Inverse scattering transform for the Toda lattice with steplike initial data

Ag.Kh. Khanmamedov¹,²
¹ Institute of Mathematics and Mechanics of NAS of Azerbaijan, 9 F Agayev str., AZ1141, Baku, Azerbaijan
² Institute Applied Mathematics, Baku State University, 23 Z Khalilov str., AZ1148, Baku, Azerbaijan
E-mail: agil_khanmamedov@yahoo.com

Abstract. We study the solution of the Toda lattice Cauchy problem with steplike initial data. The initial data are supposed to tend to zero as $n \to +\infty$. By the inverse scattering transform method formulas allowing us to find solution of the Toda lattice is obtained.

AMS classification scheme numbers: 34K29; 35Q58
Inverse scattering transform for the Toda lattice with steplike initial data

1. Introduction

The Toda lattice has some very important applications in the theory of physics of nonlinear processes (see [1]). It is known the inverse scattering method allows one to investigate in detail the Cauchy problem for the Toda lattice in the different classes of initial data (see [1]-[15] and references therein). The last problem for the doubly-infinite Toda lattice

\[
\begin{align*}
& \dot{a}_n = \frac{a_n}{2} (b_{n+1} - b_n), \quad \dot{b}_n = a_n^2 - a_{n-1}^2, \quad a_n = a_n(t) > 0, \\
& b_n = b_n(t), \quad n = 0, \pm 1, \pm 2, \ldots
\end{align*}
\]

(1.1)

with fast stabilized or steplike fast stabilized initial data is investigated in [1]-[9] (see also references therein) by the method of inverse scattering transform. However, this problem is not studied in the case of steplike initial data, where \(a_n\) tend to zero as \(n \to +\infty\) (or \(n \to -\infty\)).

In this paper we study the Cauchy problem for the system (1.1) with initial data

\[
a_n(0) \to 0, \quad b_n(0) \to 0 \quad \text{as} \quad n \to +\infty,
\]

\[
\sum_{n<0} |n| \left(|a_n(0) - 1| + |b_n(0)| \right) < \infty.
\]

(1.2)

The solution is considered in the class

\[
\|a_n(t)\|_{C[0,T]} \to 0, \quad \|b_n(t)\|_{C[0,T]} \to 0, \quad \text{as} \quad n \to +\infty,
\]

\[
\|Q(t)\|_{C[0,T]} < \infty, \quad \text{for arbitrary} \quad T > 0, \quad \text{where}
\]

\[
Q(t) = \sum_{n<0} |n| \left(|a_n(t) - 1| + |b_n(t)| \right).
\]

(1.3)

Note, we cannot apply directly method given in [1]-[9] for the case \(\inf a_n > 0\), because the Jost solution with the asymptotic behaviour on an \(+\infty\) does not exist in our case. On the other hand, method of inverse problem is used (see [10]) in the case when Jacobi operator associated with (1.1) has the continuous spectrum \([a, b]\) of multiplicity two. But this method cannot be used when the spectrum of the Jacobi operator has a continuous spectrum of multiplicity one and a discrete spectrum.

The paper is organized as follows. In section 2 we formulate some auxiliary facts to the inverse scattering problem for the Jacobi operator associated with (1.1)-(1.2). In section 3 we describe the evolution of the scattering data of problem (1.1)-(1.2).

In the last section we prove existence of the solution of the problem (1.1)-(1.2) in class (1.3).
2. The scattering problem

Consider Jacobi operator L generated in $\ell^2(-\infty, \infty)$ by the finite-difference operations

$$(Ly)_n = a_{n-1}y_{n-1} + b_ny_n + b_{n+1}y_{n+1},$$

in which the real coefficients $a_n > 0$, b_n satisfy the conditions

$$a_n \to 0, \ b_n \to 0 \quad as \quad n \to +\infty,$$

$$\sum_{n<0} |n| \{(|a_n - 1| + |b_n|) < \infty .$$

The interval $[-2, 2]$ is the continuous spectrum of multiplicity one of operator L (see [16],[17]). Beyond the continuous spectrum, L can have a finite number of simple eigenvalues $\mu_k(t)$, $k = 1, \ldots, p$.

