Further investigations of Rényi entropy power inequalities and an entropic characterization of s-concave densities

Jiange Li, Arnaud Marsiglietti, James Melbourne

Abstract

We investigate the role of convexity in Rényi entropy power inequalities. After proving that a general Rényi entropy power inequality in the style of Bobkov-Chistyakov (2015) fails when the order \(r \in (0, 1) \), we show that random vectors with s-concave densities do satisfy such a Rényi entropy power inequality. Along the way, we establish convergence in the Central Limit Theorem for Rényi entropy of order \(r \in (0, 1) \) for a large class of random vectors. This generalizes a celebrated result of Barron (1986). Additionally, we give an entropic characterization of the class of s-concave densities, which extends a classical result of Cover and Zhang (1994).

1 Introduction

Let \(X \) be a random vector in \(\mathbb{R}^d \). Suppose that \(X \) has the density \(f \) with respect to the Lebesgue measure. For \(r \in (0, 1) \cup (1, \infty) \), the Rényi entropy of order \(r \) (or simply, \(r \)-Rényi entropy) is defined as

\[
h_r(X) = \frac{1}{1 - r} \log \int_{\mathbb{R}^d} f(x)^r \, dx. \tag{1}
\]

For \(r \in \{0, 1, \infty\} \), the \(r \)-Rényi entropy can be extended continuously such that the RHS of (1) is \(\log |\text{supp}(f)| \) for \(r = 0 \); \(-\int_{\mathbb{R}^d} f(x) \log f(x) \, dx \) for \(r = 1 \); and \(-\log \|f\|_\infty \) for \(r = \infty \). The case \(r = 1 \) corresponds to the classical Shannon differential entropy. Here, we denote by \(|\text{supp}(f)| \) the Lebesgue measure of the support of \(f \), and \(\|f\|_\infty \) represents the essential supremum of \(f \). The \(r \)-Rényi entropy power is defined by

\[
N_r(X) = e^{2h_r(X)/d}. \tag{2}
\]

In the following, we drop the subscript when \(r = 1 \).

The classical Entropy Power Inequality (henceforth, EPI) of Shannon [36] and Stam [38], states that the entropy power \(N(X) \) is super-additive on the sum of independent random vectors. There has been recent success on extensions of the EPI from the Shannon differential entropy to \(r \)-Rényi entropy. In [8, 9], Bobkov and Chistyakov showed that, at the expense of an absolute constant \(c > 0 \), the following Rényi EPI of order \(r \in [1, \infty] \) holds

\[
N_r(X_1 + \cdots + X_n) \geq c \sum_{i=1}^n N_r(X_i). \tag{3}
\]

Ram and Sason soon after gave a sharpened summation dependent constant [39]. Savaré and Toscani [33] showed that a modified Rényi entropy power was concave along the solution of some nonlinear heat equation, which generalizes Costa’s concavity of entropy power [18]. Bobkov and Marsiglietti [10] proved the following variant of Rényi EPI

\[
N_r(X + Y)^\alpha \geq N_r(X)^\alpha + N_r(Y)^\alpha \tag{4}
\]

for \(r > 1 \) and some exponent \(\alpha \) only depending on \(r \). It is clear that (4) holds for more than two summands. Improvement of the exponent \(\alpha \) was given by Li [26].

One of our goals is to establish analogues of (3) and (4) when the Rényi parameter \(r \in (0, 1) \). Both (3) and (4) can be derived from Young’s convolution inequality conjugated by the entropic comparison inequality \(h_{r_1}(X) \geq h_{r_2}(X) \) for any \(0 \leq r_1 \leq r_2 \). The latter is an immediate consequence of Jensen’s
inequality. When the Rényi parameter \(r \in (0,1) \), analogues of (3) and (4) require a reverse entropic comparison inequality aforementioned. This technical issue prevents a general Rényi EPI of order \(r \in (0,1) \) for generic random vectors. Our first result shows that a general Rényi EPI of the form (3) indeed fails for all \(r \in (0,1) \).

Theorem 1. For any \(r \in (0,1) \) and \(\varepsilon > 0 \), there exist independent random vectors \(X_1, \cdots, X_n \) in \(\mathbb{R}^d \), for some \(d \geq 1 \) and \(n \geq 2 \), such that

\[
N_r(X_1 + \cdots + X_n) < \varepsilon \sum_{i=1}^n N_r(X_i).
\]

(5)

We have explicit construction of such random vectors. They are essentially truncations of some spherically symmetric random vectors with finite covariance matrices and infinite Rényi entropies of order \(r \in (0,1) \). The key point is a \(r \)-Rényi entropic Central Limit Theorem (henceforth, CLT); that is, the \(r \)-Rényi entropy of their normalized sum converges to the \(r \)-Rényi entropy of a Gaussian. This implies that after appropriate normalization the LHS of (3) is finite, but the RHS of (3) can be as large as possible. The entropic CLT has been studied for a long time. A celebrated result of Barron [3] shows the convergence in Shannon entropy in the CLT (see [25] for a multidimensional setting). The recent work of Bobkov and Marsiglietti [11] studies the convergence in Rényi entropy of order \(r > 1 \) in the CLT for real-valued random variables. In Section 2, we consider the analogue of [11, Theorem 1.1] in higher dimensions and prove the Rényi entropic CLT of order \(r \in (0,1) \) for a large class of random vectors.

As mentioned above, the reverse entropic comparison inequality prevents Rényi EPIs of order \(r \in (0,1) \) for generic random variables. However, a large class of random variables with the so-called \(s \)-concave densities do satisfy such a reverse entropic comparison inequality. Our next results show that Rényi EPI of order \(r \in (0,1) \) holds for such densities. This extends the earlier work of Marsiglietti and Melbourne [30, 31] for log-concave densities (which corresponds to the \(s = 0 \) case).

Let \(s \in [-\infty, \infty] \). A function \(f: \mathbb{R}^d \to [0,\infty) \) is called \(s \)-concave if the inequality

\[
f((1-\lambda)x + \lambda y) \geq ((1-\lambda)f(x)^s + \lambda f(y)^s)^{1/s}
\]

holds for all \(x, y \in \mathbb{R}^d \) such that \(f(x)f(y) > 0 \) and \(\lambda \in (0,1) \). For \(s \in \{-\infty,0,\infty\} \), the RHS of (6) is understood in the limiting sense; that is \(\min\{f(x),f(y)\} \) for \(s = -\infty \), \(f(x)^{1-\lambda}f(y)^{\lambda} \) for \(s = 0 \), and \(\max\{f(x),f(y)\} \) for \(s = \infty \). The case \(s = 0 \) corresponds to log-concave functions. The study of measures with \(s \)-concave densities was initiated by Borell in the seminal work [12, 13]. One can think of \(s \)-concave densities, in particular log-concave densities, as functional versions of convex sets. There has been a recent stream of research on a formal parallel relation between functional inequalities of \(s \)-concave densities and geometric inequalities of convex sets.

Theorem 2. Given \(s \in (-1/d,0) \) and \(r \in (-sd,1) \), there exists \(c = c(s,r,d,n) \) such that for all independent random vectors \(X_1, \cdots, X_n \) with \(s \)-concave densities in \(\mathbb{R}^d \),

\[
N_r(X_1 + \cdots + X_n) \geq c \sum_{i=1}^n N_r(X_i).
\]

(7)

In particular, one can take

\[
c = r^\frac{1}{1-r'} \left(1 + \frac{1}{n|r'|}\right)^{1+n|r'|} \left(\prod_{k=1}^d \frac{(1 + ks)^{r'(n-1)}(1 + \frac{ks}{r'})^{1+|r'|}}{(1 + ks(1 + \frac{1}{n|r'|}))^{1+n|r'|}} \right)^\frac{1}{d},
\]

(8)

where \(r' = r/(r-1) \) is the Hölder conjugate of \(r \).

Theorem 3. Given \(s \in (-1/d,0) \), there exist \(0 < r_0 < 1 \) and \(\alpha = \alpha(s,r,d) \) such that for \(r \in (r_0,1) \) and independent random vectors \(X \) and \(Y \) in \(\mathbb{R}^d \) with \(s \)-concave densities,

\[
N_r(X+Y)^\alpha \geq N_r(X)^\alpha + N_r(Y)^\alpha.
\]

(9)
In particular, one can take
\[r_0 = \left(1 - \frac{2}{1 + \sqrt{3}} \left(1 + \frac{1}{sd}\right)\right)^{-1}, \]
and
\[\alpha = \left(1 + \frac{\log r + (r + 1) \log \frac{r+1}{r} + C(s)}{(1 - r) \log 2}\right)^{-1}, \]
where
\[C(s) = \frac{2}{d} \sum_{k=1}^{d} \left(\log \left(1 + \frac{ks}{r}\right) + r \log(1 + ks) - (r + 1) \log \left(1 + \frac{ks(r+1)}{2r}\right) \right). \]

Owing to the convexity, random vectors with s-concave densities also satisfy a reverse EPI, which was first proved by Bobkov and Madiman [7]. This can be seen as the functional lifting of Milman’s well known reverse Brunn-Minkowski inequality [32]. Motivated by Busemann’s theorem [16] in convex geometry, Ball, Nayar, and Tkocz [2] conjectured that the following reverse EPI
\[N(X + Y)^{1/2} \leq N(X)^{1/2} + N(Y)^{1/2} \]
holds for any symmetric log-concave random vector \((X, Y) \in \mathbb{R}^2\). The \(r\)-Rényi entropy analogue was asked in [29], and the \(r = 2\) case was soon verified in [26]. It was also observed in [26] that the \(r\)-Rényi entropy analogue is equivalent to the convexity of \(p\)-cross-section body in convex geometry introduced by Gardner and Giannopoulos [22]. The equivalent linearization of \((13)\) reads as follows.

