The new landmarks, findings and signs in optical coherence tomography

Burak Turgut* and Tamer Demir
Department of Ophthalmology, Faculty of Medicine, Firat University, Elazig 23119, Turkey

Abstract
Spectral domain optical coherence tomography (SD-OCT) is a useful non-invasive imaging method which is used in the diagnosis and follow-up of various macular diseases. Photoreceptor disruption detected with OCT might be demonstrated the loss of integrity or absence of external limiting membrane, ellipsoid zone and interdigitation zone. It has been considered that the disruptions of these outer retinal layers or zones are highly correlate with lower visual acuity in various retinal diseases. Newly, current OCT findings and signs include outer retinal tubulation, hyperreflective dots/spots, flyer saucer, perifoveal cupping, focal choroidal excavation, dipping sign, choroidal macrovessel, pearl necklace sign, cystoid foveal degeneration, outer retina-choroid complex splitting, foveal pseudocyst, dome-shaped macula and brush border pattern. These might be important indicators for prognosis and response in various macular diseases.

Introduction
Spectral domain optical coherence tomography (SD-OCT) is a very useful non-invasive imaging method which is used in the diagnosis and follow-up of diseases involving the macula, such as age-related macular degeneration (AMD), diabetic maculopathy, central serous chorioretinopathy (CSCR), epiretinal membrane (ERM), various macular dystrophies/maculopathies and macular hole, etc. It provides detailed information for the evaluation of drusen, intraretinal/subretinal hemorrhage or fluid and detachment of retina pigment epithelium (RPE) or retina [1-4]. OCT can reveal ERM, choroidal neovascular membrane (CNVM), fibrovascular lesion, fibrotic scar, hard exudate, nerve fiber infarct and macular or optic disk drusen, intraretinal or subretinal fluid and cystoid cavities [1-4]. These common OCT findings are well known. Currently, due to the developments in OCT technology and the frequent use of OCT in ophthalmology, currently, some new OCT findings have been reported day after day. The aim of this study is to present new pathological or abnormal findings in SD-OCT and to emphasize the causes of these.

Normal OCT findings and histological landmarks
In a normal colored spectral domain OCT scan, the high reflectivity signals represented by yellow and red colors, come from the retinal nerve fiber layer (RNFL), plexiform layers, internal limiting membrane (ILM), junction between inner and outer segments of photoreceptors (IS/OS), RPE and choriocapillaris complex. The low reflectivity signals represented by black and blue colors belong to the nuclear layers. The normal vitreous gel is not visible in color OCT imaging because it is optically transparent and it seems black color (Figure 1) [1,2].

The external limiting membrane (ELM) (Figure 1A) is located at the boundary between the nuclei and the inner segments of the photoreceptors, and points out the junctional complexes between Müller cells and the photoreceptors [1-4].

The ellipsoid zone (EZ) (Figure 1B) is considered to be formed mainly by mitochondria within the ellipsoid layer of the outer portion of the inner segments of the photoreceptors. However, it was previously known as the junction between the photoreceptor IS/OS). In a normal fovea, EZ is located closer to ELM than RPE [1-4].

The interdigitation zone (IZ) (Figure 1B) is considered to be the contact cylinders formed by the apices of the RPE cells that encase...
part of outer segments of the cones. It was previously called the cone outer segment tips (COST) and rod outer segment tips (ROST), and its differentiation from RPE layer is difficult.

The RPE line (Figure 1A) is formed by the RPE and Bruch’s membrane and chorioocapillaris and it is thicker in the fovea compared to other regions [1-4].

Common conventional abnormal findings

In an OCT scan with macular pathology, the high reflectivity signals except above mentioned retinal layers may due to the reduced retinal thickness, ERM, CNVM, fibrovascular lesion, fibrotic scar, hard exudate, nerve fiber infarct and macular or optic disk drusen. Intraretinal or subretinal fluid and cystoid cavities seem as low reflectivity/reflectivity areas. High reflectivity is a feature of and pigmentation of the scarring tissue, example, a disciform scar [1,2].

