NONCOMPLEX SMOOTH 4-MANIFOLDS WITH
LEFSCHETZ FIBRATIONS

MUSTAFA KORKMAZ

1. Introduction

Recently, B. Ozbagci and A. Stipsicz [12] proved that there are infinitely many pairwise nonhomeomorphic 4-manifolds admitting genus-2 Lefschetz fibration over S^2 but not carrying any complex structure with either orientation. (For the definition of Lefschetz fibration, see [6].) Their result depends on a relation in the mapping class group of a closed orientable surface of genus 2. This relation with eight right Dehn twists was discovered by Y. Matsumoto [9] by a computer calculation, and it is the global monodromy of a Lefschetz fibration $T^2 \times S^2 \# 4\mathbb{C}P^2 \to S^2$, where S^2 is the 2-sphere and T^2 is the 2-torus.

In this paper, we generalize Matsumoto’s relation to higher genus orientable surfaces. We find a relation involving $2g + 4$ (resp., $2g + 10$) Dehn twists when the genus of the surface is even (resp., odd). Following the method of Ozbagci and Stipsicz, for every positive integer n, we obtain a 4-manifold X_n admitting a genus-g Lefschetz fibration such that the fundamental group of X_n is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}_n$ for every $g \geq 2$. We then deduce that the 4-manifold X_n does not admit any complex structure. This is the main result of this paper.

Theorem 1.1. For every $g \geq 2$, there are infinitely many pairwise nonhomeomorphic 4-manifolds that admit genus-g Lefschetz fibrations over S^2 but do not carry any complex structure with either orientation.

Our relation in the mapping class group given by Theorem 3.4 also shows that the minimal number of singular fibers in a nontrivial genus-g Lefschetz fibration over S^2 is less than or equal to $2g + 4$ (resp., $2g + 10$) if g is even (resp., odd). This result was also obtained independently by C. Cadavid [3]. By definition, a Lefschetz fibration is nontrivial if it admits singular fibers. Stipsicz proved in [14] that this minimal

Date: May 8, 2019.

1991 Mathematics Subject Classification. Primary 57N13, 57N05; Secondary 57R17, 20F38, 20F36.

Key words and phrases. 4-manifolds, Lefschetz fibrations, Mapping class groups.
number is in fact $2g + 4$ (resp., $2g + 10$) if g is even (resp., odd) and greater than or equal to 6 (resp., greater than or equal to 15) among all 4-manifolds with $b^+_2 = 1$. See [7] and [13] for the other results related to this minimal number.

Here is how we obtain our relation in the mapping class group. Let Σ_g be a closed connected orientable surface of genus g. The hyperelliptic mapping class group of Σ_g is a quotient of the braid group B_{2g+2} on $2g + 2$ strings. The quotient of the hyperelliptic mapping class group with the cyclic subgroup of order 2 generated by the hyperelliptic involution is isomorphic to the mapping class group of a sphere with $2g + 2$ holes. The hyperelliptic mapping class group is equal to the mapping class group when $g = 2$. Using these facts, we lift Matsumoto’s relation to the braid group B_6 and generalize it to a relation in B_{2g+2}, although we do not say so explicitly. We then project it to the surface Σ_g to get our relation in the mapping class group of Σ_g.

For each positive integer n, by considering a product of conjugates of our relation with appropriate mapping classes, we obtain a relation in the mapping class group of Σ_g so that the fundamental group of the corresponding symplectic 4-manifold X_n is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}_n$. It follows from [12, proof of Theorem 1.3] that a symplectic manifold with fundamental group $\mathbb{Z} \oplus \mathbb{Z}_n$ admits no complex structures.

In the last section, we determine the diffeomorphism type of the 4-manifold X admitting a genus-g Lefschetz fibration over S^2 corresponding to our relation given by Theorem 3.4. If g is even, then X is diffeomorphic to $\Sigma_{g/2} \times S^2 \# 4\mathbb{C}P^2$. For this, we use a result of Stipsicz asserting that the only 4-manifold with $b^+_2 = 1$ which admits a (relatively minimal) Lefschetz fibration with $2g + 4$ vanishing cycles is $\Sigma_{g/2} \times S^2 \# 4\mathbb{C}P^2$.

2. Braid groups

The braid group B_{2g+2} on $2g + 2$ strings admits a presentation with generators $\sigma_1, \sigma_2, \ldots, \sigma_{2g+1}$ and relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i - j| \geq 2$$

and

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ if } 1 \leq i \leq 2g.$$

The subgroup of B_{2g+2} generated by $\sigma_1, \sigma_2, \ldots, \sigma_h$ is isomorphic to B_{h+1}. We identify this subgroup with B_{h+1}.