Let \((X, Y) \in \mathbb{R}^2\) be a symmetric log-concave random vector such that \(h(X) = h(Y)\). Then for any \(\lambda \in [0, 1]\) we have
\[h((1 - \lambda)X + \lambda Y) \leq h(X). \]
A classical result of Cover and Zhang [19] showed that the above inequality holds under a stronger assumption that \(X\) and \(Y\) have the same log-concave distribution. The following theorem extends Cover and Zhang’s result from log-concave densities to general \(s\)-concave densities. This gives an entropic characterization of \(s\)-concave densities and implies a reverse Rényi EPI for random vectors with the same \(s\)-concave density.

Theorem 4. Let \(f\) be a probability density function on \(\mathbb{R}^d\). Then
\[\sup_{X_i \sim f} h_r \left(\sum_{i=1}^{n} \lambda_i X_i \right) = h_r(X_1) \]
holds for all \(\lambda_i \geq 0\) such that \(\sum_{i=1}^{n} \lambda_i = 1\) if and only if the density \(f\) is \((r - 1)\)-concave.

The paper is organized as follows. Section 2 explores convergence in the CLT in the entropic sense. For \(r > 1\) convergence is fully characterized for random vectors in \(\mathbb{R}^d\), while for \(r \in (0, 1)\) sufficient conditions with application to Rényi EPIs are explored. Precisely, convergence is proven for log-concave random vectors and random vectors with radially symmetric unimodal densities and compact support. As an application of the Rényi entropic CLT, we prove in Section 3 that a general \(r\)-Rényi EPI fails when \(r \in (0, 1)\), thus establishing Theorem 1. We also complement this result by proving Theorems 2 and 3. In the last section, we provide an entropic characterization of the class of \(s\)-concave densities, and discuss applications to a reverse Rényi EPI.

2 Rényi entropic CLT

Let \(\{X_n\}_{n \in \mathbb{N}}\) be a sequence of independent identically distributed (henceforth, i.i.d.) centered random vectors in \(\mathbb{R}^d\) with finite covariance matrix. We denote by \(Z_n\) the normalized sum
\[Z_n = \frac{X_1 + \cdots + X_n}{\sqrt{n}}. \]
An important tool used to prove various forms of CLT is the characteristic function. Recall that the characteristic function of a random vector X is defined by
\[\varphi_X(t) = \mathbb{E}[e^{i(t,X)}], \quad t \in \mathbb{R}^d. \] (17)

Before providing sufficient conditions for convergence in CLT in Rényi entropy of order $r \in (0,1)$, we first extend [11, Theorem 1.1] to higher dimensions.

Theorem 5. Let $r > 1$. Let X_1, \cdots, X_n be i.i.d. centered random vectors in \mathbb{R}^d. We denote by ρ_n the density of Z_n defined in (16). The following statements are equivalent.

1. $h_r(Z_n) \to h_r(Z)$ as $n \to +\infty$, where Z is a Gaussian random vector with mean 0 and the same covariance matrix as X_1.

2. $h_r(Z_n)$ is finite for some integer n_0.

3. $\int_{\mathbb{R}^d} |\varphi_{X_1}(t)|^\nu \, dt < +\infty$ for some $\nu \geq 1$.

4. Z_{n_0} has a bounded density ρ_{n_0} for some integer n_0.

Proof.

1 \implies 2: Assume that $h_r(Z_n) \to h_r(Z)$ as $n \to +\infty$. Then, there exists an integer n_0 such that
\[h_r(Z) - 1 < h_r(Z_{n_0}) < h_r(Z) + 1. \] (18)

Since $h_r(Z)$ is finite, we deduce that $h_r(Z_{n_0})$ is finite as well.

2 \implies 3: Assume that $h_r(Z_{n_0})$ is finite for some integer n_0. Then, Z_{n_0} has a density ρ_{n_0} which is in $L^r(\mathbb{R}^d)$, and thus Z_n has a density $\rho_n \in L^r$ for any $n \geq n_0$ by the convolution structure of Z_n. If $r \geq 2$, then $\rho_n \in L^2(\mathbb{R}^d)$. Hence by Plancherel identity, $\varphi_{Z_n} \in L^2(\mathbb{R}^d)$. It follows that
\[\int_{\mathbb{R}^d} |\varphi_{Z_n}(t)|^2 \, dt = \int_{\mathbb{R}^d} |\varphi_{X_1}(t/\sqrt{n})|^2 \, dt < +\infty. \] (19)

We deduce that for $\nu = 2n_0$,
\[\int_{\mathbb{R}^d} |\varphi_{X_1}(t)|^\nu \, dt < +\infty. \] (20)

If $r \in (1,2)$, then by the Hausdorff-Young inequality,
\[\|\varphi_{Z_n}\|_{L^r'} \leq \frac{1}{(2\pi)^{d/2}} \|
ho_n\|_{L^r}, \] (21)

where r' is the conjugate of r. Hence, for $\nu = r'n_0$,
\[\int_{\mathbb{R}^d} |\varphi_{X_1}(t)|^\nu \, dt < +\infty. \] (22)

3 \implies 4: Since $\int_{\mathbb{R}^d} |\varphi_{X_1}(t)|^\nu \, dt < +\infty$ for some $\nu \geq 1$, one may apply Gnedenko’s local limit theorems (see [23]), which is valid in arbitrary dimension (see [5]). In particular,
\[\lim_{\nu \to +\infty} \sup_{x \in \mathbb{R}^d} |\rho_n(x) - \phi_\Sigma(x)| = 0, \] (23)

where ϕ_Σ denotes the density of a Gaussian random vector with mean 0 and same covariance matrix as X_1. We deduce that there exists an integer n_0 and a constant $M > 0$ such that $\rho_n \leq M$ for all $n \geq n_0$.

4 \implies 1: Since ρ_{n_0} is bounded, then $\rho_{n_0} \in L^2$, and we deduce by Plancherel identity that
\[\int_{\mathbb{R}^d} |\varphi_{X_1}(t)|^\nu \, dt < +\infty \text{ for } \nu = 2n_0. \] Hence [23] holds and there exists $M > 0$ such that $\rho_n \leq M$ for all $n \geq n_0$. Let us show that $\int \rho_n \to \int \phi_\Sigma$ as $n \to +\infty$, where ϕ_Σ denotes the density of a Gaussian random vector with mean 0 and same covariance matrix as X_1. From the central limit theorem, there exists $T > 0$ such that for all n large enough,
\[\int_{|x|>T} \rho_n(x) \, dx < \varepsilon, \quad \int_{|x|>T} \phi_\Sigma(x) \, dx < \varepsilon. \] (24)
Hence,
\[
\int_{|x|>T} \rho_n(x)^r \, dx \leq M^{r-1} \int_{|x|>T} \rho_n(x) \, dx < M^{r-1} \varepsilon, \tag{25}
\]
and similarly for \(\int_{|x|>T} \phi^r_X \). Hence, for any \(\delta > 0 \), there exists \(T > 0 \) such that for all \(n \) large enough,
\[
\left| \int_{|x|>T} \rho_n(x)^r \, dx - \int_{|x|>T} \phi^r_X(x)^r \, dx \right| < \delta. \tag{26}
\]
On the other hand, by (23), for all \(T > 0 \), the function \(\rho_n^r(x)1_{\{|x|\leq T\}} \) converges everywhere to \(\phi^r_{\Sigma}(x)1_{\{|x|\leq T\}} \) as \(n \to +\infty \). Since \(\rho_n^r(x)1_{\{|x|\leq T\}} \) is dominated by the integrable function \(M^{r}1_{\{|x|\leq T\}} \), one may use the Lebesgue dominated theorem to conclude that
\[
\lim_{n \to +\infty} \left| \int_{|x| \leq T} \rho_n(x)^r \, dx - \int_{|x| \leq T} \phi^r_X(x)^r \, dx \right| = 0. \tag{27}
\]

Remark 6. Theorem 3 fails when \(r \in (0, 1) \). For example, one can consider i.i.d. random variables with a bounded density \(\rho(x) \) such that \(\int_{\mathbb{R}^d} \rho(x)^r \, dx = +\infty \) (e.g., Cauchy-type distributions). The implication \(4 \Rightarrow 2 \) (and thus \(4 \Rightarrow 1 \)) will not hold since by Jensen inequality \(h_r(Z_n) \geq h_r(X_1/\sqrt{n}) = \infty \) for all \(n \geq 1 \). As observed by Barron [3], the implication \(1 \Rightarrow 4 \) does not necessarily hold in the Shannon entropy case \(r = 1 \).

Our following results yield sufficient conditions for a CLT to hold for Rényi entropies of order \(r \in (0, 1) \) for a large classes of random vectors in \(\mathbb{R}^d \).

Theorem 7. Let \(r \in (0, 1) \). Let \(X_1, \ldots, X_n \) be i.i.d. centered log-concave random vectors in \(\mathbb{R}^d \). Then we have \(h_r(Z_n) < +\infty \) for all \(n \geq 1 \), and

\[
\lim_{n \to \infty} h_r(Z_n) = h_r(Z),
\]
where \(Z_n \) is the normalized sum in (16) and \(Z \) is a Gaussian random vector with mean 0 and the same covariance matrix as \(X_1 \).

