Ecotoxicological assessment of Zn, Cu and Ni based NPs contamination in Arenosols

Sergey Kolesnikov¹, Alena Timoshenko¹, Tatiana Minnikova¹, Tatiana Minkina¹, Vishnu D. Rajput¹-*, Kamil Kazeev¹, Morteza Feizi², Elena Fedorenko¹, Saglara Mandzhieva¹,³, Svetlana Sushkova¹

¹Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
²Department of Soil Science, University of Kurdistan, Sanandaj 66177-15175, Iran
³Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, 358000, Russia

ARTICLE INFO

Abstract
Nanoparticles are increasingly used in many industrial fields because of their special properties. In this context, several questions arise related to possible negative consequences associated with nanoparticle (NPs) entrance into the ecosystem. The adsorption of NPs by soil can adversely influence its biological properties. In the present article, the influence of Cu, Zn, and Ni NPs on the biological characteristics of Arenosol is considered. Research aimed to study the effect of Cu, Zn, Ni NPs on the biological characteristics of sandy loam chernozem. Copper, Zn, and Ni NPs were added to the soil in concentrations of 100, 1,000, and 10,000 mg kg⁻¹. The effect of NPs on the biological properties of Arenosol was evaluated after 10-day incubation. The biological indices of the ecological condition of the soil, including the germination of radish, the length of the roots, the bacteria population, Azotobacter sp. count, the catalase activity, and dehydrogenases were studied. As a result of this study, it was revealed that the degree of indices changes depending on the concentration of Cu, Zn, and Ni NPs in the Arenosols. Microbiological characteristics (bacteria population, and Azotobacter sp. count) and phytotoxic feature (length of roots and radish germination) properties were most sensitive to contamination compared to the enzyme activity of Arenosol. Based on the soil integral index of a biological state, the strongest inhibitory effect on biological parameters of Arenosols relative to the control was exerted by Cu NPs (lower than control by 48-72%), while the greatest stability in Arenosol was found for Ni NPs (lower than control by 30-55%). The studied biological parameters allow characterizing the severity of nanoparticle exposure on Arenosols. Early diagnostics of the severity of soil contamination by NPs can be successfully used to quickly assess their impact on the soil condition and prevent possible adverse consequences.

Keywords: Nanoparticles, Pollution, Arenosols, Biological properties

Article history
Submitted: 2021-11-22
Accepted: 2021-12-06
Available online: 2021-12-27
Published regularly: December 2021

* Corresponding Author
Email address: rvishnu@sfedu.ru

How to Cite: Kolesnikov, S., Timoshenko, S., Minnikova, T., Minkina, T., Rajput, V.D., Kazeev, K., Feizi, M., Fedorenko, E., Mandzhieva, S., Sushkova, S. (2021). Ecotoxicological assessment of Zn, Cu and Ni based NPs contamination in Arenosols. Sains Tanah Journal of Soil Science and Agroclimatology, 18(2): 143-151. https://dx.doi.org/10.20961/stjssa.v18i2.56697

1. INTRODUCTION
Because of their multiple special characteristics, nanoparticles (NPs) are applied in many industries, such as agriculture (Acharya et al., 2020; Adisa et al., 2020; Faizan et al., 2020), medicine (Patra et al., 2018; Shende et al., 2021), cosmetology (Pastrana et al., 2018), industry (Ali et al., 2021; Ameta et al., 2020), etc. However, large-scale synthesis and application of NPs cause a threat of adverse consequences of their release into the environment (Rajput, Minkina, Fedorenko, et al., 2021; Rajput, Minkina, Kumari, et al., 2021; Ranjan et al., 2021; Shende et al., 2021). Once in the soil, NPs change its fertility, the population of soil microflora, as well as physiology and metabolism of important plants (Ali et al., 2021; Iqbal et al., 2019; Rai & Ingle, 2012; Rajput, Singh, et al., 2021). However, the research results on the effect of NPs on the environment are not consistent. Some scientists have identified adverse effects on plants (Minkina et al., 2020; Usman et al., 2020; Zoufan et al., 2020), animals (Rajput et al., 2017; Rajput et al., 2018), and soil characteristics (Kolesnikov, Minnikova, et al., 2021). At the same time, the other researchers confirmed the absence of any adverse effects (Faizan et al., 2021; Samarajeewa et al., 2017) or even note a positive effect (Acharya et al., 2020; Faizan et al., 2020; Shekhawat et al., 2021). Nanoparticles entering the soil are distributed differently depending on soil fertility, structure,
and composition. The behavior of NPs depending on soil thickness (Khanna et al., 2021; Tourinho et al., 2012). However, studying a single soil parameter is not enough to understand the effect of NPs. Experiments are needed to study the distribution of NPs depending on other soil parameters, for example, such as the granulometric composition and the soil response. Such information would provide many chances to develop methods for remediation and rebuild soil fertility depending on its type, structure, and composition.

