AUSLANDER-REITEN QUIVER OF TYPE A AND
THE GENERALIZED QUANTUM AFFINE SCHUR-WEYL DUALITY

SE-JIN OH

Abstract. The quiver Hecke algebra \(R \) can be also understood as a generalization of the affine Hecke algebra of type \(A \) in the context of the quantum affine Schur-Weyl duality by the results of Kang, Kashiwara and Kim. On the other hand, it is well-known that the Auslander-Reiten(AR) quivers \(\Gamma_Q \) of finite simply-laced types have a deep relation with the positive roots systems of the corresponding types. In this paper, we present explicit combinatorial descriptions for the AR-quivers \(\Gamma_Q \) of finite type \(A \). Using the combinatorial descriptions, we can investigate relations between finite dimensional module categories over the quantum affine algebra \(U'_q(A_{n}^{(i)}) \) \((i = 1, 2)\) and finite dimensional graded module categories over the quiver Hecke algebra \(R_{A_n} \) associated to \(A_n \) through the generalized quantum affine Schur-Weyl duality functor.

Introduction

Let \(\Delta_n \) be a rank \(n \) Dynkin diagram of finite type \(A \), \(D \) or \(E \), and \(Q \) be a Dynkin quiver by orienting edges of \(\Delta_n \). Gabriel’s theorem [18] states that isomorphism classes of indecomposables of the category of modules \(\text{mod}\mathbb{C}Q \) over the path algebra \(\mathbb{C}Q \) are labeled by the set of positive roots \(\Phi_n^+ \) related to \(\Delta_n \).

The Auslander-Reiten quiver (AR-quiver) \(\Gamma_Q \) arising from \(Q \) encodes the structure of the \(\text{mod}\mathbb{C}Q \) in the following sense: (i) vertices of AR-quiver present the indecomposables, (ii) arrows present the irreducible morphisms between them. Moreover, \(\Gamma_Q \) itself provides reduced expressions of the longest element \(w_0 \) of the Weyl group associated with \(\Delta_n \) by reading the levels of vertices in \(\Gamma_Q \) in a manner compatible with paths [9]. The AR-quiver also plays an important role in the research area of cluster algebras, cluster-tilted algebras and cluster categories (for example, [13]).

For each reduced expression \(\tilde{w}_0 \) of \(w_0 \), we can assign a total order \(\tilde{w}_0 \) on \(\Phi_n^+ \) by [8] Chapter VI, §1.6]. Moreover, the total order is convex in the sense that for any \(\alpha, \beta \in \Phi_n^+ \) with \(\alpha + \beta \in \Phi_n^+ \), we have that \(\alpha \tilde{w}_0 \beta \) implies \(\alpha \tilde{w}_0 \alpha + \beta \tilde{w}_0 \beta \) [14]. By abstracting this

2010 Mathematics Subject Classification. Primary 05E10, 16T30, 17B37; Secondary 81R50.

Key words and phrases. Auslander-Reiten quiver, quiver Hecke algebra, generalized quantum affine Schur-Weyl duality.
concept, we say a partial order \prec on Φ^+_n convex if $\alpha + \beta \in \Phi^+_n$ implies either $\alpha \prec \alpha + \beta \prec \beta$ or $\beta \prec \alpha + \beta \prec \alpha$ (see [13]).

On the other hand, Hernandez and Leclerc [22] defined certain category $\mathcal{C}_Q^{(1)}$ which consists of finite dimensional integrable modules over quantum affine algebras $U_q'(\mathfrak{g})$, and depends on the AR-quiver Γ_Q. They proved that $\mathcal{C}_Q^{(1)}$ categorifies $\mathbb{C}[N]$ the coordinate ring of the unipotent group N associated with \mathfrak{g}_0. Here \mathfrak{g} is affine Kac-Moody algebra of untwisted simply laced type and \mathfrak{g}_0 is the finite dimensional semisimple Lie subalgebra inside \mathfrak{g}.

The quiver Hecke algebras $R_\mathfrak{g}$, introduced by Khovanov-Lauda [38, 39] and Rouquier [48], categorify the negative part of $U_q'\mathfrak{g}$ for all symmetrizable Kac-Moody algebras \mathfrak{g}. Since $R_\mathfrak{g}$ provides quantum versions of Lascoux-Leclerc-Thibon-Ariki theory ([2, 41]), many authors study the representation theories on quiver Hecke algebras $R_\mathfrak{g}$ very actively since its introduction (for example, [10, 11, 24, 26, 31, 42, 49]). In particular, if \mathfrak{g} is a finite classical semisimple Lie algebra, the theory on the construction of simple modules over $R_\mathfrak{g}$ is well-developed (see [6, 12, 23, 32, 37, 40, 43]). Among these results, the approach of [37, 40, 43] provides the way of constructing simple modules over $R_\mathfrak{g}$ by using PBW-bases which are arisen from a convex order induced by a fixed reduced expression \tilde{w}_0 of w_0.

Note that, for \mathfrak{g}_0 inside \mathfrak{g}, the specialization of the integral form $U^{-}_{A}(\mathfrak{g}_0)$ of $U^{-}_{q}(\mathfrak{g})$ at $q = 1$ is isomorphic to $\mathbb{C}[N]$ and hence $U^{-}_{A}(\mathfrak{g}_0)|_{q=1}$ is categorified via $R_{\mathfrak{g}_0}$ (with forgetting grading) and $\mathcal{C}_Q^{(1)}$ over $U_q'\mathfrak{g}$, simultaneously. Since the result of Brundan and Kleshchev in [10] provides the isomorphism between affine Hecke algebras of type A and the $R_{A_0^{(1)}}$ up to a specialization and a localization, Hernandez and Leclerc expected that quiver Hecke algebras might be interpreted as a generalization of affine Hecke algebra of type A in the context of the quantum affine Schur-Weyl duality ([14, 15, 19]).

In [27, 28], Kang, Kashiwara and Kim came up with an answer for the expectation. They constructed the generalized quantum affine Schur-Weyl duality functor

$$\mathcal{F} : \text{Rep}(R_j) \rightarrow \mathcal{C}_\mathfrak{g}$$

between the finite dimensional integrable modules category $\mathcal{C}_\mathfrak{g}$ over $U_q'(\mathfrak{g})$ and the category $\text{Rep}(R_j)$ of finite dimensional graded modules over quiver Hecke algebra R_j, by observing the zeros of denominator of normalized R-matrix $R_{k,l}^{\text{norm}}(z)$. Their work can be understood as a graded generalization of quantum affine Schur-Weyl duality since $\text{Rep}(R_j)$ has a grading. Here R_j is defined by the quiver Q_j, which appears in the process of constructing \mathcal{F}. Interestingly, R_j does depend on the choice of good modules over $U_q'(\mathfrak{g})$.

By the results of [27, 28] and [22], we have an exact functor $\mathcal{F}_Q^{(1)}$ from $\text{Rep}(R_{\mathfrak{g}_0})$ to $\mathcal{C}_Q^{(1)}$ over $U_q'(\mathfrak{g})$

$$\mathcal{F}_Q^{(1)} : \text{Rep}(R_{\mathfrak{g}_0}) \rightarrow \mathcal{C}_Q^{(1)}$$
which sends simples to simples, for

(a) each Dynkin quiver Q of finite type A (resp. D),
(b) g is of type $A_n^{(1)}$ (resp $D_n^{(1)}$) and g_0 is of type A_n (resp. D_n).

In this paper, we investigate $\mathcal{F}_Q^{(1)}$ more deeply by using the explicit combinatorial description of an AR-quiver Γ_Q which arises from a chosen Dynkin quiver Q of finite type A.

Note that all vertices in Γ_Q are labeled by the set of positive roots Φ_+^n and each positive root β in Φ_+^n of finite type A can be expressed by the segment $[a, b]$, where $\beta = \sum_{k=a}^{b} \alpha_a$. We say a the first component of β and b the second one. Identifying β with $[a, b]$, Γ_Q satisfies the following property: Every positive root appearing in the maximal N-sectional (resp. S-sectional) path in Γ_Q has the same first (resp. second) component (Theorem 1.11). With this property, the facts

(i) $\Phi_+^n = \{ [a, b] \mid 1 \leq a \leq b \leq n \}$,
(ii) we know the position of simple roots in Γ_Q by [28, Lemma 3.2.2] provides a way (Remark 1.14) for computing the bijection

$$\phi^{-1} : \Phi_+^n \times \{0\} \rightarrow \Gamma_Q$$

without using the Coxeter element τ adapted Q and the additive property of the dimension vectors.

The description of $\mathcal{C}_Q^{(1)}$ (Definition 2.2) is the smallest category containing $V_Q(\beta)$ for $\beta \in \Phi_+^n$ and stable by certain operations on modules, where

$$V_Q(\beta) := V(\pi_1)(-q)^{p}$$

is the fundamental $U'_q(A_n^{(1)})$-modules for $\phi^{-1}(\beta, 0) = (i, p)$.

Using the combinatorial descriptions of Γ_Q, we can prove that the Dorey’s rule in [14] always holds for every $\alpha \prec_Q \beta \in \Phi_+^n$ with $\gamma = \alpha + \beta \in \Phi_+^n$; i.e., the following surjective homomorphisms exist:

$$V_Q(\beta) \otimes V_Q(\alpha) \rightarrow V_Q(\gamma) \quad \text{and} \quad S_Q(\beta) \circ S_Q(\alpha) \rightarrow S_Q(\gamma),$$

where \prec_Q is the convex partial order arising from Γ_Q and the simple R_{A_n}-module $S_Q(\beta)$ is the preimage of $V_Q(\beta)$ under the functor $\mathcal{F}_Q^{(1)}$ (Theorem 3.2).

Moreover, we prove that every pair $(\alpha, \beta) \in (\Phi_+^n)^2$ with $\alpha + \beta \in \Phi_+^n$ is indeed a minimal pair in the sense of McNamara [33], with respect a suitable total order which is compatible with the convex partial order \prec_Q (Theorem 3.4). Thus, for every pair (α, β) with $\alpha + \beta \in \Phi_+^n$, we have (Corollary 3.7)

$$V_Q(\beta) \otimes V_Q(\alpha) \text{ and } S_Q(\beta) \circ S_Q(\alpha) \text{ have composition length 2.}$$
In [1, 35], it is proved that every finite dimensional simple integrable $U_q'(g)$-module M appears as a simple head of $\bigotimes_{i=1}^l V(\pi_{i_k})_{a_k}$ for some finite sequence
\[((i_1, a_1), \ldots, (i_l, a_l)) \in \{1, \ldots, n\} \times k^l \]
such that the normalized R-matrices $R_{i_k}^{\text{norm}}(z)$ have no pole at $z = a_k/a_k$, for all $1 \leq k < k' \leq l$. Here, $k = \mathbb{C}(q) \subset \cup_{m>0} \mathbb{C}((q^{1/m}))$. With this theorem and the denominators in [44, Appendix A], we can construct various exact sequences and simple modules over R_{A_n}-modules, which can be understood as generalizations of the exact sequences and simple modules in [28, Proposition 4.2.3] and [32] (see Section 4). We also obtain an alternative proof for the exactness of $F_Q^{(1)}$ (Theorem 4.14). Moreover, we can rephrase one of the main results of [43] with the following forms: For any simple module $M \in \text{Rep}(R_{A_n})$ and Dynkin quiver Q of finite type A_n, there exist two n-tuple of sequences
\[\{(a_{1;i_k}, a_{2;i_k}, \ldots, a_{i_k-1;i_k}, a_{i_k;i_k}) | 1 \leq k \leq n\} \text{ and } \{(a_{j;i_l}, a_{j+1;i_l}, \ldots, a_{i_l-1;i_l}, a_{i_l;i_l}) | 1 \leq l \leq n\} \]
such that $a_{s;i_k}, a_{j_l;u} \in \mathbb{Z}_{\geq 0}$ for $1 \leq s \leq i_k, j_l \leq u \leq n, 1 \leq k, l \leq n$ and
\[\sum_{k=1}^n \left(\frac{S_Q([s, i_k])^{\alpha_{s;i_k}}}{\circ} \right) \rightarrow M \text{ and } \sum_{l=1}^n \left(\frac{S_Q([j_l, u])^{\alpha_{j_l;u}}}{\circ} \right) \rightarrow M, \]
where $[s, i_k], [j_l, u] \in \Phi_n^+, (i_1, i_2, \ldots, i_{n-1}, i_n)$ and $(j_1, j_2, \ldots, j_{n-1}, j_n)$ are re-indexing of $\{1, 2, \ldots, n\}$ defined by the combinatorial property we observed in this paper (Theorem 4.14). Here, $\frac{S_Q([s, i_k])^{\alpha_{s;i_k}}}{\circ}$ and $\frac{S_Q([j_l, u])^{\alpha_{j_l;u}}}{\circ}$ are simple, and hence every simple R_{A_n}-module appears as a head of convolution product of n-simple modules.

Lastly, for $A_n^{(2)}$, we will prove that the description for $\mathcal{E}_q^{(2)}$ in Definition 3.1 can be re-expressed (Theorem 5.2) by using the combinatorial properties and the Dorey’s type morphisms studied in [44]. The observations on $\mathcal{E}_q^{(2)}$ will be one of the main ingredients for investigating relations between $\text{Rep}(R_{A_n})$ and $\mathcal{E}_q^{(2)}$ in [30].

We call a positive root $\beta = \sum_k n_k \alpha_k$ multiplicity free if $n_k \leq 1$ for all $1 \leq k \leq n$. Note that all positive roots in Φ_n^+ of finite type A are multiplicity free. However, it is not true for Φ_n^+ of finite type D and E. Thus we can ask the following question naturally:

Conjecture For any Dynkin quiver Q of finite type A, D or E, every pair (α, β) of a positive root $\gamma = \alpha + \beta \in \Phi_n^+$ is a minimal with respect to a suitable total order compatible with \prec_Q if and only if γ is multiplicity free.

In the forthcoming paper [45], we will prove that the above conjecture is true for Φ_n^+ of finite type D. In other word, there exists a pair (α, β) of a multiplicity non-free positive root $\gamma = \alpha + \beta$ such that the pair can not be minimal for any total order compatible with
Furthermore, we will prove that the Dorey’s rule always holds even though \((\alpha, \beta)\) is not minimal; i.e., \(S_Q(\beta) \circ S_Q(\alpha) \rightarrow S_Q(\gamma)\) for every Dynkin quiver \(Q\) of finite type \(D\), every positive root \(\gamma\) and its pair \((\alpha, \beta)\).

The outline of this paper is as follows. In Section 1, we first recall the definition of AR-quivers \(\Gamma_Q\) and their basic properties, briefly review the various orders on \(\Phi_n^+\), and provide explicit descriptions for \(\Gamma_Q\) of finite type \(A\). In Section 2, we recall the backgrounds and theories of the generalized quantum affine Schur-Weyl duality briefly. In the later sections, we investigate the categories \(C_i(Q)\) \((i = 1, 2)\) and \(\text{Rep}(R_{A_n})\) using the generalized quantum affine Schur-Weyl duality and the explicit descriptions of \(\Gamma_Q\) in Section 1.

Acknowledgements. The author would like to express his gratitude to Professor Seok-Jin Kang, Professor Masaki Kashiwara, Professor Kyungyong Lee and Myungho Kim for many fruitful discussions. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions, also. The author gratefully acknowledge the hospitality of RIMS (Kyoto) during his visit in 2013 and 2014.

1. Combinatorial characterization of AR-quivers of finite type \(A\)

In this section, we recall Gabriel’s Theorem and various orders on the set of positive roots. We also observe the combinatorial feature of AR-quivers \(\Gamma_Q\) of finite type \(A\) and provides an explicit combinatorial description of \(\Gamma_Q\). We refer to \([3, 4, 18]\) for basic theories on quiver representations and Auslander-Reiten theory.

1.1. Gabriel’s Theorem. Let \(\Delta_n\) be a rank \(n\) Dynkin diagram of finite type. We denote by \(I_0 = \{1, 2, \ldots, n\}\) the set of indices, \(\Pi_n = \{\alpha_i \mid i \in I_0\}\) the set of simple roots, \(\Phi_n (\Phi_n^+, \Phi_n^-)\) the set of (positive, negative) roots, \(E\) the vector space which \(\Phi_n\) lies, and \((,\,)\) scalar product defined on \(E\) which are associated to the Dynkin diagram \(\Delta_n\).

Let \(W_0\) be the Weyl group associated to \(\Delta_n\), which is generated by the set of simple reflections \((s_i)_{i \in I_0}\). We denote by \(w_0\) the unique longest element in \(W_0\). It is well-known that \(w_0\) induces an involution \(*\) on \(I_0\) given by \(w_0\alpha_i = -\alpha_i^*\) (see \([3\, \text{PLATE I}~\text{IX}]\)).

The Dynkin quiver \(Q\) is obtained by assigning orientation on the edges of \(\Delta_n\); i.e., \(Q\) is a data \((Q_0, Q_1)\) where \(Q_0\) is a set of vertices indexed by \(I_0\) and \(Q_1\) is a set of arrows with underlying graph \(\Delta_n\). We say that a vertex \(i\) is a source (resp. sink) if and only if there are only exiting arrows out of it (resp. entering arrows into it).

Let \(\text{Mod}\mathbb{C}Q\) be the category of finite dimensional modules over the path algebra \(\mathbb{C}Q\). An object \(M\) in this category is defined by the following data:

(a) To each \(i \in Q_0\) is associated a finite dimensional \(\mathbb{C}\)-vector space \(M_i\).

(b) To each arrow \(i \rightarrow j\) in \(Q_1\) is associated to a linear map \(\varphi_{i \rightarrow j} : M_i \rightarrow M_j\).
We define the dimension vector of $M \in \text{Mod} \mathbb{C}Q$ as
\[
\text{dim } M := \sum_{i \in Q_0} (\dim M_i) \alpha_i.
\]

The simple objects in $\text{Mod} \mathbb{C}Q$ are one dimensional vector spaces $S(i)$ ($i \in Q_0$) which can be characterized by $\text{dim } S(i) = \alpha_i$. We denote by $\text{Ind} Q$ the set of isomorphism classes $[M]$ of indecomposable modules in $\text{Mod} \mathbb{C}Q$.