Proof. Since log-concavity is preserved under independent sum, \(Z_n \) is log-concave for all \(n \geq 1 \). Hence, for all \(n \geq 1 \), \(Z_n \) has a bounded log-concave density \(\rho_n \), which satisfies
\[
\rho_n(x) \leq e^{-a_n|x|^r + b_n}, \tag{28}
\]
for all \(x \in \mathbb{R}^d \), for some constants \(a_n > 0 \), \(b_n \in \mathbb{R} \) possibly depending on the dimension (see, e.g., [14]). Hence, for all \(n \geq 1 \),
\[
\int_{\mathbb{R}^d} \rho_n(x)^r \, dx \leq \int_{\mathbb{R}^d} e^{-r(a_n|x|^r + b_n)} \, dx < +\infty. \tag{29}
\]
We deduce that \(h_r(Z_n) < +\infty \) for all \(n \geq 1 \).

The boundedness of \(\rho_n \) implies that (23) holds, and thus there exists an integer \(n_0 \) such that for all \(n \geq n_0 \),
\[
\rho_n(0) > \frac{1}{2} \phi^r_{\Sigma}(0), \tag{30}
\]
where \(\Sigma \) is the covariance matrix of \(X_1 \) (and thus does not depend on \(n \)). Moreover, since \(\rho_n \) is log-concave, one has for all \(x \in \mathbb{R}^d \),
\[
\rho_n(rx) = \rho_n((1-r)0 + rx) \geq \rho_n(0)^{1-r} \rho_n(x)^r \geq \frac{1}{2^{1-r}} \phi^r_{\Sigma}(0)^{1-r} \rho_n(x)^r. \tag{31}
\]
Hence, for all $T > 0$,
\[
\int_{|x| > T} \rho_n(x)^r \, dx \leq \frac{2^{1-r}}{\phi_\Sigma(0)^{1-r}} \int_{|x| > T} \rho_n(rx) \, dx
\]
\[
= \frac{2^{1-r}}{r^d \phi_\Sigma(0)^{1-r}} \mathbb{P} (|Z_n| > rT)
\]
\[
\leq \frac{1}{T^{d+2} \phi_\Sigma(0)^{1-r} r},
\]
where the last inequality follows from Markov’s inequality and the fact that
\[
\mathbb{E} [|Z_n|^2] = \frac{\mathbb{E} [|X_1|^2] + \cdots + \mathbb{E} [|X_n|^2]}{n} = \mathbb{E} [|X_1|^2].
\]
Hence, for every $\varepsilon > 0$, one may choose a positive number T such that for all n large enough,
\[
\int_{|x| > T} \rho_n(x)^r \, dx < \varepsilon, \quad \int_{|x| > T} \phi_\Sigma(x)^r \, dx < \varepsilon,
\]
and hence
\[
\left| \int_{|x| > T} \rho_n(x)^r \, dx - \int_{|x| > T} \phi_\Sigma(x)^r \, dx \right| < \varepsilon.
\]
On the other hand, from (23), we conclude as in the proof of Theorem 5 that for all $T > 0$,
\[
\lim_{n \to +\infty} \left(\int_{|x| \leq T} \rho_n(x)^r \, dx - \int_{|x| \leq T} \phi_\Sigma(x)^r \, dx \right) = 0.
\]

A function $f : \mathbb{R}^d \to \mathbb{R}$ is called unimodal if the super-level sets $\{x \in \mathbb{R}^d : f(x) > t\}$ are convex for all $t \in \mathbb{R}$. Next, we provide a convergence result for random vectors in \mathbb{R}^d with unimodal densities under additional symmetry assumptions. First, we need the following stability result.

Proposition 8. The class of spherically symmetric unimodal random variables is stable under convolution.

Proof. Suppose that f_i are densities such that $f_i(Tx) = f_i(x)$ for an orthogonal map T and $|x| \leq |y|$ implies $f_i(x) \geq f_i(y)$. By the layer cake decomposition, we write
\[
f_i(x) = \int_0^\infty 1_{\{\langle u, v \rangle : f_i(u) > v\}}(x, \lambda) \, d\lambda.
\]
After applying Fubini-Tonelli,
\[
f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy
\]
\[
= \int_0^\infty \int_0^\infty \left(\int_{\mathbb{R}^d} 1_{\{\langle u, v \rangle : f_1(u) > v\}}(x - y, \lambda_1) 1_{\{\langle u, v \rangle : f_2(u) > v\}}(y, \lambda_2) \, dy \right) \, d\lambda_1 \, d\lambda_2.
\]
Notice that by the spherical symmetry and decreasingness of f_i,
\[
B_{\lambda_i} = \{u : f_i(u) > \lambda_i\}
\]
is an origin symmetric ball. Thus we can write the integrand in (40) as
\[
\int_{\mathbb{R}^d} 1_{B_{\lambda_1}}(x - y) 1_{B_{\lambda_2}}(y) \, dy = 1_{B_{\lambda_1}} * 1_{B_{\lambda_2}}(x).
\]
This quantity is clearly dependent only on $|x|$, giving spherical symmetry. Additionally as the convolution of two log-concave functions, $1_{B_{\lambda_1}} * 1_{B_{\lambda_2}}$ is log-concave as well. It follows that for every λ_1, λ_2, and $|x| \leq |y|$ we have
\[
1_{B_{\lambda_1}} * 1_{B_{\lambda_2}}(x) \geq 1_{B_{\lambda_1}} * 1_{B_{\lambda_2}}(y).
\]
Integrating this inequality completes the proof.
\]
Let us establish large deviation and pointwise inequalities for radially symmetric unimodal densities with compact support.

Theorem 9 (Hoeffding [21]). Let X_1, \cdots, X_n be independent random variables with mean 0 and bounded in (a_i, b_i), respectively. One has for all $T > 0$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_i > T \right) \leq \exp\left(-\frac{2T^2}{\sum_{i=1}^{n}(b_i - a_i)^2} \right). \tag{44}
$$

The following result is Hoeffding’s inequality in higher dimensions.

Lemma 10. Let X_1, \cdots, X_n be centered independent random vectors in \mathbb{R}^d satisfying $\mathbb{P}(|X_i| > R) = 0$ for some $R > 0$. One has for all $T > 0$,

$$
\mathbb{P}\left(\left| \frac{X_1 + \cdots + X_n}{\sqrt{n}} \right| > T \right) \leq 2d \exp\left(-\frac{T^2}{d^2 R^2} \right). \tag{45}
$$

Proof. Let $X_{i,j}$ be the j-th coordinate of the random vector X_i. Then we have

$$
\mathbb{P}\left(\left| \frac{X_1 + \cdots + X_n}{\sqrt{n}} \right| > T \right) \leq \mathbb{P}\left(\bigcup_{j=1}^{d} \left\{ \left| X_{1,j} + \cdots + X_{n,j} \right| > \frac{T\sqrt{n}}{d} \right\} \right) \tag{46}
$$

$$
\leq \sum_{j=1}^{d} \mathbb{P}\left(\left| X_{1,j} + \cdots + X_{n,j} \right| > \frac{T\sqrt{n}}{d} \right) \tag{47}
$$

$$
\leq 2d \exp\left(-\frac{T^2}{d^2 R^2} \right). \tag{48}
$$

where inequality (46) follows from the pigeon-hole principle, (47) from a union bound, and (48) follows from applying Theorem 9 to $X_{1,j} + \cdots + X_{n,j}$ and $(-X_{1,j}) + \cdots + (-X_{n,j})$. \hfill \Box

We deduce the following pointwise estimate for unimodal radially symmetric and bounded random variables.

Corollary 11. Let X_1, \cdots, X_n be i.i.d. random vectors with radially symmetric unimodal density supported on the origin-centered Euclidean ball of radius $R > 0$. Let ρ_n denote the density of the normalized sum Z_n. Then there exists $c_d > 0$ such that for $|x| > 2$,

$$
\rho_n(x) \leq c_d \exp\left(-\frac{(|x| - 1)^2}{d^2 R^2} \right). \tag{49}
$$

Proof. Stating Lemma 10 in terms of ρ_n, we have

$$
\int_{|w| > T} \rho_n(w)dw \leq 2d \exp\left(-\frac{T^2}{d^2 R^2} \right). \tag{50}
$$

Since the class of radially symmetric unimodal random variables is stable under independent summation by Proposition 5, ρ_n is radially symmetric and unimodal, so that

$$
\rho_n(x) \leq \frac{\int_{B_{|x|}} \rho_n(w)dw}{\text{Vol}(B_{|x|})} \tag{51}
$$

$$
\leq \frac{\int_{|w| \geq |x| - 1} \rho_n(w)dw}{(2d - 1)\omega_d} \tag{52}
$$

where $B_{|x|}$ represents the Euclidean ball of radius $|x|$ centered at the origin and ω_d is the volume of the unit ball. Note that

$$
\text{Vol}(B_{|x|}) - |x|^d \geq (2d - 1)\omega_d, \tag{53}
$$
since \(t \mapsto t^d - (t - 1)^d \) is increasing, so that (52) follows. Now applying (50) we have

\[
\rho_n(x) \leq \frac{\int_{|w| \geq |x| - 1} \rho_n(w)dw}{(2^d - 1)\omega_d} \leq \frac{2d}{(2^d - 1)\omega_d} \exp\left(-\frac{(|x| - 1)^2}{d^2 R^2}\right)
\]

and our result holds with

\[
c_d = \frac{2d}{(2^d - 1)\omega_d}.
\]

We are now ready to establish a convergence result for bounded radially symmetric unimodal random vectors.

Theorem 12. Let \(r \in (0, 1) \). Let \(X_1, \ldots, X_n \) be i.i.d. random vectors in \(\mathbb{R}^d \) with a radially symmetric unimodal density with compact support. Then we have

\[
\lim_{n \to \infty} h_r(Z_n) = h_r(Z),
\]

where \(Z_n \) is the normalized sum in (16) and \(Z \) is a Gaussian random vector with mean 0 and the same covariance matrix as \(X_1 \).

