Ultrasound and Doppler findings in pregnant women with SARS-CoV-2 infection

E. SOTO-TORRES, E. HERNANDEZ-ANDRADE, E. HUNTLEY, H. MENDEZ-FIGUEROA and S. C. BLACKWELL

Department of Obstetrics and Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas, Health Science Center at Houston (UTHealth), Houston, TX, USA

KEYWORDS: COVID-19 pandemic; fetus; infection; obesity; perinatal death; preterm delivery; SGA; small-for-gestational age; ultrasound; vertical transmission

CONTRIBUTION
What are the novel findings of this work?
We observed no differences in ultrasound and Doppler findings between pregnant women who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and those who were negative, matched for age, body mass index, parity and gestational age. There was a higher prevalence of preterm delivery at or before 35 weeks of gestation among SARS-CoV-2-positive pregnant women.

What are the clinical implications of this work?
Additional ultrasound and Doppler evaluations are probably not needed in SARS-CoV-2-positive women with a normally grown fetus. Cervical length evaluation may be indicated in SARS-CoV-2-positive pregnant women. The association between SARS-CoV-2 and perinatal mortality should be explored further.

ABSTRACT
Objectives To describe and compare ultrasound and Doppler findings in pregnant women who were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with findings in those who were SARS-CoV-2-negative, evaluated during the pandemic period.

Methods In this retrospective case–control study, we analyzed data from 106 pregnant women who tested positive for SARS-CoV-2 at the time of, or within 1 week of, an ultrasound scan between 1 May and 31 August 2020. Scans were either performed for routine fetal evaluation or indicated due to a positive SARS-CoV-2 test. Forty-nine women were symptomatic and 57 were asymptomatic. For comparison, we analyzed data from 103 pregnant women matched for maternal age, parity, body mass index and gestational age at the time of the ultrasound scan. These control women did not report symptoms of SARS-CoV-2 infection at the time of the ultrasound scan or at the time of admission for delivery and had a negative SARS-CoV-2 test at admission for delivery. Fetal biometry, fetal anatomy, amniotic fluid volume and Doppler parameters, including umbilical and fetal middle cerebral artery pulsatility indices, cerebroplacental ratio and biophysical profile (BPP), were evaluated as indicated. Biometric and Doppler values were converted to Z-scores for comparison. Our primary outcome, an adverse prenatal composite outcome (APCO) included any one or more of: small-for-gestational-age (SGA) fetus, oligohydramnios, abnormal BPP, abnormal Doppler velocimetry and fetal death. Comorbidities, delivery information and neonatal outcome were compared between the two groups.

Results Eighty-seven (82.1%) women who were positive for SARS-CoV-2 had a body mass index > 25 kg/m². SARS-CoV-2-positive women had a higher prevalence of diabetes (26/106 (24.5%) vs 13/103 (12.6%); P = 0.03), but not of pre-eclampsia (21/106 (19.8%) vs 11/103 (10.7%); P = 0.08), compared with controls. The prevalence of APCO was not significantly different between SARS-CoV-2-positive women (19/106 (17.9%)) and controls (9/103 (8.7%)) (P = 0.06). There were no differences between SARS-CoV-2-positive women and controls in the prevalence of SGA fetuses (12/106 (11.3%) vs 6/103 (5.8%); P = 0.17), fetuses with abnormal Doppler evaluation (8/106 (7.5%) vs 2/103 (1.9%); P = 0.08) and fetuses with abnormal BPP (4/106 (3.8%) vs 0/103 (0%); P = 0.14). There were two fetal deaths in women who were positive for SARS-CoV-2 and these...
Women had a higher rate of preterm delivery ≤35 weeks of gestation (22/106 (20.8%) vs 9/103 (8.7%); odds ratio, 2.73 (95% CI, 1.19–6.3); P = 0.01) compared with controls.

Conclusions There were no significant differences in abnormal fetal ultrasound and Doppler findings observed between pregnant women who were positive for SARS-CoV-2 and controls. However, preterm delivery ≤35 weeks was more frequent among SARS-CoV-2-positive women. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.

INTRODUCTION

The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among pregnant women has been reported to be 14–15%, with most (50–90%) women being asymptomatic1–4. Only a small percentage show severe symptoms, mainly during the third trimester of pregnancy2; among these women, there is a higher risk of severe complications and death5,6. Nevertheless, most pregnant women who are positive for SARS-CoV-2 are asymptomatic and have a low prevalence of perinatal complications. Initially, there was an overreaction concerning the potential complications of SARS-CoV-2 in pregnancy, with an increase in rate of indicated preterm birth in order to avoid fetal exposure to the virus7. However, now that clinical experience has accumulated, the general consensus is that only minimal or mild fetal side effects are associated with maternal SARS-CoV-2 infection during pregnancy8,9, despite evidence of vertical transmission of the virus10. Nevertheless, the association between SARS-CoV-2 and preterm birth seems to be reported consistently11–13. There is a need for more data on the effect of SARS-CoV-2 during pregnancy, in particular prenatal imaging. The aim of this study was to describe ultrasound and Doppler findings in pregnant women who tested positive for SARS-CoV-2 at the time of obstetric ultrasound evaluation and to compare these with findings in SARS-CoV-2-negative controls.

