NOTA / NOTE

Observaciones sobre la diversidad genética de la foca leopardo (Hydrurga leptonyx) a partir del análisis de ADN mitocondrial, en la costa de Danco, península Antártica

Insights into the genetic diversity of the leopard seal (Hydrurga leptonyx), inferred from mitochondrial DNA analysis, at Danco Coast, Antarctic Peninsula

Laura Valentina Hernández-Ardila1, Dalia C. Barragán-Barrera1,2,3,4*, Javier Negrete5,
Sebastián Poljak6,7, Federico G. Riet-Sapriza1,8, Susana Caballero1

RESUMEN

La foca leopardo (Hydrurga leptonyx) es una especie poco estudiada a nivel genético. Con el fin de realizar la primera evaluación de la diversidad genética de esta especie en la costa de Danco (Península Antártica), se secuenció 423 pb de la Región Control del ADN mitocondrial (ADNmt-CR) de 13 muestras de sangre colectadas en la Base Primavera (62°15'S, 58°39'W) durante el verano austral 2011-2012. Los resultados mostraron una alta diversidad de haplotipos (h = 0.99), con varios haplotipos divergentes. Nuestros hallazgos genéticos sugieren que las focas leopardo de la costa de Danco podrían representar diferentes filogrupos; sin embargo, es necesario incluir más marcadores genéticos para confirmar esta hipótesis.

PALABRAS CLAVE: Foca, Pinnípedos, ADNmt, Región Control, Antártida.

ABSTRACT

The leopard seal (Hydrurga leptonyx) is a genetically low-studied species. In order to conduct the first genetic diversity assessment of this species in Danco Coast (Antarctic Peninsula), 423 bp of the mitochondrial DNA Control Region (mtDNA-CR) was sequenced from 13 blood samples collected in Primavera Base (62°15'S, 58°39'W) during the 2011-2012 austral summer. Our results showed high haplotype diversity (h = 0.99), with various divergent haplotypes. Our findings suggest that leopard seals in the Danco Coast could represent different phylogroups; however, including more genetic markers are needed to confirm this hypothesis.

KEYWORDS: Seal, Pinnipeds, mtDNA, Control Region, Antarctica.
The leopard seal (*Hydrurga leptonyx*) is an Antarctic pinniped with a wide circumpolar distribution that includes both Antarctic and Subantarctic waters (Bester et al., 2002; Rodriguez et al., 2003; Hückstädt, 2015; Rogers, 2018) (see Figure 1). The leopard seal is a solitary and pagophilic species that disperses widely at low densities along the ice shelf (Rogers, 2009), and some individuals move to Subantarctic zones. Opportunistic sightings of leopard seals in several countries outside their primary range include Argentina (Castello and Rumboll, 1978; Rodriguez et al., 2003; Daneri et al., 2011), Brasil (Pinedo, 1990; Rosas et al., 1992; Ferreira et al., 1995; Silva, 2004; Moura et al., 2011), Chile (Hückstädt, 2015; Acevedo et al., 2017), Uruguay (Juri, 2017), Sudáfrica (Best, 1971; Vinding et al., 2013; Hückstädt, 2015; unpublished data).

Figure 1. Distribution range of the leopard seal (*Hydrurga leptonyx*) on the Antarctic Peninsula as primary range, including occurrences outside Antarctic waters as secondary range (Oceania, South Africa, and South America). Red circle indicates location of Argentine Antarctic Base Primavera (62°15'S, 58°39'W), which is located in the vicinity of the Danco Coast northwest of the Antarctic Peninsula (64°09'S, 60°57'W), where leopard seal samples were collected for this study.
La foca leopardo muestra un amplio rango dietario y se alimenta de presas desde niveles tróficos bajos como el kril, hasta niveles tróficos altos como peces, cefalópodos, pingüinos e incluso crías de otras especies de focas (Zhao et al., 2004; Hall-Aspland y Rogers, 2004; Casaux et al., 2009; Botta et al., 2018). El cambio climático ha provocado una reducción en los niveles de hielo, que posteriormente ha modificado el ensamblaje del plancton epipelágico (Mendes et al., 2013; Giraldo et al., 2019, Mojica y Franco-Herrera, 2019). En consecuencia, las focas leopardo han mostrado un mayor consumo de kril (Guerrero et al., 2014; Botta et al., 2018). Estas especializaciones dietéticas podrían reflejar divergencias genéticas poblacionales a largo plazo como se ha reportado en las orcas Antárticas (LeDuc et al., 2008).

Divergencias relacionadas con los rasgos de la historia de vida de esta especie han sido reportadas en las vocalizaciones emitidas por individuos de foca leopardo (Thomas y Golladay, 1995; Rogers y Cato, 2002), las cuales se han asociado principalmente con el comportamiento reproductivo (Rogers, 2018). Particularmente, los machos adultos tienden a tener repertorios vocales únicos (Rogers y Cato, 2002; Rogers, 2007), lo que podría tener repercusiones en la estructura poblacional si esta divergencia acústica afecta la selección de pareja por parte de las hembras (Rogers, 2009).

