Chapter 20
Acid Modification of Sago Hampas for Industrial Purposes

Titi Candra Sunarti, Vioni Derosya, and Indah Yuliasih

Abstract Sago pith and sago hampas mainly consist of starch and fiber. In this research, acid modification of starch and fiber was conducted by high-temperature (autoclaving) and microwave-assisted treatments and slow or mild acid hydrolysis. Autoclaving and microwave-assisted treatments influenced the gelatinization and solubilization of starch granules to produce depolymerized starch and changed the fiber structure to become more amorphous forms. Heating in dilute acid produced high soluble total sugars with high dextrose equivalent, but the process also released hydroxymethylfurfural as undesired by-products. Slow or mild acid hydrolysis attacked the amorphous regions of starch and fiber. It did not change the starch and fiber crystallinity pattern but increased the degree of crystallinity. Acid modification techniques for sago starch and its fiber can be used for producing certain products such as starch sugar, fermentable sugars, and filler for biofoam production.

20.1 Introduction

Sago palm is considered an ideal crop for a starch-based sweetener and feedstock, since in Indonesia there is negligible competition between food and ethanol fuel and land resources are underutilized. Sago starch has been used for a long time, especially in Southeast Asia in the food industry for the production of sago pearl, vermicelli, bread, cake, biscuits, and many other traditional foods (Ahmad and Williams 1999). Sago palm (Metroxylon sp.) is a species from which starch-rich flour can be extracted from the pith of the trunk. The pith consists mainly of starch, which has to be separated from cellulosic materials by several stages of processing. Fujii et al. (1985) reported that the composition of dried sago pith was mainly starch (81.51–84.72%) and fiber (3.20–4.20%).

Sago starch is one of the least expensive starches but has low quality. Yatsugi (1985) has identified several problems associated with sago starch and manufacture, including whiteness, viscosity, starch particles, and starch content in starch pro-
Reduced by rural factories in the tropics. The color of the starch, which turns brown in the process of separation, is one of the factors responsible for low quality. When sago palm pith is chopped up and grated into a powder, colored substances are formed and tightly bound to the starch granules.

There are two methods for sago starch extraction from fresh sago pith, wet and dry. The dry process is conducted without water. In this method, fresh sago pith is shredded, oven-dried, ground, and sieved to produce fine starch particles. But as raw material for nonfood industry, the dry process can produce large and coarse particles passing through the 35 mesh sieve (Table 20.1); this is called sago pith flour. While from the wet method, the main product is sago starch, and its residue (sago hampas) is generated from the processing. Sago hampas is the fibrous by-product from crushing and sieving during the wet extraction process. In our research, samples of sago hampas were oven-dried, ground, and sieved to produce fine flour.

Table 20.1 shows that starch is the main component in all sago samples. Sago pith flour, as a part of the dry extraction production, contains a high amount of starch (86%), while, as a by-product from the inefficient wet extraction process, sago hampas contains approximately 55% starch and 15% fiber on a dry weight basis. Composition of this sago hampas was similar to that reported by Lingga et al. (2012) which showed 58% starch, compared to Awg-Adeni et al. (2013) who reported a lower starch content (30–45%) and higher fiber content (30–35%).

Previously we have reported that crude fiber was the second most common component in pith (Sunarti et al. 2011). Hampas also contains high amounts of cellulose (11%), hemicellulose (7.6%), and lignin (12%) (Utami et al. 2014); Abd-Aziz

Characteristics**	Sago samples	Sago pith flour	Sago starch	Sago hampas
Chemical components				
Ash (%)	1.18	0.12	7.59	
Crude lipid (%)	1.35	1.82	2.04	
Crude protein (%)	0.49	0.19	0.86	
Crude fiber (%)	3.34	0.19	15.34	
Starch (%)	86.00	97.83	55.33	
Acid hydrolysis product				
Total dry matter (%)	56.13c	53.80b	51.44a	
Yield (%)	52.56b	63.04c	32.67a	
Degree of polymerization	2.97b	2.88b	2.45a	
Dextrose equivalent	33.70a	34.12b	41.58b	
Enzymatic hydrolysis product				
Total dry matter (%)	57.74a	60.67b	69.81c	
Yield (%)	62.12b	70.63c	33.76a	
Degree of polymerization	1.35a	1.40c	1.38b	
Dextrose equivalent	72.69b	71.52c	73.88c	

