A \([\text{Na}^+]_o\)-independent, \(p\H_o\)-dependent Mechanism for Reduction of Intracellular \([\text{Ca}^{2+}]\) after Influx through \(\text{Ca}^{2+}\) Channels in Mouse Pituitary Cells

STEPHEN J. KORN and RICHARD HORN

From the Neurosciences Department, Roche Institute of Molecular Biology, Nutley, New Jersey 07110

ABSTRACT The effect of extracellular pH (pH\(_o\)) on the duration of calcium-dependent chloride currents (I\(_{\text{clCa}}\)) was studied in voltage clamped AtT-20 pituitary cells. I\(_{\text{clCa}}\) was activated by \(\text{Ca}^{2+}\) influx through plasma membrane \(\text{Ca}^{2+}\) channels, which were opened by step depolarization to voltages between -20 and +60 mV. Increasing pH\(_o\) from 7.3 to 8.0 reversibly prolonged I\(_{\text{clCa}}\) tail currents in perforated patch recordings from cells bathed in both \(\text{Na}^+\)-containing and \(\text{Na}^+\)-free solutions. This prolongation was prevented in standard whole cell recordings when the pipette solution contained 0.5 mM EGTA. The effects of raised pH\(_o\) were not due to alteration of intracellular pH, since tail current prolongation still occurred when intracellular pH was buffered at 7.3 with 80 mM HEPES. The prolongation of I\(_{\text{clCa}}\) at pH\(_o\) 8 could not be accounted for by a direct action on \(\text{Ca}^{2+}\) channels, since tail currents were prolonged when pH\(_o\) was changed rapidly during the tail current, after all \(\text{Ca}^{2+}\) channels were closed. The effects of increasing pH\(_o\) on I\(_{\text{clCa}}\) also could not be explained by a direct action on Cl\(^-\) channels, since changing to pH\(_o\) 8 did not prolong Cl\(^-\) tail currents when intracellular \(\text{Ca}^{2+}\) concentration ([\(\text{Ca}^{2+}\)]) was fixed by EGTA in whole cell recordings. Raising pH\(_o\) did, however, prolong depolarization-evoked [\(\text{Ca}^{2+}\)] transients, measured directly with the \(\text{Ca}^{2+}\) indicator dye, fura-2. Taken together, these data demonstrate the presence of a \(\text{Na}^+\)-independent, pH\(_o\)-sensitive mechanism for reduction of [\(\text{Ca}^{2+}\)] after influx through \(\text{Ca}^{2+}\) channels. This mechanism is associated with the plasma membrane, and is active on a time scale that is relevant to the duration of single action potentials in these cells. We suggest that this mechanism is the plasma membrane \(\text{Ca}^{2+}\) ATPase.

INTRODUCTION

Many excitable cells exhibit long duration action potentials during which \(\text{Ca}^{2+}\) enters the cell through voltage-gated calcium (\(\text{Ca}^{2+}\)) channels. The transient changes in intracellular \(\text{Ca}^{2+}\) concentration ([\(\text{Ca}^{2+}\)]) that result play an important role in membrane-associated events, such as ion channel gating, neurotransmitter and...
hormone secretion, and second messenger activity. The control of \([\text{Ca}^{2+}]\), near the plasma membrane depends not only on processes that modulate the increase in local \([\text{Ca}^{2+}]\), but also on the processes that reduce it. These latter processes may include: (a) \text{Ca}^{2+} extrusion from the cell via \text{Na}^+/\text{Ca}^{2+} exchange (Gill, Chueh, and Whitlow, 1984; Kaczorowski, Costello, Dethmers, Trumble, and Vandlen, 1984) or \text{Ca}^{2+} ATPases (Barros and Kaczorowski, 1984; Carafoli, 1991); (b) diffusion of \text{Ca}^{2+} away from the membrane into the cell interior; (c) binding of \text{Ca}^{2+} to either diffusable or membrane bound \text{Ca}^{2+} binding molecules; or (d) sequestration into intracellular organelles. While all of these processes are thought to exist in most excitable cells, little is known about the role each plays in the reduction of submembrane \([\text{Ca}^{2+}]\) on an electrophysiologically relevant time scale.

To date, techniques have not been developed that enable direct observation of free \([\text{Ca}^{2+}]\), selectively in the local region where it can interact with plasma membrane ion channels. One approach to this problem is to use \text{Ca}^{2+}-dependent ion channels in the plasma membrane to monitor submembrane \([\text{Ca}^{2+}]\) (Barish and Thompson, 1983; Pallotta, Hepler, Oglesby, and Harden, 1987; Korn and Horn, 1989). AtT-20 pituitary cells express a \text{Ca}^{2+}-dependent \text{Cl}^- current (\(I_{\text{Cl,ca}}\)) that is activated when \text{Ca}^{2+} enters the cell during action potentials (Korn and Weight, 1987; Korn, Bolden, and Horn, 1991a). \(I_{\text{Cl,ca}}\) is relatively insensitive to voltage, and does not inactivate over a period of many seconds (Evans and Marty, 1986; Korn and Weight, 1987). Consequently, once \(I_{\text{Cl,ca}}\) is activated and the source of \text{Ca}^{2+} turned off, the time course of \(I_{\text{Cl,ca}}\) at a given membrane potential can be used as a qualitative monitor of the \([\text{Ca}^{2+}]\) change adjacent to the cytoplasmic surface of the plasma membrane. We have previously shown, using this technique, that \text{Na}^+/\text{Ca}^{2+} exchange removes \text{Ca}^{2+} from this submembrane region on a time scale that permits it to limit the duration of \(I_{\text{Cl,ca}}\) (Korn and Horn, 1989). In this paper, we present evidence that another process in the plasma membrane, which is pH dependent and \text{Na}^+ independent, also plays a role in clearing \text{Ca}^{2+} from this region on a time scale that is relevant to the activation of \text{Ca}^{2+}-dependent channels during and after action potentials.

