A stochastic mass conserved reaction-diffusion equation
Perla El Kettani, Danielle Hilhorst, Kai Lee

To cite this version:
Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation.
Discrete and Continuous Dynamical Systems - Series A, 2018. hal-01825820

HAL Id: hal-01825820
https://hal.science/hal-01825820
Submitted on 29 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A stochastic mass conserved reaction-diffusion equation

Perla El Kettani*
Laboratoire de Mathématique, Analyse Numérique et EDP,
University of Paris-Sud, F-91405 Orsay Cedex, France

Danielle Hilhorst** and Kai Lee***
**CNRS and Laboratoire de Mathématique, Analyse Numérique et EDP,
University of Paris-Sud, F-91405 Orsay Cedex, France
***Graduate School of Mathematical Sciences,
University of Tokyo, Komaba, Tokyo 153-8914, Japan

Abstract

In this paper, we prove a well posedness result for an initial boundary value problem for a stochastic nonlocal reaction-diffusion equation with nonlinear diffusion together with a null-flux boundary condition in an open bounded domain of \(\mathbb{R}^n \) with a smooth boundary. We suppose that the additive noise is induced by a Q-Brownian motion.

1 Introduction

We study the problem

\[
\begin{cases}
\frac{\partial \varphi}{\partial t} = \text{div}(A(\nabla \varphi)) + f(\varphi) - \frac{1}{|D|} \int_D f(\varphi) dx + \frac{\partial W}{\partial t}, & x \in D, t \geq 0 \\
A(\nabla \varphi).\nu = 0, & \text{on } \partial D \times \mathbb{R}^+ \\
\varphi(x,0) = \varphi_0(x), & x \in D
\end{cases}
\]

where:

- \(D \) is an open bounded set of \(\mathbb{R}^n \) with a smooth boundary \(\partial D \);
- \(\nu \) is the outer normal vector to \(\partial D \);
- The initial function \(\varphi_0 \) is such that \(\varphi_0 \in L^2(D) \);
- We suppose that the nonlinear function \(f \) is a smooth function which satisfies the following properties:

 (F_1) There exist positive constants \(C_1 \) and \(C_2 \) such that

 \[f(a + b)a \leq -C_1 a^{2p} + f_2(b), \quad |f_2(b)| \leq C_2 (b^{2p} + 1), \quad \text{for all } a, b \in \mathbb{R} \]

 (F_2) There exist positive constants \(C_3 \) and \(\tilde{C}_3(M) \) such that

 \[|f(s)| \leq C_3 |s - M|^{2p-1} + \tilde{C}_3(M) \]
There exists a positive constant C_4 such that
\[f'(s) \leq C_4. \]

We will check in the Appendix that the function $f(s) = \sum_{r=0}^{2p-1} b_r s^r$ with $b_{2p-1} < 0, p \geq 2$ satisfies the properties $(F_1) - (F_3)$.

- We assume that $A = \nabla_v \Psi(v) : \mathbb{R}^n \to \mathbb{R}^n$ for some strictly convex function $\Psi \in C^{1,1}$ (i.e. $\Psi(v) \in C^1(\mathbb{R}^n)$ and $\nabla \Psi(v)$ is Lipschitz-continuous) satisfying
\[
\begin{aligned}
 A(0) &= \nabla \Psi(0) = 0, \\
 \|D^2 \Psi\|_{L^\infty(\mathbb{R}^n; \mathbb{R}^{n \times n})} &\leq c_1,
\end{aligned}
\]
for some constant $c_1 > 0$. We remark that (1.1) implies that
\[|A(a) - A(b)| \leq C|a - b| \]
for all $a, b \in \mathbb{R}^n$, where C is a positive constant, and that the strict convexity of Ψ implies that A is strictly monotone, namely there exists a positive constant C_0 such that
\[(A(a) - A(b))(a - b) \geq C_0|a - b|^2, \]
for all $a, b \in \mathbb{R}^n$.

We remark that if A is the identity matrix, the nonlinear diffusion operator $-\text{div}(A(\nabla u))$ reduces to the linear operator $-\Delta u$.

- The function $W = W(x, t)$ is a Q-Brownian motion. More precisely, let Q be a nonnegative definite symmetric operator on $L^2(D)$, $\{e_l\}_{l \geq 1}$ be an orthonormal basis in $L^2(D)$ diagonalizing Q, and $\{\lambda_l\}_{l \geq 1}$ be the corresponding eigenvalues, so that
\[Qe_l = \lambda_l e_l \]
for all $l \geq 1$. Since Q is of trace-class, it follows that
\[\text{Tr } Q = \sum_{l=1}^{\infty} \langle Qe_l, e_l \rangle_{L^2(D)} = \sum_{l=1}^{\infty} \lambda_l \leq \Lambda_0, \]
for some positive constant Λ_0. We suppose furthermore that $e_l \in H^1(D) \cap L^\infty(D)$ for $l = 1, 2, \ldots$ and that there exist positive constants Λ_1 and Λ_2 such that
\[\sum_{l=1}^{\infty} \lambda_l \|e_l\|_{L^\infty(D)}^2 \leq \Lambda_1, \]
and
\[\sum_{l=1}^{\infty} \lambda_l \| \nabla e_l \|_{L^2(D)}^2 \leq \Lambda_2. \]

Let \((\Omega, \mathcal{F}, P)\) be a probability space equipped with a filtration \((\mathcal{F}_t)\) and \(\{\beta_l(t)\}_{l \geq 1}\) be a sequence of independent \((\mathcal{F}_t)\)-Brownian motions defined on \((\Omega, \mathcal{F}, P)\); the \(Q\)-Wiener process \(W\) is defined by
\[W(x,t) = \sum_{l=1}^{\infty} \beta_l(t) Q^{1/2} e_l(x) = \sum_{l=1}^{\infty} \sqrt{\lambda_l} \beta_l(t) e_l(x) \]
in \(L^2(D)\). We recall that a Brownian motion \(\beta(t)\) is called an \((\mathcal{F}_t)\) Brownian motion if it is \((\mathcal{F}_t)\)-adapted and the increment \(\beta(t) - \beta(s)\) is independent of \(\mathcal{F}_s\) for every \(0 \leq s < t\).

We define:
\[H = \left\{ v \in L^2(D), \int_D v = 0 \right\}, \quad V = H^1(D) \cap H \quad \text{and} \quad Z = V \cap L^{2p}(D) \]
where \(\| \cdot \|\) is the norm corresponding to the space \(H\). We also define \(\langle \cdot, \cdot \rangle_{Z^*, Z}\) as the duality product between \(Z\) and its dual space \(Z^* = V^* + L^{2p-1}(D)\) ([3], p.175).

The corresponding deterministic equation in the case of linear diffusion, when \(A\) is the identity matrix, has been introduced by Rubinstein and Sternberg [17] as a model for phase separation in a binary mixture. The well-posedness and the stabilization of the solution for large times for the corresponding Neumann problem were proved by Boussaïd, Hilhorst and Nguyen [4]. They assumed that the initial function was bounded in \(L^\infty(D)\) and proved the existence of the solution in an invariant set using a Galerkin approximation together with a compactness method.

The interfacial evolution process corresponding to a second order mass conserved Allen-Cahn equation shares many properties with the fourth order Cahn-Hilliard equation as discussed in [17]. Da Prato and Debussche proved the existence and the uniqueness of the solution of a stochastic Cahn-Hilliard equation in [6] with an additive space-time white noise.

In our work, inspired by this paper, we introduce a nonlinear stochastic heat equation, perform a change of functions in order to maintain a "deterministic style" mass conserved equation by hiding the noise term and prove the existence of the solution in suitable Sobolev spaces similar to those in [6].

Funaki and Yokoyama [8] derive a sharp interface limit for a stochastically perturbed mass conserved Allen-Cahn equation with a sufficiently mild additive noise. This is different from the stochastic term in this paper which is not smooth.

A singular limit of a rescaled version of Problem (P) with linear diffusion has been studied by Antonopoulou, Bates, Blömker and Karali [1] to model the motion of a droplet. However, they left open the problem of proving the existence and uniqueness of the solution, which we address here. The problem that we study is more general then the one in [1] since it has a nonlinear diffusion term. The proof is based on a Galerkin method together with
a monotonicity argument similar to that used in [14] for a deterministic reaction-diffusion equation, and that in [12] for a stochastic problem.

Our paper is organised as follows. In section 2 an auxiliary problem is introduced, more precisely the nonlinear stochastic heat equation and a change of function is defined to obtain an equation without the noise term; this simplifies the use of the Galerkin method in section 3, which yields uniform bounds for the approximate solution in \(L^\infty(0,T;L^2(\Omega \times D)) \), \(L^2(\Omega \times (0,T);H^1(D)) \) and in \(L^{2p}(\Omega \times (0,T) \times D) \). We deduce that the approximate weak solution weakly converges along a subsequence to a limits. The main problem is then to identify the limit of the elliptic term and the reaction term, which we do by means of the so-called monotonicity method.

We prove in section 4 the uniqueness of the weak solution which in turn implies the convergence of the whole sequence.

Finally, in section 5 we return to the study of the nonlinear stochastic heat equation and prove the existence and uniqueness of the solution.

2 A preliminary change of functions

We consider the Neumann boundary value problem for the stochastic nonlinear heat equation

\[
(P_1) \quad \begin{cases}
\frac{\partial W_A}{\partial t} = \text{div}(A(\nabla W_A)) + \frac{\partial W}{\partial t}, & x \in D, \ t \geq 0, \\
A(\nabla W_A).\nu = 0, & x \in \partial D, t \geq 0, \\
W_A(x,0) = 0, & x \in D.
\end{cases}
\]

Krylov and Rozovskii [12] proved the well-posedness result for a classes of problems similar to Problem \((P_1)\) using a definition of solution in the distribution sense, while Gess [10] defines a solution in the sense of \(L^2(D) \), namely almost everywhere in \(D \). More precisely, he defines a strong solution as follows (cf. [10], Definition 1.3).

Definition 2.1. (Strong solution) We say that \(W_A \) is a strong solution of Problem \((P_1)\) if:

(i) \(W_A \in L^\infty(0,T;L^2(\Omega \times D)) \cap L^2(\Omega \times (0,T);H^1(D)) \);

(ii) \(W_A \in L^2(\Omega;C([0,T];L^2(D))) \);

(iii) \(\text{div}(A(\nabla W_A)) \in L^2(\Omega \times (0,T);L^2(D)) \);

(iv) \(W_A \) satisfies a.s. for all \(t \in (0,T) \) the problem

\[
\begin{cases}
W_A(t) = \int_0^t \text{div}(A(\nabla W_A(s)))ds + W(t), & \text{in } L^2(D), \\
A(\nabla W_A(t)).n = 0, & \text{in a suitable sense of trace on } \partial D.
\end{cases}
\]
We will show in Section 5 the existence and uniqueness of the strong solution W_A of Problem (P_1). Moreover we will prove that

$$W_A \in L^\infty(0,T;L^q(\Omega \times D)) \text{ for all } q \in [2,\infty).$$ \hfill (2.2)

We perform the change of functions

$$u(t) := \varphi(t) - W_A(t);$$

then φ is a solution of (P) if and only if u satisfies:

\[
\begin{align*}
(P_2) \quad \left\{ \begin{array}{l}
\frac{\partial u}{\partial t} = \text{div}(A(\nabla(u + W_A)) - A(\nabla W_A)) + f(u + W_A) \\
- \frac{1}{|D|} \int_D f(u + W_A) \, dx, \quad x \in D, \; t \geq 0, \\
A(\nabla(u + W_A)) \cdot \nu = 0, \quad x \in \partial D, t \geq 0, \\
u(x,0) = \varphi_0(x), \quad x \in D.
\end{array} \right.
\]

We remark that (P_2) has the form of a deterministic problem; however it is stochastic since the random function W_A appears in the parabolic equation for u.

Definition 2.2. We say that u is a solution of Problem (P_2) if:

(i) $u \in L^\infty(0,T;L^2(\Omega \times D)) \cap L^2(\Omega \times (0,T);H^1(D)) \cap L^{2p}(\Omega \times (0,T) \times D)$; $\text{div}[A\nabla(u + W_A)] \in L^2(\Omega \times (0,T);(H^1(D))^*)$;

(ii) u satisfies almost surely the problem: for all $t \in [0,T]
\[
\begin{align*}
&u(t) = \varphi_0 + \int_0^t \text{div}[A(\nabla(u + W_A)) - A(\nabla W_A)] \, ds + \int_0^t f(u + W_A) \, ds \\
&- \frac{1}{|D|} \int_D f(u + W_A) \, dx \, ds, \quad \text{in the sense of distributions,} \\
&A(\nabla(u + W_A)) \cdot \nu = 0, \quad \text{in the sense of distributions on } \partial D \times \mathbb{R}^+.
\end{align*}
\]

In order to check the conservation of mass property, namely that

$$\int_D u(x,t) \, dx = \int_D \varphi_0(x) \, dx, \quad \text{a.s. for a.e. } t \in \mathbb{R}^+,$$

we recall that $Z^* = V^* + L^{\frac{2p}{2p-1}}(D)$ and take the duality product of (2.2) with 1 for a.e. t and ω.

