Loss of functional diversity and network modularity in introduced plant–fungal symbioses

Ian A. Dickie1*, Jerry A. Cooper2, Jennifer L. Bufford1, Philip E. Hulme1 and Scott T. Bates3

1 Bio-Protection Research Centre, Lincoln University, Box 85084, Lincoln 7647, New Zealand
2 Landcare Research, PO Box 69040, Lincoln 7640, New Zealand
3 Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA

Received: 4 June 2016; Editorial Decision: 26 October 2016; Accepted: 27 November 2016; Published: 30 December 2016

Associate Editor: David Richardson

Citation: Dickie IA, Cooper JA, Bufford JL, Hulme PE, Bates ST. 2017. Loss of functional diversity and network modularity in introduced plant–fungal symbioses. AoB PLANTS 9: plw084; doi:10.1093/aobpla/plw084

Abstract. The introduction of alien plants into a new range can result in the loss of co-evolved symbiotic organisms, such as mycorrhizal fungi, that are essential for normal plant physiological functions. Prior studies of mycorrhizal associations in alien plants have tended to focus on individual plant species on a case-by-case basis. This approach limits broad scale understanding of functional shifts and changes in interaction network structure that may occur following introduction. Here we use two extensive datasets of plant–fungal interactions derived from fungal sporocarp observations and recorded plant hosts in two island archipelago nations: New Zealand (NZ) and the United Kingdom (UK). We found that the NZ dataset shows a lower functional diversity of fungal hyphal foraging strategies in mycorrhiza of alien when compared with native trees. Across species this resulted in fungal foraging strategies associated with alien trees being much more variable in functional composition compared with native trees, which had a strikingly similar functional composition. The UK data showed no functional difference in fungal associates of alien and native plant genera. Notwithstanding this, both the NZ and UK data showed a substantial difference in interaction network structure of alien trees compared with native trees. In both cases, fungal associates of native trees showed strong modularity, while fungal associates of alien trees generally integrated into a single large module. The results suggest a lower functional diversity (in one dataset) and a simplification of network structure (in both) as a result of introduction, potentially driven by either limited symbiont co-introductions or disruption of habitat as a driver of specificity due to nursery conditions, planting, or plant edaphic-niche expansion. Recognizing these shifts in function and network structure has important implications for plant invasions and facilitation of secondary invasions via shared mutualist populations.

Keywords: Bipartite interaction networks; ectomycorrhizal symbiosis; foraging strategies; functional traits; invasion ecology; network modularity; second-genome; soil ecology.

* Corresponding author’s e-mail address: ian.dickie@lincoln.ac.nz

© The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

When plants are introduced to a new landmass, they are often transported with a greatly reduced number of associated organisms, including many symbiotic mutualists (Richardson et al. 2000; Nuñez and Dickie 2014; Klock et al. 2016; Burgess et al. 2016). In principle, this could represent a loss or change of physiological functions associated with a plant, as most plants rely on symbionts for normal nutrient uptake (Brundrett 2009). One well-studied example is ectomycorrhizal fungi, which associate with many widely introduced tree species (Richardson et al. 1994; Tedersoo et al. 2007; Dickie et al. 2010). The initial lack of compatible fungi and their functional capabilities helps explain the failure of some early efforts to introduce alien trees and continues to limit certain tree invasions (Nuñez et al. 2009; Dickie et al. 2010). Nonetheless, the successful invasion of Pinus associated with a highly simplified fungal community suggests that even where there is a major reduction in mycorrhizal associates, trees may not be limited by a loss of symbiotic diversity (Hynson et al. 2013; Hayward et al. 2015b). Furthermore, in some cases alien trees may form novel associations with fungal associates of native flora (Tedersoo et al. 2007; Bahram et al. 2013; Moeller et al. 2015), or re-establish symbioses with cosmopolitan species (Dickie et al. 2010).

Our understanding of ectomycorrhizal symbioses of alien species is primarily based on studies of Pinus, which frequently co-invades with the host-specific, animal-dispersed fungal genus Suillus (Nuñez et al. 2013; Nuñez and Dickie, 2014; Hayward et al. 2015b; Wood et al. 2015). The few studies of other alien ectomycorrhizal trees, including Eucalyptus (Diez 2005), Pseudotsuga (Moeller et al. 2015), Salix and Alnus (Bogar et al. 2015) suggest that co-invasion with a reduced fungal community from the native range is widespread, although the identity of co-invading fungi may vary with alien tree identity.

