Split extension classifiers in the category of cocommutative Hopf algebras

Marino Gran
Université catholique de Louvain

joint work with G. Kadjo, F. Sterck and J. Vercruysse

Category Theory 2019
University of Edinburgh
13 July 2019
Outline

“Abelian” versus “semi-abelian”

Cocommutative Hopf algebras

Split extension classifiers

A description in the case of Hopf algebras
Outline

“Abelian” versus “semi-abelian”

Cocommutative Hopf algebras

Split extension classifiers

A description in the case of Hopf algebras
“Abelian” versus “semi-abelian”

Definition
A category \mathcal{C} is abelian if

- \mathcal{C} has a 0-object
- \mathcal{C} has finite products
- any arrow f in \mathcal{C} has a factorisation $f = i \circ p$

where p is a normal epi and i is a normal mono.
Ab is the typical example of abelian category:

- Ab has a 0-object: the trivial group \(\{0\} \)
- Ab has finite products
- any homomorphism \(f \) in Ab has a factorisation \(f = i \circ p \)

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{p} & & \downarrow{i} \\
\rightarrow{f(X)} & & \\
\end{array}
\]

where \(p \) is a surjective homomorphism (= normal epi) and \(i \) is an inclusion as a normal subgroup (= normal mono).
Grp is not abelian:

- Grp has a 0-object: the trivial group
- Grp has finite products
- Problem: an arrow f in Grp does not have a factorisation $f = i \circ p$

With p a surjective homomorphism and i an inclusion as a normal subgroup.
Question: is there a list of simple axioms to develop a unified treatment of the categories Grp, Rng, Lie_K, ...?
Question: is there a list of simple axioms to develop a unified treatment of the categories Grp, Rng, Lie_K, ... ?

S. Mac Lane, Duality for groups, Bull. Amer. Math. Soc. (1950)
Several proposals of “non-abelian contexts” for

radical theory:
S. A. Amitsur (1954), A.G. Kurosh (1959)

non-abelian homological algebra:
A. Frölich (1961), M. Gerstenhaber (1970), G. Orzech (1972)

commutator theory:
P. Higgins (1956), S.A. Huq (1968), etc.
Definition (G. Janelidze, L. Márki, W. Tholen, JPAA, 2002)

A finitely complete category \mathcal{C} is semi-abelian if

1. \mathcal{C} has a 0-object
2. \mathcal{C} has $A + B$
3. \mathcal{C} is (Barr)-exact
4. \mathcal{C} is (Bourn)-protomodular:

\[0 \rightarrow K \xrightarrow{k} A \xleftarrow{f} B \]
\[\downarrow u \quad \downarrow v \quad \downarrow w \]
\[0 \rightarrow K' \xrightarrow{k'} A' \xleftarrow{f'} B' \]

u, w isomorphisms $\Rightarrow v$ isomorphism.
Examples
Grp, Rng, Lie$_K$, XMod (more generally, any variety of Ω-groups)
Examples
Grp, Rng, Lie_K, XMod (more generally, any variety of Ω-groups)

Loop, Grp(Comp), Set^op, Heyt, etc.
Examples
Grp, Rng, Lie_k, XMod (more generally, any variety of \(\Omega\)-groups)

Loop, Grp(Comp), Set^op, Heyt, etc.

\[\text{[} C \text{ is abelian } \iff [C \text{ and } C^\text{op} \text{ are semi-abelian}]! \]
Examples
Grp, Rng, Lie$_K$, XMod (more generally, any variety of Ω-groups)

Loop, Grp(Comp), Set$_{\ast}^{\text{op}}$, Heyt, etc.

[\mathcal{C} is abelian] \iff [\mathcal{C} and \mathcal{C}^{op} are semi-abelian]!

Many new connections have been discovered between semi-abelian (co)homology and commutator theory in universal algebra.
Outline

“Abelian” versus “semi-abelian”

Cocommutative Hopf algebras

Split extension classifiers

A description in the case of Hopf algebras
Let K be a field.

