Equivalence perspectives in communication, source-channel connections and universal source-channel separation

Mukul Agarwal, Anant Sahai, Sanjoy Mitter

Abstract

An operational perspective is used to understand the relationship between source and channel coding. This is based on a direct reduction of one problem to another that uses random coding (and hence common randomness) but unlike all prior work, does not involve any functional computations, in particular, no mutual-information computations. This result is then used to prove a universal source-channel separation theorem in the rate-distortion context where universality is in the sense of a compound “general channel.”

I. Introduction

The essential duality between source and channel coding has been recognized since Shannon [1] and has attracted significant attention recently as well (e.g. [2], [3], [4]). This paper addresses a conceptual issue: what is the core relationship between source and channel coding and to what extent do we need mutual-information computations to understand it?

Recall that classically, mutual information plays a critical role. After all, the traditional separation theorem (separate source and channel codes result in no loss in first-order optimality when delay is not an issue.) relies crucially on the mutual-information characterization of both channel capacity and the rate-distortion function to prove the converse direction: that we can do no better. Even the more general framework of [2] builds upon the information-spectrum approach of [6] that extends mutual-information ideas to general channels by looking at the entire distribution of an information-random-variable instead of just the expectation.

Recently, a “direct” proof of the converse direction of the separation theorem was introduced by us in [7]. The key idea was to treat a combined joint-source-channel code as a non-causal arbitrarily-varying channel (AVC) with a particularly weak guarantee: as long as the input to it is drawn like the source in question, it will with high probability return an output within a specified distortion D. For such a channel, a random-coding argument revealed that reliable communication is possible at a rate given by the rate-distortion function of the source in question evaluated at D. The proof in [7], however, relied crucially on the mutual-information characterization of the rate-distortion function.

Conceptually, there are two distinct directions that one can explore from [7]. Lomnitz and Feder in [8] essentially emphasize the mutual-information aspects for a core result that avoids the need for an a priori distortion-guarantee and they then use feedback to translate this core into a meaningful interpretation concerning “communication over individual channels.” This is in the spirit of individual-sequence results as distinct from the AVC perspective taken in [7]. The contribution of this work is to move in the complementary direction. After introducing notation and definitions in Section II we give a new operational proof in Section III that does not use mutual-information computations in any way. It illuminates the operational connections and technical parallels between the problems of reliable communication at a particular rate and lossy-communication of a source to within a target distortion, in effect providing a direct “problem reduction” in the style that theoretical computer scientists use. It shows that the rate-distortion function of X gives the universal capacity of the compound set of general channels that communicate i.i.d. X sources to within a distortion D (see Theorem 5.1 for a precise statement). This naturally gives rise to a universal source-channel separation theorem in Section IV.

II. Notation and Definitions

Sets, random variables, and distortion measure: Many symbols will have an interpretation for both rate-distortion source coding and channel coding problems. $X = \{1, 2, \ldots, |X|\} \rightarrow$ finite set should be thought of as the channel input alphabet or the alphabet of the source that needs to be source-coded. $Y = \{1, 2, \ldots, |Y|\}$ should similarly be thought of as the channel output alphabet or the reconstruction alphabet of the source. Let X be a random variable on X. p_X will denote the corresponding

1Csizar established in [5] that strict separation does result in a significant loss in the error-exponent. Separation also breaks down even in a first-order sense for multiterminal problems.
probability distribution, \(d : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{R} \) is a non-negative real-valued function that represents the distortion incurred when \(x \in \mathcal{X} \) is reconstructed as \(y \in \mathcal{Y} \).

Notation: A superscript \(n \) denotes a variable whose block length is \(n \). For example, \(Y^n \) will denote a random-variable on \(\mathcal{Y}^n \).

Method of Types: We follow the notation of Csiszar and Körner [9].

Channel model: A channel is a sequence of transition-probability matrices and will be denoted by \(< c^n >^\infty \). Its operation should be thought of as follows for block-length \(n \): channel input space is \(\mathcal{X}^n \), channel output space is \(\mathcal{Y}^n \), and the channel acts as \(c^n : \mathcal{X}^n \rightarrow \mathcal{Y}^n \). This channel model is the same as that of Verdu and Han in [6].

\[
x \in \mathcal{X}^n \xrightarrow{\mathcal{C}^n} y \in \mathcal{Y}^n, \text{ with probability } c^n_{xy} \xrightarrow{n=1} \infty
\]

