Phytotoxic and dissuasive activity of Chihuahua desert plants

Ramona PEREZ-LEAL, Maribel TORRES-RAMOS, Maria A. FLORES-CORDOVA*, Ana C. GONZALEZ-FRANCO, Adriana HERNANDEZ-RODRIGUEZ, Juan M. SOTO-PARRA, Loreto ROBLES-HERNANDEZ

Autonomous University of Chihuahua, Faculty of Agro-Technological Sciences UACH, Chihuahua, México; mariflor_556@hotmail.com (corresponding author); rleal@uach.mx; mtr_vida@hotmail.com; conzalez@uach.mx; aernande@uach.mx; jmsotoparra@gmail.com; lrobles@uach.mx

Abstract

With the purpose of finding plant compounds with the potential use as herbicides and insecticides, a research was realized with the objective of evaluate the phytotoxic and dissuasive activity of four Chihuahua desert plants. The phytotoxic activity evaluation was tested on Lactuca sativa and Lolium perenne, while the dissuasive activity was realized on three species of phytophagous insects: Myzus persicae, Rhopalosiphum padi and Spodoptera littoralis. Raw extracts were used, the solvents hexane, methanol and ethanol of different plants' organs (root, stem, leaf and flower) of four species: Fouquieria splendens (ocotillo), Larrea tridentate (governor), Astragalus mollissimus (wild grass) and Pachycereus pecten-aboriginum (echo), by the establishment of in vitro bioassays at a concentration of 10 mg/ml extract/solvent. In the toxicity bioassay, the percentage of germination, root and leaf length were measured. The results showed that the leaf extract of L. tridentata had phytotoxic activity for L. sativa, while for L. perenne the phytotoxicity was observed within the ocotillo, governor and echo extracts. In the dissuasive bioassay, each treatment had 20 repetitions with 10 adult insects per repetition. The methanolic extracts of F. splendens leaf and root, ethanolic extract of A. mollissimus sheet and the ethanolic extract of P. pecten-aboriginum stems showed moderate dissuasive response of feeding against M. persicae, presenting a settlement inhibition index of 53.53, 54.35, 60.00 and 48.84% respectively. Nevertheless, the results indicated that none of the 10 extracts tested on S. littoralis showed significant dissuasive properties for this Lepidoptera, while for R. padi all the tested extracts presented dissuasive properties. The treatments of the four vegetable species evaluated showed defensive or dissuasive properties of moderate to strong feeding against the insects M. persicae and R. padi, presenting interesting potential for being used as insecticides, while the tested extracts that presented phytotoxicity for both lettuce and ryegrass present possibilities for the realization of herbicides.

Keywords: antifeedant; natural insecticides; phytotoxicity; vegetable extracts
Introduction

The botanical compounds constitute an old alternative for the control of agricultural pests (Perez, 2012). It is currently known that secondary metabolites have an important role in the defensive mechanism of plants. Therefore, in recent years, the use of such components as a source of biopesticide preparation has been returning (Celis et al., 2008), since these metabolites can be isolated and used in agriculture as an alternative for the integrated control of pests and diseases (Emilia et al., 2013). Synthetic insecticides have been the most used elements for the control of harmful organisms, causing serious consequences to the ecosystem and generating the development of resistance in pests that were intended to be controlled (Perez et al., 2013). The aforementioned, together with the recognition of the biological properties of numerous plant species, has led to the search of new natural compounds extracted from plants with the potential use as insecticides and herbicides with less impact on the environment (Rodriguez and Barreto, 2015). Currently there is a certain number of plant-based insecticides that are being marketed worldwide, such as azadirachtin, rotenone, nicotine and sabadilla (Mendoza et al., 2007, Perez, 2012). Likewise, botanical pesticides include nematicides that inhibit germination, fungicides and new herbicides (Nava-Perez et al., 2012).

