Boundary regularity of stochastic PDEs

May 19, 2017

Máté Gerencsér

IST Austria, Email: mate.gerencser@ist.ac.at

Abstract

The boundary behaviour of solutions of stochastic PDEs with Dirichlet boundary conditions can be surprisingly - and in a sense, arbitrarily - bad: as shown by Krylov [Kry03a], for any $\alpha > 0$ one can find a simple 1-dimensional constant coefficient linear equation whose solution at the boundary is not α-Hölder continuous.

We obtain a positive counterpart of this: under some mild regularity assumptions on the coefficients, solutions of semilinear SPDEs on C^1 domains are proved to be α-Hölder continuous up to the boundary with some $\alpha > 0$.

Contents

1 Introduction 1
2 Formulation 2
3 Existence and uniqueness of the solution 5
4 Proof of Theorem 2.6 8
 4.1 Simplifying . 8
 4.2 An Itô-Wentzell formula . 12
 4.3 Krylov’s square root law for inverse flows 15
 4.4 Proof of Theorem 4.6 . 20
A Appendix 24

1 Introduction

We consider semilinear stochastic partial differential equations (SPDEs) on domains (where the assumptions and precise understanding of the equation is postponed to Section 2) of the type

$$
\begin{align*}
du &= (a^{ij} D_i D_j u + f(u, \nabla u)) \, dt + (\sigma^{ik} D_i u + g^k(u)) \, dW_t^k \quad \text{on } \mathbb{R}_+ \times G, \\
u &= 0, \\
u_0 &= \psi
\end{align*}
$$

with the Einstein summation in place. The well-posedness in the variational sense of a large class of such equations is known since the 70’s ([Par75], [KR81]), and interior regularity (at least for the linear ones) results are available from the 90’s, starting from [Kry94], which initiated a series of works, see among others [KL98], [KL99], [Lot00a], [Lot01], [Kim04b].
[Kim04a], see also [Fla90] for another approach. Concerning boundary regularity, while the above works give quite some partial results, the theory is much less satisfactory. Even the rather natural question whether the solution is continuous up to the boundary (and therefore whether the boundary condition is actually satisfied in the classical sense) has remained in general unanswered, no matter how smooth the coefficients and the boundary of the domain are. Part of the reason why analysing solutions near the boundary is problematic is the fact that the boundary behaviour is indeed quite bad, as illustrated by the following result. Recall that if in the formulation below the coefficient in the noise were greater than $\sqrt{2}$, then the equation would become ill-posed.

Theorem 1.1 ([Kry03a]). There exists a $\lambda_0 > 0$ such that if $0 < \lambda < \lambda_0$, $\psi \in C^\infty_0(\mathbb{R}^+)$ is non identically 0, and u denotes the solution of

$$
\begin{align*}
\frac{du}{dt} &= D^2 u dt + \sqrt{2 - \lambda} D u dW_t \quad \text{on } \mathbb{R}_+ \times \mathbb{R}^+,
\end{align*}
$$

$$
\begin{align*}
u &= 0, \quad \text{on } \mathbb{R}_+ \times \{0\}, \\
u_0 &= \psi \quad \text{on } \mathbb{R}^+,
\end{align*}
$$

then there exists a dense subset $S \subset \mathbb{R}_+$ such that almost surely for all $s \in S$ and $\alpha > e^{-\frac{1}{2\lambda}}$

$$
\lim_{x \to 0} u_s(x) x^{-\alpha} = \infty.
$$

The main goal of the present article is to prove that solutions of (1.1) are Hölder-continuous up to the boundary, with some exponent. In light of the above, this exponent of course has to depend on the equation itself, and as we will see, this dependence is in fact only on through few parameters of the linear part of the equation. Since the precise statement requires a bit of technical setup, we postpone it to the next section, see Theorem 2.6. Our proof is inspired by [Kry03b], where the particular case of $d = 1$, $f = g = 0$, with spatially constant coefficients was treated. Importantly, unlike the above mentioned ‘partial’ results, its approach relied neither on a ‘smallness’ nor on a ‘compatibility’ condition on σ.

To our best knowledge the most general well-posedness results for (1.1) use the variational theory, which however strongly restricts the growth of f. We prove a more general existence and uniqueness result in Theorem 3.2. That itself requires no growth assumption at all on $f(u, \nabla u)$ in u, and this allows us to state also Theorem 2.6 under mild (arbitrary polynomial) growth conditions.

The article is organised as follows. In the following section, after setting up most of the notations, the main result is stated, which is followed by the aforementioned solvability result in Section 3 and the rest of the paper is devoted to the proof of Theorem 2.6. The proof has four main components: Reducing the problem to equations with linear structure and more regular data, transforming the simplified equation to a PDE with random coefficients on a random domain, establishing certain geometric properties of this random domain, and finally using these properties to prove the appropriate decay at the boundary. Section 4 is structured according to these steps.

2 Formulation

Fix a complete filtered probability space $(\Omega, (\mathcal{F}_t)_{t \geq 0}, P)$ carrying an infinite sequence of independent Wiener processes $(W^k_t)_{k \in \mathbb{N}, t \geq 0}$. The predictable σ-algebra on $\Omega \times \mathbb{R}^+$ is
denoted by \(\mathcal{P} \). Whenever expectations are taken with respect to a different probability measure \(\hat{P} \), it will be denoted by \(\mathbb{E}^{\hat{P}} \). Let us also fix \(T > 0 \). Given a \(d \)-dimensional stochastic differential equation (SDE),

\[
dX^i_t = a^i(X_t) \, dt + \beta^{ik}(X_t) \, dW_t^k, \quad i = 1, 2, \ldots, d
\]

(2.1)
driven by \(W \), the corresponding stochastic flow on \([0, T]\) is a continuous random field \((X_{s,t}(x))_{0 \leq s \leq t \leq T, x \in \mathbb{R}^d}\) such that for all \(s \) and \(x \), the process \((X_{s,t}(x))_{s \leq t \leq T}\) is a solution of the equation (2.1) with initial condition \(X_{0,t}(x) = x \), and that furthermore almost surely for all \(0 \leq s \leq t \leq v \leq T \) and \(x \in \mathbb{R}^d \), the identity \(X_{t,v}(X_{s,t}(x)) = X_{s,v}(x) \) holds. When the stochastic differential in (2.1) is replaced by the backward Itô differential \(d\hat{W}_t \), then one can correspondingly talk about the backward flow \((X_{t,s}(x))_{0 \leq s \leq t \leq T, x \in \mathbb{R}^d}\). Often one has that for any \(0 \leq s \leq t \leq T \), \(X_{s,t}(-) \) is a diffeomorphism from \(\mathbb{R}^d \) to itself, in which case one can talk about the inverse flow \((X^{-1}_{s,t}(x))_{0 \leq s \leq t \leq T, x \in \mathbb{R}^d}\).

By \(B_r(x) \) we understand the \(d \)-dimensional ball of radius \(r \geq 0 \) around \(x \in \mathbb{R}^d \), and for \(x = 0 \) the \(x \) argument is often dropped. We denote by \(\langle \cdot, \cdot \rangle \) the scalar product in \(\mathbb{R}^d \). The distance between two closed sets \(A \) and \(B \) is denoted by \(d(A, B) \). The Borel \(\sigma \)-algebra on \(\mathbb{R}^k \) is denoted by \(\mathcal{B}(\mathbb{R}^k) \).

We fix a bounded \(C^1 \)-domain \(G \subset \mathbb{R}^d \) (as defined in e.g. [Kim04]), denote \(G^c = \mathbb{R}^d \setminus G \), \(Q = [0, T] \times G \), \(G^+ = G + B_1 \) (in the sense of Minkowski sum), \(Q^+ = [0, T] \times G^+ \), and for \(T_0 \geq 0 \), \(Q_{T_0} = [T_0, T] \times G \). Fix a \(C^\infty \) function \(\Psi \) defined on \(G \) such that for all \(x \in G \),

\[
d(x, \partial G) \leq N\Psi(x) \leq N'\tilde{d}(x, \partial G), \quad d(x, \partial G)|^k|D_k\nabla \Psi(x)| \leq N(k)
\]

for some constants \(N, N', (N(k)) \), \(k \) running over all possible multindices. For the existence of such function, see e.g. [Lot00b].

Derivatives in the direction of the \(i \)-th unit direction in \(\mathbb{R}^d \) are denoted by \(D_i \). By \(\nabla \) we denote the gradient, with the convention that for \(f : \mathbb{R}^d \to \mathbb{R}^k \), \(\nabla f \) is \(\mathbb{R}^k \)-valued. By \(H^\gamma_{p,\theta} \) we mean the usual Sobolev spaces, see e.g. [Tri95]. By \(H^\gamma_{p,\theta} \) we mean the closure of \(C_0^\infty(G) \) in the \(H^\gamma_{p,\theta} \) norm. For \(\gamma \in \mathbb{R} \) and \(p \geq 1 \), by \(H^\gamma_{p,\theta} = H^\gamma_{p,\theta}(G) \) we understand weighted Sobolev spaces. An easily accessible definition of them is to first set for \(\gamma = n \in \mathbb{N} \),

\[
\| u \|^\gamma_{p,\theta} := \sum_{i=0}^n \sum_{|\alpha|=i} \int_G |D_{\alpha_1} \cdots D_{\alpha_i} u|^p (x) d(x, \partial G)^{\theta - d + ip} dx,
\]

(2.2)
and then extend this scale of spaces to noninteger and nonnegative values of \(\gamma \) by interpolation and duality, respectively. See [Lot00b] and [Kry01] for more details, and also for a more intrinsic equivalent definition of these spaces.

Hölder spaces \(C^\alpha(K) \) on some set \(K \subset \mathbb{R}^k \) for \(\alpha \in (0, 1] \) are defined with the norm

\[
\| u \|_{C^\alpha(K)} := \sup_{x \in K} |u(x)| + \sup_{x \neq y \in K} \frac{|u(x) - u(y)|}{|x - y|^\alpha}
\]

For \(\alpha > 0 \), \(u \in C^\alpha \) if all of its \(k \)-th derivatives, \(|k| < \lceil \alpha \rceil \), belong to \(C^{\alpha + 1 - \lceil \alpha \rceil} \).

All of the above spaces can easily be extended to \(l_2 \)-valued (or \((l_2)^k \)-valued, for that matter) functions, by taking the appropriate operations coordinate-wise and replace the
Assumption 2.5. There exists a G outside $\bar{\nu}$ holds in the sense of positive semidefinite matrices.

The understanding of the solution of (2.1) is the following.

Definition 2.1. A solution of (1.1) is a continuous adapted L-valued process ξ that furthermore belongs to $L_\infty(Q) \cap L_2([0, T], H_2^1(G))$ almost surely, such that for all $\varphi \in C_0^\infty(G)$ the identity

$$
(u_t, \varphi) = (\psi, \varphi) + \int_0^t (-D_j u_s, a^{ij}_s D_j \varphi) + (f_s(u_s, \nabla u_s) - (D_i a^{ij}_s) D_j u_s, \varphi) \, ds
$$

(2.3)

holds almost surely for all $t \in [0, T]$, where (\cdot, \cdot) denotes the L_2-inner product.

Our assumptions for the main result are as follows (in particular, they are more than sufficient to guarantee that all expressions in (2.3) make sense).

Assumption 2.2. There exists a $\kappa > 0$ such that for all $(t, \omega, x) \in [0, T] \times \Omega \times (G + B_{1/2})$,

$$
\bar{a} := a - \frac{1}{2} \sigma \sigma^* \geq \kappa I
$$

holds in the sense of positive semidefinite matrices.

Assumption 2.3. (a) The coefficients a and σ are $\mathcal{F} \otimes \mathcal{B}(\mathbb{R}^d)$-measurable functions that vanish outside G^+. There exist constants $K > 0$ and $\nu \in (0, 1)$ such that for all $t \in [0, T]$ and ω,

$$
\|a_t(\cdot)(\omega)\|_{C^{2+\nu}(\mathbb{R}^d)} + \|\sigma_t(\cdot)(\omega)\|_{C^{3+\nu}(\mathbb{R}^d)} \leq K.
$$

(b) There exists a random variable H with finite moments of all order such that for all ω

$$
\|\sigma(\cdot)(\omega)\|_{C^0([0, T], C^1(\mathbb{R}^d))} \leq H(\omega).
$$

Assumption 2.4. (a) The functions ψ, f, and g are $\mathcal{F}_0 \otimes \mathcal{B}(\mathbb{R}^d)$, $\mathcal{F} \otimes \mathcal{B}(\mathbb{R}^d) \otimes \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}^d)$, and $\mathcal{F} \otimes \mathcal{B}(\mathbb{R}^d) \otimes \mathcal{B}(\mathbb{R})$-measurable, with values in \mathbb{R}, \mathbb{R}, and L_2, respectively, that vanish outside G^+. The function $f_t(x, y, z)(\omega)$ is continuous in $y \in \mathbb{R}$ uniformly in t, x, z, ω, and there exists a constant $K > 0$ such that

$$
(y - y')(f_t(x, y, z)(\omega) - f_t(x, y', z)(\omega)) \leq K|y - y'|^2
$$

$$
|f_t(x, y, z)(\omega) - f_t(x, y, z')(\omega)| \leq K|z - z'|
$$

$$
g_t(x, y)(\omega) - g_t(x, y')(\omega) \leq K|y - y'|
$$

for all $t, x, y, y', z, z', \omega$.