The goal of the present work is to evaluate the impact of Cu, Zn, and Ni NPs on the biological properties of Arenosols.

2. MATERIALS AND METHODS

2.1. Study area

In this research, the soil was classified as sandy loam black soil. The soil samples were taken at Verkhnekrudyurchenskaya village, the Rostov Region, Russia (47°46'0.57" N; 40°51'41.69" E). This type of soil is characterized by a sandy loam granulometric composition, poor structure, a mean organic matter content of 2.3%, and a neutral soil reaction, pH = 6.8. For the experiment, the top layer of Arenosol (0-20 cm) was chosen, since it is here that heavy metals are deposited (Kabata-Pendias, 2010).

2.2. Experimental design

The present study aimed to provide a comprehensive evaluation of the effect of Cu, Zn, and Ni NPs on the phytotoxicity, microbial, and fermentation activity of Arenosols. The sizes of the Cu, Ni and Zn NPs for modeling were 50-100, 70-80, and 90-150 nm, respectively. The selection of metals was due to the fact that they are most often used in various fields of nanotechnology, and therefore the risk of their entering the soil is more likely than NPs of other elements. Polluting substances were introduced into the soil in the contents of 100, 1000, 10000 mg kg⁻¹. The soil was placed in plastic containers at a temperature of 22-25 °C and soil humidity of 60%. The effect of Cu, Zn, and Ni NPs on the biological properties of Arenosols in a model experiment was evaluated after 10 days of incubation.

2.3. Measurement procedures

Experimental tests were carried out using methods confirmed in ecology, biology, and soil science (Table 1). The soil condition was studied based on phytotoxic characteristics of the soil (root length and germination rate), the total bacteria count, Azotobacter sp. count, the catalase and dehydrogenases activity. Soil toxicity was evaluated using the germinating ability of radish seeds and root length (n = 180: 3 incubation vessels, 3 soil samples, x 20 seeds).

Microflora studies were carried out by the fluorescence microscopy method for evaluation of bacterial abundance in the soil according to Zvyagintsev et al. (2005) (n=720: 3 incubation vessels with soil x 3 soil samples x 4 square centimeters on slides x 20 microscope fields of view). Azotobacter sp. abundance was taken into account by fouling soil lumps method on non-acidified Ashby medium (n = 180: 3 incubation vessels with, 3 soil samples, 20 fouling lumps). Catalase activity was measured using hydrogen peroxide decomposition rate (n = 36: 3 incubation tubes with soil x 3 soil samples x 4 repetitions), dehydrogenases activity by the conversion rate of triphenyl tetrazolium chloride to triphenylformazane (n = 36: 3 incubation vessels with soil x 3 soil samples x 4 repetitions).

Biological indices are the first to respond to chemical contamination of the soil. Therefore, it is appropriate to apply exactly biological indices to assess the ecological condition of soils (Kolesnikov et al., 2019). To diagnose the soil condition after chemical contamination, it is advisable to use informative and sensitive biological indices as the most effective. The degree of the instructive value of the index was determined by the closeness of correlation between the index and the pollutant concentration in the soil. The sensibility of the indices was determined by analyzing the level of decrease in the contaminated soil compared to the blank soil.

To combine a large number of indices, the method of determining the integral index of the biological state of soils (IIBS) was used (Kolesnikov, Minnikova, et al., 2021; Kolesnikov, Timoshenko, et al., 2021).

2.4 Statistical analyses

For validation of the results, a variance and correlation analysis were performed, and then the means were compared using the least significant difference (LSD) at p ≤ 0.05. The data were obtained by three-fold reduplication. Statistical data were processed using the Statistica software package (version 12.0).

