A Topographic Atlas of the Human Brainstem in the Ponto-Mesencephalic Junction Plane

Vincent Coulombe 1, Stephan Saikali 2, Laurent Goetz 3, Mohamad A. Takech 4, Éric Philippe 4, André Parent 1 and Martin Parent 1*

1 CERVO Brain Research Center, Quebec City, QC, Canada, 2 Hôpital De L’Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC, Canada, 3 Hôpital Fondation Rothschild, Neurochirurgie pédiatrique - Unité Parkinson, Paris, France, 4 Laboratoire d’Anatomie, Université Laval, Quebec City, QC, Canada

The human brainstem harbors neuronal aggregates that ensure the maintenance of several vital functions. It also acts as a major relay structure for the neuronal information that travels between the cerebral cortex, the cerebellum and the spinal cord. As such, this relatively small portion of the human brain houses a multitude of ascending and descending fibers that course among numerous nuclei whose exact boundaries are still uncertain. Such a large number of nuclei and fiber tracts confined to a relatively small and compact brain region imposes upon the brainstem a highly complex cytoarchitectonic organization that still needs to be deciphered. The present work provides a topographic atlas of the human brainstem composed of 45 anatomical plates, each containing a pair of adjacent sections stained with Cresyl Violet and Luxol Fast Blue to help delineating brainstem nuclei and fiber tracts, respectively. The plates, which cover the entire midbrain, pons and medulla oblongata, are composed of equally-spaced sections referenced and aligned parallel to the ponto-mesencephalic junction rather than the fastigium or the obex. This topographic landmark is particularly suitable for neurosurgical interventions aiming at specific nuclei of the mesencephalic tegmentum. In complement, we provide 8 anatomical plates containing adjacent sections stained for choline acetyltransferase and Luxol Fast Blue, taken through the midbrain and the pons. This open access atlas of the human brainstem is intended to assist neuroanatomists, neurosurgeons and neuropathologists in their work.

Keywords: midbrain, pons, medulla oblongata, cytoarchitecture, reticular formation, neurosurgery, neuropathology

INTRODUCTION

The human brainstem plays a crucial role in the maintenance of vital functions, such as respiratory and cardiovascular activities. Furthermore, it acts as a major relay station between the cerebral cortex, the cerebellum and the spinal cord, as first suggested by the English neurologist Thomas Willis more than 350 years ago (Willis, 1664). Yet, despite its prime importance in the coordination of several basic central nervous system activities, the brainstem is one of the least understood parts of the human brain.
The organizational complexity of the brainstem relies, at least in part, from the fact that its houses a multitude of ascending and descending fiber tracts that course among a large number of nuclei whose exact boundaries are still a matter of controversy. Such a large number of nuclei and fiber tracts restricted to a relatively small brain region [the brainstem occupies <3% of the total brain volume (Erbagci et al., 2012)] imposes upon the brainstem a highly complex cytoarchitectonic organization that still poses problems to neuroanatomists, neuropathologists, neurosurgeons, and imaging specialists.

Based on its external appearance along the rostrocaudal axis, the brainstem has traditionally been divided into the midbrain, the pons and the medulla oblongata. However, since the recent discovery of rhombomeric segmentation based on developmental gene expression, the pons and medulla oblongata are now often referred together as the hindbrain, with the isthmus as its first segment (Watson et al., 2019; Paxinos et al., 2020). Along the dorsoventral axis, the brainstem can be divided into three distinctive parts: (1) a roof plate dorsal to the ventricular system known as the tectum, (2) a central core of cells and fibers beneath the ventricular system known as the tegmentum, and (3) a massive collection of ventrally located fibers derived from the cerebral cortex. The roof plate of the midbrain is represented by the tectum or quadrigeminal plate, consisting of the superior and inferior colliculi. At hindbrain levels, the roof plate is more elaborated and comprises the cerebellum and the tela chooroidea, which will not be considered in detail here. The tegmentum of the midbrain and hindbrain contains the brainstem reticular formation or reticular core: a large collection of diffusely distributed cells closely intermingled with fibers that subserves multiple functions, and several more precisely delineated nuclei. The cortically derived ventral fiber system forms the crus cerebri at midbrain levels, one of the principal constituents of the ventral or basilar region at pontine levels, and the pyramids at medullary levels (Parent, 1996).

Some nuclei of the brainstem tegmentum are enriched in dopaminergic, cholinergic, serotoninergic or noradrenergic neurons known to be involved in the control of motor behavior, sleep and waking cycles, as well as various autonomic functions (Parent, 1996). Over the years, many efforts have been made to delineate brainstem nuclei and fiber tracts (Kollikier, 1896; Ziehen, 1903; Jacobsohn, 1909; Riley, 1943). Olszewski and Baxter were the first to provide a comprehensive and detailed description of the cytoarchitecture of the human brainstem illustrated with high-quality photomicrographs and outlined drawings of histological sections taken transversely to the longitudinal axis of the brainstem (Olszewski and Baxter, 1954). Despite the high quality of this work, the fact that no stereotaxic coordinates were provided has led many neurosurgeons to rely on the stereotaxic atlas of the human brain published by Schaltenbrand and Wahren (1977) for their interventions, with the inherent constraint of histological sections being oriented perpendicular to the anterior (ac) and posterior commissural (pc) plane. This coordinate system originally proposed by Talairach (Talairach et al., 1957; Talairach and Szikla, 1967; Talairach and Tournoux, 1988) is not ideally suited for brainstem stereotaxy because landmarks used for stereotaxic coordinates are too distant from regions of interest (Zrinzo et al., 2008; Goetz et al., 2019). The Allen Human Brain Atlas, which uses this sectioning plane, presents an overall view of brainstem structures in relation with the entire human brain by means of Nissl cell stain combined with parvalbumin and SMI-32 immunohistochemical markers (Ding et al., 2016). Efforts have also been deployed to provide brainstem stereotaxic atlases referenced on brainstem landmarks. Afshar et al. (1978), among others, have presented stereotaxic references for the human brainstem and cerebellar nuclei based on the floor of the fourth ventricle, the midline and a plane passing perpendicular to the floor of the fourth ventricle at the level of the fastigium. The stereotaxic atlas of Paxinos and Huang (1995) contains 64 histological sections perpendicular to the long axis of the brainstem, stained for Cresyl Violet and acetylcholine esterase as well as associated diagrams with delineated nuclei and fiber tracts. In their revised version (Paxinos et al., 2020), 159 plates are presented, 31 of which being from a different brain and used to delineate fiber tracts. In this atlas, sections of the brainstem were numbered based on their distance from the obex. More recently, numerous human brainstem descriptions from MRI have been published (Naidich et al., 2007; Deistung et al., 2013; Bianciardi et al., 2015; Tang et al., 2018; Rushmore et al., 2020).

Among these, the Duvernoy's non-stereotaxic atlas of the human brainstem correlates transverse histological brainstem sections with corresponding clinical 3T and 9.4T MRI (Naidich et al., 2007) and is still widely used. The recent work of Rushmore and collaborators offers a detailed map of the human brainstem based on MRI dataset composed of 50-micron isotropic voxels from a post-mortem human brain (Rushmore et al., 2020).

In more recent studies (Ferraye et al., 2010; Goetz et al., 2019), the use of a new coordinate system referenced upon the ponto-mesencephalic junction (PMJ, a line that connects the inferior aspect of the quadrigeminal plate posteriorly with the foramen caecum of the interpeduncular fossa anteriorly), the floor of the fourth ventricle and the lateral mesencephalic sulci has been suggested to be more suitable for brainstem stereotaxy. This coordinate system, which refers to mesencephalic landmarks rather than the fastigium or the obex, has been adopted by some research groups (Thevathasan et al., 2011, 2012; Insola et al., 2012). It appears to be particularly suitable for neurosurgical interventions in the mesencephalic reticular formation, mainly because the references used are closer to neurosurgical areas of interest and easy to identify from MRI (Zrinzo et al., 2008). Readers looking for a color atlas of brainstem surgery should refer to the work of Spetzler and collaborators (Spetzler et al., 2017).

