Forensic Characterization of Liquor Samples by Gas Chromatography-Mass Spectrometry (GC-MS): A Review

Praveen K. Yadav¹, Rakesh M. Sharma¹, *

¹, * Department of Forensic Science, Punjabi University, Patiala, Punjab, India

Received 10 Oct. 2016; Accepted 27 Dec. 2017; Available Online 31 Dec. 2017

Abstract

Alcohol is a subject of forensic research across the world. The forensic characterization of alcoholic beverages is required in cases of death and crimes due to alcohol consumption. In many cases, determining the geographic origin becomes a very important part of the investigation. Therefore, it is important to develop more sensitive methods for the analysis of alcoholic beverages. In this review, an attempt has been made to summarize the work accomplished so far in the field of analysis and detection of alcoholic beverages.

In this review, various sample preparation techniques for GC-MS analysis of alcoholic beverages have been discussed along with its applications. GC-MS based analysis is less time consuming, more sensitive and more accurate.

Key words: Forensic Sciences, Alcoholic beverages, Mortality, Analysis, GC-MS

Abstract

التصويح الجنائي للمشروبات الكحولية باستخدام الكروماتوغرافيا الغازية المَرَجَِّعة بتخطيط الكتلة (GC-MS)، مراجعة علمية

المستخلص

في هذه المراجعة العلمية، تم مناقشة العديد من تقنيات طرقة تتيح تحليل المشروبات الكحولية من أجل التحليل بواسطة الكروماتوغرافيا الغازية الفائقة بخطيط الكتلة مع تطبيقاتها. وعِلى هذا الأساس، تبقى هذه التقنية هي واحدة من التقنيات الأكثر فعالية لتحليل المشروبات الكحولية وتوفر أفضل تحديد نوعية الكائنات المتضررة المختلفة (من ماذا؟ مما تم مقارنته به؟). كما تعد الأقل استهلاكاً للوقت والأكثر حساسية والأكثر دقة.

Keywords: Forensic Sciences, Alcoholic beverages, Mortality, Analysis, GC-MS

© 2017. AJFSFM. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial License.
1. Introduction

Alcohol has been a part of human society and culture for millennia. It is believed that the first alcohol must have been produced when bacteria consumed plant material nearly 1.5 billion years ago. The first evidence of manufacturing of alcohol comes from Mesopotamia, modern day Iraq, around 3500 BCE. Alcohol serves different roles in the life of an individual as well as the society as whole [1]. Heath observed that alcohol can at the same time be a food, a drug and a highly elaborated cultural artifact with important symbolic meanings [2]. Alcohol is used as a beverage served with meals, a thirst quencher, a means of socialization and enjoyment and as a means of intoxication [3,4]. Despite the grand status of alcohol in history, it has grown into a big threat to the society. It is being abused widely, which has resulted in adverse social and health effects [5].

Based upon its use, ethanol can be differentiated into fuel, the one used for scientific (research laboratories), or technical purposes; and ethanol which is used in alcoholic beverages. Ethanol, which is the main psychoactive component in alcoholic beverages, has attracted a lot of attention in recent years for its utility as biofuel. Ethanol is a renewable resource which makes it a suitable substitute for petroleum products. Generally, absolute ethanol is mixed with gasoline for use as fuel [6,7]. Ethanol used for laboratory purposes is of a very high purity, 99% or above. Alcoholic beverages produced all over the world may be categorized into two categories: recorded and unrecorded alcohol [3]. Recorded alcohol is that part of alcohol which is consumed globally and is reflected in the official statistics on production, cross-border trade and sales figures of the country of production. However, a significant part of alcohol consumed in different parts of the world is not reflected or shown in such statistics and surveys. Such alcohols are known as “unrecorded alcohol”. The unrecorded alcohol is further categorized into three types: a) (Licit) Informal alcoholic products (manufactured at small licensed factories using standard methods), b) Illicit alcoholic products (illegally produced in unlicensed small distilleries), c) Surrogate alcoholic products (preparations containing ethanol, which are not intended for human consumption).

According to WHO [8], about 25% of all alcohol consumed globally is unrecorded, but this figure is higher in some countries. Areas with the highest overall alcohol consumption are Europe, USA, and West Pacific Region, with a per capita alcohol consumption of 10.9, 8.4, and 6.8 liters per year, respectively. However, per capita consumption of unrecorded alcoholic beverage is highest in Europe, Africa and the Western Pacific Region (1.9, 1.8 and 1.7 liters pure alcohol, respectively). Unrecorded alcohol, as a proportion of total alcohol consumed, is highest in the Eastern Mediterranean (57%), South-East Asia (47%) and Africa (30%).

1.1. Forensic significance of liquors as evidence

Various economic, social, cultural and government policy factors are responsible for the increasing production and consumption of unrecorded liquors. Since the unrecorded alcohol is produced from readily available raw materials, they are cheap in comparison to licensed liquor. The production and consumption of unrecorded alcohol are major issues related to the beverage industry [4,9]. This problem is especially significant in developing countries. Another aspect of the liquor problem is the high mortalities related to disease caused by alcohol and due to consumption of hooch. Cases pertaining to drunken driving also add to the forensic cases. To make the situation worse, there is no internationally accepted standard method for analyzing liquor samples in forensic cases along with any type of database. In this review paper, an attempt has been made to summarize the current methods available for the analysis of various types of liquors [5].

