FIRST RECORD OF Xiphinema hunaniense Wang & Wu, 1992 (Dorylaimida: Longidoridae) ASSOCIATED WITH TEA (Camellia sinensis (L.) Kuntze) IN THANH HOA, VIETNAM

Le Thi Mai Linh¹², Nguyen Huu Tien¹², Nguyen Thi Duyen¹², Trinh Quang Phap¹²,* ¹Institute of Ecology and Biological Resources, VAST, Vietnam ²Graduate University of Science and Technology, VAST, Vietnam

Received 20 October 2020, accepted 2 February 2021

ABSTRACT

The dagger nematodes, Xiphinema spp., are migratory root-ectoparasitic nematodes that cause damage to a wide range of wild and cultivated plants over the world. In Vietnam, this nematode group has been studied mainly based on morphological characterizations. During a survey of pathogens associated with tea, a plant with many medicinal and therapeutic potentials, a population of Xiphinema hunaniense was recorded. This study provides the first morphological and molecular characterizations of Xiphinema hunaniense found on Tea in Vietnam. The 28S rDNA, and 18S rDNA phylogenetic trees of the genus Xiphinema are also provided. 18S rDNA sequence of X. hunaniense is also submitted to GenBank for the first time.

Keywords: 18S rDNA, 28S rDNA, molecular, phylogeny, taxonomy.

Citation: Le Thi Mai Linh, Nguyen Huu Tien, Nguyen Thi Duyen, Trinh Quang Phap, 2021. First record of Xiphinema hunaniense Wang & Wu, 1992 (Dorylaimida: Longidoridae) associated with tea (Camellia sinensis (L.) Kuntze) in Thanh Hoa, Vietnam. Academia Journal of Biology, 43(1): 1–7. https://doi.org/10.15625/2615-9023/15616

*Corresponding author email: tqphap@gmail.com

©2021 Vietnam Academy of Science and Technology (VAST)
INTRODUCTION

Plant-parasitic nematodes may cause damage to all plant parts, including stems, leaves, flowers, fruits, and roots. These nematodes, especially root-ectoparasites, are one of the most damaging pests on crops (Perry & Moens, 2013). They can cause a direct impact on plants through the absorption of nutrients from plant tissues that affects the growth and development of plants. Besides, some nematode genera also inflict wounds on plant tissues, altering host plant tissues and affecting the productivity as well as the quality of host plants (Perry & Moens, 2013; Sikora et al., 2018). On tea, forty nematode species belonging to twenty genera have been reported from different tea growing areas worldwide (Sikora et al., 2018). Mamun et al. (2011) reported that plant-parasitic nematodes caused yield loss up to 20% on tea in Bangladesh. In Vietnam, Nguyen and Nguyen (2000) reported thirty-two species associated with tea, among them, three species of the genus Xiphinema were recorded, including one species of the Xiphinema americanum-group (Xiphinema brevicollum Lordello & da Costa, 1961) and two species of the Xiphinema non-americanum-group (X. elongatum Schuurmans Stekhoven and Teunissen, 1938 and X. radicicola Goodey, 1936). Remarkably, some species of the genus Xiphinema are able to transfer plant viruses. Thus, accurate identification of Xiphinema spp. is of crucial importance.

In a survey of a pathogen associated with tea in Thanh Hoa (Vietnam), a species belonging to the Xiphinema radicicola group (within the Xiphinema non-americanum-group) was recorded. The combination of morphology and molecular characterization of 18S and 28S rDNA indicated that the Xiphinema population recorded in our survey belongs to X. hunaniense Wang & Wu, 1992. Herein, we provide morphological and molecular characterizations of this species as a first report of X. hunaniense on tea in Vietnam.

MATERIALS AND METHODS

Sampling

Soil and root samples were collected from the tea growing area in Trieu Son district, Thanh Hoa Province. The detritus layer at the rhizosphere of each tea plant was removed before taking approximately 1 kg of soil and 10 g of roots using a shovel. Samples were put in nylon bags and brought to the Department of Nematology, Institute of Ecology and Biological Resources for analysis.

