Investigation of third order nonlinearity of Ethidium bromide doped deoxyribonucleic acid (DNA)

R. K. FakherAlfahed¹, Hussain Ali Badran², Abu Talib Y. Abbas¹, Noor Al-Huda Saleh⁴
¹Al-Nahrain University, Al-Nahrain Renewable Energy Research Center, Baghdad, Iraq.
²Basrah University, Education College for Pure Sciences, Physics Department, Basrah, Iraq.
³Education Ministry, General Directorate of Education, Qamar Bani Hashem Intermediate School, Basrah, Iraq.
⁴Ministry of Transport, General Company of Iraq Ports, Ports institute, Basrah, Iraq.

Corresponding author E-mail: r.k.fakheralfahed@nerc.nahrainuniv.edu.iq

Abstract. The concentrations-dependent refractive index n_2 and the nonlinear absorption coefficient β of Ethidium bromide dye-doped deoxyribonucleic acid (biological polymer DNA) solutions in the SDL regime at 532 nm are reported. The Z-scan technique was performed in two ways and two different wavelengths, 532nm and 473nm, the open aperture technique and the closed aperture technique. From open aperture Z-scan measurements it is found that the Ethidium bromide doped deoxyribonucleic acid films exhibited reverse saturable absorption. The coefficient of nonlinear refraction and nonlinear absorption coefficient at 473nm wavelength is greater than at 532nm.

key word: Ethidium bromide, Reverse saturable, Laser , DNA.

1. Introduction

During the last decade, dye doped deoxyribonucleic acid (DNA) or polymer are being focused because of their technological applications in optical devices [1-3], spintronics, human eyes [4], solar cells [5], catalysis, optical and gas sensors protection [6], all optical switching [7], holographic gratings [8], optical storage [9] and super capacitors [10]. The characteristic feature of a deoxyribonucleic acid biopolymer is rod-like, double helix with π-electron-rich base pair stacking through hydrogen bonds between the bases and are stabilized by π-π interactions [11]. However, azo dye (Ethidium bromide) is a good material to be used as optical limiting materials. Many dyes can be easily inserted into the grooves of deoxyribonucleic acid helix. Some of other azo dyes, optical dyes or organic materials can be easily stacked on the surface of deoxyribonucleic acid helix. Since early work of doping dye into deoxyribonucleic acid (DNA) polymer [12,13], great investigators have demonstrated the nonlinear optical coefficients, optical limiting properties and self diffraction pattern of dye doped deoxyribonucleic acid matrices. Nonlinear optical (NLO) properties of deoxyribonucleic acid biopolymer in solution form [14], in azo dye films [15], in organic compounds [16] and in Rhodamine 6G-PVA [17] has been investigated recently. The mechanism of operation of this technique is based on the principle of spatial beam distortion [18], which grows from the optically induced nonlinear refractive index. From this method one can obtain both the nonlinear signal, the magnitude of the nonlinearity and the nonlinear refractive index value easily from experimental readings with a simple readout analysis [19]. Another benefit of this technique is its ease of application in studying transient phenomena [20]. The studies of Z-scan technique not only provide information about the non-linear optical properties of materials, but also provide important information regarding response time [21] and dynamics of transient processes, which contribute to obtaining the nonlinear refractive index [22].
In this paper, we employ the close and open Z-scan technique to study the nonlinear refractive index nonlinear absorption property of Ethidium bromide dye doped deoxyribonucleic acid (DNA) biopolymer, the nonlinear coefficients response of EtBr dye doped biopolymer was measured with 532 nm and 473 nm CW laser.

2. Experimental measurements

2.1 Samples preparation

Using a sensitive digital scale, about 0.0315g of EtBr dye powder was dissolved in 10 ml of distilled water. A concentration of 8 mM was obtained, after which the 8 mM main solution was placed on the heating mixer for 30 minutes at a 45 °C temperature of enough degree to ensure that the dissolution is complete. Then, the filtration process was carried out in two ways, the first with filter paper, and followed directly by filter syringe with a thickness of 0.2 μm. After completing these processes, we obtain a completely dissolved, clear solution. The biological polymer DNA was doped with concentrations of (1, 2, 3 and 4 mM). A polymer solution sample of each concentration is placed in a quartz cell, the cell thickness is 1mm and the absorbance of the stain-stained DNA polymer solution is measured. Fig. 1a and b show the chemical structure and molecular formula for Ethidium bromide dye and deoxyribonucleic acid (DNA), respectively.