*Means within a row related to particular parameter with the same superscript letter are not significantly different as $\alpha = 0.05$ confidence level; **measured as dry weight basis
(2002) reported similar results. With significant amounts of starch and fiber remaining in the hampas, it may be used for hydrolysis to make starch syrup, an alternative cheap substrate for fermentable sugar production (Lingga et al. 2012), a source for biohydrogen production (Jenol et al. 2014), and a composite material for biofoam production (Lai et al. 2013; Utami et al. 2014; Rao and Kumar 2015).

20.2 Acid-Catalyzed Hydrolysis

For industrial use, raw sago pith must be fresh and be processed quickly. With the passage of time, the separation yields less of a white product. Some importing countries are dissatisfied because each lot of starch received is variable in quality and in addition most are of inferior quality. Therefore, industrial application of the sago starch is limited. One way to overcome this inferior quality is to utilize the sago starch for glucose syrup production, which is not dependent on the properties of native starch.

Acid hydrolysis of starch to produce sugars has long been a commercial practice. Sago pith flour and hampas which contain mostly starch and lignocellulosic materials are good sources of glucose syrup and substrate for fermentation, either by enzymatic or acid hydrolysis (Table 20.1). In the acid process, a slurry containing about 30% (w/v) of starch or flour solid is suspended and acidified to a pH of about 2.0 by using diluted hydrochloric acid. The suspended starch or flour is then autoclaved at 121 °C for 1 h and neutralized by a 1 N NaOH solution. Although acid hydrolysis is a rather (but not completely) random process (BeMiller 1967), the hydrolysis produces syrup with a dextrose equivalent (DE) value range of 34–42, a lower value as compared to enzymatic (liquefaction and saccharification) hydrolysis (DE 71–74). Hebeda (1987) predicted that the carbohydrate profiles of the syrup in the 36–43 DE range consisted of 14–19% DP1 (monosaccharides, dextrose), 11–14% DP2 (disaccharides, primary maltose), 10–12% DP3 (trisaccharides, primary maltotriose), and 55–65% DP4+ (oligosaccharides, maltotetraose, and higher saccharides). Lorenz and Johnson (1972) reported that at 120 °C, autoclaving treatment completely gelatinized the starch, as expected, but did not completely hydrolyze it.

Sweetness is an important and easily identifiable characteristic of glucose. When compared to sucrose, the relative sweetness value of 30–42 DE acid-converted syrup is between 30–35 and 45–50 (Pancoast and Junk 1980). Furthermore, the starch-derived sweetener also provides a highly fermentable substrate suitable as intermediate substrate for many industrial applications such as for making ethanol, lactic acid, and kojic acid (Shinghal et al. 2008).

Starch is hydrolyzed by acid to produce D-glucose, but other products are formed such as oligosaccharides and products of decomposition and dehydration of D-glucose, such as 5-hydroxymethylfurfural, levulinic acid, formic acid starch-derived products, and colored products. Lorenz and Johnson (1972) reported that in neutral pH hydrolysis, color change was very slight as the temperature of hydrolysis increased from 120 to 135 °C; the greatest color change was from 150 to 180 °C. Several reactions can also cause color development in starch because the
material contains reducing sugars via the nonenzymatic browning reaction between sugars and primary or secondary amines (Maillard reaction). Color development in the absence of nitrogenous compounds with the application of heat or acid is the result of caramelization (BeMiller and Whistler 2009).

20.3 Effect of Microwave-Assisted Hydrolysis in Dilute Acid

Conventional acid hydrolysis of starch is usually conducted under high-pressure and high-temperature treatment for several hours. Excessive heating of starch-derived products will result in partial caramelization and development of undesirable flavors. Pentose as a fiber-derived product will be converted to furfural, while hexose produces hydroxymethylfurfural (HMF), both giving a brown color solution. Furfural is more toxic than HMF. More browning compounds make the solution have less clarity.

