Herbal pair Huangqin-Baishao: mechanisms underlying inflammatory bowel disease by combined system pharmacology and cell experiment approach

Xiaoqi Huang1,2†, Zhiwei Chen2†, Minyao Li1, Yaomin Zhang1,2, Shijie Xu1, Haiyang Huang2, Xiaoli Wu3* and Xuebao Zheng1,4*

Abstract

Background: Inflammatory bowel disease (IBD) is a severe digestive system condition, characterized by chronic and relapsing inflammation of the gastrointestinal tract. Scutellaria baicalensis Georgi (Huangqin, HQ) and Paeonia lactiflora Pall (Baishao, BS) from a typical herbal synergic pair in traditional Chinese medicine (TCM) for IBD treatments. However, the mechanisms of action for the synergy are still unclear. Therefore, this paper aimed to predict the anti-IBD targets and the main active ingredients of the HQ-BS herbal pair.

Methods: A systems pharmacology approach was used to identify the bioactive compounds and to delineate the molecular targets and potential pathways of HQ-BS herbal pair. Then, the characteristics of the candidates were analyzed according to their oral bioavailability and drug-likeness indices. Finally, gene enrichment analysis with DAVID Bioinformatics Resources was performed to identify the potential pathways associated with the candidate targets.

(Continued on next page)
Background

Inflammatory bowel disease (IBD) including Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic and recurring intestinal inflammatory disorder. Although a number of commercial drugs have been used to treat IBD in the clinic, a lack of sustained efficacy and side effects hinder their application. It has been reported that one-third of UC patients and two-thirds of CD patients need to undergo surgery eventually [1, 2]. TCM has been widely used to treat different kinds of diseases in China for a long time. TCM usually consist of different herbal medicines mixed together in specific quantities to form a formula according to the composition theory “Monarch, Minister, Assistant, and Guide”. In the formula, Monarch means the main drug for the etiology and symptoms; Minister means promoting the therapeutic effect produced by Monarch; Assistant means treating the accompanying symptom or eliminating the side effects of the Monarch; and Guide means guiding the formula to the disease area or reconciling its efficacy [3–5]. To improve the quality of life, it is vital to develop non-toxic and sustained efficacy medicines to treat IBD.

Studies have reported various beneficial effects of TCM and herbal extracts in treating IBD including antibacterial, anti-inflammatory, and anti-cancer activities [6, 7]. Among them, HuangQin decoction (HQD) is a famous formula recorded in the Treatise on Exogenous Febrile Disease written by Zhongjing Zhang. HQD has been used to treat gastrointestinal disease such as diarrhea, abdominal spasms, vomiting, and nausea for a long time in China [8]. HQD consists of four ingredients: the roots of Scutellaria baicalensis Georgi (Huangqin, HQ), Paeonia lactiflora Pall (Baishao, BS), Glycyrrhiza uralensis Fisch (Gancao, GC), and the fruit of Ziziphus jujuba Mill (Dazao, DZ) [9]. HQD has been proven to ameliorate intestinal damage [10]. According to the composition theory, HQ is the Monarch, BS and is the Minister in this formula. HQ-BS is composed of a typical herbal synergetic pair and is widely used for colitis treatments.

Results: The results showed that, a total of 38 active compounds were obtained from HQ-BS herbal pair, and 54 targets associated with IBD were identified. Gene Ontology and pathway enrichment analysis yielded the top 20 significant results with 54 targets. Furthermore, the integrated IBD pathway revealed that the HQ-BS herbal pair probably acted in patients with IBD through multiple mechanisms of regulation of the nitric oxide biosynthetic process and anti-inflammatory effects. In addition, cell experiments were carried out to verify that the HQ-BS herbal pair and their Q-markers could attenuate the levels of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated THP-1-derived macrophage inflammation. In particular, the crude materials exerted a much better anti-inflammatory effect than their Q-markers, which might be due to their synergistic effect.

Conclusion: This study provides novel insight into the molecular pathways involved in the mechanisms of the HQ-BS herbal pair acting on IBD.

Keywords: HQ-BS herbal pair, Inflammatory bowel disease, Synergic mechanism, System pharmacology, THP-1 cells
constituents, targets and underlying pathways of the HQ-BS herbal pair.

Materials and methods

Data preparation

The chemical compound data and the targets of HQ and BS were obtained from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP, http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.) [24] and were manually supplemented. Target information of the ingredients was obtained from DrugBank (www.drugbank.ca) [25]. Anti-IBD targets were derived from the Therapeutic Targets Database (TTD, http://bidd.nus.edu.sg/group/tdtd/tdtd.asp) [26], Comparative Toxicogenomics Database (CTD, http://ctdbase.org/) [27] and PharmGKB (http://www.pharmgkb.org) [28]. Protein-protein interaction (PPI) data were derived from the STRING database (http://string-db.org) [29]. Putative targets were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.kegg.jp/ or http://www.genome.jp/kegg/) [30]. All of the targets were mapped to the database UniProt (http://www.uniprot.org) [31] to construct the networks of Herb-Compound-Target (H-C-T).

