Does carminic acid concentration affect feeding preference of *Hyperaspis trifurcata* (Coleoptera: Coccinellidae) for two cochineal prey?

¿Influye la concentración de ácido carmínico en la preferencia alimentaria de *Hyperaspis trifurcata* (Coleoptera: Coccinellidae) entre dos especies de presas?

César A. Trejo-Reyes¹; Esteban Rodríguez-Leyva²*; Jesús Méndez-Gallegos¹; Francisco J. Morales-Flores¹; Fabiola Villegas-Rodríguez³

¹Colegio de Postgraduados, Campus San Luis Potosí, Posgrado en Innovación en Manejo de Recursos Naturales, Iturbide núm. 73, Salinas de Hidalgo, San Luis Potosí, México. C. P. 78600.
²Colegio de Postgraduados, Posgrado en Fitosanidad, Entomología y Acarología, Montecillo, Texcoco, Estado de México, México. C. P. 56230.
³Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria. Soledad de Graciano Sánchez, San Luis Potosí, México. C.P. 78321

*Corresponding author: esteban@colpos.mx

Abstract

El ácido carmínico es una sustancia que probablemente funciona como protección ante la depredación. Su concentración difiere entre *Dactylopius coccus* y *D. opuntiae*. Entonces, planteamos la hipótesis de que un depredador específico, el coccinéido *Hyperaspis trifurcata*, tendría una preferencia alimentaria por la especie con menor concentración de ácido carmínico. Para comprobar esta hipótesis se realizaron pruebas de elección con ambas especies en condiciones de laboratorio (25 ± 2 °C, 50 ± 20 % HR, y 12:12 h L:O). En la primera prueba, el depredador tuvo opción de alimentarse de ninfas de primer instar de ambas especies de presas, y en el segundo de hembras grávidas. *H. trifurcata* consumió ninfas de primer instar de ambas especies, y no mostró preferencia por alguna de ellas. En ese estado de desarrollo la concentración de ácido carmínico entre especies fue similar. Sin embargo, *H. trifurcata* prefirió alimentarse de hembras grávidas de *D. opuntiae* con una concentración de ácido carmínico de 3 %, mientras que dicho contenido fue de 23 % en *D. coccus*. Nuestros resultados apoyan la hipótesis de que *H. trifurcata* prefiere alimentarse de *D. opuntiae* en lugar de *D. coccus* debido a la concentración de ácido carmínico, o de algunos de sus precursores metabólicos.

Resumen

Carminic acid is a substance that probably works as a protection against predation. Its concentration differs between *Dactylopius coccus* and *D. opuntiae*. Then, we hypothesized that one specific predator, the coccinellid *Hyperaspis trifurcata*, would have a feeding preference for the species with lower carminic acid concentration. To test this hypothesis, choice tests were conducted using both species under laboratory conditions (25 ± 2 °C, 50 ± 20 % RH, and 12:12 h L:O). In the first assay, first instar nymphs of both species were offered to females of *H. trifurcata*. In the second gravid females, *H. trifurcata* consumed nymphs of the two species. The coccinellid showed no preference in the first instar nymphs; in such developmental stage, the carminic acid did not show an important difference between species. However, *H. trifurcata* preferred to feed on gravid females of *D. opuntiae* having a carminic acid concentration of 3 %, while such content was 23 % in *D. coccus*. Our results support the hypothesis that *H. trifurcata* prefers to feed on *D. opuntiae* instead of *D. coccus* due to the concentration of carminic acid, or some of its metabolic precursors.
Introduction