The heating process using a microwave represents a different mechanism from that of using a conventional convection or conduction heating process. A microwave uses electromagnetic waves between 300 MHz (wavelength 1 m) and 300 GHz (wavelength 1 mm). Microwave heating is usually called dielectric heating since in the microwave electric field, dipole molecules such as water or other dielectric materials rotate vigorously to orient in the field (Gabriel et al. 1998). Microwave energy can penetrate into materials, so that it directly and uniformly heats the materials. Microwave heating avoids degradation of product strength and surface properties caused by excessive and long conventional heating.

Previously, Matsumoto et al. (2011) and Khan et al. (1979) reported that microwave treatment can be an alternative method for starch hydrolysis in water; Warrand and Janssen (2007) and Yu et al. (1996) stated that starch in acid hydrolysis can produce oligosaccharide. Some researchers also reported the microwave-assisted hydrolysis can be applied to the mixture of starch and fiber from industrial waste such as cassava pulp (Hermiati et al. 2011) and waste from the corn starch industry (Yoshida et al. 2010). A study carried out by Palav and Seetharaman (2006) showed that gelatinization of starch during microwave heating did not produce the same phenomenon as using conduction heating. This can be observed in the loss of birefringent properties and in the swelling of the starch granules. Luo et al. (2006) conducted a study to investigate changes in crystallinity, swelling power and solubility, gelatinization parameters, retrogradation characteristics, and pasting properties of corn starches at 30% moisture after being subjected to microwave heating at 1 W/g microwave energy for 20 min. Microwave heating could convert starch directly to glucose in a relatively short time. Compared with conventional heating, the reaction rate of starch hydrolysis to glucose was accelerated 100 times under microwave irradiation (Kunlan et al. 2001).

Treatment or degradation of starch using microwave heating can use water or dilute acid, such as hydrochloric or sulfuric acid, as media. Kunlan et al. (2001) reported that the addition of inorganic salts containing Cl and SO₄ ions could
enhance the hydrolysis of starch. However, the Cl ion gave better results. Yu et al. (1996) stated that 10% starch suspension in 0.5 M HCl could be completely converted to glucose in only 5 min without the formation of colored by-products, but if heated using the conventional method, it was not completely hydrolyzed. Figure 20.1 shows the effects of microwave treatment on the microscopic structure of sago pith, which contained starch and fiber, in water (c) and dilute acid (b) compared to native sago pith (a). Microwave-assisted heating in dilute acid (Fig. 20.1b) directly converted the starch and fiber in sago pith into depolymerized products and gave more simple sugars compared to the autoclaving treatment. Microwave heating of sago pith in water mainly caused gelatinized of the starch, as long as water remained in the slurry. Insufficient water produced partial or incomplete gelatinized starch as described from a higher concentration of sago pith (10%) (Fig. 20.1d) compared to 8% of suspended solids (Fig. 20.1c).

Microwave heating also affects the lignocellulosic materials. The effects of microwave heating on major chemical components of lignocellulosic biomass (lignin, cellulose, and hemicellulose) have been reported by Tsubaki et al. (2009), who stated that the required heating temperature for degradation of either lignin or cellulose corresponded with the glass transition (Tg) of the components. Some disruptions in fiber were detected after microwave treatment in water (Fig. 20.1e) compared to autoclave treatment (Fig. 20.1f).
There are some distinct characteristics of 10% sago pith slurry in dilute acid when poured into a glass jar with a lid and then heated in a microwave oven with varied power levels (50–70% of maximum output 1000 watts) for 1–3 min heating duration (Table 20.2). Interaction between heating level and its duration influenced the hydrolysis yield (Sunarti et al. 2012). Bej et al. (2008) also stated that acid hydrolysis of starch follows the first-order reaction. Time-dependent conversion was observed with variation of temperature, pH, and initial starch concentration. Similar results have been reported by Khan et al. (1979) who found that liquefying and coloring were the most obvious visible changes during starch hydrolysis. With extended heating times, temperature, and pressure, total acidity increased causing darker hydrolyzates. Starch sugar syrups of high dextrose equivalent can be produced within a short time by using microwave energy.