Our long-term interest in the basic aspects of the pathogenesis of various neurodegenerative diseases for which patients often present brainstem anomalies or are candidate for brainstem surgical interventions in the case of Parkinson’s disease, has led us to produce a topographic atlas of the human brainstem composed of 45 anatomical plates, each containing a pair of adjacent sections stained with Cresyl Violet and Luxol Fast Blue used to delineate brainstem nuclei and fiber tracts, respectively. The plates cover the midbrain, the pons and the medulla oblongata and are composed of transverse sections taken parallel
to the PMJ. In complement, we provide eight anatomical plates containing adjacent sections stained for choline acetyltransferase (ChAT) and Luxol Fast Blue taken through the midbrain and the pons. We hope that this open access atlas of the human brainstem will complement the work of our predecessors while providing an additional tool for fundamental and clinical research.

METHOD

Specimen Preparation

The post-mortem material was gathered from the brain of a 61-year-old woman who died from a pluri-metastatic colorectal cancer with no signs of neurological, neurodegenerative or psychiatric diseases. After a post-mortem delay of 5.5 h, the brain was perfused through the internal carotids and the vertebral arteries with 4 L of cold saline solution (NaCl 0.9% to which 20 units/mL of heparin was added), followed by 6 L of a cold fixative solution containing 4% paraformaldehyde (PFA) diluted in phosphate buffer (PB, 0.1 M, pH 7.4) and 4 L of 4% PFA to which 0.3% of glutaraldehyde was added. We then performed a MRI scan of the head with a 3T Philips Achieva (TE: 17 ms; TR: 4000 ms; slice thickness: 500 µm; duration 8 h, see Supplementary Material) before brain extraction. The extracted brain weighed 1,328 g (Figures 1A–F). The brainstem was dissected out and post-fixed by immersion in 4% PFA for 4 days. Tissue samples were obtained from the Human Anatomy Laboratory at Université Laval and kept in the Human Brain Bank of the CERVO research Center. Both Institutions required informed consent before donation of tissues. The Ethics Committee at Université Laval approved the brain collecting and storage and handling of post-mortem human brain tissues.

The brainstem was dissected and cut along a sagittal plane at 1 mm from the midline (Figure 1G). From the right hemi-brainstem that contained the midline, four different blocks were cut along the ponto-mesencephalic junction plane (PMJ), a line that connects the inferior aspect of the quadrigeminal plate (qpc) posteriorly with the foramen caecum (Fc) of the interpeduncular fossa (ipf) anteriorly (Figure 1H). The PMJ is depicted by a red line on the different plates. Its exact position can be found on Figure 1H and on plate 10 (0.00 mm). We estimate that there exists a difference of 10 degrees between the PMJ plane and the ac-pc plane (Figure 1H) and 20 degrees between the PMJ plane and the one used in the atlas of Paxinos (Paxinos et al., 2020). Each of the blocks were then cut at 4°C into 50 µm-thick sections using a vibratome (Leica VT1200S). The sections were all collected serially in phosphate buffer saline (PBS, 0.1 M, pH 7.4). Pairs of adjacent sections were selected out of 22 sections and then processed for Cresyl Violet and Luxol Fast Blue, respectively, providing a mean interval of 1.1 mm between each plate. Because some sections were damaged during the cutting process, in some cases, we decided to choose the next undamaged section instead of the adjacent one, for a maximum of 400 µm interval between Cresyl Violet and Luxol Fast Blue stained sections. Because losses of tissue inevitably occurred between each block, in addition to the known section thickness and intervals, we referred to the MRI in order to confirm the exact position of each section, relative to the PMJ (Figure 1I).

Cresyl Violet Staining

Sections intended for Cresyl Violet staining were first mounted on gelatin-coated microscope slides, air dried at room temperature and incubated overnight in 95% ethanol at 56°C. The slides were then rinsed 15 times in distilled water and immersed for 3 min at room temperature in a pre-heated and filtered solution of Cresyl Violet acetate (catalog no. C5042, Sigma, St-Louis, MO, USA) dissolved at 0.1% in distilled water. Sections were then rinsed in distilled water following by 10 times in ethanol 95%, two times in a solution of ethanol/acetic acid 0.5%, five times in ethanol 95%. The rinses in ethanol 95% and ethanol/acetic acid were repeated until the desired staining intensity was obtained. Sections were dehydrated in ethanol and
Luxol Fast Blue Staining
Sections intended for Luxol Fast Blue staining were first mounted on gelatin-coated microscope slides, air dried at room temperature and rinsed 10 times in ethanol 95%. They were then incubated overnight at 56°C in Luxol Fast Blue (Solvent Blue 38, catalog no. S3382, Sigma, St-Louis, MO, USA) dissolved at 0.1% in ethanol. They were rinsed once in ethanol 95%, 10 times in lithium carbonate (0.01%) and 10 times in ethanol 70%. When needed, rinses in lithium carbonate (0.01–0.1%) and ethanol were repeated until the desired staining intensity was obtained. Sections were dehydrated in ethanol and coverslipped with Permount. To increase contrast, five sections stained for Luxol Fast Blue had to be also stained with Cresyl Violet (Plates 9, 10, 26, 31, 37).

Choline Acetyltransferase Immunostaining
Eight equal thickness sections cut through the midbrain and the pons (between +4.88 mm and −10.59 mm) were stained for choline acetyltransferase (ChAT), the enzyme responsible for the synthesis of acetylcholine (plates A-H). After three rinses in PBS, the sections were placed for 20 min at room temperature in hydrogen peroxide (3% H2O2 diluted in ethanol) to eliminate endogenous peroxidase activity. The free-floating sections were then placed in sodium borohydride (0.5% diluted in PBS) for 30 min. After three rinses in PBS, the sections were preincubated for 1 h at room temperature in a PBS solution containing 2% normal rabbit serum and 0.5% Triton X-100, and incubated 48 h at 4°C in the same solution to which the goat anti-ChAT antibody was added (catalog no. AB144P, EMD Milipore Corporation, Billerica, MA, 1:20). The sections were then rinsed, reincubated for 1 h at room temperature with a rabbit anti-goat biotinylated IgG (catalog # BA-5000; Vector Labs, Burlingame, CA, USA; 1:200). After three rinses in PBS, the sections were preincubated for 1 h at room temperature in 2% avidin-biotin-peroxidase complex (catalog # PK-4000; Vector Labs). The bound peroxidase was revealed by placing the sections in a medium containing 0.05% 3,3’-diaminobenzidine tetrahydrochloride (DAB, catalog #DS637; Sigma) and 0.005% H2O2 in 0.05 M Tris buffer, pH 7.6. The reaction was stopped after 8 min by several washes in Tris buffer and PBS. Immunostained sections were mounted on gelatine-coated slides, dehydrated in ethanol and coverslipped with Permount. Cresyl Violet, Luxol Fast Blue and ChAT-stained sections were digitalized at 1200 dpi (pixel resolution of 1 µm) using a slide scanner (TISSUEscopeTM 4000, Huron Technologies, Waterloo, Ontario, Canada) equipped with a 10X objective.