Hyperaspis trifurcata (Coleoptera: Coccinellidae) is a specific predator of cochineal insects (Dobzhansky, 1941; Gilreath & Smith 1986; Vanegas-Rico et al., 2010, 2016). It is also one of the most frequent and abundant natural enemies of *Dactylopius opuntiae* (Hemiptera: Dactylopiidae) in the Southwest of the United States of America and Mexico (Portillo & Viguera, 1998, 2006; Vanegas-Rico, Loneli-Flores, Rodríguez-Leyva, Mora-Aguilera & Valde, 2010; Vanegas-Rico et al., 2016, 2017). On the other hand, *D. opuntiae* is considered the most destructive pest of *Opuntia ficus-indica* (Caryophyllales: Cactaceae) cultivated in Mexico, where plant, pest, and its natural enemies are native (Griffith, 2004; Portillo & Viguera, 2006; Chávez-Moreno, Tecante & Casas, 2009; Vanegas-Rico et al., 2010). It is also an introduced and destructive pest on the same plant in a dozen of countries, particularly in Brazil and the Mediterranean basin (Lopes, Brito, Albuquerque & Luna, 2009; Mazzeo, Nucifora, Russo, & Suma 2019; Ülgentürk & Hocaali, 2019; Mendel et al., 2020).

Hyperaspis trifurcata has been recorded predateing several species of wild *Dactylopius* in North America, and it has also been observed feeding on the cultivated cochineal, *D. coccus*. This cultivated cochineal is the species from which carminic acid is extracted for commercialization and use in the textile, food and cosmetic industry worldwide (Aldama-Aguilera, Llanderal-Cázares, Soto Hernández & Castillo-Márquez, 2005; Portillo & Viguera, 2006; Rodríguez-Leyva et al., 2010). Although *H. trifurcata* has been detected feeding on *D. coccus* in commercial greenhouses for dye production, Aldama-Aguilera et al. (2005) pointed out that this predator prefers to feed on *D. opuntiae* when compared to *D. coccus*. The observations of these authors resulted of interest because carminic acid concentration varies among *Dactylopius* species and their developmental stages. For example, adults of *D. opuntiae* contain 3-5% while these of *D. coccus* contains 19-25% (Aldama-Aguilera et al., 2005; Flores-Alatorre, Abrego-Reyes, Reyes-Esparza, Angeles & Alba-Hurtado, 2014). Although the possible role of carminic acid of *Dactylopius* in the defense against predators was suggested some years ago (Eisner, Nowicki, Goetz & Meiwald 1980; Eisner et al., 1994), there is no information about the preference that *H. trifurcata* might show between different prey species. We hypothesized that the specific predator *H. trifurcata* would prefer to feed on *Dactylopius* species with lower carminic acid concentration. So, this work aimed to demonstrate this hypothesis.

Introducción

Hyperaspis trifurcata (Coleoptera: Coccinellidae) es un depredador específico de dactílópidos (Dobzhansky, 1941; Gilreath & Smith 1988; Vanegas-Rico et al., 2010, 2016). También es uno de los enemigos naturales más frecuentes y abundantes de *Dactylopius opuntiae* (Hemiptera: Dactylopiidae) en el suroeste de los Estados Unidos de América y México (Portillo & Viguera, 1998, 2006; Vanegas-Rico, et al., 2010; Vanegas-Rico et al., 2016, 2017). Por otro lado, *D. opuntiae* es considerada la plaga más destructiva de *Opuntia ficus-indica* (Caryophyllales: Cactaceae) cultivada en México, donde la planta, la plaga y sus enemigos naturales son nativos (Griffith, 2004; Portillo & Viguera, 2006; Chávez-Moreno, Tecante & Casas, 2009; Vanegas-Rico et al., 2010). También es una plaga introducida y destructiva en una docena de países, especialmente en Brasil y la cuenca mediterránea (Lopes, Brito, Albuquerque & Luna, 2009; Mazzeo, Nucifora, Russo, & Suma 2019; Ülgentürk & Hocaali, 2019; Mendel et al., 2020).

