Mixed Generalized Multiscale Finite Element Method for Flow Problem in Thin Domains

Denis Spiridonov ∗ Maria Vasilyeva † Min Wang ‡ Eric T. Chung §

October 13, 2021

Abstract

In this paper, we construct a class of Mixed Generalized Multiscale Finite Element Methods for the approximation on a coarse grid for an elliptic problem in thin two-dimensional domains. We consider the elliptic equation with homogeneous boundary conditions on the domain walls. For reference solution of the problem, we use a Mixed Finite Element Method on a fine grid that resolves complex geometry on the grid level. To construct a lower dimensional model, we use the Mixed Generalized Multiscale Finite Element Method, which is based on some multiscale basis functions for velocity fields. The construction of the basis functions is based on the local snapshot space that takes all possible flows on the interface between coarse cells into account. In order to reduce the size of the snapshot space and obtain the multiscale approximation, we solve a local spectral problem to identify dominant modes in the snapshot space. We present a convergence analysis of the presented multiscale method. Numerical results are presented for two-dimensional problems in three testing geometries along with the errors associated to different numbers of the multiscale basis functions used for the velocity field. Numerical investigations are conducted for problems with homogeneous and heterogeneous properties respectively.

1 Introduction

In this paper, we consider a class of multiscale problems in thin domains with complex geometries. Such problems occur in many real world applications, for example, blood flow in vessels, flow in rough fractures, etc. Problems in thin domains have been studied in [1, 2, 3]. Such problems also occur in the field of engineering modeling, examples include the modeling of fluid flow in pipe networks, oil and gas production, geothermal sources, etc. Moreover, in tasks such as filtration modeling in reservoirs, the computational domain under consideration may be of compounded complexity, as they usually contain many cracks of

∗Multiscale model reduction Laboratory, North - Eastern Federal University, Yakutsk, Republic of Sakha(Yakutia), Russia, 677980. d.stalnov@mail.ru.
†Department of Mathematics and Statistics, Texas A&M University, Corpus Christi, Texas, USA. Email: maria.vasilyeva@tamucc.edu.
‡Department of Mathematics, Duke University, Durham, NC 27705, USA wangmin@math.duke.edu.
§Department of Mathematics, The Chinese University of Hong Kong (CUHK), Hong Kong SAR. Email: tschung@math.cuhk.edu.hk.
various shapes and sizes. The length of a crack is usually much greater than its thickness, therefore, in some cases, a fracture can be considered separately [4, 5, 6].

Thin domain problems are very complicated and often lead to computational system with large number of unknowns. This is due to the fact that very fine grid is required in numerical schemes such as the Finite Element Method [7, 8, 9] and the Mixed Finite Element Method [10, 11, 12] to accurately describe the heterogeneities and complex shape of the media. One way to improve the computational efficiency is to conduct parallel computing [13, 14, 15]. Another option is to use the multiscale model reduction techniques to reduce the size of the computational system [16, 17, 18], which we will adopt in our paper.

The standard multiscale model reduction techniques include homogenization and numerical homogenization methods. The homogenization method can be used to construct the approximation of the solution on a coarse grid by calculating the effective properties of the material. The methods of numerical homogenization give macroscopic laws and parameters on the basis of local computations, but such approaches are usually based on a priori formulated assumptions [19, 20, 21, 22, 23]. Another type of such technique is the multiscale method. This method constructs multiscale basis functions to extract information of the domain on micro-level and then bridges the information between micro and macro scales [24, 25, 26].

Multiscale methods are widely used to solve various problems in domains with complex heterogeneities. Some of the popular methods are the multiscale finite element method (MsFEM) [27, 28], mixed multiscale finite element method (Mixed MsFEM) [29, 30], generalize multiscale finite element method (GMsFEM) [25, 31, 32, 33, 34], heterogeneous multiscale methods [35, 36, 37], multiscale finite volume method (MsFVM) [38, 39, 40], constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) [41, 41] and etc. Recently, in [42, 43, 44], the authors present a special design of the multiscale basis functions to solve problems in fractured porous media, which obtains the basis functions based on the constrained energy minimization problems and nonlocal multicontinuum (NLMC) method. The multiscale modeling of Darcy flow in perforated domain are presented in [45] while a similar problem in fractured domain is considered in [46]. There are also many applications of the Mixed MsFEM to the Darcy flow [47, 48]. We can also highlight the Mixed MsFEM implementation for the Darcy-Forchheimer model [49] for flows in fractured media, where Darcy flow has a non-linear nature since the velocity in the fractures is much higher than in the matrix.

In this paper we present a model for Darcy flow in heterogeneous thin domain where the length of the medium is much larger than the width. To provide numerical simulations, we use a multiscale model reduction technique. The reduction is achieved through the application of the Mixed Generalized Multiscale Finite Element Method (Mixed GMsFEM) [26, 50]. The algorithm of the Mixed GMsFEM has two stages: the offline stage and the online stage. At the offline stage, we obtain the multiscale basis functions by solving a spectral problem on local domains. The spectral problems are solved in the snapshot space that takes into account all possible flows on the interface between coarse cells. By using the multiscale basis functions, we obtain an offline space to approximate the flow part of the solution. For the pressure part, we use the piece-wise constant functions to approximate the solution on the coarse grid. At the online stage we solve our problem on the coarse grid using the offline space. In this paper, we will provide our experiment results for different shapes of computational domain. We present the dependence of the approximation accuracy of the Mixed GMsFEM solution on the shape of the computational domain. To show this dependence, we will
compare multiscale solutions with the reference solutions. The reference solution is taken to be the solution
on the fine grid obtained with Mixed Finite Element Method.

The paper is organized as follows. In Section 2, we present the problem formulation with the approxi-
mation on the fine grid given by Mixed Finite Element Method that resolve complex geometry at the grid
level. In Section 3, the construction of the Mixed GMsFEM solutions to the problems in thin domains is
presented. In particular, the multiscale basis functions for velocity field on the coarse interfaces are con-
structed. Convergence analysis of the presented method is presented in Section 4. In Section 5, we present
numerical results for two-dimensional test problems. We consider three testing geometries and investigate
the numerical errors for both pressure and velocity using different numbers of the multiscale basis functions.

2 Problem formulation

Let Ω be a two-dimensional thin domain $\Omega \subseteq \mathbb{R}^2$, where thickness is much smaller than length of the
domain (see Figure 1). Boundaries Γ_{in} and Γ_{out} are the inlet and outlet boundaries of the thin domain Ω,
while $\Gamma_w := \partial \Omega/(\Gamma_{\text{in}} \cup \Gamma_{\text{out}})$.

![Illustration of the thin domain \(\Omega, \partial \Omega = \Gamma_{\text{in}} \cup \Gamma_{\text{out}} \cup \Gamma_w \).](image)

Figure 1: Illustration of the thin domain Ω, $\partial \Omega = \Gamma_{\text{in}} \cup \Gamma_{\text{out}} \cup \Gamma_w$.