Definition 2.1 (C_{X,D}): Consider a channel \(< c^n >^\infty \). If the input to the channel is i.i.d. \(X \) source \(X^n \), the channel output is a (not necessarily i.i.d.) random variable \(Y^n \) on \(\mathcal{Y}^n \). A channel is said to belong to \(C_{X,D} \) if, under the joint distribution \(p_{X^nY^n} \) on the input-output space,

\[
\Pr \left(\sum_{i=1}^{n} \frac{1}{n} d(X^n(i), Y^n(i)) > D \right) \rightarrow 0 \text{ as } n \rightarrow \infty
\]

The i.i.d. \(X \) sequence \(X_i \) here is a just a tool in the definition of the compound channel set \(C_{X,D} \). It does not mean that one is necessarily trying to communicate solely i.i.d. \(X \) sources over the channel using uncoded transmission. Intuitively, one can think of a channel \(\in C_{X,D} \) as follows: most \(p_x \)-typical sequences of length \(n \) are usually distorted to within a distortion \(nD \). Channels \(\in C_{X,D} \) will be called channels that directly communicate an i.i.d. \(X \) source to within a distortion level \(D \).

The process of communication: Block codes will be used for communication with block length \(n \). The channel input space \(\mathcal{X}^n \), is the cartesian product of \(\mathcal{X} \), \(n \) times. \(\mathcal{X}^n = \{ x_1, x_2, \ldots, x_{|\mathcal{X}|^n} \} \). The channel output space \(\mathcal{Y}^n \), is the cartesian product of \(\mathcal{Y}^n \), \(n \) times. \(\mathcal{Y}^n = \{ y_1, y_2, \ldots, y_{|\mathcal{Y}|^n} \} \). If we want to communicate at rate \(R \), the message set is \(\mathcal{M}^n = \{ 1, 2, \ldots, 2^{nR} \} \). The message reproduction set \(\hat{\mathcal{M}}^n \) is the same as \(\mathcal{M}^n \). A deterministic encoder is a map \(e^n : \mathcal{M}^n \rightarrow \mathcal{X}^n \) and similarly, a deterministic decoder is a map \(d^n : \mathcal{Y}^n \rightarrow \hat{\mathcal{M}}^n \). Deterministic encoder-decoders will be denoted as d-encoder-decoders. A stochastic-coupled sc-encoder-decoder is the same as a random code. The encoder comes from a family of codes and the decoder has access to the realization of the encoder through common randomness — that is the encoder and decoder have access to a shared random variable of sufficient entropy. We do not worry here about how much common randomness is used. For a given block length, stochastic-coupled encoder-decoders will be denoted by \((e^n,d^n) \) and overall by \((e,d) = < e^n,d^n >^\infty \).

Universal capacity: Consider a compound set of channels \(\mathcal{A} \). Consider a uniform distribution \(M^n \) on \(\mathcal{M}^n \) so \(p_{M^n}(m) = \frac{1}{2^m} \forall m \in \mathcal{M}^n \). Each composition of the \(M^n \), encoder, channel from \(\mathcal{A} \) and decoder results in an output random variable \(\hat{M}^n \) on \(\hat{\mathcal{M}}^n \). This induces a joint probability distribution \(p_{M^n\hat{M}^n} \) on the message-message reproduction space \(\mathcal{M}^n \times \hat{\mathcal{M}}^n \). Rate \(R \) is universally achievable over \(\mathcal{A} \) under the average block error probability criterion if there exist encoder-decoder pairs such that under this joint probability distribution, \(\Pr(\hat{M}^n \neq M^n) \rightarrow 0 \) as \(n \rightarrow \infty \) for each channel in \(\mathcal{A} \). The randomness of the message and the randomness in the encoder-decoder are presumed to be independent of the channel. The *supremum of achievable rates is called the universal channel capacity* \(C_{sc}(\mathcal{A}) \).

\[
2^{nR} \text{ messages } \mathcal{M}^n. \text{ Uniform distribution } M^n \text{ on } \mathcal{M}^n \xrightarrow{\mathcal{C}^n} \text{ } e^n \in \mathcal{A} \xrightarrow{d^n} \hat{\mathcal{M}}^n
\]

rate \(R \) reliably achievable iff \(\Pr(\hat{M}^n \neq M^n) \rightarrow 0 \) as \(n \rightarrow \infty \) for any \(c \in \mathcal{A} \).