No	Biological Indices	Unit	Method
1	The total number of bacteria	10⁶ bacteria in a gram of soil dry weight	Luminescent microscopy with the solution of acridine orange, 40X
2	Azotobacter sp. Abundance	% of the mud balls surrounded by Azotobacter mucus	The method of fouling lumps on the Ashby medium
3	Catalase activity	ml O₂ per gram of soil dry weight in min	By the rate of decomposition of hydrogen peroxide according to the rate of conversion of triphenyltetrazolium chloride (TPC) to TPF
4	Dehydrogenases activity	mg of triphenylformazane (TPF) per gram of soil dry weight per hour	The germination rate of radish (Radish sativus L.) after 7 days of the experiment of roots length of the radish (Radish sativus L.) after 7 days of the experiment
5	The germination rate of radish seeds	% of germination seeds of control	
6	Radish roots length	millimeters	
3. RESULTS

3.1. Influence of Cu, Ni, and Zn NPs on microbiological publication of the soil

Application of NPs at concentrations of 100, 1000, and 10000 mg kg\(^{-1}\) decreased in the total bacteria number (Fig. 1A) and the Azotobacter sp. count of Arenosol (Fig. 1B). The Cu and Zn NPs had a higher effect. The Ni NPs were less toxic than the Cu and Zn NPs. When contaminated with Cu NPs, there was a tendency to restore the total number of bacteria, which was not typical for the other two elements. In most cases, the total bacteria number in the Arenosols decreased more significantly than the Azotobacter sp. abundance. The 100 mg kg\(^{-1}\) concentration of Cu, Zn, and Ni NPs reduced the total bacteria number by 51, 62, and 54%, respectively, while the Azotobacter sp. abundance – 23, 13, and 18%, respectively.

Application of Cu and Zn NPs to the Arenosols in an amount of 10000 mg kg\(^{-1}\), decreased the Azotobacter sp. abundance completely. No other biological index from the studied indices decreased dramatically. The Ni NPs had significantly less toxic effects on the Azotobacter sp. abundance. Thus, the index of the Azotobacter sp. abundance turned out to be very sensitive only when contaminated with Cu and Zn NPs, and only at an extremely high concentration of 10000 mg kg\(^{-1}\). In all other cases, the Azotobacter sp. abundance decreased insignificantly. This contradictory result was obtained by other researchers, which indicate that the sensibility of nitrogen-fixing bacteria to NPs is one million times higher than that of other groups of prokaryotes (Baklitskaya, 2011; Feng et al., 2013; Moll et al., 2016).

Thus, microbiological parameters in the sandy loam black soil responded negatively to contamination with Cu, Zn, Ni NPs.

3.2. Effect of Cu, Zn, and Ni NPs on enzymes activity in soil

Soil enzymes are catalyzing important metabolic processes. Their activity is determined with high accuracy and is a stable and sensitive index of soil biogenesis (Andreoni et al., 2004; Pascual et al., 2000).
The level of different concentrations effect of Cu, Ni, and Zn NPs on the activity of catalase and dehydrogenases is shown in Figure 2 and 3. The fermentation activity of Arenosol is sensitive to the presence of Cu, Zn, and Ni NPs. The sequence of metals effect on the catalase activity was as the following series: Zn ≥ Cu > Ni, while this sequence for dehydrogenases was obtained as this series: Cu > Zn > Ni.

When Cu, Zn, and Ni NPs are introduced to the soil at a concentration of 100 mg kg\(^{-1}\), the dehydrogenase activity decreased by 44, 26, and 9%, respectively, while the catalase activity decreased by 15, 12, and 7%, respectively. Thus, the dehydrogenase activity was more sensitive to contamination by Cu, Zn, and Ni NPs than the catalase activity.

3.3. The effect of NPs on root length and germination rate of radish

The level of impact of various contents of Cu, Zn, and Ni NPs on the germination and length of radish roots is shown in Fig. 4. The toxic level of Arenosol for radish (germination and length of roots) was most affected by Cu NPs. Already at 100 mg kg\(^{-1}\) concentration, a decline in the germination of radishes by 70% relative to the control, as well as a reduction of the length of the roots by 85% was observed. Also, further enhancement in the concentration of Cu NPs decreased germination rate, and the length of the radish roots was first slightly restored and then decreases again. Zinc NPs had a slightly smaller effect on phytotoxic properties than Cu NPs.
At the concentration of 100 mg kg\(^{-1}\), the germination of radishes reduced by 60% of the control, while the length of the roots was decreased by 66%. The higher the concentration, the stronger was the toxic effect. Nickel NPs had the least effect on germination (a 45% decrease of the control at a concentration of 100 mg kg\(^{-1}\)) and radish root length (a 46% decrease of the control at a concentration of 100 mg kg\(^{-1}\)). Also, the concentrations of 1000 and 10000 mg kg\(^{-1}\) had the same effect on germination. As for the length of the radish roots, it decreased with an increase in the nanoparticle concentration. Thus, the phytotoxic properties of sandy loam black soil turned out to be sensitive to the presence of Cu, Zn, and Ni NPs.

