ANTIULCER ACTIVITY OF PIPAL EXTRACT

SR. MOLLY MATHEW, T.V. GOPI and KRISHNA BALACHANDRAN*
College of pharmaceutical sciences, Medical College, Trivandrum
*Department of Pathology, Medical College, Trivandrum

Received: 18/2/2001 Accepted: 16/4/2001

ABSTRACT: An ethanol extract of Pipal has been studied for its ability to inhibit gastric acidity and to protect gastric mucosa against the injuries caused by pyloric ligation, acetyl salicylic acid and cytodestructing agents (80% ethanol, 0.6M Hcl and 0.2 M Hcl) in rats. The results of this study demonstrate that ethanol extract of papal has significant effects on various experimentally induced ulcers. It reduced significantly the intensity of gastric lesions induced by pylorus ligation, acetyl salicylic cid (ASA) and mucosal damaging agents. Also the total acidity was found to be decreased Acutic toxicity test is shoed no toxic symptoms or mortality over a period of 7 days with doses 0.25-1.5 gm/kg. These findings suggests that ethanol extract of papal exerts anticiulcer effects by increasing gastric mucosal resistance and cyto-protective activities.

INTRODUCTION:

Pipla consists of the dried fruits of Piper longum Linn of family Piperaceae. It is still used in the traditional medicines of many countries including India. (C.K.Kokate, 1990) it is used for abdominal discomfort, as a carminative and for stomach ache. It is a tonic and is used in making irritant snuffs. As a liniment it reduces rheumatic pains and paralysis. It is useful in chronic bronchitis (S.K. Jain, 1968) A survey of the literature showed that no experimental data are available to justify the medicinal use of the fruits of this plant alone. As it is used in folkgone medicine for the treatment of ulcer, the present study was carried out to investigate the antiulcer activity of pipal fruits in rats.

MATERIALS AND METHODS

Fruits of Piper longum were purchased from the local market and air dried. The powdered fruits were subjected to successive solvent extraction using petroleum ether (40-60) hexane, chloroform, acetone and ethanol in a soxhlet apparatus. The solvents were then removed at low temperature under reduced pressure and the extracts were stored in a refrigerator for pharmacological studies.

Wistar albino rats of either sex, approximately of the same age weighing 150-200 gm and fed standard chow diet were used. They were divided into groups of 6 animals each. The distribution of animals in groups, the sequence of trials, and the treatments were randomized. The solutions for the experiments were freshly prepared. The animals were killed by ether euthanasia. The stomachs were removed, opened along the greater curvature, washed with saline and examined with a magnifying lens. Lesions were assessed and scored according to their dimensions and severity and scored between 0, no visible ulcer, and 3 deep lesions with diameter greater than 5mm in each stomach. The scored for each single
lesion were then totaled (Valcavi et al, 1982). The results refer to average lesion
score ± SEM. Statistical analysis of the
severity of gastric ulcers was done by
student’s t-test.

CUTE-TOXICITY STUDIES

Acute toxicity was performed on six groups
consisting 10 mice per group. They were
intubated orally with graded doses (50, 100,
200, 40, 800, 1500 mg/kg) of the ethanol
extract and were observed for any
behavioural or toxic symptoms. They were
observed or a period of 14 days to record
any morality.

ANTICUCERSTUDIES

1. **PYLORUSLIGATED (SHAY) RATS**

The animals were made to fast for 48 hours
but allowing free access to water upto 18
hours prior to operation procedure, the
pylorus was ligated under light ether
anesthesia, car being taken mot to cause
bleeding or to occlude blood vessels (Shey
et al, 1945) Ethanol extract and ranitidine
(25mg and 50 mg/kg) were administered
intraperionetally (i.Q) soon after pylorus
ligation. The animals were maintained in
cages without food and water for 6 hours
and then sacrificed by an overdose of ether.
Stomachs were removed and contents
collected, measured, centrifuged and
subjected to analysis for titrable acidity
against 0.01 N NaOH. Each stomach was
examined for lesions as described above.

2. **ACETYLSALICYCLICACID**

INDUCED (ASA) GASTRICLESIONS

ASA induced ulcers were produced in albino
rats deprived off food for 36 hours. ASA in
1% carboxymethyl cellulose (CHC) in water
was administered P.O in a dose of 200mg/kg
body wt. To these rats, ethanol extract was
administered 1 hours before administration
of ASA. The control and standard groups
received 1% CMC and ranitidine (50mg/kg
body wt) respectively. This was repeated on
the following day also. Four hours after the
second dose, all animals were killed and
examined for lesions (Okabe et al, 1974).

3. **Gastric lesion induced necrotizing**

agents (Cytoprotection studies)

The experiments were done on Wistar male
rats, fasted of 36 hours with access to
drinking water ad libitum. The following
necrotizing agents were administered in the
volume 1ml: 80% ethanol, 0.6 M HCL,
0.2M NaoH (Robert et al, 1983).

