Emerging roles of neutrophils in immune homeostasis

Mingyu Lee¹, Suh Yeon Lee² & Yoe-Sik Bae¹,²,*

¹Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, ²Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea

Neutrophils, the most abundant innate immune cells, play essential roles in the innate immune system. As key innate immune cells, neutrophils detect intrusions of pathogens and initiate immune cascades with their functions; swarming (arresting), cytokine production, degranulation, phagocytosis, and projection of neutrophil extracellular traps. Because of their short lifespan and consumption during immune response, neutrophils need to be generated consistently, and generation of newborn neutrophils (granulopoiesis) should fulfill the environmental/systemic demands for training in cases of infection. Accumulating evidence suggests that neutrophils also play important roles in the regulation of adaptive immunity. Neutrophil-mediated immune responses end with apoptosis of the cells, and proper phagocytosis of the apoptotic body (efferocytosis) is crucial for initial and post resolution by producing tolerogenic innate/adaptive immune cells. However, inflammatory cues can impair these cascades, resulting in systemic immune activation; necrotic/pyroptotic neutrophil bodies can aggravate the excessive inflammation, increasing inflammatory macrophage and dendritic cell activation and subsequent T(H)17 responses contributing to the regulation of the pathogenesis of autoimmune disease. In this review, we briefly introduce recent studies of neutrophil function as players of immune response. [BMB Reports 2022; 55(10): 473-480]

INTRODUCTION

Neutrophils, the first defenders of the immune response, recruited into inflamed sites according to infectious and/or inflammatory cues. Recruited neutrophils recognize/integrate the unique patterns of danger molecule secreted by pathogens or the host and initiate immune cascades (1, 2). Neutrophils can eliminate extracellular pathogens or debris with phagocytic activity while releasing pro/anti-inflammatory cytokines and redox/cytotoxic molecules (3), therefore can present a ‘blueprint’ of further immune responses. Although the functional roles of neutrophils have been investigated well in innate immunity, the heritage of immune response after neutrophil action is now getting attention to understand the following innate/adaptive immune activation (2). The excessive activation of neutrophils can threaten the homeostasis of the host immune/organ system and paradoxically induce immune paralysis during the progress of sepsis and tumors (1, 2). Moreover, recent studies demonstrated the possibility of neutrophil response and death in the pathogenesis of chronic inflammation and autoimmune disease (2, 4, 5), proving the notion that neutrophils are not just a part of innate immune system. In this review, we briefly overview the functions of neutrophils and their generation by focusing on the roles of neutrophils as modulators of the entire immune response.

NEUTROPHIL-TRIGGERED INFLAMMATORY CASCADES

Neutrophils, the most abundant innate immune cells in blood stream patrol and surveil the inflammatory signs of the mammalian body (5-7). Depletion or defects of neutrophil function raises susceptibility to infection, especially opportunistic bacterial infection, demonstrating the important role of neutrophils for host defense (8). When epithelial cells or tissue-resident immune cells detect pathogen-associated molecular patterns (PAMPs) or host-derived danger-associated molecular patterns (DAMPs), they secrete alert signals and chemokines, making the inflammatory environment (2, 3). As the frontline unit of innate immune cells, neutrophils can recognize host- or bacteria-derived danger molecules and migrate into inflamed sites to block expansion of infection and inflammation (7, 9, 10) (Fig. 1A-D). When migrated neutrophils encounter pathogens, they may estimate the required number of neutrophils for pathogen exclusion with distinct reactive oxygen species (ROS) generation and secretion of IL-1β and chemokines (CXCL1 and CXCL2) (11). Recruited neutrophils, which undergo G protein-coupled receptor kinase 2 (GRK2)-dependent internalization of CXCR2, can surround and swarm around pathogens to prevent their escape, preparing initial immune responses (10, 12). Neutrophils can ingest (phagocytosis) and subsequently eliminate bacterial/fungal pathogens or host-derived particles, while selectively opening (closing) their azurophil, specific, or gelatinase granules and context-dependent cytokines based on complex
Neutrophils in immune regulation
Mingyu Lee, et al.

