Chapter 3
Discourse and conversation impairments in patients with dementia
Charalambos Themistocleous
e-mail: charalampos.themistokleous@isp.uio.no

Abstract:
Neurodegeneration characterizes individuals with different dementia subtypes (e.g., individuals with Alzheimer’s Disease, Primary Progressive Aphasia, and Parkinson’s Disease), leading to progressive decline in cognitive, linguistic, and social functioning. Speech and language impairments are early symptoms in individuals with focal forms of neurodegenerative conditions, coupled with deficits in cognitive, social, and behavioral domains. This paper reviews the findings on language and communication deficits and identifies the effects of dementia on the production and perception of discourse. It discusses findings concerning (i) language function, cognitive representation, and impairment, (ii) communicative competence, emotions, empathy, and theory-of-mind, and (iii) speech-in-interaction. It argues that clinical discourse analysis can provide a comprehensive assessment of language and communication skills in individuals with dementia, which complements the existing neurolinguistic evaluation for (differential) diagnosis, prognosis, and treatment efficacy evaluation.

Keywords:
• clinical discourse analysis
• dementia
• discourse
• communicative competence
• emotions
• empathy
• theory-of-mind

Preview of what is currently known:
Neurodegeneration characterizes individuals with different dementia subtypes, leading to progressive decline in cognitive, linguistic, and social functioning. Language and communication deficits manifest early in the development of dementia (e.g., Alzheimer’s Disease, Primary Progressive Aphasia, and Parkinson’s Disease) affecting the production and understanding of discourse microstructure (e.g., in grammar, semantics, and pragmatics) and macrostructure (e.g., discourse planning, organizing, and structuring). This work discusses findings on discourse impairments and suggests that Clinical Discourse Analysis can provide a comprehensive assessment of language and communication skills in individuals with dementia that complements existing neurolinguistic assessments for (differential) diagnosis, prognosis, and treatment efficacy evaluation.

Objectives:
a) to describe the effects of dementia on discourse
b) to identify the language and communication biomarkers for dementia assessment, diagnosis, prognosis, and treatment efficacy valuation elicited through Clinical Discourse Analysis
c) to determine the impact of dementia on the cognitive representation of grammar, communicative competence, emotions, empathy, and theory-of-mind
d) To determine whether individuals employ a socially appropriate language communication and follow the turn-taking dynamics and conventions in conversations

3.1 Introduction
Every year more than ten million individuals develop dementia, with almost fifty-five million people worldwide now living with dementia (1). Dementia is the progressive deterioration of cognitive, linguistic, and social functioning that affects the quality of life, including the physical, social, and economic conditions of individuals, their families, and society (2-5). Although there is no treatment for dementia, early-stage identification, and assessment of individuals with dementia are of utmost importance to enable interventions that can delay the progression of dementia and support family planning. The neurocognitive assessment aims to evaluate individuals’ condition and provide early diagnosis, prognosis, and quantify intervention efficacy.

Speech, language, and communication impairments are early symptoms in individuals with dementia (6-8). For example, earlier studies have shown that discourse narratives in the autobiographies of Catholic sisters of the School Sisters of Notre Dame congregation can be an exceedingly early predictor of dementia (9). In addition, studies of the speeches of the US president Ronald Reagan (10, 11) and the comparative analysis of the British novelists Iris Murdoch and Agatha Christie works showed that narratives could provide an early prognosis of dementia development (12).

Clinical Discourse Analysis (CDA) examines speech, language, and communication impairments in individuals with dementia and elicits language and communication measures. These measures can provide an early, stressless, and comprehensive assessment of individuals’ language and neurocognitive functioning (e.g., memory, attention, social interaction) and inform treatment approaches (13, 14). CDA involves the characterization of texts produced by individuals through language, cooperation, and social interaction in communicative settings such as conversations, semi-structured interviews (15-17), role-plays, and monologues (18).

In this review, we provide evidence from recent neurolinguistic and computational developments and demonstrate that discourse provides early linguistic biomarkers for (differential) diagnosis and prognosis of individuals with dementia. We discuss the following groups of individuals:

1 A more broad scope of CDA, yet uncommon in clinical settings, is the study of meaningful symbolic behavior of individuals in any mode, including social structures expressed through discourse, e.g., the discourse of race and power. Blommaert J. Discourse. Cambridge: Cambridge University Press; 2005.
individuals with Primary Progressive Aphasia (PPA), a progressive neurological condition, which primarily affects speech and language. Individuals with PPA are grouped into three variants based on their distinct underlying neuropathology and area of brain damage (20). According to current classification criteria, their characteristic neuropathology and damage patterns give rise to different discourse deficits across three variants (21, 22), namely in individuals with the non-fluent PPA variant (nfvPPA), individuals with the semantic PPA variant (svPPA), and individuals with the logopenic PPA variant (lvPPA);

individuals with Alzheimer's Disease (AD) constitute the larger group of individuals with dementia. They are characterized by a progressive deterioration of memory, language, conversation, and ability to perform everyday activities, unlike individuals with Mild Cognitive Impairment, whose cognitive impairments are incipient and retain their day-to-day functioning.

individuals with Parkinson's Disease (PD) are characterized by a progressive deterioration of movement functioning, which impairs balance, speaking, language, chewing, and swallowing.

We identify the effects of brain damage due to neurodegeneration on discourse microstructure (e.g., phonology, morphology, and syntax), macrostructure (e.g., cohesion of linguistic forms to determine whether individuals produce a text that follows the grammar and coherence of meanings and whether text productions make sense (23, 24). Macrostructure and microstructure are intertwined and often the attempt to disentangle them is difficult as the same constituents can perform both microstructure and macrostructure functions, yet the distinction is necessary for the description of discourse structure. Although, most language impairments associate with left hemisphere damage (21, 25), as discourse involves speech (and writing (26, 27)), language, emotions, social cognition, and cognitive domains, such as memory and attention, discourse impairments can result on neurodegenerative effects on the left and right hemispheres (28-31).

Here, we will discuss findings concerning the following four areas: (i) language function, cognitive representation, and impairment2, and examine how dementia impacts the cognitive representations of grammar (rules and principles) that enable speakers to produce grammatically correct sentences (32); (ii) communicative competence, emotions, empathy, and theory-of-mind (33) and evaluate whether individuals employ a socially appropriate language communication; and (iii) talk-in-interaction to identify how individuals with dementia follow the turn-taking dynamics and conventions in conversations (34-36).

3.2 Language function, cognitive representation, and impairment

3.2.1 Discourse microstructure and dementia

Individuals with dementia produce speech with deficits that affect speech and articulation (e.g., prosodic patterns and rhythmical patterns), phonology (e.g., phonological errors, such as

2 Researchers often use the word “errors” to refer to incorrect productions with respect to correct productions (targets) in typical speakers; however, individuals produce language that follows their own grammatical system or interlanguage as it has developed after the brain damage. Moreover, the term error conceals the systematicity of these productions.
insertions, deletions, syllable structure simplifications), prosodic phonology (stress, rhythmical errors, intonation), morphology (e.g., morphological errors in verb and noun inflections, tense, and number agreement, grammatical and content word production, and parts of speech) (37), lexicon (38), syntax (e.g., phrase structure and embedded phrases) (16, 39, 40), and semantics (e.g., lexical semantics, naming) (6, 41-48). These deficits can characterize individuals with other speech and language disorders as well, such as stroke aphasia (49-52). Discourse analysis employs both manual analysis and computational methods, such as acoustic analysis, natural language processing, and machine learning to automate the analysis (20, 53-60).