Theorem 1.1. (Gabriel’s Theorem) For a Dynkin quiver Q of finite type A, D or E, the map $[M] \mapsto \text{dim } M$ gives a bijection from $\text{Ind} Q$ to Φ_n^+.

Thus the set $\text{Ind} Q$ consists of the indecomposable modules $M(\beta)$ ($\beta \in \Phi_n^+$) such that $\text{dim } (M(\beta)) = \beta$ when a Dynkin quiver Q is of finite type A, D or E.

1.2. **Auslander-Reiten quiver.** In this subsection, we fix a Dynkin quiver Q whose underlying graph is of finite type A, D or E. We denote by $s_i Q$ the quiver obtained from Q by reversing the orientation of each arrow that ends at i or starts at i. A map $\xi : I_0 \rightarrow \mathbb{Z}$ is called a height function on Q if $\xi_j = \xi_i - 1$ for $i \rightarrow j \in Q_1$. Connectedness of Q implies that any two height functions on Q differ by a constant.

Set $ZQ := \{(i, p) \in \{1, 2, \ldots, n\} \times \mathbb{Z} | p - \xi_i \in 2\mathbb{Z}\}$. We view ZQ as the quiver with arrows
\[(i, p) \rightarrow (j, p + 1), (j, q) \rightarrow (i, q + 1)\]
for which i and j are adjacent in Δ_n and call it the repetition quiver of Q. Note that ZQ does not depend on the orientation of the quiver Q. It is well-known that the quiver ZQ itself has an isomorphism with the AR-quiver of $D^b(CQ)$-mod, the bounded derived category of CQ-mod ([20]). In our convention, the injective module $I(i)$ is located on the vertex (i, ξ_i) of ZQ.

For a reduced expression $\tilde{w} = s_{i_1} s_{i_2} \cdots s_{i_l}$ of an element w in W_0, it is called adapted to Q if
\[i_k \text{ is a source of } s_{i_{k-1}} \cdots s_{i_2}s_{i_1} Q \text{ for all } 1 \leq k \leq l.\]
It is well-known that there is a unique Coxeter element τ whose reduced representations are adapted to Q.

Set $\hat{\Phi}_n := \Phi_n^+ \times \mathbb{Z}$. For $i \in I_0$, we define
\[(1.1) \quad \gamma_i = \sum_{j \in B(i)} \alpha_j \quad \text{and} \quad \theta_i = \sum_{j \in C(i)} \alpha_j \quad \text{where}\]

- $B(i)$ is the set of vertices j in Q_0 such that there exists a path from j to i,
- $C(i)$ is the set of vertices j in Q_0 such that there exists a path from i to j.

The bijection \(\phi : \mathbb{Z} \mathbb{Q} \to \hat{\Phi}_n \) defined by \(M(\beta)[m] \to (\beta, m) \) is described combinatorially as follows (\cite{22}, §2.2):

\[
\text{(a) } \phi(i, \xi_i) = (\gamma_i, 0), \\
\text{(b) for a given } \beta \in \Phi_+^n \text{ with } \phi(i, p) = (\beta, m),
\]

\[
\begin{align*}
&\text{• if } \tau(\beta) \in \Phi_+^n, \text{ we set } \phi(i, p - 2) = (\tau(\beta), m), \\
&\text{• if } \tau(\beta) \in \Phi^-_n, \text{ we set } \phi(i, p - 2) = (-\tau(\beta), m - 1), \\
&\text{• if } \tau^{-1}(\beta) \in \Phi_+^n, \text{ we set } \phi(i, p + 2) = (\tau^{-1}(\beta), m), \\
&\text{• if } \tau^{-1}(\beta) \in \Phi^-_n, \text{ we set } \phi(i, p + 2) = (-\tau^{-1}(\beta), m + 1).
\end{align*}
\]

The Auslander-Reiten quiver \(\Gamma_Q \) is the full subquiver of \(\mathbb{Z} \mathbb{Q} \) whose set of vertices is \(\phi^{-1}(\Phi_+^n \times \{0\}) \). Here the vertex \(\phi^{-1}(\beta, 0) \) corresponds to the indecomposable module \(M(\beta) \) in \(\text{Ind\ } \mathbb{Q} \) and the arrow \(\phi^{-1}(\beta, 0) \to \phi^{-1}(\beta', 0) \) corresponds to an irreducible morphism from \(M(\beta) \) to \(M(\beta') \).

In particular, the injective envelope \(I(i) \) of \(S(i) \) corresponds to the vertex \(\phi^{-1}(\gamma_i, 0) \) and the projective cover \(P(i) \) of \(S(i) \) corresponds to the vertex \(\phi^{-1}(\theta_i, 0) \). It is well-known that

\[
\theta_i = \tau^{m_i}(\gamma_i), \quad \text{where } m_i = \max\{k \geq 0 \mid \tau^k(\gamma_i) \in \Phi_+^n\}.
\]

For \(\beta \in \Phi_+^n \) with \(\tau(\beta) \in \Phi_+^n \), we set \(\tau M(\beta) := M(\tau(\beta)) \). In the Auslander-Reiten quiver \(\Gamma_Q \), this map \(\tau \) is called the Auslander-Reiten translation.

(i) The dimension vector is an additive function on \(\Gamma_Q \) with respect to the map \(\tau \); that is, for each vertices \(x \in \Gamma_Q \) such that \(x = \phi^{-1}(\beta, 0) \) and \(\tau(\beta) \in \Phi_+^n \),

\[
\dim x + \dim \tau x = \sum_{z \in X^-} \dim z.
\]

Here \(X^- \) is the set of vertices \(Z \) in \(\Gamma_Q \) such that there exists an arrow from \(Z \) to \(X \).

(ii) It is well-known that, for \(\beta \in \Phi_+^n \),

\[
\tau(\beta) \in \Phi^-_n \quad \text{if and only if} \quad \beta = \theta_i \quad \text{for some } i \in I_0.
\]

A subquiver \(\Gamma' \) of \(\Gamma_Q \) is said to be sectional (\cite{9}) if whenever \(x \to y \) and \(y \to z \) are arrows in \(\Gamma' \), we have \(x \neq \tau(z) \).

The following description is one of the characterization of \(\Gamma_Q \) inside \(\mathbb{Z} \mathbb{Q} \):

\[
\phi^{-1}(\Phi_+^n \times \{0\}) = \{(i, p) \in \mathbb{Z} \mathbb{Q} \mid \xi_i - 2m_i \leq p \leq \xi_i\}.
\]

Recall that there is the Nakayama permutation \(\nu \) on \(\mathbb{Z} \mathbb{Q} \) which is given by

\[
\nu(i, p) = (i^*, p + h_n - 2)
\]

where \(h_n \) is the Coxeter number associated to \(\Delta_n \). Since, for all \(i \in I_0 \), the Nakayama permutation \(\nu \) sends vertices corresponding to \(P(i) \) to vertices corresponding to \(I(i^*) \), we
have

\begin{equation}
\xi_{i^*} - 2m_{i^*} = \xi_i - h_n + 2.
\end{equation}

1.3. Orders on Φ^+_n. In this section, we recall various orders on Φ^+_n.

A convex order on Φ^+_n is a partial order \preceq satisfying the following condition ([7]):

For all α, β and $\gamma = \alpha + \beta \in \Phi^+_n$, either $\alpha \prec \gamma \prec \beta$ or $\beta \prec \gamma \prec \alpha$.

Note that a coarsest convex partial order on Φ^+_n determines the commutation class of w_0; that is, the equivalence class on reduced expressions of w_0 which is given by

$s_{i_1}s_{i_2}\cdots s_{i_N} \sim s_{j_1}s_{j_2}\cdots s_{j_N}$ (N := $|\Phi^+_n|$)

if and only if $s_{j_1}s_{j_2}\cdots s_{j_N}$ is obtained from $s_{i_1}s_{i_2}\cdots s_{i_N}$ by replacing $s_\alpha s_\beta$ by $s_\beta s_\alpha$ for α and b not linked in Δ_n (see [5]).

A Dynkin quiver Q defines a convex partial order \preceq_Q on Φ^+_n in the following way [47]:

\begin{equation}
\alpha \preceq_Q \beta \text{ if and only if there is a path from } \beta \text{ to } \alpha \text{ in } \Gamma_Q.
\end{equation}

Thus, for a pair (α, β) with $\gamma = \alpha + \beta \in \Phi^+_n$ and $\alpha \prec_Q \beta$,

\begin{equation}
\text{there exist paths from } \beta \text{ to } \gamma \text{ and from } \gamma \text{ to } \alpha \text{ in } \Gamma_Q.
\end{equation}

On the other hand, it is well-known that a reduced expression $\bar{w}_0 = s_{i_1}s_{i_2}\cdots s_{i_N}$ of w_0 induces a convex total order $\preceq_{\bar{w}_0}$ on Φ^+_n by ([8])

\begin{equation}
\beta_z := s_{i_1}s_{i_2}\cdots s_{i_{z-1}}\alpha_{i_z} \text{ and } \beta_x <_{\bar{w}_0} \beta_y \text{ if and only if } x < y.
\end{equation}

Note that any convex total order is obtained in this way by a reduced expression \bar{w}_0 of w_0 ([46]).

The following theorem provides a way of obtaining all reduced expressions of w_0 adapted to Q and hence convex total orders compatible with the convex partial order \preceq_Q:

\begin{equation}
\alpha \prec_Q \beta \text{ implies } \alpha <_{\bar{w}_0} \beta \text{ for any } \bar{w}_0 \text{ adapted to } Q.
\end{equation}

Theorem 1.2. [5, Theorem 2.17] Let Q be a quiver of finite type A, D or E. Then any reduced expression of w_0 adapted to Q can be obtained in the following way: We read Γ_Q sequentially, in a manner compatible with arrows; that is, if there exists an arrow $\beta \rightarrow \alpha$, α appears before β. Replacing a vertex β with i for $\phi^{-1}(\beta) = (i, p)$, we have a sequence (i_1, i_2, \ldots, i_N) giving a reduced expression of w_0 adapted to Q,

$\bar{w}_0 = s_{i_1}s_{i_2}\cdots s_{i_N}$.

Remark 1.3. In this remark, we suggest two canonical readings of Γ_Q which follow the rule in Theorem 1.2. Thus we can obtain two convex total orders on Φ^+_n compatible with \preceq_Q.

(A) We denote by $<^L_Q$ the convex total order induced from the following reading:

\[(i,p) \text{ appears before } (i',p') \iff\begin{cases} d(1,i) - p < d(1,i') - p' & \text{ or } \\
 d(1,i) - p = d(1,i') - p' & \text{ and } \ i > i'. \end{cases}\]

(B) We denote by $<^U_Q$ the convex total order induced from the following reading:

\[(i,p) \text{ appears before } (i',p') \iff\begin{cases} d(1,i) + p > d(1,i') + p' & \text{ or } \\
 d(1,i) + p = d(1,i') + p' & \text{ and } \ i < i'. \end{cases}\]

Here, $d(i,j)$ denotes the distance between i and j in Δ_n.

Definition 1.4. [43, §2.1]. For a total order $<$ on Φ^+_n, a pair (α,β) with $\alpha < \beta$ is called a **minimal pair of** $\gamma \in \Phi^+_n$ **with respect to the total order** $<$ if

- $\gamma = \alpha + \beta$,
- there exist no pair (α',β') such that $\gamma = \alpha' + \beta'$ and $\alpha < \alpha' < \gamma < \beta' < \beta$.

1.4. Characterization of Auslander-Reiten quiver of type A. In this subsection, we fix the Δ_n as the Dynkin diagram of finite type A. Citing the referee, the combinatorial properties in this subsection is well-known to the experts. More precisely, using the **linear quiver \overrightarrow{Q}** (see (4.2)), the **reflection functor** on $D^b(CQ)$-mod and the tilting theorem ([4, Chapter VII]), one can observe the descriptions in this subsection. However, we have a difficulty for finding the explicit statement of Theorem 1.11 in standard textbooks, we shall deal with and derive it from Lemma 1.7 and Remark 1.8 below.

Since Δ_n is the Dynkin diagram of finite type A, we have the Coxeter number $h_n = n + 1$ and the involution induced by $w_0 \in W_0$ is given by $i \mapsto i^* = n + 1 - i$. We say that a vertex $i \in Q$ is a right (resp. left) intermediate if

\[
\begin{array}{cccccccccccccc}
\vdots & \vdots \\
\cdots & i & \cdots & i \\
\end{array}
\]

(resp. \[
\begin{array}{cccccccccccccc}
\vdots & \vdots \\
\cdots & i & \cdots & i \\
\end{array}\]) in Q.

Recall that, for every $1 \leq a \leq b \leq n$, $\beta = \sum_{a \leq k \leq b} \alpha_k$ is a positive root in Φ^+_n and every positive root in Φ^+_n is of the form. Thus we sometimes identify $\beta \in \Phi^+_n$ (and hence vertex in Γ_Q) with a segment $[a,b]$. For $\beta = [a,b]$, we say a the **first component of** β and b the **second component of** β. If β is simple, we write β as $[a]$.

Example 1.5. Consider the quiver $\bullet \bullet \bullet \bullet \bullet$ of type A_5. We set $\xi_1 = 0$. Then the Γ_Q inside $\mathbb{Z}Q$ can be obtained by using the Coxeter element τ ([1.2] or the additive
property of the dimension vectors \([1,4]\) as follows:

\[
\begin{align*}
(i, p) &\quad -6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \\
1 &\quad \rightarrow [5] \\
2 &\quad \rightarrow [4] \quad [2, 3] \\
3 &\quad \rightarrow [2, 5] \quad [1, 4] \\
4 &\quad \rightarrow [1, 5] \quad [3, 4] \\
5 &\quad \rightarrow [1, 2] \quad [3, 5]
\end{align*}
\]

Definition 1.6. (a) A path \(\rho\) in \(\Gamma_Q\) is \(S\)-sectional (resp. \(N\)-sectional) if the path is a concatenation of arrows whose forms are \((i, p) \rightarrow (i + 1, p + 1)\) (resp. \((i, p) \rightarrow (i - 1, p + 1)\)).

(b) A positive root \(\beta \in \Phi_n^+\) is contained in the path \(\rho\) in \(\Gamma_Q\) if \(\beta\) is an end or a start of some arrow in the path \(\rho\).

(c) An \(S\)-sectional (resp. \(N\)-sectional) path \(\rho\) is maximal if there is no longer \(S\)-sectional (resp. \(N\)-sectional) path containing all positive roots in \(\rho\).

(d) For \(\beta \in \Phi_n^+\) with \(\phi^{-1}(\beta, 0) = (i, p)\), we denote by \(\phi^{-1}_1(\beta) = i\) and \(\phi^{-1}_2(\beta) = p\).

The main goal of this subsection is to provide an explicit description of an AR-quiver of finite type \(A\) by using the following lemma and basic properties for an AR-quiver in §1.2.

Lemma 1.7. [5, Lemma 2.11], [28, §3.2]

(a) For \(k \in I_0\),

\[
\phi^{-1}(\alpha_k, 0) = \begin{cases}
(k, \xi_k) & \text{if } k \text{ is a source}, \\
(n + 1 - k, \xi_k - n + 1) & \text{if } k \text{ is a sink}, \\
(1, \xi_k - k + 1) & \text{if } k \text{ is a left intermediate}, \\
(n, \xi_k - n + k) & \text{if } k \text{ is a right intermediate}.
\end{cases}
\]

(b) If \(\beta \rightarrow \alpha\) is an arrow in \(\Gamma_Q\) for \(\alpha, \beta \in \Phi_n^+\), then \((\beta, \alpha) = 1\).

(c) We have

\[
(i, \xi_j - d(i, j)), (i, \xi_j - 2m_j + d(i, j)) \in \Gamma_Q \quad \text{for any } i, j \in I_0.
\]

Proof. The second and third assertions are identical with [5, Lemma 2.11] and [28, Lemma 3.2.2], respectively. For the first assertion, we can use the [28, Lemma 3.2.3] in the following way: (i) If \(k\) is a left intermediate, then take the extremal vertex \(i\) as 1 in \(I_0\). Then the formula

\[
\phi^{-1}(\alpha_k, 0) = (i, \xi_k - d(i, k))
\]
in [28] page 17] tells that \(\phi^{-1}(\alpha_k, 0) = (1, \xi_k - k + 1) \). (ii) If \(k \) is a right intermediate, then take the extremal vertex \(i \) as \(n \) in \(I_0 \). Then [1.13] tells that \(\phi^{-1}(\alpha_k, 0) = (n, \xi_k - n + k) \). It is obvious for \(k \) which is a source or a sink.

Remark 1.8. For a left (resp. right) intermediate \(k \), we can take also the extremal vertex \(i \) as \(n \) (resp. 1) in \(I_0 \). Then we have

\[
\phi^{-1}(\alpha_k, 0) = (i^*, \xi_k^* - 2m_{k^*} + d(i, k))
\]

by the formula [28] page 18).

Proposition 1.9. Let \(\rho \) be an \(N \)-sectional (resp. \(S \)-sectional) path containing simple root. Then every positive roots contained in \(\rho \) has the same first (resp. second) component.

Proof. (1) Let \(t \) be a source in \(Q \); i.e., \(\bullet \bullet \bullet \bigcirc \). Since \(t \) is a source,

\[
\dim I(t - 1) = [a, t], \quad \dim I(t + 1) = [t, b]
\]

for some \(a \leq t - 1 \) and \(b \geq t + 1 \).

Note that \(t - 1 \) or \(t + 1 \in I_0 \). By Lemma [1.7] (c), the following subquiver is contained in \(\Gamma_Q \):

- \([t + 1, b] = M_1 - [t] = B_1 - N_1 = B_2 - N_2 = B_{t-1} - N_{t-1} = \beta \) and
- \([a, t - 1] = N_1 - [t] = C_1 - M_1 = C_2 - M_2 = C_{n-t} - M_{n-t} = \eta \).

Since \(\beta + N_2 = B_2 \in \Phi^+_n \), \(N_2 \) is \([b + 1, d] \) or \([a_2, t] \). If \(N_2 = [b + 1, d] \), then \((N_1, N_2) = 0 \), which yields a contradiction to Lemma [1.7] (b). Thus \(N_2 = [c, t] \). In this way, one can show that \(N_u \) for \(1 \leq u \leq t - 1 \) is of the form \([a_u, t] \). By the similar way, we can prove that \(M_v \) for \(1 \leq v \leq n - t \) is of the form \([t, b_v] \).

