Fractional diffusion-wave equation: hidden regularity for weak solutions

Paola Loreti * Daniela Sforza †‡

August 10, 2021

1 Introduction

The equation
\[\partial_t^\alpha u(t, x) = \Delta u(t, x) \] (1)
is obtained from the diffusion equation by replacing the first order time-derivative by the Caputo fractional derivative of order \(\alpha \), where \(1 < \alpha < 2 \), that is
\[\partial_t^\alpha f(t) = \frac{1}{\Gamma(2 - \alpha)} \int_0^t (t - \tau)^{1 - \alpha} \frac{d^2 f}{d\tau^2}(\tau) \, d\tau. \]

We will prove the following regularity results.

Theorem 1.1 If \(u_0 \in H_0^1(\Omega) \) and \(u_1 \in L^2(\Omega) \), then the unique weak solution \(u \) of problem
\[
\begin{cases}
\partial_t^\alpha u(t, x) = \Delta u(t, x), & t \geq 0, \ x \in \Omega, \\
u(t, x) = 0 & t \geq 0, \ x \in \partial\Omega, \\
u(0, x) = u_0(x), & u_t(0, x) = u_1(x), \ x \in \Omega,
\end{cases}
\]
belongs to \(C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; D(A^{-\theta})) \), \(\theta \in (\frac{2-\alpha}{2\alpha}, \frac{1}{2}) \), and
\[
\lim_{t \to 0} \|u(t, \cdot) - u_0\|_{H_0^1(\Omega)} = \lim_{t \to 0} \|\partial_t u(t, \cdot) - u_1\|_{D(A^{-\theta})} = 0,
\]
\[
\|u\|_{C([0, T]; H_0^1(\Omega))} + \|\partial_t u\|_{C([0, T]; D(A^{-\theta}))} \leq C(\|u_0\|_{H_0^1(\Omega)} + \|u_1\|_{L^2(\Omega)}),
\] (3)

In addition, for any \(\theta \in (0, \frac{1}{2}) \) there exists a constant \(C > 0 \) such that
\[
\|\nabla u\|_{L^2(0, T; D(A^{-\theta}))} \leq C(\|u_0\|_{H_0^1(\Omega)} + \|u_1\|_{L^2(\Omega)}),
\] (4)

and for any \(\theta \in (\frac{\alpha-1}{2\alpha}, \frac{1}{2}) \) there exists a constant \(C > 0 \) such that
\[
\|\partial_t^\alpha u\|_{L^2(0, T; D(A^{-\theta}))} \leq C(\|u_0\|_{H_0^1(\Omega)} + \|u_1\|_{L^2(\Omega)}).
\] (5)

* Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16, 00161 Roma (Italy); e-mail: <paola.loreti@sba.uniroma1.it>
† Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16, 00161 Roma (Italy); e-mail: <daniela.sforza@sba.uniroma1.it>
‡ This paper is published (in revised form) in Fract. Calc. Appl. Anal. Vol. 24, No 4 (2021), pp. 1015-1034, DOI: 10.1515/fca-2021, and is available online at https://www.degruyter.com/journal/key/FCA/html
Theorem 1.2 Let \(u_0 \in H^1_0(\Omega) \) and \(u_1 \in L^2(\Omega) \). If \(u \) is the weak solution of (2) then, for any \(T > 0 \) there is a constant \(c_0 = c_0(T) \) such that, denoting by \(\partial_{\nu} u \) the normal derivative of \(u \), we have
\[
\int_0^T \int_{\partial \Omega} |\partial_{\nu} u|^2 d\sigma dt \leq c_0(\|\nabla u_0\|_{L^2(\Omega)}^2 + \|u_1\|_{L^2(\Omega)}^2).
\] (6)

For previous results related to this problem see [18, 19, 27, 23, 24] and references therein.

2 Preliminaries

Let \(\Omega \subset \mathbb{R}^N, N \geq 1, \) be a bounded open set with \(C^2 \) boundary. We consider \(L^2(\Omega) \) endowed with the usual inner product and norm
\[
\langle u, v \rangle = \int_{\Omega} u(x)v(x) \, dx, \quad \|u\|_{L^2(\Omega)} = \left(\int_{\Omega} |u(x)|^2 \, dx \right)^{1/2} \quad u, v \in L^2(\Omega).
\]

Definition 2.1 For any \(f \in L^1(0, T) \) \((T > 0) \) we define the Riemann–Liouville fractional integral \(I^\beta \) of order \(\beta \in \mathbb{R}, \beta > 0 \), by
\[
I^\beta(f)(t) = \frac{1}{\Gamma(\beta)} \int_0^t (t-\tau)^{\beta-1} f(\tau) \, d\tau, \quad \text{a.e. } t \in (0, T),
\] (7)
where \(\Gamma(\beta) = \int_0^\infty t^{\beta-1} e^{-t} \, dt \) is the Euler gamma function.

We note that
\[
I^1(f)(t) = \int_0^t f(\tau) \, d\tau.
\] (8)

For the sequel it is convenient to introduce the following function
\[
\Phi_\beta(t) = \frac{t^{\beta-1}}{\Gamma(\beta)} \quad t > 0,
\] (9)
so
\[
I^\beta(f)(t) = (\Phi_\beta * f)(t), \quad \text{a.e. } t \in (0, T).
\] (10)

For \(f \in L^2(0, T) \) we have
\[
\|I^\beta(f)\|_{L^2(0,T)} \leq \|\Phi_\beta\|_{L^1(0,T)} \|f\|_{L^2(0,T)}.
\] (11)

If we take into account that
\[
\Phi_\beta * \Phi_\gamma(t) = \Phi_{\beta+\gamma}(t) \quad t > 0 \quad \beta, \gamma > 0,
\] (12)
we have
\[
I^\beta I^\gamma(f) = I^{\beta+\gamma}(f).
\] (13)

