First record of *Trichinella* in *Leopardus guigna* (Carnivora, Felidae) and *Galictis cuja* (Carnivora, Mustelidae): New hosts in Chile

Diana Maritza Echeverry¹, AnaLía Henríquez², Pablo Oyarzún-Ruiz¹, Maria Carolina Silva-de la Fuente³, Rene Ortega¹, Daniel Sandoval¹, Carlos Landaeta-Aqueveque¹ Corresp. ¹

¹ Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Región de Biobío/Ñuble, Chile
² Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Biobío, Chile
³ Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Los Ríos, Chile

Corresponding Author: Carlos Landaeta-Aqueveque
Email address: clandaeta@udec.cl

Background. Trichinellosis is a zoonotic disease with a worldwide distribution. It is caused by several species of nematodes in the genus *Trichinella*. *Trichinella* spp. are transmitted through predation or carrion consumption and occur in domestic and sylvatic cycles. In humans trichinellosis occurs due to the consumption of raw or undercooked, infected meat and is mainly associated with the household slaughter of pigs or the consumption of game animals without veterinary inspection, a cultural practice that is difficult to resolve. Therefore, knowledge of this parasite’s reservoir is relevant for better implementing public health strategies. The aim of this study was to assess the presence of *Trichinella* sp. in several carnivore and omnivore vertebrates in central-southern Chile.

Methods. We collected muscle tissue from a total of 53 animals from 15 species and were digested to detect *Trichinella* larvae which were further identified to species level using molecular techniques.

Results. We detected *Trichinella* larvae in *Leopardus guigna* (Felidae) and *Galictis cuja* (Mustelidae). We identified the larvae collected from *L. guigna* as *Trichinella spiralis*, but we were unable to molecularly characterize the larvae from *G. cuja*. This is the first record of *Trichinella* in a native mustelid of South America and the first record of *T. spiralis* in *L. guigna*. This study identified two novel hosts; however, further work is needed to identify the role that these and other hosts play in the cycle of *Trichinella* in Chile.
First record of *Trichinella* in *Leopardus guigna* (Carnivora, Felidae) and *Galictis cuja* (Carnivora, Mustelidae): New hosts in Chile

Diana M. Echeverry¹, AnaLía Henríquez², Pablo Oyarzún-Ruiz¹, María C. Silva-de la Fuente³, René Ortega¹, Daniel Sandoval¹, Carlos Landaeta-Aqueveque¹

¹ Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.
² Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
³ Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.

Corresponding Author:
Carlos Landaeta-Aqueveque¹
Vicente Méndez 595, Chillán, Zip code 38121, Chile.
Email address: clandaeta@udec.cl
Abstract

Background. Trichinellosis is a zoonotic disease with a worldwide distribution. It is caused by several species of nematodes in the genus *Trichinella*. *Trichinella* spp. are transmitted through predation or carrion consumption and occur in domestic and sylvatic cycles. In humans trichinellosis occurs due to the consumption of raw or undercooked, infected meat and is mainly associated with the household slaughter of pigs or the consumption of game animals without veterinary inspection, a cultural practice that is difficult to resolve. Therefore, knowledge of this parasite’s reservoir is relevant for better implementing public health strategies. The aim of this study was to assess the presence of *Trichinella* sp. in several carnivore and omnivore vertebrates in central-southern Chile.

Methods. We collected muscle tissue from a total of 53 animals from 15 species and were digested to detect *Trichinella* larvae which were further identified to species level using molecular techniques.

Results. We detected *Trichinella* larvae in *Leopardus guigna* (Felidae) and *Galictis cuja* (Mustelidae). We identified the larvae collected from *L. guigna* as *Trichinella spiralis*, but we were unable to molecularly characterize the larvae from *G. cuja*. This is the first record of *Trichinella* in a native mustelid of South America and the first record of *T. spiralis* in *L. guigna*. This study identified two novel hosts; however, further work is needed to identify the role that these and other hosts play in the cycle of *Trichinella* in Chile.

Introduction

Trichinellosis is a disease that is distributed worldwide and is caused by nematodes in the genus *Trichinella* (*Korhonen et al., 2016*). It is considered neglected and emerging in some regions (*Dupouy-Camet, 1999; Murrell & Pozio, 2000; Bruschi, 2012; Boutsini et al., 2014*). *Trichinella* nematodes are transmitted from animals to humans by the ingestion of raw or undercooked infected meat. *Trichinella* is transmitted among non-human animals via predation and carrion consumption; therefore, it circulates among carnivorous and omnivorous vertebrates. Two cycles have been described: the domestic (encompassing mainly pigs, rats, dogs, and cats) and the sylvatic (encompassing free-range vertebrates) cycles (*Pozio, 2000; Pozio, 2007; Loutfy et al., 1999*). These cycles can be connected and fed back by invasive rats and other synanthropic animals (*Pozio, 2000*). The domestic cycle was the primary cause of human infections; however, improvements in pork production have reduced outbreaks globally (*Devleesschauwer et al., 2015; Murrell, 2016*). The improvements to pork production changed the epidemiology of trichinellosis in human populations. *Trichinella* infections now primarily occur during the consumption of meat from unregulated sources, mainly backyard pork production and the consumption of game animals (*Pozio, 2014; Tryland et al., 2014; Fichi et al., 2015; Kärssin et al., 2017*).