The channel set \(\mathcal{A} \) can be interpreted as an adversary and in particular \(C_{X,D} \) is an adversary about which something specific is known. One can ask the question of universal capacity of \(\mathcal{A} \) by restricting the set of encoders and decoders to be d or sc, and in general, one will get two different answers. *Error criteria different from \(\Pr(\hat{M}^n \neq M^n) \rightarrow 0 \) as \(n \rightarrow \infty \), also exist, but they will not be considered in this paper.*
Source-code and operational rate-distortion function: The source-coding problem is to code an i.i.d. \(X \) source to within a distortion level \(D \) in the sense of (1) while using the smallest rate possible to do so. The goal is to find a deterministic mapping whose output has the minimum cardinality and hence the smallest possible rate. See [9] for a precise statement. The minimum possible rate is called the operational rate-distortion function and is denoted by \(R_X(D) \).

The two problems between which we will see that there is a close connection:

- Universal Capacity of \(C_{X,D} \) and
- Source coding i.i.d. \(X \) to within a distortion level \(D \)

That the set of all (potentially random) source-codes which code an i.i.d. \(X \) source to within a distortion level \(D \) is the same as \(C_{X,D} \) is the reason why these two questions are closely connected.

III. \(C_{sc}(C_{X,D}) = R_X(D) \): CONNECTION BETWEEN SOURCE AND CHANNEL-CODING

\[\text{Theorem 3.1: } C_{sc}(C_{X,D}) = R_X(D) \]

Proof: First proved in [7]. We give another proof here that directly shows the close connections between the source-coding and channel-coding questions. The proof consists of two steps:

- A rate-distortion source-code can be interpreted as a particularly “bad” channel. The capacity of this “bad” channel is capped at \(R_X(D) \) by a simple cardinality bound. Thus, \(C_{sc}(C_{X,D}) \leq R_X(D) \).
- There is a random-coding scheme for which rates \(< \alpha \) are achievable for \(C_{X,D} \). Since there might be another scheme which performs even better, \(C_{sc}(C_{X,D}) \geq \alpha \).

Similarly, there is a coding-scheme for which rates \(> \alpha \) are achievable for the source-coding problem. There might be another scheme which performs even better and so \(R_X(D) \leq \alpha \). Thus, \(R_X(D) \leq \alpha \leq C_{sc}(C_{X,D}) \).

For \(R_X(D) \geq C_{sc}(C_{X,D}) \), only a little more detail is needed. Consider a “good” rate-\(R_X(D) \) source-code. Now this source-code is a channel \(\in C_{X,D} \) with no more than \(2^{nR_X(D)} \) possible outputs. Thus, the capacity of this channel \(\leq R_X(D) \) because if we try to communicate at rate \(> R_X(D) \), “many” codewords will get mapped to the same output sequence. This argument can be made precise (but longer) using standard techniques and proves \(C_{sc}(C_{X,D}) \leq R_X(D) \).

Next, we prove \(R_X(D) \leq C_{sc}(C_{X,D}) \) using parallel random coding arguments, placing those for channel-coding and source-coding side by side to see the connection. See below:

\(C_{sc}(C_{X,D}) \) Achievability	\(R_X(D) \) Achievability
Codebook generation: Generate \(2^{nR} \) codewords i.i.d. \(p_X \)	Codebook generation: Generate \(2^{nR} \) codewords independently of each other, each with precise type \(q_Y \)
\(q_Y \) is some prob. distribution on \(Y \)	
This is the codebook \(\mathcal{K} \). Note: Codewords \(\in X^n \)	This is the codebook \(\mathcal{L} \). Note: Codewords \(\in Y^n \)
Joint Typicality: Let \(\epsilon > 0 \). \((x, y) \) jointly typical if	Joint Typicality: Let \(\epsilon > 0 \). \((x, y) \) jointly typical if
i. \(x \) \(\epsilon \)-typical: \(p_x \in T(p_X, \epsilon) \)	i. \(x \) \(\epsilon \)-typical: \(p_x \in T(p_X, \epsilon) \)
ii. \(\frac{1}{n} \sum_{i=1}^{n} d(x(i), y(i)) \leq D \)	ii. \(\frac{1}{n} \sum_{i=1}^{n} d(x(i), y(i)) \leq D \)
\(y \) is output of a channel \(\in C_{X,D} \)	iii. \(q_Y = q_Y \)
Thus, there is no restriction on \(q_Y \) or \(q_{Y	x} \)
\(x \in \mathcal{K} \) will denote transmitted codeword	Thus, iii above is redundant.
\(y \in \mathcal{Y}^n \) will denote received sequence	\(x \in X^n \) will denote sequence to be source-coded
\(z \in \mathcal{K} \) will denote non-transmitted codeword	\(y \in L \) will denote a codeword
Decoding strategy:	Encoding strategy:
If \(\exists \) unique \(x \in \mathcal{K} \) such that \((x, y) \) jointly typical declare \(x \) is transmitted. Else declare error.	If \(\exists \) some \(y \in L \) such that \((x, y) \) jointly typical encoder \(x \) to one such \(y \). Else declare error.
Error events:	Error events:
\(E_1: (x, y) \) not \(\epsilon \)-jointly typical	\(F_1: x \) not \(\epsilon \)-typical
\(E_2: \exists z \neq x \in \mathcal{K} \) such that	\(F_2: \exists y \in L \) such that
Thus, as
\[\Pr(\mathcal{F}_1) \rightarrow 0 \text{ as } n \rightarrow \infty \text{ by WLLN.} \]
Analysis of \(\Pr(\mathcal{F}_2): \)
\[y \text{ is generated with precise type } q_Y \text{ independently of } x \]
The calculation required is the following:
Calculate probability that \((z, y) \) jointly typical
given that \(x \) is typical
Take best case over \(q_Y \)
Best case: maximize probability that encoding is possible
Thus, as \(\epsilon \rightarrow 0 \), \(q_Y \) for both problems is same
Thus, answer to both calculations is same: call it \(F(n) \)
Now, take a bound for whole codebook
If \((1 - F(n))^{2^nR} \rightarrow 0 \text{ as } n \rightarrow \infty \), rate \(R \) is achievable

