Adenovirus-mediated Gene Transfer of cGMP-dependent Protein Kinase Increases the Sensitivity of Cultured Vascular Smooth Muscle Cells to the Antiproliferative and Pro-apoptotic Effects of Nitric Oxide/cGMP

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Chiche, Jean-Daniel, Stacy M. Schlutsmeyer, Donald B. Bloch, Suzanne M. de la Monte, Jesse D. Roberts Jr., Galina Filippov, Stefan P. Janssens, Anthony Rosenzweig, and Kenneth D. Bloch. 1998. “Adenovirus-Mediated Gene Transfer of cGMP-Dependent Protein Kinase Increases the Sensitivity of Cultured Vascular Smooth Muscle Cells to the Antiproliferative and Pro-Apoptotic Effects of Nitric Oxide/cGMP.” Journal of Biological Chemistry 273 (51). American Society for Biochemistry & Molecular Biology (ASBMB): 34263–71. doi:10.1074/jbc.273.51.34263.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41555778

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Adenovirus-mediated Gene Transfer of cGMP-dependent Protein Kinase Increases the Sensitivity of Cultured Vascular Smooth Muscle Cells to the Antiproliferative and Pro-apoptotic Effects of Nitric Oxide/cGMP*

(Received for publication, August 17, 1998)

Jean-Daniel Chiche,a,b,c,d Stacy M. Schlutsmeyer,b Donald B. Bloch,* Suzanne M. de la Monte,f Jesse D. Roberts, Jr.,a,b Galina Filippov,b Stefan P. Janssens,e Anthony Rosenzweig,b,h and Kenneth D. Bloch,b,h,i,j

From the aDepartment of Anesthesia and Critical Care, the bCardiovascular Research Center, the cCardiology Division, the dArthritis Unit, and the eMolecular Hepatology Division of the General Medical Services, Massachusetts General Hospital and the Departments of fAnesthesia and iMedicine, Harvard Medical School, Charlestown, Massachusetts 02129 and the jCenter for Transgene Technology and Gene Therapy, University of Leuven, B-3000 Leuven, Belgium

The endothelium plays a pivotal role in the regulation of vascular tone, the prevention of thrombosis, and the modulation of adhesive interactions between inflammatory cells and the vessel wall. The endothelium modulates the functions of the subjacent vascular smooth muscle, in part, by producing active effector molecules, including angiotensin II, heparinoids, and nitric oxide (NO)1 (1, 2). Endothelial dysfunction is a shared process in the pathogenesis of vascular disorders, including atherosclerosis, neointima formation after angioplasty, and vascular remodeling associated with pulmonary or systemic hypertension (3). This dysfunction is associated with an alteration of the balance between cell growth and apoptosis and with dysregulation of cell-cell as well as cell-matrix interactions (1).

In addition to its role as an endothelium-derived relaxing factor (4), NO regulates platelet adhesion and aggregation (5, 6), leukocyte recruitment and activation (7), and cytokine-induced endothelial cell activation (8) as well as vascular smooth muscle cell (SMC) apoptosis (9–11), proliferation (12–14), and migration (15, 16). NO acts, in part, by stimulating soluble guanylate cyclase to produce the intracellular second messenger cGMP (17). cGMP activates cGMP-dependent protein kinase (PKG), leading to many of the effects of NO (18). The two isoforms of PKG detected in vascular smooth muscle (Iα and Iβ) share substrate-binding/catalytic domains, but differ in cGMP affinity (19, 20).

The effects of NO on vascular SMC proliferation have been extensively investigated. Although several studies established that NO decreases proliferation of vascular SMC stimulated with various mitogens (12–14, 21–26), the molecular mechanisms responsible for this effect are incompletely characterized. In most studies, the antiproliferative effect of NO on SMC was mediated via a cGMP-dependent mechanism (12–14, 21–23). Recently, Yu et al. (21) observed that cGMP-elevating agents decreased DNA synthesis and proliferation of epidermal growth factor-stimulated vascular SMC. The effects of cGMP on both DNA synthesis and cell proliferation were inhibited by the selective PKG inhibitor KT5823 (21). These results differ from those of Cornwell et al. (24), who reported that NO and cGMP inhibited proliferation of cultured rat aortic SMC (RASMC) via a mechanism mediated by cAMP-dependent protein kinase (PKA) and not by PKG.

The abbreviations used are: NO, nitric oxide; SMC, smooth muscle cell(s); PKG, cGMP-dependent protein kinase; PKA, cAMP-dependent protein kinase; RASMC, rat aortic smooth muscle cell(s); RPαSMC, rat pulmonary artery smooth muscle cell(s); GSNO, S-nitrosoglutathione; pfu, plaque-forming unit(s); m.o.i., multiplicity(ies) of infection; PBS, phosphate-buffered saline; cAMP-S, adenosine cyclic 3’5’-phosphorothioate.

* This work was supported by grants from the Massachusetts Biomedical Research Corp. and the Phillippe Foundation (to J.-D. C.); by an Arthritis Investigator award from the Arthritis Foundation (to D. B. B.); and by National Institutes of Health Grants AR-01866 and DK-51179 (to D. B. B.), Grant AA-10102 (to S. M. d. l. M.), Grants HL-54292, HL-58521, and AI-40970 (to A. B.), and Grant HL-55377 (to K. D. B.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Cardiovascular Research Center, Massachusetts General Hospital-East, 149 13th St., Charlestown, MA 02129. Tel.: 617-724-9541; Fax: 617-726-5806; E-mail: chiche@etherdome.mgh.harvard.edu.

‡ Established Investigator of the American Heart Association.

Studies in vitro have underestimated the importance of cGMP-dependent protein kinase (PKG) in the modulation of vascular smooth muscle cell (SMC) proliferation and apoptosis in vivo. This is attributable, in part, to a rapid decline in PKG levels as vascular SMC are passaged in culture. We used a recombinant adenovirus encoding PKG (Ad.PKG) to augment kinase activity in cultured rat pulmonary artery SMC (RPαSMC). Incubation of Ad.PKG-infected RPαSMC (multiplicity of infection = 200) with 8-Br-cGMP decreased serum-stimulated DNA synthesis by 85% and cell proliferation at day 5 by 74%. The effect of 8-Br-cGMP on DNA synthesis in Ad.PKG-infected RPαSMC was blocked by KT5823 (PKG inhibitor), but not by KT5720 (cAMP-dependent protein kinase inhibitor). A nitric oxide (NO) donor compound, S-nitrosoglutathione, at concentrations as low as 100 nm, inhibited DNA synthesis in Ad.PKG-infected RPαSMC, but not in uninfected cells or in cells infected with a control adenovirus. In addition, 8-Br-cGMP and S-nitrosoglutathione induced apoptosis in serum-deprived RPαSMC infected with Ad.PKG, but not in uninfected cells or in cells infected with a control adenovirus. These results demonstrate that modulation of PKG levels in vascular SMC can alter the sensitivity of these cells to NO and cGMP. Moreover, these observations suggest an important role for PKG in the regulation of vascular SMC proliferation and apoptosis by NO and cGMP.
Similarly, the role of NO in the induction of the apoptotic cell death program has been extensively studied (9–11, 27–31). NO appears to be a bifunctional modulator of cell death capable of either inhibiting or stimulating apoptosis depending on the cell type and the concentration of NO applied. Several investigators reported that high concentrations of NO donor compounds induce apoptosis in vascular SMC (9–11, 27). However, experiments designed to determine the role of cGMP in the activation of programmed SMC death yielded conflicting results (9–11, 27).

