Shot noise suppression in multimode ballistic Fermi conductors

Y. Naveh, A. N. Korotkov, and K. K. Likharev

Department of Physics and Astronomy
State University of New York, Stony Brook, NY 11794-3800
(December 11, 1998)

We have derived a general formula describing current noise in multimode ballistic channels connecting source and drain electrodes with Fermi electron gas. In particular (at $eV \gg k_BT$), the expression describes the nonequilibrium "shot" noise, which may be suppressed by both Fermi correlations and space charge screening. The general formula has been applied to an approximate model of a 2D nanoscale, ballistic MOSFET. At large negative gate voltages, when the density of electrons in the channel is small, shot noise spectral density $S_I(0)$ approaches the Schottky value $2eI$, where I is the average current. However, at positive gate voltages, when the maximum potential energy in the channel is below the Fermi level of the electron source, the noise can be at least an order of magnitude smaller than the Schottky value, mostly due to Fermi effects.

Nonequilibrium current fluctuations ("shot noise") in ballistic conductors have been studied extensively in recent years both theoretically (see also Ref. 10). All these works focused on the suppression of noise by Fermi correlations, which is especially strong when the channel transparency is close to 1. In order to observe this suppression, the experimental studies were invariably performed in a "quantum point contact" geometry, i.e., within conductors with a small number of quantum channels, at temperatures much lower than the energy separation between those channels. (The case of noise in multimode ballistic Fermi systems did not attract that much attention.)

However, shot noise at ballistic transport may also be suppressed by Coulomb interactions of an electron with the space charge of other ballistic electrons. For nondegenerate, Boltzmann electron gas this effect was well studied long ago, mostly in the context of vacuum tube noise – see, e.g., Ref. 11. To the best of our knowledge these studies have never been extended to the degenerate, Fermi systems. Such a study is of particular importance for at least two reasons.

From the fundamental point of view one should wonder whether the Fermi correlations may have a strong effect on the properties of wide, multichannel ballistic conductors. As for Coulomb correlations, it can be argued that its effect on the noise should be regarded as a much more accessible manifestation of electron-electron interactions than in more exotic phenomena, e.g., charge density waves. In addition, it is important to understand the difference between nonequilibrium fluctuations in ballistic and diffusive Fermi systems. In the latter case, noise originates from scattering inside the conductor, while in the former case its origin is the randomness of electron emission from the source.

From the point of view of possible applications, the continuing reduction of channel length L of field-effect transistors will eventually but inevitably lead to devices with ballistic transport of electrons. A recent approximate analysis of such transistors has shown that they may retain high performance all the way down to $L \sim 5$ nm. Such nanoscale MOSFETs may be used, in particular, as sense preamplifiers in ultradense nonvolatile memories. For these applications, the shot noise suppression is of principal importance because it determines how many single-bit memory cells may be served by one second-level sense amplifier, a number which may strongly affect the final memory density.

The objective of this work is to consider the interplay of the two mechanisms of shot noise suppression in a broad (multimode) system with the ballistic transfer of electrons from emitter to collector (Fig. 1). These electrodes are assumed to be in thermal equilibrium; in particular this means that the collector totally absorbs the incident electrons. (We will revisit this assumption at the end of the paper.) The potential energy profile $\Phi(x)$ between source and drain, and in particular its maximum Φ_0, may be affected by the space charge of ballistic electrons. The charge density $en(x)$ is determined, in turn, by the emitted current.

![General scheme of the ballistic Fermi system.](image_url)

In order to find the low-frequency shot noise in the device we start with the basic expression for the spectral density of fluctuations $\delta I_S(E)$ of current $I_S(E)$ of electrons emitted by the source electrode at some interval $(E_t, E_t + dE_t)$ of the total energy E_t.

