A Co-cooperative Evolutionary Algorithm for Flexible Scheduling Problem under Uncertainty

Yan Wanga, Lin Lina,b,*, Mitsuo Genb,c, Lu Suna and Hiroshi Kawakamid

aDalian University of Technology, 116620, China
bFuzzy Logic Systems Institute, 820-0867, Japan
cTokyo University of Science, 113-8656, Japan
dKyoto University, 606-8306, Japan

Abstract

Flexible Manufacturing System (FMS) has the characteristics of resources non-uniqueness; the operation can be performed by any available machine in a set of machines. Due to reduce the constraints of the machine, it becomes higher flexible. But it has high complexity existing in the actual production system and making its complexity is higher. We experiment three classical evolution algorithms and two modified evolutionary algorithms with grouping mechanism, and do the experiments under the certain environment on different size of data. We found that as the data growing, the evolutionary algorithms with grouping mechanism can get a better solution with larger probability. In this paper, we propose hybrid evolutionary algorithm based on the particle swarm algorithm combining a set-based grouping and parameter adaptive adjustment mechanism. It is given a set number of available groupings, choose a grouping number and calculate adaptive value, if adaptive value becomes better. Through experiments, we conclude that the proposed hybrid evolutionary algorithm based on co-cooperation gets better solution than evolutionary algorithm and then improve robustness of the proposed algorithm.

Keywords: Co-cooperation Evolutionary Algorithm, Flexible Job-shop Scheduling Problem (fJSP)

1. Introduction

Since the 21st century, due to the fierce competition and complex technology, small batch of modern manufacturing mode has become the development direction of manufacturing enterprise production and business operation mode under the background of demand diversity. In order to further improve the production efficiency and flexibility of production and reduce the cost of equipment, a flexible job shop scheduling problem (fJSP) model with numerical control (NC) technology replaces the traditional scheduling model. The fJSP as an extension of the job
shop scheduling problem (JSP), breaks through the constraints of resources uniqueness: each operation can be processed on every available machine in the machine set, but the processing time of each operation on every time is fixed, so that JSP can improve the production efficiency, shorten the ordering cycle and increase the rate of orders delivered on time. Gao, et al developed a new hybrid genetic algorithm (HGA) to solve the JSP models with non-fixed availability constraints (Gao, Gen & Sun, 2006; Gen, Cheng & Lin, 2008) and also proposed hybrid genetic and variable neighborhood descent algorithm for solving JSP models (Gao, Sun & Gen, 2008). Gen, et al proposed a multistage-based GA with bottleneck shifting developed for the JSP model (Gen, Lin & Gao, 2009).

However, in actual production process, the processing time are often changed due to the increasing or decreasing of operations, the machine becomes from available to unavailable and so on. In other words, the processing time of each operation is not fixed but stochastic. So, stochastic flexible job shop scheduling (S-fJSP) model is closer to the modelling of scheduling problem in actual production systems.

Recently, Horng et al proposed an evolutionary algorithm of embedding evolution strategy (ES) in ordinal optimization (OO), abbreviated as ESOO, to solve for a good enough schedule of stochastic job shop scheduling problem (S-JSP) with the objective of minimizing the expected sum of storage expenses and tardiness penalties using limited computation time (Horng, Lin & Yang, 2012). They embedded the ES into sequence evolution (SE) in order to minimize the cost of storage and punished for being late which is aimed on the sum of progress and expectations. Wang et al proposed an effective estimation of distribution algorithm (EDA), so that, new individuals can be generated among the search region with promising solutions by updating the probability with a mechanism and sampling by the probability model (Wang, Wang, Xu & Liu, 2013). Lei proposed an efficient decomposition-integration genetic algorithm (DIGA) and a co-evolutionary genetic algorithm (CGA) to minimize the maximum completion time (Lei, 2012). DIGA used a two-stage representation, an efficient decoding method and a population to increase the best solution; CGA used chromosome of a novel representation consists of ordered operation list and machine assignment (Lei, 2010; Lei, 2012). Niu et al proposed an assignment-first decomposition (AFD) and a sequencing-first decomposition (SFD) for solving the problem (Niu, Sun, Lafon & Zhang, 2012). Hao, et al recently proposed a cooperative EDA for semiconductor final test scheduling problems (Hao, Wu, Chien & Gen, 2014).