Because PKG expression rapidly decreases as vascular SMC are passaged in culture (32, 33), the contribution of PKG to the modulation of vascular SMC proliferation and apoptotic SMC death, we used adenovirus-mediated gene transfer to increase PKG activity in cultured rat pulmonary artery SMC (RPaSMC). We report that augmentation of PKG activity in RPaSMC, using adenovirus-mediated gene transfer, inhibited proliferation induced by serum supplementation and increased apoptosis associated with serum deprivation. Moreover, PKG gene transfer increased the sensitivity of vascular SMC to the antiproliferative and pro-apoptotic effects of NO and cGMP.

Experimental Procedures

These investigations were approved by the Subcommittee for Research Animal Studies at the Massachusetts General Hospital.

Reagents

All chemicals were purchased from Sigma, except S-nitrosglutathione (GSNO), which was obtained from Alexis Corp. (San Diego, CA), and the protein kinase inhibitors KT5823 and KT5720, which were obtained from research products (Boston, MA), penicillin, and streptomycin. Cells were used between passages 3 and 10.

Cloning of a Human PKG cDNA

A polymerase chain reaction was performed to amplify a PKG cDNA from reverse-transcribed rat brain mRNA using degenerate oligonucleotides corresponding to amino acids 1–4 and 105–110 shared by bovine and human PKG-I isoforms: 5′-GGCGATCATGGACTACAAA-3′ and 5′-CGGATCTTATGATCTTGGAGA-3′ (34–36). The polymerase chain reaction product was ligated into pUC18, and its nucleotide sequence was determined. To obtain a human PKG-I cDNA, a Agt11 cDNA library prepared from human placenta (CLONTECH) was screened using a 32P-labeled probe hybridizing bacteriophage containing sequences identical to nucleotides 922–900 of the sequence for human PKG-I (36). This cDNA was used to re-screen the library, resulting in the isolation of a second cDNA insert containing sequences identical to amino acids 430–3740 of the human PKG-I sequence. The two inserts were ligated at NoI to produce a human PKG-I cDNA specifying the full-length protein. The PKG-I cDNA was subcloned into pRC/RSV (Invitrogen, San Diego, CA).

Construction of E1-deleted Recombinant Adenoviruses

The EcoRI-BglII restriction fragment of pRC/RSV.PKG was ligated into the NoI and BamHI sites of the vector pAd.RSV (kindly provided by Dr. B. Davidson, University of Iowa), which contains the Rous sarcoma virus long terminal repeat as a promoter and the SV40 polyadenylation signal, using a linker encoding the FLAG epitope (DYKDDDK) behind a translation start site (5′-GGCGATCATGGACTACAAA-GAGGATGAGCAGTCAAA-GAGGATGAGCAGCACA-3′ and 5′-ATTGTGCTGTCATGCTTGTGATGCTGATC-3′) (37). The resulting plasmid vector (pAd.RSV.PKG) was cotransfected into 293 cells with pJM17 (generously provided by Dr. F. Graham, McMaster University) (38). Homologous recombinants containing the PKG-I cDNA substituted for E1 were detected using RNA blot hybridization. The recombinant adenovirus Ad.PKG was expanded, purified, and titrated in 283 cells to 1010 plaque-forming units/mL. Ad.PKG was adsorbed to RPaSMC, using adenovirus-mediated gene transfer, inhibited proliferation induced by serum supplementation and increased apoptosis associated with serum deprivation. Moreover, PKG gene transfer increased the sensitivity of vascular SMC to the antiproliferative and pro-apoptotic effects of NO and cGMP.

**Immunoblotting—RPaSMC were plated at a concentration of 5 × 105 cells/dish in 60-mm culture dishes and infected with Ad.PKG using multiplications of infection (m.o.i.) ranging from 50 to 500 pfu/cell for 2 h. After removal of the virus suspension, cells were incubated for 48 h and then harvested in PEM buffer containing protease inhibitors (0.1 mM phenylmethyl sulfonyl fluoride, 10 μg/ml leupeptin, 10 μg/ml pepstatin A, and 5 μg/ml aprotinin), 2 mM EDTA, 15 mM 2-mercaptoethanol, and 20 mM KH2PO4, pH 6.8. The cell suspension was homogenized and centrifuged at 10,000 × g for 10 min at 4 °C. Supernatants of centrifuged cell extracts (15 μg) were fractionated by 8% SDS-polyacrylamide gel electrophoresis and electrophotochemically transferred to nitrocellulose filters. Membrane filters were visualized using an enhanced chemiluminescence kit (Amersham Pharmacia Biotech) and exposure to x-ray film.

**Immunocytochemistry—RPaSMC were plated on four-well chamber slides (Nalge Nunc International, Naperville, IL) and infected with Ad.PKG (m.o.i. = 50–500 pfu/cell). The virus suspension was removed 2 h after infection, and cells were incubated in RPMI 1640 medium with 0.1% NuSerum. After 1, 2, 3, 5, and 7 days, cells were fixed in 4% paraformaldehyde containing 5% sucrose for 20 min at room temperature. Cells were washed in PBS, treated with 1% SDS in PBS, washed in PBS, and incubated with 0.1% Triton X-100 in PBS. After washing in PBS, cells were incubated with the anti-FLAG M2 antibody in PBS (6 mg/ml) (Genosys Biotechnologies, Inc., Houston, TX) (1/1000 dilution) for 2 h at room temperature and subsequently with Cy3-conjugated anti-mouse IgG (Jackson Immunoresearch Laboratories, West Grove, PA) diluted 1:5000 in PBS/milk. Proteins were visualized using an enhanced chemiluminescence kit (Amersham Pharmacia Biotech) and exposure to x-ray film.

Detection of PKG Transgene Expression

**Immunoblotting—RPaSMC were plated at a concentration of 5 × 105 cells/dish in 60-mm culture dishes and infected with Ad.PKG using multiplications of infection (m.o.i.) ranging from 50 to 500 pfu/cell for 2 h. After removal of the virus suspension, cells were incubated for 48 h and then harvested in PEM buffer containing protease inhibitors (0.1 mM phenylmethyl sulfonyl fluoride, 10 μg/ml leupeptin, 10 μg/ml pepstatin A, and 5 μg/ml aprotinin), 2 mM EDTA, 15 mM 2-mercaptoethanol, and 20 mM KH2PO4, pH 6.8. The cell suspension was homogenized and centrifuged at 10,000 × g for 10 min at 4 °C. Supernatants of centrifuged cell extracts (15 μg) were fractionated by 8% SDS-polyacrylamide gel electrophoresis and electrophotochemically transferred to nitrocellulose filters. Membrane filters were visualized using an enhanced chemiluminescence kit (Amersham Pharmacia Biotech) and exposure to x-ray film.