Methodological Considerations and Limitations
Chemical fixation of the brain and section processing inevitably lead to shrinkage. In order to minimize shrinkage, blocks were cut at 4°C with a vibratome, precluding the need of cryoprotection in sucrose solution and freezing. A comparison of the size of the red nucleus as it appears on post-mortem brain MRI images and on Cresyl Violet stained sections, has revealed the shrinkage to be of the order of 4%. No pre-mortem MRI was available to assess shrinkage that might have been caused by the perfusion. It should be reminded that this atlas is based on a single brain of a 61-year-old woman and that existing inter-individual variations should carefully be taken into account using provided MRI (see Supplementary Material). Three different magnifications had to be used to provide plates presenting histological sections of adequate size (plates 1–6, plates 7–29, and plates 30–45). Therefore, readers should pay close attention to individual scale bars when comparisons are made between plates. Segmentation of brainstem nuclei and fiber tracts from Cresyl Violet and Luxol Fast Blue stained sections were performed following careful examination of histological sections, so as to avoid arbitrary delineation. Only structures that could be easily delineated in our preparations are identified and dashed lines are used when brainstem regions don’t show clear histological boundaries. For example, the cuneiform nucleus (CnF) and the tegmental part of pontine reticular nucleus (PnTn) are broadly delineated with dashed lines because their boundaries with surrounding structures could not be clearly established. Therefore, the CnF, as defined in the present study, might comprise a portion of the mesencephalic reticular formation, whereas the PnTn could include parts of the isthmic reticular formation, the retroisthmic nucleus, the retrorubral field and the ventrolateral tegmental nucleus, as defined by Paxinos (Paxinos et al., 2020). Our segmentation was confirmed with the help of other human brainstem atlases (Olszewski and Baxter, 1954; Schaltenbrand and Wahren, 1977; Afshar et al., 1978; Paxinos and Huang, 1995; Naidich et al., 2007; Paxinos et al., 2020). Readers might refer to other human brainstem atlases for more extensive delineation of brainstem subnuclei and additional plates, in different sectioning planes. The nomenclature and abbreviations used in the present study are largely based on those of Paxinos and Watson (1982). For brainstem nuclei that didn’t show clear subdivisions, we used single abbreviations to identify structures composed of several subnuclei. For example, the abbreviation Sp5 for spinal trigeminal nucleus, as delineated in the present atlas, includes the oral (Sp5O), interpolar (Sp5I), and caudal (Sp5C) parts of the nucleus, and the abbreviation VC for ventral cochlear nucleus includes the anterior (VCA) and posterior (VCp) parts of the nucleus that are delineated in other atlases. Likewise, the abbreviation PAG for periaqueductal gray refers to all PAG columns. A complete list of abbreviations and equivalent Latin names, as published in Terminologia Anatomica (Terminology, 1998) is also provided. The asterisks added to some abbreviations indicate that these abbreviations are slightly different from those used in the human brainstem atlas of Paxinos (Paxinos et al., 2020) or point to structures that are not identified in that atlas.
Abbreviation	Description	Abbreviation	Description
3N	Oculomotor nucleus	3n	Oculomotor nerve
4N	Trochlear nucleus	4n	Trochlear nerve
4V	Fourth ventricle	5ADi	Motor trigeminal nucleus, anterior digastric part
5N	Motor trigeminal nucleus	5n	Motor trigeminal nerve
5Sp	Lamina 5 of the spinal gray	5Te	Motor trigeminal nucleus, temporal part
5V	Fourth ventricle	6N	Abducens nucleus
6N	Abducens nucleus	6n	Abducens nerve
7DM	Facial nucleus, dorsomedial part	7n	Facial nerve
7NH	Facial nucleus, stylohyoid part	7SH	Facial nucleus, stylohyoid part
7n	Facial nerve	8n	Vestibulocochlear nerve
7VL	Facial nucleus, ventrolateral part	9n	Glossopharyngeal nerve
8n	Vestibulocochlear nerve	9Sp	Lamina 9 of the spinal gray
9n	Glossopharyngeal nerve	10N	Dorsal motor nucleus of the vagus nerve
10n	Vagus nerve	12N	Hypoglossal nucleus
12n	Hypoglossal nerve	13N	Hypoglossal nucleus
ac*	Anterior commissure	ai*	Ansa lenticularis
al*	Ansa lenticularis	Amb	Ambiguous nucleus
Amg*	Amygdaloid complex	Aq	Aqueduct
Ar	Arcuate nucleus	BIC	Nucleus of the brachium of the inferior colliculus
bic	Brachium of the inferior colliculus	CAT	Nucleus of the central acoustic tract
CbH*	Cerebellar hemisphere	CbV*	Cerebellar vermis
CbV*	Cerebellar vermis	CC	Central canal
Cc*	Caudate nucleus	Cd*	Central gray
Cg*	Central gray	Clli	Caudal linear nucleus of the raphe
CnF	Cuneiform nucleus	CnF	Cuneiform nucleus
cp	Cerebral peduncle	Dc	Dorsal cochlear nucleus
csp	Corticospinal tract	Dl	Dorsal cochlear nucleus
Ct	Conterminal nucleus	Dll	Dorsal nucleus of the lateral lemniscus
ctg	Central tegmental tract	Dplg	Dorsal lateral geniculate nucleus
cth*	Cerebellothalamic tract	Cu	Cuneate nucleus
cu	Cuneate fasciculus	Dc	Dorsal cochlear nucleus
dsc	Dorsal spinocerebellar tract	Dl	Dorsal nucleus of the lateral lemniscus
DpGi	Dorsal paragigantocellular nucleus	Dr	Dorsal raphe nucleus
disc	Dorsal spinocerebellar tract		

(Continued)
Abbreviation	Full Name
DTg*	Dorsal tegmental nucleus
ECu	External cuneate nucleus
emlt*	External medullary lamina of the thalamus
ErR	Endorestitial nucleus
EW	Edinger-Westphal nucleus
Fc*	Foramen caecum
ft*	Thalamic fasciculus
fx*	Fornix
GP*	Globus pallidus
Gr	Gracile nucleus
gr	Gracile fasciculus
I8	Interstitial nucleus of the vestibular part of the 8th nerve
ia	Internal arcuate fibers
IC*	Inferior colliculus
ic*	Internal capsule
icp	Inferior cerebellar peduncle
IF12*	Interfascicular nucleus of the hypoglossal nerve
InC	Intersitial nucleus of Cajal
IOD	Inferior olive, dorsal nucleus
IOM	Inferior olive, medial nucleus
IOPr	Inferior olive, principal nucleus
IP	Interpeduncular nucleus
ipf	Interpeduncular fossa
JxO	Juxtaolivary nucleus
LC	Locus coeruleus
lcs	Lateral corticospinal tract
LDTg	Laterodorsal tegmental nucleus
Li	Linear nucleus of the hindbrain
II	Lateral lemniscus
LPB	Lateral parabrachial nucleus
LPCu	Lateral pericuneate nucleus
LPGi	Lateral paragigantocellular nucleus
LRt	Lateral reticular nucleus
LRtS5	Lateral reticular nucleus, subtrigeminal part
LVe	Lateral vestibular nucleus
mS	Motor root of the trigeminal nerve
MB	Mammillary body
mcp	Middle cerebellar peduncle
MdC*	Medullary reticular nucleus, central part
MdD	Medullary reticular nucleus, dorsal part
MdV	Medullary reticular nucleus, ventral part
Me5	Mesencephalic trigeminal nucleus
me5	Mesencephalic trigeminal tract
MG	Medial geniculate nucleus
ml	Medial lemniscus
mlf	Medial longitudinal fasciculus
MnR	Median raphe nucleus
MPB	Medial parabrachial nucleus
MPCu	Medial pericuneate nucleus
mt*	Mammillothalamic tract
MVe	Medial vestibular nucleus
NB	Basal nucleus of Meynert
oc	Olivocerebellar tract
opt	Optic tract
NB	Basal nucleus of Meynert
oc	Olivocerebellar tract
opt	Optic tract

Nucleus tegmentalis dorsalis
Nucleus cuneatus, pars externa
Lamina medullaris externa thalami
Nucleus endorestitiformis
Nucleus accessorii nervi oculomotorii
Foramen caecum
Fasciculus thalamicus
Globus pallidus
Nucleus gracilis
Fasciculus gracilis
Nucleus interstitialis nervi vestibulocochlearis, pars vestibularis
Fibrae arcuatae internae
Colliculus inferioris
Capsula interna
Pedunculus cerebellaris inferior
Nucleus interfascicularis nervi hypoglossi
Nucleus interstitialis
Nucleus olivaris dorsalis
Oliva inferior, nucleus medialis
Oliva inferior, nucleus principalis
Nucleus interpudendularis
Fossa interpudendularis
Oliva inferior, junct nucleus
Locus coeruleus
Tractus corticospinalis lateralis
Nucleus tegmentalis laterodorsalis
Nucleus linearis rhombencephali
Lemniscus lateralis
Nucleus parabrachialis lateralis
Nucleus pericuneatus lateralis
Nucleus paragigantocellularis lateralis
Nucleus reticularis lateralis
Nucleus reticularis lateralis, pars subtrigeminalis
Nucleus vestibularis lateralis
Radix motoria nervus trigeminus
Corpus mammillare
Pedunculus cerebellaris medius
Formatio reticularis medulares, pars centralis
Formatio reticularis medulares, pars dorsalis
Formatio reticularis medulares, pars ventralis
Nucleus mesencephalicus nervi trigemini
Tractus mesencephalicus nervi trigemini
Nucleus geniculatum mediale
Lemniscus medialis
Fasciculus longitudinalis medialis
Nucleus raphes medianus
Nucleus parabrachialis medialis
Nucleus pericuneatus medialis
Tractus mammillothalamicus
Nucleus vestibularis lateralis
Nucleus basalis Meynerti
Tractus olivocerebellaris
Tractus opticus