Bialgebras

A K-bialgebra $(A, m, u, \Delta, \epsilon)$ is both a K-algebra (A, m, u) and a K-coalgebra (A, Δ, ϵ), where m, u, Δ, ϵ are linear maps such that

\[
\begin{align*}
A \otimes A \otimes A & \xrightarrow{1_A \otimes m} A \otimes A \\
A \otimes A & \xrightarrow{m} A
\end{align*}
\]

and

\[
\begin{align*}
A & \xrightarrow{\Delta} A \otimes A \\
A \otimes A & \xrightarrow{1_A \otimes \Delta} A \otimes A \otimes A
\end{align*}
\]

\[
\begin{align*}
A \otimes K & \xrightarrow{1_A \otimes \epsilon} A \otimes A \\
A & \xleftarrow{\epsilon \otimes 1_A} K \otimes A
\end{align*}
\]

and

\[
\begin{align*}
A \otimes A & \xrightarrow{1_A \otimes \epsilon} A \otimes A \\
A & \xleftarrow{\epsilon \otimes 1_A} K \otimes A
\end{align*}
\]

commute, and m and u are K-coalgebra morphisms.
A Hopf algebra \((A, m, u, \Delta, \epsilon, S)\) is a \(K\)-bialgebra with an antipode, a linear map \(S: A \to A\) making the following diagram commute:

\[
\begin{array}{ccc}
A \otimes A & \xrightarrow{1_A \otimes S} & A \otimes A \\
\Delta \downarrow & & \downarrow S \otimes 1_A \\
A & \xrightarrow{\epsilon} & K \\
\end{array}
\]

\[
\begin{array}{ccc}
A & \xrightarrow{m} & A \\
\downarrow \epsilon & & \downarrow u \\
K & & A
\end{array}
\]
A Hopf algebra \((A, m, u, \Delta, \epsilon, S)\) is a \(K\)-bialgebra with an antipode, a linear map \(S: A \to A\) making the following diagram commute:

\[
\begin{array}{ccc}
A \otimes A & \xrightarrow{1_A \otimes S} & A \otimes A \\
\Delta & & \Delta \\
A & \xrightarrow{\epsilon} & K & \xrightarrow{u} & A
\end{array}
\]

\((A, m, u, \Delta, \epsilon, S)\) is cocommutative if the following triangle commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{\Delta} & A \\
& \xleftarrow{\Delta} & \\
A \otimes A & \xrightarrow{tw} & A \otimes A
\end{array}
\]

In Sweedler’s notations : \(\Delta(a) = a_1 \otimes a_2 = a_2 \otimes a_1\), for any \(a \in A\).
Example
Any group G gives the group-algebra

$$K[G] = \left\{ \sum_{g} \alpha_{g} g \mid g \in G, \right\},$$

which becomes a cocommutative Hopf algebra with

$$\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1}.$$
Example
Any group G gives the group-algebra

$$K[G] = \{ \sum g \alpha_g \mid g \in G, \},$$

which becomes a cocommutative Hopf algebra with

$$\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1}.$$

In the category $\text{Hopf}_{K,\text{coc}}$ of cocommutative Hopf algebras there is the full subcategory

$$\text{GrpHopf}_K \subset \text{Hopf}_{K,\text{coc}}$$

of group Hopf algebras (= generated by grouplike elements).
Theorem (M. Gran, F. Sterck and J. Vercruysse, JPAA, 2019)
The category $\text{Hopf}_{K,coc}$ is semi-abelian.
Theorem (M. Gran, F. Sterck and J. Vercruysse, JPAA, 2019)

The category $\text{Hopf}_{K,coc}$ is semi-abelian.

Remark

The fact that $\text{Hopf}_{K,coc}$ is protomodular follows from

$$\text{Hopf}_{K,coc} \cong \text{Grp}(\text{Coalg}_{K,coc})$$
Theorem (M. Gran, F. Sterck and J. Vercruysse, JPAA, 2019)
The category $\text{Hopf}_{K,\text{coc}}$ is semi-abelian.

