The prevalence of Legionella pneumophila in different water systems: A global systematic review and meta-analysis

Yadolah Fakhri (ya.fakhri@gmail.com)
Shaheed Beheshti University of Medical Sciences

Mohammad Javad Nasiri
Shahid Beheshti University of Medical Sciences School of Pharmacy

Anvar Asadi
Kermanshah University of Medical Sciences

Moayed Avazpour
Ilam University of Medical Sciences

Abdolazim Alinejad
Fasa University of Medical Science

Zeinab Gholami
University of Tehran

Amin Mousavi Khaneghah
UNINTER Educacional SA - Campinas Centro

Research article

Keywords: occurrence; Legionella pneumophila; water reservoir; global overview

Posted Date: August 24th, 2019

DOI: https://doi.org/10.21203/rs.2.13555/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The presence of Legionella pneumophila (LP) in aquatic habitat is a global concern. The current study was undertaken to estimate the prevalence of LP in water systems with the aid of a systematic review and meta-analysis. The searching was performed among some international databases, including Scopus, PubMed, and Embase to retrieve the related articles between 1/January/1983 and 25/July/2017. Therefore, thirty-six articles (with 43 studies) out of 1,541 articles collected, were included in the meta-analysis. The overall prevalence of LP in water systems was determined as 20% (95%CI: 15-25). Also, the lowest and highest pooled prevalence of LP was observed in Poland (4% (95%CI: 0-13%)) and Kuwait (98% (95%CI: 90-100%)), respectively. The lowest and highest prevalence of LP-based on water resources subgroups was a water reservoir (15% (95%CI: 2-37%) and well (40% (95%CI: 26-50%), respectively. The number of studies that used polymerase chain reaction (PCR) for detection of LP was 16/43 (37.3%) while the culture method was 27/43 (62.7%). Generally speaking, the relatively high prevalence of LP among the investigated water systems was demonstrated, which should be reduced by performing appropriate control actions.

Introduction

Legionella pneumophila (LP) as a heterotrophic bacterium is a gram-negative, aerobic, non-sporogenous, and a mobile [1, 2] which can be isolated from various environments such as soil and water systems, including water used in cooling towers and ventilation, surface water, tap water, and spring water [3–6].

The tolerance to high temperature is among the features, which could stimulate the presence, and proliferation of LP in water systems [7–9]. Although the range of optimal temperature for proliferation was indicated as 29–40 °C, rarely, it can survive in water at temperatures ranging from 0 to 63 °C [10]. Also, the efficiency of chemical or thermal disinfection can be reduced in the presence of biofilm or amoebae; which can be resulted in further contamination of water systems by LP11.

The droplets of contaminated water with LP could convey the bacterium into the lungs and as a result of swallowing by macrophages [12, 13]. Therefore, the approaching of efficient and appropriate methods is crucial to decreasing as well as controlling the prevalence of LP water systems. In this regard, according to the guideline of World Health Organization (WHO), the acceptable limit of LP in the drinking water and cooling tower systems were defined as 1 CFU/L (WHO 2008) and 1000 CFU/L [14], respectively.

Legionnaires’ disease are among issues caused by these water-borne pathogens, commonly known as Legionella. Twenty-five out of 59 species in the Legionella genus, have been correlated with human disease [15]. According to Cazalet et al. (2008), almost 20 kb of 33-kb locus carrying the genes for the proteins in lipopolysaccharide biosynthesis in LP is highly specific for L. Pneumophila serogroup 1 (LP-Sg1) [16]. Also, multigenome via comparative hybridization detected 3 genes, including lpp0837/wzm, lpp0831, and lpp0838/wzt strains only LP-Sg1 that used for real-time PCR method for identifying LP-Sg1 [16].
Moreover, *Legionella pneumophila serogroup 1* (LP) is responsible for the majority of reported cases of Legionnaires’ disease (about 90%) [17]. Legionnaires’ disease, for the first time, was diagnosed as pneumatic form [10]. The incidence of LD is increasing, especially in Europe (EU) United States of America (USA). In this context, only in 2010 and 2012, 6,305 and 4,486 cases of the Legionnaire’s disease were reported in Europe [18] and the USA [19], respectively. Some signs and symptoms include coughing, shortness of breath, high fever, muscle pains, and headaches, Nausea, vomiting, and diarrhea were associated with Legionnaires’ disease [10]. Due to the significant health effect of LP contamination in water systems, some investigations with different outcomes were performed [6, 20–22]. In this regard, the prevalence of LP in the cooling tower systems in Kuwait and Saudi Arabic were determined as 98(95%CI: 89–100) and 2(95%CI: 1–4), respectively [23, 24].

