Bioequivalence & Bioavailability of the Phytoconstituents in Some Plant Species Potentially Toxic

Monica Butnariu*
Banat University of Agricultural Sciences and Veterinary Medicine, Romania

Submission: March 08, 2017; Published: May 24, 2017

*Corresponding author: Monica Butnariu, Banat University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania–300645, Calea Aradului 119, Timis, Romania, Email: monicabutnariu@yahoo.com

Keywords: Flavonoid c–glycoside malonate; Aristolochia acid; Aristolochia Clematitis; cyanogenic glucosides

Aquilegia Sp Phytoconstituents

It contains cyanogenic glycoside ancolies, flavonoid c–glycoside malonate. Other substances are isocystososide (antioxidant, antimicrobial activity and hepato–protective effect), flavonoid emulsin, tauuin, aquilegine, vitamin C, an uncharacterized alkaloid, and sphingolipid desaturase.

Toxicity

The ancolies are regarded as dangerous (seeds). The alkaloids which they contain bring closer aconitine but their toxicity is definitely less. Their extreme acridness generally avoids poisonings. The plant's seeds and roots are highly poisonous however, and contain cardiogenic toxins which cause both severe gastroenteritis and heart palpitations if consumed as food. Folk medicine used very small amounts of Aquilegia root as an effective treatment for ulcers. However, the medical use of this plant is better avoided due to its high toxicity; poisonings may be fatal [1].

Aristolochia Clematitis Phytoconstituents

The plant contains Aristolochia acid; this stimulates white blood cell activity and speeds the healing of wounds, but is also carcinogenic and damaging to the kidneys. Contains an active antitumor agent but is too toxic for clinical use and that Aristolochia acid has anticancer properties and used in conjunction with chemotherapy and radiotherapy and increases the cellular immunity or phagocytises function of the phagocytic cells. Aristolochia acid and related alkaloids, magnoflorine and allantoin.

Toxicity

The most toxic aspect of Aristolochia Clematitis is that it acts as a poison for the kidneys and liver. If taken over the course of a month or two, this can lead to outright kidney failure and death. Toxic effects in animals include anorexia, constipation, nephritis, coma, weak pulse, and accelerated heart's action. Particularly horses are very sensitive to the plant. Intoxication generally has no adverse effects, but recovery is slow [2].
Armeniaca Vulgaris Phytoconstituents

Active constituents are amygdalin (yields hydrocyanic acid, glucose and benzaldehyde), and sitosorol. Will yield 40 to 50% express fixed oil consisting mainly of olein with small amounts of glyceride of linolic acid. Three apricots have about 2.7 IU of beta-carotene (more 50% of RDA). The dried fruit are beta-carotene, potassium, boron and 20% of the RDA for iron (in 1/2C.). It is higher in fibre than the fresh fruit.

Amygdalin: C20H27NO11, CAS: 29883-15-6.

Beta-sitoserol: C29H50O, CAS: 83-46-5.

Toxicity
Excessive eating of the kernel can result in hydrocyanic poisoning. Excess causes central nervous system depression and respiratory failure. Toxicity of amygdalin is reduced by stir-baking or steaming and can be neutralized by a decoction of the outer bark. Hydrocyanic (prussic) acid is a general protoplasmic poison even at a dose of 2.5g. Licorice or jujube taken with it helps as an antidote (applies to wild cherry bark/peach seed) [3].

Artemisia Sp Phytoconstituents

The constituents of essential oil were 1,8-cineole (eucalyptol, 13.75%), germacrene D (10.41%), camphor (8.57%), artemisia ketone (6.96%) and calarene (5.62%). From the aerial parts, one known alkamide, pellitorine, two new alkamides neopellitorine A, neopellitorine B, and one known coumarin herniarine were isolated and 4-allylanisole (estragole).

Pellitorine: C14H25NO, CAS: 18836-52-7.

Herniarine: C10H8O3, CAS: 531-59-9.

Estragole: C10H12O, CAS: 140-67-0.

Artemisinin: C15H22O5, CAS: 63968-64-9.

Toxicity
The predominant component of the essential oil was isolated and identified to be 1-phenyl-2,4-hexadiyne which was found to be responsible for the insecticidal activity of the essential oil (insecticidal alkamides neopellitorine A and neopellitorine B) [4].

Arum Maculatum, Arum Orientale Phytoconstituents

Aroin, cyanogenic glucosides, saponins, Ca2+ oxalate raphides. Arum gives off prussic acid when bruised which is the result of certain cyanaphoric glycosides (linamarin, dhurrin, lotaustralin and taxiphyllin) being present. The tuber contains volatile acrid principle, starch, albumen, gum, sugar, lignin, salts of potassium and calcium, saponin and a brownish, oily liquid alkaloid resembling coniine in property, but less active.

