The Boltzmann Equation
with Specular Boundary Condition
in Convex Domains

CHANWOO KIM
University of Wisconsin-Madison

DONGHYUN LEE
University of Wisconsin-Madison

Abstract
We establish the global well-posedness and stability of the Boltzmann equation
with the specular reflection boundary condition in general smooth convex do-
mains when an initial datum is close to the Maxwellian with or without a small
external potential. In particular, we have completely solved the longstanding
open problem after an announcement by Shizuta and Asano in 1977. © 2017 Wi-
ley Periodicals, Inc.

Contents
1. Introduction 411
2. Specular Trajectories with a Small Time-Dependent Potential 422
3. Transversality via the Geometric Decomposition and Triple Iterations 455
4. A Time-Dependent Potential 479
5. A Time-Independent Potential 491
Bibliography 503

1 Introduction

Kinetic theory describes the dynamics of any system made up of a large num-
ber of particles (e.g., gas or plasma) by a distribution function that is defined in
the phase space. Among others, one of the fundamental models is the Boltzmann
equation. This equation describes the dynamics of dilute collections of gas parti-
cles undergoing elastic binary collisions. In the presence of an external potential
\(-\nabla_x (\phi(t, x) + \Phi(x))\), a density of dilute charged gas particles is governed by the
Boltzmann equation

\[
\begin{align*}
\partial_t F & + v \cdot \nabla_x F - \nabla_x (\phi(t, x) + \Phi(x)) \cdot \nabla_v F = Q(F, F), \\
F(0, x, v) & = F_0(x, v),
\end{align*}
\]

(1.1)

Communications on Pure and Applied Mathematics, Vol. LXXI, 0411–0504 (2018)
© 2017 Wiley Periodicals, Inc.
where $F(t, x, v)$ is a distribution function of the gas particles at a time $t \geq 0$, a position $x \in \Omega \subset \mathbb{R}^3$, and a velocity $v \in \mathbb{R}^3$. Here the collision operator Q takes the form of

$$Q(F_1, F_2) := Q_+(F_1, F_2) - Q_-(F_1, F_2)$$

$$:= \int_{\mathbb{R}^3} \int_{S^2} B(v-u, \omega) \left[F_1(u') F_2(v') - F_1(u) F_2(v) \right] d\omega d\mu,$$

where $u' = u + [(v-u) \cdot \omega] \omega$, $v' = v - [(v-u) \cdot \omega] \omega$, and $B(v-u, \omega) = |(v-u) \cdot \omega|$ (hard sphere). It is well-known (see [16]) that the following local Maxwellian is an equilibrium solution to (1.1):

$$\mu_E(x, v) = \mu(v) e^{-\Phi(x)},$$

where $\mu(v) = e^{-|v|^2/2}$ is a standard global Maxwellian.

In many physical applications, e.g., dilute gases passing objects or charged particles inside tokamak devices, particles are interacting not only with each other but also with the boundary. Various interesting phenomena occur when gas particles interact with the boundary, such as a formation and propagation of singularities [13–15]. In the presence of the boundary, a kinetic equation has to be supplemented with boundary conditions modeling the interaction between the particles and the boundary. Among other boundary conditions (see [2,12]), in this paper we focus on one of the most basic boundary conditions, a so-called specular reflection boundary condition. This boundary condition takes into account a case that if a gas particle hits a boundary, then it bounces back with the opposite normal velocity and the same tangential velocity, as a billiard ball hits a boundary and bounces back:

$$F(t, x, v) = F(t, x, R_x v) \quad \text{for} \quad x \in \partial \Omega,$$

where $R_x v = v - 2(n(x) \cdot v)n(x)$. We note that the local Maxwellian (1.2) satisfies the boundary condition (1.3).

Despite extensive developments in the study of the Boltzmann theory, many basic boundary problems, especially regarding the specular reflection boundary condition (BC) with general domains, have remained open. In a landmark paper [21] of 1974, Ukai constructed the first global-in-time solutions near Maxwellians to the Boltzmann equation with nontrivial spatial dependence in a periodic box (no boundary). Not long after, in 1977, Shizuta and Asano announced the construction of global solutions to the Boltzmann equation (1.1) with no external potential ($\phi \equiv 0 \equiv \Phi$) near Maxwellians in smooth convex domains with specular reflection BC [20], but without mathematical proofs. It took more than 30 years to encounter the first mathematical resolution: Guo, in [12], developed a novel $L^2 - L^\infty$ argument to construct a unique solution to the Boltzmann equation (1.1) with no external potential for the specular reflection boundary condition. An asymptotic stability of the global Maxwellian μ is proven when an initial datum is close to μ. However, such results in [12] are established under an extra condition; namely, the
boundary is a level set of a real analytic function. Indeed, this analyticity condition is crucially used to verify a key part of the proof in [12]. Eventually, in this paper, we are able to establish the global well-posedness and stability of the Boltzmann equation for the specular reflection BC without the analyticity, and thereby we completely settle a long-standing (40 years) open question in the Boltzmann theory in the affirmative! In fact, our results even go beyond the original open question in [20]: nontrivial external potentials \(\phi(t, x) \) and \(\Phi(x) \) can be allowed. We discuss more on the external potential issue later.

Here we only mention some other relevant works briefly. In [1, 18], the well-posedness and asymptotic stability of the global Maxwellian are studied when the boundary condition is any convex combination of the specular reflection BC and a diffusive BC except the pure specular reflection boundary condition. For large-amplitude solutions, an asymptotic stability of the global Maxwellian is established in [4] with or without the boundary, provided certain a priori strong Sobolev estimates can be verified. Recently boundary regularity and singularity of solutions are extensively studied in [13–15]. We refer [19] among others for the weak solution contents.

Mathematical problems on the Boltzmann equation with an external potential have also drawn lots of attention. In [16], the stability of the Maxwellian \(\mu_E \) in (1.2) is established with a time-dependent external potential \(\Phi(x) \), which can be large, in a periodic box. The Vlasov-Poisson-Boltzmann system (VPB), which takes account of self-consistent electric fields by charged particles, is studied in [10] when solutions and fields are small perturbations in a periodic box. However, in many important physical applications (e.g., semiconductor and tokamak), the charged dilute gas interacts with the boundary. One major difficulty is that trajectories are curved and behave in a very complicated way when they hit the boundary. As the first step toward studying models of dilute charged gases interacting with a self-consistent field and boundary, in this paper we establish the global well-posedness of the Boltzmann equation coupled with small external potentials and the specular reflection BC.

An external potential and a boundary condition play an important role in the evolution of macroscopic quantities such as the total mass, total momentum, and total energy. Let \(F \) be a solution to (1.1) satisfying the specular reflection boundary condition (1.3). We have the total mass conservation and the evolution of the total energy as

\[\int \int_{\Omega \times \mathbb{R}^3} F(t) = \int \int_{\Omega \times \mathbb{R}^3} F_0. \]

(1.4)

\[\int \int_{\Omega \times \mathbb{R}^3} \left(\frac{|v|^2}{2} + \Phi \right) F(t) + \int_0^t \int \int_{\Omega \times \mathbb{R}^3} F(s) v \cdot \nabla_x \Phi(s) \right) F_0. \]

(1.5)
By normalization, without loss of generality, we assume that
\[
\iint_{\Omega \times \mathbb{R}^3} F_0(x, v) = \iint_{\Omega \times \mathbb{R}^3} \mu_E(x, v),
\]
(1.6)
\[
\iint_{\Omega \times \mathbb{R}^3} \left(\frac{|v|^2}{2} + \Phi(x) \right) F_0(x, v) = \iint_{\Omega \times \mathbb{R}^3} \left(\frac{|v|^2}{2} + \Phi(x) \right) \mu_E(x, v).
\]

We consider a momentum for a special case: a domain \(\Omega \) is axis-symmetric if there are vectors \(x_0 \in \mathbb{R}^3 \) and \(v \in \mathbb{R}^3 \) such that
\[
\{(x - x_0) \times v \} \cdot n(x) = 0 \quad \text{for all } x \in \partial \Omega.
\]
(1.7)

In the case of an axis-symmetric domain, we assume a degenerate condition for the external fields as
\[
\{ (x - x_0) \times v \} \cdot \nabla_x (\phi(t, x) + \Phi(x)) = 0 \quad \text{for all } t \geq 0 \text{ and } x \in \Omega.
\]
(1.8)

Then, assuming both (1.7) and (1.8), we have an evolution of an angular momentum as
\[
\iint_{\Omega \times \mathbb{R}^3} \{ (x - x_0) \times v \} \cdot v F(t) = \iint_{\Omega \times \mathbb{R}^3} \{ (x - x_0) \times v \} \cdot v F_0.
\]
(1.9)

In this case, we set
\[
\iint_{\Omega \times \mathbb{R}^3} \{ (x - x_0) \times v \} \cdot v F_0(x, v) = 0.
\]
(1.10)

Furthermore, the entropy
\[
\mathcal{H}(F) := \iint_{\Omega \times \mathbb{R}^3} F \ln F
\]

satisfies the following inequality (H-theorem)
\[
(1.11) \quad \mathcal{H}(F(t)) - \mathcal{H}(\mu_E) \leq \mathcal{H}(F_0) - \mathcal{H}(\mu_E).
\]

Now we are ready to state our main theorems.

Theorem 1.1. Let \(w = (1 + |v|)^\beta \) for \(\beta > \frac{5}{2} \). Assume that the domain \(\Omega \subset \mathbb{R}^3 \) is \(C^3 \) and convex in (1.15). Assume that \(\phi(t, x) \in C_{t,x}^{2,\gamma} \) and \(\Phi(x) \in C_x^{2,\gamma} \) for some \(0 < \gamma, \| \phi + \Phi \|_{C_x^2} \ll 1 \), and for \(\lambda_\phi > 0 \) and \(\delta_\phi > 0 \),
\[
\sup_{t \geq 0} e^{\lambda_\phi t} \| \phi(t) \|_{C^1} < \delta_\phi < +\infty.
\]
(1.12)

Assume (1.6). If \(F_0 = \mu_E + \sqrt{\mu_E} f_0 \geq 0 \) and \(\| w f_0 \|_\infty + |\mathcal{H}(F_0) - \mathcal{H}(\mu_E)| + \delta_\phi + \delta_\phi/\lambda_\phi \ll 1 \), then there exists a unique global-in-time solution
\[
F(t) = \mu_E + \sqrt{\mu_E} f(t) \geq 0
\]
(1.13)

to (1.1) satisfying the specular reflection boundary condition (1.3). Moreover,
\[
\sup_{t \geq 0} \| w f(t) \|_\infty \lesssim \| w f_0 \|_\infty + |\mathcal{H}(F_0) - \mathcal{H}(\mu_E)| + \delta_\phi + \delta_\phi/\lambda_\phi.
\]
(1.14)

Furthermore, (1.4), (1.5), and (1.11) hold for all \(t \geq 0 \).
Here, a C^3 domain means that for any boundary point $p \in \partial \Omega$, locally there exists a one-to-one and onto C^3 function η_p such that $\eta_p(x_{p,1}, x_{p,2}, x_{p,3}) \in \partial \Omega$ if and only if $x_{p,3} = 0$ (see (2.6)). The convexity is defined as follows: for $C^3 > 0$,

$$
(1.15) \quad \sum_{i,j=1}^{2} \xi_i \xi_j \partial_i \partial_j \eta_p(x_{p,1}, x_{p,2}, 0) \cdot \partial_3 \eta_p(x_{p,1}, x_{p,2}, 0) \leq -C_\Omega |\xi|^2
$$

for $\xi \in \mathbb{R}^2$.

The notation $C^{\alpha, \gamma}$ stands for the standard Hölder space in t and x.

In the presence of a time-independent external potential ($\phi \equiv 0$), the asymptotical stability of the local Maxwellian μ_E is studied.

Theorem 1.2. Assume the same conditions in Theorem 1.1 before (1.12). Let

$$
(1.16) \quad \phi \equiv 0.
$$

Assume (1.6). If both (1.7) and (1.8) hold, then we assume (1.10). If $\|wf_0\|_{\infty} \ll 1$, then there exists a unique global-in-time solution $F = \mu_E + \sqrt{\mu_E} f \geq 0$ to (1.1) with (1.3). Moreover, there exists $\lambda = \lambda(\Omega, \Phi) > 0$ such that

$$
(1.17) \quad \sup_{t \geq 0} e^{\lambda t} \|wf(t)\|_{\infty} \lesssim \|wf_0\|_{\infty}.
$$

Furthermore, the total mass and energy are conserved as (1.4) and (1.5) with $\phi \equiv 0$, and the total angular momentum is conserved as (1.9) if both (1.7) and (1.8) hold.

Note that we do not have a quantitative bound of λ in (1.17). The main reason is that we use a nonconstructive method to prove L^2 coercivity in Proposition 1.4.

We remark that in both theorems we only need that the domain Ω is smooth and convex but not real analytic. We also note that in [16] we need a stronger C^3 assumption for the time-independent external potential to establish the well-posedness.

To illustrate the main ideas of the paper, it is convenient to play with the perturbation f. The function f in (1.13) solves

$$
(1.18) \quad \partial_t f + v \cdot \nabla_x f - \nabla_x (\phi + \Phi) \cdot \nabla_v f + e^{-\Phi} Lf = -\left(\frac{1}{2} f + \sqrt{\mu_E} \right) v \cdot \nabla_x \phi + e^{-\frac{\Phi}{2}} \Gamma(f, f),
$$

and satisfies

$$
(1.19) \quad f(t, x, v) = f(t, x, R_x v) \quad \text{for} \quad x \in \partial \Omega.
$$

We recall the definition of the linearized collision operator (see [2]),

$$
(1.20) \quad Lf = -\frac{1}{\sqrt{\mu}} [Q(\mu, \sqrt{\mu} f) + Q(\sqrt{\mu} f, \mu)].
$$
and the nonlinear collision operator,
\[\Gamma(f, g) = \frac{1}{2\sqrt{\mu}}[Q(\sqrt{\mu} f, \sqrt{\mu} g) + Q(\sqrt{\mu} g, \sqrt{\mu} f)]. \]

It is well-known that (see [8])
\[Lf = vf - Kf, \]
where the collision frequency is defined as
\[\nu(v) := \int_{\mathbb{R}^3} \int_{S^2} |(v - u) \cdot w| \mu(u) dw du. \]

For this hard sphere case, there are positive numbers \(C_0 \) and \(C_1 \) such that, for \(\langle v \rangle := \sqrt{1 + |v|^2} \),
\[(1.21) \quad C_0 \langle v \rangle \leq \nu(v) \leq C_1 \langle v \rangle. \]

Moreover, the compact operator \(K \) in \(L^2(\{v \in \mathbb{R}^3\}) \) is defined as
\[Kf = \frac{1}{\sqrt{\mu}}[Q_+(\mu, \sqrt{\mu} f) + Q_+(\sqrt{\mu} f, \mu) - Q_-(\sqrt{\mu} f, \mu)] \]
\[= \int_{\mathbb{R}^3} k(v, u) f(u) du. \]

1.1 \textbf{\(L^p-L^\infty \) Bootstrap Argument via the Triple Iterations}

In order to handle the quadratic nonlinearity of \(\Gamma(f, f) \), it is important to derive an \(L^\infty \)-control of the solutions of (1.18). To illustrate the main idea, we consider a simplified linear problem
\[(1.22) \quad \partial_t f + v \cdot \nabla_x f - \nabla_x \Phi(t, x) \cdot \nabla_v f + f = \int_{|u| \leq N} f(u) du. \]

Here, \(\Phi(t, x) \) is a time-dependent potential and we can regard \(\phi(t, x) + \Phi(x) \) in (1.1) as \(\Phi(t, x) \).

We note that due to the boundary condition (1.19), the trajectory \((X(s; t, x, v), V(s; t, x, v)) \) is defined as the backward billiard trajectory that is curved by the external field (or force) \(-\nabla \Phi\). Let \(t^1 \) and \(x^1 \) be the first backward bouncing time and position of the trajectory sitting on a position \(x \) with a velocity \(v \) at time \(t \). Then we define \(v^1 = R_{x^1} v \) where \(R_{x^1} v \) is defined in (1.3). Inductively we can define the cycles (\(t^\ell, x^\ell, v^\ell \)) and \(X_{cl}(s; t, x, v) = X(s; t^\ell, x^\ell, v^\ell) \) and \(V_{cl}(s; t, x, v) = V(s; t^\ell, x^\ell, v^\ell) \) for \(s \in [t^{\ell+1}, t^\ell] \). The Duhamel formula of (1.22) along this trajectory is given by
\[f(t, x, v) = e^{-t} f_0(X_{cl}(0; t, x, v), V_{cl}(0; t, x, v)) \]
\[+ \int_0^t e^{-(t-s)} \int_{|u| \leq N} f(s, X_{cl}(s; t, x, v), u) du ds. \]
Plugging the Duhamel formula into the integrand \(f(s, X(s; t, x, v), u) \), we get
\[
\begin{align*}
 f(t, x, v) &= \int_0^t e^{-(t-s)} \int_0^{s-s'} e^{-(s-s')} \\
 &\times \int_{|u| \leq N, |w'| \leq N} f(s', X_{\alpha}(s'; s, X_{\alpha}(s; t, x, v), u), u') du' du ds' ds \\
 &+ \text{initial datum’s contributions} + O(e).
\end{align*}
\]

(1.24)

Throughout this paper, we use \(O_a(A) \) for some function that depends on \(a \) and is size of \(A \).

In the absence of a boundary and an external potential, the trajectory \(X(s; t, x, v) \) is a straight line, and we can explicitly compute the Jacobian of \(u \mapsto X(s'; s, X(s; t, x, v), u) \), which has a positive lower bound away from a small set of \(s \). Therefore we obtain, via a change of variables,
\[
\| f \|_{L^\infty} \lesssim \| f \|_{L^p} + \text{data} + \text{small terms}.
\]

(1.25)

Unfortunately, trajectories are very complicated when the specular reflection BC is imposed. In fact, in the case of the specular reflection BC, such a lower bound of Jacobian is only known when the domain is convex and real analytic in the absence of an external potential [12].

The main contribution of this paper is to establish an \(L^p - L^\infty \) bootstrap estimate as (1.25), when the domain is smooth and convex and the external potential is \(C^{2,\gamma} \) and small in \(C^2 \). For the readers’ convenience, we write a rough version of this result:

A ROUGH VERSION OF THEOREM 3.9. Applying the Duhamel formula once again to (1.24) (triple iterations), we have
\[
\begin{align*}
 f(t, x, v) &= \int_0^t e^{-(t-s)} \int_0^{s-s'} e^{-(s-s')} \int_{|u| \leq N, |u_1| \leq N, |u_2| \leq N} \\
 &\times f(s'', X_{\alpha}(s''; s', X_{\alpha}(s'; s, X_{\alpha}(s; t, x, v), u), u'), u'') du'' du' du ds'' ds' ds \\
 &+ \text{initial datum’s contributions} + O(e).
\end{align*}
\]

(1.26)

Let \((\hat{u}_1, \hat{u}_2) \) and \((\hat{u}_1', \hat{u}_2') \) be the spherical coordinate of \(\hat{u} = u/|u| \in S^2 \) and \(\hat{u}' = u'/|u'| \in S^2 \), respectively. Then, if \(s' \) and \(s'' \) are away from some local \(C^{0,\gamma} \) functions, then locally we can choose two distinct variables \(\{\xi_1, \xi_2\} \) among \(\{|u|, \hat{u}_1, \hat{u}_1', \hat{u}_2'\} \) such that
\[
\begin{align*}
 \left| \det \left(\frac{\partial X_{\alpha}(s''; s', X_{\alpha}(s'; s, X_{\alpha}(s; t, x, v), u), u')}{\partial(|u'|, \xi_1, \xi_2)} \right) \right|
\end{align*}
\]

(1.27)

has a positive lower bound.

As a consequence we achieve (1.25).
We remark that the regularity of such $C^{0,\gamma}$-functions is determined and restricted crucially by the regularity of the external potential $\Phi \in C^{2,\gamma}$. Moreover, this $C^{0,\gamma}$-regularity is a (minimal) condition to guarantee that we can construct small ε-neighborhoods of the graph of them.

There are several key ingredients in the proof of Theorem 3.9:

Specular Basis and Geometric Decomposition. Assume that $t^{\ell+1} < t' < t^\ell$ and hence $X_{cl}(s', s; X_{cl}(s; t, x, v), u)$ is in between ℓ-bounce and $(\ell + 1)$-bounce. Then we know that

\[
\frac{\partial}{\partial |u|} X_{cl}(s', s; X_{cl}(s; t, x, v), u) = v^\ell/|v^\ell| + O(\|\Phi\|_{C^2}).
\]

On the other hand, for $\hat{u} = (\hat{u}_1, \hat{u}_2) \in S^2$, we have

\[
\nabla_{\hat{u}} X_{cl}(s'; s; X_{cl}(s; t, x, v), u) = \nabla_{\hat{u}} x^\ell - (t^\ell - s') \nabla_{\hat{u}} v^\ell
\]

\[
- \nabla_{\hat{u}} t^\ell v^\ell + O(\|\Phi\|_{C^2}).
\]

Among other terms, $\partial_{\hat{u}} t^\ell$ is the most delicate term to control since t^ℓ depends on all the cycles (x^l, u^l) for $l = 1, 2, \ldots, \ell - 1$. Fortunately, this harmful term appears only in the direction of $v^\ell/|v^\ell|$! Inspired by this observation we define the *specular basis* $\{e_0^\ell, e_{\perp, 1}^\ell, e_{\perp, 2}^\ell\}$, which is an orthonormal basis with $e_0^\ell = v^\ell/|v^\ell|$ and $e_{\perp, i}^\ell$ perpendicular to e_0^ℓ. See (3.14).

Now we decompose $\nabla_{|u|, \hat{u}_1, \hat{u}_2} X_{cl}(s', s; X_{cl}(s; t, x, v), u)$ into

\[
\nabla X_{cl} = (\nabla X_{cl})_{\parallel} + (\nabla X_{cl})_{\perp} := (\nabla X_{cl} \cdot e_0^\ell) e_0^\ell + \nabla X_{cl} - (\nabla X_{cl})_{\parallel}.
\]

Then we have the following similarity relations, from (1.28) and (1.29):

\[
\frac{\partial X_{cl}}{\partial (|u|, \hat{u})} \sim \begin{pmatrix}
\frac{\partial X_{cl}}{\partial (|u|, \hat{u})}_{\parallel} \\
-|v^\ell| \nabla_{\hat{u}_1, \hat{u}_2} t^\ell \\
\frac{\nabla_{\hat{u}_1, \hat{u}_2} x^\ell - (t^\ell - s') \nabla_{\hat{u}_1, \hat{u}_2} v^\ell}{|\nabla_{\hat{u}_1, \hat{u}_2} x^\ell - (t^\ell - s') \nabla_{\hat{u}_1, \hat{u}_2} v^\ell|} \cdot e_{\perp, 1}^\ell \\
0_{2 \times 1}
\end{pmatrix}
\]

\[
+ O_{\Omega}(\|\Phi\|_{C^2}).
\]

See (3.32) for the precise form. Note that an upper right block containing $\partial_{\hat{u}} t^\ell$ would have small contribution in the determinant of the full matrix since the lower left block is a zero matrix.

Due to this geometric decomposition, we are able to relate $\partial X_{cl}/\partial (|u|, \hat{u})$ to the mapping

\[
(|u|, \hat{u}_1, \hat{u}_2) \mapsto (x^\ell, v^\ell).
\]

Note that the map (1.32) is closely related to the billiard map [3], which turns out to be more “controllable” than $\partial X_{cl}/\partial (|u|, \hat{u})$. Moreover, the form of the first column
Diffeomorphism and Specular Matrix. By the chain rule, we can view (1.32) as the compositions of

\[(|u|, \hat{u}_1, \hat{u}_2) \mapsto (x^1, v^1) \mapsto (x^2, v^2) \mapsto \cdots \mapsto (x^\ell, v^\ell).\]

In the absence of external potentials, the map \((x^I, v^I) \mapsto (x^{I+1}, v^{I+1})\) is the billiard table and it is well-known that this map is diffeomorphic [3].

The quantitative study of such a map, especially in 3D domains, is performed recently in the work [14] by the first author with his other collaborators when the trajectories are very close to the boundary (grazing trajectories) in the absence of external potentials. However, these estimates cannot be sufficient for our purpose since it only can provide the information for the grazing trajectories. Moreover, the proof of [14] heavily relies on the fact that the ODE of the trajectory is autonomous. In the presence of a time-dependent external potential, however, the ODE of \((X_{cl}, V_{cl})\) becomes nonautonomous, which obstructs generalizing the result of [14] to the time-dependent external potential case.

We are able to overcome this difficulty by a new advance of our understanding to the derivatives of trajectories \((X_{cl}, V_{cl})\). In this paper, we succeed in performing the (almost) explicit computations of the Jacobian matrix of (1.33) in the presence of a small time-dependent external potential. This also allows us to understand the role of the regularity of the external potential in (1.27). We expect that this technical improvement will allow us to generalize the work of [14].

Equipped with this quantitative estimate, we study the lower right \(2 \times 2\) submatrix of (1.31). In order to use the diffeomorphism property of (1.33), we employ the specular matrix \(\mathcal{R}\), which is a \(4 \times 4\) full-rank matrix and essentially equals the Jacobian matrix of (1.33) expressed with the specular basis. The precise form can be computed as in (3.16), and the entries are \(C^{0,y}\) if the external potential is \(C^{2,y}\). Indeed, the lower right \(2 \times 2\) submatrix of (1.31) can be written as in (3.32),

\[\begin{pmatrix} j_u & y_u^1 & y_u^2 \\ j_u^0 & y_u^0 & y_u^0 \end{pmatrix} = \mathcal{R} - (t^\ell - s')
\]

\[\times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\]

Since at least one entry of the right \(4 \times 2\) submatrix of \(\mathcal{R}\) should not be zero as a polynomial of \(s\), we are able to show that \((|u|, \hat{u}_1) \mapsto X\) is at least rank 2 if \(s\) is away from some \(C^{0,y}\)-function of \((t, x, v)\) in Lemma 3.6.

Triple Iterations. Unfortunately, this rank 2 is still not sufficient for our purpose. The key idea to overcome this difficulty is the triple iterations in (1.26), applying the Duhamel formula (1.23) once again to (1.24). One more iteration makes the game more feasible since now we have more free parameters to play with: \(|u|, \hat{u}_1, |u'|, \hat{u}'_1, \hat{u}'_2\) \(\in \mathbb{R}^5\). Due to the observation (1.28), we need to choose \(|u'|\) and two other free parameters \(\{\xi_1, \xi_2\}\) so that the following map is rank 3,

\[\begin{pmatrix} |u'|, \xi_1, \xi_2 \end{pmatrix} \mapsto X(s''; s', s, X(s; t, x, v, u), u').\]
We use the full structure of the specular matrix and carefully study the quadratic polynomial (Lemma 3.5) to achieve a positive lower bound of the Jacobian of (1.35) in Lemma 3.7. The convexity of the domain (1.15) is used crucially to control the number of bounces in Lemma 3.8.

1.2 \(L^p \)-Bounds

Now we illustrate the \(L^p \) control of the Boltzmann solution. Due to the \(L^p-L^\infty \) bootstrap estimate (1.25), such \(L^p \) estimates would provide \(L^1 \) control.

\(L^1 \)-bound in the case of a time-dependent potential. In order to show the stability of \(\mu_E \) in the presence of time-dependent potential \(\phi \), we utilize the following bound of [11, 15].

Lemma 1.3.

\[
|F - \mu_E|_1 \leq \frac{4}{\delta} \left((F \ln F - \mu_E \ln \mu_E) - (F - \mu_E) \right) + \left(\frac{|v|^2}{2} + \Phi(x) \right) (F - \mu_E).
\]

Applying the \(L^p-L^\infty \) bootstrap argument via the triple iteration, the \(L^\infty \)-norm of the solution is mainly bounded by the \(L^1 \)-norm of \(|F - \mu_E|_1 \). By Lemma 1.3, we further bound it by the differences in the entropy, total mass, total energy of the solution, and \(\mu_E \). A new difficulty in the presence of the time-dependent potential \(\phi(t,x) \) is that the total energy is not preserved anymore (1.5). Via Gronwall’s inequality, we are able to prove that \(\|w f(t)\|_\infty \) can grow in time at most as \(e^{C(\|\phi\|_\infty + \|w f\|_\infty)} \). Using the decay of potential and \(f \), we can prove that the total energy is close to the initial total energy for all time. This weighted \(L^\infty \)-bound is sufficient to prove the existence, uniqueness, and the stability of \(\mu_E \) in Theorem 1.1.

\(L^2 \)-decay in the case of a time-independent potential. It is well-known [2] that the linear operator \(L \) is only semipositive,

\[
\int_{\mathbb{R}^3} L f f \, dv \geq \delta \| \sqrt{\mu} (I - P) f \|_{L^2(\mathbb{R}^3)}^2,
\]

where \(\| \cdot \|_v = \| v^{1/2} \cdot \|_{L^2} \). The null space of \(L \) is a five-dimensional subspace of \(L^2(\mathbb{R}^3) \) spanned by \(\{ \sqrt{\mu} E, v \sqrt{\mu} E, |v|^2 \sqrt{\mu} E \} \) and the projection of \(f \) onto such null space is denoted by

\[
P f(t, x, v) := \{ a(t, x) + v \cdot b(t, x) + |v|^2 c(t, x) \} \sqrt{\mu_E}.
\]

Due to this missing term in the lower bound of (1.36), the Boltzmann equation is degenerated dissipative. In order to prove \(L^2 \)-decay, we need a coercivity estimate. Following the argument of [12][16] we first consider

\[
\partial_t f + v \cdot \nabla_x f - \nabla_x \Phi(x) \cdot \nabla_v f + e^{-\Phi(x)} L f = 0.
\]
PROPOSITION 1.4. Let $\Phi(x) \in C^1$. Assume that f solves \eqref{1.38} and satisfies the specular reflection BC and \eqref{1.4}–\eqref{1.5} with $\phi \equiv 0$ for $F = \mu_E + \sqrt{\mu_E} f$. Furthermore, for an axis-symmetric domain \eqref{1.7} with a degenerate potential \eqref{1.8}, we assume \eqref{1.9}. Then there exists $C > 0$ such that, for all $N \in \mathbb{N}$,

\begin{equation}
\int_N^{N+1} \| P f(t) \|_2^2 \, dt \leq C \int_N^{N+1} \| (I - P) f(t) \|_0^2 \, dt,
\end{equation}

where $P f$ is defined in \eqref{1.37}.

We remark that we do not need any smallness of $\hat{\Phi}$ in this linear theorem. A direct consequence of \eqref{1.39} is an exponential decay in time of $\| f(t) \|_{L^2(\Omega \times \mathbb{R}^3)}$. Then following the argument of \cite{12}, we are able to show an exponential decay in time of $\| w f(t) \|_{L^\infty(\Omega \times \mathbb{R}^3)}$.

The proof of this proposition is based on the contradiction argument of \cite{12, 16}. As a consequence, we do not have any quantitative estimates of C in \eqref{1.39} and the decay rate. By negating the coercivity of \eqref{1.39} and some normalization of \eqref{5.15}, we obtain a weakly convergent sequence Z^m whose component orthogonal to the null space of L is vanishing as $m \to \infty$. The weak limit Z satisfies the conservation laws as \eqref{5.1}–\eqref{5.3} and the specular reflection BC (step 7 in the proof of Proposition 1.4) and

\begin{equation}
b(t, x) \cdot n(x) = 0 \quad \text{for almost all } x \in \partial \Omega.
\end{equation}

Moreover, Z remains in the null space of L and solves the transport equation \eqref{5.24} without $e^{-\hat{\Phi} L Z}$. As a consequence, the components a, b, and c of \eqref{1.37} solve the systems of \cite{16}

\begin{equation}
\begin{aligned}
\partial_t c &= 0, \\
\partial_t c + \partial_i b_i &= 0, \\
\partial_i b_j + \partial_j b_i &= 0, \quad i \neq j, \\
\partial_i b_i + \partial_t a - 2c \partial_t \Phi &= 0, \\
\partial_t a - \nabla_x \Phi \cdot b &= 0,
\end{aligned}
\end{equation}

Unlike the case of $\Phi \equiv 0$ in \cite{12}, explicit forms of a, b, and c cannot be obtained. We use the boundary condition \eqref{1.40} and the conservation laws carefully and conclude that

\begin{equation}
Z(t, x, v) = 0 \quad \text{almost all } t, x, v.
\end{equation}

On the other hand, due to the normalization \eqref{5.15}, the L^2-norm of $P Z^m$ is always 1 identically. Away from the boundary $\partial \Omega$, the weak convergence is actually strong convergence due to the velocity average lemma. For the shell-like subset of Ω, using the Duhamel form along the trajectory, we are able to bound the integration over this shell-like subset by the interior integration (Lemma 5.1). Therefore, $Z^m \to Z$ strongly and the L^2-norm of Z equals 1, which is a contradiction to \eqref{1.42}.
2 Specular Trajectories with a Small Time-Dependent Potential

In \([1,1]\), a time-dependent potential is given by \(\Phi(x) + \phi(t, x)\). In this section, we write this potential as \(\hat{\Phi}(t, x)\) for convenience. The corresponding characteristic equation is

\[
\frac{d}{ds} X(s; t, x, v) = V(s; t, x, v),
\]

(2.1)

\[
\frac{d}{ds} V(s; t, x, v) = -\nabla_x \Phi(s, X(s; t, x, v)).
\]

DEFINITION 2.1. We recall the standard notations from \([14]\). We define

\[
t_b(t, x, v) := \sup\{s \geq 0 : X(t; t, x, v) \in \Omega \text{ for all } \tau \in (t - s, t)\},
\]

(2.2)

\[
x_b(t, x, v) := X(t - t_b(t, x, v); t, x, v),
\]

\[
v_b(t, x, v) := V(t - t_b(t, x, v); t, x, v),
\]

and similarly,

\[
t_f(t, x, v) := \sup\{s \geq 0 : X(t; t, x, v) \in \Omega \text{ for all } \tau \in (t, t + s)\},
\]

(2.3)

\[
x_f(t, x, v) := X(t + t_f(t, x, v); t, x, v),
\]

\[
v_f(t, x, v) := V(t + t_f(t, x, v); t, x, v).
\]

Here, \(t_b\) and \(t_f\) are called the \textit{backward exit time} and the \textit{forward exit time}, respectively. We also define the specular cycle as in \([14]\). We set \((t^0, x^0, v^0) = (t, x, v)\). Inductively, we define

\[
t^k = t^{k-1} - t_b(t^{k-1}, x^{k-1}, v^{k-1}),
\]

(2.4)

\[
x^k = X(t^k; t^{k-1}, x^{k-1}, v^{k-1}),
\]

\[
v^k = R_x V(t^k; t^{k-1}, x^{k-1}, v^{k-1}),
\]

where

\[
R_x V(t^k; t^{k-1}, x^{k-1}, v^{k-1}) = V(t^k; t^{k-1}, x^{k-1}, v^{k-1})
\]

\[
-2(n(x^k) \cdot V(t^k; t^{k-1}, x^{k-1}, v^{k-1}) n(x^k)).
\]

We define the specular characteristics as

\[
X_{cl}(s; t, x, v) = \sum_k 1_{s \in (t^{k+1}, t^k]} X(s; t^k, x^k, v^k),
\]

(2.5)

\[
V_{cl}(s; t, x, v) = \sum_k 1_{s \in (t^{k+1}, t^k]} V(s; t^k, x^k, v^k).
\]

For the sake of simplicity we abuse the notation of \([2,5]\) by dropping the subscript \textit{cl} in this section.
From the assumptions of Theorem 1.1 and Theorem 1.2, for any \(p \in \partial \Omega \), there exists sufficiently small \(\delta_1 > 0 \) and \(\delta_2 > 0 \), and a 1-to-1 and onto \(C^3 \)-function

\[
\eta_p : \{ x_p \in \mathbb{R}^3 : x_{p,3} < 0 \} \cap B(0; \delta_1) \to \Omega \cap B(p; \delta_2),
\]

(2.6)

\[
x_p = (x_{p,1}, x_{p,2}, x_{p,3}) \mapsto (x_1, x_2, x_3)
\]

\[
= \eta_p(x_{p,1}, x_{p,2}, x_{p,3}),
\]

and \(\eta_p(x_{p,1}, x_{p,2}, x_{p,3}) \in \partial \Omega \) if and only if \(x_{p,3} = 0 \). We define the transformed velocity field at \(\eta_p(x_p) \) as

\[
v_i(x_p) := \frac{\partial_i \eta_p(x_p)}{\sqrt{g_{p,ii}(x_p)}} \cdot v.
\]

(2.7)

For any two-dimensional smooth manifold \(\mathcal{S} \), we can find a local orthogonal parametrization from \(\mathbb{R}^2 \) to \(\partial \mathcal{S} \). (See [5, cor. 2, p. 183], for example.) Therefore, we assume

\[
\left\{ \frac{\partial_1 \eta_p}{\sqrt{g_{p,11}}}, \frac{\partial_2 \eta_p}{\sqrt{g_{p,22}}}, \frac{\partial_3 \eta_p}{\sqrt{g_{p,33}}} \right\}
\]

is orthonormal at \(x_{p,3} = 0 \),

(2.8)

where \(g_{p,ij} := (\partial_i \eta_p, \partial_j \eta_p) \).