In the present review, various aspects of analysis of alcoholic beverages using gas chromatography – mass spectrometry (GC-MS) have been studied. Search engines like
Method Type of Beverage	Extraction method	Internal standard used	Column used	Carrier gas and flow rate	Ramp Cycle	Injector and detector temperature	Split ratio	Major compounds reported	Recovery Rate (%)
Moutai Liquor	LLE using Diethyl ether and pentane	Not reported	Set 1: HP-Innowax, Set 2: DB-Petro, DB-1701	Helium	Set 1: 50°C to 230°C (10 min at 2°C/min), Set 2: 50°C to 260°C (30 min at 3°C/min)	Inj - 250°C, Det - MSD	1:30	Hexanoic acid, butanoic acid, octanoic acid, pentanoic acid, ethyl ester of C1 - C10, 2- butanol, 2-nonanol, ethanol, 2-pentanone, 1,1-diethoxyethane, 1,1-diethoxy-2-methyl propane, 2-octen-2-one, furfural, pyrazine and pyridine	NR
Luzhou raw liquor	LLE using Diethyl ether methyl octanoate and octanoic acid	NR	HP-5ms cap column	Helium	1ml/min, 40°C to 200°C at 10°C/min to 220°C at 10°C/min	Inj - 250°C, Det - Quadrupole MS	10:1	2-methylpropanoic acid, Butanoic acid, Pentanoic acid, Hexanoic acid, Nonanoic acid, 1-Propanol, 2-Pentanol, Isoamyl alcohol, 1-Pentanol, Phenylethyl alcohol, 1-Hexanol, Furfuryl alcohol, Ethyl acetate, n-Butyl formate, Ethyl lactate, p-Cresol, 2-pentanone, Heptadecane, Furfuryl Hexanoate	95 - 104% in Beer, 81% to 98% in wine
Beer and Wine	Stir bar sorptive extraction using Ethylene glycol/ PDMS polymer	3,4 - dimethylphenol in absolute alcohol	ZB-Wax column	Helium	2ml/min, 80°C to 230°C (5 min at 5°C/min)	Inj - 230°C, Det - MSD	Transfer line - 280°C	Volatile phenols 4-ethyl phenol, 4-vinyl phenol, 4-ethyl guaiacol, 4-vinyl guaiacol, 4-ethyl phenol, 4-vinyl phenol, 4-ethyl guaiacol, 4-vinyl guaiacol	95 - 104% in Beer, 81% to 98% in wine
Five chinese liquors	HS-SPME using CAR/PDMS fiber	2-octanol	HP-Innowax column	Helium	1ml/min, 50°C to 230°C (10 min at 6°C/min)	Inj - 250°C, Splitless		Ethyl ester, furfuryl hexanoate, Ethyl hexanoate, Ethyl acetate, Ethyl propanoate, 1-Propanol, 2-Methyl-1-propanol, 1-Butanol, 3-Methyl-1-butanol, 1-Pentanol, 1-Heptanol, 1-Octanol, 2-Furanmethanol, Benzyl alcohol, Phenylethyl alcohol, Acetic acid, Butanoic acid, Pentanoic acid, Hexanoic acid, Octanoic acid, Benzoic acid, Pentanoic acid, Hexanoic acid, Octanoic acid, Benzoic acid, Acetaldehyde, 3-Methyl Butanol, Hexanal, Nonanal, Furfural, 2,4-Dimethyl phenol, Phenol, Pyrazines, Isoamyl alcohol	NR
Type of Beverage	Extraction method used	Internal standard used	Column used	Carrier gas and flow rate	Ramp Cycle	Injector and detector temperature	Split ratio	Major compounds reported	
------------------	------------------------	------------------------	-------------	--------------------------	------------	------------------------------------	------------	-------------------------	
Wines	SPME using DVB/CAR/PDMS fiber	3-octanol	DB-Wax capillary column + DB-17 ms capillary column	Helium 1ml/min 35°C → 250°C at 3°C/min	35°C (5 min) → 250°C at 3°C/min to 250°C/min	Inj - 250°C Det - Time of Flight MS Ion source - 250°C Transfer line - 250°C	Splitless	2,3-Butanediol, 4-Carene, 3-Penten-2-one, Diethyl succinate, β-Santalol, Diethyl malonate, Dihydro-2)3H(-thiophenone, Tetrahydro-2)H(-pyranone, Furfural, Nonanol, 3-Methyl-2)5H(-furanone, Ethyl-9-decanoate, Nerol, Octanol	
Merlot Wines	SPME using DVB/CAR/PDMS fiber	NR	Set 1 DB-Wax + DB-1ms capillary column Set 2 DB-5 + DB-Wax capillary column Set 3 DB-Wax + DB-17ms capillary column	Helium 1ml/min 35°C → 250°C at 3°C/min to 200°C at 5°C/min to 250°C/min	30°C → 70°C (5 min) → 200°C at 3°C/min to 250°C/min	Inj - 250°C Det - FID Det temperature - 230°C	Splitless	Propanol, Butanol, 2-methylbutanol, Pentanol, Heptanol, Hexanol, Butan-2,3-diol, Phenylethyl alcohol, Acetic acid, Butanoic acid, Hexanoic acid, Octanoic acid, 2-Decanoic acid, Decanoic acid, Acetaldehyde, 2-Propenal, Butenal, Hexanal, Octanal, Decanal	
Mango Wines	LLE using n-Pentane	Methyl nonanoate in 11% Hydroalcoholic solution	HP-5ms capillary column	Helium 1ml/min 50°C → 230°C at 4°C/min	30°C → 230°C (5 min)	Inj - 230°C Det - FID Same parameters as FID Det - MS	1:10	102 compounds including 40 Esters, 15 alcohols, 12 terpenes, 8 acids, 6 aldehydes and ketones, 4 lactones, 2 phenols, 2 furans, and 13 miscellaneous compounds	

Continued on the next page
Reference	Type of Beverage	Extraction Method	Internal Standard Used	Column Used	Carrier Gas and Flow Rate	Ramp Cycle	Injector and Detector Temperature	Split Ratio	Major Compounds Reported	Recovery
[26]	2-Propanol	Direct Injection	NR	HP-FFAP	Helium 60°C (in 10 min)	270°C	3.0µl/min	1:100	Ethyl acetate, Ethanol, 2-Methyl-1-Propanol, Ethyl lactate	62%
[99]	Direct Injection	Direct Injection	NR	HP-FFAP	Helium 60°C (in 10 min)	270°C	3.0µl/min	1:100	Methyl alcohol, Ethanol, Isoamyl alcohol, t-Anethole, Propionic acid, 1-Butanol, 1-Propanol, Ethyl acetate, Formic Acid, Formamide, Acetaldehyde, Methyl amine, 2-Propanol, Methyl formate, Trioxan	65%
[36]	Direct Injection	Direct Injection	NR	HP-FFAP	Helium 60°C (in 10 min)	270°C	3.0µl/min	1:100	Methyl alcohol, Ethanol, Isoamyl alcohol, t-Anethole, Propionic acid, 1-Butanol, 1-Propanol, Ethyl acetate, Formic Acid, Formamide, Acetaldehyde, Methyl amine, 2-Propanol, Methyl formate, Trioxan	65%

