Life adverse experiences in relation with obesity and binge eating disorder: A systematic review

GIOVANNI LUCA PALMISANO1*, MARCO INNAMORATI2 and JOHAN VANDERLINDEN3

1Department of Psychology, University of Bari “Aldo Moro”, Bari, Italy
2Department of Science and Technology of Education, University of Rome “Tor Vergata”, Rome, Italy
3Eating Disorder Unit, University Psychiatric Center K.U. Leuven, Leuven, Belgium

(Received: July 21, 2015; revised manuscript received: January 14, 2016; accepted: January 17, 2016)

Background and aims: Several studies report a positive association between adverse life experiences and adult obesity. Despite the high comorbidity between binge eating disorder (BED) and obesity, few authors have studied the link between trauma and BED. In this review the association between exposure to adverse life experiences and a risk for the development of obesity and BED in adulthood is explored. Methods: Based on a scientific literature review in Medline, PubMed and PsychInfo databases, the results of 70 studies (N = 306,583 participants) were evaluated including 53 studies on relationship between adverse life experiences and obesity, 7 studies on post-traumatic stress disorder (PTSD) symptoms in relation to obesity, and 10 studies on the association between adverse life experiences and BED. In addition, mediating factors between the association of adverse life experiences, obesity and BED were examined. Results: The majority of studies (87%) report that adverse life experiences are a risk factor for developing obesity and BED. More precisely a positive association between traumatic experiences and obesity and PTSD and obesity were found, respectively, in 85% and 86% of studies. Finally, the great majority of studies (90%) between trauma and the development of BED in adulthood strongly support this association. Meanwhile, different factors mediating between the trauma and obesity link were identified. Discussion and conclusions: Although research data show a strong association between life adverse experiences and the development of obesity and BED, more research is needed to explain this association.

Keywords: trauma, obesity, binge eating disorder

INTRODUCTION

Obesity is one of the major health problems in the United States (Ogden, Yanovskey, Carroll, & Flegal, 2007), being recognized as the leading second cause of death in North America (Stein & Colditz, 2004). The etiology of adult obesity is complex and still unclear, including genetic (Comuzzie & Allison, 1998), behavioral and family factors (Dietz, 1986). In the last decades, empirical and neurologi-cal evidence has suggested that adverse childhood experiences occurring in early life, are strongly linked with multiple psychological issues in adulthood (Grilo, Sanislow, Fehon, Martino, & McGlashan, 1999) such as eating disorders (Treuer, Koperdak, Rozsa, & Furedi, 2005; Vanderlinden, Vandereycken, van Dyck, & Vertommen, 1993; Wonderlich et al., 2001), as well as with adult negative physical health outcomes (Anda et al., 2006), including type 2 diabetes (Thomas, Hyypönen, & Power, 2008), metabolic syndrome and heart disease (Lehman, Taylor, Kiefe, & Seeman, 2005; van Reedt Dortland, Giltay, van Veen, Zitman, & Penninx, 2012; Violanti et al., 2006). In this article we review all research data concerning the association between exposure to life adverse experiences and the risk to develop obesity and central adiposity in adulthood, with a particular focus on the mediators of this relationship, such as disordered eating, eating in response to stress, and mood and anxiety disorders. Since the relationship between obesity and binge eating disorders (BED) has been amply established (Bulik & Reichborn-Kjennerud, 2003; Hudson, Hiripi, Pope, & Kessler, 2007), and the fact that approximately 30% of subjects participating in weight control programs have comorbidity with BED syndrome (de Zwaan, 2001), studies investigating the relationship between life adverse experiences and BED were also included.

Definition of adverse experiences

Life adverse experiences are defined as all kinds of traumatic experiences occurring in childhood, adolescence and adulthood, which include emotional abuse, physical abuse, sexual abuse, sexual harassment, rape, bullying by peers, witnessing domestic violence, and serious accidents that threatened the lives of subjects. Exposure to violence in the neighborhood, and exposure to violence in television were excluded to this review.

* Corresponding author: Giovanni Luca Palmisano, PhD; Department of Psychology, University of Bari “Aldo Moro”, Piazza Umberto I – 70121 Bari (BA), Italy; Phones: +393396280241, +390805563630; E-mail: gianlucapalmisano@yahoo.it
Inclusion in this review was restricted to studies in people with obesity and/or a diagnosis of BED following American Psychiatric Association criteria (American Psychiatric Association, 1994, 2013). A literature search of articles was conducted in Medline, PubMed and PsychInfo until May 2015. The following keywords were included: overweight, obesity, morbid obesity, waist circumference, waist–hip ratio, abdominal fat, emotional eating, binge eating, and binge eating disorder and childhood abuse, sexual abuse, sexual harassment, physical abuse, physical neglect, physical abuse, bullying by peers, household violence, family violence, post-traumatic stress disorder. We included all the studies in which adverse life experiences were measured by self-reported instruments, clinician interviews or reports of social workers and in which at least one measure of BMI or WC was reported. Studies were divided into 4 groups: (1) studies on traumatic experiences in obese patients; (2) studies on traumatic experiences in obese patients with BED; (3) studies on post-traumatic stress symptoms in adult obese patients; and (4) studies on potential mediators and causal factors explaining the association between life adverse experiences and obesity/BED.

All the studies in this review used the definition of BED syndrome as stated in the DSM-IV and DSM-5 (American Psychiatric Association, 1994, 2000, 2013). BED is characterized by frequent and persistent episodes of binge eating, associated with a strong sense of lack of control over the eating and marked distress in the absence of regular compensatory behaviors. In the fifth edition of the DSM (American Psychiatric Association, 2014), BED is formally recognized as a separate eating disorder. Obesity, overweight and weight gain was evaluated by means of Body Mass Index (BMI) and Waist Circumference (WC).

RESULTS

Study selection

In this review a total of 70 studies were included: 53 studies on the relationship between exposure to trauma and obesity (15 longitudinal studies, 33 cross-sectional studies and 4 case-control studies), 7 studies concerning post-traumatic stress disorder symptoms in relation to obesity and BED (2 longitudinal studies and 5 cross-sectional studies) and 10 research papers regarding the association between trauma and BED (6 cross-sectional studies and 4 case-control studies).

Participants

In total 306,583 subjects (about 203,450 females and 103,133 males) including 50,461 obese individuals and 2,627 participants with BED were included in the analyses.

Adverse life experiences and obesity

Overall, there has been an important interest in this topic. A substantial amount of literature on the topic has been dedicated to investigate the association between interpersonal childhood trauma and subsequent obesity in adulthood. In a previous review Gustafson and Sarwer (2004) show that exposure to childhood sexual abuse is one of the highest risk factors for the development of adult obesity. Another recent review (Midei & Matthews, 2011) highlights that childhood trauma, involving exposure to interpersonal violence may be associated with weight gain, obesity and central adiposity in adulthood.

