Receptor-like kinase complexes in plant innate immunity

Greeff, Michael Christiaan; Roux, Milena Edna; Mundy, John; Petersen, Morten

Published in:
Frontiers in Plant Science

DOI:
10.3389/fpls.2012.00209

Publication date:
2012

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Greeff, M. C., Roux, M. E., Mundy, J., & Petersen, M. (2012). Receptor-like kinase complexes in plant innate immunity. Frontiers in Plant Science, 3. https://doi.org/10.3389/fpls.2012.00209
Receptor-like kinase complexes in plant innate immunity

Christiaan Greeff, Milena Roux, John Mundy and Morten Petersen*
Department of Biology, Copenhagen University, Copenhagen, Denmark
*Correspondence: Morten Petersen, Department of Biology, Copenhagen University, Bocxcenter 2.7.45, Ole Maaløes Vej 5, Copenhagen, Denmark. e-mail: shutko@bio.ku.dk

INTRODUCTION

Autotrophs, like plants, are the source of nutrients for heterotrophs. Plants are members of complex communities and have co-evolved commensal and pathological relationships with microbes. A fine balancing act is required to effectively combat invasion by pathogenic heterotrophs while effectively guarding resources for vegetative and reproductive growth (King and Roaggharden, 1982). This entails appropriately timed activation of defense responses to conserve energy for producing numerous healthy progeny, thus increasing evolutionary fitness through this adaptive plasticity (Sultan, 2000). Detecting harmful heterotrophs and converting this recognition to intracellular signals aimed at combating the intruder and alerting surrounding tissue, is a major challenge, especially since pathogens co-evolve with their hosts to elude discovery (Frank, 1992; Lehti-Shiu et al., 2009).

Plant genomes encode a large number of surface receptor-like kinases (RLKs) to perceive different signals from both distal cells responding to stresses such as herbivore feeding or to the presence of pathogens through detection of non-self molecules (Shiu and Bleecker, 2001). RLKs generally have an extracellular ligand-binding domain, a membrane-spanning region, a juxtamembrane domain and a serine/threonine kinase domain. Equivalent mammalian receptors from the Pelle/IRAK family differ in usually employing a cytosolic tyrosine kinase domain. Equivalent mammalian receptors from the Pelle/IRAK family differ in usually employing a cytosolic tyrosine kinase domain (Gish and Clark, 2011). This review focuses on RLKs involved in pathogen recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs) and, upon binding of their cognate ligands, activate generic immune responses termed pattern-triggered immunity (PTI). RLKs can form complexes with other family members and engage a variety of intracellular signaling components and regulatory pathways upon stimulation. This review focuses on interesting new data about how these receptors form protein complexes to exert their function.

Keywords: receptor-like kinases, complexes, plant immunity, signaling, defense
FIGURE 1 | Complexes of Xa21, FLS2, and EFR. (A) A model to summarize the current data regarding Xa21 function as discussed in this manuscript. (B) Illustration of the complexes formed by the RLK-FLS2. The yellow dots indicate phosphorylation of a protein. Yellow arrows indicate phosphorylation of a substrate protein. Yellow blunt arrows indicate dephosphorylation of a substrate protein. Green dots and green arrows indicate ubiquitination. Black arrows indicate translocation, association or dissociation. (C) Selected interactors of the RLK EFR. (D) Shows biological effects of selected RLK activation.

et al., 2010a) and the RD kinase BAK1 (Chinchilla et al., 2007; Heese et al., 2007). These receptors present the core of our current knowledge regarding RLKs involved in defense.