3 Existence of a solution of Problem (P_2)

The main result is the following

Theorem 3.1. There exists a unique solution of Problem (P_2).
Proof. In this subsection we apply the Galerkin method to prove the existence of a solution of Problem (P₂).

Denote by \(0 < \gamma_1 < \gamma_2 \leq \ldots \leq \gamma_k \leq \ldots \) the eigenvalues of the operator \(-\Delta\) with homogeneous Neumann boundary conditions, and by \(w_k, k = 0, \ldots \) the corresponding unit eigenfunctions in \(L^2(D) \). Note that they are smooth functions.

Lemma 3.1. The functions \(\{w_j\} \) are an orthonormal basis of \(L^2(D) \) and satisfy:

\[
\int_D w_j w_0 dx = 0 \quad \text{for all } j \neq 0 \quad \text{and} \quad w_0 = \frac{1}{|D|}.
\]

Proof. We check below that \(\int_D w_j(x) dx = 0 \) for all \(j \neq 0 \). Indeed,

\[
\int_D w_j dx = -\frac{1}{\gamma_j} \int_D \Delta w_j dx = -\frac{1}{\gamma_j} \int_{\partial D} \frac{\partial w_j}{\partial n} dx = 0,
\]

which implies that \(\int_D w_j w_0 dx = 0 \) for all \(j \neq 0 \). Moreover, it is standard that the eigenfunctions corresponding to different eigenvalues are orthogonal. \(\square \)

We look for an approximate solution of the form

\[
u_m(x,t) - M = \sum_{i=1}^{m} u_{im}(t) w_i = \sum_{i=1}^{m} (u_m(t), w_i) w_i,
\]

where \(M = \frac{1}{|D|} \int_D \varphi_0(x) dx \) such that the function \(\nu_m - M \) satisfies the equations

\[
\int_D \frac{\partial}{\partial t} (\nu_m(x,t) - M) w_j dx
\]

\[
= -\int_D [A(\nabla(\nu_m - M + W_A)) - A(\nabla(W_A))] \nabla w_j dx
\]

\[
+ \int_D f(\nu_m + W_A) w_j - \frac{1}{|D|} \int_D (\int_D f(\nu_m + W_A) dx) w_j dx,
\]

\[(3.2)\]

for all \(w_j, j = 1, \ldots, m \). We remark that \(\nu_m(x,0) = M + \sum_{i=1}^{m} (\varphi_0, w_i) w_i \) converges strongly to \(\varphi_0 \) in \(L^2(D) \) as \(m \to \infty \).
Problem (3.2) is an initial value problem for a system of \(m \) ordinary differential equations with the unknown functions \(u_i(t) \), \(i = 1, \ldots, m \) so that it has a unique solution \(u_m \) on some interval \((0, T_m)\), \(T_m > 0\); in fact the following a priori estimates show that this solution is global in time.

First we remark that the contribution of the nonlocal term vanishes. Indeed for all \(j = 1, \ldots, m - 1 \)

\[
- \frac{1}{|D|} \int_D \left(\int_D f(u_m + W_A(t)) dx \right) w_j dx = - \frac{1}{|D|} \left(\int_D f(u_m + W_A(t)) dx \right) \times \int_D w_j dx
\]

Therefore (3.2) reduces to the equation:

\[
\int_D \frac{\partial}{\partial t}(u_m(x,t) - M) w_j dx = - \int_D [A(\nabla(u_m - M + W_A)) - A(\nabla(W_A))] \nabla w_j dx
\]

\[
+ \int_D f(u_m + W_A) w_j dx.
\] (3.3)

We multiply (3.3) by \(u_j = u_j(t) \) and sum on \(j = 1, \ldots, m \):

\[
\int_D \frac{\partial}{\partial t}(u_m(x,t) - M)(u_m - M) dx
\]

\[
= - \int_D [A(\nabla(u_m - M + W_A)) - A(\nabla(W_A))] \nabla(u_m - M) dx
\]

\[
+ \int_D f(u_m + W_A)(u_m - M) dx.
\] (3.4)

Next we apply the monotonicity property of \(A(1.3) \) to bound the generalized Laplacian term, which yields

\[
\frac{1}{2} \frac{d}{dt} \int_D (u_m - M)^2 dx \leq -C_0 \int_D |\nabla(u_m - M)|^2 dx
\]

\[
+ \int_D f(u_m + W_A)(u_m - M) dx.
\] (3.5)

Using the property \((F_1)\) we deduce that

\[
\int_D f(u_m + W_A(t))(u_m - M) dx
\]

\[
= \int_D f(u_m - M + M + W_A(t))(u_m - M) dx
\]

\[
\leq \int_D [-C_1(u_m - M)^{2p} + C_2 ((M + W_A)^{2p}(t) + 1)] dx
\]

\[
\leq - \int_D C_1(u_m - M)^{2p} dx + C_2 \int_D [W_A(t)]^{2p} dx + \tilde{C}_2(M)|D|,
\]

which we substitute in (3.5) to obtain :

\[
\frac{1}{2} \frac{d}{dt} \int_D (u_m - M)^2 dx + C_0 \int_D |\nabla(u_m - M)|^2 dx + C_1 \int_D (u_m - M)^{2p} dx
\]

\[
\leq C_2 \int_D [W_A(t)]^{2p} dx + \tilde{C}_2(M)|D|.
\] (3.6)
3.1 A priori estimates

In what follows, we derive a priori estimates for the function u_m.

Lemma 3.2. There exists a positive constant C such that

\[\underset{t \in [0,T]}{\sup} \mathbb{E} \int_D (u_m - M)^2 \, dx \leq C, \]
\[\mathbb{E} \int_0^T \int_D |\nabla (u_m - M)|^2 \, dx \, dt \leq C, \]
\[\mathbb{E} \int_0^T \int_D (u_m - M)^{2p} \, dx \, dt \leq C, \]
\[\mathbb{E} \int_0^T \int_D (f(u_m + W_A))^{\frac{2p}{p-1}} \, dx \, dt \leq C, \]
\[\mathbb{E} \int_0^T \| \text{div} \, A(\nabla (u_m + W_A)) \|^2_{(H^1(D))'} \, dt \leq C. \]

Proof. Integrating (3.6) from 0 to t and taking the expectation we deduce that for all $t \in [0,T]$

\[
\frac{1}{2} \mathbb{E} \int_D (u_m - M)^2(t) \, dx + C_0 \mathbb{E} \int_0^t \int_D |\nabla (u_m - M)|^2 \, dx \, ds + C_1 \mathbb{E} \int_0^t \int_D (u_m - M)^{2p} \, dx \, ds \\
\leq \frac{1}{2} \int_D (u_m(0) - M)^2 \, dx + C_2 \mathbb{E} \int_0^t \int_D |W_A(t)|^{2p} \, dx \, ds + \tilde{C}_2(M)|D|T \\
\leq \frac{1}{2} \sum_{i=1}^m |\langle u_0, w_i \rangle|^2_2 + \tilde{C}_2(M)|D|T + c_2T \\
\leq \frac{1}{2} \| u_0 - M \|_{L^2(D)}^2 + \tilde{C}_2(M)|D|T + c_2T \\
\leq K
\]

where we have used (2.2).

We deduce that :

\[\mathbb{E} \int_D (u_m - M)^2(t) \, dx \leq 2K, \quad \text{for all} \quad t \in [0,T], \]
\[\mathbb{E} \int_0^T \int_D |\nabla (u_m - M)|^2 \, dx \, dt \leq \frac{K}{C_0}, \]
\[\mathbb{E} \int_0^T \int_D (u_m - M)^{2p} \, dx \, dt \leq \frac{K}{C_1}. \]

Therefore $\{u_m\}$ is bounded independently of m in $L^\infty(0,T;L^2(\Omega \times D)) \cap L^2(\Omega \times (0,T);H^1(D)) \cap L^{2p}(\Omega \times (0,T) \times D)$.
Using the property (F_2) we deduce that

\[
E \| f(u_m + W_A) \|_{L^{2p-1}(0,T \times D)}^{2p-1} \\
= E \int_0^T \int_D |f(u_m + W_A)|^{2p-1} dx dt \\
\leq E \int_0^T \int_D \left[C_3 |u_m + W_A - M|^{2p-1} + \tilde{C}_3(M) \right]^{2p-1} dx dt \\
\leq E \int_0^T \int_D \left[C_3 |u_m - M| + |W_A|^{2p-1} dx + \tilde{C}_3(M) \right]^{2p-1} dx dt \\
\leq 2^{2p-1} E \int_0^T \int_D C_5 \left[(|u_m - M| + |W_A|)^{2p-1} \right]^{2p-1} dx dt + \tilde{C}_3 |D| T \\
\leq c_3 E \int_0^T \int_D (|u_m - M|^{2p-1})^{2p-1} dx dt \\
+ c_3 E \int_0^T \int_D (|W_A|^{2p-1})^{2p-1} dx dt + \tilde{C}_3 |D| T \\
\leq c_3 E \int_0^T \int_D |u_m - M|^{2p} dx dt \\
+ c_3 E \int_0^T \int_D |W_A|^{2p} dx dt + \tilde{C}_3 |D| T \\
\leq K_1,
\]

by (3.9) and (2.2), where c_3 is a positive constant.

Finally we show that the elliptic term is bounded in $(H^1(D))^\prime$. We have that

\[
E \int_0^T \| \text{div} A(\nabla (u_m + W_A)) \|^2_{(H^1(D))^\prime} \\
= E \int_0^T \left(\sup_{v \in H^1, \|v\|_{H^1} \leq 1} |\langle \text{div} A(\nabla (u_m + W_A)), v \rangle| \right)^2 \\
= E \int_0^T \left(\sup_{v \in H^1, \|v\|_{H^1} \leq 1} \left| - \int_D A(\nabla (u_m + W_A)) \nabla v \right| \right)^2 \\
\leq E \int_0^T \left\{ \sup_{v \in H^1, \|v\|_{H^1} \leq 1} \left(\int_D |A(\nabla (u_m + W_A))|^2 \right)^{1/2} \left(\int_D \|\nabla v\|^2 \right)^{1/2} \right\}^2 \\
\leq E \int_0^T \sup_{v \in H^1, \|v\|_{H^1} \leq 1} \int_D |A(\nabla (u_m + W_A))|^2 \int_D \nabla v^2 \\
\leq E \int_0^T \int_D |A(\nabla (u_m + W_A))|^2. \quad (3.12)
\]
Next we use (1.2) and (1.1) to estimate the term on the right-hand-side of (3.12)

\begin{align*}
E \int_0^T \int_D |A(\nabla (u_m + W_A)|^2 & \leq C E \int_0^T \int_D |\nabla (u_m + W_A)|^2 \\
& \leq 2C (E \int_0^T \int_D |\nabla u_m|^2 + E \int_0^T \int_D |\nabla W_A|^2) \\
& \leq K_2.
\end{align*}

The last line follows from the a priori estimates and the regularity of the solution of Problem (P_1).

Hence there exist a subsequence which we denote again by \{u_m - M\} and a function

\[u - M \in L^2(\Omega \times (0, T); V) \cap L^{2p}(\Omega \times (0, T) \times D) \cap L^\infty(0, T; L^2(\Omega \times D)) \]

such that

\begin{align*}
& u_m - M \rightharpoonup u - M \text{ weakly in } L^2(\Omega \times (0, T); V) \\
& \text{and } L^{2p}(\Omega \times (0, T) \times D) \\
& u_m - M \rightharpoonup u - M \text{ weakly star in } L^\infty(0, T; L^2(\Omega \times D)) \\
& f(u_m + W_A) \rightharpoonup \chi \text{ weakly in } L^{2p}(\Omega \times (0, T) \times D) \\
& \text{div}(A(\nabla (u_m + W_A))) \rightharpoonup \Phi \text{ weakly in } L^2(\Omega \times (0, T); (H^1)')
\end{align*}

as \(m \to \infty \).

Next, we pass to the limit as \(m \to \infty \).

To that purpose we integrate in time the equation (3.3) to obtain

\begin{align*}
\int_D (u_m(x, t) - M) w_j &= \int_D (u_m(0) - M) w_j \\
&+ \int_0^t \langle \text{div}[A(\nabla (u_m - M + W_A)) - A(\nabla W_A)], w_j \rangle \\
&+ \int_0^t \int_D f(u_m + W_A) w_j, \text{ for all } j = 1, \ldots, m. \tag{3.17}
\end{align*}

Let \(y = y(\omega) \) be an arbitrary bounded random variable, and let \(\psi \) be an arbitrary bounded function on \((0, T)\). We multiply the equation (3.17) by the product \(y\psi \), integrate between
0 and T and take the expectation to deduce

$$
\mathbb{E} \int_0^T \int_D y \psi(t)(u_m(t) - M) w_j dx dt
= \mathbb{E} \int_0^T \int_D y \psi(t)(u_m(0) - M) w_j dx dt
+ \mathbb{E} \int_0^T y \psi(t) \left\{ \int_0^t \langle \text{div}[A(\nabla(u_m - M + W_A))], w_j \rangle \right\}
- \mathbb{E} \int_0^T y \psi(t) \left\{ \int_0^t \langle \text{div}[A(\nabla(W_A))], w_j \rangle \right\}
+ \mathbb{E} \int_0^T y \psi(t) \left\{ \int_0^t \int_D f(u_m + W_A) w_j dx ds \right\} dt.
$$

(3.18)

for all $j = 1, \ldots, m$.

