Subtle leakage of a Majorana mode into a quantum dot

E. Vernek,1,2 P. H. Penteado,2 A. C. Seridonio,3 and J. C. Egues2

1 Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
2 Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brazil.
3 Departamento de Física e Química, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil.

(Dated: May 6, 2014)

We investigate quantum transport through a quantum dot connected to source and drain leads and side-coupled to a topological superconducting nanowire (Kitaev chain) sustaining Majorana end modes. Using a recursive Green’s function approach, we determine the local density of states (LDOS) of the system and find that the end Majorana mode of the wire leaks into the dot thus emerging as a unique dot level pinned to the Fermi energy \(\epsilon_F \) of the leads. Surprisingly, this resonance pinning, resembling in this sense a “Kondo resonance”, occurs even when the gate-controlled dot level \(\epsilon_{dot}(V_g) \) is far above or far below \(\epsilon_F \). The calculated conductance \(G \) of the dot exhibits an unambiguous signature for the Majorana end mode of the wire: in essence, an off-resonance dot \([\epsilon_{dot}(V_g) \neq \epsilon_F] \), which should have \(G = 0 \), shows instead a conductance \(\epsilon^2/2h \) over a wide range of \(V_g \), due to this pinned dot mode. Interestingly, this pinning effect only occurs when the dot level is coupled to a Majorana mode; ordinary fermionic modes (e.g., disorder) in the wire simply split and broaden (if a continuum) the dot level. We discuss experimental scenarios to probe Majorana modes in wires via these leaked/pinned dot modes.

PACS numbers: 03.67.Lx, 71.10.Pm, 74.25.F-, 74.45.+c, 73.21.La, 73.63.Kv

I. INTRODUCTION

Zero-bias anomalies in transport properties are one of the most intriguing features of the low-temperature physics in nanostructures. The canonical example is the zero-bias peak in the conductance of interacting quantum dots coupled to metallic contacts, which is a clear manifestation of the Kondo effect arising from the dynamical screening of the unpaired electron spin in the quantum dot by the itinerant electrons of the leads. Another example is the Andreev bound state arising from electron and hole scattering at a normal-superconductor interface.

Recently, a new type of zero-bias anomaly has emerged in connection with the appearance of Majorana bound states in Zeeman split nanowires with spin-orbit interaction in close proximity to an s-wave superconductor. It is theoretically well established that these “topological” superconducting wires sustain chargeless zero-energy end states with peculiar features such as braiding statistics, possibly relevant for topological quantum computation. Experimentally, however, there is still controversy as to what the observed zero-bias peak really means: Kondo effect, Andreev bound states and disorder effects are some of the possibilities. Franz summarizes and discusses these issues in Ref. [16].

Here we propose a direct way to probe the Majorana end mode arising in a topological superconducting nanowire by measuring the two-terminal conductance \(G \) through a dot side-coupled to the wire, Figs. 1(a) and 1(b). Using an exact recursive Green’s function approach, we calculate the local density of states (LDOS) of the dot and wire, and show that the Majorana end mode of the wire leaks into the dot thus giving rise to a Majorana resonance in the dot, Figs. 1(c) and 1(d). Surprisingly, we find that this dot Majorana mode is pinned to the Fermi level \(\epsilon_F \) of the leads even when the gate controlled dot level \(\epsilon_{dot}(V_g) \) is far off resonance \(\epsilon_{dot}(V_g) \neq \epsilon_F \).