The identity of fungal symbionts has substantial significance for plant phenotypes, as fungi differ greatly in their hyphal foraging strategies (Agerer 2001), vertical niche preferences in soil (Dickie et al. 2002), ability to use organic nutrients (Abuzinadah and Read 1986; Lilleskov et al. 2002), and other key traits that link directly to plant nutrient uptake (Hobbie and Agerer 2010; Tedersoo et al. 2012; Hobbie et al. 2014; Koide et al. 2014). We consider the hyphal foraging strategies of fungi associated with a plant to represent the functional traits of that plant species. Having a high functional diversity of different hyphal foraging strategies may allow a plant population greater access to different nutrient sources, and greater adaptability to changing environments. Indeed, the genetic traits of ectomycorrhizal fungi could be considered as the ‘second-genome’ of plants (Zenni et al. 2016), in the same sense as the term has been applied to endosymbionts of animals (Shah et al. 2016). As such, a complete understanding of evolutionary dynamics in tree invasions requires understanding of not just genomic traits (Zenni et al. 2016b) and phenotypic plasticity (Zimmermann et al. 2016), but also traits of associated symbionts. An ectomycorrhizal fungal species can associate with multiple, potentially distantly related, plant species (Simard and Durall 2004). This means that the presence of one plant species may support a population of fungi that serves as inoculum, facilitating the establishment of a second plant species. Shared fungal symbiont species have been observed between co-occurring alien Alnus and Salix (Bogar et al. 2015), and between alien trees, Pinus and Pseudotsuga, and native trees in the Nothofagaceae (Dickie et al. 2010; Moeller et al. 2015), although the shared symbionts are generally only a small portion of total associations. Shared fungal symbiont species have also been observed between native trees and alien trees in plantations of Eucalyptus (Tedersoo et al. 2007 and Pinus (Bahram et al. 2013). Further shared symbionts can occur where novel associations form between alien trees and alien fungi from different origins, such as Australian Eucalyptus associating with northern-hemisphere Amanita muscaria in New Zealand (Nuñez and Dickie, 2014).

The interactions of alien trees through shared mutualist species can be analysed through network theory (Nuismer et al. 2013; Roy Bolduc et al. 2016; Le Roux et al. 2016). Network theory allows analysis of emergent properties of interactions between multiple partners, including nestedness (the degree to which generalists associate with specialists, and vice versa), and the identification of modules within the network (species that tend to share partners more than expected by chance), and quantification of modularity (the density of links within as opposed to between modules). In mycorrhizal ecology ‘mycorrhizal networks’ or ‘common mycorrhizal networks’ have been used to describe physical linkages between individual plants through a single fungal mycelium (Simard and Durall 2004; Horton 2015). This is not what we mean by ‘interaction network.’ Here we refer to ‘interaction network’ as the potential for plants to share fungal symbionts at the level of populations or species. This usage is common in other symbioses, for example in pollination biology (Santos et al. 2012; Nuismer et al. 2013; Traveset et al. 2013). Unlike the specific case of mycorrhizal networks, interaction networks do not necessarily imply a link through a single individual fungus, any transfer of resources, or any physiological effects
above-and-beyond changes in populations of fungi. Nonetheless, these changes in fungal populations can be critical, as increased nestedness of mutualistic networks is believed to increase network stability (Thebault and Fontaine 2010), while modularity may make networks less stable and prone to alternative stable states. Previous studies of ectomycorrhizal interaction networks suggest a nonnested or antinested pattern, with either no or less nestedness than would be expected by random chance, respectively (Bahram et al. 2014; Roy Bolduc et al. 2016). Antinested networks can arise from strong selection for fungus-host specificity (Nuismer et al. 2013). While alien ectomycorrhizal mutualistic networks have not previously been studied, data from pollinator networks suggests that aliens can be more generalist in their associations than natives, reducing network modularity and making networks more nested (Santos et al. 2012; Traveset et al. 2013).

On the basis of the above background, we set out to test the hypotheses:

H1 – alien plants will have a reduced functional diversity of ectomycorrhizal symbionts compared to native plants.

H2 – loss of specialist symbionts on alien plant species will result in a less modular structure of plant–fungal interactions among aliens compared to native plants (i.e. more sharing of fungal symbiont species across plant species).

We used data from two island nations: New Zealand and the UK. Both nations have a large number of introduced alien tree species, native ectomycorrhizal trees and relatively well-described fungal communities.

Methods

Empirical testing of hypotheses about fungal community structure across large numbers of plant species is challenging due to the below-ground nature of the interaction and the cost of molecular approaches necessary to identify fungi on plant roots. However, many ectomycorrhizal fungi produce highly visible fruiting structures, such as mushrooms (also known as sporocarps or carpophores), that reveal the symbiotic interaction between the fungal mycelium and plant roots below ground. Furthermore, many active amateur as well professional mycologists record the presence of these mushrooms and often also record the presence of a putative host plant.

Data on putative plant–fungal associations in New Zealand was obtained from the New Zealand Fungal and Plant Disease Collection (PDD) database of Landcare Research [http://www.landcareresearch.co.nz (1 November 2016)]. Similar data from the UK was obtained from the Fungal Records Database of Britain and Ireland, maintained by the British Mycological Society [http://www.fieldmycology.net/ (1 November 2016)]. The databases comprise a combination of professional and amateur observations of fungi including coordinated collections from annual ‘fungal foray’ events, ad hoc collections, and literature records. In New Zealand, the Fungal Network of New Zealand has been very active, and encourages uniform data standards by providing datasheets for all collections during annual foray events.

