Identification of claudin-4 as a marker highly overexpressed in both primary and metastatic prostate cancer

KA Landers1,2, H Samaratunga3, L Teng1,2, M Buck1,2, MJ Burger1,2, B Scells1, MF Lavin1,2 and RA Gardiner*,1,2,4

1Department of Surgery, University of Queensland, Herston, Qld, Australia; 2Queensland Institute of Medical Research, Herston, Qld, Australia; 3Sullivan Nicolaides Pathology, Taringa, Qld, Australia; 4Department of Urology, Royal Brisbane and Women’s Hospital, Herston, Qld, Australia

In the quest for markers of expression and progression for prostate cancer (PCa), the majority of studies have focussed on molecular data exclusively from primary tumours. Although expression in metastases is inferred, a lack of correlation with secondary tumours potentially limits their applicability diagnostically and therapeutically. Molecular targets were identified by examining expression profiles of prostate cell lines using cDNA microarrays. Those genes identified were verified on PCa cell lines and tumour samples from both primary and secondary tumours using real-time RT–PCR, western blotting and immunohistochemistry. Claudin-4, coding for an integral membrane cell-junction protein, was the most significantly (P < 0.00001) upregulated marker in both primary and metastatic tumour specimens compared with benign prostatic hyperplasia at both RNA and protein levels. In primary tumours, claudin-4 was more highly expressed in lower grade (Gleason 6) lesions than in higher grade (Gleason ≥ 7) cancers. Expression was prominent throughout metastases from a variety of secondary sites in fresh-frozen and formalin-fixed specimens from both androgen-intact and androgen-suppressed patients. As a result of its prominent expression in both primary and secondary PCAs, together with its established role as a receptor for Clostridium perfringens enterotoxin, claudin-4 may be useful as a potential marker and therapeutic target for PCa metastases.

British Journal of Cancer (2008) 99, 491–501. doi:10.1038/sj.bjc.6604486 www.bjcancer.com

© 2008 Cancer Research UK

Published online 22 July 2008

Keywords: prostate cancer; marker expression; RNA and protein; claudin-4

The prostate-specific antigen (PSA) and transrectal ultrasound biopsy approach for detection of prostate cancer (PCa) has resulted in a stage shift in terms of earlier diagnosis (Hankey et al., 1999). However, even when the tumour is considered localised clinically, a significant proportion of patients already have micrometastases, which declare themselves subsequent to treatment with curative intent (Freedland et al., 1999). However, even when the tumour is considered localised clinically, a significant proportion of patients already have micrometastases, which declare themselves subsequent to treatment with curative intent (Freedland et al., 1999). Currently, localised tumour is potentially curable but metastatic cancer is not (Fusi et al., 2004). Intuitively, understanding key molecular events leading to PCa will lead to the identification of potential diagnostic and/or prognostic biomarkers, more reliable and earlier detection together with implications for diagnostic and therapeutic targeting (Hanahan and Weinberg, 2000). Methods used for the identification of potential markers for PCa include gene expression analysis (e.g. microarrays and quantitative PCR) and protein markers (e.g. histopathology, mass spectrometry) (Ornstein and Tyson, 2006). Numerous genes that are up- or downregulated in PCa have been identified with 2-methyacyl-CoA racemase (AMACR) (Rubin et al., 2002), prostate-specific membrane antigen (PSMA) (Burger et al., 2002), Hepsin (Stephan et al., 2004), DD3/PCA3 (Hessels et al., 2003) and hTERT (Sommerfeld et al., 1996) among the more common (Ross et al., 2003).

In PCa detection, greater value would be afforded if markers were not only able to distinguish between benign and malignant tumours, but also to indicate innate tumour aggressiveness (including likelihood of metastasis). Their value would be enhanced even further if expression in primary tumours correlated with those in metastases and most valuable if they were also targets for imaging and therapeutic strategies. Evidence to date indicates that provision of such information is beyond the scope of any one marker (Landers et al., 2005), and it is apparent that different genes have relative strengths and weaknesses in this context. Thus, this study aimed to correlate the use of potential biomarkers of PCa primary lesions with metastases by comparing expression profiles of normal prostate cells with those of clinically significant PCa cells from primary and from metastatic tumours.

MATERIALS AND METHODS

Tissue culture

RWPE1 cells, derived from the peripheral zone of a histologically normal adult human prostate and transformed with a single copy of the human papilloma virus-18 (HPV-18), and metastatic PCa cell lines ALVA41, DU145, LNCaP and PC3 were obtained from Professor Judith Clements (Queensland University of Technology, Australia). The PCa cell lines were cultured in 10% (v/v) FCS in RPMI-1640 medium with 100 U ml⁻¹ penicillin-G (GIBCO™ Invitrogen Corporation MT Waverley, Australia) and 100 U ml⁻¹ streptomycin (GIBCO); RWPE1 cells were cultured in keratinocyte serum-free media (KSF; GIBCO) supplemented with 5 ng ml⁻¹ human recombinant epidermal growth factor and 0.05 mg ml⁻¹ human recombinant epidermal growth factor and 0.05 mg ml⁻¹
bovine pituitary extract. Cell cultures were maintained at 37°C in a humidified atmosphere of 5% CO₂.

Specimen collection

All tissue specimens collected were obtained from consenting patients Royal Brisbane Women’s Hospital, Queensland, as approved by the Institutional Ethics Committee. Primary PCa tissue specimens were obtained from patients undergoing either a radical prostatectomy (RP) or a transurethral resection of prostate (TURP) with secondary tumours provided by HS from both androgen-intact and androgen-suppressed patients. Benign prostatic hyperplasia (BPH) tissue specimens were obtained from men who had either TURP or an open enucleative prostatectomy. Tissue fragments were frozen immediately using liquid nitrogen and transported on dry ice for storage at −70°C with closely adjacent tissue specimens placed in OCT and snap frozen or formalin-fixed and paraffin-embedded. Tissues prepared for histology were examined to confirm the diagnosis of BPH or PCa and to determine the proportion of epithelial cells to stromal cells. Nonsampled tissues were analysed histopathologically, as per routine practice, to confirm the clinical diagnosis and, for PCa, to determine Gleason scores and the percentage of tumour cells present. Additional paraffin sections with high-grade prostatic intraepithelial neoplasia (HG-PIN), PCa or metastatic tissue were obtained by HS. Control benign sections, harvested from these deceased individuals following appropriate consent, were kindly provided by Associate Professor David Horsfall (Hanson Institute, Adelaide).