Based on the results above, we suggest three experimental ways of probing the Majorana end mode in the wire via the leaked/pinned Majorana mode in the dot: (i) with the dot kept off resonance \([\epsilon_{dot}(V_g) \neq \epsilon_F] \) one can measure \(G \) vs \(V_g \), the wire-dot coupling \(V_0 \) can be controlled by an external gate, to see the emergence of the \(\epsilon^2/2h \) peak in \(G \) as the Majorana end mode “leaks” into the dot, Fig. 1(e) (cf. \(\rho_{dot} \)) above and below \(\epsilon_F \); (ii) Alternatively, one can measure \(G \) vs \(V_g \), over a range in which \(\epsilon_{dot}(V_g) \) runs from far below to far above the Fermi-level of the leads where we find \(G \) to be essentially a plateau at \(\epsilon^2/2h \), Figs. 1(f) and 1(g); (iii) Yet another possibility is to drive the wire through a non-topological/topological phase transition, e.g., electrically via the spin-orbit coupling, temperature or the chemical potential \(\mu \) of the wire (Fig. 1(h)), while measuring the conductance of the dot; the presence/absence of the Majorana end mode in the wire would alter drastically the conductance of the dot, see circles (black) and stars (green) in Fig. 1(g).

The above pinning of the dot Majorana resonance at \(\epsilon_F \) is similar to that of Kondo. However, the Kondo resonance only occurs for \(\epsilon_{dot}(V_g) \) below \(\epsilon_F \) [cf. Figs. 1(h) and 1(i)] and yields a conductance peak at \(\epsilon^2/h \) (per spin) instead. Even though there is no Kondo effect in our system (spinless dot), we conjecture that this symmetry of the dot-Majorana resonance with respect to \(\epsilon_{dot}(V_g) \) above and below \(\epsilon_F \) could be used to distinguish Majorana-related peaks from those arising from the usual Kondo effect whenever this effect is relevant.

Moreover, this Majorana resonance in the dot follows quite simply by viewing the dot as an additional site (though with no pairing gap) of the Kitaev chain. We emphasize that this unique pinning occurs only when the dot is coupled to a Majorana mode – a half-fermion state. When the dot is coupled to usual fermionic modes (bound, e.g., due to disorder, or not) in the wire, its energy level will simply split and broaden as we discuss later on. A spin full version of our model with a Hubbard \(U \) interaction in the dot yields similar results.

The paper is organized as follows. In Secs. 1 and 3 we present the Hamiltonian that describes our system and introduce the Majorana Greens functions that we use to calculate...
and ˜
summarize our main findings in Sec. V.

In Sec. IV we consider a single-level spinless quantum dot coupled to two metallic leads and to a Kitaev chain (Fig. 1(a)). To realize a single-level dot (‘spinless’ dot regime), we consider a dot with gate controlled Zeeman-split levels ε⁺_dot(V_g) = -eV_g (e > 0) and ε⁻_dot(V_g) = ε⁺_dot(V_g) + V_Z, with V_Z the Zeeman energy. By varying V_g such that |eV_g| < V_Z/2 we can maintain the dot either empty [i.e., both spin-split levels above the Fermi level ε_F (taken as zero) of the leads] or singly occupied [i.e., only one spin-split dot level, e.g., ε⁺_dot(V_g) below ε_F].

Typically [e.g., Fig. 1(g)], we vary |eV_g| < 10Γ |eV_g| < 0.4 eV, assuming a realistic Zeeman energy to attain topological superconductivity, i.e., V_Z ≈ 0.8 meV [see Rainis et al. in Ref. 26]. This picture also holds true in the presence of a Hubbard U term in the dot citemapping-U). In this spinless regime, our Hamiltonian is H = H_{chain} + H_{dot} + H_{dot-chain} + H_{leads} + H_{dot-leads}, with H_{chain} describing the chain

\[H_{chain} = -\mu \sum_{j=0}^{N} c_j^\dagger c_j - \frac{1}{2} \sum_{j=1}^{N-1} [t c_{j+1}^\dagger c_j + \Delta e^{i\phi} c_j c_{j+1} + H.c.] \]

N is the number of chain sites, c_j^\dagger (c_j) creates (annihilates) a spinless electron in the j–th site and φ is an arbitrary phase. The parameters r and Δ denote the inter-site hopping and the superconductor pairing amplitude of the Kitaev model, respectively; its chemical potential is μ.