In dry AMD, disruption or absence of the EZ has been shown to correlate with visual outcomes and disease severity and it has been demonstrated that an intact EZ in the patients with geographic atrophy has higher visual acuity. In the other hand, it has been reported that the baseline EZ integrity was as a positive prognostic factor for visual outcomes following intravitreal anti-vascular endothelium growth factor (AntiVEGF) injections in wet-AMD. In the eyes with diabetic macular edema (DME), EZ disruption at the fovea was reported as an important predictor of visual acuity. Additionally, it was reported that EZ disruption was correlated with poorer visual outcomes following macular hole or ERM surgery.

The integrity of the IZ is also predictor of visual acuity outcome following surgeries for ERM, retinal detachment (RD) and macular hole. These data shows that disruption, discontinuity or the loss of integrity of the ELM, EZ and IZ bands in OCT point out a damage or disruption of the photoreceptors in various retinal diseases [3,4].

Moreover, it was hypothesized a stepwise order for importance of these lines in degenerative retinal diseases: first at the IZ, followed by the EZ and finally the ELM line [5-19].

However, it was demonstrated that the ELM is the first structure recovering following successful macular hole surgery, and that the recovery of ELM is a sign of intact photoreceptors and Müller cells. Additionally, it was reported that EZ recovery is restricted to areas with intact ELM, whereas IZ recovery is observed only in eyes with an intact EZ and ELM line following the surgeries for macular hole and epiretinal membrane [11-18]. These mean that an intact foveal ELM is essential for the complete restoration of the other photoreceptor microstructures [7-19].

In the recent studies, it was considered that the presence of undisturbed ELM is a positive predictor of visual outcome in treatment of AMD and DME [9,10]. A shorter ELM length before treatment was demonstrated to be associate with a lesser degree of change in visual acuity after AMD treatment [9].

After successful macular hole restoration, presence of disrupted ELM was associated with poor visual acuity and restoration of the EZ was restricted to areas where the ELM was also fully recovered, suggesting that restoration of the ELM is closely associated with that of the EZ [11-18].

In eyes with retinal detachment, preservation of the ELM postoperatively was correlated with better postoperative visual acuity and the restoration of the photoreceptor layer [5,15]. Photoreceptor disruption might be demonstrated using OCT as loss of integrity or absence of ELM, EZ and IZ. It has been considered that the disruptions of these the outer retinal layers are highly correlate with lower visual acuity and retinal sensitivity in various retinal diseases [9-19] (Table 1).

New abnormal OCT findings and signs

Outer retinal tubulations or cysts (Figure 2A): Outer retinal tubulation (ORT) is distinctive OCT finding firstly described Zweifel et al. It is formed histologically by interconnecting tubes, including degenerate photoreceptors and enveloping Müller cells. They are not seen in healthy retinas. ORTs have been identified at outer retinal layers or next to photoreceptors in AMD, pseudoskantoma elastica, Bietti’s crystalline retinopathy, multifocal choroiditis and uveitis with CNVM, CSCR, pattern dystrophy and choroideremia [20-23]. ORT is a different type of other cystic structures. It should be distinguishing from intraretinal fluid cysts, cystic cavities, pseudo cysts located at outer retinal layers. Intraretinal fluid cysts in cystoid macular edema (CME) have the arrangement as petaloid manner while as ORTs are randomly arranged at the macula. ORTs have often in the branched structure in contrast to subretinal fluid. Pseudo cysts are also hyporeflective intraretinal cysts. However, they are viewed in inner nuclear layer [24,25]. ORTs are round hyporeflective lesions surrounded by an hyperreflective ring. It may contain a few focal hyperreflective spots in contrast to the completely hyporeflective retinal cystoid lesions. ORT has a hyperreflective border while as the cyst has no hyperreflective border. ORT is more refractory to anti-vascular endothelial growth factor (AntiVEGF) therapy compared to the cysts and is associated with poor visual outcome. ORT is always located at the level of the outer nuclear layer [20-23].

