Curved flats and isothermic surfaces

Item Type	article;article
Authors	Burstall, F;HertrichJeromin, U;Pedit, F;Pinkall, U
Download date	2024-09-26 08:14:26
Link to Item	https://hdl.handle.net/20.500.14394/34907
Curved Flats and Isothermic Surfaces

F. Burstall, U. Hertrich-Jeromin, F. Pedit, U. Pinkall

February 7, 2008

Abstract

We show how pairs of isothermic surfaces are given by curved flats in a pseudo Riemannian symmetric space and vice versa. Calapso’s fourth order partial differential equation is derived and, using a solution of this equation, a Möbius invariant frame for an isothermic surface is built.

1 Introduction

These notes grew out of a series of discussions on a recent paper by J. Cieślinski, P. Goldstein and A. Sym [4]: these authors give a characterization of isothermic surfaces as "soliton surfaces" by introducing a spectral parameter. In trying to understand the geometric meaning of this spectral parameter, we observed some analogies with the theory of conformally flat hypersurfaces in a four-dimensional space form: Guichard’s nets may be understood as a kind of analogue of isothermic parametrizations of Riemannian surfaces (cf. [4, no.3.4.1]), and so it seems natural to look for relations between the theory of isothermic surfaces in three-dimensional space forms and the theory of conformally flat hypersurfaces in four-dimensional space forms. Here we would like to present some results we found — especially the possibility of constructing isothermic surfaces using

2 Curved Flats

A curved flat is the natural generalization of a developable surface in Euclidean space: it is a submanifold $M \subset G/K$ of a (pseudo-Riemannian) symmetric space for which the curvature operator of G/K vanishes on $\wedge^2 TM$. Thus, a curved flat may be thought of as the enveloping submanifold of a congruence of flats — totally geodesic submanifolds — of the symmetric space. Taking a regular parametrization $\gamma : M \rightarrow G/K$ of a curved flat and a framing $F : M \rightarrow G$ of this parametrization, the Maurer-Cartan form $\Phi = F^{-1}dF$

*Partially supported by NSF grant DMS 2905293

1Thus M is curvature isotropic in the sense of [3]
of the framing has a natural decomposition Φ = Φ_t + Φ_p according to the symmetric decomposition of the Lie algebra g = ℱ ⊕ ℙ of the Lie algebra g. Now the condition for γ to parametrize a curved flat may be formulated as

$$[[Φ_p ∧ Φ_p], p] \equiv 0.$$

In case that G is semisimple, it is straightforward to see that this is equivalent to

$$[Φ_p ∧ Φ_p] \equiv 0.$$

To summarise, we have the

Definition of a curved flat: An immersion γ : M → G/K is said to parametrize a curved flat, if the p-part in the symmetric decomposition of the Maurer-Cartan form $F^{-1}dF = Φ = Φ_t + Φ_p$ of a framing $F : M → G$ of γ defines a congruence $p ↦ Φ_p|_{p}(T_p M)$ of abelian subalgebras of g.

At this point we should remark that curved flats naturally arise in one parameter families: setting

$$Φ_λ := Φ_t + λΦ_p$$

the Maurer-Cartan equation $dΦ_λ + \frac{1}{2}[Φ_λ ∧ Φ_λ] = 0$ for the loop $λ ↦ Φ_λ$ of forms splits into the three equations

$$0 = dΦ_t + \frac{1}{2}[Φ_t ∧ Φ_t]$$
$$0 = dΦ_p + [Φ_t ∧ Φ_p]$$
$$0 = [Φ_p ∧ Φ_p],$$

and hence the integrability of the loop $λ ↦ Φ_λ$ is equivalent to the forms $Φ_λ$ being the Maurer-Cartan forms for some framings $F_λ : M → G$ of curved flats $γ_λ : M → G/K$. Thus integrable systems theory may be applied to produce examples.