The single-level dot Hamiltonian H_{dot} is

\[H_{dot} = (\epsilon_{dot} - \epsilon_F) c_0^\dagger c_0, \]

c_j^\dagger (c_j) creates (annihilates) a spinless electron in the dot with energy ε_{dot} = -eV_g and H_{leads} denotes the free electron source (S) and drain (D) leads

\[H_{leads} = \sum_{k,l=S,D} (\epsilon_{\ell,k} - \epsilon_F) c_{\ell,k}^\dagger c_{\ell,k}, \]

where c_{\ell,k}^\dagger (c_{\ell,k}) creates (annihilates) a spinless electron with wavevector k in the leads, whose Fermi level is ε_F. The coupling between the QD and the first site of the chain and between the QD and the leads are, respectively,

\[H_{dot-chain} = t_0 \left(c_0^\dagger c_1 + c_1^\dagger c_0 \right) \]

and

\[H_{dot-leads} = \sum_{k,l=S,D} (V_{\ell,k} c_{\ell,k}^\dagger c_{\ell,k} + H.c.). \]

The quantity V_{\ell,k} is the tunneling between the QD and the source and drain leads and t_0 is the hopping amplitude between the QD and the Kitaev chain.

III. RECURSIVE GREEN’S FUNCTION AND LDOS

Our model and approach are similar to those of Ref. 27 and go beyond low-energy effective Hamiltonians.28 Let us introduce the Majorana fermions γ_{α, j}, α = A, B, via c_j = e^{-iθ/2}(γ_{B,j} + iγ_{A,j})/2 and c_j^\dagger = e^{iθ/2}(γ_{B,j} - iγ_{A,j})/2, j = 0 \cdots N (j = 0 is the dot).23,29 The γ_{A,j}’s obey [γ_{A,j}, γ_{B,j'}]_+ = 2δ_{0,j'} δ_{j,j'} and γ_{A,j'} = γ_{j'} A. We now define the Majorana retarded Green’s function

\[M_{αβ,j}(ω) = -i \int_0^\infty \Theta(\tau) (\{γ_{α,j}(\tau), γ_{β,j}(0)\}_+) e^{iω\tau} d\tau, \]

where Θ is the Heaviside step function.
where \(\langle \cdots \rangle \) denotes either a thermodynamic average or a ground state expectation value at zero temperature; \(\Theta(x) \) is the Heaviside function and \(\epsilon \rightarrow \epsilon + i\eta \) with \(\eta \to 0^+ \). We can express the electron Green’s function as

\[
G_{ij}(\epsilon) = \frac{1}{4} \left[M_{AL,ij} + M_{BL,ij}(\epsilon) + i \left(M_{AL,ij} - M_{BL,ij} \right) \right] \tag{7}
\]

and determine the electronic LDOS \(\rho_j(\epsilon) = (-1/\pi) \text{Im } G_{jj}(\epsilon) \),

\[
\rho_j(\epsilon) = \frac{1}{4} \left[\mathcal{A}_{j}(\epsilon) + B_{j}(\epsilon) - i \frac{1}{\pi} \text{Re } \left[M_{AL,Bj}(\epsilon) - M_{BL,Aj}(\epsilon) \right] \right]. \tag{8}
\]

In \([3]\) we have introduced the Majorana LDOS \(\mathcal{A}_{j}(\epsilon) = (-1/\pi) \text{Im } M_{AL,Bj}(\epsilon) + B_{j}(\epsilon) = (-1/\pi) \text{Im } M_{BL,Aj}(\epsilon) \).

