Effects of blood parasite infection and innate immune genetic diversity on mating patterns in a passerine bird breeding in contrasted habitats

Dany Garant Correspond., 1, Audrey Bourret 1, Clarence Schmitt 2, Audrey Turcotte 1, Fanie Pelletier 1, Marc Bélisle 1

1 Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
2 Institut d’Écologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Paris, France

Corresponding Author: Dany Garant
Email address: Dany.Garant@USherbrooke.ca

Genetic diversity at immune genes and levels of parasitism are known to affect patterns of (dis)assortative mating in several species. Heterozygote advantage and/or good genes should shape mate choice originating from pathogen/parasite-driven selection at immune genes. However, the stability of these associations, and whether they vary with environmental conditions, are still rarely documented. In this study, we describe mating patterns in a wild population of tree swallows (Tachycineta bicolor) over 4 years and assess the effects of haemosporidian parasite infection and immune genetic diversity at β-defensin genes on those patterns within two habitats of contrasting environmental quality, in southern Québec, Canada. We first show that mating patterns were only very weakly related to individual status of infection by haemosporidian parasites. However, we found a difference between habitats in mating patterns related to infection status, which was likely due to a non-random distribution of individuals, as non-infected mating pairs were more frequent in lower quality habitats. Mating patterns also differed depending on β-defensin heterozygosity at AvBD2, but only for genetic partners outside of the social couple, with heterozygous individuals pairing together. Our study underlines the importance of considering habitat heterogeneity in studies of sexual selection.
Title: Effects of blood parasite infection and innate immune genetic diversity on mating patterns in a passerine bird breeding in contrasted habitats.

Authors: Dany Garant¹, Audrey Bourret¹, Clarence Schmitt², Audrey Turcotte¹, Fanie Pelletier¹, Marc Bélisle¹

Affiliations:
¹ Département de Biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada
² Sorbonne Université, CNRS, IRD, INRA, Institut d’Ecologie et des Sciences de l’Environnement de Paris, iEES-Paris, Paris, 75005, France

Author for editorial correspondence: Dany.Garant@USherbrooke.ca
Abstract

Genetic diversity at immune genes and levels of parasitism are known to affect patterns of (dis)assortative mating in several species. Heterozygote advantage and/or good genes should shape mate choice originating from pathogen/parasite-driven selection at immune genes. However, the stability of these associations, and whether they vary with environmental conditions, are still rarely documented. In this study, we describe mating patterns in a wild population of tree swallows (Tachycineta bicolor) over 4 years and assess the effects of haemosporidian parasite infection and immune genetic diversity at β-defensin genes on those patterns within two habitats of contrasting environmental quality, in southern Québec, Canada. We first show that mating patterns were only very weakly related to individual status of infection by haemosporidian parasites. However, we found a difference between habitats in mating patterns related to infection status, which was likely due to a non-random distribution of individuals, as non-infected mating pairs were more frequent in lower quality habitats. Mating patterns also differed depending on β-defensin heterozygosity at AvBD2, but only for genetic partners outside of the social couple, with heterozygous individuals pairing together. Our study underlines the importance of considering habitat heterogeneity in studies of sexual selection.
Introduction

Understanding the factors influencing how individuals select their reproductive partners is central in studies of sexual selection and in evolutionary ecology (Andersson 1994; Jennions & Petrie 1997). This undertaking is however challenging as several factors can affect mating patterns in wild populations. For instance, genetic diversity at immune genes and parasitism are both known to affect patterns of (dis)assortative mating in several species (Hamilton & Zuk 1982; Ejsmond et al. 2014). Theoretical and empirical studies have suggested that such effects may stem from an heterozygote advantage and/or from good genes that would shape mate choice originating from pathogen/parasite-driven selection at immune genes (Penn & Potts 1999; Ejsmond et al. 2014).

Previous studies have shown that genes of the major histocompatibility complex (MHC), which are involved in adaptive immune responses (reviewed Bernatchez & Landry 2003), can affect mating patterns based on the genetic complementarity or diversity of partners (reviewed in Kamiya et al. 2014). Genes involved in innate immune responses, such as β-defensin genes (van Dijk et al. 2008), however, have been less investigated in this context despite their importance in providing the first line of defense during an immune challenge, such as an infection by pathogens or parasites (Delves et al. 2006). Previous studies in passerines showed variation at different β-defensin genes (henceforth AvBD), which suggest that they could be targeted by selection (Hellgren 2015; Schmitt et al. 2017a). In particular, the strongest evidences of selection were found for locus AvBD2 and AvBD7 in both great tits (Parus major) and tree swallows (Tachycineta bicolor) (Hellgren 2015; Schmitt et al. 2017a).

