Synthesis and Antiplatelet Aggregation Activity Evaluation of some 2-Aminopyrimidine and 2-Substituted-4,6-diaminopyrimidine Derivatives

Marjan Esfahanizadeha,d, Shohreh Mohebbib, Behnam Dasht Bozorga, Salimeh Amidia, Ali Gudarzia, Seyed Abdolmajid Ayatollahic,e and Farzad Kobarfarda,c,d,*

aDepartment of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. bDepartment of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran. cPhytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. dCentral Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Abstract

A series of novel 2-aminopyrimidine and 2-Substituted-4,6-diaminopyrimidine derivatives have been synthesized and their antiplatelet aggregation activities were assessed against ADP and arachidonic acid-induced platelet aggregation in human plasma using light transmission aggregometry. Among the tested derivatives, compounds I\textsubscript{a}, I\textsubscript{b}, I\textsubscript{B} and II\textsubscript{16} exhibited the highest antiplatelet aggregation activity (36.75, 72.4, 62.5 and 80 \textmu M). None of the compounds showed satisfactory activity against the aggregation induced by ADP but acceptable activities were observed against the aggregation induced by arachidonic acid. 2-aminopyrimidines were more active than 4,6-diaminopyrimidines in this respect.

Keywords: 2-aminopyrimidines; 2-Substituted-4,6-diaminopyrimidines; Antiplatelet aggregation.

Introduction

Platelets play an important role in maintaining cardiovascular integrity and in regulating the bleeding process by blood-clot formation (1). However, uncontrolled platelet aggregation is dangerous in arterial blockage and may lead to life threatening disorders (2). Antiplatelet agents are therefore considered as a significant tool in the treatment and/or prevention of cardiovascular thrombotic disease (3-5). Antiplatelet agents such as aspirin (acetylsalicylic acid), clopidogrel or ticlopidine and anticoagulants such as warfarin are currently two predominant groups of orally consumable drugs in standard therapeutic protocols for prophylaxis and treatment of venous thrombosis and reducing the risk of recurrent myocardial infarction (6-8).

Currently aspirin, which irreversibly inhibits cyclooxygenase 1-mediated transformation of arachidonic acid to thromboxane A\textsubscript{2} (TXA\textsubscript{2}), and the P\textsubscript{2}Y\textsubscript{12} antagonists clopidogrel and prasugrel, which selectively and irreversibly bind to theP\textsubscript{2}Y\textsubscript{12} ADP receptor are routinely used as antiplatelet agents (9, 10).

However there are still some serious limitations to these agents which include weak inhibition of platelet function (eg. aspirin) (11), slow onset of action (eg. clopidogrel) (12), variable response to treatment among the patients (eg. clopidogrel and aspirin) (11, 12) and high incidence of bleeding events which occur in both aspirin and clopidogrel drug therapy (13, 14).
Considering the current situation, development of novel antiplatelet agents which are safe and effective is an urgent need (15).

Aminopyrimidine derivatives are an interesting group of compounds with various reported biological properties. Pyrimidine ring can be found in the structures of many important drugs such as nucleoside antibiotics, antibacterials and cardiovascular agents (16, 17).

Based on the hypothesis suggested by Cattaneo et al. (18), amino pyrimidine ring could be considered as a simplified form of the active metabolites of the thienopyridines and ATP derivatives. The active metabolites of thienopyridines have a simple monocyclic structure which implies that the presence of a bicyclic structure like that of a purine ring is not an absolute requirement for the affinity for the ADP receptor or so on platelet membrane.

A group of amino pyrimidine derivative with thioether substituents has been synthesized and evaluated by Cattaneo et al. (18). The compound showed satisfactory anti platelet aggregation effects when ADP had been used for aggregation induction (18). Based on the mentioned reports and in order to investigate the capability of amino pyrimidine derivatives in inhibition of platelet aggregation pathways, we synthesized two groups of amino pyrimidines with the following structures:

Figure 1. Active antiplatelet pyrimidine derivatives. A. 6-alkylamino-2,4-dialkyl(aryl)thiopyrimidines [7], R = Me, n-Pr, R1 = n-Pr, i-Pr, Ph, R2 = Ph, CH2,CH,Ph; B. Tricyclic pyrimidines [8], R = some amino substituents; c. Substituted 6-amino-2-mercaptopyrimidines [9], R = CH3, CH2CH2NHBOC, CH2,CH2OH, CH2CF3, 2-Chlorobenzyl, etc. R1 = substituted arylsulfonyl moieties.