Remark
The fact that $\text{Hopf}_{K,\text{coc}}$ is protomodular follows from

$$\text{Hopf}_{K,\text{coc}} \cong \text{Grp}(\text{Coalg}_{K,\text{coc}})$$

The most difficult part is to prove that $\text{Hopf}_{K,\text{coc}}$ is a regular category (this was explained by F. Sterck in her talk).
In particular, this result implies

Theorem (M. Takeuchi, Manuscr. Math., 1972)

The category $\text{Hopf}_{K,\text{coc}}^{\text{comm}}$ is abelian.
In particular, this result implies

Theorem (M. Takeuchi, Manuscr. Math., 1972)
The category $\text{Hopf}_{K,coc}^{\text{comm}}$ is abelian.

Indeed:

$$\text{Hopf}_{K,coc}^{\text{comm}} = \text{Ab(Hopf}_{K,coc})$$.
In particular, this result implies

Theorem (M. Takeuchi, Manuscr. Math., 1972)
The category $\text{Hopf}_{K,coc}^{\text{comm}}$ is abelian.

Indeed:

$$\text{Hopf}_{K,coc}^{\text{comm}} = \text{Ab}(\text{Hopf}_{K,coc}).$$

$A \in \text{Hopf}_{K,coc}$ is abelian $\iff \Delta : A \to A \otimes A$ is a normal mono
In particular, this result implies

Theorem (M. Takeuchi, Manuscr. Math., 1972)

The category $\text{Hopf}_{K,coc}^{\text{comm}}$ is abelian.

Indeed:

$$\text{Hopf}_{K,coc}^{\text{comm}} = \text{Ab}(\text{Hopf}_{K,coc}).$$

$A \in \text{Hopf}_{K,coc}^{\text{comm}}$ is abelian $\iff \Delta: A \to A \otimes A$ is a normal mono $\iff A$ is commutative: $ab = ba$ $\iff A \in \text{Hopf}_{K,coc}^{\text{comm}}$
There is an adjunction

\[
\text{Hopf}^{\text{comm}}_{K, \text{coc}} = \text{Ab}(\text{Hopf}_{K, \text{coc}}) \rightleftharpoons \text{Hopf}_{K, \text{coc}} \]

In general, if \(C \) is semi-abelian, \(\text{Ab}(C) \) is abelian
There is an adjunction

\[
\text{Hopf}_{K, \text{coc}}^{\text{comm}} = \text{Ab}(\text{Hopf}_{K, \text{coc}}) \xleftarrow{\ab} \text{Hopf}_{K, \text{coc}}
\]

In general, if \(\mathcal{C} \) is semi-abelian, \(\text{Ab}(\mathcal{C}) \) is abelian

\[
\text{Ab}(\mathcal{C}) \xleftarrow{\ab} \mathcal{C}
\]

with unit of the adjunction

\[
A \xrightarrow{\eta_A} [A, A]
\]
Commutators
For general normal Hopf subalgebras M, N of $A \in \text{Hopf}_{K,\text{coc}}$

\[
\begin{array}{c}
M \longrightarrow A \longleftarrow N \\
\end{array}
\]

one can compute the categorical commutator :

\[
[M, N]_{\text{Huq}} = \langle \{m_1 n_1 S(m_2) S(n_2) \mid m \in M, n \in N\} \rangle_A
\]

(where $\Delta(m) = m_1 \otimes m_2$ and $\Delta(n) = n_1 \otimes n_2$).
In $\text{Hopf}_{K,\text{coc}}$ the condition $[M, N]_{\text{Huq}} = 0$ is equivalent to the existence of a (unique) morphism $p: M \otimes N \to A$ making the diagram

\[
\begin{array}{ccc}
M \otimes N & \xrightarrow{(1_M, 0)} & M \\
\downarrow & & \downarrow & p & \downarrow \\
(0, 1_N) & \downarrow & \downarrow & & \downarrow \\
M & \xrightarrow{p} & \downarrow & N \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
A & & A & & A
\end{array}
\]

commute, where $p(m \otimes n) = mn$, for any $m \otimes n \in M \otimes N$.

This allows one to apply methods of commutator theory to $\text{Hopf}_{K,\text{coc}}$.