METHODS

This was a retrospective case–control study of pregnant women who had an obstetric ultrasound examination as either an outpatient or an inpatient while under the care of the Maternal Fetal Medicine (MFM) Division of the University of Texas McGovern Medical School, Department of Obstetrics and Gynecology, between 1st May and 31st August 2020, during the coronavirus disease 2019 (COVID-19) pandemic. The MFM Division covers 10 outpatient ultrasound units and seven hospitals within the greater Houston area. Outpatient ultrasound units screened for SARS-CoV-2 symptoms using a questionnaire and body temperature. Prior to admission, all labor and delivery units implemented universal screening via SARS-CoV-2 viral RNA polymerase chain reaction (PCR) or SARS-CoV-2 rapid antigen tests of nasopharyngeal samples. Cases included in this study were all patients who were admitted for delivery and tested positive for SARS-CoV-2, and those with a confirmed antepartum outpatient positive SARS-CoV-2 result who were scheduled for an ultrasound appointment. We evaluated 106 SARS-CoV-2-positive pregnant women, of whom 75 had a positive SARS-CoV-2 test result within 7 days after the ultrasound scan and 31 had a clinically indicated ultrasound examination due to a positive SARS-CoV-2 test. Both symptomatic and asymptomatic patients were included. SARS-CoV-2 infection was diagnosed by a positive SARS-CoV-2 viral RNA PCR or SARS-CoV-2 rapid antigen test carried out on nasopharyngeal samples. Symptomatic patients were classified according to their symptoms as mild or severe. All patients with severe symptoms required oxygen supplementation to maintain pulse oximetry above 95%. Mild cases manifested symptoms such as cough, fever, malaise, diarrhea and anosmia/ageusia, but did not require oxygen supplementation. Asymptomatic carriers attended the ultrasound unit for a routine examination and were screened negative based on the questionnaire and temperature reading, but tested positive after the ultrasound examination, on subsequent hospitalization or obstetric triage evaluation.

For each case, we carried out a computer search of our database to select a control patient matched for maternal age, body mass index (BMI), gestational age at the time of ultrasound examination and parity, and with an obstetrical ultrasound examination completed during the pandemic period. These control women screened negative for SARS-CoV-2 symptoms at the time of the ultrasound scan and at the time of admission for delivery and had a negative SARS-CoV-2 test at the time of admission for delivery.

Ultrasound and Doppler studies

Ultrasound examinations of patients known to be positive for SARS-CoV-2 were performed following guidelines and recommendations for optimal protection to reduce the risk of viral transmission between the ultrasound operator and the patient. This included: N95 face mask, shield or goggles, hair cover and gown, along with proper disinfection of the room and ultrasound machine before and after each scan14,15. In women for whom the diagnosis of SARS-CoV-2 was not known, the ultrasound scan was performed following the recommendations of the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) to reduce the risk of viral transmission16,17. The routine ultrasound evaluation included fetal biometry, anatomy evaluation, assessment of amount of amniotic fluid and, in the event of a small-for-gestational-age (SGA) fetus, Doppler examination of the umbilical artery (UA), fetal middle cerebral artery (MCA) and cerebroplacental ratio (CPR). In women with known SARS-CoV-2 infection at the time of the ultrasound scan, whether symptomatic or asymptomatic, fetal biometry, anatomy evaluation, Doppler velocimetry of the UA and MCA, and fetal biophysical
Fetal ultrasound in SARS-CoV-2 infection

Statistical analysis

Descriptive statistics for baseline clinical characteristics of both groups were applied. Continuous data were evaluated with one way analysis of variance (ANOVA) or Student’s *t*-test. Percentages and fractions were compared using Fisher’s exact test or the chi-square test. Associations were analyzed using logistic regression models; in addition to the matching process, regression analyses were further adjusted for maternal age, weight and parity. *P* < 0.05 was considered statistically significant. Statistical analyses were performed using SPSS statistical software (version 26.0; IBM Corp, Armonk, NY, USA).

This study qualified for exempt status by the Institutional Review Board at the McGovern Medical School at the University of Texas Health Science Center at Houston (HSC-MS-14-0632). Data evaluation complied with the guidelines for human studies, and data collection was conducted ethically in accordance with the World Medical Association and the Declaration of Helsinki, under Institutional Review Board approval (HSC-MS-14-0632). STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for reporting observational studies were followed.

RESULTS

A total of 106 SARS-CoV-2-positive and 103 SARS-CoV-2-negative pregnant women were analyzed. Maternal characteristics are shown in Table 1. Among the 106 patients who were positive for SARS-CoV-2, 87 (82.1%) had a BMI > 25 kg/m², the median gestational age at the ultrasound examination closest to the positive test was 33 + 1 weeks, the median number of ultrasound scans per patient was two (range, 1–9) and the median gestational age at the time of the SARS-CoV-2-positive test was 32 + 6 (range, 10 + 6 to 40 + 3) weeks. There was a similar number of twin pregnancies in both groups. The median gestational age at delivery and frequency of delivery by Cesarean section were not different between the two groups. Among women who were positive for SARS-CoV-2, 57 (53.8%) were asymptomatic and 49 (46.2%) were symptomatic, of whom 19 had severe symptoms and 30 had mild clinical manifestations (Tables 1 and 2).