1. Y. Naveh, A. N. Korotkov, and K. K. Likharev
2. E. I. Rashba and V. M. Ustinov
3. E. I. Rashba and V. M. Ustinov
4. Y. Naveh, A. N. Korotkov, and K. K. Likharev
5. E. I. Rashba and V. M. Ustinov
6. E. I. Rashba and V. M. Ustinov
7. Y. Naveh, A. N. Korotkov, and K. K. Likharev
8. E. I. Rashba and V. M. Ustinov
9. Y. Naveh, A. N. Korotkov, and K. K. Likharev
10. E. I. Rashba and V. M. Ustinov
11. Y. Naveh, A. N. Korotkov, and K. K. Likharev
12. E. I. Rashba and V. M. Ustinov
13. Y. Naveh, A. N. Korotkov, and K. K. Likharev
14. E. I. Rashba and V. M. Ustinov
15. Y. Naveh, A. N. Korotkov, and K. K. Likharev
16. E. I. Rashba and V. M. Ustinov
17. Y. Naveh, A. N. Korotkov, and K. K. Likharev
18. E. I. Rashba and V. M. Ustinov
19. Y. Naveh, A. N. Korotkov, and K. K. Likharev
20. E. I. Rashba and V. M. Ustinov
Here \(f_{0\ell}(E_t) \) and \(f_{0R}(E_t) \) are the electron distribution functions on the left and right hand sides of the interface between the source electrode and the conductor, respectively. \(t \) is the mode transmission matrix across the interface, and the trace is taken over all the transmission modes with energy \(E_t \). The assumption of absorptive electrodes implies that the eigenvalues of \(t \) are all equal to 1. This, together with conservation of transversal momentum, allows us to change the argument from the total energy \(E_t \) to the longitudinal energy \(E = E_t - E_\perp \), and write Eq. (3) as

\[
dS_{is}(\omega; E_t) = 2e\tilde{i}_S(E)(1 - f_S(E)),
\]

with

\[
\tilde{i}_S(E) = \frac{e}{2\pi\hbar}N(E)dE,
\]

where

\[
N(E) = \int_0^{E_t} f_{0\ell}(E + E_\perp)g(E_\perp)dE_\perp
\]

is the occupancy of transversal modes \([g(E_\perp)\text{ is the density of these modes}]\), and with

\[
f_S(E) = \left\{ \begin{array}{ll} \frac{f_{0\ell}^2(E + E_\perp)g(E_\perp)dE_\perp}{\int f_{0\ell}(E + E_\perp)g(E_\perp)dE_\perp} & (E < \Phi_0), \\
1 + \frac{\partial\Phi_0}{\partial S_D(E)} \frac{\partial I}{\partial \Phi_0} & (E > \Phi_0), \end{array} \right.
\]

with the upper (lower) sign used for \(\gamma_S(\gamma_D) \). In Eq. (4), the terms with derivatives describe the effect of the emission current fluctuation \(\delta I \) on the total current fluctuation \(\delta I \) via that of the local density of electrons, which in turn affects the potential barrier shape (and \(\Phi_0 \)) through the Poisson equation. The unity in the second line of Eq. (4) is due to the direct contribution of \(\delta S_D(E) \) to \(\delta I \) and, to calculate \(S_1(\omega) = \frac{\delta I^2}{\Delta\omega/2\pi} \) we combine Eqs. (3), (4) and take into account the statistical independence of sources \(\delta S_D(E) \) and \(\delta I_D(E) \) at different energies. As a result, we get

\[
\begin{align*}
S_1(0) &= 2e \int_{\Phi_0}^{\Phi_1} dE \frac{dI_S(E)}{dE} [1 - f_S(E)] \left[\frac{\partial\Phi_0}{\partial S}(E) \frac{\partial I}{\partial \Phi_0} \right]^2 \\
&+ 2e \int_{\Phi_0}^{\Phi_1} dE \frac{dI_S(E)}{dE} [1 - f_S(E)] \left[1 + \frac{\partial\Phi_0}{\partial S_D(E)} \frac{\partial I}{\partial \Phi_0} \right]^2 \\
&+ 2e \int_{\Phi_0}^{\Phi_1} dE \frac{dI_D(E)}{dE} [1 - f_D(E)] \left[\frac{\partial\Phi_0}{\partial D}(E) \frac{\partial I}{\partial \Phi_0} \right]^2 \gamma_D(E)^2
\end{align*}
\]

where \(I_S(E), I_D(E) \) are the total source and drain currents at all energies below \(E \), respectively. This equation is the main result of our work. It describes the shot noise suppression via both the Fermi statistics of the emitted electrons (factors \([1 - f_{S,D}(E)]\)) and their electrostatic interaction with space charge (factors with derivatives).

