SOME INTRINSIC CHARACTERIZATIONS OF BESSOV-TRIEBEL-LIZORKIN-MORREY-TYPE SPACES ON LIPSCHITZ DOMAINS

LIDING YAO

Abstract. We give Littlewood-Paley type characterizations for Besov-Triebel-Lizorkin-type spaces $B^{s}_{p,q}$ and Besov-Morrey spaces $N^{s}_{p,q}$ on a special Lipschitz domain $\Omega \subset \mathbb{R}^{n}$: for a suitable sequence of Schwartz functions $(\phi_{j})_{j=0}^{\infty}$,

$$\|f\|_{B^{s}_{p,q}(\Omega)} \approx \sup_{P} \text{dyadic cubes } [P]-\frac{1}{\log_{2}|P|} \|2^{js}\phi_{j} \ast f\|_{L^{p}(\Omega)}^{\infty} \|e_{1}(\mathbb{E}P);$$

$$\|f\|_{N^{s}_{p,q}(\Omega)} \approx \sup_{P} \text{dyadic cubes } [P]-\frac{1}{\log_{2}|P|} \|2^{js}\phi_{j} \ast f\|_{L^{p}(\Omega)}^{\infty} \|e_{1}(\mathbb{E}P).$$

We also show that $\|f\|_{B^{s}_{p,q}(\Omega)}$ and $\|f\|_{N^{s}_{p,q}(\Omega)}$ have equivalent (quasi-)norms via derivatives: for $\mathcal{X} \in \{B^{s}_{p,q}, B^{s}_{p,q}, N^{s}_{p,q}\}$, we have $\|f\|_{\mathcal{X}\ast_{\Omega}(\Omega)} \approx \sum_{|\alpha| \leq m} \|\partial^{\alpha} f \|_{\mathcal{X}\ast_{\Omega}(\Omega)}$.

In particular $\|f\|_{B^{s}_{p,q}(\Omega)} \approx \sum_{|\alpha| \leq m} \|\partial^{\alpha} f \|_{B^{s}_{p,q}(\Omega)} \approx \sup_{P} \|P|^{1/q} \|2^{js}\phi_{j} \ast f\|_{L^{p}(\Omega)}^{\infty} \|e_{1}(\mathbb{E}P)$.}

1. Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be a special Lipschitz domain, that is, Ω is of the form $\{(x', x_{n}) : x_{n} > \rho(x')\}$ where $\rho : \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ is a Lipschitz function such that $\|\nabla \rho\|_{L^{\infty}} < \infty$. (See also [Tr, Definition 1.103].)

In [Ryc99], based on the construction of his extension operator, Rychkov gave a Littlewood-Paley type intrinsic characterization of the Triebel-Lizorkin spaces on Ω: for $0 < p < \infty$, $0 < q \leq \infty$ and $s \in \mathbb{R}$, $\mathcal{F}_{p,q}(\Omega)$ has the following equivalent (quasi-)norm (see [Ryc99, Theorem 3.2]):

$$f \mapsto \|(2^{js} \phi_{j} \ast f\|_{p/q}^{\infty} \|e_{1}(\mathbb{E}P(\Omega)) = \left(\int_{\Omega} \left(\sum_{j=0}^{\infty} 2^{jsq} |\phi_{j} \ast f(x)|^{q}\right)^{p/q} dx \right)^{1/p}.$$

We take obvious modification for $q = \infty$. Here $(\phi_{j})_{j=0}^{\infty}$ is a carefully chosen family of Schwartz functions such that the convolution $\phi_{j} \ast f$ is defined on Ω, see Definition 4.

In [SY24, Proposition 6.6], we used Rychkov’s construction to prove that $\|f\|_{B^{s}_{p,q}(\Omega)}$ have equivalent (quasi-)norms via their derivatives. More precisely, let $m \geq 1$, for every $0 < p < \infty$, $0 < q \leq \infty$ and $s \in \mathbb{R}$ there is a $C = C(\Omega, p, q, s, m) > 0$ such that

$$\|f\|_{B^{s}_{p,q}(\Omega)} \leq \sum_{|\alpha| \leq m} \|\partial^{\alpha} f \|_{B^{s}_{p,q}(\Omega)} \leq C \|f\|_{B^{s}_{p,q}(\Omega)}, \quad \forall f \in B^{s}_{p,q}(\Omega).$$

Both (1) and (2) miss the endpoint: do we have the analogy of (1) and (2) for $p = \infty$? In this paper, we give the positive answers to both cases, by using the recently developed Triebel-Lizorkin-type spaces $\mathcal{F}_{p,q}^{\ast}$: we have the coincidences $\mathcal{F}_{p,q}^{\ast} = \mathcal{F}_{p,q}^{\ast} = \mathcal{B}_{p,q}$ for $0 < p < \infty$ (see (9)).

To make the results more general, we include the discussions of Besov-type spaces $B^{s}_{p,q}$ and the Besov-Morrey spaces $N^{s}_{p,q}$, see Definition 6.

We denote by \mathcal{Q} the set of dyadic cubes in \mathbb{R}^{n}, that is

$$\mathcal{Q} := \{Q_{J,v} : J \in \mathbb{Z}, v \in \mathbb{Z}^{n}\}, \quad \text{where} \quad Q_{J,v} := 2^{-J}v + (0, 2^{-J})^{n}.$$

Our result for (1) is the following:

2020 Mathematics Subject Classification. 46E35 (primary), 42B35 and 42B25 (secondary).

Key words and phrases. Rychkov’s extension operator, Lipschitz domains, Besov-type space, Triebel-Lizorkin-type space, Besov-Morrey space.
Theorem 1 (Littlewood-Paley type characterizations). Let $\Omega = \{(x', x_n) : x_n > \rho(x')\} \subset \mathbb{R}^n$ be a special Lipschitz domain and let $(\phi_j)_{j=0}^\infty$ be a Littlewood-Paley family associated with Ω (see Definition 4). Then for $0 < p, q \leq \infty$, $s \in \mathbb{R}$ and $\tau \geq 0$ ($p < \infty$ for \mathcal{F}-cases), we have the following equivalent (quasi-)norms:

$$\|f\|_{\mathcal{M}_{p,q}^r(\Omega)} \approx_{p,q,s,\tau,\Omega} \|\sum_{j=0}^{\infty} 2^{js} |\phi_j \ast f|^q\|_{L^p(Q_j,\cap \Omega)} \quad |\Omega|$$

$$\|f\|_{\mathcal{M}_{p,q}^r(\Omega)} \approx_{p,q,s,\tau,\Omega} \|\sum_{j=0}^{\infty} 2^{js} |\phi_j \ast f|^q\|_{L^p(Q_j,\cap \Omega)} \quad |\Omega|$$

$$\|f\|_{\mathcal{N}_{p,q}^r(\Omega)} \approx_{p,q,s,\tau,\Omega} \|\sum_{j=0}^{\infty} 2^{js} |\phi_j \ast f|^q\|_{L^p(Q_j,\cap \Omega)} \quad |\Omega|$$

(See Definition 5 for $\ell^q L^p$, $L^p_{\mathcal{F}}$ and $\ell^q M^p_\tau$. In particular for $0 < q \leq \infty$ and $s \in \mathbb{R}$,

$$\|f\|_{\mathcal{N}_{p,q}^r(\Omega)} \approx_{p,q,s,\tau,\Omega} \sup_{x \in \mathbb{R}^n} 2^{j\frac{q}{p}} \int_{Q_j,\cap \Omega} \sum_{j=0}^{\infty} 2^{js} |\phi_j \ast f|^qdx \quad |\Omega|$$

One can also get some characterizations on bounded Lipschitz domain, whose expressions are less elegant however. See Remark 24.

Similar to [Ryc99, Theorem 2.3], we also have the corresponding characterizations using Peetre maximal functions, see Proposition 21 and Corollary 23.

Our result for (2) is the following:

Theorem 2 (Equivalent norm characterizations via derivatives). Let $\mathcal{A} \in \{\mathcal{M}, \mathcal{N}, \mathcal{F}\}$, $0 < p, q \leq \infty$, $s \in \mathbb{R}$ and $\tau \geq 0$ ($p < \infty$ for \mathcal{F}-cases). Let $\Omega \subset \mathbb{R}^n$ be either a special Lipschitz domain or a bounded Lipschitz domain. Then for any positive integer m, the space $\mathcal{A}_{p,q}^m(\Omega)$ has the following equivalent (quasi-)norm:

$$\|f\|_{\mathcal{A}_{p,q}^m(\Omega)} \approx_{p,q,s,\tau,\Omega} \sum_{|\alpha| \leq m} \|\partial^\alpha f\|_{\mathcal{A}_{p,q}^s(\Omega)}.$$
2. Function Spaces and Notations

Let $U \subseteq \mathbb{R}^n$ be an open set, we define $\mathcal{S}'(U)$ to be the space of restricted tempered distributions: $\mathcal{S}'(U) := \{ f_U : f \in \mathcal{S}'(\mathbb{R}^n) \}$. See also [Ryc99, Proposition 3.1].

We use the notation $A \lesssim B$ to mean $A \leq CB$ where C is a constant independent of A, B. We use $A \approx B$ for “$A \leq B$ and $B \leq A$”. And we use $A \lesssim_B B$ to emphasize that the constant depends on the quantity x.

When p or $q < 1$, we use “norms” (for $\| \cdot \|_{\ell^p L^q}$ etc.) as the abbreviation to the usual “quasi-norms”.

In the paper we use the following Littlewood-Paley family, whose elements do not have compact supports in the Fourier side. It is crucially useful in the construction of Rychkov’s extension operator.