(2) Let \(t \) be a sink in \(Q \); i.e., \(\bullet \bullet \bullet \bigcirc \). Since \(t \) is a sink,

\[
\dim P(t - 1) = [a, t], \quad \dim P(t + 1) = [t, b]
\]

for some \(a \leq t - 1 \) and \(b \geq t + 1 \).

By using a similar argument given in (1), one can prove our assertion.

(3) Let \(t \) be a left intermediate in \(Q \); i.e., \(\bullet \bullet \bullet \bigcirc \). Then we have

\[
\dim I(t - 1) = [k, t - 1], \quad \dim I(t) = [k, t], \quad \dim P(t^*) = [t, l] \quad \text{and} \quad \dim P(t^* - 1) = [t + 1, l]
\]
for some $k \leq t - 1$ and $t + 1 \leq l$. Moreover, Lemma [1.7](a) tells that $\phi^{-1}(\alpha_1, 0) = (1, \xi_t - t + 1)$. By Lemma [1.7] (c), the following subquivers are contained in Γ_Q:

\[
\begin{array}{c}
\text{[t]} \\
M_t \\
\vdots \\
N_i \\
\vdots \\
M_{t-1} \\
\text{dim}_I(t-1) \\
\leftarrow \\
\text{dim}_P(t-1) = L_i \\
\rightarrow \\
\text{dim}_P(t^*) = J_i \\
J_{t-1} \\
\text{[t]} \\
\end{array}
\]

Since $[t] + N_k = M_k \in \Phi^+ \text{ or } N_k$ is $[a_k, t - 1]$ or $[t + 1, b_k]$. However $(N_{t-1}, N_t) = 1$ implies that $N_{t-1} = [a_{t-1}, t - 1]$ and hence $M_{t-1} = [a_{t-1}, t]$. Then we can show $M_k = [a_k, t]$ for $1 \leq k \leq t$ by using the additive property of the dimension vectors (1.4).

By applying the same argument, one can prove $J_k = [t, b_k]$ for $1 \leq k \leq t^*$.

(4) Let t be a right intermediate in Q; i.e., $\cdots \rightarrow \text{[t-1]} \rightarrow \text{[t]} \rightarrow \text{[t+1]} \cdots$. Then we have

\[
\text{dim}_I(t) = [t, l], \; \text{dim}_I(t + 1) = [t + 1, l], \; \text{dim}_P(t^*) = [k, t] \; \text{and} \; \text{dim}_P(t^* + 1) = [k, t - 1]
\]

for some $k \leq t - 1$ and $t + 1 \leq l$. By using a similar argument given in (3), one can prove our assertion. □

Proposition 1.10. Let ρ be a maximal N-sectional path or a maximal S-sectional path. Then it contains a simple root.

Proof. By Proposition [1.9] ρ contains at most one simple root. Assume that ρ is a maximal N-sectional path which does not contain a simple root, and we write $\rho = N_t \rightarrow N_{t-1} \rightarrow \cdots \rightarrow N_1$.

Assume first that $\phi^{-1}_1(N_1) = a \neq 1$. Hence, $N_1 = \tau^k(\text{dim}_I(a))$, for some $k \geq 0$. If the arrow between a and $a - 1$ in Δ_n was $\begin{array}{c}
a-1 \\
a \\
a+1 \\
\end{array}$, the irreducible morphism $I(a) \rightarrow I(a - 1)$ would give the arrow $(a, \xi_a) \rightarrow (a - 1, \xi_a + 1)$. Applying τ^k, we would have a contradiction to the maximality of ρ. Thus, a is either right intermediate or a source:

\[
\begin{array}{c}
\begin{array}{c}
\text{a-1} \\
\text{a} \\
\text{a+1} \\
\end{array}
\end{array} \quad \text{or} \quad
\begin{array}{c}
\begin{array}{c}
\text{a-1} \\
\text{a} \\
\text{a+1} \\
\end{array}
\end{array}
\]

in Q.

In both cases, N_1 is the vertex for an injective module: otherwise, we have an arrow $N_1 \rightarrow \tau^{k-1}(\text{dim}_I(a - 1))$ in Γ_Q and it contradicts the maximality of ρ again. Thus we have $\phi^{-1}(N_1, 0) = (a, \xi_a)$. Hence Lemma [1.7] (c) tells that $\phi^{-1}(N_t, 0) = (n, \xi_a - n + a)$. Thus Lemma 1.7(a) implies that $N_t = [a]$ if a is right intermediate and $N_1 = [a]$ if a is a source, contradicting our assumption that ρ does not contain a simple root. Hence we have $\phi^{-1}_1(N_1) = 1$.

If $\phi^{-1}_2(N_1) = \xi_1$ then $N_1 = \text{dim}_I(1)$. Since 1 is a source or sink, then $N_1 = [1]$, or $N_{i=n} = [1]$ and $\phi^{-1}(N_n) = (n, \xi_n - 2m_n)$ contradicting our assumption on ρ again.
Now we assume that $\phi_2^{-1}(N_1) < \xi_1$. If $\phi_1^{-1}(N_t) = b \neq n$, then

$\bullet_{b-1} \bullet_b \bullet_{b+1}$ or $\bullet_{b-1} \bullet_b \bullet_{b+1}$ in Q,

by the similar reason as above. In both cases, $\phi^{-1}(N_1, 0) = (b, \xi_b - 2m_b)$. Hence Lemma 1.7 (c) tells that $\phi_1^{-1}(N_1) = (1, \xi_b - 2m_b + (b - 1))$. Thus Lemma 1.7 (a) and Remark 1.8 imply that $N_1 = [b^*]$ if b is a left intermediate, and $N_t = [b^*]$ if b is a sink, respectively. Thus we have $t = n$ and $\phi_1^{-1}(N_n) = n$. However, the below inequality

$$\phi_2^{-1}(N_n) = \phi_2^{-1}(N_1) - n + 1 < \xi_n - 2m_n = \xi_1 - n + 1$$

yields a contradiction to (1.6). Similarly, one can prove our assertion for a maximal S-sectional path.

Theorem 1.11. Every positive root in an N-sectional path has the same first component and every root in an S-sectional path has the same second component.

Proof. By the previous proposition, every maximal N-sectional path (resp. maximal S-sectional path) contains a simple root. Thus our assertion follows from Proposition 1.9 and the fact that every N-sectional path (resp. S-sectional path) is contained in some maximal N-sectional path (resp. maximal S-sectional path).

Thus we say that an N-sectional path ρ is the maximal (N, i)-sectional path if all positive roots contained in ρ have i as a first component. Similarly, we can define a notion of the maximal (S, i)-sectional path.

Corollary 1.12. For $1 \leq i \leq n$, the Auslander-Reiten quiver Γ_Q of finite type A contains a maximal N-sectional path of length $n - i$ once and exactly once. At the same time, Γ_Q contains a maximal S-sectional path of length $i - 1$ once and exactly once.

Proof. For $i \in I$, there are $(n - i + 1)$-many positive roots whose first component is i, and i-many positive roots whose second component is i. Thus our assertion follows from Theorem 1.11.

Corollary 1.13. For vertices $\beta, \beta' \in \Phi^+_n$ with $\beta \prec_Q \beta'$ and $\beta + \beta' \in \Phi^+_n$,

(1.15) there exists only one path from β' to $\beta + \beta'$. So is from $\beta + \beta'$ to β.

Proof. The proof comes from (1.8) and Theorem 1.11.

To get a Γ_Q from Q, we have used $\tau(\beta)$ 1.2 or the additive property of the dimension vectors 1.4. On the other hand, Lemma 1.7 and Theorem 1.11 provide a combinatorial way for computing the bijection ϕ^{-1} without using the Coxeter element and the additive property of the dimension vectors.
Remark 1.14. (a) By Lemma 1.7 (a), we know the images of Π_n in Γ_Q.

(b) For each $a \in I_0$, we draw a hook as follows:

(i) If a is a source,

\[
\underbrace{N_n \rightarrow \cdots N_a \rightarrow N_a} = [a] = S_a \leftarrow S_{a-1} \leftarrow \cdots \leftarrow S_1.
\]

(ii) If a is a sink,

\[
\underbrace{N_n \leftarrow \cdots N_{n-a} \leftarrow N_{n-a+1}} = [a] = S_{n-a+1} \rightarrow S_{n-a+2} \rightarrow \cdots \rightarrow S_1.
\]

(iii) If \(\bullet \rightarrow a \rightarrow a+1 \) in Q,

\[
\underbrace{N_{n-a+1} \rightarrow \cdots N_2 \rightarrow N_1} = [a] = S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_a.
\]

(iv) If \(\bullet \leftarrow a \leftarrow a+1 \) in Q,

\[
\underbrace{N_a \leftarrow \cdots N_{a-1} \leftarrow N_n} = [a] = S_n \leftarrow S_{n-1} \leftarrow \cdots \leftarrow S_{n+1-a}.
\]

Here $\phi^{-1}_1(N_k) = k$ and $\phi^{-1}_1(S_l) = l$.

(c) If (i, p) in Γ_Q is located at an intersection of an (N, a)-sectional path and an (S, b)-sectional path,

\[\phi^{-1}([a, b], 0) = (i, p).\]

Let κ and σ be subsets of Φ^+_n defined as follows:

\[\kappa := \{\beta \in \Phi^+_n \mid \phi^{-1}_1(\beta) = 1\}, \quad \sigma := \{\beta \in \Phi^+_n \mid \phi^{-1}_1(\beta) = n\}.\]

We enumerate the positive roots in $\kappa = \{\kappa_1, \ldots, \kappa_r\}$ and $\sigma = \{\sigma_1, \ldots, \sigma_s\}$ in the following way:

\[\phi^{-1}_2(\kappa_{i+1}) + 2 = \phi^{-1}_2(\kappa_i), \quad \phi^{-1}_2(\sigma_{j+1}) - 2 = \phi^{-1}_2(\sigma_j) \text{ for } 1 \leq i < r \text{ and } 1 \leq j < s.\]

Corollary 1.15. (a) If $\kappa_i = [a, b]$, then $\kappa_{i+1} = [b+1, c]$.

(b) If $\sigma_j = [a, b]$, then $\sigma_{j+1} = [b+1, c]$.

(c) $\sum_{i=1}^r \kappa_i = [1, n] = \sum_{j=1}^s \sigma_j$.
(d) If \(\phi^{-1}([1, n]) = k \), then \(r = k = m_1 \), \(s = n + 1 - k = m_n \) and hence \(\phi^{-1}([1, n]) = (m_1, \xi_1 - m_1 + 1) = (n + 1 - m_n, \xi_n - m_n + 1) \).

Proof. By Remark 1.14 we have a subquiver in \(\Gamma_Q \) which can be described as follows:

\[
\begin{array}{ccccccc}
\kappa_k &=& [b, n] & \rightarrow & \cdots & \rightarrow & \kappa_1 &= [1, a] \\
M_{k-1}^{(j)} & \rightarrow & \cdots & \rightarrow & M_1^{(j)} & \rightarrow & M_1^{(k-1)} & \rightarrow & \cdots & \rightarrow & M_{k-1}^{(j)} \\
\rightarrow & \cdots & \rightarrow & [1, n] & \rightarrow & \cdots & \rightarrow & [1, n] \\
N_1^{(n-k+2)} & \rightarrow & \cdots & \rightarrow & N_1^{(n-k+2)} & \rightarrow & N_1^{(n-k+2)} & \rightarrow & \cdots & \rightarrow & N_1^{(n-k+2)} \\
\sigma_1 &=& [1, a'] & \rightarrow & \cdots & \rightarrow & \sigma_{n+1-k} &= [b', n]
\end{array}
\]

Then our assertions easily follow from observations on the given subquiver. \(\square \)

2. **The generalized quantum affine Schur-Weyl duality**

In this section, we briefly recall the backgrounds and theories on the generalized quantum affine Schur-Weyl duality developed in [27, 28]. Thus, for precise statements and definitions referred in this section, see [1, 22, 27, 28, 35, 44].

2.1. **Quantum affine algebras and the category \(\mathcal{C}_Q \).** Let \(I = \{0, 1, \ldots, n\} \) be a set of indices. An **affine Cartan datum** is a quadruple \((A, \mathcal{P}, \Pi, \Pi^\vee)\) consisting of

(a) a matrix \(A \) of corank 1, called the **affine Cartan matrix** satisfying

\[
\begin{align*}
(i) & \quad a_{ii} = 2 (i \in I), \\
(ii) & \quad a_{ij} \in \mathbb{Z}_{\leq 0}, \\
(iii) & \quad a_{ij} = 0 \text{ if } a_{ji} = 0
\end{align*}
\]

with \(D = \text{diag}(d_i \in \mathbb{Z}_{>0} \mid i \in I) \) making \(DA \) symmetric,

(b) a free abelian group \(\mathcal{P} \) of rank \(n + 2 \), the **weight lattice**,

(c) an linearly independent set \(\Pi = \{\alpha_i \mid i \in I\} \subset \mathcal{P} \), the set of **simple roots**,

(d) an linearly independent set \(\Pi^\vee = \{h_i \mid i \in I\} \subset \mathcal{P}^\vee := \text{Hom}(\mathcal{P}, \mathbb{Z}) \), the set of **simple coroots**,

which satisfy

\[
\begin{align*}
(1) & \quad \langle h_i, \alpha_j \rangle = a_{ij} \text{ for all } i, j \in I, \\
(2) & \quad \text{for each } i \in I, \text{ there exists } \Lambda_i \in \mathcal{P} \text{ such that } \langle h_i, \Lambda_j \rangle = \delta_{ij} \text{ for all } j \in I.
\end{align*}
\]

We call \(Q = \sum_{i \in I} \mathbb{Z}\alpha_i \) the **root lattice**, and \(Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i \) the **positive cone** of the root lattice. For \(\beta = \sum_{i \in I} k_i \alpha_i \in Q^+ \), the **height** of \(\beta \) is defined by \(|\beta| = \sum_{i \in I} k_i \). We denote by \(\delta = \sum_{i \in I} a_i h_i \) the **null root** and by \(c = \sum_{i \in I} c_i h_i \) the **center** ([25, Chapter 4]).
Set $\mathfrak{h} = \mathbb{Q} \otimes_{\mathbb{Z}} \mathfrak{P}^\vee$. Then there exists a symmetric bilinear form $(\ , \)$ on \mathfrak{h}^* satisfying
\[(h_i, \lambda) = \frac{2(\alpha_i, \lambda)}{(\alpha_i, \alpha_i)} \quad \text{for any } i \in I \text{ and } \lambda \in \mathfrak{h}^*. \]

We normalize the bilinear form by $(c, \lambda) = (\delta, \lambda)$ for any $\lambda \in \mathfrak{h}^*$.

We choose $0 \in I$ as the leftmost vertices in the tables in [25, pages 54, 55] except $A_{2n}^{(2)}$-case in which we take the longest simple root as α_0.

We denote g by the affine Kac-Moody algebra associated with the Cartan datum $(\mathbb{A}, \mathbb{P}, \Pi, \Pi^\vee)$ and g_0 by the subalgebra of g generated by e_i, f_i and K_i for $i \in I_0$. Note that g_0 is a finite-dimensional simple Lie algebra.

Let γ be the smallest positive integer such that
\[\gamma(\alpha_i, \alpha_i)/2 \in \mathbb{Z} \quad \text{for any } i \in I. \]

Note that $(\alpha_i, \alpha_i)/2$ takes the rational number $1, 2, 1/2, 1/3$ when $g = G_2^{(1)}$.

For an indeterminate $q, m, n \in \mathbb{Z}_{\geq 0}$ and $i \in I$, we define $q_i = q^{(\alpha_i, \alpha_i)/2}$ and
\[[n]_i = \frac{q_i^n - q_i^{-n}}{q_i - q_i^{-1}}, \quad [n]_i! = \prod_{k=1}^{n} [k]_i, \quad \left[\begin{array}{c} m \\ n \end{array} \right]_i = \frac{[m]_i!}{[m-n]_i! [n]_i!}. \]

Let k be an algebraic closure of $\mathbb{C}(q)$ in $\cup_{m>0} \mathbb{C}((q^{1/m}))$.

Definition 2.1. The quantum affine algebra $U_q(g)$ associated with $(\mathbb{A}, \mathbb{P}, \Pi, \Pi^\vee)$ is the associative k-algebra generated by e_i, f_i $(i \in I)$ and q^h $(h \in \gamma^{-1}\mathbb{P}^\vee)$ satisfying following relations:

1. $q^0 = 1, q^h q^{h'} = q^{h+h'}$ for $h, h' \in \gamma^{-1}\mathbb{P}^\vee$,
2. $q^h e_i q^{-h} = q^{(h, \alpha_i)} e_i, \quad q^h f_i q^{-h} = q^{-(h, \alpha_i)} f_i$ for $h \in \gamma^{-1}\mathbb{P}^\vee, i \in I$,
3. $e_i f_j - f_j e_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}$, where $K_i = q_i^{h_i}$,
4. $\sum_{k=0}^{1-a_{ij}} (-1)^k e_i^{(1-a_{ij}-k)} e_j^{(k)} = \sum_{k=0}^{1-a_{ij}} (-1)^k f_i^{(1-a_{ij}-k)} f_j^{(k)} = 0$ for $i \neq j$.

where $e_i^{(k)} = e_i^k / [k]_i!$ and $f_i^{(k)} = f_i^k / [k]_i!$.

We denote by $U_q'(g)$ the subalgebra of $U_q(g)$ generated by $e_i, f_i, K_i^{\pm 1}$ $(i \in I)$ and call it also the quantum affine algebra.

