Metagenomics of Wastewater Influent from Wastewater Treatment Facilities across Ontario in the Era of Emerging SARS-CoV-2 Variants of Concern

Opeyemi U. Lawal, Linkang Zhang, Valeria R. Parreira, R. Stephen Brown, Charles Chettleburgh, Nora Dannah, Robert Delatolla, Kimberly A. Gilbride, Tyson E. Graber, Golam Islam, James Knockleby, Sean Ma, Hanlan McDougall, R. Michael McKay, Aleksandra Młoszewska, Claire Oswald, Mark Servos, Megan Swinwood-Sky, Gustavo Ybazeta, Marc Habash, Lawrence Goodridge

Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
Urban Water Research Centre, Ryerson University, Toronto, Ontario, Canada
Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
Health Sciences North Research Institute, Sudbury, Ontario, Canada
Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
Department of Geography and Environmental Studies, Ryerson University, Toronto, Ontario, Canada
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada

Opeyemi U. Lawal, Linkang Zhang, and Valeria R. Parreira contributed equally to this article. The order of names of co-first author was unanimously determined among the authors.

ABSTRACT We report metagenomic sequencing analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in composite wastewater influent from 10 regions in Ontario, Canada, during the transition between Delta and Omicron variants of concern. The Delta and Omicron BA.1/BA.1.1 and BA.2-defining mutations occurring in various frequencies were reported in the consensus and subconsensus sequences of the composite samples.

The emergence and global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (genus Betacoronavirus, family Coronaviridae) variants of concern (VOCs) pose a significant threat to global health (1, 2). SARS-CoV-2 is shed in human fecal matter and less so in urine by infected individuals, and its detection in wastewater triggered global interest in tracking the dissemination of its VOCs (3, 4). The province of Ontario and other jurisdictions have adopted genomic surveillance of wastewater for monitoring known and emerging SARS-CoV-2 VOCs in the community (5–12).

We collected 24-h composite samples of raw influent from 28 wastewater treatment plants in 10 regions across Ontario between November 2021 and February 2022 (n = 48) (Table 1) as part of the COVID-19 Regional Genomic Initiative (CORGI) in Ontario. Nanotrap magnetic virus particles (Ceres Nanosciences) were added to 50-mL wastewater samples to capture and concentrate the virus, followed by RNA extraction with the QIAamp viral RNA minikit (Qiagen) according to the manufacturer’s instructions. The CDC N1 and N2 regions were detected in the RNA samples with one-step reverse transcriptase quantitative PCR (RT-qPCR) performed on QuantStudio 5 (Thermo Fisher Scientific) (13) by using the 2019-ncov CDC RUO kit (IDT, Coralville, USA) and TaqPath master mix (Thermo Fisher Scientific) as described (14). Wastewater samples with a cycle threshold of ≤ 35 were sequenced. For genomic sequencing, cDNA synthesis was performed using the SuperScript IV first-strand...
Date	GPS Input	Sample No.	Region	Sample ID	Wastewater Site	Latitude	Longitude	SRA ID	Variant Detection	Variant Coverage	Variant Coverage Method	Variant Coverage Type
23-Dec-21	84.390722	198	Ontario	865-166	NorWest WWTP-1	43.26706	-80.06405	SRR18680461	Delta BA.1.1.1	100.00	100.00	Subconsensus
25-Dec-21	84.390722	199	Ontario	865-227	NorWest WWTP-1	43.26706	-80.06405	SRR18680462	Delta BA.1.1.1	100.00	100.00	Subconsensus
27-Dec-21	84.390722	200	Ontario	865-166	NorWest WWTP-1	43.26706	-80.06405	SRR18680463	Delta BA.1.1.1	100.00	100.00	Subconsensus
29-Dec-21	84.390722	201	Ontario	865-166	NorWest WWTP-1	43.26706	-80.06405	SRR18680464	Delta BA.1.1.1	100.00	100.00	Subconsensus
31-Dec-21	84.390722	202	Ontario	865-166	NorWest WWTP-1	43.26706	-80.06405	SRR18680465	Delta BA.1.1.1	100.00	100.00	Subconsensus