Now we will consider the case leading to the theory of isothermic surfaces: let

$$G := O_1(5) \quad \text{and} \quad K := O(3) × O_1(2).$$

2Thus ℱ and ℙ are the +1 and −1-eigenspaces, respectively, of the involution fixing ℱ and so satisfy the characteristic conditions

$$[ℱ, ℱ] ⊂ ℱ, [ℱ, ℙ] ⊂ ℙ, [ℙ, ℙ] ⊂ ℱ.$$

3The product

$$[Φ ∧ Ψ](v, w) := [Φ(v), Ψ(w)] − [Φ(w), Ψ(v)]$$

defines a symmetric product on the space of Lie algebra valued 1-forms with values in the space of Lie algebra valued 2-forms.

4In fact, $ℙ ⊕ ℙ$ is an ideal of g so that we have a decomposition $g = ℱ' ⊕ [ℙ, ℙ] ⊕ ℙ$ where $ℱ'$ is a complementary ideal commuting with $[ℙ, ℙ] ⊕ ℙ$. Thus, if $a ⊂ ℙ$ satisfies $[[a, a], ℙ] = 0$ we deduce that $[a, a]$ lies in the center of g and so vanishes.
The coset space \(G_+ (5, 3) = G / K \) of space-like 3-planes in the Minkowski space \(\mathbb{R}^5_1 \) becomes a six dimensional pseudo-Riemannian symmetric space of signature \((3, 3)\) when endowed with the metric induced by the Killing form. We will consider two-dimensional curved flats

\[
\gamma : M^2 \rightarrow G_+ (5, 3)
\]
satisfying the regularity assumption that the metric on \(M^2 \) induced by \(\gamma \) is non-degenerate.

Fixing a pseudo orthonormal basis \((e_1, \ldots, e_5)\) of the Minkowski space \(\mathbb{R}^5_1 \) with

\[
(\langle e_i, e_j \rangle)_{ij} = \begin{pmatrix}
I_3 & 0 \\
0 & 1
\end{pmatrix}
\]
we get the matrix representations

\[
O_1(5) = \{ A \in GL(5, \mathbb{R}) | A^t E_5 A = E_5 \}
\]
\[
o_1(5) = \{ \mathfrak{X} \in \mathfrak{gl}(5, \mathbb{R}) | (E_5 \mathfrak{X}) + (\mathfrak{E}_5 \mathfrak{X})^t = 0 \}.
\]

The subalgebra \(\mathfrak{k} \) and its complementary linear subspace \(\mathfrak{p} \) in the symmetric decomposition of \(o_1(5) \) are given by the +1- resp. −1-eigenspaces of the involutive automorphism \(\text{Ad}(Q) : o_1(5) \rightarrow o_1(5) \) with \(Q = \begin{pmatrix}
-I_3 & 0 \\
0 & I_2
\end{pmatrix} \). Writing down the Maurer-Cartan form of a framing \(F : M^2 \rightarrow O_1(5) \) of our curved flat \(\gamma : M^2 \rightarrow G_+ (5, 3) \) with this notation we obtain

\[
F^{-1} dF = \Phi = \Phi_t + \Phi_p \quad \text{with}
\]
\[
\Phi_t = \begin{pmatrix}
\Omega & 0 \\
0 & \nu
\end{pmatrix} : TM \rightarrow \mathfrak{o}(3) \times o_1(2)
\]
\[
\Phi_p = \begin{pmatrix}
0 & \eta \\
-E_2 \eta^t & 0
\end{pmatrix} : TM \rightarrow \mathfrak{p}.
\]

The image of \(\Phi_p \) at each \(p \in M^2 \) is a 2-dimensional abelian subspace of \(\mathfrak{p} \) on which the Killing form is non-degenerate. One can show that there are precisely two \(K \)-orbits of maximal abelian subspaces of \(\mathfrak{p} \): one consists of 3-dimensional subspaces which are isotropic for the Killing form while the other consists of 2-dimensional subspaces on which the Killing form has signature \((1, 1)\). We therefore conclude that the images of each \(\Phi_p \) are maximal abelian and \(K \)-conjugate and so we can put \(\eta \) into the standard form

\[
\eta = \begin{pmatrix}
\omega_1 & -\omega_1 \\
\omega_2 & -\omega_2 \\
0 & 0
\end{pmatrix}
\]
by applying a gauge transformation \(M \rightarrow K \).

