Retraction

Retraction: Minimizing Rental Cost with Continuous Machine Operation Using Ginni Simpson Index (*IOP Conf. Ser.: Mater. Sci. Eng. 1145 012087*)

Published 23 February 2022

This article (and all articles in the proceedings volume relating to the same conference) has been retracted by IOP Publishing following an extensive investigation in line with the COPE guidelines. This investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.

IOP Publishing respectfully requests that readers consider all work within this volume potentially unreliable, as the volume has not been through a credible peer review process.

IOP Publishing regrets that our usual quality checks did not identify these issues before publication, and have since put additional measures in place to try to prevent these issues from reoccurring. IOP Publishing wishes to credit anonymous whistleblowers and the Problematic Paper Screener [1] for bringing some of the above issues to our attention, prompting us to investigate further.

[1] Cabanac G, Labbé C and Magazinov A 2021 arXiv:2107.06751v1

Retraction published: 23 February 2022
Minimizing Rental Cost with Continuous Machine Operation Using Ginni Simpson Index

Richa Goel¹, Deepak Gupta² and Harshleen Kaur²

¹Research Scholar, Department of Mathematics, M.M. (Deemed to be) University, Mullana, Ambala.
²Professor and Head, Deptt. of Mathematics, M.M. (Deemed to be) University, Mullana, Ambala.
² guptadeepak20003@gmail.com

Abstract. This paper studies scheduling problem of two machines with uncertain dispensation time. Our objective of study is to attain a schedule which makes idle time of machines equal to zero and reduces the rental cost of machines. Here processing time is uncertain. To deal with uncertainty Ginni Simpson Index is used. A numerical example is employed to make clear the given algorithm.

Keywords: Flow shop scheduling, Elapsed time, continuous machine operation, Ginni Simpson index.

1. Introduction
Planning and scheduling plays an important role for success in service and manufacturing industries. In some scheduling problems, several applications exist where it is required that some components perform consecutively. The working of machines can’t be stopped when started processing of jobs because their interruption causes decrease in benefits and increase in cost. This increase in cost or decrease in benefits may be due to expensive parts of machines which are used in processing and so manufacturing system does not allow idling of such costly machines. Sometimes the situation can occur when an industrialist undertakes the project of processing the jobs but does not have his own machines. Now he will hire the machines on rent with the objective to complete the task with minimum total rental cost and zero idle time of machines [1-5].

As we are aware that total rental cost for flow shop scheduling problem with two

\[k \text{ machines } = \sum_{m=1}^{k} p(m,n) + I(m,n)\times C_n \]

Where \(p(m,n) \) represents the dispensation time of \(m^{th} \) job on \(n^{th} \) machine, \(I(m, n) \) represents the idle time of machine \(n \) for job \(m \) and \(C_n \) is hiring price of \(n^{th} \) machine for per unit time. The processing time \(p(m,n) \) and hiring cost \(C_n \) are fixed so that we can reduce only the idle time \(I(m, n) \) for \(m=1,2,3,\ldots k \) and \(n=1,2 \). So if idle time of machines is reduced or made zero then rental cost of the machines will also be reduced [10].

Let \(P=(P_1,P_2,P_3,\ldots,P_n) \); \(P_i\geq 0, i=1,2,3\ldots n, n\geq 2 \)

\[P_i = 1 \text{, is a set of discrete finite } \]

and

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
n array probability distribution. Then we define Gini Simpson [6] index of diversity by

\[(P) = 1 - \sum_{i=1}^{n} P_i^2. \]

Practical Application:

There are various situations where no idle scheduling is required. Some situations come from sectors where machines used in production are less expensive but these cannot be stopped and restarted easily [7-9]. Consider the example of Ceramic roller kilns, this type of machine requires several days when we stop this between processing and then restart it. So idling is not an option hence requires no idle scheduling [11].

Rental Policy: Generally, three types of rental policies exist:

- **Policy 1:** All machines are hired at same starting time and are returned at same time.
- **Policy 2:** All machines are hired at the same time and are returned when processing is done on them.
- **Policy 3:** All machines are hired as and when required and are returned as and when processing is done on them and they are no longer required [4].