Proof. Let us denote by \(\rho_n \) the density of \((X_1 + \cdots + X_n)/\sqrt{n}\). Since \(\rho_1 \in L^1 \), it follows that \(\rho_n, n \geq 2 \), are continuous, and since \(\rho_n \) are, in addition, radially symmetric unimodal densities by Proposition 8, then \(\rho_n, n \geq 2 \), are bounded. One may thus apply (23) together with Lebesgue dominated convergence to conclude that for all \(T > 0 \),

\[
\lim_{n \to +\infty} \left| \int_{|x| \leq T} \rho_n(x)^r dx - \int_{|x| \leq T} \phi_{\Sigma}(x)^r dx \right| = 0.
\]

On the other hand, by Corollary 11 one may choose \(T > 0 \) such that for all \(n \geq 1 \),

\[
\int_{|x| > T} \rho_n(x)^r dx < \varepsilon, \quad \int_{|x| > T} \phi_{\Sigma}(x)^r dx < \varepsilon,
\]

and hence

\[
\left| \int_{|x| > T} \rho_n(x)^r dx - \int_{|x| > T} \phi_{\Sigma}(x)^r dx \right| < \varepsilon.
\]

\[\square\]

3 Rényi EPIs of order \(r \in (0, 1) \)

A striking difference between Rényi EPIs of order \(r \in (0, 1) \) and \(r \geq 1 \) is the lack of an absolute constant. Indeed, it was shown in [9] that for \(r \geq 1 \) Rényi EPI of the form (3) holds for generic independent random vectors with an absolute constant \(c_r \geq \frac{1}{e} r^{\frac{1}{1-r}} \). The following subsection shows that such a Rényi EPI does not exist for \(r \in (0, 1) \).

3.1 Failure of a generic Rényi EPI

Definition 13. For \(r \in [0, \infty] \), we define \(c_r \) as the largest number such that the following inequality holds for any independent random vectors \(X_1, \ldots, X_n \) in \(\mathbb{R}^d \),

\[
N_r(X_1 + \cdots + X_n) \geq c_r \sum_{i=1}^n N_r(X_i).
\]
Then we can rephrase Theorem 14 as follows.

Theorem 14. For \(r \in (0,1) \), the constant \(c_r \) defined in (61) satisfies \(c_r = 0 \).

The motivating observation for this line of argument is the fact that for \(r \in (0,1) \), there exist random variables with finite variances and infinite \(r \)-Rényi entropies. One might anticipate that this could contradict the existence of an \(r \)-Rényi EPI, as the CLT forces the normalized sum of such i.i.d. random variables to become ‘more Gaussian’. Heuristically, one anticipates for large \(n \), and \(X_1, \cdots, X_n \) independently drawn from such a distribution, that \(N_r(X_1 + \cdots + X_n)/n = N_r(Z_1/n) \) should approach \(N_r(Z) \), where \(Z_n = (X_1 + \cdots + X_n)/\sqrt{n} \) is the normalized sum and \(Z \) is a Gaussian vector with the same variance as \(X_1 \), while \(\sum_{i=1}^n N_r(X_i)/n = N_r(X_1) \) is infinite.

Proof of Theorem 14. Let us consider the following density

\[
f(x) = f_{R,p,d}(x) = C_R(1 + |x|)^{-p}1_{B_R}(x), \quad x \in \mathbb{R}^d, \tag{62}
\]

with \(p, R > 0 \) and \(C_R \) implicitly determined to make \(f \) a density. Note that \(f \) is bounded, unimodal, and radially symmetric. Thus its covariance matrix is a multiple of the identity, i.e., \(\sigma^2_R I \) for some \(\sigma_R > 0 \). Computing in spherical coordinates one can easily see that \(\lim_{R \to \infty} C_R \) is finite for \(p > d \), and we can thus define a density \(f_{\infty,p,d} \). What is more, when \(p > d + 2 \), the limiting density \(f_{\infty,p,d} \) has a finite covariance matrix, and has finite \(r \)-Rényi entropy if and only if \(p > \frac{d}{r} \).

Now fix \(r \in (0,1) \) and take the dimension to be \(d^* = \min\{d \in \mathbb{N} : d > \frac{2}{1-r} \} \), and \(p \in (d^* + 2, \frac{2}{1-r}] \). In this case, the limit density \(f_{\infty,p,d^*} \) is well defined and it has finite covariance matrix \(\sigma^2_{\infty} I \), but the corresponding \(r \)-Rényi entropy is infinite. Now we select independent random vectors \(X_1, \cdots, X_n \) from the distribution \(f_{R,p,d^*} \). Since \(f_{R,p,d^*} \) is a radially symmetric unimodal density with compact support, one may apply Theorem 12 to conclude that

\[
\lim_{n \to \infty} N_r(Z_1/n) = \sigma^2_R N_r(Z_{1d}),
\]

where \(Z_{1d} \) is the standard \(d \)-dimensional Gaussian. Notice that

\[
\lim_{R \to \infty} N_r(X_1) = \infty,
\]

while

\[
\lim_{R \to \infty} \sigma_R = \sigma_{\infty} < \infty.
\]

Given \(M > 0 \), we can take \(R \) large enough such that \(N_r(X_1) \geq M \), and \(|\sigma^2_R - \sigma^2_{\infty}| \leq 1 \). Then we can take \(n \) large enough such that

\[
N_r(Z_1/n) \leq (\sigma^2_{\infty} + 2)N_r(Z_{1d}).
\]

We conclude that for the inequality (61) to hold we must have

\[
c_r \leq \frac{(\sigma^2_{\infty} + 2)N_r(Z_{1d})}{M}
\]

for all \(M > 0 \). Taking \(M \to \infty \) this can only hold if \(c_r = 0 \).

Remark 15. Random vectors in our proof of Theorem 14 has identical \(s \)-concave density with \(s < 0 \) and \(|s| \geq r/d \). In the following section, we will prove a complement result by showing that \(r \)-Rényi EPI of order \(r \in (0,1) \) does hold for \(s \)-concave densities when \(s < 0 \) and \(|s| < r/d \).

3.2 Rényi EPIs for \(s \)-concave densities

As showed above, a generic Rényi EPI of the form (3) fails for \(r \in (0,1) \). In this part, we establish Rényi EPIs of the form (3) and (4) for an important class of random vectors with \(s \)-concave densities (see (6)). The constants \(c \) and \(\alpha \) are no longer dimension-free as in the case of log-concave densities [30], this is owing to the absence of exponential tails.

Following Lieb [28], we prove Theorems 2 and 3 by showing their equivalent linearizations. The following linearization of (3) and (4) is due to Rioul [34]. The \(c = 1 \) case has been used in [26].
Theorem 16 ([34]). Let X_1, \ldots, X_n be independent random vectors in \mathbb{R}^d. The following statements are equivalent.

- There exist a constant $c > 0$ and an exponent $\alpha > 0$ such that
 \[N_{\alpha}^\ast \left(\sum_{i=1}^n X_i \right) \geq c \sum_{i=1}^n N_{\alpha}^\ast (X_i). \]
 \[(68) \]

- For any $\lambda_1, \ldots, \lambda_n \geq 0$ such that $\sum_{i=1}^n \lambda_i = 1$, one has
 \[h_r \left(\sum_{i=1}^n \sqrt{\lambda_i} X_i \right) - \sum_{i=1}^n \lambda_i h_{r_i} (X_i) \geq \frac{d}{2} \left(\frac{\log c}{\alpha} + \left(\frac{1}{\alpha} - 1 \right) H(\lambda) \right), \]
 where $H(\lambda) \triangleq H(\lambda_1, \ldots, \lambda_n)$ is the discrete entropy defined as
 \[H(\lambda) = - \sum_{i=1}^n \lambda_i \log \lambda_i. \]
 \[(69) \]

One of the ingredients used to establish [69] is Young’s sharp convolution inequality [4, 14]. Its information-theoretic formulation was given in [20], which we recall below. We denote by r' the H"{o}lder conjugate of r, i.e.,
 \[\frac{1}{r} + \frac{1}{r'} = 1. \]
 \[(71) \]

Theorem 17 ([14, 20]). Let $r > 0$. Let $\lambda_1, \ldots, \lambda_n \geq 0$ such that $\sum_{i=1}^n \lambda_i = 1$, and let r_1, \ldots, r_n be positive reals such that $\lambda_i = r'/r_i$. Then, for all independent random vectors X_1, \ldots, X_n in \mathbb{R}^d, one has
 \[h_r \left(\sum_{i=1}^n \sqrt{\lambda_i} X_i \right) - \sum_{i=1}^n \lambda_i h_{r_i} (X_i) \geq \frac{d}{2} \left(\frac{\log r}{r} - \sum_{i=1}^n \log r_i \right). \]
 \[(72) \]

The second ingredient is a comparison between Rényi entropies h_r and h_{r_i}. When $r > 1$, we have $1 < r_i < r$, and Jensen’s inequality implies that $h_r \leq h_{r_i}$. In this case, one can deduce [69] from (72) with h_{r_i} replaced by h_r. However, when $r \in (0, 1)$, the order of r and r_i are reversed, i.e., $0 < r < r_i < 1$, and we need a reverse entropy comparison inequality. The so-called s-concave densities do satisfy such a reverse entropy comparison inequality. The following result of Fradelizi, Li, and Madiman [21] serves this purpose.

Theorem 18 ([21]). Let $s \in \mathbb{R}$. Let $f : \mathbb{R}^d \to [0, +\infty)$ be an integrable s-concave function. Then, the function
 \[G(r) = C(r) \int_{\mathbb{R}^d} f(x)^r \, dx \]
 \[(73) \]
 is log-concave for $r > \max \{ 0, -sd \}$, where
 \[C(r) = (r + s) \cdots (r + sd). \]
 \[(74) \]

We deduce the following Rényi entropic comparison for random vectors with s-concave densities.