Network construction and network analysis

Networks were constructed using the data about the active constituents, corresponding targets, and pathway information. Moreover, we used an open software package project named Cytoscape v1.1 Core (http://www.cytoscape.org/) [32] to construct all of the visualized network graphs.

Fig. 1 Systems pharmacology approach workflow for elucidating the mechanisms of actions for the synergy of the HQ-BS herbal pair IBD.
Gene ontology and pathway enrichment analysis
Gene Ontology (GO) enrichment analysis for the putative targets of the HQ and BS herbal pair was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov) [33]. DAVID was also applied to perform pathway enrichment analysis for the same gene targets to identify the potential synergistic actions of HQ and BS against IBD. Enriched GO terms and pathways were defined as those with false discovery rate (FDR) adjusted P values < 0.05.

Cell culture
THP-1 cells (human monocytes derived from a patient with acute monocytic leukemia) were cultured with RPMI 1640 medium containing 10% fetal bovine serum and 1% penicillin-streptomycin at 37 °C under a humidified atmosphere with 5% (v/v) CO₂.

Chemicals and reagents
LPS (L4391, a purity no less than 99%) was purchased from Sigma (St. Louis, USA); HQ and BS crude materials were obtained from Kangmei Pharmaceutical Co. LTD (Jieyang, China) and authenticated by Prof. Ziren Su (Guangzhou University of Chinese Medicine); paeoniflorin (CAS: 23180–57–6), baicalin (CAS: 21967–41–9), baicalein (CAS: 352000–07–8), wogonin (CAS: 632–85–9), and oroxylin A (CAS: 23180–57–6) were purchased from Dalian Meilun Biotechnology Co., Ltd. (Dalian, China), the purities are no less than 98%; NO assay kit from Dalian Meilun Biotechnology Co., Ltd. (Dalian, China), the purities are no less than 98%; COX-2 antibody (AF7003) were purchased from Affinity Biosciences Inc. (Cincinnati, USA). The iNOS antibody (AF0199) and COX-2 anti-body (AF7003) were purchased from Affinity Biosciences Inc. (Cincinnati, USA).

Drug groups design
LPS-stimulated THP-1-derived macrophage inflammation was used as a cell model to assess the Q-markers in DMSO and then diluted with culture medium to be-diluted samples were collected for iNOS and COX-2 assay using Western blot. The cells were lysed in chilled lysis buffer containing protease and phosphatase inhibitors for 20 min on ice. Afterward, they were centrifuged at approximately 14000 g for 10 min and the protein concentration of the supernatant was measured using a BCA Protein Assay Kit according to the protocol provided by the manufacturer. The protein samples were separated on SDS-PAGE gels and then transferred onto PVDF membranes. The membranes were blocked with 5% skim milk in TBST. Then, the membranes were incubated with iNOS and COX-2 primary antibodies at 4 °C overnight followed by incubation with the secondary antibodies for 1 h at room temperature. Finally, the bands were detected by an ECL reagent using a Western blotting detection system.

Statistical analysis
All data are expressed as the mean ± standard deviation (SD) and analyzed by one-way analysis of variance (ANOVA) followed by a least-significant difference test. p-values of < 0.05 or <0.01 were regarded as statistically significant. The statistical analysis was performed by SPSS 20.0 (SPSS Inc., NY, USA).

Results
Ingredient comparisons in the HQ-BS herbal pair
The ingredients in the HQ-BS pair were retrieved from the TCMSP. All of the constituents from the HQ-BS herbal pair were used to construct a compound library. A total of 215 constituents were obtained for HQ (143) and BS (85), respectively. The main ingredients of HQ are flavonoids and alkaloids, and the major constituents in BS are triterpenoids. We evaluated the molecular diversities of all the constituents from the HQ-BS herbal pair based on the following properties as shown in Fig. 2).
The average molecular weight (MW) of each ingredient from HQ and BS was calculated, and there was no significant difference \((p = 0.06)\) between HQ (277.74) and BS (326.75).

(2) The Moriguchi octanol-water partition coeff. \((\text{logP})\) \((\text{MLogP})\) of each ingredient from HQ and BS was calculated, and there was no significant difference \((p = 0.07)\) between HQ (4.10) and BS (3.22). This result suggests that hydrotropic constituents are the main ingredients in both HQ and BS.

(3) The number of donor atoms for the H-bonds \((\text{nHDon})\) of each ingredient from HQ and BS was calculated, and the average \(\text{nHDon}\) number of BS constituents (2.55) was much higher than that of the HQ constituents (1.44) \((p = 0.02)\).

