Supplementary references for Table 2

1. Sokolowski, M. B. C., Abramson, C. I. & Craig, D. P. A. Ethanol self-administration in free-flying honeybees (Apis mellifera L.) in an operant conditioning protocol. *Alcoholism, clinical and experimental research* **36**, 1568–1577 (2012).

2. Abramson, C. I., Fellows, G. W., Browne, B. L., Lawson, A. & Ortiz, R. A. Development of an ethanol model using social insects: II. Effect of Antabuse on consumatory responses and learned behavior of the honey bee (Apis mellifera L.). *Psychological reports* **92**, 365–378 (2003).

3. Abramson, C. I. *et al.* The development of an ethanol model using social insects I: behavior studies of the honey bee (Apis mellifera L.). *Alcoholism, Clinical and Experimental Research* **24**, 1153–1166 (2000).

4. Devineni, A. V & Heberlein, U. Preferential ethanol consumption in Drosophila models features of addiction. *Current biology* **19**, 2126–2132 (2009).

5. Kaun, K. R., Azanchi, R., Maung, Z., Hirsh, J. & Heberlein, U. A *Drosophila* model for alcohol reward. *Nature neuroscience* **14**, 1–13 (2011).

6. Shohat-Ophir, G., Kaun, K. R., Azanchi, R. & Heberlein, U. Sexual Deprivation Increases Ethanol Intake in Drosophila. *Science* **335**, 1351–1355 (2012).

7. Abramson, C. I. *et al.* Development of an ethanol model using social insects: III. Preferences for ethanol solutions. *Psychological reports* **94**, 227–239 (2004).

8. Schneider, A. *et al.* Neuronal basis of innate olfactory attraction to ethanol in *Drosophila*. *PloS one* **7**, e52007 (2012).

9. Scholz, H., Ramond, J., Singh, C. M. & Heberlein, U. Functional Ethanol Tolerance in *Drosophila*. *Neuron* **28**, 261–271 (2000).

10. Berger, K. H. *et al.* Ethanol sensitivity and tolerance in long-term memory mutants of *Drosophila melanogaster*. *Alcoholism, clinical and experimental research* **32**, 895–908 (2008).

11. Berger, K. H., Heberlein, U. & Moore, M. S. Rapid and Chronic: Two Distinct Forms of Ethanol Tolerance in *Drosophila*. *Alcoholism: Clinical & Experimental Research* **28**, 1469–1480 (2004).

12. Cowmeadow, R. B., Krishnan, H. R. & Atkinson, N. S. The slowpoke Gene Is Necessary for Rapid Ethanol Tolerance in *Drosophila*. *Alcoholism: Clinical and experimental research* **29**, 1777–1786 (2005).

13. Urizar, N. L., Yang, Z., Edenberg, H. J. & Davis, R. L. *Drosophila* homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. *The Journal of neuroscience* **27**, 4541–4551 (2007).

14. Bhandari, P., Kendler, K. S., Bettinger, J. C., Davies, A. G. & Grotewiel, M. An assay for evoked locomotor behavior in *Drosophila* reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. *Alcoholism, clinical and experimental research* **33**, 1794–1805 (2009).

15. Scholz, H. Influence of the biogenic amine tyramine on ethanol-induced behaviors in *Drosophila*. *Journal of neurobiology* **63**, 199–214 (2005).
16. Davies, A. G., Bettinger, J. C., Thiele, T. R., Judy, M. E. & McIntire, S. L. Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron 42, 731–143 (2004).

17. Mitchell, P. et al. A differential role for neuropeptides in acute and chronic adaptive responses to alcohol: behavioural and genetic analysis in Caenorhabditis elegans. PloS one 5, e10422 (2010).

18. Mustard, J. A. et al. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiology of learning and memory 90, 633–643 (2008).