![Chemical structure of (a) EtBr dye and (b) biological polymer deoxyribonucleic acid (DNA).](image)

2.2 Absorption measurement

The UV–visible absorption spectra of the EtBr dye doped deoxyribonucleic acid (DNA) with different concentrations are shown in Fig. 2. From fig.2 indicated that the absorption of the sample increases with increasing EtBr dye doped concentration due to the increase in the number of molecules per unit volume [23]. The absorption coefficients, α, for each sample were determined by the analysis of the optical absorbance spectra and can be obtained from the following relationship [24-28]:

\[\alpha = \frac{2.303a}{d} \]

where \(a \) and \(d \) are the absorbance value and thickness of the EtBr dye doped deoxyribonucleic acid sample. Figure 1 shows the presence absorption peak near 486 nm which is the characteristic of DNA. The peak is due to π-π* (where π represents bonding orbitals and π* represents anti-bonding orbitals) transition of the electrons of C=C bond in DNA [29]. At 532 nm and 473 nm the values of \(\alpha \) of the EtBr doped deoxyribonucleic acid samples were calculated and they are given in Tables 1 and 2, respectively.
Fig. 2. UV–visible absorption spectra for EtBr dye doped deoxyribonucleic acid with different concentrations.

3. Z-scan technique

The Z-scan technique is now a standard tool for studying optical nonlinearities in a wide variety of optical materials, because of its high sensitivity and experimental simplicity. In this technique, the EtBr dye-doped deoxyribonucleic acid is translated in the Z-direction along the axis of a focused Gaussian beam, and the far-field intensity is measured as a function of the sample position. While the input power is maintained constant. Scanning measurements were taken in the direction of the Z-axis for both open aperture technique (OA) and closed aperture (CA) technique for the EtBr dye-doped biological polymer using a constant laser power of 4.5mW for solid-state lasers at wavelengths of 473nm and 532nm. To study the effect of wavelength on the Z-scan behavior, two wavelengths 532 nm and 635 nm are chosen for all concentrations samples.

3.1 Nonlinear coefficients

The absorption nonlinear coefficient, β, can be found using the following relationship [30,31]:

$$\beta = 2\sqrt{2} \frac{\Delta T}{I} L_{\text{eff}}$$

(2)

Since ΔT is the difference between peck and bottom, L_{eff} is the effective length and is given by the following relationship [32,33]:

$$L_{\text{eff}} = (1 - \exp(-\alpha L))/\alpha$$

(3)

The amount of the quantity can be defined as the difference between the caliber of the top and bottom of the applied intensity for this type of scanning technique in the direction of the Z-axis. This difference is given by the following relationship [34]:

$$\Delta T_{\text{p-b}} = 0.406(1 - S)^{0.21}[\Delta \phi]$$

(4)

$\Delta \phi$, it represents the phase difference on the axis, and the phase difference on the axis is related to the nonlinear refractive index with the following relationship [35,36]:

$$\Delta \phi = k n^2 I L_{\text{eff}}$$

(5)

As k the wave vector is represented and is given by the following relationship $k = 2\pi / \lambda$ [37], where λ it represents the used of laser wavelength and I_{c} is the intensity value at the focus ($Z = 0$) and is given by the equation [38,39]:

$$I_{\text{c}} = 2P/\pi \omega^2$$

(6)
Therefore, the nonlinear refractive index can be calculated by applying the following equation [40]:

\[n_2 = \frac{\Delta \phi \lambda}{2\alpha L_{\text{eff}}} \]

(7)

The change in refractive index is given by the following relationship [41,42]:

\[n = n_2 I_X \]

(8)

