Guanosine Diphosphatase Is Required for Protein and Sphingolipid Glycosylation in the Golgi Lumen of *Saccharomyces cerevisiae*

C. Abeijon,* K. Yanagisawa,* E. C. Mandon,* A. Häusler,† K. Moremen,‡ C. B. Hirschberg,* and P. W. Robbins‡

*Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655; ‡Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract. Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the luminal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the *S. cerevisiae* guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn decrease mannosylation of proteins and lipids in this compartment. In fact, we found a partial block in O- and N-glycosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of invertase. In addition, mannosylinositolphosphorylceramide levels were drastically reduced.

The lumen of the Golgi apparatus is the subcellular organelle where proteins and lipids become terminally glycosylated. In mammalian cells, nucleotide sugars are transported from the cytosol, their site of synthesis, into the lumen of the Golgi apparatus, via specific carrier proteins. After transport into the lumen and transfer of the sugars to the appropriate macromolecular acceptors, nucleoside diphosphates, the other reaction products are presumably substrates for a nucleoside diphosphatase, which converts them to nucleoside monophosphates. These exit the lumen of the Golgi in a coupled, equimolar, exchange with additional, cytosolic, nucleotide sugar (Hirschberg and Snider, 1987). Nucleoside diphosphates are inhibitors of glycosyltransferases while the monophosphates are not (Khatra et al., 1974; Kuhn and White, 1977; Brandan and Fleischer, 1982). The Golgi membrane transporters for nucleotide sugars appear to be of physiological significance: mutant CHO and MDCK cells have been described in which a specific defect in nucleotide sugar transport leads to the corresponding defect in glycosylation of proteins and lipids in vivo (Hirschberg and Snider, 1987).

S. cerevisiae contains heavily mannosylated proteins, and a highly specific guanosine diphosphatase (GDPase)1 has been described and purified to homogeneity (Yanagisawa et al., 1990). This enzyme appears to be localized in the lumen of Golgi vesicles (Abeijon et al., 1989). Addition of mannosyl donor to outer chains of N- and O-linked oligosaccharides in glycoproteins as well as mannosylation of inositolphosphorylceramides (IPC) occurs in this compartment (Kukuruzinska et al., 1987; Puoti et al., 1991). In all these reactions, GDP-mannose, the mannosyl donor, is synthesized in the cytosol and translocated into the Golgi lumen via a specific membrane carrier (Abeijon et al., 1989). After GDP-mannose entry into the lumen and mannosylation of endogenous protein and lipid acceptors, GDP, is converted, presumably by the above GDPase, to GMP which, by analogy to the mammalian system, is the nucleotide which exits the Golgi lumen and allows entry of additional cytosolic GDP-mannose. In the absence of GDPase, a decrease of GMP, the putative antipporter, should lead to a decrease of GDP-mannose in the Golgi lumen and therefore to substantially reduced Golgi mannosylation.

To determine the in vivo role for the above described *S. cerevisiae* Golgi GDPase, its gene (*GDA1*) was cloned and a null mutation was constructed. The recovered strain was viable and showed no in vitro membrane-bound GDPase ac-

1. Abbreviations used in this paper: CPY, carboxypeptidase Y; GDPase, guanosine diphosphatase; IPC, inositolphosphorylceramides; MIPC, mannosylinositolphosphorylceramide; M(IP)2C, mannosylphosphorylinositolceramide; ORF, open reading frame; PI, phosphatidylinositol.

© The Rockefeller University Press, 0021-9525/93/07/307/17 $2.00
The Journal of Cell Biology, Volume 122, Number 2, July 1993 307-323
tivity. As predicted, the null strain showed a block of O- and N-mannosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of external invertase. In addition, a significant impairment of mannosylation of IPC was also found.

Materials and Methods

Restriction endonucleases and DNA-modifying enzymes were purchased from New England Biolabs (Beverly, MA) or GIBCO BRL (Gaithersburg, MD). pUC13, Smal cut, and phosphatase treated was from Pharmacia LKB Biotechnology Inc. (Piscataway, NJ). Radiochemicals: [2-3H]Mannose, 14 Ci/mmol (American Radiolabeled Chemicals, Inc., St. Louis, MO); Tran3S-labeling mixture (ICN Biomedicals, Inc., Costa Mesa, CA). Radiochemicals: [2-3H]Mannose, 14 Ci/mmol (American Radiolabeled Chemicals, Inc., St. Louis, MO); Tran3S-labeling mixture (ICN Biomedicals, Inc., Costa Mesa, CA). [3H]myoinositol and [α-32P]dCTP (DuPont, New England Nuclear Boston, MA).

Strains and Growth Conditions

S. cerevisiae strains were grown in YEPD or SD medium supplemented with the required amino acids (Sherman et al., 1986). Cells were grown at 30°C. Solid media was made by adding 2% agar to the liquid stock. Sporulation and tetrad dissection were carried out according to published procedures (Sherman et al., 1986). *E. coli* DH5α and DH5α FⅢ (GIBCO BRL) were used in the cloning experiments. The *E. coli* strains were grown in LB medium (Maniatis et al., 1982). Ampicillin [50 μg/ml] was added when needed. All nucleic acid manipulations and bacterial transformations were carried out according to Maniatis et al. (1982). Yeast transformations were carried out by the lithium acetate method of Ito et al. (1983).

Peptide Sequence Analysis

Approximately 80 μg of highly purified GDPase obtained after the second Mono Q column (Yanagisawa et al., 1990; see Fig. 5 a, lane 5) was subjected to SDS-PAGE, electroblotted to nitrocellulose, and stained with Pon-

The Journal of Cell Biology, Volume 122, 1993 308
gland Nuclear) and Klenow fragment of DNA polymerase I. The labeled PCR product was used as a probe for screening a S. cerevisiae genomic library in YEp3.

Screening of S. cerevisiae Genomic Library and Overexpression of the GDA 1 Gene

The S. cerevisiae genomic library in YEp3 was plated on nitrocellulose filters on LB-ampicillin plates (~20,000 clones were screened). Two sets of replicas were prepared on nitrocellulose membranes (Schleicher and Schuell, Inc., Keene, NH). Both sets were prehybridized and hybridized according to Maniatis et al. (1982). The labeled PCR product was used as a probe. Positive clones were picked, purified, and plasmids isolated and subjected to restriction analysis. Southern hybridizations confirmed the presence of PCR product sequences in the isolated plasmids.

Five independent clones were isolated and used to transform S. cerevisiae PRY223 strain. Cells containing YEp3 vector without insert were used as controls. Independent transformants were grown to early logarithmic phase and a crude membrane extract (Orlean et al., 1988) was tested for overexpression of GDPase activity.

Subcloning, Plasmid Construction, and DNA Sequence Analysis

Restriction analysis of the five independent YEp3 clones showed that four had a 3.7-kb Xhol fragment in common, which hybridized with the PCR amplification product. This 3.7-kb Xhol fragment was subcloned in the Sall site of the vector Yep352 (Hill et al., 1986) to generate p3X (see Fig. 1). The other YEp3 clone had a 3.5-kb HindIII fragment hybridizing with the PCR probe; it was cloned into the multiple cloning site of the vector Yep352 to generate p3H (see Fig. 1). This 3.5 HindIII fragment was also cloned into the vector pBlueScript to generate p3HB, needed in the construction of the plasmid used in the gene disruption experiments (see below). A 3-kb PstI-Xhol genomic fragment was cloned into the PstI-XbaI sites at the multiple cloning site of the vector Yep352 to generate p3 PX (see Fig. 1).