One of the limitations in working with data collected by amateur field mycologists is that the quality of plant identifications can be lower than the quality of fungal identifications. In particular, many collections were labelled with a plant genus, but not a species. Furthermore, some of the plants recorded as ‘hosts’ of ectomycorrhizal fungi are not known to form ectomycorrhizal associations (Brundrett 2009) based on a phylogenetic understanding of mycorrhizal status (Koele et al. 2012). We therefore filtered tree genera to retain only those known to be ectomycorrhizal (Brundrett 2009; Koele et al. 2012) and analysed data at the plant genus level. The genus Nothofagus has recently been split into four genera, with all native New Zealand Nothofagus now classified as either Lophozonia (L. menziesii) or Fuscospora (F. solandri, F. fusca, and F. truncata), while two aliens in our data, N. antarctica and N. nitida, remain in the genus Nothofagus (Heenan and Smissen 2013). We therefore were only able to retain Nothofagus records where the plant species was recorded, despite analysing our data at the plant genus level. Fortunately, the native Nothofagaceae are dominant tree species in NZ, so Lophozonia and Fuscospora remained our two best-represented plant genera despite this restriction. For the UK data, we retained the native Pinus sylvestris as distinct from alien pine species. Out of necessity, native status of plants was designated at the level of national boundaries (e.g. Pinus sylvestris was considered native to the whole of the UK, despite only occurring naturally in Scotland). For both datasets we retained fungi identified only to genus, but used species level identifications where available. To test whether this might bias the results we also analysed the data excluding genus-only identifications, and found no qualitative changes in results.

Ectomycorrhizal status and exploration type analysis

Ectomycorrhizal status of fungi was assigned based on Comandini et al. (2012) that builds on earlier works (Rinaldi et al. 2008; Tedersoo et al. 2010).
Similarly, hyphal exploration types were assigned to ectomycorrhizal fungi on the basis of a comprehensive review (Tedersoo and Smith 2013). Where a species was listed in Comandini et al. (2012) but not in Tedersoo and Smith (2013), we evaluated it on a case-by-case basis. Based on our assessment of the conflicting evidence we classified Chalciporus, Chloridium, Gyromitra, Lachnum, Leptodontium, Leucopaxillus (Vizzini 2012), Paurocotylis and Phialocephala as non-ectomycorrhizal fungi.

While ectomycorrhizal fungi vary in many fundamental traits (Koide et al. 2014), fungal exploration types are one of the few traits that have been extensively studied across a wide range of species (Agerer 2001; Hobbie and Agerer 2010). Exploration types were initially catalogued as morphological traits for microscopic identification of fungi (Agerer 1997), with categorical classifications based on the abundance and length of hyphae. These trait categories have subsequently been shown to be closely correlated with nutrient uptake capabilities (Hobbie and Agerer 2010). Exploration types with relatively low biomass of hyphae (contact, short and medium-smooth types) are hydrophilic, and may be adapted for uptake of labile nitrogen (amino acids, NH$_4^+$, NO$_3^-$). Exploration types with higher hyphal biomass and longer hyphae (medium-fringe, medium-matt and long-distance) are hydrophobic and may be adapted for more spatially dispersed organic N sources, such as proteins (Hobbie and Agerer 2010). Fungal exploration types have been catalogued at the fungal genus level in a comprehensive review by Tedersoo and Smith (2013), although some variation within genus does occur.

We summed all ectomycorrhizal sporocarp observations by hyphal foraging type within ectomycorrhizal tree genera. Tree genera with fewer than 8 sporocarp collections in a region were excluded. Functional diversity was calculated as Shannon diversity (H') and compositional differences visualized using principle components analysis. In order to test and account for any bias in H' for smaller sample size, we randomized the community matrix, maintaining row and column totals constant, using the function permatswap in the R package vegan (Oksanen et al. 2010) with a burn-in of 99 swaps discarded, and 9999 swaps analysed. We tested differences in dispersion of functional associations between native and alien trees using the function betadisper, based on Mahalanobis distances.

Network analysis

Analysis of networks was based on fungal species recorded as associating with different plant genera. As our interest was in community structure of interaction linkages between plant species, we followed Fortuna et al. (2010) in reducing the bi-partite interaction network (in which plants and fungi comprise two sets of nodes) to a unipartite projection (where fungi represent links between plant nodes). So, for example, if fungal species FS1 occurs on plant genus PG1 and on plant genus PG2, we consider this to represent a potential link between PG1 and PG2. The unipartite projection provided a clear reflection of our hypothesis, which was fundamentally about the sharing of fungal symbionts across plant species. To create the unipartite projection, fungal links were weighted on the basis of the smaller n. For example, if a fungal species FS1 occurred 15 times on one plant genus PG1 and 3 times on plant genus PG2, the link between PG1 and PG2 would have a weight of 3. We were specifically interested in maintaining self–self linkages, such that host-specific fungi would be retained in the analysis. We therefore included each fungus as a self–self link with a weight of the number of occurrences (e.g. FS1 would be represented as a PG1 to PG1 link of Weight 15, a PG2 to PG2 link of Weight 3, following the above example).

There are many methods for the detection of modules (or communities) within interaction networks, but with varying levels of support (Lancichinetti and Fortunato 2009). After reviewing these, along with ease of implementation, we used the cluster_louvain method in the igraph package of R, which is based on Blondel et al. (2008) and supported by Lancichinetti and Fortunato (2009) on the basis of comparison against benchmarks and random graphs. We also explored other techniques for detecting modules (e.g. spinglass, walktrap, leading eigenvector methods) and found that, in general, they varied in the number of modules (from a minimum of 1 to a maximum of the number of plant genera in the dataset) but rarely produced conflicting memberships in modules (not shown).