(b) There exists a constant $m > 0$ such that for all t, x, y, z, ω,

$$
|f_t(x, y, z)(\omega) - f_t(x, 0, z)(\omega)| \leq K|y|^m.
$$

Assumption 2.5. The functions $\psi, f^0 = f^0_t(x) := f_t(x, 0, 0)$, and $g^0 := g_t(x) = g_t(x, 0)$ satisfy, for some $\bar{\rho} > 0$ and for all $p \in [2, \infty)$

$$
\mathbb{E}\left(\left\|\psi\right\|_{H_{p, \bar{\rho}}}^2 + \|f^0\|_{L_{d+4}[0, T], H_{d+4}^{-1+\bar{\rho}}} + \|f^0\|_{L_p([0, T], H_{d+4}^{-2+\bar{\rho}})}^2 + \|g^0\|_{L_{d+4}[0, T], H_{d+4,d-1/2}^{\bar{\rho}}} + \|g^0\|_{L_p([0, T], H_{d+2}^{-1+\bar{\rho}})}^2\right) < \infty.
$$
Let us finally denote \(d_1 := \inf\{ k \in \mathbb{N} : \sigma_k^l(x)(\omega) \equiv 0 \forall l > k \} \).

These assumptions, unless one assumes further control of the growth of \(f(u, \nabla u) \) in \(u \), are not quite enough to fit in the \(L_2 \)-theory ([Par75], [KR81]), and in fact as far as the author is aware, no result on well-posedness in this scope is known. In the next section we prove some existence and uniqueness results that well cover the above setting. The main result of the paper then reads as follows.

Theorem 2.6. Let Assumptions 2.2 and 2.3 hold and suppose \(d_1 < \infty \). Then there exists an \(\alpha = \alpha(\kappa, K, \tilde{\nu}, d, d_1) > 0 \) such that for any \(T_0 > 0 \) and \(\psi, f, g \) satisfying Assumptions 2.4 and 2.5 a unique solution \(u \) of (1.1) exists and almost surely

\[
\sup_{(t,x) \in Q_{T_0}} u(t, x)d(x, \partial G)^{-\alpha} < \infty.
\]

Remark 2.7. Since \(\psi \) is not assumed to vanish at the boundary, one can in general not take \(T_0 = 0 \).

Remark 2.8. Assumption 2.5 is somewhat cumbersome. A stronger, but perhaps more tractable condition would be

\[
E\left(\|\psi\|_{H^\tilde{\nu}_p} + \|f^0\|_{L_\infty([0,T],[H^{1+\tilde{\nu}}_p])} + \|\Psi^{-1/(2(\tilde{\nu}+d))}g^0\|_{L_\infty([0,T],[H^{-d}_p])} \right)^2 < \infty
\]

with some fixed \(\tilde{\nu} > 0, \tilde{\nu} > d/\tilde{\nu} \). As one can see from the basic properties of weighted Sobolev spaces (which we recall in Subsection 4.1), (2.4) implies Assumption 2.5 with \(\tilde{\nu} = \tilde{\nu} - d/\tilde{\nu} \). One reason why one would not want to impose (2.4), however, is that it assumes some pointwise decay at the boundary from \(g^0 \), while Assumption 2.5 does not.

Combining Theorem 2.6 and some interior regularity, one easily gets the following corollary, which is proved in Subsection 4.1.

Corollary 2.9. Let Assumptions 2.2 and 2.3 hold and suppose \(d_1 < \infty \). Then there exists an \(\hat{\alpha} = \hat{\alpha}(\kappa, K, \tilde{\nu}, d, d_1) > 0 \) such that for any \(T_0 > 0 \) and \(\psi, f, g \) satisfying Assumptions 2.4 and 2.5 the solution \(u \) of (1.1) belongs to \(C^{\hat{\alpha}}(Q_{T_0}) \) almost surely.

3 Existence and uniqueness of the solution

First we state the existence result, under some reduced regularity and growth assumptions. Note that we momentarily switch to equations in divergence form, but since in the rest of the article the regularity condition Assumption 2.3 on the coefficients will be in place, switching between divergence and non-divergence form equations is harmless. We also remark that for Theorem 3.2 one in fact only needs \(G \) to be a Lipschitz domain.

Assumption 3.1. The functions \(\psi, f^0, \) and \(g^0 \) satisfy, for some \(\mu > 0 \),

\[
\mathcal{K}_0 := \|\psi\|_{L_\infty(G)} + \|f^0\|_{L_{2+\mu}(0,T,[H^{-1}_{d+2+\mu}])} + \|g^0\|_{L_{2+\mu}(Q)} < \infty
\]

almost surely.

Define also

\[
\mathcal{K}_1 := \|\psi\|_{L_2(G)} + \|f^0\|_{L_2([0,T],[H^{-1}_{d+2+\mu}])} + \|g^0\|_{L_2(Q)}.
\]
Theorem 3.2. Let Assumptions 2.2, 2.4 (a), and 3.1 hold and assume that

\[t \] holds almost surely for all \(u \) the verification of this.

essential. We therefore do not aim to repeat the whole argument, but rather will only detail

indicated therein) one needs only make sure that the nonlinear terms do not change anything

\[P \otimes B(\mathbb{R}^d) \]-measurable functions bounded by \(K \). Then there exists a unique continuous

\[L_2 \]-valued adapted process \(u \) that furthermore belongs to \(L_\infty(Q) \cap L_2([0, T], \dot{H}_2^1(G)) \) such that for all \(\varphi \in C_0^\infty(G) \) the identity

\[
(u_t, \varphi) = (\psi, \varphi) + \int_0^t (-D_j u_s, a_s^j D_i \varphi) + (f_s(u_s, \nabla u_s), \varphi) \, ds \\
+ \int_0^t (\sigma_s^k D_s u_s + g_s^k(u_s), \varphi) \, dW_s^k
\]

holds almost surely for all \(t \in [0, T] \). Finally, the estimates

\[
\mathbb{E}\|u\|_{L_\infty(Q)}^p \leq N(\kappa, K, \mu, T, d, G, p)\mathbb{E}K_0^p,
\]

\[
\mathbb{E}\|u\|_{L_2([0, T], \dot{H}_2^1(G))}^2 \leq N(\kappa, K, T, d, G)\mathbb{E}K_1^2
\]

hold with any \(p \in (0, \infty) \).

Proof. The proof closely follows those of Theorems 2.1-5.2 in [DG15] and (as, in fact, indicated therein) one needs only make sure that the nonlinear terms do not change anything essential. We therefore do not aim to repeat the whole argument, but rather will only detail the verification of this.

Define for \(n, m \in \mathbb{N} \),

\[f_t^{(n, m)}(x, y, z) := f_t(x, -n \vee y \wedge m, z). \]

Since \(f^{(n, m)} \) has linear growth in \(y \) and \(z \), the results of [KR81] apply and hence one has the existence of a unique continuous \(L_2 \) valued adapted process \(u^{(n, m)} \) which furthermore belongs to \(L_2([0, T], \dot{H}_2^1(G)) \) and such that (3.1) holds with \(u^{(n, m)} \) and \(f^{(n, m)} \) in place of \(u \) and \(f \), respectively.

Applying Itô’s formula [DG15 Lem 3.2] to \(\|u_t^{(n, m)}\|^p_{L_p(G)} \), \(p \geq 2 \), one gets

\[
\int_G |u_t^{(n, m)}|^p \, dx = \int_G |\psi|^p \, dx \\
+ \int_0^t \int_G p |u_s^{(n, m)}|^{p-2} u_s^{(n, m)} (\sigma_s^k D_s u_s^{(n, m)} + g_s^k(u_s^{(n, m)})) \, dx \, dW_s^k \\
+ \int_0^t \int_G -p(p-1) |u_s^{(n, m)}|^{p-2} D_i u_s^{(n, m)} u_s^{(n, m)} \nabla u_s^{(n, m)} \\
+ p |u_s^{(n, m)}|^{p-2} u_s^{(n, m)} f_s^{(n, m)}(u_s^{(n, m)}, \nabla u_s^{(n, m)}) \\
+ (1/2) p(p-1) |u_s^{(n, m)}|^{p-2} |\sigma_s^k D_s u_s^{(n, m)} + g_s^k(u_s^{(n, m)})|^2 \, dx \, ds.
\]

Looking at the contribution of the nonlinear terms, we can write, by Assumption 2.4 (a)

\[
u_s^{(n, m)} f_s^{(n, m)}(u_s^{(n, m)}, \nabla u_s^{(n, m)}) = u_s^{(n, m)} (f_s^{(n, m)}(u_s^{(n, m)}, \nabla u_s^{(n, m)}) - f_s^{(n, m)}(u_s^{(n, m)}, 0) \\
+ u_s^{(n, m)} (f_s^{(n, m)}(u_s^{(n, m)}, 0) - f_s^{(n, m)}(0, 0)) + u_s^{(n, m)} f_s^{(n, m)} \\
\leq |u_s^{(n, m)}| K |\nabla u_s^{(n, m)}| + K |u_s^{(n, m)}|^2 + u_s^{(n, m)} f_s^{(n, m)}.
\]
Recall that by Assumption 3.1, \(f^0 = \vec{f}^0 + \nabla \cdot \vec{f}^0 \), where \(\vec{f}^0, \hat{f}^0 \in L_{d+2+\mu}(Q) \). Therefore by the above bounds, integration by parts, and Young’s inequality we have, for any \(\varepsilon > 0 \),

\[
\int_G \left| pL_{(n,m)}^{p-2} u^{(n,m)} f_s^{(n,m)} (u^{(n,m)}, \nabla u^{(n,m)}) \right| dx \\
\leq \int_G p^{2} |u_s^{(n,m)}|^{p-2} \left(C(\varepsilon) |u_s^{(n,m)}|^2 + \varepsilon |\nabla u_s^{(n,m)}|^2 + |u_s^{(n,m)}| |\vec{f}_s^{0}| + C(\varepsilon) |\hat{f}_s^{0}|^2 \right) dx,
\]

for some constant \(C(\varepsilon) \) depending only on \(\varepsilon \) and \(K \). As for the contribution of \(g \), one simply has

\[
(2\sigma_s^{ik} D_{i} u_s^{(n,m)} + g_s^k(u_s^{(n,m)}))g_s^k(u_s^{(n,m)}) \\
= \left(2\sigma_s^{ik} D_{i} u_s^{(n,m)} + (g_s^k(u_s^{(n,m)}) - (g_0^k)^{0k})(g_0^k(u_s^{(n,m)}) - (g_0^k)^{0k}) \right) (g_0^k(u_s^{(n,m)}) - (g_0^k)^{0k})
\]

Therefore by Assumption 2.4 (a) we have, for any \(\varepsilon > 0 \),

\[
\sum_{k \geq 0} \int_G \frac{1}{p + (p-1)} |u_s^{(n,m)}|^{p-2} (2\sigma_s^{ik} D_{i} u_s^{(n,m)} + g_s^k(u_s^{(n,m)}))g_s^k(u_s^{(n,m)}) dx \\
\leq p^{2} \int_G C(\varepsilon) |u_s^{(n,m)}|^p + C(\varepsilon) |u_s^{(n,m)}|^{p-2} |g_0^{0k}|^2 + \varepsilon |u_s^{(n,m)}|^2 |\nabla u_s^{(n,m)}|^2 dx.
\]

All of these are of precisely the same order as the contributions coming from the lower order linear terms in [DG15]. Note also that the constants on the right-hand sides do not depend on \(n \) and \(m \). The resulting energy estimates are therefore virtually identical to the ones in the linear case, and thus so is Moser’s iteration. One therefore obtains the bounds

\[
\mathbb{E}\|u^{(n,m)}\|_{L_{\infty}(Q)}^p \leq N \mathbb{E}K_0^p
\]

with \(N \) depending on \(\kappa, K, \mu, T, d, G, p \) but not on \(n \) and \(m \). Also, applying Itô’s formula for \(\|u_s\|_{L^2(G)}^2 \), by the above and Assumption 2.2 one gets

\[
\int_G |u_s^{(n,m)}|^2 dx \leq \int_G |\psi|^2 dx + m_T - 2\kappa \int_0^T \int_G |\nabla u_s^{(n,m)}|^2 dx ds \\
+ \int_0^T C(\varepsilon) (|u_s^{(n,m)}|^2 + |f_s^{0}|^2 + |\hat{f}_s^{0}|^2 + |g_s^{0k}|^2 + \varepsilon |\nabla u_s^{(n,m)}|^2 dx ds
\]

with some martingale \(m \). Hence one obtains

\[
\mathbb{E}\|u_s^{(n,m)}\|_{L^2([0,T],H^1(G))}^2 \leq N \mathbb{E}K_1^2,
\]

with \(N \) having the same dependencies as before, except for \(\mu \) and \(p \).

Now we let \(n \to \infty \). By the comparison principle [DG14 Thm 3.3] one has that \(u^{(n,m)} \leq u^{(n',m)} \) for \(n' \geq n \), which, thanks to (3.2), implies that \(u^{(n,m)} \) not only converges as \(n \to \infty \), but is in fact constant in \(n \) after an index \(N = N(\omega) \). This implies that the limit \(u^{(\infty,m)} \) is a solution of (3.1) with \(f \) replaced by

\[
f_t^{(\infty,m)}(x, y, z) := f_t(x, y \wedge m, z),
\]
and moreover, \(u^{(\infty,m)}_t \) also satisfies the bounds (3.2)–(3.3). One then passes to the \(m \to \infty \) limit similarly, and the limit \(u := u^{(\infty,\infty)} \) is indeed the solution claimed in the theorem.