\[
\partial_t^\alpha f(t) = \begin{cases}
I^{1-\alpha}(\frac{d^2f}{dt^2})(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-\tau)^{-\alpha} \frac{d^2f}{d\tau^2}(\tau) \, d\tau & 0 < \alpha < 1, \\
I^{2-\alpha}(\frac{d^2f}{dt^2})(t) = \frac{1}{\Gamma(2-\alpha)} \int_0^t (t-\tau)^{1-\alpha} \frac{d^2f}{d\tau^2}(\tau) \, d\tau & 1 < \alpha < 2.
\end{cases}
\] (14)
We define the operator A in $L^2(\Omega)$ by
\[
D(A) = H^2(\Omega) \cap H^1_0(\Omega) \\
(Au)(x) = -\triangle u(x), \quad x \in \Omega, \quad u \in D(A).
\]
The fractional powers A^θ are defined for $\theta > 0$, see e.g. [30] and [25, Example 4.34]. We recall that the spectrum of A consists of a sequence of positive eigenvalues, each of them with finite dimensional eigenspace, and there exists an orthonormal basis of $L^2(\Omega)$ consisting of eigenfunctions of A. We denote such a basis by $\{e_n\}_{n \in \mathbb{N}}$ and by λ_n the eigenvalue with eigenfunction e_n, that is $Ae_n = \lambda_n e_n$. Then, for $\theta > 0$ the domain $D(A^\theta)$ of A^θ consists of those functions $u \in L^2(\Omega)$ such that
\[
\sum_{n=1}^{\infty} \lambda_n^{2\theta} |\langle u, e_n \rangle|^2 < +\infty
\]
and
\[
A^\theta u = \sum_{n=1}^{\infty} \lambda_n^\theta \langle u, e_n \rangle e_n, \quad u \in D(A^\theta).
\]
Moreover $D(A^\theta)$ is a Hilbert space with the norm
\[
\|u\|_{D(A^\theta)} = \|A^\theta u\|_{L^2(\Omega)} = \left(\sum_{n=1}^{\infty} \lambda_n^{2\theta} |\langle u, e_n \rangle|^2 \right)^{1/2}, \quad u \in D(A^\theta).
\] (15)
We have $D(A^\theta) \subset H^{2\theta}(\Omega)$. In particular, $D(A^{1/2}) = H^1_0(\Omega)$. If we identify the dual $(L^2(\Omega))'$ with $L^2(\Omega)$ itself, then we have $D(A^\theta) \subset L^2(\Omega) \subset (D(A^\theta))'$. From now on we set
\[
D(A^{-\theta}) := (D(A^\theta))',
\] (16)
whose elements are bounded linear functionals on $D(A^\theta)$. If $\varphi \in D(A^{-\theta})$ and $u \in D(A^\theta)$ the value of φ applied to u is denoted by
\[
\langle \varphi, u \rangle_{-\theta,\theta} := \varphi(u).
\] (17)
In addition, $D(A^{-\theta})$ is a Hilbert space with the norm
\[
\|\varphi\|_{D(A^{-\theta})} = \left(\sum_{n=1}^{\infty} \lambda_n^{-2\theta} |\langle \varphi, e_n \rangle_{-\theta,\theta}|^2 \right)^{1/2}, \quad \varphi \in D(A^{-\theta}).
\] (18)
We also recall that
\[
\langle \varphi, u \rangle_{-\theta,\theta} = \langle \varphi, u \rangle \quad \text{for} \quad \varphi \in L^2(\Omega), u \in D(A^\theta),
\] (19)
e.g. see [4, Chapitre V].
For $\alpha, \beta > 0$ arbitrary constants, we define the Mittag–Leffler functions by
\[
E_{\alpha,\beta}(z) := \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad z \in \mathbb{C}.
\] (20)
By the power series, one can note that $E_{\alpha,\beta}(z)$ is an entire function of $z \in \mathbb{C}$.

3
Lemma 2.2 Let $1 < \alpha < 2$ and $\beta > 0$ be. Then for any μ such that $\pi \alpha / 2 < \mu < \pi$ there exists a constant $C = C(\alpha, \beta, \mu) > 0$ such that

$$|E_{\alpha, \beta}(z)| \leq \frac{C}{1 + |z|}, \quad \mu \leq |\arg(z)| \leq \pi. \tag{21}$$

Lemma 2.3 For any $0 < \beta < 1$ the function $x \to \frac{x^\beta}{1 + x}$ gains its maximum on $[0, +\infty[$ at point $\frac{\beta}{1 - \beta}$ and the maximum value is given by

$$\max_{x \geq 0} \frac{x^\beta}{1 + x} = \beta^\beta (1 - \beta)^{1 - \beta}. \tag{22}$$

For a Hilbert space H endowed with the norm $\| \cdot \|_H$ and $\beta \in (0,1)$, $H^\beta(0, T; H)$ is the space of all $u \in L^2(0, T; H)$ such that

$$[u]_{H^\beta(0, T; H)} := \left(\int_0^T \int_0^T \frac{|u(t) - u(\tau)|_H^2}{|t - \tau|^{1 + 2\beta}} \, dt \, d\tau \right)^{1/2} < +\infty,$$

that is $[u]_{H^\beta(0, T; H)}$ is the so-called Gagliardo semi-norm of u. $H^\beta(0, T; H)$ is endowed with the norm

$$\| \cdot \|_{H^\beta(0, T; H)} := \| \cdot \|_{L^2(0, T; H)} + [\cdot]_{H^\beta(0, T; H)}. \tag{23}$$

We will use later the following extension to the case of vector valued functions of a known result, see [12, Theorem 2.1].

Theorem 2.4 Let H be a separable Hilbert space.

(i) The Riemann–Liouville operator $I^\beta : L^2(0, T; H) \to L^2(0, T; H)$, $0 < \beta \leq 1$, is injective and the range $\mathcal{R}(I^\beta)$ of I^β is given by

$$\mathcal{R}(I^\beta) = \begin{cases} H^\beta(0, T; H), & 0 < \beta < \frac{1}{2}, \\
\left\{ v \in H^\beta(0, T; H) : \int_0^T t^{-1} |v(t)|^2 \, dt < \infty \right\}, & \beta = \frac{1}{2}, \\
oH^\beta(0, T; H), & \frac{1}{2} < \beta \leq 1, \end{cases} \tag{24}$$

where $\text{no}H^\beta(0, T) = \{ u \in H^\beta(0, T) : u(0) = 0 \}$.

(ii) For the Riemann–Liouville operator I^β and its inverse operator $I^{-\beta}$ the norm equivalences

$$\| I^\beta(u) \|_{H^\beta(0, T; H)} \sim \| u \|_{L^2(0, T; H)}, \quad u \in L^2(0, T; H),$$

$$\| I^{-\beta}(v) \|_{L^2(0, T; H)} \sim \| v \|_{H^\beta(0, T; H)}, \quad v \in \mathcal{R}(I^\beta), \tag{25}$$

hold true.

For the sake of completeness, we recall the notion of a weak solution for fractional diffusion-wave equations, see [33, Definition 2.1].