RNA extraction

Tissue fragments were homogenised using a Polytron PK® homogeniser, in 1 ml TRI Reagent® (Sigma-Aldrich, Castle Hill, New South Wales, Australia) per 50 mg of tissue. Prostate cell lines were grown until confluent and 5–10 × 10⁶ cells collected, washed in PBS and resuspended in TRI Reagent and subsequently extracted using the recommended protocol.

cDNA microarrays

Twenty micrograms of total RNA from a prostate cell line and the reference RNA, isolated as described above, were indirectly labelled with aminoaamyl-dUTP (Amersham Biosciences, Piscataway, NJ, USA) by reverse transcription using an oligo(dT)₁₅ primer (Roche Diagnostics, Castle Hill, New South Wales, Australia) and Superscript III™ (Invitrogen). Following synthesis, aminoaamyl-labelled cDNA was purified, dried and the pellet resuspended in 100 μM sodium carbonate, pH 9.0. Cy5 or Cy3 dyes (Amersham Biosciences) were added to respective samples and the coupling reaction allowed to proceed for 1 h. Unincorporated dyes were removed from the reactions with 4 M hydroxylamine. The Cy3- and Cy5-labelled cDNAs were combined and purified using QiAquick® PCR kit (Qiagen, Doncaster, Victoria, Australia). Human Cot1 DNA (10 μg) and polyA (2 μg) were added to the purified probe mix and dried before redissolving in 4 × SSC, 50% deionised formamide and 0.25% SDS. Following incubation at 95°C for 5 min and 45°C for 90 min, the labelled probe mix was loaded on to a Human V6 custom microarray prepared in house. Following hybridisation, the microarray chip was washed in 0.2 × SSC, 0.05% SDS, followed by 0.2 × SSC and centrifuged at low speed to dry. Cy3 and Cy5 fluorescence on the microarray chip were detected with a GMS 418 Array Scanner (Genetic Microsystems, Woburn, MA, USA) using Imagene™ (BioDiscovery, El Segundo, CA, USA). Data generated using Imagene were normalised and filtered using the GeneSpring® (GeneWorks Pty Ltd, The Barton, South Australia) software. Normalisations included per spot and per chip intensity-dependent (Lowess) normalisations; data transformation set measurements less than 0.01–0.01 and per chip normalisations to the 50th percentile. The Human V6 microarray, consisting of 4600 cDNA probes ~200 bp in length spotted in duplicate on a single chip, was developed in-house and its use has been described by us previously (Burger et al., 2002).

Quantitative reverse transcription PCR

Primers for the candidate genes were designed using Taqman (PE Applied Biosystems, Foster City, CA, USA) guidelines and optimised using Amplitaq Gold. The following primers were synthesised: β2-microglobulin forward 5’-TGTAATCCTGATGTCTCGTGTTGAGTCT-3’, β2-microglobulin reverse 5’-CCTCATGATGCTGTTACATC-3’, claudin-4 forward 5’-AGCTCTGTGGCCTCGAGGTCCT-3’, claudin-4 reverse 5’-CAGTGTTGAATGCTTCTCTTACAT-3’, POX1 forward 5’-GCTGGAAACCTGGCAGTTAC-3’, POX1 reverse 5’-CAAAGGAAAGAGGCGTCTCT-3’, TPD52 forward 5’-GCTGGTGTTGTGTCGCCCT-3’ and TPD52 reverse 5’-TTTCTGCGAGAGGCGTCTCT-3’ Real-time PCRs were performed in 15 μl volumes (cDNA, 1 × Plantium® SYBR Green Quantitative PCR SuperMix-UDX (Life Technologies®) and 5 pmol each primer) using a 32-well Rotorgene real-time PCR machine (Corbett Life Science, Mortlake, New South Wales, Australia). Cycles consisted of a 94°C, 2 min hot start, 15 s 94°C denaturing step, a 15 s 55°C annealing step and a 15 s 72°C extension step for 35–40 cycles. The PCR finished with a melt curve between 55 and 100°C. Expression of each gene was calculated using a standard curve determined by expression of β2-microglobulin (β2M) in the control normal prostate cell line, RWPE1. Prostate-specific antigen was used to confirm that the RNA was of prostatic origin. Expression of each gene was determined in an average of 18 BPH, 17 PCa and 5 metastatic lesions. The transcript value of each gene was normalised in Excel by determining ratio of the candidate gene transcript/β2M transcript value. Results are presented as mean ± s.e.

