Sequence stratigraphy of the Late Cretaceous–Paleocene Gurpi Formation in southwest Iran

Bijan Beiranvand, Ebrahim Ghasemi-Nejad, Mohammad Reza Kamali and Akram Ahmadi

ABSTRACT

Facies associations, microplanktonic diversity, palynofacies variations, geochemical data, and natural gamma-ray logs were analyzed from the Danial and Gurpi sections of the Campanian–Selandian Gurpi Formation in the Zagros Mountains, southwest Iran. The biostratigraphic data indicate that deposition across the Cretaceous/Paleogene boundary was continuous in the Danial Section. In contrast, a minor stratigraphic break seems to be present in the Gurpi Section, where several planktonic foraminiferal subzones are not identified. Nine depositional sequences were interpreted and correlated between the two sections. They are apparently of great lateral extent because they closely correlate to the global sea-level cycles. The Maastrichtian maximum flooding surface MFS K180 (68 Ma) of the Arabian Plate was also identified. Detailed palynofacies analysis, integrated with standard tropical/subtropical planktonic foraminifera, indicate warm Neo-Tethyan upper-bathyal to middle-shelf depositional environments for the Gurpi Formation.

INTRODUCTION

The Upper Cretaceous–Paleocene Gurpi Formation consists of deep-marine shales, marls and argillaceous lime mudstones that crop out in the Zagros Mountains, southwest Iran (Figure 1). The petroleum geology, stratigraphy and sedimentology of the formation have been presented in several papers (e.g. James and Wynd, 1965; Wynd, 1965; Sampo, 1969; Setudehnia, 1972, 1978; Stoneley, 1974, 1990; Motiei, 2003; Ghasemi-Nejad et al., 2006; Darvishzad et al., 2007). In contrast to previous studies, this paper seeks to integrate the biostratigraphy and facies analysis of the formation in a chrono- and sequence-stratigraphic framework. It is the third of a series that include Beiranvand and Ghasemi-Nejad (2013) and Beiranvand et al. (2013).

In the first paper, Beiranvand and Ghasemi-Nejad (2013) documented the high-resolution planktonic foraminiferal biostratigraphy of the Gurpi Formation in the Danial Section, located on the Payun Anticline, northeast Izeh in Iran (Figure 1). The study was focused on a 15 m stratigraphic interval that spans the Cretaceous/Paleogene boundary (K/Pg; see Table 1 for abbreviations), traditionally referred to as the Cretaceous/Tertiary boundary (KTB). This boundary is recognized as a major regional unconformity, referred to as the “pre-Cenozoic” or “base Tertiary” unconformity in the Arabian Plate (e.g. Sharland et al., 2001). In the Danial Section, however, a complete succession was shown to cross the boundary as evident by the occurrence of the uppermost Cretaceous Plummerita hantkeninoides Taxon-range Zone (TRZ), and lowermost Paleocene Guembelitria cretacea (P0) and Parvularugoglobigerina eugubina zones (see Enclosures 1 to 4).

The second paper of the series by Beiranvand et al. (2013) interpreted genetic stratigraphic sequences and sea-level cycles based on the response of palynomorphs in the complete section of the Gurpi Formation in the Danial Section. The present paper interprets the depositional sequences and sea-level cycles in the Gurpi Anticline, where the type section of the Gurpi Formation is defined (James and Wynd, 1965). It then shows that the nine Gurpi Formation sequences interpreted in the Danial Section can be correlated to the Gurpi Section over a distance of about 70 km (Figure 1).
GEOLOGICAL SETTING

During the late Cretaceous and Paleocene, the northeastern region of the Arabian Plate was covered by the Neo-Tethys Ocean (Ziegler, 2001; Sharland et al., 2001; Motiei, 2003; Alavi, 2004). The region of the present-day Zagros Mountains was a NW-trending foredeep basin situated southeast of the Zagros Suture Zone (Figure 1; Ziegler, 2001; Alavi, 2004). The deepest part of the basin was located next to the suture and a broad shallow-marine shelf extended to the west over most of the Arabian Plate (Koop and Stoneley, 1982). During that time, an upwelling system of currents developed in the southeastern Neo-Tethys Ocean resulting in the deposition of thick organic-rich, relatively deep-marine shales and argillaceous lime mudstones in the Zagros Foredeep (Kolodny, 1980; Parrish and Curtish, 1982; Almogi-Labin et al., 1990, 1993; Eshet et al., 1994; Ziegler, 2001). The Gurpi Formation was deposited during the late Campanian to late Danian in this asymmetric foredeep basin southeast of the Zagros Suture (Bahroudi and Talbot, 2003).

The Gurpi Formation is about 340 m thick in the Gurpi and Danial sections (Figure 1, Enclosures 1 and 2), and consists of dark-gray to gray marly shales, marls and marly limestones. In these sections it overlies the Ilam Formation and the contact is a sharp disconformity surface with no evidence of subaerial erosion or weathering. It is conformably overlain by purple clayey shale and marl layers of the basal part of the Pabdeh Formation. The carbonates of the Emam Hassan Member occur in the middle part of the Gurpi Formation, and extend throughout the Zagros Basin with some distinctive lateral facies variations. In the study area, the member consists of thin-bedded pelagic and hemipelagic marls and argillaceous lime mudstones with planktonic foraminiferal assemblages (Wynd, 1965). This member has a gradational contact with the underlying strata making them practically indistinguishable except for their lithologic color.

STUDY PROGRAM

The study program started in the field by measuring the thickness of the two sections and recording their lithology, sedimentary structures and geometry. Natural gamma-ray (NGR) was...
Table 1
Abbreviations

Abbreviation	Definition
AOM	Amorphous organic matter
GR	Gamma-ray
HI	Hydrocarbon index
HST	Highstand systems tract
IZ	Interval zone
km	Kilometer
K/Pg	Cretaceous/Paleogene boundary
KTB	Cretaceous/Tertiary boundary
Kyr	Thousand years
LOZ	Lowest-occurrence zone
LOSZ	Lowest-occurrence subzone
LST	Lowstand systems tract
m	Meter
Ma	Million years before present
MFS	Maximum flooding surface
Myr	Million year
NGR	Natural gamma-ray
OI	Oxygen index
PMI	Palynological marine index
PRSZ	Partial-range subzone
Rm	Marine palynomorphs richness
RT	Terrestrial palynomorphs richness
SB	Sequence boundary
S/C	Spiniferites/cyclonephelium ratio
SEM	Scanning electron microscope
T-R	Transgressive-regressive
Tm	Maximum temperature
TOC	Total organic carbon
TRZ	Taxon-range zone
TS	Transgressive surface
TST	Transgressive systems tract
XRD	X-ray diffraction
XRF	X-ray fluorescence
TRZ	Taxon-range zone
XRF	X-ray fluorescence
XRF	X-ray fluorescence
Al	Aluminium
Ba	Barium
Ca	Calcium
Cs	Caesium
Fe	Iron
Ir	Iridium
K	Potassium
Mg	Magnesium
Mo	Molybdenum
Nb	Nibumbium
OI	Oxygen index
HI	Hydrocarbon index
OI	Oxygen index
HI	Hydrocarbon index
Al	Aluminium
Ba	Barium
Ca	Calcium
Cs	Caesium
Fe	Iron
Ir	Iridium
K	Potassium
Mg	Magnesium
Mo	Molybdenum
Si	Silicon
Sn	Stannum
Th	Thorium
Ti	Titanium
U	Uranium
Zr	Zirconium

measured using a SURVEY mode in GR-130 portable gamma in the two sections (677 m thick) with a 0.25 m sampling interval (Enclosures 1 and 2). A total of 299 rock samples were collected from the sections, most of which consist of dark-gray to gray, laminated and slightly bioturbated marly shales, marls, and shaley marls with subordinate marly limestones.

