Chiral Symmetry Breaking in Bent-Core Liquid Crystals

Lech Longa1, Grzegorz Pają\k	extsuperscript{1}, and Thomas Wydro1,2,†

1Marian Smoluchowski Institute of Physics, Department of Statistical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Reymonta 4, Kraków, Poland

2Université Paul Verlaine – Metz, Laboratoire de Physique Moléculaire et des Collisions, 1 bvd Arago, 57078 Metz, France

(Dated: February 4, 2009)

Abstract

By molecular modeling we demonstrate that the nematic long-range order discovered in bent-core liquid crystal systems should reveal further spatially homogeneous phases. Two of them are identified as a tetrahedral nematic (N_T) phase with D_{2d} symmetry and a chiral tetrahedral nematic (N^*_T) phase with D_2 symmetry. These new phases were found for a lattice model with quadrupolar and octupolar anisotropic interactions using Mean Field theory and Monte Carlo simulations. The phase diagrams exhibit tetrahedral (T), N_T and N^*_T phases, in addition to ordinary isotropic (I), uniaxial nematic (N_U) and biaxial nematic (N_B) phases. To our knowledge, this is the first molecular model with spontaneous chiral symmetry breaking in non-layered systems.

PACS numbers: 61.30.Cz, 64.70.mf, 05.70.-a

*e-mail address: lech.longa@uj.edu.pl
†e-mail address: wydro@univ-metz.fr
The chirality of liquid crystals is commonly attributed to the presence of optically active (chiral) molecules \cite{1}. Such \textit{intrinsic molecular chirality} distinguishes right-handed and left-handed molecules leading to a rich variety of chiral phases, where cholesteric phase \cite{1} and blue phases \cite{2} serve as typical examples.

Interestingly, this classical liquid crystalline chirality should be revised for \textit{achiral} bent-core (banana-shaped) liquid crystalline molecules \cite{3,4,5,6,7,8,10,11}. These fascinating compounds have substantially different physical properties than the molecules of the traditional calamitic materials, and have recently been a source of discoveries that are changing our view on molecular self-organization in liquid crystals \cite{3,4,6,8,10}.

Several observations indicate that achiral bent-core molecules can acquire conformational chirality in layered (smectic) mesophases \cite{3,10}. They can form ferroelectric and \textit{homogeneously} chiral states \cite{4}, or coexisting left and right-handed chiral domains in a nematic phase \cite{6,8}. All basic theoretical interpretations of these observations introduce at a macroscopic scale a tetrahedral order parameter field. The interplay between this order parameter and the (nematic) quadrupolar tensor order parameter \cite{12,13} appears to be essential for the emergence of the chirality of the achiral bent-core molecules \cite{7,9}. In the bent-core molecular systems this coupling generates not only the most interesting chiral symmetry breaking. The new tetrahedral (\textit{T}) and tetrahedral nematic (\textit{NT}) phases should also be stabilized \cite{7}. Recently, the experimental indication of stable \textit{T} and \textit{NT} phases was indeed reported \cite{14}, along with earlier discovery of the biaxial nematic phase \cite{15,16}.

This letter analyzes some consequences of molecular interactions that have tetrahedral, uniaxial and biaxial components. For a complete understanding of the macroscopic properties of mesophases in the bent-core systems, a first-rank tensor generating structures with polar order, is also required. To simplify the analysis, the microscopic model being discussed is limited to quadrupolar and octupolar interactions. In addition to isotropic and nematic phases, the model is shown to stabilize \textit{T}, \textit{NT} and chiral tetrahedral nematic (\textit{NT}) phases. These results are what we believe a first microscopic demonstration of spontaneous chiral symmetry breaking in non-layered bent-core liquid crystals.

We assume the molecules to occupy the sites of a three dimensional simple cubic lattice with interactions limited to nearest neighbors (coordination number: \(\text{d} = 6\)). The total interaction potential is then given by \(H = \frac{1}{2} \sum_{\langle i,j \rangle} V(\Omega_i, \Omega_j)\), where \(V(\Omega_i, \Omega_j)\) is the orientational interaction between a pair of molecules (or molecular complexes in general)
and \(<i, j> \) denotes the nearest-neighbor molecules \(i \) and \(j \). Our calculations are based on the simplest attractive, \(\mathcal{O}(3) \)-invariant interaction \(V(\Omega_i, \Omega_j) \) that involves second-rank quadrupolar tensor with uniaxial \((\hat{T}^{(2)}_0)\) and biaxial \((\hat{T}^{(2)}_2)\) components, and a third-rank octupolar tensor \((\hat{T}^{(3)}_2)\). The tensors are built out of the orthonormal tripod \(\Omega_k \) of vectors \(\{\hat{a}_k, \hat{b}_k, \hat{c}_k\} \) defining the orientational degrees of freedom of the \(k \)-th molecule. Under these assumptions \(V(\Omega_i, \Omega_j) \) takes the form