In the group B_{2g+2}, let us define the words $\Delta_k = \sigma_1 \sigma_2 \cdots \sigma_k$ and $\bar{\Delta}_k = \sigma_k \cdots \sigma_2 \sigma_1$ for each $k = 1, 2, \ldots, 2g + 1$. We define $\Delta_0 = 1$ for
the convention. For each \(k = 0, 1, \ldots, g \), let us also define
\[
\beta_k = \bar{\Delta}_k \Delta_{2g+1-k} \Delta_{2g-k}^{-1} \bar{\Delta}_k^{-1}
\]
and
\[
\beta = \bar{\Delta}^{g+1}.
\]
We have, for example, \(\beta_0 = \Delta_{2g+1} \Delta_1^{-1} \), \(\beta_1 = \bar{\Delta}_1 \Delta_{2g} \Delta_{2g-1}^{-1} \bar{\Delta}_1^{-1} \), and \(\beta_g = \bar{\Delta}_g \Delta_{g+1} \Delta_g^{-1} \bar{\Delta}_g^{-1} \). Note that \(\beta_k \) is the conjugate of \(\sigma_{2g+1-k} \) with the element \(\Delta_k \Delta_{2g-k} \).

The following lemma follows easily from the defining relations of the braid group.

Lemma 2.1. The following relations hold in the group \(B_{2g+2} \).

(a) \(\sigma_k \Delta_m = \Delta_m \sigma_k \) and \(\sigma_k^{-1} \Delta_m = \Delta_m \sigma_k^{-1} \) if \(1 < k \leq m \);
(b) \(\sigma_k \bar{\Delta}_m = \bar{\Delta}_m \sigma_{k+1} \) and \(\sigma_k^{-1} \bar{\Delta}_m = \bar{\Delta}_m \sigma_{k+1} \) if \(1 \leq k < m \);
(c) \(\sigma_k \Delta_m = \Delta_m \sigma_k \) and \(\sigma_k \bar{\Delta}_m = \bar{\Delta}_m \sigma_k \) if \(k > m + 1 \); and
(d) \(\Delta_g^k = \bar{\Delta}_g^{-1} \Delta_g^{-1} \sigma_g \sigma_{k+1} \) and \(\bar{\Delta}_g^k = \sigma_g^{-1} \Delta_g^{-1} \bar{\Delta}_g^{-1} \) if \(1 \leq k \leq g \).

Lemma 2.2. In the braid group \(B_{2g+2} \), we have the following:

(a) The element \(\beta \) is equal to \(\bar{\Delta}_g \Delta_g \bar{\Delta}_g^{-1} \); and
(b) The element \(\bar{\Delta}_g \Delta_g \) is in the centralizer of \(B_g \); in particular, it commutes with \(\Delta_g \).

Proof. We claim that \(\bar{\Delta}_g^k = \Delta_k \bar{\Delta}_g^{-k} \Delta_g^k \) for every \(0 \leq k \leq g \). First of all, the claim holds trivially for \(k = 0 \). Suppose by induction that \(\bar{\Delta}_g^k = \Delta_k \bar{\Delta}_g^{-k} \Delta_g^k \). By Lemma 2.1 (d), we have \(\Delta_g^{-k} = \sigma_{k+1} \Delta_g^{-k-1} \Delta_g \). Then we have
\[
\bar{\Delta}_g^k = \Delta_k \bar{\Delta}_g^{-k} \Delta_g \Delta_g^{-1} \Delta_g^{-k} \Delta_g = \Delta_k \sigma_{k+1} \bar{\Delta}_g^{-k-1} \Delta_g^{-k} \Delta_g \Delta_g^{-1} = \Delta_{k+1} \bar{\Delta}_g^{-k-1} \Delta_g^{-k} \Delta_g^{-1}.
\]
In particular, \(\bar{\Delta}_g^g = \Delta_g \bar{\Delta}_g^{-g} \). The proof of (a) follows.

For \(k < g \), by Lemma 2.1 we have \(\bar{\Delta}_g \Delta_g \sigma_k = \bar{\Delta}_g \sigma_{k+1} \Delta_g = \sigma_k \bar{\Delta}_g \Delta_g \). Now the proof of (b) follows. \(\Box \)

Lemma 2.3. For every \(0 \leq k \leq g-1 \), we have
\[
\Delta_{2g-k}^{-1} \bar{\Delta}_k^{-1} \Delta_{k+1} \Delta_{2g-k} \bar{\Delta}_k^{-1} \Delta_{2g-k-1} = \bar{\Delta}_k \Delta_{2g-k} \gamma_k,
\]
where \(\gamma_k = \bar{\Delta}_k \Delta_{2g-k-1} \Delta_{2g-k-2} \bar{\Delta}_k^{-1} \).
Theorem 2.4. In the braid group \(B_{2g+2} \), we have the relation
\[
\beta_0\beta_1\beta_2\cdots\beta_g\beta^2 = \Delta_{2g+1}\Delta_{2g}\cdots\Delta_3\Delta_2\Delta_1.
\]