For second derivative \(\partial_i \partial_j \eta_p \), we define the Christoffel symbol \(\Gamma^k_{p,ij} \) by

\[
\partial ij \eta_p = \sum_k \Gamma^k_{p,ij} \partial k \eta_p.
\]

(2.9)

Moreover, by reparametrization, we may assume that \(g_{p,33}(x_{p,1}, x_{p,2}, x_{p,3}) = 1 \) whenever it is defined. Without loss of generality, the outward normal at the boundary is, for \(x = \eta_p(x_{p,1}, x_{p,2}, 0) \in \partial \Omega \),

\[
n(x) = n(\eta_p(x_{p,1}, x_{p,2}, 0)) = \frac{\partial_1 \eta_p}{\sqrt{g_{p,11}}} \times \frac{\partial_2 \eta_p}{\sqrt{g_{p,22}}}(x_{p,1}, x_{p,2}, 0).
\]

(2.10)

For each \(k = 0, 1, 2, \ldots \), we assume that \(p^k \in \partial \Omega \) is chosen to be close to \(x^k \) as in (2.6). Then we define

\[
x^k_{p^k} := (x^k_{p^k,1}, x^k_{p^k,2}, 0) \text{ such that } x^k = \eta_p^k(x^k_{p^k}),
\]

(2.11)

\[
v^k_{p^k,i} := v_i^k(x^k_{p^k}) = \frac{\partial_i \eta_p^k(x^k_{p^k})}{\sqrt{g_{p^k,ii}(x^k_{p^k})}} \cdot v^k.
\]

(2.12)

Note that, due to (2.8), at the boundary,

\[
v^k_i = \sum_{\ell=1}^3 v^k_{p^k,\ell} \frac{\partial \eta_p^k}{\sqrt{g_{p^k,\ell\ell}}}(x^k_{p^k}).
\]
\textbf{Lemma 2.2.} Assume that Ω and Φ are C^2. Consider $(t^{k+1}, x_{p^{k+1}}, v_{p^{k+1}})$ as a function of (t^k, x_{p^k}, v_{p^k}). Then for $i, j = 1, 2,$
\[
\frac{\partial (t^k - t^{k+1})}{\partial x_{p^k,j}}
= - \frac{1}{v_{p^k+1,3}} \frac{\partial^3 \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k+1,33}(x^{k+1})}}
\cdot \left[\partial_j \eta_{p^k}(x_{p^k,1}^k, x_{p^k,2}^k, 0) - (t^k - t^{k+1}) \frac{\partial u}{\partial x_{p^k,j}} \right]
\]
\[+ O_{\Omega}(\|\Phi\|_{C^2}) \frac{(t^k - t^{k+1})^2}{|v_{p^k+1,3}|} \left(1 + (t^k - t^{k+1})|v_{p^k}^k| \right) e \|\Phi\|_{C^2} (t^k - t^{k+1})^2,
\]
\[
\frac{\partial x_{p^{k+1},j}}{\partial x_{p^k,j}} = \frac{1}{\sqrt{g_{p^k,ii}(x^{k+1})}} \left[\frac{\partial^3 \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k,ii}(x^{k+1})}} + \frac{\sqrt{g_{p^k,ii}(x^{k+1})}}{v_{p^k+1,3}} \frac{\partial \eta_{p^k+1}(x^{k+1})}{\partial x_{p^k,j}} \right]
\cdot \left[\partial_j \eta_{p^k}(x^k) - (t^k - t^{k+1}) \frac{\partial u}{\partial x_{p^k,j}} \right]
\]
\[+ O_{\Omega}(\|\Phi\|_{C^2}) \left\{ \left| \frac{\sqrt{g_{p^k,ii}(x^{k+1})}}{v_{p^k+1,3}} \right| (t^k - t^{k+1})^2 \right. \]
\[\left. \times \left(1 + (t^k - t^{k+1})|v_{p^k}^k| \right) e \|\Phi\|_{C^2} (t^k - t^{k+1})^2, \right. \]
\[\frac{\partial v_{p^{k+1},j}}{\partial x_{p^k,j}} = \frac{\partial u}{\partial x_{p^k,j}} \cdot \frac{\partial^3 \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k,ii}(x^{k+1})}}
\]
\[+ \sqrt{g_{p^k,ii}(x^{k+1})} \sum_{\ell=1}^2 \frac{\partial x_{p^{k+1},\ell}}{\partial x_{p^k,j}} \frac{\partial}{\partial x_{p^{k+1},\ell}} \left(\frac{\partial^3 \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k,ii}(x^{k+1})}} \right)
\]
\[+ O_{\Omega}(\|\Phi\|_{C^2}) \left\{ \sum_j \left| \frac{\partial (t^k - t^{k+1})}{\partial x_{p^k,j}} \right| \right. \]
\[\left. + (t^k - t^{k+1}) (1 + |v_{p^k}^k|(t^k - t^{k+1})) e \|\Phi\|_{C^2} (t^k - t^{k+1})^2 \right. \]
\[\left. \times \sum_{\ell} \left| \frac{\partial x_{p^{k+1},\ell}}{\partial x_{p^k,j}} \right|, \right. \]
\[
\begin{align*}
\frac{\partial v_{k+1}}{\partial x_{p^k,j}} &= -\frac{\partial v}{\partial x_{p^k,j}} \cdot \frac{\partial \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k+1,33}(x^{k+1})}} \\
- v^{k} \cdot 2 \sum_{\ell=1} \frac{\partial x^{k+1}_{p^k+1}}{\partial x_{p^k,j}} \frac{\partial}{\partial x_{p^k+1,\ell}} \left(\frac{\partial \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k+1,33}(x^{k+1})}} \right) \\
+ O(\|\Phi\|_{C^2}) \left\{ \sum_{j} \left| \frac{\partial(t^{k} - t^{k+1})}{\partial x_{p^k,j}} \right| \right\} \\
+ (t^{k} - t^{k+1})(1 + \left| \nu_{p^k}(t^{k} - t^{k+1}) \right|) \|\Phi\|_{C^2} |t^{k} - t^{k+1}| + \sum_{\ell} \left| \frac{\partial x^{k+1}_{p^k+1,\ell}}{\partial x_{p^k,j}} \right| \\
\end{align*}
\]

where

\[
\begin{align*}
\frac{\partial v}{\partial x_{p^k,j}} &= \sum_{\ell=1}^{3} v^{k}_{p^k,\ell} \sum_{r(\neq \ell)} \sqrt{g_{p^k,rr}(x^{k})} \frac{\Gamma^{r}_{p^k,\ell,j}(x^{k})}{\sqrt{g_{p^k,\ell\ell}(x^{k})}} \frac{\partial \eta_{p^k,j}(x^{k})}{\sqrt{g_{p^k,rr}(x^{k})}}. \\
\end{align*}
\]

For \(i = 1, 2 \) and \(j = 1, 2, 3 \),

\[
\begin{align*}
\frac{\partial(t^{k} - t^{k+1})}{\partial v_{p^k,j}} &= (t^{k} - t^{k+1}) \left[\frac{\partial \eta_{p^k}(x^{k})}{\sqrt{g_{p^k,ij}(x^{k})}} \right] \\
+ O(\|\Phi\|_{C^2})(t^{k} - t^{k+1})^{2} e^{\|\Phi\|_{C^2} |t^{k} - t^{k+1}|} \\
\end{align*}
\]

\[
\begin{align*}
\frac{\partial x^{k+1}_{p^k+1,j}}{\partial v_{p^k,j}} &= -(t^{k} - t^{k+1}) \frac{\partial \eta_{p^k}(x^{k})}{\sqrt{g_{p^k,ij}(x^{k})}} \\
- \frac{1}{\sqrt{g_{p^k+1,ij}(x^{k+1})}} \left[\frac{\partial \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k+1,ij}(x^{k+1})}} \\
+ \nu^{k+1}_{p^k+1,i} \frac{\partial \eta_{p^k+1}(x^{k+1})}{\sqrt{g_{p^k+1,33}(x^{k+1})}} \right] \\
+ O(\|\Phi\|_{C^2}) \left(1 + \left| \nu^{k+1}_{p^k+1,i} \right| \left| \nu^{k+1}_{p^k+1,3} \right| \right) |t^{k} - t^{k+1}|^{3} e^{\|\Phi\|_{C^2} |t^{k} - t^{k+1}|^{2}}, \\
\end{align*}
\]
\[
\frac{\partial v_{p^{k+1},i}^{k+1}}{\partial v_{p^k,j}^k} = \sum_{\ell=1}^2 \frac{\partial^2 v_{p^{k+1},\ell}^k}{\partial v_{p^k,j}^k} \frac{\partial v_{p^{k+1},i}^\ell}{\partial (x_{p^{k+1},i}^k)} \left. \frac{\partial (\eta_{p^{k+1}})}{\partial (x_{p^{k+1},i}^k)} \right|_{x_{p^{k+1}}^k} \cdot v^k \\
\quad + \frac{\partial_1 \eta_{p^{k+1}}(x_{p^{k+1},i}^k)}{\sqrt{g_{p^{k+1},i,i}^{k+1}}} \cdot \frac{\partial_j \eta_{p^k}(x^k)}{\sqrt{g_{p^k,j,j}^k}} \\
\times (1 + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2) \left(1 + \frac{|v_{p^{k+1},i}^{k+1}|}{|v_{p^{k+1},i}^{k+1}|} \right) \\
\times (1 + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2) \left(1 + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2 \right), \\
\frac{\partial v_{p^{k+1},i}^{k+1}}{\partial v_{p^k,j}^k} = -\sum_{\ell=1}^2 \frac{\partial^2 v_{p^{k+1},\ell}^k}{\partial v_{p^k,j}^k} \frac{\partial v_{p^{k+1},i}^\ell}{\partial (x_{p^{k+1},i}^k)} \left. \frac{\partial (\eta_{p^{k+1}})}{\partial (x_{p^{k+1},i}^k)} \right|_{x_{p^{k+1}}^k} \cdot v^k \\
\quad - \frac{\partial_3 \eta_{p^{k+1}}(x_{p^{k+1},i}^k)}{\sqrt{g_{p^{k+1},i,33}^{k+1}(x_{p^{k+1},i}^k)}} \cdot \frac{\partial_j \eta_{p^k}(x^k)}{\sqrt{g_{p^k,j,j}^k(x^k)}} \\
\times (1 + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2) \left(1 + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2 \right), \\
\quad + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2 \left(1 + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2 \right) \\
\quad \cdot e^{\|\Phi\|_{C^2}(t^k - t^{k+1})^2} \\
\quad + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2 \left(1 + O_\Omega(\|\Phi\|_{C^2})(t^k - t^{k+1})^2 \right) \left. \cdot e^{\|\Phi\|_{C^2}(t^k - t^{k+1})^2} \right). \\
\]

Remark 2.3. Note that we do not need the convexity (1.15) or the smallness of the size of Φ in Lemma [2.2].

Proof of Lemma 2.2. First we prove (2.13). By the definitions (2.6), (2.4), and our setting (2.11) and (2.1),

\[
\eta_{p^{k+1}}(x_{p^{k+1},1}^{k+1}, x_{p^{k+1},2}^{k+1}, 0) \\
= \eta_{p^k}(x_{p^k,1}^k, x_{p^k,2}^k, 0) + \int_{t^k}^{t^{k+1}} v^k \\
- \int_{t^k}^{t^{k+1}} \int_{t^k}^s \nabla \Phi(\tau, X(\tau; t^k, x^k, v^k)) d\tau ds.
\]
We apply \(\frac{\partial}{\partial x_{p^{k},j}} \) to the above equality for \(j = 1, 2 \) to get

\[
\sum_{l=1,2} \left| \frac{\partial x_{p^{k+1,l}}}{\partial x_{p^{k},j}} \frac{\partial \eta_{p^{k+1}}}{\partial x_{p^{k+1},l}} \right| \bigg|_{x^{k+1}} - (t^{k} - t^{k+1}) \frac{\partial v^{k}}{\partial x_{p^{k},j}} + \left\{ \partial_{j} \eta_{p^{k}}(x_{p^{k},1}, x_{p^{k},2}, 0) - \int_{t^{k}}^{t^{k+1}} ds \int_{t^{k}}^{s} d\tau \left(\frac{\partial X(\tau)}{\partial x_{p^{k},j}} \cdot \nabla_{X}(\Phi(\tau)) \right) \right\},
\]

(2.23)

and then take an inner product with \(\frac{\partial_{3} \eta_{p^{k+1}}}{\sqrt{g^{k+1,3}} \bigg|_{x^{k+1}} \rule{0pt}{11pt}^{k+1}} \) to have

\[
\sum_{l=1,2} \left| \frac{\partial x_{p^{k+1,l}}}{\partial x_{p^{k},j}} \frac{\partial \eta_{p^{k+1}}}{\partial x_{p^{k+1},l}} \right| \bigg|_{x^{k+1}} - (t^{k} - t^{k+1}) \frac{\partial v^{k}}{\partial x_{p^{k},j}} \cdot \frac{\partial_{3} \eta_{p^{k+1}}}{\sqrt{g^{k+1,3}} \bigg|_{x^{k+1}} \rule{0pt}{11pt}^{k+1}} + \left\{ \partial_{j} \eta_{p^{k}}(x_{p^{k},1}, x_{p^{k},2}, 0) - \int_{t^{k}}^{t^{k+1}} ds \int_{t^{k}}^{s} d\tau \left(\frac{\partial X(\tau)}{\partial x_{p^{k},j}} \cdot \nabla_{X}(\Phi(\tau)) \right) \right\},
\]

(2.24)

where we abbreviated \(X(s) = X(s; t^{k}, x^{k}, v^{k}), V(s) = V(s; t^{k}, x^{k}, v^{k}), \) and \(\Phi(s) = \Phi(\eta, X(s; t^{k}, x^{k}, v^{k})). \) Due to (2.8) the left-hand side equals 0.

Now we consider the right-hand side. From (2.12), we prove (2.17). We also note that

\[
\lim_{s \downarrow t^{k+1}} V(s; t^{k}, x^{k}, v^{k}) = v^{k} - \int_{t^{k}}^{t^{k+1}} \nabla \Phi(s, X(s; t^{k}, x^{k}, v^{k})) ds.
\]

(2.25)

Therefore, from (2.4) and (2.11),

\[
\left\{ v^{k} - \int_{t^{k}}^{t^{k+1}} \nabla \Phi(s, X(s; t^{k}, x^{k}, v^{k})) ds \right\} \cdot \frac{\partial_{3} \eta_{p^{k+1}}}{\sqrt{g^{k+1,3}} \bigg|_{x^{k+1}} \rule{0pt}{11pt}^{k+1}} = -v_{p^{k+1},j}.
\]
From (2.24),

\[
\begin{align*}
\frac{\partial (t^k - t^{k+1})}{\partial x_{p^k,j}} &= - \frac{1}{v_{p^k+1,3}} \frac{\partial_3 \eta_{p^{k+1}}(x^{k+1})}{g_{p^{k+1,33}}(x^{k+1})} \\
&\cdot \left[\partial_j \eta_{p^k}(x_{p^k,1},x_{p^k,2},0) \\
&- (t^k - t^{k+1}) \sum_{\ell=1}^3 x_{p^k,\ell} \sum_{t \neq \ell} \frac{\sqrt{g_{p^k,tt}}(x^k)}{\sqrt{g_{p^k,\ell t}(x^k)}} \frac{\eta_{p^k}(x^k)}{\sqrt{g_{p^k,rr}(x^k)}} \right] \\
&+ \frac{1}{v_{p^k+1,3}} \frac{\partial_3 \eta_{p^{k+1}}(x^{k+1})}{g_{p^{k+1,33}}(x^{k+1})} \int_{t^k}^{t^{k+1}} ds \int_s^t ds' \nabla \Phi(s',X(s',t^k,x^k,v^k)).
\end{align*}
\]

(2.26)

Now we consider integrand \(\frac{\partial X(t^k, t^{k+1}, x^k, v^k)}{\partial x_{p^k,j}} \). From (2.22) for \(t^{k+1} < \tau < t^k \),

\[
\begin{align*}
X(\tau; t^k, x^k, v^k) &= \eta_{p^k}(x_{p^k,1},x_{p^k,2},0) + v^k(\tau - t^k) \\
&\quad - \int_t^\tau ds \int_s^t ds' \nabla \Phi(s', X(s', t^k, x^k, v^k)).
\end{align*}
\]

(2.27)

By the direct computations, for \(j = 1, 2 \),

\[
\begin{align*}
\sup_{\tau \leq s' \leq t^k} \left| \frac{\partial X(s'; t^k, x^k, v^k)}{\partial x_{p^k,j}} \right| &\leq \left| \partial_j \eta_{p^k}(x_{p^k,1},x_{p^k,2},0) \right| + \left| \tau - t^k \right| \left| \frac{\partial v^k}{\partial x_{p^k,j}} \right| \\
&\quad + \int_t^\tau |s - t^k| \| \Phi \| C^2 \sup_{\tau \leq s' \leq t^k} \left| \frac{\partial X(s'; t^k, x^k, v^k)}{\partial x_{p^k,j}} \right| ds.
\end{align*}
\]

By Gronwall’s inequality and (2.17),

\[
\begin{align*}
\sup_{\tau} \left| \frac{\partial X(\tau; t^k, x^k, v^k)}{\partial x_{p^k,j}} \right| &\leq O(1) \left(1 + |t^k - \tau| \| v^k \| \right) \| \Phi \| C^2 t^k - |\tau|^{2/2}.
\end{align*}
\]

(2.28)

Using (2.26) and (2.28), we complete the proof of (2.13).
To prove (2.14), we take the inner product with \(\frac{\partial_t \eta_{p^k+1}}{g_{p^k+1,ii}} \big|_{x^{k+1}} \) to (2.23) to obtain

\[
\sum_{l=1,2} \frac{\partial x^{k+1}_{p^k+1,l}}{\partial x^k_{p^k,j}} \frac{\partial \eta_{p^k+1}}{\partial x^{k+1}_{p^k+1,l}} \big|_{x^{k+1}} \cdot \frac{\partial \eta_{p^k+1}}{g_{p^k+1,ii}} \big|_{x^{k+1}} = \frac{\partial x^{k+1}_{p^k+1,l}}{\partial x^k_{p^k,j}} \\
= -(k^k - t^{k+1}) \frac{\partial \eta_{p^k+1}}{\partial x^k_{p^k,j}} \big|_{x^{k+1}} \cdot \frac{\partial \eta_{p^k+1}}{g_{p^k+1,ii}} \big|_{x^{k+1}} \\
= -(k^k - t^{k+1}) \int_{t^k}^{t^{k+1}} \left\{ \psi^k - \int_{t^k}^{t^{k+1}} \nabla \Phi(s, X(s; t^k, x^k, v^k)) ds \right\} \cdot \frac{\partial \eta_{p^k+1}}{g_{p^k+1,ii}} \big|_{x^{k+1}} \\
+ \left\{ \frac{\partial_i \eta_{p^k+1}(x^k_{p^k,1}, x^k_{p^k,2})}{g_{p^k+1,ii}} \big|_{x^{k+1}} \right\} \\
- \frac{\partial \psi^k}{\partial x^k_{p^k,j}} \big|_{x^{k+1}} \cdot \frac{\partial \eta_{p^k+1}}{g_{p^k+1,ii}} \big|_{x^{k+1}} = - \frac{\psi^{k+1}_{p^k+1,ii}}{\sqrt{g_{p^k+1,ii}}}.
\]

Since

\[
\left\{ \psi^k - \int_{t^k}^{t^{k+1}} \nabla \Phi(s, X(s; t^k, x^k, v^k)) ds \right\} \cdot \frac{\partial \eta_{p^k+1}}{g_{p^k+1,ii}} \big|_{x^{k+1}} = - \frac{\psi^{k+1}_{p^k+1,ii}}{\sqrt{g_{p^k+1,ii}}}.
\]

from (2.8) and (2.13),

\[
\frac{\partial x^{k+1}_{p^k+1,i}}{\partial x^k_{p^k,j}} = \frac{1}{v^{k+1}_{p^k+1,3}} \sqrt{g_{p^k+1,33}^{k+1}} \cdot \left[\frac{\partial_j \eta_{p^k+1}(x^k_{p^k+1})}{g_{p^k+1,ii}} \big|_{x^{k+1}} \right] \\
\cdot \left[\frac{\partial \eta_{p^k+1}}{\partial x^k_{p^k,j}} \big|_{x^{k+1}} \right] \\
+ \frac{\partial_t \eta_{p^k+1}}{g_{p^k+1,ii}} \big|_{x^{k+1}} \cdot \left[\frac{\partial \eta_{p^k+1}}{\partial x^k_{p^k,j}} \big|_{x^{k+1}} \right] \\
+ O(\|\Phi\|_{C^2}) \frac{\psi^{k+1}_{p^k+1,ii}}{\sqrt{g^{k+1}_{p^k+1,3}}} (k^k - t^{k+1})^2 \\
\cdot \left(1 + (k^k - t^{k+1}) \frac{\psi^k_{p^k}}{g^k_{p^k}} \right) e^{\|\Phi\|_{C^2} (k^k - t^{k+1})^2/2} \\
+ O(\|\Phi\|_{C^2}) (k^k - t^{k+1})^2 \left(1 + (k^k - t^{k+1}) \frac{\psi^k_{p^k}}{g^k_{p^k}} \right) e^{\|\Phi\|_{C^2} (k^k - t^{k+1})^2/2}.
\]

This ends the proof of (2.14).
Now we prove (2.15) and (2.16). From (2.4) and (2.11),

\begin{align}
\frac{\partial v^{k+1}_{p^{k+1},i}}{\partial x_{p^k,j}} &= \frac{\partial_i \eta_{p^{k+1}}(x^{k+1})}{\sqrt{g_{p^{k+1},ii}}(x^{k+1})} \\
&\quad \cdot \lim_{s \downarrow t^{k+1}} V(s; t^k, x^k, v^k) \quad \text{for } i = 1, 2, \\
\frac{\partial v^{k+1}_{p^{k+1},3}}{\partial x_{p^k,j}} &= -\frac{\partial_3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}}(x^{k+1})} \\
&\quad \cdot \lim_{s \downarrow t^{k+1}} V(s; t^k, x^k, v^k).
\end{align}

For \(i, j = 1, 2 \), from (2.31),

\begin{align}
\frac{\partial v^{k+1}_{p^{k+1},i}}{\partial x_{p^k,j}} &= \frac{\partial_i \eta_{p^{k+1}}(x^{k+1})}{\sqrt{g_{p^{k+1},ii}}(x^{k+1})} \\
&\quad \cdot \left[\frac{\partial v^k}{\partial x_{p^k,j}} + \nabla_x \Phi(t^{k+1}; t^k, x^k, v^k) \frac{\partial(t^k - t^{k+1})}{\partial x_{p^k,j}} \\
&\quad - \int_{t^k}^{t^{k+1}} (\partial_{x_{p^k,j}} X(s) \cdot \nabla_x) \nabla_x \Phi(s, X(s; t^k, x^k, v^k)) ds \right] \\
&\quad + \sum_{\ell=1}^2 \frac{\partial x^{k+1}_{p^{k+1},\ell}}{\partial x_{p^k,j}} \frac{\partial}{\partial x_{p^{k+1},i}} \left(\frac{\partial_i \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},ii}}} \right) \left| \lim_{s \downarrow t^{k+1}} V(s; t^k, x^k, v^k) \right|.
\end{align}

And for \(j = 1, 2 \),

\begin{align}
\frac{\partial v^{k+1}_{p^{k+1},3}}{\partial x_{p^k,j}} &= -\frac{\partial_3 \eta_{p^{k+1}}(x^{k+1})}{\sqrt{g_{p^{k+1},33}}(x^{k+1})} \\
&\quad \cdot \left[\frac{\partial v^k}{\partial x_{p^k,j}} + \nabla_x \Phi(t^{k+1}; t^k, x^k, v^k) \frac{\partial(t^k - t^{k+1})}{\partial x_{p^k,j}} \\
&\quad - \int_{t^k}^{t^{k+1}} (\partial_{x_{p^k,j}} X(s) \cdot \nabla_x) \nabla_x \Phi(s, X(s; t^k, x^k, v^k)) ds \right] \\
&\quad - \sum_{\ell=1}^2 \frac{\partial x^{k+1}_{p^{k+1},\ell}}{\partial x_{p^k,j}} \frac{\partial}{\partial x_{p^{k+1},3}} \left(\frac{\partial_3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}}} \right) \left| \lim_{s \downarrow t^{k+1}} V(s; t^k, x^k, v^k) \right|.
\end{align}

From (2.25) and (2.28), we prove (2.15) and (2.16). Now we consider (2.18)–(2.21) for \(v \)-derivatives.
To prove (2.18), we take \(\frac{\partial}{\partial v_{p,k,j}} \) to (2.22) for \(j = 1, 2, 3 \) to get

\[
\sum_{l=1,2} \frac{\partial x_{p,k+1,l}}{\partial v_{p,k,j}} \frac{\partial \eta_{p,k+1}}{\partial x_{p,k+1,l}} \left| x^{k+1} \right| = -(t^k - t^{k+1}) \frac{\partial v^k}{\partial v_{p,k,j}}
\]

(2.32)

- \(\frac{\partial (t^k - t^{k+1})}{\partial v_{p,k,j}} \left\{ v^k - \int_{t^k}^{t^{k+1}} \nabla \Phi(s, X(s; t^k, x^k, v^k)) ds \right\} \)

+ \left\{ - \int_{t^k}^{t^{k+1}} ds \int_{t^k}^{s} d\tau \left(\frac{\partial X(\tau)}{\partial v_{p,k,j}} \nabla_x \Phi(\tau) \right) \right\}.

and then take an inner product with \(\frac{\partial_3 \eta_{p,k+1}}{\sqrt{S_{p,k+1,33}}} |x^{k+1}| \) to have

\[
\sum_{l=1,2} \frac{\partial x_{p,k+1,l}}{\partial v_{p,k,j}} \frac{\partial \eta_{p,k+1}}{\partial x_{p,k+1,l}} \left| x^{k+1} \right| = \frac{\partial_3 \eta_{p,k+1}}{\sqrt{S_{p,k+1,33}}} |x^{k+1}|
\]

(2.33)

\[
(2.34) \quad \frac{\partial v^k}{\partial v_{p,k,j}} = - \frac{\partial_j \eta_{p,k} (x^k_{p,k,1}, x^k_{p,k,2}, 0)}{\sqrt{S_{p,k,j}} (x^k_{p,k,1}, x^k_{p,k,2}, 0)}.
\]

Now we consider \(\sup_s \left| \frac{\partial X(s; t^k, x^k, v^k)}{\partial v_{p,k,j}} \right| \). From (2.27), for \(j = 1, 2, 3 \),

\[
|\frac{\partial X(s)}{\partial v_{p,k,j}}| \leq |t^k - s| \left| \frac{\partial v^k}{\partial v_{p,k,j}} \right| + \| \nabla^2 \Phi \| \infty \int_s^{t^k} |t^k - \tau| \left| \frac{\partial X(\tau)}{\partial v_{p,k,j}} \right| d\tau.
\]

By Gronwall’s inequality and (2.34), for \(t^{k+1} \leq s \leq t^k \),

\[
|\frac{\partial X(s; t^k, x^k, v^k)}{\partial v_{p,k,j}}| \leq |t^k - s| \left| \frac{\partial v^k}{\partial v_{p,k,j}} \right| e \| \Phi \|_{C^2} |t^k - s|^2 / 2
\]

(2.35)

\[
\leq \Omega |t^k - s| e \| \Phi \|_{C^2} |t^k - s|^2 / 2.
\]
Using (2.31), (2.33), (2.34), and (2.35), we prove (2.18).

The estimate (2.19) is obtained by a similar method. For \(i = 1, 2 \) and \(j = 1, 2, 3 \), we take the inner product with \(\frac{\partial_i \eta_{p+1}^{k+1}}{\eta_{p+1,ii}^{k+1}[x^{k+1}]} \) to (2.32) to obtain

\[
\frac{\partial x_{p+1,i}^{k+1}}{\partial v_{p,i}^{k}} = \left\{ -\frac{\partial (t^k - t^{k+1})}{\partial v_{p,i}^{k+1}} \lim_{s \downarrow t^{k+1}} V(s; t^k, x^k, v^k) - (t^k - t^{k+1}) \frac{\partial v_{p,i}^{k}}{\partial v_{p,i}^{k+1}} \right\} \\
\cdot \frac{\partial_i \eta_{p+1}^{k+1}}{\eta_{p+1,ii}^{k+1}[x^{k+1}]} + O\left(\|\Phi\|_{C^2}\right) |t^k - t^{k+1}| \sup_s \left| \frac{\partial X(s)}{\partial v_{p,i}^{k+1}} \right|.
\]

From (2.34), (2.35), and (2.18), we prove (2.20).

Now, let us prove (2.20) and (2.21). For \(i = 1, 2 \) and \(j = 1, 2, 3 \), from (2.31),

\[
\frac{\partial v_{p,i}^{k+1}}{\partial v_{p,i}^{k}} = \sum_{\ell=1}^{2} \frac{\partial x_{p+1,i}^{k+1}}{\partial v_{p,i}^{k}} \ell \left(\frac{\partial_i \eta_{p+1}^{k+1}}{\eta_{p+1,ii}^{k+1}[x^{k+1}]} \right) \cdot \lim_{s \downarrow t^{k+1}} V(s; t^k, x^k, v^k) \\
+ \frac{\partial_i \eta_{p+1}^{k+1}(x^{k+1})}{\sqrt{g_{p+1,ii}^{k+1}(x^{k+1})}} \cdot \left(\frac{\partial v_{p,i}^{k}}{\partial v_{p,i}^{k+1}} + \frac{\partial (t^k - t^{k+1})}{\partial v_{p,i}^{k+1}} \nabla \Phi(t^{k+1}, x^{k+1}) \right) \\
- \int_{t^k}^{t^{k+1}} \left(\frac{\partial X(s)}{\partial v_{p,i}^{k+1}} \cdot \nabla \Phi(s, X(s)) \right) ds.
\]

\[
= \sum_{\ell=1}^{2} \frac{\partial x_{p+1,i}^{k+1}}{\partial v_{p,i}^{k}} \ell \left(\frac{\partial_i \eta_{p+1}^{k+1}}{\eta_{p+1,ii}^{k+1}[x^{k+1}]} \right) \cdot v^k \\
+ \frac{\partial_i \eta_{p+1}^{k+1}(x^{k+1})}{\sqrt{g_{p+1,ii}^{k+1}(x^{k+1})}} \cdot \frac{\partial_j \eta_{p+1}(x^k)}{\sqrt{g_{p+1,jj}^{k+1}(x^k)}} \\
+ O\left(\|\Phi\|_{C^2}\right) |t^k - t^{k+1}| \frac{\partial x_{p,i}^{k+1}}{\partial v_{p,i}^{k+1}} \left| \frac{\partial v_{p,i}^{k+1}}{\partial v_{p,i}^{k+1}} \right| + O\left(\|\Phi\|_{C^2}\right) \left| \frac{\partial (t^k - t^{k+1})}{\partial v_{p,i}^{k+1}} \right| \\
\text{from (2.18), (2.19), and (2.35), we prove (2.20). The proof of (2.21) is also very similar to the above from (2.31).} \]
LEMMA 2.4. Assume that $x \in \Omega$ (interior point) and $\chi_b(t, x, v)$ is in the neighborhood of $p^1 \in \partial \Omega$. Then locally,

\[
\frac{\partial t_b}{\partial x_j} = \frac{1}{v_{p^1,3}} \left[-e_j + O_{\Omega}(\|\Phi\|_{C^2}) |t_b|^2 e^{\|\nabla^2 \Phi\|_{\infty}(t_b)^2/2} \right] \\
\quad \cdot \frac{\partial_3 \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}}, \quad j = 1, 2,
\]

(2.36)

\[
\frac{\partial t_b}{\partial v_j} = \frac{1}{v_{p^1,3}} \left[t_b e_j - \int_{t}^{t-t_b} \int_{t}^{s} \left(\frac{\partial X(\tau)}{\partial v_j} \cdot \nabla x \right) (\nabla_x \Phi(\tau)) d\tau ds \right] \\
\quad \cdot \frac{\partial_3 \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}}
\]

(2.37)

\[
\frac{\partial x_{p^1,i}^1}{\partial x_j} = \left[e_j + O_{\Omega}(\|\Phi\|_{C^2}) \left(1 + \frac{|v_{p^1,i}^1|}{v_{p^1,3}} \right) |t_b|^2 e^{\|\nabla^2 \Phi\|_{\infty}(t_b)^2/2} \right] \\
\quad \cdot \frac{1}{\sqrt{g_{p^1,ii}(x^1)}} \left[\frac{\partial_3 \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}} + \frac{v_{p^1,i}^1}{v_{p^1,3}} \frac{\partial \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}} \right],
\]

(2.38)

\[
\frac{\partial x_{p^1,i}^1}{\partial v_j} = \left[-t_b e_j - \int_{t}^{t-t_b} \int_{t}^{s} \left(\frac{\partial X(\tau)}{\partial v_j} \cdot \nabla x \right) \nabla_x \Phi(\tau) d\tau ds \right] \\
\quad \cdot \frac{1}{\sqrt{g_{p^1,ii}(x^1)}} \left[\frac{\partial_3 \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}} + \frac{v_{p^1,i}^1}{v_{p^1,3}} \frac{\partial \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}} \right]
\]

(2.39)

\[
\quad = -t_b e_j + O_{\Omega}(\|\Phi\|_{C^2}) |t_b|^2 e^{\|\nabla^2 \Phi\|_{\infty}(t_b)^2/2} \\
\quad \cdot \frac{1}{\sqrt{g_{p^1,ii}(x^1)}} \left[\frac{\partial_3 \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}} + \frac{v_{p^1,i}^1}{v_{p^1,3}} \frac{\partial \eta_{p^1}(x^1)}{\sqrt{g_{p^1,33}(x^1)}} \right].
\]
\[\frac{\partial \psi^1_{p,i}}{\partial x_j} = -\frac{\partial_i \eta^1_{p,i}(x^1)}{\sqrt{g^1_{p,i}(x^1)}} \cdot \left[\int_t^{t-t_b} \left(\frac{\partial X(s)}{\partial x_j} \cdot \nabla_x \Phi(s) \right) ds \right] \]

\[+ \sum_{\ell=1}^{2} \frac{\partial x^1_{p,i,\ell}}{\partial x_j} \partial_\ell \left(\frac{\partial_i \eta^1_{p,i}}{\sqrt{g^1_{p,i,i}}} \right) \Bigg|_{x^1} \cdot V(t-t_b) \]

\[= \sum_{\ell=1}^{2} \frac{\partial x^1_{p,i,\ell}}{\partial x_j} \partial_\ell \left(\frac{\partial_i \eta^1_{p,i}}{\sqrt{g^1_{p,i,i}}} \right) \Bigg|_{x^1} \cdot v \]

\[+ O_\Omega(\|\Phi\|_{C^2})n_b \left(1 + |v|n_b \right) e^\|\nabla_x^2 \Phi\|_\infty (n_b)^2/2 \]

\[+ \|\nabla_x \Phi\|_\infty n_b \left(1 + \frac{|v^1_{p,i}|}{|v^1_{p,1,3}|} \right) \]

\[\cdot \left(1 + O_\Omega(\|\Phi\|_{C^2})(1 + n_b |v|)(n_b)^2 e^\|\nabla_x^2 \Phi\|_\infty (n_b)^2/2 \right), \]

where, \(e_j \) is the \(j \)th directional unit vector in \(\mathbb{R}^3 \). Moreover,

\[\frac{\partial |v^1_{p,i}|}{\partial x_j} = O_\Omega(\|\nabla_x \Phi\|_\infty) \frac{1 + O_\Omega(\|\nabla_x^2 \Phi\|_\infty)(1 + n_b |v|)(n_b)^2 e^{\|\nabla_x^2 \Phi\|_\infty (n_b)^2}}{|v^1_{p,1,3}|} \]

\[+ O_\Omega(\|\Phi\|_{C^2})n_b e^{\|\nabla_x^2 \Phi\|_\infty (n_b)^2/2}, \]
BOLTZMANN EQUATION WITH THE SPECULAR BC 435

\[\frac{\partial \psi_j}{\partial v_j} = \lim_{s \to t^1} \frac{V_j(s; t, x, v)}{|V(s; t, x, v)|} + O_\Omega \left(\| \Phi \|_{C^2} \right) (t_b)^2 e^{\| \nabla_x \Phi \|_\infty (t_b)^2} \]

\[+ O_\Omega \left(\| \nabla_x \Phi \|_\infty \right) \frac{t_b}{\psi_{1,3}} \left\{ 1 + O_\Omega \left(\| \nabla_x^2 \Phi \|_\infty \right) \left(t_b \right)^2 e^{\| \nabla_x \Phi \|_\infty (t_b)^2} \} \]

PROOF OF LEMMA 2.4 We have

\[\lim_{s \to t^1} V(s; t, x, v) = v - \int_t^{t^1} \nabla \Phi(s, X(s; t, x, v))ds, \]

\[X(\tau; t, x, v) = x + v(\tau - t) - \int_t^{\tau} ds \int_t^s ds' \nabla \Phi(s', X(s'; t, x, v)). \]

Especially, when \(\tau = t^1 \), we get

\[X(t^1; t, x, v) = x + v(t^1 - t) - \int_t^{t^1} ds \int_t^s ds' \nabla \Phi(s', X(s'; t, x, v)). \]

From (2.44), we have

\[\lim_{s \to t^1} \frac{\partial V(s; t, x, v)}{\partial x_j} = \frac{\partial t_b}{\partial x_j} \nabla \Phi(t^1; X(t^1; t, x, v)) \]

\[- \int_t^{t^1} \left(\frac{\partial X(s)}{\partial x_j} \cdot \nabla \Phi(s) \right) ds, \]

and from (2.47),

\[\sup_{\tau \leq s' \leq t} \left| \frac{\partial X(s'; t, x, v)}{\partial x_j} \right| \leq 1 + \int_t^{\tau} |s - t| \| \Phi \|_{C^2} \sup_{\tau \leq s' \leq t} \left| \frac{\partial X(s'; t, x, v)}{\partial x_j} \right| ds. \]

By Gronwall’s inequality

\[\sup_{\tau \leq s' \leq t} \left| \frac{\partial X(s'; t, x, v)}{\partial x_j} \right| \leq O_\Omega (1) e^{\| \nabla_x \Phi \|_\infty |t - \tau|^2/2}. \]

Similarly, from (2.44), we have

\[\lim_{s \to t^1} \frac{\partial V(s; t, x, v)}{\partial v_j} = e_j + \frac{\partial t_b}{\partial v_j} \nabla \Phi(t^1; X(t^1; t, x, v)) \]

\[- \int_t^{t^1} \left(\frac{\partial X(s)}{\partial v_j} \cdot \nabla \Phi(s) \right) ds, \]

and from (2.45),

\[\sup_{\tau \leq s' \leq t} \left| \frac{\partial X(s'; t, x, v)}{\partial v_j} \right| \leq |\tau - t| \]

\[+ \int_t^{\tau} |s - t| \| \Phi \|_{C^2} \sup_{\tau \leq s' \leq t} \left| \frac{\partial X(s'; t, x, v)}{\partial v_j} \right| ds. \]
By Gronwall’s inequality
\[
(2.52) \quad \sup_{\tau \leq s' \leq t} \left| \frac{\partial X(s'; t, x, v)}{\partial v_j} \right| \leq O(1) |\tau - t| e^{\|\nabla^2 \Phi\|_{\infty} |t - \tau|^2/2}.
\]

To prove (2.36)–(2.41), these estimates are very similar to those of Lemma 2.2. It suffices for us to choose global euclidean coordinates instead of \(\eta_{p^k} \). Therefore we should replace
\[
(2.53) \quad \eta_{p^k+1} \to \eta_{p^1}, \quad \eta_{p^k} \to x, \quad t^k \to t, \quad t^{k+1} \to t - t_b = t^1, \quad \partial_{x_j} x = e_j.
\]

Let us prove (2.36). For \(j = 1, 2, 3 \), we apply \(\partial_{x_j} \) to (2.46) and take an inner product with \(\partial_{t_b} p_1 \). Then we get
\[
(2.54) \quad \frac{\partial t_b}{\partial x_j} = - \frac{1}{\sqrt{g_{p^1,33}(x^1)}} \frac{\partial_3 \eta_{p^1}(x^1)}{\partial_3 x_j} e_j \\
+ \frac{1}{\sqrt{g_{p^1,33}(x^1)}} \int_t^{t^1} \int_t^s \int_t^r \left(\frac{\partial X(\tau)}{\partial_{x_{p,j}}} \cdot \nabla x \right) (\nabla_x \Phi(\tau)).
\]

To prove (2.37), for \(j = 1, 2, 3 \), we apply \(\partial_{v_j} \) to (2.46) and take \(\frac{\partial_3 \eta_{p^1}}{\sqrt{g_{p^1,33}}} \). Then we get
\[
(2.55) \quad 0 = \sum_{l=1,2} \frac{\partial x_{p^1,l}}{\partial v_j} \frac{\partial \eta_{p^1}}{\partial x_{p^1,l}} \Bigg|_{x^1} \cdot \frac{\partial_3 \eta_{p^1}}{\sqrt{g_{p^1,33}}} \Bigg|_{x^1} \\
= \left\{ - (t - t^1) e_j - \frac{\partial(t - t^1)}{\partial v_j} \lim_{s \to t^1} V(s^1; t, x, v) \right\} \cdot \frac{\partial_3 \eta_{p^1}}{\sqrt{g_{p^1,33}}} \Bigg|_{x^1} \\
+ O(\|\Phi\|_{C^2}) (t - t^1)^2 \sup_s \left| \frac{\partial X(s)}{\partial v_j} \right|.
\]

To prove (2.38), for \(i, j = 1, 2 \), we apply \(\partial_{x_j} \) to (2.46) and take \(\frac{\partial_i \eta_{p^1}}{\sqrt{g_{p^1,ii}}} \). Then we use (2.48) to get
\[
(2.56) \quad \frac{\partial x_{p^1,i}}{\partial x_j} = - \frac{1}{\sqrt{g_{p^1,33}(x^1)}} \frac{\partial_3 \eta_{p^1}(x^1)}{\partial_3 x_j} e_j \Bigg|_{x^1} \cdot \frac{\partial_i \eta_{p^1}}{\sqrt{g_{p^1,ii}}} \Bigg|_{x^1} \\
+ O(\|\Phi\|_{C^2}) \frac{\sqrt{g_{p^1,ii}}}{\sqrt{g_{p^1,33}}} (t - t^1)^2 e \|\Phi\|_{C^2} (t - t^1)^2/2 \\
+ O(\|\Phi\|_{C^2}) (t - t^1)^2 e \|\Phi\|_{C^2} (t - t^1)^2/2.
\]

This yields (2.38).
To prove (2.39), for $i = 1, 2$ and $j = 1, 2, 3$, we apply ∂v_j to (2.46) and take an inner product with $\frac{\partial \eta_{p^{i}}}{\sqrt{g_{p^{i},ii}}} x^i$:

$$\frac{\partial x_{p^1,i}}{\partial v_j} = \{- \frac{\partial (t - t^1)}{\partial v_j} \lim_{s \downarrow t^1} \left[V(s; t, x, v) - (t - t^1) \frac{\partial v}{\partial v_j} \right] \cdot \frac{\partial \eta_{p^1}}{g_{p^1,ii}} \} |_{x^1} + O_{\Omega}(\|\Phi\|_{C^2}) |t - t^1|^2 \sup_{s} |\frac{\partial X(s)}{\partial v^k_{p^1,j}}|.$$

Then we use (2.48) to get (2.39).