Fig. 1. Function of neutrophils and their generation (granulopoiesis). Neutrophils circulate and detect inflammatory cues. (A) Because of their short lifespan, neutrophils are continuously generated in the bone marrow of the hematopoietic system by granulopoiesis. (B) When they detect alert signals from inflamed tissue, neutrophils migrate into inflamed sites and initiate immune activation. (C) Sensing the size of pathogens by means of dectin-1, non-TLR pattern recognition receptor, and distinct generation of reactive oxygen species (ROS), neutrophils may surround pathogens (swarming), prey on them (phagocytosis), or project a sticky neutrophil extracellular trap (NET), while secreting context-dependent cytokines and granules (degranulation). (D, E) Self-immolation of neutrophils (D) and immune activation of other monocytes and macrophages (Mø) increases production of IL-6, G-CSF, and GM-CSF, which in turn stimulate emergency neutrophil generation in the bone marrow (granulopoiesis) (E) and spleen (not shown). The context and signaling cues given for granulopoiesis affect the heterogeneity of newly generated neutrophils (trained granulopoiesis).

signaling of pattern-recognition receptors (PRRs) and antibody-Fc receptor (2, 3, 13). During the process, neutrophils recognize and check the possibility of phagocytosis with dectin-1 (a non-TLR PRR), integrin Mac-1 (CD11b/CD18), and environmental cues (13-15). If the plan is frustrated, they are instructed to project lattice structures containing DNA and histone called a neutrophil extracellular trap (NET) and/or request the reinforce-ment of NE by activated phagosome attenuates translocation of NE to the nucleus and subsequently inhibits NET formation (14). Previously, we demonstrated the functional role of phospholipase D2 (PLD2), which catalyzes phosphatidylcholine-specific hydrolysis of phospholipids, in neutrophils for bacterial control during experimental sepsis. Inhibition of the PLD2 enzymatic activity or PLD2 knockout in neutrophils can attenuate GRK2-mediated CXCR2 internalization in an LPS-stimulated condition and an experimental mouse sepsis model (18). With GRK2-dependent CXCR2 internalization, neutrophils can self-limit and stand around the pathogens (swarming) and therefore can arrest pathogen movements (12). Damaged tissues and bacterial movement or swarming can cause changes in osmolarity, which can attract leukocytes to patrol to these sites (19, 20). Membrane tension increased by osmotic pressure can lead to the interaction of the PLD2-mammalian target of rapamycin complex 2 (mTORC2), and the PLD2-mTORC2 complex can inhibit actin assembly during neutrophil mobilization (21). PLD2 does not affect the phagocytic activity of neutrophils, but Pld2 deficiency significantly augmented NET and subsequently increased bactericidal effects with increased PAD activity (18), collectively showing the sequential and crucial roles of neutrophils in host defense.

