Epidemiological analysis of bacterial meningitis in the State of Amapá in the years 2013 to 2018

Lissandra Gomes Pimentel*
Italo Bruno Maciel Campos*
Keren Hapuque da Silva Souza*
Diego Henrique de Souza Monte de Almeida**

Abstract

Meningitis is an infectious disease characterized by the inflammatory process of the arachnoid and pia mater meninges and cerebrospinal fluid. Its main bacterial etiological agents are Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. The present study aimed to carry out an epidemiological analysis of bacterial meningitis in the State of Amapá, in the years 2013 to 2018. This is a descriptive documentary, cross-sectional study with data obtained through the Information System for Notifiable Diseases (SINAN). The results show that, in the studied period, 26 cases of bacterial meningitis occurred. The agents Streptococcus pneumoniae and Neisseria meningitidis were responsible for 38% and 35% of the occurrences, respectively, while 27% of the cases were classified only as bacterial meningitis. The state capital, Macapá, was responsible for the largest number of confirmed cases (81%) and, regarding seasonality, the month of July had the highest occurrence (23%). Of the total cases assessed, 54% occurred in males and 46% in females, and the main age group affected was children less than one year old (38%). As for the evolution of the disease, 65% of people were discharged, while 27% died of meningitis. It is concluded that although the majority of cases evolved to discharge, the percentage of patients who died of meningitis highlights the need for health actions aimed at both the most affected age group and the others, due to the rapid evolution that the disease presents.

Keywords: Epidemiology. Bacterial meningitis. Compulsory Notification.

INTRODUCTION

Meningitis is characterized as infections that affect the meninges - membranes that surround the brain and spinal cord, dura mater, arachnoid and pia mater - and can also affect the cerebrospinal fluid (CSF), located in the space between the arachnoid and the pia mater, which is the subarachnoid space, and has functions related to the maintenance of homeostasis, supply of nutrients to the nervous tissue, and acts as a buffer for the brain and spinal cord. The clinical picture of this disease is usually characterized by intracranial hypertension (headache, nausea, vomiting, and reduced level of consciousness), associated with evidence of meningeal irritation (stiff neck, Kernig's sign and Brudzinski's sign), and the classic picture of acute infection (including high fever). The laboratory diagnosis is made mainly through the analysis

DOI: 10.15343/0104-7809.20204372380
of CSF, by physical chemical examination (color and appearance) and chemocytological analysis, which allows cellular distinction, and biochemical measurements such as glucose, lactate, proteins, among others. CSF culture, blood, and scraping of petechial lesions can also be performed, as well as direct bacterioscopy, agglutination by latex, and Polymerase Chain Reaction (PCR).

The morbidity and lethality rates presented by the disease can reach 100% if there is no adequate treatment and, even if there is treatment, serious consequences can occur. In the long run, neurological sequelae are considered common, namely: hearing loss, mild or severe developmental changes such as cerebral palsy and mental retardation. Complications resulting from meningitis can also be acute.

Meningitis is part of the National List of Compulsory Notification Diseases, according to Ordinance No. 204, of February 17, 2016; therefore, all outbreaks and clusters of cases or deaths must be reported immediately.

The etiology of meningitis can be divided into: infectious (caused by bacteria, viruses, fungi and parasites) and non-infectious (trauma, for example). Infectious meningitis, especially those caused by bacteria and viruses, are the most important from the point of view of public health, as they have a higher prevalence, the potential to produce outbreaks and, in the case of bacterial meningitis, a greater severity.

Actions aimed at the epidemiological surveillance of meningitis are fundamental for the adoption of prevention and control strategies and for the detection of epidemics in a timely manner. The main pathogens that cause bacterial meningitis are Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae.

Meningitis is considered an endemic disease in Brazil, with high rates of morbidity and lethality, making studies that address the epidemiological aspects of bacterial meningitis necessary for a better understanding of its behavior in the country and its states. At the local level, in Amapá, there was a lack of literature in this segment, which is a concern for the public health of the micro-region. Considering the exposed elements, this study aimed to carry out an epidemiological analysis of bacterial meningitis in the State of Amapá, between the years 2013 and 2018.

MATERIALS AND METHODS

This study is characterized as a descriptive documentary study, of a transversal nature - since the study, analysis, recording and interpretation of the facts of the physical world was carried out without the interference of the researcher, in which the analyzed data were collected over a period of defined time - with data obtained through the Notifiable Diseases Information System (SINAN) on cases of bacterial meningitis that occurred in the State of Amapá, in the years 2013 to 2018. The variables analyzed were month and year of notification, municipality of residence, etiology and evolution of the disease, age group, and sex of the people affected. Inclusion criteria were reported and confirmed cases of bacterial meningitis (with confirmed etiology, but no description of the agent), meningococcal meningitis and pneumococcal meningitis in the period from 2013 to 2018, and as exclusion criteria, cases belonging to meningitis of other etiologies and in years not corresponding to the period covered in the research.

After collection, all data were tabulated using Microsoft Excel Software, and separated according to their classification into: notified cases, confirmed cases, and case evolution. Data analysis was performed comparatively with...
other studies found in the literature referring to other states in the country, due to the absence of similar studies in the state.

This research covered the State of Amapá, located in the extreme north of Brazil, west of the Amazon River, with a territorial extension of 142,814.585 km², divided into 16 municipalities. The estimated population of the state of Amapá is 829,494 inhabitants in 2018, according to the Brazilian Institute of Geography and Statistics (IBGE)10.

RESULTS

143 cases of suspected meningitis were reported across the territory of the State of Amapá in the years 2013 to 2018, corresponding to 17.2 reported cases/100,000 inhabitants. The municipalities responsible for the highest number of notifications were Macapá, with 97 cases, and Santana, with 20 cases (table 1).

Out of 143 notified cases, 74 cases were confirmed and classified as Bacterial Meningitis (7), Meningococcal Meningitis (9), Pneumococcal Meningitis (10), Unspecified Meningitis (32) and Meningitis of another etiology (16).

The incidence coefficient of Bacterial Meningitis, went from 0/100,000 inhabitants to 0.24/100,000 inhabitants in 2018, which indicates the beginning of notifications of cases of meningitis without the identification of the causative agent, only as Bacterial Meningitis. While the incidence coefficients of Meningococcal and Pneumococcal Meningitis remained the same, except for the year 2016, when the incidence of pneumococcal meningitis was higher (Figure 1).