At present, there are 10 recognized species of *Trichinella* around the world and three additional genotypes that have not yet been identified as distinct species (*Korhonen et al., 2016; Sharma et
Most species infect only mammals \citep{Klun2019, Bielsa-Zajac2020}, including marine mammals \citep{Tryland2014, Pasqualetti2018}. However, \textit{Trichinella pseudospiralis} Garkavi, 1972 also infects birds, and \textit{Trichinella zimbabwensis} Pozio et al., 2002 and \textit{Trichinella papuae} Pozio et al., 1999 infect reptile hosts \citep{Korhonen2016}. Thus, obtaining ecological and epidemiological knowledge of the transmission cycle is relevant for reducing the incidence of this parasite.

In South America, \textit{Trichinella} spp. infections have been detected in Argentina, Bolivia, Chile \citep{laria_isolation}, Brazil, and Ecuador \citep{antibody_detection} with most studies focusing on the domestic cycle \citep{Bjorland1993, Ribicich2020}. Four species have been reported: \textit{Trichinella spiralis} Owen, 1835, \textit{Trichinella patagoniensis} Krivokapich et al. 2012, \textit{Trichinella britovi} Pozio et al. 1992, and \textit{T. pseudospiralis} \citep{Krivokapich2006, Krivokapich2012, Krivokapich2015, Krivokapich2019}. Additionally, \textit{Trichinella} infections have been documented from eight wild species: cougar \citep{Puma_concolor}, wild boar \citep{Sus_scrofa}, fox \citep{Lycalopex_gymnocercus_gracilis}, opossum \citep{Didelphis_albiventris}, sea lion \citep{Otaria_flavescens}, pecari \citep{Tayassu_tajacu}, armadillo \citep{Chaetophractus_villosus}, and pericoate \citep{Graomys_centralis} \citep{Minoprio1967, Ribicich2020, Soria2010}.

In Chile, the domestic cycle is fairly well-studied \citep{Alcaino1981, Schenone2002}, but the sylvatic cycle is largely unknown. \textit{Trichinella spiralis} is the sole species that has been reported in Chile \citep{Schenone2002, Landaeta-Aqueveque2015, Hidalgo2019, Echeverry2021, Espinoza-Rojas2021}. Among non-domestic animals, cougars, American minks \citep{Neovison_vison} and wild boar are the only wild/feral hosts with documented infections \citep{Landaeta-Aqueveque2015, Hidalgo2019, Echeverry2021, Espinoza-Rojas2021}. In addition to those reports, other studies have not found infected animals \citep{Alvarez1970, Gonzalez-Acuña2010, Ramirez-Pizarro2019}. Therefore, the objective of this study was to assess the presence of \textit{Trichinella} sp. in carnivorous and omnivorous wild vertebrates from south-central Chile.

\section*{Materials & Methods}

The study area includes four administrative regions of Chile: the O’Higgins, Maule, Ñuble, and Biobío regions (Figure 1). These regions feature a transitional climate that falls somewhere between the classifications of warm Mediterranean (Csb, after Köpen classification) and wet temperate oceanic (Cfb, after Köpen classification). These regions lie within the limits between central and southern Chile.

This study considered animals that were found dead, mainly run over by a vehicle, or that died in wild animal rescue/rehabilitation centers (Fauna Rehabilitation Center of the Universidad de Concepción; Wild Fauna Rehabilitation Center of the Universidad San Sebastián) from 2013 to 2020. We examined at least 1 g of muscle (10 g, when possible) of these animals to determine the presence of \textit{Trichinella} spp. larvae. We then selected the following muscles for...
parasitological examination: the diaphragm, masseter, tongue, quadriceps (in mammals), pectoral (in birds), and intercostals (in all animals).