Western blot analysis

Cells were washed and lysed in lysis buffer (20 mM Tris pH 8.0, 1 mM EDTA, 1 mM (p-aminodiphenyl) methanesulfonyl fluoride hydrochloride and 1% (v/v) Triton X-100) as described by Liu et al. (1997). Protein concentration was estimated using the DC protein assay (Bio-Rad Laboratories Pty Ltd, Gladesville, New South Wales, Australia) and BSA protein standards. The protein (20 μg) samples were mixed with loading buffer (2 × 0.5 ml 0.1% β-mercaptoethanol, 20% (v/v) glycerol, 2% (v/v) SDS, 37.3 μM bromphenol blue, 0.25 μM Tris, pH 8.8) and heated to 100°C for 2 min. Samples were resolved on a 15% polyacrylamide gel (15% (v/v) acrylamide, 0.375% Tris pH 8.8, 0.1% (v/v) SDS, 0.1% (w/v) ammonium persulfate and 4 μl TEMED in 10 ml) with stacking gel (1.5% (v/v) acrylamide, 0.038% Tris pH 6.8, 0.03% (v/v) SDS, 0.03% (w/v) ammonium persulfate and 3 μl TEMED) at 20 mA in running buffer (25 mM Tris, 0.19 M glycine, 0.1% (v/v) SDS in H₂O). Proteins were transferred onto a nitrocellulose membrane in a carbonate buffer (10 mM NaHCO₃, 3 mM Na₂CO₃, 20% (v/v) methanol in H₂O) at 40 V for 1 h at 4°C. Membranes were blocked in 5% (w/v) skim milk powder in 0.05% (v/v) Tween 20 in PBS (PBST) for 1 h at RT and probed overnight with anti-claudin-4 mouse antibody (5 μg per 10 ml in PBST; Zymed® Laboratories, San Francisco, CA, USA). Secondary anti-mouse IgG antibody conjugated to horseradish peroxidase (HRP) (Chemicon Australia Pty Ltd, Boronia, Victoria, Australia) was added for 1 h at 4°C. Following washing with PBST, proteins were detected using ECL Western blotting procedure (Amersham/GE Healthcare Biosciences Pty Ltd, Rydalmere, New South Wales, Australia) following the manufacturer’s instructions. β-actin was also assayed to confirm protein loading was equal for all samples.
Immunofluorescent staining of claudin-4 in prostate cell lines

ALVA41, DU145, LNCaP, PC3, RWPE1 and HeLa cells (1 × 10⁶) cultured in six-well plates were washed in 1% (v/v) FCS in PBS and fixed in 4% paraformaldehyde for 30 min at room temperature. Cells were washed, permeabilised with 0.1% (v/v) Triton X-100 in PBS for 30 min, washed again and blocked in 5% skim milk in PBS for 30 min. After removal of blocking reagent, the fixed cells were washed and incubated with the mouse anti-claudin-4 antibody (3 μg ml⁻¹) for 1 h at RT. Cells were again washed and incubated with the secondary anti-mouse IgG HRP-conjugated to FITC for 20 min. Cells were rinsed, stained with DAPI for 10 min, washed again and the coverslip inverted onto a slide with a drop of 80% (v/v) glycerol. The cells were visualised using a Carl Zeiss fluorescence microscope (Axioskop 2 plus MOT).

Immunohistochemistry on paraffin-embedded sections

The paraffin-embedded prostate tissue sections were obtained from patients with a range of prostate conditions, including 29 benign prostate, 19 BPH, 19 PIN with no associated cancer, 25 PCa (including 21 with associated PIN) and 45 metastatic sections from a range of distant sites. Paraffin-embedded prostate tissue sections were processed as previously described (Burger et al., 2002). The paraffin tissue sections were rehydrated in xylene for 5 min and rinsed in 100% ethanol followed by 70% (v/v) ethanol and PBS. Antigen retrieval within the sections was performed by covering the slides in citrate buffer for 15 min at 105°C and left to cool to room temperature. The slides were incubated in 2% (v/v) hydrogen peroxidase for 15 min to inactivate endogenous peroxidases. Slides were washed in PBS and blocked with 10% (v/v) goat serum and the primary antibody (anti-claudin-4 raised in mouse, 3 μg ml⁻¹; anti-AMACR raised in mouse, 3 μg ml⁻¹; Zymed) overnight in a humidifier chamber. Control slides were treated as above without the addition of the primary antibody. The following day, sections were washed twice in PBS for 5 min and incubated with anti-mouse IgG HRP-conjugated secondary antibody (DakoCytomation, EnVision + System; Dako Australasia Pty Ltd, Kingsgrove, Australia) for 20 min at room temperature. The labelled secondary antibody was visualised by adding a substrate containing diaminobenzadine (Zymed), and sections were counter-stained, dehydrated and mounted.

RESULTS

Identification of metastatic markers for prostate cancer

We previously identified a number of genes upregulated in PCa, which when used in combination represent useful biomarkers for detection of this disease (Landers et al., 2005). As an extension of this approach to relate these and additional markers of primary PCa to PCa metastases, gene expression profiling was carried out for three PCa metastatic tumour cell lines (ALVA41, DU145 and LNCaP) and compared with the normal prostate cell line, RWPE1. Reference RNA was also included by pooling total RNA from a control cell line, RPWE1, these genes were plotted on a Venn diagram that allowed for identification of a short list of 51 genes upregulated twofold or greater, common to all three cell lines (Figure 1). A list of these genes is presented in Table 1. Potential biomarker candidate genes were selected not only on the basis of fold change but also on the basis of a number of other criteria that included twofold upregulation, published literature describing expression in prostate, PCa or other cancers, function, potential as a biomarker and whether the gene encoded a membrane protein suitable for possible use in a diagnostic test. On the basis of these criteria, we radically reduced the number of candidate genes to four, claudin-4, peroxideroxin 1 (POX1) and tumour protein D52 (TPD52), which were upregulated 3.7-, 2.1-, 3.3- and 3.2-fold, respectively (Table 1).