Traditionally, these discourse microstructure impairments are assessed during conventional neurophysiological examination with standardized language assessment tasks and neurolinguistic batteries, such as the Boston Naming Test (BNT; 61), Western Aphasia Battery-Revised (WAB-R; Kertesz (62)), Boston Diagnostic Aphasia Examination (BDAE; 63), Psycholinguistic Assessment of Language Processing in Aphasia (PALPA; 64); the Verb and Sentence Test (VAST; 65). Nevertheless, single-domain standardized tests (cf., articulation, and conformation naming) are not meant to assess broad language communication skills (e.g., articulation, morphosyntax, semantics, pragmatics, turn-taking), which alternatively require the application of multiple separate time-consuming and stressful language assessment tests. Thus, CDA aims to provide a comprehensive analysis and assessment of speech and grammar in context without requiring lengthy evaluation tests to target specific language domains. Here, we will review the primary microstructural deficits in individuals with PPA, AD, and PD, using combined information from studies employing discourse and standardized test evaluations.

In individuals with PPA, the primary language deficits correspond to the effects of neurodegeneration on the left hemisphere (43, 66-70). Specifically, neuroimaging data shows that the peak atrophy site in individuals with nfvPPA is the posterior inferior frontal gyrus (pIFG), also known as Broca’s area. In individuals with svPPA, the peak atrophy is the left anterior temporal lobe, and in individuals with lvPPA, the peak atrophy is located in the left posterior temporal and inferior parietal regions (21, 44, 71, 72).

More specifically, the individuals with nfvPPA, svPPA, and lvPPA differ in their discourse microstructure deficits. First, the individuals with nfvPPA are characterized by agrammatism resulting in telegraphic speech productions, namely they omit grammatical words, such as conjunctions, particles, and prepositions. Often their speech is accompanied by Apraxia of Speech (AOS), which is associated with slow effortful speech with speech errors and pauses (73-77). Individuals with nfvPPA with agrammatism are characterized by substantial deficits in function word production (17, 78, 79). Consequently, in the context of producing discourse, individuals with nfvPPA produce more filled pauses than individuals with the semantic variant as they strive to construct grammatical structures and words (56). Studies of the connected speech productions showed impaired production of sentence structure components, such as verb and noun phrases (7, 40). In addition, individuals with the nfvPPA are characterized by syntactic comprehension impairments, especially during the perception of syntactically complex sentences (80). Supporting evidence from naming tests showed that single-word comprehension and object naming are retained (21).

Although, AOS and agrammatism are the two key diagnostic features in individuals with nfvPPA, agrammatism often occurs without AOS (78) and AOS without agrammatism (81). Consequently, many studies distinguish individuals with the agrammatic variant of PPA (78) and
individuals with PPA and AOS (PPAOS) (82-84). Often the classification is unclear as symptoms progress, leading to different degrees of language deterioration (85).

Moreover, individuals with nfvPPA produce selectively fewer verbs than healthy individuals (17, 78, 79) but verb perception can be preserved (86). Verb production may be preserved in individuals with other PPA variants, although individuals with lvPPA show deficits during discourse in noun production (17, 78, 79). In a computational study of morphology in individuals with PPA, Themistocleous et al. (37) have shown differential usage of parts of speech in individuals with different PPA variants (20).

Second, individuals with svPPA are characterized by impaired confrontation naming and single-word comprehension, impaired object knowledge, dysgraphia, and dyslexia (37, 43, 87). However, unlike individuals with nfvPPA, speech production is spared in individuals with svPPA. Also, individuals with svPPA are characterized by deficits in inflectional morphology. For example, Wilson et al. (88) showed that individuals with svPPA are impaired in inflecting low-frequency irregular words (89). Nonetheless, inflectional morphology can be impaired in individuals with the other two PPA variants as individuals with nfvPPA show difficulties in inflecting pseudowords and individuals with lvPPA display morphophonological deficits (88).

Third, individuals with lvPPA are characterized by impaired single-word retrieval in spontaneous speech and naming and impaired sentence and phrase repetition, often with phonological errors. Further analysis of discourse has the potential to reveal interactions between lexical and morphosyntactic categories as suggested by task-based assessments (90).

Individuals with AD and MCI are impaired in discourse microstructure; although, their deficits are incipient in individuals with MCI and become progressively more severe in individuals with AD, which may end into mutism—although, mutism is more common in individuals with frontotemporal dementia (91, 92).

Studies using signal processing have shown that individuals with AD and MCI produce connected speech productions with significantly different patterns in segmental acoustic structure (i.e., vowels and consonants); prosody, voice quality, speech fluency and speech rate and demonstrated that speech acoustics can be employed both for diagnosis and differential diagnosis of individuals with AD and MCI from healthy controls and provide classification models for diagnosis or subtyping (54, 93-96). For example, a recent study by Themistocleous et al. (57) found significantly slower speech productions in Swedish individuals with MCI than healthy controls, manifested as slower speech rate and long syllables. Moreover, they found that the speech of individuals with MCI is characterized by a greater degree of breathy voice, dysphonia, center of gravity, and shimmer than in healthy controls. They argue that the acoustic differences of individuals with MCI from healthy individuals indicate a physiological impairment in the fine control of vocal fold vibration, pulmonary pressure, respiration, and the coordination of phonation and articulation [15, 50–53]. However, other studies show mixed results. More specifically, studies on emotional prosody showed impaired prosody in expressive speech productions, such as less pitch modulation and slower speech rate in individuals with dementia than in healthy controls but their ability to control pitch and speech rate was normal (97).

Although phonology is relatively intact in individuals with MCI and AD, several studies showed phonetic and phonological errors, such as incorrect phoneme production, false starts, phonological paraphasias, and articulatory difficulties (98, 99). Compared to healthy controls, individuals with AD can exhibit deterioration or simplification of grammar and semantics (100).
For example, an early study of narratives and constrained tasks showed significant errors in open and closed lexical classes, pronouns and morphosyntax (e.g., inflection and agreement) between individuals with AD and healthy elderly individuals (101). Similarly, a study with Greek individuals showed that individuals with probable AD, were more impaired in verb aspect than in tense and agreement compared to healthy controls, in both production and grammaticality judgement; in contrast, verb agreement was in general retained (102). Furthermore, individuals with AD can produce discourse with word finding and lexical retrieval difficulties (103), redundant words, and a higher proportion of closed-class words (98, 104).

Individuals with PD are characterized by speech acoustic differences in speech production and intonation identified both from discourse and non-discourse data (105, 106) and in other linguistic domains, such as syntax and sentence production (107). Moreover, individuals with the behavioral variant of frontotemporal dementia (bvFTD) manifest progressive changes in personality, behavior, and social cognitive functions (108, 109) but can also manifest language impairments in their lexicon, semantics, prosody, reading, and writing (110). At the same time, they may preserve motor speech production and morphosyntax (110).

3.2.2 Discourse macrostructure and dementia

In conversations, individuals with dementia, especially those with PPA, display impairments in discourse planning and macrostructure. Glosser and Deser (111) suggested that individuals with dementia are selectively more impaired in discourse macrostructure (e.g., thematic coherence and cohesion) than microstructure (e.g., phonology, morphology, lexicon, and syntax). Moreover, as dementia develops, text cohesion and coherence (112) become progressively more impaired (113).

Cohesion impairments manifest as irregularities in how individuals establish cohesive relationships in the text (114). For example, individuals with dementia produce text with impaired lexical cohesion (i.e., lexical repetition and lexical chains, collocation), discourse markers, which connect post-sentential constituents, having additive (e.g., and, furthermore, in addition), adversative (e.g., but, however, nevertheless), causal (e.g., so, consequently), and temporal meaning (e.g., then, after that, finally). Moreover, they display compromised application of cohesive devices, such as anaphora and cataphora (115), namely referencing usually with pronouns to an earlier (anaphora) or subsequent (cataphora) name or entity in discourse), substitution, conjunction, and replacement (116).