Proof. We use Lemma 2.1 several times:
\[
\Delta_{2g-k}^{-1} \bar{\Delta}_k^{-1} \Delta_{k+1} \Delta_{2g-k} \bar{\Delta}_{k+1} \Delta_{2g-k-1}
\]
\[
= \sigma_{2g-k}^{-1} \cdots \sigma_{k+2g-k}^{-1} \Delta_k^{-1} \bar{\Delta}_k^{-1} (\bar{\Delta}_{k+1} \Delta_{2g-k} \bar{\Delta}_{k+1} \Delta_{2g-k-1})
\]
\[
= \sigma_{2g-k}^{-1} \cdots \sigma_{k+2g-k}^{-1} (\bar{\Delta}_{k+1} \Delta_{2g-k} \bar{\Delta}_{k+1} \Delta_{2g-k-1}) \Delta_k^{-1} \bar{\Delta}_k^{-1}
\]
\[
= \sigma_{2g-k}^{-1} \cdots \sigma_{k+3g-k+2}^{-1} \bar{\Delta}_k \Delta_{2g-k} \bar{\Delta}_{k+1} \Delta_{2g-k-1} \Delta_k^{-1} \bar{\Delta}_k^{-1}
\]
\[
= \Delta_k \sigma_{2g-k}^{-1} \cdots \sigma_{k+3g-k+2}^{-1} \bar{\Delta}_k \Delta_{2g-k} \bar{\Delta}_{k+1} \Delta_{2g-k-1} \Delta_k^{-1} \bar{\Delta}_k^{-1}
\]
\[
= \bar{\Delta}_k \Delta_{2g-k} \bar{\Delta}_k \Delta_{2g-k-1} \Delta_{2g-k-2} \bar{\Delta}_k^{-1}
\]
\[
= \bar{\Delta}_k \Delta_{2g-k} \gamma_k.
\]

The main result of this section is the next theorem.

Theorem 2.4. In the braid group \(B_{2g+2} \), we have the relation
\[
\beta_0\beta_1\beta_2\cdots\beta_g\beta^2 = \Delta_{2g+1}\Delta_{2g}\cdots\Delta_3\Delta_2\Delta_1.
\]

Proof. Recall that, for any \(h \leq 2g+2 \), we identify the group \(B_h \) with the subgroup of \(B_{2g+2} \) generated by the elements \(\sigma_1, \sigma_2, \ldots, \sigma_{h-1} \).

The proof of the theorem is by induction on \(g \). Suppose that \(g = 0 \). In the group \(B_2 \), \(\beta_0 = \Delta_1 \Delta_0^{-1} \) and \(\beta = \Delta_0 \). Thus \(\beta_0\beta^2 = \Delta_1 \). Hence, the conclusion of the theorem holds for \(g = 0 \).

In the subgroup \(B_{2g} \) of \(B_{2g+2} \), let us define
\[
\gamma_k = \bar{\Delta}_k \Delta_{2g-k} \Delta_{2g-k-1} \bar{\Delta}_k^{-1}, \quad 0 \leq k \leq g - 1
\]
and
\[
\gamma = \bar{\Delta}_{g-1}.
\]

Then, by the induction hypothesis
\[
\gamma_0\gamma_1\gamma_2\cdots\gamma_{g-1}\gamma^2 = \Delta_{2g-1}\Delta_{2g-2}\cdots\Delta_3\Delta_2\Delta_1.
\]

Let us also define \(\gamma_g = 1 \) for the convention.

In the group \(B_{2g+2} \), we claim that
\[
\beta_k\beta_{k+1} \cdots \beta_g \beta^2 = \bar{\Delta}_k \Delta_{2g+1-k} \bar{\Delta}_k \Delta_{2g-k} \gamma_k \gamma_{k+1} \cdots \gamma_{g-1} \gamma_g \gamma^2.
\]
The proof of this claim is by induction on $g - k$. We start with the following computation:

$$
\beta_g \beta^2 = \Delta_{g+1} \Delta_{g}^{-1} \Delta_{g}^{-1} (\Delta_{g} \Delta_{g} \Delta_{g-1})^2 \\
= \Delta_{g+1} \Delta_{g}^{-1} \Delta_{g} \Delta_{g} \Delta_{g-1} \\
= \Delta_{g+1} \Delta_{g} \Delta_{g} ^2 \Delta_{g}^{-1} \\
= \Delta_{g+1} \Delta_{g} \Delta_{g} \Delta_{g} \gamma \gamma^2.
$$

Hence, the claim holds for $k = g$. Suppose inductively that

$$
\beta_{k+1} \beta_{k+2} \cdots \beta_g \beta^2 = \Delta_{k+1} \Delta_{2g-k} \Delta_{k+1} \Delta_{2g-k-1} \gamma_{k+1} \gamma_{k+2} \cdots \gamma_g \gamma^2.
$$

Then by Lemma 2.3 we get

$$
\beta_k \beta_{k+1} \cdots \beta_g \beta^2 \\
= \Delta_k \Delta_{2g+1-k} (\Delta_{2g-k} \Delta_{k+1} \Delta_{2g-k} \Delta_{k+1} \Delta_{2g-k-1} \gamma_{k+1} \gamma_{k+2} \cdots \gamma_g \gamma^2) \\
= \Delta_{k} \Delta_{2g+1-k} \Delta_{k} \Delta_{2g-k} \gamma_{k} \gamma_{k+1} \gamma_{k+2} \cdots \gamma_g \gamma^2.
$$

Hence, the claim is proved. For $k = 0$, in particular, we obtain

$$
\beta_0 \beta_1 \beta_2 \cdots \beta_g \beta^2 = \Delta_0 \Delta_{2g+1} \Delta_0 \Delta_{2g} \gamma_0 \gamma_1 \cdots \gamma_g \gamma^2 \\
= \Delta_{2g+1} \Delta_{2g} \gamma_0 \gamma_1 \cdots \gamma_g \gamma^2 \\
= \Delta_{2g+1} \Delta_{2g} \Delta_{2g-1} \cdots \Delta_2 \Delta_1.
$$

This finishes the proof of the theorem.