Confirmation of overexpression of these four genes was then undertaken using real-time RT-PCR. When upregulation of claudin-4, DADI, POX1 and TPD52 was averaged across the three PCa cell lines compared with RWPE1, values of 35-, 20-, 23- and 17-fold respectively, were observed (Figure 2), confirming data from the cDNA microarray. Quantitative PCR was also employed to compare the expression of these genes in BPH, primary tumours and metastatic lesions. Claudin-4 was significantly (P = 0.00001) upregulated by sixfold in PCa specimens (mean = 17.7) compared with BPH (mean = 2.8; Figure 3 and Table 2). Similarly, claudin-4 was significantly (P = 0.00001) upregulated by fivefold in PCa metastases (mean = 14.2) compared with BPH. No significant difference was observed between primary PCa and PCa metastases. DADI was significantly (P = 0.005) upregulated twofold in PCa (mean = 0.44) compared with BPH (mean = 0.18; Figure 3 and Table 2). The sevenfold difference between PCa metastases (mean = 1.26) and BPH was significant (P = 0.0001) as well as the threefold difference between PCa and PCa metastases (P = 0.003). POX1 was expressed significantly (P = 0.012) threefold higher in PCa (mean = 0.96) compared with BPH (mean = 0.36) and ninefold (P = 0.001) higher in BPH compared with PCa metastases (mean = 0.34) and fourfold (P = 0.003) higher in PCa metastasis compared with PCa (Figure 3; Table 2). TPD52 was significantly (P = 0.007) overexpressed in PCa (mean = 0.89) compared with BPH (mean = 0.20) by fivefold. The sevenfold difference between PCa metastases (mean = 1.41) and BPH was significant (P = 0.008) but the twofold difference between PCa and PCa metastases was not significant (P = 0.066). Although the difference in transcript ratio between BPH and PCa was significant for all four biomarkers, claudin-4 was selected for further studies because of its high differential level of expression overall.
Table 1 Fifty-one genes upregulated in the metastatic prostate tumour cell lines, ALVA41, DU145 and LNCaP compared with the normal prostate cell line, RWPE1

Gene ID	Gene name	RWPE1	ALVA41	DU145	LNCaP	Fold change
AA280514	Thrombopoietin (myeloproliferative leukaemia) virus oncogene ligand, megakaryocyte growth and development factor	0.1	0.8	2.0	0.3	10.4
AA461065	Thiosphosphate sulphurtransferase (rhodanese)	0.1	0.8	1.9	0.3	8.9
AA464849	Thioredoxin reductase	0.1	1.0	2.0	0.3	8.8
AA488373	Phosphoglucomutase I	0.5	7.2	2.2	3.3	8.1
N72215	Sulphated glycoprotein I	0.2	1.0	1.8	0.6	5.8
AA431080	Keratin, type II cytoskeletal 6D	1.0	3.5	7.2	1.9	4.4
AA234982	Sarcoglycan, delta (35 kDa dystrophin-associated) glycoprotein	0.3	1.4	1.2	1.5	4.2
AA495936	Glutathione S-transferase, microsomal	0.3	1.4	1.7	0.6	3.9
AA430665	hCPE-R CPE-receptor, complete cds	0.5	1.6	2.0	1.7	3.7

Expression and localisation of claudin-4 in prostate cancer cell lines

Immunoblotting was used to verify whether the increase in claudin-4 transcript was also observed at the protein level. Claudin-4 was present in all the metastatic prostate tumour cell lines and decreased in the order of expression, PC3, DU145, LNCaP and ALVA41 (Figure 4). Low levels of claudin-4 protein were also detected in RWPE1, but, as expected, no protein was detected in HeLa cells. The level of proliferating cell nuclear antigen (β-actin ~42 kDa) served as a loading control (Figure 4).

Immunofluorescence was used to determine the localisation of claudin-4 protein in the different cell lines (Figure 5A–F). The nuclei of cells were stained with DAPI (Figure 4). Claudin-4 staining was localised predominantly in the cell membrane, with diffuse staining in the cytoplasm of the metastatic prostate cell lines ALVA41, DU145, LNCaP and PC3 (Figure 5M–P). Some membranous staining was detected in RWPE1, but, as expected, no protein was detected in HeLa cells. The level of proliferating cell nuclear antigen (β-actin ~42 kDa) served as a loading control (Figure 4).
Claudin-4 as a marker in both primary and metastatic PCs
KA Landers et al

observed in ALVA41, DU145 and LNCaP cells (Figure 5M–O). However, PC3 cells had a localised region of the membrane with intense claudin-4 staining (Figure 5P). No claudin-4 staining was evident in RWPE1 or the negative control HeLa cell line above background (Figure 5Q–R).

Expression of claudin-4 in prostate tissue

As claudin-4 was expressed at variable amounts in the prostate cell lines, it was important to determine whether upregulation and overexpression were also present in PCa primary and secondary tissues. Intensity of claudin-4 expression was classified as negative (–), light (+), moderate (++) or intense (+++). The percentage of cells stained were categorised as either < 25, 25–50% or > 50% of cells within the section. In addition, staining was compared with that of PSMA and AMACR (Jiang et al, 2001; Rubin et al, 2002). Immunohistochemical analysis was undertaken on a range of prostatic sections including, normal prostate, BPH, HG-PIN, PCa and metastases. Benign epithelium in which claudin-4 and PSMA did stain positively was localised to the cell membrane of luminal cells. Membranous staining for claudin-4 and PSMA was also observed in luminal cells of HG-PIN and in carcinoma cells. AMACR was localised to the cytoplasm of luminal cells of benign epithelium or HG-PIN and to the cytoplasm of carcinoma cells. Basal epithelium and the surrounding stromal cells did not stain positively for claudin-4, AMACR or PSMA. These findings are illustrated in Figure 6. AMACR staining was localised to the cytoplasm of cells. Claudin-4 staining was localised predominantly to the membrane with weaker cytoplasmic staining, which seemed to be variable. Similarly, PSMA was localised predominantly to the membrane.

