Protecting a Graph with Mobile Guards

William F. Klostermeyer
School of Computing
University of North Florida
Jacksonville, FL 32224-2669
wkloster@unf.edu

C. M. Mynhardt*
Department of Mathematics and Statistics
University of Victoria, P.O. Box 3060 STN CSC
Victoria, BC, CANADA V8W 3R4
mynhardt@math.uvic.ca

July 22, 2014

Abstract
Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.

Keywords: graph protection, eternal dominating set, eternal vertex cover
AMS Subject Classification Number 2000: 05C69

1 Introduction

Graph protection involves the placement of mobile guards on the vertices of a graph to protect its vertices and edges against single or sequences of attacks and has its historical roots in the time of the ancient Roman Empire. The modern study of graph protection was initiated in the late twentieth century by the appearance of four publications in quick...
succession that referred to the military strategy of Emperor Constantine (Constantine The Great, 274-337 AD).

The seminal paper is Ian Stewart’s “Defend the Roman Empire!” in Scientific American, December 1999 [13], which contains a reply to C. S. ReVelle’s “Can you protect the Roman Empire?”, Johns Hopkins Magazine, April 1997 [11], and which is based on ReVelle and K. E. Rosing’s “Defendens Imperium Romanum: A Classical Problem in Military Strategy” in American Mathematical Monthly, August – September 2000 [12]. ReVelle’s work [11] in turn is a response to the paper “Graphing’ an Optimal Grand Strategy” by J. Arquilla and H. Fredricksen [4], which appeared in Military Operations Research in 1995 and which is the oldest reference we could find that places the strategy of Emperor Constantine in a mathematical setting.

According to ancient history – some say mythology – Rome was founded by Romulus and Remus in 760 – 750 BC on the banks of the Tiber in central Italy. It was a country town whose power gradually grew until it was the centre of a large empire. In the third century AD Rome dominated not only Europe, but also North Africa and the Near East. The Roman army at that time was strong enough to use a forward defense strategy, deploying an adequate number of legions to secure on-site every region throughout the empire. However, the Roman Empire’s power was greatly reduced over the following hundred years. By the fourth century AD only twenty-five legions of the Roman army were available, which made a forward defense strategy no longer feasible.
According to E. N. Luttwak, *The Grand Strategy of the Roman Empire*, as cited in [42], to cope with the reducing power of the Empire, Constantine devised a new strategy called a *defense in depth* strategy, which used local troops to disrupt invasion. He deployed mobile Field Armies (FAs), units of forces consisting of roughly six legions powerful enough to secure any one of the regions of the Roman Empire, to stop the intruding enemy, or to suppress insurrection. By the fourth century AD there were only four FAs available for deployment, whereas there were eight regions to be defended (Britain, Gaul, Iberia, Rome, North Africa, Constantinople, Egypt and Asia Minor) in the empire. See Figure 1 An FA was considered capable of deploying to protect an adjacent region only if it moved from a region where there was at least one other FA to help launch it. The challenge that Constantine faced was to position four FAs in the eight regions of the empire. Consider a region to be *secured* if it has one or more FAs stationed in it already, and *securable* if an FA can reach it in one step. Constantine decided to place two FAs in Rome and another two FAs in Constantinople, making all regions either secured or securable – with the exception of Britain, which could only be secured after at least four movements of FAs.

It is mentioned in [4, 42, 43] that Constantine’s “defense in depth” strategy was adopted during World War II by General Douglas MacArthur. When conducting military operations in the Pacific theatre he pursued a strategy of “island-hopping” – moving troops from one island to a nearby one, but only when he could leave behind a large enough garrison to keep the first island secure. The efficiency of Constantine’s strategy under different criteria, and ways in which it can be improved, were also discussed in these three articles.

Constantine’s strategy is now known in domination theory as **Roman domination**. A **Roman dominating function** on a graph $G = (V,E)$ is a function $f : V \rightarrow \{0,1,2\}$ satisfying the condition that every vertex u with $f(u) = 0$ is adjacent to at least one vertex v with $f(v) = 2$. **Weak Roman domination**, an alternative defense strategy that can be used if defense units can move without another unit being present, was introduced in [21]. A function $f : V \rightarrow \{0,1,2\}$ is a **weak Roman dominating function** of G if each vertex u with $f(u) = 0$ is adjacent to a vertex v with $f(v) > 0$ such that the function $f' = (f - \{(v,f(v)),(u,0)\}) \cup \{(v,f(v) - 1),(u,1)\}$ also has the property that each vertex labelled 0 is adjacent to a vertex with positive label. **Secure domination** is a defense strategy that can be used when it is not possible or desirable to station two defense units at the same location. A **secure dominating function** is a weak Roman dominating function f such that $\{v \in V : f(v) = 2\} = \emptyset$. In this case the set $\{v \in V : f(v) = 1\}$ is a **secure dominating set** of G.

A full discussion of Roman domination, weak Roman domination and secure domination is beyond the scope of this survey. Publications covering these topics and their variations are given in the bibliography after the list of references. Here we focus on securing the vertices and edges of graphs against infinite sequences of attacks, executed one at a time, by stationing defense units, henceforth called guards, at the vertices of the graph. At most one guard is stationed at each vertex, and guards that move in response to an attack do not return to their original positions before facing another attack. We refer to such models as *eternal*, as they can be thought of as protecting a graph for eternity. A number of different eternal protection models have been studied. We introduce them in the next section.
2 Graph protection models

A dominating set of a graph $G = (V, E)$ is a set $D \subseteq V$ such that each vertex in $V - D$ is adjacent to a vertex in D. The minimum cardinality amongst all dominating sets of G is the domination number $\gamma(G)$. By imposing conditions on the subgraph $G[D]$ of G induced by D we obtain several varieties of dominating sets and their associated parameters. For example, if $G[D]$ is connected, then D is a connected dominating set and the corresponding parameter is the connected domination number $\gamma_c(G)$, and if $G[D]$ has no isolated vertices, then D is a total dominating set and the minimum cardinality amongst all total dominating sets is the total domination number $\gamma_t(G)$. Only connected graphs have connected dominating sets, and only graphs without isolated vertices have total dominating sets. Domination theory can be considered the precursor to the study of graph protection: one may view a dominating set as an immobile set of guards protecting a graph. A thorough survey of domination theory can be found in [22].

A vertex cover of G is a set $C \subseteq V$ such that each edge of G is incident with a vertex in C. The minimum cardinality of a vertex cover of G is the vertex cover number (also sometimes called the vertex covering number) $\tau(G)$ of G. An independent set of G is a set $I \subseteq V$ such that no two vertices in I are adjacent. The maximum cardinality amongst all independent sets is the independence number $\alpha(G)$. The independence number of G equals the clique number $\omega(G)$ of the complement \overline{G} of G. It is well known that $\alpha(G) + \tau(G) = n$ for all graphs G of order n (see e.g. [11, p. 241]). A matching in G is a set of edges, no two of which have a common end-vertex. The matching number $m(G)$ is the maximum cardinality of a matching of G. It is also well known that $\tau(G) \geq m(G)$ for all graphs, and that equality holds for bipartite graphs. The latter result is known as Konig’s theorem (see e.g. [11, Theorem 9.13]).

Let $\{D_i\}$, $D_i \subseteq V$, $i \geq 1$, be a collection of sets of vertices of the same cardinality, with one guard located on each vertex of D_i. Each protection strategy can be modelled as a two-player game between a defender and an attacker: the defender chooses D_1 as well as each D_i, $i > 1$, while the attacker chooses the locations of the attacks r_1, r_2, \ldots. Each attack is dealt with by the defender by choosing the next D_i subject to some constraints that depend on the particular game. The defender wins the game if they can successfully defend any sequence of attacks, subject to the constraints of the game described below; the attacker wins otherwise.

We say that a vertex (edge) is protected if there is a guard on the vertex or on an adjacent (incident) vertex. A vertex v is occupied if there is a guard on v, otherwise v is unoccupied. An attack is defended if a guard moves to the attacked vertex (across the attacked edge).

For the eternal domination problem, each D_i, $i \geq 1$, is required to be a dominating set, $r_i \in V$ (assume without loss of generality $r_i \notin D_i$), and D_{i+1} is obtained from D_i by moving one guard to r_i from an adjacent vertex $v \in D_i$. If the defender can win the game with the sets $\{D_i\}$, then each D_i is an eternal dominating set. The size of a smallest eternal dominating set of G is the eternal domination number $\gamma^\infty(G)$. This problem was first studied by Burger et al. in [9] and will sometimes be referred to as the one-guard
moves model.

For the m-eternal dominating set problem, each \(D_i, i \geq 1 \), is required to be a dominating set, \(r_i \in V \) (assume without loss of generality \(r_i \notin D_i \)), and \(D_{i+1} \) is obtained from \(D_i \) by moving guards to neighboring vertices. That is, each guard in \(D_i \) may move to an adjacent vertex, as long as one guard moves to \(r_i \). Thus it is required that \(r_i \in D_{i+1} \). The size of a smallest m-eternal dominating set (defined similar to an eternal dominating set) of \(G \) is the m-eternal domination number \(\gamma^\infty_m(G) \). This “multiple guards move” version of the problem was introduced by Goddard, Hedetniemi and Hedetniemi [18]. It is also called the “all-guards move” model. It is clear that \(\gamma^\infty(G) \geq \gamma^\infty_m(G) \geq \gamma(G) \) for all graphs \(G \).

As for dominating sets, we obtain variations on the above-mentioned protection models by imposing conditions on \(G[D_i] \). Thus we define the eternal total (connected, respectively) domination number \(\gamma^\infty_t(G) \) \((\gamma^\infty_c(G), \) respectively) and the m-eternal total (connected, respectively) domination number \(\gamma^\infty_m(G) \) \((\gamma^\infty_m(G), \) respectively) in the obvious way. Eternal total domination and eternal connected domination were introduced by Klostermeyer and Mynhardt [32].