Hyperaspis trifurcata depreda varias especies de *Dactylopius* silvestres en Norteamérica, y también se ha observado que se alimenta de la cochinilla cultivada, *D. coccus*. Esta cochinilla cultivada es la especie de la que se extrae el ácido carmínico para su comercialización y uso en la industria textil, alimentaria y cosmética en todo el mundo (Aldama-Aguilera, Llanderal-Cázares, Soto Hernández & Castillo-Márquez, 2005; Portillo & Viguera, 2006; Rodríguez-Leyva, Loneli-Flores, & Venegas-Rico, 2010). Aunque se ha detectado que *H. trifurcata* se alimenta de *D. coccus* en invernaderos comerciales para la producción de ácido carmínico, Aldama-Aguilera et al. (2005) señalaron que este depredador prefiere alimentarse de *D. opuntiae* en comparación con *D. coccus*. Las observaciones de estos autores resultaron interesantes ya que la concentración de ácido carmínico varía entre las especies de *Dactylopius* y sus etapas de desarrollo. Por ejemplo, los adultos de *D. opuntiae* contienen de 3 a 5 % mientras que los de *D. coccus* contienen de 19 a 25 % (Aldama-Aguilera et al., 2005; Flores-Alatorre, Abrego-Reyes, Reyes-Esparza, Angeles & Alba-Hurtado, 2014). Aunque el papel del ácido carmínico de *Dactylopius* en defensa contra depredadores fue sugerido hace algunos años (Eisner, Nowicki, Goetz & Meiwald 1980; Eisner et al., 1994), no hay información sobre la preferencia que *H. trifurcata* podría mostrar entre diferentes especies de presas. Nuestra hipótesis fue que el depredador específico *H. trifurcata* preferiría alimentarse de especies de *Dactylopius* con menor concentración de ácido carmínico. Por ello, en este trabajo se pretendió comprobar esta hipótesis.
Materials and methods

Insect rearing

Dactylopius opuntiae and *D. coccus* were reared on *O. ficus-indica* according to the method described as the “cut cladode technique” (Aldama-Aguilera & Llanderal-Cázares, 2003; Vanegas-Rico et al., 2016). The *H. trifurcata* rearing was established from adults collected from *O. ficus-indica* plants established in the Colegio de Postgraduados, Texcoco, Estado de México (19° 27' 31.59" N and 98° 54' 10.9764" O). A hundred collected specimens were kept in plastic containers (3.8 L) with perforations (10 × 5 cm) covered with screen fabric to allow ventilation. There, *D. opuntiae* colonies were introduced in the cages to provide food and a substrate for oviposition; during the rearing of *H. trifurcata*, a solution of water and honey (9:1 ratio) in a cotton swap was offered to the adults as a complementary diet. The cotton swap was replaced every other day. All the rearing of insects, prey, predator, and assays with *H. trifurcata* were conducted at 25 ± 2 °C, 50 ± 20 % RH, and 12:12 (L:D) h.

Carminic acid concentration and experimental protocol

The determination of carminic acid was carried out for two developmental stages for each *Dactylopius* species: first instar nymphs, and gravid females. We followed the method proposed by Méndez et al. (2004).

A Petri dish (Ø = 8 cm) with four perforations (Ø = 1 cm) in the circumference wall was used as an experimental area, and those perforations were covered with screen fabric to allow ventilation. In each assay, the development stages of *D. opuntiae* and *D. coccus* were placed first in the experimental arena, and then we introduced the predator. Prey species were placed together but separated 3 cm between groups. Each group of preys was also separated by 2 cm from the edge of the Petri dish. Once the two species of *Dactylopius* had been placed in the arena, the predator (*H. trifurcata*) was released on the opposite side at 6 cm from any group of prey. Due to the laboriousness in the handling of material, and the time and care necessary to correctly register the evidence of predation, this work was carried out first with first instar nymphs, and then with gravid females of the prey. *Hyperaspis trifurcata* females less than 24 h age were used in the assays, and each female was used only once. Before any assay, the *H. trifurcata* females were deprived of food for 24 h to facilitate searching behavior. Two choice tests were developed involving first instar nymphs and gravid adults of *D. coccus* versus *D. opuntiae*. Because walking of the first instar nymphs was given problems to the