19. Robinson, B. G., Khurana, S., Kuperman, A. & Atkinson, N. S. Neural adaptation leads to cognitive ethanol dependence. Current biology 22, 2338–2341 (2012).

20. Ammons, A. D. & Hunt, G. J. Identification of Quantitative Trait Loci and candidate genes influencing ethanol sensitivity in honey bees. Behavior genetics 38, 531–553 (2008).

21. Cakmak, I., Abramson, C. I., Seven-Cakmak, S., Nentchev, P. & Wells, H. Observations of ethanol exposure on the queen honey bee Apis mellifera anatoliaca (Preliminary note). Bulletin of Insectology 62, 99–101 (2009).

22. Maze, I. S., Wright, G. A. & Mustard, J. A. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera). Journal of insect physiology 52, 1243–1253 (2006).

23. Friedman, R., Bittner, G. & Blundon, J. Electrophysiological and Behavioral Effects of Ethanol on Crayfish. Journal of pharmacology and experimental therapeutics 246, 125–131 (1988).

24. Cohan, F. M. & Hoffmann, A. A. Genetic divergence under uniform selection. II. different responses to selection for knockdown resistance to ethanol among Drosophila melanogaster populations and their replicate lines. Genetics 114, 145–163 (1986).

25. Eddison, M. et al. arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron 70, 979–990 (2011).

26. Lasek, A. W., Giorgetti, F., Berger, K. H., Taylor, S. & Heberlein, U. Lmo genes regulate behavioral responses to ethanol in Drosophila melanogaster and the mouse. Alcoholism, clinical and experimental research 35, 1600–1606 (2011).

27. Kong, E. C. et al. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PloS one 5, e9954 (2010).

28. Rodan, A. R., Kiger, J. A. & Heberlein, U. Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. The Journal of neuroscience 22, 9490–9501 (2002).

29. Dzitoyeva, S., Dimitrijevic, N. & Manev, H. Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proceedings of the National Academy of Sciences 100, 5485–5490 (2003).

30. Stevenson, C. G. & Beane, W. S. A low percent ethanol method for immobilizing planarians. PloS one 5, e15310 (2010).

31. Milan, N. F., Kacsoh, B. Z. & Schlenke, T. A. Alcohol consumption as self-medication against blood-borne parasites in the fruit fly. Current biology 22, 488–93 (2012).
32. Abramson, C. I., Place, A. J., Aquino, I. S. & Fernandez, A. Development of an ethanol model using social insects: IV. Influence of ethanol on the aggression of Africanized honey bees (Apis mellifera L.). *Psychological reports* **94**, 1107–15 (2004).

33. Ammons, A. D. & Hunt, G. J. Characterization of honey bee sensitivity to ethanol vapor and its correlation with aggression. *Alcohol* **42**, 129–136 (2008).

34. Abramson, C. I., Sanderson, C., Painter, J., Barnett, S. & Wells, H. Development of an ethanol model using social insects: V. Honeybee foraging decisions under the influence of alcohol. *Alcohol* **36**, 187–193 (2005).

35. Bozic, J., Abramson, C. I. & Bedencic, M. Reduced ability of ethanol drinkers for social communication in honeybees (Apis mellifera carnica Poll.). *Alcohol* **38**, 179–183 (2006).

36. Wright, G. A., Lillvis, J. L., Bray, H. J. & Mustard, J. A. Physiological state influences the social interactions of two honeybee nest mates. *PloS one* **7**, e32677 (2012).

37. Nathaniel, T. I., Panksepp, J. & Huber, R. Drug-seeking behavior in an invertebrate system: evidence of morphine-induced reward, extinction and reinstatement in crayfish. *Behavioural brain research* **197**, 331–338 (2009).

38. Dziopa, L. *et al.* Morphine-conditioned cue alters c-Fos protein expression in the brain of crayfish. *Brain research bulletin* **85**, 385–395 (2011).

