To Get Overall Shapes and New Data of the 120-Cell and the 600-Cell

For commemorating great mathematician H. S. M. Coxeter

Kaida Shi

State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
Department of Mathematics, Zhejiang Ocean University, Zhoushan 316004, Zhejiang Province, China

Abstract This research will be helpful for people to display the 2-dimensional projective models of 4-variable actual problems in many fields, in order to investigate deeply those actual problems. By using the theory of \(N\)-dimensional finite rotation group of the regular polytopes, the author established the 2-dimensional projective model of 4-dimensional rectangular coordinate system, and deduced a transformation matrix, and adopt it to display successfully the 2-dimensional overall shapes of two most complicated regular polytopes 120-Cell and 600-Cell. In the meantime, the author calculated all the vertex coordinates and determine the joint relationships between adjacent vertices of the regular polytopes 120-Cell and 600-Cell. Also, this provided a pattern for displaying the 2-dimensional projective model of 4-variable actual problem.

Keywords: 120-Cell, 600-Cell, 2-D projective model of 4-D rectangular coordinate system, 4-dimensional geometric object, 4-dimensional finite rotation group.

Commemoration

Harold Scott McDonald Coxeter (1907~2003), who died on the evening of March 31, 2003, aged 96, made fundamental contributions in the study of multi-dimensional geometric shapes and regarded as the greatest classical geometer of his generation.

Coxeter published in the geometrical field for 70 years, worked professionally at the
University of Toronto for 60 years and wrote 12 books and more than 200 articles. He was best known for his work in hyper-dimensional geometries and regular polytopes—complicated geometric shapes of any number of dimensions that cannot be constructed in the real world but can be described mathematically and can sometime be drawn.

He wrote a book entitled Regular Polytopes\cite{1} expounded specially shapes and constructions of the regular polytopes in N-dimensional space.

For commemorating Professor H.S.M. Coxeter, we plan to research deeply two most complicated regular polytopes 120-Cell and 600-Cell in E^4. In the meantime, some new results on shapes and data of these regular polytopes will be given.

1. Introduction

Since 1850, Schläfli\cite{2}, Hilbert (Cohn-Vossen) and Coxeter investigated the basic situations of the regular polytopes in E^4 and higher, and made much progress. Their research might be helpful for people to understand the regular polytopes in E^N. Because of not having fundamentally established the 2-dimensional projective model of the N-dimensional rectangular coordinate systems, people cannot observe and investigate the true shapes of the regular polytopes in E^N.

For displaying the true shapes of two most complicated regular polytopes 120-Cell and 600-Cell, based on the mathematical theory, we plan to establish the 2-dimensional projective model of the 4-dimensional rectangular coordinate system, and adopt this projective model to deduce the transformation matrix, in order to calculate all vertex coordinates and determine the joint relationships between the adjacent vertices of two most complicated regular polytopes 120-Cell and 600-Cell, finally, to obtained some new data.

This research will be helpful for people to display and investigate the 4-variable actual
problems in many fields.

2. To establish of 2-D projective model of 4-D rectangular coordinate system

Since \(N \)-dimensional space and the objects within it do exist, then, how to display them correctly and reasonably suggests an important topic to us.

For the 2-dimensional rectangular coordinate system, we can directly draw two axes which are in the orthogonal state on the plane to indicate it.

For the 3-dimensional rectangular coordinate system, we can use our right hand’s thumb, index finger and middle finger which are in the each orthogonal state to stand for axes \(X \), \(Y \) and \(Z \) respectively. We can also easily indicate the 2-dimensional projective model of 3-dimensional rectangular coordinate system with a plane figure, i.e. to draw axes \(Y \) and \(Z \) in orthogonal state and then to draw the positive semi-axis \(X \) to connect the positive semi-axes \(Y \) and \(Z \) at origin \(O \) and makes two angles of 135° with axes \(Y \) and \(Z \) respectively.

For the 4-dimensional rectangular coordinate system, to establish directly its model is a very difficult thing.

In order to overcome the obstacle of man’s spatial thinking, we may as well make a further research for the 2-dimensional projective models of 4-dimensional objects.

Among all the regular polytopes in \(N \)-dimensional space, there is no more regular pattern which can directly embody the relations between all axes of the \(N \)-dimensional rectangular coordinate system than the hyper-cube.
Let’s investigate the 4-dimensional cube. The following figure is the 2-dimensional projective model of 4-dimensional cube.

We may observe such fact: the 4-dimensional cube has 16 vertices, 32 edges, 24 squares and 8 cubes.

3. Using transformation matrix to simplify the 2-D plotting of 4-D geometric objects

In order to deduce the relevant transformation matrix, let’s now establish the correspondence relationship between 4-dimensional geometric elements and their 2-dimensional projections. The following are the coordinates of 16 vertices of 4-dimensional cube.

1. (0,0,0,0) 5. (0,0,0,1) 9. (0,1,1,0) 13. (1,1,0,1)
2. (1,0,0,0) 6. (1,1,0,0) 10. (0,1,0,1) 14. (1,0,1,1)
3. (0,1,0,0) 7. (1,0,1,0) 11. (0,0,1,1) 15. (0,1,1,1)
4. (0,0,1,0) 8. (1,0,0,1) 12. (1,1,1,0) 16. (1,1,1,1)

So long as we demarcate these coordinates at the 2-dimensional projective model of 4-dimensional rectangular coordinate system (see Fig. 2. Notice: unit graduation of every coordinate axis equals to 1), then, we can get the 2-dimensional coordinates of above-mentioned vertices as follows:

1. (0, 0); 5. \(\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) \); 9. (1, 1); 13. (1, \(-\sqrt{2}\))
2. \(\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) \); 6. \(\left(1-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) \); 10. \(\left(1+\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) \); 14. (0, 1-\(\sqrt{2}\))
3. (1, 0) 7. \(\left(-\frac{\sqrt{2}}{2}, 1-\frac{\sqrt{2}}{2} \right) \); 11. \(\left(\frac{\sqrt{2}}{2}, 1-\frac{\sqrt{2}}{2} \right) \); 15. \(\left(1+\frac{\sqrt{2}}{2}, 1-\frac{\sqrt{2}}{2} \right) \)
4. (0, 1) 8. \((0, -\sqrt{2}) \); 12. \(\left(1-\frac{\sqrt{2}}{2}, 1-\frac{\sqrt{2}}{2} \right) \); 16. (1, 1-\(\sqrt{2}\))
Because we have

\[
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22} \\
 a_{31} & a_{32} \\
 a_{41} & a_{42}
\end{pmatrix}
\begin{pmatrix}
 x^1 \\
 x^2 \\
 x^3 \\
 x^4
\end{pmatrix}
= \begin{pmatrix}
 y^1 \\
 y^2
\end{pmatrix},
\]

therefore, so long as we substitute the coordinates of 16 vertices of 4-dimensional cube and their 2-dimensional coordinates into above formula, after calculating, we can obtain the transformation matrix of the geometric elements from 4-dimensional space project to 2-dimensional space:

\[
A_4^2 = \begin{pmatrix}
 -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
 1 & 0 \\
 \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{pmatrix},
\]

where, the number of right-up of letter A denotes original dimensional number of the geometric element, and the number of right-down denotes the projected dimensional number.

What should be noticed more is that from the 2-dimensional projective model of 4-dimensional cube, we discover that so long as we use following:

Formula 1. Let \(A(x_1, x_2, ..., x_n)\) and \(B(y_1, y_2, ..., y_n)\) be two points in \(E^N\), then, the distance between \(A\) and \(B\) is

\[
d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2};
\]

Formula 2. Let the coordinate of the vector \(n_1\) be \(\{A_1, A_2, ..., A_n\}\) and the coordinate of the vector \(n_2\) be \(\{B_1, B_2, ..., B_n\}\), then, the included angle between these two vectors is
\[
\varphi = \cos^{-1}\left[\frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2 \sqrt{\sum_{i=1}^{n} B_i^2}}} \right].
\]

We can know that the distance between any two most adjacent vertices of 4-dimensional cube are all equal to unit length 1. Undergoing such special projective transformation, we can find the property of unchanged distance between any two adjacent vertices, which is helpful to establish the 4-variable models by using the 2-dimensional projective model of 4-dimensional rectangular coordinate system, because it avoided the trouble of distortion coefficient of each axis.

4. To calculate vertex coordinates of the regular polytopes and determine the joint relationship between adjacent vertices

By the transformation matrix (*), first, we calculate the 2-dimensional projective coordinates of 4 adjacent vertices \((x^1_i, x^2_i, x^3_i, x^4_i)\) \((i = 1, 2, 3, 4)\) of the regular polytopes, and indicate in the 2-dimensional projective model of the 4-dimensional rectangular coordinate system, then, based on these vertices to list following equation group:

\[
\begin{align*}
(x^1_i - x^1_i)^2 + (x^2_i - x^2_i)^2 + (x^3_i - x^3_i)^2 + (x^4_i - x^4_i)^2 &= a^2, \\
(x^1_i - x^2_i)^2 + (x^2_i - x^2_i)^2 + (x^3_i - x^3_i)^2 + (x^4_i - x^4_i)^2 &= a^2, \\
(x^1_i - x^3_i)^2 + (x^2_i - x^3_i)^2 + (x^3_i - x^3_i)^2 + (x^4_i - x^4_i)^2 &= a^2, \\
(x^1_i - x^4_i)^2 + (x^2_i - x^4_i)^2 + (x^3_i - x^4_i)^2 + (x^4_i - x^4_i)^2 &= b^2.
\end{align*}
\]

where, \(a\) is the distance between two most adjacent vertices (namely, \(a\) is the length of an edge of the 4-dimensional regular polytopes), and \(b\) is the distance between two rather
adjacent vertices, certainly, \(a < b\). After calculating, we can obtain the solution of this

equation group as \((x_0^1, x_0^2, x_0^3, x_0^4) \).

Because we adopt the 2-dimensional projective model of 4-dimensional rectangular
coordinate system, when we establish an equation group, in order to calculate the coordinate of
next vertex, will feel have a certain direction. Otherwise, the people whom only have 3-
dimensional spatial imagination, when they imagine the position and the shapes of 4-
dimensional geometric objects, will be confused like a tangle of flax.

Also, according to the fixed distance \(a\) between a pair of the adjacent vertices of the
regular polytopes, we can obtain the joint relationship between all adjacent vertices of the
regular polytopes.

**The table of 4-dimensional vertex coordinates (accuracy 10^{-9}) of the 120-Cell and the
600-Cell and the table of the joint relationship between the adjacent vertices are listed
below.**

5. To get new data of the 120-Cell and the 600-Cell

In addition, because we may draw the graphics of 4-dimensional geometric objects by
using the 2-dimensional plotting system, therefore when we calculate concretely the date of 4-
dimensional geometric objects (for examples, the vertex coordinate, the length of line segment,
the angle between two line segments, the angle between two planes and the angle between two
solids etc.) we will feel very convergence.

So long as we understand the volume formulas for solving the 3-dimensional geometric objects and the formulas for solving the angles between two intersect straight lines, two intersect planes and two intersect hyper-planes can be extended to 4-dimensional and higher, we will obtain much unknown data about the 120-Cell and the 600-Cell.