**Immunocytochemistry—RPaSMC were plated on four-well chamber slides (Nalge Nunc International, Naperville, IL) and infected with Ad.PKG (m.o.i. = 50–500 pfu/cell). The virus suspension was removed 2 h after infection, and cells were incubated in RPMI 1640 medium with 0.1% NuSerum. After 1, 2, 3, 5, and 7 days, cells were fixed in 4% paraformaldehyde containing 5% sucrose for 20 min at room temperature. Cells were washed in PBS, treated with 1% SDS in PBS, washed in PBS, and incubated with 0.1% Triton X-100 in PBS. After washing in PBS, cells were incubated with the anti-FLAG M2 antibody in PBS (6 mg/ml) containing 1% bovine serum albumin (1 h at room temperature) and subsequently with Cy3-conjugated anti-mouse IgG (Jackson Immunoresearch Laboratories, West Grove, PA) diluted 1:5000 in PBS/milk. Proteins were visualized using an enhanced chemiluminescence kit (Amersham Pharmacia Biotech) and exposure to x-ray film.

Measuring PKG Enzyme Activity in SMC

To assess the biological activity of the transgene product, PKG enzyme activity was measured in RPaSMC infected with Ad.PKG using methods described previously (43). Briefly, 5 × 105 cells were infected with Ad.PKG (m.o.i. = 50–500 pfu/cell). After 48 h, cells were harvested and homogenized in 0.3 ml of PEM buffer before centrifugation at 10,000 × g for 10 min at 4 °C. After determination of the protein concentration in the cell homogenate by the Lowry assay (27), cell lysates (10 μl) of centrifuged cell extracts were assayed in a 50-μl reaction mixture containing 20 mM Tris, pH 7.4, 200 μM ATP, a custom-synthesized peptide RRKISEAEF (136 μg/ml) (Genosys Biotechnologies, Inc., The Woodlands, TX) (44), 20 mM MgCl2, 100 μM 3-isobutyl-1-methylxanthine, 1 μM (Rb) α-CAMP-8 (Biolog Life Science Institute, La Jolla, CA), and 30,000 cpm/ml [32P]ATP. Assays were conducted in the absence or presence of 10 μM cGMP at pH 7.4 and 30 °C. Activities of the supernatant fractions were terminated by transferring samples onto phosphocellulose P-81 paper (Whatman) and washing in 75 mM phosphoric acid. Papers were then washed once in ethanol and dried. Radiolabeled peptide bound to the phosphocellulose paper was quantitated by liquid scintillation spectrometry. PKG enzyme activity is expressed as nanomoles of peptide phosphorylated per min/mg of cell extract protein.
Measurement of [3H]Thymidine Incorporation

RPaSMC were plated in 96-well plates (10^3 cells/well) and infected with AdPKG or Ad.GFP (m.o.i. = 50–200 pfu/cell). After 2 h, the viral suspension was removed, and cells were incubated in RPMI 164 medium containing 0.1% NuSerum for 48 h to achieve a quiescent state. The culture medium was subsequently replaced with RPMI 164 medium containing 0.1% or 4% NuSerum supplemented with 8-Br-cGMP, GSNO, 8-Br-cAMP, KT5823, or KT5720 or combinations of these reagents. After 24 h, the media and reagents were replaced in each well, and [3H]thymidine (NEN Life Science Products) was added to a final concentration of 1 μCi/ml. After 12 h, cells were dissociated from the culture dishes using trypsin, and radiolabeled DNA was transferred to micro-glass-fiber filters (Cambridge Technology, Inc., Watertown, MA) using a FID cell harvester (Cambridge Technology Inc.). Filters were then washed and dried, and [3H]thymidine-labeled DNA was quantitated by liquid scintillation spectrometry. For each experiment, 8–12 wells were used for each experimental condition, and [3H]thymidine incorporation was measured in duplicate for each well.

Measurement of the Cell Proliferation Rate

RPaSMC were plated in six-well plates (2 × 10^4 cells/well) and infected with AdPKG or Ad.GFP (m.o.i. = 200 pfu/cell). The virus suspension was removed 2 h after infection, and cells were growth-arrested in RPMI 164 medium with 0.1% NuSerum for 48 h. Cells were then incubated in RPMI 164 medium containing 0.1% or 4% NuSerum in the absence or presence of 1 mM 8-Br-cGMP. For each experimental condition, cells from three wells were harvested, counted with a hemocytometer at days 0, 1, 2, 3, 4, and 5. Cell viability was assessed by trypan blue exclusion, and the number of cells floating in the culture medium was determined daily.

Nuclear Staining of Apoptotic Cells

The DNA-binding dye Hoechst H33258 was used to define nuclear chromatin morphology as a quantitative index of apoptosis within the cell culture system. RPaSMC were plated on four-well chamber slides (2 × 10^4 cells/well) and infected with AdPKG or Ad.GFP (m.o.i. = 200 pfu/cell). The virus suspension was removed 2 h after infection, and cells were incubated in RPMI 164 medium containing 0.1% NuSerum during 48 h. The culture medium was replaced and supplemented with 8-Br-cGMP, GSNO, or KT5823 or combinations of these reagents. After 24 h, cells were fixed in 4% paraformaldehyde containing 5% sucrose, washed in PBS, incubated in 95% ethanol (3 min), and stained with the DNA-binding dye Hoechst H33258 (1 μg/ml) before examination by fluorescence microscopy. To quantify apoptosis, 300 nuclei from each of five random microscopic fields were analyzed by an observer blinded to the treatment group. The percentage of apoptotic nuclei was calculated as the ratio of apoptotic nuclei to total nuclei.

Microscale Analysis of DNA Fragmentation

To analyze the pattern of DNA fragmentation, RPaSMC were cultured in 10-cm dishes (1 × 10^5 cells/dish), infected with AdPKG or Ad.GFP (m.o.i. = 200 pfu/cell), and incubated under low serum conditions. Forty-eight h after infection, the cells were rinsed with PBS and incubated in RPMI 164 medium containing 0.1% NuSerum in the absence or presence of 8-Br-cGMP (1 mM) for 24 h. Subsequently adherent cells were detached from the culture dishes with trypsin and pooled with cells floating in the supernatant. Cells were pelleted by centrifugation, washed in PBS, and incubated for 4 h at 37 °C in lysis buffer containing 100 mM Tris, pH 8.5, 5 mM EDTA, 0.2% SDS, 200 mM NaCl, and 0.1 mg/ml proteinase K. The genomic DNA was precipitated with 700 μl of isopropanol, washed in Tris/EDTA buffer, and extracted with phenol and chloroform before precipitation in the presence of 3 m sodium acetate and ethanol. After treatment with RNase (12.5 μg/ml for 1 h at 37 °C), DNA was quantitated by measuring the absorbance at 260 and 280 nm. DNA samples (1 μg) were subsequently labeled using [α-32P]dCTP and Exo−Klenow polymerase (Stratagene, La Jolla, CA) and fractionated by electrophoresis on 2% agarose gels. Gels were dried and subjected to autoradiography for 2 h at −70 °C.