39. Nathaniel, T. I., Panksepp, J. & Huber, R. Effects of a single and repeated morphine treatment on conditioned and unconditioned behavioral sensitization in Crayfish. *Behavioural brain research* **207**, 310–320 (2010).

40. Lozada, M., Romano, A. & Maldonado, H. Effect of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus. *Pharmacology, biochemistry, and behavior* **30**, 635–640 (1988).

41. Panksepp, J. B. & Huber, R. Ethological analyses of crayfish behavior: a new invertebrate system for measuring the rewarding properties of psychostimulants. *Behavioural brain research* **153**, 171–180 (2004).

42. Raffa, R. B. Amphetamine Conditioned Place Preference in Planarians. *Journal of behavioral and brain science* **3**, 131–136 (2013).

43. Raffa, R. B. *et al.* The kappa-opioid receptor antagonist nor-BNI inhibits cocaine and amphetamine, but not cannabinoid (WIN 52212-2), abstinence-induced withdrawal in planarians: an instance of “pharmacologic congruence”. *Brain research* **1193**, 51–56 (2008).

44. Alcaro, A., Panksepp, J. & Huber, R. d-Amphetamine stimulates unconditioned exploration/approach behaviors in crayfish: towards a conserved evolutionary function of ancestral drug reward. *Pharmacology, biochemistry, and behavior* **99**, 75–80 (2011).

45. Wright, G. A. *et al.* Caffeine in Floral Nectar Enhances a Pollinator’s Memory of Reward. *Science* **339**, 1202–1204 (2013).

46. Si, A., Zhang, S.-W. & Maleszka, R. Effects of caffeine on olfactory and visual learning in the honey bee (Apis mellifera). *Pharmacology, biochemistry, and behavior* **82**, 664–672 (2005).

47. Mustard, J. A., Dewes, L., Brugato, A., Dey, K. & Wright, G. A. Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee. *Behavioural brain research* **232**, 217–224 (2012).
48. Lin, F. J. et al. Effect of taurine and caffeine on sleep-wake activity in Drosophila melanogaster. Nature and science of sleep 2, 221–231 (2010).

49. Nathaniel, T. I., Panksepp, J. & Huber, R. Alteration of c-Fos mRNA in the accessory lobe of crayfish is associated with a conditioned-cocaine induced reward. Neuroscience research 72, 243–256 (2012).

50. Raffa, R. B., Dasrath, C. S. & Brown, D. R. Disruption of a drug-induced choice behavior by UV light. Behavioural pharmacology 14, 569–571 (2003).

51. Barron, A. B., Maleszka, R., Helliwell, P. G. & Robinson, G. E. Effects of cocaine on honey bee dance behaviour. The Journal of experimental biology 212, 163–168 (2009).

52. Søvik, E., Cornish, J. L. & Barron, A. B. Cocaine tolerance in honey bees. PLOS ONE 8, e64920 (2013).

53. Rawls, S. M., Rodriguez, T., Baron, D. A. & Raffa, R. B. A nitric oxide synthase inhibitor (L-NAME) attenuates abstinence-induced withdrawal from both cocaine and a cannabinoid agonist (WIN 55212-2) in Planaria. Brain research 1099, 82–87 (2006).

54. Raffa, R. B. & Desai, P. Description and quantification of cocaine withdrawal signs in Planaria. Brain research 1032, 200–202 (2005).

55. Raffa, R. B. & Valdez, J. M. Cocaine withdrawal in Planaria. European journal of pharmacology 430, 143–145 (2001).

56. Nathaniel, T. I., Huber, R. & Panksepp, J. Repeated cocaine treatments induce distinct locomotor effects in crayfish. Brain research bulletin 87, 328–333 (2012).

57. McClung, C. & Hirsh, J. Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Current Biology 8, 109–112 (1998).

58. McClung, C. & Hirsh, J. The trace amine tyramine is essential for sensitization to cocaine in Drosophila. Current Biology 9, 853–860 (1999).