Next we pass to the limit in (3.18); we only give the proof of convergence for the last term using the a priori estimates and Hölder inequality. We have that

$$
\left| \psi(t) \mathbb{E} \int_0^t \int_D f(u_m + W_A) w_j dx ds \right|
\leq \|y\|_{L^\infty(\Omega)} |\psi(t)| \left(\mathbb{E} \int_0^t \int_D |f(u_m + W_A)|^{2p} dx ds \right)^{\frac{1}{2p}} \mathbb{E} \int_0^t \int_D |w_j|^{2p} dx ds
\leq \|y\|_{L^\infty(\Omega)} \|\psi\|_{L^\infty(0,T)} C.
$$

This shows that $|\psi(t)\mathbb{E} \int_0^t \int_D f(u_m + W_A) w_j dx ds|$ is uniformly bounded by a function belonging to $L^1(0,T)$. In addition using (3.15) we have that

$$
\psi(t)\mathbb{E} \int_0^t \int_D f(u_m + W_A) w_j dx ds \to \psi(t)\mathbb{E} \int_0^t \int_D \chi w_j dx ds
$$
for a.e. $t \in (0,T)$. Applying Lebesgue-dominated convergence theorem we deduce that:

$$
\lim_{m \to \infty} \int_0^T \psi(t) dt \mathbb{E} \int_0^t \int_D f(u_m + W_A) w_j dx ds
= \int_0^T \lim_{m \to \infty} \psi(t) dt \mathbb{E} \int_0^t \int_D f(u_m + W_A) w_j dx ds dt
= \int_0^T \psi(t) dt \mathbb{E} \int_0^t \int_D \chi w_j dx ds
= \mathbb{E} \int_0^T y \psi(t) dt \left\{ \int_0^t \int_D \chi w_j dx ds \right\}.
$$

Performing a similar proof for each term in (3.18), we pass to the limit by using Lebesgue-
dominated convergence theorem. This yields
\[
\mathbb{E} \int_0^T \int_D y\psi(t)(u(t) - M)w_j dx dt \\
= \mathbb{E} \int_0^T \int_D y\psi(t)(\varphi_0 - M)w_j dx dt \\
+ \mathbb{E} \int_0^T y\psi(t) \left\{ \int_0^t \langle \Phi - \text{div} A(\nabla (W_A)), w_j \rangle \right\} dt \\
+ \mathbb{E} \int_0^T y\psi(t) \left\{ \int_0^t \int_D \chi w_j dx ds \right\} dt,
\]
for all \(j = 1, \ldots, m. \) \hspace{1cm} (3.19)

We remark that the linear combinations of \(w_j \) are dense in \(V \cap L^2p(D) \), so that
\[
\mathbb{E} \int_0^T \int_D y\psi(t)(u(t) - M)\tilde{w} dx dt = \mathbb{E} \int_0^T \int_D y\psi(t)(\varphi_0 - M)\tilde{w} dx dt \\
+ \mathbb{E} \int_0^T y\psi(t) \left\{ \int_0^t \langle \Phi - \text{div} A(\nabla (W_A)), \tilde{w} \rangle ds \right\} dt \\
+ \mathbb{E} \int_0^T y\psi(t) \left\{ \int_0^t \int_D \chi \tilde{w} dx ds \right\} dt.
\]
for all \(\tilde{w} \in V \cap L^2p(D), \ y \in L^\infty(\Omega) \) and \(\psi \in L^\infty(0,T) \). This implies that for a.e. \((t, \omega) \in (0,T) \times \Omega \)
\[
\langle u(t) - M, \tilde{w} \rangle = \langle \varphi_0 - M, \tilde{w} \rangle + \int_0^t \langle \Phi + \chi - \text{div}(A(\nabla W_A)), \tilde{w} \rangle ds
\]
for all \(\tilde{w} \in V \cap L^2p(D) \).

Lemma 3.3. The function \(u \) is such that \(u \in C([0,T]; L^2(D)) \) a.s.

Proof.
\[
Z \subseteq H \subseteq Z^*
\]
Since \(u - M \in L^2(0,T; Z) \) a.s. and \(\frac{du}{dt} \in L^2(0,T; V^*) + L^2(0,T; L^{\frac{2p}{p-1}}(D)) = L^2(0,T; Z^*) \) a.s., it follows by applying Lemma 1.2 p.260 in [18] that \(u - M \in C(0,T; H) \) a.s. \hfill \Box

It remains to prove that :
\[
\langle \Phi + \chi, \tilde{w} \rangle = \langle \text{div}(A(\nabla (u + W_A))) + f(u + W_A(t)), \tilde{w} \rangle \quad \text{for all} \quad \tilde{w} \in V \cap L^2p(D).
\]

We do so by means of the monotonicity method.
3.2 Monotonicity argument

Let w be such that $w - M \in L^2(\Omega \times (0, T); V) \cap L^{2p}(\Omega \times D \times (0, T))$.

Let c be a positive constant which will be fixed later. We define

$$
O_m = \mathbb{E} \left[\int_0^T e^{-cs} \{ 2 \langle \text{div} (A(\nabla(u_m - M + W_A)) - A(\nabla W_A)) \rangle \\
- \text{div} (A(\nabla(w - M + W_A)) - A(\nabla W_A)), u_m - M - (w - M) \rangle_{Z^*, Z} \\
+ 2 \langle f(u_m + W_A) - f(w + W_A), u_m - M - (w - M) \rangle_{Z^*, Z} \\
- c \| u_m - M - (w - M) \|^2 \} \right] ds
$$

and prove below the following result

Lemma 3.4.

$$O_m \leq 0.$$

Proof. First we estimate J_1 and apply (1.3)

$$
J_1 = \mathbb{E} \int_0^T e^{-cs} \{ 2 \langle \text{div} (A(\nabla(u_m - M + W_A)) \rangle \\
- \text{div} (A(\nabla(w - M + W_A))), u_m - M - (w - M) \rangle_{Z^*, Z} \} \\
= -2 \mathbb{E} \int_0^T e^{-cs} \int_D [A(\nabla(u_m - M + W_A)) - A(\nabla(w - M + W_A))] \\
[\nabla(u_m - M + W_A) - \nabla(w - M + W_A)] \\
\leq -2C_0 \mathbb{E} \int_0^T e^{-cs} \| \nabla(u_m - w) \|^2 \\
\leq 0.
$$

(F_3) and the mean value theorem yield:

$$
J_2 = \mathbb{E} \int_0^T e^{-cs} 2 \langle f(u_m + W_A) - f(w + W_A), u_m - w \rangle_{Z^*, Z} ds \\
\leq \mathbb{E} \int_0^T e^{-cs} 2C_4 \| u_m - w \|^2 ds.
$$

Choosing $c \geq 2C_4$, we conclude the result.

\[\square \]

We write O_m in the form $O_m = O_m^1 + O_m^2$ where

$$
O_m^1 = \mathbb{E} \left[\int_0^T e^{-cs} \{ 2 \langle \text{div} (A(\nabla(u_m - M + W_A)) - A(\nabla W_A)), u_m - M \rangle_{Z^*, Z} \\
+ 2 \langle f(u_m + W_A), u_m - M \rangle_{Z^*, Z} - c \| u_m - M \|^2 \} \right] ds.
$$

(3.21)
We integrate the equation (3.3) between 0 and \(T \) to obtain
\[
\int_D (u_m(x,T) - M)w_j = \int_D (u_m(0) - M)w_j \\
+ \int_0^T (\text{div}[A(\nabla (u_m - M + W_A)) - A(\nabla W_A)], w_j)_{Z^*,Z} \\
+ \int_0^T \int_D f(u_m + W_A)w_j, \quad \text{for all } j = 1, \ldots, m. \quad (3.22)
\]

Next we recall a chain rule formula, which can be viewed as a simplified Itô’s formula.

Proposition 3.1. Let \(X \) be a real valued function such that
\[
X(t) = X(0) + \int_0^t h(s)ds, \quad 0 \leq s \leq t,
\]
and suppose that \(h \) is measurable in time such that \(h \in L^1(0,T) \). Suppose that the function \(F : [0,T] \times \mathbb{R} \rightarrow \mathbb{R} \) and its partial derivatives \(\frac{\partial F}{\partial t} \) and \(\frac{\partial F}{\partial X} \) are continuous on \([0,T] \times \mathbb{R}\). Then for all \(t \in [0,T] \)
\[
F(t, X(t)) = F(0, X(0)) + \int_0^t \frac{\partial F}{\partial t}(s, X(s))ds + \int_0^t \frac{\partial F}{\partial X}(s, X(s))h(s)ds.
\]

(3.23)

Applying (3.23) to the \(m \) equations in (3.22) with
\[
X_j = \int_D (u_m - M)w_j, \quad j = 1, \ldots, m, \quad F(s, q) = e^{-cs}q^2,
\]
and \(h(s) = (\text{div}[A(\nabla (u_m - M + W_A)) - A(\nabla W_A)] + f(u_m + W_A), w_j)_{Z^*,Z}, \)
we deduce that
\[
e^{-cT}(\int_D (u_m(x,T) - M)w_j)^2 \\
= (\int_D (u_m(0) - M)w_j)^2 - c \int_0^T e^{-cs}(\int_D (u_m - M)w_j)^2ds \\
+ 2 \int_0^T e^{-cs}\{\int_D (u_m - M)w_j\}(\text{div}[A(\nabla (u_m - M + W_A)) - A(\nabla W_A)], w_j) \\
+ 2 \int_0^T e^{-cs}\{\int_D (u_m - M)w_j\}f(u_m + W_A), w_j), \quad \text{for all } j = 1, \ldots, m.
\]

(3.24)

In what follows, we will use the identity

Lemma 3.5. Let \(F \in Z^* \) and \(B_m = \sum_{j=1}^m \langle B_m, w_j \rangle w_j. \)

Then
\[
\sum_{j=1}^m \langle F, w_j \rangle \langle B_m, w_j \rangle = \langle F, B_m \rangle.
\]

(3.25)
Proof.

\[
\sum_{j=1}^{m} \langle F, w_j \rangle \langle B_m, w_j \rangle = \sum_{j=1}^{m} \langle F, \langle B_m, w_j \rangle w_j \rangle = \langle F, \sum_{j=1}^{m} \langle B_m, w_j \rangle w_j \rangle = \langle F, B_m \rangle.
\]

\[\square\]

Summing (3.24) on \(j = 1, \ldots, m\) and applying the identity (3.25) yields

\[
e^{-cT} \|u_m(T) - M\|^2 = \|u_m(0) - M\|^2 - c \int_0^T e^{-cs} \|u_m - M\|^2 ds + 2 \int_0^T e^{-cs} \langle \text{div}[A(\nabla (u_m - M + W_A)) - A(\nabla W_A)], u_m - M \rangle \rangle_{Z^*,Z} + 2 \int_0^T e^{-cs} \langle f(u_m + W_A), u_m - M \rangle \rangle_{Z^*,Z}.
\]

(3.26)

Taking the expectation of the equation (3.26) yields

\[
\mathbb{E}[e^{-cT} \|u_m(T) - M\|^2] = \mathbb{E}[\|u_m(0) - M\|^2] - c \mathbb{E}[\int_0^T e^{-cs} \|u_m(s) - M\|^2 ds] + 2 \mathbb{E}[\int_0^T e^{-cs} \langle \text{div}[A(\nabla (u_m - M + W_A)) - A(\nabla W_A)], u_m - M \rangle \rangle_{Z^*,Z} + 2 \mathbb{E}[\int_0^T e^{-cs} \langle f(u_m + W_A), u_m - M \rangle \rangle_{Z^*,Z}].
\]

(3.27)

It follows from (3.21) and (3.27) that

\[
O_1^m = \mathbb{E}[e^{-cT} \|u_m(T) - M\|^2] - \mathbb{E}[\|u_m(0) - M\|^2].
\]

From this we obtain

\[
\lim_{m \to \infty} \sup O_1^m = \mathbb{E}[e^{-cT} \|u(T) - M\|^2] - \mathbb{E}[\|u(0) - M\|^2] + \delta e^{-cT},
\]

(3.28)

where

\[
\delta = \lim_{m \to \infty} \sup \mathbb{E}[\|u_m(T) - M\|^2] - \mathbb{E}[\|u(T) - M\|^2] \geq 0.
\]

15
On the other hand, the equation (3.20) implies that
\[u(t) - M = \varphi_0 - M + \int_0^t \Phi - \text{div}(A(\nabla W_A)) + \int_0^t \chi, \quad \forall t \in [0, T] \]
(3.29)
a.s. in \(Z^* = V^* + L_{2p}^{2p-1}(D) \).

Next we recall a second variant of the chain rule formula, which can be viewed as a simplified Itô’s formula as in [15] [p.75 Theorem 4.2.5], and involves different function spaces. Consider the Gelfand triple
\[Z \subset H \subset Z^*, \]
where \(Z = V \cap L^{2p}(D) \) and \(Z^* \) are defined in the introduction.

