Non-equilibrium superconductivity in quantum-sensing superconducting resonators

D J Goldie and S Withington

Detector and Optical Physics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK

E-mail: d.j.goldie@mrao.cam.ac.uk

Received 30 August 2012, in final form 24 October 2012
Published 8 November 2012
Online at stacks.iop.org/SUST/26/015004

Abstract

Low temperature microwave superconducting resonators (SRs) are attractive candidates for producing quantum-sensitive, arrayable energy or power detectors for astrophysical and other precision measurement applications. Their readout uses a microwave probe signal with quanta of energy well below the threshold for pair-breaking in the superconductor. We have calculated the non-equilibrium quasiparticle and phonon distributions generated by the photons of the probe signal of a resonator operating well below its superconducting transition temperature $T_c$ as the absorbed probe power was changed using the coupled kinetic equations described by Chang and Scalapino. The calculations give insight into a rate equation estimate which suggests that the quasiparticle distributions can be driven far from their thermal equilibrium value for typical readout powers. From the driven quasiparticle distribution functions, the driven quasiparticle number densities and lifetimes were calculated. An effective temperature to describe the driven quasiparticles was defined. The non-equilibrium lifetimes were compared to the distribution-averaged thermal lifetimes at the effective temperature and good agreement was found typically within a few per cent. We used the non-equilibrium quasiparticle distribution to model a representative SR. The complex conductivity and hence the frequency dependence of the experimentally measured forward scattering parameter $S_{21}$ of the SR as a function of absorbed power were found. The non-equilibrium $S_{21}$ cannot be accurately modeled by a thermal distribution even at its own elevated temperature, having a higher quality factor in all cases studied, although for low absorbed powers the two effective temperatures are similar. From the non-equilibrium lifetimes and number densities we determined the achievable noise equivalent power (NEP) of the resonator used as a power detector as a function of absorbed microwave power. Simpler expressions to evaluate the effective quasiparticle temperature as a function of absorbed power have also been derived. We conclude that multiple photon absorption from the microwave probe increases the quasiparticle number above the thermal background and ultimately limits the achievable NEP of the resonator at temperatures well below $T_c$.

(Some figures may appear in colour only in the online journal)

1. Introduction

Microwave superconducting resonators (SRs) with high quality factor $Q$ operating at low reduced temperatures $T/T_c \simeq 0.1$, where $T$ is the temperature and $T_c$ is the superconducting transition temperature, are used not only as ultra-sensitive detectors of incident power or individual quanta for applications in sub-millimeter, millimeter, optical, x- and $\gamma$-ray astrophysics [1–6], but also as elements of Qubits for quantum computing [7–9]. They are also
needed as elements of microwave superconducting Quantum interference device (SQUID) multiplexers [10] and also some SQUID geometries more directly. Despite this technological importance, a detailed microscopic analysis of the effect on the distribution functions of the quasiparticles and phonons of the superconducting state at temperatures $T \sim 0.1T_c$ due to the interaction of a flux of microwave photons of frequency $\nu_p \ll 2\Delta(T)/h$, where $2\Delta(T)$ is the temperature-dependent superconducting energy gap and $h$ is Planck’s constant, seems to be sorely lacking. By contrast the regime $\nu_p \sim \Delta(T)/h$ with $T \sim T_c$, when gap-enhancement effect are predicted and observed, has been extensively studied. The quasiparticles and phonons of a low temperature superconductor form coupled subsystems. Energy relaxation processes of quasiparticles that couple to phonons comprise scattering with absorption or emission of phonons, and scattering involving Cooper pairs with generation or loss of two quasiparticles and absorption or emission of phonons of energy $\Omega \geq 2\Delta$ respectively. Energy escapes from the superconductor as phonons enter the substrate. The coupled kinetic equations that describe these interacting subsystems were derived by Bardeen et al [11] and discussed in detail by Chang and Scalapino [12, 13]. In [12] the coupled equations were linearized and solved for a variety of drive sources including microwaves. In [13] full non-linear solutions were obtained. Crucially however in that work solutions were obtained close to $T_c$ where microwave drive can lead to gap-enhancement effects. The same kinetic equations have also been used to investigate the non-linear effect of high-energy photon interactions at $T/T_c \sim 0.1$ [14–16].

It could be assumed that if $h\nu_p \ll 2\Delta$ the photon interaction will not change the quasiparticle number since the photon cannot break a Cooper pair. Whilst true at the single quantum level, this assumption ignores the effect of a flux of photons which might be used in a typical experiment and the competing effects of multiple photon absorption against single quasiparticle scattering or recombination on the driven quasiparticle distribution $f(E)$ where $E$ is the energy. Indeed the effect of the microwave probe on the SR may already have been observed [6]. Understanding the effect of non-equilibrium quasiparticles on a Qubit is certainly a topic of current interest [17, 18], where non-equilibrium quasiparticles may be a limiting factor on Qubit energy relaxation times. Our interest is particularly in the context of non-equilibria in SRs used as precision power or quantum-sensing detectors although we would emphasize that our calculations apply to SRs in general and the mechanisms and solutions we describe are common to all SR applications. Indeed the results presented below are independent of the particular geometry or application provided the effect of geometry on the power absorption is considered. In this report we ignore the effect of critical current on the SR, indeed our estimates indicate that, even at the highest powers considered, the SR response is not limited by its critical current.