Heating in dilute acid produced high soluble total sugars with high dextrose equivalent; the process also released HMF as an undesired by-product, and a high amount of salt was produced from neutralization of acid. Long exposure to microwave heating increased the formation of brown coloring as detected in low syrup clarity. Compared to autoclaving treatment, microwave heating treatment produced less furfural compound. Autoclaving for a longer heating time (15 min) influenced the formation of furfural and HMF compounds, as 0.24 g/l compared to the highest HMF content from microwave treatment (0.01 g/l). As substrate for ethanol production, the presence of HMF and furfural negatively influenced productivity. Nigam

Treatment	Total soluble sugar (g/l)	DE	Clarity^a At λ_{660nm} (OD)	HMF (g/l)
Autoclaving (121 °C, 15 min)				
HCl 0.2 M	294	45	1.12	0.16
HCl 0.3 M	299	50	1.26	0.24
Microwave				
- HCl 0.2 M				
PL 50%, 1 min	32	40	0.81	0.0069
PL 50%, 2 min	40	39	0.63	0.0072
PL 50%, 3 min	66	45	(0.09)	0.0074
PL 70%, 1 min	201	81	0.78	0.0089
PL 70%, 2 min	261	69	0.37	0.0091
PL 70%, 3 min	282	84	(0.09)	0.0094
- HCl 0.3 M				
PL 50%, 1 min	27	50	1.09	0.0075
PL 50%, 2 min	41	40	0.86	0.0079
PL 50%, 3 min	69	45	(0.07)	0.0082
PL 70%, 1 min	266	57	0.05	0.0095
PL 70%, 2 min	272	71	0.25	0.0097
PL 70%, 3 min	285	90	(0.10)	0.0100

Source: Sunarti et al. 2011

^aData in parenthesis express negative values
(2001) found that a furfural concentration of more than 1.5 g/l inhibits the yeast (Pichia stipites) growth and influences ethanol production. Furfural and HMF show different inhibitory effects to yeast growth in bioethanol production (Sunarti et al. 2011). Modig et al. (2002) reported that 1 g/l of furfural can inhibit the microbial enzymes for ethanol production, such as alcohol dehydrogenase, aldehyde dehydrogenase, and pyruvate dehydrogenase, while 2 g/l of HMF shows the same effects.

20.4 Slow Acid Hydrolysis

For many years, slow and mild acid hydrolyses have been applied to starch by industries to improve its solubility. This process involves suspending starch in an aqueous solution of hydrochloric or sulfuric acid at certain temperatures, since in the presence of strong acid and heat, the glycosidic bonds between the monosaccharides in the starch polymer are cleaved (Yiu et al. 2008) and produce glucose and oligosaccharides. Prolonged mild acid hydrolysis can be performed to produce linterized starches. Odeku et al. (2009) stated that acid modification has been proven to change the physicochemical properties of starch without destroying its granular structure, yielding starch with increased solubility and gel strength but decreased viscosity. The extent of hydrolysis depends on starch consistency, acidity of the medium, hydrolysis temperature, and duration of hydrolysis. The effects of acid hydrolysis of various starches, such as corn, potato, and rice, have been studied previously (Wang and Wang 2001; Wang et al. 2003; Thirathumthavorn and Charoenrein 2005). Moreover, acid treatment in alcohol, especially for sago starch, has been conducted by Yiu et al. (2008), and their study showed that sago starch can be modified through hydrolysis and alcoholysis to give various limit dextrins with high solubility.

Acid treatment also can be applied to fiber-rich starch such as sago hampas. Ning et al. (1991) reported that acid modification of fiber at high temperature (90 °C) can produce oligosaccharides and changes in its crystallinity. It has been shown that sulfuric or trifluoroacetic acid has been used to hydrolyze the hemicellulose in fiber (Englyst and Cumming 1984). In the present research, sago hampas was modified by the acid-methanol treatment according to the Chung and Lai (2006) methods. Sago hampas flour was acid-treated with a low concentration of hydrochloric acid in methanol (4 ml of HCl concentrated in 1 liter of methanol) solution at room temperature (30 °C) for 0, 60, 120, 180, and 240 h.