Definition 4. Let $\Omega = \{ x_n > \rho(x') \}$ be a special Lipschitz domain, a Littlewood-Paley family associated with Ω is a sequence $\phi = \{ \phi_j \}_{j=0}^\infty \subset \mathcal{S}'(\mathbb{R}^n)$ of Schwartz functions that satisfies the following:

P.a) Moment condition: $\int x^a \phi_j(x)\,dx = 0$ for all multi-indices $\alpha \in \mathbb{Z}^n_{\geq 0}$.

P.b) Scaling condition: $\phi_j(x) = 2^{(j-1)n} \phi_1(2^{j-1}x)$ for all $j \geq 2$.

P.c) Approximate identity: $\sum_{j=0}^\infty \phi_j = \delta_0$ is the Dirac delta measure.

P.d) Support condition: $\text{supp } \phi_j \subset \{ (x',x_n) : x_n < -\| \nabla \rho \| \cdot |x'| \}$ for all $j \geq 0$.

In the paper we use the sequence $\ell^q L^p_{\mathcal{E}}$, $L^p_{\mathcal{E}}$, $\ell^3 M^p_{\mathcal{E}}$ given by the following:

Definition 5. Let $0 < p, q \leq \infty$ and $\tau \geq 0$. We denote by $\ell^q L^p(\mathbb{R}^n)$ and $L^p_{\mathcal{E}}(\mathbb{R}^n)$ the spaces of vector valued measurable functions $(f_j)_{j=0}^\infty \subset L^p_{\text{loc}}(\mathbb{R}^n)$ such that the following (quasi-)norms are finite respectively:

$$\|(f_j)_{j=0}^\infty\|_{\ell^q L^p_{\mathcal{E}}} := \sup_{Q,J,v \in \mathcal{Q}} 2^{|qJ|} \|(f_j)_{j=\max(0,J)}^\infty\|_{\ell^q(L^p(Q,J,v))} = \sup_{J \in \mathbb{Z}, v \in \mathbb{Z}^n} 2^{|qJ|} \left(\sum_{j=\max(0,J)}^\infty \|f_j\|^q_{L^p(Q,J,v)} \right)^{\frac{1}{q}};$$

$$\|(f_j)_{j=0}^\infty\|_{L^p_{\mathcal{E}}} := \sup_{Q,J,v \in \mathcal{Q}} 2^{|qJ|} \|(f_j)_{j=\max(0,J)}^\infty\|_{L^p(Q,J,v)} = \sup_{J \in \mathbb{Z}, v \in \mathbb{Z}^n} 2^{|qJ|} \left(\int_{Q,J,v} \left(\sum_{j=\max(0,J)}^\infty |f_j(x)|^q \right)^{\frac{q}{p}} \,dx \right)^{\frac{1}{q}}.$$

We define the Morrey space $M^p_{\mathcal{E}}(\mathbb{R}^n)$ to be the set of all $f \in L^p_{\text{loc}}(\mathbb{R}^n)$ whose (quasi-)norm below is finite:

$$\|f\|_{M^p_{\mathcal{E}}} := \sup_{Q,J,v \in \mathcal{Q}} 2^{|qJ|} \|f\|_{L^p(Q,J,v)}.$$

We define $\ell^q M^p_{\mathcal{E}}(\mathbb{R}^n) := \ell^q(\mathbb{Z}_{\geq 0}; M^p_{\mathcal{E}}(\mathbb{R}^n))$ with $\|(f_j)_{j=0}^\infty\|_{\ell^q M^p_{\mathcal{E}}} := \left(\sum_{j=0}^\infty \|f_j\|^q_{M^p_{\mathcal{E}}(\mathbb{R}^n)} \right)^{\frac{1}{q}}$.

Our Besov-type spaces $\mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n)$, Triebel-Lizorkin-type spaces $\mathcal{F}^{s\tau}_{p,q}(\mathbb{R}^n)$ and Besov-Morrey spaces $\mathcal{N}^{s\tau}_{p,q}(\mathbb{R}^n)$ are given by the following:

Definition 6. Let $\lambda = (\lambda_j)_{j=0}^\infty$ be a sequence of Schwartz functions satisfying:

P.a') The Fourier transform $\hat{\lambda}_j(x) = \int_{\mathbb{R}^n} \lambda_0(x)2^{-2\pi|\xi|\cdot x} \,dx$ satisfies $\text{supp } \hat{\lambda}_0 \subset \{ |\xi| < 2 \}$ and $\hat{\lambda}_0_{|[\xi|<1]} \equiv 1$.

P.b') $\lambda_j(x) = 2^n \lambda_0(2^j x) - 2^{(j-1)n} \lambda_0(2^{j-1} x)$ for $j \geq 1$.

Let $0 < p, q \leq \infty$, $s \in \mathbb{R}$ and $\tau \geq 0$ ($p < \infty$ for \mathcal{F}-cases). We define the Besov-type Morrey space $\mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n)$, the Triebel-Lizorkin-type Morrey space $\mathcal{F}^{s\tau}_{p,q}(\mathbb{R}^n)$ and the Besov-Morrey space $\mathcal{N}^{s\tau}_{p,q}(\mathbb{R}^n)$, to be the sets of all tempered distributions $f \in \mathcal{S}'(\mathbb{R}^n)$ such that the following norms are finite, respectively:

$$\|f\|_{\mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n)} := \|(2^{s\tau} \lambda_j * f)_{j=0}^\infty\|_{\ell^p L^q_{\mathcal{E}}}; \|f\|_{\mathcal{F}^{s\tau}_{p,q}(\mathbb{R}^n)} := \|(2^{s\tau} \lambda_j * f)_{j=0}^\infty\|_{L^p_{\mathcal{E}}}; \|f\|_{\mathcal{N}^{s\tau}_{p,q}(\mathbb{R}^n)} := \|(2^{s\tau} \lambda_j * f)_{j=0}^\infty\|_{\ell^q M^p_{\mathcal{E}}}.$$

Let $\mathcal{B} \in \{ \mathcal{B}, \mathcal{F}, \mathcal{N} \}$. For an (arbitrary) open subset $U \subseteq \mathbb{R}^n$, we define $\mathcal{B}^{s\tau}_{p,q}(U) := \{ \hat{f} | U : \hat{f} \in \mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n) \}$ (p < ∞ for \mathcal{F}-cases) with the norm

$$\|f\|_{\mathcal{B}^{s\tau}_{p,q}(U)} := \inf \{ \|\hat{f}\|_{\mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n)} : \hat{f} \in \mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n), \hat{f}|_U = f \}.$$

The definitions of the spaces $\mathcal{B}^{s\tau}_{p,q}(U)$ do not depend on the choice of $(\lambda_j)_{j=0}^\infty$ which satisfies (P.a') and (P.b').

See [YSY10, Page 39, Corollary 2.1] and [TX05, Theorem 2.8].

Remark 7. We remark some known results and different notations for these spaces in \mathbb{R}^n from the literature:

(i) Clearly $\mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n) = \mathcal{B}^{0\tau}_{p,q}(\mathbb{R}^n) = \mathcal{N}^{0\tau}_{p,q}(\mathbb{R}^n)$ and $\mathcal{F}^{0\tau}_{p,q}(\mathbb{R}^n) = \mathcal{F}^{s\tau}_{p,q}(\mathbb{R}^n)$ (provided $p < \infty$).

(ii) In applications only $0 \leq \tau \leq \frac{1}{p}$ is interesting: by [YY13, Theorem 2] and [Sic12, Lemma 3.4],

$$\mathcal{B}^{s\tau}_{p,q}(\mathbb{R}^n) = \mathcal{F}^{s\tau}_{p,q}(\mathbb{R}^n) = \mathcal{B}^{s+n\tau}(\mathbb{R}^n), \quad \mathcal{N}^{s\tau}_{p,q}(\mathbb{R}^n) = \{ 0 \}, \quad 0 < p, q \leq \infty, \quad s \in \mathbb{R}, \quad \tau > \frac{1}{p}.$$

Our notation is different from the standard one, which can be found in for example [TX05, Definition 2.1].
(iii) For the case $\tau = 1/p$, by [YY13, Theorem 2] and [Sic12, Remark 11(ii)],
\[
\mathcal{B}_{p,\infty}^{s,\frac{1}{p}}(\mathbb{R}^n) = \mathcal{F}_{p,\infty}^{s,\frac{1}{p}}(\mathbb{R}^n) = \mathcal{B}_{\infty,\infty}^{s,\frac{1}{p}}(\mathbb{R}^n), \quad \mathcal{N}_{p,q}^{s,\frac{1}{p}}(\mathbb{R}^n) = \mathcal{B}_{\infty,q}^{s,\frac{1}{p}}(\mathbb{R}^n), \quad \forall 0 < p, q \leq \infty, \; s \in \mathbb{R}.
\]

(iv) Although $\mathcal{F}_p^{\tau \sigma}$-spaces are only defined for $p < \infty$, we have a description for $\mathcal{F}_{\infty q}^{\tau \sigma}$-spaces as the following (see [YSY10, Page 41, Proposition 2.4(iii)] and [FJ90, Section 5]):
\[
\mathcal{F}_{\infty q}^{\tau \sigma}(\mathbb{R}^n) = \mathcal{F}_{p,q}^{s,\frac{1}{p}}(\mathbb{R}^n) = \mathcal{F}_{q,\infty}^{s,\frac{1}{q}}(\mathbb{R}^n), \quad \forall 0 < p < \infty, \; 0 < q \leq \infty, \; s \in \mathbb{R}.
\]

(v) Our notation $\mathcal{N}_{pq}^{\tau \sigma}$ corresponds to the $\mathcal{B}_{pq}^{\tau \sigma}$ in [Sic12, Definition 5]. For the classical notations\(^3\) \mathcal{N}_{uqp} we have correspondence (see [Sic12, Remark 13(ii)] for example):
\[
\mathcal{N}_{u,q,p}^{s} = \mathcal{N}_{p,q}^{s,\frac{1}{2}}(\mathbb{R}^n), \quad \forall 0 < p \leq u \leq \infty, \; 0 < q \leq \infty, \; s \in \mathbb{R}.
\]

(vi) We do not talk about the Triebel-Lizorkin-Morrey spaces $\mathcal{E}_{u,pq}$ in the paper, because they are special cases of the Triebel-Lizorkin-type spaces: we have $\mathcal{E}_{u,q,p}^{s}(\mathbb{R}^n) = \mathcal{F}_{p,q}^{s,\frac{1}{p}}(\mathbb{R}^n)$ for all $p \in (0, \infty)$, $q \in (0, \infty]$, $u \in [p, \infty)$ and $s \in \mathbb{R}$. See [YSY10, Corollary 3.3].