Haemosporidian parasites are ubiquitous and abundant vector-borne blood parasites that cause a malaria-like disease in birds (Valkiūnas 2005). Infections by these parasites often result in negative effects on body condition, breeding success and survival (Knowles et al. 2010; Asghar et
For instance, chronic infection by haemospridian parasites resulted in birds laying fewer eggs and being less successful at rearing healthy offspring than uninfected birds in great reed warblers (*Acrocephalus arundinaceus*) (Asghar et al. 2015). Thus, resistance to infection from these parasites could be a driving selective force affecting mating patterns in wild bird populations.

So far, only a few studies have investigated the dependence on environmental conditions of mate choice patterns resulting from genetic diversity or parasitism (Ingleby et al. 2010). This is surprising given the accumulating evidences over recent years that mate choice and sexual selection will often be context-specific and constrained by different ecological factors (see Robinson et al. 2012; reviewed in Miller & Svensson 2014). For example, a recent modelling study by Kaiser et al. (2017) showed that ecological and social conditions may affect the strength of sexual selection in socially monogamous bird species.

In this study, we describe mating patterns in a wild population of tree swallows over 4 years, in southern Québec, Canada. To do so, we assess whether mating patterns are related to individual status of infection by haemosporidian parasites and if they differ depending on genetic diversity at two immune β-defensin genes. Importantly, we also evaluate if these factors affect mating patterns differentially depending on habitat quality, as this population breeds under contrasted levels of agricultural intensification. Previous studies on this population showed that birds nesting in low quality habitats, dominated by intensive cultures, have a lower breeding success (Ghilain & Bélisle 2008; Lessard et al. 2014). Also, tree swallows display a high rate of extra-pair paternity, as about 50% of nestlings are fathered by an extra-pair male (i.e. not the social male; see Lessard et al. 2014). Furthermore, previous studies have shown that factors affecting the number of within pair young often differ from the factors affecting number of extra-pair young in tree swallows (Lessard et al. 2014) and in other species (reviewed in Westneat & Stewart 2003).
These observations support the hypothesis that different mate choice patterns occur among social and extra-pair couples. We thus assessed how parasitism and innate immune genetic diversity shape mating patterns for both social and extra-pair couples.

Material and methods

Study system and data collection

This study is part of a long-term research project on tree swallows in southern Québec, Canada, which runs since 2004. The study area covers 10,200 km² and consists of 400 nest boxes distributed equally among 40 farms over a gradient of agricultural intensification (see Ghilain & Bélisle 2008 for details). Habitat types found in our study system were classified as intensive farmlands (low quality; e.g. reduced forest cover, loss of marginal habitats and wetlands, and increased field size, resulting in homogenized landscapes) or non-intensive farmlands (high quality; opposite characteristics) based on the percentage of cash crops, such as corn, soybean and other cereals, observed within a 5-km radius around each farm (see Ghilain & Bélisle 2008; Schmitt et al. 2017b). Previous studies in this system reported lower reproductive success in intensive farmlands than in non-intensive areas (Ghilain & Bélisle 2008; Lessard et al. 2014). All nest boxes are visited every two days during breeding seasons (early May to mid-July). Breeding females and social males are captured and marked at the nest box during incubation and food provisioning, respectively. Blood samples are collected for subsequent DNA analyses. Data were collected in compliance with the Canadian Council on Animal Care, under the approval of the Université de Sherbrooke Animal Ethics Committee (protocols DG 2014-01 and FP2014-01).
Parasite infection screening

For this study, 906 adult tree swallows (465 females and 441 males; 1260 samples; Table 1) were sampled between 2012 and 2015 and screened for haemosporidian parasite infection, as detailed in Turcotte et al. (2018). Briefly, the detection of avian malaria from bird blood samples was performed with a nested PCR, which consists of two successive PCR amplifications (Hellgren et al. 2004). To determine if the PCR amplification was successful, 5 μl of the second PCR product was migrated on a 2% agarose gel stained with ethidium bromide and visualized under UV light. The presence of an infection was confirmed by the detection of an amplification at ca. 500-bp (478-bp for *Leucocytozoon* and 480-bp for *Plasmodium and Haemoproteus* without primers).