In order to evaluate the relative importance of these two suppression factors, we have applied Eq. (8) to a simple model of a nanoscale, ballistic, dual-gate MOSFET studied in Ref. [4] (Fig. 3a). This device consists of a thin layer of semiconductor with 2D electron gas embedded between two gates biased with equal voltages \(V_g \). The semiconductor is heavily doped everywhere except in a strip of length \(L \) which forms the ballistic channel. Under certain conditions, the potential profile \(\Phi(x) \) can be found from the effective 1D Poisson equation

\[
\frac{d^2\Phi}{dx^2} = \frac{\Phi + eV_g}{\lambda^2} - \frac{4\pi e^2n}{\kappa_1}
\]

where \(\lambda^2 = s^2/2 + (\kappa_1/\kappa_2)s(d - s) \), \(s \) and \(d \) are the semiconductor thickness and the total distance between the gate electrodes, respectively, and \(\kappa_1, \kappa_2 \) are the dielectric constants of the semiconductor and the insulator, respectively. The simple equation (9), together with the assumption of thermal equilibrium in source and drain, makes possible a semi-analytic scheme for finding all the quantities of interest. In that scheme the calculation starts with fixing \(\Phi_0 \) while \(I, \Phi(x), \) and \(L \) are calculated by simple integration, enabling the final calculation of \(I \) and \(\Phi(x) \) for any \(L \) by numerical interpolation. Figure 3(b) shows the calculated potential energy...
profile for large positive and negative gate voltages \(V_g \), for a device with the following parameters: \(2s = 1.5 \) nm, \(2d = 6.5 \) nm, \(L = 10 \) nm, \(\kappa_1 = 12.9 \), \(\kappa_2 = 3.9 \), \(T = 300K \) and donor density in the source and drain \(N_D = 3 \times 10^{20} \text{cm}^{-3} \). (With the effective electron mass of \(0.2 \) \(m_0 \), the latter parameter means that the Fermi energy in the electrodes is close to 0.3 eV.) This parameter set corresponds to a Si MOSFET with SiO\(_2\) gate oxide, optimized for dc transport properties.

Within the calculation scheme outlined above, the derivatives \(\partial \Phi_0 / \partial i_{S,D}(E) \) participating in Eq. (8) may be found as

\[
\frac{\partial \Phi_0}{\partial i_{S,D}(E)} = - \left(\frac{\partial L}{\partial i_{S,D}(E)} \right) \Phi_0 \left/ \left(\frac{\partial L}{\partial \Phi_0} \right) \right|_{i_{S,D}(E)}. \tag{10}
\]

Figure 3 shows the results of our calculations of the device noise for the parameter set specified above. (The results are qualitatively the same for any \(L \) between 5 and 15 nm.) At negative gate voltages, when \(\Phi_0 \) is substantially above \(E_S \), current noise is very close to the Schottky value \(2eI \); however at positive gate voltages the noise may be suppressed by at least one order of magnitude.

Figure 4 assists the interpretation of this result by showing the factors participating in the first two integrals of Eq. (8), at two different gate voltages. Dotted lines represent the Fermi factor which is concentrated around the Fermi level of the source. The electrostatic term (dashed lines) peaks at \(E = \Phi_0 \) due to the fact that electrons with this energy virtually stop near the maximum of the potential profile: \(v(E) \approx 0 \). As a result, the corresponding change in charge density, \(\delta(eI) = \delta i_S / v(E) \) is very large, and strongly affects the potential distribution.

FIG. 2. (a) Model of a 2D ballistic MOSFET and (b) potential energy profiles (relative to the Fermi level of the source), at high negative and high positive gate voltages. Vertical lines show position of the conductor-electrode interfaces. Source-drain voltage is 0.52 V; for other parameters, see the text.

At high negative gate voltages [Fig. 3(a)] the Coulomb interaction factor is very small, since the electron density in the channel is exponentially small and the space charge effects are negligible. Also, since \(\Phi_0 \) is well above the Fermi level, the Fermi factor equals just \(dI_S(E) / dE \). This factor gives equal contributions into the dc current and noise, and so the shot noise has its full, classical Schottky value. Another way to express the latter fact is to say that at negative gate voltages the conduction is due to electrons at the upper, Boltzmann tail of the Fermi distribution, and degeneracy effects are negligible.

