Dividing and Conquering Long Sentences in a Translation System

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Robert L. Mercer, and Surya Mohanty *

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

ABSTRACT

The time required for our translation system to handle a sentence of length \(I \) is a rapidly growing function of \(I \). We describe here a method for analyzing a sentence into a series of pieces that can be translated sequentially. We show that for sentences with ten or fewer words, it is possible to decrease the translation time by 40% with almost no effect on translation accuracy. We argue that for longer sentences, the effect should be more dramatic.

Introduction

In a recent series of papers, Brown et al. introduce a new, statistical approach to machine translation based on the mathematical theory of communication through a noisy channel, and apply it to the problem of translating naturally occurring French sentences into English [1, 2, 3, 4]. They develop a probabilistic model for the noisy channel and show how to estimate the parameters of their model from a large collection of pairs of aligned sentences. By treating a sentence in the source language (French) as a garbled version of the corresponding sentence in the target language (English), they recast the problem of translating a French sentence into English as one of finding that English sentence which is most likely to be present at the input to the noisy channel when the given French sentence is known to be present at its output. For a French sentence of any realistic length, the most probable English translation is one of a set of English sentences that, although finite, is nonetheless so large as to preclude an exhaustive search. Brown et al. employ a suboptimal search based on the stack algorithm used in speech recognition. Even so, as we see in Figure 1, the time required for their system to translate a sentence grows very rapidly with sentence length. As a result, they have focused their attention on short sentences.

The designatum of some French words is so specific that they can be reliably translated almost anywhere they occur without regard for the context in which they appear. For example, only the most contrived circumstances could require one to translate the French technétium into English as anything but technetium. Alas, this charming class of words is woefully small: for the great majority of words, phrases, and even sentences, the more we know of the context

*This work was supported, in part, by DARPA contract N00014-91-C-0135, administered by the Office of Naval Research.
in which they appear, the more confidently and elo-
quently we are able to translate them. But the exam-
ple provided by simultaneous translators shows that
at the expense of eloquence it is possible to produce
satisfactory translation segment by segment seriatim.

In this paper, we describe a method for analyzing
long sentences into smaller units that can be trans-
lated sequentially. Obviously any such analysis risks
rupturing some organic whole within the sentence,
thereby precipitating an erroneous translation. Thus,
phrases like

\[\text{(potatoes frites | French fries), (pommes}
\]
\[\text{de discorde | bones of contention), (pommes de}
\]
\[\text{terre | potatoes), and (pommes sauvages | crab}
\]
\[\text{apples), offer}
\]

scant hope for subdivision. Even when the analysis
avoids splitting a noun from an associated adjective
or the opening word of an idiom from its conclusion,
we cannot expect that breaking a sentence into pieces
will improve translation. The gain that we can ex-
pect is in the speed of translation. In general we must
weigh this gain in translation speed against the loss in
translation accuracy when deciding whether to divide
a sentence at a particular point.

Rifts

Brown et al. [1] define an alignment between an
English sentence and its French translation to be a di-
agram showing for each word in the English sentence
those words in the French sentence to which it gives
rise (see their Figure 3). The line joining an English
word to one of its French dependents in such a dia-
gram is called a connection. Given an alignment, we
say that the position between two words in a French
sentence is a rift provided none of the connections to
words to the left of that position crosses any of the
connections to words to the right and if, further, none
of the words in the English sentence has connections
to words on both the left and the right of the position.
A set of rifts divides the sentence in which it occurs
into a series of segments. These segments may, but
need not, resemble grammatical phrases.

If a French sentence contains a rift, it is clear that
we can construct a translation of the complete sen-
tence by concatenating a translation for the words to
the right of the rift with a translation for the words to
the left of the rift. Similarly, if a French sentence
contains a number of rifts, then we can piece together
a translation of the complete sentence from transla-
tions of the individual segments. Because of this, we
assume that breaking a French sentence at a rift is
less likely to cause a translation error than breaking
it elsewhere.

Let \(\Pr(e, a|f) \) be the conditional probability of the
English sentence \(e \) and the alignment \(a \) given the
French sentence \(f = f_1 f_2 \ldots f_M \). For \(1 \leq i < M \), let
\(I(i; e, a, f) \) be 1 if there is a rift between \(f_i \) and \(f_{i+1} \)
when \(f \) is translated as \(e \) with alignment \(a \), and zero
otherwise. The probability that \(f \) has a rift between
\(f_i \) and \(f_{i+1} \) is given by

\[
p(r|i; f) = \sum_{e, a} I(i; e, a, f) \Pr(e, a|f).
\]

Notice that \(p(r|i; f) \) depends on \(f \), but not on any
translation of it, and can therefore be determined
solely from an analysis of \(f \) itself.

The Data

We have at our disposal a large collection of
French sentences aligned with their English transla-
tions [2, 4]. From this collection, we have extracted
sentences comprising 27,217,234 potential rift loca-
tions as data from which to construct a model for es-
timating \(p(r|i; f) \). Of these locations, we determined
13,268,639 to be rifts and the remaining 13,948,592
not to be rifts. Thus, if we are asked whether a par-
ticular position is or is not a rift, but are given no
information about the position, then our uncertainty
as to the answer will be 0.9995 bits. We were sur-
prised that this entropy should be so great.