Proposition 3.2. Let \(X \in L^2(0, T; V) \cap L^{2p}(0, T; L^{2p}(D)) \) and \(Y \in L^2(0, T; V^*) + L_{2p}^{2p-1}(0, T; L_{2p}^{2p-1}(D)) \) be such that
\[X(t) := X_0 + \int_0^t Y(s) ds, \quad t \in [0, T]. \]

Suppose that the function \(F : [0, T] \times Z \rightarrow \mathbb{R} \) and its partial derivatives \(\frac{\partial F}{\partial t} \) and \(\frac{\partial F}{\partial X} \) are continuous on \([0, T] \times Z\). Then for all \(t \in [0, T] \)
\[F(t, X(t)) = F(0, X(0)) + \int_0^t \frac{\partial F}{\partial t} (s, X(s)) ds + \int_0^t \langle Y(s), \frac{\partial F}{\partial X}(s, X(s)) \rangle_{Z^*, Z} ds. \]
(3.30)

Applying Proposition 3.2 to the equation (3.29), we set \(X(t) = u(t) - M, F(s, q) = e^{-cs}||q||^2 \), and \(Y(s) = \Phi - \text{div}(A(\nabla W_A)) + \chi \), in (3.30) to deduce that
\[\mathbb{E}[e^{-cT}||u(T) - M||^2] = \mathbb{E}[||u(0) - M||^2] - c\mathbb{E}[\int_0^T e^{-cs}||u(s) - M||^2 ds] \]
\[+ 2\mathbb{E}\int_0^T e^{-cs}(\Phi - \text{div}(A(\nabla W_A)), u - M)_{Z^*, Z} \]
\[+ 2\mathbb{E}[\int_0^T e^{-cs}(\chi, u - M)_{Z^*, Z}], \]
which we combine with (3.28) to deduce that
\[\lim_{m \to \infty} \sup O_m^1 = 2\mathbb{E}\int_0^T e^{-cs}(\Phi - \text{div}(A(\nabla W_A)), u - M)_{Z^*, Z} \]
\[+ 2\mathbb{E}\int_0^T e^{-cs}(\chi, u - M)_{Z^*, Z} - c\mathbb{E}[\int_0^T e^{-cs}||u(s) - M||^2 ds] + \delta e^{-cT}. \]
(3.31)
It remains to compute the limit of O^2_m:

\[O^2_m = O^1_m - O^1_m \]

\[= \mathbb{E} \int_0^T e^{-cs} \{-2\langle \text{div}[A(\nabla(w - M + W_A)) - A(\nabla W_A)], u_m - M \rangle_{Z^*, Z} \hspace{1cm} \]

\[-2\langle \text{div}[A(\nabla(u_m - M + W_A)) - A(\nabla W_A)], w - M \rangle_{Z^*, Z} \hspace{1cm} \]

\[-2\langle f(w + W_A), u_m - M \rangle_{Z^*, Z} - 2\langle f(u + W_A), w - M \rangle_{Z^*, Z} \hspace{1cm} \]

\[-c\|w - M\|^2 + 2c\langle u_m - M, w - M \rangle \} ds. \]

In view of (3.13), (3.15) and (3.16), we deduce that

\[\lim_{m \to \infty} O^2_m \]

\[= \mathbb{E} \int_0^T e^{-cs} \{-2\langle \text{div}[A(\nabla(w - M + W_A)) - A(\nabla W_A)], u - M \rangle_{Z^*, Z} \hspace{1cm} \]

\[-2\langle \Phi - \text{div}(A(\nabla W_A)) - \text{div}[A(\nabla(w - M + W_A)) - A(\nabla W_A)], w - M \rangle_{Z^*, Z} \hspace{1cm} \]

\[-2\langle f(w + W_A), u - M \rangle_{Z^*, Z} - 2\langle \chi - f(w + W_A), w - M \rangle_{Z^*, Z} \hspace{1cm} \]

\[-c\|w - M\|^2 + 2c\langle u - M, w - M \rangle \} ds. \]

Combining (3.31) and (3.32), and remembering that $O_m \leq 0$, yields

\[\mathbb{E} \int_0^T e^{-cs} \{ 2\langle \Phi - \text{div}(A(\nabla(w - M + W_A)), u - M - (w - M) \rangle_{Z^*, Z} \hspace{1cm} \]

\[+ 2\langle \chi - f(w + W_A), u - M - (w - M) \rangle_{Z^*, Z} \hspace{1cm} \]

\[-c\|u - M - (w - M)\|^2 \} + \delta e^{-cT} \leq 0. \]

Let $v \in L^2(\Omega \times (0, T); V) \cap L^{2p}(\Omega \times (0, T) \times D)$ be arbitrary and set

\[w - M = u - M - \lambda v, \text{ with } \lambda \in \mathbb{R}_+. \]

We obtain the inequality:

\[\mathbb{E} \int_0^T e^{-cs} \{ 2\langle \Phi - \text{div}(A(\nabla(u - \lambda v - M + W_A)), \lambda v \rangle_{Z^*, Z} \hspace{1cm} \]

\[+ 2\langle \chi - f(u - \lambda v + W_A), \lambda v \rangle_{Z^*, Z} - c\|\lambda v\|^2 \} dt \leq 0. \]

Dividing by λ and letting $\lambda \to 0$, we find that:

\[\mathbb{E} \int_0^T e^{-cs} \langle \Phi + \chi - \text{div}(A(\nabla(u - M + W_A)) - f(u + W_A), v \rangle_{Z^*, Z} dt \leq 0. \]

Since v is arbitrary, it follows that

\[\mathbb{E} \int_0^T \langle \Phi + \chi, v \rangle_{Z^*, Z} = \mathbb{E} \int_0^T \langle \text{div}[A(\nabla(u - M + W_A))] + f(u + W_A), v \rangle_{Z^*, Z}, \]

17
for all $v \in L^2(\Omega \times (0, T); V) \cap L^{2p}(\Omega \times (0, T) \times D)$,

\[\Phi + \chi = \text{div}[A(\nabla (u - M + W_A))] + f(u + W_A) + \theta(t, \omega), \quad (3.33) \]

a.s. a.e. in $D \times (0, T)$. Taking the duality product of (3.33) with $\tilde{w} \in V \cap L^2_{2p}(D)$ we obtain that

\[\langle \Phi + \chi, \tilde{w} \rangle_{Z^*, Z} = \langle \text{div}[A(\nabla (u - M + W_A))] + f(u + W_A), \tilde{w} \rangle_{Z^*, Z}, \quad (3.34) \]

Substituting (3.34) in (3.20) we deduce that for a.e. $(t, \omega) \in (0, T) \times \Omega$

\[\langle u(t) - M, \tilde{w} \rangle = \langle \phi_0 - M, \tilde{w} \rangle + \int_0^t \langle \text{div}[A(\nabla (u - M + W_A))] + f(u + W_A) - \text{div}(A(\nabla W_A)), \tilde{w} \rangle_{Z^*, Z}, \quad (3.35) \]

for all $\tilde{w} \in V \cap L^{2p}(D)$.

This completes the identification of the limit terms by the monotonicity method.

Next, we prove that u satisfies the equation (2.3) in Definition 2.2. We define

\[V = H^1(D) \cap L^{2p}(D). \]

The equation (3.35) implies that a.s. in $V^* = (H^1(D))' + L^{\frac{2p}{p-1}}(D)$

\[u(t) = \phi_0 + \int_0^t \text{div}[A(\nabla (u - M + W_A))] - \text{div}(A(\nabla W_A)) + \int_0^t f(u + W_A)ds + \int_0^t \lambda(s)ds, \quad (3.36) \]

for all $t \in [0, T]$.

In order to identify the last term of (3.36), we take its duality product $\langle \ldots \rangle_{V^*, V}$ with 1. Remembering that the equation is mass conserved, we obtain

\[\int_D \int_0^t f(u + W_A)dsdx + \int_0^t \lambda(s)ds|D| = \int_D u(t)dx - \int_D \phi_0dx = 0. \quad (3.37) \]

Thus,

\[\int_0^t \lambda(s)ds = -\frac{1}{|D|} \int_D \int_0^t f(u + W_A)dsdx, \]

so that also

\[\lambda(t) = -\frac{1}{|D|} \int_D f(u(x, t) + W_A(x, t))dx. \]
4 Uniqueness of the solution of Problem \((P_2)\)

Let \(\omega\) be given such that two pathwise solutions of Problem \((P_2)\), \(u_1 = u_1(\omega, x, t)\) and \(u_2 = u_2(\omega, x, t)\) satisfy

\[
\begin{align*}
 u_i(\cdot, \cdot, \omega) & \in L^\infty(0, T; L^2(D)) \cap L^2(0, T; H^1(D)) \cap L^{2p}((0, T) \times D), \\
 f(u_i + W_A) & \in L^{\frac{2p}{p-1}}((0, T) \times D), \\
 \text{div}(A(\nabla(u_i + W_A)) & \in L^2((0, T); (H^1(D))')
\end{align*}
\]

for \(i = 1, 2\), and \(u_1(\cdot, 0) = u_2(\cdot, 0) = \varphi_0\). Then

\[
\begin{align*}
 u_1(x, t) &= u_1(x, 0) + \int_0^t \text{div}(A(\nabla(u_1 + W_A))) - \text{div}(A(\nabla W_A)) + \int_0^t f(u_1 + W_A) \\
 & \quad - \frac{1}{|D|} \int_0^t \int_D f(u_1 + W_A) dx, \\
 u_2(x, t) &= u_2(x, 0) + \int_0^t \text{div}(A(\nabla(u_2 + W_A))) - \text{div}(A(\nabla W_A)) + \int_0^t f(u_2 + W_A) \\
 & \quad - \frac{1}{|D|} \int_0^t \int_D f(u_2 + W_A) dx,
\end{align*}
\]

so that the difference \(u_1 - u_2\) satisfies the equation

\[
\begin{align*}
 u_1(t) - u_2(t) &= \int_0^t \text{div}(A(\nabla(u_1 + W_A) - A(\nabla(u_2 + W_A)) \\
 & \quad + \int_0^t [f(u_1 + W_A) - f(u_2 + W_A)] \\
 & \quad - \frac{1}{|D|} \int_0^t \int_D [f(u_1 + W_A) - f(u_2 + W_A)] dx,
\end{align*}
\]

in \(L^2((0, T); V^*) + L^{\frac{2p}{p-1}}((0, T) \times D)\).

We take the duality product of this equation with \(u_1 - u_2 \in L^2((0, T); V^*) \cap L^{\frac{2p}{p-1}}((0, T) \times D)\), to deduce that
\[\|u_1 - u_2\|_{L^2(D)}^2 = 2 \int_0^t \langle \text{div}(A(\nabla(u_1 + W_A)) - A(\nabla(u_2 + W_A)), u_1 - u_2 \rangle_{Z^*, Z} \\
+ 2 \int_0^t \langle f(u_1 + W_A) - f(u_2 + W_A), u_1 - u_2 \rangle_{Z^*, Z} \\
- 2 \int_0^t \frac{1}{|D|} \int_D (f(u_1 + W_A) - f(u_2 + W_A)) dx, u_1 - u_2 \rangle_{Z^*, Z} \\
= -2 \int_0^t \int_D (A(\nabla(u_1 + W_A)) - A(\nabla(u_2 + W_A))) \nabla(u_1 - u_2) \\
+ 2 \int_D \int_D (f(u_1 + W_A) - f(u_2 + W_A))(u_1 - u_2) dx \\
- \frac{1}{|D|} \int_0^t \int_D (f(u_1 + W_A) - f(u_2 + W_A)) dx \int_D (u_1 - u_2) dx] \\
= -2 \int_0^t \int_D (A(\nabla(u_1 + W_A)) - A(\nabla(u_2 + W_A))) \nabla(u_1 - u_2) \\
+ 2 \int_0^t \int_D (f(u_1 + W_A) - f(u_2 + W_A))(u_1 - u_2) dx, \tag{4.1} \]

where we remark that since \(\int_D u_1(x, t) dx = \int_D u_2(x, t) dx = \int_D \varphi_0(x) dx \), the nonlocal term vanishes.

In view of (1.3), (4.1) becomes

\[\|u_1 - u_2\|_{L^2(D)}^2 \leq \int_0^t \int_D (f(u_1 + W_A) - f(u_2 + W_A))(u_1 - u_2) dx dt - C_0 \int_0^t \int_D \nabla(u_1 - u_2)^2 dx dt, \tag{4.2} \]

for all \(t \in (0, T) \). In addition, the property \((F_3)\) implies that

\[(f(u_1 + W_A) - f(u_2 + W_A))(u_1 - u_2) \leq C_4 \int_D (u_1 - u_2)^2. \tag{4.3} \]

Substituting (4.3) in (4.2) yields

\[\int_D (u_1 - u_2)^2(x, t) dx \leq C_4 \int_0^t \int_D (u_1 - u_2)^2(x, t) dx \quad \text{for all} \quad t \in (0, T), \]

which in turn implies by Gronwall’s Lemma that

\[u_1 = u_2 \quad \text{a.e. in} \quad D \times (0, T). \]
5 Existence and uniqueness of the solution of Problem \((P_1)\)

In this section we return to the study of the solution \(W_A\) of Problem \((P_1)\), and derive a priori estimates for a Galerkin approximation in \(L^\infty(0,T;L^2(\Omega\times D))\) following an idea due to Gess [10]. We are then in a position to show that \(W_A\) is also bounded in \(L^\infty(0,T;L^q(\Omega\times D))\) for all \(q \geq 2\), which is necessary for the proof of Lemma 3.2.