β-defensin genes analysis

Of the individuals screened for parasites infection, 69 females and 81 males captured in 2013 and 2014 (on a subsample of 10 farms) were genotyped at β-defensin loci, as detailed in Schmitt et al. (2017a,c) (see Table 1). This population of tree swallows has shown variability for several β-defensin genes for both non-synonymous and synonymous SNPs (Schmitt et al. 2017a,c). We used only non-synonymous SNPs because the alleles are potentially responsible for functionally different peptides. We choose to perform analyses of mating patterns using heterozygous status at AvBD2 and AvBD7 loci as these were related to different components of immunity in previous research: heterozygosity at AvBD2 was associated with the absence of eggshell bacteria, and homozygosity at AvBD7 with greater innate immune response (Schmitt et al. 2017c). Moreover, among the six available β-defensin genes in tree swallows, AvBD2 and AvBD7 were the only loci showing some evidence of selection, with lowest Tajima's D scores (Schmitt et al. 2017a). Finally, heterozygosity at both loci
was strongly correlated with total heterozygosity when estimated over all loci considered in previous analyses by Schmitt et al. (2017a; spearman rank correlation with total heterozygosity: AvBD2: rho = 0.61, P < 0.001; AvBD7: rho = 0.44, P < 0.001).

Mating patterns analysis

Mating patterns were defined for both social and extra-pair couples (males assigned using microsatellite loci - see Bourret & Garant 2017 for details on parentage assignment procedures). In brief, candidate genetic fathers of a given nestling included all males captured on the same farm on both previous and following years and within a 15-km radius of the nestling’s nest box (covers males from 1 to 9 farms, mean = 4.8 ± 1.9 farms; see Lessard et al. 2014 for a justification of this scale). However, it should be noted that most paternities in our study system are attributed to males located on the same farm as the female (~85%; see Lessard et al. 2014). Assignment rate was 73.8% for nestlings with DNA samples available (93.5% of all nestlings). The rate of extra-pair paternities was 52.3% overall, and did not vary between habitat (low-quality intensive habitats = 52.3%, non-intensive = 52.4%, χ² = 0.0002, df = 1, P = 0.99).

Patterns were described from the female perspective with respect to (1) their social male and (2) the extra-pair males who fathered some or all of their offspring (genetic males). We compared observed mating patterns to random expectations based on i) parasite infection status of each individual and ii) heterozygosity at either AvBD2 or AvBD7 loci. Males were resampled with replacement, within years, and within a buffer of 15 km for the parasite infection status analysis. Observed numbers were compared to 1000 random expectations for each mating pair status (social and genetic), and P-values were calculated using two-tailed distributions (Fig. S1). We used chi-square tests to check for differences in status (i.e. infected or not, heterozygous or not) between
Results

Overall, 19.5% of social mating partners were infected by haemosporidian parasites (females: 23.7%, males: 16.3%). Females that were not infected by haemosporidian parasites showed mating patterns in accord with random expectations (all Ps > 0.17; Fig 1a). There was a marginally non-significant tendency for infected females to pair with non-infected social males more often than random expectations (social males: P = 0.094; genetic males, P = 0.92; Fig 1b).

No differences in infection status by haemosporidian parasites were observed between social and genetic males for both non-infected ($\chi^2 = 0.40, df = 1, P = 0.53$) and infected ($\chi^2 = 0.10, df = 1, P = 0.76$) females.

Heterozygotes at AvBD2 and AvBD7 represented 34.5% (females: 30.7%, males: 39.5%) and 11.4% (females: 12.9%, males: 9.5%) of social mating partners, respectively. While homozygous females at AvBD2 showed mating patterns that did not differ from random expectation (P > 0.41; Fig 1c), heterozygote females were more likely to pair with heterozygote genetic males than expected by chance (P = 0.013); a pattern not found for social males (P = 0.15; Fig. 1d).