Dada la biología de la foca leopardo, la cual exhibe un área de acción restringida, divergencias en la dieta y en las vocalizaciones asociadas a la reproducción, y fidelidad al sitio de muda y reproducción (Walker et al., 1998; Hiruki et al., 1999; Negrete et al., 2014), es posible que exista algún grado de diferenciación genética entre individuos (Hamilton, 2009). Sin embargo, debido a que los hábitos pagofílicos de la foca leopardo le permiten distribuirse ampliamente sobre el hielo errante, también es posible que los individuos puedan mantener la conectividad genética entre poblaciones aisladas. No obstante, los análisis genéticos de la foca leopardo son muy escasos (e.g., Slip et al., 1994; Fyler et al., 2005; Bonillas-Monge, 2018) debido a su distribución amplia y solitaria incluso en áreas remotas (Southwell et al., 2003; Davis et al., 2008), lo que la convierte en una de las especies de fócidos menos estudiadas de la Antártida a nivel poblacional. Por lo tanto, en este estudio se presenta la primera descripción de la diversidad genética de la foca data from citizen science), New Zealand, and Australia (Shaughnessy et al., 2012; Hückstädt, 2015; Rogers, 2018) (Figure 1, table S1 in supplementary material). However, this species shows area-restricted behaviors (Meade et al., 2015) and as a result, it may potentially show some population structure (Davis et al., 2008).

Leopard seal shows a wide range in diet and feeds on prey from low trophic level such as krill, to high trophic level such as fish, cephalopods, penguins, and even pups of other seal species (Hall-Aspland and Rogers, 2004; Zhao et al., 2004; Casaux et al., 2009; Botta et al., 2018). Climate change has caused a reduction in ice levels, which has subsequently changed the epipelagic plankton assembly (Mendes et al., 2013; Giraldo et al., 2019, Mojica and Franco-Herrera, 2019). Consequently, leopard seals have shown increased consumption of krill (Guerrero et al., 2014; Botta et al., 2018). These dietary specializations could show lead to long-term population genetic divergences as has been reported in Antarctic killer whales (LeDuc et al., 2008).

Divergences related with life history traits of this species have been reported in vocalizations emitted by leopard seal individuals (Thomas and Golladay, 1995; Rogers and Cato, 2002), which are mainly associated with reproductive behavior (Rogers, 2018). Particularly, adult males tend to have more unique vocal repertoires (Rogers and Cato, 2002; Rogers, 2007), which could have repercussions on the population’s structure if this acoustic divergence affects partner selection by females (Rogers, 2009).

Given the leopard seal’s biology traits as area-restricted behaviors, divergences in diet and vocalizations related to reproduction, and fidelity to molting and reproduction sites (Walker et al., 1998; Hiruki et al., 1999; Hall-Aspland et al., 2004; Negrete et al., 2014), it is possible that there is some degree of genetic differentiation among individuals (Hamilton, 2009). Nevertheless, because the leopard seal’s pagophilic habits allows an expanded distribution onto the pack ice, it is also possible that individuals can keep genetic connectivity between isolated populations. However, genetic analyses of the leopard seal are very scarce (e.g., Slip et al., 1994; Fyler et al., 2005; Bonillas-Monge, 2018) due to its wide solitary distribution even in remote areas (Southwell et al., 2003; Davis et al., 2008), making it one of the least studied species of Antarctica’s phocids at the population level. Therefore, here we present the first description of
leopardo en la costa de Danco, cerca de la Base Primavera de la Península Antártica, utilizando un fragmento de 423 pares de bases (pb) de la Región Control de ADN mitocondrial (ADNmt-CR) heredada por linaje materno.

Se colectaron muestras de sangre de 13 focas leopardo adultas durante el verano austral de 2011-2012 cerca de la Base Primavera (62°15’S, 58°39’O) en la costa de Danco (64°09’S, 60°57’O, Figura 1). Los animales fueron inmovilizados usando un sistema de lanzamiento de dardos con una pistola de aire de teleinyección desde el hielo o desde un bote, dependiendo de la ubicación de los individuos (Botta et al., 2018). La determinación del sexo se realizó mediante inspección visual de los órganos genitales externos. Se tomaron muestras de sangre de la vena intervertebral epidural y se almacenaron en EDTA (ácido etilendiaminotetraacético) a -20 °C para los análisis genéticos posteriores.

Se extrajo ADN de cada muestra usando el kit Stratec molecular© para sangre y tejido siguiendo el protocolo estándar de extracción de sangre. Se amplificó un fragmento de ADNmt-CR mediante una Reacción en Cadena de la Polimerasa (PCR) utilizando los primers TRO directo (5’-CCTCCCTAAGACTCAAGG-3’) e inverso (3’-GTAGACCAAAGAATGAAGTCC-5’) (Slade et al., 1994), siguiendo el protocolo descrito por Barragán-Barrera et al. (2017). Los productos de PCR se purificaron siguiendo el protocolo de polietilenglicol (PEG al 20 %) y se secuenciaron utilizando el método de Sanger (Sanger y Coulson, 1975). Las secuencias obtenidas de ADNmt-CR se recortaron a 423 pb, se editaron y alinearon utilizando el algoritmo Muscle en el software Geneious versión 11 (Drummond et al., 2009). La caracterización de haplotipos se realizó utilizando el software MacClade (Maddison y Maddison, 2011). Se utilizó el software Network (Bandelt et al., 1999) para construir una red haplotípica con las secuencias obtenidas y la única secuencia de ADNmt-CR disponible en NCBI para la foca leopardo publicada por Slade et al. (1994) (número de acceso en GenBank U03590.1), utilizando el método de Median Joining (M-J) (Bandelt et al., 1999). Finalmente, se utilizó el software Arlequin versión 3.5 (Excoffier y Lischer, 2010) para evaluar la diversidad genética, incluidos los índices de diversidad haplotípica (h) y nucleotídica (π).

