tRNAs are transcribed as precursors and processed in a series of reactions culminating in aminoacylation and translation. Central to tRNA maturation, the 3’ end trailer can be endonucleolytically removed by tRNase Z. A flexible arm (FA) extruded from the body of tRNase Z consists of a structured ααββ hand that binds the elbow of pre-tRNA. Deleting the FA hand causes an almost 100-fold increase in k_{cat}, with little change in K_m, establishing its contribution to substrate recognition/binding. Remarkably, a 40-residue Ala scan through the FA hand reveals a conserved leucine at the ascending stalk/hand boundary that causes nearly eliminating its ability to bind substrate. K_m also increases with substitutions in the GP (α4–α5) loop and at other conserved residues in the FA hand predicted to contact substrate based on the co-crystal structure. Substitutions that reduce k_{cat} are clustered in the β10–β11 loop.

Interestingly, the 3’ end CCA is an anti-determinant for tRNase Z that discourages the recycling of mature tRNAs (4–7), although not in every case (8). Additional functions have been suggested for tRNase Z, including a possible role in human prostate cancer susceptibility (2, 9–12). In some instances, tRNase Z has cleaved RNAs that are transcriptionally encoded, and a CCA-adding enzyme is required (1); endonucleolytic processing by tRNase Z is thus a precise and probably essential reaction in the pathway to a mature 3’ end (2, 3).

Sequence alignments suggest conserved FA structure and function among archaea and eukaryotes (including their organelles), CCA at the 3’ end of mature tRNAs is not transcriptionally encoded, and a 5’ end trailer can be endonucleolytically removed by tRNase Z. A flexible arm (FA) extruded from the body of tRNase Z consists of a structured ααββ hand that binds the elbow of pre-tRNA. Deleting the FA hand causes an almost 100-fold increase in k_{cat}, with little change in K_m, establishing its contribution to substrate recognition/binding. Remarkably, a 40-residue Ala scan through the FA hand reveals a conserved leucine at the ascending stalk/hand boundary that causes nearly eliminating its ability to bind substrate. K_m also increases with substitutions in the GP (α4–α5) loop and at other conserved residues in the FA hand predicted to contact substrate based on the co-crystal structure. Substitutions that reduce k_{cat} are clustered in the β10–β11 loop.

Effect of Changes in the Flexible Arm on tRNase Z Processing Kinetics*

Louis Levinger 1, Angela Hopkinson 2, Rohini Desetty, and Christopher Wilson

From the Department of Biology, York College of the City University of New York, Jamaica, New York 11451

* This work was supported, in whole or in part, by National Institutes of Health Grants S06GM08153, R15CA20072, and SC3GM084764. This work was also supported by grants from the Professional Staff Congress-City University of New York.

1 The on-line version of this article (available at http://www.jbc.org) contains supplemental Table 1 and Figs. 1–3.

2 Present address: Dept. of Microbiology and Immunology, University of Michigan Medical School.

tRNAs are transcribed as precursors with a 5’ end leader and 3’ end trailer. The 5’ end leader is removed by RNase P. The 3’ end trailer can be endonucleolytically removed by tRNase Z, which cleaves following the unpaired nucleotide just beyond the 3’ side of the acceptor stem (the discriminator) leaving a 3’-OH ready for CCA addition. In some bacteria and in all archaea and eukaryotes (including their organelles), CCA at the 3’ end of mature tRNAs is not transcriptionally encoded, and a CCA-adding enzyme is required (1); endonucleolytic processing by tRNase Z is thus a precise and probably essential reaction in the pathway to a mature 3’ end (2, 3).

Interestingly, the 3’ end CCA is an anti-determinant for tRNase Z that discourages the recycling of mature tRNAs (4–7), although not in every case (8). Additional functions have been suggested for tRNase Z, including a possible role in human prostate cancer susceptibility (2, 9–12). In some instances, tRNase Z can recognize and cleave RNAs that are structurally related to pre-tRNAs with 3’ end extensions (10, 12).