Continued on the next page
No.	Type of Beverage	Extraction method	Internal standard used	Column used	Carrier gas and flow rate	Ramp Cycle	Injector and detector temperature	Split ratio	Major compounds reported			
11.	Homemade commercial samogon, tequila, whiskey, cognacs	Direct injection	Cyclohexane	HP-FFAP capillary column	Helium 1ml/min	70°C (5min) to 190°C (20min) at 10°C/min	Inj. 240°C Det. - FID Det. temp. 220°C Det. - MS Ion source 240°C Transfer line 180°C	1:15	Diethyl ether, Acetaldehyde, Acetone, Ethyl acetate, Methanol, Isopropanol, Methyl ethyl ketone, t-Butanol, 1-Propanol, Crotonaldehyde, Methyl butyl ketone, Isobutanol, Ethanol			
12.	Alcoholic beverages produced by Whey fermentation	LLE using Dichloromethane	4-nonanol	CP-Wax capillary column	Helium 60°C (5min) to 250°C (20min) at 3°C/min to 255°C at 1°C/min	Inj. 20°C to 250°C at 180°C/min Det. - Ion trap MS Splitless	Acetaldehyde, Ethyl acetate, Ethanol, 2-Butanol, 1-Propanol, 2-Methyl-1-propanol, 2-Methyl-1-butanol, Acetic acid, 3-Methyl-1-butanol, 4-Nonanol					
13.	Mezcal	Direct injection for major components and SPME using Car/DVB fiber for minor components	2-Pentanol	HP-Innowax capillary column for major components HP-FFAP capillary column for minor components	Helium 1.5ml/min	40°C (3min) to 120°C at 3°C/min to 200°C at 6°C/min	Inj. 220°C Det. – FID Det. Temp. 250°C Det. – Mass selective detector Ion Source 230°C Transfer line 230°C		Ethanol, Methanol, n-Propanol, 2-Butanol, 2-Methyl-propanol, 2-Methyl-1-butanol, 3-Methyl-1-butanol ethyl ester, Acetic acid			
14.	Chinese rice wines	HS-SPME using following fibers 1(DVB/CAR/PDMS 2(DVB/PDMS 3(PDMS	2-Octanol	DB Wax capillary column	Helium 2ml/min	50°C to 80°C at 20°C/min to 230°C at 3°C/min	Inj - 250°C Det. – Mass selective detector Ion source 250°C Transfer line 230°C		97 Compounds including 28 ester, 1 acid, 3 ketones, 13 alcohol, 8 acid, 17 aromatic compound, 3 lactones, 6 phenols, 3 sulphides, 9 furans, 6 nitrogen containing compounds			
15.	Spirit germam fruit spirit and Mexican fruit	Static headspace with trap enrichment	t-Butanol	Rtx-1701 capillary column	Nitrogen 37°C (6min) to 100°C at 10°C/min to 200°C at 20°C/min	Inj. - 220°C Splitless	Methanol, 1-Propanol, 1-Butanol, 2-Butanol, Isobutanol, 2/3-Methyl-1-butanol, Ethyl acetate, Ethyl lactate, Benzaldehyde, 1-Hexanol, Ethyl octanoate					
16.	Surrogate Alcohol of Russia	Direct injection	Acetone-D6	HP-FFAP capillary column	Helium 60°C (4min) to 110°C at 5°C/min		Inj. - 200°C Det. – Mass selective Detector Ion source 230°C Transfer line 280°C		Ethanol, 1-Propanol, Isobutanol, Isoamyl alcohol			
Reference	Type of Beverage	Extraction method used	Internal standard used	Column used	Carrier gas and flow rate	Ramp Cycle	Injector and detector temperature	Split ratio	Major compounds reported	Recovery	Reference	
-----------	------------------	------------------------	------------------------	-------------	--------------------------	------------	-----------------------------------	-------------	--------------------------	----------	-----------	
18.	Surrogate alcohol from South-Eastern Nigeria	LLE with Dichloromethane	SR	CB-Wax capillary column	Helium 1ml/min	50°C → 1min (to 160°C at 5°C/min) to 220°C → 10min (at 25°C/min)	Inj. - 220°C	Det. – MS/MS triple quadrupole MS	1:1	Ethanol, Methanol, Acetaldehyde, 1-Propanol, 2-Butanol, Isobutanol, Amyl alcohol, 2-Phenyl ethanol, Ethyl acetate, Ethyl lactate	94 – 103% for Methanol, 95 – 97% for Ethanol	[64]
19.	Whiskey and Gao-Liang	Direct injection	2-Pentanol and Acetonitrile	CP-Wax 58 CP Megapore capillary column	Nitrogen 3ml/min	30°C → 2min (to 65°C at 5°C/min to 250°C → 1min)	Inj. - 210°C	Det. – FID	Splitless	Methanol and Ethanol	94 – 103% for Methanol, 95 – 97% for Ethanol	[88]
20.	Greek distilled alcoholic beverages	Direct injection	Pentanol in absolute ethanol	CB Wax 57 capillary column	Helium 2ml/min	40°C → 5min (to 200°C → 20min at 30°C/min)	Inj. - 200°C	Det. – FID	1:60	Acetaldehyde and Methanol		[60]
21.	Wine and Whiskey	Direct injection	Acetonitrile	CP-Wax 58CB capillary column	Nitrogen 3ml/min	38°C → 3min (to 250°C → 1min at 50°C/min)	Inj. – 210°C	Det. – FID	Splitless	Methanol and ethanol	101-107% for Wine, 94-103% for Whiskey	[85]
22.	Chinese Dahuaxiang liquors	1(LLE using Dichloromethane 2(SPME sol gel fiber of γ-methylroloxypropyl n-Butyl acetate and 2-Octanol	HP-5 capillary column	Helium 1.2ml/min	37°C → 8min (to 50°C at 3°C/min to 100°C at 4°C/min to 210°C → 10min at 5°C/min)	Inj. - 250°C	Det. – Mass selective detector	Splitless	57 compounds including 5 alcohols, 30 esters, 6 acids, 3 aldehydes, 4 acetals, 5 aromatic compounds, 2 ketones, 2 miscellaneous compounds		[50]	
23.	Turkish Raki	SPME	2-Octanol	GL Science High Resolution TC-Wax capillary column	NR	35°C to 80°C → 2min (at 2°C/min to 150°C → 2min (at 2°C/min to 195°C at 2°C/min to 250°C at 4°C/min)	Inj. - 150°C	Det. – FID	Splitless	Acetaldehyde, Ethyl acetate, Methanol, 2-Propanol, 1-Propanol, Butyl acetate, Amyl acetate, 3-Pentanol, n-Butanol, 2-Butanol, 3-Methyl-1-pentanol, 1-Pentanol, Ethyl lactate, 1-Hexanol, p-Allylanisole, t-Anethole, p-Anisaldehyde, p-Anisyl alcohol		[59]
24.	Lemon liquor (Limoncello)	SPME using PDMS fiber	NR	SLB – 5ms capillary column	Helium	40°C to 250°C → 2min (at 3°C/min	Inj. - 250°C	Det. – MS	Ion source - 200°C		[35]	
Reference	Type of Beverage	Extraction method used	Internal standard used	Column used	Carrier gas and flow rate	Ramp Cycle	Injector and detector temperature	Split ratio	Major compounds reported	Recovery		
-----------	------------------	------------------------	------------------------	-------------	--------------------------	------------	-----------------------------------	-------------	--------------------------	---------		
[702]	Lemon flavour liquor	LLE using hexane	NR	SE 52 capillary column	Helium 50°C to 70°C (at 4°C/min to 200°C) 5min(at 5°C/min to 300°C) 10min(Inj. – 250°C	Det. – FID	Det. Temp. - 300°C	1:45	Lactic acid, Oxalic acid, Malonic acid, Phosphoric acid, Succinic acid, Malic acid, Citric acid, Ascorbic acid, Glycerols, meso-erithryol, mio-inositol, L-arabinose, rhamnose, fructose, glucose, saccharose, ethanol, acetaldehyde, ethyl acetate, methanol, propanol, i-butanol.		
[86]	Apple fermented beverages	Direct injection	Heptanoic acid	ZB-Wax capillary column	Nitrogen 2.5ml/min 40°C)5min(to 150°C)10min(at 10°C/min to 200°C)5min(at 10°C/min to 220°C at 10°C/min	Inj. - 220°C	Det. – FID	Det. Temp. - 230°C	1:12	Ethyl ethanoate, Ethyl butanoate, 3-Methylpropyl ethanoate, Ethyl hexanoate, Butyl ethanoate, 3-Methylbutyl ethanoate, Hexyl ethanoate, 2-Hydroxy ethyl propanoate, Ethyl octanoate, Ethyl decanoate, Diethyl butanedioate, Ethyl dodecanoate, Ethanal, Butanoic acid, Octanoic acid, 3-Methyl-1-butanol, 1-Hexanol, 2-Hexanol, 2-Phenylethyl alcohol, 2-Hexanone, 2-Octanone		
[17]	Sparkling wines	HS-SPME using DVB/CAR/PDMS fiber	TRAP	Supelco wax 10 capillary column	Helium 1ml/min 40°C)2min(to 150°C)1min(at 4°C/min to 200°C)1min(at 4°C/min to 220°C 15°C/min	Inj. - 250°C	Quadrupole Trace MS	NR	Lilial octanal, 2-Octanone, Isopropyl disulfide, Methylthiophen-3-one, α-Amyl-cinnanaldehyde, Ethyl-2-furancarboxylate, 2-Acetyl-furan, 5-Methylfurfural			
Type of Beverage	Extraction Method	Internal Standard Used	Column Used	Carrier Gas and Flow Rate	Ramp Cycle	Injector and Detector Temperature	Split Ratio	Major Compounds Reported	Recovery	Reference		
------------------	-------------------	------------------------	-------------	---------------------------	------------	------------------------------------	-------------	-----------------------------	----------	-----------		
Whiskey	1 (LLE using Dichloromethane)	Octan-3-ol + Methylpentan-2-ol in hydroalcoholic solution 1:1 v/v	DB-Waxetr capillary column	Helium 1 ml/min	40°C 1 min (to 120°C) 2 min (at 1°C/min to 180°C) 1 min (at 1.7°C/min to 220°C) 10 min (at 25°C/min)	Inj. – 260°C Det. – FID Det. Temp. - 300°C	Splitless	Propen-1-ol, 2-methyl propan-1-ol, Butan-1-ol, 2-Methyl butan-1-ol, Hexan-1-ol, Methanol, 2-Phenylethanol, Benzyl alcohol, Isoamyl acetate, Ethyl butanoate, Ethyl hexanoate, Ethyl lactate, Ethyl octanoate, Ethyl decanoate, Diethyl succinate, Ethyl dodecanoate, Hexanoic acid, Octanoic acid, Decanoic acid, Acetaldehyde, Syringaldehyde, Furfural, 5-Methyl-2-furfural, Guaiacol	>80%	[18]		
Maldova Sun and Muscat wines	1 (SPME using following fibers) - a (CAR/DVB/PDMS) b (PDMS) c (CAR/PDMS) d (DVB/PDMS) e (Polyacrylate)	2 (Solid phase extraction using C-18 isolute cartridge)	Supelcowax 10 capillary column	Helium 0.8 ml/min	40°C 1 min (to 200°C at 5°C/min) to 230°C 9.5 min (at 20°C/min)	Inj. - 220°C Det. – Quadrupole MS with triple axis detector Ion source - Transfer line - 240°C	Splitless	Geranic oxide 1, Geranic oxide 2, 1,3,5,5 – Tetramethyl-1,3-cyclohexadiene, Isoterpinolene, β-Myrcene, α-Terpinene, Limonene, β-cis-ocimene, m-Cymene, Terpinolene, Cis Rose oxide, Cis-lineleol oxide, Linalool, Hotrienol, Ocimenol-1, Ocimenol-2, α-Terpineol, β-Citronellol, 4,5,9,10 – Dihydroisolongfolene	80%	[77]		

