Explore Image Deblurring via Blur Kernel Space

Phong Tran¹
Anh Tran¹, ²
Quynh Phung¹
Minh Hoai¹, ³

¹VinAI Research, Hanoi, Vietnam, ²VinUniversity, Hanoi, Vietnam, ³Stony Brook University, Stony Brook, NY 11790, USA

https://github.com/VinAIResearch/blurr-kernel-space-exploring
Image Deblurring

Moving object

Camera shaking
Image Deblurring

Deblurring method
MAP-based Methods

\[y = x \ast k + n \]

- \(y \): blur image
- \(x \): sharp image
- \(k \): blur kernel
- \(n \): noise

Linear and uniform
MAP-based Methods

MAP Framework:

\[x, k = \arg\max_{x,k} P(y|x, k)P(x)P(k) \]
MAP-based Methods

Gradient-based penalty, dark channels, ...

Linear and uniform

*

Sparsity, Spectral properties, ...
MAP-based Methods

- Gradient-based penalty, dark channels, ...
- Sparsity, Spectral properties, ...
- Linear and uniform kernel

Does not hold in general
Deep Learning Models
Deep Learning Models - Challenges

Kernel overfitting

CNN
Our Work

- Generalize MAP-based method
- Leverage neural networks
Our Work

Assumptions: \[y = \mathcal{F}(x, k) \]

\[\mathcal{F}(\cdot, k) : \text{Blur operator parameterized by } k \]
Our Work

Assumptions:

\[y = \mathcal{F}(x, k) \]

\(\mathcal{F}(\cdot, k) \) : Blur operator parameterized by k

\(\mathcal{G}(x, y) \) : Extract blur kernel k from (x, y)
Our Work

Find F and G
Our Work

Find F and G

Blind Deblurring
Our Work

Find F and G
Blind Deblurring
Blur Synthesis
Kernel Encoding

- F and G are implemented by two neural networks.

- For \((x, y) \sim P_{\text{data}}(x, y)\), F and G are jointly optimized by minimizing the objective function:
 \[
 \mathbb{E}_{x,y} \left[\rho(y, \mathcal{F}(x, \mathcal{G}(x, y))) \right]
 \]
Kernel Encoding

• F and G are implemented by two neural networks.

• For \((x, y) \sim P_{\text{data}}(x, y)\). F and G are jointly optimized by minimizing the objective function:

\[
\mathbb{E}_{x,y} [\rho(y, \mathcal{F}(x, \mathcal{G}(x, y)))]
\]

Charbonnier Loss

Recon blurry image
Generic Image Deblurring

- X and k are alternatively optimized by minimizing:

$$\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i)))$$

Charbonnier Loss

Recon blurry image
• X and k are alternatively optimized by minimizing:

\[\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i))) \]

Algorithm 1 Blind image deblurring

Input: blurry image \(y \)

Output: sharp image \(x \)

1. Sample \(z_x \sim \mathcal{N}(0, I) \)
2. Randomly initialize \(\theta_x \) of \(G_{\theta_x} \)
3. **while** \(\theta_x \) has not converged **do**
 4. Sample \(z_k \sim \mathcal{N}(0, I) \)
 5. Randomly initialize \(\theta_k \) of \(G_{\theta_k} \)
 6. **while** \(\theta_k \) has not converged **do**
 7. \(g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k)/\partial \theta_k \)
 8. \(\theta_k \leftarrow \theta_k + \alpha \ast ADAM(\theta_k, g_k) \)
 9. **end while**
 10. \(g_x \leftarrow \partial \mathcal{L}(\theta_x, \theta_k)/\partial \theta_x \)
 11. \(\theta_x \leftarrow \theta_x + \alpha \ast ADAM(\theta_x, g_x) \)
12. **end while**
13. \(x = G_{\theta_x}(z_x) \)
Generic Image Deblurring