(4) The number of acceptor atoms for H-bonds \((\text{nHAcc})\) of each ingredient from HQ and BS was calculated and there was no significant difference \((p = 0.07)\) between HQ (3.48) and BS (4.86).

(5) The average oral bioavailability (OB) value of the constituents of HQ and BS was calculated, and there was no significant difference \((p = 0.33)\).

(6) The Caco-2 permeability Caco-2 of each ingredient from HQ and BS was calculated, and the average \(\text{nHDon}\) number of BS constituents (0.328) was much lower than that of the HQ constituents (0.94) \((p = 3.58 \times 10^{-4})\).

(7) For drug-likeness (DL) analysis, the average DL index of the constituents of HQ and BS were 0.23 and 0.29, respectively, which displays no significant difference \((p = 0.11)\).

Despite the constituents of HQ and BS being diverse, based on the analysis above, we also found that the majority of them met the Lipinski’s rule of five. Apart from the \(\text{nHDon}\), HQ was similar to BS in other properties of the chemical components. These similarities indicate that the constituents of HQ and BS share similar chemo-physical properties and that the ingredients from HQ and BS possessed similar DL. These results also indicate that the compounds from the HQ-BS herbal pair had similar pharmacokinetic properties.

Active ingredients in the HQ-BS herbal pair

Although the HQ-BS herbal pair contains a large number of bioactive compounds, only a few that exert desirable pharmacodynamic and pharmacokinetic properties contribute to the therapeutic actions of this herbal pair. In the current study, we screened the active constituents from the HQ-BS herbal pair from the following absorption, distribution, metabolism, and excretion (ADME) parameters, including OB, Caco-2 and DL. Some constituents were also chosen for their effective bioactivities without satisfying all of these criteria. As a result, a total of 38 active compounds (33 active compounds from HQ and 7 active compounds from BS, and among them, two compounds found in both HQ and BS) were chosen from the 215 compounds of this herbal pair (shown in Supplementary Table 1).

Targets of the HQ-BS herbal pair that are anti-IBD

To investigate the synergic mechanism of the HQ-BS herbal pair for IBD, the parameters of the active compounds of HQ and BS were obtained from the TCMSP and the target information was collected from DrugBank. Herb Ingredients’ Target (HIT, [http://lifecenter.sgst.cn/hit/][34]) was used for specific targets validated by the experiments and the SysDT model [35] was used for the targets without experimental verification. As shown in Supplementary Table 2 and Fig. 3, 147 putative
targets that belong to 38 active ingredients of the HQ-BS pair were collected. All of the above targets were mapped to the database UniProt. Subsequently, we constructed the networks of H-C-T using these data. Finally, we calculated the contribution index of all the active constituents based on the networks.

Interactions between the HQ-BS putative targets and the anti-IBD targets

Targets for IBD were derived from the TTD, CTD and PharmGKB by using the keywords “inflammatory bowel disease (IBD)”, “Crohn’s disease” and “ulcerative colitis”. As shown in Fig. 4, the three target sets, anti-IBD targets (yellow), putative targets for HQ (blue), and putative targets for IBD (green) were intersected, and the targets in each intersection set were also listed.
targets for BS (red), had intersections containing targets. Among the intersected targets, 8 targets were at the intersections of three targets sets, 7 targets were at the intersections of the blue and yellow sets, and 7 targets were at the intersections of the red and yellow sets. The 22 targets were considered to be the direct putative HQ-BS herbal pair anti-IBD targets.

Next, we constructed a PPI network using the 193 IBD targets and the 147 HQ-BS putative targets. The PPI was ranked among four minimum required interaction scores (low, the score is 0.150; medium, 0.4; high, 0.7; and highest, 0.9). We selected the high scoring (scores > 0.7) PPIs to construct the PPI network. Our analysis obtained a connected network of 319 proteins and 2093 interactions. From them, 66 were anti-IBD targets, 385 were HQ-BS putative targets, and in the intersection lay 26 HQ-BS against IBD targets. The specific interactions are depicted in Fig. 5a. With a hub node [36] defined as a node with a degree higher than 2-fold of the average degree of all the nodes in the networks (the average degree of all the nodes in the network was 13 in our study), 45 major hub nodes were identified (Fig. 5b).

Functions of the HQ-BS herbal pair for IBD by GO enrichment

As shown in Table 1 and Fig. 6, GO enrichment analysis of the 54 putative targets of HQ and BS (combining the 22 IBD related targets with 45 important targets) resulted in the top 20 biological processes (BP) with FDR corrected $p < 0.05$. The results indicate that they are involved in signal transduction, regulation, and response...
Table 1 The top 20 biological processes enriched by the 54 putative targets

