Rooted trees and an exponential-like series

Frédéric Chapoton

March 29, 2022

Abstract

This paper deals with a group of generalized power series associated
to any augmented operad, focusing on the case of the PreLie operad. The
solution of flow equations using the pre-Lie structure on vector fields on
an affine space gives rise to an interesting element of this group.

0 Introduction

This paper is composed of three main ingredients: the first is the definition of
a group of power series G_P for any augmented operad P. This group acts on
all P-algebras having a suitable completeness property. The Lie algebra of this
group, or rather a graded version of it, has been introduced before, from another
point of view, by Kapranov and Manin [5].

The rest of the paper focuses on the case of the PreLie operad P_{PreLie}. The group
$G_{P_{\text{PreLie}}}$ is a group of series indexed by rooted trees. The second component of
the paper is given by two quotient operads of PreLie corresponding respectively
to linear trees and corollas. The operad on linear trees is no other than the
associative operad As, whereas the operad Mu on corollas seems not to have
been considered before. By functoriality of the group construction, one gets
group maps $G_{P_{\text{PreLie}}} \rightarrow G_{As}$ and $G_{P_{\text{PreLie}}} \rightarrow G_{Mu}$. Whereas G_{As} is isomorphic to
the group of formal power series for the composition product, G_{Mu} is related to
the group of formal power series for the pointwise multiplication product.

The final ingredient comes from flow equations for vector fields on the affine
space A^n. We recall the formula which gives the Taylor expansion of the solution
of a flow equation using the pre-Lie structure on the vector space of vector
fields on A^n. We have not traced the precise origin of this formula, although
it is certainly not new, see [1] and references therein. This formula can be
interpreted as a distinguished element of the group $G_{P_{\text{PreLie}}}$, which we choose to
denote by \exp^*, for its image in G_{As} is $\exp - 1$, where \exp is the usual exponential
function.

The plan of the paper is as follows: in the first section, we define the functor
G from augmented operads to groups. The second section is about vector fields
on affine space and the pre-Lie formula for flows. The third and fourth sections
are devoted to the two quotient operads of PreLie and the images of \exp^* and its
inverse in the associated groups. Then we give the first terms of the expansion
of \exp^* and its inverse.
A group associated to an augmented operad

Let P be an operad in the category $\text{Vect}_\mathbb{Q}$ of vector spaces over \mathbb{Q} and assume that $P(0) = \{0\}$ and that $P(1) = \mathbb{Q}e$ where e is the unit of P. Such an operad is called augmented.

Let $FP = \bigoplus_n P(n)_{e_n}$ be the direct sum of the coinvariant spaces, which can be identified with the underlying vector space of the free P-algebra on a generator v, and $\hat{P} = \prod_n P(n)_{e_n}$ be its completion.

We now define a product on \hat{P}. Let $x = \sum m x_m, y = \sum n y_n$ be two elements of \hat{P}. Choose any representatives \bar{x}_m of x_m (resp. \bar{y}_n of y_n) in the operad P. Then one defines

$$x \times y = \sum_{m \geq 1} \sum_{n_1, \ldots, n_m \geq 1} \langle \gamma(\bar{x}_m, \bar{y}_{n_1}, \ldots, \bar{y}_{n_m}) \rangle,$$

where $\langle \rangle$ is the quotient map to the coinvariants and γ is the composition map of the operad P. This product is indeed well defined, as can be directly checked by using the equivariance axiom of operads to compare two different choices of representatives.

Proposition 1 The product \times defines the structure of an associative monoid on the vector space \hat{P}. Furthermore, this product is \mathbb{Q}-linear on its left argument.