We consider an elliptic equation on the thin domain Ω

$$
k^{-1} u + \nabla p = 0, \quad x \in \Omega,
\nabla \cdot u = f, \quad x \in \Omega,
$$

where u is the velocity field, p is the pressure, k is the heterogeneous coefficient and f is the source term.

On Γ_w, a homogeneous boundary conditions is imposed to the system (1):

$$
u \cdot n = 0, \quad x \in \Gamma_w,
$$

and the non-homogeneous boundary conditions are imposed to the pressure on the inlet Γ_{in} and outlet Γ_{out}
boundaries

$$
p = p_1 \quad x \in \Gamma_{\text{in}},
p = p_2 \quad x \in \Gamma_{\text{out}},
$$

where n is the outward normal vector to the domain boundary.

Variational formulation

We present a weak formulation of problem (1), (2), (3) as follows. Let

$$
V := \{ v \in H(\text{div}; \Omega) : v \cdot n = 0 \text{ on } \Gamma_w \}$$

3
and $Q := L^2(\Omega)$. We have the following variational formulation: Find $(u, p) \in V \times Q$ such that

$$\begin{align*}
-\int_{\Omega} \kappa^{-1} u v \, dx + \int_{\Omega} p \nabla \cdot v \, dx &= \int_{\Gamma_{\text{in}}} p_1 v \cdot n \, ds + \int_{\Gamma_{\text{out}}} p_2 v \cdot n \, ds, \quad \forall v \in V, \\
\int_{\Omega} q \nabla \cdot u \, dx &= \int_{\Omega} f q \, dx, \quad \forall q \in Q.
\end{align*}$$

$$\text{(4)}$$

Figure 2: Illustration of the fine grid T_h for domain Ω.

Fine grid approximation

We construct a fine grid T_h that resolves the complex geometry on a grid level (see Figure 2). Let $V_h \subset V$ and $Q_h \subset Q$ be the finite element subspaces on the fine grid T_h. In particular, we use the lowest order Raviart-Thomas elements for velocity and piece-wise constant elements for pressure respectively. Then, we have the following discretized problem on the fine grid: Find $(u_h, p_h) \in V_h \times Q_h$ such that

$$\begin{align*}
a(u_h, v_h) + b(p_h, v_h) &= g(v_h), \quad \forall v_h \in V_h, \\
b(q_h, u_h) &= f(q_h), \quad \forall q_h \in Q_h.
\end{align*}$$

$$\text{(5)}$$

where

$$\begin{align*}
a(u_h, v_h) &:= -\int_{\Omega} \kappa^{-1} u_h v_h \, dx, \quad b(p_h, u_h) := \int_{\Omega} p_h \nabla \cdot u_h \, dx, \\
g(v_h) &:= \int_{\Gamma_{\text{in}}} p_1 v_h \cdot n \, ds + \int_{\Gamma_{\text{out}}} p_2 v_h \cdot n \, ds, \quad f(q_h) := \int_{\Omega} f q \, dx.
\end{align*}$$

We can then write the discrete system (5) in the following matrix form

$$\begin{pmatrix}
A_h & B_h^T \\
B_h & 0
\end{pmatrix}
\begin{pmatrix}
U_h \\
P_h
\end{pmatrix}
= \begin{pmatrix}
G_h \\
F_h
\end{pmatrix}. $$

$$\text{(6)}$$

where ψ_m and ϕ_m are the basis functions for velocity and pressure on the fine grid respectively.

3 Mixed Generalized Multiscale Finite Element Method

In this section, we describe the coarse grid approximation for problem (1) using the Mixed Generalized Multiscale Finite Element Method (Mixed GMsFEM). We describe the construction of the approximation
on the coarse grid with the use of the multiscale basis functions for the velocity field. Since we consider the problem in thin domains with no-flow conditions on the wall boundary Γ_w, we only compute multiscale basis functions for vertical edges of the coarse grid.

Let \mathcal{T}_H be a coarse grid of the computational domain Ω with a coarse grid size H

$$\mathcal{T}_H = \bigcup_{i=1}^{N_C} K_i,$$

and $\mathcal{E}_H = \bigcup E_{ij}$ is the set of all interfaces between two cells of the coarse grid, N_E and N_C are the number of edges and cells of the coarse grid respectively. In particular, we construct the multiscale basis functions for the velocity field following the Mixed GMsFEM in the local domains $\omega_{ij} := \{ K_i \cup K_j : K_i \cap K_j = E_{ij}, K_i, K_j \in \mathcal{T}_H \}$ that associated with the coarse edge $E_{ij} \in \mathcal{E}_H$ (see Figure. 3). Without lose of generality, we use a single index to denote local domains and coarse grid edges ω_i and E_i from now on.

We first need to construct the multiscale space for velocity field

$$V_H = \text{span}\{\psi_{i}^{(l)} : 1 \leq i \leq N_E, 1 \leq l \leq M^{(i)}\}, \quad (7)$$

by expanding the multiscale basis function $\psi_{i}^{(l)}$ which are computed in the local domain ω_i. $M^{(i)}$ denotes the number of basis functions in each local domain. We then take the space Q_H, which is constituted by piece-wise constant functions on the coarse cells, for pressure. A coarse-scale solution can thus be obtained by solving the following problem: Find $(u_H, p_H) \in V_H \times Q_H$ such that

$$a(u_H, v_H) + b(p_H, v_H) = g(v_H), \quad \forall v_H \in V_H,$$

$$b(q_H, u_H) = f(q_H), \quad \forall q_H \in Q_H. \quad (8)$$

The construction of the multiscale basis functions $\psi_{i}^{(l)} \in \omega_i$ for the velocity field contains several steps:

Step 1: Generate the snapshot space in local domain ω_i for all possible flows through the edge E_i.

Step 2: Obtain the multiscale basis functions $\psi_{i}^{(l)}$ by solving the local spectral problem in the local snapshot space associated to ω_i.

We note that, the spectral problem is used to extract dominant modes in a snapshot space and reduce the dimension of the space used to approximate the velocity field.