The culture medium and polymerase chain reaction (PCR) techniques are used to isolate the LP in water systems. The culture techniques based on ISO 11731 can be considered as gold-standard for detecting LP in water systems [14]. In the PCR method, the limit of detection (LOD) is 2×10^2 GU/100 mL for LP (*mip* gene), while the LOD for culture methods is 1 CFU/100 mL [25, 26]. Although culture techniques are used widely, these techniques have several limitations including a long time needed to obtain results, weak recovery, weak sensitivity, inability to detect viable but non-culturable cells (VBNC) [27]. In another hand, the polymerase chain reaction (PCR) techniques due to reproducibility, sensitivity, specificity, high-throughput and reducing in the required time to less than 24 hours are widely approached to detect LP in water systems [28–30].

However, no systematic review and meta-analysis was performed regarding the prevalence of *Legionella pneumophila* in different water systems. Therefore, for the first time, the current study was undertaken to perform a meta-analysis to investigate the prevalence LP in the water systems based on geographical, quality of research as well as the type of water.

Material And Methods

In this study, the systematic review was conducted in accordance with the Cochrane protocol and Prisma protocol [31].

2.1. Search strategy

The search strategy was performed on the *Legionella pneumophila* studies in water systems. Searching was performed in the main international databases, including Scopus, PubMed, and Embase.

The following terms were used: (a) PubMed: Search ((((((Legionella[Title/Abstract]) OR *Legionella pneumophila*[Title/Abstract])) OR microbe[Title/Abstract]) OR bacteria[Title/Abstract])) AND (((water[Title/Abstract]) OR drinking water[Title/Abstract]) OR tap water[Title/Abstract]) OR water system[Title/Abstract])) AND (“Legionella”[Mesh] AND “Legionella pneumophila”[Mesh]); (b) Scopus: ((title-abs-key (legionella and pneumophila) or title-abs-key (legionella) or title-abs-key (pneumophila) or...
The references articles were reviewed to obtain more articles. Seventeen years (1/January/1983 and 25/July/ 2017) was chosen as the searching period.

2.2. Inclusion and exclusion criteria

Full-text articles were downloaded and then reviewed carefully to check if they meet the proposed criteria [32–34] such as (1) original study; (2) cross-sectional data; (3) published in English; (4) published online between 1/January/1983 and 25/July/ 2017; (5) full-text available articles; (6) existence of exact total sample size and positive samples; (7) the defined type of water was examined; and (8) accurate methods including culture or PCR techniques were mentioned. The articles were excluded when not meet our criteria.

2.3. Data extraction

The obtained information from each study can be summarized as study characteristics; (the first author, year of study); total sample size; the number of positive samples; the geographical study (countries); study methodology (Culture or PCR); type of water systems (tap drinking water, hot water, water reservoir, cold water, well and spring).

2.4. Meta-analysis of data

The ratio of the positive samples \(p_i \) to the total sample \(n_i \) defined as prevalence \(P = p_i / n_i \), which is between 0 to 1 value [32, 35–37]. Estimation of the prevalence of LP in water systems was performed using the binomial distribution model [38]. The heterogeneity \((\hat{I}^2) \) statistics was used to determine the variation between the prevalence of *Legionella pneumophila* among the included studies [39]. In the current study, when the heterogeneity was higher than 50%, the random effect model (REM) was used to estimate prevalence based on the defined subgroup. The Begg’s and Egger’s test was used to estimate publication bias [21, 40]. A meta-analysis of data was conducted using Stata 12.2 intercooled version (Stata Corp, College Station, TX). All statistical analysis was significant at P-values< 0.05.

Results

A total number of 1541 of articles were screened in the initial screening through databases. Finally, 36 articles (43 studies) were included in the conducted systematic review and meta-analysis (Table 1, Figure 1). Given the geographical analysis, the lowest and highest pooled prevalence of LP was observed in Poland (4 (95%CI: 0–13%)) and Kuwait (98 % (95%CI: 90–100%)), respectively (Figure 2). Also, the global pooled prevalence of LP in water systems was determined as 20% (95%CI: 15–25%) (Figure 2). While, the
lowest and highest prevalence of LP-based on water resources subgroups was water reservoir (15% (95%CI: 2–37%) and well (40% (95%CI: 26–50%), respectively (Figure 3).

According to Begg's (p-value = 0.029) and Egger's (p-value = 0.024), significant publication bias among studies was noted (Figure 4A-B); Hence, to remove the effect of publication bias, the metatrim test was performed. The pooled prevalence of LP in a water system based on metatrim in the random effect model (REM) was 21% (95%CI: 15–26%) (Figure 5).

Discussion

The prevalence of LP in the water systems was obtained as an average of 20% (95%CI: 15–25%). The prevalence of LP in the different countries considerably was difference (Figure 2), which can be associated with variation in the quality of disinfection of water, the average life of water facilities, the chemical quality of water and the type of exploitation in each country.

