Intracellular mono-ADP-ribosyltransferases at the host–virus interphase

Bernhard Lüscher1 · Maud Verheirstraeten1 · Sarah Krieg1 · Patricia Korn1

Received: 10 February 2022 / Revised: 15 March 2022 / Accepted: 5 April 2022 / Published online: 10 May 2022
© The Author(s) 2022

Abstract

The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.

Keywords ADP-ribosylation · Alphavirus · Chikungunya virus · Coronavirus · Macrodomain · MARylation · Hydrolase · Interferon · PARP · Pattern recognition receptors · Signaling

Introduction

The innate immune system is our first line defense against pathogens. To mount a rapid response, it senses pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) (Fig. 1a). These include membrane-bound toll-like receptors (TLRs) and cytosolic receptors such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), AIM2-like receptors (ALRs), and cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS) and RNA helicases that sense nucleic acids [1–7].

PRRs recognize PAMPs to allow cells to distinguish between self and non-self. PAMPs consist of a variety of molecules with broad chemical properties, including conserved microbial components such as glycolipids, peptidoglycans, and lipopolysaccharides (LPS). Also, certain forms of RNA and DNA serve as PAMPs. Nucleic acid receptors sense distinct features of these polymers that are not present or not available in host cells. Examples are viral replication intermediates, double stranded (ds) RNA or dsDNA with a high non-methylated cytosine-phosphate-guanosine (CpG) content [8–10].

Upon interaction with PAMPs, PRRs induce signaling cascades that stimulate interferon (IFN) expression. Subsequently, these secreted cytokines induce the expression of IFN-stimulated genes (ISGs), which encode antiviral and antimicrobial factors and thus enable other cells to mount an antipathogen response [11, 12]. Some ISGs encode ADP-ribosyltransferase (ART) family members, in particular mono-ADP-ribosylating (MARylating) PARPs (Box 1) [13, 14]. In this review, we focus on the role of intracellular mono-ADP-ribosyltransferases in the antiviral response. This involves functions of ARTs as PAMP receptors and as regulators of both host and viral factors. Moreover, we summarize how viruses antagonize MARylation, which is achieved by ADP-ribosylhydrolases. These findings suggest
that MARylation is an important arm of innate immunity and that the emerging mechanisms may offer opportunities to interfere with viral replication and/or immune modulation.

Of note, enzymes that poly-ADP-ribosylate (PARylate) substrates, such as PARP1, and extracellular mono-ARTs, referred to as ARTCs [14], have also been linked to innate and adaptive immunity. Discussing these findings in detail is beyond the scope of this review. We refer the reader to excellent, recent reviews that summarize and discuss these functions [15–17].

Recognition of PAMPs and signaling by PRRs

TLRs are spanning either the plasma (e.g. TLR2, 4 and 5) or the endosomal membrane (e.g. TLR3, 7 and 8), recognizing a large variety of different PAMPs such as LPS by TLR4 and dsRNA by TLR3, and activate signal transduction pathways (Fig. 1a) [2, 18–20]. Cytosolic RLRs recognize PAMPs that include nucleic acids. For example, un-capped dsRNA promotes oligomerization of RIG-I and MDA5, while unmethylated CpG-rich DNA is sensed by cGAS, which then activates the adaptor mitochondrial antiviral signaling protein (MAVS) or stimulator of interferon genes (STING), respectively, to promote the assembly of signaling complexes. These contain different ubiquitin E3 ligases and kinases, which activate sequence specific transcription factors (sTFs) such as interferon regulatory factors (IRFs) 3 and 7 and NF-κB [5, 9, 21–27]. These sTFs stimulate the expression of genes encoding type I and III interferons (IFN) as well as pro-inflammatory cytokines in many different cell types [28–31]. In addition, the expression of IFNγ, the single type II IFN, is induced predominantly in certain immune cells, such as natural killer, innate-like lymphoid and T cells following PRR activation [32–34]. Together, these IFNs unfold signaling processes controlling the expression of genes whose products possess broad antiviral activities (Fig. 1b).

Interferon regulated genes and their products

IFNs were originally identified due to their interfering antiviral activities [35, 36]. Once released, IFNs disseminate
Genes encoding ADP-ribosyltransferases are regulated by interferons

ARTs are enzymes capable of transferring ADP-ribose (ADPr) from NAD⁺ onto substrates. ADP-ribosylation comes in two forms, mono- and poly-ADP-ribosylation (MARylation and PARylation, respectively), which is catalyzed intracellularly predominantly by the ARTD family, including PARP and TNKS proteins (Box 1). ADP-ribosylation was discovered in the 1960s and numerous proteins have been identified as substrates. These are associated with many different biochemical and cellular functions, including DNA repair, viral replication, gene transcription and stress response [13]. Importantly, ADP-ribosylation is a fully reversible process. ADP-ribosylhydrolases contain either a macrodomain or a Ribosyl_crysJ1 domain capable of cleaving ADPr-ADPr or ADPr-amino acid glycosidic bonds (Box 2) [46]. Moreover, Nudix hydrolases cleave ADP-ribose to produce 5’ AMP and ribose-5-phosphate [47, 48]. Below we will focus on macrodomain-containing proteins as these have been identified in some viruses.

In addition to proteins, nucleic acids have been identified as substrates [49, 50]. Although a good part of the evidence comes from in vitro experiments so far, it is notable that enzymes in shellfish and in butterflies have been demonstrated to MARylate DNA, possibly as part of a defense mechanism [51–53]. Moreover, some toxins of bacterial toxin-antitoxin systems, which are involved in promoting persistence of cell populations, have been described as DNA ADP-ribosylating enzymes [54, 55]. It is tempting to speculate that ADP-ribosylation of viral nucleic acids might be of functional relevance.

An early observation linking ARTDs to IFN signaling was the demonstration that PARP9 is responsive to IFNγ [56]. PARP9 was initially described as a risk factor in diffuse large B-cell lymphoma (DLBCL) and is upregulated in chemoresistant DLBCL [57, 58]. PARP9 shares its promoter with DTX3L and, indeed, DTX3L is also IFNγ responsive. Both genes are activated in cells that express a dominant active form of STAT1 (Fig. 1b) [59]. Interestingly, PARP9 and DTX3L, a Deltax family member (see below), interact and participate in the activation of certain ISGs, suggesting a positive feedback loop [56, 60]. Another PARP gene identified as regulated by IFNs is PARP13 [61, 62]. Moreover, in different experimental systems, including infection of human monocytes with Borrelia burgdorferi, spirochetes that promote an IFN response, the ISGs activated include PARP10, PARP12 and PARP14 [63–67]. Similar findings were obtained upon infection with for example a murine coronavirus (CoV) and with SARS-CoV-2 (for viral taxonomy see https://ictv.global/taxonomy/) [64, 68].

Comparing type I IFN-inducible genes between 10 different species, i.e. 9 mammals and chicken, revealed 62 upregulated ISGs in all species and an additional 28 only in mammals, likely defining central components of the innate immune response [39]. These genes encode antiviral proteins, factors involved in PAMP sensing and in modulating IFN signaling, proteins implicated in antigen presentation, and several PARP genes (Table 1) [39]. The latter include the previously identified IFN-inducible genes, i.e. PARP9, PARP10, PARP12, PARP13 and PARP14. These five genes were consistently activated, in many cases more than tenfold. In some species PARP11 and PARP15 were induced, while PARP3, PARP4, PARP7, PARP8, and PARP16 were stimulated less efficiently (Table 1). Strikingly, these PARP genes encode mono-ARTs, except PARP13, which is thought to be catalytically inactive [69]. The genes encoding the PARylating enzymes PARP1, PARP2, TNKS1 and TNKS2 were not induced (Table 1 and Box 1). Together, these findings establish a link between innate immune signaling and the expression of a subset of PARP genes that encode MARylating enzymes.

In addition to IFNs, some PARP genes are also activated by PAMPs [70–73]. Whether these PAMP signals promote the expression of these PARP genes directly or whether these are indirect effects caused by activated IRFs driving IFN expression, thereby stimulating autocrine signaling, is not fully understood. In support of a direct effect are analyses of IRF1, a transcription factor directly activated by certain PAMPs [74]. IRF1 interferes with replication of some viruses and promotes the expression of PARP9, PARP10, PARP12 and PARP14 even in the absence of STAT1 [67].

Furthermore, it is of interest to mention that the different ADP-ribosylhydrolases capable of reversing
ADP-ribosylation were also evaluated in the data set discussed above [39]. The genes encoding PARG and ARH3, both capable of hydrolyzing PAR chains, and the genes encoding MacroD1, MacroD2, TARG1, ARH1 and ARH3, which cleave the glycosidic bond between specific amino acid side chains and ADP-ribose, were not systematically regulated in response to type I IFN (Table 1 and Box 2).

Together these observations support the notion that MARylation contributes to innate immunity. Considering that genes encoding mono-ARTs are up-regulated upon IFN signaling, while genes encoding hydrolases are not, suggests that MARylation exerts predominantly antiviral effects. In support, some viruses encode a mono-ADP-ribosylhydrolase. However, this does not exclude that viruses may also exploit ADP-ribosylation for their propagation.

ARTD protein expression and activation in innate immune signaling

While many reports demonstrate expression of PARP genes in response to PAMPs and IFNs, the expression and activity of the encoded proteins are less well studied. For PARP10, PARP12 and PARP14 enhanced protein expression in response to LPS has been documented [70, 71, 75]. Other PARPs have been more difficult to evaluate, mainly due to the lack of high quality reagents for protein detection and the low expression of some of these proteins. Even less clear is whether the catalytic activities of the different MARylating enzymes are altered in response to innate immune stimuli. While mass spectrometry studies define increasing numbers of substrates and ADP-ribosylation sites (see e.g. [76–82]), information that specifies enzyme–substrate pairs is still rare. Interestingly, a recent study suggests that ADP-ribosylation increases upon treatment with IFN as well as poly(I:C), a vRNA mimic [83]. This increase was unaffected by Olaparib, a potent PARP1/2 inhibitor, suggesting that PARP1 and PARP2 were unlikely to be involved. Whether the increase is due to activation of an ART or through inhibiting a hydrolase or both has not been clarified. Together, understanding the role of IFN-inducible PARPs in innate immunity will require the identification of substrates, to comprehend whether the relevant sites are differentially modified, and whether MARylation is of functional relevance.

Evolution of mono-ARTs supports link to host–pathogen conflicts

PARP genes have undergone strong selection in primates [84]. In particular, it appears that PARP13 is under positive selection, enhancing its antiviral activities [85]. Also PARP9, PARP14 and PARP15 seem to be under strong evolutionary selection [86]. The described rapid sequence adaptations are thought to reflect the arms race in host–pathogen conflicts. Of note is that the changes in sequence that were selected are particularly frequent in the catalytic domains, e.g. in PARP13 despite its apparent lack of catalytic activity, and in the macrodomains of PARP9, 14 and 15, domains linked to ADP-ribosylation-dependent signaling (Box 2). This supports the hypothesis that mono-ARTs are contributing to the antiviral innate immune response.