We performed artificial digestion of the muscles following the method described by Gajadhar et al. (2019) and preserved the larvae in 96% ethanol. For molecular identification, we extracted DNA from a pool of 10 Trichinella larvae isolated from each positive animal using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) and used 10 ng of DNA for identification at the species level by nested polymerase chain reaction (PCR), following a modification of the protocol of Zarlenga et al. (1999). We performed the reactions at a final volume of 25 µL. We used the following primers: Ne forward (5’-TCTTGGGTAGTAGGC-3’) and reverse (5’-GCAGGATTGAACG-3’) in the first PCR (0.5 µM of each primer), and 12.5 µL of GoTaq Green Master Mix (Promega Corporation, Madison, WI, USA). We amplified the DNA in a thermocycler (MultiGene™ OptiMax Thermal Cycler; Labnet International, Inc., Edison, NJ, USA) under the following cycling conditions: 95°C × 1 minute for initial denaturation, followed by 40 cycles of 95°C × 30 sec; 56°C × 1 minute, and 72°C × 1 minute; and a final extension of 72°C × 2 minutes. Then, we used 0.5 µM of each Primers I forward (5’-GTTCCATGTGAACAGCAG-3’) and reverse (5’-CGAAAACATACGACAACTGC-3’) in a second PCR under same conditions with an annealing temperature of 55°C. The PCR products were subjected to electrophoresis in 2% agarose gel. We used master mix without the DNA as the negative control, and T. spiralis larvae obtained from a previous study (Landaeta-Aqueveque et al., 2015) as a positive control of the PCR.

Bioethical considerations: This study met the International Guiding Principles for Biomedical Research Involving Animals. The Comité de Ética of the Facultad de Ciencias Veterinarias of the Universidad de Concepción approved the study (CBE-47-2017).

Results

We collected samples from 53 animals. The sample was composed of 28 mammals, 24 birds and one reptile (Table 1). The weight of the examined muscle samples were at least 10 g with the exception of D. bozinovici and P. chamissonis with samples sizes of 3 g and 1 g, respectively. Trichinella larvae were isolated only from one Leopardus guigna Molina, 1782 (güiña; 52 larvae per gram of muscle) and one Galictis cuja Molina, 1782 (lesser grison; 0.3 larvae per gram of muscle), both from the Ñuble region (Figure 1). We were unable to amplify DNA from the larvae isolated from the grison. However, we were able to amplify a PCR product of 173 bp from the güiña which is consistent with our T. spiralis positive control (Figure 2) and the size described for this species (Pozio & Zarlenga, 2019).

Discussion

Detecting Trichinella infection is a challenge in wild fauna of Chile because most carnivore vertebrates are protected by law (SAG, 2012). This protection is due to conservation concerns or because these animals aid in pest control. Therefore, only invasive animals can be hunted to assess Trichinella infection (Hidalgo et al., 2019; Ramirez-Pizarro et al., 2019; Espinoza-Rojas...
et al., 2021). This has resulted in few studies that have assessed the presence of Trichinella infection in native wildlife in Chile (Alvarez et al. 1970; González-Acuña et al. 2010; Hidalgo et al., 2013; Landaeta-Aqueveque et al., 2015; Echeverry et al., 2021). Although one of these studies sampled a broad range of mammalian species including güiñas and lesser grisons, it did not detect Trichinella spp. (Alvarez et al. 1970).

Studies in Argentina examined another wild felid, the Geoffroy’s cat (Leopardus geoffroyi D’Orbigny and Gervais, 1844), and the lesser grison with negative results (Ribicich et al., 2010; Winter et al., 2018). Thus, this is the first record of Trichinella spp. larvae in a native mustelid in South America, and the first record of T. spiralis in the güiña. The güiña is the second reported South American felid host for this species.

Previously, other mustelids have been reported to host Trichinella infections: American mink infected with T. spiralis in Chile (Espinoza-Rojas et al., 2021) and with T. spiralis, T. britovi, and T. pseudospiralis in Poland (Hurníková et al., 2016) and the European badger (Meles meles Linnaeus, 1758) infected with T. britovi in Romania (Boros et al., 2020). Similarly, other felids have reportedly harbored Trichinella larvae. Trichinella infections have been reported in cougars across most of their range including with T. spiralis in Chile (Landaeta-Aqueveque et al., 2015; Echeverry et al., 2021), T. patagoniensis in Argentina (Krivokapich et al., 2012), T. spiralis and T. pseudospiralis in the United States (Reichard et al., 2015), Trichinella nativa Britov and Boev, 1972, T. pseudospiralis, Trichinella murrelli Pozio and La Rosa, 2000, and Trichinella T6 in Canada (Gajadhar & Forbes, 2010). Additionally, infections have been reported in Canadian lynx (Lynx canadensis Kerr, 1792) with Trichinella T6 in Canada (Gajadhar & Forbes, 2010), Eurasian lynx (Lynx lynx Schreber, 1777) with T. britovi, and the European wildcat (Felis silvestris Schreber, 1777) with T. britovi and T. spiralis (Pozio et al., 2009).

The güiña is one of the smallest felids in the world. It is distributed across Chile and Argentina between latitudes of 33º S and 48º S (Napolitano et al., 2014). This felid consumes micromammals such as rodents as primary prey (Delibes-Mateos et al., 2014; Figueroa, Corales & Rau, 2018); consequently, rodents could be the source of infection. Rodents have been recognized as hosts of T. spiralis, mainly in the domestic environment in Chile (Schenone et al., 1967; Schenone et al., 2002). This record is in accordance with the fact that güiñas have been frequently infected by pathogens from free-roaming domestic animals (Ortega et al., 2020; Sacristán et al., 2020); although T. spiralis is not an important pathogen for the health of non-human animals, its presence in the güiña highlights the need for pathogen surveillance in the rural–sylvatic interphase.