Now, we list the new data of the 120-Cell and the 600-Cell as follows:

Designation:	120-Cell	Schl"afli Symbol: \{5, 3, 3\}
I. Composition	II. Feature	III. Numerical Value
600 vertices	4 edges meet vertex	1. The angle edges is 108°
1200 edges	3 pentagons at a edge between pentagons	116.5650507°
720 pentagons	2 dodecahedrons (an) pentagon two adjacent dodecahedrons	144°
120 dodecahedrons	2. Superficial Area 919.5742838a³	
	3. Volume 787.8569889a³	

Designation:	600-Cell	Schl"afli Symbol: \{3, 3, 5\}
I. Composition	II. Feature	III. Numerical Value
120 vertices	12 edges meet vertex	1. The angle edges is 60°
720 edges	5 triangles at a edge between triangles	70.52877936°
1200 triangles	2 tetrahedrons (an) triangle two adjacent tetrahedrons	164.4775174°
600 tetrahedrons	2. Superficial Area 70.710678a³	
	3. Volume 26.475425a³	

6. To investigate the finite rotation groups of the 120-Cell and the 600-Cell

The pure mathematical theory has proved that the concrete geometric objects exist in N-dimensional space. We have discussed it in the reference [3, 4]. The following is an important
Theorem (Pole number theorem) Suppose that the order of finite rotation group of the regular polytopes in \(E^N \) is \(N = o(N G) \), and its 3-dimensional cell number is \(\prod_{k=4}^{N} k v_{p_k} \), as well as the cardinal of orbit is \(N v_{p_i} \), and the order of stability group of a point in orbit is \(N n_{p_i} \), then the following relationship holds:

\[
N n = N v_{p_i} \prod_{j=2}^{N-1} j e_j, \quad (i=1, 2, \cdots, N);
\]

\[
N v_{p_i} = \frac{N v_{p_i}}{N-i e_{N-i}} e_{N-i}^{N-i-1}_{\{i, \cdots, N\}}, \quad (i=1, 2, \cdots, N);
\]

\[
N n_{p_i} = \prod_{j=2}^{N-1} j e_{j}^{N-i} e_{N-i}^{N-i-1}_{\{i, \cdots, N\}} e_{i}^{N-i \{i, \cdots, N\}}, \quad (i = 1, 2, \cdots, N);
\]

\[
N \alpha_{p_i} = \frac{N n_{p_i} 2 e_i}{p \cdot 3-i e_{3-i}^{2-i}_{\{i, \cdots, N\}}};
\]

The items \(N n_{p_i} \), \(N v_{p_i} \), \(N n_{p_i} \) of above relationship can be obtained from the following formulas:

Formula 1(Order of finite rotation group)

\[
N n = N v_{p_i} \prod_{j=2}^{N-1} j e_j, \quad (i=1, 2, \cdots, N);
\]

Formula 2(Cardinal of orbit)

\[
N v_{p_i} = \frac{N v_{p_i}}{N-i e_{N-i}} e_{N-i}^{N-i-1}_{\{i, \cdots, N\}}, \quad (i=1, 2, \cdots, N);
\]

Formula 3(Order of stability group)

\[
N n_{p_i} = \prod_{j=2}^{N-1} j e_{j}^{N-i} e_{N-i}^{N-i-1}_{\{i, \cdots, N\}} e_{i}^{N-i \{i, \cdots, N\}}, \quad (i = 1, 2, \cdots, N);
\]

Formula 4(Unit element numbers of stability group)

When \(i=1, 2, 3 \),

\[
N \alpha_{p_i} = \frac{N n_{p_i} 2 e_i}{p \cdot 3-i e_{3-i}^{2-i}_{\{i, \cdots, N\}}};
\]
when $i = 4, 5, \cdots, N,$

$$\alpha_{p_i}^N = n_{p_i}^N.$$

Now, we take the 120-Cell and the 600-Cell as the examples to verify conclusively the correctness of above theorem and formulas.

Name	120-Cell	600-Cell	
$N\ n$	7200	7200	
$\prod_{k=4}^N k v_{p_k}$	120	600	
$i=1$	600	$i=1$	120
$i=2$	1200	$i=2$	720
$i=3$	720	$i=3$	1200
$N\ v_{p_i}$			
$i=1$	12	$i=1$	60
$i=2$	6	$i=2$	10
$i=3$	10	$i=3$	6
$N\ n_{p_i}$			
$i=1$	4	$i=1$	20
$i=2$	3	$i=2$	5
$i=3$	2	$i=3$	2
$N\ \alpha_{p_i}$			
$i=1$	14160	left	14160
$i=2$	14160	right	13200
$i=3$			

Contrast

| Result | equals | equals |

This explains that the concrete objects exist in N-dimensional space, which enables the conception of N-dimensional space to break away from the abstract supposition so as to bring it back to reality again.

Acknowledgements

I thank all those who helped in the preparation of this paper. In particular, I am grateful to Prof. Jiaoying Shi, Prof. Qunsheng Peng, Dr. Lizhuang Ma of Zhejiang University and Prof. Qizhao Ying, Associate Prof. Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA
Tianhui Liu of Zhejiang Ocean University for their help and discussions. Also, I am grateful to Lecturer Jianmin Zhou for his help in computer modeling.
The 4-Dimensional Coordinates of Vertices of the 120-Cell

