Analysis on temperature effect on the mechanical and tribological properties of titanium nitride thin films

V V Merie¹, C Bîrleanu², M S Pustan², G Negrea¹ and I M Pintea²

¹Materials Science and Engineering Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
²Mechanical Systems Engineering Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

E-mail: violeta.merie@sim.utcluj.ro

Abstract. The main goal of this paper is to study the influence of the temperature on the mechanical and tribological characteristics of titanium nitride thin films. The titanium nitride thin films were deposited by reactive magnetron sputtering on silicon substrates using a titanium high purity target. The films were deposited in different conditions. Several films were deposited on silicon substrate at room temperature while the others were obtained after the substrate was preheated. The majority of the films were deposited on non-biased substrates while the rest were deposited on substrates to which a negative bias was applied. Once the films were deposited, the characterization was realized by atomic force microscopy investigations determining the topographical parameters as well as the mechanical properties such as the modulus of elasticity and the hardness. The mechanical properties mentioned before were determined at 20 °C, 40 °C, 60 °C, 80 °C and 100 °C in order to establish the effect of testing temperature on the mechanical characteristics. The results highlighted a significant influence of temperature on the mechanical and tribological properties of the investigated titanium nitride thin films.

1. Introduction
In the last decades, the thin films industry has recorded a strong development due to the fact that it allows the obtaining of materials characterized by superior properties for medical, spatial, aeronautical, microelectronics industries etc. Different type of nitrides coatings are often employed for manufacturing products for the industries mentioned before [1-12]. The mechanical, physical, chemical and electrical characteristics of titanium nitride set it forth a wide range of applications such as hard coatings for mechanical tools, protective coating for medical devices, and diffusion barrier in microelectronics and so on [13-16].

Over the years, the elaboration of titanium nitride thin films has been realized by different techniques such as reactive magnetron sputtering, RF (radio frequency) magnetron sputtering, laser ablation, ion-beam deposition and so on [4-6, 13-19]. The deposition parameters play an important role in obtaining thin films characterized by superior mechanical, tribological, electrical or optical behaviour. For that purpose the nature, the temperature or the biasing of the substrate, the nitrogen flow, the pressure, the distance between the target and the substrate, the deposition time require a special attention Silicon [14, 16, 17], steel [5, 18], quartz [13], titanium [19] and static bell-metal (alloy of copper and tin) [4] are reported in the scientific literature as materials used for substrates when depositing titanium nitride. The experimental investigations reported that the deposition of...
titanium nitride thin films was carried out at different temperatures between the room temperature and 600 °C [4, 5, 13, 14, 16, 17].

The main aim of this paper is to elaborate titanium nitride thin films by reactive magnetron sputtering using different deposition parameters and to characterize them by atomic force microscopy investigations in order to emphasize the influence of testing temperature on the mechanical properties of the elaborated thin films.

2. Materials and experimental procedure

2.1. Materials
Silicon Si (100) substrates were employed for the deposition of titanium nitride thin films. A high purity (99.995 %) titanium nitride target was used for elaborating them. The atmosphere from the chamber in which the deposition was realized was formed by a mixture of argon and nitrogen.

2.2. Experimental procedure
The deposition of titanium nitride thin films was realized by direct current reactive magnetron sputtering. For a starter the silicon substrates were cleaned in an ultrasonic bath with isopropyl alcohol in order to remove any possible impurities. After that they were blown with nitrogen.

The elaboration of the thin films was realized in the chamber of a reactive sputtering facility with a Varian TV551 turbo-molecular pump under a high vacuum of 10^{-7} torr. The pressure inside the chamber was of 1 mtorr. The nitrogen flow rate was 1.2 cm³/min while the discharge current was of 350 mA. Some substrates were negative biased voltage at -40 V or -90 V. The deposition time was 20 minutes. Three different temperatures were employed for the substrates when depositing the titanium nitride thin films in order to highlight the influence of the substrate temperature on the mechanical and tribological properties of the deposited films. Some films were deposited on substrate at room temperature, others were deposited after the substrates were previously heated at 300 °C while the rest were elaborated on substrates preheated at 500 °C. During the deposition process, when substrates were preheated at 300 °C and 500 °C, the temperature of the substrates was kept constant. An increase of the temperature up to approximately 100 °C was determined even when the films were deposited at room temperature due to the contact with the plasma. Some of the titanium nitride films were directly obtained on silicon substrates while the rest were elaborated after a titanium buffer layer was previously deposited on the silicon substrate. The thickness of the deposited films was 0.55 μm. The notation and the deposition conditions for the seven kinds of titanium nitride films are given in table 1. Three titanium nitride thin films were deposited for each deposition conditions.