The lesser grison is a neotropical mustelid that inhabits an area spanning southern Peru, Uruguay, and Paraguay to southern Chile and Argentina, encompassing several environments (Prevosti & Travaini, 2005). It is a generalist predator and rodents comprise an important part of its diet (Ebensperger, Mella & Simonetti, 1991; Zapata et al., 2005). Given that, and considering how other pathogens have spilled from domestic animals (Megid et al., 2013; Pedrassani et al., 2018), this species might most likely be infected in domestic environments. However, identification of the Trichinella species harbored by the lesser grison helps to better understand
the source of infection, given that not all *Trichinella* species identified in South America have been reported in the domestic cycle. For instance, *T. patagoniensis* has been reported only in cougars (Krivokapich et al., 2008; Krivokapich et al., 2012).

To the best of our knowledge, there are no reports of the güiña as prey of larger predators, whereas the lesser horned owl (*Bubo magellanicus*) is the sole predator to be reported for the lesser grison (Prevosti & Travaini, 2005). In that respect, *T. pseudospiralis*, also zoonotic, is the only species of the genus that has reportedly infected birds, and this may be the only species of *Trichinella* that could be transmitted from the grison to the owl. However, this species has not been reported in Chile and one record of a single pig from Argentina represents the only report in South America (Krivokapich et al., 2015). Therefore, it is unlikely that this owl could play a role in the sylvatic cycle of *Trichinella* in Chile. Hence, whether güiña and lesser grison participate in the reservoir or constitute dead-end hosts is unknown, and the most likely way for *Trichinella* larvae to be transmitted from these hosts seems to be their consumption by carrion-consuming mammals. Furthermore, human trichinellosis resulting from the direct consumption of a wild mammal has also been reported worldwide (Garcia et al., 2005; Fichi et al., 2015); however, neither güiñas nor grisons are typical prey for hunters to eat, nor is their hunting permitted by law in Chile (SAG, 2012). However, further studies are needed to evaluate these hypotheses.

It is worth noting that the two types of mammal host species reported herein had the largest sample sizes, suggesting that larger samples of other mammals could represent new hosts for *Trichinella*. In contrast, the lack of findings identified by Alvarez et al. (1970) may have been due to the real absence of larvae in their samples, as well as to the parasitological technique (trichinoscopy) used, which is of lower sensitivity (Forbes, Parker & Scandrett, 2003).

Conclusions

This is the first record of *Trichinella* larvae in a native mustelid, *G. cuja*, in South America, as well as the first record of *T. spiralis* in *L. guigna*. Thus, this study increased the number of mammals infected with *Trichinella* larvae in the neotropics, enhancing the need to identify the role played by neotropical animals in the reservoir for humans. This underlies how studying the rural–sylvatic interphase is of utmost importance.

Acknowledgements

In memoriam: The authors dedicate this article to Daniel González-Acuña, who died during the writing of this manuscript prior to submission, and who made significant contributions to this study.

References

Alcaíno HA, and Arenas X. 1981. Antecedentes sobre triquinosis en Chile. *Monografías de Medicina Veterinaria* 3. https://revistas.uchile.cl/index.php/MMV/article/view/4847/
Alvarez V, Rivera G, Neghme A, and Schenone H. 1970. Triquinosis en animales de Chile. *Boletín Chileno de Parasitología* 25:83-86.

Bilska-Zając E, Różycki M, Grądziel-Krukowska K, Belcik A, Mizak I, Karamon J, Sroka J, Zdybel J, and Cencek T. 2020. Diversity of *Trichinella* species in relation to the host species and geographical location. *Veterinary Parasitology* 279:109052.

DOI: 10.1016/j.vetpar.2020.109052

Bjorland J, Brown D, Ray Gamble H, and McAuley JB. 1993. *Trichinella spiralis* infection in pigs in the Bolivian Altiplano. *Veterinary Parasitology* 47:349-354. DOI: 10.1016/0304-4017(93)90036-M

Boros Z, Ionică AM, Deak G, Mihalca AD, Chisamera GB, Györke A, Gherman CM, and Cozma V. 2020. The European badger, *Meles meles*, as a new host for *Trichinella britovi* in Romania. *Veterinary Parasitology* 288:109301. 10.1016/j.vetpar.2020.109301

Boutsini S, Papatsiros VG, Stougiou D, Marucci G, Liandris E, Athanasiou LV, Papadoudis A, Karagiopoulos E, Bisias A, and Pozio E. 2014. Emerging *Trichinella britovi* infections in free ranging pigs of Greece. *Veterinary Parasitology* 199:278-282.