Normal prostate sections

In the 29 normal prostate sections collected, claudin-4 was localised to the cell membrane of luminal cells at a moderate

Table 2 Summary of real-time RT-PCR results

Gene	Claudin-4	DAD1	POX1	TPDS2				
Mean	s.e.	Mean	s.e.	Mean	s.e.			
BPH	2.80	0.39	0.18	0.03	0.36	0.07	0.20	0.05
PCA	17.68	3.29	0.44	0.09	0.96	0.21	1.41	0.93
MET	1421	1.14	1.26	0.51	3.39	0.46	0.20	0.05

Fold change	P							
BPH-PCA	6.3	0.0001	2.4	0.005	2.6	0.012	4.5	0.007
BPH-MET	5.1	0.0001	6.9	0.0001	9.3	0.001	7.1	0.008
PCA-MET	0.8	0.663	2.8	0.003	3.5	0.003	1.6	0.066

Abbreviations: BPH = benign prostatic hyperplasia; PCa = prostate cancer.
intensity in 24% (7 out of 29), at a low intensity in 66% (19 out of 29) and was absent in 10% (3 out of 29) of the sections (Figure 6A; Table 3). Approximately 25–50% of the cells stained positively in most sections. There was no correlation with level of claudin-4 expression in the prostate and age. In the normal prostate sections, AMACR staining was weak in 20% (3 out of 15) of sections and absent in 80% (12 out of 15). Prostate-specific membrane antigen was present at moderate levels of expression in 14% (2 out of 14), at low levels in 79% (11 out of 14) and was absent in 7% (1 out of 14) sections.

Benign prostatic hyperplasia

From 19 BPH sections, consisting of nodules of hyperplastic glands and intervening stroma or stromal nodules (Foster, 2000), claudin-4 staining was strong in 10.5% (2 out of 19) of cases and moderate in 63.2% (12 out of 19) (Figure 6B; Table 2). The remaining sections had either low (21%; 4 out of 19) or no (5.26%; 1 out of 19) claudin-4 staining. Staining was localised to the membrane and in some cases to the cytoplasm of acinar cells. Weak AMACR staining was detected in 14% (2 out of 14), and the remaining 86%...
(12 out of 14) did not reveal any staining. Prostate-specific membrane antigen was expressed moderately in 31% (4 out of 13) and weakly in 54% (7 out of 13; Figure 6: Table 3). The remaining sections (15%; 2 out of 13) did not have any PSMA present.

High-grade prostatic intraepithelial neoplasia

Both focal and extensive HG-PIN, characterised by progressive basal layer disruption, loss of markers of secretory differentiation, nuclear and nucleolar abnormalities, increasing proliferative potential, microvessel density, variation in DNA content and allelic loss (Bostwick et al., 2004), were studied. Initially, 18 sections with HG-PIN without invasive carcinoma were examined for claudin-4 expression. From the 18 HG-PIN sections obtained, 72% (13 out of 18) were of a moderate intensity for claudin-4 expression (Figure 6C; Table 3). Within these sections, >50% of the cells were positive for claudin-4, with staining localised to the membrane of HG-PIN cells. The remaining 11% (2 out of 18) of sections were strong or 17% (3 out of 18) low. AMACR staining was high in 9% (1 out of 11), moderate in 9% (1 out of 11), low in 36% (4 out of 11) and absent in 46% (5 out of 11) of HG-PIN in the absence of invasive carcinoma. Prostate-specific membrane antigen was present at a high level in 9% (1 out of 11), at a low level in 53% (6 out of 11) and absent in 36% (4 out of 11) of sections.

Figure 6 Immunohistochemical staining of AMACR, claudin-4 and PSMA representative of that observed in a range of prostate conditions. Adjacent sections were stained with haematoxylin and eosin (H and E), AMACR, claudin-4 and PSMA for each prostate tissue examined. Tissue sections consist of a normal (A), BPH (B), HG-PIN without invasive carcinoma (C), HG-PIN with invasive carcinoma (D and E) and metastatic carcinoma (lymph node; F). Arrows indicate benign glands; (C) arrow indicates HG-PIN; (D) black arrow indicates HG-PIN and red arrow indicates PCa (Gleason 3 + 4); (E) black arrow indicates benign epithelial cells and red arrow indicates PCa (Gleason 5 + 5); (F) arrow indicates cancerous cells present at a metastatic site.
As PCa is commonly associated with the presence of HG-PIN (Bostwick et al., 2000), PCa sections were collected from 25 individuals, with 21 of the sections containing HG-PIN and PCa. Strong staining for claudin-4 was present (71%; 15 out of 21), with moderate staining in 28.5% (6 out of 21) or 4–25% of cells (Figure 6D; Table 3). On the other hand, the majority of the invasive tumour cells studied exhibited moderate staining (64%; 16 out of 25) for claudin-4, whereas 24% (6 out of 25) were strong and 8% (2 out of 25) low. Interestingly, lower grade (Gleason grade 3) tumours had higher staining for claudin-4 compared with higher grade (Gleason grade 5) tumours (Figure 6E; Table 3). Furthermore, benign glands in the PCa sections were moderate (56%; 14 out of 25) to high (44%; 11 out of 25) for claudin-4 staining and, in some cases, higher than that found in invasive carcinoma cells.

High-grade prostatic intraepithelial neoplasia cells found within PCa sections demonstrated low (32%; 6 out of 19) to moderate (21%; 4 out of 19) levels of expression for AMACR, with a small percentage staining high (10%; 2 out of 19). The remaining 37% (7 out of 19) did not have AMACR present. Invasive carcinoma cells, AMACR staining was intense in 5% (1 out of 21), high in 33% (7 out of 21), moderate in 24% (5 out of 21), low in 24% (5 out of 21) and absent in 14% (3 out of 21) of cases. Benign epithelial cells in those sections showed low staining for AMACR (5%; 1 out of 21), whereas the remaining (95%; 20 out of 21) sections did not show AMACR. Prostate-specific membrane antigen staining of HG-PIN cells in the presence of invasive carcinoma was high in

Table 3 Immunohistochemical evaluation of AMACR, PSMA and claudin-4 expression in prostate tissue sections