The majority of plant species have some type of phytochemical study. However, there are many aspects that remain empirical, which is a limitation to know the bioactive components and their diverse applications in the agronomic field (Celís, 2008). Monreal-García et al. (2014) evaluated phenolic compounds of foliar tissues of extracts of *Fouquieria splendens*, whereas they mention that the presence of these compounds can serve as an indicator of the attack of some pathogenic agent, since these are secreted as a defense mechanism. Likewise, Salas (2013) reports a work done by Fimbrés and García (1998) in a combination of extracts of *P. pecten-aboriginum* and *Lphocerus scottii* reporting bactericidal and antifungal activity. Flores et al. (2015) evaluated the allelopathic activity of *Astragalus mollissimus* in *Lactua vitreus* seeds, *Halepense sorghum, Lolium multiflorum, Arundo donax* and *Medicago sativa* detecting allelopathic activity as a possible natural herbicide, with respect to *L. tridentate*. There are scientific investigations that mention the biological properties that this shrub possesses; it has been reported that its components have antifungal, antibacterial, nematicidal, phytotoxic and insect repellent effects (Moreno-Limon et al., 2011; Peñuelas-Rubio et al., 2017), as well as being used for its medicinal properties (Lambert, 2004).

Therefore, the objective of the present work was to evaluate the phytotoxic and dissuasive activity of the Chihuahua desert plants *Fouquieria splendens* (ocotillo), *Larrea tridentata* (governor), *Astragalus mollissimus* (wild grass) and *Pachyceerus pecten-aboriginum* (echo), on *Lactuca sativa* and *Lolium perenne* and the dissuasive effect of feeding on three phytophagous insects of worldwide economic importance, *Myzus persicae*, *Rhopalosiphum padi* and *Spodoptera littoralis*, using raw extracts obtained of the four plant species mentioned.

Materials and Methods

Preparation of raw extracts

The collected plant material (root, stem, leaf and flower) was washed and dried at room temperature, after which was cut and placed in paper bags, dried in a Tork-type stove (Felisa) for five days at 40 °C and milled to obtain a fine powder. For the maceration, the solvents hexane, methanol and ethanol were separately used for each plant organ for 48 hours. The extracts were concentrated under reduced pressure. The extracts were stored at -22 °C; the solutions of each extract to be tested were prepared in the bioassays, at a concentration of 10 mg ml⁻¹ extract/solvent. Juglone was used as a positive control and pure methanol as a negative control (Table 1).
Phytotoxic bioassay

The bioassay was carried out in vegetable cultivation chambers with a photoperiod of 16:8 (L:O) at 23-24 °C, according to the methodology proposed by Moiteiro et al. (2006). The seeds used were from Lactuca sativa ‘Carrasco’ variety (certified, Arnedo, La Rioja) and Lolium perenne variety ‘Nui’, lot 3881157. Variables regarding the germination percentage and radicle length were evaluated for the two species, while, in addition, leaf length was measured for L. perenne.

Table 1. Evaluated treatments for phytotoxic bioassay using Chihuahua desert species

Plant species	Common name	Organ and solvent	Treatment
Fouquieria splendens	Ocotillo	Hexane sheet, Methanol sheet, Methanol root	ohh, ohm, orm
Larrea tridentata	Governor	Ethanol root, Ethanol sheet, Methanol sheet	gre, ghe, ghm
Astragallus mollissimus	Crazy grass	Ethanol flower, Ethanol sheet	hle, hle
Paquicereus pecten-aboriginum	Echo	Stem 10 r. ethanol, Stem 12 r. ethanol	ht10e, ht12e
Control		Juglone, Methanol	tju, tdi

Establishment of the bioassay on L. sativa and L. perenne

The seeds were hydrated for 12 hours before the test. Later, a dose of 20 μl of each treatment was added to 2.5 cm diameter filter paper discs; once dried, they were placed in plastic boxes and 10 seeds per disc were placed and hydrated with 500 μl of distilled water; the boxes were sealed with parafilm and placed in the chamber for germination. The negative control (only with solvent) was prepared in the same manner and with the same dose, plus water; the control with juglone used as reference for phytotoxicity, was prepared likewise, in a concentration of 5 mg ml\(^{-1}\) (juglone/acetone) (Kocacaliskan, 2001). The readings were carried out every 24 hours, for six days (144 hours), counting the number of germinated seeds. At the end of the test, the root and leaf length were measured using the program Image J version 1.37 r. 2006 (Rodilla et al., 2008). The effect of the treatments was verified by an ANOVA analysis of the results obtained, whereas the design used was a completely randomized factorial arrangement with 4 repetitions per treatment and comparison of Tukey means with an α = 0.05.