(vii) There are also papers that use the notations $\Lambda_{\psi}^{s,p}$ and $\Lambda_{\psi}^{s,p}$ for $\mathcal{A} \in \mathcal{B}, \mathcal{F}$ and $-n \leq g \leq 0$ ($p < \infty$ for \mathcal{F}-cases), for example [Trio2, HT23]. These spaces describe the same collection to $\mathcal{A}_{pq}^{\tau \sigma}$ for $\mathcal{A} \in \mathcal{B}, \mathcal{F}$, see [HT23, Remarks 2.7 and 2.9] for example.

For more discussions, we refer the reader to [YSY10, Trio14, HT23].

3. Proof of the Theorems

Our proof follows from some results in [Ryc99] and [YY10].

The key ingredient is the Peetre maximal operators introduced in [Pec75].

Definition 8. Let $N > 0$, $U \subseteq \mathbb{R}^n$ be an open set and let $\eta = (\eta_j)_{j=0}^{\infty}$ be a sequence of Schwartz functions. The associated Peetre maximal operators $(\mathcal{P}_U^{N})_{j=0}^{\infty}$ are given by
\[
\mathcal{P}_U^{N} f(x) := \sup_{y \in U} \frac{|\eta_j * f(y)|}{(1 + 2^j |x-y|)^N}, \quad f \in \mathcal{F}'(\mathbb{R}^n), \quad x \in \mathbb{R}^n, \quad j \geq 0.
\]

Lemma 9. Let $\phi = (\phi_j)_{j=0}^{\infty}$ be a Littlewood-Paley family associated with a special Lipschitz domain Ω (see Definition 4). Then there is a $\psi = (\psi_j)_{j=0}^{\infty} \subset \mathcal{F}'(\mathbb{R}^n)$ satisfying (P.a) and (P.b) such that $(\psi_j * \phi_j)_{j=0}^{\infty}$ is also associated with Ω.

Proof. The assumptions $\phi_j(x) = 2^{-j+n} \phi_1(2^{-j}x)$ for $j \geq 1$ and $\sum_{j=0}^{\infty} \phi_j = \delta_0$ imply $\phi_1(x) = 2^n \phi_0(2x) - \phi_0(x)$, i.e. $\hat{\phi}_1(\xi) = \hat{\phi}_0(\xi/2) - \hat{\phi}_0(\xi)$. We can take $\psi_j = (\psi_j)_{j=0}^{\infty}$ via the Fourier transforms:
\[
\hat{\psi}_0(\xi) := 2 \hat{\phi}_0(\xi) - \hat{\phi}_0(\xi)^3; \quad \hat{\psi}_j(\xi) := (\hat{\phi}_0(2^{-j} \xi) + \hat{\phi}_0(2^{-j} \xi))(2 - \hat{\phi}_0(2^{-j} \xi)^2 - \hat{\phi}_0(2^{-j} \xi)^2), \quad j \geq 1.
\]
See [Ryc99, Proposition 2.1] for details. \hfill \Box

Lemma 10 ([BPT96, Lemma 2.1]). Let $\eta = (\eta_j)_{j=0}^{\infty}$ and $\theta = (\theta_j)_{j=0}^{\infty} \subset \mathcal{S}(\mathbb{R}^n)$ both satisfy conditions (P.a) and (P.b). Then for any $N > 0$ there exists a $C = C(\eta, \theta, N) > 0$ such that
\[
\int_{\mathbb{R}^n} |\eta_j * \theta_k(x)| (1 + 2^k |x|)^N dx \lesssim_{\eta, \theta, N} 2^{-N|j-k|}, \quad \forall j, k \geq 0.
\]

Lemma 11. Let $0 < p, q \leq \infty$, $\tau \geq 0$ and $\delta > n \tau$. There is a $C = C(n, p, q, \tau, \delta) > 0$ such that for every $(g_j)_{j=0}^{\infty} \subset L_p^{loc}(\mathbb{R}^n),$
\[
\left\| \sum_{k \geq 0} 2^{-\frac{\delta}{j-k}} g_k \right\|_{L_p^{e q}} \leq C \left\| (g_j)_{j=0}^{\infty} \right\|_{L_p^{e q}}, \quad \forall j \geq 0; \quad \text{provided } p < \infty;
\]
\[
\left\| \sum_{k \geq 0} 2^{-\frac{\delta}{j-k}} g_k \right\|_{L_p^{e q}} \leq C \left\| (g_j)_{j=0}^{\infty} \right\|_{L_p^{e q}}, \quad \text{provided } p < \infty; \quad \text{provided } p < \infty;
\]
Proof. (10) and (11) have been done in [YY10, Lemma 2.3]. We only prove (12).

Using the case \(\tau = 0 \) in (10) we have

\[
\left\| \sum_{k=0}^{\infty} 2^{-\delta_{j-k}} f_k \right\|_{L^p(\mathbb{R}^n)} \lesssim_{p, q, \delta} \left\| (f_j)_{j=0}^{\infty} \right\|_{L^p(\mathbb{R}^n)}, \quad \forall (f_j)_{j=0}^{\infty} \in L^p(\mathbb{Z}_{\geq 0}; L^p(\mathbb{R}^n)).
\]

Note that \(\left\| g_k \right\|_{M^p} = \sup_{Q_j, \nu} 2^{n \tau_j} 1_{Q_j, \nu} \cdot g_k \left| \right|_{L^p(\mathbb{R}^n)}. \) By taking \(f_k := \sup_{Q_j, \nu} 2^{n \tau_j} 1_{Q_j, \nu} \cdot g_k \) above we have

\[
\left\| \left(\sum_{k=0}^{\infty} 2^{-\delta_{j-k}} \left| g_k \right| \right) \right\|_{L^{p}(\mathbb{R}^n)} = \left\| \left(\sup_{Q_j, \nu, \in \mathcal{Q}} 2^{n \tau_j} 1_{Q_j, \nu} \cdot \left| g_k \right| \right) \right\|_{L^p(\mathbb{R}^n)} \leq \left(\sum_{k=0}^{\infty} 2^{-\delta_{j-k}} \right) \left\| f_k \right\|_{L^p(\mathbb{R}^n)} \leq \left\| (f_j)_{j=0}^{\infty} \right\|_{L^p(\mathbb{R}^n)} \lesssim_{p, q, \delta} \left\| (f_j)_{j=0}^{\infty} \right\|_{L^p(\mathbb{R}^n)}.
\]

Lemma 12. Let \(\Omega \subset \mathbb{R}^n \) be a special Lipschitz domain, let \(\phi = (\phi_j)_{j=0}^{\infty} \) be a Littlewood-Paley family associated with \(\Omega, \) and let \(\theta = (\theta_j)_{j=0}^{\infty} \) satisfies conditions (P.a), (P.b) and (P.d). Then for any \(N > 0 \) and \(\gamma \in (0, \infty] \) there is a \(C = C(\theta, \phi, N) > 0 \) such that,

\[
\mathcal{P}_{\Omega, j}^{\phi, N} f(x) \leq C \left(\sum_{k=0}^{\infty} 2^{-N \gamma \left| j-k \right|} \int_{\Omega} \left| x \right|^{\gamma} \right)^{1/\gamma}, \quad \forall f \in \mathcal{S}'(\mathbb{R}^n), \quad j \geq 0, \quad x \in \Omega.
\]

Proof. The special case \(\theta = \phi \) of (13) is proved in [Ryc09, Proof of Theorem 3.2, Step 1]. Namely, we have

\[
\mathcal{P}_{\Omega, j}^{\phi, N} f(x) \lesssim_{\phi, N} \left(\sum_{k=0}^{\infty} 2^{-N \gamma \left| j-k \right|} \int_{\Omega} \left| x \right|^{\gamma} \right)^{1/\gamma}, \quad \forall f \in \mathcal{S}'(\mathbb{R}^n), \quad j \geq 0, \quad x \in \Omega.
\]

Also see [Uhl12, Proof of Theorem 2.6, Step 1] for the argument. Thus it suffices to prove the case \(\gamma = \infty \):

\[
\mathcal{P}_{\Omega, j}^{\phi, N} f(x) \lesssim_{\theta, \phi, N} \sup_{k \geq 0} 2^{-N \left| j-k \right|} \mathcal{P}_{\Omega, k}^{\phi, N} f(x), \quad \forall f \in \mathcal{S}'(\mathbb{R}^n), \quad j \geq 0, \quad x \in \Omega.
\]