A total of 180 samples were selected for thin-section preparation and 106 samples were processed for planktonic foraminiferal biostratigraphy, following the standard method of Keller et al. (1995). In addition, a total of 210 samples were processed for stratigraphic and organic-matter investigations, following the palynological technique described in Wood et al. (1996). A total of 15 samples were prepared for X-ray diffraction (XRD) analysis and 25 powdered bulk samples underwent standard analytical methods of Espitalie et al. (1986) using Rock-Eval II plus TOC (total organic carbon) module to determine TOC, Tmax (maximum temperature), OI (oxygen index), and HI (hydrocarbon index). The distribution of major and trace elements was determined on 52 samples by XRF (x-ray fluorescence) analysis.

Thin sections were studied by optical microscopy, and the data were processed using the routine grain-size distribution analysis (Flügel, 2004) for petrography and microfacies analysis so as to correlate the facies between the sections. Dating of time lines was established using a detailed planktonic foraminiferal biozonation and dinocyst events in the sections (Enclosures 3 and 4). X-ray techniques (XRD, XRF and SEM) were used as the main methods to identify mineral phases, clay content, chemical composition (major and trace element analysis), and microplanktonic species diversity. Palynofacies analysis, geochemical data (TOC, Tmax, OI, and HI), and natural gamma-ray spectroscopy, which are strongly dependent on variation in depositional environments (Tyson, 1995), were used as multi-disciplinary approaches to interpret sea-level cycles. The interpretation of this data is described in more detail below.

Facies Analysis

Field descriptions of lithology, sedimentary structures, trace fossils and strata surfaces, together with microfacies analysis of the formation, led to the identification of four main sedimentary facies related to sea-level variations.

(I) Gray marls and argillaceous limestones to carbonate mudstone/wackestone containing minor debris of planktonic and rare benthic foraminifera; this facies occurs in shallowing upward parasequences of the lowstand systems tract (LST) of each depositional sequence. It is consolidated following a period of erosion and/or non-deposition after the falling stage of the sea-level cycle.
(2) Dark-gray to gray marls and marly shales to carbonate wackestone, wackestone-packstone and packstone, with abundant planktonic and rare benthic foraminifers; this facies occurs in deepening upward parasequences of the transgressive systems tract (TST) during the rising stage of the sea-level cycle.

(3) Gray fossiliferous marls and shaley marls containing abundant planktonic and rare benthic foraminifera occur in the parasequences of the early highstand systems tract (HST).

(4) Light-gray to cream marls interbedded with marly limestones, characterized by planktonic foraminifera wackestone, containing common trace fossils with abundant oxidized minerals suggest deposition during period of low sea level within outer-neritic to upper-slope settings.

A hardground surface at the top of each depositional sequence marks a major sedimentological change from the gray marly limestones and marls below, to the marls and clayey marls above. The latter contains several resistant layers of cream marly limestones. This pattern suggests a rising sea level, sometimes with fluctuations.

Planktonic Foraminifera

Nutrient supply, oxygen, temperature and salinity are the main environmental parameters that control variations in the relative abundances of planktonic foraminifers’ species (Huber et al., 1999; Gebhardt et al., 2004). It has also been demonstrated that the eustatic sea level can fluctuate with temperature. Therefore, shifts in the percentage and morphotype groups of planktonic foraminifera indicate changing environmental conditions, which can be linked to water depth (e.g. Boersma and Shackleton 1981; van der Zwaan et al., 1990; Huber et al., 1995, 1999; Nederbragt et al., 1998; West et al., 1998; Premoli Silva and Sliter, 1999; Gebhardt et al., 2004). Accordingly, four main planktonic foraminiferal morphogroups are recognized:

(1) Heterohelicids are interpreted as opportunists indicating high productivity or unstable conditions (Nederbragt et al., 1998; West et al., 1998; Premoli Silva and Sliter, 1999), which may point to the deepest habitats (Huber et al., 1995, 1999).

(2) Hedbergellids (non-keeled group) are interpreted as surface dwellers (Huber et al., 1995). These are considered to be open-marine species, which dominate when favorable conditions at greater depths do not exist (shallow-water depths or oxygen minimum zones; Leary et al., 1989; Koutsoukos and Hart, 1990; West et al., 1998; Premoli Silva and Sliter, 1999).

(3) The Whiteinella and Praeglobotruncana group indicate intermediate water-depth habitats (Huber et al., 1995, 1999).

(4) The Rotalipora and Dicarinella (keeled genera) group are interpreted as deep open-marine dwelling species (Huber et al., 1995, 1999; Premoli Silva and Sliter, 1999), and can represent different ecological niches. These are incorporated here for environmental interpretation.

Thus, high percentages of planktonic foraminifera, with frequent keeled specimens, are characteristic of deep water. The percentages within the four main environmental index groups indicate values vary widely between 0% and 61%, with a generally increasing trend according to the environmental habitat of each group during sea-level cycles.

Palynomorphs

The main palynological parameters that can be used to interpret relative sea-level changes include:

(1) amount of terrestrially derived organic matter (Posamentier and Vail, 1988; Roberts and Coleman, 1988; Leithold and Bourgeois, 1989);

(2) marine to terrestrial palynomorph ratio (Gregory and Hart, 1992);

(3) the ratio of recycled palynomorphs (Eshet et al., 1988a, b);

(4) depositional organic facies (Habib and Miller, 1989; Habib et al., 1992; Edet and Nyong, 1993);

(5) dinoflagellate species diversity (Habib and Miller, 1989; Habib et al., 1992; Moshkovitz and Habib, 1993).
In this study, the abundance and diversity of marine palynomorphs, represented by the Palynological Marine Index (PMI), and Spiniferites/Cyclonephelium Ratio (S/C) are used as the main palynological parameters to determine changes in depositional environments and transgressive-regressive sequences (Enclosure 1).

The percentages of five main palynological elements (1) amorphous organic matter (AOM), (2) dinocyst, and (3) foraminiferal test linings (as marine palynomorphs), (4) phytoclast and (5) sporomorphs (as terrestrial components) vary from 0–96%. They show a generally increasing trend for marine elements from the transgressive surface (TS) to the maximum flooding surface (MFS), and a decreasing trend for phytoclast and sporomorphs in each sequence. The calculated percentage of palynomorphs is largely controlled by AOM and phytoclast dilution. Large percentages of AOM in the succession resulted from a combination of good preservation (directly related to dysoxic–anoxic conditions) and low-energy environments.

