ON $T-$LOCALLY COMPACT SPACES

ALIAKBAR ALIJANI

Abstract. The aim of this paper is to introduce and give preliminary investigation of $T-$locally compact spaces. Locally compact and $T-$locally compact are independent of each other. Every Hausdorff, locally compact space is $T-$locally compact. $T-$locally compact is a topological property. $T-$locally compact is not preserved by the product topology.

1. Introduction

By a space, we mean a topological space. A space X will be called $T-$locally compact if for every open set U containing x, there exists an open subset V containing x such that ∂V is compact and $V \subseteq U$. The space X is called $T-$locally compact if X is $T-$locally compact at each of points. Locally compact and $T-$locally compact are independent of each other (Examples 2 and Example 3). We show that a Hausdorff, locally compact space is $T-$locally compact (Lemma 4). Open or closed subspace of a $T-$locally compact space is $T-$locally compact (Lemma 6 and Lemma 7). We show that $T-$locally compact is a topological property (Theorem 8). The product of two $T-$locally compact spaces need not to be $T-$locally compact (Example 4). We give some conditions such that the product of two $T-$locally compact spaces is $T-$locally compact (Lemma 9 and Theorem 10).

Throughout, clA, $intA$ and ∂A will denote the closure, the interior and the boundary of a set A respectively. Assume that I be a non-empty index set and for every $i \in I$, X_i be a space. We denote by $\prod_{i \in I} X_i$, the cartesian product of X_i with the product topology. For more information on topological spaces, see [1].

2. $T-$LOCALLY COMPACT SPACE

In this section, we introduce the concept and study some properties of $T-$locally compact space.

Definition 1. A space X is called $T-$locally compact at x if for every open set U containing x, there exists an open subset V containing x such that ∂V...
is compact and \(V \subseteq U \). The space \(X \) is called \(T \)–locally compact if \(X \) is \(T \)–locally compact at each of points.

Example 1. Let \(\mathbb{R} \) be the reals with the usual topology. Assume that \(x \in U \) for some open subset \(U \) of \(\mathbb{R} \). Then, \(x \in (a, b) \) for some real numbers \(a \) and \(b \) which \((a, b) \subseteq U \). It is clear that \(\partial(a, b) = \{ a, b \} \) is compact in \(\mathbb{R} \). So, \(\mathbb{R} \) is \(T \)–locally compact. Also, it is clear that every discrete space is \(T \)–locally compact.

Definition 2. A subset \(A \) of a space \(X \) is called nowhere dense if \(X - \text{cl}A \) is dense.

Lemma 3. The boundary of an open or closed subsets of a space is nowhere dense.

Proof. It is clear. \(\Box \)

Locally compact and \(T \)–locally compact are independent of each other. See the examples 2 and 3.

Example 2. Consider \(\mathbb{Q} \) as a subspace of \(\mathbb{R} \) (with the usual topology) and \(U \), be an open subset of \(\mathbb{Q} \). We know that the only compact sets in \(\mathbb{Q} \) are nowhere dense. Hence, by Lemma 3, \(\partial U \) is compact. So, \(\mathbb{Q} \) is \(T \)–locally compact. But, \(\mathbb{Q} \) is not locally compact.

Example 3. Let \(X \) be an infinite set and \(p \in X \). Define \(\tau = \phi \cup \{ U; p \in U \} \). Then, \(\tau \) is a topology on \(X \). It is clear that \((X, \tau) \) is not Hausdorff, locally compact space. Since \(\partial\{ p \} = X - \{ p \} \) is not compact, \((X, \tau) \) is not a \(T \)–locally compact space.

Lemma 4. A Hausdorff, locally compact space is a \(T \)–locally compact space.

Proof. Let \(x \in X \) and \(U \) be an open set containing \(x \). Since \(X \) is Hausdorff and locally compact, there is an open set \(V \) containing \(x \) such that \(\text{cl}V \) is compact and \(V \subseteq U \). It is clear that \(\partial V \) is compact as a closed subset of compact set \(\text{cl}V \). \(\Box \)

Lemma 5. Every compact space \(X \) is \(T \)–locally compact, even though \(X \) is not Hausdorff.

Proof. Let \(X \) be a compact space. Then, for every open subset \(U \) of \(X \), \(\partial U \) is compact and proof is complete. \(\Box \)

Lemma 6. An open subspace of a \(T \)–locally compact space is \(T \)–locally compact.

Proof. Let \(X \) be a \(T \)–locally compact space and \(Y \), an open subspace of \(X \). Let \(y \in Y \) and \(U \) be an open set in \(Y \) containing \(y \). Then, \(U \) is open in \(X \). Since \(X \) is \(T \)–locally compact, there is an open set \(V \) in \(X \) containing \(y \) such that \(\partial V \) is compact and \(V \subseteq U \). So, \(Y \) os \(T \)–locally compact. \(\Box \)
Remark 1. Let Y be a closed subspace of X and U, an open subset in X. Then,

$$\partial_Y(U \cap Y) = cl_Y(U \cap Y) - int_Y(U \cap Y)$$

$$= clU \cap Y - U \cap Y$$

$$= \partial U \cap Y$$

Lemma 7. A closed subspace of a T–locally compact space is T–locally compact.