Using the equation of motion for the Green’s functions, we obtained a set of coupled matrix equations, e.g., for \(j = 0 \) (dot)

\[
M_{00}(\epsilon) = \tilde{m}_{00}(\epsilon) + \tilde{m}_{00}(\epsilon)W_0^\dagger M_{10}(\epsilon), \tag{9}
\]

where \(M_{ij}(\epsilon) \) is [see Eq. \([3]\)]

\[
M_{ij}(\epsilon) = \begin{bmatrix} M_{AL,ij}(\epsilon) & M_{AL,ij}(\epsilon) \\ M_{BL,ij}(\epsilon) & M_{BL,ij}(\epsilon) \end{bmatrix}, \tag{10}
\]

\[
\tilde{m}_{j}(\epsilon) = \left[1 - m_{j}(\epsilon) V(\epsilon)^{-1} \right] m_{j}(\epsilon) \text{ and } m_{j}(\epsilon) = 2\{\epsilon - \Sigma(0)\delta(0)\} - 1. \]

Here \(\Sigma(\epsilon) = \Sigma_{\text{dot}} = \Sigma_k |\tilde{V}|^2 (\epsilon - \tilde{\epsilon}_k)^{-1} + (\epsilon - \tilde{\epsilon}_k)^{-1} \) is the dot level broadening (leads), with \(\tilde{\epsilon}_k = \epsilon_k - \epsilon_F \), \(V_{\text{sc}} = V_{\text{sc}} = \sqrt{V}/\sqrt{2} \) and \(I \) the 2 \(\times \) 2 identity matrix. Finally,

\[
V_j = \frac{1}{2} \begin{bmatrix} 0 & i\mu_j \\ -i\mu_j & 0 \end{bmatrix} \text{ and } W_j = \frac{1}{2} \begin{bmatrix} 0 & iW_j^{(s)} \\ iW_j^{(s)} & 0 \end{bmatrix}, \tag{11}
\]

with \(\mu_0 = eV_g - 2 \Sigma_k |\tilde{V}|^2 (\epsilon - \tilde{\epsilon}_k)^{-1} - (\epsilon + \tilde{\epsilon}_k)^{-1} \), \(W_j^{(s)} = \pm \theta_0 \), and \(\mu_j = \mu \) and \(W_j^{(s)} = (\Delta \pm t)/2 \) for all \(j > 0 \). The quantity \(W_j^{(s)} \) is an effective coupling matrix, see Fig. 1(a). In the wide band limit and assuming a constant \(\tilde{V} \), we obtain \(\Sigma_{\text{dot}}(\epsilon) = -2\Gamma \) and \(\mu_0 = eV_g = -\epsilon_{\text{dot}} \), with the broadening \(\Gamma = 2\pi |\tilde{V}|^2 \rho_1 \) and \(\rho_0 = \rho(\epsilon_F) \) being the DOS of the leads. Similarly to \([9]\), we find for the first site \(j = 1 \) of the chain

\[
M_{11}(\epsilon) = \tilde{m}_{11}(\epsilon) + \tilde{m}_{11}(\epsilon)W_1^\dagger M_{21}(\epsilon), \tag{12}
\]

with \(\tilde{m}_{11}(\epsilon) = \left[1 - \tilde{m}_{11}(\epsilon) W_0 m_{00}(\epsilon) W_0^\dagger \right]^{-1} \tilde{m}_{11}(\epsilon) \). We can then recursively obtain the Majorana matrix at any site.

IV. NUMERICAL RESULTS

Following realistic simulations\([2,9]\) and experiments\([3]\), we assume \(t = 10 \) meV, the dot level broadening \(\Gamma_0 = 4.0 \times 10^{-2} \) meV and set \(\epsilon_F = 0 \) (we also set \(\phi = 0 \)). In Fig. 1(b) we show the LDOS as a function of the energy \(\epsilon \) for a site in the middle and on the edge of the chain, \(\rho_{\text{bulk}} \) [dashed (red) curve] and \(\rho_1 = \rho_{\text{edge}} \) [solid (black) curve], respectively, for \(t_0 = 0 \) (decoupled chain) and \(\Delta = 0.2t \) = 2 meV. Note that \(\rho_{\text{bulk}} \) is fully gapped, while \(\rho_1 = \rho_{\text{edge}} \) exhibits a midgap zero-energy peak, corresponding to the end Majorana state of the chain.