Long (tRNase ZL) and short (tRNase ZS) forms of tRNase Z are encoded by different genes (2, 22, 23). Both forms are present in human and other vertebrate genomes and in Arabidopsis and other higher plants. Only tRNase ZL is found in bacteria and archaea; only tRNase ZS is found in Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster. Sequence alignments suggest conserved FA structure and function.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Table 1 and Figs. 1–3.

1 To whom correspondence should be addressed: 94-20 Guy R. Brewer Blvd., Jamaica, NY 11451. Tel.: 718-262-2704; Fax: 718-262-2369; E-mail: louie@york.cuny.edu.

2 Present address: Dept. of Microbiology and Immunology, University of Michigan Medical School.

3 The abbreviations used are: FA, flexible arm; nt, nucleotide; WT, wild type; tRNase ZL, long form of tRNase Z; tRNase ZS, short form of tRNase Z; GP loop, glycine/proline-rich loop.
tion between tRNase Z_L and tRNase Z_S (see Fig. 1), although they have different positions in the primary structure.

tRNase Z_L may have arisen from a tandem gene duplication of tRNase Z_S^* (2) with subsequent evolutionary adaptation. Human tRNase Z_L displays between 1,500–2,000-fold higher catalytic efficiency than tRNase Z_S^*. The short form has been more thoroughly studied (25), including the solution of three high resolution crystal structures (15, 26, 27) and a co-crystal structure with tRNA (20).

The active site is found entirely within the carboxyl-terminal two-fifths of tRNase Z_L, which is a close homolog of tRNase Z_S^*. The amino-terminal three-fifths of tRNase Z_L displays weak homology with the carboxyl-terminal two-fifths and with tRNase Z_S^*. Architectural relics from tRNase Z_S^* were apparently retained in the amino-terminal portion of tRNase Z_L (2), whereas residues involved with metal ion binding and catalysis were specifically replaced. Exceptionally, the FA of tRNase Z_S^* occurs between the Motif III His and Motif IV Asp (twice in the homodimer), but only in the amino-terminal half of tRNase Z_L between residues 173–232 (see Fig. 1). This adaptation, in which the FA occurs only in the amino portion of tRNase Z_L and the active site is present only in the carboxyl-terminal part, could contribute to its expanded substrate range (10) and higher catalytic efficiency (24).

Sequence alignments were sufficient to identify the tRNase Z_L FA (see Fig. 1) (21) despite the absence of additional structural information. Remarkably, deletion of the FA from $S.\ cer\text{-}
\text{visiae}$ tRNase Z abolished tRNA binding and catalysis without affecting its activity with the small molecule substrate bis(p-nitrophenyl)phosphate (21). The co-crystal structure shows contacts principally between α5 residues in the hand of the FA and the D/T loops (elbow) of tRNA (20). These results demonstrate that the FA of tRNase Z is involved with substrate recognition and binding remote from its active site and from the scissile bond of the substrate. Some of the substrate D/T loop substitutions in human tRNA$^{\text{Arg}}$ also cause the K_m for tRNase Z_L to increase, suggesting effects on binding (28). The FA of $T.\ maritima$ tRNase Z (a short form with an atypical cleavage site and FA) (29, 30) is dispensable, but some of the mutations affected its cleavage site (31).

D. melanogaster tRNase Z (a long form) with a deleted hand of the FA has a K_m almost 100-fold higher than that of the wild type enzyme. A 40-residue Ala scan through the hand of the FA shows a cluster of residues centered on the β10–β11 loop with reduced k_{cat}, increases in K_m clustered in the GP (α4–α5) loop and at the boundary with α5, and additional K_m increases scattered at other conserved positions suggested by the co-crystal structure (20) to contact substrate. Interestingly, substitution of a single residue (Leu186) at the ascending stalk-α4 boundary (a conserved residue and predicted contact) (20) causes almost as great an increase in K_m as deletion of the entire FA hand, with little decrease in k_{cat}.

