ABSTRACT. Three dry bean (Phaseolus vulgaris L.) genotypes differing in seedcoat color, mineral brown (P C D J G B v), yellow brown (P C D J G b v), and pale greenish yellow (P C D J g b v), were analyzed phytochemically. Kaempferol 3-O-β-D-glucoside (astragalin) was isolated and identified by nuclear magnetic resonance spectroscopy from all three genotypes, and was the main flavonoid monomer present. Flavonoid polymers (condensed tannins) were detected by thin layer chromatography, but anthocyanins were not detected in the three genotypes. High pressure liquid chromatography analyses indicated that astragalin was present at similar concentrations in pale greenish yellow and mineral brown genotypes, but was significantly lower in yellow brown. Presently, we do not know the functions of the G and B color genes, although the presence of astragalin in the three genotypes studied indicates these genes do not appear to act in a qualitative manner with regard to astragalin production, but may control the amount of astragal in present. Subtle differences in color between these genotypes may be due to the amount and type of tannins which have secondarily polymerized with phenolics and flavonoid monomers.

Knowledge of the genetics and chemistry of seedcoat color and patterns in P. vulgaris (dry bean) is due mainly to the work of Kooiman (1931), Lamprecht (1932), and Feenstra (1960). In P. vulgaris, eight major loci are known to contribute to color inheritance: P, C, D, J, G, B, V and Rk (Prakken, 1970, 1972). The complex C locus also includes a dominant gene R for red seedcoat color (Prakken, 1972). According to Prakken’s (1972) interpretation of seedcoat color in common bean, C, D, and J are the color genes, whereas G, B, V, and Rk are modifying genes (have an intensifying effect or darkening influence upon pale colors formed by the action of the color genes). V is also called the violet factor and the dominant allele causes bluish, or violet to black, colors to develop in the seedcoat.

The work of Kooiman (1931) and Lamprecht (1932) demonstrated that the seedcoat colors of common bean are not affected by the genetic background, but only by the complex interactions of the eight major loci cited above. Thus, seedcoat colors are qualitatively inherited. Feenstra (1960) studied the pigment chemistry of 12 genotypes, each with a different combination of alleles at C, J, and V. One of the 12 genotypes was ‘Canadian Wonder Improved.’ The remaining 11 genotypes were derived by inbreeding to homozygosity from 8 different parental cross combinations, which involved 5 named varieties and eight numbered breeding lines. Thus, the genetic backgrounds of his 12 seedcoat genotypes were greatly more diverse than the genetic backgrounds of the three used in the present work. The great genetic diversity of the genetic backgrounds of the materials used by Feenstra (1960) had no effect on the results of the chemical analyses reported.

Feenstra (1960) studied the flavonoids produced by different alleles at the C, J (same as his Sh), and V loci, but no work to fully elucidate all the flavonoids of various color genotypes has since been published. To date, our knowledge of the flavonoid gene products has been inferred from other plant systems (Leakey, 1988). Leakey (1988) proposed that dominance at the C locus promotes the formation of flavonol glycosides and also allows formation of anthocyanins. Dominance at the J locus is thought to be necessary for production of proanthocyanidins (condensed tannins) in the seedcoat (Feenstra, 1960). Other genes may be responsible for glycosylation of the flavonoid nucleus, as well as hydroxymethylation of the A and B rings.

The metabolic pathway for flavonoid biosynthesis begins with isomerization of chalcone to form a flavanone, which is then converted successively into the flavonols dihydrokaempferol and kaempferol (Heller and Forkmann, 1988). These pathways, and the genes that control them, have been elucidated for such plant species as maize (Zea mays L.) and petunia (Petunia hybrida Hort. Vilm.-Andr.) (Koes et al., 1993). However, the pathways and gene products of P vulgaris have not been elucidated, and current models are speculative. We determined previously that ‘Prim’, a manteca-type market class bean with the genotype P C d j G b v (Hosfield et al., 1995), contained the flavonols kaempferol-3-O-glucoside and kaempferol-3-O-glucosylxylloside in the seedcoat, but ‘Prim’ did not contain detectable levels of proanthocyanidins (Beninger et al., 1998a). Although our analysis of ‘Prim’ was of interest because of the recessive state at several loci, we were not able to determine the functions of the G and B genes.