Let us prove (2.40). For $i = 1, 2$ and $j = 1, 2$, we apply ∂x_j to

$$v_{p^1,i} = \frac{\partial \eta_{p^{i}}}{\sqrt{g_{p^{i},ii}}} \lim_{s \downarrow t^1} V(s; t, x, v) \quad \text{for} \quad i = 1, 2,$$

(2.57)

$$v_{p^1,3} = - \frac{\partial \eta_{p^{i}}}{\sqrt{g_{p^{1,33}}} x^i} \lim_{s \downarrow t^1} V(s; t, x, v).$$

For $i, j = 1, 2$, from (2.31),

$$\frac{\partial v_{p^1,i}}{\partial x_j} = \frac{\partial \eta_{p^{i}}}{\sqrt{g_{p^{i},ii}}} (x^1) \cdot \left[\nabla_x \Phi(t^1; t, x, v) \frac{\partial (t - t^1)}{\partial x_j} \right.$$

$$- \int_{t}^{t^1} (\partial_{x_j} X(s) \cdot \nabla_x) \Phi(s, X(s; t, x, v)) ds \left. \right]$$

$$+ \sum_{\ell = 1}^{2} \frac{\partial x_{p^1,\ell}}{\partial x_j} \frac{\partial}{\partial x_{p^1,\ell}} \left(\frac{\partial \eta_{p^{i}}}{\sqrt{g_{p^{i,ii}}} x^i} \right) \lim_{s \downarrow t^1} V(s; t, x, v).$$

For $j = 1, 2$,

$$\frac{\partial v_{p^1,3}}{\partial x_j} = - \frac{\partial \eta_{p^{i}}}{\sqrt{g_{p^{1,33}}} (x^1)} \cdot \left[\nabla_x \Phi(t^1; t, x, v) \frac{\partial (t - t^1)}{\partial x_j} \right.$$

$$- \int_{t}^{t^1} (\partial_{x_j} X(s) \cdot \nabla_x) \Phi(s, X(s; t, x, v)) ds \left. \right]$$

$$- \sum_{\ell = 1}^{2} \frac{\partial x_{p^1,\ell}}{\partial x_j} \frac{\partial}{\partial x_{p^1,\ell}} \left(\frac{\partial \eta_{p^{i}}}{\sqrt{g_{p^{1,33}}} x^i} \right) \lim_{s \downarrow t^1} V(s; t, x, v).$$

From (2.44), (2.38), and (2.36), we prove (2.18).

The proof of (2.41) is similar to the proof above. We apply ∂v_j to (2.57) and then use (2.44), (2.39), and (2.37). We skip the details.
Let us consider (2.42). Note that
\[|v^1_p| = \lim_{s \to t^1} |V(s; t, x, v)| \text{ and} \]
\[2|v^1_p| \frac{\partial |v^1_p|}{\partial X_j} = 2 \lim_{s \to t^1} V(s; t, x, v) \cdot \lim_{s \to t^1} \partial_{X_j} V(s; t, x, v), \]
we have
\[\frac{\partial |v^1_p|}{\partial X_j} = \lim_{s \to t^1} \frac{V(s; t, x, v)}{|V(s; t, x, v)|} \cdot \lim_{s \to t^1} \partial_{X_j} V(s; t, x, v). \]

We combine (2.58), (2.47), (2.36), and (2.49) to derive (2.42).

To prove (2.43), we perform a similar process to that above with \(\partial v^1_j \) to get
\[\frac{\partial |v^1_p|}{\partial v^1_j} = \lim_{s \to t^1} \frac{V(s; t, x, v)}{|V(s; t, x, v)|} \cdot \lim_{s \to t^1} \partial_{v^1_j} V(s; t, x, v). \]

We combine (2.59), (2.50), (2.37), and (2.52) to derive (2.43).

\[\Box \]

Lemma 2.5. We define \((X_p(s; t, x, v), V_p(s; t, x, v))\) as
\[\eta_p(X_p(s; t, x, v)) := X(s; t, x, v), \]
\[V_{p,i}(s; t, x, v) := \frac{\partial_{i} \eta_p(X_p(s; t, x, v))}{\sqrt{g_{p,ii}(X_p(s; t, x, v))}} \cdot V(s; t, x, v). \]

Then we have
\[\dot{X}_{p,i}(s; t, x, v) \]
\[= \sum_j \left(\frac{\partial_{i} \eta_p(X_{p,1}(s), X_{p,2}(s), 0)}{\sqrt{g_{p,ii}(X_{p,1}(s), X_{p,2}(s), 0)}} + O_{\eta p}c^2 (|X_{p,3}(s)|) \right) V_j(s; t, x, v) \]
\[= \frac{1}{\sqrt{g_{p,ii}(X_p(s; t, x, v))}} V_{p,i}(s; t, x, v) \]
\[+ O_{\eta p}c^2 (\max_s |X_{p,3}(s)| \max_s |V(s)|). \]

\[\dot{V}_{p,i}(s; t, x, v) \]
\[= - \sum_{m=1}^{3} \sum_{n \neq i}^{2} \frac{1}{\sqrt{g_{p,\ell \ell}} \sqrt{g_{p,nn}}} \left(\frac{\partial_{n} \eta_p, m}{\sqrt{g_{p,nn}}} \frac{\partial_{i} \eta_p, m}{\sqrt{g_{p,ii}}} \right) (X_{p,1}(s), X_{p,2}(s), 0) \times V_{p,\ell}(s; t, x, v) \]
\[+ O(||\eta||_C^3) \left\{ \max_s |X_{p,3}(s)| \max_s |V(s)|^2 \right. \]
\[+ \max_s |V_{p,3}(s)| \max_s |V(s)| + \|\nabla_x \Phi\|_\infty \}. \]

Proof. First we prove (2.61). From (2.1),
\[\sum_{\ell} \partial_{\ell} \eta_p, i (X_p(s; t, x, v)) \dot{X}_{p,\ell}(s; t, x, v) = \dot{X}_i(s; t, x, v) = V_i(s; t, x, v). \]
Note that from (2.8), for \[|X_{p,3}(s)| \ll 1, \]
\[
(\nabla \eta_p(X_{p,1}(s), X_{p,2}(s), X_{p,3}(s)))^{-1}_{i,j} = \frac{\partial_i \eta_{p,j}(X_{p,1}(s), X_{p,2}(s), 0)}{g_{p,ii}(X_{p,1}(s), X_{p,2}(s), 0)} + O(\|\eta\|_{C^2})|X_{p,3}(s)|.
\]

(2.63) \[
\left(\begin{array}{c}
\frac{\partial_i \eta_p}{\sqrt{g_{p,11}}} (X_{p,1}(s), X_{p,2}(s), 0) \\
\frac{\partial_i \eta_p}{\sqrt{g_{p,22}}} (X_{p,1}(s), X_{p,2}(s), 0) \\
\frac{\partial_i \eta_p}{\sqrt{g_{p,33}}} (X_{p,1}(s), X_{p,2}(s), 0)
\end{array} \right)_{i,j}^{-1} = \frac{\partial_j \eta_{p,i}(X_{p,1}(s), X_{p,2}(s), 0)}{\sqrt{g_{p,ij}}(X_{p,1}(s), X_{p,2}(s), 0)}.
\]

We apply these to (2.60) and use (2.1) to get (2.61).

Second, we prove (2.62). From (2.60), (2.63), and (2.61),

\[
\dot{V}_{p,i}(s; t, x, v) = \frac{d}{ds} \left[\frac{\partial_i \eta_p(X_{p,1}(s), X_{p,2}(s), 0)}{\sqrt{g_{p,ii}(X_{p,1}(s), X_{p,2}(s), 0)} \cdot V(s; t, x, v)} \right] + O(\|\eta\|_{C^3}) \max_s |X_{p,3}(s)| \max_s |V(s)|
\]
\[
+ O(\|\eta\|_{C^2}) \max_s \max_s |V_{p,3}(s)| \max_s |V(s)|
\]
\[
+ O(\|\eta\|_{C^2}) \|\nabla^2 \Phi\|_{\infty} \max_s |X_{p,3}(s)|
\]
\[
= \sum_{m,n=1}^{3} \sum_{\ell=1}^{2} \frac{1}{\sqrt{g_{p,\ell\ell}}} \partial_{\ell} \left(\frac{\partial_i \eta_{p,m}}{\sqrt{g_{p,ii}}} \frac{\partial_n \eta_{p,m}}{\sqrt{g_{p,nn}}} \right) |X_{p,1}(s), X_{p,2}(s), 0|
\]
\[
\times V_{p,\ell}(s; t, x, v) V_{p,n}(s; t, x, v) + O(\|\eta\|_{C^3}) \max_s |X_{p,3}(s)| \max_s |V(s)|
\]
\[
+ O(\|\eta\|_{C^2}) \max_s |V_{p,3}(s)| \max_s |V(s)|
\]
\[
+ O(\|\eta\|_{C^2}) \|\nabla^2 \Phi\|_{\infty},
\]

where we have used

\[
V_m(s; t, x, v) = \sum_{n=1}^{3} \frac{\partial_n \eta_{p,m}}{\sqrt{g_{p,nn}}} |X_{p,1}(s), X_{p,2}(s), 0| V_{p,n}(s; t, x, v)
\]
\[
+ C\Omega \max_s |X_{p,3}(s)| \max_s |V(s)|.
\]

In the case of \(i = n\), we have

\[
\sum_{m=1}^{3} \partial_m \left(\frac{\partial_i \eta_{p,m}}{\sqrt{g_{p,ii}}} \right) \frac{\partial_i \eta_{p,m}}{\sqrt{g_{p,ii}}} |X_{p,1}(s), X_{p,2}(s), 0| = 0.
\]
Moreover,
\[
\sum_{m=1}^{3} \partial_\ell \left(\frac{\partial_i \eta_{p,m}}{\sqrt{\beta_{p,ii}}} \right) \frac{\partial_n \eta_{p,m}}{\sqrt{\beta_{p,nn}}} \bigg|_{(X_{p,1}(s), X_{p,2}(s), 0)} = \\
- \sum_{m=1}^{3} \partial_\ell \left(\frac{\partial_n \eta_{p,m}}{\sqrt{\beta_{p,nn}}} \right) \frac{\partial_i \eta_{p,m}}{\sqrt{\beta_{p,ii}}} \bigg|_{(X_{p,1}(s), X_{p,2}(s), 0)}.
\]

This finishes the proof for (2.62). □

Lemma 2.6.

(i) Let \(\Omega \) be a bounded open domain in \(\mathbb{R}^3 \). If \(|v| \geq \frac{1}{N} \) and \(\|\nabla \Phi\|_\infty < \frac{\delta}{3 \text{diam}(\Omega) N^2} \) for \(1 \ll N \) and \(0 < \delta \ll 1 \). Here \(\text{diam}(\Omega) := \max_{x,y \in \Omega} |x - y| \).

Then

\[
t_b(t, x, v) \leq 3N \text{diam}(\Omega).
\]

(ii) Assume convexity in (1.15). Suppose

\[
\frac{1}{N} \leq |v^k| \leq N, \quad \|\nabla \Phi\|_\infty < \frac{\delta}{3 \text{diam}(\Omega) N^2} \quad \text{for} \; 1 \ll N,
\]

and \(0 < \delta \ll \frac{1}{N} \ll 1 \). If either \(\frac{|v^k \cdot n(x^k)|}{|v^k|} \ll 1 \) or \(\frac{|v^{k+1} \cdot n(x^{k+1})|}{|v^{k+1}|} \ll 1 \), then we have the following estimates:

\[
|v^k|(t^k - t^{k+1}) \leq \min \left\{ \frac{|v^k \cdot n(x^k)|}{|v^k|}, \frac{|v^{k+1} \cdot n(x^{k+1})|}{|v^{k+1}|} \right\}.
\]

(2.65)

\[
|v^k|(t^k - t^{k+1}) \geq \min \left\{ \frac{|v^k \cdot n(x^k)|}{|v^k|}, \frac{|v^{k+1} \cdot n(x^{k+1})|}{|v^{k+1}|} \right\}.
\]

(2.66)

Proof. Note that if \(|y - x| > \text{diam}(\Omega)\) and \(x \in \overline{\Omega} \), then \(y \notin \overline{\Omega} \). If \(s_* = t - 3N \text{diam}(\Omega) \), then

\[
|X(s_*; t, x, v) - x| \geq \left| |v| - \|\nabla \Phi\|_\infty \frac{|s_* - t|}{2} \right| |s_* - t| \geq \frac{1}{2N} 3N \text{diam}(\Omega) = \frac{3}{2} \text{diam}(\Omega).
\]

From (2.2), therefore,

\[
t_b(t, x, v) = \sup\{s \geq 0 : X(\tau; t, x, v) \in \Omega \; \text{for all} \; \tau \in (t - s, t)\} \leq 3N \text{diam}(\Omega).
\]
First, we consider the case of $|v^k||r^{k+1} - r^k| > \delta$ for $0 < \delta \ll 1$. If $\|\nabla \Phi\|_{\infty} \leq \frac{2\delta}{N^2}$, then

$$|X(t^{k+1}) - X(t^k)| \geq |v^k||r^k - r^{k+1}| - \|\nabla \Phi\|_{\infty} \frac{|r^k - r^{k+1}|^2}{2}$$

(2.67)

$$\geq |v^k||r^k - r^{k+1}| \left(1 - \frac{\|\nabla \Phi\|_{\infty} |r^k - r^{k+1}|}{2|v^k|}\right)$$

$$\geq \frac{|v^k||r^k - r^{k+1}|}{2} \geq \frac{\delta}{2},$$

where we have used the fact that

(2.68) \quad \frac{\|\nabla \Phi\|_{\infty} |r^k - r^{k+1}|}{2|v^k|} \leq \frac{2\delta}{N^2} \frac{3N \text{ diam}(\Omega)}{2/N} \leq 3\delta \text{ diam}(\Omega) \ll 1.

On the other hand, note that

$$n(X(t^k)) \cdot (X(t^{k+1}) - X(t^k))$$

(2.69)

$$= n(X(t^k)) \cdot \left(\lim_{s \to r^k} V(s)(t^{k+1} - t^k) + \int_{t^k}^{t^{k+1}} \int_{r^k}^{r^{k+1}} -\nabla \Phi(\tau, X(\tau)) d\tau ds\right)$$

$$= v_{p^k,3}^{k+1}(t^{k+1} - t^k) + \|\nabla \Phi\|_{\infty} \frac{|t^{k+1} - t^k|^2}{2}.$$

From the convexity, the left-hand side has a lower bound $C_\Omega |X(t^{k+1}) - X(t^k)|^2$. Therefore, if $\|\nabla \Phi\|_{\infty} \leq \frac{2\delta}{N^2}$, then from (2.67) and (2.69),

$$\frac{v_{p^k,3}^{k+1}}{|v^k|} \geq \frac{1}{|v^k|} \left(\frac{C_\Omega}{|r^k - r^{k+1}|} \left(\frac{|v^k||X(t^k) - X(t^{k+1})|}{2} - \|\nabla \Phi\|_{\infty} \frac{|r^k - r^{k+1}|}{2}\right)\right)$$

$$\geq \left(\frac{C_\Omega}{4} - \frac{\|\nabla \Phi\|_{\infty}}{2|v^k|^2}\right)|v^k||r^k - r^{k+1}|$$

$$\geq \left(\frac{C_\Omega}{4} - \frac{2\delta/N}{2/N}\right)|v^k||r^k - r^{k+1}|$$

$$\geq \left(\frac{C_\Omega}{4} - \delta\right)|v^k||r^k - r^{k+1}|$$

$$\geq \frac{C_\Omega}{8}|v^k||r^k - r^{k+1}|.$$

Second, we consider the case of $|v^k||r^{k+1} - r^k| \leq \delta$ for $0 < \delta \ll 1$. Then $|X(t^k) - X(s)| \leq |v^k||r^{k+1} - r^k| + \|\nabla \Phi\|_{\infty} |r^{k+1} - r^k|^2 \ll 1$, and therefore we may assume that $X(s)$ can be parametrized by p^k-coordinate for all $s \in [r^{k+1}, r^k]$. From (2.61),

$$\max_s |X_{p^k,3}(s)| \leq \frac{v^k_{p^k,3}}{|v^k|} |r^{k+1} - r^k|$$

$$+ O_{\|v\|_{C^2}} \left(\max_s |V(s)||r^k - r^{k+1}|\right) \times \max_s |X_{p^k,3}(s)|.$$
On the right-hand side, we control \(\max_s |V(s)| \) by
\[
\max_s |V(s)| \leq |v^k| + \|\nabla \Phi\|_\infty \leq 2|v^k| \quad \text{for} \quad \|\nabla \Phi\|_\infty \leq \frac{1}{N} \leq |v^k|,
\]
so we have
\[
\text{(2.70)} \quad \max_s |V(s)||t^k - t^{k+1}| \leq 2\delta
\]
and
\[
\text{(2.71)} \quad \max_s |X_p^{k,3}(s)| \leq \delta |v^{k+1} - t^k|.
\]
From \(\text{(2.62)} \) and \(\text{(2.71)} \),
\[
\max_s |V^{k,3}(s)| \leq |v^{k,3}| + 4|v^k|^2|t^k - t^{k+1}| + \|\nabla \Phi\|_\infty |t^k - t^{k+1}|
\]
\[
+ 4|v^{k,3}|v^k|t^k - t^{k+1}|^2
\]
\[
+ O_{\|\eta\|_{C_3}}(1) \max_s |V^{k,3}(s)| |v^k||t^k - t^{k+1}|.
\]
Now we use \(|v^k||t^k - t^{k+1}| \leq \delta \ll 1 \) to have
\[
\text{(2.72)} \quad \max_s |V^{k,3}(s)| \leq 2|v^{k,3}| + 4|v^k|^2|t^k - t^{k+1}| + \|\nabla \Phi\|_\infty |t^k - t^{k+1}|.
\]
Now we integrate \(\text{(2.61)} \) on \(t^{k+1} \leq s \leq t^k \) and then use \(\text{(2.62)} \) to obtain
\[
\text{(2.73)} \quad v^{k,3}(t^k - t^{k+1})
\]
\[
= -\int_{t^{k+1}}^{t^k} \int_{t^{k+1}}^{t^k} \sum_{m,n=1}^{2} v^{k,3, m, n} \frac{\partial_m \partial_n \eta_p}{\sqrt{g^{k,3, m, n}}} \frac{\partial_3 \eta_p}{\sqrt{g^{k,3, m, n}}} |(X_{p^{k,3}(s)}, X_{p^{k,3}(s)}, 0) dr ds
\]
\[
+ O_{\|\eta\|_{C_3}}(1) \left[\max_s |X_{p^{k,3}(s)}| \max_s |V(s)||t^k - t^{k+1}| + |t^k - t^{k+1}|^3 \max_s |V(s)|^3
\]
\[
+ |t^k - t^{k+1}|^2 \|\nabla \Phi\|_\infty \max_s |X_{p^{k,3}(s)}| \max_s |V(s)|^2
\]
\[
+ \max_s |V^{k,3}(s)| \max_s |V(s)| \right],
\]
and we use the convexity \(\text{(1.15)} \), and \(\text{(2.71)}, \text{(2.72)}, \) and \(\text{(2.70)} \) to derive
\[
|v^{k,3}(t^k - t^{k+1})| \geq C \max_s |V(s)| |t^k - t^{k+1}| + \delta |t^k - t^{k+1}|^2 \max_s |V(s)|^2
\]
\[
\text{(2.74)} \quad \geq C \max_s |V(s)| |t^k - t^{k+1}| + \delta |t^k - t^{k+1}|^2 \max_s |V(s)|^2
\]
\[
\left[\begin{array}{c}
\|\nabla \Phi\|_\infty + |v^{k,3}(s)| |t^k - t^{k+1}| \max_s |V(s)|^2
\end{array} \right] + \delta |t^k - t^{k+1}|^2 \max_s |V(s)|^2
\]
\[
+ 2 \left(|v^{k,3}||t^k - t^{k+1}| + \|\nabla \Phi\|_\infty |t^k - t^{k+1}| \right).
\]
For $(*)_1$, we decomposed $|V(s)|$ by $\{v_{p^k,\ell}\}_{\ell=1,2,3}$ and then the $\sum_{\ell=1,2} |v_{p^k,\ell}|^2$ part is absorbed by $C_\Omega (\frac{t_k^k - t_{k+1}^k}{2})^2 \sum_{m=1,2} |v_{p^k,m}^k|^2$. $|v_{p^k,3}^k|^2$ is absorbed by the left-hand side by the fact $|v^k||t_{k+1}^k - t_k^k| \leq \delta \ll 1$. For $(*)_2$, since $|v^k| \geq 1$,

$$
\|\nabla \Phi\|_{\infty} |t^k - t_{k+1}^k|^2 \leq \left(|v_{p^k,3}^k||v^k| + |v_{p^k,\ell}^k|^2 \right) N^2 \|\nabla \Phi\|_{\infty} |t_{k+1}^k - t_k^k|^2
$$

(2.75)

$$
\leq N^2 \|\nabla \Phi\|_{\infty} |v^k||t^k - t_{k+1}^k| |v^k||t_{k+1}^k - t_k^k|.
$$

so $(*)_2$ is absorbed by the left-hand side. For $(*)_3$, it is also absorbed by the left-hand side from (2.70). For $(*)_4$, it is also absorbed by the left-hand side from the facts $|v^k||t_{k+1}^k - t_k^k| \leq \delta \ll 1$ and $\delta \ll \frac{1}{N}$. For $(*)_5$, we perform decomposition as we did in $(*)_1$ and apply $|v^k||t_{k+1}^k - t_k^k| \leq \delta \ll 1$ and $\delta \ll \frac{1}{N}$ to be absorbed by the left-hand side and $C_\Omega \left(\frac{t_k^k - t_{k+1}^k}{2}\right)^2 \sum_{m=1,2} |v_{p^k,m}^k|^2$. For $(*)_6$, it is also absorbed by the left-hand side similarly to the $(*)_2$ case. Finally, we conclude (2.65).

Assume that x_{k+1} and x_k are close enough, i.e., $|x_{k+1} - x_k| \leq \|\Phi\|_{C^1}^{1/2} \ll 1$. From

$$
\eta_{p^k}(x_{p^k}^{k+1}) - \eta_{p^k}(x_{p^k}^k) = \int_0^{-(t_{k+1}^k - t_k^k)} V(t^k + s^k; t_{p^k}; \eta_{p^k}(x_{p^k}^k), u^k) ds
$$

(2.76)

$$
= v^k(t_{k+1}^k - t_k^k) - \int_0^{-(t_{k+1}^k - t_k^k)} \int_0^s \nabla \Phi(t^k + \tau; X(t^k + \tau; t_{p^k}; \eta_{p^k}(x_{p^k}^k), u^k)) d\tau ds.
$$

we have

$$
\eta_{p^k}(x_{p^k}^{k+1}) - \eta_{p^k}(x_{p^k}^k) = v^k(t_{k+1}^k - t_k^k) + O(\|\Phi\|_{C^1})|t_{k+1}^k - t_k^k|^2.
$$

By the expansion, $\eta_{p^k}(x_{p^k}^{k+1}) - \eta_{p^k}(x_{p^k}^k) = (x_{p^k+1}^k - x_{p^k}^k) \cdot \nabla \eta_{p^k}(x_{p^k}^{k+1})$. For $|t_{k+1}^k - t_k^k| \leq 1$, $|v^k| \geq \frac{1}{N}$, and $\|\Phi\|_{C^2} \leq \frac{1}{\sqrt{N}}$ for $N \gg 1$,

$$
|x_{p^k+1}^k - x_{p^k}^k| \leq |(\nabla \eta_{p^k}(x_{p^k}^{k+1}))^{-1}| |t_{k+1}^k - t_k^k| |v^k| + O(\|\Phi\|_{C^1})
$$

(2.77)

$$
\lesssim \Omega N |v^k||t_{k+1}^k - t_k^k|.
$$

On the other hand, from (2.76) $\cdot n_{p^k}(x_{p^k}^{k+1})$, we have

$$
[\eta_{p^k}(x_{p^k}^{k+1}) - \eta_{p^k}(x_{p^k}^k)] \cdot n_{p^k}(x_{p^k}^{k+1}) =
$$

$$
v_{p^k,3}(t_{k+1}^k - t_k^k) + O(\|\Phi\|_{C^2})|t_{k+1}^k - t_k^k|^2.
$$
By the expansion, the left-hand side equals
\[
\left[\eta_{p^k} (x_{p^k}^{k+1}) - \eta_{p^k} (x_{p^k}^k) \right] \cdot n_{p^k} (x_{p^k}^{k+1}) \\
= \left[(x_{p^k+1}^{k+1} - x_{p^k}^k) \cdot \nabla \eta_{p^k} (x_{p^k}^{k+1}) \right] \cdot n_{p^k} (x_{p^k}^{k+1}) + O(\| \eta \|_{C^2}) |x_{p^k+1}^{k+1} - x_{p^k}^k|^2 \\
\geq \Omega |x_{p^k+1}^{k+1} - x_{p^k}^k|^2 ,
\]
where we have used the fact that \(\nabla \eta_{p^k} (x_{p^k}^{k+1}) \perp n_{p^k} (x_{p^k}^{k+1}) \). Therefore, if \(|v_{p^k,3}^k| > \varepsilon \) and \(\| \Phi \|_{C^2} \ll \varepsilon \),
\[
|x_{p^k+1}^{k+1} - x_{p^k}^k|^2 \geq \Omega |v_{p^k,3}^k (t^{k+1} - t^k) + O(\| \Phi \|_{C^2}) |t^{k+1} - t^k|^2 | \\
\geq \Omega \{ |v_{p^k,3}^k| - O(\| \Phi \|_{C^2}) |t^{k+1} - t^k| \} \\
\geq \Omega |v_{p^k,3}^k||t^{k+1} - t^k|.
\]
(2.78)

From (2.77) and (2.78), we prove (2.66) when \(x^{k+1} \) and \(x^k \) are close enough.

Assume \(x^{k+1} \) and \(x^k \) are not close, i.e., \(|x^{k+1} - x^k| \geq \| \Phi \|_{C^1}^{1/2} \). From (2.1) and \(|t^k - t^{k+1}| \leq 1, |v^k| \geq 1/N \), and \(\| \Phi \|_{C^2} \leq 1/4N \) for \(N \gg 1 \),
\[
|t^k - t^{k+1}| |v^k| \geq |x^{k+1} - x^k| - O(\| \Phi \|_{C^1}) |t^k - t^{k+1}|^2 \geq \| \Phi \|_{C^1}^{1/2} .
\]
This proves (2.66).

\[\square \]

Lemma 2.7. Assume (2.6) and (1.15) hold. Suppose \(x \in \overline{\Omega}, 1/N \leq |v| \leq N, \| \nabla \Phi \|_\infty < \frac{\delta}{3 \max(\Omega)N^2} \) for \(1 \ll N \), and \(0 < \delta \ll \frac{1}{N} \ll 1 \). Assume \(t \in [M, M+1] \) for \(M \in \mathbb{N} \). For all \(i \in \mathbb{N} \) with \(t^i \in [M-1, t] \),
\[
\max \{ 1 - C_\Omega |v^i| |t^i - t^{i+1}|, c_{\Omega, N} \} v_{p^k,3}^{k+1} \\
\leq v_{p^k+1,3}^{k+1} \leq \min \{ 1 + C_\Omega |v^i| |t^i - t^{i+1}|, C_{\Omega, N} \} v_{p^k,3}^{k},
\]
and
\[
\sum_{j=1}^{k} \max \{ 1 - C_\Omega |v^j| |t^j - t^{j+1}|, c_{\Omega, N} \} v_{p^1,3}^j \\
\leq v_{p^k+1,3}^{k+1} \leq \prod_{j=1}^{k} \min \{ 1 + C_\Omega |v^j| |t^j - t^{j+1}|, C_{\Omega, N} \} v_{p^1,3}^j .
\]
(2.79)

Moreover,
\[
\sup \{ k \in \mathbb{N} : |t - t^k| \leq 1 \} \leq \Omega, N, \delta .
\]
(2.80)
PROOF.

Step 1. We claim that if $v^k_{p,k,3} \ll |u^k|$, then

$$
\dot{t}^k - \dot{t}^{k+1} = \frac{-2v^{k+1}}{v_{p,k,3}^{k+1}} \sum_{m,n=1}^2 \frac{\partial_m \partial_n \eta_{p,k+1}}{\sqrt{\sqrt{p_{k+1}} \sqrt{\sqrt{p_{k+1}}}} x^{k+1}} + \frac{\partial_3 \eta_{p,k+1}}{\sqrt{\sqrt{p_{k+1}} \sqrt{\sqrt{p_{k+1}}}} x^{k+1}} v^{k+1}_{p,k+1,m} v^{k+1}_{p,k+1,n}
$$

(2.82)

Due to (2.65) and its proof, if $v^k_{p,k,3} \ll |u^k|$, then

$$
X(s; t^{k+1}, x^{k+1}, v^{k+1}) \sim x^{k+1} \sim p^{k+1} \quad \text{for all } t^{k+1} \leq s \leq t^k.
$$

By the expansion of

$$
(X_{p,k+1}(s; t^{k+1}, x^{k+1}, v^{k+1}), V_{p,k+1}(s; t^{k+1}, x^{k+1}, v^{k+1}))
$$

in (2.62) around $s = t^{k+1}$,

$$
\dot{V}_{p,k+1,3}(s; t^{k+1}, x^{k+1}, v^{k+1}) = -\sum_{n=1}^2 \sum_{\ell=1}^2 \frac{\partial_{\ell n} \eta_{p,k+1}}{\sqrt{\sqrt{p_{k+1}} \sqrt{\sqrt{p_{k+1}}}} x^{k+1}} \frac{\partial_3 \eta_{p,k+1}}{\sqrt{\sqrt{p_{k+1}} \sqrt{\sqrt{p_{k+1}}}} x^{k+1}} v^{k+1}_{p,k+1,\ell} v^{k+1}_{p,k+1,n} + O(\eta ||\eta||_C^3) \max_s |V(s)|^2 \max_s |\nabla V(s)| + \|\nabla^2 \Phi\| \|\nabla \Phi\|_\infty.
$$

Note that from Lemma 2.6 and (2.71), the last three lines above are bounded from above by $|u^{k+1}||v^{k+1}_{p,k+1}||\nabla^2 \Phi\|_\infty$. Then from (2.61), (2.62), (2.71), and (2.72),

$$
-\frac{(t^k - t^{k+1})^2}{2} \sum_{m,n=1}^2 \frac{\partial_m \partial_n \eta_{p,k+1}}{\sqrt{\sqrt{p_{k+1}} \sqrt{\sqrt{p_{k+1}}}} x^{k+1}} + \frac{\partial_3 \eta_{p,k+1}}{\sqrt{\sqrt{p_{k+1}} \sqrt{\sqrt{p_{k+1}}}} x^{k+1}} v^{k+1}_{p,k+1,m} v^{k+1}_{p,k+1,n} = v^{k+1}_{p,k+1,3}(t^k - t^{k+1}) + O(\eta ||\eta||_C^3) \max_s |V^{k+1}_{p,k+1,3}||u^{k+1}|
$$

This proves (2.82).

Step 2. We claim that for $v^{k+1}_{p,k,3} \ll |u^{k+1}|$,

$$
\frac{\partial v^{k+1}_{p,k,3}}{\partial v^k_{p,k,3}} = 1 + O(\|\Phi\|_C^1 |t^k - t^{k+1}|) + O(V^{k+1}_{p,k+1,3} |v^{k+1}|).
$$

(2.83)
From Lemma 2.2

\[
\frac{\partial v^{k+1}}{\partial p^{k+1} x_{1,3}} = - \sum_{\ell = 1}^{2} \left\{ \left(t^k - t^{k+1} \right) \frac{\partial^3 \eta_{p^k}(x^k)}{\sqrt{g_{p^k,33}(x^k)}} \cdot \frac{1}{\sqrt{g_{p^k+1,\ell\ell}(x^{k+1})}} \right\} \left[\frac{\partial_{\ell} \eta_{p^{k+1}}(x^{k+1})}{\sqrt{g_{p^{k+1},\ell\ell}(x^{k+1})}} \right] x^{k+1} - \frac{\partial^3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} \cdot \frac{\partial^3 \eta_{p^k}}{\sqrt{g_{p^k,33}(x^k)}} x^k \\
+ O_{\Omega}(\|\Phi\|_{C^2}) \left(1 + \frac{|v^{k+1}|}{|v^k|} \right) (t^k - t^{k+1})^2 e^{\|\Phi\|_{C^2}} (t^k - t^{k+1})^2 \\
\right. \\
= \left. \frac{\partial^3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} \cdot \frac{\partial^3 \eta_{p^k}}{\sqrt{g_{p^k,33}(x^k)}} x^k \right] \\
\times \left\{ -1 + \frac{t^k - t^{k+1}}{|v^k|} \sum_{\ell = 1}^{2} \frac{v^{k+1}}{|v^{k+1}|} \frac{\partial_{\ell} \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} x^{k+1} \right\} \\
\right) \\
+ O_{\Omega}(1)|v^k|(t^k - t^{k+1}) \left\{ \frac{\partial^3 \eta_{p^k}}{\sqrt{g_{p^k,33}(x^k)}} \cdot \frac{\partial_{\ell} \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} x^{k+1} \right\} \\
+ O_{\Omega}(\|\Phi\|_{C^2}) \left(1 + \frac{|v^{k+1}|}{|v^k|} \right) |v^k|(t^k - t^{k+1})^2 e^{\|\Phi\|_{C^2}} (t^k - t^{k+1})^2. \\
\right.
\]

Consider (*). For \(\ell, j = 1, 2 \), from (2.8),

\[
\partial_{\ell} \left(\frac{\partial^3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} \cdot \frac{\partial_{j} \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},jj}(x^{k+1})}} \right) x^{k+1} = 0
\]

and hence

\[
\partial_{\ell} \left(\frac{\partial^3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} \right) x^{k+1} = \partial_{\ell} \left(\frac{\partial^3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} \right) x^{k+1} + O_{\Omega}(\|\Phi\|_{C^2}) (t^k - t^{k+1}) = \]

\[
\partial_{\ell} \left(\frac{\partial^3 \eta_{p^{k+1}}}{\sqrt{g_{p^{k+1},33}(x^{k+1})}} \right) x^{k+1} + O_{\Omega}(\|\Phi\|_{C^2}) (t^k - t^{k+1}) =
\]
Combining the above with (2.82), we conclude that

\[k \eta \]

Note that \(kr \) for sufficiently small \(\frac{1}{\eta} \).

Taking the above all together, we prove (2.83).

This proves \((\ast) = -1 + 2 + O_{\|\eta\|_{C^2}}(|\Phi|_{C_1}) |t^k - t^{k+1}|. \)

Note that

\[
\begin{align*}
\frac{\partial k \eta \ p^{k+1}}{\sqrt{g} p^{k+1,33}} \bigg|_{x^{k+1}} & \cdot \frac{\partial k \eta \ p^k}{\sqrt{g} p^{k,33}} \bigg|_{x^k} = 1 + O_{\Omega}(1) \max_s |V(s)| (t^k - t^{k+1}), \\
\frac{\partial k \eta \ p^{k+1}}{\sqrt{g} p^{k+1,\ell \ell}} \bigg|_{x^{k+1}} & \cdot \frac{\partial k \eta \ p^k}{\sqrt{g} p^{k,33}} \bigg|_{x^k} = O_{\Omega}(1) \max_s |V(s)| (t^k - t^{k+1}), \quad \text{for } \ell = 1, 2.
\end{align*}
\]

Taking the above all together, we prove (2.83).