Percentage and intensity of cells staining	AMACR (n=15)	PSMA (n=14)	Claudin-4 (n=29)
<25%	12	1	3
25–50%	3	6	2
>50%	1	1	5
BPH	12	2	1
Nil	3	4	1
Low	1	6	1
Moderate	1	3	1
Strong	1	1	6
Intense			2
HG-PIN (with no foci of PCa)	5	4	1
Nil	3	2	1
Low	1	2	3
Moderate	1	6	3
Strong	1	1	6
Intense			5
PCa	7	4	1
Nil	4	2	1
Low	2	2	3
Moderate	1	6	3
Strong			2
Intense			1
HG-PIN (with foci of PCa)	20	3	1
Nil	1	5	3
Low	2	4	1
Moderate			7
Strong			6
Intense			3
Benign glands (adjacent to PCa)	11	4	1
Nil	5	3	1
Low	6	4	2
Moderate			6
Strong			5
Intense			3
Metastatic sites	AMACR (n=18)	PSMA (n=16)	Claudin-4 (n=45)
Nil	11	3	9
Low	5	4	1
Moderate	6	4	2
Strong	6	4	1
Intense			1

Abbreviations: AMACR = α-methylacyl-CoA racemase; BPH = benign prostatic hyperplasia; HG-PIN = high-grade prostatic intraepithelial neoplasia; PCa = prostate cancer; PSMA = prostate-specific membrane antigen. Immunohistochemical staining for AMACR, PSMA and claudin-4 was performed on a number (n) of prostate sections. The percentage and the intensity of cells staining within each of the sections were determined by a uropathologist.
PCS metastatic lesions

Although lymph node and bone metastases predominate in patients with advanced PCA (Bubendorf et al., 2000), lesions from a wide range of secondary sites were studied (45 sections in total). Specimens from both androgen-intact and androgen-suppressed patients were isolated from a range of tissues including lymph nodes (18 out of 45), bone (8 out of 45), liver (1 out of 45), lung (1 out of 45), penile (2 out of 45), seminal vesicles (2 out of 45) and biopsies of pelvic retroperitoneal tumours (13 out of 45). From the 45 tumour metastases sections examined, 36% (16 out of 45) had strong, 29% (13 out of 45) had moderate, 20% (9 out of 45) had low and 7% (3 out of 45) had negative staining for claudin-4. It was also observed that a small percentage (9%; 4 out of 45) of metastases showed intense staining for claudin-4. Furthermore, in 47% of sections of metastases, >50–100% of carcinoma cells stained positively for claudin-4 (Figure 6F; Table 3). Those sections with intense claudin-4 staining included liver, lymph node, bone and lung metastases. AMACR expression was high in 16% (6 out of 38) of sections and moderate in 92% (11 out of 38). Twenty-six per cent (10 out of 38) of the sections had low staining for AMACR, whereas the remaining (29%; 11 out of 38) of sections had no AMACR staining. Prostate-specific membrane antigen staining of sections with metastases revealed high levels in 44% (7 out of 16), moderate levels in 31% (5 out of 16) and low levels in 25% (4 out of 16) of sections (Table 3).

DISCUSSION

In previous work, we examined the expression profiles of prostatic tissues using cDNA microarrays, which revealed β-Catenin and PSMA to be significantly overexpressed in primary PCA tumours compared with BPH (Burger et al., 2002). In addition, we revealed that a combination of four PCA biomarkers, UDP-N-acetyl-z-D-galactosamine transferase (GalNAc-T3), PSMA, Hepsin and DD3/PCa3 represented a powerful new approach for detecting all PCA cells by molecular profiling (Landers et al., 2005). The present study was designed to extend this approach to encompass metastases in addition to primary PCA. Fifty-one genes were studied was designed to extend this approach to encompass PCA cells by molecular profiling (Landers et al., 2000). PCA3 represented a powerful new approach for detecting all PCa cells by molecular profiling (Landers et al., 2000). Both primary tumours and metastases.

There have been previous reports to indicate that claudin-4 is upregulated in primary breast (Kominsky et al., 2004; Tokes et al., 2005), ovarian (Rangel et al., 2003; Agarwal et al., 2005; Santin et al., 2005), prostate (Long et al., 2001; Sheehan et al., 2007) squamous cell carcinoma (Morita et al., 2004) and pancreatic cancers (Michl et al., 2001, 2003; Nichols et al., 2004; Sato et al., 2004) but is downregulated in gastric cancer (Lee et al., 2005). In this study, the increasing prominence of claudin-4 compared with other candidate genes evaluated at both RNA and protein levels was confirmed with highest levels in PCA metastatic cells. Long et al. (2001) observed claudin-4 expression in metastatic prostate tissue samples; however, they failed to observe expression in the metastatic cell lines LNCaP and PC3, attributing this inconsistency to the possibility of alterations induced by long periods of passaging (Long et al., 2001). Interestingly, we found that claudin-4 localisation in PC3 cells was confined to only a sector of the membrane but the reasons for this finding are unclear. One possible explanation is a loss of cellular organisation due to a defect in tight junction formation or cell polarity, features common in tumour cells (Weinstein et al., 1976).

Immunohistochemical staining in situ confirmed localisation of claudin-4 and PSMA to the membrane of luminal cells of benign epithelial glands and HG-PIN as well as PCa cells (Chang et al., 1999), with increasing expression for claudin-4 from benign, through premalignant to malignant, being most evident in metastatic PCAs. In the few cases in which AMACR was present in benign glands or HG-PIN, it was localised to the cytoplasm of luminal cells (Hamed and Humphrey, 2005) with a similar localisation in PCA cells. Normal prostate sections exhibited a low level of staining for claudin-4 and PSMA, but the majority was negative for AMACR. Benign prostatic hyperplasia glands stained primarily with a moderate intensity for claudin-4 compared with PSMA and AMACR, which stained at low intensity and negatively, respectively.