The level of heterozygosity at AvBD2 did not differ between social and genetic males, when paired with homozygous females ($\chi^2 = 0, df = 1, P = 1.00$; Fig 1c). However, social males showed a lower proportion of heterozygous individuals compared to genetic males, when paired
with heterozygous females ($\chi^2 = 6.49$, df = 1, $P = 0.011$; Fig 1d). None of the analyses revealed significant differences in mating patterns related to AvBD7 (all Ps > 0.12; Fig S3).

Mating patterns related to haemosporidian parasite infection status differed between habitats for both social and genetic males (all Ps < 0.001; Fig 2a,b). This was likely due to a non-random distribution of individuals with different infection status among habitats, as non-infected mating pairs were more frequent in low quality, more intensive, habitats (Fig. 2a,b). We observed no differences between habitats in mating patterns related to AvBD2 (all Ps > 0.83; Fig 2c,d) or AvBD7 heterozygosity status (all Ps > 0.30; Fig S3).

Discussion

Our results showed a weak effect of infection status by haemosporidian parasites on mating patterns. There was only a marginally non-significant tendency for infected females to pair with non-infected social males more often than expected by chance. In tree swallows, both females and social males provide food to offspring during the nestling phase (McCarty 2002). Previous studies however provided conflicting results concerning the importance of paternal care in this species with some finding no benefits on females’ reproductive success (Dunn and Hanson 1992) and other showing positive effects (Whittingham et al. 1994). Our results suggest that the choice of social partners by females, who may themselves be limited in their capacity to raise young due to infection by parasites, may be somewhat directed toward healthier males that will help with offspring care and competition for nesting sites.

We also showed assortative mating patterns of genetic pairs based on heterozygosity at one of two β-defensin loci. Heterozygous females at AvBD2 were more likely to be mated with
heterozygous genetic males at this locus. Several factors could explain this result. For instance, the pattern observed could depend on the female’s capacity to assess the genetic diversity of her partners and/or the female’s level of choosiness, which could itself be affected by her own heterozygosity (reviewed in Kempenaers 2007). Different signals, such as plumage coloration, are related to male reproductive success in this system (Van Wijk et al. 2016) and could thus be used as indicators of heterozygosity. Another possible explanation for our result is that patterns of assortative mating are also determined by mutual mate choice, where not only females, but also males, would display preferences for heterozygous partners (García-Navas et al. 2009; Kempenaers 2007). Our result is thus partly in line with theory suggesting that heterozygosity should be favoured by mate choice (Brown 1997) and previous evidences that females increase heterozygosity of their offspring via extra-pair matings (Foerster et al. 2003), including in tree swallows (Stapleton et al. 2007). A previous study conducted in this system provided some evidence that heterozygosity at AvBD2 was marginally, negatively associated with the presence of eggshell heterotrophic bacteria present in nests. Additional analyses however revealed no evidence for an effect of genetic diversity at this locus on fledging success of females (Schmitt et al. 2017c). Further research is needed to conclude on the underlying processes modulating the trend we observed.

We found some evidence that environmental conditions associated with agricultural practices affected the overall distribution of mating patterns. Mating patterns related to parasite infection status differed between habitats for both social and genetic males, which can be explained by a non-random distribution of individuals, with infected individuals found in greater proportion in non-intensively cultivated habitats. Indeed, additional simulation analyses conducted within each habitat, with smaller sample sizes but allowing to control for differences among habitats in...
distribution of individuals, revealed that the differences in mating patterns were not significant at the within-habitat scale (all P-values >0.05; see Supplementary material).

While mate choice patterns are occurring prior to the sampling for infection, most of the infections detected are probably chronic (Turcotte et al. 2018). Hence, measuring infection status after mate choice has occurred likely gives a good picture of this aspect at the time mating choices were made. It is probable, however, that some of the infections occurred on the breeding grounds, as we previously showed that local transmission is present in this study system (Turcotte et al. 2018). This local transmission could also drive to some extent the non-random distribution of infected individuals we reported here. A previous study in this system by Turcotte et al. (2018) showed that non-intensive farmlands were associated with higher *Leucocytozoon* parasites prevalence. These types of land covers correspond to more heterogeneous agricultural landscapes with lower pesticide use (Ghilain and Bélisle, 2008), which thus tend to support greater vector and host abundances (see Bonneaud et al. 2009 for example). Our results are thus partly in line with previous studies showing that mate choice in birds may depend on environmental contexts (O’Brien & Dawson 2007; Robinson et al. 2012).

