A preliminary study on the reduction of limonite ore by using rice husk as a reducing agent

Ahmad Maksuma,b, Michael Kelvin E. Huseina, Sulaksana Permanaa, Andi Rustandia, Johny Wahyuadi Soedarsonoa,*

aCenter of Minerals Processing and Corrosion Research, Department of Metallurgical and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia

bDepartment of Mechanical Engineering, Politeknik Negeri Jakarta, Depok 16425, Indonesia

Corresponding author: jwsono@metal.ui.ac.id

Abstract. The abundant of rice husk in Indonesia has encouraged researchers to study the feasibility of rice husk for substituting material that is more expensive or dangerous. In previous study, silica with a purity of 99.9\% has been obtained from rice husk with calcinations process. Nevertheless, the gases resulting from the process were not used and left useless. Therefore, in this study, those gases derived from rice husk calcinations process were used as reducing agents during the ferronickel (Fe-Ni) production through a direct reduction process. The objective of this study was to investigate the effect of the amount of rice husk in the pellets on the increase of nickel content in the limonite reduction process. The limonite ore were crushed to the size of less than 150 mesh using disc-mill, and then were mixed with rice husk powder (10, 20, 30 in wt \% mass) before being pelletized using bentonite as a binder. The resulted pellets were roasted at 500°C for 60 minutes and then quenched in water media. After drying process, the reduction process of 40g pellets was conducted at 1000°C for 90 minutes with 20g rice husk in furnace. The effects of additional rice husk on the direct reduction of limonite ore pellets were qualitatively analyzed by using X-ray powder diffraction (XRD) and quantitatively by Atomic absorption spectroscopy (AAS). Both analysis results showed that the reduction process followed the reaction scheme: Fe\textsubscript{2}O\textsubscript{3}→Fe\textsubscript{3}O\textsubscript{4}→FeO and NiO phase was detected in the sample with 20\% rice husk addition. The optimum concentration of Ni 1.23\% was obtained for 20\% rice husk addition.

Keywords: Direct reduction, Ferronickel, Limonite, Quenching, Rice husk.

1. Introduction
Nickel, as one of the commercially important metals in modern life, is widely used in the industrial manufacture of stainless steel, both for steel construction and household purposes, and the battery industries as well. In addition, nickel is also used in a wide variety of metal alloys and nickel plating [1]. At this time, the nickel was obtained from primary sources in the form of nickel sulfide ore (nickel associated with copper) and lateritic ore (nickel associated with iron and/or magnesium silicate) [2]. Approximately 60\% of the total nickel production in the world uses a nickel sulfide ore as raw material. Its existence, however, is only about 30\% of total world reserves of nickel [3]. With the
depletion of nickel sulfide ore reserves caused by continuous exploration, the world industries are forced to find other sources that can be used in nickel production industries as an alternative raw material to substitute nickel sulfide.

For the last few years there has been an increase in the investigation of low-grade lateritic ore to substitute nickel sulfide as the nickel resource [4,5]. Lateritic ore is more difficult to be processed due to the lower nickel content and more complexity of its mineralogy structure as a result of their isomorphism crystal structure goethite and serpentine [6,7].

In the metallurgical extraction methods, nickel lateritic ore is generally processed through hydrometallurgy [8–10], pyrometallurgy [11], or a combination of both pyro- and hydrometallurgy [12]. Until now, the hydrometallurgical process, especially High Pressure Acid Leaching (HPAL), has been effective for dissolving nickel lateritic ore with the high recovery of nickel and cobalt [13]. However, this method requires higher investment costs mainly for the autoclave procurement. In addition, this method is also less effective when the content of magnesium in the lateritic ore is higher than 15%, and sometimes can cause problems for the environment and health as well.

The widely used nickel ore in Indonesia is the one with high nickel content above 1.5%, which is then used to produce ferronickel or nickel matte [14]. Various studies to increase levels of nickel from lateritic ore have been done, ranging from thermodynamic calculations for the reduction [15], the characterization of the microstructure and phase changes during the process of reduction and leaching [16], the mechanism of its reduction with coal as a reducing agent [17], and the effect of sodium sulfate [18] or sodium chloride [19] addition in the nickel lateritic ore reduction roasting process, to further increase the nickel content of the result of the reduction, magnetic separation and microwave [20].

Recently, many researchers have been using coal as reducing agent on the reduction process of nickel lateritic ore in order to produce ferronickel or nickel matte. Based on the above discussion, this study investigated the effect of the amount of rice husk in the pellets on the increase of nickel content in the limonite reduction process. The characteristics of limonite ore and reduction product were analyzed by using X-ray diffraction (XRD) and Atomic Adsorption Spectroscopy (AAS). The results of this preliminary study may provide a reference for further investigation in related reduction process, and furthermore, it can answer the feasibility of rice husk as a sustainable alternative reducing agent.

