E2A/PBX1, MLL/AF4, BCR/ABL (M-BCR), BCR/ABL(m-BCR) Gene Rearrangements in Acute Lymphoblastic Leukemia in Iranian Children

Ahmad Reza Rahnemoon,1,* Leila Koochazadeh,2,3 Shahla Ansari,4 Anna Boyajyan,5 and Arsen Arakelyan5

1Allied Medical School, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, IR Iran
2Children’s Medical Center, Pediatrics Center of Excellence, Tehran, IR Iran
3Department of Pediatrics, Tehran University of Medical Sciences, Tehran, IR Iran
4Department of Pediatrics, Iran University of Medical Sciences, Tehran, IR Iran
5Institute of Molecular Biology NAS RA, Yerevan, Armenia

*Corresponding author: Ahmad Reza Rahnemoon, Allied Medical School, Cellular and Molecular Research Center, Tehran University of Medical Sciences, Tehran, IR Iran.
E-mail: ar.rahnemoob@gmail.com

Received 2016 January 12; Revised 2018 January 24; Accepted 2018 January 27.

Abstract

Objectives: The following observation was primarily based on the study of gene fusion in blood and bone marrow cells taken from 68 Iranian children with acute lymphoblastic leukemia (ALL), to compare with healthy population.

Methods: Peripheral blood and bone marrow samples obtained from patients with ALL were immunophenotyped to determine the lineage and the level of differentiation. With reverse transcriptase-polymerase chain reaction (RT-PCR), the RNA molecules were analyzed according to Van Dongen et al. protocol to detect fused genes in cell population.

Results: Leukemic cell type was identified by cytochemical stains and classified on the basis of FAB classification. Nonetheless the frequencies of E2A/PBX1, MLL/AF4, BCR/ABL (M-BCR) and BCR/ABL(m-BCR) gene transcripts were 1.5%, 0%, 0% and 4.4% respectively. The positive case of E2A/PBX1 fusion gene had an early pre B and 3 BCR/ABL (m-BCR). Positive cases had an early pre B and pre-B ALL immunophenotype.

Conclusions: Early pre-B cells were the most common types in our patients. The RT-PCR was shown to be an ideal method for detecting hybrid transcripts and to estimate the prevalence of the fusion genes in ALL patients. The frequency of these fusion genes in Iranian pediatric ALL patients were found to be similar to some developed countries. Thus, their presence does not seem to be predictive of increasing malignancy, but rather it can challenge the prognostic significance of these rearrangements.

Keywords: Childhood Acute Lymphoblastic Leukemia, Immunophenotype, Genetic Alterations

1. Background

Acute lymphoblastic leukemia (ALL) in children is a heterogeneous disease with different subtypes based on their cellular and molecular characteristics. ALL accounts for approximately 80% of all acute leukemias in childhood, contrasting with about 20% of the cases in adults (1).

Genetic molecular analysis on leukemia cell has provided the basic knowledge of pathogenesis and prognosis in ALL. Since the translocation discovery of the first fusion gene, BCR-ABL resulting from a t (9;22) translocation, many fusion transcripts that occur in leukemia, such as t (12;21), t (4;11), and t (1;19), have subsequently been detected (2, 3). Research has shown that normally-fused translocated genes play a crucial role in the development and function of lymphocytes and bone marrow cells (4). It has therefore been suggested that the fusion genes may be closely correlated with the onset of leukemia. The presence of MLL/AF4 is associated with a very poor prognosis the same as E2A/PBX1 (5-8). Studies on genetic changes in leukemic cells significantly enhance the precision of diagnosis and allow determining treatment strategy for childhood ALL, especially when specific aberrations are present.

2. Methods

This study was done to detect blast cells taken at early diagnosis from 68 patients with ALL in Children’s Medical Center, Tehran, Iran. Diagnosis was based on the classification of French American British (FAB) criteria and cyto-
chemistry staining. Informed consent was obtained prior to peripheral blood and bone marrow aspiration.

Immunophenotyping: The leukemic cells were immunophenotyped using monoclonal antibodies to define the lineage and to determine the level of differentiation. The panel included: CD34, CD45, HLA-DR, CD17, CD10, CD19, CD4, CD7, CD8, CD38, Tdt, CD2, CD3, CD20 and CD22. Antigen expression was determined by indirect immunofluorescence (BD, FACSCalibur) evaluated by flow cytometry (9, 10).