Results

Data set

For the NZ dataset, we identified 4000 sporocarp records of 637 ectomycorrhizal fungal taxa associated with 19 tree genera (Table 1; See Supporting Information—Table S1). For the UK dataset we identified 164 901 sporocarp records of 2304 ectomycorrhizal fungal taxa associated with 19 tree genera (Table 1; See Supporting Information—Table S2). Diversity of fungi (H') by tree genus was higher on native than alien trees (Table 1), but the difference was only significant in New Zealand (t-test, $t_{16,98} = -8.959, P < 0.001$), not the UK (t-test, $t_{14,86} = -1.7932, P = 0.09$).
Functional diversity
The four New Zealand native ectomycorrhizal tree genera had very similar mixtures of the six fungal exploration types (Fig. 1), resulting in very tight clustering in ordination (Fig. 2). Alien tree genera in New Zealand, in contrast, had very variable functional composition of associated fungal exploration types (Fig. 1), resulting in a greater spread in ordination (Fig. 2) and a highly significant difference in dispersion (betadisper, $F_{1,13} = 15.7$, $P = 0.0016$). Native tree genera had all six functional types represented, with roughly equal proportions of contact, short-distance, medium smooth and

Table 1. Summary of data on plant–fungal interactions and diversity of fungi by region and origin of host plants.

Region	Plant genera	Total fungal observations	Number of fungal species	Fungal diversity (H^1) 2
NZ	Native ($n = 4$)	3114	427	4.67 ± 0.12***
	Exotic ($n = 15$)	812	152	2.10 ± 0.26
UK	Native ($n = 10$)	153 580	1603	4.62 ± 0.22
	Exotic ($n = 9$)	11 321	701	3.94 ± 0.31

1Shannon diversity of fungi associated with each tree genus, mean and SE.

2Stars indicate significant differences within region (*** < 0.001).

Figure 1. Functional composition of ectomycorrhizal fungal exploration types on native and alien tree genera in New Zealand by tree genus. Native genera names labelled in blue, aliens in red. Four alien tree genera with fewer than eight observations were excluded from functional analysis.

Dickie et al. — Introduced plant ectomycorrhizal networks
medium-fringe exploration types; a smaller proportion of long-distance types, and the smallest representation of medium-matt types. Medium-matt types were formed by 13 different fungal genera (most common including Hysterangium, Phellodon, Gallacea, Ramaria and Clavaria) on native trees as well as on Australian Eucalyptus, but this functional type was largely absent from alien tree genera originating from the northern hemisphere.

The presence of all six functional types in relatively even distributions resulted in a higher Shannon diversity of functional types associated with native tree genera ($H^{'} = 1.70$) than alien tree genera ($H^{'}=1.39$; $t_{12,83} = -7.05$, $P < 0.001$), which generally lacked the medium-matt forming type and tended to have a less even distribution of types (Fig. 1). Randomized simulations showed that the difference in $H^{'}$ partially reflected a bias due to smaller sample size in alien species (randomized data $H^{'} = 1.69$ for natives and 1.55 for aliens), but the observed difference in native versus alien $H^{'}$ values was larger than the difference in randomized simulations in >99.99% of simulations.

The UK data showed strong functional similarity of hyphal exploration types across all tree genera, regardless of native versus alien status (Figs 3 and 4). Functional diversity was also not significantly different between native trees ($H^{'} = 1.27$) and aliens ($H^{'} = 1.32$; $t_{6,6} = 0.21$, $P = 0.84$) and there was no significant difference in dispersion (betadisper, $F_{1,17}=0.92$, $P = 0.35$).

Network structure and modularity

The New Zealand bipartite interaction network was significantly antinested (weighted nestedness $= 0.74$ compared with 95% confidence interval of random expectation of 0.77–0.81, $P < 0.01$). The UK bipartite interaction network followed a similar pattern (observed nestedness 0.71 versus random expectation 0.80–0.82; $P < 0.01$).

The NZ unipartite projected plant network clustered into 4 modules (modularity = 0.46). All alien trees in New Zealand, with the sole exception of Eucalyptus, were clustered into one module within the network (Fig. 5). The Myrtaceae, including Kunzea and Leptospermum (both native) and Eucalyptus (alien) all formed a second module. Native Lophozonia and Fuscospora were each placed into an individual module, while Nothofagus (alien, but in the same family) was placed into a module with all other alien trees.

A similar pattern occurred in the UK, where there were five modules detected (modularity 0.38). The native tree genera Fagus, Quercus and Betula were each placed into an individual module, while native Pinus sylvestris formed a module with alien Picea. All other alien tree genera were placed in one large module along with six native tree genera (Fig. 5).

