Vocal Variability Post Swallowing in Individuals with and without Oropharyngeal Dysphagia

Karoline Weber dos Santos¹ Betina Scheeren² Antonio Carlos Maciel² Mauriceia Cassol¹

¹ Speech Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
² Radiology, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil

Int Arch Otorhinolaryngol 2015;19:61–66.

Abstract

Introduction Voice modification after swallowing may indicate changes in the transit of the bolus.

Objective The aim of this study is to verify the use of perceptual voice analysis to detect oropharyngeal dysphagia.

Study Design Case series.

Methods Twenty-seven patients with dysphagia as diagnosed by videofluoroscopy and 25 without were evaluated. The sustained vowel /a/ was recorded before this exam and after swallowing different consistencies (pasty, liquid and solid). For the voice evaluation, the GRBAS scale (grade, roughness, breathiness, asthenia and strain) and the parameter “wet voice” were used. Three judges blinded to study group and time of emission performed voice analysis.

Results Individuals with dysphagia showed significant decrease in grade of voice and asthenia and increase in strain after swallowing pasty substances, differing from individuals without dysphagia who showed no modification of the parameters after swallowing. The wet voice parameter showed no difference after swallowing in both study groups.

Conclusion The decrease in grade and asthenia and increased strain are indicative of a swallowing disorder, indicating increased vocal strain to clean the vocal tract of food. The modification of vocal production after swallowing proved to be a trusted resource for detection of swallowing disorders.

Keywords
► deglutition disorders
► voice quality
► deglutition
► voice
► oropharyngeal dysphagia

Introduction

Swallowing, a stomatognathic function, is characterized by a complex mechanism that requires the involvement of many structures that must be coordinated to occur effectively. The main functional condition that needs to be considered is the ability to protect the lower airway through elevation, laryngeal closure and protective reflexes, such as coughing.¹ When starting the pharyngeal phase of swallowing, three events occur: laryngeal elevation through the contraction of the suprahylid muscles; lowering of the epiglottis, which reduces the space of the laryngeal inlet; and vocal fold adduction, operating in glottal closure, which is an additional mechanism that reduces exposure of the lower airway.¹–³

The main diagnostic method to evaluate swallowing dynamics is videofluoroscopy, also known as “videodeglutogram” or dynamic examination of swallowing. Considered the reference standard for evaluation and diagnosis of changes in this function, it consists of swallowing food with barium, allowing the visualization of the process by dynamic X-ray machine,
which shows the path traversed by the material swallowed. In this exam, the exact course taken by the food can be precisely identified, as well as the areas where the process does not occur efficiently; it is possible to view a deposit of contrasted material in places with changes in motility.

Although videofluoroscopy is the standard for diagnosis, it is not easy to access for patients with swallowing disorders, besides having restrictions on its indication. Therefore, clinical evaluation is routinely used for detection of swallowing disorders and determination of treatment. This method consists of several steps that, when taken together, describe the swallowing changes according to the characteristics presented by the patient, thus allowing the determination of therapeutic changes in vocal production after swallowing. Altered vocal production after swallowing has been considered a leading indicator of inefficiency of the process, because stasis of food in the laryngeal-pharyngeal cavity during swallowing is commonly observed in patients with dysphagia. The presence of food in this region can alter the space of the vocal tract, modifying voice quality. Although this parameter is routinely evaluated in clinical protocols, few studies have analyzed its reliability for detection of dysphagia, indicating possible bias of this method when indicating a change in swallowing. Moreover, studies do not compare voices of individuals with and without swallowing disorders, which could determine whether this modification can actually be attributed to a disturbance of this function or it occurs for all subjects immediately after swallowing.

This study aimed to: (1) investigate the reliability of the protocol used; (2) check whether significant change occurs in the perceptual assessment of voice after swallowing in individuals with oropharyngeal dysphagia; and (3) compare significant changes related to voice quality in the group with dysphagia compared with the control group.

Methods

Design and Sample

This study presents a descriptive cross-sectional prospective comparison between subjects with and without oropharyngeal dysphagia aiming to verify changes of voice production after swallowing. The study was approved by the Ethics Research Committee under protocol 293.856.

Men and women 18 years or older capable of continuous voice production for at least 4 seconds and swallowing at least one of the consistencies in the evaluation (pasty, liquid and solid) were included. The study sample was divided into two groups: individuals with (G1) and individuals without (G2) oropharyngeal dysphagia. Subjects who were diagnosed with swallowing disorder by videofluoroscopy composed G1 and were stratified according to the score in the dysphagia severity scale from 1 to 5, signifying severe to discrete dysphagia. Individuals in G2 showed no swallowing disorders and scored 7 on the scale used, compatible with normality.