The prevalence of maternal comorbidity was higher among SARS-CoV-2-positive women (76/106 (71.7%)) than in controls (50/103 (48.5%); *P* = 0.007), mainly due to a greater number of women with diabetes (26/106 (24.5%) vs 13/103 (12.6%); *P* = 0.03) (Table 3). There were no significant differences between the two groups in the prevalence of chronic complications, i.e. asthma, lupus, human immunodeficiency virus and hepatitis C. The prevalence of hypertensive disorders was not significantly different between the groups, although there was a trend towards a higher prevalence of pre-eclampsia in women who tested positive for SARS-CoV-2 (21/106 (19.8%) vs 11/103 (10.7%); *P* = 0.08). The high prevalence of complications observed, including pre-eclampsia, can be attributed to the characteristics of this selected population in which more than 80% were overweight and more than 50% obese.

The prevalence of APCO in SARS-CoV-2-positive women was not significantly different from that in controls (19/106 (17.9%) vs 9/103 (8.7%); *P* = 0.06) (Table 4) and SARS-CoV-2 positivity was not significantly associated with an increase in APCO (odds ratio (OR), 2.28; 95% CI, 0.97–5.31), compared with controls. There were no significant differences between SARS-CoV-2-positive women and controls in the prevalence of SGA fetuses (12/106 (11.3%) vs 6/103 (5.8%); *P* = 0.17), fetuses with abnormal Doppler evaluation (8/106 (7.5%) vs 2/103 (1.9%); *P* = 0.08) and fetuses with abnormal BPP (4/106 (3.8%) vs 0/103 (0%); *P* = 0.14).

There was no difference in the prevalence of abnormal...
There were no differences in fetal biometric and Doppler try values among SARS-CoV-2-positive women (Figure 3).

Table 1 Clinical characteristics of study group of pregnant women who were positive for SARS-CoV-2 infection and negative controls

Characteristic	SARS-CoV-2-positive (n = 106)	Negative controls (n = 103)	P
Maternal age (years)	28 (15–42)	29 (17–42)	0.27
Gravidity	2 (1–10)	2 (1–7)	1.0
Primigravida	14 (13.2)	9 (8.7)	0.37
GA at ultrasound nearest SARS-CoV-2 test (weeks)	33 + 1 (11–3 to 38+4)	30 + 2 (10–2 to 39+0)	0.34
GA at last scan (weeks)	34 + 3 (18–0 to 38+4)	35 + 0 (14+1 to 40+0)	0.20
Body mass index (kg/m²)	32.6 ± 8.1 (18.0–54.6)	33.1 ± 8.4 (19.0–54.1)	0.70
Body mass index > 25 kg/m²	87 (82.1)	82 (79.6)	0.47
Body mass index > 30 kg/m²	58 (54.7)	58 (56.3)	0.89
Nulliparous	33 (31.1)	28 (27.2)	0.54
Singleton pregnancy	100 (94.3)	99 (96.1)	0.71
GA at SARS-CoV-2-positive test (weeks)	6 (DCDA, n = 3; MCDA, n = 3)	4 (DCDA, n = 3; MCDA, n = 1)	0.74
GA at delivery (weeks)	37 + 5 (23 + 5 to 40+1)	38 + 1 (25 + 2 to 40 + 5)	0.09
Vaginal delivery	77 (72.6)	62 (60.2)	0.06
Cesarean section	29 (27.4)†	41 (39.8)‡	0.06

Data are given as median (range), n (%), mean ± SD (range) or n, unless stated otherwise. *For controls, GA at corresponding ultrasound examination. †Including 11 repeat Cesarean sections, eight with abnormal fetal heart rate (FHR) and 10 with other obstetric indications. ‡Including 15 repeat Cesarean sections, 11 with abnormal FHR and 15 with other obstetric indications. DCDA, dichorionic diamniotic; GA, gestational age; MCDA, monochorionic diamniotic; NA, not applicable.

Table 2 Symptoms in 49 SARS-CoV-2-positive pregnant women

Symptom	n (%)
Women with severe symptoms (n = 19)	
Oxygen required	19 (100)
Cough	13 (68.4)
Fever	11 (57.9)
Pneumonia	9 (47.4)
Chest pain	5 (26.3)
Anosmia/ageusia	3 (15.8)
Nasal congestion	1 (5.3)
Diarrhea	1 (5.3)
Women with mild symptoms (n = 30)	
Cough	15 (50.0)
Anosmia/ageusia	13 (43.3)
Fever	8 (26.7)
Diarrhea	4 (13.3)
Shortness of breath	6 (20.0)
Runny nose	3 (10.0)
Nasal congestion	3 (10.0)
Fatigue	1 (3.3)
Chills	1 (3.3)
Chest pain	1 (3.3)
Sore throat	1 (3.3)
Myalgia	1 (3.3)
Fetal tachycardia	1 (3.3)