No	x_1	x_2	x_3	x_4				
1	0.	0.	-0.8646837645	-1.2228474870				
2	0.	-0.2314036982	0.5659428717	1.3671850620				
3	0.	-0.2314036982	-0.8331448501	1.2228474870				
4	0.	-0.2314036982	1.1003468280	0.9893043979				
5	0.	0.2314036982	-1.4306266360	0.3778806546				
6	0.	-0.3744190490	-0.4833729193	1.3671850620				
7	0.	0.3744190490	-1.4501187420	0.				
8	0.	-0.5174343998	-0.9982847540	0.9893043979				
9	0.	-0.5174343998	1.2654867320	-0.6114237430				
10	0.	-0.6058227472	0.0825699521	-1.3671850620				
11	0.	-0.6058227472	0.6169739091	1.2228474870				
12	0.	-0.6058227472	0.9472537170	0.9893043979				
13	0.	-0.6058227472	-1.3165177690	-0.3778806546				
14	0.	-0.7488380980	-1.2970256470	0.				
15	0.	-0.7488380980	1.2970256470	0.				
16	0.	-0.7488380980	-0.4323418823	1.2228474870				
17	0.	-0.7488380980	0.4323418823	-1.2228474870				
18	0.	-0.8372264454	-0.2161709413	-1.2228474870				
19	0.	-0.8372264454	-0.7505748982	0.9893043979				
20	0.	-0.8372264454	-1.0808547060	-0.6114237430				
21	0.	-0.8372264454	1.1829167810	-0.3778806546				
22	0.	-1.0686301440	0.3497719302	-0.9893043979				
23	0.	-1.0686301440	-1.0493157910	0.				
24	0.	-1.1232571470	-0.0510310370	-0.9893043979				
25	0.	-1.1232571470	-0.9157148022	-0.3778806546				
26	0.	-1.3546608450	0.5149118351	0.3778806546				
27	0.	-1.3546608450	0.1846320260	0.6114237430				
28	0.	-1.4430491930	-0.1336009891	0.3778806546				
29	0.	-1.4430491930	0.4008029672	0.				
---	---	---	---	---				
30	0.	-1.4976761960	0.	0.				
31	-0.2022542486	0.	0.	-1.4839566060				
32	0.2022542486	0.	0.	-1.4839566060				
33	-0.2022542486	0.	-1.3990877210	-0.4946521989				
34	0.2022542486	0.	-1.3990877210	-0.4946521989				
35	-0.2022542486	-0.3744190490	0.9157148022	-1.1060759430				
36	0.2022542486	-0.3744190490	0.9157148022	-1.1060759430				
37	-0.2022542486	-0.3744190490	-1.3480566840	0.4946521989				
38	-0.2022542486	0.3744190490	1.3480566840	-0.4946521989				
39	-0.2022542486	-0.6058227472	-0.7821138131	-1.1060759430				
40	0.2022542486	-0.6058227472	-0.7821138131	-1.1060759430				
41	-0.2022542486	-0.9802417962	0.1336009891	1.1060759430				
42	0.2022542486	-0.9802417962	0.1336009891	1.1060759430				
43	-0.2022542486	-0.9802417962	0.9982847540	0.4946521989				
44	0.2022542486	-0.9802417962	0.9982847540	0.4946521989				
45	-0.2022542486	-1.2116454950	-0.6995438612	0.4946521989				
46	-0.2022542486	-1.2116454950	0.6995438612	-0.4946521989				
47	0.2022542486	-1.2116454950	0.6995438612	-0.4946521989				
48	0.2022542486	-1.2116454950	-0.6995438612	0.4946521989				
49	-0.2022542486	-1.3546608450	-0.3497719302	-0.4946521989				
50	0.2022542486	-1.3546608450	-0.3497719302	-0.4946521989				
51	-0.3272542486	0.	-0.8646837645	1.1782447260				
52	0.3272542486	0.	-0.8646837645	1.1782447260				
53	-0.3272542486	0.	-1.3990877210	0.4224834156				
54	-0.3272542486	0.	1.3990877210	-0.4224834156				
55	-0.3272542486	-0.2314036982	-0.2987408932	1.4117878230				
56	-0.3272542486	0.2314036982	0.2987408932	-1.4117878230				
57	-0.3272542486	0.1430153508	-0.3497719302	-1.4117878230				
58	0.3272542486	0.1430153508	-0.3497719302	-1.4117878230				
59	-0.3272542486	-0.1430153508	1.2144556950	0.8003640706				
60	-0.3272542486	0.1430153508	-1.2144556950	-0.8003640706				
61	-0.3272542486	-0.2314036982	-0.8331448501	-1.1782447260				
	0.3272542486	-0.2314036982	-0.8331448501	-1.1782447260				
---	--------------	----------------	----------------	----------------				
63	-0.3272542486	0.2314036982	-1.4306266350	-0.1889403276				
64	0.3272542486	0.2314036982	-1.4306266350	-0.1889403276				
65	-0.3272542486	-0.3744190490	0.0510310370	-1.4117878230				
66	0.3272542486	-0.3744190490	0.0510310370	-1.4117878230				
67	-0.3272542486	-0.3744190490	-1.3480566350	-0.4224834156				
68	0.3272542486	-0.3744190490	-1.3480566350	-0.4224834156				
69	-0.3272542486	0.4628073964	1.1318857430	-0.8003640706				
70	0.3272542486	-0.4628073964	1.1318857430	-0.8003540706				
71	-0.3272542486	-0.3744190490	-1.4306266350	-0.1889403276				
72	0.3272542486	-0.3744190490	-1.4306266350	-0.1889403276				
73	-0.3272542486	-0.6058227472	0.6169739091	-1.1782447260				
74	0.3272542486	-0.6058227472	0.6169739091	-1.1782447260				
75	-0.3272542486	-0.6058227472	-1.3480566350	-0.4224834156				
76	0.3272542486	-0.6058227472	-1.3480566350	-0.4224834156				
77	-0.3272542486	-0.7488380980	-0.4323418823	-1.1782447260				
78	0.3272542486	-0.7488380980	-0.4323418823	1.1782447260				
79	-0.3272542486	-0.7488380980	0.4323418823	-1.1782447260				
80	0.3272542486	-0.7488380980	0.4323418823	1.1782447260				
81	-0.3272542486	-0.7488380980	-0.9667458392	-0.8003640706				
82	0.3272542486	-0.7488380980	-0.9667458392	-0.8003640706				
83	-0.3272542486	-0.7488380980	-0.9667458392	-0.8003640706				
84	0.3272542486	-0.7488380980	-0.9667458392	-0.8003640706				
85	-0.3272542486	-0.8372266454	1.1829167810	0.1889403276				
86	0.3272542486	-0.8372266454	1.1829167810	0.1889403276				
87	-0.3272542486	-0.8372266454	-0.2161709413	1.1782447260				
88	0.3272542486	-0.8372266454	-0.2161709413	1.1782447260				
89	-0.3272542486	-0.9802417962	0.9982847540	-0.4224834156				
90	0.3272542486	-0.9802417962	0.9982847540	-0.4224834156				
91	-0.3272542486	-0.9802417962	-0.7310827761	0.8003640706				
92	0.3272542486	-0.9802417962	-0.7310827761	0.8003640706				
93	-0.3272542486	-1.1232571470	0.4833729193	-0.8003640706				
94	0.3272542486	-1.1232571470	0.4833729193	-0.8003640706				
95	-0.3272542486	-1.1232571470	-0.9157148022	-0.1889403276				
96	0.3272542486	-1.1232571470	-0.9157148022	0.1889403276				
97	-0.3272542486	-1.2116454950	-0.6995438612	-0.4224834156				
98	-0.3272542486	-1.2116454950	0.6995438612	0.4224834156				
99	0.3272542486	-1.2116454950	-0.6995438612	-0.4224834156				
100	0.3272542486	-1.2116454950	0.6995438612	0.4224834156				
101	-0.3272542486	-1.2116454950	-0.1651399043	-0.8003640706				
102	-0.3272542486	-1.2116454950	0.1651399043	0.8003640706				
103	0.3272542486	-1.2116454950	-0.1651399043	-0.8003640706				
104	0.3272542486	-1.2116454950	0.1651399043	0.8003640706				
105	-0.3272542486	-1.3546608450	-0.3497719302	-0.4224834156				
106	0.3272542486	-1.3546608450	-0.3497719302	0.4224834156				
107	-0.3272542486	-1.3546608450	0.5149118351	-0.1889403276				
108	0.3272542486	-1.3546608450	0.5149118351	-0.1889403276				
109	-0.3272542486	-1.4430491930	-0.1336009891	-0.1889403276				
110	0.3272542486	-1.4430491930	-0.1336009891	-0.1889403276				
111	-0.5295084972	0.	-0.5344039562	1.2950162700				
112	-0.5295084972	0.	0.5344039562	-1.2950162700				
113	-0.5295084972	0.	-1.3990877210	0.0721687833				
114	0.5295084972	0.	-1.3990877210	0.0721687833				
115	-0.5295084972	-0.1430153508	-0.5149118351	-1.2950162700				
116	0.5295084972	-0.1430153508	-0.5149118351	-1.2950162700				
117	-0.5295084972	-0.1430153508	-1.0493157910	-0.9171356145				
118	0.5295084972	-0.1430153508	-1.0493157910	-0.9171356145				
119	-0.5295084972	-0.1430153508	1.2144556950	-0.6835925263				
120	-0.5295084972	0.1430153508	-1.2144556950	0.6835925263				
121	-0.5295084972	0.1430153508	-1.0493157910	0.9171356145				
122	-0.5295084972	0.1430153508	1.0493157910	-0.9171356145				
123	-0.5295084972	-0.3744190490	0.3813108453	-1.2950162700				
124	-0.5295084972	0.3744190490	-0.3813108453	1.2950162700				
125	-0.5295084972	-0.3744190490	-1.3480566840	-0.0721687833				
	0.5295084972		-0.3744190490		-1.3480566840		-0.0721687833	
---	-------------	---	----------------	---	----------------	---	----------------	---
126	-0.5295084972		-0.4628073964		-0.2672019781		-1.2950162700	
127	0.5295084972		-0.4628073964		-0.2672019781		-1.2950162700	
128	0.5295084972		-0.4628073964		0.2672019781		1.2950162700	
129	-0.5295084972		0.4628073964		-0.2672019781		-1.2950162700	
130	0.5295084972		-0.4628073964		-1.1318857430		-0.6835925263	
131	-0.5295084972		-0.4628073964		-1.1318857430		-0.6835925263	
132	-0.5295084972		0.4628073964		-1.1318857430		-0.6835925263	
133	0.5295084972		-0.4628073964		-0.2672019781		-1.2950162700	
134	0.5295084972		0.4628073964		0.2672019781		1.2950162700	
135	-0.5295084972		-0.5174343998		-0.1336009891		1.2950162700	
136	-0.5295084972		0.5174343998		0.1336009891		-1.2950162700	
137	-0.5295084972		-0.5174343998		1.2654867320		0.3057118717	
138	0.5295084972		-0.5174343998		1.2654867320		0.3057118717	
139	0.5295084972		0.4628073964		-0.9667458392		0.6835925263	
140	0.5295084972		0.4628073964		0.9667458392		0.6835925263	
141	0.5295084972		0.4628073964		-0.9667458392		0.6835925263	
142	0.5295084972		0.4628073964		0.9667458392		0.6835925263	
143	0.5295084972		0.4628073964		0.9667458392		0.6835925263	
144	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
145	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
146	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
147	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
148	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
149	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
150	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
151	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
152	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
153	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
154	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
155	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
156	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
157	0.5295084972		0.4628073964		-0.1080854706		0.3057118717	
---	---	---	---	---				
158	0.5295084972	-1.1232571470	0.4833729193	0.6835925263				
159	-0.5295084972	-1.1216454950	0.1651399043	-0.6835925263				
160	0.5295084972	-1.1216454950	0.1651399043	-0.6835925263				
161	-0.5295084972	-1.1216454950	-0.6995438612	-0.0721687833				
162	-0.5295084972	-1.1216454950	0.6995438612	0.0721687833				
163	-0.5295084972	-1.1216454950	-0.1651399043	0.6835925263				
164	0.5295084972	-1.1216454950	-0.1651399043	0.6835925263				
165	0.5295084972	-1.1216454950	0.6995438612	0.0721687833				
166	0.5295084972	-1.1216454950	-0.6995438612	-0.0721687833				
167	-0.5295084972	-1.3546608450	0.1846320260	-0.3057118717				
168	0.5295084972	-1.3546608450	0.1846320260	-0.3057118717				
169	-0.5295084972	-1.3546608450	-0.3497719302	0.0721687833				
170	0.5295084972	-1.3546608450	-0.3497719302	0.0721687833				
171	-0.8567627458	0.0	-0.5344039562	-1.1060759430				
172	-0.8567627458	0.0	0.5344039562	1.1060759430				
173	-0.8567627458	0.0	-0.8646837645	-0.8725328536				
174	-0.8567627458	0.0	0.8646837645	0.8725328536				
175	-0.8567627458	-0.1430153508	-0.5149118351	1.1060759430				
176	-0.8567627458	0.1430153508	0.5149118351	-1.1060759430				
177	-0.8567627458	-0.1430153508	1.2144556950	-0.1167715443				
178	-0.8567627458	0.1430153508	-1.2144556950	0.1167715443				
179	-0.8567627458	-0.2314036982	1.1003468280	-0.4946521989				
180	-0.8567627458	0.2314036982	-1.1003468280	0.4946521989				
181	-0.8567627458	-0.2314036982	-0.8331448501	0.8725328536				
182	0.8567627458	-0.2314036982	-0.8331448501	0.8725328536				
183	-0.8567627458	-0.3744190490	0.9157148022	0.7281952873				
184	-0.8567627458	0.3744190490	-0.9157148022	-0.7281952873				
185	-0.8567627458	-0.3744190490	0.3813108453	1.1060759430				
186	0.8567627458	-0.3744190490	0.3813108453	1.1060759430				
187	-0.8567627458	-0.4628073964	0.2672019781	-1.1060759430				
188	-0.8567627458	0.4628073964	-0.2672019781	1.1060759430				
189	-0.8567627458	0.4628073964	0.2672019781	-1.1060759430				
---	----------	----------	----------	----------	----------			
190	0.8567627458	-0.4628073964	0.2672019781	-1.1060759430				
191	-0.8567627458	-0.4628073964	-1.1318857430	-0.1167715443				
192	-0.8567627458	0.4628073964	-1.1318857430	-0.1167715443				
193	-0.8567627458	-0.4628073964	1.1318857430	0.1167715443				
194	0.8567627458	-0.4628073964	-1.1318857430	-0.1167715443				
195	-0.8567627458	-0.5174343998	-0.1336009891	-1.1060759430				
196	0.8567627458	-0.5174343998	0.9982487540	0.4946521989				
197	-0.8567627458	-0.5174343998	-0.9982487540	-0.4946521989				
198	-0.8567627458	0.6058227472	-0.9472537170	0.4946521989				
199	-0.8567627458	0.6058227472	0.9472537170	-0.4946521989				
200	0.8567627458	0.6058227472	0.9472537170	-0.4946521989				
201	-0.8567627458	-0.7488380980	-0.7505748982	0.1167715443				
202	0.8567627458	-0.7488380980	0.7505748982	-0.1167715443				
203	-0.8567627458	-0.7488380980	-0.9667458392	0.4946521989				
204	0.8567627458	-0.7488380980	0.9667458392	-0.1167715443				
205	0.8567627458	0.7488380980	0.4323418823	0.8725328536				
206	-0.8567627458	0.7488380980	-0.4323418823	-0.8725328536				
207	0.8567627458	0.7488380980	0.9667458392	-0.9667458392				
208	0.8567627458	0.7488380980	-0.9667458392	0.4946521989				
209	-0.8567627458	-0.7488380980	-0.7505748982	0.4946521989				
210	0.8567627458	-0.7488380980	0.7505748982	0.4946521989				
Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA 18								
	0.8567627458	-1.0686301440	0.3497719302	0.4946521989				
---	-------------	----------------	--------------	-------------				
222	-0.8567627458	-1.1232571470	0.4833729193	0.1167715443				
223	-0.8567627458	-1.1232571470	-0.0510310370	0.4946521989				
224	-0.8567627458	-1.1232571470	-0.0510310370	0.4946521989				
225	0.8567627458	-1.1232571470	-0.1167715443	0.4946521989				
226	-0.8567627458	-1.2116454950	-0.1651399043	-0.1167715443				
227	-0.8567627458	-1.2116454950	0.1651399043	0.4946521989				
228	-0.8567627458	-1.2116454950	-0.1167715443	-0.1167715443				
229	-0.8567627458	0.1430153508	-1.0493157910	0.9893043979				
230	0.8567627458	-1.2116454950	-0.0510310370	0.4946521989				
231	-1.0590169944	0.	-0.8646837645	0.6114237430				
232	-1.0590169944	0.	0.8646837645	-0.6114237430				
233	-1.0590169944	-0.1430153508	0.3497719302	-0.9893043979				
234	-1.0590169944	0.1430153508	-0.3497719302	0.9893043979				
235	-1.0590169944	-0.1430153508	-1.0493157910	0.				
236	-1.0590169944	0.1430153508	1.0493157910	0.				
237	-1.0590169944	0.2314036982	-0.2987408932	-0.9893043979				
238	-1.0590169944	0.2314036982	0.2987408932	0.9893043979				
239	-1.0590169944	-0.2314036982	-0.8331448501	-0.6114237430				
240	-1.0590169944	0.2314036982	0.8331448501	0.6114237430				
241	-1.0590169944	-0.3744190490	0.0510310370	0.9893043979				
242	-1.0590169944	0.3744190490	-0.0510310370	-0.9893043979				
243	-1.0590169944	-0.3744190490	0.9157148022	0.3778806546				
244	-1.0590169944	0.3744190490	-0.9157148022	-0.3778806546				
245	-1.0590169944	-0.6058227472	0.6169739091	-0.6114237430				
246	1.0590169944	-0.6058227472	0.6169739091	-0.6114237430				
247	-1.0590169944	-0.6058227472	-0.7821138131	0.3778806546				
248	1.0590169944	-0.6058227472	-0.7821138131	0.3778806546				
249	-1.0590169944	-0.7488380980	-0.4323418823	-0.6114237430				
250	-1.0590169944	-0.7488380980	0.4323418823	0.6114237430				
251	-1.0590169944	0.7488380980	0.4323418823	0.6114237430				
252	-1.0590169944	0.7488380980	-0.4323418823	-0.6114237430				
253	-1.0590169944	-0.8372264454	-0.2161709413	0.6114237430				
---	---	---	---	---				
254	1.0590169944	-0.8372264454	-0.2161709413	0.6114237430				
255	-1.0590169944	-0.8372264454	0.6485128238	0.				
256	1.0590169944	-0.8372264454	0.6485128238	0.				
257	-1.0590169944	-0.9802417962	0.1336009891	-0.3778806546				
258	1.0590169944	-0.9802417962	0.1336009891	-0.3778806546				
259	-1.0590169944	-0.9802417962	-0.4008029672	0.				
260	1.0590169944	-0.9802417962	-0.4008029672	0.				
261	-1.1840169944	0.	0.	-0.9171356154				
262	-1.1840169944	0.	0.	0.9171356154				
263	-1.1840169944	0.	-0.8646837645	-0.3057118717				
264	-1.1840169944	0.	0.8646837645	0.3057118717				
265	-1.1840169944	-0.2314036982	-0.8331448501	0.3057118717				
266	-1.1840169944	0.2314036982	0.8331448501	-0.3057118717				
267	-1.1840169944	-0.2314036982	0.5659428717	-0.6835925263				
268	-1.1840169944	0.2314036982	-0.5659428717	0.6835925263				
269	-1.1840169944	-0.3744190490	-0.4833729193	-0.6835925263				
270	-1.1840169944	0.3744190490	0.4833729193	0.6835925263				
271	-1.1840169944	-0.6058227472	0.0825688521	0.6835925263				
272	-1.1840169944	0.6058227472	-0.0825688521	-0.6835925263				
273	-1.1840169944	-0.6058227472	0.6169739091	0.3057118717				
274	-1.1840169944	0.6058227472	0.6169739091	0.3057118717				
275	-1.1840169944	-0.7488380980	0.4323418823	-0.3057118717				
276	-1.1840169944	0.7488380980	-0.4323418823	0.3057118717				
277	-1.1840169944	0.7488380980	0.4323418823	-0.3057118717				
278	-1.1840169944	-0.7488380980	0.4323418823	-0.3057118717				
279	-1.1840169944	-0.8372264454	-0.2161709413	-0.3057118717				
280	-1.1840169944	0.8372264454	0.2161709413	0.3057118717				
281	-1.3862712430	0.	0.	-0.5668209828				
282	-1.3862712430	0.	0.	0.5668209828				
283	-1.3862712430	0.	-0.5344039562	-0.1889403276				
284	-1.3862712430	0.	0.5344039562	0.1889403276				
285	-1.3862712430	-0.1430153508	0.3497719302	-0.4224834156				

