First detailed analysis of multiple system V2083 Cyg

P. Zasche,1⋆ P. Svoboda2 and M. Šlechta3

1Astronomical Institute, Faculty of Mathematics and Physics, Charles University Prague, V Holešovičká 2, CZ-180 00 Praha 8, Czech Republic
2Private Observatory, Vypustky 5, CZ-614 00 Brno, Czech Republic
3Astronomical Institute, Academy of Sciences, Frčová 298, CZ-251 65 Ondřejov, Czech Republic

Accepted 2011 December 13. Received 2011 December 13; in original form 2011 September 20

ABSTRACT

The main aim of this paper is the first detailed analysis of multiple system V2083 Cyg, to reveal its basic physical properties. The system was studied using the methods of light-curve and radial-velocity curve analysis, together with interferometric data from the visual pair obtained during the last century. It was found that the close subsystem contains two very similar stars of spectral type A7–8. Moreover, a third body is orbiting around this pair with a period of about 177 yr. Due to the discrepancy in the total mass derived with the two methods, the possibility arises that the third body is perhaps also a binary, or some object with lower luminosity but higher mass than a normal main-sequence star. Another explanation is that the Hipparcos value of parallax is incorrect and the system is much closer to the Sun.

Key words: binaries: eclipsing – binaries: visual – stars: fundamental parameters – stars: individual: V2083 Cyg.

1 INTRODUCTION

Eclipsing binaries as members of more complex multiple systems can provide us with important information about their physical properties, derived using different methods. This is the case for V2083 Cyg, which is a system in which the close components form an eclipsing binary and the third distant body orbiting the close pair is detected as a visual component. Thanks to combined analysis, we are able to derive the radii, masses and evolutionary status of the close components and also some properties of the distant one. Such systems are still very rare and mostly lie relatively close to the Solar system. Nowadays, only 33 such systems are known in which a close eclipsing binary is a member of a wide visual binary and we know both orbits, mutual inclinations, ratio of periods, etc. Such unique systems are the most suitable ones for studies of dynamical effects, such as the short- and long-term evolution of the orbits (see e.g. Söderhjelm 1975).

2 THE SYSTEM V2083 CYG

The system V2083 Cyg (= HD 184242 = HIP 96011, RA 19h31m16.36, Dec. +47°28′52″24, \(V_{\text{max}} = 6.86 \text{mag} \)) is an Algol-type eclipsing binary with an orbital period of about 1.87 d. It is also the primary component of a visual double star designated as WDS J19313+4729 in the Washington Double Star Catalog (WDS)1 (Mason et al. 2001). The secondary component of this double star is about 220 mas distant and is a little fainter. On the other hand, the magnitude difference is not very certain, because different authors list different values. The WDS catalogue itself gives 7.50 and 7.93 mag for both components.

The system is a rather neglected one and there have only been a few papers published regarding it. It was discovered as an eclipsing binary from Hipparcos data (Perryman et al. 1997), which also reveal that the light curve (hereafter LC) shows two similar minima and the classical features of an Algol-type star.

The spectral type of the system is not known very precisely at present. Abt (1985) presented the spectral classification of the whole AB system as Am (K/H/M=A3/A8/A9), Renson, Gerbaldi & Catalano (1991) give a composite spectral type of A3–A9, while the spectral type A3 was presented by Cannon & Pickering (1918), Ochsenbein (1980) and many others. This could indicate that the combined spectrum is composed from components of slightly different spectral types. The photometry of V2083 Cyg obtained from the Hipparcos mission gives a colour index \(B – V = 0.279 \text{mag} \) (indicating spectral type A9, Popper 1980), while the infrared \(J – H \) and \(H – K \) indices, which are less influenced by interstellar reddening, as derived from the 2MASS survey give spectral types of about A4 and A7 (Cox 2000).

The visual orbit of the two components was derived by Seymour et al. (2002). They presented an orbital period of the double of about 372 yr, an angular semimajor axis of about 498 mas and an eccentricity of 0.16. However, as they mention, the orbit is still only a preliminary one.

3 PHOTOMETRY AND SPECTROSCOPY

We started collecting photometric data for the system in 2008 April. In total there are 31 nights of observations, but for the light-curve
4 LC AND RV ANALYSIS

The complete LC (in BVR filters) and RV curves were analysed simultaneously, using the program PHOEBE (Prša & Zwitter 2005), which is based on the Wilson–Devinney algorithm (Wilson & Devinney 1971). The derived quantities are as follows: semi-major axis a, mass ratio $q = M_2/M_1$, systemic velocity γ, secondary temperature T_2, inclination i, luminosities L_i, gravity-darkening coefficients g_i, limb-darkening coefficients x_i, albedo coefficients A_i, and synchronicity parameters F_i. The limb darkening was approximated via a linear cosine law and the values of x_i were interpolated from van Hamme’s tables (see van Hamme 1993).