Discussion

Ectomycorrhizal sporocarp collections from New Zealand and the UK provide some of the largest databases of plant–fungal interactions ever assembled. Prior studies of alien plant—ectomycorrhizal fungal associations have relied on detailed molecular identification of fungi on plant roots, which provides reliable data yet is generally limited by logistic constraints to small scale studies (Nunez and Dickie, 2014). As such, most studies have only examined a very limited number of tree species at a time in relatively restricted portions of their distributions (Dickie et al. 2010; Bogar et al. 2015; Wood et al. 2015; Nuñez et al. 2009; Hayward et al. 2015a, b; Moeller et al. 2015). Using sporocarp observations, in contrast, we were able to obtain data on 19 tree genera in each of two countries, allowing the first analyses of how functional types of mycorrhizal fungi differ between natives and aliens, and how alien tree—ectomycorrhizal fungal communities integrate into native interaction networks.

Our databases were reliant on sporocarp observations and the ability of observers to infer the host of a particular fungus. We acknowledge that sporocarp observations record only a fraction of the fungi associated with a plant species, and are unlikely to be strongly correlated with belowground abundance. Species that produce
belowground fruiting bodies (truffles), cryptic and difficult to identify sporocarps (e.g. *Tomentella*), or are asexual are less likely to be recorded than species with highly visible sporocarps (e.g. *Amanita, Russula*). Furthermore, there may be biases among mycologists and citizen scientists in which fungi are collected and recorded. Nonetheless, there is no reason to expect these biases would be systematic and using sporocarp collections allowed us to obtain a large number of association records across a wide area of each country at minimal cost. Finally, we note that there is an extensive prior scientific literature using sporocarp observations for the study of alien fungi and their host associations (Chuchou and Grace 1982, 1990; Pringle and Vellinga 2006; Vellinga et al. 2009; Wolfe and Pringle 2012).

The remarkably consistent composition of functional types of fungi associated with native NZ trees, including two plant families, suggests a convergence on similar functional composition. Alien trees, in contrast, had a much more variable functional composition of associated fungi. The lack of a directional shift suggests this was not driven by ecosystem modification favouring one particular functional type. Instead, we suggest that limited co-introduction of fungi is creating variable communities of fungi on different alien trees. In some cases, this lack of functional diversity seems to have little consequence; *Pinus*, for example, can be a highly successful invader with as little as a single fungal symbiont (Hayward et al. 2015b). Nonetheless, functional diversity of symbionts is potentially important as a physiological determinant of plant growth, and may limit the ability of some alien trees to become invasive (Richardson et al. 2000; Diez 2005; Dickie et al. 2010). Trait-based analyses of alien plants (e.g. Van Kleunen et al. 2010) may need to...
consider the degree to which plant traits vary depending on available symbionts or might be modified by any subsequent acquisition of fungal symbionts.

The difference in functional diversity of native versus alien tree genera in New Zealand was not replicated in the UK dataset, and there was much less difference in fungal species diversity between alien and native plants in the UK (Table 1). This may reflect distance of transport. Most UK alien species were from elsewhere in the Northern hemisphere and therefore may be more phylogenetically ‘familiar’ to native fungi. This is supported by Bahram et al. (2013) who found many native fungi on alien Pinus in Iran, compared with the prevalence of alien fungi on Pinus in the Southern Hemisphere (Nunez et al. 2009; Dickie et al. 2010; Walbert et al. 2010).

Alien trees in both archipelagos were mostly linked into large, non-specific modules via their fungal associations. In NZ this large module was exclusively dominated by alien trees, while in the UK it included both native and alien species. This is consistent with the concept of alien species behaving as generalists and hence reducing network modularity and increasing nestedness (Santos et al. 2012; Traveset et al. 2013). Supporting this, the fungi associated with native trees in both NZ and the UK had a lower host breadth (or, conversely greater host preference) than fungi associated with aliens. Increased network nestedness is expected to make interaction networks more stable. This has been widely recognized in ectomycorrhizal interactions, albeit not in a network theory context, as the role of generalist host plants in maintaining ectomycorrhizal fungal inoculum following disturbance (e.g. Perry et al. 1989; Hagerman et al. 2001).

Increased sharing of fungal species associations may be the outcome of multiple processes. Highly host-specific fungi may not have been co-introduced with plants, resulting in higher reliance on generalist fungi.

Figure 4. Multivariate visualization of functional similarity of fungal communities on native (blue) and alien (red) tree genera in the UK based on data presented in Figure 2.

Figure 5. Interaction network of tree genera and ectomycorrhizal fungi in New Zealand (left) and the UK (right), showing plant–plant modules by the colour of the vertex. Native plant genera are indicated by circles, alien plants by squares, labelled with the first three letters of the genus except in the UK network, where PIS = Pinus sylvestris, and PIX = alien Pinus spp. Each link represents a fungal species either linking plant species or forming a self–self link (loops), with link width proportional to the square root of the number of observations (scaled 1/10th in the UK network compared with NZ network). The colour of the links indicates fungal-fungal modules (not discussed).
capable of forming novel associations with alien trees (Tedesco et al. 2007; Bahram et al. 2013). Plant–fungal associations may also become less specific in the alien range. For example, Bogar et al. (2015) note a number of fungi shared between Alnus and Salix in New Zealand that would not typically be shared in their native range. Very host-generalist alien fungi may also form novel associations with alien plants from other origins when both are alien, such as Amanita muscaria from Europe associating with Eucalyptus in New Zealand (Nunez and Dickie, 2014). Finally, both fungal and plant communities are highly responsive to soils and other habitat conditions. As noted by Zobel and Opik (2014), this can result in co-occurrence driven by habitat rather than symbiont specialization. The process of introduction may break this habitat linkage. In particular, a higher proportion of observations of fungi on alien trees are likely to be in plantations or of other planted trees, rather than soil types where a tree naturally occurs. Homogenization of fungal communities may further occur in commercial tree nurseries, through uniformity of soils used and through strong selection for fungi able to survive these conditions. Where alien trees become invasive, they may also occur on a wider range of soils than in the native range (plant edaphic niche expansion; Erfmeier 2013), reducing the influence of soil habitat as a driver of plant–fungal associations.