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA
286	-1.3862712430	0.1430153508	-0.3497719302	0.4224834156	
287	-1.3862712430	-0.1430153508	-0.5149118351	0.1889403276	
288	-1.3862712430	0.1430153508	0.5149118351	-0.1889403276	
289	-1.3862712430	-0.2314036982	-0.2987408932	-0.4224834156	
290	-1.3862712430	0.2314036982	0.2987408932	0.4224834156	
291	-1.3862712430	-0.3744190490	0.0510310370	0.4224834156	
292	-1.3862712430	0.3744190490	-0.0510310370	-0.4224834156	
293	-1.3862712430	-0.3744190490	0.3813108453	0.1889403276	
294	-1.3862712430	0.3744190490	-0.3813108453	-0.1889403276	
295	-1.3862712430	-0.4628073964	-0.2672019781	0.1889403276	
296	-1.3862712430	0.4628073964	0.2672019781	-0.1889403276	
297	-1.3862712430	0.4628073964	-0.2672019781	0.1889403276	
298	-1.3862712430	0.4628073964	0.2672019871	-0.1889403276	
299	-1.3862712430	-0.5174343998	-0.1336009891	-0.1889403276	
300	-1.3862712430	0.5174343998	0.1336009891	0.1889403276	
301	0.	0.	0.8646837645	1.2228474870	
302	0.	0.2314036982	-0.5659428717	-1.3671850620	
303	0.	0.2314036982	0.8331448501	-1.2228474870	
304	0.	0.2314036982	-1.1003468280	-0.9893043979	
305	0.	-0.2314036982	1.4306266360	-0.3778806546	
306	0.	0.3744190490	0.4833729193	-1.3671850620	
307	0.	-0.3744190490	1.4501187420	0.	
308	0.	0.5174343998	0.9982847540	-0.9893043979	
309	0.	0.5174343998	-1.2654867320	0.6114237430	
310	0.	0.6058227472	-0.0825699521	1.3671850620	
311	0.	0.6058227472	-0.6169739091	-1.2228474870	
312	0.	0.6058227472	-0.9472537170	-0.9893043979	
313	0.	0.6058227472	1.3165177690	0.3778806546	
314	0.	0.7488380980	1.2970256470	0.	
315	0.	0.7488380980	-1.2970256470	0.	
316	0.	0.7488380980	0.4323418823	-1.2228474870	
317	0.	0.7488380980	-0.4323418823	1.2228474870	
---	---	---	---	---	
318	0.	0.8372264454	0.2161709413	1.2228474870	
319	0.	0.8372264454	0.7505748982	-0.9893043979	
320	0.	0.8372264454	1.0808547060	0.6114237430	
321	0.	0.8372264454	-1.1829167810	0.3778806546	
322	0.	1.0686301440	-0.3497719302	0.9893043979	
323	0.	1.0686301440	1.0493157910	0.	
324	0.	1.1232571470	0.0510310370	0.9893043979	
325	0.	1.1232571470	0.9157148022	-0.3778806546	
326	0.	1.3546608450	-0.5149118351	-0.3778806546	
327	0.	1.3546608450	-0.5149118351	-0.3778806546	
328	0.	1.4430491930	0.1336099891	-0.3778806546	
329	0.	1.4430491930	-0.4008029672	0.	
330	0.	1.4976761960	0.	0.	
331	0.2022542486	0.	0.	1.4839566060	
332	-0.2022542486	0.	0.	1.4839566060	
333	0.2022542486	0.	1.3990877210	0.4946521989	
334	-0.2022542486	0.	1.3990877210	0.4946521989	
335	0.2022542486	0.3744190490	-0.9157148022	1.1060759430	
336	-0.2022542486	0.3744190490	-0.9157148022	1.1060759430	
337	0.2022542486	0.3744190490	1.3480566840	-0.4946521989	
338	0.2022542486	-0.3744190490	-1.3480566840	0.4946521989	
339	0.2022542486	0.6058227472	0.7821138131	1.1060759430	
340	-0.2022542486	0.6058227472	0.7821138131	1.1060759430	
341	0.2022542486	0.9802417962	-0.1336099891	-1.1060759430	
342	-0.2022542486	0.9802417962	-0.1336099891	-1.1060759430	
343	0.2022542486	0.9802417962	-0.9982847540	-0.4946521989	
344	-0.2022542486	0.9802417962	-0.9982847540	-0.4946521989	
345	0.2022542486	1.2116454950	0.6995438612	-0.4946521989	
346	0.2022542486	1.2116454950	-0.6995438612	0.4946521989	
347	-0.2022542486	1.2116454950	-0.6995438612	0.4946521989	
348	-0.2022542486	1.2116454950	0.6995438612	-0.4946521989	
349	0.2022542486	1.3546608450	0.3497719302	0.4946521989	
---	---	---	---	---	
350	-0.2022542486	1.3546608450	0.3497719302	0.4946521989	
351	0.3272542486	0.	0.8646837645	-1.1782447260	
352	-0.3272542486	0.	0.8646837645	-1.1782447260	
353	0.3272542486	0.	1.3990877210	-0.4224834156	
354	0.3272542486	0.	-1.3990877210	0.4224834156	
355	0.3272542486	0.2314036982	0.2987408932	-1.4117878230	
356	0.3272542486	-0.2314036982	0.2987408932	1.4117878230	
357	0.3272542486	-0.1430153508	0.3497719302	1.4117878230	
358	-0.3272542486	-0.1430153508	0.3497719302	1.4117878230	
359	0.3272542486	0.1430153508	-1.2144556950	-0.8003640706	
360	-0.3272542486	1.2144556950	0.8003640706	-0.8003640706	
361	0.3272542486	0.2314036982	0.8331448501	1.1782447260	
362	-0.3272542486	0.2314036982	0.8331448501	1.1782447260	
363	0.3272542486	-0.2314036982	1.4306266350	0.1889403276	
364	-0.3272542486	-0.2314036982	1.4306266350	0.1889403276	
365	0.3272542486	0.3744190490	-0.0510310370	1.4117878230	
366	-0.3272542486	0.3744190490	-0.0510310370	1.4117878230	
367	0.3272542486	0.3744190490	1.3480566840	0.4224834156	
368	-0.3272542486	0.3744190490	1.3480566840	0.4224834156	
369	0.3272542486	-0.4628073964	-1.1318857430	0.8003640706	
370	-0.3272542486	-0.4628073964	-1.1318857430	0.8003640706	
371	0.3272542486	0.4628073964	1.1318857430	-0.8003640706	
372	0.3272542486	0.4628073964	-1.1318857430	0.8003640706	
373	0.3272542486	0.6058227472	-0.6169739091	1.1782447260	
374	-0.3272542486	0.6058227472	-0.6169739091	1.1782447260	
375	0.3272542486	0.6058227472	1.3165177690	-0.1889403276	
376	-0.3272542486	0.6058227472	1.3165177690	-0.1889403276	
377	0.3272542486	0.7488380980	0.4323418823	1.1782447260	
378	0.3272542486	0.7488380980	-0.4323418823	-1.1782447260	
379	-0.3272542486	0.7488380980	0.4323418823	1.1782447260	
380	-0.3272542486	0.7488380980	-0.4323418823	-1.1782447260	
381	0.3272541486	0.7488380980	0.9667458392	0.8003640706	
---	---	---	---	---	
382	0.3272542486	0.7488380980	-0.9667458392	-0.8003640706	
383	-0.3272542486	0.7488380980	0.9667458392	0.8003640706	
384	-0.3272542486	0.7488380980	-0.9667458392	-0.8003640706	
385	0.3272542486	0.8372264454	-1.1829167810	-0.1889403276	
386	-0.3272542486	0.8372264454	-1.1829167810	-0.1889403276	
387	-0.3272542486	0.8373264454	0.2161709413	-0.8003640706	
388	0.3272542486	0.8372264454	0.2161709413	-1.1782447260	
389	-0.3272542486	0.9802417962	-0.9982847540	0.4224834156	
390	-0.3272542486	0.9802417962	-0.9982847540	0.4224834156	
391	0.3272542486	0.9802417962	0.7310827761	-0.8003640706	
392	-0.3272542486	0.9802417962	0.7310827761	-0.8003640706	
393	0.3272542486	1.1232571470	-0.4833729193	0.8003640706	
394	-0.3272542486	1.1232571470	-0.4833729193	0.8003640706	
395	0.3272542486	1.1232571470	0.9157148022	-0.1889403276	
396	-0.3272542486	1.1232571470	0.9157148022	-0.1889403276	
397	0.3272542486	1.2116454950	0.6995438612	0.4224834156	
398	0.3272542486	1.2116454950	-0.6995438612	-0.4224834156	
399	-0.3272542486	1.2116454950	0.6995438612	0.4224834156	
400	-0.3272542486	1.2116454950	-0.6995438612	-0.4224834156	
401	0.3272542486	1.2116454950	0.1651399043	0.8003640706	
402	0.3272542486	1.2116454950	-0.1651399043	-0.8003640706	
403	-0.3272542486	1.2116454950	0.1651399043	0.8003640706	
404	-0.3272542486	1.2116454950	-0.1651399043	-0.8003640706	
405	0.3272542486	1.3546608450	0.3497719302	-0.4224834156	
406	-0.3272542486	1.3546608450	0.3497719302	-0.4224834156	
407	0.3272542486	1.3546608450	0.5149118351	0.1889403276	
408	-0.3272542486	1.3546608450	-0.5149118351	0.1889403276	
409	0.3272542486	1.4430491930	0.1336009891	0.1889403276	
410	-0.3272542486	1.4430491930	0.1336009891	0.1889403276	
411	0.5295084972	0.5344039562	0.5344039562	-1.2950162700	
412	0.5295084972	0.5344039562	-0.5344039562	1.2950162700	
413	0.5295084972	0.5344039562	1.3990877210	-0.0721687833	