Let us formulate some auxiliary facts related to the inverse scattering problem for the equation

$$(Ly)_n = \lambda y_n, \quad n = 0, \pm 1, \ldots, \lambda \in C$$ \hspace{1cm} (2.1)

Many of these facts can be found in [16],[17].

Let $P_n(\lambda)$ and $Q_n(\lambda)$ be solutions of Eq. (2.1) with initial conditions

$$P_{-1}(\lambda) = 0, \quad P_0(\lambda) = 1,$$

$$Q_0(\lambda) = 0, \quad Q_1(\lambda) = \frac{1}{a_0}.$$ \hspace{1cm} (2.2)

We denote by L_0 semi-infinite Jacobi operator generated $\ell^2[0, \infty)$ by Eq. (2.1) as $n \geq 0$ and the boundary condition $y_{-1} = 0$. This operator is completely continuous. Moreover, the spectral function $\rho(\lambda)$ of L_0 represented [18] in the form

$$\rho(\lambda) = \sum_{\lambda_n < \lambda} \beta_n^{-2},$$

where λ_n is the eigenvalue of L_0 and β_n is the norm of the eigenfunction corresponding to the λ_n.

As is known from [18]-[19], the right Weyl function of the problem (2.1) has the form

$$m(\lambda) = \int_{-\infty}^{\infty} \frac{d\rho(\tau)}{\tau - \lambda},$$ \hspace{1cm} (2.2)

or

$$m(\lambda) = \sum_{n=1}^{\infty} \frac{\beta_n^{-2}}{\lambda_n - \lambda}.$$ \hspace{1cm} (2.3)

where $\lambda_n \to 0$ as $n \to \infty$. It follows from [12]-[13] that for $\lambda \neq \lambda_k$, $k = 1, 2, \ldots$, Eq.(2.1) has Weyl solution

$$\psi_n(\lambda) = Q_n(\lambda) + m(\lambda)P_n(\lambda),$$ \hspace{1cm} (2.3)
Inverse scattering transform for the Toda lattice with step-like initial data

“on the right semiaxis” (such that $\sum_{n=0}^{\infty} |\psi_n(\lambda)|^2 < \infty$).

Suppose that Γ is the complex λ-plane with cut along the interval $[-2, 2]$. In the plane Γ, consider the function

$$z(\lambda) = \frac{\lambda}{2} + \sqrt{\frac{\lambda^2}{4} - 1}$$

choosing the regular branch of the radical so that $\sqrt{\frac{\lambda^2}{4} - 1} < 0$ for $\lambda > 2$. We often omit the dependence of $z(\lambda)$ on λ in what follows. Thus, in the formulas involving z and λ, we always assume that z is as in the above equation.

It is well known (see, for example, [20]) that Eq.(2.1) has a Jost solution represented in the form

$$f_n(\lambda) = a_n z^{-n} \left(1 + \sum_{m<0} A_{nm} z^{-m}\right). \tag{2.4}$$

The coefficients are given by

$$a_n = \frac{\alpha_n}{\alpha_{n+1}}, \quad b_n = A_{n,-1} - A_{n+1,-1}. \tag{2.5}$$

Without restriction of generality we can suppose that $\lambda_m \in (-2, 2)$ for any $m = 1, 2, \ldots$. As known [16],[17], for $\lambda \in \partial \Gamma$, $\lambda^2 \neq 4, \lambda \neq \lambda_m$ identity

$$\psi_n(\lambda) = a(\lambda)f_n(\lambda) + \overline{a(\lambda)f_n(\lambda)} \tag{2.6}$$

holds, where the function $a(\lambda)$ can be regularly continued to Γ. Note also, $a(\lambda)$ can have a finite number of coinciding simple zeros outside the interval $[-2, 2]$, because, these zeros constitute the discrete spectrum $\mu_k, \ k = 1, \ldots, p$, of the operator L.