We call $P_{cl} := \mathbb{P} / \mathbb{Z} \delta$ the classical weight lattice. For $cl : \mathbb{P} \to P_{cl}$ the canonical projection, we have
\[P_{cl} = \bigoplus_{i \in I} \mathbb{Z} \mathcal{L} \mathcal{L}(A_i) \quad \text{and} \quad P_{cl}^\vee := \text{Hom}(P_{cl}, \mathbb{Z}) = \{ h \in P_{cl}^\vee \mid \langle h, \delta \rangle = 0 \} = \bigoplus_{i \in I} \mathbb{Z} h_i. \]

Set $\Pi_{cl} = cl(\Pi)$ and $\Pi_{cl}^\vee = \{ h_0, \ldots, h_n \}$. Then we can regard $U_q'(g)$ as the quantum affine algebra associated with the classical affine Cartan datum $(\mathbb{A}, P_{cl}, \Pi_{cl}, \Pi_{cl}^\vee)$.
Set
\[\omega_i = \gcd(c_0, c_i)^{-1}(c_0 \Lambda_i - c_i \Lambda_0) \in P \quad \text{for } i \in I_0. \]

Then \{\text{cl} (\omega_i) \mid i \in I_0\} forms a basis of \(P_{\text{cl}}^0 := \{\lambda \in P_{\text{cl}} \mid \langle c, \lambda \rangle = 0\}. \) The Weyl group \(W_0 \) of \(\mathfrak{g}_0 \) acts on \(P_{\text{cl}}^0 \) (Prop. 1.2).

For \(i \in I_0 \), there exists a unique simple \(U'_q(\mathfrak{g}) \)-module \(V(\omega_i) \) (up to an isomorphism), called the \(i \)th fundamental module, satisfying the certain properties (Prop. 1.3). Moreover, there exist the left dual \(V(\omega_i)^* \) and the right dual \(\ast V(\omega_i) \) of \(V(\omega_i) \) with the following \(U'_q(\mathfrak{g}) \)-homomorphisms
\[
(2.1) \quad V(\omega_i)^* \otimes V(\omega_i) \xrightarrow{\text{tr}} k \quad \text{and} \quad V(\omega_i) \otimes \ast V(\omega_i) \xrightarrow{\text{tr}} k
\]
where
\[
(2.2) \quad V(\omega_i)^* := V(\omega_i)^{\ast(p_i - 1)} \quad \ast V(\omega_i) := V(\omega_i)^{p_i} \quad \text{and} \quad p_i := (-1)^{\langle \rho_i, \beta \rangle} q^{\langle \rho_i, \delta \rangle}.
\]

Here \(\rho \) is defined by \(\langle h_i, \rho \rangle = 1 \) and \(\rho^\vee \) is defined by \(\langle \rho^\vee, \alpha_i \rangle = 1 \) for all \(i \in I \) (see Prop. 1.3).

We say that a \(U'_q(\mathfrak{g}) \)-module \(M \) is good if it has a bar involution, a crystal basis with simple crystal graph, and a global basis (see [33] for precise definitions). For instance, every fundamental module is a good module. Note that every good module is a simple \(U'_q(\mathfrak{g}) \)-module.

Definition 2.2. [32] (see also [28] §3.3) Let \(Q \) be a Dynkin quiver of finite type \(A_n \) (resp. \(D_n \)) and \(U'_q(\mathfrak{g}) \) be the quantum affine algebra of type \(A_n^{(1)} \) (resp. \(D_n^{(1)} \)). For any positive root \(\beta \) contained in \(\Phi_n^+ \) associated to \(\mathfrak{g}_0 \), we set the \(U'_q(\mathfrak{g}) \)-module \(V_Q(\beta) \) defined as follows:
\[
(2.3) \quad V_Q(\beta) := V(\omega_i)^{(-q)^p} \quad \text{where} \quad \phi^{-1}(\beta, 0) = (i, p).
\]

We define the smallest abelian full subcategory \(\mathcal{C}_Q^{(1)} \) consisting of finite dimensional integrable \(U'_q(\mathfrak{g}) \)-modules such that
(a) it is stable by taking subquotient, tensor product and extension,
(b) it contains \(V_Q(\beta) \) for all \(\beta \in \Phi_n^+ \).

For the rest of this subsection, we briefly recall the morphisms between \(U'_q(A_n^{(1)}) \)-modules \((t = 1, 2)\)
\[
V(\omega)_a \otimes V(\omega)_b \quad \text{and} \quad V(\omega)_c.
\]

These kinds of morphisms are known as Dorey’s type morphisms and well-studied for the classical untwisted quantum affine algebras of types \(A_n^{(1)}, B_n^{(1)}, C_n^{(1)} \) and \(D_n^{(1)} \) in [44]. Recently, the author investigated such morphisms for the classical twisted quantum affine algebras of types \(A_{2n-1}^{(2)}, A_{2n}^{(2)} \) and \(D_{n+1}^{(2)} \) in [44].
Theorem 2.3. [14 Theorem 6.1] Let $U'_q(\mathfrak{g})$ be the affine algebra of type $A_n^{(1)}$. For $1 \leq i, j, k \leq n$ and $a, b, c \in \mathbb{Z}$,

$$\text{Hom}_{U'_q(\mathfrak{g})}(V(\varpi_i)(-q)^a \otimes V(\varpi_j)(-q)^b, V(\varpi_k)(-q)^c) \neq 0$$

if and only if one of the following holds:

(i) $i + j \leq n$, $i + j = k$, $a - c = -j$ and $b - c = i$,

(ii) $i + j > n$, $k = i + j - n - 1$, $c - a = -n - 1 + j$ and $b - a = n + 1 - i$.

In this paper, we denote the $D_3^{(2)}$ in [25] by $A_3^{(2)}$ with the following enumeration on Dynkin diagram:

![Dynkin Diagram](image)

Theorem 2.4. [44 Theorem 3.5, Theorem 3.9]

(a) For $i + j = k \leq n$, there exists a surjective $U'_q(A_{2n-1}^{(2)})$-module (resp. $U'_q(A_{2n}^{(2)})$-module) homomorphism

$$p_{i,j} : V(\varpi_i)(-q)^a \otimes V(\varpi_j)(-q)^b \twoheadrightarrow V(\varpi_k).$$

(b) There exists a surjective $U'_q(A_{2n}^{(2)})$-module homomorphism

$$p_{1,n} : V(\varpi_n)(-q)^{-1} \otimes V(\varpi_1)(-q)^n \twoheadrightarrow V(\varpi_n).$$

2.2. The denominators of normalized R-matrices. For good modules M and N, we have an intertwiner between $U'_q(\mathfrak{g})$-modules

$$R_{M,N}^{\text{norm}} : M_{\text{aff}} \otimes N_{\text{aff}} \rightarrow k(z_M, z_N) \otimes k[z_M^{-1}, z_N^{-1}] N_{\text{aff}} \otimes M_{\text{aff}}$$

which satisfies

$$R_{M,N}^{\text{norm}} \circ z_M = z_M \circ R_{M,N}^{\text{norm}}, \quad R_{M,N}^{\text{norm}} \circ z_N = z_N \circ R_{M,N}^{\text{norm}} \quad \text{and} \quad R_{M,N}^{\text{norm}}(v_M \otimes v_N) = v_N \otimes v_M.$$

Here M_{aff} is the affinization of M and z_M is the $U'_q(\mathfrak{g})$-automorphism of M_{aff} of weight δ.

We call $R_{M,N}^{\text{norm}}$ the normalized R-matrix.

Note that

$$R_{M,N}^{\text{norm}}(M_{\text{aff}} \otimes N_{\text{aff}}) \subset k(z_N/z_M) \otimes k[z_N/z_M, z_M] \otimes k[z_N/z_M] N_{\text{aff}} \otimes M_{\text{aff}}$$

and there exists a unique monic polynomial $d_{M,N}(u) \in k[u]$ such that

$$d_{M,N}(z_N/z_M) R_{M,N}^{\text{norm}}(M_{\text{aff}} \otimes N_{\text{aff}}) \subset (N_{\text{aff}} \otimes M_{\text{aff}}).$$

We call $d_{M,N}(u)$ the denominator of $R_{M,N}^{\text{norm}}$.

Theorem 2.5. [1] [35]
(1) For good modules M_1 and M_2, the zeros of $d_{M_1,M_2}(z)$ belong to $\mathbb{C}[q^{1/m}]$ for some $m \in \mathbb{Z}_{>0}$.
(2) $V(\varpi_i)_{a_i} \otimes V(\varpi_j)_{a_j}$ remains simple if and only if
\[
d_{i,j}(z) := d_{V(\varpi_i),V(\varpi_j)}(z)
\]
does not have zeros at $z = a_i/a_j$ or a_j/a_i.
(3) Let M be a finite dimensional simple integrable $U'_q(\mathfrak{g})$-module M. Then, there exists a finite sequence
\[
((i_1,a_1), \ldots, (i_l,a_l)) \text{ in } (I_0 \times k^X)^l
\]
such that $d_{i_k,i_{k'}}(a_{k'}/a_k) \neq 0$ for $1 \leq k < k' \leq l$ and M is isomorphic to the head of $\bigotimes_{i=1}^l V(\varpi_k)_{a_k}$. Moreover, such a sequence $((i_1,a_1), \ldots, (i_l,a_l))$ is unique up to permutation.

Thus the information on zeros of denominators between fundamental modules is crucial to investigate the finite dimensional integrable $U'_q(\mathfrak{g})$-modules. The denominators between fundamental modules are calculated in [11, 16, 28, 44] for all classical quantum affine algebras.

Theorem 2.6. [16, 44] For $1 \leq k, l \leq n$, we have
\[
d_{k,l}(z) = \prod_{s=1}^{\min(k,l,n+1-k,n+1-l)} (z - (-q)^{2s+|k-l|}) \quad \text{if } \mathfrak{g} = A_n^{(1)},
\]
\[
d_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z - (-q)^{2s+|k-l|})(z - (p^*)^2 - (-q)^{2s+k-l}) \quad \text{if } \mathfrak{g} = A_{2n-1}^{(2)} \text{ or } A_{2n}^{(2)}.
\]

2.3. Quiver Hecke algebras and their finite dimensional modules. We now recall the definition of the quiver Hecke algebra. Let I be an index set and k be a field. For any symmetrizable Cartan datum (A, P, Π, Π'), $Q_{i,j}(u,v) \in k[u,v]$ $(i,j \in I)$ denote polynomials satisfying the following conditions:

\[
Q_{i,j}(u,v) = \begin{cases}
\sum (\alpha_i,\alpha_j) p^{(\alpha_i,\alpha_j)} = -2(\alpha_i,\alpha_j) t_{i,j;p,q} u^p v^q & \text{if } i \neq j, \\
0 & \text{if } i = j,
\end{cases}
\]
where $t_{i,j;p,q} = t_{j,i;q,p} \in k$ and $t_{i,j;-a_i,0} \neq 0$. Thus we have $Q_{i,j}(u,v) = Q_{j,i}(v,u)$. Note that the symmetric group on m-letters, $S_m = \langle s_1, s_2, \ldots, s_{m-1} \rangle$, acts on I^m by place permutations.

Definition 2.7. [38, 39, 48] The quiver Hecke algebra $R(m)$ associated with polynomials $(Q_{i,j}(u,v))_{i,j \in I}$ is the \mathbb{Z}-graded k-algebra defined by three sets of generators
\[
\{ e(\nu) \mid \nu = (\nu_1, \ldots, \nu_m) \in I^m \}, \{ x_k \mid 1 \leq k \leq m \}, \{ \tau_l \mid 1 \leq l \leq m-1 \}
\]
satisfying the following relations:

\[e(\nu)e(\nu') = \delta_{\nu,\nu'}e(\nu), \quad \sum_{\nu \in I^m} e(\nu) = 1, \quad x_k e(\nu) = e(\nu)x_k, \quad x_k x_l = x_l x_k, \]

\[\tau_l e(\nu) = e(\beta_l(\nu))\tau_l, \quad \tau_k \tau_l = \tau_l \tau_k \text{ if } |k - l| > 1, \quad \tau_k^2 e(\nu) = Q_{\nu_k,\nu_{k+1}}(x_k, x_{k+1}) e(\nu), \]

\[(\tau_k x_l - x_{\beta_k(l)} \tau_k) e(\nu) = \begin{cases} -e(\nu) & \text{if } l = k \text{ and } \nu_k = \nu_{k+1}, \\ e(\nu) & \text{if } l = k + 1 \text{ and } \nu_k = \nu_{k+1}, \\ 0 & \text{otherwise}, \end{cases} \]

\[(\tau_{k+1} \tau_k \tau_{k+1} - \tau_k \tau_{k+1} \tau_k) e(\nu) = \delta_{\nu_k,\nu_{k+1}} \frac{Q_{\nu_k,\nu_{k+1}}(x_k, x_{k+1}) - Q_{\nu_k,\nu_{k+1}}(x_{k+2}, x_{k+1})}{x_k - x_{k+2}} e(\nu). \]

By assigning \(\mathbb{Z} \)-grading on generator as below, \(R(m) \) becomes \(\mathbb{Z} \)-graded:

\[\deg(e(\nu)) = 0, \quad \deg(x_k e(\nu)) = (\alpha_{\nu_k}, \alpha_{\nu_k}), \quad \deg(\tau_l e(\nu)) = - (\alpha_{\nu_l}, \alpha_{\nu_{l+1}}). \]

We denote the direct sum of the Grothendieck groups of the categories \(\text{Rep}(R(m)) \) of finite dimensional graded \(R(m) \)-modules by

\[[\text{Rep}(R)] = \bigoplus_{m \in \mathbb{Z}_{\geq 0}} [\text{Rep}(R(m))]. \]

Note that \([\text{Rep}(R)]\) has a free \(\mathbb{A} = \mathbb{Z}[q, q^{-1}] \)-module structure induced from the \(\mathbb{Z} \)-grading on \(R(m) \), i.e. \((q M)_k = M_{k-1}\) for a graded module \(M = \bigoplus_{k \in \mathbb{Z}} M_k \).

For \(m, n \in \mathbb{Z}_{\geq 0} \), let

\[R(m) \otimes R(n) \to R(m + n) \]

be the \(k \)-algebra homomorphism given by \(e(\mu) \otimes e(\nu) \mapsto e(\mu \ast \nu) \) (\(\mu \in I^m, \nu \in I^n \)), \(x_k \otimes 1 \mapsto x_k \) (\(1 \leq k \leq m \)), \(1 \otimes x_k \mapsto x_{m+k} \) (\(1 \leq k \leq n \)), \(\tau_k \otimes 1 \mapsto \tau_k \) (\(1 \leq k < n \)), \(1 \otimes \tau_k \mapsto \tau_{m+k} \) (\(1 \leq k < n \)), where \(\mu \ast \nu \) denotes the concatenation of \(\mu \) and \(\nu \).

For an \(R(m) \)-module \(M \) and an \(R(n) \)-module \(N \), the induced \(R(m + n) \)-module

\[M \circ N := R(m + n) \otimes_{R(m) \otimes R(n)} (M \otimes N) \]

is called the convolution product of \(M \) and \(N \). For \(M \in \text{Rep}(m) \), \(M_k \in \text{Rep}(m_k) \) (\(k = 1, \ldots, n \)) and \(r \in \mathbb{Z}_{>0} \), let

\[M^{o_0} = k, \quad M^{o_r} = \bigcirc_{k=1}^n M_k = M_1 \circ \cdots \circ M_n. \]

For \(\beta \in \mathbb{Q}^+ \) with \(\mid \beta \mid = m \), we define \(I^\beta \) and \(e(\beta) \) as follows:

\[I^\beta = \{ \nu = (\nu_1, \ldots, \nu_m) \in I^m \mid \alpha_{\nu_1} + \cdots + \alpha_{\nu_m} = \beta \} \quad \text{and} \quad e(\beta) = \sum_{\nu \in I^\beta} e(\nu). \]
Then $e(\beta)$ becomes a central idempotent. We define the subalgebra $R(\beta)$ of $R(m)$ by

$$R(\beta) := R(m)e(\beta)$$

and call it the quiver Hecke algebra at β.

Theorem 2.8. [38, 39, 48] For any symmetrizable Cartan datum (A, P, Π, Π'), take $(Q_{i,j}(u, v))_{i,j \in \mathcal{I}}$ satisfying (2.10). Then there exists an A-algebra isomorphism

$$U_{A}^{-}(\mathfrak{g})^{\vee} \simeq [\text{Rep}(R)]$$

where the multiplication of $[\text{Rep}(R)]$ is given by the convolution product.

For a module M, we denote by $\text{hd}(M)$ the head of M and $\text{soc}(M)$ the socle of M, respectively.

Theorem 2.9. [12, Theorem 4.7] (see also 37, 40) For a finite simple Lie algebra \mathfrak{g}_{0}, fix an equivalence class $[\tilde{w}_{0}]$ of reduced expression of w_{0} and take any reduced expression \tilde{w}_{0} in the class $[\tilde{w}_{0}]$. We fix a convex total order $\leq \tilde{w}_{0}$ induced from the reduced expression \tilde{w}_{0} (see (1.10)).

Let R be the quiver Hecke algebra corresponding to \mathfrak{g}_{0}. For each positive root $\beta \in \Phi_{R}^{+}$, there exists a simple module $S_{\tilde{w}_{0}}(\beta)$ such that

(a) for all $m \in \mathbb{Z}_{\geq 0}$, $S_{\tilde{w}_{0}}(\beta)^{\otimes m}$ is simple,

(b) for every $m = (m_{1}, \cdots, m_{\mathcal{N}}) \in \mathbb{Z}_{\geq 0}^{\mathcal{N}}$, there exists a non-zero R-module homomorphism

$$r_{m} : S_{\tilde{w}_{0}}(m) := S_{\tilde{w}_{0}}(\beta_{1})^{\otimes m_{1}} \circ \cdots \circ S_{\tilde{w}_{0}}(\beta_{\mathcal{N}})^{\otimes m_{\mathcal{N}}}$$

$$\rightarrow S_{\tilde{w}_{0}}(m) := S_{\tilde{w}_{0}}(\beta_{\mathcal{N}})^{\otimes m_{\mathcal{N}}} \circ \cdots \circ S_{\tilde{w}_{0}}(\beta_{1})^{\otimes m_{1}}$$

and $\text{Im}(r_{m}) \simeq \text{hd}\left(S_{\tilde{w}_{0}}(m)\right)$ is simple.

(c) for every simple R-module M, there exists a unique sequence $m \in \mathbb{Z}_{\geq 0}^{\mathcal{N}}$ such that $M \simeq \text{Im}(r_{m}) \simeq \text{hd}(S_{\tilde{w}_{0}}(m))$.