Proof. Let us first prove the associativity. On the one hand, one has

$$\begin{align*}
(x \times y) \times z &= \sum_m \sum_{p_1, \ldots, p_m} \langle \gamma((x \times y)_m, \bar{z}_{p_1}, \ldots, \bar{z}_{p_m}) \rangle \\
&= \sum_m \sum_{n_1, \ldots, n_m} \sum_{p_1, \ldots, p_{n_1 + \ldots + n_m}} \langle \gamma(\bar{x}_m, \bar{y}_{n_1}, \ldots, \bar{y}_{n_m}), \bar{z}_{p_1}, \ldots, \bar{z}_{p_{n_1 + \ldots + n_m}} \rangle.
\end{align*}$$

On the other hand, one has

$$\begin{align*}
x \times (y \times z) &= \sum_m \sum_{n_1, \ldots, n_m} \langle \gamma(\bar{x}_m, (y \times z)_{n_1}, \ldots, (y \times z)_{n_m}) \rangle \\
&= \sum_m \sum_{n_1, \ldots, n_m} \sum_{(q_1, \ldots, q_m) \in (n_1, \ldots, n_m)} \langle \bar{x}_m, \gamma(\bar{y}_{n_1}, \bar{z}_{q_1}, \ldots, \bar{z}_{q_1}), \ldots, \gamma(\bar{y}_{n_m}, \bar{z}_{q_m}, \ldots, \bar{z}_{q_m}) \rangle.
\end{align*}$$

Using then the “associativity” of the operad, one gets the associativity of \times.

It is easy to check that the image of the unit e of the operad P is a two-sided unit for the \times product.

The left \mathbb{Q}-linearity is clear from the formula (1).

On can characterize invertible elements in this monoid.

Proposition 2 An element y of \hat{P} is invertible for \times if and only if the first component y_1 of y is non-zero.

Proof. The direct implication is trivial. The reverse one is proved by a very standard recursive argument. ■
Let us call G_P the set of invertible elements of \hat{P} for the \times product.

Proposition 3 G is a functor from the category of augmented operads to the category of groups.

Proof. The functoriality follows from inspection of the definitions of \hat{P} and \times.

In fact, one can see G_P as the group of \mathbb{Q}-points of a pro-algebraic group. The Lie algebra of this pro-algebraic group is given by the usual linearization process on the tangent space \hat{P}, resulting in the formula

$$[x, y] = \sum_{m \geq 1} \sum_{n \geq 1} (\bar{x}_m \circ \bar{y}_n - \bar{y}_n \circ \bar{x}_m),$$

where

$$\bar{x}_m \circ \bar{y}_n = \sum_{i=1}^{m} \gamma(\bar{x}_m, e, \ldots, e, \bar{y}_n, e, \ldots, e).$$

The graded Lie algebra structure on FP defined by the same formulas has already appeared in the work of Kapranov and Manin on the category of right modules over an operad [5, Th. 1.7.3]. They explained that it acts by polynomial vector fields on the underlying vector space of any P-algebra. For the endomorphism operad $\text{End}(L)$ of a vector space L, $G_{\text{End}(L)}$ is the group of formal diffeomorphisms of L preserving the origin. So G_P acts by formal diffeomorphisms on any P-algebra L.

In order to get an (non-formal) action of G_P, one can assume that the P-algebra L is complete filtered, i.e. endowed with a decreasing filtration $L = F^1L \supset F^2L \supset \ldots$ which is complete and compatible with the P-action.

2 The flow of a vector field

Let A^n be the affine space of dimension n over \mathbb{R}. It is well-known [2, 3] that there is a structure of pre-Lie algebra on the vector space V_n of smooth vector fields on A^n. More precisely, let x_1, \ldots, x_n be coordinates on A^n. Given two vector fields $F = \sum F_i \partial_i$ and $F' = \sum F'_j \partial_j$, their pre-Lie product $F \leftarrow F'$ is given by

$$F \leftarrow F' := \sum \sum F'_j(\partial_j F_i)\partial_i.$$

This does not depend on the choice of affine coordinates.

Let $F \in V_n$ be a vector field. The flow equation of F is the following equation for a smooth function $g : A^1 \to A^n$ of the variable t:

$$\begin{cases} \frac{dg}{dt} = F(g), \\ g(0) = g_0, \end{cases}$$

where g_0 is any chosen point in A^n. The smoothness of F ensures unicity of the solution.