Table 1 - (continued)
No.	Class	Primary Constituent	Extraction Method	Internal Standard	Column	Carrier gas & flow rate	Ramp Cycle	Injector & Detector temp	Split ratio	Major compounds reported	Recovery (%)	Reference
31.	Chinese Moutai and Gujingyong liquor	1. LLE using Diethyl ether			DB-Wax capillary column	Helium, 2 ml/min				2,5-Dimethyl purazine, 2,6-Dimethyl pyrazine, 2-Ethyl pyrazine, 2,3-Dimethyl pyrazine, 2-Ethyl-6-methyl pyrazine, 2-Ethyl-5-methyl pyrazine, 2-Ethyl-3-methyl pyrazine, 2,3,5-Trimethyl pyrazine, 2,6-Dimethyl pyrazine, 2,5-Dimethyl-3-ethyl pyrazine, 2,3-Dimethyl-5-ethyl pyrazine, 3,5-Dimethyl-2-ethyl pyrazine, 2,3,5,6-Tetramethyl pyrazine, 3,5-Dimethyl-2-methyl pyrazine, 2,3,5,5-Trimethyl-3-isobutyl pyrazine, 2-Methyl-6-vinyl pyrazine, 2-Acetyl-3-methyl pyrazine, 2-Butyl-3,5-dimethyl pyrazine, 2-Methyl-6-cis-1-propyl pyrazine, 2-Acetyl-3,5-dimethyl pyrazine, 2,5-Dimethyl-3-pentyl pyrazine, 2,3-Dimethyl-5-(2Z)-1-propenyl pyrazine.	83 – 119% for synthetic liquor, 85 – 100% for Moutai liquor, 92 – 117% for Guijingyong liquor	[63]
32.	Gerenache Red wine	2-Octanol and 4-Methyl-2-Pentanol	LLE using Freon 113		HP-5 capillary column	Helium, 1 ml/min				45 compounds including 8 acids, 7 alcohols, 5 aldehydes and ketones, 15 esters, 5 lactones, 5 phenols, 2 thiols	[76]	
33.	Ciders	Microextraction using C18 sorbent			BP-20 capillary column	Helium, 1 ml/min				2-Methyl propan-1-ol, Butan-1-ol, 3-Methylbutyl acetate, 4-Methyl pentan-2-ol, Heptan-2-one, Isopentan-1-ol, Ethyl hexanoate, 1,2,4-Trimethyl benzene, Propan-1-ol, Hexyl acetate, Acetoin, Ethyl lactate, Hexan-1-ol, Nonan-2-one, Ethyl octanoate, Acetic acid, 2-Methyl propanoic acid, Ethyl decanoate, Butanoic acid, Diethyl succinate, Methional, 2-Methyl butanoic acid, 2-Phenyl ethyl acetate, Hexanoic acid, Benzyl alcohol, 2-Phenylethyl alcohol, 4-Ethyl guaiacol, Octanoic acid, 4-Ethyl phenol, Decanoic acid	[62]	
Google Scholar, ScienceDirect and PubMed were searched using combinations of keywords such as gas chromatography-mass spectrometry (GC-MS), alcoholic beverages, wine, whiskey, illicit liquor, geographic origin, characterization, etc. for literature published after 2000.

2. Qualitative analysis

Qualitative analysis or identification of components of different alcoholic beverages can be done using comparison of analytical parameters such as MS spectra with standards stored in the form of databases. Most common MS databases are provided by the National Institute of Standards and Technology (NIST) and Wiley. Although these databases provide a definite identification, it is advisable to run standard compounds to compare the retention times with that of an analyte in the samples. Running standards and comparing their retention time also helps in differentiating isomeric compounds such as 1-butanol and 2-butanol, 1-pentanol, 2-pentanol and 3-pentanol, etc.

3. Quantitative analysis

Apart from qualitative analysis, the determination of the concentration of the components is also important for identifying an alcoholic beverage. This process includes addition of internal standards to calculate the recovery percentage. Standards are also used to prepare the calibration curves which again help in quantifying the components. These parameters are discussed below.

4. Internal Standard

To compensate for variations in the analytical method, a known concentration of an internal standard is added to the sample during calibration and validation of the method as well as in practical application. The response coefficient of the internal standard is known or arbitrarily fixed [10]. Its concentration is in about the same range as that of the analyte(s) of interest. It is added prior to any chemical derivatization or any other treatment of the sample [11,12,13]. The internal standard must not be present in the sample and there must be no compound present that has the same retention time in the chromatogram. It should elute near the peak of interest. It must be chemically similar to the analytes of interest and must not react with any sample components. In Table-1, the internal standards used in the analysis of alcoholic beverages have been summarized. 2-octanol and 2-propanol are the most commonly used internal standards.

5. Sample Preparation

5.1. Solvent Extraction

Extraction methods employing solvents such as liquid - liquid extraction, etc. are time consuming and involve many steps. Such methods have the need to rinse the organic extract with an aqueous solution of different pH to remove acids and non-volatile compounds from the sample, which might result in downsizing of the extraction procedure. The removal of non-volatile substances from the samples is necessary because of the risk of chromatographic column contamination, and possible artifact formation in the hot injector [14]. Liquid-liquid extraction using ammonium sulphate and dichloromethane [15], 4-ethylphenol and 4-ethylguaiacol [16], pentane and dichloromethane (3:1) and carbon disulphide [17], sodium sulphate and dichloromethane [18], pentane, pentane-diethyl ether (2:1 v/v) and have been reported. Castro et al. used rotatory and continuous liquid-liquid extraction for the extraction of volatile compounds of ‘fino’ sherry wines [19].

5.2. Headspace Extraction

Headspace sampling is essentially a separation technique in which volatile components of the gas phase above a liquid or solid sample matrix are analyzed. Headspace can be either static or dynamic. Both static [20] and dynamic [21] have been successfully used for the analysis of alcoholic beverages. Static headspace has shown great advantage in which intermediate trap phases were involved [22,23]. Headspace can be combined efficiently with SPME to produce better results [24-26].
Some variants of the headspace technique are the purge and trap methods. In purge and trap analysis, a sample is continuously purged with an inert gas, and volatiles are transported from the sample to a trap with sufficiently high retention power. After purging, the trap is heated and the trapped volatiles are released onto a GC column [27,28]. Using purge and trap extraction, Mamede and Pastore extracted 25 volatile components in the aroma of the Chardonnay and Pinot Noir fermented grape musts [29]. Static headspace and Purge and trap extraction was used by Kleinova and Klejdus for extraction of volatiles in beer [30]. Trap materials used include Carbotrap and Carbosieve sandwich trap. By this process, the volatile analytes are pre-concentrated prior to GC separation, so that a splitless transfer is possible. The process of loading absorbent as well the sample is simple and easy to operate. This trap enrichment results in significant high peak areas. It has been observed that single trap extraction cycle results in an increase of almost 33–35 times in peak areas compared to static headspace [28].

5.3. Solid Phase Microextraction (SPME)

SPME has three modes of operation: the direct-immersion extraction (DI-SPME), headspace extraction (HS-SPME), and membrane protected SPME [31]. While selecting fibers, parameters such as sensitivity, lack of affinity for interfering compounds, fast desorption, and low sample carry over must be taken into consideration [32,33]. Stashenko et al. [32] reported seven types of SPME fibers available commercially, which include 1) Non-polar polydimethylsiloxane (PDMS), 2) Polar Polycrylate (PA), 3) Polar Carbowax/Divinyl benzene (CAR/DVB), 4) Carbowax/Template resin 5) Mixed polarity polydimethylsiloxane/divinyl benzene (PDMS/DVB), 6) Mixed polarity Carbowax/Polydimethylsiloxane (CAR/PDMS), and 7) Mixed polarity Divinyl benzene/Carbowax/Polydimethylsiloxane (DVB/CAR/PDMS).