Step 3. We now prove (2.79). For \(\eta_{p^{k+1,3}} \ll |v^{k+1}| \), by the expansion and (2.83),

\[
\begin{align*}
v^{k+1}_{p^{k+1,3}} & (t^k, x^k, v^k_{p^{k,1}}, v^k_{p^{k,2}}, v^k_{p^{k,3}}) \\
& = v^{k+1}_{p^{k+1,3}} (t^k, x^k_{p^{k,1}}, v^k_{p^{k,1}}, 0) \\
& + \int_0^1 \frac{\partial v^{k+1}_{p^{k,3}}}{\partial x^{p^{k,3}}} (t^k, x^k_{p^{k,1}}, v^k_{p^{k,1}}, v^k_{p^{k,2}}, \tau) d\tau \\
& = 0 + v^k_{p^{k,3}} \times (2.83).
\end{align*}
\]

This proves \(v^{k+1}_{p^{k+1,3}} = (1 + O_{\|\eta\|_{C^2}} |v^k||t^k - t^{k+1}|) v^k_{p^{k,3}}. \)

Now we consider the case of \(v^{k+1}_{p^{k+1,3}} \geq |v^{k+1}|. \) Clearly

\[
v^k_{p^{k,3}} \leq |v^k_{p^k}| \leq |v^{k+1}| + \|\nabla_x \Phi\|_\infty |t^k - t^{k+1}| \leq \frac{1}{2} |v^{k+1}| \leq v^{k+1}_{p^{k+1,3}},
\]

for sufficiently small \(\|\nabla_x \Phi\|_\infty. \) This proves (2.79). Then we prove (2.80) by induction in \(k. \) Also, the proof of (2.81) is a direct consequence of (2.80):

\[
\begin{align*}
v^{k+1}_{p^{k+1,3}} & \geq (1 + C_{\|\eta\|_{C^2}} |v^k||t^k - t^{k+1}|)^{-1} v^k_{p^{k,3}} \geq e^{-C_{\|\eta\|_{C^2}} |v^k||t^k - t^{k+1}|} v^k_{p^{k,3}} \\
& \geq e^{-C_{\|\eta\|_{C^2}} \sum_{i=1}^k |v^i||t^i - t^{i+1}|} v^1_{p^{1,3}} \geq e^{-C_{\|\eta\|_{C^2}} \delta}.
\end{align*}
\]
LEMMA 2.8. Assume $\frac{1}{N} \leq |v| \leq N$, $\|\nabla \Phi\|_{\infty} < \frac{\delta}{3 \text{diam}(\Omega) N^2}$ for $1 \ll N$, and $0 < \delta \ll \frac{1}{N} \ll 1$. Also, we assume $|\ell - \ell^{k+1}| \leq 1$. Then

$$
\det \begin{bmatrix}
\nabla_{x_p}^{k} x_{p}^{k+1} & \nabla_{x_p}^{k} x_{p}^{k+1} & \nabla_{x_p}^{k} x_{p}^{k+1} \\
\nabla_{x_p}^{k} x_{p}^{k+1} & \nabla_{x_p}^{k} x_{p}^{k+1} & \nabla_{x_p}^{k} x_{p}^{k+1} \\
\nabla_{x_p}^{k} x_{p}^{k+1} & \nabla_{x_p}^{k} x_{p}^{k+1} & \nabla_{x_p}^{k} x_{p}^{k+1} \\
\end{bmatrix}_{5 \times 5}
$$

$$
= (1 + O_{\Omega,N}(\|\Phi\|_{C^2})) \frac{\sqrt{g_{p_{k+1,11}}(x^{k})} \sqrt{g_{p_{k+1,22}}(x^{k})}}{\sqrt{g_{p_{k+1,11}}(x^{k+1})} \sqrt{g_{p_{k+1,22}}(x^{k+1})}} \begin{bmatrix}
\text{det} (\frac{\partial i \eta_{p_{k+1}}}{\partial x_{p}^{k+1,11}}) \\
\text{det} (\frac{\partial i \eta_{p_{k+1}}}{\partial x_{p}^{k+1,22}}) \\
\text{det} (\frac{\partial i \eta_{p_{k+1}}}{\partial x_{p}^{k+1,33}}) \\
\end{bmatrix}_{5 \times 5}
$$

for the mapping $(x_{p}^{k+1,1}, x_{p}^{k+1,2}, x_{p}^{k+1,3}) \mapsto (x_{p}^{k+1,1}, x_{p}^{k+1,2}, x_{p}^{k+1,3})$.

PROOF. From Lemma 2.2 and Lemma 2.6

Now for $i = 1$ and $i = 2$, we multiply

$$
\partial_{\ell} \left(\frac{\partial i \eta_{p_{k+1}}}{\sqrt{g_{p_{k+1,ii}}}} \right)_{x^{k+1}} \cdot u^{k}
$$

to the ℓ^{th} row for $\ell = 1, 2$, and then subtract this from the $(i + 2)^{th}$ row. Similarly, we multiply

$$
\partial_{\ell} \left(\frac{\partial i \eta_{p_{k+1}}}{\sqrt{g_{p_{k+1,ii}}}} \right)_{x^{k+1}} \cdot u^{k}
$$
to the ℓth row for $\ell = 1, 2$ and then subtract this from the 5th row. Hence, rewriting the first two rows using Lemma 2.2, the resulting row echelon form of matrix \mathcal{A} is

$$
\begin{array}{c|c|c}
\frac{\partial f}{\partial x} - \frac{\partial f}{\partial t} & 1 & \frac{\partial g}{\partial x} - \frac{\partial g}{\partial t} \\
\frac{\partial g}{\partial x} & 1 & \frac{\partial h}{\partial x} - \frac{\partial h}{\partial t} \\
\frac{\partial h}{\partial x} & 1 & \frac{\partial i}{\partial x} - \frac{\partial i}{\partial t} \\
\end{array}
$$

In order to evaluate the determinant of the upper left 2×2 matrix, we use a basic linear algebra result: Let $A_1, A_2, B_1, B_2 \in \mathbb{R}^2$. Then

$$
\det \left(\begin{array}{cc}
A_1 & A_2 \\
A_2 & B_2 \\
\end{array} \right) = \det \left(\begin{array}{cc}
A_1 & A_2 \\
A_2 & B_2 \\
\end{array} \right) = \det \left(\begin{array}{cc}
A_1 \times A_2 & A_1 \times B_2 \\
A_2 \times A_1 & A_2 \times B_2 \\
\end{array} \right) = \left(\begin{array}{cc}
A_1 & A_2 \\
A_2 & B_2 \\
\end{array} \right) \cdot (A_1 \times B_2).
$$
From (2.86), the determinant of upper left 2×2 submatrix of the first matrix in (2.84) equals
\[
\left| \partial_1 \eta_{\rho^k} \times \partial_2 \eta_{\rho^k} \right|_{x^k}
\]
\[
\times \left(\frac{1}{\sqrt{g_{\rho^k,11}}} \left[\frac{\partial_1 \eta_{\rho^k+1}}{\sqrt{g_{\rho^k,11}}} \right]_{x^{k+1}} + \frac{\eta_{\rho^k+1}}{\rho^k+1} \frac{\partial_3 \eta_{\rho^k+1}}{\sqrt{g_{\rho^k,13}}} \right)
\]
\[
\times \left(\frac{1}{\sqrt{g_{\rho^k,22}}} \left[\frac{\partial_2 \eta_{\rho^k+1}}{\sqrt{g_{\rho^k,22}}} \right]_{x^{k+1}} + \frac{\eta_{\rho^k+1}}{\rho^k+1} \frac{\partial_3 \eta_{\rho^k+1}}{\sqrt{g_{\rho^k,33}}} \right) \right)
\]
\[
(2.87)
\]
\[
\sqrt{g_{\rho^k,11}(x^k)g_{\rho^k,22}(x^k)}
\]
\[
\left| n_{\rho^k}(x^k) \cdot \left(n_{\rho^k+1} - \frac{\eta_{\rho^k+1}}{\rho^k+1} \frac{\partial_2 \eta_{\rho^k+1}}{\sqrt{g_{\rho^k,22}}} \right) \right| \right)
\]
\[
(2.88)
\]
Since the determinant of the second matrix in (2.84) is the size of $\| \Phi \|_{C^2}$, we finish the proof from (2.84), (2.85), and (2.88).

Lemma 2.9. We define, for all k,
\[
|v_{p^k}^k| = \sqrt{(v_{p^k,1}^k)^2 + (v_{p^k,2}^k)^2 + (v_{p^k,3}^k)^2}, \quad \tilde{v}_{p^k,1}^k = \frac{\partial v_{p^k,1}^k}{|v_{p^k}|}, \quad v_{p^k,2}^k = \frac{\partial v_{p^k,2}^k}{|v_{p^k}|},
\]
where $v_{p^k}^k = v_{p^k}^k(t, x, v)$ are defined in (2.11). Assume (1.15). $\frac{1}{N} \leq |v| \leq N$, $\| \Phi \|_{C^2}^2 < \frac{\delta_1}{\delta_1} N^2$ for $1 \leq N$, $0 < \delta_1 \ll \frac{1}{N} \ll 1$, and $|\psi_{p^k,1}^k(t, x, v)| > \delta_2 > 0$. If $|t - t^k| \leq 1$, then
\[
\det \left[\begin{array}{ccc}
\partial \psi_{p^k,1}^k & \partial \psi_{p^k,2}^k & \partial \psi_{p^k,3}^k \\
\partial \psi_{p^k,1}^k & \partial \psi_{p^k,2}^k & \partial \psi_{p^k,3}^k \\
\partial \psi_{p^k,1}^k & \partial \psi_{p^k,2}^k & \partial \psi_{p^k,3}^k
\end{array} \right] > \epsilon_{\Omega, N, \delta_1, \delta_2} > 0,
\]

(2.90)
where \(t^1 = t^1(t, x, v) \), \(x^{1}_{p^1, i} = x^{1}_{p^1, i}(t, x, v) \), \(\tilde{x}^{1}_{p^1, i} = \tilde{x}^{1}_{p^1, i}(t, x, v) \), and

\[
\begin{align*}
\varphi^{1}_{p^1, i} = x^{1}_{p^1, i}(t', x^{1}_{p^1, 1}, x^{1}_{p^1, 1}, \tilde{x}^{1}_{p^1, 1}, \tilde{x}^{1}_{p^1, 1}, |v^{1}_{p^1, 1}|) \\
\tilde{\varphi}^{1}_{p^1, i} = \tilde{x}^{1}_{p^1, i}(t', x^{1}_{p^1, 1}, x^{1}_{p^1, 1}, \tilde{x}^{1}_{p^1, 1}, \tilde{x}^{1}_{p^1, 1}, |v^{1}_{p^1, 1}|)
\end{align*}
\]

Here the constant \(\delta_{\Omega, N, \delta_1, \delta_2} > 0 \) does not depend on \(t \) or \(x \).

Proof. Step 1. We compute

\[
J_{i+1}^1 := \frac{\partial(x^{i+1}_{p^1, 1}, x^{i+1}_{p^1, 2}, \tilde{x}^{i+1}_{p^1, 1}, \tilde{x}^{i+1}_{p^1, 2}, |v^{i+1}_{p^1, 1}|)}{\partial(x^{i}_{p^1, 1}, x^{i}_{p^1, 2}, \tilde{x}^{i}_{p^1, 1}, \tilde{x}^{i}_{p^1, 2}, |v^{i}_{p^1, 1}|)} \\
= \frac{\partial(x^{i}_{p^1, 1}, x^{i}_{p^1, 2}, \tilde{x}^{i}_{p^1, 1}, \tilde{x}^{i}_{p^1, 2}, |v^{i}_{p^1, 1}|)}{\partial(x^{i}_{p^1, 1}, x^{i}_{p^1, 2}, \tilde{x}^{i}_{p^1, 1}, \tilde{x}^{i}_{p^1, 2}, |v^{i}_{p^1, 1}|)} = P_i
\]

\[
\times \frac{\partial(x^{i+1}_{p^1, 1}, x^{i+1}_{p^1, 2}, \tilde{x}^{i+1}_{p^1, 1}, \tilde{x}^{i+1}_{p^1, 2}, |v^{i+1}_{p^1, 1}|)}{\partial(x^{i+1}_{p^1, 1}, x^{i+1}_{p^1, 2}, \tilde{x}^{i+1}_{p^1, 1}, \tilde{x}^{i+1}_{p^1, 2}, |v^{i+1}_{p^1, 1}|)} = Q_{i+1}
\]

For \(Q_i \),

\[
Q_i = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{\partial v^{i}_{p^1, 1}}{\partial x^{i}_{p^1, 1}} & \frac{\partial v^{i}_{p^1, 1}}{\partial x^{i}_{p^1, 2}} & \frac{\partial v^{i}_{p^1, 1}}{\partial \tilde{x}^{i}_{p^1, 1}} \\
0 & 0 & \frac{\partial v^{i}_{p^1, 2}}{\partial x^{i}_{p^1, 1}} & \frac{\partial v^{i}_{p^1, 2}}{\partial x^{i}_{p^1, 2}} & \frac{\partial v^{i}_{p^1, 2}}{\partial \tilde{x}^{i}_{p^1, 2}} \\
0 & 0 & \frac{\partial v^{i}_{p^1, 3}}{\partial x^{i}_{p^1, 1}} & \frac{\partial v^{i}_{p^1, 3}}{\partial x^{i}_{p^1, 2}} & \frac{\partial v^{i}_{p^1, 3}}{\partial \tilde{x}^{i}_{p^1, 2}} \\
\end{bmatrix}
\]

\[
Q_{i+1} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{\partial v^{i+1}_{p^1, 1}}{\partial x^{i+1}_{p^1, 1}} & \frac{\partial v^{i+1}_{p^1, 1}}{\partial x^{i+1}_{p^1, 2}} & \frac{\partial v^{i+1}_{p^1, 1}}{\partial \tilde{x}^{i+1}_{p^1, 1}} \\
0 & 0 & \frac{\partial v^{i+1}_{p^1, 2}}{\partial x^{i+1}_{p^1, 1}} & \frac{\partial v^{i+1}_{p^1, 2}}{\partial x^{i+1}_{p^1, 2}} & \frac{\partial v^{i+1}_{p^1, 2}}{\partial \tilde{x}^{i+1}_{p^1, 2}} \\
0 & 0 & \frac{\partial v^{i+1}_{p^1, 3}}{\partial x^{i+1}_{p^1, 1}} & \frac{\partial v^{i+1}_{p^1, 3}}{\partial x^{i+1}_{p^1, 2}} & \frac{\partial v^{i+1}_{p^1, 3}}{\partial \tilde{x}^{i+1}_{p^1, 2}} \\
\end{bmatrix}
\]
From (2.91), (2.97), (2.96), and Lemma 2.8, we get
\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{\partial v^{i+1}_{p^{i+1}}}{\partial v^{i+1}_{p^{i+1}} - 1} & 0 \\
0 & 0 & \left. \frac{\partial v^{i+1}_{p^{i+1}}}{\partial v^{i+1}_{p^{i+1}} - 1} \right|_{p^{i+1},1} & \left. \frac{\partial v^{i+1}_{p^{i+1}}}{\partial v^{i+1}_{p^{i+1}} - 1} \right|_{p^{i+1},3}
\end{bmatrix}
\]
\[
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \left. \frac{\partial v^{i+1}_{p^{i+1}}}{\partial v^{i+1}_{p^{i+1}} - 1} \right|_{p^{i+1},1} & 0 \\
0 & 0 & \left. \frac{\partial v^{i+1}_{p^{i+1}}}{\partial v^{i+1}_{p^{i+1}} - 1} \right|_{p^{i+1},2} & \left. \frac{\partial v^{i+1}_{p^{i+1}}}{\partial v^{i+1}_{p^{i+1}} - 1} \right|_{p^{i+1},3}
\end{bmatrix}
\]
\]
Note that for \(\ell = 1, 2, \)
\[
\frac{\partial v^{i+1}_{p^{i+1},\ell}}{\partial v^{i+1}_{p^{i+1},3}} = v^{i+1}_{p^{i+1},\ell} \frac{\partial}{\partial v^{i+1}_{p^{i+1},3}} \left(\frac{1}{v^{i+1}_{p^{i+1}}} \right) = \frac{v^{i+1}_{p^{i+1},\ell} v^{i+1}_{p^{i+1},3}}{v^{i+1}_{p^{i+1}}},
\]
and for \(k = 1, 2, 3, \)
\[
\frac{\partial |v^{i+1}_{p^{i+1}}|}{\partial v^{i+1}_{p^{i+1},k}} = -\frac{v^{i+1}_{p^{i+1},k}}{|v^{i+1}_{p^{i+1}}|}.
\]
From (2.93), (2.94), and (2.95),
\[
\det Q_{i+1} = \frac{1}{|v^{i+1}_{p^{i+1}}|} \left(-\frac{v^{i+1}_{p^{i+1},3}}{|v^{i+1}_{p^{i+1}}|} + \frac{(v^{i+1}_{p^{i+1},2})^2 v^{i+1}_{p^{i+1},3}}{|v^{i+1}_{p^{i+1}}|^4} \right)
\]
\[
+ \frac{v^{i+1}_{p^{i+1},1} v^{i+1}_{p^{i+1},3} v^{i+1}_{p^{i+1},1}}{|v^{i+1}_{p^{i+1}}|^3 |v^{i+1}_{p^{i+1}}|^3} - \frac{(v^{i+1}_{p^{i+1},3})^3}{|v^{i+1}_{p^{i+1}}|^5}.
\]
By taking the inverse and changing index \(i + 1 \) to \(i \), we get
\[
\det Q_i = -\frac{|v^i_{p^{i,3}}|}{|v^i_{p^{i,3}}|^5}.
\]
From (2.91), (2.97), (2.96), and Lemma 2.8 we get
\[
\det \begin{bmatrix}
\nabla x^k_{p^k} x^{k+1}_{p^{k+1}} & \nabla x^k_{p^k} x^{k+1}_{p^{k+1}} \\
\nabla x^k_{p^k} x^{k+1}_{p^{k+1}} & \nabla x^k_{p^k} x^{k+1}_{p^{k+1}}
\end{bmatrix}_{5 \times 5}
\]
\[
= (1 + O_{\Omega,N}(\|\Phi\|_{C^2})) \sqrt{g_{p^{k,11}(x^k)}} \sqrt{g_{p^{k,22}(x^k)}} \sqrt{g_{p^{k,11}(x^{k+1})}} \sqrt{g_{p^{k,22}(x^{k+1})}} |v^k_{p^k,3}| \sqrt{g_{p^{k+1,11}(x^{k+1})}} \sqrt{g_{p^{k+1,22}(x^{k+1})}} |v^{k+1}_{p^{k+1},3}|.
\]
\[|\det J_i^{j+1}| = |\det Q_i \det P_i \det Q_{i+1}| \]
\[= \frac{|\nu_{p_i}^j|^5}{(\nu_{p_{i+1}}^j)^3} (1 + O_{\Omega,N}(\|\Phi\|_{C^2})) \frac{\sqrt{g_{p_i,11}} \sqrt{g_{p_i,22}} |x_i^j|}{\sqrt{g_{p_i^1,11}} \sqrt{g_{p_i^1,22}} |x_i^{j+1}|} \]
\[\cdot \frac{|\nu_{p_{i+1}}^{j+1}|^3}{|\nu_{p_{i+1}}^{j+1,3}|} |\nu_{p_{i+1}}^{j+1}|^5 \]
\[= (1 + O_{\Omega,N}(\|\Phi\|_{C^2})) \frac{\sqrt{g_{p_i,11}} \sqrt{g_{p_i,22}} |x_i^j|}{\sqrt{g_{p_i^1,11}} \sqrt{g_{p_i^1,22}} |x_i^{j+1}|} \frac{|\nu_{p_{i+1}}^{j+1}}{\nu_{p_{i+1}}^{p_{i+1},3}} \]
\[+ O_{\Omega,N}(\|\Phi\|_{C^2}). \]

Therefore,

\[|\det J_i^k| = (1 + O_{\Omega,N}(\|\Phi\|_{C^2})) \frac{\sqrt{g_{p_i,11}} \sqrt{g_{p_i,22}} |x_i^j|}{\sqrt{g_{p_i^k,11}} \sqrt{g_{p_i^k,22}} |x_i^k|} \frac{|\nu_{p_{i+1}}^{j+1}}{\nu_{p_{i+1}}^{p_{i+1},3}} \]
\[+ O_{\Omega,N}(\|\Phi\|_{C^2}). \]

Step 2. From (2.35),

\[2|\nu_{p_i}^{j+1}|^2 \frac{\partial |\nu_{p_i}^{j+1}|}{\partial \nu_{p_i}^j} = 2|\nu_{p_i}^{j+1}| \frac{\partial V(t^{j+1},t^j, x^j, v^j)}{\partial \nu_{p_i}^j} = 2|\nu_{p_i}^{j+1}| \frac{\partial V(t^{j+1},t^j, x^j, v^j)}{\partial \nu_{p_i}^j} \]
\[= 2 \left(\frac{\partial_n g_{p_i,n}}{\sqrt{g_{p_i,n}}} |x_i^j| + \frac{\partial (t^j - t^{j+1})}{\partial \nu_{p_i}^j} \nabla_x \Phi(t^{j+1}, x^j + (t^j - t^{j+1})) \right) \cdot V(t^{j+1},t^j, x^j, v^j) \]
\[= 2 |\nu_{p_i}^j| \frac{\partial (t^j - t^{j+1})}{\partial \nu_{p_i}^j} \frac{\partial \nabla_x \Phi(t^j)}{\partial \nu_{p_i}^j} |x_i^{j+1}| + O_{\Omega}(\|\nabla_x \Phi\|_{\infty})(t^j - t^{j+1})^2 e \|\nabla_x \Phi\|_{\infty} (t^j - t^{j+1})^2 \]
\[+ O_{\Omega}(\|\nabla_x \Phi\|_{\infty}) |v^j| (t^j - t^{j+1})^2 e \|\nabla_x \Phi\|_{\infty} (t^j - t^{j+1})^2. \]

Then by Lemma 2.2 and \[\frac{\partial (t^j - t^{j+1})}{\partial \nu_{p_i}^j} \leq \frac{1}{\Omega, N}, \] we get

\[2 |\nu_{p_i}^j| \frac{\partial |\nu_{p_i}^{j+1}}{\partial \nu_{p_i}^j} = \frac{\nu_{p_i}^j}{|\nu_{p_i}^{j+1}|} + O_{\Omega,N}(\|\Phi\|_{C^2}) \text{ for } n = 1, 2. \]
From (2.35), for \(n = 1, 2 \),

\[
2|v_{p^i+1}^{j+1}| \frac{\partial |v_{p^i+1}^{j+1}|}{\partial x_{p^i,n}^j} = \frac{\partial |V(t^{i+1}; t^i, x^i, v^i)|^2}{\partial x_{p^i,n}^j}
\]

\[
= 2 \frac{\partial V(t^{i+1}; t^i, x^i, v^i)}{\partial x_{p^i,n}^j} \cdot V(t^{i+1}; t^i, x^i, v^i)
\]

\[
= 2 \left(\frac{\partial (t^i - t^{i+1})}{\partial x_{p^i,n}^j} \nabla_x \Phi(t^i, x^i) + O_\Omega(\|\nabla^2 \Phi\|_\infty)(t^i - t^{i+1})^2 \right)
\]

\[
\cdot V(t^{i+1}; t^i, x^i, v^i)
\]

\[
\leq O_{N, \Omega}(\|\Phi\|_{C^2}).
\]

where we have used \(|\partial (t^i - t^{i+1})/\partial x_{p^i,n}^j| \lesssim_{N, \Omega} 1 \) for \(n = 1, 2 \) from Lemma 2.2. This proves

\[
(2.102) \quad \frac{\partial |v_{p^i+1}^{j+1}|}{\partial x_{p^i,n}^j} = O_{N, \Omega}(\|\Phi\|_{C^2}) \quad \text{for } n = 1, 2.
\]

Meanwhile,

\[
\frac{\partial |v_{p^i+1}^{j+1}|}{\partial |v_{p^i}^j|} = \sum_{\ell=1}^{2} \bar{v}_{p^i, \ell} \frac{\partial |v_{p^i+1}^{j+1}|}{\partial v_{p^i, \ell}^{j+1}} + \sqrt{1 - (\bar{v}_{p^i, 1}^j)^2 - (\bar{v}_{p^i, 2}^j)^2} \frac{v_{p^i, 3}^j v_{p^i+1}^{j+1}}{|v_{p^i}^j|} + O_{\Omega, N}(\|\Phi\|_{C^2})
\]

\[
(2.103) \quad = \sum_{\ell=1}^{2} \bar{v}_{p^i, \ell} \frac{v_{p^i, \ell}^j}{|v_{p^i}^j|} + \sqrt{1 - (\bar{v}_{p^i, 1}^j)^2 - (\bar{v}_{p^i, 2}^j)^2} \frac{v_{p^i, 3}^j}{|v_{p^i}^j|} + O_{\Omega, N}(\|\Phi\|_{C^2})
\]

\[
= 1 + O_{\Omega, N}(\|\Phi\|_{C^2}).
\]
Step 3. From (2.99), (2.101), (2.102), and (2.103),

\[
\det J^k_1 = (1 + O_{\Omega,N}(\|\Phi\|_{C^2})) \frac{\sqrt{\frac{p^{k,11}}{p^{k,22}}} \left| x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}} \right|^2}{\sqrt{\frac{p^{k,11}}{p^{k,22}}} \left| v^1_{p^{k,3}} \right|^2} + O_{\Omega,N}(\|\Phi\|_{C^2})
\]

\[
= \det \begin{bmatrix}
\frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} & \frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} \\
\frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} & \frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} \\
\end{bmatrix}
\]

where (*) := \(O_{\Omega,N}(\|\Phi\|_{C^2})\).

\[
= \det \begin{bmatrix}
\frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} & \frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} \\
\frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} & \frac{\partial x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}}{\partial x^1_{p^{k,1} \cdot \cdot \cdot p^{k,2}}} \\
\end{bmatrix}
\]

\[
= 1 + (*)
\]

Note that from (2.81), \(k \lesssim_{\Omega,N,\delta,1,2} 1\) and \(|v^k_{p^{k,3}}| \lesssim_{\Omega,N,\delta,1,2} |v^1_{p^{k,3}}|\). Therefore, we conclude (2.90).

\[
3 \ Transversality \ via \ the \ Geometric \ Decomposition \ and \ Triple \ Iterations
\]

Lemma 3.1. Assume \(Y : (y_1, y_2) \mapsto Y(y_1, y_2) \in \mathbb{R}^3\) is a \(C^1\)-map locally. For any \(t, s \geq 0\) with \(s \in [t - 1, t]\), \(|n(x^1(t, Y(y_1, y_2), v)) \cdot v^1(t, Y(y_1, y_2), v) > \delta, \frac{1}{N} \leq |v| \leq N, \frac{1}{N} \leq |v_3|, i + 1(t, Y(y_1, y_2), v) < s < i(t, Y(y_1, y_2), v), and \|\nabla \Phi\|_{\infty} < \frac{\delta}{3\text{diam}(\Omega)N^2},\) we have

\[
(3.1) \quad \partial_{|v|}[X_i(s; t, Y(y_1, y_2), v)] =
\]

\[
- (t - s) \sum_{\ell=1}^3 \frac{\partial \eta_{p^{k,\ell},i}}{\sqrt{g_{p^{k,\ell},p^{k,\ell}}}} \left(x^k_{p^{k,1} \cdot \cdot \cdot p^{k,2}}, 0 \right) \frac{v^k_{p^{k,\ell}}}{|v^k_{p^{k,3}}|} + O_{\delta,N}(\|\Phi\|_{C^2}).
\]
and for $\partial \in \{ \partial \bar{e}_1, \partial \bar{e}_2, \partial y_1, \partial y_2 \}$,
\[
\partial[X_i(s,t,Y(y_1,y_2),v)] = -\partial \ell \left| v^k \right| \sum_{\ell=1}^2 \frac{3}{\sqrt{g} p^\ell, \ell \ell} \left(x^k_{p^\ell,1} \cdot x^k_{p^\ell,2} \cdot 0 \right) \frac{\partial \ell}{\partial |v|} \\
+ \sum_{\ell=1}^2 \partial x^k_{p^\ell,1} \partial \ell \eta_{p^\ell,1} \left(x^k_{p^\ell,1} \cdot x^k_{p^\ell,2} \cdot 0 \right)
\]
\[
-(t^k - s)\left| v^k \right| \sum_{j=1}^2 \left(\frac{3}{\sqrt{g} p^k, j} \left(x^k_{p^k,1} \cdot x^k_{p^k,2} \cdot 0 \right) \frac{\partial \ell}{\partial |v|} \right) \partial x^k_{p^k, j} \\
-(t^k - s)\left| v^k \right| \sum_{j=1}^2 \left(\frac{\partial \ell}{\partial |v|} \eta_{p^k,1} \left(x^k_{p^k,1} \cdot x^k_{p^k,2} \cdot 0 \right) \right) \partial x^k_{p^k, j} \\
+ O_8,N(\|\Phi\|_{C^2}).
\]

Here
\[
i^k = k^k (t, Y(y_1,y_2), v), \quad x^k_{p^k} = x^k_{p^k} (t, Y(y_1,y_2), v),
\]
and $v^k_{p^k} = v^k_{p^k} (t, Y(y_1,y_2), v)$.

PROOF.

Step 1. We claim that
\[
\frac{\partial ((t^j - t^{j+1})|v^k|)}{\partial |v|} = O_8,N(\|\Phi\|_{C^2}), \quad \frac{\partial |v^k|}{\partial |v|} = 1 + O_8,N(\|\Phi\|_{C^2}),
\]
\[
\frac{\partial x^k_{p^k, j}}{\partial |v|} = O_8,N(\|\Phi\|_{C^2}), \quad \frac{\partial x^k_{p^k, j}}{\partial |v|} = O_8,N(\|\Phi\|_{C^2}).
\]

By the chain rule,
\[
\begin{bmatrix}
\nabla_{y_1,y_2,\bar{e}_1,\bar{e}_2,v}|v^k| \\
\nabla_{y_1,y_2,\bar{e}_1,\bar{e}_2,v} x^k_{p^k} \\
\nabla_{y_1,y_2,\bar{e}_1,\bar{e}_2,v} \tilde{x}^k_{p^k} \\
\nabla_{y_1,y_2,\bar{e}_1,\bar{e}_2,v} |v^k_{p^k}|
\end{bmatrix}
= \begin{bmatrix}
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} |t^k| \\
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} x^k_{p^k-1} \\
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} \tilde{x}^k_{p^k-1} \\
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} |v^k|_{p^k-1}
\end{bmatrix}
\times \cdots
\]
\[
\begin{bmatrix}
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} |t^1| \\
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} x^1_{p^1} \\
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} \tilde{x}^1_{p^1} \\
\nabla_{k^k-1,\bar{e}_1,\bar{e}_2,v} |v^1|_{p^1}
\end{bmatrix}
\times \cdots
\]
\[
\begin{bmatrix}
\nabla_{k^1,\bar{e}_1,\bar{e}_2,v} |t^1| \\
\nabla_{k^1,\bar{e}_1,\bar{e}_2,v} x^1_{p^1} \\
\nabla_{k^1,\bar{e}_1,\bar{e}_2,v} \tilde{x}^1_{p^1} \\
\nabla_{k^1,\bar{e}_1,\bar{e}_2,v} |v^1|_{p^1}
\end{bmatrix}.
\]
We claim that
\[
\begin{bmatrix}
\nabla t^j x^j_{p^j,1}, v^j_{p^j,1} |v^j_{p^j,1}| t^j + 1 \\
\nabla t^j x^j_{p^j,1}, \hat{v}^j_{p^j,1}, v^j_{p^j,1} |v^j_{p^j,1}| t^j + 1 \\
\nabla t^j x^j_{p^j,1}, \hat{v}^j_{p^j,1}, \hat{v}^j_{p^j,1} |v^j_{p^j,1}| t^j + 1 \\
\nabla t^j x^j_{p^j,1}, \hat{v}^j_{p^j,1}, v^j_{p^j,1} |v^j_{p^j,1}| t^j + 1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 & t^j + 1 \\
0 & 0 & 0 & 0 & \frac{t^j + 1}{|v^j_{p^j,1}|} \\
0 & O_{\Omega,N,\delta}(1) & 0 & 0 & 0 \\
0 & O_{\Omega,N,\delta}(1) & 0 & 0 & 1
\end{bmatrix} + O_{\Omega,N} (\|\Phi\|_{C^2}).
\]

Once (3.5) is proven, from the chain rule (3.4) and Lemma 2.4, we conclude (3.3). From (2.1),
\[
v^j (t^j - t^j + 1) = \eta^j_{p^j+1} (x^j_{p^j+1,1}, x^j_{p^j+1,2}, 0) - \eta^j_{p^j} (x^j_{p^j,1}, x^j_{p^j,2}, 0)
- \int_{t^j}^{t^j + 1} \int_{t^j}^{t^j + 1} \nabla_x \Phi (\tau, X(\tau; t^j, x^j, v^j)) d\tau ds.
\]
Taking \(\frac{\partial}{\partial t^j} \) directly to the above equality, we derive
\[
v^j \left(1 - \frac{\partial t^j + 1}{\partial t^j} \right) = - \frac{\partial t^j + 1}{\partial t^j} \int_{t^j}^{t^j + 1} \nabla_x \Phi (\tau, X(\tau; t^j, x^j, v^j)) d\tau \\
+ (t^j + 1) \nabla_x \Phi (t^j, x^j),
\]
and \(\frac{\partial t^j + 1}{\partial t^j} = 1 + \| \nabla_x \Phi \|_\infty |t^j - t^j + 1| / |v^j_{p^j+1}|. \) Now from Lemma 2.6,
\[
|v^j_{p^j+1}| = |v| + O (\| \nabla \Phi \|_\infty |t - t^j + 1| \geq \frac{1}{N} + \frac{\delta \times 3N \text{diam}(\Omega)}{3 \text{diam}(\Omega) N^2} \geq \frac{1}{N}.
\]
Therefore we conclude that
\[
(3.6) \quad \frac{\partial t^j + 1}{\partial t^j} = 1 + O_{\Omega,N} (\|\Phi\|_{C^2}).
\]

From (2.22), we derive
\[
\frac{\partial x^j_{p^j+1,i}}{\partial t^j} = \left(\frac{\partial t^j + 1}{\partial t^j} - 1 \right) v^j_{p^j+1,i}
+ \|\Phi\|_{C^2} |t^j - t^j + 1| \sup_{t^j + 1 \leq \tau \leq t^j} \left| \frac{\partial X(\tau; t^j, x^j, v^j)}{\partial t^j} \right|
\]
\[
= O_{\Omega,N} (\|\Phi\|_{C^2}),
\]
where we have used the fact that
\[
\sup_{t^{j+1} \leq \tau \leq t^j} \left| \frac{\partial X(\tau; t^j, x^j, v^j)}{\partial t^j} \right| \lesssim |v^j| + \| \nabla_x \Phi \|_\infty |t^j - t^{j+1}| \leq C_{N, \Omega},
\]
which is proved similarly to the proof of (2.28).

From (2.1), we have
\[
|v^{j+1}|^2 = |v^j|^2 - 2 \int_{t^j}^{t^{j+1}} v^j \cdot \nabla_x \Phi(\tau, X(\tau; t^j, x^j, v^j)) d\tau + \int_{t^j}^{t^{j+1}} \nabla_x \Phi(\tau)^2.
\]
Then
\[
2|v^{j+1}| \frac{\partial |v^{j+1}|}{\partial t^j} = -2 \frac{\partial t^{j+1}}{\partial t^j} v^j \cdot \nabla_x \Phi(t^{j+1}) + 2v^j \cdot \nabla_x \Phi(t^j) + 2 \left\{ \| \nabla^2_x \Phi \|_\infty |v^j|(t^j - t^{j+1}) \right\} + \sup_{t^{j+1} \leq \tau \leq t^j} \left| \frac{\partial X(\tau)}{\partial t^j} \right| \sup_{t^{j+1} \leq \tau \leq t^j} \left| \frac{\partial X(\tau)}{\partial t^j} \right|,
\]
and hence
\[
(3.8) \quad \frac{\partial |v^{j+1}|}{\partial t^j} = O_{\Omega, N}(\| \Phi \|_{C^2}).
\]
From (2.31), we prove
\[
(3.9) \quad \frac{\partial \hat{v}^{j+1}_{p, i}}{\partial t^j} = O_{\| \Phi \|_{C^2}} \left(\frac{\partial x^j_{p, i}}{\partial t^j} \right) \left(|v^j| + \| \nabla_x \Phi \|_\infty (t^j - t^{j+1}) \right) + O_{\eta_1}(\| \nabla_x \Phi \|_\infty)
\]
\[
= O_{N, \Omega}(\| \Phi \|_{C^2}).
\]
We already have estimates for \(\frac{\partial t^{j+1}}{\partial x^j_{p, i}} \) in Lemma 2.2.

From Lemma 2.2,
\[
\frac{\partial t^{j+1}}{\partial v^j_{p, i}} = \frac{t^{j+1} - t^j}{|v^j_{p, i}|} + \frac{\partial t^{j+1}}{\partial \hat{v}^{j+1}_{p, i}} = O_{\Omega, N}(\| \Phi \|_{C^2}) \quad \text{and} \quad \frac{\partial t^{j+1}}{\partial \hat{v}^{j+1}_{p, i}} = O_{\Omega, N}(\| \Phi \|_{C^2}).
\]
Moreover, from the conditions \(|n(x^1(t, Y(y_1, y_2), v)) \cdot v^1(t, Y(y_1, y_2), v)| > \delta, \frac{1}{N} \leq |v| \leq N, \) Lemma 2.7 (2.80), and (2.81), we have
\[
(3.10) \quad |v^j_{p, i, 3}(t, Y(y_1, y_2), v)| \gtrsim \delta.
\]
Then, from Lemma 2.2,
\[
(3.11) \quad \left| \frac{\partial (x^j_{p, i+1}, \hat{v}^j_{p, i+1})}{\partial (x^j_{p, i}, \hat{v}^j_{p, i}, v^j_{p, i})} \right| = O_{\Omega, N, \delta}(1).
\]
From (3.6) to (3.11), we prove (3.5).