Introduce reflection $R(\lambda)$ coefficient by the formula

$$R(\lambda) = \frac{a(\lambda)}{\overline{a(\lambda)}}.$$

The function $R(\lambda)$ is continuous for $\lambda \in \partial \Gamma$. Setting $n = -1$ and $n = 0$ in the identity (2.6) yields the expression

$$m(\lambda) = -\frac{1}{a_{-1}} \frac{f_0(\lambda) + R(\lambda)f_0(\lambda)}{f_{-1}(\lambda) + R(\lambda)f_{-1}(\lambda)} \tag{2.7}$$

The norming constants $M_k(t)$ corresponding to the $\mu_k(t)$ are given as

$$M_k^{-2} = \sum_{n=-\infty}^{\infty} f_n^2(\mu_k), \ k = 1, \ldots, p.$$

The set of quantities $\{R(\lambda); \mu_k; \ M_k, \ k = 1, \ldots, p\}$ is called the scattering data for the Jacobi operator L. The inverse scattering problem for L is to recover the coefficients $a_n, \ b_n$ from the scattering data.
In solving the inverse problem, an important role is played by the Marchenko-type basic equation. Define

\[F_n = \sum_{k=1}^{p} M_k^{-2} z_k^{-n} + \frac{1}{2\pi i} \int_{\partial \Gamma} \frac{R(\lambda)}{\zeta - 1} \zeta^{-n} d\lambda, \]

(2.8)

where \(z_k = z(\mu_k), \ k = 1, \ldots, p. \)

Then \(A_{nm} \) and \(\alpha_n \) involved in (2.4) satisfy the relations

\[F_{2n+m} + A_{nm} + \sum_{k<0} A_{nk} F_{2n+m+k} = 0, \quad m < n \leq 0, \]

(2.9)

\[\alpha_n^{-2} = 1 + F_{2n} + \sum_{k<0} A_{nk} F_{2n+k}, \quad n \leq 0. \]

(2.10)

To reconstruct the operator \(L \), we consider Eq. (2.8) which is constructed by the scattering data. We find \(A_{nm} \) and \(\alpha_n \) from Eqs. (2.9) and (2.10), respectively, the first one having a unique solution with respect to \(A_{nm} \). The coefficients \(a_n \) and \(b_n \) are defined for \(n < 0 \) by (2.5). \(f_n(\lambda) \) for \(n \leq 0 \) are defined by (2.4). From the formula (2.7) we obtain Weyl function \(m(\lambda) \). The spectral measure \(d\rho(\lambda) \) can be found by the formula

\[d\rho(\lambda_n) = \lim_{\lambda \to \lambda_n} (\lambda_n - \lambda)m(\lambda), \quad n = 1, 2, \ldots. \]

Using the approach in [12],[13],[19], we can reconstruct semi-infinite Jacobi operator \(L_0 \) by its spectral measure \(d\rho(\lambda) \). Therefore, we find \(a_n, b_n \) for \(n \geq 0 \).

3. Evolution of the scattering data

In this section we use the inverse scattering transform method to solve the problem (1.1)-(1.2). Let \(a_n(t), b_n(t) \) be a solution of the problem (1.1)-(1.2) satisfying (1.3). Consider the Jacobi operator \(L = L(t) \) associated with \(a_n = a_n(t), b_n = b_n(t) \). Jost and Weyl solutions, reflection coefficient, spectral measure now depend on the additional parameter \(t \in [0, \infty) \).