![Color map of the local density of states for Majoranas “A” (top) and “B” (bottom) at the dot (left) and at the first site of the chain (right), as a function of \(\epsilon \) and \(\epsilon_{\text{dot}} \) for \(t = 10 \) meV.](image)

\(\Delta = 0.2t \), \(\Gamma_L = 40 \) meV, \(t_0 = 10 \Gamma_L \), and \(\mu = 0 \). Panel (d) shows \(10^4 \Gamma_1 \).

Figures 1(c) and 1(d) show the LDOS of the dot \(\rho_{\text{dot}} \) and of the first site \(\rho_1 \) as functions of \(\epsilon \) for \(\epsilon_{\text{dot}} = -5\Gamma_L \) and three different values of \(\mu_0 \).

For clarity, the curves are offset vertically. For \(t_0 = 0 \) (long dashed (black) line) we see just the usual single particle peak of width \(\Gamma_0 \) centered at \(\epsilon = \epsilon_{\text{dot}} \). For clarity, we observe the emergence of a sharp peak at \(\epsilon = 0 \). In addition to the peak at \(\epsilon = \epsilon_{\text{dot}} \), we observe the small real peaks for \(\epsilon_{\text{dot}} \) slightly moves to lower energies while its zero-energy peak increases to 0.5 (in units of \(\pi \Gamma_0 \)). As the peak appears in \(\rho_{\text{dot}} \) for increasing \(\mu_0 \), the Majorana central peak in Fig. 1(d) decreases. We can still see a peak in \(\rho_1 \) for \(\mu_0 = 10 \Gamma_L \), dashed (blue) line in Fig. 1(d), but much weaker than its \(\mu_0 = 0 \) value. We further show \(\rho_{\text{dot}} = \rho_{\text{dot}}(0) / \rho_{\text{max}} \) and \(\rho_1 = \rho_1(0) / \rho_1(\mu_0) \), \(\rho_{\text{dot}}(0) \) = \(\rho_1(0) \) = \(\rho_{\text{max}} \), \(\rho_{\text{dot}} \) below \(\epsilon_{\text{dot}} \) = 0 is similar to that of the Kondo resonance, which, however, is known to occur at \(\pi \Gamma_0 \), cf Figs. 1(b) and 1(i).

In Fig. 1(f) we display a color map of the electronic LDOS \(\rho_{\text{dot}} \) vs \(\epsilon \) and \(\epsilon_{\text{dot}} \) for the wire in the topological phase \(\Delta = 0 \) and \(\mu_0 < t \) with \(\mu = 0 \). At \(\epsilon_{\text{dot}} = 0 \), we see three bright regions that correspond to the three peaks of \(\rho_{\text{dot}}(\epsilon) \). Fig. 1(f).

In contrast, by fixing \(\epsilon = 0 \) and varying \(\epsilon_{\text{dot}} \), we see that the zero-energy peak remains essentially unchanged over the range of \(\epsilon_{\text{dot}} \). More strikingly, this central peak is pinned at \(\epsilon = \epsilon_{\text{dot}} = 0 \) for \(\epsilon_{\text{dot}} > 0 \) and \(\epsilon_{\text{dot}} < 0 \). The pinning for \(\epsilon_{\text{dot}} = 0 \) is similar to that of the Kondo resonance, which, however, is known to occur at \(\pi \Gamma_0 \), cf Figs. 1(b) and 1(i).