However, the methods mentioned above are all overall do the evolution operations, with the increase of the scale of problems, the effectiveness of the algorithm is limited even goes down. This is a serious problem in real production system that the scale of problem is often large. So it is lack of related research for flexibility and the effectiveness analysis of the scheduling for designing optimization method, especially for using the framework of cooperative coevolution and grouping the variables to increase the effectiveness depending on the problem scales.

2. Scheduling Model under Uncertainty

In S-fJSP, each job i consists of n_i operations ($O_{i1}, O_{i2}, ..., O_{im}$). For each operation O_{ik}, processing machine must be from the machine set A_{ik}. The difference between S-fJSP and JSP is that processing time is randomly given by expectation $E[\xi_{ij}]$ and variance σ_{ij}, such as normal distribution, joint distribution and random distribution. In order to test the robustness for each solution, we randomly assign the processing time according to the distribution for each operation.

The symbols used in S-fJSP are defined as follows:

Indices:
- i, h: job index, $i, h=1,2,...,n$
- j: machine index, $j=1,2,...,m$
- k, g: operation index, $k, g=1,2,...,n_i$

Parameters:
- n: total number of jobs
- m: total number of machines
- n_i: total number of operations in job i

ξ_{ij}: processing time on the machine j of the kth operation O_{ik} of job i, a stochastic variable

$\xi{C_i}$: processing time of job i, a stochastic variable
Decision variables:
\(\tilde{c}_{ik} \): completed time of \(O_{ik} \), a stochastic variable
\(x_{ij} \): machine \(j \) is selected for \(O_{ik} \)

The objective function (1) is to minimize the stochastic makespan and the mathematical programming model of the FJSP under uncertainty formulated as follows:

\[
\min \ E[\tilde{c}_{M}] = E[\max_{i=1}^{m} \{ \max_{j=1}^{n} \{ \tilde{c}_{ij} \} \}]
\]

subject to:
\[
\sum_{x_{ij} \in h_k} x_{ij} = 1, \quad \forall i, k, j
\]
\[
(\tilde{c}_{ik} \tilde{c}_{[j]} x_{ij} \geq 0) \land ((\tilde{c}_{ik} \tilde{c}_{[g]} x_{ij} \geq 0) \lor (\tilde{c}_{ik} \tilde{c}_{[h]} x_{ij} \geq 0)), \quad \forall i, j, g, h
\]
\[
\sum_{x_{ij} \in h_k} x_{ij} = 1, \quad \forall i, k, j
\]
\[
\tilde{c}_{ik} \geq 0, \quad \forall i, k
\]
\[
x_{ij} \in \{0,1\}, \quad \forall i, k, j
\]

The constraints (2) - (3) represent the operating sequence and avoiding the duplicated machine assignment constraints, respectively. The constraint (4) guarantees machine allocation that for each operation can assign on one machine from machine set at one time. The constraints (5) – (6) are nonnegative and 0 – 1 binary variable restriction on decision variables, respectively.

3. Proposed algorithm CChEA

3.1 The Co-Cooperative hybrid Evolutionary Algorithm (CChEA)

JSP is a typical combinatorial optimization problem and it is a NP-hard problem under the constraint of priorities and resources (Lawler, 1993; Kennedy, 1995). So we choose the heuristic algorithm to solve S-fJSP. Evolution algorithm (EA) is inspired by natural selection, it makes the individuals with higher ability of survival be reserved and the gens with higher adaptability be spread to more individuals, so the species of evolution will be more and better to adapt to their environment by the methods mentioned above.