Furthermore, individuals with dementia display deficits in making cohesive associations with adjacency pairs, such as question-answer pairs, enumerations, greeting-greeting pairs, invitation-acceptance or rejection, and request-acceptance or rejection. When speakers employ adjacency pairs, the first part of the adjacency pair creates expectations that an ensuing part should satisfy, e.g., in a question-answering pair, listeners expect an answer to a question and in an enumeration an utterance, such as “I am going to state three things” should be followed by a list of three things; missing these associations are common in patients with dementia. For example, Ramanathan (117) notes that the expectations developed by Tina, an individual with AD are not fulfilled by her, and the communication collapses:

“Tina’s talk here does not allow stanza parsing. Her talk starts off as a narrative (...) where she talks about how her India trip came about (“I had always wanted to go to India ...”), but she does not sustain her effort. In fact,
in some instances she does not respond at all. (...) she does not pick up my prompts as cues for her to keep talking and (...) she is non-responsive to my question (...) but, once again, she does not develop her utterances into narratives” (103).

Coherence is the structuring and continuity of meanings and the semantic relationship of oral (or written) productions to their context including the situational conditions related to space, time, participants, and sociocultural meanings (118). Coherence deficits reveal impairments in memory and the semantic-linguistic interface, including impairments in recalling and organizing semantic meanings, such as past experiences and knowledge about the world (119). Individuals with AD and MCI produce discourse with impaired semantic meaning and structure (119).

In addition, individuals with svPPA manifest semantic impairments in discourse affecting production of lexical items and particularly content words (120). A recent study by Seixas Lima et al. (121) on individuals with svPPA showed that although they produced episodic information related to the discourse topic, the semantic information was unrelated to discourse topic. The authors argue that, for individuals with svPPA, impairment depends on the selection of relevant semantic information and the inhibition of irrelevant ones. These findings are consistent with evidence from confrontational naming tasks, such as the Boston Naming Test (BNT) (61) and the Hopkins Assessment on Naming Actions (HANA) (122).

Furthermore, patients with dementia produce speech with impaired information packaging, concerning the new and old information, contrast, and pragmatic implicatures (123). Specifically, information packaging is achieved using linguistic means such as syntax and prosody (124, 125). Information packaging using syntax is manifested with cleft structures, where constituents are moved to a different position in the sentence to express contrast, emphasis, etc., as in the following examples in (1):

(1)

i. It is George[F] who went to the movies last week.
ii. It was to the movies[F] that George went last week.
iii. It was yesterday[F] that Jerry went to the movies.
iv. What I need is a nice milk chocolate.

The cleft structures in the examples above can imply a contrasted constituent as:

(2)

i. It was GEORGE who went to the movies last week [not Maria].

Moreover, prosody (e.g., intonation and phrasing cues) express information structure in English and other languages. For example, new-information focus and contrast are manifested using nuclear pitch accents that highlight the prominent or contrasting constituent (126-129), whereas preceding words, if any, are marked with a different type of accent, a.k.a. prenuclear pitch accents.

3 [F] indicates the focused or highlighted constituent.
In English syntax expresses information structure (cf. examples above (1) and (2)) combined with a nuclear pitch accent at the end manifesting broad focus (3):

(3)

i. George went to the movies last week.

These cases demonstrate an interplay between prosody and syntax. Dementia can impair prosody and syntax in individuals with non-fluent PPA with agrammatism (124), individuals with MCI and AD (54, 95, 110, 130).

Using Rhetorical Structure Theory, Abdalla et al. (131) showed the effects of AD on discourse rhetorical mechanisms (132). RST evaluates various relationships and how they are constructed in discourse, e.g., Elaboration, Circumstance, Solutionhood, Cause, Restatement, and presentational relations, Motivation, Background, Justify, and Concession (132, 133). Studies of discourse in the Nun Study, a longitudinal study of cognitive decline, also showed that nuns with AD produced discourse with impaired idea density; in fact, research on the nun study showed that discourse deterioration is a very early predictor of dementia (134).

Overall, discourse macrostructure impairments can correlate with the deterioration of language and cognition, such as working memory, planning, generation, problem-solving, and abstraction (111).

3.3 Dementia and communicative competence, emotions, empathy, and theory-of-mind

Communication assessment aims to determine how individuals employ language in the appropriate social context, follow social norms, and make connections with participants and settings. Therefore, Hymes (135) suggests utterances should be evaluated concerning their discourse context. In other words, the communicative competence of individuals is assessed based on whether they produce utterances that consider the following discourse settings, namely:

1. the other participants;
2. the roles they assume;
3. the conversational topic;
4. the communicative channel (e.g., writing and speaking);
5. the language code (e.g., language variety, dialect, language style);
6. the message form (e.g., lecture, a conversation, a fairy tale, narrative);
7. the situation (e.g., a ceremony, a friendly conversation);
8. the purpose of the speech; and
9. the key (e.g., tone and manner).

Therefore, there is a fundamental distinction between CDA and standardized language assessment in that CDA assesses language communication, which involves several distinct components at once, such as the following: (i) the intentionality of discourse and whether individuals perceive utterances as intentional and actively make a cooperative effort to produce and understand the discourse content (114, 136); (ii) the situationality of discourse and whether individuals produce utterances that are related to the immediate discourse context, and (iii) the intertextuality of
discourse and whether individuals’ utterances connect discourse productions to the broader intertextual context correctly (114).

Kong et al. (137) employed story grammars, which consider information such as the conversational background, participants, and the time, and place of conversation to analyze discourse produced by individuals with fluent aphasia, non-fluent aphasia, AD, and healthy controls. Their study showed significant differences in the production of situational discourse information in individuals with AD and healthy controls. Interestingly, their study showed similarities in the use of situational information between individuals with AD and individuals with fluent aphasia.

Individuals with dementia can exhibit discourse impairments in communicative competence (138). However, individuals with the behavioral variant of frontotemporal dementia (bvFTD) show communicative competence impairments more predominantly than other individuals with dementia. These individuals display impairments in early behavioral disinhibition, which is the distinguishing symptom of individuals with bvFTD clinical syndrome from individuals with AD, dementia with Lewy bodies, and vascular dementia (108). Inappropriate language accompanies an overall loss of manners of decorum, such as cursing, speaking loudly, expressing offensive, sexually, obscene remarks, jokes, and opinions (108). In addition, apathy, failure to initiate or sustain a conversation, loss of empathy, insight, and executive dysfunction are associated with frontal and temporal atrophy (108). Also the speech of individuals with bvFTD is characterized by selective impairments linked to an overall degraded communicative competence, as reflected by poor organization discourse, simplification of grammatical production, selective impairments in word use, and changes in acoustic properties (110, 138-142).

Notably, the assessment of communicative competence brings language to the fore as the connecting link between the social context, paralinguistic expression and emotion, empathy/sympathy, and theory of mind (ToM). ToM is the ability of individuals to attribute mental states to other individuals and employ the states to understand and predict actions and discourse contributions. Using standardized tests for memory, comprehension, and general inferencing question, Youmans and Bourgeois (143) found that individuals with mild to moderate AD exhibit mild but specific ToM impairment. Again, ToM impairments are more severe in individuals with bvFTD. However, standardized neurocognitive testing of ToM can only modestly distinguish between individuals with FTD and AD (144), as these tests create an artificial environment that does not provide the necessary social context to adequately evaluate ToM. In contrast, discourse can provide a natural environment and comprehensive assessment of ToM.

These findings from discourse provide quantitative measures of communicative competence and assess social and behavioral symptoms using more naturalistic and conversational interactions than standardized language tests (e.g., identifying pictures in cards or picture books and repeating words and sentences).

3.4 Dementia and talk-in-interaction (turn-taking)

As discourse is used in conversations between individuals and other individuals (e.g., clinicians and other individuals), conversation analysis can be employed as a method to identify how dementia influences both language and social interaction. Conversation analysis studies the social conventions that facilitate the interaction of interlocutors and the passing of conversational turns from one participant to another. The conversational turns are the basic units of any conversation
The aim of conversation analysis in the clinic is twofold: first, it aims to determine whether the basic properties that characterize social interaction break down in individuals with dementia and quantify the communicative characteristics of their speech and second, it aims to identify how individuals with dementia construct the conversational turn vis-à-vis other groups of speakers (e.g., healthy controls, individuals with different conditions or with respect to an earlier stage of the same individual). Examining how individuals with dementia engage in conversations in the clinic provides information about the language and social interaction impairments.