Step 2. Recall that, from (2.1), for $t^{k+1} \leq s < t^{k}$

$$X_{i}(s; t, X(x_{1}, x_{2}), v)$$

$$= X_{i}(s; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v^{k})$$

$$= \eta_{p^{k},i}(x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0) - (t^{k} - s)|v^{k}| \tilde{v}^{k}$$

$$- \int_{t^{k}}^{s} \int_{t^{k}}^{\tau} \frac{\partial t}{\partial t} \Phi(\tau'; X(\tau'; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v^{k})) \, d\tau' \, d\tau,$$

(3.12)

$$V_{i}(s; t, X(x_{1}, x_{2}), v)$$

$$= V_{i}(s; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v^{k})$$

$$= |v^{k}| \tilde{v}^{k} - \int_{t^{k}}^{s} \frac{\partial t}{\partial t} \Phi(\tau; X(\tau; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v^{k})) \, d\tau,$$

where the specular cycles are defined in (2.4) as

$$(t^{k}, x_{p^{k}}^{k}, v_{p^{k}}^{k}) = (t^{k}(t, Y(y_{1}, y_{2}), v), x_{p^{k}}^{k}(t, Y(y_{1}, y_{2}), v), v_{p^{k}}^{k}(t, Y(y_{1}, y_{2}), v)).$$

By direct computations, for $\partial = \partial_{|v|}$,

$$\partial_{|v|}[X_{i}(s; t, X(x_{1}, x_{2}), v)]$$

$$= \sum_{\ell=1}^{2} \partial_{|v|} x_{p^{k},\ell}^{k} \cdot \partial \eta_{p^{k},i}(x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0)$$

$$+ \partial_{|v|}[(t - t^{k})|v^{k}| \tilde{v}^{k} - (t - s)|v^{k}| \tilde{v}^{k} - (t^{k} - s)|v^{k}| \partial_{|v|}[\tilde{v}^{k}]]$$

$$- \int_{t^{k}}^{s} \int_{t^{k}}^{\tau} \left(\partial_{|v|} t^{k} \partial_{t} X(\tau'; t^{k}) + \sum_{\ell=1}^{2} \partial_{|v|} x_{p^{k},\ell}^{k} \partial_{|v|} x_{p^{k},\ell}^{k} \partial \Phi(\tau'; X(\tau'; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v_{p^{k}}^{k})) \right)$$

$$\cdot \nabla \partial_{t} \Phi(\tau'; X(\tau'; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v_{p^{k}}^{k})) \, d\tau' \, d\tau$$

$$+ \partial_{|v|} t^{k} (s - t^{k}) \lim_{\tau' \to t^{k}} \partial_{|v|} \Phi(\tau'; X(\tau'; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v_{p^{k}}^{k})),$$

where we have used the abbreviated notation $X(\tau'; t^{k})$ for $X(\tau'; t^{k}, x_{p^{k},1}^{k}, x_{p^{k},2}^{k}, 0, v_{p^{k}}^{k})$. From (3.3), we bound the first, second, fourth, fifth, and last line of the right-hand side by $O_{\Omega,N}(\|\Phi\|_{C^{2}})$. Finally, we apply (3.3) to the third line and conclude (3.1).
Step 3. First we compute $\partial \delta^k$ with any arbitrary derivative ∂. Note that from (2.7) and (2.10), $\hat{v}_{p^k,3}^k > 0$ and $\hat{v}_{p^k,3}^k = \sqrt{1 - |\hat{v}_{p^k,1}^k|^2 - |\hat{v}_{p^k,2}^k|^2}$. Therefore

$$
\partial \delta^k = \delta \left[\sum_{\ell=1}^{2} \frac{\partial \eta p^k}{\sqrt{g_{p^k,\ell}}} (x_{p^k,1}^k, x_{p^k,2}^k, 0) \hat{v}_{p^k,\ell}^k + \frac{\partial \eta p^k}{\sqrt{g_{p^k,3}}} (x_{p^k,1}^k, x_{p^k,2}^k, 0) \sqrt{1 - |\hat{v}_{p^k,1}^k|^2 - |\hat{v}_{p^k,2}^k|^2} \right]
$$

$$
= \sum_{\ell=1}^{3} \sum_{m=1}^{2} \partial x_{p^k,m} \partial m \left[\frac{\partial \eta p^k}{\sqrt{g_{p^k,\ell}}} (x_{p^k,1}^k, x_{p^k,2}^k, 0) \hat{v}_{p^k,\ell}^k \right]
$$

$$
+ \sum_{\ell=1}^{3} \frac{\partial \eta p^k}{\sqrt{g_{p^k,3}}} (x_{p^k,1}^k, x_{p^k,2}^k, 0) \partial \left[\hat{v}_{p^k,1}^k \right]
$$

$$
- \frac{\partial \eta p^k}{\sqrt{g_{p^k,3}}} (x_{p^k,1}^k, x_{p^k,2}^k, 0) \frac{1}{\sqrt{1 - |\hat{v}_{p^k,1}^k|^2 - |\hat{v}_{p^k,2}^k|^2}} \cdot \left[\hat{v}_{p^k,1}^k \partial \left[\hat{v}_{p^k,2}^k \right] + \hat{v}_{p^k,2}^k \partial \left[\hat{v}_{p^k,1}^k \right] \right]
$$

$$
= 2 \sum_{j=1}^{3} \left(\sum_{\ell=1}^{3} \partial x_{p^k,j} \partial \eta p^k \left[\frac{\partial \eta p^k}{\sqrt{g_{p^k,\ell}}} (x_{p^k,1}^k, x_{p^k,2}^k, 0) \hat{v}_{p^k,\ell}^k \right] \right) \partial x_{p^k,j}
$$

$$
+ \sum_{j=1}^{2} \left(\frac{\partial \eta p^k}{\sqrt{g_{p^k,1}}} (x_{p^k,1}^k, x_{p^k,2}^k, 0) \hat{v}_{p^k,j}^k \right) \partial [x_{p^k,j}]
$$

From (5.12), for $\partial \in \partial \delta_1, \partial \delta_2, \partial y_1, \partial y_2$, $\partial [x_i(s, t, Y(y_1, y_2), \nu)]$

$$
= \sum_{\ell=1}^{2} \partial x_{p^k,\ell} \cdot \partial \eta p^k \cdot (x_{p^k,1}^k, x_{p^k,2}^k, 0) - \partial t^k |\nu_{p^k}^k| \partial k
$$

$$
- (t^k - s) \partial |\nu_{p^k}^k| |\nu_{p^k}^k| - (t^k - s) |\nu_{p^k}^k| \partial k
$$

$$
- \int_{t^k}^{s} \int_{t^k}^{\tau^k} \partial t^k \partial X(\tau^k, t^k) + \sum_{\ell=1}^{2} \partial x_{p^k,\ell} \partial x_{p^k,\ell} \cdot X(\tau^k, t^k) + \partial \nu_{p^k,\ell} (x_{p^k}^k) \partial \nu_{p^k,\ell} \cdot X(\tau^k, t^k)
$$

$$
\cdot \nabla \partial \phi(\tau^k) X(\tau^k, t^k) X(\tau^k, t^k) d\tau d\tau
$$

$$
+ \partial k (s - t^k) \lim_{\tau^k \to t^k} \partial \phi(\tau^k) X(\tau^k, t^k) X(\tau^k, t^k) X(\tau^k, t^k) d\tau d\tau.
$$
We can easily conclude (3.2) by (3.3) and Step 2.

Recall the specular cycles \((t^k, x^k, v^k)\) in (2.4) and \(\eta_{p^k}\) in (2.6). Assume

\[(3.13)\]

\[n(x^k) \cdot v^k \neq 0.\]

Definition 3.2 (Specular Basis). We define the *specular basis*, which is an orthonormal basis of \(\mathbb{R}^3\), as

\[(3.14)\]

\[
e_0^k := \frac{v^k}{|v^k|},
\]

\[
e_{\perp,1}^k := e_0^k \times \frac{\partial_2 \eta_{p^k}(x^k)}{\sqrt{g_{p^k,22}(x^k)}} / \left| e_0^k \times \frac{\partial_2 \eta_{p^k}(x^k)}{\sqrt{g_{p^k,22}(x^k)}} \right|,
\]

\[
e_{\perp,2}^k := e_0^k \times e_{\perp,1}^k.
\]

Definition 3.3 (Specular Matrix). For fixed \(k \in \mathbb{N}\) and a \(C^1\)-map

\[Y : (y_1, y_2) \mapsto Y(y_1, y_2),\]

assume (3.13) with \(x^k = x^k(t, Y(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)\) and \(v^k = v^k(t, Y(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)\). We define the \(4 \times 4\) specular transition matrix

\[(3.15)\]

\[
\mathcal{J}^{k, p^k}_Y := \begin{bmatrix}
\mathcal{J}^{k, p^k}_1 & 0_{2 \times 2} \\
\mathcal{J}^{k, p^k}_2 & \mathcal{J}^{k, p^k}_3
\end{bmatrix}_{4 \times 4},
\]

where

\[
\mathcal{J}^{k, p^k}_1 := \begin{bmatrix}
\frac{\partial_1 \eta_{p^k} \cdot e_{\perp,1}^k}{\sqrt{g_{p^k,11}}} & \frac{\partial_2 \eta_{p^k} \cdot e_{\perp,1}^k}{\sqrt{g_{p^k,11}}} & \frac{\partial_3 \eta_{p^k} \cdot e_{\perp,1}^k}{\sqrt{g_{p^k,11}}} & 0_{4 \times 2}
\end{bmatrix}_{2 \times 4},
\]

\[
\mathcal{J}^{k, p^k}_2 := \begin{bmatrix}
\sum_{l=1}^3 \partial_1 \eta_{p^k} \cdot \frac{v_{p^k,l}}{\sqrt{g_{p^k,l,l}}} & \partial_2 \eta_{p^k} \cdot e_{\perp,1}^k & \partial_3 \eta_{p^k} \cdot e_{\perp,2}^k & 0_{4 \times 2}
\end{bmatrix}_{2 \times 4},
\]

\[
\mathcal{J}^{k, p^k}_3 := \begin{bmatrix}
\frac{\partial_1 \eta_{p^k}}{\sqrt{g_{p^k,11}}} & \frac{\partial_2 \eta_{p^k}}{\sqrt{g_{p^k,11}}} & \frac{\partial_3 \eta_{p^k}}{\sqrt{g_{p^k,11}}} & 0_{4 \times 2}
\end{bmatrix}_{2 \times 4},
\]

where \(\eta_{p^k}\) and \(g_{p^k}\) are evaluated at \(x^k(t, Y(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)\). We also define the \(4 \times 4\) specular matrix \(\mathcal{R}^{k, p^k}_Y = \mathcal{J}^{k, p^k}_Y \partial(x_{p^k}) \cdot x_{p^k} \cdot \hat{v}_{p^k} \cdot \hat{v}_{p^k}\) as

\[(3.16)\]

\[
\mathcal{R}^{k, p^k}_Y := \mathcal{J}^{k, p^k}_Y \partial(x_{p^k} \cdot x_{p^k} \cdot \hat{v}_{p^k} \cdot \hat{v}_{p^k}),
\]

where \(x_{p^k} = x_{p^k}(t, Y(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2), \hat{v}_{p^k} = \hat{v}_{p^k}(t, Y(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2).\)
Finally, we state the result that is a crucial ingredient in the proofs of Lemma 3.6 and Lemma 3.7. For an $n \times m$ matrix A, we use the notation $A_{i,j}$ for its (i,j)-entry.

LEMMA 3.4. Let a C^1-map $Y : (y_1, y_2) \mapsto Y(y_1, y_2) \in \tilde{\Omega}$ with $\|Y\|_{C^1} \lesssim 1$. Assume $\frac{1}{N} \leq |v| \leq N, \frac{1}{N} \leq |v_3|, \frac{1}{N} < |n(x^1(t, Y(y_1, y_2), v)) \cdot e_3|$, and $\|\Phi\|_{C^2_{\tilde{\Omega}}} < \frac{\delta_1}{3 \text{diam}(\Omega)} N^2$ for $1 \ll N$ and $0 < \delta_1 \ll 1$. We also assume a nongrazing condition

$$|v^1(t, Y(y_1, y_2), v) \cdot n(x^1(t, Y(y_1, y_2), v))| > \delta_2 > 0$$

and nondegenerate condition

$$\left| \left(\frac{\partial Y(y_1, y_2)}{\partial y_1} \times \frac{\partial Y(y_1, y_2)}{\partial y_2} \right) \cdot R_{x^1(t, Y(y_1, y_2), v)} v^1(t, Y(y_1, y_2), v) \right| > \delta_3 > 0.$$

Fix $k \in \mathbb{N}$ with $|t - t^k| \leq 1$. Then the following results hold:

(i) For some constant $\varrho_{\Omega, N, \delta_1, \delta_2, \delta_3} > 0$, there exists at least one $i \in \{1, 2, 3, 4\}$ such that

$$\left| \mathcal{R}_{i,3}^k p^k, Y (t, Y(y_1, y_2), v) \right| > \varrho_{\Omega, N, \delta_1, \delta_2, \delta_3}.$$

(ii) There exist $i, j \in \{1, 2, 3, 4\}$ with $i < j$ such that

$$\left| \det \begin{pmatrix} \mathcal{R}_{3,i}^k p^k, Y \\ \mathcal{R}_{3,j}^k p^k, Y \\ \mathcal{R}_{4,i}^k p^k, Y \\ \mathcal{R}_{4,j}^k p^k, Y \end{pmatrix} (t, Y(y_1, y_2), v) \right| > \varrho_{\Omega, N, \delta_1, \delta_2, \delta_3}.$$

PROOF.

Step 1. We claim that

$$\left| \det \mathcal{R}_{i,3}^k p^k, Y (t, Y(y_1, y_2), v) \right| \geq \varrho_{\Omega, N, \delta_1, \delta_2, \delta_3} - 1.$$

Note that from (3.16) and (3.15),

$$\det(\mathcal{R}^k p^k, Y) = \det(\mathcal{R}^k p^k, Y) \det(\mathcal{R}^k p^k, Y) \times \det \left(\frac{\partial (x^k_{p^k,1}, x^k_{p^k,2}, x^k_{p^k,3}, \tilde{x}^k_{p^k,1}, \tilde{x}^k_{p^k,2}, \tilde{x}^k_{p^k,3})}{\partial (y_1, y_2, \tilde{v}_1, \tilde{v}_2)} \right).$$

By (2.86) and (3.14),

$$\det(\mathcal{R}^k p^k, Y) = \left| (\partial_1 \eta_{p^k} \times \partial_1 \eta_{p^k}) \cdot \left(e^k_{p^k,1} \times e^k_{p^k,2} \right) \right|$$

$$= \sqrt{g_{p^k,11}(x^k) g_{p^k,22}(x^k)} \left| \frac{v^k_{p^k,1}}{v^k_{p^k}} \cdot n(x^k) \right|$$

$$= \sqrt{g_{p^k,11}(x^k) g_{p^k,22}(x^k)} \left| \frac{v^k_{p^k,3}}{v^k_{p^k}} \right|.$$
From the chain rule and (2.90),
\[
\det(S_3^{k,p^k,y}) = \left| \left(\frac{\partial_1 \eta_{p^k}}{\sqrt{g_{p^k,11}}} - \frac{\partial_3 \eta_{p^k}}{\sqrt{g_{p^k,33}}} \dot{\bar{v}}_{p^k,3} \right) \right|
\times \left| \left(\frac{\partial_2 \eta_{p^k}}{\sqrt{g_{p^k,22}}} - \frac{\partial_3 \eta_{p^k}}{\sqrt{g_{p^k,33}}} \dot{\bar{v}}_{p^k,3} \right) \right|
\cdot \left(e_{\perp,1}^k \times e_{\perp,2}^k \right)
\]
\[
= \left| \dot{\bar{v}}_{p^k,3} \right| \left(\frac{\partial_1 \eta_{p^k}}{\sqrt{g_{p^k,11}}} + \dot{\bar{v}}_{p^k,1} \frac{\partial_2 \eta_{p^k}}{\sqrt{g_{p^k,22}}} + \dot{\bar{v}}_{p^k,3} \frac{\partial_3 \eta_{p^k}}{\sqrt{g_{p^k,33}}} \right)
\cdot \left(e_{\perp,1}^k \times e_{\perp,2}^k \right)
\]
\[
= \left| \dot{\bar{v}}_{p^k,3} \right| \frac{\dot{\bar{v}}_{p^k}}{\left| \dot{\bar{v}}_{p^k,3} \right|} = \frac{\left| \dot{\bar{v}}_{p^k} \right|}{\left| \dot{\bar{v}}_{p^k,3} \right|}.
\]

From the chain rule and (2.90),
\[
\left| \det \left(\frac{\partial(x_{p^k,1}^k, x_{p^k,2}^k, x_{p^k,3}^k)}{\partial(y_1, y_2, \bar{v}_1, \bar{v}_2)} \right) \right|
\]
\[
= \left| \det \left(\frac{\partial(x_{p^k,1}^k, x_{p^k,2}^k, x_{p^k,3}^k)}{\partial(y_1, y_2, \bar{v}_1, \bar{v}_2)} \right) \right|
\cdot \left| \det \left(\frac{\partial(x_{p^k,1}^k, x_{p^k,2}^k, x_{p^k,3}^k)}{\partial(y_1, y_2, \bar{v}_1, \bar{v}_2)} \right) \right|
\geq \epsilon_{\Omega,N,\delta_1,\delta_2,\delta_3} \left| \det \left(\frac{\partial(x_{p^k,1}^k, x_{p^k,2}^k, x_{p^k,3}^k)}{\partial(y_1, y_2, \bar{v}_1, \bar{v}_2)} \right) \right|
\]

Note that
\[
\frac{\partial(x_{p^k,1}^1, x_{p^k,2}^1, x_{p^k,3}^1)}{\partial(y_1, y_2, \bar{v}_1, \bar{v}_2)} = \begin{bmatrix}
\frac{\partial Y}{\partial y_1} \cdot \nabla x_{p^k,1}^1 & \frac{\partial Y}{\partial y_2} \cdot \nabla x_{p^k,1}^1 & \frac{\partial y_{p^k,1}}{\partial y_1} & \frac{\partial y_{p^k,1}}{\partial y_2} & \frac{\partial y_{p^k,1}}{\partial \bar{v}_1} & \frac{\partial y_{p^k,1}}{\partial \bar{v}_2} \\
\frac{\partial Y}{\partial y_1} \cdot \nabla x_{p^k,2}^1 & \frac{\partial Y}{\partial y_2} \cdot \nabla x_{p^k,2}^1 & \frac{\partial y_{p^k,2}}{\partial y_1} & \frac{\partial y_{p^k,2}}{\partial y_2} & \frac{\partial y_{p^k,2}}{\partial \bar{v}_1} & \frac{\partial y_{p^k,2}}{\partial \bar{v}_2} \\
\frac{\partial Y}{\partial y_1} \cdot \nabla \bar{v}_{p^k,1}^1 & \frac{\partial Y}{\partial y_2} \cdot \nabla \bar{v}_{p^k,1}^1 & \frac{\partial \bar{v}_{p^k,1}}{\partial y_1} & \frac{\partial \bar{v}_{p^k,1}}{\partial y_2} & \frac{\partial \bar{v}_{p^k,1}}{\partial \bar{v}_1} & \frac{\partial \bar{v}_{p^k,1}}{\partial \bar{v}_2} \\
\frac{\partial Y}{\partial y_1} \cdot \nabla \bar{v}_{p^k,2}^1 & \frac{\partial Y}{\partial y_2} \cdot \nabla \bar{v}_{p^k,2}^1 & \frac{\partial \bar{v}_{p^k,2}}{\partial y_1} & \frac{\partial \bar{v}_{p^k,2}}{\partial y_2} & \frac{\partial \bar{v}_{p^k,2}}{\partial \bar{v}_1} & \frac{\partial \bar{v}_{p^k,2}}{\partial \bar{v}_2}
\end{bmatrix}
\]

From Lemma 2.4 and (3.17),
\[
\nabla_{x} \bar{v}_{p^k,1}^1 = \left| \dot{\bar{v}}_{p^k,1} \right| \left(\nabla x_{p^k,1}^1 \cdot \nabla \left(\frac{\partial_1 \eta_{p^k}}{\sqrt{g_{p^k,11}}} \right) \right) \cdot v + O_{\Omega,N,\delta_2} \left(\| \Phi \| C^2 \right)
\]
\[
+ \frac{O_{\Omega,N} \left(\| \Phi \| C^2 \right)}{\left| \dot{\bar{v}}_{p^k,1} \right|^2 \left| \dot{\bar{v}}_{p^k,3} \right|}
\]
\[
= \nabla x_{p^k,1} \cdot \nabla \left(\frac{\partial_1 \eta_{p^k}}{\sqrt{g_{p^k,11}}} \right) \bigg|_{x^1} \cdot v + O_{\Omega,N,\delta_1,\delta_2} \left(\| \Phi \| C^2 \right),
\]
Then by Gaussian elimination,

\[
\frac{\partial (x_{p^1,1}^1, x_{p^1,2}^1, \hat{v}_{p^1,i}, \hat{v}_{p^1,i}^1)}{\partial (y_1, y_2, \hat{u}_1, \hat{u}_2)} = \det \begin{bmatrix}
\frac{\partial y_1}{\partial y_1} \cdot \nabla_{y_1} x_{p^1,1}^1 & \frac{\partial y_2}{\partial y_2} \cdot \nabla_{y_2} x_{p^1,1}^1 & 0 & 0 \\
\frac{\partial y_1}{\partial y_1} \cdot \nabla_{y_1} x_{p^1,2}^1 & \frac{\partial y_2}{\partial y_2} \cdot \nabla_{y_2} x_{p^1,2}^1 & 0 & 0 \\
0 & 0 & \frac{\partial_1 \eta_{p^1}^1 \cdot e_1}{\sqrt{g_{p^1,11}}} & \frac{\partial_1 \eta_{p^1}^2 \cdot e_2}{\sqrt{g_{p^1,22}}} \\
0 & 0 & \frac{\partial_2 \eta_{p^1}^2 \cdot e_1}{\sqrt{g_{p^1,11}}} & \frac{\partial_2 \eta_{p^1}^2 \cdot e_2}{\sqrt{g_{p^1,22}}} \\
\end{bmatrix} + O_{\Omega,N,\delta_1,\delta_2} (\|\Phi\|_{C^2})^{4 \times 4}. \\
\]

From (3.10) and (2.2), all the entries of the above matrix are bound and hence the determinant of the Jacobian matrix equals

\[
(3.23) \quad \det \begin{bmatrix}
\frac{\partial y_1}{\partial y_1} \cdot \nabla_{y_1} x_{p^1,1}^1 & \frac{\partial y_2}{\partial y_2} \cdot \nabla_{y_2} x_{p^1,1}^1 & 0 & 0 \\
\frac{\partial y_1}{\partial y_1} \cdot \nabla_{y_1} x_{p^1,2}^1 & \frac{\partial y_2}{\partial y_2} \cdot \nabla_{y_2} x_{p^1,2}^1 & 0 & 0 \\
0 & 0 & \frac{\partial_1 \eta_{p^1}^1 \cdot e_1}{\sqrt{g_{p^1,11}}} & \frac{\partial_1 \eta_{p^1}^2 \cdot e_2}{\sqrt{g_{p^1,22}}} \\
0 & 0 & \frac{\partial_2 \eta_{p^1}^2 \cdot e_1}{\sqrt{g_{p^1,11}}} & \frac{\partial_2 \eta_{p^1}^2 \cdot e_2}{\sqrt{g_{p^1,22}}} \\
\end{bmatrix} + O_{\Omega,N,\delta_1,\delta_2} (\|\Phi\|_{C^2}).
\]
From (2.46), the determinant equals

\[
(3.24) \quad \left| \left(\frac{\partial Y}{\partial y_1} \times \frac{\partial Y}{\partial y_2} \right) \cdot \left(\nabla_{x} x_{p,1}^1 \times \nabla_{x} x_{p,1}^2 \right) \right| \times \left| \left(\frac{\partial_1 \eta_{p}^1}{\sqrt{g_{p,11}^1}} \times \frac{\partial_2 \eta_{p}^1}{\sqrt{g_{p,22}^1}} \right) \cdot e_3 \right| + O_{\Omega, \delta_1, \delta_2}(\|\Phi\|_{C^2}).
\]

From (2.86),

\[
\nabla_{x} x_{p,1}^1 \times \nabla_{x} x_{p,1}^2 = \frac{1}{\sqrt{g_{p,11}^1(x^1)g_{p,22}^1(x^1)}} \left(n_{p}^1(x^1) - \frac{v_{p,1}^1}{v_{p,3}^1} \frac{\partial_1 \eta_{p}^1(x^1)}{\sqrt{g_{p,11}^1(x^1)}} - \frac{v_{p,2}^1}{v_{p,3}^1} \frac{\partial_2 \eta_{p}^1(x^1)}{\sqrt{g_{p,22}^1(x^1)}} \right) + O_{\Omega}(\|\nabla^2_{x} \Phi\|_{\infty}) \left(1 + |v|/|v_{p,1}^1| \right) |v|/|v_{p,1}^1|.
\]

From (2.10) and (2.11), the first line of the right-hand side above equals

\[
\frac{1}{\sqrt{g_{p,11}^1(x^1)g_{p,22}^1(x^1)}} - R_{\chi_1} v_{p,1}^1/v_{p,3}^1,
\]

while the second line is bounded by \(O_{\Omega, \delta_1, \delta_2}(\|\nabla^2_{x} \Phi\|_{\infty})(|v|/|v_{p,1}^1|) \) from (3.17).

From the assumptions of the lemma, including (3.18), we derive a lower bound as

\[
(3.24) \geq \Omega \frac{\delta_3}{N} \times \frac{1}{N} + O(\|\Phi\|_{C^2}).
\]

By choosing sufficiently small \(\|\Phi\|_{C^2}\) we prove (3.21).

Step 2. Assume \(|\mathcal{A}_{i,3}^k,p^k,Y| \ll 1\) for all \(i \in \{1, 2, 3, 4\}\). Then

\[
|\det \mathcal{A}_{i,3}^k,p^k,Y| \leq \left| \sum_{i=1}^{4} (-1)^i + 3 \mathcal{A}_{i,3}^k,p^k,Y M_{i,3} \right| \leq 4 \max_i |M_{i,3}| \times \max_i |\mathcal{A}_{i,3}^k,p^k,Y|,
\]

where the minor \(M_{i,j}\) is defined to be the determinant of the \(3 \times 3\) matrix that results from \(\mathcal{A}_{i,3}^k,p^k,Y\) by removing the \(i^{th}\) row and the \(j^{th}\) column. Note that \(|M_{i,3}| \leq \Omega, \delta_1, \delta_2 1\). From (3.21) we prove (3.19).
Step 3. Note that
\[
\left|\det \mathcal{A}^{k,p,k,Y}\right| \leq 12 \max_i \left|\mathcal{A}_{1,i}^{k,p,k,Y}\right| \times \max_i \left|\mathcal{A}_{2,i}^{k,p,k,Y}\right| \times \max_{i,j} \left|\det \begin{bmatrix} \mathcal{A}_{3,i}^{k,p,k,Y} & \mathcal{A}_{3,j}^{k,p,k,Y} \\ \mathcal{A}_{4,i}^{k,p,k,Y} & \mathcal{A}_{4,j}^{k,p,k,Y} \end{bmatrix}\right|
\]
\[
\leq \Omega_N, \delta_1, \delta_2 \max_{i,j} \left|\det \begin{bmatrix} \mathcal{A}_{3,i}^{k,p,k,Y} & \mathcal{A}_{3,j}^{k,p,k,Y} \\ \mathcal{A}_{4,i}^{k,p,k,Y} & \mathcal{A}_{4,j}^{k,p,k,Y} \end{bmatrix}\right|.
\]
From (3.21), we prove (3.20). □

Lemma 3.5. Assume that \(a(z), b(z), \) and \(c(z)\) are \(C^{0,\gamma}\)-functions of \(z \in \mathbb{R}^n\) locally. We consider \(G(z,s) := a(z)s^2 + b(z)s + c(z)\).

(i) Assume \(|a| \geq \min |a| > 0\). Define
\[
\varphi_1(z) := \frac{-b(z)}{2a(z)}, \quad \varphi_2(z) := 1_{b^2 - 4ac > 0} \frac{-b(z) + \sqrt{b^2(z) - 4a(z)c(z)}}{2a(z)},
\]
\[
\varphi_3(z) := 1_{b^2(z) - 4a(z)c(z) > 0} \frac{-b(z) - \sqrt{b^2(z) - 4a(z)c(z)}}{2a(z)}.
\]
Then \(\varphi_i(z) \in C^{0,\gamma}\) with \(\|\varphi_i\|_{C^{0,\gamma}} \leq C(\min |a|, \|a\|_{C^{0,\gamma}}, \|b\|_{C^{0,\gamma}}, \|c\|_{C^{0,\gamma}})\) for \(i = 1, 2, 3\) such that if \(|s| \leq 1\) and \(\min_{i=1,2,3} |s - \varphi_i(z)| > \delta\), then \(|G(z,s)| \geq \min |a| \times \delta^2\).

(ii) Assume \(a \equiv 0\) and \(\min |b| > 0\). Define
\[
\varphi_4(z) := \frac{-c(z)}{b(z)}.
\]
Then \(\varphi_4(z) \in C^{0,\gamma}\) with \(\|\varphi_4\|_{C^{0,\gamma}} \leq C(\min |b|, \|b\|_{C^{0,\gamma}}, \|c\|_{C^{0,\gamma}})\). Moreover, if \(|s| \leq 1\) and \(|s - \varphi_4(z)| > \delta\), then \(|G(z,s)| \geq \min |b| \times \delta\).

(iii) Assume \(a \equiv 0\) and \(\min |c| > 0\). Define
\[
\varphi_5(z) := 1_{|b(z)| > \frac{\min |c|}{4}} \frac{-c(z)}{b(z)}.
\]
Then \(\varphi_5(z) \in C^{0,\gamma}\) with \(\|\varphi_5\|_{C^{0,\gamma}} \leq C(\min |b|, \|b\|_{C^{0,\gamma}}, \|c\|_{C^{0,\gamma}})\). Moreover, if \(|s| \leq 1\) and \(|s - \varphi_5(z)| > \delta\), then \(|G(z,s)| \geq \min \left\{\frac{\min |c|}{2}, \frac{\min |c|}{4} \times \delta\right\}\).

Proof. We consider (i). Without loss of generality we may assume that \(a \geq \min a > 0\). Clearly if \(a(z) \geq \min a > 0\), then \(\varphi_i\) is \(C^{0,\gamma}\) and \(\|\varphi_i\|_{C^{0,\gamma}} \leq C(\min a, \|a\|_{C^{0,\gamma}}, \|b\|_{C^{0,\gamma}}, \|c\|_{C^{0,\gamma}})\) for \(i = 1, 2, 3\).

We claim that
\[
\min_{|s - \varphi_i(z)| > \delta} \{|G(z,s + \delta) - G(z,s)|, |G(z,s) - G(z,s - \delta)|\} \geq \min a \times \delta^2.
\]
Since $G(z, s)$ is symmetric around $s = \varphi_1$, it suffices to prove the above estimate for $s \geq \varphi_1$. First, we consider the difference $G(z, s + \delta) - G(z, s)$ for $s \geq -\frac{b}{2a}$ and $\delta > 0$. Note $\partial_s [G(z, s + \delta) - G(z, s)] = 2a \delta > 0$. Therefore, for any z,

$$\min_{s \geq -\frac{b}{2a}} [G(z, s + \delta) - G(z, s)] = \left[G \left(z, -\frac{b}{2a} + \delta \right) - G \left(z, -\frac{b}{2a} \right) \right] \geq \min a \times \delta^2.$$

Second, we consider $G(z, s) - G(z, s - \delta)$ for $s \geq -\frac{b}{2a} + \delta$ and $\delta > 0$. Since $\partial_s [G(z, s + \delta) - G(z, s)] = 2a \delta > 0$,

$$\min_{s \geq -\frac{b}{2a} + \delta} [G(z, s) - G(z, s - \delta)] = \left[G \left(z, -\frac{b}{2a} + \right) - G \left(z, -\frac{b}{2a} \right) \right] \geq \min a \times \delta^2,$$

and thus we prove the claim.

Finally, we consider φ_2 and φ_3. We split the argument into two cases with small number $\delta < \frac{\sqrt{b^2 - 4ac}}{2a}$ and $\delta \geq \frac{\sqrt{b^2 - 4ac}}{2a}$.

Case 1. If $\delta < \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{\varphi_3 - \varphi_2}{2}$,

$$\{ s : \min_{i=2,3} |s - \varphi_i| > \delta \} = \{ s < \varphi_3 - \delta \} \cup \{ \varphi_3 + \delta < s < \varphi_2 - \delta \} \cup \{ \varphi_2 + \delta < s \},$$

where \{ $\varphi_3 + \delta < s < \varphi_2 - \delta$ \} is not the empty set. For $s > \varphi_2 + \delta$,

$$|G(z, s)| = \int_{\varphi_2}^{s} \partial_s G(z, t) dt = \int_{\varphi_2}^{s} (2at + b) dt$$

$$= \int_{\varphi_2}^{s} 2a(t - \frac{b}{2a}) dt = \int_{\varphi_2}^{s} 2a(t - \varphi_2) dt, \quad t - \varphi_2 := r,$$

$$= \int_{\varphi_2}^{s - \varphi_1} 2ar dr \geq (\min a)(s - \varphi_2)(s - \varphi_1 + \varphi_2 - \varphi_1)$$

$$\geq (\min a) \delta (s - \varphi_2 + (\varphi_2 - \varphi_1)) \geq (\min a) \delta (s - \varphi_2)$$

$$\geq (\min a) \delta^2.$$

By symmetry, we get the same estimate for the $\{ s < \varphi_3 - \delta \}$ case.

On the other hand, for $\{ \varphi_3 + \delta < s < \varphi_2 - \delta \}$, it suffices to consider $\{ \varphi_1 \leq s < \varphi_2 - \delta \}$ because the $\{ \varphi_3 + \delta < s \leq \varphi_1 \}$ case is the same by symmetry. We have a lower bound as follows:

$$|G(z, s)| = \int_{s}^{\varphi_2} \partial_s G(z, t) dt = \int_{s}^{\varphi_2} 2a(t - \varphi_1) dt, \quad t - \varphi_1 := r,$$

$$= \int_{s - \varphi_1}^{\varphi_2 - \varphi_1} 2ar dr \geq (\min a)(\varphi_2 - s)(\varphi_2 - \varphi_1 + s - \varphi_1)$$

$$\geq (\min a) \delta (\delta + (s - \varphi_1))$$

$$\geq (\min a) \delta^2.$$
Case 2. If $\delta \geq \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{\varphi_2 - \varphi_3}{2}$,

\[
\{ s : \min_{i=2,3} |s - \varphi_i| > \delta \} = \{ s < \varphi_3 - \delta \} \cup \{ s > \varphi_2 + \delta \}.
\]

Note that $\{ \varphi_3 + \delta < s < \varphi_2 - \delta \}$ is empty set because, if $s - \varphi_3 = |s - \varphi_3| > \delta$,

\[
\varphi_2 - s = |s - \varphi_2| = (\varphi_2 - \varphi_3) + (\varphi_3 - s) < 2\delta + (-\delta) = \delta.
\]

For $\{ s < \varphi_3 - \delta \}$ and $\{ s > \varphi_2 + \delta \}$, we already checked that $|G(z, s)| \geq \min_{i=2,3} |a| \times \delta^2$ holds in Case 1.

Finally, we conclude that

\[
|G(z, s)| = |G(z, s) - G(z, \varphi_i)| \geq \min_{i=2,3} |a| \times \delta^2 \text{ for } \min_{i=2,3} |s - \varphi_i| > \delta,
\]

when $-1 < s < 2$.

Now we consider (ii). Clearly φ_4 is $C^{0,\gamma}$ for this case, and

\[
|G(z, s)| \geq \min\left\{ b(z) \left(-\frac{c(z)}{b(z)} + \delta \right) + c(z), \left| b(z) \left(\frac{c(z)}{b(z)} \delta \right) + c(z) \right| \right\}
\]

\[
\geq \min |b| \times \delta.
\]

Now we consider (iii). First, if $\frac{|c(z)|}{\min |c|} < 2$, then $|\varphi_5(s)| = \frac{|c(z)|}{\min |c|} \geq 2$.$\triangle$

Therefore,

\[
|G(z, s)| \geq \min\{|G(z, 1)|, |G(z, -1)|\} \geq |c(z)| - |b(z)| \geq \frac{\min |c|}{2}.
\]

Consider the case of $|b| > \frac{\min |c|}{4}$. If $|s - \varphi_5(s)| > \delta$, then

\[
|G(z, s)| \geq \min\left\{ b(z) \left(-\frac{c(z)}{b(z)} + \delta \right) + c(z), \left| b(z) \left(\frac{c(z)}{b(z)} - \delta \right) + c(z) \right| \right\}
\]

\[
\geq \min |b| \times \delta \geq \frac{\min |c|}{2} \times \delta.
\]

Lemma 3.6. Assume Ω is $C^{3, \frac{1}{2}}$ and convex (1.15), and Φ is $C^{2,\gamma}_{t,x}$ for some $0 < \gamma < 1$. We also assume that $\|\Phi\|_{C^{3, \frac{1}{2}}_{t,x}} \leq \delta_1$. Let $t^0 \geq 0$, $x^0 \in \Omega$, $v^0 \in \mathbb{R}^3$, and

\[
(3.28) \quad \frac{1}{N} \leq |v^0| \leq N, \quad \frac{1}{N} \leq |v^0_0|, \quad \frac{1}{N} \leq |n(x^1) \cdot e_3|, \quad |n(x^1) \cdot v^1| > \delta_2 > 0,
\]

where $(x^1, v^1) = (x^1(t^0, x^0, v^0), v^1(t^0, x^0, v^0))$.

Fix $k \in \mathbb{N}$ with $t^k \geq t - 1$. Then there exists $\epsilon > 0$ and finitely many $C^{0,\gamma}$-functions $\psi^k_i : B_{\epsilon}(t, x, v) \to \mathbb{R}$ with $\|\psi^k_i\|_{C^{0,\gamma}_{t,x}} \leq \delta_1, \delta_2, \delta_3, \Omega, N \ 1$ and there exists a constant $\epsilon_{\delta_1, \delta_2, \delta_3, \Omega, N} > 0$.

If $\min_i |s - \psi^k_i(t, x, v)| > \delta_*$ and

\[
(3.29) \quad (s; t, x, v) \in \left[\max\{t - 1, t^k + 1\}, \min\{t - \frac{1}{N}, t^k\} \right] \times B_{\epsilon}(t^0, x^0, v^0),
\]

then $|\partial_{|v|} X(s; t, x, v) \times \partial_{\psi_i} X(s; t, x, v)| > \epsilon_{\delta_1, \delta_2, \delta_3, \Omega, \delta_*}$.

\[
\end{document}
Here $\hat{v}_1 = v_1/|v|$, $\hat{v}_2 = v_2/|v|$.

It is important that this lower bound $\epsilon_{\delta_1, \delta_2, \Omega, N}$ not depend on time t.

Proof.

Step 1. For (t^0, x^0, v^0) in the assumption we choose (t, x, v) with $|(t, x, v) - (t^0, x^0, v^0)| \ll 1$.

For each x with $|x - x^0| \ll 1$, we set a C^1-map $Y_x : (y_1, y_2) \mapsto Y(y_1, y_2) \in \mathbb{R}^3$ such that

$$Y_x(y_1, y_2) := x + y_1e_0 \perp (t^0, x^0, v^0) + y_2e_2 \perp (t^0, x^0, v^0).$$

We claim that

$$\left| \left(\frac{\partial Y_x(y_1, y_2)}{\partial y_1} \times \frac{\partial Y_x(y_1, y_2)}{\partial y_2} \right) \cdot R_x(t, Y_x(y_1, y_2), v) v^1(t, Y_x(y_1, y_2), v) \right| \geq \Omega, \delta_1, \delta_2, 1.$$ \hspace{1cm} (3.31)

Using the definition of the specular basis (3.14), we equate the left-hand side of (3.31) to

$$\left| \left(e_0 \perp (t^0, x^0, v^0) \times e_2 \perp (t^0, x^0, v^0) \right) \cdot R_x(t, x^0, v^0) v^1(t^0, x^0, v^0) \right| = \lim_{t \downarrow t^1} V(s; t^0, x^0, v^0).$$

For a small potential, we conclude (3.31).

Step 2. Fix k with $|k^1(t, x, v) - t| \leq 1$. Then we fix the orthonormal basis $\{e_k \perp, e_{k \perp 1}, e_{k \perp 2}\}$ of (3.14) with $k = k(t, x, v)$, $v^k = v^k(t, x, v)$. Note that this orthonormal basis $\{e_k \perp, e_{k \perp 1}, e_{k \perp 2}\}$ depends on (t, x, v).

For $t^{k+1} \leq s < t^k$, recall the forms of $\frac{\partial X(s)}{\partial |v|}$ and $\frac{\partial X(s)}{\partial v_j}$ in (3.1) and (3.2) of Lemma 3.1 where

$$X(s) = X(s; t^k, x^k, v^k).$$

Recall the specular matrix (3.16) with $Y = Y_x$ in (3.30). Using the specular basis (3.14) and the specular matrix (3.16), we rewrite (3.1) and (3.2) as

$$\left(\begin{array}{c}
-\frac{\partial X(s)}{\partial |v|} \cdot e_k \perp \\
\frac{\partial X(s)}{\partial v_1} \cdot e_{k \perp 1} \\
\frac{\partial X(s)}{\partial v_2} \cdot e_{k \perp 1} \\
\frac{\partial X(s)}{\partial v_1} \cdot e_{k \perp 2} \\
\frac{\partial X(s)}{\partial v_2} \cdot e_{k \perp 2}
\end{array} \right) \begin{bmatrix}
(t^k - s) |V_{0, \perp}^k | \sum_{j=1}^{2} \sum_{\ell=1}^{k^1} \frac{\partial |V_{j, \perp}^k |}{\partial v_{\ell, \perp}} \cdot e_{\ell, \perp} \\
(t^k - s) |V_{1, \perp}^k | \sum_{j=1}^{2} \sum_{\ell=1}^{k^1} \frac{\partial |V_{j, \perp}^k |}{\partial v_{\ell, \perp}} \cdot e_{\ell, \perp} \\
(t^k - s) |V_{2, \perp}^k | \sum_{j=1}^{2} \sum_{\ell=1}^{k^1} \frac{\partial |V_{j, \perp}^k |}{\partial v_{\ell, \perp}} \cdot e_{\ell, \perp}
\end{bmatrix}$$

$$- \begin{bmatrix}
R_{k, p, k} \cdot Y^k_{1, 3} \\
R_{k, p, k} \cdot Y^k_{1, 4} \\
R_{k, p, k} \cdot Y^k_{2, 4}
\end{bmatrix} - (t^k - s) |V_{p, k}^k | \begin{bmatrix}
R_{k, p, k} \cdot Y^k_{3, 3} \\
R_{k, p, k} \cdot Y^k_{3, 4} \\
R_{k, p, k} \cdot Y^k_{4, 4}
\end{bmatrix} + O_{\Omega, \delta_2 (\|\Phi\|_{C^2})}.\]
From (3.10) and (2.2), all the entries of the above matrix are bounded. By direct computation we obtain
\[
\partial_{[v]} X(s) \times \partial_{[v]} X(s) = -(t - s) \{ \mathcal{R}_{1,3}^{k,p,k} Y - (t^k - s) \mathcal{R}_{3,3}^{k,p,k} Y \} e_{1,2}^k + (t - s) \{ \mathcal{R}_{2,3}^{k,p,k} Y - (t^k - s) \mathcal{R}_{4,3}^{k,p,k} Y \} e_{1,1}^k + O_{\Omega,N,\delta_2} (\| \Phi \|_{C^2}).
\]
(3.33)

Here \(\mathcal{R}_{i,j}^{k,p,k} Y \), \(t^k \), \(v_k \), and \(e_{1,i}^k \) depend on \((t, x, v) \) but not on \(s \).