At high positive gate voltage when \(\Phi_0 < E_S \) [Fig. 3(b)], the space charge screening factor is rather moderate (\(\sim 0.5 \)) for energies within the interval \(\Phi_0 < E < E_S \) responsible for most of the current transfer. The reasons for this weak interaction are twofold. First, because of electron degeneracy, \(I \) depends only algebraically on \(\Phi_0 \).

FIG. 3. DC source-drain current, and spectral density of its fluctuations (both in absolute units and normalized to the Schottky value \(2eI \)) as functions of gate voltage, at source-drain voltage of 0.52 V.

FIG. 4. The shot noise suppression factors appearing in Eq. (8) as functions of energy at (a) negative and (b) positive gate voltages. Dotted lines show the Fermi factor, \(-[1 - f_S(E)] dI_S(E)/dE \), while dashed lines, the Coulomb factor, \(-[\Phi_0/di_{S}(E)] dI/d\Phi_0 \). Solid line shows the complete integrand [the first term of Eq. (8) is used for \(E < \Phi_0 \) and the second term for \(E > \Phi_0 \).] All the parameters are the same as in Figs. 2 and 3.
realistic MOSFET models.

We are grateful to P. Solomon for useful discussions and the opportunity to read his manuscript prior to publication. The work was supported in part by AME program of ONR/DARPA.

1. V. A. Khlusb, Zh. Eksp. Teor. Fiz. 93, 2179 (1987) [Sov. Phys. JETP 66, 1243 (1987)].
2. G. B. Lesovik, Pis’ma Zh. Eksp. Teor. Fiz. 49, 513 (1989) [JETP Lett. 49, 592 (1989)].
3. M. Buttiker, Phys. Rev. Lett. 65, 2901 (1990); Phys. Rev. B 46, 12485 (1992).
4. R. Landauer and Th. Martin, Physica B 175, 167 (1991); Th. Martin and R. Landauer, Phys. Rev. B 45, 1742 (1992).
5. Y. P. Li, D. C. Tsui, J. J. Heremans, J. A. Simmons, and G. W. Weimann, Appl. Phys. Lett. 57, 774 (1990).
6. M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75, 3340 (1995).
7. A. Kumar, I. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 76, 2778 (1996).
8. C. Kurdak, C.-J. Chen, D. C. Tsui, J. P. Lu, M. Shayegan, S. Parihar, and S. A. Lyon, Surface Sci. 361/362, 705 (1996).
9. H. E. van der Brom and J. M. van Ruitenbeek, preprint cond-mat/9810276.
10. For a general review of mesoscopic ballistic transport see C. W. J. Beenakker and M. H. van Houten, Solid State Phys. 44, 1 (1991) and Y. Imry, Introduction to Mesoscopic Physics (Oxford, New York, 1997).
11. A. van der Ziel, Noise (Prentice-Hall, Englewood Cliffs, N.J., 1954).
12. T. Gonzalez, O. M. Bulashenko, J. Mateos, D. Prado, and L. Reggiani, Phys. Rev. B 56, 6424 (1997); O. M. Bulashenko, J. Mateos, D. Prado, T. Gonzalez, L. Reggiani, and J. M. Rubi, Phys. Rev. B 57, 1366 (1998).
13. C. W. J. Beenakker and M. Buttiker, Phys. Rev. B 46, 1889 (1992).
14. K. E. Nagaev, Phys. Lett. A 169, 103 (1992).
15. Y. Naveh, D. V. Averin, and K. K. Likharev, Phys. Rev. Lett. 79, 3482 (1997); Phys. Rev. B, in press.
16. F. G. Pikus and K. K. Likharev, Appl. Phys. Lett. 71, 3661 (1997).
17. Nonvolatile Semiconductor Memory Technology, ed. by W. D. Brown and J. E. Brewer (IEEE Press, New York, 1998).
18. K. K. Likharev, Appl. Phys. Lett. 73, 2137 (1998).
19. Sh. Kogan, Electronic noise and fluctuations in solids (Cambridge, Cambridge, 1996), chapter 5.
20. See, e.g., P. M. Solomon, “On Contacts to Small Semiconductor Devices”, unpublished. Similar restrictions of the “rigid” boundary conditions have also been repeatedly discussed in theories of superconductor weak links – see, e.g., K. Likharev, Rev. Mod. Phys. 51, 101 (1979).