4. **Ulcer healing tests**

Male albino rats weighing between 250-275
gm were used after an overnight fasting.
Under ether, anaesthesia laparatomy was
performed and after exposing the stomach,
0.05ml 30% acetic acid was injected into the
gastric wall at the junction of the body of the
glandular stomach and the antrum of the
anterior wall (Takagi et al, 1969). The rats
were then maintained; in cages with normal
food and water ad libitum and were
sacrificed on the 12th day after operation.
Ethanol extract of pipla in doses 25 and 50
mg/kg body wt. Were given orally, daily
from one day after operation for 10
consecutive days. Ulcer index and healing
rate were then calculated as described by
Okabe et al (1976).
TABLE I

Effect of Ethanol Extract of Pipal on the Gastric Secretion, Acidity and Lesions in Pylorus – ligated (Shay) rats

Group	Dose (mg.Kg)	Gastric secretions at 6 hr (Mean±SEM)	Titrable acidity	Ulcer index
		Vol. of Gastric Secretion		
Control	1% CMC (1ml/kg)	13.13 ± 0.478	18.94 ± 0.361	0.196 ± 0.021
Ethanol Exl	25mg	10.56 ± 0.33	12.728 ± 0.478	0.124 ± 0.033*
Ethanol Ext	50mg	2.08 ± 0.238	2.146 ± 0.729*	0.072 ± 0.006***
Ranitidine	50mg	1.33 ± 0.247	1.295 ± 0.519	0.056 ± 0.014***

*P<0.05, **P<0.01, ***P<0.001

TABLE II

Effect of Ethanol Extract of ASA induced Gastric Lesion

Group	Dose (mg.Kg)	Intraluminal bleeding	Gastric lesion
		Scare (mean ± SEM)	Ulcer under (Mean ± SEM)
Control	1% CMC (1ml/kg)	1.83 ± 0.40	19.66 ± 2.02
Ethanol Exl	25mg	1.12 ± 0.33	12.16 ± 0.23**
Ethanol Ext	50mg	0.5 ± 0.22	8.16 ± 0.83***
Ranitidine	50mg	0.33 ± 0.21**	6.66 ± 2.10***

*P<0.05, **P<0.01, ***P<0.001

TABLE III

Effect of Ethanol Extract of ASA induced Gastric Lesion induced by various necrotizing agents

Group	Dose (mg.Kg)	Various index (mean ± SEM)		
		80% EtOH	0.6 M HCL	0.2 MnaOH
Control	1% CMC (1ml/kg)	6.16 ± 0.41	7.5 ± 0.32	6.0 ± 0.87
Ethanol Exl	25mg	3.16 ± 0.79*	3.33 ± 0.21**	2.80 ± 1.20**
Ethanol Ext	50mg	0.66 ± 0.21**	1.66 ± 0.16**	0.66 ± 0.21**
Ranitidine	50mg	4.16 ± 0.70	3.97 ± 0.61	1.91 ± 1.2**

*P<0.05, **P<0.01, ***P<0.001
TABLE IV
Effect of Ethanol Extract of papal on Rats (Ulcer healing test)

Group	Dose (mg.Kg)	Ulcer index	% age of healing
Control	1% CMC (1ml/kg)	28.9 ± 0.477	-
Ethanol Exl	25	12.66 ± 0.33*	56.19**
Ethanol Ext	50	6.33 ± 0.243 ***	78.09%***

*P<0.05, **P<0.01, ***P<0.001

RESULTS AND DISCUSSIONS

This study reveals the capacity of ethanol extract of papal to inhibit significantly the formation of gastric ulcers in rats by various ulcerogenic procedures and necrotizing agents compared to ranitidine. It produced a dose dependent reduction in gastric acidity and a decrease in the gastric ulceration in shay rats as observed from reduced ulcer index. The cytoprotective activity is very significant and it is found to be more than that of ranitidine. From the ulcer healing test it is evident that papal extract in 50 mg.kg exerts very significant curative effect. From all these results it is proved that papal extract has prophylactic, cytoprotective as well as curative effects on various experimentally induced gastric lesions. Further studies are deemed necessary to elucidate the exact mode of action and therapeutic value in prophylactic and/or treatment of peptic ulcer disease in traditional medicine.

ACKNOWLEDGEMENT

Authors sincerely thank Department of Science, Technology and Environmental studies, Govt. of Kerala, for the financial assistance given in time.

REFERENCE

1. Jain, S.K. (1968), Medicinal Plants, 138-139.
2. Kokata, C.K. Gokhale, S.B., Nakamura, K. and Takagi, K. (1974). Jap J. Pharmacol. 24,363.
3. Okabe, S., Takeucki, K; Nakamura, K. and Takagi, K. (1974). Jap J. Pharmacol. 24, 363.
4. Robert, A. Nizamis, J.E., Lancaster, C., Davis J.P. Field, S.O. and Hanchar, A.J. (1983) Am. J. Physiol 245: G 113 – G 121.
5. Shay, H. Komarov, S.A., Fels S.E.,Meraze, D., Fruenstein, M. and Siplet, H. (1945) Gastroenterol. 5;43.
6. Valcavi, U*, Caponi, R., Brambilla, A., Palmira F. and Fumagali, R(1982) Arznein Forsch 32: 657-663.