GENERATION OF ACQUIRED (TRAINED) NEUTROPHILS

While circulating neutrophils migrate into inflamed sites and ignite their short lives, new neutrophils are continually generated in bone marrow to replace their former fellows via granulopoiesis. Because of their relatively short lifespan (a few hours to a few days), neutrophils need to be generated from hematopoietic stem cells consistently at steady-state (normal granulopoiesis), and the hematopoietic system can rapidly adapt to hematopoietic stress and external environmental cues and produce the white blood cells needed urgently to deal with an call like infection (emergency granulopoiesis for neutrophils) (Fig. 1D, E) (22-24). Granulocyte colony-stimulating factor (G-CSF) is the main growth factor for granulopoiesis, and β-catenin-T-cell factor/lymphoid enhancer-binding factor-mediated signaling maintains neutrophil maturation during normal/emergency granulo-poiesis by increasing G-CSF receptor expression (25). Pathogenic bacterial infection can interfere with the expression or...
stability of Wnt/β-catenin-mediated signaling, which can promote granulopoiesis, to avoid or use the host defense system (25, 26). On the other hand, inflammatory cascade can induce secretion of G-CSF, IL-6, and granulocyte-macrophage colony-stimulating factor, which can stimulate emergency granulopoiesis in bone marrow (medullary) and spleen (extramedullary, in the emergency state) (1, 27). These results suggest that there is a competition between pathogens and innate immune cells for the host reinforcement system. When the hematopoietic system detects this pathogen-triggered hematopoietic stress and increased cytokines, the hematopoietic system of bone marrow and spleen rapidly switch the main transcription factor for granulopoiesis from CCAAT/enhancer-binding protein (CEBPα to CEBPB), the master transcription factors for the steady and emergency states, respectively (1). Patterns of degraded or leaked proteins/peptides like N-formyl-peptides produced by the inflamed/damaged host cells or bacteria can be detected by formyl peptide receptor like FPR2 and trigger emergency granulopoiesis. Blocking or deficiency of Fpr2 attenuates sepsis-induced neutrophil generation, and sole administration of an FPR2 ligand (WKYMVm) can be enough to induce granulopoiesis by increasing c-kit+sca-1 granulocyte-macrophage progenitor cells in a phospholipase C-dependent manner (28). Likewise, activation of FPR can prevent sepsis-induced mortality by increased H2O2 production of neutrophil and secretion of IFN-γ and IL-17a (29), the last of which can be secreted by IL-6/IL-23-exposed RORγt+ neutrophils, increase its bactericidal/anti-fungal activity (30, 31), and trigger IL-23/IL-17a-G-CSF axis-mediated granulopoiesis in bone marrow (32). Hence the hematopoietic system can detect molecular patterns and initiate generation of neutrophils. Several lines of study suggest that the properties of generated neutrophils are not constant; instead, the cells acquire lifelong functional modification, which is now called ‘trained immunity’ (33). The functions of trained neutrophil can be heterogeneous and context-dependent, which favor pro- or anti-inflammatory response in inflamed sites; for instance, β-glucan/type 1 interferon-trained neutrophils (N1 neutrophil) can drive anti-tumor activities with increased ROS production and T-cell stimulatory ligands (34, 35); meanwhile, prolonged G-CSF/GM-CSF-exposed (trained) neutrophils (N2 neutrophils) from bone marrow and spleen can drive pro-tumor immune responses (35-37) with increased angiogenetic molecules (VEGF, MMP-9) and T-cell suppressive ROS and arginase, the last two of which increase the ratio of Treg/cytotoxic CD8 T cells (35, 38, 39). Infection by bacteria (for example, M. tuberculosis) can change of microbiota can reprogram long-lasting myelopoiesis (40-43). Change of cytokine-sphingolipid signaling and subsequent lipid metabolism can affect the rate of myelopoiesis and differentiation of neutrophils with autophagy modulation (44-46). Likewise, Bacillus Calmette-Guérin (BCG) vaccination against tuberculosis can trigger epigenetic modification of neutrophils (genome-wide trimethylation at H3K4) and induce a phenotype change of generated neutrophils with increased maturation surface marker (CD10, CD15, and CD16) and activation marker (CD11b, CD66b) while decreasing CD62L (l-selectin) and PD-1; these ‘trained’ neutrophil shows improved bactericidal and anti-fungal activity, but NET formation is not affected (47). Administration of 4-phenyl butyric acid, a peroxisomal stress-reducing agent and inhibitor of histone deactetylase, can potentially educate a small subpopulation of CD200R+CD86+ but low CD177 (neutrophil exhaustion marker) pro-resolving (increased resolvin D1 (RvD1)/SerpinB1, reduced TNF-α) neutrophils with increased bactericidal activity (48). These studies indicate that, although the lifespan of neutrophils is relatively short, entrained by extrinsic cues with epigenetic modification from the immature stage (granulopoiesis) (23), neutrophils can be heterogeneous and ‘the giver’ of memory that guides the direction of further immune cascades. Interestingly, BCG vaccination of humans in the morning but not evening (circadian rhythm) can influence ‘long-term’ trained immunity of neutrophils (49). The interrelation between Bmal-1-dependent TLR17 (not TLR4 and TLR9) development (in spleen and small intestine) and daily generation/oscillation of neutrophils (in bone marrow) (23, 49) suggests that trained granulopoiesis also can be affected by systemic TLR17 activation and vice versa; that can explain the functional role of gut microbiota in regulating the generation/priming of neutrophils and why some neutrophils migrate into the intestine to control IL-23/IL-17-mediated G-CSF production (42, 50, 51). However, details of the immunological roles of trained granulopoiesis in generating TLR17 and identification of specific gut microbiota involved in trained immunity need to be deeply explored to understand the patho-mechanism of chronic inflammatory disease.

PROGRAMED NEUTROPHIL APOPTOSIS AND INITIATION OF RESOLUTION

Neutrophil-mediated inflammatory responses end with apoptosis of the cells within inflamed sites, and some of the neutrophils reverse migrate to the lungs, the liver, the spleen, and the bone marrow, and then accept their programmed cell death, which is critical for initiation of resolution (Fig. 2A-E) (32, 52, 53). Professional or non-professional phagocytic cells recognize the surface antigen (eat-me signal, phosphatidylserine) of apoptotic neutrophils and remove the debris of immune cascades via efferocytosis, restoring normal tissue/immune homeostasis (54). Macrophages are professional efferocytic cells that remove apoptotic neutrophils and neutrophil-derived NET (55). Engulfment of cellular debris from the apoptotic body or NET component can modulate intracellular machineries and metabolism of macrophages and regulate proliferation and phenotype change of efferocytes, accelerating tissue resolution (36, 57). During the efferocytic process, interaction between macrophage-derived developmental endothelial locus-1 and integrins (LFA-1, CD11a/CD18; and Mac-1) of the apoptotic body can increase the clearance of apoptotic neutrophils and subsequent immune resolution, which in turn induces production of specialized pro-resolving mediators, such as RvD1 and lipoxin A4 (LXA4) in

