Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The Questionable Ethics Behind Lack of Universal Doula Care in the United States

At the end of January, the Centers for Disease Control and Prevention published the U.S. maternal mortality rate for the first time in 13 years (Hoyert & Minino, 2020). The reasons behind the lapse in reporting have been documented (Hoyert & Minino, 2020; MacDorman et al., 2016) and are primarily related to the fact that the United States does not require all states to use the same birth and death certificates. Nonetheless, the newly-published data reveal what many of us had long suspected: the United States has a higher maternal mortality rate than all other high-resource countries (17.4/100,000), and the rate for Black women is much higher (37.1/100,000; Hoyert & Minino, 2020).

In addition to elevated rates of maternal mortality, communities of color in the United States have poorer birth outcomes generally. For instance, women of color bear a disproportionate burden of preterm birth and intrauterine growth restriction (Bryant et al., 2010; Crawford et al., 2017; National Academies of Sciences, Engineering, and Medicine, 2020). We also observe poor birth outcomes in women with low socioeconomic status (Amjad et al., 2019). Based on the work done on fetal origins of adult disease and the microbiome, it is clear that the circumstances surrounding one’s birth matter a great deal for later health for the individual and her or his children and grandchildren (Cresci & Bawden, 2015; Fernandez-Twinn et al., 2019; Yarde et al., 2013). These inequities at birth reinforce the more generalized health inequities shouldered by communities of color in the United States across generations.

Ideally, midwifery care would be a pillar in any strategy designed to reduce inequities in maternal and child health outcomes (Sandall et al., 2016). However, the U.S. midwifery workforce is not currently extensive enough or sufficiently diverse to offer every pregnant woman a midwife in and from her own community, despite decades of robust evidence indicating such an approach could dramatically improve outcomes (Allen et al., 2016; Cheyney et al., 2015; Homer et al., 2014; National Academies of Sciences, Engineering, and Medicine, 2020; Sandall et al., 2016). Furthermore, even if we decided tomorrow to quadruple the midwifery workforce (it is, after all, the year of the Nurse and Midwife; World Health Assembly, 2019), training midwives takes several years and our existing nursing and midwifery schools do not currently have the capacity to sufficiently increase their enrollments (Accreditation Commission for Midwifery Education, 2019).

In the meantime, we could offer doulas to all childbearing families. These traditional health workers can be trained in a matter of weeks, and once in practice they provide the health education, social support, and continuity of care midwives are often unable to provide because they are constrained by hospital policies (Dahlen et al., 2011). Excellent maternal and child outcomes have been associated with the use of
doulas (Bohren et al., 2017), and depending on the particular state in question, reimbursement of $929–$1,047 (average $986) is cost effective because of the vast reductions in preterm and cesarean births (Kozhimannil et al., 2016).

Universal access to doulas during childbirth could be operationalized in practice in a few different ways. First, hospitals could employ doulas as part of their maternity care teams and include their services for all childbirthing women as part of the overall care package. As accountability to quality of care has become more prominent since the Affordable Care Act, most hospital administrators are interested in reducing cesarean rates. Doulas would almost certainly help achieve this goal (Bohren et al., 2017). Doula care is a cost-effective, evidence-based solution—the proverbial magic bullet.

The other way doula care could be made more accessible is by enabling individual doulas or multidoula practices (call doula “hubs” in some states) to bill insurers for services. In practice, this means state Medicaid programs would need to begin to reimburse for doula care; private insurers would likely follow suit. Oregon is one of the few states that has done this via a state Traditional Health Worker Registry. Doulas who meet the training standards set by the state can apply to be on the Registry, after which they can bill for services. Implementation of this system has not been entirely smooth sailing. However, it now seems to be working in at least some areas of the state, since more families from traditionally underrepresented groups can access doula care without cost to themselves.

It is not yet clear which of these two implementation methods would be more effective in the U.S. healthcare system. Addressing the systemic racism underpinning centuries of poorer health outcomes for minority families should be our nation’s top priority. One way to immediately begin to move the needle on maternal and child health outcomes for communities of color is to provide every childbirthing woman who wants one with a socially and linguistically matched doula. As Dr. Christiane Northrup wrote in her iconic book Women’s Bodies, Women’s Wisdom, if doulas were a drug, it would be unethical not to use them (Northrup, 2010).

Acknowledgment

The authors acknowledge Sabrina Pillai, MPH, for assistance with the literature searches for this column.

REFERENCES

Accreditation Commission for Midwifery Education. (2019). Midwifery education trends report 2019. American College of Nurse-Midwives.

Allen, J., Kildea, S., & Stapleton, H. (2016). How optimal caseload midwifery can modify predictors for preterm birth in young women: Integrated findings from a mixed methods study. Midwifery, 41, 30–38. https://doi.org/10.1016/j.midw.2016.07.012

Amjad, S., Chandra, S., Osconio-Vargas, A., Voaklander, D. & Osipina, M. B. (2019). Maternal area of residence, socioeconomic status, and risk of adverse maternal and birth outcomes in adolescent mothers. Journal of Obstetrics and Gynaecology Canada, 41(12), 1752–1759. https://doi.org/10.1016/j.jogc.2019.02.126

Bohren, M. A., Hofmeyr, G. J., Sakala, C., Fukuzawa, R. K., & Cuthbert, A. (2017). Continuous support for women during childbirth. Cochrane Database of Systematic Reviews, 2017, (7), CD003766. https://doi.org/10.1002/14651858.CD003766.pub6

Bryant, A. S., Worjoloh, A., Caughney, A. B., & Washington, A. E. (2010). Racial/ethnic disparities in obstetric outcomes and care: Prevalence and determinants. American Journal of Obstetrics and Gynecology, 202(4), 335–343. https://doi.org/10.1016/j.ajog.2009.10.864

Cheyney, M., Olsen, C., Bovbjerg, M., Eversen, C., Darragh, I., & Potter, B. (2015). Practitioner and practice characteristics of certified professional midwives in the United States: Results of the 2011 North American registry of midwives survey. Journal of Midwifery & Women’s Health, 60(5), 534–545. https://doi.org/10.1111/jmwh.12367

Crawford, S., Joshi, N., Boulut, S. L., Bailey, M. A., Hood, M.-E., Manning, S. E., et al. States Monitoring Assisted Reproductive Technology (SMART) Collaborative. (2017). Maternal racial and ethnic disparities in neonatal birth outcomes with and without assisted reproduction. Obstetrics & Gynecology, 129(6), 1022–1030. https://doi.org/10.1097/01.AOG.0000500000002031

Cresci, G. A., & Bawden, E. (2015). Gut microbiome: What do we and don’t know. Nutrition in Clinical Practice, 30(6), 734–746. https://doi.org/10.1177/0884536615609899

Dahlen, H. G., Jackson, M., & Stevens, J. (2011). Homebirth, freebirth and doulas: Casualty and consequences of a broken maternity system. Women and Birth, 24(1), 47–50. https://doi.org/10.1111/j.1479-828X.2010.11102.x

Fernandez-Twinn, D. S., Hjort, L., Novakovic, B., Ozanne, S. E., & Saffery, R. (2019). Intrauterine programming of obesity and type 2 diabetes. Diabetologia, 62(10), 1789–1801. https://doi.org/10.1007/s00125-019-4961-9

Hommer, C. S. E., Friberg, I. K., Dias, M. A. B., ten Hoopen-Bender, P., Sandall, J., Speciale, A. M., & Bartlett, L. A. (2014). The projected effect of scaling up midwifery. Lancet, 384(9948), 1146–1157. https://doi.org/10.1016/S0140-6736(14)60790-X

Hoyert, D. L., & Minino, A. M. (2020). Maternal mortality in the United States: Changes in coding, publication, and data release, 2018. National Vital Statistics Reports, 69(2), 1–18. https://www.cdc.gov/nchs/data/nvsr/nvsr69/nvsr69_02-508.pdf