Recently, a number of seedcoat color genotypes have been made available for research. Three of these color genotypes—P C D J G B v (mineral brown), P C D J G b v (yellow brown) and
P C D J g b v (pale greenish-yellow)—differ by successive recessive substitutions at the G and B loci. The purpose of this paper was to identify and compare the specific kinds and concentrations of flavonoids found in these three seedcoat genotypes in order to determine the functions of the G and B seedcoat color genes.

Materials and Methods

Plant Material. The three genetic stocks used for this investigation were developed by Bassett (1998a) by backcrossing selected recessive genes for seedcoat color into a recurrent parent breeding line 5-593. Line 5-593 has dominant genes for seedcoat color in all eight color loci (P [C r] D J G B V Rk), except for the dominant red locus R, which is tightly linked to the C locus (Bassett, 1998b; Prakken, 1970). The three genetic stocks are in the third backcross to the recurrent parent 5-593 and are designated v BC, 5-593 (mineral brown), b v BC, 5-593 (yellow brown) and g b v BC, 5-593 (pale greenish-yellow) (Bassett, 1998a). The three genetic stocks are not isogenic with respect to the recurrent parent 5-593, but an isogenic condition is not needed (as explained above) for our experimental purpose.

Fig. 1. HPLC profile of extract from the seedcoat of mineral-brown bean genotype; 1 = unidentified mixture of minor flavonoids, 2 = astragalin.
The yellow and mineral brown genetic stocks were increased during summer 1996 in a nursery at the Saginaw Valley Bean and Sugarbeet Research Farm, Saginaw, Mich. The soil type on the farm is a Mistequay silty clay [fine, illitic (calcareous), frigid typic Hapludoll]. After harvesting in the autumn, seeds were frozen at –20 °C. Pale greenish-yellow seeds were planted in the greenhouse in January 1998 and were harvested in early April 1998. Plants were grown under sodium lights with an 8 h daylength and watered as needed.

INSTRUMENTATION. A Waters (Waters Corp., Milford, Mass.) High-performance liquid chromatography (HPLC) system was used for the isolation and quantification of the compounds. This included a 600 multisolute pump, 996 photo diode array detector, and 717 autosampler. Nuclear magnetic resonance (NMR) spectra were obtained on a VXR 500 MHZ (Oxford Instruments, Eynsham, Oxfordshire, United Kingdom) with Varian (Varian Associates, Palo Alto, Calif.) software at the Max T. Rogers NMR facility in the Dept. of Chemistry, Michigan State Univ.

EXTRACTION AND ISOLATION. Depending on the amount of beans available a number of 100 g (fresh weight) samples of beans were washed and then placed in distilled water to soak (Beninger et al., 1998b). There were six 100-g samples soaked for yellow brown, eighteen for mineral brown, and two for pale greenish yellow. After soaking, the seedcoats were separated from the cotyledons and then freeze-dried. The water exudate from the soaked beans was also freeze-dried and stored. Dried, ground, seedcoats from yellow brown (32.3 g), mineral brown (100.0 g), and pale greenish yellow (9.98 g) beans were packed separately into glass columns and extracted sequentially with hexane, ethyl acetate (EtOAc), methanol (MeOH), and 1 MeOH : 1 water.

PREPARATIVE HPLC. Yellow brown (100.8 mg), mineral brown, (100.3 mg), and 100.0 mg of the pale greenish yellow crude methanol extracts were dissolved in 1 ACN : 3 H2O and purified by preparative HPLC, using a reverse phase (RP) C18 CapCell Pak guard column (AG120 A, 5 µm, 10 × 250 mm) (Shiseido Co. Ltd., Chuo-ku, Tokyo, Japan) and a C18 CapCell Pak guard column (AG120 A, 5 µm, 10 × 20 mm). The solvent system was 3 ACN : 7 H2O mobile phase at a flow rate of 1.0 mL·min−1 and detection at 200 to 600 nm (extraction wavelength was 347 nm). For qualitative analysis a gradient method was used: 1 ACN : 9 H2O to 9 ACN : 1 H2O over 20 min with a total analysis time of 40 min.