Calculating the Maurer-Cartan equation using the ansatz

\[
\Omega = \begin{pmatrix}
0 & \omega & -\psi_1 \\
-\omega & 0 & -\psi_2 \\
\psi_1 & \psi_2 & 0
\end{pmatrix} \quad \text{and} \quad \nu = \begin{pmatrix}
\nu & 0 \\
0 & -\nu
\end{pmatrix}
\]

3
together with \(\eta \) given by (10), we see that
\[
d\omega_1 = d\omega_2 = 0.
\]

So we are given canonical coordinates \((x, y) : M \to \mathbb{R}^2\) by integrating the forms \(\omega_1\) and \(\omega_2\). Moreover, since we also have \(dv = 0\), we may set \(\nu = -du\) for a suitable function \(u \in C^\infty(M)\) — this gives us \(\omega = u_y dx - u_x dy\), where \(u_x\) and \(u_y\) denote the partial derivatives of \(u\) in \(x\)- resp. \(y\)-directions. Finally, the equations \(\psi_1 \wedge \omega_1 = 0\) and \(\psi_2 \wedge \omega_2 = 0\) show that \(\psi_1 = e^u k_1 dx\) and \(\psi_2 = e^u k_2 dy\) for two functions \(k_i \in C^\infty(M)\).

We now perform a final \(O_1(2)\)-gauge \((I_3^0 e^u 0 0 e^{-u}, 0 0 e^{-u}) : M \to O(3) \times O_1(2)\) and insert the spectral parameter \(\lambda\) to obtain the Maurer-Cartan form discussed in (cf.\([4]\)):
\[
\Phi_\lambda = \begin{pmatrix} I_3 & e^u & 0 & 0 \\ 0 & e^{u_x} & 0 & 0 \\ 0 & 0 & e^{u_y} & 0 \\ -e^{u_x} & -e^{u_y} & 0 & 0 \\ -e^{-u_x} & -e^{-u_y} & 0 & 0 \\ e^{-u_x} & e^{-u_y} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]

We are now lead directly to the theory of

3 Isothermic Surfaces

In the context of Möbius geometry the three sphere \(S^3\) is viewed as the projective light-cone \(IPL^4\) in \(I\mathbb{R}_1\) while the Lorentzian sphere \(\{v \in I\mathbb{R}_1^5 | \langle v, v \rangle = 1\}\) should be interpreted as the space of (oriented) spheres in the three sphere \(I\mathbb{R}_1^5\) (cf.\([1]\)). Now, denoting by
\[
\begin{align*}
n &: F e_3 : M \to S_1^5 = \{v \in I\mathbb{R}_1^5 | \langle v, v \rangle = 1\} \\
f &: F e_4 : M \to L^4 = \{v \in I\mathbb{R}_1^5 | \langle v, v \rangle = 0\} \\
\hat{f} &: F e_5 : M \to L^4
\end{align*}
\]

one of the sphere congruences resp. the two immersions given by our frame \(F\), we see that

Theorem: The sphere congruence \(n\) given by our curved flat is a Ribeaucour sphere congruence\([1]\) which is enveloped by two isothermic immersions \(f\) and \(\hat{f}\) (cf.\([1]\) p.362):

Since
\[
\begin{align*}
\langle f, n \rangle &= 0 \quad \text{and} \quad \langle df, n \rangle \equiv 0, \\
\langle \hat{f}, n \rangle &= 0 \quad \text{and} \quad \langle d\hat{f}, n \rangle \equiv 0,
\end{align*}
\]

\(\text{Since our theory is local, all closed forms may be assumed to be exact.}\)

\(\text{Or, equivalently, it may be interpreted as the space of (oriented) spheres and planes in Euclidean three space } \mathbb{R}^3: \text{the polar hyperplane to a vector } v \text{ of the Lorentz sphere intersects the three sphere — thought of as the absolute quadric in projective four space} — \text{in a two sphere. Stereographic projection yields a sphere in } \mathbb{R}^3 \text{ or, if the projection center lies on the sphere, a plane.}\)