Materiales y métodos

Cría de insectos

Dactylopius opuntiae y *D. coccus* se reproducieron sobre *O. ficus-indica* de acuerdo con el método descrito como “técnica de cladodios cortados” (Aldama-Aguilera & Llanderal-Cázares, 2003; Vanegas-Rico et al., 2016). La cría de *H. trifurcata* se estableció a partir de adultos recolectados de plantas de *O. ficus-indica* establecidas en el Colegio de Postgraduados, Texcoco, Estado de México (19° 27' 31.59" N y 98° 54' 10.9764" O). Un centenar de ejemplares recolectados se guardaron en recipientes de plástico (3.8 L) con perforaciones (10 x 5 cm) cubiertos con tela de malla para permitir la ventilación. En esas jaulas se introdujeron colonias de *D. opuntiae* para proporcionarles alimento y un sustrato para la oviposición; durante la reproducción de *H. trifurcata* se ofreció a los adultos, como dieta complementaria, una solución de agua y miel (proporción 9:1) en un cotonete, cabe mencionar que el cotonete se cambió cada dos días. Toda la reproducción de insectos, presas y depredadores y las pruebas con *H. trifurcata* se realizaron a 25 ± 2 °C, 50 ± 20 % de HR y 12:12 (L:D) h.

Concentración de ácido carmínico y protocolo experimental

La determinación de ácido carmínico se realizó para dos estados de desarrollo de cada especie de *Dactylopius*: ninjas de primer estadio y hembras grávidas. Se siguió el método propuesto por Méndez et al. (2004).

Como área experimental se utilizó una caja de Petri (Ø = 8 cm) con cuatro perforaciones (Ø = 1 cm) en la pared de la circunferencia, y dichas perforaciones se cubrieron con tela de malla para permitir la ventilación. En cada ensayo primero se colocaron los estados de desarrollo de *D. opuntiae* y *D. coccus* en la arena experimental, y luego se introdujo el depredador. Las especies de presas se colocaron juntas pero separadas 3 cm entre grupos. Cada grupo de presas se separó 2 cm del borde de la caja de Petri. Una vez colocadas las dos especies de *Dactylopius* en la arena, se colocó el depredador (*H. trifurcata*) en el lado opuesto a 6 cm de cualquier grupo de presas. Debido a la dificultad en la manipulación del material, el tiempo y cuidado necesarios para registrar correctamente la depredación, este trabajo se llevó a cabo primero con ninjas de primer estadio, y después con hembras grávidas de la presa. En los ensayos se utilizaron hembras de *H. trifurcata* de menos de 24 h de edad, y cada hembra se utilizó una sola vez. Antes de cualquier ensayo, las hembras de *H. trifurcata* fueron privadas de alimento durante 24 h para facilitar el comportamiento de búsqueda. Se desarrollaron dos pruebas de elección con ninjas de primer estadio y
evaluation (CATR, unpublished data), individuals at this developmental stage were frozen (-15.5°C) for 30 min before assays. The experimental arenas were randomly established inside the rearing chamber to prevent the influence of illumination on the response of *H. trifurcata*.

Choice assays

First instar nymph assay. In each experimental arena, 30 first instar nymphs of each *Dactylopius* species were placed, and subsequently, a female of *H. trifurcata* was released and allowed to feed for 30 min. A control treatment was included to determine any damage different from predation (an arena with nymphs but without a predator). After the feeding time, the number of nymphs consumed or not consumed of each species of *Dactylopius*, or the number of individuals with some damage of predation (bites) was carefully counted under a stereomicroscope. Five experimental arenas were established at the same time, and the complete experiment was repeated on six different occasions (i.e. 30 replicates in total).