STATISTICAL ANALYSIS. Data were analyzed using the general linear models procedure with a Student-Newman-Keuls comparison of means (SAS Institute, Inc., Cary, N.C.).

RESULTS

Analytical HPLC traces showed that flavonoid profiles of these three genotypes were virtually identical; only that of the mineral brown genotype is presented (Fig. 1). A flavonoid was isolated from the crude methanolic extract of all three genotypes and was subjected to 1H NMR and 13C NMR analysis (Table 1). The downfield portion of the 1D 1H NMR spectrum was characteristic of a kaempferol aglycon. The anomeric sugar protons were found as doublets at 5.44, 5.41, and 5.43 for yellow brown, mineral brown and pale greenish-yellow, respectively. The coupling constants for all anomeric protons were >7.0 Hz, indicating a β-linkage of the glucose residues to the aglycons. The C3 of the kaempferol isolated from each bean genotype was shifted upfield in the 13C spectrum by ~3.0 mg·mL−1, indicating the glucose residues were attached at the C3 position of the aglycon. Therefore, the flavonol compound isolated from each of the three genotypes used in the study was identified as kaempferol 3-O-β-D-glucopyranoside (astragalin) (Fig. 2). Coinjection of the crude methanolic extract with 200 µg astragalin standard increased the area and height of the peak at 24.0 min and confirmed the identification. In addition to astragalin, a second peak with a shorter retention time was found (Fig. 1). Attempts to isolate and purify compounds from this broad peak showed it was a mixture of trace flavonoid compounds, and we could not obtain enough material for NMR identification.

DISCUSSION

Astragalin (kaempferol 3-O-β-D-glucopyranoside) was the main flavonoid found in all three genotypes, with small amounts of other flavonoid compounds. A flavonol diglycoside, kaempferol 3-O-glucosyl-xylose, which was a constituent of ‘Prim’ seedcoats, was not found in mineral brown, yellow brown or pale greenish-yellow and may occur only in the pale-yellow manteca market class of dry bean due to the action of J G b v (vs. J G b v) (Bassett, 1999; Beninger et al., 1998a). However, a related compound, which differs from the above diglycoside only in having an additional OH at the 3′ position, viz., quercetin 3-O-β-D-glucopyranosyl xylose, has been found in red kidney seedcoats (Beninger et al., unpublished data). In addition, no anthocyanins were found in the three genotypes used in this study, which also had in common recessive v. Therefore, V is probably necessary for production of anthocyanins.

Since the three genotypes did not differ qualitatively for the
flavonoids present, we hypothesized that their quantities of astragalin might differ. Yellow brown had significantly less astragalin than mineral brown and pale greenish-yellow, viz., about half as much on average (Table 2). Since the B locus is recessive (bb) in yellow brown, B may enhance production of astragalin. However, G and B are both recessive (gg bb) in the pale greenish-yellow genotype, yet the concentration of astragalin was not significantly different from mineral brown (GG BB). We explain these results, by suggesting that the main effects of genes controlling astragalin concentration are due to interactions of JJ vs. jj with GG and BB. Therefore, with JJ and vv (common to all three genotypes studied herein) there is an increase in the production of astragalin with GG BB and gg bb, as opposed to GG bb. In the case of ‘Prim’, which is recessive at J (jj), an additional kaempferol compound (kaempferol 3-O-glucose-xylose) is produced (Beninger et al., 1998a). The function of the B gene (with J) may be to maintain the concentration of astragalin at a “standard” equilibrium, whereas G may shunt the astragalin into condensed tannins. Thus, with Gb the concentration of astragalin drops to a lower equilibrium level.