The linear transmittance of the detector aperture S were equal to 0.61 and 0.73 for the 473 nm and 532 nm wavelength laser, respectively, and in general S is given by [43].

\[S = 1 - \exp\left(-r_a^2 / \omega_0^2\right) \]

(9)

Where \(\omega_0 \) is the beam deflection at the detector aperture and it was calculated using the following equation [44]:

\[\omega_0^2 = \omega^2 \left(1 + \left(\frac{Z}{Z_s}\right)^2\right) \]

(10)

where \(Z_s \) represent the diffraction length of the beam \(Z_s \) was equal to 3.27 mm, and in general \(Z_s \) is given by the following equation [45]:

\[Z_s = \frac{\pi \omega_0^2}{\lambda} \]

(11)

\(Z_s \) represent the distance between the detector aperture and the focal point, \(\omega_0 \) represent the radius of the beam waist at the focus (\(Z = 0 \)), given by the following relationship [46,47]:

\[\omega_0 = 1.22 f \lambda / D \]

(12)

where \(f \) is the focal length of the used lens where \(f = +50 \) mm, \(D \) is defined as the diameter of the laser beam at the detector.

3.2. Z-scan technique at 532nm

The open aperture Z-scanning technique was applied on the dye-doped biological polymer (DNA) using a solid-state laser of wavelength 532 nm at the power of 4.5 mW with concentrations (1, 2, 3 and 4 mM) and the measurements were obtained are shown in figure 3.

![Fig. 3: Open Z-Scan technique.](image1)

![Fig. 4: Normalized pure Z-Scan technique.](image2)
The Z-Scan technique of the closed aperture was applied using a laser of wavelength 532nm at a power of 4.5 mW, the measurements obtained were shown in Figure 4, which shows the relationship between the intensity and Z-direction. The Nonlinear optical coefficients values are listed in Table 1.

Table 1: Nonlinear optical parameters and absorption coefficients at 532nm.

Co.(mM)	$\beta \times 10^{-3} \text{(cm/W)}$	$\Delta n \times 10^{-3}$	$n_2 \times 10^{-7} \text{(cm}^2\text{/W)}$	$\alpha \text{(cm}^{-1})$
1	2.765	0.312	7.965	10.83
2	6.940	0.411	10.499	13.67
3	13.288	0.753	19.218	17.80
4	27.089	1.094	27.936	24.19

It has been shown from Table 1 that the values of nonlinear optical parameters of the EtBr dye-doped polymer increase with increasing concentration. To illustrate this effect more accurately and clearly, Figure 5 shows the nonlinear absorption coefficient and nonlinear refractive index as a function of concentration, as it can be seen from the curve that the relationship between them is linear, that is, when the concentration increases, the nonlinear absorption coefficient and nonlinear refractive index is a linear function.

![Figure 5](image1.png)

Fig. 5: n_2 and β as a function of concentration of dye doped biological polymer.

3.3. Z-Scan technique at 473nm

With the same power of 4.5mW for the 473nm wavelength laser, this technique was applied, and the measurement was obtained. Figure 6 shows the relationship between the normalized transmitted of the sample as a function of the location when the aperture is opened.

![Figure 6](image2.png)

Fig. 6: Open Z-Scan technique.

![Figure 7](image3.png)

Fig. 7: Normalized pure Z-Scan technique

Scanning measurements were taken with the direction of the Z-axis of dye doped biological polymer (DNA) at the power of 4.5 mW using a solid-state laser with a wavelength of 473 nm. The measurements obtained were
shown in figure 7, which shows the relationship between the normalized transmitted and the sample location, for pure Z-scan data. Table 2 shows Z-scan nonlinear coefficients values of the dye-doped biological polymer at the wavelength of 473nm.

Table 2: Nonlinear optical parameters and absorption coefficients at 473nm.