High-grade prostatic intraepithelial neoplasia, previously considered to be an invariable precursor lesion of PCa and commonly found in association with PCa, does not always proceed to invasive carcinoma and, when it does, this may develop decades later (Montironi et al., 2002). In this study, this relationship, sections containing HG-PIN without associated invasive carcinoma were of moderate intensity for claudin-4 and of low intensity for PSMA and AMACR. Cells containing HG-PIN in association with invasive carcinoma exhibited strong levels of claudin-4 staining. In contrast, AMACR levels were low and PSMA levels moderate. This observation that claudin-4 expression is increased in HG-PIN in the presence of PCa may indicate that claudin-4 plays a role in the early events of PCA development.

Although a moderate level of staining for claudin-4 was evident in the majority of invasive PCa cells, a closer examination of tumour sections revealed that claudin-4 expression tended to be higher in lower grade carcinomas compared with those of higher grades (Gleason 5) (data not shown). Furthermore, epithelial cells in surrounding benign glands within the PCa sections also had moderate to strong claudin-4 staining. As cellular organisation is lost in cancer, not uncommonly a reduction in tight junction function is observable, consistent with changes in cellular polarity associated with increased cellular mobility (Weinstein et al., 1976).

Prostate cancer metastases examined by immunohistochemistry were from a range of secondary sites. Most of the metastatic tumours stained positively for claudin-4, with the majority classified as strong or intense and only a minority registering moderate expression. No difference was evident in specimens from androgen-suppressed and nonandrogen-suppressed patients (data not shown). Furthermore, there did not appear to be a correlation with type of metastatic site and the intensity of claudin-4 expression: those sections with the strongest claudin-4 staining were from liver, lymph node, bone and lung. Although decreased polarity and differentiation are regarded as important for the
metastatic phenotype, to enable individual cells to leave the primary site and enter the circulation to reach distant sites (Martín and Jiang, 2001), circumstances are different in established metastases in which a reversal is required to permit growth of established secondary lesions (Yang et al, 2006).

Sheehan et al (2007) in their evaluation of 141 RP specimens reported an increase in claudin-4 expression in advanced-stage tumours compared with adjacent benign glands and concluded that claudin-4 expression persisted in PCa and correlated with an adverse prognosis. In contrast, our study of both primary and secondary lesions examined 182 sections from patients with a range of prostate conditions to provide a better understanding of the role of claudin-4 in the prostate and in tumour progression: our findings are consistent with current concepts of the carcinogenesis/invasion process. A further difference to the report from Sheehan et al (2007) is that our immunohistochemical analysis of claudin-4 was supported by a comparative evaluation of AMACR and PSMA, two well-established PCa markers.

In a small study of pancreatic cancer, Michl et al (2003) concluded that claudin-4 expression tended to be stronger in well-differentiated tumours compared with poorly differentiated tumours, which correlates with the expression pattern observed within PCa primary lesions in this study. Also, in primary pancreatic cancer sections, Nichols et al (2004) reported that immunohistochemical expression of claudin-4 was present in pancreatic intraepithelial neoplasia cells and in all of the metastatic cancers examined (Nichols et al, 2004) reflecting our observation that claudin-4 expression was present in all HG-PIN sections associated with PCa.

It is not known what regulates claudin-4 expression; however, studies in pancreatic cancer have implicated the TGF-β pathway (Michl et al, 2003). TGF-β is known as a potent mediator of tumour progression by inducing cell spreading, migration, angiogenesis and tumour cell invasion (Wikstrom et al, 1998; Massague et al, 2000). A study into the regulation of claudin-4 by TGF-β revealed that this cytokine downregulated claudin-4 expression within pancreatic cancer, which may be the mechanism by which TGF-β promotes tumour invasion (Michl et al, 2003). Furthermore, inhibition of Ras signalling by dominant-negative Ras and specific inhibitors of downstream effectors, mitogen-activated protein/extracellular signal-regulated kinase kinase and phosphatidylinositol 3'-kinase, has been suggested to decrease claudin-4 expression (Michl et al, 2003). More recently, over-expression of claudin-4 in ovarian cancer was found to be partly regulated by a small region in the claudin-4 promoter-containing Sp1 sites (Honda et al, 2006). The claudin-4 promoter is also controlled by epigenetic modifications (Boireau et al, 2007). It was revealed that cells overexpressing claudin-4 exhibited low DNA methylation and high histone H3 acetylation of the critical claudin-4 promoter region with the converse observed for cells expressing low levels of claudin-4 (Boireau et al, 2007). Studies are currently underway in our laboratory to determine if this mechanism is also responsible for the regulation of claudin-4 in the prostate.

The results obtained within this study have revealed a distinct and progressing pattern of claudin-4 expression within the prostate with noncancerous pathological changes as well as in PCa and PCa metastases by RT–PCR and immunohistochemistry of both primary and secondary tumours. In addition, elevated levels of claudin-4 were observed in suspected premalignant and malignant lesions.

Many genes and proteins have been proposed as useful markers for diagnosis, imaging and therapeutic targeting in PCa. In diagnosis, the large proportion of those nominated was related to an aggressive phenotype with relatively few identified as potential indicators of low risk PCa. With burgeoning numbers of this category of patients being identified as a consequence of PSA screening, there is a pressing need for low-risk disease markers, particularly for those men considering close observation (Smith and Catalona, 1994; Hoedemaeker et al, 2000). However, before claudin-4 can be considered for any role in this regard despite its proclivity to be overexpressed preferentially in lower Gleason score tumours, further evaluation is essential. Similarly, its potential as a target for imaging or therapy must remain speculative until further definitive research is undertaken.

ACKNOWLEDGEMENTS

We wish to acknowledge the Australasian Urological Foundation, the Australian National Health and Medical Research Council and The Cancer Council Queensland. We thank Tracey Laing for typing the manuscript.