http://bmbreports.org

BMB Reports 475
FRUSTRATED RESOLUTION AND NEUTROPHIL-MEDIATED CHRONIC INFLAMMATION

Recently, accumulating evidence suggests that defects in apoptotic progress of neutrophils and frustrated efferocytosis are closely related to chronic/systemic inflammation, and that neutrophils can carry phagocytic antigen and directly guide lymphocyte migration (as trail) and activation (Fig. 3A-C) (54, 80-84). Neutrophils can exhibit MHC and co-stimulatory molecules by localizing in peripheral tissue (lung) and being exposed to inflammatory cues like immune complex-mediated Fc receptor signaling, G-CSF, and GM-CSF (6, 83). The maturation state (CD10+1) of neutrophils can present opposite effects on T cells, and trained granulopoiesis (after BCG vaccination) can tune the ratio of mature and immature neutrophils; mature CD10+ CD66b+ neutrophils display an activated phenotype, but inhibit proliferation and production of IFN-γ of T cells, whereas immature (CD10−1) neutrophils sustain T-cell survival and increase proliferation and IFN-γ production (47, 82). Besides types of pathogens, developmental stage (immature, mature, or aged), activation state of neutrophils, and external cues of inflamed sites can shape the response of neutrophils with distinct transcriptional activities, and vice versa (23, 77). An interesting aspect of macrophage-mediated efferocytosis is that, if an apoptotic cell was not infected, this process does not load lysosomal particles to MHC and therefore can modulate antigen presentation to lymphocytes, removing inflammatory stimuli silently and attenuating systemic adaptive immune activation (54). However, failure to silence inflammatory cues (or evasion of pathogens from bacterial action of neutrophils after phagocytosis) and/or defect of efferocytosis; subsequently neglected dead bodies can induce a form of programmed cell death called necrosis (secondary necrosis) (84, 85). Bursting out inflammatory molecules and bacterial components can trigger serial pro-inflammatory

macrophages (32, 58). As a positive feedback loop, RvD1 can limit LPS/arachidonic-acid-induced inflammatory cues while promoting the conversion of M2-macrophages (alternative activated) by switching production of proinflammatory leukotriene B4 to LXA4 and upregulating TGF-β (59-62). Produced LXA4 can sustain viability of macrophages against pathophysiological apoptotic cues by increasing Bcl2 via PI3K/Akt and ERK/Nrf-2 pathways and assist M2 macrophage polarization via the FPR2-RAR5/4 axis, accelerating the removal of apoptotic neutrophils (63-65). Likewise, complement protein C1q binds to apoptotic neutrophils and facilitates opsonization of NETs. Macrophages can also clear away apoptotic cells and C1q-opsonized NETs (55). Meanwhile, C1q can induce polarization of alternatively activated M2 macrophages in a MafB-dependent manner with increased type I IFN, IL-27, and IL-10 production, while attenuating inflammasome activation (66-68). Especially, efferocytosis of apoptotic (reverse migrated) neutrophils in bone marrow decreases IL-23/IL-17a-G-CSF axis and restores normal state of granulopoiesis.