Pairing by sex and age was performed, with a difference of up to 5 years between pairs. Individuals with tracheostomy, organic-functional and organic vocal fold lesions, or injury of laryngeal nerves causing vocal fold paralysis were excluded. Subjects who had surgical removal of tumor and tissues involved in the swallowing process and all those individuals cognitively unable to respond to the protocol were also excluded.

Fifty-two individuals, 27 (14 men and 13 women) in G1 and 25 (12 men and 13 women) in G2, were evaluated, with mean ages of 71.07 for men and 76.69 for women in the first group and 68.05 and 78.53, respectively, in the second group. The evaluations performed yielded 201 vocal recordings, including 101 in G1 and 100 in G2. The difference in the number of recordings between groups was due the greater number of subjects in G1; the number of recordings was also less than expected due to the impossibility of evaluating some consistencies due to limitations of bolus preparation and oropharyngeal dysphagia.

Videofluoroscopy

Videofluoroscopy examinations were performed with the Siemens Axion Icons R100 fluoroscopy (Siemens, USA) model coupled to an image recording system in a computer, which allows further detailed analysis of the exam. During the examination, subjects remained seated and images were captured in the lateral and anteroposterior positions, with upper and lower limits ranging from the oral cavity to the stomach.

The examinations were performed by evaluating pasty, liquid and solid consistencies prepared, respectively, as follows: yogurt-type petit suisse with liquid barium (Bariogel®, Brazil) at a ratio of 1:1 (20 mL of yogurt to 20 mL of barium); distilled water with liquid barium (Bariogel®) at a ratio of 1:1 (40 mL of water to 40 mL of barium); and bread soaked in liquid barium (Bariogel®).

Based on the dysphagia severity scale, the degree of dysphagia was determined on each subject and used to allocate subjects into their study groups. Individuals with functional swallowing (a score 6 on the scale) were excluded because they were considered to have neither normal swallowing nor dysphagia, which could compromise data analysis. The examination data were only used to include subjects in
Table 1 Compatibility between judges in the application of GRBAS scale and wet voice at each moment of evaluation

Moment of evaluation	Number of items evaluated	Cronbach’s alpha
Before swallowing	6	0.898
After swallowing pasty food	6	0.882
After swallowing liquid food	6	0.872
After swallowing solid food	6	0.863

Table 2 Emission before and after swallowing of each consistency in individuals with oropharyngeal dysphagia (Student t test)

	G	R	B			
	Mean	SD	Mean	SD	Mean	SD
Before swallowing	1.98	0.75	1.55	0.78	0.87	0.77
After swallowing pasty food (n = 27)	1.77	0.69	1.38	0.7	0.87	72
B	0.008^a	0.134	> 0.999			
Before swallowing	1.94	0.074	1.51	0.77	0.84	0.73
After swallowing liquid food (n = 26)	1.8	0.54	1.61	0.52	0.84	0.65
B	0.146	0.439	> 0.999			
Before swallowing	1.93	0.68	1.44	0.74	0.84	0.74
After swallowing solid food (n = 21)	1.79	0.49	1.52	0.58	0.85	0.7
B	0.267	0.581	0.928			

Abbreviations: B, breathiness; G, grade; R, roughness; SD, standard deviation.

^ap < 0.05.
The same anatomical structures are involved in phonation and swallowing, especially in the laryngeal region, which is responsible for the main execution of these functions [14]. Some studies have been conducted to identify vocal parameters that can contribute to detection of oropharyngeal dysphagia.

Vocal production is initiated by the exhalation of air, which passes through the vocal folds in adduction position, producing a sound that is modified by the vocal tract that features the voice of each individual. The length and diameter of the vocal tract, ranging from the vocal folds to the nasal cavity, the placement of structures, such as the tongue and lips, as well as the permeability of the paranasal sinuses modify the sound produced by the vocal folds, making the voice of each person unique due to anatomical peculiarities.

Thus, anatomical or functional modifications in these structures, as well as the presence of food in the pharyngolaryngeal cavity in cases of oropharyngeal dysphagia, can lead to perceptual changes in the usual voice.