Outretinal tubulation is a finding long lasting macular disease. It is typically observed at areas of previous outer retinal damage, overlying fibrotic/fibrovascular scar or retinal atrophy or near to neovascular fibrotic lesion in the patients with AMD. It has been considered that it might be an indicator of failure of the photoreceptor support system (RPE and choroid) as in choroideremia and some some inherited retinal degenerations [20-23]. Since they are not the indicator for an ongoing neovascular or exudative activity and, they do not require treatment [20-23].

Figure 2. Samples from new signs/patterns/findings in spectral domain optical coherence tomography: ORT (A), HRD (B), perifoveal cupping (C), FCE (D), dipping sign (E), choroidal macrovessel (F). Arrows indicate specifically each entity. ORT: outer retinal tubulation; HRD: hyperreflective dots; FCE: focal choroidal excavation.
Hyperreflective spots or dots (Figure 2B): Hyperreflective spots or dots (HRD) are new findings previously unseen in OCT demonstrated firstly by Coscas et al. [26]. It has been reported that they might seem in different retinal diseases, including AMD, DME, retinal venous occlusion (RVO), CSCR, uveitis and macular telangiectasia [26-40]. HRDs are not visible in any monochromatic and angiographic photos. The HRDs are scattered, punctiform, small in size, mainly located in the outer retinal layers and/or around pockets of fluid accumulation and are typically not confluent [26,27]. Costas et al hypothesized that HRD were detected in the majority of patients affected by exudative AMD could be inflammatory activated and swollen cells or activated microglia cells because they may spread in all retinal layers in contrast to hard exudates, that they rapidly disappear after antiVEGF or anti-inflammatory treatment [26,27]. They considered that inflammation plays in the role at the pathogenesis of AMD and suggested that the presence of HRDs could affect the prognosis and treatment decisions, particularly in the patients with AMD.

Although etiology of HRD is not clear, there are various theories of pathogenesis of HRD. They might be caused focal accumulations of pigment or lipofuscin granules, small intraretinal proteins or lipid/lipoprotein exudates/deposits/extravasation due to the breakdown of the blood-retinal barrier (BRB), derived the degenerated photoreceptors or the macrophages phagiosed them [26-40]. It has been reported that HRDs were the first features to disappear or to reduce significantly after anti-VEGF treatment in patients with both focal DME and diffuse DME. Therefore, it has been hypothesized that HRDs represent a clinical marker of inflammatory response [28-40].

Flyer saucer sign: This sign was firstly described as an emerging finding of early antimalarial maculopathy by Chen et al using OCT in patients with at 2010. Its main characteristics are the loss of the normal macular depression, perifoveal thinning, perifoveal depression toward RPE, and perifoveal loss of the photoreceptor IS/OS junction. Poor visual outcome.

Perifoveal cupping (Figure 2C): In a recent study, we observed “perifoveal inner retinal thinning” as a new sign in the romatologic patients using antimalarial drug and we called it as “perifoveal cupping”. We considered that this entity detected with SD-OCT might be a predictor for impending antimalarial related maculopathy in the absence of visual field defect. As a support to our findings, in a previous study, it was detected an appearance of a broadened foveal base and also thinning of the inner retinal layer on SD-OCT in the patients using antimalarial drug without fundus and visual field changes. Perifoveal cupping or a broadened foveal base might indicate early hydroxychloroquine retinopathy [43,44].

Focal choroidal excavation (FCE) (Figure 2D): Focal choroidal excavation (FCE) is a new choroidal entity, which can only be detected with OCT. It was firstly described by Jampol et al using OCT in 2006 [45,46]. FCE is characterized by focal concavity at the RPE-
choriocapillaris line in the choroid in an OCT scan, with a good visual acuity, and normal appearance of the overlying retina. In the FCE cases, there is no history of trauma and current or prior retinal or choroidal vascular or infectious disease [45,46]. FCE affects Bruch’s membrane–RPE-choriocapillaris complex line and photoreceptors. It is considered that this lesion often remains stable. However, some lesions may be related to development the CNVM [47-50]. It has been reported that FCE may occur in various macular diseases such as AMD, CSCR, ERM, CNVM, polyoidial choroidal vasculopathy (PCV), Best vitelliform macular dystrophy (BVMD), Vogt-Koyanagi-Harada Disease (VKHD), multifocal choroiditis and punctate inner choroidopathy, focal retinochoroiditis, foveoschisis, torpedo maculopathy, multiple evanescent white dot syndrome (MEWDS), combined hamartoma of the retina and retinal pigment epithelium [47-59].