2. Material and method

2.1. Materials
The selected reducing agent is the rice husk from Kerawang, West Java, Indonesia. The proximate analysis of the rice husk is listed in Table 1. The rice husk is a good reducing agent because of high volatile matter, and relatively low harmful element (S, P) content.

Analysis Parameters	Value	Unit	Basis
Proximate			
Moisture	8.70	%	adb
Ash	23.85	%	adb
Volatile Matter	54.10	%	adb
Fixed Carbon	13.35	%	adb
Ultimate			
Carbon	33.14	%	adb
Hydrogen	5.14	%	adb
Nitrogen	0.55	%	adb
Total Sulfur	0.12	%	adb
Oxygen	37.20	%	adb
A limonite ore from North Sulawesi Province in Indonesia was selected for this study. The chemical composition of the limonite ore has silica and alumina content as seen in Table 2.

Table 2. Main chemical compositions of the low-grade nickel lateritic ore sample (mass fraction, %).

	Fe$_2$O$_3$	NiO	CO$_2$O$_3$	SiO$_2$	Al$_2$O$_3$	Cr$_2$O$_3$	MnO	MgO	ZrO$_2$	Others
Mass	75.3	1.69	0.315	10.8	6.04	2.59	1.25	0.94	0.701	0.374

2.2. Roasting reduction method

The limonite ore was crushed and sieved to 80 wt%, passing 0.074 mm, while rice husk was crushed and screened to a size range of 0.5–2. The sieved limonite ore sample was thoroughly mixed with bentonite (2 wt.%) and sieved rice husk (the amount of rice husk addition were varied from 0 wt.% to 30 wt.%) for preparing pellets with a diameter of 12–16 mms, as shown in Table 3.

Table 3. The mixture composition of pellets.

Code	Limonite	Bentonite	Rice Husk
Sample 1	98%	2%	0%
Sample 2	88%	2%	10%
Sample 3	78%	2%	20%
Sample 4	68%	2%	30%

2.3. Characterization

The content of nickel and iron in the magnetic concentrate samples were determined by atomic absorption spectrometry (AAS, HITACHI 180/80, Japan). Meanwhile, the XRD patterns were recorded using a diffractometer (RIGAKU D/Max 2500, Japan) under the conditions of radiation: Cu Ka, tube current and voltage: 250 mA, 40 kV, scanning range: 10–80° 2θ, step size: 0.02° 2θ and scanning speed: 8°/minute.

3. Result and discussion

3.1. Initial characterizations

Before undergoing the roasting reduction, the chemical composition of the limonite ore was analyzed by XRF is given in Table 2.

Figure 1. The XRD Pattern of Limonite ore with (S) phases as Spinel (Al$_{1.835}$Cr$_{0.079}$Fe$_{0.221}$Mg$_{0.775}$Ni$_{0.014}$O$_4$Zn$_{0.007}$) and (G) phases as Goethite.
Based on that chemical composition, the XRD pattern resulted from XRD machine was analyzed by using Expert High Score Software to predict the phases that are presented in the limonite ore. And the result (Figure 1) showed that peaks from limonite ore sample matched with the goethite and spinel (Al1.835 Cr0.079 Fe0.221 Mg0.775 Ni0.014 O4 Zn0.007) phase patterns standard. So, it was confirmed that goethite and spinel were the main essential minerals in the limonite sample ore. Meanwhile, the invisibility of crystalline structure of nickel was suggested that nickel was associated with other elements and formed as spinel.

3.2. Effect of rice husk addition on phase transformation during reduction
The effect of rice husk addition on mineral transformation of limonite ores after roasting reduction at 1000°C is shown in Figure 2.

![Figure 2. XRD patterns of magnetic concentrates obtained from the pellets reduced at 1000°C for 60 minutes.](image)

In reference to Figure 2, the major phases that were present in sample 1 were magnetite, hematite, and trevorite. Meanwhile, NiO phase was not detected in the XRD pattern. It might happen due to the amount that was too small or existed in the trevorite form. Thermodynamically, trevorite phase, which might be formed due to the reduction of NiO by fixed carbon, was able to occur at low temperatures, namely 438 °C, as shown in Figure 3. In addition, NiO was easily reduced by CO. This was indicated by a negative value of the standard Gibbs free energy of reaction (3), and the curve of forming NiO was located above the forming of CO2, as shown in Figure 3.

\[
\begin{align*}
C + CO_2 &= 2CO \\
\Delta G^\circ &= 166550 - 171TJ/mol \\

NiO + C &= Ni + CO \\
\Delta G^\circ &= 124800 - 175TJ/mol \\

NiO + CO &= Ni + CO_2 \\
\Delta G^\circ &= -40590 - 0.42TJ/mol
\end{align*}
\]
Figure 3. Standard Gibbs free energy (ΔG^θ) of carbon oxide and nickel oxide.

