Photoinduced Aromatization of Asymmetrically Substituted 1,4-Dihydropyridine Derivative Drug Cilnidipine

Waseem Ahmad

Organic Chemistry Section, Department of Chemistry, Uttaranchal University, Dehradun 248001, India

Correspondence should be addressed to Waseem Ahmad; waseemahmad86@hotmail.com

Received 24 July 2014; Accepted 29 September 2014; Published 20 October 2014

The antihypertensive drug Cilnidipine (1) is photolabile under UV-A light. Irradiation of a chloroform solution of Cilnidipine under aerobic and anaerobic conditions produces a common photoproduct which was isolated as 2-methoxyethyl-3-phenyl-2-propenyl pyridine dihydro-2,6-dimethyl-4-(3-nitrophenyl) pyridine-3,5-dicarboxylate (2). The formation of products was explained by photochemical aromatization of Cilnidipine.

1. Introduction

The last few years have witnessed a growing interest of the scientific community in photoinitiated reactions of drugs [1]. This has been motivated by photobiological reasons, connected to the increasing number of cases of drug-photoinduced disorders but it has also attracted considerable attention from a more fundamental photochemical standpoint [2]. Thus it is worthy to stress that studies performed on drugs bearing either simple or complex chromophoric structures have provided remarkable contributions to the broad area of the molecular mechanisms of photoinitiated reactions [3, 4].

Derivatives of 1,4-dihydropyridines (DHPs) are drugs belonging to the class of pharmacological agents known as calcium channel blockers [5]. They inhibit calcium ion penetration inside cells and weaken the contractility of the cardiac muscle [6]. These compounds have been shown to be very effective vasodilators and are useful in the treatment of hypertension, ischemic heart disease, and other cardiovascular disorders [7, 8]. The 1,4-dihydropyridines show fast photochemical decomposition, which lead to chemical changes responsible for weakening the therapeutic effect [9, 10]. During the use of the DHPs, some side effects have been reported, of which the most common are associated with the vasodilatory action. But recently, besides these phenomena, more and more phototoxic effects on the skin are observed, indicating that they can cause skin photosensitivity reactions [11, 12].

Cilnidipine is a newly synthesized dihydropyridine calcium antagonist that has a slow onset and long duration of action. It can regulate the catecholamine secretion closely linked to intracellular Ca^{2+} levels [13, 14]. Comparing with other calcium antagonists, it has a slow onset, long-lasting antihypertensive effect, and unique inhibitory actions on sympathetic neurotransmission [15]. It shifts the lower limits for autoregulation of the cerebral blood flow downward, which may remain intact even if excessive hypotension is induced by Cilnidipine [16]. Hence, Cilnidipine has high potentials in the therapy of hypertension. Cilnidipine also exhibits photosensitive reaction [17].

The main goal was to investigate the photochemical reactivity and to correlate with its clinical photosensitization. Herein we have examined the photochemistry of a newly synthesized dihydropyridine calcium antagonist Cilnidipine under mild conditions similar to those encountered in biological systems, namely, oxygenated media, as well as under argon atmosphere. The irradiation of Cilnidipine with UV-A light under both conditions gives the same photoproduct identified as 2 from their spectral (IR, 1H-NMR, 13C-NMR, and mass spectra) properties (Scheme 1). The products are formed by photochemical aromatization of Cilnidipine.
2. Experimental

2.1. Apparatus and Chemicals. All chemicals used were of analytical grade. Pure Cilnidipine was obtained from Sigma Aldrich (India); IR spectra were recorded as KBr discs on a Perkin Elmer model spectrum RXI. 1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance-DRX-300 Spectrometer using TMS as internal standard and CD$_3$OD as solvent. High resolution mass spectra were determined with a VG-ZAB-BEQ9 spectrometer at 70 eV ionization voltage. Merck silica gel 60 F$_{254}$ plates were used for analytical TLC; column chromatography was performed on Merck silica gel 60 (60–120 mesh).