For the m-eternal vertex covering problem, each \(D_i, i \geq 1 \), is required to be a vertex cover, \(r_i \in E \), and \(D_{i+1} \) is obtained from \(D_i \) by moving guards to neighboring vertices; all guards in \(D_i \) may move to adjacent vertices provided that one of them moves across edge \(r_i \) (we assume without loss of generality that one end-vertex of \(r_i \) is not in \(D_i \), otherwise the two guards on the endvertices of \(r_i \) simply interchange positions). If the defender can win the game with the sets \(\{D_i\} \), then each \(D_i \) is an eternal vertex cover. The size of a smallest eternal vertex cover of \(G \) is the eternal covering number \(\tau^\infty_m(G) \). The m-eternal vertex covering problem (or just the eternal vertex covering problem, for simplicity) was introduced by Klostermeyer and Mynhardt [31] and was also studied by Fomin et al. in [16, 17] and Anderson et al. in [2, 3]. As in the case of domination, \(\tau^\infty_m(G) \geq \tau(G) \) for all graphs \(G \). Also, for any graph \(G \) without isolated vertices, \(\tau(G) \geq \gamma(G) \) and \(\tau^\infty_m(G) \geq \gamma^\infty_m(G) \).

We discuss these and other related protection models in Sections 4 – 8 and present a list of open problems in Section 10.

We conclude this section with some remarks about the nature of the attack sequence \(\{r_i\} \). There are three main ways for the attacker to choose and reveal \(\{r_i\} \). Following the notation used for the k-server problem (see Section 4.2), they are as follows.

1. **Offline problem**: the entire sequence \(r_1, r_2, \ldots, r_m \) of attacks is chosen and revealed in advance.

2. **Adaptive online problem**: the sequence of attacks is chosen and revealed one by one by the attacker alternating with the guard movements by the defendant. The attacker is called an adaptive adversary.

3. **Oblivious online problem**: the sequence of attacks is constructed in advance by an adversary, but revealed one by one in response to each guard movement. The adversary in this case is called an oblivious adversary.
The offline problem, even if the finite sequence \(r_1, r_2, \ldots, r_m \) is repeated indefinitely, is not the same as eternal domination problem. The minimum number of guards required to defend such a predefined attack sequence could be strictly less than the eternal domination number. We only consider this type of attack sequence for the \(k \)-server problem in Section 4.2. The adaptive online problem is precisely the eternal domination problem as described above: the location of each attack is chosen by the attacker depending on the location of the guards at that time. At first glance, the oblivious online problem appears to be somewhat different from the adaptive online problem, and to be the same as the original eternal domination problem described in [9]. However, the defender is required to defend against any attack sequence and has no advance knowledge of the sequence. Furthermore, one can assume the attacker is aware of the defense strategy; and so the attacker can predict the moves of the defender unless the defender employs a randomized strategy. Because randomized strategies are not relevant for the types of results described in this paper, for our purposes, the two types of attack models are equivalent. Certainly, the associated parameters are equal. Randomized strategies are relevant when one asks questions that might concern the number of (expected) moves before some configuration is reached, for example.

3 Definitions

The open and closed neighbourhoods of \(X \subseteq V \) are \(N(X) = \{v \in V : v \text{ is adjacent to a vertex in } X\} \) and \(N[X] = N(X) \cup X \), respectively, and \(N(\{v\}) \) and \(N[\{v\}] \) are abbreviated, as usual, to \(N(v) \) and \(N[v] \). For any \(v \in X \), the private neighbourhood \(pn(v, X) \) of \(v \) with respect to \(X \) is the set of all vertices in \(N[v] \) that are not contained in the closed neighbourhood of any other vertex in \(X \), i.e., \(pn(v, X) = N[v] - N[X - \{v\}] \). The elements of \(pn(v, X) \) are the private neighbours of \(v \) relative to \(X \). The external private neighbourhood of \(v \) with respect to \(X \) is the set \(epn(v, X) = pn(v, X) - \{v\} = N(v) - N[X - \{v\}] \).

The clique covering number \(\theta(G) \) is the minimum number \(k \) of sets in a partition \(V = V_1 \cup \cdots \cup V_k \) of \(V \) such that each \(G[V_i] \) is complete. Hence \(\theta(G) \) equals the chromatic number \(\chi(G) \) of the complement \(\overline{G} \) of \(G \). Since \(\chi(G) = \omega(G) \) if \(G \) is perfect, and \(G \) is perfect if and only if \(\overline{G} \) is perfect [11, p. 203], \(\alpha(G) = \theta(G) \) for all perfect graphs.

The circulant graph \(C_{n}[a_1, \ldots, a_k] \), where \(1 \leq a_1 \leq \cdots \leq a_k \leq \left\lfloor \frac{n}{2} \right\rfloor \), is the graph with vertex set \(\{v_0, \ldots, v_{n-1}\} \) such that \(v_i \) and \(v_j \) are adjacent if and only if \(i - j \equiv \pm a_\ell \pmod{n} \) for some \(\ell \in \{1, \ldots, k\} \).

The Cartesian product of two graphs \(G \) and \(H \) is denoted \(G \square H \); a definition can be found in [22].

4 Eternal domination

The eternal domination problem was first studied by Burger et al. [9] in 2004 where it was called infinite order domination. That paper, and this section, consider the one-guard moves model. Shortly thereafter, Goddard et al. published a second paper on the subject.
Figure 2: In G, y does not defend r, and D is not an eternal dominating set of H

where they called it eternal security [18].

Consider an eternal dominating set D of a graph G. A necessary condition for a guard on D to defend a neighbouring vertex in a winning strategy is given below.

Proposition 4.1 Let D be an eternal dominating set of a graph G. If a guard on $v \in D$ can move to a vertex $u \in V - D$ in a winning strategy, then $pn(v, D) \cup \{u\}$ induces a clique.

Proof. Suppose the guard g on v moves to u in a winning strategy. If the next attack is at $x \in pn(v, D)$, g moves to x, as it is the only guard that protects x. Since this holds whether $u \in pn(v, D)$ or not, $pn(v, D) \cup \{u\}$ induces a clique.

The converse of Proposition 4.1 is not true. Consider the graph G in Figure 2. The set $D = \{x, y, z\}$ is an eternal dominating set of G in which the guard on x (y, z) defends $\{x, u, r\}$ ($\{y, v, s\}$, $\{z, w\}$). Also, $pn(y, D) = \{y, v\}$ and $G[\{y, v, r\}]$ is a clique. Suppose, however, the guard on y moves to r. If the next attack is at s, then only z has a guard adjacent to s. But moving this guard to s leaves w unprotected. In the graph H in Figure 2, $D = \{x, y\}$ is not an eternal dominating set, even though $pn(x, D) \cup \{r\}$, $pn(x, D) \cup \{w\}$, $pn(y, D) \cup \{w\}$, $pn(y, D) \cup \{s\}$ all induce cliques: first attack r; without loss of generality, the guard on x moves there. Now attack s. If the guard on y moves there, then w is not protected; if the guard on r moves there, then u is not protected.

4.1 Bounds for the eternal domination number

As first observed by Burger et al. [9], it does not take much imagination to see that γ^∞ lies between the independence and clique covering numbers.

Fact 4.2 For any graph G, $\alpha(G) \leq \gamma^\infty(G) \leq \theta(G)$.

Proof. To see the lower bound, consider a sequence of consecutive attacks at the vertices of a maximum independent set. To see the upper bound, observe that a single guard can defend all vertices of a clique.
Since $\alpha(G) = \theta(G)$ for perfect graphs, the bounds in Fact 4.2 are tight for perfect graphs. A topic that has received much attention is finding classes of non-perfect graphs that satisfy one of the bounds in Fact 4.2. Before proceeding, we should point out that the independence number, eternal domination number, and clique-covering number can vary widely.

Theorem 4.3 [28] For any positive integers c and d there exists a connected graph G such that $\alpha(G) + c \leq \gamma^\infty(G)$ and $\gamma^\infty(G) + d \leq \theta(G)$.

Let C_n^k denote the k^{th} power (see [11, p. 105]) of the cycle of order n, where $2k + 1 < n$.

Theorem 4.4 If G is a graph in one of the following classes, then $\gamma^\infty(G) = \theta(G)$.

(a) [9] Perfect graphs.
(b) [9] Any graph G such that $\theta(G) \leq 3$.
(c) [28] C_n^k and $\overline{C_n^k}$, for all $k \geq 1$, $n \geq 3$.
(d) [40] Circular-arc graphs (intersection graphs of a family of arcs of a circle).
(e) [11] K_4-minor-free graphs (a.k.a. series-parallel graphs, see e.g. [44, p. 336] for definition).
(f) [11] $C_m \sqcup C_n; P_m \sqcup C_n$.

Goddard et al. [18] showed that

$$\text{if } \alpha(G) = 2, \text{ then } \gamma^\infty(G) \leq 3.$$ \hspace{1cm} (1)

The Mycielski construction (see [11, p. 203]) yields triangle-free k-chromatic graphs for arbitrary k. The complements of these graphs have $\alpha = 2$ and $\theta = k$, and hence are examples of graphs with small eternal domination numbers and large clique covering numbers. The Grötzsch graph is the smallest 4-chromatic triangle-free graph, and its complement is the smallest known graph with $\gamma^\infty < \theta$. Goddard et al. [18] also gave the first example of a graph G with $\alpha(G) < \gamma^\infty(G) < \theta(G)$: the circulant graph $C_{18}[1, 3, 8]$, which satisfies $\alpha = 6, \gamma^\infty = 8$ and $\theta = 9$.

Klostermeyer and MacGillivray [26] proved the existence of graphs with $\gamma^\infty = \alpha$ and whose clique covering number is either equal to two (if $\alpha = 2$) or arbitrary otherwise. Their proof rests (i. a.) on the observation that if H is an induced subgraph of G and π is any of the parameters $\alpha, \gamma^\infty, \theta$, then $\pi(H) \leq \pi(G)$. This is trivially true for α and θ. To see that it is true for γ^∞, note that a sequence of attacks on G but restricted to H requires $\gamma^\infty(H)$ guards, hence $\gamma^\infty(G) \geq \gamma^\infty(H)$.