From the XRD pattern of sample 2 in Figure 2, it could be observed that the presence of magnetite phase in sample 2 was noticeably increased if compared to the first sample. This was suspected due to the utilization of rice husk in the limonite ore during the reduction process. The rice husk helped to produce more CO gas used in the reduction process. The utilization of rice husk in the pellet assured that the limonite ore would be in contact with the rice husk and when the rice husk in the pellet was starting to produce CO gas, it came in contact with the limonite ore optimizing the process working in tandem with the rice husk used as the reduction agent.

The increased amount of the rice husk has impacted significantly with the XRD pattern of sample 3 compared with the XRD pattern of sample 1 and sample 2. Although the major phases that were present in sample 3 were hematite, magnetite, and trevorite, NiO started to appear clearly. The magnetite phase that existed in sample 3 was also more intense and existed in more angles than the magnetite phase in the XRD pattern of the previous samples. This was due to the trevorite phases that had been further reduced to NiO and magnetite, triggered by the increased amount of CO that was caused by the utilization of higher amount of rice husk in the limonite ore.

In Figure 2, the number of trevorite phase peaks (from sample 1 to sample 3) was increased with the increasing of rice husk amount; and the NiO phase had even been detected in sample 3. However, the trend was not observed in the XRD pattern sample 4 in which the amount was the largest rice husk. It was suspected that the amount of rice husk was too much. This caused NiO trapped in premature melt of silica husks (rice husk ash) and then separated as a tail in magnetic separation process [21].

3.3. Effect of rice husk addition on the Ni and Fe contents of magnetic concentrates after reduction

The Ni and Fe content of magnetic concentrate in each sample was detected by using AAS, as given in Table 4. As shown in the Table 4, the highest Ni content was obtained from samples 3, which was prepared by using 20% additional RH. In the range of 0-20%, the increasing of additional RH amount would lead to higher iron contents in magnetic concentrate. These results were similar to the effects of sawdust [22–24], where the addition of sawdust as reducing agents would increase the amount of magnetic iron ore concentrate in the form of magnetite phase.
Table 4. Nickel and iron contents in magnetic fraction as a function of rice husk addition.

Code	Fe (wt.%)	Ni (wt.%)
Limonite Ore	39.68	1.19
Concentrate sample 1 (without RH)	9.48	0.55
Concentrate sample 2 (10% RH)	8.28	0.61
Concentrate sample 3 (20% RH)	19.81	1.23
Concentrate sample 4 (30% RH)	7.47	0.27

As shown in the Table 4, the highest Ni content was obtained from samples 3, which was prepared by using 20% additional RH. In the range of 0-20%, the increasing of additional RH amount would lead to higher iron contents in magnetic concentrate. These results were similar to the effects of sawdust [22–24], where the addition of sawdust as reducing agents would increase the amount of magnetic iron ore concentrate in the form of magnetite phase.

The amount of nickel content corresponding to the amount of iron content in various amounts of rice husk indicates a strong bond between nickel and iron in a compound. So it is more convinced that the Ni is incorporated in magnetite substance of one Fe atoms to form trevorite (NiFe$_2$O$_4$), as seen in the XRD pattern. Meanwhile, the relatively small nickel content in all concentrates indicates that most of the nickel content is in the tailings, so it is not attracted by magnets because of their smaller magnetic properties.

The interesting phenomenon was the decreasing Ni content in sample 4. This low amount of the Ni content in sample 4 was suspected due to the excess amount of the rice husk used in the process, which generated an excess tar and silica which act as a barrier for CO to reduce hematite. So, the fraction of magnetite and trevorite become low and affect to Ni recovery.

4. Conclusion
In this study, beneficiation of nickel from limonite ore was carried out by roasting reduction and magnetic separation. The increasing of Ni content was a result of the transformation of hematite into magnetite phase during roasting reduction by using rice husk as pellet addition and reducing gas agent. A small amount of nickel detected in the concentrate may be due to too strong a magnet being used. This causes a small amount of trevorite that should not be attracted by the magnet getting into the concentrate bin.

The optimum result, 1.23 % Ni, was reached in magnetic concentrate sample which was obtained from reduction of pellet with 20% additional RH. Nevertheless, it is still necessary to analyze the composition and the phase of the obtained tailings fraction to ascertain where the largest concentration of nickel, whether in concentrate or in tailings.

5. Acknowledgement
Special thanks are due to Mr. Agus Budi Prasetyo (Research Centre for Metallurgy, Indonesian Institute of Sciences - LIPI, Indonesia) and Mr. Delfiandra (Center for Testing and Identification of Goods, Directorate General of Customs and Excise, Jakarta, Indonesia) for helpful supports. The authors also wish to thank the Directorate of Research and Community Engagement, Universitas Indonesia under Postgraduate research grants for the financial support of this research.

