LGPMA: Complicated Table Structure Recognition with Local and Global Pyramid Mask Alignment

Liang Qiao*, Zaisheng Li*, Zhanzhan Cheng, Peng Zhang, Shiliang Pu, Yi Niu, Wenqi Ren, Wenming Tan, and Fei Wu

Hikvision Research Institute, Hangzhou, China

Zhejiang University, Hangzhou, China
1. Background
Table Recognition

Dog	Cat^a	
Woof	Arf	Meow

Targeted HTML code (output)

```html
<html>
<body>
<table>
<thead>
<tr>
    <td colspan="2">Dog</b></td>
    <td><b>Cat</b><sup>a</sup><sup>a</sup></td>
</tr>
</thead>
<tbody>
<tr>
    <td>Woof</td>
    <td>Arf</td>
    <td>Meow</td>
</tr>
</tbody>
</table>
</body>
</html>
```

Table Structure Recognition

- Global-object-based methods
- Local-object-based methods
Previous Method——Global-object-based

Problem of global-object-based methods:
- Lack of grid boundaries
- Cells spanning multiple rows/columns
Problem of local-object-based methods:
- Rules have limitations
- Empty cell ambiguity
2. Method
Insight

Treatment phase	Adverse event	No. of patients
T1	Headache	1
	Burning	2
	Fever	1
	Chest Infection	1
	Injury	1
T2	Headache	1
	Headache	1
	Headache	1

- **Lack of Annotations**: No visible boundaries in the table structure.
- **Position of Aligned Cell**: LGPMA algorithm is used for detection.
Workflow of LGPMA
Aligned Bounding Box Detection

- Ground Truth of aligned bounding boxes for non-empty cell

Method to approximate real cell regions
Local Pyramid Mask Alignment

- Binary mask of text region
- Pyramid mask in horizontal
- Pyramid mask in vertical

For pixel \((h, w)\), pyramid masks formed as

\[
\begin{align*}
t_h^{(w, h)} &= \begin{cases}
\frac{w-x_1}{W-w} & w \leq x_{mid} \\
\frac{w-x_2}{W-w} & w > x_{mid}
\end{cases}, &
\begin{cases}
\frac{h-y_1}{H-h} & h \leq y_{mid} \\
\frac{H-h}{H-y_2} & h > y_{mid}
\end{cases},
\end{align*}
\]

\(1\)

\(\text{Global Pyramid Mask Alignment}\)

- Binary mask of all aligned cells (including empty cell)
- Pyramid mask of all non-empty cells in horizontal
- Pyramid mask of all non-empty cells in vertical

PMFD: Pyramid Mask Text Detector, 2019
Aligned Bounding Box Refine

- Re-scoring strategy to compromise local and global pyramid mask

Final pyramid mask of \((x, y)\) can be re-scored as:

\[
F(x) = \begin{cases}
\frac{x-x_1}{x_{mid}-x_1} F^{(L)}_{hor}(x, y) + \frac{x_{mid}-x}{x_{mid}-x_1} F^{(G)}_{hor}(x, y) & x_1 \leq x \leq x_{mid} \\
\frac{x-x_2}{x_{mid}-x_2} F^{(L)}_{hor}(x, y) + \frac{x_{mid}-x}{x_{mid}-x_2} F^{(G)}_{hor}(x, y) & x_{mid} < x \leq x_2
\end{cases}
\]

\[
F(y) = \begin{cases}
\frac{y-y_1}{y_{mid}-y_1} F^{(L)}_{ver}(x, y) + \frac{y_{mid}-y}{y_{mid}-y_1} F^{(G)}_{ver}(x, y) & y_1 \leq y \leq y_{mid} \\
\frac{y-y_2}{y_{mid}-y_2} F^{(L)}_{ver}(x, y) + \frac{y_{mid}-y}{y_{mid}-y_2} F^{(G)}_{ver}(x, y) & y_{mid} < y \leq y_2
\end{cases}
\]

- Final horizontal and vertical pyramid mask can fit two planes respectively.