First formulated by Sacks et al. (36), conversation analysis aims to determine whether speakers follow the social conventions that regulate the exchange of turns in conversations. In particular, the authors formulated a set of simple principles that determine conversation (36): speaker change recurs; one party speaks at a time; occurrences, when speakers talk simultaneously, are common but brief; turn transitions with a slight or no gap make the majority of turn transitions; the turn order and size are not fixed, and the length and content of transitions vary. Moreover, the selection of speakers in the conversation follows conventionalized turn-allocation techniques, which are a core component of any conversation. The conversation exchange consists of turns structured from turn-constructional units (cf. sentences consisting of phrases and words). A conversational unit contains turn transition points where the current speaker can select the next speaker or decide to continue, known as self-selection, using gestures such as prosody or intonation, hand and head gestures, body posture, glance, and eyebrow movement. Lexicogrammar can also indicate transitions, such as specific lexical units or the right end of a sentence. For example, conversation exchange involves the identification of the appropriate places to exchange the conversational turn, such as passing it to the next speaker and resolving conflicts that may occur.

Individuals with PPA display interactional difficulties during communication. For example, a study of individuals with svPPA showed that although these individuals participated actively in the conversation, they had problems maintaining the flow of interaction, such as requesting for confirmation and displayed an inability to keep with the conversation, such as to initiate or continue the conversational topic (145). In addition, individuals with AD differ in the construction of turns from healthy controls. For example, a study of conversations in individuals with AD showed that individuals with AD produced fewer word per turn and fewer speech acts—especially, requestives, assertives—than healthy individuals (146).

The types of conversations, e.g., casual conversations (147), telephone conversations (148), map task navigation, computer-mediated decision-making interactions, and spontaneous dialogue data (149) determine the role of exchange between speakers. However, a common complaint is that individuals with dementia often have difficulty following conventional patterns, such as ring-greeting-message-greeting, that characterize phone conversations (150).

Moreover, reduced conversational skills characterize individuals with dementia, including PPA, MCI, AD, and PD (151-154). For example, studies showed that individuals with PPA could “maintain turn-taking but had reduced amount of talk and were able to request confirmation and actively repair their own and their partners’ trouble in talk” (155). Nevertheless, studies using conversational analysis usually rely on a few participants. Thus, it is far from straightforward to generalize on the population.

Whitworth et al. (156) employed conversational analysis and showed that individuals with PD display impairments in turn initiation, turn-taking, and repair, such as failing or delaying responding to conversational cues when turns are allocated to them by the current speaker. As a
result, in individuals with PD, conversational difficulties arise regarding speaker coordination during turn-taking and turn-resolution (157, 158). These failures may occur due to a failure to perceive a turn-taking cue during the interaction. Several studies in talk-in-interaction benefit from analyzing multimodal cues from speech language and video. However, these studies generally rely on very few participants (159); thus, it is essential to employ conversation multimodal analytic research on larger individual groups to safeguard the generalizability of the findings.

3.5 Conclusions
This paper has discussed discourse and conversation in the context of assessment and diagnosis and demonstrated that CDA provides information about speech communication impairments across discourse domains. The multimodal information highlights the value of CDA as an approach that provides measures that can complement those from current standardized language evaluation batteries (160-164) for assessment, diagnosis, prognosis, and therapy efficacy estimation (159, 163-165).

3.6 Major takeaways
i. Dementia affects speech, language, and communication in most individuals with dementia, but these are especially evident in individuals with Primary Progressive Aphasia.
ii. Deficits characterize the microstructure (e.g., phonology, morphology, syntax) and discourse macrostructure (e.g., cohesion, coherence), theory of mind, and conversation.
iii. Discourse analysis in individuals with dementia provides comprehensive linguistic biomarkers for speech, language, communication, and cognition assessment, (differential) diagnosis, prognosis, and treatment efficacy valuation.