procedure: Co-cooperative Hybrid Evolution Algorithm

input: data set; parameters

output: best solution of S-fJSP

begin
\(t \leftarrow 0; \)
initialize population \(p(t) \) by random value;
get sub-\(p(t) \) by random grouping;
\(g(t) \leftarrow 0; \)
while(not meeting termination condition)

evaluate \(p(t) \) and calculate the best fitness;
if (gbest(t) has not become better)
choose \(s \) from \(S \) randomly;
reconstruct sub-swarm for all \(n \) dims;
for each swarm
if (\(t \) meets the condition)
adapt the parameters by formulas;
record correlation parameters;
\(t \leftarrow t+1; \)
end
output best solution gbest(t) of S-fJSP
end;

Fig.1. Pseudo-code for Hybrid Evolution Algorithm
Genetic algorithm (GA) is a typical classical EA, it presents the solutions of problems by chromosomes, uses the generation operations to generate new individuals and gets the best solution by iteration. Particle swarm optimization (PSO) is another typical EA. It simulates the process of the birds’ predation, changes the moving speed and position according to the formula to reach all parts of the searching space. According to the character of the encoding method in the PSO, it can has larger searching space than GA (Kennedy & Eberhart, 1995). So we use PSO as the basic algorithm of the proposed algorithm. Then, we use the set-based random grouping mechanism with the set-based grouping and parameter adaptive adjustment mechanism. It is given a set number of available groupings, chooses a grouping number and calculates adaptive value. If adaptive value become better, we will use the grouping number continually; otherwise, when the first time that good adaptive value does not change even worse, we abandon the grouping number, randomly choose another number in the grouping set. We named it as co-cooperative hybrid evolutionary algorithm (CChEA). The pseudo code of CCHA is shown in Figure 1.

PSO uses the follow formulas to update velocity and position in each generation t, respectively. The initial values are random. Parameter ω presents inertia weight, $rand_1$ and $rand_2$ are random value within $[0,1]$. The bigger ω presents affecting by chromosome’s own value; the smaller ω presents affecting by population’s social factor.

$$
\begin{align*}
 v_i(t + 1) &= \omega v_i(t) + c_1 rand_1 [p_{pbest}(t) - x_i(t)] + c_2 rand_2 [p_{gbest}(t) - x_i(t)] \\
 x_i(t + 1) &= x_i(t) + v_i(t + 1)
\end{align*}
$$

3.2 The Set-based Random Grouping Mechanism

The grouping method is inspired by the divide-and-conquer algorithm: to solve the problem is to change the structure of the organization dynamically, we called this as random grouping method. Decompose the problems of N dims into k sub-problems (each sub-problem has $s=N/k$ dims) and the sub-problems do not effect each other. But they all belong to the same optimization process. The correlation between two random selected variables in one sub-problem will increase with the increasing of the number of iterations. $N=1000$, $k=10$, $s=N/k=1000/10=100$, the number of generation is 50, the times of random grouping is also 50, we present the mathematical proof as follow:

$$
\begin{align*}
 p(x \geq 1) &= p(1) + p(2) + \cdots + p(50) = 1 - p(0) = 1 - \left(\binom{50}{0} 0.1^0 (1 - 0.1)^{50} \right) = 0.9948
\end{align*}
$$

Among them, x presents 2 variables were assigned in the same group, $p(m)$ presents m times. Due to the dims in one sub-problem will influence directly, so we give a set $S=\{2, 5, 50, 100\}$ to adapt the grouping size dynamically in the repeated iteration. If the fitness becomes better, we keep current grouping size; otherwise, when the first time that good adaptive value does not change even worse, we randomly select a number from the set and replace the current grouping size.

3.3 The Parameter Adaptive Adjustment

Due to the existing experiment parameters have important influence on the results and decide the evolution operations, so the inertia weight and random value are particularly important to the result. So if they can be adapted according the merits of the fitness value in the process of experiment, there will be a good influence on the performance of the algorithm.

