An Incremental System To Predict the Effect of Different London Dispersion Donors in All-meta-Substituted Azobenzenes

Chiara Di Berardino, Marcel A. Strauss, Dominic Schatz, and Hermann A. Wegner*

Abstract: Predictive models based on incremental systems exist for many chemical phenomena, thus allowing easy estimates. Despite their low magnitude in isolated systems London dispersion interactions are ubiquitous in manifold situations ranging from solvation to catalysis or in biological systems. Based on our azobenzene system, we systematically determined the London dispersion donor strength of the alkyl substituents Me, Et, iPr up to tBu. Based on this data, we were able to implement an incremental system for London dispersion for the azobenzene scheme. We propose an equation that allows the prediction of the effect of change of substituents on London dispersion interactions in azobenzenes, which has to be validated in similar molecular arrangements in the future.

Chemical processes are in general governed by the interactions between all participating entities. Established models help to predict these interactions and, hence, the outcome of, for example, a reaction. Despite the development of computational methods and the ever-increasing accuracy, such intuitive models are still the basis for the design process of molecular scientists. One very successful concept in this regard is the frontier molecular orbital (FMO) theory, which allows straightforward analysis of transformations simply with pen and paper. Weaker interactions, such as van der Waals and in particular the attractive part, London dispersion, are much more difficult to predict. Therefore, it is not surprising that the concept is rarely covered in basic organic textbooks as it is reverse to the concept of steric repulsion.

Although the theory behind London dispersion was proposed more than 80 years ago, efforts to quantify this effect have only recently been intensified. Experimentally, different molecular systems have been designed to address the challenge of “measuring” such small interactions, such as London dispersion. Torsion balances applied by Wilcox or Cockroft use the reversible rotation around a single bond to compare the interactions of different entities. The conformational preference controlled by dispersion interactions between different groups is also the principle for systems based on cyclooctatetraene or thiobarbiturate. Alternatively, dissociative concepts such as the proton-bound N-heterocyclic dimers prepared by Chen or equilibrating titanium complexes also allow the strengths of different London dispersion donors to be compared.

In our group, we established the azobenzene molecular switch as efficient tool to quantify these small-energy interactions. Therewith, we could show that the larger the substituent on the azobenzene, the larger the attraction due to London dispersion. However, with longer n-alkyl chains, entropy counteracts the effect and an ideal length of four carbons (n-butyl) to maximize London dispersion interactions was determined. Furthermore, we screened various alkane solvents and could qualitatively show their effect on the London dispersion interactions.

Although the general attractive effect of London dispersion donors is accepted, their application as design parameters for chemical processes is still hampered by the lack of a handy scale, which would allow a structural alteration on London dispersion to easily be predicted. One reason why such a scale is still missing can be assigned inter alia to the high distance dependency of dispersion forces. However, the azobenzene, with its standardized distance in combination with the easy synthetic accessibility, is ideally suited to provide the necessary data, allowing such an incremental system to be established for London dispersion.

The systematic independent variation of the substituents at either phenyl ring allows the interdependence of structural changes of each group to be determined (Scheme 1). This...
analysis is based on the Arrhenius equation [Eq. (1)], by which we can correlate the relative changes in the activation barrier for different all-meta alkyl substituted azobenzenes with the interaction strength of the groups attached.

\[k = A \cdot e^{-\frac{E_A}{RT}} \]

The electronic structure of these azobenzenes is not significantly altered, neither does the isomerization mechanism change for this special type of compounds, as we could demonstrate by an Exner plot in a previous study.\[11]\] Therefore, we can assume a constant pre-exponential factor \(A \), allowing the relative changes to be related to a standard compound with the following equation [Eq. (2)] at a constant temperature \(T \).

\[\frac{\ln(k_1)}{\ln(k_2)} = \frac{E_{A1}}{E_{A2}} \]

With a known activation energy of one of the compounds, all the others could be estimated for a given temperature. 3,3',5,5'-Tetramethylazobenzene (1) should serve as the reference compound. The experimental value for \(\Delta G^\ddagger \) for the thermal \(Z \rightarrow E \) isomerization determined in previous studies, for example, for 1 can easily be adjusted to other temperatures.