One can give a formal Taylor development at $t = 0$ of the solution of (7) using the following construction in the pre-Lie algebra of vector fields (see [3].
Proposition 4 The solution of the flow equation (7) has the following formal Taylor expansion:

\[g(t) = g_0 + \sum_{k \geq 1} F^{\leftarrow k}(g_0) \frac{t^k}{k!}. \]

(9)

The proof is by iterated use of the following lemma, which in turn is easily proved with the definition (6) of the pre-Lie product.

Lemma 1 Let \(g \) be the solution of (7) and \(G \) be a vector field on \(A^n \). Then

\[\frac{dG(g)}{dt} = (G \leftarrow F)(g). \]

(10)

In the special case where the vector field is linear, i.e. \(F = \sum a_{i,j} x_i \partial_j \) with \(a_{i,j} \in \mathbb{R} \), the formula (6) gives back the classical exponential formula:

\[g(t) = g_0 + (\exp(tA) - I)g_0 = \exp(tA)g_0. \]

(11)

where \(A \) is the matrix \((a_{i,j}) \).

One can define an element \(\exp^*(v) \) of the completed free pre-Lie algebra on a generator \(v \) over \(\mathbb{Q} \) by

\[\exp^*(v) := \sum_{k \geq 1} v^{\leftarrow k} \frac{1}{k!}. \]

(12)

Definition 1 The image of \(\exp^*(v) \) by the usual identification between the completed free pre-Lie algebra on \(\{v\} \) and \(\hat{\text{PreLie}} \) is an element of the group \(G_{\text{PreLie}} \), which is denoted by \(\exp^* \). Its inverse is denoted by \(\log^* \).

The group \(G_{\text{PreLie}} \) acts on the completed free pre-Lie algebra on \(v \), and the action of \(\exp^* \) on \(v \) is \(\exp^*(v) \).

If \(F \) is a vector field on \(A^n \), then the difference between the flow at time 0 and the flow at time 1 can be considered as another vector field \(G \) on \(A^n \). In fact, formula (6) says that it is formally given by \(\exp^* F \). So the meaning of \(\log^* \) is the reverse operation: knowing the displacement \(G \) between time 0 and time 1, \(\log^* G \) formally recovers the vector field \(F \). For these statements to make sense, one must work within a complete pre-Lie algebra of vector fields, for example the pre-Lie algebra \(\prod_{k \geq 2} \mathbb{Q} x^k \partial_k \).

3 Linear trees and composition

As shown in [4], the PreLie operad can be described in terms of labeled rooted trees. By convention, edges are oriented towards the root. Let us call linear the trees that do no branch, that is to say all vertices have at most one incoming edge.
We recall here briefly (see [4] for more details) the definition of the composition of two labeled rooted trees \(T \) and \(S \) on the vertex sets \(I \) and \(J \) respectively. Let \(i \in I \); the composition of \(S \) at the vertex \(i \) of \(T \) is given by

\[
T \circ_i S = \sum_f T \circ_i^f S,
\]

where the sum runs over all maps \(f \) from the set of incoming edges of the vertex \(i \) of \(T \) to the set of vertices of \(S \), and \(T \circ_i^f S \) can be described as follows: replace the vertex \(i \) by the tree \(S \), grafting back the subtrees of \(T \) previously attached to \(i \), according to the map \(f \).

Proposition 5 The subspace of PreLie spanned by non-linear labeled trees is an ideal. The quotient map \(\phi \) coincides with the usual map from PreLie to the associative operad As.

Proof. Using the description above of the composition map of the operad PreLie, it is clear that the composition of two labeled trees, at least one of which is non-linear, is again non-linear. The quotient operad, spanned by labeled linear trees, has dimension \(n! \) in rank \(n \). Its composition is given by insertion, and can be easily identified with the associative operad As. The quotient map is then checked on generators of PreLie to be the same as the usual map.

By functoriality of the group construction, there is a map, still denoted by \(\phi \), from \(G_{\text{PreLie}} \) to \(G_{\text{As}} \).

