Hawking radiation and the Bloom–Gilman duality

R Casadio1, Alexander Yu Kamenshchik1,2,6 and Oleg V Teryaev3,4,5

1 Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126, Bologna, Italy
2 L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow, Russia
3 Joint Institute for Nuclear Research, 141980 Dubna, Russia
4 Dubna International University, 141980 Dubna, Russia
5 Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia

E-mail: Roberto.Casadio@bo.infn.it, Alexander.Kamenshchik@bo.infn.it and teryaev@jinr.ru

Received 27 March 2018, revised 3 June 2018
Accepted for publication 13 June 2018
Published 28 June 2018

Abstract

The decay widths of the quantum black hole precursors, determined from the poles of the resummed graviton propagator, are matched to the expected lifetime given by the Hawking decay. In this way, we impose a kind of duality between a perturbative description and an essentially non-perturbative description, bearing some similarity with the Bloom–Gilman duality for the strong interactions. General relations are then obtained for the widths and masses of the poles in terms of the number of particle species and the renormalisation scale of gravity. A lower bound on the lifetime of the quantum black holes is also obtained.

Keywords: black holes, duality, graviton propagator

1. Introduction

Black holes are non-perturbative objects that arise in general relativity, and describe a strong regime of gravity in which all signals are classically confined within their horizon. Like for other bound states, one can hope to find hints of their existence already at the perturbative level of quantum field theory. In fact, the resummed one-loop propagator of the graviton interacting with matter fields obtained in [1, 2] contains non-trivial poles, which may be interpreted as precursors of black holes [3, 4].

6 Author to whom any correspondence should be addressed.
The complete analytic structure of this propagator was further studied in [5], where a broad spectrum of such resonance-like states was found. In particular, the resummed graviton propagator has the following form:

$$iD^{\alpha\beta}(p^2) = i \left(L^{\alpha\mu}L^{\beta\nu} + L^{\alpha\nu}L^{\beta\mu} - L^{\alpha\beta}L^{\mu\nu} \right) G(p^2),$$

(1)

where

$$L^{\mu\nu}(p) = \eta^{\mu\nu} - \frac{p^\mu p^\nu}{p^2},$$

(2)

and

$$G^{-1}(p^2) = 2p^2 \left[1 - \frac{Np^2}{120 \pi m_P^2} \ln \left(\frac{p^2}{\mu^2} \right) \right].$$

(3)

Here, m_P denotes the Planck mass, μ is the renormalization scale, $N = N_s + 3N_f + 12N_V$, where N_s, N_f, N_V are the number of scalar, fermion and vector fields, respectively. In the standard model of particle physics, $N_s = 4$, $N_f = 45$, $N_V = 12$ and $N = 283$. The propagator (1) has a standard pole at $p^2 = 0$ and an infinite number of other poles, which are the zeros of the expression (3). The masses of these resonance-like states are given by [5]

$$m_n = m_p \sqrt{\frac{120 \pi \sin \theta_n}{N}} \sin \left(\frac{\theta_n}{2} \right),$$

(4)

and the corresponding widths by

$$\Gamma_n = m_p \sqrt{\frac{120 \pi \sin \theta_n}{N}} \frac{\sin \theta_n}{|\sin(\theta_n/2)|},$$

(5)

where the integer $n \geq 0$ labels the nth Riemann sheet. Their ratio is thus

$$\frac{\Gamma_n}{m_n} = 2 \cot \left(\frac{\theta_n}{2} \right),$$

(6)

where the angle θ_n is the solution of the equation

$$\frac{\theta_n}{\sin \theta_n} \exp \left(- \frac{\theta_n}{\tan \theta_n} \right) = \frac{120 \pi m_P^2}{N \mu^2},$$

(7)

defining the phase of the resonance on the nth Riemann sheet. It is important to recall that in [5] we showed that the phase θ should belong to one of the intervals

$$2\pi n \leq \theta_n \leq (2n + 1) \pi,$$

(8)

for these solutions to represent proper resonances.