Dissuasive bioassay of feeding of phytophagous insects

The species used (Myzus persicae, Rhopalosiphum padi) were raised in secondary host plants Capsicum annuum and Hordeum vulgare, while Spodoptera littoralis was fed a general diet for noctuid’s, in chambers heated at a temperature of 22±1 °C, with a relative humidity of 60-70% and photoperiod 16:8 (L:O) (Rodilla et al., 2008; Burgueño-Tapia et al., 2008).

Establishment of the bioassay on S. littoralis

The dissuasive effects of the feeding of the evaluated extracts were carried out through tests with possibility of choice where larvae of the fifth and sixth stage (L5, L6) of S. littoralis were used. Each treatment had 5 repetitions, with completely random experimental design, which consisted of 5 Petri dishes with a layer of insect agar (2.5%), with 4 holes with equivalent distances where discs of leaves of C. annuum of 1 cm\(^2\) were placed; in two discs, the extract to be tested was applied (10 μl), while the other two discs served as controls where only the solvent was applied; two larvae of S. littoralis were deposited in each box (Gonzalez-Coloma et
al., 1995, 1996 and 2008). Once 75% of the surface of the discs was consumed (control or treatment), the larvae were removed. The unconsumed foliar surfaces were measured with the image analysis program Image J. 1.37 r, 2006 (Rodilla et al., 2008). The consumption index (FI) was calculated: FI = 1 – (T/C) × 100%, where T: Consumption of the treatment, C: Consumption of the control or witness. It was considered that if FI ≥ 75, it corresponds to a highly active extract, while 50 < FI <75) indicate a moderately active extract (Gonzalez-Coloma et al., 2008; Rodilla et al., 2008).

Establishment of the bioassay for M. persicae and R. padi

Each treatment consisted of 20 repetitions with 10 adult insects per repetition. Plastic boxes of 3 × 3 × 1.5 cm, covered and ventilated, in an inverted position, with a surface of 2.5% insect agar were used. For M. persicae assay, discs of C. annum leaves of 1 cm² in diameter were prepared, while for R. padi two fragments of H. vulgare foliole, with a surface area of 2 cm², were used (Gutierrez et al., 1997), whereas half disc or foliole fragment was treated with the solution of the extract to be tested, with a dose of 10 μl in a concentration of 10 mg ml⁻¹ (extract/solvent), and the other half of the disc or fragment was treated with pure solvent with the same dose as the treatment (Reina et al., 2001). Each treatment was subsequently incubated in chambers under the same climatic conditions mentioned for the maintenance of these insects, by a completely random design. After 24 hours, the aphids were counted in the treatment and in the control, calculating the settlement inhibition index (SI) for each treatment: SI = [1 – (% T/% C)] × 100, where T: percentage of aphids on the treated surface, % C: percentage of aphids on the surface of the sample or control. It was considered that a SI ≥ 60 represents a highly active extract and 45 < SI <60 is considered as a moderately active extract (Gonzalez-Coloma et al., 2008; Rodilla et al., 2008).

Results and Discussion

Phytotoxic effect on Lactuca sativa

In regard with the inhibition of germination of L. sativa seeds, of the 12 treatments tested only the ethanolic extract of L. tridentata leaf showed germination delay compared to the control, observing 45% germination after 24 hours, reaching 92% after 120 hours and 95% after 144 hours (Figure 1). In the rest of the treatments there were no significant differences in this variable. Regarding the radical length, only two of the evaluated extracts showed activity, significantly inhibiting the growth of the root (Figure 2). The shortest length, in addition to causing deformations, was obtained with the ethanolic treatment of L. tridentata leaf. Reported results from similar studies mention that researchers found inhibition of radicular and hypocotyl growth of L. sativa with extracts of NDGA (Nordihydroguaiaretic acid), the main component of L. tridentata leaf (Delgado et al., 2014). On the other hand, the hereby results differ from those reported by Lira-Saldivar et al. (2008) who mentioned that when testing extracts of said species, they showed a bio stimulating effect on the germination and growth of L. sativa. In the present study, the second treatment that showed phytotoxic activity in root growth was the methanolic extract of ocotillo root, unlike the percentage of germination where it showed no inhibition. At the moment, there are no scientific publications that mention phytotoxic properties of F. splendens (ocotillo).
Figure 1. Phytotoxic effects of the applied treatments on germination percentage of *L. sativa* at 24 and 144 hours