2.2. Photoirradiation Procedure. Cilnidipine (265 mg) was dissolved in 400 mL chloroform and irradiated at room temperature for 1 hr in a Rayonet photochemical reactor (The Southern New England Ultraviolet Co. Model RPR-208 equipped with four RUL-300 nm fluorescence lamps) for the complete conversion of the reactants. Progress of the reaction was monitored by thin layer chromatography (chloroform-methanol, 98:2). Irradiation was carried out under both aerobic and anaerobic conditions. At the end of reaction the formation of a number of products was indicated on TLC and the photoproduct was isolated by eluting with chloroform and petrol (60:40, v/v) on silica column. Under both aerobic and anaerobic conditions 2 is obtained as major photoproduct and identified as 2-methoxyethyl-3-phenyl-2-propenyl pyridine dihydro-2,6-dimethyl-4-(3-nitrophenyl) pyridine-3,5-dicarboxylate (2) from the following spectral properties.

2-Methoxyethyl-3-phenyl-2-propenyl Pyridine Dihydro-2,6-dimethyl-4-(3-nitrophenyl) Pyridine-3,5-dicarboxylate (2). Yield: 125 mg (47%) HRMS calcld. For C$_{27}$H$_{26}$N$_{2}$O$_7$, 490.5045 found 490.5040; IR (KBr): 1680 (CO), 1350 (NO$_2$), 1530 (NO$_2$) cm$^{-1}$; 1H-NMR (CD$_3$OD, δ, ppm) 7.84–8.40 (m, phenylH), 2.5 (s, CH$_3$), 3.23 (s, OCH$_3$); 13C-NMR (CD$_3$OD, δ, ppm) 1660 (CO), 148.8, 138.5, 133.4, 130.2, 122.0, 121.4 (Phenyl), 18.6 (CH$_3$); MS: m/z: 490 (M$^+$), 461 (M$^+$–OCH$_3$), 444 (M$^+$–NO$_2$).

3. Results and Discussion

Irradiation of Cilnidipine in chloroform under both aerobic and anaerobic conditions with Corex filtered light followed by purification of crude product by silica gel column chromatography afforded one major photoproduct, which was identified by their spectral studies as 2-methoxyethyl-3-phenyl-2-propenyl pyridine dihydro-2,6-dimethyl-4-(3-nitrophenyl) pyridine-3,5-dicarboxylate (Scheme 1).
The photoproduct formation can be rationalized by the involvement of different mechanisms under aerobic and anaerobic conditions. Photoproduct formation under aerobic conditions is proposed as photoinduced single electron transfer from Cilnidipine (CLD) to molecular oxygen results in the formation of a radical cation (CLD$^+$) and a superoxide radical anion (O$_2^-$). The generated CLD$^+$ cation radical may undergo fast deprotonation to give the CLD$^\cdot$ radical. The CLD$^\cdot$ radical further reacts with molecular oxygen to yield the pyridine photoproduct (2) and H$_2$O$_2$ (Scheme 2).

Under anaerobic condition photoprodut formed according to the proposed mechanism; excited Cilnidipine donates an electron to chloroform resulting in the formation of radical cation (CLD**) and CHCl$_3^\cdot$. Elimination of HCl from both intermediates leads to the formation of a radical pair of Cilnidipine (CLD$^\cdot$) and dichloromethyl (CHCl$_2^\cdot$).
radicals. Hydrogen abstraction by CHCl₂∙ radical completes the reaction by formation of the photoproduct 2 and dichloromethane (Scheme 3).

The most interesting aspect of dihydropyridines can be attributed to the coenzyme reduced nicotinamide adenine dinucleotide (NADH). The importance of the oxidative reaction of these compounds is due to their similarity to the oxidative metabolism of these compounds with pharmaceutical activity in the liver to form pyridine derivatives, which become biologically inactive [18]. Hence, a convenient method for the conversion of 1,4-dihydropyridines to pyridine derivatives is important for the investigation of their metabolism and the result of the present investigation provides two suitable methods for the aromatization of 1,4-dihydropyridine.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