One may nevertheless ask why such an essentially non-perturbative object as a quantum black hole can be described by means of the perturbation theory. A similar problem inevitably arises in quantum chromodynamics (QCD), where, due to the confinement property, the observed objects are non-perturbatively formed hadrons, whereas the actual calculations can be performed at the level of quarks and gluons. The central role here is played by various types of quark-hadron duality. The first one was probably the famous Bloom–Gilman duality [9] between parton distributions and hadronic resonances, which was marked by Feynman as a manifestation of Bohr’s complementarity [10]. The quark-hadron duality is crucial in the applications of QCD sum rules [11], where the non-perturbative vector-meson coupling
can be related to the simple quark loop. The quark-hadron duality is also related to such a fundamental quantity as the axial anomaly [12]. Recently, a similar duality was observed in relativistic hydrodynamics as an effective theory [13].

In the present paper, we conjecture that a quantum black hole is related to perturbative matter loops like, for example, the ρ-meson is related to quark loops. To do so, we confront our previous results [5], based on perturbative calculations [1, 2], with the standard description of the Hawking evaporation effect, based on the consideration of quantum particles on the classical Schwarzschild background [6]. Namely, we postulate that the widths (5) determined by the poles of the graviton propagator (1) equal the inverse of the decay times following from the canonical Hawking evaporation. This assumption leads to general relations between the parameters that describe the black hole precursors.

2. Duality for black holes

A black hole with mass of the order of the Planck mass is most likely a quantum object and, without an established theory of quantum gravity, one can only conjecture how the Hawking evaporation will affect such a quantum black hole. As a working hypothesis, we shall assume that the usual expression of the Hawking radiation [6] provides an estimate of the black hole lifetime τ, from which the decay width reads

$$\Gamma_H = \frac{\tau P m P}{\tau} = \frac{m_p^4}{\alpha m^3},$$

(9)

where τ_P is the Planck time\(^7\) and α is a positive dimensionless parameter, which depends on the unknown details of the Hawking emission from such extreme black holes. For example, in the case of the standard thermodynamic approach exploiting the Stefan–Boltzmann law (see e.g. [7, 8]) this coefficient is rather large, that is

$$\alpha_{SB} = 5120 \pi.$$

(10)

Now, we make the strong assumption that this width should coincide with the one given in equation (5),

$$\Gamma_H = \Gamma_n.$$ (11)

Substituting (5) and (9) into (11), with $m = m_n$ from (4), yields

$$F(\theta) \equiv \frac{\sin^3(\theta) \sin^3(\theta/2)}{\theta^2} = A,$$

(12)

where $\theta = \theta_n$ must satisfy the condition (8) and

$$A \equiv \frac{N^2}{(120 \pi)^2 \alpha} \simeq 7.0 \cdot 10^{-6} \frac{N^2}{\alpha},$$

(13)

which gives $A \simeq 0.56/\alpha$ for $N = 283$. This is the value of N we will mostly refer to, but we already notice that A is very sensitive to the actual particle content of the theory.

The parameter α plays an especially important role for quantum black holes, whose evaporation process is essentially modified [14]. Indeed, the width Γ_H for macroscopic black holes is ensured to be small (and the lifetime $\tau \sim 1/\Gamma_H$ large) by the very large ratio m/m_P, whereas the relative stability for microscopic black holes strongly depends on the value of α in Γ_n.

\(^7\)The Planck time equals the Planck length l_P in our units with $c = 1$. We also recall that the Newton constant $G_N = \ell_P/m_P$ and the Planck constant $\hbar = \ell_P m_P$.