3.4 Integral index of the biological state of Arenosols contaminated by Cu, Ni, and Zn NPs

The results of the IIBS calculations based on the analysis of the effect of Cu, Zn, and Ni NPs on the state of the Arenosol are shown in Fig. 5. The concentration of 100 mg kg\(^{-1}\) Cu, Zn, and Ni NPs, decreased IIBS by 48, 40, and 30%, respectively, while at 1000 mg kg\(^{-1}\) – by 62, 50, and 44%, respectively, and at 10000 mg kg\(^{-1}\) – by 72, 73, and 55%, respectively. Thus, in terms of the influencing degree on the biological properties of sandy loam black sands, the following series were obtained Cu > Zn > Ni. The studied NPs had the greatest effect at a concentration of 10000 mg kg\(^{-1}\). So, there is a positive correlation between the NPs content and the degree of deterioration of the biological properties of Arenosol.

3.5 Assessment of the informative value of biological indices

The instructive value of the index can be determined by the closeness of the correlation between the index and the content of the polluting substance in the soil. Table 2 presents the correlation coefficients of the studied biological indices.

3.6 Assessment of the sensitivity degree of biological indices

The sensitivity degree of the index was evaluated by the decrease in its value in presence of contaminants compared to the control. Table 3 shows the values of the degree of decrease in the studied biological parameters. These are the average values for all concentrations of heavy metal NPs.

In terms of the sensitivity degree (according to the decrease in values) to the presence of Cu, Ni, and Zn NPs, the studied biological parameters are arranged as follows.

When contaminated with Cu NPs: root length > germination rate > total number of bacteria > Azotobacter sp. abundance > dehydrogenases activity > catalase activity.

When contaminated with Zn NPs: total number of bacteria > root length > germination rate > Azotobacter sp. abundance > dehydrogenases activity > catalase activity.

When contaminated with Ni NPs: total number of bacteria > root length > germination > Azotobacter sp. abundance > dehydrogenases activity > catalase activity.
The toxicity mechanisms of heavy metal NPs with respect to plants are associated with the inhibition of major physiological processes, like photosynthesis, mineral nutrition, and water-binding (Minkina et al., 2020; Yadav et al., 2014). In addition, due to the high redox capacity, the ions of HM NP can participate in the redox reactions in cells and, through the Haber-Weiss and Fenton reactions, lead to the formation of reactive oxygen species, like superoxide radicals, hydrogen peroxide, and hydroxyl radicals. Besides, as noted above, HM NPs cause the inactivation of enzymes as a result of interaction with sulfhydryl groups of proteins, which leads to metabolic disorders and causes chlorosis, necrosis, and growth retardation of shoots and roots (Manceau et al., 2008).

It was confirmed that the ecotoxicity of Cu, Zn, and Ni NPs on soil microorganisms increases with increasing concentration. The results of other works have indicated that NPs can penetrate directly into the cell and cause more damage than macroparticles. This concerns interference with DNA and protein synthesis, redox, and organoid functions (Slavin et al., 2017; Yoo et al., 2021).

The mechanism of the inhibitory effect of metal NPs on enzymes seems to be due to their interaction with sulfhydryl groups (Manceau et al., 2008; Metryka et al., 2021; Slavin et al., 2017). The degree of ecotoxicity of NPs depends not only on the dose but also on the class of the enzyme. In the present study, it was revealed that dehydrogenase activity is less sensitive to contamination by Cu, Zn, and Ni NPs than catalase activity. Previous studies have shown both the negative impact of NPs on the activity of enzymes (Kolesnikov, Timoshenko et al., 2021; Peyrot et al., 2014; Shende et al., 2021) and the positive effect (Asadshad et al., 2017).