Term	Count of Proteins	%	p -Value
positive regulation of nitric oxide biosynthetic process	14	25.93	2.12 × 10^{-23}
inflammatory response	20	37.04	1.89 × 10^{-18}
positive regulation of transcription from RNA polymerase II promoter	26	48.15	1.90 × 10^{-17}
positive regulation of smooth muscle cell proliferation	12	22.22	3.09 × 10^{-17}
lipopolysaccharide-mediated signaling pathway	10	18.52	4.01 × 10^{-16}
positive regulation of gene expression	16	29.63	1.99 × 10^{-15}
response to drug	16	29.63	1.76 × 10^{-14}
cellular response to lipopolysaccharide	12	22.22	4.69 × 10^{-14}
response to lipopolysaccharide	13	24.07	9.47 × 10^{-14}
positive regulation of transcription, DNA-templated	18	33.33	1.69 × 10^{-13}
aging	12	22.22	3.15 × 10^{-12}
cellular response to organic cyclic compound	9	16.67	1.11 × 10^{-11}
angiogenesis	12	22.22	8.27 × 10^{-11}
positive regulation of protein phosphorylation	10	18.52	2.04 × 10^{-10}
movement of cell or subcellular component	9	16.67	2.49 × 10^{-10}
response to antibiotic	7	12.96	6.28 × 10^{-10}
negative regulation of apoptotic process	14	25.93	1.12 × 10^{-9}
cellular response to mechanical stimulus	8	14.81	2.36 × 10^{-9}
negative regulation of cell proliferation	13	24.07	2.79 × 10^{-9}
positive regulation of ERK1 and ERK2 cascade	10	18.52	3.53 × 10^{-9}

Fig. 6 the top 20 biological processes by GO enrichment analysis of therapeutic targets. The -axis represents the enrichment scores of these terms (p < 0.05), and the -axis represents significantly enriched BP categories in GO relative to the targets.
processes, such as positive regulation of nitric oxide bio-
synthetic process (25.93%), inflammatory response
(37.04%), lipopolysaccharide-mediated signaling pathway
(18.52%), and cellular response to lipopolysaccharide
(22.22%). Consistent with prior publications, HQ and BS
are targeting different proteins in the nitric oxide bio-
synthetic process pathway.

Pathway analysis to explore the underlying mechanisms
of the HQ-BS herbal pair
The KEGG pathway enrichment analysis suggested that the
54 putative targets of HQ and BS were enriched with FDR
corrected \(p < 0.05 \). As shown in Supplementary Table 3, the
top 20 pathways associated with the HQ and BS herbal pair
were obtained. Consistent with the previous publications,
the tumor necrosis factor (TNF) signaling pathway, Toll-
like receptor signaling pathway, and the IBD pathway had a
strong correlation with the HQ-BS herbal pair against IBD.
Furthermore, we investigated the distribution of partial tar-
ggets of HQ-BS on the IBD pathway (shown in Fig. 7). After
analysis by the Target-Pathway (T-P) network, 67 nodes
(20 pathways and 47 proteins) and 303 interactions were
obtained (shown in Fig. 8).

The HQ-BS herbal pair attenuated NO and PGE_2 release
The results showed that an LPS insult induced a significant
release of NO and PGE_2 compared with the control cells.
However, HQ, BS and their active components treatment
could significantly attenuate the levels of NO and PGE_2 (as
shown in Fig. 9). Especially, the crude materials of HQ, BS
and HQ-BS exerted much stronger activities in attenuating
the release of NO and PGE_2 compared with the Q-markers
of HQ, BS and HQ-BS. These results indicate that the ex-
cellent anti-inflammatory effects of HQ-BS might be due to
the synergistic effect of all their components.

The HQ-BS herbal pair reduced the levels of iNOS and
COX-2
Western blot results showed that the levels of iNOS and
COX-2 increased sharply after LPS stimulation.
Fig. 8 Target-Pathway network for HQ-BS anti-IBD. The pink and blue nodes represent the pathway and targets, respectively, and the edges represent the interactions among them.

Fig. 9 HQ, BS, HQ-BS herbal pair and their Q-markers attenuated the levels of NO and PGE\(_2\). Data were expressed as the mean ± SD (n = 8). \(*p < 0.05, **p < 0.01\) compared with control group; \(*p < 0.05, **p < 0.01\) compared with LPS group.
compared with the control cells. However, HQ, BS and their active components treatment could significantly reduce the levels of NO and PGE₂ (as shown in Fig. 10). Similar to the NO and PGE₂ assay result, the crude materials of HQ, BS and HQ-BS could remarkably attenuate the inflammatory response remarkably than their Q-markers. The Western blot results further confirmed that their synergistic effect plays an important role in the anti-inflammatory effects of HQ-BS.

Discussion

In the current study, we used a systems pharmacology approach to investigate the bioactive ingredients and significant pathways of the HQ-BS herbal pair. Then, we performed in vitro cell experiments to verify the network pharmacology prediction results.

A total of 215 compounds of the HQ and BS herbal pair were obtained from the TCMSP database, and 38 of them were chosen for further investigation following the drug-likeness analysis. Among the 38 compounds, 31 compounds were present in HQ, 5 compounds were present in BS, and 2 compounds were present in both HQ and BS.