In $\text{Hopf}_{K,\text{coc}}$ the condition $[M, N]_{\text{Huq}} = 0$ is equivalent to the existence of a (unique) morphism $p: M \otimes N \rightarrow A$ making the diagram

\[
\begin{array}{ccc}
M \otimes N & \xrightarrow{(1_M,0)} & (1_M,0) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
M & \xrightarrow{p} & M & \xrightarrow{(0,1_N)} & (0,1_N) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
A & \xrightarrow{\rho} & A & \xrightarrow{\rho} & A \\
\end{array}
\]

commute, where $p(m \otimes n) = mn$, for any $m \otimes n \in M \otimes N$.

This allows one to apply methods of commutator theory to $\text{Hopf}_{K,\text{coc}}$.
Outline

“Abelian” versus “semi-abelian”

Cocommutative Hopf algebras

Split extension classifiers

A description in the case of Hopf algebras
Split extensions

In a semi-abelian category \(\mathcal{C} \) a **split extension** is a diagram

\[
0 \rightarrow X \xrightarrow{\kappa} A \xleftarrow{s} B \rightarrow 0 \tag{1}
\]

where \(\kappa = \text{Ker}(p) \) and \(p \circ s = 1_B \).
Split extensions

In a semi-abelian category \mathbb{C} a **split extension** is a diagram

$$
0 \longrightarrow X \xrightarrow{\kappa} A \xleftarrow{s} B \xrightarrow{p} 0
$$

(1)

where $\kappa = \text{Ker}(p)$ and $p \circ s = 1_B$.

Example

In the category Grp of groups each split extension (1) is determined by a morphism

$$
\chi : B \rightarrow \text{Aut}(X)
$$

where the action of B on X is given by

$$
\chi(b)(x) = s(b)x s(b)^{-1}
$$

for any $b \in B$ and $x \in X$.
Given any \(X \in \text{Grp} \) there is a universal split extension

\[
0 \to X \xrightarrow{i_1} X \rtimes \text{Aut}(X) \xleftarrow{i_2} \text{Aut}(X) \to 0
\]

(with kernel \(X \)) with the following universal property:

\[
\exists ! \chi \downarrow \downarrow
\]
Given any $X \in \text{Grp}$ there is a universal split extension

$$
\begin{array}{c}
0 \rightarrow X \xrightarrow{i_1} X \rtimes \text{Aut}(X) \xleftarrow{i_2} \text{Aut}(X) \rightarrow 0
\end{array}
$$

(with kernel X) with the following universal property:

for any other split extension, there is a unique morphism

$$
\begin{array}{c}
0 \rightarrow X \xrightarrow{\kappa} A \xleftarrow{s} B \rightarrow 0
\end{array}
$$

$$
\begin{array}{c}
0 \rightarrow X \xrightarrow{i_1} X \rtimes \text{Aut}(X) \xleftarrow{i_2} \text{Aut}(X) \rightarrow 0.
\end{array}
$$
Given $X \in \text{Grp}$, the group $\text{Aut}(X)$ is the split extension classifier:

$$
0 \rightarrow X \xrightarrow{\kappa} A \leftarrow B \rightarrow 0
$$

$$
0 \rightarrow X \xrightarrow{i_1} X \rtimes \text{Aut}(X) \xleftarrow{i_2} \text{Aut}(X) \rightarrow 0.
$$

The category Grp has representable actions in the sense of F. Borceux, G. Janelidze, G.M. Kelly, Comment. Math. Univ. Carolin. 2005.
The term “having representable actions” comes from the fact that

$$\text{SplExt}(−, X): \text{Grp}^{op} \to \text{Set}$$

is representable, with representing object $\text{Aut}(X)$:

$$\text{SplExt}(−, X) \cong \text{hom}(−, \text{Aut}(X)).$$
The term “having representable actions” comes from the fact that

$$\text{SplExt}(_, X) : \text{Grp}^{op} \to \text{Set}$$

is representable, with representing object $\text{Aut}(X)$:

$$\text{SplExt}(_, X) \cong \text{hom}(_, \text{Aut}(X)).$$

Split extensions in Grp correspond to actions:

$$\text{Act}(_, X) \cong \text{SplExt}(_, X) \cong \text{hom}(_, \text{Aut}(X))$$
Split extensions in the category of Lie algebras