(Continued on next page)
Sample ID	Date of collection (day-mo-yr)	Sampling point	Wastewater sample location ID	Region	GPS coordinates	No. of input reads	% mapped reads	% breadth of coverage	Variant detected (consensus)	Variant detected (subconsensus)	SRA accession no.
365	13-Jan-22	Niagara WWTP-4	Baker Road Wastewater Treatment Plant (Grimsby)	Niagara	43.190000, −79.540000	2,374,706	98.36	99.00	Omicron BA.1.1	Delta B.1.617.2	SRR18680451
330	14-Jan-22	Halton WWTP-1	Maplehurst Correctional Complex	Halton	43.520000, −79.900000	3,637,030	97.02	99.69	Omicron BA.1.1	Delta B.1.617.2	SRR18680458
341	14-Jan-22	Guelph WWTP-1	Guelph	Wellington	43.520000, −80.270000	3,529,346	74.85	97.64	Omicron BA.1.1	Delta B.1.617.2	SRR18680454
257	17-Jan-22	Northern Ontario WWTP-1	Sudbury/TPKL220117	Northern	46.4655660272402, −81.0328557166295	3,175,686	91.77	99.70	Omicron BA.1.1	Delta B.1.617.2	SRR18680464
373	17-Jan-22	Northern Ontario WWTP-2	Sault Ste. Marie/TPSSM220117	Ontario	46.50572400555, −84.2539500029	3,313,904	89.77	99.00	Omicron BA.1.1	Omicron BA.2	SRR18680448
338	18-Jan-22	Niagara WWTP-5	Niagara Falls-Stamford Wastewater Treatment Plant	Niagara	43.120000, −79.090000	2,917,972	96.83	99.71	Omicron BA.1.1	Delta B.1.617.2	SRR18680455
359	18-Jan-22	Durham WWTP-5	Corbett WWTP/OUT/A02.18.1.22	Durham	43.85542482, −78.89248301	2,366,054	85.02	99.66	Omicron BA.1.1	Delta B.1.617.2	SRR18680453
332	19-Jan-22	Halton WWTP-1	Maplehurst Correctional Complex	Halton	43.520000, −79.900000	3,260,302	40.88	99.66	Omicron BA.1.1	Delta B.1.617.2	SRR18680457
333	21-Jan-22	Halton WWTP-1	Maplehurst Correctional Complex	Halton	43.520000, −79.900000	3,834,210	99.53	99.21	Omicron BA.1.1	Delta B.1.617.2	SRR18680456
372	26-Jan-22	Northern Ontario WWTP-1	Sudbury/TPKL220126	Northern	46.4655660272402, −81.0328557166295	2,985,948	99.15	100.00	Omicron BA.1.1	Delta B.1.617.2	SRR18680449
421	5-Feb-22	Ottawa WWTP-1	Ottawa influent	Ottawa	45.461111, −75.589167	2,634,062	93.99	96.00	Omicron BA.1.1	None	SRR18680447
422	7-Feb-22	Ottawa WWTP-1	Ottawa influent	Ottawa	45.461111, −75.589167	2,482,608	99.95	96.00	Omicron BA.1.1	None	SRR18680446
423	9-Feb-22	Ottawa WWTP-1	Ottawa influent	Ottawa	45.461111, −75.589167	2,668,098	50.47	95.00	Omicron BA.1.1	None	SRR18680492

aData in the table are sorted by date of collection. WWTP, wastewater treatment plant.
synthesis system (Thermo Fisher Scientific). SARS-CoV-2 amplicons were generated as previously described (15) but with ARTIC V4 primers (https://github.com/artic-network/artic-ncov2019/tree/master/primer_schemes/nCoV-2019). DNA libraries were generated using the Nextera XT DNA library prep kit (Illumina). Paired-end (2 × 150 bp) sequencing was performed using the MiniSeq system (Illumina). Raw sequence reads were analyzed using ViralRecon v2.4.1 (16). Variants were called with iVar v1.3.1 (17) using minimum quality and depth of 15 and 10, respectively. Consensus and subconsensus sequences were defined using mutation frequency thresholds of >50% and 10 to 50%, respectively. Variant lineages were inferred using Pangolin v3.1.20 (18). Default parameters were used for all tools unless otherwise specified.

We received 148,603,298 total reads across all 48 samples (mean, 3,095,902; range, 2,095,676 to 4,867,030). In most of the samples (85%; n = 41), ≥50% of reads mapped to the SARS-CoV-2 Wuhan strain. The average breadth of coverage of the consensus sequences generated was 98%. In consensus sequences, the Delta variants, including 8 sublineages, were detected in 14 samples from 7 regions in December 2021 (Table 1). Omicron BA.1/BA.1.1 was detected in 34 samples collected from all the regions studied except in Windsor, located in the extreme southwest of the province (Fig. 1). In subconsensus sequences, 26 samples contained the Delta VOC, 2 samples contained both Delta and Omicron BA.2 mutations, while traces (<6 mutations) of Omicron BA.1-defining mutations were detected in 4 samples. Overall, multiple SARS-CoV-2 VOCs were detected in 32 samples (Table 1). Collectively, continuous genomic surveillance of wastewater provides sufficient specificity to infer individual VOC lineages in mixed samples and is effective for monitoring SARS-CoV-2 VOCs in the community.