METHODS

Cell Culture

AtT-20/D16-16 pituitary cells were kindly provided by the Laboratory of Cell Biology, National Institutes of Health, and Dr. Terry Reisine, University of Pennsylvania. They were grown in Dulbecco's modified Eagle's medium (DMEM) plus 10% fetal bovine serum (Gibco Laboratories, Grand Island, NY), and maintained in 75-mm tissue culture flasks in a 37°C, 5% CO₂ incubator. Cells were passed once weekly and used for experiments 5–8 d after plating (into 35-mm Nunc dishes for most experiments, and glass-bottom Nunc dishes for fluorescence experiments). Plated cells (passage 18–35) were fed three times weekly.

Electrophysiology

Perforated patch and standard whole cell patch clamp recordings were made as described previously (Korn and Horn, 1989). Perforated patch recordings were made (Figs. 1, 3, 4, 7) when it was desired to prevent washout of \text{Ca}^{2+} and \text{Ca}^{2+}-dependent currents and to maintain endogenous \text{Ca}^{2+} buffering systems, and also when the time course of intracellular \text{Ca}^{2+}
transients and Ca\(^{2+}\)-dependent currents were of interest (Korn and Horn, 1989; Korn et al., 1991a; Korn, Marty, Connor, and Horn, 1991b). Standard whole cell recordings (Hamill, Marty, Neher, Sakmann, and Sigworth, 1981) were made (Figs. 2, 5, 6) when better control of intracellular [Ca\(^{2+}\)] and/or pH was necessary. Membrane currents were recorded and filtered (2 kHz, -3 dB) with an Axopatch 1C patch clamp amplifier (Axon Instruments, Inc., Burlingame, CA). Series resistance \((R_s)\) and membrane capacitance \((C_m)\) were measured by cancellation of capacitive currents evoked by 20-ms, 10-mV voltage steps from -70 mV. \(R_s\) ranged from 5 to 20 M\(\Omega\) in perforated patch experiments, and was <5 M\(\Omega\) in standard whole cell experiments (4–10 M\(\Omega\) when 80 mM HEPES was added to the pipette solution). Experiments were performed at 21–23\(^\circ\)C. Data were acquired with pCLAMP (Axon Instruments, Inc.) and analyzed with both pCLAMP and user-written programs.

\[\text{Ca}^{2+}\text{-activated Cl}^{-}\text{tail currents decay with complex kinetics and cannot be uniformly fit by} \]

\[\text{the sum of a few exponentials. Therefore, the tail current duration was measured as the} \]

\[\text{time for decay from peak to 20\% of peak (peak to 10\% of peak in Fig. 5).} \]

Solutions

The volume of the bathing solution in the recording chamber (35-mm Nunc dish) was ~1 ml, and except as described below, experiments were performed in a static bath. The standard extracellular solution in both perforated patch (except in Fig. 4, A–E) and standard whole cell experiments contained (in mM): 155–160 tetraethylammonium (TEA) CI, 5 CaCl\(_2\), 0.8 MgCl\(_2\), 10 HEPES-NaOH, 20 glucose, pH 7.3, osmolality 335 mosM. The standard pipette solution in perforated patch experiments contained (in mM): 55 CsCl, 75 CsSO\(_4\), 8 MgCl\(_2\), and 10 HEPES-CsOH, pH 7.3, 310 mosmol/kg. Substitutions for these standard solutions, and pipette solutions used for standard whole cell recordings, are listed in the figure legends.

Extracellular solutions were changed using three methods. Typically, the solution surrounding the cell being recorded was switched by manually lowering a large bore pipette that contained the desired solution into the bath adjacent to the cell. Cells were returned to control solution by removing the large bore pipette from the bath. Solution changes were accomplished within 5 s using this procedure. Faster solution changes (Fig. 4) were made with a magnetically driven stepping device (Korn and Horn, 1989). At the beginning of the experiment, a large bore pipette was placed manually 700 \(\mu\)m to the side of the cell being recorded. In these experiments, the bathing solution was flowing ~0.6 ml/min from the direction directly opposite the large bore pipette. At the desired moment, a computer-generated TTL pulse triggered the magnet which flipped the drug-containing pipette 700 \(\mu\)m, so that it was directly apposed to the recorded cell. The new solution quickly engulfed the cell, with an on time constant that ranged from 40 to 110 ms (Korn and Horn, 1989). The experimental solution was removed by magnetically flipping the macropipette back to the starting position. Total removal of test solution from near the cell depended on the flow rate of the bath and passive diffusion away from the cell, and required 1–4 s (Korn and Horn, 1989). To insure that solution from the macropipette was applied to the cell as expected, macropipette solutions in these experiments contained 100 \(\mu\)M phenol red to allow us to visually inspect the solution flow characteristics. Phenol red had no effect on membrane currents (Fig. 4 E).