Statistical Analysis

Each experiment was repeated a minimum of three times. Data are presented as the means ± S.D. Statistical analysis was performed by analysis of variance followed by Bonferroni’s t test for post hoc analysis. To compare the rate of proliferation of vascular SMC for each treatment group, logarithmic transformation of cell counts (n) was performed, and the slopes of the linear relationship fitting log(n) as a function of time (t) were compared using analysis of covariance. A value of p < 0.05 was considered significant.

RESULTS

AdPKG Infection Increases PKG Activity in Vascular SMC in Culture—To augment PKG enzyme activity in vascular SMC in culture, we used a replication-deficient recombinant adenovirus encoding the human PKG-β isomorph. A FLAG epitope was encoded at the amino terminus to facilitate transient detection. To determine whether increased levels of PKG protein could be achieved in cultured SMC using adenovirus-mediated gene transfer, RPaSMC were infected with increasing concentrations of AdPKG (m.o.i. = 50, 100, 200, and 500 pfu/cell) or with Ad.βgal (m.o.i. = 500 pfu/cell). Forty-eight h after infection, proteins in the soluble fraction of cell extracts were fractionated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose. The 80-kDa PKG transgene product, tagged with the FLAG epitope, was detected using a monoclonal antibody directed against the FLAG epitope, and the expression of the recombinant PKG protein was determined by liquid scintillation spectrometry. For each experiment, 8–12 wells were used for each experimental condition, and [3H]thymidine incorporation was measured in duplicate for each well.

AdPKG infection increases PKG levels and activity in cultured RPaSMC. Levels and enzyme activity of the PKG transgene product were measured in uninfected RPaSMC and in RPaSMC infected with increasing concentrations of AdPKG (m.o.i. = 50, 100, 200, and 500 pfu/cell), and Ad.βgal (m.o.i. = 500 pfu/cell). Forty-eight h after infection, proteins in the soluble fraction of cell extracts were fractionated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose. The 80-kDa PKG transgene product, tagged with the FLAG epitope, was detected using a monoclonal antibody directed against the FLAG epitope, and the expression of the recombinant PKG protein was measured by liquid scintillation spectrometry. Forty-eight h after infection, expression of PKG was detectable in cell extracts from RPaSMC infected at m.o.i. = 50 pfu/cell and increased in a m.o.i.-dependent manner (Fig. 1). The recombinant protein was detectable as early as 24 h, peaked at 48 h, and persisted for 7 days after infection (data not shown).

To confirm that the FLAG peptide did not interfere with the biological activity of the transgene product, PKG activity was measured in cell extracts from RPaSMC infected with AdPKG (m.o.i. = 0–500 pfu/cell). As shown in Fig. 1, adenovirus-mediated PKG gene transfer at m.o.i. = 100 resulted in a significant increase in basal PKG activity. cGMP-stimulated activity was markedly increased in cell extracts from RPaSMC infected at m.o.i. = 50. Transduction of RPaSMC with AdPKG increased PKG protein levels and enzyme activity in a m.o.i.-dependent manner. *, p < 0.05, differed from control cells incubated with or without cGMP; ‡, p < 0.05, cGMP-stimulated enzyme activity differed from basal enzyme activity.

Statistical Analysis

Each experiment was repeated a minimum of three times. Data are presented as the means ± S.D. Statistical analysis was performed by analysis of variance followed by Bonferroni’s t test for post hoc analysis. To compare the rate of proliferation of vascular SMC for each treatment group, logarithmic transformation of cell counts (n) was performed, and the slopes of the linear relationship fitting log(n) as a function of time (t) were compared using analysis of covariance. A value of p < 0.05 was considered significant.

RESULTS

AdPKG Infection Increases PKG Activity in Vascular SMC in Culture—To augment PKG enzyme activity in vascular SMC in culture, we used a replication-deficient recombinant adenovirus encoding the human PKG-β isomorph. A FLAG epitope was encoded at the amino terminus to facilitate transient detection. To determine whether increased levels of PKG protein could be achieved in cultured SMC using adenovirus-mediated gene transfer, RPaSMC were infected with increasing concentrations of AdPKG (m.o.i. = 50, 100, 200, and 500 pfu/cell), and the expression of the recombinant PKG protein was measured by immunoblotting. Forty-eight h after infection, expression of PKG was detectable in cell extracts from RPaSMC infected at m.o.i. = 50 pfu/cell and increased in a m.o.i.-dependent manner (Fig. 1). The recombinant protein was detectable as early as 24 h, peaked at 48 h, and persisted for 7 days after infection (data not shown).

To confirm that the FLAG peptide did not interfere with the biological activity of the transgene product, PKG activity was measured in cell extracts from RPaSMC infected with AdPKG (m.o.i. = 0–500 pfu/cell). As shown in Fig. 1, adenovirus-mediated PKG gene transfer at m.o.i. = 100 resulted in a significant increase in basal PKG activity. cGMP-stimulated activity was markedly increased in cell extracts from RPaSMC infected at m.o.i. = 50. Transduction of RPaSMC with AdPKG increased PKG protein levels and enzyme activity in a m.o.i.-dependent manner. *, p < 0.05, differed from control cells incubated with or without cGMP; ‡, p < 0.05, cGMP-stimulated enzyme activity differed from basal enzyme activity.

To identify the m.o.i. required to infect the majority of vascular SMC, RPaSMC were incubated with AdPKG...
at various m.o.i., and 48 h later, the percentage of cells containing PKG was determined by immunocytochemical techniques using an anti-FLAG monoclonal antibody and a Cy3-conjugated secondary antibody. FLAG immunoreactivity was detected in 30, 50, and 100% of RPaSMC infected with Ad.PKG at 50, 100 and 200 pfu/cell, respectively, but not in RPaSMC infected with Ad.\(\beta \)gal (Fig. 2). There was no evidence of cytopathic effect in vascular SMC infected with Ad.PKG at any m.o.i. tested.