Step 3. Recall Lemma 3.4. From (3.28) and (3.31), we can choose nonzero constants \(\delta_1, \delta_2, \) and \(\delta_3 \) for a large \(N \). Applying Lemma 3.4 and (3.19), we conclude that, for some \(i \in \{1, 2, 3, 4\} \),
\[
|\mathcal{R}_{i,3}^{k,p,k} Y (t_0, x_0, v_0)| > \min \{ \mathcal{R}_{i,3}^{k,p,k} Y |_{t_0, x_0, v_0} | : \}
\]
(3.34)

Now we claim that \(\mathcal{R}_{i,3}^{k,p,k} Y (t, x, v) \in C_{t,x,v}^{0,Y} \) if \(|(t, x, v) - (t^0, x^0, v_0)| \ll 1 \). Since the domain is convex (1.15) and \(|n(x^1(t^0, x^0, v_0)) \cdot v_1(t^0, x^0, v_0)| > \delta_2 \) in (3.28), utilizing Lemma 2.7 we deduce that if \(|(t, x, v) - (t^0, x^0, v_0)| \ll 1 \) then \(|n(x^1) \cdot v_1| \geq \delta_2 \) for all \(1 \leq l \leq k \). Hence, from (3.15) and (3.16), we conclude our claim.

Finally, we choose a small constant \(\varepsilon > 0 \) such that, for some \(i \in \{1, 2, 3, 4\} \) satisfying (3.34),
\[
|\mathcal{R}_{i,3}^{k,p,k} Y (t, x, v)| > \frac{\partial \Omega,N,\delta_1,\delta_2}{2} \quad \text{for } |(t, x, v) - (t^0, x^0, v_0)| < \varepsilon.
\]
(3.35)

Step 4. With \(N \gg 1 \), from (3.35), we divide the cases as follows:
\[
|\mathcal{R}_{i,3}^{k,p,k} Y | > \frac{\partial \Omega,N,\delta_1,\delta_2}{2} \quad \text{for some } i \in \{1, 2\}.
\]
(3.36)

We split the first case further into two more cases as
\[
\begin{align*}
\min_{i=1,2} |\mathcal{R}_{i,3}^{k,p,k} Y | &> \frac{\partial \Omega,N,\delta_1,\delta_2}{2} \quad \text{and} \quad \max_{i=1,2} |\mathcal{R}_{i,3}^{k,p,k} Y | < \frac{\partial \Omega,N,\delta_1,\delta_2}{4N},
\end{align*}
\]
(3.37)

Set the other case
\[
|\mathcal{R}_{j,3}^{k,p,k} Y | \geq \frac{\partial \Omega,N,\delta_1,\delta_2}{2} \quad \text{for some } j \in \{3, 4\}.
\]
(3.38)

Then clearly (3.37) and (3.38) cover all the cases.
Step 5. We consider the case of (3.37). Then, from (3.33),

\[\begin{align*}
|\partial_{\nu}X(s) \times \partial_{\nu_1}X(s)| & \geq \left| v^k \mathcal{A}^{k,p^k,Y}_{i+2,3} (t^k - s) - \mathcal{A}^{k,p^k,Y}_{i,3} (t - s) \right| + O_{\Omega,N,\delta} (\| \Phi \| C^2) \\
& = \left| v^k \mathcal{A}^{k,p^k,Y}_{i+2,3} (t - s) + [-\mathcal{A}^{k,p^k,Y}_{i,3} + (t^k - t)|v^k|\mathcal{A}^{k,p^k,Y}_{i+2,3}] (t - s) \right| \\
& \quad + O_{\Omega,\delta_2,N} (\| \Phi \| C^2).
\end{align*} \] (3.39)

Let us consider the underbraced term above. We define

\[|s| = t - s, \]

and set

\[b(t,x,v) \equiv |v^k|\mathcal{A}^{k,p^k,Y}_{i+2,3}, \quad c \equiv -\mathcal{A}^{k,p^k,Y}_{i,3} + (t^k - t)|v^k|\mathcal{A}^{k,p^k,Y}_{i+2,3}. \]

Note that \(\mathcal{A}^{k,p^k,Y}_{i,3}, \mathcal{A}^{k,p^k,Y}_{i+2,3}, |v^k|, \) and \(t^k \) depend only on \((t,x,v) \).

Hence we regard the underbraced term of (3.39) as an affine function of \(s \),

\[b(t,x,v)\tilde{s} + c(t,x,v). \] (3.42)

Note that from (3.37)

\[|c(t,x,v)| \geq \frac{\Omega_{\Omega,N,\delta_1,\delta_2}}{2} - N \frac{\Omega_{\Omega,N,\delta_1,\delta_2}}{4N} \geq \frac{\Omega_{\Omega,N,\delta_1,\delta_2}}{4}. \]

Now we apply (iii) of Lemma 3.5 With \(\varphi_5(t,x,v) \) in (3.27), if \(|\tilde{s} - \varphi_5(t,x,v)| > \delta_* \), then \(|b(t,x,v)\tilde{s} + c(t,x,v)| \geq \frac{\Omega_{\Omega,N,\delta}}{4} \times \delta_* \). We set

\[\psi_5(t,x,v) = t - \varphi_5(t,x,v). \] (3.43)

From (3.40),

\[\text{if } |s - \psi_5(t,x,v)| > \delta_*, \text{ then} \\
|b(t,x,v)(t - s) + c(t,x,v)| \geq \frac{\Omega_{\Omega,N,\delta_1,\delta_2}}{4} \times \delta_. \] (3.44)

Now we consider the case of (3.38). From (3.33),

\[\begin{align*}
|\partial_{\nu}X(s) \times \partial_{\nu_1}X(s)| & \geq \left| v^k \mathcal{A}^{k,p^k,Y}_{j,3} (t - s) \right| \\
& \quad + \left[-\mathcal{A}^{k,p^k,Y}_{j-2,3} + (t^k - t)|v^k|\mathcal{A}^{k,p^k,Y}_{j,3} \right] (t - s) \\
& \quad + O_{\Omega,N,\delta} (\| \Phi \| C^2).
\end{align*} \] (3.45)

We set \(\tilde{s} \) as in (3.40) and set

\[a \equiv 0, \quad b \equiv |v^k|\mathcal{A}^{k,p^k,Y}_{j,3}, \quad c \equiv -\mathcal{A}^{k,p^k,Y}_{j-2,3} + (t^k - t)|v^k|\mathcal{A}^{k,p^k,Y}_{j,3}. \]

From (3.38) and (3.46)

\[|b(t,x,v)| \geq \frac{\Omega_{\Omega,N,\delta_1,\delta_2}}{8N^2}. \]
We apply (ii) of Lemma \[3.5\] to this case: With \(\varphi_4(t, x, v) \) in \(\text{(3.26)} \), we set
\[
(3.47) \quad \psi_4(t, x, v) = t - \varphi_4(t, x, v),
\]
and
\[
(3.48) \quad |b(t, x, v)(t - s) + c(t, x, v)| \geq \frac{\vartheta_{\Omega, N, \delta_1, \delta_2}}{8N^2} \times \delta_\star.
\]
From \(\text{(3.44)}, \text{(3.39)}, \text{(3.48)}, \text{and} \text{(3.45)} \), we conclude the proof of Lemma \[3.6\].

Lemma 3.7. Assume \(\Omega \) is \(C^3 \) \(\text{(2.6)} \) and convex \(\text{(1.15)} \), and \(\Phi \) is \(C_{t,x}^{2,\gamma} \) for some \(0 < \gamma < 1 \). Assume the conditions of Lemma \[3.4\].

Let a \(C^1 \)-map \(Y_x : (y_1, y_2) \mapsto Y_x(y_1, y_2) \in \bar{\Omega} \) with \(Y_x(0, 0) = x \) and \(\|Y\|_{C^1_{x,y_1,y_2}} \leq 1 \). We assume that
\[
(3.49) \quad \left| \left(\frac{\partial Y_{x0}(0, 0)}{\partial y_1} \times \frac{\partial Y_{x0}(0, 0)}{\partial y_2} \right) \cdot R_{x1}(t, x^0, v) \right|^1(t, x^0, v^0) > \delta_3 > 0.
\]

For \(k \in \mathbb{N} \) with \(t^k \geq t - 1 \), there exist \(\varepsilon > 0 \), finitely many \(C^{0,\gamma} \)-functions \(\psi_k : B_\varepsilon(t, x, v) \to \mathbb{R} \) with \(\|\psi_k\|_{C^{0,\gamma}_t} \leq 1 \), and a constant \(\varepsilon_{\delta_1, \delta_2, \delta_3, N, \Omega} > 0 \), and \(\{\xi_1, \xi_2\} \subset \{\hat{v}_1, \hat{v}_2, y_1, y_2\} \) such that if \(\min_i |s - \psi_k(t, Y_x(y_1, y_2), v)| > \delta_\star \) and
\[
(3.50) \quad (s; t, Y_x(y_1, y_2), v) \in \left[\max\{t - 1, t^k + 1\}, \min\left\{ t - \frac{1}{N^k}, t^k \right\} \right] \times B_\varepsilon(t^0, x^0, v^0),
\]
then
\[
\text{det} \left(\frac{\partial X(s; t, Y_x(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)}{\partial (|v|, \xi_1, \xi_2)} \right) > \varepsilon_{\delta_1, \delta_2, \delta_3, N, \Omega, \delta_\star} > 0.
\]

Proof.

Step 1. Recall the specular basis \(\{e_0^k, e_{\perp,1}^k, e_{\perp,2}^k\} \) in \(\text{(3.14)} \) with
\[
x^k = x^k(t, Y_x(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2) \quad \text{and} \quad v^k = v^k(t, Y_x(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2) :
\]
\[
\frac{\partial X(s; t, Y_x(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)}{\partial (|v|, y_1, y_2, \hat{v}_1, \hat{v}_2)} =
\begin{bmatrix}
\frac{\partial X}{\partial |v|} \cdot e_0^k & \frac{\partial X}{\partial y_1} \cdot e_0^k & \frac{\partial X}{\partial y_2} \cdot e_0^k & \frac{\partial X}{\partial v} \cdot e_0^k & \frac{\partial X}{\partial \hat{v}_1} \cdot e_0^k & \frac{\partial X}{\partial \hat{v}_2} \cdot e_0^k \\
\frac{\partial X}{\partial |v|} \cdot e_{\perp,1}^k & \frac{\partial X}{\partial y_1} \cdot e_{\perp,1}^k & \frac{\partial X}{\partial y_2} \cdot e_{\perp,1}^k & \frac{\partial X}{\partial v} \cdot e_{\perp,1}^k & \frac{\partial X}{\partial \hat{v}_1} \cdot e_{\perp,1}^k & \frac{\partial X}{\partial \hat{v}_2} \cdot e_{\perp,1}^k \\
\frac{\partial X}{\partial |v|} \cdot e_{\perp,2}^k & \frac{\partial X}{\partial y_1} \cdot e_{\perp,2}^k & \frac{\partial X}{\partial y_2} \cdot e_{\perp,2}^k & \frac{\partial X}{\partial v} \cdot e_{\perp,2}^k & \frac{\partial X}{\partial \hat{v}_1} \cdot e_{\perp,2}^k & \frac{\partial X}{\partial \hat{v}_2} \cdot e_{\perp,2}^k
\end{bmatrix}.
\]
From (3.1) and (3.2), using the specular basis (3.14) and the specular matrix (3.16), we rewrite the underbraced term as

\[
\begin{pmatrix}
-(t-s) & -(t^k - s)|v^k| \sum_{j=1}^{2} \left(\sum_{\ell=1}^{6} \frac{p}{\sqrt{v_{\rho,j}^k}} \right) \partial_{x_{\rho,j}} q_0 \\
0 & 0
\end{pmatrix}
\]

where the lower right 2 × 4-submatrix equals

\[
\begin{bmatrix}
R_{1,1}^k, p^k, Y_x & R_{1,2}^k, p^k, Y_x & R_{1,3}^k, p^k, Y_x & R_{1,4}^k, p^k, Y_x \\
R_{2,1}^k, p^k, Y_x & R_{2,2}^k, p^k, Y_x & R_{2,3}^k, p^k, Y_x & R_{2,4}^k, p^k, Y_x \\
\end{bmatrix}
\]

\[
-(t^k - s)|v^k| \sum_{j=1}^{2} \left(\sum_{\ell=1}^{6} \frac{p}{\sqrt{v_{\rho,j}^k}} \right) \partial_{x_{\rho,j}} q_0 \
\]

Here \(R_{i,j}^k, p^k, Y_x\) is defined in (3.16) with \(x^k = x^k(t, Y_x(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)\) and \(v^k = v^k(t, Y_x(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)\).

Step 2. From Lemma [3.4] there exist \(i < j\) such that (3.20) holds. We choose \(\hat{\xi}_1, \hat{\xi}_2\) to be the \(i^\text{th}\) component and \(j^\text{th}\) component of \(\{y_1, y_2, \hat{v}_1, \hat{v}_2\}\). For the sake of simplicity, we abuse the notation as

\[
\begin{bmatrix}
R_{3,1}^k, p^k, Y_x & R_{3,2}^k, p^k, Y_x & R_{3,3}^k, p^k, Y_x & R_{3,4}^k, p^k, Y_x \\
R_{4,1}^k, p^k, Y_x & R_{4,2}^k, p^k, Y_x & R_{4,3}^k, p^k, Y_x & R_{4,4}^k, p^k, Y_x \\
\end{bmatrix}
\]

Note that

\[
\det \left(\frac{\partial X(s; t, Y_x(y_1, y_2), |v|, \hat{v}_1, \hat{v}_2)}{\partial (|v|, \hat{\xi}_1, \hat{\xi}_2)} \right) = \det \left(\begin{pmatrix}
(s-t) & -(t^k - s)|v^k| \sum_{j=1}^{2} \left(\sum_{\ell=1}^{6} \frac{p}{\sqrt{v_{\rho,j}^k}} \right) \partial_{x_{\rho,j}} q_0 \\
0 & 0
\end{pmatrix}
\right)
\]

From (3.10) and (2.2), all the entries of the above matrix are bound and hence the determinant of above matrix equals

\[
-(t-s) \det \left(\begin{pmatrix}
R_{1,1}^k, p^k, Y_x & R_{1,2}^k, p^k, Y_x & R_{1,3}^k, p^k, Y_x & R_{1,4}^k, p^k, Y_x \\
R_{2,1}^k, p^k, Y_x & R_{2,2}^k, p^k, Y_x & R_{2,3}^k, p^k, Y_x & R_{2,4}^k, p^k, Y_x \\
\end{pmatrix}
\right) + O(\Phi \|C^2\|). \tag{3.52}
\]
The underbraced term equals
\[
(t^k - s)^2 |v|^2 \det \left(\begin{bmatrix}
R_{k,p^k,Y_1} & R_{k,p^k,Y_2} \\
R_{k,p^k,Y_3} & R_{k,p^k,Y_4}
\end{bmatrix}
\right)
\]

\[+ \det \left(\begin{bmatrix}
R_{k,p^k,Y_1} & R_{k,p^k,Y_2} \\
R_{k,p^k,Y_3} & R_{k,p^k,Y_4}
\end{bmatrix}
\right)
\]

\[-(t^k - s)|v|^2 \left(R_{k,p^k,Y_1} R_{k,p^k,Y_2} + R_{k,p^k,Y_1} R_{k,p^k,Y_4} - R_{k,p^k,Y_3} R_{k,p^k,Y_2} - R_{k,p^k,Y_3} R_{k,p^k,Y_4} \right).\]

We define \(\tilde{s} = t^k (t, Y_x(y_1, y_2), v) - s \), and we regard (3.53) as a quadratic polynomial of \(\tilde{s} \). Then the coefficient of \(\tilde{s}^2 \) is
\[|v|^2 \det \left(\begin{bmatrix}
R_{k,p^k,Y_1} & R_{k,p^k,Y_2} \\
R_{k,p^k,Y_3} & R_{k,p^k,Y_4}
\end{bmatrix}
\right),\]
which depends only on \((t, Y_x(y_1, y_2), v)\). From (3.20) and \(|v| \geq \frac{1}{N}\), we have a lower bound of \(\hat{s}_2 N \).

We apply (iii) of Lemma 3.5. There exist \(C^1 \)-functions \(\psi_1(t, Y_x(y_1, y_2), v), \psi_2(t, Y_x(y_1, y_2), v), \) and \(\psi_3(t, Y_x(y_1, y_2), v) \) so that if \(|\tilde{s} - \psi_1(t, Y_x(y_1, y_2), v)| > \delta_2 \) for all \(i = 1, 2, 3 \), then the absolute value of (3.53) has a positive lower bound. Set
\[\psi_i = t^k - \phi_i.\]

Using \(|t - s| > \frac{1}{N}\) and (3.52) we prove (3.50). □

Lemma 3.8. Assume \(\Omega \) is convex in (1.15) and \(\| \Phi \|_{C^1} \ll 1 \). Choose \(N \gg 1 \), \(0 < \delta \ll 1 \), and then \(\delta_1 = \delta_1(\Omega, N, \delta, \| \nabla X \Phi \|_{\infty}) > 0 \) as in (3.57). There exist collections of open subsets \(\{ \mathcal{O}_i \}_{i=1}^{I_{\Omega,N,\delta_1}} \) of \(\Omega \) and \(\{ \mathcal{P}_i(\mathbf{q}_1, \mathbf{q}_2) \}_{i=1}^{I_{\Omega,N,\delta_1}} \) of \(\mathbb{R}^3 \), where \(\mathbf{q}_1 \) and \(\mathbf{q}_2 \) are two independent vectors in \(\mathbb{R}^3 \), with \(I_{\Omega,N,\delta_1} < \infty \) such that \(\tilde{\Omega} \subset \bigcup_i \mathcal{O}_i \) and \(\int_{\mathcal{O}_i \setminus \mathcal{P}_i(\mathbf{q}_1, \mathbf{q}_2)} e^{-|v|^2/100} dv \leq O(\frac{1}{N}) + O(\delta_1). \) Moreover,
\[K_i := \sup \{ k \in \mathbb{N} : t^k (t, x, v) \geq T \},\]

\[(t, x, v) \in [T, T + 1] \times \mathcal{O}_i \times \mathbb{R}^3 \setminus \mathcal{P}_i(\mathbf{q}_1, \mathbf{q}_2) \}
\]< \infty.

If \((x, v) \in \mathcal{O}_i \times \mathbb{R}^3 \setminus \mathcal{P}_i(\mathbf{q}_1, \mathbf{q}_2)\) for some \(i \), then
\[|n(x^1(t, x, v)) \cdot v^1(t, x, v)| > \min \left\{ \frac{\delta_1}{4}, C_{\Omega,N,\| \nabla X \Phi \|_{\infty}} \delta \right\} \]
and

\[|(q_1 \times q_2) \cdot v| \geq \frac{1}{N}. \]

Proof. We construct \(\mathcal{O}_i \) and \(\mathcal{V}_i(q_1, q_2) \). Choose \(\xi \in \bar{\Omega} \) and \(v \in \mathbb{R}^3 \) with \(\frac{1}{N} \leq |v| \leq N \). Let \(|v| \leq |v_3| \) for \(N \gg 1 \). We split the cases \(|v| |t-t^1(t, \xi, v)| \geq \delta \) and \(|v||t-t^1(t, \xi, v)| \leq 2\delta \) for some \(0 < \delta \ll 1 \). For the first case, from (2.65),

\[\delta \leq |v||t-t^1(t, \xi, v)| \leq \bar{\Omega} \frac{|v^1(t, \xi, v) \cdot n(x^1(t, \xi, v))|}{|v^1(t, \xi, v)|}, \]

and hence \(|v^1(t, \xi, v) \cdot n(x^1(t, \xi, v))| \geq C_{\Omega,N} \|v_\infty\|\Omega \cdot \delta \). For the second case,

\[|n(x^1(t, \xi, v)) \cdot v^1(t, \xi, v)| \]

\[= |n(\xi) \cdot v| + O_{\eta_1}_{C^3}(\|n(x^1(t, \xi, v) - \xi)\|) \times \{ |v| + \|x_\infty\|\Omega \} + \|v_\infty\|\Omega \]

\[= |n(\xi) \cdot v| + O_{\eta_1}_{\|\eta\|_{C^3}}(\delta) + O_{\eta_1}_{\|\eta\|_{C^3}}(\|v_\infty\|\Omega), \]

where we have used the fact \(|x^1(t, \xi, v) - \xi| = |v||t-t^1| + \|v_\infty\|\Omega|t-t^1|^2 \)

Let us choose

\[(3.57) \delta_1 = 2 |O_{\eta_1}_{\|\eta\|_{C^3}}(\delta) + O_{\eta_1}_{\|\eta\|_{C^3}}(\|v_\infty\|\Omega)| \]

for \(\delta \ll N, 1 \). \(\|v_\infty\|\Omega \ll N, 1 \).

Then \(|n(x^1(t, \xi, v)) \cdot v^1(t, \xi, v)| \geq \frac{\delta_1}{2} \) for \(|n(\xi) \cdot v| \geq \delta_1 \). Condition (3.56) is independent of position \(x \). Note that, from Lemma (2.4), \(t^1(t, x^1, v^1) \) is continuous locally. Therefore, we can choose \(r_\xi > 0 \) such that if \(x \in B(\xi, r_\xi) \cap \bar{\Omega}, \frac{1}{N} \leq |v| \leq N, \frac{1}{N} \leq |v_3|, |n(\xi) \cdot v| \geq 2\delta_1 \), and \(|(q_1 \times q_2) \cdot v| \geq \frac{\delta_1}{N} \), then we have (3.55) and (3.56). Since \(\bar{\Omega} \) is a compact subset of \(\mathbb{R}^3 \), we extract finite points \(\{\xi_i\}_{i=1}^{l_\Omega,N,\delta,\delta_1} \) with \(l_\Omega,N,\delta,\delta_1 < \infty \) such that \(\{B(\xi_i, r_\xi)\}_{i=1}^{l_\Omega,N,\delta,\delta_1} \) is an open covering of \(\bar{\Omega} \). We define

\[(3.58) \mathcal{O}_i := B(\xi_i, r_\xi), \]

\[\mathcal{V}_i(q_1, q_2) := \left\{ v \in \mathbb{R}^3 : |v| \leq \frac{1}{N}, |v| \geq N, |v_3| \leq \frac{1}{N}, |n(\xi) \cdot v| \leq 2\delta_1, \right. \]

\[\left. \text{or } |(q_1 \times q_2) \cdot v| \leq \frac{1}{N} \right\}, \]

for two independent vectors \(q_1, q_2 \) in \(\mathbb{R}^3 \). Clearly we already proved that if \((x, v) \in \mathcal{O}_i \times \mathbb{R}^3 \setminus \mathcal{V}_i(q_1, q_2) \) for some \(i = 1, 2, \ldots, l_\Omega,N,\delta,\delta_1 \), then we have (3.55). Moreover, \(\int_{\mathcal{V}_i(q_1, q_2)} e^{-|v|^2/100} dv < O(1/N) + O(\delta_1) \) from our construction. From (2.81), we prove (3.54).

Now we are ready to prove the main theorem.
THEOREM 3.9. Fix arbitrary \((t, x, v) \in [T, T+1] \times \Omega \times \mathbb{R}^3\). Recall \(M, \delta, \delta_1, \) and \(\mathcal{O}_i, \mathcal{Y}_i(\mathcal{E}_1, \mathcal{E}_2)\), which are chosen in Lemma 3.8. For each \(i = 1, 2, \ldots, I_{\Omega,N,\delta,\delta_1}\), there exist \(\delta_2 > 0\) and a \(C^{0,\gamma}\)-function \(\psi_{t_0,\ell_0,i,k}\) for \(k \leq K_i\) in (3.54) where \(\psi_{t_0,\ell_0,i,k}\) is defined locally around \((T + \delta_2 \ell_0, X(T + \delta_2 \ell_0; t, x, v), \delta_2 \ell)\) with

\[
(\ell_0, \ell) = (\ell_0, \ell_1, \ell_2, \ell_3) \in \left\{0, 1, \ldots, \left\lfloor \frac{1}{\delta_2} \right\rfloor + 1 \right\} \times \left\{ -\left\lfloor \frac{N}{\delta_2} \right\rfloor - 1, \ldots, 0, \ldots, \left\lceil \frac{N}{\delta_2} \right\rceil + 1 \right\}^3
\]

and \(\|\psi_{t_0,\ell_0,i,k}\|_{C^{0,\gamma}} \leq C_{N,\Omega,\delta,\delta_1,\delta_2,\|\Phi\|_{C^{2,\gamma}}} < \infty\).

Moreover, if

(3.59) \((X(s; t, x, v), u) \in \mathcal{O}_i \times \mathbb{R}^3 \setminus \mathcal{Y}_i(\mathcal{E}_1, \mathcal{E}_2)\) for \(i = 1, 2, \ldots, I_{\Omega,N,\delta,\delta_1}\),

(3.60) \((s, u) \in [T + (\ell_0 - 1)\delta_2, T + (\ell_0 + 1)\delta_2] \times B(\delta_2 \ell, 2\delta_2),\)

\[s' \in \left[T^{k+1}(T + \delta_2 \ell_0; X(T + \delta_2 \ell_0; t, x, v), \delta_2 \ell) + \frac{1}{N}, \right.\]

(3.61) \[T^k(T + \delta_2 \ell_0; X(T + \delta_2 \ell_0; t, x, v), \delta_2 \ell) - \frac{1}{N} \]

and

(3.62) \[|s' - \psi_{t_0,\ell_0,i,k}(T + \delta_2 \ell_0, X(T + \delta_2 \ell_0; t, x, v), \delta_2 \ell)| > N^2 (1 + \|\psi_{t_0,\ell_0,i,k}\|_{C^{0,\gamma}}(\delta_2)\gamma),\]

then

(3.63) \[\left| \partial_{x_1}X(s'; s, X(s'; t, x, v), u) \times \partial_{x_1}X(s'; s, X(s'; t, x, v), u) \right| > \epsilon_{\Omega,N,\|\Phi\|_{C^{2,\gamma}}} \delta_1 \delta_2 \delta_3.\]

Here \(\epsilon_{\Omega,N,\|\Phi\|_{C^{2,\gamma}}} \delta_1 \delta_2 \delta_3 > 0\) does not depend on \(T, t, x,\) or \(v\).

For each \(j = 1, 2, \ldots, I_{\Omega,N,\delta,\delta_1}\) in Lemma 3.8 there exist \(\delta_3 > 0\) and \(C^{0,\gamma}\)-functions

(3.64) \[\psi_{t_0,\ell_0,i,k,j,m_0,\tilde{m},k'}^{(j)}, \psi_{t_0,\ell_0,i,k,j,m_0,\tilde{m},k'}^{(j)}, \psi_{t_0,\ell_0,i,k,j,m_0,\tilde{m},k'}^{(j)}\]

for \(k' \leq K^j\) in (3.54) where \(\psi_{t_0,\ell_0,i,k,j,m_0,\tilde{m},k'}^{(j)}\) is defined locally around

\((T + \delta_3 m_0; X(T + \delta_3 m_0; T + \delta_2 \ell_0, X(T + \delta_2 \ell_0; t, x, v), \delta_2 \ell), \delta_3 \tilde{m})\)
for some
\[(m_0, \tilde{m}) = (m_0, m_1, m_2, m_3) \in \left\{ 0, 1, \ldots, \left\lfloor \frac{1}{\delta_3} \right\rfloor + 1 \right\} \times \left\{ -\left\lfloor \frac{N}{\delta_3} \right\rfloor - 1, \ldots, 0, \ldots, \left\lfloor \frac{N}{\delta_3} \right\rfloor + 1 \right\}^3 \]
with \(0 < \delta_3 \ll 1\).

Moreover, if we assume (3.59), (3.60), (3.61), and (3.62),
\[(3.65) \quad (X(s'; s, X(s'; t, x, v), u), u') \in \mathcal{O}_j \times \mathbb{R}^3 \setminus \mathcal{Y}_j (\partial_{|u|} X, \partial_{\tilde{u}} X)
\]
for some \(j = 1, 2, \ldots, I_{\Omega,N,\delta_1,\delta_3} \) in Lemma 3.8 \(s'' \in \left[t^{k+1} (T + \delta_3 m_0; T + \delta_2 \ell_0, X(T + \delta_2 \ell_0; t, x, v), \delta_0 \tilde{\ell}, \delta_3 \tilde{m}) + \frac{1}{N},
ight.
\]
(3.66) \[\left. t^k (T + \delta_3 m_0; T + \delta_2 \ell_0, X(T + \delta_2 \ell_0; t, x, v), \delta_0 \tilde{\ell}, \delta_3 \tilde{m}) - \frac{1}{N} \right] \]
and
\[(3.67) \quad \min_{n=1,2,3} \left| s'' - \psi_n^* \right| > \frac{N^2 (1 + \max_{n=1,2,3} \| \psi_n^* \|_{\mathcal{C}^0,\mathcal{Y}}) (\delta_3)^2}{\delta_3}, \]
where (**) is defined in (3.66). Then for each \(\ell_0, \tilde{\ell}, i, k, j, m_0, \tilde{m},\) and \(k'\) we can choose two distinct variables \(\{\xi_1, \xi_2\} \subset \{|u'|, \tilde{u}_1', \tilde{u}_2'\}\) such that \((|u'|, \xi_1, \xi_2) \mapsto X(s''; s', X(s'; s, X(s'; t, x, v), u), u')\) is one-to-one locally and
\[(3.68) \quad \left| \frac{\partial \det \left(\frac{\partial X(s''; s', X(s''; s, X(s'; t, x, v), u), u')}{\partial (|u'|, \xi_1, \xi_2)} \right)}{\partial (|u'|, \xi_1, \xi_2)} \right| > \epsilon' \rho_{\Omega, N, \| \Phi \|_{\mathcal{C}^2, \delta_1, \delta_2, \delta_3}} > 0 \text{ does not depend on } T, t, x, \text{ or } v. \]

Proof.

Step 1. Fix any arbitrary \((t, x, v) \in [T, T + 1] \times \Omega \times \mathbb{R}^3\). Assume that \(s \in [T, t]\) and \((X(s'; s, X(s'; t, x, v), u), V(s'; s, X(s'; t, x, v), u))\) is well-defined for all \(s' \in [T, s]\) and \(|u(x^k(s, X(s'; t, x, v), u)) \cdot v^k(s, X(s'; t, x, v), u)| \gtrsim_{\Omega,N} 1\) for all \(k\) with \(|t - t^k(s, X(s'; t, x, v), u)| \leq 1\).

We note that, from \(X(s; t, x, v) = X(\tilde{s}; t, x, v) + \int_{s}^{s'} V(t; t, x, v) dt\),
\[|\psi^k(s, X(s; t, x, v), u) - \psi^k(\tilde{s}, X(\tilde{s}; t, x, v), \tilde{u})| \leq \|\psi^k\|_{\mathcal{C}^1_{\mathcal{C}^0,\mathcal{Y}}(s; t, x, v)} \{s - \tilde{s}\}^\gamma + |X(s; t, x, v) - X(\tilde{s}; t, x, v)|^\gamma + |u - \tilde{u}|^\gamma\]
(3.69) \[\leq \|\psi^k\|_{\mathcal{C}^1_{\mathcal{C}^0,\mathcal{Y}}(s; t, x, v)} \{s - \tilde{s}\}^\gamma + (1 + N^\gamma + \|\nabla_x \Phi\|_{\mathcal{C}^0}^\gamma) |u - \tilde{u}|^\gamma.\]
For $0 < \delta_2 \ll 1$ we split

$$[T, T + 1] = \bigcup_{\ell_0 = 0}^{[\delta_2^{-1}] + 1} \left[T + (\ell_0 - 1)\delta_2, T + (\ell_0 + 1)\delta_2 \right].$$

$$\mathbb{R}^3 \setminus \mathcal{Y}(\mathbf{e}_1, \mathbf{e}_2) = \bigcup_{|\tilde{\ell}| = 0}^{\lfloor N/\delta_2^2 \rfloor + 1} B(\tilde{\ell}\delta_2; 2\delta_2) \cap \mathbb{R}^3 \setminus \mathcal{Y}(\mathbf{e}_1, \mathbf{e}_2).$$

From (3.69), if

$$(s, u) \in [T + (\ell_0 - 1)\delta_2, T + (\ell_0 + 1)\delta_2]$$

$$\times \{ B(\tilde{\ell}\delta_2; 2\delta_2) \cap \mathbb{R}^3 \setminus \mathcal{Y} \},$$

then

$$|\psi^k(T + \ell_0\delta, X(T + \ell_0\delta; t, x, v), (\ell_1\delta, \ell_2\delta, \ell_3\delta)) - \psi^k(s, X(s; t, x, v), u)|$$

$$\leq \| \psi^k \|_{C^{0,\gamma}} (2 + N^\gamma + \| \nabla_x \Phi \|_{C^2}) (\delta_2)^\gamma.$$

Therefore, if (3.62) holds, then

$$|s' - \psi^k(s, X(s; t, x, v), u)|$$

$$\geq |s' - \psi^k(T + \ell_0\delta, X(T + \ell_0\delta; t, x, v), \tilde{\ell}\delta)|$$

$$- |\psi^k(T + \ell_0\delta, X(T + \ell_0\delta; t, x, v), \tilde{\ell}\delta)$$

$$- \psi^k(s, X(s; t, x, v), u)|$$

$$\geq (N^2 - N^\gamma) \| \psi^k \|_{C^{0,\gamma}} (\delta_2)^\gamma.$$

Consider the mapping $u \mapsto X(s', s, X(s'; t, x, v), u)$. Note that from Lemma 3.8 we verify the condition of Lemma 3.6. Applying Lemma 3.6, we construct the $C^{0,\gamma}$-function $\psi^k : B_\epsilon(s, X(s; t, x, v), u) \to \mathbb{R}$ for $k \leq K'$ such that if $|s' - \psi^k(s, X(s; t, x, v), u)| > (\delta_2)^\gamma$, then

$$|\partial_{(s')} X(s', s, X(s; t, x, v), u) \times \partial_{\mathbf{x}} X(s', s, X(s; t, x, v), u)| > \epsilon \Omega_N \| \Phi \|_{C^2, \delta_1, (\delta_2)^\gamma} > 0.$$

Clearly if (3.62) holds, then from (3.70) we have $|s' - \psi^k(s, X(s; t, x, v), u)| > (\delta_2)^\gamma$.

Step 2. Assume all the conditions of (3.59)–(3.62) and (3.65). Applying Lemma 3.7, we construct (3.64). From (3.69)

$$|\psi(s', X(s'; s, X(s'; t, x, v), u), u') - \psi(s', X(s'; s, X(s'; t, x, v), u), u')|$$

$$\leq \| \psi \|_{C^{0,\gamma}} |s' - s'|^\gamma + (1 + N^\gamma + \| \nabla_x \Phi \|_{C^2}) |u' - u'|^\gamma.$$
4 A Time-Dependent Potential

THEOREM 4.1 (Local existence). For a sufficiently small $\mu_0 > 0$ and $\delta > 0$, there exists $T^* > 0$ such that if $\|f(0)\|_{L^1(\mathbb{R}^d)} \leq \delta_0$ and $\|\phi\|_{L^1(\mathbb{R}^d)} \leq \delta_0$, then there exists a unique solution $f(t, x)$ to (1) in $[0, T^*) \times \mathbb{R}^d$.

PROOF. For the proof we use a sequence of $F_0 \equiv 0$ and for $l \geq 0$

$$F_{l+1}(x, v) = F_{l+1}(x, v),$$

where $\|f(t, x)\|_{L^1(\mathbb{R}^d)} \leq \delta_0$. Then there exists a unique solution $f(t, x)$ to (1) in $[0, T^*) \times \mathbb{R}^d$. Note that from Lemma 3.7 we verify the condition of Lemma 3.7.