(Continued)
LIST OF ABBREVIATIONS | Continued

Abbreviation	Full Name
P5	Peritrigeminal zone
PAG	Periaqueductal gray
PBP	Parabrachial pigmented nucleus of the ventral tegmental area
pc	Posterior commissure
PDTg	Posterodorsal tegmental nucleus
PN	Paranigral nucleus of the ventral tegmental area
Pr	Pontine nuclei
PrnB	Pontobulbar nucleus
PrC	Pontine reticular nucleus, caudal part
PrG*	Pontine reticular nucleus, gigantocellular part
PrO	Pontine reticular nucleus, oral part
PrP*	Pontine reticular nucleus, parvocellular part
PrR	Pontine raphe nucleus
PrN*	Pontine reticular nucleus, tegmental part
PP	Peripeduncular nucleus
Prp	Prepositus nucleus
PrS	Principal sensory trigeminal nucleus
PT*	Pretectal nucleus
PTg	Pedunculotegmental nucleus
PuI	Pulvinar nucleus
Put*	Putamen
py	Pyramidal tract
pyx	Pyramidal decussation
R*	Red nucleus
RAmb	Retroambiguus nucleus
RfP	Raphe interpositus nucleus
RMg	Raphe magnus nucleus
RoB	Raphe obscurus nucleus
RtGt	Reticulotegmental nucleus
s5	Sensory root of the trigeminal nerve
SC	Superior colliculus
scp	Superior cerebellar peduncle
SGe	Supragenual nucleus of the raphe
SNc	Substantia nigra, compact part
SNr	Substantia nigra, reticular part
SoI	Superior olive
SoI	Solitary nucleus
sol	Solitary tract
Sp5*	Spinal trigeminal nucleus
sp5	Spinal trigeminal tract
SpVe	Spinal vestibular nucleus
STh*	Subthalamic nucleus
SubC*	Subcoeruleus nucleus
Sul-B9*	Supralemniscal nucleus–B9 serotonin cells
SuVe	Superior vestibular nucleus
tfp	Transverse fibers of the pons
VC*	Ventral cochlear nucleus
vesp	Vestibulospinal tract
VLL	Ventral nucleus of the lateral lemniscus
Vsc	Ventral spino-cerebellar tract
VTA	Ventral tegmental area
xscp	Decussation of the superior cerebellar peduncle

Asterisks indicate abbreviations that are slightly different from those used in the human brainstem atlas of Paxinos et al. (2020) or point to structures that are not identified in that atlas.
Coulombe et al. Atlas of the Human Brainstem

Plate 1

Caudate nucleus (Cd)
Cuneiform nucleus (CnF)
Globus pallidus (GP)
Interstitial nucleus of Cajal (InC)
Mammillary body (MB)
Basal nucleus of Meynert (NB)
Periaqueductal gray (PAG)
Pretectal nucleus (PT)
Pulvinar nucleus (Pul)
Putamen (Put)
Red nucleus (R)
Superior colliculus (SC)
Subthalamic nucleus (STh)

Anterior commissure (ac)
Ansa lenticularis (al)
Brachium of the inferior colliculus (bic)
Cerebellotegmental tract (cth)
External medullary lamina of the thalamus (emlt)
Thalamic fasciculus (ft)
Fornix (fx)
Internal capsule (ic)
Medial lemniscus (ml)
Medial longitudinal fasciculus (mlf)
Mammillothalamic tract (mt)
Optic tract (opt)
Posterior commissure (pc)

0 10 mm

+ 11.19 mm
Plate 2

CnF: Cuneiform nucleus
DLG: Dorsal lateral geniculate nucleus
GP: Globus pallidus
MB: Mammillary body
MG: Medial geniculate nucleus
NB: Basal nucleus of Meynert
PAG: Periaqueductal gray
PP: Peripeduncular nucleus
PT: Pretectal nucleus
Pul: Pulvinar nucleus
Put: Putamen
R: Red nucleus
SC: Superior colliculus
STh: Subthalamic nucleus

ac: Anterior commissure
bic: Brachium of the inferior colliculus
cp: Cerebral peduncle
ctg: Central tegmental tract
cth: Cerebellothalamic tract
emlt: External medullary lamina of the thalamus
ft: Thalamic fasciculus
fx: Fornix
ic: Internal capsule
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
mt: Mammillothalamic tract
opt: Optic tract

+ 10.41 mm
Plate 3

3N: Oculomotor nucleus
Amg: Amygdaloid complex
Aq: Aqueduct
CLi: Caudal linear nucleus of the raphe
CnF: Cuneiform nucleus
DLG: Dorsal lateral geniculate nucleus
EW: Edinger-Westphal nucleus
MB: Mammillary body
MG: Medial geniculate nucleus
PAG: Periaqueductal gray
PBP: Parabrachial pigmented nucleus of the ventral tegmental area
PN: Paraventricular nucleus of the ventral tegmental area
PP: Peripeduncular nucleus
Pul: Pulvinar nucleus
R: Red nucleus
SC: Superior colliculus
SNC: Substantia nigra, compact part
SNR: Substantia nigra, reticular part
VTA: Ventral tegmental area

ac: Anterior commissure
Aq: Aqueduct
bic: Brachium of the inferior colliculus
cp: Cerebral peduncle
ctg: Central tegmental tract
cth: Cerebellothalamic tract
emlt: External medullary lamina of the thalamus
ic: Internal capsule
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
mt: Mammillothalamic tract
opt: Optic tract

+ 10.12 mm
3N: Oculomotor nucleus
Aq: Aqueduct
CLi: Caudal linear nucleus of the raphe
CnF: Cuneiform nucleus
ipf: Interpeduncular fossa
MG: Medial geniculate nucleus
PAG: Periaqueductal gray
PBP: Parabrachial pigmented nucleus of the ventral tegmental area
PN: Paramarginal nucleus of the ventral tegmental area
PP: Peripeduncular nucleus
R: Red nucleus
SC: Superior colliculus
SNC: Substantia nigra, compact part
SNR: Substantia nigra, reticular part
VTA: Ventral tegmental area

Aq: Aqueduct
bic: Brachium of the inferior colliculus
cp: Cerebral peduncle
ctg: Central tegmental tract
cth: Cerebellothalamic tract
ipf: Interpeduncular fossa
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus

Plate 4

+ 9.57 mm
3N: Oculomotor nucleus
Aq: Aqueduct
BIC: Nucleus of the brachium of the inferior colliculus
CLi: Caudal linear nucleus of the raphe
CnF: Cuneiform nucleus
ipf: Interpeduncular fossa
PAG: Periaqueductal gray
PBP: Parabrachial pigmented nucleus of the ventral tegmental area
PTg: Pedunculotegmental nucleus
R: Red nucleus
SC: Superior colliculus
SNC: Substantia nigra, compact part
SNR: Substantia nigra, reticular part
VTA: Ventral tegmental area

3n: Oculomotor nerve
Aq: Aqueduct
bic: Brachium of the inferior colliculus
cp: Cerebral peduncle
ctg: Central tegmental tract
ipf: Interpeduncular fossa
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
scp: Superior cerebellar peduncle

Plate 6

+ 6.45 mm
4N: Trochlear nucleus
Aq: Aqueduct
BIC: Nucleus of the brachium of the inferior colliculus
C Li: Caudal linear nucleus of the raphe
CnF: Cuneiform nucleus
DR: Dorsal raphe nucleus
IC: Inferior colliculus
IP: Interpeduncular nucleus
ipf: Interpeduncular fossa
PAG: Periaqueductal gray
PBP: Parabrachial pigmented nucleus of the ventral tegmental area
PTg: Pedunculotegmental nucleus
SNC: Substantia nigra, compact part
SNR: Substantia nigra, reticular part

4n: Trochlear nerve
Aq: Aqueduct
cp: Cerebral peduncle
ctg: Central tegmental tract
ipf: Interpeduncular fossa
ll: Lateral lemniscus
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
xscp: Decussation of the superior cerebellar peduncle

Plate 7

+ 5.08 mm
4V: Fourth ventricle
DLL: Dorsal nucleus of the lateral lemniscus
DR: Dorsal raphe nucleus
DTg: Dorsal tegmental nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
LPB: Lateral parabrachial nucleus
Me5: Mesencephalic trigeminal nucleus
MnR: Median raphe nucleus
MPB: Medial parabrachial nucleus
PAG: Periaqueductal gray
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnTn: Pontine reticular nucleus, tegmental part
PTg: Pedunculotegmental nucleus