The agents *Streptococcus pneumoniae* and *Neisseria meningitidis* were responsible for 38% and 35% of the occurrences, respectively, while 27% of the cases were classified only as bacterial meningitis (table 2). No cases of meningitis by the bacterium *Haemophilus influenzae* were confirmed in the period and places covered in the study.

The municipality of Macapá, capital of the state, was responsible for the largest number of confirmed cases, with 21 cases (81%), followed by Laranjal do Jari, with 2 cases (7%) (table 3). For the assembly of these data, the municipality of residence of the affected people was informed in the investigation form.

As for seasonality, the month of July had the highest occurrence of cases, with a total of 6 cases (23%), followed by March, June, and September with 4 cases each (15%) (table 4). The male gender was predominant in the years 2013, 2014 and 2018, while the female gender presented higher numbers in the years 2015, 2016, and 2017 (figure 2). Of the total cases evaluated, 14 (54%) occurred in males, and 12 (46%) in females.

Regarding the distribution according to the age group, the largest number of cases was concentrated in children less than one year old (38%), followed by adults aged between 40 and 59 years (15%) (table 5).

As for the evolution of the disease, 65% of people were discharged, while 27% died from Meningitis, and 4% died from other causes (figure 3).
Table 1 - Meningitis notifications by year and city of residence in the State of Amapá in the period from 2013 to 2018.

City	2013	2014	2015	2016	2017	2018	Total
Amapá	0	0	0	1	1	0	2
Cutias	0	0	0	0	0	0	0
Calçoene	1	0	0	0	0	1	1
Ferreira Gomes	0	0	0	0	0	0	0
Itaubal	0	0	0	0	1	1	2
Laranjal do Jari	3	3	0	1	1	8	
Macapá	28	17	6	13	11	97	
Mazagão	0	0	0	0	0	0	0
Oiapoque	3	1	0	0	0	4	
Pedra Branca	0	0	2	0	0	2	
Porto Grande	0	3	1	0	0	1	
Pracuúba	3	6	3	6	1	1	
Santana	0	0	0	0	0	1	
Serra do Navio	0	0	0	0	0	0	
Tartarugalzinho	0	0	0	1	0	2	
Vitória do Jari	0	0	0	0	0	0	
Total	34	31	32	13	17	16	

Source: Notifiable Diseases Information System.

Table 3 - Confirmed cases of Bacterial Meningitis by year and city of residence in the State of Amapá from 2013 to 2018.

City	2013	2014	2015	2016	2017	2018	Total
Amapá	0	0	0	1	1	0	4
Cutias	0	0	0	0	0	0	0
Calçoene	0	0	0	0	0	0	0
Ferreira Gomes	0	0	0	0	0	0	0
Itaubal	0	0	0	0	1	1	4
Laranjal do Jari	0	1	0	1	0	2	
Macapá	5	5	3	1	4	3	
Mazagão	0	0	0	0	0	0	0
Oiapoque	0	0	0	0	0	0	0
Pedra Branca	0	0	0	0	0	0	0
Porto Grande	0	0	0	0	0	0	0
Pracuúba	0	0	0	0	0	0	0
Santana	1	0	0	0	0	1	
Serra do Navio	0	0	0	0	0	0	0
Tartarugalzinho	0	0	0	0	0	0	
Vitória do Jari	0	0	0	0	0	0	
Total	6	5	4	1	6	4	

Source: Notifiable Diseases Information System.

Table 2 - Confirmed cases of Bacterial Meningitis by year and etiology in the State of Amapá from 2013 to 2018.

Etiology	2013	2014	2015	2016	2017	2018	Total
Bacterial Meningitis	0	1	2	0	2	7	27
Meningococcal Meningitis	3	2	1	0	2	1	35
Pneumococcal Meningitis	3	2	1	1	2	1	
Total	6	5	4	1	6	4	

Source: Notifiable Diseases Information System.
Table 4: Confirmed cases of Bacterial Meningitis by year and months of the year in the State of Amapá from 2013 to 2018.

Months of the Year	2013	2014	2015	2016	2017	2018	n°	%
January	0	0	0	0	0	0	0	0
February	0	1	0	0	0	1	4	4
March	2	0	0	1	1	4	15	15
April	0	0	0	0	0	0	0	0
May	1	0	0	0	1	2	8	8
June	0	0	1	1	2	0	4	4
July	0	2	2	0	2	0	6	6
August	0	1	0	0	0	1	4	4
September	2	0	0	1	1	4	15	15
October	0	1	0	0	1	2	8	8
November	1	0	1	0	0	0	2	2
December	0	0	0	0	0	0	0	0
Total	6	5	4	1	6	4	26	100

Source: Notifiable Diseases Information System.

Table 5: Confirmed cases of Bacterial Meningitis by year and age group in the State of Amapá from 2013 to 2018.

Age Group	2013	2014	2015	2016	2017	2018	n°	%
< 1 year	2	1	4	0	3	0	10	38
1 – 4 years	0	2	0	0	1	0	3	11
5 – 9 years	1	0	0	1	1	0	3	12
10 – 14 years	1	0	0	0	0	2	3	12
15 – 19 years	1	0	0	0	0	0	1	4
20 – 39 years	0	0	0	0	0	1	1	4
40 – 59 years	1	1	0	0	1	1	4	15
60 – 79 years	0	0	0	0	0	0	0	0
> 80 years	0	1	0	0	0	0	1	4
Total	6	5	4	1	6	4	26	100

Source: Notifiable Diseases Information System.
According to Pobb et al.11 during an epidemiological study, the greater the number of variables analyzed, the broader the investigation will be. Thus, the investigation of the epidemiological behavior of a disease will provide fundamental information for its reduction and prevention.

Of the 143 cases suspected as being meningitis reported during the study period, 74 were confirmed and classified as Bacterial Meningitis, Meningococcal Meningitis, Pneumococcal Meningitis, Unspecified Meningitis, and Meningitis of another etiology. The classifications studied in the research (Bacterial Meningitis, Meningococcal Meningitis, and Pneumococcal Meningitis) totaled 26 cases. Unspecified Meningitis had the highest number of occurrences (32 cases), this can be explained by the fact that, during the disease diagnosis process, it is not possible to discover the etiology, either by factors related to the evolution of the disease or time of sample analysis. Thus, meningitis was confirmed, but its etiology was not known11.

As for occurrences due to Bacterial Meningitis, in 27\% of the cases it was not possible to identify the etiologic agent, therefore, they were classified only as Bacterial Meningitis. This situation can be explained by the fact that Meningitis is a pathology that has a rapid evolution and can lead to death in a few hours. In many cases, the time elapsed between the onset of symptoms and the beginning of medical research may be delayed due to the geographical conditions of the region or the lack of knowledge of the population about the disease; thus, there may not be enough time for further investigations that could classify the bacterial etiology of the disease2.