In the context of power measurement or quantum spectroscopy, SRs are sensitive to changes in incident energy because of the dependence of the surface impedance $Z_s$ of the superconductor on quasiparticle density and the dependence follows from the complex conductivity $\sigma$ described by Mattis and Bardeen [19]. The SR is embedded in an electrical readout circuit and is driven by a microwave probe signal of frequency $\nu_p \sim 0.1\Delta(T)/h$ close to the circuit resonant frequency $\nu_0$. If the quasiparticle density is changed, for example by absorption of a photon of sufficient energy to break Cooper pairs directly $h\nu_p > 2\Delta$, where $\nu_p$ is the detected photon frequency, $Z_s$ is changed and the change can be monitored by measuring the change in the (complex) resonance transmission characteristic $S_{21}(\nu)$ of the probe signal. The change relaxes back to the unperturbed state as energy is exchanged between the quasiparticles and the phonons of the superconductor and ultimately the substrate. In this way very sensitive power or energy detectors can be made. For example [6] estimated a dark noise equivalent power (NEP), i.e. ignoring the achieved signal detection efficiency, of $2 \times 10^{-19}$ W Hz$^{-1/2}$ at lowest readout power which was accounted for in terms of the generation–recombination noise of the quasiparticles and a limiting lifetime of 3–4 ms, and it has been suggested that NEP’s of order $10^{-20}$ W Hz$^{-1/2}$ may be achieve [20]. The readout naturally lends itself to frequency-division multiplexing where a large number of SRs each operating with a slightly different $\nu_0$ are coupled to a through-transmission line. A high $Q$ resonator can be formed by lithographically patterning a low-$T_c$ superconducting thin film such as Al ($T_c = 1.2$ K) on a dielectric substrate. The substrate is held at the bath temperature $T = T_b$. A number of SR geometries are possible including ring, half- and quarter-wave or lumped-element designs.

In a recent paper we discussed the effect of the probe power on the resonator characteristic [21]. The key point is that the readout is dissipative [2, 6, 22] and the absorbed probe power can be calculated knowing the embedding electrical circuit. Probe photons are absorbed by the quasiparticles of the SR which changes $f(E)$, although the resulting distribution has not yet been calculated. In a real device other mechanisms may contribute to the dissipation for example dielectric or radiative losses [2]. Here we focus on the dissipation associated with the real part of $\sigma$. The aim of this work is to calculate the effect of a microwave drive at low temperatures ($T_b/T_c = 0.1$) on the static, non-equilibrium quasiparticle and phonon distributions the SR as the probe power levels are changed. We also derive simpler analytical expressions which give a good approximation to the key results of the full calculation.

The structure of this paper is as follows. In section 2 we give an estimate of the power densities where non-equilibrium effects are likely to become important in a SR. In section 3 we discuss the general properties of the coupled kinetic equations and derive the form for the drive and subsystem power flow terms necessary to ensure energy conservation whilst also discussing the effects of out-diffusion in a real geometry and the method used to calculate distribution-averaged recombination times. In section 4 we give numerical parameters used in calculations to describe a clean thin-film superconductor (Al), and in section 4.1 we describe the model used to calculate $S_{21}$ for a representative SR. Section 5 describes the numerical method. In section 6 we show
solutions for the non-equilibrium quasiparticle and phonon distributions of a driven SR operating with $T_b/T_c = 0.1$ as a function of $P_{abs}$ including calculations of driven quasiparticle density $N_{qp}$ and effective temperature $T^*_N$ determined from $N_{qp}$ and of the distribution-averaged relaxation time $\tau_r$. We calculate the driven $S_{21}$ for a representative Al SR under the same powers. We also estimate the effect on the achievable NEP for a quantum SR detector using these results.

Section 7 describes two models both giving a reasonable but numerically simpler account of the results. In section 8 we discuss the implications of the work with concluding remarks.

2. Equilibrium estimate

In this section we use the equilibrium interaction times derived by Kaplan et al [23] to estimate the power densities where non-equilibrium effects are likely to occur in a SR at low temperatures. Reference [23] gives expressions for the thermal equilibrium lifetimes: $\tau_0(E, T)$ for the scattering of quasiparticles of energy $E$, $\tau_r(E, T)$ for recombination to Cooper pairs, $\tau_{qφ}(Ω, T)$ for the scattering of phonons of energy $Ω$ and $τ_{pb}(Ω, T)$ for a phonon to break a pair. These are calculated in terms of characteristic quasiparticle and phonon lifetimes $\tau_0$ and $\tau_0^φ$. The volume density of thermal quasiparticles is $N(T) = N(0) \int_0^\infty \rho(E, Δ(T))f(E, T) \text{d}E$, where $\rho(E, Δ) = E/(\sqrt{E^2 - Δ^2}$ is the normalized quasiparticle density of states, $f(E, T) = (\exp(E/k_bT) + 1)^{-1}$ is the Fermi distribution at temperature $T$ (in contrast to $f(E)$ the driven distribution), $k_b$ is Boltzmann’s constant and $N(0)$ is the single-spin density of states at the Fermi energy. Consider the case of an Al resonator with a probe signal of $ω_p \approx 4$ GHz. Since $hω_p \approx 2Δ/20$ it is not clear that the probe signal is capable of changing the equilibrium $N(T)$ and hence $Δ(T)$. Our measurements and modeling show that typical experimental readout powers dissipate of order $1 \rightarrow 100$ aW $\mu$m$^{-3}$ in an Al SR used as a power detector [3, 21].