For each i, j we consider the mapping

$$\psi_i^T : \mathbb{R}^d \to \mathbb{R}^d,$$

and for $0 < \delta_3 \ll 1$, we split

$$[T, T + 1] = \bigcup_{[M^2]_{i=1}^{M^2}} B(iM^2, 2\delta_3) \setminus \bigcup_{[M^2]_{i=1}^{M^2}} B(iM^2, 2\delta_3).$$

Consider the mapping

$$(x', v') \to (x, v) \in \mathbb{R}^d \setminus \{x, v \mid |x| > 1\},$$

and for $0 < \delta_3 \ll 1$, we have

$$\|\psi_i^T f(0)\|_{L^1(\mathbb{R}^d)} \leq \delta_0.$$
Note that
\[
\frac{d}{ds} e^{-f'_s v(F') \langle \tau, X(\tau; t, x, v), X(\tau; t, x, v) \rangle} \, F^{\ell+1}(s, X(s), V(s)) = Q_+ (F^\ell, F_+)(s, X(s), V(s)),
\]
where \(X(s) = X(s; t, x, v) \) and \(V(s) := V(s; t, x, v) \) satisfy (2.1) and (2.4). Note that if \(F^\ell \geq 0 \), then \(v(F^\ell) \geq 0 \) and \(Q_+ (F^\ell, F_+) \geq 0 \). Therefore, if \(F^\ell \geq 0 \) and \(F_0 \geq 0 \), then
\begin{equation}
F^{\ell+1} \geq 0 \text{ for all } \ell.
\end{equation}

From \(F^{\ell+1} = \mu_E + \sqrt{\mu_E} f^{\ell+1} \),
\begin{equation}
\begin{aligned}
\partial_t f^{\ell+1} + v \cdot \nabla_x f^{\ell+1} - \nabla_x (\phi + \Phi) \cdot \nabla_v f^{\ell+1} \\
+ e^{-\Phi} v (f^{\ell+1} + \frac{f^{\ell+1}}{2} v \cdot \nabla_x \phi)
\end{aligned}
= e^{-\Phi} K f^\ell - \sqrt{\mu_E} v \cdot \nabla_x \phi + e^{-\frac{\Phi}{2}} \Gamma_+ (f^\ell, f^\ell) - e^{-\frac{\Phi}{2}} \Gamma_- (f^\ell, f^{\ell+1}).
\end{equation}

For \(h^\ell := w f^\ell \)
\begin{equation}
\begin{aligned}
\partial_t h^{\ell+1} + v \cdot \nabla_x h^{\ell+1} - \nabla_x (\phi + \Phi) \cdot \nabla_v h^{\ell+1} \\
+ \frac{h^{\ell+1}}{w} \nabla (\phi + \Phi) \cdot \nabla_v w + e^{-\Phi} v h^{\ell+1} + \frac{h^{\ell+1}}{2} v \cdot \nabla \phi
\end{aligned}
= e^{-\Phi} K w h^\ell - w \sqrt{\mu_E} v \cdot \nabla_x \phi + w e^{-\frac{\Phi}{2}} \Gamma_+ \left(\frac{h^\ell}{w}, \frac{h^\ell}{w} \right)
\end{equation}
\begin{equation}
- w e^{-\frac{\Phi}{2}} \Gamma_- \left(\frac{h^\ell}{w}, \frac{h^{\ell+1}}{w} \right).
\end{equation}

We claim that we can choose \(0 < T_* \ll 1 \) such that for all \(\ell \)
\begin{equation}
\sup_{0 \leq t \leq T_*} \| h^\ell(t) \|_\infty \leq 2(\delta_0 + C \delta_\phi).
\end{equation}

We define
\begin{equation}
\begin{aligned}
E(v, t, x) := \exp \left\{ - \int_s^t v_E \langle \tau, X(\tau; t, x, v), V(\tau; t, x, v) \rangle \, d\tau \right\} \\
:= \exp \left\{ - \int_s^t \left[e^{-\Phi(X(\tau))} v(V(\tau)) + \frac{1}{2} V(\tau) \cdot \nabla \phi(\tau, X(\tau)) \right. \right. \\
\left. + \left. \left. \frac{1}{w} \nabla_x (\phi(\tau, X(\tau)) + \Phi(X(\tau)) \cdot \nabla_v w(V(\tau)) \right] d\tau \right\}.
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
G^{\ell+1} := -w \sqrt{\mu E} V \cdot \nabla_x \phi + w e^{-\frac{\Phi}{2}} \Gamma_+ \left(\frac{h^\ell}{w}, \frac{h^\ell}{w} \right)
\end{aligned}
\end{equation}
\begin{equation}
- w e^{-\frac{\Phi}{2}} \Gamma_- \left(\frac{h^\ell}{w}, \frac{h^{\ell+1}}{w} \right).
\end{equation}
Along the trajectory,

\[
\frac{d}{ds} \left(E(v, t, s)h^{\ell+1}(s, X(s; t, x, v), V(s; t, x, v)) \right) =
E(v, t, s) \left[e^{-\Phi(X(s))} K_w h^{\ell+1} + G^{\ell+1} \right](s, X(s; t, x, v), V(s; t, x, v)) .
\]

By integrating from 0 to \(t \), we obtain

\[
h^{\ell+1}(t, x, v) = E(v, t, 0)h^{\ell+1}(0, X(0), V(0)) + \int_0^t E(v, t, s)G^{\ell+1}(s)ds
+ \int_0^t E(v, t, s)e^{-\Phi(X(s))} \int_{\mathbb{R}^3} k_w(u, V(s))h^{\ell+1}(s, X(s; t, x, v), u)du ds .
\]

From (1.21),

\[
(4.8) \quad \langle V(\tau; t, x, v) \rangle \lesssim_{\phi, \varphi} \nu E(\tau, X(\tau; t, x, v), V(\tau; t, x, v)) \lesssim_{\phi, \varphi} \langle V(\tau; t, x, v) \rangle .
\]

Recall the standard estimates (see lemma 4 and lemma 5 in [14]):

\[
(4.9) \quad \int_{\mathbb{R}^3} |k_w(v, u)|du \leq C_K \langle v \rangle^{-1}, \quad \left| u \Gamma_{\pm} \left(\frac{h_1}{w}, \frac{h_2}{w} \right)(v) \right| \lesssim \langle v \rangle |h_1||h_2| .
\]

Therefore,

\[
|G^{\ell+1}(s; t, x, v)| \lesssim_{\phi} \|\nabla_X \phi(s)\|_{\infty} e^{-\frac{|V(s)|^2}{8}}
+ \langle V(s; t, x, v) \rangle \{\|h^{\ell}(s)\|_{\infty} + \|h^{\ell+1}(s)\|_{\infty}\} \|h^{\ell}(s)\|_{\infty} .
\]

From (4.8) and (4.10), we deduce that

\[
\sup_{0 \leq t \leq T} \|h^{\ell+1}(t)\|_{\infty}
\leq \delta_0 + C\delta_\phi + C_K T \sup_{0 \leq s \leq t} \|h^{\ell+1}(s)\|_{\infty}
+ CT \left\{ \sup_{0 \leq s \leq t} \|h^{\ell+1}(s)\|_{\infty} + \sup_{0 \leq s \leq t} \|h^{\ell}(s)\|_{\infty} \right\} \sup_{0 \leq s \leq t} \|h^{\ell}(s)\|_{\infty} .
\]

Choose \(T^* > 0 \) such that \(C_K T^* \ll 1 \). Then from (4.5) for \(h^{\ell} \)

\[
\left(1 - \frac{1}{10} - 2(\delta_0 + C\delta_\phi) \right) \times \sup_{0 \leq t \leq T} \|h^{\ell+1}(t)\|_{\infty} \leq \delta_0 + C\delta_\phi + C(\delta_0 + C\delta_\phi)^2 ,
\]

and we prove the same upper bound of (4.5) for \(h^{\ell+1} \) for sufficiently small \(\delta_0 \) and \(\delta_\phi \).

We can show that \(h^{\ell} \) is a Cauchy sequence in \(L^\infty([0, T^*); L^\infty(\Omega \times \mathbb{R}^3)) \) by repeating the argument with \(h^{\ell+1} - h^{\ell} \). Then we pass a limit \(\ell \to \infty \) to prove the existence and (4.1). Using (4.2) and this limit we prove \(F \geq 0 \). Assume \(h_1 \) and \(h_2 \) solve the same equation (4.4). Following the same proof as for (4.5), we prove that
\[\sup_{0 \leq t \leq T^*} \| h_1 - h_2 \|_\infty \leq o(1) \sup_{0 \leq t \leq T^*} \| h_1 - h_2 \|_\infty. \] Hence \(h_1 \equiv h_2 \), and we conclude the uniqueness.

For \(0 < \varepsilon \ll 1 \), from (4.4) with \(h = h^{l+1} \)
\[\| h(t + \varepsilon) \|_\infty - \| h(t) \|_\infty \leq \| h(t + \varepsilon) - h(t) \|_\infty \leq \varepsilon \{ \| h_0 \|_\infty + \| h \|_\infty + \| h \|_\infty^2 + \| \phi \|_{C^1} \}. \]

Hence \(\| w \|_\infty \) is continuous on \([0, T^*] \).

Lemma 4.2. For \(w(v) = (1 + |v|)^{\beta} \) with \(\beta > 2 \),
\[
\left| \int_{\mathbb{R}^3} \Gamma_+(\psi, \psi) \psi \, dv \right| \lesssim \| w \psi \|_{\infty} \| \psi \|_{L^2(\mathbb{R}^3)} \| \varphi \|_{L^2(\mathbb{R}^3)},
\]
(4.11)
\[
\left| \int_{\mathbb{R}^3} \Gamma_-(\psi, \psi) \psi \, dv \right| \lesssim \| w \psi \|_{\infty} \{ \| \psi \|_{L^2(\mathbb{R}^3)} \| \varphi \|_{L^2(\mathbb{R}^3)} + \| (I - P) \psi \| \| \varphi \| \},
\]

Proof. Via the well-known Carleman representation (for example, see (32) in [15]), we have
\[
\Gamma_+(\psi, \psi)(v) = \frac{1}{\sqrt{\mu(v)}} \mathcal{Q}_+ (\sqrt{\mu'}, \sqrt{\mu'}) (v)
\]
\[
= 2 \int_{\mathbb{R}^3} \psi(v') \frac{1}{|v - v'|^2} \cdot \int_{E_{vv'}} \psi(v') e^{-\frac{|v + v' + v'_1|^2}{4}} B\left(2v - v' - v_1, \frac{v' - v_1}{|v' - v'_1|}\right) \, dv' \, dv',
\]
where \(E_{vv'} \) is a hyperplane containing \(v \in \mathbb{R}^3 \) and is perpendicular to \(\frac{v' - v}{|v' - v|} \in S^2 \), i.e.,
\[
E_{vv'} := \{ v'_1 \in \mathbb{R}^3 : (v'_1 - v) \cdot (v' - v) = 0 \}.
\]

For the internal integration over \(E_{vv'} \), using lemma 6 and (34) in [15], we bound it above as
\[
\int_{E_{vv'}} \cdots \, dv'_1 \lesssim \| w \psi \|_{\infty} \frac{1 + |v - v'|}{w(v - v')} \lesssim \| w \psi \|_{\infty} (v - v')^{-1/2},
\]
where we have used
\[
w(v'_1)^{-1} e^{-\frac{|v + v' + v'_1|^2}{4}} \lesssim w(v - v').
\]
Note that \(\int_{\mathbb{R}^3} \frac{(v-v')^{-(\beta-1)}}{|v-v'|^2} \, dv' \lesssim 1 \) for \(\beta > 2 \). Hence we conclude that
\[
\left| \int_{\mathbb{R}^3} \Gamma_+ (\psi, \psi) \varphi \, dv \right| \\
\lesssim \| \varphi \|_\infty \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{(v-v')^{-(\beta-1)}}{|v-v'|^2} |\psi(v')||\varphi(v)| \, dv' \, dv \\
\lesssim \| \varphi \|_\infty \left[\int_{\mathbb{R}^3} \left(\int_{\mathbb{R}^3} \frac{(v-v')^{-(\beta-1)}}{|v-v'|^2} \, dv \right) |\varphi(v')|^2 \, dv \right]^{\frac{1}{2}} \\
\times \left[\int_{\mathbb{R}^3} \left(\int_{\mathbb{R}^3} \frac{(v-v')^{-(\beta-1)}}{|v-v'|^2} \, dv \right) |\varphi(v)|^2 \, dv \right]^{\frac{1}{2}} \\
\lesssim \| \varphi \|_\infty \| \psi \|_{L^2(\mathbb{R}^3)} \| \varphi \|_{L^2(\mathbb{R}^3)} .
\]

For the \(\Gamma_- \) estimate, we have
\[
\int_{\mathbb{R}^3} |\Gamma_-(\psi, \psi)(v)\varphi(v)| \, dv \leq \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |v-u||\psi(u)| \sqrt{\mu(u)} \, du \times |\psi(v)||\varphi(v)| \, dv \\
\lesssim \| \varphi \|_\infty \int_{\mathbb{R}^3} \langle v \rangle \{ |P\psi(v)| + |(I-P)\psi(v)| \} |\varphi(v)| \, dv \\
\lesssim \| \varphi \|_\infty \{ \| \psi \|_{L^2(\mathbb{R}^3)} \| \varphi \|_{L^2(\mathbb{R}^3)} + \| (I-P)\psi \|_v |\varphi|_v \}
\]
where we have used the fact, for all \(p \in [1, \infty] \),
\[
\| \langle v \rangle P \psi \|_{L^p(\mathbb{R}^3)} \lesssim \| \langle v \rangle^3 \sqrt{\mu(u)} \int_{\mathbb{R}^3} \psi(u) \langle u \rangle^2 \sqrt{\mu(u)} \, du \|_{L^p(\mathbb{R}^3)} \lesssim \| \psi \|_{L^p(\mathbb{R}^3)} .
\]

Lemma 4.3. Let \(f \) solve (1.18). Then there exists a constant \(C > 0 \) not depending on \(f_0, f, \) or \(\phi \) such that, for all \(t \geq 0 \),
\[
\| f(t) \|_2^2 \leq C \left(\| f(0) \|_2^2 + \int_0^t \| \phi(s) \|_\infty \right) \\
\times (1 + C(\| \phi \|_\infty + \| w f \|_\infty)te^C(\| \phi \|_\infty + \| w f \|_\infty)t).
\]

Proof.
\[
\| f(t) \|_2^2 + \int_0^t \int_{\Omega \times \mathbb{R}^3} e^{-\Phi} f Lf \\
= \| f(0) \|_2^2 - \int_0^t \int_{\Omega \times \mathbb{R}^3} \frac{v \cdot \nabla_x \Phi}{2} f^2 - \int_0^t \int_{\Omega \times \mathbb{R}^3} v \cdot \nabla_x \Phi f \sqrt{\mu E} \\
+ \int_0^t \int_{\Omega \times \mathbb{R}^3} e^{-\frac{\Phi}{2}} \Gamma(f, f)(I-P) f .
\]
By the decomposition $f = P f + (I - P) f$ and the strong decay-in-v of $P f$ in (1.37),

$$
\begin{align*}
(I) & \leq \|\phi\|_\infty \left\{ \int_0^t \int_{\Omega \times \mathbb{R}^3} |v|| Pf |^2 + \int_0^t \| (I - P) f \|_v^2 \right\} \\
& \lesssim \|\phi\|_\infty \left\{ \int_0^t \| f \|_2^2 + \int_0^t \| (I - P) f \|_v^2 \right\}.
\end{align*}
$$

(II) $\lesssim \|\phi\|_\infty \int_0^t \| f \|_2^2 + \int_0^t \| \phi(s) \|_\infty \, ds.$

From (4.11)

$$
\begin{align*}
(III) & \lesssim \int_0^t \int_{\Omega} \| w f(s, x, \cdot) \|_\infty \| (I - P) f(s, x, \cdot) \|_v^2 \, dx \, ds \\
& \quad + \int_0^t \int_{\Omega} \| w f(s, x, \cdot) \|_\infty \| f(s, x, \cdot) \|_2^2 \, dx \, ds \\
& \lesssim \| w f \|_\infty \int_0^t \| (I - P) f(s) \|_v^2 \, ds + \| w f \|_\infty \int_0^t \| f(s) \|_2^2 \, ds.
\end{align*}
$$

Using (1.36) and collecting the terms, we deduce that, for some constant $C > 0$,

$$
\begin{align*}
\| f(t) \|_2^2 & \leq \| f(t) \|_2^2 + (\delta_L - \| \phi \|_\infty - \| w f \|_\infty) \int_0^t \| (I - P) f \|_v^2 \\
& \leq \| f(0) \|_2^2 + C(\| \phi \|_\infty + \| w f \|_\infty) \int_0^t \| f \|_2^2 + C \int_0^t \| \phi \|_\infty.
\end{align*}
$$

By Gronwall's inequality we conclude (4.12). □

Lemma 4.4. Assume $F = \mu E + \sqrt{\mu E} f$ solves (1.1) and satisfies (1.5). Assume (1.12) and

$$
\lambda_\phi \gg \delta_\phi + \| w f \|_\infty.
$$

Then

$$
\begin{align*}
\left| \int_{\Omega \times \mathbb{R}^3} \left(\frac{|v|^2}{2} + \Phi(x) \right) F(t, x, v) \, dx \, dv \\
- \int_{\Omega \times \mathbb{R}^3} \left(\frac{|v|^2}{2} + \Phi(x) \right) F_0(x, v) \, dx \, dv \right| \\
& \lesssim \frac{\delta_\phi}{\lambda_\phi} \left\{ 1 + \| f(0) \|_2^2 + \| w f \|_\infty \right\}
\end{align*}
$$
PROOF. The proof is a direct consequence of two previous lemmas (1.5 and 4.12) and the exponential decay-in-time of $\phi(t)$ in (1.12): The LHS of (4.15) is bounded by

$$\begin{align*}
\leq & \int_0^t \int_{\Omega \times \mathbb{R}^3} \{ \mu_E(x, v) + \sqrt{\mu_E(x, v)} |f(s, x, v)| \} |v| \| \nabla_x \phi(s, x) \| dv \; dx \; ds \\
\leq & \delta \phi \int_0^t e^{-\lambda_\phi s} \left\{ 1 + C \left(\| f(0) \|_2^2 + \int_0^t \| \phi(s) \|_{\infty} \right) \right. \\
& \times \left(1 + C(\| \phi \|_{\infty} + \| w f \|_{\infty}) e^{C(\| \phi \|_{\infty} + \| w f \|_{\infty})s} \right) \right\} ds \\
\leq & \delta \phi \int_0^t e^{-\lambda_\phi s} \left\{ 1 + C \left(\| f(0) \|_2^2 + \delta \phi / \lambda_\phi \right) \right. \\
& \times \left(1 + C(\delta \phi + \| w f \|_{\infty}) e^{C(\delta \phi + \| w f \|_{\infty})s} \right) \right\} ds \\
\leq & \delta \phi / \lambda_\phi \left\{ 1 + C \left(\| f(0) \|_2^2 + \delta \phi / \lambda_\phi \right) \right\} \\
& + C \delta \phi (\delta \phi + \| w f \|_{\infty}) \int_0^t e^{-[\lambda_\phi - C(\delta \phi + \| w f \|_{\infty})]s} ds \\
\leq & \frac{\delta \phi}{\lambda_\phi} \left\{ 1 + \| f(0) \|_2^2 + \| w f \|_{\infty} \right\}. \quad \square
\end{align*}$$

Lemma 4.5 ([11][15]). Recall μ_E in (1.2). Then

$$\begin{align*}
|F - \mu_E|, |F - \mu_E| \geq \bar{\delta} \mu_E \\
\leq & \frac{4}{\delta} \left\{ (F \ln F - \mu_E \ln \mu_E) \\
& - (F - \mu_E) + \left(\frac{|v|^2}{2} + \Phi(x) \right) (F - \mu_E) \right\}.
\end{align*}$$

Proof. The proof is based on the proof of lemma 4 of [15] and the argument on page 147 of [11].

By the Taylor expansion, for $t, s > 0$

$$\begin{align*}
\frac{1}{\max\{t, s\}} \frac{|t - s|^2}{2} \leq \int_t^s \int_s^{s_1} \frac{1}{s_2} ds_2 \; ds_1 = t \ln t - s \ln s - (1 + \ln s)(t - s).
\end{align*}$$

Note that if $F(t, x, v) - \mu_E(x, v) \geq \bar{\delta} \mu_E(x, v)$ with $0 \leq \bar{\delta} \ll 1$, then $F \geq (1 + \bar{\delta}) \mu_E$ and hence

$$\max\{F, \mu_E\} = (1 + \bar{\delta}) \mu_E.$$

If $\mu_E(x, v) - F(t, x, v) \geq -\bar{\delta} \mu_E(x, v)$, then $(1 + \bar{\delta}) \mu_E \geq F$ and

$$\max\{F, \mu_E\} \leq (1 + \bar{\delta}) \mu_E.$$
Therefore, if $|F - \mu E| \geq \bar{\delta} \mu E$ then
\[
\frac{|F - \mu E|}{\max\{F, \mu E\}} \times \frac{|F - \mu E|}{2} \geq \frac{\bar{\delta} \mu E}{(1 + \bar{\delta}) \mu E} \times \frac{|F - \mu E|}{2} \\
\geq \frac{\bar{\delta}}{2} \times \frac{|F - \mu E|}{2} \geq \frac{\bar{\delta}}{4} |F - \mu E|.
\]

Hence, from (4.17), we deduce that
\[
|F - \mu E| \begin{cases} 1_{|F - \mu E| \geq \bar{\delta} \mu E} \\
\leq \frac{4}{\delta} \frac{1}{\max\{F, \mu E\}} \frac{|F - \mu E|^2}{2} \\
\leq \frac{4}{\delta} \{F(t) \ln F(t) - \mu E \ln \mu E - (1 + \ln \mu E)(F - \mu E(x, v))\} \\
\leq \frac{4}{\delta} \{F \ln F - \mu E \ln \mu E\} - (F - \mu E) + (|v|^2/2 + \Phi(x))(F - \mu E)\}
\]
where we have used $\ln \mu E = -(\frac{|v|^2}{2} + \Phi(x))$. \hfill \Box

Proof of Theorem 1.1. Denote
\[
T_1 := \text{sup}\{t \geq 0 : \|w f(t)\|_\infty \leq 2(\delta_0 + C \delta \phi)\}.
\]

Note that (1.4), (1.5), and (1.11) hold for $0 \leq t \leq T_1$. Note that f and h satisfy (1.18) and (4.4) with $h^{\ell+1} = h = h^{\ell}$. Then we have (4.7) with $h^{\ell+1} = h = h^{\ell}$.

We apply the Duhamel formula (4.7) three times, for $0 \leq t \leq T_1$, and decompose the integrand h as
\begin{equation}
(4.18) \quad h = h^1_{|F - \mu E| \geq \bar{\delta} \mu E} + w \frac{F - \mu E}{\sqrt{\mu E}} 1_{|F - \mu E| \leq \bar{\delta} \mu E},
\end{equation}
for sufficiently small $0 < \bar{\delta} \ll 1$, to get
\[
h(t, x, v) = E(v, t, 0)h(0) + \int_0^t E(v, t, s)G(s)ds \\
+ \int_0^t E(v, t, s)e^{-\Phi(X(s))} \int_u k_w(u, v)h(s, X(s), u)du \, ds \\
= E(v, t, 0)h(0) + \int_0^t E(v, t, s)G(s)ds \\
+ \int_0^t E(v, t, s)e^{-\Phi(X(s))} \\
\times \int_u k_w(u, v)E(u, s, 0) \left\{ h(0) + \int_0^s E(u, s, s')G(s')ds' \right\} \\
+ \int_0^t E(v, t, s)e^{-\Phi(X(s))} \int_u k_w(u, v) \int_0^s E(u, s, s')e^{-\Phi(X(s'))} \\
\times \int_u' k_w(u', v)h(s', X(s'), u')du'ds' \, ds \, du \, ds =
\]
\[
(4.19) \quad E(v, t, s) = E(v, t, 0)h(0) + \int_0^t E(v, t, s)G(s)\,ds \\
+ \int_0^t E(v, t, s)e^{-\Phi} \int_u k_w(u, v)E(u, s, 0)h(0)\,du \, ds \\
+ \int_0^t \int_u E(v, t, s) e^{-\Phi} k_w(u, v) E(u, s, 0) E(u, s', 0) G(s') \, du \, ds' \, ds \\
+ \int_0^t E(v, t, s) e^{-\Phi(X(s))} \int_u k_w(u, v) \\
\times \int_0^s E(u, s, s') e^{-\Phi(X(s'))} \int_{u'} k_w(u', u) \int_0^{s'} E(u', s', s'') G(s'') \\
+ \int_0^t E(v, t, s) e^{-\Phi(X(s))} \int_u k_w(u, v) \int_0^s E(u, s, s') e^{-\Phi(X(s'))} \int_{u'} k_w(u', u) \\
\times \int_0^{s'} E(u', s', s'') e^{-\Phi(X(s''))} \int_{u''} k_w(u'', u') h(s'', X(s'', u'')) \mathbf{1}_{|F_{-\mu} W| \geq \delta_{\mu}} \\
+ \int_0^t E(v, t, s) e^{-\Phi(X(s))} \int_u k_w(u, v) \int_0^s E(u, s, s') e^{-\Phi(X(s'))} \int_{u'} k_w(u', u) \\
\times \int_0^{s'} E(u', s', s'') e^{-\Phi(X(s''))} \int_{u''} k_w(u'', u') h(s'', X(s'', u'')) \mathbf{1}_{|F_{-\mu} W| \geq \delta_{\mu}},
\]

where we abbreviated notation as follows:

\[X(s) := X(s', t, x, v), \quad X(s') := X'(s'', s, X(s; t, x, v), u),\]
\[X(s'') := X(s''', s', X' (s''; s, X(s; t, x, v), u), u'),\]

and where we use definitions similar to those in (4.6):

\[
E(v, t, s) := \exp\left\{-\int_s^t v_E(\tau, X(\tau; t, x, v), V(\tau; t, x, v))\,d\tau\right\} \\
:= \exp\left\{-\int_s^t \left[e^{-\Phi(X(\tau))} v(V(\tau)) + \frac{1}{2} V(\tau) \cdot \nabla \phi(\tau, X(\tau)) \right. \right.
\]
\[
+ \frac{1}{w} \nabla_x (\phi(\tau, X(\tau)) + \Phi(X(\tau)) \cdot \nabla_v W(V(\tau))) \right\} \,d\tau\}.
\]
\[
G := -w \sqrt{\mu_E} V \cdot \nabla_x \phi + w e^{-\frac{\Phi}{2}} \Gamma \left(\frac{h}{w}, \frac{h}{w} \right).
\]

Under the assumption that \(\delta_\phi + \delta_\phi/\lambda_\phi \ll 1,\)

\[
(4.21) \quad E(v, t, s) \leq e^{-\frac{1}{2} e^{-\Phi_0} c_v(v)(t-s)} := e^{-c_\phi_0 (t-s)},
\]
where we define $v_{\Phi}(v) := \frac{1}{2}e^{-\|\Phi\|_C v(v)}$. For (4.19), every term except (*) is controlled by

$$C_{\Phi,\lambda,\phi}(\delta + \tilde{\delta} + \|h(0)\|_\infty + \sup_{0 \leq s \leq t} \|h(s)\|_\infty^2).$$

For (*), we choose $m(N)$ so that

$$k_{w,m}(u, v) := 1_{\{|u-v| \geq \frac{1}{m}, |u| \leq m\}} k_w(u, v)$$

satisfies $\int_{\mathbb{R}^3} |k_{w,m}(u, v) - k_w(u, v)| du \leq \frac{1}{N}$ for sufficiently large $N \geq 1$. Then, by splitting k_w,

$$\begin{align*}
\text{(*)} & \leq \int_0^t \int_0^t \int_0^t e^{-\nu_{\Phi}(0)(t-s')} \int_u k_{w,m}(u, v) \int_{u'} k_{w,m}(u', u) \\
& \times \int_{u''} k_{w,m}(u'', u') h(s'', X''(s''), u'') 1_{\|F_{\mu,\phi}\| \geq \tilde{\delta}_{\mu,\phi}} du'' du ds'' ds' ds + O_{\Omega}(\frac{1}{N}) \sup_{0 \leq s \leq t} \|h(s)\|_\infty.
\end{align*}$$

We analyze (**). We use Theorem 3.9 then

$$\exists i_s \in \{1, 2, \ldots, I_{\Omega,N}\} \text{ such that } X(s) \in \mathcal{G}_{i_s},$$

$$\exists j_{s,s'} \in \{1, 2, \ldots, I_{\Omega,N}\} \text{ such that } X(s'; s, X(s'; t, x, v), u) \in \mathcal{G}_{j_{s,s'}},$$

and then we can define the following sets for fixed $n, \tilde{n}, i, k, m, \tilde{m}, j,$ and k', where Theorem 3.9 does not work.

$$R_1 := \{u \mid u \notin B(\tilde{n}, 2\delta) \cap \{\mathbb{R}^3 \setminus \mathcal{Y}_{i_s}(\tilde{G}_1, \tilde{G}_2)\}\},$$

$$R_2 := \{s' \mid |s - s'| \leq \delta'\},$$

$$R_3 := \{s' \mid |s' - \psi_{\lambda',\tilde{\lambda},i,k,m,\tilde{m},j,k'}(n\delta, X(n\delta; t, x, v), \tilde{n}\delta)\| \leq N \delta' \|\psi_{\lambda}\|_{C^{0,\gamma}}\},$$

$$R_4 := \{u' \mid u' \notin B(\tilde{m}\delta; 2\delta) \cap \{\mathbb{R}^3 \setminus \mathcal{Y}_{j_{s,s'}}(\tilde{G}_{i_s}; X, \tilde{G}_1)\}\},$$

$$R_5 := \{s'' \mid |s'' - s'| \leq \delta''\},$$

$$R_6 := \{s'' \mid \min_{r=1,2} |s'' - \psi_{\lambda',\tilde{\lambda},i,k,m,\tilde{m},j,k'}(m\delta, X(m\delta; n\delta, X(n\delta; t, x, v), \tilde{m}\delta, \tilde{n}\delta))| \leq N \delta'' \|\psi_{\lambda}\|_{C^{0,\gamma}}\}.$$

Therefore,

$$\text{(**)} = \left[\frac{t}{\delta}\right] + 1 \sum_{n=0}^{\left[\frac{t}{\delta}\right]} \sum_{\|u\| \leq N} \sum_{\|u\| \leq N} \sum_{k} \sum_{k'} \int_{(n+1)\delta}^{n\delta} \int_{(n+1)\delta}^{n\delta} \int_{(n+1)\delta}^{n\delta} \int_{(n+1)\delta}^{n\delta} e^{-\nu_{\Phi}(0)(t-s')} \\
\times \int_{|u| \leq N, |u| \leq N} \int_{|u| \leq N} \int_{|u| \leq N} \int_{|u| \leq N} \int_{|u| \leq N} |h(s'', X(s''), u'')| 1_{\|F_{\mu,\phi}\| \geq \tilde{\delta}_{\mu,\phi}} 1_{R_1 \cap R_2 \cap R_3 \cap R_4 \cap R_5} \text{(MAIN)} + B + R,$$

where the B term corresponds to where the trajectory is near bouncing points and R corresponds to where (u, s', u', s'') is in one of R_1 through R_6. So we have the
We can apply Theorem 3.9, which gives a local time-independent lower bound of

$$B \leq \int_0^t \int_0^s \int_0^{s'} e^{-v \cdot \varphi(0)(t-s')} \int_{|u| \leq N} k_{w,m}(u, v) \int_{|u'| \leq N} k_{w,m}(u', u)$$

$$\times \int_{|u''| \leq N} k_{w,m}(u'', u') h(s'', X''(s''), u'') 1_{|F - \mu_E| \geq \delta \mu_E}$$

$$\times 1_{|s'' - t'| \leq \delta \nu}$$

$$\leq C_N \delta^\gamma \sup_{0 \leq s \leq t} \|h(s)\|_{\infty},$$

(4.28)

$$R \leq \int_0^t \int_0^s \int_0^{s'} e^{-v \cdot \varphi(0)(t-s')} \int_{|u| \leq N} k_{w,m}(u, v) \int_{|u'| \leq N} k_{w,m}(u', u)$$

$$\times \int_{|u''| \leq N} k_{w,m}(u'', u') h(s'', X''(s''), u'') 1_{|F - \mu_E| \geq \delta \mu_E}$$

$$\times 1_{R_1 \cup R_2 \cup R_3 \cup R_4 \cup R_5 \cup R_6}$$

$$\leq C_N \delta^\gamma \sup_{0 \leq s \leq t} \|h(s)\|_{\infty},$$

For (MAIN) in (4.27), we are away from two sets B and R. Under the condition of

$$(u, s', u', s'') \in R^c_1 \cap R^c_2 \cap R^c_3 \cap R^c_4 \cap R^c_5 \cap R^c_6,$$

where R^c_i is the complement of R_i. Indices $n, \bar{n}, i_s, k, m, \bar{m}, j_s, x',$ and k' are determined so that

$$t \in [(n - 1)\delta, (n + 1)\delta],$$

$$X(s'; t, x, v) \in \mathcal{O}_{i_s},$$

$$X(s'; s, X(s; t, x, v), u) \in \mathcal{O}_{j_s, x'},$$

$$u \in B(\bar{m} \delta; 2\delta) \cap \mathbb{R}^3 \setminus \gamma_{i_s}(\hat{e}_1, \hat{e}_2),$$

$$u' \in B(\bar{m} \delta; 2\delta) \cap \mathbb{R}^3 \setminus \gamma_{j_s, x'}(\partial|u|, X, \partial_{\bar{u}_1} X).$$

We can apply Theorem 3.9, which gives a local time-independent lower bound of

$$\left| \det \left(\frac{\partial (X(s''))}{\partial (|u'|, \xi_1, \xi_2)} \right) \right| \geq \epsilon_\delta.$$

Note that $\{\xi_1, \xi_2\} \subset \{|u|, \bar{u}_1, \bar{u}'_1, \bar{u}'_2\}$ are chosen variables in Theorem 3.9 and $\{\xi_3, \xi_4\} \subset \{|u|, \bar{u}_1, \bar{u}'_1, \bar{u}'_2\}$ are unchosen variables. Let us use \mathcal{P} to denote the projection of $B(\bar{m} \delta; 2\delta) \cap \mathbb{R}^3 \setminus \gamma_{i_s}(\hat{e}_1, \hat{e}_2) \times B(\bar{m} \delta; 2\delta) \cap \mathbb{R}^3 \setminus \gamma_{j_s, x'}(\partial|u|, X, \partial_{\bar{u}_1} X)$ into \mathbb{R}^3, which corresponds to the $(|u'|, \xi_1, \xi_2)$ components. If we choose sufficiently small δ, there exist small $r_{\delta, n, \bar{n}, i, k, m, \bar{m}, j, k'}$ such that there exist one-to-one
map \mathcal{M},
\[
\mathcal{M} : \mathcal{P}(B(\widetilde{n}; 2\delta) \cap \mathbb{R}^3 \setminus \mathcal{G}(\mathbf{e}_1, \mathbf{e}_2) \times B(\widetilde{m}; 2\delta) \cap \mathbb{R}^3 \setminus \mathcal{G}_{x,s}(\partial_{\tilde{u}}, X, \partial_{\tilde{u}} X))
\mapsto B(X(s''; s', X(s'; t, x, v), u'), r_{\delta, n, \tilde{n}, k, m, \tilde{m}, j, k'}).\]

So we perform a change of variable for (MAIN) in (4.27) to obtain

\begin{align}
&\text{(MAIN)} \\
&\leq \sum_{n=0}^{[\gamma/\delta]+1} \sum_{|n| \leq N} \sum_{m=0}^{[\gamma/\delta]+1} \sum_{|m| \leq N} \sum_{k=0}^{K_{x,v}} \int_{(n+1)\delta}^{(n+1)\delta} \int_{t_k+\delta}^{t_k+\delta} \int_{t_k+\delta}^{t_k+\delta} e^{-\nu_0(0)(t-s')} \\
&\quad \times \int_{u''}^{u''} \int_{\tilde{u}_2, \tilde{u}_3, \mathcal{C}_4} 1_{|u''| \leq N, |u'| \leq N, |u''| \leq N} \, \text{d}u_2 \, \text{d}u_3 \, \text{d}\zeta_4 \\
&\quad \times \int_{u''}^{u''} \int_{\tilde{u}_1, \tilde{u}_2} \text{d}|u''| \, \text{d}|\tilde{u}_3| \, \text{d}|u''| \, \text{d}u_1 \, \text{d}u_2 \, \text{d}u_3 \, \text{d}\zeta_4 \\
&\quad \times \int_{u''}^{u''} \int_{B(X(s''; t, x, v, u''), 1)_{F - \mu_E \geq \bar{\mu}_E}} \frac{1}{\mathcal{O}(N, |x|)_{\mathcal{O}} C_2 \bar{\mu}} \, \text{d}u'' \, \text{d}s'' \\
&\quad \leq C_{N, \delta, \frac{\gamma}{\delta}, \Phi, \Omega} \sup_{0 \leq s'' \leq t} \|h(s'')\|_{L^1(\Omega \times B_N)} \\
&\quad \leq C_{N, \delta, \frac{\gamma}{\delta}, \Phi, \Omega} \sup_{0 \leq s'' \leq t} \|h(s'')\|_{L^1(\Omega \times B_N)}.
\end{align}

From (4.16) and (1.11), we can further bound (4.29) by

\begin{align}
&\leq C_{N, \delta, \frac{\gamma}{\delta}, \Phi, \Omega} \frac{1}{\delta} \left\| \frac{u'}{\sqrt{\mu}} \right\|_{L^\infty(B_N)} \\
&\times \sup_{0 \leq s'' \leq t} \left\{ (\mathcal{H}(F(0)) - \mathcal{H}(\mu_E)) - \int_0^t (F(s'') - \mu_E) \\
&\quad + \int_0^t \left(\frac{|v|^2}{2} + \Phi(x) \right) (F(s'') - \mu_E) \right\}.
\end{align}

Finally, utilizing (1.4), (1.6), and (4.15), we deduce that

\begin{align}
\text{(MAIN)} \leq C_{N, \delta, \frac{\gamma}{\delta}, \Phi, \Omega} \frac{1}{\delta} \left\| \frac{u'}{\sqrt{\mu}} \right\|_{L^\infty(B_N)} \\
&\times \left((\mathcal{H}(F(0)) - \mathcal{H}(\mu_E)) + \frac{\delta_\Phi}{\delta_\Phi} \left\{ 1 + \sup_{0 \leq s'' \leq t} \|w(s'')\|_\infty \right\} \right).
\end{align}
For \(\delta_0, \delta_0, \delta_0 \ll 1\), we collect (4.22), (4.24), (4.27), (4.28), and (4.31) to get

\[
\sup_{0 \leq t \leq T_1} \|w f(t)\|_{\infty} \lesssim \|w f_0\|_{\infty} + \delta_0 + \delta + \mathcal{H}(0) - \mathcal{H}(\mu_E) + \frac{\delta_0}{\lambda_0} + \sup_{0 \leq t \leq T_1} \|w f(t)\|^{2}_{\infty}.
\]

By choosing small data we deduce \(\sup_{0 \leq t \leq T_1} \|w f(t)\|_{\infty} < 2(\delta_0 + C\delta_0) \ll 1\) from (4.1). By continuity of \(\|w f(t)\|_{\infty}\) in Theorem 4.1 and a uniform bound, we conclude

\(T_1 = \infty\), and this proves the global-in-time existence.

\(\square\)

5 A Time-Independent Potential

First we derive \(L^2\)-coercivity for the homogeneous linear Boltzmann of (1.18)

\[\partial_t f + \nu \cdot \nabla_x f - \nabla_x \Phi(x) \cdot \nabla_v f + e^{-\Phi} L f = 0,\]

with specular reflection boundary condition on the boundary \(\partial \Omega\). From (1.6),

\[\iint_{\Omega \times \mathbb{R}^3} f(t) \sqrt{\mu_E} = \iint_{\Omega \times \mathbb{R}^3} f_0 \sqrt{\mu_E} = 0,\]

(5.1)

\[\iint_{\Omega \times \mathbb{R}^3} f(t) \left(\frac{|v|^2}{2} + \Phi\right) \sqrt{\mu_E} = \iint_{\Omega \times \mathbb{R}^3} f_0 \left(\frac{|v|^2}{2} + \Phi\right) \sqrt{\mu_E} = 0.\]

(5.2)

If the domain is axis-symmetric (1.7) and \(\Phi\) is degenerated (1.8), then

\[\iint_{\Omega \times \mathbb{R}^3} f(t) \{(x - x^0) \times \nu\} \cdot v \sqrt{\mu_E} = \iint_{\Omega \times \mathbb{R}^3} f_0 \{(x - x^0) \times \nu\} \cdot v \sqrt{\mu_E} = 0.\]

(5.3)

We prove Proposition 1.4 by the contradiction argument of the proof of proposition 11 in [12]. We first study the geometric lemma, which allows estimating near the boundary via the interior bound, and postpone the proof of the proposition. Define the distance function toward the boundary as

\[\text{dist}(x, \partial \Omega) = \inf\{|x - y| : y \in \partial \Omega\},\]

which is well-defined if \(\text{dist}(x, \partial \Omega) \ll 1\). In this case there exists a unique \(x^* \in \partial \Omega\) satisfying \(|x^* - x| = \text{dist}(x, \partial \Omega)|. We also define

\[n(x) = n(x^*)\]

for \(x \in \Omega\) with \(\text{dist}(x, \partial \Omega) \ll 1\).
LEMMA 5.1. Let g be a (distributional) solution to
\begin{equation}
\partial_t g + v \cdot \nabla_x g + E \cdot \nabla_x g = G,
\end{equation}
where $E = E(t, x) \in C^1 \mathcal{V}$. Then, for a sufficiently small $\varepsilon > 0$,
\begin{equation}
\int_0^1 \|1_{\dist(x, \partial \Omega) < \varepsilon^4} \|_{\Omega}(x, v)^{\geq \varepsilon g(t)} \|_2^2 \, dt \lesssim \int_0^1 \|1_{\dist(x, \partial \Omega) > \varepsilon^4 / 2} g(t) \|_{2}^2 \, dt + \int_0^1 \int_{\Omega \times \mathbb{R}^3} |gG|.
\end{equation}
Note that this lemma is true even for a time-dependent external field case.