REFERENCES

Agarwal R, D’Souza T, Morin PJ (2005) Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 65: 7378–7385

Boireau S, Buchert M, Samuel MS, Pannequin J, Ryan JL, Choquet A, Chapuis H, Rebillard X, Avancés C, Ernst M, Joubert D, Mottet N, Hollande F (2007) DNA-methylation-dependent alterations of claudin-4 expression in human bladder carcinoma. Carcinogenesis 28: 246–258

Bostwick DG, Liu L, Brawer MK, Qian J (2004) High-grade prostatic intraepithelial neoplasia. Rev Urol 6: 171–179

Bostwick DG, Norlen BJ, Denis L (2000) Prostatic intraepithelial neoplasia: the preinvasive stage of prostate cancer. Overview of the prostate committee report. Scand J Urol Nephrol Suppl 205: 1–2

Bubendorf L, Schopfer A, Wagner U, Sauter G, Meyer J, Willi N, Gasser TC, Mihatsch MJ (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31: 578–583

Burger MJ, Tebay MA, Keith PA, Samaratunga HM, Clements J, Lavin MF, Gardiner RA (2002) Expression analysis of delta-catenin and prostate-specific membrane antigen: their potential as diagnostic markers for prostate cancer. Int J Cancer 100: 228–237

Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumors-associated neovascularization. Cancer Res 59: 3192–3198

Foster CS (2000) Pathology of benign prostatic hyperplasia. Prostate Suppl 9: 4–14

Freedland SJ, Presti Jr JC, Amling CL, Kane CJ, Aronson WJ, Dorey F, Terris MK, SEARCH Database Study Group (2003) Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology 61: 736–741

Fusi A, Procopio G, Della Torre S, Ricotta R, Bianchini G, Salvioni R, Ferrari L, MartiMetti A, Salvetti G, Villa S, Bajetta E (2004) Treatment options in hormone-refractory metastatic prostate carcinoma. Tumori 90: 535–546

Hamed O, Humphrey PA (2005) p63/AMACR antibody cocktail retaining of prostate needle biopsy tissue after transfer to charged slides: a viable approach in the diagnosis of small atypical foci that are lost on block sectioning. Am J Clin Pathol 124: 708–715

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

Holler F, Feuer EJ, Clegg LX, Hayes RB, Legler JM, Prorok PC, Ries LA, Scully S, Smoller BW, Terris MK, SEARCH Database Study Group (2003) Time trends in prostate cancer – part I: Evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates. J Natl Cancer Inst 91: 1017–1024

Hessels D, Klein Gunnewiek JMT, van Oort I, Kaufhaus HF, van Leenders GJL, van Balken B, Kienemann LA, Wijkes JA, Schalken JA (2003) DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44: 8–15

© 2008 Cancer Research UK

British Journal of Cancer (2008) 99 (3), 491–501
Morita K, Tsuchita S, Miyachi Y (2004) Tight junction-associated proteins (occludin, ZO-1, Claudin-1, Claudin-4) in squamous cell carcinoma and Bowen's disease. Br J Dermatol 151: 328 – 334

Nichols LS, Ashfaq R, Iacobuzio-Donahue CA (2004) Claudin 4 protein expression in primary and metastatic pancreatic cancer: support for use as a therapeutic target. J Am Clin Pathol 121: 226 – 230

Ornstein DK, Tyson DR (2006) Proteomics for the identification of new prostate cancer biomarkers. Urol Oncol 24: 231 – 236

Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of Claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120: 411 – 422

Rangel LB, Agarwal R, D’Souza T, Pizer ES, Alô PL, Lancaster WD, Greigore L, Schwarz DR, Cho KR, Morin PJ (2003) Tight junction proteins Claudin-3 and Claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res 9: 2567 – 2575

Ross JS, Sheehan CE, Fisher HA, Kaufman Jr RP, Kaur P, Gray K, Webb I, Gray GS, Mosher R, Kallakury BV (2003) Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9: 6357 – 6362

Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM (2002) alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287: 1662 – 1670

Santin AD, Cane S, Bellone S, Palmieri M, Siegel ER, Thomas M, Roman JJ, Burnett A, Cannon MJ, Pecorelli S (2005) Treatment of chemotherapy-resistant human ovarian cancer xenografts in C.B-17/SCID mice by intraperitoneal administration of Clostridium perfringens enterotoxin. Cancer Res 65: 4334 – 4342

Sato N, Fukushima N, Maitra A, Iacobuzio-Donahue CA, van Heek NT, Cameron JL, Yeo CJ, Hruban RH, Goggins M (2004) Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 164: 903 – 914

Sheehan GM, Kallakury BV, Sheehan CE, Fisher HA, Kaufman Jr RP, Ross JS (2007) Loss of Claudins-1 and -7 and expression of Claudins-3 and -4 correlate with prognostic variables in prostatic adenocarcinomas. Hum Pathol 38: 564 – 569

Smith DS, Catalona WJ (1994) The nature of prostate cancer detected through prostate specific antigen based screening. J Urol 152: 1732 – 1736

Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS (1996) Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res 56: 218 – 222

Stark RL, Duncan CL (1971) Biological characteristics of Clostridium perfringens type A enterotoxin. Infect Immun 4: 89 – 96

Stephan C, Yousef GM, Scordilas A, Jung M, Kristiansen G, Hauptmann S, Kishi T, Nakamura T, Leaning SA, Diamandis EP (2004) Hepsin is highly over expressed in and a new candidate for a prognostic indicator in prostate cancer. Cancer Res 64: 1937 – 1942

Tokes AM, Kulkja J, Paku S, Søkå A, Páska C, Novák PK, Sližák L, Kiss A, Bőgi K, Schaff Z (2005) Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res T 7: R296 – R305

Weinstein RS, Merk FB, Atroy J (1976) The structure and function of intercellular junctions in cancer. Adv Cancer Res 23: 23 – 89

Wikström P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A (1998) Transforming growth factor beta is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37: 19 – 29

Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66: 4549 – 4552