The probe photons are absorbed by the quasiparticles changing their energy distribution $f(E)$. We expect the appearance of at least one peak in $f(E)$ around $E = hω_p$ due to absorption of the monochromatic probe photons by the large density of quasiparticles near to the gap, perhaps more peaks if $P_{abs}$ is sufficiently high. Assume that energy relaxation of an excited quasiparticle can only occur by scattering with emission of phonons and all of the emitted phonons are lost from the film with an energy-independent time $τ_r$. Indeed, for thermal distributions at low reduced temperatures quasiparticle-scattering times are significantly shorter than recombination times [23]. However if $f(E)$ has any non-equilibrium quasiparticles above $E = 3Δ$ the phonon emitted in scattering may have $Ω > 2Δ$ which can break a pair. This is the onset of non-equilibrium effects since the number of quasiparticles can be changed. We can obtain a naive estimate of the probe power level for this to occur by assuming that all of the available quasiparticles at $T_b$ i.e. $N(T) ≡ N(T_b)$, are driven to the same (to be determined) energy $E_0$ and that scattering is the only energy loss mechanism for the quasiparticles, so that $P_{abs} = E_0 N(T_b)/τ_r(E_0, T_b)$. Figure 1 shows $E_0$ for three bath temperatures as a function of $P_{abs}$ calculated for an Al film with $Δ(0) = 180$ μeV, $T_c = 1.17$ K, $N(0) = 1.74 \times 10^4$ μeV$^{-1}$ μm$^{-3}$, and $τ_0 = 438$ ns. At $T_b/T_c = 0.1$ all the quasiparticles would have $E_0 > 3Δ$ for these $P_{abs}$ and then the phonon emitted in scattering could break a pair. Even at $T_b/T_c = 0.2, E_0$ is close to the pair-breaking threshold. We would note that this estimate is probably conservative: non-equilibrium effects occur as soon as there are any non-thermal quasiparticles with $E ≥ 3Δ$ and the degree of non-equilibrium depends on the probability of pair-breaking before loss by the scattered phonons, $τ_r/τ_{pb}$. At low temperatures $τ_{pb} = τ_0^φ$. For a 100 nm Al film on sapphire or Si we estimate that $τ_r ≈ τ_{pb}$ [24]. This suggests that the probe signal may break Cooper pairs in the driven SR even for very low $P_{abs}$ and scattering without pair-breaking may not be a sufficient energy relaxation mechanism. Then a full non-equilibrium description is required and we will not be surprised if the power densities to observe non-equilibrium effects may be lower than suggested by figure 1.

3. Non-equilibrium resonators

In this and subsequent sections we describe and use a full non-linear solution of the kinetic equations for the coupled quasiparticle and phonon systems. The rates of change of the distribution functions, $f(E)$ for the quasiparticles and $n(Ω)$ for the phonons, are given in equations (7) and (8) of [13]. Substituting $τ_0$ and $τ_0^φ$ these become

$$\frac{df(E)}{dr} = I_{qp}(E, ω_p) = \frac{1}{τ_0(k_bT_b)^3} \int_0^\infty \text{d}Ω \Omega^2 \rho(\Omega + E) \times \left(1 - \frac{\Delta^2}{E(\Omega + E)}\right) \times (f(E)[1 - f(E + \Omega)]n(\Omega) - [1 - f(E)]f(E + \Omega)[n(\Omega + 1)]) - \frac{1}{τ_0(k_bT_b)^3} \int_0^\infty \text{d}Ω \Omega^2 \rho(\Omega - E)$$

Figure 1. Quasiparticle energy $E_0$ as a function of $P_{abs}$ for an Al film at 3 bath temperatures assuming cooling by quasiparticle-phonon scattering alone.
where the rate coefficient $B$ needs to be determined for low temperatures. A third term arises in equation (4) if $h\nu_p \geq 2\Delta$, which is not considered here since we are investigating the effect of sub-gap photons. Reference [12] used a different rate coefficient to describe the interaction of microwaves at normal incidence to a superconducting film close to $T_c$ which, in our notation, would be $B' \propto H^2 R_n/dN(0)\nu^2$ with $H$ the magnetic field strength, $R_n$ the normal-state square sheet resistance and $d$ the film thickness. For a SR at $T/T_c = 0.1$ the field does not interact with a normal-state metal in that geometry, neither is the penetration of the field into the superconductor determined by the normal-state parameter. We take a different approach which emerges naturally by considering energy conservation. Assuming uniform absorption, the power absorbed per unit volume of the resonator is

$$P_{\text{abs}} = 4N(0) \int_\Delta^\infty dE I_{\text{qp}}(E, \nu_p) E \rho(E, \Delta). \quad (5)$$

We solve equations (1) and (2) numerically so that writing $I_{\text{qp}}(E, \nu_p) = BK_{\text{qp}}(E, \nu_p)$ we can also include a power absorption error term

$$\delta P = 4N(0)B \int_\Delta^\infty dE K_{\text{qp}}(E, \nu_p) E \rho(E, \Delta) - P_{\text{abs}}, \quad (6)$$

where $B$ needs to be determined to satisfy this equation, and the static non-equilibrium solution sought is $\delta P = 0$.

### 3.2. Quasiparticle-phonon power

The power flow from the quasiparticles to the phonons can be found by recognizing that the sum of the integrals on the right-hand-side of equation (1) gives the total rate of change of $f(E)$ due to interactions with phonons, $I_{\text{qp}}(E)$. The energy leaving the quasiparticles per unit volume per unit time is

$$P_{\text{qp-phil}} = 4N(0) \int_\Delta^\infty dE I_{\text{qp}}(E) E \rho(E, \Delta). \quad (7)$$

We define the fractional quasiparticle-phonon power flow error term

$$\xi_{\text{qp-phil}} = \frac{P_{\text{abs}} - P_{\text{qp-phil}}}{P_{\text{abs}}}. \quad (8)$$