PROOF. For $x \in \bar{\Omega}$ with $\dist(x, \partial \Omega) < \varepsilon^4$, $n(x) \cdot v < -\varepsilon$, and $y \in \partial \Omega$ with $|y - x| < 1$,
\begin{align*}
|X(t + \varepsilon; t, x, v) - y| &\geq |(X(t + \varepsilon; t, x, v) - y) \cdot n(x)| \\
&= \left| (x - y) \cdot n(x) + v \cdot n(x) \varepsilon^2 + O(1) \|E\|_{\infty} \right| \\
&\geq \varepsilon^3 - \varepsilon^4 - O(1) \|E\|_{\infty} \varepsilon^4 \geq \frac{\varepsilon^3}{2}.
\end{align*}
Hence
\begin{equation}
\dist(X(t + \varepsilon; t, x, v), \Omega) = \inf_{y \in \partial \Omega, |y - x| < 1} |X(t + \varepsilon; t, x, v) - y| \geq \frac{\varepsilon^3}{2}.
\end{equation}
We can prove the exact same lower bound of $|X(t - \varepsilon; t, x, v) - y|$ when $n(x) \cdot v > \varepsilon$. Hence we conclude, for $x \in \bar{\Omega}$ with $\dist(x, \partial \Omega) < \varepsilon^4$ and $n(x) \cdot v > \varepsilon$,
\begin{equation}
\dist(X(t - \varepsilon; t, x, v), \Omega) = \inf_{y \in \partial \Omega, |y - x| < 1} |X(t - \varepsilon; t, x, v) - y| \geq \frac{\varepsilon^3}{2}.
\end{equation}
Moreover, it is well-known that $(x, v) \mapsto (X(t + \varepsilon; t, x, v), V(t + \varepsilon; t, x, v))$ is a local diffeomorphism if $\dist(x, \partial \Omega) < \varepsilon^4$ and $n(x) \cdot v < -\varepsilon$. And, $(x, v) \mapsto (X(t - \varepsilon; t, x, v), V(t + \varepsilon; t, x, v))$ is also a local diffeomorphism if $\dist(x, \partial \Omega) < \varepsilon^4$ and $n(x) \cdot v > \varepsilon$ hold, since they never hit the boundary. These diffeomorphisms satisfy
\begin{equation}
\Jac \left(\frac{\partial(X(t \pm \varepsilon; t, x, v), V(t \pm \varepsilon; t, x, v))}{\partial(x, v)} \right) = 1.
\end{equation}
Note that
\begin{align*}
\|X(t + \varepsilon; t, \cdots)\|_{C^1, \mathcal{V}} &\leq \frac{\varepsilon^2}{2} \|E\|_{C^1, \mathcal{V}}, \\
\|V(t + \varepsilon; t, \cdots)\|_{C^1, \mathcal{V}} &\leq \varepsilon \|E\|_{C^1, \mathcal{V}}.
\end{align*}
By expansions, we conclude that there exist sufficiently small $\delta > 0$ and $\varepsilon_0 > 0$ such that for all $0 < \varepsilon < \varepsilon_0$, $(X(t + \varepsilon; t, \cdots), V(t + \varepsilon; t, \cdots))$ is one-to-one in $\{(x, v) \in \bar{\Omega} \times \mathbb{R}^3 : \dist(x, \partial \Omega) < \varepsilon^4, n(x) \cdot v < -\varepsilon, |x - x^0| + |v - v^0| < \delta\}$ and $(X(t - \varepsilon; t, \cdots), V(t - \varepsilon; t, \cdots))$ is so in $\{(x, v) \in \bar{\Omega} \times \mathbb{R}^3 : \dist(x, \partial \Omega) < \varepsilon^4, n(x) \cdot v > \varepsilon, |x - x^0| + |v - v^0| < \delta\}$.
On the other hand, if \(X(t + \varepsilon; t, \tilde{x}, \tilde{v}) = X(t + \varepsilon; t, x, v) \) and \(V(t + \varepsilon; t, \tilde{x}, \tilde{v}) = V(t + \varepsilon; t, x, v) \), then \(|v - \tilde{v}| \leq \|E\|_{\infty} \varepsilon \) and \(|x - \tilde{x}| \leq 2\|E\|_{\infty} \varepsilon^2 \). We deduce the same conclusion if \(X(t - \varepsilon; t, \tilde{x}, \tilde{v}) = X(t - \varepsilon; t, x, v) \) and \(V(t - \varepsilon; t, \tilde{x}, \tilde{v}) = V(t - \varepsilon; t, x, v) \). Hence for a sufficiently small \(\varepsilon \), such \((x, v)\) and \((\tilde{x}, \tilde{v})\) are close as \(|(x, v) - (\tilde{x}, \tilde{v})| < \delta \). From the local one-to-one property in the previous sentence we conclude \((x, v) = (\tilde{x}, \tilde{v})\).

Now we are ready to prove (5.7). Note that

\[
\frac{d}{ds} |g(s, X(s; t, x, v), V(s; t, x, v))|^2 = 2(gG)(s, X(s; t, x, v), V(s; t, x, v)).
\]

For \((x, v)\) with dist \((x, \partial \Omega) < \varepsilon^4\) and \(n(x) \cdot v < -\varepsilon\), taking integration \(s \in [t, t + \varepsilon] \) along the trajectory,

\[
|g(t, x, v)|^2 = |g(t + \varepsilon, X(t + \varepsilon), V(t + \varepsilon))|^2 - 2 \int_{t}^{t+\varepsilon} 2(gG)(s, X(s), V(s))ds.
\]

From (5.8), dist \((X(t + \varepsilon), \partial \Omega) \geq \varepsilon^3/2\). Using (5.10) and the one-to-one property of \((x, v) \mapsto (X(s), V(s)) \) for any fixed \(|s| \leq \varepsilon\), we take an integration over dist \((x, \partial \Omega) < \varepsilon^4\) and \(n(x) \cdot v < -\varepsilon\) and conclude that

\[
\|1_{\text{dist}(x, \partial \Omega) < \varepsilon^4} 1_{n(x) \cdot v < -\varepsilon} g(t)\|_2^2 = \|1_{\text{dist}(x, \partial \Omega) > \varepsilon^3/2} g(t + \varepsilon)\|_2^2
\]

\[
+ \int_{t}^{t+\varepsilon} \int_{\Omega \times \mathbb{R}^3} |g(s)G(s)|.
\]

(5.11)

For the other case, dist \((x, \partial \Omega) < \varepsilon^4\) and \(n(x) \cdot v > \varepsilon\), we repeat the same argument but change \(\varepsilon\) to \(-\varepsilon\) and conclude that

\[
\|1_{\text{dist}(x, \partial \Omega) < \varepsilon^4} 1_{n(x) \cdot v > \varepsilon} g(t)\|_2^2 = \|1_{\text{dist}(x, \partial \Omega) > \varepsilon^3/2} g(t - \varepsilon)\|_2^2
\]

\[
+ \int_{t-\varepsilon}^{t} \int_{\Omega \times \mathbb{R}^3} |g(s)G(s)|.
\]

(5.12)

Finally by \(\int_{\varepsilon}^{1-\varepsilon} (5.11) \, dt\) and \(\int_{\varepsilon}^{1-\varepsilon} (5.12) \, dt\), we conclude (5.7). \(\square\)

Proof of Proposition 1.4. First, it is easy to check that equation (1.38) is translation invariant in time; i.e., \(\tilde{f}(t, x, v) := f(t + c, x, v)\) also solves the same equation for any \(c\). Note that this is not true for the time-dependent potential case anymore, unless the potential is periodic in time. Therefore it suffices to prove coercivity for finite time interval \(t \in [0, 1]\) and so we claim (1.39) for \(N = 0\).

Step 1. Assume that Proposition 1.4 is wrong. This means for any \(m \gg 1\) there exists a solution \(f^m\) to (1.38) satisfying the specular reflection BC that solves

\[
\partial_t f^m + v \cdot \nabla_x f^m - \nabla_x \Phi \cdot \nabla_v f^m + e^{-\Phi} L f^m = 0 \quad \text{for} \ t \in [0, 1]
\]

(5.13)
and satisfies
\[
\left(5.14\right) \quad \int_0^1 \| P f_m(t) \|^2_2 \, dt \geq m \int_0^1 \| (I - P) f_m(t) \|^2_2 \, dt.
\]

We define the normalized form of \(f^m \) by
\[
\left(5.15\right) \quad Z^m(t, x, v) := \frac{f^m(t, x, v)}{\sqrt{\int_0^1 \| P f^m(t) \|^2_2 \, dt}}.
\]

Then \(Z^m \) solves
\[
\left(5.16\right) \quad \partial_t Z^m + v \cdot \nabla_x Z^m - \nabla_x \Phi \cdot \nabla_v Z^m + e^{-\Phi} L Z^m = 0,
\]
\[
\left(5.17\right) \quad Z^m(t, x, v) = Z^m(t, x, R_x v) \quad \forall x \in \partial \Omega,
\]
and
\[
\left(5.18\right) \quad \frac{1}{m} \geq \int_0^1 \| (I - P) Z^m(t) \|^2_2 \, dt.
\]

\textbf{Step 2. We claim that}
\[
\left(5.19\right) \quad \sup_m \sup_{0 \leq t \leq 1} \| Z^m(t) \|^2_2 < \infty.
\]

From \(\left(5.16\right) \), for \(0 \leq t \leq 1 \),
\[
\left(5.20\right) \quad \| Z^m(t) \|^2_2 + \int_0^t e^{-\Phi} (L Z^m, Z^m) = \| Z^m(0) \|^2_2.
\]

From the nonnegativity of \(L \),
\[
\left(5.21\right) \quad \sup_{0 \leq t \leq 1} \| Z^m(t) \|^2_2 \leq \| Z^m(0) \|^2_2.
\]

On the other hand, by integration \(\int_0^1 \left(5.20\right) \, dt \) and utilizing \(\left(5.18\right) \) and \(\left(5.15\right) \),
\[
\left(5.22\right) \quad \| Z^m(0) \|^2_2 \lesssim \int_0^1 \| Z^m \|^2_2 + \int_0^1 \| (I - P) Z^m \|^2_2 \lesssim 1 + \frac{1}{m}.
\]

Therefore, we prove the claim \(\left(5.19\right) \) from \(\left(5.21\right) \) and \(\left(5.22\right) \).

\textbf{Step 3. Therefore, the sequence \(\{ Z^m \}_{m \geq 1} \) is uniformly bounded from above by \(\sup_{0 \leq t \leq 1} \| g(t) \|^2_2 \, dt \). By the weak compactness of \(L^2 \)-space, there exists a weak limit \(Z \) such that}
\[
\left(5.23\right) \quad Z^m \rightharpoonup Z \quad \text{in} \ L^\infty([0, 1]; L^2_v(\Omega \times \mathbb{R}^3)) \cap L^2([0, 1]; L^2_v(\Omega \times \mathbb{R}^3)).
\]

Therefore, in the sense of distributions, \(Z \) solves
\[
\left(5.24\right) \quad \partial_t Z + v \cdot \nabla_x Z - \nabla_x \Phi \cdot \nabla_v Z = 0.
\]
Now we consider the limit of the linear conservation laws. Note that, taking a weak limit $Z^m \to Z$ in $L^\infty_t L^2_{x,v}$ of (5.23) and using (5.1), (5.2), and (5.15), we deduce linear conservation laws, for almost every $t \in [0,1]$,

$$\int_\Omega Z(t) \sqrt{\mu_E} = 0, \quad \int_\Omega Z(t) \left(\frac{|v|^2}{2} + \Phi \right) \sqrt{\mu_E} = 0.$$

In the case that both (1.7) and (1.8) hold, from (5.3),

$$\int_\Omega (x-x^0) \times \sigma \cdot v Z(t) \sqrt{\mu_E} = 0.$$

On the other hand, since

$$\mathbf{P} Z^m \to \mathbf{P} Z \quad \text{and} \quad (\mathbf{I} - \mathbf{P}) Z^m \to 0 \quad \text{in} \quad \int_0^1 \| \cdot \|^2_v \, dt,$$

we know that weak limit Z has only a hydrodynamic part, i.e.,

$$Z(t, x, v) = \{ a(t, x) + v \cdot b(x, v) + |v|^2 c(t, x) \} \sqrt{\mu_E},$$

and

$$\int_0^1 \| Z \|^2_v \, dt \leq \liminf_{m \to \infty} \int_0^1 \| Z^m \|^2_v \, dt \leq 1 + \frac{1}{m} \to 1.$$

Step 4. Let $\chi_\varepsilon : \Omega \to [0,1]$ be a smooth function such that $\chi_\varepsilon(x) = 1$ if $\text{dist}(x, \partial \Omega) > 2\varepsilon^4$ and $\chi_\varepsilon(x) = 0$ if $\text{dist}(x, \partial \Omega) < \varepsilon^4$. From (5.16),

$$[\partial_t + v \cdot \nabla_x] (\chi_\varepsilon Z^m) = \nabla_x \Phi \cdot \nabla_v (\chi_\varepsilon Z^m) + v \cdot \nabla_x \chi_\varepsilon Z^m - e^{-\Phi} L(\chi_\varepsilon Z^m).$$

From the standard average lemma in [8], $\chi_\varepsilon Z^m$ is compact, i.e.,

$$\chi_\varepsilon Z^m \to \chi_\varepsilon Z \quad \text{strongly in} \ L^2([0,1]; L^2_v(\Omega \times \mathbb{R}^3)).$$

Step 5. First we claim that

$$\int_{\varepsilon}^{1-\varepsilon} \| (Z^m(t, x, v) - Z(t, x, v)) 1_{\text{dist}(x, \partial \Omega) < \varepsilon^4} 1_{|n(x) \cdot v| > \varepsilon} \|^2_2 \lesssim \int_0^1 \| (Z^m(t, x, v) - Z(t, x, v)) 1_{\text{dist}(x, \partial \Omega) > \varepsilon^3/2} \|^2_2 + O \left(\frac{1}{\sqrt{m}} \right).$$

We consider the equation of $Z^m - Z$. By subtracting (5.16) from (5.24),

$$(Z^m - Z) + e^{-\Phi} L Z^m = 0.$$
Now we apply Lemma 5.1 to (5.31) by equating g and G with $Z^m - Z$ and the right-hand side of (5.31), respectively. Then
\[
\int_0^1 \|1_{\text{dist}(x, \partial \Omega) < \varepsilon}1_{|n(x) \cdot v| > \varepsilon}(Z^m - Z)(t)\|_2^2 \, dt \\
\lesssim \int_0^1 \|1_{\text{dist}(x, \partial \Omega) > \varepsilon^3/2}(Z^m - Z)(t)\|_2^2 \, dt \\
+ \int_0^1 \int_{\Omega \times \mathbb{R}^3} |Z^m - Z| |\{v\}| |(I - P)Z^m|.
\]
Using Hölder’s inequality, we bound the last line of the above estimate by
\[
\sqrt{m} \int_0^1 \|(I - P)Z^m\|_v^2 + \frac{1}{\sqrt{m}} \int_0^1 \|Z^m\|_v^2 + \|Z\|_v^2.
\]
By (5.19) and (5.18), we conclude (5.30).
On the other hand, from (5.18), (5.27), and (5.19),
\[
\int_0^1 \| (Z^m - Z) 1_{|n(x) \cdot v| \leq \varepsilon} \|_2^2 \\
\leq \int_0^1 \| (I - P)Z^m \|_v^2 + O(\varepsilon) \int_0^1 \|PZ^m\|_2^2 + \|PZ\|_2^2 \\
\leq \frac{1}{m} + O(\varepsilon).
\]

Step 6. For given $\varepsilon > 0$, we can choose $m \gg 1$ such that
\[
\int_0^1 \int_{\Omega \times \mathbb{R}^3} |Z^m - Z|^2 \\
\leq \int_0^1 \int_{\Omega \times \mathbb{R}^3} + \int_{\varepsilon}^1 \int_{\Omega \times \mathbb{R}^3} + \int_0^1 \int_{\Omega \times \mathbb{R}^3} \\
+ \int_0^1 \int_{\Omega \times \mathbb{R}^3} \cap \{|n(x) \cdot v| < \varepsilon \text{ or } |v| \geq \varepsilon^{-1}\} \\
+ \int_0^1 \int_{\Omega \times \mathbb{R}^3} \cap \{|n(x) \cdot v| \geq \varepsilon \text{ and } |v| \leq \varepsilon^{-1}\}
\leq C \varepsilon,
\]
where we have used (5.19), (5.29), (5.30), and (5.32). Therefore, we conclude that $Z^m \to Z$ strongly in $L^2([0, 1] \times \Omega \times \mathbb{R}^3)$ and hence
\[
\int_0^1 \|Z\|_2^2 = 1.
\]

Step 7. We consider the boundary condition of Z. Fix a small constant $\delta > 0$. In order to control Z in $\{(x, v) \in \gamma_\pm : |n(x) \cdot v| < \delta\}$, we use smooth functions $\phi_{\pm}^\delta : \Omega \times \mathbb{R}^3 \to [0, 1]$ where $\phi_{\pm}^\delta \equiv 1$ on $\{(x, v) \in \gamma_\pm : |n(x) \cdot v| < \delta\}$ and $\phi_{\pm}^\delta \equiv 0$ on $\{(x, v) \in \gamma_\pm : |n(x) \cdot v| > 2\delta\}$, respectively.
From the weak formulation, we have \((\partial_t + v \cdot \nabla_x - \nabla_x \Phi \cdot \nabla_v)|Z|^2 = 0\). Testing it with \(\phi_{\pm}^\delta\), we obtain

\[
\int_0^1 \int_{\gamma} |Z|^2 \phi_{\pm}^\delta (n \cdot v) = - \int_{\Omega \times \mathbb{R}^3} \int_{\Omega \times \mathbb{R}^3} \phi_{\pm}^\delta |Z(1)|^2 + \int_{\Omega \times \mathbb{R}^3} \phi_{\pm}^\delta |Z(0)|^2 + \int_0^1 \int_{\Omega \times \mathbb{R}^3} -v \cdot \nabla_x \phi_{\pm}^\delta |Z|^2 + \nabla_x \Phi \cdot \nabla_v \phi_{\pm}^\delta |Z|).
\]

From (5.27) and (5.28), we deduce that \(Z \in L^2(\{(x, v) \in \gamma_\pm : |n(x) \cdot v| < \delta\})\), and \(a, b, c \in L^2([0, 1] \times \partial \Omega)\) such that

\[
(5.34) \quad \int_0^1 \int_{\partial \Omega} |a|^2 + |b|^2 + |c|^2 \leq \int_0^1 \|Z\|_v^2 + \sup_{0 \leq t \leq 1} \|Z(t)\|_2^2.
\]

Now we claim that

\[
(5.35) \quad Z(t, x, v) = Z(t, x, R_x v) \quad \text{almost every } [\delta, 1 - \delta] \times \gamma_-.\]

Let \(\phi : \bar{\Omega} \times \mathbb{R}^3 \to \mathbb{R}\) be a smooth bounded function with strong decay in \(v\). Moreover, we assume that this test function is an even function in \(\phi(n(x) \cdot v)\) at the boundary. Testing (5.24) with such a function \(\phi\), we have

\[
(5.36) \quad \int_0^1 \int_{\gamma} Z\phi(n(x) \cdot v) = - \int_{\Omega \times \mathbb{R}^3} \int_{\Omega \times \mathbb{R}^3} (Z(1) - Z(0))\phi + \int_0^1 \int_{\Omega \times \mathbb{R}^3} \int_{\Omega \times \mathbb{R}^3} Z(-v \cdot \nabla_x \phi + \nabla_x \Phi \cdot \nabla_v \phi).
\]

On the other hand, employing the same test function, from (5.16) and (5.17), we conclude that

\[
0 = - \int_{\Omega \times \mathbb{R}^3} (Z^m(1) - Z^m(0))\phi + \int_0^1 \int_{\Omega \times \mathbb{R}^3} \int_{\Omega \times \mathbb{R}^3} Z^m(-v \cdot \nabla_x \phi + \nabla_x \Phi \cdot \nabla_v \phi) + \int_0^1 \int_{\Omega \times \mathbb{R}^3} e^\Phi L Z^m \phi.
\]

By passing to the limit \(m \to \infty\), from (5.27) and (5.18), we realize that the right-hand side of (5.36) equals 0. Therefore, we conclude that

\[
(5.37) \quad \int_0^1 \int_{\gamma} Z\phi(n(x) \cdot v) = 0.
\]

for any smooth function \(\phi\) that is even in \(n(x) \cdot v\) at the boundary. This proves (5.35).

Finally, combining (5.35), (5.27), and (5.34), we prove (1.40).

Step 8. We claim (1.42). We consider the system of \(a, b, c\) that is obtained by plugging (5.27) in (5.24). From (16), in the sense of distributions, they solve (1.41).
The first equation of (1.41) implies that c is only a function of t, i.e., $c = c(t)$. From the first three equations of (1.41) we can get

$$(5.38) \quad b(t, x) = -\partial_t c(t) x + \omega(t) \times x + m(t).$$

The proof of (5.38) is based on direct computations. (See lemma 12 in [12] for the details.)

From the second equation of (1.41), we obtain

$$-3c'(t)|\Omega| = \int_{\partial\Omega} b \cdot n = 0.$$

Therefore, $c'(t) = 0$, $c(t) = c_0$, and $b = \omega(t) \times x + m(t)$. We conclude

$$(5.39) \quad c(t, x) = c_0.$$

We split into two cases: $\omega = 0$ and $\omega \neq 0$.

Case of $\omega = 0$. If $\omega = 0$, then $b(t) = m(t)$. From (1.40) we deduce that

$$(5.40) \quad b(t) \equiv m(t) \equiv 0.$$

Then from the last equation of (1.41), $a = a(x)$. From the fourth equation of (1.41), for some constant C, we obtain that

$$(5.41) \quad a(t, x) = 2c_0 \Phi(x) + C.$$

Plugging (5.39) and (5.41) into the conservation laws (5.25),

$$0 = \iiint (2c_0 \Phi(x) + C + c_0 |v|^2) \mu_E$$

$$= \iiint (2c_0 \Phi(x) + C + c_0 |v|^2) \left(\frac{|v|^2}{2} + \Phi(x)\right) \mu_E.$$

From the direct computations, we deduce $c_0 = 0 = C$ and hence (1.42).

Case of $\omega \neq 0$. From (1.40), at the boundary,

$$b(t, x) \cdot n(x) = (\omega(t) \times x + m(t)) \cdot n(x) = 0.$$

Since $m(t)$ is a fixed vector for given t, we decompose $m(t)$ into the parallel and orthogonal components to $\omega(t)$ as

$$m(t) = \alpha(t) \omega(t) - \omega(t) \times x_0(t).$$

Then

$$b(t, x) \cdot n(x)$$

$$= (\omega(t) \times x + m(t)) \cdot n(x)$$

$$(5.42) = (\omega(t) \times (x - x_0(t))) \cdot n(x) + \alpha(t) \omega(t) \cdot n(x) = 0 \quad \forall x \in \partial\Omega.$$
Choose \(t \) with \(\varpi(t) \neq 0 \). We can pick \(x' \in \partial \Omega \) such that \(\varpi(t) \parallel n(x') \). Then the first term of the right-hand side in (5.42) is 0. Hence we deduce, from (5.38) and (5.39), that

\[
(5.43) \quad \alpha(t) = 0 \quad \text{and} \quad b(t, x) = \varpi(t) \times (x - x^0(t)).
\]

This yields

\[
(5.44) \quad (\varpi(t) \times (x - x_0(t))) \cdot n(x) = 0 \quad \forall x \in \partial \Omega.
\]

The equality (5.44) implies that \(\varpi(t) \) is axis symmetric with the origin \(x_0(t) \) and the axis \(\varpi(t) \). From (5.26) and (5.43),

\[
0 = \iint_{\Omega} |\varpi \times (x - x_0(t)) \cdot v|^2 \mu e^{-\Phi} \, dx \, dv.
\]

Therefore, we conclude that \(\varpi(t) \equiv 0 \) for all \(t \). This proves \(b(t, x) \equiv 0 \). Then we follow the argument for the case of \(\varpi = 0 \) and deduce (1.42).

Step 9. Finally, we deduce a contradiction from (5.33) and (1.42). Hence we prove the theorem. \(\square \)

Once such a coercivity is proven, we can directly deduce an exponential decay.

COROLLARY 5.2. Assume the same conditions in Proposition 1.4. Then there exists \(\lambda > 0 \) such that a solution of (1.38) satisfies

\[
(5.45) \quad \sup_{0 \leq t} e^{\lambda t} \| f(t) \|^2 \lesssim \| f_0 \|^2.
\]

PROOF OF COROLLARY 5.2. Assume that \(0 \leq t \leq 1 \). From the energy estimate of (1.38) in a time interval \([0, N] \),

\[
(5.46) \quad \| f(N) \|^2 + \int_0^N \iint_{\Omega \times \mathbb{R}^3} e^{-\Phi} f L f \leq \| f(0) \|^2.
\]

From (1.38), for any \(\lambda > 0 \)

\[
(5.47) \quad [\partial_t + v \cdot \nabla_x - \nabla_x \Phi \cdot \nabla_v] (e^{\lambda t} f) + e^{-\Phi} L (e^{\lambda t} f) = \lambda e^{\lambda t} f.
\]

By the energy estimate,

\[
(5.48) \quad \| e^{\lambda t} f(N) \|^2 \geq \int_0^N \iint_{\Omega \times \mathbb{R}^3} e^{-\Phi} e^{2\lambda s} f L f - \lambda \int_0^N \iint_{\Omega \times \mathbb{R}^3} |e^{\lambda s} f(s)|^2 \leq \| f(0) \|^2.
\]
First, we consider (I) in (5.48). From (1.36), the term (I) in (5.48) is bounded below by

\[
(I) \geq \delta L \int_0^N \int_{\Omega} e^{-\Phi} \int_{\mathbb{R}^3} \langle v \rangle |e^{\lambda s}(I - P)f|^2 \\
\geq \delta L e^{-\|\Phi\|_\infty} \int_0^N \|e^{\lambda s} (I - P)f\|_v^2.
\]

By time translation, we apply (1.39) to obtain

\[
\geq \frac{\delta L e^{-\|\Phi\|_\infty}}{2} \int_0^N \|e^{\lambda s}(I - P)f\|_v^2 + \frac{\delta L e^{-\|\Phi\|_\infty}}{2C} \int_0^N \|e^{\lambda s} Pf\|_f^2 \\
\geq \frac{\delta L e^{-\|\Phi\|_\infty}}{2C} \int_0^N \|e^{\lambda s} f\|_f^2.
\]

Therefore, we derive

\[
e^{\lambda N} \|f(N)\|_f^2 + \left(\frac{\delta L e^{-\|\Phi\|_\infty}}{2C} - \lambda\right) \int_0^N \|e^{\lambda s} f\|_f^2 \leq \|f(0)\|_f^2.
\]

On the other hand, from the energy estimate of (1.38) in a time interval \([N, t]\), using (1.36), we have

\[
\|f(t)\|_f^2 \leq \|f(N)\|_f^2.
\]

Finally, choosing \(\lambda \ll 1\), from (5.49) and (5.50), we conclude that

\[
e^{\lambda t} \|f(t)\|_f^2 = e^{\lambda (t-N)} e^{\lambda N} \|f(N)\|_f^2 \leq 2 \|f(0)\|_f^2
\]

and prove (5.45). \(\square\)

Proof of Theorem 1.2. We sketch the proof of the nonlinear \(L^\infty\)-decay. Note that we have shown a local existence result in (4.1) and the global stability theorem, Theorem 1.1, so we perform an exponential decaying a priori estimate for a nonlinear problem to finish proof.

Note that for small \(\|\Phi\|_{C^1} = \delta \Phi \ll 1\), we have

\[
e^{-\Psi} v(v) + \frac{1}{w} \nabla \Phi \cdot \nabla v \geq \frac{1}{2} e^{-\delta \Phi} v(v).
\]

This inequality implies

\[
e^{-\int_s^t e^{-\Phi(X)} v(V) d\tau - \int_s^t \frac{1}{w} \nabla \Phi \cdot \nabla v d\tau} \leq e^{-\frac{1}{2} e^{-\delta \Phi} v(v)(t-s)} \\
:= e^{-\frac{1}{2} \psi (v)(t-s)},
\]

(5.52)
where we defined $v_\Phi(v) := e^{-\Phi v(v)}$. Then, similar to the proof of Theorem 1.1

\[h(t, x, v) \]

\[= E(v, t, T)h(T) + \int_T^t E(v, s) e^{-\Phi \int_u^s k_w(u, v) E(u, s, T)h(T) du ds} \]

\[+ \int_T^t E(v, s) e^{-\Phi \int_u^s k_w(u, v) E(u, s, s') e^{-\Phi \int_u^s \hat{\Phi} (X(s')) du' ds'}} ds \]

\[+ \int_T^t E(v, s) e^{-\Phi \int_u^s k_w(u, v) E(u, s, s') e^{-\Phi \int_u^s \hat{\Phi} (X(s')) du' ds'}} ds \]

\[\times \int_{s'}^s \int_{u'}^u k_w(u', u) E(u', s, X(s'; X(s', s), s, s), u) du'' ds'' du ds' ds , \]

where we defined,

\[E(v, s) := e^{-\int_s^T e^{-\Phi \int_u^s V(s,t,x,u)} du} - \int_s^T e^{-\int_u^s \frac{1}{2} \nabla_x \Phi (X(s'; t, x, u)) - \nabla_v w(V(s', t, x, u))}. \]

Except for (IV), the rest of the terms are clearly bounded by

\[e^{-\frac{1}{2}v_\Phi(0)(T-t)} \| h(T) \|_{\infty}. \]

The estimate for (IV) is obtained by a change of variable similar to (4.29) in the proof of Theorem 1.1. Using definition (4.23) and performing a change of variable, we obtain

\[(IV) \lesssim C_{N, \Omega, \Phi, \beta} \int_T^t \int_{\Omega''} \int_{\Omega''} h(s'', X''(s''), u'', X''(s''), u') du'' dX'' ds'' \]

\[+ C_{N, \Omega, \Phi, \delta'} \sup_{s \in [T, t]} \| h(s) \|_{\infty} \]

\[\lesssim C_{N, \Omega, \Phi, \beta} \int_T^t \| f(s) \|_{L^2_{x,v}} ds + C_{N, \Omega, \Phi, \delta'} \sup_{s \in [T, t]} \| h(s) \|_{\infty} . \]

Hence

\[\sup_{s \in [T, t]} \| h(s) \|_{\infty} \lesssim C_{N, \Omega, \Phi, \beta} e^{-\frac{1}{2}v_\Phi(0)(T-t)} \| h(T) \|_{\infty} + \int_T^t \| f(s) \|_{2} ds. \]

We assume that $m \leq t < m + 1$ and define $\lambda^* := \min\{\frac{v_\Phi(0)}{2}, \lambda\}$, where λ is some constant from Corollary 5.2. We use (5.55) repeatedly for each time step,
\[(5.56) \]
\[\|h(t)\|_\infty \lesssim N, \Omega, \Phi, \beta e^{-m_v \frac{\nu(h(0))}{2}} \|h(0)\|_\infty \]
\[+ \sum_{k=0}^{m-1} e^{-k \frac{\nu(h(0))}{2}} \int_{m-1-k}^m \|f(s)\| ds \]
\[\lesssim N, \Omega, \Phi, \beta e^{-m_v \frac{\nu(h(0))}{2}} \|h(0)\|_\infty \]
\[+ \sum_{k=0}^{m-1} e^{-k \frac{\nu(h(0))}{2}} \int_{m-1-k}^m e^{-\lambda (m-1-k)} \|f(0)\| ds \]
\[\leq C_{N, \Omega, \Phi, \beta} e^{-\frac{\lambda}{2} t \|h(0)\|_\infty}. \]

For a nonlinear problem, from Duhamel principle,
\[h := U(t)h_0 + \int_0^t U(t-s)w e^{-\frac{\Phi}{2} \Gamma \left(\frac{h}{w}, \frac{h}{w} \right)} (s) ds. \]
\[(5.57) \]
\[\|h(t)\|_\infty \lesssim N, \Omega, \Phi, \beta e^{-\frac{\lambda}{2} t \|h(0)\|_\infty} \]
\[+ \left\| \int_0^t U(t-s)w e^{-\frac{\Phi}{2} \Gamma \left(\frac{h}{w}, \frac{h}{w} \right)} (s) ds \right\|_\infty, \]

where \(U(t) \) is a linear solver for a linearized Boltzmann equation. Inspired by [12], we use Duhamel’s principle again, i.e.,
\[(5.58) \]
\[U(t-s) = G(t-s) + \int_s^t G(t-s_1) K_w U(s_1-s) ds_1. \]

where \(G(t) \) is linear solver for the system
\[\partial_t h + v \cdot \nabla_x h - \nabla_x \Phi \cdot \nabla v h + \frac{h}{w} \nabla \Phi \cdot \nabla v w + e^{-\Phi} v h = 0 \]
\[(5.59) \]
\[\text{and} \quad |G(t)h_0| \leq e^{-\frac{\lambda}{2} v(h(0)) |h_0|}. \]

For the last term in (5.57),
\[\left\| \int_0^t U(t-s)w e^{-\frac{\Phi}{2} \Gamma \left(\frac{h}{w}, \frac{h}{w} \right)} (s) ds \right\|_\infty \]
\[\leq \left\| \int_0^t G(t-s)w \Gamma \left(\frac{h}{w}, \frac{h}{w} \right) (s) ds \right\|_\infty \]
\[+ \left\| \int_0^t \int_s^t G(t-s_1) K_w U(s_1-s) w \Gamma \left(\frac{h}{w}, \frac{h}{w} \right) (s) ds_1 ds \right\|_\infty \]
\[\leq C_{\Phi} e^{-\frac{\lambda}{2} t} \left(\sup_{0 \leq s \leq \infty} e^{\frac{\lambda}{2} s} \left\| h(s) \right\|_\infty \right)^2. \]
Therefore, for sufficiently small $\|h_0\|_\infty \ll 1$, we have a uniform bound

$$\sup_{0 \leq t \leq \infty} e^{\frac{k}{2}t} \|h(t)\|_\infty \ll 1.$$

From this small uniform bound, we get global decay and uniqueness. Positivity was already proved in Theorem 4.1.

\[\square \]

Acknowledgments. The authors thank Yan Guo and Sergey Bolotin for stimulating discussions. They also thank Nikolai Chernov for kindly answering many questions about billiard theory. The authors thank the referee for the valuable comments. Their research is supported in part by NSF-DMS 1501031 and the University of Wisconsin-Madison Graduate School with funding from the Wisconsin Alumni Research Foundation. C. Kim thanks the KAIST Center for Mathematical Challenges for the kind hospitality.

Bibliography

[1] Briant, M.; Guo, Y. Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions. *J. Differential Equations* **261** (2016), no. 12, 7000–7079. doi:10.1016/j.jde.2016.09.014

[2] Cercignani, C.; Illner, R.; Pulvirenti, M. *The mathematical theory of dilute gases*. Applied Mathematical Sciences, 106. Springer, New York, 1994. doi:10.1007/978-1-4419-8524-8

[3] Chernov, N.; Markarian, R. *Chaotic billiards*. Mathematical Surveys and Monographs, 127. American Mathematical Society, Providence, R.I., 2006. doi:10.1090/surv/127

[4] Desvillettes, L.; Villani, C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. *Invent. Math.* **159** (2005), no. 2, 245–316. doi:10.1007/s00222-004-0389-9

[5] do Carmo, M. P. *Differential geometry of curves and surfaces*. Prentice-Hall, Englewood Cliffs, N.J., 1976.

[6] Esposito, R.; Guo, Y.; Kim, C.; Marra, R. Non-isothermal boundary in the Boltzmann theory and Fourier law. *Comm. Math. Phys.* **323** (2013), no. 1, 177–239. doi:10.1007/s00220-013-1766-2

[7] Esposito, R.; Guo, Y.; Kim, C.; Marra, R. Stationary solutions to the Boltzmann equation in the hydrodynamic limit. [arXiv:1502.05324](https://arxiv.org/abs/1502.05324)

[8] Glassey, R. T. *The Cauchy problem in kinetic theory*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1996. doi:10.1137/1.9781611971477

[9] Guillemin, V.; Pollack, A. *Differential topology*. Prentice-Hall, Englewood Cliffs, N.J., 1974.

[10] Guo, Y. The Vlasov-Poisson-Boltzmann system near Maxwellians. *Comm. Pure Appl. Math.* **55** (2002), no. 9, 1104–1135. doi:10.1002/cpa.10040

[11] Guo, Y. Bounded solutions for the Boltzmann equation. *Quart. Appl. Math.* **68** (2010), no. 1, 143–148. doi:10.1090/S0033-569X-09-01180-4

[12] Guo, Y. Decay and continuity of the Boltzmann equation in bounded domains. *Arch. Ration. Mech. Anal.* **197** (2010), no. 3, 713–809. doi:10.1007/s00205-009-0285-9

[13] Guo, Y.; Kim, C.; Tonon, D.; Trescases, A. BV-regularity of the Boltzmann equation in non-convex domains. *Arch. Ration. Mech. Anal.* **220** (2016), no. 3, 1045–1093. doi:10.1007/s00205-015-0948-9

[14] Guo, Y.; Kim, C.; Tonon, D.; Trescases, A. Regularity of the Boltzmann equation in convex domains. *Invent. Math.* **207** (2017), no. 1, 115–290. doi:10.1007/s00222-016-0670-8
Kim, C. Formation and propagation of discontinuity for Boltzmann equation in non-convex domains. *Comm. Math. Phys.* **308** (2011), no. 3, 641–701. [doi:10.1007/s00220-011-1355-1]

Kim, C. Boltzmann equation with a large potential in a periodic box. *Comm. Partial Differential Equations* **39** (2014), no. 8, 1393–1423. [doi:10.1080/03605302.2014.903278]

Kim, C.; Yun, S.-B. The Boltzmann equation near a rotational local Maxwellian. *SIAM J. Math. Anal.* **44** (2012), no. 4, 2560–2598. [doi:10.1137/11084981X]

Kuo, H.-W. Equilibrating effect of Maxwell-type boundary condition in highly rarefied gas. *J. Stat. Phys.* **161** (2015), no. 3, 743–800. [doi:10.1007/s10955-015-1355-1]

Mischler, S. On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. *Comm. Math. Phys.* **210** (2000), no. 2, 447–466. [doi:10.1007/s002200050787]

Shizuta, Y.; Asano, K. Global solutions of the Boltzmann equation in a bounded convex domain. *Proc. Japan Acad. Ser. A Math. Sci.* **53** (1977), no. 1, 1–5.

Ukai, S. On the existence of global solutions of mixed problem for non-linear Boltzmann equation. *Proc. Japan Acad.* **50** (1974), 179–184.

Chanwoo Kim
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
USA
E-mail: ckim@math.wisc.edu

Donghyun Lee
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
USA
E-mail: donghyun@math.wisc.edu

Received June 2016.