Modification of sago hampas by acid in methanol cleaved the amorphous site of fiber and starch. The sago hampas was immerged in acid in methanol solution and produced a dark filtrate color. The dark color of sago pith flour comes from an oxidative reaction of phenolic compounds. This acid condition causes solubilization of phenolic compound and dissolves some reducing sugars and produces 91–94% yield of acid modified sago hampas as described on Table 20.3. This made the acid modified sago hampas’s color or performance brighter compared to that before the treatment. Lignins are amorphous and noncarbohydrate compounds containing phe-
nolic substances which were diluted in acid solution. This condition also causes small changes in fiber composition (lignin, hemicellulose, and cellulose) but has significant effects on changes in molecular weight and composition of starch.

Sathaporn et al. (2005) reported that some branched points in amylopectin were hydrolyzed and remained crystalline parts of starch. Soluble carbohydrate produced from acid hydrolysis can be glucose, maltose or malto-oligosaccharides as products from starch hydrolysis, and soluble hemicellulose or its derived products. It was detected that a small amount of soluble carbohydrate (not more than 90 ppm) (Table 20.3) was produced from acid hydrolysis.

Previously, we reported that the crystalline type of starch and fiber were not markedly changed after acid modification (Sunarti et al. 2016). Higher diffraction intensities were clearly obtained after acid treatment. An increase in starch and fiber crystallinity is attributed to preferential hydrolysis of the amorphous domains by acid (Gerard et al. 2002). Ahmad and Williams (1999) and Pukkahuta and Varavinit (2007) found that sago hampas has a crystallinity type between cereal (A-type) and tuber (B-type). The profiles also expressed the mixture of starch and fiber crystalline fractions. Typical diffraction angle for starch can be detected on 2Θ 15.1, 17.2, 17.8, and 23.4°; Lai et al. (2013) also reported diffraction angle of 22.5° for fiber.

Changes of molecular structures are also expressed on surface morphology of starch granules and fiber structures. Compared to native sago hampas, internal fissures in starch granules appeared after 180 and 240 h. The fiber also degraded into small parts and became transparent which showed the increment of amorphous fraction of fiber (Sunarti et al. 2016). Some data in Table 20.3 also proved that the destruction of fiber and starch took place after acid modification.

Hampas, sago pith residue, a solid waste of sago wet extraction industry, is a potential source for use as fiber reinforcement on starch-based foam production due to its composition that contains starch and fiber which are necessary for producing biofoam. Utami et al. (2014) also reported that partial acid hydrolysis of sago ham-

Treatment of hydrolysis	Total soluble solid in filtrate (ppm)	Yield (%)	Starch (%)	Lignin (%)	Cellulose (%)	Hemicellulose (%)	Crystallinity (%)
Native hampas	100	49.94	4.97	15.10	5.33		
0 h	0.39	93.81	48.07a	4.32a	15.31b	5.87a	57.33
60 h	51.70	93.67	42.94a	4.70a	14.00ab	4.98a	64.37
120 h	72.21	91.62	40.02a	4.83a	11.37a	4.58a	62.68
180 h	79.62	91.48	25.72d	5.71a	13.04ab	5.04a	52.22
240 h	87.73	91.35	19.38e	3.11a	14.20ab	5.91a	58.55

Source: Sunarti et al. 2015

*Means within a column related to particular parameter with the same superscript letter are not significantly different as α = 0.05 confidence level.
Pas modified the structural and physico-mechanical properties of the resulting foam. Compared to styrofoam, biofoam produced from acid modified sago hampas has better mechanical properties but is very sensitive to moisture making biofoam ideal for trays of dry food products (Sunarti et al. 2016).