Similarly, for any $L \in \text{Lie}_K$ the Lie algebra $\text{Der}(L)$ of derivations is a split extension classifier

\[0 \rightarrow L \xrightarrow{\kappa} A \xleftarrow{s} B \rightarrow 0 \]
\[0 \rightarrow L \xrightarrow{i_1} L \times \text{Der}(L) \xleftarrow{i_2} \text{Der}(L) \rightarrow 0 \]

where the Lie algebra action is

\[\rho(b)(l) = [s(b), l] \]
Split extensions in the category of Lie algebras

Similarly, for any $L \in \text{Lie}_K$ the Lie algebra $\text{Der}(L)$ of derivations is a split extension classifier

$$
0 \rightarrow L \xrightarrow{\kappa} A \xleftarrow{s} B \rightarrow 0
$$

$$
0 \rightarrow L \xrightarrow{i_1} L \times \text{Der}(L) \xleftarrow{i_2} \text{Der}(L) \rightarrow 0
$$

where the Lie algebra action is

$$
\rho(b)(l) = [s(b), l]
$$

$$
\text{Act}(_ , L) \cong \text{SplExt}(_ , L) \cong \text{hom}(_ , \text{Der}(L))
$$
In general, a semi-abelian category \(\mathbb{C} \) has representable actions if any object \(X \in \mathbb{C} \) has a split extension classifier, denoted by \([X]\), with

\[
0 \rightarrow X \xrightarrow{\kappa} \overline{X} \xleftarrow{s} [X] \rightarrow 0
\]

a universal split extension (with kernel \(X \)).
Outline

“Abelian” versus “semi-abelian”

Cocommutative Hopf algebras

Split extension classifiers

A description in the case of Hopf algebras
Split extensions in cocommutative Hopf algebras

In $\text{Hopf}_{K,coc}$ any split extension

$$
0 \longrightarrow X \xrightarrow{\kappa} A \xleftarrow{s} B \longrightarrow 0
$$

is canonically isomorphic to the semidirect product exact sequence

$$
0 \longrightarrow X \xrightarrow{\kappa} A \xleftarrow{s} B \longrightarrow 0
$$
Semidirect product

In the split exact sequence

\[0 \rightarrow X \xrightarrow{i_1} X \rtimes B \xrightarrow{i_2} B \xleftarrow{p_2} 0 \]

the semidirect product \(X \rtimes B \) is the vector space \(X \otimes B \) equipped with the cocommutative Hopf algebra structure:

- \(M_{X \rtimes B}(x \otimes b, x' \otimes b') = x(b_1 \cdot x') \otimes b_2 b' \)
- \(\Delta_{X \rtimes B} = (1_X \otimes \text{tw} \otimes 1_B)(\Delta_X \otimes \Delta_B) \)
- \(u_{X \rtimes B} = u_X \otimes u_B \) and \(\epsilon_{X \rtimes B} = \epsilon_X \otimes \epsilon_B \)
- \(S(x \otimes b) = (S_B(b_1)) \cdot S_X(x) \otimes S_B(b_2) \)

(here \(b \cdot x \) denotes the action of \(b \) on \(x \) corresponding to \(0 \rightarrow X \overset{\kappa}{\rightarrow} A \overset{s}{\leftarrow} B \rightarrow 0 \))
When K is an algebraically closed field of characteristic 0:

Theorem (Milnor-Moore, Ann. Math. 1965)

For any cocommutative Hopf K-algebra H there is a split extension

$$
0 \longrightarrow \mathcal{U}(L_H) \xrightarrow{i_1} H \cong \mathcal{U}(L_H) \rtimes K[G_H] \xleftarrow{i_2} K[G_H] \longrightarrow 0
$$

\[\mathcal{U}(L_H) \] is the universal enveloping algebra of the Lie algebra $L_H = \{ x \in H | \Delta(x) = 1 \otimes x + x \otimes 1 \}$ of primitive elements of H; $K[G_H]$ is the group Hopf algebra generated by the grouplike elements $G_H = \{ x \in H | \Delta(x) = x \otimes x, \epsilon(x) = 1 \}$ of H.
When K is an algebraically closed field of characteristic 0:

Theorem (Milnor-Moore, Ann. Math. 1965)

For any cocommutative Hopf K-algebra H there is a split extension

$$0 \longrightarrow \mathcal{U}(L_H) \xrightarrow{i_1} H \cong \mathcal{U}(L_H) \rtimes K[G_H] \xrightarrow{i_2} K[G_H] \longrightarrow 0$$

- $\mathcal{U}(L_H)$ is the universal enveloping algebra of the Lie algebra

 $$L_H = \{ x \in H \mid \Delta(x) = 1 \otimes x + x \otimes 1 \}$$

 of **primitive elements** of H;
When K is an algebraically closed field of characteristic 0:

Theorem (Milnor-Moore, Ann. Math. 1965)

For any cocommutative Hopf K-algebra H there is a split extension

$$0 \rightarrow \mathcal{U}(L_H) \overset{i_1}{\rightarrow} H \cong \mathcal{U}(L_H) \rtimes K[G_H] \overset{i_2}{\underset{p_2}{\leftarrow}} K[G_H] \rightarrow 0$$

- $\mathcal{U}(L_H)$ is the universal enveloping algebra of the Lie algebra

$$L_H = \{ x \in H \mid \Delta(x) = 1 \otimes x + x \otimes 1 \}$$

of primitive elements of H;

- $K[G_H]$ is the group Hopf algebra generated by the grouplike elements

$$G_H = \{ x \in H \mid \Delta(x) = x \otimes x, \epsilon(x) = 1 \}$$

of H.
This result can be used to prove

Proposition (M.G., G. Kadjo and J. Vercruysse (APCS, 2016))

When K is an algebraically closed field with characteristic 0, the pair $(\text{PrimHopf}_K, \text{GrpHopf}_K)$ of full subcategories of Hopf_K,coc is a hereditary torsion theory.

Moreover, the category of groups is a localization of Hopf_K,coc, i.e. the reflector $F: \text{Hopf}_K,\text{coc} \to \text{Grp}$ preserves finite limits.
This result can be used to prove

Proposition (M.G., G. Kadjo and J. Vercruysse (APCS, 2016))

When K is an algebraically closed field with characteristic 0, the pair

$$(\text{PrimHopf}_K, \text{GrpHopf}_K)$$

of full subcategories of $\text{Hopf}_{K, \text{coc}}$ is a hereditary torsion theory.

Moreover, the category of groups is a localization of $\text{Hopf}_{K, \text{coc}}$

Grp $\xleftarrow{F} \perp \xrightarrow{\bot} \text{Hopf}_{K, \text{coc}}$

i.e. the reflector $F: \text{Hopf}_{K, \text{coc}} \to \text{Grp}$ preserves finite limits.
Split extension classifier in $\text{Hopf}_{K,\text{coc}}$

The category $\text{Hopf}_{K,\text{coc}}$ has representable actions in the sense of Borceux, Janelidze, Kelly (2005).
Split extension classifier in $\text{Hopf}_{K,coc}$

The category $\text{Hopf}_{K,coc}$ has representable actions in the sense of Borceux, Janelidze, Kelly (2005).

It is natural to look for an explicit description of the split extension classifier $[H]$ of any cocommutative Hopf algebra H.
The “group Hopf algebra part” of $[H]$ is

$$K[\text{Aut}_{\text{Hopf}}(H)]$$

where $\text{Aut}_{\text{Hopf}}(H)$ is the group of Hopf automorphisms of H.
The “group Hopf algebra part” of $[H]$ is

$$K[\text{Aut}_{\text{Hopf}}(H)]$$

where $\text{Aut}_{\text{Hopf}}(H)$ is the group of Hopf automorphisms of H.