Low percentages of terrestrial elements (phytoclasts and sporomorphs) are mostly related to deep-marine depositional conditions and long-distance transportation of the particles. A very small ratio of sporomorphs to phytoplankton reflects the proximal–distal trend and indicates deep-marine condition for the succession. Plotting these data on ‘AAP’ ternary diagram of Tyson (1995; Figure 2) shows a concentration in the IX and VIII zones implying deep-water basinal setting and stratified marine shelf deposits. On the other hand, determining species diversity of dinocysts indicated that values vary widely between 1 and 42 with a normal increasing trend during relative sea-level rises. Generally, the abundance and diversity of marine palynomorphs increase during deposition of TSTs and the highest diversity is recorded at the MFSs (Enclosure 1).

The PMI that was proposed by Helenes et al. (1998) to support the interpretation of depositional environments is calculated using the formula:

\[
\text{Palynological Marine Index (PMI in %)} = 100 \times \left(\frac{R_m}{R_t} + 1 \right)
\]

Rm is richness of marine palynomorphs (dinoflagellates cysts, acritarchs and foraminiferal test linings) and Rt is the richness of terrestrial palynomorphs (pollens and spores) counted per sample. In the present study, Rm and Rt were expressed as number of species per sample. High values of PMI are interpreted as indicative of normal marine depositional conditions. When the samples have no marine palynomorphs (Rm = 0), the PMI value is 100. The results of determining PMI from counting 210 samples are shown in Enclosure 1. PMI values range widely between 167 and 1,600 with a generally increasing trend from the transgressive surface to the MFSs (Enclosure 1).

Generally, cyst types with different lengths and complexity of processes can be used in environmental analysis (Williams, 1977). The association with dominant long and complex process chorate cysts (such as Spiniferites, Achomosphaera, Oligosphaeridium, Hystrichosphaeridium, and Hystrichodinium) is considered to indicate open-marine shelf environments (Davey and Rogers, 1975; Wall et al., 1977; Brinkhuis and Zachariasse, 1988; Carvalho et al., 2006), and the association of proximate cysts with short, stout and berbed-process (such as Cyclonephelium, Exochosphaeridium, Cleistosphaeridium, and Micrhystridium) reflects a more coastal to nearshore relatively restricted
environment (Brinkhuis and Zachariasse, 1988; Eshet et al., 1992). Optima of the *Spiniferites* group are in most cases associated with a sea-level high and/or an energy low condition. However, the S/C ratio, as additional evidence of the palynologic response to sea-level change, can be defined and taken to reflect a more detailed, smaller-scale change of depositional environments compared to species diversity alone. In general, the S/C ratio shows an increase in the seaward direction and is a good indicator of environmental change in the offshore direction (Harland, 1973). The calculated ratio for 180 samples show a wide range between 0–10, with a typical increasing trend from the TS to the MFS (Enclosure 1). The subsequent change (increase, and then decrease) of the S/C ratio, corresponding with a similar change of species richness, highlights the T-R depositional sequences.

The results of palynofacies analysis indicate that dinoflagellate abundance and diversity, PMI, S/C ratio, and other sedimentary organic-matter parameters are related to the migration of the various depositional environments in response to sea-level changes. They contribute to the recognition of systems tracts and key horizons such as flooding surfaces and sequence boundaries (SB). Accordingly, each palynological cycle develops during a T-S sequence; it starts with a dramatic increase in PMI index, species diversity and S/C ratio in the TST, and the decrease of these criteria during the HST, thus reflecting a complete cycle of relative sea level.

Geochemical Analysis, Natural Gamma-ray Log and TOC Content

Inorganic whole rock geochemical data can be used to define depositional facies, stratigraphic surfaces, cycles and sequences reflecting changes in relative sea level. Nine major elements (Ca, Si, Al, Fe, Mg, K, Ba, Rb, and Ti) and six trace elements (Ir, Mo, Zn, Sn, Cs, and Zr) were determined in this study. Data are reported as weight percent oxides (CaO, SiO$_2$, Al$_2$O$_3$, K$_2$O, MgO, BaO, RbO, and TiO$_2$) of major and trace elements. The CaO compound shows the most abundance in the successions (46.8 wt% on average of all samples) and SiO$_2$ and Al$_2$O$_3$ are the other main components with 23.6 wt% and 11.2 wt%, respectively. Others, Fe$_2$O$_3$, K$_2$O, MgO, BaO, RbO, and TiO$_2$ have positive correlations with Al$_2$O$_3$ content. SiO$_2$ contents in hemipelagic marine sediments consist of both biogenic and detrital silica. The SiO$_2$/Al$_2$O$_3$ ratio has a clear negative correlation with Al$_2$O$_3$ content (Enclosure 1).

The samples with high Si/Al ratios, representing high biogenic silica, correspond to those with high TOC content, thus suggesting that TOC content should mainly be derived from sea-surface production of siliceous phytoplankton dominated by diatoms. In this study multi-element geochemistry has been used as a supplement for stratigraphic studies. The part of chemostratigraphy in Enclosure 1 shows the variations of the principal components versus depth to help discriminate between the different chemical signatures of the nine sequences.

The total of natural gamma-ray (NGR) intensity is a function of the combined contributions of K, U, and Th in sediments, matrix density, and matrix lithology. Clay mineral content is often diluted by other components such as biogenic silica. Because of this dilution, if the NGR signal in the sedimentary sequence is to be used to reconstruct the environmental record, it is important to know which chemical components relate to the NGR signal. Thus, NGR measurements can help determine the mineralogy and abundance of clay and other radioactive minerals including micas and feldspars (Serra, 1985). They can also help characterize deposional environments and diagenetic processes in sediments. The NGR intensity of the succession has been plotted with analyzed chemical results in Enclosure 1. The changes of U/Th ratio within the depositional sequences are indicative of the T-R sequences. Changes with depth occur where the parent rocks and organic carbon affect the radioactive element concentrations in specific layers.

Total organic carbon (TOC) in the sediments may be interpreted as a proxy for organic influx. In general, increase in TOC correlates with increasing water depth, but here the organic carbon and Rock-Eval pyrolysis data (Enclosure 1) indicate that TOC values are generally low in the TST and higher values (generally associated with hardgrounds) occur in the HST. The coincident increase in carbonate and proportion of planktonic foraminifera is related to the planktonic foraminifera (mainly heterohelicids) being the main sources of carbonate in the organic-rich shales and marls (Leine, 1986). The pyrolysis data further suggest that all of the kerogens are thermally immature,
Stratigraphy of Gurpi Formation, Late Cretaceous–Paleocene, southwest Iran

Table 2
Correlation of Gurpi and global sequences

Boundary and Sequence	Type Section (meter)	Danial Section (meter)	Rate meter/kyr	Surface	Age
Top Gurpi				SB Th1	59.3
Gu9	27	20	1.5	MFS Sel1	60.6
SB Gu9				SB Sel1	61.1
Gu8	20	14	1.5	MFS Da4	61.7
SB Gu8				SB Da4	62.1
Gu7	22	18	1.0–2.0	MFS Da2	64.5
SB Gu7				SB Da1	65.1
Gu6	50	33	1.0–8.0	MFS Ma5	66.3
SB Gu6				SB Ma5	67.7
Gu5	58	24	1.0–2.0	MFS Ma4	68.0
SB Gu5				SB Ma4	69.0
Gu4	68	94	8.0–9.5	MFS Ma2	69.7
SB Gu4				SB Ma2	70.1
Gu3	28	28	2.5–3.5	MFS Ma1	70.5
SB Gu3				SB Ma1	70.8
Gu2	33	56	3.0–3.5	MFS Cam9	72.1
SB Gu2				SB Cam9	73.1
Gu1	32	40	1.5–2.0	MFS Cam8	74.5
SB Gu1				SB Cam8	75.6

as indicated by the low to slightly elevated temperature maximum (Tmax) values of 422–457°C and a terrigenous source (Type III). However, these data indicate that total organic carbon (TOC) values are generally very low and rarely exceed 0.5 wt%, with average values about 0.23 wt% (Enclosure 1).