4V: Fourth ventricle
csp: Corticospinal tract
ctg: Central tegmental tract
ll: Lateral lemniscus
mcp: Middle cerebellar peduncle
me5: Mesencephalic trigeminal tract
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
scp: Superior cerebellar peduncle
tfp: Transverse fibers of the pons

Plate 12

- 3.87 mm
4V: Fourth ventricle
DR: Dorsal raphe nucleus
DTg: Dorsal tegmental nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
LPB: Lateral parabrachial nucleus
Me5: Mesencephalic trigeminal nucleus
MnR: Median raphe nucleus
MPB: Medial parabrachial nucleus
PAG: Periaqueductal gray
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnTn: Pontine reticular nucleus, tegmental part
PTg: Pedunculotegmental nucleus
SuL-B9: Supralemniscal nucleus - B9 serotonin cells
VLL: Ventral nucleus of the lateral lemniscus
DR : Dorsal raphe nucleus
LC : Locus coeruleus
LDTg : Laterodorsal tegmental nucleus
MnR : Median raphe nucleus
MPB : Medial parabrachial nucleus
Pn : Pontine nuclei
PnO : Pontine reticular nucleus, oral part
PnTn : Pontine reticular nucleus, tegmental part
RTg : Reticulotegmental nucleus
SuL-B9 : Supralemniscal nucleus - B9 serotonin cells
VLL : Ventral nucleus of the lateral lemniscus

csp : Corticospinal tract
ctg : Central tegmental tract
ll : Lateral lemniscus
mcp : Middle cerebellar peduncle
me5 : Mesencephalic trigeminal tract
ml : Medial lemniscus
mlf : Medial longitudinal fasciculus
scp : Superior cerebellar peduncle
tfp : Transverse fibers of the pons

Plate 15

- 10.64 mm
4V: Fourth ventricle
DR: Dorsal raphe nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
Me5: Mesencephalic trigeminal nucleus
MnR: Median raphe nucleus
MPB: Medial parabrachial nucleus
PAG: Periaqueductal gray
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnTn: Pontine reticular nucleus, tegmental part
RTg: Reticulotegmental nucleus
SubC: Subcoeruleus nucleus
SuL-B9: Supralemniscal nucleus - B9 serotonin cells
VLL: Ventral nucleus of the lateral lemniscus

4V: Fourth ventricle
csp: Corticospinal tract
c tg: Central tegmental tract
l l: Lateral lemniscus
mcp: Middle cerebellar peduncle
me5: Mesencephalic trigeminal tract
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
scp: Superior cerebellar peduncle
tfp: Transverse fibers of the pons

Plate 16

- 13.05 mm
4V: Fourth ventricle
CbH: Cerebellar hemisphere
CbV: Cerebellar vermis
DR: Dorsal raphe nucleus
LC: Locus coerulescens
MPB: Medial parabrachial nucleus
PDtg: Posterodorsal tegmental nucleus
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnR: Pontine raphe nucleus
PnTn: Pontine reticular nucleus, tegmental part
RdTg: Reticulotegmental nucleus
SubC: Subcoeruleus nucleus
SuL-B9: Supralemniscal nucleus - B9 serotonin cells
VLL: Ventral nucleus of the lateral lemniscus

4V: Fourth ventricle
csp: Corticospinal tract
ctg: Central tegmental tract
dl: Lateral lemniscus
cmp: Middle cerebellar peduncle
m5: Motor root of the trigeminal nerve
me5: Mesencephalic trigeminal tract
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
scp: Superior cerebellar peduncle
tfp: Transverse fibers of the pons
vsc: Ventral spinocerebellar tract

Plate 18

- 14.88 mm
4V: Fourth ventricle
SADi: Motor trigeminal nucleus, anterior digastic part
SN: Motor trigeminal nucleus
STe: Motor trigeminal nucleus, temporal part
STr: Trigeminal transition zone
CAT: Nucleus of the central acoustic tract
CbH: Cerebellar hemisphere
DR: Dorsal raphe nucleus
Me5: Mesencephalic trigeminal nucleus
MPB: Medial parabrachial nucleus
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnR: Pontine raphe nucleus
PnTn: Pontine reticular nucleus, tegmental part
Pr5: Principal sensory trigeminal nucleus
RTg: Reticulotegmental nucleus
SGe: Supragenual nucleus of the raphe
SubC: Subcoeruleus nucleus
SuL-B9: Supralemniscal nucleus - B9 serotonin cells

4V: Fourth ventricle
7n: Facial nerve
csp: Corticospinal tract
ctg: Central tegmental tract
icp: Inferior cerebellar peduncle
ll: Lateral lemniscus
m5: Motor root of the trigeminal nerve
mcp: Middle cerebellar peduncle
me5: Mesencephalic trigeminal tract
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
s5: Sensory root of the trigeminal nerve
scp: Superior cerebellar peduncle
sol: Solitary tract
tfp: Transverse fibers of the pons
vsc: Ventral spinocerebellar tract

Plate 20

- 17.09 mm
Plate 22

- 19.36 mm

4V: Fourth ventricle
5N: Motor trigeminal nucleus
CbV: Cerebellar vermis
Me5: Mesencephalic trigeminal nucleus
Pn: Pontine nuclei
PnC: Pontine reticular nucleus, caudal part
PnP: Pontine reticular nucleus, parvocellular part
Pr5: Principal sensory trigeminal nucleus
RtTg: Reticulotegmental nucleus
SGe: Suprageminal nucleus
SOI: Superior olivary nucleus
SubC: Subcoeruleus nucleus
SuVe: Superior vestibular nucleus

4V: Fourth ventricle
7n: Facial nerve
csp: Corticospinal tract
ctg: Central tegmental tract
icp: Inferior cerebellar peduncle
mcp: Middle cerebellar peduncle
ml: Medial lemniscus
mif: Medial longitudinal fasciculus
s5: Sensory root of the trigeminal nerve
sol: Solitary tract
tfp: Transverse fibers of the pons
- Fourth ventricle
6N: Abducens nucleus
CbV: Cerebellar vermis
Pn: Pontine nuclei
PnC: Pontine reticular nucleus, caudal part
PnP: Pontine reticular nucleus, parvocellular part
Pr5: Principal sensory trigeminal nucleus
RIP: Raphe interpositus nucleus
RtTg: Reticulotegmental nucleus
SGe: Suprageniculate nucleus
SOI: Superior olivary nucleus
SuVe: Superior vestibular nucleus

4V: Fourth ventricle
7n: Facial nerve
csp: Corticospinal tract
ctg: Central tegmental tract
icp: Inferior cerebellar peduncle
mcp: Middle cerebellar peduncle
ml: Medial lemniscus
mif: Medial longitudinal fasciculus
s5: Sensory root of the trigeminal nerve
sol: Solitary tract
tfp: Transverse fibers of the pons

Plate 23

- 20.34 mm
4V: Fourth ventricle
6N: Abducens nucleus
7N: Facial nucleus
7SH: Facial nucleus, stylohyoid part
ChV: Cerebellar vermis
Pn: Pontine nuclei
PnC: Pontine reticular nucleus, caudal part
PnG: Pontine reticular nucleus, gigantocellular part
PnP: Pontine reticular nucleus, parvocellular part
Pr5: Principal sensory trigeminal nucleus
RIP: Raphe interpositus nucleus
RtTg: Reticulotegmental nucleus
SGe: Supraoptic nucleus
StG: Superior olivary nucleus
Sol: Solitary nucleus
Sp5: Spinal trigeminal nucleus
SuVe: Superior vestibular nucleus
4V: Fourth ventricle
6n: Abducens nerve
7n: Facial nerve
csp: Corticospinal tract
ctg: Central tegmental tract
icp: Inferior cerebellar peduncle
mcp: Middle cerebellar peduncle
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
sp5: Spinal trigeminal tract
sol: Solitary tract
tfp: Transverse fibers of the pons

