Short Communication

Executive function in adolescents with PKU and their siblings: Associations with biochemistry

R. Sharman a,⁎, K. Sullivan b, R. Young b, J. McGill c

a University of the Sunshine Coast, ML 32 Maroochydore DC, QLD 4558, Australia
b Queensland University of Technology, Kelvin Grove, Brisbane, QLD 4059, Australia
c Department of Metabolic Medicine, Lady Cilento Children’s Hospital, Brisbane, QLD, Australia

Abstract

Previous research shows consistent and marked executive function impairment in children with early and continuously treated phenylketonuria. This between groups analysis (phenylketonuria group vs sibling controls) found no significant differences in executive function (although adolescents with phenylketonuria performed slightly worse than their siblings). Biochemical relationships with executive function were confined to long-term measures of high phenylalanine:tyrosine ratio exposure, as well as tyrosine exposure independent of phenylalanine. This study suggests that early and continuously treated PKU results in non-significant EF differences (compared to siblings), although the influence of long-term exposure to poorer metabolic control is still evident.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The functional impact of executive function (EF) impairments in children with early and continuously treated phenylketonuria (ECT-PKU) has been well documented and quite marked, leading to an increased risk of ADHD diagnosis [1,2,7]. This study replicates previous investigations exploring the relationship between EF impairment and biochemical control in this population [6]. Consistent with previous research it was expected that 1) children with PKU would show greater impairments than their siblings in EF, and that EF impairment would be more strongly associated with poorer metabolic control (higher phenylalanine, phenylalanine:tyrosine ratio and lower tyrosine markers; [3]).

2. Method

2.1. Participants

Thirteen children with classical PKU were recruited as part of a larger study from Royal Children’s Hospital, Brisbane, Australia. All children have ECT-PKU and Table 1 presents their biochemical data. The characteristics of the 13 children with classical PKU were: seven male and six female and mean age of 13.95 years (SD: 1.8 years; range: 10.26 years to 16.26 years). Nine siblings (6 male; 3 female) were assessed for between groups analyses. Their mean age at testing was 13.12 years (SD: 3.4 years; range: 7.5 years to 17.58 years). Five siblings were older than their sibling with PKU, and six were of the same gender.

2.2. Materials

The Behaviour Rating Inventory of Executive Function (BRIEF) provides an ecologically valid measure of the manifestation of EF deficits in daily life e.g., impact on school work, family functioning and social relationships [4]. The BRIEF was recommended by the Waisbren and White [8] review as an appropriate test instrument for this population. The Global Executive Composite (GEC; an overall score of EF impairment) as well as working memory subscale were used in the analyses. Working memory (WM) was also chosen given the consistent findings that it remains an executive function most at risk in this cohort [2].

2.3. Procedure

Parents filled out the BRIEF questionnaire concurrent with neuropsychological test administration as part of a larger study whilst onsite at the Royal Children’s Hospital.
Three significant correlations between children with PKU and their phenylalanine:tyrosine ratio and tyrosine independent of phenylalanine were observed. The failure to a) find significant between-groups differences and b) significant correlations on the WM scale is likely due to the small sample size. Correlations between tyrosine and EF impairment were in the expected direction (negative), in that lower levels of lifetime (and 12 years) tyrosine were associated with higher levels of EF impairment. Although not all correlations between tyrosine and GEC/WM were statistically significant, all tyrosine correlations were in a negative direction, further indicating a trend towards low levels of tyrosine associated with increased EF impairment.

A high lifetime phenylalanine:tyrosine ratio was also found to correlate positively with GEC, in that the higher the ratio, the higher the level of parent-reported impairment. No correlations between phenylalanine on its own and EF were observed in this sample. This study has also found an association between tyrosine levels on their own (i.e., independent of phenylalanine) and EF.

In all, these results provide support that poorer metabolic control underpins EF impairment in this population [3]. Phenylalanine exposure was not shown to be associated with EF deficit in this sample, rather, the strongest associations between biochemistry and reported EF, involved long-term tyrosine deficit or a high phenylalanine:tyrosine ratio. This is likely because the sample was early and continuously treated, with reasonable phenylalanine compliance across their lifetime. Nonetheless, subtle influences of poorer metabolic control on EF remained evident.

Acknowledgements and conflicts of interest

The authors would like to thank the Royal Children’s Hospital Foundation for their generous grant (10242; Allied Health Research Project Grant) worth $24,491. The authors have no conflicts of interest to report.

References

[1] G.L. Arnold, C.J. Vladutiu, C.C. Orlowski, E.M. Blakely, J. DeLeuca, Prevalence of stimulant use for attentional dysfunction in children with phenylketonuria. J. Inherit. Metab. Dis. 27 (2004) 137–145, http://dx.doi.org/10.1023/B:JHED.0000028725.37345.62.

[2] S.F. Christ, S.C.J. Huijbregts, L.M.J. de Sonneville, D.A. White, Executive function in adolescents with early and continuously treated phenylketonuria, Monogr. Soc. Res. Child Dev. 62 (1997) 1–208.

[3] A. Diamond, M.B. Prevor, G. Callender, G.P. Druin, Prefrontal cortex cognitive deficits in children treated early and continuously for PKU, Monogr. Soc. Res. Child Dev. 62 (1997) 1–208.

[4] G.A. Gioia, P.K. Isquith, S.C. Guy, L. Kenworthy, Behaviour Rating Inventory of Executive Function, Psychological Assessment Resources Inc, Lutz, FL, 2000.

[5] Koch, R., Azen, C., Friedman, E. G., & Williamson, M. L. (1984). Paired comparisons between early treated PKU children and their matched sibling controls on intelligence and school achievement test results at eight years of age. J. Inherit. Metab. Dis., 7, 86–90, http://dx.doi.org/10.1007/BF01805813.

[6] R. Sharmar, K. Sullivan, R. Young, J. McNeill, Biochemical markers associated with executive function in adolescents with early and continuously treated phenylketonuria, Clin. Genet. 75 (2009) 169–174, http://dx.doi.org/10.1111.j.1399-0004.2008.01101.x.

[7] Simon, E., Schwarz, M., Roos, J., Dragano, N., Geraedts, M., Siegrist, J.,... Wendel, U. (2008). Evaluation of quality of life and description of the sociodemographic state in adolescent and young adult patients with phenylketonuria (PKU). Health and Quality of Life Outcomes, 6, 25, http://dx.doi.org/10.1186/1477-7525-6-25.

[8] S.E. Waisbren, D.A. White, Screening for cognitive and social-emotional in individuals with PKU: tools for use in the metabolic clinic, Mol. Genet. Metab. 99 (Suppl 1) (2010) S32, http://dx.doi.org/10.1016/j.ymgme.2009.10.007.

[9] J. Weglage, B. Funders, B. Wilken, D. Schubert, K. Ulfrich, School performance and intellectual outcome in adolescents with phenylketonuria, Acta Paediatrica 82 (1993) 582–586, http://dx.doi.org/10.1111/j.1651-2227.1993.tb12799.x.