In the examples below, which we have chosen from
our aligned data, the rifts are indicated by carets ap-
pearing between some of the words.

1. La réponse à la question #2 est oui.
2. Ce chiffre compris la rémunération du temps supplémentaire.
3. La Société du crédit agricole fait savoir qui suit:

The exact positions of the rifts in these sentences de-
PENDS on the English translation with which they are
aligned. For the first sentence above, the Hansard
English is *The answer to part two is yes.* If, instead,
it had been *For part two, yes is the answer*, then the
only rift in the sentence would have appeared imme-
diately before the final punctuation.
The Decision Tree

Brown et al. [3] describe a method for assigning sense labels to words in French sentences. Their idea is this. Given a French word \(f \), find a series of yes-no questions about the context in which it occurs so that knowing the answers to these questions reduces the entropy of the translation of \(f \). They assume that the sense of \(f \) can be determined from an examination of the French words in the vicinity of \(f \). They refer to these words as informants and limit their search to questions of the form *Is some particular informant in a particular subset of the French vocabulary.* The set of possible answers to these questions can be displayed as a tree, the leaves of which they take to correspond to the senses of \(f \).

We have adapted this technique to construct a decision tree for estimating \(p(r|i, f) \). Changing any of the words in \(f \) may affect \(p(r|i, f) \), but we consider only its dependence on \(f_{i-1} \) through \(f_{i+2} \), the four words closest to the location of the potential rift, and on the parts of speech of these words. We treat each of these eight items as a candidate informant. For each of the 27,217,234 training locations, we created a record of the form \(v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 b \), where \(v_s \) is the value of the informant at site \(s \) and \(b \) is 1 or 0 according as the location is or is not a rift. Using 20,000,000 of these records as data, we have constructed a binary decision tree with a total of 245 leaves.

Each of the 244 internal nodes of this tree has associated with it one of the eight informant sites, a subset of the informant vocabulary for that site, a left son, and a right son. For node \(n \), we represent this information by the quadruple \((s(n), S(n), l(n), r(n)) \). Given any location in a French sentence, we construct \(v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 \) and assign the location to a leaf as follows.

1. Set \(a \) to the root node.
2. If \(a \) is a leaf, then assign the location to \(a \) and stop.
3. If \(v_{s(a)} \in S(a) \), then set \(a \) to \(l(a) \), otherwise set \(a \) to \(r(a) \).
4. Go to step 2.

We call this process pouring the data down the tree. We call the series of values that \(a \) takes the path of the data down the tree. Each path begins at the root node and ends at a leaf node.

We used this algorithm to pour our 27,217,234 training locations down the tree. We estimate \(p(r|i, f) \) at a leaf to be the fraction of these training locations at the leaf for which \(b = 1 \). In a similar manner, we can estimate \(p(r|i, f) \) at each of the internal nodes of the tree. We write \(p_c(n) \) for the estimate of \(p(r|i, f) \) obtained in this way at node \(n \). The average entropy of \(b \) at the leaves is 0.7669 bits. Thus, by using the decision tree, we can reduce the entropy of \(b \) for training data by 0.2326 bits.

To warrant our tree against idiosyncrasies in the training data, we used an additional 528,509 locations as data for smoothing the distributions at the leaves. We obtain a smooth estimate, \(p(n) \), of \(p(r|i, f) \) at each node as follows. At the root, we take \(p(n) = p_c(n) \). At all other nodes, we define

\[
p(n) = \lambda(b_n)p_c(n) + (1 - \lambda(b_n))p(\text{the parent of } n),
\]

where \(b_n \) is one of fifty buckets associated with a node according to the count of training locations at the node. Bucket 1 is for counts of 0 and 1, bucket 50 is for counts equal to or greater than 1,000,000, and for \(1 < i < 50 \), bucket \(i \) is for counts greater than or equal to \(x_i - \sigma \sqrt{x_i} \) and less than \(x_i + \sigma \sqrt{x_i} \), where \(x_1 = 438 \), \(x_2 = 438 \), and \(\sigma = 21 \).

Segmenting

Let \(t(l) \) be the expected time required by our system to translate a sequence of \(l \) French words. We can estimate \(t(l) \) for small values of \(l \) by using our system to translate a number of sentences of length \(l \). If we break \(f \) into \(m+1 \) pieces by splitting it between \(f_1 \) and \(f_{i_1+1} \), between \(f_{i_2} \) and \(f_{i_2+1} \), and so on, finishing with a split between \(f_{i_m} \) and \(f_{i_m+1} \), \(1 \leq i_1 < i_2 < \cdots < i_m < M \), then the expected time to translate all of the pieces is \(t(i_1) + t(i_2 - i_1) + \cdots + t(i_m - i_{m-1}) + t(M - i_m) \). Translation accuracy will be largely unaffected exactly when each split falls on a rift. Assuming that rifts occur independently of one another, the probability of this event is \(\prod_{k=1}^{m} p(r|i_k, f) \). We define the utility, \(S_\alpha(i, f) \), of a split \(i = (i_1, i_2, \ldots, i_m) \) for \(f \) by

\[
S_\alpha(i, f) = \alpha \sum_{k=1}^{m} \log p(r|i_k, f)
\]