SEQUENCE STRATIGRAPHY

Haq et al. (1988), in their “Mesozoic–Cenozoic Cycle Chart”, interpreted Campanian–Maastrichtian UZA-4 and Maastrichtian–Paleocene TA-1 supercycles, and dated them between 80.0 and 58.5 Ma in their time scale. They divided these supercycles into cycles or third-order sequences. On the basis of biostratigraphy the Gurpi Formation correlates to third-order sequences UZA-4.4 (75–71 Ma), UZA-4.5 (71–68 Ma) and TA-1.1 to TA-1.3 (68–60 Ma). The cycles of Haq et al. (1988) were revised by Hardenbol et al. (1998) and compiled and recalibrated in the revised geological time scale GTS 2004 (Gradstein et al., 2004) by Snedden and Liu (2011). In the latter updated chart, the Gurpi Formation is calibrated between 75.6 and 59.3 Ma, and correlates to sequences Campanian Ca8 and Ca9, Maastrichtian Ma1 to Ma5, Danian Da1 to Da4, and Selandian Sel1. The sea-level cycles and coastal onlap curves for these sequences are shown in Enclosure 1.

Beiranvand et al. (2013) interpreted the Gurpi Formation in the Danial Section in terms of nine depositional sequences, denoted Gu1 to Gu9 in ascending order (Enclosure 1). The nine Gurpi sequences are interpreted based on facies associations, palynofacies variations, microplanktonic diversity, and geochemical analysis. In the Danial Section, no evidences of subaerial erosion or unconformities is recognized across the Cretaceous/Paleogene boundary, and in general the outer-shelf and deeper-marine marls contain typical correlative conformities (Enclosure 2). Eustasy is believed to have controlled the sea-level cycles, and the sequences are characterized by sequence boundaries (SB), lowstand, transgressive and highstand systems tracts (LST, TST and HST), and maximum flooding surfaces (MFS). The sequence boundaries are given the same name as the overlying sequence (Table 2).
The ages of the sequences are determined from high-resolution planktonic foraminiferal biostratigraphy (Beiranvand and Ghasemi-Nejad, 2013; Enclosures 3 and 4), and correlated to the global sequences by stratigraphic position (Snedden and Liu, 2011). In Table 2, the correlations are listed together with the ages for SBs and MFSs of Snedden and Liu (2011). The sediment accumulation rate is calculated using the thickness of the sequence and depositional age of the global sequence. Note the K/Pg boundary is calibrated at 65.5 Ma in Snedden and Liu (2011), and 66.0 Ma in GTS 2012. In our study the K/Pg is interpreted at the top of Sequence Gu6.

Gurpi Sequence Gu1

SB Gu1 is taken at the base of the studied sections at the boundary between the Gurpi and Ilam formations. It occurs in the upper part of the *Radotruncana calcarea* TRZ and is correlated to SB UZA-4.4 and correlative SB Cam8, which is a major eustatic sea-level drop in the late Campanian (Haq et al., 1988; Hardenbol et al., 1998). Sequence Gu1 is correlated to Campanian Sequence Cam8 between 75.6–73.1 Ma (Snedden and Liu, 2011).

The **TST Gu1** is characterized by decreasing in relative abundance of phytoclast particles and increased abundance of AOM directly related to dysoxic–anoxic conditions and low-energy environments (Enclosure 1). The increased abundance of heterohelicids and keeled genera planktonic foraminifera is interpreted as an open-marine deep-water habitat. Rock-Eval pyrolysis data indicate that TOC values are generally low and kerogen type is dominantly Types II and III (Enclosure 1). Geochemical analysis indicate that the amount of terrigenous minerals (including K, Al, and related elements) increase progressively during the TST. In addition, the U/Th ratio changes are directly related to the sea-level change. These criteria apparently reflect a rapid marine TST during a sea-level rise in outer-neritic conditions, or hydrodynamically lower-energy settings.

The **MFS of Sequence Gu1** is identified by the maximum abundance of heterohelicids and keeled planktonic foraminifera, optimum species diversity, PMI, AOM, CaO components and highest ratios of S/C and U/Th, and scarcity of phytoclast particles. Additionally, GR and NGR logs show the greatest deflections at the MFS. This late Campanian MFS is positioned near the top of the *Radotruncana calcarea* TRZ, immediately below the base of the *Globotruncanella havanensis* PRZ. The dominance of carbonate in these beds reflects maximum accommodation and highest relative sea level, with minimum siliciclastic sediment influx in an overall shelf depositional setting. The HST exhibits a significant and progressive decrease in planktonic foraminiferal percentages and increase in coarser siliciclastic sediments, indicating an overall decrease in water depth and progradation. Major element compounds, except for SiO₂, show decreasing trends, and the GR and NGR logs deflect to the left. The subsequent decreases of U/Th ratio indicate the regression.

Campanian Gurpi Sequences Gu2 and Gu3

Dinocyst-based events and associated species, in correlation with the planktonic foraminiferal biozones, imply a Late Campanian age for the sequences Gu2 and Gu3, which are correlated to sequences Cam9 and possibly Ma1 (Snedden and Liu, 2011). Sequence Gu3 is apparently coincident with the brief Ma1 sea-level cycle (ca. 1 Myr) and may have been deposited during a lowstand near the Campanian/Maastrichtian boundary (e.g. Haq et al., 1988; Barrera et al., 1997; Li et al., 1998).

The **TSTs of both sequences** are characterized by low TOC and increasing PMI and microplanktonic diversity. Their MFSs are characterized by an abrupt change in trend of S/C and U/Th ratios, an increasing AOM, and relative abundance and diversity of planktonic foraminifera and dinocysts (100 dinocyst species belonging to 66 genera). The HSTs are reflected by a marked progressive decrease in planktonic foraminifera and dinocyst diversity and an increase in coarser phytoclasts, which indicate decreasing of water depths during regression and progradation (Enclosure 1). All the evidence indicates outer-neritic, deep-marine conditions for these two sequences.
Maastrichtian Gurpi Sequence Gu4

Sequence Gu4 consists of gray marl and marly limestone of the Emam Hassan Member (Enclosures 1 and 2). A total of 61 dinoflagellate cyst species belonging to 53 genera reveals a moderate diversity in the sequence. Based on the bioevents, it has a Maastrichtian age and is correlated to sequences Ma2 and Ma3 (Snedden and Liu (2011)). It has the highest rate of sedimentation, 8–9.5 cm/Kyr, of all the Gurpi sequences (Table 2). SB Gu4 corresponds to a minimum of the U/Th ratio and occurs in the lower part of the *Gansserina gansseri* IZ. The TST occurs in the same interval zone and the increase in water depth is recognized by the increased clay content in the marls, and the abundance and diversity of the microfossil assemblages (Enclosure 1). The MFS occurs in the middle part of the Emam Hassan Member. In the Gurpi Section the MFS is often only recognized by a change in the relative abundance and diversity of planktonic foraminifera and dinocysts. The early HST is characterized by a sharp decrease in PMI values. Light gray to cream marls with carbonate planktonic foraminifera wackestone contain abundant oxidized minerals, suggesting deposition during low sea level within outer neritic to upper slope. The late HST reflects the shallowest environments and the greatest regression.