Table 1. The notation and the deposition parameters of the investigated titanium nitride thin films.
Sample notation
TiN-Tibl_rt
TiN+Tibl_rt
TiN-Tibl_300
TiN+Tibl_300
TiN-Tibl_500
TiN-Tibl_rt-90
TiN-Tibl_rt-40

* Tibl stands for titanium buffer layer while the “rt” represents the room temperature
After the films were deposited, they were characterized from the mechanical and tribological point of view by atomic force microscopy analyses. The nanocharacterization of the deposited films was performed using a XE 70 atomic force microscope. The tests were carried out for a relative humidity of 31 % at a temperature of 23 °C. The topography and the tribological properties were determined using a NSC35C cantilever. The characteristics of this cantilever given by the manufacturer are: length of 130 µm, width of 35 µm, thickness of 2 µm, force constant of 5.4 N/m and resonance frequency of 150 kHz. A TD23838 nanoindenter was used for determining the mechanical properties. Its characteristics according to the manufacturer are: cantilever stiffness of 272 N/m, tip radius smaller than 25 nm, tip height of 90 µm, tip thickness of 41 µm and cantilever length of 1050 µm respectively. The XEI Image Processing Tool for SPM (Scanning Probe Microscopy) data used both the Oliver and Pharr and the Hertzian models for the interpretation of the obtained data in order to determine the hardness and the modulus of elasticity respectively. In order to study the variation of the mechanical characteristics in regards to the testing temperature, a LDT 5525B temperature controller was used.

3. Results and discussion

After the titanium nitride thin films were deposited as mentioned before, they were characterized by the tribological and mechanical point of view using an atomic force microscope. The mechanical characterization was performed when the investigated thin films were at five different temperatures namely 20, 40, 60, 80 and 100 °C respectively in order to emphasize the influence of testing temperature on the mechanical characteristics.

3.1. Topographical characterization

3D images of the films were achieved with the XE 70 atomic force microscope. After interpreting the achieved images with the XEI Image Processing Tool for SPM Data, we determined the values of the roughness parameters. Figure 1 presents an image of the software for determining the roughness characteristics of the titanium nitride thin film deposited at room temperature in the presence of titanium buffer layer (TiN+Tibl_rt).

![Figure 1. Image of the XEI Image Processing Tools for SPM Data for determining the roughness characteristics of the TiN+Tibl_rt thin film.](image-url)
Each elaborated thin film was investigated in three different areas, the scanned surfaces being of 5 μm x 5 μm. The values of the roughness parameters of interest for the seven kinds of investigated ceramic materials are given in Table 2. The Rₐ represents the average roughness, the Rₛ is the root mean square, the Rₕₖ is the skewness roughness (an asymmetry indicator) while Rₖᵤ stands for kurtosis roughness (an indicator of the shape of the distribution’s tails). We can affirm that the modification of the deposition parameters causes the obtaining of more or less rough surfaces. The increase of substrate temperature leads to the decrease of the average roughness. The negative biasing of the substrate also determines the decrease of the topographical parameter, its effect being stronger than that of the substrate temperature on the same roughness parameter. The titanium nitride thin film deposited at room temperature when a negative bias of -90 V (TiN-Tbl_rt-90) is applied to the substrate is characterized by the smallest value of the average roughness (0.413 nm) while the titanium nitride thin films deposited at room temperature (TiN-Tibl_rt) shows the highest average roughness (1.206 nm).

Table 2. The roughness characterization of the deposited titanium nitride thin films.