PARP proteins in viral replication and propagation

The information depth regarding the consequences of mono-ARTs on viral replication and propagation is quite variable. Because mechanistic insight has only been obtained in some cases, the subsequent discussion is structured according to proposed mechanisms. Worth remembering is that PARP13 seems to be catalytically inactive as an ART and thus it does not teach us directly how ADP-ribosylation might interfere with viral replication. However, PARP13, which is also referred to as zinc finger (ZnF) antiviral protein (ZAP) or ZC3HAV1, is arguably the best studied PARP member with antiviral activity and it connects to other PARP enzymes, thereby likely affecting ADP-ribosylation (see below). Note that a lack of consequences on viral replication when single PARPs are manipulated should be interpreted with caution. The activity of a specific PARP may only unfold in cooperation with other ISG encoded proteins, including other IFN-inducible PARPs. Thus, while we learn more about individual PARPs and viral replication, a more complete picture will require to study cooperative activities of PARPs.

Interference with viral replication

In an overexpression screen using Moloney murine leukemia virus (MMLV) as a model, PARP13 was identified as an inhibitor of viral propagation [87]. PARP13 is expressed as several isoforms. The most prominent are a long and a short version, referred to as PARP13 (PARP13.1/ZAPL) and PARP13.2 (ZAPS), respectively. Both encode all 4 ZnFs, but PARP13.2 lacks the pseudo-ART domain [88, 89]. The different isoforms have distinct activities in the innate immune response [88, 90]. PARP13 possesses robust antiviral activity in many experimental systems including, in addition to MMLV, certain alphaviruses, hepatitis B virus, influenza A virus, and SARS-CoV-2 [73, 85, 91–104]. Other PARPs, including PARP7, PARP9, PARP10, PARP12 and PARP14, also interfere with replication and propagation of some viruses [64, 66, 67, 105–110]. For PARP10 and 12 these effects are at least in part dependent on catalytic activity [66, 107, 108, 110]. Studying the effects of PARPs on different viruses reveals some selectivity, possibly
due to different substrate specificities or the interaction with both host and viral proteins or nucleic acids (see below). For example, some viruses are not affected by PARP13, including yellow fever virus (YFV, Flaviviridae family) and Venezuelan equine encephalitis virus (VEEV, Togaviridae family) [95, 99, 108]. It is likely that PARP13 needs to cooperate with other IFN regulated gene products for antiviral activity [93, 111]. Similarly, PARP7 also shows some specificity, which may depend on the ability to interact with certain viral RNAs [105]. Thus, combinatorial effects of different PARPs and with other host factors will need to be considered.

PARP proteins as sensors of viral RNA

When analyzing the structural attributes of IFN-inducible PARPs, features that stand out are potential nucleic acid binding domains (ZnFs and RRMs) and macrodomains (Box 1). Indeed, several PARP proteins interact with viral RNA and thus may serve as PRRs. Again, PARP13 was the first identified. It interacts with vRNA through its ZnFs, which can stimulate RNA degradation (Fig. 2a). PARP13 seems to recognize multiple binding sites in both the 5′ or the 3′ untranslated regions (UTR) of MMLV, although no defined sequence was mapped [87, 112]. More recently, the CpG dinucleotide content was found to promote PARP13 binding. Synonymous mutagenesis of the HIV genome to increase the number of CpG dinucleotides resulted in sensitization to PARP13 [113]. The genomic positions of the additional CpG dinucleotides are relevant, suggesting that the sequence context is important [102, 114]. This is consistent with a high CpG content promoting an innate immune response [115–117].

PARP13 interacting factors are important for CpG dinucleotide dependent antiviral activity (Fig. 2a) [113, 118]. One is TRIM25, which appears to enhance RNA binding of PARP13 [119]. Because TRIM25 is involved in activating MAVS [1], promoting IFN expression might be a consequence of PARP13 sensing vRNA. Moreover, PARP13 interacts with the exosome, a structure that degrades RNA and is involved in immunity [120, 121]. Exosome-dependent degradation of RNA begins with removing the poly(A) tail. Indeed, PARP13 interacts with PARN, one of several exonucleases known to target poly(A), and indirectly with decapping factors [96]. In addition, evidence for the requirement of a DEAD box helicase that associates with PARP13 has been obtained [122]. Helicases are involved in resolving secondary structures of RNA, which is required for exosome-dependent degradation. These findings suggest that PARP13 bridges viral and possibly cellular RNAs (see below) to cellular complexes that unfold and degrade RNA. PARP7, similar to PARP13, uses its ZnF to bind to SINV vRNA and induces its degradation by recruiting the exosome [105].

PARP9 has also been suggested to function as a receptor of viral dsRNA. This interaction promotes the activation of IRF3 and IRF7 through the phosphoinositide 3-kinase (PI3K) and AKT3 pathway (Fig. 2b) [106]. IRF3 and IRF7 stimulate type I and III IFN gene expression, however, this appears to be independent of MAVS, suggesting that PARP9 functions as a non-canonical PAMP sensor. Consistent with this, Parp9−/− mice are more susceptible to different viral infections [106]. Thus, evidence is accumulating that several PARPs function as PRRs, contributing to the first level of the antiviral response.

Cellular RNA metabolism and protein translation

Many viruses affect the availability of cellular RNAs and control selective protein translation. Products of ISGs interfere with these processes [123]. Several PARP proteins have been suggested to alter protein translation. When expressed from a modified VEEV replicon, PARP7, 10 and 12 appear to strongly repress translation [109]. This might be due to synergistic effects with viral proteins, as these PARPs do not affect general translation in other cellular systems. As discussed above, vRNAs are regulated by PARP13. Moreover, it destabilizes certain cellular RNAs, for example the mRNA encoding TRAIL receptor 4 (TRAILR4), a decoy receptor [124]. Downregulation of TRAILR4 sensitizes cells to pro-apoptotic TRAIL signaling and thus may contribute to the antiviral function of PARP13. PARP13 was also found to inhibit translation at least in part by preventing the interaction of RNA with ribosomes (Fig. 2c) [125]. PARP13 interacts with eIF4A, a helicase important for initiation of translation [126]. The eIF4 complex is a frequent target of viral interference to promote translation of vRNAs [127].

In addition to stimulating RNA binding as described above, TRIM25 appears to participate in PARP13 mediated inhibition of viral translation [128]. Whether this is dependent on the E3 ligase activity of TRIM25 will need clarification. An indirect mechanism to control the availability of both cellular and viral RNAs is to interfere with Dicer/RNA-induced silencing complex (RISC), which contributes to antiviral immunity [129]. Subunits of RISC, including Ago2, are PARylated upon stress and damage-associated molecular patterns (DAMP) signaling [130, 131]. PARP13 interacts with Ago2 and interferes with miRNA function, possibly in complex with PARP12 and PARP15, offering additional mechanisms to control RNA stability and translation.

Many of the processes discussed above connect to stress granules (SGs), which are well-described to contribute to innate immunity [132–135]. Indeed, Ago2 and PARPs 12–15 are found in SGs, pointing to an intimate relation of SGs with ADP-ribosylation [130, 136–138]. In support, ADP-ribosylation of both SG and RISC components are suggested to participate in antiviral activities (Fig. 3a) [136]. Because the effects on SG formation are thought to require PAR formation, the mono-ARTs PARP12, PARP14 and PARP15,
and possibly others, may be responsible for initial MARylation. This might provide a seed for subsequent PAR formation, for example by TNKS1 or 2, which are also located in the cytosol and are associated with SGs when overexpressed [13, 130]. Together, a network of PARP proteins appears to contribute to SG formation, potentially regulating RNA stability and availability. Unraveling their precise interplay will be relevant to advance our understanding of the role of SGs for viral replication.

Cellular interactors and substrates of IFN-inducible PARPs

A key question in understanding the role of PARPs in host–pathogen conflicts is to define their substrates. Both host and viral factors might be controlled by ADP-ribosylation. Different approaches have been employed including targeted approaches, protein arrays, chemical genetics approaches and BioID-based protein–protein interaction

Table 1 The expression of ARTD subfamily members, macrodomain-containing hydrolases, and ARH family members in response to interferon signaling is summarized

Enzyme	ADP-ribosylation	Human	Rat	Cow	Sheep	Pig	Horse	Dog	Fruit bat	Microbat	Chicken
PARP1	Poly	NDE									
PARP2	Poly	-0.60									
PARP3	Mono	0.61	1.56	1.28	0.71	1.17	1.25				
PARP4 (VPARP)	Mono	1.34	0.46				0.45	0.43			
TNKS1	Poly	-0.22	0.34								
TNKS2	Poly	0.66									
PARP6	Mono						0.83	0.72	1.67	0.45	
PARP7 (TIPARP)	Mono						0.83	0.72			
PARP8	Mono	2.05	0.82	2.15					1.49		
PARP9 (BAL1)	Mono	4.02	4.81	4.46	4.12	5.79	4.97	4.00	4.41	3.24	4.86
PARP10	Mono	2.92	3.81	4.27	2.68	2.58	5.54	NA	2.27	4.03	
PARP11	Mono	0.58	0.57	0.35	3.48	1.32	3.35	1.67			
PARP12 (ZC3HC1)	Mono	4.22	3.98	4.36	4.50	4.78	3.81	2.53	6.66	3.12	4.21
PARP13 (ZAP, ZC3HAV1)	Inactive	3.06	1.55	2.07	2.55	3.86	5.68	2.81	2.26	2.10	5.21
PARP14 (BAL2)	Mono	5.14	4.44	4.69	5.71	10.35	3.96	5.71	6.96	5.31	5.61
PARP15 (BAL3)	Mono	1.10				8.06	2.34	8.68	6.07	5.61	
PARP16	Mono	-0.75	-0.58	0.46							
PARG	De-poly										
MacroD1	De-mono										
MacroD2	De-mono										
TARG1	De-mono										0.35
ARH1	De-mono	0.98									
ARH3	De-mono/poly	1.72	-0.67	-0.42							

The data were obtained from http://isg.data.cvr.ac.uk [39]
The expression is indicated as log2 fold change. In green are genes whose expression is induced more than tenfold (log2 ≥ 3.33)
NDE/orange: not differentially expressed. This indicates genes that are neither induced nor repressed in a statistically significant manner
NA/grey: no data available
ADP-ribosylation: mono refers to ARTD enzymes capable of mono-ADP-ribosylating substrates; poly to ARTD enzymes synthesizing ADP-ribose polymer chains (iterative mono-ADP-ribosylation); De-poly and de-mono refer to enzymes that can degrade ADP-ribose polymer chains and substrate attached mono-ADP-ribose, respectively
screens to define possible interactors and substrates. Because measuring MARylation in cells is cumbersome, many of the potential substrates await detailed analysis, including mapping modification sites to evaluate relevance.