X and k are alternatively optimized by minimizing:

$$\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i)))$$

Algorithm 1 Blind image deblurring

Input: blurry image y

Output: sharp image x

1: Sample $z_x \sim \mathcal{N}(0, I)$
2: Randomly initialize θ_x of $G_{\theta_x}^x$
3: while θ_x has not converged do
4: Sample $z_k \sim \mathcal{N}(0, I)$
5: Randomly initialize θ_k of $G_{\theta_k}^k$
6: while θ_k has not converged do
7: $g_k \leftarrow \partial \mathcal{L}(\theta_x, \theta_k)/\partial \theta_k$
8: $\theta_k \leftarrow \theta_k + \alpha \ast ADAM(\theta_k, g_k)$
9: end while
10: $g_x \leftarrow \partial \mathcal{L}(\theta_x, \theta_k)/\partial \theta_x$
11: $\theta_x \leftarrow \theta_x + \alpha \ast ADAM(\theta_x, g_x)$
12: end while
13: $x = G_{\theta_x}(z_x)$
Generic Image Deblurring

- X and k are alternatively optimized by minimizing:

$$\sum_{i=1}^{n} \rho(y_i, F(x_i, G(x_i, y_i)))$$

```
Algorithm 1 Blind image deblurring

Input: blurry image $y$
Output: sharp image $x$

1: Sample $z_x \sim \mathcal{N}(0, I)$
2: Randomly initialize $\theta_x$ of $G_{\theta_x}^x$
3: while $\theta_x$ has not converged do
4: Sample $z_k \sim \mathcal{N}(0, I)$
5: Randomly initialize $\theta_k$ of $G_{\theta_k}^k$
6: while $\theta_k$ has not converged do
7: $g_k \leftarrow \partial L(\theta_x, \theta_k)/\partial \theta_k$
8: $\theta_k \leftarrow \theta_k + \alpha \ast ADAM(\theta_k, g_k)$
9: end while
10: $g_x \leftarrow \partial L(\theta_x, \theta_k)/\partial \theta_x$
11: $\theta_x \leftarrow \theta_x + \alpha \ast ADAM(\theta_x, g_x)$
12: end while
13: $x = G_{\theta_x}(z_x)$
```
Generic Image Deblurring

- X and k are alternatively optimized by minimizing:

\[
\rho(y, F(x, k)) + \lambda \|k\|_2 + \gamma (g_u^2(x) + g_v^2(x))^{\alpha/2}
\]

Algorithm 1 Blind image deblurring

Input: blurry image y
Output: sharp image x

1: Sample \(z_x \sim \mathcal{N}(0, I) \)
2: Randomly initialize \(\theta_x \) of \(G_{\theta_x}^x \)
3: **while** \(\theta_x \) has not converged **do**
4: \hspace{1em} Sample \(z_k \sim \mathcal{N}(0, I) \)
5: \hspace{1em} Randomly initialize \(\theta_k \) of \(G_{\theta_k}^k \)
6: \hspace{1em} **while** \(\theta_k \) has not converged **do**
7: \hspace{2em} \(g_k \leftarrow \partial L(\theta_x, \theta_k) / \partial \theta_k \)
8: \hspace{2em} \(\theta_k \leftarrow \theta_k + \alpha \ast \text{ADAM}(\theta_k, g_k) \)
9: \hspace{1em} **end while**
10: \hspace{1em} \(g_x \leftarrow \partial L(\theta_x, \theta_k) / \partial \theta_x \)
11: \hspace{1em} \(\theta_x \leftarrow \theta_x + \alpha \ast \text{ADAM}(\theta_x, g_x) \)
12: **end while**
13: \(x = G_{\theta_x}(z_x) \)
Generic Image Deblurring

- Deep Image Prior:
 - Replace x by $G_{\theta_x}^x$
 - Replace k by $G_{\theta_k}^k$

- x and k are alternatively optimized by minimizing:
 \[
 \rho(y, F(x, k)) + \lambda \|k\|_2 + \gamma(g_u^2(x) + g_v^2(x))^{\alpha/2}
 \]

