8)
Family accident history	80 (54.0)	67 (46.0)
Need to be hospitalized*	45 (30.3)	102 (69.7)
Having insurance	20 (13.3)	127 (86.7)
Having supplemental insurance	101 (68.5)	46 (41.5)

*Need to be hospitalized: To take someone who is injured by traffic accident to hospital and keep them there for treatment at least 1 day or more

Table 4: Status of the use of seat belt in the studied motorcyclists

Variables	n (%)
Use a helmet	
Yes	132 (89.5)
No	13 (10.5)
Fasten his helmet strap	
Always	71 (48.3)
Sometimes	57 (38.8)
Rarely and never	19 (12.9)

Table 5: Percent of the opinion of motorcyclist about which actions would reduce the injury risk

Reduce the risk of death through	Ever	A little	Medium	Much	Very much
The separation of bicycle lanes	0.7	5.6	18.2	53.1	22.4
The separation of pedestrian lanes	0.0	0.7	4.9	46.2	48.2
The separation of motorcycle lines	0.0	0.7	1.4	25.9	72.0
Widen the way	0.0	0.0	12.5	39.9	47.6
Build more pedestrian bridges	0.0	4.9	26.6	52.4	16.1
Increasing the number of public buses	0.8	7.9	25.9	49.1	16.3
Increase pedestrian underpass	0.0	7.0	30.1	46.8	16.1
insurance. Chumpawadee et al. reported that among motorcycles, 72.3% had a motorcycle driving license, and 83.0% had accident insurance. Prevalence of the nonuse of helmets was 23.3%. Their findings show the need to strengthen accident prevention programs for northeastern Thailand.[31]

In the study of Manan et al. with the aim of reducing multivehicle crashes on motorcycles, they recommend that motorcyclists should be separated from main traffic through the exclusive motorcycle lane or motorcycle lane on high-speed roads, as it has been proven to significantly reduce motorcycle crashes. If complete separation is not possible, the introduction of a road shoulder alongside rural roads can also be effective in creating a space for safe motorcycle movement.[32]

Sivasankaran et al. studied that motorcycles be separated from the main traffic by an exclusive motorcycle lane to decrease RTAs. A more accurate understanding of the accident pattern can guide decision-makers to take effective countermeasures to reduce the number of fatalities and injuries.[33]

According to the findings of Jones et al. study, possible measures to improve the safety of motorcycles could be the precise control of high-risk behaviors and speeding of motorcyclists, the establishment of dedicated motorcycle lanes, and especially the training of female passengers.[34]

Our findings were in line with other studies. To show the importance of having insurance, ways to adapt and tailor training opportunities that focus on health insurance literacy, more studies should be done for a wide range of road users such as motorcyclists.

Motorcycles seem to be an integral part of the transportation system in LMICs countries. To reduce the number and severity of injuries among motorcyclists, variables related to motorcyclists, such as the behavior of road users and the road environment, emergency preaccident care should be effectively considered.

In this study, respondents felt that the greatest potential improvement for road safety would be the institution for separate motorcycle lanes. Hence, officials and planners should pay more attention to road design and separation of motorcycle lanes as a solution.

Studying the viewpoint of the main stakeholders (motorcyclists) for the first time in Iran could be one of the strengths of the study. The small sample size could affect the generalizability of the results which could be considered a weakness of the study.

CONCLUSION

In the viewpoint of the motorcyclist, separating the motorcycle lanes could be one of the most effective measurements to injury reduction. Hence, officials and planners need to pay more attention to the logical demands of motorcyclists.

Research quality and ethics statement

This study was approved by the Institutional Review Board/Ethics Committee at Shahid Beheshti University of Medical Sciences (Approval #IR.SBMU.RETECH.REC.2021.077; Approval date May 2, 2021). The authors followed the applicable EQUATOR Network (http://www.equator-network.org/) guidelines, specifically the STROBE Guidelines, during the conduct of this research project.