Let \(\psi = (\psi_j)_{j=0}^{\infty} \) satisfies the consequence of Lemma 9, so \(\theta_j \ast f = \sum_{k=0}^{\infty} (\theta_j \ast \psi_k) \ast (\phi_k \ast f) \) for \(j \geq 0. \) By assumption \(\phi_j, \phi_j, \theta_j \) are supported in \(K = \{ x_n < -\lVert \nabla \rho \rVert_{L^\infty} \cdot \lVert x \rVert \} \) where \(\rho \) is the defining function for \(\Omega = \{ x_n > \rho(x') \}. \) Using the property \(\Omega - K \subseteq \Omega, \) we have

\[
1_{\Omega} \cdot (\theta_j \ast f) = 1_{\Omega} \cdot \sum_{k=0}^{\infty} (\theta_j \ast \psi_k) \ast (1_{\Omega} \cdot (\phi_k \ast f));
\]

and thus

\[
\mathcal{P}_{\Omega, j}^{\phi, N} f(x) \leq \sup_{z \in \Omega} \frac{\left| \theta_j \ast f(z) \right|}{(1 + 2^j |x - z|)^N} \leq \sup_{z \in \Omega} \sum_{k=0}^{\infty} \int_{\Omega} \frac{\left| \theta_j \ast \psi_k(z - y) \right| \left| \phi_k \ast f(y) \right| dy}{(1 + 2^j |x - z|)^N}.
\]

The elementary inequality yields

\[
\frac{1}{(1 + 2^j |x - z|)^N} \leq \frac{2^{N \left| j-k \right|}}{(1 + 2^k |x - z|)^N},
\]

Therefore,

\[
\mathcal{P}_{\Omega, j}^{\phi, N} f(x) \leq \sup_{z \in \Omega} \frac{\left| \phi_k \ast f(z) \right|}{(1 + 2^k |x - z|)^N} \sum_{k=0}^{\infty} \int_{\Omega} 2^{N \left| j-k \right|} \left(\theta_j \ast | \psi_k(z - y) \right| \left(1 + 2^k |z - y|\right)^N dy
\]

\[
\leq \sup_{k \geq 0} 2^{-N \left| j-k \right|} \mathcal{P}_{\Omega, k}^{\phi, N} f(x) \sum_{l=0}^{\infty} \int_{\Omega} 2^{2N \left| j-l \right|} \left| \theta_j \ast \psi_l(y) \right| \left(1 + 2^l |y|\right)^N dy
\]

\[
\lesssim_{\theta, \phi, N} \sup_{k \geq 0} 2^{-N \left| j-k \right|} \mathcal{P}_{\Omega, k}^{\phi, N} f(x) \sum_{l=0}^{\infty} 2^{(2N - (2N + 1)) \left| j-l \right|} \lesssim_{\theta, \phi, N} \sup_{k \geq 0} 2^{-N \left| j-k \right|} \mathcal{P}_{\Omega, k}^{\phi, N} f(x).
\]

Here the last inequality is obtained by applying Lemma 10.

Therefore we get (15). Combining it with (14) we complete the proof.

Recall the Hardy-Littlewood maximal function \(\mathcal{M} f(x) := \sup_{R > 0} |B(0, R)|^{-1} \int_{B(x,R)} |f(y)| dy \) for \(f \in L^1_{loc}. \)

Lemma 13. Let \(N > n. \) There is a \(C = C(N) > 0 \) such that for any \(g \in L^1_{loc}(\mathbb{R}^n), \)

\[
\int_{\mathbb{R}^n} \frac{2^{k \gamma} \left| g(y) \right| dy}{(1 + 2^k |x - y|)^N} \leq C \sum_{w \in \mathbb{Z}^n} \frac{1}{(1 + |v - w|)^{N-n}} \cdot \mathcal{M} (1_{Q_{j,v}} \cdot g)(x), \quad J \in \mathbb{Z}, \quad v \in \mathbb{Z}^n, \quad k \geq J, \quad x \in Q_{j,v}.
\]
Our lemma here is weaker than the corresponding estimate in [YY10, Proof of Theorem 1.2, Step 3].

Proof. By taking a translation, it suffices to prove the estimate on \(x \in Q_{J,0}\), i.e. for \(v = 0\). Note that if \(y \in Q_{J,w}\), then \(|x - y| \geq \text{dist}(Q_{J,w}, Q_{J,0}) \geq \frac{1}{\sqrt{n}} 2^{-J} \max(0, |w| - \sqrt{n})\) and \(|x - y| \leq |w| + \sqrt{n}|. Therefore

\[
\int_{\mathbb{R}^n} \frac{2^{kn} |g(y)| dy}{(1 + 2^k |x - y|)^N} \leq \int_{B(x, 3 \sqrt{2}^{-J})} \frac{2^{kn} |g(y)| dy}{(1 + 2^k |x - y|)^N} + \sum_{|w| > 2 \sqrt{n}} \frac{2^{kn} |g(y)| dy}{(1 + 2^k |x - y|)^N}
\]

\[
\lesssim \left\| \frac{2^{n(k-j)}}{(1 + 2^k |y|)^N} \right\|_{L^1(\mathbb{R}^n)} \mathcal{M}(\mathbf{1}_{B(0.4 \sqrt{2}^{-J}) \cdot g})(x) + \sum_{|w| > 2 \sqrt{n}} \frac{2^{n(k-j)(N-n)}}{|w|^{N-n}} \int_{B(x, 2^{-j} (|w| + \sqrt{n}))} |1_{Q_{J,w}} \cdot g(y)| dy
\]

\[
\lesssim \sum_{w \in \mathbb{Z}^n} \frac{1}{(1 + |w|)^{N-n}} \cdot \mathcal{M}(1_{Q_{J,w}} \cdot g)(x).
\]

Combining Lemmas 11 - 13 we have the following Morrey-type estimates for Peetre maximal functions.

Proposition 14. Keeping the assumptions of Lemma 12, for every \(0 < p, q \leq \infty\), \(s \in \mathbb{R}\), \(\tau \geq 0\) and \(N > \max(2n / \min(p,q), |s| + n\tau)\), there is a \(C = C(\theta, \phi, p, q, s, \tau, N) > 0\) such that for every \(f \in \mathcal{F}'(\Omega)\),

\[
\begin{align*}
(18) & \quad \left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\mathcal{P}^{2, N}_{\Omega, j} f) \right)_{j=0}^{\infty} \right\|_{\ell^p L^\infty} \leq C \left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\phi_{j} * f) \right)_{j=0}^{\infty} \right\|_{\ell^p L^\infty}; \\
(19) & \quad \left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\mathcal{P}^{\theta, N}_{\Omega, j} f) \right)_{j=0}^{\infty} \right\|_{L^p L^\infty} \leq C \left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\phi_{j} * f) \right)_{j=0}^{\infty} \right\|_{L^p L^\infty}, \quad \text{provided } p \leq \infty; \\
(20) & \quad \left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\mathcal{P}^{\theta, N}_{\Omega, j} f) \right)_{j=0}^{\infty} \right\|_{L^p \ell^q} \leq C \left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\phi_{j} * f) \right)_{j=0}^{\infty} \right\|_{L^p \ell^q}.
\end{align*}
\]

Remark 15. It is possible that the assumption \(N > \max(\frac{2n}{\min(p,q)}, |s| + n\tau)\) can be relaxed to \(N > \frac{n}{\min(p,q)}\). In applications, we only need a large enough \(N\) that does not depend on \(f\).

A similar result for (20) can be found in [TX05, Proposition 2.12]. Note that we require \(\theta_j\) to have Fourier compact supports in that proposition.

Proof. We use a convention \(\phi_j := 0\) for \(j \leq -1\). Thus in the computations below every sequence \((a_j)_{j=0}^{\infty}\) is identical to \((a_j)_{j=\max(0,J)}^{\infty}\).

By the assumption on \(N\) we can take \(\gamma \in (0, \min(p,q))\) such that \(N\gamma > 2n\). We first prove (19).

Since \(N > |s| + n\tau\) By Lemma 12 and using \(2^{(N-\gamma)j-k} \leq 2^{-\gamma} (|s|+|j-k|) 2^{k\gamma s}\),

\[
\left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\mathcal{P}^{\theta, N}_{\Omega, j} f) \right)_{j=0}^{\infty} \right\|_{L^p L^\infty} = \left\| \left(2^{j} \mathbf{1}_{\Omega} \cdot (\mathcal{P}^{\theta, N}_{\Omega, j} f) \gamma \right)_{j=0}^{\infty} \right\|_{L^p L^\infty} \lesssim \left(\int_{\Omega} \frac{2^{kn} |2^{ks} \phi_{k} * f(y)|^{\gamma} dy}{(1 + 2^k |y|)^N} \right)^{\frac{1}{\gamma}} \lesssim \left(\int_{\Omega} \frac{2^{kn} \sum_{k=0}^{\infty} \left|2^{ks} \phi_{k} * f(y)\right|^{\gamma} dy}{(1 + 2^k |y|)^N} \right)^{\frac{1}{\gamma}} \lesssim \left(\int_{\Omega} \frac{2^{kn} |2^{ks} \phi_{k} * f(y)|^{\gamma} dy}{(1 + 2^k |y|)^N} \right)^{\frac{1}{\gamma}}
\]

By Lemma 11 and since \((N - |s|)\gamma > n\tau\gamma,

\[
\left\| \left(\sum_{k=0}^{\infty} 2^{(N-\gamma)j-k} \int_{\Omega} \frac{2^{kn} |2^{ks} \phi_{k} * f(y)|^{\gamma} dy}{(1 + 2^k |y|)^N} \right)_{j=0}^{\infty} \right\|_{L^p L^\infty} \lesssim \left(\int_{\Omega} \frac{2^{kn} \sum_{k=0}^{\infty} |2^{ks} \phi_{k} * f(y)|^{\gamma} dy}{(1 + 2^k |y|)^N} \right)^{\frac{1}{\gamma}} \lesssim \left(\int_{\Omega} \frac{2^{kn} |2^{ks} \phi_{k} * f(y)|^{\gamma} dy}{(1 + 2^k |y|)^N} \right)^{\frac{1}{\gamma}}
\]