Theorem 1. If the coefficients \(a_n = a_n(t), b_n = b_n(t) \) of Eq. (2.1) are solutions to problem (1.1)-(1.2) in the class (1.3), then the evolution of the scattering data is described by the formulas

\[R(\lambda, t) = R(\lambda, 0) e^{(z^{-1}-z)t}, \]

(3.1)

\[\mu_k(t) = \mu_k(0), \ k = 1, \ldots, p \]

(3.2)

\[M_k^{-2}(t) = M_k^{-2}(0) e^{(z^{-1}-z_k)t}, \quad z_k = z(\mu_k), \ k = 1, \ldots, p. \]

(3.3)

Proof. System (1.1) is represented (see, for example [8],[13]) in the Lax form

\[\dot{L} = [L, A] = AL - LA, \]

(3.4)

where \(A = A(t) \) are Jacobi operator in \(\ell^2(-\infty, \infty) \):

\[(Ay)_n = \frac{1}{2} a_n y_{n+1} - \frac{1}{2} a_{n-1} y_{n-1}. \]
Since (3.4) implies that the family of operators \(L = L(t) \) are unitarily equivalent (see [5],[8]), the spectrum of \(L = L(t) \) does not depend on \(n \) and (3.2) is valid.

Let \(f_n(\lambda, \ t) \) and \(\psi_n(\lambda, \ t) \) respectively be the Jost and Weyl solutions of the Eq.(2.1) with the parameter \(t \). Consider the identity (2.6) with the parameter \(t \). As follows from [8],[12] the function \(\frac{d}{dt} \psi_n - (A\psi)_n \) is also a solution of the Eq.(2.1) with the parameter \(t \). Appling the operator \(\frac{d}{dt} - A \) to (2.6), taking into account that the Jost solution \(f_n(\lambda, \ t) \) does not depend (see [8], on \(t \) asymptotically, we obtain

\[
\frac{d}{dt} \psi_n - (A\psi)_n = \left(a(\lambda, \ t) + \frac{1}{2} (z^{-1} - z) a(\lambda, \ t) \right) f_n(\lambda, \ t) + \left(\dot{a}(\lambda, \ t) - \frac{1}{2} (z^{-1} - z) a(\lambda, \ t) \right) f_n(\lambda, \ t). \tag{3.5}
\]

On the other hand, we find

\[
\frac{d}{dt} P_0 - (AP)_0 = \frac{b_0 - \lambda}{2}, \quad \frac{d}{dt} P_{-1} - (AP)_{-1} = -a_{-1}.
\]

Since \(P_n(\lambda, \ t) \) and \(Q_n(\lambda, \ t) \) are linearly independent, the function \(\frac{d}{dt} P_n - (AP)_n \) can be represented as

\[
\frac{d}{dt} P_n - (AP)_n = A(\lambda, \ t) P_n + D(\lambda, \ t) Q_n.
\]

Setting \(n = -1 \) and \(n = 0 \) in the last relation, we find that

\[
A(\lambda, \ t) = \frac{b_0 - \lambda}{2}, \quad D(\lambda, \ t) = a_{-1}^2.
\]

Therefore,

\[
\frac{d}{dt} P_n - (AP)_n = \frac{b_0 - \lambda}{2} P_n + a_{-1}^2 Q_n.
\]

The same arguments are valid for solution \(Q_n(\lambda, \ t) \). Thus, we have the formula

\[
\frac{d}{dt} Q_n - (AQ)_n = -P_n + \frac{\lambda - b_0}{2a_0} Q_n.
\]

Now by the formula (2.3) with the parameter \(t \) we find that

\[
\frac{d}{dt} \psi_n - (A\psi)_n = \left(a_{-1}^2 m(\lambda, \ t) + \frac{\lambda - b_0}{2a_0} \right) Q_n + \left(\dot{m}(\lambda, \ t) + \frac{b_0 - \lambda}{2} m(\lambda, \ t) - 1 \right) P_n. \tag{3.6}
\]