Kozhimannil, K. B., Hardeman, R. R., Alarid-Escudero, F., Vogelsgang, C. A., Blauer-Peterson, C., & Howell, E. A. (2016). Modeling the cost-effectiveness of doula care associated with reductions in preterm birth and cesarean delivery. Birth, 43(1), 20–27. https://doi.org/10.1111/birt.12218

MacDorman, M. F., Declercq, E., Cabrall, H., & Morton, C. (2016). Recent increases in the U.S. maternal mortality rate: Disentangling trends from measurement issues. Obstetrics & Gynecology, 128(3), 447–455. https://doi.org/10.1097/AOG.0000000000001556
From Cochrane Database of Systematic Reviews (CDSR) Issues 03–04 (2020)

Systematic Reviews in CDSR: Women's Health
- Ovarian suppression for adjuvant treatment of hormone receptor-positive early breast cancer
- Health education interventions to promote early presentation and referral for women with symptoms of endometrial cancer
- Green tea (Camellia sinensis) for the prevention of cancer

Systematic Reviews in CDSR: Fertility, Contraception, and ART
- Self-administered versus provider-administered medical abortion
- Intra-uterine insemination for unexplained subfertility

Systematic Reviews in CDSR: Pregnancy and Birth
- Death audits and reviews for reducing maternal, perinatal and child mortality
- Vaginal preparation with anti-septic solution before cesarean section for preventing postoperative infections

Systematic Reviews in CDSR: Infant Health and Breastfeeding
- Zinc supplementation for the promotion of growth and prevention of infections in infants less than six months of age
- Early versus late parenteral nutrition for critically ill term and late preterm infants
- Non-invasive respiratory support for the management of transient tachypnea of the newborn

- Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants
- Diaphragm-triggered non-invasive respiratory support in preterm infants
- Normal saline (0.9% sodium chloride) versus heparin intermittent flushing for the prevention of occlusion in long-term central venous catheters in infants and children
- Postnatal corticosteroids for transient tachypnoea of the newborn

Systematic Reviews in CDSR: Nursing Education and Practice
- Health workers' perceptions and experiences of using mHealth technologies to deliver primary healthcare services: A qualitative evidence synthesis

Systematic Reviews in CDSR: SARS-CoV-2
- Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review
- Hand cleaning with ash for reducing the spread of viral and bacterial infections: A rapid review
- Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff

Evidence-Based Reviews From Other Sources

Recent Evidence-Based Reviews: Women's Health
Abdin, S., Lavallée, J. F., Faulkner, J., & Husted, M. (2019). A systematic review of the effectiveness of physical activity interventions in adults with breast cancer by physical activity type and mode of participation. Psycho-Oncology, 28(7), 1381–1393. https://doi.org/10.1002/pon.5101

Ambikairajah, A., Walsh, E., Tabatabaei-Jafari, H., & Cherbuin, N. (2019). Fat mass changes during menopause: A meta-analysis. American Journal of Obstetrics and Gynecology, 221(5), 393–409.e50. https://doi.org/10.1016/j.ajog.2019.04.023

Armour, M., Parry, K., Al-Dabbas, M. A., Curry, C., Holmes, K., MacMillan, F., … Smith, C. A. (2019). Self-care strategies and sources of knowledge on menstruation in 12,526 young women with dysmenorrhea: A systematic
review and meta-analysis. *PLOS ONE*, 14(7), e0220103. https://doi.org/10.1371/journal.pone.0220103
Bradley, L. D., Pasic, R. P., & Miller, L. E. (2019). Clinical performance of radiofrequency ablation for treatment of uterine fibroids: Systematic review and meta-analysis of prospective studies. *Journal of Laparoendoscopic & Advanced Surgical Techniques. Part A*, 29(12), 1507–1517. https://doi.org/10.1089/laq.2019.0550
Carr, T. L., Groot, G., Cochran, D., & Holtslander, L. (2019). Patient information needs and breast reconstruction after mastectomy: A qualitative meta-synthesis. *Cancer Nursing*, 42(3), 229–241. https://doi.org/10.1097/NCC.000000000000599
Carroquino-Garcia, P., Jiménez-Rejano, J. J., Medrano-Sanchez, E., de la Casa-Almeida, M., Diaz-Mohedo, E., & Suarez-Serrano, C. (2019). Therapeutic exercise in the treatment of primary dysmenorrhea: A systematic review and meta-analysis. *Physical Therapy*, 99(10), 1371–1380. https://doi.org/10.1093/ptj/pzv101
Constantine, G. D., Graham, S., Lapane, K., O Letter, B., Bernick, B., Liu, J., & Mirkin, S. (2019). Endometrial safety of low-dose vaginal estrogens in menopausal women: A systematic evidence review. *Menopause*, 26(7), 800–807. https://doi.org/10.1097/GME.000000000001315
Coughlin, S. S. (2019). Social determinants of breast cancer risk, stage, and survival. *Breast Cancer Research and Treatment*, 177(3), 537–548. https://doi.org/10.1007/s10549-019-05340-7
Coughlin, S. S., Caplan, L. S., & Williams, V. (2019). Home-based physical activity interventions for breast cancer patients receiving primary therapy: A systematic review. *Breast Cancer Research and Treatment*, 178(3), 513–522. https://doi.org/10.1007/s10549-019-05424-4
Gray, T. G., Vickers, H., Jha, S., Jones, G. L., Brown, S. R., & Radley, S. C. (2019). A systematic review of non-invasive modalities used to identify women with anal incontinence symptoms after childbirth. *International Urology and Nephrology*, 30(6), 869–879. https://doi.org/10.1007/s00192-018-3819-8
Jouybari, L., Kiani, F., Akbari, A., Sanagoo, A., Sayehmiri, F., Aaseth, J., … Bjerkund, G. (2019). A meta-analysis of zinc levels in breast cancer. *Journal of Trace Elements in Medicine and Biology*, 56, 90–99. https://doi.org/10.1016/j.jtemb.2019.06.017
Khushalani, J. S., Trogdon, J. G., Ekwueme, D. U., & Yabroff, K. R. (2019). Economics of public health programs for underserved populations: A review of economic analysis of the National Breast and Cervical Cancer Early Detection Program. *Cancer Causes & Control*, 30(12), 1351–1363. https://doi.org/10.1007/s10552-019-01235-6
Krassuski, L., Vennedey, V., Stock, S., & Kautz-Freimuth, S. (2019). Effectiveness of decision aids for female BRCA1 and BRCA2 mutation carriers: A systematic review. *BioMed Central Medical Informatics and Decision Making*, 19(1), 154. https://doi.org/10.1186/s12911-019-0872-2
Kumar, S., Long, J., Kehoe, S., Sundar, S., & Cummins, C. (2019). Quality of life outcomes following surgery for advanced ovarian cancer: A systematic review and meta-analysis. *International Journal of Gynecological Cancer*, 29(8), 1285–1291. https://doi.org/10.1136/ijgc-2018-000125
Lee, I., Cooney, L. G., Saini, S., Sammel, M. D., Allison, K. C., & Dokras, A. (2019). Increased odds of disordered eating in polycystic ovary syndrome: A systematic review and meta-analysis. *Eating and Weight Disorders*, 24(5), 787–797. https://doi.org/10.1007/s40519-018-0533-y
Leonardi, M., Hicks, C., El-Assaad, F., El-Omari, E., & Condous, G. (2020). Endometriosis and the microbiome: A systematic review. *British Journal of Obstetrics and Gynaecology*, 127(2), 239–249. https://doi.org/10.1111/1471-0528.15916
Li, C., Fan, H., Xiang, Q., Xu, L., Zhang, Z., Liu, Q., … Cui, Y. (2019). Prognostic value of receptor status conversion following neo-adjuvant chemotherapy in breast cancer patients: A systematic review and meta-analysis. *Breast Cancer Research and Treatment*, 178(3), 497–504. https://doi.org/10.1007/s10549-019-05421-7
Li, M., Hung, A., Lenon, G. B., & Yang, A. W. H. (2019). Chinese herbal formulae for the treatment of menopausal hot flushes: A systematic review and meta-analysis. *PLOS ONE*, 14(9), e0222383. https://doi.org/10.1371/journal.pone.0222383
Li, X. T., Liu, Y., Yang, H. S., He, L. Y., Fang, Y. G., … Chaplin, J. E. (2020). Health-related quality-of-life among patients with premature ovarian insufficiency: A systematic review and meta-analysis. *Quality of Life
Bovbjerg, M. L., and Cheyney, M.