3. Mapping class groups

Let Σ_g be a closed connected orientable surface of genus g embedded in \mathbb{R}^3 such that it is invariant under the involution $J(x, y, z) = (-x, y, -z)$ (cf. Fig. 4). Notice that J is the rotation about y-axis by π. We orient Σ_g so that the unit normal vectors are pointing outward. Let j be the isotopy class of J. Let us denote by M_g the mapping class group of Σ_g which is the group of isotopy classes of orientation-preserving diffeomorphisms of Σ_g. The hyperelliptic mapping class group is defined as the centralizer $C_{M_g}(j)$ of j in M_g, the subgroup consisting of those the mapping classes that commute with j.

Throughout this paper, we use functional notation. That is, for any two mapping classes f and g, the multiplication fg means that g is applied first.

For a simple closed curve a on the oriented surface Σ_g, by the abuse of notation, a right Dehn twist about a and its isotopy class is denoted by t_a.

Let us consider the simple closed curves $A_1, A_2, \ldots, A_{2g+1}$ on Σ_g defined as follows: $A_{2k} = b_k, A_1 = a_1, A_{2k-1} = a_k a_{k+1}^{-1}$, and $A_{2g+1} = a_g$.

where \(a_k\) and \(b_k\) are the curves shown in Fig. 4. Let \(t_k\) denote the right Dehn twist about \(A_k\). The simple closed curves \(A_k\) are invariant under \(J\). It follows that Dehn twists \(t_1, t_2, \ldots, t_{2g+1}\) commute with \(j\). Hence, they are contained in the hyperelliptic mapping class group.

The involution \(J\) has \(2g+2\) fixed points. Hence, we have a branched covering \(p : \Sigma_g \rightarrow S^2\) branching over \(2g+2\) points. Let us mark these \(2g+2\) points on \(S^2\), and let \(\Sigma_{0,2g+2}\) be the resulting surface. Notice that the interior of each \(p(A_k)\) is an embedded arc on \(\Sigma_{0,2g+2}\) connecting two distinct marked points and that it is disjoint from \(p(A_l)\) for \(k \neq l\). Let us denote by \(w_k\) the isotopy class of a right half twist about \(p(A_k)\). Thus, if we orient the arc \(p(A_k)\) arbitrarily, then \(w_k(p(A_k))\) (defined up to isotopy) is isotopic to the arc \(p(A_k)^{-1}\). Therefore, \(w_k^2\) is the right Dehn twist about the boundary component of a regular neighborhood of \(p(A_k)\). It is well-known that the half twists \(w_1, w_2, \ldots, w_{2g+1}\) generate the mapping class group \(M_{0,2g+2}\) of \(\Sigma_{0,2g+2}\) (cf. \[4\], Theorem 4.5]). Here, the group \(M_{0,2g+2}\) is defined to be the group of the isotopy classes of the orientation-preserving diffeomorphisms of \(\Sigma_{0,2g+2}\) that preserve the marked points setwise. The isotopies are assumed to fix each marked point.

Theorem 3.1. The hyperelliptic mapping class group \(C_{M_0}(j)\) is generated by the Dehn twists \(t_1, t_2, \ldots, t_{2g+1}\), the function given by \(\Psi(t_k) = w_k\) on the generators defines a surjective homomorphism
\[
\Psi : C_{M_0}(j) \rightarrow M_{0,2g+2},
\]
and the kernel of \(\Psi\) is \(\langle j \rangle\), which is a subgroup of order 2.

Theorem 3.1 was proved by J. Birman and H. Hilden \[2\]. They also obtained a presentation of the hyperelliptic mapping class group. Since \(t_it_j = t_jt_i\) for \(|i-j| \geq 2\) and \(t_it_{i+1}t_i = t_{i+1}t_it_{i+1}\) in the group \(C_{M_0}(j)\), the fact that \(t_1, t_2, \ldots, t_{2g+1}\) generate \(C_{M_0}(j)\) implies that \(\sigma_k \mapsto t_k\) defines a surjective homomorphism \(B_{2g+2} \rightarrow C_{M_0}(j)\).

The following lemma is easy to prove (cf. Fig. 4 (a)).

Lemma 3.2. In the group \(M_{0,2g+2}\), the element \((w_k \cdots w_2 w_1)^{k+1}\) is equal to the right Dehn twist about the boundary component of a regular neighborhood of \(p(A_1) \cup p(A_2) \cup \cdots \cup p(A_k)\).

In order to state the main result of this section, let us consider the simple closed curves \(B_k, a, b,\) and \(c\) illustrated in Fig. 4. Note that \(a\) and \(b\) are defined for odd \(g\), and \(c\) is defined for even \(g\).

