Intractable pleural effusion associated with superior vena cava and upper extremity deep vein thrombosis in a patient with advanced lung cancer

Kosuke Tsuruno a,*, Kazunori Tobino a,b, Mitsukuni Sakabe a, Masanobu Okahisa a, Saori Nishizawa a, Kohei Yoshimine a, Yuki Ko a, Hiromi Ide a

a Department of Respiratory Medicine, Iizuka Hospital, 3-83 Yoshiomachi, Iizuka, Fukuoka, 820-0018, Japan
b Department of Respiratory Medicine, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan

ARTICLE INFO

Keywords:
Pleural effusion
Upper extremity deep vein thrombosis
Pleuroperitoneal shunt

ABSTRACT

We herein report a case with intractable pleural effusion attributed to superior vena cava (SVC) and upper extremity deep vein thrombosis in a patient with lung cancer. A 62-year-old woman presented to our hospital with shortness of breath and bilateral upper extremity edema. One year ago, she was diagnosed with stage IVB lung adenocarcinoma with bilateral malignant pleural effusions. A genetic analysis of the cells from pleural effusion revealed an epidermal growth factor receptor (EGFR) point mutation at exon 21 (L858R); since then, she was treated with gefitinib. Although her lung cancer and metastatic lesions had markedly reduced and the tumor cells in the pleural effusion had disappeared, pleural effusion remained. Contrast-enhanced whole-body computed tomography (CT) revealed intravenous thrombosis extending from the SVC to the left brachiocephalic and subclavian veins, and her pleural effusion was attributed to this thrombosis. Anticoagulant therapy with intravenous heparin and oral warfarin was started, nevertheless, the thrombus remained and pleural effusion did not decrease. After the placement of a pleuroperitoneal shunt, her pleural effusion resolved and her symptoms improved. This case highlights the importance of awareness of SVC or upper extremity deep vein thrombosis as a differential diagnosis of intractable pleural effusion in lung cancer patients.

1. Introduction

Pleural effusion in patients with lung cancer is mostly induced by cancerous dissemination to the pleura, superior vena cava (SVC) syndrome, and heart failure. We herein report a case with intractable pleural effusion attributed to SVC and upper extremity deep vein thrombosis in a patient with lung cancer, who was successfully managed with a pleuroperitoneal shunt.

2. Case presentation

A 62-year-old woman presented to our hospital with shortness of breath and bilateral upper extremity edema. She had been diagnosed with stage IVB lung adenocarcinoma with bilateral malignant pleural effusion, and metastatic lesions in both lungs, the left supraclavicular lymph node, right temporal lobe, and right ribs, one year previously. A genetic analysis of cells from pleural effusion revealed an epidermal growth factor receptor (EGFR) point mutation at exon 21 (L858R); thereafter, she was treated with gefitinib. During this treatment, her lung cancer and metastatic lesions had markedly reduced except bilateral pleural effusion (Fig. 1). With the exception of uterine myoma her past medical history was unremarkable. She had a 40 pack-year smoking history.

Her initial vital signs were as follows: heart rate, 85 beats per minute; blood pressure, 110/60 mmHg; temperature, 37.4 °C (99.3 °F); respiratory rate, 24 breaths per minute and oxygen saturation, 94% on room air. A general physical examination revealed edema of the bilateral upper extremities. Both sides of the thorax were dull to percussion with decreased breath sounds. Bilateral digital clubbing was seen. The patient’s laboratory test values were as follows: white blood cell count, 8820/mm³ with a left shift; hemoglobin, 12.4 g/dl; platelets, 182,000/mm³; random serum glucose, 111 mg/dl; serum lactate dehydrogenase (LDH), 204 U/l; serum aspartate and alanine aminotransferase (AST and ALT), 18 U/l and 11 U/l; serum albumin, 3.1 g/dl serum blood urea nitrogen (BUN), 19 mg/dl; serum creatinine, 0.8 mg/dl; serum C-reactive protein (CRP), 0.24 mg/dl; and serum brain natriuretic peptide.
Respiratory Medicine Case Reports 30 (2020) 101094