### 3.3. Phonon cooling term

Energy is lost from a SR as non-equilibrium phonons are lost into the substrate. The energy leaving the phonons per unit volume of the film per unit time is given by

$$P_{\phi-b} = \sum_{n_{\text{br}}} N_{\text{ion}} \int_0^\infty d\Omega D(\omega) \frac{\rho(\Omega) - n(\Omega, T_b)}{\tau_f}. \quad (9)$$

With a Debye model the density of states is given by $D(\omega) = 3\Omega_D^2/\omega^3$, $\Omega_D$ is the Debye energy, and the sum over the phonon branches introduces an additional factor of three. We define a further error term

$$\xi_{\phi-b} = \frac{P_{\text{abs}} - P_{\phi-b}}{P_{\text{abs}}}. \quad (10)$$
3.4. Power absorption and the effect of geometry

Power absorption in a resonator is dependent on its geometry and we assumed $P_{\text{abs}}$ was known. In modeling, we assumed that probe photons were uniformly absorbed in the SR. Quasiparticle diffusion lengths for clean superconducting films are relatively long ensuring that power absorption with respect to the thickness or width of a typical SR satisfy this assumption. In practice geometric effects associated with the length of the SR should be accounted for and these depend on the particular realization. For example a $\lambda/4$-resonator is a useful geometry into which to couple an external pair-breaking signal. The longitudinal current density distribution in this device is described by $J(x) = J(x_0) \sin(\pi x/2x_0)$, which is a maximum $J(x_0)$ at the shorted end $x = x_0$, and the peak power density is a factor close to two-times higher than the average. For the same reason, as a detector the $\lambda/4$-SR is most sensitive to changes in the quasiparticle density at its shorted end. Mirror currents in the ground-plane mean that the effective volume for the power absorption is up to twice that of the central conductor. However when using a $\lambda/4$ resonator as a detector out-diffusion of the excess quasiparticles generated by the in-coming signal itself must be minimized in order to maximize the detection sensitivity, which may be achieved for example using a higher energy gap contact to the electrical ground. For a $\lambda/2$-SR out-diffusion from the central volume cannot occur. To make our model most general, we ignored out-diffusion of quasiparticles. In practice other resonator geometries can be used and the effect of geometry and out-diffusion on power absorption can in principle be calculated.

3.5. Recombination times

In what follows we calculated distribution-averaged quasiparticle recombination times $\tau_r$ for the driven $f(E)$. We used [12] equation (A9) to find the rate coefficient $R$ averaged over $f(E)$ and set $\tau_r = (2RN_{\text{QP}})^{-1}$ with $N_{\text{QP}} = 4N(0) \int_{-\infty}^{\infty} dE \rho(E)f(E)$ the non-equilibrium quasiparticle density. If the detected power is small compared to the probe power this is the appropriate measure of the small-signal relaxation time. For a thermal distribution we find $\tau_r \equiv \langle \tau_r(T) \rangle_{\text{qp}}$, the distribution-averaged recombination time described by Kaplan et al.

4. Numerical parameters

To describe the resonator we used material parameters appropriate for Al with $N(0)V_{\text{BCS}} = 0.167$ giving $\Delta(0) = 180 \mu eV$, $T_r = 1.17$ K and we set $T_b/T_c = 0.1$. We used $N(0) = 1.74 \times 10^{25} \mu eV^{-1} \mu m^{-3}$, $T_0 = 438$ ns and $t_0^{\phi \phi} = 0.26$ ns [23]. The latter was calculated assuming that the appropriate value for the phonon density of states in the calculation of $t_0^{\phi \phi}$ is $\alpha^{\phi \phi}$ appropriate for a Debye model as given in table II of [23], an approach suggested in [14].

To be precise, in our view the parameters needed as inputs for modeling are not collectively and with sufficient precision known from measurement or theory. Considering the pre-factors in equations (1), (2), (7) and (9), we found that the numerical inputs must satisfy

$$2\pi N(0)t_0^\phi \Delta_0 \Omega^2_1 \lambda^4 = 1$$

(11)

to allow a self-consistent solution where the power errors equations (8) and (10) converged to zero.

4.1. Parameters for a $\lambda/4$-resonator

In calculations discussed later and shown in figure 7 we investigated the effect of the driven $f(E)$ on a representative device modeling a $\lambda/4$ microstrip resonator as in [21]. The complex conductivity $\sigma$ which is proportional to the normal-state conductivity $\sigma_N$ was calculated from equations (3.9) and (3.10) of [19] but using the non-equilibrium $f(E)$. The surface impedance was calculated from $\sigma$ hence the propagation constant and the characteristic impedance of the SR. The modeled SR had a length of 7.6 mm, width 3 $\mu m$, film thickness of 200 nm, dielectric thickness of 200 nm with $\epsilon_r = 3.8$ and a saturation quality factor of $10^7$. We set the coupling capacitance to be 5 pF and $\sigma_N = 1.25 \times 10^8 (\Omega m)^{-1}$, which would be typical for a clean Al film at low temperatures. We calculated a resonant frequency $v_0 = 3.934 21$ GHz ($h\nu_0 = 16.2 \mu eV$) with zero absorbed power.