Now, it turns out that \((1 - F(n))^{2^nR} \) exhibits a tight phase-transition as \(n \) gets large. Make \(R \) a little bigger and it goes to 0 and a little smaller and it goes to 1. It follows that there is a threshold \(\alpha \) such that all rates \(< \alpha \) are achievable for the channel-coding problem and all rates \(\geq \alpha \) are achievable for the source-coding problem. Thus, \(R_X(D) \leq \alpha \leq C_{sc}(C_{X,D}). \)

Notice that this argument does not have to do any calculations for either capacity or the rate-distortion function. We just use the operational definition of capacity as the maximum rate of reliable communication and the operational definition of the rate-distortion function as the minimum rate required to source-code \(X \) to within a distortion \(D \).

IV. Universal source-channel separation theorem for rate-distortion assuming common randomness

In this section, we prove a universal source-channel separation theorem in the rate-distortion context, where universality is over the channel. We also see an operational, direct view of source-channel separation for rate-distortion.

Universal lossy communication to within a distortion \(D \) over a channel set \(\mathcal{A} \): Channel set \(\mathcal{A} \) is said to be capable of universally communicating an i.i.d. \(X \) source to within a distortion level \(D \) if there exist encoder-decoders \(e =< e^n >^n_{i=1}, < d^n >^n_{i=1} \) such that all the composite channels (the composition of encoder, channel from \(\mathcal{A} \), and decoder) \(< d^n \circ e \circ e^n >^n_{i=1} \), directly communicate an i.i.d. \(X \) source to within a distortion \(D \), for all \(c =< c^n >^n_{i=1} \in \mathcal{A} \). In other words, \(d \circ e \circ e \in C_{X,D} \) for all \(c \in \mathcal{A} \).

The composite channel set \{ \(d \circ e \circ e : c \in \mathcal{A} \) \} will be denoted by \(d \circ e \circ e \).

Theorem 4.1 (Universal source-channel theorem for rate-distortion (USCS)): Assuming there is common randomness, in order to communicate i.i.d. \(X \) to within a distortion level \(D \) universally over a channel set \(\mathcal{A} \), it is sufficient to consider architectures which first source code the source to within a distortion level \(D \) followed by universal reliable channel coding over \(\mathcal{A} \).

Proof: Let \(\mathcal{A} \) be a channel set. Consider the following three statements.
\(S_1 : C_{sc}(\mathcal{A}) > R_X(D). \quad S_1^* : C_{sc}(\mathcal{A}) \geq R_X(D). \quad S_2 : \mathcal{A} \text{ is capable of universally communicating an i.i.d. \(X \) source to within a distortion } D \text{ using an sc-encoder-decoder.} \)