Theorem 4.5 [26]

(a) If $\alpha(G) = \gamma^\infty(G) = 2$, then $\theta(G) = 2$.

8
(b) For all integers $k \geq a \geq 3$ there exists a connected graph G such that $\alpha(G) = \gamma^\infty(G) = a$ and $\theta(G) = k$.

Proof. (a) The statement is clearly true for graphs of order three and four. Assume it to be true for all graphs of order less than n, where $n \geq 5$, and let G be an n-vertex graph with $\alpha(G) = \gamma^\infty(G) = 2$. Let u and v be nonadjacent vertices of G. After consecutive attacks on u and v, both these vertices are occupied. By Proposition 4.1, $\text{pn}(v, \{u, v\}) = V - N[u]$ and $\text{pn}(u, \{u, v\}) = V - N[v]$ induce cliques. Let W and Y be the sets of all vertices in $N(u) \cap N(v)$ that are defended by the guard on v and the guard on u, respectively. By Proposition 4.1, each $w \in W$ ($y \in Y$, respectively) is adjacent to each vertex in $V - N[u]$ ($V - N[v]$, respectively).

Let $H' \cong G[N(u) \cap N(v)]$ and $H \cong G[V(H') \cup \{u, v\}]$. (Possibly $H = G$.) If H' is complete, then $(V - N[u]) \cup W$ and $(V - N[u]) \cup Y$ induce cliques that contain $V(G)$. Hence suppose H' is not complete. Then $\alpha(H') \geq 2$ and so $\gamma^\infty(H') \geq 2$. Since H' is an induced subgraph H, which is an induced subgraph of G, it follows that $\alpha(H) = \gamma^\infty(H) = 2$ and $\alpha(H') = \gamma^\infty(H') = 2$. By the induction hypothesis, $\theta(H') = 2$ and so $\theta(H) = 2$. Partition $V(H)$ into the cliques C_u, C_v, where $u \in V(C_u), v \in V(C_v)$. Clearly, $V(C_u) - \{u\} \subseteq W$ and $V(C_v) - \{v\} \subseteq Y$. Therefore $(V - N[v]) \cup V(C_u)$ and $(V - N[u]) \cup V(C_v)$ induce a clique partition of G.

(b) Let H be the complement of a triangle-free k-chromatic graph, $k \geq 3$. Then $\alpha(H) = 2$ and $\theta(H) = k$. By (a), $\gamma^\infty(H) \geq 3$, and thus by (4), $\gamma^\infty(H) = 3$. Add a new vertices $v_1, ..., v_a$, joining each v_i to each vertex of H to form the graph G. Then $\alpha(G) = a$, and, since $a \leq k$, $\theta(G) = k$. Place a guard on each v_i, $i > 3$; these guards never move. The remaining three guards protect H and v_1, v_2, v_3 according to the strategy for H; when v_i is attacked, any guard moves there, and returns to H when required.

Goddard et al. [18] asked whether the eternal domination number can be bounded by a constant times the independence number. That this is impossible in general follows from the next two theorems. One of the main results on eternal domination is the following upper bound, due to Klostermeyer and MacGillivray [27].

Theorem 4.6 [27] For any graph G,

$$\gamma^\infty(G) \leq \left(\frac{\alpha(G) + 1}{2}\right).$$

Proof. Assume $|V| > \binom{a+1}{2}$, otherwise we are done. Consider pairwise disjoint sets $S_\alpha, S_{\alpha-1}, ..., S_1$, where S_α is a maximum independent set of G and, for $i = \alpha-1, \alpha-2, ..., 1$, the set S_i is either empty or an independent set of size i. Other than S_α, no S_i needs to be a maximal independent set. Among all collections of such sets, we choose one such that $\left|\bigcup_{i=1}^\alpha S_i\right|$ is maximum. Since $|V| > \binom{a+1}{2}$, the set $S_1 \neq \emptyset$. Let $D = \bigcup_{i=1}^\alpha S_i$ and note that $|D| \leq \binom{\alpha(G)+1}{2}$. We describe a defense strategy \star which shows that D is an eternal dominating set of G.
Whenever there is an attack at a vertex $v \notin D$, a guard on a vertex u from the set S_t with the smallest subscript among those with a vertex adjacent to v moves to v. Such a set S_t exists because S_α is a dominating set (as it is a maximum independent set).

The key technical part of the proof is to show that $(D - \{u\}) \cup \{v\}$ can be partitioned into disjoint independent sets with the same properties as the sets $\{S_i\}$. There are two cases.

If $S_t' = (S_t - \{u\}) \cup \{v\}$ is an independent set, then replacing S_t by S_t' yields another collection of disjoint independent sets as desired. Otherwise, v is adjacent to at least two vertices in S_t and $t > 1$. Let r be the greatest integer less than t such that $S_r \neq \emptyset$. We show that $r = t - 1$.

Suppose $r \leq t - 2$. Then $S_{r+1} = \emptyset$. By definition of t, no vertex in S_r is adjacent to v, hence $S_r \cup \{v\}$ is an independent set of cardinality $r + 1$. The collection of independent sets obtained by replacing S_{r+1} by $S_r \cup \{v\}$ and S_r by \emptyset contradicts the maximality of $|\bigcup_{k=1}^\alpha S_k|$. Hence $r = t - 1$.

Replacing S_t by $S_{t-1} \cup \{v\}$ and S_{t-1} by $S_t - \{u\}$ gives another collection of independent sets with the desired properties. Thus we may repeat \star indefinitely to protect G against any sequence of attacks. ■

Goldwasser and Klostermeyer [19] showed that this bound is sharp for certain graphs. Specifically, let $G(n, k)$ be the graph with vertex set consisting of the set of all k-subsets of an n-set and where two vertices are adjacent if and only if their intersection is nonempty (thus $G(n, k)$ is the complement of a Kneser graph).

Theorem 4.7 [19] For each positive integer t, if k is sufficiently large, then the graph $G(kt + k - 1, k)$ has eternal domination number $(t+1)/2$.

Regan [40] found another graph for which the bound is sharp: the circulant graph $C_{22}[1, 2, 4, 5, 9, 11]$. Theorems 4.6 and 4.7 show that it is impossible to find a constant c such that $\gamma^\infty(G) \leq c\alpha(G)$ for all graphs G. It would be of interest to find other graphs where the bound is sharp.

As shown by Klostermeyer and MacGillivray [27], the graph G obtained by joining a new vertex to m disjoint copies of C_5 satisfies $\alpha(G) = 2m$ and $\gamma^\infty(G) = 3m$, that is, $\gamma^\infty(G)/\alpha(G) = \frac{3}{2}$. This result and Theorem 4.5 can be placed in a more general setting, as explained in [28].

A triple (a, g, t) of positive integers is called realizable if there exists a connected graph G with $\alpha(G) = a$, $\gamma^\infty(G) = g$ and $\theta(G) = t$. Theorem 4.6 shows that no triple with $g > \binom{a+1}{2}$ is realizable. The following theorem, stated in [28], provides a partial solution to the question of which triples are realizable.

Theorem 4.8 Let (a, g, t) be a triple of positive integers such that $a \leq g \leq t$.

(a) The only realizable triple with $a = 1$ is $(1, 1, 1)$.

10
The only realizable triples with $a = 2$ are $(2, 2, 2)$ and $(2, 3, t)$, $t \geq 3$.

For all integers a, g and t with $3 \leq a \leq g \leq \frac{3}{2}a$ and $g \leq t$, the triple (a, g, t) is realizable.

The circulant $C_{21}[1, 3, 8]$, which satisfies $\gamma^\infty/\alpha = \frac{10}{6}$ (see [18]), shows that Theorem 4.8 does not characterize realizable triples.

4.2 The k-server problem

We briefly mention the k-server problem, which is related to the eternal domination problem. The k-server problem is an algorithmic problem set in the more general framework of metric spaces, but often focused on graphs. It was defined in [38] as follows. There are k mobile servers (or guards) located at vertices of a graph. In response to an attack on an unoccupied vertex r_i, a server must move to r_i. The objective is to minimize the total distance travelled by all the servers over the sequence of attacks. The three main variations of the problem are (1) the offline problem, (2) the adaptive online problem and (3) the oblivious online problem, as described in Section 2.

A simple polynomial time algorithm using dynamic programming can compute the optimal solution for the offline problem [38]. A faster algorithm is given in [12]. Koutsoupias and Papadimitriou [37] proved that a simple algorithm known as the work-function algorithm is $2k - 1$ competitive. In other words, the distance the servers travel using the work function algorithm is at most $2k - 1$ times the distance they would travel using any other algorithm, including an optimal algorithm that knew the entire attack sequence in advance, over all attack sequences. It is a famous conjecture in computer science that the work function algorithm is k-competitive and that this would be best possible.

A key difference between problems (2) and (3) is that a randomized algorithm can be effective in problem (3). Since an oblivious adversary cannot adapt the attack sequence to the moves of the algorithm, by using randomization an algorithm may be able to effectively prevent an adversary from constructing a costly attack sequence. A famous result from [39] is an H_k-competitive algorithm for the problem of k servers on a complete graph with $k + 1$ vertices, where H_k is the k^{th} harmonic number. This result is known to be optimal.

5 m-Eternal domination

As mentioned in Section 2, m-eternal dominating sets are defined similar to eternal dominating sets, except that when an attack occurs, each guard is allowed to move to a neighbouring vertex to either defend the attacked vertex or to better position themselves for the future. This model was introduced by Goddard et al. [18]. As stated above, we refer to this as the “all-guards move” model of eternal domination.

Goddard et al. [18] determine $\gamma_m^\infty(G)$ exactly for complete graphs, paths, cycles, and complete bipartite graphs. They also obtained the following fundamental bound.
Theorem 5.1 \[18\] For all graphs \(G \), \(\gamma(G) \leq \gamma^\infty_m(G) \leq \alpha(G) \).