Figure 2. Phytotoxic effects of the applied treatments on the seedling root length of *L. sativa* at 144 hours

Phytotoxic effect on Lolium perenne

The germination percentage for *L. perenne* species was evaluated (Figure 3). The treatments with the methanol extract of the ocotillo and governor leaves, as well as the ethanolic extract of the stem of 10 echo ribs, showed significant phytotoxic activity at the end of the study (144 hours). Regarding the inhibition of root growth of *L. perenne* seedlings, the extracts that showed inhibition were: methanolic from the root of *F. splendens* and stem ethanolic from 10 ribs of *P. pecten-aboriginum* (Figure 4). For leaf length, none of the treatments showed significant inhibition of growth except for the methanolic extract of ocotillo root, and the leaf ethanolic extract of *L. tridentata*, which showed stimulating effects on the leaf length. Zarate-Hernandez *et al.* (2008) found phytotoxic effects on germination, leaf and root length in *L. perenne* when testing aqueous extracts of *Calia secundiflora* leaf at 5% concentration. Young and Bush (2009) reported significant inhibition in germination of grass *Bouteloua curtipendula monocotyledonea* belonging to the family Poaceae, due to the action of leaf extracts of *Juniperus ashei* Buchh.
Dissuasive bioassays of the tested insects feeding

Dissuasive effect of feeding of Spodoptera littoralis

The results obtained in this bioassay indicated that none of the 10 extracts tested on *S. littoralis* showed significant dissuasive properties for this lepidoptera (Table 2). Likewise, no scientific evidence of these plant extracts or the dissuasive properties of this insect have been found in other works previously done. For example, Gonzalez-Coloma *et al.* (2006) reported the low effect (FI of 33%) of essential oils extracted from leaves and flowers of *Lavandula luisieri* against *S. littoralis*. In 2008, the same author and collaborators mentioned that after evaluating diterpene neo-clerodane isolated from parts of the species *Linaria saxactilis*, with a dose of 50 g/cm², the results showed no toxic effect for *S. littoralis*. However, there are other works carried out with *S. littoralis* and similar species that show contrary results, such as Rodilla *et al.* (2008) report that noted the essential oils extracted from *L. novocanariensis* showed a moderate effect of 55% of FI against *S. littoralis*.

Figure 3. Phytotoxic effects of the applied treatments on germination percentage of *L. perenne* at 72 and 144 hours

Figure 4. Phytotoxic effects of the applied treatments on the root and leaf length of *L. perenne* at 144 hours
Table 2. Dissuasive activity of four plant species extracts against Spodopera littoralis, Myzus persicae and Rophalosiphum padi

S. littoralis	M. persicae	R. padi							
Treat.	% FI	Treat.	% C	% T	% SI	Treat.	% C	% T	% SI
ohh	22.13	ohm	70	29	55.53	orm	78	21	70.30
ohm	11.70	orm	69	30	54.35	ghe	72	27	54.80
orm	12.25	ghe	31	68	6.31	ht10e	71	28	54.50
gre	28.14	hlfe	59	40	31.33	ht12e	82	13	76.10
ghe	12.72	hlhe	72	28	60.00				
ghm	20.83	hlhe	62	38	38.60				
hlfe	8.0	hlhe	68	31	48.84				
hlhe	12.24								
ht10e	40.93								
ht10e	46.59								

Treat = Treatment; %FI = dissuasive efficiency of treatment on the feeding; %SI = inhibition of aphid settling; %T = percentage of aphids on the treatment surface; %C = percentage of aphids on the control surface or control