For the whole analysis, we followed this procedure: at the beginning we fixed the temperature of the primary component at $T_1 = 7930 \, K$ (corresponding to spectral type A7, Cox 2000). We were trying to find the best LC+RV fit according to the lowest value of root-mean-square (rms). A solution was reached, but this one was unacceptable due to the fact that resulting values of M_1, M_2, L_1, L_2, T_1 and T_2 are in contradiction with each other. In particular, the resulting spectral types as derived from M_1, M_2, L_1, L_2, T_1 and T_2 differ significantly from each other. For this reason, we tried a different starting value of T_1. With this method we were changing the temperature T_1 in the range from 8520–7020 K (spectral types A3 to F0) and trying to find a consistent solution. For all of these attempts, the value of T_1 remained fixed.

Our final parameters as derived from the LC+RV fit are given in Table 2. The plot of the LC is shown in Fig. 1, while the RV curves with the fits are given in Fig. 2. The value of eccentricity was fixed at 0. For discussion about the physical parameters of the components (eclipsing and also the third one), see Section 6.

For the entire computation process, the values of parameters A_i, g_i and gravity-darkening coefficients were set at their appropriate values ($A_i = 1$ or 0.5 and $g_i = 0.1$ or 0.32) according to the component’s temperature ($T_i < 7200 \, K$ or $T_i > 7200 \, K$).

Table 1. Radial velocities of V2083 Cyg as derived from the spectra from the Elodie archive and from the Ondřejov observatory.

HJD	RV1	RV2	RV3	Ref.
51405.3658	95.594	-81.861		Elodie
51407.4156	129.872	-117.06		Elodie
55316.5290	20.920	2.771	-16.272	OND
55380.5210	-122.394	142.771	-16.336	OND
55385.5370	122.946	-99.062	-16.775	OND
55385.5530	56.001	-29.860	-18.397	OND
55383.3640	-73.970	99.094	-14.986	OND
55386.5650	-4.42	25.184	-17.640	OND
55405.3670	55.349	-26.402	-16.327	OND
55425.3970	-117.384	141.598	-16.145	OND
55496.2990	-121.010	140.992	-16.273	OND
55496.4630	-99.677	124.485	-16.277	OND
55497.2890	141.451	-119.863	-15.212	OND
55622.5420	116.769	-96.782	-15.048	OND
55622.6370	89.474	-66.160	-14.284	OND
55671.4500	-18.008	36.024	-14.574	OND
55671.5840	-72.089	92.471	-14.950	OND
55671.6310	-86.135	105.183	-14.784	OND
55689.5750	144.545	-122.291	-16.380	OND
55692.3700	-119.493	143.646	-15.231	OND
55692.5540	-98.435	122.422	-15.080	OND

Table 2. The final LC and RV parameters of V2083 Cyg.

Parameter	Value	Parameter	Value
a [\(R_\odot\)]	9.57 ± 0.15	L_1 (B) [per cent]	26.7 ± 0.7
$q = M_2/M_1$	0.97 ± 0.07	L_2 (B) [per cent]	34.9 ± 0.9
γ [km s\(^{-1}\)]	10.78 ± 0.68	L_3 (B) [per cent]	38.4 ± 0.8
T_1 [K]	7630 (fixed)	L_1 (V) [per cent]	26.7 ± 0.6
T_2 [K]	7623 ± 45	L_2 (V) [per cent]	34.7 ± 0.9
e	0 (fixed)	L_3 (V) [per cent]	38.6 ± 0.8
i [deg]	80.47 ± 1.60	L_1 (R) [per cent]	26.4 ± 0.6
$x_1 = x_2$ (B)	0.412	L_2 (R) [per cent]	34.2 ± 0.9
$x_1 = x_2$ (V)	0.356	L_3 (R) [per cent]	39.4 ± 1.0
$x_1 = x_2$ (R)	0.356	Derived physical quantities:	
$g_1 = g_2$	1.000 (fixed)	R_1 [\(R_\odot\)]	2.12 ± 0.17
$A_1 = A_2$	1.000 (fixed)	R_2 [\(R_\odot\)]	2.45 ± 0.20
F_1	0.81 ± 0.13	M_1 [\(M_\odot\)]	1.71 ± 0.11
F_2	0.84 ± 0.11	M_2 [\(M_\odot\)]	1.66 ± 0.09

2 See http://c-munipack.sourceforge.net/
issue was the values of F_i, which tended to decrease down to 0 for both components for each of the T_i values, dropping down very quickly after a few steps of iterations. For this reason we tried a different approach. From the spectra of the system we estimated the values $v \sin i$, which were used to derive the values of F_i for both components. Therefore, the values of F_i as given in Table 2 are not derived from the combined LC and RV analysis but from the spectra.