Some factors such as water temperature, stagnation of water in pipes, the formation of biofilms on the interior walls of pipes, the presence of protozoa, the chemical quality of water and pH could affect Legionella growth in aquatic systems [71, 72]. However, the proposed temperature for growth of LP is 29–40 °C with an optimum of 35 °C; it could survive in aqueous systems at temperatures of 0–63 °C [10]. The increase in temperature above 55 °C can be considered as an efficient technique for the prevention of bacterial growth and consequently, lower incidence of legionellosis [73]. According to Leoni et al. (2001), no LP growth was observed at temperatures above 41 °C [74]. However, the growth of LP decreased with increase in temperature [75].

Moreover, LP quickly reproduces in hot water systems such as showerheads (45–50 °C) [61]. Based on one recent study, the highest prevalence of LP in hot spring was 17.6% in the 40–48.6 °C [7]. Findings showed that the prevalence of LP in cold water was higher than hot water (Figure 4), which can be correlated with the inhibition effect of increase in temperature on LP growth. Additionally, based on ecological data, protozoans and amoeba can protect this bacteria from disinfectant, osmolality, and pH variations [61, 76].

The influence of metallic elements such as iron and manganese on the growth of Legionella previously also has been demonstrated [77, 78]. Due to organophilic properties of LP, its growth is limited in the water with low iron concentrations. Considering to findings of Portier et al. (2016), the iron pyrophosphate and ferric iron chelator did not affect the persistence of LPin the biofilms, but ferrous iron chelator showed a positive effect because of higher bioavailable ferrous ion. Hence, the growth of LP in the pipes that are made of iron could be stimulated. Also, manganese has an indirect effect on Legionella growth by enhancing the growth of biofilms and plantations [79].

Moreover, the protective role of manganese in enzymatic activity and increasing in resistance to oxidative stress has been confirmed [80]. In this regard, the positive correlation between Mn concentration (> 3µg/L) with a prevalence of LP in water was demonstrated [81]. The presence of a copper ion in water
due to its antibacterial nature can resulted in further decline in the prevalence of Legionella [82]. However, biofilms in water systems protect Legionella against disinfection [83]. Therefore, in order to reduce the prevalence of Legionella, washing of pipes and tanks in addition to exhausting of water facilities with chlorinated hot water can be recommended. According to Oberdorfer et al. (2008), the prevalence of Legionella in the old water system of the hospital was higher than new ones [84]. Nowadays, the use of polyethylene (PE) and Polyvinyl chloride (PVC) materials in water facilities is continuously expanding. The growth of biofilm was increased with the releasing of volatile organic compounds in PVC and PE pipes [85]. Therefore, using PE and PVC in water facilities may increase the prevalence of LP in water systems.

pH is another chemical parameter that affects the growth and survival of LP in water systems. The highest prevalence of LP was reported in weakly acid (pH 5–7, 37.5%) [7]. In a report by Ohno et al. (2003), the optimal range of pH for LP in water systems was defined between 6.0 and 8.0 [8]. However, other data showed that LP had not been explored in extremely acidic water [60, 86].

Considering the frequency of detection techniques, PCR (37.3%) approximately was similar to the culture method (62.7%). While in culture techniques, only living bacteria can be detected [87], in the PCR in addition to living bacteria, the bacteria that damaged by the disinfection which their DNA remains also can be detected [88]. Moreover, in the culture technique, the incubation period of 3–14 days is recommended to facilitate the growth of bacterial colonies, while the bacteria can be damaged by used acid treatment in culture technique. In another hand, the observed limitation regarding detection sensitivity (50–60%) is another disadvantage of culture techniques [89]. Due to Culturable None but Viable (CNBV) properties, LP can survey in water for a long time without being identified by culture technique. Likewise, data have shown that Legionella prevalence in amoeba-water samples was 25–50% higher than other samples because of symbiosis survival with the amoeba [90, 91]. Moreover, one of the most significant limitations of PCR techniques is bias due to the presence of inhibitors such as polysaccharide and chlorophyll in the samples [92].

Since the culture and PCR techniques have different ranges of detection limits, however, by using PCR technique, higher level of contamination in pathological samples can be detected quickly and accurately, approaching of both methods in the case of environmental issues such as LP might be recommended.

Conclusion

In the current study, the prevalence of LP in water systems in the defined subgroups were meta analyzed. A high prevalence of LP in water systems worldwide was demonstrated by the current study as a first systematic review in this field. Likewise, the higher prevalence of *Legionella pneumophila* was considerable in the water systems, particularly in cold water. In this context, approaching of control actions such as avoiding stagnation of water in water systems, use of high-quality water, and continuous purification of water using disinfectants factors can be recommended. Continuous monitoring of water
quality to assess the effectiveness of measures to control and prevent the prevalence of legionellosis is crucial.

Abbreviations

LP: Legionella pneumophila; WHO: World Health Organization; PCR: polymerase chain reaction; LOD: limit of detection; VBNC: Non-culturable cells; PVC: Polyvinyl chloride; CNBV: Culturable None but Viable.