Lemma 3.3. The following relations hold in the mapping class group:
\[\begin{align*}
(a) & \ t_c = (t_g \cdots t_2 t_1)^{2g+1} \text{ if } g \text{ is even}; \text{ and}\\
(b) & \ t_at_b = (t_g \cdots t_2 t_1)^{g+1} \text{ if } g \text{ is odd}.
\end{align*}\]
Proof. Suppose that \(g \) is even. Consider the branched covering \(p : \Sigma_g \to S^2 \). Notice that \(p(c) \) is a simple closed curve on \(\Sigma_{0,2g+2} \). The projection \(\Psi(t_c) \) of \(t_c \) to \(\Sigma_{0,2g+2} \) is the square of the Dehn twist about \(p(c) \). This can be seen geometrically as follows. Consider the arcs \(p(A_1), p(A_2), \ldots, p(A_{2g+1}) \). Since the surface obtained by cutting \(\Sigma_{0,2g+2} \) along these arcs is a disc without any marked points in the interior, in order to show that \(\Psi(t_c) = t^2_{p(c)} \), it is enough to check that the actions of \(\Psi(t_c) \) and \(t^2_{p(c)} \) on these arcs are the same (up to isotopy). To see the action of \(\Psi(t_c) \) on an arc \(A' \), lift \(A' \) to \(\Sigma_g \), apply \(t_c \), and then project it down to \(\Sigma_{0,2g+2} \) (cf. Fig. 3). Since \(t^2_{p(c)} = (w_g \cdots w_2 w_1)^{g+1} \) by Lemma 3.2, we conclude that \(\Psi(t_c) = \Psi((t_g \cdots t_2 t_1)^{2(g+1)}) \). Hence, \((t_g \cdots t_2 t_1)^{2(g+1)} \) is equal to either \(t_c \) or \(j t_c \). We rule out the latter possibility as follows. It is easily checked that \((t_g \cdots t_2 t_1)^{2(g+1)} \) acts trivially on the first homology group \(H_1(\Sigma_g; \mathbb{Z}) \). The action of \(t_c \) is also trivial since \(c \) is null homologous. On the other hand, \(j \) acts as the minus identity on \(H_1(\Sigma_g; \mathbb{Z}) \).

The part (b) is proved similarly. \(\square \)
Figure 3. Projection of the Dehn twist t_c.

Theorem 3.4. In the mapping class group M_g, the following relations between right Dehn twists hold:

(a) $(t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_g} t_c)^2 = 1$ if g is even;
(b) $(t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_g} t_a^2 t_b^2)^2 = 1$ if g is odd.

Proof. In the mapping class group M_g of Σ_g, for each $k = 0, 1, 2, \ldots, g$, we define Δ_k, $\bar{\Delta}_k$, β_k, and β as in Section 2 by replacing σ_i by t_i. Recall that t_i is the (right) Dehn twist about the simple closed curve A_i. Hence,

$$\beta_k = (\bar{\Delta}_k \Delta_{2g-k}) t_{2g+1-k} (\bar{\Delta}_k \Delta_{2g-k})^{-1}.$$

It is easy to see that $\bar{\Delta}_i \Delta_{2g-i}(A_{2g+1-i}) = B_i$. Since $f t_e f^{-1} = t_{f(e)}$ for any $f \in M_g$ and for any simple closed curve e, we conclude that $\beta_k = t_{B_k}$. Also, by Lemma 3.3, $\beta^2 = t_c$ if g is even and $\beta^2 = t_a^2 t_b^2$ if g is odd. Let us define the word

$$W = \begin{cases}
(t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_g} t_c)^2 & \text{if } g \text{ is even,} \\
(t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_g} t_a^2 t_b^2)^2 & \text{if } g \text{ is odd.}
\end{cases}$$

Hence, $W = (\beta_0 \beta_1 \cdots \beta_g \beta^2)^2$. Let $\Delta = \Delta_{2g+1} \Delta_{2g} \cdots \Delta_1$. Since $t_i t_j = t_j t_i$ for $|i - j| \geq 2$ and $t_i t_{i+1} t_i = t_{i+1} t_i t_{i+1}$ by Theorem 2.4, we obtain $W = \Delta^2$. Now the element $\Psi(\Delta)$ is of order 2 in $M_{0,2g+2}$ (cf. Fig. 4 (b) for $g = 6$), where Ψ is the epimorphism in Theorem 3.1. Hence, either $\Delta^2 = 1$ or $\Delta^2 = J$. It is easy to verify that Δ^2 acts trivially on the first homology group $H_1(\Sigma_g; \mathbb{Z})$ but J does not. Therefore, $W = 1$.

This finishes the proof of the theorem. \square
4. Noncomplex genus-

In this section, we prove the main result of this paper. We assume from now on that $g \geq 2$. We construct a 4-manifold X_n a admitting genus-g Lefschetz fibration with fundamental group $\mathbb{Z} \oplus \mathbb{Z}_n$ for every positive integer n. Then we conclude the main result of this paper from the proof of the main result of [12]. As the model for a closed connected oriented surface Σ_g, we will consider the one embedded in \mathbb{R}^3 as shown in Fig. 4.