Definition 2.5 Let $1 < \alpha < 2$. We define u as a weak solution to problem

$$\begin{cases}
\partial_t^\alpha u(t, x) = \Delta u(t, x) & t \in (0, T), \ x \in \Omega, \\
u(t, x) = 0 & t \in (0, T), \ x \in \partial \Omega, \\
u(0, x) = u_0(x), \ u_1(0, x) = u_1(x) & x \in \Omega, \tag{26}
\end{cases}$$
if \(\partial_t^\alpha u(t, \cdot) = \Delta u(t, \cdot) \) holds in \(L^2(\Omega) \), \(u(t, \cdot) \in H^1_0(\Omega) \) for almost all \(t \in (0, T) \) and for some \(\theta > 0 \), depending on the initial data \(u_0, u_1 \), one has \(u, \partial_t u \in C([0, T]; D(A^{-\theta})) \) and

\[
\lim_{t \to 0} \| u(t, \cdot) - u_0 \|_{D(A^{-\theta})} = \lim_{t \to 0} \| \partial_t u(t, \cdot) - u_1 \|_{D(A^{-\theta})} = 0. \tag{27}
\]

We also need to recall some existence results given in [33, Theorem 2.3], that we have integrated with other essential regularity properties of the solution, see [28] below.

Theorem 2.6
(i) Let \(u_0 \in L^2(\Omega) \) and \(u_1 \in D(A^{\frac{-1}{\alpha}}) \). Then there exists a unique weak solution \(u \in C([0, T]; L^2(\Omega)) \cap C((0, T]; H^2(\Omega) \cap H^1_0(\Omega)) \) to (26) with \(\partial_t^\alpha u \in C((0, T]; L^2(\Omega)) \) and satisfying

\[
\lim_{t \to 0} \| u(t, \cdot) - u_0 \|_{L^2(\Omega)} = 0, \quad \| u \|_{C([0, T]; L^2(\Omega))} \leq C \left(\| u_0 \|_{L^2(\Omega)} + \| u_1 \|_{D(A^{\frac{-1}{\alpha}})} \right),
\]

\[
\lim_{t \to 0} \| \partial_t u(t, \cdot) - u_1 \|_{D(A^{-\theta})} = 0, \quad \theta \in \left(\frac{1}{\alpha}, 1 \right),
\]

\[
\| \partial_t u \|_{C([0, T]; D(A^{-\theta}))} \leq C \left(\| u_0 \|_{L^2(\Omega)} + \| u_1 \|_{D(A^{\frac{-1}{\alpha}})} \right),
\]

for some constant \(C > 0 \). Moreover, if \(u_1 \in L^2(\Omega) \) we have

\[
u(t, x) = \sum_{n=1}^{\infty} \left[\langle u_0, e_n \rangle E_{\alpha,1}(-\lambda_n t^\alpha) + \langle u_1, e_n \rangle t E_{\alpha,2}(-\lambda_n t^\alpha) \right] e_n(x), \tag{29}
\]

\[
\partial_t u(t, x) = \sum_{n=1}^{\infty} \left[-\lambda_n \langle u_0, e_n \rangle t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_n t^\alpha) + \langle u_1, e_n \rangle E_{\alpha,1}(-\lambda_n t^\alpha) \right] e_n(x), \tag{30}
\]

\[
\partial_t^\alpha u(t, x) = \sum_{n=1}^{\infty} \left[-\lambda_n \langle u_0, e_n \rangle E_{\alpha,1}(-\lambda_n t^\alpha) - \lambda_n \langle u_1, e_n \rangle t E_{\alpha,2}(-\lambda_n t^\alpha) \right] e_n(x), \tag{31}
\]

\[
\| \partial_t u(t, \cdot) \|_{L^2(\Omega)} \leq C \left(t^{-1} \| u_0 \|_{L^2(\Omega)} + \| u_1 \|_{L^2(\Omega)} \right) \quad (C > 0).
\]

(ii) If \(u_0 \in H^2(\Omega) \cap H^1_0(\Omega) \) and \(u_1 \in H^1_0(\Omega) \), then the unique weak solution \(u \) to (26) given by (29) belongs to \(C([0, T]; H^2(\Omega) \cap H^1_0(\Omega)) \cap C^1(0, T]; L^2(\Omega)) \) and \(\partial_t^\alpha u \in C([0, T]; L^2(\Omega)) \). In addition, there exists a constant \(C > 0 \) such that

\[
\| u \|_{C([0, T]; H^2(\Omega))} + \| u \|_{C^1([0, T]; L^2(\Omega))} + \| \partial_t^\alpha u \|_{C([0, T]; L^2(\Omega))} \leq C \left(\| u_0 \|_{H^2(\Omega)} + \| u_1 \|_{H^1(\Omega)} \right). \tag{32}
\]

Proof. We refer to [33, Theorem 2.3] for the proof of all statements, except for the proof of (28). We first observe that, since \(u_1 \in D(A^{\frac{-1}{\alpha}}) \), the expression (30) for \(\partial_t u \) has to be written in the form

\[
\partial_t u(t, x) = \sum_{n=1}^{\infty} \left[-\lambda_n \langle u_0, e_n \rangle t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_n t^\alpha) + \langle u_1, e_n \rangle t \frac{E_{\alpha,1}(-\lambda_n t^\alpha)}{-\lambda_n} \right] e_n(x).
\]

For \(\theta \in (0, 1) \) to choose suitably later, we have

\[
\| \partial_t u(t, \cdot) - u_1 \|_{D(A^{-\theta})}^2 = \sum_{n=1}^{\infty} \lambda_n^{-2\theta} \left| -\lambda_n \langle u_0, e_n \rangle t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_n t^\alpha) + \langle u_1, e_n \rangle t \frac{E_{\alpha,1}(-\lambda_n t^\alpha)}{-\lambda_n} - \frac{1}{\alpha} \right|^2.
\]

\[
\leq 2t^{2\alpha-1} \sum_{n=1}^{\infty} \lambda_n^{2(1-\theta)} \left| \langle u_0, e_n \rangle E_{\alpha,\alpha}(-\lambda_n t^\alpha) \right|^2 + 2 \sum_{n=1}^{\infty} \lambda_n^{-2\theta} \left| \langle u_1, e_n \rangle - \frac{1}{\alpha} \right|^2 \left(E_{\alpha,1}(-\lambda_n t^\alpha) - 1 \right)^2. \tag{33}
\]
Moreover, if we assume u while, regarding the second sum, we have
\[\lambda_n^{-2\theta} \left| \langle u_1, e_n \rangle - \frac{1}{n^\alpha} (E_{\alpha,1}(-\lambda_n t^\alpha) - 1) \right|^2 = \lambda_n^{-2(\theta - \frac{1}{\alpha})} \lambda_n^{-\frac{2}{\alpha}} \left| \langle u_1, e_n \rangle - \frac{1}{n^\alpha} \right|^2 \left| E_{\alpha,1}(-\lambda_n t^\alpha) - 1 \right|^2 .\]
Therefore, plugging the above two estimates into (33) we obtain
\[\| \partial_t u(t, \cdot) - u_1 \|^2_{D(A^{-\theta})} \leq C t^{2(\alpha - 1)} \| u_0 \|^2_{L^2(\Omega)} + 2 \sum_{n=1}^{\infty} \lambda_n^{-2(\theta - \frac{1}{\alpha})} \lambda_n^{-\frac{2}{\alpha}} \left| \langle u_1, e_n \rangle - \frac{1}{n^\alpha} \right|^2 \left| E_{\alpha,1}(-\lambda_n t^\alpha) - 1 \right|^2 ,\]
whence it follows that for $\theta > \frac{1}{\alpha}$ (28) holds true. \(\square\)

3 Regularity for \(u_0 \in H^1_0(\Omega)\) and \(u_1 \in L^2(\Omega)\)

We establish a result about the regularity of the weak solutions assuming on the data \(u_0, u_1\) a degree of regularity intermediate between those assumed in (i) and (ii) of Theorem 2.6.