Declarations

Acknowledgements

Not applicable

Authors’ contributions

Searching in international database was performed by Z.GH and MJ.NA; screening of papers based on title and abstract was performed by Y.FA, M.AZ and A.AS; Data extraction and data preparation was performed by AM.MK and AZ.AL. Meta-analysis of data and preparation of manuscript was performed by Y.FA and AM.MK.

Conflict of Interest

There is no conflict of interest.

Funding

The authors would like to thank student research committee, Shahid Beheshti University of Medical Sciences for the financial grants of this study (Code: 1396/54035).

Availability of data and materials

Not applicable

Ethics approval and consent to participate

Not applicable

Consent for publication
Not applicable

Competing interests

The authors declare that they have no competing interests

References

1. Edelstein PH: *Legionella jamestowniensis* fatal pneumonia in an immunosuppressed man. *Journal of Infection and Chemotherapy* 2017, 23(1):59–61.

2. Al-Matawah Q, Al-Zenki S, Al-Azmi A, Al-Waalan T, Al-Salameen F, Hejji AB: *Legionella* detection and subgrouping in water air-conditioning cooling tower systems in Kuwait. *Environmental Science and Pollution Research* 2015, 22(13):10235–10241.

3. Leoni E, Legnani P: Comparison of selective procedures for isolation and enumeration of *Legionella* species from hot water systems. *J Appl Microbiol* 2001, 90(1):27–33.

4. Qin T, Zhou H, Ren H, Guan H, Li M, Zhu B, Shao Z: Distribution of sequence-based types of *Legionella pneumophila* serogroup 1 strains isolated from cooling towers, hot spring, and potable water systems in China. *Appl Environ Microbiol* 2014:AEM. 03844–03813.

5. Shen S-M, Chou M-Y, Hsu B-M, Ji W-T, Hsu T-K, Tsai H-F, Huang Y-L, Chiu Y-C, Kao E-S, Kao P-M: Assessment of *Legionella pneumophila* in recreational spring water with quantitative PCR (Taqman) assay. *Pathogens and global health* 2015, 109(5):236–241.

6. Özen NS, Ataman ŞT, Emek M: Exploring the *Legionella pneumophila* positivity rate in hotel water samples from Antalya, Turkey. *Environmental Science and Pollution Research* 2017, 24(13):12238–12242.

7. Huang S-W, Hsu B-M, Wu S-F, Fan C-W, Shih F-C, Lin Y-C, Ji D-D: Water quality parameters associated with prevalence of *Legionella* in hot spring facility water bodies. *Water research* 2010, 44(16):4805–4811.

8. Ohno A, Kato N, Yamada K, Yamaguchi K: Factors influencing survival of *Legionella pneumophila* serotype 1 in hot spring water and tap water. *Appl Environ Microbiol* 2003, 69(5):2540–2547.

9. Alexandropoulou IG, Ntougias S, Konstantinidis TG, Parasidis TA, Panopoulou M, Constantinidis TC: Environmental surveillance and molecular epidemiology of waterborne pathogen *Legionella pneumophila* in health-care facilities of Northeastern Greece: a 4-year survey. *Environmental Science and Pollution Research* 2015, 22(10):7628–7640.

10. Cunha BA, Burillo A, Bouza E: *Legionnaires’ disease*. *The Lancet* 2016, 387(10016):376–385.
11. Kruse E-B, Wehner A, Wisplinghoff H: *Prevalence and distribution of Legionella spp in potable water systems in Germany, risk factors associated with contamination, and effectiveness of thermal disinfection.* Am J Infect Control 2016, 44(4):470–474.

12. Best A, Price C, Ozanic M, Santic M, Jones S, Kwaik YA: *A Legionella pneumophila amylase is essential for intracellular replication in human macrophages and amoebae.* Sci Rep 2018, 8(1):6340.

13. Lu J, Buse H, Strueming I, Zhao A, Lytle D, Ashbolt N: *Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom.* Environmental Science and Pollution Research 2017, 24(3):2326–2336.

14. WHO: *World Health Organization. Legionella and the prevention of legionellosis.* 2007.

15. Sedlata EJ, Sedlackova H, Janska J, Holy O, Lalova I, Matouskova I: *Legionella spp. in dental unit waterlines.* Bratisl Lek Listy 2017, 118(5):310–314.

16. Merault N, Rusniok C, Jarraud S, Gomez-Valero L, Cazalet C, Marin M, Brachet E, Aegerter P, Gaillard J, Etienne J: *Specific real-time PCR for simultaneous detection and identification of Legionella pneumophila serogroup 1 in water and clinical samples.* Appl Environ Microbiol 2011, 77(5):1708–1717.