Isolation of mononuclear cells from the collected samples was performed by Ficoll Hipaque density gradient centrifugation (Sigma Diagnostics) and total RNA was isolated from the thawed cells by Trizol method according to manufacturer’s instructions. The total RNA was run on a agarose gel containing ethidium bromide to visualize integrity of bands. Thus, reverse-transcription and PCR amplification of E2A/PBX1, MLL/AF4, M-BCR and m-BCR fusion genes were carried out according to a standardized protocol by Van Dongen and colleagues (11). Moreover, all cases were compared with positive and negative controls. The specific primers for RT-PCR analysis of these fusion genes are as shown in Tables 1-4.

During the Period of the study between 2009 and 2015, 68 new cases of ALL had been registered in Tehran, Iran. Blood counts with differential and bone marrow aspiration were carried out according to a standardized protocol by Van Dongen and colleagues (11). Moreover, all cases were compared with positive and negative controls. The specific primers for RT-PCR analysis of these fusion genes are as shown in Tables 1-4.

Table 1. Primers for E2A/PBX1

Primer Code	5' Position (Size)	Sequence 5'-3'
E2A-A	1434 (19)	CACCCAGCTCCAGCTCCAC
PBX-B	675 (19)	TGGGTCCAACCTCCAC
E2A-C	1479 (19)	CACCCAGCTCCAGCTCCAC
PBX-D	636 (19)	TGGGTCCAACCTCCAC
PBX-E	748 (19)	CACCCAGCTCCAGCTCCAC

Table 3. Primers for M-BCR

Primer Code	5' Position (Size)	Sequence 5'-3'
M-BCR-a1	1479 (21)	GCTCCACCTCCACCTCCAC
ABL-a3-B	505 (23)	TGGGTCCAACCTCCAC
BCR-e1-A	1474 (21)	GCTCCACCTCCACCTCCAC
ABL-a3-D	441 (21)	TGGGTCCAACCTCCAC
ABL-a3-E	505 (23)	TGGGTCCAACCTCCAC

Table 4. Primers for m-BCR

Primer Code	5' Position (Size)	Sequence 5'-3'
BCR-a1	1474 (21)	GCTCCACCTCCACCTCCAC
ABL-a3-B	505 (23)	TGGGTCCAACCTCCAC
BCR-e1-C	1602 (21)	GCTCCACCTCCACCTCCAC
ABL-a3-D	441 (21)	TGGGTCCAACCTCCAC
ABL-a3-E	505 (23)	TGGGTCCAACCTCCAC

3. Results

During the Period of the study between 2009 and 2015, 68 new cases of ALL had been registered in Tehran, Iran. The results of the peripheral blood and bone marrow examinations of all 68 pediatric patients prior to the start of chemotherapy are summarized in Table 5. The table shows the data for all morphologic, immunologic and genetic studies of cases to diagnosis as well as the outcomes of several years’ treatment with control. Among the 68 patients evaluated, 45 (44.1%) were male and 23 (33.9%) were female. Blood counts with differential and bone marrow aspiration analysis usually confirmed the diagnosis of ALL. The major clinical findings included anemia, hepatomegaly and splenomegaly. The most important laboratory results (Table 6) were white blood cell (WBC) < 5000 (22%), 5000-10000 (23.6%). 10000-50000 (41.2%) and > 50000 (13.2%), and hemoglobin (Hb) < 5 (10.3%), 5-10 (67.7%) and > 10 (22%). Patient’s age was mainly 1 - 4 and 4 - 10 years. For molecular analysis, we used published experiences to optimize PCR program also by using agarose gel as a powerful separation method based on the detection of presence or absence of the target sequence and length of the fragment; in fact we analyzed DNA fragments generated by RT-PCR following the standard protocols of agarose gel preparation and loading the products to the gel. The final pictures were used to detect the fusion genes and different controls. Finally, E2A/PBX1 was positive only in patient 14 and negative in the other patients. MLL/AF4 and M-BCR were negative in them, and m-BCR was positive in patients 61, 67, 68 and negative in the others. In follow up, 44 patients were in complete remission stage, 6 relapsed and 18 died (Table 5). Based on FAB classification of ALL in our results, 47 individuals were of type L1, L2, L3, and L4 and 6 assumed as ALL.