5. Numerical method

A non-equilibrium solution for $f(E)$ and $n(\Omega)$ requires simultaneous solutions of equations (1), (2), (3) and (5). The task is complicated since, for example, equation (1) contains terms such as $f(E \pm \Omega)$ and likewise (6) requires knowledge of $f(E \pm \hbar \nu_p)$, and there are likely to be peaks in the driven distributions arising from the high density of states of quasiparticles near $E = \Delta$. Equations (1), (2) and (5) were solved using Newton’s method. We discretized the distributions $f(E)$ and $n(\Omega)$ using a $1 \mu eV$ grid with $E_i = \Delta + i - 1$, $\Omega_i = i$ and $i = 1 \ldots N$ with $N = 1000$ so that quasiparticle states up to $\sum.5\Delta(0)$ are considered. We formed the state vector $\alpha = [\alpha_A, B, n_1]^T$ where $T$ denotes the transpose. We formed the error vector $\epsilon = [d\alpha_i/dt, \delta P, d\nu_p/d\eta]^T$. The iterative procedure seeks to find $\alpha_i = 0$ using $\alpha_i = \alpha - \chi J(\alpha_i)^{-1} \epsilon(\alpha_i)$ where the matrix $J = d\alpha/d\alpha_i$ is the Jacobian of the partial derivatives and $j, k = 1 \ldots 2N + 2$. Analytical expressions for the derivatives can be found making the Jacobian efficient to evaluate. The superscript $l$ denotes the iteration number. $\chi \leq 1$ is a convergence parameter and we find $0.8 \leq \chi \leq 0.95$ gives reasonably rapid convergence typically within 10 iterations.

We assumed a starting thermal $\theta^0 = f(E_i, T_{\text{start}})$ with an initial temperature $T_{\text{start}} \sim 2T_0$. The value chosen for $T_{\text{start}}$ did not affect the solutions obtained merely the number of iterations required to converge sufficiently. Using an earlier estimate of the non-equilibrium distributions reduces the
number of iterations (or increases the precision for the same computation time) and is a useful approach if parameters such as power or phonon-trapping factors are being varied systematically. We chose \( n^0 = n(\Omega_1, T_b) \) so that the phonons are initially at the bath temperature. The aim was to find \( f^i(E) \) and \( n'(\Omega) \) such that \( |\xi_{\mathrm{qp},\phi}|, |\xi_{\mathrm{qp},b}| \leq 0.1\% \) for both power transfer error terms. All solutions shown below exceed these convergence criteria in some cases by nearly an order of magnitude. For the microwave drive we restricted \( v_p \) to match the discretized distributions. This means that the onset of any photon induced peaks occurs in well-defined bins of both \( f(E) \) and \( n(\Omega) \).

We found that in our solutions the non-equilibrium gap calculated with equation (3) changed very little from \( \Delta(T_b) \) and by a maximum of \( \delta\Delta \approx 50 \, \text{nV} \). For this reason we did not allow \( \Delta \) to change in the simulations. The exception to this was for calculations of \( S_{21} \) shown later in figure 7. \( S_{21} \) is very sensitive to the value of \( \Delta \) used in the calculation of the conductivity. In this case we linearly interpolated \( f(E) \) to find self-consistent values for the non-equilibrium gap \( \Delta(f(E)) \) using equation (3) which was used to calculate \( S_{21} \). The numerical solutions are slightly sensitive to the grid used due to the approximation involved in representing the large density of states near the gap. We found that the 1 \( \mu \text{eV} \) grid with a gap function \( \rho(E) = \text{Re}(E/\sqrt{E^2 - (\Delta + 0.001\Delta)^2}) \) to account for physical gap-smearing gave a reasonable representation of the density of states.

6. Solutions for non-equilibrium resonators

In this section we show results of the modeling. Figure 2 shows \( f(E) \) with \( v_p = 3.8804 \, \text{GHz} \) \((\hbar v_p = 16 \, \mu\text{eV})\), which is close to \( v_0 \) for the \( \lambda/4-\text{Al} \) SR that we later use as an example, with \( T/T_c = 0.1, P_{\text{abs}} = 2 \, \text{fW} \, \mu\text{m}^{-3} \) and \( \tau_l/\tau_{\phi b} = 1 \). The multi-peak structure is consistent with sequential single photon absorption; the drive term of equation (4) only describes single photon events. The occurrence of this multi-peak structure is expected if the SR is driven far from equilibrium. Pleasingly this structure emerges in the very first iteration of the numerical method. In addition physically unrealistic distributions (where for example \( f(E - h\nu) < f(E) \) at \( E < 3\Delta \)) were never found. Figure 2 includes a thermal distribution \( f(E, T_b^t) \) where \( T_b^t \) is defined so that \( 4N(0) f^\infty(E, T_b^t) \rho(E) dE = N_{\mathrm{qp}} \) i.e. the thermal distribution having the same number density of quasiparticles as the driven case. The non-equilibrium nature of \( f(E) \) becomes further apparent in the semi-log plots in the inset which are calculated for \( P_{\text{abs}} \) of (a) 2 \( \text{fW} \, \mu\text{m}^{-3} \), (b) 20 \( \text{aW} \, \mu\text{m}^{-3} \) and (c) 0.2 \( \text{aW} \, \mu\text{m}^{-3} \) all with \( \tau_l/\tau_{\phi b} = 1 \).