In the present problem, we have used the policy 3 because our objective to have zero idle time of machines and under policy 1 and policy 2 all machines are hired at one time i.e. in the starting of processing [12], [13]. First machine will start processing in the starting but machine 2 will be idle. Therefore, our aim can’t be attained under policy 1 and policy 2.

2. Problem Formulation

Consider k jobs and two machines scheduling problem whose uncertain dispensation time is given by \(\mu_{ij} \) and \(\eta_{ij} \) where \(i=1,2,3 \) and \(j=1,2,3,...,k \) on machines \(\eta \) and \(\mu \) respectively. Let \(C_1 \) and \(C_2 \) be the renting cost for one unit time of machines \(\eta \) and \(\mu \) respectively [8]. Our goal is to obtain a schedule which makes the machines idle time zero and reduces the hiring cost as shown in table 1.

Machines	Jobs	1	2	3	4	-	K
\(\eta \)	\(\eta_{i1} \)	\(\eta_{i2} \)	\(\eta_{i3} \)	\(\eta_{i4} \)	-	\(\eta_k \)	
\(\mu \)	\(\mu_{i1} \)	\(\mu_{i2} \)	\(\mu_{i3} \)	\(\mu_{i4} \)	-	\(\mu_k \)	

Table 1. schedule of machines
3. Numerical Example:

Take a 5 job and 2 machine scheduling problem whose uncertain processing time are represented by η_{ij} and μ_{ij} where $i=1,2,3$ and $j=1,2,...,5$. The rate of rent for per unit time ij for η and μ are 6 and 8 units [2].

In matrix form this problem may be stated as shown in tables 2 and 3. Table 4 states Gini simpsons index and Johnson’s Technique.
Table 2. Matrix 1

JOBS	MACHINE η	MACHINE μ
1	(4,6,8)	(7,9,11)
2	(7,9,10)	(6,8,9)
3	(8,11,13)	(3,5,6)
4	(3,7,9)	(2,4,5)
5	(4,5,6)	(5,7,11)

STEP 1 - Calculate

$$\eta_{ij} = \frac{\eta_i}{\sum_{i=1}^{3} \eta_i}$$

and

$$\mu_{ij} = \frac{\mu_i}{\sum_{i=1}^{3} \mu_i}$$

where $i=1,2,3$ and $j=1,2,..5$

Table 3. Matrix 2

JOBS	MACHINE η	MACHINE μ
1	$\left(\begin{array}{c} 4 \\ 6 \\ 8 \\ 18 \\ 18 \\ 18 \end{array}\right)$	$\left(\begin{array}{c} 7 \\ 9 \\ 11 \\ 27 \\ 27 \\ 27 \end{array}\right)$
2	$\left(\begin{array}{c} 7 \\ 9 \\ 10 \\ 26 \\ 26 \\ 26 \end{array}\right)$	$\left(\begin{array}{c} 6 \\ 8 \\ 9 \\ 23 \\ 23 \\ 23 \end{array}\right)$
3	$\left(\begin{array}{c} 8 \\ 11 \\ 13 \\ 32 \\ 32 \\ 32 \end{array}\right)$	$\left(\begin{array}{c} 3 \\ 5 \\ 6 \\ 14 \\ 14 \\ 14 \end{array}\right)$
4	$\left(\begin{array}{c} 3 \\ 7 \\ 9 \\ 19 \\ 19 \\ 19 \end{array}\right)$	$\left(\begin{array}{c} 2 \\ 4 \\ 5 \\ 11 \\ 11 \\ 11 \end{array}\right)$
5	$\left(\begin{array}{c} 4 \\ 5 \\ 6 \\ 15 \\ 15 \\ 15 \end{array}\right)$	$\left(\begin{array}{c} 5 \\ 7 \\ 11 \\ 23 \\ 23 \\ 23 \end{array}\right)$

We observe that $\sum_{i=1}^{3} \eta_{ij} = 1$ and $\sum_{i=1}^{3} \mu_{ij} = 1$.

STEP 2 - Using Gini Simpson’s index

$$\lambda_i = [1 - \sum_{j=1}^{3} \eta_{ij}^2]$$

and

$$\omega_i = [1 - \sum_{j=1}^{3} \mu_{ij}^2]$$

where $i=1,2,..5$
Table 4. Gini Simpson’s index and Johnson’s Technique

Jobs	Machine η	Machine μ
1	208	478
	324	729
2	446	348
	676	529
3	670	126
	1024	196
4	222	76
	361	121
5	148	334
	235	529

STEP 3 - Using Johnson’s Technique, we get optimal sequence - 4,1,2,3,5

STEP 4 - Prepare the in –Out table for sequence obtained in step 3 is shown in Table 5.