The pathogenesis of the FCE is not well defined. However, it is considered that FCE could be an embryonic developmental disorder, or an acquired pathology. Some authors hypothesize that FCE is a congenital malformation while as others theorize that it might due to the failure of chorioretinal development in the embryonic stage, micro staphyloma, congenital focal choroidal dysplasia, focal choroidal atrophy caused by congenital or acquired choroiditis [47-50]. They might occur as cone-shaped, bowl-shaped type the mixed type in OCT [48].

Dipping sign (Figure 2E): Dipping (tenting down) sign may be observed in some acute CSCR patients. It is characterized by dipping or tenting at the outer surface of detached neurosensory retina due to hyperreflective material accumulation such as subretinal fibrin or fibrinous exudate connecting the detached neurosensory retina and RPE at its opposite [60,61].

Choroidal macrovessel (Figure 2F): Choroidal macrovessel, the abnormal choroidal vessel was firstly described by Lima et al using indocyanine green angiography (ICGA) [62]. Recently, it has been also reported the findings in enhanced depth imaging (EDI) and en face (EF) imaging in OCT of the choroidal macrovessel. It may be associated no retinal abnormality or hyperpigmentation of the RPE, debris in the subretinal space, and changes in the outer nuclear layer thickness [62,63]. The choroidal macrovessel could be distinguished from choroidal hemangioma, subretinal parasite, vortex varix, retinochoroidal anastomosis, anomalous posterior ciliary vessels [62,63].

Pearl necklace sign (Figure 3A): The pearl necklace sign detected with SD-OCT is characterized by a contiguous ring of small hyperreflective dots lining in the inner wall of cystoid spaces located in the OPL. It is considered that it may represent lipid-laden macrophages [64].

The pearl necklace sign should be distinguishing from ORT, which is located deeper in the outer nuclear layer of the retina. In ORT, the hyperreflective ring is continuous and homogeneous, while as the contiguous hyperreflective dots are as small foci in the pearl necklace sign. Both entity have also different pathogenesis. It is considered that ORT might be a result of focal disruption of the photoreceptor layer [64].

Outer retina-choroid complex splitting (Figure 3B): OCT can show a splitting of outer retina-choroid complex (ORCC) or broadening of ORCC. The splitting is between photoreceptor outer segments, RPE and Bruch membrane. It may occur in the patients with best vitelliform macular dystrophy [65].

Figure 3. Samples from new signs/patterns/findings in spectral domain optical coherence tomography: Pearl necklace sign (circle) (A), ORCC splitting (arrows and asterisk)(B), dome-shaped macula (frame) (C), foveal pseudocyst (arrows) (D), brush-border pattern (arrow) (E), CFD (arrows) (F). ORCC: outer retina-choroid complex; CFD: cystoid foveal degeneration.
pathogenic process or recurrent foveal ischemia. FFA often fails for the distinguishing from CME. This pathology may be accurately diagnosed with [74,75].

Authorship and contribution

All authors listed on the title page made significant contributions to this manuscript.

Acknowledgements

None

Funding

No funding was received for this study.

Competing interest

The authors have no conflict of interest or financial relationships related to this manuscript.