Figure 2. Comparing the structures of aminopyrimidines with the structures of purine and the active metabolite of clopidogrel.
Comparing the activity of these compounds in inhibition of platelet aggregation induced by ADP and arachidonic acid will provide some insights into the structure activity relationship of these compounds.

Chemistry

The synthetic procedures for groups I and II are illustrated in Figures 4 and 5.

Group I: Methyl ketones (1a-h) were allowed to react with dimethylformamide-dimethylacetate (DMF-DMA) to produce 3-(dimethylamino)-1-aryl-2-en-1-ones (2a-h). These intermediates could be then condensed with guanidine HCl to obtain the corresponding amino pyrimidine ring systems (19).

Group II: As it is shown in Figure 5 the intermediate II₃ (4,6-diaminopyrimidine-2-thiol) was obtained by the reaction of thiourea and malononitrile in absolute ethanol as the solvent. Subsequent reaction of compound II₃ with various alkylhalides at room temperature afforded compounds II₄-₂₅ in good yields.

Structure confirmation of the synthesized intermediates and the final products was performed using IR, NMR and Mass spectrometry (20).

Experimental

General

All evaporations were carried out in vacuo with a rotary evaporator. Melting points (°C) were determined by capillary method on an electrothermal melting point apparatus. Infrared spectra were recorded as thin films of KBr plates with Uₘ₄ in inverse centimeters. Nuclear magnetic resonance spectra for proton (¹H NMR) were recorded on a Bruker DRX-Avance (500 MHz) spectrometer. Chemical shift values are expressed in ppm (parts per million) relative to tetramethylsilane (TMS) as internal standard; s: singlet, d: doublet, dd: double doublet, t: triplet, q: quartet, m: multiplet, br s: broad singlet. Thin layer chromatography (TLC) was performed on Whatman SilG/UV₂₅₄ silica gel plates with fluorescent indicator and the
spots were visualized under 254 and 366 nm illumination. Mass analyses were performed on an Agilent 6400 series equipped with an electrospray (ESI) ionization interface (drying gas adjusted at 300 °C, nebulizing gas flow at 12 L/min). All the compounds were analyzed for C, H, N and S on a Costech model 4010 and agreed with the proposed structures within ±0.4% of the theoretical values.

General procedure for the preparation of compounds (Ia-h)

The detailed description of the methods used for preparation of compounds Ia to Ii and compounds Ia to IIi is reported in reference 19. Briefly to a solution of acetophenone (84 mmol) in DMF (16 mL), was added DMF-DMA (84 mmol) and the solution was heated under reflux for 24 h. Brine (25 mL) was added to the reaction mixture after cooling and the reaction mixture was then extracted with CH2Cl2 (3 × 25 mL). The combined organic fractions were dried over anhydrous Na2SO4 and the solvent was evaporated under reduced pressure. The residue was dissolved in EtOAc (12 mL), followed by addition of n-hexane (100 mL). The precipitate thus obtained was filtered and dried to give the pure product Ia as a yellow solid (19).

General procedure for the preparation of compounds (Ia-H)

To a solution of compounds Ia (2.68 mmol) in isopropanol (13.5 mL) were added sodium methoxide (10.7 mmol) and guanidine hydrochloride (4.02 mmol) and the solution was heated under reflux for 48h. Distilled water (25 mL) was added to the reaction mixture after cooling and the mixture was then extracted with EtOAc (3 × 15 mL). The combined organic fractions were dried over anhydrous Na2SO4 and the solvent was evaporated under reduced pressure. The residue was dissolved in EtOAc (2 mL), followed by addition of n-hexane (25 mL). The precipitate thus obtained was filtered and dried to give Ia-H.

Representative procedure for the preparation of compounds (II4-25)

The detailed description of the methods used for preparation of compounds II4 to II25 is reported in reference 20. Briefly, to a solution of 4,6-diaminopyrimidine-2-thiol (II3, 1.4 mmol) in methanol, was added alkyl halide (3.5 mmol) under basic conditions (NaOH 0.1 M, 14 mL). The mixture was then stirred for 18 h at...
room temperature. After removing the solvent under reduced pressure, the residue was washed by water and the precipitate was collected as a solid. All compounds were obtained in acceptable purity and no further purification was needed (20).