\(\text{The curvature lines on the two enveloping immersions correspond.}\)
the immersions \(f \) and \(\hat{f} \) do envelop the sphere congruence \(n \) and, since the bilinear forms

\[
\begin{align*}
\langle df, dn \rangle &= \lambda e^{2u}(k_1 dx^2 + k_2 dy^2), \\
\langle d\hat{f}, dn \rangle &= \lambda (-k_1 dx^2 + k_2 dy^2)
\end{align*}
\]

are diagonal with respect to the induced metrics

\[
\begin{align*}
\langle df, df \rangle &= \lambda^2 e^{2u}(dx^2 + dy^2), \\
\langle d\hat{f}, d\hat{f} \rangle &= \lambda^2 e^{-2u}(dx^2 + dy^2)
\end{align*}
\]

the two immersions \(f \) and \(\hat{f} \) are isothermic.

It is quite difficult to calculate the first and second fundamental forms of these isothermic immersions, when they are projected to \(S^3 \) resp. \(IR^3 \), but applying a (constant) conformal change (constant \(O_1(2) \)-gauge)

\[
\begin{align*}
f &\sim \frac{1}{\lambda^2} f \quad \text{and} \quad \hat{f} \sim \lambda \hat{f} \quad \text{or} \\
f &\sim \lambda f \quad \text{and} \quad \hat{f} \sim \frac{1}{\lambda \hat{f}}
\end{align*}
\]

and sending \(\lambda \to 0 \), \(\hat{f} \)resp. \(f \) becomes a constant vector — \(\Phi_{\lambda=0} e_5 \) resp. \(\Phi_{\lambda=0} e_4 \) vanishes. This constant light-like vector may be interpreted as the point at infinity and we therefore obtain an isothermic immersion \(f : M \to IR^3 \) with first and second fundamental forms

\[
\begin{align*}
I &= e^{2u}(dx^2 + dy^2) \\
II &= e^{2u}(k_1 dx^2 + k_2 dy^2)
\end{align*}
\]

resp. its Euclidean dual surface \(\hat{f} : M \to IR^3 \) with first and second fundamental forms

\[
\begin{align*}
\hat{I} &= e^{-2u}(dx^2 + dy^2) \\
\hat{II} &= -k_1 dx^2 + k_2 dy^2.
\end{align*}
\]

We now recognise the remaining three equations from the Maurer-Cartan equation for \(\Phi_{\lambda} \)

\[
\begin{align*}
0 &= \Delta u + e^{2u} k_1 k_2 \\
0 &= k_{1y} + (k_1 - k_2) u_y \\
0 &= k_{2x} - (k_1 - k_2) u_x
\end{align*}
\]

\(^8\)The bundle defined by \(\text{span}\{n, f, \hat{f}\} \) over \(M \) is flat (cf.(13)) and so the map \(p \mapsto df(T_p M) \) defines a normal congruence of circles \[5\]: for each \(p \in M \)

\[
t \mapsto f_t(p) := \frac{1}{\sqrt{2}} \sin t \cdot n(p) + \frac{1}{2}(1 + \cos t) \cdot f(p) - \frac{1}{2}(1 - \cos t) \cdot \hat{f}(p)
\]

parametrizes the circle \((df(T_p M))^\perp\) meeting the sphere \(n(p) \) in \(f(p) \) and \(\hat{f}(p) \) orthogonal. Since \(n, f \) and \(\hat{f} \) are parallel sections in this bundle, the maps \(p \mapsto f_t(p) \) (which generically are not degenerate) parametrize the surfaces orthogonal to this congruence of circles.