Proposition 6 The group \(G_{\text{As}} \) is isomorphic to the group of invertible formal power series in \(xQ[[x]] \) for the composition product.

Proof. It is more convenient here to work at the monoid level with \(\widehat{\text{As}} \) and \(xQ[[x]] \). The vector space \(\text{As}(n)_{\text{Lin}} \) is one dimensional for all \(n \), with a basis given by the image by \(\phi \) of the linear tree with \(n \) nodes. Let us denote this basis element by \(\theta_n \). By left linearity of both monoids, it is sufficient to check the product rule for \(\theta_m \) and \(f = \sum_{n \geq 1} f_n \theta_n \). One finds that

\[
\theta_m \times f = \sum_{n_1, \ldots, n_m \geq 1} f_{n_1} \cdots f_{n_m} \theta_{n_1 + \cdots + n_m},
\]

which proves that the linear map defined by \(x^n \mapsto \theta_n \) is an isomorphism between the monoids \(\widehat{\text{As}} \) and \(xQ[[x]] \). The proposition follows by taking invertible elements.

Proposition 7 The image of \(\exp^* \) by \(\phi \) is \(\exp x - 1 \) and the image of \(\log^* \) is \(\log(1 + x) \).

Proof. One has to prove that the coefficient of the linear tree with \(n \) nodes in \(\exp^* \) is \(1/n! \) for all \(n \). This can be done by recursion, using [12].

This proposition explains what happens for linear vector fields. The linearity of a vector field \(F \) on \(\mathbb{A}^n \) implies that the pre-Lie algebra generated by \(F \) inside \(\mathbb{V}_n \) is associative, so that \(\exp^* \) reduces to the standard exponential minus one.
4 Corollas and pointwise multiplication

There is another interesting kind of trees, opposite to linear trees. Let us call corollas the trees of depth no greater than two, where the depth is the maximum number of vertices in a chain of adjacent vertices starting from the root.

Proposition 8 The subspace of PreLie spanned by labeled non-corollas is an ideal.

Proof. Using the description above of the composition of PreLie, one shows that the depth of the composition of two labeled trees is greater or equal than the maximum of the depths of these labeled trees. Therefore, if one of the labeled trees has depth greater or equal to three, so does the composition. ■

One can give a simple description of the quotient operad Mu. It has dimension \(n \) in rank \(n \) with basis given by the image of the labeled corollas with \(n \) nodes. Let us call \(\mu_i^n \) the image of the corolla with \(n \) nodes and with root labeled by \(i \) for \(i = 1, \ldots, n \).

Then \(\mu_1^1 \) is the unit of Mu and the composition is given by

\[
\mu^n_i \circ \mu^\ell_j = \mu^n_i + \ell - 1 \quad \text{for} \quad i \neq j \quad \text{and} \quad \ell \geq 2.
\]

(15)

Let \(G_1 \) be the group of formal power series of the form \(1 + x^Q[[x]] \) for the pointwise multiplication product and \(G_2 \) be the multiplicative group \(\mathbb{Q}^* \). There is an action of \(G_2 \) on \(G_1 \) by substitution: \(\lambda \cdot f(x) = f(\lambda x) \). A group similar to the semi-direct product group \(G_2 \ltimes G_1 \) has been considered in [2, §2].

From the description of Mu above, one deduces that

Proposition 9 The group \(G_{Mu} \) is isomorphic to \(G_2 \ltimes G_1 \).