Xa21

The Xa21 extracellular domain is composed of 23 LRRs and was one of the first eukaryotic RLKs found to be involved in resistance (Song et al., 1995; Wang et al., 2006). Xa21 binds the Xanthomonas oryzae pv. oryzae (Xoo) secreted tyrosine (Tyr)-O-sulfonation peptide AxYS22 (Lee et al., 2009). Much has been learned about the function of Xa21. For example, the amino acids Ser686, Thr688, and Ser689 in the cytosolic JM domain are important for stability and for endoplasmic reticulum (ER) processing (Xu et al., 2006; Park et al., 2010a). Phosphorylation of residues in the JM domain is also critical for the activation of Xa21 and binding of at least four Xa21-binding proteins named XB3, XB15, XB24, and XB10 (OsWRKY62; Park et al., 2010b) associated with Xa21 via the JM domain. These interactions are all dependent on Thr705 since mutation of this JM domain residue abolishes XB-Xa21 binding (Chen et al., 2010a).

XB3 is an E3 ligase important for Xa21 accumulation and is a substrate for Xa21 kinase activity, although the biological relevance of this relationship is still unclear. After Xa21 binds AxYS22, XB3 is activated by transphosphorylation and likely leads to cleavage of a negative regulator of defense or even of itself, allowing other interactions to take place (Wang et al., 2006).

Xa21 is regulated by two proteins through phosphorylation; XB15, a protein phosphatase 2C (PP2C) and XB24, a protein with intrinsic ATPase activity (Park et al., 2008). XB15 dephosphorylates Xa21 and XB15 over-expression reduces Xoo resistance while xb15 null-mutants exhibit increased cell death and resistance to Xoo. This would point to a negative regulatory role of XB15. On the other hand, XB24 promotes autophosphorylation of Xa21 and may be required to prevent proteolytic cleavage of Xa21. The complex between XB24 and Xa21 dissociates upon Xoo infection or AxYS22 binding (Chen et al., 2010b). Phosphorylation, especially in the JM domain, plays a critical role in Xa21 stability. It is clear that autophosphorylation of certain residues in Xa21 promotes an inactive state but the exact changes in phosphorylation status upon pathogen infection remain largely unknown.

Xa21 binds to the WRKY transcription factor XB10 and this binding requires an active Xa21 kinase domain. Binding of the AxYS22 peptide to Xa21 leads to translocation of a Xa21 kinase domain-GFP fragment to the nucleus where it interacts with XB10.
The nuclear translocation is important for Xoo resistance and the Xa21 kinase domain/XB10 complex probably affects defense gene expression (Park and Ronald, 2012). Whether this or a similar mechanism also applies to other RLKs is currently unknown, but future studies will likely address this issue. Recently, a large-scale yeast two-hybrid study revealed yet another set of Xa21 interacting partners (Soo et al., 2011). Although the biological significance of these discoveries in signaling remains to be seen, they may provide interesting clues to the functions of Xa21 and other RLKs.

To help proteins fold properly, the ER contains a number of chaperones including BiPs (binding immunoglobulin protein) that bind N-glycosylated proteins and direct them to the ER (Molinaro and Helenius, 2000). Xa21 is also N-glycosylated and interacts with BiP3, an HSP70-like ATPase located in the ER, and this is important for correct folding and functioning of the protein (Park et al., 2010a). While a pool of Xa21 locates to the PM where AxX522 ligand is perceived, the majority of the receptor is found in the ER.

AflFLS2

The FLS2 (flagellin sensing 2) receptor recognizes the well-conserved protein flagellin from a broad class of bacterial plant pathogens including *Pseudomonas syringae pv. tomato* (Pto) DC3000 (Gómez-Gómez and Boller, 2000). Direct binding of the flagellin-derived peptide flg22 has been shown using *32*P-labeled peptides (Chinchilla et al., 2006), but a recent report also implicates FLS2 in unsulfonated Xoo Ax21 peptide perception. These two peptides are not sequence related, which makes the finding quite astonishing (Danna et al., 2011).