The study of PARP10 and PARP14 on protein micorarrays defined in vitro substrates [139], some of the PARP10 substrates could be verified in cells [140–142]. Through interaction and chemical genetic screens potential substrates for PARP10, PARP11 and PARP14 were identified [143, 144]. Interestingly, gene ontology (GO) analyses of these potential substrates suggest functions in signaling, metabolism and mRNA associated processes, among others, compatible with functions in innate immunity. One of the PARP14 substrates identified is PARP13, providing a link for an interaction network of PARP family members [144]. Other PARPs that are modified in cells include PARP9, PARP10 and PARP14 [145]. Support for a network is also provided by the interaction of PARP14 with MARylated PARP10 that is dependent on the ability of the macrodomains of PARP14 to read the modification [146].

Of note is that PARP14 translocates to the cell nucleus upon LPS stimulation, offering the possibility that nuclear substrates can be MARylated upon PAMP signaling, while cytosolic substrates may lose MARylation (Fig. 3b) [71]. These effects may be further augmented because the translocation of PARP14 also promotes the nuclear uptake of other proteins, including PARP12 and PARP9/DTX3L. Some PARPs affect transcription, for example PARP14 acts as a cofactor for STAT6 [147, 148]. Moreover, PARP9/DTX3L interacts with STAT1 and enhances its DNA binding on both ISRE and GAS elements and transcription of ISGs, suggesting a STAT1 cofactor function for PARP9/DTX3L (Fig. 3b) [59]. Consistent with this model is that the knockdown of either PARP9 or DTX3L, which results in the repression of both proteins, abrogates the antiviral effect of active STAT1 [59]. The interplay of PARP14 and PARP9 has obtained further complexity when it was reported that STAT1 is MARylated by PARP14, which is antagonized by PARP9. This results in complex effects on STAT1 dependent gene transcription [149]. However, this study has provoked significant criticism [150], requiring further clarification about the interplay of PARP9 and PARP14. Also, a recent study did not find effects on ISG expression upon manipulating PARP9/DTX3L [83]. While LPS stimulates the nuclear translocation of monoARTs, LPS also stimulates PARylation through PARP1 and 2, which is inhibited by PARPi such as Olaparib [76, 151]. LPS has been described to induce DNA damage that activates PARP1 and PARP2 [152], and to promote PARylation of NFATc, a transcription factor involved in immune signaling [153]. Thus, under specific conditions, combination of MARylation and PARylation may affect gene transcription.

In addition to the above summarized accumulation of PARPs in the nucleus, PARP7 relocates to the cytosol upon stress to interact with vRNA and to stimulate mitochondrial damage [105]. Because BAX and BAK are involved, this may result in an apoptotic response. How general this process remains to be determined. More recently, PARP7 substrates were found to be linked to gene transcription and microtubules, functions that might be relevant for virus-host interactions [154].

PARP9 was considered inactive. However, when interacting with DTX3L, this protein complex appears to have dual functions. In the presence of high NAD⁺ levels, the complex MARylates ubiquitin and blocks its use by E3 ligases. In contrast, when the complex is recruited to PAR chains through the PARP9 macrodomains, the E3 ligase activity of DTX3L is stimulated [60]. The authors suggested that PARP9 is responsible for this MARylation. However, a recent study finds that the RING-DTC domain of Deltex family E3 ubiquitin ligases such as DTX3L, independent of PARP9, is responsible for MARylation of ubiquitin [155]. It remains to be clarified whether PARP9 is indeed active or not. Recently, additional E3 ligases were identified in complex with PARP9/DTX3L as part of a newly forming protein module in myeloid cells upon LPS treatment [76]. These findings suggest an intimate relationship between PARP9/DTX3L and ubiquitination, a post-translational modification (PTM) prominent in controlling innate immune signaling [156].

Host proteins that have been linked to viral replication are the two highly homologous proteins RasGAP SH3-binding proteins 1 and 2 (G3BP1/2) [157]. These proteins are ADP-ribosylated, although the relevant enzymes have not been identified [158]. As discussed further below, these modifications are reversed by viral hydrolases. G3BPs are essential for SG assembly, which at least for some viruses is relevant for replication [159, 160]. The knockout (KO) of G3BP1 and/or G3BP2 affects alphavirus replication to different degrees [161]. SG condensates form through liquid–liquid phase separation (LLPS), suggested to be dependent on the RNA-binding capacity of G3BPs. PTMs modulate the ability of G3BPs to form condensates [162–164], and thus ADP-ribosylation of G3BP proteins might affect SG function and consequently viral replication.

The studies summarized in this section suggest that many of the interactors/substrates of IFN-inducible PARPs have antiviral activities. Although in many instances the full molecular consequences are not yet understood, as discussed further below, MARylation is moving into the focus of virus–host conflicts.

Feedback response in interferon signaling

Deregulated IFN expression and/or signaling is associated with different diseases, including chronic viral infection or autoimmune diseases [45, 165–167]. For example, the lack of a proper response to IFNs due to inherent IFNAR1 deficiency
results in adverse reactions to live virus vaccines [168]. More recently, an impaired IFN response has been found associated with severe COVID-19 [169, 170] (reviewed in [166, 171]). Unlike the antiviral activity of PARP13, PARP13.2 appears to be part of a negative feedback mechanism as it is involved in the degradation of several IFN mRNAs, thereby restraining the IFN response [90]. Others have reported that PARP13.2 promotes RIG-I signaling during the antiviral response, which enhances IFN production, and thus contributes to a positive feedback loop [172]. How these two opposing functions of PARP13.2 are regulated remains to be resolved.

PARP11 is a poorly studied family member that is induced by IFN and subsequently reduces IFN signaling. Mechanistically, PARP11 was shown to MARylate the ubiquitin E3 ligase β-transducin repeat-containing protein (β-TrCP), which promotes the poly-ubiquitination and degradation of IFNAR1 [173]. The consequence is reduced IFN signaling, contributing to the negative feedback response. Whether PARP11 also has antiviral activity has not been reported.

The aryl hydrocarbon receptor (AHR) is activated by ligands such as dioxin and other xenobiotics, but also microbial metabolites and thus functions as a PRR. Ligand binding promotes DNA binding and gene expression, one of its targets is PARP7 [174–180]. PARP7 inhibits AHR at least in part by MARylating the receptor (Fig. 3c) [181–183]. Moreover, PARP7 induced by constitutively activated AHR interferes with PAMP signaling and, in accordance, IFN production is enhanced in AHR knockout cells, which hampers viral replication [184]. The PARP7 catalyzed MARylation of AHR is read by PARP9/DTX3L, which contributes to deregulated expression of a subset of AHR target genes [185]. Thus, the role of PARP7 in innate immunity is complex by limiting the host response but also by interfering with virus replication and propagation. Such a feedback mechanism might also be relevant during CoV infection, which promotes AHR activation by an unknown mechanism [186]. Moreover, this suggests that PARP9/DTX3L also possesses activating functions, for example through STAT1, but also repressing functions in combination with PARP7 MARylated AHR.

An additional level of feedback signaling by PARP7 has been described recently. PARP7 was found to MARylate proteins with functions in the immune system, including PARP13 (Fig. 3d) [187]. PARP7 has been reported to MARylate cysteines, unlike other IFN-inducible PARPs that modify glutamates and aspartates [181, 187]. PARP13 is MARylated by PARP7 at several of the cysteines that are responsible for coordinating Zn²⁺ ions, resulting most likely in inactivating the ZnFs and thus preventing RNA binding (Fig. 3d). This function may also be important to limit the innate immune response. So far, no eukaryotic hydrolase has been identified that reverses Cys-MARylation and thus the modification may provide a permanent inactivation of PARP13. Of note is the recent finding that a bacterial hydrolase, SpyMacroD, which is part of a toxin-antitoxin system in Streptococcus pyogenes, can hydrolyze MAR-Cys (Box 2) [188]. This provides a first link to reversibility of cysteine MARylation. When discussing different acceptor sites, an additional mechanistic aspect is worth pointing out. While MAR and PAR chains can be distinguished by some readers, including macrodomains, the macrodomains
Intracellular mono-ADP-ribosyltransferases at the host–virus interphase

The viral response to MARylation representing one arm of innate immunity

Viruses have developed many strategies to evade the innate immune response, including avoiding recognition by PAMP receptors and by interfering with IFN-dependent signaling [192, 193]. Because the available information suggests strongly that PARP mediated MARylation antagonizes viral replication and propagation, questions that are important to address include which strategies viruses developed to deal with MARylation and whether viral proteins are substrates. For both these questions we only have partial answers that we discuss in this section.
Viral interference with cellular MARylation

Macromdomains, structural elements closely associated with ADP-ribose metabolism, are found in all kingdoms of life (Box 2) [46, 194–197]. Upon the realization that some viruses possess macromdomains, a potential role in antagonizing IFN-induced MARylation was hypothesized. Indeed, the viral macromdomains belonging to the alphavirus, orthohepevirus, alph-CoV and beta-CoV genera have been identified as MAR-selective hydrolases [70, 198–203]. In some cases the relevance of macromdomains for replication has been documented [107, 199, 201, 204–207].

Beta-CoV, including SARS-CoV-2, possess a positive-sense, single-stranded RNA ((+)-ssRNA) genome of roughly 30 kb [208–210]. SARS-CoV-2 encodes 16 non-structural proteins (nsPs), the corresponding information is encoded by the 5’ two-thirds of the viral genome. Additional open reading frames encode accessory and structural proteins. The nsP3 protein of SARS-CoV-2, a membrane bound multidomain protein, contains three macromdomains. Of these, only Mac1 binds ADPr [211–213]. Mac1 of SARS-CoV-2, SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV) and murine hepatitis virus (MHV, a CoV) functions as MAR hydrolase [202, 214]. These studies also demonstrate that Mac1 is important for efficient viral replication. In contrast, Mac2 and Mac3 do not possess hydrolase activity. Instead, they bind to nucleic acids or host proteins, thereby promoting replication [215–218]. An additional study supports the modulatory role of the catalytic macromdomain in MHV. General PARP inhibitors were able to interfere with viral replication only when an MHV strain was used, in which the nsP3 macromdomain was inactivated [64].

While in CoVs the macromdomain hydrolase activity enhances viral replication, the catalytic activity of the macromdomain of certain alphaviruses is necessary for replication [107, 199]. It is remarkable that of the four nsPs of alphaviruses, which typically have a (+)-ssRNA genome of 10–12 kb, nsP3 contains a macromdomain with MAR hydrolase activity [219, 220]. The high selectivity of the macromdomains for MAR over PAR supports the notion that MARylating PARPs contribute to antiviral defense [70, 107].