Extraction

250 g of soil or 5 g of roots were used to extract nematodes following the method described by Nguyen (2003). The reference code for Xiphinema population in this study was IEBR-NEMA 4776.

Molecular characterization

Fresh nematodes were killed by hot water (60–70 °C) and fixed in TAF for at least 4–5 days. Subsequently, specimens were dehydrated and transferred to glycerine to make permanent slides following Nguyen (2003). Measurements and microphotographs of nematodes were taken using Carl Zeiss Axio Lab A1 microscope (Nguyen et al., 2017).

Molecular characterization

Nematode DNA was extracted following Nguyen et al. (2019). 18S and 28S rDNA regions were amplified using D2A/D3B (5' - ACAAGTACCCTGAGGAAAGTTG-3'/5' - CCCGGAAGGAAACCAGTACTA-3') and 18F/18R (5' - TCTAGCTAATACATGCAC-3'/5' - TACCGGAAACCT TGTTACGAC-3') primers (De Ley et al., 1999; Nguyen et al., 2019). The thermal profile to amplify 18S and 28S rDNA regions were: 1 cycle of 95 °C for 2 min, followed by 40 cycles of 95 °C for 30s, 50–55 °C for 30s, 72 °C for 45s, and finished at 10 °C for 10 min. PCR product was purified using the kit GenJet PCR Purification (Thermo Scientific- Germany). Forward and reverse sequences were assembled using Chromas pro. BLAST was used to search for closely related sequences from GenBank. The selected sequences were aligned using

Le Thi Mai Linh et al.
ClustalW. Best fit model was chosen and phylogenetic trees were built using Mega 7.0 (Tamura et al., 2013).

RESULTS AND DISCUSSION

Xiphinema hunaniense Wang and Wu, 1992

Locality: Binh Son commune, Trieu Son district, Thanh Hoa Province, Vietnam.

Measurements: ♀ ♂ (n=5): L=2203±109 (1905–2289) µm, V%=26±0.8 (25–27), Odontostyle=123±7 (119–131) µm, Odontophore=70±3 (69–75) µm, Stylet=193±8 (189–203) µm, Max. body diam. =49±2 (47–51) µm, Anal body diam. =23±1 (22–24) µm. Tail length=62±5 (56–67) µm, a=38.5±2 (36–41) c=31±2.5 (29–34), c’=2.5±0.3 (2.4–2.7).

Morphological characterization: Females of Xiphinema hunaniense in this study can be characterized by having a body curved ventrally, hemisphere lip region slightly offset from body contour, guiding ring located at 1/5 odontostyle length, lack of anterior genital branch, vagina directed slightly backward, and a digitate tail (Fig. 1).

Host: Tea (Camellia sinensis (L.) Kuntze).

Figure 1. Female of Xiphinema hunaniense on tea in Vietnam, A: Entire body, B: Lip region, C: Vulva, D: Tail region
Molecular characterizations:

28S rDNA region

28S rDNA sequence of *Xiphinema hunanense* in this study was 99.6% similar to the sequence of *X. hunanense* from China (EF188839) and 99% similar to *X. hunanense* on turmeric in Vietnam (MT513135, MT513136). Intraspecific variation to *X. hunanense* was from 0 to 1%. The phylogenetic tree in Fig. 2 clearly showed 2 clades, clade I includes species belonging to the *Xiphinema* non-americanum-group and clade II consists of species belonging to the *Xiphinema americanum*-group. The 28S rDNA sequence of *Xiphinema hunanense* in this study, placed together with other *X. hunanense* sequences from GenBank, has a sister relationship to the sequences of *Xiphinema chambersi* Thorne, 1939, *X. naturale* Lamberti, De Luca, Molinari, Duncan, Agostinelli, Coiro, Dunn & Radici, 2002, *X. elongatum* Schuurmans Stekhoven & Teunissen, 1938, *X. insigne* Loos, 1949 with relatively high bootstrap support (91%) (Fig. 2). However, the 28S rDNA sequence of *X. hunanense* in this study (MT844609) was only 86.63–89.11% similar to the sequences in this sister group (AY601617, DQ299515, KU680965, KF430802, AY601619, MT193455).