Snapshot space.
To construct a snapshot space in ω_i we solve the following local problem: Find $(\varphi^{(i)}_j, \eta^{(i)}_j) \in V^{(i)}_h \times Q^{(i)}_h$ such that

$$
- \int_{\omega_i} \kappa^{-1} \varphi^{(i)}_j v \, dx + \int_{\omega_i} \eta^{(i)}_j \nabla \cdot v \, dx = 0, \quad \forall v \in V^{(i)}_h,
$$

$$
\int_{\omega_i} r \ \nabla \cdot \varphi^{(i)}_j \, dx = \int_{\omega_i} c^{(i)}_j r \, dx, \quad \forall r \in Q^{(i)}_h,
$$

with boundary condition

$$
\varphi^{(i)}_j \cdot n = 0, \quad x \in \partial \omega_i,
$$

and additional boundary condition on the coarse edge E_i

$$
\varphi^{(i)}_j \cdot n = \delta_j, \quad x \in E_i,
$$

where $j = 1, ..., J^{(i)}$, $V^{(i)}_h := V_h(\omega_i)$ and $Q^{(i)}_h := Q_h(\omega_i)$ and n is the normal vector to the boundary. Here $c^{(i)}_j := \frac{|e_j|}{|\omega_i|}$ is chosen by a compatibility condition, where $|e_j|$ is the length of the fine grid edge e_j, $|\omega_i|$ is the volume of the local domain ω_i, $J^{(i)}$ is the number of fine grid edges e_j on E_i, $E_i = \cup_{j=1}^{J^{(i)}} e_j$, δ_j is a piece-wise constant function defined on E, which takes the value 1 on e_j and 0 in all other edge of the fine grid.

We further define the local snapshot space as

$$
V^{(i)}_{\text{snap}} = \text{span}\{\varphi^{(i)}_j, \ 1 \leq j \leq J^{(i)}\}.
$$

Multiscale space

We perform dimension reduction of the snapshot space $V^{(i)}_{\text{snap}}$ by solving the following spectral problem: solve for eigen pairs λ and $\Psi^{(i)}$ for

$$
a^{(i)}(\Psi^{(i)}, v) = \lambda \ s^{(i)}(\Psi^{(i)}, v), \quad \forall v \in V^{(i)}_{\text{snap}},
$$

where

$$
a^{(i)}(u, v) := \int_{E_i} \kappa^{-1}(u \cdot n)(v \cdot n) \, ds, \quad s^{(i)}(u, v) := \int_{\omega_i} \kappa^{-1} u \ v \, dx + \int_{\omega_i} \nabla \cdot u \ \nabla \cdot v \, dx.
$$

This is equivalent to solving the discrete system:

$$
\hat{A}^{(i)} \Psi^{(i)} = \lambda^{(i)} \ \hat{S}^{(i)} \Psi^{(i)},
$$

where

$$
\hat{A}^{(i)} = R^{(i)}_{\text{snap}} A^{(i)} (R^{(i)}_{\text{snap}})^T, \quad \hat{S}^{(i)} = R^{(i)}_{\text{snap}} S^{(i)} (R^{(i)}_{\text{snap}})^T, \quad R^{(i)}_{\text{snap}} = [\varphi^{(i)}_1, ..., \varphi^{(i)}_{J^{(i)}}]^T.
$$

with $A^{(i)} = \{a_{mn} = a^{(i)}(\psi_m, \psi_n)\}$ and $S^{(i)} = \{s_{mn} = s^{(i)}(\psi_m, \psi_n)\}$.

For the construction of the multiscale space, we sort the eigenvalues in ascending order. We select the first $M^{(i)}$ eigenvalues and take the corresponding eigenvectors $\psi^{(i)}_l = (R^{(i)}_{\text{snap}})^T \Psi^{(i)}_l$ as basis functions, $l = 1, ..., M^{(i)}$. The first four multiscale basis functions for velocity are presented in Figure 4.

Finally, we obtain the following multiscale space for velocity by expanding all local multiscale basis

$$
V_H = \text{span}\{\psi^{(i)}_l, \ 1 \leq l \leq M^{(i)}, \ 1 \leq i \leq N_E\}.
$$
Coarse grid system

For the construction of the coarse grid system, we define a projection matrix

\[R = \begin{bmatrix} R_u & 0 \\ 0 & R_p \end{bmatrix}, \]

(15)

where

\[R_u = [\psi_1^{(1)}, \ldots, \psi_{M(1)}^{(1)}, \ldots, \psi_1^{(N_E)}, \ldots, \psi_{M(N_E)}^{(N_E)}], \]

and \(R_p \) is the projection matrix for pressure, where we set one for each fine grid cell in the current coarse grid cell and zero otherwise.

Using the projection matrix, we obtain the following coarse scale system in matrix form

\[\begin{pmatrix} A_H & B_H^T \\ B_H & 0 \end{pmatrix} \begin{pmatrix} U_H \\ P_H \end{pmatrix} = \begin{pmatrix} G_H \\ F_H \end{pmatrix}, \]

(16)

where

\[A_H = R_uA_hR_u^T, \quad B_H = R_uB_hR_p^T, \quad G_H = R_uG_h \quad F_H = R_pF_h. \]

(17)

After solving the coarse grid system (16), we reconstruct the fine grid velocity field using the projection matrix, \(U_{ms} = R_u^T U_H \).
4 Convergence Analysis

In this section, we prove the convergence of the Mixed GMsFEM for problems in thin domains with no flow boundary conditions on wall boundary. This analysis is based on our previous papers [51, 45].

We define the following norms and notations:

- \(\| q \|_{L^2(\Omega)}^2 = \int_{\Omega} q^2 \, dx \) is the \(L^2 \) norm for a scalar function \(q \in L^2(\Omega) \);
- \(\| v \|_{\kappa^{-1}\Omega}^2 = \int_{\Omega} \kappa^{-1} |v|^2 \, dx \) is the weighted \(L^2 \) norm for vector function \(v \);
- \(\| v \|_{H(\text{div}; \Omega); \kappa^{-1}}^2 = \| v \|_{\kappa^{-1}\Omega}^2 + \| \nabla \cdot v \|_{L^2(\Omega)}^2 \) is the norm in the Sobolev space \(H(\text{div}; \Omega) \) for vector function \(v \) with \(v \in [L^2(\Omega)]^2 \) and \(\text{div}(v) \in L^2(\Omega) \);
- \(\alpha \preceq \beta \) means there is a constant \(C > 0 \) such that \(\alpha \leq C\beta \);

Lemma 1. Let \((u_h, p_h) \in V_h \times Q_h\) be fine solutions of [3] and \(\hat{u} \) be the weak fine-scale solution of the following problem

\[
\kappa^{-1} \hat{u} + \nabla \hat{p} = 0, \quad x \in K, \\
\nabla \cdot \hat{u} = \hat{f}, \quad x \in K,
\]

subject to

\[
\hat{u} \cdot n = 0, \quad x \in \Gamma_w, \quad \hat{u} \cdot n = u_h \cdot n, \quad x \in \partial K/\Gamma_w,
\]

and

\[
\int_K \hat{p} \, dx = \int_K p_h \, dx,
\]

where \(K \) is any coarse cell in \(T_H \) and \(\hat{f} = \frac{1}{|K|} \int_K f \, dx \) is the average value of \(f \) over \(K \). Assume that \(\kappa^{-1}_{\min, K} := \min \{ \kappa^{-1}(x) \mid x \in K \} < \infty \) for all \(K \in T_H \), then we have

\[
\| u_h - \hat{u} \|_{\kappa^{-1}\Omega}^2 \preceq \max_{K \in T_H} \left(\kappa^{-1}_{\min, K} \right) \sum_i \| f - \hat{f} \|_{L^2(K_i)}^2.
\]