S P E C I A L R E P O R T

Long, H., Brooks, J. M., Harvie, M., Maxwell, A., & French, D. P. (2019). How do women experience a false-positive test result from breast screening? A systematic review and thematic synthesis of qualitative studies. British Journal of Cancer, 121(4), 351–358. https://doi.org/10.1038/s41416-019-0524-4

Louro, J., Posso, M., Hilton Boon, M., Román, M., Domingo, L., Castells, X., & Sala, M. (2019). A systematic review and quality assessment of individualised breast cancer risk prediction models. British Journal of Cancer, 121(4), 76–85. https://doi.org/10.1038/s41416-019-0476-8

LoVette, A., Kuo, C., & Harrison, A. (2019). Strength-based interventions for HIV prevention and sexual risk reduction among girls and young women: A resilience-focused systematic review. Global Public Health, 14(10), 1454–1478. https://doi.org/10.1080/17441692.2019.1602157

Magno, L., da Silva, L. A. V., Veras, M. A., Pereira-Santos, M., & Dourado, I. (2019). Stigma and discrimination related to gender identity and vulnerability to HIV/AIDS among transgender women: A systematic review. Cadernos De Saúde Publica, 35(4), e00112718. https://doi.org/10.1590/0102-311X00112718

Mudhune, G. H., Armour, M., & McBride, K. A. (2019). Safety of menopausal hormone therapy in breast cancer survivors older than fifty at diagnosis: A systematic review and meta-analysis. Breast, 47, 43–55. https://doi.org/10.1016/j.breast.2019.06.002

Murfin, J., Irvine, F., Meechan-Rogers, R., & Swift, A. (2020). Education, income and occupation and their influence on the uptake of cervical cancer prevention strategies: A systematic review. Journal of Clinical Nursing, 29(3-4), 393–415. https://doi.org/10.1111/jocn.15094

Norenhag, J., Du, J., Olovsson, M., Verstraalen, H., Engstrand, L., & Brusselaers, N. (2020). The vaginal microbiota, human papillomavirus and cervical dysplasia: A systematic review and network meta-analysis. British Journal of Obstetrics and Gynaecology, 127(2), 171–180. https://doi.org/10.1111/1471-0528.15854

Ortiz, R. R., Smith, A., & Coyne-Beasley, T. (2019). A systematic literature review to examine the potential for social media to impact HPV vaccine uptake and awareness, knowledge, and attitudes about HPV and HPV vaccination. Human Vaccines & Immunotherapeutics, 15(7–8), 1465–1475. https://doi.org/10.1080/21645515.2019.1581543

Raffone, A., Travaglino, A., Saccone, G., Alviggi, C., Mascolo, M., De Placido, G., ... Zullo, F. (2019). Management of women with atypical polypoid adenomyoma of the uterus: A quantitative systematic review. Acta Obstetricia Et Gynecologica Scandinavica, 98(7), 842–855. https://doi.org/10.1111/aogs.13553

Raffone, A., Travaglino, A., Saccone, G., Insabato, L., Mollo, A., De Placido, G., & Zullo, F. (2019). Endometrial hyperplasia and progression to cancer: Which classification system stratifies the risk better? A systematic review and meta-analysis. Archives of Gynecology and Obstetrics, 299(5), 1233–1242. https://doi.org/10.1007/s00404-019-05103-1

Ren, Z.-J., Cao, D.-H., Zhang, Q., Ren, P.-W., Liu, L.-R., Wei, Q., ... Dong, Q. (2019). First-degree family history of breast cancer is associated with prostate cancer risk: A systematic review and meta-analysis. BioMed Central Cancer, 19(1), 871. https://doi.org/10.1186/s12885-019-6055-9

Ribeiro, I. L., Moreira, R. F. C., Ferrari, A. V., Alburquerque-Sendín, F., Camargo, P. R., & Salvini, T. F. (2019). Effectiveness of early rehabilitation on range of motion, muscle strength and arm function after breast cancer surgery: A systematic review of randomized controlled trials. Clinical Rehabilitation, 33(12), 1876–1886. https://doi.org/10.1177/0269215519873026

Riemmia, G., Schiattarella, A., La Verde, M., Zarobbi, G., Garzon, S., Cucinella, G., ... De Francis, P. (2019). Efficacy of low-dose paroxetine for the treatment of hot flushes in surgical and physiological post-menopausal women: Systematic review and meta-analysis of randomized trials. Medicine, 55(9), 554. https://doi.org/10.3390/medicine55090554

Roman Lay, A. A., do Nascimento, C. F., Horta, B. L., & Dias Porto Chiavegatto Filho, A. (2020). Reproductive factors and age at natural menopause: A systematic review and meta-analysis. Maturitas, 131, 57–64. https://doi.org/10.1016/j.maturitas.2019.10.012

Ryan, N. A. J., Glaire, M. A., Blake, D., Cabrera-Dandy, M., Evans, D. G., & Crosbie, E. J. (2019). The proportion of endometrial cancers associated with Lynch syndrome: A systematic review of the literature and meta-
analysis. *Genetics in Medicine, 21*(10), 2167–2180. https://doi.org/10.1038/s41436-019-0536-8

Saibudeen, A., Makris, G. C., Elzein, A., Wigham, A., Patel, R., Husainy, M. A., ... Uberoi, R. (2019). Pain management protocols during uterine fibroid embolisation: A systematic review of the evidence. *Cardiovascular and Interventional Radiology, 42*(12), 1663–1677. https://doi.org/10.1007/s00270-019-02327-1

Vromans, R., Tenfelde, K., Pauws, S., van Eenenbergen, M., Mares-Engelberts, I., Velikova, G., ... Krahmer, E. (2019). Assessing the quality and communicative aspects of patient decision aids for early-stage breast cancer treatment: A systematic review. *Breast Cancer Research and Treatment, 178*(1), 1–15. https://doi.org/10.1007/s10549-019-05351-4

Wang, Yizi, Ren, F., Song, Z., Chen, P., Liu, S., & Ouyang, L. (2019). Statin use and the risk of ovarian and endometrial cancers: A meta-analysis. *BioMed Central Cancer, 19*(1), 730.

Wheeler, L. J., Desanto, K., Teal, S. B., Sheeder, J., & Guntupalli, S. R. (2019). Intrauterine device use and ovarian cancer risk: A systematic review and meta-analysis. *Obstetrics & Gynecology, 134*(4), 791–800. https://doi.org/10.1097/AOG.0000000000003463

Williams, P., Murchie, P., Cruickshank, M. E., Bond, C. M., & Burton, C. D. (2019). The use, quality and effectiveness of pelvic examination in primary care for the detection of gynaecological cancer: A systematic review. *Family Practice, 36*(4), 378–386. https://doi.org/10.1093/fampra/cmy092

Woopen, H., Richter, R., Chekerov, R., Inci, G., Alavi, S., Grabowski, J. P., & Sehouli, J. (2020). Prognostic role of chemotherapy-induced nausea and vomiting in recurrent ovarian cancer patients: Results of an individual participant data meta-analysis in 1213. *Supportive Care in Cancer, 28*(1), 73–78. https://doi.org/10.1007/s00520-019-04778-1

Wright, J. D., Matsuo, K., Huang, Y., Tergas, A. I., Hou, J. Y., Khoury-Collado, F., ... Hershman, D. L. (2019). Prognostic performance of the 2018 International Federation of Gynecology and Obstetrics cervical cancer staging guidelines. *Obstetrics & Gynecology, 134*(1), 49–57. https://doi.org/10.1097/AOG.0000000000003311