The random value $rand_1$ and $rand_2$ of the PSO update formula determines the influence of the two parts, they are initialed by random values. In the process of experiment, they are confirmed to the normal distribution with average value CR_m and the standard deviation 0.1.

$$
\begin{align*}
 rand_{lor2} &= N_i(CR_m, 0.1)
\end{align*}
$$

CR_m is firstly set as 0.5. These CR values for all individuals remain the same for 5 generations and then a new set of CR values is generated using the same equation. During every generation, the CR values associated with offspring successfully entering the next generation are recorded in an array CR_{rec}. After 25 generations CR_m will be updated:
\[CR_m = \frac{1}{|CR_m|} \sum_{k=1}^{\left| CR_m \right|} CR_{mk}(k) \quad (11) \]

The inertia weight \(\omega \) is adapted by formula (12), we first set the selectance \(fp \) as 0.5, if the random value is smaller than \(fp \), \(\omega \) is confirmed to the normal distribution with average value 0.5 and the standard deviation 0.3, and otherwise, \(\omega \) is confirmed to Cauchy distribution with parameter 1. The inertia weight \(\omega \) is adapted each 15 generations.

\[w_k = \begin{cases} N(0.5,0.3), & \text{if } U(0,1) < fp \\ \xi, & \text{otherwise} \end{cases} \quad (12) \]

The selectance \(fp \) is adapted by formula (13), among them, After evaluation of all offspring, the number of offspring successfully entering the next generation while generated by normal distribution and Cauchy distribution are recorded as \(ns_1 \) and \(ns_2 \), respectively, and the numbers of offspring discarded while generated by normal distribution and Cauchy distribution are recorded as \(nf_1 \) and \(nf_2 \). Those two pairs of numbers are accumulated within a specified 50 generations, called the "learning period". Then, the probability \(p \) is updated as:

\[p = \frac{ns_i(n_s + nf_i)}{ns_i(n_s + nf_i) + ns_i(n_s + nf_i)} \quad (13) \]

4. Numerical Experiment

In order to verify the effectiveness of the proposed algorithm, Co-cooperative hybrid Evolutionary Algorithm (CChEA) in this paper, we do experiment with 4 scales of data under uncertain environment. Compared with a classic genetic algorithm (GA), a binary genetic algorithm (Binary GA), particle swarm optimization (PSO), differential evolution (DE) algorithm, cooperative coevolution group with PSO (CCPSO), particle swarm optimization with adaptive grouping differential evolution algorithm (PSO+DE), and proposed CchEA. The scales of data are 5*5, 10*10, 15*15 and 20*20. To ensure the reliability of the experimental, the experiment repeats 30 times and gets the mean value. Test machine is Intel(R) Core(TM) i3-2120 CPU @3.3GHZ, 4GB.

Table. 1 Experimental parameters Settings
5*5
Pop. size
Crossover prob.
Mutation prob.
Terminating condition
\(\omega \)
\(c \)

Table. 2 Experimental results of 5*5 – 20*20 under uncertain
GA
--
5*5
variance
10*10
variance
15*15
variance
20*20
variance
Table 2 shows the experimental results of 4 scales of problems under uncertain, we used a different color to label each the best of each attribute, and we could found that CChEA has better performance for different scales of problems and compared to the algorithms in references (Della et al, 1995, Sinha et al, 2003, Kennddy et al, 1995, Li et al, 2012; Yang et al, 2008).

5. Conclusion

We proposed Co-cooperative hybrid Evolutionary Algorithm (CChEA) for solving flexible Job-shop Scheduling Problem (fJSP) under uncertain environment in Flexible Manufacturing System (FMS). We used the set-based random grouping mechanism with the set-based grouping and parameter adaptive adjustment mechanism. It is given a set number of available groupings with a grouping number and calculates adaptive value. If the adaptive value becomes better, we will use the grouping number continually, otherwise randomly select a grouping number of the set. The proposed algorithm CChEA can get better solutions and increase the robustness. Meanwhile, in our future work, experiments will be processed by group under the distributed environment for each sub-population of the different and parallel processing, so that not only optimize the optimal solution, but also shorten the time more efficiency.