The third method of changing solutions was used in experiments that involved fluorescence measurements (see below). In these experiments (Figs. 7 and 8), solutions were changed by switching electronically (Isolatch valves from General Valve Co., Fairfield, NJ) among four teflon, gravity-fed outlet tubes nested within a 100-\(\mu\)m-diam glass pipette (Korn et al., 1991a). The glass pipette was placed in apposition to the recorded cell at the start of the experiment, with control (bath) solution flowing out of one of the four outlet tubes. The 10–90% rise time for complete solution exchange was 3–5 s.
Intracellular

Intracellular [Ca$^{2+}$] was measured photometrically from single cells using the Ca$^{2+}$ indicator dye, fura-2 (Molecular Probes, Inc., Eugene, OR). The method for measuring fluorescence and calculating the [Ca$^{2+}$] has been described in detail (Korn et al., 1991a). Briefly, cells were incubated in 6.25 mg/ml of the membrane permeant, fura-2AM for 10 min at 37°C. Once deesterified in the cell (Grynkiewicz, Poenie, and Tsien, 1985), fura-2 is impermeant through both the plasma membrane and through nystatin pores. Immediately before commencing an experimental protocol, the resting [Ca$^{2+}$] at the holding potential (usually ~70 mV) was determined by measuring the fluorescence during successive 400-ms periods of excitation with 340- and 380-nm wavelengths. Stimulus-induced fluorescence transients were then measured monochromatically at 380-nm excitation wavelength to improve the time resolution of the measurements. The calculations used to determine [Ca$^{2+}$] were exactly as described previously (Korn et al., 1991a). Bleaching was minimized by using as low an excitation light intensity as possible. The amount of bleaching was determined by comparing the fluorescence at 380 nm with a ratio measurement of [Ca$^{2+}$] after each test run. During the brief light exposures necessary for the data presented here, significant bleaching did not occur.

RESULTS

Effect of Changing pHo on Iccl^-

Voltage-activated Ca$^{2+}$ currents (I$_{c\alpha}$) and Ca$^{2+}$-dependent Cl$^-$ currents (I$_{c\text{cl}^-}$) were isolated by bathing AtT-20 cells in a Na$^+$- and K$^+$-free extracellular solution (TEA substitution for monovalent ions) and using a K$^+$-free intracellular solution (Cs$^+$ substitution for K$^+$). Fig. 1 illustrates currents obtained with perforated patch recording from a cell in which the membrane potential was stepped for 60 ms from ~80 mV to a series of potentials between ~30 and +60 mV. During the voltage step, an inward I$_{c\alpha}$ is superimposed on an outward I$_{c\text{cl}^-}$ (Cl$^-$ equilibrium potential = ~22 mV; see also Fig. 3 A). Upon repolarization to ~80 mV, a slowly decaying I$_{c\text{cl}^-}$ tail current is revealed (Fig. 1 A; Korn and Weight, 1987). I$_{c\alpha}$ tail currents are not observed in these experiments, since Ca$^{2+}$ channels close within 0.5 ms of the transition back to ~80 mV (Korn and Weight, 1987), and the data were digitized at ≤1 kHz. When extracellular pH (pHo) was changed from 7.3 to 8.0 I$_{c\text{cl}^-}$ tail currents decayed more slowly (Fig. 1 A), regardless of size or activating voltage step (Fig. 1 B). Indeed, even tail currents that were somewhat reduced in amplitude in pHo 8 decayed more slowly (see activating voltages of +20 to +60 mV). For voltage steps to potentials between ~20 and +10 mV, increasing pHo also increased the initial amplitude of the Cl$^-$ tail current (Fig. 1 A, top and 1 C). The effects of raising pHo reversed quickly upon return to pHo 7.3 (Fig. 1 A and 1, B and C, triangles).

The same experiment was performed with the standard whole cell recording technique (Hamill et al., 1981) using 80 mM HEPES in the
recording pipette to heavily buffer intracellular pH at 7.3 (Deutsch and Lee, 1989). Changing pHo from 7.3 to 8.0 under these conditions produced identical results (in nine of nine cells) as under perforated patch conditions. Alkalinizing pHo increased the magnitude and duration of I_{cloc} after activation steps to 0 mV (Fig. 2A), and increased the duration but not the magnitude of I_{cloc} after more positive activation steps (Fig. 2B). These data demonstrate that the effects of changing pHo did not require changes in intracellular pH.

![Figure 1](image)

Figure 1. Effect of raising pHo on I_{cloc} in perforated patch recording. Currents were activated by 60-ms depolarizing voltage steps from a holding potential of −80 mV to potentials between −30 and +60 mV. (A) Currents evoked by steps to 0, 20, and 40 mV, in control (pH 7.3), pH 8, and after return to pH 7.3 external solutions. Time of voltage step is shown below lowest current traces. (B) Tail current duration, measured from peak to 20% of peak, as a function of activation potential, in control (open circles), pH 8 (filled circles), and after return to pH 7.3 (triangles). (C) Tail current peak amplitude, measured 2 ms after repolarization, as a function of activation potential. R, 20 MΩ; Cm, 8.4 pF.