Proof. The vector space \(Mu(n)_{S_n} \) is one-dimensional for all \(n \), with basis given by the image of the corolla with \(n \) nodes. Let us denote this basis element by \(\nu_{n-1} \). Any element of \(G_{Mu} \) can be uniquely written as the product \(\lambda(\sum_{m \geq 0} f_m \nu_m) \) of \(\lambda \in \mathbb{Q}^* \) and \(f = \sum_{m \geq 0} f_m \nu_m \) with \(f_0 = 1 \). Let us compute the product of \(\lambda f = \lambda(\sum_{m \geq 0} f_m \nu_m) \) and \(\theta g = \theta(\sum_{n \geq 0} g_n \nu_n) \) with the conventions \(f_0 = 1 \) and \(g_0 = 1 \). One finds that

\[
\lambda f \times \theta g = \sum_{m \geq 0} \sum_{n \geq 0} \lambda f_m \theta^m(\theta g_n)\nu_{n+m} = \lambda \theta \sum_{m \geq 0} \sum_{n \geq 0} \theta^m f_m g_n \nu_{n+m}.
\]

(16)

One defines a map from \(G_{Mu} \) to \(G_2 \ltimes G_1 \) by \(\lambda(\sum_m f_m \nu_m) \mapsto (\lambda, f(x)) \) with \(f(x) = \sum_m f_m x^m \). The product in \(G_2 \ltimes G_1 \) is given by

\[
(\lambda, f(x))(\theta, g(x)) = (\lambda \theta, f(x)g(x)).
\]

(17)

Hence the map is an isomorphism. ■

Let us denote by \(\psi \) the quotient map from PreLie to Mu.

Proposition 10 The image of \(\exp^* \) by \(\psi \) is \((\exp x - 1)/x \) and the image of \(\log^* \) is \(x/(\exp x - 1) \).

Proof. One must prove that the coefficient of the corolla with \(n \) nodes in \(\exp^* \) is \(1/n! \) for all \(n \). The argument is a simple recursion using (13). ■

Therefore the coefficients of the corollas in \(\log^* \) are related to the Bernoulli numbers, whose exponential generating function is precisely \(x/(\exp x - 1) \).
5 Expansion

The coefficients of \exp^* are easily computed by the recursive formula (12). They are known as the Connes-Moscovici coefficients, and there exists a direct procedure to compute the coefficient of any rooted tree in \exp^*, see [1, §2.2]. It is an interesting open problem to compute the coefficients of \log^*, for which there is no known alternative to the inversion in the group G_{PreLie}. We give here the first terms of the expansions of \exp^* and \log^* in the rooted tree basis of PreLie.

\[
\exp^* = \bullet + \frac{1}{2} \bullet + \frac{1}{6} \left(\bullet + \bullet \right) + \frac{1}{24} \left(\bullet + \bullet + 3 \bullet + \bullet \right) + \frac{1}{120} \left(\bullet + \bullet + 3 \bullet + \bullet + 3 \bullet + 4 \bullet + 4 \bullet + 6 \bullet + \bullet \right) + \cdots
\]

(18)

\[
\log^* = \bullet - \frac{1}{2} \bullet + \frac{1}{6} \left(2 \bullet + \frac{1}{2} \bullet \right) - \frac{1}{24} \left(6 \bullet + 2 \bullet + 2 \bullet \right) + \frac{1}{120} \left(24 \bullet + 4 \bullet + 12 \bullet + 2 \bullet + 6 \bullet + \bullet - 1 \bullet - \frac{1}{30} \bullet \right) + \cdots
\]

(19)

References

[1] C. Brouder. Runge-Kutta methods and renormalization. European Physical J., 12:521–534, 2000.

[2] Christian Brouder and Alessandra Frabetti. QED Hopf algebras on planar binary trees. Preprint 2001/15 of Institut Girard Desargues, arXiv:math.QA/0112043.

[3] Frédéric Chapoton. Algèbres pré-Lie et algèbres de Hopf liées à la renormalisation. C. R. Acad. Sci. Paris Sér. I Math., 332(8):681–684, 2001.

[4] Frédéric Chapoton and Muriel Livernet. Pre-Lie algebras and the rooted trees operad. Internat. Math. Res. Notices, (8):395–408, 2001.
[5] M. Kapranov and Yu. Manin. Modules and Morita theorem for operads.
Amer. J. Math., 123(5):811–838, 2001.

[6] Yozô Matsushima. Affine structures on complex manifolds. Osaka J. Math.,
5:215–222, 1968.