Table 7 shows the relationship between fusion genes and ALL immunophenotypes. In this study early pre-B was the most common in the newly diagnosed patients (27 cases) followed by pre-B (21 cases), and T-ALL (8 cases) types. Other cases included two pro-B ALL, two early pre-B
with CD13 and CD33, two early pre-B along with CD13, two pre B plus CD7, one pre-B with CD33, one with B+T lymphoid cells and two with B-ALL. The prevalence of E2A/PBX1, MLL/AF4, BCR/ABL (M-BCR) and BCR/ABL (m-BCR) in childhood ALL were 1.5% (1/68), 0% (0/68), 0% (0/68) and 4.4% (3/68) respectively.

For leukemic cells, immunophenotype is the main prognostic factor in ALL, determined by lineage specific monoclonal antibodies against various clusters of differentiation markers on human leukocytes. T-ALL used to be considered as a poor prognostic factor. However, in the study, here were no significant differences between groups of patients with B-lineage or T-lineage ALL, because a few number of patients had a relation with T-ALL. Age, Hb, WBC and subtypes of ALL are the other known clinical and hematological prognostic factors.

Age, is found to have a strong impact on outcome in childhood ALL. In our study, there were no significant differences found among those aged 1 to more than 10 years. On the other hand, there were on significant differences in survival rate between patients with WBC under or over 25x10³/µl.

In childhood ALL, a strong negative prognostic factor was shown as MLL gene rearrangement (5, 6, 17). The most common rearrangement of MLL is a balanced translocation t (4;11), associated with the expression of MLL/AF4 fusion gene, high WBC and pro-B ALL immunophenotype. In our study, there was no MLL/AF4 fusion gene in the patients, which contrasted to report of Trka et al. (18), but it did not contrast with the opinions of Soszynska et al. (19) and Wu et al. (20).

In about 5% of children, E2A/PBX1 is expressed with early pre-B ALL and poor prognosis. In our data, E2A/PBX1 was present in only one (1.5%) child with early pre-B-ALL who achieved early hematological response with complete remission and after that showed hematological relapse and died. Nevertheless, it is associated usually with poor or a better prognosis when ALL is treated more intensively in this fusion gene (19, 21-23), but the death risk in these patients was 2.5 times higher than in the whole study group (19). In the opinion of Soszynska et al. (19), E2A/PBX1 was expressed in about 2.8% of children which is in agreement with our findings. E2A/PBX1 expression was reported by Zuo et al. (24) in about 17.5% and by Mesquita et al. (25) in 9.7% of children which indicate a significant difference with our study of 68 Iranian ALL patients with Philadelphia chromosome analyzed for lineage involvement, 3 were BCR/ABL positive.

In the Study by Zuo et al. (24) the frequency of BCR/ABL positive was 13.7% which contrasted to our report. Cetin et al. (26) reported with M-BCR in 1.4% which indicates a significant difference to our data and with m-BCR in 3.6%
which did not contrast our findings. In the opinion of Qin et al. (27) M-BCR and m-BCR were expressed in 4.8% and 9.1% of children with ALL respectively, indicating a significant difference with our results. Moreover, Soszynska et al. (19) described 2.9% of children with ALL had BCR/ABL fusion gene which did not contrast to our study.

4.1. Conclusions

Our Study reveals a lower frequency of E2A/PBX1 and BCR-ABL (m-BCR) fusion genes in childhood ALL and absence of MLL/AF4 and BCR-ABL (M-BCR) fusion genes in pediatric ALL Patients. The results were confirmed by RT-PCR for detecting hybrid transcripts. Therefore, fusion transcript levels in untreated acute lymphoblastic leukemia patients were important to estimate the frequency or prevalence of these fusion genes in Iranian pediatric ALL Patients. We can say, 1) these fusion genes are likely to show the transient genomic instability and 2) possibly they do not define truly clinically apparent disease but other malignant progression seems to depend on additional factors like the occurrence of genetic secondary changes as well as other agents with effects on hematopoietic microenvironment. Thus, the presence of fusion genes does not seem to be predictive of increasing malignancy, rather it can challenge the pragmatic significance of these rearrangements and therefore improved strategies are necessary for the treatment of acute leukemia patients.