(d) for any minimal pair (β_{k}, β_{l}) of $\beta_{j} = \beta_{k} + \beta_{l}$ with respect to the convex total order $< \tilde{w}_{0}$, there exists an exact sequence

$$0 \rightarrow S_{\tilde{w}_{0}}(\beta_{j}) \rightarrow S_{\tilde{w}_{0}}(\beta_{k}) \circ S_{\tilde{w}_{0}}(\beta_{l}) \xrightarrow{r_{m}} S_{\tilde{w}_{0}}(\beta_{l}) \circ S_{\tilde{w}_{0}}(\beta_{k}) \rightarrow S_{\tilde{w}_{0}}(\beta_{j}) \rightarrow 0,$$

where $m \in \mathbb{Z}_{\geq 0}^{\mathcal{N}}$ such that $m_{k} = m_{l} = 1$ and $m_{i} = 0$ for all $i \neq k, l$.

Remark 2.10. (i) In this paper, we use the module of $S_{\tilde{w}_{0}}(\beta)$ in [28]. Thus the statement (c) of the above theorem is different from [12, Theorem 2.9] even though we use the same convention $\leq \tilde{w}_{0}$ for the convex total order induced from \tilde{w}_{0} (see [28, Remark 4.3.3]).
(ii) For a minimal pair \((\beta_k, \beta_l)\) of \(\beta_j\) with respect to \(\langle w_0 \rangle\), the statement (d) of the above theorem tells that the modules \(S_{\tilde{w}_0}(\beta_k) \circ S_{\tilde{w}_0}(\beta_l)\) and \(S_{\tilde{w}_0}(\beta_l) \circ S_{\tilde{w}_0}(\beta_k)\) have composition length 2.

(iii) For any pair of reduced expressions \(\tilde{w}_0\) and \(\tilde{w}_0'\) of \(w_0\) which are adapted to \(Q\), we have
\[
S_{\tilde{w}_0}(\beta) \cong S_{\tilde{w}_0'}(\beta)
\]
for all \(\beta \in \Phi^+_n\), by (1.11) and Theorem 2.9 (d). Thus we denote by \(S_Q(\beta)\) the simple \(R(\beta)\)-module \(S_{\tilde{w}_0}(\beta)\) for any reduced expression \(\tilde{w}_0\) adapted to \(Q\).

Definition 2.11. We say the quiver Hecke algebra \(R(\beta)\) at \(\beta\) is symmetric if \(Q_{i,j}(u,v)\) is a polynomial in \(u - v\) for all \(i,j \in \text{supp}(\beta)\). Here
\[
\text{supp}(\beta) := \{j \in I \mid a_j \neq 0 \text{ where } \beta = \sum_{j \in I} a_j \alpha_j\}.
\]

2.4. The generalized quantum affine Schur-Weyl duality functors. Now we shortly review the generalized quantum affine Schur-Weyl duality functors which were studied in [27, 28].

Let \(S\) be an index set and \(\{V_s\}_{s \in S}\) be a family of good \(U'_q(g)\)-modules indexed by \(S\).

Assume that we have a triple \((J,X,s)\) consisting of an index set \(J\) and two maps \(X : J \to k^\times, s : J \to S\). For a given \((J,X,s)\) and \(\{V_s\}_{s \in S}\), we define a quiver \(Q^J = (Q^J_{i,j}(u,v))\) by observing the order of zeros of denominator as follows:

1. \(Q^J_0 = J\).
2. For \(i,j \in J\), we put \(d_{ij}\) many arrows from \(i\) to \(j\), where \(d_{ij}\) is the order of the zero of \(d_{V_s(i),V_s(j)}(z_2/z_1)\) at \(X(j)/X(i)\).

For a quiver \(Q^J\), we can associate
- a symmetric Cartan matrix \(A^J = (a^J_{ij})_{i,j \in J}\) by
\[
a^J_{ij} = 2 \quad \text{if } i = j, \quad a^J_{ij} = -d_{ij} - d_{ji} \quad \text{if } i \neq j,
\]
- the set of polynomials \((Q^J_{i,j}(u,v))_{i,j \in I}\)
\[
Q^J_{i,j}(u,v) = (u - v)^{d_{ij}}(v - u)^{d_{ji}} \quad \text{if } i \neq j.
\]

We denote by \(R_J\) the symmetric quiver Hecke algebra associated with \((Q^J_{i,j}(u,v))_{i,j \in I}\).

Theorem 2.12. [27] There exists a functor
\[
\mathcal{F} : \text{Rep}(R_J) \to \mathcal{C}_g
\]
where \(\mathcal{C}_g\) denotes the category of finite-dimensional integrable \(U'_q(g)\)-modules. Moreover, the functor enjoys the following properties:
(a) \(\mathcal{F} \) is a tensor functor; that is, there exist \(U'_q(\mathfrak{g}) \)-module isomorphisms
\[
\mathcal{F}(R_J(0)) \simeq k \quad \text{and} \quad \mathcal{F}(M_1 \circ M_2) \simeq \mathcal{F}(M_1) \otimes \mathcal{F}(M_2)
\]
for any \(M_1, M_2 \in \text{Rep}(R_J) \).

(b) If the underlying graph of \(Q^J \) is a Dynkin diagram of finite type \(A, D \) or \(E \), then the functor \(\mathcal{F} \) is exact.

We call the functor \(\mathcal{F} \) the generalized quantum affine Schur-Weyl duality functor.

Theorem 2.13. [28] Let \(\mathfrak{g} \) be an affine Kac-Moody algebra of type \(A_n^{(1)} \) (resp. \(D_n^{(1)} \)) and \(Q \) be a quiver whose underlying graph is a Dynkin diagram of finite type \(A_n \) (resp. \(D_n \)). Set
\[
J := \{ (i,p) \in \mathbb{Z}Q \mid \phi(i,p) \in \Pi_n \times \{0\} \},
\]
where the map is given in (1.2). We define two maps \(s : J \to \{ V(\varpi_i) \mid i \in I_0 \} \) and \(X : J \to k^\times \) as
\[
s(i,p) = V(\varpi_i) \quad \text{and} \quad X(i,p) = (-q)^p \quad \text{for} \quad (i,p) \in J.
\]

(a) The underlying graph of the quiver \(Q^J \) associated to \((J,X,s) \) is of finite type \(A_n \) (resp. \(D_n \)). Hence the functor
\[
\mathcal{F}_{Q}^{(1)} : \text{Rep}(R_J) \to \mathcal{C}_{Q}^{(1)}
\]

in Theorem 2.12 is exact.

(b) The functor \(\mathcal{F}_{Q}^{(1)} \) sends simples to simples, bijectively. In particular, \(\mathcal{F}_{Q}^{(1)} \) sends \(S_{Q}(\beta) \) to \(V_{Q}(\beta) \).

Remark 2.14. In Theorem 4.9, we will provide an alternative proof of (a) in the above theorem by using only the results in this paper. In [28], the authors of [28] used the result of [22] to prove (a) in the above theorem.

3. **Dorey’s rules and minimal pair**

In this section, we prove that \(\Gamma_Q \) encodes the information of the Dorey’s type morphisms for \(U'_q(\mathfrak{g}) \), and all pair \((\alpha, \beta) \) of \(\gamma \in \Phi_n^+ \) are minimal with suitable convex total orders, which is compatible with respect to the convex partial order \(\preceq_Q \).

Definition 3.1. Let \(\beta \) be a vertex in \(\Gamma_Q \). (Equivalently, \(\beta \in \Phi_n^+ \).

(a) The upper ray of \(\beta \) is the path consisting of one \(S \)-sectional path and one \(N \)-sectional path satisfying the following properties:

- \(S_1 \to \cdots S_{a-1} \to S_a = \beta = N_b \to N_{b-1} \to N_1 \),
there is no vertex \(S_0 \in \Gamma_Q \) such that \(S_0 \rightarrow S_1 \) is an \(S \)-sectional path in \(\Gamma_Q \),

there is no vertex \(N_0 \in \Gamma_Q \) such that \(N_1 \rightarrow N_0 \) is an \(N \)-sectional path in \(\Gamma_Q \).

(b) The lower ray of \(\beta \) is the path consisting of one \(S \)-sectional path and one \(N \)-sectional path satisfying the following properties:

- There is no vertex \(N_0 \in \Gamma_Q \) such that \(N_1 \rightarrow N_0 \) is an \(N \)-sectional path in \(\Gamma_Q \),
- there is no vertex \(S_0 \in \Gamma_Q \) such that \(S_1 \rightarrow S_0 \) is an \(S \)-sectional path in \(\Gamma_Q \).

In Example 1.5 the upper ray and the lower ray of \([1, 4]\) can be described as follows:

\[
\begin{array}{c}
[4] \\
[2, 4] \rightarrow [1, 3] \rightarrow [1, 5] \rightarrow [3, 4] \\
[1, 4] \rightarrow [1, 2]
\end{array}
\]

Theorem 3.2. For every pair \((\alpha, \beta) \) of \(\alpha + \beta = \gamma \in \Phi_n^+ \), we write

\[
\phi_1^{-1}(\alpha) = i_\alpha, \quad \phi_1^{-1}(\beta) = i_\beta \quad \text{and} \quad \phi_1^{-1}(\gamma) = i_\gamma.
\]

Then we have

\[
i_\alpha + i_\beta = i_\gamma \quad \text{or} \quad (n + 1 - i_\alpha) + (n + 1 - i_\beta) = (n + 1 - i_\gamma).
\]

Proof. We write \(\gamma = [a, b] \). By Corollary 1.13 the pair \((\alpha, \beta) \) is contained in the upper ray of \([a, b]\) or the lower ray of \([a, b]\). Assume that it is contained in the upper ray; that is, there exists \(a \leq c \leq b \) such that \(\alpha = [a, c] \) and \(\beta = [c + 1, b] \). Using (1.6), Theorem 1.11 and Remark 1.14, the situation in \(\Gamma_Q \) can be described as follows:

By Theorem 1.11 and Remark 1.14 \(\kappa_u = [e, c] \) \((e \leq c)\) and \(\kappa_w = [c + 1, f] \) \((c + 1 \leq f)\). Then Corollary 1.15(a) tells that \(w = u + 1 \) and hence \(\ell = 1 \). Thus we can conclude

\[
i_\alpha = i_\gamma - i_\beta + 1 - \ell = i_\gamma - i_\beta
\]
which implies our first assertion. If a pair \((\alpha, \beta)\) of \(\gamma \in \Phi^+_n\) is contained in the lower ray of \(\beta_2\), then one can prove our second assertion by applying a similar argument. \(\square\)

Remark 3.3. Using the above theorem, we can observe the following: For pairs \((\alpha, \beta), (\alpha', \beta')\) such that \(\alpha + \beta = \alpha' + \beta' = \gamma \in \Phi^+_n\) and they are contained in the upper ray (resp. lower ray) of \(\gamma\) together, the number of edges between \(\alpha\) and \(\beta\) in the upper ray (resp. lower ray) coincides with the one between \(\alpha'\) and \(\beta'\).

Now we show that every pair \((\alpha, \beta)\) of \(\alpha + \beta = \gamma \in \Phi^+_n\) is indeed a minimal pair with respect to a suitable convex total order compatible with the convex partial order \(\leq_Q\).

Theorem 3.4. For every pair \((\alpha, \beta)\) of \(\alpha + \beta = \gamma\), there is a convex total order \(<\) such that

(a) it is compatible with the convex partial order \(\leq_Q\),

(b) \((\alpha, \beta)\) is a minimal pair of \(\gamma\) with respect to the convex total order.

Proof. As we observed, all pair \((\alpha, \beta)\) of \(\gamma\) is located in the upper ray of \(\gamma\) or lower ray of \(\gamma\). Assume that \((\alpha, \beta)\) is in the upper ray. Take any pair \((\alpha', \beta')\) of \(\gamma\).

(i) If \((\alpha', \beta')\) is also contained in the upper ray of \(\gamma\), the observation in Remark 3.3 tells that we have one of the following two situations in \(\Gamma_Q\):

Thus, with respect to the total convex order \(<^U_Q\) in Remark 1.3, we have

\[\alpha <^U_Q \alpha' <^U_Q \gamma <^U_Q \beta <^U_Q \beta' \text{ or } \alpha' <^U_Q \alpha <^U_Q \gamma <^U_Q \beta' <^U_Q \beta.\]

(ii) Assume that \((\alpha', \beta')\) is contained in the lower ray of \(\gamma\). Then the situation can be expressed as follows:

Hence, with respect to the total convex order \(<^U_Q\) in Remark 1.3, we have

\[\alpha' <^U_Q \alpha <^U_Q \gamma <^U_Q \beta' <^U_Q \beta.\]

By (i) and (ii), we can conclude that every pair \((\alpha, \beta)\) in the upper ray becomes minimal with respect to the total convex order \(<^U_Q\). In the similar way, one can see that every pair \((\alpha, \beta)\) in the lower ray becomes minimal with respect to the total convex order \(<^L_Q\). \(\square\)
For the rest of this paper, we say that a pair \((\alpha, \beta)\) is minimal when \(\alpha + \beta \in \Phi_n^+\) and the pair is a minimal pair with respect to a suitable convex total order which is induced by some reduced expression \(\tilde{w}_0\) adapted to \(Q\).

Corollary 3.5.
(a) For every pair \((\alpha, \beta)\) of \(\alpha + \beta = \gamma \in \Phi_n^+\), we have a surjection

\[
S_Q(\beta) \circ S_Q(\alpha) \twoheadrightarrow S_Q(\gamma) \quad \text{in } \text{Rep}(R_{A_n}).
\]

Hence we have a surjection

\[
V_Q(\beta) \otimes V_Q(\alpha) \twoheadrightarrow V_Q(\gamma) \quad \text{in } \mathcal{C}_Q^{(1)}.
\]

(b) For every positive root \(\beta \in \Phi_n^+\), there exists a sequence \((i_1, i_2, \cdots, i_{|\beta|}) \in I^{|\beta|}_0\) such that

\[
\bigotimes_{t=1}^{|\beta|} V_Q(\alpha_{i_t}) \twoheadrightarrow V_Q(\beta).
\]

Proof. Note that for a minimal pair \((\alpha, \beta)\) of \(\alpha + \beta = \gamma\) with respect to some convex total order \(\leq \tilde{w}_0\), Theorem 2.9 (d) guarantees the existence of (3.1) in \text{Rep}(R_{A_n}).

On the other hand, Theorem 3.4 tells that, for every pair \((\alpha, \beta)\) of \(\gamma\), there exists a reduced expression \(\tilde{w}'_0\) adapted to \(Q\) such that the pair is minimal with respect to the total order \(\leq \tilde{w}'_0\). Thus our first assertion for \text{Rep}(R_{A_n}) follows.

Recall that the functor \(F_Q^{(1)}\) sends simples to simples. Thus \(F_Q^{(1)}(\text{Im}(f))\) is non-zero for any non-zero homomorphism \(f\) in \text{Rep}(R_{A_n}); i.e., \(F_Q^{(1)}\) is faithful. Then our first assertion for \(\mathcal{C}_Q^{(1)}\) follows since \(F_Q^{(1)}\) is a tensor functor sending \(S_Q(\beta)\) to \(V_Q(\beta)\). The existence of (3.2) is also guaranteed by Theorem 2.3 and Theorem 3.2.

The second assertion follows from the first assertion. \(\square\)

From Corollary 3.5 (b), the condition (b) in Definition 2.2 can be modified as follows:

(b') It contains \(V_Q(\alpha_k)\) for all \(\alpha_k \in \Pi_n\).

Corollary 3.6. For \(\phi^{-1}(\alpha, 0) = (i, a), \phi^{-1}(\beta, 0) = (j, b)\), assume that \((k, c) \in \Gamma_Q\) such that the triple \(\{(i, a), (j, b), (k, c)\}\) satisfies the one of the condition (i) and (ii) in Theorem 2.5. Then we have

\[
\gamma := \phi(k, c) = \alpha + \beta.
\]

Proof. By assumption, \(\alpha, \beta\) are contained in the upper ray or lower ray of \(\gamma\), respectively. Applying the argument in Theorem 3.2 one can prove the assertion. \(\square\)

Recall Example 1.5.
(i) Using the reading in Remark 3.3 (A), the reduced expression \(\tilde{w}_0 \) of \(w_0 \) associated to the reading is
\[
\tilde{w}_0 = s_1 s_3 s_2 s_1 s_4 s_3 s_2 s_1 s_5 s_4 s_3 s_2 s_1 s_5 s_4
\]
and the convex total order on \(\Phi_0^+ \) is given as follows:
\[
[1] < \tilde{w}_0 [3] < \tilde{w}_0 [1,3] < \tilde{w}_0 [2,3] < \tilde{w}_0 [3,4] < \tilde{w}_0 [1,4] < \tilde{w}_0 [2,4] < \tilde{w}_0 [4] \\
< \tilde{w}_0 [3,5] < \tilde{w}_0 [1,5] < \tilde{w}_0 [2,5] < \tilde{w}_0 [4,5] < \tilde{w}_0 [5] < \tilde{w}_0 [1,2] < \tilde{w}_0 [2].
\]
With this convex total order, one can observe that every pair in lower rays becomes minimal.

(ii) Using the reading in Remark 3.3 (B), the reduced expression \(\tilde{w}'_0 \) of \(w_0 \) associated to the reading is
\[
\tilde{w}'_0 = s_3 s_4 s_5 s_1 s_2 s_3 s_4 s_5 s_2 s_3 s_4 s_1 s_2 s_1
\]
and the convex total order on \(\Phi_0^+ \) is given as follows:
\[
[3] < \tilde{w}'_0 [3,4] < \tilde{w}'_0 [3,5] < \tilde{w}'_0 [1] < \tilde{w}'_0 [1,3] < \tilde{w}'_0 [1,4] < \tilde{w}'_0 [1,5] < \tilde{w}'_0 [1,2] \\
< \tilde{w}'_0 [2,3] < \tilde{w}'_0 [2,4] < \tilde{w}'_0 [2,5] < \tilde{w}'_0 [2] < \tilde{w}'_0 [4] < \tilde{w}'_0 [4,5] < \tilde{w}'_0 [5].
\]
With this convex total order, one can observe that every pair in upper rays becomes minimal.