Theorem 3.1 If \(u_0 \in H^1_0(\Omega)\) and \(u_1 \in L^2(\Omega)\), then the unique weak solution \(u\) to (26) given by (29)–(31) belongs to \(C([0, T]; H^1_0(\Omega)) \cap C^1([0, T]; D(A^{-\theta}))\), \(\theta \in \left(\frac{2 - \alpha}{2\alpha}, \frac{1}{2}\right]\), and
\[\lim_{t \to 0} \| u(t, \cdot) - u_0 \|_{H^1_0(\Omega)} = \lim_{t \to 0} \| \partial_t u(t, \cdot) - u_1 \|_{D(A^{-\theta})} = 0 ,\]
\[\| u \|_{C([0, T]; H^1_0(\Omega))} + \| \partial_t u \|_{C([0, T]; D(A^{-\theta}))} \leq C \left(\| u_0 \|_{H^1_0(\Omega)} + \| u_1 \|_{L^2(\Omega)} \right).\] (34)
In addition, for any \(\theta \in (0, \frac{1}{2\alpha})\) there exists a constant \(C > 0\) such that
\[\| \nabla u \|_{L^2(0, T; D(A^{-\theta}))} \leq C \left(\| u_0 \|_{H^1_0(\Omega)} + \| u_1 \|_{L^2(\Omega)} \right),\] (35)
and for any \(\theta \in \left(\frac{2 - \alpha}{2\alpha}, \frac{1}{2}\right]\) there exists a constant \(C > 0\) such that
\[\| \partial_t^\alpha u \|_{L^2(0, T; D(A^{-\theta}))} \leq C \left(\| u_0 \|_{H^1_0(\Omega)} + \| u_1 \|_{L^2(\Omega)} \right).\] (36)
Moreover, if we assume \(u_0 \in D(A^{\frac{1}{2} + \varepsilon})\) with \(\varepsilon \in \left(\frac{2 - \alpha}{2\alpha}, \frac{1}{2}\right]\), then
\[\lim_{t \to 0} \| \partial_t u(t, \cdot) - u_1 \|_{L^2(\Omega)} = 0 ,\]
\[\| \partial_t u \|_{C([0, T]; L^2(\Omega))} \leq C \left(\| u_0 \|_{D(A^{\frac{1}{2} + \varepsilon})} + \| u_1 \|_{L^2(\Omega)} \right).\] (37)

Proof. In virtue of the expression (29) for the solution \(u\) we have
\[\| u(t, \cdot) - u_0 \|^2_{H^1_0(\Omega)} = \sum_{n=1}^{\infty} \lambda_n \left| \langle u_0, e_n \rangle \left(E_{\alpha,1}(-\lambda_n t^\alpha) - 1 \right) + \langle u_1, e_n \rangle t E_{\alpha,2}(-\lambda_n t^\alpha) \right|^2 \leq 2 \sum_{n=1}^{\infty} \lambda_n \left| \langle u_0, e_n \rangle \right|^2 \left| E_{\alpha,1}(-\lambda_n t^\alpha) - 1 \right|^2 + t^{2\alpha} C^2 \sum_{n=1}^{\infty} \left| \langle u_1, e_n \rangle \right|^2 \left(\frac{\lambda_n t^\alpha \frac{1}{2}}{1 + \lambda_n t^\alpha} \right)^2 ,\] (38)
thanks also to (21). We observe that for any $n \in \mathbb{N}$ $\lim_{t \to 0} (E_{\alpha,1}(-\lambda_n t^\theta) - 1) = 0$. Moreover, again by (21), we get for $n \in \mathbb{N}$ and $0 \leq t \leq T$

$$\lambda_n \|\langle u_0, e_n \rangle\|^2 |E_{\alpha,1}(-\lambda_n t^\theta) - 1|^2 \leq 2\lambda_n \|\langle u_0, e_n \rangle\|^2 \left(\frac{C}{(1 + \lambda_n t^\theta)^2} + 1\right) \leq C\lambda_n \|\langle u_0, e_n \rangle\|^2,$$

hence by (33) we deduce $\lim_{t \to 0} \|u(t, \cdot) - u_0\|_{H^1_0(\Omega)} = 0$ and for any $t \in [0, T]$

$$\|u(t, \cdot)\|^2_{H^1_0(\Omega)} \leq C(\|u_0\|^2_{H^1_0(\Omega)} + \|u_1\|^2_{L^2(\Omega)}).$$

To complete the proof of (34), we fix $\theta \in \left(\frac{2-\alpha}{2\alpha}, \frac{1}{2}\right]$ and use formula (30) to note that

$$\|\partial_t u(t, \cdot) - u_1\|^2_{D(A^{1-\theta})} = \sum_{n=1}^{\infty} \lambda_n^{-2\theta} \left|\lambda_n \langle u_0, e_n \rangle t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_n t^\theta) + \langle u_1, e_n \rangle (E_{\alpha,1}(-\lambda_n t^\theta) - 1)\right|^2 \leq C t^{\alpha-2+2\alpha \theta} \|u_0\|^2_{H^1_0(\Omega)} + 2 \sum_{n=1}^{\infty} \left|\lambda_n \langle u_0, e_n \rangle t\right|^2 \|E_{\alpha,1}(-\lambda_n t^\theta) - 1\|^2,$$

(39)

thanks also to (21). Since $0 < \frac{1-2\theta}{2} < 1$ we can apply (22) to have

$$\|\partial_t u(t, \cdot) - u_1\|^2_{D(A^{1-\theta})} \leq C t^{\alpha-2+2\alpha \theta} \|u_0\|^2_{H^1_0(\Omega)} + 2 \sum_{n=1}^{\infty} \left|\lambda_n \langle u_0, e_n \rangle t\right|^2 \|E_{\alpha,1}(-\lambda_n t^\theta) - 1\|^2.$$