We show below a priori estimates, which imply that the elliptic term \(\text{div}(A(\nabla W_A))\) is bounded in \(L^2(D)\) having in mind that Problem \((P_1)\) is a special case of Problem (4.33) in [10] (see also equation (2.8) in [10]). Whereas Gess concentrates on the special case of the p-Laplacian, we are interested in the uniformly parabolic case, which corresponds to \(m = 2\) in [10] p.280-281. We also remark that there are no reaction terms i.e. \(f_i = 0\) for all \(i\) from 1 to \(n\) and that the noise is additive. However, Gess assumes that the nonlinear function \(\Psi\) is twice continuously differentiable while we only suppose that \(\Psi \in C^{1,1}(\mathbb{R}^n)\).

We prove the following result.

Theorem 5.1. There exists a unique solution of Problem \((P_1)\).

Proof. To begin with, we approximate the function \(\Psi\) by a sufficiently smooth function \(\Psi^n\) such that

\[
\Psi^n \to \Psi \quad \text{in} \quad C^1(\mathbb{R}^n),
\]

and

\[
\|D^2\Psi^n\|_{L^\infty(\mathbb{R}^n,\mathbb{R}^{n\times n})} \leq c_1, \quad \nabla \Psi^n(0) = 0,
\]

and derive a priori estimates for a Galerkin approximation as in [10] (p. 2363 (2.13)). It turns out that the upper bounds which we find do not depend on \(n\).

We define \(W_{mn}^A\) by

\[
W_{mn}^A(t) = \int_0^t P_m[\text{div}(\nabla \Psi^n(\nabla W_{mn}^A(s)))]ds + \sum_{l=1}^m P_m(\sqrt{\lambda_l}e_l)\beta_l(t)
\]

a.s., where for \(v \in L^2(D)\) \(P_m v := \sum_{j=1}^m (\int_D v w_j) w_j\) and \(P_m : H^1(D) \to H_m = \text{span}\{w_1,...,w_m\}\), \(m \in \mathbb{N}\) is the continuous operator defined by

\[
\|a - P_m a\|_{H^1(D)}^2 = \inf_{v \in H_m} \|a - v\|_{H^1(D)}^2, \quad a \in H^1(D) \quad (\text{c.f [10] p. 2363}).
\]

Note that (cf. [5] p.193)

\[
\|P_m a\|_{H^1(D)} \leq \|a\|_{H^1(D)}.
\]

and that (cf. [10] Remark 2.3)

\[
P_m a \to a, \quad \text{in} \quad H^1(D) \quad \text{as} \quad m \to \infty.
\]

This implies in particular that

\[
P_m a \to a, \quad \text{in} \quad L^2(D) \quad \text{as} \quad m \to \infty.
\]
In addition, we have that (cf. [12] p. 49)
\[
\int_D u_m P_m [\text{div}(\nabla \Psi^n (\nabla W^{m,n}_A))] = - \int_D \nabla u_m \nabla \Psi^n (\nabla W^{m,n}_A). \tag{5.6}
\]
Indeed,
\[
\int_D u_m \sum_{j=1}^m (\int_D \text{div}(\nabla \Psi^n (\nabla W^{m,n}_A)) w_j) w_j = \sum_{j=1}^m \int_D u_m w_j \int_D \text{div}(\nabla \Psi^n (\nabla W^{m,n}_A)) w_j = \int_D \text{div}(\nabla \Psi^n (\nabla W^{m,n}_A)) (\sum_{j=1}^m \int_D u_m w_j) w_j = \int_D \text{div}(\nabla \Psi^n (\nabla W^{m,n}_A)) u_m = - \int_D \nabla u_m \nabla \Psi^n (\nabla W^{m,n}_A).
\]

Lemma 5.1. There exists a positive constant \mathcal{K} such that
\[
\mathbb{E} \int_0^T \int_D (W^{m,n}_A)^2 dx dt \leq \mathcal{K}, \tag{5.7}
\]
\[
\mathbb{E} \int_0^T \int_D |\nabla (W^{m,n}_A)|^2 dx dt \leq \mathcal{K}, \tag{5.8}
\]
\[
\mathbb{E} \int_0^T \|P_m \text{div}(\nabla \Psi^n (\nabla W^{m,n}_A))\|_{L^2(D)}^2 \leq \mathcal{K}, \tag{5.9}
\]
\[
\sup_{t \in (0,T)} \mathbb{E} \int_D (W^{m,n}_A)^2 dx \leq \mathcal{K}. \tag{5.10}
\]

Proof. We first recall Itô’s formula as in [16] p.16-17 which is based on [11] [p.153, Theorem 3.6], and is applicable to systems of stochastic ordinary differential equations.

Lemma 5.2. For a smooth vector function h and an adapted process $(g(t), t \geq 0)$ with $\int_0^T |g(t)| dt < \infty$ almost surely, for all $T > 0$ set
\[
X(t) := \int_0^t g(s) ds + \int_0^t h dW(s), \quad 0 \leq t \leq T,
\]
where h is a vector of components h_l, $l = 1, \ldots, m$ and dW is a vector of components $d\beta_l$, $l = 1, \ldots, m$ with β_l a one-dimensional Brownian motion. Then, for F twice continuously differentiable in X and continuously differentiable in t, one has
\[
F(X(t), t) = F(X(0), 0) + \int_0^t F_t(X(s), s) + \int_0^t F_x(X(s)) g(s) ds + \int_0^t F_{xx}(X(s)) h dW(s) + \frac{1}{2} \sum_{l=1}^m \int_0^t F_{xx}(X(s)) h_l^2 ds. \tag{5.11}
\]
Next we apply Lemma 5.2 to (5.2) with \(hdW = \sum_{l=1}^{m} P_m \sqrt{\lambda_l} \epsilon_l \, \delta_l(t)\) and \(h_l = P_m \sqrt{\lambda_l} \epsilon_l\), supposing that \(F\) does not depend on time and setting

\[
X(t) = W_{A}^{m,n}(t), \\
F(X(t)) = (X(t))^2, \\
F'(X(t)) = 2X(t), \\
F''(X(t)) = 2, \\
g(s) = P_m \text{div}(\nabla \Psi^n(\nabla W_{A}^{m,n}(s))).
\]

We remark that in this case \(F\) does not depend on \(t\). After integrating on \(D\), we obtain almost surely, for all \(t \in [0,T]\),

\[
\int_{D} W_{A}^{m,n}(x,t)^2 \, dx = 2 \int_{0}^{t} \int_{D} W_{A}^{m,n} P_m \text{div}(\nabla \Psi^n(\nabla W_{A}^{m,n}(s))) \, dx \, ds \\
+ 2 \sum_{l=1}^{m} \int_{0}^{t} \int_{D} W_{A}^{m,n} P_m \sqrt{\lambda_l} \epsilon_l \, dx \, \delta_l(s) \\
+ \int_{0}^{t} \sum_{l=1}^{m} \|P_m \sqrt{\lambda_l} \epsilon_l\|^2_{L^2(D)} \, dx \, ds.
\]

(5.12)

Substituting (5.6) into (5.12) we obtain,

\[
\|W_{A}^{m,n}(t)\|^2_{L^2(D)} + 2 \int_{0}^{t} \int_{D} \nabla W_{A}^{m,n} \nabla \Psi^n(\nabla W_{A}^{m,n}(s)) \, dx \, ds \\
= 2 \sum_{l=1}^{m} \int_{0}^{t} \int_{D} W_{A}^{m,n} P_m \sqrt{\lambda_l} \epsilon_l \, dx \, \delta_l(s) + \int_{0}^{t} \sum_{l=1}^{m} \|P_m \sqrt{\lambda_l} \epsilon_l\|^2_{L^2(D)} \, dx \, ds.
\]

(5.13)

Taking the expectation, we obtain

\[
\mathbb{E}\|W_{A}^{m,n}(t)\|^2_{L^2(D)} + 2\mathbb{E} \int_{0}^{t} \int_{D} \nabla W_{A}^{m,n} \nabla \Psi^n(\nabla W_{A}^{m,n}(s)) \, dx \, ds \\
= \mathbb{E} \int_{0}^{t} \sum_{l=1}^{m} \|P_m \sqrt{\lambda_l} \epsilon_l\|^2_{L^2(D)} \, dx \, ds,
\]

(5.14)

where we have used the fact that \(2\mathbb{E}[\sum_{l=1}^{m} \int_{0}^{t} \int_{D} W_{A}^{m,n} \sqrt{\lambda_l} \epsilon_l \, dx \, \delta_l(s)] = 0\) ([13] Theorem 2.3.4 - p.11).

We deduce from (5.3) that

\[
\sum_{l=1}^{m} \|P_m \sqrt{\lambda_l} \epsilon_l\|^2_{L^2(D)} \leq \sum_{l=1}^{m} (\|\sqrt{\lambda_l} \epsilon_l\|^2_{L^2(D)} + \|\nabla (\sqrt{\lambda_l} \epsilon_l)\|^2_{L^2(D)}) \\
\leq (\Lambda_0 + \Lambda_2).
\]

(5.15)
Taking the supremum of equation (5.14) and substituting (5.15) into (5.14) we obtain
\[\sup_{t \in (0,T)} \mathbb{E} \| W^{m,n}_A(t) \|_{L^2(D)}^2 \leq T(\Lambda_0 + \Lambda_2) \leq K. \]

This completes the proof of (5.10).

In order to obtain an H^2-type estimate for W^{m}_A, we take the gradient of the equation (5.2). For all $x \in D$, we have that
\[
\nabla W^{m,n}_A(t) = \int_0^t \nabla \{ P_m[\text{div}(\nabla \Psi^n(\nabla W^{m,n}_A))] \} ds + \sum_{l=1}^m \nabla \{ P_m[\sqrt{\lambda_l}e_l] \} \beta_l(t)
\]
\[
= \int_0^t \nabla \{ P_m[\text{div}(\nabla \Psi^n(\nabla W^{m,n}_A))] \} ds + \sum_{l=1}^m \int_0^t \nabla \{ P_m[\sqrt{\lambda_l}] \} d\beta_l(s).
\]
(5.16)

We fix $x \in D$ and apply below for a second time Itô’s formula Lemma 5.2 to the integral equation (5.16) where in this case $hdW = \sum_{l=1}^m \nabla \{ P_m[\sqrt{\lambda_l}e_l] \} d\beta_l(s)$ and $h_l = \nabla \{ P_m[\sqrt{\lambda_l}] \}$ with:

\[
X(t) = \nabla W^{m,n}_A(x,t),
F(X(t)) = \Psi^n(\nabla W^{m,n}_A(x,t)),
F'(X(t)) = \nabla \Psi^n(\nabla W^{m,n}_A(x,t)) = \nabla \Psi^n(\nabla W^{m,n}_A(x,t)),
F''(X(t)) = D^2 \Psi^n(\nabla W^{m,n}_A(x,t)), \text{ and}
g(s) = \nabla \{ P_m[\text{div}(\nabla \Psi^n(\nabla W^{m,n}_A(x,s)))] \}
\]

After integrating over D, we obtain almost surely, for all $t \in [0,T]$,
\[
\int_D \Psi^n(\nabla W^{m,n}_A(x,t)) dx = \int_0^t \int_D \nabla \Psi^n(\nabla W^{m,n}_A(x,s)) \nabla \{ P_m[\text{div}(\nabla \Psi^n(\nabla W^{m,n}_A(s)))] \} dx ds
\]
\[
+ \sum_{l=1}^m \int_0^t \int_D \nabla \Psi^n(\nabla W^{m,n}_A(x,s)) \nabla \{ P_m[\sqrt{\lambda_l}] \} dx d\beta_l(s)
\]
\[
+ \frac{1}{2} \sum_{l=1}^m \int_0^t \int_D D^2 \Psi^n(\nabla W^{m,n}_A(x,s)) |\nabla P_m[\sqrt{\lambda_l}]|^2 dx ds.
\]
In view of (1.1) and (5.6) we have that

\[
\int_D \Psi^n(\nabla W_{A}^{m,n}(t))dx \leq -\int_0^t \int_D [P_m \text{div}(\nabla \Psi^n(\nabla W_{A}^{m,n}(s)))^2]dxds + \sum_{l=1}^m \int_0^t \nabla \Psi^n(\nabla W_{A}^{m,n}(x,s))\nabla \{P_m(\sqrt{\Lambda_l e_l})\}dx\beta_l(s)
\]

\[
+ \frac{1}{2} \|D^2(\nabla W_{A}^{m,n}(s))\|_{L^\infty(D)} \sum_{l=1}^m \int_0^t |\nabla P_m(\sqrt{\Lambda_l e_l})|^2gs
\]

\[
\leq -\int_0^t \|P_m \text{div}(\nabla \Psi^n(\nabla W_{A}^{m,n}(s)))\|_{L^2(D)}^2ds + \sum_{l=1}^m \int_0^t \nabla \Psi^n(\nabla W_{A}^{m,n}(x,s))\nabla \{P_m(\sqrt{\Lambda_l e_l})\}dx\beta_l(s)
\]

\[
+ \frac{c_1}{2} \sum_{k=1}^m \int_0^t \|\nabla P_m\sqrt{\Lambda_l e_l}\|_{L^2(D)}^2ds.
\]