but not IL-10R (no WSXWS motif, class II receptor) (69-72), thereby restraining the emergency preparedness and reinforcement of neutrophils. C1q bound to apoptotic cells also can modulate checkpoint ligand/receptor of dendritic cells (DC) (PD-L1, CD86) and macrophages (PD-L1/2, CD40) (73). These tolerogenic antigen-presenting cells (APCs) can migrate from inflamed sites into lymphatic drains and lymph nodes and induce Treg cells and T regulatory type 1 (Tr1) cells, which are crucial for initial and long-term peripheral tolerance (infectious tolerance), respectively (74, 75). Neutrophils can respond and adapt to the migrated circumstance with transcriptional modification (6, 76, 77). Treg/IL-10 educated neutrophils become IL-10-producing and later apoptotic, assisting repair of damaged tissue by transferring preexisting matrix and fueling repair activities of other immune cells, such as monocytes, macrophages, and type 3 innate lymphoid cells (53, 76, 78, 79). Taken together, neutrophils are not limited to regulating inflammation in inflamed sites, but can also act as pioneers of systemic immune regulators.
responses of inflamed sites, and inflammatory cytokines such as IL-6, IL-8, IFN-α, and GM-CSF, can prolong the lifespan of neutrophils that should have undergone ‘silent’ apoptosis, by modulating PI3K-Akt signaling and Bcl2 (Bcl-x for neutrophil); Bcl2 can block Bax-mediated release of cytochrome c and therefore attenuate caspase-dependent cell death (86, 87). Although induced Bcl2 in neutrophils does not affect the phagocytic activity of macrophages (88), exposure of pathogen- or host-derived inflammatory cues, such as IL-8, LPS, HMGB1, and S1P, can change the death of neutrophils from apoptosis to ferroptosis and NETosis, which are the main drivers of chronic and systemic autoimmunity (4, 17, 87, 89). HMGB1 released from ferroptotic cells can be taken by phagocytic macrophages to accumulate iron inside the cells, activating M1 macrophages, which then increase production of IL-6, TNF-α, and IL-1β (90). In addition, NET and its component HMGB1 can promote caspase-1-dependent macrophage pyroptosis, another form of cell death, which releases AIM2 inflammasome-mediated IL-1β and accelerates inflammatory cascades while blocking macrophage-mediated effector cytokine production with opsonin-related defects (91, 92). The DNA of NET can be recognized by the TLR of macrophages, which phagocytose NETs and NETs do not transfer into phagosome but reside in cytosol; DNA and enzymatic activity of NE from NET stimulate the cyclic GMP-AMP synthase (GAS)-stimulator of interferon genes (STING) pathway that induces type I IFN production and subsequently necroptosis and senescence of macrophages (93, 94). Moreover, the cGAS-STING pathway can turn on an anti-proliferative program and induce Bax-mediated cell death of macrophages, which can counteract the proliferation and effecatory activity of, but promote macrophage-mediated inflammation (57, 93, 95). Whereas the effecytosis of DC leads to tolerogenic immature DC with low costimulatory checkpoint ligands, activated neutrophils can recall and directly cluster with DCs, the most potent APC for T lymphocytes, through DC-SIGN and Mac-1, and can mediate maturation of DC, providing TNF-α and other cytokines and granule components (73, 96, 97). Moreover, NET components can drive DC activation to produce type I interferon, and DC can take some NET components as antigens, which may lead to autologous lymphocyte activation (87, 98). Enriched neutrophils in synovial fluid and delayed neutrophil apoptosis in joints may explain the increase of double-stranded DNA and anti-citrullinated antibodies of rheumatoid disease patients (99). Collectively, these facts suggest that neutrophils are crucial immune modulators that affect overall immune response.

CONCLUSION

The functions of neutrophils, the most abundant in the circulation and crucial innate immune cells in host defense, are now getting attention for understanding their following innate/adaptive immune cascades. As a frontline unit of non-specific innate immune responses, the research of neutrophils was focused on migration, detection, and removal of pathogens and damaged host cells (1, 2). However, accumulating evidence suggests that the immunological functions of neutrophil are not limited to initial immune responses. Neutrophils can educate other innate immune cells, such as monocytes, macrophages, and DCs, guiding the direction of immune cascades with production of cytokines and granules and presenting their dead bodies as immune context (3, 32, 52, 53, 93, 94). Moreover, neutrophils directly/indirectly activate lymphocytes, which may aggravate the progress of chronic and autoimmune disease by presenting a source of auto-antigens (4, 17, 87, 89). On the other hand, programmed apoptosis of neutrophils initiates immune modulatory phenotype changes of macrophages and DCs as effecytosis, which can induce tolerogenic APCs that induce immune suppressive Treg and Tr1 (32, 54, 58). Therefore, it is now accepted that excessive activation, dysfunction, or malfunction of neutrophils is closely related to pathogenesis and progression of disease. Hence neutrophils are emerging therapeutic targets for human disease (2, 5). However, further investigations of the roles of trained granulopoiesis and epigenetically modified neutrophils in immune cascades are needed. We hope the gradual progress in the analysis of trained granulopoiesis and heterogeneous neutrophils may lead to further understanding of peripheral tolerance and immune activation.

ACKNOWLEDGEMENTS

This study was supported by the Basic Science Research Program Planning through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2020R3F3A3038435, NRF-2021R1A2C3011228, NRF-2017R1A5A1014560), and by a grant of the Korea
CONFLICTS OF INTEREST

The authors have no conflicting interests.