The fitting process with PHOEBE was carried out assuming three luminosities. Besides the luminosities of the primary and secondary components of the eclipsing binary pair, the additional third light L_3 was also considered. This luminosity corresponds to the visual component B and is presented in the combined light for the entire time period (the two visual components are too close). From this value one can speculate about some physical parameters of the third body in the system; see Section 6 below.

5 VISUAL ORBIT

The close eclipsing pair is orbiting around a common barycentre with the third distant component of the system. Recent precise interferometric observations are to be used for determining the parameters of this visual orbit. Since its discovery as a double star by Aitken (1904), 61 astrometric observations of the double (i.e. position angle and separation) have been obtained. We took these data from the WDS data base. The very last observation was obtained in 2009.

Since its discovery, the position angle of the pair has changed by about 88°. Thanks to this movement, the orbit of the pair around a barycentre has been derived. The orbit was published by Seymour et al. (2002), who computed an orbital period of about 372 yr. However, since this most recent study three new interferometric observations have been published, so we decided to perform a new analysis with the complete data set.

Our new computation led to the visual orbit parameters given in Table 3 and the orbit plotted in Fig. 3. For the computation we used the following approach. Starting with the orbital parameters as published by Seymour et al. (2002), the final fit reached a very different solution. Moreover, several different minima in the parameter space were found, as derived from this astrometric data set. Some minima were found with very long orbital periods, but this solution seems to be less probable due to the poor coverage of the data. The most significant minimum (the deepest one) was found near the period of 177.4 yr. However, we would like to emphasize that the orbital solution is still a preliminary one. New precise observations secured every year would be very welcome to aid in derivation of the orbital parameters more conclusively and especially in setting more solid constraints on p_1 and α values. These values are the most important for discussion about the nature of the third component (see Section 6 below).

In Fig. 4 a plot of total mass versus period is shown, as well as the rms of the particular fit versus period. For our final solution reached (minimum rms with $p_1 = 64778.357$ d), the value of total mass was computed (using the Hipparcos parallax); this is shown as the dashed lines in Fig. 4. The relation between the two vertical axes (parallax and total mass) is defined via Kepler’s third law using our final solution. As one can see from the bold line of the mass–period relation, the total mass as derived from our final solution is close to the minimal mass in this period range (the uncertainty of the Hipparcos parallax $\pi_{\text{Hip}} = 4.32 \pm 0.57$ is shown as a grey area). Of course, this analysis is very sensitive to the input weighting.

Table 3. Final parameters of the long orbit.

Parameter	Seymour et al. (2002)	This work
p_1 [day]	135869	64778 ± 427
p_1 [yr]	372	177.4 ± 1.2
α [mas]	498	291.9 ± 1.4
T_0	2438395	2400006 ± 375
Ω [deg]	73.6	174.54 ± 2.9
ω [deg]	189	334.89 ± 5.3
i [deg]	64	48.73 ± 3.6
e	0.16	0.471 ± 0.018
scheme. The individual weights of the data points were set equal to each other, because for most of the observations σ or some other error estimations are missing. No minimum of rms near a period of 372 yr, as proposed by Seymour et al. (2002), is seen. One might ask why such a different solution was reached using only three new interferometric observations. The main reason (besides perhaps different weighting) is that these three new measurements provide strong constraints on the fit. This is due to the fact that the position angle between our most recent data and those from Seymour et al. (2002) has changed by about 20°, which is about a quarter of the total position-angle range covered. All of these calculations (e.g. Kepler’s law) used the set of recommended values of fundamental parameters as proposed by Harmanec & Prša (2011).

On the other hand, we also tried to compute the predicted change in the third-body velocities over the time span of more than 11 yr covered by our spectroscopic data. Taking into account some assumptions (masses), the change in velocity that resulted was greater than 20 km s$^{-1}$. Such a large velocity difference should be easily detectable in our RV3 data. Unfortunately, we were not able to identify the third-component lines in the Elodie spectra and in newer data from Ondřejov there is no such difference; hence we can only speculate about our findings. The reason could be either different masses or a much longer orbital period. Another explanation is an incorrect identification of the third-body lines in the spectra.