(5.17)

Thus taking the expectation of (5.17) and using the fact that

\[
\mathbb{E}\left[\sum_{l=1}^m \int_0^t \nabla \Psi^n(\nabla W_{A}^{m,n}(x,s))\nabla \{P_m(\sqrt{\Lambda_l e_l})\}dx\beta_l(s)\right] = 0,
\]

we obtain

\[
\mathbb{E} \int_D \Psi^n(\nabla W_{A}^{m,n}(t))dx + \mathbb{E} \int_0^t \|P_m \text{div}(\nabla \Psi^n(\nabla W_{A}^{m,n}(s)))\|_{L^2(D)}^2ds
\]

\[
\leq \frac{c_1}{2} \sum_{l=1}^m \mathbb{E} \int_0^t \|\nabla P_m\sqrt{\Lambda_l e_l}\|_{L^2(D)}^2ds.
\]

(5.18)

Adding (5.14) and (5.18), using (5.3), (1.5) and (1.6) we obtain

\[
\mathbb{E} \int_D \Psi^n(\nabla W_{A}^{m,n}(t))dx + \mathbb{E} \|W_{A}^{m,n}\|_{L^2(D)}^2 + \mathbb{E} \int_0^t \|P_m \text{div}(\nabla \Psi^n(\nabla W_{A}^{m,n}(s)))\|_{L^2(D)}^2ds
\]

\[
+ 2\mathbb{E} \int_0^t \int_D \nabla W_{A}^{m,n}\nabla \Psi^n(\nabla W_{A}^{m,n}(s))dxds
\]

\[
\leq c_0 \int_0^t \sum_{l=1}^m \left(\|P_m\sqrt{\Lambda_l e_l}\|_{L^2(D)}^2 + \|\nabla P_m\sqrt{\Lambda_l e_l}\|_{L^2(D)}^2\right)
\]

\[
\leq c_0 \int_0^t \sum_{l=1}^m \left(\|\sqrt{\Lambda_l e_l}\|_{L^2(D)}^2 + \|\nabla \sqrt{\Lambda_l e_l}\|_{L^2(D)}^2\right)
\]

\[
\leq c_0 \int_0^t \left(\sum_{l=1}^m \lambda_l ||e_l||_{L^2(D)}^2 + \sum_{l=1}^m \lambda_l ||\nabla e_l||_{L^2(D)}^2\right)ds
\]

\[
\leq c_0 T(\Lambda_0 + \Lambda_2),
\]

25
where $c_0 = \max(1, \frac{c_1}{2})$. In view of (1.3) we obtain,
\[
E \int_D \Psi^n(\nabla W_A^{m,n}(t)) \, dx + E\|W_A^{m,n}(t)\|_{L^2(D)}^2
+ E \int_0^t \|P_m[\text{div}(\nabla \Psi^n(\nabla W_A^{m,n}(s)))]\|_{L^2(D)}^2 \, ds
\leq c_0 T(\Lambda_0 + \Lambda_2) \leq K,
\]
which completes the proof of (5.7), (5.8) and (5.9).

Hence there exist a subsequence which we denote again by $W_A^{m,n}$ and a function $W_A \in L^2(\Omega \times (0, T); H^1) \cap L^\infty(0, T; L^2(\Omega \times D))$ such that
\[
W_A^{m,n} \rightharpoonup W_A \text{ weakly in } L^2(\Omega \times (0, T); H^1(D)) \quad (5.19)
\]
\[
P_m \text{div}(\nabla \Psi^n(\nabla W_A^{m,n}(s))) \rightharpoonup \tilde{\Phi} \text{ weakly in } L^2(\Omega \times (0, T); L^2(D)) \quad (5.21)
\]
as $m, n \to \infty$.

In addition, one can show the following result.

Lemma 5.3.
\[
\sum_{l=1}^m P_m(\sqrt{\lambda_l}e_l)\beta_l(t) \to \sum_{l=1}^\infty \sqrt{\lambda_l}e_l\beta_l(t) \quad \text{in } L^\infty((0, T); L^2(\Omega; L^2(D))). \quad (5.22)
\]

Proof. For all $t \in [0, T]$,
\[
E \int_D \left| \sum_{l=1}^\infty \sqrt{\lambda_l}e_l\beta_l(t) - \sum_{l=1}^m P_m(\sqrt{\lambda_l}e_l)\beta_l(t) \right|^2 \leq 2E \int_D \left| \sum_{l=1}^\infty \sqrt{\lambda_l}e_l\beta_l(t) - \sum_{l=1}^m \sqrt{\lambda_l}e_l\beta_l(t) \right|^2 \leq 2E \int_D \left| \sum_{l=1}^m P_m(\sqrt{\lambda_l}e_l)\beta_l(t) \right|^2
\]
\[
+ 2E \int_D \left| \sum_{l=m+1}^\infty \sqrt{\lambda_l}e_l\beta_l(t) \right|^2 \leq 2E \int_D \left| \sum_{l=m+1}^\infty \sqrt{\lambda_l}e_l\beta_l(t) \right|^2 \leq 2E \int_D \left| \sum_{l=1}^m [P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l]\beta_l(t) \right|^2 = W_1 + W_2.
\]
By [9] p. 20 we deduce that $W_1 \to 0$ in $C([0,T])$ as $m \to \infty$. For W_2, by the properties of the Brownian motion, we have that

$$2\int_D E \left| \sum_{l=1}^{m} [P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l] \beta_l(t) \right|^2$$

$$= 2\int_D E \left(\sum_{l=1}^{m} [P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l]^2 \beta_l^2(t) \right)$$

$$+ 2 \sum_{l \neq l_2} m [P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l] \beta_l [P_m(\sqrt{\lambda_{l_2}}e_{l_2}) - \sqrt{\lambda_{l_2}}e_{l_2}] \beta_{l_2} \right) dx$$

$$= 2\int_D \sum_{l=1}^{m} [P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l]^2 E[\beta_l^2(t)]$$

$$= 2 \sum_{l=1}^{m} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2 t$$

$$\leq 2T \sum_{l=1}^{\infty} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2, \quad (5.23)$$

In order to prove that the right-hand side of (5.23) tends to zero as $m \to \infty$, we use (5.3) and (5.5) to deduce that

$$\sum_{l=1}^{\infty} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2$$

$$= \sum_{l=1}^{K} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2 + \sum_{l=K+1}^{\infty} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2$$

$$\leq \sum_{l=1}^{K} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2 + 2 \sum_{l=K+1}^{\infty} \|\sqrt{\lambda_l}e_l\|_{H^1(D)}^2$$

$$\leq \sum_{l=1}^{K} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2 + 4 \sum_{l=K+1}^{\infty} (\lambda_l + \lambda_l \|\nabla e_l\|_{L^2(D)})$$

$$\leq P_1 + P_2, \quad (5.24)$$

Let $\varepsilon > 0$ be arbitrary. We choose K such that $P_2 \leq \frac{\varepsilon}{2}$. For a fixed K, we choose m sufficiently large such that $P_1 \leq \frac{\varepsilon}{2}$. Therefore,

$$\sum_{l=1}^{\infty} \|P_m(\sqrt{\lambda_l}e_l) - \sqrt{\lambda_l}e_l\|_{L^2(D)}^2 \leq \varepsilon, \quad (5.25)$$

so that $W_2 \to 0$ in $C([0,T])$ as $m \to \infty$. \hfill \Box

Let y be an arbitrary bounded random variable, and let ψ be an arbitrary bounded function on $(0,T)$. Next we multiply the equation (5.2) by the product $y \psi$, integrate on D.
between 0 and \(T\) and take the expectation to obtain
\[
\mathbb{E} \int_0^T \int_D y\psi(t)W_A^{m,n} w_j dx dt = \mathbb{E} \int_0^T y\psi(t) \left\{ \int_0^t \langle P_m(\text{div} \Psi^n (\nabla W_A^{m,n})), w_j \rangle ds \right\} dt \\
+ \mathbb{E} \int_0^T y\psi(t) \left\{ \int_D \sum_{l=1}^m P_m(\sqrt{\lambda_l}e_l)\beta_l(t)w_j dx \right\} dt.
\]
Passing to the limit when \(m, n \to \infty\), using (5.19)-(5.21) and (5.22), and remembering that the linear combinations of \(w_j\) are dense in \(H^1(D)\), yields
\[
\mathbb{E} \int_0^T \int_D y\psi(t)W_A(t) \tilde{w} dx dt = \mathbb{E} \int_0^T y\psi(t) \left\{ \int_0^t \langle \tilde{\Phi}, \tilde{w} \rangle ds \right\} dt \\
+ \mathbb{E} \int_0^T y\psi(t) \left\{ \int_D \sum_{l=1}^\infty (\sqrt{\lambda_l}e_l)\beta_l(t)\tilde{w} dx \right\} dt,
\]
for all \(\tilde{w} \in H^1(D)\). Therefore, we deduce that
\[
W_A(t) = \int_0^t \tilde{\Phi}(s) ds + \sum_{l=1}^\infty \sqrt{\lambda_l}e_l\beta_l(t) \text{ on } \Omega \times (0, T) \times D. \tag{5.26}
\]
We will prove below, using again the monotonicity method, that \(\tilde{\Phi} = \text{div}(\nabla \Psi(\nabla W_A))\).

5.1 Monotonicity argument

Let \(w\) be such that \(w \in L^2(\Omega \times (0, T); H^1(D))\) and let \(c\) be a positive constant. We define
\[
\mathcal{O}_{mn} = \mathbb{E} \left[\int_0^T e^{-cs} \left\{ 2(P_m[\text{div} \Psi^n (\nabla W_A^{m,n})]) - P_m[\text{div} \Psi^n (\nabla w)] \right\}, W_A^{m,n} - w \right\} ds \\
- c||W_A^{m,n} - w||^2 \right\} ds
\]
\[
= J_1 + J_2.
\]
We will check as before the following result

Lemma 5.4.

\[O_{mn} \leq 0. \]

Proof. Using (5.6) and (1.3) we have that
\[
J_1 = \left\langle P_m[\text{div} \Psi^n (\nabla W_A^{m,n})]) - P_m[\text{div} \Psi^n (\nabla w)] \right\rangle, W_A^{m,n} - w \right\} ds \\
= - \int_D [\nabla \Psi^n (\nabla W_A^{m,n}) - \nabla \Psi^n (\nabla w)] \nabla (W_A^{m,n} - w) ds \\
\leq -C_0 ||\nabla (W_A^{m,n} - w)||^2_{L^2(D)} \leq 0, \tag{5.27}
\]
which completes the proof. \(\blacksquare\)
We write O_{mn} in the form $O_{mn} = O^1_{mn} + O^2_{mn}$ where

$$O^1_{mn} = \mathbb{E}\left[\int_0^T e^{-cs} \{2\langle P_m[\text{div}(\nabla \Psi^n(\nabla W_{A}^{mn}))], W_{A}^{mn}\rangle - c\|W_{A}^{mn}\|^2\}\}ds.\right]$$

(5.28)

We apply Ito formula Lemma 5.2 on (5.2) with $F(X,t) = e^{-ct}(X)^2$ and $F_t = -ce^{-ct}(X)^2$. After integrating on D and taking the expectation, we obtain almost surely, for all $t \in [0,T]$,

$$\mathbb{E}[e^{-cT}\|W_{A}^{mn}(x,T)\|^2_{L^2(D)}] = -c\mathbb{E}\left[\int_0^T e^{-cs}\|W_{A}^{mn}(x,s)\|^2_{L^2(D)}ds\right]$$

$$+ 2\mathbb{E}\left[\int_0^T e^{-cs} \int_D W_{A}^{mn} P_m[\text{div}(\nabla \Psi^n(\nabla W_{A}^{mn}(s)))]dxds\right]$$

$$+ 2\mathbb{E}\left[\sum_{l=1}^m \int_0^T e^{-cs} \int_D W_{A}^{mn} P_m \sqrt{\lambda_l} \epsilon_l dxd\beta_l(s)\right]$$

$$+ \int_0^T e^{-cs} \sum_{l=1}^m \|P_m \sqrt{\lambda_l} \epsilon_l\|^2_{L^2(D)}ds.\right]$$

(5.29)

It follows from (5.28),(5.29) and the fact that

$$\mathbb{E}\left[\sum_{l=1}^m \int_0^T e^{-cs} \int_D W_{A}^{mn} P_m \sqrt{\lambda_l} \epsilon_l dxd\beta_l(s)\right] = 0$$

that

$$O^1_{mn} = \mathbb{E}[e^{-cT}\|W_{A}^{mn}(T)\|^2_{L^2(D)}] - \int_0^T e^{-cs} \sum_{l=1}^m \|P_m \sqrt{\lambda_l} \epsilon_l\|^2_{L^2(D)}ds.\right]$$