In general the immersions \(f \) and \(\hat{f} = f_\pi \) will be the only isothermic surfaces among the surfaces.
as the Gauß and Codazzi equations of the Euclidean immersion \(f \) resp. its dual \(\hat{f} \) \[3\]. As a consequence, we can invert our construction and build a curved flat from an isothermic surface:

Theorem. Given an isothermic surface \(f : M^2 \to \mathbb{IR}^3 \) and its Euclidean dual surface \(\hat{f} : M \to \mathbb{IR}^3 \) we get a curved flat \(\gamma : M \to G_+(5,3) \) integrating the Maurer-Cartan form \((13)\), which we are able to write down knowing the first and second fundamental forms of the immersions \(f \) and \(\hat{f} \) \[4\].

Another way to obtain these two Euclidean immersions is presented in \[4\]. Applying Sym’s formula to the associated family of frames \(F = F(\lambda) \), we obtain a map

\[
(\frac{\partial}{\partial \lambda} F)F^{-1}|_{\lambda=0} : M \to p
\]

interpreting \(p \) as two copies of Euclidean three space \(\mathbb{IR}^3 \) this map gives us the immersion \(f \), and in the other copy of \(\mathbb{IR}^3 \), its dual \(\hat{f} \): this can be seen by looking at the differential

\[
d(\frac{\partial}{\partial \lambda} F)F^{-1}|_{\lambda=0} = F_0 \Phi_p F_0^{-1}
\]

\[
\cong H_3 \begin{pmatrix}
 e^u dx & -e^{-u} dx \\
 e^u dy & e^{-u} dy \\
 0 & 0
\end{pmatrix}.
\]

Here \(F_0 = \begin{pmatrix}
 H_3 & 0 \\
 0 & I_2
\end{pmatrix} \) solves the equation \(F_0^{-1} dF_0 = \Phi_F \) and thus we may view \(H_3 : M \to O(3) \) as a Euclidean framing of \(f \) resp. \(\hat{f} \).

There is another possibility for producing isothermal surfaces in Euclidean space \(\mathbb{IR}^3 \) (or \(S^3 \)): that is, by using a solution of

\[4\] Calapso’s equation

To understand this, we write down the Maurer-Cartan form of a frame \(F : M \to O_1(5) \), which is M"obius-invariantly connected to a given immersion: taking \(f = Fe_4 \) the (unique) isometric lift of the isothermic immersion and \(n = Fe_3 \) the central sphere congruence (conformal Gauß map) of the immersion, the frame is determined by the assumption of

9The Euclidean dual of an isothermic surface is obtained by integrating the closed 1-form \(d\hat{f} := e^{-2u}(-f_x dx + f_y dy) \): see for example \[2\] p.14.

When the normal congruence of circles mentioned in footnote 8 is projected to Euclidean three space \(\mathbb{IR}^3 \), we see that, in the limit \(\lambda \to 0 \), the circles become straight lines — circles meeting the collapsed surface \(\hat{f} \) resp. \(f \) in the point at infinity — while the Ribeaucour sphere congruence enveloped by the two surfaces \(f \) and \(\hat{f} \) becomes the congruence of tangent planes of \(f \) resp. \(\hat{f} \).

10Since this construction depends on the conformal rather than the Euclidean geometry of the ambient space, we generally get a whole three parameter family of loops of curved flats from one isothermic surface: when viewing our given isothermic surface as a surface in the three sphere \(S^3 \), we may choose the point at infinity arbitrarily.

11Here the Euclidean metric is induced by the quadratic form \(\frac{1}{2} \text{tr} \Phi_p \Phi_p \) instead of the Killing form.
being an adapted frame (i.e. $F\varepsilon_1 = f_x$ and $F\varepsilon_2 = f_y$). The associated Maurer-Cartan form will be

$$ \Phi = \begin{pmatrix} 0 & 0 & kdx & dx & \chi_1 \\ 0 & 0 & -kdy & dy & \chi_2 \\ -kdx & kdy & 0 & 0 & \tau \\ -\chi_1 & -\chi_2 & -\tau & 0 & 0 \\ -dx & -dy & 0 & 0 & 0 \end{pmatrix}, $$

k^2 being the conformal factor relating the metric induced by the central sphere congruence to the isometric one, and the 1-forms χ_1, χ_2 and τ to be determined. From the Maurer-Cartan equation for this form we learn that