\[
V(\Omega_i, \Omega_j) = -\epsilon \left[\left(\hat{T}^{(2)}_0(\Omega_i) + \sqrt{2}\lambda \hat{T}^{(2)}_2(\Omega_i) \right) \cdot \left(\hat{T}^{(2)}_0(\Omega_j) + \sqrt{2}\lambda \hat{T}^{(2)}_2(\Omega_j) \right) + \tau \hat{T}^{(3)}_2(\Omega_i) \cdot \hat{T}^{(3)}_2(\Omega_j) \right],
\]

where \(\hat{T}^{(L)}_m(\Omega_i) \cdot \hat{T}^{(L)}_{m'}(\Omega_j) = \delta_{mm'} \) \([17]\). The summation in \(\hat{T}^{(3)}_2 \) runs over all permutations of \(\{\hat{a}_k, \hat{b}_k, \hat{c}_k\} \). The symbol ‘\(\cdot \)’ denotes the scalar product formed by a full contraction of the Cartesian indices, and \(\hat{T}^{(L)}_m(\Omega_i) \cdot \hat{T}^{(L)}_{m'}(\Omega_j) = \Delta^{(L)}_{mm'} \) are linear combinations of Wigner rotation matrices \([18]\).

The interaction (1) can be interpreted within point dispersion forces approximation. The quadrupolar tensor \(\hat{T}^{(2)}_0 + \sqrt{2}\lambda \hat{T}^{(2)}_2 \) is then proportional to the anisotropic part of the dielectric polarizability tensor of a molecule while \(\hat{T}^{(3)}_2 \) is the \(T_d \)-symmetric component of the third-order polarizability tensor. The model parameters \(\{\epsilon, \lambda, \tau\} \) are related to the molecular absorption frequencies.

Special cases of the model have already been studied. For \(\tau = \lambda = 0 \) the potential in Eq. (1) reduces to the well-known Maier-Saupe or Lebwohl-Lasher \([19]\) potential, which describes a phase diagram with isotropic and uniaxial nematic phases connected by a first-order phase transition. Second is the one where \(\lambda \neq 0 \) and \(\tau = 0 \). Potential (1) then reduces to the model proposed by Luckhurst et al. \([20]\), which was extensively studied by Biscarini et. al. \([21]\). The model describes a phase diagram with uniaxial nematic and biaxial nematic phases connected by the second-order phase transition. The phases include:
a prolate uniaxial \((N_U^+\)) phase, an oblate uniaxial \((N_U^-\)) phase, a biaxial \((N_B)\) phase, and an isotropic \((I)\) phase. A self-dual point for which \(\lambda = 1/\sqrt{6}\) \([18, 21]\) separates a phase in which the molecules are of distorted prolate form \((\lambda < 1/\sqrt{6})\) from a phase in which the molecules are of distorted oblate form \((\lambda > 1/\sqrt{6})\). Bates and Luckhurst have proposed a simple relation between \(\epsilon, \lambda\) and the opening angle for bent-core molecules based on segmental second rank interactions \([22]\).

When only the term proportional to \(\epsilon \tau\) is retained in Eq. (1), the resulting model corresponds to a purely tetrahedratic coupling. It was introduced by Fel \([23]\) and studied via Mean Field (MF) and Monte Carlo (MC) simulations by Romano \([24]\). For this model, MF theory predicts a second order phase transition from \(I\) to \(T\) phase and MC simulations indicate a weak first-order transition from \(I\) to \(T\).