The present work is consistent with the hypothesis that the higher the content of NPs in the soil, the more pronounced are toxic effects on biological parameters of the soil (the activity of enzymes, total bacteria count, and phytotoxic indices). According to the obtained biological indices of the state of soil contaminated with Cu, Zn, and Ni NPs, their information value and sensitivity were evaluated.

The indices of enzymatic activity and microbiological indices turned out to be the most informative in terms of reflecting the status of the studied black soil contamination with Cu, Zn, and Ni NPs, while the indices of phytotoxicity were less informative. Microbiological and phytotoxicity indices were the most sensitive to contamination by Cu, Ni, and Zn NPs. The indices of enzymatic activity were less sensitive. A similar result was obtained earlier for oxides and water-soluble salts of heavy metals, including Cu, Zn, and Ni (Vodyanitskii, 2016). Also, the sensitivity of the index depended on the nature of the metal. Copper and Zn NPs showed greater toxicity than Ni ones. This does not support the existing hypothesis that the toxicity of NPs depends on their size and does not depend on the chemical nature of the element. A slightly different pattern was observed for oxides and water-soluble salts of these heavy metals. Thus, Cu and Ni NPs were more toxic than Zn NPs (Abdel-Khalek et al., 2015; Iqbal et al., 2021).

Because some indices are sensitive, while others are informative, it is advisable to use the IIBS. In terms of influencing the biological properties of sandy loam black soil, metal NPs form the following series: Cu > Zn > Ni. First, this does not consistent with the existing hypothesis that the NPs toxicity depends only on their size and does not depend on the chemical nature of the element. Secondly, the oxides and water-soluble salts of these metals are characterized by a slightly different pattern, namely, Cu and Ni are more toxic than Zn.

Table 2. Correlation coefficients (r) between the content of Cu, Ni, and Zn NPs in Arenosols.

No	Biological index	Cu	Zn	Ni	Average
1	total number of bacteria	-0.90	-0.58	-0.59	-0.69
2	Azotobacter sp. abundance	-0.67	-0.92	-0.83	-0.80
3	catalase activity	-0.64	-0.85	-0.85	-0.78
4	dehydrogenases activity	-0.54	-0.85	-0.83	-0.74
5	germination rate of radish seeds	-0.52	-0.59	-0.47	-0.53
6	length of the radish roots	-0.42	-0.50	-0.68	-0.53
7	IIBS	-0.62	-0.75	-0.69	-0.69

Note: * p <0.05 compared to the control

Table 3. Degree of decrease in biological parameters of Arenosols upon contamination with Cu, Zn and Ni NPs, % of control (average values for three doses of NPs).

No	Biological index	Cu	Zn	Ni	Average
1	total number of bacteria	28	27	31	29
2	Azotobacter sp. abundance	43	51	71	55
3	catalase activity	76	75	88	80
4	dehydrogenases activity	48	64	72	61
5	the germination rate of radish seeds	23	32	48	34
6	the length of the radish roots	18	26	33	26
7	IIBS	54	58	67	60
Based on the results obtained, one can state that further study of the effect of NPs on the properties of the soil is necessary. Most publications related to NPs are devoted to their synthesis and application. At the same time, an increase in the scope of applications and the utilization capacity of NPs leads to the threat of their release into the environment and soil contamination. The potential risk and environmental impact are difficult to quantify and are not fully studied. Knowledge of the ultimate effects of NPs on the environment should be expanded, and appropriate guidelines should be developed to prevent contamination.

5. CONCLUSION

The degree of reduction in biological characteristics of the soil depends on the content of contaminating NPs. It was revealed that the total bacteria count, the length of radish roots and germination are the most sensitive indices to the presence of Cu, Zn, and Ni NPs. These indices have shown significant changes (more than 50%) caused by the impact of even a small pollutant dose of 100 mg kg⁻¹. The activity of enzymes was the least sensitive index to the presence of Cu, Zn, and Ni NPs. However, a significant decrease was noted in these indices when the studied pollutants were introduced. The presence of Cu, Zn, and Ni NPs led to a decrease in the IIBS of sandy loam black soil. According to the results of the IIBS, Cu NPs had the strongest effect on the soil, while Ni NPs had the least effect. The conducted research confirmed the need for further study of the effect of NPs on the biological characteristics of different types of soils. This study confirmed the need for further study of the effect of NPs on the biological properties of soils in order to identify possible negative effects. For a better understanding of the negative consequences of the ingress of NPs into the soil, it is necessary to study a large number of pollutants, indices, soil types, as well as the mechanisms of their influence.

