EDITORIAL

Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations

Leukemia advance online publication, 12 May 2017; doi:10.1038/leu.2017.125

IMMUNOGENETIC ANALYSIS IN CLL: BIOLOGICAL AND CLINICAL RELEVANCE

Pivotal studies from the 1990s offered the first pieces of evidence for the role of immunoglobulin (IG) receptors and antigen stimulation in the natural history of chronic lymphocytic leukemia (CLL). These studies revealed the pronounced microenvironment (SMH) within the rearranged IG heavy variable (IGHV) genes of the clonotypic B-cell receptor (BCR) IG dichotomizes CLL into two broad categories: the first includes cases with no or limited SHM (‘unmutated’ CLL, U-CLL), while the second includes cases with a significant SHM load (‘mutated’ CLL, M-CLL).

In addition, they showed that the presence and load of somatic hypermutation (SMH) within the IGHV mutation burden enabled the accurate prediction of the clinical course of the disease based on the level of SMH within the expressed IGHV genes. It has subsequently been shown that U-CLL is markedly different from M-CLL not only regarding the significance of SHM from other patients within the same SHM category. Of note, within the clinical arena, IGHV mutation burden enabled the accurate prediction of the clinical course of the disease based on the level of SMH within the expressed IGHV genes. It has subsequently been shown that U-CLL is markedly different from M-CLL not only regarding the clinical course, but also in terms of biological features: the former is associated with adverse prognostic genomic aberrations, increased BCR signaling capacity, shorter time to progression and an overall inferior outcome compared to M-CLL.

In hindsight, these studies represent true landmarks in the understanding of CLL, forming the cornerstone for an immunologically oriented view of CLL ontology and evolution. Indeed, rather than focusing only on genomic lesions, as is the norm for most cancers including almost all other lymphoid malignancies, these studies highlighted the critical role of the BCR IG, thus opening new directions for research into CLL-microenvironment interactions that have led to a more comprehensive appreciation of the biological heterogeneity of CLL.

An important milestone in the timeline of CLL-focused immunogenetic research was the observation that one-third of CLL patients carry (quasi)identical, also referred to as stereotyped BCR IGs, and can be classified into subsets defined by distinct sequence motifs within the IG variable heavy complementarity-determining region 3 (VH CDR3). Mounting evidence suggests that patients assigned to the same subset have similar biological features (for example, signaling capacity and genomic aberration profiles) and clinical course, often differing significantly from other patients within the same SMH category. On these grounds, it has been proposed that patient classification based on BCR IG stereotypy can supersede the more generic categorization into U-CLL versus M-CLL, at least for major subsets. For instance, stereotyped subset #2 (IGHV3-21/ IGLV3-21) has emerged as a prototype of aggressive disease independently of the SHM load.

Additional evidence for the importance of immunogenetic analysis in CLL was provided by three recent independent studies demonstrating that the SHM status of the IGHV genes was associated with a particular clinical response to chemoinmunotherapy regimens in both clinical trials and general practice, such as the FCR (fludarabine/cyclophosphamide/rituximab) combination. More specifically, fit M-CLL patients treated with FCR (especially those lacking del(17p) and/or del(11q)) experienced more prolonged responses, delayed progression and a significant improvement in overall survival compared to U-CLL patients who received the same treatment.

Determining the SHM level is therefore important, not only for general assessment of the disease course in CLL, but also for guiding treatment decisions: put simply, it is not only a prognostic test, but also a predictive test for the use of certain therapies, such as FCR. This will likely have important implications in the near future due to the emergence of novel treatments and will impact the clinical management of patients with CLL.

SETTING STANDARDS FOR IMMUNOGENETIC ANALYSIS IN CLL: PAST AND ONGOING ERIC INITIATIVES

ERIC, the European Research Initiative on CLL (www.ericll.org) has been at the forefront of immunogenetic research in CLL. The first ERIC recommendations for the determination of IGHV gene mutational status in CLL were published in 2007. They were subsequently complemented by instructions detailing how to handle analytically challenging cases or cases difficult to categorize. In addition, since 2007, ERIC provides the community with an expert online forum (www.ericll.org/services/) to discuss general queries on IG gene sequence interpretation in CLL, or to analyze and provide advice about actual IG gene rearrangement sequences that can be difficult to interpret in everyday practice. More recently, ERIC participated in the development of the ARResT/AssignSubsets bioinformatics tool, which is freely available online, and enables one to robustly and easily determine whether a particular IGHV-IGHD-IGHJ gene rearrangement belongs to one of the so-called ‘major’ (that is, largest) CLL stereotyped subsets.

To improve the quality of IG gene sequence analysis in CLL within the international research community, ERIC has organized educational workshops on the topic (2009–2016: Uppsala, Paris, Thessaloniki, Stresa, Brno, Uppsala). Furthermore, it has established the IG Network with the main objective of harmonizing IG gene sequence analysis in CLL to ensure that results are reliable and comparable among different laboratories, hence promoting optimal patient care (www.ericll.org/pages/networks/ignetwork). In this context, very recently, ERIC also started periodic (biannual) rounds of certification of IG gene sequence analysis in CLL to disseminate expertise in reliable IG sequence analysis (www.ericll.org/pages/ighv-certification). Thirty-seven diagnostic laboratories from 17 different countries in Europe and Australia have already participated in the first certification round and passed this test.

UPDATE OF THE ERIC RECOMMENDATIONS FOR IMMUNOGENETIC ANALYSIS IN CLL

Capitalizing on many years of active involvement in this field combined with the experience gained from the activities...
Table 1. Technical considerations for determination of the IGHV somatic hypermutation status of clonotypic IGHV-IGHD-IGHJ gene rearrangements in CLL

Item	Recommendations	Remarks
Material		
Anticoagulants	EDTA (or CPT)	
Cells/tissue	Blood, bone marrow, tissue biopsy	Purification of B cells usually not necessary unless low fraction of leukemic cells
Nucleic acid	gDNA or cDNA	cDNA useful when mutations within the IGHJ gene impair amplification
Production of template for sequencing		
Primers	5′: leader VH FR1, VH FR2 and VH FR3 primers are not acceptable	VH FR1, VH FR2 and VH FR3 primers are not acceptable
3′: IGHC primers (on cDNA) useful when mutations within IGHJ gene impair amplification		
Amplification	Multiplex PCR	Individual PCR reactions (for each 5′ primer) may be useful when more than one rearrangement found
Detection of IGH rearrangement	GeneScan or PAGE electrophoresis	Agarose gel electrophoresis strongly discouraged (lack of resolution)
Cloning	Not necessary	Except in rare circumstances (more than one rearrangement not isolated by simplex PCR)
Sequencing		
Methodology	Direct, both strands	Both strands mandatory for high-quality sequence
Sequence alignment	IMGT/V-QUEST (www.imgt.org)	Adjustable parameters: (1) search for insertions/deletions; (2) number of accepted D genes
IGHV identity (%)	Automatic or adjusted	Adjusted: use option ‘search for insertions/deletions’ when low % identity
Stereotypic subset identification	ARRest/AssignSubsets (bat.infspire.org/arrest/ericll.org/pages/services/tool)	Applicable for the current 19 major BCR stereotyped subsets in CLL^a

Abbreviations: BcR, B-cell receptor; cDNA, complementary DNA; CLL, chronic lymphocytic leukemia; CPT, citrate/pyridoxal 5′-phosphate/Tris; EDTA, ethylenediaminetetraacetic acid; gDNA, genomic DNA; PAGE, polyacrylamide gel electrophoresis. ^aAgathangelidis and colleagues.7

Table 2. Reporting IGHV gene somatic hypermutation status in CLL

Item	Recommendations	
Standard cases		
Methodology	Report type of: primers,^a PCR product analysis, sequencing method, bioinformatics tools	
Gene identification	IGHV, IGHD, IGHJ genes and alleles; IGHJ may be difficult to precisely identify (due to deletions and/or SHM)	
Productive rearrangement	Mutational status determined only for productive rearrangements; if unproductive, mention reasons (out-of-frame junction, stop codon)	
IGHV gene: % of nucleotide identity to germ line	Classification: U-CLL ≥ 98%; M-CLL < 98%; borderline CLL when 97–97.9%	For subsets with well-established prognostic value (subsets #1, #2, #4 and #8)
Subset identification		
Difficult cases (frequency)^b		
Double rearrangements (10.5%)	Same as standard cases (mutational status defined by the productive rearrangement)	
Productive+non-productive concordant status (7.8%)		
Productive+non-productive discordant status	Mutational status not determined	Consider as M-CLL
Productive U+non-productive M (0.4%)		
Productive M+non-productive U (0.2%)		
Double productive		
Discordant status (0.7%)	Mutational status not determined	
Multiple (more than two) productive rearrangements^c	Mutational status not determined (unless it can be performed on sorted B-cell clones and/or preserved G-X-G motif in VH FR4)	
Single unproductive rearrangement (0.6%)	Mutational status not determined (after failure of alternative PCR attempts)	
Missing anchors (C104/W118) (0.4%)	Mutational status possible if evidence for IG expression on leukemic cells and/or preserved G-X-G motif in VH FR4	

Abbreviations: CLL, chronic lymphocytic leukemia; IG, immunoglobulin; M-CLL, mutated CLL; U-CLL, unmutated CLL. ^aLeader primers are the only recommended option. That said, in rare cases when leader primers are unsuccessful at providing a product that can be sequenced and VH FR1 primers are used (discouraged for the determination of SHM status), the report should indicate that the use of VH FR1 primers might underestimate the total number of IGHV somatic hypermutations as a part of the VH domain is missing. ^bAll frequencies according to Langerak et al.²⁸ ^cCases with two or more B-cell clones.
mentioned above, we recently critically discussed all aspects of immunogenetics for diagnostic purposes in CLL, bearing in mind new knowledge available, and reached a consensus on the essential requirements necessary for reliable and reproducible IG gene analysis and interpretation of CLL-specific IGHV-IGHD-IGHJ gene rearrangements. The updated ERIC recommendations are listed in Tables 1 and 2. In the sections that follow, we will focus on the most critical revisions and additions to the original recommendations from 2007.27

Primers

Only the use of leader primers allows for the amplification of the entire sequence of the rearranged IGHV gene, thus enabling the true and complete level of SHM to be determined, and is the recommended choice. The use of primers annealing to the VH FR1 or even more downstream parts of the VH domain (for example, the VH FR2 or VH FR3) is not acceptable for determining the SHM status: in these cases, an insufficient portion of the IG gene rearrangement will be amplified, thus potentially obscuring or preventing the true level of SHM from being determined since the total number of IGHV SHMs may be underestimated. That said, in rare cases when leader primers are unsuccessful at providing a product that can be sequenced and VH FR1 primers are used (not generally recommended), the report should indicate that the use of VH FR1 primers might underestimate the total number of IGHV SHMs.

Sequence alignment and annotation

1. Alignment tool and database. The user sequence is analyzed under the report should indicate that the use of VH FR1 primers might underestimate the total number of IGHV SHMs.

2. Nomenclature. The IMGT/V-QUEST reference directory against laboratory report should:

3. Specify the percentage of identity of the identified rearranged IGHV gene and allele to its closest germ line counterpart.

4. State whether the identified productive IG gene rearrangement leads to membership of a major stereotyped subset. Considering ever-increasing evidence about the clinical implications of BcR IG stereotypy, at least for certain major stereotyped subsets,10–12 the IG Network advises everyone to analyze the clonal IGHV-IGHD-IGHJ gene rearrangement for possible membership in aggressive (major) subsets. Particular attention should be given to the identification of subset #2 (IGHV3-21/IGL3-21) as most cases belonging to this subset would be otherwise reported as M-CLL, given the presence of a moderate level of SHM, usually leading to an identity to the germ line below the 98% cutoff. It is now well established that patients belonging to subset #2 have an inferior outcome, similar to U-CLL patients and patients with TP53 aberrations.13 Membership in other major stereotyped subsets can also be explicitly reported, namely the aggressive #1 (IGHV1-4/IGHD1-D-39) and #8 (IGHV4-39/IGHD1-D-39), the latter also associated with the highest risk for Richter’s transformation among all CLL, as well as subset #4 (IGHV4-34) that includes a subgroup of patients with a particularly indolent form of CLL and rarely in need of treatment, which might be relevant for both patients and physicians alike.10 Membership to any of these subsets can be investigated using the ARResT/AssignSubsets tool, whereby users submit their FASTA sequences and a report is generated with IMGT/V-QUEST results and subset assignment along with an assignment confidence level ranging from ‘borderline’ to ‘extreme’. Users are urged to use caution and their best judgement, or ask for advice, especially for clinical use of, for example, ‘borderline’- or ‘low’-confidence assignments. The tool together with comprehensive background and instructions are available at http://tools.bat.infspire.org/arrest/assignsubsets/.

5. Provide a concise overall assessment of the clinical implications of the immunogenetic results; several examples and templates are provided as Supplementary Material. The following issues merit special consideration:

 i. Cases with a single unproductive rearrangement, apparent double rearrangements or lacking VH CDR3 anchors (overall frequency: ~3% of cases). In these instances, the report should include a relevant statement, depending on the particular type of 'issue', following the published ERIC recommendations for reliable interpretation of problematic cases and/or by consulting the online ERIC Review Board (www.ericcll.org/services/).

 ii. Cases with IGHV gene rearrangements with ‘borderline’ identity to the closest germ line counterpart. Classification into the M-CLL or U-CLL category should always be based on the established 98% cutoff value for identity to the germ line (M-CLL: <98%; U-CLL: 98–100%). That notwithstanding, for cases close to the cutoff (for example, 97–97.99%), caution is warranted regarding the precise prognostic implications and a statement to this effect should be included in the report (for example,
Following the 98% cutoff value for discriminating between IG-mutated or IG-unmutated CLL cases, the SHM status of this particular rearranged IGHV gene is borderline. The clinical implications remain to be elucidated.

CONCLUDING REMARKS

The BcR IG sequence is the ideal clonal marker for CLL: it is present from the birth of every CLL clone and in contrast to other markers, most notably genomic aberrations, remains stable over time and unaffected by disease evolution. Recent evidence has reinforced the important prognostic/predictive value of immunogenetic analysis in CLL, while also highlighting the need to move from the mere determination of IGH gene mutational status to a more comprehensive assessment of the IGHV-IGHD-IGHJ gene rearrangement including stereotyped subset assignment, at least in for certain cases.

ERIC has pioneered the adoption of good practices and will continue to strive to ensure reliable immunogenetic analysis in CLL for the benefit of patients. That said, this topic is far from being exhausted, especially due to the advent of novel analytical approaches, that is, high-throughput sequencing, necessitating further efforts for standardization, currently an unmet need and the focus of an ongoing initiative within ERIC.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This study was supported by grants from the Swedish Cancer Society, the Swedish Research Council, Uppsala University, Uppsala University Hospital, the Lion’s Cancer Research Foundation (Uppsala), and Selander’s Foundation, Uppsala; the Ministry of Health of the Czech Republic, grant no. 16-34272A: H2020 ‘AELEG, An analytics framework for integrated and personalized healthcare services in Europe’ and H2020 ‘MEDGENET, Medical Genomics and Epigenomics Network’ (no. 692298), both funded by the European Commission; and HARMONY, funded by the IMI2.

R Rosenquist1,2,10, P Ghia3,10, A Hadzidimitriou4, L-A Sutton1,2, R Aghathangelidis5, P Baliakas1, N Darzentas5, V Giudicelli6, M-P Lefranc6, AW Langerak7, C Belessi8, F Davi9,10 and K Stamatopoulos1,4,10, on behalf of ERIC, the European Research Initiative on CLL

1Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden;
2Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden;
3Division of Experimental Oncology, IRCCS Istituto Scientifico San Raffaele e Università Vita-Salute San Raffaele, Milan, Italy;
4Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece;
5CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic;
6IMGT, The International ImMunoGeneTics information system, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR CNRS 9002, Université de Montpellier, Montpellier, France;
7Department of Immunology, Laboratory for Medical Immunology, Erasmus MC, Rotterdam, The Netherlands;
8Department of Hematology, Nikea General Hospital, Athens, Greece and
9Department of Hematology, AP-HP, Hospital Pitié-Salpêtrière, UPMC Univ Paris 06, Paris, France
E-mail: ghia.paolo@hsr.it

These authors contributed equally to this work.

REFERENCES

1 Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SJ, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. *J Clin Invest* 1998; 102: 1515–1525.
2 Johnson TA, Rassenti LZ, Kipps TJ. Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. *J Immunol* 1997; 158: 235–246.
3 Schroeder Jr HW, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. *Immunol Today* 1994; 15: 288–294.
4 Hashimoto S, Dono M, Waki M, Allen SL, Lichtman SM, Schulman P et al. Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgGi+ CD5+ chronic lymphocytic leukemia B cells. *J Exp Med* 1995; 181: 1507–1517.
5 Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. *Blood* 1999; 94: 1840–1847.
6 Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. *Blood* 1999; 94: 1848–1854.
7 Vardi A, Agathangelidis A, Sutton LA, Ghia P, Rosenquist R, Stamatopoulos K. Immunogenetic studies of chronic lymphocytic leukemia: revelations and speculations about ontogeny and clinical evolution. *Cancer Res* 2014; 74: 4211–4216.
8 Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. *Trends Immunol* 2013; 34: 592–601.
9 Packham G, Krysov S, Allen A, Saveljeva N, Steele AJ, Forconi F et al. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. *Haematologica* 2014; 99: 1138–1148.
10 Sutton LA, Rosenquist R. The complex interplay between cell-intrinsic and cell-extrinsic factors driving the evolution of chronic lymphocytic leukemia. *Semin Cancer Biol* 2015; 34: 22–35.
11 Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. *Blood* 2012; 119: 4467–4475.
12 Messmer BT, Albiesano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. *J Exp Med* 2004; 200: 519–525.
13 Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smileyva T et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. *Blood* 2007; 109: 259–270.
14 Gounari M, Ntoufa S, Apollonio B, Papakonstantinou N, Ponzoni M, Chu CC et al. Excessive antigen reactivity may underlie the clinical aggressiveness of chronic lymphocytic leukemia stereotyped subset #8. *Blood* 2015; 125: 3580–3587.
15 Ntoufa S, Papakonstantinou N, Apollonio B, Gounari M, Gallagalidou C, Fonte E et al. B cell energy modulation by TLR1/2 and the mIR-17 approximately 92 cluster underlies the indolent clinical course of chronic lymphocytic leukemia stereotyped subset #4. *J Immunol* 2016; 196: 4410–4417.
16 Mansouri L, Sutton LA, Ljungstrom Y, Bondza S, Aarnalden L, Bho S et al. Functional loss of IkappaBepsilon leads to NF-kappabDeregulation in aggressive chronic lymphocytic leukemia. *J Exp Med* 2015; 212: 833–843.
17 Navrkalova V, Young E, Baliakas P, Radova L, Sutton LA, Plevoa K et al. ATM mutations in major stereotyped subsets of chronic lymphocytic leukemia: enrichment in subset #2 is associated with markedly short telomeres. *Haematologica* 2016; 101: e369–e373.
18 Bossi D, Spina V, Bomben R, Rasi S, Dal-Bo M, Bruscaggin A et al. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. *Blood* 2013; 121: 4902–4905.
19 Sutton LA, Young E, Baliakas P, Hadzidimitriou A, Moysiadis T, Plevoa K et al. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. *Haematologica* 2016; 101: 959–967.
20 Baliakas P, Hadzidimitriou A, Sutton LA, Minga E, Agathangelidis A, Nicheltalli M et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. *Lancet Haematol* 2014; 1: e74–e84.
21 Stamatopoulos K, Agathangelidis A, Rosenquist R, Ghia P. Antigen receptor stereotypy in chronic lymphocytic leukemia. *Leukemia* 2017; 31: 282–291.
22 Strefford JC, Sutton LA, Baliakas P, Agathangelidis A, Malcikova J, Plevoa K et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. *Leukemia* 2013; 27: 2196–2199.
23 Baliakas P, Agathangelidis A, Hadzidimitriou A, Sutton LA, Minga E, Tsanousa A et al. Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood 2015; 125: 856–859.

24 Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 2016; 127: 208–215.

25 Rossi D, Terzi-di-Bergamo L, De Paoli L, Cerri M, Ghilardi G, Chiarenza A et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood 126: 1921–1924.

26 Thompson PA, Tam CS, O’Brien SM, Wierda WG, Stingo F, Plunkett W et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016; 127: 303–309.

27 Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stilgenbauer S, Stevenson F et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007; 21: 1–3.

28 Langerak AW, Davi F, Ghia P, Hadzidimitriou A, Murray F, Potter KN et al. Immunoglobulin sequence analysis and prognostication in CLL: guidelines from the ERIC review board for reliable interpretation of problematic cases. Leukemia 2011; 25: 979–984.

29 Bystry V, Agathangelidis A, Bikos V, Sutton LA, Baliakas P, Hadzidimitriou A et al. ARRest/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy. Bioinformatics 2015; 31: 3844–3846.

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)