Figure 3 shows the corresponding contributions to the phonon power flow for absorbed power 2 \( \text{fW} \, \mu\text{m}^{-3} \). The inset shows semi-log plots for absorbed powers of (a) 2 \( \text{fW} \, \mu\text{m}^{-3} \), (b) 20 \( \text{aW} \, \mu\text{m}^{-3} \) and (c) 0.2 \( \text{aW} \, \mu\text{m}^{-3} \).
for the same drive conditions where the presence of non-equilibrium $\Delta$-phonons is seen. An additional feature at $\Omega = 4\Delta$ is also found. There are two distinct contributions to $P(\Omega)_{\phi-b}$. At low energies we see phonons arising from the scattering of low-energy quasiparticles towards the gap, and there is structure consistent with the peaks in $f(E)$. Structure on the low-energy side of the phonon peaks is also seen which is expected as the driven $f(E)$ scatters to lower energies and the rate of this scattering is reduced by the occupation of the final states by the driven distribution itself, despite the increasing phonon density of states that would be available for the scattering to occur. At $\Omega \geq 2\Delta$ we see a second distinct contribution to $P(\Omega)_{\phi-b}$. This power is transferred to the substrate by pair-breaking phonons with $\Omega \geq 2\Delta$, which are generated not just by recombination of the excess $f(E)$ itself but also by the scattering (and recombination) of those quasiparticles with $E \geq 3\Delta$. To quantify the fraction of the power carried by phonons with $\Omega \geq 2\Delta$ we define $\eta_{2\Delta} = \int_{2\Delta}^{\infty} d\Omega \langle n(\Omega) - n(\Omega, T_b) \rangle / \int_0^{\infty} d\Omega \langle n(\Omega) - n(\Omega, T_b) \rangle$. In the main plot of figure 3, $\eta_{2\Delta} = 0.16$. Figure 4 shows contributions to $P(\Omega)_{\phi-b}$ for two values of $\tau_1/\tau_{pb}$. Somewhat counter-intuitively increasing $\tau_1/\tau_{pb}$ increases the contribution at the lowest $\Omega$ to $P(\Omega)_{\phi-b}$ whilst simultaneously increasing the contribution from pair-breaking phonons $\Omega \geq 2\Delta$. The effect on $f(E)$ is evident in the inset. As $\tau_1/\tau_{pb}$ is increased more $3\Delta$ quasiparticles are generated, these in turn generate more pair-breaking phonons which can be re-absorbed before being lost from the film. Figure 5 shows the effect of changing $\tau_1/\tau_{pb}$ on $N_{qp}, T^*_N, \eta_{2\Delta}$, and $\tau_r$ for $P_{abs} = 50$ aW $\mu$m$^{-3}$. Increasing $\tau_1/\tau_{pb}$ increases both $N_{qp}$ and $T^*_N$ while $\tau_r$ is reduced. In combination this increases the relative contribution of the recombination phonons to the power flow to the bath despite the increasing probability of re-absorption, and for this reason $\eta_{2\Delta}$ increases somewhat. We find that for fixed power the solutions are related by $N_{qp}/\tau_r(1 + \tau_1/\tau_{pb}) = k$ where $k$ is a constant independent of $\eta_{2\Delta}$ although we emphasize that both $N_{qp}$ and $\tau_r$ are driven non-equilibrium values.
by quasiparticle scattering. For \( P_{\text{abs}} \to 0 \) we find \( \eta_{2\Delta} = 0.6 \) which interestingly is the result found for high-energy interactions \( h\nu \gg 2\Delta \). Figure 6(d) shows that \( \tau_r \) is reduced as \( P_{\text{abs}} \) is increased and, as expected, mirrors the increase in \( N_{\text{qp}} \). The full curve in (d) is the distribution-averaged thermal recombination time at \( T_N^C \), \( (\tau_r(T_N^C))_{\text{qp}} \), which gives a very good description of the recombination time of the driven \( f(E) \) typically within a few percentage. The deviation increases with \( P_{\text{abs}} \), which again is expected: the distortion of \( f(E) \) with \( P_{\text{abs}} \) from the \( T_N^C \) distribution increases the available final phonon densities of states for recombination.

Figure 7 shows (full lines) calculated \( |S_{21}|^2 \) for the driven \( f(E) \) for absorbed powers: (a) \( P_{\text{abs}} = 0 \) at \( T_b \), (b) \( P_{\text{abs}} = 0.1 \text{ aW} \mu\text{m}^{-3} \), (c) \( P_{\text{abs}} = 2 \text{ aW} \mu\text{m}^{-3} \) and (d) \( P_{\text{abs}} = 50 \text{ aW} \mu\text{m}^{-3} \). The dotted lines show \( |S_{21}|^2 \) for the nearest thermal distribution \( f(E, T_{21}^C) \) giving the same \( \nu_0 \) in each case. Note here that \( S_{21} \) is sensitive to the value of the gap used in calculating \( \sigma \) so that the energy gaps used are the self-consistent gaps calculated using equation (3). A general characteristic of all calculated transmission curves is that the driven \( S_{21} \) has a higher \( Q \) (it is deeper and narrower) than the nearest \( T_{21}^C \) prediction. This arises due to occupation of final states for absorption by the driven distributions. For increasing \( P_{\text{abs}} \) the divergence increases. This is a further effect of the increasing distortion of \( f(E) \) as a function of \( P_{\text{abs}} \), observed in relation to Figure 2. The inset shows that \( T_N^C \) gives a reasonable account of \( T_{21}^C \) for the range of \( P_{\text{abs}} \) considered, particularly at low powers.

The intrinsic limiting NEP of a superconducting detector in thermal equilibrium is determined by the random generation and recombination of quasiparticles [27]. In thermal equilibrium \( \text{NEP}_{\text{G-R}} = 2\Delta/\eta \sqrt{N_{\text{qp}} V/\tau_{\text{qp}}} \) where \( \eta \) is the fraction of detected power \( P_{\text{det}} \) coupling to the quasiparticles, \( V \) is the volume of the SR, and the effective recombination time \( \tau_{\text{qp}}^* = \tau_r \frac{1}{1 + \tau_r/\tau_{\text{ph}}} / 2 \). Here the factor of two arises because, as noted by Kaplan et al and others, \( \tau_r \) is the recombination time of a single quasiparticle whereas two quasiparticles are lost in each event [23, 28, 29]. For detection of high-energy photons \( h\nu \gg 2\Delta \), \( \eta \simeq 0.59 [14–16] \). If we assume that \( P_{\text{det}} \ll P_{\text{abs}} \) so that \( \delta N_{\text{qp}}/N_{\text{qp}} \) is small (as it must be for a linear detector) then the relevant \( N_{\text{qp}} \) and \( \tau_r \) are as already calculated. Figure 8 shows \( \text{NEP}_{\text{G-R}} \) as a function of \( P_{\text{abs}} \) for a SR with \( V = 1000 \mu\text{m}^3 \) and \( \tau_r/\tau_{\text{ph}} = 1 \) for 2 values of \( \eta \) and we have assumed that the equilibrium expression for \( \text{NEP}_{\text{G-R}} \) applies for the driven case. \( P_{\text{abs}} \) determines the limiting NEP and even for the lowest \( P_{\text{abs}} \) studied, \( \text{NEP}_{\text{G-R}} \sim 1-5 \times 10^{-19} \text{ W Hz}^{-1/2} \).