$$ \tau = k_x dx - k_y dy $$

$$ \chi_1 = \left(\frac{1}{2} k^2 - u \right) dx - \frac{k_x}{k} dy $$

$$ \chi_2 = -\frac{k_x}{k} dx + \left(\frac{1}{2} k^2 + u \right) dy , $$

where $u \in C^\infty(M)$ is a function satisfying the differential equation

$$ du = -\left(\left(\frac{k_x}{k} \right)_y + \left(k^2 \right)_x \right) dx + \left(\left(\frac{k_x}{k} \right)_x + \left(k^2 \right)_y \right) dy $$

— the integrability condition of this equation is a fourth order partial differential equation closely related to Calapso’s original equation [3]:

$$ 0 = \Delta \left(\frac{k_x}{k} \right) + 2 \left(k^2 \right)_{xy} $$

This shows, that

Theorem: Any isothermic surface gives rise to a solution of Calapso’s equation.

Conversely, from a solution $k \in C^\infty(M)$ of Calapso’s equation we can construct a Möbius invariant frame of an isothermic surface by integrating the Maurer-Cartan form (24), where the function u is a solution of (26).

Now, applying a conformal change $f \sim \frac{1}{f'}$ while fixing the central sphere congruence $n \sim n$, the Maurer-Cartan form of the associated frame becomes

$$ \Phi = \begin{pmatrix} 0 & \omega & kdx & dx & \chi_1 \\ -\omega & 0 & -kdy & dy & \chi_2 \\ -kdx & kdy & 0 & 0 & \tau \\ -\chi_1 & -\chi_2 & -\tau & 0 & 0 \\ -\frac{\omega}{k} dx & -\frac{\omega}{k} dy & 0 & 0 & 0 \end{pmatrix}, $$

where

$$ \omega = -\frac{k_x}{k} dx + \frac{k_x}{k} dy $$

$$ \chi_1 = k \left(\frac{k_x}{k} - \frac{k_x}{2} + \frac{1}{2} k^2 - u \right) dx . $$

$$ \chi_2 = k \left(\frac{k_x}{2} - \frac{k_x}{2} + \frac{1}{2} k^2 + u \right) dy $$

Here we see that the central sphere congruence of an isothermic surface is a Ribaucour sphere congruence, which actually is a characterisation of isothermic surfaces (cf.[4].
and hence it has flat normal bundle as a codimension two surface in the Lorentz sphere \mathbb{S}^4_1.

In general, the second enveloping surface of the central sphere congruence of an isothermic surface will not be an isothermic surface and it seems to be difficult to built a curved flat starting with it. But in a quite simple case this is possible:

5 Example

Starting with a surface of revolution

$$f(x, y) = (r(x) \cos y, r(x) \sin y, z(x)),$$

the functions r and z satisfying the differential equation

$$r^2 = r'^2 + z'^2,$$

i.e. the curve (r, z) being parametrized by arc length (thought of as a curve in the Poincaré half plane), we may write down the loop of Maurer-Cartan forms

$$\Phi_\lambda = \begin{pmatrix}
0 & -\frac{r'}{\sqrt{r'}} dy & -\frac{r'^{\prime\prime}}{\sqrt{r'}} dz & \lambda r dx & -\frac{\lambda}{\sqrt{r'}} dx \\
\frac{r'}{\sqrt{r'}} dy & 0 & -\frac{r'^{\prime\prime}}{\sqrt{r'}} dz & \lambda r dx & -\frac{\lambda}{\sqrt{r'}} dx \\
\frac{r'}{\sqrt{r'}} dz & -\frac{r'^{\prime\prime}}{\sqrt{r'}} dz & 0 & 0 & 0 \\
\lambda r dx & -\lambda r dy & 0 & 0 & 0
\end{pmatrix},$$

which gives us the immersion f and its dual \hat{f} in the limit $\lambda \to 0$.