Corollary 3.7. For every pair \((\alpha, \beta)\) of \(\alpha + \beta \in \Phi^+\),
\[
V_Q(\beta) \otimes V_Q(\alpha) \text{ and } S_Q(\beta) \circ S_Q(\alpha) \text{ are of length 2.}
\]

Proof. Since every pair \((\alpha, \beta)\) is minimal, our assertions follow from Theorem 2.13 (d) and Theorem 2.13 (b). \(\square\)

Remark 3.8. For a reduced expression of the longest element \(w_0 \) of \(A_5 \)
\[
\tilde{w}_0 = s_1 s_2 s_3 s_5 s_4 s_3 s_2 s_1 s_5 s_4 s_3 s_2 s_3,
\]
one can easily check that it is *not* adapted to any Dynkin quiver \(Q \) of type \(A_5 \). The convex total order induced by \(\tilde{w}_0 \) is given as follows:
\[
[1] < \tilde{w}_0 [1,2] < \tilde{w}_0 [1,3] < \tilde{w}_0 [5] < \tilde{w}_0 [1,5] < \tilde{w}_0 [4,5] < \tilde{w}_0 [2] < \tilde{w}_0 [2,5] \\
< \tilde{w}_0 [2,3] < \tilde{w}_0 [1,4] < \tilde{w}_0 [2,4] < \tilde{w}_0 [4] < \tilde{w}_0 [3,5] < \tilde{w}_0 [3,4] < \tilde{w}_0 [3].
\]

Thus the pair \(([1,2], [3,5])\) is not a minimal pair of \([1,5] \) with respect to \(<_0 \), since we have
\[
[1,2] < \tilde{w}_0 [1,3] < \tilde{w}_0 [1,5] < \tilde{w}_0 [4,5] < \tilde{w}_0 [3,5].
\]

One can compute that
\[
S_{\tilde{w}_0}([1,2]) = L(21); \quad S_{\tilde{w}_0}([1,3]) = L(321); \quad S_{\tilde{w}_0}([4,5]) = L(45); \quad S_{\tilde{w}_0}([3,5]) = L(345).\]
where $L(21)$, $L(321)$, $L(45)$ and $L(345)$ are 1-dimensional modules which are defined in the similar way of (4.1) below. Moreover, we have

- $L(345) \circ L(21)$ and $L(45) \circ L(321)$ have composition length 2,
- $\text{hd}(L(345) \circ L(21)) \simeq \text{soc}(L(45) \circ L(321))$ are simple.

Hence we can conclude that

$$\text{hd}(L(345) \circ L(21)) \not\simeq \text{hd}(L(45) \circ L(321)) \simeq S_{\tilde{w}_0}([1,5]),$$

by [29, Corollary 3.9].

4. Revisit of construction of exact sequences and simple modules.

In this section, we revisit the theories on construction of exact sequences and simple modules of R_{A_n} developed in [6, 12, 23, 28, 29, 32, 40, 43] by using the explicit description of Γ_Q in Section 1.

For $\beta = [a, b] \in \Phi^+_n$, we define a 1-dimensional simple $R_{A_n}(\beta)$-module $L(a, b) = ku(a, b)$ as follows:

$$x_m u(a, b) = 0 \ (1 \leq m \leq b - a + 1),$$

$$\tau_k u(a, b) = 0 \ (1 \leq k < b - a + 1),$$

$$e(\nu) u(a, b) = \begin{cases} u(a, b) & \text{if } \nu = (a, a + 1, \ldots, b), \\ 0 & \text{otherwise.} \end{cases}$$

(4.1)

Lemma 4.1. Fix a Dynkin quiver \tilde{Q} of type A_n, called the linear quiver, as follows:

(4.2)

For $\beta = [a, b] \in \Phi^+_n$, we have

$$S_{\tilde{Q}}(\beta) \simeq L(a, b).$$

Proof. By Lemma 1.7(a), we have

$$\phi^{-1}(\alpha_k, 0) = (n, \xi_n - 2(n-k)) \quad \text{for all } k \in I_0.$$
As is well-known, the shape of Γ_Q^n is given as follows:

\[
\begin{array}{c}
1 \rightarrow \cdots \rightarrow [1, n] \\
2 \rightarrow \cdots \rightarrow [1, n-1] \\
\vdots \\
n-1 \rightarrow [1, 2] \\
n \rightarrow [1] \\
\end{array}
\]

For a simple root β, it is trivial. By an induction hypothesis on a height $|\beta|$ and Corollary 3.5, we have $(c+1, b) < (a, c)$ and a surjection

\[L(a, c) \circ L(c+1, b) \rightarrow S_Q^-(\beta)\]

for $\beta = (a, b) \in \Phi_n^+$ with $|\beta| \geq 2$.

Since there is a canonical surjection

\[L(a, c) \circ L(c+1, b) \rightarrow L(a, b),\]

and $L(a, c) \circ L(c+1, b)$ has a unique simple head, our assertion follows.

Lemma 4.2. 32 For $[a_1, b_1], [a_2, b_2] \in \Phi_n^+$ with $a_1 = a_2$ or $b_1 = b_2$,

\[L(a_1, b_1) \circ L(a_2, b_2) \simeq L(a_2, b_2) \circ L(a_1, b_1)\]

is simple.

Now the following proposition can be regarded as a generalization of the above lemma.

Proposition 4.3. For any Dynkin quiver Q of type A_n and $\alpha = [a_1, b_1], \beta = [a_2, b_2] \in \Phi_n^+$ with $a_1 = a_2$ or $b_1 = b_2$,

\[S_Q^-(\alpha) \circ S_Q^-(\beta) \simeq S_Q^-(\beta) \circ S_Q^-(\alpha)\]

is simple.

Proof. By Remark 1.14 we have

\[|\phi_2^{-1}(\alpha) - \phi_2^{-1}(\beta)| = |\phi_1^{-1}(\alpha) - \phi_1^{-1}(\beta)|.\]

By (2.8) and Theorem 2.5 we have

\[V_Q^-(\alpha) \otimes V_Q^-(\beta) \simeq V_Q^-(\beta) \otimes V_Q^-(\alpha)\]

is simple.

Thus our assertion follows from Theorem 2.13.

Corollary 4.4. For any Dynkin quiver Q of type A_n and $\beta_k = [a_k, b_k] \in \Phi_n^+(k \in \mathbb{Z}_{>0})$, assume that $a_k = a_l$ (resp. $b_k = b_l$) for all $k \neq l$. Then we have

\[S_Q^-(\beta_1) \circ S_Q^-(\beta_2) \circ \cdots \circ S_Q^-(\beta_k)\]

is simple.

Proposition 4.5. Let Q be any Dynkin quiver of finite type A_n.
For a source or a sink i in Q, and $a \leq i \leq b$,
$$S_Q([a, i]) \circ S_Q([i, b]) \simeq S_Q([i, b]) \circ S_Q([a, i])$$
is simple.

(b) For a right intermediate or a left intermediate i in Q, and $a < i < b$
$$S_Q([a, i]) \circ S_Q([i, b]) \text{ and } S_Q([i, b]) \circ S_Q([a, i])$$
are reducible.

Proof. (a) Write $\phi^{-1}([i, b]) = (k, p)$ and $\phi^{-1}([a, i]) = (l, q)$. By Remark 1.14 (b-i) and (b-ii),
we have
$$|k - l| \geq |p - q|.$$ Hence, by (2.8),
$$d_{k, l}(z)$$
does not have a zero at $(-q)^{|p - q|}$. Thus
$$V_Q([a, i]) \otimes V_Q([i, b]) \simeq V_Q([i, b]) \otimes V_Q([a, i])$$
is simple,
which yields our first assertion.

(b) Assume that i is a left intermediate. By Remark 1.14, all positive root of the form $[i, b]$ or $[a, i]$ are contained in the following hook in Γ_Q:
$$\text{maximal (N, i)-sectional path} \quad N_{n-i+1} \rightarrow \cdots N_2 \rightarrow N_1 = [i] = S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_i \quad \text{maximal (S, i)-sectional path}.$$ Thus we can assume that $[i, b] = N_k$ ($2 \leq k \leq n - i + 1$) and $[a, i] = S_l$ ($2 \leq l \leq i$). Then we have
$$\phi^{-1}_i(N_k) = k, \quad \phi^{-1}_l(S_l) = l \quad \text{and} \quad \phi^{-1}_2(S_l) - \phi^{-1}_2(N_k) = k + l - 2.$$ In this case, one can check that
- $\min\{k, l, n + 1 - k, n + 1 - k\} = \min\{k, l\}$,
- $|k - l| + 2s = k + l - 2$ when $1 \leq s = \min\{k, l\} - 1$.

Thus
$$V_Q([a, i]) \otimes V_Q([i, b]) \text{ and } V_Q([i, b]) \otimes V_Q([a, i])$$
are reducible,
which yields our second assertion. The case for a right intermediate i, we can prove by applying the same argument. \square

Corollary 4.6. Let Q be Dynkin quiver of finite type A_n and i be a source or a sink in Q.
For $\beta_k = [a_k, b_k] \in \Phi_n^+$ ($k \in \mathbb{Z}_{>0}$), assume that $a_k = i$ or $b_k = i$ for all k. Then we have
$$S_Q(\beta_1) \circ S_Q(\beta_2) \circ \cdots S_Q(\beta_k)$$
is simple.

Lemma 4.7. For $[a_1, b_1], [a_2, b_2] \in \Phi_n^+$ with $b_1 < a_2 - 1$,
$$L(a_1, b_1) \circ L(a_2, b_2) \simeq L(a_2, b_2) \circ L(a_1, b_1)$$
is simple.

Now the following proposition can be regarded as a generalization of the above lemma.
Proposition 4.8. For any Dynkin quiver Q of finite type A_n and $[a, b], [a', b'] \in \Phi_n^+$, assume that $a < b < a' - 1 < b'$. Then we have

$$S_Q([a, b]) \circ S_Q([a', b']) \simeq S_Q([a', b']) \circ S_Q([a, b])$$

is simple.

Proof. Note that $[a, b'] \in \Phi_n^+$ and there is no $[a', b] \not\in \Phi_n^+$. Thus

- $[a, b']$ is located at the intersection of the maximal (N, a)-sectional path and the maximal (S, b')-sectional path,
- there is no intersection between the maximal (S, a)-sectional path and the maximal (N, b')-sectional path.

Then the situations can be described as follows:

Write $\phi^{-1}([a, b]) = (i, p)$, $\phi^{-1}([a', b']) = (j, q)$ and $\phi^{-1}([a, b']) = (k, r)$. For the first and second cases, one can easily notice that $|i - j| > |p - q|$. Thus the assertion follows from (2.8).

Assume the third case. Then it is enough to show that, for any $1 \leq s \leq \min\{i, j, n + 1 - i, n + 1 - j\}$,

$$|i - j| + 2s \neq 2k - i - j. \tag{4.3}$$

Set $v = \max\{i, j\}$ and $w = \min\{i, j, n + 1 - i, n + 1 - j\}$. Then we have

$$|i - j| + 2s = 2k - i - j \quad \text{if} \quad s = k - v.$$

However, the fact $k > i + j$ implies $k - v > w$. Thus the assertion holds. For the fourth case, one can prove by applying the similar argument of the third case. \qed

Now, we have an alternative proof of Theorem 2.13 (a) as we emphasized in Remark 2.14.

Theorem 4.9. With the same choice of (J, X, s) in Theorem 2.13 the underlying graph of Q^J is of finite type A_n.

Proof. By Corollary 3.5 there exists a surjective morphism

$$V_Q(\alpha_k) \otimes V_Q(\alpha_{k+1}) \twoheadrightarrow V_Q(\alpha_k + \alpha_{k+1}) \quad \text{or} \quad V_Q(\alpha_{k+1}) \otimes V_Q(\alpha_k) \twoheadrightarrow V_Q(\alpha_k + \alpha_{k+1})$$

and hence $V_Q(\alpha_k) \otimes V_Q(\alpha_{k+1})$ is reducible.
On the other hand, Proposition 4.8 tells that
\[V_Q(\alpha_k) \otimes V_Q(\alpha_l) \simeq V_Q(\alpha_l) \otimes V_Q(\alpha_k) \] is simple for \(|k - l| > 1\).

By Theorem 2.5 and the fact that \(d_{k,l}(z)\) in (2.8) has only zeros of multiplicity 1, our assertion follows.

Definition 4.10. A simple \(R(\beta_k)\)-module \(M\) is called real if \(M \circ M\) is again simple.

For example, every \(S_Q(\beta)\) is real by Theorem 2.9 (a). Now, we recall one of the main results in [29]:

Theorem 4.11. [29] (see also [30]) Let \(M_k\) be a simple \(R(\beta_k)\)-module \((k = 1, 2)\) and assume one of \(M_1\) and \(M_2\) is real, and \(P_{Q_k}^{\operatorname{norm}}(z)\) has a simple pole at \(z = 1\). Then \(M_1 \circ M_2\) has composition length 2. In particular, there exists an exact sequence

\[0 \to N \to M_1 \circ M_2 \xrightarrow{r_{M_1,M_2}} M_2 \circ M_1 \to N \to 0, \]

where \(r_{M_1,M_2}\) is non-zero, \(\operatorname{Im}(r_{M_1,M_2})\) is the unique simple socle of \(M_2 \circ M_1\) and \(N\) is the unique simple head of \(M_2 \circ M_1\) (up to isomorphisms).

Note that the statements in the rest of this section also hold when we replace the module \(S_Q(\beta)\) (resp. \(M \in \operatorname{Rep}(R_{A_n})\)) in the statements with \(V_Q(\beta)\) (resp. \(M \in \mathcal{C}_Q^{(1)}\)), by applying the exact functor \(F_Q^{(1)}\).

Proposition 4.12. Let \(Q\) be any Dynkin quiver of finite type \(A_n\). Assume we have the following rectangle subquiver in \(\Gamma_Q\):

\[
\begin{array}{c}
\bullet \\
[a,b] \\
[a,b'] \\
\bullet \\
a'\ b' \\
\end{array}
\]

for \(a \neq a'\) and \(b \neq b'\). Then there exists a short exact sequence

\[
0 \to S_Q([a,b]) \circ S_Q([a',b']) \to S_Q([a,b']) \circ S_Q([a',b])
\]

\[\xrightarrow{r} S_Q([a',b']) \circ S_Q([a,b]) \to S_Q([a,b]) \circ S_Q([a',b']) \to 0, \]

such that \(r := r_{S_Q([a,b']),S_Q([a',b])}\) and

- \(S_Q([a,b]) \circ S_Q([a',b']) \simeq S_Q([a',b']) \circ S_Q([a,b])\) is simple,
- \(S_Q([a',b']) \circ S_Q([a,b])\) has composition length 2 with the unique simple socle \(\operatorname{Im}(r)\) and the simple head \(S_Q([a',b']) \circ S_Q([a,b])\) (up to isomorphisms).
Note that the following four cases can happen:

at the right part of the upper ray of \([4.6]\)

\(S - R\). By taking \(k\) since \((4.7)\) \(S - R\) and hence \(S_Q([a, b]) \circ S_Q([a', b']) \simeq S_Q([a', b']) \circ S_Q([a, b])\) is simple.

Now we claim that \(R_{V_Q([a, b], V_Q([a, b'])}(z)\) has a pole at \(z = 1\); that is, there exists \(1 \leq t \leq \min\{i, j, n + 1 - i, n + 1 - j\}\) satisfying

\[
|i - j| + 2t = 2k - i - j.
\]

Set \(v = \max\{i, j\}\) and \(u = \min\{i, j\}\). Then we have \(w = \min\{u, n + 1 - v\}\) and

\[
|i - j| + 2t = 2k - i - j \quad \text{if} \quad t = k - v
\]

Since \(k \leq i + j - 1, k - v < w\) always. Thus our claim holds.

By Theorem 4.11 it is enough to show that there exists a non-zero \(R\)-homomorphism

\[
\psi : S_Q([a', b]) \circ S_Q([a, b']) \rightarrow S_Q([a, b]) \circ S_Q([a', b']) \simeq S_Q([a', b']) \circ S_Q([a, b]).
\]

Note that the following four cases can happen:

\[a < a' \leq b' < b, \quad a' < a \leq b < b', \quad a < a' \leq b < b' \quad \text{or} \quad a' < a \leq b' < b.\]

Let us consider the first case. From the rectangle quiver, we can read that \([a', b]\) is located at the right part of the upper ray of \([a', b]\) and hence \([b' + 1, b]\) is located at the left part of the upper ray. Thus we have an injective \(R\)-homomorphism

\[
(4.6) \quad S_Q([a', b]) \hookrightarrow S_Q([a', b']) \otimes S_Q([b' + 1, b]).
\]

By taking \(- \circ S_Q([a', b'])\) to (4.6), we have a composition

\[
S_Q([a', b]) \circ S_Q([a, b']) \rightarrow S_Q([a', b']) \circ S_Q([b' + 1, b]) \circ S_Q([a, b'])
\]

\[
\rightarrow S_Q([a', b']) \circ S_Q([a, b]),
\]

since \(([b' + 1, b], [a, b'])\) is the pair contained in the upper ray of \([a, b]\). By [29] Corollary 3.11, the composition is non-zero. From the fact that \(S_Q([a', b']) \circ S_Q([a, b])\) is simple, the composition is surjective and hence \(S_Q([a', b']) \circ S_Q([a, b])\) is a head of \(S_Q([a', b']) \circ S_Q([a, b'])\). By applying the similar argument, one can see that there exists such a surjective homomorphism for the second case.