Figure 2. Phylogenetic tree generated from 28S rDNA sequences
First record of Xiphinema hunaniense

18S rDNA region

18S rDNA sequence of *X. hunaniense* in this study was 904 bp long (accession number: MT830884). The interspecific variation between *X. hunaniense* in this study and other *Xiphinema* spp. was 95 to 98%. The phylogenetic tree showed that the 18S rDNA sequence of *X. hunaniense* was separated from all other species and has a sister relationship to sequences of *X. parachambersi* Maria, Ye, Yu & Gu, 2018 and *X. chambersi* (Fig. 3). However, the 18S rDNA sequence of *X. hunaniense* in this study (MT830884) was 98% similar (16 bp difference) to sequences of *X. parachambersi* and *X. chambersi* (MG786444, KU764411, KJ934157).

Discussion:

Although morphological identification of *Xiphinema* species has been frequently used, there exist very similar species such as species of the *X. americanum*-group (e.g., *X. parapachydermum* Gutiérrez-Gutiérrez, Cantalapiedra-Navarrete, Decraemer, Vovlas, Prior, Rius & Castillo, 2012, *X. paratenuicutis* Gutiérrez-Gutiérrez, Cantalapiedra-Navarrete, Decraemer, Vovlas, Prior, Rius & Castillo, 2012) or some species of the *X. nonamericanum*-group (e.g., *X. radicicola*, *X. brasiilense*, *X. hunaniense*) (Gutiérrez-Gutiérrez et al., 2012; Long et al., 2014). Therefore, study on molecular diversity of *Xiphinema* spp. is needed for quick and accurate identification. Especially, 18S, 28S, and ITS rDNA regions were the most frequently used molecular barcodes in identifying *Xiphinema* spp. (Nguyen et al., 2020; Orlando et al., 2016; Wang et al., 2003; Wu et al., 2007). This study was able to amplify 18S and 28S rDNA sequences of *X.
Xiphinema hunaniense on tea in Vietnam and deposited to GenBank. These sequences can be very useful in future studies of taxonomy and DNA barcoding.

According to the dichotomous identification key of *Xiphinema* species in Vietnam of Nguyen and Nguyen (2000) and other polytomous keys provided by Loof et al. (1996), the *Xiphinema* population IEBR-NEMA 4776 was most similar to *X. radicicola*, *X. brasiliense*, and *X. hunaniense* by an offset lip region from body contour, vulva anteriorly, gonad single and extending posteriorly, vagina directed slightly backward, and a digitate tail. However, this population can be differentiated from *X. radicicola* by the stylet length (189–203 vs 143–175 µm) and c’ value (2.4–2.7 vs 1.5–2.2). They can be distinguished from *X. brasiliense* by the c’ value (2.4–2.7 vs 0.65–0.9). The *Xiphinema* population IEBR-NEMA 4776 was largely in agreement with the morphology of *X. hunaniense* from turmeric in Vietnam, except for odontophore (69–75 vs 70–71 µm), V% (25–27 vs 24.2–25), and tail length (56–67 vs 44–46 µm). Interestingly, variations of the above indices were also shown in the type population and other recorded populations of *X. hunaniense* from China, Nigeria, Australia, Malaysia, and Thailand (Long et al., 2014; Wang & Wu, 1992; Wu et al., 2007). Although the type population of *X. hunaniense* was found on tea (Wang & Wu, 1992), this study provides the first report of *X. hunaniense* on tea in northern Vietnam, added to the total of four species of the genus *Xiphinema* on tea in Vietnam (Nguyen & Nguyen, 2000).

Acknowledgements: This study was supported by the National Foundation for Science & Technology Development (NAFOSTED) of Vietnam (Code: 106.05–2019.323). The authors would like to thank the anonymous reviewers for their comments and suggestions.