Class. Quantum Grav. 35 (2018) 155001

R Casadio et al
The first interesting thing to note is that there exists a minimum value of α for which equation (12) admits a solution given a fixed number N of matter particles. In fact, the function F inside the allowed intervals (8) is a bell-shaped curve like the one shown in figure 1 for the Riemann sheet $n=0$. For larger values of n, the shape is similar, except the maximum value of F simply decreases like $\theta^{-2} \sim n^{-2}$. The absolute maximum which occurs for θ in the $n=0$ sheet can be easily found to be $F_{\text{max}} \equiv F(\theta_{\text{max}} \simeq 1.48) \simeq 0.21$. This implies that one must have $A \lesssim F_{\text{max}}$ or

$$
\alpha \gtrsim 4.9 \frac{(120 \pi)^2}{N^2} \simeq 2.7,
$$

(14)
for a solution θ_0 to exist. We consider this bound as one of the important results of this paper. For $A < F_{\text{max}}$, one will have two such solutions, say θ_0^\pm, which degenerate to one for $A = F_{\text{max}}$, that is $\theta_0^\pm = \theta_{\text{max}}$. This case corresponds to $m_0 \simeq 0.64 m_P$, $\Gamma_0 \simeq 1.4 m_P$, (15) and, from equation (7), a renormalisation scale $\mu_0 \simeq 0.3 m_P$.

For sufficiently small A (equivalently, for sufficiently large α), one can find solutions in Riemann sheets with $n > 0$, and the number of sheets with solutions increases for increasing α. For instance, for $\alpha = 100$ one has two solutions θ_0^\pm in the first Riemann sheet, and two more solutions θ_1^\pm in the second Riemann sheet, as can be seen from figure 2. The corresponding relevant physical quantities are displayed in table 1. Likewise, for $\alpha = \alpha_{\text{SB}}$ in equation (10), one can see from figure 3 that solutions θ_n^\pm exist up to $n = 19$, and we display a few in table 2.

We can now present some general considerations. It is easy to see from equation (6) that the ratio Γ_n/m_n is minimised for $\theta_n^+ \simeq (2n + 1)\pi$ inside the allowed intervals (8). For any given value of A that allows for the existence of resonances, θ_0^+ is always the largest phase (modulo 2π), and will therefore correspond to the (relatively) most stable resonance. On the contrary, since θ_0^- is the closest to 0 (modulo 2π), the corresponding resonance will always be the (relatively) most unstable. Moreover, the larger α (and thus the larger the number of sheets with solutions), the larger is θ_0^+ (modulo 2π), which makes it more stable (conversely, θ_0^- is more unstable). We also notice that $\Gamma_n/m_n \simeq 2$ for $\theta_n \simeq \pi/2$ (modulo 2π), which can be a solution only provided if A is close to the maximum of F. This will occur if n is the largest integer that admits solutions, so that $\theta_0^- \simeq \theta_0^+$. Such properties are clearly displayed by the cases we considered explicitly above.

$\alpha = 100$	m	Γ	Γ/m	μ
θ_0^- = 0.29	0.16	2.3	14	0.6
θ_0^+ = 2.8	0.41	0.15	0.4	$3 \cdot 10^{-3}$
θ_1^- = 7.6	0.25	0.66	2.6	0.4
θ_1^+ = 8.5	0.32	0.32	1	$5 \cdot 10^{-3}$

Table 1. Phases, and corresponding masses and widths (in units of m_P), for $\alpha = 100$.

Figure 3. The function $F(\theta) - A$ for $\alpha = \alpha_{\text{SB}}$, in the interval $0 \leq \theta \leq 41\pi$ (or $n = 0, 1, \ldots, 20$). Phases θ_n^\pm are given by intersections with the θ axis and exist up to $n = 19$ included.
3. Conclusions

In this work, we have explored the opportunity to apply ideas similar to the well-known quark-hadron duality to the poles of the resummed graviton propagator (1), which are interpreted as describing the smallest possible black holes.