Symptoms in 49 SARS-CoV-2-positive pregnant women

amniotic fluid volume or structural anomalies between the two groups (Table 4). SARS-CoV-2 positivity was not significantly associated with an increased rate of SGA fetuses (OR, 1.86 (95% CI, 0.67–5.18); P = 0.2) or abnormal Doppler velocimetry parameters (OR, 3.88 (95% CI, 0.80–17.80); P = 0.08) compared with controls. Analysis of subsequent ultrasound scans showed no changes over time in fetal size (Figures 1 and 2) or in Doppler velocimetry values among SARS-CoV-2-positive women (Figure 3). There were no differences in fetal biometric and Doppler parameters between SARS-CoV-2-positive women and negative controls (Table 5) or in the frequency of the APCO or of individual adverse outcomes between asymptomatic and symptomatic SARS-CoV-2-positive women (Table 6).

There were two fetal deaths in women who were positive for SARS-CoV-2; both were asymptomatic. One woman had hypothyroidism and her fetus developed early and severe SGA. UA-PI and CPR were abnormal at ultrasound examination. She presented with placental abruption and fetal demise at 24 + 5 weeks of gestation. The second patient had hyperthyroidism and developed a SGA fetus with abnormal CPR. She was followed up with serial Doppler and BPP evaluations, but presented at 34 weeks with fetal demise. No other comorbidities were documented in either patient.

Among all 106 pregnant women who tested positive for SARS-CoV-2 infection, there were no ultrasound findings related to fetal infection such as calcifications of the brain, liver, lung or bowel or areas of increased echogenicity, no fetal hydrops, pericardial effusion, ascites or skin edema. There were no structural abnormalities noted in any fetus. However, most of our cases with SARS-CoV-2 infection occurred in the second or third trimester, after organogenesis was complete. Of note, one fetus had evidence of premature atrial contractions (fetal arrhythmia) at 26 weeks of gestation. This mother was tested for SARS-CoV-2 for other indications and was found to be positive on the same day on which the fetal arrhythmia was detected. A normal fetal heart had been reported in previous ultrasound examinations in this patient.

There was a higher prevalence of preterm delivery ≤ 35 weeks of gestation (22/106 (20.8%) vs 9/103 (8.7%); OR, 2.73 (95% CI, 1.19–6.3); P = 0.01) in women who were positive for SARS-CoV-2 compared...
Table 3 Comorbidities in pregnant women who were positive for SARS-CoV-2 infection and corresponding morbidities in negative controls

Parameter	SARS-CoV-2-positive (n = 106)	Negative controls (n = 103)	P
Maternal (co)morbidity	76 (71.7)	50 (48.5)	0.007
Pre-eclampsia	21 (19.8)	11 (10.7)	0.08
Hypertensive disorder other than pre-eclampsia	17 (16.0)	18 (17.5)	0.8
Diabetes	26 (24.5)	13 (12.6)	0.03
Anemia	8 (7.5)	7 (6.8)	1.0
Asthma	8 (7.5)	4 (3.9)	0.4
Cholestasis	4 (3.8)	5 (4.9)	0.7
Hypothyroidism	4 (3.8)	2 (1.9)	0.7
Hyperthyroidism	1 (0.9)	0	1.0
Thyroiditis	1 (0.9)	0	1.0
Lupus	2 (1.9)	0	0.5
Other	11 (10.4)*	7 (6.8)†	0.5
Number of comorbidities			
One	52/76 (68.4)	34/50 (68.0)	1.0
Two	21/76 (27.6)	15/50 (30.0)	0.8
Three	3/76 (3.9)	1/50 (2.0)	1.0

Data are given as n (%) or n/N (%). *One case each of: epilepsy, syphilis, Von Willebrand disease, human immunodeficiency virus, hepatitis C, consanguinity, pyelonephritis, bariatric surgery, sickle cell disease, breast cancer and bicornuate uterus. †One case each of: pancreatitis, Von Willebrand disease, breast cancer, epilepsy, gastroenteritis, protein S deficiency and fibroids.

Table 4 Fetal ultrasound findings in pregnant women who were positive for SARS-CoV-2 infection and negative controls

Finding	SARS-CoV-2-positive (n = 106)	Negative controls (n = 103)	Odds ratio (95% CI)	P
APCO*	19	9	2.28 (0.97–5.31)	0.06
SGA fetus	12	6	1.86 (0.67–5.18)	0.17
Abnormal BPP	4	0	9.08 (0.48–170.90)	0.14
Abnormal Doppler findings	8	2	3.88 (0.80–17.80)	0.08
Oligohydramnios	3	2	1.50 (0.24–8.91)	0.6
Fetal death	2†	0	4.95 (0.23–104.40)	0.3
Premature atrial contractions	1	0	2.94 (0.11–73.00)	0.51
Ventricular septal defect	1	1	0.97 (0.06–15.30)	0.9
Pericardial effusion	0	1	0.30 (0.01–7.96)	0.48
Echogenic bowel	1	1	0.97 (0.06–15.30)	0.9
Placental anomalies	1	1	0.97 (0.06–15.30)	0.9
Placental abruption	1	0	2.94 (0.11–73.00)	0.51
Missed miscarriage	1	0	2.94 (0.11–73.00)	0.51

Data are given as n, unless stated otherwise. *Adverse prenatal composite outcome (APCO) included any one or more of: small-for-gestational age (SGA), oligohydramnios (defined as amniotic fluid index < 5 and/or maximum vertical pocket < 2 cm), abnormal fetal biophysical profile (BPP), abnormal Doppler velocimetry and fetal death. †One placental abruption, one severe fetal growth restriction.