Conclusion

We showed that mating patterns were different depending on heterozygosity at an immune β-defensin locus, but that they only weakly differed according to infection status by haemosporidian parasites. Furthermore, mating patterns related to parasites infection status were different between habitats of contrasted qualities, indicating a possible effect of the environment in driving sexual selection mechanisms. Given that human-driven habitat changes fundamentally
modify ecosystems across the globe and can modulate wildlife mating patterns, integrating them into sexual selection studies will provide critical insights on their potential consequences on wild populations.
Data accessibility

The raw data have been uploaded as Supplementary files.

Acknowledgements

We thank two anonymous reviewers for helpful comments on a previous version of the manuscript.
We thank all graduate students and field and laboratory assistants who have contributed to the collection of data and laboratory analysis. We also thank the 40 farmers who provide access to their land each year.
260 **References**

261 Andersson M. 1994. Sexual selection. Princeton University Press; Princeton, NJ.

262 Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch S. 2015. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347, 436-438.

265 Bernatchez L, Landry C. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16, 363-377.

267 Bonneaud C, Sepil I, Milá B, Buermann W, Pollinger J, Sehgal RNM, Valkiūnas G, Iezhova TA, Saatchi S, Smith TB 2009. The prevalence of avian Plasmodium is higher in undisturbed tropical forests of Cameroon. J. Trop. Ecol. 25, 439-447.

270 Bourret A, Garant D. 2017. An assessment of the reliability of quantitative genetics estimates in study systems with high rate of extra-pair reproduction and low recruitment. Heredity. 118, 229-238.

273 Brown JL .1997. A theory of mate choice based on heterozygosity. Behav. Ecol. 8, 60-65.

274 Delves P, Martin S, Burton D, Roitt I. 2006. Roitt’s Essential Immunology. John Wiley & Sons. Wiley-Blackwell, Oxford, UK.

276 Dunn PO, Hannon SJ. 1992. Effects of food abundance and male parental care on reproductive success and monogamy in tree swallows. Auk. 109, 488-499.

278 Ejsmond MJ, Radwan J, Wilson AB. 2014. Sexual selection and the evolutionary dynamics of the major histocompatibility complex. Proc. R. Soc. B. 281, 20141662.

280 Foerster K, Delhey K, Johnsen A, Lifjeld JT, Kempenaers B. 2003. Females increase offspring heterozygosity and fitness through extra-pair matings. Nature. 425, 714-717.
García-Navas V, Ortego J, Sanz JJ. 2009. Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): implications for the evolution of mate choice. Proc. R. Soc. B. 276, 2931-2940.

Ghilain A, Bélisle M. 2008. Breeding success of tree swallows along a gradient of agricultural intensification. Ecol. Appl. 18, 1140-1154.

Hamilton WD, Zuk M. 1982. Heritable true fitness and bright birds: a role for parasites? Science. 218, 384-387.

Hellgren O. 2015. Allelic variation at innate immune genes (avian β-defensins), within a natural population of great tits. J. Avian Biol. 46, 113-118.

Hellgren O, Waldenström J, Bensch S. 2004. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797-802.

Ingleby FC, Hunt J, Hosken DJ. 2010. The role of genotype-by-environment interactions in sexual selection. J. Evol. Biol. 23, 2031-2045.

Jennions MD, Petrie M 1997. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. 72, 283-327.

Kaiser SA, Risk BB, Sillett TS, Webster MS. 2017. Ecological and social factors constrain spatial and temporal opportunities for mating in a migratory songbird. Am. Nat. 189, 283-296.

Kamiya T, O'Dwyer K, Westerdahl H, Senior A, Nakagawa, S. 2014. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol. Ecol. 23, 5151-5163.

Kempenaers B. 2007. Mate choice and genetic quality: a review of the heterozygosity theory. Adv. Study Behav. 37, 189-278.
Knowles SCL, Palinauskas V, Sheldon, BC. 2010. Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J. Evol. Biol. 23, 557-569.

Lessard A, Bourret A, Bélisle M, Pelletier F, Garant D. 2014. Individual and environmental determinants of reproductive success in male tree swallow (Tachycineta bicolor). Behav. Ecol. Sociobiol. 68, 733-742.

McCarty JP. 2002. The number of visits to the nest by parents is an accurate measure of food delivered to nestlings in tree swallows. J. Field Ornitho. 73, 9-14.