DOI: 10.1016/j.vetpar.2013.10.007

Bruschi F. 2012. Trichinellosis in developing countries: is it neglected? *The Journal of Infection in Developing Countries* 6:216-222. 10.3855/jidc.2478

Delibes-Mateos M, Díaz-Ruiz F, Caro J, and Ferreras P. 2014. Activity patterns of the vulnerable guíña (*Leopardus guigna*) and its main prey in the Valdivian rainforest of southern Chile. *Mammalian Biology* 79:393-397. 10.1016/j.mambio.2014.04.006

Devleesschauwer B, Praet N, Speybroeck N, Torgerson PR, Haagsma JA, De Smet K, Murrell KD, Pozio E, and Dorny P. 2015. The low global burden of trichinellosis: evidence and implications. *International Journal for Parasitology* 45:95-99.

DOI: 10.1016/j.ijpara.2014.05.006

Dupouy-Camet J. 1999. Is human trichinellosis an emerging zoonosis in the European community? *Helminthologia* 36:201-204.

Ebensperger LA, Mella JE, and Simonetti JA. 1991. Trophic-Niche Relationships among *Galictis cuja*, *Dusicyon culpaeus*, and *Tyto alba* in Central Chile. *Journal of Mammalogy* 72:820-823. 10.2307/1381849

Echeverry DM, Santodomingo AM, González-Ugás J, Oyarzún-Ruiz P, Silva-de la Fuente MC, and Landaeta-Aqueveque C. 2021. *Trichinella spiralis* in a cougar (*Puma concolor*) hunted by poachers in Chile. *Revista Brasileira de Parasitologia Veterinária* in press. 10.1590/S1984-29612021033

Espinoza-Rojas H, Lobos-Chávez F, Silva-de la Fuente MC, Echeverry DM, Muñoz-Galaz J, Yáñez-Crisóstomo C, Oyarzún-Ruiz P, Ortega R, Sandoval D, Henríquez A, Moreno Salas L, Acosta-Jamett G, and Landaeta-Aqueveque C. 2021. Survey of *Trichinella* in American minks (*Neovison vison* Schreber, 1777) and wild rodents (Muridae and Cricetidae) in Chile. *Zoonoses and Public Health* In press. 10.1111/zph.12845

Fichi G, Stefànelli S, Pagani A, Luchi S, De Gennaro M, Gómez-Morales MA, Selmi M, Rovai D, Mari M, Fischetti R, and Pozio E. 2015. Trichinellosis outbreak caused by meat from a wild boar hunted in an Italian region considered to be at negligible risk for *Trichinella*. *Zoonoses and Public Health* 62:285-291. 10.1111/zph.12148

Figueroa RA, Corales ES, and Rau JR. 2018. Prey of the guíña (*Leopardus guigna*) in an Andean mixed southern beech forest, southern Chile. *Studies on Neotropical Fauna and Environment* 53:211-218. 10.1080/01650521.2018.1477032
Forbes LB, Parker S, and Scandrett WB. 2003. Comparison of a modified digestion assay with trichinoscopy for the detection of *Trichinella larvae* in pork. *Journal of Food Protection* 66:1043-1046. 10.4315/0362-028x-66.6.1043

Gajadhar AA, and Forbes LB. 2010. A 10-year wildlife survey of 15 species of Canadian carnivores identifies new hosts or geographic locations for *Trichinella* genotypes T2, T4, T5, and T6. *Veterinary Parasitology* 168:78-83. 10.1016/j.vetpar.2009.10.012

Gajadhar AA, Noeckler K, Boireau P, Rossi P, Scandrett B, and Gamble HR. 2019. International Commission on Trichinellosis: Recommendations for quality assurance in digestion testing programs for *Trichinella*. *Food and Waterborne Parasitology* 16:e00059. 10.1016/j.fawpar.2019.e00059

García E, Mora L, Torres P, Jercic MI, and Mercado R. 2005. First record of human trichinosis in Chile associated with consumption of wild boar (*Sus scrofa*). *Memórias do Instituto Oswaldo Cruz* 100:17-18. 10.1590/S0074-02762005000100003

González-Acuña D, Moreno L, Ardiles K, Flores M, Duclos M, and Kinsella M. 2010. *Endoparasites of the kodkod,* *Oncifelis guigna* (Carnivora, Felidae) in Chile. *Revista Chilena de Historia Natural* 83:619-622. 10.4067/S0716-078x20100000400013

Hidalgo A, Oberg CA, Fonseca-Salamanca F, and Vidal MF. 2013. Report of the first finding of *Trichinella spiralis* Infecting Wild Boars in Southern Chile: Evidence of an Underrated Risk. *Vector-Borne and Zoonotic Diseases* 19:625-629. 10.1089/vbz.2018.2384