Combining quadrupolar and octupolar interactions in Eq. (1), yields new possibilities of which the most notable one is the spontaneous breaking of chiral symmetry. Such a symmetry breaking is already manifested in the ground state properties of the interaction of Eq.(1). Indeed, to be consistent with Eq.(1), the average molecular configurations of two bent-core molecules in a chiral phase must belong to one of two configurations of opposite chirality \((0 < \delta < \pi/2)\), as shown in Fig. 1. Due to the global \(O(3)\)-invariance of \(H\), the two configurations of different chirality are the source of two homo-chiral domains, which are present with equal probability in the system’s configuration space. When \(\tau = 0\) \((\delta = 0)\) or \(\lambda = 0\) \((\delta = \pi/2)\) the molecular configurations are nonchiral and can be brought into coincidence by a rotation. In particular, these configurations produce \(N_U\), \(N_B\), \(T\) and \(N_T\) phases. In order for both chiral configurations to be equivalent, the degrees of freedom of the \(k\)-th molecule should involve a rotation \(\Omega_k\) and parity \(p_k = \hat{a}_k \cdot (\hat{b}_k \times \hat{c}_k) = \pm 1\), thereby reflecting an \(O(3)\) symmetry. Consequently, the free energy for the system composed of \(N\) such molecules is given by \(\beta F = -\ln Z\), where \(Z = \prod_{k=1}^{N} \left(\frac{1}{2} \sum_{p_k=\pm 1} \int d\Omega_k\right) \exp[-\beta H]\), and \(\beta = 1/(k_BT)\) is the inverse temperature.

We will apply two methods to determine phase diagrams from \(F\). The methods are the MF approximation and the Metropolis MC simulations with a crucial step being the identification of the order parameters. The identification is achieved by expanding the one-particle distribution function \(P(p, \Omega)\) in a series of symmetry adapted, real \(\Delta\)-functions:

\[
P(p, \Omega) = \sum_{L,m,m',s} \frac{2L+1}{8\pi^2} p_s \Delta_{mm'}^{(L)}(\Omega) \Delta_{mm'}^{(L)}(\Omega),
\]

\(\text{(3)}\)
with \(\mathbf{X} = \frac{1}{2} \sum_{p=\pm 1} \int X(p, \Omega) P(p, \Omega) d\Omega, \quad p_s = (1, p), \) and

\[
\frac{1}{2} \sum_{p=\pm 1} \int d\Omega p_s \Delta^{(L)}_{mm}(\Omega) p_{s'} \Delta^{(L')}_{m'n'}(\Omega) = \frac{8\pi^2}{(2L+1)} \delta_{LL'} \delta_{mm'} \delta_{nn'} \delta_{ss'}.
\]

For the interaction of Eq. (1), the allowed symmetry reduction is shown in Fig. 2 along with the primary order parameters that acquire non-zero averages when crossing various phase transitions. In order to be consistent with \(L = 3 \) primary tetrahedratic order parameter, we list all remaining (secondary) molecular order parameters of rank \(L \leq 3 \). These are: (a) \(\Delta_{02}^{(2)} \) for \(N_U \); (b) \(\Delta_{20}^{(2)} \) and \(p\Delta_{22}^{(3)} \) for \(N_B \); (c) \(p\Delta_{20}^{(2)} \) and \(p\Delta_{22}^{(2)} \), along with \(N_U \) secondary order parameters, for \(N_T \); and finally (d) for \(N_T^* \) all aforementioned order parameters are nonzero, in addition to \(\mathbf{p}, p\Delta_{00}^{(2)}, \) and \(p\Delta_{02}^{(2)} \). Here

\[\Delta^{(L)}_{mm'} = \left(\frac{1}{\sqrt{2}} \right)^{2+\delta_{mn}+\delta_{mm'}} \sum_{s,s'=\pm 1} [\delta_{ss'} + (-1)^L \delta_{-ss'}] D_{ss'm'm'}, \]

where \(D \) are the Wigner rotation matrices.

We are now in position to evaluate the MF approximation to \(F \) and obtain the equilibrium properties of our system. We have identified six stable phases of the model (1) that cover the whole symmetry reduction flowchart of Fig. 2. The phases are: (a) the isotropic phase; (b) the uniaxial prolate or oblate nematic phase; (c) the biaxial phase; (d) the tetrahedratic phase; (e) the prolate or oblate tetrahedratic nematic phase and (f) the chiral tetrahedratic nematic phase. Exemplary phase diagrams for \(\tau = 1 \) and and for \(\tau = 9 \) are shown in Figs. 3 and 4, respectively. Fig. 3 shows a phase diagram in which the high-temperature region is dominated by the nematic phases. Fig. 4 shows a phase diagram in which occurs a direct \(I - T \) phase transition. Phase diagrams for intermediate values of \(\tau \) can partly be deduced by extrapolation. One of them is of particular interest. Namely, for \(\tau = \frac{28}{15} \) six phases: \(I, T, N_{T^+}, N_{T^*}, N_{T^-} \) and \(N_{U^-} \) meet at a single multicritical Landau point. All phase transitions found are of second order except when more than one order parameter acquires a nonzero value at a bifurcation. Such first order phase transitions occur at \(I - N_T, T - N_T \) or \(I - N_U \). A fuller account of the properties of this model is deferred to our future publication.