REFERENCES

De Ley P., Felix M. A., Frisse L., Nadler S., Sternberg P., Thomas W. K., 1999. Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). *Nematology*, 1: 591–612.

Gutiérrez-Gutiérrez C., Cantalapiedra-Navarrete C., Decraemer W., Vovlas N., Prior T., Palomares-Rius J., Castillo P., 2012. Phylogeny, diversity, and species delimitation in some species of the *Xiphinema americanum*-group complex (Nematoda: Longidoridae), as inferred from nuclear and mitochondrial DNA sequences and morphology. *European Journal of Plant Pathology*, 134: 561–597.

Long H., Ling X., Li Y., Zheng Y., 2014. Molecular and morphological identification of *Xiphinema hunaniense* on the Juniperus chinensis imported from Thailand. *Plant Pathology & Quarantine*, 4: 92–98.

Loof P. A., Luc M., Baujard P., 1996. A revised polytomous key for the identification of species of the genus *Xiphinema* Cobb, 1913 (Nematoda: Longidoridae) with exclusion of the *X. americanum*-group: Supplement 2. *Systematic Parasitology*, 33: 23–29.

Mamun M., Ahmed M., Paul S., 2011. Control of plant parasitic nematodes of tea soil using different species of green crops in Bangladesh. *Tea Journal of Bangladesh*, 40: 1–7.

Nguyen H. T., Le T. M. L., Nguyen T. D., Liebanas G., Nguyen, T. A. D., Trinh, Q. P., 2019. Description of *Geocenamus vietnamensis* sp. n. (Nematoda: Merliiniidae) from Vietnam. *Journal of Nematology*, 51: e2019–25.

Nguyen H. T., Nguyen T. D., Le T. M. L. & Trinh Q. P., 2020. First report of *Xiphinema hunaniense* Wang & Wu, 1992 (Nematoda: Longidoridae) in Vietnam. *Journal of Nematology* 52: e2020-78.

Nguyen N. C., 2003. Plant-parasitic nematodes and control base (in
First record of Xiphinema hunaniense

Vietnamese). Science and Technics Pulishing House, Hanoi, Vietnam.

Nguyen N. C., Nguyen V. T., 2000. Fauna of Vietnam, Plant-parasitic nematodes (in Vietnamese). Science and Technics Publishing House, Hanoi, Vietnam.

Nguyen T. D., Le T. M. L., Nguyen H. T., Nguyen T. A. D., Liébanas, G., Trinh, Q. P., 2017. Morphological and molecular characteristics of Pratylenchus haiduongensis sp. n., a new species of root-lesion nematode associated with carrot in Vietnam. Journal of Nematology, 49: 276–285.

Orlando V., Chitambar J. J., Dong K., Chizhov V. N., Mollov D., Bert W., Subbotin S. A., 2016. Molecular and morphological characterisation of Xiphinema americanum-group species (Nematoda: Dorylaimida) from California, USA, and other regions, and co-evolution of bacteria from the genus Candidatus Xiphinematobacter with nematodes. Nematology, 18: 1015–1043.

Perry R., Moens M. 2013. Plant nematology. CABI, London, UK.

Sikora R. A., Coyne D., Hallmann J., Timper P., 2018. Plant-parasitic nematodes in subtropical and tropical agriculture. CABI, UK.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30: 2725–2729.

Wang S., Wu X., 1992. Two species of Xiphinema Cobb, 1913 (Dorylaimida: Longidoridae) from around grape roots in China. Acta Phytopathologica Sinica, 22: 117–123.

Wang X., Bosselut N., Castagnone C., Voisin R., Abad P., Esmenjaud D., 2003. Multiplex polymerase chain reaction identification of single individuals of the longidorid nematodes Xiphinema index, X. diversicaudatum, X. vuittenezi, and X. italae using specific primers from ribosomal genes. Phytopathology, 93: 160–166.

Wu Y., Zheng J., Robbins R. T., 2007. Molecular characterization of a Xiphinema hunaniense population with morphometric data of all four juvenile stages. Journal of Nematology, 39: 37–42.