Hurníková Z, Kołodziej-Sobocińska M, Dvorožňáková E, Niemczynowicz A, and Zalewski A. 2016. An invasive species as an additional parasite reservoir: *Trichinella* in introduced American mink (*Neovison vison*). *Veterinary Parasitology* 231:106-109. 10.1016/j.vetpar.2016.06.010

Kärssin A, Häkkinen L, Niin E, Peik K, Vilem A, Lassen B. 2017. *Trichinella* spp. biomass has increased in raccoon dogs (*Nyctereutes procyonoides*) and red foxes (*Vulpes vulpes*) in Estonia. *Parasites & Vectors* 10. 10.1186/s13071-017-2571-0

Klun I, Ćosić N, Ćirović D, Vasilev D, Teodorović V, and Djurković-Djaković O. 2019. *Trichinella* spp. in wild mesocarnivores in an endemic setting. *Acta Veterinaria Hungarica* 67:34-39. 10.1556/004.2019.004

Korhonen PK, Pozio E, La Rosa G, Chang BCH, Koehler AV, Hoberg EP, Boag PR, Tan P, Jex AR, Hofmann A, Sternberg PW, Young ND, and Gasser RB. 2016. Phylogenomic and biogeographic reconstruction of the *Trichinella* complex. *Nature Communications* 7:10513. 10.1038/ncomms10513

Krivokapich SJ, Gatti GM, Prous CLG, Degese MF, Arbusti PA, Ayesa GE, Bello GV, and Salomon MC. 2019. Detection of *Trichinella britovi* in pork sausage suspected to be implicated in a human outbreak in Mendoza, Argentina. *Parasitology International* 71:53-55. 10.1016/j.parint.2019.03.010

Krivokapich SJ, Gonzalez Prous CL, Gatti GM, and Saldia L. 2015. First finding of *Trichinella pseudospiralis* in the Neotropical region. *Veterinary Parasitology* 208:268-271. 10.1016/j.vetpar.2015.01.001

Krivokapich SJ, Molina V, Bergagna HFJ, and Guarnera EA. 2006. Epidemiological survey of *Trichinella* infection in domestic, synanthropic and sylvatic animals from Argentina. *Journal of Helminthology* 80:267-269. 10.1079/JOH2006338
Krivokapich SJ, Pozio E, Gatti GM, Gonzalez Prous CL, Ribicich M, Marucci G, La Rosa G, and Confalonieri V. 2012. *Trichinella patagoniensis* n. sp. (Nematoda), a new encapsulated species infecting carnivorous mammals in South America. *International Journal for Parasitology* 42:903-910. 10.4067/S0716-078X2012000200009

Krivokapich SJ, Prous CLG, Gatti GM, Confalonieri V, Molina V, Matarasso H, and Guarnera E. 2008. Molecular evidence for a novel encapsulated genotype of *Trichinella* from Patagonia, Argentina. *Veterinary Parasitology* 156:234-240. 10.1016/j.vetpar.2008.06.003

Landaeta-Aqueveque C, Krivokapich S, Gatti GM, Prous CG, Rivera-Buckle V, Martin N, Gonzalez-Acuna D, and Sandoval D. 2015. *Trichinella spiralis* parasitizing Puma concolor: first record in wildlife in Chile. *Helminthologia* 52:360-363. 10.1515/helmin-2015-0057

Loutfy NF, Awad OM, El-Masry AG and Kandil GM. 1999. Study on rodents infestation in Alexandria and prevalence of *Trichinella spiralis* infection among them. *Journal of the Egyptian Society of Parasitology* 29(3):897-909. https://europepmc.org/article/med/12561929

Megid J, Teixeira CR, Cortez A, Heinemann MB, Antunes JMAP, Fornazari F, Rassy FB, and Richtzenhain LJ. 2013. Canine distemper virus infection in a lesser grison (*Galictis cuja*): first report and virus phylogeny. *Pesquisa Veterinária Brasileira* 33:247-250. 10.1590/s0100-736x2013000200018

Minoprio JL, Abdon H, and Abdon D. 1967. Factores epidemiológicos que determinan la trichiniasis silvestre en el oeste de San Luis y en el este de Mendoza. *Anales de la Sociedad Científica Argentina* 183:19-30. https://ia801302.us.archive.org/20/items/analesdelaso183121967soci/analesdelaso183121967soci.pdf

Murrell KD. 2016. The dynamics of *Trichinella spiralis* epidemiology: Out to pasture? *Veterinary Parasitology* 231:92-96. 10.1016/j.vetpar.2016.03.020

Murrell KD, and Pozio E. 2000. Trichinellosis: the zoonosis that won't go quietly. *International Journal for Parasitology* 30:1339-1349. 10.1016/S0020-7519(00)00132-6

Napolitano C, Johnson WE, Sanderson J, O'Brien SJ, Rus Hoelzel A, Freer R, Dunstone N, Ritland K, Ritland CE, and Poulin E. 2014. Phylogeography and population history of Leopardus guigna, the smallest American felid. *Conservation Genetics* 15:631-653. 10.1007/s10592-014-0566-3