References

1. Pui CH, Crist WM. Biology and treatment of acute lymphoblastic leukemia. [Pediatr. 1994;124:491-503.]
2. Roberts WM, Rivera GK, Raimondi SC. Intensive chemotherapy for Philadelphia-chromosome-positive acute lymphoblastic leukemia. [Lancet. 1994;343:331-2.]
3. Hantschel O. Targeting BCR-ABL and JAK2 in Ph+ ALL. Blood. 2015;125(9):1349-59. doi: 10.1182/blood-2014-12-675448. [PubMed: 25726043].
4. Look AT. Oncogenic transcription factors in the human acute leukemias. Sci. 1987;236:1059-64.
5. Qin M, Vermorken J, Cuffe P, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with hint(2) rearrangements. Leukemia. 2003;17(4):700-6. doi: 10.1038/sj.leu.2402881. [PubMed: 12682627].
6. Uckun FM, Sensel MG, Sather TN, et al. Clinical significance of translocation t(19)(q13) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(2):527-35. doi: 10.1200/JCO.1998.16.2.527. [PubMed: 9489337].
7. Hutchison RE, Schexnieder KL. Leukocytic disorders. In McPherson RA, Pincus MR. Henry's clinical diagnosis and management by laboratory methods. 23rd edition. China: Elsevier; 2017. p. 606-58.
8. Catovsky D, Matutes E, Buckner R, et al. A classification of acute leukaemia for the 1990s. Ann Hematol. 1991;62(1):16–21. [PubMed: 2031964].
9. Campana D, Behm GB. Immunophenotyping of leukemias. J Immunol Methods. 2000;243:59-75.
10. Von Dongen JJ, Gabert JA, et al. Identification of gene expression profiles that segregate patients with t(4;11) acute lymphoblastic leukemia. Blood. 2002;100(1):133–43. doi: 10.1182/blood-2001-04-0145. [PubMed: 11731795].
11. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7. doi: 10.1038/ng765. [PubMed: 11731795].
12. Yeoh EJ, Ross ME, Shurtleff SA. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BioMED-1 concerted action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:1901-28.
13. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7. doi: 10.1038/ng765. [PubMed: 11731795].
14. van der Burg M, Poulsen TS, Bervens JP, et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia. 2004;18(5):895-908. doi: 10.1038/sj.leu.2403340. [PubMed: 15042105].
15. Rahnemoon AR et al. Iran J Pediatr. 2018;28(3):e5371.
16. Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. *Hematology Am Soc Hematol Educ Program*. 2012;2012:389-96. doi: 10.1182/asheducation-2012.1.389. [PubMed: 22328109].

17. Kubicka M, Soszynska K, Mucha B, Rafinska B, Kolodziej B, Haus O, et al. Unusual profiles of pediatric acute lymphoblastic leukemia with MLL gene rearrangement. *Leuk Lymphoma*. 2007;48(10):2083-9. doi: 10.1080/1042819060068026. [PubMed: 17979799].

18. Trka J, Zuna J, Haskovec C. Detection of BCR/ABL, MLL/AF4 and TEL/AML hybrid genes and monitoring of minimal residual disease in pediatric patients with acute lymphoblastic leukemia. *Cas Lek Cesk*. 1999;138:12-7.

19. Soszynska K, Mucha B, Debski R, Skonieczka K, Duszenko E, Koltan A, et al. The application of conventional cytogenetics, FISH, and RT-PCR to detect genetic changes in 70 children with ALL. *Ann Hematol*. 2008;87(12):991-1002. doi: 10.1007/s00277-008-0540-6. [PubMed: 18633615].

20. Wu J, Zhang LP, Chen SH, Wang SQ. [Detection of fusion genes in childhood acute lymphoblastic leukemia by using oligonucleotide microarrays approach]. *Zhonghua Er Ke Za Zhi*. 2008;46(3):298-202. [PubMed: 19099709].

21. Kager L, Lion T, Attarbaschi A, Koenig M, Strehl S, Haas OA, et al. Incidence and outcome of TCF3-PBX1-positive acute lymphoblastic leukemia in Austrian children. *Haematologica*. 2007;92(1):56-4. doi: 10.3324/haematol.12339. [PubMed: 18024406].