Outline of proof. The left inequality is obvious. The right inequality is proved by induction on the order of \(G \), the result being easy to see for small graphs. If \(G \) has a vertex \(v \) that is not contained in any maximum independent set, then \(v \) is adjacent to at least two vertices of each maximum independent set of \(G \). Therefore \(\alpha(G - N[v]) \leq \alpha(G) - 2 \). Hence (by induction) \(G - N[v] \) can be protected by \(\alpha(G) - 2 \) guards. Since \(K_{1, \deg(v)} \) is a spanning subgraph of \(G[N[v]] \), \(G[N[v]] \) can be protected by two guards. It follows that \(\gamma^\infty_m(G) \leq \alpha(G) \).

If each vertex of \(G \) is contained in a maximum independent set, place a guard on each vertex of a maximum independent set \(M \). Defend an attack on \(v \in V(G) - M \) by moving all guards to a maximum independent set \(M_v \) containing \(v \). This is possible since Hall’s Marriage Theorem ensures that there is a matching between \(M_v \) and \(M \).

Theorem 5.1 places \(\gamma^\infty_m \) nicely in the chain
\[
\gamma(G) \leq \gamma^\infty_m(G) \leq \alpha(G) \leq \gamma^\infty(G) \leq \theta(G).
\]

Goddard et al. also claim that \(\gamma^\infty_m(G) = \gamma(G) \) for all Cayley graphs \(G \). This claim, however, is false, as is shown in the recent paper \[8\] by Graga, de Souza and Lee. By computing \(\gamma(G) \) and \(\gamma^\infty_m(G) \) for 7871 Cayley graphs of non-abelian groups, they found 61 connected Cayley graphs \(G \) such that \(\gamma^\infty_m(G) = \gamma(G) + 1 \). For all other connected Cayley graphs they investigated, \(\gamma^\infty_m(G) = \gamma(G) \).

The upper bound in Theorem 5.1 is not tight in general. For example, \(K_{1,m} \) has independence number \(m \) and can be defended with just two guards in this model. But equality holds for many graphs, such as \(K_n, C_n, \) and \(P_2 \square P_3 \), just to name a few. Characterizing graphs with m-eternal domination number equal to the bounds in Theorem 5.1 remains open, as mentioned in Section 10.2. However, trees for which equality holds in the upper bound, \(\alpha \), are characterized by Klostermeyer and MacGillivray \[30\].

Define a neo-colonization to be a partition \(\{V_1, V_2, \ldots, V_t\} \) of \(G \) such that each \(V_i \) induces a connected graph. A part \(V_i \) is assigned weight one if it induces a clique, and \(1 + \gamma_c(G[V_i]) \) otherwise, where \(\gamma_c(G[V_i]) \) is the connected domination number of the subgraph induced by \(V_i \). Then \(\theta_c(G) \) is the minimum weight of any neo-colonization of \(G \).

Goddard et al. \[18\] proved that \(\gamma^\infty_m(G) \leq \theta_c(G) \leq \gamma_c(G) + 1 \). Klostermeyer and MacGillivray \[28\] proved that equality holds in the first inequality for trees.

Theorem 5.2 \[28\] If \(T \) is a tree, then \(\gamma^\infty_m(T) = \theta_c(T) \).

A different upper bound is given in \[10\]. A proof is given below. A branch vertex of a tree is a vertex of degree at least three.

Theorem 5.3 If \(G \) is a connected graph of order \(n \), then \(\gamma^\infty_m(G) \leq \left\lceil \frac{n}{2} \right\rceil \).
Proof. The proof is by induction on \(n \), the result being easy to see for paths and cycles. Let \(T \) be a spanning tree of \(G \) with \(r \geq 1 \) branch vertices.

If \(T \) has no vertex of degree two, then the subgraph of \(T \) induced by the branch vertices is connected and, by \([11] \text{ Theorem 3.7}\), \(T \) has at least \(r + 2 \) leaves. Hence \(n \geq 2r + 2 \). Place a guard on each branch vertex and on one leaf. Whenever an unoccupied leaf \(u \) is attacked, guards move so that \(u \) and all branch vertices have guards. Hence \(\gamma_m^\infty(T) \leq r + 1 \leq \left\lceil \frac{n}{2} \right\rceil \).

If \(T \) has a vertex \(v \) of degree two, and \(N(v) = \{u_1, u_2\} \), then at least one of the graphs \(T - \{vu_i\} \) has a component of even order. Let \(T_1 \) be this component and let \(T_2 \) be the other component. Say \(T_i \) has order \(n_i \). By the induction hypothesis, \(\gamma_m^\infty(T_1) \leq \frac{n_1}{2} \) and \(\gamma_m^\infty(T_2) \leq \left\lceil \frac{n_2}{2} \right\rceil \). It follows that \(\gamma_m^\infty(T) \leq \left\lceil \frac{n}{2} \right\rceil \) and therefore \(\gamma_m^\infty(G) \leq \gamma_m^\infty(T) \leq \left\lceil \frac{n}{2} \right\rceil \). □

The bound in Theorem 5.3 is exact for the coronas of all graphs because they have domination numbers equal to half their order.

It is not hard to see that for many all-guards move models, the associated parameter is bounded above by \(2\gamma \).

Proposition 5.4 For any connected graph \(G \), \(\gamma_m^\infty(G) \leq 2\gamma(G) \), and the bound is sharp for all values of \(\gamma(G) \).

Proof. The result is trivial for \(K_1 \), so assume \(|V(G)| \geq 2\). As shown in [7], every graph without isolated vertices has a minimum dominating set in which each vertex has an external private neighbour. Let \(D \) be such a minimum dominating set of \(G \). For each \(v \in D \), place a guard at \(v \) and at a private neighbour of \(v \). This configuration is an \(m \)-eternal dominating set.

To see that the bound is sharp for \(\gamma = 1 \), consider any star with at least three vertices. For \(\gamma = 2 \), consider \(C_6 \) and let \(u \) and \(v \) be two vertices at distance three apart. Add two new internally disjoint \(u - v \) paths of length three to form the graph \(G \). Obviously, \(\{u, v\} \) is a \(\gamma \)-set of \(G \). Let \(D \) be any dominating set of \(G \) with \(|D| = 3 \). Suppose \(u \notin D \). Since \(N(u) \) is independent with \(|N(u)| = 4 \), and no two vertices in \(N(u) \) have a common neighbour other than \(u \), \(D \) does not dominate \(N(u) \), a contradiction. Thus \(u \in D \) and similarly \(v \in D \). Without loss of generality say \(D = \{u, v, w\} \), where \(w \in N(u) \). Then \(D \) cannot repel an attack at a vertex in \(N(v) - N(w) \). It follows that \(\gamma_m^\infty(G) = 4 = 2\gamma(G) \).

For \(\gamma = k \geq 3 \), consider \(C_{3k} \) and let \(\{u_1, \ldots, u_k\} \) be any \(\gamma \)-set of \(C_{3k} \), where the subscripts of the \(u_i \) have been chosen so that \(d(u_i, u_{i+1 \pmod{k}}) = 3 \) for each \(i \). For each \(i = 1, \ldots, k \), add a new \(u_i - u_{i+1 \pmod{3k}} \) path of length three to form \(G \). Then \(\gamma(G) = k \), but it can be shown similar to the previous case that no set of \(2k - 1 \) vertices eternally protects the vertices of \(G \). □

Klostermeyer and MacGillivray [30] characterized trees for which equality holds in the following bounds: \(\gamma_m^\infty(T) \leq \gamma_c(T) + 1 \), \(\gamma(T) \leq \gamma_m^\infty(T) \), \(\gamma_m^\infty(T) \leq 2\gamma(T) \), and \(\gamma_m^\infty(T) \leq \alpha_c(T) \).

Grid graphs, i.e. \(P_n \sqcap P_m \), are a well-studied class of graphs in domination theory; see [22]. We sometimes refer to \(P_n \sqcap P_m \) as the \(n \times m \) grid graph. As shown in [20], \(\gamma_m^\infty(P_2 \sqcap P_n) = \left\lceil \frac{2n}{3} \right\rceil \) for any \(n \geq 2 \), while \(\gamma_m^\infty(P_3 \sqcap P_n) = n \) for \(2 \leq n \leq 8 \). Based on these results, the next theorem may seem surprising.
Theorem 5.5 [20] For \(n \geq 9 \), \(\gamma_\infty^m(P_3 \Box P_n) \leq \lceil \frac{8n}{9} \rceil \).

It is not known if the bound in Theorem 5.5 is sharp for all values of \(n \geq 9 \), though it is sharp for \(n = 9 \) and \(n = 10 \), for example. Beaton, Finbow and MacDonald [5, 6] continued the study of m-eternal domination in grid graphs and obtained the following results.

Theorem 5.6 [5, 6]

(a) For any \(n \in \mathbb{Z}^+ \), \(\gamma_\infty^m(P_4 \Box P_n) = 2 \lceil \frac{n+1}{2} \rceil \), with the exceptions \(\gamma_\infty^m(P_4 \Box P_2) = 3 \) and \(\gamma_\infty^m(P_4 \Box P_6) = 7 \).

(b) For any \(n \in \mathbb{Z}^+ \), \(\lceil \frac{10(n+1)}{7} \rceil \leq \gamma_\infty^m(P_6 \Box P_n) \leq \lceil \frac{8n}{9} \rceil + 8 \).

(c) \(\gamma_\infty^m(P_5 \Box P_5) = 7 \), \(\gamma_\infty^m(P_6 \Box P_6) = 10 \), and \(13 \leq \gamma_\infty^m(P_7 \Box P_7) \leq 14 \).

We now compare the m-eternal domination number and the vertex cover number. This may seem like an unusual pair of parameters to compare, but the comparison turns out to be interesting.

Theorem 5.7 (a) [33] If \(G \) is connected, then \(\gamma_\infty^m(G) \leq 2\tau(G) \).

(b) [33] If, in addition, \(\delta(G) \geq 2 \), then \(\gamma_\infty^m(G) \leq \tau(G) \).

(c) [34] If, in addition to (a) and (b), \(G \) has girth seven or at least nine, then \(\gamma_\infty^m(G) < \tau(G) \).