Ortega R, Mena J, Grecco S, Pérez R, Panzera Y, Napolitano C, Zegpi NA, Sandoval A, Sandoval D, González-Acuña D, Cofré S, Neira V, and Castillo-Aliaga C. 2020. Domestic dog origin of Carnivore Protoparvovirus 1 infection in a rescued free-ranging guña (*Leopardus guigna*) in Chile. *Transboundary and Emerging Diseases*. 10.1111/tbed.13807

Pasqualetti MI, Fariña FA, Krivokapich SJ, Gatti GM, Daneri GA, Varela EA, Lucero S, Ercole ME, Bessi C, Winter M, and Ribicich MM. 2018. *Trichinella spiralis* in a South American sea lion (*Otaria flavescens*) from Patagonia, Argentina. *Parasitology Research* 117:4033-4036. 10.1007/s00436-018-6116-z

Pedrassani D, Worm M, Drecher J, and Santos MCI. 2018. Lesser Grison (*Galictis cuja Molina, 1782*) as host of *Dioctophyme renale* Goeze, 1782. *Arquivos do Instituto Biológico* 84:e0312016. 10.1590/1808-1657000312016
Pozio E. 2000. Factors affecting the flow among domestic, synanthropic and sylvatic cycles of Trichinella. Veterinary Parasitology 93:241-262. 10.1016/S0304-4017(00)00344-7

Pozio E. 2007. World distribution of Trichinella spp. infections in animals and humans. Veterinary parasitology 149(1-2), 3-21. 10.1016/j.vetpar.2007.07.002

Pozio E. 2014. Searching for Trichinella: not all pigs are created equal. Trends in Parasitology 30:4-11. 10.1016/j.pt.2013.11.001

Pozio E, Rinaldi L, Marucci G, Musella V, Galati F, Cringoli G, Boireau P, and La Rosa G. 2009. Hosts and habitats of Trichinella spiralis and Trichinella britovi in Europe. International Journal for Parasitology 39:71-79. 10.1016/j.ijpara.2008.06.006

Pozio E, and Zarlenga D. 2019. International Commission on Trichinellosis: Recommendations for genotyping Trichinella muscle stage larvae. Food and Waterborne Parasitology 15:e00033. 10.1016/j.fawpar.2018.e00033

Prevosti FJ, and Travaini A. 2005. New records of Galictis cuja (Molina, 1782) (Carnivora, Mustelidae) in Southern Patagonia. Mammalian Biology 70:317-320. 10.1016/j.mambio.2005.03.004

Ramirez-Pizarro F, Silva-de la Fuente C, Hernandez-Orellana C, Lopez J, Madrid V, Fernandez I, Martin N, Gonzalez-Acuna D, Sandoval D, Ortega R, and Landaeta-Aqueveque C. 2019. Zoonotic Pathogens in the American Mink in Its Southernmost Distribution. Vector-Borne and Zoonotic Diseases 19:908-914. 10.1089/vbz.2019.2445

Reichard MV, Criffield M, Thomas JE, Paritte JM, Cunningham M, Onorato D, Logan K, Interisano M, Marucci G, and Pozio E. 2015. High prevalence of Trichinella pseudospiralis in Florida panthers (Puma concolor coryi). Parasites & Vectors 8:67. 10.1186/s13071-015-0674-z

Ribicich M, Gamble HR, Bolpe J, Scialfa E, Krivokapich S, Cardillo N, Betti A, Cambiaggi Holzmann M, Pasqualetti M, FariñA±a F, and Rosa A. 2010. Trichinella infection in wild animals from endemic regions of Argentina. Parasitology Research 107:377-380. DOI: 10.1007/s00436-010-1873-3

Ribicich MM, FariñAFA, Aronowicz T, Ercole ME, Bessi C, Winter M, and Pasqualetti MI. 2020. A review on Trichinella infection in South America. Veterinary Parasitology 285:109234. 10.1016/j.vetpar.2020.109234

Sagristán I, Esperón F, Pérez R, Acuña F, Aguilar E, García S, López MJ, Neves E, Cabello J, Hidalgo-Hermoso E, Terio KA, Millán J, Poulin E, and Napolitano C. 2020. Epidemiology and molecular characterization of Carnivore protoparvovirus-1 infection in the wild felid Leopardus guigna in Chile. Transboundary and Emerging Diseases. 10.1111/tbed.13937

Sag. 2012. Ley de Caza y su Reglamento. Available at http://www.sag.cl/sites/default/files/ley_caza_edicion2012.pdf (accessed Dec 30 2014).

Schenone H, Jacob C, Rojas A, and Villarrel F. 1967. Infección por Trichinella spiralis en Rattus norvegicus capturados en el Matadero Municipal de Santiago. Boletín Chileno de Parasitología 22:176.