Proof. Notice that, by construction, \(\hat{u} \in V_h \cap V_{\text{snap}} \). Then, by subtracting variational form of [18] from [3], we have

\[
\int_K \kappa^{-1}(u_h - \hat{u}) \cdot w_h \, dx = \int_K (p_h - \hat{p}) \nabla \cdot w_h \, dx = 0, \quad \forall w_h \in V_h(K),
\]

\[
\int_K q_h \nabla \cdot (u_h - \hat{u}) \, dx = \int_K (f - \hat{f}) q_h \, dx, \quad \forall q_h \in Q_h(K).
\]

Taking \(w_h = u_h - \hat{u} \) and \(q_h = p_h - \hat{p} \) in [20], we can then get

\[
\int_K \kappa^{-1}(u_h - \hat{u})^2 \, dx = \int_K (f - \hat{f})(p_h - \hat{p}) \, dx.
\]

Taking \(w_h = u_h - \hat{u} \) and \(q_h = p_h - \hat{p} \) in [20], we can then get

\[
\| q_h \|_{L^2(K)} \leq \sup_{w_h \in V_h(K)} \frac{\int_K q_h \nabla \cdot w_h \, dx}{\| w_h \|_{H(\text{div}; K)}}, \quad \forall q_h \in Q_h(K).
\]
Combining condition \((22) \) with \((20) \), we can get:

\[
\|p_h - \bar{p}\|_{L^2(K)} \leq \kappa_{min,K}^{-\frac{1}{2}}\|u_h - \bar{u}\|_{\kappa^{-1},K}.
\]

Then by \((21) \)

\[
\|u_h - \bar{u}\|_{\kappa^{-1},K} \leq \kappa_{min,K}^{-\frac{1}{2}}\|f - \bar{f}\|_{L^2(K)}.
\]

(23)

Summing up the results for all coarse blocks, we obtain the desired conclusion.

In the next result, we will prove that our mixed GMsFEM satisfies an inf-sup condition, which is important for the convergence analysis of the method.

Theorem 2. For all \(p \in Q_H \), we have

\[
\|p\|_{L^2(\Omega)} \leq C_{\text{infsup}} \sup_{u \in V_H} \frac{\int_{\Omega} p \nabla \cdot u \; dx}{\|u\|_{H(\text{div};\Omega);\kappa^{-1}}}
\]

where \(C_{\text{infsup}} := \left(\max \min_{i} \int_{\omega_i} \kappa^{-1} \psi_i^{(i)} \cdot \psi_i^{(i)} \; dx + 1 \right)^{\frac{1}{2}} \).

Proof. Consider the problem \(\Delta \xi = p \) in \(\Omega \) with zero conditions \(\partial \xi / \partial n = 0 \) on \(\partial \Omega \). Let \(v = \nabla \xi \), then we have \(\nabla \cdot v = p \). By the Green’s identity and the regularity theory, we have \(\text{(21)} \) \[\text{[15]}\]

\[
H \sum_{i=1}^{N_C} \int_{\partial K_i} (v \cdot n)^2 \; ds \leq \|p\|_{L^2(\Omega)}^2.
\]

Let \(u = \sum_{i=1}^{N_E} b_i \psi_i^{(i)} \), \(b_i = \int_{E_i} u \cdot n \; ds \),

where \(\psi_i^{(i)} \) is the normalized basis functions, in this proof only, with the property \(\int_{E_i} \psi_i^{(i)} \cdot n \; ds = 1 \). Therefore using property of normal basis functions, we have

\[
\int_{\Omega} p^2 \; dx = \int_{\Omega} p \nabla \cdot v \; dx = \sum_{i=1}^{N_E} \int_{E_i} [p] (u \cdot n) \; ds = \sum_{i=1}^{N_E} b_i [p] = \sum_{i=1}^{N_E} \int_{E_i} (\psi_i^{(i)} \cdot n) [p] \; ds = \int_{\Omega} p \nabla \cdot u \; dx, \tag{26}
\]

where \([p]\) is the jump of \(p \) across the coarse edge \(E_i \). In addition, we have the following estimate for the weighted \(L^2 \) norm for velocity

\[
\|u\|_{\kappa^{-1},\Omega}^2 = \int_{\Omega} \kappa^{-1} u \cdot u \; dx \leq \sum_{i=1}^{N_E} \int_{\omega_i} \kappa^{-1} (b_i \psi_i^{(i)})^2 \; dx \leq \left(\max_{i} \min_{r} \int_{\omega_i} \kappa^{-1} \psi_i^{(i)} \cdot \psi_i^{(i)} \; dx \right) H \sum_{i=1}^{N_E} b_i^2. \tag{27}
\]

with the property \(\int_{E_i} \psi_i^{(i)} \cdot n \; ds \neq 0 \).

Using \((25) \), \((27) \) and the fact that \(\nabla \cdot u = p \), we obtain

\[
\|u\|_{H(\text{div};\Omega);\kappa^{-1}}^2 \leq C_{\text{infsup}} \|p\|_{L^2(\Omega)}.
\]

or

\[
\|u\|_{H(\text{div};\Omega);\kappa^{-1}}^2 \leq C_{\text{infsup}} \|p\|_{L^2(\Omega)}.
\]

(28)
Using (26) and (28), we have
\[
\int_\Omega p \nabla \cdot u \, dx = \int_\Omega p^2 \, dx \geq C_{\text{inf}}^{-1} \|p\|_{L^2(\Omega)} \|u\|_{H(\text{div};\Omega)},
\]
and can obtain the bound (24).

Finally, we state the prove of the convergence of our method.

Theorem 3. Let \(u_h \) be the fine-grid solution to (5) and \(u_H \) be the Mixed GMsFEM solution to (8). Then, the following estimate holds:
\[
\|u_h - u_H\|^2_{\kappa^{-1}, \Omega} \leq C_{\text{inf}}^2 \Lambda^{-1} \sum_{i=1}^{N_E} a^{(i)}(\hat{u}, \hat{u}) + \max_{K \in T_H} (\kappa_{\text{min}, K})^{-1} \sum_{i=1}^{N_C} \|f - \tilde{f}\|^2_{L^2(K)},
\]
where \(\Lambda = \min_i \lambda^{(i)}_{\gamma^{(i)} + 1} \) and \(\hat{u} \) is the solution to the projection problem of (18).