6 PHYSICAL PARAMETERS

Taking into account all results as presented above, one can build up a picture of the system, its geometry and orientation in space. From the combined LC and RV analysis it appears that both eclipsing components are probably main-sequence stars, located well within their respective Roche lobes. According to their masses and temperatures, it seems that their individual spectral types are probably A7 and A8 (e.g. Popper 1980; Harmanec 1988; Andersen 1991) for the primary and secondary, respectively. However, according to their luminosities, it seems as though the stars are of slightly earlier spectral type (about A5).

Another task was to derive the value of the third light L_3 from the LC solution and to obtain a magnitude difference between the two visual components. The value resulting was about 0.49 mag, which is in rough agreement with the value $\Delta m = 0.43$ mag presented in the WDS catalogue.

Discussion regarding the third body is still difficult due to certain aspects of the problem. The most problematic issue is still the uncertainty of the Hipparcos value of parallax. The relatively high error of about 13 per cent could lead to distances in a wide range from 204–267 pc. Thanks to this uncertainty, the value of total mass as computed from the visual orbit (see Table 3) could also lie between 6.54 and 15.41 M_\odot, with a mean value of 9.81 M_\odot.

Subtracting the masses of both eclipsing components, we obtain an interesting result for the mass of the third body of about 6.44 M_\odot (with upper and lower limits of about 12.24 and 2.97). Such a massive third body cannot easily be a main-sequence A star as predicted from the Δm value. One possible explanation for this discrepancy is that this component is also a double star. If we speculate that there are two identical stars, then such stars have to be of only slightly later spectral type than the eclipsing components (because of the total mass). Assuming two F0 stars, we can hardly satisfy the magnitude difference between the components. However, this explanation is still questionable because the third lines in the spectra do not show a double profile.

To solve this discrepancy we tried to use the program KOREL (Hadrava 2004) to disentangle the spectra taken at Ondřejov observatory. However, it was not able to solve the problem either. The final parameters on one hand confirmed our findings about the LC+RV solution (the mass ratio q from KOREL was about 0.993) but on the other hand also resulted in a value of mass ratio $q_3 = M_3/M_{12} > 1$. This would indicate that the third body is more massive than the eclipsing pair, but also less luminous. Solving the problem of its lower luminosity and higher mass by introducing a degenerate object is a highly speculative solution. Hence, the nature of the third body still remains an open question. The KOREL radial velocities of the third body were also used and these are the values presented in Table 1 in the RV3 column.

7 DISCUSSION AND CONCLUSIONS

The multiple system V2083 Cyg is still rather neglected and this is the first detailed analysis of it. The components of the eclipsing binary are of spectral type A and are well-detached, with no evidence of circumstellar matter, emission in the spectra, etc. This close pair is also orbiting around a common barycentre with a third component with a period of about 177 yr. The mutual inclination of the two orbits is 31:8; therefore we can only speculate about a common origin of the system.

The nature of the third component is still rather problematic to derive. From the combined LC and RV analysis it appears that the third body is slightly less luminous than the eclipsing pair. However, the Hipparcos parallax indicates a higher total mass of the system than computed from all component masses. A possible explanation is that the value of the Hipparcos parallax is underestimated and the real distance of V2083 Cyg is lower (even outside the error bars of the Hipparcos data). This would not be an exceptional case, because for some systems Hipparcos data yield an incorrect parallax due to the presence of a close visual companion (e.g. Docobo et al. 2008). Another possible explanation is that this body is also a binary, but there are some problems with this explanation too (luminosity and the spectral lines of such a body). For this reason, new more detailed observations would be greatly welcome.

However, if the hypothesis of binarity of the third component is proven, it will shift the triple system to a quadruple one. On one hand, such systems of higher multiplicity are of great interest, but on the other hand we would then have to deal with the very
incomplete statistics of such systems among stars (see e.g. Eggleton & Tokovinin 2008; Eggleton 2009).

ACKNOWLEDGMENTS

We thank the ‘SWASP’ team for making all observations easily publicly available. Mr Robert Uhlaf is acknowledged for sending us his photometric data and Professor Petr Harmanec for useful discussion and valuable advice. We also thank an anonymous referee for helpful and critical suggestions. We also acknowledge the use of spectrograms from the public archives of the Elodie spectrograph of the Haute Provence Observatory. We are obliged to our colleagues who took spectra of V2083 Cyg in Ondrejov observatory (M. Wolf, P. Chadmia and J.A. Nemravova). This work was supported by the Czech Science Foundation grant no. P209/10/0715 and also by the Research Programme MSM0021620860 of the Czech Ministry of Education. This research has made use of the Washington Double Star Catalog maintained at the US Naval Observatory, the SIMBAD data base, operated at CDS, Strasbourg, France, and of NASA’s Astrophysics Data System Bibliographic Services.