Gravid females assay. Eight live females of each *Dactylopius* species were introduced in each arena. The predator was released and it remained foraging for 24 h; a control treatment was also established (an arena with females without the predator). After 24 h, the predator was removed, and the number of individuals with obvious damage due to predation (bites) was counted. Ten experimental arenas were established at the same time, and the complete experiment repeated on three different occasions (= 30 replicates in total).

Statistical analyses. The assays were analyzed as experiments under the basis of a completely randomized design; a Student’s t-test ($p \geq 0.05$) was used to determine the difference between means (SAS Institute, 2017). The data of control treatments were excluded from the statistical analysis because individuals of *Dactylopius* at both developmental stages did not show signs of damage or collapse in absence of the predator.

Results and discussion

The carminic acid concentration between *D. opuntiae* and *D. coccus* was significantly different (t = 0.019, df = 3, $P = 0.039$). First instar nymphs of *D. opuntiae* and *D. coccus* had the lowest concentration of carminic acid (1.7 and 1.9 %, respectively) and showed no differences between them. However, the carminic acid concentration was different among gravid females (t = 26.01, df = 8, $P < 0.001$), 3.1 % in *D. opuntiae*, and 23.5 % in *D. coccus*, respectively.

Hyperaspis trifurcata consumed first instar nymphs of both *Dactylopius* species and no significant difference was observed due to the consumption of one or another adults grávidas de *D. coccus* frente a *D. opuntiae*. Debido a que el caminar de las ninñas de primer instar resultó problemático para la evaluación (CATR, datos no publicados), los individuos en este estado de desarrollo fueron congelados (-15.5 °C) durante 30 minutos antes de los ensayos. Las arenas experimentales se establecieron al azar dentro de la cámara de cría para evitar la influencia de la iluminación en la respuesta de *H. trifurcata*.

Ensayos de elección

Ensayo con ninñas de primer estadio. En cada arena experimental se colocaron 30 ninñas de primer estadio de cada especie de *Dactylopius* y, posteriormente, se liberó una hembra de *H. trifurcata* y se le permitió alimentarse durante 30 minutos. Se incluyó un tratamiento testigo para determinar cualquier daño diferente a la depredación (una arena con ninñas pero sin depredador). Después del tiempo de alimentación, el número de ninñas consumidas o no consumidas de cada especie de *Dactylopius*, o el número de individuos con algún daño de depredación (mordeduras) fue cuidadosamente contado bajo un estereomicroscopio. Se establecieron cinco arenas experimentales al mismo tiempo, y el experimento completo se repitió en seis ocasiones diferentes (es decir, 30 repeticiones en total).

Ensayo con hembras grávidas. Ocho hembras vivas de cada especie de *Dactylopius* se introdujeron en cada arena. El depredador se liberó y permaneció forrajeando durante 24 h; también se estableció un tratamiento testigo (una arena con hembras sin depredador). Después de 24 h, el depredador se retiró y se contó el número de individuos con daños evidentes debidos a la depredación (mordeduras). Se establecieron diez arenas experimentales al mismo tiempo y el experimento completo se repitió en tres ocasiones diferentes (= 30 repeticiones en total).

Análisis estadísticos. Los ensayos se analizaron como experimentos con diseño completamente aleatorio; se utilizó la prueba t de Student ($p \geq 0.05$) para determinar la diferencia entre medias (SAS Institute, 2017). Los datos de los tratamientos testigo se excluyeron del análisis estadístico porque los individuos de *Dactylopius* en ambas etapas de desarrollo no mostraron signos de daño o colapso en ausencia de depredador.

Resultados y discusión

La concentración de ácido carmínico entre *D. opuntiae* y *D. coccus* fue significativamente diferente (t = 0.019, df = 3, $P = 0.039$). Las ninñas de primer estado de *D. opuntiae* y *D. coccus* tuvieron la menor concentración de ácido carmínico (1.7 y 1.9 %, respectivamente) y no mostraron diferencias entre ellas. Sin embargo, la concentración de ácido carmínico fue diferente entre
species (t = 0.48, df 29, P = 0.962) (Figure 1). Hyperaspis trifurcata consumed on average 11 nymphs regardless of the involved species. The maximum number of consumed nymphs along the exposure time (30 min) were 25 and 21 in the cases of D. opuntiae and D. coccus, respectively.