References

1. Arevalo JF, Lasave AF, Arias JD, Serrano MA, Arevalo FA (2013) Clinical applications of optical coherence tomography in the posterior pole: the 2011 José Manuel Espino Lecture - Part I. Clin Ophthalmol 7: 2165-2179. [Crossref]
2. Gabriele ML, Wolfstein G, Ishikawa H, Kagemann L, Xu J, et al. (2011) Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci 52: 2425-2436. [Crossref]
3. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: Literature review and model. Retina 31: 1609-1619. [Crossref]
4. Mitamura Y, Mitamura-Aizawa S, Katome T, Naito T, Hagiwara A, et al. (2013) Photoreceptor impairment and restoration on optical coherence tomographic image. J Ophthalmol 2013: 518170. [Crossref]
5. Sakai T, Calderone JB, Lewis GP, Linberg KA, Fisher SK, et al. (2003) Cone photoreceptor recovery after experimental detachment and retachment: An immunocytochemical, morphological, and electrophysiological study. Invest Ophthalmol Vis Sci 44:416-425. [Crossref]
6. Milan A, Li Z, Cideciyan A, Jacobson S (1996) Clinopathologic effects of the Q464ter rhodopsin mutation in retinitis pigmentosa. Invest Ophthalmol Vis Sci 37:753-765. [Crossref]
7. Aizawa S, Mitamura Y, Hagiwara S, Segawa T, Yamamoto S (2010) Changes of fundus autofluorescence, photoreceptor inner and outer segment junction line, and visual function in patients with retinitis pigmentosa. J Clin Experiment Ophthalmol 38:597-604. [Crossref]
8. Hagiwara A, Mitamura Y, Kumatagi K, Baba T, Yamamoto S (2013) Photoreceptor impairment on optical coherence tomographic images in patients with retinitis pigmentosa. Br J Ophthalmol 97: 237-238. [Crossref]
9. Kwon Y, Lee D, Kim H, Kwon O (2014) Predictive findings of visual outcome in spectral domain optical coherence tomography after ranibizumab treatment in age-related macular degeneration. Korean J Ophthalmol 28: 386-92. [Crossref]
10. Oishi A, Shimozono M, Mandai M, Hata M, Nishida A, et al. (2013) Recovery of photoreceptor outer segments after anti-VEGF therapy for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 251: 435-440. [Crossref]
11. Theodosiadis P, Grigoropoulos V, Theodosiadis G (2011) The significance of the external limiting membrane in the recovery of photoreceptor layer after successful macular hole closure: A study by spectral domain optical coherence tomography. Ophthalmologica 225:176-184. [Crossref]
12. Bottoni F, De Angelis S, Luccarelli S, Gigala M, Staurenghi G (2011) The dynamic healing process of idiopathic macular holes after surgical repair: a spectral-domain optical coherence tomography study. Invest Ophthalmol Vis Sci 52: 4439-4446. [Crossref]
13. Oka E, Mitamura Y, Baba T, Kitahashi M, Oshitari T, Yamamoto S (2011) Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am J Ophthalmol 152: 283-290. [Crossref]
14. Shimozono M, Oishi A, Hata M, Kurimoto Y (2011) Restoration of the photoreceptor outer segment and visual outcomes after macular hole closure: Spectral-domain optical coherence tomography analysis. Graefes Arch Clin Exp Ophthalmol 249: 1469-1476. [Crossref]
15. Wakabayashi T, Oshima Y, Fujimoto H, Murakami Y, Sakaguchi H, et al. (2009) Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology 116: 519-528. [Crossref]
16. Wakabayashi T, Fujimata M, Sakaguchi H, Kusaka S, Oshima Y (2010) Foveal microstructure and visual acuity in surgically closed macular holes: Spectral-domain optical coherence tomographic analysis. Ophthalmology 117:1815-1824. [Crossref]
17. Shimozono M, Oishi A, Hata M, Matsuki T, Ito S, et al. (2012) The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery. Am J Ophthalmol 153: 698-704. [Crossref]
18. Ito Y, Inoue M, Rui T, Hirotu K, Hirakata A (2013) Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery. Invest Ophthalmol Vis Sci 54:7302-7308. [Crossref]
19. Saxena S, Srivastav K, Cheung CM, Ng JY, Lai TY (2014) Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography. Clin Ophthalmol 8: 2507-2522. [Crossref]