Pneumococcus (\textit{Streptococcus pneumoniae}) has a hospital mortality rate ranging from 20 to 30\%, and a 40\% rate of intracranial complications (such as cerebral edema, hydrocephalus, and intracranial hemorrhage) and, for this reason, is considered the most common severe cause of Bacterial Meningitis12. In meningitis caused by this pathogen, the people who are most at risk of illness are the elderly and individuals with chronic conditions or immunosuppressive diseases, due to their greater vulnerability7. In this study, it was found that the agent \textit{Streptococcus pneumoniae} was responsible for the highest number of occurrences (38\%) in the studied period and place, which reinforces the importance of surveillance and vaccination coverage against this agent.

According to Duarte, Lourenço and Camargo2, meningitis caused by the bacterium \textit{Neisseria meningitidis} (meningococcus) is an acute bacterial infection, which is infectious and contagious, and highly pathogenic. In Brazil, the disease has a lethality rate that can reach 20\%. According to Murray, Rosenthal and Pfaffer13, the mortality rate in properly treated patients is less than 10\%, and it can be close to 100\% in patients who do not receive treatment. The agent \textit{Neisseria meningitidis} was responsible for 35\% of the cases of meningitis, with numbers close to those of the bacterium \textit{Streptococcus pneumoniae}, which had a higher occurrence.

Other studies conducted in Brazil14,15,16 obtained similar results regarding the etiology of Bacterial Meningitis, where the one caused by \textit{Streptococcus pneumoniae} had a higher incidence than that caused by \textit{Neisseria meningitidis}.

The absence of cases by the agent \textit{Haemophilus influenzae} explained the
efficacy in vaccination coverage against type B *Haemophilus influenzae* (Hib). According to the Ministry of Health, meningitis caused by this agent represented, until 1999, the second main cause of Bacterial Meningitis after Meningococcal Meningitis. Starting from the year 2000, after the introduction of the conjugate vaccine against Hib, there was a drop of 90% in its incidence.

The Ministry of Health, in the 7th edition of the Epidemiological Surveillance Guide, points out that meningitis distributed worldwide and that the factors related to its epidemiological expression are linked to the infectious agent, the existence of population clusters, and the socioeconomic characteristics of population groups and of the environment. A possible explanation for the municipality of Macapá being responsible for the largest number of confirmed cases (81%) may be related to the fact that it has a greater part of the population of the entire state (approximately 493,634 inhabitants) and also because it has favorable factors for the spread of agents, such as only having 26.8% of adequate sewage.

According to the Ministry of Health, cases of meningitis are expected throughout the year, as it is an endemic disease. In Amapá, only the months of January, April, and December did not present any cases of the disease and, of the remaining nine months, July showed the highest occurrence. These figures are in line with a study by Pobb et al., which points to the variation of meningitis cases according to the months of the year.

The predominance of cases in males coincides with other studies carried out in Brazil. However, there are also studies that reveal a higher occurrence in females. Even though most of the studies point to a greater predominance of cases in males, there was no evidence that this is an aspect that impacts the evolution or management of the disease, showing that there is some variation between cases of meningitis and the gender of people.

The main age group affected during the study period was children under one year of age (38%). According to Pobb et al., one of the factors responsible for these numbers is the social factor, as children often remain in greater contact, and in isolated environments, which facilitates the transmission of the disease. In addition, this age group is characterized by a certain immaturity of the Central Nervous System (CNS). Other studies conducted in Brazil point to a higher incidence of Bacterial Meningitis in children, a factor that draws attention to the need for greater preventive actions aimed at this age group. According to Franco, Sanjad and Pinto, in addition to the fact that children are more affected by the disease, are the ones that most evolve to death. In a study by Berezin et al., mortality in children under two years old reached levels close to 40%, and in relation to neurological sequelae, these reached 40% of surviving children and 60% of those evaluated.

Regarding the evolution of the disease, in most cases (65%) the patients were discharged and 27% died from meningitis, which coincides with other studies carried out in Brazil in which most of the cases evolved to be cured. According to the Ministry of Health, if medical assistance is provided during the period of symptoms, most cases tend to evolve to be cured.
CONCLUSION

There was a predominance of cases of Bacterial Meningitis in male patients, mainly involving those less than 1 year of age. The state capital, Macapá, had the highest number of cases, and the month of July had the highest occurrence. The etiologic agent highlighted as the main cause of Bacterial Meningitis was *Streptococcus pneumonia*, followed by the bacterium *Neisseria meningitidis*; meanwhile, cases by the agent *Haemophilus influenzae* were not reported. Despite the fact that most of the cases evolved to a discharge, which shows some efficacy regarding the treatment of affected patients, the percentage of patients who died of meningitis (27%) highlights the need for health actions aimed at the more affected age groups (children under the age of one year) than for the others, due to the rapid evolution that the disease presents, as well as aiming at reducing cases and preventing possible outbreaks.