By analyzing these 38 bioactive compounds of HQ and BS, we found that alkaloids and flavonoids were the primary active moieties of HQ, and triterpenoids were the main active constituents of BS. In HQ, flavonoid constituents, such as baicalin, wogonin, acacetin, skullcapflavone, carthamin, dihydrooroxylin and oroxylin A are known to be anti-inflammatory agents [37]. Especially, baicalin was proven to exert excellent effects in ameliorating colitis through polarization of macrophages to an M2 phenotype, inflammation inhibition, and the suppression of oxidant stress and apoptosis [37–41]. The alkaloid composition, coptisine, was previously reported to attenuate intestinal damage [42, 43]. In BS, the triterpenoids composition, such as paeoniflorin, was reported to attenuate intestinal damage by inhibiting apoptosis and the NF-kappa B and TLR4 pathways [15, 16]. By analyzing 54 putative anti-IBD targets of HQ and BS, we found that the targets were mainly from the following two anti-IBD target classes: (1) apoptosis-related targets (such as heat shock proteins, apoptosis regulators, and caspases) and (2) 13 inflammation-related targets (such as prostaglandin, nitric oxide synthase, interleukin-6, and tumor necrosis factor) [32]. Prostaglandin plays a pivotal role in allergic inflammation. Moreover, reducing
the level of prostaglandin exerts a protective effect against IBD and may represent a future safe treatment for IBD [44–46]. Furthermore, treatment with natural products could attenuate colitis by downregulating the level of prostaglandin. Nitric oxide synthase [47–49], interleukin-6 [50], and tumor necrosis factor [51] also revealed the same effect as prostaglandin in the regulation of IBD. Additionally, the apoptosis-related targets, such as bax, bcl-2, caspase-3 and caspase-9, also have crucial role in the pathogenesis of IBD [52]. By analyzing the top 20 KEGG pathways of the 54 putative targets, we found that positive regulation of the nitric oxide biosynthetic process was the most correlated pathway. The nitric oxide biosynthetic process plays an essential role in the pathobiology of IBD. In IBD, iNOS induces the generation of NO, which leads to the release of pro-inflammatory cytokines, such as TNF-α, interleukin-1β (IL-1β) and interleukin-6 (IL-6). The accumulation of NO and pro-inflammatory cytokines in the intestinal epithelial cells triggers intestinal inflammation in IBD [53]. Cellular responses to lipopolysaccharide, inflammatory response and the TNF signaling pathway are also associated with the mechanism of HQ-BS against IBD.

The system pharmacology prediction results above suggest that cellular response to lipopolysaccharide, inflammatory response and the TNF signaling pathway are also associated with the mechanism of HQ-BS against IBD. Moreover, the HQ-BS herbal pair is predicted to target the nitric oxide biosynthetic process and inflammation-related targets (such as prostaglandin, nitric oxide synthase, interleukin-6, and tumor necrosis factor). Hence, to verify whether the HQ-BS herbal pair attenuates IBD symptom by targeting the inflammation response, we performed in vitro experiments to confirm their effects. The LPS-induced inflammation model in THP-1 cells is an accepted model to evaluate the action of drugs on inflammation. A previous report demonstrated that paonflorin from BS is a Q-marker of HQD [9]. Therefore, we tested the effect of HQ, BS, the HQ-BS herbal pair and their Q-markers against the LPS-induced inflammatory response in the THP-1 cells. The results showed that HQ, BS, the HQ-BS herbal pair and their Q-markers could suppress NO and PGE₂ production, as well as iNOS and COX-2 protein expression. These cell-based results suggest that the synergistic effect plays an important role in the anti-inflammatory effects of HQ-BS.

Based upon the above prediction and experimental results, the underlying mechanism of the HQ-BS herbal pair against IBD may be associated with the regulation of the nitric oxide biosynthetic process and inflammatory cytokines release.

Conclusion
The mechanism of the HQ-BS herbal pair in IBD involves multiple ingredients, targets, and pathways. Combining the prediction and cell experimental results, the therapeutic effects of the HQ-BS herbal pair in IBD may be dependent on the regulation of the proteins and pathways related to the nitric oxide biosynthetic process and the inflammatory response by inhibiting NO synthesis and inflammatory cytokine release. The systems pharmacology approach combined with cell experimental methods as applied in our study provided an alternative strategy for the comprehensive understanding of the mechanisms of the HQ-BS herbal pair in IBD. In the future, we would like to validate the therapeutic effects of the HQ-BS herbal pair in IBD using a mouse model. Furthermore, we will investigate the mechanism whether by the HQ-BS herbal pair attenuates IBD through affecting the nitric oxide biosynthetic process and the inflammatory response.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12906-020-03068-2.