Since \(L = L(t) \) is selfadjoint and bounded, \(\frac{d}{dt} \psi_n - (A\psi)_n \) must satisfy the relation

\[
\frac{d}{dt} \psi_n - (A\psi)_n = \theta(\lambda, \ t) \psi_n. \tag{3.7}
\]

Hence, we can represent the function \(\frac{d}{dt} \psi_n - (A\psi)_n \) as

\[
\frac{d}{dt} \psi_n - (A\psi)_n = \theta(\lambda, \ t) Q_n + \theta(\lambda, \ t) m(\lambda, \ t) P_n. \tag{3.8}
\]
Comparing this identity with (3.6), we have

\[\theta(\lambda, t) = a_{-1}^2 m(\lambda, t) + \frac{\lambda - b_0}{2a_0}, \]

(3.9)

Further, according to (2.6), (3.5), (3.7),

\[\theta(\lambda, t) a(\lambda, t) f_n + \theta(\lambda, t) a(\lambda, t) f_n = \left(\dot{a}(\lambda, t) + \frac{1}{2} (z^{-1} - z) a(\lambda, t) \right) f_n + \]

\[\left(\frac{a(\lambda, t) - \frac{1}{2} (z^{-1} - z) a(\lambda, t)}{f_n} \right). \]

Since \(f_n \) and \(\overline{f_n} \) are linearly independent, so substituting (3.9) into the last identity, we obtain

\[\dot{a}(\lambda, t) + \frac{1}{2} (z^{-1} - z) a(\lambda, t) = \left(a_{-1}^2 m(\lambda, t) + \frac{\lambda - b_0}{2a_0} \right) a(\lambda, t), \]

\[\dot{a}(\lambda, t) - \frac{1}{2} (z^{-1} - z) a(\lambda, t) = \left(a_{-1}^2 m(\lambda, t) + \frac{\lambda - b_0}{2a_0} \right) a(\lambda, t). \]

From this relations, we get

\[\dot{R}(\lambda, t) = (z^{-1} - z) R(\lambda, t), \]

which imply (3.1).

Now, let \(g_n(\mu_k, t) \) be a normalized eigenfunction of \(L \). Since the eigenvalues \(\mu_k, k = 1, ..., p \), of this operator are simple, we have

\[\frac{d}{dt} g_n - (Ag)_n = c g_n. \]

Taking the scalar products of \(g_n \) with both sides of this equality in \(\ell^2(-\infty, \infty) \) and using \(\| \psi_n \|_{\ell^2(-\infty, \infty)} = 1 \) and \(A^* = -A \), we obtain \(c = 0 \). Therefore,

\[\frac{d}{dt} g_n - (Ag)_n = 0 \]

(3.10)

On the other hand, if a normalized eigenfunction \(g_n(\mu_k, t) \) corresponds to the eigenvalue \(\mu_k \), then

\[g_n(\mu_k, t) = c_k(t) f_n(\mu_k, t). \]

This implies that \(M_k^2(t) = c_k^2(t) \). By virtue of (2.4), we find that

\[\frac{d}{dt} g_n - (Ag)_n \sim \left(\dot{c}_k(t) + \frac{z_k - z_k^{-1}}{2} c_k(t) \right) z_k^{-n} \]

as \(n \to -\infty \). Taking into account (3.10), we have

\[\dot{c}_k(t) + \frac{z_k - z_k^{-1}}{2} c_k(t) = 0 \]

This equation implies the relation (3.3).

The theorem is proved.

Using Theorem 1, we obtain the following procedure for solving problem (1.1),(1.2) based on the inverse scattering transform method: Initial data (1.2) is given. Construct \(R(\lambda, 0), \mu_k(0), M_k(0), \) \(k = 1, ..., p \). Calculate \(R(\lambda, t), \mu_k(t), M_k(t) \) using formulas (3.1)-(3.3). Construct a solution by solving the inverse problem by applying approach of the section 2 with \(R(\lambda, 0), \mu_k(0), M_k(0), \) \(k = 1, ..., p \) replaced by (3.1)-(3.3).
4. Solvability of the Cauchy problem for the Toda lattice

In section 3, while constructing a solution to problem (1.1)-(1.2), we assumed that this solution exists in the class (1.3). Let us now investigate its existence.