Results and Discussion

All the synthesized compounds were screened for their effects on human platelet aggregation induced by arachidonic acid and ADP using light transmission aggregometry. IC$_{50}$ was determined as the concentration of the test compounds that exhibit platelet aggregation by 50%. The *in-vitro* antiplatelet activity of the synthesized derivatives is listed in Tables 1 and 2.

Comparing the activities of the two aminopyrimidine groups indicates that none of the compounds showed satisfactory activity against the aggregation induced by ADP. Therefore it could be concluded that the compounds do not interfere with ADP receptors on platelet membrane. However, acceptable activities were observed in both groups against the aggregation induced by arachidonic acid. This is not in agreement with the report by Cattaneo *et al.* who introduced a group of aminopyrimidines as active platelet aggregation inhibitors.

Compound	R	A.A IC$_{50}$ MM	ADP % inhibition
I$_a$ (1.25 mM)	ph	36.75	45.2
I$_b$ (0.75 mM)	ph	544	29
I$_c$ (1 mM)	4-F- ph	72.4	28.6
I$_d$ (2.5 mM)	4-F- ph	62.5	53
I$_e$ (1 mM)	3-thienyl	1000	35.5
I$_f$ (1.6 mM)	3-thienyl	>1000	57.3
I$_g$ (1.3 mM)	4-(CF$_3$)- ph	>1000	24.3
I$_h$ (0.5 mM)	4-(CF$_3$)- ph	340	42.5
I$_i$ (1.3 mM)	4-(ph)- ph	>1000	24.3
I$_j$ (1 mM)	4-(ph)- ph	>1000	50
I$_k$ (1 mM)	4-pyridyl	>1000	1
I$_l$ (1 mM)	4-pyridyl	ND	ND
I$_m$ (2.5 mM)	3-pyridyl	1000	35
I$_n$ (0.5 mM)	3-pyridyl	192	39.5
I$_o$ (1.25 mM)	2-pyridyl	752	27.1
I$_p$ (1.25 mM)	2-pyridyl	>1000	44
Indomethacin		3.0	
Aspirin		30.3	

Table 1. Antiplatelet activity of group I derivatives.
inhibitors which interfere with ADP receptors.

Comparing the overall results obtained for aminopyrimidines I and II indicates that 2-aminopyrimidines (I) were more active than 4,6-diaminopyrimidines (II). Only compound 16 in group II showed satisfactory IC$_{50}$ (80 µM).

Among the 2-aminopyrimidines group (I), on the other hand, a few compounds (I$_a$, I$_b$, I$_b$ and I$_G$) showed good activities (36.75, 72.4, 62.5 and 192 µM). Interestingly, compounds with fluorine substituent on phenyl ring (I$_b$, I$_b$) were among the most active compounds.

Global physicochemical properties for compounds I$_{a-h}$, I$_{A-H}$ and II$_{4-25}$ were calculated using Chemdraw Ultra, Chem3D Ultra version 8.0 and Hyper Chem professional and the results are presented in Tables 3 and 4.

Efforts to find a relationship between these
Table 3. Global physicochemical properties for compounds group I.

Compound	ClogP^a	P^b	V^c	SA^d	D^e
I_a	2.2974	20.85	606.6	388.66	2.669
I_b	1.774	20.03	549.5	259.2	1.319
I_c	2.516	24.43	632.5	398.5	3.181
I_d	1.926	22.06	553.45	357.2	1.122
I_e	2.0739	20.38	581.23	379.5	2.56
I_f	1.4697	19.55	521.3	342.54	0.778
I_g	3.3127	22.42	683.67	430.8	3.844
I_h	2.6730	21.59	620.86	395.87	2.208
I_i	4.185	30.5	811.04	495.06	2.708
I_j	1.1964	20.14	592.2	382.9	1.548
I_k	0.409	19.32	529.56	344.89	1.194
I_l	1.1964	20.22	591.97	383.02	1.914
I_m	0.1997	19.32	521.3	342.54	1.774
I_n	1.5964	22.95	611.69	389.11	1.944
I_o	0.409	19.32	535.7	351.3	1.3

^aClogP were calculated by using Chem Draw Ultra version 8.0. ^bPolarizability values were calculated by using Hyper Chem Professional. ^cMolecular volume values were calculated by using Hyper Chem Professional. ^dSurface area values were calculated by using Hyper Chem Professional. ^eDipole (debye) values were calculated by using Chem3D Ultra version 8.0.