Three general mechanisms could account for the effects of raising pHo on I_{cloc}. First, decreasing the concentration of extracellular protons (H⁺) could increase Ca²⁺ influx during the depolarizing voltage step, either from a shift in Ca²⁺ channel activation due to a change in surface potential (Hille, 1984), or by a direct action on Ca²⁺ channels (cf. Prod'hom, Pietrobon, and Hess, 1987). Second, H⁺ or OH⁻ might interact directly with Cl⁻ channels to influence their closing kinetics. Finally, increasing pHo might reduce the rate of removal of intracellular free Ca²⁺ from near
the plasma membrane. The remaining experiments in this study tested these three possibilities.

Did Increasing \(\text{pH}_o \) Prolong \(I_{\text{Ca}} \) by Increasing \(\text{Ca}^{2+} \) Influx?

In AtT-20 cells, \(I_{\text{Ca}} \) activates relatively quickly, reaching its peak in 4–5 ms. In contrast, \(I_{\text{Ca}^{2+}} \) activates more slowly, and is insignificant within 4–5 ms of the start of the step depolarization (Korn and Weight, 1987). Consequently, an estimate of the magnitude of \(I_{\text{Ca}} \) was obtained by measuring the inward current within 4–5 ms after the start of the depolarizing step (Fig. 3A, open arrow). The current–voltage relationship for \(I_{\text{Ca}} \) in these experiments was qualitatively similar to that observed when activation of \(I_{\text{Ca}^{2+}} \) is prevented by high intracellular [EGTA] in whole cell recordings or when \(\text{Ba}^{2+} \) is used as the charge carrier (Korn and Weight, 1987), which supports the assumption that the inward current 4–5 ms after the start of the voltage step is not significantly contaminated by \(I_{\text{Cl}^{-}} \).

If the prolongation of \(I_{\text{Ca}^{2+}} \) in \(\text{pH}_o \) 8 were due simply to an increase in the magnitude of \(I_{\text{Ca}} \), the relationship between \(I_{\text{Ca}} \) magnitude and tail current duration would be expected to remain relatively constant. Fig. 3C illustrates that this was not the case; tail currents were greatly prolonged at \(\text{pH}_o \) 8 even for significantly smaller \(\text{Ca}^{2+} \) currents. As described earlier, changing to \(\text{pH}_o \) 8 also resulted in larger peak \(I_{\text{Ca}^{2+}} \) only at activation voltages of \(\leq +10 \) mV. This is consistent with a shift in \(\text{Ca}^{2+} \) channel activation due to a change in surface potential (Hille, 1984). At most voltage steps, however, increases in \(I_{\text{Ca}} \) amplitude were not observed with \(\text{pH}_o \) changes. In addition, for a given \(I_{\text{Ca}} \) amplitude, there was a slight increase in \(I_{\text{Ca}^{2+}} \) tail current amplitude (Fig. 3B). These data suggest that at least some of the increase in \(I_{\text{Cl}^{-}} \)amplitude following changes in \(\text{pH}_o \) was not due to an increase in \(I_{\text{Ca}} \), but was due to an increased coupling between \(I_{\text{Ca}} \) and \(I_{\text{Cl}^{-}} \).
Due to the mixture of currents during the 100-ms voltage step, it could not be determined in these experiments whether the integrated I_{Ca} was influenced by pH$_{o}$. For example, increasing pH$_{o}$ could have decreased I_{Ca} inactivation, and thus increased Ca$^{2+}$ influx during the voltage step. Such an effect could account for the increased I_{Ca} amplitude and duration for a given I_{Ca}.

To conclusively rule out the possibility that the effect of changing pH$_{o}$ could be accounted for by an action on Ca$^{2+}$ channel function, a fast solution changer (see Methods) was used to change the external solution after the termination of the voltage step. Fig. 4, A–E, shows currents evoked by voltage steps to +10 mV in a cell that was bathed in a Na$^{+}$-containing solution. Each panel in Fig. 4, A–E, illustrates two superimposed currents, one in the Na$^{+}$/pH$_{7.3}$ bath solution and one evoked 30 s later with the extracellular solution changed as described. In Fig. 4 A, the solution surrounding the cell was changed to pH 8 five seconds before the depolarizing stimulus. The typical prolongation was observed. The solution was then returned to pH 7.3. In Fig. 4 B, the solution was switched to pH 8 twenty milliseconds after the termination of the depolarizing stimulus (arrow), after all Ca$^{2+}$ channels were presumably closed. Following a short delay, the tail current was prolonged. Similar effects on the Cl$^{-}$ tail current were observed (Fig. 4, C and D).

![Figure 3](image-url) **Figure 3.** I_{Cl} amplitude and duration as a function of I_{Ca}. (A) I_{Ca} magnitude was measured 4 ms after the start of the voltage step (open arrow). I_{Cl} amplitude was measured 2 ms after the termination of the voltage step (closed arrow). (B) Tail current amplitude as a function of I_{Ca} amplitude. (C) Tail current duration (measured as peak to 20% of peak) as a function of I_{Ca} amplitude. Currents were evoked by 100-ms voltage steps to between −15 and +5 mV (pH 7.3) and between −20 and 0 mV (pH 8.0). R, 19 MΩ, C, 7.4 pF.
when extracellular Na\(^+\) (Na\textsubscript{o}\(^+\); pH\textsubscript{o} 7.3) was replaced by TEA (pH\textsubscript{o} 7.3). Na\textsubscript{o}\(^+\) removal prolongs \(I_{\text{ca}}\) by inhibiting Na\textsubscript{o}/Ca2+ exchange (Korn and Horn, 1989). Fig. 4 \(E\) shows that the effects of switching solutions during the tail were due neither to a mechanical artifact of the solution change nor to application of 100 \(\mu\text{M}\) phenol red, which was used to visualize the flowing test solution. Rapidly changing to pH\textsubscript{o} 8 also prolonged \(I_{\text{ca}}\) in cells bathed in Na+-free solution (Fig. 4 \(F\)), showing that the rapid effects of pH\textsubscript{o} on \(I_{\text{ca}}\) were not due to its action on the Na+-Ca2+ exchanger. In conclusion, raising pH\textsubscript{o} prolonged \(I_{\text{ca}}\) tail currents by a mechanism that did not involve a direct action on Ca2+ channels.