Experimental Procedures

tRNase Z Mutagenesis and Expression—D. melanogaster tRNase Z cDNA (accession number AY119279) was baculovirus-expressed from methionine 24 (suggested to be the translation start for the nuclear form of the enzyme) (32). Residues are thus numbered +1 from this methionine (19), hence Gly200 for a central conserved residue in the GP (α4–α5) loop of the FA (see Fig. 1). Overlap extension amplification for the Ala scan through the hand of the FA was achieved using complementary mismatched oligonucleotides (Sigma Genosys) with a GCC Ala codon substituted at each of 40 positions (Ala186 in wild type tRNase Z was substituted with Thr). AFA hand deletions were similarly constructed; AFA designations refer to the last residue retained on the amino-terminal side of the breakpoint and the first residue retained on the carboxyl-terminal side (e.g. ΔFA183/226 retains Arg183 and Thr226 with 42 residues deleted from Ala184 to Val225) (see Fig. 1). Versions of tRNase Z with FA deletions closer to the boundary between the stalk and the body of the enzyme (e.g. from 173/232 to 177/228) did not express (data not shown), suggesting that a finishing loop is avoided to interfere with structure of the body of the protein.

Oligonucleotides were 33-nucleotides (nt) long (15 wild type nt on each side of the substitution). Forward and reverse primers for the unique internal BstEII (nt 470) and PflMI (nt 1149) subcloning sites were used to obtain A and B segments incorporating the mismatches. VENT DNA polymerase (New England Biolabs) was used for amplifications with an annealing temperature of 65°C. Longer oligonucleotides were used whenever an A or B segment failed to amplify. A/B segments were joined by overlap extension-amplification using the BstEII and PflMI primers and subcloned into the tRNase Z cDNA pFastBac-HTA (Invitrogen) transfer plasmid. Accuracy of construction was confirmed by DNA sequencing (Genewiz).

Bacmid DNA transfer, virus amplification, expression in insect Sf9 cells, and nickel chelate affinity purification of soluble tRNase Z were performed as described previously (19). Enzyme concentrations were determined using Bio-Rad dye reagent and confirmed by gel electrophoresis and fluorescent staining (Figs. 3A and 4A).

Substrate Preparation—D. melanogaster tRNA$^{\text{Arg(UUA)}}$ (Fig. 3B), a canonical tRNA with a 17-nt 3’ end trailer, was prepared by T7 transcription of a template Dral digest (to obtain -UUU at the 3’ end of the 3’ end trailer), cleaved with a cis-acting hammerhead to obtain a mature 5’ end (as in Ref. 33), and gel-purified as described previously (17). Pre-tRNA$^{\text{Arg}}$ was 5’ end-labeled with polynucleotide kinase and [γ-32P]ATP and repurified.

tRNase Z Processing Kinetics—Variant enzyme concentrations for processing kinetics were based on results of processing efficiencies (data not shown) determined using $\sim 10^{-10}$ M labeled pre-tRNA$^{\text{Arg}}$, between one and two orders of magnitude below the lowest K_m observed (supplemental Table 1). At a low [S], V is pseudo-first order in [S], and % product/min ($V/[S]$) is a measure of reaction efficiency (k_{cat}/K_m). More than 50% of the substrate could be processed with sufficient wild type enzyme (data not shown).

For kinetic experiments, a constant trace amount of labeled substrate was supplemented with a concentration series of unlabeled pre-tRNA$^{\text{Arg}}$. The substrate concentration range (usually 2–100 nm for wild type (WT) tRNase Z) was adjusted so that the K_m fell within the [S] range for each tRNase Z variant. RNA concentrations were independently determined in each experiment by running analytical lanes of the unlabeled RNA samples and comparing with standards. Percent product/min ($V/[S]$) decreases with increasing [S] (supplemental Fig. 1,
Enzyme kinetics were determined from original wild type and variant enzyme stocks (Bio-Rad assay). At the time of use, enzymes were diluted to 2 \mu M (equivalent to 2.5 \times 10^{-8} \text{ M}) in the first tube of a dilution series. To refine the estimation of [E] in kinetic experiments, 2.5 \mu M of the subsequent 1:10 dilution (to 200 \text{ ng} / \mu M, 25 \mu M) was electrophoresed on a protein gel (supplemental Fig. 1A) and compared with protein standards. V_{max} (obtained from Eadie-Hofstee plots or by nonlinear regression analysis of Michaelis-Menten plots) (supplemental Fig. 1) was converted to k_{cat} by dividing by [E].