Now, we assume the third case; that is, \(a < a' \leq b < b'\). Since \(([a, b], [b + 1, b'])\) is the pair contained in the lower ray of \([a, b']\), we have an injective \(R\)-homomorphism

\[
(4.7) \quad S_Q([a, b']) \hookrightarrow S_Q([a, b]) \circ S_Q([b + 1, b']).
\]
By taking $S_Q([a', b]) \circ - \sim$ to (4.7), we have
\[
S_Q([a', b]) \circ S_Q([a, b']) \rightarrow S_Q([a', b]) \circ S_Q([b + 1, b'])
\]
\[
\simeq S_Q([a, b]) \circ S_Q([a', b]) \circ S_Q([b + 1, b']) \rightarrow S_Q([a, b]) \circ S_Q([a', b']),
\]
by Proposition 4.3. In the similar way, one can do for the fourth case, also. \(\square\)

Remark 4.13. When Q is equal to \tilde{Q}, we always have the following inequality in (4.4):
\[
a' < a \leq b < b'.
\]
Thus the above proposition can be understood as generalizations of the following statements [27, Proposition 4.2.3]:
(a) For $a' \leq a \leq b \leq b'$, $L(a, b) \circ L(a', b') \simeq L(a', b') \circ L(a, b)$ is simple.
(b) For $a' < a \leq b < b'$, there exists an exact sequence
\[
0 \rightarrow L(a, b) \circ L(a', b') \rightarrow L(a', b') \circ L(a', b)
\]
\[
\xrightarrow{r} L(a', b) \circ L(a, b') \rightarrow L(a, b) \circ L(a', b') \rightarrow 0,
\]
where the image of r coincides with the head of $L(a, b') \circ L(a', b)$ and the socle of $L(a', b) \circ L(a, b')$.

Theorem 4.11 tells that all positive roots β_k’s in a maximal S-sectional (resp. N-sectional) path ρ share second (resp. first) component and have the same value
\[
\phi_1^{-1}(\beta_k) - \phi_2^{-1}(\beta_k) = \phi_1^{-1}(\beta_k') - \phi_2^{-1}(\beta_k')
\]
(resp. $\phi_1^{-1}(\beta_k) + \phi_2^{-1}(\beta_k) = \phi_1^{-1}(\beta_k') + \phi_2^{-1}(\beta_k')$).

For each maximal S-sectional (resp. N-sectional) path ρ, we assign a value
\[
\chi_S(\rho) = \phi_1^{-1}(\beta) - \phi_2^{-1}(\beta) \quad \text{(resp.} \chi_N(\rho) = \phi_1^{-1}(\beta) + \phi_2^{-1}(\beta))
\]
where β is any positive root in ρ.

Note that $\chi_S(\rho) \neq \chi_S(\rho')$ (resp. $\chi_N(\rho) \neq \chi_N(\rho')$) for any distinct pair of maximal S-sectional (resp. N-sectional) paths (ρ, ρ').

We set ρ_1 the maximal S-sectional path such that $\chi_S(\rho_1)$ is maximum and i_1 the second component of ρ_1. In this way, we define ρ_k the maximal S-sectional path such that $\chi_S(\rho_k)$ is kth maximum and i_k the second component of ρ_k for $1 \leq k \leq n$. Similarly, we set ρ_k' the maximal N-sectional path such that $\chi_N(\rho_k')$ is kth maximum and j_k the first component of ρ_k' for $1 \leq k \leq n$.

In Example 4.3
\[
(i_1, i_2, i_3, i_4, i_5) = (1, 3, 4, 5, 2) \quad \text{and} \quad (j_1, j_2, j_3, j_4, j_5) = (3, 1, 2, 4, 5).
\]
Theorem 4.14. Let Q be any Dynkin quiver of finite type A_n. Assume that we have a simple R_{A_n}-module M.

(a) There exists a sequence
\[(a_{1;i_k}, a_{2;i_k}, \ldots, a_{i_k-1;i_k}, a_{i_k};i_k)\]
for $1 \leq s \leq i_k$, $1 \leq k \leq n$ and $a_{s;i_k} \in \mathbb{Z}_{\geq 0}$ such that
\[\frac{n}{s-1} S_Q([s,i_k])^{\circ a_{s;i_k}} \to M,\]
where $\frac{n}{s-1} S_Q([s,i_k])^{\circ a_{s;i_k}}$ is a simple module for every $1 \leq k \leq n$.

(b) There exists a sequence
\[(a_{j_k;j_k}, a_{j_k+1;1}, \ldots, a_{j_k;n-1}, a_{j_k};n)\]
for $j_k \leq s \leq n$, $1 \leq k \leq n$ and $a_{s;i_k} \in \mathbb{Z}_{\geq 0}$ such that
\[\frac{n}{s-j_k} S_Q([j_k,s])^{\circ a_{j_k;1}} \to M,\]
where $\frac{n}{s-j_k} S_Q([j_k,s])^{\circ a_{j_k;1}}$ is a simple module for every $1 \leq k \leq n$.

Proof. With Theorem 1.11 and Theorem 2.9, our assertions come from the convex total orders $<_{Q^L}$ and $<_{Q^U}$. □

Remark 4.15. Fix the Dynkin quiver as Q. Then we have
\[\text{for } (j_1, j_2, \ldots, j_{n-1}, j_n) = (n, n - 1, \ldots, 2, 1).\]

(a) For a Kashiwara-Nakashima tableau T of shape λ of finite type A_n ([36]), we can associate $\ell(\lambda)$-tuple of partitions $(\mu(1), \ldots, \mu(\ell(\lambda) - 1), \mu(\ell(\lambda)))$ as in [32, Section 1]. Here $\ell(\eta)$ denotes the length of a partition η. Set $L(a,b) = k$ for $a > b$. Then [32, Theorem 4.8] tells that the simple head $\triangle(T)$ of
\[\nabla(T) := \bigoplus_{k=1}^{\ell(\lambda)} \left(\bigoplus_{s=1}^{\ell(\mu(\lambda)+1-k)} \bigoplus_{Q=1}^{\mu(\lambda)+1-k} S_Q([\ell(\lambda) + 1 - k, \ell(\lambda) + 1 - k + \mu(\lambda)+1-k]-1) \right)\]
is indeed a simple module over $R_{A_n}^\lambda$, the cyclotomic quotient of R_{A_n} with the dominant integral weight λ. Moreover, the crystal structure on $\{\triangle(T)\}$ ([32]) is isomorphic to the crystal structure of $B(\lambda)$ of $V(\lambda)$ over $U_q(A_n)$ ([33, 34]).

(b) If we give a total order on I_0 as $j_k > j_{k+1}$ for $1 \leq k \leq n - 1$, we have
\[1 < 2 < \cdots < n - 1 < n.\]

Then Lemma 4.11 tells that $S_{\lambda}(\beta)$ coincides with the cuspidal representation L_β in [23, 40] with respect to the total order 4.8 on I_0.

5. The categories \(\mathcal{C}^{(2)}_{Q} \) over \(U'_{q}(A_{2n-1}^{(2)}) \) and \(U'_{q}(A_{2n}^{(2)}) \).

In this subsection, we study the category \(\mathcal{C}^{(2)}_{Q} \) over \(U'_{q}(A_{2n-1}^{(2)}) \) and \(U'_{q}(A_{2n}^{(2)}) \) by using the combinatorial descriptions in Section 1 and the Dorey’s type morphisms for \(U'_{q}(A_{2n-1}^{(2)}) \) and \(U'_{q}(A_{2n}^{(2)}) \) studied in [44].

Now, we fix \(m \in \mathbb{Z}_{\geq 2} \) as \(2n \) or \(2n - 1 \), and a Dynkin quiver \(Q \) of finite type \(A_{m} \). For \(1 \leq i \leq m \) and \((-q)^{p} \in \mathbb{k}^{	imes} \), we define

\[
\{1, \ldots, n\} \ni i^* := \begin{cases}
 i & \text{if } 1 \leq i \leq n, \\
 m + 1 - i & \text{if } n < i \leq m.
\end{cases}
\]

Using (5.1), we can obtain an injective map \(\ast \), from the set \(\{ V(\varpi_{i})(-q)^{p} \mid 1 \leq i \leq m, \ p \in \mathbb{Z} \} \) consisting of fundamental \(U'_{q}(A_{m}^{(1)}) \)-modules to the set \(\{ V(\varpi_{i})_{\pm(-q)^{p}} \mid 1 \leq i \leq n, \ p \in \mathbb{Z} \} \) consisting of fundamental \(U'_{q}(A_{m}^{(2)}) \)-modules, which is given by (see [21])

\[
(V(\varpi_{i})(-q)^{p})^* := V(\varpi_{i^*})_{((-q)^{p})^*}.
\]

For each \((i, p) \in \Gamma_{Q} \) with \(\phi(i, p) = (\beta, 0) \in \Phi_{m}^{+} \times \{0\} \), we set

\[
V_{Q}(\beta) := (V_{Q}(\beta))^* = \begin{cases}
 V(\varpi_{i})(-q)^{p} & \text{if } 1 \leq i \leq n, \\
 V(\varpi_{m+1-i})(-1)^{m}(-q)^{p} & \text{if } n < i \leq m,
\end{cases}
\]

which is a fundamental module over \(U'_{q}(A_{m}^{(2)}) \).

By mimicking Definition 2.2 and using (5.2), we can define the category \(\mathcal{C}^{(2)}_{Q} \) as follows (see also [21]):

Definition 5.1. Let \(Q \) be a Dynkin quiver of finite type \(A_{m} \) and \(U'_{q}(g) \) be the quantum affine algebra of type \(A_{m}^{(2)} \) for \(m = 2n \) or \(2n - 1 \in \mathbb{Z}_{\geq 2} \). We define the smallest abelian full subcategory \(\mathcal{C}^{(2)}_{Q} \) consisting of finite dimensional integrable \(U'_{q}(A_{m}^{(2)}) \)-modules such that

(a) it is stable by taking subquotient, tensor product and extension,

(b) it contains \(V_{Q}(\beta) \) for all \(\beta \in \Phi_{m}^{+} \).

Here, \(\Phi_{m}^{+} \) is the set of positive root of \(A_{m} \).

The goal of this subsection is to show the following theorem:
Theorem 5.2. For every positive root $\gamma \in \Phi_+^*$ with $|\gamma| \geq 2$, there exists a minimal pair (α, β) such that there exists a surjective $U'_q(A_n^{(2)})$-module homomorphism

$$V_Q(\beta) \otimes V_Q(\alpha) \to V_Q(\gamma).$$

It is known that $(1, (1.7))$, for all $p \in \mathbb{Z},$

$$V(\varpi_n)(-q)^p \simeq V(\varpi_n)_{-q}^p,$$

where $V(\varpi_n)$ is a $U'_q(A_{2n-1}^{(2)})$-module.

In this subsection, we prove Theorem 5.2 only for $m = 2n - 1$. In the way of proving Theorem 5.2 for $m = 2n - 1$, we use (5.3) several times. To prove the case when $m = 2n$, one has to use the same arguments, the same pairs of positive roots in this subsection, and use the morphism $\mathbf{(2.5)}$ instead of $\mathbf{(5.3)}$.

Note that the p^* in (2.2) is $(-1)^m(-q)^{m+1}$ for $g = A_m^{(2)}$ (14 Appendix A).

Lemma 5.3. For $\alpha_k + \alpha_{k+1}$ with $1 \leq k < 2n - 1$, we have a surjective $U'_q(A_{2n-1}^{(2)})$-module homomorphism

$$V_Q(\alpha_k) \otimes V_Q(\alpha_{k+1}) \to V_Q(\alpha_k + \alpha_{k+1}) \text{ or } V_Q(\alpha_{k+1}) \otimes V_Q(\alpha_k) \to V_Q(\alpha_k + \alpha_{k+1}).$$

Proof. (Case 1: $\bullet \cdots \bullet \quad k \quad k+1$) In this case, Lemma 1.4 (a) tells that

$$\phi^{-1}(\alpha_k) = (k, \xi_k) \quad \text{and} \quad \phi^{-1}(\alpha_{k+1}) = (2n - 1 - k, \xi_k - (2n - 1)).$$

Thus, by Remark 1.13, we have $\alpha_k \prec Q \alpha_{k+1},$

$$\phi^{-1}(\alpha_k + \alpha_{k+1}) = (2n - 1, \xi_k - (2n - 1 - k))$$

and hence $V_Q(\alpha_k + \alpha_{k+1}) = V(\varpi_1)_{-q}\xi_k - (2n - 1 - k).$ For each k, $V_Q(\alpha_k)$ and $V_Q(\alpha_{k+1})$ are summarized by the following table:

k	$V_Q(\alpha_{k+1})$	$V_Q(\alpha_k)$
$k \leq n - 1$	$V(\varpi_{k+1})_{-q}\xi_k - (2n - 1)$	$V(\varpi_k)_{-q}\xi_k$
$k \geq n$	$V(\varpi_{2n-1-k})_{-q}\xi_k - (2n - 1)$	$V(\varpi_{2n-1})_{-q}\xi_k$

For $k \leq n - 1$, we have an injection $V(\varpi_{k+1}) \hookrightarrow V(\varpi_1)_{-q} \otimes V(\varpi_k)_{-q}$ by taking dual to (2.4). Tensoring the right dual of $V(\varpi_k)_{-q}$, we have

$$V(\varpi_{k+1}) \otimes V(\varpi_k)_{-q}^{2n-1} \to V(\varpi_1)_{-q}^k,$$

which yields our assertion. Similarly, we can prove for $k \geq n$.
(Case 2: \(k \quad k + 1\)) In this case, we have

\[
\phi^{-1}(\alpha_k) = (k, \xi_k), \quad \phi^{-1}(\alpha_{k+1}) = (1, \xi_k - 1 - k), \quad \phi^{-1}(\alpha_k + \alpha_{k+1}) = (k + 1, \xi_k - 1)
\]

and hence \(V_Q(\alpha_{k+1}) = V(\varpi_1)(-q)^{\xi_k-1-k}\). For each \(k\), \(V_Q(\alpha_k)\) and \(V_Q(\alpha_{k+1})\) are summarized by the following table:

\(k\)	\(V_Q(\alpha_k)\)	\(V_Q(\alpha_k + \alpha_{k+1})\)
\(k \leq n - 1\)	\(V(\varpi_k)(-q)^{\xi_k}\)	\(V(\varpi_{k+1})(-q)^{\xi_k-1}\)
\(k \geq n\)	\(V(\varpi_{2n-k})(-q)^{\xi_k}\)	\(V(\varpi_{2n-k-1})(-q)^{\xi_k-1}\)

Using the same technique in (Case 1), we have \(V_Q(\alpha_{k+1}) \otimes V_Q(\alpha_k) \rightarrow V_Q(\alpha_k + \alpha_{k+1})\).

(Case 3: \(k \quad k + 1\)) We have

\[
\phi^{-1}(\alpha_k) = (2n - k, \xi_k - 2n + 2), \quad \phi^{-1}(\alpha_{k+1}) = (k + 1, \xi_k + 1),
\]

\[
\phi^{-1}(\alpha_k + \alpha_{k+1}) = (1, \xi_k + 1 - k)
\]

and hence \(V_Q(\alpha_k + \alpha_{k+1}) = V(\varpi_1)(-q)^{\xi_k+1-k}\). For each \(k\), \(V_Q(\alpha_k)\) and \(V_Q(\alpha_{k+1})\) are summarized by the following table:

\(k\)	\(V_Q(\alpha_k)\)	\(V_Q(\alpha_{k+1})\)
\(k \leq n - 1\)	\(V(\varpi_k)(-q)^{\xi_k-2n+2}\)	\(V(\varpi_{k+1})(-q)^{\xi_k+1}\)
\(k \geq n\)	\(V(\varpi_{2n-k})(-q)^{\xi_k-2n+2}\)	\(V(\varpi_{2n-k-1})(-q)^{\xi_k+1}\)

By the same way of the \((\text{Case 1,2})\), one can prove that \(V_Q(\alpha_k) \otimes V_Q(\alpha_{k+1}) \rightarrow V_Q(\alpha_k + \alpha_{k+1})\).

For the remaining cases, we have:

\(Q\)	\(\phi^{-1}(\alpha_k, 0)\)	\(\phi^{-1}(\alpha_{k+1}, 0)\)	\(\phi^{-1}(\alpha_k + \alpha_{k+1}, 0)\)
\(k\ \quad k+1\)	\((2n - k, \xi_k - 2n + 2)\)	\((2n - 1, \xi_k - 2n + k + 3)\)	\((2n - k + 1, \xi_k - 2n + 3)\)
\(k\ \quad k+1\)	\((1, \xi_k - k + 1)\)	\((2n - k - 1, \xi_k - 2n + 1)\)	\((2n - k, \xi_k - 2n + 2)\)
\(k\ \quad k+1\)	\((1, \xi_k - 2n + 1 + k)\)	\((1, \xi_k - k - 1)\)	\((2, \xi_k - k)\)
\(k\ \quad k+1\)	\((2n - 1, \xi_k - 2n + 1 + k)\)	\((k + 1, \xi_k + 1)\)	\((k, \xi_k)\)
\(k\ \quad k+1\)	\((2n - 1, \xi_k - 2n + 1 + k)\)	\((2n - 1, \xi_k - 2n + 3 + k)\)	\((2n - 2, \xi_k - 2n + 2 + k)\)

By using the same technique, one can prove our assertion for the remaining cases. □
Lemma 5.4. Let $\gamma = [k, \ell] \in \Phi_n^+$ with $|\gamma| \geq 3$. We write the upper ray and the lower ray of $[k, \ell]$ as follows:

\[
\begin{align*}
\text{Upper ray} &: S^u_1 \rightarrow \cdots \rightarrow S^u_{a_1 - 1} \rightarrow S^u_{b_1} = [k, \ell] = N^u_{b_1} \rightarrow N^u_{b_1 - 1} \rightarrow N^u_1 \\
\text{Lower ray} &: N^l_1 \rightarrow \cdots \rightarrow N^l_{b_2 - 1} \rightarrow N^l_{b_2} = [k, \ell] = S^l_{a_2} \rightarrow S^l_{a_2 - 1} \rightarrow S^l_1.
\end{align*}
\]

Then the followings hold:

(a) If $a_1 = 1$ and $b_1 > 1$, then all N^u_j (1 $\leq j < b_2$) are of the form $[k, \ell]$ with $t < \ell$ and all N^u_s (1 $\leq s < b_1$) are of the form $[k, v]$ with $v > l$. Moreover, $N^l_{b_2 - 1} = [k, \ell - 1]$ and the pair $([\ell], [k, \ell - 1])$ is in the lower ray of γ.

(b) If $b_1 = 1$ and $a_1 > 1$, then all S^l_j (1 $\leq j < a_2$) are of the form $[b, \ell]$ with $k < b$ and all S^u_s (1 $\leq s < a_1$) are of the form $[a, \ell]$ with $a < k$. Moreover, $S^l_{b_2 - 1} = [k + 1, \ell]$ and the pair $([1, \ell], [k])$ is in the lower ray of γ.