7. Analytical power model

The preceding calculations provide insight into the effects of \( P_{\text{abs}} \) with \( 1 \mu\text{p} \ll 2\Delta/h \) at low reduced temperatures on low-\( T_b \) SRs. However in many situations, for example for estimates of performance or for extrapolation to other materials, an expression to approximate the key results would be extremely powerful. Recombination determines the overall time-evolution of the driven system, even though we have shown that only a power-dependent fraction \( \eta_{2\Delta} \) of \( P_{\text{abs}} \) is carried by the recombination phonons. An approximate equation giving an estimate of \( T_N^C \) as a function of \( P_{\text{abs}} \) can be derived considering energy conservation so that

\[
\int_0^{P_{\text{abs}}} dP \eta_{2\Delta} = \int_{P_b}^{P_{\text{abs}}} dP \frac{C_{\text{BCS}}(T)}{(\tau_r(T))_{\text{qp}}},
\]

where the denominator on the right-hand-side is the distribution-averaged effective thermal recombination time and \( \tau_{\text{qp}}^* = \tau_r \frac{1}{1 + \tau_r/\tau_{\text{ph}}} / 2 \). \( C_{\text{BCS}} \) is the BCS specific heat capacity which comprises two terms [30]. The first is the quasiparticle heat capacity \( C_{\text{qp}} = 4\pi(0) d\omega/dT \int_0^{\infty} d\omega E\rho(E) \) and the second arises because the quasiparticle energies \( E \) themselves change due to their dependence on \( \Delta \). At the (effective) temperatures considered here \( d\Delta/dT \simeq 0 \). The data of figure 6(c) were fitted to a log-linear model.
giving \( \eta_{2\Delta} = -0.03 \ln(P_{abs}/aW \ \mu m^{-3}) + 0.384 \). At very low absorbed powers \( P \to 0 \) we find \( \eta_{2\Delta} \to 0.6 \). With the same limit equation (12) was solved. The result is shown as the full line in figure 6(b). The account of \( T_N^* \) as a function of \( P_{abs} \) is very satisfactory.

We found that the functional form of \( T_N^* \) with \( P_{abs} \) can be further approximated by the simpler expression

\[
P_{abs} = \frac{1}{\eta_{2\Delta}(P_{abs})} \Sigma_s \left[ \frac{1}{1 + t/(t_b)} \right] \times \left[ T_N^* \exp \left( -\frac{2\Delta(T_N^*)}{k_b T_N^*} \right) \right. \\
- \left. T_b \exp \left( -\frac{2\Delta(T_b)}{k_b T_b} \right) \right].
\]

where \( \eta_{2\Delta}(P_{abs}) \) is the fraction of power carried by 2\( \Delta \)-phonons at \( P_{abs} \). For the Al film modeled here we found \( \Sigma_s = 3.4 \times 10^{10} \ W \ m^{-3} \ K^{-1} \). This function is indistinguishable from the full curve plotted in figure 6(b) and gives a good account of the effect of \( P_{abs} \) on \( T_N^* \) for the parameter space studied. Both equations (12) and (13) provide a straightforward route to estimate \( N_{qp} \) and \( \tau_r \) as a function of \( P_{abs} \).

8. Discussion and conclusions

We have calculated the non-equilibrium distributions of quasiparticles and phonons, \( f(E) \), \( n(\Omega) \) generated by a flux of low-energy phonons \( h\nu_{\Omega} \ll 2\Delta \) as a function of \( P_{abs} \) for a thin-film superconducting resonator at low temperatures \( T/T_c = 0.1 \). Driven \( f(E) \) deviate from thermal-like distributions exhibiting structures associated with multiple probe-photon absorption and emission for all \( P_{abs} \) studied. All calculated \( n(\Omega) \) show pair-breaking phonons \( \Omega \geq 2\Delta \) for all \( P_{abs} \) studied. The density of driven quasiparticles exceeds their thermal density at the bath temperature, confirming a simple estimate based on energy conservation using thermal scattering times. The driven \( f(E) \) can be characterized in terms of an effective temperature \( T_N^* \) which also gives a good account of the distribution averaged, driven recombination time \( \tau_r \) and this can be very-well approximated using simpler expressions to calculate the thermal recombination time at \( T_N^* \). Using \( N_{qp} \) and \( \tau_r \) a (dark) detector Noise Equivalent Power can be calculated. We find that dissipation limits the achievable NEP in the range of \( P_{abs} \) considered indicating a minimum NEP \( \sim 1 \times 10^{-19} \ W \ Hz^{-1/2} \) although we emphasize this depends on the actual absorbed power.