(5.30)
In view of [5] p.193 we have that
\[
\left| \int_0^T e^{-cs} \sum_{l=1}^m \| P_m \sqrt{\lambda_l} e_l \|^2_{L^2(D)} - \sum_{l=1}^\infty \| \sqrt{\lambda_l} e_l \|^2_{L^2(D)} \right| ds \\
\leq \int_0^T e^{-cs} \sum_{l=1}^m \| P_m \sqrt{\lambda_l} e_l \|^2_{L^2(D)} - \sum_{l=1}^\infty \| \sqrt{\lambda_l} e_l \|^2_{L^2(D)} \right| ds \\
+ \int_0^T e^{-cs} \sum_{l=m+1}^\infty \| \sqrt{\lambda_l} e_l \|^2_{L^2(D)} ds \\
\leq T \sum_{l=1}^\infty \| P_m \sqrt{\lambda_l} e_l \|^2_{L^2(D)} - \| \sqrt{\lambda_l} e_l \|^2_{L^2(D)} \right| + T \sum_{l=m+1}^\infty \lambda_l \\
\leq T \sum_{l=1}^\infty \| \sqrt{\lambda_l} e_l - P_m \sqrt{\lambda_l} e_l \|^2_{L^2(D)} + T \sum_{l=m+1}^\infty \lambda_l \\
\leq \varepsilon,
\]
which, in view of (5.25) and (1.4), tends to zero as \(m \to \infty \). Thus,
\[
\lim_{m \to \infty} \int_0^T e^{-cs} \sum_{l=1}^m \| P_m \sqrt{\lambda_l} e_l \|^2_{L^2(D)} ds = \int_0^T e^{-cs} \sum_{l=1}^\infty \| \sqrt{\lambda_l} e_l \|^2_{L^2(D)} ds.
\]

Letting \(m \) and \(n \) tend to infinity in (5.30), we deduce that
\[
\lim_{m,n \to \infty} \sup \mathcal{O}_{mn}^1 = \mathbb{E}[e^{-cT} \| W_A(T) \|_{L^2(D)}^2] - \int_0^T e^{-cs} \sum_{l=1}^\infty \lambda_l ds + \delta e^{-cT},
\] (5.31)
where
\[
\delta = \lim_{m,n \to \infty} \sup \mathbb{E}[\| W_A^{m,n}(T) \|^2] - \mathbb{E}[\| W_A(T) \|^2] \geq 0.
\]

On the other hand, the equation (5.26) implies that a.s. in \(L^2(D) \)
\[
W_A(t) = \int_0^t \Phi(s) ds + \int_0^t dW(s), \quad \forall t \in [0,T],
\] (5.32)

Next we recall a simplified form of the Itô’s formula given by [7] (Theorem 4.32 p.106), which will suffice for our purpose. We do so since the Itô’s formula given in Lemma 5.2 only applies to finite dimensional problems.

Lemma 5.5. Let \(h \) be an \(L^2(D) \)-valued progressively measurable Bochner integrable process. Consider the following well defined process :
\[
X(t) = \int_0^t h(s) ds + W(t), \quad t \in [0,T].
\]

Assume that a function $F : [0, T] \times L^2(D) \to \mathbb{R}$ and its partial derivatives F_t, F_x, F_{xx} are uniformly continuous on bounded subsets of $[0, T] \times L^2(D)$, and that $F(X(0), 0) = 0$. Then, a.s., for all $t \in [0, T]$,

$$F(X(t), t) = \int_0^t F_t(X(s), s) ds + \int_0^t \langle F_x(X(s), s), dW(s) \rangle_{L^2(D)} + \frac{1}{2} \int_0^t Tr[F_{xx}(X(s), s)Q] ds$$

where

$$Tr[F_{xx}(X(s))Q] = \sum_{l=1}^{\infty} \langle F_{xx}(X(s), s)Qe_l, e_l \rangle_{L^2(D)}$$

and

$$\langle u, v \rangle_{L^2(D)} = \int_D u(x)v(x) dx,$$

where we note that $TrA = \sum_{l=1}^{\infty} \langle Ae_l, e_l \rangle_{L^2(D)}$ is bounded linear operator on $L^2(D)$.

Applying Lemma 5.5 to (5.32) with $X = W_A, F(X(t), t) = e^{-ct}\|X\|^2_{L^2(D)}, F_t(X(t), t) = -ce^{-ct}\|X\|^2_{L^2(D)}, F_x(X(t), t) = 2e^{-ct}X, h = \tilde{\Phi}, F_{xx}(X(t), t) = 2e^{-ct}I$.

After taking the expectation, we deduce that

$$\mathbb{E}[e^{-cT}\|W_A\|^2] = -c\mathbb{E}[\int_0^T e^{-cs}\|W_A\|^2 ds] + 2\mathbb{E}[\int_0^T e^{-cs}(\tilde{\Phi}, W_A) ds] + 2\mathbb{E}[\sum_{l=1}^{\infty} \int_0^T e^{-cs} \int_D W_A \sqrt{\lambda_l} e_l(x) d\beta_l(s)] + \int_0^T e^{-cs} \sum_{l=1}^{\infty} \lambda_l ds,$$

which we combine with (5.31) to deduce that

$$\lim_{m,n \to \infty} \sup O_{1mn}^1 = 2\mathbb{E}[\int_0^T e^{-cs}(\tilde{\Phi}, W_A)] - c\mathbb{E}[\int_0^T e^{-cs}\|W_A\|^2 ds] + \delta e^{-cT}. \quad (5.33)$$

It remains to compute the limit of O_{mn}^2:

$$O_{mn}^2 = O_{mn} - O_{1mn}^1$$

$$= \mathbb{E}[\int_0^T e^{-cs}\{ -2\langle P_m(\text{div} \nabla \Psi^n(\nabla w)), W_A^{m,n} \rangle - 2\langle P_m(\text{div} \nabla \Psi^n(\nabla W_A^{m,n})), w \rangle$$

$$+ 2\langle P_m(\text{div} \nabla \Psi^n(\nabla w)), w \rangle - c\|w\|^2 + 2c(W_A^{m,n}, w) \} ds.$$
In view of (5.19), (5.21), using (5.1) and (5.6) we deduce that
\[
\lim_{m,n \to \infty} O_{mn}^2 = \mathbb{E} \int_0^T e^{-cs} \{-2 \langle \text{div} \nabla \Psi(w), W_A \rangle - 2 \langle \tilde{\Phi} - \text{div} \nabla \Psi(w), w \rangle \\
- c\|w\|^2 + 2c \langle W_A, w \rangle \} ds.
\] (5.34)

Combining (5.33) and (5.34), and remembering that \(O_{mn} \leq 0\), yields
\[
\mathbb{E} \int_0^T e^{-cs} \{ 2 \langle \tilde{\Phi} - \text{div} \nabla \Psi(w), W_A - w \rangle - c\|W_A - w\|^2 \} ds + \delta e^{-cT} \leq 0.
\]

Let \(\tilde{v} \in L^2(\Omega \times (0,T); H^1(D))\) be arbitrary and set
\[w = W_A - \lambda \tilde{v}, \text{ with } \lambda \in \mathbb{R}_+.\]
Dividing by \(\lambda\) and letting \(\lambda \to 0\), we find that :
\[
\mathbb{E} \int_0^T e^{-cs} \langle \tilde{\Phi} - \text{div} \nabla \Psi(W_A), \tilde{v} \rangle dt \leq 0.
\]
Since \(\tilde{v}\) is arbitrary, it follows that
\[
\mathbb{E} \int_0^T \langle \tilde{\Phi}, \tilde{v} \rangle = \mathbb{E} \int_0^T \langle \text{div} \nabla \Psi(W_A), \tilde{v} \rangle,
\]
for all \(\tilde{v} \in L^2(\Omega \times (0,T); H^1(D))\),
that is
\[
\tilde{\Phi} = \text{div} \nabla \Psi(W_A)
\] (5.35)
a.s. a.e. in \(D \times (0,T)\).
One finally concludes that \(W_A\) satisfies Definition 2.1.

Next, we prove below the boundedness of \(W_A\) in \(L^\infty(0,T; L^q(\Omega \times D))\), for all \(q \geq 2\).
The proof of this result is based on an article by Bauzet, Vallet, Wittbold [2] where a similar result was proved for a convection-diffusion equation with a multiplicative noise on \(\mathbb{R}^n\) involving a standard adapted one-dimensional Brownian motion. More precisely, we follow the proof of Proposition A.5 of [2].

Theorem 5.2. Let \(W_A\) be a solution of Problem \((P_1)\); then
\(W_A \in L^\infty(0,T; L^q(\Omega \times D))\), for all \(q \geq 2\).

Proof. For each positive constant \(k\), denote by \(\Phi_k : \mathbb{R} \to \mathbb{R}\) the function
\[
\Phi_k(\xi) = \begin{cases}
|\xi|^q, & \text{if } |\xi| < k, \\
\frac{q}{2}(q-1)k^{q-2}\xi^2 - q(q-2)k^{q-1}|\xi| + \left(q - 1\right)(q - 1)k^q, & \text{if } k \leq |\xi|.
\end{cases}
\]
\(\Phi_k\) is a convex \(C^2\) function and \(\Phi'_k\) is a Lipschitz-continuous function with \(\Phi'_k(0) = 0\). The
function Φ_k satisfies the inequalities $0 \leq \Phi_k'(\xi) \leq c(k)\xi$ and $0 \leq \Phi_k(\xi) = \int_0^\xi \Phi_k'(\zeta)d\zeta \leq \frac{c(k)}{2}\xi^2$ for all $\xi \in \mathbb{R}^+$. This yields in view of Definition 2.1 (i) that,

$$\mathbb{E}\int_D \Phi_k(W_A(x,t))dx \leq \frac{c(k)}{2}\mathbb{E}\int_D W_A^2(x,t)dx \leq \tau(k)$$

for a.e. $t \in [0,T]$.

Lemma 5.6. (i) One has $0 \leq \Phi_k''(\xi) \leq c_k$ for all $\xi \in \mathbb{R}$ where c_k is a positive constant depending on k.

(ii) One has $0 \leq \Phi_k''(\xi) \leq q(q-1)(1+\Phi_k(\xi))$, for all $\xi \in \mathbb{R}$.

Proof. (i)

$$\Phi_k''(\xi) = \begin{cases} q(q-1)|\xi|^{q-2} & \text{if } 0 \leq |\xi| < k, \\ q(q-1)k^{q-2} & \text{if } k \leq |\xi|. \end{cases}$$

Thus,

$$\Phi_k''(\xi) \leq q(q-1)k^{q-2} =: c_k$$

(ii) If $|\xi| < k$, $\Phi_k''(\xi) = q(q-1)|\xi|^{q-2}$,

- if $1 \leq |\xi| < k$, $|\xi|^{q-2} \leq |\xi|^q$ which gives the result.
- if $0 \leq |\xi| < 1$, $|\xi|^{q-2} \leq |\xi|^q$ and $0 < 1 + |\xi|^q$.

If $|\xi| \geq k$, $\Phi_k''(\xi) = q(q-1)k^{q-2}$ the problem then reduces to prove that

$$H(\xi) = 1 + \frac{q}{2}(q-1)k^{q-2}\xi^2 - q(q-2)k^{q-1}|\xi| + \left(\frac{q}{2} - 1\right)(q-1)k^q - k^{q-2} \geq 0$$

Let us consider the function $H(\xi) = F(\xi) + G$ where

$$F(\xi) = \frac{q}{2}(q-1)k^{q-2}\xi^2 - q(q-2)k^{q-1}|\xi|$$

and

$$G = \left(\frac{q}{2} - 1\right)(q-1)k^q - k^{q-2} + 1.$$

- if $\xi \geq k$, $H'(\xi) = F'(\xi) \geq 0$ and $H(k) \geq 0$ for all $k > 0$, thus $H(\xi) \geq H(k) \geq 0$ for all $\xi \geq k$.
- if $\xi \leq -k$ then $H(-\xi) = F(-\xi) + G \geq 0$. Therefore

$$H(\xi) \geq H(-\xi) \geq 0.$$

Next we apply Lemma 5.5 to (2.1), supposing that F does not depend on time and setting

$$X(t) = W_A(t),$$

$$F(X(t)) = \int_D \Phi_k(X(t))dx,$$

$$F'(X(t)) = \Phi_k'(X(t)),$$

$$h = \text{div}(A(\nabla W_A)),$$

$$F''(X(t)) = \Phi_k''(X(t)).$$

33
\[
\int_D \Phi_k(W_A(t)) \, dx = \int_0^t \langle \text{div}(A(\nabla W_A(s))), \Phi_k'(W_A(s)) \rangle \, ds \\
+ \int_0^t \int_D \Phi_k'(W_A(s)) \, dW(s) \\
+ \frac{1}{2} \sum_{l=1}^\infty \int_0^t \int_D \Phi_k''(W_A) \lambda_l |e_l|^2 \, dx \, ds \\
\leq - \int_0^t \int_D \Phi_k''(W_A) \nabla W_A(s) A(\nabla W_A(s)) \, ds \\
+ \int_0^t \int_D \Phi_k'(W_A(s)) \, dW(s) \\
+ \frac{1}{2} \sum_{l=1}^\infty \lambda_l \|e_l\|_{L^\infty}^2 \int_0^t \int_D \Phi_k''(W_A) \, dx \, ds.
\]
(5.36)

Taking the expectation of (5.36), and using the fact that \(\Phi_k'' \geq 0 \), we deduce from the fact that
\[
E \int_0^t \int_D \Phi_k'(W_A) \, dW(s) = 0 \quad (|13| \text{ Theorem 2.3.4 - p.11}),
\]
from the coercivity property (1.3) and from (1.5) that
\[
E \int_D \Phi_k(W_A(t)) \, dx \leq - C_0 E \int_0^t \int_D \Phi_k''(W_A) |\nabla W_A|^2 + \frac{1}{2} \Lambda_1 E \int_0^t \int_D \Phi_k''(W_A) \, dx \, ds.
\]

Then using Lemma 5.6 (ii) and Gronwall Lemma we obtain, defining
\[
C(q) = \frac{1}{2} q(q-1),
\]
\[
E \int_D \Phi_k(W_A(t)) \, dx \leq \frac{1}{2} q(q-1) \Lambda_1 E \int_0^t \int_D (1 + \Phi_k(W_A)) \, dx \, ds \\
\leq C(q) \Lambda_1 t |D| + C(q) \Lambda_1 E \int_0^t \int_D \Phi_k(W_A) \, dx \, ds \\
\leq C(q) \Lambda_1 t |D| e^{C(q) \Lambda_1 t}.
\]

Thus, \(E \int_D \Phi_k(W_A(t)) \, dx \) is bounded independently of \(k \).