To obtain the necessary data, the groups \(R^1 \) and \(R^2 \) were varied from Me to Et to \(iPr \) to \(tBu \), as shown in Scheme 2. The synthesis was done according to the established routes (see the Supporting Information for details). With the compounds in hand the kinetic measurements were performed. In order to compare the results with previous studies in our lab and to realize a reasonable backreaction rate the measurements were conducted at 40°C in \(n \)-octane. By using time resolved UV-Vis spectroscopy at a constant temperature, the rate constants and half-lives for the \(Z \rightarrow E \) isomerization of the synthesized azobenzenes were determined.

As expected from previous studies,\[11,12]\] the results clearly show the slower thermal \(Z \rightarrow E \) isomerization for the investigated azobenzenes 1–10 with increasing size of the substituents (Figure 1). It is also evident that for the asymmetric derivatives the \(Z \rightarrow E \) isomerization proceeds faster than for their constitutional isomers with a symmetrical substitution pattern. This can clearly be seen by the comparison of 3 to 4 or 7 to 8. Also, for the derivatives 5 and 6, which are also constitutional isomeric azobenzene, a longer half-life is observed for compound 5 with a more similar sized substitution pattern (Et→\(iPr \) vs. Me→\(tBu \)).

In general, our results show that methyl groups are having the smallest impact on stabilizing London dispersion interactions. With the above presented equation, the Gibbs activation energies for the \(Z \rightarrow E \) isomerization were calculated (Table 1). The differences in the calculated Gibbs activation energies of 3 and 4, 5 and 6 or 7 and 8 vary between 0.2 and 0.6 kcal mol\(^{-1}\). These results illustrate the increased stabilizing contributions in symmetrical azobenzenes due to higher attraction of the pairwise increased London dispersion interactions. If a CH\(_2\) group in a symmetric azobenzene is formally swapped from one substituent to one on the opposing phenyl ring, it will be positioned at a larger distance from the center of the molecule. Although the substituents can rotate, in average the interaction distance is slightly increased, leading to less attractive dis-
per interactions and, therefore, to a faster thermal Z→E isomerization for the asymmetric azobenzenes.

This distance dependency can also be illustrated by the comparison of the half-lives of 7 and 10 with their constitutional isomers with n-propyl and n-butyl substituents. The compounds 7 and 10 with the more compact substituents have half-lives of 55.1 and 156 h, whereas the ones with the flexible linear n-alkane chains have half-lives of 26.6 and 30.47 h, respectively. In an iso-propyl or a tert-butyl group, the carbon atoms are in average closer to each other. Hence, the dispersion interactions show less anisotropic behavior between the branched alkyl chains (iPr, tBu) than for the corresponding linear chains (nPr, nBu).

Additionally, we correlated the structural parameters of the Z isomer with the thermal isomerization to the E isomer. The results partly reproduce the observed kinetics. Because only the most stable conformers were computed by our approach (for details see the Supporting Information), derivatives with substituents; this prevents any further approach of the opposing aryl rings. Therefore, attractive long-range interactions from the more remote areas of the molecule become more important for its stabilization.

Additionally, a local energy decomposition (LED) analysis has been performed. Also here, the contribution of London dispersion interactions increases with increasing number of CH₂ units relatively to other contributions such as exchange energy or electrostatics (Figure 3).

A correlation of the activation energies for the Z→E isomerization of the azobenzenes 1–10 with the number of C–H contacts of a constant substituent R¹ with varying R² allows us to extrapolate the stabilizing contributions for each CH₂ group added to the substituent R¹ (Figure 4). These results show a high linear correlation and provide a possibility to actually assign a value for each dispersion energy donor in this azobenzene system. In this way, we can deduce from the slope of this graph that each C–H contact with a tert-butyl group contributes about ~0.70 kcal mol⁻¹ to the stabilization of the Z isomer (Table S3 in the Supporting Information). The same procedure can be repeated for an iso-propyl, ethyl or methyl group as reference leading to expected lower stabilizing contributions of 0.61, 0.60, and 0.54 kcal mol⁻¹, respectively.