Cross-sectional studies

The vast majority of studies (Grilo et al., 2005; Grilo, White, Masheb, Rothschild, & Burke-Martindale, 2006; Salwen, Hymowitz, Vivian, & O’Leary, 2014; Wildes, Kalarchian, Marcus, Levine, & Courcoulas, 2008) show that abuse is associated with obesity in later life (see Table 1). Several studies (Grilo et al., 2005, 2006; Salwen et al., 2014; Wildes et al., 2008) report significantly higher levels of different types of abuse (emotional, physical and sexual abuse, and emotional and physical neglect) in two-thirds of a sample of morbid obese patients who underwent gastric bypass surgery compared to a normative sample of adult women, while the rates of maltreatment were roughly two to three times higher in the obese sample. These rates are comparable to those found in psychiatric populations of eating disorders and chronic depression patients (e.g., Carter, Bewell, Blackmore, & Woodside, 2006; Harkness, Bagby, & Kennedy, 2012). Another study (Maddi, Khoshaba, Persico, Bleecker, & VanArsdall, 1997) in a representative sample of morbid obese subjects revealed that a combination of childhood sexual, emotional and physical abuse in the family of origin predicted BMI in adulthood. Clark et al. (2007) reported in a study carried out on a sample of 152 morbid obese patients who underwent gastric bypass a prevalence rate of childhood sexual abuse, adult sexual abuse and childhood physical abuse respectively of 27%, 9% and 19%. Moreover, Sansone, Schumacher, Wiederman, and Routsong-Weichers (2008) found among 121 individuals seeking surgical treatment for obesity finding that 62.7% of respondents indicated having experienced at least one form of childhood abuse. In another study carried out on a sample of bariatric surgery patients Mahony (2010) found prevalence rates of sexual abuse of 15.5%, lower than those reported by other studies that used bariatric surgery patients (Grilo et al., 2005, 2006; Wildes et al., 2008). In two other studies performed on representative large samples (Alvarez, Pavao, Baumnind, & Kimerling, 2007; Rhode et al., 2008), the authors highlighted that both physical and sexual abuse in childhood were positively associated with obesity in adulthood. At the same time Marcus, Bromberg, Wei, Brown, and Kravitz (2007) found that midlife women with an early life history of physical and sexual abuse were more likely to show higher BMI and higher frequency of binge eating than non-abused women. Van Reedt Dortland et al. (2012) found that sexual abuse, physical abuse and emotional abuse independently predicted WC in adulthood. Another series of studies (Aaron & Hughes, 2007; Brewer-Smyth, 2014; Chartier, Walker, & Naimark, 2008; McIntyre et al., 2012; Pinhas-Hamiel, Modan-Moses, Herman-Raz, & Reichman, 2008; Smith et al., 2010)
First author, year	Country/ Study design	Samples	Mean BMI (WC)	Obesity measures	Measures	ACE (n or %)	Variables predicted OB	Results	
Aaron, 2007	USA CS	N = 416 ♂	27.8	SR BMI	CSA-Structured interview	CS = 31%	OB/M-OB = CSA	BMI + in CSA	
		OB = 90		OB = BMI ≥ 30					
		Age = 37.8		M-OB = BMI ≥ 35					
Alvarez, 2007	USA CS	N = 11116	SR BMI	TSS	ACE in OB = 29.9%	OB = Tot ACE, CSA & CPA	M-OB = ≥ 4 ACE		
		OB = 2509	OB = BMI ≥ 30						
		Age 18–65							
Anda, 2006	USA CS	N = 17337	SR BMI	Four questions from CTS	ACE = 10.6%	OB = ≥ 4 ACE			
		(9367 ♂)	M-OB = BMI ≥ 35	TSS	CPA = 28.3%	CS = 20.7%	BMI ≥ 4 ACE = 12.5%		
		Age = 57		O	DV = 12.7%	CSA = 20.7%			
Bellis, 2014	UK CS	N = 1466 (882 ♂)	SR BMI	ACE questions	1 ACE = 287	OB = ≥ 4 ACE			
		OB = 268	OB = BMI ≥ 30	2–3 ACE = 234					
		M-OB = 40	M-OB = BMI ≥ 40	≥ 4 ACE = 185					
		Age = 18–70							
Brewer-Smyth, 2014	UK CS	N = 81 ♂	LM BMI	Muenzenmaier’s scale	OB = CSA	OB = CSA			
Burke, 2011	USA CS	N = 701 (381 ♂)	LM BMI	Trauma screen on a chart	≥1 ACE = 67.2%	OW/OB = ≥ 4 ACE	≥ 4 ACE = 38 OB		
		Age = 0–20.9	OB = BMI ≥ 85th %	review	≥ 4 ACE = 12.0%	CS = 20.7%			
Buser, 2004	USA CC	N = 42 ♂ M-OB	LM BMI	Interview	CSA = 21	BMI: CSA = Non			
		CSA = 21	CS = 56.9	Non CSA = 21	CS = 18		CS = 20.7%		
		Age CSA = 39.0							
		Non CSA = 36.1							
Chartier, 2008	Canada CS	N = 8116 (4074 ♂)	SR BMI	Mental Health	CPA in OB = 15.0%	OB = CSA			
		OB = 829	OB = BMI ≥ 30	Supplement of the Ontario Health Survey	CS in OB = 18.2%	CS = 20.7%			
		Age 15–64							
Clark, 2007	USA CS	N = 152 (111 ♂)	SR BMI	Semi-structured interview	CSA = 27%	OB = Tot ACE	No ACE differences		
		Age = 51.3	OB = BMI in 73 M-OB	ASA = 9%	CS = 20.7%	CS = 20.7%			
			OB = BMI ≥ 30	CPA = 20.7%					
D’Argenio, 2009	Italy CC	N = 200 (130 ♂)	LM BMI	ETLE	ACE in OB = 38.5%	OB = Tot ACE			
		OB = 65 (42 ♂)	OB = BMI ≥ 30		CS = 20.7%	CS = 20.7%			
		OB/PS = 85 (64 ♂)	OB/PS = 38.3		CS = 20.7%	CS = 20.7%			
		Age OB = 40.4	Age OB = 39.1		CS = 20.7%	CS = 20.7%			
First author, year	Country/ Study design	Samples	Mean BMI (WC)	Obesity measures	Measures	ACE (n or %)	Variables predicted OB	Results	
-------------------	-----------------------	---------	--------------	-----------------	----------	-------------	------------------------	---------	
Davis, 2014	USA CS	N = 210 (110 ♀)	30.4	LM BMI	ELSI	CEA = 23%	BMI = ACE		
		Age = 45.8		OB = BMI ≥ 30	AAI	CPA = 41%	WHR = ACE		
				OB = WHR > 2		CSA = 30%			
Felitti, 1993	USA CS	N = 200 (158 ♀)	>65 pounds	LM of weight	Clinical interview	CSA in OB = 25%	CSA + in OB		
		OB = 100 (79 ♀)	MIW	Weight = pounds	Nurses information	CSA in NW = 7%	CEA/CN + in OB		
		NW = 100 (79 ♀)				CEA/CN in OB = 29%			
		Age = 41				CEA/CN in OB = 14%			
Fuller-Thomson, 2012	Canada CS	N = 12590 (6887 ♀)	N/R	SR BMI	CCHS	♀ CPA = 4.9%	OB = CPA in ♀		
		OB = 2787 (1254 ♀)	OB = 50	OB = BMI ≥ 30		♀ CPA = 9.7%	OB + in ♀ CPA		
		Age = 18–80		NW = BMI < 25					
Goedecke, 2013	South Africa CS	N = 44 ♀	43.1	LM BMI	CTQ	℃ OA in black OB = 33.2			
		OB = 24		OB = BMI ≥ 30		CTQ: OB = OW			
				NW = BMI < 25					
Grilo, 2005	USA CS	N = 340 M-OB (282 ♀)	43.1	LM BMI	CTQ	CEA in M-OB = 46.2%	CN + in M-OB/BED		
		BED = 76				CPA in M-OB = 28.8%			
		M-OB = 203				CSA in M-OB = 31.8%			
		Age = 51.1				CEN in M-OB = 48.8%			
						CPN in M-OB = 32.1%			
Grilo, 2006	USA CS	N = 137 M-OB (122 ♀)	51.8	LM BMI	CTQ	CEA in M-OB = 46.0%	No BMI differences		
		Age = 42.3				CPA in M-OB = 29.2%			
						CSA in M-OB = 32.1%			
						CEN in M-OB = 49.6%			
						CPN in M-OB = 27.7%			
Gunstad, 2006	USA CS	N = 696 (339 ♀)	OB = 34.8	LM BMI	CAT	CEA in ♂ OB = 17%	BMI = B	B + in ♂ OB	
		OB = 73 (37 ♀)		OB = BMI ≥ 30		B in ♂ OB = 30%	BMI = CEA	B + in ♂ OW	
		Age = 36.59				♂ OB = ACE		CEA + in ♂ OB	
Hodge, 2014	USA CS	N = 459 (336 ♀)	31	OB = BMI ≥ 30	Questions about ACE	CEA in ♀ OB = 41.3%	OB = CEA, CPA		
		Median age = 42		M-OB = BMI ≥ 40		CPA in ♀ OB = 41.9%			
						CSA in ♀ OB = 31.9%			
						CEN in ♀ OB = 21.4%			
						CPN in ♀ OB = 26.3%			
Hollingsworth, 2012	Australia CS	N = 239 ♀	26.24	LM BMI	CTQ	CEA in ♀ OB = 41.3%	CEA + in ♀ OB		
		OB = 63		OB = BMI ≥ 30		CPA in ♀ OB = 41.9%	CPA + in ♀ OB		
						CSA in ♀ OB = 31.9%			
						CEN in ♀ OB = 21.4%			
						CPN in ♀ OB = 26.3%			
First author, year	Country/Study design	Samples	Mean BMI (WC)	Obesity measures	Measures	ACE (n or %)	Variables predicted OB	Results	
--------------------	---------------------	---------	--------------	-----------------	----------	-------------	------------------------	---------	
Jia, 2004 USA CS	N = 237 ♂ 21% B	OB = 40.1	LM BMI	CPA-Structured interview CPA in OB = 34	OB = CPA	CSA + in OB/OW			
Kestilä, 2009 Finland CS	N = 1369 (618 ♂)	OB = 34	LM BMI	Health Examination Survey	♂ B = 28%	♂ OB = B			
Knutson, 2010 USA CS	N = 571 (282 ♂)	OB = 38.9	LM BMI	SA/Structured interview	OB = CPA	CPA + in OB/OW			
Larsen, 2005 Netherlands CS	N = 157 M-OB (144 ♂)	Age = 40	CSA = 45.1 Non CSA = 45.7	CSA in OB	OB = CPA	CPA + in OB/OW			
Maddi, 1997 USA CS	N = 1027 M-OB (855 ♂)	Age = 37.31	LM BMI	Interview CPA in OB = 11.6%	BMI = CEA, CPA, CSA				
Mahony, 2010 USA CS	N = 573 OB (419 ♂)	Age = 40.14	LM BMI	PsyBari CPA = 133	BMI = CEA, CPA, CSA				
Marcus, 2007 USA CS	N = 589 ♂	OB = 213	LM-BMI & WC	12-item questionnaire from National Comorbidity’s Study modification of the revised Diagnostic Interview Survey PTSD section	BMI = CPA/CSA				
McIntyre, 2012 Canada CS	N = 373 (230 ♂)	MS = 83 (50 ♂) Age = 42.9	LM BMI & WC	Klein Trauma & Abuse Neglect self-report scale	OB + in CSA				
Oppong, 2006 USA CS	N = 258 M-OB (208 ♂)	Non CSA = 52	N/R	Questionnaire on ACE ♂ CSA = 29.6%	BMI = CEA, CPA, CSA				
Pinhas-Hamiel, 2008 Israel CS	N = 145 ♂ OW	MS = 14 (50 %)	N/R	Social worker and psychologist interview	OB + in CSA				
Rhode, 2008 USA CS	N = 4641 ♂	OB = 3251	SR BMI	Four questions from CTQ	OB = CPA/CSA				

(Continued)
First author, year	Country/ Study design	Samples	Mean BMI (WC)	Obesity measures	Measures	ACE (n or %)	Variables predicted OB	Results
Salwen, 2014	USA CS	N = 187 (67♀)	45.90	LM BMI	OB = BMI ≥ 30	CTQ-short form	Severe CEA = 10.2%	OB/PS
		OB = 29		OB = BMI ≥ 30		CPA = 8%		
		M-OB = 158		M-OB = BMI ≥ 40		CSA = 4.8%		
		Age = 43.58				CEN = 8%		
						CPA = 9.6%		
						CEN = 9.6%		
						CEN = 9.6%		
						AIA = 30.5%		
						Any ACE = 61.0%		
Sansone, 2008	USA CS	N = 121 OB (104♀)	47.2	LM BMI	OB = BMI ≥ 30	Questions about ACE	CEA = 43%	
		Age = 44.6		OB = BMI ≥ 30		CSA = 19%		
						CPA = 17.4%		
						CPN = 9.1%		
						DV = 39%		
Schneiderman, 2012	USA CC	N = 454 (231♀)	N/R	LM BMI	OB ≥ 95th %	Child Welfare Case Records	CEA = 156 (83♀)	BMI: ACE Group =
		ACE = 303 (151♀)				CPA = 156 (67♀)		
		CG = 151 (60♀)				CSA = 64 (41♀)		
		Age = 10.93				CN = 232 (111♀)		
Smith, 2010	USA CS	N = 867 ♂	N/R	LM BMI	M-OB = BMI ≥ 40	Three questions about SA	OB = Any SA	
		OB = 310		OB = BMI ≥ 30		S-OB = BMI ≥ 35		
		Age = 47.6				OB = BMI ≥ 30		
Taylor, 2006	USA CS	N = 455 ♂	23.7	LM BMI	OW = BMI 25–32	CTQ Questions of negative comments about shape and weight	NC = 114 OW	MBS = NC, CEN
		Age = 20.8				NC = 40–50%		
						152 OW > 90th % on CEA, CEN & CPN		
						CEA = 10.8%		
						CPA = 2.8%		
						CSA = 1.3%		
						CEN = 20.4%		
van Reedt Dordland, 2012	Netherlands CS	N = 2755 (1829♀)	WC = 87.0	LM WC		Childhood Trauma Interview used in the Netherlands Mental Survey and Incidence Study	WC = CPA, CSA & CEA	
		Age = 41.9				CEA = 10.8%		
						CPA = 2.8%		
						CSA = 1.3%		
						CEN = 20.4%		
Whitaker, 2007	USA CS	2412 children	N/R	LM BMI	OB = BMI > 95th %	CTSPSC	CEA = 94%	OB = CN
		Age = 3				CPA = 84%		
						CN = 11%		
Wildes, 2008	USA CS	N = 230 M-OB (191♀)	51.4	LM BMI	M-OB = BMI ≥ 40	CTQ Tot ACE = 151	CEA + in ♂ OB	
		Age = 44.8		OB = BMI ≥ 30		CEA = 109		
						CSA = 71		
						CEN = 71		

Index: AAI = Adult Attachment Interview; CAT = Child Abuse and Trauma Scale; CCHS = Canadian Community Health Survey; CTQ = Childhood Trauma Questionnaire; CTSPSC = Parent-Child Conflict Tactics Scales; CTS = Conflict Tactic Scale; ELSI = Evaluation of Lifetime Stressors Interview; ETLE = Early Traumatic Life Events; HEQ = The Home Environment Questionnaire; TSS = Traumatic Stress Schedule; AIA = Adult Interpersonal Abuse; ACE = Adverse Childhood Experiences; CSA = Childhood Sexual Abuse; CPA = Childhood Physical Abuse; CEN = Childhood Emotional Neglect; CPN = Childhood Physical Neglect; CEA = Childhood Emotional Abuse; ASA = Adult Sexual Abuse; DV = Domestic violence against mother; D/S = Divorce/ Separation of parents; I = Incarcerated household members; B = Bullied/rejected; DF = Death of family members; NC = Negative comments in family; S-OB = Severe obese; M-OB = Morbid obese; OB = Obese; OB/PS = Obese with psychiatric disorders; NW = Normal weight; BMI = Body Mass Index (kg/m²); WC = Waist Circumference (cm); WHR = Waist–Hip Ratio; MBS = Maximum Body Size (kg).
confirm previous findings showing a strong association between childhood sexual abuse with obesity, suggesting that this variable may be an important risk factor for becoming obese in adulthood.