Plate 24

- 21.33 mm
4V : Fourth ventricle
7DM : Facial nucleus, dorsomedial part
7N : Facial nucleus
7SH : Facial nucleus, stylohyoid part
7VL : Facial nucleus, ventrolateral part
CbH : Cerebellar hemisphere
DC : Dorsal cochlear nucleus
DPGi : Dorsal paragigantocellular nucleus
I8 : Intersitial nucleus of the vestibular part of the 8th nerve
LPGi : Lateral paragigantocellular nucleus
LVe : Lateral vestibular nucleus
MVe : Medial vestibular nucleus
Pn : Pontine nuclei
PnP : Pontine reticular nucleus, gigantocellular part
PnG : Pontine reticular nucleus, parvo cellular part
Pr : Prepositus nucleus
RMg : Raphe magnus nucleus
ROb : Raphe obscurus nucleus
SOl : Superior olive
Sol : Solitary nucleus
Sp5 : Spinal trigeminal nucleus
SpVe : Spinal vestibular nucleus
VC : Ventral cochlear nucleus

4V : Fourth ventricle
8n : Vestibulocochlear nerve
csp : Corticospinal tract
ctg : Central tegmental tract
icp : Inferior cerebellar peduncle
mcp : Middle cerebellar peduncle
ml : Medial lemniscus
mlf : Medial longitudinal fasciculus
sol : Solitary tract
sp5 : Spinal trigeminal tract
tfp : Transverse fibers of the pons
vesp : Vestibulospinal tract
Plate 27

- 25.86 mm

7DM: Facial nucleus, dorsomedial part
7N: Facial nucleus
7SH: Facial nucleus, stylohyoid part
7VL: Facial nucleus, ventrolateral part
DC: Dorsal cochlear nucleus
DPGi: Dorsal paragigantocellular nucleus
I8: Interstitial nucleus of the vestibular part of the 8th nerve
LPGi: Lateral paragigantocellular nucleus
LVe: Lateral vestibular nucleus
MVe: Medial vestibular nucleus
Pn: Pontine nuclei
PnB: Pontobulbar nucleus
PnG: Pontine reticular nucleus, gigantocellular part
PnP: Pontine reticular nucleus, parvocellular part
Pr: Prepositus nucleus
RMg: Raphe magnus nucleus
ROb: Raphe obscurus nucleus
SOI: Superior olive
Sol: Solitary nucleus
Sp5: Spinal trigeminal nucleus
SpVe: Spinal vestibular nucleus
VC: Ventral cochlear nucleus

csp: Corticospinal tract
ctg: Central tegmental tract
icp: Inferior cerebellar peduncle
mcp: Middle cerebellar peduncle
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
sol: Solitary tract
sp5: Spinal trigeminal tract
tfp: Transverse fibers of the pons
vesp: Vestibulospinal tract
Amb: Ambiguous nucleus
DPGi: Dorsal paragigantocellular nucleus
IOD: Inferior olive, dorsal nucleus
IOPr: Inferior olive, principal nucleus
LPGi: Lateral paragigantocellular nucleus
LRSS: Lateral reticular nucleus, subtrigeminal part
MVe: Medial vestibular nucleus
PnG: Pontine reticular nucleus, gigantocellular part
PnP: Pontine reticular nucleus, parvocellular part
Pr: Prepositus nucleus
RMg: Raphe magnus nucleus
ROb: Raphe obscurus nucleus
Sol: Solitary nucleus
Sp5: Spinal trigeminal nucleus
SpVe: Spinal vestibular nucleus
ctg: Central tegmental tract
icp: Inferior cerebellar peduncle
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
py: Pyramidal tract
oc: Olivocerebellar tract
sol: Solitary tract
sp5: Spinal trigeminal tract
vesp: Vestibulospinal tract
vsc: Ventral spino cerebellar tract

Plate 30

- 28.13 mm
4V: Fourth ventricle
10N: Dorsal motor nucleus of the vagus nerve
Amb: Ambiguous nucleus
DPGi: Dorsal paragigantocellular nucleus
EnR: Endorestiform nucleus
IOD: Inferior olive, dorsal nucleus
IOM: Inferior olive, medial nucleus
IOPr: Inferior olive, principal nucleus
LPGi: Lateral paragigantocellular nucleus
LRIS5: Lateral reticular nucleus, subnigral part
MVe: Medial vestibular nucleus
PnG: Pontine reticular nucleus, gigantocellular part
PnP: Pontine reticular nucleus, parvocellular part
Pr: Prepositus nucleus
ROb: Raphe obscurus nucleus
Sol: Solitary nucleus
Sp5: Spinal trigeminal nucleus
SpVe: Spinal vestibular nucleus

Plate 31

- 29.51 mm
4V: Fourth ventricle
10N: Dorsal motor nucleus of the vagus nerve
12N: Hypoglossal nerve
Amb: Ambiguous nucleus
ECu: External cuneate nucleus
EnR: Endorestiform nucleus
IF12: Interfascicular nucleus of the hypoglossal nerve
IOD: Inferior olive, dorsal nucleus
IOM: Inferior olive, medial nucleus
IOPr: Inferior olive, principal nucleus
Li: Linear nucleus of the hindbrain
LRt: Lateral reticular nucleus
LRtSS: Lateral reticular nucleus, subtrigeminal part
MdD: Medullary reticular nucleus, dorsal part
MdV: Medullary reticular nucleus, ventral part
MPCu: Medial pericuneate nucleus
MVe: Medial vestibular nucleus
Sol: Solitary nucleus
Sp5: Spinal trigeminal nucleus
4V: Fourth ventricle
12n: Hypoglossal nerve
ctg: Central tegmental tract
cu: Cuneate fasciculus
icp: Inferior cerebellar peduncle
ml: Medial lemniscus
py: Pyramidal tract
sol: Solitary tract
sp5: Spinal trigeminal tract
vesp: Vestibulospinal tract
vsc: Ventral spinocerebellar tract

Plate 34
- 32.87 mm
10N : Dorsal motor nucleus of the vagus nerve
12N : Hypoglossal nucleus
Amb : Ambiguous nucleus
Ct : Conterminal nucleus
ECu : External cuneate nucleus
IF12 : Interfascicular nucleus of the hypoglossal nerve
IOD : Inferior olive, dorsal nucleus
IOM : Inferior olive, medial nucleus
IOPr : Inferior olive, principal nucleus
Li : Linear nucleus of the hindbrain
LPCu : Lateral pericuneate nucleus
LRt : Lateral reticular nucleus
LRtS5 : Lateral reticular nucleus, subtrigeminal part
MdD : Medullary reticular nucleus, dorsal part
MdV : Medullary reticular nucleus, ventral part
MPCu : Medial pericuneate nucleus
Sol : Solitary nucleus
Sp5 : Spinal trigeminal nucleus

12n : Hypoglossal nerve
ctg : Central tegmental tract
cu : Cuneate fasciculus
icp : Inferior cerebellar peduncle
ml : Medial lemniscus
py : Pyramidal tract
sol : Solitary tract
sp5 : Spinal trigeminal tract
vesp : Vestibulospinal tract
vsc : Ventral spino cerebellar tract

Plate 35

- 33.87 mm
10N: Dorsal motor nucleus of the vagus nerve
12N: Hypoglossal nucleus
Amb: Ambiguous nucleus
Ct: Conterminal nucleus
Cu: Cuneate nucleus
ECu: External cuneate nucleus
Gr: Gracile nucleus
IOD: Inferior olive, dorsal nucleus
IOM: Inferior olive, medial nucleus
IOPr: Inferior olive, principal nucleus
Li: Linear nucleus of the hindbrain
LRT: Lateral reticular nucleus
LRIS5: Lateral reticular nucleus, subnucleus interpolaris
MdD: Medullary reticular nucleus, dorsal part
MdV: Medullary reticular nucleus, ventral part
MPCu: Medial perincuneate nucleus
Sol: Solitary nucleus
Sp5: Spinal trigeminal nucleus

12n: Hypoglossal nerve
ctg: Central tegmental tract
cu: Cuneate fasciculus
dsc: Dorsal spinocerebellar tract
icp: Inferior cerebellar peduncle
ml: Medial lemniscus
py: Pyramidal tract
sol: Solitary tract
sp5: Spinal trigeminal tract
vsc: Ventral spinocerebellar tract
10N : Dorsal motor nucleus of the vagus nerve
12N : Hypoglossal nucleus
Amb : Ambiguous nucleus
CC : Central canal
Cu : Cuneate nucleus
ECu : External cuneate nucleus
Gr : Gracile nucleus
IOM : Inferior olive, medial nucleus
LRt : Lateral reticular nucleus
MdD : Medullary reticular nucleus, dorsal part
MdV : Medullary reticular nucleus, ventral part
Sol : Solitary nucleus
Sp5 : Spinal trigeminal nucleus