To define the “primitive part” of $[H]$ one needs the following

Definition

A Hopf derivation of a Hopf algebra $(H, m, u, \Delta, \epsilon, S)$ is a linear endomorphism $\psi : H \to H$ that is a derivation

$$\psi \circ m = m \circ (\psi \otimes \text{id} + \text{id} \otimes \psi)$$

and a coderivation

$$\Delta \circ \psi = (\psi \otimes \text{id} + \text{id} \otimes \psi) \circ \Delta.$$
One writes $\text{Der}_{\text{Hopf}}(H)$ for the Lie algebra of Hopf derivations, where

$$[\psi_1, \psi_2] = \psi_1 \circ \psi_2 - \psi_2 \circ \psi_1, \quad \forall \psi_1, \psi_2 \in \text{Der}_{\text{Hopf}}(H).$$
One writes $\text{Der}_{\text{Hopf}}(H)$ for the Lie algebra of Hopf derivations, where

$$[\psi_1, \psi_2] = \psi_1 \circ \psi_2 - \psi_2 \circ \psi_1, \quad \forall \psi_1, \psi_2 \in \text{Der}_{\text{Hopf}}(H).$$

By applying the universal enveloping algebra functor $\mathcal{U}: \text{Lie}_K \rightarrow \text{Hopf}_{K,\text{coc}}$ one gets the primitive Hopf algebra

$$\mathcal{U}(\text{Der}_{\text{Hopf}}(H)).$$
One writes $\text{Der}_{\text{Hopf}}(H)$ for the Lie algebra of Hopf derivations, where

$$[\psi_1, \psi_2] = \psi_1 \circ \psi_2 - \psi_2 \circ \psi_1, \quad \forall \psi_1, \psi_2 \in \text{Der}_{\text{Hopf}}(H).$$

By applying the universal enveloping algebra functor $\mathcal{U}: \text{Lie}_K \to \text{Hopf}_K,\text{coc}$ one gets the primitive Hopf algebra

$$\mathcal{U}(\text{Der}_{\text{Hopf}}(H))$$

One defines

$$[H] = \mathcal{U}(\text{Der}_{\text{Hopf}}(H)) \rtimes \bar{\rho} \ K[\text{Aut}_{\text{Hopf}}(H)]$$

where the action

$$\bar{\rho}: K[\text{Aut}_{\text{Hopf}}(H)] \otimes \mathcal{U}(\text{Der}_{\text{Hopf}}(H)) \to \mathcal{U}(\text{Der}_{\text{Hopf}}(H))$$

is determined by $\bar{\rho}(\phi \otimes \psi) = \phi \circ \psi \circ \phi^{-1}$.
Theorem (M.G., G. Kadjo and J. Vercruysse, BBMS 2018)
Let K be an algebraically closed field of characteristic zero. Then

$$[H] = \mathcal{U}(\text{Der}_{\text{Hopf}}(H)) \rtimes_{\rho} K[\text{Aut}_{\text{Hopf}}(H)]$$

is the split extension classifier of H in $\text{Hopf}_{K,coc}$.
Theorem (M.G., G. Kadjo and J. Vercruysse, BBMS 2018)
Let K be an algebraically closed field of characteristic zero. Then

$$[H] = \mathcal{U}(\text{Der}_{\text{Hopf}}(H)) \rtimes K[\text{Aut}_{\text{Hopf}}(H)]$$

is the split extension classifier of H in $\text{Hopf}_{K,coc}$

There is a universal split extension

$$0 \longrightarrow H \longrightarrow H \rtimes_* [H] \longrightarrow [H] \longrightarrow 0$$

where the action $*: [H] \otimes H \rightarrow H$ is defined by

$$(\phi \otimes \psi) \ast h = \psi(\phi(h))$$

for any $\phi \otimes \psi \in [H] = \mathcal{U}(\text{Der}_{\text{Hopf}}(H)) \rtimes K[\text{Aut}_{\text{Hopf}}(H)]$, and $h \in H$.
Center
When a semi-abelian category \mathcal{C} is action representable, the categorical center $Z(X)$ of an object X can be obtained as the kernel of the canonical arrow χ in

\[
\begin{array}{ccccccc}
0 & \rightarrow & X & \rightarrow & X \times X & \leftarrow & X & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \rightarrow & X & \rightarrow & X \times X & \leftarrow & X \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \rightarrow & X & \rightarrow & X \times [X] & \leftarrow & [X] & \rightarrow & 0 \\
\end{array}
\]