Wu, Z.-H., Tang, Y., Niu, X., Pu, F.-F., Xiao, X.-Y., & Kong, W. (2019). Prostatic-specific antigen (PSA) levels in patients with polycystic ovary syndrome (PCOS): A meta-analysis. *Journal of Ovarian Research, 12*(1), 94. https://doi.org/10.1186/s13048-019-0569-2

Yang, L., & Chen, H. (2019). Establishing the prognostic value of platelet-to-lymphocyte ratio in cervical cancer: A systematic review and meta-analysis. *International Journal of Gynecological Cancer, 29*(4), 683–690. https://doi.org/10.1136/ijgc-2018-000090

Zwolsman, S., Kastelein, A., Daams, J., Roovers, J.-P., Opmeer, B. C., & WOMEN-UP Consortium. (2019). Heterogeneity of cost estimates in health economic evaluation research. A systematic review of stress urinary incontinence studies. *International Urogynecology Journal, 30*(7), 1045–1059. https://doi.org/10.1007/s00192-018-3814-0

Recent Evidence-Based Reviews:

Fertility, Contraception, and ART

Alves, D. S., Times, V. C., da Silva, É. M. A., Melo, P. S. A., & Novaes, M. de A. (2020). Advances in obstetric telemonitoring: A systematic review. *International Journal of Medical Informatics, 134*, 104004. https://doi.org/10.1016/j.jmir.2019.104004

Corkum, K. S., Rhee, D. S., Wafford, Q. E., Demeestere, I., Dasgupta, R., Baertschiger, R., ... Lautz, T. B. (2019). Fertility and hormone preservation and restoration for female children and adolescents receiving gonadotoxic cancer treatments: A systematic review. *Journal of Pediatric Surgery, 54*(11), 2200–2209. https://doi.org/10.1016/j.jpedsurg.2018.12.021

Moreno-Sepulveda, J., & Checa, M. A. (2019). Risk of adverse perinatal outcomes after oocyte donation: A systematic review and meta-analysis. *Journal of Assisted Reproduction and Genetics, 36*(10), 2017–2037. https://doi.org/10.1007/s10185-019-01552-4

Simopoulos, M., Sfakianoudis, K., Maziotis, E., Tsoulou, P., Giannelou, P., Grigoriadis, S., ... Koutsilieris, M. (2019). Investigating the optimal time for intrauterine human chorionic gonadotropin infusion in order to improve IVF outcome: A systematic review and meta-analysis. *In Vivo, 33*(6), 1737–1749. https://doi.org/10.21873/invivo.11664

Vargas, S. E., Midoun, M. M., Guillen, M., Getz, M. L., Underhill, K., Kuo, C., Guthrie, K. M., & other members of the Project WISH Research Team. (2019). A qualitative systematic review of women’s experiences using contraceptive vaginal rings: Implications for new technologies. *Perspectives on Obstetrics and Gynecology, 134*, 1045–1059. https://doi.org/10.1016/j.fertconace.2019.05.003

Recent Critical Reviews:

Fertility, Contraception, and ART

Kong, W. (2019). Prostatic-specific antigen (PSA) levels in patients with polycystic ovary syndrome (PCOS): A meta-analysis. *Journal of Ovarian Research, 12*(1), 94. https://doi.org/10.1186/s13048-019-0569-2

Yang, L., & Chen, H. (2019). Establishing the prognostic value of platelet-to-lymphocyte ratio in cervical cancer: A systematic review and meta-analysis. *International Journal of Gynecological Cancer, 29*(4), 683–690. https://doi.org/10.1136/ijgc-2018-000090

Zwolsman, S., Kastelein, A., Daams, J., Roovers, J.-P., Opmeer, B. C., & WOMEN-UP Consortium. (2019). Heterogeneity of cost estimates in health economic evaluation research. A systematic review of stress urinary incontinence studies. *International Urogynecology Journal, 30*(7), 1045–1059. https://doi.org/10.1007/s00192-018-3814-0

Recent Evidence-Based Reviews:

Fertility, Contraception, and ART

Alves, D. S., Times, V. C., da Silva, É. M. A., Melo, P. S. A., & Novaes, M. de A. (2020). Advances in obstetric telemonitoring: A systematic review. *International Journal of Medical Informatics, 134*, 104004. https://doi.org/10.1016/j.jmir.2019.104004

Corkum, K. S., Rhee, D. S., Wafford, Q. E., Demeestere, I., Dasgupta, R., Baertschiger, R., ... Lautz, T. B. (2019). Fertility and hormone preservation and restoration for female children and adolescents receiving gonadotoxic cancer treatments: A systematic review. *Journal of Pediatric Surgery, 54*(11), 2200–2209. https://doi.org/10.1016/j.jpedsurg.2018.12.021

Moreno-Sepulveda, J., & Checa, M. A. (2019). Risk of adverse perinatal outcomes after oocyte donation: A systematic review and meta-analysis. *Journal of Assisted Reproduction and Genetics, 36*(10), 2017–2037. https://doi.org/10.1007/s10185-019-01552-4

Simopoulos, M., Sfakianoudis, K., Maziotis, E., Tsoulou, P., Giannelou, P., Grigoriadis, S., ... Koutsilieris, M. (2019). Investigating the optimal time for intrauterine human chorionic gonadotropin infusion in order to improve IVF outcome: A systematic review and meta-analysis. *In Vivo, 33*(6), 1737–1749. https://doi.org/10.21873/invivo.11664

Vargas, S. E., Midoun, M. M., Guillen, M., Getz, M. L., Underhill, K., Kuo, C., Guthrie, K. M., & other members of the Project WISH Research Team. (2019). A qualitative systematic review of women’s experiences using contraceptive vaginal rings: Implications for new technologies. *Perspectives on Obstetrics and Gynecology, 134*, 1045–1059. https://doi.org/10.1016/j.fertconace.2019.05.003
Sexual and Reproductive Health, 51(2), 71–80. https://doi.org/10.1363/psrh.12103

Recent Evidence-Based Reviews: Pregnancy and Birth

Amiel Castro, R. T., Pataky, E. A., & Ehlert, U. (2019). Associations between premenstrual syndrome and postpartum depression: A systematic literature review. Biological Psychology, 147, 107612. https://doi.org/10.1016/j.biopsycho.2018.10.014

Anton, O., Jordan, H., & Rabe, H. (2019). Strategies for implementing placental transfusion at birth: A systematic review. Birth, 46(3), 411–427. https://doi.org/10.1111/birt.12398

Arafa, A., & Dong, J.-Y. (2019). Depression and risk of gestational diabetes: A meta-analysis of cohort studies. Diabetes Research and Clinical Practice, 156, 107826. https://doi.org/10.1016/j.diabres.2019.107826

Cai, C., Vandermeer, B., Khurana, R., Nerenberg, K., Featherstone, R., Sebastianski, M., & Davenport, M. H. (2019). The impact of occupational shift work and working hours during pregnancy on health outcomes: A systematic review and meta-analysis. American Journal of Obstetrics and Gynecology, 221(6), 563–576. https://doi.org/10.1016/j.ajog.2019.06.051

Chamberlain, C., Ralph, N., Hokke, S., Clark, Y., Gee, G., Stansfield, C., ... Healing The Past By Nurturing The Future group. (2019). Healing the past by nurturing the future: A qualitative systematic review and meta-synthesis of pregnancy, birth and early postpartum experiences and views of parents with a history of childhood maltreatment. PLOS ONE, 14(12), e0225441. https://doi.org/10.1371/journal.pone.0225441

Chun, H., Leung, C., Wen, S. W., McDonald, J., & Shin, H. H. (2020). Maternal exposure to air pollution and risk of autism in children: A systematic review and meta-analysis. Environmental Pollution, 256, 113307. https://doi.org/10.1016/j.envpol.2019.113307

Cunningham, W., Geard, N., Fielding, J. E., Braat, S., Madhi, S. A., Nunes, M. C., ... Moss, R. (2019). Optimal timing of influenza vaccine during pregnancy: A systematic review and meta-analysis. Influenza and Other Respiratory Viruses, 13(5), 438–452. https://doi.org/10.1111/irv.12649