CC : Central canal
cu : Cuneate fasciculus
dsc : Dorsal spinocerebellar tract
gr : Gracile fasciculus
ml : Medial lemniscus
py : Pyramidal tract
pyx : Pyramidal decussation
sp5 : Spinal trigeminal tract
vsc : Ventral spinocerebellar tract

Plate 40
- 42.20 mm
Plate 41

9Sp: Lamina 9 of the spinal gray
CC: Central canal
CG: Central gray
Cu: Cuneate nucleus
Gr: Gracile nucleus
MdC: Medullary reticular nucleus, central part
Ram: Retroambiguus nucleus
Sp5: Spinal trigeminal nucleus

CC: Central canal
cu: Cuneate fasciculus
dsc: Dorsal spinocerebellar tract
g: Gracile fasciculus
ml: Medial lemniscus
py: Pyramidal tract
pyx: Pyramidal decussation
sp5: Spinal trigeminal tract
vsc: Ventral spinocerebellar tract

- 44.70 mm
9Sp : Lamina 9 of the spinal gray
CC : Central canal
CG : Central gray
Cu : Cuneate nucleus
Gr : Gracile nucleus
MdC : Medullary reticular nucleus, central part
RAmh : Retroambiguus nucleus
Sp5 : Spinal trigeminal nucleus

CC : Central canal
cu : Cuneate fasciculus
dsc : Dorsal spinocerebellar tract
gr : Gracile fasciculus
py : Pyramidal tract
pyx : Pyramidal decussation
sp5 : Spinal trigeminal tract
vsc : Ventral spinocerebellar tract

Plate 42
- 47.20 mm
SSp : Lamina 5 of the spinal gray
9Sp : Lamina 9 of the spinal gray
CC : Central canal
CG : Central gray
Cu : Cuneate nucleus
Gr : Gracile nucleus
MdC : Medullary reticular nucleus, central part
RAmb : Retroambigius nucleus
Sp5 : Spinal trigeminal nucleus

CC : Central canal
cu : Cuneate fasciculus
dsc : Dorsal spinocerebellar tract
gr : Gracile fasciculus
py : Pyramidal tract
pyx : Pyramidal decussation
sp5 : Spinal trigeminal tract
vsc : Ventral spinocerebellar tract

Plate 43
- 48.70 mm
5Sp : Lamina 5 of the spinal gray
9Sp : Lamina 9 of the spinal gray
CC : Central canal
CG : Central gray
Gr : Gracile nucleus
MdC : Medullary reticular nucleus, central part
RAmb : Retroambiguus nucleus
Sp5 : Spinal trigeminal nucleus

CC : Central canal
cu : Cuneate fasciculus
dsc : Dorsal spinocerebellar tract
gr : Gracile fasciculus
les : Lateral corticospinal tract
py : Pyramidal tract
pyx : Pyramidal decussation
sp5 : Spinal trigeminal tract
vsc : Ventral spinocerebellar tract
5Sp: Lamina 5 of the spinal gray
9Sp: Lamina 9 of the spinal gray
CC: Central canal
CG: Central gray
Gr: Gracile nucleus
MdC: Medullary reticular nucleus, central part
RAmb: Retroambiguus nucleus
Sp5: Spinal trigeminal nucleus

CC: Central canal
cu: Cuneate fasciculus
dsc: Dorsal spinocerebellar tract
gr: Gracile fasciculus
les: Lateral corticospinal tract
py: Pyramidal tract
pyx: Pyramidal decussation
sp5: Spinal trigeminal tract
vsc: Ventral spinocerebellar tract

Plate 45
- 51.70 mm
4N: Trochlear nucleus
Aq: Aqueduct
BIC: Nucleus of the brachium of the inferior colliculus
CLI: Caudal linear nucleus of the raphe
CnF: Cuneiform nucleus
DR: Dorsal raphe nucleus
IC: Inferior colliculus
IP: Interpeduncular nucleus
ipf: Interpeduncular fossa
PAG: Periaqueductal gray
PBP: Parabrachial pigmented nucleus of the ventral tegmental area
PTg: Pedunculotegmental nucleus
SNC: Substantia nigra, compact part
SNR: Substantia nigra, reticular part

4n: Trochlear nerve
Aq: Aqueduct
cp: Cerebral peduncle
ctg: Central tegmental tract
ipf: Interpeduncular fossa
ll: Lateral lemniscus
ml: Medial lemniscus
mif: Medial longitudinal fasciculus
xscp: Decussation of the superior cerebellar peduncle

Plate A

+ 4.88 mm
4V: Fourth ventricle
DLL: Dorsal nucleus of the lateral lemniscus
DR: Dorsal raphe nucleus
Fc: Foramen caecum
IC: Inferior colliculus
IP: Interpeduncular nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
Me5: Mesencephalic trigeminal nucleus
PAG: Periaqueductal gray
PBP: Parabrachial pigmented nucleus of the ventral tegmental area
Pn: Pontine nuclei
PnTn: Pontine reticular nucleus, tegmental part
PTg: Pedunculotegmental nucleus
SNC: Substantia nigra, compact part

4n: Trochlear nerve
4V: Fourth ventricle
cp: Cerebral peduncle
csp: Corticospinal tract
ctg: Central tegmental tract
Fc: Foramen caecum
ll: Lateral lemniscus
mcp: Middle cerebellar peduncle
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
tfp: Transverse fibers of the pons
xscp: Decussation of the superior cerebellar peduncle

Plate C

- 0.40 mm
4V: Fourth ventricle
DLL: Dorsal nucleus of the lateral lemniscus
DR: Dorsal raphe nucleus
IC: Inferior colliculus
IP: Interpeduncular nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
LPB: Lateral parabrachial nucleus
Me5: Mesencephalic trigeminal nucleus
MnR: Median raphe nucleus
PAG: Periaqueudctal gray
PBP: Parabrachial pigmented nucleus of the ventral tegmental area
Pn: Pontine nuclei
PnTn: Pontine reticular nucleus, tegmental part
PTg: Pedunculotegmental nucleus
SNC: Substantia nigra, compact part

4n: Trochlear nerve
4V: Fourth ventricle
csp: Corticospinal tract
ctg: Central tegmental tract
ll: Lateral lemniscus
mcp: Middle cerebellar peduncle
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
tfp: Transverse fibers of the pons
xscp: Decussation of the superior cerebellar peduncle

Plate D

- 1.13 mm
4V: Fourth ventricle
DLL: Dorsal nucleus of the lateral lemniscus
DR: Dorsal raphe nucleus
DTg: Dorsal tegmental nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
LPB: Lateral parabrachial nucleus
Me5: Mesencephalic trigeminal nucleus
MnR: Median raphe nucleus
MPB: Medial parabrachial nucleus
PAG: Periaqueductal gray
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnTn: Pontine reticular nucleus, tegmental part
PTg: Pedunculotegmental nucleus

4V: Fourth ventricle
csp: Corticospinal tract
ctg: Central tegmental tract
ll: Lateral lemniscus
mcp: Middle cerebellar peduncle
me5: Mesencephalic trigeminal tract
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
scp: Superior cerebellar peduncle
tfp: Transverse fibers of the pons

Plate E

- 3.77 mm
Plate F - 5.91 mm
4V: Fourth ventricle
DR: Dorsal raphe nucleus
DTg: Dorsal tegmental nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
Me5: Mesencephalic trigeminal nucleus
MnR: Median raphe nucleus
MPB: Medial parabrachial nucleus
PAG: Periaqueductal gray
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnTn: Pontine reticular nucleus, tegmental part
PTg: Pedunculotegmental nucleus
SuL-B9: Supralemniscal nucleus - B9 serotonin cells
VLL: Ventral nucleus of the lateral lemniscus

4V: Fourth ventricle
csp: Corticospinal tract
ctg: Central tegmental tract
ll: Lateral lemniscus
mcp: Middle cerebellar peduncle
me5: Mesencephalic trigeminal tract
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
scp: Superior cerebellar peduncle
tfp: Transverse fibers of the pons