In alcoholic beverages, a major portion is constituted by volatile components. Therefore, the SPME is often used in combination with headspace [26,27, 34-39]. The most common fiber used is Polydimethylsiloxane (PDMS) [19,24,30,36,40-45]. Polydimethylsiloxane (PDMS) fibers often provide the highest efficiency along with extracting the maximum number of compounds for volatile polar compounds [31]. Carbowax/polydimethylsiloxane (CAR/PDMS) fiber can also be used for the extraction of trans-level volatile components from alcoholic beverages [18,19,39,42,43]. The Polycrylate fiber [19,42] is another type of fiber commercially available for extraction of volatile compounds. However, polyacrylate as well as divinyl-benzene fibers show a considerable affinity to ethanol and are therefore less suited for the extraction of other volatile components from alcoholic beverages [65].

From a theoretical point of view, the amount of analyte extracted into the fiber coating is the same at equilibrium for direct immersion and headspace sampling provided that the sample vial and the volume of the liquid sample and the gaseous headspace are the same. However, headspace has the large advantages of excluding non-volatile substances and of avoiding fiber corrosion by the liquid phase. Due to the accumulation of the analyte on the fiber, much more analyte can be injected into the GC-MS than by static headspace injection, which leads to strongly increased sensitivity. However, SPME suffers from a lack of precision and high fiber to fiber variations. Highest reproducibility is attained only when all calibration and measurements are performed continuously with the same fiber and by use of deuterated internal standards. Moreover, the high price of fibers along with their fragile nature makes them less preferable. Furthermore, the variety of coatings currently available commercially for extraction procedures is limited. Due to this, the number of components which can be extracted using this method is severely limited.

5.4. Stir-Bar Sorptive Extraction (SBSE)

To overcome the limitations of SPME, SBSE was developed in which a magnetic stir bar, coated with polydimethylsiloxane (PDMS), is rotated in an aqueous sample. Once the equilibrium is reached, the magnetic stir bar is first rinsed with distilled water to remove the excess of the sample adhering to the outer surface of the magnetic bar. Then, the magnetic bar is placed on the liner of thermal
or liquid desorption system to enable GC analysis [27,46]. This extraction technique is new, and its application in the field of beverage analysis is yet to be explored. At present, the only polymer commercially available as stir-bar coating is that of polydimethylsiloxane (PDMS)[47]. Coelho et al. [46] used SBSE with liquid desorption (SBSE-LD) followed by large volume injection and subsequent qualitative and quantitative analysis with GC-MS of varietal and fermentative volatiles in sparkling wines. SBSE extraction greatly influenced the quantitation of major as well as minor components. A stir bar recovery of polar analytes is low. Therefore, a stir bar coated with materials that shows higher affinity for polar compounds would improve SBSE flexibility and selectivity while maintaining its concentration capacity [47,48].

5.5. Selecting an appropriate extraction method

The analytical performance of an extraction method may greatly affect the results of (GC-MS) analysis. A good extraction technique must have good linearity, a wide range of extracted components, low detection limits, high recovery for more components and high sensitivity [49]. As discussed above, several isolation and concentration methods developed for isolation and concentration of analytes include solvent extraction, headspace extraction, SPME and SBSE. With solvent extraction, all volatile compounds require solvent evaporation, which might result in loss or degradation of some of the components and formation of adducts originally absent in the sample [29]. Headspace techniques are fast and no sample preparation is required, but they suffer from a disadvantage of low sensitivity. SPME and SBSE are effective extraction techniques and can be used for both direct extraction and extraction through headspace. Contrary to SPME, where numerous fiber coating materials are available commercially, only one type of stir bar coating is available for SBSE i.e. of non-polar medium polydimethylsiloxane (PDMS). This limits the sensitivity and number of compounds extracted using SBSE [31].

Caldeira et al. [18] observed that out of LLE and HS-SPME, HS-SPME produces better results in terms of number of components extracted as well the quantity extracted. Wang et al. [50] compared the analytical efficiency of SPME using sol-gel and LLE method in identifying the components of alcoholic beverages. SPME appeared to be a better technique for extraction of volatile components from alcoholic beverages.

Demyttenaere et al. [51] compared SPME using three fibers with newly developed SBSE. Qualitatively, both SPME and SBSE performed equally; however, SBSE showed better enrichment of identified components, even when higher split ratios were used. This was the result of a higher amount of polymer that covers the bar, proving higher sensitivity of SBSE. However, SBSE suffers from the limitation of ineffective desorption. When used with split desorption-split injection mode, because of lacking desorption device, it does not improve significantly the results obtained by SPME.

6. Detector conditions

Detectors are an integral part of any chromatographic technique. Different detectors provide differing sensitivities and have been successfully used to identify the separated components. Detectors used include FID [57-61], ECD [34], and MS [62-64]. Mass spectrometric detectors provide high sensitivity, low detection limits and high qualitative capabilities. Mass spectrometers use the differences in mass-charge ratio i.e. m/z ratio of ionized atoms or molecules or fragments for separation. The fragmentation pattern of a compound is very specific and can be used for qualitative and quantitative identification. There are various types of analyzers available, for e.g. quadruples, time of flight analyzers, magnetic sectors, fourier transform, and quadruple ion traps. However, quadruple and time of flight mass analyzers are most common. Various detectors used for the analysis of alcoholic beverages include Flame ionization detector [12,52,66,67], time of flight mass detector [25,36,37,67], and quadruple mass detector [13,68]. Quadruple mass analyzers produce classic mass spectra with good reproducibility. These are relatively low cost systems. However, quadruples produce low resolution mass spectra and their peak height vs. mass response must be tuned.
Time of flight (TOF) MS are the fastest mass analyzers, significantly reducing the analysis time and highest practical range of all other mass analyzers. Ion trap mass analyzers have the best resolution of all mass analyzers. Ion trap mass analyzers help in non-destructive ion detection and produce a stable mass calibration. However, ion trap mass analyzer suffers from the limitation of narrow dynamic range, and the results are comparatively less reproducible [69].

7. Applications of GC-MS

7.1. Identification and characterization of aroma components of alcoholic beverages

The volatile fraction of liquors is responsible for the organoleptic properties of the liquors and their quality. Therefore, the characterization of the volatile fraction becomes an important part in maintaining the quality of liquors [70,71]. Some volatile components are universally found in all liquors and some volatile components are specific to a certain type of alcoholic beverage. Such volatile components can be used in differentiating the different liquors [13]. A gas chromatography with mass spectrometric detector is used to create component profiles of various alcoholic beverages traditionally manufactured in different countries. Volatile components of beer [72,73], wine [24,74-77] whiskey [78], rum [79], tequila [80] and other traditional alcoholic beverages [56,71,83] and other alcoholic beverages [88,50,53,56,71,72] have been reported. Table 1 illustrates the different types of components reported in different studies.

7.2. Congener analysis

Congeners are all compounds in an alcoholic beverage other than water and ethanol that assist in the distinctive aroma, flavor and appearance of the beverage [81]. These congenic products which distil along with the ethanol after fermentation provide a “fingerprint” that can assist in identifying the type of spirit. The final concentration of congeners in the alcoholic beverage broadly depends on the raw materials used for fermentation, various parameters of fermentation used, and the distillation process. Around 600-800 congeners have been reported in beer, spirits and wines. The concentration of different congeners and their relative concentration must be taken into consideration while interpreting the results of congener analysis [82]. Congeners can be produced either by the cross-reaction of different fermentation products [25, 83] or by degradation of amino acids [81]. The production of congeners is also affected by availability of amino acids, presence of other carbon sources such as carbohydrates, and different strains of yeast fermenting at variable rates consequently producing different congener profiles. Another factor affecting congener profiles is the distillation. Although distillation results in decrease of total congener volume in an alcoholic beverage, the relative congener concentration produced during the fermentation is increased. Most of the congeners having boiling points similar to ethanol are retained [81]. Maturation and secondary fermentation can also result in a change in the concentration of congeners in alcoholic beverages.