Here again one can measure \(G \) vs \(\epsilon_{\text{dot}} \) [Fig. 1(h)] for the wire in its trivial phase \(\mu_0 > t \), e.g., \(\mu = 1.5t \) (circles, black). G exhibits a single peak, whose maximum corresponds to \(\epsilon_{\text{dot}}(\epsilon_{\text{dot}}) \) crossing the Fermi level. Note that the peak is not at \(\epsilon_{\text{dot}} = 0 \) but slightly shifted. This arises from the small real parts of the self energy in the dot Green’s function. In the topological phase \(\mu_0 < t \), e.g., \(\mu = 0 \) and \(\mu = 0.75t \) [squares (red) and diamonds (blue), respectively], we see an almost constant \(G \approx e^2/2h \) for \(\epsilon_{\text{dot}} \) up to \(10 \Gamma_L \). This conductance plateau is similar to that of Kondo\([3]\), except that here \(G \) is half of it (per
The Majorana LDOS A_{dot} and B_{dot} shown in Figs. 2(a) and 2(b), respectively, as functions of ε and eV_F (same parameters as in Figs. 1(f), display a zero-energy peak in A_{dot} and none in B_{dot}. This shows that the pinned dot-Majorana peak in Fig. 1(f) arises from Majorana A only. We note that the peaks at B_{dot} at $\varepsilon \approx \pm 7t_L$ (for $eV_F = 0$) are affected by the dot-wire Majorana coupling as compared to the $\Delta = t$ case. For couplings to any ordinary fermionic wire modes, the dot LDOS would obey $A_{\text{dot}} = B_{\text{dot}}$ and it would split and broaden.

Figures 2(c) and 2(d) show that the Majorana LDOS of the first chain site A_1 and B_1 have no zero-energy peaks, thus indicating that the wire end mode has indeed leaked into the dot. We see two peaks in A_1 at $\varepsilon = \pm 7t_L$ [see Fig. 2(b)] resulting from the coupling $-t_0$ between A_1 and B_{dot}, see Fig. 1(a). A careful look at Fig. 2(c) reveals an enhancement of the zero-energy peaks for $eV_F \lesssim 5t_L$, as a result of the coupling between the dot Majorana A and the Majoranas of the chain via a finite ε_{dot}. The strength of this peak is much smaller than its magnitude without the dot.

Figure 3(a) shows the conductance G vs μ for several ε_{dot}’s [same parameters as in Figs. 1(f) and 1(g)]. For $\varepsilon_{\text{dot}} = 0$ [circles (black)] and $|\mu| > t$ (trivial phase), G arises from the single-particle dot level at $e\varepsilon$. The effect of the chain is essentially to shift and broaden ε_{dot} so that the value e^2/h is reached only for $|\mu| \gg t$. As μ varies across $\pm t$, the wire undergoes a trivial-to-topological transition and G suddenly decreases to $e^2/2h$ as the leaked dot Majorana appears. For $\varepsilon_{\text{dot}} \neq 0$ the asymptotic ($|\mu| \gg t$) value of the G is no longer e^2/h as ε_{dot} cannot attain eF. The squares (red) and diamonds (blue) in Fig. 3(a) show a tiny conductance for $\mu > t$. However, as $|\mu|$ becomes smaller than t both curves rapidly go to $e^2/2h$.