As for the uniqueness, take two solutions \(u \) and \(v \) and write Itô’s formula for \(\|e\|^2_{L^2(G)} := \|u - v\|^2_{L^2(G)} \):

\[
\int_0^t |e_t|^2 \, dx = \int_0^t -2a_s^j D_t e_s D_j e_s + (u_s - v_s)(f_s(u_s, \nabla u_s) - f_s(v_s, \nabla v_s)) + 2a_s^j D_t(u_s - v_s)(g^k_s(u_s) - g^k_s(v_s)) + |g_s(u_s) - g_s(v_s)|^2 \, dx \, ds + m_t
\]

with some martingale \(m \). By Assumption 2.4 (a), one has

\[
(u - v)(f(u, \nabla u) - f(v, \nabla v)) = (u - v)(f(u, \nabla u) - f(v, \nabla u) + (f(v, \nabla u) - f(v, \nabla v)) \leq K|u - v|^2 + K|u - v||\nabla(u - v)|.
\]

By using simply the bound \(|g(u) - g(v)| \leq K|u - v| \) in the terms involving \(g \), and by Assumption 2.2, we get

\[
\int_0^t |e_t|^2 \, dx \leq \int_0^t \int_G -2\kappa|\nabla e_s|^2 + C|e_s|^2 + C'|e_s||\nabla e_s| \, dx \, ds + m_t
\]

with some constants \(C, C' \) depending on \(K \). Hence, Young’s inequality, taking expectations, and Gronwall’s lemma yields \((E\|e_t\|^2_{L^2(G)})_{t \in [0,T]} \equiv 0 \). Since \(e \) is continuous in \(L^2(G) \), \((e_t)_{t \in [0,T]} \equiv 0 \) almost surely, as required.

\[
\square
\]

4 Proof of Theorem 2.6

4.1 Simplifying

As a first step, we reduce the statement to a version where the equation is linear, \(f \) is regular, and \(g \) is simply not present. To do that, however, we need to derive some further properties of the solution of (1.1), based on \(L_p \)-theory, and so we recall a couple of notations from it.

We somewhat deviate from the standard convention of the literature in terms of the spaces used, in that the integration exponent in time and in \(\omega \) may differ (in fact the latter will mostly be 2), hence the slightly different notation. Set

\[
U^{\gamma}_{p,\theta,(q)} = L^q(\Omega, F_\omega, \Psi^{1-2/p}H^{\gamma-2/p}_{p,\theta})
\]

and let \(H^{\gamma}_{p,\theta,(q)} \) be the space of \(P \otimes B(G) \)-measurable functions belonging to \(L^q(\Omega, L^p([0, T], H^\gamma_{p,\theta})) \).

Let furthermore \(\bar{H}^{\gamma}_{p,\theta,(q)} \subset \Psi^*H^{\gamma}_{p,\theta,(q)} \) consist of functions \(u \) for which there exists a \(\psi \in U^{\gamma}_{p,\theta,(q)} \), \(f \in \Psi^{-1}H^{-2}_{p,\theta,(q)} \), and \(g \in H^{\gamma-1}_{p,\theta,(q)} \), such that for all \(\varphi \in C^\infty_0(G) \) the identity

\[
(u_t(\cdot), \varphi) = (\psi, \varphi) + \int_0^t (f_s(\cdot), \varphi) \, ds + \int_0^t (g^k_s(\cdot), \varphi) \, dW^k_s
\]

holds almost surely for all \(t \in [0, T] \). We use the norm

\[
\|u\|_{\bar{H}^{\gamma}_{p,\theta,(q)}} = \|\Psi^{-1}u\|_{H^{\gamma}_{p,\theta,(q)}} + \|\psi\|_{U^{\gamma}_{p,\theta,(q)}} + \|\Psi f\|_{H^{\gamma-2}_{p,\theta,(q)}} + \|g\|_{H^{\gamma-1}_{p,\theta,(q)}}.
\]

Let us recall some useful properties of these spaces. First of all, \(\Psi^{-\alpha} \) is an isomorphism from \(H^\alpha_{p,\theta} \) to \(H^\alpha_{p,\theta+\alpha,p} \). The following property, while we did not find explicitly stated
elsewhere, follows easily from the definition (2.2), interpolation, and duality.

\[H^\gamma_{p,\theta} \subset H^\gamma_p \quad \text{if } \theta \leq d - (\gamma \vee 0)p \]
\[H^\gamma_p \subset H^\gamma_{p,\theta} \quad \text{if } \theta \geq d - (\gamma \wedge 0)p \]
(4.1)

Finally, invoke from [Kry01 Thm 4.7] that for any \(r' \geq r \geq 2 \), \(\kappa \in [0, 1] \), \(2/r < \beta \leq 1 \), \(q \in [0, r] \), \(\theta \in \mathbb{R} \), and \(\gamma \in \mathbb{R} \), one has the continuous embedding

\[\mathcal{S}^\gamma_{p,\theta,(q)} \subset \Psi^{1-\gamma+(d-\theta)/p} L_q(\Omega, \mathcal{C}^{\alpha/2-1/p}([0, T], \mathcal{C}^{\gamma-\beta-d/p}(G))), \]
(4.2)

provided

\[2/p < \alpha < \beta \leq 1, \quad \gamma - \beta - d/p \in (0, 1). \]

The following is a particular case of the of the quite general \(L_p \)-theory for SPDEs on domains from [Kim04b Thm 2.9].

Theorem 4.1. Let Assumption 2.3 (a) hold, and assume that \(q \) and \(\gamma \) do not depend on \(u \) or \(\nabla u \). Suppose furthermore that for some \(c \in (0, 1] \), Assumption 2.2 hold with \(\kappa = cK \) and fix \(p \geq 2 \) and \(\theta \in \mathbb{R} \) that satisfy

\[d - 1 + p[1 - \frac{1}{p(1 - c)} + c] < \theta < d - 1 + p. \]
(4.3)

Let \(q \in [0, p] \), \(\gamma \in [0, 4] \), and assume \(\psi \in U^\gamma_{p,\theta,(q)} \) \(f^0 \in \Psi^{-1}\mathcal{H}^{\gamma-2} \) and \(g \in \mathcal{H}^{\gamma-1} \). Then the solution \(u \) of (1.1) belongs to \(\mathcal{S}^\gamma_{p,\theta,(q)} \)

\[\|u\|_{\mathcal{S}^\gamma_{p,\theta,(q)}} \leq N(\|\psi\|_{U^\gamma_{p,\theta,(q)}} + \|\Psi f\|_{\mathcal{H}^{\gamma-2}} + \|g\|_{\mathcal{H}^{\gamma-1}}), \]

where \(N \) depends on \(\kappa \), \(K \), \(d \), \(T \), \(G \), \(\theta \), \(p \), and \(q \).

Remark 4.2. Notice that (4.3) is always satisfied if \(-2 + p \leq \theta < d - 1 + p \).

Theorem 4.3. Let Assumptions 2.2 2.3 (a), 2.4 and 2.5 hold and let \(u \) be the solution of (1.1) obtained from Theorem 3.2. Then for any \(p \in [2, \infty) \), \(u \in \mathcal{S}^{\gamma}_{p,d-2+p,(2)} \) and in particular \(u \) is a continuous random field in \(Q \).

Proof. By Theorem 3.2 and 4.1, one has, for any \(p \in [2, \infty) \)

\[\nabla u \in L_2(\Omega, L_p([0, T], H^{-1}_p)) \subset L_2(\Omega, L_p([0, T], H^{-1}_{p,d+1})) \]
\[\subset L_2(\Omega, L_p([0, T], \Psi^{-1}H^{-1}_{p,d+1})) \]
\[\subset \Psi^{-1}H^{-2-p}_{p,d+2+p}. \]

By similar reasoning,

\[|u|^m \in L_2(\Omega, L_p([0, T], L_p)) \subset L_2(\Omega, L_p([0, T], H^{0,d})) \subset H^{1+p}_{p,d+2+p,(2)}. \]

By Assumption 2.4 one has

\[|f(u, \nabla u) - f^0| \leq |f(u, \nabla u) - f(0, \nabla u)| + |f(0, \nabla u) - f^0| \leq K|u|^m + K|\nabla u|, \]
\[|g(u) - g^0| \leq K|u|. \]
(4.4)

These are actually only stated in the references for the \(q = p \) case, but from that one can easily deduce the \(q < p \) case using Lenglart’s inequality, see [RY04 Prop IV.4.7].
Thanks to the duality property [Lot00b, Prop 2.4] and the fact that for \(\gamma \geq 0 \), elements of \(H^{\gamma}_{p,\theta} \) are locally integrable functions, one has the property that if two locally integrable functions \(f \) and \(g \) satisfy \(|f| \leq |g| \) and \(g \in H^{\gamma}_{p,\theta} \) for some \(\gamma \leq 0 \), then \(f \in H^{\gamma}_{p,\theta} \). Invoking also Assumption 2.5, one can therefore conclude from (4.4) that \(f(u, \nabla u) \in \Psi^{-1}H^{0}_{p,d-2+p,(2)} \) and \(g(u) \in H^{0}_{p,d-2+p,(2)} \). Also,

\[
\psi \in L_2(\Omega, H^0_{p}) \subset U^{p}_{\tilde{p},d-2+\tilde{p}}(2)
\]

by Assumption 2.5 and (4.1). Viewing \(f(u, \nabla u) \) and \(g(u) \) as fixed free terms, we can apply Theorem 2.6 with \(\tilde{\nu} \) in place of \(\gamma \), and 2 in place of \(\tilde{\nu} \), to obtain \(u \in \tilde{S}^{p}_{\tilde{p},d-2+p,(2)} \) as claimed. The second claim in the theorem is simply using (4.2).

Now that the basic interior regularity is quantified, we can prove Corollary 2.9.

Proof of Corollary 2.9 Let \((t, x), (s, y) \in Q_{T_0}\) and denote \(|(t, x) - (s, y)| = \varepsilon \), \(d(x, \partial G) \wedge d(y, \partial G) = \delta \). From Theorem 4.3 and (4.2) we can deduce that there exist \(\bar{\kappa} \in \mathbb{R} \) and \(\bar{\alpha} > 0 \) such that

\[
|u_t(x) - u_s(y)| \leq \eta_0 \delta^{\bar{\kappa}} \varepsilon^{\bar{\alpha}}.
\]

with some random variable \(\eta_0 \). Theorem 2.6 on the other hand, yields that

\[
|u_t(x) - u_s(y)| \leq \eta_1 (\delta \vee \varepsilon)^\alpha
\]

with some random variable \(\eta_1 \). If \(\delta \vee \varepsilon = \varepsilon \), then this already gives the desired Hölder estimate. Otherwise choose \(\lambda \in (0, 1) \) such that \(\beta := \lambda \bar{\kappa} + (1 - \lambda)\alpha > 0 \), and note that combining the two above bounds give

\[
|u_t(x) - u_s(y)| \leq \eta_0 \eta_1^{1-\lambda} \delta^{\beta} \varepsilon^{\lambda \bar{\alpha} + (1-\lambda)\alpha} \leq \eta_2 \varepsilon^{\lambda \bar{\alpha} + (1-\lambda)\alpha}
\]

with some random variable \(\eta_2 \), as required.

Introduce the spaces, for \(T_0 \geq 0 \), \(\alpha \geq 0 \)

\[
L_{\infty,\alpha}(Q_{T_0}) = \{ u \in L_{\infty}(Q_{T_0}) : \|u\|_{L_{\infty,\alpha}(Q_{T_0})} := \sup_{(t, x) \in Q_{T_0}} |u(t, x)| d(x, \partial G)^{-\alpha} < \infty \}.
\]

It is easy to check that under the complex interpolation \([\cdot, \cdot]_\theta\) (for its definition see e.g. [Tri95]) these spaces behave as expected.

Proposition 4.4. Let \(\alpha \neq \alpha', \theta \in (0, 1) \), and \(T_0 \geq 0 \). Then

\[
L_{\infty,(1-\theta)\alpha+\theta\alpha'}(Q_{T_0}) = [L_{\infty,\alpha}(Q_{T_0}), L_{\infty,\alpha'}(Q_{T_0})]_\theta.
\]

Proof. Denote by \(l^0_\infty(L_\infty) \) the set of sequences with elements from \(L_\infty(Q_{T_0}) \) such that

\[
\|f_n\|_{l^0_\infty(L_\infty)} = \sup_{n \geq 0} 2^{\alpha n} \|f_n\|_{L_\infty(Q_{T_0})} < \infty.
\]

Then the linear operators \(S : L_{\infty,\alpha}(Q_{T_0}) \to l^0_\infty(L_\infty) \), \(R : l^0_\infty(L_\infty) \to L_{\infty,\alpha}(Q_{T_0}) \)

\[
(Su)_n(t, x) := 1_{d(x, \partial G) \in [2^{-n+1/2}, 2^{-n}]} \text{diam}(G) u_t(x), \quad (Rf)_n(t, x) := \sum_{n \geq 0} f_n(t, x)
\]

are bounded and satisfy \(RS = \text{id} \). The interpolation properties of the spaces \(l^0_\infty(L_\infty) \) (see [Tri95] Thm 1.18.2) then imply the claim, by [Tri95] Thm 1.2.4. \(\square \)
The setting of the aforementioned simpler version of Theorem 2.6 is then as follows.