Assuming the standard Hawking formula (9) for the decay time of a macroscopic black hole still provides an estimate of the decay width for a quantum black hole, we found the bound in equation (14) for the unknown parameter α. This constraint can in turn be interpreted as an upper bound for the Hawking decay width (equivalently, a lower bound for the black hole lifetime), if α itself does not change significantly while the mass m of the radiating black hole is larger than the minimum pole mass $m_0 \approx m_P$. In fact, one approximately has

$$\tau \approx \alpha \ell_P \left(\frac{m_0}{m_P} \right)^3 \gtrsim 0.7 \tau_P, \quad (16)$$

where the values in equations (14) and (15) were used. This bound is one of the main results of this work. In this respect, it is interesting to note that this estimate of the black hole decay time leads to a very slow growth with α, as the decrease in the pole masses tends to compensate for the increase in α. For instance, for $\alpha = 100$, one can consider the poles with phases $\theta_1^+ = 5.2 \cdot 10^{-2}$ and $\theta_1^- = 3.1 \cdot 10^{-2}$ in table 1, which correspond to a width $\Gamma \lesssim m$, and find $\tau \approx 0.7 \tau_P$. Likewise, for $\alpha = \alpha_{SB}$ one obtains $\tau \approx 83 \tau_P$ for the cases in table 2 with $\Gamma \lesssim m$. In particular, the decay time computed from θ_0^+ as a function of α is shown in figure 4, from which one can estimate

$\alpha = \alpha_{SB}$	m	Γ	Γ/m	μ
θ_0^+ = 5.2 \cdot 10^{-2}	3.0 \cdot 10^{-2}	2.3	77	0.6
θ_0^+ = 3.1	1.7 \cdot 10^{-1}	1.2 \cdot 10^{-2}	7.0 \cdot 10^{-2}	1 \cdot 10^{-11}
θ_{19}^+ = 121.0	7.5 \cdot 10^{-2}	1.5 \cdot 10^{-1}	1.9	7 \cdot 10^{-3}
θ_{19}^+ = 121.4	8.4 \cdot 10^{-2}	1.0 \cdot 10^{-1}	1.2	2 \cdot 10^{-15}

Figure 4. Numerical values of the decay time $\tau \sim 1/\Gamma$, in Planck units, as a function of α (dots joined by dotted line) and the analytical approximation (17) (solid line).
\[\tau \simeq \frac{2}{3} \alpha_{\text{f}}^{1/2} \tau_p. \]

(17)

Based on this consideration about the decay time, one could therefore conjecture that the description of quantum black holes is subject to a large degeneracy, mathematically represented by the (potentially infinite) number of Riemann sheets where the poles of the propagator (1) are found.

There is some analogy between the perturbative and non-perturbative physics in QCD and gravity. The contribution of quark loops to the photon propagator [11] allows one to describe the properties of vector mesons in QCD. At the same time, the contribution of matter loops to the graviton propagator might be related to properties of black holes.

Note that perturbative QCD is not sufficient to describe the form of the spectral function. Indeed, in order to establish the duality quantitatively and its domain of validity, the notion of vacuum condensates is also required [11]. At the same time, the perturbative loop contributions are already sufficient to identify the structures which may be interpreted as Breit–Wigner peaks.

The origin of duality is connected with unitarity and the possibility to have different choices for a full set of states. In QCD, for example, one can use either the fundamental (quark and gluon) states or the physical (hadron) states as such full sets, since they are complementary to each other and not additive (for the notions of duality and additivity for various types of QCD factorisation, see [15]). The duality for black holes would mean that the matter states and the states of quantum black holes are also complementary and one should not need to consider both of them together. This would also mean that the well-known degeneracy of the black hole spectrum [16] may provide the large amount of states required to form a complete basis.

To conclude, the emerging analytical structure of the graviton propagator provides a rich set of black hole states. It is possible that they indeed form a full set of states and provide a complementary view to the quantum theory. In this respect, it would be very interesting to repeat our analysis starting from alternative descriptions of (quantum) black hole evaporation (see, e.g. [17–21]), which lead to a departure from the Hawking expression (9) for the decay time.