Data availability. The metagenomic sequences are available in the NCBI Sequence Read Archive under BioProject accession number PRJNA824537.

ACKNOWLEDGMENT

This project was funded by Ontario Genomics through the COVID-19 Regional Genomic Initiative (CORGI), Ontario.
REFERENCES

1. da Silva Filipe A, Shepherd JG, Williams T, Hughes J, Aranday-Cortes E, Asamaphan P, Ashraf S, Balazar C, Brunker K, Campbell A, Carmichael S, Davis C, Dewar R, Gallagher MD, Gunson R, Hill V, Ho A, Jackson B, James E, Jesudason N, Johnson N, McWilliam Leitch EC, Li K, Maclean A, Mair D, McAllister DA, McCrone JT, McDonald SE, McHugh MP, Morris AK, Nichols J, Niebel M, Nomiokiu K, Orton RJ, O’Toole A, Palmarini M, Parcell BJ, Parr YA, Rambaut A, Rokee S, Shaaban S, Shah R, Singer JB, Smollett K, Starinski J, Tong L, Sreenu VB, Wanstedge E, Holden MTG, Robertson DL, et al. 2021. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nat Microbiol 6:112–122. https://doi.org/10.1038/s41564-020-00838-z.

2. Page AJ, Mather AE, Le-Viet T, Meader EJ, Alikhan N-F, Kay GL, de Oliveira Martins L, Aydin A, Baker DJ, Trotter AJ, Rudder S, Tedlin AP, Kolyva A, Stanley R, Yasir M, Diaz M, Potter W, Stuart C, Meadows L, Bell A, Gutierrez AV, Thomson NM, Adriaenssens EM, Swingler T, Giroiy RAI, Griffith L, Sethi DK, Aggarwal D, Brown CS, Davidson RK, Kingsley RA, Bedford L, Coupland LJ, Charles KG, Elamogo N, Wain J, Prakash R, Webber MA, Smith SJ, Chand M, Derivisevic S, O’Grady J. The COVID-19 Genomics UK (COG-UK) Consortium. 2021. Large-scale sequencing of SARS-CoV-2 genomes from one region allows detailed epidemiology and enables local outbreak management. Microbiol Genomics 7:000589. https://doi.org/10.1099/mgen.0.000589.

3. Abu Ali H, Yaniv K, Bar-Zeev E, Chaudhury S, Shagan M, Lakkakula S, Ronen F, Yasir M, Diaz M, Potter W, Stuart C, Meadows L, Bell A, Gutierrez AV, Thomson NM, Adriaenssens EM, Swingler T, Giroiy RAI, Griffith L, Sethi DK, Aggarwal D, Brown CS, Davidson RK, Kingsley RA, Bedford L, Coupland LJ, Charles KG, Elamogo N, Wain J, Prakash R, Webber MA, Smith SJ, Chand M, Derivisevic S, O’Grady J. The COVID-19 Genomics UK (COG-UK) Consortium. 2021. Large-scale sequencing of SARS-CoV-2 genomes from one region allows detailed epidemiology and enables local outbreak management. Microbiol Genomics 7:000589. https://doi.org/10.1099/mgen.0.000589.

4. Kumar M, Patel AK, Shah A, Raval J, Rajpara N, Joshi M, Joshi C. 2020. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci Total Environ 746:141326. https://doi.org/10.1016/j.scitotenv.2020.141326.

5. Swift CL, Isanovic M, Correa Velez KE, Norman RS. 2021. Community-level SARS-CoV-2 sequence diversity revealed by wastewater sampling. Sci Total Environ 801:149691–149698. https://doi.org/10.1016/j.scitotenv.2021.149691.

6. Crites-Christoph A, Kantor RS, Olm MR, Whitney ON, Al-Shayeb B, Lou YC, Flamholz A, Kennedy LC, Greenwald H, Hinkle A, Hetzel J, Spitzer S, Koble J, Tan A, Hyde F, Schroth G, Kuersten S, Barnfeld JF, Nelson KL. 2021. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. mBio 12:e02703-20. https://doi.org/10.1128/mBio.e02703-20.