17. Diederen B: *Legionella spp. and Legionnaires’ disease.* J Infect 2008, 56(1):1–12.

18. Beauté J, Zucs P, de Jong B: *on behalf of the European Legionnaires’ Disease Surveillance Network. Legionnaires’ disease in Europe 2009, 2010.*

19. CDCP: Centers for Disease Control Prevention. Summary of provisional cases of selected notifiable diseases, United States, cumulative, week ending December 30, 2000. *MMWR Morb Mortal Wkly Rep* 2000, 49(51):1167–1174.

20. Eslami A, Momayyzei MH, Esmaili D, Joshani GH: *Presence of Legionella pneumophila and environmental factors affecting its growth, in the water distribution system in Taleghani hospital, Tehran.* Pajoohande Journal 2012, 17(1):32–37.

21. Kuroki T, Watanabe Y, Teranishi H, Izumiyama S, Amemura-Maekawa J, Kura F: *Legionella prevalence and risk of legionellosis in Japanese households.* Epidemiol Infect 2017, 145(7):1398–1408.

22. Mouchtouri V, Velonakis E, Tsakalof A, Kapoula C, Goutziana G, Vatopoulos A, Kremastinou J, Hadjichristodoulou C: *Risk factors for contamination of hotel water distribution systems by Legionella species.* Appl Environ Microbiol 2007, 73(5):1489–1492.

23. Al-Matawah QA, Al-Zenki SF, Qasem JA, Al-Waalan TE, Heji B, Ahmed H: *Detection and quantification of Legionella pneumophila from water systems in Kuwait residential facilities.* Journal of pathogens 2012, 2012.
24. Elhadi N, Qutub H: *Detection of Legionella from Teaching Hospital Cooling Tower Water of Air Conditioning Systems in Eastern Province of Saudi Arabia.* Asian Journal of Medical Sciences 2012, 4(2):99–102.

25. Toplitsch D, Platzer S, Pfeifer B, Hautz J, Mascher F, Kittinger C: *Legionella Detection in Environmental Samples as an Example for Successful Implementation of qPCR.* Water 2018, 10(8):1012.

26. ISO: *ISO 11731:2017 - Water quality—Enumeration of Legionella.* https://www.iso.org/standard/61782.htm 2017.

27. Shih H-Y, Lin YE: *Caution on interpretation of Legionella results obtained using real-time PCR for environmental water samples.* Appl Environ Microbiol 2006, 72(10):6859–6859.

28. Collins S, Stevenson D, Walker J, Bennett A: *Evaluation of Legionella real-time PCR against traditional culture for routine and public health testing of water samples.* J Appl Microbiol 2017, 122(6):1692–1703.

29. Grúas C, Llambi S, Arruga MV: *Detection of Legionella spp. and Legionella pneumophila in water samples of Spain by specific real-time PCR.* Arch Microbiol 2014, 196(1):63–71.

30. Yang G, Benson R, Pelish T, Brown E, Winchell J, Fields B: *Dual detection of Legionella pneumophila and Legionella species by real-time PCR targeting the 23S–5S rRNA gene spacer region.* Clin Microbiol Infect 2010, 16(3):255–261.

31. Higgins JP, Green S: *Cochrane handbook for systematic reviews of interventions*, vol. 4: John Wiley & Sons; 2011.

32. Khaneghah AM, Fakhri Y, Sant’Ana AS: *Impact of unit operations during processing of cereal-based products on the levels of deoxynivalenol, total aflatoxin, ochratoxin A, and zearalenone: A systematic review and meta-analysis.* Food Chem 2018.

33. Abtahi M, Fakhri Y, Oliveri Conti G, Ferrante M, Taghavi M, Tavakoli J, Heshmati A, Keramati H, Moradi B, Amanidaz N: *The concentration of BTEX in the air of Tehran: A systematic review-meta analysis and risk assessment.* Int J Environ Res Public Health 2018, 15(9):1837.

34. Keramati H, Ghorbani R, Fakhri Y, Khaneghah AM, Conti GO, Ferrante M, Ghaderpoori M, Taghavi M, Baninameh Z, Bay A: *Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation).* Food Chem Toxicol 2018, 115:460–469.

35. Khaneghah AM, Fakhri Y, Raeisi S, Armoon B, Sant’Ana AS: *Prevalence and concentration of ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: A systematic review and meta-analysis.* Food Chem Toxicol 2018.

36. Rahmani J, Alipour S, Miri A, Fakhri Y, Riahi S-M, Keramati H, Moradi M, Amanidaz N, Pouya RH, Bahmani Z: *The prevalence of aflatoxin M1 in milk of Middle East region: A systematic review, meta-
analysis and probabilistic health risk assessment. Food Chem Toxicol 2018, 118:653–666.

37. Fakhri Y, Gasser R, Rostami A, Fan C, Ghasemi S, Javanian M, Bayani M, Armoon B, Moradi B: Toxocara eggs in public places worldwide-A systematic review and meta-analysis. Environmental Pollution 2018, 242:1467–1475.