C_0(mM)	$\beta \times 10^{-3}$ (cm/W)	$\Delta n \times 10^{-3}$	$n_2 \times 10^{-2}$ (cm2/W)	α(cm$^{-1}$)
1	5.45	0.49	8.49	24.08
2	8.05	0.70	11.77	28.99
3	33.42	1.34	22.54	35.56
4	67.45	2.51	42.36	45.51

The results shown in Table 1 and 2 have shown that the nonlinear parameter values of the EtBr dye-doped biopolymer DNA, which are the nonlinear absorption coefficient, the nonlinear refractive index and the phase difference, increase with increasing concentration at the wavelength of 473nm more than at the wavelength of 532 nm. Figure 8 shows the nonlinear absorption coefficients and the nonlinear refractive indices at the wavelength of 473 nm as a function of sample concentration.

![Fig. 8: n_2 and β as a function of concentration of dye doped biological polymer.](image_url)

4. Spot size behavior.

During the Z-scan technique, the scanning process is along the Z-axis in positive (+Z) and negative (-Z) directions. Therefore, the sample is in different locations for the focus and thus, the spot size is constantly changing according to the location. We deliberately studied this continuous change in shape, where we dispensed with the detector device by replacing it with a sensitive screen. The spot size was studied as a function of the Z-scan location of the dye-doped DNA polymer at a concentration of 3 mM. The spots size of the laser beam (the penetrating beam) were taken on a screen placed at a distance from the sample at the location in which the intensity appears (vertex) along the Z-axis, and the location in which the intensity appears (bottom) by a digital camera. The Z-scan technique was performed using a linearly TEM$_{00}$ Gaussian beam of solid-state CW diode laser at 4.5 mW (λ=473 nm). Different spot size shape for the selected scanning locations has been appearing on the sensitive screen. Fig. 9 shows the characteristics of the obtained spot size.
Fig. 9: change in the laser spot size along Z-position.

Fig. 9 displays the pure z-scan results of EtBr dye-doped DNA polymer. While the samples move along the Z-axis in the measurements, the incident fluence increases from a lower value to its maximum value. At the Z-position 'far' away from the focal point, this means low input fluence. The samples exhibit linear optical behavior. The size of the spot is as small as possible at the valley, and if the intensity is very high because the effect of non-concentration contributes to the nonlinear heat as a result of the absorption of the laser beam according to the absorption of the sample, this effect has the maximum permeability as a result of saturation at high intensity[48-50].

5. Conclusions:

In conclusion, we studied the third-order nonlinear optical response of Ethidium bromide doped deoxyribonucleic acid (DNA) by performing both open-aperture and closed-aperture Z-scan technique with a TEM00, Gaussian solid state CW laser at 532 nm and 473 nm. The third-order nonlinear refractive index was as large as $42.36 \times 10^{-7} \text{cm}^2/\text{W}$ has been achieved. The values of n_2 and β obtained at 532 nm are the same order as those obtained at 473 nm. The nonlinear refractive index had a negative sign, which was due to self-defocusing. The magnitude of n_2 with the negative sign and β were in the order of $10^{-7} \text{cm}^2/\text{W}$ and $10^{-3} \text{cm}/\text{W}$, respectively. They were dependent on the concentrations of Ethidium bromide dye. The doping of the DNA polymer by the EtBr dye worked to improve the ability of the material to show high optical properties of nonlinearity, as the denaturation worked on doped the DNA polymer and the binding was high with the dye through the bases of Adenine (A) and Guanine (G) as well as the association with the three bases of bermdene. Figure 9 shows the comparison between pure and Ethidium bromide doped DNA and how the DNA bases are related when doped.

Fig. 10: Comparison of pure and Ethidium bromide dye doped DNA.
References

[1] H. A. Badran, Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel. Results Phys. 4, 69–72 (2014).

[2] K. Abd AL-Adel, H. A. Badran, \(\chi^3 \) measurements and optical limiting in Bismarck BrownY dye, International J. of Emerging Technologies in Computational and Applied Sciences (IJETCAS), 8(1), 64-68 (2014).

[3] K. Abd AL-Adel, H. A. Badran, Nonlinear optical properties and diffraction ring patterns of benzocongo red, European Journal of Applied Engineering and Scientific Research, 1(2) 66-72(2012).

[4] T. Suzuki, Y. Kawabe, Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method, Optical Materials Express, 4(7), (2014) 1411-1419.