Se encontraron trece haplotipos en los 14 individuos analizados (12 haplotipos de 13 muestras de la costa de Danco, y un haplotipo reportado por Slade et al. (1994)), de los cuales solo el haplotipo llamado HL6 fue compartido por dos individuos. Las 12 secuencias de haplotipos identificadas...
en la costa de Danco se publicaron a GenBank con los números de acceso MW168801 a MW168812 (ver tabla S2 en material complementario).

En la red de haplotipos, el haplótipo reportado por Slade et al. (1994) y nombrado en este estudio como CR1, estaba conectado por un paso mutacional al haplótipo HL1, el cual parece ser el haplótipo más ancestral debido a su posición central y al número de conexiones con otros haplotipos que se originan de él (Caballero et al., 2015). Los haplotipos HL2 y HL3 también se conectaron a HL1 por un paso mutacional, mientras que los haplotipos HL7, HL8, HL9, HL10 y HL12 se conectaron a HL1 por más de un paso mutacional (Figura 2). Por ejemplo, HL7, HL8, HL10 y HL12 parecen ser los haplotipos más divergentes, separados de HL1 por un mayor número (> 5) de pasos mutacionales.

En cuanto a la diversidad haplotípica (h) y nucleotídica (π), en este estudio se encontraron altos valores para la foca leopardo ($h = 0.99; \pi = 1.76\% ; N = 14$), similares a los valores reportados para otras especies de pinnípedos que se reproducen en el hielo errante, como la foca de casco (Cystophora cristata; $h = 0.96; \pi = 1.47\% ; N = 123$; Davis et al., 2008). Estas especies pagofílicas muestran una alta diversidad genética, probablemente debido a la naturaleza inestable del hábitat de hielo, lo que dificulta la fidelidad del sitio, y por tanto resulta en una gran población reproductiva.

In the haplotype network, the haplotype that was reported by Slade et al. (1994), named here as CR1, was connected by one mutational step to haplotype HL1, which appears to be the most ancestral, due to their central position and the number of connections to other haplotypes originating in it (Caballero et al., 2015). Haplotypes HL2, and HL3 were also connected to HL1 by one mutation step, while haplotypes HL7, HL8, HL9, HL10, and HL12 were connected to HL1 by more than one mutational step (Figure 2). For example, HL7, HL8, HL10, and HL12 appear to be the more divergent haplotypes, separated from HL1 by a higher number (> 5) of mutational steps.

Regarding haplotype (h) and nucleotide (π) diversities, in this study we found high values for the leopard seal ($h = 0.99; \pi = 1.76\% ; N = 14$), similar to values reported for other pinniped species that reproduce on pack ice such as the hooded seal (Cystophora cristata; $h = 0.98; \pi = 1.47\% ; N = 123$; Davis et al., 2008). These pagophilic species show high genetic diversities likely due to the unstable nature of ice habitat, which hinders site fidelity, resulting in a large reproductive population. In fact, it has been suggested that pagophilic pinniped distribution at low densities along pack ice does not favor

Figura 2. Red haplotípica de individuos de focas leopardo (*Hydrurga leptonyx*) presentes en la costa de Danco, Península Antártica. El haplótipo CR1 corresponde a la única secuencia publicada en NCBI por Slade et al. (1994).

Figure 2. Haplotypic network of leopard seals individuals (*Hydrurga leptonyx*) presented in the Danco Coast, Antarctic Peninsula. CR1 haplotype corresponds to the unique published sequence in NCBI by Slade et al. (1994).
De hecho, se ha sugerido que la distribución de pinnípodos pagofílicos a lo largo de los bloques de hielo errante en densidades bajas no favorece el desarrollo de la estructura de la población, incluso si los individuos regresan a las áreas natales (Davis et al., 2008).

Nuestros resultados sugieren que la población de focas leopardo muestreadas cerca de la Base Primavera tiene una alta diversidad genética, representada por un número muy bajo de haplotipos compartidos (a excepción del haplótipo HL6), así como algunos haplotipos divergentes, lo cual es particularmente interesante considerando el bajo tamaño de la muestra y que todos los individuos fueron muestreados en la misma área. Es posible que las focas leopardo muestreadas en la costa de Danco puedan representar diferentes filogrupos, probablemente porque esta especie muestra fidelidad de sitio a las áreas reproductivas a pesar de su amplia distribución favorecida por sus hábitos pagofílicos (Rogers, 2018). Sin embargo, es posible que el cambio climático pueda afectar su distribución y potencialmente su estructura genética, particularmente en el oeste de la Península Antártica donde se han reportado temperaturas más altas (Vaughan et al., 2003; IPCC, 2014; Mojica-Moncada et al., 2019). Es posible que una mayor presencia de bloques de hielo pueda mantener una conectividad genética más amplia o pueda restringir el flujo de genes debido al descongelamiento prematuro de los bloques de hielo. Se necesitan más estudios genéticos que incluyan la evaluación de genes nucleares y la inclusión de un mayor número de muestras de otras regiones geográficas a lo largo de la Península Antártica para determinar así la estructura genética de la foca leopardo en esta región, dada su potencial vulnerabilidad a los efectos de cambio climático (Vaughan et al., 2003; IPCC, 2014; Mojica-Moncada et al., 2019).