Despite the large amount of studies, demonstrating a strong association between traumatic experiences and the development of obesity, some studies show some conflicting data. For instance, Jia, Li, Leserman, Hu, and Drossman (2004) showed that in obese and overweight patients who reported a history of physical or sexual abuse only the rates of physical abuse significantly increased the odds of being overweight. Some other studies (Goedcke, Forbes, & Stein, 2013; Larsen & Geenen, 2005; Oppong, Nickels, & Sax, 2006), showed that sexually abused patients did not differ significantly in BMI compared with patients reporting no sexual abuse.

In a cross-sectional study performed on a sample of pre-pregnancy women Hollingsworth, Callaway, Dughig, Matheson, and Scott (2012) found that the rates of childhood emotional and physical abuse were higher in obese women compared with normal weight women. Furthermore, these authors revealed that pre-pregnancy obesity was associated with a self-reported history of emotional or physical abuse. On the other hand, Fuller-Thomson, Sinclair, and Brennenstuhl (2012) in a cross-sectional study carried out in a large and representative sample of adult subjects found that among women with childhood physical abuse compared to non-abused women, the odds of obesity were 35% higher, while childhood physical abuse was not associated with adult obesity among men. Two other studies clearly showed that being bullied or rejected during childhood predicted BMI and obesity in adulthood (Gunstad et al., 2006; Kestilä, Rahkonen, Martelin, Lahti-Koski, & Koskinen, 2009).

Three cross-sectional studies (Anda et al., 2006; Bellis, Lowey, Leckenby, Hughes, & Harrison, 2014; Burke, Hellman, Scott, Weems, & Carrion, 2011) showed that children who were exposed to different types of adverse life experiences have a higher risk to develop overweight, obesity and morbidity obesity in adulthood compared with subjects without traumatic experiences in childhood. Consistent with these studies Davis et al. (2014) found that different types of adverse life experiences predicted central obesity measured respectively with waist–hip ratio and BMI.

In contrast with the great interest in physical, and sexual abuse, only few studies focused on the impact of childhood neglect documenting a positive association between parental neglect in childhood and increased risk of obesity both in childhood (Knutson, Taber, Murray, Valles, & Koeppl, 2010; Taylor et al., 2006) and adulthood (Whitaker, Phillips, Orzol, & Burdette, 2007). One cross-sectional study reported that only verbal abuse but not sexual and physical abuse were predictive of adult obesity (Hodge, Stemmler, & Nandy, 2014).

Case-control studies

Only a few case-control studies were carried out (see Table 1). One case-control study (Felitti, 1993) showed that obese patients report a higher incidence of different childhood traumatizing life events compared with and age and sex matched control sample. Another case-control study (D’Argenio et al., 2009), comparing obese subjects to both obese subjects with a current psychiatric diagnosis, and to non-obese and non-psychiatric subjects, showed that also marital conflicts and separation of one or both parents, may be a risk factor for developing obesity during adulthood. Again some studies show some contrasting findings and do not find a higher risk to develop obesity in obese patients with a history of trauma compared to a non-trauma sample (Buser, Dynek-Valentine, Hilburger, & Alverdy, 2004; Schneiderman, Mennen, Negriff, & Trickett, 2012).

Longitudinal studies

Several longitudinal studies report a positive association between abuse and later obesity (see Table 2). Two studies (Midei, Matthews, & Bromberger, 2010; Power, Pinto, & Li, 2015) showed that childhood physical and sexual abuse and childhood neglect were positively associated with obesity, BMI and WC increase in adulthood. Another study (Thomas et al., 2008) revealed that verbal abuse and physical abuse was related with increases of both BMI and WC in adulthood, and that physical punishment, neglect, witnessing violence and living in a conflictual family, predicted overall the growth of WC in adulthood. At the same time another longitudinal study (Bentley & Widom, 2009) found that only physical abuse predicted the growth of BMI. Boynton-Jarrett, Rosenberg, Palmer, Boggs, and Wise (2012) found that in comparison with non-abused women, those reporting severe physical and/or sexual abuse had the highest ratios of obesity and waist circumference, and that both severe sexual and physical abuse were positively associated with body weight. Two other longitudinal studies (Greenfield & Marks, 2009; Williamson, Thompson, Anda, Dietz, & Felliti, 2002) corroborate the finding that in adults reporting childhood physical, sexual and psychological violence from parents, greater odds of obesity was observed.

Noll, Zeller, Trickett, and Putnam (2007) showed that sexually abused women were 2.85 times more likely to be obese during young adulthood compared to non-abused women. Some longitudinal studies (Johnson, Cohen, Kasen, & Brook, 2002; Lissau & Sorensen, 1994; Shin & Miller, 2011; Vámosi, Heitmann, Thinggaard, & Kyvik, 2011) clearly show that the prevalence of obesity and greater rates of increase of BMI were significantly higher among subjects who had experienced neglect in the prior years compared to those growing up in a supportive and harmonious family environment. Only one study (Fuemmeler, Diedert, McClemont, & Beckham, 2009) showed that only in men, but not in women, obesity and overweight were positively associated with early life history of sexual abuse. Finally, Sweeting, Wright, and Minnis (2005), in line with the findings of Gunstad et al. (2006) and Kestilä et al. (2009) found that victimization at school was positively related to obesity at age 11 but that this association disappeared at age 15. Only one longitudinal study is in conflict with previous findings (Bennett, Sullivan, Thompson, & Lewis, 2010) since the chronicity of neglect was associated with lower BMI at 7 and 9 years but was unrelated to BMI at an earlier age.
Table 2. Longitudinal studies on the relationship between adverse childhood experiences and development of obesity in adulthood

First author, year	Country	Samples (follow-up)	Mean BMI/WC	Obesity measures	Measures	Prevalence of ACE (N or %)	Variables predicted OB	Results
Bennett, 2010	USA	N = 185 (103 ♀)	N/R	LM BMI	Mother interview	CN = 91	BMI in CN	
		Age = 6.1		BMI ≥ 30	CTSPSC	CPA = 12	BMI = CPA	
				BMI ≥ 95th %	Child Protective Service allegation		CN = 335	
Bentley, 2009	USA	N = 807 (426 ♀)	CPA = 31.9	LM BMI	Official records	CPA = 68	OB = CPA	
		Age (T2) = 41	CSA = 30.7	BMI ≥ 30		CSA = 54		
			CN = 29.7	SR BMI (n = 180)		CN = 335		
Boynton-Jarrett, 2012	USA	N = 33298 ♀	No ACE = 30	SR BMI and WC	CTS	CPA/CSCSA = 35	Δ BMI = CPA/CSCSA	
		OB = 14418	CPA/CSCSA = 31	OB = BMI ≥ 30	PAAS	CPA + CSCSA = 804	Δ BMI = CPA + CSCSA	
		Age (21–69)	CPA + CSCSA = 32	OB = WC ≥ 35 inch		Δ WC = CPA/CSCSA		
Fuemmeler, 2009	USA	N = 15197	N/R	SR BMI	Survey	CS in ♀ OB = 4.4%	CS + in ♀ OB	
		OB = 1778 (905 ♀)		BMI ≥ 30		CPA in ♀ OB = 16.2%	CS in ♀ OW	
		Age = 22.0		BMI ≥ 35		CN in ♀ OB = 5.3%	CS in ♀ OB = 6.9%	
						CPA in ♀ OB = 13.8%	CPA in ♀ OB = 13.8%	
						CN in ♀ OB = 6.3%	CN in ♀ OB = 6.3%	
Greenfield, 2009	USA	N = 1650 (891 ♀)	N/R	SR BMI	Items from modified version of CTS	Rarely CPA or CEA = 18%	OB = frequently CPA + CEA	
		OB = 478		BMI ≥ 30		Frequently CPA or CEA = 6%		
		Age = 56.6				Frequently CPA & rarely CEA = 12%		
						Frequently CPA + CEA = 22%		
Johnson, 2002	USA	N = 782 (385 ♀)	N/R	SR BMI	Official records	CN in OB = 21%	OB = CN	
		OB = 93		BMI ≥ 30	Parental Interview	CN in OB = 18%	OB = CN	
		Age = 22			Neglect Scale			
					Teachers and parents			
					questionnaire			
Lissau, 1994	Denmark	N = 756	N/R	LM BMI (T1)	CN in OB = 21%	OB = CN		
		OB = 38		SR BMI (T2)	CN in OB = 18%	OB = CN		
		Age = 19–20		BMI > 95th %				
				BMI > 30				

(Continued)
First author, year	Country	Samples (follow-up)	Mean BMI/WC	Obesity measures	Measures	Prevalence of ACE (N or %)	Variables predicted OB	Results
Midei, 2010	USA	N = 311 ♀, OB = 109	28.6 (87.6 cm)	LM BMI & WC BMI ≥ 30	CTQ	Tot ACE = 36.0%	Δ BMI + in ACE	
		Age = 45.7						
						CEA = 19.6%	Δ BMI + in CSA	
						CPA = 16.7%	Δ BMI + in CPA	
						CSA = 14.1%	Δ WC + in ACE	
						CEN = 6.4%	Δ WC + in CSA	
						CPN = 14.8%		
		ΔBMI + in ACE				Pathology		
Noll, 2007	USA	N = 173 ♀, OB in CSA = 35	N/R	LM BMI BMI ≥ 30	Substantiated abuse through child Protective Services	CSA = 84	OB = CSA	Δ BMI + in CSA
		OB in CG = 25	Age = 6-27					
Power, 2015	UK	N = 17638 ♀, OB = 2101 (952 ♀)	28.1	LM BMI SR BMI OB = BMI > 95th % PATH OB = BMI ≥ 30	Interview of parents CPA in ♀ = 6.14%	♀ OB = CPA	Δ BMI + in CPA	
		Age = 45	♀ = 28.6			CEA in ♀ = 11.7%	♀ OB = CPA, CSA	
						CSA in ♀ = 2.71%	Δ BMI + in ♀ = CPA CN	
						CN in ♀ = 18.5%	Δ BMI + in ♀ = CPA	
						CPA in ♀ = 5.95%	CSA, CN	
						CEA in ♀ = 8.29%		
						CSA in ♀ = 0.48%		
						CN in ♀ = 21.8%		
Shin, 2011	USA	N = 8471 ♀, OB = 139 (77 ♀)	29.0	SR BMI BMI > 95th %	CASI Interview CPA in ♀ = 11%	♀ OB = CPA	Δ BMI = CN	
		Age = 28.3	♀ = 26.8			CEA in ♀ = 1%	♀ OB = CPA, CSA	
						CSA in ♀ = 22%	Δ BMI + in ♀ = CPA CN	
Sweeting, 2005	Scotland	N = 2127 (1043 ♀)	24.2	LM BMI BMI > 95th %	2 items on B B in ♀ at 11 years = 21.8%	♀ OB at 11 years = B	Δ BMI = B	
		OB = 139 (77 ♀)	♀ = 25.6			B in ♀ at 11 years = 29.8%	Δ BMI = B	
Thomas, 2008	UK	N = 9310 (4658 ♀)	27.5	LM BMI & WC BMI ≥ 30	PBI	CEA = 1420	Δ BMI = CEA, CPA	
		OB = 2227 (1104 ♀)	26.5			CEA = 147	Δ WC = CN, PP, DV, CF	
		Age = 45				CPA = 558		
						CSA = 147		
						CN = 1425		
						PP = 705		
						DV = 557		
						CF = 366		
First author, year	Country	Samples (follow-up)	Mean BMI/WC	Obesity measures	Measures	Prevalence of ACE (N or %)	Variables predicted OB	Results
-------------------	---------	---------------------	------------	-----------------	----------	--------------------------	------------------------	---------
Vámosi, 2011	Denmark	$N = 236 \ (159 \ ♀)$	♀ = 29.5	SR BMI	CECA.Q	Maternal CN = 50	OB at age 40 = Maternal	♀ 40.4
		♀ Age = 41.4	♂ = 28.8	OB = BMI ≥ 30		Paternal CN = 105	CN	♀ 40.4
		♂ Age = 40.4				Maternal antipathy = 37	OB at age 40 = Maternal	♂ 40.4
						Paternal antipathy = 41		♂ 40.4
Williamson, 2002	USA	$N = 13177 \ (6720 \ ♀)$	27.4	LM BMI	ACEs study survey	Any ACE = 1318	OB/M-OB = Any ACE, 4	♀ 55.7
		OB = 3294	BMI ≥ 30			CEA = 6238	ACE	♀ 55.7
		M-OB = 1014	BMI ≥ 40			CPA = 2710	M-OB = CEA, CPA	♀ 55.7
		Age = 55.7				CSA = 2860		♀ 55.7