Declaration of Competing Interest

The authors declare no competing financial or personal interests that may appear and influence the work reported in this paper.

Funding

The research was carried out with the support of the “Priority 2030” program of the Ministry of Science and Education of the Russian Federation, project no. SP02/S4_0708 Priority_01/SP02/S4_0706 Priority_01.

References

Abdel-Khalek, A. A., Kadry, M. A. M., Badran, S. R., & Marie, M.-A. S. (2015). Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress. The Journal of Basic & Applied Zoology, 72, 43-57. https://doi.org/10.1016/j.jobaz.2015.04.001

Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1), 5037. https://doi.org/10.1038/s41598-020-61696-7

Adisa, I. O., Rawat, S., Pullagurala, V. L. R., Dimkpa, C. O., Elmer, W. H., White, J. C., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2020). Nutritional Status of Tomato (Solanum lycopersicum) Fruit Grown in Fusarium-Infested Soil: Impact of Cerium Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 68(7), 1986-1997. https://doi.org/10.1021/acs.jafc.9b06840

Ali, S. S., Al-Tohamy, R., Koutra, E., Moawad, M. S., Kornaros, M., Mustafa, A. M., Mahmoud, Y. A. G., Badr, A., Osman, M. E. H., Elsamahy, T., Jiao, H., & Sun, J. (2021). Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of The Total Environment, 792, 148359. https://doi.org/10.1016/j.scitotenv.2021.148359

Ameta, S. K., Rai, A. K., Hiran, D., Ameta, R., & Ameta, S. C. (2020). Use of Nanomaterials in Food Science. In M. Ghorbanpour, P. Bhargava, A. Varma, & D. K. Choudhary (Eds.), Biogenic Nanoparticles and Their Use in Agro-ecosystems (pp. 457-488). Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_24

Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell’Amico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57(5), 401-412. https://doi.org/10.1016/j.chemosphere.2004.06.013

Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., & Tufenkji, N. (2017). Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating [10.1039/C6EN00567E]. Environmental Science: Nano, 4(4), 907-918. https://doi.org/10.1039/C6EN00567E

Baklitskaya, O. (2011, April 19, 2011). Silver nanoparticles, nanoparticles can be dangerous. Science and Life https://www.nki.ru/news/19470/

Faizan, M., Faraz, A., Mir, A. R., & Hayat, S. (2020). Role of Zinc Oxide Nanoparticles in Countering Negative Effects Generated by Cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 40(1), 101-115. https://doi.org/10.1007/s00344-019-10059-2

Faizan, M., Sehar, S., Rajput, V. D., Faraz, A., Afzal, S., Minkina, T., Sushkova, S., Adil, M. F., Yu, F., Alatar, A. A., Akhter, F., & Faisal, M. (2021). Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice (Oryza sativa) Plant under Arsenic Stress. Plants, 10(11), 2254. https://doi.org/10.3390/plants10112254

Feng, Y., Cui, X., He, S., Dong, G., Chen, M., Wang, J., & Lin, X. (2013). The Role of Metal Nanoparticles in Influencing Arbuscular Mycorrhizal Fungi Effects on Plant Growth. Environmental Science & Technology, 47(16), 9496-9504. https://doi.org/10.1021/es402109n
Kolesnikov et al., SAINS TANAH – Journal of Soil Science and Agroclimatology, 18(2), 2021

Ghosh, M., Jana, A., Sinha, S., Jothiramajayam, M., Nag, A., Chakraborty, A., Mukherjee, A., & Mukherjee, A. (2016). Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 807, 25-32. https://doi.org/10.1016/j.mrgentox.2016.07.006

Hossain, Z., Mustafa, G., & Komatsu, S. (2015). Plant Responses to Nanoparticle Stress. International Journal of Molecular Sciences, 16(11), 26644-26653. https://doi.org/10.3390/ijms161125980

Iqbal, M., Umar, S., & Mahmooduzzafar. (2019). Nano-fertilization to Enhance Nutrient Use Efficiency and Productivity of Crop Plants. In A. Husen & M. Iqbal (Eds.), Nanomaterials and Plant Potential (pp. 473-505). Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1

Iqbal, S., Jabeen, F., Chaudhry, A. S., Shah, M. A., & Battha, G. E. (2021). Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health, 37(10), 635-651. https://doi.org/10.1080/10478237.2021.1910100

Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th Ed.). CRC Press. https://doi.org/10.1201/b10158

Khanna, K., Kohli, S. K., Handa, N., Kaur, H., Ohri, P., Bhardwaj, R., Yousaf, B., Rinklebe, J., & Ahmad, P. (2021). Toxic Effects of Thallium on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety, 222, 112459. https://doi.org/10.1016/j.ecoenv.2021.112459

Kolesnikov, S., Minnikova, T., Minkina, T., Rajput, V. D., Tsepina, N., Kazeev, K., Zhadobin, A., Nevedomaya, E., Ter-Misakyan, T., Akimenko, Y., Mandzhieva, S., Sushkova, S., Ranjan, A., Asylbaev, I., Popova, V., & Tymoshenko, A. (2021). Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments, 8(11), 119. https://doi.org/10.3390/environments81100119

Kolesnikov, S., Tymoshenko, A., Minnikova, T., Tsepina, N., Kazeev, K., Akimenko, Y., Zhadobin, A., Shuavaev, V., Rajput, V. D., Mandzhieva, S., Sushkova, S., Minkina, T., Dudnikova, T., Mazarji, M., Alamri, S., Siddiqui, M. H., & Singh, R. K. (2021). Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth. Plants, 10(10), 2080. https://doi.org/10.3390/plants10102080

Kolesnikov, S. I., Kazeev, K. S., & Akimenko, Y. V. (2019). Development of regional standards for pollutants in the soil using biological parameters. Environmental Monitoring and Assessment, 191(9), 544. https://doi.org/10.1007/s10661-019-7718-3

Manceau, A., Nagy, K. L., Marcus, M. A., Lanson, M., Geoffroy, N., Jacquet, T., & Kirpichchikova, T. (2008). Formation of Metallic Copper Nanoparticles at the Soil–Root Interface. Environmental Science & Technology, 42(5), 1766-1772. https://doi.org/10.1021/es072017o

Metryka, O., Wasilkowski, D., & Mrozik, A. (2021). Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. International Journal of Molecular Sciences, 22(21), 11811. https://doi.org/10.3390/ijms222111811

Minkina, T., Rajput, V., Fedorenko, G., Fedorenko, A., Mandzhieva, S., Sushkova, S., Morin, T., & Yao, J. (2020). Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health, 42(1), 45-58. https://doi.org/10.1007/s10653-019-00269-8

Moll, J., Gogos, A., Bucheli, T. D., Widmer, F., & van der Heijden, M. G. A. (2016). Effect of nanoparticles on red clover and its symbiotic microorganisms. Journal of Nanobiotechnology, 14(1), 36. https://doi.org/10.1186/s12951-016-0188-7

Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L., & Ros, M. (2000). Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry, 32(13), 1877-1883. https://doi.org/10.1016/S0038-0717(00)00161-9

Pastrana, H., Avila, A., & Tsai, C. S. J. (2018). Nanomaterials in Cosmetic Products: the Challenges with regard to Current Legal Frameworks and Consumer Exposure. NanoEthics, 12(2), 123-137. https://doi.org/10.1007/s11569-018-0317-x

Patra, J. K., Das, G., Facrato, L. F., Campos, E. V. R., Rodriguez-Torres, M. d. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8

Peyrot, C., Wilkinson, K. J., Desrosiers, M., & Sauvé, S. (2014). Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem, 33(1), 115-125. https://doi.org/10.1002/etc.2398

Polischuk, S., Fadkin, G., Churilov, D., Churilova, V., & Churilov, G. (2019). The stimulating effect of nanoparticle suspensions on seeds and seedlings of Scotch pine (Pinus sylvestris). IOP Conference Series: Earth and Environmental Science, 226, 012020. https://doi.org/10.1088/1755-1315/226/1/012020

Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbial Biotechnol, 94(2), 287-293. https://doi.org/10.1007/s00253-012-3969-4

Rajput, V. D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., Sushkova, S., Lysenko, V., Soldatov, M. A., & Burachevskaya, M. (2021). Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Nanomaterials, 11(7), 1722. https://doi.org/10.3390/nano11071722

Rajput, V. D., Minkina, T., Kumari, A., Harish, Singh, V. K., Verma, K. K., Mandzhieva, S., Sushkova, S., Srivastava,
S., & Keswani, C. (2021). Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. *Plants*, 10(6), 1221. https://doi.org/10.3390/plants10061221