7.3. Geographic origin of alcoholic beverages

Determination of geographic origin of different alcoholic liquors is an important aspect of forensic investigation. Determination of geographic origin is a method of authenticating the liquor samples. By application of chemometric tools such as principal component analysis (PCA), linear discriminant analysis (LDA), cluster analysis (CA), partial least square discriminant analysis (PLS-DA), stepwise linear discriminant analysis (SLDA), etc., the alcoholic beverages from different geographical origins can be differentiated. These chemometric tools process the data obtained from GC-MS and overcome the resource limitations of detecting equipment to provide statistical separation of different categories [45]. High accuracy rates of classification (above 80% in every case) have been reported by Cheng et al. [45], Counet et al.[84], Cynkar et al. [85], and Berna et al. [86]. More research must be done in this field to validate the available results.

7.4. Adulteration of alcoholic beverages
Methanol is cheap and readily accessible; therefore, it is one of the most common adulterants used in alcoholic beverages, especially in developing countries. These have been used in the production of imitated spirits and wine [87]. Its accidental intake results in severe intoxication due to formation of formic acid, which has a long half-life and results in severe acidosis. There have been several methods reported for qualitative and quantitative analysis of methanol in alcoholic beverages. Wang et al. used direct injection capillary gas chromatography for rapid determination of methanol [87]. Simultaneous determination of ethanol and methanol in alcoholic beverages have been reported by Zhang et al. [61] and Wang et al. [88]. The determination of methanol and its derivatives in illegally produced unrecorded alcoholic beverages have been studied using GC-MS [60,68].

7.5. Analysis of unrecorded and surrogate alcohols

Unrecorded alcohols consist of illicit liquors and traditional alcoholic beverages. The main purpose of manufacturing such alcoholic beverages is tax evasion, profit, and to impede law enforcement agencies. The alcohol content varies significantly, and their quality is suspicious. Traditional alcoholic drinks are location specific and are manufactured using raw materials found in that area. Unrecorded alcoholic beverages have been analyzed using gas chromatography–flame ionization detection by Mapitse et al. [66]. Surrogate alcohols include alcohol containing medicines and other spirits such as fluids for lighting fires and after-shaves [55,64].

8. Conclusion

The forensic analysis of alcoholic beverages constitutes a very important position in many toxicological cases. In this review, various methods for extraction of various volatile components were discussed along with their advantages and limitations. Furthermore, the application of GC-MS in qualitative and quantitative determination of volatile components of alcoholic beverages was discussed. From the literature review, SPME is the best extraction method available. It is evident that far too little analytical work has been done in the field of determining geographic origin using aroma components of liquors. More work is being done in this field and, therefore, the present review is an important addition to knowledge in this area.

References

1. Nordegren T. The A-Z Encyclopedia of Alcohol and Drug Abuse. First Edit. Florida: Brown Walker Press; 2002.
2. Thun MJ, Peto R, Lopez AD, Monaco JH, Henley SJ, Heath Jr CW, Doll R. Alcohol consumption and mortality among middle-aged and elderly US adults. N Engl J Med. 1997;337(24):1705-14. https://doi.org/10.1056/NEJM199712113372401, PMID:9392695
3. Chakrabarti A, Rai B, Panda S. Producer, sellers and drinkers - studies of noncommercial alcohol in nine countries. Int Cent alcohol policies Monogr Ser. 2012;33–8.
4. Gururaj G, Murthy P, Girish N, Benegal V. Alcohol related harm: Implications for public health and policy in India. Bangalore: NIMHANS. 2011. PMCid:PMC3209979
5. Martin C. Forensic issues in alcohol testing. 1st ed. Karch SB, editor. Boca Raton: CRC press, Taylor and francis group; 2008.
6. Hansen AC, Zhang Q, Lyne PW. Ethanol–diesel fuel blends—a review. Bioresour Technol. 2005;96(3):277-85. https://doi.org/10.1016/j.biortech.2004.04.007, PMID:15474927
7. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549-56. https://doi.org/10.1016/j.tibtech.2006.10.004, PMID:17050014
8. World Health Organization, World Health Organization. Management of Substance Abuse Unit. Global status report on alcohol and health, 2014. World Health Organization; 2014.
9. Babor T, Caetano R, Casswell S, Edwards G, Giesbrecht N, Graham K, et al. Alcohol: No ordinary commodity Research and public policy. Second Edi. New york: Oxford University Press; 2010. https://doi.org/10.1093/acprof:oso/9780199551149.001.0001
10. Vial J, Jardy A. Quantitation by Internal Standard. In: Cazes J, editor. Encycl. Chromatogr. New york: Marcel Dekker; 2004. p. 1–2.

11. McNair HM, Miller JM. Qualitative and Quantitative Analysis. Basic Gas Chromatography, Second Edition.:129-44.

12. Pino JA, Queris O. Analysis of volatile compounds of mango wine. Food Chem. 2011;125(4):1141-6. https://doi.org/10.1016/j.foodchem.2010.09.056

13. Zheng J, Liang R, Wu C, Zhou R, Liao X. Discrimination of different kinds of Luzhou-flavor raw liquors based on their volatile features. Food Res Int. 2014;56:77-84. https://doi.org/10.1016/j.foodres.2013.12.011

14. Plutowska B, Wardencki W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages–A review. Food chem. 2008 Mar 1;107(1):449-63. https://doi.org/10.1016/j.foodchem.2007.08.058

15. Ortega C, López R, Cacho J, Ferreira V. Fast analysis of important wine volatile compounds: Development and validation of a new method based on gas chromatographic–flame ionisation detection analysis of dichloromethane microextracts. J Chromatogr A. 2001;923(1):205-14. https://doi.org/10.1016/S0021-9673(01)00972-4

16. Farina L, Boido E, Carrau F, Dellacassa E. Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. J Chromatogr A. 2007;1157(1):46-50. https://doi.org/10.1016/j.chroma.2007.05.006, PMid:17517420

17. Bosch-Fusté J, Riu-Aumatell M, Guadayol JM, Caixach J, López-Tamames E, Buxaderas S. Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography–mass spectrometry (GC–MS) analysis. Food Chem. 2007;105(1):428-35. https://doi.org/10.1016/j.foodchem.2006.12.053

18. Caldeira M, Rodrigues F, Perestrelo R, Marques JC, Câmara JD. Comparison of two extraction methods for evaluation of volatile constituents patterns in commercial whiskeys: Elucidation of the main odour-active compounds. Talanta. 2007;74(1):78-90. https://doi.org/10.1016/j.talanta.2007.05.029, PMid:18371616

19. Castro R, Natera R, Benitez P, Barroso CG. Comparative analysis of volatile compounds of ‘fino’ sherry wine by rotatory and continuous liquid–liquid extraction and solid-phase microextraction in conjunction with gas chromatography–mass spectrometry. Anal Chim Acta. 2004;513(1):141-50. https://doi.org/10.1016/j.aca.2004.02.002

20. Punia BS, Yadav PK, Bumbrah GS, Sharma RM. Analysis of illicit liquor by Headspace Gas Chromatography–Mass Spectrometry (HS-GC-MS): A Preliminary Study. J AOAC Int. 2017;100(1):109-25. https://doi.org/10.5740/jaoacint.16-0214, PMid:28825540

21. Rodrigues F, Caldeira M, Câmara JD. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC–qMSD for evaluation the chemical profile in alcoholic beverages. Anal Chim Acta. 2008;609(1):82-104. https://doi.org/10.1016/j.aca.2007.12.041, PMid:18243877

22. Morales MT, Aparicio R, Rios JJ. Dynamic headspace gas chromatographic method for determining volatiles in virgin olive oil. J Chromatogr A. 1994;668(2):455-62. https://doi.org/10.1016/0021-9673(94)80139-8

23. Zhang Z, Pawlisyn J. Headspace solid-phase microextraction. Anal chem. 1993;65(14):1843-52. https://doi.org/10.1021/ac00062a008

24. Luo T, Fan W, Xu Y. Characterization of Volatile and Semi-Volatile Compounds in Chinese Rice Wines by Headspace Solid Phase Microextraction Followed by Gas Chromatography-Mass Spectrometry. J Inst Brew. 2008;114(2):172-9. https://doi.org/10.1002/j.2050-0416.2008.tb00323.x

25. Weldegergis BT, de Villiers A, McNeish C, Seethapathy S, Mostafa A, Górecki T, Crouch AM. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCx GC–TOFMS). Food Chem. 2011;129(1):188-99. https://doi.org/10.1016/j.foodchem.2010.11.157

26. Cheng P, Fan W, Xu Y. Quality grade discrimination...
tion of Chinese strong aroma type liquors using mass spectrometry and multivariate analysis. Food res int. 2013;54(2):1753-60. https://doi.org/10.1016/j.foodres.2013.09.002

27. de Koning S, Janssen HG, Udo AT. Modern methods of sample preparation for GC analysis. Chromatographia. 2009;69(1):33. https://doi.org/10.1365/s10337-008-0937-3

28. Schulz K, Dreßler J, Sohnius EM, Lachenmeier DW. Determination of volatile constituents in spirits using headspace trap technology. J Chromatogr A. 2007;1145(1):204-9. https://doi.org/10.1016/j.chroma.2007.01.082, PMid:17289058

29. Mamede ME, Pastore GM. Study of methods for the extraction of volatile compounds from fermented grape must. Food Chem. 2006;96(4):586-90. https://doi.org/10.1016/j.foodchem.2005.03.013

30. Kleinova J, Klejdus B. Determination of volatiles in beer using solid-phase microextraction in combination with gas chromatography/mass spectrometry. Czech J Food Sci. 2014;32(3):241-8.