Corollary 19. Let X be a random vector in \mathbb{R}^d with an s-concave density. For $-sd < r < q < 1$, we have
 \[h_q (X) \geq h_r (X) + \log \frac{C(r)^{q/r} C(1)^{-q}}{C(q)^{1/r}}. \]
 \[(75) \]

Proof. Write $q = (1 - \lambda) \cdot r + \lambda \cdot 1$. By Theorem 18 we have
 \[G(q) \geq G(r)^{1 - \lambda} G(1)^{\lambda} = G(r)^{1 - \frac{q}{r}} G(1)^{\frac{q}{r}}. \]
 \[(76) \]

Rewrite the above inequality in terms of entropy power
 \[C(q)^{\frac{q}{r}} \geq C(r)^{\frac{q}{r}} \frac{C(q)^{\frac{q}{r}}}{C(r)^{\frac{q}{r}}} N_r (X) C(1)^{\frac{q}{r}}. \]
 \[(77) \]

The desired result follows from taking the logarithm of the above inequality. \(\square\)
Put together Theorem 17 and Corollary 19. We obtain the following Rényi EPI valid for a single Rényi parameter \(r \in (0, 1) \) in the class of \(s \)-concave random variables.

Theorem 20. Let \(s \in (-1/d, 0) \) and \(r \in (-sd, 1) \). Let \(X_1, \ldots, X_n \) be independent random vectors in \(\mathbb{R}^d \) with \(s \)-concave densities. Then, for all \(\lambda = (\lambda_1, \ldots, \lambda_n) \in [0, 1]^n \) such that \(\sum_{i=1}^n \lambda_i = 1 \), we have

\[
h_r \left(\sum_{i=1}^n \sqrt[\lambda_i]{X_i} \right) - \sum_{i=1}^n \lambda_i h_r(X_i) \geq \frac{d}{2} A(\lambda) + \sum_{k=1}^d g_k(\lambda),
\]

where

\[
A(\lambda) = r' \left(\left(1 - \frac{1}{r' \lambda} \right) \log \left(1 - \frac{1}{r'} \right) - \sum_{i=1}^n \left(1 - \frac{\lambda_i}{r'} \right) \log \left(1 - \frac{\lambda_i}{r'} \right) \right),
\]

\[
g_k(\lambda) = (1 - n) r' \log (1 + k s) + (1 - r') \log \left(1 + \frac{k s}{r} \right) + r' \sum_{i=1}^n \left(1 - \frac{\lambda_i}{r'} \right) \log \left(1 + k s \left(1 - \frac{\lambda_i}{r'} \right) \right).
\]

Proof. Let \(r_i \) be defined by \(\lambda_i = r' / r_i' \), where \(r' \) and \(r_i' \) are Hölder conjugates of \(r \) and \(r_i \), respectively. Combining Theorem 17 with Corollary 19 we have

\[
h_r \left(\sum_{i=1}^n \sqrt[\lambda_i]{X_i} \right) - \sum_{i=1}^n \lambda_i h_r(X_i) \geq \frac{d}{2} r' \left(\frac{\log r}{r} - \sum_{i=1}^n \log \frac{r_i}{r} \right) + \sum_{i=1}^n \lambda_i \log \frac{C(r) \frac{1}{1-r} C(1) \frac{1}{1-r'} (1-1/r)}{C(r_i) \frac{1}{1-r_i}}.
\]

Notice that \(C(r) = r^d D(r) \), where \(D(r) = (1 + s/r) \cdots (1 + sd/r) \). Thus,

\[
\sum_{i=1}^n \lambda_i \log \frac{C(r) \frac{1}{1-r} C(1) \frac{1}{1-r'} (1-1/r)}{C(r_i) \frac{1}{1-r_i}} = \sum_{i=1}^n \lambda_i \left(\log D(r) \frac{1}{1-r'} + \left(\frac{1}{1-r_i} - \frac{1}{1-r} \right) \log D(1) - \frac{\log D(r_i)}{1-r_i} \right) + d \left(\frac{\log r}{1-r} - \sum_{i=1}^n \lambda_i \log \frac{r_i}{1-r_i} \right).
\]

Using the identities \(1/(1-r) = 1-r' \) and \(\lambda_i/(1-r_i) = \lambda_i - r' \), we have

\[
\sum_{i=1}^n \lambda_i \left(\log D(r) \frac{1}{1-r'} + \left(\frac{1}{1-r_i} - \frac{1}{1-r} \right) \log D(1) - \frac{\log D(r_i)}{1-r_i} \right)
\]

\[
= (1 - r') \log D(r) + (1 - n) r' \log D(1) + \sum_{k=1}^d \sum_{i=1}^n (r_i - \lambda_i) \log \left(1 + \frac{k s}{r_i} \right)
\]

\[
= \sum_{k=1}^d \left((1 - r') \log \left(1 + \frac{k s}{r} \right) + (1 - n) r' \log (1 + k s) + \sum_{i=1}^n (r_i - \lambda_i) \log \left(1 + \frac{k s}{r_i} \right) \right)
\]

\[
= \sum_{k=1}^d g_k(\lambda),
\]

the last identity follows from \(1/r_i = 1 - \lambda_i/r' \). Hence, the RHS of (79) can be written as

\[
\frac{d}{2} r' \left(\frac{\log r}{r} - \sum_{i=1}^n \frac{\log r_i}{r_i} \right) + d \left(\frac{\log r}{1-r} - \sum_{i=1}^n \lambda_i \frac{\log r_i}{1-r_i} \right) + \sum_{k=1}^d g_k(\lambda) = \frac{d}{2} A(\lambda) + \sum_{k=1}^d g_k(\lambda).
\]

Having Theorem 16 and Theorem 20 at hand, we are ready to prove the main results.
3.2.1 Proof of Theorem 2

Combine Theorems 16 and 20. Then it suffices to find \(c \) such that for all \(\lambda = (\lambda_1, \cdots, \lambda_n) \in [0, 1]^n \) satisfying \(\sum_{i=1}^{n} \lambda_i = 1 \),

\[
\frac{d}{2} A(\lambda) + \sum_{k=1}^{d} g_k(\lambda) \geq \frac{d}{2} \log c. \tag{86}
\]

Hence, we set

\[
c = \inf_{\lambda} \exp \left(A(\lambda) + \frac{2}{d} \sum_{k=1}^{d} g_k(\lambda) \right), \tag{87}
\]

where the infimum runs over all \(\lambda = (\lambda_1, \cdots, \lambda_n) \in [0, 1]^n \) such that \(\sum_{i=1}^{n} \lambda_i = 1 \). For fixed \(r \), both \(A(\lambda) \) and \(g_k(\lambda) \) are sum of one-dimensional convex functions of the form \((1 + x) \log (1 + x)\). Furthermore, both \(A(\lambda) \) and \(g_k(\lambda) \) are permutation invariant. Hence, the minimum is achieved at \(\lambda = (1/n, \cdots, 1/n) \). This yields the value of \(c \) in Theorem 2.

3.2.2 Proof of Theorem 3

The following lemma in [30] serves us in the proof of Theorem 3.

Lemma 21 ([30]). Let \(c > 0 \). Let \(L, F : [0, c] \to [0, \infty) \) be twice differentiable on \((0, c) \), continuous on \([0, c]\), such that \(L(0) = F(0) = 0 \) and \(L'(c) = F'(c) = 0 \). Let us also assume that \(F(x) > 0 \) for \(x > 0 \), that \(F \) is strictly increasing, and that \(F' \) is strictly decreasing. Then \(\frac{L'}{F} \) increasing on \((0, c)\) implies that \(\frac{L}{F} \) is increasing on \((0, c)\) as well. In particular,

\[
\max_{x \in [0, c]} \frac{L(x)}{F(x)} = \frac{L(c)}{F(c)}.
\]

Proof of Theorem 3 Using Theorems 16 and 20 with \(n = 2 \), it suffices to find \(\alpha \) such that for all \(\lambda \in [0, 1] \),

\[
\frac{d}{2} A(\lambda) + \sum_{k=1}^{d} g_k(\lambda) \geq \frac{d}{2} \left(\frac{1}{\alpha} - 1 \right) H(\lambda), \tag{88}
\]

where,

\[
A(\lambda) = \lambda' \left(\left(1 - \frac{1}{r'} \right) \log \left(1 - \frac{1}{r'} \right) - \left(1 - \frac{\lambda}{r'} \right) \log \left(1 - \frac{\lambda}{r'} \right) - \left(\frac{1 - \frac{1-\lambda}{r'}}{r'} \right) \log \left(\frac{1 - \frac{1-\lambda}{r'}}{r'} \right) \right), \tag{89}
\]

\[
g_k(\lambda) = \left(1 - r' \right) \log \left(1 + \frac{ks}{r} \right) - r' \log (1 + ks) \quad + \quad \lambda' \left(\left(1 - \frac{\lambda}{r'} \right) \log \left(1 + ks \left(1 - \frac{\lambda}{r'} \right) \right) + \left(\frac{1 - \lambda}{r'} \right) \log \left(1 + ks \left(1 - \frac{\lambda}{r'} \right) \right) \right). \tag{90}
\]

We can set

\[
\alpha = \left(1 - \sup_{0 \leq \lambda \leq 1} \left(\frac{A(\lambda)}{H(\lambda)} - \frac{2}{d} \sum_{k=1}^{d} \frac{g_k(\lambda)}{H(\lambda)} \right) \right)^{-1}. \tag{91}
\]