Algorithm 1 Blind image deblurring

Input: blurry image y

Output: sharp image x

1. Sample $z_x \sim \mathcal{N}(0, I)$
2. Randomly initialize θ_x of $G_{\theta_x}^x$
3. While θ_x has not converged do
 4. Sample $z_k \sim \mathcal{N}(0, I)$
 5. Randomly initialize θ_k of $G_{\theta_k}^k$
 6. While θ_k has not converged do
 7. $g_k \leftarrow \partial\mathcal{L}(\theta_x, \theta_k)/\partial\theta_k$
 8. $\theta_k \leftarrow \theta_k + \alpha \ast ADAM(\theta_k, g_k)$
 9. End while
 10. $g_x \leftarrow \partial\mathcal{L}(\theta_x, \theta_k)/\partial\theta_x$
 11. $\theta_x \leftarrow \theta_x + \alpha \ast ADAM(\theta_x, g_x)$
 12. End while
13. $x = G_{\theta_x}(z_x)$
Domain-specific Image Deblurring

\[z^*, k^* = \arg \max_{z,k} \rho \left(F(G_{\text{style}}(z), k), y \right) + R_z(z) + R_k(k) \]

Regularization term
Blur Synthesis

\[G(x_1, y_1) \]

\((x_1, y_1)\)
Blur Synthesis

\[G(x_1, y_1) \]

\[F(x_2, k_1) \]

\((x_1, y_1) \)

\(x_2 \)

\(y_2 \)
Experimental Results – Kernel Encoding

Kernel 8

\((x_1, y_1)\)

\((x_2, y_2)\)
Experimental Results – Kernel Encoding

\[G(x_1, y_1) \]

\[F(x_2, k_1) \]

\[x_2 \]

\[y'_2 \]
Experimental Results – Kernel Encoding

\[G(x_1, y_1) \]

\[F(x_2, k_1) \]

\[x_2 \]

\[y'_2 \]

\[y_2 \]

PSNR
Experimental Results – Kernel Encoding

PSNR (db)	kernel 1	kernel 2	kernel 3	kernel 4
	49.48	51.93	52.06	53.74
PSNR (db)	kernel 5	kernel 6	kernel 7	kernel 8
	49.91	49.49	51.43	50.38

Blur transferring performance on Levin dataset
Experimental Results – Kernel Encoding

Training data	Dataset		
	REDS	GOPRO	
Original	30.70	30.20	
Blur-swapped	29.43	28.49	

SRN performance when training on blur-swapped dataset
Experimental Results – Generic Image Deblurring

Blur
SelfDeblur
DeblurGANv2
SRN
Ours
Sharp
Experimental Results – Generic Image Deblurring

Blur	SelfDeblur	DeblurGANv2	SRN	Ours	Sharp
![Blur](image1.png)	![SelfDeblur](image2.png)	![DeblurGANv2](image3.png)	![SRN](image4.png)	![Ours](image5.png)	![Sharp](image6.png)
![Blur](image7.png)	![SelfDeblur](image8.png)	![DeblurGANv2](image9.png)	![SRN](image10.png)	![Ours](image11.png)	![Sharp](image12.png)
![Blur](image13.png)	![SelfDeblur](image14.png)	![DeblurGANv2](image15.png)	![SRN](image16.png)	![Ours](image17.png)	![Sharp](image18.png)
Experimental Results – Blind Image Deblurring

Blur

SelfDeblur

DeblurGANv2 imgaug

DeblurGANv2 REDS

SRN imgaug

SRN REDS

Ours
Experimental Results – Blind Image Deblurring

Blur	SelfDeblur	DeblurGANv2	DeblurGANv2	SRN imgaug	SRN REDS	ours
![Image](blur.png)	![Image](selfdeblur.png)	![Image](deblurGANv2.png)	![Image](deblurGANv2.png)	![Image](SRN_imgaug.png)	![Image](SRN_REDS.png)	![Image](ours.png)
Experimental Results – Blur Synthesis

Source sharp Source blur Synthesized blur
Experimental Results – Blur Synthesis

Source sharp | Source blur | Synthesized blur
Summary

• We have proposed a method to encode the blur kernel space of a deblurring dataset.
• We have proposed some applications of the blur kernel space.