PKG Expression Decreases DNA Synthesis in Vascular SMC—To determine the effect of PKG on DNA synthesis in vascular SMC, RPaSMC were infected with Ad.PKG (m.o.i. = 50–500 pfu/cell) and stimulated to undergo DNA replication with 4% NuSerum. Compared with cells maintained in 0.1% NuSerum, incubation with 4% NuSerum resulted in an 8–10-fold increase in DNA synthesis in RPaSMC, as assessed by \(^{[3}H\)thymidine incorporation (data not shown). Adenovirus-mediated gene transfer of PKG decreased \(^{[3}H\)thymidine incorporation in a m.o.i.-dependent fashion (Fig. 3). The maximum antiproliferative effect was obtained in RPaSMC infected at m.o.i. = 200 pfu/cell, and transduction of RPaSMC with 500 pfu/cell did not further decrease \(^{[3}H\)thymidine incorporation despite increased cGMP-stimulated PKG activity. Exposure to 8-Br-cGMP, a membrane-permeable cGMP analogue, markedly potentiated the antimitogenic effect of Ad.PKG infection. Transduction of RPaSMC at m.o.i. = 100 pfu/cell significantly decreased DNA synthesis in the presence, but not in the absence, of 1 mM 8-Br-cGMP. The 8-Br-cGMP-induced reduction in \(^{[3}H\)thymidine incorporation was significantly greater in RPaSMC transduced with Ad.PKG (m.o.i. = 200 pfu/cell) than in uninfected cells.

To evaluate the effect of Ad.PKG infection (m.o.i. = 200 pfu/cell) on the sensitivity of RPaSMC to the antiproliferative effects of 8-Br-cGMP, \(^{[3}H\)thymidine incorporation was measured in cells incubated in the presence of 0, \(10^{-5}\), \(10^{-4}\), and \(10^{-3}\) \(\mu\)8-Br-cGMP. As shown in Fig. 4, incubation of Ad.PKG-infected cells with as little as \(10^{-3}\) \(\mu\)8-Br-cGMP significantly inhibited DNA synthesis as compared with Ad.PKG infected cells incubated without 8-Br-cGMP. Infection with Ad.PKG also increased the sensitivity of RPaSMC to the antiprolifera-

FIG. 2. Ad.PKG infection efficiently transduces PKG into cultured RPaSMC. RPaSMC were plated on four-well chamber slides and infected with Ad.PKG (m.o.i. = 50 (A), 100 (B), and 200 (C) pfu/cell) or with Ad.\(\beta \)gal (m.o.i. = 200 pfu/cell (D)). Forty-eight h after infection, cells were fixed and sequentially incubated with the anti-FLAG M2 antibody and a Cy3-conjugated secondary antibody. Cells were examined immediately after preparation using an epifluorescence photomicroscope. Infection of RPaSMC with Ad.PKG (m.o.i. = 200 pfu/cell) infected 100% of the cells in culture.

FIG. 3. PKG activation decreases DNA synthesis in RPaSMC. RPaSMC were plated in 96-well plates (10\(^3\) cells/well) and infected with Ad.PKG (0, 50, 100, 200, and 500 pfu/cell). Cells were incubated in RPMI 1640 medium containing 0.1% NuSerum (NuS) for 48 h. The culture medium was then replaced with RPMI 1640 medium containing 4% NuSerum in the absence (open bars) or presence (closed bars) of 1 mM 8-Br-cGMP. After 24 h, the medium was replaced in each well (with supplements), and \(^{[3}H\)thymidine was added to a final concentration of 1 \(\mu\)Ci/ml. Incorporation of \(^{[3}H\)thymidine into DNA was determined 12 h later. Data are expressed as the means \(\pm\) S.D. (\(n = 24\)). Adenovirus-mediated PKG gene transfer decreased DNA synthesis in serum-stimulated RPaSMC. *, \(p < 0.05\) versus uninfected cells; ‡, \(p < 0.05\) versus uninfected cells treated with 8-Br-cGMP; §, \(p < 0.05\), cGMP-induced reduction in DNA synthesis differed from that in uninfected cells.
FIG. 4. PKG modulates the sensitivity of vascular SMC to the antimitogenic effects of NO and cGMP. Incorporation of 3H[3H\textsuperscript{thymidine was measured in uninfected RPaSMC (open bars) or in RPaSMC transduced with Ad.PKG (m.o.i. = 200 pfu/cell; closed bars). RPaSMC were plated in 96-well plates (105 cells/well), infected, and incubated in RPMI 1640 medium containing 0.1% NuSerum for 48 h. The culture medium was then replaced with RPMI 1640 medium containing 4% NuSerum or with 8-Br-cGMP (10−5 M, left panel) or GSNO (10−8 M, 10−7 M, and 10−6 M, right panel). After 24 h, the medium was replaced in each well (with supplements), and 3H\textsuperscript{thymidine incorporation was determined. Data are expressed as the means ± S.D. (n = 36). PKG gene transfer into RPaSMC potentiated the antimitogenic effects of 8-Br-cGMP and GSNO.; *, p < 0.05 versus NuSerum without 8-Br-cGMP; †, p < 0.05 versus NuSerum without GSNO. CTL, control.

FIG. 5. KT5823 blocks the inhibitory effect of NO/cGMP on DNA synthesis in Ad.PKG-infected vascular SMC. RPaSMC plated in 96-well plates (105 cells/well) were incubated in the absence of adenovirus (uninfected) or in the presence of Ad.PKG or Ad.GFP (m.o.i. = 200 pfu/cell) for 2 h. After 48 h of incubation in RPMI 1640 medium containing 0.1% NuSerum (NuS), the culture medium was replaced with RPMI 1640 medium containing 4% NuSerum. In experiments presented in the left panel, the medium was supplemented with 1 mM 8-Br-cGMP or with or without 0.25 \mu M KT5823. In experiments presented in the right panel, a 1\mu M GSNO was added to the culture medium. After 24 h, the medium was replaced in each well (with supplements), and 3H\textsuperscript{thymidine uptake was measured after 12 h. Data are expressed as the means ± S.D. (n = 36). 8-Br-cGMP and GSNO decreased DNA synthesis in Ad.PKG-infected RPaSMC, but not in uninfected or Ad.GFP-infected RPaSMC. The inhibitory effect of 8-Br-cGMP or GSNO was attenuated by KT5823. †, p < 0.05 versus uninfected cells; ‡, p < 0.05 versus Ad.PKG-infected cells not treated with 8-Br-cGMP or GSNO; §, p < 0.05 versus Ad.PKG-infected cells treated with 8-Br-cGMP or GSNO. CTL, control.