Variant enzymes were used in two or more kinetic experiments (typically $n = 3$–4); a parallel experiment with wild type tRNase Z was included each time variant processing kinetics was performed. Calculations of values relative to WT were made between experiments with variant and wild type tRNases Z performed on the same day and, therefore, do not coincide with values calculated using the wild type tRNase Z data presented on row 1 of supplemental Table 1 (the means of all eighty kinetic experiments). Reproducible kinetic parameters were obtained with the lowest possible concentration of each variant enzyme (supplemental Fig. 1). Wild type tRNase Z was used at ~25 pM, at least 1,000 times lower concentration than has been used by other laboratories (e.g. Refs. 31 and 34).

Multiple Sequence Alignments—Multiple sequence alignments (Fig. 1A) were prepared using ClustalW and displayed using GeneDoc. Structural designations for the hand of the FA (e.g. α_4, α_5, β_{10}, and β_{11}) are taken from the Bacillus subtilis tRNase Z \text{Z} structure (Protein Data Bank code 1Y44) (15). Corresponding residue numbers are higher by 29 or 30 in the FA hand of D. melanogaster tRNase Z than in B. subtilis (e.g. D. melanogaster Leu187 corresponds to B. subtilis Leu158, and Gly200 corresponds to Gly171) (see alignments in Fig. 1) (15, 21). Residue colors signify identity or similarity, with green being the most conserved.

Flexible Arm of tRNase Z

RESULTS

Multiple Sequence Alignments of the Flexible Arm—The flexible arm of tRNase Z consists of 35–40 residues in a globular, compact $\alpha_4\beta_5\eta$ structure (the hand) (15, 27) extruded from the body of the enzyme and held apart from it by an extended two-stranded polypeptide stalk (Fig. 1). The sequence of the hand is more conserved than that of the stalks (Fig. 1A).

To further probe for residues and regions important for substrate recognition and binding, a FA hand deletion and an Ala scan, each of the 40 wild type residues (between the body of the enzyme and held apart from it by an extended two-stranded polypeptide stalk (Fig. 1)) was singly substituted with alanine, expressed and compared with the wild type enzyme in repeated kinetic experiments. Reproducible kinetic parameters were obtained with the lowest possible concentration of each variant enzyme (supplemental Fig. 1). Wild type tRNase Z was used at ~25 pM, at least 1,000 times lower concentration than has been used by other laboratories (e.g. Refs. 31 and 34).
Flexible Arm of tRNase Z

From the amino-terminal side, the sequence at the ascending stalk-α4 boundary (Gly\(^{185}\)-X-Leu\(^{187}\)) is conserved; Leu\(^{187}\) may be replaced by another bulky hydrophobic residue (Phe or Ile). α4 is an amphipathic helix with polar residues present at both ends and in the middle (n = 1, 4, and 7) with their side chains pointing toward the solvent and the tRNA, when present. Length, sequence, and position of the GP (α4–α5) loop are conserved with the consensus GXPGXP (sometimes GXPGGP), producing its characteristic shape (Fig. 1 and supplemental Fig. 3D), in which the polypeptide backbone in the vicinity of Gly\(^{200}\) runs parallel to the bases in the elbow of the tRNA (the tertiary Gly\(^{19}\), Cys\(^{25}\) base pair), producing favorable stacking interactions. α5 is moderately conserved, starting with two bulky hydrophobics and ending with a Gly, with a bulky hydrophobic residue and a Lys in between. The β10 consensus is two bulky hydrophobics flanking a Thr. The β10–β11 loop has a consensus Asp. β11 (G(K/R)x(I/V)) has a consensus Gly at its amino boundary followed by a consensus Lys or Arg, a non-conserved residue and a consensus hydrophobic (Ile or Val). The short 3/10 helix following β11 (η) ends with a consensus Asp, and the η-descending stalk boundary is marked by a bulky hydrophobic.