Finally, since \(\Phi_k(W_A(x,t)) \) converges to \(|W_A(x,t)|^q \) for a.e. \(x \) and \(t \) when \(k \) goes to infinity, if follows from Fatou’s Lemma that
\[
E \int_D |W_A(x,t)|^q \, dx = E \int_D \lim_{k \to \infty} \Phi_k(W_A(x,t)) \, dx = E \int_D \lim inf_{k \to \infty} \Phi_k(W_A(x,t)) \, dx \\
\leq \lim inf_{k \to \infty} E \int_D \Phi_k(W_A(x,t)) \, dx \\
\leq C(q) \Lambda_1 t |D| e^{C(q) \Lambda_1 t}
\]
for all \(t > 0. \)

Therefore, \(W_A \in L^\infty(0,T; L^q(\Omega \times D)) \) for all \(q \geq 2. \)
5.2 Uniqueness of the solution W_A

Let ω be given such that two pathwise solutions of Problem (P_2), $W^1_A = W^1_A(\omega, x, t)$ and $W^2_A = W^2_A(\omega, x, t)$ satisfy

\[
\begin{align*}
&u_i(\cdot \cdot, \omega) \in L^{\infty}(0, T; L^2(D)) \cap L^2(0, T; H^1(D)), \\
&\text{div}(A(\nabla(u_i + W_A))) \in L^2((0, T); L^2(D))
\end{align*}
\]

for $i = 1, 2$. The difference of the two solutions satisfies the equation

\[
W^1_A - W^2_A = \int_0^t \text{div}(A(\nabla W^1_A(s)) - A(\nabla W^2_A(s))) ds
\]

in $L^2((0, T) \times D)$.

We take the duality product of this equation with $W^1_A - W^2_A \in L^2((0, T); H^1(D))$. In view of (1.3) we obtain

\[
\begin{align*}
||W^1_A - W^2_A||^2_{L^2(D)} & = -\int_0^t [A(\nabla W^1_A) - A(\nabla W^2_A)]\nabla(W^1_A - W^2_A) \\
& \leq -C_0 \int_0^t ||\nabla(W^1_A - W^2_A)||^2_{L^2(D)},
\end{align*}
\]

which in turn implies that

\[
W^1_A = W^2_A \quad \text{a.e. in } D \times (0, T).
\]

\[\square\]

A Appendix

In this appendix we prove the properties $(F_1), (F_2)$ and (F_3) for the nonlinear function f.

\begin{enumerate}
 \item [(F_1)] There exist positive constants C_1 and C_2 such that
 \[f(a + b)a \leq -C_1 a^{2p} + f_2(b), \quad |f_2(b)| \leq C_2 (b^{2p} + 1), \quad \text{for all } a, b \in \mathbb{R}\]
\end{enumerate}

Proof. For simplicity we suppose that $b_j = 1$ for all $j = 0, \ldots, 2p - 2$ and that $b_{2p-1} = -1$.

\[
f(a + b) = \sum_{j=0}^{2p-1} b_j (a + b)^j
\]

\[
= -(a + b)^{2p-1} + (a + b)^{2p-2} + \cdots + (a + b)^2 + (a + b)
\]

\[
f(a + b)a = -(a + b)^{2p-1}a + (a + b)^{2p-2}a + \cdots + (a + b)^2a + (a + b)a
\]

\[
= L_{2p-1} + L_{2p-2} + \ldots L_1.
\]

(A.1)
We first estimate the term L_{2p-1}.

\[L_{2p-1} = -(a + b)^{2p-1} a = -a^{2p} - C_{2p-1}^1 a^{2p-1} b - C_{2p-1}^2 a^{2p-2} b^2 - \cdots - C_{2p-1}^{2p-3} a^3 b^{2p-3} \]

We suppose that (A.4) is true for $n = 2p-1$. Thus,

\[L_{2p-1} \leq -a^{2p} + C_{2p-1}^1 \frac{\varepsilon(2p-1)|a|^{2p}}{2p} + C_{2p-1}^2 \frac{|b|^{2p}}{2p\varepsilon} + \cdots + \frac{\varepsilon|a|^{2p}}{2p}. \]

Similarly, we find that.

Lemma A.1.

\[L_q \leq \varepsilon C_1(p)|a|^{2p} + \frac{C_3(p)}{\varepsilon} |b|^{2p} + \frac{1}{\varepsilon} C_4(p), \quad \text{for all } q \in \{1, \ldots, 2p - 2\}. \]

Proof. By induction, we first prove that (A.4) is true for $q = 1$.

Using Hölder inequality, we deduce that

\[L_1 = (a + b)a = a^2 + ab \leq \frac{\varepsilon}{p} |a|^{2p} + \frac{p - 1}{p\varepsilon} + \frac{\varepsilon}{2p} |a|^{2p} + \frac{2p - 1}{2p\varepsilon} |b|^{2p-1} \]

\[\leq \frac{3\varepsilon}{2p} |a|^{2p} + \frac{p - 1}{p\varepsilon} + \frac{2p - 1}{2p\varepsilon} \left(\frac{1}{(2p - 1)} |b|^{2p} + \frac{(2p - 2)}{2p - 1} \right) \]

\[\leq \frac{3\varepsilon}{2p} |a|^{2p} + \frac{1}{2p\varepsilon} |b|^{2p} + \frac{2p - 2}{p\varepsilon}. \]

We suppose that (A.4) is true for $q = 2p - 3$ and prove that it remains true for $q = 2p - 2$.

Using Hölder inequality, we obtain

\[L_{2p-2} = (a + b)^{2p-2} a = a^{2p-1} + C_{2p-2}^1 a^{2p-2} b + \cdots + C_{2p-2}^{2p-3} a^3 b^{2p-3} + a b^{2p-2} \]

\[\leq \frac{\varepsilon(2p - 1)}{2p} |a|^{2p} + \frac{1}{2p\varepsilon} + \cdots + \frac{\varepsilon}{2p} |a|^{2p} + \frac{2p - 1}{2p\varepsilon} |b|^{(2p-2)\varepsilon} \]

\[\leq \varepsilon C_1(p)|a|^{2p} + \frac{1}{\varepsilon} C_3(p)|b|^{2p} + C_4(p). \]

\[\text{Eq. A.5} \]
Combining (A.1),(A.3) and Lemma A.1 and choosing $\varepsilon < \frac{1}{2(C'(p) + C_1(p))}$ yields

$$f(a + b)a \leq \left(-1 + \varepsilon(C'(p) + C_1(p))\right)|a|^{2p} + \frac{1}{\varepsilon}C_3(p)|b|^{2p} + C_4(p) \leq -\frac{1}{2}a^{2p} + C_2(b^{2p} + 1),$$

with $C_2 = \max(\frac{1}{\varepsilon}C_3(p), C_4(p))$.

(F_2) There exists a positive constant C_3 such that

$$|f(s)| \leq C_3|s - M|^{2p - 1} + \tilde{C}_3(M).$$

Proof. Again, we suppose that $b_j = 1$ for all $j = 0, \ldots, 2p - 2$ and that $b_{2p-1} = -1$.

$$f(s) = -s^{2p-1} + s^{2p-2} + \ldots + s^2 + s. \quad (A.6)$$

We estimate the leading term of (A.6)

$$|s|^{2p-1} = |s - M + M|^{2p-1} = |s - M|^{2p-1} + C_{2p-1}^{2p-1}|s - M|^{2p-2}M + \ldots + C_{2p-1}^{2p-2}|s - M|^{2p-2}M + M^{2p-1}.$$

By Hölder inequality, there holds

$$|s - M|^{2p-2}M \leq \frac{e(2p - 2)}{2p - 1} |s - M|^{2p - 1} + \frac{M^{2p-1}}{e(2p - 1)},$$

so that

$$|s|\leq (1 + \varepsilon C(p))|s - M|^{2p - 1} + (1 + \frac{1}{\varepsilon}C(p))M|^{2p - 1}. \quad (A.7)$$

Next, we estimate the last term on the right-hand-side of (A.6).

It follows from Hölder inequality that

$$|s| \leq |s - M| + |M| \leq \frac{e}{2p - 1} |s - M|^{2p - 1} + \frac{2p - 2}{e(2p - 1)} + |M|. \quad (A.8)$$

Computing all the other terms of (A.6) similarly and substituting them in (A.6) we obtain

$$|f(s)| \leq C_3|s - M|^{2p - 1} + \tilde{C}_3(M).$$
There exists a positive constant C_4 such that
\[f'(s) \leq C_4. \]

Proof.
\[f'(s) = -(2p - 1)s^{2p-2} + (2p - 2)s^{2p-3} + \ldots + 2s + 1. \tag{A.9} \]

By Hölder inequality
\[|s|^{2p-3} \leq \frac{\varepsilon(2p - 3)}{(2p - 2)} |s|^{2p-2} + \frac{1}{(2p - 2)e}, \ldots \tag{A.10} \]
\[|s| \leq \frac{\varepsilon}{2p - 2} |s|^{2p-2} + \frac{2p - 3}{(2p - 2)e}. \tag{A.11} \]

We compute all the other terms similarly, and substitute them in (A.9) to obtain
\[f'(s) \leq -(2p - 1) + \varepsilon C(p)|s|^{2p-2} + \frac{\tilde{C}(p)}{\varepsilon} + 1. \]

Choosing $\varepsilon \leq \frac{2p - 1}{2C(p)}$ we conclude that
\[f'(s) \leq C_4. \]

\[\square \]

Acknowledgments

The authors would like to thank Professor T. Funaki and Professor M. Hofmanova for invaluable discussions and the GDRI ReaDiNet for financial support.

This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

References

[1] D.C. Antonopoulou, P. W. Bates, D. Binkler, and G. D Karali. Motion of a droplet for the stochastic mass-conserving allen–cahn equation. \textit{SIAM Journal on Mathematical Analysis}, 48(1):670–708, 2016.

[2] C. Bauzet, G. Vallet, and P. Wittbold. The cauchy problem for conservation laws with a multiplicative stochastic perturbation. \textit{Journal of Hyperbolic Differential Equations}, 9(04):661–709, 2012.

[3] C. Bennett and R. C Sharpley. \textit{Interpolation of operators}, volume 129. Academic press, 1988.
[4] S. Boussaïd, D. Hilhorst, and T.N. Nguyen. Convergence to steady states for solutions of a reaction-diffusion equation with mass conservation. 2015.

[5] W. Cheney. *Analysis for applied mathematics*. Springer, 2001.

[6] G. Da Prato and A. Debussche. Stochastic cahn-hilliard equation. *Nonlinear Analysis: Theory, Methods & Applications*, 26(2):241–263, 1996.

[7] G. Da Prato and J. Zabczyk. *Stochastic equations in infinite dimensions*. Cambridge university press, 2014.

[8] T. Funaki and S. Yokoyama. Sharp interface limit for stochastically perturbed mass conserving allen-cahn equation. *arXiv preprint arXiv:1610.01263*, 2016.

[9] L. Gawarecki and V. Mandrekar. *Stochastic Differential Equations in Infinite Dimensions*. Springer, 2010.

[10] B. Gess. Strong solutions for stochastic partial differential equations of gradient type. *Journal of Functional Analysis*, 263(8):2355–2383, 2012.

[11] I. Karatzas and S. Shreve. *Brownian motion and stochastic calculus*, volume 113. Springer Science & Business Media, 2012.

[12] N.V. Krylov and B.L. Rozovskii. Stochastic evolution equations. stochastic differential equations: theory and applications. *Journal of Soviet Mathematics*, 14:1233–1277, 1981.

[13] H.H. Kuo. *Introduction to Stochastic Integration*. Springer Science & Business Media, 2006.

[14] M. Marion. Attractors for reaction-diffusion equations: existence and estimate of their dimension. *Applicable Analysis*, 25(1-2):101–147, 1987.

[15] C. Prévôt and M. Röckner. *A concise course on stochastic partial differential equations*, volume 1905. Springer, 2007.

[16] M. Reiß. Stochastic differential equations. *Lecture Notes, Humboldt University Berlin*, 2003.

[17] J. Rubinstein and P. Sternberg. Nonlocal reaction-diffusion equations and nucleation. *IMA Journal of Applied Mathematics*, 48(3):249–264, 1992.

[18] R. Temam. *Navier-stokes equations*, volume 2. North-Holland Amsterdam, revised edition 1979.