REFERENCES

1. Brasil. Ministério da Saúde, Agência Nacional de Vigilância Sanitária [homepage da internet]. Meningite: o que é, causas, sintomas, tratamento, diagnóstico e prevenção. 2017. [acesso em 24 de fevereiro de 2019]. Disponível em: http://portalms.saude.gov.br/saude-de-a-z/meningites.
2. Duarte KR, Lourenço SJ, Camargo B. Perfil Epidemiológico da Meningite Meningocócica no Distrito Federal nos anos de 2014 a 2017. Anais do 13 Simpósio de TCC e 6 Seminário de IC da Faculdade ICESP. 2018;13(1):400-404.
3. Pitelle JEH, Rosemberg S, Hahn MD, Chimelli L, Grinberg LT, De Andrade MPG, Heinsen H, Neder L. Sistema Nervoso. In: Brasileiro Filho G. Bogliolo, patologia. 8. ed. Rio de Janeiro: Guanabara Koogan; 2011. p. 895 - 1023.
4. Szajnberg DCN. Meningite Bacteriana Aguda. J Pediatr. 2012; 13(2):72-75.
5. Brasil. Ministério da Saúde. Portaria nº 204, de 17 de fevereiro de 2016. Define a Lista Nacional de Notificação Compulsória de doenças, agravos e eventos de saúde pública nos serviços de saúde públicos e privados em todo o território nacional, nos termos do anexo, e dá outras providências. Brasília, 2016. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2016/prt0204_17_02_2016.html
6. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica. Guia de Vigilância Epidemiológica. 7. ed., Brasília: Ministério da Saúde, 2009.
7. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde, Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de Vigilância em Saúde. v.1, ed. atual, Brasília: Ministério da Saúde, 2017.
8. Azevedo LCP, Toscano CM, Bierrenbach AL. Bacterial Meningitis in Brazil: Baseline Epidemiologic Assessment of the Decade Prior to the Introduction of Pneumococcal and Meningococcal Vaccines. PLOS ONE. 2013;8(6):1-8.
9. Pós-graduando [homepage da internet]. As diferenças entre pesquisa descritiva, exploratória e explicativa. [acesso em 24 de fevereiro de 2019]. Disponível em:https://posgraduando.com/diferencas-pesquisa-descritiva-exploratoria-explicativa/.
10. Instituto Brasileiro de Geografia e Estatística (Brasil) [base de dados online]. Cidades e Estados: Amapá. 2018. Acesso em 10 de junho de 2019. Disponível em: https://cidades.ibge.gov.br/brasil/ap/panorama.
11. Polib K, Leite LM, Virgens Filho JS, Stocco C, Dal Cobbo BL. Aspectos epidemiológicos e influência de variáveis climáticas nos casos notificados de meningite em crianças no município de Ponta Grossa – PR, 2002 – 2011. Rev Bras Climatol. 2013;13(1):202-213.
12. Barichello T, Generoso GS, Collodel A, Moreira AP, Almeida SM. Pathophysiology of acute meningitis caused by Streptococcus pneumoniae and adjunctive therapy approaches. Arq Neuropsiquiatr. 2012;70(5):366-372.
13. Murray PR, Rosenthal KS, Pfaller MA. Microbiologia Médica. 7. ed. Rio de Janeiro: Elsevier, 2014. p. 248 – 57.
14. Dazzi MC, Zatti CA, Baldissera, R. Perfil dos casos de meningites ocorridos no Brasil de 2009 a 2012. Rev UNINGÁ Review. 2014;19(3):33-36.
15. Silva HCG, Mezarobba NA. Meningite no brasil em 2015: o panorama da atualidade. Arq Catarin Med. Santa Catarina. 2018;47(1):34-46.
16. Dias FCF, Rodrigues Junior CA, Cardoso CRL, Veloso FPFS, Rosa RTAS, Figueiredo BNS. Meningite: aspectos epidemiológicos da doença na Região Norte do Brasil. Revista de Patologia do Tocantins. 2017;4(2):46-49.
17. Antoniuk AS, Hamdar F, Ducci RD, Kira ATF, Cat MNL, Cruz CR. Childhood acute bacterial meningitis: risk factors for acute
18. Ferreira JHS, Gomes AMAS, Oliveira CM, Bonfim CV. Tendência e aspectos epidemiológicos das meningites bacterianas em crianças. Rev Enferm UFPE online. 2015;9(7):8534-8541.
19. Monteiro LF, Frasson MZ, Trevisol DJ, Schuelter-Treviso F. Vigilância clínico-epidemiológica das meningites em um hospital do sul de Santa Catarina, no período entre 2007 a 2013. Arq Catarin Med. 2014;43(4):24-29.
20. Rogerio LPW, Camargo RPM, Menegali TT, Silva RM. Perfil epidemiológico das meningites no sul de Santa Catarina entre 1994 e 2009. Rev Soc Bras Clín Med. 2011;9(3):200-203.
21. Labiak VB, Stocco C, Leite ML, Virgens Filho JS. Aspectos epidemiológicos dos casos de meningite notificados no município de Ponta Grossa – PR, 2001-2005. Cogitare Enferm. 2007;12(3):306-312.
22. Franco MCA, Sanjad MR, Pinto PHO. Prevalência de meningite em crianças no hospital universitário João de Barros Barreto, período de 1995 a 2004. Rev Para Med. 2006; 20(1):33-39.
23. Berezin EN, Carvalho LH, Lopes CR, Sanajotta AT, Brandileone NCC, Nemegatti S, Safadi MA, Guerra MLCS. Meningite pneumocócica na infância: características clínicas, sorotipos mais prevalentes e prognóstico. J Pediatr. 2002;77(1):19-23.

Received in october 2019.
Accepted in august 2020.
Análise epidemiológica da meningite bacteriana no Estado do Amapá nos anos de 2013 a 2018

Lissandra Gomes Pimentel*
Italo Bruno Maciel Campos*
Keren Hapuque da Silva Souza*
Diego Henrique de Souza Monte de Almeida**

Resumo
A meningite é uma doença infectocontagiosa caracterizada pelo processo inflamatório das meninges aracnoide e pia-máter e do líquido cefalorraquidiano. Seus principais agentes etiológicos bacterianos são Neisseria meningitidis, Streptococcus pneumoniae e Haemophilus influenzae. O presente trabalho teve como objetivo realizar uma análise epidemiológica da meningite bacteriana no Estado do Amapá, nos anos de 2013 a 2018. Trata-se de um estudo documental descritivo, de caráter transversal, com dados obtidos através do Sistema de Informações de Agravos de Notificação (SINAN). Os resultados demonstram que ocorreram, no período estudado, 26 casos de meningite bacteriana. Os agentes Streptococcus pneumoniae e Neisseria meningitidis foram responsáveis por 38% e 35% das ocorrências, respectivamente, enquanto 27% dos casos foram classificados somente como meningite bacteriana. A capital do estado, Macapá, foi responsável pelo maior número de casos confirmados (81%) e, quanto à sazonalidade, o mês de julho apresentou maior ocorrência (23%). Do total de casos avaliados 54% ocorreram em pessoas do sexo masculino, e 46% em pessoas do sexo feminino, e a principal faixa etária acometida foi de crianças menores de um ano (38%). Quanto à evolução da doença, 65% das pessoas receberam alta, enquanto 27% foram à óbito por meningite. Conclui-se que apesar de a maior parte dos casos evoluírem para alta, a porcentagem de pacientes que foram à óbito por meningite ressalta a necessidade de ações em saúde voltadas tanto para a faixa etária mais acometida quanto para as demais, em função da rápida evolução que a doença apresenta.

Palavras-chave: Epidemiologia. Meningite Bacteriana. Notificação Compulsória.