The original tRNase Z\(^L\) sequence alignments (2) included a description of a conserved 10-residue Walker A motif that begins at the start of α5 (15). Several α5 residues were suggested to contact substrate based on the co-crystal structure (20). Additionally, a five-residue insertion sequence (TAAIA) close to the carboxyl-terminal border of the GP loop in Homo sapiens and other vertebrate tRNases Z\(^L\) has not been further characterized.

Structure of the FA, Free and Bound to tRNA—The available structures of bacterial tRNases Z (short forms) (15, 26, 27) are similar; structure models presented here are taken from the first published structure (Fig. 1, B and C) (supplemental Fig. 3A–C) (15) and the co-crystal structure (Fig. 1D and supplemental Fig. 3D) (20). The B subunit FA structure in free tRNase Z\(^L\) is practically the same as when bound to tRNA (15, 20). These models provide the basis for secondary structure designations (from the amino to carboxyl terminus: ascending stalk-α4-GP loop-α5-β10-loop-β11-η-descending stalk). The structure of the hand (Fig. 1, B and C) (15) and the co-crystal structure with tRNA (Fig. 1D) (20) suggest that the hand directly binds the elbow of the tRNA (at a conserved distance from the scissile bond) through specific contacts and that the stalk establishes the distances from the hand to the body and active site. One side of the hand (the ascending stalk-α4 boundary, the GP loop-α5 boundary, and α5) faces the elbow of the tRNA. In Fig. 1C, the tRNA would be above the page. In Fig. 1D, the tRNA is on the left, giving the best view of all secondary structure elements. β10, the β10–β11 loop, and β11 are behind α4 and α5 and would not be expected to contact the tRNA. Conserved residues most important for substrate binding (Leu\(^{187}\) and Gly\(^{200}\)) (Fig. 1, supplemental Fig. 1, and supplemental Table 1) are marked with blue asterisks.

Deletion of FA Hand Produces an ~100-fold Increase in \(K_m\)—A FA hand deletion was prepared to determine the contribution the FA hand makes to processing kinetics. Deletion of the FA hand close to its boundaries with the stalk (dashed lines in

FIGURE 2. Graphical representation of kinetic effects of the FA deletion and Ala substitutions relative to the wild type (from right three columns of supplemental Table 1). A–C, \(k_{cat}/K_m\) and \(K_m\) relative to wild type, respectively. S.E. are presented in supplemental Table 1. Abscisca, ΔFA and the 40 residues (Gly\(^{185}\)–Asp\(^{229}\)) (supplemental Table 1) with Ala substitutions. The designations between A and B and between B and C are structural elements based on alignment with B. subtilis tRNase Z\(^L\) and the crystal structure (as in Figs. 1 and 2) (de la Sierra-Gallay et al. (15)). Colored residues and values on the bar graph indicate significant reductions in \(k_{cat}/K_m\) (Gly\(^{200}\), Lys\(^{207}\), Lys\(^{211}\), Lys\(^{218}\)) in red (A) and increases in \(K_m\) (ΔFA, Leu\(^{187}\), Gly\(^{185}\)–Pro\(^{201}\), Leu\(^{205}\), Lys\(^{207}\), Gly\(^{200}\), and Ile\(^{212}\)) in dark blue (B). Substitutions that contribute to reduced catalytic efficiency (\(k_{cat}/K_m\)) are shown using the same colors as in C. See supplemental Fig. , which emphasizes the internal high \(K_m\) relative to WT variants by suppressing the two highest values (ΔFA and L187A).
Flexible Arm of tRNase Z

DISCUSSION

A Discrete Region of tRNase Z, the FA Hand—This study refines results from earlier studies of the flexible arm using kinetic analysis of a hand deletion and an Ala scan throughout the hand. The FA has been reported previously to be indispensable or, in contrast, dispensable for pre-tRNA processing (21, 31). Results with tRNase Z ∆FA establish that the hand of the FA contributes almost two orders of magnitude to the base K_m for wild type tRNase Z of 3.4×10^{-8} M. The ability to assign a value to the contribution made by the FA to substrate binding is due to care taken with kinetic analysis and the quality of baculovirus-expressed tRNase Z. No changes in the cleavage site were observed, unlike in Ref. 31.