Late Maastrichtian Gurpi Sequence Gu5

Sequence Gu5 consists of gray marls and marly shales (Enclosures 1 and 2). Based on the planktonic foraminiferal biozones (CF5 and CF4) and correlatable dinoflagellate cysts bioevents, it is mid-Late Maastrichtian and correlated to Sequence Ma4 (Snedden and Liu, 2011). SB Gu5 is characterized by a minimum of the U/Th ratio, a sharp decrease in palynological content and a hardground. The LST is ca. 3 m thick and likely to be equivalent to the uppermost *Contusotruncana contusa* IZ. The TST is recognized as an increase in water depth characterized by the vertical lithologic changes and the components of the microfossil assemblages; it occurs in the *Pseudotextularia intermedia* PRZ. The MFS corresponds to the base of the *Abathomphalus mayaroensis* TRZ, and is correlated to MFS K180 at 68 Ma (Sharland et al., 2001). The overlying sediments are interpreted as a relatively long-lasting HST with drops in dinoflagellate species diversity and an increase in planktonic foraminifera assemblage diversity. The paleoenvironmental indicators represent open-marine, outer-neritic conditions.

Late Maastrichtian Gurpi Sequence Gu6

Sequence Gu6 is the youngest Cretaceous sequence with the K/Pg boundary defining its upper boundary (Enclosures 1 and 2). It comprises dark gray marly shales, and planktonic foraminiferal biozones and dinoflagellate cysts bioevents indicate a latest Maastrichtian age. Sequence Gu6 is correlated to the late Maastrichtian Sequence Ma5 (Snedden and Liu, 2011). Note that the latter authors calibrated the age of 65.1 Ma for the K/Pg boundary as in GTS 2008; however in GTS 2012 it has an estimated age of 66.0 Ma.

SB Gu6 is characterized by a minimum of the U/Th ratio, and a sharp decrease in palynological content. It occurs at the base of the *Pseudoguembelina hariaensis* PRSZ. The LST is ca. 2 m thick, and probably occurs within the basal *Pseudoguembelina hariaensis* PRSZ. The TST occurs within this PRSZ and is characterized by a slight increase in the values of the PMI reaching the highest PMI and diversities in its upper part. The MFS is recognized by increased planktonic foraminifera and dinocysts of moderate diversity (79 dinocyst species belonging to 71 genera) and abrupt increasing of S/C, U/Th ratios, and amount of AOM. The HST corresponds to the latest Maastrichtian *Pseudoguembelina palpebra* PRSZ and *Plummerita hantkeninoides* TRSZ. It may contain a minor regressive phase (sea-level fall) in its middle part, indicated by the low percentage of planktonic foraminifera and slight increase in phytoclasts. At that time, the water depth reached a level where the oxygen minimum zone almost covered the area and permitted the preservation of organic matter. Other minor sea-level falls thought to have occurred at this time are, however, not evidenced by the presence of corresponding “shallow-water” benthic foraminifera. The paleoenvironmental evidence indicates open-marine outer-neritic conditions.
Unlike the Danial locality, where the section is apparently biostratigraphically continuous across the K-Pg boundary, the very latest Maastrichtian and very earliest Paleocene planktonic foraminiferal biozones (the *P. hantkeninoides*, *G. cretacea*, and *P. eugubina* zones) are apparently absent in the Gurpi (northeast Lali) locality. The time period represented by all these zones is only approximately 750,000 years in total and therefore the absence of any or all of them may be due to insufficiently closely spaced sampling.

Paleocene Gurpi Sequence Gu7

Sequence Gu7 is the oldest Paleocene sequence, and is characterized by the highest PMI values, particularly in the lower part, and lowest carbonate content. SB Gu7 is correlated to the K/Pg boundary and SB Da1 (Li et al., 1999; Snedden and Liu, 2011). The LST is ca. 1.5 m thick, and corresponds to the basalmost Paleocene planktonic foraminifera *Parvularugoglobigerina eugubina* TRZ (Pa) and *Guembelitria cretacea* PRZ (P0). These two foraminiferal biozones coincide with the lowest occurrences of *Damassadinium californicum* and *Senonisphaera inornata* dinocyst events that are indices for the K/Pg boundary. In addition to the bioevents, there is a correlation between the species richness, iridium anomaly, TOC, quartz, and calcite components (Enclosure 1) that also represent the K/Pg boundary.

The early Danian TST ends at the MFS, which is marked by an increase in frequency and diversity of planktonic foraminifera and dinocyst species (119 dinoflagellate cyst species belonging to 83 genera), and abrupt increase of PMI and AOM amounts and S/C and U/Th ratios. The HST corresponds to the *Parasubbotina pseudobulloides* PRSZ (P1a), and *Subbotina triloculinoides* LOSZ (P1b). It contains abrupt decrease in the abundance and diversity of biota and periodic increases in phytoclasts, which reflect minor sea-level falls. The highest TOC concentration occurs in this systems tract and is probably due to minor sea-level falls because of the occurrence of type III kerogen in these sediments. These minor falls are, however, not evidenced by the presence of corresponding “shallow-water” benthic foraminifera. The bathymetric investigations indicate a marine, mainly outer-neritic, with occasional transgressions, to upper-bathyal conditions for the sequence.

Paleocene Gurpi Sequence Gu8 and Gu9

These two sequences comprise dark gray to reddish gray marly shales. Based on the bioevents they are dated as late Danian and Selandian and correlated to sequences Da4 and Sel1 (Snedden and Liu, 2011). The two sequences are characterized by the highest PMI values, particularly in their lower parts. Their MFSs are marked by an increase in frequency and diversity of planktonic foraminifera and dinocyst species and abrupt increases of the PMI and AOM, and S/C and U/Th ratios. The HSTs show probable minor sea-level falls indicated by the abruptly decreasing abundance and diversity of biota and periodic increases of phytoclasts. The most abundant TOC occurs in Sequence Gu9 and is concentrated in the HST. Bathymetric investigations indicate a marine, mainly outer-neritic, with occasional transgressions to upper-bathyal conditions.

CONCLUSIONS

Four main lithofacies, integrated with biofacies response to paleoenvironmental changes, indicate that the Upper Campanian–Paleocene Gurpi Formation consists of at least nine depositional sequences. These were deposited in the Zagros Foredeep in settings that varied between middle-to outer-neritic and particularly upper-bathyal depths and hydrodynamically lower-energy conditions. The Gurpi sequences can be correlated to the global sequences compiled by Snedden and Liu (2011).