Index: CECA.Q = The Childhood Experience of Care and Abuse Questionnaire; CTQ = Childhood Trauma Questionnaire; CTS = Conflict Tactic Scale; CTSPSC = Parent–Child Conflict Tactics Scales; PAAS = Pregnancy Abuse Assessment Scale; PATH = Personality and Total Health Through Life Project; PBI = Parental Bonding Inventory; ACE = Adverse Childhood Experiences; CSA = Childhood Sexual Abuse; CPA = Childhood Physical Abuse; CN = Childhood Neglect; CEN = Childhood Emotional Neglect; CPN = Childhood Physical Neglect; CEA = Childhood Emotional Abuse; PP = Physical Punishment; DV = Domestic violence against mother; B = Bullyed/rejected; M-OB = Morbid obese; OB = Obese; OB/PSY = Obese with psychiatric disorders; BMI = Body Mass Index (kg/m2); SR BMI = Self-reported BMI; LM BMI = Laboratory measure of BMI; WC = Waist Circumference (cm).
Table 3. Studies on the relationship between PTSD and development of OB/BED in adulthood

First author, year	Country/ Study design	Samples	Mean BMI	Obesity measures	Measures	PTSD/ACE (N or %)	Variables predicted OB	Results	
Dedert, 2010	USA CS	N = 148 ♀	30.9	LM BMI	TLEQ	PTSD = 49%	BMI = CSA, OB + in CSA	OB + in CSA	
Dedert, 2010	USA CS	OB = 43		OB = BMI > 30	DTS	CSA = 45%	OB + in CSA		
		OW = 50		OW = BMI > 25		CPA = 46%	OB + in CSA		
		Age = 39.10							
Duncan, 2015	USA L	N = 3699 ♀		SR BMI	Standard traumatic event checklist adapted from the NCS	PTSD in OB = 7.4%	CSA in OB = 25.3%	OB = CSA + CPA + CN OW = CSA, CPA	
		OB = 497		OB = BMI ≥ 30		CSA in OB = 31.2%	OB = CSA in OB		
		Age = 15–24							
Grilo, 2012	USA CS	N = 105 ♀	38.4	LM BMI	SCID-I/P	PTSD = 25		No BMI differences	
		OB = 5250		OB = BMI ≥ 30	EDE for BED				
		OW = 9019		OW = BMI ≥ 25					
		Age = 34.5							
Kubzansky, 2014	USA CS	N = 5050 ♀	23.6–24.1	LM BMI	Modified BTQ 7-item screening scale for DSM-IV PTSD	ACE + PTSD = 51.1%	Only ACE = 30.3%	OB/OW = ACE + PTSD	
		OB = 2520		OB = BMI ≥ 30					
		OW = 9019		OW = BMI ≥ 25					
		Age = 34.5							
Pagoto, 2012	USA CS	N = 20013 (10527 ♀)	23.8	SR BMI	CIDI for PTSD	1 year PTSD = 3.4%	OB = PTSD in ♀ & ♂		
		OB = 4863		Class I OB = BMI ≥ 30	CIDI for BED	Past PTSD = 3.3%			
		Age = 44.2		Class II OB = BMI ≥ 35					
				Class III OB = BMI ≥ 40					
Roenholt, 2012	Denmark CS	N = 2981 (1425 ♀)	23.8	SR BMI	4 PTSD questions	1/2 symptoms of PTSD = 21%	OB = CN + CPA + CEA		
		OB = 197		OB = BMI ≥ 30		3/4 symptoms of PTSD = 6%			
		OW = 650				CEA = 9%			
		Age = 28				CSA = 2%			
						CN+CPA+CEA = 2%			
Violanti, 2006	USA CS	N = 101 (40 ♀)	♀ WC = 80.6	LM WC	IES	Severe PTSD = 6	WC + in Severe PTSD		
		♂ WC = 97.2		WC > 88 in ♀		Moderate PTSD = 23			
				WC > 102 in ♂		Mild PTSD = 19			
						Sub-clinical PTSD = 53			
								WC > 88 in ♀	

Index: BTQ = Brief Trauma Questionnaire; CIDI = World Health Organization Composite International Diagnostic Interview; DTS = Davidson Trauma Scale; IES = The Impact of Event Scale; NCS = National Comorbidity Scale; SCID = Structured Clinical Interview for DSM Axis I Disorders; TLEQ = Traumatic Life Events Questionnaire; ACE = Adverse Childhood Experiences; CSA = Childhood Sexual Abuse; CPA = Childhood Physical Abuse; CN = Childhood Neglect; CEA = Childhood Emotional Abuse; OB = Obese; OW = Overweight; NW = Normal weight; UW = Underweight; BMI = Body Mass Index (kg/m²); SR BMI = Self-reported BMI; LM BMI = Laboratory measure of BMI; WC = Waist Circumference (cm); NCS = Impact of Event Scale; TLEQ = Traumatic Life Events Questionnaire.
Table 4. Studies on the relationship between adverse childhood experiences and development of BED in adulthood

First author, year	Country/Study design	Samples	Mean BMI	Obesity measures	Measures	ACE in BED	Variables predicted	Results
Allison, 2007 USA	CC	N = 271 (204 ♀)	BED = 35.6	LM BMI	CTQ	Tot ACE = 82%	OB/BED	OB/BED = BED in any ACE
		BED = 176 (139 ♀)			EDE	CEA = 54%		OB-BED = BED in ACE
		NES = 57 (41 ♀)			SCID-I/P	CPA = 31%		OB/BED = BED in ACE
		OB = 38 (24 ♀)				CSA = 29%		OB/BED = BED in ACE
		Age of BED = 44.9				CEN = 69%		OB/BED = BED in ACE
						CPA = 31%		OB/BED = BED in ACE
Becker, 2011 USA	CS	N = 137 ♀ BED	35.7	LM BMI	CTQ	CEA = 71	OB onset = CPA	OB + in OB-BED
		Age = 43.9		OB = BMI ≥ 30	SCID-I/P	CPA = 38		OB + in OB-BED
					EDE	CSA = 42		OB + in OB-BED
						CN = 156		OB + in OB-BED
Dalle Grave, 1997	Italy	N = 64 ♀ OB	N = 35.7	LM BMI	Clinical interview for Trauma	ACE in OB = 26%	ACE + in OB-BED	
	CC	BED = 29	BED = 35.0	OB = BMI > 30	Standardized interview for BED	ACE in OB/BED = 41.3%	ACE + in OB-BED	
		OB = 35		OB = 36.3	Semistructured interview for BED diagnosis			
Gabert, 2013 Canada	CS	N = 500 M-OB (441 ♀)	47.9	LM BMI	Interview about CSA	CSA in ♀ = 23.6%	BED + in CSA	
		BED = 148	M-OB = BMI ≥ 35			CSA in ♀ = 8.5%		
		Age = 43.7						
Grilo, 2001 USA	CC	BED = 145 (111 ♀)	BED = 37.9	LM BMI	CTQ	Any ACE = 82.8%	OB/BED = BED in any ACE	
		OB/BED = 105	OB = BMI ≥ 30		SCID-I	CEA = 59.3%		
		NS = 1125 ♀			EDE-Q	CPA = 35.8%		
		Age BED = 43.6			CPA = 35.8%	CSA = 30.3%		
					QEWP-R	CEN = 69%		
						CPA = 48.6%		
Grilo, 2002 USA	CC	BED = 116 (90 ♀)	BED = 37.9	LM BMI	CTQ	Any ACE = 81.9%	BED > NS in Any ACE	
		NS = 1125 ♀	OB = BMI ≥ 30		SCID-I	CEA = 52.6%		
		Age BED = 44.2			CPA = 31.9%	CSA = 25.9%		
		Age NS = 42			CEN = 67.2%	CPA = 49.6%		
Knoph Berg, 2011 Norway	CS	N = 45644 ♀	BED = 37.9	SR BMI	2 questions about	CEA in BED = 23.6%	BED = CSA,	
		BED = 931			CPA	CPA		
		Age = 29.9			2 questions about	CEA in BED = 24.0%		
					CSA	CEA		
					2 questions about	CPA		
					CSA	CEA		
					2 questions about	CPA		
					CSA	CEA		
					2 questions about	CPA		
					CSA	CEA		
					2 questions about	CPA		

(Continued)
First author, year	Country/ Study design	Samples	Mean BMI	Obesity measures	Measures	ACE in BED	Variables predicted OB/BED	Results
Mitchell, 2012	USA CS	N = 5692 (3310 ♀) BED = 105 (75 ♀) Age ♂ = 43.2 Age ♀ = 44.0	CIDI	Any ACE = 90.3%	Any Int-ACE = 63.7% R = 19.5% CSA = 34.8% CPA = 13.71% DV = 30.8% Stalking = 33.8%	Any ACE + in BED		
Pike, 2006	USA CC	BED = 162 ♀ (101 OB) CG = 162 ♀ (32 OB) PC = 107 ♀ (23 OB) Age BED = 30.8 Age CG = 30.0 Age PC = 20.5	RFI	CSA = 8.6%	Any Int-ACE + in BED CSA + in BED R + in ♀ BED CPA + in BED DV + in BED Stalking + in BED			
Striegel-Moore, 2002	USA CC	BED = 162 ♀ CG = 251 ♀ Age BED = 30 Age CG = 30	Oxford assessment	CSA = 56.7%	CPA = 65%	CS + in BED CPA + in BED B + in BED		