Additional file 1: Table S1. Compounds of Scutellaria baicalensis (Huangqi) and Paeonia lactiflora (Baishao). Table S2. Targets of HQ-BS pair active compounds. Table S3. The top 20 KEGG pathways of 54 putative targets generated by DAVID.

Additional file 2. Original blot images.

Abbreviations
IBD: Inflammatory bowel disease; HQ: Huangqin; BS: Baishao; TCM: Traditional Chinese medicine; NO: Nitric oxide; PGE₂: Prostaglandin E₂; iNOS: Inducible nitric oxide synthase; COX-2: Cyclooxygenase-2; LPS: Lipopolysaccharide; CD: Crohn’s disease; UC: Ulcerative colitis; HQD: HuangQin decoction; GC: Gancarcin; D2: Dazao; DSS: Dextran sodium sulfate; CKD2: Caudal-type homeobox 2; PXR: Pregnane X receptor; TNBS: Trinitrobenzene-sulfonic acid; TLR4: Toll like receptor-4; MyD88: Myeloid differential protein-88; NLRP3: NOD-like receptor 3; NF-κB: Nuclear factor kappa-B; MAPK: Mitogen-activated protein kinase; TCMS: Traditional Chinese Medicine Systems Pharmacology Database; TTD: Therapeutic Targets Database; CTLD: Comparative Toxicogenomics Database; PPI: Protein-protein interaction; KEGG: Kyoto Encyclopedia of Genes and Genomes; H-C-T: Herb-Compound-Target; GO: Gene Ontology; DAVID: Database for Annotation, Visualization and Integrated Discovery; FDR: False discovery rate; SD: Standard deviation; ANOVA: Analysis of variance; MW: Molecular weight; MLogP: Moriguchi octanol-water partition coeff. (logP); nHDon: Number of donor atoms for the H-bonds; nHAcc: Number of acceptor atoms for H-bonds; OB: Oral bioavailability; DL: Drug-likeness; ADME: Absorption, distribution, metabolism, and excretion; HIT: Herb Ingredients’ Target; BP: Biological processes; TNF: Tumor necrosis factor; T-P: Target-Pathway; IL-1β: Interleukin-1β; IL-6: Interleukin-6.

Acknowledgements
Not applicable.

Declarations
Not applicable.

Authors’ contributions
XQH designed this study, provided reagents and responsible for the system pharmacology research. ZWC participated in the system pharmacology research. MYL and YMZ performed the intro experiment. SJX and HYH performed the system pharmacology research. ZWC participated in the system pharmacology research. HYH and XQH contributed to the analysis and interpretation of results. XQH participated in the writing and reviewing of the manuscript. All authors read and approved the final manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.
analyzed that data. XLW drafted the manuscript. XBJZ supervised the design of the study and reviewed this manuscript. All authors reviewed and approved the final version of this paper.

Funding

This study was supported by Special Project on the Integration of Industry, Education and Research of Guangdong Province (2014B090900202); Provincial-level Major Scientific Research Projects in Ordinary Universities of Guangdong Province, China (2017KZDXM017); Science and Technological Program for Dongguan’s Social development, China (20180701501131614); Characteristic Cultivation Program for Subject Research of Guangzhou University of Chinese Medicine (XKPF2019007); National Natural Science Foundation of China (81573952); National Natural Science Foundation of Guangdong, China (2019A1515010673); Guangzhou University of Chinese Medicine Discipline Research Major Project. All of these funding provided research resources for acquisition of materials and reagents.

Availability of data and materials

The dataset used during the current study is stored in a secured research data server at Guangzhou University of Chinese Medicine. The datasets used are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors gave full consent for publication of the manuscript.

Competing interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Author details

1. Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou University of Chinese Medicine, 232# Wai Huan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.

2. Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, China.

3. School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 1009 Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.

4. Dongguan Songshan Lake Yi Dao TCM Clinic, Dongguan 523808, China.

Received: 5 October 2019 Accepted: 1 September 2020

Published online: 25 September 2020

References

1. Ali T, Yun L, Rubin DT. Risk of post-operative complications associated with anti-TNF therapy in inflammatory bowel disease. World J Gastroenter. 2012;18(3):197–204.

2. de Chambrun GP, Blanc P, Peyrin-Biroulet L. Current evidence supporting mucosal healing and deep remission as important treatment goals for inflammatory bowel disease. Expert Rev Gastroent. 2016;10(8):915–27.

3. Jiang WY. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol Sci. 2005;26(11):558–63.

4. Xiong XJ, Yang XC, Liu YM, Zhang Y, Wang PQ, Wang J. Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res. 2013;36(7):570–9.

5. Zhang AH, Sun H, Qiu S, Wang XJ. Advancing Drug Discovery and Development from Active Constituents of Yinchenhao Tang, a Famous Traditional Chinese Medicine Formula. Evid-Based Compl Alt. 2013;10:25799.