38. Nyaga VN, Arbyn M, Aerts M: Metaprop: a Stata command to perform meta-analysis of binomial data. Archives of Public Health 2014, 72(1):39–43.

39. Higgins., Thompson S: Quantifying heterogeneity in a meta-analysis. Stat Med 2002, 21(11):1539–1558.

40. Egger M, Smith GD, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315(7109):629–634.

41. Attar HM, Shahmansouri M, Neshat A, Fazeli M: Identification of Legionella in the hot water supply of a general hospital in Isfahan. J Res Med Sci 2004, 9(6):289–293.

42. Baghal Asghari F, Nikaeen M, Hatamzadeh M, Vahid Dastjerdi M, Hassanzadeh A: Detection of Legionella Spp. in Water from Cooling Towers. Journal of Isfahan Medical School 2012, 30(195).

43. Moosavian M, Fathollahzadeh B, Amoli K, Moazzami N: Isolation of Legionella Pneumophila Serogroups 1, 8 & 10 (Causative Agents of Legionnaires’ Disease) from Water Sources in Tehran, Iran. Iranian Biomedical Journal 1998, 2(2):83–87.

44. Yaslianifard S, Mobarez AM, Fatolahzadeh B, Feizabadi MM: Colonization of hospital water systems by Legionella pneumophila, Pseudomonas aeroginosa, and Acinetobacter in ICU wards of Tehran hospitals. Indian J Pathol Microbiol 2012, 55(3):352.

45. Ghotaslou R, Sefidan FY, Akhi MT, Sorosh MH, Hejazi MS: Detection of legionella contamination in tabriz hospitals by PCR assay. Advanced pharmaceutical bulletin 2013, 3(1):131.

46. Esmaili D, Ashrafi M, Reza HS: The frequency of water pollution of Tehran hospitals with Legionella South Medical 2006, 11:55–60.

47. Moghadam J, Ahmadi M, Honarmand H, Meshginshahr SA, Tehrani BS, Nojavan M: Frequency of Legionella Pneumophila in Tap Water and Water of Infant Incubators in Guilan Hospitals, Iran. Journal of Mazandaran University of Medical Sciences (JMUMS) 2013, 23(98).

48. Mirhosseni S, Mohssen M, Mahdi B: Investigation of the bacteria Legionella pneumophila contamination of water resources Khorramabad hospitals in 2008 Journal of Lorestan University of Medical Sciences 2009, 11:27–31.
49. Ahmadinejad M, Shakibaie MR, Shams K, Khalili M: Detection of Legionella pneumophila in cooling water systems of hospitals and nursing homes of Kerman city, Iran by semi-nested PCR. World Acad Sci Eng Technol 2011, 76:20–23.

50. Ahmadrajabi R, Shakibaie MR, Iranmanesh Z, Mollaei HR, Sobhanipoor MH: Prevalence of mip virulence gene and PCR-base sequence typing of Legionella pneumophila from cooling water systems of two cities in Iran. Virulence 2016, 7(5):602–609.

51. Yeganeh F, Ghotaslou R, Akhi MT, Soroush MH: Detection of Legionella in Hospitals Water Systems. Medical Journal of Tabriz University of Medical Sciences & Health Services 2013, 34(6).

52. Khleifat KM, Hanafy AMM, Al Omari J: Prevalence and molecular diversity of Legionella pneumophila in domestic hot water systems of private apartments. British Microbiology Research Journal 2014, 4(3):306.

53. Yu P-Y, Lin YE, Lin W-R, Shih H-Y, Chuang Y-C, Ben R-J, Huang W-K, Chen Y-S, Liu Y-C, Chang F-Y: The high prevalence of Legionella pneumophila contamination in hospital potable water systems in Taiwan: implications for hospital infection control in Asia. Int J Infect Dis 2008, 12(4):416–420.

54. Tai J, Benchekroun MN, Mekkour M, Ennaji MM, Nader H, Cohen N: Investigation of Legionella Pneumophila in Hot Water Systems in Morocco. Int J Sci Technol 2012, 1(10):524–530.

55. Stojek NM, Dutkiewicz J: Legionella and other gram-negative bacteria in potable water from various rural and urban sources. Ann Agric Environ Med 2006, 13(2):323–335.

56. Massoni F, Giorgi DA, Palmieri S, Mari M, Vullo A, Ricci S: Prevalence of Legionella in hospital water systems: Medicolegal and occupational considerations. Acta Medica Mediterranea 2013, 29:527–532.

57. Veronesi L, Capobianco E, Affanni P: Legionella contamination in the water system of hospital dental settings. Acta Bio Medica Atenei Parmensis 2007, 78(2):117–122.

58. Tesauro M, Bianchi A, Consonni M, Pregliasco F, Galli MG: Environmental surveillance of Legionella pneumophila in two Italian hospitals. Ann Ist Super Sanita 2010, 46:274–278.