59. McClung, C. A Role for Tyramine in the Development of Sensitization to Cocaine in Drosophila melanogaster. (2001).

60. Andretic, R., Chaney, S. & Hirsh, J. Requirement of Circadian Genes for Cocaine Sensitization in Drosophila. Science 285, 1066–1068 (1999).

61. Dimitrijevic, N., Dzitojeva, S. & Manev, H. An automated assay of the behavioral effects of cocaine injections in adult Drosophila. Journal of neuroscience methods 137, 181–184 (2004).

62. Rawls, S. M., Patil, T., Yuvasheva, E. & Raffa, R. B. First evidence that drugs of abuse produce behavioral sensitization and cross sensitization in Planarians. Behavioural Pharmacology 21, 301–313 (2010).

63. Carter, K., Lukowiak, K., Schenk, J. O. & Sorg, B. A. Repeated cocaine effects on learning, memory and extinction in the pond snail Lymnaea stagnalis. The Journal of experimental biology 209, 4273–4282 (2006).

64. Lease, K. A. & Hirsh, J. A novel method of cocaine delivery to fruit flies using a graphic arts airbrush. Journal of neuroscience methods 141, 89–96 (2005).

65. Palladini, G. et al. A pharmacological study of cocaine activity in planaria. Comparative biochemistry and physiology part C: Comparative pharmacology 115, 41–45 (1996).
66. Owaisat, S., Raffa, R. B. & Rawls, S. M. In vivo comparison of harmine efficacy against psychostimulants: preferential inhibition of the cocaine response through a glutamatergic mechanism. *Neuroscience letters* **525**, 12–16 (2012).

67. Tallarida, C., Song, K., Raffa, R. B. & Rawls, S. M. Glutamate carboxypeptidase II (GCPII) inhibitor displays anti-glutamate and anti-cocaine effects in an invertebrate assay. *Amino acids* **42**, 2521–2524 (2012).

68. Pagán, O. R. *et al.* Reversal of cocaine-induced planarian behavior by parthenolide and related sesquiterpene lactones. *Pharmacology, biochemistry, and behavior* **89**, 160–170 (2008).

69. Kusayama, T. & Watanabe, S. Reinforcing effects of methamphetamine in planarians. *Neuroreport* **11**, 2511–2513 (2000).

70. Rawls, S. M., Shah, H., Ayoub, G. & Raffa, R. B. 5-HT(1A)-like receptor activation inhibits abstinence-induced methamphetamine withdrawal in planarians. *Neuroscience letters* **484**, 113–117 (2010).

71. Rawls, S. M. *et al.* Nociceptin attenuates methamphetamine abstinence-induced withdrawal-like behavior in planarians. *Neuropeptides* **42**, 229–237 (2008).

72. Ramoz, L. *et al.* Mephedrone (“bath salt”) pharmacology: insights from invertebrates. *Neuroscience* **208**, 79–84 (2012).

73. Pagán, O. R. *et al.* A cembranoid from tobacco prevents the expression of nicotine-induced withdrawal behavior in planarian worms. *European journal of pharmacology* **615**, 118–124 (2009).

74. Rawls, S. M. *et al.* Nicotine behavioral pharmacology: clues from planarians. *Drug and alcohol dependence* **118**, 274–279 (2011).

75. Rawls, S. M., Gomez, T. & Raffa, R. B. An NMDA antagonist (LY 235959) attenuates abstinence-induced withdrawal of planarians following acute exposure to a cannabinoid agonist (WIN 55212-2). *Pharmacology, biochemistry, and behavior* **86**, 499–504 (2007).

76. Buttarelli, F. R., Pontieri, F. E., Margotta, V. & Palladini, G. Cannabinoid-induced stimulation of motor activity in planaria through an opioid receptor-mediated mechanism. *Progress in neuro-psychopharmacology & biological psychiatry* **26**, 65–68 (2002).