Applying Lemma 13 with \(g(x) = \mathbf{1}_{\Omega} (x) \cdot |2^{ks} \phi_{k} * f(x)|^\gamma\) for each \(k \geq 0\) and expanding the \(L^\infty_{\gamma} L^{\frac{p}{\gamma}}\)-norm,

\[
\left\| \left(\int_{\Omega} \frac{2^{kn} |2^{ks} \phi_{k} * f(y)|^{\gamma} dy}{(1 + 2^k |y|)^N} \right)^{\frac{1}{\gamma}} \right\|_{L^p_{\gamma} L^{\frac{p}{\gamma}}} = \sup_{J \in \mathbb{Z}, \gamma \in \mathbb{Z}^n} \left(\sum_{k=0}^{\infty} 2^{nJ \gamma \tau} \left\| \left(\sum_{w \in \mathbb{Z}^n} \frac{1}{(1 + |w - v|)^{N\gamma-n}} \mathcal{M}(1_{Q_{J,w}} \cdot \mathbf{1}_{\Omega} \cdot |2^{ks} \phi_{k} * f|^\gamma) \right)_{v \in \mathbb{Z}^n} \right\|_{L^p_{\gamma} (\mathbb{R}^n \subset \ell^{\frac{p}{\gamma}})}^{\frac{1}{\gamma}} \right)^{\frac{1}{\gamma}} \lesssim \left(\sum_{w \in \mathbb{Z}^n} \frac{1}{(1 + |w|)^{N\gamma-n}} \mathcal{M}(1_{Q_{J,w}} \cdot \mathbf{1}_{\Omega} \cdot |2^{ks} \phi_{k} * f|^\gamma) \right)_{v \in \mathbb{Z}^n} \right\|_{L^p_{\gamma} (\mathbb{R}^n \subset \ell^{\frac{p}{\gamma}})}^{\frac{1}{\gamma}} \lesssim \left(\sum_{v \in \mathbb{Z}^n} \frac{1}{(1 + |v|)^{N\gamma-n}} \mathcal{M}(1_{Q_{J,v}} \cdot \mathbf{1}_{\Omega} \cdot |2^{ks} \phi_{k} * f|^\gamma) \right)_{v \in \mathbb{Z}^n} \right\|_{L^p_{\gamma} (\mathbb{R}^n \subset \ell^{\frac{p}{\gamma}})}^{\frac{1}{\gamma}}
\]

Since \(N\gamma - n > n\) the sum \(\sum_{v \in \mathbb{Z}^n} (1 + |v|)^{n-N\gamma}\) is finite.
Finally, applying Fefferman-Stein’s inequality to \((M(1_{Q,J,w} \cdot f))_{k,j} \) in \(L^p_\gamma (\mathbb{R}^n) \) for each \(J \in \mathbb{Z} \) (see [FS71, Theorem 1(1)] and also [Gra14, Remark 5.6.7]), since \(1 < p/\gamma < \infty \) and \(1 < q/\gamma \leq \infty \),

\[
\sup_{Q,J,w} 2^{nJt} \| (M(1_{Q,J,w} \cdot f))_{k,j} \|_{L^p_\gamma (\mathbb{R}^n)} \leq \sup_{Q,J,w} 2^{nJt} \| (1_{Q,J,w} \cdot f) \|_{L^p_\gamma (\mathbb{R}^n)} \leq \| 2^{\alpha k} (\phi_k f) \|_{L^p_\gamma (\mathbb{R}^n)}.
\]

This completes the proof of (19).

The proof of (18) and (20) are similar but simpler: by assumption \(1 < p/\gamma \leq \infty \) we have

\[
\mathcal{M} : L^\infty_\gamma (\mathbb{R}^n) \to L^\infty_\gamma (\mathbb{R}^n).
\]

Therefore, we prove (18) by the following:

\[
\left\| (2^{js} \mathcal{P}_{\Omega,j} f)_{j=0}^\infty \right\|_{L^p_\gamma} \lesssim \left\| \left(\sum_{k=0}^\infty 2^{s-\lambda} j_{j,k} 2^{\lambda k} \mathcal{P}_{\Omega,k} f \right)_{j=0}^\infty \right\|_{L^p_\gamma} \lesssim \left\| \sum_{k=0}^\infty 2^{\lambda k} \mathcal{P}_{\Omega,k} f \right\|_{L^p_\gamma} \lesssim \left\| \mathcal{M} f \right\|_{L^p_\gamma} \lesssim \left\| \mathcal{M} f \right\|_{L^p_\gamma},
\]

by (13) and (10).

We finally prove (20). Using (15) and (12) (since \(N > |s| + n \tau \)) we have

\[
\left\| (2^{js} \mathcal{P}_{\Omega,j} f)_{j=0}^\infty \right\|_{L^p_\gamma} \lesssim \left\| \left(\sum_{k=0}^\infty 2^{s-\lambda} j_{j,k} 2^{\lambda k} \mathcal{P}_{\Omega,k} f \right)_{j=0}^\infty \right\|_{L^p_\gamma} \lesssim \left\| \mathcal{M} f \right\|_{L^p_\gamma} \lesssim \left\| \mathcal{M} f \right\|_{L^p_\gamma},
\]

from (21).

Taking \(\gamma \in (n/N, \min(p,q)) \), we have \(\mathcal{M} f \in \mathcal{M}((2^{js} \mathcal{P}_{\Omega,j} f)_{j=0}^\infty) \) pointwise in \(\mathbb{R}^n \). When \(\gamma \in (n/N, \min(p,q)) \), we have \(\mathcal{M} f \in \mathcal{M}((2^{js} \mathcal{P}_{\Omega,j} f)_{j=0}^\infty) \) pointwise in \(\mathbb{R}^n \).

Thus by taking \(\mathcal{L}^\infty\)-sum of (23), we get (20), completing the proof.

\begin{proposition}
Let \(\theta = (\theta_j)_{j=0}^\infty \) satisfies (P.a) and (P.b), and let \(\lambda = (\lambda_j)_{j=0}^\infty \) satisfies (P.a') and (P.b'). For any \(0 < p,q \leq \infty \), \(s \in \mathbb{R} \), \(\tau \geq 0 \), and \(N > \max(2n/\min(p,q), |s| + n \tau) \), there is a \(C = C(\theta, \lambda, p, q, s, \tau, N) > 0 \) such that for every \(f \in \mathcal{Y}(\mathbb{R}^n) \),

\[
\left\| (2^{js} \mathcal{P}_{\Omega,j} f)_{j=0}^\infty \right\|_{L^p_\gamma} \leq C \left\| (2^{js} \lambda_j f)_{j=0}^\infty \right\|_{L^p_\gamma},
\]

provided \(p < \infty \).
\end{proposition}

Proof. The proof is the same as that for Proposition 14, except that we replace every \(\Omega \) by \(\mathbb{R}^n \) in the arguments. We leave the details to readers.

Based on Proposition 14, we can prove a boundedness result of Rychkov-type operators on \(\mathcal{Y}_{pq}^x \)-spaces.

\begin{proposition}
Let \(\Omega \subset \mathbb{R}^n \) be a special Lipschitz domain and let \(\gamma \in \mathbb{R} \). Let \(\eta = (\eta_j)_{j=0}^\infty \) satisfies conditions (P.a), (P.b) and (P.d) with respect to \(\Omega \). We define an operator \(T^{\Omega,\theta,\gamma} \) as

\[
T^{\Omega,\theta,\gamma}_f := \sum_{j=0}^\infty 2^{\gamma j} \eta_j (\mathcal{P}_{\Omega,j} \theta_j f), \quad f \in \mathcal{Y}(\Omega).
\]

\end{proposition}

The notation is slightly different from the one in [SY24, Theorem 1.5].
Then for \(\mathcal{A} \in \{ \mathcal{B}, \mathcal{F}, \mathcal{N} \} \), \(0 < p, q, \gamma \leq \infty \), \(s \in \mathbb{R} \) and \(\tau \geq 0 \) \((p < \infty \text{ for } \mathcal{F}-\text{cases})\), we have the boundedness

\[
T_{\Omega}^{\eta, \theta, \gamma} : \mathcal{A}_{p, q}^{s, \tau} \rightarrow \mathcal{A}_{p, q}^{s, \gamma + \tau} \left(\mathbb{R}^n \right).
\]

Proof. Recall \(\mathcal{S}'(\Omega) = \{ \tilde{f} |_{\Omega} : \tilde{f} \in \mathcal{S}'(\mathbb{R}^n) \} \) is defined via restrictions. We see that \(T_{\Omega}^{\eta, \theta, \gamma} : \mathcal{S}'(\Omega) \rightarrow \mathcal{S}'(\mathbb{R}^n) \) is well-defined in the sense that, for every extension \(\tilde{f} \in \mathcal{S}'(\mathbb{R}^n) \) of \(f \), the summation \(\sum_{j=0}^{\infty} 2^{\gamma j} \eta_j \ast (\mathbf{1}_\Omega \cdot (\theta_j \ast \tilde{f})) \) converges \(\mathcal{S}'(\mathbb{R}^n) \) and does not depend on the choice of \(\tilde{f} \). See [SY24, Propositions 3.10 and 3.14] for example.