(c) If $a_2 = 1$ and $b_2 > 1$, then all N^u_j (1 $\leq j < b_1$) are of the form $[k, \ell]$ with $t < \ell$ and all N^u_s (1 $\leq s < b_2$) are of the form $[k, v]$ with $v > l$. Moreover, $N^u_{b_1 - 1} = [k, \ell - 1]$ and $([\ell], [k, \ell - 1])$ is in the upper ray of γ.

(d) If $b_2 = 1$ and $a_2 > 1$, then all S^u_j (1 $\leq j < a_1$) are of the form $[b, \ell]$ with $k < b$ and all S^l_s (1 $\leq s < a_2$) are of the form $[a, \ell]$ with $a < k$. Moreover, $S^l_{a_1 - 1} = [k + 1, \ell]$ and the pair $([1, \ell], [k])$ is in the upper ray of γ.

Proof. We only give a proof of (a). The remaining cases can be proved in the similar way. The second assertion of (a) follows from Theorem 1.11 and 1.15. In particular, $N^u_1 \neq [k]$. Note that

\[
N^l_1 \rightarrow \cdots N^l_{b_2 - 1} \rightarrow N^l_{b_2} = N^u_{b_1} \rightarrow N^u_{b_1 - 1} \rightarrow N^u_1
\]

is a maximal N-sectional path. Thus by Proposition 1.10, $N^l_1 = [k]$ and hence k is a sink or a right intermediate. On the other hand, $b_1 > 1$ implies that \(\ell-1 \rightarrow \ell \rightarrow \ell+1\) in Q. Hence $S^l_1 = [\ell]$. Thus, by Remark 1.14 the situation in Γ_Q can be drawn as follows:

\[\text{Diagram}\]
Theorem 1.12 and Corollary 1.15 tell that for any \(u < v < w \),
\[
\sigma_u = [k, c], \quad \sigma_u = [e, f] \quad \text{and} \quad k \leq c < e \leq f < \ell.
\]

By applying Theorem 1.12 once again, we can conclude that \(N_{l_j} = [k, f] \) for \(f < \ell \). Furthermore, we can observe that
\[
\sigma_{w-1} = [g, \ell - 1] \quad \text{for some} \quad g \leq \ell - 1 \quad \text{and hence} \quad N_{l_2}^{l} = [k, \ell - 1].
\]

\[\square\]

Lemma 5.5. Let \(\gamma = [k, \ell] \in \Phi^+_{n} \) with \(|\gamma| \geq 3 \).

(a) If there is no pair of \(\gamma \) in the upper ray, there exists a pair \((\alpha, \beta)\) in the lower ray such that
\[
|\phi^{-1}_1(\alpha) - \phi^{-1}_1(\gamma)| = 1 \quad \text{or} \quad |\phi^{-1}_1(\beta) - \phi^{-1}_1(\gamma)| = 1.
\]

(b) If there is no pair of \(\gamma \) in the lower ray, there exists a pair \((\alpha, \beta)\) in the upper ray such that
\[
|\phi^{-1}_1(\alpha) - \phi^{-1}_1(\gamma)| = 1 \quad \text{or} \quad |\phi^{-1}_1(\beta) - \phi^{-1}_1(\gamma)| = 1.
\]

Proof. (a) Using the notations in Lemma 5.4, Corollary 1.12 implies that
\[
N^l_1 = [k] \quad \text{and} \quad S^l_1 = [\ell] \quad \text{under the assumption of (a)}.
\]

Thus \(k \) can not be a source and a right intermediate in \(Q \), and \(\ell \) can not be a sink and a right intermediate in \(Q \).

(Case 1: \(k \) is a sink and \(\ell \) is a source) If \(k = 1 \) or \(\ell = n \), then the situation in \(\Gamma_Q \) can be drawn as follows:

For each case, \(\sigma_2 = [2, a] \) and \(\sigma_{s-1} = [b, n - 1] \), respectively. Thus \((S^l_{a2-1} = [2, \ell], [1])\) and \(([n], N^l_{b2-1} = [k, n - 1])\) are desired ones, respectively.
If \(k \neq 1 \) and \(\ell \neq n \), then Remark 1.14 and Corollary 1.15 imply that the situation in \(\Gamma_Q \) can be depicted as follows:

![Diagram](image)

for some \(k < b < c < a < \ell \). Thus \(([k, b], [b + 1, \ell])\) is a pair in the upper ray of \(\gamma \) which yields a contradiction to the assumption.

(Case 2: \(k \) is a not sink or \(\ell \) is not a source) Equivalently,

Thus, using the notations in Lemma 5.4 the situation in \(\Gamma_Q \) can be drawn as follows:

![Diagram](image)

Then \((S_{a2-1}', \sigma_{a+1}) = ([k+1, \ell], [k+1, c])\) and \((N_{b2-1}', \sigma_{b-1}) = ([k, \ell-1], [d, \ell-1])\), respectively. Hence \(([k+1, \ell], [k])\) and \(([\ell], [k, \ell - 1])\) are desired one, respectively. The proof for (b) can be obtained by applying the similar argument. \(\square\)

Proof of Theorem 5.2. For \(\gamma \in \Phi_{2n-1}^+ \) with \(|\gamma| = 2\), it is already proved in Lemma 5.3. Thus it suffices to consider when \(|\gamma| = |[k, \ell]| \geq 3\). To prove this, we need to observe the situation in \(\Gamma_Q \) for each case.

(Case 1: \(1 < \phi_1^{-1}(\gamma) = i_{\gamma} \leq n \)) (a) If there is a pair \((\alpha, \beta)\) in the upper ray, then Theorem 5.2 tells that

\[
(\phi_1^{-1}(\alpha))^* = \phi_1^{-1}(\alpha), \quad (\phi_1^{-1}(\beta))^* = \phi_1^{-1}(\beta) \quad \text{and} \quad \phi_1^{-1}(\alpha) + \phi_1^{-1}(\beta) = \phi_1^{-1}(\gamma).
\]

Then we have a surjective homomorphism

\[
V_Q(\beta) \otimes V_Q(\alpha) \to V_Q(\gamma)
\]

by (2.4).
(b) Now we deal with the case when there is no pair in the upper ray. By Lemma 5.4 and Lemma 5.5, there exists a minimal pair \((\alpha, \beta)\) such that
\[
(\phi_1^{-1}(\alpha), \phi_1^{-1}(\beta)) = (2n - 1, i_\gamma + 1) \text{ or } (i_\gamma + 1, 2n - 1).
\]
For the case when \((\phi_1^{-1}(\alpha), \phi_1^{-1}(\beta)) = (2n - 1, i_\gamma + 1)\), it suffices to show that there exists a surjective homomorphism
\[
V(\varpi(i_\gamma + 1)^*) \otimes V(\varpi_1) \to V(\varpi_{i_\gamma})(-q)^{p_\gamma},
\]
where \(p_\gamma = \phi_2^{-1}(\gamma)\).

(b-i) If \(i_\gamma < n\), then \((i_\gamma + 1)^* = i_\gamma + 1\) and \((-q)^{p_\gamma - 1} = (-q)^{p_\gamma - 1}\). By taking dual to (2.4), we have
\[
V(\varpi_{i_\gamma + 1}) \to V(\varpi_{i_\gamma})(-q)^1 \otimes V(\varpi_1)(-q)^{-i_\gamma}.
\]
By taking the left dual of \(V(\varpi_1)(-q)^{-i_\gamma}\) to (5.3), we have
\[
V(\varpi_{i_\gamma + 1}) \otimes V(\varpi_1)(-q)^{2n - i_\gamma} \to V(\varpi_{i_\gamma})(-q)^1.
\]
Thus we have (5.4) for \(i_\gamma < n\).

(b-ii) If \(i_\gamma = n\), then \((i_\gamma + 1)^* = n - 1\) and \((-q)^{p_\gamma - 1} = (-q)^{p_\gamma - 1}\). Then (5.4) becomes
\[
V(\varpi_{n - 1})(-q)^{p_\gamma - 1} \otimes V(\varpi_1)(-q)^{p_\gamma + n - 1} \to V(\varpi_n)(-q)^{p_\gamma} \simeq V(\varpi_n)(-q)^{p_\gamma},
\]
by (5.3). The above equation follows from (2.4) directly.

The case when \((\phi_1^{-1}(\alpha), \phi_1^{-1}(\beta)) = (i_\gamma + 1, 2n - 1)\) can be proved in the same way.

Case 2: \(\phi_1^{-1}(\beta_1) = \gamma \) Note that there is no pair in the upper ray. Thus using the notations in Lemma 5.4 we have
- \(N_1^t = [k]\) and \(S_1^t = [\ell]\),
- \([k] = N_1^t \to \cdots \to N_{b_2 - 1}^t \to N_{b_2}^t\) is a maximal \(N\)-sectional path,
- \(S_{a_2}^t \to S_{a_2 - 1}^t \to \cdots \to S_1^t = [\ell]\) is a maximal \(S\)-sectional path.

Thus the situation in \(\Gamma_Q\) can be drawn as follows:
for some $a < k$ and $\ell < b$. By Corollary 1.15, $\sigma_{l-1} = [c, \ell - 1]$ ($c \leq \ell - 1$) and hence $N^l_{s-1} = [k, \ell - 1]$. We fix a pair (α, β) as $([\ell], [k, \ell - 1])$. Then we can see that

$$\phi^{-1}_1(\beta) = 2n + 1 - i_\alpha$$

and $(2n - \phi^{-1}_1(\beta)) + (2n - \phi^{-1}_1(\alpha)) = (2n - \phi^{-1}_1(\gamma)) = 2n - 1$.

(a) Assume that $i_\alpha = \phi^{-1}_1(\alpha) \geq n + 1$, then $\phi^{-1}_1(\beta) \leq n$. Thus it suffices to show that there exists a surjective homomorphism

$$V(\mathcal{w}_{2n-\alpha} + 1)(-q)_{p_\gamma - 2n + i_\alpha} \otimes V(\mathcal{w}_{2n-\alpha})(-q)_{p_\gamma + i_\alpha - 1} \to V(\mathcal{w}_1)(-q)_{p_\gamma}.$$

By taking dual to (2.4), we have

$$V(\mathcal{w}_{2n-\alpha} + 1) \to V(\mathcal{w}_1)(-q)_{2n - i_\alpha} \otimes V(\mathcal{w}_{2n-\alpha})(-q)^{-1}.$$

By taking left dual of $V(\mathcal{w}_{2n-\alpha})(-q)^{-1}$ to (5.7), we have

$$V(\mathcal{w}_{2n-\alpha} + 1) \otimes V(\mathcal{w}_{2n-\alpha})(-q)_{2n - 1} \to V(\mathcal{w}_1)(-q)_{2n - i_\alpha}.$$

Thus we have (5.6) for $i_\alpha \geq n + 1$.

(b) Assume that $i_\alpha \leq n$, then $\phi^{-1}_1(\beta) \geq n + 1$. Thus it suffices to show that there exists a surjective homomorphism

$$V(\mathcal{w}_{i_\alpha} - 1)(-q)_{p_\gamma - 2n + i_\alpha} \otimes V(\mathcal{w}_{i_\alpha})(-q)_{p_\gamma + i_\alpha - 1} \to V(\mathcal{w}_1)(-q)_{p_\gamma}.$$

By taking dual to (2.4), we have

$$V(\mathcal{w}_{i_\alpha}) \to V(\mathcal{w}_{i_\alpha} - 1)(-q)^{-1} \otimes V(\mathcal{w}_1)(-q)^{-i_\alpha + 1}.$$

By taking right dual of $V(\mathcal{w}_{i_\alpha} - 1)(-q)^{-1}$, we have

$$V(\mathcal{w}_{i_\alpha} - 1)(-q)_{2n + 1} \otimes V(\mathcal{w}_{i_\alpha}) \to V(\mathcal{w}_1)(-q)^{-i_\alpha + 1}.$$

Thus we have (5.8) for $i_\alpha \leq n$.

The remaining case (Case 3: $n < \phi^{-1}_1(\beta_\gamma) = i_\gamma \leq 2n - 1$) can be proved by applying the similar arguments in (Case 1) and (Case 2).

Corollary 5.6. For every positive root $\beta \in \Phi^+_m$, there exists a sequence $(i_1, i_2, \ldots, i_{|\beta|}) \in I_0^{[|\beta|]}$ such that

$$\bigotimes_{t=1}^{[|\beta|]} V_Q(\alpha_i) \to V_Q(\beta).$$

From Corollary 5.6, the condition (b) in Definition 5.1 can be also restated as follows:

(b') It contains $V_Q(\alpha_k)$ for all $\alpha_k \in \Pi_m$.
References

1. T. Akasaka and M. Kashiwara, *Finite-dimensional representations of quantum affine algebras*, Publ. RIMS. Kyoto Univ., **33** (1997), 839-867.
2. S. Ariki, *On the decomposition numbers of the Hecke algebra of \(G(M, 1, n) \)*, J. Math. Kyoto Univ. **36** (1996), 789-808.
3. M. Auslander, I. Reiten and S. Smalo, *Representation theory of Artin algebras*, Cambridge studies in advanced mathematics **36**, Cambridge 1995.
4. I. Assem, D. Simson and A. Skowroński, *Elements of the representation theory of associative algebras. Vol. I*, London Math. Soc. Student Texts **65**, Cambridge 2006.
5. R. Bedard, *On commutation classes of reduced words in Weyl groups*, European J. Combin. **20** (1999), 483–505.
6. G. Benkart, S.-J. Kang, S.-j. Oh, and E. Park, *Construction of Irreducible representations over Khovanov-Lauda-Rouquier algebras of finite classical type*, Int. Math. Res. Not. **5** (2014) 1312–1366.
7. A. Berenstein, S. Fomin and A. Zelevinsky, *Parameterizations of canonical bases and totally positive matrices*, Adv. Math. **122** (1996), 49–149.
8. N. Bourbaki. *Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitres IV–VI*. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.
9. S. Brenner, *A combinatorial characterisation of finite Auslander-Reiten quivers. In: Representation Theory I. Finite Dimensional Algebras* (ed. V. Dlab, P. Gabriel, G. Michler). Springer LNM 1177 (1986), 13-49.
10. J. Brundan and A. Kleshchev, *Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras*, Invent. Math., **178** (2009) 451–484.
11. J. Brundan, A. Kleshchev and P. J. McNamara, *Homological properties of finite Khovanov-Lauda-Rouquier algebras*, Duke Math. J., **163** (2014), 1353-1404.
12. A. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, *Tilting theory and cluster combinatorics*, Adv. Math. **204** (2006), no 2, 572–618.
13. V. Chari and A. Pressley, *Yangians, integrable quantum systems and Dorey's rule*, Comm. Math. Phys. **181** (1996), no 2, 265-302.
14. I. V. Cherednik, *A new interpretation of Gelfand-Tzetlin bases*, Duke Math. J., **54** (1987), 563–577.
15. E. Date and M. Okado, *Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_{n} \)*, Internat. J. Modern Phys. A **9** (3) (1994), 399–417.
16. E. Frenkel and E. Mukhin, *Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras*, Commun. Math. Phys. **216** (2001), 23–57.
17. P. Gabriel, *Auslander-Reiten sequences and Representation-finite algebras*, Lecture notes in Math., vol. 831, Springer-Verlag, Berlin and New York, 1980, pp.1.71.
18. V. Ginzburg, N. Reshetikhin and E. Vasserot, *Quantum groups and flag varieties*, A.M.S. Contemp. Math. **175** (1994), 101-130.
19. D. Happel, *Triangulated categories in the representation theory of finite-dimensional algebras*, London Math. Soc. Lecture Notes 119, Cambridge 1988.
22. D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, [arXiv:1109.0862], to appear in J. Reine Angew. Math.
23. D. Hill, G. Melvin and D. Mondragon, Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra 216 (2012), no. 5, 1052–1079.
24. J. Hu and A. Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A, Adv. Math. 225 (2010), no. 2, 598–642.
25. V. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
26. S.-J. Kang and M. Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math. 190 (2012), 699–742.
27. S.-J. Kang, M. Kashiwara and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, [arXiv:1304.0323] [math.RT].
28. ——, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras II, [arXiv:1308.0651] [math.RT], to appear in Duke Math. J.
29. S.-J. Kang, M. Kashiwara, M. Kim and S.-j. Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), no. 2, 377–396.
30. ——, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, [arXiv:1502.07415] [math.RT].
31. S.-J. Kang, M. Kashiwara and S.-j. Oh, Supercategorification of quantum Kac-Moody Algebras, Adv. Math. 242 (2013) 116–162.
32. S.-J. Kang and E. Park, Irreducible modules over Khovanov-Lauda-Rouquier algebras of type A_n and semistandard tableaux, J. Algebra 339 (2011), 223–251.
33. M. Kashiwara, On crystal bases of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345.
34. ——, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.
35. ——, On level zero representations of quantum affine algebras, Duke. Math. J. 112 (2002), 117–175.
36. M. Kashiwara and T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345.
37. S. Kato, Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163, 3 (2014), 619–663.
38. M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309–347.
39. ——, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700.
40. A. Kleshchev and A. Ram, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann. 349 (2011), no. 4, 943–975.
41. A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), 205-263.
42. A. Lauda and M. Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803–861.
43. P. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: finite type, to appear in J. Reine Angew. Math.; [arXiv:1207.5860].
44. S.-j. Oh, *The Denominators of normalized R-matrices of types $A_{2n-1}^{(2)}$, $A_{2n}^{(2)}$, $B_n^{(1)}$ and $D_n^{(2)}$*, arXiv:1404.6715 [math.QA].

45. ———, *Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality*, arXiv:1406.4555 [math.RT].

46. P. Papi, *A characterization of a special ordering in a root system*, Proc. Amer. Math. 120 (1994), 661–665.

47. C. Ringel, *PBW-bases of quantum groups*, J. Reine Angew. Math. 470 (1996), pp. 51–88.

48. R. Rouquier, *2 Kac-Moody algebras*, arXiv:0812.5023 (2008).

49. M. Varagnolo and E. Vasserot, *Canonical bases and KLR algebras*, J. reine angew. Math. 659 (2011), 67–100.

School of Mathematics, Korea Institute for Advanced Study Seoul 130-722, Korea

E-mail address: sejin092@gmail.com