Index: EDE = Eating Disorder Examination; CTQ = Childhood Trauma Questionnaire; SCID-I/P = Structured Clinical Interview for DSM-IV-TR Axis I Disorders Patient edition; SCID-I = Structured Clinical Interview for DSM-IV-TR Axis I Disorders; SCID-IV = Structured Clinical Interview for DSM-IV-TR Disorders; ACE = Adverse Childhood Experiences; CSA = Childhood Sexual Abuse; CPA = Childhood Physical Abuse; CN = Childhood Neglect; CEA = Childhood Emotional Abuse; DV = Domestic violence; B = Bullied/rejected; R = rape; NC = Negative comments in family about shape and weight; BED = Binge Eating Disorder; BEB = Binge Eating Behaviors; M-OB = Morbid obese; OB = Obese; BMI = Body Mass Index (kg/m²); SR BMI = Self-reported BMI; LM BMI = Laboratory measure of BMI; WC = Waist Circumference (cm); QEWP-R = Questionnaire of Eating and Weight Patterns-Revised; CIDI = World Health Organization Composite International Diagnostic Interview (CIDI) for DSM-IV and ICD-10 diagnosis; RFI = Oxford Risk Factor Interview.
Post-traumatic stress disorder and obesity

Some studies evaluated the presence of a post-traumatic stress disorder (PTSD) in adult obese patients and this way indirectly measured the presence of trauma (see Table 3). Violanti et al. (2006) showed that waist circumference in police officers exposed to some form of traumatic experience was related to PTSD symptoms. In line with these findings, other researchers found a significant association between obesity and PTSD symptoms (Duncan et al., 2015; Pagoto et al., 2012), and that both PTSD symptoms and major depressive symptoms had a significant effect on BMI and waist–hip ratio (Dedert et al., 2010). Roenholt, Beck, Karsberg, and Elkkil (2012) also found a strong positive association between BMI and the presence of PTSD symptoms. Moreover, Grilo, White, Barnes, and Masheb (2012) found in a sample of obese patients with BED a great number of subjects had comorbid PTSD. Grilo et al. (2012) also demonstrated that BED patients with a diagnosis of PTSD had a greater percentage of binge eating behaviors compared with BED patients without PTSD. In another longitudinal study Kubzansky et al. (2014) demonstrated that women with PTSD symptoms reported significantly more both overweight and obesity compared with women with no PTSD symptoms. Moreover, BMI trajectories over time indicated a faster rate of weight gain among women who experienced trauma or PTSD symptoms relative to women who never experienced trauma or PTSD.

Adverse life experiences in binge eating disorder (BED)

In contrast with the large number of obesity studies, only 10 studies on the relationship between childhood maltreatment and BED are published (see Table 4). In one of the first case-control studies, Dalle Grave, Oliosi, Todisco, and Vanderlinden (1997) reported significantly higher rates of childhood trauma in BED compared to an OB sample. Pike et al. (2006) investigated the occurrence of stressful life events at least 12 months before the onset of BED (N = 162 BED patients). Compared to a normal control sample, BED subjects reported more physical abuse and critical comments about shape and weight, compared to psychiatric subjects. In another series of studies, high prevalence rates of abuse in BED are reported namely between 35% and 82% (Allison, Pike, & Stunkard, 2007; Grilo & Masheb, 2001, 2002) reaching peaks of 90% (Mitchell, Mazzeo, Schlesinger, Brewerton, & Smith, 2012). Mitchell et al. (2012) found that compared to a normal sample, BED patients reported significantly more exposure to any form of interpersonal trauma. Striegel-Moore, Dohm, Pike, Willfey, and Fairburn (2002) in a case-control study carried out in 60 black and 102 white women with BED, showed that both white and black women with BED reported significantly higher scores of sexual abuse, physical abuse, and bullying by peers than a healthy comparison group. Rates of sexual abuse were significantly higher in black women with BED than those of a psychiatric group. Allison et al. (2007) studied the relationship between childhood emotional neglect and abuse in 176 women with BED compared to 57 women with night eating syndrome (NES) and to 37 women with OB. In this study the rates of both emotional abuse and emotional neglect were significantly higher in BED women, compared to the other two groups, whereas physical neglect was higher in NES women compared to BED women. In two cross-sectional studies (Grilo & Masheb, 2001, 2002) obese-BED patients reported two to three times higher rates of both emotional and physical neglect and emotional, physical and sexual abuse compared to the rates of a normative sample. However, Grilo and Masheb (2001) showed that none of the 5 forms of maltreatment were associated with age at onset of the first binge eating episode and with the severity of both obesity and binge eating behaviors. One cross-sectional study (Becker & Grilo, 2011), showed that obese women with BED who reported sexual, physical and emotional abuse, had higher BMI and waist circumference compared to non-abused women. Moreover, all of these forms of childhood abuse in the family of origin were positive predictors of later obesity. On the other hand, Knoph Berg et al. (2011) in a large and representative sample of pregnant women found that physical abuse and sexual abuse increased the incidence of BED respectively of 1.68- and 1.57-fold. Finally, in another cross-sectional study in a large sample of morbidly obese patients Gabert et al. (2013) found that 21.8% of patients reported sexual abuse and that the BED diagnosis was significantly higher in this patient sample. All these findings further support the hypothesis that childhood maltreatment may be associated with a greater risk to develop BED symptomatology.

POTENTIAL MEDIATORS AND MECHANISM INVOLVED IN THE RELATIONSHIP BETWEEN ADVERSE LIFE EXPERIENCES AND OBESITY

Since the mechanism by which traumatic experiences are linked with obesity has not yet been clarified, several studies have looked at possible mediating variables which could explain this link. According to some authors, PTSD symptoms could play an important role to understand the mechanism underlying the association between traumatic experiences and development of obesity in adulthood (Dedert et al., 2010; Heppner et al., 2009; Mitchell et al., 2012; Roenholt et al., 2012). Mitchell et al. (2012) also conclude that PTSD symptoms may in part explain the association between trauma and BED. Abuse-related PTSD symptoms are associated with hyper-activation of HPA axis and with subsequent increases in peripheral cortisol, which in turn have been linked to accumulation of fat in adipose tissues with a consequent increase in abdominal obesity (Glaser, 2000; Pasquali, Vicennati, Cacciari, & Pagotto, 2006). In line with these findings, the hyperactivation of HPA axis with an exaggerated cortisol response to stress, has been observed in obese patients (Marin et al., 1992), and were also put in relation with stress-induced eating (Vicennati, Pasqui, Cavazza, Pagotto, & Pasquali, 2009), with night eating syndrome (NES) (Birketvedt et al., 1999), and with waist adiposity in BED patients (Gluck, Geliebter, & Lorenz, 2004).

Another mediating factor can be the presence of disassociative symptoms. Although few studies have analyzed the relationship between trauma, dissociation and BED, some
Trauma in relation with obesity and BED: A review

authors have been suggesting that dissociation may play an important mediating role between the presence of early trauma and the development of eating disorders (Beato, Rodriguez, & Belmonte, 2003; McShane & Zirkel, 2008; Oliosi & Dalle Grave, 2003; Treuer et al., 2005; Vanderlinden et al., 1993). In agreement with the theory of escape from self-awareness (Heatherton & Baumaister, 1991), it is hypothesized that when negative emotional states are activated, a shift towards lower levels of cognition and self-awareness is initiated, which involves cognitive processes similar to dissociation. This mechanism tends to remove the inhibitions, thereby facilitating the start of binge eating or overeating, both in clinical (Engelberg, Steiger, Gauvin, & Wonderlich, 2007; Heathertoon & Baumaister, 1991; Vanderlinden et al., 1993) and in non-clinical subjects (Lyubomirsy, Casper, & Sousa, 2001). In line with this interpretation, some studies showed a positive association between trauma, dissociative symptoms and BED. For instance, Dalle Grave et al. (1997) highlighted that obese subjects with a diagnosis of BED had higher scores of both early traumatic experiences and dissociation compared to obese non-BED subjects, and that dissociation was significantly associated with traumatic experiences. Recently Rodriguez-Srednicki (2001) found that the presence of childhood sexual abuse was the strongest predictive factor of binge eating episodes, and that dissociation fully mediated the relationship between childhood abuse and the severity of binge eating symptoms. In another study dissociation was the only variable able to predict the frequency of binge eating episodes (La Mela, Maglietta, Castellini, Amoroso, & Lucarelli, 2010). These studies seem to support the hypothesis that dissociation may have a mediating role in the abuse and binge eating link.

Other researchers identified some specific psychological variables that function as mediators in the relationship between childhood abuse, obesity and BED, such as depression (Moyer, Di Pietro, Berkowitz, & Stunkard, 1997), trait anger (Midei et al., 2010) and perceived stress (Alvarez et al., 2007). Moyer et al. (1997) even suggest that depression may be the only significant variable explaining the link between childhood abuse and adult obesity. Depression is consistently associated with obesity and central obesity (Katz et al., 2000). A possible way to interpret the link between childhood abuse, depression and obesity are emotional eating. Some studies have shown that childhood abuse and neglect contribute much to psychological etiology of emotional eating (Burns, Fischer, Jackson, & Harding, 2012; Kong & Bernstein, 2009). Moreover, Michopoulos et al. (2015) revealed that depression has an important mediating role in the relationship between childhood trauma and emotional eating, and hence also with weight gain (Hays & Roberts, 2008) and obesity (Cornelis et al., 2014). However, Midei et al. (2010) reported that trait anger but not depression, mediated between childhood abuse and both BMI and waist circumference. Trait anger seems to be related to the increase of visceral adipose tissue (Rääkkönen, Matthews, & Kuller, 1999), and is also associated with emotional eating (Appelhans, Whited, Schneider, Oleski, & Pagoto, 2011). Moreover subjects with adverse childhood experiences have a higher risk of developing maladaptive coping strategies, including stress-induced emotional eating (Evers, Stok, & de Ridder, 2010). Alvarez et al. (2007) found that perceived stress may explain the link between child abuse and the development of obesity in adulthood. Activation of the stress response can lead to emotional dysregulation that has been associated with increased appetite, a preference for foods high in sugar and fat (Adam & Epel, 2007; Dallman, 2010; McEwen, 2007; Torres & Nowson, 2007), fat visceral accumulation and obesity in adults (Cohen, Janicki-Deverts, & Miller, 2007; Torres & Nowson, 2007) and adolescents (De Vriendt et al., 2012). In this regards some authors revealed that overweight subjects tend to gain weight when stressed (Dallman, 2010) and that obese individuals increase their food intake after having experienced negative emotions and perceived stress (Barrington, Beresford, McGregor, & White, 2014; Telch & Agras, 1996). Laboratory studies have demonstrated that acute physical or emotional distress were followed by high cortisol reactivity, which induces increased intake of ‘comfort’ foods (Epel, Lapidus, McEwen, Brownell, 2001; Garg, Wansink, & Inman, 2007; Newman, O’Connor, & Conner, 2007). Stress-related adaptation involves the concept of allostatics, which is the ability to achieve the physiological balance through the change of the internal environment (McEwen, 2007; Seeman, Singer, Rowe, Horwitz, & McEwen, 1997; Sinha & Jastreboff, 2013). Conditions of repeated or uncontrollable chronic stress are followed by higher cortisol response and tend to activate a state of allostatic load resulting in neural and emotional dysregulation, which contribute to maladaptive behaviors such as repeated consumption of high caloric food (McEwen, 2007), lack of control over eating and binge eating (Gluck, Geliebter, & Lorenz, 2004; Gluck, Geliebter, Hung, & Yahav, 2004; Groesz et al., 2012). These results suggest that psychophysiological responses to stress may influence subsequent eating behavior and hence may also mediate between the trauma and eating disorder link.