As, apart from alkyl–alkyl interactions, alkyl–aryl interactions also play an important role for the stabilization of these meta-

Table 1. Rate constants k and activation energies (ΔG°298) of the thermal Z→E isomerization of compounds 1–10 in n-octane and comparison with computed thermodynamic parameters (ΔH°298, ΔS°298). Energies and enthalpies are given in kcal mol⁻¹ and k values in s⁻¹.

Cpd	Experimental k [10⁻¹²]	ΔG°298 [kcal/mol]	Computed ΔH°298 [kcal/mol]	Computed ΔS°298 [cal K⁻¹ mol⁻¹]
1	2.857 × 10⁻² ± 2 × 10⁻³	24.9 ± 0.3	10.40	10.30
2	1.72 × 10⁻¹ ± 1 × 10⁻²	26.1 ± 0.4	9.39	9.89
3	9.98 × 10⁻¹ ± 4 × 10⁻²	27.4 ± 0.4	8.31	10.42
4	1.073 × 10⁻¹ ± 9 × 10⁻²	27.2 ± 0.4	9.55	9.88
5	5.74 × 10⁻¹ ± 2 × 10⁻²	28.7 ± 0.4	8.20	9.54
6	7.29 × 10⁻¹ ± 2 × 10⁻²	28.1 ± 0.4	9.28	9.39
7	3.49 × 10⁻¹ ± 2 × 10⁻²	29.8 ± 0.4	7.98	9.08
8	3.98 × 10⁻¹ ± 3 × 10⁻²	29.6 ± 0.4	7.70	9.40
9	2.32 × 10⁻¹ ± 3 × 10⁻²	30.8 ± 0.4	7.71	8.78
10	1.23 × 10⁻¹ ± 2 × 10⁻²	32.3 ± 0.5	7.44	8.63

[a] At 40°C. [b] Computed with the lowest-energy conformer at the [DLPNO-CCSD(T)/def2-TZVP/PBE0-D3BJ/def2-TZVP] level[14,15,16] at 25°C.
substituted azobenzenes, increasing one substituent already leads to longer half-lives. If ethyl instead of methyl is chosen as R, we observe an additional increase of 0.06 kcal mol$^{-1}$ of the activation barrier for each CH$\text{}_2$ group added to R. For an iso-propyl group as R, only a marginal increase is detected. This can be attributed to the rotatability of these substituents. If a CH$_3$ group of the iso-propyl substituent on one side is positioned closer to the center of the molecule, the CH$_3$ groups on the other part will give way by rotation (Figure 2). For tert-butyl as R, this effect is eliminated due to its symmetry, leading to a total of 0.16 kcal mol$^{-1}$ increase of the activation barrier for each CH$_2$ group added to R. This would mean an additional stabilizing contribution by alkyl–alkyl interactions in the range of about 0.05 kcal mol$^{-1}$ per added CH$_3$ group.

By combining all this information, the following equation [Eq. (3)] for an incremental system for this specific molecular arrangement can be formulated to estimate the activation energy $\Delta G^*_{Z\rightarrow E}$:

$$\Delta G^*_{Z\rightarrow E} \approx 25 \text{ kcal mol}^{-1} + 0.6 \text{ kcal mol}^{-1} \times 2 (X^1 + X^2) \quad (3)$$

Here, X^1 is the number of CH$_2$ fragments in addition to CH$_3$ in R, and X^2 is the number of CH$_3$ fragments in addition to CH$_3$ in R.

Each additional CH$_3$ fragment adds ~ 0.6 kcal mol$^{-1}$ stabilization energy relative to the reference compound 1 ($R^1 = R^2 = \text{CH}_3$). As each phenyl unit in the azobenzene test system bears two R groups, this term is multiplied by 2. This equation delivers approximate values, which are [with one exception (Me/tBu)] all within experimental error.

Figure 4. Linear interpolation of the activation energy for the thermal $Z \rightarrow E$ isomerization of 1–10 against the total number of additional CH$_2$ groups in the alkyl substituent R for different substituents R.