The results of this study helped confirm that perceptual parameters commonly evaluated for vocal characterization may vary after swallowing in individuals with oropharyngeal dysphagia. This is not observed in subjects without this change, which is of fundamental importance in clinical applicability. Furthermore, judges were compatible on the assignment of the observed features, as shown in Table 1. Perceptual analysis needs to have high compatibility in intra- and interevaluators so that the data are reliable compared with the real vocal production. The scale used for perceptual analysis in this study is often by professionals that work in the voice area and has shown fairly consistent applicability by independent evaluators, allowing greater reliability between results obtained in this study.

A proviso should be made for the wet voice parameter added to the protocol in this study, which will be discussed later.

Voice grade depends on the perception of the evaluator and consequently, previous experiences in voice analysis is necessary to assign a gravity score based on a set of vocal characteristics perceived as variations of normality.

Table 3 Emission before and after swallowing of each consistency in individuals with oropharyngeal dysphagia (Wilcoxon U test)

	A	S	Wet voice			
	Median	IR	Median	IR	Median	IR
Before swallowing	0.66	0–2.3	0.66	0–2	0.3	0–2
After swallowing pasty food (n = 27)	0	0–1.6	0.66	0–2.3	0.33	0–1.3
P	0.011*	0.028*	0.142			
Before swallowing	0.66	0–2.3	0.5	0–2	0.16	0–1.3
After swallowing liquid food (n = 26)	0	0–2	0.33	0–2.3	0.33	0–1.3
P	0.71	0.077	0.345			
Before swallowing	0	0–1	0.3	0–2	0.3	0–1.3
After swallowing solid food (n = 21)	0.33	0–2	0.33	0–2.6	0.33	0–1.3
P	0.428	0.586	0.444			

Abbreviations: A, asthenia; IR, interquartile range; S, strain.

*P < 0.05.

Table 4 Emission before and after swallowing of each consistency in group 2 (Wilcoxon U test)

	G	A	S			
	Median	IR	Median	IR	Median	IR
Before swallowing	0.66	0.3–2.3	0	0–2	0.33	0 to 2.3
After swallowing pasty food (n = 25)	1	0–2	0	0 to 0.6	0.33	0–2
P	0.357	0.803	0.101			
Before swallowing	0.6	0.3–2.3	0	0–1	0.3	0–2.3
After swallowing liquid food (n = 25)	1	0.3–2.3	0	0–1	0.3	0–2.3
P	0.406	0.167	0.439			
Before swallowing	0.6	0.3–2.3	0	0–1	0.3	0–2.3
After swallowing solid food (n = 25)	0.6	0.3–2	0	0–1	0.3	0–1.6
P	0.646	0.428	0.586			

Abbreviations: A, asthenia; G, grade; IR, interquartile range; S, strain.
use of this parameter in the evaluation of dysphagia allowed
the identification of changes in the oropharyngeal transit of
pasty food, with a decrease in severity of grade, even in a
blinded analysis. It was noted that this modification only
occurs for this consistency and was not modified for other
consistencies evaluated. The viscosity of the pasty food
permits it to adhere to the pharyngolaryngeal structures
when there are changes in motility, as observed in imaging
studies.22,23 The presence of food in the pharyngolaryngeal
cavity acts as a voice modifier and changes voice character-
istics during the sound passage produced by the vocal folds
over the vocal tract. The obstruction at any point in the vocal
tract, as commonly accomplished by the lips and tongue
during speech, changes the formants that compose the voice,
giving more bass or treble according to the position of these
structures.18,24 Thus, the stasis of pasty food modified speech
and decreased the aspects considered not normal and re-
duced the evaluator’s perception of the grade of alteration,
which can be associated with changes in the sound wave
caued by the presence of food.11 Nevertheless, the changes
related to swallowing liquids and solids are not able to change
this perception. The consumption of liquid is a beneficial
resource for vocal production as it reduces the salivary
viscosity and decreases dryness of the tract after long-term
use, with little immediate benefits perceived aurally.25 In case
of change in motility for this consistency, no impact occurs on
the voice after swallowing when there is no adherence of the
material in the tract modifying the passage of sound. So as
observed in a previous study, the use of liquid food for voice
variability evaluation after swallowing shows little sensitivity
because there is no immediately perceptible voice modifica-
tion even in cases of tracheal aspiration.16 In solid swallow-
ing, it is believed that this change will not occur once the food
causes a mechanical obstruction, leading to discomfort due to
prolonged transit time of food, which affects effective breath-
ing; phonation is performed only when there is clearance of
the tract after conducting multiple swallows,26,27 as observed
in the tests performed.