Plasmids p3X, p3H, p3PX, and Yep352 without insert were used to transform S. cerevisiae PRY223 and overexpression of GDPase activity was tested as described in the previous section. Based on these results, a 2.2-kb HindIII-Nhel genomic fragment (see Fig. 1) was selected for sequencing and cloned in both orientations into M13 mp19. Sequencing overlapping deletions were introduced on the M13 clones with T4 polymerase using the Cyclic biosystem kit (International Biotechnology, Inc., New Haven, CT). Sequencing was obtained by the "dideoxy" chain termination method (Sanger et al., 1977), using deoxyinosine triphosphate in place of dGTP and Sequenase (United States Biochem. Corp., Cleveland, OH) as described by the manufacturer. DNA sequence data were assembled into a contiguous sequence data base with the SeqMan, DNASTar program. Each strand was sequenced at least twice, and gaps were filled by sequencing from synthetic oligonucleotide primers (see Fig. 2).

Sequence comparisons against the GenBank or GenPept sequence data bases were performed using the Fasta (Pearson and Lipman, 1988) and BLAST (Altschul et al., 1990) programs. The hydropathy plot was generated by the method of Kyte and Doolittle (1982) with a window of 20 amino acids.

Disruption of the GDA1 Gene

Construction of pGDA1. The pGDA1 plasmid contains the GDA1 gene, with 128 codons in the center of the GDAp coding region were deleted and replaced by the LEU2 gene (see Fig. 1). It was constructed in three steps for technical reasons. (Step 1) The 1,550-bp PstI-Nhel fragment of p3HB (containing part of the GDA1-ORF) was cloned into the PstI and XbaI sites of pUC18 to give plasmid A. (Step 2) The 650-bp HindIII-PstI fragment of p3HB (containing part of the GDA1-ORF) was cloned into the multiple cloning site of pBH-L1 to obtain plasmid A. pH-L1 has a 3-kb, BglII S. cerevisiae genomic fragment containing the LEU2 gene cloned into the BamHI site of pUC18. (Step 3) A 3.7-kb HindII-Smal segment of plasmid B (containing the first 172 codons of the GDA1-ORF and the entire LEU2 gene) was cloned into plasmid A cut with HindIII and Hpal to produce pGDA1 (Fig. 1).

Construction of G2 and G11 Strains. The heterozygous gda::LEU2/GDA1 strains G2 and G11 were made via one-step gene replacement (Rothstein, 1983) by transforming the parent strains PRY225 and PRY238, respectively, with a 4.8-kb HindIII-BamHI fragment from pGDA1 containing the LEU2 marked gda deletion. LEU1 transformants were selected and allele replacement was confirmed by Southern analysis (Maniatis, 1982).

Guanosine Diphosphatase Assay

GDPase activity was assayed essentially as described previously (Yanagisawa et al., 1990). Briefly, incubation mixtures contained in a final volume of 0.1 ml, enzyme (10-50 µg of total membrane extract, Orlean et al., 1988), CaCl2 (1 µmol), Triton X-100 (100 µg), GDP (0.2 µmol), and imidazole-HCl buffer pH 7.6, (20 µmol). For UDPase and ADPase assays, GDP was replaced by UDP or ADP at the same concentration. Incubations were done for 5 min at 30°C.

Protein concentration was determined using the BCA protein assay reagent as described by the manufacturer (Pierce, Rockford, IL).

Radiolabeling of S. cerevisiae Cells for the Analysis of O-linked Carbohydrates

Exponentially growing cultures (YPE 2% Sucrose) with an initial OD600 = 1, were used. 30 min before labeling, 2 OD600 of cells were harvested and suspended in 1 ml of YEP 0.5% sucrose. Labeling was done with [2-3H]mannose (specific activity 14 Ci/mmol), 25 µCi/ml were used when total membrane fraction was isolated and 1 mCi/ml when labeled chitinase was isolated. Cells were labeled during 60 min.

O-linked Carbohydrate Analyses

The method of Haslebeck and Tanner (1983) was followed for the isolation of total O-linked carbohydrates from radiolabeled cells. The β-elimination was achieved in 0.1 M NaOH for 24 h at room temperature after which the reaction was stopped by addition of HCl to a final concentration of 0.15 M and the protein was removed by centrifugation. Radiolabeled species in the supernatant were subjected to paper chromatography (Whatman 1 paper) in ethyl acetate/butanol/acetic acid/water (3:4:2.5:4, by vol) during 24 h, or thin layer chromatography on silicone gel 60 plates with two ascents in butanol–ethanol–water (5:3:2, by vol). The standard sugar mixture contained mannose, maltose, and raffinose which was detected by silver staining. To determine the distribution of radioactivity, paper chromatograms were cut into 1-cm strips, placed in a vial with 1 ml of H2O to elute the radioactivity. Then 9 ml of liquid scintillation cocktail were added and the radioactivity measured in a liquid scintillation counter. The thin layer chromatograms were treated with ENHANCE reagent (New England Nuclear) for fluorography, and then exposed to Kodak X-O MAT X-ray film at −70°C. When quantitation was required, the area corresponding to the bands was scraped (based on the autoradiogram) and the radioactivity determined as described for the paper strips.

Isolation of Chitinase from Culture Media by Chitin Binding

Native chitinase was isolated from saturated S. cerevisiae cultures grown in YEPD basically as described by Kuranda and Robbins (1991). Chitinase from 10 ml of media from a saturated culture was allowed to bind ~30 mg of purified chitin (Sigma Chem. Co., St. Louis, MO) for 4 h at 4°C. Chitin was then pelleted by centrifugation and washed three times with PBS. The washed pellet was suspended on 100 µl of SDS sample buffer (2% SDS, 5% β-mercaptoethanol, 10% glycerol) heated to 100°C for 10 min, and analyzed by SDS-PAGE on 5% resolving gels with the discontinuous buffer system described by Laemmli (1970). The gel was then stained with Coomassie brilliant blue.

Radiolabeled chitinase was isolated from 1 ml of [2-3H]mannose-la-
beled cells as described by Orlean (1990). The material was then subjected to β-elimination and paper chromatography as described in the O-linked carbohydrate analysis section.

Immunoprecipitation of Carboxypeptidase Y

The method described by Orlean (1990) was followed. Briefly, logarithmically growing cultures (OD 600 ~1) in methionine-free minimal medium and 2% glucose were used as starting material. Between 2 and 4, OD900 of cells were harvested and suspended in 1 ml of the same medium. Labeling was done for 30 min with 100 mM Tris Trans 3H-labeling mix. After labeling, the cells were washed and suspended on 200 μl PBS with 1% SDS, and broken with glass beads. Triton X-100 was added to give a final concentration of 0.4%. Samples were precleared with preimmune serum and protein A-Sepharose (2 h at 4°C), and then immunoprecipitated with 5 μl of anti-CPY serum (a gift from R. Schoenack, University of California, Berkeley, CA) overnight at 4°C. Protein A conjugates were washed and boiled for 10 min in SDS-sample buffer, and run on SDS-PAGE. Acryl-
amide concentration was 10% on the resolving gel; the discontinuous sys-
tem described by Laemmli (1970) was used. The gel was then treated with ENHANCE (New England Nuclear) and exposed to Kodak X-OMAT x-ray film at -80°C.

Analysis of External Invertase

Preparation of the invertase extracts, native PAGE of the external invertase, and activity staining were done as described by Ballou (1990) with minor modifications. Five OD900 of cells growing logarithmically on YEPD (2% glucose) were harvested and suspended in 3 ml of YEP containing 0.05% glucose to induce invertase during 4 h at 30°C. Further treatment was as described (Ballou, 1990) and 10 μl of total lysate was loaded on the gel. The crude extracts were heated to 50°C for 30 min before loading onto the native gel in order to convert the invertase to a single oligomeric form (Es-
mon et al., 1987). The concentration of acrylamide was raised to 8% and 30-cm long slab gels were run for 10 h at 10 mA constant current. These changes were introduced in order to better resolve the highly glycosylated forms of invertase.