Let \(\lambda = (\lambda_j)^{\infty}_{j=0} \) be as in Definition 6 that defines the \(\mathcal{A}_{p, q}^{s, \tau} \)-norms. By Lemma 10, for every \(j, k \geq 0 \),

\[
\int_{\mathbb{R}^n} |\lambda_j \ast \eta_k(y)|(1 + 2^k |y|)^N \, dy \lesssim_{\lambda, \eta, \gamma} 2^{-N(j-k)}.
\]

Thus by the similar argument to (16), for every \(N > |s - \gamma| \),

\[
2^{i(s-\gamma)2k^\gamma} |\lambda_j \ast \eta_k| \left((1 + 2^k |y|)^N \, dy \cdot \sup_{i \in \mathbb{I}} \frac{|\theta_k \ast f(y)|}{(1 + 2^k |x-t|)^N} \right)
\]

\[
\lesssim_{\lambda, \eta, \gamma} 2^{-(N-|s-\gamma|)(j-k)}2^{ks}(T_{\Omega, k}^{\theta, \gamma} f)(x).
\]

Therefore, by Lemma 11, for any \(N > |s - \gamma| + n\tau \),

\[
\| (2^{i(s-\gamma)} \lambda_j \ast \theta_{\nu} f)_{i=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n} \lesssim_{\lambda, \eta, \gamma, s, \tau, N} \| (2^{ks} T_{\nu, k}^{\theta, \gamma} f)_{k=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n};
\]

\[
\| (2^{i(s-\gamma)} \lambda_j \ast \theta_{\nu} f)_{i=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n} \lesssim_{\lambda, \eta, \gamma, s, \tau, N} \| (T_{\nu, k}^{\theta, \gamma} f)_{k=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n};
\]

\[
\| (2^{i(s-\gamma)} \lambda_j \ast \theta_{\nu} f)_{i=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n} \lesssim_{\lambda, \eta, \gamma, s, \tau, N} \| (2^{ks} T_{\nu, k}^{\theta, \gamma} f)_{k=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n}, \quad \text{provided } p < \infty;
\]

Let \(\tilde{f} \in \mathcal{A}_{p, q}^{s, \tau}(\mathbb{R}^n) \) be an extension of \(f \). Clearly \(T_{\Omega, k}^{\theta, \gamma} f(x) = T_{\Omega, k}^{\theta, \gamma} \tilde{f}(x) \leq T_{\nu, k}^{\theta, \gamma} \tilde{f}(x) \) holds pointwise for \(x \in \mathbb{R}^n \). Therefore, by choosing \(N > 2n/\min(p, q) \) and combining (28) and (24), we have

\[
\| T_{\Omega, k}^{\theta, \gamma} f \|_{L^p_{\nu} \mathbb{R}^n} = \| (2^{i(s-\gamma)} \lambda_j \ast \theta_{\nu} f)_{i=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n} \lesssim_{\lambda, \eta, \gamma, s, \tau, N} \| (2^{ks} T_{\nu, k}^{\theta, \gamma} f)_{k=0}^{\infty} \|_{L^p_{\nu} \mathbb{R}^n} = \| \tilde{f} \|_{L^p_{\nu} \mathbb{R}^n}.
\]

Taking the infimum over all extensions \(\tilde{f} \) of \(f \) we get the boundedness \(T_{\Omega}^{\theta, \gamma} : \mathcal{A}_{p, q}^{s, \tau}(\Omega) \rightarrow \mathcal{A}_{p, q}^{s, \gamma + \tau}(\mathbb{R}^n) \). Similarly using (29), (25) and (30), we get \(T_{\Omega}^{\theta, \gamma} : \mathcal{A}_{p, q}^{s, \tau}(\Omega) \rightarrow \mathcal{A}_{p, q}^{s, \gamma + \tau}(\mathbb{R}^n) \) for \(\mathcal{A} \in \{ \mathcal{B}, \mathcal{F}, \mathcal{N} \} \).

\[\square\]

Remark 18. Under the definition (7), the operator norms of \(T_{\Omega}^{\theta, \gamma} \) do not depend on \(\Omega \). This is due to the same reason as mentioned in [SY24, Remark 3.11].

One can see that the constants in Proposition 14 depend on everything except on \(\Omega \). The same hold for the implied constants in (28), (29) and (30). After the pointwise inequality \(T_{\Omega, k}^{\theta, \gamma} f \leq T_{\nu, k}^{\theta, \gamma} \tilde{f} \), it remains to estimate \((2^{ks} P_{p, q}^{\theta, \gamma} f)_{j=0}^{\infty} \) (which is Proposition 16), where \(\Omega \) is not involved.

Corollary 19 ([YSY15, ZHS20, Zhu21]). Let \(\Omega \subset \mathbb{R}^n \) be a special Lipschitz domain. Let \(\phi = (\phi_j)_{j=0}^{\infty} \) and \(\psi = (\psi_j)_{j=0}^{\infty} \) be as in the assumption and conclusion of Lemma 9 with respect to \(\Omega \). Then the Rychkov’s extension operator

\[
E_{\Omega} f = E_{\Omega}^\psi f := \sum_{j=0}^{\infty} \psi_j \ast (\mathbf{1}_\Omega \cdot (\phi_j \ast f)), \quad f \in \mathcal{S}'(\Omega),
\]

is well-defined and has boundedness \(E_{\Omega} : \mathcal{A}_{p, q}^{s, \tau}(\Omega) \rightarrow \mathcal{A}_{p, q}^{s, \tau}(\mathbb{R}^n) \) for \(\mathcal{A} \in \{ \mathcal{B}, \mathcal{F}, \mathcal{N} \} \) and all \(0 < p, q, \gamma \leq \infty, s \in \mathbb{R}, \tau \geq 0 \) \((p < \infty \text{ for } \mathcal{F}-\text{cases})\).

Proof. \(E_{\Omega} \) is an extension operator because by assumption \(E_{\Omega} f |_{\Omega} = \sum_{j=0}^{\infty} \psi_j \ast \phi_j \ast f = f \). The boundedness is immediate since \(E_{\Omega} = T_{\Omega}^{\psi, \phi, 0} \) from (27).

\[\square\]

Remark 20. Corollary 19 is not new. See [YSY15, Proposition 4.13] for \(\mathcal{A} = \mathcal{N} \), [ZHS20, Section 4] for \(\mathcal{A} = \mathcal{F} \) and [Zhu21, Section 4] for \(\mathcal{A} = \mathcal{B} \). For the proof we also refer [GHS23, Theorem 3.6] to readers.

The key to prove Theorem 1 is to use the following analog of [Ryc99, Theorem 2.3].

Proposition 21 (Characterizations via Peetre’s maximal functions). Let \(\Omega \subset \mathbb{R}^n \) be a special Lipschitz domain and let \(\phi = (\phi_j)_{j=0}^{\infty} \) be a Littlewood-Paley family associated with \(\Omega \). Then for \(0 < p, q \leq \infty, s \in \mathbb{R} \) and \(\tau \geq 0 \)

\[5\text{It can depend on the upper bound of } \|\nabla \rho\|_{L^\infty}, \text{ which is bounded by } \inf \{ -\frac{\mathbf{1}_\gamma}{|x'|} : (x', x_n) \in \text{supp } \phi_j \} \text{ where } \phi \in \{ \eta, \theta \} \text{ and } j \geq 0.\]
(p < ∞ for \mathcal{F}-cases), we have the following intrinsic characterizations: for every $N > \max(\frac{2n}{\min(p,q)}, |s| + n\tau)$,

$$\|f\|_{\mathcal{S}_{pq}^s(\Omega)} \approx_{\phi,p,q,s,\tau,N} \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f)) \|^\infty_{L^p_{\ell^q}};$$

$$\|f\|_{\mathcal{S}_{pq}^s(\Omega)} \approx_{\phi,p,q,s,\tau,N} \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f)) \|^\infty_{L^p_{\ell^q}}, \quad \text{provided } p < \infty;$$

$$\|f\|_{\mathcal{N}_{pq}^s(\Omega)} \approx_{\phi,p,q,s,\tau,N} \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f)) \|^\infty_{L^p_{\ell^q}}.$$

Remark 22. (32) and (33) are not new as well. The case $\mathcal{A} = \mathcal{F}$ is done in [SZ22, Theorem 1.7], where a more general setting is considered. See also [GHS23, Theorem 3.6, Step 2] for a proof of $\mathcal{A} \in \{\mathcal{B}, \mathcal{F}\}$.

As already mentioned in Remark 15, it is possible that the assumption of N can be weakened.

Proof of Proposition 21. Let $\lambda = (\lambda_j)_{j=0}^\infty$ be as in Definition 6 that defines the \mathcal{A}_{pq}^s-norms. We only prove (33) since the proof of (32) and (34) are the same by replacing $L^p_{\ell^q}$ with $\ell^1_{L^q}$ and $\ell^1_{M^q}$, and including the discussion of $p = \infty$.

(\gtrsim) For $f \in \mathcal{S}_{pq}^s(\Omega)$, let $\tilde{f} \in \mathcal{S}_{pq}^s(\mathbb{R}^n)$ be an extension of f. We see that pointwisely

$$(1 \Omega \cdot \mathcal{P}_{\Omega,j}^{\phi,N} f)(x) \leq \mathcal{P}_{\Omega,j}^{\phi,N} f(x) \leq \mathcal{P}_{\Omega,j}^{\phi,N} \tilde{f}(x), \quad j \geq 0, \quad x \in \mathbb{R}^n.$$

Thus by Proposition 14,

$$\| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}} \leq \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} \tilde{f}))^\infty \|_{L^p_{\ell^q}} \lesssim_{\lambda,\phi,p,q,s,\gamma,N} \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} \tilde{f}))^\infty \|_{L^p_{\ell^q}},$$

Taking infimum over all extensions \tilde{f} of f, we get $\| f \|_{\mathcal{S}_{pq}^s(\Omega)} \gtrsim \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}}$.