References
[1] Bunjaku A, Kekkonen M, Pietilä K and Taskinen P 2012 Effect of mineralogy and reducing agent on reduction of saprolitic nickel ores Miner. Process. Extr. Metall. 121 156–65
[2] Liu Y and Lee M 2015 Separation of Co and Ni from a chloride leach solutions of laterite ore by solvent extraction with extractant mixtures J. Ind. Eng. Chem. 28 322–7
[3] Mudd G M 2010 Global trends and environmental issues in nickel mining: Sulfides versus laterites Ore Geol. Rev. 38 9–26
[4] Senanayake G, Childs J, Akerstrom B D and Pugaev D 2011 Reductive acid leaching of
laterite and metal oxides - A review with new data for Fe(Ni,Co)OOH and a limonitic ore
Hydrometallurgy 110 13–32

[5] Guo Q, Qu J, Han B, Zhang P, Song Y and Qi T 2015 Innovative technology for processing saprolitic laterite ores by hydrochloric acid atmospheric pressure leaching Miner. Eng. 71 1–6

[6] Guo Y, Dai H and Yang J 2013 Beneficiation Test Research on High Grade Hematite-Limonite Ore Appl. Mech. Mater. 298 3029–33

[7] Tang X, Liu R, Yao L, Ji Z, Zhang Y and Li S 2014 Ferronickel enrichment by fine particle reduction and magnetic separation from nickel laterite ore Int. J. Miner. Metall. Mater. 21 955–61

[8] Fan C, Zhai X, Fu Y, Chang Y, Li B and Zhang T A 2012 Leaching behavior of metals from chlorinated limonitic nickel laterite Int. J. Miner. Process. 110–111 117–20

[9] Agacayak T and Koseler M 2015 Effect of Microwave Heating on the Leaching of Lateritic Nickel Ore J. Chem. Soc. Pakistan 37 230–5

[10] Astuti W, Hirajima T, Sasaki K and Okibe N 2016 Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores Miner. Eng. 85 1–16

[11] Li G, Shi T, Rao M, Jiang T and Zhang Y 2012 Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate Miner. Eng. 32 19–26

[12] Oxley A and Barcza N 2013 Hydro – pyro integration in the processing of nickel laterites Miner. Eng. 54 2–13

[13] Kyle J 2010 Nickel laterite processing technologies – where to next? ALTA 2010 Nickel/Cobalt/Copper Conference, 24 - 27 May (Perth, Western Australia)

[14] Soedarsono J W, Kawigraha A, Sulamet-ariobimo R D, Asy M A, Yosi A and Putra E M 2013 The Influence of Coal and Reduction Process Parameters in Producing Iron Nugget Adv. Mater. Res. 789 517–21

[15] Swinbourne D R 2014 Understanding ferronickel smelting from laterites through computational thermodynamics modelling Miner. Process. Extr. Metall. 123 127–40

[16] Rhamdhani M A, Hayes P C and Jak E 2009 Nickel laterite part 1 - Microstructure and phase characterisations during reduction roasting and leaching Trans. Institutions Min. Metall. Sect. C Miner. Process. Extr. Metall. 118 129–45

[17] Li Y, Sun Y, Han Y and Gao P 2013 Coal-based reduction mechanism of low-grade laterite ore Trans. Nonferrous Met. Soc. China 23 3428–33

[18] Jiang M, Sun T, Liu Z, Kou J, Liu N and Zhang S 2013 Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process Int. J. Miner. Process. 123 32–8

[19] Zhou S, Wei Y, Li B, Wang H, Ma B and Wang C 2016 Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore Sci. Rep. 6 1–12

[20] Samouhos M, Taxiarcho M, Hucheon R and Devlin E 2012 Microwave reduction of a nickeliferous laterite ore Miner. Eng. 34 19–29

[21] Maksum A, Rustandi A, Permana S and Soedarsono J W 2017 Influence of roasting-quenching pretreatment on the rice husk silica prepared by calcination method AIP Conf. Proc. 1823 20009-1-020009–8

[22] Luo S, Yi C and Zhou Y 2011 Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas Renew. Energy 36 3332–6

[23] Guo D, Hu M, Pu C, Xiao B, Hu Z, Liu S, Wang X and Zhu X 2015 Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas Int. J. Hydrogen Energy 40 4733–40

[24] Guo D, Zhu L, Guo S, Cui B, Luo S, Laghari M, Chen Z, Ma C, Zhou Y, Chen J, Xiao B, Hu M and Luo S 2016 Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer Fuel Process. Technol. 148 276–81