To check the validity of the MF predictions the phase diagrams were also determined from MC simulations. The simulations were performed on a 16x16x16 lattice with periodic boundary conditions. Each MC move included a rotation of a molecule’s orientation and a parity inversion. The size of MC rotational moves was selected to produce an acceptance
ratio between 30% and 40% in the ordered phases. Typically, 50,000 to 200,000 lattice sweeps were used to thermalize the system and 60,000 to 200,000 sweeps for measurements. In the MC simulations, phase transitions were detected by observing the temperature dependence of the order parameters. In turn, these quantities were determined from the asymptotic behaviors of the correlation functions

\[G^{(L)}_{mm'}(|i - j|) = \overline{T^{(L)}_m(\Omega_i) \cdot T^{(L)}_{m'}(\Omega_j)} \]
\[G^{pp}_{pp'}(|i - j|) = \overline{p_ip'_j} \]

for large \(|i - j|\). Here the overline indicates an ensemble average. In the simulations, the temperature resolution \(\delta t\) satisfied \(\delta t = 0.01\). At the above resolution (and system’s size) our simulations were unable to distinguish between weakly first-order and second-order phase transitions. The MC transition curves lie below those obtained from MF. The MF results worsen from a discrepancy of 8% to about 20% as \(\lambda\) increases from \(\lambda = 0\) (\(I - NU\)) to \(\lambda = 0.3\) (\(NT - N^*_T\)). The \(I - NU\) part of our MC diagram agrees with MC results of Biscarini et al. [21].

The new liquid crystal phases appear due to the combination of octupolar interactions with quadrupolar contributions. In addition to a tetrahedratic nematic phase, existing in prolate \((NT+\)\) and oblate \((NT-)\) versions, the \(N^*_T\) phase appears stable. It does not appear for \(\lambda = 0\) or \(\lambda = \sqrt{2}/2\), which correspond to a uniaxial limit. From the leading MF contribution to the parity order parameter, \(p\), an induced homogeneous chirality is seen to emerge when both biaxial and tetrahedratic orders condense. The estimation gives

\[\overline{p} \approx \frac{\sqrt{2}}{210 t^4} \tau \lambda (-3 + 2 \lambda^2) \Delta^{(3)}_{22} \left(\Delta^{(2)}_{20} + \sqrt{2} \lambda \Delta^{(2)}_{22} \right)^3, \]

which vanishes when biaxial or tetrahedratic order parameters are zero. A maximal transition temperature to a chiral phase is achieved for the self-dual point of \(\lambda = 1/\sqrt{6}\).

To conclude, bent-core liquid crystals can stabilize the elusive thermotropic biaxial nematic phase [15, 16], and reveal a path to a series of new spatially homogeneous but anisotropic liquids [7]. Of these liquids the most interesting one is the \(N^*_T\) phase, which should emerge from a nonchiral liquid as a result of spontaneous chiral symmetry breaking. The simplest ‘spin-spin’-type of molecular model of Eq. (1), with quadrupolar and octupolar interactions supports this scenario, but, unlike chiral phases of ordinary chiral materials, the orientational order in \(N^*_T\) appears spatially uniform. It is worth noting, however, that inclusion of higher-order cross-coupling terms between uniaxial, biaxial and tetrahedratic interactions can superimpose a spatial modulation to \(NT\) and \(N^*_T\) [17]. Thus the structures stabilized in our model can serve as the long-wavelength limits to a family of spatially
modulated chiral structures that can possibly condense in the presence of higher-order interactions. Owing to general form of the interaction, Eq. (1), these conclusions should apply to any system where tetrahedratic and quadrupolar order may simultaneously coexist.

Acknowledgments

This work was supported by Grant N202 169 31/3455 of the Polish Ministry of Science and Higher Education, and by the EC Marie Curie Actions 'Transfer of Knowledge', project COCOS (contract MTKD-CT-2004-517186).