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA 24
414	-0.5295084972	0.0000000000	1.3990877210	-0.0721687833
415	0.5295084972	0.1430153508	0.5149118351	1.2950162700
416	-0.5295084972	0.1430153508	0.5149118351	1.2950162700
417	0.5295084972	0.1430153508	1.0493157910	0.9171356145
418	-0.5295084972	0.1430153508	1.0493157910	0.9171356145
419	0.5295084972	0.1430153508	-1.2144556950	0.6835925263
420	0.5295084972	-0.1430153508	1.2144556950	-0.6835925263
421	0.5295084972	0.1430153508	-1.0493157910	0.9171356145
422	-0.5295084972	-0.1430153508	-1.0493157910	0.9171356145
423	0.5295084972	0.3744190490	0.2672019781	1.2950162700
424	-0.5295084972	0.3744190490	0.2672019781	1.2950162700
425	0.5295084972	0.4628073964	1.1318857430	0.6835925263
426	-0.5295084972	0.4628073964	1.1318857430	0.6835925263
427	0.5295084972	0.5174343998	0.1336009891	-1.2950162700
428	-0.5295084972	0.5174343998	0.1336009891	-1.2950162700
429	0.5295084972	0.7488380980	0.9667458392	-0.6835925263
430	-0.5295084972	0.7488380980	0.9667458392	-0.6835925263
431	0.5295084972	0.8372264454	-0.6485128238	0.9171356154
432	-0.5295084972	0.8372264454	-0.6485128238	0.9171356154
433	0.5295084972	0.7488380980	0.9667458392	-0.6835925263
434	-0.5295084972	0.7488380980	0.9667458392	-0.6835925263
435	0.5295084972	0.8372264454	-0.6485128238	0.9171356154
436	-0.5295084972	0.8372264454	-0.6485128238	0.9171356154
	0.5295084972	0.8372264454	-0.6485128238	-0.9171356154
---	-------------	---------------	----------------	----------------
446	0.5295084972	0.8372264454	1.0808547060	-0.3057118717
447	-0.5295084972	0.8372264454	1.0808547060	-0.3057118717
448	0.5295084972	0.9802417962	0.4008029672	-0.9171356154
449	0.5295084972	0.9802417962	0.4008029672	0.9171356154
450	0.5295084972	0.9802417962	0.7310827761	0.6835925263
451	0.5295084972	0.9802417962	0.4008029672	-0.9171356154
452	-0.5295084972	0.9802417962	-0.7310827761	-0.6835925263
453	-0.5295084972	-0.9802417962	-0.4008029672	-0.9171356154
454	-0.5295084972	-0.9802417962	-0.4008029672	-0.9171356154
455	0.5295084972	0.9802417962	-0.9982847540	0.0721687833
456	-0.5295084972	0.9802417962	-0.9982847540	0.0721687833
457	0.5295084972	1.1232571470	-0.4833729193	-0.6835925263
458	-0.5295084972	1.1232571470	-0.4833729193	-0.6835925263
459	0.5295084972	1.2116454950	-0.1651399043	0.6835925263
460	-0.5295084972	1.2116454950	-0.1651399043	0.6835925263
461	0.5295084972	1.2116454950	0.6995438612	0.0721687833
462	0.5295084972	1.2116454950	0.6995438612	-0.0721687833
463	0.5295084972	1.2116454950	0.1651399043	-0.6835925263
464	-0.5295084972	1.2116454950	0.1651399043	-0.6835925263
465	-0.5295084972	1.2116454950	-0.6995438612	-0.0721687833
466	-0.5295084972	1.2116454950	0.6995438612	0.0721687833
467	0.5295084972	1.3546608450	-0.1846320260	0.3057118717
468	-0.5295084972	1.3546608450	-0.1846320260	0.3057118717
469	0.5295084972	1.3546608450	0.3497719302	-0.0721687833
470	-0.5295084972	1.3546608450	0.3497719302	-0.0721687833
471	0.8567627458	0.1430153508	-0.1214455695	0.1167715443
472	0.8567627458	0.1430153508	-0.1214455695	-1.1060759430
473	0.8567627458	0.8646837645	0.8725328536	
474	0.8567627458	-0.8646837645	-0.8725328536	
475	0.8567627458	0.1430153508	0.5149118351	-1.1060759430
476	0.8567627458	-0.1430153508	-0.5149118351	1.1060759430
477	0.8567627458	0.1430153508	-1.2144556950	0.1167715443

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA 26
	0.8567627458	-0.1430153508	1.2144556950	-0.1167715443
479	0.8567627458	0.2314036982	-1.1003468280	0.4946521989
480	0.8567627458	-0.2314036982	1.1003468280	-0.4946521989
481	0.8567627458	0.2314036982	0.8331448501	-0.8725328536
482	-0.8567627458	0.2314036982	0.8331448501	-0.8725328536
483	0.8567627458	0.3744190490	-0.9157148022	0.7281952873
484	0.8567627458	-0.3744190490	0.9157148022	0.7281952873
485	0.8567627458	0.2314036982	-0.3813108453	-1.1060759430
486	-0.8567627458	0.2314036982	-0.3813108453	-1.1060759430
487	0.8567627458	0.4628073964	-0.2672019781	1.1060759430
488	0.8567627458	0.4628073964	0.2672019781	1.1060759430
489	0.8567627458	0.4628073964	-0.2672019781	1.1060759430
490	-0.8567627458	0.4628073964	0.2672019781	1.1060759430
491	0.8567627458	0.4628073964	1.1318857430	0.1167715443
492	0.8567627458	-0.4628073964	1.1318857430	0.1167715443
493	0.8567627458	0.4628073964	-1.1318857430	0.1167715443
494	-0.8567627458	0.4628073964	1.1318857430	0.1167715443
495	0.8567627458	0.5174343998	0.1336009891	1.1060759430
496	0.8567627458	-0.5174343998	-0.1336009891	-1.1060759430
497	0.8567627458	0.5174343998	0.9982847540	0.4946521989
498	0.8567627458	-0.5174343998	-0.9982847540	-0.4946521989
499	0.8567627458	0.6058227472	0.7821138131	-0.7281952873
500	-0.8567627458	0.6058227472	0.7821138131	-0.7281952873
501	0.8567627458	0.6058227472	-0.6169739091	-0.8725328536
502	-0.8567627458	0.6058227472	-0.6169739091	-0.8725328536
503	0.8567627458	-0.6058227472	0.9472537170	-0.4946521989
504	0.8567627458	0.6058227472	-0.9472537170	0.4946521989
505	0.8567627458	0.7488380980	0.4323418823	-0.8725328536
506	0.8567627458	0.7488380980	-0.4323418823	0.8725328536
507	-0.8567627458	0.7488380980	0.4323418823	-0.8725328536
508	-0.8567627458	0.7488380980	-0.4323418823	0.8725328536
509	0.8567627458	0.7488380980	0.9667458392	-0.1167715443

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA
510	0.8567627458	0.7488380980	-0.9667458392	0.11677154430
511	-0.8567627458	0.7488380980	0.9667458392	-0.11677154430
512	-0.8567627458	0.7488380980	-0.9667458392	0.11677154430
513	0.8567627458	0.8372264454	0.2161709413	0.8725328536
514	-0.8567627458	0.8372264454	0.2161709413	0.8725328536
515	0.8567627458	0.8372264454	0.7505748982	0.4946521989
516	-0.8567627458	0.8372264454	0.7505748982	0.4946521989
517	0.8567627458	0.9802417962	-0.1336009891	0.7281952873
518	-0.8567627458	0.9802417962	-0.1336009891	0.7281952873
519	0.8567627458	0.9802417962	0.7310827761	0.1167715443
520	-0.8567627458	0.9802417962	0.7310827761	0.1167715443