The Ala scan through the hand of the FA led to discovery of clusters of residues in which substitutions principally affect K_m or k_{cat} (the GP and β10–β11 loops, respectively) and of a single residue (Leu158) at the ascending stalk/hand (ε4) boundary in which a substitution strikingly increases K_m. These results were obtained by careful kinetic analysis and the substantial effort of a single residue Ala scan compared with punctate mutagenesis strategies.

Multiple sequence alignments show three classes of FA (21): the tRNase Z^L FA and a slightly shorter FA of the bacterial tRNase Z class align well (Fig. 1A); an atypically short FA exemplified by Arabidopsis thaliana TRZ1 and *T. maritima* tRNase Z lacks the bulky hydrophobic at the ascending stalk/hand boundary, and the GP loop is instead characterized by a cluster of 4–5 basic residues. Curiously, both tRNase Z FAs that have been subjected previously to mutagenesis analysis are from this latter category (31, 34), although the original FA deletion reported to be indispensable was from the more typical *E. coli* tRNase Z (21). Significance of L187A and the GP loop for substrate binding would therefore not have been detected in the latter studies. The results presented here, in light of previous reports, suggest that there are at least two general mechanisms by which the FA recognizes tRNA, one primarily based on interactions of complementary surfaces and the other based on electrostatic contacts.

Ala Substitutions That Produce Greatest Increases in K_m—Substitutions in the hand of the FA that produce the greatest increases in K_m (L187A and Gly209) are in conserved residues that were suggested by the co-crystal structure to contact substrate (blue asterisks in Fig. 1, C and D and supplemental Fig. 3) (20). Interestingly, neither of these side chains has potential for H-bonding or electrostatic interactions with nucleoside bases or the polynucleotide backbone. More likely, contacts are based principally on shapes and paths of the respective backbones and through stacking interactions.

Leu187 probably functions as a primary contact with substrate (20), and judging from its position at the ascending stalk-ε4 boundary, could also maintain the structure, position, or orientation of the hand of the FA relative to the stalk and body of the enzyme, thereby influencing ability of the entire FA to bind substrate. The L187A substitution could increase flexibility at this boundary, enabling a stable interaction between the hand of the FA and the body of tRNase Z (arrows in supplemental Fig. 3A) so that the hand would no longer bind tRNA.
Flexible Arm of tRNase Z

The bulky hydrophobic Leu187 side chain is in the interior of the FA hand in \textit{B. subtilis} tRNase Z (supplemental Fig. 3B). The structure of the FA hand could be maintained by a combination of internal hydrophobicity and van der Waals contacts. According to this hypothesis (supplemental Fig. 3C, cf. Fig. 3B), the L187A substitution would allow the hand to collapse due to a net reduction in internal hydrophobicity and van der Waals attractions, explaining the large effect on \(K_m \).

A backbone amino group at Gly200 could electrostatically contact a backbone phosphate on the tRNA (supplemental Fig. 3D) (20); Ala substitution at that position might alter the path of the polypeptide or interfere sterically with its position to prevent this backbone contact. The path of the polypeptide chain in this region of the GP (α4–α5) loop runs parallel to the plane of the Gly189-Cys556 base pair, suggesting a stacking interaction (Fig. 2D and supplemental Fig. 3D). The increased \(K_m \) observed with substitutions in the GP loop may informatively identify a broad contact surface. Processing kinetic analysis reports the \(K_m \) effects on a dynamic ES complex, whereas the co-crystal was a static complex of enzyme with product; thus, the whole GP loop could directly contact the elbow of the substrate during catalysis. On the other hand, effects of these substitutions could be locally propagated along the path of the polypeptide consistent with a single contact corresponding to Gly200, as suggested previously (20).