Assumption 4.5. The function \(f \) does not depend on \(u \) and \(\nabla u \), \(g = 0 \), and almost surely
\[
K_2 := \|\psi\|_{H_{d+3}^1} + \|f^0\|_{L_\infty([0,T],H_{d+3}^1)} < \infty.
\]

Theorem 4.6. Let Assumptions 2.2 and 2.3 hold and suppose \(d_1 < \infty \). Then there exists an \(\alpha = \alpha(\kappa,K,d,d_1) > 0 \) such that for any \(T_0 > 0 \) there exists an almost surely finite random variable \(\eta_{T_0} \) such that for all \(\psi, f, g \) satisfying Assumption 4.5, the unique solution \(u \) of (4.1) belongs to \(C^\alpha([T_0,T] \times D) \), and moreover
\[
\|u\|_{L_\infty,0(Q_{T_0})} \leq \eta_{T_0} K_2.
\]

Lemma 4.7. Theorem 4.6 implies Theorem 2.6

Proof. Fix \(T_0 > 0 \) and set, for \(c \in [0,\infty) \), \(\Omega_c := \{\eta_{T_0} \leq c\} \). Let, for \(C \geq 1 \) and \(c \in [0,\infty) \), denote by \(S_c(\psi, f, g) \) the random field \(\psi_1 \alpha_{\psi} \), where \(\alpha \) solves
\[
dv = (Ca^{1/j} D_i D_j v + \bar{f}) \, dt + (\sigma^{ik} D_i v + \bar{g}^k) \, dW_t^k \quad \text{on} \ \mathbb{R}_+ \times G,
\]
\[
v = 0, \quad \text{on} \ \mathbb{R}_+ \times \partial G,
\]
\[
v_0 = \bar{v}, \quad \text{on} \ G.
\]

When \(C = 1 \) and/or \(c = \infty \), the corresponding index will be dropped.

Theorem 4.6 implies that for any \(c < \infty \), \(S_c(\psi, f, 0) \) is bounded as an operator
\[
\text{from} \ L^\infty(\Omega, H_{d+3}^1) \times L^\infty(\Omega, L_\infty([0,T], H_{d+3}^1)) \ \text{to} \ L^\infty(\Omega, L_{\infty,0}(Q_{T_0})).
\]

Theorem 5.2 implies that \(S(\psi, f, 0) \) (and hence obviously also \(S_c(\psi, f, 0) \) for any \(c < \infty \)) is bounded
\[
\text{from} \ L^p(\Omega, L^\infty(G)) \times L^p(\Omega, L_{d+3}([0,T], H_{d+3}^1)) \ \text{to} \ L^p(\Omega, L_{\infty,0}(Q_{T_0})),
\]
for any \(p \in (0,\infty) \). Hence, by interpolation, \(S_c(\psi, f, 0) \) is also bounded
\[
\text{from} \ L^2(\Omega, H_{d+4}^2) \times L^2(\Omega, L_{d+4}([0,T], H_{d+4}^{1/2})) \ \text{to} \ L^2(\Omega, L_{\infty,0}(Q_{T_0})),
\]
where \(\gamma \leq \bar{v} \wedge 1/(4(d + 4)) \), \(\alpha' > 0 \) depends only on \(\alpha, \bar{v}, \) and \(d \), and \(p \in (0,\infty) \) is arbitrary. Note that now that one has the identity
\[
S_c(\bar{\psi}, \bar{f}, \bar{g}) = S_c(\bar{\psi}, \bar{f} + (C - 1) a^{1/j} D_i D_j (S^C(0,0,\bar{g})), 0) + S^C_c(0,0,\bar{g}). \quad (4.5)
\]

By Theorem 4.1 for sufficiently large \(C = C(d) \), \(S^C(0,0,\bar{g}) \) is bounded
\[
\text{from} \ \mathbb{H}_{d+4,d-1/2,2}^7 \ \text{to} \ \mathbb{H}^{1+\gamma}_{d+4,d-1/2,2} \times \mathbb{H}^{1+\gamma}_{d+4,d-1/2,2}.
\]

Notice that
\[
\mathbb{H}^{1+\gamma}_{d+4,d-1/2,2} \subset \mathbb{H}^{1+\gamma}_{d+4,d-1/2,2} \subset \mathbb{H}^{1+\gamma}_{d+4,d-1/2,2} \subset L^2(\Omega, L_{d+4}([0,T], H_{d+4}^{1+\gamma})),
\]
where for the last inclusion we used (4.1) and the condition on \(\gamma \). It is known (see [Lot00b Thm 3.1]) that \(a^{1/j} D_i D_j \) maps \(H_{d+4}^{1+\gamma} \) to \(H_{d+4}^{-1/2} \). Therefore the first term in (4.5) is bounded
\[
\text{from} \ L^2(\Omega, H_{d+4}^2) \times L^2(\Omega, L_{d+4}([0,T], H_{d+4}^{1+\gamma})) \times \mathbb{H}^{\gamma}_{d+4,d-1/2,2} \ \text{to} \ L^2(\Omega, L_{\infty,0}(Q_{T_0})). \quad (4.6)
\]
Finally, (4.2) implies that for a sufficiently small $\varepsilon = \varepsilon(d) > 0$, $S_{d+4,d-1/2,2}(\Omega, L_\infty(Q))$ is embedded into $\Psi^e L_2(\Omega, L_\infty(Q))$, and thus (possibly after lowering the value of α^0) the whole solution map $S_\varepsilon(\psi, f, g)$ has boundedness in property in (4.6).

Since on $\Omega_\varepsilon, u = S(\psi, f(u, \nabla u), g(u))$, and by assumption $\psi \in L_2(\Omega, H^7_{d+4})$, it suffices to check that

$$f(u, \nabla u) \in L_2(\Omega, L_{d+4}([0, T], H^{-1+\gamma}_1(G))), \quad g(u) \in H^7_{d+4,d-1/2,2}.$$ \hspace{1cm} (4.7)

The first of these inclusions already follows from Theorem[4.2] one can use (4.4) as before, the assumption $f^0 \in L_2(\Omega, L_{d+4}([0, T], H^{-1+\gamma}_1(G)))$, the already seen property $|u|^m \in L_2(\Omega, L_\infty(Q))$, and the fact that

$$\nabla u \in L_2(\Omega, L_2(Q)) \cap L_2(\Omega, L_\infty([0, T], H^{-1}_1(G))$$

implies, by interpolation, $\nabla u \in L_2(\Omega, L_{d+4}([0, T], H_{d+4}^{-1+\gamma}(G)))$. The second inclusion on (4.7) is a consequence of the Lipschitz continuity in u of $g(u)$, the assumption $g^0 \in H^7_{d+4,d-1/2,2}$, and that by Theorem[4.3]

$$u \in S^\gamma_{d+4,d-2+4,d,2} \subset H^7_{d+4,d-2,2}.$$ \hspace{1cm} □

4.2 An Itô-Wentzell formula

In light of Lemma[4.7] we consider

$$du_t(x) = (a^i_t(x)D_i u_t(x) + f_t(x)) dt + \sigma^i_t(x)D_i u_t(x) dW^i_t$$ on $\mathbb{R}^+ \times G$,

$$u_t(x) = 0$$ on $\mathbb{R}^+ \times \partial G$,

$$u_0(x) = \psi(x)$$ on G.

Consider the flow $(X_t(x))(t,x) \in Q^+$ given by the SDE

$$dX_t = -\sigma^k_t(X_t) dW^k_t,$$ \hspace{1cm} (4.8)

which exists under Assumption(2.3)(a) by the general theory of stochastic flows, see for example [Kun84, Thm II.3.1]. Here and below σ^k_t stands for the column vector $(\sigma^1_t, \ldots, \sigma^d_t)$. Since the coefficients are assumed to vanish outside G^+, the flow X, and in fact any flow appearing below that is built from the coefficients a and σ, are trivial outside G^+. Formally applying the Itô-Wentzell formula, the field $v_t(x) := u_t(X_t(x))$ is expected to satisfy

$$\partial_t v_t(x) = \partial^j_t(X_t(x))(D_i D_j u_t(x)) + (\sigma^i_t D_i \sigma^j_t(X_t(x))(D_j u_t(x)) + f_t(X_t(x)))$$

$$= \alpha^i_t(x)D_i D_j v_t(x) + \beta^j_t(x)D_j v_t(x) + \varphi_t(x),$$

on

$$\tilde{Q} := \{(t, x) : t \in (0, T], X_t(x) \in G\},$$

where here and in the following we use the notations

$$\alpha_t(x) = \alpha_t(x)(\omega) = (\nabla X_t(x))^{-1}\tilde{a}_t(X_t(x))(\nabla X_t(x))^*^{-1}$$

$$\beta_t(x) = \beta_t(x)(\omega) = (\nabla X_t(x))^{-1}\left(\Sigma_t(X_t(x)) - \nabla^2(X_t(x))\alpha_t(x)\right)$$
\[\varphi_t(x) = \varphi_t(x)(\omega) = f_t(X_t(x)) \]
\[\Sigma_t(x) = (\nabla \sigma_t(x)) \sigma_t^i(x) \]

Unfortunately no version of the Itô-Wentzell formula known to the author is actually applicable here, so we should confirm that the above formal computation is correct.

Lemma 4.8. Let Assumptions 2.2, 2.3(a), and 4.5 hold. Then with the above notations, for almost all \(\omega \in \Omega \), the function \((v_t(x))_{(t,x) \in \hat{Q}(\omega)(\omega)}\) is the probabilistic solution of (4.9) on \(\hat{Q}(\omega) \), with initial condition \(\psi \) and boundary condition 0.

Proof. Recall a Feynman-Kac formula for SPDEs with Dirichlet boundary conditions from [GG16]. Let \((B_t^r)_{r=1,\ldots,d, t \geq 0}\) be the canonical \(d\)-dimensional Wiener process on the standard Wiener space \((\Omega, (\mathcal{F}_t)_{t \geq 0}, P)\). Fix for now and for the rest of the paper \(\rho \) to be a \(C^{2+\nu}(G) \) square root of \(\tilde{a} \). Introducing the flow \(Y \) given by the SDE given on the completion of the probability space \((\Omega \times \Omega, (\mathcal{F}_t \otimes \mathcal{F}_r)_{t \geq 0}, P \otimes P)\),

\[dY_t = (\sigma_t^k D_t \sigma_t^k + \tilde{\rho}_t^r D_t \rho_t^r)(Y_t) \, dt - \sigma_t^k(Y_t) \, dW_t^k + \rho_t^r(Y_t) \, dB_t^r \]

and the exit time of the inverse characteristics

\[\gamma_{t,x} = \sup \{ s \in [0,t] : (s, Y_{s,t}^{-1}(x)) \notin (0,T] \times G \}, \]

one has by [GG16] Thm 2.1, for all \(t \in [0,T], dx \otimes dP \)-almost everywhere

\[u_t(x) = \mathbb{E}^P \left(\psi(Y_{0,t}^{-1}(x)) \mathbf{1}_{\gamma_{t,x} = 0} + \int_{\gamma_{t,x}}^t f_s(Y_{s,t}^{-1}(x)) \, ds \right). \]

For a fixed \(s \in [0,T] \), consider \(w = (w^{(1)}_t, \ldots, w^{(d)}_t) \), the solution of the (system of) fully degenerate SPDEs

\[dw^{(l)}_t(x) = a^{ij}_t(x)D_t D_j w^{(l)}_t(x) \, dt + \alpha^{ik}_t(x)D_i w^{(l)}_t(x) \, dW_t^k + \rho_t^r(x)D_t w^{(l)}_t(x) \, dB_t^r \]

on \([s,T] \times \mathbb{R}^d\), with initial condition \(w^{(l)}_t(x) = x^l, l = 1, \ldots, d \), which exists and is unique by [GGK14]. Now we may apply the Itô-Wentzell formula [Kry10] Thm 1.1 and verify that the differential of \(w^{(l)}_t(Y_{s,t}(x)) \) is 0, and hence \(w^{(l)}_t(x) := (Y_{s,t}^{-1}(x))^l \). Applying the Itô-Wentzell formula again, one sees that \(\tilde{z}_t^{(l)}(x):= w^{(l)}_t(X_t(x)) \) satisfies, with the notation \(\tilde{\rho}_t(x) = (\nabla X_t(x))^{-1} \rho_t(X_t(x)) \),

\[dz^{(l)}_t(x) = [a^{ij}_t(X_t(x))D_t D_j w^{(l)}_t(X_t(x)) - (\sigma_t^k D_t \sigma_t^k)(X_t(x))D_j w^{(l)}_t(X_t(x))] \, dt \\
+ \rho_t^r(X_t(x))D_t w^{(l)}_t(X_t(x)) \, dB_t^r \]

\[= [a^{ij}_t(X_t(x))D_t D_j z_t^{(l)}(x) + \beta^{l}_t(x)D_t z_t^{(l)}(x)] \, dt + \tilde{\rho}_t^r(x)D_t z_t^{(l)}(x) \, dB_t^r \]

(4.10)
on \([s,T] \times \mathbb{R}^d\) with initial condition \(z^{(l)}_s(x) = X_t^{(l)}(x) \). Note that (due to again [Kun84] Thm II.3.1.1) the coefficients \(\alpha, \beta, \tilde{\rho} \) are almost surely bounded processes in \(C^{2+\nu/2}, C^{1+\nu/2}, \) and \(C^{2+\nu/2} \), respectively. So (see e.g. [Kry02]) one can find processes \(\beta^{[m]} \) and \(\tilde{\rho}^{[m]} \) which are step functions in the sense that they are of the form

\[\sum_{i=1}^k \sum_{j=1}^{l_i} \mathbf{1}_{[t_{i-1}, t_i)} \lambda_{i,j} h_{i,j} \]
with some $k = k(m)$, $l_j = l_j(m)$, some partition $0 = t_0 < t_1 < \cdots < t_k = T$, some $\mathcal{F}_{t_{j-1}}$-measurable events A'_j, and some deterministic smooth functions $h_{i,j}$, and such that furthermore
\[
\left\| (\beta^{[m]} - \beta) \right\|_{C^{1+\nu/3}} + \left\| (\rho^{[m]} - \bar{\rho}) \right\|_{C^{2+\nu/3}} \to 0
\] (4.11)
as $m \to 0$ in measure with respect to $dt \otimes dP$. One can of course also assume that the left-hand side above never exceeds 1. Denote by $z^{[m]}(\omega)$ the solution of (4.10) with $\alpha = \bar{\rho}$, β, and $\bar{\rho}$ replaced by $\bar{\rho}^{[m]}(\beta^{[m]}), \beta^{[m]}$, and $\bar{\rho}^{[m]}$, respectively. If we set $\tau_\nu := \inf\{t \geq 0 : \|DkX_t(x)\| \leq n, \forall |k| \leq 3 \} \wedge T$, then up to τ_ν, the coefficients are bounded in the appropriate spaces, and the existence an uniqueness of such solution on $[0, \tau_\nu]$ follows again from [GCK14], along with the fact that
\[
\left\| z^{[m]} - z \right\|_{L_2([0,\tau_\nu], H_\nu^1)} \to 0
\] (4.12)
as $m \to \infty$, for any $p, q \in [2, \infty)$.