The Cretaceous/Paleogene (K/Pg) boundary, traditionally referred to as the Cretaceous/Tertiary boundary (KTB), is recognized as at the boundary between Gurpi sequences Gu6 and Gu7. The lowstand systems tract of basalmost Paleocene Gurpi Sequence Gu7 is characterized by planktonic foraminifera *Parvularugoglobigerina eugubina* TRZ (Pa) and *Guembelitria cretacea* PRZ (P0), the
Stratigraphy of Gurpi Formation, Late Cretaceous–Paleocene, southwest Iran

lowest occurrence of Damassadinium californicum and Senoniasphaera inornata dinocyst events, and a correlation between the species’ richness, iridium anomaly, TOC, quartz, and calcite components—all representative indices for the K/Pg boundary (Enclosure 1).

Arabian Plate maximum flooding surface Maastrichtian MFS K180 (Sharland et al., 2001) is a distinctive mappable surface with an estimated age of at 68 Ma. It coincides to the base of the Abathomphalus mayaroensis TRZ in Gurpi Sequence Gu6, which is correlated to global Maastrichtian Sequence Ma5 (Snedden and Liu, 2011).

The low TOC content of the Gurpi depositional sequences in the TSTs and higher values in HSTs can be interpreted as due to the floodings of planktonic foraminifera (mainly heterohelicids) as the main sources of carbonate in the organic-rich shales and marls. Furthermore, the pyrolysis-data suggest that all of the kerogens present here are thermally immature, as indicated by the low to slightly elevated temperature maximum (Tmax) values of 422–457°C.

ACKNOWLEDGEMENTS

This study was supported by the Research Institute of Petroleum Industry (RIPI) of Iran. We thank Mr. S.S. Hendi, Head of Exploration and Production Research Center for supporting the work and Mrs. E.H. Tavakoli and H. Alinaghian for processing the samples. The authors thank Roger Davies, Mike Bidgood and Moujahed Al-Husseini for their careful review and many constructive remarks that greatly improved the quality of this paper. Kathy Breining is thanked for proofreading the text and GeoArabia’s Production Co-manager, Arnold Egdane, for designing the paper for press.

REFERENCES

Alavi, M. 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, v. 304, p. 1-20.
Almogi-Labin, A., A. Bein and E. Sass 1990. Agglutinated foraminifera in organic-rich neritic carbonates (Upper Cretaceous, Israel) and their use in identifying oxygen levels in oxygen-poor environments. In C. Hemleben, M.A. Kaminski, W. Kuhn and D.B. Scott (Eds.), Palaeoecology, Biostratigraphy, Palaeoecography, and Taxonomy of Agglutinated Foraminifera. Kluwer, Dordrecht, p. 565-585.
Almogi-Labin, A., A. Bein, and E. Sass 1993. Late Cretaceous upwelling along the Southern Tethys margin (Israel): Interrelationship between productivity, bottom water environments and organic matter preservation. Palaeoecography, v. 8, p. 671-690.
Bahroudi, A. and C.J. Talbot 2003. The configuration of basement beneath the Zagros Basin. Journal of Petroleum Geology, v. 26, no. 3, p. 257-282.
Barrera, E., S.M. Savin, E. Thomas and C.E. Jones 1997. Evidence for thermohaline-circulation reversals controlled by sea-level change in the latest Cretaceous. Geology, v. 25, p. 715-718.
Beiranvand, B. and E. Ghasemi-Nejad 2013. High resolution planktonic foraminiferal biostratigraphy of the Gurpi Formation, K/Pg boundary of the Izh Zeh Zone, SW Iran. Revista Brasileira de Paleontologia, v. 16, no. 1, p. 5-26.
Beiranvand, B., E. Ghasemi-Nejad and M. Reza Kamali 2013. Palynomorphs’ response to sea-level fluctuations: A case study from Late Cretaceous–Paleocene, Gurpi Formation, SW Iran. Journal Geopersia, v. 3, no. 1, p. 11-24.
Boersma, A. and N.J. Shackleton 1981. Oxygen- and carbon-isotope variations and planktonic foraminifer depth habitat, Late Cretaceous to Paleocene, Central Pacific. In J. Thiede, T.L. Valuer, et al., Initial Reports of the DSDP 62, Washington (U.S. Govt. Printing Office), p. 513-526.
Brinkhuis, H. and W.J. Zachariasse 1988. Dinoflagellate cysts, sea level changes and planktonic foraminifers across the Cretaceous-Tertiary boundary at El Haria, northwest Tunisia. Marine Micropaleontology, v. 13, p. 153-191.
Carvalho, M.A., J.G.M. Filho and T.R. Menezes 2006. Palynofacies and sequence stratigraphy of the Aptian–Albian of the Sergipe Basin, Brazil. Sedimentary Geology, v. 192, p. 57-74.
Darvishzad, B., E. Ghasemi-Nejad, S. Ghourchaei and G. Keller 2007. Planktonic foraminiferal biostratigraphy and faunal turnover across the Cretaceous-Tertiary boundary in southwestern Iran. Journal of Sciences, Islamic Republic of Iran, v. 18, no. 2, p. 139-149.
Davey, R.J. and J. Rogers 1975. Palynomorph distribution in recent offsho se sediments along two traverses off south west Africa. Marine Geology, v. 18, p. 213-225.
Edet, J.J. and E.E. Nyong 1993. Depositional environments, sea-level history and palaeobiogeography of the late Campanian-Maastrichtian on the Calabar Flank, SE Nigeria. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 102, p. 161-175.
Eshet, Y., H.L. Cousminer and D. Habib 1988a. A model for using reworked palynomorphs as sedimentological and environmental indicators. Abstract, Palynology, v. 12, p. 236-237.
Eshet, Y., H.L. Druckman, Y. Cousminer, D. Habib and W.S. Drugg 1988b. Reworked palynomorphs and their use in the determination of sedimentary cycles. Palynology, v. 16, p. 662-665.
Eshet, Y., S. Moshkovitz, D. Habib, C. Benjamin and M. Mogaritz 1992. Calcareous nanofossil and dinoflagellate stratigraphy across the Cretaceous/Tertiary boundary at Hor Hahar, Israel. Marine Micropaleontology, v. 18, p. 199-228.
Eshet, Y., A. Almogi-Labin and A. Bein 1994. Dinoflagellate cysts, paleoproductivity and upwelling systems: A Late Cretaceous example from Israel. Marine Micropaleontology, v. 23, p. 231-240.

Espitalie, J., G. Deroo and F. Marquis 1986. La pyrolyse Rock-Eval et ses applications. Partie 3. Revue de l’Institut Français du Pétrole, Rueil-Malmaison, v. 41, no. 1, p. 73-89.

Flügel, E. 2004. Microfossils of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin, Heidelberg, New York, 976 p.

Gebhardt, A.C., B. Gaye-Haake, D. Unger, N. Lahajnar and V. Itekkot 2004. Recent particulate organic carbon and total suspended matter fluxes from the Ob and Yenisei Rivers into the Kara Sea (Siberia). Marine Geology, v. 207, p. 225-245.

Ghasemi-Nejad, E., M.H. Hobbi and P. Schieler 2006. Dinoflagellate and foraminiferal biostratigraphy of the Gurpi Formation (upper Santonian–upper Maastrichtian), Zagros Mountains, Iran. Cretaceous Research, v. 27, no. 6, p. 828-835.