D’Ambrosio, V., Vena, F., Di Mascio, D., Faralli, I., Musacchio, L., Boccherini, C., ... Giancotti, A. (2019). Obstetrical outcomes in women with history of breast cancer: A systematic review and meta-analysis. Breast Cancer Research and Treatment, 178(3), 485–492. https://doi.org/10.1007/s10549-019-05408-4

Dathe, K., Hultsch, S., Pritchard, L. W., & Schaefer, C. (2019). Risk estimation of fetal adverse effects after short-term second trimester exposure to non-steroidal anti-inflammatory drugs: A literature review. European Journal of Clinical Pharmacology, 75(10), 1347–1353. https://doi.org/10.1007/s00228-019-02712-2

Davidoff, C. L., Lo Presti, A., Rogers, J. M., Simons, M., Assaad, N. N. A., Stoodley, M. A., & Morgan, M. K. (2019). Risk of first hemorrhage of brain arteriovenous malformations during pregnancy: A systematic review of the literature. Neurosurgery, 85(5), E806–E814. https://doi.org/10.1093/neuros/nyz175

Dennison, R. A., Ward, R. J., Griffin, S. J., & Usher-Smith, J. A. (2019). Women’s views on lifestyle changes to reduce the risk of developing type 2 diabetes after gestational diabetes: A systematic review, qualitative synthesis and recommendations for practice. Diabetic Medicine, 36(6), 702–717. https://doi.org/10.1111/dme.13926

Di Mascio, D., Acharya, G., Khalil, A., Odibo, A., Prefumo, F., Liberati, M., ... D’Antonio, F. (2019). Birthweight discordance and neonatal morbidity in twin pregnancies: A systematic review and meta-analysis. Acta Obstetricia Et Gynecologica Scandinavica, 98(10), 1245–1257. https://doi.org/10.1111/aogs.13613

Di Mascio, D., Buca, D., Khalil, A., Rizzo, G., Makatsariya, A., Sileo, F., & D’Antonio, F. (2019). Outcome of isolated fetal talipes: A systematic review and meta-analysis. Acta Obstetricia Et Gynecologica Scandinavica, 98(11), 1367–1377. https://doi.org/10.1111/aogs.13637

Du, M.-C., Ouyang, Y.-Q., Nie, X.-F., Huang, Y., & Redding, S. R. (2019). Effects of physical exercise during pregnancy on maternal and infant outcomes in overweight and obese pregnant women: A meta-analysis. Birth, 46(2), 211–221. https://doi.org/10.1111/birt.12396

Evans, K., Spiby, H., & Morrell, J. C. (2020). Non-pharmacological interventions to reduce the symptoms of mild to moderate anxiety in pregnant women. A systematic review and narrative synthesis of women’s views on the acceptability of and satisfaction with interventions. Archives of Women’s Mental Health.
Effectiveness of physical activity interventions for overweight and obesity during pregnancy: A systematic review

González-Mesa, E., Cuenca-Marín, C., Suarez-Goto, E. (2019). Effectiveness of prenatal lipid and physical activity, 16(1), 97. https://doi.org/10.1016/j.ijpara.2019.02.005

Hastie, R., Brownfoot, F. C., Cluver, C. A., Walker, S. P., Hesselman, S., Tong, S., & Bergman, L. (2019). Predictive value of the signs and symptoms preceding eclampsia: A systematic review. Obstetrics & Gynecology, 134(4), 677–684. https://doi.org/10.1097/AOG.0000000000003476

Janbek, J., Specht, I. O., & Heitmann, B. L. (2019). Associations between vitamin D status in pregnancy and offspring neuro-development: A systematic literature review. Nutrition Reviews, 77(5), 330–349. https://doi.org/10.1093/nutrit/nuy071

Jansen, C. H. J. R., Kleinrouweiler, C. E., van Leeuwen, L., Ruiter, L., Limpens, J., van Wely, M., … Pajkrt, E. (2019). Final outcome of a second trimester low-positioned placenta: A systematic review and meta-analysis. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 240, 197–204. https://doi.org/10.1016/j.ejogrb.2019.06.020

Jauniaux, E., Bunce, C., Grenbeck, L., & Langhoff-Roos, J. (2019). Prevalence and main outcomes of placenta accreta spectrum: A systematic review and meta-analysis. American Journal of Obstetrics and Gynecology, 221(3), 208–218. https://doi.org/10.1016/j.ajog.2019.01.233

Jeong, S., Jang, E. J., Jo, J., & Jang, S. (2019). Effects of maternal influenza vaccination on adverse birth outcomes: A systematic review and Bayesian meta-analysis. PLOS ONE,
Jones, K., Webb, S., Manresa, M., Hodgetts-Morton, V., & Morris, R. K. (2019). The incidence of wound infection and dehiscence following childbirth-related perineal trauma: A systematic review of the evidence. *European Journal of Obstetrics, Gynecology, and Reproductive Biology, 240*, 1–8. https://doi.org/10.1016/j.ejogrb.2019.05.038

Kanninen, T. T., Quist-Nelson, J., Sisti, G., & Berghella, V. (2019). Chlamydia trachomatis screening in preterm labor: A systematic review and meta-analysis. *European Journal of Obstetrics, Gynecology, and Reproductive Biology, 240*, 242–247. https://doi.org/10.1016/j.ejogrb.2019.06.032

Kataria, Y., Gaewsky, L., & Ellervik, C. (2019). Prenatal smoking exposure and cardio-metabolic risk factors in adulthood: A general population study and a meta-analysis. *International Journal of Obesity, 43*(4), 763–773. https://doi.org/10.1038/s41366-018-0206-y

Kołomańska-Bogucka, D., & Mazur-Bialy, A. I. (2019). Physical activity and the occurrence of postnatal depression—a systematic review. *Medicina, 55*(9). https://doi.org/10.3390/medicina55090560

Lara-Cinisomo, S., Wood, J., & Fujimoto, E. M. (2019). A systematic review of cultural orientation and perinatal depression in Latina women: Are acculturation, Marianismo, and religiosity risks or protective factors? *Archives of Women's Mental Health, 22*(5), 557–567. https://doi.org/10.1007/s00737-018-0920-4

Li, H., Bowen, A., Bowen, R., Balbuena, L., Feng, C., Bally, J., & Muhajarine, N. (2020). Mood instability during pregnancy and postpartum: A systematic review. *Archives of Women's Mental Health, 23*(1), 29–41. https://doi.org/10.1007/s00737-019-00956-6

Liu, N., Gou, W.-H., Wang, J., Chen, D.-D., Sun, W.-J., Guo, P.-P., ... Zhang, W. (2019). Effects of exercise on pregnant women’s quality of life: A systematic review. *European Journal of Obstetrics, Gynecology, and Reproductive Biology, 242*, 170–177. https://doi.org/10.1016/j.ejogrb.2019.03.009

Liu, X., Wang, Y., Zhang, F., Zhong, X., Ou, R., Luo, X., & Qi, H. (2019). Double- versus single-balloon catheters for labour induction and cervical ripening: A meta-analysis. *BioMed Central Pregnancy and Childbirth, 19*(1), 358. https://doi.org/10.1186/s12884-019-2491-4

Lou, S., Hvidman, L., Uldbjerg, N., Neumann, L., Jensen, T. F., Haben, J.-G., & Carstensen, K. (2019). Women’s experiences of postterm induction of labor: A systematic review of qualitative studies. *Birth, 46*(3), 400–410. https://doi.org/10.1111/birt.12412

Lucas, G., Olander, E. K., Ayers, S., & Salmon, D. (2019). No straight lines—young women’s perceptions of their mental health and well-being during and after pregnancy: A systematic review and meta-ethnography. *BioMed Central Women’s Health, 19*(1), 152. https://doi.org/10.1186/s12905-019-0848-5