INTRODUÇÃO

Meningites são caracterizadas como infecções que acometem as meninges -membranas que envolvem o cérebro e a medula espinhal, dura-máter, aracnoide e pia-máter - e podem afetar também o líquido cefalorraquidiano (LCR), localizado no espaço entre a aracnoide e a pia-máter, o espaço subaracnoíde, e possui funções relacionadas à manutenção da homeostase, fornecimento de nutrientes para o tecido nervoso e atua como um amortecedor para o cérebro e a medula espinhal1,2.

O quadro clínico desta enfermidade costuma caracterizar-se por hipertensão intracraniana (cefaléia, náuseas, vômitos e redução do nível de consciência), associado à evidência de irritação meníngea (rigidez de nuca, sinal de Kernig e sinal de Brudzinski) e ao quadro clássico de infecção aguda (incluindo febre alta)3. O diagnóstico laboratorial é feito...
principalmente através da análise do líquor, por exame físico químico (cor e aspecto) e análise quimiocitológica, que permite a diferenciação celular, dosagens bioquímicas como glicose, lactato, proteínas, dentre outros. Também podem ser realizados cultura de LCR, sangue e raspado de lesões petequiais; bacterioscopia direta; aglutinação pelo látex e Reação em Cadeia da Polimerase (PCR).

As taxas de morbidade e letalidade apresentadas pela doença podem atingir 100% se não houver tratamento adequado e, ainda se houver tratamento, podem ocorrer consequências graves. A longo prazo, são consideradas comuns as sequelas neurológicas, a saber: perda auditiva, alterações do desenvolvimento leves ou graves, como paralisia cerebral e retardo mental. As complicações decorrentes da meningite podem ser agudas.

A Meningite integra a Lista Nacional de Doenças de Notificação Compulsória, de acordo com a Portaria nº 204, de 17 de fevereiro de 2016, desse modo, todos os surtos e aglomerados de casos ou óbitos devem ser notificados de forma imediata.

A etiologia das Meningites pode ser dividida em: infeciosa (ocasionada por bactérias, vírus, fungos e parasitas) e não infeciosa (traumatismos, por exemplo). As Meningites infeciosas, principalmente aquelas causadas por bactérias e vírus, são as mais importantes do ponto de vista da saúde pública, pois possuem maior prevalência, potencial de produzir surtos e, no caso da meningite bacteriana, maior gravidade.

Ações voltadas para a vigilância epidemiológica da meningite são fundamentais para a adoção de estratégias de prevenção e controle e para a detecção de epidemias em tempo oportuno. Os principais agentes patogênicos causadores de meningite bacteriana são Neisseria meningitidis, Streptococcus pneumoniae e Haemophilus influenzae.

A Meningite é considerada uma doença endêmica no Brasil, possuindo elevados índices de morbidade e letalidade, tornando-se necessários estudos que abordem os aspectos epidemiológicos da Meningite Bacteriana, para melhor compreensão do seu comportamento no país e em seus estados. Em âmbito local, Amapá, constatou-se a inexistência de literatura nesse segmento constituindo uma preocupação para a saúde pública da microrregião. Considerando os elementos expostos, esta pesquisa propôs realizar uma análise epidemiológica da Meningite Bacteriana no Estado do Amapá, nos anos de 2013 a 2018.

MATERIAL E MÉTODOS

Esta pesquisa se caracteriza como um estudo documental descritivo, de caráter transversal - visto que foi realizado o estudo, análise, registro e interpretação dos fatos do mundo físico sem a interferência do pesquisador, em que os dados analisados foram coletados ao longo de um período de tempo definido - com dados obtidos através do Sistema de Informação de Agravos de Notificação (SINAN) sobre os casos de meningite bacteriana ocorridos no Estado do Amapá, nos anos de 2013 a 2018. As variáveis analisadas foram mês e ano de notificação, município de residência, etiologia e evolução da doença, faixa etária e sexo das pessoas acometidas. Foram utilizados como critérios de inclusão os casos notificados e confirmados de meningite bacteriana (com etiologia confirmada, mas sem descrição do agente), meningite meningocócica e meningite pneumocócica no período de tempo de 2013 a 2018, e como critério de exclusão os casos pertencentes a meningites de outras etiologias e em anos não correspondentes ao período abordado na pesquisa.

Após a coleta, todos os dados foram
tabulados através do Software Microsoft Excel, e separados de acordo com sua classificação em: casos notificados, casos confirmados e evolução dos casos. A análise dos dados foi realizada comparativamente com outros estudos encontrados na literatura referentes a outros estados do país, devido à ausência de estudos semelhantes no estado.

Esta pesquisa teve como abrangência o Estado do Amapá, localizado no extremo norte do Brasil, à esquerda do Rio Amazonas, com extensão territorial de 142.814,585 Km², divididos em 16 municípios. A população estimada do estado do Amapá é de 829.494 habitantes no ano de 2018, segundo o Instituto Brasileiro de Geografia e Estatística (IBGE).

RESULTADOS

Foram notificados 143 casos como suspeitos de Meningite em todo o território do Estado do Amapá nos anos de 2013 a 2018, que correspondem a 17,2 casos notificados/100.000 habitantes. Os municípios responsáveis pelos maiores números de notificações foram Macapá, com 97 casos, e Santana, com 20 (tabela 1).

No universo de 143 casos notificados, 74 casos foram confirmados e classificados como Meningite Bacteriana (7), Meningite Meningocócica (9), Meningite Pneumocócica (10), Meningite não especificada (32) e Meningite de outra etiologia (16).

O coeficiente de incidência da Meningite Bacteriana, passou de 0/100.000 habitantes para 0,24/100.000 habitantes no ano de 2018, o que indica o início das notificações de casos de meningite sem a identificação do agente causador, apenas como Meningite Bacteriana. Enquanto os coeficientes de incidência das Meningites Meningocócica e Pneumocócica se mantiveram iguais, com exceção do ano de 2016, quando a incidência da meningite pneumocócica foi maior (Figura 1).

Os agentes *Streptococcus pneumoniae* e *Neisseria meningitidis* foram responsáveis por 38% e 35% das ocorrências, respectivamente, enquanto 27% dos casos foram classificados somente como meningite bacteriana (tabela 2). Não foram confirmados casos de meningite pela bactéria *Haemophilus influenzae* no período e locais abordados pela pesquisa.

O município de Macapá, capital do Estado, foi responsável pelo maior número de casos confirmados, com 21 casos (81%), seguido de Laranjal do Jari, com 2 casos (7%) (tabela 3). Para a construção destes dados, foi levado em consideração o município de residência das pessoas acometidas informado na ficha de investigação.