Gradesen, M., J.G. Oggi, A.G. Smith, F.P. Agterberg, W. Bleeker, R.A. Cooper, V. Davydov, P. Gibbard, L. Hinnov, E.R.H. House (†), L. Lourerio, H.P. Luterbacher, J. McArthur, M.J. Melchin, L.J. Robb, J. Shergold, M. Villeneuve, B.R. Wardlaw, J. Ali, H. Brinkhuis, F.J. Hilgen, J. Hooker, R.J. Howarth, A.H. Knoll, J. Laskar, S. Monechi, J. Powell, K.A. Plumb, I. Raffi, U. Röhl, P. Sadler, A. Santillan, B. Schmitz, N.J. Shackleton, G.A. Shields, H. Strauss, J. Van Dam, J. Veizer, Th. van Kolfschoten and D. Wilson 2004. A Geologic Time Scale 2004. Cambridge University Press, 589 p.

Gregory, W. and G.P. Hart 1992. Towards a predictive model for the palynologic response to sea-level changes. Palaios, v. 7, no. 1, p. 3-33.

Habib, D and J.A. Miller 1989. Dinoflagellate species and organic facies evidence of marine transgression and regression in the Atlantic coastal plain. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 74, p. 23-47.

Habib, D., S. Moshkovitz and C. Kramer 1992. Dinoflagellate and calcareous nannofossil response to sea level change across Cretaceous-Tertiary boundary sections. Geology, v. 20, p. 165-168.

Haq, B.U., J. Hardenbol and P.R. Vail 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In C.K. Wilgus, B.S. Hastings, C.G.T. C. Kendall, H.W. Posamentier, C.A. Ross and J.C. Van Wagoner (Eds.), Sea-level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists Special Publication no. 42, p. 71-108.

Hardenbol, J., J. Thierry, M.B. Farley, T. Jacquin, P.-C. de Graciansky and P.R. Vail 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In P.C. Graciansky, J. Hardenbol, T. Jacquin and P.R. Vail (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society of Economic Paleontologists and Mineralogists Special Publication no. 60, p. 3-13, charts 1-8.

Harland, R. 1973. Dinoflagellate cysts and acritarchs from the Bearpaw Formation (upper Campanian) of southern Alberta, Canada. Palaeontology, v. 16, p. 665-706.

Helenes, J., C. de-Guerra and J. Vásquez 1998. Palynology and chronostratigraphy of the upper Cretaceous in the subsurface of the Barinas area, western Venezuela. The American Association of Petroleum Geologists Bulletin, v. 82, p. 1308-1328.

Huber, B.T., D.A. Hodell and C.P. Hamilton 1995. Middle–late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin, v. 107, p. 1164-1191.

Huber, B.T., R.M. Leckie, R.D. Norris, T.J. Bralower and E. Collabe 1999. Foraminiferal assemblage and stable isotopic change across the Cenomanian–Turonian boundary in the subtropical North Atlantic. Journal of Foraminiferal Research, v. 29, p. 392-417.

James, G.A. and J.C. Wynd 1965. Stratigraphic nomenclature of the Iranian oil consortium agreement area. American Association of Petroleum Geologists Bulletin, v. 49, p. 2182-2245.

Keller, G., L. Li and N. MacLeod 1995. The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: How catastrophic was the mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology, v. 119, p. 221-254.

Kolodyń, Y. 1980. Carbon isotope compositions and environmental conditions of the high productivity sedimentary sequence - the case of the Mishash–Ghareb formations, Israel. Israel Journal of Earth-Sciences, v. 29, p. 147-156.

Koop, W.J. and R. Stoneley 1982. Subsidence history of the Middle East Zagros Basin, Permain to Recent. In P. Kent, M.H.P. Bott, D.P. McKenzie and C.A. Williams (Eds.), The Evolution of Sedimentary Basins. Philosophical Transactions of the Royal Society of London, Part A, v. 305, p. 149-168.

Koutsoukos, E.A.M. and M.B. Hart 1990. Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: A case study from the Sergipe Basin, Brazil. Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 81, p. 221-246.

Leary, P.N., G.A. Carson, M.K.E. Cooper, M.B. Hart, D. Horne, I. Jarvis, A. Rosenfeld and B.A. Tocher 1989. The biotic response to the late Cenomanian oceanic anoxic event; integrated evidence from Dover, SE England. Journal of the Geological Society of London, v. 146, p. 311-317.

Leine, L. 1986. Geology of the Tarfaya oil shale deposits, Morocco. Geologie en Mijnbouw, v. 65, p. 57-74.

Leithold, E.L. and J. Bourgeois 1989. Sedimentation, sea-level change, and tectonics on an early Pleistocene continental shelf, northern California. Geological Society of America Bulletin, v. 101, p. 1209-1224.

Li, L. and G. Keller 1998. Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP Sites 525 and 21. Marine Micropaleontology, v. 33, p. 55-86.

Li, L., G. Keller and W. Stinsnesbeck 1999. The Late Campanian and Maastrichtian in northwestern Tunisia: Palaeoenvironmental inferences from lithology, macrofauna and benthic foraminifera. Cretaceous Research, v. 20, p. 231-252.

Moshkovitz, S. and D. Habib 1993. Calcareous nannofossil and dinoflagellate stratigraphy of the Cretaceous–Tertiary boundary, Alabama and Georgia. Micropaleontology, v. 40, p. 100.

Motiei, H. 2003. Stratigraphy of Zagros, Treatise on the geology of Iran. Tehran, Iran, Geological Survey Press, 583 p.

Nederbragt, A.J., R.N. Erlich, B.W. Fouke and G.M. Garssen 1998. Palaeoecology of the biserial planktonic foraminifer Heterobolus moremani (Cushman) in the late Albian to middle Turonian Circum-North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 144, p. 115-133.

Parrish, J.T. and R.L. Curtish 1982. Atmospheric circulation, upwelling and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeography, Palaeoclimatology Palaeoecology, v. 40, p. 31-66.
Posamentier, H.W and P.R. Vail 1988. Eustatic controls on clastic deposition II - Sequence and systems tract models. In C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier, C.A. Ross and J.C. Van Wagoner (Eds.), Sea-level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists, Special Publication no. 42, p. 125-154.

Premoli Silva, I. and W.V. Sliter 1999. Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution. In E. Barrera and C. Johnson (Eds.), Evolution of the Cretaceous Ocean-Climate System: Boulder, Colorado. Geological Society of America Special Publication 332, p. 301-328.

Roberts, H.H. and J.M. Coleman 1988. Lithofacies characteristics of shallow expanded and condensed sections of the Louisiana distal shelf and upper slope. Gulf Coast Association of Geological Societies Transactions, v. 38, p. 291-301.

Sampo, M. 1969. Microfossils and microfacies of the Zagros Area, southwestern Iran (from pre-Permian to Miocene). International Sedimentary Petrographical Series, v. 12. E. J. Brill, Leiden, 74 p., 105 pls.

Serra, O. 1985. Sedimentary Environments from Wireline Logs, Schlumberger, Houston, 211 p.