Shared symbionts are known to play an important role in natural succession, with pioneer vegetation facilitating the establishment of later successional plants (Horton et al. 1999; Dickie et al. 2004; Nara and Hogetsu 2004). Although our data cover alien plants in general, many alien ectomycorrhizal plants are also invasive (Richardson 1998; Rundel et al. 2014). In the context of invasion, shared networks of symbionts may allow early establishing plants to facilitate subsequent invasion. This is likely, for example, in the invasion of Alnus into areas previously invaded by Salix in New Zealand (Bogar et al. 2015), and possibly in the increased ectomycorrhization of Pseudotsuga in areas where Pinus had previously invaded (Dickie et al. 2014).

Some of the patterns we observe may reflect phylogeny, as there are only two phylogenetic pairs represented in our NZ native ectomycorrhizal tree data, two Nothofagaceae and two Myrtaceae. Having low phylogenetic diversity can be an issue in statistical analyses of ectomycorrhizal functioning (Koele et al. 2012). The presence of a phylogenetic signal driving some of our results is clear in the Myrtaceae in NZ, where alien Eucalyptus forms a module with native Kunzea and Leptospermum. The UK data also suggest some similarity of fungal functional communities within the Fagales, although the two Salicaceae and some of the Pinaceae are highly divergent in functional composition within plant family (Fig. 4).

Conclusions
The use of sporocarp collection data linked to fungal functional traits shows that fungal associates of alien trees in NZ have a lower functional richness and more variable composition than native tree genera. Given that different fungal exploration types exploit different soil resources (Hobbie and Agerer 2010) reduced diversity of symbionts may limit plant nutrient uptake capabilities. Nonetheless, the lack of a similar pattern in the UK dataset indicates that this pattern may depend on either environmental context and/or time since introduction. Both datasets suggest that alien trees generally integrate into networks as large interconnected modules, which contrast with the much smaller modules generally formed by native trees. Whether this is driven by fungal traits (e.g. lack of host-specific fungi; expanded host-range) or habitat drivers (e.g. planting into atypical soils) requires more detailed investigation to unravel. Regardless of the cause, the sharing of symbiotic fungi among alien trees may have important implications for the invasion process, if tree species which share fungal associates facilitate each other.

Sources of Funding
I.A.D., P.E.H. and J.L.B. are funded by Tertiary Education Commission CORE funding to the Bio-Protection Research Centre. J.A.C. is funded by the New Zealand Ministry of Business, Innovation and Employment.

Contributions by the Authors
I.A.D. conceived the study based partially on conversations with P.E.H. and J.B. J.C. had a major role in developing the fungal databases for NZ and the UK and assisted in obtaining, formatting, and interpreting fungal data. S.T.B. obtained similar data for North America, which helped inform the analysis but was not ultimately used in the final manuscript. I.A.D. conducted all analysis with input from J.L.B. and wrote the paper based on discussions with all authors. All authors helped improve the manuscript in revisions.

Conflicts of Interest Statement
None declared.
Acknowledgements

We thank the many people who collected, identified and recorded the fungal data used in this study, the Landcare Research NZ mycology group, and Paul Kirk, Royal Botanic Gardens Kew, manager of the Fungal Records database of the British Mycological Society. This paper had its origin at a workshop on ‘Evolutionary dynamics of tree invasions’ hosted by the DST-NRF Centre of Excellence for Invasion Biology (C-I-B) in Stellenbosch, South Africa, in November 2015. Funding for the workshop was provided by the C-I-B, Stellenbosch University (through the office of the Vice Rector: Research, Innovation and Postgraduate Studies), and the South African National Research Foundation (DVGR grant no. 98182).

Supporting Information

The following additional information is available in the online version of this article —

Table S1. Ectomycorrhizal sporocarp and tree dataset for New Zealand.
Table S2. Ectomycorrhizal sporocarp and tree dataset for UK.