59. Reinthaler FF, Sattler J, Schaffler-Dullnig K, Weinmayr B, Marth E: Comparative study of procedures for isolation and cultivation of Legionella pneumophila from tap water in hospitals. J Clin Microbiol 1993, 31(5):1213–1216.

60. Hsu B-M, Chen C-H, Wan M-T, Cheng H-W: Legionella prevalence in hot spring recreation areas of Taiwan. Water research 2006, 40(17):3267–3273.

61. Hsu B-M, Lin C-L, Shih F-C: Survey of pathogenic free-living amoebae and Legionella spp. in mud spring recreation area. Water research 2009, 43(11):2817–2828.
62. Snyder MB, Siwicki M, Wireman J, Pohlod D, Grimes M, Bowman-Riney S, Saravolatz LD: Reduction in Legionella pneumophila through heat flushing followed by continuous supplemental chlorination of hospital hot water. J Infect Dis 1990, 162(1):127–132.

63. Edelstein PH: Comparative study of selective media for isolation of Legionella pneumophila from potable water. J Clin Microbiol 1982, 16(4):697–699.

64. Stout J, Yu V, Yee Y, Vaccarello S, Diven W, Lee T: Legionella pneumophila in residential water supplies: environmental surveillance with clinical assessment for Legionnaires’ disease. Epidemiol Infect 1992, 109(1):49.

65. Kanatani J-i, Isobe J, Norimoto S, Kimata K, Mitsui C, Amemura-Maekawa J, Kura F, Sata T, Watahiki M: Prevalence of Legionella species isolated from shower water in public bath facilities in Toyama Prefecture, Japan. Journal of Infection and Chemotherapy 2017, 23(5):265–270.

66. Türetgen I, Sungur El, Cotuk A: Enumeration of Legionella pneumophila in cooling tower water systems. Environ Monit Assess 2005, 100(1–3):53.

67. Burak DM, Zeybek Z: Investigation of Legionella pneumophila and free living amoebas in the domestic hot water systems in Istanbul. Turkish Journal of Biology 2011, 35(6):679–685.

68. Hwang I-Y, Park E-H, Park Y-K, Park S-H, Sung G-H, Park H-Y, Lee Y-C: Distribution of Legionella pneumophila serogroups isolated from water systems of public facilities in Busan, South Korea. Southeast Asian J Trop Med Public Health 2016, 47:467–474.

69. Ramadan N: Prevalence of legionella among pneumonia patients and environmental water samples in an Egyptian University Hospital. The International Arabic Journal of Antimicrobial Agents 2016, 6(2).

70. Lin H, Xu B, Chen Y, Wang W: Legionella pollution in cooling tower water of air-conditioning systems in Shanghai, China. J Appl Microbiol 2009, 106(2):606–612.

71. Mirmohammadlo A, Ghanizadeh G, Esmaeili D, Sepandi M, Avakh P: Legionelle pneumophila water contamination in three military hospitals of Tehran in 2013. Journal of Kermanshah University of Medical Sciences 2014, 18(7):398–408.

72. Taylor M, Ross K, Bentham R: Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol 2009, 58(3):538–547.

73. Darelid J, Löfgren S, Malmvall B-E: Control of nosocomial Legionnaires’ disease by keeping the circulating hot water temperature above 55 C: experience from a 10-year surveillance programme in a district general hospital. J Hosp Infect 2002, 50(3):213–219.

74. Leoni E, Legnani P, Sabattini MB, Righi F: Prevalence of Legionella spp. in swimming pool environment. Water Research 2001, 35(15):3749–3753.
75. Brooks T, Osicki RA, Springthorpe VS, Sattar SA, Filion L, Abrial D, Riffard S: Detection and identification of Legionella species from groundwaters. Journal of Toxicology and Environmental Health, Part A 2004, 67(20–22):1845–1859.

76. Borella P, Montagna MT, Stampi S, Stancanelli G, Romano-Spica V, Triassi M, Marchesi I, Bargellini A, Tato D, Napoli C: Legionella contamination in hot water of Italian hotels. Appl Environ Microbiol 2005, 71(10):5805–5813.

77. Bargellini A, Marchesi I, Righi E, Ferrari A, Cencetti S, Borella P, Rovesti S: Parameters predictive of Legionella contamination in hot water systems: association with trace elements and heterotrophic plate counts. Water research 2011, 45(6):2315–2321.

78. Wang H, Masters S, Hong Y, Stallings J, Falkinham III JO, Edwards MA, Pruden A: Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella, mycobacteria, Pseudomonas aeruginosa, and two amoebas. Environ Sci Technol 2012, 46(21):11566–11574.

79. Granger HC, Stoddart AK, Gagnon GA: Direct biofiltration for manganese removal from surface water. Journal of Environmental Engineering 2014, 140(4):04014006.