22. Kohlmann A, Schoch C, Schnirrer S, Dugas M, Hiddemann W, Kern W, et al. Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. *Leukemia*. 2004;18(1):63-71. doi: 10.1038/sj.leu.2403167. [PubMed: 1460332].

23. Sudhackar N, Rajalekshmy KR, Rajkumar T, Nancy KN. RT-PCR and real-time PCR analysis of E2A-PBX1, TEL-AML1, mBCR-ABL and MLL-AF4 fusion gene transcripts in de novo B-lineage lymphoblastic leukemia patients in south India. *J Genet*. 2011;90(2):349-56. [PubMed: 21694488].

24. Zuo YX, Zhang LP, Liu AD, Wang B, Liu GL. [Clinical characteristics of children with B cell type acute lymphoblastic leukemia carrying different fusion gene]. *Zhongguo Dang Dai Er Ke Za Zhi*. 2009;11(3):145-5. [PubMed: 20350423].

25. Mesquita DR, Cordoba JC, Magalhaes FJ, Cordoba MS, Oliveira JF, Goncalves A, et al. Molecular and chromosomal alterations among children with B-lineage lymphoblastic leukemia in Brazil’s Federal District. *Genet Mol Res*. 2009;8(1):99-108. [PubMed: 19749203].

26. Cetin Z, Yukut S, Karadogan I, Kucuk A, Timuragaoglu A, Salim O, et al. Aberrations of chromosomes 9 and 22 as predictors of prognosis in childhood acute lymphoblastic leukemia cases detected by fluorescence in situ hybridization. *Genet Test Mol Biomarkers*. 2012;16(5):318-23. doi: 10.1089/gtmb.2011.0186. [PubMed: 22904681].

27. Qin YZ, Li JL, Zou Y, Li YR, Chang W, et al. [Detection of common fusion transcript levels in acute myeloid leukemia patients by real-time quantitative RT-PCR]. *Zhonghua Xue Ye Xue Za Zhi*. 2007;26(7):433-7. [PubMed: 18072623].

28. Rahnemoon AR et al.
Table 5. The Clinical and Hematological Data of ALL Patients and Gene Analysis Results in Study Subjects