Quanto à sazonalidade, o mês de Julho apresentou maior ocorrência de casos da doença, com um total de 6 casos (23%), seguido de Março, Junho e Setembro com 4 casos cada (15%) (tabela 4).

O sexo masculino foi predominante nos anos de 2013, 2014 e 2018, enquanto o sexo feminino apresentou maiores números nos anos de 2015, 2016 e 2017 (figura 2). Do total de casos avaliados, 14 (54%) ocorreram em pessoas do sexo masculino, e 12 (46%) em pessoas do sexo feminino.

Com relação à distribuição segundo a faixa etária, o maior número de casos se concentra em crianças com idade inferior a um ano (38%), seguido de adultos com idade entre 40 e 59 anos (15%) (tabela 5).

Quanto à evolução da doença, 65% das pessoas receberam alta, enquanto 27% foram à óbito por Meningite e 4% foram à óbito por outras causas (figura 3).
Tabela 1- Notificações de Meningite por ano e município de residência no Estado do Amapá no período de 2013 a 2018.

Município	2013	2014	2015	2016	2017	2018	Total
Amapá	0	0	0	1	1	0	2
Cutias	0	0	0	0	0	0	0
Calçoene	0	0	0	0	0	0	0
Ferreira Gomes	0	0	0	0	0	0	0
Itaubal	0	0	0	0	1	1	1
Laranjal do Jari	0	3	3	0	1	1	8
Macapá	28	17	22	6	13	11	97
Mazagão	0	0	0	0	0	0	0
Oiapoque	3	1	0	0	0	0	4
Pedra Branca	0	0	2	0	0	0	2
Porto Grande	0	3	1	0	1	5	6
Pracuúba	0	0	0	0	0	1	1
Santana	3	6	3	6	1	1	20
Serra do Navio	0	0	0	0	0	0	0
Tartarugalzinho	0	0	1	0	1	0	2
Vitória do Jari	0	0	0	0	0	0	0
Total	34	31	32	13	17	16	143

Fonte: Sistema de Informação de Agravos de Notificação.

Figura 1- Notificações de Meningite por ano e município de residência no Estado do Amapá no período de 2013 a 2018.

Tabela 2- Casos confirmados de Meningite Bacteriana por ano e etiologia no Estado do Amapá no período de 2013 a 2018.

Etiologia	2013	2014	2015	2016	2017	2018	nº	%
Meningite Bacteriana	0	1	2	0	2	2	7	27
Meningite meningocócica	3	2	1	0	2	1	9	35
Meningite pneumocócica	3	2	1	1	2	1	10	38
Total	6	5	4	1	6	4	26	100

Fonte: Sistema de Informação de Agravos de Notificação.

Figura 2- Casos confirmados de Meningite Bacteriana por ano e gênero no Estado do Amapá no período de 2013 a 2018.

Tabela 3- Casos confirmados de Meningite Bacteriana por ano e município de residência no Estado do Amapá no período de 2013 a 2018.

Município	2013	2014	2015	2016	2017	2018	nº	%
Amapá	0	0	0	1	0	1	4	
Cutias	0	0	0	0	0	0	0	
Calçoene	0	0	0	0	0	0	0	
Ferreira Gomes	0	0	0	0	0	0	0	
Itaubal	0	0	0	0	1	1	4	
Laranjal do Jari	0	0	0	0	0	1	1	
Macapá	5	5	3	1	4	3	21	81
Mazagão	0	0	0	0	0	0	0	
Oiapoque	0	0	0	0	0	0	0	
Pedra Branca	0	0	0	0	0	0	0	
Porto Grande	0	0	0	0	0	0	0	
Pracuúba	0	0	0	0	0	0	0	
Santana	1	0	0	0	0	1	4	
Serra do Navio	0	0	0	0	0	0	0	
Tartarugalzinho	0	0	0	0	0	0	0	
Vitória do Jari	0	0	0	0	0	0	0	
Total	6	5	4	1	6	4	26	100

Fonte: Sistema de Informação de Agravos de Notificação.
Tabela 4: Casos confirmados de Meningite Bacteriana por ano e meses do ano no Estado do Amapá no período de 2013 a 2018.

Meses do ano	2013	2014	2015	2016	2017	2018	nª	%
Janeiro	0	0	0	0	0	0	0	0
Fevereiro	0	1	0	0	0	0	1	4
Março	2	0	0	1	1	4	15	
Abril	0	0	0	0	0	0	0	
Maio	1	0	0	0	0	1	2	8
Junho	0	0	1	1	2	0	4	15
Julho	0	2	2	0	2	0	6	23
Agosto	0	1	0	0	0	0	1	4
Setembro	2	0	0	1	1	4	15	
Outubro	0	1	0	0	0	0	1	2
Novembro	1	0	1	0	0	0	2	8
Dezembro	0	0	0	0	0	0	0	
Total	6	5	4	1	6	4	26	100

Fonte: Sistema de Informação de Agravos de Notificação.

Tabela 5: Casos confirmados de Meningite Bacteriana por ano e faixa etária no Estado do Amapá no período de 2013 a 2018.

Faixa Etária	2013	2014	2015	2016	2017	2018	nª	%
< 1 ano	2	1	4	0	3	0	10	38
1 – 4 anos	0	2	0	0	1	0	3	11
5 – 9 anos	1	0	0	1	1	0	3	12
10 – 14 anos	1	0	0	0	0	2	3	12
15 – 19 anos	1	0	0	0	0	0	1	4
20 – 39 anos	0	0	0	0	1	1	4	
40 – 59 anos	1	1	0	0	1	1	4	15
60 – 79 anos	0	0	0	0	0	0	0	
> 80 anos	0	1	0	0	0	0	1	4
Total	6	5	4	1	6	4	26	100

Fonte: Sistema de Informação de Agravos de Notificação.
DISCUSSÃO

Segundo Pobb et al.11 durante um estudo epidemiológico, quanto maior o número de variáveis analisadas, mais ampla será a investigação. Assim, a investigação do comportamento epidemiológico de uma doença irá proporcionar informações fundamentais para a sua redução e prevenção.

Dos 143 casos notificados durante o período estudado como suspeitos de Meningite, 74 foram confirmados e classificados como Meningite Bacteriana, Meningite Meningocócica, Meningite Pneumocócica, Meningite não especificada e Meningite de outra etiologia. As classificações estudadas na pesquisa (Meningite Bacteriana, Meningite Meningocócica e Meningite Pneumocócica) totalizam 26 casos. A Meningite não especificada apresentou o maior número de ocorrências (32 casos), isso pode ser explicado pelo fato de que, durante o processo de diagnóstico da doença, não seja possível descobrir a etiologia, seja por fatores relacionados à evolução da doença ou tempo de análise da amostra. Dessa forma, a Meningite é confirmada, mas não se sabe qual a sua etiologia11.