Proof. By (5) and (8), and the fact that \(V_H \subset V_h \), we get that
\[
\int_\Omega \kappa^{-1}(u_h - u_H) \cdot v_H \, dx + \int_\Omega (p_h - p_H) \nabla \cdot v_H \, dx = 0, \quad \forall v_H \in V_H, \quad \int_\Omega q_H \nabla \cdot (u_h - u_H) \, dx = 0, \quad \forall q_H \in Q_H.
\]
Combining (20), we have
\[
\int_K q_H \nabla \cdot (u_h - \hat{u}) \, dx = \int_K (f - \tilde{f}) q_H \, dx = 0, \quad \forall q_H \in Q_H.
\]
We then easily get the following equalities by (18),
\[
\int_\Omega p_h \nabla \cdot v_H \, dx = \int_\Omega \hat{p} \nabla \cdot v_H \, dx,
\]
noticing that \(q_H \) and \(\nabla \cdot v_H \) are both constants in any coarse block \(K \).

Therefore, (30) can be further written as
\[
\int_\Omega \kappa^{-1}(u_h - u_H) \cdot v_H \, dx - \int_\Omega (\hat{p} - p_H) \nabla \cdot v_H \, dx = 0, \quad \forall v_H \in V_H \quad \int_\Omega q_H \nabla \cdot (\hat{u} - u_H) \, dx = 0, \quad \forall q_H \in Q_H.
\]
Since \(\hat{u} \in V_{\text{snap}} \), we can rewrite \(\hat{u} \) as
\[
\hat{u} = \sum_{i=1}^{N_E} \sum_{l=1}^{J^{(i)}} \hat{u}_{ij} \psi_l^{(i)}.
\]
We then define \(\hat{u}_{ms} \in V_H \) as
\[
\hat{u}_{ms} = \sum_{i=1}^{N_E} \sum_{l=1}^{M^{(i)}} \hat{u}_{ij} \psi_l^{(i)}.
\]
where \(M^{(i)} \) is the number of multiscale basis we select for each coarse neighborhood \(\omega_i \).
We further rewrite (31) as
\[
\int_{\Omega} \kappa^{-1}(u_h - u_H) \cdot v_H \, dx - \int_{\Omega} (\hat{\rho} - p_H) \nabla \cdot v_H \, dx = 0, \quad \forall v_H \in V_H,
\]
\[
\int_{\Omega} q_H \nabla \cdot (\hat{u}_{ms} - u_H) \, dx = \int_{\Omega} q_H \nabla \cdot (\hat{u}_{ms} - \hat{u}) \, dx, \quad \forall q_H \in Q_H.
\]
(32)

Let \(v_H = \hat{u}_{ms} - u_H \) and \(q_H = \hat{\rho} - p_H \) and plug back to (32). After adding equations up, we get that
\[
\int_{\Omega} \kappa^{-1}(u_h - u_H) \cdot (\hat{u}_{ms} - u_H) \, dx = \int_{\Omega} (\hat{\rho} - p_H) \nabla \cdot (\hat{u}_{ms} - \hat{u}) \, dx.
\]
(33)

Combining (32) and the inf-sup condition (24), we further have To apply the condition, we need \(\hat{\rho} \in V_H \), should we go back to letting \(\hat{p}_H \in V_H \) and \(\int \hat{p}_H = \int \hat{\rho} \)
\[
||\hat{\rho} - p_H||_{L^2(\Omega)} \leq C_{\text{inf-sup}} \sup_{u \in V_H} \frac{\int_{\Omega} (\hat{\rho} - p_H) \nabla \cdot u \, dx}{||u||_{H(\text{div};\Omega);\kappa^{-1}}} = C_{\text{inf-sup}} \sup_{u \in V_H} \frac{\int_{\Omega} \kappa^{-1}(u_h - u_H) \cdot u \, dx}{||u||_{H(\text{div};\Omega);\kappa^{-1}}} \leq C_{\text{inf-sup}} \sup_{u \in V_H} \frac{||u_h - u_H||_{\kappa^{-1},\Omega} ||u||_{\kappa^{-1},\Omega}}{||u||_{H(\text{div};\Omega);\kappa^{-1}}}
\]

Since \(V_H \) is a finite dimensional space, all norms are equivalent. Thus,
\[
||\hat{\rho} - p_H||_{L^2(\Omega)} \leq C_{\text{inf-sup}} ||u_h - u_H||_{\kappa^{-1},\Omega}.
\]

By the definition of the bilinear form \(s^{(i)}(u,v) \)
\[
\int_{\Omega} (\nabla \cdot (\hat{u}_{ms} - \hat{u}))^2 \, dx \leq \sum_{i=1}^{N_E} \int_{\omega_i} (\nabla \cdot (\hat{u}_{ms} - \hat{u}))^2 \, dx \leq \sum_{i=1}^{N_E} s^{(i)}(\hat{u}_{ms} - \hat{u}, \hat{u}_{ms} - \hat{u})
\]

Then, by (33) and Cauchy–Schwarz inequality, we can obtain that
\[
||u_h - u_H||_{\kappa^{-1},\Omega}^2 = \int_{\Omega} \kappa^{-1}(u_h - u_H)^2 \, dx \leq \left| \int_{\Omega} \kappa^{-1}(u_h - u_H)(u_h - \hat{u}_{ms}) \, dx \right| + \left| \int_{\Omega} \kappa^{-1}(u_h - u_H)(\hat{u}_{ms} - u_H) \, dx \right| \leq ||u_h - u_H||_{\kappa^{-1},\Omega} ||u_h - \hat{u}_{ms}||_{\kappa^{-1},\Omega} + ||\nabla \cdot (\hat{u}_{ms} - \hat{u})||_{L^2(\Omega)} ||\hat{\rho} - p_H||_{L^2(\Omega)} \leq ||u_h - u_H||_{\kappa^{-1},\Omega} ||u_h - \hat{u}_{ms}||_{\kappa^{-1},\Omega} + \left(\sum_{i=1}^{N_E} s^{(i)}(\hat{u}_{ms} - \hat{u}, \hat{u}_{ms} - \hat{u}) \right)^{\frac{1}{2}} C_{\text{inf-sup}} ||u_h - u_H||_{\kappa^{-1},\Omega}
\]