References
1. World Health Organization. Global action plan on the public health response to dementia 2017–20252017.
2. Geda YE, Schneider LS, Gitlin LN, Miller DS, Smith GS, Bell J, Evans J, Lee M, Porsteinsson A, Lanctôt KL, Rosenberg PB, Sultzer DL, Francis PT, Brodaty H, Padala PP, Onyike CU, Ortiz LA, Ancoli-Israel S, Bliwise DL, Martin JL, Vitiello MV, Yaffe K, Zee PC, Herrmann N, Sweet RA, Ballard C, Khin NA, Alfaro C, Murray PS, Schultz S, Lyketsos CG. Neuropsychiatric symptoms in Alzheimer's disease: Past progress and anticipation of the future. Alzheimer's and Dementia. 2013;9(5):602-8.
3. Lyketsos CG, DelCampo L, Steinberg M, Miles Q, Steele CD, Munro C, Baker AS, Sheppard JME, Frangakis C, Brandt J. Treating depression in Alzheimer disease: efficacy and safety of sertraline therapy, and the benefits of depression reduction: the DIADS. Archives of General Psychiatry. 2003;60(7):737.
4. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of Neuropsychiatric Symptoms in Dementia and Mild Cognitive ImpairmentResults From the Cardiovascular Health Study. JAMA. 2002;288(12):1475-83.
5. Lyketsos CG, Steinberg M, Tschanz JT, Norton MC, Steffens DC, Breitner JCS. Mental and Behavioral Disturbances in Dementia: Findings From the Cache County Study on Memory in Aging. American Journal of Psychiatry. 2000;157(5):708-14.
6. Thompson CK, Lukic S, King MC, Mesulam MM, Weintraub S. Verb and noun deficits in stroke-induced and primary progressive aphasia: The Northwestern Naming Battery. Aphasiology. 2012;26(5):632-55.
7. Thompson CK, Mack JE. Grammatical Impairments in PPA. Aphasiology. 2014;28(8-9):1018-37.
8. Mesulam MM. Primary progressive aphasia and the language network: the 2013 H. Houston Merritt Lecture. Neurology. 2013;81(5):456-62.
9. Danner DD, Snowdon DA, Friesen WV. Positive emotions in early life and longevity: Findings from the nun study. Journal of Personality and Social Psychology. 2001;80(5):804-13.
10. Berisha V, Wang S, LaCross A, Liss J. Tracking discourse complexity preceding Alzheimer's disease diagnosis: a case study comparing the press conferences of Presidents Ronald Reagan and George Herbert Walker Bush. J Alzheimers Dis. 2015;45(3):959-63.
11. Berisha V, Sandoval S, Utianski R, Liss J, Spanias A. Characterizing the distribution of the quadrilateral vowel space area. Journal of the Acoustical Society of America. 2014;135(1):421-7.
12. Le X, Lancashire I, Hirst G, Jokel R. Longitudinal detection of dementia through lexical and syntactic changes in writing: a case study of three British novelists. Literary and Linguistic Computing. 2011;26(4):435-61.
13. Brown G, Yule G. Discourse Analysis. Cambridge: Cambridge University Press; 1983.
14. Armstrong E. Aphasic discourse analysis: The story so far. Aphasiology. 2000;14(9):875-92.
15. Graham NL, Patterson K, Hodges JR. When more yields less: Speaking and writing deficits in Nonfluent progressive aphasia. Neurocase. 2004;10(2):141-55.
16. Knibb JA, Woollams AM, Hodges JR, Patterson K. Making sense of progressive non-fluent aphasia: an analysis of conversational speech. Brain. 2009;132(10):2734-46.
17. Thompson CK, Ballard KJ, Tait ME, Weintraub S, Mesulam MM. Patterns of language decline in nonfluent primary progressive aphasia. Aphasiology. 1997;11:297.
18. Whitworth A, Cartwright J, Beales A, Leitao S, Panegyres PK, Kane R. Taking words to a new level: a preliminary investigation of discourse intervention in primary progressive aphasia. Aphasiology. 2018;32(11):1284-309.
19. Blommaert J. Discourse. Cambridge: Cambridge University Press; 2005.
20. Themistocleous C, Ficek B, Webster K, den Ouden D-B, Hillis AE, Tsapkini K. Automatic Subtyping of Individuals with Primary Progressive Aphasia. Journal of Alzheimer's Disease. 2021;79:1185-94.
21. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenbergh E, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006-14.
22. Ash S, Evans E, O’Shea J, Powers J, Boller A, Weinberg D, Haley J, McMillan C, Irwin DJ, Rascovsky K, Grossman M. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology. 2013;81:329-36.
23. Hall K, Lind C, Young JA, Okell E, van Steenbrugge W. Familiar communication partners’ facilitation of topic management in conversations with individuals with dementia. International Journal of Language & Communication Disorders. 2018;53(3):564-75.
24. Botinis A, Bakakou-Orphanou A, Themistocleous C. Multifactor Analysis of Discourse Turn in Greek. ICPhS XVI; Saarbrücken, Germany 2007. p. 1341-4.
25. Peristeri E, TsimpI IM, Tsapkini K. The local-global dimension in cognitive control after left lateral prefrontal cortex damage: Evidence from the verbal and the non-verbal domain. Academy of Aphasia-- 52nd Annual Meeting; Miami-Florida: Frontiers in Psychology 2014. p. 1-2.
26. Neophytou K, Themistocleous C, Wiley R, Tsapkini K, Rapp B. Understanding and classifying the different variants of Primary Progressive Aphasia based on spelling performance. Frontiers in Human Neuroscience. 2018;12.
27. Themistocleous C, Neophytou K, Rapp B, Tsapkini K. A tool for automatic scoring of spelling performance. Journal of Speech, Language, and Hearing Research. 2020;63:4179-92.
28. Hickok G, Wilson M, Clark K, Klima ES, Kritchevsky M, Bellugi U. Discourse Deficits Following Right Hemisphere Damage in Deaf Signers. Brain and Language. 1999;66(2):233-48.
29. Afthinos A, Themistocleous C, Herrmann O, Fan H, Lu H, Tsapkini K. The Contribution of Working Memory Areas to Verbal Learning and Recall in Primary Progressive Aphasia. Frontiers in Neurology. 2022;13:1-11.
30. Winner E, Brownell H, Happé F, Blum A, Pincus D. Distinguishing Lies from Jokes: Theory of Mind Deficits and Discourse Interpretation in Right Hemispheric Brain-Damaged Patients. Brain and Language. 1998;62(1):89-106.
31. Chapman SB, Highley AP, Thompson JL. Discourse in fluent aphasia and Alzheimer’s disease: Linguistic and pragmatic considerations. Journal of Neurolinguistics. 1998;11(1-2):55-78.
32. Chomsky N. Aspects of the theory of syntax. Cambridge, Massachusetts: M.I.T. Press; 1965.
33. Murray L, Timberlake A, Eberle R. Treatment of Underlying Forms in a discourse context. Aphasiology. 2007;21(2):139-63.
34. Schegloff EA. Reflections on Studying Prosody in Talk-in-Interaction. Language and Speech. 1998;41(3-4):235-63.
35. Schegloff EA, Jefferson G, Sacks H. The preference for self-correction in the organization of repair in conversation. Language. 1977;53(2):361-82.
36. Sacks H, Schegloff EA, Jefferson G. A Simplest Systematics for the Organization of Turn-Taking for Conversation. Language. 1974;50:696-735.
37. Themistocleous C, Webster K, Afthinos A, Tsapkini K. Part of Speech Production in Patients With Primary Progressive Aphasia: An Analysis Based on Natural Language Processing. American Journal of Speech-Language Pathology. 2020:1-15.
38. Fergadiotis G, Wright Heather H, West Thomas M. Measuring Lexical Diversity in Narrative Discourse of People With Aphasia. American Journal of Speech-Language Pathology. 2013;22(2):S397-S408.
39. Wilson SM, DeMarco AT, Henry ML, Gesierich B, Babiak M, Miller BL, Gorno-Tempini ML. Variable disruption of a syntactic processing network in primary progressive aphasia. Brain. 2016;139(11):2994-3006.
40. Wilson SM, Galantucci S, Tartaglia MC, Gorno-Tempini ML. The neural basis of syntactic deficits in primary progressive aphasia. Brain Lang. 2012;122(3):190-8.
41. Fergadiotis G, Wright HH. Modelling confrontation naming and discourse performance in aphasia. Aphasiology. 2016;30(4):364-80.
42. Fenner AS, Webster KT, Ficek BN, Frangakis CE, Tsapkini K. Written Verb Naming Improves After tDCS Over the Left IFG in Primary Progressive Aphasia. Frontiers in Psychology. 2019;10:1396.
43. Sebastian R, Thompson CB, Wang NY, Wright A, Meyer A, Friedman RB, Hillis AE, Tippett DC. Patterns of Decline in Naming and Semantic Knowledge in Primary Progressive Aphasia. Aphasiology. 2018;32(9):1010-30.
44. Tsapkini K, Webster KT, Ficek BN, Desmond JE, Onyike CU, Rapp B, Frangakis CE, Hillis AE. Electrical brain stimulation in different variants of primary progressive aphasia: A randomized clinical trial. Alzheimer's Dement (N Y). 2018;4:461-72.
45. Faria A, Meyer A, Tippett D, Sebastian R, Mori S, Friedman R. Decline in naming in patients with Primary Progressive Aphasia is associated with the strength of functional correlation between homologous Pre-Frontal cortices in the initial MRI. Neurology. 2015;84(14 Supplement):P5-018.
46. Budd MA, Korte K, Cloutman L, Newhart M, Gottesman RF, Davis C, Heidler-Gary J, Seay MW, Hillis AE. The nature of naming errors in primary progressive aphasia versus acute post-stroke aphasia. Neuropsychology. 2010;24(5):581-9.
47. Newhart M, Davis C, Kannan V, Heidler-Gary J, Cloutman L, Hillis AE. Therapy for naming deficits in two variants of primary progressive aphasia. Aphasiology. 2009;23:823--34.
48. Hillis AE, Oh S, Ken L. Deterioration of naming nouns versus verbs in primary progressive aphasia. Annals of Neurology. 2004;55(2):268-75.
49. Salis C, DeDe G. Sentence Production in a Discourse Context in Latent Aphasia: A Real-Time Study. American Journal of Speech-Language Pathology. 2022;31(3):1284-96.
50. Salis C, Martin N, Meehan SV, McCaffery K. Short-term memory span in aphasia: Insights from speech-timing measures. Journal of Neurolinguistics. 2018;48:176-89.
51. Yoo H, McNeil MR, Dickey MW, Terhorst L. Linguistic and nonlinguistic processing speed across age-matched normal healthy controls and individuals with left-hemisphere damage, with and without aphasia. Aphasiology. 2022;36(2):147-69.
52. Fyndanis V, Themistocleous C. Are there prototypical associations between time frames and aspectual values? Evidence from Greek aphasia and healthy ageing. Clinical Linguistics & Phonetics. 2019;33(1-2):191-217.
53. Themistocleous C, Fyndanis V, Tsapkini K. Sonorant spectra and coarticulation distinguish speakers with different dialects. Speech Communication. 2022:1-14.
54. König A, Satt A, Sorin A, others. Automatic speech analysis for the assessment of patients with predementia and Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2018;1(1):112-24.
55. Satt A, Hoory R, König A, Aalten P, Robert PH, editors. Speech-based automatic and robust detection of very early dementia. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH; 2014.
56. Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF, Jarrold W, Miller BL, Gorno-Tempini ML. Connected speech production in three variants of primary progressive aphasia. Brain. 2010;133(Pt 7):2069-88.
57. Themistocleous C, Eckerström M, Kokkinakis D. Voice quality and speech fluency distinguish individuals with Mild Cognitive Impairment from Healthy Controls. PLoS One. 2020;15(7):e0236009.
58. Themistocleous C. Dialect Classification From a Single Sonorant Sound Using Deep Neural Networks. Frontiers in Communication. 2019;4:1-12.
59. Themistocleous C, Kokkinakis D, Marie E, Kathleen F, Kristina Lundholm F. Effects of Cognitive Impairment on vowel duration. Proceedings of the 9th Tutorial & Research Workshop on Experimental Linguistics (ExLing 2018) 28-30 Paris, France. 2018:113-6.
60. Themistocleous C. Dialect classification using vowel acoustic parameters. Speech Communication. 2017;92:13-22.
61. Kaplan E, Goodglass H, Weintraub S. Boston Naming Test. Austin, TX: Pro-ed; 2001.
62. Kertesz A. Western aphasia battery-revised (WAB-R). New York: Pearson; 2006. null p.
63. Goodglass H, Kaplan E. Boston diagnostic aphasia examination (BDAE). Philadelphia: Lea & Febiger; 1983.
64. Kay J, Lesser R, Coltheart RM. PALPA. Psycholinguistic Assessments of Language Processing in Aphasia. New York: Psychology Press; 1992.
65. Bastiaanse R, Edwards S, Rispens J. The Verb and Sentence Test (VAST). Harlow (UK): Thames Valley Test Company; 2002. null p.
66. de Aguiar V, Zhao Y, Ficek BN, Webster K, Rofes A, Wendt H, Frangakis C, Caffo B, Hillis AE, Rapp B, Tsapkin K. Cognitive and language performance predicts effects of spelling intervention and tDCS in Primary Progressive Aphasia. Cortex. 2020;124:66-84.
67. Hudspeth Dalton SG, Shultz C, Henry ML, Hillis AE, Richardson JD. Describing Phonological Paraphasias in Three Variants of Primary Progressive Aphasia. American Journal of Speech-Language Pathology. 2018;27:336-49.
68. Tippett DC, Hillis AE, Tsapkin K. Treatment of Primary Progressive Aphasia. Current Treatment Options in Neurology. 2015;17(8).
69. Tsapkin K, Frangakis C, Davis C, Gomez Y, Chakravarty T, Hillis A. Spelling rehabilitation using transcranial direct current (tDCS) in primary progressive aphasia (PPA). Frontiers in Psychology. 2014;5:1.
70. Hillis AE. Deterioration or recovery of selective cognitive function can reveal the role of focal areas within networks of the brain. Behavioural neuroscience. 2013;26(1-2):3-5.
71. de Aguiar V, Zhao Y, Faria A, Ficek B, Webster KT, Wendt H, Wang Z, Hillis AE, Onyike CU, Frangakis C, Caffo B, Tsapkin K. Brain volumes as predictors of tDCS effects in primary progressive aphasia. Brain and Language. 2020;200:104707-.
72. Hillis AE, Tsapkin K. Neuroanatomical aspects of reading. The Handbook of Adult Language Disorders: Psychology Press; 2015. p. 40–53.
73. Gorno-Tempini ML, Pressman P. Introduction to Primary Progressive Aphasia. In: Small SL, Hickok G, editors. Neurobiology of language: Elsevier; 2016. p. 935-52.
74. Themistocleous C, Ficek B, Webster K, Tsapkin K. tDCS reduces phonological errors in patients with primary progressive aphasia. 60th Annual Academy of Aphasia Meeting; Philadelphia2022.
75. Themistocleous C, Webster K, Tsapkini K. Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sciences. 2021;11(3).
76. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, Johnson JK, Weiner MW, Miller BL. Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology. 2004;55(3):335-46.
77. Ash S, Adamowicz D, McMillan C, Grossman M. Sounds of Silence: Pauses in the Speech of Progressive Non-Fluent Aphasics. Neurology. 2010;74(9):A504-A5.
78. Thompson CK, Cho S, Hsu CJ, Wienieke C, Rademaker A, Weitner BB, Mesulam MM, Weintraub S. Dissociations Between Fluency And Agrammatism In Primary Progressive Aphasia. Aphasiology. 2012;26(1):20-43.
79. Thompson CK, Meltzer-Asscher A, Cho S, Lee J, Wienieke C, Weintraub S, Mesulam MM. Neurocognitive mechanisms of verb argument structure processing. Behavioural Neurology. 2013;26(null):141-68.
80. Marcotte K, Graham NL, Fraser KC, Meltzer JA, Tang-Wai DF, Chow TW, Freedman M, Leonard C, Black SE, Rochon E. White Matter Disruption and Connected Speech in Non-Fluent and Semantic Variants of Primary Progressive Aphasia. Dementia and geriatric cognitive disorders extra. 2017;7(1):52-73.
81. Duffy JR. Apraxia of speech in degenerative neurologic disease. Aphasiology. 2006;20(6):511-27.
82. Duffy JR, Strand EA, Clark H, Machulda M, Whitwell JL, Josephs KA. Primary progressive apraxia of speech: clinical features and acoustic and neurologic correlates. American Journal of Speech and Language Pathology. 2015;24(2):88-100.
83. Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE, Hauser MF, Witte RJ, Boeve BF, Knopman DS, Dickson DW, Jack CR, Jr., Petersen RC. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):1385-98.
84. Josephs KA, Whitwell JL, Duffy JR, Vanvoorst WA, Strand EA, Hu WT, Boeve BF, Graff-Radford NR, Parisi JE, Knopman DS, others. Progressive aphasia secondary to Alzheimer disease vs FTLD pathology. Neurology. 2008;70(1):25-34.
85. Gorno-Tempini ML, Ogar JM, Brambati SM, Wang P, Jeong JH, Rankin KP, Dronkers NF, Miller BL. Anatomical correlates of early mutism in progressive nonfluent aphasia. Neurology. 2006;67(10):1849-51.
86. Wang H, Walenski M, Litcofsky K, Mack JE, Mesulam MM, Thompson CK. Verb production and comprehension in primary progressive aphasia. Journal of Neurolinguistics. 2022;64.
87. Neophytou K, Wiley RW, Rapp B, Tsapkini K. The use of spelling for variant classification in primary progressive aphasia: Theoretical and practical implications. Neuropsychologia. 2019;133:107157.
88. Wilson SM, Brandt TH, Henry ML, Babiak M, Ogar JM, Salli C, Wilson L, Peralta K, Miller BL, Gorno-Tempini ML. Inflectional morphology in primary progressive aphasia: an elicited production study. Brain and Language. 2014;136:58-68.
89. Mack JE, Mesulam MM, Rogalski EJ, Thompson CK. Verb-argument integration in primary progressive aphasia: Real-time argument access and selection. Neuropsychologia. 2019;134:107192.
90. Stockbridge MD, Matchin W, Walker A, Breining B, Fridriksson J, Hickok G, Hillis AE. One cat, Two cats, Red cat, Blue cats: Eliciting morphemes from individuals with primary progressive aphasia. Aphasiology. 2021;35(12):1-12.