(d) [34] For any nontrivial tree \(T \), \(\alpha(T) \leq \gamma_\infty^m(T) \leq 2\tau(T) \).

It is not possible to relax the girth condition in Theorem 5.7(c) to girth less than five. Examples of graphs with girth less than five for which \(\gamma_\infty^m(G) = \tau(G) \) are given in [34]. The problem remains open for girths five, six, and eight, though it is believed that \(\gamma_\infty^m(G) < \tau(G) \) for such graphs. The trees where the bounds in Theorem 5.7(d) are sharp are characterized in [34].

A question stated in [18] is whether there is any advantage in allowing two guards to occupy the same vertex in the m-eternal domination problem. There is no advantage allowing multiple guards to occupy a single vertex in the “one guard moves” model [9]. The results stated in this paper apply to the case when only one guard is allowed to occupy each vertex. Finbow et al. have showed that there exist graphs for which it is an advantage in the all-guards move model to allow more than one guard on a vertex at a time [14].

If any number of guards per vertex are allowed, then the bound in Theorem 5.3 can be improved to \(\lceil \frac{n}{2} \rceil - 1 \) when \(\delta(G) \geq 2 \) (with four small exceptions) [10]. It is not known whether their result holds if each vertex contains at most one guard. Under these conditions Nordhaus-Gaddum results were also shown in [10], for example the following bound; they also characterize the graphs for which equality holds.

Theorem 5.8 [10] \(\gamma_\infty^m(G) + \gamma_\infty^m(\overline{G}) \leq n + 1 \).
6 Eternal total domination

Some results on eternal total domination are reviewed in this section. The first result applies to the “one-guard moves” model.

Theorem 6.1 [32] For all graphs $G = (V, E)$ without isolated vertices,

(a) $\gamma_t^\infty(G) > \gamma^\infty(G)$

(b) $\gamma_t^\infty(G) \leq \gamma^\infty(G) + \gamma(G) \leq 2\gamma^\infty(G) \leq 2\theta(G)$.

Klostermeyer and Mynhardt give a number of results on eternal total domination [32] in the all-guards move model, such as the following.

Theorem 6.2 [32] For all graphs $G = (V, E)$ without isolated vertices, $\gamma_{mt}^\infty(G) \leq 2\gamma(G)$.

Results from [20] focus on grid graphs and include the following.

Theorem 6.3 [20]

(a) For any $n \geq 3$, $\gamma_{mt}^\infty(P_2 \square P_n) = \left\lfloor \frac{2n}{3} \right\rfloor + 2$.

(b) For all $n \geq 1$, $\gamma_{mt}^\infty(P_3 \square P_n) = n + 1$.

(c) For any $n \geq 1$, $\gamma_{mt}^\infty(P_4 \square P_n) \leq \left\lfloor \frac{4n}{3} \right\rfloor + 2$.

Achieving good bounds for larger grid graphs seems quite difficult; by “good” bounds we mean better than simply partitioning the grid into disjoint, say $3 \times n$, grids.

7 Eternal vertex covering

We emphasize that eternal vertex covering is non-trivial only for the all-guards move model and thus our attention is limited to that model. Some simple examples are as follows: $\tau_m^\infty(C_4) = 2$, $\tau_m^\infty(C_5) = 3$ and $\tau_m^\infty(P_n) = 2\tau(P_n)$ if n is odd [31]. A fundamental bound is given next.

Theorem 7.1 [31] For any nontrivial connected graph G, $\tau(G) \leq \tau_m^\infty(G) \leq 2\tau(G)$.

Graphs satisfying the upper bound in Theorem 7.1 are characterized in [31]. Some graphs where the lower bound is sharp are described next.

Proposition 7.2 Each graph in the following classes satisfies $\tau_m^\infty(G) = \tau(G)$.

15
(a) K_n
(b) Petersen graph
(c) $K_m \square K_n$
(d) $C_m \square C_n$
(e) Circulant graphs (to repel an attack along the edge uv, move (say) the guard on u to v and move each other guard along its incident edge that corresponds to uv in the same orientation of the cycle).

We next give some exact bounds for trees and grid graphs. Let L denote the number of leaves of a tree T.

Theorem 7.3 [31] For any nontrivial tree T, $\tau_\infty^m(T) = |V - L| + 1$.

Theorem 7.4
(a) $\tau_\infty^m (P_1 \square P_n) = n - 1$.
(b) If n is even, then $\tau_\infty^m (P_n \square P_m) = \frac{nm}{2} = \tau(P_n \square P_m)$.
(c) If $n, m > 1$ are odd, $n \geq m$, then $\tau_\infty^m (P_n \square P_m) = \lceil \frac{nm}{2} \rceil = \tau(P_n \square P_m) + 1$.

We next compare τ_∞^m with some of the other graph protection parameters.

Theorem 7.5 [24] If G is connected, then $\tau_\infty^m (G) = \gamma(G)$ if and only if $G \in \{C_4, K_2\}$.

Theorem 7.6 [31] If $G \neq C_4$ is a connected graph of order $n \geq 3$ with $\delta(G) \geq 2$, then $\gamma_\infty^m (G) < \tau_\infty^m (G)$.

It seems a challenging problem to describe graphs with pendant vertices and $\gamma_\infty^m (G) = \tau_\infty^m (G)$. Some examples are given next. Part (a) of Proposition [7.7] is from [31] and we thank Michael Fisher for pointing out the examples in the proof of part (b).

Proposition 7.7 Let G be a 2-connected graph with n vertices. Let G' be a graph obtained from G by attaching a pendant vertex to each vertex of G except the two vertices u, v.

(a) If $uv \in E$ then $\alpha_\infty^m (G') = n$ and $\gamma_\infty^m (G') = n - 1$.
(b) If $uv \notin E$ then $\alpha_\infty^m (G') \geq n - 1 = \gamma_\infty^m (G')$.

Proof. (a) Suppose we could eternally defend the edges of G' with $n - 1$ guards. Let $x \in V(G) - \{u, v\}$ and let y be the pendant vertex attached to x. We can force guards onto both vertices x, y. Since each end-vertex is dominated, the edge uv is not protected. It is easy to see that the vertices of G' can be protected by $n - 1$ guards.

(b) Similar to (a), $n - 2$ guards do not protect the edges of G'. To see that n guards suffice to defend the edges, initially place guards on the vertices of G and then maintain at most one guard on a pendant edge at any time. Letting $G = C_5$ is an example where $\alpha_\infty^m (G') = n$ and $G = C_4$ is an example where $\alpha_\infty^m (G') = n - 1$. ■
Proposition 7.8 \[31\] Let G be a 2-connected graph with $n \geq 3$ vertices. Add one pendant vertex to $n - 1$ vertices of G and call the resulting graph G'. Then $\alpha^\infty_m(G') = \gamma^\infty_m(G') = n$.

It is an open question whether the condition of G being 2-connected in Proposition 7.8 can be replaced by minimum degree two.

An analog of realizable triples can be defined for edge protection. Results on graphs G having realizable triples $(\tau(G), \tau^\infty_m(G), \tau^\infty_{mt}(G))$, where $\tau^\infty_{mt}(G)$ is the total eternal vertex cover, are given in \[2,24\]. Any such realizable triple must satisfy the basic bound that for a connected graph G with more than two vertices, $\tau^\infty_{mt}(G) < 2\tau^\infty_m(G)$ \[24\]. In \[2\] it is shown that $\tau^\infty_{mt}(G) \leq \tau_c(G) + 1 \leq 2\tau(G)$, where τ_c is the size of a smallest connected vertex cover of G.

It is shown in \[17\] that there exist graphs for which allowing multiple guards to reside on a vertex at the same time reduces the number of guards needed to defend the edges of the graph, in comparison to the eternal vertex cover number. These authors leave obtaining good bounds on k in the following statement as an open problem:

If one can defend any sequence of k attacks on edges, then one can defend any infinite sequence of attacks on edges.

Partial results on this question are given in \[2\]. For instance:

Theorem 7.9 \[2\] If T is a tree with $n - L$ guards, then there exists a strategy to defend $V(T)$ attacks on the edges of T. That is, an adversary can be forced to make $V(T)$ attacks before winning the eternal vertex cover game.

An alternate type of eternal vertex cover problem in which attacks are at vertices while a vertex cover must be maintained at all times is explored in \[23\].

8 Other models

8.1 Eviction Model

In the eviction model, each configuration $D_i, i \geq 1$, of guards is required to be a dominating set. An attack occurs at a vertex $r_i \in D_i$ such that there exists at least one $v \in N(r_i)$ with $v \notin D_i$. The next guard configuration D_{i+1} is obtained from D_i by moving the guard from r_i to a vertex $v \in N(r_i), v \notin D_i$ (i.e., this is the “one-guard moves” model). The size of a smallest eternal dominating set in the eviction model for G is denoted $e^\infty(G)$. Simply put, attacks occur at vertices with guards and we must move that guard to an unoccupied neighboring vertex. An attacked vertex is required to have at least one neighboring vertex with no guard, otherwise there would be no place for the guard to go.

This problem models a problem in computer networks where copies of a file are stored throughout the network and files must sometimes be moved, or migrated, due to maintenance at the server at which they are located. The goal is to ensure a copy of the file is
close to every vertex in the network. That is, the locations of the files induce a dominating set at all times. The eviction problem was introduced in [25] and “one-guard moves” and “all-guards move” versions were defined. Most of the results in that paper are for the one-guard moves model and we focus our attention to that model here.

Some easy examples to illustrate the concept are $e^\infty(K_{1,m}) = m$, $e^\infty(C_5) = 2$, and $e^\infty(P_5) = 3$.

Theorem 8.1 [25] Let G be a connected graph. Then $e^\infty(G) \leq \theta(G)$.

Theorem 8.2 [25] Let G be a bipartite graph. Then $e^\infty(G) = \alpha(G)$.

Unlike in the traditional eternal domination model, there are graphs G for which $e^\infty(G) < \alpha(G)$: take a copy of K_3 and a large independent set I and join every vertex of the K_3 to every vertex of I. This graph has $e^\infty(G) = 2$.