[5] H. G. Lazim, K. I. Ajeel, H. A. Badran, “The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.145, pp.598-603 (2015).

[6] P. Varsani, A. Alonja, D. E. Williams, I. P. Parkin, R. Binions, Zeolite-modified WO3 gas sensors Enhanced detection of NOx, Sensors and Actuators B 160 (2011) 475-482

[7] H. A. Badran, Thermal properties of a new dye compound measured by thermal lens effect and Z-scan technique. Appl. Phys. B 119, 319–326 (2015).

[8] A. J. Steckl, “DNA—A New Material for Photonics?” Nature Photonics, 1 (1) 3-5(2007).

[9] J. G. Grote, E. M. Heckman, D. Diggs, J. A. Hagen, P. Yaney, A. J. Steckl, G. S. He, Q. Zheng, P. N. Prasad, J. Zotts and P. K. Hopkins, “DNA-Based Materials for Electro-Optic Applications,” Proceedings of SPIE, Vol. 5934 (2005) pp.38-43.

[10] T. M. Salman, R. K. Fakher Alafah, H. A.Badran, K. I. Ajeel, M. M. Jaffer, K. K. Mohammad, The evaluation and analysing the boron concentration rate in soil of north Basrah city (Iraq) by carmine method, IOP Conf. Series: Journal of Physics: Conf. Series 1294,022006 (2019).

[11] G. Jian Zhang, H. Takahashi, L. Li Wang, J. Yoshida, S. Kobayashi, S. Horinouchi, N.Ogata, Nonlinear Optical Materials Derived from Biopolymer (DNA)- surfactant-Azo dye complex, Proceedings of SPIE, Vol.4905, 375-380 (2000).

[12] J. Grote, D. Y. Zang, F. Ouchen, G. Subramanyam, P. Yaney, C. Bartsch, E. Heckman, R. Naik, “Progress of DNA Photonics,” Proceedings of SPIE, Vol. 7765, (2010).

[13] N. Balan, M. Hari, V. P. Narayana Nampoori, Selective mode excitation in dye-doped DNA polyvinyl alcohol thin film, Applied Optics Vol. 48, Issue 19, pp. 3521-3525, (2009)

[14] M. Samoc, A. Samoc and J. G. Grote, “Complex Nonlin-ear Refractive Index of DNA,” Chemical Physics Letters, 431(1-3) (2006) pp. 132-134.

[15] A. J. Steckl, H. Spaeth, H. You, E. Gomez and J. Grote, “DNA as an Optical Material,” Optics and Photonics News, 22(7), (2011) pp. 34-39.

[16] Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata, “Amplified Spontaneous Emission from Fluorescent-Dye- Doped DNA-Surfactant Complex Films,” Advanced Materials, 12(17),(2000) pp.1281-1283.

[17] B. Nithiyaja, H. Misha, P. Radhakrishnan and V. P. N. Nampoori, “Effect of Deoxyribonucleic Acid on Nonlinear Optical Properties of Rhodamine 6G-Polyvinyl Alcohol Solution,” Journal of Applied Physics, 109(2) (2011).

[18] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE Journal of Quantum Electronics, 26(4) (1999) pp.760-769.

[19] H. A. Badran, A. Y. Al-Ahmad, Q. M. Ali, C. A Emshary, “Determination of optical constants and nonlinear optical coefficients of Violet 1-doped polyvinyl alcohol thin film, Pramana J. phys. 86,(2016) 135-145.

[20] K. Abd AL-Adel, H. A. Badran, The Study of the Nonlinear Optical Properties of Solutions under CW Laser Illumination, Journal of Basrah Researches (Sciences) A 38 (4),73-79 (2012).

[21] A.Y.AL-Ahmad, M. F. AL-Mudhaffer, H. A. Badran, C.A.Emshary, Nonlinear optical and thermal properties of BCP: PMMA films determined by thermal self-diffraction. Optics and Laser Technology 54, 72–78 (2013).
[22] A. L. Mghames, H. A. Badran, H. F. Hussain, Optical limiting studies and saturated output of continuous wave laser in Fluorescein solution, International Journal of Engineering and Applied Sciences (IJAES), 5(8), 64-67 (2018).