269
\[(1 - \alpha)(t(i_1) + t(i_2 - i_1) + \ldots + t(i_m - i_{m-1}) + t(M - i_m)).\]

Here, \(\alpha\) is a parameter weighing accuracy against translation time: when \(\alpha\) is near 1, we favor accuracy (and, hence, few segments) at the expense of translation time; when \(\alpha\) is near zero, we favor translation time (and, hence, many segments) at the expense of accuracy.

Given a French sentence \(f\) and the decision tree mentioned above for approximating \(p(r|f)\), it is straightforward using dynamic programming to find the split that maximizes \(S_a\).

If we approximate \(t(l)\) to be zero for \(l\) less than some threshold and infinite for \(l\) equal to or greater than that threshold, then we can discard \(\alpha\). Our utility becomes simply

\[S(i, f) = \sum_{k=1}^{m} \log p(r|i_k, f)\]

provided all of the segments are less than the threshold. If the length of any segment is equal to or greater than the threshold, then the utility is \(-\infty\).

Decoding

In the absence of segmentation, we employ an analysis-transfer-synthesis paradigm in our decoder as described in detail by Brown et al. [5]. We have insinuated the segmenter into the system between the analysis and the transfer phases of our processing. The analysis operation, therefore, is unaffected by the presence of the segmenter. We have also modified the transfer portion of the decoder so as to investigate only those translations that are consistent with the segmented input, but have otherwise left it alone. As a result, we get the benefit of the English language model across segment boundaries, but save time by not considering the great number of translations that are not consistent with the segmented input.

Results

To test the usefulness of segmenting, we decoded 400 short sentences four different ways. We compiled the results in Table 1, where: *Tree* is a shorthand for segmentation using the tree described above with a threshold of 7; *Every 5* is a shorthand for segments made regularly after every five words; *Every 4* is a shorthand for segments made regularly after every four words; and *None* is a shorthand for using no segmentation at all. We see from the first line of the table that the decoder performed somewhat better with segmentation as determined by the decision tree. If we carried out an exhaustive search, this could not happen, but because our search is suboptimal it is possible for the various shortcuts that we have taken to interact in such a way as to make the result better with segmentation than without. The result with the decision tree is clearly superior to the results obtained with either of the rigid segmentation schemes.

In Table 2, we show the decoding time in minutes for the four decoders. Using the segmentation tree, the decoder is about 41% faster than without it. We use a trigram language model to provide the a priori probability for English sentences. This means that the translation of one segment may depend on the result of the immediately preceding segment, but should not be much affected by the translation of any earlier segment provided that segments average more than two words in length. Because of this, we expect translation time with the segmenter to grow approximately linearly with sentence length, while translation time without the segmenter grows much more rapidly. Therefore, we anticipate that the benefit of segmenting to decoding speed will be greater for longer sentences.

Method	Better	Worse	Equal
Tree vs. None	8	12	380
Every 5 vs. None	16	55	329
Every 4 vs. None	11	61	328
Tree vs. Every 5	54	18	328
Tree vs. Every 4	59	11	330

Table 1. Comparison of segmentation schemes

Method	Translation time (in minutes)	Average Segment Length
None	8716	9.35
Every 5	4628	4.12
Tree	5124	3.67
Every 4	4414	3.44

Table 2. Translation times and segment lengths

REFERENCES

[1] P. F. Brown, J. Cocke, S. A. DellaPietra, V. J. DellaPietra, F. Jelinek, J. D. Lafferty, R. L. Mer-
cer, and P. S. Roossin, “A statistical approach to
machine translation,” Computational Linguistics,
vol. 16, pp. 79–85, June 1990.

[2] P. F. Brown, J. C. Lai, and R. L. Mercer, “Align-
ing sentences in parallel corpora,” in Proceedings
29th Annual Meeting of the Association for Com-
putational Linguistics, (Berkeley, CA), pp. 169–
176, June 1991.

[3] P. F. Brown, S. A. DellaPietra, V. J. DellaPietra,
and R. L. Mercer, “Word sense disambiguation us-
ing statistical methods,” in Proceedings 29th An-
nual Meeting of the Association for Computational
Linguistics, (Berkeley, CA), pp. 265–270, June
1991.

[4] P. F. Brown, S. A. DellaPietra, V. J. DellaPietra,
and R. L. Mercer, “The mathematics of machine
translation: Parameter estimation.” Submitted to
Computational Linguistics, 1991.

[5] P. F. Brown, S. A. DellaPietra, V. J. DellaPietra,
J. Lafferty, and R. L. Mercer, “Analysis, statis-
tical transfer, and synthesis in machine transla-
tion.” Submitted to TMI-92, Fourth International
Conference on Theoretical and Methodological Is-
sues in Machine Translation, 1992.