Dependence of the pH\textsubscript{o} Effect on [Ca2+]\textsubscript{i}

Although the effects of changing to pH\textsubscript{o} 8 were not due to effects on Ca2+ channel function, the increase in peak and duration of \(I_{\text{ca}}\) in pH\textsubscript{o} 8 were consistent with the effect being dependent on intracellular [Ca2+] ([Ca2+]\textsubscript{i}). Two possible mechanisms could account for this dependence: (a) a decrease in intracellular Ca2+ buffering or removal at pH\textsubscript{o} 8, or (b) a change in binding kinetics (e.g., a slower off rate) between
Ca\(^{2+}\) and the Cl\(^-\) channel. To distinguish between these two possibilities, we used standard whole cell recordings in which cells were loaded with 200–500 \(\mu\)M EGTA. Ca\(^{2+}\) influx was varied incrementally by stepping the voltage to between −30 mV and +40 mV. In EGTA-loaded cells, the peak amplitude of \(I_{\text{Cl}_{\text{Ca}}}\) still increased with increasing Ca\(^{2+}\) influx, but the dependence of \(I_{\text{Cl}_{\text{Ca}}}\) duration on the peak \(I_{\text{Cl}_{\text{Ca}}}\) (which reflects Ca\(^{2+}\) influx) was greatly reduced (Fig. 5 B). This presumably occurs because chelation by EGTA becomes the dominant Ca\(^{2+}\) buffering mechanism in standard whole cell recordings (Korn and Weight, 1987; Korn and Horn, 1989). The prediction was that if increasing pH\(_o\) prolonged \(I_{\text{Cl}_{\text{Ca}}}\) due to a decrease in Ca\(^{2+}\) buffering, changing pH\(_o\) in the presence of intracellular EGTA would have little or no effect on \(I_{\text{Cl}_{\text{Ca}}}\). In contrast, if changing pH\(_o\) changed the binding kinetics of Ca\(^{2+}\) to the Cl\(^-\) channel, or if it prolonged \(I_{\text{Cl}_{\text{Ca}}}\) by a mechanism unrelated to intracellular Ca\(^{2+}\), then adding EGTA would not prevent the effects of changing pH\(_o\). Addition of EGTA eliminated the effect of changing pH\(_o\) on tail current duration (Fig. 5 A), consistent with the hypothesis that prolongation of \(I_{\text{Cl}_{\text{Ca}}}\) involved alterations in the buffering of intracellular Ca\(^{2+}\).

\textbf{Direct Effects of Increasing pH\(_o\) on \(I_{\text{Cl}_{\text{Ca}}}\)}

To examine whether the effects of changing pH\(_o\) could be due to a direct effect of OH\(^-\) (or H\(^+\) removal) on Cl\(^-\) channels, we used standard whole cell recordings to activate \(I_{\text{Cl}_{\text{Ca}}}\) by voltage pulses in the presence of a fixed [Ca\(^{2+}\)], of 0.5 \(\mu\)M (Korn and Weight, 1987; Korn and Horn, 1989). In these experiments, Ca\(^{2+}\) entry was prevented by removal of extracellular Ca\(^{2+}\). At pH\(_o\) 8 (arrows in Fig. 6), \(I_{\text{Cl}_{\text{Ca}}}\) was reduced in magnitude (Fig. 6 B) but not prolonged (Fig. 6 C; \(n = 4\) cells). The effects...
of changing to pHo 8 rapidly reversed upon returning to pHo 7.3 (Fig. 6A), which eliminated the possibility that the changes observed were due to a washout phenomenon. These data indicate that a direct effect of extracellular OH⁻ addition or H⁺ removal on Cl⁻ channels did not contribute to the prolongation of I_{cl,sh} at pHo 8.