Partial Purification of Invertase

To increase the production of invertase, wild-type (G2-9) and gda 1 null strains were used. Partial purification of enzymes were used to obtain amino acid sequence (Table I). De-

SDS-PAGE and Western Blotting of Purified Invertase

Active fractions (0.5 U) of enzyme from wild-type and gda 1 null strains from the DE 52 cellulose column were combined into three pools and sub-

Radiolabeling of S. cerevisiae Cells for the Analysis of Mannosylinositol Phosphosphingolipids

Exponentially growing cultures (OD900=1) in Wickerham's minimal medium (Wickerham, 1946) were used with 2% glucose as carbon source but omitting myoinositol. Cells (OD900=1) were labeled with 5 μCi/ml of [2-3H]mannose (20 Ci/mmol; New England Nuclear) or with 1 μCi/ml of [2-3H] mannose (14 Ci/mmol; American Radiolabeled Chemicals, Inc., St. Louis, MO) for 10 min. Routinely, 3 OD900 of cells per time point were used. Cultures were then diluted with 4 vol of minimal medium containing 40 μg/ml of cold myoinositol and incubated further for the periods indi-
cated. At the end of the incubations, NaN3 (3 mM) was added, cells were washed four times, and the pellet was resuspended in 100 μl of 10 mM Na3O. Cells were broken by vortexing with glass beads (three times for 1 min each). 10 μl were used to determine protein concentration and total incor-

Mannosylinositol Phosphosphingolipid Analysis

Lipid extracts were analyzed by ascending TLC on 0.2-mm thick silica gel 60 plates (Merck Sharpe & Dohme/Isotopes, St. Louis, MO) using CHCl3:CH3OH:0.22% KCl in water (55:45:10) as solvent system. Ap-

Table I. Amino Acid Sequence of Tryptic Peptides from GDAP and PCR Primer Design

Peptide	Primer aa Position in the protein
1s	Gly Cys Thr Leu Arg Glu Asp Ala 366-374
2s	Val Gly Thr Leu Arg Glu Asp Ala 399-412
3s	Leu Pro Val Leu Arg Glu Asp Ala 238-257
4	Phe Gln Asp Glu Asp Asp Asp 276-282

Amino acid sequence of tryptic peptides from purified GDAP was obtained as described in Materials and Methods. Peptides 31 and 3ii were obtained from the sequencing of a complex peak; boxes represent positions where primary/secondary identifications were not possible; () indicate tentative identifica-
tion of amino acids. I, isoinosine; s, sense; a, antisense.
Overexpression of GDPase activity

Figure 1. Restriction endonuclease cleavage pattern of *S. cerevisiae* genomic DNA isolated from the YEp13 genomic library. The 140-bp amplification product of the PCR reaction is indicated with a hatched bar. Restriction fragments were subcloned into YEp352 to generate p13X, p13H, and p13PX. Their ability to overexpress GDPase activity is shown. The 2.2-kb HindIII-NheI fragment was sequenced, and the GDA1-ORF is denoted as a black box flanked by ATG and TGA-codons. Disruption of GDA1-ORF was performed using the HindIII-BamHI fragment of pGDA1, which contains a LEU2 insertion and deletion of the PstI-HpaI (381 bp) fragment of the GDA1-ORF. The HpaI/SmaI ligation and the NheI/XbaI ligation in pGDA1 did not regenerate either of the restriction sites.

The protein were not known (Table I). The oligonucleotides were then used in a PCR amplification with genomic DNA of *S. cerevisiae* strain PRY123 as template. Only when oligonucleotides 1s and 2a (Table I) were combined in the reaction, was a product obtained (~140 bp). This product was cloned into an M13 vector and its DNA sequence determined. Coding for the additional amino acid sequence of peptide 2, not used in primer design, was found within the PCR product, as expected. Both peptides, 1 and 2, were found in the same open reading frame (ORF) in the PCR product and there was a lysine residue upstream of peptide 2, consistent with the trypsin digestion used to generate the peptides. These results strongly suggested that a specific DNA fragment of the GDPase gene (GDA1) had been amplified.

The 140-bp PCR product was labeled by primer extension and used to screen a *S. cerevisiae* genomic library in YEpl3. A total of 20,000 clones were screened from which five positive colonies were isolated. These clones contained 7-9-kb inserts. Restriction endonuclease cleavage showed that a 3.7-kb XhoI fragment and a 3.5-kb HindIII fragment hybridized with the PCR probe. Both of these fragments and a smaller PstI-XhoI piece (also hybridizing with the PCR probe) were subcloned into YEp352 giving plasmids p13X, p13H, and p13PX (Fig. 1).

Since YEp352 is a 2-μm type vector which replicates with high copy number in *S. cerevisiae*, “overexpression” of GDPase was measured upon transformation of strain PRY223 with p13X, p13H, and p13PX. Both p13X and p13H gave 6–8-fold overexpression of GDPase activity. This result showed that the 0.6-kb Hind III-PstI fragment missing in p13X (Fig. 1) was required for activity. Based on this information, a 2.2-kb HindIII-NheI fragment, which hybridized with the PCR probe, was selected for sequencing.

Sequence of the GDA1 Gene

Sequence information was obtained from both DNA strands for the complete 2.2-kb HindIII–NheI fragment. A 1,557 bp ORF was found starting at a methionine residue 133 bp downstream of the HindIII cloning site (Fig. 2 A). The predicted protein contains the sequence corresponding to all the peptides obtained from the GDPase protein (Fig. 2 A). No NH2-terminal protein sequence was obtained. The hydrophobicity plot of the predicted protein shows a single putative membrane-spanning region of 15 amino acids, starting 9 amino acids after the first methionine (Fig. 2 B). Although this putative transmembrane domain is short, Adams and Rose (1985) demonstrated that mutants of vesicular stomatitis virus glycoprotein G containing 14 or more amino acids of the original 20-amino acid transmembrane domain assumed a transmembrane orientation and were correctly targeted. The deduced protein sequence of the GDA1 gene encodes a 519-amino acid polypeptide with a calculated molecular weight of 56,817 D. Three potential N-glycosylation sites are present within the coding region (Fig. 2 A).

These results are in agreement with the observation that GDPase was purified as a luminal Golgi glycoprotein. The hydrophobic plot suggests a typical type II membrane protein with a single hydrophobic stretch acting as an uncleaved signal sequence and anchor to the membrane (Parks and Lamb, 1991) preceded by a short hydrophilic, cytosolic tail (Fig. 2 B). Most mammalian (Paulson and Colley, 1989; Moremen...
Table II. Guanosine Diphosphatase Activity after Disruption of GDA1 ORF

Strain	Relevant genotype	GDPase (U*/mg protein)	UDPase (U*/mg protein)
G2-9	GDA1	1.68	0.12
G2-10	GDA1	1.46	0.12
G2-11	gdal::LEU2	0	0
G2-12	gdal::LEU2	0	0

Total membrane fractions were assayed for their ability to hydrolyze GDP, ADP, and UDP. GDPase and UDPase activity are defined as GDPase or UDPase minus ADPase. ADPase activity was 0.22 U/mg protein for every fraction. Results are the average of three independent determinations.

* One unit is the amount of enzyme that releases 1 μmol of inorganic phosphate per min under the standard assay conditions described in Materials and Methods.

GDA1 Is Not Essential for Cell Viability and Growth

The GDA1 gene was disrupted by replacing the 381 bp Pst-HpaI fragment in the center of the coding region with a fragment encoding LEU2 (Fig. 1). A linear 4.8-kb HindIII–BamHI fragment containing the gdal::LEU2 allele was used for transformation of PRY225 and PRY238. A schematic representation of the disrupted allele is shown in Fig. 1. Eight independent diploid transformants from each background were sporulated and 12 asci each from 4 of them were dissected. Viable colonies could be generated from each of the tetrad spores, indicating that the GDA1 gene is not essential for viability. Tetrads showed that Leu+ segregated 2:2 in all cases. One tetrad from each genetic background was analyzed in more detail. Southern analyses confirmed the correct replacement of the GDA1 gene by the gdal::LEU2 allele (data not shown).