FLS2 was recently shown to form homo-dimers independently of flg22 binding, but whether this dimerization is important for receptor function is not known (Sun et al., 2012). However, it is well-established that FLS2 forms heterodimers with BRI1-associated kinase 1 (BAK1) (Chinchilla et al., 2007; Schulze et al., 2010) in the presence of bound flg22. BAK1 is a common component in many RLK signaling complexes, and was first identified for its requirement in brassinosteroid signaling via the receptor BRI1 (Li et al., 2002). The essential role of BAK1 in flg22 sensing was revealed by the marked reduction of flg22-induced responses in bak1 plants (Chinchilla et al., 2007, Hesse et al., 2007). Importantly, the BAK1–FLS2 interaction most likely does not compete with other known BAK1 interactors such as BRI1, and the BAK1–FLS2 interaction is therefore not responsible for BR-mediated PAMP defense suppression (Albrecht et al., 2012). BAK1 is a member of the somatic embryogenesis receptor kinase (SERK) family comprising 5 members, SERK1, SERK2, BAK1/SERK3, BAK1-like (BBK1)/SERK4, and SERK5. FLS2 interactions with SERK1, SERK2, SERK5, and BKK have been detected, but its predominant association is with BAK1. BAK1 and BKK1 are thought to act cooperatively in PAMP signaling and resistance to biotrophic pathogens (Rozen et al., 2011). BAK1 and FLS2 also interact with Botrytis-induced kinase 1 (BIK1), which is a receptor-like cytoplasmic kinase (RLCK) implicated in resistance to necrotrophic pathogens (Veronese et al., 2006). BAK1 and FLS2 phosphorylate BIK1 (Lu et al., 2010) and BIK1 in turn phosphorylates both FLS2 and BAK1. This is thought to be an important signal amplification mechanism. However, since FLS2 has been shown to have very low catalytic activity in *situ* (Schweisinger et al., 2011), BAK1 probably possesses the predominant kinase activity influencing BIK1 phosphorylation. The BIK1–FLS2/BAK1 association is decreased after flg22 sensing, suggesting that BIK1 is released to activate downstream signaling components (Lu et al., 2010). BIK1’s role in PTI is dependent on complex interactions with major immune response regulators and may thus provide RLK signaling complexes with the ability to discriminate between biotrophic and necrotrophic pathogens (Laluk et al., 2011). Importantly, bki1 mutants display enhanced susceptibility to *Pto DC3000*, reduced flg22 responsiveness, as well as compromised flg22-induced resistance to virulent *Pto DC3000*. The BIK1-related kinases, PRS-like kinase 1 (PRL1) and PRL2 also interact with FLS2 and BAK1. pbi1 mutants show less reduction in PTI responses but the effect seems to be additive to BIK1 function (Zhang et al., 2010).

BAK1, BKK1, SERK1, and SERK2 have also been shown to interact with BIK1 (BAK1-interacting receptor-like kinase 1), an active protein kinase. The bki1 mutant exhibits increased resistance to biotrophic *Pto DC3000* and *Hyphomicrobium arahdopidis* Noco2, due to apparent R protein activation (Wang et al., 2011). The bki1 phenotype is partially rescued in *bki1 pkl4* double mutants, and is completely rescued in the bki1 pkl4 sobi (suppressor of bki1-1) triple mutant. Phytoalexin deficient 4 (PAD4) is one of the critical components required for Toll/interleukin-1 receptor (TIR) R protein signaling. Many constitutively active defense phenotypes that result from activated TIR R proteins are suppressed by PAD4 loss of function (Wiermer et al., 2005, Palma et al., 2010, Zhang et al., 2012). The aforementioned results thus indicate that the bki1 phenotype is partly dependent upon R protein activation, although the majority of defense induction in bki1 occurs through SOBIR1. SOBIR1 is also a RLK, and over-expression of SOBIR1 leads to activation of cell death. SOBIR1 does not function in flg22 sensing and does not interact with BRI1. Exactly how loss of BRI1 activates SOBIR1 is a mystery (Gao et al., 2009), and it is still uncertain whether BRI1 has a role in the PAMP signaling pathway. Kinase-associated protein phosphatase (KAPP) interacts with the FLS2 kinase domain (Gómez-Gómez and Boller, 2000), and this interaction may be important for receptor endocytosis upon activation as was found for ASEC1 (Shah et al., 2002). KAPP has also been found in complexes with other RLKs (Williams et al., 1997; Stone et al., 1998) but whether it functions as a general regulator of a broader spectrum of RLKs needs to be explored.