7. Harris-Lovett S, Nelson KL, Beamer P, Bischel HN, Bivins A, Bruder A, Butler C, Camenisch TD, De Long SK, Kartihkeyan S, Larsen DA, Meierdiercks K, Mouser PJ, Pagsuyoin S, Prasek SM, Radniecki TS, Ram JL, Roper DK, Safford H, Sherchan SP, Shuster W, Stalder T, Wheeler RT, Korfmarcker KS. 2021. Wastewater surveillance for SARS-CoV-2 on college campuses: initial efforts, lessons learned, and research needs. iPeerPH 18:4455. https://doi.org/10.3390/ipeerph180904455.

8. Arts E, Brown S, Bulir D, Charles TC, DeGroot CT, Delattola R, Desaulniers J-P, Edwards EA, Fuzzen M, Gilbride K, Gilchrist J, Goodridge L, Graber TE, Habash M, Jüni P, Kirkwood A, Knockleby J, Kyle C, Landgraaff C, Mangat C, Manuel DG, McKay RM, Mejia E, Młoszewska A, Ormeci B, Oswald C, Payne SJ, Peng H, Peterson S, Poon AFY, Servos MR, Simmons D, Sun J, Yang M, Ybataza G. 2022. Community surveillance of Omicron in Ontario: wastewater-based epidemiology comes of age. Res Square Preprint https://doi.org/10.21203/rs.3.rs-1439969/v2.

9. Wastewater Surveillance Initiative. 2022. COVID-19 wastewater monitoring. http://www.ontario.ca/page/covid-19-wastewater-monitoring. Retrieved 5 April 2022.

10. Nemudryi A, Nemudraia A, Wiegand T, Surya K, Buyukyoruk M, Cicha C, Vanderwood KK, Wilkinson R, Wiedenheft B. 2020. Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Rep Med 1:100098. https://doi.org/10.1016/j.xcrm.2020.100098.

11. Fontenele RS, Kraberger S, Hadfield J, Driver EM, Bowes D, Holland LA, Faley TOC, Adhikari S, Kumar R, Inchausti R, Holmes WK, Dietrick S, Brown P, Duty D, Smith T, Bhatnagar A, Yeager RA, Holm RH, von Reitzenstein NH, Wheeler E, Dixon K, Constantine T, Wilson MA, Lim ES, Jiang X, Halden RU, Scotch M, Maryani A. 2021. High-throughput sequencing of SARS-CoV-2 in wastewater provides insights into circulating variants. Water Res 205:117710. https://doi.org/10.1016/j.watres.2021.117710.

12. Herold M, deHérouéul AF, May P, Delougou F, Wenecke-Baldacchino A, Tapp J, Walczak C, Wilmes P, Cauchie H-M, Fournier G, Ogorzaly L. 2021. Genome sequencing of SARS-CoV-2 allows monitoring of variants of concern through wastewater. Water 13:3018. https://doi.org/10.3390/w13103018.

13. Landgraft C, Wang LVR, Buchanan C, Wells M, Schonfeld J, Bessonov K, Ali J, Roberts E, Nadon C. 2021. Metagenomic sequencing of municipal wastewater provides a near-complete SARS-CoV-2 genome sequence identified as the B.1.1.7 variant of concern from a Canadian municipality concurrent with an outbreak. MedRxiv https://doi.org/10.1101/2021.03.11.21253409.

14. Centers for Disease Control and Prevention. 2021. CDC 2019-novel coronavirus (2019-nCoV) real-time RT-PCR diagnostic panel. CDC-006-00019; revision 07. Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA.

15. Fried NE, Vlková M, Fais M, Silander MB, Silander AJ, 2020. Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore rapid barcoding. Biolog Methods Protoc 5:bpaa014. https://doi.org/10.1093/biomethods/bpaa014.

16. Patel H, Varona S, Monzon S, Espinoza-Carrasco J, Heuer ML, Gabernet G, Patel H, Varona S, Monzon S, Espinoza-Carrasco J, Heuer ML, Gabernet G. 2021. Metagenomic sequencing of municipal wastewater and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Water 13:3018. https://doi.org/10.3390/w13213018.

17. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan A, Hyde F, Schroth G, Kuersten S, Barnfeld JF, Nelson KL. 2021. Metagenomic sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. mBio 12:e02703-20. https://doi.org/10.1128/mBio.02703-20.

18. O’Toole A, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, Colquhoun R, Ruis C, Abu-Dahab K, Taylor B, Yeats C, Du Plessis L, Maloney D, Medd N, Attwood SW, Anensen DM, Holmes EC, Pybus OG, Rambaut A. 2021. Assignment of epidemiological lineages in an emerging pandemic using the pango line tool. Virus Evol 7:veab064. https://doi.org/10.1093/viruses/veab064.