Figure 1 Box-and-whiskers plots of estimated fetal weight Z-scores in pregnant women who tested positive for SARS-CoV-2 (a) and in negative controls (b), at first and subsequent ultrasound evaluations. Boxes with internal lines represent median and interquartile range (IQR), whiskers are 1.5 × IQR from upper and lower quartile and circles are outliers.

© 2021 International Society of Ultrasound in Obstetrics and Gynecology. Ultrasound Obstet Gynecol 2021; 58: 111–120.
Figure 2 Box-and-whiskers plots of fetal abdominal circumference Z-scores in pregnant women who tested positive for SARS-CoV-2 (a) and in negative controls (b), at first and subsequent ultrasound evaluations. Boxes with internal lines represent median and interquartile range (IQR), whiskers are $1.5 \times$ IQR from upper and lower quartile, circles are outliers and asterisks represent an uneven distribution of outliers.

Figure 3 Box-and-whiskers plots of umbilical artery pulsatility index Z-scores in pregnant women who tested positive for SARS-CoV-2 (a) and in negative controls (b), at first and subsequent ultrasound evaluations. Boxes with internal lines represent median and interquartile range (IQR), whiskers are $1.5 \times$ IQR from upper and lower quartile and circles are outliers.

Table 5 Fetal biometry and Doppler values (Z-scores) in 106 pregnant women who were positive for SARS-CoV-2 infection and 103 negative controls

Parameter	SARS-CoV-2-positive	Negative controls	P
Biparietal diameter	0.6 ± 1.1	0.2 ± 1.08	0.94
Head circumference	0.4 ± 1.08	−0.1 ± 1.03	0.21
Abdominal circumference	1.5 ± 3.4	0.3 ± 1.06	0.14
Femur length	−0.1 ± 0.49	−0.07 ± 0.8	0.41
Estimated fetal weight	1.2 ± 2.7	0.4 ± 1.04	0.29
Umbilical artery pulsatility index	0.67 ± 1.49	0.4 ± 1.6	0.42
Middle cerebral artery pulsatility index	−0.43 ± 1.18	−0.3 ± 1.2	0.9
Cerebroplacental ratio	−0.64 ± 1.07	−0.6 ± 2.3	0.38
Amniotic fluid MVP (cm)	4.9 (0–9.7)	5.1 (2.9–9.5)	0.22
Amniotic fluid index (cm)	14.2 (0–29.1)	13.6 (3.6–30.7)	0.7

Data expressed as mean ± SD or median (range). MVP, maximum vertical pocket.
with controls (Table 7). Among SARS-CoV-2-positive women, the prevalence of preterm delivery was similar between women with (13/49) and those without (9/57) COVID-19 symptoms ($P = 0.23$) (Table 6). There was no difference in low birth weight between neonates of SARS-CoV-2-positive women and those of control women ($12/106 (11.3\%) vs 15/103 (14.6\%); OR, 0.74 (95\% CI, 0.33–1.68); $P = 0.48$). Most (14/15) low birth-weight newborns of SARS-CoV-2-negative women were born at term, of which only six (40\%) were diagnosed before delivery. This is likely to be related to the time at which ultrasound examination was performed and subsequent development of a SGA fetus. Among SARS-CoV-2-positive women, the higher identification of SGA fetuses may be related to a more detailed evaluation by the ultrasound operator.

DISCUSSION

There were no significant differences in the prevalence of abnormal ultrasound and Doppler findings between SARS-CoV-2-positive pregnant women and negative controls, or between SARS-CoV-2-positive women with mild and those with severe clinical symptoms, or between SARS-CoV-2-positive pregnant women with and those without comorbidity. While there was a higher frequency of SGA fetus and of fetus with abnormal Doppler parameters in SARS-CoV-2-positive pregnant women compared with controls, these differences did not reach statistical difference. Nevertheless, our results add to the increasing number of publications showing a higher prevalence of obesity, diabetes, thyroid disease and preterm delivery among pregnant women who test positive for SARS-CoV-2.$^{26–30}$ SARS-CoV-2 is the third of a group of known coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV).31 Despite the initial assumption of severe adverse side effects, it is now agreed that maternal and perinatal repercussions from SARS-CoV-2 are less severe than those from MERS-CoV and SARS-CoV infections.32 Nevertheless, data from single-center reports, systematic reviews and
meta-analyses$^{33–35}$ have shown that SARS-CoV-2 infection may indeed have perinatal complications, although whether this is due to worsening maternal condition, interactions with maternal comorbidity or vertical transmission of the virus remains unknown. Vertical transmission of SARS-CoV-2 has been demonstrated by the presence of the virus in maternal, placental and neonatal samples10,36; however, this seems to be a rare event37. Cell invasion by SARS-CoV-2 differs from that of other viruses in that SARS-CoV-2 invasion depends on ACE-2 (angiotensin-converting enzyme 2) and TMPRSS-2 (transmembrane serine protease 2) receptors$^{38–40}$. Pique-Regi et al.41 reported low expression of these receptors in placenta from SARS-CoV-2-positive women, suggesting a low likelihood of vertical transmission, although they suggested that SARS-CoV-2 may interact with other proteins to use alternative routes to invade cells. It may also be possible that comorbidities, such as chronic hypertension and those related to chronic inflammation, such as obesity and diabetes, can affect the renin-angiotensin-aldosterone system and facilitate the vertical transmission of SARS-CoV-2$^{32–45}$.