Assays of GDPase confirmed the loss of this activity in the Leu+ strains. Table II shows the result of a typical experiment. GDPase activity is not detected in membranes derived from the disrupted strains. All values are corrected for production of inorganic phosphate from ADP, which is not a substrate for the enzyme (Yanagisawa et al., 1990). ADPase values were constant in the four samples from each tetrad (see legend of Table II).

GDA1 Is Required to Complete the O-Glycosylation of Proteins

Analysis of the O-linked carbohydrate chains was performed by labeling cells in vivo with [2-3H]mannose for 60 min. Total O-linked carbohydrates were then released by β-elimination and radiolabeled carbohydrate chains were resolved by either paper or thin layer chromatography. The oligosaccharide pattern from the wild-type strains agreed with those previously published (Häusler et al., 1992; Haselbeck and Tanner, 1983) and showed five species (ManrMans) (Fig. 3, lanes 1, 3, and 6). The gdal::LEU2 strains showed accumulation of M1, mannose; M2, mannobiose; M3, mannotriose; M4, mannotetraose; and M5, mannopentose.
was an almost complete absence of chains with 3, 4, and 5 mannose residues (Fig. 3, lanes 2 and 4). To extend these findings, four tetrads from each genetic background were subjected to the same labeling protocol, total O-linked sugar chains were released, resolved by paper chromatography, and labeled M₁–M₅ species quantitated. We found a threefold increase of M₁ and a 1.2-fold increase of M₂ in the gdalΔ strains from both genetic backgrounds (not shown). The decrease in O-linked sugar chains with 3, 4, in 5 mannose residues was more pronounced in gdalΔ strains originated from the G2 diploid that in those originated from the G11 diploid strain. In the G2 derived disrupted strains, we detected a decrease of 4-5-fold in M₁, 10-fold in M₄, and 6-10-fold in the M₅ species. The decline was 2-3-fold in M₁ species, 4-5 in M₄, and 3-5 in M₅ species in the G11 derived disrupted strains (not shown). The wild-type strains corresponding to tetrads from both genetic backgrounds were indistinguishable (not shown).

Mutations in PMR1, a member of the Ca⁺⁺ ATPase family, have been reported to perturb the secretory pathway and Golgi N-glycosylation in yeast (Rudolph et al., 1989). The O-glycosylation phenotype of this mutant has not been reported. As with the gdalΔ deletion, we found that the pmr1::LEU2 mutants cannot complete the O-linked sugar chains; species with 4 and 5 mannoses were not found (Fig. 3, lane 5). We measured a 2.4-fold increase in the amount of M₁, a 1.3-fold increase in M₂, and 20% decrease of M₃ in the pmr1Δ. The almost normal amounts of M₃ in pmr1Δ are a significant difference from gdalΔ, where almost none was found.

Secreted, O-Mannosylated Chitinase Is Underglycosylated in gdal Mutants

S. cerevisiae chitinase is secreted into the growth medium and is extensively and exclusively O-mannosylated (Orlean et al., 1986; Kuranda and Robbins, 1991). The enzyme can be purified from culture media by chitin binding and its mobility on SDS-PAGE depends on the amount and length of the O-linked attached sugar chains (Kuranda and Robbins, 1991). As seen in Fig. 4, lanes 1 and 2 vs lanes 3 and 4, similar amounts of chitinase were isolated by chitin binding from the medium of saturated cultures of wild-type and gdalΔ strains indicating that mutant cells do not have a defect in

![Image of SDS-PAGE gel](image-url)

Figure 4. Effect of GDA1 disruption on O-glycosylated secreted chitinase. Coomassie blue stained SDS-PAGE of secreted chitinase from various strains of *S. cerevisiae* is shown. Secreted chitinase was isolated from 15 ml of medium of saturated cultures by chitin binding. Bound protein was eluted by boiling in sample buffer. Samples were then analyzed on 6% SDS polyacrylamide gels. Lanes 1 and 3 are strains G2-9 and G2-10, wild type for GDA1; lanes 3 and 4 are strains G2-11 and G2-12, both having the GDA1-ORF disrupted; and lanes 5 and 6 correspond to strains CGY2332 and CGY2333, respectively, described in the legend to Fig. 3.
secretion. The mobility on SDS-PAGE was greater for the chitinase produced by the gdalA strains (Fig. 4, lanes 1 and 3 vs lanes 2 and 4). A smaller difference was observed when comparing chitinase produced by the pmrlA strain to the wild-type enzyme (Fig. 4, lane 6 vs lane 6).

To further substantiate the assumption that differences in apparent mobility of chitinase produced by wild-type and mutant strains were the result of differences in glycosylation, cells were labeled in vivo with [2-3H]mannose, chitinase was isolated by chitin binding, sugar chains were isolated by β-elimination and separated by paper chromatography (Orlean et al., 1991). The pattern seen in the O-linked chains released from wild-type chitinase was similar to that previously published (Häusler et al., 1992; Kuranda and Robbins, 1991; Orlean et al., 1991) (Fig. 5, A and B). Chitinase produced by the gdalA strains contained 35% of the radiolabel in the M1 species (relative to total M species); M1 was almost completely absent in chitinase from the wild-type. M2 had the remaining 65% of the radiolabel released from gdalA chitinase while M1, M4, and M5 were absent (Fig. 5 A). Chitinase produced by the pmrlA strain also showed a significant accumulation of the M1 species; M2 and M3 were also present, but in this case only M4 and M5 were absent (Fig. 5 B).

gdal Mutants Cannot Synthesize the Golgi p2 Form of Carboxypeptidase Y

The vacuolar enzyme Carboxypeptidase Y (CPY) has been extensively studied; it is a glycoprotein with four N-linked carbohydrate chains (Stevens et al., 1982). Three forms of the enzyme have been identified: the mature (proteolytically processed) vacuolar form, the core glycosylated ER form of the proenzyme (pl), and the more extensively glycosylated p2 form which is found in the Golgi (Stevens et al., 1982). The three forms were immunoprecipitated from wild-type extracts (Fig. 6, lanes 3 and 5); the GDA1 disrupted strain, however, showed only the ER precursor pl, and a smaller than wild-type mature form, while the Golgi modified p2 was not detected (Fig. 6, lanes 2 and 4). It had previously been shown that the conversion of pl to p2 is solely the result of further mannosylation of the N-linked core in the Golgi, and is not required for accurate proteolytic processing and targeting (Stevens et al., 1982). Thus, the mature form of CPY made by the gdalA strain lacks the additional carbohydrates normally added in the Golgi. The core protein of gdal::LEU2 was not significantly altered because immunoprecipitation of CPY from wild-type and gdalA strains followed by treatment with endo H and electrophoresis showed that proteins from both strains migrated equally (not shown). To further support this finding we immunoprecipitated CPY...
from mnnl, mnnl0. The structure of the oligosaccharides of CPY from this strain has been reported (Ballou et al., 1990) and lacks outer chain α-3 linked mannoses which are added by the mannosyltransferase encoded by the MNN1 gene (Nakajima and Ballou, 1975). The enzyme has been localized to an intermediate Golgi compartment (Graham and Emr, 1991). The electrophoretic pattern obtained from this strain, with an apparently normal p1 form, a mature CPY smaller than wild type, and no observable p2 form, appears identical to that obtained for the gda1Δ strain (Fig. 6, lane 1 vs lanes 2 and 4).

Invertase Is Underglycosylated in gda1 Mutants

Invertase is a highly glycosylated protein whose rate of migration on a native gel depends on the number and size of the N-linked oligosaccharide chains (Ballou, 1990). Moreover, the crude extracts were heated to 50°C for 30 min before loading on to the native gels in order to convert the invertase to a single oligomeric form (Esmon et al., 1987). Fully glycosylated external invertase from wild-type strains migrated as a diffuse band in the upper third of the gel (Fig. 7, lanes 2, 3, and 7) as reported by Ballou (1990). Invertase produced by pmrlΔ strains has been shown to migrate faster, at a rate similar to invertase from strains carrying the mnn9 mutation (Rudolph et al., 1989) consistent with the absence of outer mannan chains. This behavior was confirmed by the present study (Fig. 7, lanes 1 and 6). Invertase produced by the gda1Δ strains showed an intermediate phenotype (Fig. 7, lanes 4 and 5, vs lanes 1 and 6 and lanes 2, 3, and 7); it clearly is underglycosylated, but not completely devoid of outer mannan chains. This result was independent of the genetic background in which the null mutations were made (not shown).