Table 4. Global physicochemical properties for compounds group II.

Compound	ClogP^a	P^b	V^c	SA^d	D^e
II₁	0.866	16.55	487.68	331.52	3.1
II₂	1.395	18.39	542.6	362.6	2.926
II₃	1.924	20.22	596.38	394.4	2.933
II₄	2.453	22.06	650.7	423.37	2.895
II₅	2.982	23.89	703.83	455.17	2.9047
II₆	3.511	25.73	749.73	477.11	2.884
II₇	2.398	23.12	653.14	414.09	2.898
II₈	0.8381	26.94	745.2	461.24	3.168
II₉	2.883	28.05	744.66	467.25	3.084
II₁₀	2.933	28.05	754.32	472.14	2.902
II₁₁	2.097	32.61	767.72	477.94	4.137
II₁₂	3.147	28.14	729.07	460.65	41.994
II₁₃	2.577	26.12	706.53	448.67	1.818
II₁₄	2.577	26.12	711.03	452.9	3.835
II₁₅	2.577	26.12	711.7	453.5	4.995
II₁₆	2.535	28.88	771.85	485.4	1.774
II₁₇	1.867	28.06	760.45	479.2	6.326
II₁₈	3.317	27.77	779.18	489.7	4.5
II₁₉	2.963	28.05	754.7	477.36	3.067
II₂₀	3.342	29.88	809.23	507.6	3.145
II₂₁	3.608	33.48	826.6	509.25	2.885
II₂₂	2.397	29.47	799.19	477.84	1.924

^aClogP were calculated by using Chem Draw Ultra version 8.0. ^bPolarizability values were calculated by using Hyper Chem Professional. ^cMolecular volume values were calculated by using Hyper Chem Professional. ^dSurface area values were calculated by using Hyper Chem Professional. ^eDipole (debye) values were calculated by using Chem3D Ultra version 8.0.
physicochemical parameters and antiplatelet aggregation activity of the compounds did not result in a clear correlation. This could be due to the fact that the compounds are different in their access to their targets in the platelet aggregation pathway induced by arachidonic acid.

Further mechanistic studies are needed to clarify the mechanism of antiplatelet activity of these compounds.

References

(1) Zia-Ul-Haq M, Ahmad Shahid S, Ahmed S, Ahmad Sh, Qayum M and Khan I. Antiplatelet activity of methanolic extract of Grewia asiatica L. leaves and Terminalia chebula Retz. Fruits. J. Med. Plants Res. (2012) 6: 2029-2032.
(2) Mathers C, Fat DM and Boerma JT. World Health Organization. The Global Burden of Diseases: 2004 Update. Geneva (2008).
(3) White HD. Oral antiplatelet therapy for atherothrombotic disease: Current evidence and new directions. Am. Heart J. (2011) 161: 450-461.
(4) Latib A, Ielasi A, Ferri L, Chieffo A, Carlino M, Montorfano M and Colombo A. Aspirin intolerance and the need for dual antiplatelet therapy after stent implantation: A proposed alternative regimen. Int. J. Cardiol. (2013) 165: 444-447.
(5) Reiter RA and Jilma B. Platelets and new antiplatelet drugs. Therapy (2005) 2: 465-502.
(6) Ilas J, Jakopin Z, Borstnar T, Stegnar M and Kikelj D. 3,4-Dihydro-2H-1,4-benzoxazine derivatives combining thrombin inhibitory and glycoprotein IIb/IIIa receptor antagonistic activity as a novel class of antithrombotic compounds with dual function. J. Med. Chem. (2008) 51: 5617-5629.
(7) De Meyer SF, Vanhoorelbeke K, Broos K, Saleis II and Deckmyn H. Antiplatelet drugs. Br. J. Haematol. (2008) 142: 515-528.
(8) Amidi S, Kobnarfid F, Moghaddam AB, Tabib K and Soleymanizadeh. Electrochemical synthesis of novel 1,3-indandione derivatives and evaluation of their antiplatelet aggregation activities. Iran. J. Pharm. Res. (2013) 12: 91-103.
(9) Maree AO and Fitzgerald DJ. Variable platelet response to aspirin and clopidogrel in atherothrombotic disease.