Theorem 8.3 [25] There exists a graph G such that $e^\infty(G) > \alpha(G)$. In fact, for $k \geq 3$, $e^\infty(C_{2k+1}) = k + 1$.

Theorem 8.4 [25] Let G be a graph with $\alpha(G) = 2$. If G has two dominating vertices, then $e^\infty(G) = 1$. Otherwise, $e^\infty(G) = 2$.

Proof: If G has dominating vertices x and y, then a single guard can relocate back and forth between them and maintain a dominating set.

Finally, suppose G has at most one dominating vertex. Then G is the complement of a triangle-free graph with at most one isolated vertex. Initially locate the guards on any dominating set of size two, say $\{u, v\}$. Suppose the guard on u is attacked. If v has a non-neighbor $w \neq u$, then whether or not u and v are adjacent, the guard at u guard can relocate to v and the resulting configuration is a dominating set. If no such vertex w exists, the guard at u can relocate to any vertex z and the resulting configuration of guards is a dominating set. □

The following is much more difficult to prove.

Theorem 8.5 [25] Let graph G have $\alpha(G) = 3$. Then $e^\infty(G) \leq 5$.

It is not known whether or not $e^\infty(G) \leq \gamma^\infty(G)$ for all graphs G [25].

Much less is known about the eviction model when all guards are allowed to move in response to an attack, though some elementary results are given in [25] and in [35].

8.2 Eternal Connected Domination

Let $\gamma_c^\infty(G)$ denote the size of a smallest eternal connected dominating set (ECDS) in which the vertices containing guards induce a connected graph. Denote the all-guards move
version of this parameter (the cardinality of a minimum m-eternal connected dominating set (m-ECDS) by $\gamma^\infty_{mc}(G)$. The ordinary connected domination number of G is denoted $\gamma_c(G)$ [22]. Obviously, these parameters are only defined for connected graphs. They were initially studied in [32].

Theorem 8.6 [32] If G is connected and $\theta(G) \geq 2$, then $\gamma^\infty_{mc}(G) \leq 2\theta(G) - 1$. This bound is sharp for all $\theta \geq 2$.

Theorem 8.7 [32] For all graphs $G = (V, E)$ without isolated vertices,

(a) $\gamma^\infty_c(G) > \gamma^\infty(G)$

(b) $\gamma^\infty_c(G) \leq \gamma^\infty(G) + \gamma(G) \leq 2\gamma^\infty(G) \leq 2\theta(G)$.

Klostermeyer and Mynhardt also give a number of results on eternal connected domination [32] in the all-guards move model, such as the following bound.

Theorem 8.8 [32] For all graphs $G = (V, E)$ without isolated vertices, $\gamma^\infty_{mc}(G) \leq 2\gamma(G)$.

8.3 Foolproof Eternal Domination

In the definition of eternal domination, the decision of which guard to send to defend an attack may require knowledge of the locations of future attacks. The definition states “there exists” a guard to send to defend the attack such that all subsequent attacks can be defended by the resulting guard configuration. It may be difficult in practice to decide which guard to send to defend an attack.

Burger et al. [9] defined a “foolproof” variation on eternal domination in which the resulting configuration of guards must be able to defend all subsequent attacks if a guard from any vertex adjacent to the attacked vertex is sent to defend an attack at an unoccupied vertex. That is, no matter which guard is sent, the resulting configuration can defend all future attacks. They proved that $n - \delta(G)$ guards are necessary and sufficient for all graphs G, where $\delta(G)$ is the minimum vertex degree in the graph. To see this, note that any set of $n - \delta(G)$ vertices form a dominating set. On the other hand, if we have fewer than $n - \delta(G)$ guards in G, then by a series of attacks, an adversary can force the closed neighborhood of a vertex to contain no guards. For example, consider C_6, and observe that $\gamma^\infty(C_6) = 3$. Now suppose we could defend the graph with three guards in the foolproof model. Since any neighboring guard can move to defend an attack, an adversary can force the three guards to migrate to three consecutive vertices, thereby leaving a vertex undominated.

The foolproof variety has been studied in the all-guards move model in [29]. The problem is the same as the m-eternal dominating set problem in that attacks are at (unoccupied) vertices and all guards can move in response to an attack on a vertex v, but the attacker chooses which guard moves to v. One can also imagine there being a victim of the attack at v and allowing the victim to choose which guard to send to its defense. For example, when a site is attacked, it may want to choose which of the nearby defenders it calls in, perhaps because of particular expertise in defending certain types of attacks. The size of a smallest m-eternal dominating set for G in the foolproof model is denoted $\rho^\infty_m(G)$.
Proposition 8.9 For any graph \(G \), \(\gamma_m^\infty(G) \leq \rho_m^\infty(G) \leq \alpha_m^\infty(G) \).

Proof. The first inequality is obvious. For the second inequality, observe that in the m-eternal vertex cover problem, when an attack occurs on an edge with guards on either end, the two guards can swap places and no other guards need to move; hence there is no net change in the guard configuration. If there is only one guard incident to attacked edge \(uv \), that guard must move across the edge, say from \(u \) to \(v \), to defend the attack. This is equivalent to the attacker choosing the guard to defend the attack. Now rather than having attacks at edges, imagine the attack is at \(v \) and the attacker chooses the guard at \(u \) to defend it. It follows that \(\rho_m^\infty(G) \leq \alpha_m^\infty(G) \).

Theorem 8.10

(a) If \(G \) is a connected bipartite graph, then \(\rho_m^\infty(G) \).

(b) For any graph \(G \), \(\rho_m^\infty(G) \leq 2 \theta(G) \).

It is not known if the bound in Theorem 8.10 (b) is sharp. There does exist a graph \(G \) with \(\rho_m^\infty(G) \geq \frac{3}{2} \theta(G) \).

9 Complexity

The complexity of deciding whether a given set of vertices is an eternal dominating set, or another of the variations discussed, as well as the complexity of determining the protection parameters themselves, are generally difficult problems. The precise complexity remains unknown in most cases. For example, it is unknown whether deciding whether a given set of vertices is an eternal dominating set lies in the class PSPACE (though it is not too difficult to see that it can be decided in exponential time). One problem in assessing in which complexity class the eternal domination problem lies is to determine how many attacks one must evaluate to determine whether a set of guards can defend any infinite sequence of attacks in the graph. That is, is there a polynomial function \(f(n) \), where \(n \) is the number of vertices in \(G \), such that if one can defend any sequence of \(f(n) \) attacks, then one can defend any infinite sequence of attacks? If there is no such polynomial function, then what bounds can be placed on such a function?

We mention some results, besides the obvious cases like for perfect graphs. From the results in [28], the m-eternal domination number for a tree can be computed in polynomial time. In addition, we can determine in polynomial time whether each of these protection parameters is at most \(k \) for a fixed constant \(k \), based the configuration graph method of [25]. On a related note, the parameterized complexity of the eternal vertex cover problem was studied in [16].
10 Open problems

We present a number of conjectures and open problems on some of the models discussed above.

10.1 Eternal domination

Problem 10.1 Study classes of graphs G such that (i) $\gamma^\infty(G) = \alpha(G)$, (ii) $\gamma^\infty(G) = \theta(G)$.

As mentioned above, $\gamma^\infty(G) = \theta(G)$ if G is series-parallel, so it makes sense to pose the following question.

Problem 10.2 Is it true that $\gamma^\infty(G) = \theta(G)$ if G is planar?

Problem 10.3 Does there exist a constant c such that $\gamma^\infty(G) \leq c\tau(G)$ for all graphs G?

The following is motivated by an error discovered in [28], where it is claimed that no such graph exists.

Problem 10.4 Does there exist a graph G with $\gamma(G) = \gamma^\infty(G)$ and $\gamma(G) < \theta(G)$?

In [36], it was shown that (i) every triangle-free G with $\gamma(G) = \gamma^\infty(G)$ has $\gamma(G) = \theta(G)$ and (ii) every graph G with $\Delta(G) \leq 3$ with $\gamma(G) = \gamma^\infty(G)$ has $\gamma(G) = \theta(G)$.

It would also be of interest to determine if the graph with 13 vertices given in [13] having $\gamma^\infty < \theta$ is the smallest such graph.

Problem 10.5 [28] Characterize graphs G with $\gamma(G) = \gamma^\infty(G) = \theta(G)$.

It is not hard to argue that any graph G satisfying $\gamma(G) = \gamma^\infty(G) < \theta(G)$ contains a triangle.

Problem 10.6 (a) Describe classes of graphs with $\gamma^\infty/\alpha > \frac{3}{2}$.

(b) Characterize realizable triples with $\gamma^\infty/\alpha > \frac{3}{2}$.

A Vizing-like question was asked in [36].

Problem 10.7 It is true for all graphs G and H that $\gamma^\infty(G \boxplus H) \geq \gamma^\infty(G) * \gamma^\infty(H)$?
10.2 m-Eternal Domination

Recall the inequality chain $\gamma(G) \leq \gamma_m^\infty(G) \leq \alpha(G) \leq \gamma^\infty(G) \leq \theta(G)$ from Section 5.

Problem 10.8 Describe classes of graphs having $\gamma(G) = \gamma_m^\infty(G)$, $\gamma^\infty(G) = \gamma_m^\infty(G)$, $\gamma_m^\infty(G) = \tau(G)$, or $\gamma^\infty(G) = \alpha(G)$.

As shown in [8], there exist connected Cayley graphs, necessarily of non-abelian groups, whose m-eternal domination numbers exceed their domination numbers by one. This implies that there exist disconnected Cayley graphs G such that $\gamma_m^\infty(G) - \gamma(G)$ is an arbitrary positive integer. The picture for connected Cayley graphs is not so clear.

Problem 10.9 Does there exist a connected Cayley graph G such that $\gamma_m^\infty(G) > \gamma(G) + 1$?

Problem 10.10 Find conditions under which the bound $\gamma_m^\infty(G) \leq \lceil \frac{n}{2} \rceil$ in Theorem 5.3 can be improved, and conditions under which equality holds.