31. Jeleń HH, Majcher M, Dziadas M. Microextraction techniques in the analysis of food flavor compounds: A review. Anal Chim Acta. 2012;738:13-26. https://doi.org/10.1016/j.aca.2012.06.006, PMid:22790695

32. Stashenko EE, Martínez JR. Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction. J Biochem Biophys Methods. 2007;70(2):235-42. https://doi.org/10.1016/j.jbmb.2006.08.011, PMid:17045655

33. Wardenczyk W, Michulec M, Curyło J. A review of theoretical and practical aspects of solid-phase micro-extraction in food analysis. Int J Food Sci Technol. 2004;39(7):703-17. https://doi.org/10.1111/j.1365-2621.2004.00839.x

34. Özhan D, Anlı RE, Vural N, Bayram M. Determination of Chloroanisoles and Chlorophenols in Cork and Wine by using HS-SPME and GC-ECD Detection. J Inst Brew. 2009;115(1):71-7. https://doi.org/10.1002/j.2050-0416.2009.tb00346.x

35. Crupi ML, Costa R, Dugo P, Dugo G, Mondello L. A comprehensive study on the chemical composition and aromatic characteristics of lemon liquor. Food Chem. 2007;105(2):771–83. https://doi.org/10.1016/j.foodchem.2007.01.041

36. Galano E, Imbelloni M, Chambery A, Malorni A, Amoresano A. Molecular fingerprint of the alcoholic Grappa beverage by mass spectrometry techniques. Food Res Int. 2015;72:106–14. https://doi.org/10.1016/j.foodres.2015.03.033

37. Welke JE, Manfroi V, Zanus M, Lazzarotto M, Zini CA. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013;141(4):3897–905. https://doi.org/10.1016/j.foodchem.2013.06.100, PMid:23993563

38. Canuti V, Conversano M, Calzi ML, Heymann H, Mathews MA, Ebeler SE. Headspace solid-phase microextraction-gas chromatography- mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J Chromatogr. A. 2009;1216(15):3012–22. https://doi.org/10.1016/j.chroma.2009.01.014, PMid:19233370

39. Torrens J, Riu-Aumatell M, Lopez-Tamames E, Buxaderas S. Volatile compounds of red and white wines by headspace-solid-phase microextraction-gas chromatography- mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J Chromatogr Sci. 2004;42(6):310-6. https://doi.org/10.1093/chromsci/42.6.310, PMid:15296531

40. Riu-Aumatell M, Bosch-Fuste J, Lopez-Tamames F, Buxaderas S. Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees. Food Chem. 2006;95(2):237–42. https://doi.org/10.1016/j.foodchem.2005.01.029

41. Tao Y, Li H, Wang H, Zhang L. Volatile compounds of young Cabernet Sauvignon red wine from Changli county (China). J Food Compos Anal. 2008;21(8):689–94. https://doi.org/10.1016/j.jfca.2008.05.007

42. Jelen HH, Szczurek A. Solid phase microextraction for profiling volatile compounds in liqueurred white wines. Acta Sci Pol, 2010;9(1):23–32.

43. Villiere A, Arvisenet G, Lethuaut L, Prost C, Serot T.
Selection of a representative extraction method for the analysis of odourant volatile composition of French cider by GCMS-O and GC GC-TOF-MS. Food Chem. 2012;131(4):1561–8. https://doi.org/10.1016/j.foodchem.2011.10.008

44. Vas G, Gal L, Harangi J, Dobo A, Vekey K. Determination of volatile aroma compounds of Blaufrankisch wines extracted by Solid-Phase Microextraction. J. Chromatogr. Sci. 1998;36(10):506–10. https://doi.org/10.1093/chromsci/36.10.505

45. Cheng P, Fan W, Xu Y. Determination of Chinese liquors from different geographic origins by combination of mass spectrometry and chemometric technique. Food Control. 2014;35(1):153-8. https://doi.org/10.1016/j.foodcont.2013.07.003

46. Coelho E, Coimbra MA, Nogueira JM, Rocha SM. Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Anal Chim Acta. 2009;635(2):214-21. https://doi.org/10.1016/j.aca.2009.01.013, PMid:19216881

47. Kawaguchi M, Takatsu A, Ito R, Nakazawa H. Applications of stir-bar sorptive extraction to food analysis. Trends Analyt Chem. 2013;45:280-93. https://doi.org/10.1016/j.trac.2013.01.007

48. Ochiai N, Sasamoto K, David F, Sandra P. Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: Application to aroma compounds in beer and pesticides in wine. J Chromatogr A. 2016;1455:45-56. https://doi.org/10.1016/j.chroma.2016.05.085, PMid:27289502

49. Andujar-Ortiz I, Moreno-Arribas MV, Martín-Álvarez PJ, Pozo-Bayón MA. Analytical performance of three commonly used extraction methods for the gas chromatography–mass spectrometry analysis of wine volatile compounds. J Chromatogr A. 2009;1216(43):7351-7. https://doi.org/10.1016/j.chroma.2009.08.055, PMid:19732903

50. Wang PP, Li Z, Qi TT, Li XJ, Pan SY. Development of a method for identification and accurate quantitation of aroma compounds in Chinese Daohuaxiang liquors based on SPME using a sol–gel fibre. Food chem. 2015;169:230-40. https://doi.org/10.1016/j.foodchem.2014.07.150, PMid:25236221

51. Demyttenaere JC, Martí JJ, Verhé R, Sandra P, De Kimpe N. Analysis of volatiles of malt whisky by solid-phase microextraction and stir bar sorptive extraction. J Chromatogr A. 2003;985(1):221-32. https://doi.org/10.1016/S0021-9673(02)01471-1

52. Savchuk SA, Kolesov GM, Nuzhnyi VP. Chromatographic study of the chemical composition and potential toxicity of spirits and alcoholic beverages. J Anal Chem. 2007;62(6):575-82. https://doi.org/10.1134/S1061934807060147

53. Dragone G, Mussatto SI, Oliveira JM, Teixeira JA. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 2009;112(4):929-35. https://doi.org/10.1016/j.foodchem.2008.07.005

54. Zhou Q, Qian Y, Qian MC. Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography–mass spectrometry. J Chromatogr A. 2015;1390:22-7. https://doi.org/10.1016/j.chroma.2015.02.064, PMid:25766496

55. McKee M, Sűzcs S, Sárváry A, Ádany R, Kiryanov N, Saburova L, Tomkins S, Andreev E, Leon DA. The composition of surrogate alcohols consumed in Russia. Alcohol Clin Exp Res. 2005;29(10):1884-8. https://doi.org/10.1097/01.alc.0000183012.93303.90, PMid:16269919

56. De León-Rodríguez A, González-Hernández L, Barba de la Rosa AP, Escalante-Minakata P, López MG. Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J Agric Food Chem. 2006;54(4):1337-41. https://doi.org/10.1021/jf052154+, PMid:16478257