By dividing \(||u_h - u_H||_{\kappa^{-1},\Omega} \) for both sides of the inequality, we then have
\[
||u_h - u_H||_{\kappa^{-1},\Omega} \leq ||u_h - \hat{u}_{ms}||_{\kappa^{-1},\Omega} + \left(\sum_{i=1}^{N_E} s^{(i)}(\hat{u}_{ms} - \hat{u}, \hat{u}_{ms} - \hat{u}) \right)^{\frac{1}{2}} C_{\text{inf-sup}}
\]
For the first term on the right-hand, by triangle inequality, we have
\[\| u_h - \hat{u}_{ms} \|_{\kappa^{-1}, \Omega} \leq \| u_h - \hat{u} \|_{\kappa^{-1}, \Omega} + \| \hat{u}_{ms} - \hat{u} \|_{\kappa^{-1}, \Omega} \]
Moreover, by the definition of the spectral problem \([12]\) we have
\[\| \hat{u}_{ms} - \hat{u} \|_{\kappa^{-1}, \Omega} \leq \sum_{i=1}^{N_E} \| \hat{u}_{ms} - \hat{u} \|_{\kappa^{-1}, \omega_i} \leq \sum_{i=1}^{N_E} s^{(i)}(\hat{u}_{ms} - \hat{u}, \hat{u}_{ms} - \hat{u}) \]
Thus the following inequality holds:
\[\| u_h - u_H \|_{\kappa^{-1}, \Omega} \leq \| u_h - \hat{u} \|_{\kappa^{-1}, \Omega} + \left(\sum_{i=1}^{N_E} s^{(i)}(\hat{u}_{ms} - \hat{u}, \hat{u}_{ms} - \hat{u}) \right)^{\frac{1}{2}} C_{\text{infsup}} \]
By \([19]\), we can estimate the first term on the right hand side while the second term can be determined by the fact that eigenfunctions are orthogonal, thus
\[s^{(i)}(\hat{u}_{ms} - \hat{u}, \hat{u}_{ms} - \hat{u})) = s^{(i)} \left(\sum_{i=1}^{N_E} \sum_{j=M^{(i)}+1}^{J^{(i)}} \hat{u}_{ij} \psi_{j}^{(i)}(\hat{u}), \sum_{i=1}^{N_E} \sum_{j=M^{(i)}+1}^{J^{(i)}} \hat{u}_{ij} \psi_{j}^{(i)}(\hat{u}) \right) = \sum_{j=M^{(i)}+1}^{J^{(i)}} (\lambda_{j}^{(i)})^{-1} \hat{u}_{ij}^2 a(i) (\psi_{j}^{(i)}(\hat{u}), \psi_{j}^{(i)}) \leq (\lambda_{M^{(i)}+1}^{(i)})^{-1} a_i(\hat{u}_{ms} - \hat{u}, \hat{u}_{ms} - \hat{u}) \leq (\lambda_{M^{(i)}+1}^{(i)})^{-1} a_i(\hat{u}, \hat{u}), \]
which gives us the conclusion of this theorem. \(\square\)

5 Numerical results

We consider the numerical simulations of an elliptic equation in three different thin domains \(\Omega\):

• **Geometry 1**: A rectangular thin domain of size \(L_x \times L_y\) with \(L_x = 1.0\) and \(L_y = 0.1\).

• **Geometry 2**: A thin domain with \(L_x = 1.0\) and rough top and bottom boundaries with \(L_y \in [0.057, 0.251]\).

• **Geometry 3**: Y-shaped thin domain with varying thickness.

For **Geometry 1** we use a structured triangular 160 \(\times\) 16 fine grid with 31072 facets and 20480 cells. For **Geometry 2**, and **Geometry 3**, we consider unstructured fine grids with following parameters: 42951 facets, 28351 cells (**Geometry 2**); 95217 facets, 62819 cells (**Geometry 3**). The computational domains, fine and coarse grids are presented in Figure 5. For **Geometry 1**, we use a structured rectangular coarse grid with 10 coarse cells. For **Geometry 2**, we use a coarse grid with 10 cells and 11 facets and for **Geometry 3**, we use a coarse grid with 20 cells and 23 facets. Heterogeneous coefficient \(k\) is depicted in Figure 5 (second column).

We consider two test cases with different boundary conditions and source terms:

• **Test 1**: We set \(p_1 = 1\) on the inlet boundary \(\Gamma_{in}\), \(p_2 = 0\) on the outlet boundary \(\Gamma_{out}\) and \(f = 0\).

• **Test 2**: We set \(p_1 = 0\) on the inlet and outlet boundaries \(\Gamma_{in} \cup \Gamma_{out}\) and \(f = 1\).
Figure 5: Computational domains with fine grid and heterogeneous coefficient k for Geometry 1 (first row), Geometry 2 (second row) and Geometry 3 (third row). First column: fine grid. Second column: heterogeneous coefficient.

On the top and bottom boundaries Γ_w we set zero flux boundary condition for both test cases.

We calculate the relative L^2 error for pressure on the coarse grid and error for velocity on the fine grid as follows

$$e^H_p = \frac{||p_H - \bar{p}_h||_{L^2(\Omega)}}{||\bar{p}_h||_{L^2(\Omega)}} \times 100\%,$$

$$e^h_u = \frac{||u_H - u_h||_{K^{-1},\Omega}}{||u_h||_{K^{-1},\Omega}} \times 100\%,$$

where (u_h, p_h) are the reference fine-grid solutions, (u_H, p_H) are the multiscale solutions using Mixed GMs-FEM, \bar{p}_h is the reference pressure on coarse grid (coarse cell average for p_h).

We start multiscale modeling for test problems in Geometry 1. Fine scale and multiscale solutions using 4 multiscale basis function are presented in Figure 6 for Test 1 and in Figure 7 for Test 2. In Table 1 we present the relative errors for Test 1 and Test 2. In this table we show the errors associated with different number of multiscale basis functions. Here, $DOF_c = M \times N_E$ and DOF_f denotes the size of the multiscale and fine grid solutions ($DOF_f = 51552$), M is the number of multiscale basis functions. From this tables,
we can see that Mixed GMsFEM can provide solutions with high accuracy in both cases. We can observe that the accuracy of the method is almost the same for both sets of input parameters: Test 1 and Test 2. In fact, using 4 multiscale basis functions is sufficient to obtain a good solution. We can provide the error less than 1%, using only 0.1% degrees of freedom from solution on the fine grid. We can also get even better accuracy of the Mixed GMsFEM by increasing the number of multiscale basis functions in each local domain ω_i.

The multiscale modeling of flow in Geometry 2 is a very interesting case, because we can test Mixed GMsFEM associated to local domains with complex shapes. We completed the multiscale modeling for this case, and the numerical results are presented in Figure 8 and in 9 for Test 1 and Test 2 respectively. For
Table 1: Numerical results for Geometry 1. Relative error in L^2 norm for different number of multiscale basis functions. Left: Test 1. Right: Test 2.

M	DOF_c	e^h_{u}, %	e^H_{p}, %
1	21	14.824	0.883
2	32	3.066	0.114
4	54	0.613	0.008
8	98	0.161	0.001
12	142	0.105	0.001

M	DOF_c	e^h_{u}, %	e^H_{p}, %
1	21	12.034	2.094
2	32	3.249	0.232
4	54	0.614	0.013
8	98	0.146	0.001
12	142	0.071	0.001

Figure 8: Fine grid solution (right column) and multiscale solution using 8 multiscale basis functions (left column). Geometry 2, Test 1.

Table 2: Numerical results for Geometry 2. Relative error in L^2 norm for different number of multiscale basis functions. Left: Test 1. Right: Test 2.