Dissuasive effect of feeding of *Myzus persicae*

As shown in Table 2, the methanolic extracts of leaf and root of *Fouquieria splendens*, ethanolic extract of *Astragalus mollisimus* sheet and the ethanolic extract of stem of 12 ribs of *P. pecten-aboriginum* showed moderate dissuasive response of feeding against *Myzus persicae*, presenting a settlement inhibition index of 53.53, 54.35, 60.00 and 48.84% respectively, unlike the other extracts tested, with low rates of settlement inhibition, below 40%. In similar works, defensive properties of other plant species were sought against this species of aphid or similar species were noted. It has been found that there was dissuasive activity in *M. persicae* when evaluating neo-clerodane diterpenes of the plant species *Linaria saxactilis*, with a dose of 50 g/cm² (Gonzalez-Coloma et al., 2008). Likewise, Ricci et al. (2006) reported that the essential oils of lemongrass possess a repellent activity between 65 and 80% against Russian aphid (*Diuraphis noxia* Kurdj). Comparing with the results of the hereby bioassay, it can be concluded that the proven concentration of 10 mg ml⁻¹ of the raw extracts mentioned have potential as a dissuasive of the feeding for *M. persicae*, taking into account that other works have used isolated and identified substances, unlike the raw extracts that were used in the current work.

Dissuasive effect of feeding of *Rophalosiphum padi*

All the tested extracts showed dissuasive activity against *R. padi*. It was observed that the methanol extract of the root of *F. splendens* and the ethanolic extract of the stem of 12 ribs of *P. pecten-aboriginum* showed a higher inhibition activity, with settlement percentages of 70.3% and 76.1% (Table 2). The ethanol extracts of *L. tridentata* leaf and the ethanolic extract of the stem of 10 ribs of *P. pecten aboriginum* showed moderate inhibition activity, with settlement percentages of 54.8% and 54.5%. There is evidence of similar research carried out with other plant species on this aphid. Such as the works of Mazoir et al. (2008), which mention the strong dissociative effect against this insect of the polygodial derivatives obtained from two species of the Euphorbiaceae family with an SI up to 98%. Moreno-Osorio et al. (2008) tested polygodial derivatives of the raw hexanic extract of bark from *Drimys winteri*, finding 98% of SI for the aphid *R. padi*. More recently, it was reported that *Lycium centroides* leaf extract presented dissuasive activity against *R. padi* of 52% of SI (Castillo et al., 2009).
Conclusions

The ethanolic leaf extract of Larrea tridentata had phytotoxic properties on the root growth of the L. sativa species. The extracts of the ocotillo, governor and echo of 10 ribs species showed significant phytotoxicity in germination of L. perenne, as well as extracts of ocotillo and echo which inhibited the root length, while the foliar growth was affected by the phytotoxic inhibition of the methanolic extract of ocotillo root. The treatments of the four vegetable species evaluated showed defensive or dissuasive properties of moderate to strong feeding against the insects M. persicae and R. padi, presenting interesting potential in regard with future possibilities for the realization of insecticides. The tested extracts that presented phytotoxicity for both lettuce and ryegrass present possibilities for the realization of herbicides. It is necessary for the elucidation and identification of the compounds responsible for the phytotoxic and dissuasive activity of the feeding of said treatments to be further reached, since those evaluated in the present work were raw extracts under in vitro conditions; respective tests under greenhouse and field conditions are to be followed.

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Arias S, Terrazas T (2001). Variación en la anatomía de la madera de Pachycereus pecten-aboriginum (Cactácea) [Wood anatomy variation of Pachycereus pecten-aboriginum (Cactaceae)]. Serie Botánica 72(2):157-169.

Burgueño-Tapia E, Castillo L, González-Coloma A, Joseph-Natan P (2008). Antifeedant and phytotoxic activity of the sesquiterpene p-Benzquinone perezone and some of its derivatives. Journal of Chemical Ecology 34(6):776-771.

Castillo L, González-Coloma A, González A, Díaz M, Santos E, Alonso-Paz E, ... Rossini C (2009). Screening of Uruguayan plants for dissuasive activity against insects. Industrial Crops and Products 29(1):235-240.