On the other hand, denoting by $H = \frac{1}{2}(\frac{r'}{r} + \frac{r'^{\prime\prime}}{r})$ the mean curvature of our surface of rotation, the central sphere congruence of f is $n + Hf$. The metric it induces has conformal factor k^2 (relative to the metric induced by f) given by

$$k = \frac{1}{2\sqrt{r'}}(rz' + r'^{}z'' + r''z').$$

Since $k_y \equiv 0$, this is obviously a solution of Calapso’s equation and a function u solving (26) is $u = \lambda^2 - k^2$. So the Maurer-Cartan form (24) becomes

$$\Phi_\lambda = \begin{pmatrix}
0 & 0 & k dx & dx & (\frac{1}{2}k^2 - \lambda^2) dx \\
0 & 0 & -kd y & dy & (\frac{1}{2}k^2 + \lambda^2) dy \\
-k dx & k dy & 0 & 0 & 0 \\
-k dx & -dy & 0 & 0 & 0
\end{pmatrix}. $$

A change $n \sim n + kf$ of the sphere congruence, enveloped by f, followed by an $O_1(2)$-gauge $f \sim \lambda f$ and $\hat{f} \sim \lambda^{-1} \hat{f}$ gives us the Maurer-Cartan form

$$\Phi_\lambda = \begin{pmatrix}
0 & 0 & 2k dx & \lambda dx & -\lambda dx \\
0 & 0 & 0 & \lambda dy & -\lambda dy \\
-2k dx & 0 & 0 & 0 & 0 \\
\lambda dx & -\lambda dy & 0 & 0 & 0 \\
-\lambda dx & -\lambda dy & 0 & 0 & 0
\end{pmatrix}. $$
of a curved flat, quite different from that coming from (32).

To understand the geometry of the two enveloping immersions \(f = F e_4 \) and \(\hat{f} = F e_5 \), we remark that the sphere congruence \(n = F e_3 \) depends only on one variable and hence the two immersions parametrize a channel surface; moreover all spheres of the congruence are perpendicular to the fixed circle \(e_2 \) given by span\{\(F e_2, F(e_4 + e_5) \)\}, which may be thought as an axis of rotation: the immersions \(f \) and \(\hat{f} \) parametrize pieces of a surface of revolution \(\hat{F} \), \(f \) and \(\hat{f} \) being axisymmetric.\(^{14}\) Taking now the limit \(\lambda \to 0 \), we obtain a cylinder resp. its dual, which is an (axial) reflection of the original cylinder.

References

[1] W. Blaschke, Vorlesungen über Differentialgeometrie III, Berlin (1929)

[2] A. I. Bobenko, Surfaces in Terms of 2 by 2 Matrices. Old and New Integrable Cases, SFB 288 Preprint No. 66

[3] P. Calapso, Sulla superficie a linee di curvatura isoterme, Rend. Circ. Mat. Palermo 17 (1903) 275-286

[4] J. Cieśliński, P. Goldstein, A. Sym, Isothermic Surfaces in \(E^3 \) as Soliton Surfaces, Short Report (1994)

[5] J. Coolidge, Congruences and Complexes of Circles, Trans. AMS 15 (1914) 107-134

[6] D. Ferus, F. Pedit, Curved Flats in Symmetric Spaces, Manuscript (1993)

[7] U. Hertrich-Jeromin, Über konform flache Hyperflächen in vierdimensionalen Raumformen, Thesis (1994)

\(^{12}\) We have \(\Phi e_2 = -(e_4 + e_5)dy \) and \(\Phi (e_4 + e_5) = 2e_2dy \).

\(^{13}\) The meridian curve is given by \(\frac{1}{\sqrt{2}}(f - \hat{f}) \) — which only depends on one variable — thought as a curve in the Poincaré half plane; its tangent field is given by \(F e_1 \) and its unit normal field by \(n = F e_3 \).

\(^{14}\) The circles \(\{F(p)e_1, F(p)e_2\}^+ \) intersecting the sphere \(n(p) \) orthogonally in \(f(p) \) and \(\hat{f}(p) \) all meet the axis (cf. footnote 3, page 3).