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA 28
	1.0590169944	-0.3744190490	0.0510310370	0.9893043979
542	1.0590169944	0.3744190490	-0.9157148022	-0.3778806546
543	1.0590169944	-0.3744190490	0.9157148022	0.3778806546
544	1.0590169944	0.6058227472	-0.6169739091	0.6114237430
545	-1.0590169944	0.6058227472	-0.6169739091	0.6114237430
546	1.0590169944	0.3744190490	-0.9157148022	-0.3778806546
547	-1.0590169944	0.6058227472	0.7821138131	-0.3778806546
548	1.0590169944	0.6058227472	0.7821138131	-0.3778806546
549	-1.0590169944	0.3744190490	-0.9157148022	-0.3778806546
550	1.0590169944	-0.3744190490	0.9157148022	0.3778806546
551	1.0590169944	0.6058227472	-0.6169739091	0.6114237430
552	-1.0590169944	0.6058227472	-0.6169739091	0.6114237430
553	1.0590169944	0.3744190490	-0.9157148022	-0.3778806546
554	-1.0590169944	0.3744190490	0.9157148022	0.3778806546
555	1.0590169944	-0.3744190490	0.9157148022	-0.3778806546
556	-1.0590169944	0.3744190490	-0.9157148022	-0.3778806546
557	1.0590169944	0.6058227472	-0.6169739091	0.6114237430
558	-1.0590169944	0.6058227472	-0.6169739091	0.6114237430
559	1.0590169944	0.3744190490	-0.9157148022	-0.3778806546
560	-1.0590169944	0.3744190490	0.9157148022	0.3778806546
561	1.1840169944	0.	0.0	0.9171356154
562	1.1840169944	0.	0.	-0.9171356154
563	1.1840169944	0.	0.8646837645	0.3057118717
564	1.1840169944	0.	-0.8646837645	-0.3057118717
565	1.1840169944	0.2314036982	0.8331448501	-0.3057118717
566	1.1840169944	-0.2314036982	-0.8331448501	0.3057118717
567	1.1840169944	0.2314036982	-0.5659428717	0.6835925263
568	1.1840169944	-0.2314036982	0.5659428717	-0.6835925263
569	1.1840169944	0.3744190490	0.4833729193	0.6835925263
570	1.1840169944	-0.3744190490	-0.4833729193	-0.6835925263
571	1.1840169944	0.6058227472	-0.0825688521	-0.6835925263
572	1.1840169944	-0.6058227472	0.0825688521	0.6835925263
573	1.1840169944	0.6058227472	-0.6169739091	-0.3057118717
	x	y	z	w
----	-----------	-----------	-----------	-----------
574	-1.1840169944	0.60582272472	-0.6169739091	-0.3057118717
575	1.1840169944	0.748838080980	-0.4323418823	0.3057118717
576	1.1840169944	0.748838080980	0.4323418823	-0.3057118717
577	1.1840169944	-0.748838080980	-0.4323418823	0.3057118717
578	1.1840169944	0.748838080980	-0.4323418823	0.3057118717
579	1.1840169944	0.8372264454	0.2161709413	0.3057118717
580	1.1840169944	-0.8372264454	-0.2161709413	-0.3057118717
581	1.3862712430	0.	0.	0.5668209828
582	1.3862712430	0.	0.	-0.5668209828
583	1.3862712430	0.	0.5344039562	0.1889403276
584	1.3862712430	0.	-0.5344039562	-0.1889403276
585	1.3862712430	0.1430153508	-0.3497719302	0.4224834156
586	1.3862712430	-0.1430153508	0.3497719302	-0.4224834156
587	1.3862712430	0.1430153508	0.5149118351	-0.1889403276
588	1.3862712430	-0.1430153508	-0.5149118351	0.1889403276
589	1.3862712430	0.2314036982	0.2987408932	0.4224834156
590	1.3862712430	-0.2314036982	-0.2987408932	-0.4224834156
591	1.3862712430	0.3744190490	-0.0510310370	-0.4224834156
592	1.3862712430	-0.3744190490	0.0510310370	0.4224834156
593	1.3862712430	0.3744190490	-0.3813108453	-0.1889403276
594	1.3862712430	-0.3744190490	0.3813108453	0.1889403276
595	1.3862712430	0.4628073964	0.2672019781	-0.1889403276
596	1.3862712430	0.4628073964	-0.2672019781	0.1889403276
597	1.3862712430	-0.4628073964	0.2672019781	-0.1889403276
598	1.3862712430	-0.4628073964	-0.2672019781	0.1889403276
599	1.3862712430	0.5174343998	0.1336009891	0.1889403276
600	1.3862712430	-0.5174343998	-0.1336009891	-0.1889403276
The Joint Relations between the Vertices of the 120-Cell

1(61,62,302,304)	31(32,56,57,65)	61(1,39,115,117)
2(11,301,357,358)	32(31,58,66,355)	62(1,40,116,118)
3(6,8,51,52)	33(34,60,63,67)	63(7,33,113,438)
4(12,59,301,360)	34(33,64,68,359)	64(7,34,114,437)
5(7,53,309,354)	35(36,72,73,352)	65(10,31,123,127)
6(3,16,55,356)	36(35,70,74,351)	66(10,32,128,424)
7(5,63,64,315)	37(53,71,75,338)	67(13,33,125,131)
8(3,19,71,369)	38(54,69,337,376)	68(13,34,126,134)
9(21,70,72,305)	39(40,61,77,81)	69(38,122,308,441)
10(17,18,65,66)	40(39,62,79,83)	70(9,36,142,420)
11(2,12,78,80)	41(42,78,88,102)	71(8,37,121,139)
12(4,11,82,84)	42(41,80,87,104)	72(9,35,119,140)
13(14,20,67,68)	43(44,82,85,98)	73(17,35,123,143)
14(13,23,75,76)	44(43,84,86,100)	74(17,36,144,424)
15(21,85,86,307)	45(48,91,95,105)	75(14,37,125,147)
16(6,19,87,88)	46(47,89,93,107)	76(14,126,148,338)
17(10,22,73,74)	47(46,90,94,108)	77(18,39,127,150)
18(10,24,77,79)	48(45,92,96,106)	78(11,41,146,430)
19(8,16,91,92)	49(50,97,101,109)	79(18,40,128,453)
20(13,25,81,83)	50(49,99,103,110)	80(11,42,129,145)
21(9,15,89,90)	51(3,111,121,336)	81(20,39,131,151)
22(17,24,93,94)	52(3,335,412,422)	82(12,43,132,146)
23(14,25,95,96)	53(5,37,113,120)	83(20,40,134,452)
24(18,22,101,103)	54(38,119,305,414)	84(12,44,145,433)
25(20,23,97,99)	55(6,111,135,332)	85(15,43,137,155)
26(27,29,98,100)	56(31,112,136,306)	86(15,44,138,156)
27(26,28,102,104)	57(31,115,302,429)	87(16,42,154,436)
28(27,30,105,106)	58(32,116,130,302)	88(16,41,135,149)
29(26,30,107,108)	59(4,132,334,418)	89(21,46,140,155)
30(28,29,109,110)	60(33,117,133,304)	90(21,47,142,156)
---	---	---
91(19,45,139,149) & 123(65,73,112,187) & 155(85,89,162,210)		
92(19,48,141,154) & 124(111,366,374,490) & 156(86,90,165,212)		
93(22,46,143,159) & 125(67,75,113,191) & 157(98,102,146,221)		
94(22,47,144,160) & 126(68,76,114,194) & 158(100,104,145,222)		
95(23,45,147,161) & 127(65,77,115,195) & 159(93,101,167,217)		
96(23,48,148,166) & 128(66,79,116,496) & 160(94,103,168,218)		
97(25,49,151,161) & 129(80,186,357,436) & 161(95,97,169,219)		
98(26,43,157,162) & 130(58,378,435,485) & 162(98,107,155,223)		
99(25,50,166,452) & 131(67,81,117,197) & 163(102,105,149,225)		
100(26,44,158,165) & 132(59,82,137,183) & 164(104,106,154,226)		
101(24,49,150,159) & 133(60,184,384,438) & 165(100,108,156,224)		
102(27,41,157,163) & 134(68,83,118,498) & 166(96,99,170,220)		
103(24,50,160,453) & 135(55,88,188,430) & 167(107,109,159,228)		
104(27,42,158,164) & 136(56,189,387,429) & 168(108,110,160,230)		
105(28,45,163,169) & 137(85,132,193,364) & 169(105,109,161,227)		
106(28,48,164,170) & 138(86,363,433,492) & 170(106,110,166,529)		
107(29,46,162,167) & 139(71,91,147,199) & 171(115,173,237,486)		
108(29,47,165,168) & 140(72,89,143,204) & 172(174,185,238,416)		
109(30,49,167,169) & 141(92,148,200,369) & 173(117,171,184,239)		
110(30,50,168,170) & 142(70,90,144,503) & 174(172,183,240,418)		
111(51,55,124,175) & 143(73,93,140,206) & 175(111,181,188,234)		
112(56,123,176,352) & 144(74,94,142,208) & 176(112,189,233,482)		
113(53,63,125,178) & 145(80,84,158,202) & 177(179,193,236,414)		
114(64,126,354,477) & 146(78,82,157,201) & 178(113,180,192,235)		
115(57,61,127,171) & 147(75,95,139,209) & 179(119,177,204,232)		
116(58,62,128,472) & 148(76,96,141,211) & 180(120,178,203,231)		
117(60,61,131,173) & 149(88,91,163,205) & 181(121,175,199,231)		
118(62,134,359,474) & 150(77,101,151,213) & 182(200,422,476,532)		
119(54,72,122,179) & 151(81,97,150,215) & 183(132,174,201,243)		
120(53,121,180,370) & 152(153,383,399,516) & 184(133,173,244,502)		
121(51,71,120,181) & 153(152,379,403,514) & 185(172,201,241,430)		
122(69,119,352,482) & 154(87,92,164,207) & 186(129,202,471,542)		
-----	-----	-----
187	123,195,206,233	219
188	135,175,205,241	220
189	136,176,242,507	221
190	208,424,496,534	222
191	125,197,209,235	223
192	178,244,438,512	224
193	137,177,210,243	225
194	126,211,498,536	226
195	127,187,213,237	227
196	238,428,490,514	228
197	131,191,215,239	229
198	240,434,494,516	230
199	139,181,205,247	231
200	141,182,207,248	232
201	146,183,185,250	233
202	145,186,484,552	234
203	180,442,512,546	235
204	140,179,210,245	236
205	149,188,199,253	237
206	143,187,217,245	238
207	154,200,254,489	239
208	144,190,218,246	240
209	147,191,219,247	241
210	155,193,204,255	242
211	148,194,220,248	243
212	156,256,492,503	244
213	150,195,217,249	245
214	218,453,496,551	246
215	151,197,219,249	247
216	220,452,498,551	248
217	159,206,213,257	249
218	160,208,214,258	250