As pointed out above, G3BP proteins are ADP-ribosylated. Early on it was found that SINV nsP3 is in complexes containing G3BP1 and G3BP2 [221]. The nsP3 proteins of other viruses were also found to colocalize with G3BP [222]. Of note is that several of the over 30 alphaviruses, which include a large number of mosquito-borne vertebrate pathogens [223, 224], possess two FGxF-like motifs in nsP3. This motif mimics a G3BP binding domain and may modulate G3BP function and SG assembly [220]. Of note for the discussion here is that the catalytic activity of the CHIKV nsP3 macromdomain was suggested to inhibit SG formation [158]. These findings, which need further verification, suggest that CHIKV nsP3 reorganizes G3BP condensate formation and thus may influence SGs.

It is possible that viruses have developed additional means to deal with IFN-induced MARylation. In one study, it was suggested that the NS1 protein of avian influenza virus interacts with PARP10 and induces its degradation (Fig. 4c) [225]. In parallel, a cell cycle arrest was observed, although it is unclear whether this is the result of PARP10 loss or some other NS1 effect on the host. Nevertheless, PARP10 is antiviral in several experimental settings and thus is an attractive target for viral intervention.

Viral ADP-ribosylation substrates

Recent studies have identified viral proteins as substrates of IFN-induced PARP enzymes. These include the non-structural proteins NS1 and NS3 of Zika virus (ZIKV, Flaviviridae family) [110], the nucleocapsids of several viruses [226], and the nsP2 protein of CHIKV [107]. PARP12 inhibits ZIKV replication by targeting NS1 and NS3. This results in PARylation dependent proteasomal degradation of the two viral proteins [110], which are generated upon processing of a polyprotein and are required for replication [227]. Because PARP12 is a mono-ART, the combined action of a MARylating and a PARyating enzyme, possibly TNKS1 or 2, is necessary. PAR chains can serve as binding sites for an ubiquitin E3 ligase, thereby promoting protein degradation (Fig. 4a) [13, 228]. The reported interaction of PARP12 with PAR chains, through one of its WWE domains [137], may be part of a positive feed-forward loop to promote efficient non-structural protein degradation.

The nucleocapsid proteins of several CoVs are ADP-ribosylated in cells [226]. Although the relevant PARP enzyme(s) has not been identified yet, it is of interest to note that plasmid encoded nucleocapsid was not modified. Instead, this ADP-ribosylation required infection with virus or replicon particles. Thus, it is possible that the relevant PAR(s) needs to be activated by viral infection. This might occur by directly binding to vRNA or by stimulating innate immune signaling. Alternatively, the subcellular localization might be critical and PARP and nucleocapsid are only in contact when additional viral proteins and/or the viral genome are present. It will be important to define the functional relevance of nucleocapsid ADP-ribosylation.

Processing of the non-structural polyprotein of alphaviruses is dependent on the protease encoded by nsP2, an important target for antiviral drugs [229, 230]. For CHIKV the protease is necessary for replication [107, 231]. PARP10 MARylates nsP2 and the isolated protease domain, which inhibits catalytic activity (Fig. 4b) [107]. The protease is reactivated when treated with the nsP3 macromdomain. Consistent with this finding is that a CHIKV replicon with an inactivated nsP3 macromdomain is replication defective.
Together, the findings discussed above provide the first few viral MARylation substrates that seem to be important for viral replication. It is likely that we are only seeing the proverbial tip of the iceberg.

Viral macrodomains as targets for therapeutic intervention

The enzymatic activities encoded by viruses are important for replication, and some modulate the antiviral response executed by the innate immune system [192, 193]. Thus, targeting these activities with small molecules is of considerable importance to therapeutically interfere with viral replication and propagation [193, 208, 232–234]. The macrodomain hydrolases encoded by some RNA viruses, including SARS-CoV-2, CHIKV and Hepatitis E virus, are considered potential drug targets. Targeting viral macrodomains may be facilitated by the conserved fold of these domains and the large number of structures that are available [235].

Efforts have been undertaken to identify small molecule inhibitors of the catalytically active Mac1 of CoVs. Initial information, based on computational approaches and fragment screening, has been obtained that will be useful to develop Mac1 small molecule inhibitors [236–241]. Using homology to related macrodomains and to the PARG macrodomain resulted in two compounds that crystallize in the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that interact with the active site of Mac1 [238]. It will be interesting to see further biological studies of these compounds. In a large effort using crystallographic fragment screening and computational docking, many compound fragments were identified that inter...
polymerase [244]. Consistent with these findings, suramin has broad antiviral activities [245], and was reported to interfere with an early step of the SARS-CoV-2 replication cycle [246]. In a second study, dasatinib and dihydralazine were identified as Mac1 inhibitors [243]. Of note is that dasatinib, developed as an inhibitor of BCR-ABL and for the treatment of chronic myelogenous leukemia [247], did not inhibit MacroD2, the closest homolog of Mac1 present in humans.

A set of nucleosides and nucleotides were studied for binding to Mac1 using crystallography and modeling [240]. Interestingly, metabolites of remdesivir, including GS-441524, bound in the active center of Mac1. Because this metabolite inhibits both SARS-CoV-2 and MHV in cells and in a mouse model, respectively [248], GS-441524 may provide a hit compound for further development.

Specific inhibitors of viral macrodomains are not only relevant for CoVs but also for a number of alphaviruses that have a significant impact on the health of humans and other vertebrates [223, 249–251]. Several studies have used in silico strategies and high throughput screenings to identify compounds that target the CHIKV nsP3 macrodomain [252, 253]. Although it is unclear whether they are capable of inhibiting hydrolase activity, they showed weak activity in CHIKV infection models. Also flavonoids were identified as interactors of the CHIKV nsP3 macrodomain [254, 255], but again more detailed studies will be needed to verify the macrodomain as target. Finally, a recent study used compounds that were developed using in silico techniques to target MacroD1. Testing some of the compounds for their ability to interfere with Semliki Forest virus replication identified a compound with weak activity [256]. Together, these are promising studies that lay down the groundwork for developing much needed inhibitors of viral macrodomains.

Outlook

The findings that multiple PARP genes but none of the genes that encode the antagonizing hydrolases are induced in response to IFNs suggest a broad antiviral role of MARylation. This is consistent with some viruses possessing macrodomains with de-MARylating activity. How do viruses that do not encode a catalytically active macrodomain deal with the PARP response? Because MARylation is widespread, it is well possible that such viruses have developed alternative strategies. One possibility is that de-MARylating activities are associated with as yet unidentified domains. These might be related to the ARH fold or be distinct from the presently known structures. It will be interesting to see whether indeed unidentified “hidden” hydrolases exist.

Other possibilities include that viral proteins affect the activities or the specificities of PARP enzymes, thereby diverting these proteins from critical host and/or viral substrates. The identification of HPF1 as a cofactor of PARP1, which changes its substrate specificity, has provided exemplary evidence for redirecting specificity of a PARP enzyme [257]. Not only may the interaction of viral proteins with PARPs interfere with their antiviral activities, as suggested for the avian influenza virus NS1—PARP10 interaction described above, we imagine that it may redirect PARPs from an inhibitory to a neutral or even a supporting activity for viral replication. Additionally, multiple viral effectors control PAMP and IFN signaling and thus may affect PARP expression and activation in ways that have not been elucidated yet. Together, the published findings delineate an important role of MARylation as an antiviral PTM.

Despite these notions, we would like to point out the possibility that some pathogens, including viruses, do not interact with mono-ARTs and MARylation. Consequently, these pathogens may not require activities countering MARylation and thus they may lack MAR hydrolases or regulators of mono-ARTs.

Key to understanding the MARylation arm of innate immunity and its interaction with viruses will be to define more broadly relevant substrates, both viral and host factors. With the progress in the development of mass spectrometry techniques and detection tools to study MARylation in cells, we expect to see a boost in MARylation substrates. These will be interesting to study regarding virus–host interactions. Moreover, mapping modification sites and understanding the functional consequences of MARylation both on host as well as on viral proteins will be instrumental to define the role of MARylation as an antiviral mechanism, but also how viruses might capitalize on this PTM for their own advantage.

Beyond proteins, with the detection of modification of nucleic acids by some of the IFN-inducible PARPs [49, 50], the question becomes obvious whether this is a modification that occurs on viral genomes and whether this is part of the innate immune response. If so, the functional consequences need to be addressed as well as the activities of viral macrodomains on nucleic acid substrates.

Finally, defining relevant substrates as well as viral effectors will provide opportunities to develop small molecule inhibitors for therapeutic approaches. As many of the viral proteins possess multiple functions, developing inhibitors, or more generally binders, further to proteolysis targeting chimeras or PROTACs might also be relevant for future therapeutic strategies, as already noteworthy in cancer therapy [258, 259]. The development of small molecule inhibitors/degraders of viral macrodomains is certainly of high importance as multiple studies have demonstrated the importance of the de-MARylating activity. Thus, such inhibitors may have high therapeutic value. We are optimistic that the current efforts, particularly on SARS-CoV-2, will help to develop viral macrodomain specific therapeutics.
Box 1 Brief summary of eukaryotic, intracellular ADP-ribosyltransferases and their catalytic activities

ADP-ribosylation is a fully reversible modification of proteins, nucleic acids or metabolites (see Box 2 for the description of hydrolases). The reaction involves the transfer of ADP-ribose (ADPr) from the redox cofactor β-nicotinamide adenine dinucleotide (NAD⁺) onto the respective substrate [13, 49, 262]. It links signaling to basic cellular metabolism due to the central role of NAD⁺ in e.g. glycolysis and the Krebs cycle [263]. The main representatives of intracellular ADP-ribosyltransferases (ARTs) belong to the ARTD (ARTs of the diphtheria toxin-like) family [14], which share a highly conserved catalytic domain that resembles the ART domain of diphtheria toxin [264]. Besides, ARTDs have diverse additional functional domains linking them to numerous cellular processes. The enzymes are named PARP or TNKS. Some of these are capable of synthesizing ADPr polymers by iteratively transferring ADPr units. However, most enzymes transfer a single unit of ADPr (summarized in the figure). For PARP13 no catalytic activity has been reported so far, whereas findings with PARP9 are controversial (see the text). Several of the genes encoding ARTDs are interferon responsive and thus belong to ISGs. Various ADPr acceptor amino acids are under debate, including glutamate, aspartate, serine, arginine and cysteine. Of note is that the selectivity or the activity of a PARP protein may depend on cofactors. For example, the activity of PARP1, the target of clinically relevant inhibitors, shifts from modifying acidic amino acids to serine in the presence of HPF1 [265, 266].