Hyperaspis trifurcata fed on the gravid females of both species of Dactylopius. Two coccinellid females, of 30 tested insects, did not consume prey. Notably, the predator species preferred feeding on D. opuntiae than on D. coccus (t = 2.45, df 29, P <0.001; Figure 2). During las hembras grávidas (t = 26.01, df = 8, P <0.001), 3.1 % en D. opuntiae y 23.5 % en D. coccus, respectivamente.

El depredador H. trifurcata consumió ninñas de primer estadio de ambas especies de Dactylopius y no se observaron diferencias significativas por el consumo de una u otra especie (t = 0.48, df 29, P = 0.962) (Figura 1). Hyperaspis trifurcata consumió en promedio 11 ninñas independientemente de la especie implicada. El número máximo de ninñas consumidas a lo largo del tiempo de exposición (30 min) fue de 25 y 21 en los casos de D. opuntiae y D. coccus, respectivamente.

Figure 1. Proportion of Dactylopius opuntiae or D. coccus first instar nymphs eaten by Hyperaspis trifurcata in the choice experiment.

Figura 1. Proporción de ninfas de primer estadio de Dactylopius opuntiae o D. coccus consumidas por Hyperaspis trifurcata en el experimento de elección.

Figure 2. Proportion of Dactylopius opuntiae or D. coccus female adults eaten by Hyperaspis trifurcata in the choice experiment.

Figura 2. Proporción de hembras adultas de Dactylopius opuntiae o D. coccus consumidas por Hyperaspis trifurcata en el experimento de elección.
the exposure time (24 h), *H. trifurcata* fed one to four *D. opuntiae* females.

Hyperaspis trifurcata preferred feeding on *D. opuntiae* instead of on *D. coccus* in the adult stage of the prey. This behavior can be attributed to the difference in carminic acid concentration, or to some metabolic substances which are precursor of it. The role of carminic acid as a physiological defense mechanism against predation (Eisner et al., 1980, 1994) seems to support the hypothesis, and it would be necessary to perform studies involving biology and demographic parameters of *H. trifurcata* as related to each *Dactylopius* species to confirm the effect of feeding on cochineal species with contrasting differences in carminic acid concentration. There are other factors on each *Dactylopius* species such as size, cuticle thickness, and wax production that may have some influence on the feeding preference; however, these issues were not considered in this work. It would be advisable to consider those factors in future studies to better understand the predator’s preference by several *Dactylopius* species.

Hyperaspis trifurcata is one of the specific and most frequent natural enemies of *D. opuntiae* and *D. confusus* in Mexico and the Southern of the United States of America (Gilreath & Smith, 1986; Vanegas-Rico et al., 2010, 2016; Cruz-Rodríguez, González-Machorro, Villegas, Rodríguez & Mejía, 2016). It was also demonstrated that it preferred to feed on *D. opuntiae* instead of *D. coccus*; this information supports continuous evaluation of its potential as a biological control agent of *D. opuntiae* in Mexico and the Mediterranean basin where *D. opuntiae* is a key pest.

Conclusion

Hyperaspis trifurcata preferred to feed on *D. opuntiae* gravid females instead of *D. coccus* due to the lower carminic acid concentration, or some of its metabolic precursors, in such a specific developmental stage.

Acknowledgments

We thank Dr. Marcos Soto and his laboratory staff for advising on the extraction of carminic acid. We also thank Dr. Celina Llanderal Cázares for the donation of *D. coccus* material. The first author is grateful to the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) for the full scholarship granted for his master’s studies.