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA
283(263,287,289,294)	315(7,321,385,386)	347(346,390,394,408)
284(264,288,290,293)	316(306,319,387,388)	348(345,392,396,406)
285(267,281,288,296)	317(310,322,373,374)	349(350,397,401,409)
286(268,282,287,297)	318(310,324,377,379)	350(349,399,403,410)
287(265,283,286,295)	319(308,316,391,392)	351(36,303,411,421)
288(266,284,285,298)	320(313,325,381,383)	352(35,112,122,303)
289(269,281,283,299)	321(309,315,389,390)	353(305,337,413,420)
290(270,282,284,300)	322(317,324,393,394)	354(5,114,338,419)
291(271,282,293,295)	323(314,325,395,396)	355(32,306,411,435)
292(272,281,294,298)	324(318,322,401,403)	356(6,331,412,436)
293(273,284,291,296)	325(320,323,397,399)	357(2,129,338,433)
294(283,292,297,574)	326(327,329,398,400)	358(2,332,416,430)
295(276,287,291,299)	327(326,328,402,404)	359(34,118,304,432)
296(275,285,293,299)	328(327,330,405,406)	360(4,333,417,433)
297(286,578,294,300)	329(326,330,407,408)	361(301,339,415,417)
298(277,288,292,300)	330(328,329,409,410)	362(301,340,416,418)
299(279,289,295,296)	331(332,356,357,365)	363(138,307,333,413)
300(280,290,297,298)	332(55,331,358,366)	364(137,307,334,414)
301(2,4,361,362)	333(334,360,363,367)	365(310,331,423,427)
302(1,57,58,311)	334(59,333,364,368)	366(124,310,332,428)
303(306,308,351,352)	335(52,336,372,373)	367(313,333,425,431)
304(1,60,312,359)	336(51,335,370,374)	368(313,334,426,434)
305(9,54,307,353)	337(38,353,371,375)	369(8,141,338,422)
306(56,303,316,355)	338(37,76,354,369)	370(120,309,336,442)
307(15,305,363,364)	339(340,361,377,381)	371(308,337,421,439)
308(69,303,319,371)	340(339,362,379,383)	372(309,335,419,440)
309(5,321,370,372)	341(342,378,388,402)	373(317,335,423,443)
310(317,318,365,366)	342(341,380,387,404)	374(124,317,336,444)
311(302,312,378,380)	343(344,382,385,398)	375(314,337,425,447)
312(304,311,382,384)	344(343,384,386,400)	376(38,314,426,448)
313(314,320,367,368)	345(348,391,395,405)	377(318,339,427,450)
314(313,323,375,376)	346(347,389,393,407)	378(130,311,341,446)
475(411,481,488,534)	507(189,454,500,554)	539(473,497,563,569)
------------------	------------------	------------------
476(182,412,489,533)	508(444,490,518,546)	540(474,498,564,570)
477(114,479,493,536)	509(447,491,519,547)	541(485,488,562,571)
478(413,480,492,535)	510(455,493,504,555)	542(186,489,561,572)
479(419,477,504,532)	511(448,494,520,548)	543(483,493,564,573)
480(420,478,503,531)	512(192,203,456,556)	544(274,484,492,563)
481(421,475,499,531)	513(450,495,517,549)	545(504,506,567,575)
482(122,176,232,500)	514(153,196,251,518)	546(203,268,508,578)
483(432,474,501,543)	515(451,497,519,549)	547(499,509,565,576)
484(202,433,473,544)	516(152,198,251,520)	548(266,277,500,511)
485(130,472,501,541)	517(459,506,513,557)	549(513,515,569,579)
486(171,242,429,502)	518(460,508,514,558)	550(501,521,571,573)
487(423,495,506,533)	519(461,509,515,559)	551(214,216,570,580)
488(435,475,505,541)	520(466,511,516,560)	552(202,222,274,572)
489(207,436,476,542)	521(457,523,525,550)	553(505,525,571,576)
490(124,196,234,508)	522(252,524,526,458)	554(272,277,507,526)
491(425,497,509,535)	523(462,521,528,555)	555(510,523,573,575)
492(138,212,478,544)	524(522,465,530,556)	556(512,524,574,578)
493(437,477,510,543)	525(463,521,527,553)	557(517,528,575,579)
494(198,236,426,511)	526(229,464,522,554)	558(280,518,530,578)
495(427,487,513,537)	527(469,525,528,559)	559(519,527,576,579)
496(128,190,214,538)	528(467,523,527,557)	560(229,277,280,520)
497(431,491,515,539)	529(170,226,230,260)	561(533,537,542,581)
498(134,194,216,540)	530(229,468,524,558)	562(534,538,541,582)
499(439,481,505,547)	531(480,481,565,568)	563(535,539,544,583)
500(441,482,507,548)	532(182,479,566,567)	564(536,540,543,584)
501(446,483,485,550)	533(476,487,561,567)	565(531,535,547,587)
502(184,252,445,486)	534(190,475,562,568)	566(248,532,536,588)
503(142,212,246,480)	535(478,491,563,565)	567(532,533,545,585)
504(440,479,510,545)	536(194,477,564,566)	568(246,531,534,586)
505(449,488,499,553)	537(471,495,561,569)	569(537,539,549,589)
506(443,487,517,545)	538(472,496,562,570)	570(538,540,551,590)
571(541,550,553,591)	581(561,585,589,592)	591(571,582,593,595)
---------------------	---------------------	---------------------
572(254,542,552,592)	582(562,586,590,591)	592(572,581,594,598)
573(543,550,555,593)	583(563,587,589,594)	593(573,584,591,596)
574(244,252,294,556)	584(564,588,590,593)	594(274,583,592,597)
575(545,555,557,596)	585(567,581,588,596)	595(576,587,591,599)
576(547,553,559,595)	586(568,582,587,597)	596(575,585,593,599)
577(248,254,260,598)	587(565,583,586,595)	597(586,278,594,600)
578(297,546,556,558)	588(566,584,585,598)	598(577,588,592,600)
579(549,557,559,599)	589(569,581,583,599)	599(579,589,595,596)
580(258,260,551,600)	590(570,582,584,600)	600(580,590,597,598)
The 4-dimensional Coordinates of Vertices of the 600-Cell

No	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)
1	0.	0.	1.3211192340	-0.9341723545
2	0.	-0.2185080123	0.5344039563	-1.5115226210
3	0.	0.2185080123	1.6032118690	0.0000000000
4	0.	-0.3535533906	-1.2729320600	-0.9341723545
5	0.	-0.3535533906	-0.4564354698	-1.5115226210
6	0.	-0.5720614029	1.3990877210	0.5773502668
7	0.	0.5720614029	-0.0779684865	-1.5115226210
8	0.	-0.9256147931	0.9426522510	-0.9341723545
9	0.	0.9256147931	1.1949635730	-0.5773502668
10	0.	-1.1441228050	-0.6605596176	-0.9341723545
11	0.	-1.1441228050	0.6605596176	0.9341723545
12	0.	-1.2791681840	0.9908394253	0.0000000000
13	0.	-1.2791681840	-0.3302798088	0.9341723545
14	0.	-1.4976761961	-0.6123724428	0.0000000000
15	0.	-1.4976761961	0.2041241477	-0.5773502668
16	-0.5	0.3535533906	-0.8646837645	-1.2228474870
17	-0.5	-0.5720614029	1.3990877210	-0.2886751334
18	-0.5	0.5720614029	0.7385281032	-1.2228474870
19	-0.5	-0.9256147931	-1.1949635730	-0.2886751334
20	-0.5	-0.9256147931	0.1261556613	-1.2228474870
21	-0.5	-1.4976761961	0.2041241477	0.2886751334
22	0.5	0.3535533906	-0.8646837645	-1.2228474870
23	0.5	-0.5720614029	1.3990877210	-0.2886751334
24	0.5	0.5720614029	0.7385281032	-1.2228474870
25	0.5	-0.9256147931	-1.1949635730	-0.2886751334
26	0.5	-0.9256147931	0.1261556613	-1.2228474870
27	0.5	-1.4976761961	0.2041241477	0.2886751334
28	-0.8090169944	0.0000000000	0.0000000000	-1.4012585320
29	-0.8090169944	-0.3535533906	0.8646837645	-1.0444364440

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA
30	-0.8090169944	-0.5720614029	-0.7385281032	-1.0444364440
31	-0.8090169944	-0.9256147931	0.9426522510	0.4670861773
32	-0.8090169944	-1.1441228050	-0.6605596176	0.4670861773
33	-0.8090169944	-1.1441228050	0.6605596176	-0.4670861773
34	-0.8090169944	-1.2791681840	-0.3302798088	-0.4670861773
35	0.8090169944	0.	0.	-1.4012585320
36	0.8090169944	0.	-1.3211192340	-0.4670861773
37	0.8090169944	0.	1.3211192340	0.4670861773
38	0.8090169944	-0.3535533906	0.8646837645	-1.0444364440
39	0.8090169944	-0.3535533906	-1.2729320600	0.4670861773
40	0.8090169944	0.3535533906	1.2729320600	-0.4670861773
41	0.8090169944	-0.5720614029	-0.7385281032	-1.0444364440
42	0.8090169944	-0.9256147931	0.9426522510	0.4670861773
43	0.8090169944	-0.9256147931	0.1261556613	1.0444364440
44	0.8090169944	0.9256147931	-0.1261556613	-1.0444364440
45	0.8090169944	-1.1441228050	-0.6605596176	0.4670861773
46	0.8090169944	-1.1441228050	0.6605596176	-0.4670861773
47	0.8090169944	-1.2791681840	-0.3302798088	-0.4670861773
48	-1.3090169944	-0.3535533906	0.8646837645	-0.1784110442
49	-1.3090169944	-0.5720614029	0.0779684865	-0.7557613103
50	1.3090169944	-0.2185080123	0.5344039563	0.7557613103
51	1.3090169944	0.2185080123	-0.5344039563	-0.7557613103
52	1.3090169944	-0.3535533906	-0.4564354698	0.7557613103
53	1.3090169944	-0.3535533906	0.8646837645	-0.1784110442
54	1.3090169944	0.3535533906	0.4564354698	-0.7557613103
55	1.3090169944	-0.5720614029	-0.7385281032	-0.1784110442
56	1.3090169944	-0.5720614029	0.0779684865	-0.7557613103
57	1.3090169944	0.5720614029	0.7385281032	0.1784110442
58	1.3090169944	-0.9256147931	0.1261556613	0.1784110442
59	1.3090169944	0.9256147931	-0.1261556613	-0.1784110442
60	1.6180339891	0.	0.	0.
61	0.	0.	-1.3211192340	0.9341723545

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA
62	0.	0.2185080123	-0.5344039563	1.5115226210
63	0.	-0.2185080123	-1.6032118690	0.
64	0.	0.3535533906	1.2729320600	0.9341723545
65	0.	0.3535533906	0.4564354698	1.5115226210
66	0.	0.5720614029	-1.3990877210	-0.5773502668
67	0.	-0.5720614029	0.0779684865	1.5115226210
68	0.	0.9256147931	-0.9426522510	0.9341723545
69	0.	-0.9256147931	-1.1949635730	0.5773502668
70	0.	1.1441228050	0.6605596176	0.9341723545
71	0.	1.1441228050	-0.6605596176	-0.9341723545
72	0.	1.2791681840	-0.9908394253	0.
73	0.	1.2791681840	0.3302798088	-0.9341723545
74	0.	1.4976761961	0.6123724428	0.
75	0.	1.4976761961	-0.2041241477	0.5773502668
76	0.5	-0.3535533906	0.8646837645	1.2228474870
77	0.5	0.5720614029	-1.3990877210	0.2886751334
78	0.5	-0.5720614029	-0.7385281032	1.2228474870
79	0.5	0.9256147931	1.1949635730	0.2886751334
80	0.5	0.9256147931	-0.1261556613	1.2228474870
81	0.5	1.4976761961	-0.2041241477	-0.2886751334
82	-0.5	-0.3535533906	0.8646837645	1.2228474870
83	-0.5	0.5720614029	-1.3990877210	0.2886751334
84	-0.5	-0.5720614029	-0.7385281032	1.2228474870
85	-0.5	0.9256147931	1.1949635730	0.2886751334
86	-0.5	0.9256147931	-0.1261556613	1.2228474870
87	-0.5	1.4976761961	-0.2041241477	-0.2886751334
88	0.8090169944	0.	0.	1.4012585320
89	0.8090169944	0.3535533906	-0.8646837645	1.0444364440
90	0.8090169944	0.5720614029	0.7385281032	1.0444364440
91	0.8090169944	0.9256147931	-0.9426522510	-0.4670861773
92	0.8090169944	1.1441228050	0.6605596176	-0.4670861773
93	0.8090169944	1.1441228050	-0.6605596176	0.4670861773