Sample	Rₐ (nm)	Rₛ (nm)	Rₕₖ (-)	Rₖᵤ (-)
TiN-Tbl_rt	1.206	1.401	0.052	1.843
TiN+Tbl_rt	0.968	1.229	0.304	3.370
TiN-Tbl_300	0.701	0.814	-0.003	1.931
TiN+Tbl_300	0.964	1.246	0.206	3.580
TiN-Tbl_500	0.558	0.860	-2.738	54.501
TiN-Tbl_rt-90V	0.413	0.531	-0.226	3.960
TiN-Tbl_rt-40V	1.092	1.419	-0.005	5.428

3.2. Mechanical characterization

The modulus of elasticity and the hardness are the mechanical properties that were determined by atomic force microscopy investigations. Force vs. Z scan curves were obtained for each sample. The indentations were performed using a force limit of 25 μN. Four indentation tests were performed for each of the five testing temperature. The curves were interpreted with both the Oliver and Pharr method and the Hertzian method to get the values for the hardness and the modulus of elasticity respectively. The Hertzian model was employed for determining the modulus of elasticity due to the fact that this method assumes that plastic deformation doesn’t occur between the tip of the indentor and the tested thin film. Figure 2 shows an image of the XEI Image Processing Tool for SPM Data for determining the modulus of elasticity of the TiN-Tbl_rt-90V thin film tested when it was heated at 100 °C. The value of this mechanical property is influenced by the tip shape and the Poisson’s ratio of the thin film.

The fluctuation of modulus of elasticity dependent on the substrate temperature when testing from 20 to 100 °C is graphically given in figure 3a. The values of the mechanical parameter decreased indifferent to the deposition parameters when the testing temperature was increased from 20 up to 100 °C. The titanium nitride thin films deposited at room temperature in the presence of a titanium buffer layer (TiN+Tibl rt) are characterized by the smallest variation of modulus of elasticity in terms of testing temperature (about 18 %) while the biggest variation is specific to the titanium nitride thin films deposited directly on the silicon substrate at 300 °C (TiN-Tibl_300). The thin films deposited on silicon substrate at room temperature show the highest modulus of elasticity (226 GPa). Instead the titanium nitride films deposited at room temperature after a titanium buffer layer was first deposited present the highest modulus of elasticity when testing at 100 °C (175 GPa). When a negative bias is applied to the substrate, an increase of the modulus elasticity is generally determined (figure 3b). A
similar trend as presented before is detachable namely this mechanical characteristic decreases when the testing temperature is increased. The highest values of the modulus elasticity when testing at 20 °C, 40°C, 60°C, 80°C and 100°C, are characteristic to the titanium nitride thin films deposited at room temperature when a negative bias of -90 V (TiN-TbI_bl-90) is applied to the silicon substrate. However the films deposited in these conditions present a higher variation of the modulus of elasticity when increasing the testing temperature from 20 °C up to 100 °C (28 %) than the titanium nitride thin film deposited at room temperature in the presence of a titanium buffer layer (in this case the variation of the modulus of elasticity was 18 %).

Figure 2. Image of the XEI Image Processing Tools for SPM Data for determining the modulus of elasticity of the TiN-TbI_bl-90V thin film tested at 100°C.

Figure 3. The fluctuation of modulus of elasticity up to 100°C dependent on (a) substrate temperature and (b) substrate bias voltage.
Figure 4 presents an image of the XEI Image Processing Tool for SPM Data for determining the hardness of the TiN-Tibl\textsubscript{rt}-90V thin film tested at a temperature of 100 °C. It can be noticed that the value of this mechanical characteristic is influenced, among other things, by the shape of the tip and the Poisson’s ratio of both the investigated thin film and the tip.

![Force vs. Z Scan](image)

Cursor	ΔX(nm)	ΔY(μm)	Left X(nm)	Left Y(μm)	Right X(nm)	Right Y(μm)
Force	25.988	19.713	-30.464	4.461	-4.565	24.174
Slope	0.987	1.246	-5.553	22.928	-4.565	24.174

Figure 4. Image of the XEI Image Processing Tools for SPM Data for determining the hardness of the TiN-Tibl\textsubscript{rt}-90V thin film tested at 100 °C.