PKG Activation Decreases Vascular SMC Proliferation—To determine whether PKG-induced inhibition of DNA synthesis was associated with a decrease in the rate of cell proliferation, we counted uninfected RPaSMC and RPaSMC infected with Ad.PKG or Ad.GFP that were incubated in the presence of serum with or without 8-Br-cGMP (Fig. 7). Uninfected and adenovirus-infected RPaSMC were incubated in 0.1% NuSerum for 48 h, at which time the number of cells did not differ among groups. Thereafter, the culture medium was replaced and supplemented with 4% NuSerum with or without 1 mM 8-Br-cGMP. Cells were counted daily for 5 days, and the rate of proliferation was assessed by comparing the slope of the linear relationships fitting logarithmic transformation of cell

PKG modulates vascular SMC proliferation and apoptosis.
Fig. 7. PKG activation decreases proliferation of RPASMC.
RPASMC were plated in six-well plates (2 × 10^4 cells/well). RPASMC cultures were infected with Ad.PKG (Ad/GK) or Ad.GFP (m.o.i. = 200 pfu/cell), whereas others were uninfected. After 2 h, the virus suspension was removed, and cells were incubated in RPMI 1640 medium containing 0.1% NuSerum (NuS) for 48 h. Subsequently, the culture medium was replaced with RPMI 1640 medium containing 0.1% NuSerum in the absence or presence of 1 mM 8-Br-cGMP. Media and reagents were replaced every 24 h. Cells were dissociated from the culture dish with trypsin and counted daily for 5 days (n = 3 for each condition). The rate of proliferation was assessed by comparing the slope of the linear relationships fitting logarithmic transformation of cell counts as a function of time in each treatment group. Data are expressed as the means ± S.D. The rate of proliferation of Ad.GFP-infected cells incubated in the absence (data not shown) or presence of 8-Br-cGMP did not differ from that of uninfected RPASMC. Incubation with 8-Br-cGMP significantly decreased the rate of proliferation of RPASMC infected with Ad.PKG. *p < 0.05 versus all other groups.

Fig. 8. 8-Br-cGMP induces apoptosis in vascular smooth muscle cells infected with Ad.PKG. Uninfected RPASMC (A) or RPASMC infected with Ad.PKG (m.o.i. = 200 pfu/cell; B) were incubated in RPMI 1640 medium containing 0.1% NuSerum. After 48 h, the culture medium was replaced with RPMI 1640 medium containing 0.1% NuSerum supplemented with 1 mM 8-Br-cGMP, and the cells were incubated for an additional 24 h. Thereafter, cells were fixed, stained with the DNA-binding dye Hoechst H33258 (1 μg/ml), and examined by fluorescence microscopy. Cells undergoing apoptosis were identified by their characteristic condensed and coalesced nuclei (B, inset). Incubation with 8-Br-cGMP increased the percentage of apoptotic nuclei in RPASMC infected with Ad.PKG, but not in uninfected cells. In C, uninfected RPASMC or RPASMC infected with Ad.PKG (m.o.i. = 200 pfu/cell) were incubated in RPMI 1640 medium containing 0.1% NuSerum. After 48 h, the culture medium was replaced with RPMI 1640 medium containing 0.1% NuSerum supplemented with 1 mM 8-Br-cGMP, and the cells were incubated for an additional 24 h. Genomic DNA was extracted, radiolabeled, and separated by gel electrophoresis before autoradiography. Incubation with 8-Br-cGMP resulted in a pattern of DNA fragmentation characteristic of apoptosis in RPASMC infected with Ad.PKG, but not in uninfected cells.

PKG Activation Induces Vascular SMC Apoptosis—To test the hypothesis that PKG activation induces apoptosis of vascular SMC, RPASMC infected with Ad.PKG or Ad.GFP and uninfected cells were incubated in culture medium containing 0.1% NuSerum in the absence or presence of 1 mM 8-Br-cGMP. Fig. 8 (A and B) shows the nuclear morphology of uninfected and Ad.PKG-infected RPASMC, respectively, incubated with 8-Br-cGMP for 24 h. The nuclear morphology of uninfected RPASMC incubated with 8-Br-cGMP was homogeneous. In contrast, the nuclear morphology of Ad.PKG-infected cells incubated with 8-Br-cGMP was not homogeneous, with many cells having condensed and coalesced nuclei (Fig. 8B, inset). To confirm that PKG activation induced apoptotic cell death, DNA was extracted from adenovirus-infected RPASMC for assessment of internucleosomal DNA fragmentation by gel electrophoresis. Incubation of Ad.PKG-infected RPASMC with 1 mM 8-Br-cGMP for 24 h resulted in a pattern of DNA fragmentation characteristic of apoptosis (Fig. 8C). In contrast, analysis of radiolabeled genomic DNA by gel electrophoresis did not reveal DNA fragmentation in uninfected RPASMC incubated with 1 mM 8-Br-cGMP (Fig. 8C) or in Ad.GFP-infected cells in the presence or absence of 8-Br-cGMP (data not shown).

To quantitate the impact of adenovirus-mediated gene trans-
PKG Modulates Vascular SMC Proliferation and Apoptosis

DISCUSSION

Modulation of SMC proliferation and apoptosis is a prominent feature of the vascular remodeling associated with endothelial dysfunction and arterial injury (1). Although it is well established that NO (synthesized endogenously or delivered exogenously) inhibits vascular remodeling (22, 46–49), it is uncertain whether this effect is mediated by a direct action of NO on vascular SMC or whether NO acts indirectly by reducing the release of growth modulatory factors from other cell types (such as platelets and leukocytes). At least in vitro, NO regulates many functions of vascular SMC, including SMC proliferation (12–14, 21–26), migration (15, 16), apoptosis (9–11, 27), and extracellular matrix formation (50). However, the concentrations of NO required to elicit these effects are typically higher than those likely to be achieved in vivo (12–14, 21, 22). Moreover, in some studies, the effects of NO on vascular SMC functions appear to be cGMP- and PKG-independent (25, 32, 33). Cornwall and co-workers (32, 33) observed that levels of PKG decline rapidly as vascular SMC are passaged in culture. It is therefore likely that studies of the effects of NO on vascular SMC in culture have underestimated the contributions of cGMP and PKG in vivo.

To investigate the role of PKG in vascular SMC proliferation and apoptosis, we used adenovirus-mediated gene transfer to increase PKG activity in cultured RPaSMC. In a recently reported study, Gambaryan _et al._ (51) used a similar approach to investigate the role of PKGs in the modulation of renin secretion by juxtaglomerular cells. We found that restoration of PKG activity in RAoSMC decreased serum-stimulated DNA synthesis and cell proliferation. The inhibitory effect of PKG gene transfer in 8-Br-cGMP-treated RAoSMC was blocked by the PKG-selective inhibitor KT5823, but not by the PKA-selective inhibitor KT5720. These findings are supported by those of Yu _et al._ (21), who observed that inhibition of endogenous PKG in vascular smooth muscle cells attenuated the antiproliferative effects of NO and cGMP. Moreover, our finding suggests that, in SMC containing abundant PKG, cGMP inhibits proliferation via PKG rather than via PKA.