Acknowledgments

OT thanks the Department of Physics and Astronomy and INFN section of Bologna for the kind hospitality during the development of this work. RC and AK are partially supported by the INFN grant FLAG. AK was partially supported by the program 0033-2018-0008 Relativistic astrophysics and cosmology from the FASO of the Russian Federation. OT was partially supported by the RFBR grant N. 17-02-01108. The work of RC has been carried out in the framework of GNFM and INdAM and the COST action Cantata.

ORCID iDs

R Casadio https://orcid.org/0000-0002-1330-7787
Alexander Yu Kamenshchik https://orcid.org/0000-0002-0575-486X
References

[1] Han T and Willenbrock S 2005 Scale of quantum gravity Phys. Lett. B 616 215
[2] Aydemir U, Anber M M and Donoghue J F 2012 Self-healing of unitarity in effective field theories and the onset of new physics Phys. Rev. D 86 014025
[3] Calmet X 2014 The lightest of black holes Mod. Phys. Lett. A 29 1450204
[4] Calmet X and Casadio R 2015 The horizon of the lightest black hole Eur. Phys. J. C 75 445
[5] Calmet X, Casadio R, Kamenshchik A Y and Teryaev O V 2017 Graviton propagator, renormalization scale and black-hole like states Phys. Lett. B 774 332
[6] Hawking S W 1975 Particle creation by black holes Commun. Math. Phys. 43 199
Hawking S W 1976 Particle creation by black holes Commun. Math. Phys. 46 206 (erratum)
[7] Walecka J D 2008 Introduction to General Relativity (Hackensack, NJ: World Scientific) p 305 (problem 10.10)
[8] Fabian A C, Lasenby A and Ashby N 2015 Astrophysical black holes General Relativity: the Most Beautiful of Theories ed C Rovelli (Berlin: de Gruyter)
[9] Bloom E D and Gilman F J 1970 Scaling, duality, and the behavior of resonances in inelastic electron–proton scattering Phys. Rev. Lett. 25 1140
[10] Feynman R P 1972 Photon-Hadron Interactions (Reading, MA: Addison-Wesley)
[11] Shifman M A, Vainshtein A I and Zakharov V I 1979 QCD and resonance physics. Theoretical foundations Nucl. Phys. B 147 385
[12] Klopot Y N, Oganesian A G and Teryaev O V 2011 Axial anomaly as a collective effect of meson spectrum Phys. Lett. B 695 130
[13] Teryaev O V and Zakharov V I 2017 From the chiral vortical effect to polarization of baryons: a model Phys. Rev. D 96 096023
[14] Dvali G, Gomez C, Isermann R S, Lüst D and Stieberger S 2015 Black hole formation and classicalization in ultra-Planckian 2 → N scattering Nucl. Phys. B 893 187
[15] Anikin I V, Cherednikov I O, Stefanis N G and Teryaev O V 2009 Duality between different mechanisms of QCD factorization in γ ∗ γ collisions Eur. Phys. J. C 61 357
[16] Bekenstein J D 1973 Black holes and entropy Phys. Rev. D 7 2333
[17] Casadio R and Harms B 1998 Microfield dynamics of black holes Phys. Rev. D 58 044014
[18] Clement G, Fabris J C and Marques G T 2007 Hawking radiation of linear dilaton black holes Phys. Lett. B 651 54
[19] Casadio R and Nicolini P 2008 The Decay-time of non-commutative micro-black holes J. High Energy Phys. JHEP11(2008)072
[20] Casadio R, Giugno A and Orlandi A 2015 Thermal corpuscular black holes Phys. Rev. D 91 124069
[21] Bambi C, Modesto L, Porey S and Rachwal L 2017 Black hole evaporation in conformal gravity J. Cosmol. Astropart. Phys. JCAP09(2017)033