Magoga, G., Saccone, G., Al-Kouatly, H. B., Dahlen G., Thornton, C., Akbarzadeh, M., ... Berghella, V. (2019). Warm perineal compresses during the second stage of labor for reducing perineal trauma: A meta-analysis. *European Journal of Obstetrics, Gynecology, and Reproductive Biology, 240*, 93–98. https://doi.org/10.1016/j.ejogrb.2019.06.011

Manresa, M., Pereda, A., Bataller, E., Terre-Rull, C., Ismail, K. M., & Webb, S. S. (2019). Incidence of perineal pain and dyspareunia following postnatal depression—a systematic review. *International Urogynecology Journal, 30*(6), 853–868. https://doi.org/10.1007/s00192-019-03894-0

Manzari, N., Matvienko-Sikar, K., Baldoni, F., O’Keeffe, G. W., & Khashan, A. S. (2019). Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: A systematic review and meta-analysis. *Social Psychiatry and Psychiatric Epidemiology, 54*(11), 1299–1309. https://doi.org/10.1007/s00127-019-01745-3

Meier, K., Parrish, J., & D’Souza, R. (2019). Prediction models for determining the success of labor induction: A systematic review. *Acta Obstetricia Et Gynecologica Scandinavica, 98*(9), 1100–1112. https://doi.org/10.1111/aogs.13589

Moreta, D., Vo, S., Eslick, G. D., & Benzie, R. (2019). Re-evaluating the role of cerebroplacental ratio in predicting adverse perinatal outcome. *European Journal of Obstetrics, Gynecology, and Reproductive Biology, 242*, 17–28. https://doi.org/10.1016/j.ejogrb.2019.06.033

Nithiyanthan, S. F., & Badawi, A. (2019). Maternal infection with Zika virus and prevalence of congenital disorders in infants: Systematic review and meta-analysis. *Canadian Journal of Public Health, 110*(5), 638–
648. https://doi.org/10.17269/s41997-019-00215-2

Nourollahpour Shiadeh, M., Riahi, S. M., Khani, S., Alizadeh, S., Hosseinizadeh, R., Hasannpour, A. H., ... Rostami, A. (2019). Human immunodeficiency virus and risk of pre-eclampsia and eclampsia in pregnant women: A meta-analysis on cohort studies. *Pregnancy Hypertension*, 17, 269–275. https://doi.org/10.1016/j.preghy.2019.07.008

Oni, H. T., Khan, M. N., Abdel-Latif, M., Buultjens, M., & Islam, M. M. (2019). Short-term health outcomes of newborn infants of substance-using mothers in Australia and New Zealand: A systematic review. *Journal of Obstetrics and Gynaecology Research*, 45(9), 1783–1795. https://doi.org/10.1111/jog.14051

Onwochei, D. N., Van Ross, J., Singh, P. M., Salter, A., & Monks, D. T. (2019). Carbetocin reduces the need for additional uterotonic in elective caesarean delivery: A systematic review, meta-analysis and trial sequential analysis of randomised controlled trials. *International Journal of Obstetric Anesthesia*, 40, 14–23. https://doi.org/10.1016/j.ijoa.2019.06.007

Pérez-López, F. R., Chedraui, P., Pérez-Roncero, G. R., Martínez-Domínguez, S. J., & Health Outcomes and Systematic Analyses (HOUSSAY) Project. (2019). Effectiveness of the cervical pessary for the prevention of preterm birth in singleton pregnancies with a short cervix: A meta-analysis of randomized trials. *Archives of Gynecology and Obstetrics*, 299(5), 1215–1231. https://doi.org/10.1007/s00404-019-05096-x

Pergialiotis, V., Bellos, I., Hatzigiaglaki, E., Antsaklis, A., Loutradis, D., & Daskalakis, G. (2019). Progestogens for the prevention of preterm birth and risk of developing gestational diabetes mellitus: A meta-analysis. *American Journal of Obstetrics and Gynecology*, 221(5), 429–436.e5. https://doi.org/10.1016/j.ajo.2019.05.033

Premkumar, A., Dude, A. M., Haddad, L. B., & Yee, L. M. (2019). Combined antiretroviral therapy for HIV and the risk of hypertensive disorders of pregnancy: A systematic review. *Pregnancy Hypertension*, 17, 178–190. https://doi.org/10.1016/j.preghy.2019.05.015

Qassim, A., Grivell, R. M., Henry, A., Kidson-Gerber, G., Shand, A., & Grzeskowiak, L. E. (2019). Intravenous or oral iron for treating iron deficiency anaemia during pregnancy: Systematic review and meta-analysis. *Medical Journal of Australia*, 211(8), 367–373. https://doi.org/10.5694/mja2.50308

Radke, E. G., Glenn, B. S., Braun, J. M., & Cooper, G. S. (2019). Phthalate exposure and female reproductive and developmental outcomes: A systematic review of the human epidemiological evidence. *Environment International*, 130, 104580. https://doi.org/10.1016/j.envint.2019.02.003

Reznicek, G. A., Förster, C., Hilal, Z., Westhoff, T., & Tempfer, C. B. (2019). Calprotectin in pregnancy and pregnancy-associated diseases: A systematic review and prospective cohort study. *Archives of Gynecology and Obstetrics*, 299(6), 1567–1577. https://doi.org/10.1007/s00404-019-05134-8

Rogozińska, E., Zamora, J., Marlin, N., Betrán, A. P., Astrup, A., & Bogaerts, ... International Weight Management in Pregnancy (i-WIP) Collaborative Group. (2019). Gestational weight gain outside the Institute of Medicine recommendations and adverse pregnancy outcomes: Analysis using individual participant data from randomised trials. *BioMed Central Pregnancy and Childbirth*, 19(1), 322. https://doi.org/10.1186/s12884-019-2472-7

Salomon, L. J., Sotiariadis, A., Wulf, C. B., Odibo, A., & Akolekar, R. (2019). Risk of miscarriage following amniocentesis or chorionic villus sampling: Systematic review of literature and updated meta-analysis. *Ultrasound in Obstetrics & Gynecology*, 54(4), 442–451. https://doi.org/10.1002/ugo.20353

Shepherd, E., Salam, R. A., Manhas, D., Synnes, A., Middleton, P., Makrides, M., & Crowther, C. A. (2019). Antenatal magnesium sulphate and adverse neonatal outcomes: A systematic review and meta-analysis. *PLOS Medicine*, 16(12), e1002988. https://doi.org/10.1371/journal.pmed.1002988

Sun, M., Yan, W., Fang, K., Chen, D., Liu, J., Chen, Y., ... Xia, Y. (2020). The correlation between PM2.5 exposure and hypertensive disorders in pregnancy: A meta-analysis. *Science of the Total Environment*, 703, 134985. https://doi.org/10.1016/j.scitotenv.2019.134985

Swift, B. E., Shah, P. S., & Farine, D. (2019). Sonographic lower uterine segment thickness after prior cesarean section to predict uterine rupture: A systematic review and meta-analysis. *Acta Obstetricia Et Gynecologica Scandinavica*, 98(7), 830–841. https://doi.org/10.1111/aogs.13585
Sznewajs, A., Pon, E., & Matthay, K. K. (2019). Congenital malformation syndromes associated with peripheral neuroblastic tumors: A systematic review. *Pediatric Blood & Cancer, 66*(10), e27901. https://doi.org/10.1002/pbc.27901

Temkin, A., Evans, S., Manidis, T., Campbell, C., & Naidenko, O. V. (2019). Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. *Environmental Research, 176*, 108442. https://doi.org/10.1016/j.envres.2019.04.009

Teulings, N. E. W. D., Masconi, K. L., Ozanne, S. E., Aiken, C. E., & Wood, A. M. (2019). Effect of interpregnancy weight change on perinatal outcomes: Systematic review and meta-analysis. *BioMed Central Pregnancy and Childbirth, 19*(1), 386. https://doi.org/10.1186/s12884-019-2566-2

Valiton, V., Hugon-Rodin, J., Fontana, P., Neerman-Arbez, M., & Casini, A. (2019). Obstetrical and postpartum complications in women with hereditary fibrinogen disorders: A systematic literature review. *Haemophilia, 25*(5), 747–754. https://doi.org/10.1111/hae.13825