Problem 10.11 Determine the value of $\gamma_m^\infty(P_n \Box P_m)$. In particular, is $\gamma_m^\infty(P_n \Box P_n) \leq \gamma(P_n \Box P_n) + c$, for some constant c? (The latter is conjectured to be true by S. Finbow and Klostermeyer, personal communication).

Conjecture 10.12 [20] If $\gamma_m^\infty(P_3 \Box P_n) \leq r$, then $\gamma_m^\infty(P_3 \Box P_{n+1}) \leq r + 1$.

Conjecture 10.13 [20] For $n > 9$, $\gamma_m^\infty(P_3 \Box P_n) = 1 + \lceil \frac{4n}{5} \rceil$.

The latter conjecture has been nearly resolved by Finbow et al.

Theorem 10.14 [15] For $n > 11$, $1 + \lceil \frac{4n}{5} \rceil \leq \gamma_m^\infty(P_3 \Box P_n) \leq 2 + \lceil \frac{4n}{5} \rceil$.

10.3 Eternal Vertex Cover

Problem 10.15 [31] For which (bipartite) graphs is $\tau_m^\infty(G) = \tau(G)$?

Problem 10.16 [31] Do all vertex transitive graphs G satisfy $\tau_m^\infty(G) = \tau(G)$?

Conjecture 10.17 [31] Let G and H be graphs such that $\tau_m^\infty(G) = \tau(G)$ and $\tau_m^\infty(H) = \tau(H)$. Then $\tau_m^\infty(G \Box H) = \tau(G \Box H)$.

Conjecture 10.18 [31] Let $G = (V, E)$ be a connected graph with subgraph H such that $\delta(H) \geq 2$ and $\delta(G[V - V(H)]) \geq 2$. Then $\tau_m^\infty(G) \geq \tau_m^\infty(H) + \tau_m^\infty(G[V - V(H)])$.

Problem 10.19 [31] Characterize graphs that are edge-critical for eternal vertex covering.

If $e \in E(\overline{G})$, then possibly $\tau_m^\infty(G + e) > \tau_m^\infty(G)$ (such as $G = C_4$) or possibly $\tau_m^\infty(G + e) < \tau_m^\infty(G)$. An example of the latter is to let $G + e$ be the 2×4 grid graph laid out in the usual manner (this graph has eternal vertex cover number four) and choose e to be the middle edge on the upper P_4.

In general, vertex and edge criticality has not been studied for any of the eternal protection parameters.
10.4 Other models

We mention some open problems in some of the other models discussed.

Conjecture 10.20 [32] For all connected graphs \(G \) with \(\Delta(G) < n - 1 \), \(\gamma_c^\infty(G) > \theta(G) \).

Problem 10.21 [25] Is \(e^\infty(G) \leq \gamma^\infty(G) \) for all graphs \(G \)?

Conjecture 10.22 [29] For a graph \(G = (V, E) \) with \(n \) vertices and no isolated vertices, \(\rho_m^\infty(G) \leq \lceil \frac{n}{2} \rceil \).

It was shown in [29] that \(\rho_m^\infty(G) \leq \lceil \frac{5n}{6} \rceil \), for all graphs \(G \).

References

[1] M. Anderson, C. Barrientos, R. Brigham, J. Carrington, R. Vitray, J. Yellen, Maximum demand graphs for eternal security. *J. Combin. Math. Combin. Comput.* 61 (2007), 111–128.

[2] M. Anderson, R. Brigham, J. Carrington, R. Dutton R. Vitray, J. Yellen, Mortal and eternal vertex covers. Manuscript (2012).

[3] M. Anderson, R. Brigham, J. Carrington, R. Dutton R. Vitray, J. Yellen, Graphs simultaneously achieving three vertex cover numbers. Manuscript (2012).

[4] J. Arquilla, H. Fredricksen, “Graphing” an optimal grand strategy. *Military Operations Research* 1(3) (1995), 3–17.

[5] I. Beaton, S. Finbow, J. A. MacDonald, Eternal domination of grids. *J. Combin. Math. Combin. Comput.* 85 (2013), 33–48.

[6] I. Beaton, S. Finbow, J. A. MacDonald, Eternal domination of grids. Manuscript (2013).

[7] B. Bollobas, E.J. Cockayne, Graph theoretic parameters concerning domination, independence, irredundance. *J. Graph Theory* 3 (1979), 241–250.

[8] A. Braga, C. C. de Souza, O. Lee, A note on the paper “Eternal security in graphs” by Goddard, Hedetniemi, and Hedetniemi (2005). Manuscript (2014).

[9] A. P. Burger, E. J. Cockayne, W. R. Gründlingh, C. M. Mynhardt, J. H. van Vuuren, W. Winterbach, Infinite order domination in graphs. *J. Combin. Math. Combin. Comput.* 50 (2004), 179–194.

[10] E. Chambers, W. Kinnersly, N. Prince, Mobile eternal security in graphs. Manuscript (2006).
[11] G. Chartrand, L. Lesniak, *Graphs Digraphs*. Fourth Edition, Chapman & Hall, London, 2005.

[12] M. Chrobak, H. Karloff, T. Payne, S. Vishwanathan, New results on server problems. *SIAM J. Discrete Math.* **4** (1991), 172–181.

[13] E. J. Cockayne, P. J. P. Grobler, W. R. Grundlingh, J. Munganga, J. H. van Vuuren, Protection of a graph. *Utilitas Math.* **67** (2005), 19–32.

[14] S. Finbow, S. Gaspers, M.-E. Messinger, P. Ottoway, Eternal domination. Manuscript (2010).

[15] S. Finbow, M.-E. Messinger, M. van Bommel, Eternal domination in $3 \times n$ grids. Manuscript (2014).

[16] F. Fomin, S. Gaspers, P. Golovach, D. Kratsch, S. Saurabh, Parameterized algorithm for eternal vertex cover. *Inform. Process. Lett.* **110** (2010), 702–706.

[17] F. Fomin, S. Gaspers, P. Golovach, D. Kratsch, S. Saurabh, Eternal vertex cover. Manuscript (2010).

[18] W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, Eternal security in graphs. *J. Combin. Math. Combin. Comput.* **52** (2005), 169–180.

[19] J. Goldwasser, W. F. Klostermeyer, Tight bounds for eternal dominating sets in graphs. *Discrete Math.* **308** (2008), 2589–2593.

[20] J. Goldwasser, W. F. Klostermeyer, C. M. Mynhardt, Eternal protection in grid graphs. *Utilitas Math.*, **91** (2013), 47–64.

[21] M. A. Henning, S. T. Hedetniemi, Defending the Roman Empire – a new strategy. *Discrete Math.* **266** (2003), 239–251.

[22] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, *Fundamentals of Domination in Graphs*. Marcel Dekker, New York, 1998.

[23] W. Klostermeyer, An eternal vertex cover problem. *J. Combin. Math. Combin. Comput.* **85** (2013), 79–95.

[24] W. Klostermeyer, Some Questions on Graph Protection. *Graph Theory Notes of New York* **57** (2010), 29–33.

[25] W. Klostermeyer, M. Lawrence, G. MacGillivray, An eternal domination problem related to file migration. Manuscript (2014).

[26] W. F. Klostermeyer, G. MacGillivray, Eternally secure sets, independence sets, and Cliques. *AKCE Int. J. Graphs Comb.* **2** (2005), 119–122.

[27] W. F. Klostermeyer, G. MacGillivray, Eternal security in graphs of fixed independence number. *J. Combin. Math. Combin. Comput.* **63** (2007), 97–101.
[28] W. F. Klostermeyer, G. MacGillivray, Eternal dominating sets in graphs. J. Combin. Math. Combin. Comput. 68 (2009), 97–111.

[29] W.F. Klostermeyer, G. MacGillivray, Foolproof eternal domination in the all-guards move model. Math Slovaca 62 (2012), 595–610.

[30] W. F. Klostermeyer, G. MacGillivray, Eternal domination in trees, to appear in Journal of Combinatorial Mathematics and Combinatorial Computing (2014).

[31] W. F. Klostermeyer, C. M. Mynhardt, Edge protection in graphs. Australas. J. Combin. 45 (2009), 235–250.

[32] W. F. Klostermeyer, C. M. Mynhardt, Eternal total domination in graphs. Ars Combin. 68 (2012), 473–492.

[33] W.F. Klostermeyer, C.M. Mynhardt, Graphs with equal eternal vertex cover and eternal domination numbers. Discrete Math. 311 (2011), 1371–1379.

[34] W. F. Klostermeyer, C. M. Mynhardt, Vertex covers and eternal dominating sets. Discrete Appl. Math. 160 (2012), pp. 1183–1190.

[35] W. F. Klostermeyer, C. M. Mynhardt, A dynamic domination problem in trees. Manuscript (2014).

[36] W. F. Klostermeyer, C. M. Mynhardt, Domination, Eternal Domination, and Clique Covering. Manuscript (2014).

[37] E. Koutsoupias, C. Papadimitriou, On the k-server conjecture. J. ACM 42 (1995), 971–983.

[38] M. Manasse, L. McGeoch, D. Sleator, Competitive algorithms for server problems. J. Algorithms 11 (1990), 208–230.

[39] L. McGeoch, D. Sleator, A strongly competitive randomized paging algorithm. Algorithmica 6 (1991), 816–825.

[40] F. Regan, Dynamic variants of domination and independence in graphs, graduate thesis, Rheinischen Friedrich-Wilhlems University, Bonn, 2007.

[41] C. S. ReVelle, Can you protect the Roman Empire? Johns Hopkins Magazine 50(2), April 1997.

[42] C. S. ReVelle, K. E. Rosing, Defendens Imperium Romanum: A classical problem in military strategy. Amer. Math. Monthly 107, Aug. – Sept. 2000, 585–594.

[43] I. Stewart, Defend the Roman Empire! Scientific American, December 1999, 136–138.