Linamarin: C20H27NO11, CAS: 554-35-8.

Lotaustralin: C20H27NO11, CAS: 534-67-8.

Taxiphyllin: C20H27NO11, CAS: 21401-21-8.

Toxicity
Calcium oxalate and possibly irritant proteins and aroine, arodine, aronine. The edema of the lips, tongue, and throat may be seen. Treatment usually none required. Analgesics may be
Swelling may be treated with cool compresses. It is unknown if diuretics or glucocorticosteroid would help with the inflammation. Rarely, swelling of the tongue, glottis, or pharynx will interfere with respiration irritates skin, eyes and mucous membranes. Oxalic acid, common in spinach and rhubarb, can combine with serum calcium to form insoluble calcium oxalate. The features of the toxicity profile for cyanide are its high acute toxicity with a very steep dose–effect curve and chronic toxicity, probably mediated through the main metabolite and detoxification product, thiocyanate. Cyanogenic glycosides are toxic, of the release of free hydrogen cyanide which occurs when the plant tissue is disturbed as during chopping, processing, or ingestion. These conditions initiate the hydrolysis of the glycoside by action of β-glucuronidases (or other enzymes naturally) present in plant tissue and in intestinal lumen. The process, initiated by acid, but this doesn’t appear to occur in the digestive tract to any great extent despite the acid environment in the stomach. Hydrolysis by β-glucuronidases produces sugar and a cyanohydrin, the latter spontaneously/enzymatic ally degrades to form free hydrogen cyanide [5].

Asarum Europaeum Phytoconstituents

The dried whole herb of *Asarum* contains about 2.5% essential oils; toxic compositions are safrole, myristicin. Alkaloids: bikhaconitine, chasmaconitine, indaconitine, pseudoaconitine, aconitine, mesaconitine and hypaconitine.

- **Safrole:** C10H10O2, CAS: 202-345-4.
- **Alpha-asarone:** C12H16O3, CAS: 2883-98-9.
- **Myristicin:** C11H12O3, CAS: 210-146-9.
- **Trans-aconitic acid:** C6H6O6, CAS: 4023-65-8.
- **Mesaconitine:** C33H45NO11, CAS: 2752-64-9.

Toxicity

Essential oils, which are a component of asarum, are known to herbalists as “kidney irritants” if taken in large quantities. Thus, for example, pennyroyal, a member of the mint family, became known as a dangerous herb when at least one woman took a substantial quantity of the oil (being used as an emenagogue) and suffered kidney failure. It is possible that the concern about asarum expressed in the above–mentioned texts was related to its essential oil content (if the dosage were high enough) rather than aristolochic acid [6].

Atropa Belladonna Phytoconstituents

Belladonna contains 0.3-0.6% of tropone alkaloids (hyoscyamine, atropine and scopolamine). It also contains small quantity of bases like pyridine, N-methylpyrroline. Leaves also contain florescence substance β-methyl aesculetin and calcium oxalate.

- **Hyoscyamine:** C17H23NO3, CAS: 202-933-0.
- **Scopolamine:** C17H21NO4, CAS: 200-090-3.

Toxicity

All parts contain tropone alkaloids (atropine and other belladonna alkaloids). The foliage and berries are extremely toxic. These toxins include scopolamine and hyoscyamine which cause a bizarre delirium and hallucinations, and are also used as pharmaceutical anticholinergics. Tropone alkaloids are commonly described as anti-cholinergic compounds, due to their ability to bind to muscarinic acetylcholine receptors and hence acting as competitive antagonists at these receptors. Since belladonna alkaloids have a longer half–life than physostigmine has, repeated doses of physostigmine may be required [7].
Bryonia alba, B dioica Phytoconstituents

Bryonin, bryonidin, bryonicin and other cucurbitacins (most oxygenated C30 triterpenoids with a dimethyl group at C4 and methylated at C9 and C14). Strictly they are not steroid since they are not methylated at C10; structure of cucurbitacin D is shown below an example of cucurbitacins). Dried root contains: bryonin (glucoside), starch, gum, fat, malates, bryoresin, cucurbitans, alkaloids, phytosterols, volatile oil, tannins.

Maslinic acid: C30H48O4, CAS: 4373-41-5.
Cucurbitacin: C32H46O8, CAS: 6199-67-3.
Ginsenoside: Rb1, C54H92O23, CAS: 41753-43-9.
Ginsenoside: Rg1, C42H72O14, CAS: 22427-39-0
Teicoplanin: C78H78Cl2N9O32R; CAS: 61036-62-2.