AGRADECIMIENTOS

Este estudio fue posible gracias a la cooperación internacional desarrollada en el marco de la II Expedición Científica de Colombia a la Antártida “Almirante Lemaitre”. Apreciamos el apoyo de la Dirección Nacional del Antártico Argentino y del Instituto Antártico Argentino, que proporcionó toda la logística necesaria para realizar el trabajo de campo. Un agradecimiento especial al Programa Antártico Colombiano, a la Armada Nacional de Colombia, la Comisión Colombiana del Océano, y a la tripulación del buque “ARC 20 Julio” por su valioso apoyo para el desarrollo exitoso de las Expediciones Científicas de Colombia a la Antártida. Agradecemos a Diego F. Mojica-Moncada por la development of population structure even if individuals return to natal areas (Davis et al., 2008).

Our results suggest that the leopard seal population sampled near the Primavera Base has a high genetic diversity, represented by a very low number of shared haplotypes (except for the HL6 haplotype), as well as some divergent haplotypes, which is particularly interesting considering the low sample size and that all the individuals were sampled in the same area. It is possible that leopard seals sampled in the Danco Coast could represent different phylogroups, likely because this species shows site fidelity to reproductive sites despite its wider distribution favored by their pagophilic habits (Rogers, 2018). However, it is possible that climate change may affect its distribution and potentially its genetic structure, particularly in the western Antarctic Peninsula where higher temperatures have been reported (Vaughan et al., 2003; IPCC, 2014; Mojica-Moncada et al., 2019). Likely, more ice pack presence can maintain a wider genetic connectivity or can restrict gene flow due to premature thawing ice pack. Further genetic studies including the evaluation of nuclear genes and the inclusion of a higher number of samples from other geographical regions along the Antarctic Peninsula is necessary to determine the genetic status of the leopard seal in this region, given its potential vulnerability to the effects of climate change.

ACKNOWLEDGMENTS

This study was made possible thanks to the international cooperation developed within the framework of the II Scientific Expedition of Colombia to the Antarctica “Admiral Lemaitre”. We really appreciate the support of the Dirección Nacional del Antártico Argentino and the Instituto Antártico Argentino who provided all needed logistic to conduct fieldtrips. Special thanks to the Colombian Antarctic Program, to the Armada Nacional de Colombia, the Comisión Colombiana del Océano, and to the crew of the “ARC 20 Julio” vessel for their valuable support for the successful development of Colombia’s Scientific Expeditions to Antarctica. We thank to Diego F. Mojica-Moncada for his logistic support. We also thank to the technical team of laboratory in the Universidad de los Andes, and Sonia Quintanilla for their valuable support in laboratory work. The Colombian Sciences Ministry (MinCiencias) is acknowledged for providing to Dalía C. Barragán-Barrera a postdoctoral fellowship trough Francisco José de Caldas Fund (Call No. 848 of 2019).
su apoyo logístico. También agradecemos al equipo técnico de laboratorio de la Universidad de los Andes, y a Sonia Quintanilla por su valioso apoyo en el trabajo de laboratorio. Se agradece al Ministerio de Ciencia, Tecnología e Innovación de Colombia (MinCiencias) por otorgar una beca postdoctoral a Dalia C. Barragán-Barrera a través del Fondo Francisco José de Caldas (Convocatoria No. 848 de 2019).

BIBLIOGRÁFÍA / LITERATURE CITED

Acevedo, J., A. González, S. Garthe, I. Gonzalez, R. Gómez and A. Aguayo-Lobo. 2017. Births of leopard seal *Hydrurga leptonyx* in southern Chile. Polar Biol., 40: 713–717.

Bandelt, H.J., P. Forster and A. Röhl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 37–48.

Barragán-Barrera, D.C., L. J. May-Collado, G. Tezanos-Pinto, V. Islas-Villanueva, C. Correa-Cárdenas, C.A. and S. Caballero. 2017. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the archipelago of Bocas del Toro, Panama: a population at risk? PLoS One, 12(12): e0189370.

Best, P. B. 1971. A leopard seal from Hout bay, South Africa. Zool. Afr., 6: 177–179.

Bester, M. N., J. W. H. Ferguson and F. C. Jonker. 2002. Population densities of pack ice seals in the Lazarev Sea, Antarctica. Antarct. Sci., 14(2): 123–127.

Bonillas-Monge, M. 2018. Historical dynamics of Leopard Seal (*Hydrurga leptonyx*) and Southern Elephant Seal (*Mirounga leonina*) populations in the Southern Ocean. Master thesis, Durham University, Durham. Abstract. 151 p.

Botta, S., E. R. Secchi, T. L. Rogers, J. H. F. Pradoa, R. C. de Lima, P. Carlini and J. Negrete. 2018. Isotopic niche overlap and partition among three Antarctic seals from the Western Antarctic Peninsula. Deep-Sea Res. Pt. II., 149: 240–249.

Caballero, S., Correa-Cárdenas, C. A. and F. Trujillo. 2013. Population Structure and Genetic Diversity of the Endangered South American Giant Otter (*Pteronura brasiliensis*) from the Orinoco Basin in Colombia: Management Implications and Application to Current Conservation Programs. J Heredity, 106: 469–477.

Casaux, R., A. Baroni, A. Ramón, A. Carlini, M. Bertolin and C. Y. DiPrinzio. 2009. Diet of the leopard seal *Hydrurga leptonyx* at the Danco Coast, Antarctic Peninsula. Polar Biol., 32(2): 307–310.

Castello H.P. and M. Rumboll. 1978. Extension of range of the leopard seal, *Hydrurga leptonyx*, for the Argentine coast. Mammalia, 42: 135–137.

Coltman, D. W., G. Stenson, M. O. Hammill, T. Haug, C. S. Davis and T. L. Fulton. 2007. Panmictic population structure in the hooded seal (*Cystophora cristata*). Mol. Ecol., 16(8): 1639–1648.