We will show that the optimal value is achieved at \(\lambda = 1/2 \). Since the function is symmetric about \(\lambda = 1/2 \), it suffices to show that

\[
- \frac{A(\lambda)}{H(\lambda)} - \frac{2}{d} \sum_{k=1}^{n} \frac{g_k(\lambda)}{H(\lambda)} \tag{92}
\]

is increasing on \([0, 1/2]\). It has been shown in [29] that \(-A(\lambda)/H(\lambda)\) is increasing on \([0, 1/2]\). We will show that every \(-g_k(\lambda)/H(\lambda)\) is also increasing on \([0, 1/2]\), by applying Lemma 21. Note that \(-g_k(\lambda), H(\lambda) \geq 0 \). Also, one can check that \(g_k(0) = g_k(1) = 0 \) and \(g_k'(1/2) = 0 \). Elementary calculation yields

\[
H''(\lambda) = -\frac{1}{(1-\lambda)} \tag{93}
\]
Let us define $x = \frac{1}{|r'|}$ and $y = \frac{1}{|r'|}$. Then one can check that

$$-g_k''(\lambda) = \frac{ks}{|r'|} \left(\frac{1}{1 + ks(1 + x)} + \frac{1}{1 + ks(1 + y)} + \frac{1}{(1 + ks(1 + x))^2} + \frac{1}{(1 + ks(1 + y))^2} \right).$$

(94)

Hence, we have

$$-\frac{g_k''(\lambda)}{H''(\lambda)} = ksr'W(x),$$

where

$$W(x) = xy \left(\frac{1}{1 + ks(1 + x)} + \frac{1}{1 + ks(1 + y)} + \frac{1}{(1 + ks(1 + x))^2} + \frac{1}{(1 + ks(1 + y))^2} \right)$$

(96)

with $y = \frac{1}{|r'|} - x$. Since $s, r' < 0$, it suffices to show that $W(x)$ is increasing over $[0, \frac{1}{2|r'|}]$. We rewrite W in the following way

$$W(x) = W_1(x) + W_2(x),$$

where

$$W_1(x) = xy \left(\frac{1}{1 + ks(1 + x)} + \frac{1}{1 + ks(1 + y)} \right),$$

and

$$W_2(x) = xy \left(\frac{1}{(1 + ks(1 + x))^2} + \frac{1}{(1 + ks(1 + y))^2} \right).$$

(98)

(99)

We will show that both $W_1(x)$ and $W_2(x)$ are increasing on $[0, \frac{1}{2|r'|}]$. Now let us focus on W_1. Since $y = \frac{1}{|r'|} - x$, it is easy to see that

$$W_1'(x) = \left(\frac{1}{|r'|} - 2x \right) \left(\frac{1}{1 + ks(1 + x)} + \frac{1}{1 + ks(1 + y)} \right) - kxy \left(\frac{1}{(1 + ks(1 + x))^2} - \frac{1}{(1 + ks(1 + y))^2} \right).$$

(100)

Let us denote

$$a \triangleq a(x) = 1 + ks(1 + x)$$

(101)

$$b \triangleq b(x) = 1 + ks(1 + y) = 1 + ks \left(\frac{1}{|r'|} - x + 1 \right).$$

(102)

The condition $r > -sd$ implies that $a, b \geq 0$. With these notations, we have

$$W_1'(x) = \left(\frac{1}{a} + \frac{1}{b} \right) \left(\frac{1}{|r'|} - 2x \right) - kxy \left(\frac{1}{a} - \frac{1}{b} \right)$$

(103)

$$= \left(\frac{1}{a} + \frac{1}{b} \right) \left(\frac{1}{|r'|} - 2x \right) \left(1 - (ks)^2 xy \right),$$

(104)

where the last identity follows from

$$\frac{1}{a} - \frac{1}{b} = ks \frac{1}{ab} \left(\frac{1}{|r'|} - 2x \right).$$

(105)

Since $a, b \geq 0$ and $x \in [0, \frac{1}{2|r'|}]$, it suffices to show that

$$ab - (ks)^2 xy \geq 0.$$

(106)

Using (101) and (102), we have

$$ab - (ks)^2 xy = (1 + ks) \left(1 + \frac{ks}{r} \right).$$

(107)

Then the desired statement follows from that $s > -1/d$ and $r > -sd$. We conclude that W_1 is increasing on $[0, \frac{1}{2|r'|}].$
It remains to show that \(W_2(x)\) is increasing on \([0, \frac{1}{2|r'|}]\). Recall the definition of \(W_2(x)\) in (139), it is easy to check that
\[
W_2'(x) = \left(\frac{1}{|r'|} - 2x\right) \left(\frac{1}{a^2} + \frac{1}{b^2}\right) - 2ksxy \left(\frac{1}{a^2} - \frac{1}{b^2}\right)
\]
(108)
\[
= \frac{b - a}{ks} \left(\frac{1}{a^2} + \frac{1}{b^2}\right) - 2ksxy \left(\frac{1}{a^2} - \frac{1}{b^2}\right)
\]
(109)
\[
= \frac{b - a}{ksa^3b^3}T(x),
\]
(110)
where
\[
T(x) = ab(a^2 + b^2) - 2k^2s^2xy(a^2 + ab + b^2).
\]
(111)
Since
\[
\frac{b - a}{ks} = \frac{1}{|r'|} - 2x \geq 0, \quad x \in \left[0, \frac{1}{2|r'|}\right],
\]
(112)
it suffices to show that \(T(x) \geq 0\) for \(x \in \left[0, \frac{1}{2|r'|}\right]\). Using the identities
\[
a'(x)b(x) + a(x)b'(x) = ks(b - a) = -a(x)a'(x) - b(x)b'(x),
\]
(113)
one can check that
\[
T'(x) = ks(a-b)U(x),
\]
(114)
where
\[
U(x) = a^2 + b^2 + 4ab - 2k^2s^2xy.
\]
(115)
Notice that \(U'(x) \equiv 0\), which implies that \(U(x)\) is a constant. Since \(a, b \geq 0\), we have
\[
U(0) = a^2 + b^2 + 4ab > 0.
\]
(116)
Hence, \(T'(x) \leq 0\), i.e., \(T(x)\) is decreasing. Therefore, since \(a = b\) when \(x = \frac{1}{2|r'|}\), we have
\[
T(x) \geq T\left(\frac{1}{2|r'|}\right) = 2a^2(a^2 - 3k^2s^2x^2) \quad \text{at } x = \frac{1}{2|r'|},
\]
(117)
It suffices to have
\[
a^2 \geq 3k^2s^2x^2, \quad x = \frac{1}{2|r'|},
\]
(118)
which is equivalent to
\[
\frac{1}{|r'|} \leq \frac{2}{1 + \sqrt{3}} \left(\frac{1}{ks} - 1\right).
\]
(119)
This finishes the proof that every \(-g_k(\lambda)/H(\lambda)\) is also increasing on \([0, 1/2]\). Then the numerical value of \(\alpha\) in theorem 3 follows from setting \(\lambda = 1/2\) in (91).

Remark 22. Our optimization argument heavily relies on that \(-A(\lambda)/H(\lambda)\) and \(-g_k(\lambda)/H(\lambda)\) are monotonically increasing for \(\lambda \in [0, 1/2]\). As observed in [23], the monotonicity of \(-A(\lambda)/H(\lambda)\) does not depend on the value of \(r\). Numerical examples show that \(-g_k(\lambda)/H(\lambda)\) is not monotone when \(r\) is small. This is one of the reasons for the restriction \(r > r_0\).

Remark 23. Note that the condition \(r > -sd\) of Theorem 18 can be rewritten as
\[
\frac{1}{|r'|} < \left(\frac{1}{d|s|} - 1\right).
\]
(120)
We do not know whether Theorem 4 holds when
\[
\frac{2}{1 + \sqrt{3}} \left(\frac{1}{d|s|} - 1\right) < \frac{1}{|r'|} < \left(\frac{1}{d|s|} - 1\right).
\]
(121)
4 An entropic characterization of s-concave densities

Let \(X \) and \(Y \) be real-valued random variables (possibly dependent) with the fixed identical density \(f \). Cover and Zhang \([19]\) proved that

\[
h(X + Y) \leq h(2X)
\]
(122)

holds for every coupling of \(X \) and \(Y \) if and only if \(f \) is log-concave. This gives an entropic characterization of one-dimensional log-concave densities. We will extend Cover and Zhang’s result to Rényi entropies of random vectors with \(s \)-concave densities (defined in \([9]\)), which particularly include log-concave densities as a special case. This was previously proved in \([27]\) under the stronger assumption that \(f \) is continuous.

Firstly, we introduce some classical variations of convexity and concavity which will be used later in our proof.

Definition 24. For a fixed \(\lambda \in (0, 1) \), a function \(f : \mathbb{R}^d \to \mathbb{R} \) with convex support is called almost \(\lambda \)-convex if

\[
f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)
\]
(123)

holds for almost every pair \(x, y \) in the domain of \(f \). We say that \(f \) is \(\lambda \)-convex if inequality \((123)\) holds for any pair \(x, y \) in the domain of \(f \). We say that \(f \) is convex if \(f \) is \(\lambda \)-convex for any \(\lambda \in (0, 1) \).