FLS2 also interacts with E3 ligases that polyubiquitinate the receptor after flg22 signaling. FLS2 is subsequently degraded by the proteasome, which might constitute a mechanism for attenuation as has been described for the mammalian Toll-like receptor 4 (TLR4) and TLR9 (Chuang and Ulevitch, 2004). Plant U-boxes 12 (PUB12) and PUB13, both E3 ubiquitin ligases, have been shown to be BAK1 phosphorylation targets, and this modification is required for their association with FLS2. This phosphorylation is reminiscent of the previously mentioned Xa21 phosphorylation of Xb3. PUB12 and PUB13 control flg22-dependent, proteasome-mediated degradation of FLS2.
Despite being a transmembrane protein, FLS2 does not depend critically on N-glycosylation for its function as has been found for EFR (Nekrasov et al., 2009; Saio et al., 2009; Häweker et al., 2010). However, FLS2 has recently been shown to interact with the reticulin-like proteins RTNB1 and RTNLB2. RTNLB1/2 are together involved in regulating FLS2 transport from the ER to the plasma membrane (Lee et al., 2011). In addition, stomatal cytoskeleton defective 1 (SCD1) was identified by mass spectrometry as an FLS2 interaction partner. Scd1 mutants display SA-dependent enhanced resistance to infection with Pto DC3000, as well as enhanced accumulation of PR1 transcripts and hydrogen peroxide. However, the same mutants are less sensitive to PAMPs, with reduced seedling growth inhibition and ROS production in response to flg22 or elf18 (Koraisik et al., 2010).

EF-Tu RECEPTOR

EF-Tu receptor is a LRR-RLK that recognizes the peptide elf18 from bacterial elongation factor (EF)-Tu. EFR and BAK1 have also been shown to interact in a ligand-dependent manner (Roux et al., 2011). Indeed, many of the signaling components downstream of FLS2 and EFR are shared. While both EFR and FLS2 are capable of associating with all members of the SERK family, BKK1, SERK1, SERK2 have a stronger association with EFR than with FLS2 (Roux et al., 2011). This might allow EFR to avoid pathogen effector action on the single SERKs. Studies of SERK function have been difficult due to their apparent redundancy and the lethality of some double mutants such as ser1/ser2 and bkk1-4 bkk1-1 (Colombo et al., 2005; He et al., 2007). However, the discovery of a novel allele of bkk1, bkk1-5, enabled study of non-lethal bkk1-5 bkk1 double mutants. This revealed that BAK1 and BKK1 act cooperatively in PAMP signaling (Roux et al., 2011; Schieweck et al., 2011). BKK1 is phosphorylated upon elf18 and flg22 treatment (Lu et al., 2010). Given the many parallels between FLS2 and EFR, it is possible that transphosphorylation of the EFR/BAK1 complex also occurs, although direct proof is still lacking. In contrast to FLS2, but similarly to Xa21, N-glycosylation is critical for EFR signaling function and EFR is subject to ER quality control that requires several chaperones involved in ERQC for full activity (Häweker et al., 2010).