Rajput, V. D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., Nevidomskyyaya, D., & Gromakova, N. (2017). Effect of nanoparticles on crops and soil microbial communities. *Journal of Soils and Sediments*, 18(6), 2179-2187. https://doi.org/10.1007/s11368-017-1793-2

Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., Ghazaryan, K. A., & Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. *Environmental Nanotechnology, Monitoring & Management*, 9, 76-84. https://doi.org/10.1016/j.jenmm.2017.12.006

Rajput, V. D., Singh, A., Singh, V. K., Minkina, T. M., & Sushkova, S. (2021). Chapter 4 - Impact of nanoparticles on soil resource. In A. Amrane, D. Mohan, T. A. Nguyen, A. A. Assadi, & G. Yasin (Eds.), *Nanomaterials for Soil Remediation* (pp. 65-85). Elsevier. https://doi.org/10.1016/B978-0-12-822891-3.00004-9

Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021). Nanoparticles induced stress and toxicity in plants. *Environmental Nanotechnology, Monitoring & Management*, 15, 100457. https://doi.org/10.1016/j.jenmm.2021.100457

Samarajeewa, A. D., Velicogna, J. R., Princa, J. I., Subasinghe, R. M., Scroggins, R. P., & Beaudette, L. A. (2017). Effect of silver nano-particles on microbial growth, activity and community diversity in a sandy loam soil. *Environmental Pollution*, 220, 504-513. https://doi.org/10.1016/j.envpol.2016.09.094

Shekhawat, G. S., Mahawar, L., Rajput, P., Rajput, V. D., Minkina, T., & Singh, R. K. (2021). Role of Engineered Carbon Nanoparticles (CNPs) in Promoting Growth and Metabolism of Vigna radiata (L.) Wilczek: Insights into the Biochemical and Physiological Responses. *Plants*, 10(7), 1317. https://doi.org/10.3390/plants10071317

Shende, S. S., Rajput, V. D., Gorovtsov, A. V., Harish, Saxena, P., Minkina, T. M., Chokheli, V. A., Jatav, H. S., Sushkova, S. N., Kaur, P., & Kizilkaya, R. (2021). Interaction of Nanoparticles with Microbes. In P. Singh, R. Singh, P. Verma, R. Bhadouria, A. Kumar, & M. Kaushik (Eds.), *Plant-Microbes-Engineered Nanoparticles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPs)* (pp. 175-188). Springer, Cham. https://doi.org/10.1007/978-3-030-66956-0_12

Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. *Journal of Nanobiotechnology*, 15(1), 65. https://doi.org/10.1186/s12951-017-0308-z

Tourinho, P. S., van Gestel, C. A. M., Lofts, S., Svendsen, C., Soares, A. M. V. M., & Loureiro, S. (2012). Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. *Environ Toxicol Chem*, 31(8), 1679-1692. https://doi.org/10.1002/etc.1880

Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H. u., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. *Science of The Total Environment*, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778

Vodyanitskii, Y. N. (2016). Standards for the contents of heavy metals in soils of some states. *Annals of Agrarian Science*, 14(3), 257-263. https://doi.org/10.1016/j.aasci.2016.08.011

Yadav, T., Mungray, A. A., & Mungray, A. K. (2014). Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In D. M. Whitacre (Ed.), *Reviews of Environmental Contamination and Toxicology volume. Reviews of Environmental Contamination and Toxicology (Continuation of Reserve Reviews)* (Vol. 230). Springer, Cham. https://doi.org/10.1007/978-3-319-04411-8_4

Yoo, A., Lin, M., & Mustapha, A. (2021). Zinc Oxide and Silver Nano Particle Effects on Intestinal Bacteria. *Materials*, 14(10), 2489. https://doi.org/10.3390/ma14102489

Zoufan, P., Baroonian, M., & Zargar, B. (2020). ZnO nanoparticles-induced oxidative stress in Chenopodium murale L. Zn uptake, and accumulation under hydroponic culture. *Environmental Science and Pollution Research*, 27(10), 11066-11078. https://doi.org/10.1007/s11356-020-07735-2

Zvyagintsev, D. G., Zhou, G. M., & Kolesnikov et al. (2017). The Ability of Soil Actinomycetes to Develop at an Extremely Low Humidity. *Doklady Biological Sciences*, 405(1), 461-463. https://doi.org/10.1017/s00630-005-0165-z