Daneri G. A., E. A. Varela, C. C. Di Martino, A. Harrington and R. A. Montiel R.A. 2011. Atypical records of pinniped specimens housed in the Museo Argentino de Ciencias Naturales. Lat. Amer. J. Aquat. Mamm., 9: 150–153.

Davis, C. S., I. A. N. Stirling, C. Strobeck and D. W. Coltman. 2008. Population structure of ice-breeding seals. Mol. Ecol., 17(13): 3078–3094.

Drummond, A. J., B. Ashton, M. Cheung, J. Heled, M. Kearse, R. Moir, S. Stones-Havas, T. Thierer and A. Wilson. 2009. Geneious Pro. Version 4.8.5., ver. http://www.geneious.com.

Excoffier, L. and H. E. L. Lischer. 2010. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res., 10: 564–567.

Ferreira H.D.O., A. N. Zerbini A.N. and S. Siciliano. 1995. Occurrence of crabeater and leopard seals in Southern Brazil. XI Biennial Conference on the Biology of Marine Mammals. Diciembre 1995. Orlando, USA.

Fyler, C. A., T. W. Reeder, A. Berta, G. Antonelis, A. Aguilar and E. Androukaki. 2005. Historical biogeography and phylogeny of monachine seals (Pinnipedia: Phocidae) based on mitochondrial and nuclear DNA data. J. Biogeogr., 32(7): 1267–1279.

Giraldo, A., M. I. Criales-Hernández, M. Jeréz-Guerrero and D. F. Mojica-Moncada. 2019. Mesozooplankton biomass and epipelagic copepod assemblages in the Gerlache Strait (Antarctica) during the 2015 austral summer. Bol. Invest. Mar. Cost., 48(1): 9–26.

Guerrero, A., J. Negrete, M. Márquez, J. Menucci, K. Zaman and T. Rogers. 2014. Fatty acid composition suggests leopard seals are no longer apex predators in the Western Antarctic Peninsula ecosystem. XXXIII Scientific Committee on Antarctic Research (SCAR). Open Science Conference. Agosto 2014. Auckland, New Zealand.

Hall-Aspland, S. A. and T. L. Rogers. 2004. Summer diet of leopard seals (*Hydrurga leptonyx*) in Prydz Bay, Eastern Antarctica. Polar Biol., 27(12): 729–734.
Hall-Aspland, S. A., T. L. Rogers and R. B. Canfield. 2005. Stable carbon and nitrogen isotope analysis reveals seasonal variation in the diet of leopard seals. Mar. Ecol. Prog. Ser., 305: 249–259.

Hall-Aspland, S. A. and T. L. Rogers. 2007. Identification of hairs found in leopard seal (Hydrurga leptonyx) scats. Polar Biol., 30(5): 581.

Hamilton, M. 2009. Population Genetics. John Wiley & Sons, Chichester, UK. 424 p.

Hiruki, L.M., M. K. Schwartz and P. L. Boveng. 1999. Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica. J. Zool., 249, 97–109.

Hückstädt, L. 2015. Hydrurga leptonyx: The IUCN Red List of Threatened Species 2015: e.T10340A45226422, http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T10340A45226422.en

IPCC. 2014. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. En: Pachauri, R. K. and L.A. Meyer (Eds.). IPCC. Geneva, Switzerland. 151 p.

Juri, E. 2017. Ocurrencia de focas (Mammalia, Carnivora, Phocidae) en Uruguay. Bol. Soc. Zool. Uruguay (2a época), 26(1): 30–36.

Kuhn, C. E., B. I. McDonald, S. A. Shaffer, J. Barnes, D. E. Crocker, J. Burns and D. P. Costa. 2006. Diving physiology and winter foraging behavior of a juvenile leopard seal (Hydrurga leptonyx). Polar Biol., 29: 303–307.

Laws, R.M. 1953. The seals of the Falkland Islands and dependencies. Oryx, 2: 87–97.

Meade, J., M. B. Ciaglia, D. J. Slip, J. Negrete, M. E. I. Márquez, J Mennucci and T.L. Rogers. 2015. Spatial patterns in activity of leopard seals Hydrurga leptonyx in relation to sea ice. Mar. Ecol. Prog. Ser., 521: 265–275.

Mendes, C. R. B., V. M. Tavano, M. C. Leal, M. S. de Souza, V. Brotas and C. A. E. Garcia. 2013. Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biol., 36: 537–547.

Mojica L., L. H. and A. Franco-Herrera. 2019. Zooplankton composition and taxonomic abundance from South Pacific until Antarctic Peninsula 2016-2017. Bol. Invest. Mar. Cost., 48(2): 119–142.

Mojica-Moncada, D. F., C. Cárdenas, I. F. Mojica-Moncada, D. Holland y G. Casassa. 2019. Estudio del Glaciar Lange y su impacto por cambio climático en la Bahía de Almirantazgo, Isla Rey Jorge, Antártica durante el verano austral 2018 – 2019. Libro de Memorias del XVIII Seminario Nacional de Ciencias y Tecnologías del Mar. Octubre 2019. Barranquilla, Colombia. 400–401.

Negrete J., E. A. Depino, P. Carlini, J. G. Galliari, S. Leonardi, M. Bobinac, C. M. Loza, M. E. I. Márquez, J. A. Mennucci y T. Rogers. 2014. Fidelidad al sitio de muda de la foca leopardo (Hydrurga leptonyx) en costa Danco, Península Antártica. XXVII Jornadas Argentinas de Mastozoología. Noviembre 2014. Esquel, Provincia de Chubut, Argentina.