M	DOF_c	e^h_{u}, %	e^H_{p}, %
1	21	22.032	6.358
2	32	14.021	2.468
4	54	3.201	0.165
8	98	0.863	0.007
12	142	0.664	0.006

M	DOF_c	e^h_{u}, %	e^H_{p}, %
1	21	25.235	12.077
2	32	14.018	4.023
4	54	4.299	0.299
8	98	1.335	0.025
12	142	1.063	0.015
both test problems, we use 8 multiscale basis functions in each local domain. In Table 2 we demonstrate the relative errors of the multiscale solution compared to the fine grid solution ($DOF_f = 71302$) when using different number of multiscale basis functions where in the left table are the errors for Test 1 and in the right table are errors for Test 2. The behavior of the errors is similar to the results with the previous geometry, but in this case, we need to use 8 multiscale basis functions to obtain a good solution. Similar to past results, we need to use only 0.1% degrees of freedom from solution on the fine grid to obtain the error less than 1%. The increase in the error in this case is justified by the fact that the computational domain has a more complex shape. We can also observe an improvement in the accuracy of the method with an increase in the number of multiscale basis functions. As we can see, Mixed GMsFEM perfectly solves tasks in domains with such complex shape, which shows that the proposed multiscale basis functions can describe the properties of the media with different shape of local domains very well.

Finally, we consider the numerical experiment in the more complicated Y-tube domain (Geometry 3). Numerical result for Test 1 and Test 2 using 8 multiscale basis function are presented in Figures 10 and 11 respectively. In Table 3 we present the relative errors between multiscale solution and fine grid solution ($DOF_f = 158036$) for different number of multiscale basis functions for both test problems. We can observe good accuracy of the Mixed GMsFEM solutions in this case using 8 multiscale basis functions. In this case, we also need to use only 0.1% degrees of freedom from solution on the fine grid to obtain the error around 1%. We also observe the convergence in error with an increase in the number of multiscale bases. The behavior of the solution is similar to the previous results. So we can see, that the Mixed GMsFEM provide a good solution for problems even in the computational field with such a complex shape. The results suggest
Table 3: Numerical results for Geometry 3. Relative error in L^2 norm for different number of multiscale basis functions. Left: Test 1. Right: Test 2.

that this method can be applied to simulate fluid flow in applications such as fluid flow in blood vessels.
Figure 10: Fine grid solution (left column) and multiscale solution using 8 multiscale basis functions (right column). Geometry 3, Test 1.
Figure 11: Fine grid solution (left column) and multiscale solution using 8 multiscale basis functions (right column). *Geometry 3, Test 2.*
6 Conclusions

We developed an algorithm based on the Mixed Generalized Finite Element Method for flow problem in thin domains. Modeling was carried out in thin domains with different shapes, including domains with complex geometries. We also conducted a study over the accuracy of the multiscale solution associated with different number of multiscale basis functions. The obtained results show good applicability of the method to this type of problems. The proposed multiscale model reduction technique allows us to describe the heterogeneities of the domain on micro-level with high accuracy and further lead to multiscale solutions with small errors while reducing the size of the system significantly.

7 Acknowledgements

This work is supported by the mega-grant of the Russian Federation Government N14.Y26.31.0013 and RFBR N19-31-90066. The research of Eric Chung is partially supported by the Hong Kong RGC General Research Fund (Project numbers 14304719 and 14302620) and CUHK Faculty of Science Direct Grant 2020-21.

References

[1] Alfio Quarteroni and Luca Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. *Handbook of numerical analysis*, 12:3–127, 2004.

[2] Abdessalem Nachit, Gregory P Panasenko, and Abdelmalek Zine. Asymptotic partial domain decomposition in thin tube structures: numerical experiments. *International Journal for Multiscale Computational Engineering*, 11(5), 2013.

[3] Marie Oshima, Ryo Torii, Toshio Kobayashi, Nobuyuki Taniguchi, and Kiyoshi Takagi. Finite element simulation of blood flow in the cerebral artery. *Computer methods in applied mechanics and engineering*, 191(6-7):661–671, 2001.

[4] Luca Formaggia, Alessio Fumagalli, Anna Scotti, and Paolo Ruffo. A reduced model for darcy’s problem in networks of fractures. *ESAIM: Mathematical Modelling and Numerical Analysis*, 48(4):1089–1116, 2014.

[5] Vincent Martin, Jérôme Jaffré, and Jean E Roberts. Modeling fractures and barriers as interfaces for flow in porous media. *SIAM Journal on Scientific Computing*, 26(5):1667–1691, 2005.

[6] Carlo D’ANGELO and Alfio Quarteroni. On the coupling of 1d and 3d diffusion-reaction equations: application to tissue perfusion problems. *Mathematical Models and Methods in Applied Sciences*, 18(08):1481–1504, 2008.

[7] Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Perumal Nithiarasu, and JZ Zhu. *The finite element method*, volume 3. McGraw-hill London, 1977.
[8] Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element method: its basis and fundamentals. Elsevier, 2005.

[9] Gouri Dhatt, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John Wiley & Sons, 2012.

[10] Pierre-Arnaud Raviart and Jean-Marie Thomas. A mixed finite element method for 2-nd order elliptic problems. In Mathematical aspects of finite element methods, pages 292–315. Springer, 1977.

[11] Daniele Boffi, Franco Brezzi, Michel Fortin, et al. Mixed finite element methods and applications, volume 44. Springer, 2013.

[12] Gabriel N Gatica. A simple introduction to the mixed finite element method. Theory and Applications. Springer Briefs in Mathematics. Springer, London, 2014.

[13] Masroor Hussain, Muhammad Abid, Mushtaq Ahmad, and SF Hussain. A parallel 2d stabilized finite element method for darcy flow on distributed systems. World Appl Sci J, 27(9):1119–1125, 2013.

[14] KA Cliffe, Ivan G Graham, Robert Scheichl, and Linda Stals. Parallel computation of flow in heterogeneous media modelled by mixed finite elements. Journal of Computational Physics, 164(2):258–282, 2000.

[15] J Douglas, PJ Paes Leme, JE Roberts, and Junping Wang. A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numerische Mathematik, 65(1):95–108, 1993.

[16] JA Hernández, Javier Oliver, Alfredo Edmundo Huespe, MA Caicedo, and JC Cante. High-performance model reduction techniques in computational multiscale homogenization. Computer Methods in Applied Mechanics and Engineering, 276:149–189, 2014.

[17] Eric T Chung, Wing Tat Leung, Maria Vasilyeva, and Yating Wang. Multiscale model reduction for transport and flow problems in perforated domains. Journal of Computational and Applied Mathematics, 330:519–535, 2018.

[18] Grégoire Allaire and Robert Brizzi. A multiscale finite element method for numerical homogenization. Multiscale Modeling & Simulation, 4(3):790–812, 2005.

[19] Nikolai Sergeyevich Bakhvalov and G Panasenko. Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials, volume 36. Springer Science & Business Media, 2012.