REFERENCES

Abt H. A., 1985, ApJS, 59, 95
Aitken R. G., 1904, Lick Observ. Bulletin, 3, 6
Andersen J., 1991, A&A, 3, 91
Bessell M. S., 1990, PASP, 102, 1181
Cannon A. J., Pickering E. C., 1918, Annals of Harvard College Observatory, 91, 1
Cox A. N., 2000, Allen’s Astrophysical Quantities, 4th edn. AIP Press: Springer, New York
Docobo J. A., Tamazian V. S., Andrade M., Melikian N. D., Karapetian A. A., 2008, AJ, 136, 890
Eggleton P. P., 2009, MNRAS, 399, 1471
Eggleton P. P., Tokovinin A. A., 2008, MNRAS, 389, 869
Hadrava P., 2004, Publ. Astron. Inst. Czech. Acad. Sci., 92, 15
Harmanec P., 1988, Bull. Astron. Inst. Czech., 39, 329
Harmanec P., Prsa A., 2011, PASP, 123, 976
Horn J., Kubat J., Harmanec P., Koubké P., Hadrava P., Šimon V., Štefl S., Škoda P., 1996, A&A, 309, 521
Kwee K. K., van Woerden H., 1956, Bull. Astron. Inst. Netherlands, 12, 327
Mason B. D., Wycoff G. L., Hartkopf W. I., Douglass G. G., Worley C. E., 2001, AJ, 122, 3466
Moulataka J., Ilovaisky S. A., Prugniel P., Soubiran C., 2004, PASP, 116, 693
Ochsenbein F., 1980, Bull. Inf. Centre de Donnees Stellaires, 19, 74
Perryman M. A. C. et al., 1997, A&A, 323, L49
Pollacco D. L. et al., 2006, PASP, 118, 1407
Popper D. M., 1980, ARA&A, 18, 115
Prša A., Zwitter T., 2005, ApJ, 628, 426
Renson P., Gerbaldi M., Catalano F. A., 1991, A&AS, 89, 429
Seymour D. M., Mason B. D., Hartkopf W. I., Wycoff G. L., 2002, AJ, 123, 1023
Söderhjelm S., 1975, A&A, 42, 229
Tody D., 1993, in Hanisch R. J., Brissenden R. J. V., Barnes J., eds, ASP Conf. Ser. Vol. 52, Astronomical Data Analysis Software and Systems II. Astron. Soc. Pac., San Francisco, p. 173
van Hamme W., 1993, AJ, 106, 2096
Wilson R. E., Devinney E. J., 1971, ApJ, 166, 605

APPENDIX A

The minima obtained using the Kwee–van Woerden method (Kwee & van Woerden 1956) are here given in Table A1.

HJD: 240 0000	Error	Type	Filter	Observer
54609.69354	0.00179	prim	–	SWASP
54638.63794	0.00035	sec	B	SWASP
54639.57227	0.00042	prim	–	SWASP
54652.64554	0.00089	prim	–	SWASP
54668.51720	0.00046	sec	B	SWASP
54669.44747	0.00046	prim	–	SWASP
54683.46156	0.00027	sec	V	SWASP
54684.39467	0.00095	prim	–	SWASP
54994.39887	0.00091	prim	B	PS
54994.39888	0.00113	prim	V	PS
54994.39948	0.00128	prim	R	PS
55049.49292	0.00110	sec	B	PS
55049.49015	0.00104	sec	R	PS
55049.49055	0.00062	sec	V	PS
55051.35585	0.00081	sec	B	PS
55051.35567	0.00078	sec	V	PS
55051.35645	0.00107	sec	R	PS
55064.43157	0.00091	sec	B	PS
55064.43162	0.00057	sec	V	PS
55064.43102	0.00064	sec	R	PS
55076.57570	0.00116	prim	B	PS
55076.57197	0.00108	prim	V	PS
55076.57194	0.00165	prim	R	PS
55093.37749	0.00087	prim	B	PS
55093.37848	0.00068	prim	V	PS
55093.37624	0.00063	prim	R	PS
55374.43431	0.00021	sec	I	RU
55429.52450	0.00028	prim	I	RU
55740.46289	0.00056	sec	R	PS
55797.42284	0.00043	prim	I	RU

Note: PS – Petr Svoboda, RU – Robert Uhlaf.

This paper has been typeset from a TeX/PostTeX file prepared by the author.