Celis A, Mendoza C, Pachón M, Cardona J, Delgada LE (2008). Plant extracts used as biocontrol with emphasis on Piperaceae family: a review. Agronomía Colombiana 26(1):97-106.

Chitwood DJ (2002). Phytochemical based spara strategies nematode control. Phytopathology 40:221-249.

Delgado RM, Guzman MK, Flores TE, Márquez D, Corral AA, Santana CLE, Romero GJ (2014). Caracterización y capacidad de adsorción de la especie vegetal Larrea tridentata como adsorbente de color [Characterization and adsorption capacity of the plant species Larrea tridentata as a color adsorbent]. Culcyt 54(1):208-224.

Flores-Córdova MA, Sánchez ChE, Pérez LR (2015). Potencial alelopático de extractos foliares de Astragalus mollissimus Torr. sobre la germinación in vitro de semillas de maleza [Allelopathic potential of leaf extracts from Astragalus mollissimus Torr. on in vitro germination of weed seeds]. Revista Mexicana de Ciencias Agrícolas 6(5):1093-1103.

Gutiérrez C, Fereres A, Reina M, Cabrera RA, González-Coloma A (1997). Behavioral and sub-lethal effects of structurally-related lower terpenes on Myzus persicae. Journal of Chemical Ecology 23(6):1641-1650.

González-Coloma A, Gutiérrez C, Jos MC, Gordaliza M, De la Puente ML, San Feliciano A (2008). Structure and species dependent insecticidal effects of neo-clerodane diterpenes. Journal of Agriculture and Food Chemistry 48(8):3677-3671.
González-Coloma A, Martín-Benito D, Mohamed N, García-Vallejo MC, Soria AC (2006). Antifeedant effects and chemical composition of essential oils from different populations of *Lavandula luisieri* L. Biochemical Systematics and Ecology 34(8):609-616.

González-Coloma A, Terrero D, Perales A, Escoubas P, Fraga BM (1996). Insect antifeedant ryanodane diterpenes from *Persea indica*. Journal of Agriculture and Food Chemistry 44(1):296-300.

González-Coloma A, Cabrera R, Castañera P, Gutiérrez C (1995). Antifeedant and toxic effects of sesquiterpenes from *Senecio Palmensis* to Colorado potato beetle. Journal of Chemical Ecology 21:1255-1270.

Kocacaliskan I, Terzi I (2001). Allelopathic effects of walnut leaf extracts and juglone on seed germination and seedling growth. Journal Horticulture Science Biotechnology 76(4):436-440.

Kordaly S, Cakirb A, Aytas T, Meted E, Akcine A, Aydınb T, Kilic H (2008). Antifungal and herbicidal properties of essential oils and *n*-hexane extracts of *Achillea gypsicola* Hub-Mor. and *Achillea biebersteinii* Afan. (Asteraceae). Industrial Crops and Products. Science Direct 29(2-3):562-570.

Kruse M, Strandberg M, Strandberg B (2000). Ecological effects of allelopathic plants, a review. National Environmental Research Institute, Silkeborg, Denmark. NERI Technical Report No. 315, pp 66.

Lambert JD, Dorr RT, Timmermann BN (2004). Nordihydroguaiaretic acid: a review of its numerous and varied. Pharmaceutical Biology 42(2):149-158.

Lira-Saldivar RH, Díaz-Cortes Z, Sánchez-Rivera YE, Alemán-Granados FJ, Molina-Abadía GS, Facio-Parra F, … Ruiz-Torres NA (2008). Promoción de la germinación de semillas y crecimiento de plántulas de cultivos básicos y horticolas con extractos de *Larrea tridentata* [Promotion of seed germination and seedling growth of basic and horticultural crops with extracts of *Larrea tridentata*]. In: Ruiz-Torres NA, Lira-Saldivar RH (Eds). Tecnologías Sustentables en Semillas [Sustainable Seed Technologies]. Primera Ed, pp 184-197.

Moreno-Limón LN, González-Solís SM, Salcedo-Martínez ML, Cárdenas-Avila A, Perales-Ramírez A (2011). Efecto antifúngico de extractos de gobernadora (*Larrea tridentata* L.) sobre la inhibición *in vitro* de *Aspergillus flavus* y *Penicillium* sp. [Antifungal effect of gobernadora extracts (*Larrea tridentata* L.) on *in vitro* inhibition of *Aspergillus flavus* and *Penicillium* sp.]. Polibotanica 32:193-205.