The above definition is equivalent to that \(f \) satisfies the following inequality

\[
f(\lambda x + (1 - \lambda)y) + f((1 - \lambda)x + \lambda y) \leq f(x) + f(y).
\]
(124)

One can define almost \(\lambda \)-concavity, \(\lambda \)-concavity, and concavity by reversing the inequalities \((123)\) or \((124)\). Theorem 1 of \([1]\) implies that an almost \(\lambda \)-convex function is identical to a \(\lambda \)-convex function except on a set of Lebesgue measure 0. (For the theorem there, one can take the ideals \(I_1 \) and \(I_2 \) as the family of sets with Lebesgue measure 0 in \(\mathbb{R}^d \) and \(\mathbb{R}^{2d} \), respectively). In general, \(\lambda \)-convexity is not equivalent to convexity, as it is not a strong enough notion to imply continuity, at least not in a logical framework that accepts the axiom of choice. Indeed, counterexamples can be constructed using a Hamel basis for \(\mathbb{R} \) as a vector space over \(\mathbb{Q} \). However, in the case that \(f \) is Lebesgue measurable, a classical result of Blumberg \([6]\) and Sierpinski \([37]\) (see also \([17]\) in more general setting) shows that \(\lambda \)-convexity implies continuity thus convexity.

Theorem 25. Let \(s > -1/d \). A random vector \(X \) in \(\mathbb{R}^d \) has density \(f \) being \(s \)-concave if and only if

\[
h_r(\lambda X + (1 - \lambda)Y) \leq h_r(X)
\]
(125)

holds for any \(\lambda \in (0, 1) \) and \(r = 1 + s \). Equality is achieved when \(X \equiv Y \).

Proof. We only prove the statement for \(s > 0 \), equivalently \(r > 1 \). The proof for \(-1/d < s < 0\), equivalently \(1 - 1/d < r < 1 \), is similar and sketched below.

Sufficiency: Let \(g \) be the density of \(\lambda X + (1 - \lambda)Y \). Then we have

\[
h_r(X) = \frac{1}{1-r} \log \mathbb{E}f^{-1}(X)
\]
(126)

\[
= \frac{1}{1-r} \log(\lambda \mathbb{E}f^{-1}(X) + (1 - \lambda)\mathbb{E}f^{-1}(Y))
\]
(127)

\[
\geq \frac{1}{1-r} \log \mathbb{E}f^{-1}(\lambda X + (1 - \lambda)Y)
\]
(128)

\[
= \frac{1}{1-r} \log \int_{\mathbb{R}^d} f(x)^{-1}g(x)dx
\]
(129)

\[
\geq \frac{1}{1-r} \log \left(\int_{\mathbb{R}^d} f(x)^r dx\right)^{1-\frac{1}{r}} \left(\int_{\mathbb{R}^d} g(x)^r dx\right)^{\frac{1}{r}}
\]
(130)

\[
= \frac{r-1}{r} h_r(g(X)) + \frac{1}{r} h_r(\lambda X + (1 - \lambda)Y).
\]
(131)
This is equivalent to the desired result. The second identity follows from the assumption that X and Y have the same distribution. In the first inequality, we use the concavity of f^{r-1} and that $\frac{1}{1-r} \log x$ is decreasing when $r > 1$. The second inequality follows from Hölder’s inequality and that $\frac{1}{1-r} \log x$ is decreasing when $r > 1$. Note that the argument also works for $1 - 1/d < r < 1$ in conjunction with the convexity of f^{r-1}, the reverse Hölder inequality and that $\frac{1}{1-r} \log x$ is increasing, instead of decreasing when $0 < r < 1$.

Necessity: We will prove the statement by contradiction. The following example is borrowed from Cover and Zhang [19]. It might be helpful for the readers to better view the ‘mass transferring’ argument used in the proof. Consider the density $f(x) = 3/2$ in the intervals $(0, 1/3)$ and $(2/3, 1)$. It is clear that f is not $(r - 1)$-concave. The joint distribution of (X, Y) with $Y \equiv X$ concentrates on the diagonal line $y = x$. Its Radon-Nikodym derivative g with respect to the Lebesgue measure on the line $y = x$ exists and is shown in Fig. 1. We move a part of the values of this Radon-Nikodym derivative to the lines $y = x - 2/3$ and $y = x + 2/3$. The new Radon-Nikodym derivative \hat{g} is shown in Fig. 2. Let (\hat{X}, \hat{Y}) be a pair of random variables whose joint distribution possesses this new Radon-Nikodym derivative. It is easy to see that \hat{X} and \hat{Y} still have the same density f. But $\hat{X} + \hat{Y}$ is uniformly distributed on $(0, 2)$, and $h_r(\hat{X} + \hat{Y}) = \log 2$. One can check that $h_r(2X) = \log(4/3)$.

Now we turn to the general case. Suppose that f is not $(r - 1)$-concave, i.e., f^{r-1} is not concave (for $r > 1$). Invoke the equivalence of λ-concavity and concavity for Lebesgue measurable probability density functions. For any $\lambda \in (0, 1)$ there exists (x, y) such that the following inequality holds

$$f^{r-1}(x) + f^{r-1}(y) > f^{r-1}(\lambda x + (1 - \lambda)y) + f^{r-1}((1 - \lambda)x + \lambda y). \quad (132)$$

We denote by A_λ the collection of such pairs (x, y). If $m(A_\lambda) = 0$, i.e., the reverse of (132) holds almost everywhere, then f^{r-1} is an almost λ-concave function, and f^{r-1} is identical to a λ-concave function except on a set of the Lebesgue measure 0. Without changing the distribution of X, we can modify f such that f^{r-1} is λ-concave. Using the equivalence of λ-concavity and concavity, after modification f^{r-1} is concave, i.e., f is $(r - 1)$-concave. Therefore, if f is not $(r - 1)$-concave, for any $\lambda \in (0, 1)$ we must have $m(A_\lambda) > 0$. Then for any $\lambda \in (0, 1)$ there exists (x, y) such that (132) holds for a set of x with positive measure. We rephrase the argument in a form suitable for our purpose. For any $\lambda \in (0, 1)$, there is $x_0 \neq 0$ such that the set

$$\Lambda = \{ x \in \mathbb{R}^d : f(x + x_0)^{r-1} + f(x - x_0)^{r-1} > f(x + (2\lambda - 1)x_0)^{r-1} + f(x - (2\lambda - 1)x_0)^{r-1} \} \quad (133)$$

has positive measure. For $\epsilon > 0$, we denote by $\Lambda(\epsilon)$ a ball of radius ϵ whose intersection with Λ has positive measure. Let $g(x, y)$ be the Radon-Nikodym derivative (with respect to the Lebesgue measure on \mathbb{R}^d) of the joint distribution of (X, Y) such that $X \equiv Y$. (So g is supported on the ‘diagonal line’ $y = x$). Now we build a new density \hat{g} by translating a small amount of ‘mass’ from ‘diagonal’ points $(x - x_0, x - x_0)$ and $(x + x_0, x + x_0)$ to ‘off-diagonal’ points $(x - x_0, x + x_0), (x + x_0, x - x_0)$. To be
more precise, we define the new joint density \(\hat{g} \) as

\[
\hat{g}(x, y) = g(x, y) + \sqrt{d(\lambda^2 + (1 - \lambda)^2)} \delta \left(1_{\{x-x_0,x+x_0\} \in \Lambda(\epsilon)} \right)
\]

(134)

\[
+ 1_{\{x+x_0,x-x_0\} \in \Lambda(\epsilon)} - 1_{\{x-x_0,x-x_0\} \in \Lambda(\epsilon)}
\]

(135)

\[
- 1_{\{x+x_0,x+x_0\} \in \Lambda(\epsilon)}
\]

(136)

where \(\delta > 0 \) and \(1_A \) is the indicator function of the set \(A \). When \(\delta > 0 \) is small enough, \(\hat{g}(x, y) \) is non-negative everywhere. Furthermore, our construction preserves the ‘total mass’. Hence, the function \(\hat{g}(x, y) \) is indeed a probability density. Let \((\hat{X}, \hat{Y})\) be a pair with joint density \(\hat{g}(x, y) \). The marginals \(X \) and \(Y \) have the same distribution as that of \(X \), since the ‘positive mass’ on ‘off-diagonal’ points cancels the ‘negative mass’ on ‘diagonal’ points when we project in the \(x \) and \(y \) direction. We claim that the pair \((\hat{X}, \hat{Y})\) has larger entropy \(h_r(\lambda X + (1 - \lambda) Y) \). The density of \(\lambda X + (1 - \lambda) Y \) is

\[
\hat{f}(x) = f(x) + \delta \left(1_{\Lambda(\epsilon)} + (2\lambda - 1)x_0 + 1_{\Lambda(\epsilon)} - (2\lambda - 1)x_0 - 1_{\Lambda(\epsilon)} + x_0 - 1_{\Lambda(\epsilon)} - x_0 \right).
\]

(137)

Let \(\Omega \) denote the union of \(\Lambda(\epsilon) + (2\lambda - 1)x_0, \Lambda(\epsilon) - (2\lambda - 1)x_0, \Lambda(\epsilon) + x_0 \) and \(\Lambda(\epsilon) - x_0 \). Then we have

\[
h_r(\lambda \hat{X} + (1 - \lambda) \hat{Y}) = \frac{1}{1 - r} \log \left(\int_{\Omega} \hat{f}(x)^r dx + \int_{\Omega^c} f(x)^r dx \right).
\]

(138)

For \(\epsilon > 0 \) small, since \(x_0 \neq 0 \), \(\Omega \) is the union of disjoint translates of \(\Lambda(\epsilon) \). When \(\delta > 0 \) is sufficiently small, we have

\[
\int_{\Omega} \hat{f}(x)^r dx = \int_{\Lambda(\epsilon)} \left[(f(x - (2\lambda - 1)x_0) + \delta)^r + (f(x + (2\lambda - 1)x_0) + \delta)^r \right] dx
\]

(139)

\[
+ (f(x - x_0) - \delta)^r + (f(x - x_0) - \delta)^r dx
\]