Contact Positions in Elbow of Pre-tRNA Substrate—The sequence of several nucleotides in the elbow of tRNA are conserved in canonical tRNAs. (The Gly18–Gly19/H9251–H9252/Cys556/D/T loop tertiary base pairs that define the elbow and the Thr54–Ala58 pairing across the T loop that defines the U-turn.) These conserved features and the characteristic length of the coaxially stacked acceptor and T stems present potential characteristics for recognition by tRNase Z and other enzymes in the tRNA maturation pathway that distinguish tRNAs from other RNA molecules without discriminating between individual tRNAs (36–38). Moderate effects on \(K_m \) of human tRNase Z1 were observed with substitutions in the D and T loops of the substrate (28), consistent with a function in tRNase Z recognition for these structural elements. Importance of the elbow and T loop for tRNase Z reaction has been questioned (39), but this and similar studies were performed with a much higher enzyme concentration than in the present study.

Effects of Substitutions on \(k_{cat} \)—The FA appears to be principally concerned with substrate recognition and binding, leading one to anticipate greater effects on \(K_m \) than on \(k_{cat} \). Deletion of the entire FA hand (ΔFA) and one of the Ala substitutions (L187A) cause a large increase in \(K_m \) with little decrease in \(k_{cat} \), which is consistent with this binding model. Most of the FA hand substitutions have a \(k_{cat} \) relative to WT below 1, however, most clearly illustrated by a cluster of low \(k_{cat} \) relative to WT values centered on the β10–β11 loop. One side of the β10–loop–β11 region faces α4–GP loop–α5, and the other side faces the solvent; thus, the region in which effects were observed does not obviously contact the substrate. A change in orientation of the FA hand could allow FA-tRNA binding to persist, but with the tRNA pointed away from the body of tRNase Z and the active site. \(k_{cat} \) effects could also be explained by changes in protein–protein contacts or in protein folding and stability.

Acknowledgments—We acknowledge the technical assistance of Drupattie Dial, Victoria Edwards, Shary Karkashon, and Asif Rizwan. We also acknowledge Kevin Ryan (City College) and Liang Tong (Columbia University) for helpful discussions.