The four planes' intersection lines with the zero plane are the refined boundaries.
Table Structure Recovery Pipeline

Refined according to LPMA and GPMA results
3. Experiment
Implementation Details:

- Backbone: ResNet-50 + FPN
- 4 x feature map
- Pre-trained model of ImageNet
- Anchor ratios: 1/20, 1/10, 1/5, 1/2, 1, 2
- Pytorch, 8 32GB-Tesla-V100 GPUs
- Data augmentations: multi-scale training
- Single scale testing
Visualization Results:

Threshold for EF (L/min/m²)	Lower limit	Middle limit	Upper limit	Mean value
1.1-1.4	20	30	40	30
1.4-1.6	30	40	50	40
1.6-1.8	40	50	60	50

Semantic labels	Cityscapes image	PSNR (dB)	SSIM	EQE	VIF
ps2pcGAN	15.74	0.707	0.272	0.206	
PAN	16.06	0.828	0.111	0.0658	

Edges	Networks			
IDGAN	20.07	0.756	0.272	0.206
PAN	19.31	0.781	0.342	0.256

Cityscapes images	Semantic labels	PSNR (dB)	SSIM	EQE	VIF
IDGAN	16.50	0.657	0.357	0.172	
PAN	15.90	0.657	0.357	0.172	

Annal pattern	Maps			
IDGAN	19.85	0.757	0.357	0.172
PAN	20.62	0.772	0.172	0.1638

Annotations	Maps			
IDGAN	26.10	0.645	0.012	0.0213
PAN	28.34	0.762	0.337	0.1017
Visualization Results:
Performance Evaluation:

Methods	Training Dataset	ICDAR 2013	SciTSR	SciTSR-COMP						
		P	R	F1	P	R	F1	P	R	F1
DeepDeSRT [30]	-	0.959	0.874	0.914	0.906	0.887	0.890	0.863	0.831	0.846
Split [33]	Private	0.869	0.866	0.868	-	-	-	-	-	-
DeepTabStR [31]	ICDAR 2013	0.931	0.930	0.930	-	-	-	-	-	-
Siddiqui et al. [32]	Synthetic 500k	0.934	0.934	0.934	-	-	-	-	-	-
ReS2TIM [36]	ICDAR 2013†	0.734	0.747	0.740	-	-	-	-	-	-
GTE [38]	ICDAR 2013†	0.944	0.927	0.935	-	-	-	-	-	-
GraphTSR [2]	SciTSR	0.885	0.860	0.872	0.950	0.948	0.953	0.964	0.945	0.955
TabStruct-Net [26]	SciTSR	0.915	0.897	0.906	0.927	0.913	0.920	0.909	0.882	0.895
LGPMA	SciTSR	0.930	0.977	0.953	0.982	0.993	0.988	0.973	0.987	0.980
LGPMA	ICDAR 2013†	0.967	0.991	0.979	-	-	-	-	-	-

Table 1: Results on ICDAR 2013, SciTSR, SciTSR-COMP datasets

Methods	Training Dataset	Testing Dataset	TEDS (All)	TEDS-Struct. (All)
EDD [39]	PTN-train	PTN-val	88.3	-
TabStruct-Net [26]	SciTSR	PTN-val	90.1	-
GTE [38]	PTN-train	PTN-val	93.0	-
LGPMA (ours)	PTN-train	PTN-val	94.6	96.7

Table 2: Results on PubTabNet
Ablation Summary:

Table 3: Ablation experiments on modules effect the aligned bounding box detection

Models	Modules	Det of text regions	Det of non-empty aligned bounding boxes	TEDS-Struc.										
		Precision Recall Hmean	Precision Recall Hmean											
	LPMA	GPMA	AL [26]	-	-	-	-	81.32	81.31	81.31	94.63			
Faster R-CNN	✔	✔	✔	✔	✔	✔	✔	91.71	91.53	91.62	81.83	81.82	81.83	94.65
Mask R-CNN	✔	✔	✔	✔	✔	✔	✔	91.92	91.66	91.79	84.29	84.10	84.20	95.22
	✔	✔	✔	✔	✔	✔	✔	91.98	91.50	91.74	83.48	83.18	83.33	95.04
Mask R-CNN	✔	✔	✔	✔	✔	✔	✔	92.27	91.86	92.06	85.14	84.77	84.95	95.53
	✔	✔	✔	✔	✔	✔	✔	92.11	91.85	91.98	81.91	81.79	81.85	94.94
	✔	✔	✔	✔	✔	✔	✔	92.05	91.65	91.85	84.87	84.50	84.68	95.31
Contact Email:
qiaoliang6@hikvision.com
lizaisheng@hikvision.com

More works from Davar-Lab:
https://davar-lab.github.io/
Thank you