Bryonia dioica Phytoconstituents

Old World pie plant (Bryonia dioica) and Wild tobacco (Bryonia alba) contain (unknown amount) a mixture of bryonin (a glucoside), starch, gum, fat, malates, bryoresin, cucurbitans, alkaloids, phytosterols, volatile oil, tannins, but no cucurbitacin. Bryonin is a glucoside of bryonin, and the glucoside is the glucoside of bryonin.

Momordicaside: C42H72O14, CAS: 78887-72-6.

Toxicity

Cucurbitacins with some have strong cytotoxic properties (cytotoxic—something which damages cells). Gastrointestinal tract affected by the glycosides bryonin and bryonidin; plant also causes dermatitis. These steroids which are commonly combined in glycosides are mainly associated with cucurbitaceae species but they have also been detected in other families. About 50 species have been identified. Mammals perceived these toxic molecules as some of the bitterest substances known. They have protective effects against herbivores but are feeding stimulants for some beetles. Cucurbitacins have been shown to act as ecdysteroid receptor antagonists [8].

Alla Palustris Phytoconstituents

Dominant terpenoids in our study were linalool oxide (pyranoid) and α-muurolene, neoxanthin, nicotine, nortriterpene lactones from Calta palustris.

Muurolene: C15H24, CAS: 10208-80-7.
Neoxanthin: C40H58O4, CAS: 14660-91-4.
Hellebrin: C36H52O15, CAS: 13289-18-4.
Bufotoxin: C40H60N4O10; CAS: 464-81-3.
Sclareol: C20H36O2; CAS: 515-03-7.

Uroiolid: C40H54O5, CAS: 101527-89-3.

Nicotine: C10H14N2, CAS: 22083-74-5.

Hederagenin: C30H48O4, CAS: 465-99-6.

Palustrolide: C30H48O4, CAS: 93772-37-3.

Toxicity

calcium oxalate and possibly irritant proteins. Toxic parts: whole plant, especially the roots. The acute inflammation of the oropharynx accompanied by salivation, pawing at the mouth, drooling. Edema of the lips, tongue, and throat may be seen. Treatment usually none required. Analgesics may be required. Swelling may be treated with cool compresses. It is unknown if diuretics or glucocorticosteroid would help with the inflammation. Rarely the swelling will interfere with respiration. If necessary, secure the airway. The plant contains calcium oxalate crystals. These cause an extremely unpleasant sensation similar to needles being stuck into the mouth and tongue (eaten), but they are easily neutralized by thoroughly drying or cooling the plant or by steeping it in water [9].

References

1. Debelle FD, Vanherweghem JL, Nortier JL (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int 74(2): 158-69.
2. Abdel-Aziem SH, El-Nekeety AA, Barakat IA, Mohamed MI, Abdel-Wahhab MA, et al. (2011) Aquilegia vulgaris extract protects against the oxidative stress and the mutagenic effects of cadmium in Balb/c mice. Exp Toxicol Pathol 63(4): 337-44.
3. Mratinić E, Popovs B, Milošev T, Popovs M (2011) Evaluation of Apricot Fruit Quality and Correlations Between Physical and Chemical Attributes. Czech J Food Sci 29(2): 161-170.
4. Squires JM, Ferreira JR, Lindsay DS, Zajac AM (2011) Effects of artemisinin and Artemisia extracts on Haemonchus contortus in gerbils (Meriones unguiculatus). Vet Parasitol 175(1-2): 103-108.
5. Carré JE, Alfururit C, Moore AL (2011) Interaction of purified alternative oxidase from thermogenic Arum maculatum with pyruvate. FEBS Lett 585(2): 397-401.
6. Rui W, Yi-kun S, Yun W, Yan-Jiang Q (2010) Simultaneous determination of aconitum alkaloids in rat body fluids by high-performance liquid chromatography. African Journal of Biotechnology 9(28): 4422-4427.
7. Jayakanthi J, Dhanarajan MS, Sarumathy K, Vijay T (2011) the protective potential effects of Atropa Acuminata on acetaminophen induced hepatotoxicity and oxidative stress in male albino rats. International Journal of Pharmacy and Pharmaceutical Sciences 3(5): 197-203.
8. Sahranavard S, Naghibi F, Siems K, Jenett-Siems K (2010) New cucurbitane-type triterpenoids from Bryonia aspera. Planta Med 76(10): 1014-1017.
9. Rudskiy IV, Titova GE, Batygina TB (2011) Analysis of Space-Temporal Symmetry in the Early Embryogenesis of Calla palustris L Araceae. Mathematical Modelling of Natural Phenomena 6(2): 82-106.

Your next submission with Juniper Publishers will reach you the below assets:

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (PDF, E-Pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission:

https://juniperpublishers.com/online-submission.php