Therefore, by analogous arguments to those done before, since $\alpha - 2 + 2\alpha \theta > 0$ we deduce $\lim_{t \to 0} \|\partial_t u(t, \cdot) - u_1\|_{D(A^{1-\theta})} = 0$ and for any $t \in [0, T]$

$$\|\partial_t u(t, \cdot)\|^2_{D(A^{1-\theta})} \leq C(\|u_0\|^2_{H^1_0(\Omega)} + \|u_1\|^2_{L^2(\Omega)}).$$

$$\|\nabla u(\cdot, t)\|^2_{D(A^{\theta})} = \sum_{n=1}^{\infty} \lambda_n^{1+2\theta} \left|\langle u_0, e_n \rangle E_{\alpha,1}(-\lambda_n t^\theta) + \langle u_1, e_n \rangle t E_{\alpha,2}(-\lambda_n t^\theta)\right|^2 \leq C \sum_{n=1}^{\infty} \lambda_n \|\langle u_0, e_n \rangle\|^2 \frac{\lambda_{\alpha}^{2\theta}}{(1 + \lambda_n t^\theta)^2} + C \sum_{n=1}^{\infty} \left|\langle u_1, e_n \rangle\right|^2 \frac{\lambda_1^{1+2\theta} t^2}{(1 + \lambda_n t^\theta)^2}.$$

(40)

Since

$$\frac{\lambda_{\alpha}^{2\theta}}{(1 + \lambda_n t^\theta)^2} = \left(\frac{\lambda_{\alpha} t^\theta}{1 + \lambda_n t^\theta}\right)^2 t^{-2\alpha \theta},$$

$$\frac{\lambda_1^{1+2\theta} t^2}{(1 + \lambda_n t^\theta)^2} = \left(\frac{(\lambda_{\alpha} t^\theta)^{1+2\theta}}{1 + \lambda_n t^\theta}\right)^2 t^{-\alpha(1+2\theta)},$$

for $0 < \theta < \frac{1}{2}$, we can apply (22) to have

$$\|\nabla u(\cdot, t)\|^2_{L^2(0,T;D(A^{\theta}))} \leq C t^{-2\alpha \theta} \|u_0\|^2_{H^1_0(\Omega)} + C t^{2-\alpha(1+2\theta)} \|u_1\|^2_{L^2(\Omega)}$$

Thanks to (18), (31) and (21) we get

$$\|\partial_t^2 u(\cdot, t)\|^2_{D(A^{1-\theta})} = \sum_{n=1}^{\infty} \lambda_n^{-2\theta} \left|\lambda_n \langle u_0, e_n \rangle E_{\alpha,1}(-\lambda_n t^\theta) + \lambda_n \langle u_1, e_n \rangle t E_{\alpha,2}(-\lambda_n t^\theta)\right|^2 \leq C \sum_{n=1}^{\infty} \lambda_n \|\langle u_0, e_n \rangle\|^2 \frac{\lambda_{\alpha}^{-2\theta}}{(1 + \lambda_n t^\theta)^2} + C \sum_{n=1}^{\infty} \left|\langle u_1, e_n \rangle\right|^2 \frac{\lambda_1^{2(1-\theta)} t^2}{(1 + \lambda_n t^\theta)^2}.$$

(41)
\[
\frac{\lambda_{n}^{1-2\theta}}{(1 + \lambda_{n}t^{\alpha})^2} = \left(\frac{(\lambda_{n}t^{\alpha})^{\frac{1-2\theta}{2}}}{1 + \lambda_{n}t^{\alpha}}\right)^2 t^{(2\theta - 1)}
\]

\[
\frac{\lambda_{n}^{2(1-\theta)}t^{2}}{(1 + \lambda_{n}t^{\alpha})^2} = \left(\frac{(\lambda_{n}t^{\alpha})^{1-\theta}}{1 + \lambda_{n}t^{\alpha}}\right)^2 t^{2+2\alpha(\theta - 1)}
\]

\[
\|\partial_{\alpha}^{\ast} u(\cdot, t)\|_{D(A^{1/2})}^2 \leq C t^{1-\alpha} \|u_0\|_{H_{0}^{1/2}(\Omega)}^2 + C t^{3-2\alpha} \|u_1\|_{L^2(\Omega)}^2. \quad (42)
\]

By assuming, in addition, that \(u_0 \in D(A^{1/2+\varepsilon})\) with \(\varepsilon \in \left(\frac{2-\alpha}{2\alpha}, \frac{1}{2}\right)\) we have

\[
\|\partial_{t} u(t, \cdot) - u_1\|_{L^2(\Omega)}^2 = \sum_{n=1}^{\infty} \left| -\lambda_{n} \langle u_0, e_n \rangle t^{\alpha - 1} E_{\alpha, \alpha} (-\lambda_{n}t^{\alpha}) + \langle u_1, e_n \rangle (E_{\alpha, 1} (-\lambda_{n}t^{\alpha}) - 1) \right|^2
\]

\[
\leq C t^{\alpha - 2 + 2\alpha\varepsilon} \sum_{n=1}^{\infty} \lambda_{n}^{1+2\varepsilon} \left| \langle u_0, e_n \rangle \right|^2 \left(\frac{(\lambda_{n}t^{\alpha})^{1-2\varepsilon}}{1 + \lambda_{n}t^{\alpha}}\right)^2 + 2 \sum_{n=1}^{\infty} \left| \langle u_1, e_n \rangle \right|^2 \left| E_{\alpha, 1} (-\lambda_{n}t^{\alpha}) - 1 \right|^2. \quad (43)
\]

Thanks to (22) with \(\beta = \frac{1-2\varepsilon}{2}\) we obtain

\[
\|\partial_{t} u(t, \cdot) - u_1\|_{L^2(\Omega)}^2 \leq C t^{\alpha - 2 + 2\alpha\varepsilon} \|u_0\|_{D(A^{1/2+\varepsilon})} + 2 \sum_{n=1}^{\infty} \left| \langle u_1, e_n \rangle \right|^2 \left| E_{\alpha, 1} (-\lambda_{n}t^{\alpha}) - 1 \right|^2,
\]

hence, since \(\alpha - 2 + 2\alpha\varepsilon > 0\), we deduce (37). \(\square\)

Remark 3.2 Comparing the regularity results given in Theorems 2.6 and 3.1, we have to observe that if \(\theta \in \left(\frac{2-\alpha}{2\alpha}, \frac{1}{2}\right)\) then \(D(A^{-\theta}) \subset D(A^{-\eta})\) for any \(\eta \in \left(\frac{1}{\alpha}, 1\right]\). Therefore Theorem 3.1 effectively improves the regularity of the weak solution.

Moreover, taking into account the argumentations used to get (39), we note that to secure a regularity of \(\partial_{t} u\) in \(L^2(\Omega)\) we have to assume the datum \(u_0\) more regular than \(u_0 \in H_{0}^{1/2}(\Omega) = D(A^{1/2})\), that is \(u_0 \in D(A^{1/2+\varepsilon})\) with \(\varepsilon \in \left(\frac{2-\alpha}{2\alpha}, \frac{1}{2}\right)\), see (37).