Quanto às ocorrências por Meningite Bacteriana, em 27\% dos casos não foi possível identificar o agente etiológico, portanto, estes ficaram classificados apenas como Meningite Bacteriana. Esta situação pode ser explicada pelo fato de que a Meningite seria uma patologia que apresenta rápida evolução podendo levar a óbito em poucas horas. Em muitos casos, o tempo decorrido entre o aparecimento dos sintomas e o início da investigação médica pode ser prolongado, devido às condições geográficas da região ou pela falta de conhecimento da população sobre a doença, assim, não há prazo suficiente para maiores investigações que puderiam classificar a etiologia bacteriana da doença2.

O pneumocoço (\textit{Streptococcus pneumoniae}) apresenta uma taxa de mortalidade hospitalar que varia entre 20 a 30\%, e uma taxa de 40\% de complicações intracranianas (como edema cerebral, hidrocefalia e hemorragia intracraniana) e, por este motivo, é considerado a causa mais grave de Meningite Bacteriana12. Na Meningite causada por este patógeno, as pessoas que apresentam maior risco de adoecimento são idosos e indivíduos portadores de quadros crônicos ou doenças imunossupressoras, devido sua maior vulnerabilidade7. Neste estudo foi constatado que o agente \textit{Streptococcus pneumoniae} foi responsável pelo maior número de ocorrências (38\%) no período e local estudados, o que reforça a importância da vigilância e da cobertura vacinal para este agente.

Segundo Duarte, Lourenço e Camargo2, a Meningite causada pela bactéria \textit{Neisseria meningitidis} (meningococo) é uma infecção bacteriana aguda, infectocontagiosa, e que possui elevada patogenicidade. No Brasil, a doença possui uma taxa de letalidade que pode chegar a 20\%. Conforme Murray, Rosenthal e Pfaller13, a taxa de mortalidade em pacientes tratados adequadamente é de menos de 10\%, podendo aproximar-se de 100\% em pacientes que não receberem tratamento. O agente \textit{Neisseria meningitidis} foi responsável por 35\% dos casos de Meningite, com números próximos aos da bactéria \textit{Streptococcus pneumoniae}, que apresentou maior ocorrência.

Outros estudos realizados no Brasil14,15,16 obtiveram resultados semelhantes quanto à etiologia da Meningite Bacteriana, onde a causada pelo \textit{Streptococcus pneumoniae} apresentou maior incidência que a causada pela \textit{Neisseria meningitidis}.
A ausência de casos pelo agente *Haemophilus influenzae* explica-se pela eficácia na cobertura vacinal contra o *Haemophilus influenzae* do tipo B (Hib). Segundo o Ministério da Saúde, as meningites causadas por esse agente representavam, até o ano de 1999, a segunda causa de Meningite Bacteriana depois da Meningite Meningocócica. A partir do ano 2000, após a introdução da vacina conjugada contra o Hib, houve uma queda de 90% em sua incidência.

O Ministério da Saúde, na 7ª edição do Guia de Vigilância Epidemiológica, ressalta que as meningites possuem distribuição mundial e que os fatores relacionados à sua expressão epidemiológica estão ligados ao agente infeccioso, à existência de aglomerados populacionais, e às características socioeconômicas dos grupos populacionais e do meio ambiente. Uma possível explicação para o município de Macapá ser responsável pelo maior número de casos confirmados (81%) pode estar relacionada ao fato de este possuir maior parte da população de todo o estado (aproximadamente 493.634 habitantes) e ainda por possuir fatores próprios para a multiplicação dos agentes, como apenas 26,8% de esgotamento sanitário adequado.

Segundo o Ministério da Saúde, casos de Meningite são esperados no decurso de todo o ano, por tratar-se de uma doença endêmica. No Amapá, somente os meses de Janeiro, Abril e Dezembro não apresentaram casos da doença e, dos nove meses restantes, Julho exibiu maior ocorrência. Estes números condizem com um estudo realizado por Pobb et al. que aponta para variação dos casos de Meningite conforme os meses do ano.

A predominância de casos no gênero masculino coincide com outros estudos realizados no Brasil. Entretanto, existem também estudos que revelam uma maior ocorrência em pessoas do gênero feminino. Mesmo que a maior parte das pesquisas apontem maior predominância de casos no gênero masculino, não foram encontradas evidências de que este seja um aspecto que impacte na evolução ou manejo da doença, mostrando que ocorre certa variação entre a ocorrência de casos de Meningite e o gênero das pessoas.

A principal faixa etária acometida durante o período estudado foi de crianças menores de um ano (38%). Segundo Pobb et al., um dos fatores responsáveis por esses números é o fator social, pois crianças permanecem frequentemente em maior contato, e em ambientes isolados, o que facilita a transmissão da doença. Além disso, esta faixa etária é caracterizada por apresentar certa imaturidade do Sistema Nervoso Central (SNC). Outros estudos realizados no Brasil apontam para uma maior incidência de Meningite Bacteriana em crianças, fator que chama a atenção para a necessidade de maiores ações de prevenção voltadas para esta faixa etária. Segundo Franco, Sanjad e Pinto, além de as crianças serem mais atingidas pela enfermidade, são as que mais evoluem para óbito. Em estudo realizado por Berezin et al. a mortalidade em crianças a baixo de dois anos atingiu níveis próximos a 40%, e em relação às sequelas neurológicas, estas atingiram 40% das crianças sobreviventes e 60% das avaliadas.

Quanto à evolução da doença, na maioria dos casos (65%) os pacientes receberam alta e 27% foram à óbito por Meningite, o que coincide com outros estudos realizados no Brasil em que a maior parte dos casos evoluíram para a cura. Segundo o Ministério da Saúde, se for realizada a assistência médica na vigência dos sintomas, a maioria dos casos tendem a evoluir para a cura.
CONCLUSÃO

Observou-se a predominância dos casos de Meningite Bacteriana em pacientes do gênero masculino, com principal acometimento da faixa etária inferior a 1 ano de idade. A capital do Estado, Macapá, deteve maior número de casos, e o mês de julho apresentou maior ocorrência. O agente etiológico destacado como principal causador de Meningite Bacteriana foi o Streptococcus pneumoniae, seguido da bactéria Neisseria meningitidis, enquanto casos pelo agente Haemophilus influenzae não foram relatados.