Now introduce the flow $Z^{[m]}(\omega)$, as a function of ω, s, t, x, is the flow given by the SDE on the probability space $(\Omega \times \hat{\Omega}, (\mathcal{F}_t \otimes \hat{\mathcal{F}}_t)_{t \geq 0}, P \otimes \hat{P})$
\[
dZ^{[m]}_t = (-\beta^{[m]}_t + \bar{\rho}^{[m],r}_t D_i \bar{\rho}^{[m],r}_t)(Z^{[m]}_t) dt - \bar{\rho}^{[m],r}_t(Z^{[m]}_t) dB^r_t.
\] (4.13)
For almost all fixed ω, $Z^{[m]}(\omega)$, as a function of ω, s, t, x, is the flow given by the SDE (4.14) on the probability space $(\Omega, (\mathcal{F}_t)_{t \geq 0}, P \otimes \hat{P})$, with ‘deterministic’ coefficients $\beta^{[m]}(\omega)$, $\bar{\rho}^{[m]}(\omega)$. Moreover, the convergence (4.11) (at least along a subsequence) holds for almost all ω in measure with respect to dt. So by the limit theorems of flows (see e.g [Kun97]), the limit $Z := \lim Z^{[m]}$ exists (for example, in $C^{r/4}(Q^+)$), and is on the one hand the flow corresponding to the equation
\[
dZ_t = (-\beta_t + \bar{\rho}^{r}_t D_i \bar{\rho}^{r}_t)(Z_t) dt - \bar{\rho}^{r}_t(Z_t) dB^r_t.
\] (4.14)
on $(\Omega \times \hat{\Omega}, (\mathcal{F}_t \otimes \hat{\mathcal{F}}_t)_{t \geq 0}, P \otimes \hat{P})$, and on the other hand, also on $(\hat{\Omega}, (\hat{\mathcal{F}}_t)_{t \geq 0}, \hat{P})$, for almost all $\omega \in \Omega$. One more application of the Itô-Wentzell formula then yields that the differential of $a^{[m]}_t(Z^{[m]}_{s,t}(x))$ is 0, that is, $a^{[m]}_t(Z^{[m]}_{s,t}(x)) = X_s(x)$. After passing to the limit using (4.12), and using the fact that both sides are continuous in all arguments, we therefore obtain that almost surely for all $0 \leq s \leq t \leq T$, $x \in \mathbb{R}^d$
\[
Y^{-1}_{s,t}(X_t(Z_{s,t}(x))) = X_s(x), \quad \text{or} \quad Y^{-1}_{s,t}(X_s(x)) = X_s(Z^{-1}_{s,t}(x)).
\]
By [Kun84] Thm II.6.1, for each fixed ω the inverse flow of $Z(\omega)$ can be given explicitly: $Z^{-1}_{s,t}(\omega) = U_{t,s}(\omega)$, where the flow $U = U(\omega)$ goes backwards in time and is given by the SDE (parametrized by $\omega \in \Omega$)
\[
dU_t = \beta_t(U_t) dt + \bar{\rho}^r_t(U_t) dB^r_t.
\] (4.15)
Furthermore, almost surely,
\[
\tau_{s,t} := \gamma_{t,X_t(x)} = \sup\{s \in [0, t] : (s, X_s(Z_{s,t}^{-1}(x))) \notin (0, T] \times G\}
= \sup\{s \in [0, t] : (s, Z_{s,t}^{-1}(x)) \notin \hat{Q}\}
= \sup\{s \in [0, t] : (s, U_{t,s}(x)) \notin \hat{Q}\}
\]
We therefore provide a proof (using in fact less regularity requirement on where the convention x

Theorem 4.9 (Krylov). Let $f(x) = \psi^{-1}(x) + \int_{\gamma(x)} f_s(Y_s^{-1}(X_t(x))) ds$

and the right-hand side is indeed the probabilistic solution of (4.9) with initial condition ψ and boundary condition 0. While the above equality is a priori only justified for all $t \in [0, T]$, $dx \otimes dP$-almost everywhere, since both sides are continuous in $(t, x) \in \bar{Q}$, the equality holds P-almost surely for all $(t, x) \in \bar{Q}$.

4.3 Krylov’s square root law for inverse flows

Define, for $(x_t)_{t \in [0, T]} \in C([0, T], \mathbb{R}^d)$, $c \in (0, \infty)$, and $t \in [0, T]$ the quantity

$$\text{osc}_{[t-2^{-k}, t]} x = \# \{k = 0, \ldots, n : \text{osc}_{[t-2^{-k}, t]} x > c2^{-k/2}\},$$

where the convention $x_t = x_0$ for $t \in [-1, 0)$ is used. We will need a generalization of the following square root law.

Theorem 4.9 (Krylov). Let $(w_t)_{t \geq 0}$ be a 1-dimensional Wiener process. Then for all $c, T \in (0, \infty)$, almost surely

$$\lim_{n \to \infty} \sup_{t \in (0, T]} \frac{1}{n+1} N_n(w, c, t) = \pi(c),$$

with a deterministic function $\pi(c)$ that converges to 0 as $c \to \infty$.

First we prove the following auxiliary lemma. For deterministic σ, similar estimates often appear in rough path theory, but we could not find a version that implies this form. We therefore provide a proof (using in fact less regularity requirement on σ than in for example [FH14, Prop 8.3]).

Lemma 4.10. Let $\lambda \in (0, 1/2)$. Let σ be a bounded predictable process with values in $C^1(\mathbb{R}^d)$ that vanishes outside G^+ and such that $||\sigma||_{C^1([0, T], C^1(\mathbb{R}^d))}$ has finite moments of any order. Then with the flow X given by (4.8), any $\varepsilon > 0$ and $p \geq 0$,

$$E \left(\sup_{s, t \in [0, T]; y \in G^+} \frac{|X_y(t) - X_y(s) + \sigma_s^k(X_y(s))(W_t^k - W_s^k)|}{|t - s|^{(1+2\lambda)/2 - \varepsilon}} \right)^p \leq N$$

for a constant N depending on $p, \lambda, \varepsilon, d, T$, and the bounds on σ.

Proof. We apply Lemma A.1 with $V = C(G^+, \mathbb{R}^d)$,

$$D_{s, t} X = X_t(\cdot) - X_s(\cdot) + \sigma_s^k(X_s(\cdot))(W_t^k - W_s^k),$$

$$E_{s, t'} X = \sigma_s^k(X_s(\cdot)) - \sigma_{t'}^k(X_{t'}(\cdot))(W_t^k - W_{t'}^k).$$

Condition (A.1) is clearly satisfied. As for the bounds (A.2), first, using also the usual version of the Kolmogorov continuity theorem, we can write, for any $p \geq 1$, (up to constants depending on p, d, and G)

$$E|D_{s, t}|^p = E \sup_{y \in G^+} \left(\int_s^t \sigma_r^k(X_r(y)) - \sigma_s^k(X_s(y)) dW_r^k \right)^p$$
Therefore we also have

\[
\mathbb{E} \left| \int_s^t \sigma_r^k(X_r(y_0)) - \sigma_s^k(X_s(y_0)) \, dW_r^k \right|^p
\]

\[
+ \sup_{y,y' \in G^+} \mathbb{E} \left[\int_s^t \left| \sigma_r^k(X_r(y)) - \sigma_r^k(X_r(y')) - \sigma_s^k(X_s(y)) + \sigma_s^k(X_s(y')) \right| \, dW_r^k \right]^p
\]

\[
\leq \mathbb{E} \left[\int_s^t \left| \sigma_r(X_r(y_0)) - \sigma_s(X_s(y_0)) \right|^2 \, dr \right]^{p/2}
\]

\[
+ \sup_{y,y' \in G^+} \mathbb{E} \left[\int_s^t \left| \sigma_r(X_r(y)) - \sigma_r(X_r(y')) - \sigma_s(X_s(y)) + \sigma_s(X_s(y')) \right|^2 \, dr \right]^{p/2}
\]

(4.16)

where \(y_0 \in G^+\) is arbitrary. Fix \(\varepsilon' \in (0,1/2 - \lambda)\) and denote

\[
K = \|\sigma\|_{L_\infty([0,T],\mathcal{C}^1(\mathbb{R}^d))}, \quad \eta_1 = \|\sigma\|_{C^\lambda([0,T],\mathcal{C}^1(\mathbb{R}^d))}, \quad \eta_2 = \|X\|_{C^{1/2-\varepsilon'}([0,T],\mathcal{C}^{1-\varepsilon'}(G^+))}.
\]

The latter random variable has finite moments of any order due to [Kun84]. One has

\[
|\sigma_r(X_r(y_0)) - \sigma_s(X_s(y_0))| \leq \eta_1 |r - s|^\lambda + |\sigma_s(X_s(y_0)) - \sigma_s(X_s(y_0))| \leq \eta_1 |r - s|^\lambda + K|X_r(y_0) - X_s(y_0)| \leq \eta_1 |r - s|^\lambda + K \eta_2 |y - y'|^{1/2 - \varepsilon}
\]

(4.17)

As for the other term, first, using the same bound as above, with \(y_0\) replaced by \(y\) and \(y'\),

\[
|\sigma_r(X_r(y)) - \sigma_s(X_s(y))| + |\sigma_s(X_s(y')) - \sigma_r(X_r(y'))| \leq 2(\eta_1 + K T \eta_2)|r - s|^\lambda
\]

On the other hand, one also has

\[
|\sigma_r(X_r(y)) - \sigma_s(X_s(y'))| + |\sigma_s(X_s(y')) - \sigma_s(X_s(y'))| \leq 2 K \eta_2 |y - y'|^{1/2 - \varepsilon'}
\]

Therefore we also have

\[
|\sigma_r(X_r(y)) - \sigma_r(X_r(y')) - \sigma_s(X_s(y)) + \sigma_s(X_s(y'))| \leq \eta_3 |r - s|^\lambda - |y - y'|^{1/2 - \varepsilon} (4.18)
\]

with some random variable \(\eta_3\) with finite moments of any order. Choosing \(p\) large enough so that \(p(1 - \varepsilon')\varepsilon \geq d + 1\), the second term on the right-hand side of (4.16) is bounded by a constant times

\[
|s - t|^p(1/2 + \lambda(1 - \varepsilon))
\]

and hence, combining this with (4.17), we get

\[
\mathbb{E}|D_{s,t}|^p \leq C|s - t|^p(1/2 + \lambda(1 - \varepsilon))
\]

uniformly in \(s\) and \(t\). Moving to the second bound in (A.2), we have

\[
\mathbb{E}|E_{s,s',t,t'}|^p \leq |t - t'|^p/2 \sup_{y \in G^+} |\sigma_s(X_s(y)) - \sigma_{s'}(X_{s'}(y))|^{2p}
\]

The second component on the right-hand side can be estimated exactly as above: the only difference is that since one does not integrate in time, there is no factor \(|s - s'|^{p/2}\) appearing. One hence has

\[
\mathbb{E}|E_{s,s',t,t'}|^p \leq C|t - t'|^p/2 |s - s'|^{p\lambda(1 - \varepsilon)}
\]

and so one can set \(\gamma = (1 + 2\lambda)/2 - \varepsilon\) in Lemma (A.1) for large enough \(p\) the conditions on the exponents are satisfied and we get the claim. □
We can now prove the desired square root law.

Lemma 4.11. Let \(\sigma \) satisfy Assumption 2.3 and assume \(d_1 < \infty \). Then, with the flow \(X \) given by (4.8), for all \(c \in (0, \infty) \), almost surely

\[
\limsup_{n \to \infty} \sup_{t \in [0,T]} \sup_{x \in G^+} \frac{1}{n+1} N_n((\nabla X_t^{-1}(x))^{-1} X_t^{-1}(x), c, t) \leq \hat{\pi}(c)
\]

with a deterministic function \(\hat{\pi}(c) \), that depends only on \(K \) and \(d_1 \), and that converges to 0 as \(c \to \infty \).