To further determine the degree of underglycosylation of invertase, wild-type and gda1 null cells were transformed with a multicopy plasmid carrying the external invertase gene (SUC2). The enzyme was partially purified from these overproducing strains. Invertase from the wild-type strain eluted from the DEAE cellulose column as a sharp peak with maximum activity at 90-100 mM NaCl (Fig. 8 A). Invertase from the gda1 null mutant was more heterogeneous eluting from the DEAE column as a broad peak with maximum activity between 95 and 130 mM NaCl (Fig. 8 A). This behavior is consistent with either underglycosylation, hyper-phosphorylation, or both. Internal nonglycosylated invertase binds very tightly to DEAE, requiring 2 M NaCl for elution (Fig. 8 A). Fractions across the activity peak of each strain were divided into three pools (P1, P2, and P3 for wild-type enzyme and P4, P5, and P6 for gda1 null mutant enzyme; Fig. 8 A) and subjected to SDS-PAGE followed by blotting to PVDF membranes as described in Materials and Methods. One membrane was stained with antiinvertase antibody (Fig. 8 B). Invertase from the wild-type strain migrated as a broad band with an apparent mobility of 100-150 kD (Fig. 8, lanes 1, 2, and 3); this is similar to the previously described behavior of invertase by Trimble et al. (1991). The mobility of the invertase from the gda1 null mutant strain was clearly more heterogeneous, appearing as a diffused ladder of species migrating between 80 and 130 kD (Fig. 8 B, lanes 4, 5, and 6). Moreover, invertase which elutes later from the DEAE column (lane 6) was of the size range of invertase from Pichia pastoris and S. cerevisiae pmr1 mutant strains (Fig. 8, lanes 7 and 8; B). Preparations of invertase from Pichia pastoris have been shown on SDS-PAGE as a ladder of species of the same size (85-95 kD) as the ER form of invertase from S. cerevisiae Sec 18 mutants.
at 37°C (Trimble et al., 1991). Chromatography of \emph{P. pastoris} oligosaccharides released by endo H showed that over 90% of the species were Man$_6$GlcNac (Trimble et al., 1991). Invertase produced by pmr 1 mutants have also been shown to be devoid of outer mannan chains.

All the invertase fractions from the wild-type and gda 1 null mutant strains showed reactivity with antibodies against the α1, 6-mannose linkage (data not shown). Staining for the presence of terminal α1, 3 linked mannose showed that this linkage occurred, as expected, in the wild-type invertase (Fig. 8 C, lanes 1, 2, and 3). Invertase secreted by the gda 1 null mutants showed a wide range of reactivity varying in amounts similar from wild-type (Fig. 8 C, lane 4) to very reduced levels (lane 6), further supporting the heterogeneity of this enzyme’s mannan chains. Invertase from \emph{P. pastoris} (lane 8) does not contain such linkage in agreement with previous biochemical studies (Trimble et al., 1991).

The Cell Wall Is Altered in gda1 Mutants

The \emph{MNT1} gene (Häußler et al., 1992) is identical to \emph{KRE2} (Hill et al., 1992), a gene isolated based on resistance of \emph{S. cerevisiae} to killer toxin \emph{Kt}. Wild-type \emph{S. cerevisiae} strains are sensitive to \emph{Kt} while gda1 mutants were partially resistant (Bussey, H., personal communication) indicating a structural alteration of the cell wall. Although β-1,6 glucans are components of the \emph{Kt} killer toxin receptor on the cell...
wall (Boone et al., 1990), other components must play a role since the structure and amounts of β-1,6 glucan is normal in mnt 1/kre2 null mutants (Hill et al., 1992). β-glucans are known to be crosslinked with mannanproteins in the S. cerevisiae cell wall. Perhaps the basis for toxin resistance is a reduced number of attachments between these two types of chains.

Biosynthesis of Mannosylinositolphosphorylceramides Is Severely Impaired in gdal Mutants

About one third of *S. cerevisiae* lipids contain inositol; of these, 60% is phosphatidylinositol (PI) which is essential for cell viability and growth (Culbertson and Henry, 1975; Henry, 1982; Nikawa et al., 1982). The remaining 40% consists of three classes of related inositolphosphate-containing sphingolipids, they are: (a) IPC containing a single inositolphosphate; (b) mannosylinositolphosphorylceramides (MIPC), containing a single inositolphosphate with a mannose attached; and (c) the major sphingolipid, mannosydiphosphorylinositolceramide (M(IP)2C) which contains a second inositolphosphate attached to the mannose of MIPC (Steiner et al., 1969; Smith and Lester, 1974). Diversity in the types of sphingoid bases and in the degree of hydroxylation and chain lengths of the fatty acids gives rise to many molecular species of these three lipid classes (Smith and Lester, 1974).

Yeast membranes contain activities which transfer (a) inositolphosphosphate from PI onto endogenous ceramides, yielding IPC, and (b) mannose, from GDP-mannose, onto IPC to yield MIPC (Becker and Lester, 1980). It is also known that the biosynthesis of mannosylinositolphosphorylceramides is dependent on genes controlling the flow of secretory vesicles from the ER to the Golgi apparatus (Puoti et al., 1991). Previous results suggest that IPC is the critical substrate transported between ER and Golgi vesicles; because ER blocked mutants like sec17 and sec18 accumulate IPC and cannot synthesize MIPC at the restricted temperature (Puoti et al., 1991).

From knowledge that MIPC is likely to be made in the Golgi, that GDP-mannose is the mannosyl donor, and that MIPC and M(IP)2C are normally found in the plasma membrane facing the periplasmic space, we speculated that mannosylation of IPC probably occurs in the Golgi lumen for completion of glycosylation. We have shown in the gdal null mutant that, (a) elongation of O-linked carbohydrate chains is blocked at the mannobi-step in bulk cell mannanproteins and in secreted chitinase; (b) N-linked carbohydrates of CPY are not elongated beyond the pl (ER) stage; (c) invertase is underglycosylated; and (d) biosynthesis of MIPC is severely impaired. All these processes have in common a requirement for GDP-mannose in the Golgi lumen for completion of glycosylation. GDAI is the structural gene for a GDPase, previously localized by subcellular fractionation, to a Golgi-like compartment (Anéjion et al., 1989). GDAI deletion was not expected to be lethal because mutants which can only complete glycosylation to the ER (like mnn9) are viable (Ballou, 1990).

We shall briefly review the current status of *S. cerevisiae* Golgi subcompartmentation before interpreting the phenotype of gdal strains in relation to this Golgi structure. The complexity of the *S. cerevisiae* Golgi is just unravelling; few genes have been cloned whose products are specific markers of this compartment. Among these are integral membrane proteins responsible for Golgi functions, such as (a) mntlp, an α,2 mannosyltransferase involved in O-glycosylation (Häuser and Robbins, 1992; Häusler et al., 1992); (b) kex2p, an endoprotease that processes α-factor in a late Golgi compartment (Redding et al., 1991); and (c) pmrlp, a P-type ATPase, homologous to mammalian Ca++ pumps (Rudolph et al., 1989; Antebi, 1991). A null mutation in PMR1 exhibits pleiotropic Golgi dysfunctions (Antebi, 1991).