ARTD	Number of amino acids	ART activity	Broadly IFN-inducible	
PARP1	ZnF,ZnF BRCT WGR HD	1014	poly	–
PARP2	ZnF BRCT WGR HD	583	poly	–
PARP3	ZnF BRCT WGR HD	533	mono	–
PARP4	BRCT HD ART VIT vWA	1724	mono	–
TNKS1	Ankyrin repeats ART	1327	poly	–
TNKS2	Ankyrin repeats ART	1166	poly	–
PARP6	ART	630	mono	–
PARP7	ZnF WWE ART	657	mono	–
PARP8	MD MD ART	854	mono	–
PARP9	MD MD ART	854	(mono)	●
PARP10	RRM RRM 3xUIM ART	1025	mono	●
PARP11	WWE ART	338	mono	●
PARP12	WWE ART	701	mono	●
PARP13	WWE ART	902	inactive	●
PARP14	RRM MD MD WWE ART	1801	mono	●
PARP15	MD MD ART	678	mono	●
PARP16	HD ART	322	mono	–

The domain architecture of ARTD family members is summarized: ART, ADP-ribosyltransferase domain; BRCT, BRCA1 C-terminus domain; HD, helical domain; MD, macrodomain; RRM, RNA-recognition motif; SAM, sterile alpha motif; TM, transmembrane motif; UIM, ubiquitin-interaction motif; vWA, von Willebrand factor type A domain; VIT, vault protein inter-α-trypsin domain; WGR, conserved Trp-Gly-Arg motif domain; WWE, three conserved residues Trp-Trp-Glu motif domain; ZnF, Zinc finger.
Both mono- and poly-ADP-ribosylation are reversible modifications, however, no eukaryotic hydrolases have been identified that remove mono-ADP-ribosylation from cysteines and lysines. Several proteins with hydrolase activity have been described in higher eukaryotes. One group contains macrodomains. These domains are closely associated with NAD+ metabolism. Many macrodomains are capable of interacting with free ADP or with ADP-modified substrates and thus may function in disseminating the information carried by substrate ADP-ribosylation. Other macrodomains function as hydrolases and reverse ADP-ribosylation [46, 197]. The latter is true for MacroD1, MacroD2 and TARG1, which function as mono-ADP-ribosylhydrolases. PARG is a fourth protein with a macrodomain fold providing hydrolase activity. It is expressed as multiple splice variants that localize to either the nucleus or the cytosol. PARG possesses poly-ADP-ribosylhydrolase activity but is unable to cleave the bond between ADPr and an amino acid side chain. A second group of proteins referred to as ADP-ribosyl-acceptor hydrolases or ADP-ribosyl-glycohydrolases (ARH1-3) possesses homology to a family of selenoproteins termed SeJ [267]. ARH proteins share a common Ribosyl_crysJ1 domain [46].

The ability to read and potentially regulate ADP-ribosylation is conserved among all kingdoms of life, as hydrolases are also found among bacteria and some RNA viruses. Macrodomain hydrolases associated with microorganisms seem to be relevant in stress response, some of which represent one part of bacterial toxin-antitoxin systems [54]. Several RNA viruses, including alphaviruses and Coronaviruses, possess macrodomains that function as mono-ADP-ribosylhydrolases [46]. They are important for viral replication and host immune modulation, as discussed in the text. These hydrolases appear to target MARylated acidic amino acids. Recently, SpyMacroD, a bacterial hydrolase of a toxin-antitoxin system in Streptococcus pyogenes [268], was shown to remove MAR from cysteine [188]. The Ribosyl_crysJ1 domain has also been identified in proteins of some microorganisms. For example, the domain is found in proteins associated with toxin-antitoxin systems that function in interbacterial competition [269].

The domain architecture of selected members of the above-mentioned ADP-ribosylhydrolases is summarized:

Protein	Number of amino acids	Hydrolase activity	Broadly IFN-inducible
MacroD1	325	mono	-
MacroD2	448	mono	-
TARG1	152	mono	-
PARG	976	poly	-
ARH1	357	mono	-
ARH2	354	(inactive)	-
ARH3	363	mono/poly	-
CHIKV nsP3	530	mono	n.a.
SARS-CoV-2 nsP3	1945	mono	n.a.
SpyMacroD	270	mono	n.a.

The domain architecture of selected members of the above-mentioned ADP-ribosylhydrolases is summarized: AD, accessory domain promoting MD function; HV, hypervariable domain; MD, macrodomain; MTS, mitochondrial targeting sequence; NES, nuclear export sequence; NLS, nuclear localization sequence; nsP, non-structural protein; PL protease, papain-like protease domain (cleaves the viral non-structural polyprotein); Ribosyl_crysJ1, ADP-ribosylation/Crystallin J1 fold; RT, regulatory and targeting domain; TM, transmembrane; 3α, 3-helix bundle (3 α-helices that coordinate a Zn2+ binding loop). The different isoforms of PARG are indicated.
Funding Open Access funding enabled and organized by Projekt DEAL. The authors gratefully acknowledge funding from the Deutsche Forschungsgemeinschaft DFG (LU 466/16-2 to BL and VE 1093/1-1 to PK), from the Wilhelm-Sander Foundation (grant # 2020.034.1) to PK, and from the START program of the Medical School of the RWTH Aachen University (117/15) to PK.

Availability of data and materials Not applicable.

Declarations

Conflict of interest The authors declare that they have no competing interests.

Ethics approval and consent to participate Not applicable.