91. Barber R, Snowden JS, Craufurd D. Frontotemporal dementia and Alzheimer’s disease: retrospective differentiation using information from informants. Journal of Neurology, Neurosurgery & Psychiatry. 1995;59(1):61.

92. van Engelen M-PE, Gossink FT, de Vijlder LS, Meursing JRA, Scheltens P, Dols A, Pijnenburg YAL, Knopman D. End Stage Clinical Features and Cause of Death of Behavioral Variant Frontotemporal Dementia and Young-Onset Alzheimer’s Disease. Journal of Alzheimer's Disease. 2020;77(3):1169-80.

93. Meilan JJG, Martinez-Sanchez F, Carro J, Carcavilla N, Ivanova O. Voice Markers of Lexical Access in Mild Cognitive Impairment and Alzheimer's Disease. Current Alzheimer Research. 2018;15(2):111-9.

94. Themistocleous C, Kokkinakis D. Speech and Mild Cognitive Impairment detection. In: Botinis A, editor. Proceedings of the 9th Tutorial & Research Workshop on Experimental Linguistics (ExLing2019)2019. p. 201.

95. Themistocleous C, Eckerström M, Kokkinakis D. Identification of Mild Cognitive Impairment From Speech in Swedish Using Deep Sequential Neural Networks. Frontiers in Neurology. 2018;9:797.