Astragalin may contribute to the yellow color of seedcoats, as it does in the Manteca market class. However, its concentration was lowest in the yellow brown genotype, but the seedcoat of this genotype had the most intense yellow color. In the yellow brown genotype, astragalin occurred at only about a quarter the concentration of the total kaempferol glycosides found in the ‘Prim’ genotype (Beninger et al., 1998a). Thus, substitution of j for J in ‘Prim’ may reduce substantially the capacity of G to convert the flavonols to proanthocyanidins, leading to an increased concentra-

Table 1. Proton and carbon assignments obtained by NMR of astragalin from the seedcoats of three bean color genotypes.

Proton and carbon assignment	Spectral peak measurement (mg·L⁻¹)	Seedcoat color		
	Yellow brown	Mineral brown	Pale greenish-yellow	Reference
¹⁴NMR:				
1H, s, H-5 (OH)	12.5	12.5	12.5	12.61
1H, s, H-6	6.17	6.15	6.16	6.21
1H, s, H-8	6.4	6.37	6.39	6.43
2H, d, J = 9.06 Hz, H-2’6’	8.02	8.02	8.03	8.04
2H, d, J = 9.06 Hz, H-3’5’	6.87	6.86	6.86	6.86
1H, d, J = 7.54 Hz, H-1”	5.44	5.41	5.43	---
1H, m, H-2”	3.34	3.32	3.32	---
1H, m, H-3”	3.14	3.12	3.12	---
1H, m, H-4”	3.2	3.22	3.22	---
1H, m, H-5”	3.24	3.24	3.24	---
1H, d, J = 11.6, H-6A”	3.55	3.55	3.55	---
1H, s, H-6B”	3.3	3.3	3.3	---
¹³C NMR:				
C-2	156.36	156.02	156.42	156.4
C-3	133.08	133.1	133.1	133.4
C-4	177.28	177.27	177.25	177.5
C-5	161.11	161.13	161.1	161.1
C-6	98.79	98.91	98.8	98.8
C-7	164.81	161.13	164.95	164.2
C-8	93.64	93.73	93.67	93.8
C-9	156.04	156.02	156.42	156.4
C-10	103.65	102.5	103.61	104
C-2’6’	130.75	130.78	130.78	131
C-3’5’	115.02	115.06	115.02	115.1
C-1”	100.87	100.94	100.94	100.7
C-2”	74.22	74.17	74.15	74.2
C-3”	77.39	77.42	77.42	77.3
C-4”	69.88	69.86	69.86	69.8
C-5”	76.36	76.4	76.39	76.4
C-6”	60.76	60.81	60.8	60.8

²¹H NMR = proton nuclear magnetic resonance, s = singlet, d = doublet, m = multiplet, J = coupling constant in Hz.
³¹C NMR = carbon 13 nuclear magnetic resonance.

Fig. 2. Structure of astragalin (kaempferol 3-O-β-D-glucopyranoside).
Table 2. Flavonoid concentrations in seedcoats of three color genotypes of dry bean.

Flavonoid	Mineral brown	Yellow brown	Pale greenish-yellow
Kaempferol 3-O-glucoside	23.23 ± 2.87 a	15.98 ± 1.25 b	24.58 ± 1.72 a
Kaempferol 3-0-glucose-xylose	-	+	-
Proanthocyanidins	+	-	+

*Significant differences among means ± se determined by a Student-Newman-Keuls test, \(P \leq 0.05 \).
*Not found.
*Present.