6. Wan P, Chen H, Guo Y, Bai AP. Advances in treatment of ulcerative colitis with herbs: from bench to bedside. World J Gastroenter. 2014;20(39):14099–104.

7. Chen Q, Zhang H. Clinical study on 118 cases of ulcerative colitis treated by integration of traditional Chinese and Western medicine. J Tradit Chin Med. 1999;19(3):163–5.

8. Wang X, Cui DN, Dai XM, Wang J, Zhang W, Zhang ZJ, Xu FG. HuangQin decoction attenuates CPT-11-induced gastrointestinal toxicity by regulating bile acids metabolism homeostasis. Front Pharmacol. 2017;8.

9. Dai XM, Cui DN, Wang J, Zhang W, Zhang ZJ, Xu FG. Systems pharmacology based strategy for Q-markers discovery of HuangQin decoction to attenuate intestinal damage. Front Pharmacol. 2018;9:236.

10. Tilton R, Paiva AA, Guan QJ, Marathe R, Jiang Z, van Eyndhoven W, Bjoraker J, Prusoff W, Zhang H, Liu SH, et al. A comprehensive platform for quality control of botanical drugs (PhytomicQC): a case study of Huangqin Tang (HQT) and PHY906. Chin Med. 2010;5:30.

11. Jiang WY, Sae GS, Kim YC, Sohn DH, Lee SH, PF2405, standardized fraction of Scutellaria baicalensis, ameliorates colitis in vitro and in vivo. Arch Pharm Res. 2015;38(6):1127–37.

12. Fajardo AM, Piazza GA. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. Am J Physiol-Gastr L. 2015;309(2):G59–70.

13. Dou W, Mukherjee S, Li H, Venkatesh M, Wang HW, Kortagere S, Peleg A, Chilimurt SS, Wang ZT, Feng Y, et al. Alleviation of Gut Inflammation by Cdx2/Pxr Pathway in a Mouse Model of Colitis. PLoS One. 2012;7(7).

14. Luo X, Yu ZL, Deng C, Zhang JJ, Ren GV, Sun AN, Mani S, Wang ZT, Dou W. Baicalin ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci Rep-Uk. 2017;7(7).

15. Zhang JJ, Dou W, Zhang EY, Sun A, Ding LL, Wei XH, Chou GX, Mani S, Wang ZT. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent mechanism. Am J Physiol-Gastr L. 2013;306(1):G27–36.

16. Gu PQ, Zhu L, Liu YJ, Zhang L, Liu J, Shen H. Protective effects of paeoniflorin on TNBS-induced ulcerative colitis through inhibiting NF-kappaB pathway and apoptosis in mice. Int Immunopharmacol. 2017;50:152–60.

17. Huang JH, Tang HT, Cao SM, He YC, Feng YB, Wang K, Zheng QS. Molecular Targets and Associated Potential Pathways of Danilu Capsules in Hyperplasia of Mammary Glands Based on Systems Pharmacology. Evid-Based Compl Alt. 2017;2017:1930598.

18. Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, Guan HS, Wang CY. Herb pair Danggui-Honghua mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep-Uk. 2017;7:40318.

19. Zhong JL, Liu ZH, Zhou YX, Xu J. Synergic Anti-Pruritus Mechanisms of Action for the Radix Sophorae Flavescentis and Fructus Cnidii Herbal Formula. Molecules. 2017;22(9).

20. Pei TL, Zheng CL, Huang C, Chen XT, Guo ZH, Fu YX, Liu JL, Wang YH. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J Ethnopharmacol. 2016;190:272–87.

21. Liu JL, Pei TL, Mu JX, Zheng CL, Chen XT, Huang C, Fu YX, Liang ZS, Wang YH. Systems Pharmacology Uncovers the Multiple Mechanisms of Xijiao Dhuang Decoction for the Treatment of Viral Hemorrhagic Fever. Evid-Based Compl Alt. 2016;2016:9025036.

22. Chen WQ, Ren Q, Chen X, Song ZQ, Nie C, Gan JH, Ma XL, Liang DR, Guan DG, Li ZL, et al. System pharmacology-based strategy to decode the synergistic mechanism of Zhi-zhu Wan for functional dyspepsia. Front Pharmacol. 2018;9:841.

23. Wang Y, Guo G, Yang BR, Xin QQ, Liao WE, Sun MY, Hu YJ, Chen K, Kong WH. Synergistic effects of Chuanxiong-Chishao herb-pair on promoting angiogenesis at network pharmacological and pharmacodynamic levels. Chin J Integr Med. 2017;23(9):654–62.

24. Ru JL, Li P, Wang JN, Zhou W, Li BH, Huang C, Li PD, Guo ZH, Tao WY, Yang YF, et al. TC MSPan: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminformatics. 2016.