Rodríguez, D., R. Bastida, S. Morín, S. R. Heredia and J. Loureiro. 2003. Occurrence of leopard seals in northern Argentina. Lat. Amer. J. Aquat. Mam., 2(1): 51–54.

Rogers, T. L. 2007. Age-related differences in the acoustic characteristics of male leopard seals Hydrurga leptonyx. J. Acoust. Soc. Amer., 122: 596–605.

Rogers, T. L. 2009. Leopard seal: Hydrurga leptonyx. 673–674. In: Perrin, W. F., Würsig, B. and J. G. M. Thewissen (Eds.). Encyclopedia of marine mammals, 2nd Ed. Academic Press. San Diego, USA. 1352 p.

Rogers, T. L. 2018. Leopard seal: Hydrurga leptonyx. 673–674. In: Würsig, B., J.G.M. Thewissen and K. Kovacs (Eds.). Encyclopedia of marine mammals, 3rd Ed. Academic Press. London, UK. 1190 p.

Rogers, T.L. and D.H. Cato. 2002. Individual variation in the acoustical behaviour of the adult male leopard seal, Hydrurga leptonyx. Behaviour, 139: 1267–1286.

Rosas F.C.W., L. C. Capistrano, A. P. Di Beneditto and R. Ramos. 1992. Hydrurga leptonyx recovered from the stomach of a tiger shark captured off Rio de Janeiro coast, Brazil. Mammalia, 56: 153–155.

Sanger, F. and A. R. Coulson. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol., 94(3): 441–446.
Silva K. G. 2004. Os pinípedes no Brasil. Ocorrências, estimativas populacionais e conservação. PhD Thesis. Fundação Universidade Federal do Rio Grande, Rio Grande, Brazil. 242 pp.

Slade, R. W., C. Moritz and A. Heideman. 1994. Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. Mol. Biol. Evol., 11(3): 341–356.

Slade, R. W., Moritz, C., A. R. Hoelzel and H. R. Burton. 1998. Molecular population genetics of the southern elephant seal Mirounga leonina. Genetics, 149(4): 1945–1957.

Slip, D. J., K. Green, H. R. Burton, P. J. Mitchell and M. A. R. K. Adams. 1994. Allozyme variation in the leopard seal, Hydrurga leptonyx. J. Aust. Mammal. Soc., 17: 1–5.

Southwell, C., K. Kerry, P. Ensor, E. J. Wohler and T. Rogers. 2003. The timing of pupping by pack-ice seals in East Antarctica. Polar Biol., 26(10): 648–652.

Thomas, J. A. and C. L. Golladay. 1995. Geographic variation in leopard seal (Hydrurga leptonyx) underwater vocalizations. 201–222. In: Kastelein, R. A., J.A. Thomas and P. E. Nachtigall (Eds.). Sensory Systems of Aquatic Mammals. De Spil Publishers, Woerden, The Netherlands.

Varela, M., E. Fernandez and P. Serret. 2002. Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep-Sea Res. Part II. Top. Stud. Oceanogr., 49(4-5): 749–768.

Southwell, C., K. Kerry, P. Ensor, E. J. Wohler and T. Rogers. 2003. The timing of pupping by pack-ice seals in East Antarctica. Polar Biol., 26(10): 648–652.

Thomas, J. A. and C. L. Golladay. 1995. Geographic variation in leopard seal (Hydrurga leptonyx) underwater vocalizations. 201–222. In: Kastelein, R. A., J.A. Thomas and P. E. Nachtigall (Eds.). Sensory Systems of Aquatic Mammals. De Spil Publishers, Woerden, The Netherlands.

Varela, M., E. Fernandez and P. Serret. 2002. Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep-Sea Res. Part II. Top. Stud. Oceanogr., 49(4-5): 749–768.

Vaughan, D., G. Marshall, W. Connolley, C. Parkinson, R. Mulvaney, D. Hodgson, J. C. King, C. J. Pudsey and J. Turner. 2003. Recent rapid regional climate warming on the Antarctic Peninsula, Clim. Chang., 60: 243–274.

Vinding, K., M. Christiansen, G. J. Hofmeyr, W. Chivell, R. McBride and M. N. Bester. 2013. Occurrence of vagrant leopard seals, Hydrurga leptonyx, along the South African coast. S. Afr. J. Wildl. Res., 43(1): 1–3.

Walker, T.R., I. L. Boyd, D. J. McCafferty, N. Huin, R. I. Taylor and K. Reid. 1998. Seasonal occurrence and diet of leopard seals (Hydrurga leptonyx) at Bird Island, South Georgia. Antarct. Sci., 10: 75–81.

Widholzer, F. L. 1982. Registro de uma nova espécie de mamífero para Brasil, Hydrurga leptonyx (Blainville) (Carnivora: Phocidae). Resumos IX Congresso Brasileiro de Zoologia. February 1982. Porto Alegre, Brazil. 263.

Ximenez, A., P. C. Simões-Lopes y R. Praderi. 1987. Notas sobre mamíferos marinos de Santa Catarina e Rio Grande do Sul (Pinnipedia, Cetacea). Anais II Reunião de Trabalho de Especialistas em Mamíferos Aquáticos da América do Sul. August 1987. Rio de Janeiro, Brazil. 100–103.

Zhao, L., M. Castellini, T. Mau and S. Trumble. 2004. Trophic interactions of Antarctic seals as determined by stable isotope signatures. Polar Biol. 27, 368–373.