References / Referencias

El depredador *H. trifurcata* se alimentó de hembras grávidas de ambas especies de *Dactylopius*. Dos hembras de coccinélidos, de los 30 insectos de la evaluación, no consumieron presas. Evidentemente el depredador prefirió alimentarse de *D. opuntiae* que de *D. coccus* (t = 2.45, df 29, P < 0.001; Figura 2). Durante el tiempo de exposición (24 h) *H. trifurcata* se alimentó de cuatro hembras de la especie *D. opuntiae*.

Hyperaspis trifurcata prefirió alimentarse de *D. opuntiae* en lugar de *D. coccus* en el estado adulto de la presa. Este comportamiento puede atribuirse a la diferencia en la concentración de ácido carmínico, o a algunas sustancias metabólicas precursoras del mismo. El papel del ácido carmínico como mecanismo fisiológico de defensa contra la depredación (Eisner et al., 1980, 1994) parece apoyar la hipótesis. Con esta información sería recomendable realizar estudios que incluyan parámetros biológicos y demográficos de *H. trifurcata*, en relación con cada especie de *Dactylopius*, para confirmar el efecto de la alimentación sobre especies de cochinilla con diferencias contrastantes en la concentración de ácido carmínico. Existen otros factores en cada especie de *Dactylopius*, como el tamaño, el grosor de la cutícula y la producción de cera, que pueden tener cierta influencia en la preferencia de alimentación; sin embargo, estos no se tomaron en cuenta en este estudio. Sería aconsejable considerar esos factores en futuros estudios para comprender mejor la preferencia de los depredadores por varias especies de *Dactylopius*.

Hyperaspis trifurcata es uno de los enemigos naturales específicos y más frecuentes de *D. opuntiae* y *D. confusus* en México y el sur de los Estados Unidos de América (Gilreath & Smith, 1988; Vanegas-Rico et al., 2010, 2016; Cruz-Rodríguez, González-Machorro, Villegas, Rodríguez & Mejía, 2016). También se demostró que prefería alimentarse de *D. opuntiae* en lugar de *D. coccus*; esta información respalda la evaluación continua de su potencial como agente de control biológico de *D. opuntiae* en México y la cuenca mediterránea donde *D. opuntiae* es una plaga clave.

Conclusión

Hyperaspis trifurcata prefirió alimentarse de hembras grávidas de *D. opuntiae* en lugar de *D. coccus* debido a la menor concentración de ácido carmínico, o de algunos de sus precursores metabólicos, en este estado de desarrollo.

Agradecimientos

Agradecemos al Dr. Marcos Soto y a su personal de laboratorio por el asesoramiento en la extracción de ácido carmínico. También agradecemos a la Dra. Celina
Aldama-Aguilera, C., & Llander-Alcázar, C. (2003). Cochineal: comparison of production methods in cut cladodes. *Agrociencia*, 37, 11-19. https://www.colpos.mx/agrociencia/Bimestral/2003/ene-feb/ene-feb-03.html

Aldama-Aguilera, C., Llander-Alcázar, C., Soto Hernández M., & Castillo-Márquez L. E. (2005). Cochineal (*Dactylopius coccus Costa*) production in prickly pear plants in the open and in microtunnel greenhouses. *Agrociencia*, 39, 167-171. https://www.colpos.mx/agrociencia/Bimestral/2005/mar-abr/mar-abr-05.html

Chávez-Moreno, C. K., Tecante, A., & Casas, A. (2009). The Opuntia (Cactaceae) and *Dactylopius* (Hemiptera: Dactylotidae) in Mexico: a historical perspective of use, interaction and distribution. *Biodiversity and Conservation*, 18, 3337-3355. DOI: 10.1007/s10531-009-9647-x

Cruz-Rodríguez, J. A., González-Machorro, E., Villegas, A., Rodríguez, M., Mejía, F. (2016). Autonomous biological control of *Dactylopius opuntiae* (Hemiptera: Dactylotidae) in a prickly pear plantation with ecological management. *Environmental Entomology*, 45, 642-648. DOI: 10.1093/ee/nw023