Our results differ from the recently published observations of Boerth _et al._ (52), who concluded that PKG does not play a critical role in regulating vascular SMC proliferation. These investigators studied RASMC stably transfected with the PKG-I isoform or the constitutively active PKG catalytic domain (which is shared by both isoforms): platelet-derived growth factor-stimulated proliferation did not differ in control-transfected RASMC, PKG-I-transfected RASMC incubated with 8-(p-chlorophenylthio)-cGMP, and RASMC transfected with the PKG catalytic domain. In addition, the investigators observed that infection of RASMC with recombinant adenosine-specifying PKG increased kinase activity; however, the effect of adenosine-mediated PKG gene transfer on cell proliferation was not reported. There are several potential explanations for the apparent discrepancy between our observations and those of Boerth _et al._ First, we used RAoSMC rather than RASMC, and there may be differences in PKG sensitivity between SMC derived from different blood vessels. This possibility is unlikely because we also observed that augmentation of PKG activity in RASMC using adenovirus-mediated gene transfer decreased serum-stimulated DNA synthesis and increased apoptosis associated with serum deprivation (data not shown). A second possible explanation for the differing results may be attributable to differences in the mitogenic stimuli used in the two studies (platelet-derived growth factor versus serum). A third potential explanation for these conflicting results is that isolation of stably transfected SMC requires multiple cell divisions and selection for cell growth, potentially resulting in dedifferentiation and loss of the ability to respond to the antiproliferative effects of PKG activation. In contrast, adenosine-mediated PKG gene transfer permitted us to study the impact of PKG activation on SMC functions in early passage cells without selection.

In this study, adenosine-mediated augmentation of PKG activity induced apoptosis in serum-deprived RPaSMC. These findings are consistent with those of Pollman _et al._ (9), who reported that endogenous PKG has an important role in mediating vascular SMC apoptosis induced by high concentrations of NO. In contrast, other investigators reported that the apoptotic effect of NO on vascular SMC was cGMP-independent (10, 11, 27). Nishio _et al._ (10) observed that NO donor compounds, but not dibutyryl cGMP, triggered vascular SMC...
apoptosis and that inhibition of the Na⁺/H⁺ antiporter suppressed NO-induced apoptosis. Zhao et al. (27) reported that high concentrations of sodium nitroprusside (0.5–1 m M) induced vascular SMC apoptosis, but cGMP analogues did not. They observed that NO induced apoptosis by decreasing intracellular levels of reduced glutathione and increasing expression of the p53 tumor suppressor gene. Our observations suggest that the differences in the impact of cGMP on apoptosis of cultured vascular SMC described in these reports may be attributable to differences in PKG levels. Moreover, our results suggest that, in cells containing abundant PKG, this kinase is an important mediator of vascular cell apoptosis induced by NO and cGMP.

A striking finding of this study is that adenovirus-mediated PKG gene transfer increased the sensitivity of RPaSMC to the antiproliferative and pro-apoptotic effects of NO: activation of the PKG transgene with submicromolar concentrations of GSNO significantly decreased vascular SMC proliferation, and similar low concentrations of GSNO induced apoptosis of vascular SMC. The amounts of NO generated by these concentrations of GSNO are comparable to those endogenously generated by endothelial cells (53, 54) and to those required to dilate intact blood vessels (55). An important consideration is that levels of PKG achieved in adenovirus-infected RPaSMC are similar to those found in freshly isolated vascular SMC (45) and in extracts prepared from rat pulmonary or carotid arteries (data not shown). The regulatory role of endothelial NO production in vascular SMC proliferation and apoptosis has been shown to be uncertain because the concentrations of NO required to modulate these functions in cultured cells are greater than those achievable in vivo. Our observations in Ad.PKG-infected RPaSMC suggest that physiologically relevant levels of NO, such as those produced by vascular endothelial cells, can modulate proliferation and apoptosis in vascular smooth muscle cells containing abundant PKG (such as those in intact blood vessels).

Acknowledgments—We thank Dr. W. M. Zapal for advice and support and Ling Li and Neema Ganju for technical assistance.