2

The etiology of her intractable pleural effusion. Cases of pleural effusion attributable to central vein thrombosis have been previously reported but are rarely associated with cancer and are mostly due to central venous catheterization [1–4]. In 1994, Wright et al. reported the case of a patient on hemodialysis who had left pleural effusion and ipsilateral upper extremity edema attributable to partial obstruction of the left brachiocephalic vein [5]. The patient had a left-side arteriovenous fistula for hemodialysis, and the surgical closure of it led to the complete resolution of her pleural effusion. In 2001, Muthuswamy et al. reported a similar case involving a patient on hemodialysis [6]. The patient had undergone percutaneous angioplasty of the brachiocephalic vein stenosis, and her pleural effusion disappeared completely. In 2005, Ruiz et al. reported two similar cases involving patients on hemodialysis. One patient underwent percutaneous venous angioplasty and the other patient underwent ligation of the arteriovenous fistula, and the pleural effusion of both patients resolved completely [7]. The authors of these papers proposed a mechanism by which venous pressure increases locally due to the combination of brachiocephalic stenosis and the high venous flow from an ipsilaterally located arteriovenous fistula, impeding the drainage of the left superior intercostal vein into the left subclavian and brachiocephalic veins. This pathophysiology could have caused intractable left-sided pleural effusion in our patient.

The pathophysiological mechanism of pleural effusion due to SVC syndrome is considered to be almost the same. The reported frequency of pleural effusion in patients with SVC syndrome is 6–70% [8–11]. The pathophysiological mechanism of this condition is considered to be as follows: an obstruction of the SVC below the entry of the azygos vein arch causes counter-current blood flow of the azygos system, which leads to plasma leakage into the pleural cavity [12]; then, the hydrostatic pressure of the intercostal veins increases and reveals congenital anastomosis between the intercostal and pulmonary veins (right-left shunt); finally, an increase in the production of pleural effusion and the impairment of reabsorption by the lymphatic system co-occurs, and pleural effusion increases. Regarding the location of pleural effusion associated with SVC syndrome, Rice et al. reported that 23% were unilateral left-sided, 17% were unilateral right-sided, and 39% were bilateral [11]. Our patient had bilateral pleural effusion. The characteristics of pleural effusion of this condition have been reported as transudative [13–16]. On the other hand, Rice et al. reported that in all cases, the pleural effusion of their patients with SVC syndrome was exudate, and among the 17 effusion samples obtained from patients with malignancy, malignant cells were observed in 9 samples [11]. Therefore, they assumed that the pleural effusion cytology of some of the remainder were false-negatives, and that malignancy affected the characteristics of pleural effusion. In our patient, no malignant cells were observed in repeated tests, and the pleural effusion remained transudative. Anticoagulation and successful recanalization of thrombosis are essential in the treatment of thrombosis related pleural effusion. However, in our patient, the transcatheter therapeutic procedure was performed after it led to the complete resolution of her pleural effusion. In our patient, the transcatheter therapeutic procedure was ineffective in the treatment of thrombosis related pleural effusion.
abandoned because her thrombus was too extensive. A pleuroperitoneal shunt was placed instead of a pleurodesis to control her symptoms due to pleural effusion. We avoided pleurodesis because her right pleura was already adherent due to pleurisy and pleurodesis was thought to be associated with a high risk of developing a high degree of restricted ventilation. Pleuroperitoneal shunt insertion has been reported to be effective and safe for relieving symptoms of patients with intractable pleural effusion [17]. The previously reported frequency of complications associated with this procedure was 14.8%, including infection, tumor seeding into the peritoneal cavity, and shunt occlusion. Our patient was unable to receive second-line treatment because her ECOG-PS dropped from 2 to 4. Therefore, we determined that the benefits of this treatment outweighed the disadvantages.

In conclusion, this case highlights the importance of awareness of SVC or upper extremity deep vein thrombosis in the differential diagnosis of intractable pleural effusion in lung cancer patients.