PEPR1

In contrast to the three receptors described above, Pep1 receptor 1 (PEPR1) binds AtPep1 (Yamaguchi et al., 2006) a DAMP derived from the precursor gene PROPEP1. PEPR1 and PEPR2 act redundantly to perceive AtPep1. BAK1 was shown to interact with PEPR1 like FLS2 and EFR (Postel et al., 2010). PEPR1 possesses a putative guanylyl cyclase (GC) domain and cGMP production by the purified RLK was shown in vitro (Qi et al., 2007). Interestingly, a GC domain is also present in BRI1 and was shown to have a catalytic function in vitro (Koevari et al., 2007). This cGMP generated after elicitation may trigger a cyclic nucleotide-activated Ca2+ channel as part of its signaling activity (Ali et al., 2007).
in ROS production and the activation of MAP kinase is still missing. Nevertheless, a quite comprehensive picture of the route from receptor activation to enhanced defense gene expression has emerged for XA21 and similar data for FLS2 and EFR are sure to come to light.

ACKNOWLEDGMENTS

This work was supported by grants to Morten Petersen from the Danish Research Council for Technology and Production (11-106302) and the Strategic Research Council (09-06714).

Kanath, N. F., Kuzemtsova, S., Lorik, L., Bourouze, G., Konder, S. A., Shimono-Anan, H., Grossniklaus, U., Schulze, W. K., Robatzek, S., and Pantgrug, R. (2010). PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J. Biol. Chem. 285, 59140–59148.

Konder, S. A., Shimono-Anan, H., Kanath, N. F., Wust, S. E., Ingram, G., Pantgrug, R., and Grossniklaus, U. (2010). Conserved molecular components for pollen tube reception and fungal invasion. Science 329, 968–972.

King, D., and Rongruanghit, J. (1982). Multiple switches between vegetative and reproductive growth in annual plants. Theor. Popul. Biol. 21, 156–164.

Koracin, D. A., McMichael, C., Kadar, A. A., James, C., Berkowitz, G. A. (2007). Death doesn’t have no mercy and neither does cytokinesis. Cell 131, 465–476.

Lai, Z., and Mengiste, T. (2011). The Arabidopsis thaliana brassinosteroid receptor BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr. Biol. 21, 1109–1113.

Larsen, J., Henriksen, M., Grossniklaus, U., Schulze, W. X., Robatzek, S., and Rathjen, J. P. (2007). The receptor-like kinase SRR4/SRK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. U.S.A. 104, 12217–12222.

Lee, Y.-A., Mikami, A., Takeuchi, Y., Noguchi, T., and Nagano, I. (2010). Direct binding of a plant leucine receptor-like kinase, Leukin RKL(SRRK), to chitin in vitro. J. Biol. Chem. 285, 2939–2944.

Lehmann, L., Mares, S., Milorge, I., Ruaudel, G., Irving, H., and Gehring, C. (2007). The Arabidopsis thaliana brassinosteroid receptor (ABR1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS ONE 2, e449. doi: 10.1371/journal.pone.0000449.

Lefebvre, J. P., De Vries, S. C., and Ding, X. (2010a). An ATPase protein ligase regulating T oll-like receptor signaling. Proc. Natl. Acad. Sci. U.S.A. 107, 10385–10390.

Lefebvre, J. P., De Vries, S. C., and Ding, X. (2010b). An ATPase protein ligase regulating T oll-like receptor signaling. Proc. Natl. Acad. Sci. U.S.A. 107, 10385–10390.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Li, R., and Schneeberger, K. E. (2005). T riad3A, an E3 ubiquitin-protein ligase regulating T oll-like receptor signaling. Proc. Natl. Acad. Sci. U.S.A. 102, e449. doi: 10.1371/journal.pone.0000449.

Lin, H., Yuan, T., Li, L., and Luo, H. (2006). Perception of the bacterial elicitor flagellin in Arabidopsis involves FLS2 and BAK1. J. Biol. Chem. 281, 7914–7921.

Liu, X., Schneeberger, K. E., and Shibuya, N. (2006). Plant pattern recognition receptors recognize signals through non-R domain. PLoS Pathog. 2, e23. doi: 10.1371/journal.ppat.0020020.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.