4 Hidden regularity results

To begin with we single out some technical results that we will use later in the main theorem.

Lemma 4.1 For any \(w \in H^{2}(\Omega)\) one has

\[
2 \int_{\Omega} \nabla w \cdot \nabla w \; dx = \int_{\partial \Omega} \left[2 \partial_{w} w \cdot \nabla w - h \cdot \nabla w \right] \; d\sigma - 2 \sum_{i,j=1}^{N} \int_{\Omega} \partial_{i} h_{j} \partial_{i} w \partial_{j} w \; dx
\]

\[
\int_{\Omega} \sum_{j=1}^{N} \partial_{j} h_{j} |\nabla w|^{2} \; dx. \quad (44)
\]

Proof. We integrate by parts to get

\[
\int_{\Omega} \nabla w \cdot \nabla w \; dx = \int_{\partial \Omega} \partial_{w} w \cdot \nabla w \; d\sigma - \int_{\Omega} \nabla w \cdot \nabla (h \cdot \nabla w) \; dx. \quad (45)
\]
Since
\[\int_\Omega \nabla w \cdot \nabla (h \cdot \nabla w) \, dx = \sum_{i,j=1}^N \int_\Omega \partial_i w \partial_i (h_j \partial_j w) \, dx = \sum_{i,j=1}^N \int_\Omega \partial^2_i w \partial_i h_j \partial_j w \, dx + \sum_{i,j=1}^N \int_\Omega h_j \partial_i w \partial_j (\partial_i w) \, dx, \]
we evaluate the last term on the right-hand side again by an integration by parts, so we obtain
\[\sum_{i,j=1}^N \int_\Omega h_j \partial_i w \partial_j (\partial_i w) \, dx = \frac{1}{2} \sum_{j=1}^N \int h_j \partial_j \left(\sum_{i=1}^N (\partial_i w)^2 \right) \, dx \]
\[= \frac{1}{2} \int h \cdot v |\nabla w|^2 \, d\sigma - \frac{1}{2} \int_\Omega \sum_{j=1}^N \partial_j h_j \cdot |\nabla w|^2 \, dx. \]
Therefore, if we merge the above two identities with (45), then we have (44). \(\square \)

Lemma 4.2 Assume \(1 < \alpha < 2 \) and the weak solution \(u \) of
\[\partial^\alpha_t u(t, x) = \triangle u(t, x) \quad \text{in} \quad (0, \infty) \times \Omega \quad \text{(46)} \]
belonging to \(C([0, +\infty); H^2(\Omega) \cap H^1_0(\Omega)) \cap C^1([0, +\infty); L^2(\Omega)) \) with \(\partial^\alpha_t u \in C([0, +\infty); L^2(\Omega)) \). Then, for a vector field \(h : \overline{\Omega} \to \mathbb{R}^N \) of class \(C^1 \) and \(\beta, \theta \in (0, 1) \) the following identities hold true
\[\int_{\partial\Omega} \left[2I^\beta(\partial_\nu u)(t) \cdot I^\beta(\nabla u)(t) - h \cdot \nu |I^\beta(\nabla u)(t)|^2 \right] \, d\sigma = 2\langle I^\beta(\partial_t^\alpha u)(t), h \cdot I^\beta(\nabla u)(t) \rangle_{-\theta, \theta} \]
\[+ 2 \sum_{i,j=1}^N \int_\Omega \partial_i h_j I^\beta(\partial_\nu u)(t)I^\beta(\partial_j u)(t) \, dx - \int_\Omega \sum_{j=1}^N \partial_j h_j \cdot |I^\beta(\nabla u)(t)|^2 \, dx, \quad t > 0, \quad \text{(47)} \]
\[\int_{\partial\Omega} \left[2(I^\beta(\partial_\nu u)(t) - I^\beta(\partial_\nu u)(\tau)) \cdot h \cdot (I^\beta(\nabla u)(t) - I^\beta(\nabla u)(\tau)) - h \cdot \nu |I^\beta(\nabla u)(t) - I^\beta(\nabla u)(\tau)|^2 \right] \, d\sigma \]
\[= 2\langle I^\beta(\partial_t^\alpha u)(t) - I^\beta(\partial_t^\alpha u)(\tau), h \cdot (I^\beta(\nabla u)(t) - I^\beta(\nabla u)(\tau)) \rangle_{-\theta, \theta} \]
\[+ 2 \sum_{i,j=1}^N \int_\Omega \partial_i h_j (I^\beta(\partial_\nu u)(t) - I^\beta(\partial_\nu u)(\tau)) (I^\beta(\partial_j u)(t) - I^\beta(\partial_j u)(\tau)) \, dx \]
\[- \sum_{j=1}^N \int_\Omega \partial_j h_j \cdot |I^\beta(\nabla u)(t) - I^\beta(\nabla u)(\tau)|^2 \, dx, \quad t, \tau > 0. \quad \text{(48)} \]

Proof. First, we apply the operator \(I^\beta, \beta \in (0, 1) \), to equation (46):
\[I^\beta(\partial_t^\alpha u)(t) = I^\beta(\triangle u)(t) \quad t > 0. \quad \text{(49)} \]
Fix \(\theta \in (0, 1) \), by means of the duality \(\langle \cdot, \cdot \rangle_{-\theta, \theta} \) introduced by (17) we multiply the terms of the previous equation by
\[2h \cdot \nabla I^\beta(u)(t), \]
that is
\[2\langle I^\beta(\partial_\nu^\beta u)(t), h \cdot \nabla I^\beta(u)(t)\rangle_{-\theta,\theta} = 2\langle \triangle I^\beta(u)(t), h \cdot \nabla I^\beta(u)(t)\rangle_{-\theta,\theta}. \]

Thanks to the regularity of data and (19), the term on the right-hand side of the previous equation can be written as a scalar product in \(L^2(\Omega) \), so we have
\[2\langle I^\beta(\partial_\nu^\beta u)(t), h \cdot \nabla I^\beta(u)(t)\rangle_{-\theta,\theta} = 2\int_\Omega \triangle I^\beta(u)(t) h \cdot \nabla I^\beta(u)(t) \, dx \tag{50} \]

To evaluate the term
\[2\int_\Omega \triangle I^\beta(u)(t) h \cdot \nabla I^\beta(u)(t) \, dx, \]
we apply Lemma 4.1 to the function \(w(t, x) = I^\beta(u)(t) \), so from (44) we deduce
\[2\int_\Omega \triangle I^\beta(u)(t) h \cdot \nabla I^\beta(u)(t) \, dx = \int_{\partial\Omega} \left[2I^\beta(\partial_\nu u)(t) h \cdot I^\beta(\nabla u)(t) - h \cdot \nu |I^\beta(\nabla u)(t)|^2 \right] d\sigma \]
\[- 2 \sum_{i,j=1}^N \int_\Omega \partial_i h \partial_j I^\beta(\partial_i u)(t) I^\beta(\partial_j u)(t) \, dx + \int_\Omega \sum_{j=1}^N \partial_j h \frac{|I^\beta(\nabla u)(t)|^2}{2} \, dx. \]

In conclusion, plugging the above formula into (50), we obtain (47).