Material Suplementario / Supplementary Material

Table S1. Ocurcencias de la foca leopardo (Hydrurga leptonyx) representadas en la Figura 1, alrededor Península Antártica como su área de distribución primaria y en Oceania, Sudáfrica y Suramérica como áreas de distribución secundaria. Para cada ocurrencia, se incluyó el país, localidad, latitud decimal, longitud decimal y la referencia del estudio.

País / Country	Localidad / Locality	Latitud decimal / Decimal latitude	Longitud decimal / Decimal longitude	Referencia / Study reference
Antártida / Antarctica	Base Primavera / Primavera Base	62.25	58.65	Este estudio / This study
Antártida / Antarctica	Falkkand Islands / Islas Malvinas	51.75	59.00	Laws, 1953
Antártida / Antarctica	Adelaide Island	66.85	66.40	Kuhn et al., 2006
Argentina	Puerto Quequén	38.56	58.72	Castello y Rumboll, 1978
Argentina	Mar de las Pampas	37.32	57.03	Rodríguez et al., 2003
Argentina	San Clemente del Tuyú	36.35	56.72	Rodríguez et al., 2003
País / Country	Localidad / Locality	Latitud decimal / Decimal latitude	Longitud decimal / Decimal longitude	Referencia / Study reference
---------------	----------------------	-----------------------------------	-----------------------------------	-----------------------------
Argentina	Buenos Aires	36.33	38.58	Castello y Rumboll, 1978
Australia	Tasmania (Darlington Beach)	42.58	148.05	Australian Mammals Society, 1991
Australia	Tasmania (Adventure Bay)	43.32	147.33	Australian Mammals Society, 1991
Australia	Tasmania (Fortescue Bay)	43.13	147.95	Australian Mammals Society, 1991
Australia	Tasmania (Sandford)	40.37	148.02	Australian Mammals Society, 1991
Australia	Tasmania (Musselroe Point)	40.83	148.15	Australian Mammals Society, 1991
Australia	Tasmania (Shark Point Road)	40.40	147.47	Australian Mammals Society, 1991
Australia	Tasmania (Cox Bight)	43.52	146.23	Australian Mammals Society, 1991
Australia	Tasmania (Primrose Sand)	42.88	147.83	Australian Mammals Society, 1991
Australia	Tasmania (Ocean Beach)	42.13	145.18	Australian Mammals Society, 1991
Australia	Tasmania (Prince of wales Bay)	42.82	147.28	Australian Mammals Society, 1991
Australia	Tasmania (Remarkable Cave)	43.18	147.83	Australian Mammals Society, 1991
Australia	Tasmania (Roaring Beach)	43.08	147.67	Australian Mammals Society, 1991
Australia	Tasmania (Fortescue Bay)	43.13	147.88	Australian Mammals Society, 1991
Australia	Tasmania (Marion Bay)	41.13	146.58	Australian Mammals Society, 1991
Australia	Tasmania (Bakers Beach)	40.75	145.28	Australian Mammals Society, 1991
Australia	Tasmania (Stanley)	42.33	145.42	Australian Mammals Society, 1991
Australia	Tasmania (Macquarie Harbour)	42.33	145.42	Australian Mammals Society, 1991
Australia	Tasmania (Wineglass Bay)	42.17	148.30	Australian Mammals Society, 1991
Australia	Middleton Beach	35.51	138.71	Shaughnessy et al., 2012
Australia	Middleton Beach	35.51	138.71	Shaughnessy et al., 2012
Australia	Granite Island, Encounter Bay	35.55	138.62	Shaughnessy et al., 2012
Australia	Port Adelaide, Bower Rd	34.83	138.50	Shaughnessy et al., 2012
Australia	Parham	34.43	138.25	Shaughnessy et al., 2012
Australia	Kellidie Bay	34.61	135.48	Shaughnessy et al., 2012
Australia	Waitpinga Beach	35.63	138.49	Shaughnessy et al., 2012
Australia	21 km SE Southend	37.73	140.24	Shaughnessy et al., 2012
Australia	Goolwa Beach	35.51	138.77	Shaughnessy et al., 2012
Australia	Carpenter Rocks	37.92	140.41	Shaughnessy et al., 2012
Australia	Seacliff, Adelaide	35.03	138.52	Shaughnessy et al., 2012
Australia	Henley Beach, Adelaide	34.92	138.49	Shaughnessy et al., 2012
Australia	West Beach, Adelaide	34.96	138.51	Shaughnessy et al., 2012
País / Country	Localidad / Locality	Latitud decimal / Decimak latitude	Longitud decimal / Decimak longitude	Referencia / Study reference
---------------	----------------------	-------------------------------------	-------------------------------------	-----------------------------
Australia	Kangaroo Island (South West River)	36.02	136.85	Shaughnessy et al., 2012
Australia	Kangaroo Island (Seal Slide)	36.01	137.54	Shaughnessy et al., 2012
Australia	Kangaroo Island (Bales Beach)	35.99	137.35	Shaughnessy et al., 2012
Australia	Kangaroo Island (West Bay)	35.89	136.54	Shaughnessy et al., 2012
Australia	North coast of Kangaroo Island	35.67	137.62	Shaughnessy et al., 2012
Australia	Kangaroo Island (Mouth Flat Beach)	35.86	137.94	Shaughnessy et al., 2012
Australia	Kangaroo Island (D’Estrees Bay)	35.95	137.58	Shaughnessy et al., 2012
Australia	Kangaroo Island (Pennington Bay)	35.86	137.74	Shaughnessy et al., 2012
Australia	Encounter Bay	35.58	138.60	Shaughnessy et al., 2012
Australia	Fishery Bay, Eyre Peninsula	34.92	135.69	Shaughnessy et al., 2012
Australia	Coffin Bay	34.62	135.47	Shaughnessy et al., 2012
Australia	Waterloo Bay, Elliston	33.64	134.87	Shaughnessy et al., 2012
Australia	Hindmarsh River mouth	35.54	138.63	Shaughnessy et al., 2012
Australia	Younghusband Peninsula, Murray Mouth	35.71	139.13	Shaughnessy et al., 2012
Australia	Nora Creina	37.33	139.85	Shaughnessy et al., 2012
Australia	Hindmarsh River mouth	35.54	138.63	Shaughnessy et al., 2012
Australia	Kangaroo Island (Castle Rock Beach, Vivonne Bay)	35.99	137.18	Shaughnessy et al., 2012
Australia	Goolwa Beach	35.51	138.77	Shaughnessy et al., 2012
Australia	Younghusband Peninsula	35.66	139.07	Shaughnessy et al., 2012
Australia	Younghusband Peninsula	35.84	139.31	Shaughnessy et al., 2012
Brasil / Brazil	Estado de rio de Janeiro	22.00	41.00	Moura et al., 2011
Brasil / Brazil	Estado de rio de Janeiro	22.17	44.33	Moura et al., 2011
Brasil / Brazil	Estado de rio de Janeiro	22.00	43.25	Moura et al., 2011
Brasil / Brazil	Florianópolis	27.59	48.55	Ximenez et al., 1987
Brasil / Brazil	Praia de Cidreira	30.00	50.21	Widholzer, 1982
Brasil / Brazil	Praia do Cassino	32.12	52.16	Pinedo, 1990
Brasil / Brazil	Albardão	33.25	52.71	Ferreira et al., 1995
Chile	Parry Fjord	54.07	69.34	Acevedo et al., 2017
Chile	Parry Fjord	54.68	69.51	Acevedo et al., 2017
Sudáfrica / South Africa	Die Dam Beach (Western Cape)	34.76	19.71	Vinding et al., 2013
País / Country	Localidad / Locality	Latitud decimal / Decimal latitude	Longitud decimal / Decimal longitude	Referencia / Study reference
---------------	----------------------	-----------------------------------	-------------------------------------	-----------------------------
Sudáfrica / South Africa	Hout Bay (Cape Province)	34.01	18.35	Best, 1971
Sudáfrica / South Africa	Marion Prince Edward Island	34.01	23.37	Hückstädt, 2015 (Red List web page: https://www.iucnredlist.org/species/10340/45226422)
Sudáfrica / South Africa	Plettenberg Beach	46.89	37.74	Citizen science: https://www.capetownetc.com/cape-town/rare-sighting-of-leopard-seal-on-plett-beach/
Sudáfrica / South Africa	Cape Recife Beach (Algoa Bay)	33.83	25.83	Citizen science: https://www.heraldlive.co.za/news/2020-07-06-rare-leopard-seal-carcass-found-on-cape-recife-beach/
Sudáfrica / South Africa	Cape Town (Milnerton Beach)	33.87	18.50	Citizen science: https://www.news24.com/news24/southafrica/news/pic-leopard-seal-spotted-on-cape-town-beach-residents-cautioned-20190828
Uruguay	Isla Verde	34.82	55.31	Juri, 2017
Uruguay	Punta Palmar	34.07	53.55	Juri, 2017
Uruguay	Piríapolis	34.87	55.27	Juri, 2017