Proof. First note that

\[
A_{s,t} := \sup_{y \in G^+} |X_s(y) - X_t(y)| \leq K|W_t - W_s| + |t - s|^{(1+\nu)/2} \sup_{s', t' \in [0,T], y \in G^+} |X_{t'}(y) - X_{s'}(y) + \sigma_{s'}(X_{s'}(y))(W_{t'} - W_{s'})|.
\]

Denote the second term on the right-hand side by \(B_{s,t} \), and let

\[
S_t^1(c) = \{ n \in \mathbb{N} : \sup_{[t-2^{n}, t]} \text{osc} W_i > c2^{-n/2} \}, \quad i = 1, \ldots, d_1
\]

and

\[
S_t^0(c) = \{ n \in \mathbb{N} : \sup_{[t-2^{n}, t]} B_{s,t} > c2^{-n/2} \}.
\]

Since due to Lemma 4.10, \(B_{s,t} \leq |t - s|^{(1+\nu)/2} \eta \) for all \(s, t \in [0, T] \) with a finite random variable \(\eta \), the quantity \(\sup_{t \in [0,T]} \# S_t^0(c) \) is also a.s. finite. By Theorem 4.9

\[
\limsup_{n \to \infty} \sup_{t \in [0,T]} \frac{1}{n+1} \# (S_t^1(c) \cap [0, n]) = \pi(c).
\]

Note that one has

\[
X_t^{-1}(x) - X_s^{-1}(x) = X_t^{-1}(X_s(X_s^{-1}(x))) - X_t^{-1}(X_t(X_s^{-1}(x))) = \nabla X_t^{-1}(x)(X_s(X_s^{-1}(x)) - X_t(X_s^{-1}(x))) + C_{s,t}
\]

where one has the estimates

\[
|\langle X_s(X_s^{-1}(x)) - X_t(X_s^{-1}(x)) \rangle| \leq A_{s,t}
\]

\[
|C_{s,t}| \leq \sup_{(t,x) \in Q^+} |\nabla^2 X_t^{-1}(x)||X_s(X_s^{-1}(x)) - X_t(X_s^{-1}(x))|^2 \leq A_{s,t}^2 \sup_{(t,x) \in Q^+} |\nabla^2 X_t^{-1}(x)|.
\]

Hence for all \(s, t \in [0, T] \),

\[
\sup_{x \in G^+} |(\nabla X_t^{-1}(x))^{-1}(X_t^{-1}(x) - X_s^{-1}(x))| \leq A_{s,t} + A_{s,t}^2 \xi
\]

with some finite random variable \(\xi \). So whenever \(n \notin \bigcup_{i=0}^{d_1} S_t^1(c) \) and \(c2^{-n/2} \leq 1/\xi \), the right-hand side above is bounded by \(2(Kd_1 + 1)c2^{-n/2} \) for all \(s \in [t - 2^n, t] \), and so setting \(\tilde{\pi}(c) = d_1 \pi(c) / (2Kd_1 + 2) \) finishes the proof of the lemma. \(\square \)

Our final lemma, which will essentially allow us to utilize the above square root law, is the following estimate for hitting probabilities.
Lemma 4.12. Let \(p \geq 0 \) be an integer, \((\tilde{B}_t)_{t \geq 0}\) be a \(d\)-dimensional Wiener process on a filtered probability space \((\Omega, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\), and let

\[
\xi_s = \int_0^s b_s \, ds + \int_0^s a_s \, d\tilde{B}_s
\]

with \(a_t \) and \(b_t \) being bounded predictable processes with values in \(\mathbb{R}^{d \times d} \) and \(\mathbb{R}^d \), respectively. Fix \(c \geq 1 \), \(r \geq 7c \), denote \(Q^p_r := [0, 2^{-p}] \times B_{2^{-p/2}, r} \), fix \((t, x) \in Q^p_r\), and assume that on \{\(s, \omega): (t + s, x + \xi_s) \in Q^p_r\}\) the bounds \(|b_s(\omega)| \leq C2^p/2\) and

\[
\delta I \leq a_s(\omega)a_s^*(\omega) \leq I
\]

hold, the latter in the sense of positive semidefinite matrices with some \(C, \delta, \Delta > 0 \). Let further \(n \in \mathbb{R}^d \) be a unit vector, and \(A \subset Q^p_r\) be a closed set such that \{\(s, y): \langle y, n \rangle \geq c2^{-p/2}\} \cap Q^p_r \subset A\). Finally, set

\[
\tau_{t,x} = \inf\{s > 0: (t + s, x + \xi_s) \in A \cup \partial Q^p_r\}.
\]

Then there exists a \(C_0 = C_0(c, r, d, \Delta) \) such that if \(C \leq C_0 \), then one has

\[
\mathbb{P}(t + \tau_{t,x}, x + \xi_{\tau_{t,x}} \notin A) \leq \gamma(c, r, d, \delta, \Delta) < 1. \tag{4.19}
\]

for some function \(\gamma \), depending only on the indicated parameters.

Proof. By rotational symmetry we may assume that \(n = (-1, 0, \ldots 0) \) and by Brownian rescaling we may assume \(p = 0 \). It is also clear that if \(A \) is replaced by \(A_c \cap Q^0_r \), where

\[
A_c = \{(s, y): y \in A_c\} := \{(s, y): y_1 \leq -c\},
\]

both in the definition of \(\tau \) and on the left-hand side of (4.19), then the left-hand side of (4.19) increases, so it suffices to prove the statement for \(A = A_c \cap Q^0_r \). One can also trivially assume \(x \notin \text{int}A_c \), since otherwise the left-hand side of (4.19) is just 0.

Let \(\varphi, \psi \) be smooth functions on \(\mathbb{R} \) such that

for \(|a| \leq 5/7r \), \(\varphi(a) = \frac{1}{c + \sqrt{r^2 - a^2}} \), \(\psi(a) = c \);

for \(|a| \geq 6/7r \), \(\varphi(a) = 1 \), \(\psi(a) = c + 1 \);

for \(|a| \in [5/7r, 6/7r] \), \(\varphi(a) \in \left[\frac{1}{c + \sqrt{r^2 - a^2}}, 1 \right] \), \(\psi(a) \in [c, c + 1] \).

Denote \(\tilde{y} := (y_2, \ldots, y_d) \), and introduce the function \(f(y) = \varphi(|\tilde{y}|)(y_1 + \psi(|\tilde{y}|)) \), the process

\[
\hat{\xi}_s := f(x) + \int_0^s \hat{b}_s \, ds' + \int_0^s \hat{a}_s \, d\tilde{B}_s := f(x + \xi_s),
\]

and the stopping time

\[
\hat{\tau} := \inf\{s > 0: (t + s, \hat{\xi}_s) \in [0, 1] \times \{0, 1\} \cup \{1\} \times [0, 1]\}.
\]

These restrictions on \(r \) and \(c \) are somewhat arbitrary and are mainly for convenience, but since this version is already more than sufficient in our application, we do not pursue more generality.
By construction, on \(B_c \setminus \text{int} A_c, f \) is nonnegative, and on \(\{y : |y| = r, y_1 \geq -c\} \), one has \(f(y) \geq 1 \). Therefore

\[
\{(t + \tau_{e,x}, x + \xi_{\tau_{e,x}}) \notin \tilde{A}_c \cap \tilde{Q}_t \} \subset \{(t + \tilde{\tau}, \tilde{\xi}_t) \notin [0, 1] \times \{0\}\}.
\]

Note also that

\[
|\nabla f(y)| \geq |D_1 f(y)| \geq \inf_{a \in \mathbb{R}} \varphi(a) = \frac{1}{c + r},
\]

and so \(|\tilde{a}|^2\) is bounded from below \(\frac{\delta}{(r + c)^2} \). It is also clear from Itô’s formula that there exists a \(\tilde{C} = \tilde{C}(r, c, d, \Delta) \) such that \(\sup_{s \in [0,1]} |\int_0^s \hat{b}_s^* \, ds'| \leq C \tilde{C} \). Next, we claim that there exists an \(m = m(r, c) < 1 \) such that for \(y \in B_{2^{-1/2}}, f(y) \leq m \). Indeed, we can write

\[
\max_{y_1^2 + |y|^2 \leq r^2/2} f(y) = \max_{y_1^2 + |y|^2 \leq r^2/2} \frac{y_1 + c}{\sqrt{y_1^2 + |y|^2}} = \max_{y_1^2 + |y|^2 = r^2/2} \frac{y_1 + c}{c + \sqrt{r^2 - |y|^2}} = \max_{y_1^2 \leq r^2/2} \frac{y_1 + c}{c + \sqrt{r^2/2 + y_1^2}} =: \max_{y_1^2 \leq r^2/2} g(y_1).
\]

Trivially \(\lim_{y_1 \to \pm \infty} g(y_1) = \pm 1 \), so it suffices to show that \(g' > 0 \). Direct calculation shows

\[
g'(y_1) = \frac{c \sqrt{r^2/2 + y_1^2} - cy_1 + r^2/2}{\sqrt{r^2/2 + y_1^2} \left(\sqrt{r^2/2 + y_1^2} + c \right)^2}.
\]

If the numerator were 0 for some \(y_1 \), that would imply

\[
c^2(r^2/2 + y_1^2) = c^2 y_1^2 - c^2 y_1 + r^4/4,
\]

which gives \(y_1 = r^2/4 - c^2/2 \), but since substituting this back to (4.20) gives a positive quantity, we get the claim.

Let us now set \(C_0 := (1 - m)/(2C) \), so that for \(C \leq C_0 \), one has \(\sup_{s \in [0,1]} |\int_0^s \hat{b}_s^* \, ds'| \leq (1 - m)/2 \). Define

\[
\tilde{\xi}_t := f(x) + \int_0^s \hat{a}_{s'} \, dB_{s'},
\]

\[
\tilde{\tau} := \inf\{s > 0 : (t + s, \tilde{\xi}_t) \in [0, 1] \times \left\{ -\frac{1-m}{2}, \frac{1+m}{2} \right\} \cup \{1\} \times [0,1] \}
\]

and notice that

\[
\{(t + \tilde{\tau}, \tilde{\xi}_t) \notin [0, 1] \times \{0\}\} \subset \{(t + \tilde{\tau}, \tilde{\xi}_t) \notin [0, 1] \times \left\{ -\frac{1-m}{2} \right\}\}.
\]

The latter event is now in the scope of [Kry03b, Lem 3.7]: the process whose hitting time we are considering is a 1-dimensional continuous martingale with quadratic variation uniformly bounded from below, and the starting point \((t, f(x))\) is strictly separated from the right boundary \([0, 1] \times \left\{ \frac{1+m}{2} \right\} \). Since all these bounds depend only on \(r, c, d, \delta, \Delta \), the application of [Kry03b, Lem 3.7] hence concludes the proof. \(\square \)
4.4 Proof of Theorem 4.6

Proof of Theorem 4.6 Throughout the proof we work with a fixed $\omega \in \Omega$. By linearity, we can assume that $\psi, f \geq 0$, and hence also $u, v \geq 0$. We will throughout the proof often use the shorthand $z = (t, x)$.

Define v^ε as the probabilistic solution of (4.9) on

$$\tilde{Q}^\varepsilon := \{ z : t \in [0, T], (\zeta_{\varepsilon^3} * X(x))_t \in (G + B_x) \},$$

with initial condition ψ and boundary condition 0, where $\zeta \in C_0^\infty(\mathbb{R}^+)$ and $\zeta_\varepsilon(s) = \varepsilon^{-1}\zeta(\varepsilon^{-1}s)$. Simply by the uniform in x $1/2$ Hölder-continuity in time of X, there exists an $\varepsilon_0 = \varepsilon_0(\omega)$ such that for all $0 < \varepsilon < \varepsilon_0$, one has $\tilde{Q} \subset \tilde{Q}^\varepsilon$ and therefore $v \geq v^\varepsilon$. Moreover, v^ε agrees with the classical solution of (4.9) with the same initial-boundary conditions and therefore it is continuously differentiable in time and twice continuously differentiable in space on the closure of $\{ z : t \in [T_0/2, T], x \in \tilde{Q}^\varepsilon_t \}$, where $\tilde{Q}^\varepsilon_t = \{ x : (t, x) \in \tilde{Q}^\varepsilon \}$.

Using Lemma 4.11 and the notation in Lemma 4.12 fix a p_0 such that $1 > \hat{\pi}(p_0) =: 1 - \hat{\pi}$ and a $r_0 \geq 7(2^{1/4}c_0 + 1)$, and set $\gamma := \gamma(2^{1/4}c_0 + 1, r_0, \lambda 2^{-1/4}, K 2^{1/4}) \vee 1/2 < 1$. Since $M(z) := \nabla X_t(x)$ is uniformly continuous and separated away from zero, there exists a $\delta_0 = \delta_0(\omega) > 0$ such that whenever $|z - z'| \leq \delta_0$,

$$2^{-1/4}I \leq M(z)M^{-1}(z') \leq 2^{1/4}I.$$

Let furthermore p_1, p_2, \ldots, be the nonnegative integers such that

$$\sup_{z \in Q^+} \text{osc} M(t, X_t^{-1}(x))X_t^{-1}(x) \leq c_0 2^{-p_i/2}. \tag{4.21}$$

Introduce, for integers $j \geq -\log_2(1 \wedge (T_0/2))$,

$$S(j) := \{ z : t \in [T_0 - 2^{-j}, T], x \in \tilde{Q}_t, d(M(z)x, M(z)\partial \tilde{Q}_t) \leq r_0 2^{-j/2} \}$$

and $\mathcal{M}(j) := \sup_{S(j)} |v^\varepsilon|$. Of course $(\mathcal{M}(j))$ is a decreasing sequence. Suppose now that there exists an $j_0 = j_0(\omega)$ and a $j_1 = j_1(\varepsilon, \omega)$ such that $j_1 \to \infty$ as $\varepsilon \to 0$ almost surely and that for all $j_1 \geq p_i \geq j_0$,

$$\mathcal{M}(p_{i+1}) \leq 2^{-p_i}K_2 + \gamma \mathcal{M}(p_i). \tag{4.22}$$

By iterating the above we get

$$\mathcal{M}(p_{i+1}) \leq \gamma^iK_2 + \gamma \mathcal{M}(p_i) \leq \gamma^i(iK_2 + \mathcal{M}(0)) \leq C\hat{\gamma}^iK_2(2 + T).$$

with $\hat{\gamma} = \gamma/2 + 1/2$ and some $C = C(\gamma)$. Denote by $j_2 = j_2(\omega)$ the index such that for all $j \geq j_2$,

$$\# \{ i : j_0 \leq p_i \leq j \} \geq j\hat{\pi}/2, \tag{4.23}$$

which exists by the definition of $\hat{\pi}$. We therefore obtain, for $j_1 \geq j \geq j_2$,

$$\mathcal{M}(j) \leq \mathcal{M}(p_{j_1\hat{\pi}/2 + j_0}) \leq C(2 + T)K_2(\hat{\gamma}^{j_2})^{j_2}. \tag{4.24}$$