20.5 Conclusion

Sago palm (*Metroxylon sagu*) is a species from which starch-rich flour can be extracted from the pith of the trunk. Sago hampas is a fibrous by-product from the wet extraction process. Although it is inefficient for starch production, sago hampas consists of starch and fiber as major components. Some conclusions can be summarized about acid modified treatment of hampas:

1. Direct hydrolysis of starch and fiber using dilute acid and heat treatment (autoclaving or microwave-assisted treatments) degraded the starch into glucose and oligosaccharide and increased the amorphous region of fiber.
2. Slow or mild acid hydrolysis of starch and fiber attacked the amorphous region. Mild acid hydrolysis did not change the crystallinity pattern but increased the degree of crystallinity.
3. Products revealed from acid hydrolysis of starch and fiber in sago samples (starch, sago pith, and sago hampas) can be applied as sweetener, substrate for fermentation, and raw materials for food and nonfood industries.

Acknowledgments This publication is part of the research funded by the Osaka Gas Foundation of International Cultural Exchange (OGFICE) Research Grant FY 2012/2013 through Bogor Agricultural University, Research Institute for Environment, and from Southeast Asian Regional Center for Tropical Biology fiscal year 2010. The authors thank Ms. Fitri Ana Sari, Mr. Imam Muttaqiem, Mr. Taufiqurrahman, and Mr. Martin Dwiko for their technical assistances in this research.

References

Abd-Aziz S (2002) Sago starch and its utilization. J Biosci Bioeng 94:526–529
Ahmad FB, Williams PA (1999) Effect of salts on the gelatinization and rheological properties of sago starch. J Agric Food Chem 47:3359–3366
Awg-Adeni DS, Bujang K, Hasan MA et al (2013) Recovery of glucose from residual starch of sago hampas for bioethanol production. J Biomed Biotechnol http://dx.doi.org/10.1155/2013/935852
Bej B, Basu RK, Ash SN (2008) Kinetic studies on acid catalyzed hydrolysis of starch. J Sci Ind Res 67:295–298
BeMiller JN (1967) Acid-catalyzed hydrolysis of glycosides. Adv Carbohydr Chem Biochem 22:25–108
BeMiller J, Whistler R (eds) (2009) Starch chemistry and technology, 3rd edn. Academic Press, New York
Chung YL, Lai HM (2006) Molecular and granular characteristics of corn starch modified by HCl-methanol at different temperature. Carbohydr Polym 63:527–534
Englyst HN, Cumming JH (1984) Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugar as alditol acetate. Analyst 109:937–942
Fuji S, Kitahara S, Komoto M (1985) Studies on improvement of sago starch quality. In: Proceedings of the 3rd international sago symposium. Tokyo, Japan, 20–23 May 1985, pp 186–192
Gabriel C, Gabriel S, Grant EH et al (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–223
Gerard C, Colonna P, Buleon A et al (2002) Order in maize mutant starches revealed by mild acid hydrolysis. Carbohydr Polym 48(2):131–141
Hebeda RE (1987) In: Watson SA, Ramstad PE (eds) Corn chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 501–534
Hermiati E, Azuma J, Mangunwidjaja D et al (2011) Hydrolysis of carbohydrates in cassava pulp and tapioca flour under microwave irradiation. Indo J Chem 11(3):238–245
Jenol MA, Ibrahim MF, Phang LY et al (2014) Sago biomass as a sustainable source for biohydrogen production by Clostridium butyricum A1. Bioresources 9(1):1007–1026
Khan AR, Johnson JA, Robinson RJ (1979) Degradation of starch polymers by microwave energy. Cereal Chem 56:303–304
Kunlan L, Lixin X, Jun L et al (2001) Salt-assisted hydrolysis of starch to D-glucose under microwave irradiation. Carbohydr Res 331:9–12
Lai JC, Rahman, WAWA, Toh, WY (2013) Characterisation of sago pith waste and its composites. Indus Crops Prod 45:319–326
Lingga S, Phang LY, Wasoh MH et al (2012) Sago pith residue as an alternative cheap substrate for fermentable sugars production. Appl Biochem Biotechnol 167(1):122–131
Lorenz K, Johnson JA (1972) Starch hydrolysis under high temperatures and pressures. Cereal Chem 49:616–628
Luo Z, He X, Fu X, et al (2006) Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch/Starke 58:468–474
Matsumoto A, Tsubaki S, Sakamoto M et al (2011) A novel saccharification method of starch using microwave irradiation with addition of activated carbon. Bioresour Technol 102:3985–3988
Modig T, Liden G, Taherzadeh J (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. J Biochem 363:769–776
Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27
Ning L, Villota R, Artz WE (1991) Modification of corn flour fiber through chemical treatment in combination with twin-screw extrusion. Cereal Chem 68(6):632–636
Odeku OA, Schmid W, Picker-Freyer KM (2009) Characterization of acid modified Dioscorea starches as direct compression excipients. Pharm Dev Technol 14:259–270
Palav T, Seetharaman K (2006) Mechanism of starch gelatinization and polymer leaching during microwave heating. Carbohydr Polym 65:364–370
Pancoast H, Junk WR (1980) Handbook of sugar. AVI Publishing, Westport
Pukkahuta C, Varavinit S (2007) Structural transformation of sago starch by heat-moisture and osmotic-pressure treatment. Starch/Starke 59:624–631
Rao PP, Kumar BR (2015) Characterisation and processing of sago particle reinforced composite. Intl J Eng Trends Tech 24(3):151–154
Sathaporn S, Sunarti TC, Mishima T et al (2005) Starches from different botanical sources I: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr Polym 60:529–538
Shinghal RS, Kennedy JF, Gopalakrishnan SM et al (2008) Industrial production, processing and utilization of sago palm derived products. Carbohydr Polym 72(1):1–20
Sunarti TC, Dwiko M, Richana N et al (2011) Effect of microwave treatment on acid hydrolysis of sago pith for the preparation of fermentable sugar in bioethanol production. In: Proceedings of the 1st international conference on chemical innovation, Kemaman, Malaysia, 23–24 May 2011, pp 155–158