REFERENCES

1. Gibbons, G. H. (1997) Am. J. Cardiol. 79, 3–8
2. Dzau, V. J., and Gibbons, G. H. (1991) Hypertension 18, III115–III121
3. Ross, R. (1993) Nature 362, 801–809
4. Moncada, S., Palmer, R. M., and Higgs, E. A. (1991) Pharmacol. Rev. 43, 109–142
5. Radomski, M. W., Palmer, R. M., and Moncada, S. (1987) Lancet 2, 1057–1058
6. Radomski, M. W., Palmer, R. M., and Moncada, S. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 5193–5197
7. Kubes, P., Suzuki, M., and Granger, D. N. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 4651–4655
8. Decatarina, R., Libby, P., Peng, H.-B., Thannickai, V. J., Rajavashisth, T. B., Gimbrone, M. A., Shin, W. S., and Liao, J. K. (1995) J. Clin. Invest. 96, 3–8
9. Pollman, M. J., Yamada, T., Horisuchi, M., and Gibbons, G. H. (1996) Circ. Res. 79, 748–756
10. Nishio, E., Fujikoshi, K., Shinzaki, M., and Watanabe, Y. (1996) Biochem. Biophys. Res. Commun. 221, 163–168
11. Fukuo, K., Hata, S., Suhara, T., Nakahashi, T., Shinto, Y., Tsujimoto, Y., Morimoto, S., and Oghara, T. (1996) Hypertension (Dallas) 27, 823–826
12. Guyton, U. C. and Hassid, A. (1989) J. Clin. Invest. 83, 1774–1777
13. Karmy, K., Kawahara, Y., Araki, S., Fukuizuki, H., and Takai, Y. (1989) Atherosclerosis 80, 143–147
14. Nakaki, T., Nakayama, M., and Kato, R. (1990) Eur. J. Pharmacol. 189, 347–353
15. Dubey, R. K., Jackson, E. K., and Luscher, T. F. (1996) J. Clin. Invest. 96, 141–149
16. Sarkar, R., Meinberg, E. G., Stanley, J. C., Gordon, D., and Webb, R. C. (1996) Circ. Res. 78, 225–230
17. Hobbs, A. J., and Igarro, L. J. (1997) in Nitric Oxide and the Lung (Zapol, W. M., and Bloch, K. D., eds) pp. 1–57, Marcel Dekker, Inc., New York
18. Lincoln, T. M., and Cornwell, T. L. (1993) FASEB J. 7, 328–338
19. Sekhar, K. R., Hatchett, R. J., Shabb, J. B., Wolfe, S. H., H. J., Jastorff, B., But, E., Chakmakalas, M. B., and Corbin, J. D. (1992) Mol. Pharmacol. 42, 105–107
20. Ruth, P., Pfeifer, A., Kamn, S., Klag, P., Dostmann, W. R., and Hofmann, F. (1997) J. Biol. Chem. 272, 10522–10528
21. Yu, S. M., Hung, L. M., and Lin, C. C. (1997) Circulation 95, 1269–1277
22. Guo, J. P., Panday, M. M., Consigny, P. M., and Lefer, A. M. (1995) Am. J. Physiol. 269, H1122–H1131
23. Moradian, D. L., Hutset, T. C., and Keeffe, L. K. (1995) J. Cardiovasc. Pharmacol. 25, 674–678
24. Cornwell, T. L., Arnold, E., Boerth, N. J., and Lincoln, T. M. (1994) Am. J. Physiol. 267, C1405–C1413
25. Sarkar, R., Gordon, D., Stanley, J. C., and Webb, R. C. (1997) Am. J. Physiol. 272, H1810–H1818
26. Assendar, J. W., Southgate, K. M., Hallett, M. B., and Newby, A. C. (1992) Biochem. J. 288, 527–534
27. Zhao, Z., Francis, C. E., Welch, G., Loscalzo, J., and Ravid, K. (1997) Biochem. Biophys. Acta 1359, 143–152
28. Dimmeler, S., Rippmann, V., Weidand, U., Haenderl, J., and Zeiher, A. M. (1997) Circ. Res. 81, 977–984
29. Dimmeler, S., Haenderl, J., Nehls, M., and Zeiher, A. M. (1997) J. Exp. Med. 185, 601–607
30. Ting, E., Kim, Y. M., Pitt, B. R., Lizonova, A., Kovesdi, I., and Billiar, T. R. (1997) Surgery (St. Louis) 122, 255–263
31. Kim, Y. M., Talanian, R. V., and Billiar, T. R. (1997) J. Biol. Chem. 272, 3138–3148
32. Lincoln, T. M., Komalavilas, P., and Cornwell, T. L. (1994) J. Hypertension (Dallas) 22, 1141–1147
33. Cormwell, T. L., Hoff, S. A., Traynor, A. E., and Lincoln, T. M. (1994) J. Vasc. Surg. 31, 330–337
34. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
35. Wolfe, L., Corbin, J. D., and Francis, S. H. (1989) J. Biol. Chem. 264, 7734–7741
36. Sandberg, M., Natarajan, V., Ronanaja, I., Kalderon, D., Walter, U., Lohmann, S. M., and Jahnens, T. (1988) FEBS Lett. 255, 321–326
37. Chubet, R. G., and Brizzard, B. L. (1996) BioTechniques 21, 29969–29976
38. McGrory, W. J., Bautista, D. S., and Graham, F. L. (1988) Virology 163, 614–617
39. Graham, F. L., and Prevec, L. (1991) Gene Transfer and Expression Protocols, (Murray, E. J. ed) pp. 109–128, Humana Press, Inc., Clifton, NJ
40. Hirai, H., Schmidt, U., Matsui, T., Guerrero, L., Lee, K. H., Grawe, J. K., Dee, G. W., Semigam, J. M., and Rosenwax, A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 5251–5256
41. Dong, G., Shullick, A. H., DeYoung, M. B., and Dichek, D. A. (1996) J. Biol. Chem. 271, 29969–29976
42. Yu, F. S., Lee, S. L., Lanzillo, J. J., and Fanburg, B. L. (1989) Am. Rev. Respir. Dis. 138, 1144–1148
43. Francis, S. H., Wolfe, L., and Corbin, J. D. (1997) Methods Enzymol. 299,
44. Colbran, J. L., Francis, S. H., Leach, A. B., Thomas, M. K., Jiang, H., McHillister, I. M., and Corbin, J. D. (1992) *J. Biol. Chem.* 267, 9589–9594
45. Cornwell, T. L., and Lincoln, T. M. (1989) *J. Biol. Chem.* 264, 1146–1155
46. Hamon, M., Vallet, B., Bauters, C., Wernert, N., McFadden, E. P., Lablanche, J.-M., Dupuis, B., and Bertrand, M. (1994) *Circulation* 90, 1357–1362
47. McNamara, D. B., Bedi, B., Aurora, H., Tena, L., Ignarro, L. J., Kadowitz, P. J., and Akers, D. L. (1993) *Biochem. Biophys. Res. Commun.* 193, 291–296
48. Janssens, S., Fiherty, D., Nong, Z., Varenne, O., Van Pelt, N., Hausermann, C., Zoldheyi, P., Gerard, R., and Collen, D. (1998) *Circulation* 97, 1274–1281
49. Marks, D. S., Vita, J. A., Folts, J. D., Keaney J. F., Jr., Welch, G. N., and Loscalzo, J. (1995) *J. Clin. Invest.* 96, 2630–2638
50. Kolpakov, V., Gordon, D., and Kulik, T. J. (1995) *Circ. Res.* 76, 305–309
51. Gambaryan, S., Wagner, C., Smedenski, A., Walter, U., Poller, W., Haase, W., Kurtz, A., and Lohmann, S. M. (1998) *Proc. Natl. Acad. Sci. U. S. A.* 95, 9903–9908
52. Boerth, N. J., Dey, N. B., Cornwell, T. L., and Lincoln, T. M. (1997) *J. Vasc. Res.* 34, 245–259
53. Kanai, A. J., Strauss, H. C., Truskey, G. A., Crews, A. L., Grunfeld, S., and Malinski, T. (1995) *Circ. Res.* 77, 284–293
54. Ishimori, K., Ishida, H., Pakahori, M., Nakazawa, H., and Murakami, E. (1994) *Rev. Sci. Instrum.* 65, 1–5
55. Mathews, W. R., and Kerr, S. W. (1993) *J. Pharmaco. Exp. Ther.* 267, 1529–1537
56. Dey, N. B., Boerth, N. J., Murphy-Ullrich, J. E., Chang, P. L., Prince, C. W., and Lincoln, T. M. (1998) *Circ. Res.* 82, 139–146
57. Tamura, N., Itoh, H., Ogawa, Y., Nakagawa, O., Harada, M., Chun, T. H., Suga, S., Yoshimasa, T., and Nakao, K. (1996) *Hypertension (Dallas)* 27, 552–557
58. Soff, G. A., Cornwell, T. L., Cundiff, D. L., Gately, S., and Lincoln, T. M. (1997) *J. Clin. Invest.* 100, 2580–2587
59. Anderson, P. G., Williams, E. L., Cornwell, T. M., and Lincoln, T. M. (1996) *J. Vasc. Res.* 33, Suppl. 1, Abstr. 12
60. Yan, Z. Q., and Hansson, G. K. (1998) *Circ. Res.* 82, 21–29
Adenovirus-mediated Gene Transfer of cGMP-dependent Protein Kinase Increases the Sensitivity of Cultured Vascular Smooth Muscle Cells to the Antiproliferative and Pro-apoptotic Effects of Nitric Oxide/cGMP

Jean-Daniel Chiche, Stacy M. Schlutsmeyer, Donald B. Bloch, Suzanne M. de la Monte, Jesse D. Roberts, Jr., Galina Filippov, Stefan P. Janssens, Anthony Rosenzweig and Kenneth D. Bloch

J. Biol. Chem. 1998, 273:34263-34271.
doi: 10.1074/jbc.273.51.34263

Access the most updated version of this article at http://www.jbc.org/content/273/51/34263

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 56 references, 27 of which can be accessed free at http://www.jbc.org/content/273/51/34263.full.html#ref-list-1