The variation of the hardness dependent on both the substrate temperature and substrate bias voltage when testing at temperatures between 20 °C and 100 °C are given in figure 5. As expected, the increase of testing temperature up to 100 °C determines the decrease of the hardness regardless of the substrate temperature or its bias voltage. However, in some cases this decrease is much stronger. The titanium nitride thin films deposited at room temperature directly on the silicon substrate (TiN-Tibl\textsubscript{rt}) is characterized by a decrease with almost 50 % of the hardness when the testing temperature is increased from 20 °C up to 100 °C. As regards the fluctuation of this characteristic for the samples deposited at different substrate temperatures (figure 5a), when the tests were performed at 20 °C, the first type of titanium nitride films (TiN-Tibl\textsubscript{rt}) presented the highest value of the hardness (about 5.8 GPa) while the films deposited on substrates preheated at 500 °C (TiN-Tibl\textsubscript{500}) are characterized by the smallest hardness (4.3 GPa). When the tests were carried out at 100 °C, the TiN-Tibl\textsubscript{500} films also showed the smallest hardness but the highest value of this mechanical property was determined for the titanium nitride thin films deposited on substrates preheated at 300 °C with (TiN+Tibl\textsubscript{300}) or without (TiN-Tibl\textsubscript{300}) the presence of a titanium buffer layer. The smallest fluctuation of the hardness was pointed out on the films deposited on silicon substrates preheated at 300 °C (TiN-Tibl\textsubscript{300}), in this case the variation being of 33.7 %.

Regarding the variation of the hardness for the samples deposited on negative bias voltage substrates (figure 5b), the results pointed out that in general biasing the substrate causes the increase of
the hardness. The titanium nitride thin films that were deposited at room temperature when a negative bias voltage of -90 V (TiN-Tibl rt -90V) was applied is characterized predominantly by the highest values of the hardness. This kind of films also presented the smallest fluctuation (32 %) of the mechanical characteristic when increasing the testing temperature from 20 ºC to 100 ºC.

Figure 5. The fluctuation of hardness up to 100 ºC dependent on (a) substrate temperature and (b) substrate bias voltage.

3.3. Tribological characterization

The research also aimed at determining the friction force between the tip of the atomic force microscope and the surface of the investigated films. The fluctuation of this friction parameter as regards the substrate temperature and substrate bias voltage is graphically given in figure 6. In the case of the films deposited on substrates at different temperature without biasing (figure 6a), a significant increase of the friction force was marked out when the titanium nitride films were deposited on substrates preheated at 500 ºC (TiN-Tibl_500). In this case the values of the friction parameter increased more than seven times as compare to that obtained for the thin films deposited at room temperature or at 300 ºC.

Figure 6. The fluctuation of friction force at room temperature dependent on (a) substrate temperature and (b) substrate bias voltage.

As regards the films deposited on negative biased substrates (figure 6b), it is obviously that applying a bias voltage to the substrate determines a strong increase of the friction force. This increase
is more evident when the applied bias voltage was of -90 V. The thin films deposited in these conditions (TiN-Tibl rt-90V) is characterized by a friction force of about 23 nN which is eight times higher than the friction force of the samples deposited in the same conditions but without biasing the substrate.

4. Conclusions
Titanium nitride thin films were deposited by reactive magnetron sputtering on silicon substrate at different substrate temperatures, with or without biasing the substrate and in the presence/absence of a titanium buffer layer. The atomic force microscopy investigations marked out that the films deposited at room temperature when biasing the substrate at -90 V are characterized by the smallest average roughness. Regarding the mechanical characteristics, the applying of a negative bias voltage to the substrate causes an increase of both modulus of elasticity and hardness. The two mechanical properties vary when the testing temperature is increased in the sense that their values decrease when increasing the testing temperature. As regards the tribological characteristics, the films obtained on negative bias voltage substrates also present the highest friction force. Future research will aim at characterizing and improving the mechanical, optical and/or tribological properties of titanium nitride films in order to use them when manufacturing components for MEMS applications.