For any two elements x and y in a group, we denote $yx y^{-1}$ and $x y x^{-1} y^{-1}$ by xy and $[x, y]$, respectively.

Let us consider the word W in M_g defined by

$$W = \left\{ \begin{array}{ll} (t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_g} t_c)^2 & \text{if } g \text{ is even}, \\ (t_{B_0} t_{B_1} t_{B_2} \cdots t_{B_n} t_{a_b}^2)^2 & \text{if } g \text{ is odd}. \end{array} \right.$$

By Theorem 3.1, $W = 1$ in M_g. Since the conjugation of a right Dehn twist with an element of M_g is again a right Dehn twist, the word W^f is a product of right Dehn twists for any mapping class f. For each positive integer n, we define

$$W_n = \left\{ \begin{array}{ll} W W^{t_{a_1}} W^{t_{a_2}} \cdots W^{t_{a_r-1}} W^{t_{a_r}} W^{t_{b_r+2}} W^{t_{b_r+3}} \cdots W^{t_{b_g}} & \text{if } g = 2r, \\ W W^{t_{c_3}} W^{t_{c_2}} W^{t_{c_1}} \cdots W^{t_{c_{r+1}}} W^{t_{b_r+2}} W^{t_{b_r+3}} \cdots W^{t_{b_g}} & \text{if } g = 2r + 1, \end{array} \right.$$

where a_i and b_i are simple closed curves given in Fig. 4 (considered up to isotopy). Note that W_n is a product of $g(2g + 4)$ (resp., $g(2g + 10)$) right Dehn twists if g is even (odd).

The word W_n is equal to the identity in the mapping class group M_g. Let X and X_n be the smooth 4-manifolds that admit the genus-g Lefschetz fibrations over S^2 whose global monodromies are W and W_n, respectively. Thus, X_n is the fiber sum of g copies of X.

Theorem 4.1. The fundamental group $\pi_1(X_n)$ of X_n is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}_n$.

Proof. Let a_k and b_k be the standard generators of $\pi_1(\Sigma_g)$ illustrated in Fig. 4. By the theory of Lefschetz fibrations, $\pi_1(X_n)$ is isomorphic to the quotient of $\pi_1(\Sigma_g)$ by the normal subgroup generated by the vanishing cycles.

Suppose first that $g = 2r$. It is easy to check that up to conjugation the following equalities hold in $\pi_1(\Sigma_g)$:

- $B_0 = b_1 b_2 \cdots b_g$;
- $B_{2k-1} = a_k b_k b_{k+1} \cdots b_{g+1-k} c_{g+1-k} a_{g+1-k} a_{g+1-k}$, $1 \leq k \leq r$;
- $B_{2k} = a_k b_{k+1} b_{k+2} \cdots b_{g-k} c_{g-k} a_{g+1-k}$, $1 \leq k \leq r - 1$;
- $B_g = B_{2r} = a_r c_r a_{r+1}$;
- $c = c_r = [a_1, b_1][a_2, b_2] \cdots [a_r, b_r]$.

For any two elements x and y in a group, we denote $xy y^{-1}$ and $x y x^{-1} y^{-1}$ by xy and $[x, y]$, respectively.
The vanishing cycles corresponding to W^t_{ak} are the set
\[\{ a_kB_0, \ldots, a_kB_{2k-1}, B_{2k}, \ldots, B_g, c \}, \ 1 \leq k \leq r - 1. \]
Similarly, the vanishing cycles corresponding to W^t_{ar} and W^t_{bg+1-k} are
\[\{ a^n_rB_0, \ldots, a^n_rB_{g-1}, B_g, c \}, \ 1 \leq k \leq r - 1, \]
and
\[\{ B_0, \ldots, B_{2k-2}, b_{g+1-k}^{-1}B_{2k-1}, b_{g+1-k}^{-1}B_{2k}, B_{2k+1}, \ldots, B_g, c \}, \ 1 \leq k \leq r - 1, \]
respectively. It follows that the fundamental group of X_n has a presentation with generators $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$ and relations
- $\Pi_{k=1}^g [a_k, b_k] = 1$;
- $B_0 = B_1 = B_2 = \cdots = B_g = c = 1$;
- $a_1 = a_2 = \cdots = a_{r-1} = a^n_1 = b_{r+2} = b_{r+3} = \cdots = b_g = 1$.

It is easy to see that this presentation is equivalent to the presentation with generators a_r, b_r and relations $a^n_r = [a_r, b_r] = 1$.

Suppose now that $g = 2r + 1$. A similar argument as in the case of even g shows that the fundamental group of X_n has a presentation with generators $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$ and relations
- $\Pi_{k=1}^g [a_k, b_k] = 1$;
- $B_0 = B_1 = B_2 = \cdots = B_g = a = b = 1$;
- $(a_2a_1^{-1})^n = a_3a_2^{-1} = a_4a_3^{-1} = \cdots = a_{r+1}a_r^{-1} = b_{r+2} = b_{r+3} = \cdots = b_g = 1$.