[23] H. A. Badran, Riyadh Ch. Abul-Hail, Hussain S. Shaker, Abdulameer I. Musa, Qusay M. A. Hassan, “An all-optical switch and third-order optical nonlinearity of 3,4-pyridinediamine, Appl. Phys. B, vol.123,p.31, 2017.

[24] A. A. Hussain, A. A. Musa, R. K. Fakher Alfahed, H. A. Badran, Diffracting samples, Nonlinear optical properties and morphology for (2-hydroxyphenyl) [2-(2-methoxybenzilideneamino)-5-methyl phenyl] telluride film, AIP Conference Proceedings 2290, 050049 (2020).

[25] H.A. Badran, K.A. Al-Adil, H.G. Lazim,A.Y. Al-Ahmad, Thermal blooming and photoluminescence characterizations of sol–gel CdO–SiO2 with different nanocomposite. J. of Materials Science: Materials in Electronics, 27, 2212–2220 (2016).

[26] Abd. Imran, S. J. Bader, Abd. Al-Salih, H. A. Badran, Gamma irradiation impact on the morphology and thermal blooming of sodalime glass, AIP Conference Proceedings 2290, 050038 (2020).

[27] H. A. Badran, Study on Optical Constants and Refractive Index Dispersion of Neutral red Doped Polymer Film, American Journal of Applied Sciences 9(2), 250-253 (2012).

[28] H.S. Shaaker, W.A. Hussain, H.A. Badran, “Determination of the optical constants and optical limiting of doped malachite green thin films by the spray method. Advances in Applied Science Research, 3,(2012) 2940-2946.

[29] L.Wang, J. Yoshiida, N. Ogata, S. Sasaki, T. Kajiyama, Self-Assembled Supramolecular Films Derived from Marine Deoxyribonucleic Acid (DNA)–Cationic Surfactant Complexes: Large-Scale Preparation and Optical and Thermal Properties, Chem. Mater. 13(4) (2001) 1273-1281.

[30] H.A. Badran, A.A. Al-Fregi, R.K. Fakher Alfahed, A.S. Al-Asadi, Study of thermal lens technique and third-order nonlinear susceptibility of PMMA base containing 5,5′-dibromo-o cresolsulf ophthalein. J. Mater. Sci.: Mater. Electron, 28, 17288–17296 (2017)

[31] A. Al-Salih, R. D. Salim, R. K. Fakher Alfahed, H. A. Badran, Effect of Solar radiation induced and alpha particles on Nonlinear behavior of PM-355 film, IOP Conf. Series: Materials Science and Engineering 928, 072056 (2020).

[32] H.A. Badran, K.I. Ajeel, H.G. Lazim, Effect of nano particle sizes on the third-order optical nonlinearities and nanostructure of copolymer P3HT:PCBM thin film for organic photovoltaics, Mater. Res. Bull. 76, 422–430 (2016)

[33] R. K. Fakher Alfahed, H. A. Badran, F. Zuhair Razzooqi, K. K. Mohammad, Measurement of the thermooptic coefficient and Ring surface profile of sulfadiazine azo dye by using milli watts cw laser beams, IOP Conf. Series: Materials Science and Engineering 928, 072071 (2020).

[34] H.A. Badran, Z-scan measurement for the thermo-optic coefficient and transmitted beam profile of 1,8-dihydroxy-naphthalin-3,6 (disulfonic acid-[2-(4-azo)]-N-5-methyl-3-isoxazolyl)-benzene sulfonamide. Advances in Physics Theories and Applications, 26, 36–44 (2013).

[35] R.K. Fakher Alfahed, A. Imran, M.S. Majeed, H. A. Badran, Photoluminescence characterizations and nonlinear optical of PM-355 nuclear track detector film by alpha-particles and laser irradiation. Phys. Scr. 95, 075709 (8pp) (2020).