Acknowledgment

The authors express their gratitude for the support of Traffic police research center (NAJA) during conducting research.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Mahdian M, Sehat M, Fazeli MR, Moraveji A, Mohammadzadeh M. Epidemiology of urban traffic accident victims hospitalized more than 24 hours in a Level III trauma center, Khashan county, Iran, during 2012-2013. Arch Trauma Res 2015;4:e28465.
2. Vanlaar W, Mainegra Hing M, Brown S, McAteer H, Crain J, McFaull S. Fatal and serious injuries related to vulnerable road users in Canada. J Safety Res 2016;58:67-77.
3. Kitamura Y, Hayashi M, Yagi E. Traffic problems in Southeast Asia featuring the case of Cambodia’s traffic accidents involving motorcycles. IATSS Res 2018;42:163-70.
4. Organization WH. Global Status Report on Road Safety 2015: World Health Organization; 2015. Available from: https://www.who.int/violence_injury_prevention/road_safety_status/2015/en/. [Last accessed on 2021 May 01].
5. Bazargan-Hejazi S, Ahmadi A, Shirazi A, Ainy E, Djalalinia S, Fereshtehnejad SM, et al. The burden of road traffic injuries in Iran and 15 surrounding countries: 1990-2016. Arch Iran Med 2018;21:556-65.
6. Molan AM, Rezapour M, Ksaibati K. Investigating the relationship between crash severity, traffic barrier type, and vehicle type in crashes involving traffic barrier. J Traffic Transp Eng (English Edition) 2020;7:125-36.
7. Molan AM, Rezapour M, Ksaibati K. Modeling the impact of various variables on severity of crashes involving traffic barriers. J Transp Saf Sec 2020;12:800-17.
8. Alam K, Mahal A. The economic burden of road traffic injuries on households in south Asia. PLoS One 2016;11:e0164362.
9. Ospina-Mateus H, Quintana Jiménez LA, Lopez-Valdes FJ. Understanding motorcyclist-related accidents in Colombia. Int J Inj Contr Saf Promot 2020;27:215-31.
10. Rodríguez-Hernández J, Camelo-Tovar F, Albavea-Hernández C, Campuzano-Rincón J. Motorcyclists mortality pattern in Colombia from 2000 to 2013: A longitudinal study. Arch Med 2017;9:10-21767.
11. Ministers TCo. Executive Regulations of the Law on Compulsory Use of Seat Belts and Helmets Approved in 1997 Tehran: Islamic Parliament Research Center of the Islamic Republic of IRAN; 1997. Available from: https://rc.majlis.ir/fa/law/show/121262. [Last accessed on 2021 May 01].
12. Khorshidi A, Ainy E, Soori H. Epidemiological pattern of road traffic injuries among Iranian motorcyclists in 2012. Saf Promot Inj Prev (Tehran) 2016;4:47-54.
13. Shahriyari M. The battle of motorcyclists in the capital with insurers Tehran: Islamic Republic News Agency; 2021. Available from: http://www.mehrnews.com/news/5097211. [Last accessed on 2021 May 01].

International Journal of Critical Illness and Injury Science | Volume 11 | Issue 4 | October-December 2021