80. Arirachakaran P, Luengpailin S, Banas J, Mazurkiewicz J, Benjavongkulchai E: Effects of manganese on Streptococcus mutans planktonic and biofilm growth. Caries Res 2007, 41(6):497–502.

81. Borella P, Guerrieri E, Marchesi I, Bondi M, Messi P: Water ecology of Legionella and protozoan: environmental and public health perspectives. Biotechnol Annu Rev 2005, 11:355–380.

82. Lu J, Buse H, Gomez-Alvarez V, Struwing I, Santo Domingo J, Ashbolt N: Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and Legionella pneumophila colonization. J Appl Microbiol 2014, 117(3):905–918.

83. Solimini AG, Cottarelli A, Marinelli L, De Giusti M: Factors influencing persistence of Legionella pneumophila serogroup 1 in laboratory cocultures. BMC Microbiol 2014, 14(1):249.

84. Oberdorfer K, Müssigbrodt G, Wendt C: Genetic diversity of Legionella pneumophila in hospital water systems. Int J Hyg Environ Health 2008, 211(1–2):172–178.

85. Lee Y: An evaluation of microbial and chemical contamination sources related to the deterioration of tap water quality in the household water supply system. Int J Environ Res Public Health 2013, 10(9):4143–4160.

86. Sheehan KB, Henson JM, Ferris MJ: Legionella species diversity in an acidic biofilm community in Yellowstone National Park. Appl Environ Microbiol 2005, 71(1):507–511.

87. Barigou M, Cavalie L, Daviller B, Dubois D, Mantion B, Delobel P, Debard A, Prere M-F, Marchou B, Martin-Blondel G: Isolation on chocolate agar culture of Legionella pneumophila isolates from
subcutaneous abscesses in an immunocompromised patient. J Clin Microbiol 2015, 53(11):3683–3685.

88. Dada R, Mishra S, Mohanty K, Kumar M, Vemprala K: Polymerase chain reaction. Manual of Cytogenetics in Reproductive Biology 2014:59.

89. Veenendaal HR, Brouwer-Hanzens AJ, van der Kooij D: Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila. Water research 2017, 123:439–447.

90. Bartie C, Venter S, Nel L: Identification methods for Legionella from environmental samples. Water research 2003, 37(6):1362–1370.

91. Ducret A, Chabalier M, Dukan S: Characterization and resuscitation of ‘non-culturable’cells of Legionella pneumophila. BMC Microbiol 2014, 14(1):3.

92. Miotke L, Lau BT, Rumma RT, Ji HP: High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem 2014, 86(5):2618–2624.

Table 1

Table 1. Characteristics included of studies
Year	Study	Country	Water resource	Total sample size	Positive sample size	Technique	Ref
2011	Iran	Tap drinking water	32	6	BCYE[2]	[20]	
2003	Iran	Hot water tank	30	11	BCYE	[41]	
2008	Iran	Water reservoir	33	5	BCYE	[42]	
1997	Iran	Water reservoir	210	14	BCYE	[43]	
2011	Iran	Tap drinking water	110	29	BCYE	[44]	
2012	Iran	Tap drinking water	140	8	PCR[3]	[45]	
2005	Iran	Tap drinking water	113	30	BCYE	[46]	
2012	Iran	Tap drinking water	140	12	PCR	[47]	
2008	Iran	Water reservoir	240	100	BCYE/GVPC[4]	[48]	
2010	Iran	Cold water tank	77	14	PCR	[49]	
2015	Iran	Cold water tank	78	18	PCR	[50]	
2015	(Iran (Kerman)	Cold water tank	50	7	PCR	[50]	
2012	Iran	Cold water tank	140	10	PCR	[51]	
2011	Saudi Arabia	Cold water tank	300	5	BCYE	[24]	
2013	Jordan	Hot water tank	200	17	BCYE and BAP[5]	[52]	
2010	Taiwan	Tap drinking water	706	148	BCYE and BAP	[53]	
2005	Morocco	Hot water tank	128	25	BCYE	[54]	

[1] LOD methods for PCR: 2×10^2 GU/100 mL for LP (mip gene) and culture methods is 1 CFU/100 ml.

[2] Buffered charcoal yeast extract: culture techniques

[3] Polymerase chain reaction technique

[4] Glycine-Vancomycin-Polymyxin-Cycloheximide technique

[5] Blood agar plates

Figures
Figure 1

Flowchart describing the study design process based on PRISMA
Figure 2

Forest plot of the prevalence of LP in the water resources based on geographical.
Figure 3

Forest plot of the prevalence of LP in the water resources based on the type of water resources.
Figure 4

Evaluate publication bias based on Beggs (A) and Eggers (B) tests

Figure 5
Sensitivity analysis (Metatrim analysis) of the prevalence of LP in the water systems