[1] See e.g. P. G. de Gennes and J. Prost, *The Physics of Liquid Crystals* (Second Edition, Clarendon Press, Oxford, 1993).
[2] J. Englert, L. Longa, H. Stark, and H.-R. Trebin, Phys. Rev. Lett. 81, 1457 (1998).
[3] D. R. Link, G. Natale, R. Shao, J. E. Maclennan, N. A. Clark, E. Korblova, and D. M. Walba, Science 278, 1924 (1997).
[4] D. M. Walba, E. Korblova, R. Shao, J. E. Maclennan, D. R. Link, M. A. Glaser, and N. A. Clark, Science 288, 2181 (2000).
[5] J. Xu, R. L. B. Selinger, J. V. Selinger and R. Shashidhar, J. Chem. Phys. 115, 4333 (2001).
[6] G. Pelzl, A. Eremin, S. Diele, H. Kresse, and W. Weissflog, J. Mat. Chem. 12 2591 (2002).
[7] T. C. Lubensky, L. Radzihovsky, Phys. Rev. E 66, 031704 (2002).
[8] T. Niori, J. Yamamoto, and H. Yokoyama, Mol. Cryst. Liq. Cryst. 409 475 (2004).
[9] H. R. Brand, H. Pleiner, and P.E. Cladis, Physica A 351, 189 (2005).
[10] H. Takezoe, Y. Takanishi, Japanese Journal of Applied Physics 45, 597 (2006).
[11] F. Yan, C. A. Hixson, and D. J. Earl, Phys. Rev. Lett. 101, 157801 (2008).
[12] D. Allender and L. Longa Phys. Rev. E 78, 011704 (2008).
[13] L. Longa, G. Pajął, and T. Wydro, Phys. Rev. E 76, 011703 (2007).
[14] D. Wiant, K. Neupane, S. Sharma, J. T. Gleeson, S. Sprunt, A. Jakli, N. Pradhan, and G. Iannacchione, Phys. Rev. E 77, 061701 (2008).
[15] L. A. Madsen, T. J. Dingemans, M. Nakata, and E. T. Samulski, Phys. Rev. Lett. 92 (14), 145505 (2004).
[16] B. R. Acharya, A. Primak, and S. Kumar, Phys. Rev. Lett. 92(14), 145506 (2004).

[17] We have left out interactions that involve products of more than two $L = 2, 3$ tensors, or couple to lattice directions.

[18] *see e.g.* L. Longa, P. Grzybowski, S. Romano, and E. Virga, Phys. Rev. E 71, 051714 (2005).

[19] P. A. Lebwohl and G. Lasher, Phys. Rev. A 6, 426 (1972).

[20] G.R. Luckhurst, C. Zannoni, P.L. Nordio, and U. Segre, Mol. Phys. 30, 1345 (1975).

[21] F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, and C. Zannoni, Phys. Rev. Lett. 75, 1803 (1995).

[22] M. A. Bates, and G. R. Luckhurst, Phys. Rev. E 72, 051702 (2005).

[23] L. G. Fel, Phys. Rev. E 52, 702 (1995).

[24] S. Romano, Phys. Rev. E 77, 021704 (2008).
FIG. 1: (Color online) Ground state configurations of opposite chirality \((0 < \delta < \pi/2)\) for a pair of bent-core molecules in \(N^*_T\) phase; the configurations for \(0 < \delta < \pi/2\) cannot be brought into coincidence by a proper rotation. \((\hat{a}_m, \hat{b}_m, \hat{c}_m)\) are mirror images of \((\hat{a}, \hat{b}, \hat{c})\).
FIG. 2: (Color online) A flowchart of phase transitions between liquid-crystal phases for molecules interacting through pair potential, Eq. (1). Primary order parameters, which become nonzero at the transitions, their symmetry groups and abbreviated notation for the structures are indicated. In addition, sketched are one-particle spherical distribution functions $P \sim \text{const} + aY_{20} + b(Y_{22} + Y_{2-2}) + c\ i(Y_{32} - Y_{3-2})$ illustrating symmetries considered.
FIG. 3: (Color online) Phase diagram for $\tau = 1$. Lines represent MF results; points are from MC simulations for the three dimensional cubic lattice ($16 \times 16 \times 16$); $t = (\beta\epsilon)^{-1}$.
FIG. 4: (Color online) MF phase diagram for $\tau = 9$ (see captions to Fig. 3). Simulations here are difficult since parity degrees of freedom condense to a glassy state. The N_T^* phase cannot be reached by standard Metropolis simulations.