Literature Cited

Abuzinadah RA, Read DJ. 1986. The role of proteins in the nitrogen utilization of ectomycorrhizal plants I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist 103: 481–493.
Agerer R. 1997. Colour Atlas of Ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger GmbH, Schwäbisch-Gmünd, Germany. ISBN 3921703778.
Agerer R. 2001. Exploration types of ectomycorrhizae; a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114.
Bahram M, Harend H, Tedersoo L. 2014. Network perspectives of ectomycorrhizal associations. Fungal Ecology 7:70–77.
Bahram M, Koljag J, Kohout P, Mirshahvaladi S, Tedersoo L. 2013. Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 23: 11–19.
BlondelVD,GuillaumeJL,LambiotteR,LefebvreE.2008.Fastunfoldingofcommunitiesinalargenetworks.JournalofStatisticalMechanics:TheoryandExperiment10:10008.
BogarLM,DickieIA,KennedyPG.2015.Testingthecoinvasionhypothesis:ectomycorrhizalfungalcommunitiesandaninNewZealand.Diversity&Distributions21:268–278.
BrundrettMC.2009.Ectomycorrhizalassociationsandothermeansofnutritionofvascularplants:understandingtheglobaldiversityofhostplantsbyresolvingconflictinginformationanddevelopingreliablesmeansofdiagnosis.Plant&Soil320:37–77.
BurgessTI,CrousCJ,SlippersB,HuntulaJ,WingfieldMJ.2016.Treetriversandbiosecurity:eco-evolutionarydynamicsofhitchhikingfungi. AoB PLANTS 8:plw076. doi: 10.1093/aobpla/plw076.
Chu-Chou M, Grace LJ. 1982. Mycorrhizal fungi of Eucalyptus in the North Island of New Zealand. Soil Biology & Biochemistry 14: 133–137.
Chu-chou M, Grace LJ. 1990. Mycorrhizal fungi of radiata pine seedlings in nurseries and trees in forests. Soil Biology & Biochemistry 22:959–966.
Comandini O, Rinaldi AC, Kuyper TW. 2012. Measuring and estimating ectomycorrhizal fungal diversity: a continuous challenge. In: Pagano M, ed. Mycorrhiza: occurrence in natural and restored environments. New York: Nova Science Publishers, 165–200. ISBN 978-1-61209-226-3.
Dickie IA, Guza RC, Krazewski SE, Reich PB. 2004. Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknelli) and oak (Quercus) seedlings. New Phytologist 164: 375–382.
Dickie IA, Bolstridge N, Cooper JA, Peltzer DA. 2010. Co-invasion by Pinus and its mycorrhizal fungi. New Phytologist 187:475–484.
Dickie IA, St John MG, Yeates GW, Morse CW, Bonner KI, Orwin K, Peltzer DA. 2014. Belowground legacies of Pinus contorta invasion and removal result in multiple mechanisms of invasional meltdown. AoB PLANTS 6:plu056. doi:10.1093/aobpla/plu056.
Dickie IA, Xu B, Kaide RT. 2002. Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist 156:527–535.
Diez J. 2005. Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biological Invasions 7:3–15.
Erfmeier A. 2013. Constraints and release at different scales–The role of adaptation in biological invasions. Basic and Applied Ecology 14:281–288.
Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J. 2010. Nestedness versus modularity in ecological networks: two sides of the same coin. Journal of Animal Ecology 79:811–817.
Hagerman SM, Sakakibara SM, Durall DM. 2001. The potential for woody understory plants to provide refuge for ectomycorrhizal inoculum at an interior Douglas-fir forest after clear-cut logging. Canadian Journal of Forest Research 31:711–721.
Hayward J, Horton TR, Nuinez MA. 2015a. Ectomycorrhizal fungal communities co invading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytologist 208: 497–506.
Hayward J, Horton TR, Pauchard A, Nuinez MA. 2015b. A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444.
Heenan PB, Smissen RD. 2013. Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phyto-taxa 146:1–31.
Hobbie EA, van Diepen LT, Lilleskov EA, Quimette AP, Finzi AC, Hofmockel KS. 2014. Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment. New Phytologist 201:1431–1439.
Hobbie EA, Agerer R. 2010. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant and Soil 327:71–83.
Horton TR, Bruns TD, Parker VT. 1999. Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Canadian Journal of Botany 77:93–102.

Horton, TR, ed. 2015. Mycorrhizal Networks. Ecological Studies 224:1–286.

Hynson NA, Merckx VSFT, Perry BA, Treseder KK. 2013. Identities and distributions of the co-invading ectomycorrhizal fungal symbionts of exotic pines in the Hawaiian Islands. Biological Invasions 15:2373–2385.

Klock MM, Barrett LG, Thrall PH, Harms KE. 2016. Differential plant invasiveness is not always driven by host promiscuity with bacterial symbionts. AoB PLANTS 8:p106. doi:10.1093/aobpla/p1063.

Koene N, Dickie IA, Oleksyn J, Richardson SJ, Reich PB. 2012. No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist 3:845–852.

Koide RT, Fernandez C, Malcolm G. 2014. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytologist 201:433–439.

Lancichinetti A, Fortunato S. 2009. Community detection algorithms: a comparative analysis. Physical Review E DOI: 10.1103/PhysRevE.80.056117.

Le Roux JJ, Mavengere NR, Ellis AG. 2016. The structure of legumerrhizobium interaction networks and their response to tree invasions. AoB PLANTS 8:p1038. doi:10.1093/aobpla/p1038.

Lilleskov EA, Hobbie EA, Fahey TJ. 2002. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist 154:219–231.