Table 5. Out table for sequence

Jobs	In-Out	In-Out
4	0 - 0.614	0.614 – 1.242
1	0.614 – 1.255	1.255 – 1.910
2	1.255 – 1.914	1.914 – 2.571
3	1.914 – 2.568	2.571 – 3.213
5	2.568 – 3.225	3.225 – 3.856

STEP 5 - Calculate latest time L_2 to hire machine $μ$ by $L_2 = 3.856 - (3.213) = 0.643$

STEP 6 and **STEP 7** - Taking K_2 as starting time for Machine $μ$, prepare In Out table is shown in Table 6.
Table 6. In Out table

Jobs	In- Out	In-Out
1	0 - 0.614	0.643 – 1.271
2	0.614 – 1.255	1.271 – 1.926
3	1.255 – 1.914	1.926 – 2.583
4	1.914 – 2.568	2.583 – 3.225
5	2.568 – 3.225	3.225 – 3.856

STEP 8:
\[
R(S) = \sum_{i=1}^{n} \lambda_i * C_1 + U_2(S)* C_2
\]
\[
= 3.225 * 6 + (3.856 - 0.643)* 8
\]
\[
= 19.35 + 25.704 = 45.054
\]

4. Conclusion
In the present paper, A new knowledge measure in fuzzy environment has been introduced. We have also considered an example to explain the given algorithm. With the help of this algorithm, we have neglected the idle time and reduced the rental cost. This study can be further done by considering certain parameters such as set up time, breakdown interval etc.

References
[1] Johnson SM. (1954), Optimal two-and three-stage production schedules with setup times included. Naval Research Logistics (NRL), Mar 1, 1(1), pp 61-68.
[2] Smith RD, Dudek RA. (1967), A general algorithm for solution of the n-job, M-machine sequencing problem of the flow shop. Operations Research. Feb, 15(1), pp 71-82.
[3] Adiri, I. and Pohoryles, D. (1982), Flow shop no-idle or no-wait scheduling to minimize the sum of completion times. Naval Research Logistics, 29(3), pp 495–504.
[4] Narain L., Bagga P.C. (2003), Minimize total elapsed time subject to zero idle time of machines in n *3 flow shop problem. Indian journal of Pure and Applied Mathematics, 34, pp 219-228.
[5] Singh TP, Kumar R, Gupta D. (2005), Optimal three stage production schedule, the processing and set up times associated with probabilities including job block criteria. In Proceedings of the National Conference on FACM, pp 463-470.
[6] Simpson, E.H. (1949), Measurement of diversity, Nature 163(4148): 668.Bibcode:1949 Nature 163.6885.
[7] Wang T-C, Lee H-D. (2009), Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert Systems with Applications. 36(5), pp 8980.
[8] Shemshadi A, Shirazi H, Toreihi M, Tarokh MJ (2011), A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Systems with Applications.; 38(10), pp12160–7.
[9] Gupta D, Singh H. (2013), A heuristic approach to n*m flow shop scheduling problem in which processing times are associated with their respective probabilities with no- idle constraint. ISRN Operations Research, Hindawi Publishing Corporation, July 30, pp 1-9.
[10] Nailwal K, Gupta D, Jeet K. (2018), Minimizing makespan in flow shop under continuous machine operation International journal of research in Advent technology, Sept.6(9).
[11] Haldorai, A. Ramu, and S. Murugan, Social Aware Cognitive Radio Networks, Social Network Analytics for Contemporary Business Organizations, pp. 188–202. doi:10.4018/978-1-5225-5097-6.ch010

[12] R. Arulmurugan and H. Anandakumar, Region-based seed point cell segmentation and detection for biomedical image analysis, International Journal of Biomedical Engineering and Technology, vol. 27, no. 4, p. 273, 2018.

[13] Gupta D., Goel R. (2020), No idle scheduling with fuzzy approach. Journal of Advances in Mathematics: Special Issue.9(3).