Wang, Y., Liu, S., & He, L. (2019). Prophylactic use of tranexamic acid reduces blood loss and transfusion requirements in patients undergoing cesarean section: A meta-analysis. *Journal of Obstetrics and Gynaecology Research, 45*(8), 1562–1575. https://doi.org/10.1016/j.jog.14013

Xia, Y., Griffiths, B. B., & Xue, Q. (2020). Tranexamic acid for postpartum hemorrhage prevention in vaginal delivery: A meta-analysis. *Medicine, 99*(3), e18792. https://doi.org/10.1097/MD.0000000000018792

Xu, Q., & Xie, Q. (2019). Long-term effects of prenatal exposure to metformin on the health of children based on follow-up studies of randomized controlled trials: A systematic review and meta-analysis. *Archives of Gynecology and Obstetrics, 298*(5), 1295–1303. https://doi.org/10.1007/s00404-019-05124-w

Yin, X., Li, J., Li, Y., & Zou, S. (2019). Maternal alcohol consumption and oral clefts: A meta-analysis. *British Journal of Oral & Maxillofacial Surgery, 57*(9), 839–846. https://doi.org/10.1016/j.bjoms.2019.08.013

Zhang, J., Ma, S., Wu, S., Guo, C., Long, S., & Tan, H. (2019). Effects of probiotic supplement in pregnant women with gestational diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. *Journal of Diabetes Research, 2019*, 5364730. https://doi.org/10.1155/2019/5364730

Zheng, W., Cai, D.-B., Zheng, W., Sim, K., Ungvari, G. S., Peng, X.-J., ... Xiang, Y.-T. (2019). Brexanolone for postpartum depression: A meta-analysis of randomized controlled studies. *Psychiatry Research, 279*, 83–89. https://doi.org/10.1016/j.psychres.2019.07.006

Zheng, Z., Xie, G., Yang, T., & Qin, J. (2019). Congenital malformations are associated with secondhand smoke among nonsmoking women: A meta-analysis. *Birth, 46*(2), 222–233. https://doi.org/10.1111/birt.12401

Zhong, Q., Peng, M., He, J., Yang, W., & Huang, F. (2020). Association of prenatal exposure to phenols and parabens with birth size: A systematic review and meta-analysis. *Science of the Total Environment, 703*, 134720. https://doi.org/10.1016/j.scitotenv.2019.134720

Featured Review: Guo, B.-Q., Li, H.-B., Zhai, D.-S., & Ding, S.-B. (2019). Association of maternal prenatal folic acid intake with subsequent risk of autism spectrum disorder in children: A systematic review and meta-analysis. *Progress in Neuro-Psychopharmacology & Biological Psychiatry, 94*, 109650. https://doi.org/10.1016/j.pnpbp.2019.109650

In this meta-analysis, Guo et al. (2019) pooled data from eight observational studies, including a total of 840,776 children of whom 7127 were diagnosed with autism spectrum disorder (ASD). The exposure of interest was folic acid, which, in addition to reducing neural tube defects (Werler et al., 1993), appears to be associated with other beneficial pregnancy outcomes, including childhood neurodevelopment (Hua et al., 2016; McNulty et al., 2019). Numerous researchers have therefore postulated folic acid might also be associated with ASD.

Guo et al. (2019), however, found no association between folic acid and ASD; the pooled estimate from studies reporting odds ratios was 0.91 (95% CI, 0.73–1.13), and the pooled estimate from studies reporting hazard ratios was 0.66 (0.38–1.17). They concluded, “This study does not provide support for the association between maternal FA [folic acid] intake during the prenatal period and the reduced risk of ASD in children.... More investigation is needed” (Guo et al., 2019, p. 12).
Comment: I agree Guo et al.’s (2019) results are compatible with no association between folic acid supplementation and ASD. However, I disagree with their conclusion that more investigations are necessary. It is possible a beneficial effect of folic acid would be observed with more careful assessment of the exposure. Not all of the studies included in this meta-analysis assessed folic acid during the pre-conception period. Perhaps nuancing exactly when the supplements were taken would allow a more precise estimate of any association with ASD.

However, it is fairly clear from looking at Figure 1 in Guo et al.’s (2019) article that folic acid is not harmful, at least in terms of ASD. Given the current recommendations concerning folic acid for women of childbearing age, I would argue it does not matter whether folic acid might also prevent ASD. Folic acid is known to prevent neural tube defects, and on the basis of that knowledge, we supplement our food supply and encourage women to take folic acid before and during pregnancy. This clinical message would not change if folic acid also prevents ASD. Thus, in my opinion, we do not need more studies on this topic. Completed studies combine to indicate no association, and, even if there was one, we would not change practice.

REFERENCES
Guo, B.-Q., Li, H.-B., Zhai, D.-S., & Ding, S.-B. (2019). Association of maternal prenatal folic acid intake with subsequent risk of autism spectrum disorder in children: A systematic review and meta-analysis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 94, 109650. https://doi.org/10.1016/j.pnpbp.2019.109650
Hua, X., Zhang, J., Guo, Y., Shen, M., Gaudet, L., Janoudi, G., … Wen, S. W. (2016). Effect of folic acid supplementation during pregnancy on gestational hypertension/preeclampsia: A systematic review and meta-analysis. Hypertension in Pregnancy, 35(4), 447–460. https://doi.org/10.1080/10641955.2016.1183673
McNulty, H., Rollins, M., Cassidy, T., Caffrey, A., Marshall, B., Dorman, J., … Pentieva, K. (2019). Effect of continued folic acid supplementation beyond the first trimester of pregnancy on cognitive performance in the child: A follow-up study from a randomized controlled trial (FASSTT Offspring Trial). BioMed Central Medicine, 17(1), 196. https://doi.org/10.1186/s12916-019-1432-4
Werler, M. M., Shapiro, S., & Mitchell, A. A. (1990). Periconceptional folic acid exposure and risk of occurrent neural tube defects. Journal of the American Medical Association, 264(10), 1257–1261. https://doi.org/10.1001/jama.1990.03480100550027

Featured Review: Cunningham, W., Geard, N., Fielding, J. E., Braat, S., Madhi, S. A., Nunes, M. C., … Moss, R. (2019). Optimal timing of influenza vaccine during pregnancy: A systematic review and meta-analysis. Influenza and Other Respiratory Viruses, 13(5), 438–452. https://doi.org/10.1111/irv.12649

In this meta-analysis, Cunningham et al. (2019) summarized the results from 16 studies on timing of influenza vaccine during pregnancy, spanning eight countries and eight influenza seasons. The studies varied in design, and researchers compared immunologic responses of women vaccinated in the first, second, or third trimesters; none included confirmed or suspected influenza illness as an outcome. The authors of the meta-analysis concluded third trimester inoculation induces a greater immune response.

Comment: I do not think this conclusion is supported by the data. Based on data displayed in the meta-analysis (specifically, Figures 1–3), there does not appear to be a clinically-relevant difference in immune response for women vaccinated in the third trimester compared to the other trimesters (Cunningham et al., 2019). Indeed, there does not seem to be much of a difference at all. Furthermore, realistically, in clinical practice during flu season, we would vaccinate women when we see them, regardless of gestational age. If a woman presented in January for antenatal care at 14 weeks gestation, she would be sent for a flu shot if she had not already had one that season. Likewise it would not be ethical to tell a 20-week pregnant woman in October that she must wait until December to get vaccinated because that would be her third trimester.

Cunningham et al. (2019) make a legitimate attempt to adjust for seasonality, but this is nearly impossible to tease out given the nature of the data and durations of pregnancies and flu seasons. I also find it problematic that none of the researchers in the included studies looked at the actual end-point: influenza infection. Immune response is at best a proxy for this, and proxy (surrogate) outcomes are always suspect (Alonso et al., 2015; Bovbjerg et al., 2019; Buyse et al., 2016; Gomella & Oliver Sartor, 2014; Patel et al., 2016; Schievink et al., 2014). Given that pregnancy is known to induce alterations in one’s immune system (Blackburn, 2003), how valid it is to compare antibody titers across trimesters?