Our results did not show a higher prevalence of abnormal ultrasound and Doppler findings in pregnant women who were positive for SARS-CoV-2 compared with controls. We could not find any previous reports comparing ultrasound and Doppler parameters between pregnant women who were SARS-CoV-2 positive with those who tested negative. The main perinatal complication reported in the literature associated with SARS-CoV-2 infection in pregnancy in preterm delivery. However, several studies have highlighted the occurrence of fetal death among SARS-CoV-2-positive women. In a study from Brazil, five fetal deaths occurring between 21 and 38 weeks of gestation in women who were positive for SARS-CoV-2 were reported46; in two cases, the authors confirmed vertical transmission by PCR analysis of placental samples, in two cases, PCR of placental samples was not performed and, in one case, the PCR result was negative. All five cases showed histopathological signs of placental infection, including chorioamnionitis and villitis. The authors concluded that fetal death might have been related to SARS-CoV-2 infection. Di Mascio et al.47 performed a systematic review and meta-analysis of the outcomes of coronavirus spectrum infections during pregnancy, including SARS-CoV, MERS-CoV and SARS-CoV-2 infections. They included 41 patients with SARS-CoV-2 infections, reporting that, among these, there was a 41.1% prevalence of preterm delivery < 37 weeks, 14.6% had pre-eclampsia, 18.8% had preterm prelabor rupture of the membranes and in 7% there was perinatal death. A different report from the same authors48, analyzing 266 pregnant women who were positive for SARS-CoV-2, from 73 different centers and 22 countries, showed a prevalence of 26.3% (n = 70) for preterm delivery, 2.3% (n = 6) for stillbirth, 4.1% (n = 11) for perinatal death and 3.8% (n = 10) for fetal growth restriction. They explained that the increased rate of perinatal mortality was most probably related to prematurity. In Sweden, Ramaeus et al.49 reported their findings in 67 women (with 68 fetuses) who were positive for SARS-CoV-2, showing a prevalence of 19% (n = 13) for preterm delivery (≤ 37 weeks) and two perinatal deaths, one in a normally grown fetus and one in a growth-restricted fetus. All this information has led to the conclusion that preterm delivery and stillbirth might be more common among pregnant women infected with SARS-CoV-2. The two fetal deaths seen in our population occurred in asymptomatic women, both having thyroid comorbidities and placental complications (i.e. one with placental abruption and one with severe fetal growth restriction). Unfortunately, findings regarding the presence of SARS-CoV-2 infection in the placenta or stillbirths were inconclusive. In our cohort there was one fetus with premature atrial contractions whose mother tested positive for SARS-CoV-2 on the same day as the ultrasound scan. Since completion of our analysis, we have seen three more similar cases, in which premature atrial contractions were noted with a concurrent SARS-CoV-2-positive test. Whether this is a sporadic finding or a related complication is unclear and requires further investigation. The association between SARS-CoV-2 and preterm delivery has been described in several studies, with the reported prevalence of PTM in positive pregnancies being higher than 20%29,47. Our results, showing a rate of preterm delivery ≤ 35 weeks of 20.8%, almost two and a half times higher than that in control women, are in accordance with these reports.

Whether prenatal care should be modified in SARS-CoV-2-positive pregnant women is still unknown. However, it seems that ultrasound and Doppler velocimetry do not provide additional information, unless the fetus is SGA, which, in turn, can be associated with comorbidities such as hypertensive disorders and diabetes. The lack of specific fetal ultrasound signs in SARS-CoV-2-positive pregnant women suggests that increasing the frequency of scans or using Doppler velocimetry in a normally grown fetus may not be indicated.

Strengths and weaknesses

It is a strength of our study that we included a relatively large number of women with a SARS-CoV-2-positive test, and performed longitudinal evaluations in most cases. In addition, we analyzed the association of SARS-CoV-2 infection and maternal comorbidities and compared our results with control women with similar clinical characteristics. A weakness of our study is that we did not test all women attending the ultrasound unit; most of the positive cases in our study did not know if they were infected at the time of the ultrasound examination, but all had a positive SARS-CoV-2 test result within 7 days after the ultrasound scan. It has been estimated that, after viral exposure, 4–5 days is the average latency period prior to seroconversion and a positive test50. We therefore considered that fetuses had already been exposed to the virus at the time of the ultrasound evaluation. Pregnant women who were positive for SARS-CoV-2 and negative...
controls were matched by age, gestational age, BMI and parity; however, we did not match for other variables that may affect results, such as tobacco use or socioeconomic status. We did not match for complications in pregnancy, as one of our main aims was to document differences in the prevalence of comorbidities between women who were positive for SARS-CoV-2 and those who were negative. Our results showed that only diabetes was significantly more frequent among SARS-CoV-2-positive pregnant women. We did not test the placenta after delivery. Finally, our study was a retrospective analysis of cases and controls, rather than a prospective cohort study.