Proof of \(S_1 \Rightarrow S_2 \) is the usual argument of source-coding followed by channel-coding. Roughly, source-code the i.i.d. \(X \) source. The output of the source-code is a message set of cardinality \(2^nR_X(D) \) with a probability distribution on it. Communicate the message universally, reliably over \(\mathcal{A} \) with an sc-encoder-decoder. This proof is rough, but since everything involved is standard, a precise proof is omitted. This completes the proof of \(S_1 \Rightarrow S_2 \).
To prove $S_2 \Rightarrow S_1^*$: We will keep referring to the figure below which gives a step by step view of the argument. A (black rectangle) is capable of universally communicating i.i.d. X to within a distortion D with an encoder-decoder, there is reliable communication across \mathcal{S}_d encoder-decoder. So there exists an encoder-decoder $e_b = e_b^{(1)} >_1^{\infty}$, $d_a = d_a^{(1)} >_1^{\infty}$ such that with this encoder-decoder, there is reliable communication across \mathcal{S}_d (magenta rectangle). Now, $d_b \circ \mathcal{S}_d \circ e_b = d_b \circ d_a \circ A \circ e_a = (d_b \circ d_a) \circ A \circ e_a$ is an encoder-decoder pair (red rectangles) that achieve universal reliable communication over A. Thus, $\mathcal{S}_{uc}(A) \geq R_X(D)$. This proves $S_2 \Rightarrow S_1^*$. Theorem 4.1 follows.

One gets the following layered architecture for reliable communication: an architecture for reliable communication built “on top of” an architecture for communication to within a distortion D. See figure above. $d_b \circ c \circ e_a$ is the architecture for communication to within a distortion D (blue rectangle), and an architecture for reliable communication, using encoder-decoder e_b, d_b is built “on top of” it (magenta rectangle). This is a “direct” reduction of the reliable communication problem to the problem of “communication to within a distortion $D”. The view is operational because the proofs of Theorems 3.1 and 4.1 are operational. We believe that the USCS perspective might be useful in network problems.

V. CONCLUSION

The results in this paper imply that there are natural equivalence relationships among communication problems. Here, the equivalence is shown by explicit reductions from one problem to another in a spirit analogous to [10]. In light of this, the traditional mutual-information characterization of rate can be viewed as a kind of key “invariant” that labels the equivalence classes. The implication is that if common-randomness is available, then there is nothing sacred about the traditional layering: source-coding followed by reliable communication over channels. Instead, the inner layer could just as well be something that is only guaranteed to communicate e.g. an asymmetric ternary source with $P(a) = 2P(b) = 3P(c) = 1/6$ to within Hamming distortion $1/6$. There will be no loss of optimality by forcing this seemingly bizarre architecture.

However, it turns out that the common-randomness is really critical: in general for any Theorem 3.1 style universal reduction of a reliable communication problem to one with non-zero distortion, a significant amount of common-randomness is required [11]. This suggests that there might be something special about the traditional layering after all: no additional common-randomness is required if the inner layer gives a reliable communication guarantee. Furthermore, it suggests that there might be other interesting “invariants” out there besides the rate-distortion function even for the simple stationary memoryless sources with additive distortion measures considered here.

REFERENCES

[1] C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” IRE National Convention Record, vol. 7, no. 4, pp. 142-163, 1959.
[2] S. Vembu, S. Verdu and Y. Steinberg, “The Source-Channel Separation Theorem Revisited,” IEEE Tran. Info. Th., Vol. 41, No. 1, Jan 1995.
[3] S. S. Pradhan, J. Chou and K. Ramchandran, “Duality between source coding and channel coding and its extension to the side information case,” IEEE Tran. Info. Th., Vol. 49, No. 5, May 2003.
[4] M. Chiang and T. M. Cover, “Duality between channel capacity and rate-distortion with two-sided state information,” IEEE Tran. Info. Th., June 2002.
[5] I. Csiszar, “Joint source-channel error exponent,” Problems of Control and Information Theory, Vol. 9, pp 313–328, 1980.
[6] S. Verdu and T. S. Han, “A general formula for channel capacity,” IEEE Tran. Info. Th., vol. 40, no. 4, pp. 1147-1157, July 1994
[7] M. Agarwal, A. Sahai, S. Mitter, “Coding into a source: A direct inverse rate-distortion theorem” in proceedings 44th Allerton conference, 2006.
[8] Y. Lomnitz and M. Feder, “Communication over individual channels” in ISIT, 2009.
[9] I. Csiszar and J. Kornel, "Information theory: coding theorems for the discrete memoryless channel,” 1981.
[10] A. Sahai and S.K. Mitter, “The necessity and sufficiency of anytime capacity for stabilization of a linear system over a noisy communication link. Part I: scalar systems,” *IEEE Tran. Info. Th.*, Vol. 52, No. 8, Aug 2006.

[11] M. Agarwal, S. Kopparty, S. Mitter, “The universal capacity of channels with given rate-distortion in the absence of common randomness,” *in proceedings 47th Allerton conference*, 2009.