Consent for publication All authors approved the manuscript and give their consent for submission and publication.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Chan YK, Gack MU (2016) Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol 14(6):360–373. https://doi.org/10.1038/nrmicro.2016.45
2. O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13(6):453–460. https://doi.org/10.1038/nri3446
3. Chow KT, Gale M Jr, Loo YM (2018) RIG-I and other RNA sensors in antiviral immunity. Annu Rev Immunol 36:667–694. https://doi.org/10.1146/annurev-immunol-042617-053309
4. Zevini A, Olagnier D, Hiscott J (2017) Crossstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38(3):194–205. https://doi.org/10.1016/j.it.2016.12.004
5. Ablaser A, Hur S (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 21(1):17–29. https://doi.org/10.1038/s41590-019-0556-1
6. Motwani M, Pesirisid S, Fitzgerald KA (2019) DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 20(11):657–674. https://doi.org/10.1038/s41576-019-0151-1
7. Baldacchini M, Pfeffer S (2021) Untangling the roles of RNA helicases in antiviral innate immunity. PLoS Pathog 17(12):e1010072. https://doi.org/10.1371/journal.ppat.1010072
8. Boxx GM, Cheng G (2016) The roles of type I interferon in bacterial infection. Cell Host Microbe 19(6):760–769. https://doi.org/10.1016/j.chom.2016.05.016
9. Liu G, Gack MU (2020) Distinct and orchestrated functions of RNA sensors in innate immunity. Immunity 53(1):26–42. https://doi.org/10.1016/j.immuni.2020.03.017
10. Iwasaki A (2012) A virological view of innate immune recognition. Annu Rev Microbiol 66:177–196. https://doi.org/10.1146/annurev-micro-092611-150203
11. Lazear HM, Schoggins JW, Diamond MS (2019) Shared and distinct functions of type I and type III interferons. Immunity 50(6):907–923. https://doi.org/10.1016/j.immuni.2019.03.025
12. Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. https://doi.org/10.1146/annurev-immunol-032713-120231
13. Luscher B, Butepage M, Ecke L, Krieg S, Verheugd P, Shilton BH (2018) ADP-ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chem Rev 118(3):1092–1136. https://doi.org/10.1021/acs.chemrev.7b00122
14. Luscher B, Aebl H, Altmeyer M, Ashworth A, Bae P, Chang P et al (2021) ADP-ribosyltransferases, an update on function and nomenclature. FEBS J. https://doi.org/10.1111/febs.16142
15. Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M (2020) The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 34(5–6):341–359. https://doi.org/10.1101/gad.334425.119
16. Di Girolamo M, Fabrizio G (2019) Overview of the mammalian ADP-ribose-transf erase clapoidoxin-like (ARTCs) family. Biochim Pharmacol 167:86–96. https://doi.org/10.1016/j.bcp.2019.07.004
17. Rosado MM, Pioti C (2021) ADP-ribosylation in evasion, promotion and exacerbation of immune responses. Immunology. https://doi.org/10.1111/imm.13332
18. Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558. https://doi.org/10.1038/nri3713
19. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863
20. Song DH, Lee JO (2012) Sensing of microbial molecular patterns by Toll-like receptors. Immunol Rev 250(1):216–229. https://doi.org/10.1111/j.1600-065X.2012.01167.x
21. Streicher F, Jouvenet N (2019) Stimulation of innate immunity by host and viral RNAs. Trends Immunol 40(12):1134–1148. https://doi.org/10.1016/j.it.2019.10.009
22. Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20(9):537–551. https://doi.org/10.1038/s41575-020-0288-3
23. Heaton SM, Borg NA, Dixit VM (2016) Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 213(1):1–13. https://doi.org/10.1084/jem.20151531
24. Hertzog J, Rehwinkel J (2020) Regulation and inhibition of the DNA sensor cGAS. EMBO Rep. https://doi.org/10.15252/embr.202051345
25. Zhang X, Bai XC, Chen ZJ (2018) Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53(1):43–53. https://doi.org/10.1016/j.immuni.2020.05.013
26. Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16(1):35–50. https://doi.org/10.1038/nri.2015.8
27. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20(11):1242–1253. https://doi.org/10.1038/nm.3739
28. Li SF, Gong MJ, Zhao FR, Shao JJ, Xie YL, Zhang YG et al (2018) Type I interferons: distinct biological activities and current applications for viral infection. Cell Physiol Biochem 51(5):2377–2396. https://doi.org/10.1159/000495897
29. Jefferies CA (2019) Regulating IRFs in IFN driven disease. Front Immunol 10:325. https://doi.org/10.3389/fimmu.2019.00325
transduction and gene regulation kinetics. Gastroenterology 131(6):1887–1898. https://doi.org/10.1053/j.gastro.2006.09.052
63. Salazar JC, Duham-Ens M, Sa Vake C, Cruz AR, Moore MW, Caimano MJ et al (2009) Activation of human monocytes by live *Borrelia burgdorferi* generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS Pathog 5(5):e1000444. https://doi.org/10.1371/journal.ppat.1000444
64. Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D et al (2019) The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog 15(5):e1007756. https://doi.org/10.1371/journal.ppat.1007756
65. Mahmoud L, Al-Saif M, Amer HM, Sheikh M, Almajhdi FN, Khabar KS (2011) Green fluorescent protein reporter system with transcriptional sequence heterogeneity for monitoring the interferon response. J Virol 85(18):9268–9275. https://doi.org/10.1128/JVI.00772-11
66. Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 109(11):4239–4244. https://doi.org/10.1073/pnas.1114981109
67. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P et al (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472(7344):481–485. https://doi.org/10.1038/nature09907
68. Heer CD, Sanderson DJ, Voth LS, Alhamamd YMO, Schmidt MS, Trammell SJ et al (2020) Coronavirus infection and PARP expression dysregulate the NAD metabolome: an actionable component of innate immunity. J Biol Chem 295(52):17986–17996. https://doi.org/10.1074/jbc.RA120.151538
69. Karlberg T, Klepsch M, Thorsell AG, Andersson CD, Linusson A, Schuler H (2015) Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein. J Biol Chem 290(12):7336–7344. https://doi.org/10.1074/jbc.M114.630160
70. Eckel L, Krieg S, Butepage M, Lehmann A, Gross A, Lippok B et al (2017) The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydroxylases. Sci Rep 7:41746. https://doi.org/10.1038/srep41746
71. Caprara G, Prosperini E, Piccolo V, Sigismondo G, Melacarne F, Karlberg T et al (2019) The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog 15(5):e1007756. https://doi.org/10.1371/journal.ppat.1007756
72. Zhao Y, Song Z, Bai J, Liu X, Nauwynck H, Jiang P (2019) ZAP, a CCCH-type zinc finger protein. Science 364(6441):790–793. https://doi.org/10.1126/science.aay8590
73. Honda K, Takaoka A, Tanigawa H, Jiang P (2019) ZAP, a CCCH-type zinc finger protein, inhibits porcine reproductive and respiratory syndrome virus replication and interacts with viral Nsp9. J Virol. https://doi.org/10.1128/jVI.00019-19
74. Hover K, Takaoka A, Tanigawa H, Jiang P, Nauwynck H, Liu X et al (2019) ZAP, a CCCH-type zinc finger protein, inhibits porcine reproductive and respiratory syndrome virus replication and interacts with viral Nsp9. J Virol. https://doi.org/10.1128/jVI.00019-19
75. Welsby I, Hutsin D, Gueydan C, Krusys V, Rongvaaas A, Leo O (2014) PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. J Biol Chem 289(38):26642–26657. https://doi.org/10.1074/jbc.M114.589515
76. Daniels CM, Kaplan PR, Bischof I, Bradfield C, Tucholski T, Nuccio AG et al (2020) Dynamic ADP-ribosylation, phosphoproteome, and interactome in LPS-activated macrophages. J Proteome Res 19(9):3716–3731. https://doi.org/10.1021/ac5. j Proteome.0c00261
77. McPherson RL, Ong SE, Leung AKL (2020) Ion-pairing with triethylammonium acetate improves solid-phase extraction of ADP-ribosylated peptides. J Proteome Res 19(2):984–990. https://doi. org/10.1021acs.jproteome.9b00696
78. Hendriks IA, Larsen SC, Nielsen ML (2019) An advanced strategy for comprehensive profiling of ADP-ribosylation sites using mass spectrometry-based proteomics. Mol Cell Proteomics 18(5):1010–1026. https://doi.org/10.1074/mcp.TIR119.011315
79. Kalesh K, Lukauskas S, Borg AJ, Snijders AP, Ayyappan V, Leung AKL et al (2019) An integrated chemical proteomics approach for quantitative profiling of intracellular ADP-ribosylation. Sci Rep 9(1):6655. https://doi.org/10.1038/s41598-019-4354-1
80. Larsen SC, Leutert M, Bilan V, Martello R, Jungmichel S, Young C et al (2017) Proteome-wide identification of in vivo ADP-ribosyl acceptor sites by liquid chromatography-tandem mass spectrometry. Methods Mol Biol 1608:149–162. https://doi.org/10.1007/978-1-4939-6993-7_11
81. Nowak K, Rosenthal F, Karlberg T, Butepage M, Thorsell AG, Dreier B et al (2020) Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. Nat Commun 11(1):5199. https://doi.org/10.1038/s41467-020-19881-w
82. Buch-Larsen SC, Hendriks IA, Lodge JM, Rykaer M, Furtwangler B, Shishkova E et al (2020) Mapping physiological ADP-ribosylation using activated ion electron transfer dissociation. Cell Rep 32(12):108176. https://doi.org/10.1016/j.celrep.2020.108176
83. Russo LC, Tomasin R, Matos IA, Manucci AC, Sowa ST, Dale K et al (2021) The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. J Biol Chem 297(3):101041. https://doi.org/10.1016/j.jbc.2021.101041
84. Daugherty MD, Malik HS (2012) Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46:677–700. https://doi.org/10.1146/annurev-genet-110711-155522
85. Kerns JA, Emerman M, Malik HS (2008) Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet 4(1):e21
86. Daugherty MD, Young JM, Kerns JA, Malik HS (2014) Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 10(5):e1004403. https://doi.org/10.1371/journal.pgen.1004403
87. Gao G, Guo X, Goff SP (2002) Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297(5587):1703–1706
88. Li MMH, Aguilar EG, Michailidis E, Pabon J, Park P, Wu X et al (2019) Characterization of novel splice variants of zinc finger antiviral protein (ZAP). J Virol. https://doi.org/10.1128/JVI.00715-19
89. Ficarella M, Neil SJD, Swanson CM (2021) Targeted restriction of viral gene expression and replication by the ZAP antiviral system. Annu Rev Virol. https://doi.org/10.1146/annurev-virology-091919-104213
90. Schwark J, Soeeg FW, Ryan AP, Thomas KR, Hatfield LD, Ozarkar S et al (2019) RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat Immunol 20(12):1610–1620. https://doi.org/10.1038/s41590-019-0527-6
91. Charmon G, Li MM, MacDonald MR, Hang HC (2013) Preynolome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc Natl Acad Sci U S A 110(27):11085–11090. https://doi.org/10.1073/pnas.1302564110
92. Zhang Y, Burke CW, Ryman KD, Klimstra WB (2007) Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J Virol 81(20):11246–11255
93. MacDonald MR, Machlin ES, Albin OR, Levy DE (2007) The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. J Virol 81(24):13509–13518. https://doi.org/10.1128/JVI.00402-07
94. Muller S, Moller P, Bick MJ, Wurr S, Becker S, Gunther S et al (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 81(5):2391–2400. https://doi.org/10.1128/JVI.01601-06
95. Bick MJ, Carroll JW, Gao G, Goff SP, Rice CM, MacDonald MR (2003) Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 77(21):11555–11562. https://doi.org/10.1128/JVI.77.21.11555-11562.2003
96. Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y et al (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci U S A 108(38):15834–15839. https://doi.org/10.1073/pnas.1106176108
97. Wang X, Tu F, Zhu Y, Gao G (2012) Zinc-finger antiviral protein inhibits XMV infection. PLoS ONE 7(6):e39159. https://doi.org/10.1371/journal.pone.0039159
98. Mao R, Nie H, Cai D, Zhang J, Liu H, Yan R et al (2013) Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 9(7):e1003494. https://doi.org/10.1371/journal.ppat.1003494
99. Chiu HP, Chiu H, Yang CF, Lee YL, Chiu FL, Kuo HC et al (2011) Inhibition of Japanese encephalitis virus infection by the host-zinc-finger antiviral protein. PLoS Pathog 14(7):e1001766. https://doi.org/10.1371/journal.ppat.1001766
100. Liu CH, Zhou L, Chen G, Krug RM (2015) Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAP protein. Proc Natl Acad Sci U S A 112(45):14048–14053. https://doi.org/10.1073/pnas.1509745112
101. Li M, Yan K, Wei L, Yang J, Lu C, Xiong F et al (2015) Zinc finger antiviral protein inhibits Coxackievirus B3 virus replication and protects against viral myocarditis. Antiviral Res 123:50–61. https://doi.org/10.1016/j.antiviral.2015.09.001
102. Ficarrelli M, Antzin-Andueza I, Hugh-White R, Firth AE, Sertkaya H, Wilson H et al (2020) CpG dinucleotides inhibit HIV-1 replication through zinc finger antiviral protein (ZAP)-dependent and -independent mechanisms. J Virol. https://doi.org/10.1128/JVI.01337-19
103. Nchioura R, Kmiec D, Muller JA, Conzelmann C, Gross R, Swanson CM et al (2020) SARS-CoV-2 is restricted by zinc finger antiviral protein despite preadaptation to the low-CPG environment in humans. MBio. https://doi.org/10.1128/mBio.01930-20
104. Goomanwadane N, Nguyen D, Simmonds P (2021) Association of zinc finger antiviral protein binding to viral genomic RNA with attenuation of replication of echovirus 7. mSphere. https://doi.org/10.1128/mSphere.01138-20
105. Kozaki T, Komano J, Kanbayashi D, Takahama M, Misawa T, Sato T et al (2017) Mitochondrial damage elicits a TCD3-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc Natl Acad Sci U S A 114(10):2681–2686. https://doi.org/10.1073/pnas.1621508114
106. Xing J, Zhang A, Du Y, Fang M, Minze LJ, Liu YL et al (2021) Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nat Commun 12(1):2681. https://doi.org/10.1038/s41467-021-23003-4
107. Krieg S, Pott F, Ecke L, Verheirstraeten M, Büttgepage M, Lippok B et al (2020) Mono-ADP-ribosylation by ARTD10 restricts Chikungunya virus replication by interfering with the proteolytic activity of nsP2. bioRxiv. https://doi.org/10.1101/2020.01.07.896977
108. Ataseva S, Akhrymuk M, Frolova EI, Frolov I (2012) New PARP gene with an anti-alphavirus function. J Virol 86(15):8147–8160. https://doi.org/10.1128/JVI.00733-12
109. Ataseva S, Frolova EI, Frolov I (2014) Interferon-stimulated poly(ADP-Ribose) polymers are potent inhibitors of cellular translation and virus replication. J Virol 88(4):2116–2130. https://doi.org/10.1128/JVI.03443-13
110. Li L, Zhao H, Liu P, Li C, Quanquin N, Ji X et al (2018) PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Sci Signal. https://doi.org/10.1126/scisignal.aas9332
111. Karki S, Li MM, Schoggins JW, Tian S, Rice CM, MacDonald MR (2012) Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLoS ONE 7(5):e37398. https://doi.org/10.1371/journal.pone.0037398
112. Guo X, Carroll JW, Macdonald MR, Goff SP, Gao G (2004) The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol 78(23):12781–12787
113. Takata MA, Goncalves-Carneiro D, Zang TM, Soll SJ, York A, Blasco-Melo D et al (2017) CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550(7674):124–127. https://doi.org/10.1038/nature24039
114. Kmiec D, Nchioua R, Sherrill-Mix S, Sturzel CM, Heusinger E, Braun E et al (2020) CpG frequency in the 5′-third of the env gene determines sensitivity of primary HIV-1 strains to the zinc-finger antiviral protein. MBio. https://doi.org/10.1128/mBio.02903-19
115. Cheng X, Virk N, Chen W, Ji S, Ji S, Sun Y et al (2013) CpG usage in RNA viruses: data and hypotheses. PLoS ONE 8(9):e74109. https://doi.org/10.1371/journal.pone.0074109
116. Greenbaum BD, Levine AJ, Bhanot G, Rabadan R (2008) Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 4(6):e1000079. https://doi.org/10.1371/journal.ppat.1000079
117. Hartmann G (2017) Nucleic acid immunity. Adv Immunol 133:121–169. https://doi.org/10.1016/bs.ai.2016.11.001
118. Ficarrelli M, Wilson H, Pedro Galao R, Mazzon M, Antzin-Andueza I, Marsh M et al (2019) KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. Elife. https://doi.org/10.7554/eLife.46767
119. Zheng X, Wang X, Tu F, Wang Q, Fan Z, Gao G (2017) TRIM25 is required for the antiviral activity of zinc finger antiviral protein. J Virol. https://doi.org/10.1128/JVI.00008-17
120. Klichert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17(4):227–239. https://doi.org/10.1038/nrm.2015.15
121. Guo X, Ma J, Sun J, Gao G (2017) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci U S A 104(1):151–156
122. Chen G, Guo X, Lv F, Xu Y, Gao G (2008) p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. Proc Natl Acad Sci U S A 105(11):4352–4357. https://doi.org/10.1073/pnas.0712276105
123. Li MM, MacDonald MR, Rice CM (2015) To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 25(6):320–329. https://doi.org/10.1016/j.tcb.2015.02.001
124. Todorova T, Bock FJ, Chang P (2014) PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat Commun 5:5362. https://doi.org/10.1038/ncomms6362
125. Zhu Y, Wang X, Goff SP, Gao G (2012) Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J 31(21):4236–4246. https://doi.org/10.1038/emboj.2012.271