(140)

\[
< \int_{\Lambda(\epsilon)} [f(x - (2\lambda - 1)x_0)^r + f(x + (2\lambda - 1)x_0)^r + f(x + x_0)^r + f(x - x_0)^r] dx
\]

(141)

\[
= \int_{\Omega} f(x)^r dx,
\]

(142)

where inequality (141) follows from the observation that for \(x \in \Lambda(\epsilon) \) the derivative of the integrand at \(\delta = 0 \) is

\[
r \left[(f(x - (2\lambda - 1)x_0))^{r-1} + (f(x + (2\lambda - 1)x_0))^{r-1} - f(x - x_0)^{r-1} - f(x + x_0)^{r-1} \right] < 0.
\]

(143)

Since \(r > 1 \), we have

\[
h_r(\lambda \hat{X} + (1 - \lambda) \hat{Y}) > \frac{1}{1 - r} \log \left(\int_{\Omega} f(x)^r dx + \int_{\Omega^c} f(x)^r dx \right) = h(X).
\]

(144)

In the case \(0 < r < 1 \), we define the set \(\Lambda \) by revering the inequality, and inequality (141) will be also reversed. We will arrive at the same result.

\[\square\]

Remark 26. We mention that the proof of sufficiency is an immediate consequence of Theorem 3.36 in [29]. The theorem there draws heavily on the ideas of [39], where a related study, deriving the Schur convexity of Rényi entropies under the assumption of exchangeability and \(s \)-concavity of the random variables, generalizing Yu’s results in [40] on the entropies of sums of i.i.d. log-concave random variables.

Taking \(\lambda = 1/2 \) in Theorem 25, we have the following reverse Rényi EPI for dependent random variables with the same distribution.

Corollary 27. Let \(s > -1/d \). Let \(X \) and \(Y \) be (possibly dependent) random vectors in \(\mathbb{R}^d \) with the same density \(f \) being \(s \)-concave. Then we have

\[
N_r(X + Y) \leq 4N_r(X), \tag{145}
\]

where \(r = 1 + s \).
Theorem 25 also implies the following seemingly stronger form.

Theorem 28. Let f be a probability density function on \mathbb{R}^d. Then

$$\sup_{X_i \sim f} h_r \left(\sum_{i=1}^{n} \lambda_i X_i \right) = h_r(X_1)$$

(146)

holds for all $\lambda_i \geq 0$ such that $\sum_{i=1}^{n} \lambda_i = 1$ if and only if the density f is $(r - 1)$-concave.

References

[1] M. Adamek. Almost λ-convex and almost wright-convex functions. *Mathematica Slovaca*, 53(1):67–73, 2003.

[2] K. Ball, P. Nayar, and T. Tkocz. A reverse entropy power inequality for log-concave random vectors. *Studia Math.*, 235(1):17–30, 2016.

[3] A. R. Barron. Entropy and the central limit theorem. *Ann. Probab.*, 14:336–342, 1986.

[4] W. Beckner. Inequalities in Fourier analysis. *Ann. of Math. (2)*, 102(1):159–182, 1975.

[5] R. N. Bhattacharya and R. Ranga Rao. Normal approximation and asymptotic expansions. *John Wiley & Sons, Inc. Also: Soc. for Industrial and Appl. Math., Philadelphia*, 2010, 1976.

[6] H. Blumberg, On convex functions. *Trans. Amer. Math. Soc.*, 20, 40–44, 1919.

[7] S. Bobkov and M. Madiman. Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures. *J. Funct. Anal.*, 262:3309–3339, 2012.

[8] S. G. Bobkov and G. P. Chistyakov. Bounds for the maximum of the density of the sum of independent random variables. *Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)*, 408(Veroyatnost i Statistika. 18):62–73, 324, 2012.

[9] S. G. Bobkov and G. P. Chistyakov. Entropy power inequality for the Rényi entropy. *IEEE Trans. Inform. Theory*, 61(2):708–714, February 2015.

[10] S. G. Bobkov and A. Marsiglietti. Variants of the entropy power inequality. *IEEE Trans. Inform. Theory*, 63(12):7747–7752, 2017.

[11] S. G. Bobkov and A. Marsiglietti. Asymptotic behavior of Rényi entropy in the central limit theorem. Preprint, [arXiv:1802.10212](https://arxiv.org/abs/1802.10212), 2018.

[12] C. Borell. Convex measures on locally convex spaces. *Ark. Mat.*, 12:239–252, 1974.

[13] C. Borell. Convex set functions in d-space. *Period. Math. Hungar.*, 6(2):111–136, 1975.

[14] H. J. Brascamp and E. H. Lieb. Best constants in Young’s inequality, its converse, and its generalization to more than three functions. *Adv. in Math.*, 20(2):151–173, 1976.

[15] S. Brazitikos, A. Giannopoulos, P. Valettas, and B.-H. Vritsiou. Geometry of isotropic convex bodies. *AMS-Mathematical Surveys and Monographs 196*, 2014.

[16] H. Busemann. A theorem on convex bodies of the Brunn-Minkowski type. *Proc. Nat. Acad. Sci. U. S. A.*, 35:27–31, 1949.

[17] A. Chademan, and F. Mirzapour. Midconvex functions in locally compact groups. *Proc. Amer. Math. Soc.*, 127, 2961–2968, 1999.

[18] M. H. M. Costa. A new entropy power inequality. *IEEE Trans. Inform. Theory*, 31(6):751–760, 1985.
[19] T. M. Cover and Z. Zhang. On the maximum entropy of the sum of two dependent random variables. *IEEE Trans. Inform. Theory*, 40(4):1244–1246, 1994.

[20] A. Dembo, T. M. Cover, and J. A. Thomas. Information-theoretic inequalities. *IEEE Trans. Inform. Theory*, 37(6):1501–1518, 1991.

[21] M. Fradelizi, J. Li, and M. Madiman. Concentration of information content for convex measures. *Preprint*, [arXiv:1512.01490](https://arxiv.org/abs/1512.01490), 2015.

[22] R. J. Gardner and A. Giannopoulos. p-cross-section bodies. *Indiana Univ. Math. J.*, 48(2):593–614, 1999.

[23] B. V. Gnedenko and A. N. Kolmogorov. *Limit distributions for sums of independent random variables*. Translated from the Russian, annotated, and revised by K. L. Chung. With appendices by J. L. Doob and P. L. Hsu. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills., Ont., 1968.

[24] W. Hoeffding. Probability inequalities for sums of bounded random variables. *J. Amer. Statist. Assoc.*, 58:13–30, 1963.

[25] O. Johnson. *Information theory and the central limit theorem*. Imperial College Press, London, 2004.

[26] J. Li. Rényi entropy power inequality and a reverse. *Studia Math*, 242:303 – 319, 2018.

[27] J. Li and J. Melbourne. Further investigations of the maximum entropy of the sum of two dependent random variables. In *Proc. IEEE Intl. Symp. Inform. Theory.*, pages 1969–1972, Vail, USA, July 2018.

[28] E. H. Lieb. Proof of an entropy conjecture of Wehrl. *Comm. Math. Phys.*, 62(1):35–41, 1978.

[29] M. Madiman, J. Melbourne, and P. Xu. Forward and reverse entropy power inequalities in convex geometry. *Convexity and Concentration*, pages 427–485, 2017.

[30] A. Marsiglietti and J. Melbourne. On the entropy power inequality for the Rényi entropy of order [0, 1]. *IEEE Trans. Inform. Theory*, doi: 10.1109/TIT.2018.2877741, 2018.

[31] A. Marsiglietti and J. Melbourne. A Rényi entropy power inequality for log-concave vectors and parameters in [0, 1]. In *Proc. IEEE Intl. Symp. Inform. Theory.*, pages 1964–1968, Vail, USA, July 2018.

[32] V. D. Milman. Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés. *C. R. Acad. Sci. Paris Sér. I Math.*, 302(1):25–28, 1986.

[33] E. Ram and I. Sason. On Rényi entropy power inequalities. *IEEE Trans. Inform. Theory*, 62(12):6800–6815, 2016.

[34] O. Rioul. Rényi entropy power inequalities via normal transport and rotation. *Entropy*, 20(9):641, 2018.

[35] G. Savaré and G. Toscani. The concavity of Rényi entropy power. *IEEE Trans. Inform. Theory*, 60(5):2687–2693, May 2014.

[36] C. E. Shannon. A mathematical theory of communication. *Bell System Tech. J.*, 27:379–423, 623–656, 1948.

[37] W. Sierpinski. Sur les fonctions convexes mesurables. *Fund. Math.*, 1:125–129, 1920.

[38] A. J. Stam. Some inequalities satisfied by the quantities of information of Fisher and Shannon. *Information and Control*, 2:101–112, 1959.
[39] P. Xu, J. Melbourne, and M. Madiman. Reverse entropy power inequalities for s-concave densities. In *Proc. IEEE Intl. Symp. Inform. Theory.*, pages 2284–2288, Barcelona, Spain, July 2016.

[40] Y. Yu. Letter to the editor: On an inequality of Karlin and Rinott concerning weighted sums of i.i.d. random variables. *Adv. in Appl. Probab.*, 40(4):1223–1226, 2008.

Jiange Li
Einstein Institute of Mathematics
Hebrew University of Jerusalem
Jerusalem, IL 9190401
E-mail: jiangleli@mail.huji.ac.il

Arnaud Marsiglietti
Department of Mathematics
University of Florida
Gainesville, FL 32611, USA
E-mail: a.marsiglietti@ufl.edu

James Melbourne
Electrical and Computer Engineering
University of Minnesota
Minneapolis, MN 55455, USA
E-mail: melbo013@umn.edu