(\lesssim) By Corollary 19 we have $\| f \|_{\mathcal{S}_{pq}^s(\Omega)} \approx_{\lambda,\phi,p,q,s,\gamma,N} \| E\Omega f \|_{\mathcal{S}_{pq}^s(\mathbb{R}^n)} = \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}}$. Therefore using (28) with the fact that $E\Omega = \mathcal{T}_{\Omega}^{\phi,0}$,

$$\| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}} \leq \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{T}_{\Omega}^{\phi,0} f))^\infty \|_{L^p_{\ell^q}} \lesssim_{\psi,\phi,p,q,s,\tau,N} \| (2^{js} \mathcal{P}_{\Omega,j}^{\phi,N} f)^\infty \|_{L^p_{\ell^q}}.$$

Write $\Omega = \{(x',x_n) : x_n > \rho(x')\}$. We define a “fold map” $L = L_\Omega : \mathbb{R}^n \to \mathbb{R}^n$ as

$$L(x) := x \quad \text{if } x \in \Omega; \quad L(x) := (x', 2\rho(x') - x_n), \quad \text{if } x \notin \Omega.$$

Recall $\Omega = \{x_n > \rho(x')\}$.

By direct computation, we have

$$|L(x) - y| \leq (\|\nabla \rho\|_{L^\infty} + \sqrt{1 + \|\nabla \rho\|_{L^\infty}^2}) |x - y| \lesssim_{\Omega} |x - y|, \quad x \in \mathbb{R}^n, \quad y \in \Omega.$$

Therefore

$$\mathcal{P}_{\Omega,j}^{\phi,N} f(x) = \sup_{y \in \Omega} \frac{|\phi_j * f(y)|}{(1 + 2^{|j|}|x - y|)^N} \lesssim_{\Omega,N} \sup_{y \in \Omega} \frac{|\phi_j * f(y)|}{(1 + 2^{|j|}|L(x) - y|)^N} = \left(\mathcal{P}_{\Omega,j}^{\phi,N} f \right)(L(x)), \quad x \in \mathbb{R}^n.$$

Clearly for $0 < p \leq \infty$ we can estimate the cube $Q \in \mathcal{Q}$ and function $g \in L^p_{\text{loc}}(\Omega)$:

$$\| g \|_{L^p(Q)} \lesssim_p \| g \|_{L^p(\Omega) \cap L^p(L^{-1}(Q))} \lesssim_p \sum_{P \subseteq \mathcal{L}_Q} \| 1_{P} \cdot g \|_{L^p(P)}, \quad \text{where } \mathcal{L}_Q := \{ P \in \mathcal{Q} : |P| = |Q|, \ P \cap L^{-1}(Q) \neq \emptyset \}.$$

By (36) we have control of the cardinality $#\mathcal{L}_Q \lesssim_n (1 + \|\nabla \rho\|_{L^\infty})^{2n} \lesssim_{\Omega} 1$, which is uniform in $Q \in \mathcal{Q}$.

Therefore,

$$\| (2^{js} \mathcal{P}_{\Omega,j}^{\phi,N} f)^\infty \|_{L^p_{\ell^q}} \lesssim_n \| (2^{js} (\mathcal{P}_{\Omega,j}^{\phi,N} f \cdot L_\Omega^\infty))^\infty \|_{L^p_{\ell^q}} \lesssim_{p,q} \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}}.$$

Combining (35) and (37) we get $\| f \|_{\mathcal{S}_{pq}^s(\Omega)} \lesssim \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}}$, finishing the proof. □

We can now prove Theorem 1:

Proof of Theorem 1. The \mathcal{F}_{pq}^s-cases follow immediately from the \mathcal{S}_{pq}^s-cases using (9).

Fix a $N > \max(2n/\min(p,q), |s| + n\tau)$. We only prove the \mathcal{F}_{pq}^s-cases. The proofs of the \mathcal{A}_{pq}^s-cases and the \mathcal{N}_{pq}^s-cases are the same, except that we replace every $L^p_{\ell^q}$ with $\ell^1_{L^q}$ and $\ell^1_{M^q}$.

By Proposition 21 we have $\| f \|_{\mathcal{S}_{pq}^s(\Omega)} \approx \| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}}$. Therefore, it suffices to show that

$$\| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}} \approx \| (2^{js} \mathbf{1}_\Omega \cdot (\phi_j * f))^\infty \|_{L^p_{\ell^q}},$$

Clearly $\| (2^{js} \mathbf{1}_\Omega \cdot (\phi_j * f))^\infty \|_{L^p_{\ell^q}} \lesssim \| (2^{js} \mathbf{1}_\Omega \cdot (\phi_j * f))^\infty \|_{L^p_{\ell^q}}$, since $\phi_j * f(x) \leq \mathcal{P}_{\Omega,j}^{\phi,N} f(x)$ holds for all $f \in \mathcal{S}_{pq}^s(\Omega), x \in \Omega$ and $j \geq 0$. The converse $\| (2^{js} \mathbf{1}_\Omega \cdot (\mathcal{P}_{\Omega,j}^{\phi,N} f))^\infty \|_{L^p_{\ell^q}} \lesssim_{\phi,p,q,s,\tau,N} \| (2^{js} \mathbf{1}_\Omega \cdot (\phi_j * f))^\infty \|_{L^p_{\ell^q}}$ follows from (18). Thus, we prove the \mathcal{F}_{pq}^s-cases. □
We have the immediate analogy of [YY10, Theorem 1.1] on Lipschitz domains:

Corollary 23. Keeping the assumptions in Proposition 21, we have the following intrinsic characterizations: for every $N > \max(2n / \min(p,q), |s| + n\tau)$,

\[
\|f\|_{\mathcal{M}^m_{pq}^{\ast}(\Omega)} \approx_{\phi,p,q,s,\alpha,N} \sup_{Q_{J,v} \in \mathcal{Q}} 2^{nJ\tau} \left(\sum_{j = \max(0,J)}^{\infty} 2^{jsq} \|P_{(Q_{J,v} \cap \Omega),j} f\|_{L^p(Q_{J,v} \cap \Omega)}^{\frac{q}{p}} \right)^{\frac{1}{q}};
\]

\[
\|f\|_{\mathcal{M}^m_{pq}^{\ast}(\Omega)} \approx_{\phi,p,q,s,\alpha,N} \sup_{Q_{J,v} \in \mathcal{Q}} 2^{nJ\tau} \left(\int_{Q_{J,v} \cap \Omega} \left(\sum_{j = \max(0,J)}^{\infty} 2^{jsq} \|P_{(Q_{J,v} \cap \Omega),j} f(x)\|_{L^p(Q_{J,v} \cap \Omega)}^{\frac{q}{p}} \right)^{\frac{1}{q}} dx \right)^{\frac{1}{q}}, \quad \text{provided } p < \infty;
\]

\[
\|f\|_{\mathcal{M}^m_{pq}^{\ast}(\Omega)} \approx_{\phi,p,q,s,\alpha,N} \left(\sum_{j=0}^{\infty} \sup_{Q_{J,v} \in \mathcal{Q}} 2^{N\tau+jsq} \left\|P_{(Q_{J,v} \cap \Omega),j} f\right\|_{L^p(Q_{J,v} \cap \Omega)}^{\frac{q}{p}} \right)^{\frac{1}{q}}.
\]

Proof. Since $|\phi_j * f(x)| \leq P_{(Q_{J,v} \cap \Omega),j} f(x) \leq P_{(Q_{J,v} \cap \Omega),j} f(x)$ pointwisely for every $Q_{J,v} \in \mathcal{Q}$ and $x \in Q_{J,v} \cap \Omega$, the results follow immediately by combining Theorem 1 and Proposition 21.

Remark 24. By the standard partition of unity argument, we can give the analogy of Theorem 1 on a bounded Lipschitz domain: an example is the following:

\[
\|f\|_{\mathcal{M}^m_{pq}^{\ast}(\Omega)} \approx \sum_{\nu=1}^{N} \left\|(2js^1\chi_{\nu} \cdot (\phi^{{\nu}^1} * (\chi_{\nu} f)))\right\|_{L^p}^{\infty};
\]

\[
\|f\|_{\mathcal{M}^m_{pq}^{\ast}(\Omega)} \approx \sum_{\nu=1}^{N} \left\|(2js^1\chi_{\nu} \cdot (\phi^{{\nu}^1} * (\chi_{\nu} f)))\right\|_{L^p}^{\infty};
\]

\[
\|f\|_{\mathcal{M}^m_{pq}^{\ast}(\Omega)} \approx \sum_{\nu=1}^{N} \left\|(2js^1\chi_{\nu} \cdot (\phi^{{\nu}^1} * (\chi_{\nu} f)))\right\|_{L^p}^{\infty};
\]

Here $\{U_{\nu}, (\phi^{{\nu}^1})^{\infty}_{\nu=0}, \chi_{\nu}\}^{N}_{\nu=1}$ satisfy the following:

- $\{U_{\nu}\}^{N}_{\nu=1}$ is an open cover of Ω, and there are cones $K_{\nu} \subset \mathbb{R}^n$ such that $U_{\nu} \cap (\Omega - K_{\nu}) \subseteq U_{\nu} \cap \Omega$ for each $\nu = 1, \ldots, N$.
- For $\nu = 1, \ldots, N$, $(\phi^{{\nu}^1})^{\infty}_{\nu=0}$ satisfies (P.a) - (P.c) in Definition 4, with support condition $\sup \phi^{{\nu}^1} \subset K_{\nu}$ for $\nu = 1, \ldots, N$.
- $\chi_{\nu} \in C^\infty_c(U_{\nu})$ for $\nu = 1, \ldots, N$, and satisfy $\sum_{\nu=1}^{N} \chi_{\nu} = 1$.