Setudehnia, A. 1972. Stratigraphic Lexicon of Iran. Union International des Sciences Geologiques, vol. 3., ASIE, southwest Iran.

Setudehnia, A. 1978. The Mesozoic sequence in southwest Iran and adjacent areas. Journal of Petroleum Geology, v. 1, no. 1, p. 3-42.

Sharland, P.R., R. Archer, D.M. Casey, R.B. Davies, S.H. Hall, A.P. Heward, A.D. Horbury and M.D. Simmons 2001. Arabian plate sequence stratigraphy. GeoArabia Special Publication 2, Gulf Petrolink, Bahrain, 371p., with 3 charts.

Snedden, J.W and C. Liu 2011. Recommendations for a uniform chronostratigraphic designation system for Phanerozoic depositional sequences. American Association of Petroleum Geologists Bulletin, v. 95, no. 7. p. 1095-1122.

Stoneley, R. 1974. Evolution of the continental margins bounding a former southern Tethys. In C.A. Burk and C.L. Darke (Eds.), The Geology of Continental Margins. Springer-Verlag, New York, p. 889-903.

Stoneley, R. 1990. The Middle East Basin: A Summary Overview. In J. Brooks (Ed.), Classic Petroleum Provinces. Geological Society of London, Special Publication no. 50, p. 293-298.

Tyson, R.V. 1995. Sedimentary Organic Matter, Organic Facies and Palynofacies. Chapman and Hall, London, 615 p.

van der Zwaan, G.J., F.J. Jorissen and H.C. de Stigter 1990. The depth dependency of planktonic/benthic foraminiferal ratios: Constraints and applications. Marine Geology, v. 95, p. 1-36.

Williams, G.L. 1977. Dinoflagellate cysts, their classification, biostratigraphy and palaeoecology. In A.T.S. Ramsay (Ed.), Oceanic Micropalaentology. Academic Press, London, p. 1231-1325.

Wood, G.D., A.M. Gabriel and J.C. Lawson 1996. Palynological techniques-processing and microscopy. In J. Jansonius and D.C. McGregor (Eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, Dallas, p. 29-50.

Wynd, J.G. 1965. Biofacies of the Iranian Oil Consortium Agreement area. Iranian Oil Operating Companies, Geological and Exploration Division, Report 1082, 89 p.

Ziegler, M.A. 2001. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, v. 6, no. 3, p. 445-504.

ABOUT THE AUTHORS

Bijan Beiranvand is a Basin Analyst with the Research Institute of Petroleum Industry (RIPI) at the National Iranian Oil Company (NIOC). He received a BSc (1992) in Geology (Hydrogeology) from Shiraz University, Iran and an MSc (1995) and PhD in Geology (Stratigraphy) from the University of Tehran, Iran. Bijan joined the Bureau of Engineering of the Iranian Air force as a Supervisor of the Soil Mechanic Laboratory from 1995 to 1997, then he worked as a Supervisor of the Exploration Department of the Bureau of Lorestan and Chahar Mahal-o Bakhtiari Provinces (1997-2000). Bijan joined RIPI in 2000 and now he is working for the Petroleum Geology Department of this company. His interests are stratigraphy and basin analysis, basin modeling and reservoir geology.

biranvandb@ripi.ir
Ebrahim Ghasemi-Nejad is currently a professor of Stratigraphy and Marine Palynology with the Department of Geology of the University of Tehran, Iran. He received a BSc degree in Geology from Ferdowsi University of Mashhad and an MSc degree in the field of Stratigraphy and Micropaleontology from the University of Tehran. He then continued his studies for a PhD degree at the Department of Earth Sciences of the University of Saskatchewan, Canada from 1990 to 1995. His PhD thesis is on the Palynology and Paleoenvironment of the Jurassic strata of the Jura Mountain in Switzerland. After finishing his PhD (1996) he returned to Iran to work as an academic with the University of Tehran. Since 1996 he has been working there, teaching graduate and undergraduate students of Geology and handling research projects in the fields of marine palynology (dinoflagellates), palynostratigraphy, foraminiferal biostratigraphy and evaluation of petroleum potential of different rock units via using palynology, palynofacies and organic geochemistry analyses. Ebrahim has presented and published many papers and is currently active as the chief editor of the Geopersia journal and at the same as editorial board member for several national geological journals. His publications include papers on Triassic, Jurassic and Cretaceous marine palynology, palynostratigraphy, paleoenvironment, and petroleum potential evaluation of different rock units. He was promoted to the level of professorship in 2009.

Mohammad Reza Kamali is Associate Professor and Deputy, International Business Development, Center for Exploration and Production–Research Institute of Petroleum Industry, Iran. He received his BSc and MSc in Geology from the University of Mysore (India) in 1982 and 1984 respectively. After joining to National Iranian Oil Company in 1985 as a Senior Geologist, Mohammad continued his PhD in Petroleum Geology in Adelaide University, Australia and graduated in 1996. Mohammad has published six books on Petroleum Geochemistry and Geology is author and co-author for more than 95 research papers published in national and international journals. His research interests are petroleum geochemistry, basin modelling and reservoir geology. He is an active member of AAPG, SPE, EAGE, Geological Society of Iran and Petroleum Engineering Society of Iran.

Akram Ahmadi worked as a Petroleum Geologist with the Research Institute of Petroleum Industry (RIPI) at the National Iranian Oil Company from 2004 to 2009. She received a BSc (2002) in Geology from Kharazmi University, Iran and an MSc (2005) in Petroleum Geology from the University of Tehran, Iran. Akram’s interests are reservoir evaluation and petrophysical data interpretation.

Manuscript received October 1, 2012
Revised July 25, 2013
Accepted October 29, 2013
Enclosure 1: Correlation chart of different data to recognize sea-level changes and identify systems tracts and correspondence to the global sea-level cycles and systems tracts. See table 1 for abbreviations.
Enclosure 2a: Danial Reference Section, Pyun Anticline, Northeast Izeh (Iran)

GeoArabia
Hossein K. Hosseinnejad, M. R. Kamali and A. Ahmadi 2014. Sequence stratigraphy of the Late Cretaceous–Paleocene Gurpi Formation in southwest Iran. GeoArabia, v. 19, no. 2, p. 89-102, 4 enclosures

Enclosure 2b: Gurpi Type Section, Gurpi Anticline, Northeast Lali (Iran)

GeoArabia
Enclosure 3: Full Planktonic Foraminifera Biozonation, Danial Reference Section
Enclosure 4: Full Planktonic Foraminifera Biozonation, Gurpi Type Section

Nannofossil Event	Planktonic Foraminifera Biozonation (This Study)				
	Sample Number	Formation	Member	Lithology	Texture
		Gurpi	Emam Hassan	Mudstone	Graded bedding

Thickness (m)	340	320	300	280	260	240	220	200	180	160	140	120	100	80	60	40	20	0

GeoArabia
Beiranvand, B., E. Ghasemi-Nejad, M.R. Kamali and A. Ahmadi 2014. Sequence stratigraphy of the Late Cretaceous–Paleocene Gurpi Formation in southwest Iran. GeoArabia, v. 19, no. 2, p. 89-102, 4 enclosures

Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/19/2/89/5450459/beiranvand.pdf by guest on 31 October 2021