REFERENCES

1. Aebi, M., Kirchner, G., Chen, J. Y., Vijayaraghavan, U., Jacobson, A., Martin, N. C., and Abelson, J. (1990) \textit{J. Biol. Chem.} 265, 16216–16220
2. Tavitgian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayanathan, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliiev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J., and Cannon-Albright, L. A. (2001) \textit{Nat. Genet.} 27, 172–180
3. Chen, Y., Beck, A., Davenport, C., Chen, Y., Shattuck, D., and Tavitgian, S. V. (2005) \textit{BMC Mol. Biol.} 6, 12
4. Nashimoto, M. (1997) \textit{Nucleic Acids Res.} 25, 1148–1154
5. Mohan, A., Whyte, S., Wang, X., Nashimoto, M., and Levinger, L. (1999) \textit{RNA} 5, 245–256
6. Pellegrini, O., Nezzar, J., Marchfelder, A., Putzer, H., and Condon, C. (2003) \textit{EMBO J.} 22, 4534–4543
7. Zareen, N., Hopkinson, A., and Levinger, L. (2006) \textit{RNA} 12, 1104–1115
8. Schiffer, S., Rösch, S., and Marchfelder, A. (2003) \textit{Biol. Chem.} 384, 333–342
9. Korver, W., Guevara, C., Chen, Y., Neuteboom, S., Bookstein, R., Tavtigian, S., and Lees, E. (2003) \textit{Int. J. Cancer} 104, 283–288
10. Takaku, H., Minagawa, A., Takagi, M., and Nashimoto, M. (2004) \textit{Nucleic Acids Res.} 32, 4429–4438
11. Smith, M. M., and Levitan, D. J. (2004) \textit{Dev. Biol.} 266, 151–160
12. Höhlé, A., Fischer, S., Heyer, R., Schütz, S., Zacharias, M., Walther, P., Allers, T., and Marchfelder, A. (2008) \textit{RNA} 14, 928–937
13. Dominski, Z. (2007) \textit{Crit. Rev. Biochem. Mol. Biol.} 42, 67–93
14. Vogel, A., Schilling, O., and Meyer-Klaucke, W. (2004) \textit{Biochemistry} 43, 10379–10386
15. de la Sierra-Gallay, I. L., Pellegrini, O., and Condon, C. (2005) \textit{Nature} 433, 657–661
16. Mandel, C. R., Kaneko, S., Zhang, H., Gebauer, D., Vethantham, V., Manley, J. L., and Tong, L. (2006) \textit{Nature} 445, 953–956
17. Karkashon, S., Hopkinson, A., and Levinger, L. (2007) \textit{Biochemistry} 46, 9380–9387
18. Zareen, N., Yan, H., Hopkinson, A., and Levinger, L. (2005) \textit{J. Mol. Biol.} 350, 189–199
19. de la Sierra-Gallay, I. L., Mathy, N., Pellegrini, O., and Condon, C. (2006) \textit{Nat. Struct. Mol. Biol.} 13, 376–377
20. Schilling, O., Späth, B., Kostelecky, B., Marchfelder, A., Meyer-Klaucke, W., and Vogel, A. (2005) \textit{J. Biol. Chem.} 280, 17857–17862
21. Schiffer, S., Rösch, S., and Marchfelder, A. (2002) \textit{EMBO J.} 21, 2769–2777
22. Takaku, H., Minagawa, A., Takagi, M., and Nashimoto, M. (2003) \textit{Nucleic Acids Res.} 31, 2272–2278
23. Yan, H., Zareen, N., and Levinger, L. (2006) \textit{J. Biol. Chem.} 281, 3926–3935
24. Redko, Y., Li de Lasierra-Gallay, I., and Condon, C. (2007) \textit{Nat. Rev. Microbiol.} 5, 278–286
25. Ishii, R., Minagawa, A., Takaku, H., Takagi, M., Nashimoto, M., and Yokoyama, S. (2005) \textit{J. Biol. Chem.} 280, 14138–14144
26. Kostelecky, B., Pohl, E., Vogel, A., Schilling, O., and Meyer-Klaucke, W. (2006) \textit{J. Bacteriol.} 188, 1607–1614
27. Hopkinson, A., and Levinger, L. (2008) \textit{RNA Biol.} 5, 104–111
28. Minagawa, A., Takaku, H., Takagi, M., and Nashimoto, M. (2004) \textit{J. Biol. Chem.} 279, 15688–15697
29. Ishii, R., Minagawa, A., Takaku, H., Takagi, M., Nashimoto, M., and Yokoyama, S. (2007) \textit{Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun.}
Flexible Arm of tRNase Z

31. Minagawa, A., Ishii, R., Takaku, H., Yokoyama, S., and Nashimoto, M. (2008) J. Mol. Biol. 381, 289–299
32. Dubrovsky, E. B., Dubrovskaya, V. A., Levinger, L., Schiffer, S., and Marchfelder, A. (2004) Nucleic Acids Res. 32, 255–262
33. Fechter, P., Rudinger, J., Giege, R., and Theobald-Dietrich, A. (1998) FEBS Lett. 436, 99–103
34. Spöth, B., Kirchner, S., Vogel, A., Schubert, S., Meinschmidt, P., Aymanns, S., Nezzar, J., and Marchfelder, A. (2005) J. Biol. Chem. 280, 35440–35447
35. DeLano, W. L. (2002) The PyMOL Molecular Graphics System, DeLano Scientific LLC, San Carlos, CA
36. McClain, W. H., Guerrier-Takada, C., and Altman, S. (1987) Science 238, 527–530
37. Levinger, L., Bourne, R., Kolla, S., Cylin, E., Russell, K., Wang, X., and Mohan, A. (1998) J. Biol. Chem. 273, 1015–1025
38. Shi, P. Y., Weiner, A. M., and Maizels, N. (1998) RNA 4, 276–284
39. Shibata, H. S., Takaku, H., Takagi, M., and Nashimoto, M. (2005) J. Biol. Chem. 280, 22326–22334