Beyond the modification of voice grade, the parameters of
vocal effort also changed after swallowing. During the per-
ceptual analysis, the judges characterized the voice by assign-
ing a marker of vocal effort, \textit{either} asthenia or strain.13,21 Indivi-
duals with vocal asthenia showed a decrease in this
aspect after swallowing, consequently verifying higher
strain; those who already had vocal strain had an increase
of this parameter. The vocal strain is caused by the increased
resistance of the vocal tract during passage of expiratory air,
performed in an attempt to compensate for structural
changes or a lack of balance between air and vocal muscle
use during phonation, with excessive muscular effort during
emission.18,28 This effort also occurs during coughing, when
the muscles contract abruptly to expel a foreign body.29 When
there is food residue in the tract, phonation occurs with more
effort to keep the usual voice pattern, because the food causes
obstruction, demonstrating that the increased vocal strain is
associated with the attempt to maintain a normal pattern of
speech and withdrawing food deposited in the tract.11,14

Although there is scarce literature about the use of voice
modifications to evaluate dysphagia, it is based primarily on
clinical identification of the presence of wet voice after
swallowing.30,31 Although commonly described as being a
characteristic of voice in which there is a change in the usual
pattern after swallowing, no features describe this variability
in the literature, as opposed to the concepts of other vocal
classifications observed.11,16,21 This aspect complicates
the standardization of analyses made by professionals in the area,
because it involves subjective characterization with little
scientific background. No significant change in this parameter
before and after swallowing was observed in this study. As
discussed in previous studies, this vocal characterization is
sensitive and it is not always possible to identify individuals
with alterations; the subjectivity and lack of standardization
cause poor reproducibility between evaluators, reflecting a
poor diagnostic prediction for dysphagia.11,16

Despite the important findings presented in this study, it is
necessary to point out some limitations, among them, the
sample size. Other authors who studied this method of
evaluation also had this same difficulty concerning the lim-
itations of the patients, because participation and integrity of
oropharyngeal structures are necessary. In addition, the use
of gold standard methods for evaluation are restricted to
individuals who have conditions to accomplish such evalua-
tion.11,14–16 Even with this limitation, the results corroborate
previous studies and demonstrate that this method of evalua-
tion shows specificity to differentiate individuals without
swallowing disorder.16,31

Further studies should be conducted to confirm our data to
better standardize the use of voice assessment as a method of
identification for oropharyngeal dysphagia. Other data ob-
tained from this same sample demonstrating the use of
parameters of vocal self-perception, acoustic voice analysis
and comparison between voice modifications and video-
fluoroscopic examination will be presented in other publica-
tions to probe studies in this area.

\textbf{Conclusion}

Based on the data presented in this study, after swallowing
pasty food, individuals with dysphagia decreased the
grade of vocal alteration and increased strain, with no
change in these vocal parameters for individuals without
swallowing disorder, demonstrating its specificity for clin-
cal use in the detection of oropharyngeal dysphagia.
Nevertheless, the use of the wet voice parameter was not
found to contribute to indicating this disorder, requiring
further studies and standardization like other vocal
parameters used in this study to allow a reliable evaluation
for clinical applicability.