...tation of astragalin in ‘Prim’ compared with \(JG B \) or \(Jg b \), and especially with \(JG b v \). Color differences observed visually between the three genotypes studied are, therefore, probably not caused as much by the flavonoid monomers, as they are by subtle differences in the amounts and types of proanthocyanidins and their oxidation/polymerization derivatives present. Unaltered proanthocyanidins are colorless, but are known to be present in sorghum (\(\text{Sorghum bicolor} \) L. Moench) seedcoats that are different shades of brown that darken with development (Stafford, 1990). These shades that darken with development are probably due to secondary changes of the proanthocyanidins or the formation of complexes with other phenolics in the seedcoat (Stafford, 1990). Although quercetin (3',4'-OH) glycosides may be present in small amounts, it does not appear at this time that the main effect of \(B \) results in a second (3') hydroxylation of the kaempferol B-ring, as has been hypothesized by Leakey (1988).

Although the three genotypes studied in this work did not differ in the types of flavonoids present in methanol extracts, they differed slightly in the amount of astragalin present. Therefore, the color genes \(G \) and \(B \) do not influence color by their affect on the types of flavonoid monomers present. Genes \(G \) and \(B \) may act, at least in part, to increase the rate of tannin formation and the types of tannins that are formed, which in turn, affects the subtle variations in color that one observes in these seedcoats.

Literature Cited

Agrawal, P.K. and M.C. Bansai. 1989. Flavonoid glycosides, p. 283–355. In: P.K. Agrawal (ed.). Carbon-13 NMR of flavonoids. Elsevier, New York.

Bassett, M.J. 1998a. List of seed coat genetic tester stocks in the 5-593 genetic background. Annu. Rpt. Bean Improvement Coop. 41:125–126.

Bassett, M.J. 1998b. The genotype for seed coat color and pattern of breeding line 5-593. 1998. Annu. Rpt. Bean Improvement Coop. 41:127–128.

Bassett, M.J. 1999. The seedcoat color genotype of ‘Prim’ and the Manteca and Coscorrón market classes of common bean. HortScience 34:336–337.

Beninger, C.W., G.L. Hosfield, and M.G. Nair. 1998a. Flavonol glycosides from the seedcoat of a new manteca-type dry bean (\(\text{Phaseolus vulgaris} \) L.) J. Agr. Food Chem. 46:2906–2910.

Beninger, C.W., G.L. Hosfield, and M.G. Nair. 1998b. Physical characteristics of dry beans in relation to seedcoat color genotype. HortScience 33:328–329.

Feenstra, W.J. 1960. Biochemical aspects of seedcoat color inheritance in \(\text{Phaseolus vulgaris} \) L. Med. Landbouwhogeschool Wageningen 60:1–53.

Heller, W. and G. Forkmann. 1988. Biosynthesis, p. 399–425. In: J.B. Harborne (ed.). The flavonoids. Chapman and Hall, New York.

Kooiman, H.W. 1931. Monograph on the genetics of \(\text{Phaseolus} \) (especially \(\text{Ph. vulgaris} \) and \(\text{Ph. multiflorus} \)). Bibliographia Genet. 8:295–413.

Lamprecht, H. 1932. Beiträge zur Genetik von \(\text{Phaseolus vulgaris} \). Zur Vererbung der Testafarbe. Hereditas 16:169–211.

Leakey, C.L.A. 1988. Genotypic and phenotypic markers in common bean, p. 245–327. In: J.B. Harborne (ed.). The flavonoids. Chapman and Hall, New York.

Markham, K.M. 1982. Techniques of flavonoid identification. Academic Press, New York.

Markham, K.R. and H. Geiger. 1994. 1H nuclear magnetic resonance spectroscopy of flavonoids and their glycosides in hexadecymethylsulfoxide, p. 441–479. In: J.B. Harborne (ed.). The flavonoids: Advances in research since 1986. Chapman and Hall, New York.

Prakken, R. 1970. Inheritance of colours in \(\text{Phaseolus vulgaris} \) L. II. A critical review. Med. Landbouwhogeschool Wageningen 70:1–38.

Prakken, R. 1972. Inheritance of colours in \(\text{Phaseolus vulgaris} \) L. III. On genes for red seedcoat color and a general synthesis. Med. Landbouwhogeschool Wageningen 72:1–82.

Stafford, H.A. 1990. Flavonoid Metabolism. CRC Press, Boca Raton, Fla.