96. Tóth L, Hoffmann I, Gosztolya G, Vincze V, Szatloczki G, Banreti Z, Pakaski M, Kalman J. A speech recognition-based solution for the automatic detection of mild cognitive impairment from spontaneous speech. Current Alzheimer Research. 2018;15(2):130-8.

97. Horley K, Reid A, Burnham D. Emotional prosody perception and production in Dementia of the Alzheimer's type. Journal of Speech, Language, and Hearing Research. 2010;53(5):1132-46.

98. Sajjadi SA, Patterson K, Tomek M, Nestor PJ. Abnormalities of connected speech in semantic dementia vs Alzheimer's disease. Aphasiology. 2012;26(6):847-66.

99. Croot K, Hodges JR, Xuereb J, Patterson K. Phonological and Articulatory Impairment in Alzheimer's Disease: A Case Series. Brain and Language. 2000;75(2):277-309.

100. Sanz C, Carrillo F, Slachevsky A, Forno G, Gorno Tempini ML, Villagra R, Ibáñez A, Tagliazucchi E, García AM. Automated text-level semantic markers of Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2022;14(1):1-10.

101. Altmann LJP, Kempler D, Andersen ES. Speech Errors in Alzheimer's Disease: Reevaluating Morphosyntactic Preservation. Journal of Speech, Language & Hearing Research. 2001;44(5):1069-82.

102. Fyndanis V, Manouilidou C, Koufou E, Karampekios S, Tsapakis EM. Agrammatic patterns in Alzheimer's disease: Evidence from tense, agreement, and aspect. Aphasiology. 2013;27(2):178-200.

103. Pekkala S, Wiener D, Himali J, Beiser A, Obler L, Liu Y, McKee A, Auerbach S, Seshadri S, Wolf P, Au R. Lexical retrieval in discourse: An early indicator of Alzheimer’s dementia. Clinical linguistics & phonetics. 2013;27.