Since $a = a_{r+1}$, this presentation is equivalent to the presentation with generators a_1, b_1 and relations $a^n_1 = [a_1, b_1] = 1$.

This completes the proof of the theorem.

\[\text{Figure 4. Generators of the fundamental group.} \]

The following theorem can be concluded from [12, proof of Theorem 1.3].

Theorem 4.2. Let M be an orientable 4-manifold such that $b_2^+(M) \geq 1$ and $\pi_1(M) = \mathbb{Z} \oplus \mathbb{Z}_n$. Then M does not carry any complex structure.
Proof of Theorem 1.1. The smooth 4-manifold X_n admits a genus-g Lefschetz fibration for every positive integer n. Since X_n is symplectic by a result of R. Gompf [6], we have $b_2^+(X_n) \geq 1$. We showed above that $\pi_1(X_n) = \mathbb{Z} \oplus \mathbb{Z}_n$. Hence, the manifold X_n is not homeomorphic to X_m for $n \neq m$. By Theorem 1.2, the manifold X_n and the manifold obtained from it by reversing the orientation do not admit any complex structure.

5. The 4-manifold admitting a Lefschetz fibration with global monodromy W.

In this section, we determine the 4-manifold corresponding to the word W given in Section 3.

The case of even g. Notice that simple closed curves B_0, B_1, \ldots, B_g, and c are invariant under the involution J. Hence, the genus-g Lefschetz fibration $X \to S^2$ with global monodromy W is is hyperelliptic.

Theorem 5.1 ([8],[9],[4],[11]). Let M be a 4-manifold that admits a hyperelliptic Lefschetz fibration of genus g over S^2. Let m and $s = \sum_{h=1}^{[g/2]} s_h$ be the numbers of nonseparating and separating vanishing cycles in the global monodromy of this fibration, respectively, where s_h denotes the number of separating vanishing cycles that separate the genus-g surface into two surfaces one of which has genus h. Then the signature of M is

$$\sigma(M) = -\frac{g+1}{2g+1} m + \sum_{h=1}^{[g/2]} \left(\frac{4h(g-h)}{2g+1} - 1 \right) s_h.$$

Since there are $2g + 4$ vanishing cycles, Euler characteristic of X is $\chi(X) = 2(2 - 2g) + 2g + 4 = 8 - 2g$. There are only two separating vanishing cycles, and they bound a surface of genus $g/2$ on both sides. Hence, the signature of X is

$$\sigma(X) = -\frac{g+1}{2g+1} (2g + 2) + \left(\frac{4g(g - g/2)}{2g + 1} - 1 \right) 2 = -4.$$

The group $\pi_1(X)$ has a presentation with generators $a_1, b_1, \ldots, a_g, b_g$ and relations $\Pi_{k=1}^g [a_k, b_k] = B_0 = B_1 = B_2 = \cdots = B_g = c = 1$. It is now easy to see that $H_1(X; \mathbb{Z}) = \mathbb{Z}^g$. In particular, $b_1(X) = g$. It follows from $\chi(X) = 8 - 2g$ and $\sigma(X) = -4$ that $b_2^+(X) = 1$. By [14, Remark 4.5(a)], X is diffeomorphic to $\Sigma_{g/2} \times S^2 \# 4CP^2$ if $g \geq 6$.

The case of odd g. Suppose that g is at least 3 and odd. Let $X \to S^2$ be the genus-g Lefschetz fibration with global monodromy W. Since there are $2g+10$ singular fibers, the Euler characteristic of X is $\chi(X) = 2(2 - 2g) + 2g + 10 = 14 - 2g$. The fundamental group $\pi_1(X)$ of X has a presentation with generators $a_1, b_1, \ldots, a_g, b_g$ and relations $\prod_{k=1}^g [a_k, b_k] = B_0 = B_1 = B_2 = \cdots = B_g = a = b = 1$. It is now easy to see that $H_1(X; \mathbb{Z}) = \mathbb{Z}^{g-1}$. In particular, $b_1(X) = g - 1$. Hence,

$$14 - 2g = 2 - 2b_1(X) + b_2(X) = 2 - 2(g - 1) + b_2(X);$$

that is, $b_2(X) = 10$.

The manifold X is symplectic. Since $1 - b_1 + b_2^+$ is even for any symplectic manifold, we conclude that $b_2^+(X)$ is odd and is between 1 and 9. Hence, $b_2^-(X)$ is also odd and is between 1 and 9.