25. Wishart DS, Feunang YO, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.

26. Li YH, Yu CY, Li XX, Zhang P, Yang QX, Fu TT, Zhang YX, Liang ZS, Wang YH. Systems Pharmacology Uncovers the Multiple Mechanisms of Xijiao Dhuang Decoction for the Treatment of Viral Hemorrhagic Fever. Nucleic Acids Res. 2015;38(6):1127–37.

27. Dai XM, Cui DN, Wang J, Zhang W, Zhang ZJ, Xu FG. Systems pharmacology based strategy for Q-markers discovery of HuangQin decoction to attenuate intestinal damage. Front Pharmacol. 2018;9:236.

28. Wishart DS, Feunang YO, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1127–37.

29. Xie AP, Gourin CJ, Johnson RJ, Scialy D, McMorran R, Wiegens J, Wiegens TC, Mattingly DJ. The comparative Toxicogenomics database: update 2019. Nucleic Acids Res. 2019;47(D1):D948–53.

30. Whit-Carillo M, McDonagh EM, Hebert JM, Gong L, Sangkhukh K, Thorn CF, Altman RB, Klein TE. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–7.
44. Montrose DC, Franceschini A, Wyder S, Fordlund K, Heller D, Huerta-Cepas J, Simovonic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.

43. Xie M, Zhang HJ, Deng AJ, Wu LQ, Zhang ZH, Li ZH, Wang WJ, Qin HL. New metabolite as a reliable surrogate marker for mucosal inflammation in ulcerative colitis. Front Pharmacol. 2018;9.

42. Zhang ZH, Wu LQ, Deng AJ, Yu JQ, Li ZH, Zhang HJ, Wang WJ, Qin HL. Prostaglandin E-major urinary metabolite as a biomarker for inflammation in ulcerative colitis patients. World J Gastroenterol. 2014;20(41):15299–309.

41. Yao J, Cao X, Zhang R, Li YX, Xu ZL, Zhang DG, Wang LS, Wang JY. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol. 2016;35:119–26.

40. Yu H, Ye L, Kang H, Zhang DF, Tao L, Tang KL, Liu XP, Zhu RX, Liu Q, Chen YZ, et al. HIT: linking herbal active ingredients to targets. Nucleic Acids Res. 2011;39(D1):D1055–9.

39. Yu H, Chen JX, Xu X, Li Y, Zhao HH, Fang YP, Li XX, Zhou W, Wang W, Wang YH. A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data. PLoS One. 2012;7:5.

38. Feng JS, Guo CC, Zhu YZ, Pang LP, Yang Z, Zou Y, Zheng XB. Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sodium sulfate. Int J Clin Exp Med. 2014;7(11):4063–72.

37. Zhu W, Jin ZS, Yu JB, Liang J, Yang QD, Li FJ, Shi XK, Zhu XD, Zhang XL. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol. 2016;35:119–26.

36. Ye H, Ye L, Kang H, Zhang DF, Tao L, Tang KL, Liu XP, Zhu RX, Liu Q, Chen YZ, et al. HIT: linking herbal active ingredients to targets. Nucleic Acids Res. 2011;39(D1):D1055–9.

35. Yu H, Chen JX, Xu X, Li Y, Zhao HH, Fang YP, Li XX, Zhou W, Wang W, Wang YH. A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data. PLoS One. 2012;7:5.

34. Ye H, Ye L, Kang H, Zhang DF, Tao L, Tang KL, Liu XP, Zhu RX, Liu Q, Chen YZ, et al. HIT: linking herbal active ingredients to targets. Nucleic Acids Res. 2011;39(D1):D1055–9.

33. Zhu W, Jin ZS, Yu JB, Liang J, Yang QD, Li FJ, Shi XK, Zhu XD, Zhang XL. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol. 2016;35:119–26.

32. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(1):2498–504.

31. UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2015;43(D1):D447–52.

30. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–61.

29. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.

28. de Oliveira GAL, de la Lastra CA, Rosillo MA, Martinez MLC, Sanchez-Hidalgo M, Medeiros JVR, Villegas I. Preventive effect of berberin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chem Biol Interact. 2019;297:25–33.

27. Sun BY, Yuan JY, Wang SY, Lin J, Zhang WJ, Shao JD, Wang RQ, Shi B, Hu HY. Qingchong suppository ameliorates colonic vascular permeability in dextran-sulfate-sodium-induced colitis. Front Pharmacol. 2018;9.

26. Hunter T, Schroeder K, Sandoval D, Deodhar A. Persistence, discontinuation, and switching patterns of newly initiated TNF inhibitor therapy in Ankylosing spondylitis patients in the United States. Rheumatol Ther. 2019.

25. Vukelic I, Detel D, Pucar LB, Potocnjak I, Buljevic S, Domitrovic R. Chlorogenic acid ameliorates experimental colitis in mice by suppressing signaling pathways involved in inflammatory response and apoptosis. Food Chem Toxicol. 2018;121:140–50.

24. Kalus G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology. 2004;113(4):427–37.