Only two studies have identified the eating disorder symptoms itself as potential mediators between childhood trauma and later obesity. Rhode et al. (2008) found that childhood physical and sexual abuse predicted the outcomes of body dissatisfaction, binge eating and obesity. In addition body dissatisfaction and binge eating predicted obesity. Meanwhile, Greenfield and Marks (2009) found that using food in response to stress partially mediated the relationship between childhood abuse and obesity. Moreover, some studies have questioned the mediating role of BED in the link between the presence of PTSD symptoms and the development of obesity (Pagoto et al., 2012; Rhode et al., 2008). Finally, some authors studied the mediating role of interpersonal factors in the relationship between childhood adverse experiences and obesity paying particular attention to the attachment style. D’Argenio et al. (2009) demonstrated that anxious attachment mediated the association between childhood adverse experiences, and the risk of becoming obese in adulthood. This finding is supported by the data from other studies which highlighted that insecure children had higher odds of obesity than secure children (Anderson & Withaker, 2011). Indeed, according to attachment theory, abused children, may develop difficulties in emotion regulation, which in turn is linked with eating in response to stress in absence of hunger (Macht, 2008;
neglect and pathological growth of BMI in later life. It is hypothesized that some obese subjects use binge eating aiming to cope with negative affect. Furthermore, some authors highlighted the role played by parents in the monitoring the eating habits of their children as a possible mechanism linking childhood neglect and the development of obesity. These researchers also revealed that neglect experienced in childhood was related to obesity in adulthood (Johnson et al., 2002; Shin & Miller, 2011; Whitaker et al., 2007). These authors hypothesize that parental failure in promoting and monitoring a healthy lifestyle and a low-calorie diet may explain the relationship between childhood neglect and pathological growth of BMI in later life.

SUMMARY, LIMITATIONS AND CRITICAL REMARKS

An important quality of this review is the fact that the data are based on the findings of a very large sample (more than 300,000 participants). In this review 60 studies in obesity and 10 studies in BED were analyzed. The vast majority of these research data (61 studies, 87%) strongly support the hypothesis of an association between adverse life experiences and the development of obesity and BED. In 45 out of 53 studies (i.e., 85%) a statistically significant association was found between at least one type of trauma and obesity. With the exception of one study (Grilo et al., 2012), all other studies (86%) found a positive association between PTSD symptoms and an increase in waist circumference or BMI in adult individuals. These data show that not only childhood trauma but also traumatic events occurring in adulthood, may increase the risk of developing obesity in adulthood. Furthermore out of 10 studies on the relationship between BED and trauma, 9 studies strongly support the association between trauma and the development of BED and in adulthood. This association appears to be particularly strong when the abuse started at an early age and when the abuse was more severe. Only one study did not support this finding (Grilo & Masheb, 2001). Although these studies show some different results concerning the association between the type of abuse and BMI, probably due to differences in methodology, sampling, and research design, the vast majority came to the conclusion that adverse life experiences may play an important risk factor for the development of adult obesity and BED.

Different mediating factors between adverse life experiences, obesity and BED were found in this review namely different psychological factors such as PTSD, depression, trait anger, perceived stress, body dissatisfaction, dissociation, food intake in response to stress, insecure attachment style and neurobiological factors. An important limitation of most obesity studies is the fact that only a few used adequate control samples matched for age, gender and social status. Only in three longitudinal studies focusing on the association between life adverse experiences and obesity, adequate control samples were included (Bentley & Widom, 2009; Boynton-Jarrett et al., 2012; Noll et al., 2007). The same limitation applies to the BED studies: only a few studies incorporated adequate control samples matched for age, gender, social status and BMI. Another limitation is the fact that a wide variety of measurements and questionnaires have been employed to evaluate the different types of trauma. This makes the comparison of the results of the different studies quite difficult. Moreover, in the majority of these studies the report of childhood adversities was retrospective and could thus have led to a certain recall bias (Hardi & Rutter, 2004). In addition, different definitions of childhood adversities have been employed and this may also have created a bias in the results obtained by the different studies. Finally, the assessment of obesity and binge eating was limited in many studies to the validity of the self-reports of weight and height by the respondents. As stated before, in this review BMI was used to evaluate the severity of the obesity, consisting of 3 categories: overweight (BMI ≥ 25 kg/m²), obesity (BMI ≥ 30 kg/m²) and morbid obesity (BMI ≥ 35 kg/m²). However many studies differ in the method used to determine the BMI, given that some used objective laboratory measures, while others used self-reported measures, and still others have used 85th and 95th percentiles of BMI adjusted for age and sex, as cut-point to determine, respectively, overweight and obesity (Sweeting et al., 2005; Whitaker et al., 2007). Both self-reported measures and laboratory measures were included in this review.

Despite these limitations, the results of the vast majority of studies suggest that there is a significant association between both childhood and adult adversities and development of both obesity and BED supporting the hypothesis that trauma increases the risk to develop obesity and binge eating. In this association between adversities and the development of obesity and BED, several mediating factors have been identified such as depression, self-criticism, dissociation, specific interpersonal factors such as the attachment quality, eating disorder symptoms such as binge eating and some neurobiological changes.

Our results have some important clinical implications. Clinicians must be aware of the full range of different traumatic experiences and systematically evaluate these experiences in the standard assessment procedure. Such a careful evaluation may indicate the need for an appropriate psychotherapeutic support. Next, because childhood adversities are associated with adult obesity and a higher risk to develop BED, increased attention must be given to the prevention of these adversities (Bruffaerts & Demyttenaere, 2009; Felitti & Williams, 1998).

Funding sources: Nothing declared.

Authors’ contribution: All authors are fully responsible for the content of the article, while GLP wrote the first draft and JV completed the last revision. All authors had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study, concept and design: GLP, MI and JV; Collecting of studies and articles: GLP, MI and JV; Analysis and interpretation of data: GLP, MI and JV; Study supervision: MI and JV.
Conflict of interest: The authors declare no conflict of interest.

REFERENCES

Aaron, D. J., & Hughes, T. L. (2007). Association of childhood sexual abuse with obesity in a community sample of lesbians. Obesity, 15, 1023–1028. doi: 10.1038/oby.2007.634

Adam, T. C., & Epel, E. S. (2007). Stress, eating and the reward system. Physiology & Behavior, 91(4), 449–458. doi: 10.1016/j.physbeh.2007.04.011

Allison, K. C., Grilo, C. M., Masheb, R. M., & Stunkard, A. J. (2007). High self-reported rates of neglect and emotional abuse, by persons with binge eating disorder and night eating syndrome. Behaviour Research and Therapy, 45, 2874–2883. doi: 10.1016/j.brat.2007.05.007

Alvarez, J., Pavao, J., Baumrind, N., & Kimerling, N. (2007). The relationship between child abuse and adult obesity among California women. American Journal of Preventive Medicine, 33(1), 28–33. doi: 10.1016/j.amepre.2007.02.036

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental health disorders (4th ed.). Washington, DC: Author.

American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders. 4th text revision ed. Washington, DC: Author.

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5TM). Arlington, VA: Author.

Anda, R. F., Felitti, V. J., Bremner, J. D., Walker, J. D., Whitfield, C., Perry, B. D., Dube, S. R., & Gilles, W. H. (2006). The enduring effects of abuse and related adverse experiences in childhood. European Archives of Psychiatry and Clinical Neuroscience, 256(3), 174–186. doi: 10.1007/s00406-005-0624-4

Anderson, S. E., & Whitaker, R. C. (2011). Attachment security and obesity in US preschool-aged children. Archives of Pediatric & Adolescent Medicine, 165(3), 235–242. doi: 10.1001/archpediatrics.2010.29

Appelhans, B. M., Whited, M. C., Schneider, K. L., Oleski, J., & Pagoto, S. L. (2011). Response style and vulnerability to anger-induced eating in obese adults. Eating behaviors, 12(1), 9–14. doi: 10.1016/j.eatbeh.2010.08.009

Barrington, W. E., Beresford, S. A., McGregor, B. A., & White, E. (2014). Perceived stress and eating behaviors by sex, obesity status, and stress vulnerability: Findings from the vitamins and lifestyle (vital) study. Journal of the Academy of Nutrition and Dietetics, 114(11), 1791–1799. doi: 10.1016/j.jand.2

Beato, L., Rodriguez, C., & Belmonte, A. (2003). Relationship of dissociative experiences to body shape concerns in eating disorders. European Eating Disorders Review, 11(1), 38–45. doi: 10.1002/erv.508

Becker, D. F., & Grilo, C. M. (2011). Childhood maltreatment in women with binge eating disorder: Associations with psychiatric comorbidity, psychological functioning, and eating pathology. Eating and Weight Disorders, 16(2), 113–120. doi: 10.1007/BF03325316

Bellis, M. A., Lowey, H., Leckeny, N., Hughes, K., & Harrison, D. (2014). Adverse childhood experiences: Retrospective study to determine their impact on adult health behaviours and health outcomes in a UK population. Journal of Public Health, 36(1), 81–91. doi: 10.1093/pubmed/fdh038

Bennett, D. S., Sullivan, M. W., Thompson, S. M., & Lewis, M. (2010). Early child neglect: Does it predict obesity or under-weight in later childhood? Child Maltreatment, 15(3), 250–253. doi: 10.1177/1077559510363730

Bentley, T., & Widom, C. S. (2009). A 30-year follow-up of the effects of child abuse and neglect on obesity in adulthood. Obesity, 17(10), 1900–1905. doi: 10.1038/oby.2009.160

Birkenstedt, G. S., Florholmen, J., Sundsfjord, J., Osterud, B., Dingers, D., Bilker, W., & Stunkard, A. (1999). Behavioral and neuroendocrine characteristics of the night-eating syndrome. The Journal of the American Medical Association, 282, 657–663. doi: 10.1001/jama.282.7.657

Boynton-Jarrett, R., Rosenberg, L., Palmer, J. R., Boggis, D. A., & Wise, L. A. (2012). Child and adolescent abuse in relation to obesity in adulthood: The black women’s health study. Pediatrics, 130(2), 245–253. doi: 10.1542/peds.2011-1554

Brewer-Smyth, K. (2014). Obesity, traumatic brain injury, childhood abuse, and suicide attempts in females at risk. Rehabilitation Nursing, 39(4), 183–191. doi: 10.1002/rnj.150

Bruffaerts, R., & Demyttenaere, K. (2009). Childhood adversities and adult obesity. In M. Von Korff, K. Scott, & O. Gureye (Eds.), Mind and body: Global perspectives on mental-physical comorbidity (pp. 165–173). New York, NY: Cambridge University Press.