Patient	Age at Diagnosis (yr,mo/sex)	Hb g/dl	WBC (X10³/µl)	Type of ALL	Immunopheno-Type	T (1;19) E2A/ PBX1	T (4;11) MLL/ AF4	T (9;22) M-BCR	(9;22) m-BCR	Outcome
1	4.10/F	5.3	40280	L2 Pre B ALL	-	-	-	-	-	Died
2	4.1/F	6.6	8770	L1 Early Pre B ALL	-	-	-	-	-	CR
3	9/F	8	11200	L1 Pre B ALL	-	-	-	-	-	Died
4	3.10/F	4.9	18400	L1 Pre B ALL	-	-	-	-	-	CR
5	3.5/M	5.9	35020	L1 Early Pre B ALL	-	-	-	-	-	CR
6	4/M	9.1	22200	ALL Pre B ALL	-	-	-	-	-	Relapse
7	4/M	6.3	22640	L1 Early Pre B ALL along CD13	-	-	-	-	-	Died
8	6.10/F	8.9	7000	L1 Early Pre B ALL	-	-	-	-	-	Died
9	7.9/F	7.5	4300	L1 Early Pre B ALL	-	-	-	-	-	CR
10	3.5/M	6.7	173100	L2 T- ALL	-	-	-	-	CR	
11	2/M	7	29330	L1 Early Pre B ALL	-	-	-	-	-	CR
12	3/F	11.8	13170	L2 Pre B ALL	-	-	-	-	CR	
13	4/M	10.8	16000	L2 Early Pre B ALL	-	-	-	-	Died	
14	7/M	8.1	29450	L2 Early Pre B ALL	-	-	-	-	Died	
15	3/F	4.6	16000	L1 Pre B ALL	-	-	-	-	CR	
16	1.7/M	5.9	7620	L1 Early Pre B ALL	-	-	-	-	-	CR
17	2.3/M	10.8	13490	L1 Early Pre B ALL	-	-	-	-	CR	
18	8/M	10.8	24440	L1 Early Pre B ALL	-	-	-	-	Died	
19	3.2/F	10	5320	L3 Early Pre B ALL	-	-	-	-	Died	
20	8.2/M	9.5	2680	L1 Pre B ALL	-	-	-	-	Died	
21	3.7/M	8.1	3600	L1 Early Pre B ALL	-	-	-	-	CR	
22	2/M	10.4	1540	L1 Pre B ALL	-	-	-	-	CR	
23	11/F	11.9	1710	L1 Pre B ALL	-	-	-	-	CR	
24	3/M	6.2	3940	L1 Early Pre B ALL	-	-	-	-	CR	
25	4.5/M	10.1	16000	L1 Pre B ALL	-	-	-	-	CR	
26	2/F	7.6	79600	L1 Early Pre B ALL	-	-	-	-	CR	
27	1.5/M	7.9	16500	L1 Pre B ALL	-	-	-	-	CR	
28	2/M	10.5	16000	L1 Pre B ALL	-	-	-	-	CR	
29	8/F	7.5	35020	L1 Early Pre B ALL	-	-	-	-	CR	
30	2/F	8.7	18000	L2 Early Pre B ALL	-	-	-	-	CR	
31	3/F	8.8	15560	L1 T- ALL	-	-	-	-	CR	
32	4/F	11	2530	L1 Early Pre B ALL	-	-	-	-	CR	
33	11/F	11.1	7150	L1 Pre B ALL	-	-	-	-	CR	
34	2/F	11	5790	L1 Early Pre B ALL	-	-	-	-	CR	
35	11/F	4.2	14200	L1 Early Pre B ALL	-	-	-	-	CR	
36	2/F	7.9	5790	L1 Early Pre B ALL	-	-	-	-	CR	
37	6/M	10.8	13180	L1 T- ALL	-	-	-	-	Relapse	
38	3/M	7.9	11550	L1 Early Pre B ALL	-	-	-	-	CR	
39	5/M	5.6	19710	L2 Pre B ALL	-	-	-	-	CR	
40	3/M	10.8	6680	L2 Pre B ALL	-	-	-	-	CR	
41	2/M	7.5	3260	L2 Pre B ALL	-	-	-	-	Died	
42	11/M	5.2	14300	L2 Pre B ALL	-	-	-	-	Died	
43	5/M	7.1	9770	L1 Pre B ALL	-	-	-	-	Died	
44	11/M	5.7	3800	L2 Early Pre B ALL	-	-	-	-	Died	
45	9/M	10.9	16800	L2 Early Pre B with CD13 and CD33	-	-	-	-	CR	
46	5/F	3.3	5790	L1 Early Pre B ALL	-	-	-	-	CR	
No.	Sex	Age	WBC	Stage	Primary Diagnosis	Secondary Markers	Treatment	Status		
-----	------	-----	-----	-------	------------------	-------------------	-----------	--------		
47	F	8.1	1700	L1	B+T lymphoid cells	-	-	CR		
48	M	10.6	14260	L1	Pre B	-	-	CR		
49	M	5.7	231740	ALL	Pre B with CD7	-	-	CR		
50	F	9	7720	L1	Pre B with CD33	-	-	CR		
51	M	6.4	17450	T-ALL	-	-	-	CR		
52	M	6.9	84610	L1	Early Pre B	-	-	CR		
53	M	10	2450	L1	Early Pre B	-	-	CR		
54	F	6.9	3940	L1	Early Pre B with CD13 and CD33	-	-	CR		
55	F	5	7730	L3	B-ALL	-	-	CR		
56	F	5.3	940	L1	Pre B ALL	-	-	CR		
57	F	4.4	40540	ALL	Pre B ALL	-	-	CR		
58	M	8.7	21650	L3	B-ALL	-	-	Died		
59	M	8.2	6380	L1	Early Pre B	-	-	CR		
60	M	7.1	13520	L1	Early Pre B	-	-	CR		
61	F	4.9	52300	L1	Early Pre B	-	-	Relapse		
62	M	6.4	6180	L1	T-ALL	-	-	Died		
63	M	5.5	100000	L2	Early Pre B with CD13	-	-	Relapse		
64	M	8.4	365000	L1	T-ALL	-	-	Relapse		
65	M	11.3	2007	L1	Pre B ALL	-	-	Relapse		
66	M	8.9	6500	L1	Early Pre B	-	-	Died		
67	M	10	120000	L2	Pre B	-	-	+ CR		
68	M	4.9	3800	L1	Pre B	-	-	+ Died		