[20] Alexey Talonov and Maria Vasilyeva. On numerical homogenization of shale gas transport. Journal of Computational and Applied Mathematics, 301:44–52, 2016.

[21] JD Hales, MR Tonks, K Chockalingam, DM Perez, SR Novascone, BW Spencer, and RL Williamson. Asymptotic expansion homogenization for multiscale nuclear fuel analysis. Computational Materials Science, 99:290–297, 2015.
[22] Björn Engquist and Panagiotis E Souganidis. Asymptotic and numerical homogenization. *Acta Numerica*, 17(147-190):C86, 2008.

[23] A Tyrylgin, D Spiridonov, and M Vasilyeva. Numerical homogenization for poroelasticity problem in heterogeneous media. In *Journal of Physics: Conference Series*, volume 1158, page 042030. IOP Publishing, 2019.

[24] Yalchin Efendiev and Thomas Y Hou. *Multiscale finite element methods: theory and applications*, volume 4. Springer Science & Business Media, 2009.

[25] Yalchin Efendiev, Juan Galvis, and Thomas Y Hou. Generalized multiscale finite element methods (gmsfem). *Journal of Computational Physics*, 251:116–135, 2013.

[26] Eric T Chung, Yalchin Efendiev, and Chak Shing Lee. Mixed generalized multiscale finite element methods and applications. *Multiscale Modeling & Simulation*, 13(1):338–366, 2015.

[27] Thomas Y Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. *Journal of computational physics*, 134(1):169–189, 1997.

[28] Eric T Chung and Yalchin Efendiev. Reduced-contrast approximations for high-contrast multiscale flow problems. *Multiscale Modeling & Simulation*, 8(4):1128–1153, 2010.

[29] Zhiming Chen and Thomas Hou. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. *Mathematics of Computation*, 72(242):541–576, 2003.

[30] Jorg E Aarnes. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. *Multiscale Modeling & Simulation*, 2(3):421–439, 2004.

[31] Denis Spiridonov, Maria Vasilyeva, and Wing Tat Leung. A generalized multiscale finite element method (gmsfem) for perforated domain flows with robin boundary conditions. *Journal of Computational and Applied Mathematics*, 357:319–328, 2019.

[32] Eric T Chung, Yalchin Efendiev, and Shubin Fu. Generalized multiscale finite element method for elasticity equations. *GEM-International Journal on Geomathematics*, 5(2):225–254, 2014.

[33] Eric Chung, Yalchin Efendiev, Yanbo Li, and Qin Li. Generalized multiscale finite element method for the steady state linear boltzmann equation. *Multiscale Modeling & Simulation*, 18(1):475–501, 2020.

[34] Min Wang, Siu Wun Cheung, Eric T Chung, Maria Vasilyeva, and Yuhe Wang. Generalized multiscale multicontinuum model for fractured vuggy carbonate reservoirs. *Journal of Computational and Applied Mathematics*, 366:112370, 2020.

[35] Björn Engquist, Xiantao Li, Weiqing Ren, Eric Vanden-Eijnden, et al. Heterogeneous multiscale methods: a review. *Communications in Computational Physics*, 2(3):367–450, 2007.
[36] Assyr Abdulle, E Weinan, Björn Engquist, and Eric Vanden-Eijnden. The heterogeneous multiscale method. *Acta Numerica*, 21:1–87, 2012.

[37] E Weinan, Bjorn Engquist, and Zhongyi Huang. Heterogeneous multiscale method: a general methodology for multiscale modeling. *Physical Review B*, 67(9):092101, 2003.

[38] Hadi Hajibeygi, Giuseppe Bonfigli, Marc Andre Hesse, and Patrick Jenny. Iterative multiscale finite-volume method. *Journal of Computational Physics*, 227(19):8604–8621, 2008.

[39] Aleksei Tyrylgin, Maria Vasilyeva, and Eric T Chung. Embedded fracture model in numerical simulation of the fluid flow and geo-mechanics using generalized multiscale finite element method. In *Journal of Physics: Conference Series*, volume 1392, page 012075. IOP Publishing, 2019.

[40] Ivan Lunati and Patrick Jenny. Multiscale finite-volume method for compressible multiphase flow in porous media. *Journal of Computational Physics*, 216(2):616–636, 2006.

[41] Eric T Chung, Yalchin Efendiev, and Wing Tat Leung. Constraint energy minimizing generalized multiscale finite element method. *Computer Methods in Applied Mechanics and Engineering*, 339:298–319, 2018.

[42] Eric T Chung, Yalchin Efendiev, Wing Tat Leung, Maria Vasilyeva, and Yating Wang. Non-local multi-continua upscaling for flows in heterogeneous fractured media. *Journal of Computational Physics*, 372:22–34, 2018.

[43] Maria Vasilyeva, Eric T Chung, Siu Wun Cheung, Yating Wang, and Georgy Prokopev. Nonlocal multi-continua upscaling for multi-continuum flow problems in fractured porous media. *Journal of Computational and Applied Mathematics*, 355:258–267, 2019.

[44] Maria Vasilyeva, Eric T Chung, Yalchin Efendiev, and Jihoon Kim. Constrained energy minimization based upscaling for coupled flow and mechanics. *Journal of Computational Physics*, 376:660–674, 2019.

[45] Eric T Chung, Wing Tat Leung, and Maria Vasilyeva. Mixed gmsfem for second order elliptic problem in perforated domains. *Journal of Computational and Applied Mathematics*, 304:84–99, 2016.

[46] D Spiridonov and M Vasilyeva. Multiscale model reduction of the flow problem in fractured porous media using mixed generalized multiscale finite element method. In *AIP Conference Proceedings*, volume 2025, page 100008. AIP Publishing LLC, 2018.

[47] Astrid Fossum Gulbransen, Vera Louise Hauge, Knut-Andreas Lie, et al. A multiscale mixed finite element method for vuggy and naturally fractured reservoirs. In *SPE Reservoir Simulation Symposium*. Society of Petroleum Engineers, 2009.

[48] Omar Duran, Philippe RB Devloo, Sônia M Gomes, and Frédéric Valentin. A multiscale hybrid method for darcy’s problems using mixed finite element local solvers. *Computer methods in applied mechanics and engineering*, 354:213–244, 2019.
[49] Denis Spiridonov, Jian Huang, Maria Vasilyeva, Yunqing Huang, and Eric T Chung. Mixed generalized multiscale finite element method for darcy-forchheimer model. *Mathematics*, 7(12):1212, 2019.

[50] Eric T Chung and Chak Shing Lee. A mixed generalized multiscale finite element method for planar linear elasticity. *Journal of Computational and Applied Mathematics*, 348:298–313, 2019.

[51] E. Chung, Y. Efendiev, and C. Lee. Mixed generalized multiscale finite element methods and applications. *To appear in Multicale Model. Simul.*, 2014.