Acknowledgments

This work is partly supported by the Fundamental Research Funds for the Central Universities No. DUT15QY10 and the Grant-in-Aid for Scientific Research (C) of Japan Society of Promotion of Science (JSPS) No. 15K00357.

References

[1] J. Gao, M. Gen, and L. Sun (2006). Scheduling Jobs and Maintenances in Flexible Job Shop with a Hybrid Genetic Algorithm, Journal of Intelligent Manufacturing 17: 493–507.
[2] J. Gao, L. Sun & M. Gen (2008). A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Computers & Operations Research, 35(9), 2892–2907.
[3] M. Gen, R. Cheng and L. Lin (2008). Network Models and Optimization: Multiple Objective Genetic Algorithm, 710pp, Springer, London.
[4] M. Gen, L. Lin, and J. Gao (2009). Multistage-based Genetic Algorithm for Flexible Job-shop Scheduling Problem. Intelligent and Evolutionary Systems, 187: 183–196.
[5] S.-C. Horng, S.-S. Lin, F.-Y. Yang (2012). Evolutionary algorithm for stochastic job shop scheduling with random processing time. Expert Systems with Applications, 39: 3603-3610.
[6] S.Y. Wang, L. Wang, Y. Xu, M. Liu (2013). An effective estimation of distribution algorithm for the flexible job shop scheduling problem with fuzzy processing time, Inter. J. of Production Research, 51: 3778–3793.
[7] D. Lei (2010) A genetic algorithm for flexible job shop scheduling with fuzzy processing time, Inter. J. of Production Res., 48:2995–3013.
[8] D. Lei (2012). Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling, Applied Soft Computing, 12: 2237–2245.
[9] G. Niu, S. Sun, P. Lafon and Y. Zhang (2012). Two decompositions for the bicriteria job-shop scheduling problem with discretely controllable processing times. Inter. J. of Production Research, 50(24): 7415-7427.
[10] X.C. Hao, H. W. Lin, X.L. Chen & T. Murata (2012). Cooperative Bayesian optimization algorithm: a novel approach to multiple resources scheduling problem, IEEJ Trans. on Electronics, Information and Systems, 32(12): 2007-2018.
[11] E.L. Lawler, J.K. Lenstra, A.R. Kan, and D.B. Shmoys (1993). Sequencing and scheduling: Algorithms and complexity, Chapter 9, Handbooks of Operations Res. & Management Science, Elsevier, 445-521.
[12] J. Kennedy and R. C. Eberhart (1995). Particle swarm optimization. Proceedings of IEEE Inter. Conf. on Neural Networks, IV: 1942-1948.
[13] F. Della Croce, Tadei and R. Volta (1995). A genetic algorithm for the job shop problem, Computers & Operations Research, 22(1): 15-24.
[14] N. Sinha, R. Chakrabarti and P.K. Chattopadhyay (2003). Evolutionary programming techniques for economic load dispatch. IEEE Transactions on Evolutionary Computation, 7(1): 83-94.
[15] J. Kenndy and R.C. Eberhart (1995). Particle swarm optimization, Proc. of IEEE Inter. Conference on Neural Networks, 4: 1942-1948.
[16] K. Price, R.M. Storn and J.A. Lampinen. (2006). Differential evolution: a practical approach to global optimization. Springer Science & Business Media.
[17] X. Li and X. Yao. (2012). Cooperatively coevolving particle swarms for large scale optimization, IEEE Transactions on Evolutionary Computation, 16(2): 210-224.
[18] Z. Yang, K. Tang and X. Yan. (2008). Self-adaptive differential evolution with neighborhood search, Proc. of Congress on Evolutionary Computation IEEE. 1110-1116.
[19] X-C Hao, J-Z Wu, C-F Chien and M. Gen (2014). The cooperative estimation of distribution algorithm: A novel approach for semiconductor final test scheduling problems, J. of Intelligent Manufacturing, 25(5): 867-879.