Plate G

- 8.17 mm
DR: Dorsal raphe nucleus
LC: Locus coeruleus
LDTg: Laterodorsal tegmental nucleus
Me5: Mesencephalic trigeminal nucleus
MnR: Median raphe nucleus
MPB: Medial parabrachial nucleus
PAG: Periaqueductal gray
Pn: Pontine nuclei
PnO: Pontine reticular nucleus, oral part
PnTn: Pontine reticular nucleus, tegmental part
RITg: Reticulotegmental nucleus
SuL-B9: Supralemniscal nucleus - B9 serotonin cells
VLL: Ventral nucleus of the lateral lemniscus

csp: Corticospinal tract
ctg: Central tegmental tract
Il: Lateral lemniscus
mcp: Middle cerebellar peduncle
me5: Mesencephalic trigeminal tract
ml: Medial lemniscus
mlf: Medial longitudinal fasciculus
scp: Superior cerebellar peduncle
tfp: Transverse fibers of the pons

Plate H

- 10.59 mm
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Ethics Committee at Université Laval. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

MT and ÉP provided post-mortem human brain tissue. LG and MP were in charge of MRI and proceeded with brain dissection. MT, LG, and MP perfused and extracted the brain. LG cut the brainstem and stained sections with Cresyl Violet and Luxol Fast Blue. VC stained sections with ChAT and acquired and edited images. SS, AP, and MP were in charge of brainstem nuclei and fiber tracts segmentation. VC, AP, and MP wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by research grants from the Quebec Bio-Imaging Network (QBIN) and the Natural Sciences and Engineering Research Council of Canada (NSERC) to MP who benefited from a senior career award from the Fonds de Recherche du Québec-Santé (FRQ-S). VC was the recipient of MSc and BSc fellowships from FRQ-S and NSERC.

ACKNOWLEDGMENTS

The authors are very grateful for brain donation. The authors thank Marie-Josée Wallman and Sylvain Courcy (IRM Québec) for technical assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online: https://www.dropbox.com/sh/ln9zqv4dkyqol2q/AAC80leqF0bYcI8ZLWERCIRXa?dl=0

REFERENCES

Afshar, F., Watkins, E. S., and Yap, J. C. (1978). Stereotaxic Atlas of the Human Brainstem and Cerebellar Nuclei. New York, NY: Raven Press.

Bianciardi, M., Toschi, N., Eddow, B. L., Eichner, C., Setzomopp, K., Polimeni, J. R., et al. (2015). Toward an in vivo neuroimaging template of human brainstem nuclei of the ascending arousal, autonomic, and motor systems. Brain Connect. 5, 597–607. doi: 10.1089/brain.2015.0347

Deistung, A., Schafer, A., Schwese, F., Biedermann, U., Gullmar, D., Trampel, R., et al. (2013). High-resolution MR imaging of the human brainstem in vivo at 7 tesla. Front. Hum. Neurosci. 7:710. doi: 10.3389/fnhum.2013.00710

Ding, S. L., Royall, J. J., Sunkin, S. M., Ng, L., Facer, B. A., Lesnar, P., et al. (2016). Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol. 524, 3127–3481. doi: 10.1002/cne.24080

Erbagci, H., Keser, M., Kervancioglu, S., and Kizilkan, N. (2012). Estimation of the brain stem volume by stereological method on magnetic resonance imaging. Surg. Radiol. Anat. 34, 819–824. doi: 10.1007/s00276-012-0966-3

Ferray, M. U., Debu, B., and Pollak, P. (2010). Deep brain stimulation and gait disorders in Parkinson disease. Rev. Neurol. 166, 178–187. doi: 10.1016/j.neurol.2009.07.018

Goetz, L., Bhattacharjee, M., Ferray, M. U., Fraix, V., Maineri, C., Nosko, D., et al. (2019). Deep brain stimulation of the pedunculopontine nucleus area in Parkinson disease: MRI-based anatomical correlations and optimal target. Neurosurgery 84, 506–518. doi: 10.1093/neuros/nyy151

Insola, A., Valeriani, M., and Mazzone, P. (2012). Targeting the pedunculopontine nucleus: a new neurophysiological method based on somatosensory evoked potentials to calculate the distance of the deep brain stimulation lead from the Obex. Neurosurgery 71, 96–103. doi: 10.1227/NEU.0b013e3182149c726

Johanssohn, L. (1969). Über die Kerne des menschlichen Hirnstammes (Medulla oblongata, Pons, und Pedunculus cerebri). Berlin: Verlag der Konigl Akademie der Wissenschaften.

Kolliker, A. (1896). Handbuch der Gewebelehre des Menschen. Leipzig: Engelmann.

Naidich, T. P., Duvernoy, H. M., Delman, B. M., Sorensen, A. G., Kollias, S. S., and Haacke, E. M. (2007). Duvernoy's Atlas of the Human Brain Stem and Cerebellum. Berlin: J.B. Lippincott Company.

Okarma, J., and Baxter, D. (1954). Cytarohcitecture of the Human Brain Stem. Basel: J.B. Lippincott Company.

Parent, A. (1996). Carpenter's Human Neuroanatomy. Baltimore, MD: Williams and Wilkins.

Paxinos, G., Furlong, T. M., and Watson, C. (2020). Human Brainstem: Cytarohcitecture, Chemoarchitecture, Myeloarchitecture, Revised Edition. San Diego, CA: Academic Press.

Paxinos, G., and Huang, X. F. (1995). Atlas of the Human Brainstem. San Diego, CA: Academic Press.

Paxinos, G., and Watson, C. (1982). The Rat Brain in Stereotaxic Coordinates. Sydney, NSW: Academic Press.

Riley, H. A. (1943). An Atlas of the Basal Ganglia, Brain Stem and Spinal Cord. New York, NY: Hafner Publishing Company.

Rushmore, R. J., Wilson-Braun, P., Papadimitriou, G., Ng, L., Rathli, Y., Zhang, F., et al. (2020). Exploration of the brainstem in 50-micron resolution MRI. Front. Neuroanat. 14:40. doi: 10.3389/fnana.2020.00040

Schaltenbrand, G., and Wahren, W. (1977). Atlas for Stereotaxy of the Human Brain. Chicago, IL: Thieme.

Spetzler, R. F., Kalani, M. Y. S., Nakaji, P., and Yagmurlu, K. (2017). Color Atlas of Brainstem Surgery. New York, NY: Thieme.

Talairach, J., and Tournoux, P. (1988). Co-Planar Stereotactic Atlas of the Human Brain. New York, NY: Thieme.

Talairach, J., and Szikla, G. (1967). Atlas of Stereotaxic Anatomy of the Telencephalon. Anatomo-Radiological Studies. Paris: Masson and Cie.

Talairach, J., and Szikla, G. (1967). Atlas of Stereotaxic Anatomy of the Telencephalon. Anatomo-Radiological Studies. Paris: Masson and Cie.

Talairach, J., and Tournoux, P. (1998). Co-Planar Stereotactic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart: Georg Thieme Verlag.

Tang, Y., Sun, W., Toga, A. W., Ringman, J. M., and Shi, Y. (2018). A probabilistic atlas of human brainstem pathways based on connectome imaging data. Neuroimage 169, 227–239. doi: 10.1016/j.neuroimage.2017.12.042

Termilology, F. C. O. A. (1998). Terminologia Anatomica: International Anatomical Terminology. New York, NY: Thieme Stuttgart.

Thevathasan, W., Coyne, T. J., Hyam, J. A., Kerr, G., Jenkinson, N., Aziz, T. Z., et al. (2011). Pedunculopontine nucleus stimulation improves gait...
freezing in Parkinson disease. *Neurosurgery* 69, 1248–1253. discussion 1254. doi: 10.1227/NEU.0b013e31822b6f71

Thevathasan, W., Pogosyan, A., Hyam, J. A., Jenkinson, N., Foltynie, T., Limousin, P., et al. (2012). Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. *Brain* 135, 148–160. doi: 10.1093/brain awr315

Watson, C., Bartholomeus, C., and Puelles, L. (2019). Time for radical changes in brain stem nomenclature-applying the lessons from developmental gene patterns. *Front. Neuroanat.* 13:10. doi: 10.3389/fnana.2019.00010

Willis, T. (1664). *Cerebri Anatomie: Cui Accessit Nervorum Descriptio et Usus.* London: Martyn and Allestry.

Ziehen, G. T. (1903). *Makroskopische und mikroskopische Anatomie des Gehirn.* Jena: Fisher.

Zrinzo, L., Zrinzo, L. V., Tisch, S., Limousin, P. D., Yousry, T. A., Afshar, F., et al. (2008). Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. *Brain* 131, 1588–1598. doi: 10.1093/brain/awn075

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Coulombe, Saikali, Goetz, Takech, Philippe, Parent and Parent. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.