Kaida Shi, Zhejiang University and Zhejiang Ocean University, CHINA
94	0.8090169944	1.2791681840	0.3302798088	0.4670861773
95	-0.8090169944	0.	0.	1.4012585320
96	-0.8090169944	0.	1.321192340	0.4670861773
97	-0.8090169944	0.	-1.321192340	-0.4670861773
98	-0.8090169944	0.3535533906	-0.8646837645	1.0444364440
99	-0.8090169944	0.3535533906	1.2729320600	-0.4670861773
100	-0.8090169944	-0.3535533906	-1.2729320600	0.4670861773
101	-0.8090169944	0.5720614029	0.7385281032	1.0444354440
102	-0.8090169944	0.9256147931	-0.9426522510	-0.4670861773
103	-0.8090169944	0.9256147931	-0.1261556613	-1.0444364440
104	-0.8090169944	-0.9256147931	0.1261556613	1.0444364440
105	-0.8090169944	1.1441228050	0.6605596176	-0.4670861773
106	-0.8090169944	1.1441228050	-0.6605596176	0.4670861773
107	-0.8090169944	1.2791681840	0.3302798088	0.4670861773
108	1.3090169944	0.3535533906	-0.8646837645	0.1784110442
109	1.3090169944	0.5720614029	-0.0779684865	0.7557613103
110	-1.3090169944	0.2185080123	-0.5344039563	-0.7557613103
111	-1.3090169944	-0.2185080123	0.5344039563	0.7557613103
112	-1.3090169944	0.3535533906	0.4564354698	-0.7557613103
113	-1.3090169944	0.3535533906	-0.8646837645	0.1784110442
114	-1.3090169944	-0.3535533906	-0.4564354698	0.7557613103
115	-1.3090169944	0.5720914029	0.7385281032	0.1784110442
116	-1.3090169944	0.5720614029	-0.0779684865	0.7557613103
117	-1.3090169944	-0.5720614029	-0.7385281032	-0.1784110442
118	-1.3090169944	0.9256147931	-0.1261556613	-0.1784110442
119	-1.3090169944	-0.9256147931	0.1261556613	0.1784110442
120	-1.6180339891	0.	0.	0.
The Joint Relations of the Vertices of the 600-Cell

1(2,3,8,9,17,18,23,24,29,38,40,99)	33(8,12,15,17,20,21,29,31,34,48,49,119)
2(1,5,7,8,18,20,24,26,28,35,38)	34(10,14,15,19,20,21,30,32,33,49,117,119)
3(1,6,9,17,23,37,40,64,79,85,96,99)	35(2,5,7,22,24,26,38,41,44,51,54,56)
4(5,10,16,19,22,25,30,36,41,63,66,97)	36(4,22,25,39,41,51,55,63,66,77,91,108)
5(2,4,7,10,16,20,22,26,30,35,41)	37(3,6,23,40,42,50,53,57,64,76,79,90)
6(3,1,12,17,23,31,37,42,64,76,82,96)	38(1,2,8,23,24,26,35,40,46,53,54,56)
7(2,5,16,22,24,28,35,44,71,73,103)	39(25,36,45,52,55,61,63,69,77,78,89,108)
8(1,2,12,15,17,20,23,26,29,33,38,46)	40(1,3,9,23,24,26,35,53,54,57,79,92)
9(1,3,18,24,40,73,74,98,92,99,105)	41(4,5,10,22,25,26,35,47,51,55,56)
10(4,5,14,15,19,20,25,26,30,34,41,47)	42(6,11,12,23,27,37,43,46,50,53,58,76)
11(6,12,13,21,27,31,42,43,67,76,82,104)	43(11,13,27,42,45,50,52,58,67,76,78,88)
12(6,8,11,15,17,23,27,31,33,42,46)	44(7,22,24,35,51,54,59,71,73,81,91,92)
13(11,14,21,27,32,43,45,47,67,69,78,84,104)	45(13,14,25,27,39,43,47,52,55,58,69,78)
14(10,13,15,19,21,25,27,32,34,45,47,69)	46(8,12,15,23,26,27,38,42,47,53,56,58)
15(8,10,12,14,20,21,26,27,33,34,46,47)	47(10,14,15,25,26,27,41,45,46,55,56,58)
16(4,5,7,22,28,30,66,71,97,102,103,110)	48(17,29,31,33,49,96,99,111,112,115,119,120)
17(1,3,6,8,12,23,29,31,33,48,96,99)	49(20,28,29,30,33,48,110,112,117,119,120)
18(1,2,7,9,24,28,29,73,99,103,105,112)	50(37,42,43,52,53,57,58,60,76,88,90,109)
19(4,10,14,25,30,32,34,63,69,97,100,117)	51(22,35,36,41,44,54,55,56,59,60,91,108)
20(2,5,8,10,15,26,28,29,30,33,34,49)	52(39,43,45,50,55,58,60,78,88,89,108,109)
21(11,12,13,14,15,27,31,32,33,34,104,119)	53(23,37,38,40,42,46,50,54,56,57,58,60)
22(4,5,7,16,35,36,41,44,51,66,71,91)	54(24,35,38,40,44,51,53,56,59,60,92)
23(1,3,6,8,12,17,37,38,40,42,46,53)	55(25,36,39,41,45,47,51,52,56,58,60,108)
24(1,2,7,9,18,35,38,40,44,54,73,92)	56(26,35,38,41,46,47,51,53,54,55,58,60)
25(4,10,14,19,36,39,41,45,47,55,63,69)	57(37,40,50,53,54,59,60,79,90,92,94,109)
26(2,5,8,10,15,20,35,38,41,46,47,56)	58(27,42,43,45,46,47,50,52,53,55,56,60)
27(11,12,13,14,15,21,42,43,45,46,47,58)	59(44,51,54,57,60,81,91,92,93,94,108,109)
28(2,5,7,16,18,20,29,30,49,103,110,112)	60(50,51,52,53,54,55,56,57,58,59,108,109)
29(1,2,8,17,18,20,28,33,48,49,99,112)	61(39,62,63,68,69,77,78,83,84,89,98,100)
30(4,5,10,16,19,20,28,34,49,97,110,117)	62(61,65,67,68,78,80,84,86,88,89,95,98)
31(6,11,12,17,21,33,48,82,96,104,111,119)	63(4,19,25,36,39,61,66,69,77,83,97,100)
32(13,14,19,21,34,69,84,100,104,114,117,119)	64(3,6,37,65,70,76,79,82,85,90,96,101)
65(62,64,67,70,76,80,82,86,88,90,95,101)	93(59,68,72,75,77,80,81,89,91,94,108,109)
66(4,16,22,36,63,71,72,77,83,91,97,100)	94(57,59,70,74,75,79,80,85,90,92,93,109)
67(11,13,43,62,65,76,78,82,84,88,95,104)	95(62,65,67,82,84,86,98,101,104,111,114,116)
68(61,62,72,75,77,80,83,86,89,93,98,106)	96(3,6,17,31,48,64,82,85,99,101,111,115)
69(13,14,19,25,32,39,45,61,63,78,84,100)	97(4,16,19,30,63,66,83,100,102,110,113,117)
70(64,75,74,79,80,85,86,90,94,101,107)	98(61,62,68,83,84,86,95,100,106,113,114,116)
71(7,16,22,44,66,72,73,81,87,91,102,103)	99(1,3,9,17,18,29,48,85,96,105,112,115)
72(66,68,71,75,77,81,83,87,91,93,102,106)	100(19,32,61,63,69,83,84,97,98,113,114,117)
73(7,9,18,24,44,71,74,81,87,92,103,105)	101(64,65,70,82,85,86,95,96,107,111,115,116)
74(9,70,73,75,79,81,85,87,92,94,105,107)	102(16,66,71,72,83,87,97,103,106,110,113,118)
75(68,70,72,74,80,81,86,87,93,94,106,107)	103(7,16,18,28,71,73,87,102,105,112,118)
76(6,11,37,42,43,50,64,65,67,82,88,90)	104(11,13,21,31,32,67,82,84,95,111,114,119)
77(36,39,61,63,66,68,72,83,89,91,93,108)	105(9,18,73,74,85,87,99,103,107,112,115,118)
78(13,39,43,52,61,62,67,69,84,88,89)	106(68,72,75,83,86,87,98,102,107,113,116,118)
79(3,9,37,40,57,64,70,74,85,90,92,94)	107(70,74,75,85,86,87,101,105,106,115,116,118)
80(62,65,68,70,75,86,88,90,93,94,109)	108(36,39,51,52,55,59,60,77,89,91,93,109)
81(44,59,71,72,73,74,75,87,91,92,93,94)	109(50,52,57,59,60,80,88,89,90,93,94,108)
82(6,11,31,64,65,67,76,95,96,101,104,111)	110(16,28,30,49,97,102,103,112,113,117,118,120)
83(61,63,66,68,72,77,97,98,100,102,106,113)	111(31,48,82,95,96,101,104,114,115,116,119,120)
84(13,32,61,62,67,69,78,95,98,100,104,114)	112(18,28,29,48,49,99,103,105,110,115,118,120)
85(3,9,64,70,74,79,96,99,101,105,107,115)	113(83,97,98,100,102,106,110,114,116,117,118,120)
86(62,65,68,70,75,80,95,98,101,106,107,116)	114(32,84,95,98,100,104,111,113,116,117,119,120)
87(71,72,73,74,75,81,102,103,105,106,107,18)	115(48,85,96,99,101,105,107,111,112,116,118,120)
88(43,50,52,62,65,67,76,78,80,89,90,109)	116(86,95,98,101,106,107,111,113,114,115,118,120)
89(39,52,61,62,68,77,80,88,93,108,109)	117(19,30,32,34,49,97,100,110,113,114,119,120)
90(37,50,57,64,65,70,76,79,80,88,94,109)	118(87,102,103,105,106,107,110,112,113,115,116,120)
91(22,36,44,51,59,66,71,72,77,81,93,108)	119(21,31,32,33,34,48,49,104,111,114,117,120)
92(9,24,40,44,54,57,59,73,74,79,81,94)	120(48,49,110,111,112,113,114,115,116,117,118,119)
References

[1] H. S. M. Coxeter, *Regular Polytopes* (Methuen and Co., Ltd., London, 1948), pp.21–98.

[2] D. Hilbert and S. Cohn-Vossen, *Geometry and the Imagination* (Chelsea Publishing Co., New York, 1983), pp.17–105.

[3] Kaida Shi, Lizhuang Ma, New results on the regular polytopes and the theory of N-dimensional finite rotation group, Taylor & Francis (London and Washington) and Science in China Press (Beijing): *Progress in Natural Science*, 10, 740–746 (1999).

[4] Kaida Shi, Tianhui Liu, Qunsheng Peng, Using special projective method to present multivariable model in 3D space, Science in China Press (Beijing): *Journal of Computer-Aided Design & Computer Graphics*, 7, 613–618 (2002).

[5] Lorimer P., Towards a 3-dimensional model of the 120-Cell, *Mathematical Intelligence*, 11, 61 (1989).

[6] Zuji Wan, Qidi Lin, Josann Duane, Rotating Transformations in Four-Dimensional Space, *Engineering Design Graphics Journal*, 39–47 (Autumn 1989).

[7] Manning, H.P., *Geometry of Four Dimensional* (Dover, New York, NY, 1956), pp.12–83.

[8] Lindgren, C.E.S., et al, *Four-Dimensional Descriptive Geometry* (McGraw-Hill, New York, NY, 1968), pp.13–78.

[9] Brisson, D.W., *Hypergraphics Visualizing Complex Relationships in Art* (Science and Technology, Westviews, 1978), pp.13–21.

[10] Jianrong Tan, Qunsheng Peng, Youdong Liang, A Mathematical Model for Graphical Representation of Multivariable Nonlinear Problems with Computer and its Application, *Chinese Journal of Computer*, 10, 245–261 (1992).
[11] Morikita Shuppan, *Handbook of Graphic Science* (Japan Society for Graphic Science 1980), pp.229–230.