[36] N. A. Huda, S. Yakop, H.A. Badran, Single-beam Z-scan measurement of the third-order optical nonlinearities of ethidium bromide. Int. J. Eng. Res. Appl. 4, 727–731 (2014)

[37] R.F. Alfahed, A.S. Al-Asadi, H.A. Badran, K.I. Ajeel, Structural, morphological, and Z-scan technique for a temperature-controllable chemical reaction synthesis of zinc sulfide nanoparticles, Applied Physics B 125 (2019) 48.

[38] H.A. Badran, A. Al-Maliki, R.K. Fakher Alfahed, B.A. Saeed, A.Y. Al-Ahmad, F.A. Al-Saymari, R.S. Elias, Synthesis, surface profile, nonlinear reflective index and photophysical properties of curcumin compound. J. Mater. Sci.: Mater. Electron. 29, 10890–10903 (2018)
[39] R. K. Fakher Alfahed, H. A. Badran, F. Zuhair Razzooqi, K. K Mohammad, Measurement of the thermooptic coefficient and Ring surface profile of sulfadiazine azo dye by using milli watts cw laser beams, IOP Conf. Series: Materials Science and Engineering 928, 072071 (2020).

[40] H.A. Badran, H.F. Hussain, K.I. Ajeel, Nonlinear characterization of conducting polymer and electrical study for application as solar cells and its antibacterial activity, Optik 127 (2016) 5301–5309.

[41] H.A. Badran, Investigation of the nonlinear optical response of 3-(dimethylamino)-7-aminophenothiazin-5-ium chloride dye. IOSR Journal of Applied Physics (IOSRJAP), 1,33-37 (2012).

[42] F.A. Al-Saymari, H.A. Badran, A.Y. Al-Ahmad, C.A. Emshary, Time dependent diffraction ring patterns in bromothymol blue dye doped PMMA film under irradiation with continuous wave green laser light. Indian J. Phys. 87, 1153–1156 (2013)

[43] H.A. Badran, A.Y. Taha, A.F. Abdulkader, C.A. Emshary, preparation and study of the electrical and optical properties of a new azo dye (4-acetaminophenol-[2-(4-azo)]-4-amino dipheyl sulfone). J. Ovonic Res. 8, 161–170 (2012)

[44] N. A. Huda S.Yakop, H. A. Badran, Single-beam Z-scan measurement of the third-order optical nonlineairties of ethidium bromide. International Journal of Engineering Research an Applications, 4,727-731 (2014).

[45] H.A. Badran, A.Y. AL-Ahmad, M.F. AL-Mudhaffer, C.A.Emshary, Nonlinear optical responses and limiting behavior of sulfadiazine-chromotropic acid azodye. Opt. Quantum Electron.47,1859-1867 (2015).

[46] H. A. Al-Hazam, R. K.Fakher Alfahed, A. Imran, H. A.Badran, H. S. Shaker, A. Alsalhi, K. I. Ajeel, Preparation and optoelectronic studies of the organic compound [2-(2,3-dimethyl phenylamino)-N-Phenyl benzamide doped(PMMA)]. J. of Materials Science: Materials in Electronics, 30(11) 10284–10292 (2019).

[47] M. T. Obeed, R. CH. Abul-Hail, H. A. Badran, gamma irradiation effect on the nonlinear refractive index and optical limiting behavior of pyronine y dye solution, Journal of Basrah Reseaches(Sciences), 46(1), 49-56 (2020).

[48] H. A. Badran, Harith A. Hasan, Synthesis and study dielectric properties of a new Schiff-base liquid crystal, AIP Conference Proceedings 2290, 050037 (2020).

[49] K.A. AL-Adel, H.A. Badran, Nonlinear Optical Properties and Diffraction Ring Patterns of Acid black 1, Archives of Applied Science Research, 4 (6), 2499-2506 (2012).

[50] D. Swain, P. T. Anusha, T. S. Prashant, S. P. Tewari, T. Sarma, S. Venugopal Rao, “Ultrafast Excited State Dynamics and Dispersion Studies of Nonlinear Optical Properties in Dinaphthoporphycenes, Applied Physics Letters, 100(14) (2012) 141109