Moiteiro C, Marcelo C, Mohamed NM, Bailén M, González-Coloma A (2006). Biovalorización de carbolane triterpenes derived from latex of two Euphoria species. Phytochemistry 69:1328-1338.

Mendoza CB, Moreno MN, Wei M, Elango F (2007). Evaluación del efecto de extractos vegetales sobre el crecimiento *in vitro* *Phytophthora palmivora* (Butl.), y *Colletotrichum gloeosporioides* (Penz.) Penz. & Sacc. [Evaluation of the effect of plant extracts *in vitro* growth *Phytophthora palmivora* (Butl.), and *Colletotrichum gloeosporioides* (Penz.) Penz. & Sacc]. Tierra Tropicale 3(1):81-89.

Nava-Perez E, García-Gutiérrez C, Camacho-Báez JR, Vazquez-Montoya EL (2012). Bioplaguicidas: una opción para el control biológico de plagas [Biopesticides: an option for biological pest control]. Ra Ximhai 8(3):17-29.

Reina M, González-Coloma A, Gutiérrez C, Cabrera R, Rodríguez ML, Fajardo V, Villarroel L (2001). Defensive chemistry of *Senecio miser*. Journal of Natural Products 64:6-11.

Rodríguez GDP, Barreto MAC (2013). Propiedades biológicas de *Pedilanthus tithymaloides*: una alternativa natural de tratamiento [Biological properties of *Pedilanthus tithymaloides*: a natural treatment alternative]. Revista Cienciactual 4:40-48.

Peñuelas-Rubio O, Arellano-Gil M, Verdugo-Fuentes AA, Chaparro-Encinas LA, Hernández-Rodríguez SE, Martínez-Carrillo JL, Vargas-Arispuro IC (2017). *Larrea tridentata* extracts as an ecological strategy against *Fusarium oxysporum radicis-lycopersici* in tomato plants under greenhouse conditions. Patología 35(3):360-376.
Pérez LE (2012). Plaguicidas botánicos: una alternativa a tener en cuenta [Botanical pesticides: an alternative to consider]. Fitosanidad 16(1):51-59.

Pérez ME, Ruiz DM, Dchneider M, Sutino JC, Romanelli G (2013). La química verde como fuente de nuevos compuestos para el control de plagas agrícolas [Green chemistry as a source of novel compounds for agricultural pest control]. Revista Ciencia en Desarrollo 4(2):83-91.

Ricci M, Padín S, Ringuette J, Kahan A (2006). Use of lemongrass (Cymbopogon citratus Stapf) essential oil as a repellent of Diuraphis noxia Kurdj. (Hemiptera: Aphididae) in wheat. Agricultura Técnica 66(3):256-263.

Rodilla JM, Tinoco MT, Morais CJ, Gimenez C, Cabrera R, Martin-Benito D, ... González-Coloma A (2008). Laurus novocanariensis essential oil: seasonal variation and valorization. Biochemical Systematics and Ecology 36(3):167-176.

Salas GAL (2013). Efecto del extracto de Jatropha dioica Sesse en el control de Fusarium oxysporum en tomate (Solanum lycopersicum L.) [Effect of Jatropha dioica Sesse extract on the control of Fusarium oxysporum in tomato (Solanum lycopersicum L.)]. Dissertation Thesis, Universidad Antonio Narro, pp 103.

Young GP, Bush JK (2009). Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula, Journal of Chemical Ecology 35(1):7480.

Zarate-Hernández J, García-Mateos R, Zavala-Chávez F, Pérez LR, Soto-Hernández JM (2006). Fitotoxicidad de los extractos de Calia secundiflora (Ort.) Yakovlev [Phytotoxicity of Calia secundiflora (Ort.) Yakovlev extracts]. Revista Chapingo Serie Horticultura 12(2):197-202.

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulae Botanicae Horti Agrobotanici Cluj-Napoca are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.