The proof of (48) is similar to that of (47). Indeed, starting from
\[I^\beta(\partial_\nu^\beta u)(t) - I^\beta(\partial_\nu^\beta u)(\tau) = I^\beta(\triangle u)(t) - I^\beta(\triangle u)(\tau) \quad t, \tau > 0, \]
by means of the duality \(\langle \cdot, \cdot \rangle_{-\theta,\theta} \) one multiplies both terms by
\[2h \cdot \nabla (I^\beta(u)(t) - I^\beta(u)(\tau)). \]

Then applying Lemma 4.1 to the function \(w(t, \tau, x) = I^\beta(u)(t) - I^\beta(u)(\tau) \), one can get the identity (48). We omit the details. \(\square \)

Theorem 4.3 Let \(u_0 \in H^2(\Omega) \cap H^1_0(\Omega) \), \(u_1 \in H^1_0(\Omega) \) and \(u \) the weak solution of

\[
\begin{align*}
\partial_\nu^\beta u(t, x) &= \Delta u(t, x), \quad t \geq 0, \ x \in \Omega, \\
u(t, x) &= 0 \quad t \geq 0, \ x \in \partial \Omega, \\
u(0, x) &= u_0(x), \quad \nu(t, 0, x) = u_1(x), \quad x \in \Omega.
\end{align*}
\tag{51}
\]

Then, for any \(T > 0 \) there is a constant \(c_0 = c_0(T) \) such that \(u \) satisfies the inequality
\[\int_0^T \int_{\partial\Omega} |\partial_\nu u|^2 \, d\sigma dt \leq c_0(\|\nabla u_0\|_{L^2(\Omega)}^2 + \|u_1\|_{L^2(\Omega)}^2). \tag{52} \]

Proof. We will use Theorem 2.31 with \(H = L^2(\partial\Omega) \) and \(\beta \in (0, 1) \). Indeed, thanks to (25) we have
\[\|\partial_\nu u\|_{L^2(0,T;L^2(\partial\Omega))} \sim \|I^\beta(\partial_\nu u)\|_{H^\beta(0,T;L^2(\partial\Omega))}, \tag{53} \]
so, taking also into account (23), the proof of (52) is equivalent to prove
\[\|I^\beta(\partial_\nu u)\|_{L^2(0,T;L^2(\partial\Omega))}^2 + \|I^\beta(\partial_\nu u)\|_{H^\beta(0,T;L^2(\partial\Omega))}^2 \leq c_0(\|\nabla u_0\|_{L^2(\Omega)}^2 + \|u_1\|_{L^2(\Omega)}^2). \tag{54} \]
To this end we will employ the two identities in Lemma 4.2 with a suitable choice of the vector field \(h \). Indeed, we take a vector field \(h \in C^1(\Omega; \mathbb{R}^N) \) satisfying the condition

\[
 h = \nu \quad \text{on} \quad \partial \Omega
\]

(see e.g. [16] for the existence of such vector field \(h \)) and first consider the identity (47). Since

\[
 \nabla u = (\partial_\nu u)\nu \quad \text{on} \quad (0, T) \times \partial \Omega,
\]

(see e.g. [27, Lemma 2.1] for a detailed proof) the left-hand side of (47) becomes

\[
 \int_{\partial \Omega} |I^3(\partial_\nu u)|^2 \, d\sigma.
\]

Thanks to that choice of \(h \), if we integrate (47) over \([0, T]\), then we obtain

\[
 \int_0^T \int_{\partial \Omega} |I^3(\partial_\nu u)|^2 \, d\sigma dt = 2 \int_0^T \langle I^3(\partial_t^\alpha u)(t), h \cdot I^3(\nabla u)(t) \rangle_{-\theta, \theta} \, dt
\]

\[
 + 2 \sum_{i,j=1}^N \int_0^T \int_{\Omega} \partial_\nu h_j I^3(\partial_t^\alpha u)(t)I^3(\partial_j u)(t) \, dx dt - \int_0^T \int_{\Omega} \sum_{j=1}^N \partial_\nu h_j |I^3(\nabla u)(t)|^2 \, dx dt.
\]

Thanks again to the condition (56) the left-hand side of (48) becomes

\[
 \int_{\partial \Omega} |I^3(\partial_\nu u)(t) - I^3(\partial_\nu u)(\tau)|^2 \, d\sigma.
\]

Therefore, if we multiple both terms of (48) by \(\frac{1}{|t-\tau|^{1+2\beta}} \) and then integrate over \([0, T] \times [0, T]\), we have

\[
 \left[I^3(\partial_\nu u)\right]_{H^\beta(0,T;L^2(\partial \Omega))}^2
\]

\[
 = 2 \int_0^T \int_0^T \frac{1}{|t-\tau|^{1+2\beta}} \langle I^3(\partial_t^\alpha u)(t) - I^3(\partial_t^\alpha u)(\tau), h \cdot (I^3(\nabla u)(t) - I^3(\nabla u)(\tau)) \rangle_{-\theta, \theta} \, dt d\tau
\]

\[
 + 2 \int_0^T \int_0^T \frac{1}{|t-\tau|^{1+2\beta}} \sum_{i,j=1}^N \int_{\Omega} \partial_\nu h_j (I^3(\partial_t^\alpha u)(t) - I^3(\partial_t^\alpha u)(\tau))(I^3(\partial_j u)(t) - I^3(\partial_j u)(\tau)) \, dx \, dt d\tau
\]

\[
 - \int_0^T \int_0^T \frac{1}{|t-\tau|^{1+2\beta}} \int_{\Omega} \sum_{j=1}^N \partial_\nu h_j |I^3(\nabla u)(t) - I^3(\nabla u)(\tau)|^2 \, dx \, dt d\tau.
\]

To estimate the first term on the right-hand side of the above identity, we note that

\[
 2 \int_0^T \int_0^T \frac{1}{|t-\tau|^{1+2\beta}} \langle I^3(\partial_t^\alpha u)(t) - I^3(\partial_t^\alpha u)(\tau), h \cdot (I^3(\nabla u)(t) - I^3(\nabla u)(\tau)) \rangle_{-\theta, \theta} \, dt d\tau
\]

\[
 \leq C \left[I^3(\partial_t^\alpha u) \right]_{H^\beta(0,T;D(A^{-\theta}))}^2 + C \left[I^3(\nabla u) \right]_{H^\beta(0,T;D(A^{\theta}))}^2.
\]