Role of the study

Kosuke Tsuruno: Data collection, Interpretation of data, Writing of the manuscript.
Kazunori Tobino: Writing of the manuscript.
Mitsukuni Sakabe: Data collection.
Masanobu Okahisa: Data collection.
Saori Nishizawa: Interpretation of data.
Kohei Yoshimine: Interpretation of data.
Yuki Ko: Data collection.
Hiromi Ide: Data collection.

Declaration of competing interest

All the authors have no conflict of interest about this case report.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.rmcr.2020.101094.

References

[1] S.S. Kho, S.T. Tie, S.K. Chan, et al., Chylothorax and central vein thrombosis, an under-recognized association: a case series, Respir. Case Rep. 5 (2017), e00221.
[2] Y. Isik, U. Goktas, O. Binici, et al., Chylothorax developing due to thrombosis in the subclavian vein, Eur. J. Gen. Med. 10 (2013) 243–245.
[3] W.H. Warren, J.S. Altman, S.A. Gregory, Chylothorax secondary to obstruction of the superior vena cava: a complication of the LeVeen shunt, Thorax 45 (1990) 978–979.
[4] P.J. Van Veldhuizen, Taylor S. Chylothorax, A complication of a left subclavian vein thrombosis, Am. J. Clin. Oncol. 19 (1996) 99–101.
[5] R.S. Wright, W.J. Quinones-Baldrich, A.J. Anders, G.M. Danovitch, Pleural effusion associated with ipsilateral breast and arm edema as a complication of subclavian...
vein catheterization arteriovenous fistula formation for hemodialysis, Chest 106 (1994) 950–952.

[6] P. Muthuswamy, M. Alausa, B. Reilly, Clinical problem-solving. The effusion that would not go away, N. Engl. J. Med. 345 (2001) 756–759.

[7] E.M. Ruiz, E. Gutierrez, A. Martínez, et al., Unilateral pleural effusions associated with stenoses of left brachiocephalic veins in haemodialysis patients, Nephrol. Dial. Transplant. 20 (2005) 1257–1259.

[8] H.H. Hussey, S. Katz, W.M. Yater, The superior vena caval syndrome; report of thirty-five cases, Am. Heart J. 1 (1946) 1–26.

[9] J.M. Parish, R.F. Marschke, D.E. Dines, et al., Etiologic considerations in superior vena cava syndrome, Mayo Clin. Proc. 56 (1981) 407–413.

[10] D.R. Bell, R.L. Woods, J.A. Levi, Superior vena caval obstruction: a 10-year experience, Med. J. Aust. 145 (1986) 566–568.

[11] T.W. Rice, R.M. Rodriguez, R. Barnette, et al., Prevalence and characteristics of pleural effusions in superior vena cava syndrome, Respirology 11 (2006) 299–305.

[12] A. Lacout, P.-Y. Marcy, J. Thariat, et al., Radio-anatomy of the superior vena cava syndrome and therapeutic orientations, Diagn. Interv. Imaging 93 (2012) 569–577.

[13] J.T. Good Jr., J.B. Moore, A.A. Fowler, S.A. Sahn, Superior vena cava syndrome as a cause of pleural effusion, Am. Rev. Respir. Dis. 125 (1982) 246–247.

[14] R.W. Light, Transudative pleural effusions, in: R.W. Light (Ed.), Pleural Diseases, fourth ed., Lippincott Williams and Wilkins, Philadelphia, 2001, pp. 96–107.

[15] S.A. Sahn, J.E. Heffner, Pleural fluid analysis (Gary), in: R.W. Light, Y.C. Lee (Eds.), Textbook of Pleural Diseases, Arnold Publishers, London, 2003, pp. 191–209.

[16] N.A. Maskell, R.J. Butland, BTS guidelines for the investigation of a unilateral pleural effusion in adults, Thorax 58 (Suppl. 2) (2003) ii8–17.

[17] O. Gene, M. Petros, G. Ladas, et al., The long-term morbidity of pleuroperitoneal shunts in the management of recurrent malignant effusions, Eur. J. Cardio. Thorac. Surg. 18 (2000) 143–146.