Conclusion

There were no significant differences in ultrasound and Doppler findings observed between pregnant women who were positive for SARS-CoV-2 and controls. However, a higher prevalence of preterm delivery ≤3 weeks was documented among women who were positive for SARS-CoV-2.

REFERENCES

1. Sutton D, Fuchs K, D’Alton M, Goffman D. Universal Screening for SARS-CoV-2 in Pregnant Women: Reasons for Admission and Pregnancy Characteristics - Eight U.S. Maternal Mortality Workgroup Reports. Arch Gynecol Obstet 2021; 302: 255–172.

2. Jansen O, Thompson M, Milburn S, Green R, Wagner B, Bianco A, Stroustrup A. The Impact of Perinatal SARS-CoV-2 Infection During the Peripartum Period. Am J Obstet Gynecol. 2021; 310:106267.

3. McDonnell S, McNamara E, Lindow SW, O’Connell MP. The impact of the Covid-19 pandemic on maternity services: A review of maternal and neonatal outcomes before, during and after the pandemic. Eur J Obstet Gynecol Reprod Biol. 2020; 255: 1352–1357.

4. Yee J, Kim W, Han JM, Youn HY, Lee N, Lee KE, Gwak HS. Clinical manifestations and perinatal outcomes of pregnant women with COVID-19: a systematic review and meta-analysis. Sci Rep 2020; 10: 18126.

5. Mullins E, Hadad ML, Banerjee J, Getfalia T, Townsend J, Barnett K, Playle R, Boume T, Lee C; PON-COVID investigators and the National Perinatal COVID-19 Registry Study Group. Pregnancy and neonatal outcomes of COVID-19 co-infecting women: a systematic review of common outcomes from PON-COVID and AAP SONPM registries. Ultrasound Obstet Gynecol 2021; 57: 573–581.

6. Woodworth KR, Olen EO, Nogues T, Lewis EL, Galang RR, Odyudeo T, Avens K, Yazdy MM, Harvey E, Longcore ND, Barton J, Fussman C, Seibman S, Lash M, Patrick PH, Halai UA, Valencia-Prado M, Orks L, Sumwuni S, Schlessor L, Khawaja S, Read J, Hall AJ, McNeely-Delman D, Ellington SR, Blobaum SG, Tong VT; CDC COVID-19 Response Pregnancy and Infant Linked Outcomes Team; COVID-19 Pregnancy and Infant Linked Outcomes Team (PILOT); Birth and Infant Outcomes Following Laboratory-Confirmed SARS-CoV-2 Infection in Pregnancy - SET-NET, 16 Jurisdictions, March 29-October 14, 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 1635–1640.

7. Stephens AJ, Barton JR, Bentum NA, Blackwell SC, Sribo BM. General Guidelines in the Management of an Obstetric Patient on the Labour and Delivery Unit during the COVID-19 Pandemic. Am J Perinatol 2020; 37: 829–836.

8. Capanna F, Haydar A, McCarey C, Bernini Carri E, Bartha Rasero J, Tzibizova V, Helmer H, Makatsarya A, Di Renzo GC. Preparing an obstetric unit in the heart of the epicentre of COVID-19: quick reorganization tips. J Matern Fetal Neonatal Med 2020; 1–7. DOI: 10.1080/14767058.2020.1749238.

9. Abu-Rustum RS, Akolekar R, Sotiriadis A, Salomon LJ, Costa FDS, Wu Q, Frasca T, Bilardo CM, Pefumo F, Poon LC; ISOGO Consensus Statement on organization of routine and specialist obstetric ultrasound services in context of COVID-19. Ultrasound Obstet Gynecol 2020, 55: 863–870.

10. Abramiowicz JS, Bassel JM, Brezinka C, Dell’Asta A, Deng J, Harrison G, Lee JCS, Lim A, Marial K, Melo P, Poon LC, Salvesen SA, Karde T, Rich A, Heger SW, Seng I, Virb C, Lee C; ISUGO Safety Committee Position Statement on use of personal protective equipment and hazard mitigation in relation to SARS-CoV-2 infection for practitioners undertaking obstetric and gynecological ultrasound. Ultrasound Obstet Gynecol 2020; 55: 886–891.

11. Hadlock FP, Deter RL, Harriss RB, Park SK. Estimating fetal age: computer-assisted analysis of multiple fetal growth parameters. Radiology 1984; 152: 497–503.