Other specific Golgi markers are peripheral membrane proteins such as sec7p involved in vesicle-mediated protein sorting and traffic through the Golgi segment of the secretory pathway. Anti sec7p IgG blocks ER to Golgi transport in vitro (Franzusoff et al., 1992) and conditional sec7 mutants accumulate Golgi-like structures (Novick et al., 1981). Other peripheral Golgi membrane proteins include small (20–25 kD) ras-like GTP-binding proteins such as arflp and yptlp. These are localized on the cytosolic surface of the Golgi complex and function in protein transport to and/or within the organelle (Stearns et al., 1990; Segev et al., 1988). Sec14p is a peripheral membrane and cytosolic protein which cofractionates with the putative late Golgi marker kex2p and has PI/PC transfer (exchange) activity; condi-

The Journal of Cell Biology, Volume 122, 1993
Figure 9. Effect of GDA1 disruption on the biosynthesis of MIPC. Wild-type (G2-10 strain, lanes 1 and 3) and gdalA (G2-12 strain, lanes 2 and 4) cells were incubated with [3H]myoinositol for 10 min, followed by addition of high concentration of unlabeled myoinositol and further incubation for 10 min (lanes 1 and 2) or 90 min (lanes 3 and 4). Labeled lipids, PI, IPC, MIPC, M(IP)C were extracted and analyzed by thin layer chromatography (CHCl₃/CH₃OH/0.2% aqueous KCl, 55:45:10) and fluorography. Quantitation is presented in Table III.

Table III. Effect of gdalA on the Biosynthesis of Inositol-containing Phospholipids

Incorporation of [3H]inositol	Wild-type	gdalA	gdalA/wt
Inositol phospholipid			
PI	42,700	47,700	1.12
IPC	10,000	15,500	1.55
MIPC	10,600	4,300	0.40
M(IP)₂C	3,400	1,800	0.53

Ratios of radioactivity of inositol-containing phospholipids

	Wild-type	gdalA
IPC/PI	0.23	0.32
MIPC/IPC	1.06	0.28
M(IP)₂C/IPC	0.34	0.12
M(IP)₂C/MIPC	0.32	0.42

Results were taken from the 90-min time point of the experiment described in Fig. 8.

Biochemical, functional, and morphological results support Golgi subcompartmentalization in S. cerevisiae. Golgi markers have been separated from those of other organelles and from each other. Subcellular fractionation can clearly dissociate kex2 endoprotease from GDPase-containing compartments (Bowser and Novick, 1991); kex2p and αl,3 mannosyltransferase can be partially separated (Cunningham and Wickner, 1989) while GDPase and the αl,2 mannosyltransferase, responsible for the addition of the third O-linked mannose (mntlp, Häusler et al., 1992) co-sediment (Abeijon et al., 1989). Furthermore, the bulk of pmrlp comigrates with kex2p and GDPase, clearly separating from markers of the ER, plasma membrane, vacuole and ERD2, and the yeast HDEL receptor (Antebi, 1991). However, peak and shoulder fractions of pmrlp, GDPase, and kex2p do not overlap completely (Antebi, 1991). At least three functionally distinct Golgi subcompartments have been postulated in S. cerevisiae containing from cis (early) to trans (late) (a)
α,6-mannosyltransferase, (b) α,3-mannosyltransferase, and (c) kex2 endopeptidase (Graham and Emr, 1991). S. cerevisiae strains which lack clathrin heavy chains mislocalized Golgi proteases involved in α factor maturation like kex2p and dipetidylaminopeptidase A to the cell surface, while other Golgi integral membrane proteins such as GDPase were not affected (Seeger and Payne, 1992).

Recently, improved ultrastructural EM analyses with perimanganate staining and serial sectioning, showed that wild-type S. cerevisiae cells contain ~30 Golgi-like structures (Preuss et al., 1992) slightly concave disks, typically observed as single isolated cistermae (60% of cases). Occasionally two (30% of cases) or up to three (10% of cases) of these structures are in parallel stacks, often associated with nearby 50-nm vesicles. Golgi structures are always discrete, not contiguous with ER or other organelles. The yeast Golgi compartments are equidistant from the nucleus and the cell wall (Preuss et al., 1992), and different from the mammalian Golgi complexes which are near the nucleus as a consequence of their association with the microtubule organizing center (Kreis, 1990). Permanganate staining in S. cerevisiae revealed morphological features and structures similar to the cistermae and vesicles labeled with antibodies against yptlp, sec7p, and α,6-mannose residues (Preuss et al., 1992) the latter recognizing proteins which have gained access to the Golgi (Ballou, 1982). Unfortunately, no colocalization of these antigens was done in this EM study.

The above ultrastructural studies agree with previous immunofluorescent experiments which showed yeast Golgi associated antigens dispersed in many locations within the cell, but not overlapping with other organelles. By immuno-fluorescence sec7p colocalizes with kex2p in most instances (60–80%) (Franzusoff et al., 1991). Kex2p is thought to occupy a late Golgi subcompartment whereas sec7p appears to be associated with several Golgi subcompartments (Franzusoff et al., 1991; Franzusoff and Schekman, 1989). PMR may be in another subcompartment because indirect immunofluorescence showed a punctate pattern resembling Golgi staining, but double-labeling experiments in wild-type cells (Antebi, 1991) revealed only a small degree of congruence (although in close juxtaposition) between pmrlp and sec7p (17% or pmrlp and kex2p (26%); pmrlp accumulated in aberrant Golgi-like structures that occur in sec7 mutants.

How does knowledge of the above Golgi subcompartments relate to the phenotype of gdal null mutants and our current hypothesis of the Golgi localization and function of the gdalp? Current models of nucleotide sugar transport into the Golgi lumen predict a critical role for gdalp in those luminal reactions requiring GDP-mannose as substrates: after mannosylation of proteins and lipids, GDP, a reaction product, is converted by gdalp to GMP which can exit the Golgi lumen in an exchange coupled to entry of additional GDP-mannose from the cytosol. In the absence of gdalp, transport of GDP-mannose into the Golgi lumen should be diminished, leading to reduced availability of the nucleotide sugar and inhibition of those mannosylation reactions occurring in this compartment.

Upon examining total O-glycosylation of proteins we found a threefold increase in the amount of base sensitive monosecharide in the gdal strains compared to wild type, strongly suggesting that O-linked sugar chains were normally initiated by the addition of a single mannose residue. Gdalp is not expected to play a role in this initiation step, because it is well established that the biosynthesis of O-linked carbohydrate chains starts in the ER, with the first sugar being transferred to serine or threonine residues of the protein from dolichol-P-mannose (Haselbeck and Tanner, 1983, Orlean, 1990). Dolichol-P-mannose synthase has its active site towards the cytosol (Beck, P. J., C. Albrit, P. Orlean, P. W. Robbins, M. J. Gething, and J. F. Sambrook. 1990. J. Cell Biol. 111:37a), and transport of GDP-mannose into a lumenal compartment is not required for this reaction. It has been proposed that dol-P- man synthase can catalyze the translocation of the mannosylated dol-P-mann from the cytosolic to the luminal side of the ER (Haselbeck and Tanner, 1982), where the sugar becomes attached to the Ser/Thr of the proteins by a recently purified protein O-mannosyltransferase (Sharma et al., 1991).

GDP-mannose is probably the direct donor of the second to fifth O-mannoses which are added stepwise to complete the O-linked mannosyl chains (Haselbeck and Tanner, 1983). These reactions probably occur in the lumen of the Golgi apparatus. Analyses of bulk cell mannosoproteins of gdal null mutants showed a virtual complete absence of O-linked mannosyl chains with 3, 4, or 5 sugars though, unexpectedly, mannosibiose was similar to wild type. Because the second O-linked mannosyl is thought to be added in the Golgi lumen, we were initially surprised by the amount of O-linked mannosibiose found in gdal mutants. However, Kuranda and Robbins (1991) reported that intracellular chitinase from sec18 labeled at the restrictive temperature contained more than half of the sugars as mannosibiose, the remaining being mannosyl. Significant amounts of mannosibiose, in addition to mannosyl, were also detected in cell wall mannsans of sec18 (Haselbeck and Tanner, 1983). Recent studies have shown that sec18 (together with sec17 and 22) belongs to a subset of sec mutants blocked in ER to Golgi transport (class II), in which 50-nm vesicles and enlarged ER structures accumulate (Kaiser and Schekman, 1990). These mutants are believed to be blocked in fusion of these vesicles to the target compartment while class I mutants (sec12, 14, 16, and 23), which accumulate only ER structures appear to be blocked earlier in secretion, during the budding stage (Kaiser and Schekman, 1990). It will be important to determine the length of the O-linked mannosyl chains synthesized by these mutants.