Dobzhansky, T. H. (1941). Beetles of genus Hyperaspis inhabiting the United States. *Smithsonian Miscellaneous Collections*, 101, 1-94. https://repository.si.edu/handle/10088/23721

Eisner, T., Nowicki, S., McCormick, J. L., Eisner, M., Hoebeke, E., & Meiwald, J. (1980). Defensive use of an acquired substance (carminic acid) by predaceous insect larvae. *Experientia*, 50, 610-615. DOI: 10.1007/bf01921733

Flores-Alatorre, H. L., Abrego-Reyes, V., Reyes-Esparza, J. A., Angeles, E., & Alba-Hurtado, F. (2014). Variation in the concentration of carminic acid produced by *Dactylopius coccus* (Hemiptera: Dactylotidae) at various maturation stages. *Journal of Economic Entomology*, 107, 1700-1705. DOI: 10.1603/ec13475

Gilreath, M. P. (2004). The origins of an important cactus crop, *Opuntia ficus-indica* (Cactaceae): new molecular evidence. *American Journal of Botany*, 91, 1915-1921. DOI: 10.3732/ajb.91.11.1915

Lopes, E. B., Brito, C. H., Albuquerque, I. C., & Luna, J. (2009). Desempenho do óleo de laranja no controle da cochinilhada-docarmim em palma gigante. *Engenharia Ambiental - Espírito Santo do Pinhal*, 6, 252-258.

Mazzeo, G., Nucifora, S., Russo, A., & Suma, P. (2019). *Dactylopius opuntiae*, a new prickly pear cactus pest in the Mediterranean: an overview. *Entomologia Experimentalis et Applicata*, 167, 59-72. DOI: 10.1111/eea.12756

Mendel, Z., Protasov, A., Vanegas-Rico, J. M., Lomeli-Flores, J. R., Pompeo, S., & Rodríguez-Leyva, E. (2020). Classical and fortuitous biological control of the prickly pear cochinule *Dactylopius opuntiae* in Israel. *Biological Control*, 142, 104157. DOI: 10.1016/j.biocontrol.2019.104157

Portillo, L., Viguera, A. L. (1998). Natural enemies of cochinule (*Dactylopius coccus Costa*): importance in México. *Journal of Professional Association Cactus*, 3, 43-49.

Portillo, L., Viguera, A. L. (2006). A review on the cochinule species in México, host and natural enemies. *Acta Horticulturae*, 728, 249-256. DOI: 10.17660/ActaHortic.2006.728.35

Rodríguez-Leyva, E., Komeli-Flores, J. R., & Vanegas-Rico J. M. (2016). Autonomous biological control of *Dactylopius opuntiae* (Cockrell) in a prickly pear plantation with ecological management. *Environmental Entomology*, 45, 642-648. DOI: 10.1093/ee/nw023

SAS Institute. (2017). SAS/OR 9.4 User’s Guide: Mathematical Programming Examples. SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

Ülgentürk, S., & Hocaali, S. S. (2019). Pest status of *Dactylopius opuntiae* (Cockrell) (Hemiptera: Dactylotidae) and new records of scale insects from northern Turkish Republic of Cyprus. *Munis Entomology & Zoology*, 14, 294-300.

Vanegas-Rico, J. M., Lomeli-Flores, J. R., Rodríguez-Leyva, E., Mora-Aguilera, G., & Valdez, J. M. (2010). Enemigos naturales de la grana cochinilla del nopal *Dactylopius coccus* Costa (Hemiptera: Dactylotidae), pp. 101-112. In: Portillo, L. y Viguera, A. L. (Eds.) Conocimiento y aprovechamiento de la grana cochinilla, Colegio de Postgraduados®, México.

Fin de la versión en español