Liu, X., Lu, J., and Dangl, J. L. (2006). The perception of bacterial elicitor flagellin in Arabidopsis thaliana requires N-glycosylation to mediate plant immunity. J. Biol. Chem. 281, 6429–6436.
Lu, D., Lin, W., Gao, X., Wu, S., Cheng, F.L. H. (2011). Targeted quantitative receptor FLS2 attenuates plant innate immunity. Plant Cell 107, 496–501.

Helm, K., Thompson-Samuels, S., Malnowsky, E. G., Fed, B. K., Nishida, H. B., Broderick, P., Hulan, D., Peterson, M., and Mundy, J. (2010). Autophagosome in Arabidopsis acs1 is mediated by autophagic degradation of an immune receptor. PLoS Pathog. 6, e1001137. doi: 10.1371/journal.ppat.1001137.

Park, C.-I., Rarr, R., Chen, M., Cam, P. E., Bau, W., and Ronald, P. C. (2010a). Identification of the endoplasmic reticulum chaperone BiP as receptor-associated kinase FLS2 attenuates plant innate immunity. Science 326, 1499–1502.

Park, C.-I., Han, S.-W., Chen, X., and Ronald, P. C. (2010b). Elucidation of the recognition of a receptor-like kinase in rice. Science 329, 9444–9451.

Bosch, U., Mentzel, T., Iklä, A., Muelle, K., Becker, S., Boller, T., Folig, G., and Chinnoski, D. (2010). Rapid determination of a receptor-like kinase and associated kinase BAK1. J. Biol. Chem. 285, 9444–9451.

Schwens, R., Buus, M., Kaderis, V., Nishikura, V., Ksienz, J., Jones, A., and Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 7, e1002066. doi: 10.1371/journal.pgen.1002066.

Sax, Y.-S., Chena, M., Bartley, T. E., Han, M., Jiang, H.-C., Lee, L., Wola, H., Richter, T., Xu, X., Cao, P., Bau, W., Kumaras, R., Armstrong, E., Aral, L., Galula, E., Baum, R., Park, C.-J., Chen, X., Huang, S.-J., and Ronald, P. C. (2011). Towards establishment of a rice stress response interaction network. Plant Physiol. 157, 3428–3437. doi: 10.1104/pp.111.186821.

Mishra, S. K., Vrijmoeth, B. J., Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, B. A., Hart, H., and Mengiste, T. (2009). The multimerization-anchored RBOHS-INDUCED KINASES plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 21, 257–273.

Wan, J., Zhang, X.-C., Niecz, D., Ramonell, K. M., Coughy, S., Kim, S.-Y., Stacey, M. G., and Stacey, G. (2008). A lysozyme receptor-like kinase plays a critical role in chitin-signaling and fungal resistance in Arabidopsis. Plant Cell 20, 471–484.

Wang, Y.-S., Pi, L.-Y., Chen, X., Chakraverter, P. K., Jang, J., Lee, O. S. (2012). Receptor-like kinases

Arabidopsis. Plant Cell 23, 2813–2849.

Lee, H. Y., Boom, C. H., Popescu, G. V., Kang, H. G., Kato, N., Ma, S., Dinjens-Rama, S., Strieder, M., and Popescu, S. C. (2011). Arabidopsis RTB1BD1 and RTB1BD2 receptor-like kinase proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. J. Biol. Chem. 286, 5374–5381.

Liu, S.-C., Han, S.-W., Syringman, M., Park, C.-I., Soo, Y.-S., and Ronald, P. C. (2010). A Type I- secreted, sulfated polysaccharide XA21 mediates innate immunity. Proc. Natl. Acad. Sci. U.S.A. 107, 21193–21198.

Ronald, P. C. (2009). A Type I- secreted, sulfated polysaccharide XA21 mediates innate immunity. Proc. Natl. Acad. Sci. U.S.A. 107, 21193–21198.

Ronald, P. C. (2010b). Elucidation of the recognition of a receptor-like kinase in rice. Science 329, 9444–9451.