57. Braga CM, Zielinski AA, da Silva KM, de Souza FK, Pietrowski GD, Couto M, Granato D, Wosiacki G, Nogueira A. Classification of juices and fermented beverages made from unripe, ripe and senescent apples
58. Andrea V, Nadia N, Teresa RM, Andrea A. Analysis of some Italian lemon liquors (Limoncello). J Agric Food Chem. 2003;51(17):4978-83. https://doi.org/10.1021/jf030083d, PMid:12903956

59. Anli RE, Vural N, Gucer Y. Determination of the principal volatile compounds of Turkish Raki. J Inst Brew. 2007;113(3):302-9. https://doi.org/10.1002/j.2050-0416.2007.tb00290.x

60. Geroyiannaki M, Komaitis ME, Stavrakas DE, Polysiou M, Athanasopoulos PE, Spanos M. Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control. 2007;18(8):988-95. https://doi.org/10.1016/j.foodcont.2006.06.005

61. Zhang CY, Lin NB, Chai XS, Barnes DG. A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography. Food chem. 2015;183:169-72. https://doi.org/10.1016/j.foodchem.2015.03.048, PMid:25863625

62. Haider W, Barilier D, Hayat A, Gaillard JL, Leduffin J. Rapid quantification and comparison of major volatile compounds of ciders from France (Normandy and Brittany) using microextraction by packed sorbent (MEPS). Anal Methods. 2014;6(5):1364-76. https://doi.org/10.1039/C3AY41385C

63. Fan W, Xu Y, Zhang Y. Characterization of pyrazines in some Chinese liquors and their approximate concentrations. J Agric Food Chem.2007;55(24):9956-62. https://doi.org/10.1021/jf071357q, PMid:17970591

64. Ejim OS, Brands B, Rehm J, Lachenmeier DW. Composition of surrogate alcohol from South-Eastern Nigeria. Afr J Drug Alcohol Stud. 2007;6:65-74.

65. Ebeler SE, Terrien MB, Buztke CE. Analysis of brandy aroma by solid-phase microextraction and liquid–liquid extraction. J Sci Food Agric. 2000;80(5):625-30. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<625::AID-JSFA584>3.0.CO;2-5

66. Mapitse R, Okatch H, Moshoeshoe E. Analysis of Volatile Compounds in Khadi (an Unrecorded Alcohol Beverage) from Botswana by Gas Chromatography-Flame Ionization Detection (GC-FID). S Afr J Chem. 2014;67:184-8.

67. Zhu S, Lu X, Ji K, Guo K, Li Y, Wu C, Xu G. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal Chim Acta. 2007;597(2):340-8. https://doi.org/10.1016/j.aca.2007.07.007, PMid:17683748

68. Arslan MM, Zeren C, Aydin Z, Akcan R, Dokuyucu R, Keten A, Cekin N. Analysis of methanol and its derivatives in illegally produced alcoholic beverages. J Forensic Leg Med. 2015;33:56-60. https://doi.org/10.1016/j.jflm.2015.04.005, PMid:26048498

69. Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentals of analytical chemistry. Ninth. Belmont: Brooks/Cole Cengage Learning; 2014.

70. Boscaini E, Mikoviny T, Wisthaler A, von Hartungen E, Märk TD. Characterization of wine with PTR-MS. Int J Mass Spectrom. 2004;239(2):215-9. https://doi.org/10.1016/j.ijms.2004.07.023

71. Xiao Z, Yu D, Niu Y, Chen F, Song S, Zhu J, Zhu G. Characterization of aroma compounds of Chinese famous liquors by gas chromatography–mass spectrometry and flash GC electronic-nose. J Chromatogr B. 2014;945:92-100. https://doi.org/10.1016/j.jchromb.2013.11.032, PMid:24336461

72. da Silva GA, Augusto F, Poppi RJ. Exploratory analysis of the volatile profile of beers by HS–SPME–GC. Food Chem. 2008;111(4):1057-63. https://doi.org/10.1016/j.foodchem.2008.05.022

73. da Silva GC, da Silva AA, da Silva LS, Godoy RL, Nogueira LC, Quitério SL, Raices RS. Method development by GC–ECD and HS–SPME–GC–MS for beer volatile analysis. Food chem. 2015;167:71-7. https://doi.org/10.1016/j.foodchem.2014.06.033, PMid:25148961

74. Welke JE, Zanus M, Lazzarotto M, Zini CA. Quantitative analysis of headspace volatile compounds using
comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res Int. 2014;59:85-99. https://doi.org/10.1016/j.foodres.2014.02.002

75. Xiao Z, Zhou X, Niu Y, Yu D, Zhu J, Zhu G. Optimization and application of headspace-solid-phase microextraction coupled with gas chromatography–mass spectrometry for the determination of volatile compounds in cherry wines. J Chromatogr B. 2015;978:122-30. https://doi.org/10.1016/j.jchromb.2014.12.006, PMid:25544009

76. Ferreira V, Ortín N, Escudero A, López R, Cacho J. Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J Agric Food Chem. 2002;50(14):4048-54. https://doi.org/10.1021/jf0115645, PMid:12083881

77. Dziadas M, Jeleń HH. Analysis of terpenes in white wines using SPE–SPME–GC/MS approach. Anal Chim Acta. 2010;677(1):43-9. https://doi.org/10.1016/j.aca.2010.06.035, PMid:20850588

78. Fitzgerald G, James KJ, MacNamara K, Stack MA. Characterisation of whiskeys using solid-phase microextraction with gas chromatography–mass spectrometry. J Chromatogr A. 2000;896(1):351-9. https://doi.org/10.1016/S0021-9673(00)737-8

79. De Souza MD, Vásquez P, del Mastro NL, Acree TE, Lavin EH. Characterization of cachaça and rum aroma. J Agric Food Chem. 2006;54(2):485-8. https://doi.org/10.1021/jf0511190, PMid:16417309

80. Vallejo-Cordoba B, González-Córdova AF, del Carmen Estrada-Montoya M. Tequila volatile characterization and ethyl ester determination by solid phase microextraction gas chromatography/mass spectrometry analysis. J Agric Food Chem. 2004;52(18):5567-71. https://doi.org/10.1021/jf0499119, PMid:15373393

81. Rodda LN, Beyer J, Gerostamoulos D, Drummer OH. Alcohol congener analysis and the source of alcohol: a review. Forensic Sci Med Pathol. 2013;9(2):194-207. https://doi.org/10.1007/s12024-013-9411-0, PMid:23456600

82. Simpkins W. Detection of Illicit Spirits. In: Linskens HF, Jackson JF, editors. Wine Anal. Mordern Methods Plant Anal. Vol. 6. Berlin: Springer-Verlag; 1988. p. 317–38. https://doi.org/10.1007/978-3-642-83340-3_11

83. Fan W, Qian MC. Identification of aroma compounds in Chinese “Yanghe Daqu” liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry. Flavour Fragr J. 2006;21:333–42. https://doi.org/10.1002/ffj.1621

84. Couret C, Ouwerx C, Rosoux D, Collin S. Relationship between procyanidin and flavor contents of cocoa liquors from different origins. J Agric Food Chem. 2004;52(20):6243–9. https://doi.org/10.1021/jf040105b, PMid:15453694

85. Cynkar W, Dambergs R, Smith P, Cozzolino D. Classification of tempranillo wines according to geographic origin: combination of mass spectrometry based electronic nose and chemometrics. Anal Chim Acta. 2010;660(1):227–31. https://doi.org/10.1016/j.aca.2009.09.030, PMid:20103167

86. Berna AZ, Trowell S, Clifford D, Cynkar W, Cozzolino D. Geographical origin of Sauvignon Blanc wines produced by mass spectrometry and metal oxide based electronic nose. Anal Chim Acta. 2009;648(2):146–52. https://doi.org/10.1016/j.aca.2009.06.056, PMid:19646576

87. Wang ML, Wang JT, Choong YM. A rapid and accurate method for determination of methanol in alcoholic beverage by direct injection capillary gas chromatography. J Food Compost Anal. 2004;17(2):187-96. https://doi.org/10.1016/j.jfca.2003.08.006

88. Wang M-L, Wang J-T, Choong Y-M. Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards. Food Chem. 2004;86(4):609–15. https://doi.org/10.1016/j.foodchem.2003.10.029