Theorem 2. The problem (1.1)-(1.2) has a unique solution in the class (1.3).

Proof. Denote by B the Banach space of pairs of sequences $y = (y_{1,n}, y_{2,n})_{n=0}^{\infty}$ for which the norm $\|y\|_B = \sup_{n \geq 0} (|y_{1,n}| + |y_{2,n}|) + \sum_{n < 0} |n| (|y_{1,n}| + |y_{2,n}|)$ is finite. Then (see [21]) the set $C([0, T]; B)$ of the continuous on an interval $[0, T]$ with respect to the norm $\|\cdot\|_B$ functions is the Banach space.

Let us assume that

$$x_{1,n} = \begin{cases} a_n(t) & \text{for } n \geq 0, \\ a_n(t) - 1 & \text{for } n < 0, \end{cases} \quad (4.1)$$

$$x_{2,n} = b_n(t).$$

Then system (1.1) is equivalent to the system

$$\begin{cases}
\dot{x}_{1,n} = \frac{1}{2} x_{1,n} (x_{2,n+1} - x_{2,n}) + \frac{1}{2} \left(1 - \delta_{n,|n|}\right) (x_{2,n+1} - x_{2,n}), \\
\dot{x}_{2,n} = x_{1,n}^2 - x_{1,n-1}^2 + 2 \left(1 - \delta_{n,|n|}\right) (x_{1,n} - x_{2,n-1}),
\end{cases} \quad (4.2)$$

where $\delta_{n,m}$ is the Kronecker symbol.

Denote by F the operator generated the right-hand sides of system (4.2). Note, operator F is strongly continuously differentable in the space $C([0, T]; B)$.

Now passing to the integral equation in the standard manner, we find problem (4.2) with initial conditions

$$x_{1,n}(0) = \begin{cases} a_n(0) & \text{for } n \geq 0, \\ a_n(0) - 1 & \text{for } n < 0, \end{cases} \quad (4.3)$$

$$x_{2,n}(0) = b_n(0).$$

is equivalent to the equation

$$x(t) = x(0) + \int_0^t F(x(\tau))d\tau \quad (4.4)$$

Applying the principle of compressed maps, we find that problem (4.4) on some interval $[0, \delta]$ has a unique solution $x(t)$ with finite norm $\|x(t)\|_{C([0, \delta]; B)} < \infty$. Let us show that this solution can be extended to the entire positive semi-axis. Assume the opposite. Then there exists a point $t^* \in (0, \infty)$ such that problem (4.2)-(4.3) has a solution $x(t) = (x_{1,n}(t), x_{2,n}(t))$ on the interval $[0, t^*)$ but $\lim_{t \to t^* - 0} \|x(t)\|_B = \infty$. It follows from [8],[13] problem (1.1)-(1.2) has a unique solution $(a_n(t), b_n(t))$ in $C^\infty([0, \infty); M)$,
Inverse scattering transform for the Toda lattice with step-like initial data

where \(M = \ell^\infty (\infty, \infty) \oplus \ell^\infty (\infty, \infty) \). Hence, according to the (4.1) problem (4.2)-(4.3) has a unique solution \(x(t) = (x_{1,n}(t), x_{2,n}(t)) \) satisfying

\[
|x_{1,n}(t)| + |x_{2,n}(t)| < C
\]

for any \(t \in [0, \infty) \), where \(C \) does not depend on \(t \). We integrate the system (4.2) over a interval \([0, t]\). Then, using the last inequality, after some simple transformations, we get

\[
\|x(t)\|_B \leq 2 \|x(0)\|_B + (4C + 4) \int_0^t \|x(\tau)\|_B d\tau, \quad 0 < t < t^*,
\]

which, according to the Gronwall’s inequality implies

\[
\|x(t)\|_B \leq 2 \|x(0)\|_B e^{(4C+4)t},
\]