\textbf{References}

1. Pitts T, Rose MJ, Mortensen AN, et al. Coordination of cough and
swallow: a meta-behavioral response to aspiration. Respir Physiol
Neurobiol 2013;189(3):543–551
2 Hadley AJ, Kolb I, Tyler DJ. Laryngeal elevation by selective stimulation of the hypoglossal nerve. J Neural Eng 2013;10(4):046013
3 Pearson WC Jr, Hindson DF, Langmore SE, Zumwalt AC. Evaluating swallowing muscles essential for hyolaryngeal elevation by using muscle functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2013;85(3):735–740
4 Wang J, Li WY, Zhang ZH, et al. Assessment of dysphagia: report of 37 cases. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2012;47(11):889–893
5 American Speech-Language-Hearing Association. Guidelines for speech-language pathologists performing videofluoroscopic swallowing studies. 2004. Available at: http://www.asha.org/policy/GL2004-00050/. Accessed April 28, 2014
6 Titworth WL, Abram J, Fullerton A, et al. Prospective quality initiative to maximize dysphagia screening reduces hospital-acquired pneumonia prevalence in patients with stroke. Stroke 2013;44(11):3154–3160
7 Ko MJ, Kang MJ, Ko KJ, Ki YO, Chang HJ, Kwon JY. Clinical usefulness of Schedule for Oral-Motor Assessment (SOMA) in children with dysphagia. Ann Rehabil Med 2011;35(4):477–484
8 Kjaersgaard A, Nielsen LH, Sjölund BH. Randomized trial of two swallowing assessment approaches in patients with acquired brain injury: facial-oral tract therapy versus fiberoptic endoscopic evaluation of swallowing. Clin Rehabil 2014;28(3):243–253
9 Padovani AR, Moraes DP, Mangili LD, Andrade CRF. Protocolo Fonoaudiológico de Avaliação do Risco para Disfagia (PARD). Rev Soc Bras Fonoaudiol. 2007;2(3):199–205
10 Daniels SK, Anderson JA, Willson PC. Valid items for screening dysphagia risk in patients with stroke: a systematic review. Stroke 2012;43(3):892–897
11 Groves-Wright KJ, Boyce S, Kelchner L. Perception of wet vocal quality in identifying penetration/aspiration during swallowing. J Speech Lang Hear Res 2010;53(3):620–632
12 O’Neil KH, Purdy M, Falk J, Gallo L. The dysphagia outcome and severity scale. Dysphagia 1999;14(3):139–145
13 Hirano M. Clinical Examination of Voice. New York, NY: Springer-Verlag; 1981
14 Malandraki GA, Hind JA, Gangnon R, Logemann JA, Robbins J. The utility of pitch elevation in the evaluation of oropharyngeal dysphagia: preliminary findings. Am J Speech Lang Pathol 2011; 20(4):262–268
15 Warm S, Richards J. “Wet voice” as a predictor of penetration and aspiration in oropharyngeal dysphagia. Dysphagia 2000;15(2):84–88
16 Waito A, Bailey GL, Molfenter SM, Zoratto DC, Steele CM. Voice-quality abnormalities as a sign of dysphagia: validation against acoustic and videofluoroscopic data. Dysphagia 2011;26(2):125–134
17 Cleveland TF. A clearer view of singing voice production: 25 years of progress. J Voice 1994;8(1):18–23
18. Behlau M. Voz: o livro do especialista. Vol. 2. Rio de Janeiro, Brazil: Revinter; 2008
19. Rouquayrol MZ, Almeida N. Epidemiologia e Saúde. Rio de Janeiro, Brazil: Medsi; 2000
20. Kreiman J, Gerratt BR, Kempster GB, Erman A, Berke GS. Perceptual evaluation of voice quality: review, tutorial, and a framework for future research. J Speech Hear Res 1993;36(1):21–40
21. Behlau M. Voz: o livro do especialista. Vol. 1. Rio de Janeiro, Brazil: Revinter; 2001
22. Dantas RO, Dodds WJ. Influência da viscosidade do bolo alimentar deglutido na motilidade da faringe. Arq Gastroenterol 1990;27(4):164–168
23. Prodomo LPV. Caracterização videofluoroscópica da fase faringea da deglutição [dissertation]. Fundação Antonio Prudente: São Paulo; 2010
24. Sundberg J. Perception of singing. STL-QPSR 1979;20(1):1–48
25. Fujita R, Ferreira AE, Sarkovas C. Avaliação videofluorométrica da vibração de pregas vocais no pré e pós hidratação. Rev Bras Otorrinolaringol (Engl Ed) 2004;70(6):742–746
26. Vivone GP, Tavares MMM, Bartolomeu RS, Nemr K, Chiappetta AL. Análise da consistência alimentar e tempo de deglutição em crianças com paralisia cerebral tetraplégica espástica. Rev CEFAC 2007;9(4):504–511
27. Moro ET. Prevenção da asfixia pulmonar do conteúdo gástrico. Rev Bras Anestesiol 2004;54(2):261–275
28. Koishi HU, Tsuji DH, Imamura R, Sennes LU. Variação da intensidade vocal: estudo da vibração das pregas vocais em seres humanos com videoendoscopia. Rev Bras Otorrinolaringol (Engl Ed) 2003;69(4):464–470
29. Gibson PG, Vertigan AE. Speech pathology for chronic cough: a new approach. Pulm Pharmacol Ther 2009;22(2):159–162
30. Murugappan S, Boyce S, Khosla S, Kelchner L, Gutmark E. Acoustic characteristics of phonation in “wet voice” conditions. J Acoust Soc Am 2010;127(4):2578–2589
31. Ryu JS, Park SR, Choi KH. Prediction of laryngeal aspiration using voice analysis. Am J Phys Med Rehabil 2004;83(10):753–757