Sunarti TC, Dwiko M, Derosya V et al (2012) Effect of microwave treatment on acid and enzyme susceptibility of sago pith. Procedia Chem 4:301–307

Sunarti TC, Derosya V, Taufiqurrahman A et al (2015) Acid modification of starch and fiber in Sago Hampas for improving the mechanical and physical properties of biodegradable foam. In: Proceedings of the 12th international Sago symposium 15–16 September 2015. Rikkyo University, Tokyo

Sunarti TC, Derosya V, Taufiqurrahman A et al (2016) Acid modification of starch and fiber in sago hampas for improving the mechanical and physical properties of biodegradable foam. In: Proceedings of the 12th international sago symposium, Rikkyo University, Tokyo, 15–16 September 2015, pp 117–121

Thirathumthavorn D, Charoenrein S (2005) Thermal and pasting properties of acid-treated rice starches. Starch 57:217–222

Tsubaki S, Sakamoto M, Azuma J (2009) Application of microwave heating for utilization of agricultural biomass. Res Adv Agric Food Chem 1:1–12

Utami AS, Sunarti TC, Isono N et al (2014) Preparation of biodegradable foam from sago residue. Sago Palm 22:1–5

Wang L, Wang YJ (2001) Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch 53:570–576

Wang YJ, TruangVD, Wang L (2003) Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr Polym 52:327–333

Warrand J, Janssen HG (2007) Controlled production of oligosaccharides from amylose by acid-hydrolysis under microwave treatment: comparison with conventional heating. Carbohydr Polym 69:353–362

Yatsugi T (1985) Problem of sago starch manufacturing. In: Proceedings of the 3rd international sago symposium, Tokyo, Japan, 20–23 May 1985, pp 201–207

Yiu PH, Loh SL, Rajan A et al (2008) Physicochemical properties of sago starch modified by acid treatment in alcohol. Am J Appl Sci 5(4):307–311

Yoshida T, Tsubaki S, Teramoto Y et al (2010) Optimization of microwave assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. Biorec Technol 101(20):7820–7826

Yu HM, Chen ST, Suree P et al (1996) Effect of microwave irradiation on acid-catalyzed hydrolysis of starch. J Org Chem 26:9608–9609

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.