Bulik, C. M., & Reichborn-Kjennerud, T. (2003). Medical morbidity in binge eating disorder. International Journal of Eating Disorders, 34, 39–46. doi: 10.1002/eat.10204

Burke, N. J., Hellman, J. L., Scott, B. G., Wembs, C. F., & Carrion, V. G. (2011). The impact of adverse childhood experiences on an urban pediatric population. Child Abuse & Neglect, 35(6), 408–413. DOI: 10.1016/j.chiabd.2011.02.006

Burns, E. E., Fischer, S., Jackson, J. L., & Harding, H. G. (2012). Deficits in emotion regulation mediate the relationship between childhood abuse and later eating disorder symptoms. Child Abuse & Neglect, 36(1), 32–39. doi: 10.1016/j.chiabd.2011.08.005

Buser, A., Dymek-Valentine, M., Hilburger, J., & Alverdy, J. (2004). Outcome following gastric bypass surgery: Impact of past sexual abuse. Obesity Surgery, 14, 170–174. doi: 10.1381/09609204328257519

Carter, J. C., Bewell, C., Blackmore, E., & Woodside, D. B. (2006). The impact of childhood sexual abuse in anorexia nervosa. Child Abuse & Neglect, 30(3), 257–269. doi: 10.1016/j.chiabd.2005.09.004

Chartier, M. J., Walker, J. R., & Naimark, B. (2008). Health risk behaviors and mental health problems as mediators of the relationship between childhood abuse and adult health. American Journal of Public Health, 98(5), 847–854. doi: 10.2105/ AJPH.2007.122408

Clark, M. M., Hanna, B. K., Mai, J. L., Graszer, K. M., Krochta, J. G., McAlpine, D. E., McAlpine, D. E., Reading, S., Abu-Lebdeh, H. S., Jensen, M. D., & Sarr, M. G. (2007). Sexual abuse survivors and psychiatric hospitalization after bariatric surgery. Obesity Surgery, 17(4), 465–469. doi: 10.1007/s11695-007-9084-4

Cohen, S., Janicki-Deverts, D., & Miller, G. E. (2007). Psychological stress and disease. Jama, 298(14), 1685–1687. doi: 10.1001/jama.298.14.1685
Comuzzie, A. G., & Allison, D. B. (1998). The search for human obesity genes. *Science, 280*, 1374–1377. doi: 10.1126/science.280.5368.1374

Cornelis, M. C., Rimm, E. B., Curhan, G. C., Kraft, P., Hunter, D. J., Hu, F. B., & Darr, R. M. (2014). Obesity susceptibility loci and uncontrolled eating, emotional eating and cognitive restraint behaviors in men and women. *Obesity, 22*(5), E135–E141. doi: 10.1002/oby.20592

Dalle Grave, R., Oliosi, M., Todisco, P., & Vanderlinden, J. (1997). Self-reported traumatic experiences and dissociative symptoms in obese women with and without binge-eating disorder. *Eating Disorders: The Journal of Treatment and Prevention, 2*, 11–15. doi: 10.1080/106040269708249213

Dallman, M. F. (2010). Stress-induced obesity and the emotional nervous system. *Trends in Endocrinology & Metabolism, 21*(3), 159–165. doi: 10.1016/j.tem.2009.10.004

D’Argenio, A., Mazzi, C., Pecchioli, L., Di Lorenzo, G., Siracusano, A., & Troisi, A. (2009). Early trauma and adult obesity: Is psychological dysfunction the mediating mechanism? *Physiology and Behavior, 98*, 543–546. doi: 10.1016/j.physbeh.2009.08.010

Davis, C. R., Dearing, E., Usher, N., Trifilletti, S., Zaichenko, L., Ollen, E., Trifilletti, S., Zaichenko, L., Brinkoetter, M. T., Crowell-Doom, C., Joung, K., Park, K. E., Mantzoros, C. S., & Crowell, J. A. (2014). Detailed assessments of childhood adversity enhance prediction of central obesity independent of gender, race, adult psychosocial risk and health behaviors. *Metabolism, 63*(2), 199–206. doi: 10.1016/j.metabol.2013.08.013

Dedert, E. A., Becker, M. E., Fuemmeler, B. F., Braxton, L. E., Calhoun, P. S., & Beckham, J. C. (2010). The roles of posttraumatic stress disorder and major depressive disorder in childhood traumatic stress and weight problems among women. *Journal of Traumatic Stress, 23*(6), 765–763. doi: 10.1002/jts.20584

De Vriendt, T., Clays, E., Maes, L., De Bourdeaudhuï, I., Vicente-Rodriguez, G., Moreno, L. A., Nagy, E., Molnar, D., Ortega, F. B., Dietrich, S., Manios, Y., & De Henauw, S. (2012). European adolescents’ level of perceived stress and its relationship with body adiposity–The HELENA Study. *The European Journal of Public Health, 22*(4), 519–524. doi: 10.1093/eurpub/ckr134

Evers, C., Stok, F. M., & de Ridder, D. T. (2010). Feeding your feelings: Emotion regulation strategies and emotional eating. *Personality and Social Psychology Bulletin, 36*, 792–804. doi: 10.1177/0146167210371383

Felliti, V. J. (1993). Childhood sexual abuse, depression, and family dysfunction in adult obese patients: A case control study. *Southern Medical Journal, 86*(7), 732–736. PMID: 8322078

Felliti, V. J., & Williams, S. A. (1998). Long term follow-up and analysis of over one hundred patients who have lost over 100 pounds. *Permanente Journal, 2*, 12–21. PMID: 2000519

Fuemmeler, B. F., Diedert, E., Mc Clemmon, F. J., & Beckham, J. C. (2009). Adverse childhood events are associated with obesity and disordered eating: Results from U.S. population-based survey of young adults. *Journal of Traumatic Stress, 22*(4), 329–333. doi: 10.1002/jts.20421

Fuller-Thomson, E., Sinclair, D. A., & Brennenstuhl, S. (2012). Carrying the pain of abuse: Gender-specific findings on the relationship between childhood physical abuse and obesity in adulthood. *Obesity Facts, 6*(4), 325–336. doi: 10.1159/000354609

Gabert, D. L., Majumdar, S. R., Sharma, A. M., Rueda-Clausen, C. F., Klarenbach, S. W., Birch, D. W., Karmali, S., McCargar, L., Fassbender, K., & Padwal, R. S. (2013). Prevalence and predictors of self-reported sexual abuse in severely obese patients in a population-based bariatric program. *Journal of Obesity, 2013*, Article ID 374050. doi: 10.1155/2013/374050

Garg, N., Wansink, B., & Inman, J. J. (2007). The influence of incidental affect on consumers’ food intake. *Journal of Marketing, 71*(1), 194–206.

Glaser, D. (2000). Child abuse and neglect and the brain—A review. *Journal of Child Psychology and Psychiatry, 41*(1), 97–116. doi: http://dx.doi.org/10.1111/1469-7610.00551

Gluck, M. E., Geliebter, A., Hung, J., & Yahav, E. (2004). Cortisol, hunger, and desire to binge eat following a cold stress test in obese women with binge eating disorder. *Psychosomatic Medicine, 66*, 876–881. doi: 10.1097/01.psy.0000143637.63508.47

Gluck, M. E., Geliebter, A., & Lorence, M. (2004). Cortisol stress response is positively correlated with central obesity in obese women with binge eating disorder (BED) before and after cognitive-behavioral treatment. *Annals of New York Academy of Sciences, 1032*, 202–207. doi: 10.1196/annals.1314.021

Goedeeke, J. H., Forbes, J., & Stein, D. J. (2013). Differences in the association between childhood trauma and BMI in black and white South African women. *African Journal of Psychiatry, 16*(3), 201–205. doi: 10.4314/ajpsy.v16i3.27

Greenfield, E. A., & Marks, N. F. (2009). Violence from parents in childhood and obesity in adulthood: Using food in response to stress as a mediator of risk. *Social Science and Medicine, 68*(5), 791–798. doi: 10.1016/j.socscimed.2008.12.004

Grilo, C. G., White, M. A., Barnes, R. D., & Masheb, R. M. (2012). Posttraumatic stress disorder in women with binge eating disorder in primary care. *Journal of Psychiatric Practice, 18*(6), 408–412. doi: 10.1097/prj.0b013e31822738.49377.5e

Grilo, C. G., White, M. A., Masheb, R. M., Rothschild, B. S., & Burke-Martindale, C. H. (2006). Relation of childhood sexual abuse and other forms of maltreatment to 12-month postoperative outcomes in extremely obese gastric bypass patients. *Obesity Surgery, 16*, 454–460. doi: 10.1381/096089206776327288

Grilo, C. M., & Masheb, R. M. (2001). Childhood psychological, physical and sexual maltreatment in outpatients with binge
Trauma in relation with obesity and BED: A review

Johnston, J. G., Cohen, P., Kasen, S., & Brook, J. S. (2002). Childhood adversities associated with risk for eating disorders or weight problems during adolescence or early adulthood. American Journal of Psychiatry, 159, 394–400. doi: 10.1176/appi.ajp.159.3.394

Jia, H., Li, J. Z., Leserman, J., Hu, Y., & Drossman, D. A. (2004). Relationship of abuse history and other risk factors with obesity among female gastrointestinal patients. Digestive Disease and Science, 49(5), 872–877. doi: 10.1023/B:DDAS.0000030102.19372.52

Katz, J. R., Taylor, N. F., Goodrick, S., Perry, L., Yudkin, J. S., & Coppack, S. W. (2000). Central obesity, depression and the hypothalamo-pituitary-adrenal axis in men and postmenopausal women. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 24(2), 246–251.

Kestilä, L., Rahkonen, O., Martelin, T., Lahtis-Koski, M., & Koskinen, S. (2009). Does childhood social circumstance affect overweight and obesity in early adulthood? Scandinavian Journal of Public Health, 37, 206–219. doi: 10.1177/14034948081000827

Kong, S., & Bernstein, K. (2009). Childhood trauma as a predictor of eating psychopathology and its mediating variables in patients with eating disorders. Journal of Clinical Nursing, 18(3), 1897–1907. doi: 10.1111/j.1365-2702.2008.02740.x

Knoph Berg, C., Torgersen, L., Von Holle, A., Hamer, R. M., Bulik, C. M., & Reichborn-Kjennerud, T. (2011). Factors associated with binge eating disorder in pregnancy. International Journal of Eating Disorders, 44(2), 124–133. doi: 10.1002/eat.20797

Knutson, J. F., Taber, S. M., Murray, A. J., Valles, N. L., & Koeppl, G. (2010). The role of care neglect and supervisory neglect in childhood obesity in a disadvantaged sample. Journal of Pediatric Psychology, 35(5), 523–532. doi: 10.1093/jpepsy/jsi115

Kubzansky, L. D., Bordeloius, P., Jun, H. J., Roberts, A. L., Cerda, M., Bluestone, N., & Koenen, K. C. (2014). The weight of traumatic stress: A prospective study of posttraumatic stress disorder symptoms and weight status in women. JAMA Psychiatry, 71(1), 44–51. doi: 10.1001/jamapsychiatry.2013.2798

La Mela, C., Maglietta, M., Castellini, G., Amoroso, L., & Lucarelli, S. (2010). Dissociation in eating disorders: Relationship between dissociative experiences and binge-eating episodes. Comprehensive Psychiatry, 51(4), 393–400. doi: 10.1016/j.comppsych.2009.09.008

Larsen, J. K., & Geenen, R. (2005) Childhood sexual abuse is not associated with a poor outcome after gastric banding for severe obesity. Obesity Surgery, 15, 534–537. doi: 10.1381/0960892053723277

Lehman, B. J., Taylor, S. E., Kiefe, C. I., & Seeman, T. E. (2005). Relation of childhood socioeconomic status and family environment to adult metabolic functioning in the CARDIA study. Psychosomatic Medicine, 67, 846–854. doi: 10.1097/01.psy.0000188443.48405.eb

Lissau, I., & Sørensen, T. I. A. (1994). Parental neglect during childhood and increased risk of obesity in young adulthood. The Lancet, 344, 324–327. doi: 10.1016/S0140-6736(94)91163-0