To prove (38), (39) and (40) the only thing we need are the following standard results ($p < \infty$ for \mathcal{S}-cases):

- (P.a) Let $\chi \in C^\infty_c(\mathbb{R}^n)$. Then $[\chi \mapsto \hat{\chi}] : \mathcal{S}^{sk}_{pq}(\mathbb{R}^n) \rightarrow \mathcal{S}^{sk}_{pq}(\mathbb{R}^n)$ is bounded.
- (P.b) Let Φ be an invertible affine linear transform. Then $[\Phi \mapsto \hat{\Phi}] : \mathcal{S}^{sk}_{pq}(\mathbb{R}^n) \rightarrow \mathcal{S}^{sk}_{pq}(\mathbb{R}^n)$ is bounded.
- (P.c) For every $\nu \geq 1$, we have equivalent norms $\|f\|_{\mathcal{S}^{sk}_{pq}(\mathbb{R}^n)} \approx_{p,q,s,\alpha,N} \sum_{|\alpha| = m} \|\partial^\alpha f\|_{\mathcal{S}^{sk}_{pq-m,\alpha,N}(\mathbb{R}^n)}$.

One can see [YSY10, Sections 6.11 and 6.2], [WYY17, Theorem 1.6] and [ST07, Theorem 3.3] for their proof. See also [HT23, Sections 3.4, 4.2 and 4.3]. We remark that because of (8) it is enough to consider the case $0 \leq \tau \leq \frac{1}{p}$.

We leave the details to the readers.

One can also write down the analogy of Proposition 21 and Corollary 23 similar to (38), (39) and (40), we leave the details to the readers as well.

Finally, we prove Theorem 2 using the following fact:

Proposition 25 ([SY24, Theorem 1.5 (ii)]). Let $(\phi_j)_{j=1}^{\infty}$ be a family of Schwartz functions satisfying (P.a), (P.b) and (P.d). Recall that for every $j \geq 1$, $\phi_j(x) = 2^{j-1} \phi_1(2^{j-1}x) = 0$ for all α, and $\sup \phi_j \subset \{x_n < - A|x'|\}$ for some $A > 0$.

Then for any $m \geq 1$, there are families of Schwartz functions $\tilde{\phi}^\beta = (\phi_j^\beta)_{j=1}^{\infty}$ for $|\beta| = m$ that also satisfy (P.a), (P.b) and (P.d), such that

\[
\phi_j = 2^{-jm} \sum_{|\beta|=m} \partial^\beta \tilde{\phi}^\beta_j, \quad \text{for every } j \geq 1.
\]

\footnote{In fact we can relax the condition to $\sum_{\nu=1}^{N} \chi_{\nu} > c$ for some $c > 0$.}

\footnote{Here the index of the Schwartz family start from $j = 1$. In Definition 5 we start with $j = 0$.}
Proposition 6

SZ22\((P.d) \)

SY24\((P.b) \)

Xu05\((Ψ.c) \)

WYY17\((Ψ.c) \)

Definition

Proof of Theorem

By example \[\varepsilon \neq 0 \] This completes the proof of \((\Psi.c)\). In Definition 6, it is known that the norms are equivalent if \(|\lambda_j| \gtrless 0 \) only satisfies the scaling condition \((P.b)\) and the Tauberian condition:

\[|\lambda_0(\xi)| > c \text{ for } |\xi| < \varepsilon_0, \quad \text{and } |\lambda_1(\xi)| > c \text{ for } \varepsilon_0/2 < |\xi| < 2\varepsilon_0. \]

See [WYY17, Theorems 2.5 and 2.6] and [Xu05, Theorem 1] for example.

It is not known to the author whether we can replace the assumption \((P.c)\) for \((\phi_j)_{j=0}^\infty \) in Theorem 1 with the Tauberian condition \((43)\).

For Theorem 2, we do not know whether \((4)\) has the following improvement:
Question 26. Keeping the assumptions of Theorem 2, can we find a $C = C(\Omega, p, q, s, \tau, m) > 0$ such that the following holds?

$$
\|f\|_{A^p_{\tau,q}(\Omega)} \leq C \left(\|f\|_{A^{p,s-m,\tau}_{p,q}(\Omega)} + \sum_{k=0}^{n} \|\frac{\partial^m f}{\partial x_k^m}\|_{A^{p,s-m,\tau}_{p,q}(\Omega)} \right), \quad \forall f \in A^{p,s}_{p,q}(\Omega).
$$

Cf. [WYY17, Theorem 1.6]. The question is open even for the classical Besov and Triebel-Lizorkin spaces $A^{p,q}_{p,q}(\Omega)$ when Ω is a (special or bounded) Lipschitz domain.

Acknowledgment. I would like to thank Dorothee Haroske, Wen Yuan and Ciqiang Zhuo for their informative discussions and advice. I would also like to thank the referees for the comments and suggestions.

References

[BPT96] Huy-Qui Bui, Maciej Paluszyński, and Mitchell H. Taibleson, *A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces*, Studia Math. 119 (1996), no. 3, 219–246. MR 1397492

[FJ90] Michael Frazier and Björn Jawerth, *A discrete transform and decompositions of distribution spaces*, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070057

[FS71] Charles Fefferman and Elias M. Stein, *Some maximal inequalities*, Amer. J. Math. 93 (1971), 107–115. MR 284802

[GHS23] Helena F. Gonçalves, Dorothee D. Haroske, and Leszek Skrzypczak, *Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator*, Ann. Mat. Pura Appl. (4) 202 (2023), no. 5, 2481–2516. MR 4634273

[Gr14] Loukas Grafakos, *Classical Fourier analysis*, third ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734

[HT23] Dorothee D. Haroske and Hans Triebel, *Morrey smoothness spaces: a new approach*, Sci. China Math. 66 (2023), no. 6, 1301–1358. MR 4596050

[Mazz03] Anna L. Mazzucato, *Besov-Morrey spaces: function space theory and applications to non-linear PDE*, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1297–1364. MR 1946395

[Pee75] Jaak Peetre, *On spaces of Triebel-Lizorkin type*, Ark. Mat. 13 (1975), 123–130. MR 380394

[Ryc99] Vyacheslav S. Rychkov, *On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains*, London Math. Soc. (2) 60 (1999), no. 1, 237–257. MR 1721827

[Sic12] Winfried Sickel, *Smoothness spaces related to Morrey spaces—a survey*, I, Eurasian Math. J. 3 (2012), no. 3, 110–149. MR 3383989

[ST07] Yoshihiro Sawano and Hitoshi Tanaka, *Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces*, Math. Z. 257 (2007), no. 4, 871–905. MR 2342557

[SY24] Ziming Shi and Liding Yao, *New estimates of Rychkov’s universal extension operator for Lipschitz domains*, J. Math. Soc. Japan 72 (2020), no. 4, 1407–1443. MR 4734977

[SZZ22] Qi Sun and Ciqiang Zhuo, *Extension of variable Triebel-Lizorkin-type space on domains*, Bull. Malays. Math. Sci. Soc. 45 (2022), no. 1, 201–216. MR 4351129

[Tri06] Hans Triebel, *Theory of function spaces. III*, Monographs in Mathematics, vol. 100, Birkhäuser Verlag, Basel, 2006. MR 2250142

[Tri08] Hans Triebel, *Function spaces and wavelets on domains*, EMS Tracts in Mathematics, vol. 7, European Mathematical Society (EMS), Zürich, 2008. MR 2457524

[Tri10] Hans Triebel, *Theory of function spaces*, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010, Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540]. MR 3024598

[Tri13] Hans Triebel, *Local function spaces, heat and Navier-Stokes equations*, EMS Tracts in Mathematics, vol. 20, European Mathematical Society (EMS), Zürich, 2013. MR 3086433

[Tri14] Hans Triebel, *Hybrid function spaces, heat and Navier-Stokes equations*, EMS Tracts in Mathematics, vol. 24, European Mathematical Society (EMS), Zürich, 2014. MR 3308920

[Tri19] Hans Triebel, *Theory of function spaces. IV*, Monographs in Mathematics, vol. 107, Birkhäuser/Springer, Cham, [2020] ©2020 MR 4298338

[TX05] Lin Tang and Jingshi Xu, *Some properties of Morrey type Besov-Triebel spaces*, Math. Nachr. 278 (2005), no. 7-8, 904–917. MR 2141966

[UH12] Tino Ullrich, *Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits*, J. Funct. Spaces Appl. (2012), Art. ID 163213, 47. MR 2898467

[WYY17] Suqing Wu, Dachun Yang, and Wen Yuan, *Equivalent quasi-norms of Besov-Triebel-Lizorkin-type spaces via derivatives*, Results Math. 72 (2017), no. 1-2, 813–841. MR 3684461

[Xu05] Jingshi Xu, *A characterization of Morrey type Besov and Triebel-Lizorkin spaces*, Vietnam J. Math. 33 (2005), no. 4, 369–379. MR 2200234

[YSY10] Wen Yuan, Winfried Sickel, and Dachun Yang, *Morrey and Campanato meet Besov, Lizorkin and Triebel*, Lecture Notes in Mathematics, vol. 2005, Springer-Verlag, Berlin, 2010. MR 2683024

[YSY15] Wen Yuan, Winfried Sickel, and Dachun Yang, *Interpolation of Morrey-Campanato and related smoothness spaces*, Sci. China Math. 58 (2015), no. 9, 1835–1908. MR 3383989

[YY10] Dachun Yang and Wen Yuan, *Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means*, Nonlinear Anal. 73 (2010), no. 12, 3805–3820. MR 2728556
[YY13] , Relations among Besov-type spaces, Triebel-Lizorkin-type spaces and generalized Carleson measure spaces, Appl. Anal. 92 (2013), no. 3, 549–561. MR 3021276

[ZHS20] Ciqiang Zhuo, Marc Hovemann, and Winfried Sickel, Complex interpolation of Lizorkin-Triebel-Morrey spaces on domains, Anal. Geom. Metr. Spaces 8 (2020), no. 1, 268–304. MR 4178742

[Zhu21] Ciqiang Zhuo, Complex interpolation of Besov-type spaces on domains, Z. Anal. Anwend. 40 (2021), no. 3, 313–347. MR 4284347

Liding Yao, Department of Mathematics, The Ohio State University, Columbus, OH 43210

Email address: yao.1015@osu.edu