REFERENCES

1. Yvan-Charvet L and Ng LG (2019) Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol 40, 598-612
2. Németh T, Sperandio M and Mócsai A (2020) Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 19, 253-275
3. Cassatella MA, Östberg NK, Tamassia N and Soehnlein O (2019) Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol 40, 648-664
4. Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18, 134-147
5. Liew PX and Kubes P (2019) The neutrophil’s role during health and disease. Physiol Rev 99, 1223-1248
6. Bae GH, Kim YS, Park JY et al (2022) Unique characteristics of lung resident neutrophils are maintained by PGE2/PKA/Tgm2-mediated signaling. Blood 140, 889-899
7. Kolaczkowska E and Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13, 159-175
8. Dinauer MC (2019) Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 133, 2130-2139
9. Thanabalasuriar A, Scott BNV, Peiseler M et al (2019) Neutrophil extracellular traps confine pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe 25, 526-536.e524
10. Hopke A, Scherer A, Kreuzburg S et al (2020) Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat Commun 11, 2031
11. Warnatsch A, Tsourouktsoglou T-D, Branzk N et al (2017) Neutrophil extracellular traps confine pseudomonas aeruginosa growth factor to central mediator of tissue inflammation. Nat Commun 8, 2574-2587
12. Silva-Garcia O, Valdez-Alarcón JJ and Baizabal-Aguirre VM (2019) Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Front Immunol 10, 2135
13. Becher B, Tugues S and Greter M (2014) GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963-973
14. Kim HS, Park MV, Lee SK, Park JS, Lee HY and Bae YS (2018) Activation of formyl peptide receptor 2 by WAKY/Mv enhances emergency granulopoiesis through phospholipase C activity. BMB Rep 51, 418-423
15. Kim SD, Kim Y-K, Lee HY et al (2010) The agonists of formyl peptide receptors prevent development of severe sepsis after microbial infection. J Immunol Res 185, 4302-4310
16. Freitas A, Alves-Filho JC, Victoni T et al (2009) IL-17 receptor signaling is required to control polymicrobial sepsis. J Immunol 182, 7846-7854
17. Taylor PR, Roy S, Leal SM et al (2014) Activation of neutrophils by autocrine IL-17A/IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and A20. Nat Immunol 15, 143-151
18. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS and Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285-294
19. Netea MG, Dominguez-Andrés J, Barreiro LB et al (2020) Innate immune training of granulopoiesis promotes anti-phage killing of bacterial pathogens. Sci Adv 7, eabj2101
20. Lee SK, Kim SD, Kook M et al (2015) Phospholipase D2 drives mortality in sepsis by inhibiting neutrophil extracellular trap formation and down-regulating CXCR2. J Exp Med 212, 1381-1390
21. Enyedi B, Kala S, Nikolic-Zugich T and Niethammer P (2013) Tissue damage detection by osmotic surveillance. Nat Cell Biol 15, 1123-1130
22. Ping L, Wu Y, Hosu BG, Tang JX and Berg HC (2014) Osmotic pressure in a bacterial swarm. Biophys J 107, 871-878
23. Schwartzman J, Schlosser S, Swanson K et al (2021) Neutrophil extracellular traps enhance macrophage training and function. J Immunol 207, 3388-3399
24. Boettcher S, Gerosa RC, Radpour R et al (2014) Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124, 1393-1403
25. Danek P, Kardosova M, Janeckova L et al (2020) β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood 136, 2574-2587
26. Silva-Garcia O, Valdez-Alarcón JJ and Baizabal-Aguirre VM (2019) Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Front Immunol 10, 2135
27. Becher B, Tugues S and Greter M (2016) GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963-973
28. Kim HS, Park MV, Lee SK, Park JS, Lee HY and Bae YS (2018) Activation of formyl peptide receptor 2 by WAKY/Mv enhances emergency granulopoiesis through phospholipase C activity. BMB Rep 51, 418-423
29. Kim SD, Kim Y-K, Lee HY et al (2010) The agonists of formyl peptide receptors prevent development of severe sepsis after microbial infection. J Immunol Res 185, 4302-4310
30. Freitas A, Alves-Filho JC, Victoni T et al (2009) IL-17 receptor signaling is required to control polymicrobial sepsis. J Immunol 182, 7846-7854
31. Taylor PR, Roy S, Leal SM et al (2014) Activation of neutrophils by autocrine IL-17A/IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and A20. Nat Immunol 15, 143-151
32. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS and Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285-294
33. Netea MG, Dominguez-Andrés J, Barreiro LB et al (2020) Innate immune training of granulopoiesis promotes anti-phage killing of bacterial pathogens. Sci Adv 7, eabj2101
34. Schwartzman J, Schlosser S, Swanson K et al (2021) Neutrophil extracellular traps enhance macrophage training and function. J Immunol 207, 3388-3399
35. Schwartzman J, Schlosser S, Swanson K et al (2021) Neutrophil extracellular traps enhance macrophage training and function. J Immunol 207, 3388-3399