Lyubomirsky, S., Casper, R. C., & Sousa, L. (2001). What triggers abnormal eating in bulimic and non-bulimic women? The role of dissociative experiences, negative affect, and
psychopathology. *Psychology of Women Quarterly, 25*, 223–232. doi: 10.1111/1471-6402.00023

Macht, M. (2008). How emotions affect eating: A five-way model. *Appetite, 50*(1), 1–11. doi: 10.1016/j.appet.2007.07.002

Maddi, S., Khoshaba, D. M., Persico, M., Bleecker, F., & VanArsdall, G. (1997). Psychosocial correlates of psychopathology in a national sample of the morbidity obese. *Obesity Surgery, 7*, 397–404. doi: 10.1381/09608929776555377

Mahony, D. (2010). Assessing sexual abuse/attack histories with bariatric surgery patients. *Journal of Child Sexual Abuse, 19*, 469–484. doi: 10.1080/10538712.2010.496713

Marcus, M., Bromberg, J. T., Wei, H. L., Brown, C., & Kravitz, H. M. (2007). Prevalence and selected correlates of eating disorder symptom among a multiethnic community sample of middle woman. *Annals of Behavioral Medicine, 33*(3), 269–277. doi: 10.1007/BF02879909

Marin, P., Darin, N., Amemiya, T., Andersson, B., Jern, S., & Bjornorp, P. (1992). Cortisol secretion in relation to body fat distribution in obese premenopausal women. *Metabolism, 41*, 882–886. doi: 10.1016/0026-0495(92)90171-6

McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. *Physiological Reviews, 87*(3), 873–904. doi: 10.1152/phyrev.00041.2006

McIntyre, R. S., Soczylnska, J. K., Liaw, S. S., Woldeyohannes, H. O., Brietzke, E., Nathanson, J., Alsuwaidan, M., Muzina, D. J., Taylor, W. H., Cha, D. S., & Kennedy, S. H. (2012). The association between childhood adversity and components of metabolic syndrome in adults with mood disorders: Results from the International Mood Disorders Collaborative Project. *The International Journal of Psychiatry in Medicine, 43*(2), 165–177. doi: 10.2190/PM.43.2.e

McShane, J. M., & Zirkel, S. (2008). Dissociation in the binge-purge cycle of bulimia nervosa. *Journal of Trauma and Dissociation, 9*(4), 463–79. doi: 10.1080/15299730802225680

Michopoulos, V., Powers, A., Moore, C., Villarreal, S., Ressler, K. J., & Bradley, B. (2015). The mediating role of emotion dysregulation and depression on the relationship between childhood trauma exposure and emotional eating. *Appetite, 91*, 129–136. doi: 10.1016/j.appet.2015.03.036

Midei, A. J., & Matthews, K. A. (2011). Interpersonal violence in childhood as a risk factor for obesity: A systematic review of the literature and proposed pathways. *Obesity Reviews, 12*(5), 159–179. doi: 10.1111/j.1467-789X.2010.00823.x

Midei, A. J., Matthews, K. A., & Bromberger, J. (2010). Childhood abuse is associated with adiposity in mid-life women: Possible pathways through trait anger and reproductive hormones. *Psychosomatic Medicine, 72*(2), 215–223. doi: 10.1097/PSY.0b013e3181ebc524

Mitchell, K. S., Mazzeo, S. E., Schlesinger, M. R., Brewerton, T. D., & Smith, B. N. (2012). Comorbidity of partial and subthreshold PTSD among men and women with eating disorders in the National Comorbidity Survey-Replication Study. *International Journal of Eating Disorders, 45*(3), 307–315. doi: 10.1002/eat.20965

Moyer, D., Di Pietro, L., Berkowitz, R., & Sunkard, A. J. (1997). Childhood sexual abuse and precursors of binge eating in an adolescent female population. *International Journal of Eating Disorders, 21*(1), 23–30. doi: 10.1002/(SICI)1098-108X(199701)21:1<23::AID-EAT3>3.0.CO;2-5

Newman, E., O’Connor, D. B., & Conner, M. (2007). Daily hassles and eating behaviour: The role of cortisol reactivity status.
Trauma in relation with obesity and BED: A review

Salwen, K. H., Hymowitz, G. F., Vivian, D., & O’Leary, K. D. (2014). Childhood abuse, adult interpersonal abuse, and depression in individuals with extreme obesity. *Child Abuse & Neglect, 38*(3), 425–433. doi: 10.1016/j.chiabu.2013.12.005

Sansone, R. A., Schumacher, D., Wiederman, M. W., & Routson-Weichers, L. (2008). The prevalence of childhood trauma and parental caretaking quality among gastric surgery candidates. *Eating Disorders, 16*(2), 117–127. doi: 10.1080/10640260801887196

Schneiderman, J. U., Mennen, F. E., Negriff, S., & Trickett, P. K. (2012). Overweight and obesity among maltreated young adolescents. *Child Abuse & Neglect, 36*(4), 370–378. doi: 10.1016/j.chiabu.2012.03.001

Seeman, T. E., Singer, B. H., Rowe, J. W., Horwitz, R. I., & McEwen, B. S. (1997). Price of adaptation: Allostatic load and its health consequences: MacArthur studies of successful aging. *Archives of Internal Medicine, 157*(19), 2259–2268. doi: 10.1001/archinte.1997.00440400111013

Shin, H. S., & Miller, D. P. (2011). A longitudinal examination of childhood maltreatment and adolescent obesity: Results from the National Longitudinal Study of Adolescent Health (AddHealth). *Child Abuse & Neglect, 36*, 84–94. doi: 10.1016/j.chiabu.2011.08.007

Sinha, R., & Jastreboff, A. M. (2013). Stress as a common risk factor for obesity and addiction. *Biological Psychiatry, 73*(9), 827–835. doi: 10.1016/j.biopsych.2013.01.032

Smith, H. A., Markovich, N., Danielson, M. E., Matthews, A., Youk, A., Talbott, E. O., Larkby, C., & Hughes, T. (2010). Sexual abuse, sexual orientation, and obesity in women. *Journal of Women's Health, 19*(8), 1525–1532. doi: 10.1089/jwh.2009.1763

Stein, C. J., & Colditz, G. A. (2004). The epidemic of obesity. *Clinical Endocrinology & Metabolism, 89*, 2522–2525. doi: 10.1210/jc.2004-0288

Striegel-Moore, R. H., Doehm, F. A., Pike, K. M., Wilfley, D. E., & Fairburn, C. G. (2002). Abuse, bullying and discrimination as risk factors for binge eating disorders. *American Journal of Psychiatry, 159*, 1902–1907. doi: 10.1176/appi.ajp.159.11.1902

Sweeting, H., Wright, C., & Minnis, H. (2005). Psychosocial correlates of adolescent obesity, ‘slimming’ down and ‘becoming’ obese. *Journal of Adolescent Health, 37*, 409e9–409e17. doi: 10.1016/j.jadohealth.2005.01.008

Taylor, C. B., Bryson, S., Celio Doyle, A. A., Luce, K. H., Cunning, D., Abascal, L. B., Rockwell, R., Field, A. E., Striegel-Moore, R., Winzelberg, A. J., & Wilfley, D. E. (2006). The adverse effect of negative comments about weight and shape from family and siblings on women at high risk for eating disorders. *Pediatrics, 118*(2), 731–738. doi: 10.1542/peds.2005-1806

Telch, C. F., & Agras, W. S. (1996). Do emotional states influence binge eating in the obese? *International Journal of Eating Disorders, 20*(3), 271–279. doi: 10.1002/(SICI)1098-108X(199611)20:3<271::AID-EAT3.0.CO;2-L

Thomas, C., Hyppönen, E., & Power, C. (2008). Obesity and type 2 diabetes risk in midlife adult: The role of childhood adversity. *Pediatrics, 121*(5), e1240–e1249. doi: 10.1542/peds.2007-2403

Torres, S. J., & Nowson, C. A. (2007). Relationship between stress, eating behavior, and obesity. *Nutrition, 23*(11), 887–894. doi: 10.1016/j.nut.2007.08.008

Treuer, T., Koperdak, M., Roxsa, S., & Furedi, J. (2005). The impact of physical and sexual abuse on body image in eating disorders. *European Eating Disorders Review, 13*, 106–111. doi: 10.1002/erv.616

Vámosi, M. E., Heitmann, B. L., Thinggaard, M., & Kyvik, K. O. (2011). Parental care in childhood and obesity in adulthood: A study among twins. *Obesity, 19*(7), 1445–1450. doi: 10.1038/oby.2011.20

Vanderlinden, J., Vandereycken, W., van Dyck, R., & Vertommen, H. (1993). Dissociative experiences and trauma in eating disorders. *International Journal of Eating Disorders, 13*(2), 187–193. doi: 10.1002/1098-108X(199303)13:2<187::AID-EAT226030206>3.0.CO;2-9

van Reedt Dortland, A. K. B., Giltay, E. J., van Veen, T., Zitman, F. G., & Penninx, B. W. J. H. (2012). Personality traits and childhood abuse trauma as correlates of metabolic risk factors: The Netherlands Study Depression and Anxiety (NESDA). *Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36*, 85–91. doi: 10.1016/j.pnpbp.2011.10.001

Vicennati, V., Pasqui, F., Cavazza, C., Pagotto, U., & Pasquali, R. (2009). Stress-related development of obesity and cortisol in women. *Obesity, 17*(9), 1678–1683. doi: 10.1038/oby.2009.76

Violanti, J. M., Hartley, T. A., Charles, L. E., Fekedulegn, D., Andrew, M. E., & Mnatsakanova, A. (2006). Police trauma and cardiovascular disease: Association between PTSD symptoms and metabolic syndrome. *International Journal of Emergency Mental Health, 8*(4), 227–238. PMID: 17131769

Whitaker, R. C., Phillips, S. M., Orzol, S. M., & Burdette, H. L. (2007). The association between maltreatment and obesity among preschool children. *Child Abuse & Neglect, 31*(11), 1187–1199. doi: 10.1016/j.chiabu.2007.04.008

Wildes, J. E., Kalarchian, M. A., Marcus, M. D., Levine, M. D., & Courcoulas, A. P. (2008). Childhood maltreatment and psychiatric morbidity in bariatric surgery candidates. *Obesity Surgery, 18*(3), 306–313. doi: 10.1007/s11695-007-9292-y

Williamson, D. F., Thompson, T. J., Anda, R. F., Dietz, W. H., & Feliitti, V. (2002). Body weight and obesity in adults and self-reported abuse in childhood. *International Journal of Obesity, 26*(8), 1075–1082. doi: 10.1038/sj.ijo.0802038

Wonderlich, S. A., Crosby, R. D., Mitchel, J. E., Thompson, K. M., Redlin, J., Demuth, G., Smyth, J., & Haseltine, B. (2001). Eating disturbance and sexual trauma in childhood and adulthood. *International Journal of Eating Disorders, 30*(4), 401–412. doi: 10.1002/eat.1101

Wonderlich, S. A., Rosenfield, S., Crosby, R. D., Mitchell, J. E., Engel, S. G., Smyth, J., & Miltenberger, R. (2007). The effects of childhood trauma on daily mood lability and comorbid psychopathology in bulimia nervosa. *Journal of Traumatic Stress, 20*(1), 77–87. doi: 10.1002/jts.20184

Yokel, E. (2012). Childhood sexual abuse and obesity in adult women: Exploring the mitigating mechanism. *Master of Social Work Clinical Research Papers, Paper 107*.

Journal of Behavioral Addictions 5(1), pp. 11–31 (2016) | 31