Therefore, our assumption that \(\lim_{t \to t^* - 0} \|x(t)\|_B = \infty \) is not correct and problem (4.2)-(4.3) has a unique solution \(x(t) = (x_{1,n}(t), x_{2,n}(t)) \in C([0, T]; B) \) for any \(T > 0 \). Integrating the system (1.1) over a interval \([0, t]\) and using (4.1), we obtain that problem (1.1)-(1.2) be uniquely solvable in the class (1.3).

Thus, the theorem is proved.

References

[1] Toda M 1989 Theory of nonlinear lattices (Berlin: Springer)
[2] Flaschka H 1974 On the Toda lattice. Inverse transform solution Prag Theor.Phys. 51 703-16.
[3] Venakides S, Deift Pand Oba R 1991 The Toda shock problem Comm. Pure Appl.Math. 44 1171-42.
[4] Deift Pand Kriecherbauer T 1996 The Toda rarefaction problem Comm.Pure Appl.Math. 54 1171-42.
[5] Boutet de Monvel A, Egorova I and Khruslov E 1997 Soliton asymptotics of the Cauchy problem solution for the Toda lattice Inverse Problems 13 323-37.
[6] Sspace Guseinov I and Khannamedov Ag 1999 The asymptotics of the Cauchy problem for the Toda chair with threshold – type initial data Th. and Math. Phys. 119 739-49.
[7] Boutet de Monvel A and Egorova I 2000 The Toda lattice with step-like initial data. Solution asymptotics Inverse Problems 16 955-77.
[8] Teschl G 2000 Jacobi Operators and Completely Integrable Nonlinear Lattices (Math. Surv. And Mon. 72, AMS).
[9] Kudryavstsev M 2002 The Cauchy problem for the Toda lattice with a class of non-stabilized initial data (Mathem. Results in Quantum mechanics 307 AMS 209-214).
[10] Khannamedov A. Kh 2008 The solution of Cauchy’s problem for the Toda lattice with limit periodic initial data Sb. Math. 199 449-58.
[11] Khannamedov Ag 2009 Inverse scattering problem for Schrodinger difference equation NEWS of Baku University, ser. of phys.-math. Sci. 2 17-22.
[12] Khannamedov Ag 2010 The inverse scattering problem for a discrete Sturm-Lioville operator on the whole axis Dokladi Akademii Nauk, 431 25-26
[13] Guseinov G 1978 The determination of on infinite Jacobi matrix form the two spectrum Math. Zametki 23 709-20.
[14] Berezanski Yu 1968 Expansions in Eigenfunctions of Self-adjoint Operators (Transl.Math.Monogr. 17 AMS).
Inverse scattering transform for the Toda lattice with steplike initial data

[15] Berezanski Yu 1985 The integration of semi-infinite Toda chain by means of inverse spectral problem Math. Phys. 24 21-47.

[16] Berezanski Yu 1985 Integration of nonlinear difference equations by the inverse spectral problem method Soviet Math. Dokl. 31 264-67.

[17] Guseinov G 1976 The inverse problem of scattering theory for a second – order difference equation on the whole axis Soviet Math. Dokl. 17 1684-88.

[18] Khanmamedov A. Kh 2005 The rapidly decreasing solution of the Cauchy problem for the Toda lattice Theoret. and Math. Phys. 142 1-7.

[19] Coussement Jand Van Assche W 2004 An extension of the Toda lattice: a direct and inverse spectral transform connected with orthogonal rational functions Inverse Problems 20 297-18.

[20] Egorova I, Michor J and Teschl G 2009 Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds J.Math. Phys. 50 1-10.

[21] Krein M. 1967 Linear Differential Equations in Banach Spaces (Nauka: Moscow [in Russian]).