Effect of Changing pHo on [Ca²⁺] Transients

The above experiments show that the effects of pHo on Cl⁻ channel currents cannot be explained by direct actions on the function of either Ca²⁺ or Cl⁻ channels, but that they are prevented by adding the Ca²⁺ chelator, EGTA, to the cytoplasm. These observations are consistent with the hypothesis that the prolongation of I_{cl,sh} in pHo 8 was due to changes in the cell's handling of Ca²⁺ after influx. To further explore this hypothesis, we made perforated patch recordings on cells previously loaded with the Ca²⁺ indicator dye, fura-2. With this procedure, we could directly observe [Ca²⁺]i transients in voltage clamped cells. Fig. 7 illustrates I_{cl,sh} (middle traces) and [Ca²⁺]i transients (top traces) evoked by a 200-ms voltage step to +10 mV at pHo 7.3. Depolarization caused a rapid increase in [Ca²⁺]i together with activation of I_{cl,sh}. As shown previously (Korn et al., 1991a, b), the cell averaged [Ca²⁺]i decayed more slowly than I_{cl,sh}. 10 s after switching to pHo 8, the same stimulus was repeated. Both I_{cl,sh} and the [Ca²⁺]i transient were potentiated and prolonged. This effect reversed within 30 s of returning to pHo 7.3 (Fig. 7). Note also in Fig. 7 that the
[Ca2+] measured with fura-2 does not correspond with the [Ca2+] required to activate I_{\text{Ca}}. At pH\textsubscript{8}, [Ca2+], 1 s from the end of the illustrated trace is higher than the peak [Ca2+] at pH\textsubscript{7.3}, yet I_{\text{Ca}} is completely turned off. This indicates that the [Ca2+] near the cell membrane is different than the average internal [Ca2+] measured by fura-2.

Since changing to pH\textsubscript{8} not only slowed the decline of [Ca2+], but also increased Ca2+ influx, it was possible that the reduced rate of decay was due to the increased Ca2+ load. However, the decline of intracellular Ca2+ was slowed at pH\textsubscript{8} even when Ca2+ influx was less (Fig. 8). The top traces (Fig. 8) show the typical effect of raising pH\textsubscript{8} on the decay of [Ca2+], following a constant stimulus; at pH\textsubscript{8}, [Ca2+], reached a higher peak and decayed more slowly. The second set of traces compares the [Ca2+] transient after the stimulus to +10 mV at pH\textsubscript{8} 7.3 (same as top trace) and a subsequent stimulus to −5 mV at pH\textsubscript{8} 8. The [Ca2+], peaked at a significantly lower concentration at pH\textsubscript{8} 8 than at pH\textsubscript{8} 7.3, yet decayed more slowly. These data demonstrate that the slowed reduction of [Ca2+], at pH\textsubscript{8} 8 was not due solely to an increase in the intracellular Ca2+ load. Furthermore, they show that pH\textsubscript{8} has a direct effect on the rate of intracellular [Ca2+] decrease after Ca2+ entry through Ca2+ channels.

Figure 7. Effect of increasing pH\textsubscript{o} on intracellular [Ca2+] transient. Simultaneous recording of intracellular [Ca2+] (top) and membrane currents (middle) using the perforated patch technique on a fura-2-loaded cell. Ca2+ influx was activated by a 500-ms voltage pulse from −70 to 0 mV (protocol shown in lower trace). Three superimposed traces are shown: responses in control (pH\textsubscript{o} 7.3), pH\textsubscript{o} 8 and after return to pH\textsubscript{o} 7.3. R\textsubscript{i} 19 MΩ, C\textsubscript{m} 11 pF.

Figure 8. [Ca2+] transients were prolonged at pH\textsubscript{o} 8, even after less Ca2+ influx. (Top) [Ca2+] transients were produced by 500-ms voltage steps from −70 mV to +10 mV in pH\textsubscript{o} 7.3 and, 30 s later, in pH\textsubscript{o} 8. (Middle) [Ca2+] transient produced by voltage step to −5 mV in pH\textsubscript{o} 8 is superimposed on larger [Ca2+] transient produced by stimulus to +10 mV in pH\textsubscript{o} 7.3 (same trace as in top panel). R\textsubscript{i} 16 MΩ, C\textsubscript{m} 11.6 pF.
DISCUSSION

This study began following the observation that, in voltage clamp experiments, raising pHo increased the magnitude and duration of I_{Cl^{\text{Ca}}}. In AtT-20 pituitary cells, I_{Cl^{\text{Ca}}} is activated by Ca^{2+} that enters the cell through plasma membrane Ca^{2+} channels. Since I_{Cl^{\text{Ca}}} does not inactivate (Evans and Marty, 1986; Korn and Weight, 1987), the primary determinants of I_{Cl^{\text{Ca}}} magnitude and duration are the amount and time course of Ca^{2+} influx, the rate of [Ca^{2+}] reduction near the intracellular surface of the plasma membrane, the binding kinetics of Ca^{2+} to the Cl^- channel, and the intrinsic Cl^- channel kinetics. The data presented in this study demonstrate that the prolongation of I_{Cl^{\text{Ca}}} produced by raising pHo cannot be accounted for by a direct action of H^+ removal (or OH^- addition) on Ca^{2+} or Cl^- channels, nor on Ca^{2+} binding to the Cl^- channel. The remaining hypothesis is that raising pHo prolonged I_{Cl^{\text{Ca}}} by slowing the removal of Ca^{2+} from near the plasma membrane after Ca^{2+} influx. This hypothesis was supported by experiments with the [Ca^{2+}] indicator dye, fura-2, which directly demonstrated that raising pHo prolonged intracellular [Ca^{2+}] transients that resulted from Ca^{2+} channel activation.

Which Ca^{2+} Buffering Mechanism Was Affected by Raising pHo?