Apesar de a maior parte dos casos evoluírem para alta, o que demonstra certa eficácia quanto ao tratamento dos pacientes acometidos, a porcentagem de pacientes que foram à óbito por meningite (27%) ressalta a necessidade de ações em saúde voltadas tanto para a faixa etária mais acometida (crianças com idade inferior a um ano) quanto para as demais, em função da rápida evolução que a doença apresenta e visando a redução de casos e a prevenção de possíveis surtos.

REFERÊNCIAS

1. Brasil. Ministério da Saúde, Agência Nacional de Vigilância Sanitária [homepage da internet]. Meningite: o que é, causas, sintomas, tratamento, diagnóstico e prevenção. 2017. [acesso em 24 de fevereiro de 2019]. Disponível em: http://portalms.saude.gov.br/saude-de-a-z/meningites.
2. Duarte KR, Lourenço SJ, Camargo B. Perfil Epidemiológico da Meningite Meningocócica no Distrito Federal nos anos de 2014 a 2017. Anais do 13 Simpósio de TCC e 6 Seminário de IC da Faculdade ICESSP. 2018;13(1):400-404.
3. Pitelle JEH, Rosemberg S, Hahn MD, Chimelli L, Grinberg LT, De Andrade MPG, Heinsen H, Neder L. Sistema Nervoso. In: Brasileiro Filho G. Bogliolo, patologia. 8. ed. Rio de Janeiro: Guanabara Koogan; 2011. p. 895 - 1023.
4. Sztajnbok DCN. Meningite Bacteriana Aguda. J Pediatr. 2012; 13(2):72-75.
5. Brasil. Ministério da Saúde. Portaria nº 204, de 17 de fevereiro de 2016. Define a Lista Nacional de Notificação Compulsória de doenças, agravos e eventos de saúde pública nos serviços de saúde públicos e privados em todo o território nacional, nos termos do anexo, e dá outras providências. Brasília, 2016. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2016/prt0204_17_02_2016.html
6. Brasil. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica. Guia de Vigilância Epidemiológica. 7. ed., Brasília: Ministério da Saúde, 2009.
7. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde, Coordenação-Geral de Desenvolvimento da Epidemiologia em Serviços. Guia de Vigilância em Saúde. v.1, ed. atual, Brasília: Ministério da Saúde, 2017.
8. Azevedo LCF, Toscano CM, Bierrrenbach AL. Bacterial Meningitis in Brazil: Baseline Epidemiologic Assessment of the Decade Prior to the Introduction of Pneumococcal and Meningococcal Vaccines. PLOS ONE. 2013;8(6):1-8.
9. Pós-graduando [homepage da internet]. As diferenças entre pesquisa descritiva, exploratória e explicativa. [acesso em 24 de fevereiro de 2019]. Disponível em:https://posgraduando.com/diferencas-pesquisa-descritiva-exploratoria-explicativa/.
10. Instituto Brasileiro de Geografia e Estatística [Brasil] [base de dados online]. Cidades e Estados: Amapá. 2018. Acesso em 10 de junho de 2019. Disponível em: https://cidades.ibge.gov.br/brasil/ap/panorama.
11. Pobb K, Leite LM, Virgens Filho JS, Stocco C, Dal Gobbo BL. Aspectos epidemiológicos e influência de variáveis climáticas nos casos notificados de meningite em crianças no município de Ponta Grossa - PR, 2002 – 2011. Rev Bras Climatol. 2013;13(1):202-213.
12. Barichello T, Generoso GS, Collodel A, Moreira AP, Almeida SM. Pathophysiology of acute meningitis caused by Streptococcus pneumoniae and adjunctive therapy approaches. Arq Neuro-psiquiatr. 2012;70(5):366-372.
13. Murray PR, Rosenthal KS, Pfaller MA. Microbiologia Médica. 7. ed. Rio de Janeiro: Elsevier, 2014, p. 248 - 57.
14. Dazzi MC, Zatti CA, Baldissera, R. Perfil dos casos de meninges ocorridas no Brasil de 2009 a 2012. Rev UNINGÁ Review. 2014;19(3):33-36.
15. Silva HCG, Mezarobba N. Meningite no brasil em 2015: o panorama da atualidade. Arq Catarin Med. Santa Catarina. 2018;47(1):34-46.
16. Dias FCF, Rodrigues Junior CA, Cardoso CRL, Veloso FPFS, Rosa RTAS, Figueiredo BNS. Meningite: aspectos epidemiológicos da doença na Região Norte do Brasil. Revista de Patologia do Tocantins. 2017;4(2):46-49.
17. Antoniuk AS, Hamdar F, Ducci RD, Kira ATF, Cat MNL, Cruz CR. Childhood acute bacterial meningitis: risk factors for acute neurological complications and neurological sequelae. J Pediatr. 2011;87(6):535-540.
18. Ferreira JHS, Gomes AMAS, Oliveira CM, Bonfim CV. Tendência e aspectos epidemiológicos das meningites bacterianas em crianças. Rev Enferm UFPE online. 2015;9(7):8534-8541.
19. Monteiro LF, Frasson MZ, Trevisol DJ, Schuelter-Treviso F. Vigilância clínico-epidemiológica das meningites em um hospital do sul de Santa Catarina, no período entre 2007 a 2013. Arq Catarin Med. 2014;43(4):24-29.
20. Rogerio LPW, Camargo RPM, Menegali TT, Silva RM. Perfil epidemiológico das meningites no sul de Santa Catarina entre 1994 e 2009. Rev Soc Bras Clin Med. 2011;9(3):200-203.
21. Labiak VB, Stocco C, Leite ML, Virgens Filho JS. Aspectos epidemiológicos dos casos de meningite notificados no município de Ponta Grossa – PR, 2001-2005. Cogitare Enfem. 2007;12(3):306-312.
22. Franco MCA, Sanjad MR, Pinto PHO. Prevalência de meningite em crianças no hospital universitário João de Barros Barreto, período de 1995 a 2004. Rev Para Med. 2006; 20(1):33-39.
23. Berezin EN, Carvalho LH, Lopes CR, Sanajotta AT, Brandleone NCC, Nemeagatti S, Safadi MA, Guerra MLCS. Meningite pneumocócica na infância: características clínicas, sorotipos mais prevalentes e prognóstico. J Pediatr. 2002;77(1):19-23.