Conclusion

Herein, we have formulated for the first time an incremental system to estimate the strength of different London dispersion donors based on the azobenzene system. The scale originates from a systematic measurement of the thermal $Z \rightarrow E$ isomerization of differently substituted (Me, Et, iPr, tBu) azobenzenes. The observed linear relationship of the half-lives with increasing size of the substituents allowed a proposal for an equation proving a reasonable assessment of the London dispersion interactions of these substituents. Such a system will be of great value for all scientists relying on the reciprocal effects of different molecular entities and will have to be validated for other arrangements in the future.

Acknowledgements

The authors thank the DFG (SPP 1807) for funding and Heike Hausmann (Institute of Organic Chemistry, Justus Liebig University, Giessen) for NMR measurements. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: azobenzene · kinetics · London dispersion · molecular switches · weak interactions

[1] K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 1952, 20, 722–725.

[2] J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274–12296; Angew. Chem. 2015, 127, 12446–12471.

[3] F. London, Z. Phys. 1930, 63, 245–279.

[4] a) A. Elmi, S. L. Cockroft, Acc. Chem. Res. 2021, 54, 92–103; b) M. Giese, M. Albrecht, ChemPlusChem 2020, 85, 715–724; c) F. Holtrop, K. W. Visscher, A. R. Jupp, J. C. Sootweg, Adv. Phys. Org. Chem. 2020, 54, 119–141; d) M. A. Strauss, H. A. Wegner, Eur. J. Org. Chem. 2019, 295–302; e) D. Liptrot, P. Power, Nat. Chem. Rev. 2017, 1, 0004; f) J. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274–12296; Angew. Chem. 2015, 127, 12446–12471.

[5] a) E. Kim, S. Paliwal, C. S. Wilcox, J. Am. Chem. Soc. 1998, 120, 11192–11193; b) S. Paliwal, S. Geib, C. S. Wilcox, J. Am. Chem. Soc. 1994, 116, 4497–4498.

[6] a) L. Yang, C. Adam, S. L. Cockroft, J. Am. Chem. Soc. 2015, 137, 10084–10087; b) L. Yang, C. Adam, G. S. Nichol, S. L. Cockroft, Nat. Chem. 2013, 5, 1006–1010.

[7] a) J. E. Anderson, P. A. Kirsch, J. Chem. Soc. Perkin Trans. 2 1992, 1951; b) L. A. Paquette, G. J. Hefferon, R. Samodral, Y. Hanazawa, J. Org. Chem. 1983, 48, 1262–1266; c) M. H. Lyttle, A. Streitwieser, R. Q. Kluttz, J. Am. Chem. Soc. 1981, 103, 3232–3233; d) J. M. Schümann, J. P. Wagner, A. K. Eckhardt, H. Quanz, P. R. Schreiner, J. Am. Chem. Soc. 2021, 143, 41–45.

[8] U. Berg, I. Pettersson, J. Org. Chem. 1987, 52, 5177–5184.

[9] a) R. Pollice, F. Fleckenstein, I. Shenderovich, P. Chen, Angew. Chem. Int. Ed. 2019, 58, 14281–14288; Angew. Chem. 2019, 131, 14419–14426; b) R.
[10] M. Albrecht, S. Mirtschin, M. de Groot, I. Janser, J. Runsink, G. Raabe, M. Kogej, C. A. Schalley, R. Fröhlich, J. Am. Chem. Soc. 2005, 127, 10371–10387.

[11] L. Schweighauser, M. A. Strauss, S. Bellotto, H. A. Wegner, Angew. Chem. Int. Ed. 2015, 54, 13436–13439; Angew. Chem. 2015, 127, 13636–13639.

[12] M. A. Strauss, H. A. Wegner, Angew. Chem. Int. Ed. 2019, 58, 18552–18556; Angew. Chem. 2019, 131, 18724–18729.

[13] M. A. Strauss, H. A. Wegner, Angew. Chem. Int. Ed. 2021, 60, 779–786; Angew. Chem. 2021, 133, 792–799.

[14] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465; c) C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101.

[15] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

[16] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.

[17] C. Y. Legault, CYLview, 2009, Université de Sherbrooke, Québec, Canada, can be found under http://www.cylview.org.