In Fig. 3(b) we fix $\varepsilon_{\text{dot}} = 0$ and plot the conductance G as a function of μ for distinct t_0’s. As t_0 increases, G remains pinned at $e^2/2h$ in the topological regime, while it decreases in the trivial phase since the dot level shifts due to the chain self energy $\sim t_0^2$. Figures 3(c) and 3(d) show G for $\Delta = 0$ and the same parameters as in Figs. 3(a) and 3(b), respectively. For $|\mu| < t$ the G is very sensitive to ε_{dot} for a fixed $t_0 = 10t_L$ [Fig. 3(c)], and to t_0 for $\varepsilon_{\text{dot}} = 0$ [Fig. 3(d)], which contrasts with its practically constant value for $\Delta = 0.2t$, Figs. 3(a) and 3(b). This is so because the wire acts as a third normal lead for $\Delta = 0$ and $t_0 \neq 0$, so the source-drain G, e.g., for $\mu = 0$, reduces to $G = (e^2/h)\Gamma_L/(\Gamma_L + \Gamma_{\text{chain}})$, where $\Gamma_{\text{chain}} = 2t_0^2/t$ is the broadening due to the chain. Curiously, for $t_0 = 11.18t_L$ and $\varepsilon_{\text{dot}} = 0$ the G curves are indistinguishable for $\Delta = 0$ and $\Delta \neq 0$, being pinned at $e^2/2h$ in the topological and trivial phases, cf. squares in 3(d) and 3(c). Therefore, the peak value $G = e^2/2h$, first found in Ref. 27 in a similar setup as ours but only for an on-resonance dot (i.e., $\varepsilon_{\text{dot}} = 0 \neq eF$), is not present when a ‘smoking-gun’ evidence for a Majorana end mode in conductance measurements, as we find that this peak value can appear even in the trivial phase of the wire. One should vary, e.g., ε_{dot} and/or t_0 to tell these phases apart as we do in Fig. 3. Finally, the kinks in 3(d) [e.g., diamonds (blue) and stars (green)] result from discontinuities in Γ_{chain} at $\mu = \pm t$.

V. CONCLUDING REMARKS

We have used an exact recursive Green’s function approach to calculate the LDOS and the two-terminal conductance G through a quantum dot side-coupled to a Kitaev wire. Interestingly, we found that the end Majorana mode of the wire leaks into the quantum dot thus originating a resonance pinned to the Fermi level of the leads eF. In contrast to the usual Kondo resonance arising only for ε_{dot} below eF, this unique dot-Majorana resonance appears pinned to eF even when the gate-controlled energy level $\varepsilon_{\text{dot}}(V_F)$ is far above or below eF, provided that the wire is in its topological phase. This leaked Majorana dot mode provides a clear-cut way to probe the Majorana mode of the wire via conductance measurements through the dot.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with F. M. Souza. J.C.E. also acknowledges valuable discussions with D. Raish. This work was supported by the Brazilian agencies CNPq, CAPES, FAPESP, FAPEMIG, and PRP/USP within the Research Support Center Initiative (NAP Q-NANO).

1 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Nature 391, 156 (1998).

2 S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998).
When the Kondo resonance coexists with the dot Majorana mode, the total conductance through the dot should ideally attain $3e^2/2h$ \[e^2/h \text{ (due to Kondo)} + e^2/2h \text{ (Majorana)}, \] as was found by Lee et al. [Phys. Rev. B 87, 241402 (2013)] for a dot in the resonant-tunneling regime. See also Cheng et al. [arXiv:1308.4156] and Golub et al. [Phys. Rev. Lett. 107, 176802 (2011)] for a discussion on the interplay between Kondo and Majorana induced couplings in a quantum dot.

For an interesting proposal for the realization of the Kitaev chain see: I. C. Fulga, A. Haim, A. R. Akhmerov, and Y. Oreg, New J. Phys. 15, 045020 (2013).

We have also implemented a spin-full version of our system, considering a tight-binding nanowire + Rashba spin-orbit interaction + proximity-induced superconductivity + a Zeeman field (a wire with these ingredients can be mapped onto the Kitaev chain\[\text{[87]}\]) which corroborates our findings. In addition, We have considered a Hubbard U term in the dot and verified that our results still hold, provided that only a single spin-split dot level lies below the Fermi level of the leads (i.e., Coulomb blockade is irrelevant in this regime). These results will be described elsewhere.

Interestingly, this regime (empty or singly occupied dot) should by itself prevent the Kondo effect and Andreev bound states in our setup. Andreev bound states, however, have a strong gate voltage dependence as reported by Deacon \textit{et al}. [Phys. Rev. Lett. 104, 076805 (2010)] and appear (mostly) as doublets not pinned to e_F [see also Lee \textit{et al}, Nat. Nanotechnol. 9, 79 (2014)].