Results. Analysis included 160 encounters: 70 UTIs, 66 SSTIs, and 24 LRTIs. Of 71 (44%) culture-positive infections, Enterobacteriaceae (61%) and Streptococcus spp. (15%) were most often identified. In total, 180 OAPs were issued – most commonly cefpodoxime (21%), cefadroxil (18%), and doxycycline (17%). Overall, 99 (62%) encounters were associated with a suboptimal discharge OAP. Of 138 suboptimal characteristics identified, suboptimal duration was most frequent (57%), specifically excessive duration (45%). Proportion of suboptimal OAPs and their underlying reasons are analyzed by syndrome in Figures 1 and 2, respectively. Miscalculation (39%), intentional selection of guideline-discordant duration (29%), and omission of antibiotic days (19%) were the most frequent reasons for suboptimal duration (Fig. 3).

Disclosures. No reported disclosures

Conclusion. The low prevalence of MDROs, coupled with the high overtreatment and low undertreatment rate suggests most patients hospitalized with CAP at our institution can receive an antibiotic regimen targeting standard CAP pathogens. Antibiotic stewardship intervention to shorten the duration of therapy should be considered. In addition to microbiology history and recent IV antibiotic exposure during hospitalization, further studies are needed to validate other patient characteristics at risk for MDROs.

Disclosures. All Authors: No reported disclosures

170. Antimicrobial Use Before and During COVID-19 – Data from 108 VA Facilities

Matthew B. Goetz, MD; Matthew B. Goetz, MD; Tina M. Willson, PhD; Vanessa W. Stevens, PhD; Christopher J. Graber, MD, MPH; Michael Rubin, MD, PhD; VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA; VA-CDC Practice-Based Research Network, Los Angeles, California; University of Utah, Salt Lake City, Utah; VA Salt Lake City Health Care System, Salt Lake City, Utah; VA Greater Los Angeles Healthcare System/UCLA, Los Angeles, California; VA Salt Lake City HCS, Salt Lake City, UT

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Increased antibiotic prescribing rates during the early phases of the COVID-19 pandemic have been widely reported. We previously reported that while both antibiotic days of therapy (DOT) and total days present (DP) declined in the first 5 months of 2020 at Veterans Affairs (VA) acute care facilities nationwide relative to the comparable period in 2019, antibiotic DOT per 1000 DP increased by 11.3%, largely reversing declines in VA antimicrobial utilization from 2015 – 2019. We now evaluate whether these changes in antibiotic use persisted throughout the COVID-19 pandemic.

Methods. Data on antibacterial use, patient days present, and COVID-19 care for acute inpatient care units in 108 VA level 1 and 2 facilities were extracted through the VA Informatics and Computing Infrastructure; level 3 facilities which provide limited acute inpatient services were excluded. DOT per 1000 DP were calculated and stratified by CDC-defined antibiotic classes.

Results. From 1/2020 to 2/2021, care for 34,996 COVID-19 patients accounted for 13% of all acute inpatient days of care in the VA. Following the onset of COVID-19 pandemic, with monthly total acute care antibiotic use increased from 533 DOT/1000 DP in 1/2020 to a peak of 583 DOT/1000 DP in 4/2020; during that month COVID-19 patients accounted for 13% of all DP (Figure). In subsequent months, total antibiotic use declined such that for the full year the change of antibiotic use from 2019 to 2020 (a decrease of 18 DOT/1000 DP) was similar to the rate of decline from 2015 to 2019 (mean decrease of 13 DOT/1000 DP; Table). The decreased DOT/1000 DP from 5/2020 to 2/2021 occurred even as the percentage of all DP due to COVID-19 peaked at 14 - 24% from 11/2020 to 2/2021.
Although rates of antibiotic use increased within the VA during the early phases of the COVID-19 pandemic, rates subsequently decreased to below previous baseline levels even as the proportion of COVID-19 DP spiked between 11/2020 and 02/2021. Although the degree to which the initial increase in antibiotic use is attributable to concerns of bacterial superinfection versus changes in case-mix (e.g., decreased elective admission) remains to be assessed, these data support the continued effectiveness of antimicrobial stewardship programs in the VA.

Disclosures. Matthew B. Goetz, MD. Nothing to disclose

171. A Multicenter Analysis of Inpatient Antibiotic Use During the 2015-2019 Influenza Season in the US: Untapped Opportunities for Antimicrobial Stewardship

Amine Amiche, PhD1; Heidi Kabler, MD1; Janet Weeks, PhD2; Kalvin Yu, MD2; Vikas Gupta, PharmD, BCPS2; Sanoji Pasteur, Dubai, Dubai, United Arab Emirates; Bection, Dickinson and Company, Franklin Lakes, New Jersey

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Inappropriate antibiotic (AB) use for viral respiratory illnesses remains widespread in the United States (US) with strong seasonal fluctuations. In contrast to outpatient AB use, the seasonality inpatient AB utilization (IAU) and its correlation with the influenza season are not well understood. We sought to describe trends, seasonality, and the association between IAU use and the 2015-2019 influenza season.