208

14. Razeghi S. 50% of Injuries and Fatal Accidents in Tehran are Related to Motorcyclists Tehran: Mehr News Agency; 2021. Available from: http://iran‑tejarat.com/A...1817/14963381.html. [Last accessed on 2021 May 01].
15. Municipality T. Licensing and Representation (Motor Courier) Tehran: Iran Tejarat; 2019. Available from: http://iran‑tejarat.com/Ads1817/14963381.html. [Last accessed on 2021 May 01].
16. List of Motor Couriers in Tehran Iran: PEYK‑E‑NOVIN; 2019. Available from: https://payju.ir/content. [Last accessed on 2019 Nov 13].
17. Hyder AA, Paichadze N, Toroyan T, Peden MM. Monitoring the Decade of Action for Global Road Safety 2011‑2020: An update. Glob Public Health 2017;12:1492‑505.
18. Mama S, Taneranannon P. Effective motorcycle lane configuration Thailand: A Case study of Southern Thailand. Eng J 2016;20:113‑21.
19. Le TQ, Narhidayati ZA. A study of motorcycle lane design in Some Asian countries. Procedia Eng 2016;142:292‑8.
20. Ha NT, Ederer D, Vo VA, Pham AV, Mounts A, Nolen LD, et al. Changes in motorcycle‑related injuries and deaths after mandatory motorcycle helmet law in a district of Vietnam. Traffic Inj Prev 2018;19:75‑80.
21. Vadeby A, Anund A. Effectiveness and acceptability of milled rumble strips on rural two‑lane roads in Sweden. Eur Transp Res Rev 2017;9:29.
22. Hagen JX, Pardo C, Valente JB. Motivations for motorcycle use for Urban travel in Latin America: A qualitative study. Transp Policy 2016;49:93‑104.
23. Obilomohvin OO. The development and impact of motorcycles as means of commercial transportation in Nigeria. Res Hum Soc Sci 2012;2:231‑9.
24. Heydari ST, Hoseinzadeh A, Sarikhani Y, Hedjazi A, Zarenehzad M, Moafian G, et al. Time analysis of fatal traffic accidents in Fars Province of Iran. Chin J Traumatol 2013;16:84‑8.
25. Shajith SLA. Motorcycle accident analysis in Sri Lanka: Digital Library University of Moratuwa Sri Lanka; 2019. Available from: http://dl.lib.mrt.ac.lk/handle/123/14115. [Last accessed on 2021 November 24].
26. Ouni F, Belloumi M. Spatio‑temporal pattern of vulnerable road user's collisions hot spots and related risk factors for injury severity in Tunisia. Transp Res Part F Traffic Psychol Behav 2018;56:477‑95.
27. Pape‑Köhler CI, Simanski C, Nienaber U, Lefering R. External factors and the incidence of severe trauma: Time, date, season and moon. Injury 2014;45 Suppl 3:S93‑9.
28. Konlan KD, Doat AR, Mohammed I, Amoah RM, Saah JA, Konlan KD, et al. Prevalence and pattern of road traffic accidents among commercial motorcyclists in the central Tongu district, Ghana. ScientificWorldJournal 2020;2020:1‑10. Article ID 9493718 | https://doi.org/10.1155/2020/9493718.
29. Liang CC, Liu HT, Rau CS, Hsu SY, Hsieh HY, Hsieh CH. Motorcycle‑related hospitalization of adolescents in a Level I trauma center in southern Taiwan: A cross‑sectional study. BMC Pediatr 2015;15:105.
30. Shavaleh R, Motevalian SA, Mahdavi N, Haddadi M, Mohaghegh MR, Hamedi Z. Epidemiological study of hospitalized road traffic injuries in Iran 2011. Med J Islam Repub Iran 2018;32:50.
31. Chumpawadee U, Homchampa P, Thongkrajai P, Suwanimitr A, Chadbunchachai W. Factors related to motorcycle accident risk behavior among university students in northeastern Thailand. Southeast Asian J Trop Med Public Health 2015;46:805‑21.
32. Manan MM, Várhelyi A, Çelik AK, Hashim HH. Road characteristics and environment factors associated with motorcycle fatal crashes in Malaysia. IATSS Res 2018;42:207‑20.
33. Sivasankaran SK, Rangam H, Balasubramanian V. Investigation of factors contributing to injury severity in single vehicle motorcycle crashes in India. Int J Inj Contr Saf Promot 2021;28:243‑54.
34. Jones S, Gurupackiam S, Walsh J. Factors influencing the severity of crashes caused by motorcyclists: Analysis of data from Alabama. J Transp Eng 2013;139:949‑56.