We now determine the signature of X. A handlebody decomposition for X is obtained as follows. Start with $\Sigma_g \times D^2$, where D^2 is the 2-disc. Its boundary is $\Sigma_g \times S^1$. Attach a 2-handle along each vanishing cycle (by counting its multiplicity) with the -1 framing relative to the product framing. The cores of the first two 2-handles attached along a gives us a (-2)-sphere S_1. Denote the class of S_1 in $H_2(X; \mathbb{R})$ by $[S_1]$. Similarly, the cores of the second and the third 2-handles, and the third and the fourth 2-handles give two (-2)-spheres S_2 and S_3. Note that $[S_1][S_3] = 0$. Orient each S_i so that $[S_1][S_2] = [S_2][S_3] = -1$. Similarly, the four 2-handles glued along b give three (-2)-spheres S_4, S_5, S_6 with $[S_4][S_5] = [S_5][S_6] = -1$ and $[S_4][S_6] = 0$. Since a and b are disjoint, $[S_i][S_j] = 0$ for $1 \leq i \leq 3$ and $4 \leq j \leq 6$. The first handles attached along a and b give a surface S_7 of genus $(g - 1)/2$ such that $[S_7]^2 = -2$, $[S_7][S_1] = [S_7][S_4] = -1$, and $[S_7][S_i] = 0$ for $i = 2, 3, 5, 6$.

The homology classes $[S_1], \ldots, [S_7]$ are linearly independent. Hence, they form a basis for a subspace V of $H_2(X; \mathbb{R})$ of dimension 7. The matrix of the intersection form restricted to V in the above basis is the matrix $-A$, where

$$A = \begin{pmatrix}
2 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 2
\end{pmatrix}$$

It is easily check that the matrix A is positive definite. Hence, the restriction of the intersection form to V is negative definite.
On the other hand, we have \([F] \neq 0, [F]^2 = 0\) and \([F] \in V^\perp\), where \(F\) is a generic fiber and \(V^\perp\) is the orthogonal complement of \(V\). Since the restriction of the intersection form to \(V^\perp\) is nondegenerate, there is a class \([S_8] \in V^\perp\) with \([S_8]^2 < 0\). Thus, the restriction of the intersection form to the 8-dimensional subspace generated by \([S_1], \ldots, [S_8]\) is negative definite. Therefore, \(b_2^-(X)\) is at least 8, and hence \(b_2^+(X) = 9\), since it is also odd. Consequently, we have \(b_2^+(X) = 1\) and \(\sigma(X) = -8\).

Remarks 5.2. (1) Stipsicz [14] points out that when \(g\) is odd, the manifold \(X\) that admits a Lefschetz fibration over \(S^2\) with global monodromy \(W\) is diffeomorphic to \(\Sigma_{(g-1)/2} \times S^2 \# 8\mathbb{CP}^2\).

(2) R. Fintushel and R. Stern [5] constructed infinite classes of simply connected homeomorphic but nondiffeomorphic symplectic manifolds, all of which admit Lefschetz fibrations of a fixed fiber genus.

Acknowledgments. I thank András I. Stipsicz and Sergey Finashin for helpful conversations and for suggestions in the computation of the signature in the case of odd \(g\). I also thank Yildiray Ozan for answering numerous questions.

References

[1] J. S. Birman, *Braids, links and mapping class groups*, Ann. of Math. Stud. 82, Princeton Univ. Press, Princeton, 1974.

[2] J. S. Birman and H. M. Hilden, "On the mapping class groups of closed surfaces as covering spaces", in *Advances in the Theory of Riemann surfaces (Stony Brook, N.Y., 1969)*, Ann. of Math. Stud. 66, Princeton Univ. Press, Princeton 1971, 81-115.

[3] C. Cadavid, *A remarkable set of words in the mapping class group*, Ph.D. dissertation, Univ. of Texas at Austin, 1998.

[4] H. Endo, *Meyer’s signature cocycle and hyperelliptic fibrations*, Math. Ann. 316 (2000), 237-257.

[5] R. Fintushel and R. Stern, *Symplectic surfaces in a fixed homology class*, J. Differential Geom. 52 (1999), 203-222.

[6] R. E. Gompf and A. I. Stipsicz, *4-manifolds and Kirby calculus*, Grad. Stud. Math. 20, Amer. Math. Soc., Providence, 1999.

[7] M. Korkmaz and B. Ozbagci, *Minimal number of singular fibers in a Lefschetz fibration*, to appear in Proc. Amer. Math. Soc.

[8] Y. Matsumoto, *On 4-manifolds fibered over tori, II*, Proc. Japan Acad. Ser.A Math Sci. 59 (1983), 100-103.

[9] Y. Matsumoto, "Lefschetz fibrations of genus two - A topological approach", in *Topology and Teichmüller Spaces (Katinkulta, Finland, 1995)*, World Sci., River Edge, New Jersey, 1996, 123-148.

[10] J. D. McCarthy and A. Papadopoulos, *Involutions in surface mapping class groups*, Enseign. Math. (2) 33 (1987), 275-290.

[11] B. Ozbagci, *Signatures of Lefschetz fibrations*, to appear in Pacific J. Math.
[12] B. Ozbagci and A. I. Stipsicz, Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (2000), 3125-3128.
[13] A. I. Stipsicz, On the number of vanishing cycles in Lefschetz fibrations, Math. Res. Lett. 6 (1999), 449-456.
[14] A. I. Stipsicz, Singular fibres in Lefschetz fibrations on manifolds with $b_2^+ = 1$, to appear in Topology Appl.

DEPARTMENT OF MATHEMATICS, MIDDLE EAST TECHNICAL UNIVERSITY, 06531 ANKARA, TURKEY
E-mail address: korkmaz@arf.math.metu.edu.tr