Proof. Let X be a T–locally compact space and Y, a closed subspace of X. Let $y \in Y$ and U be an open set in Y containing y. Then, there exists an open set W in X such that $U = W \cap Y$. Since X is T–locally compact, there exists an open set V containing y such that ∂V is compact and $V \subseteq W$. By Remark 1, $\partial_Y(U \cap V) = \partial V \cap Y$ which is compact. Also, $V \cap Y \subseteq U$. So, Y is T–locally compact. \qed

Theorem 8. T–locally compact is a topological property.

Proof. Let X and Y be two spaces and $f : X \to Y$, a homomorphism. Let X be a T–locally compact space. We show that Y is T–locally compact. Let $y \in Y$ and V be an open subset of Y containing y. Then, $f(x) = y$ for some $x \in X$ and $x \in f^{-1}(V)$ is an open subset of X. There exists an open subset U of X containing x such that $U \subseteq f^{-1}(V)$ and ∂U is compact. Since f is open, $f(U)$ is open in Y and is contained in V. Also,

$$\partial f(U) = cl f(U) - f(U) = f(cl U) - f(U) \subseteq f(\partial U)$$

So, $\partial f(U)$ is compact and Y is T–locally compact. \qed

If X and Y be two T–locally compact spaces, then, $X \times Y$ need not to be T–locally compact. See the Example 4.

Example 4. Let \mathbb{R} be the reals with the usual topology and \mathbb{Q}, the rationales with the subspace topology. We show that $\mathbb{Q} \times \mathbb{R}$ is not T–locally compact. Let $N = (0, 1)^2 \cap (\mathbb{Q} \times \mathbb{R}) ((0, 1)^2 = (0, 1) \times (0, 1))$. We claim that the boundary of every nonempty open subset of N is not compact. Let $U \subseteq N$ be an open set. First, we show that $\pi_2(U) \subseteq \pi_1(\partial U)$. Let $x \in \pi_1 U$. Assume to contrary, $x \notin \pi_1(\partial U)$. Then, $\{x\} \times \mathbb{R} \subseteq U \subseteq N$. So, $\pi_2(\{x\} \times \mathbb{R}) \subseteq \pi_2(N) = (0, 1)$ which is a contradiction. Now, if ∂U is compact, then $cl \pi_1(U)$ is compact in \mathbb{Q} which is a contradiction (since $int \pi_1(U) \neq \emptyset$). So, $\mathbb{Q} \times \mathbb{R}$ is not T–locally compact.

Lemma 9. Let X be a discrete space and Y, a T–locally compact space. Then, $X \times Y$ is T–locally compact.

Proof. Let N be an open subset of $X \times Y$ containing (x, y). Then, there exists an open subset V of Y containing y such that ∂V is compact. It is clear that
$\{x\} \times V \cap N$ is an open subset of $X \times Y$ containing (x, y). Also,
\[
\partial((\{x\} \times V) \cap N) \subseteq (\{x\} \times \partial V) \cap \partial N
\]
So, $\partial((\{x\} \times V) \cap N)$ is compact. Hence, $X \times Y$ is T–locally compact.

Theorem 10. Let Y be a compact space. Then, $X \times Y$ is T–locally compact if and only if X is T–locally compact.

Proof. First, suppose that $X \times Y$ be T–locally compact. Let U be an open subset of X containing x. The, $U \times Y$ is an open set in $X \times Y$ containing (x, y) for some $y \in Y$. So, there exists an open subset N of $X \times Y$ containing (x, y) such that ∂N is compact and $N \subseteq X \times Y$. Since Y is compact, π_1 is a closed map. Hence, $\partial \pi_1(N) \subseteq \pi_1(\partial N)$. So, $\partial \pi_1(N)$ is compact and $\pi_1(N) \subseteq U$.

Conversely, Let N be an open subset of $X \times Y$ containing (x, y). Then, $\pi_1(N)$ is an open set in X containing x. Since X is T–locally compact, there exists an open set U of X containing x such that ∂U is compact. Clearly, $(x, y) \in (U \times Y) \cap N \neq \emptyset$. Since $\partial((U \times Y) \cap N) \subseteq (\partial U \times Y) \cap \partial N$, so $(U \times Y) \cap N$ is an open set containing (x, y) such that $\partial((U \times Y) \cap N)$ is compact. It shows that $X \times Y$ is T–locally compact. \qed

Corollary 11. Let X and Y be two Hausdorff spaces. If $X \times Y$ is T–locally compact, then X and Y are T–locally compact.

Proof. Let $y \in Y$. By Lemma 7, $X \times \{y\}$ is T–locally compact. Hence, by Theorem 10, X is T–locally compact. Similarly, Y is T–locally compact. \qed

Corollary 12. Let $\{X_i; i \in I\}$ be an arbitrary family of Hausdorff spaces. If $\prod_i X_i$ is a T–locally compact space, then each X_i is T–locally compact.

References

[1] N. Bourbaki, *Elements of mathematics: General topology*, Springer Verlag, Chapters 1-4, Berlin 1995.