Denote $\hat{C} = C(2 + T)$, $\hat{\gamma} = \hat{\gamma}^{j_2}$. Note that for any $z \in Q$, with $\bar{\mu} := \sup_{x,z' \in Q^+} |M(z)||M^{-1}(z')|$, one has the trivial bound

$$d(M(t, X_t^{-1}(x))X_t^{-1}(x), M(t, X_t^{-1}(x))\partial \tilde{Q}_t) \leq d(x, \partial G)\bar{\mu} = r_0 2^{-\log_2(\frac{r_0}{d(x, \partial G)\bar{\mu}})}/2.$$
If $2\log_2(\frac{r_0}{d(x, \partial G)\mu}) > j_2$, choose $\varepsilon \leq \varepsilon_0$ such that $j_1(\varepsilon) \geq 2\log_2(\frac{r_0}{d(x, \partial G)\mu})$, so that whenever $t \geq T_0$, we can write

$$u_t(x) = v_t(X_t^{-1}(x)) \leq v_t^*(X_t^{-1}(x)) \leq \mathcal{M}_x'(2\log_2(\frac{r_0}{d(x, \partial G)\mu})) \leq \hat{C}K_2\gamma^{2\log_2(\frac{r_0}{d(x, \partial G)\mu})}\mu^{-\frac{3}{2}}d(x, \partial G)^{-2\log_2\gamma}.$$

Note that - as claimed in the theorem - the exponent $\alpha := -2\log_2\gamma > 0$ of the decay depends only on κ, K, d, d_1 (through γ and $\hat{\gamma}$). For $2\log_2(\frac{r_0}{d(x, \partial G)\mu}) \leq j_2$ we can use the trivial bound

$$u_t(x) \leq \sup_{Q} v \leq K_2(T + 1) \leq K_2(T + 1)\left(\frac{2^{j_2/2}}{r_0}\right)^\alpha d(x, \partial G)^\alpha.$$

This yields the claim, so it would suffice to prove (4.22). By virtually the same argument, it is also enough to prove

$$\mathcal{M}_x'(p_{i+2}) \leq 2^{-p_i}K_2 + \gamma\mathcal{M}_x'(p_{i-1}). \quad (4.24)$$

Recall that for any bounded C^1 domain there exists a function $\varepsilon_G(\alpha) : (0, 1) \to (0, \infty)$ such that for any $\alpha \in (0, 1)$ and $x \in \partial G$ one has $B_{\varepsilon_G(\alpha)}(x) \cap \{y : \frac{y - x}{|y - x|}, n_x \geq \alpha \} \subset G^c$, where n_x is the normal derivative of ∂G at x. Let then j_0 be the smallest integer such that for all $j \geq j_0$

(a) $2r_02^{-j/2}\mu \leq 1/(32r_0)$, where $\mu = \sup_{z, z' \in Q^+} |\nabla^2 X_t(x)||M^{-1}(z)|^2$,

(b) $2\mu r_02^{-j/2} \leq \varepsilon_G(1/16r_0)$,

(c) $2^{-j} + \sup_{|s-t| \leq 2^{-j}} \sup_{y \in \mathbb{R}^d} |X_t^{-1}X_t y - y| + \mu r_02^{-j/2} \leq \delta_0$,

(d) $\mu \sup_{(t, x) \in Q^+} |\beta_t(x)| \leq C_0(2^{1/4}c_0 + 1, r_0, d, K_2^{1/4})2^{j/2}$.

That is of course equivalent to saying that j_0 is the smallest integer that satisfies (a)-(d).

Fix now i such that $p_i \geq j_0$ as well as $0 < \varepsilon < \varepsilon_0$ and fix also $z_0 = (t_0, x_0) \in S(p_{i+2})$. Let $z' = (t_0, x') \in \partial Q_{t_0}$ be a minimizer of the distance between x_0 and ∂Q_{t_0}. Recall the definition of the flow U from (4.15) and introduce, with $M_0 := M(z')$

$$Q_0 := \{z : t \in [t_0 - 2^{-p_i}, t_0], d(M_0 x, M_0 x') \leq r_02^{-p_i/2}\}$$

$$A_0 := Q_0 \setminus \bar{Q}^z \quad \tau_0 := \sup\{s < t_0 : (s, U_{t_0, s}(x_0)) \in A_0 \cup \partial Q_0\}.$$

One has $z_0 \in Q_0$, in fact, even

$$|M_0 x_0 - M_0 x'| \leq 2^{1/4}|M(z_0)x_0 - M(z_0)x'| \leq r_02^{-p_{i+2}/2+1/4} \leq r_02^{-(p_{i+1})/2}. \quad (4.25)$$

Since v^ε is sufficiently smooth on the closure of $Q_0 \cap \bar{Q}^z$, by Itô’s formula one has

$$v^\varepsilon_{t_0}(x_0) = \mathbb{E}^P \left(\int_{t_0}^{t_0} \varphi_s(U_{t_0, s}(x_0)) ds + v^\varepsilon_{t_0}(U_{t_0, t_0}(x_0)) \right).$$
If \(z_0 := (\tau_0, U_{t_0, \tau_0}(x_0)) \in A_0\), then \(v^\gamma(z_0) = 0\). If however \(z_0 \notin A_0\), then we claim that \(z_0 \in S(p_{i-1})\). Indeed, first by property (c) of \(j_0\), one has \(|z_0 - z'| \leq \delta_0\). Hence

\[
d(M(z_0)U_{t_0, \tau_0}(x_0), M(z_0)\partial \tilde{Q}_{\tau_0})
\leq 2^{1/4}d(M_0U_{t_0, \tau_0}(x_0), M_0\partial \tilde{Q}_{\tau_0})
\leq 2^{1/4}|M_0U_{t_0, \tau_0}(x_0) - M_0X_{\tau_0, \theta_0}(x')|
\leq 2^{1/4}(|M_0U_{t_0, \tau_0}(x_0) - M_0x'| + |M_0x' - M_0X_{\tau_0, \theta_0}(x')|)
\leq 2^{1/4}(r_02^{-p_i/2} + c_02^{-p_i/2}) \leq r_02^{-p_i-1/2}.
\]

As for the time-coordinate, one simply has

\[
\tau_0 \geq t_0 - 2^{-p_i} \geq T_0 - 2^{-p_i} - 2^{-p_i} \geq T_0 - 2^{-p_i-1},
\]

as required. Hence,

\[
v^\gamma_t(x_0) \leq 2^{-p_i} \kappa_2 + \tilde{P}(\tau_0, U_{t_0, \tau_0}(x_0)) \notin A_0)M^\gamma(p_{i-1}).
\]

We now want to estimate the probability appearing on the right-hand side by \(\gamma\), which is indeed enough to infer (4.24). First let us transform the whole space by \(M_0\):

\[
Q_1 := (id, M_0)Q_0, \quad A_1 := (id, M_0)A_0,
\]

and note that \(\tau_0 = \sup\{s < t_0 : (s, M_0U_{t_0, s}(x_0)) \in A_1 \cup \partial Q_1\}\).

Let us now apply Lemma 4.12 with the following choice of parameters:

- \(p = p_i, \quad r = r_0, \quad c = 2^{1/4}c_0 + 1\)
- \((\tilde{B}(t))_{t \geq 0} = (B_{t_0} - t - B_{t_0})_{t \geq 0}, \quad (\tilde{\Omega}, (\tilde{F}_t)_{t \geq 0}, \tilde{P}) = (\hat{\Omega}, (\sigma(\tilde{B}_s : s \in [0, t])_{t \geq 0}, \tilde{P})\)
- \(A = \{(t, x) : (-t, x) \in A_1 - (t_0, M_0x')\}, \quad n = n_{X_{t_0}}(x')\)
- \((t, x) = (0, M_0x_0 - M_0x')\)
- \(\xi_s = M_0U_{t_0, t_0-s}(x_0) - M_0x_0\)

\[
\begin{align*}
&= \int_0^s M_0\beta_{t_0-s'}(U_{t_0, t_0-s'}(x_0)) ds' + \int_0^s M_0\Omega_{t_0-s'}(U_{t_0, t_0-s'}(x_0)) ds' \\
&= \kappa_2^{1/4}, \quad \Delta = K2^{1/4}
\end{align*}
\]

Let us verify the assumptions of Lemma 4.12. The measurability conditions are satisfied by construction. The bound on the drift is satisfied due to property (d) of \(j_0\). Concerning the bounds on the diffusion, first note that as seen above, property (c) of \(j_0\) implies that whenever \((s, U_{t_0, s}(x_0)) \in Q_0, |z' - (s, U_{t_0, s}(x_0))| \leq \delta_0\), and so

\[
M_0\rho_\gamma(U_{t_0, s}(x_0)) = M_0(\nabla X_s(U_{t_0, s}(x_0)))^{-1}\rho_s(X_s(U_{t_0, s}(x_0)))
= M(z')M^{-1}((s, U_{t_0, s}(x_0)))\rho_s(X_s(U_{t_0, s}(x_0))),
\]

and the definition of \(\delta_0\) along with the assumed bounds on \(\bar{a} = \rho \rho^*\) implies the claimed bounds. The condition on \((t, x)\) is straightforward and follows from (4.25).
As for the condition on A, first note that with denoting $\tilde{x} := X_{t_0}(x') \in \partial G$,

$$
\mathcal{R} := \{ y : \langle y - M_0x', n \rangle \geq 2^{-p_i/2 - 1} \} \cap B_{2r_02^{-p_i/2}}(M_0x')
$$

$$
\subset \{ y : \langle \frac{y - M_0x'}{|y - M_0x'|}, n \rangle \geq 1/(4r_0) \} \cap B_{2r_02^{-p_i/2}}(M_0x')
$$

$$
= \{ y : \langle \frac{y - M_0X^{-1}_t\tilde{x}}{|y - M_0X^{-1}_t\tilde{x}|}, n \rangle \geq 1/(4r_0) \} \cap B_{2r_02^{-p_i/2}}(M_0X^{-1}_t\tilde{x})
$$

Denoting further $\tilde{x} := M_0X^{-1}_t\tilde{x}$, since one has $\nabla(X_{t_0}M_0^{-1})(\tilde{x}) = I$, each y in the latter set satisfies

$$
X_{t_0}M_0^{-1}y - \tilde{x} = y - \tilde{x} + e,
$$

where

$$
|e| \leq |y - \tilde{x}|^2\hat{\mu} \leq |y - \tilde{x}|2^{-p_i/2}\hat{\mu} \leq |y - \tilde{x}|/(32r_0)
$$

by property (a) of j_0. In particular, a very crude application of this bound implies

$$
|y - \tilde{x}|/2 \leq |y - \tilde{x} + e| \leq 2|y - \tilde{x}|
$$

and hence

$$
\frac{X_{t_0}M_0^{-1}y - \tilde{x}}{|X_{t_0}M_0^{-1}y - \tilde{x}|} n \geq \frac{y - \tilde{x}}{|y - \tilde{x} + e|},
$$

$$
\geq \frac{1}{2}\frac{y - \tilde{x}}{|y - \tilde{x}|} - \frac{1}{16r_0} \geq \frac{1}{16r_0}.
$$

Hence we can write

$$
\mathcal{R} \subset M_0X^{-1}_t\left(\{ y : \langle \frac{y - \tilde{x}}{|y - \tilde{x}|}, n \rangle \geq (1/16r_0) \} \cap B_{2\hat{\mu}r_02^{-p_i/2}}(\tilde{x}) \right)
$$

$$
\subset M_0X^{-1}_t(G^c)
$$

where for the last inclusion we used property (b) of j_0. Let us now take an arbitrary

$$
y^* \in \{ y : \langle y - M_0x', n \rangle \geq (2^{1/4}c_0 + 1/2)2^{-p_i/2} \} \cap B_{(r_0+1)2^{-p_i/2}}(M_0x')
$$

and an $s \in [t_0 - 2^{-p_i}, t_0]$. Denote $\tilde{y} := X_sM_0^{-1}y^*$ and $\tilde{y} := M_sX^{-1}_t\tilde{y}$. Then one has

$$
\tilde{y} - y^* = M_0(X_{t_0}^{-1}\tilde{y} - X_{s}^{-1}\tilde{y}) = M_0M^{-1}(t_0, X_{t_0}^{-1}\tilde{y})M(t_0, X_{t_0}^{-1}\tilde{y})(X_{t_0}^{-1}\tilde{y} - X_{s}^{-1}\tilde{y}).
$$

(4.26)

We have

$$
|X_{t_0}^{-1}\tilde{y} - x'| \leq |X_{t_0}^{-1}X_sX_{t_0}^{-1}y^* - M_0^{-1}y^*| + |M_0^{-1}y^* - x'|
$$

$$
\leq \sup_{y \in \mathcal{R}^d} |X_{t_0}^{-1}X_sy - y| + \hat{\mu}r_02^{-p_i/2} \leq \delta_0
$$

by property (c) of j_0. Hence $|(t_0, X_{t_0}^{-1}\tilde{y}) - z'| \leq \delta_0$ and using the defining property of p_i, from (4.26) we get

$$
|\tilde{y} - y^*| \leq 2^{1/4}c_02^{-p_i/2}.
$$
It follows that \(\tilde{y} \in R \subset M_0X_{t_0}^{-1}(G^*) = M_0\tilde{Q}_{t_0}^c \), and so \(y^* = M_0X_s^{-1}X_{t_0}M_0^{-1}\tilde{y} \in M_0\tilde{Q}_t^c \).