Tabla S2. Relación de la muestra de cada foca leopardo (*Hydrurga leptonyx*) colectada en la costa de Danco con cada haplotipo identificado por Slade *et al.* (1994) y en este estudio. Para cada individuo, se incluyó el ID de la secuencia en NCBI, el número de acceso a Genbank, el nombre del haplotipo utilizado en la gráfica de la red (Figura 2), el sexo y la referencia del estudio.

ID Secuencia NCBI / NCBI Sequence ID	Número de acceso a GenBank / GenBank Accession number	Haplotipo / Haplotype	Sexo / Sex	Referencia / Reference
HLU03590		CR1	-	Slade *et al.* (1994)
HL1CD	MW168803	HL1	Hembra / Female	Este estudio / This study
HL2CD	MW168801	HL2	Macho / Male	Este estudio / This study
HL3CD	MW168811	HL3	Macho / Male	Este estudio / This study
HL4CD	MW168812	HL4	Macho / Male	Este estudio / This study
HL5CD	MW168809	HL5	Hembra / Female	Este estudio / This study
HL6CD	MW168805	HL6	Hembra / Female	Este estudio / This study
HL7CD	MW168810	HL7	Macho / Male	Este estudio / This study
HL8CD	MW168806	HL8	Macho / Male	Este estudio / This study
HL9CD	MW168802	HL9	Macho / Male	Este estudio / This study
HL10CD	MW168807	HL10	Hembra / Female	Este estudio / This study
HL11CD	MW168808	HL11	Hembra / Female	Este estudio / This study
HL12CD	MW168804	HL12	Macho / Male	Este estudio / This study

Table S2. Relationship of the sample of each individual leopard seal (*Hydrurga leptonyx*) collected on the Danco Coast with each haplotype identified by Slade *et al.* (1994) and in this study. For each individual, NCBI Sequence ID, GenBank accession number, haplotype name used in network plot (Figure 2), sex, and study reference were included.