References

[1] G. Cosa and J. C. Scaiano, “Laser techniques in the study of drug photochemistry,” Photochemistry and Photobiology, vol. 80, no. 2, pp. 159–174, 2004.
[2] B. Quintero and M. A. Miranda, “Mechanisms of photosensitization induced by drugs: a general survey,” Ars Pharmaceutica, vol. 41, no. 1, pp. 27–46, 2000.
[3] M. H. Kleinman, M. D. Smith, E. Kurali et al., “An evaluation of chemical photoreactivity and the relationship to phototoxicity,” Regulatory Toxicology and Pharmacology, vol. 58, no. 2, pp. 224–232, 2010.
[4] S. Sortino, G. Cosa, and J. C. Scaiano, “pH Effect on the efficiency of the photodeactivation pathways of naphazoline: a combined steady state and time resolved study,” New Journal of Chemistry, vol. 24, no. 3, pp. 159–163, 2000.
[5] J. Mielcarek, T. Osmalek, and M. Kruszynska, “Photodegradation products of new dihydropyridine derivatives,” Chromatographia, vol. 69, no. 5-6, pp. 503–506, 2009.
[6] E. Fasani, A. Albini, and M. Mella, “Photochemistry of Hantzsch 1,4-dihydropyridines and pyridines,” Tetrahedron, vol. 64, no. 14, pp. 3190–3196, 2008.
[7] A. R. Momeni, T. Sameh, H. Golmohammadi et al., “An efficient oxidation of 1,4-dihydropyridines to pyridines using silver carbonate on silica gel and celite,” Bulletin of the Korean Chemical Society, vol. 27, no. 3, pp. 355–356, 2006.
[8] S. Cogan and Y. Haas, “Self-sensitized photo-oxidation of para-indenylidene-dihydropyridine derivatives,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 193, no. 1, pp. 25–32, 2008.
[9] P. Pavez and M. V. Encinas, “Photophysics and photochemical studies of 1,4-dihydropyridine derivatives,” Photochemistry and Photobiology, vol. 83, no. 3, pp. 722–729, 2007.
[10] A. Higeroth and U. Baumeister, “Formation of novel photodimers from 4-Aryl-1,4-dihydropyridines,” Chemistry, vol. 7, pp. 4599–4603, 2001.
[11] Y. Kawabe, H. Nakamura, E. Hino, and S. Suzuki, “Photochemical stabilities of some dihydropyridine calcium-channel blockers in powdered pharmaceutical tablets,” Journal of Pharmaceutical and Biomedical Analysis, vol. 47, no. 3, pp. 618–624, 2008.
[12] D. H. Wang, Q. Liu, B. Chen, L. P. Zhang, C. H. Tung, and L. Z. Wu, “Photooxidation of Hantzsch 1,4-dihydropyridines by molecular oxygen,” Chinese Science Bulletin, vol. 55, no. 25, pp. 2855–2858, 2010.
[13] T. Sakaki, H. Naruse, M. Masai et al., “Cilnidipine as an agent to lower blood pressure without sympathetic nervous activation as demonstrated by iodine-123 metaiodobenzylguanidine imaging in rat hearts,” Annals of Nuclear Medicine, vol. 17, no. 4, pp. 321–326, 2003.
[14] K. Sakata, M. Shirotani, H. Yoshida et al., “Effects of amlodipine and cilnidipine on cardiac sympathetic nervous system and neurohormonal status in essential hypertension,” Hypertension, vol. 33, no. 6, pp. 1447–1452, 1999.
[15] S. Fukumoto, E. Ishimura, K. Motoyama et al., “Antialbuminuric advantage of cilnidipine compared with L-type calcium channel blockers in type 2 diabetic patients with normalalbuminuria and microalbuminuria,” Diabetes Research and Clinical Practice, vol. 97, no. 1, pp. 91–98, 2012.
[16] S. Fujii, K. Kameyama, M. Hosono, Y. Hayashi, and K. Kitamura, “Effect of cilnidipine, a novel dihydropyridine CaII-channel antagonist, on N-type CaII channel in rat dorsal root ganglion neurons,” Journal of Pharmacology and Experimental Therapeutics, vol. 280, no. 3, pp. 1184–1191, 1997.
[17] X. Zhang, S. Zhai, R. Zhao, J. OuYang, X. Li, and W. R. G. Baeyens, “Determination of cilnidipine, a new calcium antagonist, in human plasma using high performance liquid chromatography with tandem mass spectrometric detection,” Analytica Chimica Acta, vol. 600, no. 1-2, pp. 142–146, 2007.
[18] S. Onoue, N. Igarashi, Y. Yamauchi et al., “In vitro photoxicity of dihydropyridine derivatives: a photochemical and photobiological study,” European Journal of Pharmaceutical Sciences, vol. 33, no. 3, pp. 262–270, 2008.