126. Gingras AC, Raught B, Sonenberg N (1999) elf4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963. https://doi.org/10.1146/annurev.biochem.68.1.913

127. Montero H, Perez-Gil G, Sampieri CL (2019) Eukaryotic initiation factor 4A (elf4A) during viral infections. Virus Genes 55(3):267–273. https://doi.org/10.1007/s11262-019-01641-7

128. Li MM, Lau Z, Cheung P, Aguilar EG, Schneider WM, Bozzacco L et al (2017) TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLoS Pathog 13(11):e1006145. https://doi.org/10.1371/journal.ppat.1006145

129. Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227(1):176–188. https://doi.org/10.1111/j.1600-065X.2008.00722.x

130. Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P et al (2013) Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 14(4):435–445. https://doi.org/10.1016/j.chom.2013.09.002

131. Kedersha N, Ivanov P, Anderson P (2013) Stress granules and its antiviral activity and induced by virus replication. PLoS Pathog 13(10):e1006145.

132. Tian Y, Korn P, Tripathi P, Komnig D, Wiemuth D, Nikouee A et al (2020) The mono-ADP-ribosyltransferase ARTD10 regulates the voltage-gated K(+) channel Kv1.1 through protein kinase C delta. BMC Biol 18(1):143. https://doi.org/10.1186/s12915-020-00878-1

133. Carter-O’Connell J, Jin H, Morgan RK, Zaja R, David LL, Ahel I et al (2016) Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach. Cell Rep 14(3):621–631. https://doi.org/10.1016/j.celrep.2015.12.045

134. Carter-O’Connell J, Vermehren-Schmaedick A, Jin H, Morgan RK, David LL, Cohen MS (2018) Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly(ADP-ribose) polymerase 14 (PARP14). ACS Chem Biol 13(10):2841–2848. https://doi.org/10.1021/acschembio.8b00567

135. Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A (2020) SUMO and PARP12 translocation to stress granules and impairment of GSK3beta function. Sci Rep 7(1):14035. https://doi.org/10.1038/s41598-017-14516-8

136. Law LMJ, Razooky BS, Li MMH, You S, Jurado A, Rice CM et al (2019) ZAP’s stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog 15(5):e1007798. https://doi.org/10.1371/journal.ppat.1007798

137. Fejs KL, Kleiner H, Braczynski A, Forst AH, Herzog N, Verheugd P et al (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal 11(1):5. https://doi.org/10.1186/1478-811X-11-5

138. Verheugd P, Forst AH, Milke L, Herzog N, Fejs KL, Kremmer E et al (2013) Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun 4:1683. https://doi.org/10.1038/ncomms2672

139. Rosenthal F, Fejs KL, Frugier E, Bonalli M, Forst AH, Imhof R et al (2013) Macromod-conantaining proteins are new mono-ADP-ribosylhydroxylases. Nat Struct Mol Biol 20(4):502–507. https://doi.org/10.1038/nsmb.2521

140. Vandewalle A, Tourneur E, Bens M, Chassin C, Werts C (2014) New therapeutic activity of metabolic enhancer piracetam filing and structural analysis of PARP and tankyrase inhibitors. Nat Struct Mol Biol 20(4):502–507. https://doi.org/10.1038/nsmb.2521

141. Zheng Y, Gao C (2020) Fine-tuning of antiviral innate immunity by ubiquitination. Adv Immunol 145:95–128. https://doi.org/10.1016/bs.ai.2019.11.004

142. Kedersha N, Ivanov P, Anderson P (2013) Stress granules and signaling: more than just a passing phase? Trends Biochem Sci 38(10):494–506. https://doi.org/10.1016/j.tibs.2013.07.004

143. White JP, Lloyd RE (2012) Regulation of stress granules in virus systems. Trends Microbiol 20(4):175–183. https://doi.org/10.1016/j.tim.2012.02.001

144. Zhang Q, Sharma NR, Zheng ZM, Chen M (2019) Viral regulation of RNA granules in infected cells. Virol Sin 34(2):175–191. https://doi.org/10.1007/s12250-019-00122-3

145. Eiermann N, Hanek K, Sun Z, Stoecklin G, Ruggieri A (2020) Dance with the devil: stress granules and signaling in antiviral responses. Viruses. https://doi.org/10.3390/v12090984

146. Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D (2019) PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 167:64–75. https://doi.org/10.1016/j.bcp.2019.05.019

147. Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Lo Monte M et al (2017) PARP1-produces poly-ADP-ribose causes the PARP12 translation to stress granules and impairment of Golgi complex functions. Sci Rep 7(1):14035. https://doi.org/10.1038/s41598-017-14156-8

148. Law MJ, Razooky BS, Li MMH, You S, Jurado A, Rice CM et al (2019) ZAP’s stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog 15(5):e1007798. https://doi.org/10.1371/journal.ppat.1007798

149. Fejs KL, Kleiner H, Braczynski A, Forst AH, Herzog N, Verheugd P et al (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal 11(1):5. https://doi.org/10.1186/1478-811X-11-5

150. Verheugd P, Forst AH, Milke L, Herzog N, Fejs KL, Kremmer E et al (2013) Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun 4:1683. https://doi.org/10.1038/ncomms2672

151. Rosenthal F, Fejs KL, Frugier E, Bonalli M, Forst AH, Imhof R et al (2013) Macromod-conantaining proteins are new mono-ADP-ribosylhydroxylases. Nat Struct Mol Biol 20(4):502–507. https://doi.org/10.1038/nsmb.2521
TCDD-inducible-PARP Expression. J Virol. https://doi.org/10.1128/JVI.01743-19

187. Rodriguez KM, Buch-Larsen SC, Kirby IT, Siordia IR, Hutin D, Rasmussen M et al (2021) Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets. Elife. https://doi.org/10.7554/eLife.60480

188. Voorneveld J, Rack JGM, van Gijlsweijk L, Meeuwenoord NJ, Liu Q, Overkleeft HS et al (2021) Molecular tools for the study of ADP-ribosylation: a unified and versatile method to synthesise native mono-ADP-ribosylated peptides. Chemistry 27(41):10621–10627. https://doi.org/10.1021/chem.2100337

189. Ahel D, Horejsi Z, Wuchens N, Polo SE, Garcia-Wilson E, Ahel I et al (2009) Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325(5945):1240–1243. https://doi.org/10.1126/science.1177321

190. Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929. https://doi.org/10.1038/nsmb.1664

191. Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK et al (2009) Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci U S A 106(33):13770–13774. https://doi.org/10.1073/pnas.0909602106

192. Ten G-S (2017) Strategies of interferon evasion by viruses. Cell Host Microbe 22(2):176–184. https://doi.org/10.1016/j.chom.2017.07.012

193. Lowery SA, Sariol A, Perlman S (2021) Innate immune and inflammatory responses to SARS-CoV-2: implications for COVID-19. Cell Host Microbe 29(7):1052–1062. https://doi.org/10.1016/j.chom.2021.05.004

194. Till S, Ladurner AG (2009) Sensing NAD metabolites through macro domains. EMBO J 24(11):1911–1920

195. Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Till S, Ladurner AG (2009) Sensing NAD metabolites through macro domains. Front Biosci (Landmark Ed) 14:3246–3258

196. Frick DN, Virdi RS, Vukasanovic N, Dahal N, Silvaggi NR (2020) Molecular basis for ADP-ribosyl binding to the Mac1 domain of the alphavirus nsP3 macrodomain. J Virol. https://doi.org/10.1128/JVI.00766-21

197. Feijs KL, Forst AH, Verheugd P, Luscher B (2013) Macrdo: a new intracellular function, evolution, and catalytic activities. Annu Rev Biochem 82(1):1–30. https://doi.org/10.1146/annurev-biochem-060813-014933

198. Feijs KL, Forst AH, Verheugd P, Luscher B (2013) Macrdo: a new intracellular function, evolution, and catalytic activities. Annu Rev Biochem 82(1):1–30. https://doi.org/10.1146/annurev-biochem-060813-014933

199. Lin MH, Chang SC, Chiu YC, Jiang BC, Wu TH, Hsu CH (2020) Structural, biophysical, and biochemical elucidation of the SARS-CoV-2 nonstructural protein 3 macro domain. ACS Infect Dis 6(11):2970–2978. https://doi.org/10.1021/acsinfecdis.0c00441

200. McPherson RL, Abraham R, McPherson RL, Dasovich M, Badiee M, Leung AKL, Griffin DE (2020) Both ADP-ribosyl-binding and hydrolyase activities of the alphavirus nsP3 macrodomain affect neurovirulence in mice. MBio. https://doi.org/10.1128/mBio.03253-19

201. Rack JGM, Zorzini V, Zhu Z, Schuller M, Ahel D, Ahel I (2020) Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Open Biol 10(11):200237. https://doi.org/10.1098/rsob.2020237

202. Fedr AR, Athmer J, Channappanavar R, Phillips JM, Meyer-holz DK, Perlman S (2015) The nsP3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J Virol 89(3):1523–1536. https://doi.org/10.1128/JVI.02596-14