(see A. Cigoli and S. Mantovani, JPAA, 2012).
Example

In the case of groups, this corresponds to the fact that the center $Z(G)$ of a group G is the kernel of the conjugation map χ in

\[
0 \rightarrow G \rightarrow G \times G \xleftarrow{\bar{\chi}} G \rightarrow G \rightarrow 0
\]

\[
0 \rightarrow G \rightarrow G \times Aut(G) \xleftarrow{\bar{\chi}} Aut(G) \rightarrow 0
\]

where $\chi(g)(h) = ghg^{-1}$, for any $g, h \in G$.

\[
\begin{array}{cccccc}
0 & \rightarrow & G & \rightarrow & G \times G & \xleftarrow{\bar{\chi}} & G & \rightarrow & 0 \\
& & \downarrow & & \bar{\chi} & & \downarrow & & \\
0 & \rightarrow & G & \rightarrow & G \times Aut(G) & \xleftarrow{\bar{\chi}} & Aut(G) & \rightarrow & 0
\end{array}
\]

\[
\begin{array}{cccccc}
0 & \rightarrow & G & \rightarrow & G \times Aut(G) & \xleftarrow{\bar{\chi}} & Aut(G) & \rightarrow & 0 \\
& & \downarrow & & \bar{\chi} & & \downarrow & & \\
0 & \rightarrow & G & \rightarrow & G \times Aut(G) & \xleftarrow{\bar{\chi}} & Aut(G) & \rightarrow & 0
\end{array}
\]
Definition (N. Andruskiewitsch, Canad. J. Math. 1996)

Given a Hopf algebra A, the Hopf center $HZ(A)$ is the largest Hopf subalgebra of A contained in the algebraic center $Z_{alg}(A)$ of A, where

$$Z_{alg}(A) = \{ a \in A \mid ab = ba, \forall b \in A \}.$$
Definition (N. Andruskiewitsch, Canad. J. Math. 1996)
Given a Hopf algebra A, the Hopf center $HZ(A)$ is the largest Hopf subalgebra of A contained in the algebraic center $Z_{alg}(A)$ of A, where

$$Z_{alg}(A) = \{ a \in A \mid ab = ba, \forall b \in A \}.$$

Proposition (M.G., G. Kadjo and J. Vercruysse, 2018)
When A is cocommutative, the categorical center $Z(A)$ of A coincides with the Hopf center $HZ(A)$:

$$Z(A) = HZ(A) = \{ a \in A \mid \Delta(a) \in A \otimes Z_{alg}(A) \}.$$
Final remarks
It is interesting to adopt the approach based on semi-abelian categories in the study of (cocommutative) Hopf algebras.
Final remarks
It is interesting to adopt the approach based on semi-abelian categories in the study of (cocommutative) Hopf algebras.

The case of general Hopf algebras is more subtle, since limits in Hopf_K are difficult to compute.
Final remarks

It is interesting to adopt the approach based on semi-abelian categories in the study of (cocommutative) Hopf algebras.

The case of general Hopf algebras is more subtle, since limits in Hopf_K are difficult to compute.

The approach based on *Schreier split extensions* (due to Sobral, Martins-Ferreira, Montoli, Bourn) could be useful to study some exactness properties of Hopf_K.
References

• G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra (2002)
• F. Borceux, G. Janelidze and G.M. Kelly, Internal object actions, Comment. Math. Univ. Carolin. (2005)
• M. Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscr. Mathematica (1972)
• J. Milnor and J. Moore, On the structure of Hopf algebras, Ann. Math. (1965)
• M. Gran, G. Kadjo and J. Vercruysse, Split extension classifiers in the category of cocommutative Hopf algebras, Bull. Belgian Math. Society (2018)
• M. Gran, F. Sterck and J. Vercruysse, A semi-abelian extension of a theorem by Takeuchi, J. Pure Appl. Algebra (2019)
• N. Andruskiewitsch, Notes on extensions of Hopf algebras, Canad. J. Math. (1996)