Schenone H, Olea A, Schenone H, Contreras M, Mercado R, Sandoval L, and Pavletic C. 2002. Situación epidemiológica actual de la triquínosis en Chile. 1991-2000. Revista médica de Chile 130:281-285. DOI: 10.4067/S0034-98872002000300006

Sharma R, Thompson PC, Hoberg EP, Brad Scandrett W, Končeski K, Harms NJ, Kukka PM, Jung TS, Elkin B, Mulders R, Larter NC, Branigan M, Pongracz J, Wagner B, Kafle P, Lobanov VA, Rosenthal BM, and Jenkins EJ. 2020. Hiding in plain sight: discovery and
phylogeography of a cryptic species of *Trichinella* (Nematoda: Trichinellidae) in wolverine (*Gulo gulo*). *International Journal for Parasitology* 50:277-287.

Soria C, Mozo G, Camaño C, Saldaño B, López E, Malandrini J and Soria J. 2010. Isolation of *Trichinella* spp. larvae in peccary (*Tayassu tajacu*) of Icaño, Departament La Paz, Catamarca. *Revista Electrónica Iberoamericana de Educación en Ciencias y Tecnología* 2(1):153-163.

http://www.exactas.unca.edu.ar/riecyt/VOL%202%20NUM%201/Archivos%20Digitales/Doc%20RIECyT%20V2-1-9.pdf

Tryland M, Nesbakken T, Robertson L, Grahek-Ogden D, and Lunestad BT. 2014. Human pathogens in marine mammal meat - A Northern perspective. *Zoonoses and Public Health* 61:377-394. 10.1111/zph.12080

Winter M, Pasqualetti M, Fariña F, Ercole M, Failla M, Perello M, Birochio D, Abate S, Soricetti M, and Ribicich M. 2018. Trichinellosis surveillance in wildlife in northeastern argentine patagonia. *Veterinary Parasitology: Regional Studies and Reports* 11:32-35. 10.1016/j.vprsr.2017.11.009

Zapata SC, Travaini A, Delibes M, and Martínez-Peck R. 2005. Annual food habits of the lesser grison (*Galictis cuja*) at the southern limit of its range. *Mammalia* 69. 10.1515/mamm.2005.008

Zarlenga DS, Chute MB, Martin A, and Kapel CMO. 1999. A multiplex PCR for unequivocal differentiation of all encapsulated and non-encapsulated genotypes of *Trichinella*. *International Journal for Parasitology* 29:1859-1867. 10.1016/S0020-7519(99)00107-1
Table 1 (on next page)

Details of examined animals
Table 1: Details of examined animals.

Species	Infected/Analyzed (%)	Class
Glaucidium nana King, 1828 (Austral pygmy owl)	0/1 (0)	Aves
Bubo magellanicus Gmelin, 1788 (Magellanic horned owl)	0/2 (0)	Aves
Tyto furcata Temminck, 1827 (American barn owl)	0/5 (0)	Aves
Strix rufipes King, 1828 (Rufous-legged owl)	0/2 (0)	Aves
Parabuteo unicinctus Temminck, 1824 (Harris' hawk)	0/11 (0)	Aves
Coragyps atratus Bechstein, 1793 (Black vulture)	0/1 (0)	Aves
Cathartes aura Linnaeus, 1758 (Turkey vulture)	0/1 (0)	Aves
Pelecanus thagus Molina, 1782 (Peruvian pelican)	0/1 (0)	Aves
Grampus griseus Cuvier, 1812 (Risso's Dolphin)	0/1 (0)	Mammalia
Otaria flavescens Shaw, 1800 (South American sealion)	0/1 (0)	Mammalia
Leopardus guigna Molina, 1782 (Guíña)	1/6 (16.67)	Mammalia
Lycalopex culpaeus Molina, 1782 (Culpeo fox)	0/2 (0)	Mammalia
Galictis cuja Molina, 1782 (Lesser grison)	1/17 (5.88)	Mammalia
Dromiciops bozinovic D’Elía, Hurtado and D’Anatro, 2016 (‘Monito del monte’)	0/1 (0)	Mammalia
Philodryas chaminssonis Wiegmann, 1834 (Long-tailed snake)	0/1 (0)	Reptilia
Figure 1

Map of Chile (A) and the studied administrative regions (B).

The italicized text indicates the name of the regions, and the Roman text indicates the name of the communes. Infected animals are presented with the symbols “+” (*Leopardus guigna*) and “*” (*Galictis cuja*). The numbers indicate the number of animals examined in each commune. Thick lines indicate the regional limits, while thin lines indicate the limits of the communes.
Figure 2

a) Larva of *Trichinella* sp. isolated from a *Galictis cuja*. b) Gel electrophoresis of PCR products

(b) MW: Marker of 50 bp. C-: negative control. C+: *Trichinella spiralis* positive control. Lanes 1 – 4: isolates from *Leopardus guigna*.