Miller CW, Svensson EI. 2014. Sexual selection in complex environments. Ann. Rev. Entomol. 59, 427-445.

O’Brien EL, Dawson RD. 2007. Context-dependent genetic benefits of extra-pair mate choice in a socially monogamous passerine. Behav. Ecol. Sociobiol. 61, 775-782.

Penn DJ, Potts WK. 1999. The evolution of mating preferences and major histocompatibility complex genes. Am. Nat. 153, 145-164.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. https://www.R-project.org/.

Robinson MR, Sander van Doorn G, Gustafsson L, Qvarnström A. 2012. Environment-dependent selection on mate choice in a natural population of birds. Ecol. Lett. 15, 611-618.

Schmitt C, Garant D, Doyon K, Bousquet N, Gaudreau L, Bélisle M, Pelletier F. 2017a. Patterns of diversity and spatial variability of β-defensin innate immune genes in a declining wild population of tree swallows. J. Hered. 108, 262-269.
Schmitt C, Garant D, Bélisle M, Pelletier F. 2017b. Agricultural intensification is linked to constitutive innate immune function in a wild bird population. Physiol. Biochem. Zool. 90, 201-209.

Schmitt C, Garant D, Bélisle M, Pelletier F. 2017c. Linking innate immunogenetic variation with phenotypic traits in a wild population of tree swallows, *Tachycineta bicolor*. Biol. J. Linn. Soc. 121, 685-697.

Stapleton MK, Kleven O, Lifjeld JT, Robertson RJ. 2007. Female tree swallows (*Tachycineta bicolor*) increase offspring heterozygosity through extrapair mating. Behav. Ecol. Sociobiol. 61, 1725-1733.

Turcotte A, Bélisle M, Pelletier F, Garant D. 2018. Environmental determinants of haemosporidian parasite prevalence in a declining population of Tree Swallows. Parasitology. 145, 961-970.

Valkiūnas G. 2005. Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton, USA.

van Dijk A, Veldhuizen EJ, Haagsman HP. 2008. Avian defensins. Veter. immunol. immunopathol. 124, 1-18.

Van Wijk S, Bourret A, Bélisle M, Garant D, Pelletier F. 2016. The influence of iridescent coloration directionality on male tree swallows’ reproductive success at different breeding densities. Behav. Ecol. Sociobiol. 70, 1557-1569.

Westneat DF, Stewart IR. 2003. Extra-pair paternity in birds: causes, correlates, and conflict. Ann. Rev. Ecol. Evol. Syst. 34, 365-396.

Whittingham LA, Dunn PO, Robertson RJ. 1994. Female response to reduced male parental care in birds: an experiment in tree swallows. Ethology. 96, 260-269.
Table 1 (on next page)

Sample sizes for adult Tree swallows (total number of individuals sampled per year) included in analyses and known infection status by haemosporidian parasites or genetic diversity at two β-defensin genes.

Total: total number of individuals (including multiple records of individuals across years).
	2012	2013	2014	2015	Total
Parasite infection					
Females	132	132	177	173	614
Males	138	144	187	177	646
AvBD2					
Females	26	46			72
Males	33	63			96
AvBD7					
Females	31	49			80
Males	37	65			102
Figure 1 (on next page)

Difference in proportions of observed and expected mating pairs.

a) Females non-infected by haemosporidian parasites, b) infected females, c) homozygous females at AvBD2 locus and d) heterozygous females at AvBD2, paired with either social (S) or genetic males (G). White bars represent non-infected (a, b) or homozygote (c, d) males, and grey bars, infected (a, b) or heterozygote (c, d) males. P-values (* P < 0.1; ** P < 0.05) are shown. Significance threshold (P<0.05) in each case is represented by a dashed line.
a) Non-infected females

b) Infected females

* p < 0.05

** p < 0.01

c) Homozygous females

d) Heterozygous females
Figure 2 (on next page)

Proportions of observed mating pairs between habitats.

White bars: intensive; grey bars: non-intensive as function of infection status by haemosporidian parasites (a, b; non-infected: 0, infected: 1) or heterozygosity at AvBD2 locus (c, d; homozygote: 0, heterozygote: 1), for social couples (a, c) and genetic couples (b, d). P-values (*** P < 0.001) are also shown.