Hence

\[
[t_0 - 2^{-p_1}, t_0] \times \left(\{ y : \langle y - M_0x', n \rangle \geq (2^{1/4}c_0 + 1/2)2^{-p_1/2} \} \cap B_{(p_0 + 1)2^{-n_1/2}}(M_0x') \right) \subset (\text{id}, M_0)\tilde{Q}_t^c.
\]

Let now \(j_2 = j_2(\varepsilon, \omega) \) be the largest integer such that the Hausdorff distance between \(\tilde{Q} \) and \(\tilde{Q}_t^c \) is smaller than \(2^{-j_2-1} \). Then if \(p_1 \leq j_2 \), we get

\[
[t_0 - 2^{-p_1}, t_0] \times \left(\{ y : \langle y - M_0x', n \rangle \geq (2^{1/4}c_0 + 1/2)2^{-p_1/2} \} \cap B_{(p_0 + 1)2^{-n_1/2}}(M_0x') \right) \subset (\text{id}, M_0)(Q_0 \setminus \tilde{Q}_t^c).
\]

By a simple translation and reflection we get the desired property of \(A \). Also notice that \(\tau_{t,x} = t_0 - \tau_0 \) and

\[
\{(\tau_0, U_{t_0, \tau_0}(x_0)) \notin A_0\} = \{(\tau_0, M_0U_{t_0, \tau_0}(x_0)) \notin A_1\} = \{(\tau, x + \xi_{\tau, x}) \notin A\}.
\]

Applying Lemma 4.12 therefore yields

\[
\hat{P}(\{(\tau_0, U_{t_0, \tau_0}(x_0)) \notin A_0\}) \leq \gamma
\]

as claimed and the proof is concluded.

\[\square\]

A Appendix

The following lemma is a variation on Kolmogorov’s Hölder-estimate, with the difference being that the two-parameter family we estimate here is not necessarily represented as increments of a (one-parameter) function.

Lemma A.1. Let \((V, |\cdot|)\) be a normed vector space and let \((D_{s,t})_{s,t \in [0,T]} \) and \((E_{s,s',t,t'})_{s,s',t,t' \in [0,T]} \) be two families of \(V\)-valued random variables, satisfying

\[
|D_{s,t}| \leq |D_{s,r}| + |D_{r,t}| + |E_{s,r,r,t}|
\]

\[
|E_{s_1,s_2,s_3,s_4}| \leq (|E_{s_1,t,s_3,s_4}| + |E_{t,s_2,s_3,s_4}|) \wedge (|E_{s_1,s_2,s_3,t}| + |E_{t,s_2,t,s_4}|)(A.1)
\]

for all choice of arguments. Suppose furthermore that \(D \) is almost surely continuous\(^3\) in both arguments and that for some \(p \geq 1 \), \(C > 0 \), \(\alpha, \alpha_1, \alpha_2 > 0 \) the bounds

\[
\mathbb{E}|D_{s,t}|^p \leq C|s - t|^{\alpha}
\]

\[
\mathbb{E}|E_{s,s',t,t'}|^p \leq C|s - s'|^{\alpha_1}|t - t'|^{\alpha_2}(A.2)
\]

hold uniformly in \(s, s', t, t' \). Then, if \(0 < p\gamma < (\alpha - 1) \wedge (\alpha_1 + \alpha_2 - 2) \), then almost surely

\[
\mathbb{E}\left(\sup_{s \neq t \in [0,T]} |s - t|\gamma|D_{s,t}| \right)^p \leq C N(T, \gamma, \alpha, \alpha_1, \alpha_2, p). (A.3)
\]

\(^3\)This condition is for convenience, in order to avoid dealing with suitable modifications.
Proof. We assume without loss of generality $T = 1$. Introduce the notations $D_k = 2^{-k} \mathbb{Z} \cap [0, 1]$ and $D = \bigcup_{k=0}^{\infty} D_k$ for the dyadic numbers and note that due to the continuity of D, it suffices to take supremum over $s, t \in D$ in (A.3). For fixed $s, t \in D$ let $n \in \mathbb{N}$ be such that $2^{-n-1} \leq |s - t| \leq 2^{-n}$. Let $(s_k)_{k \geq n}$ and $(t_k)_{k \geq n}$ be two sequences such that $s_k, t_k \in D_k$, $|s_n - t_n| \leq 2^{-n}$, $|s_{k+1} - s_k| \lor |t_{k+1} - t_k| \leq 2^{k+1}$, and that for some large enough N, $|s_k - s| \lor |t_k - t| = 0$ for all $k \geq N$. One then has, due to (A.1),

$$\sup_{k \geq n} \left| E_{s, t}^k \right| = 1.$$

Clearly each of $I_1, I_3,$ and I_4 is bounded (up to a universal constant) by

$$2^{-\gamma n} \sup_{k \geq 0} \sup_{r \in D_k} \left| D_{r, r+2^{-k}} \right| 2^{\gamma k} =: 2^{-\gamma n} A.$$

Choose $\gamma_1, \gamma_2 > 0$ such that $\gamma_1 + \gamma_2 = \gamma$ and $p \gamma_i < \alpha_i - 1$ for $i = 1, 2$. Then each of $I_2, I_5, I_6,$ and I_7 is bounded (up to a universal constant) by

$$2^{-\gamma n} \sup_{k, k' \geq 0} \sup_{r \in D_k} \left| E_{r, r+2^{-k}, r', r' + 2^{-k'}} \right| 2^{\gamma_1 k} 2^{\gamma_2 k'} =: 2^{-\gamma n} B.$$

This can be easily seen, for example in the case of I_2 (the other terms can be treated similarly), from

$$I_2 \leq \sum_{k = n}^N \sum_{k' = k+1}^\infty \left| E_{s_{k+1}^k, s_{k+1}^{k'}, s_{k+1}^k, s_k^k} \right| \leq B \sum_{k = n}^\infty \sum_{k' = k+1}^\infty 2^{-k'} \gamma_1 2^{-k_2} \leq 2^{-n(\gamma_1 + \gamma_2)}.$$

Therefore

$$E \left(\sup_{s \neq t \in [0, T]} |s - t|^\gamma \left| D_{s, t} \right|^\gamma \right) \leq p^p E(A \lor B)^p,$$

and it remains to bound $E(A \lor B)^p$. Using the bounds (A.2) and the conditions on the exponents, one has, up to constants depending on p and the exponents,

$$E(A \lor B)^p \leq E \sup_{k, k' \geq 0} \sup_{r \in D_k} \sup_{r' \in D_{k'}} \left| D_{r, r+2^{-k}} \right|^{p_2 \gamma k p} + \left| E_{r, r+2^{-k}, r', r' + 2^{-k'}} \right|^{p_2 \gamma_1 k p} 2^{\gamma_2 k' p}$$

$$\leq \sum_{k = 0}^\infty \sum_{r \in D_k} \left| D_{r, r+2^{-k}} \right|^{p_2 \gamma k p} + \sum_{k, k' \geq 0} \sum_{r \in D_k} \left| E_{r, r+2^{-k}, r', r' + 2^{-k'}} \right|^{p_2 \gamma_1 k p} 2^{\gamma_2 k' p}$$

$$\leq C \sum_{k = 0}^\infty 2^{k - \gamma k} 2^{\gamma k p} + C \sum_{k, k' \geq 0} 2^{k + k' - \gamma k} 2^{k + k' - \gamma k} 2^{\gamma k} 2^{\gamma k'} \leq C.$$
References

[DG14] K. A. DAREIOTIS and I. GYÖNGY. A Comparison Principle for Stochastic Integro-Differential Equations. Potential Analysis 41, no. 4, (2014), 1203–1222. [http://dx.doi.org/10.1007/s11118-014-9416-7]

[DG15] K. DAREIOTIS and M. GERENCŠÉR. On the boundedness of solutions of SPDEs. Stochastic Partial Differential Equations: Analysis and Computations 3, no. 1, (2015), 84–102. [http://dx.doi.org/10.1007/s40072-014-0043-5]

[FH14] P. K. FRIZ and M. HAIRER. A course on rough paths. Universitext. Springer, Cham, 2014. With an introduction to regularity structures. [http://dx.doi.org/10.1007/978-3-319-08332-2]

[Fla90] F. LANDOLI. Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions. Stochastics and Stochastic Reports 29, no. 3, (1990), 331–357. [http://dx.doi.org/10.1080/17442509008833620]

[GG16] M. GERENCŠÉR and I. GYÖNGY. A Feynman-Kac formula for stochastic Dirichlet problems. ArXiv e-prints (2016). [http://arxiv.org/abs/1611.04177]

[GGK14] M. GERENCŠÉR, I. GYÖNGY, and N. V. KRYLOV. On the solvability of degenerate stochastic partial differential equations in Sobolev spaces. Stochastic Partial Differential Equations: Analysis and Computations 3, no. 1, (2014), 52–83. [http://dx.doi.org/10.1007/s40072-014-0042-6]

[Kim04a] K.-H. KIM. On Lp-theory of stochastic partial differential equations of divergence form in C1 domains. Probability Theory and Related Fields 130, no. 4, (2004), 473–492. [http://dx.doi.org/10.1007/s00440-004-0368-5]

[Kim04b] K.-H. KIM. On stochastic partial differential equations with variable coefficients in C1 domains. Stochastic Processes and their Applications 112, no. 2, (2004), 261 – 283. [http://dx.doi.org/10.1016/j.spa.2004.02.006]

[KL98] N. V. KRYLOV and S. V. LOTOTSKY. A Sobolev space theory of SPDEs with constant coefficients on a half line. SIAM Journal on Mathematical Analysis 30, no. 2, (1998), 298–325. [http://dx.doi.org/10.1137/S0036141097326908]

[KL99] N. V. KRYLOV and S. V. LOTOTSKY. A Sobolev space theory of SPDEs with constant coefficients in a half space. SIAM Journal on Mathematical Analysis 31, no. 1, (1999), 19–33. [http://dx.doi.org/10.1137/S0036141098338843]

[KR81] N. V. KRYLOV and B. L. ROZOVSKII. Stochastic evolution equations. Journal of Soviet Mathematics 16, no. 4, (1981), 1233–1277. [http://dx.doi.org/10.1007/BF01084893]

[Kry94] N. V. KRYLOV. A W2n-theory of the Dirichlet problem for SPDEs in general smooth domains. Probability Theory and Related Fields 98, no. 3, (1994), 389–421. [http://dx.doi.org/10.1007/BF01192260]

[Kry01] N. KRYLOV. Some Properties of Traces for Stochastic and Deterministic Parabolic Weighted Sobolev Spaces. Journal of Functional Analysis 183, no. 1, (2001), 1 – 41. [http://dx.doi.org/http://dx.doi.org/10.1006/jfan.2000.3728]

[Kry02] N. KRYLOV. Introduction to the Theory of Random Processes. Graduate studies in mathematics. American Mathematical Society, 2002.

[Kry03a] N. V. KRYLOV. Brownian trajectory is a regular lateral boundary for the heat equation. SIAM Journal on Mathematical Analysis 34, no. 5, (2003), 1167–1182. [http://dx.doi.org/10.1137/S0036141002402980]
[Kry03b] N. V. KRYLOV. One more square root law for brownian motion and its application to
spdes. Probability Theory and Related Fields 127, no. 4, (2003), 496–512. http://
dx.doi.org/10.1007/s00440-003-0301-3

[Kry07] N. V. KRYLOV. Maximum Principle for SPDEs and Its Applications, 311–338. 2007.
http://dx.doi.org/10.1142/9789812770639_0012

[Kry10] N. V. KRYLOV. On the Itô–Wentzell formula for distribution-valued processes and
related topics. Probability Theory and Related Fields 150, no. 1, (2010), 295–319.
http://dx.doi.org/10.1007/s00440-010-0275-x

[Kun84] H. KUNITA. Stochastic differential equations and stochastic flows of diffeomorphisms,
143–303. Springer Berlin Heidelberg, Berlin, Heidelberg, 1984. http://dx.doi.
org/10.1007/BFb0099433

[Kun97] H. KUNITA. Stochastic Flows and Stochastic Differential Equations. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 1997.

[Lot00a] S. V. LOTOTSKY. Dirichlet problem for stochastic parabolic equations in smooth do-
 mains. Stochastics and Stochastic Reports 68, (2000), 145–175.

[Lot00b] S. V. LOTOTSKY. Sobolev spaces with weights in domains and boundary value pro-
blems for degenerate elliptic equations. In Methods and Applications of Analysis, 195 –
204. 2000.

[Lot01] S. LOTOTSKY. Linear stochastic parabolic equations, degenerating on the boundary of
a domain. Electron. J. Probab. 6, (2001), 14 pp. http://dx.doi.org/10.1214/
EJP.v6-97

[Par75] É. PARDOUX. Equations aux derives partielles stochastiques non lineaires monotones.
Etude de solutions fortes de type Ito. Ph.D. thesis, Univ. Paris Sud., 1975.

[RY04] D. REVUZ and M. YOR. Continuous Martingales and Brownian Motion. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Heidelberg, 3rd ed., 2004.

[Tri95] H. TRIEBEL. Interpolation theory, function spaces, differential operators. Johann Amb-
rosius Barth Verlag, 1995.