Finally, I would like to raise a related idea: immortal time bias (Hutcheon & Savitz, 2016). This epidemiological concept must always be considered when studying pregnancy, particularly when pre-term birth (or gestational age more generally) is
the outcome. Immortal time bias can arise when you have a one-time exposure and a time-variant outcome. For instance, if we did a study on whether flu vaccines during pregnancy were associated with preterm birth, we would run into trouble because women who gave birth preterm had a shorter window during which they could have been exposed to having a flu shot. Thus, we could easily find influenza vaccination is protective because fewer women who gave birth preterm had one. However, it is not that the vaccine itself actually reduces the preterm risk; rather, women who remained pregnant then had another several weeks during which they might have gotten the flu shot. Studying flu vaccination during pregnancy is then made even more complex because of seasonality. Bottom line: all of us should get flu shots, including pregnant women.

REFERENCES

Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (2015). On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints. Biometrics, 71(1), 15–24. https://doi.org/10.1111/biomet.12246

Blackburn, S. T. (2003). Maternal, Fetal, & Neonatal Physiology: A Clinical Perspective (2nd ed.). Saunders.

Bovbjerg, M. L., Dissanayake, M., Brown, J., Cheyney, M., & Snowdon, J. M. (2019). Utility of the 5-minute Apgar score as a research end point. American Journal of Epidemiology, 189(9), 1695–1704. https://doi.org/10.1093/aje/kwx132

Buyse, M., Molenberghs, G., Padletti, X., Obia, K., Alonso, A., Van der Elst, W., & Burzykowski, T. (2016). Statistical evaluation of surrogate endpoints with examples from cancer clinical trials. Biometrical Journal, 58(1), 104–132. https://doi.org/10.1002/bmj.201400049

Cuningham, W., Geard, N., Fielding, J. E., Braat, S., Madhi, S. A., Nunes, M. C., … Moss, R. (2019). Optimal timing of influenza vaccine during pregnancy: A systematic review and meta-analysis. Influenza and Other Respiratory Viruses, 13(5), 438–452. https://doi.org/10.1111/irv.12649

Gomella, L. G., & Oliver Sartor, A. (2014). The current role and limitations of surrogate endpoints in advanced prostate cancer. Urologic Oncology, 32(1), 28.e1–9. https://doi.org/10.1016/j.urolonc.2012.10.001

Hutccheon, J. A., & Savitz, D. A. (2016). Invited commentary: Influenza, influenza immunization, and pregnancy—it’s about time. American Journal of Epidemiology, 184(3), 187–191. https://doi.org/10.1093/aje/kwv042

Patel, R. B., Vaduganathan, M., Samman-Tahhan, A., Kalogeropoulos, A. P., Georgiooupolou, V., Fonarow, G. C., … Butler, J. (2016). Trends in utilization of surrogate endpoints in contemporary cardiovascular clinical trials. American Journal of Cardiology, 117(11), 1845–1850. https://doi.org/10.1016/j.amjcard.2016.02.021

Schievink, B., Lambers Heerspink, H., Leufkens, H., De Zeeuw, D., & Hoekman, J. (2014). The use of surrogate endpoints in regulating medicines for cardio-renal disease: Opinions of stakeholders. PLOS ONE, 9(9), e108722. https://doi.org/10.1371/journal.pone.0108722

Recent Evidence-Based Reviews: Infant Health and Breastfeeding

Abdelhakim, A. M., Sunoqrot, M., Amin, A. H., Nabil, H., Raslan, A. N., & Samy, A. (2019). The effect of early vs. delayed postpartum insertion of the LNG-IUS on breastfeeding continuation: A systematic review and meta-analysis of randomised controlled trials. European Journal of Contraception & Reproductive Health Care, 24(5), 327–336. https://doi.org/10.1080/13625187.2019.1665175

Bhatt, G. C., Gogia, P., Bitzan, M., & Das, R. R. (2019). Theophylline and aminophylline for prevention of acute kidney injury in neonates and children: A systematic review. Archives of Disease in Childhood, 104(7), 670–679. https://doi.org/10.1136/archdischild-2018-315805

Fleeman, N., Dundar, Y., Shah, P. S., & Shaw, B. N. (2019). Heated humidified high-flow cannula for preterm infants: An updated systematic review and meta-analysis. International Journal of Technology Assessment in Health Care, 35(4), 298–306. https://doi.org/10.1017/S0266462319000424

Garrison, M. P., & Maisano, P. (2019). Systematic review of factors influencing non-medically indicated formula supplementation of newborns in the hospital setting. Nursing for Women’s Health, 23(4), 340–350. https://doi.org/10.1016/j.nwh.2019.06.003

Kariholu, U., Montaldo, P., Markati, T., Lally, P. J., Pryce, R., Teiserskas, J., … Thayyil, S. (2020). Therapeutic hypothermia for mild neonatal encephalopathy: A systematic review and meta-analysis. Archives of Disease in Childhood, Fetal and Neonatal Edition, 105(2), 225–228. https://doi.org/10.1136/archdischild-2018-315711

Kolodziej, M., Patro-Golab, B., Gieruszczak-Bialek, D., Skorka, A., Piecick-Lech, M., Baron, R., … on behalf of the SAWANTI Working Group. (2019). Association between early life (prenatal and postnatal) antibiotic administration and coeliac disease: A systematic review. Archives of Disease in Childhood, 104(11), 1083–1089. https://doi.org/10.1136/archdischild-2019-317174

MacVicar, S., & Kelly, L. E. (2019). Systematic mixed-study review of nonpharmacological management of neonatal abstinence syndrome. Birth, 46(3), 428–438. https://doi.org/10.1111/birt.12427

McCarthy, E. K., Dempsey, E. M., & Kiely, M. E. (2019). Iron supplementation in preterm and low-birth-weight infants: A systematic review
of intervention studies. *Nutrition Reviews*, 77(12), 865–877. https://doi.org/10.1093/nutrit/nuz051

Parri, N., Trippella, G., Lisi, C., De Martino, M., Galli, L., & Chiappini, E. (2019). Accuracy of pre-sepsin in neonatal sepsis: Systematic review and meta-analysis. *Expert Review of Anti-Infective Therapy*, 17(4), 223–232. https://doi.org/10.1080/14787210.2019.1584037

Patro-Gołąb, B., Zalewski, B. M., Polaczek, A., & Szajewska, H. (2019). Duration of breastfeeding and early growth: A systematic review of current evidence. *Breastfeeding Medicine*, 14(4), 218–229. https://doi.org/10.1089/bfm.2018.0187

Stadler, J., Raith, W., Mileder, L. P., Schmölder, G. M., & Urlesberger, B. (2019). Invasive and non-invasive acupuncture techniques for pain management in neonates: A systematic review. *Acupuncture in Medicine*, 37(4), 201–210. https://doi.org/10.1136/acupmed-2017-011549

Recent Evidence-Based Reviews:

Nursing Education and Practice

Huang, J., Tang, Y., Tang, J., Shi, J., Wang, H., Xiong, T., ... Mu, D. (2019). Educational efficacy of high-fidelity simulation in neonatal resuscitation training: A systematic review and meta-analysis. *BioMed Central Medical Education*, 19(1), 323. https://doi.org/10.1186/s12909-019-1763-z

Morris, M., Cooper, R. L., Ramesh, A., Tabatabai, M., Arcury, T. A., Shinn, M., ... Matthews-Juarez, P. (2019). Training to reduce LGBTQ-related bias among medical, nursing, and dental students and providers: A systematic review. *BioMed Central Medical Education*, 19(1), 325. https://doi.org/10.1186/s12909-019-1727-3

Ouyang, M., Peng, K., Botfield, J. R., & McGeechan, K. (2019). Intrauterine contraceptive device training and outcomes for healthcare providers in developed countries: A systematic review. *PLOS ONE*, 14(7), e0219746. https://doi.org/10.1371/journal.pone.0219746