If we choose \(\theta \in \left(\frac{\alpha - 1}{2\alpha}, \frac{1}{2\alpha} \right) \), then we can apply Theorem 3.1 to get \(\partial_t^\alpha u \in L^2(0,T;D(A^{-\theta})) \) and \(\nabla u \in L^2(0,T;D(A^{\theta})) \). Therefore, thanks to Theorem 2.4 we have

\[
 \|I^3(\partial_t^\alpha u)\|_{H^\beta(0,T;D(A^{-\theta}))} \sim \|\partial_t^\alpha u\|_{L^2(0,T;D(A^{-\theta}))},
\]

\[
 \|I^3(\nabla u)\|_{H^\beta(0,T;D(A^{\theta}))} \sim \|\nabla u\|_{L^2(0,T;D(A^{\theta}))}.
\]

\(\square \)
References

[1] F. Alabau-Boussouira, P. Cannarsa, D. Sforza, \textit{Decay estimates for second order evolution equations with memory}, J. Funct. Anal. 254 (2008), 1342–1372.

[2] J. M. Ball, \textit{Strongly continuous semigroups, weak solutions, and the variation of constants formula}, Proc. Amer. Math. Soc. 63 (1977) 370–373.

[3] S. Berrimi, S. A. Messaoudi, \textit{Existence and decay of solutions of a viscoelastic equation with a nonlinear source}, Nonlinear Analysis, \textbf{64} (2006), 2314–2331.

[4] H. Brezis, \textit{Analyse fonctionnelle. Théorie et applications}. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, 1983.

[5] P. Cannarsa, D. Sforza, \textit{An existence result for semilinear equations in viscoelasticity: the case of regular kernels}, in: M. Fabrizio, B. Lazzari and A. Morro editors, Mathematical Models and Methods for Smart Materials, Series on Advances in Mathematics for Applied Sciences, 62, World Scientific, (2002), pp. 343-354.

[6] P. Cannarsa, D. Sforza, \textit{A stability result for a class of nonlinear integrodifferential equations with L^1 kernels}, Appl. Math. (Warsaw) 35 (2008) 395–430.

[7] P. Cannarsa, D. Sforza, \textit{Integro-differential equations of hyperbolic type with positive definite kernels}, J. Differential Equations 250 (2011), 4289–4335.

[8] T. Cazenave, A. Haraux, \textit{An introduction to semilinear evolution equations}. Translated from the 1990 French original by Yvan Martel and revised by the authors. Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York.

[9] M. Doi, S. F. Edwards, \textit{Dynamics of concentrated polymer systems}, Parts 1, 2 and 3, J. Chem. Soc. Faraday II 74 (1978), 1789–1832; Parts 4, J. Chem. Soc. Faraday II 75 (1979), 38–54.

[10] D. Fujiwara, \textit{Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order}, Proc. Japan Acad. 43, No 2 (1967), 82–86.

[11] R. Gorenflo, M. Yamamoto, \textit{Operator theoretic treatment of linear Abel integral equations of first kind}, Japan J. Indust. Appl. Math. 16, No 1 (1999), 137–161.

[12] R. Gorenflo, Y. Luchko, M. Yamamoto, \textit{Time-fractional diffusion equation in the fractional Sobolev spaces} Fract. Calc. Appl. Anal. 18 (2015), no. 3, 799–820.

[13] G. Gripenberg, S. O. Londen, O. J. Staffans, \textit{Volterra Integral and Functional Equations}, Encyclopedia Math. Appl., vol. 34, Cambridge Univ. Press, Cambridge, 1990.

[14] S. Kawashima, \textit{Global solutions to the equation of viscoelasticity with fading memory}, J. Differential Equations 101 (1993) 388–420.

[15] J. U. Kim, \textit{On the local regularity of solutions in linear viscoelasticity of several space dimensions}, Trans. Amer. Math. Soc. 346 (1994), 359–398.

[16] V. Komornik, \textit{Exact controllability and stabilization. The multiplier method}, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley and Sons, Ltd., Chichester, 1994.
[17] V. Komornik, P. Loreti, *Fourier Series in Control Theory*, Springer Monogr. Math., Springer-Verlag, New York, 2005.

[18] I. Lasiecka, R. Triggiani, *Regularity of hyperbolic equations under $L_2(0,T;L_2(\Gamma))$ boundary terms*, Appl. Math. Optim. 10 (1983), 275–286.

[19] J.-L. Lions, *Contrôle des systèmes distribués singuliers*, Gauthiers-Villars, Paris, 1983.

[20] J.-L. Lions, *Hidden regularity in some nonlinear hyperbolic equations* Mat. Apl. Comput. 6 (1987), 7–15.

[21] J.-L. Lions, *Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués I-II*, Recherches en Mathématiques Appliquées, 8-9 (1988), Masson, Paris.

[22] P. Loreti, D. Sforza, *Reachability problems for a class of integro-differential equations*, J. Differential Equations 248 (2010), 1711–1755.

[23] P. Loreti, D. Sforza, *Hidden regularity for wave equations with memory*, Riv. Math. Univ. Parma (N.S.) 7 (2016), 391–405.

[24] P. Loreti, D. Sforza, *A semilinear integro-differential equation: global existence and hidden regularity. Trends in control theory and partial differential equations*, 157–180, Springer INdAM Ser., 32, Springer, Cham, 2019.

[25] A. Lunardi, Interpolation theory. Third edition [of MR2523200]. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 16. Edizioni della Normale, Pisa, 2018. xiv+199 pp.

[26] R. C. MacCamy, *A model Riemann problem for Volterra equations*, Arch. Rational Mech. Anal. 82 (1983), 71–86.

[27] M. Milla Miranda, L. A. Medeiros, *Hidden regularity for semilinear hyperbolic partial differential equations*, Ann. Fac. Sci. Toulouse Math. (5) 9 (1988), 103–120.

[28] J. E. Muñoz Rivera, A. Peres Salvatierra, *Asymptotic behaviour of the energy in partially viscoelastic materials*, Quart. Appl. Math., 59 (2001), 557–578.

[29] J. A. Nohel, D. F. Shea, *Frequency domain methods for Volterra equations*, Advances in Math. 22 (1976) 278–304.

[30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.

[31] J. Prüss, *Evolutionary integral equations and applications*, Monographs in Mathematics, 87 (1993), Birkhäuser Verlag, Basel.

[32] M. Renardy, W. J. Hrusa, J. A. Nohel, *Mathematical problems in viscoelasticity*, Pitman Monographs Pure Appl.Math., 35 (1988), Longman Sci. Tech., Harlow, Essex.

[33] K. Sakamoto, M. Yamamoto, *Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems*, J. Math. Anal. Appl. 382 (1) (2011) 426–447.