tumor activity. Cell 183, 771-785 e712
35. Kalafati L, Mitroulis I, Verginis P, Chavakis T and Kourtzelis I (2020) Neutrophils as orchestrators in tumor development and metastasis formation. Front Oncol 10, 581457
36. Cortez-Retamozo V, Etzrodt M, Newton A et al (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 109, 2491-2496
37. Casbon AJ, Reynaud D, Park C et al (2015) Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 112, E566-575
38. Grzywa TM, Sosnowska A, Matryba P et al (2020) Myeloid cell-derived arginase in cancer immune response. Front immunol 11, 938
39. Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L and Quigley JP (2014) Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 16, 771-778
40. Khan N, Downey J, Sanz J et al (2020) M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell 183, 752-770 e722
41. Ebata KO, Hashimoto D, Takahashi S, Hayase E, Ogasa-wara R and Teshima T (2017) Intestinal microbiota play a critical role in neutrophil engrafment posttransplant and recovery after chemotherapy by stimulating T cell Production of IL-17A. Blood 130, 3166
42. Balmer ML, Schürch CM, Saito Y et al (2014) Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol Res 193, 5273-5283
43. Khostravi A, Yañez A, Price Jeremy G et al (2014) Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374-381
44. Orsini M, Chateauvieux S, Rhim J et al (2019) Sphingo-lipid-mediated inflammatory signaling leading to autophagy inhibition converts erythropoiesis to myelopoiesis in human hematopoietic stem/progenitor cells. Cell Death Differ 26, 1796-1812
45. Riffelmacher T, Clarke A, Richter FC et al (2017) Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity 47, 466-480 e465
46. Rožman S, Yousafi S, Oberson K, Kaufmann T, Benarafa C and Simon HU (2015) The generation of neutrophils in the bone marrow is controlled by autophagy. Cell Death Differ 22, 445-456
47. Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J et al (2020) BCG vaccination induces long-term functional reprogramm-ing of human neutrophils. Cell Rep 33, 108387
48. Lin R, Yi Z, Wang J, Geng S and Li L (2022) Generation of resolving memory neutrophils through pharmacological training with 4-PBA or genetic deletion of TRAM. Cell Death Differ 13, 345
49. de Bree LCJ, Mourits VP, Koeken VA et al (2020) Circadian rhythm influences induction of trained immunity by BCG vaccination. J Clin Invest 130, 5603-5617
50. Casanova-Acebes M, Nicolás-Avila JA, Li JL et al (2018) Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med 215, 2778-2795
51. Zhang D and Fenrette PS (2019) Cross talk between neutrophils and the microbiota. Blood 133, 2168-2177
52. Rankin SM (2010) The bone marrow: a site of neutrophil clearance. J Leukoc Biol 88, 241-251
53. Wang J, Hossain M, Thanabalasurui A, Gunzer M, Meininger C and Kubes P (2017) Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111-116
54. Doran AC, Yurdagul A and Tabas I (2020) Efferocytosis in health and disease. Nat Rev Immunol 20, 254-267
55. Farrera C and Fadeel B (2013) Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191, 2647-2656
56. Amponah PB, Cai B, Sulka SR et al (2022) Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat Metab 4, 444-457
57. Gerlach BD, Amponah PB, Yurdagul A Jr et al (2021) Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab 33, 2445-2463 e2448
58. Kourtzelis I, Li X, Mitroulis I et al (2019) DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol 20, 40-49
59. Schmid M, Gumperle C, Rimann N and Hersberger M (2016) Resolvin D1 polarizes primary human macrophages toward a proresolution phenotype through GPR32. J Immunol 196, 3429-3437
60. Fredman G, Özcan L, Spolitu S et al (2014) Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc Natl Acad Sci U.S.A 111, 14530-14535
61. Amardottir H, Thul S, Pawelzik SC et al (2021) The resolution D1 receptor GPR32 transduces inflammation resolution and atheroprotection. J Clin Invest 131, e142883
62. Luo B, Han F, Xu K et al (2016) Resolvin D1 Programs inflammation resolution by increasing TGF-β expression induced by dying cell clearance in experimental autoimmune neuritis. J Neurosci 36, 9590-9603
63. Yuan J, Lin F, Chen L et al (2022) Lipoxin A4 regulates M1/M2 macrophage polarization via FPR2-IRF pathway. Inflammopharmacology 30, 487-498
64. Prieto P, Cuenca J, Tráves P, Fernández-Velasco M, Martín-Sanz P and Bosca L (2010) Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ 17, 1179-1188
65. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N and Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164, 1663-1667
66. Son M, Porat A, He M et al (2016) C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 128, 2218-2228
67. Benoit ME, Clarke EV, Morgado P, Fraser DA and Tenner AJ (2012) Complement protein C1q directs macrophage polarization and limits inflammamson activity during the uptake of apoptotic cells. J Immunol 188, 5628-5639
68. Tran MTN, Hamada M, Jeon H et al (2017) MaD8 is a critical regulator of complement component C1q. Nat Commun 8, 1700