The α,2 mannosyltransferase (mntlp) responsible for the addition of the third O-linked mannosyl has been localized by subcellular fractionation to the Golgi, and colocalizes with the GDPase activity (Abeijon et al., 1989). This α,2 mannosyltransferase activity is inhibited in the gdal mutant; thus the O-glycosylation phenotype of gdal is very similar to that of mnt1 null mutants (Hausler et al., 1992). This provides independent evidence for both activities occurring in the same subcellular compartment.

Bulk mannosoproteins and secreted chitinase from pmrlp strains contained almost normal amounts of O-linked M₃ species and thus appear to be blocked in O-mannosylation later than gdal mutants. Subcompartmentation may play a role in the differential effects of these mutations on Golgi processing, since gdalp and pmrlp would be thought to alter Golgi glyco-sylation in a general, non-specific fashion.

The vacuolar serine protease CPY has been used to detect...
alterations in Golgi N-glycosylation since conversion of the core glycosylated 61 kD, ER, form of the proenzyme (pICPY) to the 69 kD precursor 2 (p2CPY) is solely due to the addition in the Golgi of five mannoses to each of the four N-linked core units present in the proenzyme (Hasilik and Tanner 1978a). This precursor is converted by proteolytic cleavage to a mature, 61-kD form in the vacuole. Glycosylation is not required for correct targeting and processing of CPY (Hasilik and Tanner, 1978b). As predicted, gdal mutants could not synthesize p2CPY and the mature form migrated faster than wild-type on SDS-PAGE. These differences were solely due to glycosylation because mutant and wild-type CPY showed equal SDS-PAGE migration after endo H treatment.

External invertase synthesized by wild-type strains has long outer mannan chain added to core-N-linked oligosaccharides (Ballou, 1990), while that secreted by gdal mutants was underglycosylated but not completely lacking outer mannan chains. Invertase secreted by the mutants is more heterogeneous than that by wild type and partially lacks the terminal cd, 3 linked mannnose units added in the Golgi apparatus. A substantial portion of it showed only core oligosaccharides which are added in the ER. Even though the glycosylation defect observed in invertase is less pronounced than that of CPY and chitinase, four different reasons can explain why a severe decrease in the availability of GDP-mannose in the Golgi lumen of gda 1 mutants may differentially affect individual glycosylation reactions: (a) Different mannosyltransferases have distinct Kms for GDP-mannose (Nakajima and Ballou, 1975). Thus, low concentrations of the nucleotide sugar may affect mannosylations of different substrates to a different extent. (b) Different mannosyltransferases most likely also have different Ki for GDP and thereby selectively affect the synthesis of different glycosylated products. (c) The Golgi apparatus of S. cerevisiae is a subcompartamentalized organelle based on structural (Preuss et al., 1992) and functional evidence (Franzusoff and Schekman, 1989). The various subcompartments most likely have different local substrate concentrations. (d) Invertase has mannosyl phosphate on the outer chains, the donor of which is also GDP mannosyl, although the reaction product in this case is GMP, and not GDP. The transfer of mannosyl phosphate is a lumenal reaction and can generate the putative antipporter, GMP, independently of gda1p. GMP present in the Golgi lumen could in turn facilitate the entry of additional cytosolic GDP-mannose, causing the glycosylation defects induced by the gda1 mutation to be less severe in those subcompartments where addition of mannosyl phosphate occurs. This hypothesis can be tested in a double mutant gda1, mnn6 (defective in phosphohomanann formation [Ballou, 1990]) where invertase may only be core glycosylated. In more general terms, we recognize that the antipporter activity required to sustain the level of mannosylation found in the deletion strain may be derived from GMP generated by enzymes other than gda1p or from weak antipporter activity of GDP. Mutations in peripheral Golgi proteins arfl and ypl lead to a glycosylation phenotype of invertase very similar to gda1 (Stearns et al., 1990). Although CPY also contains mannosyl-phosphate, the addition probably occurs at a different subcellular site than for invertase (Stevens et al., 1982). Sec18 showed almost no phosphate radiolabeled invertase while CPY phosphate content was normal. In addition, conversion of pICPY to p2CPY did not result in additional phosphate incorporation (Stevens et al., 1982). The gdal and pml1 mutations, which have quantitatively different effects on N-glycosylation of CPY and invertase, provide another example of disparity between secretory and vacuolar proteins routed through the yeast Golgi.

Sphingolipids are ubiquitous eukaryotic plasma membrane constituents that contain a common hydrophobic portion (ceramide) which is anchored in the membrane, and a variable hydrophilic region which in S. cerevisiae has mannosylinositol phosphate exposed to the cell surface (Patton and Lester, 1992). In higher eukaryotes they may act as mediators of signal transduction and cellular regulation (Hakomori, 1990; Hanmun and Bell, 1989). Our results with gda1 strains provide direct evidence that the biosynthesis of the mannosyl-sphingolipids occurs in the lumen of the S. cerevisiae Golgi apparatus, supporting previous studies which suggest that GDP-mannose is the direct mannosyl donor in the formation of MIPE (Becker and Lester, 1980) and that these reactions probably occur in the Golgi apparatus (Puoti et al., 1991). The severe decrease of the above lipids in the gdal mutant strains opens the possibility of studying their influence on membrane activities in vivo. Studies in vitro have shown that H+ ATPase, a major protein of the S. cerevisiae plasma membrane is stimulated by sphingolipids (Patton and Lester, 1992).

We thank Drs. M. F. Verostek and R. Trimble (N.Y. State Department of Health, Albany, NY) for their invaluable help in the purification and characterization of external invertase, and Karen Welch and Annette Stratton for excellent secretarial assistance.

This work was supported by National Institutes of Health grants GM 45188 to P. W. Robbins and GM 30365 to C. B. Hirschberg.

Received for publication 9 September 1992 and in revised form 30 March 1993.

References
Abeijon, C., P. Orlean, P. W. Robbins, and C. B. Hirschberg. 1989. Topography of glycosylation in yeast: characterization of GDP-mannose transport and luminal guanosine diphosphatase activities in Golgi-like vesicles. Proc. Natl. Acad. Sci. USA, 86:6935-6939.
Adams, G. A., and J. K. Rose. 1985. Structural requirement of a membrane-spanning domain for protein anchoring and cell surface transport. Cell 41:1007-1015.
Aebischer, R. H., J. Leavitt, R. A. Saavedra, L. E. Hood, and S. B. H. Kent. 1987. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci. USA, 84:6970-6974.
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. A basic local alignment search tool. J. Mol. Biol. 215:403-410.
Angus, W. W., and R. L. Lester. 1972. Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinositol derived from phosphatidylinositol. Arch. Biochem. Biophys. 151:483-495.
Antebi, A. 1991. Cellular function of the yeast calcium ATPase, PMR1. Ph.D. Thesis. Department of Biology, MIT, Cambridge, MA. 4-115.
Ballou, C. E. 1982. In The Molecular Biology of the Yeast Saccharomyces cerevisiae. J. N. Strathern, E. Jones, and J. Broach, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 335-360.
Ballou, C. E. 1990. Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol. 185:440-470.
Ballou, L., L. M. Hernandez, E. Alvarado, and C. E. Ballou. 1990. Revision of the oligosaccharide structures of yeast carboxypeptidase Y. Proc. Natl. Acad. Sci. USA, 87:3368-3372.
Becker, G. W., and R. L. Lester. 1980. Biosynthesis of phosphoinositol containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae. J. Bacteriol. 142:747-754.
Boone, C., S. S. Sommers, A. Hessell, and H. Bussey. 1990. Yeast KRE genes provide evidence for a pathway of cell wall glucan assembly. J. Cell Biol. 110:1833-1843.