203. Bell J et al (2009) The nsp3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388(2):305–314. https://doi.org/10.1016/j.virol.2009.03.031

204. Eriksson KK, Cervantes-Barragan L, Ludewig B, Thiel V (2008) Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1''-phosphatase, a viral function conserved in the alphavirus supergroup. J Virol 82(4):12325–12334. https://doi.org/10.1128/JVI.02082-08

205. Abraham R, McPherson RL, Dasovich M, Badiee M, Leung AKL, Griffin DE (2020) Both ADP-ribosyl-binding and hydrolyase activities of the alphavirus nsP3 macrodomain affect neurovirulence in mice. MBio. https://doi.org/10.1128/mBio.03253-19

206. Frick DN, Virdi RS, Vukasanovic N, Dahal N, Silvaggi NR (2020) Molecular basis for ADP-ribosyl binding to the Mac1 domain of the alphavirus nsP3 macrodomain. J Virol. https://doi.org/10.1128/JVI.00766-21

207. Abraham R, McPherson RL, Dasovich M, Badiee M, Leung AKL, Griffin DE (2020) Both ADP-ribosyl-binding and hydrolyase activities of the alphavirus nsP3 macrodomain affect neurovirulence in mice. MBio. https://doi.org/10.1128/mBio.03253-19

208. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V (2015) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19(3):155–170. https://doi.org/10.1038/nrmicro2009-19

209. de Wit E, van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14(8):523–534. https://doi.org/10.1038/nrmic2016.81

210. Coronavirus Study Group of the International Committee on Taxonomy of V (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5(4):536–544. https://doi.org/10.1038/s41564-020-0695-z

211. Michalska K, Kim Y, Jendrezczak R, Maltsvea NL, Stols L, Endres M et al (2020) Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: from the apo form to ligand complexes. IUCrJ 7(Pt 5):814–824. https://doi.org/10.1016/j.chemphys.2020.08.006

212. Fridk DN, Virdi RS, Vukasanovic N, Dahal N, Silvaggi NR (2020) Molecular basis for ADP-ribosyl binding to the Mac1 domain of the alphavirus nsP3 macrodomain. J Virol. https://doi.org/10.1128/JVI.00766-21

213. Alhammad YMO, Fehr AR (2020) The viral macrodomain counters host antiviral ADP-Ribosylation. Viruses. https://doi.org/10.3390/v12040384

214. Voith LS, O’Connor JJ, Kerr CM, Doerger E, Schwarting N, Sperstad P et al (2021) Unique mutations in the MHV macrodomain differentially attenuate virus replication, indicating multiple roles for the macrodomain in coronavirus replication. J Virol. https://doi.org/10.1128/JVI.01721-16

215. Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R (2015) A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology 484:313–322. https://doi.org/10.1016/j.virol.2015.06.016

216. Johnson MA, Chatterjee A, Neuman BW, Wuthrich K (2010) SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding. J Mol Biol 400(4):724–742. https://doi.org/10.1016/j.jmb.2010.05.027

217. Tan J, Kusov Y, Mutschall D, Tech S, Nagarajan K, Hilgenfeld R et al (2007) The “SARS-unique domain” (SUD) of SARS coronavirus is an oligo(G)-binding protein. Biochem Biophys Res Commun 364(4):877–882. https://doi.org/10.1016/j.bbrc.2007.10.081
219. Solignat M, Gay B, Higgs S, Briant L, Devaux C (2009) Repli-
220. B. Lüscher et al.
Page 22 of 23
288
233. Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S,
232. Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson
222. Nowee G, Bakker JW, Geertsema C, Ros VID, Goertz GP, Fros
221. Gorchakov R, Garmashova N, Frolova E, Frolov I (2008) Dif-
226. Grunewald ME, Fehr AR, Athmer J, Perlman S (2018) The
225. Yu M, Zhang C, Yang Y, Yang Z, Zhao L, Xu L et al (2011) The
230. Abdelnabi R, Delang L (2020) Antiviral strategies against arthri-
228. Bhardwaj A, Yang Y, Ueberheide B, Smith S (2017) Whole pro-
241. Patel DC, Hausman KR, Arba M, Tran A, Lakernick PM, Wu
246. Salgado-Benvindo C, Thaler M, Tas A, Ogando NS, Breden-
245. Wiedemar N, Hauser DA, Maser P (2020) 100 years of suramin.
244. Yin W, Luan X, Li Z, Zhou Z, Wang Q, Gao M et al (2021) Struc-
247. Rossari F, Minutolo F, Orciuolo E (2018) Past, present, and
248. Li Y, Cao L, Li G, Cong F, Li Y, Sun J et al (2021) Remdesivir
226. Wierzbowska E, Verheugen S, Smeets P, Govaert R (2003) The
242. Gorojadjanova J, Rosiuk A, Saraiva C, Babu R, Górecki DP, Kim
234. Diffley JFX (2021) Author’s overview: identifying SARS-CoV-2 antiviral compounds. Biochem J 478(13):2533–2535. https://doi.org/10.1042/BCJ20210426
218. Tan J, vonrnein C, Smart OS, Bricogine G, Bollati M, Kusov Y
224. Sukhralia S, Verma M, Gopirajan S, Dhanaraj PS, Lal R, Mehla
228. Mogul N, Bera S, Mata L, Fauquet C, Watts D, Brown J et al.
235. Fu W, Yao H, Butepage M, Zhao Q, Luscher B, Li J (2021) The
229. Solignat M, Gay B, Higgs S, Briant L, Devaux C (2009) Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393(2):183–197. https://doi.org/10.1016/j.virology.2009.07.024 (S0042-6822(09)00456-5[pii])
231. Gotte B, Liu L, McInerney GM (2018) The enigmatic alphavi-
237. Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HIF et al
238. Brosey CA, Houl JL, Katsonis P, Balapiti-Modarage LPF, Bom-
239. Bhardwaj A, Yang Y, Ueberheide B, Smith S (2017) Whole pro-
240. Ni X, Schroder M, Olieric V, Sharpe ME, Hernandez-Olmos V,
236. Babar Z, Khan M, Zahra M, Noor K, Hashmi HF et al
243. Fu W, Yao H, Butepage M, Zhao Q, Luscher B, Li J (2021) The
227. Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Schuhbier A et al (2021)
223. Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S,
232. Arboviruses: epidemiological and clinical perspective on emerging arboviruses. Lancet Infect Dis 21(5):e123–e133. https://doi.org/10.1016/S1473-3099(20)30491-6
224. Sukhralia S, Verma M, Gopirajan S, Dhanaraj PS, Lal R, Mehla
225. Yu M, Zhang C, Yang Y, Yang Z, Zhao L, Xu L et al (2011) The
237. Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HIF et al
236. Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HF et al
231. Gotte B, Liu L, McInerney GM (2018) The enigmatic alphavi-
230. Abdelnabi R, Delang L (2020) Antiviral strategies against arthri-
227. Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Schuhbier A et al (2021)
223. Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S,
235. Fu W, Yao H, Butepage M, Zhao Q, Luscher B, Li J (2021) The
228. Mogul N, Bera S, Mata L, Fauquet C, Watts D, Brown J et al.
234. Diffley JFX (2021) Author’s overview: identifying SARS-CoV-2 antiviral compounds. Biochem J 478(13):2533–2535. https://doi.org/10.1042/BCJ20210426
224. Sukhralia S, Verma M, Gopirajan S, Dhanaraj PS, Lal R, Mehla
225. Yu M, Zhang C, Yang Y, Yang Z, Zhao L, Xu L et al (2011) The
237. Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HIF et al
236. Babar Z, Khan M, Zahra M, Anwar M, Noor K, Hashmi HF et al
231. Gotte B, Liu L, McInerney GM (2018) The enigmatic alphavi-
229. Solignat M, Gay B, Higgs S, Briant L, Devaux C (2009) Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393(2):183–197. https://doi.org/10.1016/j.virology.2009.07.024 (S0042-6822(09)00456-5[pii])
231. Gotte B, Liu L, McInerney GM (2018) The enigmatic alphavi-
226. Wierzbowska E, Verheugen S, Smeets P, Govaert R (2003) The
249. Baxter VK, Heise MT (2020) Immunopathogenesis of alphaviruses. Adv Virus Res 107:315–382. https://doi.org/10.1016/bs.avir.2020.06.002

250. Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol 8(7):491–500. https://doi.org/10.1038/nrmicro2368

251. Burt FJ, Chen W, Minner JJ, Merits A, Schneitler E et al (2017) Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis 17(4):e107–e117. https://doi.org/10.1016/S1473-3099(16)30385-1

252. Puranik NV, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P (2019) Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with nsP3 protein of chikungunya virus (CHIKV). ACS Omega 4(23):20335–20345. https://doi.org/10.1021/acsomega.9b02900

253. Shimizu JF, Martins DOS, McPhillie MJ, Roberts GC, Zothner C, Merits A et al (2020) Is the ADP ribose site of the Chikungunya virus NSP3 Macro domain a target for antiviral approaches? Acta Trop 207:105490. https://doi.org/10.1016/j.actatropica.2020.105490

254. Hussain W, Amir A, Rasool N (2020) Computer-aided study of selective flavonoids against chikungunya virus replication using molecular docking and DFT-based approach. Struct Chem 31(4):1363–1374. https://doi.org/10.1007/s11224-020-00150-7

255. Seyedi SS, Shakri M, Hassandarvish P, Oo A, Muthu SE, Abubakar S et al (2016) Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Sci Rep 6:24027. https://doi.org/10.1038/srep24027

256. Mattila S, Merilahiti P, Wazir S, Quirin T, Maksimainen MM, Zhang Y et al (2021) Macromodern binding compound MRS 2578 inhibits alphavirus replication. Antimicrob Agents Chemother 65(12):e0139821. https://doi.org/10.1128/AAC.01398-21

257. Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I et al (2017) Serine ADP-ribosylation depends on HPF1. Mol Cell. https://doi.org/10.1016/j.molcel.2017.01.003

258. Dale B, Cheng M, Park KS, Kaniskan HU, Xiong Y, Jin J (2021) Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer 21(10):638–654. https://doi.org/10.1038/s41567-021-00365-x

259. Dong G, Ding Y, He S, Sheng C (2021) Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem 64(15):10606–10620. https://doi.org/10.1021/acs.jmedchem.1c00895

260. Chan AH, Schroder K (2020) Inflammomodulatory signaling and regulation of interleukin-1 family cytokines. J Exp Med. https://doi.org/10.1084/jem.20190314

261. Orning P, Lien E, Fitzgerald KA (2019) Gasdermins and their role in immunity and inflammation. J Exp Med 216(11):2453–2465. https://doi.org/10.1084/jem.20190545

262. Kim DS, Challa S, Jones A, Kraus WL (2020) PARPs and ADP-riboseylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev 34(5–6):302–320. https://doi.org/10.1101/gad.334433.119

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.