Ronald, P. C. (2010a). Overexpression of a major chitin-binding protein in Arabidopsis thaliana is mediated by epigenetic regulation of the pattern-recognition receptor FLS2. Plant Cell 22, 143–155.

Ronald, P. C. (2009). A Type I- secreted, sulfated polysaccharide XA21 mediates innate immunity. Proc. Natl. Acad. Sci. U.S.A. 107, 21193–21198.

Ronald, P. C. (2001). Plant receptor-like kinase signaling. Curr. Opin. Plant Biol. 4, 239–245.

Ronald, P. C. (1995). A receptor-like kinase-dependent nuclear factor BAK1. J. Biol. Chem. 270, 29503–29508.

Nanjo, T., Ishiguro, H., Nakamura, M., Ishihara, A., Kagami, H., and Kajimura, T. (2007). CERK1, a Lysozyme receptor-like kinase, is essential for chitin elicitor signaling in Arabidop- sis. Proc. Natl. Acad. Sci. U.S.A. 104, 16035–16040.

Mohrmann, M., and Helman, A. (2008). Chaperone selection during protein translocation into the endoplasmic reticulum. Science 320, 355–357.
A. L. Liu, G.-Z., Li, L., Benny, U., Oued, J., Renaud, P. C., and Song, W. Y. (2006). Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18, 3635–3646.

Wang, Z., Meng, P., Zhang, X., Ran, D., and Yang, S. (2011). ROS1 interacts with the protein kinase BRI1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis. Plant J. 67, 1081–1095.

Warnier, M., Foyer, C. H., and Parker, J. E. (2005). Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8, 385–389.

Williams, R. W., Wilson, J. M., and Mayerowitz, E. M. (1997). A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 94, 10467–10472.

Williams, R., Laimim, H. M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.-J., Cullimore, J. V., Jehle, A. K., Götz, F., Kalik, A., Melianos, A., Lipka, V., Gut, A. A., and Nürnberger, T. (2011). Arabidopsis homophilous protein pairs TMM1 and TMM3 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. U.S.A. 108, 19024–19029.

Wong, H. L., Prasin, R., Hayashi, K., Iwabata, R., Yano, Y., Haogawa, K., Kojima, C., Yoshida, H., Ra, K., Kawazoe, T., and Shimamoto, K. (2007). Regulation of rice NAMPR oxidase by binding of Rae GTPase to its N-terminal extension. Plant Cell 19, 4022–4034.

Xu, W., Wang, Y., Liu, G., Chen, X., Tien, Tzuang, P. S., Li, L., and Song, W. (2006). The autophosphorylated Ser686, Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptor-like kinase. Plant J. 45, 740–751.

Yamaguchi, Y., Pearce, G., and Ryan, C. A. (2006). The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl. Acad. Sci. U.S.A. 103, 10194–10199.

Zhang, J., Li, W., Xiang, T., Liu, Z., Lai, K., Ding, X., Zou, Y., Gan, M., Zhang, X., Chen, S., Mengiste, T., Zhang, Y., and Zhou, J. M. (2010). Receptor-like cysteine kinase-integrating signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 286–301.

Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Wu, H., Zhai, J., and Zhang, Y. (2012). Disruption of PDFP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein FUM2. Cell Host Microbe 11, 253–263.

Zipfel, C., Kunze, G., Chinchilla, D., Camard, A., Jones, J. D. G., Bolten, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor FFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 03 May 2012; paper pending published: 01 June 2012; accepted: 16 August 2012; published online: 24 August 2012.

Greeff C, Roux M, Mundy J and Petersen M (2012) Receptor-like kinase complexes in plant innate immunity. Front. Plant Sci. 3:209. doi: 10.3389/fpls.2012.00209

Copyright © 2012 Greeff, Roux, Mundy and Petersen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any changes made are indicated and any new works are distributed under the same terms. Frontiers in Plant science is an open-access journal published under the terms and conditions of the Creative Commons Attribution License.