Methods. We used the BD Insights Research Database (Franklin Lakes, NJ USA) to identify IAU that were prescribed in patients ≥17 years old from up to 236 US acute care facilities from July 2015 to December 2019. We included the following AB categories: extended spectrum cephalosporins (ESCs), macrolides, β-lactam inhibitor combination (BLCIC), fluoroquinolones, carbapenems, glycopeptides, lipopeptide, tetracyclines, and others. We defined IAU use as days of therapy (DOT) per 1000 patient-days present. We used influenza laboratory data to identify facility-level positivity ratio per 100 tests. We used random effect models to estimate IAU: 1) trends overtime, 2) seasonality, and 3) association with influenza positivity rate.

Results. For IAU from 2015 to 2019, BLCICs, ESCs, and glycopeptides were the most used (average 91, 107, and 96 DOT/1000 days present, respectively). Visually, we observed strong seasonality that matches the influenza season for macrolide, ESC, and quinolone use (See Figure). Unadjusted bivariate results showed strong seasonality that matches the influenza season for macrolide, ESC, and quinolone use. In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). Unadjusted bivariate results showed strong seasonality that matches the influenza season for macrolide, ESC, and quinolone use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure). In the adjusted analysis, increased influenza positivity rate was associated with increased IAU use (See Figure).

Conclusion. Our study shows that IAU is on the rise for the ESC and BLIC classes. ESC and macrolide use was strongly correlated with influenza season. Monitoring influenza signals may provide more insights that can inform the interpretation of IAU trends and be incorporated into antimicrobial stewardship programs.

Disclosures. Amine Amiche, PhD, Sanoji Pasteur (Employee) Janet Weeks, PhD, Bection, Dickinson and Company (Employee) Kalvin Yu, MD, BD (Employee) Vikas Gupta, PharmD, BCPS, Bection, Dickinson and Company (Employee, Shareholder)

172. Inpatient Antibiotic Prescribing Patterns Using the WHO Access Watch and Reserve (AWaRe) Classification in Okinawa, Japan: A Point Prevalence Survey

Payal K. Patel, MD, MPH1; Naoyuki Satoh, MD, PhD2; Masashi Narita, MD3; Yoshiaki Cho, MD4; Yusuke Oshiro, MD5; Tomoharu Suzuki, MD5; Karen E. Fowler, BA1; M. Todd Greene, MPH, PhD2; Yauhara Tokuda, MD, MPH7; Keith S. Kaye, MD, MPH1; University of Michigan and the Ann Arbor VA Healthcare System, Ann Arbor, MI; Heartlife Hospital, Okinawa, Okinawa, Japan; Okinawa Chubu Hospital, okinawa, Okinawa, Japan; Okinawa Prefectural Nanbu Medical and Children's Medical Center, Okinawa, Okinawa, Japan; Nakagami Hospital, Okinawa, Okinawa, Japan; Urasoe General Hospital, Okinawa, Okinawa, Japan; Muribushi Project for Teaching Hospitals, Urasoe, Okinawa, Japan; University of Michigan Medical School, Ann Arbor, MI

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. Few studies have been done on inpatient antibiotic use in Japan and antibiotic stewardship programs with dedicated full-time equivalents are rare. We sought to better understand inpatient antibiotic use in Okinawa, Japan. We applied the World Health Organization (WHO) Access, Watch and Reserve (AWaRe) Classification to compare our findings to international literature. Access antibiotics are common front-line antibiotics, Watch antibiotics are high-priority antibiotics with toxicity or resistance concerns, and Reserve antibiotics are last-line treatments for multi-drug resistant infections.

Methods. A point prevalence study was conducted in five hospitals in Okinawa, Japan on Oct 1, 2020. Physicians conducted chart reviews of all patients receiving intravenous antibiotics. Type of antibiotic, reason for use, duration, and microbiologic data was collected. The primary aim was to evaluate the proportion of patients who received antibiotics on the assessment date; secondary aims were to categorize antibiotics according to indication, class and AWaRe classification. Descriptive statistics were used to derive the distribution of AWaRe Classifications and drug class.

Results. 1,728 unique patients were included and 504 (29%) received ≥1 antibiotic on the assessment date. A total of 559 antibiotics were used for 504 patients and 22.0% (n=112) were for prophylaxis. Of those receiving antibiotics for treatment (N=436), 385 (88.3%) patients had a documented infection source. 3,131 different antibiotic agents were used to derive the distribution of AWaRe Classifications and drug class.

Conclusion. 29% of inpatients in these 5 Okinawan hospitals were prescribed an antibiotic on the survey date. A majority of antibiotics used fall under the WHO AWaRe Watch classification which are antibiotics that may be more likely to cause resistance. Understanding appropriateness of antibiotics used in this population could inform antibiotic stewardship strategies and reduce antibiotic resistance.