Reference [6] measured a \( \lambda/2 \) Al resonator where we expect out-diffusion should be minimized. That work estimated a limiting effective quasiparticle temperature of order 160 mK with \( T_b = 100 \ mK \), \( N_{qp} \sim 20–70 \ \mu m^{-3} \), \( \tau_r \sim 3.5–0.5 \) ms depending on the power, and a dark NEP \( \sim 2 \times 10^{-19} \ W \ Hz^{-1/2} \) at the lowest probe power. Quantifying \( P_{abs} \) from the reported results is difficult without knowing details of the embedding circuit. However our calculations shown in figures 6(a), (b) and (d) indicate these densities, temperatures, and lifetimes would arise for \( P_{abs} \) in the range 0.1–1 aW \( \mu m^{-3} \). For the same absorbed powers, figure 8 indicates a limiting dark NEP of 2–3 \( \times 10^{-19} \ W \ Hz^{-1/2} \). The agreement with our calculations, without free parameters, is extremely satisfactory whilst suggesting that the approach that we have described has merit.

In future work we will incorporate a pair-breaking source in the kinetic equations in addition to the probe signal. We will also investigate the effect of the probe frequency on the driven solutions, its effect on the achievable NEP, and the scaling of \( \eta_{2\Delta} \) with material parameters. It will also be possible to model the detection of sub-gap photons \( h\nu_{\Omega} \ll 2\Delta \) using a driven resonator.

References

[1] Day P K, LeDuc II G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 A broadband superconducting detector suitable for use in large arrays Nature 425 817–21
[2] Zmuidzinas J 2012 Superconducting microresonators: physics and applications Annu. Rev. Condens. Matter Phys. 3 169–214
[3] Vardulakis G, Withington S and Goldie D J 2008 Superconducting kinetic inductance detectors for astrophysics Meas. Sci. Technol. 19 015509
[4] Monlardini A et al 2010 NIKA: a millimeter-wave kinetic inductance camera Astron. Astrophys. 521 A29
[5] Baselmans J J A 2011 Kinetic inductance detectors J. Low Temp. Phys. 167 292–304
[6] de Visser P J, Baselmans J J A, Yates S J C, Diener P, Endo A and Klapwijk T M 2012 Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations Appl. Phys. Lett. 100 162601
[7] DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H and Schoelkopf R J 2010 Preparation and measurement of three-qubit entanglement in a superconducting circuit Nature 467 575–8
[8] Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O’Connell A D, Wang H, Martinis J M and Cleland A N 2008 Generation of Fock states in a superconducting quantum circuit Nature 454 310–4
[9] Schoelkopf R V and Girvin S M 2008 Wiring up quantum systems Nature 451 664–9
[10] Irwin K D and Lehnert K W 2004 Microwave SQUID multiplexers Appl. Phys. Lett. 85 2107–9
[11] Bardeen J, Rickayzen G and Tewordt L 1959 Theory of the thermal conductivity of superconductors Phys. Rev. 113 982–94
[12] Chang J J and Scalapino D J 1977 Kinetic-equation approach to superconductivity Phys. Rev. B 15 2651–70
[13] Chang J J and Scalapino D J 1978 Nonequilibrium superconductivity J. Low Temp. Phys. 31 1–32
[14] Zehnder A 1995 Response of superconducting films to localized energy deposition Phys. Rev. B 52 12858–66
[15] Ishibashi K, Takeno K, Nagae T and Matsumoto Y 1991 Output signal from Nb-based tunnel junctions by irradiation of 6 keV x-rays IEEE Trans. Magn. 27 2661–4
[16] Kurakado M 1982 Possibility of high resolution detectors using superconducting tunnel junctions Nucl. Instrum. Methods 196 275–7
[17] Lenander M et al 2011 Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles Phys. Rev. B 84 024501
[18] Martinis J M, Ansmann M and Aumentado J 2009 Energy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations Phys. Rev. Lett. 103 097002
[19] Mattis D C and Bardeen J 1958 Theory of the anomalous skin effect in normal and superconducting metals Phys. Rev. 111 412–7
[20] Doyle S, Mauskopf P D, Zhang J, Montfardini A, Swenson L, Baselsmans J J A, Yates S J C, Houwman E P and Roesch M 2010 A review of the lumped element kinetic inductance detector Proc. SPIE 7741 77410m
[21] de Visser P J, Withington S and Goldie D J 2010 Readout-power heating and hysteretic switching between thermal quasiparticle states in kinetic inductance detectors J. Appl. Phys. 108 114504
[22] Thompson S J, Withington S and Goldie D J 2012 Dynamical behaviour of superconducting resonators under readout-frequency, readout-power and signal-power switching Proc. SPIE 8452 84520N
[23] Kaplan S B, Chi C C, Langenberg D N, Chang J J, Jafarey S and Scalapino D J 1976 Quasiparticle and phonon lifetimes in superconductors Phys. Rev. B 14 4854–73
[24] Kaplan S B 1979 Acoustic matching of superconducting films to substrates J. Low Temp. Phys. 37 343–65
[25] Eliashberg G M 1972 Inelastic electron collisions and nonequilibrium stationary states in superconductors Sov. Phys.—JETP 34 668–76
[26] Ivlev B I, Lisitsyn S G and Eliashberg G M 1973 Nonequilibrium excitations in superconductors in high-frequency fields J. Low Temp. Phys. 10 449–68
[27] Wilson C M, Frunzio L and Prober D E 2001 Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate fermi gas Phys. Rev. Lett. 87 067004
[28] de Korte P A J, van den Berg M L, Bruijn M P, Frericks M, le Grand J B, Gijsbertsen J G, Houwman E P and Flokstra J 1992 Superconducting tunnel junctions for x-ray spectroscopy Proc. SPIE 1743 24
[29] Wilson C M and Prober D E 2004 Quasiparticle number fluctuations in superconductors Phys. Rev. B 69 094524
[30] Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill)