A COUNTER-EXAMPLE TO THE EQUIVARIANCE STRUCTURE ON
SEMI-UNIVERSAL DEFORMATION

AN KHUONG DOAN

Abstract. We provide a counter-example to the the G-equivariant structure on semi-universal deformation in the case that G is nonreductive.

Contents

Introduction 1
1. Formal schemes and formal deformations 2
2. The second Hirzebruch surface and its automorphism group 4
3. A formally semi-universal deformation of \mathbb{F}_2 and formal vector fields on it 5
3.1. Construction of the semi-universal deformation of \mathbb{F}_2 5
3.2. Formal vector fields on the formally semi-universal deformation of \mathbb{F}_2 7
4. The non-existence of G-equivariant structure on the formally semi-universal deformation 9
References 11

Introduction

Let X be an algebraic variety. Due to Schlessinger’s work in [5], the existence of a formally semi-universal deformation (unique up to non-canonical isomorphism), which contains all the information of small deformations of X, is guaranteed provided that $H^1(X, \mathcal{T}_X)$ and $H^2(X, \mathcal{T}_X)$ are finite dimensional vector spaces. These conditions realise for example, if X is a complete scheme over the ground field or an affine scheme with at most isolated singularities (see [6, Corollary 2.4.2]). Now, we equipe X with an action of a group G. One question arisen naturally is whether there exists a formally semi-universal deformation $\pi : \mathcal{X} \to S$ of X, on which we can provide a G-action extending the given action on X. The answer is positive in the case that G satisfies some vanishing condition on its cohomology groups, i.e $H^1(G, -) = 0$ and $H^2(G, -) = 0$ for a class of G-modules determined by X. In particular, these vanishing conditions hold for linearly reductive groups (see [4]). However, we do not know if there exists a non-reductive group whose action on X does not extend to the formally semi-universal deformation of X. Therefore, we wish to give an example which illustrates this phenomenon. More precisely, we prove that the action of the automorphism group of the second Hirzebruch surface \mathbb{F}_2, denoted by G, does not extend to its formally semi-universal deformation.
Our proof goes as follows. First, we find a nice presentation of G and then construct a formally semi-universal deformation of \hat{X} of \mathbb{F}_2. It turns out that G is non-reductive and that the Lie algebra of G is a 7-dimensional vector space. In particular, we obtain seven vector fields on \mathbb{F}_2 with Lie bracket relations induced by those in Lie(G). Next, we describe general form of formal vector fields on \hat{X}. Finally, we conclude the paper by means of contradiction. Suppose that the G-action on \mathbb{F}_2 does extend to a G-action on \hat{X} then we also have seven formal vector fields on \hat{X} whose restriction on the central fiber is nothing but our former vector fields on \mathbb{F}_2. By manipulation on these vector fields with a filtration F given by the vanishing order at 0, we obtain the existence of a 3-dimensional abelian Lie subalgebra in $\mathfrak{sl}_2(\mathbb{C}) \times \mathfrak{sl}_2(\mathbb{C})$, where $\mathfrak{sl}_2(\mathbb{C})$ is the special linear group, which is not the case. A remark is in order. Since \mathbb{F}_2 does not have a space of moduli, another possible way to obtain a contradiction is to use Wavrik’s criterion (see [7, Theorem 4.1]) but the calculations are somewhat more complicated.

Acknowledgements. I would like to thank Prof. Bernd Siebert for many useful discussions. Actually, I learnt the idea of using the extension of vector fields and their relations as an obstruction to the extension of the group action from an unpublished paper of him. This provides a strategy to attack the problem. I am specially thankful to Prof. Julien Grivaux for his careful reading and his comments which help to improve the manuscript.

1. Formal schemes and formal deformations

We begin this sections by recalling some basic definitions of formal schemes. For more details, the readers are referred to [2, Chapter III. 9].

Definition 1.1. Let X be a noetherian scheme and let Y be a closed subscheme defined by a sheaf of ideals J. Then we define the formal completion of X along Y, denoted $(\hat{X}, \mathcal{O}_{\hat{X}})$, to be the following ringed space. We take the topological space Y, and on it the sheaf of rings $\mathcal{O}_{\hat{X}} = \lim_n \mathcal{O}_X / I^n$. Here we consider each \mathcal{O}_X / I^n as sheaf of rings on Y

Definition 1.2. A noetherian formal scheme is a locally ringed space (X, \mathcal{O}_X) which has a finite open cover $\{U_i\}$ such that for each i, the pair $(U_i, \mathcal{O}_X |_{U_i})$ is isomorphic, as a locally ringed space, to the completion of some noetherian scheme X_i along a closed subscheme Y_i. A morphism of noetherian formal schemes is a morphism as locally ringed spaces.

Example 1.1. If X is any noetherian scheme, and Y a closed subscheme then the formal completion \hat{X} of X along Y is a formal scheme.

Example 1.2. For $X = \mathbb{C}^1 = \text{Spec}(\mathbb{C}[t])$ and $Y = \{0\}$, the formal scheme \hat{X} is the locally ringed space $(Y, \mathcal{O}_{\hat{X}})$, where the structure sheaf $\mathcal{O}_{\hat{X}}$ is $\mathbb{C}[[t]]$. We denote by $\text{Specf}(\mathbb{C}[t]) := (Y, \mathcal{O}_{\hat{X}})$.

Now, we come to the notion of formal deformation. Let X be an algebraic scheme and A be a complete local noetherian \mathbb{C}-algebra with residue field \mathbb{C} and the maximal ideal m.

Definition 1.3. A formal deformation of X over A is a sequence $\{\nu_n\}$ of infinitesimal deformations of X, in which ν_n is represented by a deformation
A COUNTER-EXAMPLE TO THE EQUIVARIANCE STRUCTURE ON SEMI-UNIVERSAL DEFORMATION

\[
\begin{array}{ccc}
X & \xrightarrow{f_n} & X_n \\
\downarrow & & \downarrow \pi_n \\
\text{Spec}(\mathbb{C}) & \longrightarrow & \text{Spec}(A_n)
\end{array}
\]

where \(A_n = A/m^n + 1 \), such that for all \(n \geq 1 \), \(\nu_n \) induces \(\nu_{n-1} \) by pullback under the natural inclusion \(\text{Spec}(A_{n-1}) \to \text{Spec}(A_n) \), i.e. \(\nu_{n-1} \) is also represented by the deformation

\[
\begin{array}{ccc}
X & \xrightarrow{f_{n-1}} & X_n \times_{\text{Spec}(A_n)} \text{Spec}(A_{n-1}) \\
\downarrow & & \downarrow \pi_{n-1} \\
\text{Spec}(\mathbb{C}) & \longrightarrow & \text{Spec}(A_{n-1})
\end{array}
\]

In the language of formal schemes, we can write \(\{ \nu_n \} \) as the morphism of formal schemes

\[\hat{\pi} : \hat{X} \to \text{Spec}(A) \]

where

\[\hat{X} = (X, \lim \mathcal{O}_{X_n}) \text{ and } \hat{\pi} = \lim \pi_n. \]

Here, \(\mathcal{O}_{X_n} \) is the structure sheaf on \(X_n \) and \(\text{Spec}(A) \) is the formal scheme obtained by completing \(\text{Spec}(A) \) along its closed point which corresponds to the unique maximal ideal of \(A \).

We end this section by introducing the definition of formal scheme associated to a given deformation. Let \(X \) be a projective scheme and \(\nu \) be a deformation represented by

\[
\begin{array}{ccc}
X & \xrightarrow{f} & X \\
\downarrow & & \downarrow \pi \\
\text{Spec}(\mathbb{C}) & \longrightarrow & (S, s)
\end{array}
\]

where \(S = \text{Spec}(B) \) for some \(\mathbb{C} \)-algebra \(B \) and \(s \) is a \(\mathbb{C} \)-rational point in \(S \).

Definition 1.4. The formal deformation associated to \(\nu \) is defined to be the sequence of deformations \(\{ \nu_n \} \) where each \(\nu_n \) is the pullback of \(\nu \) under the natural closed embedding

\[\text{Spec}(\mathcal{O}_{S,s}/m_s^{n+1}) \to S \]

where \(m_s \) is the unique maximal ideal of the local ring \(\mathcal{O}_{S,s} \).

Remark 1.1. Note that \(\{ \nu_n \} \) is formal because of the isomorphism

\[\mathcal{O}_{S,s}/m_s^{n+1} \cong \hat{\mathcal{O}}_{S,s}/\hat{m}_s^{n+1} \]

for all \(n \).
2. The second Hirzebruch surface and its automorphism group

We always assume that our ground field is the field of complex numbers \(\mathbb{C} \). The general linear group \(\text{GL}(2, \mathbb{C}) \) has an obvious linear action on \(\mathbb{C}^2 \). This induces an action on the \(\mathbb{C} \)-vector space of polynomials in two variables \(\mathbb{C}[X, Y] \). Since the subspace of homogeneous polynomials of degree 2, denoted by \(\mathbb{C}[X, Y]_2 \), is \(\text{GL}(2, \mathbb{C}) \)-invariant then we have a \(\text{GL}(2, \mathbb{C}) \)-action on \(\mathbb{C}[X, Y]_2 \). More precisely, for \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}(2, \mathbb{C}) \) and \(f = a_0X^2 + a_1XY + a_2Y^2 \in \mathbb{C}[X, Y]_2 \), the action of \(g \) on \(f \) is given by the linear substitution

\[
\begin{pmatrix} X \\ Y \end{pmatrix} := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},
\]

i.e.

\[
g.f = a_0(aX + bY)^2 + a_1(aX + bY)(cX + dY) + a_2(cX + dY)^2
= (a^2a_0 + ac + c^2a_2)X^2 + (2aba_0 + (ad + bc)a_1 + 2cd)XY + (b^2a_0 + bda_1 + d^2a_2)Y^2.
\]

Identifying \(\mathbb{C}[X, Y]_2 \) with \(\mathbb{C}^3 \), the corresponding action on \(\mathbb{C}^3 \) can be written as

\[
g.(a_0, a_1, a_2) = \begin{pmatrix} a^2 & ac & c^2 \\ ab & ad + bc & 2cd \\ b^2 & bd & d^2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}.
\]

This action gives rise to an algebraic group \(H \) which is the semi-product of \(\mathbb{C}^3 \) and \(\text{GL}(2, \mathbb{C}) \), i.e.

\[
H := \mathbb{C}^3 \times \text{GL}(2, \mathbb{C}).
\]

This is a non-reductive linear group. Recall that an algebraic group \(K \) is reductive if \(R_u(K) \) of \(K \) is trivial, where \(R_u(K) \) is the unipotent radical of \(K \), i.e. the greatest connected normal subgroup of \(K \). In our case, \(R_u(H) = \mathbb{C}^3 \).

Next, we recall the definition of the second Hirzebruch surface \(\mathbb{F}_2 \).

Definition 2.1. The second Hirzebruch surface \(\mathbb{F}_2 \) is defined to be the projectivization of \(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1} \), i.e. \(\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}) \), where \(\mathcal{O}_{\mathbb{P}^1} \) is the structure sheaf of the projective space \(\mathbb{P}^1 \).

An equivalent definition of \(\mathbb{F}_2 \) is given in the following.

Proposition 2.1. The second Hirzebruch surface \(\mathbb{F}_2 \) is isomorphic to the variety

\[
\{([x : y : z], [u : v]) \in \mathbb{P}^2 \times \mathbb{P}^1 | yv^2 = zu^2 \}.
\]

Proof. Let \(\sigma : \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}) \to \mathbb{P}^1 \) be the canonical projection of the projectivization \(\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}) \), let \(U = \text{Spec}(\mathbb{C}[v]) \) and \(U' = \text{Spec}(\mathbb{C}[v']) \) such that \(v'v = 1 \) on \(U \cap U' \). Then \(\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}) \) has the following presentation

\[
\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}) = \sigma^{-1}(U) \cup \sigma^{-1}(U') = (U \times \mathbb{P}^1) \cup (U' \times \mathbb{P}^1),
\]

so that on the intersection of the affine open sets \(V = \text{Spec}(\mathbb{C}[v, y]) \subset U \times \mathbb{P}^1 \) and \(V' = \text{Spec}(\mathbb{C}[v', y']) \subset U' \times \mathbb{P}^1 \), we have

\[
\begin{cases}
vv' = 1 \\
y' = yv^2
\end{cases}.
\]
So, we have an open covering of F_2 given by the following open embeddings

$$
\rho_1 : U \times \mathbb{P}^1 \to F_2
$$

$$(v, [x : y]) \mapsto ([x : y : yv^2], [1 : v])$$

and

$$
\rho_2 : U' \times \mathbb{P}^1 \to F_2
$$

$$(v', [x' : y']) \mapsto ([x' : y'v'^2 : y'], [v' : 1]),$$

which yields an isomorphism $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}) \to F_2$ by gluing.

Now, the algebraic group H acts on the second Hirzebruch surface

$$F_2 = \{([x : y : z], [u : v]) \in \mathbb{P}^2 \times \mathbb{P}^1 | yv^2 = zu^2\}$$

in the following manner: for $p = ([x : y : z], [u : v]) \in F_2$ and $g = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in H,

$$
g(p) = \left\{ \begin{array}{ll}
([xu^2 + y(a_0v^2 + a_1uv + a_2u^2) : y(au + bv)^2 : z(au + bv) : z(au + bv : cu + dv)^2], [au + bv : cu + dv]) & \text{if } u \neq 0 \\
([xv^2 + z(a_0v^2 + a_1uv + a_2u^2) : z(au + bv)^2 : z(au + bv : cu + dv)^2], [au + bv : cu + dv]) & \text{if } v \neq 0
\end{array} \right.

The following theorem is well-known (see [1, Section 6.1]).

Theorem 2.1. The group of automorphisms of F_2 is exactly the quotient of H by the subgroup I consisting of diagonal matrices of the form $\begin{pmatrix} \mu & 0 \\ 0 & \mu \end{pmatrix}$ where $\mu \in \mathbb{C}$ such that $\mu^2 = 1$.

3. A formally semi-universal deformation of F_2 and formal vector fields on it

3.1. **Construction of the semi-universal deformation of F_2.** We shall following the construction given in [4, Example 1.2.2.(iii)]. Consider two copies of $\mathbb{C} \times \mathbb{C} \times \mathbb{P}^1$ given by $W := \text{Proj}(\mathbb{C}[t, v, x, y])$ and $W' := \text{Proj}(\mathbb{C}[t', v', x', y'])$ (note that these two rings are graded with respect to x, y and x', y'). Take two affine subsets of W and W' given by $\text{Spec}(\mathbb{C}[t, v, y])$ and $\text{Spec}(\mathbb{C}[t', v', y'])$, respectively and then glue along the open subsets

$$\text{Spec}(\mathbb{C}[t, v, v^{-1}, y]) \subset \text{Spec}(\mathbb{C}[t, v, y])$$

and

$$\text{Spec}(\mathbb{C}[t', v', v'^{-1}, y']) \subset \text{Spec}(\mathbb{C}[t', v', y'])$$

by the rules

$$(3.1) \begin{cases}
vv' = 1 \\
y' = yv^2 - tv \\
t' = t
\end{cases}$$

Hence, this gives a gluing of W and W', which we call W, along

$$\text{Proj}(\mathbb{C}[t, v, v^{-1}, x, y]) \text{ and } \text{Proj}(\mathbb{C}[t', v', v'^{-1}, x', y']).$$

Now, let $\pi : W \to \mathbb{C}$ be the morphism induced by the projections.
Theorem 3.1. The family \(\pi : \mathcal{W} \to \mathbb{C} \) is a semi-universal deformation of \(\mathbb{F}_2 \). Moreover,

\[
\pi^{-1}(t) = \begin{cases}
\mathbb{F}_2 & \text{if } t = 0 \\
\mathbb{P}^1 \times \mathbb{P}^1 & \text{otherwise}.
\end{cases}
\]

Proof. The map \(\pi \) is obviously surjective by construction. Since \(\pi \) is locally a projection, it is a flat morphism. Moreover, by Proposition 2.1, \(W_0 = \pi^{-1}(0) = \mathbb{F}_2 \). Then \(\pi : \mathcal{W} \to \mathbb{C} \) is a deformation of \(\mathbb{F}_2 \). To see that \(\pi^{-1}(t) = \mathbb{P}^1 \times \mathbb{P}^1 \) for \(C \setminus \{0\} \), we give new coordinates on \(\text{Spec}(\mathbb{C}[t, v, v^{-1}, y]) \) and \(\text{Spec}(\mathbb{C}[t', v', (v')^{-1}, y']) \) by the following transformation:

\[
r = \frac{vy - t}{ty}
\]

and

\[
r' = \frac{y'}{t'v'y' + t'^2},
\]

respectively. The gluing (3.1) gives the relation

\[
r' = \frac{y'}{t'v'y' + t'^2} = \frac{yv^2 - tv}{t'v'(yv^2 - tv) + t'^2} = \frac{yv^2 - tv}{t'vy} = \frac{yv - t}{ty} = r.
\]

This is nothing but the gluing process to obtain \(\mathbb{P}^1 \times \mathbb{P}^1 \).

Another useful representation of \(\mathcal{W} \) is given as follows.

Proposition 3.1. The scheme \(\mathcal{W} \) is isomorphic to the surface

\[
\mathcal{X} := \{([x : y : z], [u : v], t) \in \mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{C} \mid yv^2 - zu^2 - txuv = 0\}.
\]
Proof. We have an open covering of \mathbb{F}_2 given by the following open embeddings

$$\rho_1 : \mathbb{C} \times \mathbb{C} \times \mathbb{P}^1 \to X$$

$$(t, v, [x : y]) \mapsto ([x : y : yv^2 - tv], [1 : v], t)$$

and

$$\rho_2 : \mathbb{C} \times \mathbb{C} \times \mathbb{P}^1 \to X$$

$$(t', v', [x' : y']) \mapsto ([x' : y'v^2 + t'v' : y'], [v' : 1], t)$$

which glue to give an isomorphism $\mathcal{W} \to X$. □

Remark 3.1. Because of the equivalence, from now on, we use interchangeably between \mathbb{F}_2, X and $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}), W$, respectively.

3.2. Formal vector fields on the formally semi-universal deformation of \mathbb{F}_2. The formal deformation associated to X, $\tilde{\pi} : \tilde{X} \to \text{Specf}(\mathbb{C}[[t]])$ is a formally semi-universal \tilde{X} of \mathbb{F}_2 (here $\mathbb{C}[[t]]$ is the ring of formal power series in t). We will give explicit description of a formal vector fields on \tilde{X}. Consider the covering $\{W, W'\}$ where $W := \text{Proj}(\mathbb{C}[t, v, x, y])$ and $W' := \text{Proj}(\mathbb{C}[t', v', x', y'])$ as before. A formal vector field on W is of the form

$$(3.2) \quad g_1(v, t) \frac{\partial}{\partial v} + (\alpha_1(v, t)y^2 + \beta_1(v, t)y + \gamma_1(v, t)) \frac{\partial}{\partial y} + k_1(t) \frac{\partial}{\partial t}$$

where $g_1, \alpha_1, \beta_1, \gamma_1, k_1(t)$ are formal power series in t. Likewise, a formal vector field on W' is of the form

$$(3.3) \quad g_2(v', t') \frac{\partial}{\partial v'} + (\alpha_2(v', t')y'^2 + \beta_2(v', t')y' + \gamma_2(v', t')) \frac{\partial}{\partial y'} + k_2(t') \frac{\partial}{\partial t'}$$

where $g_2, \alpha_2, \beta_2, \gamma_2, k_2$ are formal power series in t'. Therefore, a vector field on \tilde{X} which is of the form (3.2) on W and (3.3) on W' must satisfy the relation

$$(3.4) \quad g_1(v, t) \frac{\partial}{\partial v} + (\alpha_1(v, t)y^2 + \beta_1(v, t)y + \gamma_1(v, t)) \frac{\partial}{\partial y} + k_1(t) \frac{\partial}{\partial t} = g_2(v', t') \frac{\partial}{\partial v'} + (\alpha_2(v', t')y'^2 + \beta_2(v', t')y' + \gamma_2(v', t')) \frac{\partial}{\partial y'} + k_2(t') \frac{\partial}{\partial t'}$$

on the overlapping open set $W \cap W'$.

Lemma 3.1. A global formal vector field on \tilde{X} whose restriction on W is

$$g_1(v, t) \frac{\partial}{\partial v} + (\alpha_1(v, t)y^2 + \beta_1(v, t)y + \gamma_1(v, t)) \frac{\partial}{\partial y} + k_1(t) \frac{\partial}{\partial t}$$

must satisfy the following

$$(3.5) \quad \begin{cases} g_1(v, t) = A(t)v^2 + B(t)v + C(t) \\ \alpha_1(v, t) = a(t)v^2 + b(t)v + c(t) \\ \beta_1(v, t) = -2(a(t)t + A(t))v + e(t) \\ \gamma_1(v, t) = t^2a(t) + tA(t) \end{cases}$$

where A, B, C, a, b, c, e are formal power series of t with a relation

$$(3.6) \quad b(t)t^2 + e(t)t + B(t)t - k(t) = 0.$$
Proof. By (3.1), we have
\[
\begin{aligned}
&y = v^2y' + tv' \\
v = \frac{1}{tv} \\
t = t' \\
\partial_v = -v^2\partial_v' + (2y'v' + t)\partial_y' \\
\partial_y = \frac{1}{v^2}\partial_y' \\
\partial_t = -\frac{1}{v}\partial_y' + \partial_v.
\end{aligned}
\]
Substituting these into the left hand side of (3.4) and equalizing gives us
\[
(3.7) \begin{cases}
g_2(v', t') = -v'^2g_1(\frac{1}{v'}, t') \\
\alpha_2(v', t') = v'^2\alpha_1(\frac{1}{v'}, t') \\
\beta_2(v', t') = 2t'v'\alpha_1(\frac{1}{v'}, t') + \beta_1(\frac{1}{v'}, t') + 2v'g_1(\frac{1}{v'}, t') \\
\gamma_2(v', t') = t'^2\alpha_1(\frac{1}{v'}, t') + \beta_1(\frac{1}{v'}, t') + \frac{1}{v^2}\gamma_1(v', t') + t'g_1(\frac{1}{v'}, t') - \frac{k_1(t')}{v}.
\end{cases}
\]
From these above equations, we have that
\[
\begin{aligned}
g_1(v, t) &= A(t)v^2 + B(t)v + C(t) \\
\alpha_1(v, t) &= a(t)v^2 + b(t)v + c(t) \\
\beta_1(v, t) &= -2(a(t)t + A(t))v + e(t) \\
\gamma_1(v, t) &= t^2a(t) + tA(t),
\end{aligned}
\]
where A, B, C, a, b, c, e are formal power series of t with a relation
\[
b(t)t^2 + e(t)t + B(t)t - k_1(t) = 0.
\]
This constraint comes from the coefficient of $\frac{1}{v}$ in the fourth equation in (3.7). \qed

Remark 3.2. If $t = 0$ then (3.5) becomes
\[
\begin{aligned}
g_1(v) &= Av^2 + Bv + C \\
\alpha_1(v) &= av^2 + bv + c \\
\beta_1(v) &= -2Av + e \\
\gamma_1(v, t) &= 0
\end{aligned}
\]
which agrees with Kodaira’s calculation of vector fields on $\mathcal{X}_0 = \mathbb{F}_2$ (see [3, Page 75]). In particular, we have seven linearly independent vector fields on \mathbb{F}_2. If t is non-zero and fixed then we have six linearly independent vector fields on the fiber $\hat{\mathcal{X}}_t$ which is due the existence of the relation (3.6).
4. The non-existence of G-equivariant structure on the formally semi-universal deformation

The Lie algebra of $G := \text{Aut}(\mathbb{P}_2)$, i.e. Lie(G) := $\mathbb{C}^3 \times M(2, \mathbb{C})$ is 7-dimensional. Take a \mathbb{C}-basis of Lie(G) given by the following elements

\[
\begin{align*}
 e_1 &= (1, 0, 0) \times \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \\
 e_2 &= (0, 0, 1) \times \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \\
 e_3 &= (0, 0, 0) \times \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \\
 e_4 &= (0, 1, 0) \times \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \\
 e_5 &= (0, 0, 0) \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \\
 e_6 &= (0, 0, 0) \times \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \\
 e_7 &= (0, 0, 0) \times \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\end{align*}
\]

then we obtain 7 vector fields E'_1, \ldots, E'_7 on \mathbb{P}_2 with the relations

\[
\begin{align*}
 [E'_1, E'_2] &= 0, \\
 [E'_1, E'_3] &= -2E'_4, \\
 [E'_1, E'_4] &= 0, \\
 [E'_1, E'_5] &= 0, \\
 [E'_1, E'_6] &= -2E'_1, \\
 [E'_1, E'_7] &= 0, \\
 [E'_2, E'_3] &= 0, \\
 [E'_2, E'_4] &= 0, \\
 [E'_2, E'_5] &= -2E'_2, \\
 [E'_2, E'_6] &= 0, \\
 [E'_2, E'_7] &= -2E'_4, \\
 [E'_3, E'_4] &= E'_2, \\
 [E'_3, E'_5] &= -E'_3, \\
 [E'_3, E'_6] &= E'_3, \\
 [E'_3, E'_7] &= E'_5 - E'_6, \\
 [E'_4, E'_5] &= -E'_4, \\
 [E'_4, E'_6] &= -E'_4, \\
 [E'_4, E'_7] &= -E'_1, \\
 [E'_5, E'_6] &= 0, \\
 [E'_5, E'_7] &= -E'_7, \\
 [E'_6, E'_7] &= E'_7.
\end{align*}
\]

Now, we come to the main result of this paper. Suppose that the G-action extends on \hat{X}. This implies that we also have 7 formal vector fields $E_1, E_2, E_3, E_4, E_5, E_6, E_7$ on \hat{X} with the following Lie bracket constraints

\[
\begin{align*}
 [E_1, E_2] &= 0, \\
 [E_1, E_3] &= -2E_4, \\
 [E_1, E_4] &= 0, \\
 [E_1, E_5] &= 0, \\
 [E_1, E_6] &= -2E_1, \\
 [E_1, E_7] &= 0, \\
 [E_2, E_3] &= 0, \\
 [E_2, E_4] &= 0, \\
 [E_2, E_5] &= -2E_2, \\
 [E_2, E_6] &= 0, \\
 [E_2, E_7] &= -2E_4, \\
 [E_3, E_4] &= E_2, \\
 [E_3, E_5] &= -E_3, \\
 [E_3, E_6] &= E_3, \\
 [E_3, E_7] &= E_5 - E_6, \\
 [E_4, E_5] &= -E_4, \\
 [E_4, E_6] &= -E_4, \\
 [E_4, E_7] &= -E_1, \\
 [E_5, E_6] &= 0, \\
 [E_5, E_7] &= -E_7, \\
 [E_6, E_7] &= E_7.
\end{align*}
\]

These vector fields form a Lie subalgebra of the Lie algebra of formal vector fields on \hat{X}, which we denote by g. Of course, the restriction of E_i on the central fiber are nothing but E'_i ($i = 1, \ldots, 7$).
From the previous section, we can assume that our seven vector fields are of the form

\[E_i = g_i(v, t) \frac{\partial}{\partial v} + (\alpha_i(v, t)y^2 + \beta_1(v, t)y + \gamma_i(v, t)) \frac{\partial}{\partial y} + k_i(t) \frac{\partial}{\partial t}, \]

where \(A, B, C, a, b, c, e \) are formal power series of \(t \) (\(i = 1, \ldots, 7 \)).

Remark 4.1. The general fibre \(\hat{X} \) of the deformation \(\hat{X} \) is \(P := \mathbb{P}^1 \times \mathbb{P}^1 \) whose automorphism group is the product of two projective linear group: \(\text{PGL}(2, \mathbb{C}) \times \text{PGL}(2, \mathbb{C}) \). The Lie algebra of this group is nothing but \(\mathfrak{sl}_2(\mathbb{C}) \times \mathfrak{sl}_2(\mathbb{C}) \) where \(\mathfrak{sl}_2(\mathbb{C}) \) is the special linear group. Moreover, the Lie algebra of vector fields on \(\mathbb{P}^1 \times \mathbb{P}^1 \) is isomorphic to this Lie algebra.

Theorem 4.1. The action of \(G \) on \(\mathbb{F}_2 \) does not extend to the formally semi-universal deformation \(\hat{X} \) where \(G \) is the automorphism group of \(\mathbb{F}_2 \).

Proof. We denote by \(\mathfrak{g} \) the Lie algebra of formal vector fields in one variable \(t \). Consider a map \(\delta : \mathfrak{g} \rightarrow \mathfrak{v} \) which sends

\[g_i(v, t) \frac{\partial}{\partial v} + (\alpha_i(v, t)y^2 + \beta_1(v, t)y + \gamma_i(v, t)) \frac{\partial}{\partial y} + k_i(t) \frac{\partial}{\partial t} \]

to \(k_i(t) \frac{\partial}{\partial t} \) for \(i = 1, \ldots, 7 \). Since, the first two components \(\frac{\partial}{\partial v} \) and \(\frac{\partial}{\partial y} \) contribute nothing to the component \(\frac{\partial}{\partial t} \) in the Lie bracket then \(\delta \) is a well-defined Lie homomorphism. Set \(F_i := \delta(E_i) = k_i(t) \frac{\partial}{\partial t} \) (\(i = 1, \ldots, 7 \)).

Note that \(\mathfrak{v} \) can be equipped with a filtration \(F \) given by the vanishing order at 0 and we have two well-known facts

\[[F^p \mathfrak{v}, F^q \mathfrak{v}] \subset F^{2p} \mathfrak{v}, \text{ and } [F^p \mathfrak{v}, F^q \mathfrak{v}] \subset F^{p+q-1} \mathfrak{v} \]

for \(p, q \geq 1 \). Also, the vanishing order of all \(k_i \) at 0 is at least 1. Let \(k_i(t) = \sum_{j=1}^{\infty} a_j^i t^j \) (\(i = 1, 2, 4, 5 \)). Using the first fact and Lie relations induced by \(\delta \): \([F_1, F_0] = -2F_1, [F_2, F_3] = -2F_2, \text{ and } [F_1, F_3] = -2F_4 \), we obtain \(a_1^1 = a_2^3 = a_4^1 = 0 \). Suppose that \(k_4(t) \) is not identically zero, then there exists \(j^* \geq 2 \) such that \(a_j^4 \) is nonzero. By computing explicitly the lie relation \([F_4, F_3] = -F_4 \) in terms of power series in \(t \) and equalizing coefficient, we get that

\[a_j^4[(j - 1)a_1^5 - 1] = 0 \]

for all \(j \geq 2 \). Thus, \(a_j^5 = \frac{1}{j - 1} \), which is clearly nonzero. A similar computation for the relation \([F_1, F_5] = 0 \) gives

\[(j - 1)a_1^1 a_5^5 = 0 \]

for all \(j \geq 2 \). Hence, all \(a_j^1 = 0 \) so that \(k_1(t) = 0 \). By the relation \([F_1, F_3] = -2F_4 \), we deduce that \(k_4(t) = 0 \), a contradiction. Therefore, \(k_4(t) = 0 \). From the relations \([F_3, F_4] = F_2 \text{ and } [F_4, F_7] = -F_1 \), we have in turn that \(k_2(t) = 0 \) and \(k_1(t) = 0 \). Thus, \(E_1, E_2, \text{ and } E_4 \) are all vertical.

In other words, \(E_1, E_2, \text{ and } E_4 \) are vector fields on the fibers \(\mathbb{P}^1 \times \mathbb{P}^1 \). This means that there exists a 3-dimensional abelian Lie subalgebra of \(\mathfrak{sl}_2(\mathbb{C}) \times \mathfrak{sl}_2(\mathbb{C}) \). The image of that subalgebra under one of the two canonical projections of the product \(\mathfrak{sl}_2(\mathbb{C}) \times \mathfrak{sl}_2(\mathbb{C}) \) provides a 2-dimensional abelian Lie subalgebra in \(\mathfrak{sl}_2(\mathbb{C}) \). This is a contradiction since \(\text{rank(}\mathfrak{sl}_2(\mathbb{C})\text{)} \) is only 1. \(\Box \)
References

1. J. Blanc, Finite subgroups of the Cremona group of the plane. The 35th Autumn School in Algebraic Geometry, Poland, September 23 – September 29 (2012).

2. R. Hartshorne, Algebraic Geometry, Springer Verlag Graduate Texts in Mathematics, Vol 52, (1977).

3. K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Classics in Mathematics, English edn. Springer, Berlin, (2005).

4. D. S. Rim, Equivariant G-structure on versal deformations, Transactions of the American Mathematical Society, 257(1) (1980): 217–226.

5. M. Schlessinger, Functors of Artin rings, Transactions of the American Mathematical Society, 130(2) (1968): 208–222.

6. E. Sernesi, Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften, vol. 334. Springer, Berlin (2006).

7. J. J. Wavrik, Obstructions to the existence of a space of moduli, Papers in Honour of K. Kodaira, Princeton Univ. Press, (1969), 403-414.

An Khuong DOAN, IMJ-PRG, UMR 7586, Université Pierre et Marie Curie, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France
E-mail address: an-khuong.doan@imj-prg.fr