20. Zweifel SA, Inamura Y, Freund KB, Spaide RF (2011) Multimodal fundus imaging of pseudoexfoliation elastin. Retina 31: 482-491. [Crossref]
21. Kojima H, Otani A, Ogino K, Nakagawa S, Makijima Y, et al. (2012) Outer retinal circular structures in patients with Besti crystalline retinopathy. Br J Ophthalmol 96: 390-393. [Crossref]
22. Turgut B, Bilir N (2012) The frequency and importance of outer retinal tubulations in age related macular degeneration. Retina-Vitreus 20: 260-264.
23. Goldberg NR, Greenberg JP, Lauk K, Tsang S, Bailey Freund K (2013) Outer Retinal Tubulation in Degenerative Retinal Disorders. Retina 33: 1871-1876. [Crossref]
24. Cohen SY, Dubois L, Nghiem-Buffet S, Ayrault S, Fajnkuchen F, et al. (2010) Retinal pseudocysts in age-related geographic atrophy. Am J Ophthalmol 150: 211-217. [Crossref]
25. WOLTER JR (1955) [A case of advanced retinitis pigmentosa with rosette-shaped formations on the retina]. Klin Monbl Augenheilkd Augenarztl Fortbild 127: 687-694. [Crossref]
26. Coscas G, Coscas F, Vismara S, Zourdani A, Li Calzi CI (2009) Clinical features and natural history of AMD; in Coscas G, Coscas F, Vismara S, Zourdani A, Li Calzi CI (Eds): Optical Coherence Tomography in Age-Related Macular Degeneration. Heidelberg, Springer, pp 171-174.
27. Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, et al (2013) Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229: 32-37. [Crossref]
28. Coscas G, Loevenstein A, Augustin A, Bandello F, Battaglia Parodi M, et al. (2011) Management of retinal vein occlusion—consensus document. Ophthalmologica 226:4:28. [Crossref]
29. Ogino K, Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, et al. (2012) Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina 32: 77-85. [Crossref]
30. Bolz M, Schmidt-Erfurth U, Deuk G, Mylonas G, Kriechbaum K, et al (2009) Optical coherence tomographic hyper-reflective foci: a morphological sign of lipid extravasation in diabetic macular edema. Ophthalmology 116: 914-920.
31. Kon Y, Iida T, Maruko I, Saito M (2008) The optical coherence tomography-ophthalmoscope for examination of central serous choriorretinopathy with precipitates. Retina 28: 864-869. [Crossref]
32. van Velthoven ME, Verbraak FD, Garcia PM, Schlingemann RO, Rosen RB, et al. (2005) Evaluation of central serous retinopathy with en face optical coherence tomography. Br J Ophthalmol 89: 1483-1488. [Crossref]
33. Vujosevic S, Bini S, Midaen G, Berton M, Piloto E, et al (2013) Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res.
34. Gaudric A, Ducos de Lahitte G, Cohen SY, Massin P, Haouchine B (2006) Optical coherence tomography in group 2A idiopathic juxtapfoveal retinal telangiectasia. Arch Ophthalmol 124: 1410-1419. [Crossref]
35. Baumüller S, Charbel Issa P, Scholl HP, Schmitz-Valckenberg S, Holz FG (2010)
Turgut B (2016) The new landmarks, findings and signs in optical coherence tomography

42. [Insert citation]

41. [Insert citation]

40. [Insert citation]

39. [Insert citation]

38. [Insert citation]

37. [Insert citation]

36. [Insert citation]

35. [Insert citation]

34. [Insert citation]

33. [Insert citation]

32. [Insert citation]

31. [Insert citation]

30. [Insert citation]

29. [Insert citation]

28. [Insert citation]

27. [Insert citation]

26. [Insert citation]

25. [Insert citation]

24. [Insert citation]

23. [Insert citation]

22. [Insert citation]

21. [Insert citation]

20. [Insert citation]

19. [Insert citation]

18. [Insert citation]

17. [Insert citation]

16. [Insert citation]

15. [Insert citation]

14. [Insert citation]

13. [Insert citation]

12. [Insert citation]

11. [Insert citation]

10. [Insert citation]

9. [Insert citation]

8. [Insert citation]

7. [Insert citation]

6. [Insert citation]

5. [Insert citation]

4. [Insert citation]

3. [Insert citation]

2. [Insert citation]

1. [Insert citation]