Abeijon et al. S. cerevisiae Golgi GDPMase 321
Bowser, R., and P. Novick. 1991. Sec15 protein, an essential component of the exocytic apparatus, is associated with the plasma membrane and with a fraction of exocytic vesicles. J. Cell Biol. 112:1177–1131.

Brandon, E., and B. Fleischer. 1982. Orientation and role of nucleosidediphosphate and 5'-nucleotidase in Golgi vesicles from rat liver. Biochemistry. 21:4640–4645.

Campbell, R. H., Heysen, B. Grondin, and A. Herscovics. 1991. Glycoprotein biosynthesis in Saccharomyces cerevisiae. Isolation and characterization of the gene encoding a specific processing α-mannosidase. J. Biol. Chem. 266:15120–15126.

Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with transmembrane signalling and mediators for cellular interactions. J. Biol. Chem. 262:4387–4394.

Franzusoff, A., and R. Schekman. 1989. Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation. EMBO (Eur. Mol. Biol. Organ.) J. 8:2695–2702.

Franzusoff, A., K. Redding, J. Crosby, R. S. Fuller, and R. Schekman. 1991. Localization of components involved in protein transport and processing through the yeast Golgi apparatus. J. Cell Biol. 115:459–57.

Franzusoff, A., E. Laue, and K. E. Howell. 1992. Immunoisolation of Sec7p coated transport vesicles from yeast secretory pathway. Nature (Lond.) 355:173–175.

Goldstein, A., and J. O. Lampen. 1975. β-D-Fructofuranoside fructohydrolase from yeast. Methods Enzymol. 42:504–511.

Graham, T. R., and S. D. Emr. 1991. Compartimentation of Golgi-specific protein modification and vacuolar protein sorting events defined in yeast. J. Cell Biol. 114:207–218.

Hakomori, S. 1990. Bifunctional role of glyco phosphorylases. Modulators for trans membrane signalling and mediators for cellular interactions. J. Biol. Chem. 265:18713–18716.

Hannun, Y. A., and R. M. Bell. 1989. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science (Wash. DC). 243:500–507.

Haselbeck, A., and W. Tanner. 1983. Dolichol-phosphate mediated mannosyl transferase is localized to distinct compartments of the secretory pathway. Yeast. 2:5–25.

Ish, P. K., E. Eisen, J. R. Schauer, A. Taylor, and R. Schekman. 1987. Structure, assembly and secretion of octomeric invertase. J. Biol. Chem. 262:4387–4394.

Kreis, T. E. 1990. Role of microtubules in the organization of the Golgi apparatus. Cell Motil. Cytoskeleton. 15:67–70.

Kuhlman, C. and A. White. 1977. The role of nucleoside diphosphate in a uridine nucleotide cycle associated with lactose synthesis in rat mammary gland Golgi apparatus. Biochem. J. 168:423–433.

Kurkutuzinska, M. A., M. L. E. Berg, and B. J. Jackson. 1987. Protein glycosylation in yeast. Annu. Rev. Biochem. 56:915–944.

Kuranda, M. J., and P. W. Robbins. 1991. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266:19758–19767.

Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227:680–685.

Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 545 pp.

Moremen, K. W. 1989. Isolation of a rat liver Golgi mannosidase II clone by mixed oligomannose-primed amplification of cDNA. Proc. Natl. Acad. Sci. USA. 86:5276–5280.

Nakajima, T., and C. Ballou. 1975. Yeast manno-protein biosynthesis: solubilization and selective assay of four mannosyltransferases. Proc. Natl. Acad. Sci. USA. 72:3912–3916.

Nakawa, J. I., T. Nagumo, and S. Yamashita. 1982. Myo-inositol transport in Saccharomyces cerevisiae. J. Bacteriol. 150:441–446.

Novick, P., S. Ferro, and R. Schekman. 1981. Order of events in the yeast exocytic pathway. J. Cell Biol. 84:1499–1507.

Orlean, P. 1990. Dolichol phosphate mannosynthase is required in vivo for glycosylphosphatidylinositol membrane anchoring. O-mannosylation, and N-glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:5796–5805.

Orlean, P., H. Ammer, M. Watzele, and W. Tanner. 1986. Synthesis of an O-glycosylated cell surface protein induced in yeast by a factor. Proc. Natl. Acad. Sci. USA. 83:6263–6266.

Orlean, P., C. Albright, and P. W. Robbins. 1988. Cloning and sequencing of the yeast gene for dolichyl phosphate mannosynthase, an essential protein. J. Biol. Chem. 263:17499–17507.

Orlean, P., M. J. Kuranda, and C. F. Albright. 1991. Analysis of glycoproteins from Saccharomyces cerevisiae. Methods Enzymol. 194:682–697.

Parks, G. D., and R. A. Lamb. 1991. Topology of eukaryotic type II membrane proteins: importance of N-terminal positively charged residues flanking the hydrophobic domain. Cell. 64:777–787.

Patton, R. C., and R. L. Lester. 1992. Phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, and the phosphatidylinositol spingolipids are found in the plasma membrane and stimulate the plasma membrane H+-ATPase of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 292:70–76.

Paulson, J. C., and K. J. Colley. 1989. Glycosyltransferase structure, localization and control of cell-type specific glycosylation. J. Biol. Chem. 264:17615–17618.

Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA. 85:2444–2448.

Parks, G. D., and R. A. Full. 1991. Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae. J. Cell Biol. 113:527–538.

Rothstein, R. J. 1983. One step gene disruption in yeast. Methods Enzymol. 101:202–211.

Rudolph, H. K., A. Antebi, G. R. Fink, C. M. Buckley, T. E. Dorman, J. A. Levine, L. S. Davidow, J.-l. Mao, and D. T. Moir. 1989. The yeast secretory pathway is perturbed by mutation in PMR1, a memban of a Caa++ ATPase family. Cell. 58:133–145.

Segger, M., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463–5467.

Sherman, M., and S. Payne. 1992. Selective and immediate effects of clarithromycin on Golgi membrane protein retention in Saccharomyces cerevisiae. J. Cell Biol. 118:531–540.

Seger, N., J. Muilholland, A. Kohef, S. Segev, and D. Botstein. 1992. Characterization of the Saccharomyces cerevisiae Golgi complex through the cell cycle by immunoelectronmicroscopy. Mol. Biol. Cell. 3:782–803.

Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in Yeast Genetics: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 907 pp.
Smith, S. W., and R. L. Lester. 1974. Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. *J. Biol. Chem.* 249:3395-3405.

Stearns, T., M. C. Willingham, D. Botstein, and R. A. Kahn. 1990. ADP-ribosylation factor is functionally and physically associated with the Golgi complex. *Proc. Natl. Acad. Sci. USA.* 87:1238-1242.

Steiner, S., S. Smith, C. J. Waechter, and R. L. Lester. 1969. Isolation and partial characterization of a major inositol-containing lipid in Baker's yeast, mannosyl-diinositol, diphosphoryl-ceramide. *Proc. Natl. Acad. Sci. USA.* 64:1042-1048.

Stevens, T., B. Esmon, and R. Schekman. 1982. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. *Cell.* 30:439-448.

Wickerham, L. S. 1946. A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. *J. Bacteriol.* 52:293-301.

Yanagisawa, K., D. Rensiek, C. Abeijon, P. W. Robbins, and C. B. Hirschberg. 1990. A guanosine diphosphatase enriched in Golgi vesicles of *Saccharomyces cerevisiae*. Purification and characterization. *J. Biol. Chem.* 265:19351-19355.