5. References
[1] Li X, Bai Q, Yang J, Li Y, Wang L, Wang H, Ren S, Liu S and Huang W 2013 Effect of N2-gas flow rates on the structures and properties of copper nitride films prepared by reactive DC magnetron sputtering Vacuum 89 pp 78-81
[2] Xiao J, Li Y and Jiang A 2011 Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering Journal of Materials Science & Technology 27 pp 403-407
[3] Hadian F, Rahmati A, Movla H and Khaksar M 2012 Reactive DC magnetron sputter deposited copper nitride nano-crystalline thin films: Growth and characterization Vacuum 86 pp 1067-1072
[4] Borah S M, Pal A R, Bailung H and Chutia J 2008 Optimization of plasma parameters for high rate deposition of titanium nitride films as protective coating on bell-metal by reactive sputtering in cylindrical magnetron device Applied Surface Science 254 pp 5760-5765
[5] Yazdani A, Soltanieh M, Aghajani H and Rastegari S 2011 A new method for deposition of nano sized titanium nitride on steels Vacuum 86 pp 131-139
[6] Li C, Lv X, Chen J, Liu X and Bai C 2015 Kinetics of titanium nitride synthesized with Ti and N2 International Journal of Refractory Metals and Hard Materials 52 pp 165-170
[7] Tacikowski M, Kamiński J, Rudnicki J, Borowski T, Trzaska M and Wierzchoń T 2011 The effect of the diffusive, composite chromium nitride layers produced by a hybrid surface treatment on the corrosion behavior of AZ91D magnesium alloy Vacuum 85 pp 938-942
[8] Angerer P, Lackner J M, Wiessner M and Maier G A 2013 Chromium/chromium nitride multilayers during thermal treatment: An X-ray diffraction study International Journal of Refractory Metals and Hard Materials 36 pp 101-105
[9] Ovcharenko V D, Kuprin A S, Tolmachova G N, Kolodiy I V, Gilewicz A, Lupicka O, Rochowicz J and Warcholinski B 2015 Deposition of chromium nitride coatings using vacuum arc plasma in increased negative substrate bias voltage Vacuum 117 pp 27-34
[10] Chihi T, Fatmi M and Ghebouli B 2012 First-principles prediction of metastable niobium and tantalum nitrides M2N5 and M2N6 stoichiometry Solid State Sciences 14 pp 80-83
[11] Bekermann D, Barreca D, Gasparotto A, Becker H W, Fischer R A and Devi A 2009 Investigation of niobium nitride and oxy-nitride films grown by MOCVD Surface & Coatings Technology 204 pp 404-409
[12] Olaya J J, Rodil S E and Muhl S 2008 Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering Thin Solid Films 516 pp 8319-8326
Vasu K, Krishna G M and Padmanabhan K A 2011 Substrate-temperature dependent structure and composition variations in RF magnetron sputtered titanium nitride thin films *Applied Surface Science* **257** pp 3069-3074

White N, Campbell A L, Grant J T, Pachter R, Eyink K, Jakubiak R, Martinez G and Ramana C V 2014 Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films *Applied Surface Science* **292** pp 74-85

Popović M, Novaković M, Mitrić M, Zhang K and Bibić N 2015 Structural, optical and electrical properties of argon implanted TiN thin films *International Journal of Refractory Metals and Hard Materials* **48** pp 318-323

Merie V, Pustan M, Negrea V and Birleanu C 2015 research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications *Applied Surface Science* **358** pp 525-532

Kim S H, Park H, Lee K H, Jee S H, Kim D J, Yoon Y S and Chae H B 2009 Structure and mechanical properties of titanium nitride thin films grown by reactive pulsed laser deposition *Journal of Ceramic Processing Research* **10** pp 49-53

Zhao Y, Lin G, Xiao J, Lang W, Dong C, Gong J and Sun C 2011 Synthesis of titanium nitride thin films deposited by a new shielded arc ion plating *Applied Surface Science* **257** pp 5694-5697

Şerban V A, Roşu R A, Bucur A I and Pascu D R 2013 Deposition of titanium nitride layers by electric arc – reactive plasma spraying method *Applied Surface Science* **265** pp 245-249

Acknowledgments

This work was supported by the Romanian Space Agency, Research Program for Space Technology Development and Innovation and Advanced Research – STAR Grant no. 97/2013 (MEMSMAT).