http://bmbreports.org

BMB Reports 479
Neutrophils in immune regulation

Mingyu Lee, et al.

69. Croker BA, Metcalf D, Robb L et al (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20, 153-165

70. Lee CK, Raz R, Gimenov R et al (2002) STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63-72

71. Hutchins AP, Diez D and Miranda-Saavedra D (2013) The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief Funct Genom 12, 489-498

72. Morris R, Kershaw NJ and Babon JJ (2018) The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 27, 1984-2009

73. Clarke EV, Weist BM, Walsh CM and Tenner AJ (2015) The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004-1019

74. Lewkowicz N, Mycko MP, Przygodzka P et al (2016) Induction of human IL-10-producing neutrophils by LPS-stimulated Treg cells and IL-10. Mucosal Immunol 9, 364-378

75. Khoyratty TE, Ai Z, Ballesteros I et al (2021) Distinct transcription factor networks control neutrophil-driven inflammation. Nat Immunol 22, 1093-1106

76. Wang X, Cai J, Lin B et al (2021) GPR34-mediated sensing of lyosphosphatidylserine released by apoptotic neutrophils activates type 3 innate lymphoid cells to mediate tissue repair. Science 349, aae4352

77. Fischer A, Wannemacher J, Christ S et al (2022) Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat Immunol 23, 518-531

78. Lim K, Hyun YM, Lambert-Emo K et al (2015) Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, aaa6692

79. Vono M, Lin A, Norrbay-Teblund A, Koup RA, Liang F and Löré K (2017) Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood 129, 1991-2001

80. Marini O, Costa S, Bevilacqua D et al (2017) Mature CD10+ and immature CD10- neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 129, 1343-1356

81. Mysores V, Cullere X, Mears J et al (2021) FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat Commun 12, 4791

82. Lu T, Kobayashi SD, Quinn MT and Deleo FR (2012) A NET outcome. Front Immunol 3, 365

83. Bedou S, Herold MJ and Strasser A (2020) Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 21, 678-695

84. Brosjan C and Oehler R (2020) The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov 6, 26

85. Liu P, Jiang M, Li K et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22, 1107-1117

86. Lagasse E and Weissman IL (1994) bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 179, 1047-1052

87. Zhao X, Yang L, Chang N et al (2020) Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis 11, 379

88. Yang Y, Wang Y, Guo L, Gao W, Tang T-L and Yan M (2022) Interaction between macrophages and ferroptosis. Cell Death Dis 13, 355

89. Chen K, Murao A, Arif A et al (2021) Inhibition of effrocytosis by extracellular CRP-induced neutrophil extracellular traps. J Immunol 206, 797-806

90. Chen L, Zhao Y, Lai D et al (2018) Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis 9, 597

91. Decout A, Katz JD, Venkatraman S and Ablasser A (2021) The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21, 548-569

92. Apel F, Andreeva L, Knackstedt LS et al (2021) The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal 14, eaax7942

93. Boada-Romero E, Martínez J, Heckmann BL and Green DR (2020) The clearance of dead cells by effrocytosis. Nat Rev Mol Cell Biol 21, 398-414

94. van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB and van Kooyk Y (2005) Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 201, 1281-1292

95. Steinman RM, Turley S, Mellman I and Inaba K (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191, 411-416

96. Sangaletti S, Tripodo C, Chiodoni C et al (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120, 3007-3018

97. Fresneda Alarcon M, McLaren Z and Wright HL (2021) Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same foe different M.O. Front Immunol 12, 649693