Möller HV, Dickie IA, Peltzer D, Fukami T. 2015. Mycorrhizal co-invasion and novel interactions depend on neighborhood context. Ecology 96:2336–2347.

Nara K, Hogetsu T. 2004. Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707.

Nuïsmer SL, Jordano P, Bascompte J. 2013. Coevolution and the architecture of mutualistic networks. Evolution 67:338–354.

Nuïzze MA, Dickie IA. 2014. Invasive belowground mutualists of woody plants. Biological Invasions 16:645–661.

Nuïzze MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-García MN, Simberloff D. 2013. Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8:e66832.

Nuïzze MA, Horton TR, Simberloff D. 2009. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359.

Oksanen J, FG B, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2010. vegan: Community Ecology Package. https://cran.r-project.org/web/packages/vegan/index.html (1 November 2016).

Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE. 1989. Bootstrapping in ecosystems. Bioscience 39:230–237.

Pringle A, Vellinga EC. 2006. Last chance to know? Using literature to explore the biogeography of and invasion biology of the death cap mushroom Amanita phalloides (Vaill. Ex Fr.:Fr) Link. Biological Invasions 8:1131–1144.

Richardson DM. 1998. Forestry trees as invasive aliens. Conservation Biology 12:18–98.

Richardson DM, Williams PA, Hobbs RJ. 1994. Pin invasions in the Southern Hemisphere: determinants of spread and invadability. Journal of Biogeography 21:511–527.

Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M. 2000. Plant invasions—the role of mutualisms. Biological Reviews 75:65–93.

Rinaldi AC, Comandini O, Kuyper TW. 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diversity 33:1–45.

Roy Bolduc A, Laliberté E, Hjiri M. 2016. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecology and Evolution 6:349–362.

Rundel PW, Dickie IA, Richardson DM. 2014. Tree invasions into treeless areas: mechanisms and ecosystem processes. Biological Invasions 16:663–675.

Santos GMDM, Aguiar CML, Genini J, Martins CF, Zanella FCV, Mello MAR. 2012. Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biological Invasions 14:2369–2378.

Shah F, Nicolas C, Bentzer J, Ellström M, Smits M, Rineau F, Canback B, Floudas D, Carleer R, Lockner G, Braesel J, Hoffmeister D, Henrirots S, Ahrén D, Johansson T, Hibbetts DS, Martin F, Persson P, Tunlid A. 2016. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist 209:1705–1719.

Simard SW, Durrall DM. 2004. Mycorrhizal networks: a review of their extent, function, and importance. Canadian Journal of Botany 82:1140–1165.

Tedersoo L, May TW, Smith ME. 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution and evolution of phylogenetic lineages. Mycorrhiza 20:217–263.

Tedersoo L, Suvi T, Beaver K, Köljalg U. 2007. Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriaiopsis seychelluranum (Dipterocarpaceae) and Initsa bijuga (Caesalpiniaeae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytologist 175:321–333.

Tedersoo L, Noadelt B, Bahram M, Pritsch K, Buegger F, Leal M, Kölijalg U, Pöldmaa K. 2012. Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytologist 195:832–843.

Tedersoo L, Smith ME. 2013. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27:83–99.

Thebault E, Fontaine C. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856.

Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R, Nogales M, Herrera HW, Olesen JM. 2013. Invaders of pollination networks in the Galapagos Islands: emergence of novel communities. Proceedings of the Royal Society of London B: Biological Sciences 280:20123040.

Van Kleunen M, Weber E, Fischer M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13:235–245.

Vellinga EC, Wolfe BE, Pringle A. 2009. Global patterns of ectomycorrhizal introductions. New Phytologist 181:960–973.

Vizzini A. 2012. A contribution to the ITS-LSU phylogeny of the genus Leucopaxillus (Iricholomatomat clad, Agaricales), with three new genera and notes on Porpoloma. Mycosphere 3:79–90.
Walbert K, Ramsfield TD, Ridgway HJ, Jones EE. 2010. Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel associations determined by molecular analysis. *Mycorrhiza* 20:209–215.

Wolfe BE, Pringle A. 2012. Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. *ISME Journal* 6:745–755.

Wood JR, Dickie IA, Moeller HV, Peltzer DA, Bonner KI, Rattray G, Wilmshurst JM. 2015. Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. *Journal of Ecology* 103:121–129.

Zenni RD, Dickie IA, Mingfield MJ, Hirsch H, Crous CJ, Meyerson LA, Burgess TI, Zimmermann TG, Klock MM, et al. 2016a. Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. *AoB PLANTS*, in press.

Zenni RD, da Cunha WL, Sena G. 2016b. Rapid increase in growth and productivity can aid invasions by a non-native tree. *AoB PLANTS* 8:plw048. doi:10.1093/aobpla/plw048.

Zimmermann TG, Andrade ACS, Richardson DM. 2016. Experimental assessment of factors mediating the naturalization of a globally invasive tree on sandy coastal plains: a case study from Brazil. *AoB Plants* 8:plw042. doi:10.1093/aobpla/plw042.

Zobel M, Opik M. 2014. Plant and arbuscular mycorrhizal fungal (AMF) communities - which drives which? *Journal of Vegetation Science* 25:1133–1140.