104. Faroqi-Shah Y, Treanor A, Ratner NB, Ficek B, Webster K, Tsapkini K. Using narratives in differential diagnosis of neurodegenerative syndromes. J Commun Disord. 2020;85:1-13.
105. Tsanas A, Arora S. Data-Driven Subtyping of Parkinson's Using Acoustic Analysis of Sustained Vowels and Cluster Analysis: Findings in the Parkinson's Voice Initiative Study. SN Computer Science. 2022;3(3).
106. Troche J, Troche M, Berkowitz R, Grossman M, Reilly J, editors. Tone discrimination as a window into acoustic perceptual deficits in Parkinson's disease. Procedia - Social and Behavioral Sciences; 2010.
107. Troche MS, Altmann LJP. Sentence production in Parkinson disease: Effects of conceptual and task complexity. Applied Psycholinguistics. 2012;33(2):225-51.
108. Raschovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EGP, Onyike CU, Hillis AE, Josephs KA, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini M-L, Rosen H, Prioleau-Latham CE, Lee A, Kipps CM, Lillo P, Piguet O, Rohrer JD, Rossor MN, Warren JD, Fox NC, Galasko D, Salmon DP, Black SE, Mesulam M, Weintraub S, Dickerson BC, Diehl-Schmid J, Pasquier F, Deramecourt V, Lebert F, Pijnenburg Y, Chow TW, Manes F, Grafman J, Cappa SF, Freedman M, Grossman M, Miller BL. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(9):2456-77.
109. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF. Frontotemporal lobar degeneration. Neurology. 1998;51(6):1546.
110. Geraudie A, Battista P, García AM, Allen IE, Miller ZA, Gorno-Tempini ML, Montembeault M. Speech and language impairments in behavioral variant frontotemporal dementia: A systematic review. Neuroscience & Biobehavioral Reviews. 2021;131:1076-95.
111. Glosser G, Deser T. Patterns of discourse production among neurological patients with fluent language disorders. Brain and Language. 1991;40(1):67-88.
112. St-Pierre M-C, Ska B, Bélard R. Lack of coherence in the narrative discourse of patients with dementia of the Alzheimer's type. Journal of Multilingual Communication Disorders. 2009;3(3):211-5.
113. Obler LK. CHAPTER 12 - Language and Brain Dysfunction in Dementia. In: Segalowitz SJ, editor. Language Functions and Brain Organization. Boston: Academic Press; 1983. p. 267-82.
114. Beaugrande RD, Dressler WU. Introduction to text linguistics: Longman; 1981.
115. Almor A, Kempler D, MacDonald MC, Andersen ES, Tyler LK. Why Do Alzheimer Patients Have Difficulty with Pronouns? Working Memory, Semantics, and Reference in Comprehension and Production in Alzheimer’s Disease. Brain and Language. 1999;67(3):202-27.
116. Halliday MAK, Hasan R. Cohesion in English. London: Longman; 1976. xv,374p. p.
117. Ramanathan V. Narrative well-formedness in Alzheimer's discourse: An interactional examination across settings. Journal of Pragmatics. 1995;23(4):395-419.
118. Perkins L, Whitworth A, Lesser R. Conversing in dementia: A conversation analytic approach. Journal of Neurolinguistics. 1998;11(1-2):33-53.
119. Chapman SB, Zientz J, Weiner M, Rosenberg R, Frawley W, Burns MH. Discourse changes in early Alzheimer disease, mild cognitive impairment, and normal aging. Alzheimer Dis Assoc Disord. 2002;16(3):177-86.
120. Garrard P, Rentoumi V, Gesierich B, Miller B, Gorno-Tempini ML. Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse. Cortex. 2014;55(1):122-9.
121. Seixas Lima B, Levine B, Graham NL, Leonard C, Tang-Wai D, Black S, Rochon E. Impaired coherence for semantic but not episodic autobiographical memory in semantic variant primary progressive aphasia. Cortex. 2020;123:72-85.
122. Breining BL, Tippett DC, Davis C, Posner J, Sebastian R, Oishie K, Hillis AE. Assessing dissociations of object and action naming in acute stroke. Clinical Aphasiology Conference; Monterey, CA 2015.
123. Roberts A, Savundranayagam M, Orange JB. Non-Alzheimer Dementias. In: Cummings L, editor. Research in Clinical Pragmatics. Cham: Springer International Publishing; 2017. p. 347-77.
124. Walenski M, Mack JE, Mesulam MM, Thompson CK. Thematic Integration Impairments in Primary Progressive Aphasia: Evidence From Eye-Tracking. Front Hum Neurosci. 2020;14:587594.
125. Ribu ISB. Language and cognition in healthy aging and dementia. Oslo: University of Oslo; 2019.
126. Themistocleous C. Seeking an Anchorage. Stability and Variability in Tonal Alignment of Rising Prenuclear Pitch Accents in Cypriot Greek. Language and Speech. 2016;59(4):433-61.
127. Themistocleous C. Prosody and Information Structure in Greek (Prosodia kai plirophoriki domi stin Ellinici). Athens: National and Kapodistrian University of Cyprus; 2011.
128. Beckman M, Pierrehumbert J. Intonational Structure in Japanese and English. Phonology Yearbook. 1986;3:255-309.
129. Pierrehumbert J. Phonology and Phonetics of English intonation. Boston: Massachusetts Institute of Technology; 1980.
130. Misiewicz S, Brickman AM, Tosto G. Prosodic Impairment in Dementia: Review of the Literature. Current Alzheimer Research. 2018;15(2):157-63.
131. Abdalla M, Rudzicz F, Hirst G. Rhetorical structure and Alzheimer’s disease. Aphasiology. 2018;32(1):41-60.
132. Taboada M, Mann WC. Rhetorical Structure Theory: looking back and moving ahead. Discourse Studies. 2006;8(3):423-59.
133. Kong AP-H, Linnik A, Law S-P, Shum WW-M. Measuring discourse coherence in anomic aphasia using Rhetorical Structure Theory. International Journal of Speech-Language Pathology. 2018;20(4):406-21.
134. Farias ST, Chand V, Bonnici L, Baynes K, Harvey D, Mungas D, Simon C, Reed B. Idea density measured in late life predicts subsequent cognitive trajectories: implications for the measurement of cognitive reserve. J Gerontol B Psychol Sci Soc Sci. 2012;67(6):677-86.
135. Hymes DH. Ethnography, Linguistics, Narrative Inequality Toward An Understanding Of voice Critical Perspectives on Literacy and Education. New York: Routledge; 1996.
136. Grice HP. Logic and Conversation. In: Cole P, Morgan JL, editors. Syntax And Semantics Speech Acts. 3: Academic Press; 1975. p. 41-58.
137. Kong AP, Whiteside J, Bargmann P. The Main Concept Analysis: Validation and sensitivity in differentiating discourse produced by unimpaired English speakers from individuals with aphasia and dementia of Alzheimer type. Logoped Phoniatr Vocol. 2016;41(3):129-41.
138. Rosen HJ, Allison SC, Ogar JM, Amici S, Rose K, Dronkers N, Miller BL, Gorno-Tempini ML. Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology. 2006;67(10):1752-6.
139. Carr AR, Ashla MM, Jimenez EE, Mendez MF. Screening for Emotional Expression in Frontotemporal Dementia: A Pilot Study. Behavioural Neurology. 2018:1-6.
140. Ducharme S, Pearl-Dowler L, Gossink F, McCarthy J, Lai J, Dickerson BC, Chertkow H, Rapin L, Vijverberg E, Krudop W, Dols A, Pijnenburg Y. The Frontotemporal Dementia versus Primary Psychiatric Disorder (FTD versus PPD) Checklist: A Bedside Clinical Tool to Identify Behavioral Variant FTD in Patients with Late-Onset Behavioral Changes. Journal of Alzheimer's Disease. 2019;67(1):113-24.
141. Nevler N, Ash S, Jester C, Irwin DJ, Liberman M, Grossman M. Automatic measurement of prosody in behavioral variant FTD. Neurology. 2017;89(7):650-6.
142. Ash S, Moore P, Antani S, G McCawley BMW, BS; and M. Grossman, MD, EdD. Trying to tell a tale. Discourse impairments in progressive aphasia and frontotemporal dementia. Neurology. 2006;66(9):1405-13.
143. Youmans G, Bourgeois M. Theory of mind in individuals with Alzheimer-type dementia. Aphasiology. 2010;24(4):515-34.
144. Bora E, Walterfang M, Velakoulis D. Theory of mind in behavioural-variant frontotemporal dementia and Alzheimer's disease: a meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86(7):714-9.
145. Taylor-Rubin C, Croot K, Power E, Savage SA, Hodges JR, Togher L. Communication behaviors associated with successful conversation in semantic variant primary progressive aphasia. International Psychogeriatrics. 2017;29(10):1619-32.
146. Ripich DN, Vertes D, Whitehouse P, Fulton S, Ekelman B. Turn-taking and speech act patterns in the discourse of senile dementia of the Alzheimer's type patients. Brain and Language. 1991;40(3):330-43.
147. Voutilainen L, Henttonen P, Kahri M, Kivioja M, Ravaja N, Sams M, Peräkylä A. Affective stance, ambivalence, and psychophysiological responses during conversational storytelling. Journal of Pragmatics. 2014;68:1-24.
148. Shimoda A, Li Y, Hayashi H, Kondo N. Dementia risks identified by vocal features via telephone conversations: A novel machine learning prediction model. PLoS One. 2021;16(7):e0253988.
149. de la Fuente Garcia S, Ritchie CW, Luz S. Protocol for a conversation-based analysis study: PREVENT-ED investigates dialogue features that may help predict dementia onset in later life. BMJ Open. 2019;9(3):e026254.
150. Orange JB, Lubinski RB, Higginbotham J. Conversational Repair by Individuals With Dementia of the Alzheimer's Type. J Speech Hear Res. 1996;39(4):881-95.
151. Bohling HR. Communication with Alzheimer's Patients: An Analysis of Caregiver Listening Patterns. The International Journal of Aging and Human Development. 1991;33(4):249-67.
152. Kindell J, Sage K, Keady J, Wilkinson R. Adapting to conversation with semantic dementia: using enactment as a compensatory strategy in everyday social interaction. International Journal of Language & Communication Disorders. 2013;48(5):497-507.
153. Watson CM. An analysis of trouble and repair in the natural conversations of people with dementia of the Alzheimer's type. Aphasiology. 1999;13(3):195-218.
154. Myrberg K, Hydén L-C, Samuelsson C. Instances of trouble in aphasia and dementia: an analysis of trouble domain and interactional consequences. Aphasiology. 2022;36(11):1333-50.
155. Taylor C, Croot K, Power E, Savage SA, Hodges JR, Togher L. Trouble and repair during conversations of people with primary progressive aphasia. Aphasiology. 2014;28(8-9):1069-91.
156. Whitworth A, Lesser R, McKeith I. Profiling conversation in Parkinson's disease with cognitive impairment. Aphasiology. 1999;13(4-5):407-25.
157. Saldert C, Bauer M. Multifaceted Communication Problems in Everyday Conversations Involving People with Parkinson's Disease. Brain Sci. 2017;7(10).
158. Saldert C, Ferm U, Bloch S. Semantic trouble sources and their repair in conversations affected by Parkinson's disease. International Journal of Language and Communication Disorders. 2014;49(6):710-21.
159. Thilakaratne R, Loftus AM, Cocks N. Assessing and treating conversations with partners in Parkinson's disease: A scoping review of the evidence. Int J Speech Lang Pathol. 2022;24(4):427-36.
160. Aliakbari M, Faraji E, Pourshakibaee P. Investigation of the proxemic behavior of Iranian professors and university students: Effects of gender and status. Journal of Pragmatics. 2011;43(5):1392-402.
161. Stark BC, Bryant L, Themistocleous C, den Ouden D-B, Roberts AC. Best practice guidelines for reporting spoken discourse in aphasia and neurogenic communication disorders. Aphasiology. 2022:1-24.
162. Stark Brielle C, Dutta M, Murray Laura L, Bryant L, Fromm D, MacWhinney B, Ramage Amy E, Roberts A, den Ouden Dirk B, Brock K, McKinney-Bock K, Paek Eun J, Harmon Tyson G, Yoon Si O, Themistocleous C, Yoo H, Aveni K, Gutierrez S, Sharma S. Standardizing Assessment of Spoken Discourse in Aphasia: A Working Group With Deliverables. Am J Speech Lang Pathol. 2020:1-12.
163. Marangolo P, Fiori V, Calpagnano MA, Campana S, Razzano C, Caltagirone C, Marini A. tDCS over the left inferior frontal cortex improves speech production in aphasia. Front Hum Neurosci. 2013;7:539.
164. Marangolo P, Fiori V, Caltagirone C, Marini A. How Conversational Therapy influences language recovery in chronic non-fluent aphasia. Neuropsychological rehabilitation. 2013;23(5):715-31.
165. Gartner-Schmidt J, Gherson S, Hapner ER, Muckala J, Roth D, Schneider S, Gillespie Al. The Development of Conversation Training Therapy: A Concept Paper. Journal Of Voice: Official Journal Of The Voice Foundation. 2016;30(5):563-73.

Biographical note

Charalambos Themistocleous, Associate Professor of speech, language, and communication at the Department of Special Needs Education at University of Oslo. He served as a postdoctoral researcher in computational neurolinguistics at the Department of Neurology at Johns Hopkins University. He is a computational linguist with research interests in speech, language, and communication. He is interested in the relationship between the brain and language and in providing opportunities to patients with aphasia by developing automated, personalized, high-quality speech and language assessments, diagnoses, and prognoses. He has developed machine learning models for automatic treatment, monitoring, and differential diagnosis of individuals with Primary Progressive Aphasia, Alzheimer's disease, and Mild Cognitive Impairment from speech, language, structural/functional MRI, and neurophysiological testing. [ORCID: 0000-0002-9138-0939]