Three observations suggest that the site of pHo influence was the plasma membrane. First, the effect occurred very quickly, in ~100 ms or less (Fig. 4), and reversed within seconds. Second, effects remained when intracellular pH was heavily buffered (Fig. 2). This ruled out the possibility that the effects of raising pHo were due to changes in intracellular pH, which are known to influence Ca^{2+} buffering in the cytoplasm (Alvarez-Leefmans, Rink, and Tsien, 1981; Zucker, 1981). Third, the magnitude of I_{Cl^{\text{Ca}}} was not closely related to the [Ca^{2+}] measured with fura-2 in the cell interior. In the experiment illustrated in Fig. 7, for example, the whole cell [Ca^{2+}] measured after a fully decayed I_{Cl^{\text{Ca}}} in pHo 8 was higher than the whole cell [Ca^{2+}] that corresponded with the peak I_{Cl^{\text{Ca}}} at pH 7.3. This would not be predicted if I_{Cl^{\text{Ca}}} magnitude were closely coupled to Ca^{2+} buffering by a deep intracellular buffering mechanism, such as uptake into a Ca^{2+}-sequestering organelle.

Two active mechanisms for reduction of free intracellular [Ca^{2+}], Na^+/Ca^{2+} exchange and a Ca^{2+} ATPase, are known to reside in the plasma membrane of pituitary and other excitable cells (Dipolo and Beauge, 1983; Barros and Kaczorowski, 1984; Gill et al., 1984; Kaczorowski et al., 1984; Carafoli, 1991). The effects of raised pHo occurred in the absence of Na^+, which rules out the possibility that Na^+/Ca^{2+} exchange is involved in the effect. Ca^{2+} ATPases, however, display two forms of pH dependence, both of which are consistent with the hypothesis that raising pHo may have slowed the rate of Ca^{2+} reduction via inhibition of a Ca^{2+} ATPase. Activity of the sarcoplasmic reticulum Ca^{2+} ATPase, measured both as ATPase-mediated Ca^{2+} transport and ATPase-mediated ADP production, is reversibly inhibited at alkaline pH (Tate, Chu, McMillin-Wood, Van Winkle, and Entman, 1981; Bishop and Al-Shawi, 1988). Of perhaps greater relevance to this study, the plasma membrane Ca^{2+} ATPase appears to couple the extrusion of Ca^{2+} to countertransport of one or more H^+ (Carafoli, 1991). As predicted for this type of mechanism, Ca^{2+} transport by the Ca^{2+} ATPase in human red blood cell membranes is inhibited by raising pHo in
the presence of extracellular Ca$^{2+}$ (Milanick, 1990). Similarly, removal of extracellular H$^+$ by alkalinizing extracellular pH in our experiments would be expected to inhibit Ca$^{2+}$ extrusion from the cell interior.

An alternative possibility is that raising pHo prolonged I_{Cl,c,} by indirectly delaying the diffusion of Ca$^{2+}$ away from the plasma membrane into the cell interior. In theory, alkalinizing pH$_o$ could change the capacity or affinity of plasma membrane molecules for Ca$^{2+}$, which would then slow the exodus of Ca$^{2+}$ from the local compartment (cf. Barish and Thompson, 1983; Sala and Hernandez-Cruz, 1990). This hypothesis, however, requires that the molecules involved are either integral or closely associated with the membrane, and that deprotonating an extracellular domain would alter Ca$^{2+}$ binding to an intracellular binding site. At least one integral Ca$^{2+}$ binding protein has been described (Kowarski, Cowen, Takahashi, and Shachter, 1987), and many others associate with membranes in the presence of Ca$^{2+}$ (Smith and Dedman, 1990). For the time being, however, this argument is purely speculative. Given the demonstrated existence of a plasma membrane Ca$^{2+}$ ATPase, and its inhibition by extracellular alkalinization, we favor the hypothesis that raising pH$_o$ prolonged I_{Cl,c,} via inhibition of a Ca$^{2+}$ ATPase. An unequivocal test of this hypothesis must await the availability of a specific inhibitor (Note: Including vanadate in the pipette solution in whole cell recordings led to immediate and permanent activation of I_{Cl,c,} and within seconds, cell death [Korn, S. J., and R. Horn, unpublished observations]).

Conclusion

Our data indicate that a pH-dependent, Na$^+$-independent Ca$^{2+}$ buffering mechanism in the plasma membrane influences [Ca$^{2+}$] near ion channels after Ca$^{2+}$ influx, on a time scale that is relevant to Ca$^{2+}$-dependent membrane currents and action potentials. While not unequivocal, present evidence suggests that this buffering mechanism is the plasma membrane Ca$^{2+}$ ATPase. Based on kinetic data, the Ca$^{2+}$ ATPase has been characterized as a high affinity, low capacity transporter, whereas the Na$^+$/Ca$^{2+}$ exchanger is a low affinity, high capacity transporter (Dipolo and Beauge, 1983). Based on theoretical arguments, it has been proposed that the ATPase is relatively more important for the maintenance of resting [Ca$^{2+}$], whereas Na$^+$/Ca$^{2+}$ exchange is more important for removing Ca$^{2+}$ following large transients (Dipolo and Beauge, 1983; Gill et al., 1984). Together with a previous study (Korn and Horn, 1989), the data presented here suggest that in pituitary cells, both transporters can act to influence the duration of Ca$^{2+}$-dependent membrane currents produced by Ca$^{2+}$ influx. Consequently, the activity of these transporters may influence not only Ca$^{2+}$ removal following influx, but also Ca$^{2+}$ influx via modulation of Ca$^{2+}$-dependent ion channel activity (Hume and Thomas, 1989; Korn et al., 1991a).

We thank Dr. Terry Reisine for quickly sending us AtT-20 cells, Mr. Arthur Bolden for unwavering dedication to quality cell culture maintenance, and Dr. William Chapple for his comments on the manuscript.

This work was supported in part by National Institutes of Health postdoctoral fellowship NS-08117 to Dr. Korn.

Original version received 2 May 1991 and accepted version received 21 June 1991.
REFERENCES

Alvarez-Leefmans, F. J., T. J. Rink, and R. Y. Tsien. 1981. Free calcium ions in neurones of Helix Aspersa measured with ion-selective microelectrodes. Journal of Physiology. 315:531–548.

Barish, M. E., and S. H. Thompson. 1983. Calcium buffering and slow recovery kinetics of calcium-dependent outward current in molluscan neurons. Journal of Physiology. 337:201–219.

Barros, F., and G. J. Kaczorowski. 1984. Mechanisms of Ca\(^{2+}\) transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca\(^{2+}\) + Mg\(^{2+}\))-ATPase-dependent Ca\(^{2+}\) transport activity. Journal of Biological Chemistry. 259:9404–9410.

Bishop, J. E., and M. K. Al-Shawi. 1988. Inhibition of sarcoplasmic reticulum Ca\(^{2+}\)-ATPase by Mg\(^{2+}\) at high pH. Journal of Biological Chemistry. 263:1886–1892.

Carafoli, E. 1991. Calcium pump of the plasma membrane. Physiological Reviews. 71:129–153.

Deutsch, C., and S. C. Lee. 1989. Modulation of K\(^{+}\) currents in human lymphocytes by pH. Journal of Physiology. 413:399–415.

Dipolo, R., and L. Beauge. 1983. The calcium pump and sodium-calcium exchange in squid axons. Annual Review of Physiology. 45:313–324.

Evans, M. G., and A. Marty. 1986. Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. Journal of Physiology. 378:437–460.

Gill, D. L., S.-H. Chueh, and C. L. Whitlow. 1984. Functional Importance of the synaptic plasma membrane calcium pump and sodium-calcium exchanger. Journal of Biological Chemistry. 259:10807–10813.

Gryniewicz, G., M. Poenie, and R. Y. Tsien. 1985. A new generation of Ca\(^{2+}\) indicators with greatly improved fluorescence properties. Journal of Biological Chemistry. 260:3440–3450.

Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. 381:85–100.

Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer Associates, Inc., Sunderland, MA. 1–426.

Hume, R. I., and S. A. Thomas. 1989. A calcium and voltage-dependent chloride current in developing chick skeletal muscle. Journal of Physiology. 417:241–261.

Kaczorowski, G. J., L. Costello, J. Dethmers, M. J. Trumble, and R. L. Vandlen. 1984. Mechanisms of Ca\(^{2+}\) transport in plasma membrane vesicles prepared from cultured pituitary cells. I. Characterization of Na\(^{+}\)/Ca\(^{2+}\) exchange activity. Journal of Biological Chemistry. 259:9395–9403.

Korn, S. J., A. Bolden, and R. Horn. 1991a. Control of action potentials and Ca\(^{2+}\) influx by the Ca\(^{2+}\)-dependent chloride current in AtT-20 mouse pituitary cells. Journal of Physiology. 439:425–437.

Korn, S. J., and R. Horn. 1989. Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording. Journal of General Physiology. 94:789–812.

Korn, S. J., A. Marty, J. A. Connor, and R. Horn. 1991b. Perforated patch recording. Methods in Neurosciences. 4:364–373.

Korn, S. J., and F. F. Weight. 1987. Patch-clamp study of the calcium-dependent chloride current in AtT-20 pituitary cells. Journal of Neurophysiology. 58:1431–1451.

Kowarski, S., L. A. Cowen, M. T. Takahashi, and D. Schachter. 1987. Tissue distribution and vitamin D dependence of IMCAL in the rat. American Journal of Physiology. 253:C411–C419.

Milanick, M. A. 1990. Proton fluxes associated with the Ca pump in human red blood cells. American Journal of Physiology. 258:C552–C562.

Pallotta, B. S., J. R. Hepler, S. A. Oglesby, and T. K. Harden. 1987. A comparison of calcium-
activated potassium channel currents in cell-attached and excised patches. *Journal of General Physiology.* 89:985–997.

Prod'hom, B., D. Pietrobon, and P. Hess. 1987. Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca$^{2+}$ channel. *Nature.* 329:245–246.

Sala, F., and A. Hernandez-Cruz. 1990. Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. *Biophysical Journal.* 57:313–324.

Smith, V. L., and J. R. Dedman (eds.). 1990. *Stimulus Response Coupling: The Role of Intracellular Calcium-binding Proteins.* CRC Press, Boca Raton, FL.

Tare, C. A., A. Chu, J. McMillin-Wood, W. B. Van Winkle, and M. L. Entman. 1981. Evidence for a calcium-sensitive factor which alters the alkaline pH sensitivity of sarcoplasmic reticulum calcium transport. *Journal of Biological Chemistry.* 256:2934–2939.

Zucker, R. S. 1981. Tetraethylammonium contains an impurity which alkalizes cytoplasm and reduce calcium buffering in neurons. *Brain Research.* 208:473–478.