[44] D. B. West, Introduction to Graph Theory, Prentice-Hall, 1996.
Bibliography

Roman domination

1. M. Adabi, E. E. Targhi, N. Jafari Rad, M. S. Moradi, Properties of independent Roman domination in graphs. *Australas. J. Combin.* 52 (2012), 11–18.

2. M. Atapour, S. M. Sheikholeslami, A. Khodkar, Trees whose Roman domination subdivision number is 2. *Util. Math.* 82 (2010), 227–240.

3. M. Atapour, S. M. Sheikholeslami, A. Khodkar, Roman domination subdivision number of graphs. *Aequationes Math.* 78 (2009), 237–245.

4. B. Chaluvaraju, V. Chaitra, Roman domination in odd and even graphs. *South East Asian J. Math. Math. Sci.* 10 (2011), 97–104.

5. E. Chambers, W. Kinnersly, N. Prince, D. West, Extremal problems for Roman domination. *SIAM J. Discrete Math.* 23 (2009), 1575–1586.

6. M. Chellali, N. Jafari Rad, A note on the independent Roman domination in unicyclic graphs. *Opuscula Math.* 32 (2012), 715–718.

7. E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs. *Discrete Math.* 278 (2004), 11–12.

8. N. Dehgardi, S. M. Sheikholeslami, L. Volkmann, On the Roman \(k \)-bondage number of a graph. *AKCE Int. J. Graphs Comb.* 8 (2011), 169–180.

9. E. Ebrahimi Targhi, N. Jafari Rad, L. Volkmann, Unique response Roman domination in graphs. *Discrete Appl. Math.* 159 (2011), 1110–1117.

10. O. Favaron, H. Karami, R. Khoeilar, S. M. Sheikholeslami, On the Roman domination number of a graph. *Discrete Math.* 309 (2009), 3447–3451.

11. H. Fernau, Roman domination: a parameterized perspective. *Int. J. Comput. Math.* 85 (2008), 25–38.

12. X. Fu, Y. Yang, B. Jiang, Roman domination in regular graphs. *Discrete Math.* 309 (2009), 1528–1537.

13. S. Fujita, M. Furuya, Difference between 2-rainbow domination and Roman domination in graphs. *Discrete Appl. Math.* 161 (2013), 806–812.

14. A. Hansberg, N. Jafari Rad, L. Volkmann, Characterization of Roman domination critical unicyclic graphs. *Util. Math.* 86 (2011), 129–146.

15. A. Hansberg, L. Volkmann, Upper bounds on the \(k \)-domination number and the \(k \)-Roman domination number. *Discrete Appl. Math.* 157 (2009), 1634–1639.
16. M. A. Henning, A characterization of Roman trees. *Discussiones Math. Graph Theory* **22** (2002), 225–234.

17. M. A. Henning, Defending the Roman Empire from multiple attacks. *Discrete Math.* **271** (2003), 101–115.

18. N. Jafari Rad, A note on Roman domination in graphs. *Util. Math.* **83** (2010), 305–312.

19. N. Jafari Rad, Chun-Hung Liu, Trees with strong equality between the Roman domination number and the unique response Roman domination number. *Australas. J. Combin.* **54** (2012), 133–140.

20. N. Jafari Rad, S. M. Sheikholeslami, Roman reinforcement in graphs. *Bull. Inst. Combin. Appl.* **61** (2011), 81–90.

21. N. Jafari Rad, L. Volkmann, Roman domination dot-critical trees. *AKCE Int. J. Graphs Comb.* **8** (2011), 75–83.

22. N. Jafari Rad, L. Volkmann, On the Roman bondage number of planar graphs. *Graphs Combin.* **27** (2011), 531–538.

23. N. Jafari Rad, L. Volkmann, Roman domination perfect graphs. *An. Științ. Univ. "Ovidius" Constanța Ser. Mat.* **19** (2011), 167–174.

24. A. P. Kazemi, Roman domination and Mycieleki’s structure in graphs. *Ars Combin.* **106** (2012), 277–287.

25. A. Khodkar, B. P. Mobaraky, S. M. Sheikholeslami, Upper bounds for the Roman domination subdivision number of a graph. *AKCE Int. J. Graphs Comb.* **5** (2008), 7–14.

26. D. Kuziak, Interpolation properties of domination parameters of a graph. *Australas. J. Combin.* **46** (2010), 3–12.

27. S. C. Li, Z. X. Zhu, Roman domination numbers. (Chinese) *J. Huazhong Univ. Sci. Technol. Nat. Sci.* **34** (2006), 118–119.

28. M. Liedloff, T. Kloks, J. Liu, S-L. Peng, Efficient algorithms for Roman domination on some classes of graphs. *Discrete Appl. Math.* **156** (2008), 3400–3415.

29. M. Liedloff, T. Kloks, J. Liu, S-L. Peng, Roman domination over some graph classes. *Graph-theoretic concepts in computer science*, 103–114, Lecture Notes in Comput. Sci., **3787**, Springer, Berlin, 2005.

30. Chun-Hung Liu, G. J. Chang, Roman domination on 2-connected graphs. *SIAM J. Discrete Math.* **26** (2012), 193–205.

31. Chun-Hung Liu, G. J. Chang, Upper bounds on Roman domination numbers of graphs. *Discrete Math.* **312** (2012), 1386–1391.
32. B. P. Mobaraky, S. M. Sheikholeslami, Bounds on Roman domination numbers of graphs. *Mat. Vesnik* **60** (2008), 247–253.

33. A. Pagourtzis, P. Penna, K. Schlude, K. Steinhöfel, D. Taylor, P. Widmayer, Server placements, Roman domination and other dominating set variants. *Proceedings 2002 IFIP Conference on Theoretical Computer Science*, Montreal, Canada, 280–291.

34. P. Pavlič, J. Žerovnik, Roman domination number of the Cartesian products of paths and cycles. *Electron. J. Combin.* **19** (2012), no. 3, Paper 19, 37 pp.

35. P. R. L. Pushpam, T. N. M. M. Mai, On efficiently Roman dominatable graphs. *J. Combin. Math. Combin. Comput.* **67** (2008), 49–58.

36. P. R. L. Pushpam, T. N. M. M. Mai, Edge Roman domination in graphs. *J. Combin. Math. Combin. Comput.* **69** (2009), 175–182.

37. R. R. Rubalcaba, P. J. Slater, Roman dominating influence parameters. *Discrete Math.* **307** (2007), 3194–3200.

38. R. R. Rubalcaba, M. Walsh, Fractional Roman domination. Proceedings of the Thirty-Eighth Southeastern International Conference on Combinatorics, Graph Theory and Computing. *Congr. Numer.* **187** (2007), 8–20.

39. W. Shang, X. Wang, X. Hu, Roman domination and its variants in unit disk graphs. *Discrete Math. Algorithms Appl.* **2** (2010), 99–105.

40. S. M. Sheikholeslami, L. Volkmann, The Roman domination number of a digraph. *Acta Univ. Apulensis Math. Inform.* **27** (2011), 77–86.

41. X. Song, W. Shang, Roman domination in a tree. *Ars Combin.* **98** (2011), 73–82.

42. X. Song, X. Wang, Roman domination number and domination number of a tree. *Chinese Quart. J. Math.* **21** (2006), 358–367.

43. T. K. Šumenjak, P. Pavlič, On the Roman domination in the lexicographic product of graphs. *Discrete Appl. Math.* **160** (2012), 2030–2036.

44. E. E. Targhi, N. Jafari Rad, C. M. Mynhardt, Y. Wu, Bounds for independent Roman domination in graphs. *J. Combin. Math. Combin. Comput.* **80** (2012), 351–365.

45. Y. Wu, H. Xing, Note on 2-rainbow domination and Roman domination in graphs. *Appl. Math. Lett.* **23** (2010), 706–709.

46. H-M. Xing, X. Chen, X-G. Chen, A note on Roman domination in graphs. *Discrete Math.* **306** (2006), 3338–3340.

47. V. Zverovich, A. Poghosyan, On Roman, global and restrained domination in graphs. *Graphs Combin.* **27** (2011), 755–768.
Secure domination

1. S. Benecke, E. J. Cockayne, C. M. Mynhardt, Secure total domination in graphs. *Util. Math.* 74 (2007), 247–259.

2. S. Benecke, P. J. P. Grobler, J. H. van Vuuren, Protection of complete multipartite graphs. *Util. Math.* 71 (2006), 161–168.

3. A. P. Burger, E. J. Cockayne, W. R. Gründlingh, C. M. Mynhardt, J. H. van Vuuren, W. Winterbach, Finite order domination in graphs. *J. Combin. Math. Combin. Comput.* 49 (2004), 159–175.

4. A. P. Burger, A. P. de Villiers, J. H. van Vuuren, A linear algorithm for secure domination in trees, *Discrete Appl. Math.*, to appear.

5. A. P. Burger, A. P. de Villiers, J. H. van Vuuren, The cost of edge failure with respect to secure graph domination, *Util. Math.*, to appear.

6. E. J. Cockayne, Irredundance, secure domination and maximum degree in trees. *Discrete Math.* 307 (2007), 12–17.

7. E. J. Cockayne, O. Favaron, C. M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs. *Bull. Inst. Combin. Appl.* 39 (2003), 87–100.

8. P. J. P. Grobler, C. M. Mynhardt, Secure domination critical graphs. *Discrete Math.* 309 (2009), 5820–5827.

9. W. F. Klostermeyer, C. M. Mynhardt, Secure domination and secure total domination in graphs. *Discuss. Math. Graph Theory* 28 (2008), 267–284.

10. C. M. Mynhardt, H. C. Swart, E. Ungerer, Excellent trees and secure domination. *Util. Math.* 67 (2005), 255–267.

Weak Roman domination

1. E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga, J.H. van Vuuren, Protection of a graph. *Utilitas Math.* 67 (2005), 19–32.

2. M.A. Henning, S.T. Hedetniemi, Defending the Roman Empire – A new strategy, *Discrete Math.* 266 (2003), 239–251.

3. P. R. L. Pushpam, T. N. M. M. Mai, Weak Roman domination in graphs. *Discuss. Math. Graph Theory* 31 (2011), 115–128.