12. Hadlock FP, Harrist RB, Martinez-Poyre J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991; 181: 129–133.

13. Bhide A, Acharya G, Bilardo CM, Brezinka C, Calca D, Hernandez-Andrade E, Kalache K, Kingdom J, Kiserud T, Lee W, Lee C, Leung KY, Malinger G, Mary G, Pefumo F, Sepulveda V, Trudinger B. ISOGO practice guidelines: use of Doppler ultrasoundsc in obstetrics. Ultrasound Obstet Gynecol 2013; 41: 233–239.

14. Costanzo M, Sandoval MA, Castro-Bernabe DA, Medina-Jimenez V, Monarrez-Martin JM; KidsCorona Pregnancy Registry Study Group. Pregnancy and neonatal outcomes of COVID-19: co-reporting project. Clin Infect Dis 2020; 73: 573–577.

15. Panagiotakopoulos L, Myers TR, Gee J, Lipkind HS, Kharbanda EO, Ryan DS, Gotch T, Fracincia G, Ozgi G, Oyo L, Romero R. Doppler interrogation of the fetal circulation. In Sonography in Obstetrics and Gynecology (7th edn), Fleischer AC, Toy EC, Lee W, Manning F, Romero R (eds). McGraw Hill: New York, 2011; 257–308.

16. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007; 147: 573–577.

17. Casey K, Coelho L, Sinha S, Bhide A, Espino YA, Sosa S, Gomez-Roig MD, Figueras F, Gratacos E; KidsCorona Pregnancy Registry Study Group. Fetal Heart Rate and the Fetal Circulation. In American Journal of Perinatology. 2021; 38: 1355–1359.
35. WAPM (World Association of Perinatal Medicine) Working Group on COVID-19. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection. *Ultrasound Obstet Gynecol* 2021; 57: 232–241.

36. Kotlyar AM, Grechukhina O, Chen A, Popkhadze S, Grinshaw A, Tal O, Taylor HS, Tal R. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. *Am J Obstet Gynecol* 2021; 224: 35–13.e3.

37. Wang C, Zhou YH, Yang YX, Poon LC. Intrauterine vertical transmission of SARS-CoV-2: what we know so far. *Ultrasound Obstet Gynecol* 2020; 55: 724–725.

38. Wang Q, Zhang Y, Wu L, Niu S, Song G, Zhang Z, Lu G, Qiao C, Hu Y, Yuan KY, Wang Q, Zhou H, Yan J, Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. *Cell* 2020; 181: 894–904.e9.

39. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. *Nature* 2020; 581: 221–224.

40. Faure-Bardon V, Isnard P, Roux N, Leruez-Ville M, Molina T, Bessieres B, Ville Y. Protein expression of angiotensin-converting enzyme 2, a SARS-CoV-2-specific receptor, in fetal and placental tissues throughout gestation: new insight for perinatal counseling. *Ultrasound Obstet Gynecol* 2021; 57: 242–247.

41. Pique-Regi R, Romero R, Tarca AL, Luca F, Xu Y, Alazizi A, Leng Y, Hsu CD, Gomez-Lopez N. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? *Elife* 2020; 9. e58716.

42. Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum: II) Antiviral Spectrum of Maternal Lactoferrin in Fetal and Neonatal Defense. *J Diet Suppl* 2020; 1–37. DOI: 10.1080/19390211.2020.1834047.

43. Bhattacharya I, Ghayor C, Perez Dominguez A, Weber FE. From Influenza Virus to Novel Corona Virus (SARS-CoV-2)-The Contribution of Obesity. *Front Endocrinol (Lausanne)* 2020; 11: 556962.

44. Lim S, Baek JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. *Nat Rev Endocrinol* 2021; 17: 11–30.

45. Wang Y, Chen K, Li Y, Zhang L, Wang Y, Yang S, Xiao X, Qin Q. The use of renin-angiotensin-aldosterone system (RAAS) inhibitors is associated with a lower risk of mortality in hypertensive COVID-19 patients: A systematic review and meta-analysis. *J Med Virol* 2021; 93: 1370–1377.

46. Richtmann R, Torloni MR, Oyamada Otani AR, Levi JE, Crema Tobarra M, de Almeida Silva C, Dias L, Miglioli-Galvão L, Martins Silva P, Macoto Kondo M. Fetal deaths in pregnancies with SARS-CoV-2 infection in Brazil: A case series. *Case Rep Women's Health* 2020; 27: e10243.

47. Di Mascio D, Khalil A, Saccone G, Rizzo G, Buca D, Liberati M, Vecchiet J, Nappi L, Scambia G, Berghella V, D'Antonio F. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. *Am J Obstet Gynecol MFM* 2020; 2: 100107.

48. Di Mascio D, Sen C, Saccone G, Galindo A, Grünbaum A, Yoshimatsu J, Stanovic M, Kurjak A, Chervenak F. Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19. *J Perinat Med* 2020; 48: 950–958.

49. Remarque K, Savchenko J, Brismar Wendel S, Brueell Gidlöf S, Gruner S, Jones F, Mohlin J, Saltvedt S, Wallström T, Pettersson K. Characteristics and short-term obstetric outcomes in a case series of 67 women test-positive for SARS-CoV-2 in Stockholm, Sweden. *Acta Obstet Gynecol Scand* 2020; 99: 1626–1631.

50. Centers for Disease Control and Prevention. Clinical Care Guidance. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html.