Перспективы маркер-ориентированной селекции томата Solanum lycopersicum L.

А.Б. Щербань

Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия
e-mail: atos@bionet.nsc.ru

В обзоре представлена краткая характеристика одного из основных для Сибири объектов овощеводства – томата. Обобщены данные об основных направлениях селекции этой культуры, таких как устойчивость к различным па­тогенам, сроки созревания и хранения плодов, а также содержание в них биологически активных веществ (БАВ). Отдельная глава обзора посвящена использованию различных типов маркеров ДНК для построения детальных генетических карт указанного объекта, которые наряду с данными полногеномного секвенирования могут быть использованы для скрининга различных генов, отвечающих за селектируемые признаки. Большинство таких при­знаков, особенно специфическая устойчивость к тем или иным патогенам, перенесено в культурный томат путем скрещивания его с дикорастущими видами, поэтому особое внимание в статье удалено выявлению и маркированию генов устойчивости к целому ряду вирусных, грибных и бактериальных патогенов, распространенных в Западной Сибири и на прилегающих территориях. Другой важный аспект для селекции – содержание БАВ в плодах томата, включая каротиноиды, витамины, сахара, органические кислоты и др. За последнее время благодаря современным технологиям секвенирования, SNP-генотипирования, разработке новых биоинформатических подходов удалось установить генетические каскады, определяющие биохимический состав плодов томата; выделить ключевые гены, которые в перспективе могут быть использованы в маркер-ориентированной селекции по признакам питательной ценности. И, наконец, обсуждаются генетические работы, посвященные весьма актуальной для селекции проблеме оптимального в тех или иных климатических условиях срока созревания плодов и их длительного хранения без потери качества.

Ключевые слова: томат; селекция; ДНК-маркер; патоген; устойчивость; срок созревания; лежкость.

Для цитирования: Щербань А.Б. Перспективы маркер-ориентированной селекции томата Solanum lycopersicum L. Вавиловский журнал генетики и селекции. 2019;23(5):534-541. DOI 10.18699/VJ19.522

Prospects for marker-associated selection in tomato Solanum lycopersicum L.

A.B. Shcherban

Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
e-mail: atos@bionet.nsc.ru

The review gives a brief description of tomato, one of the main objects of olericulture for Siberia. The data on the main directions in the breeding of this culture, such as resistance to various pathogens, the nutritional properties of fruits, the timing of their maturation and storage are generalized. A separate chapter is devoted to the use of various types of DNA markers for constructing detailed genetic maps of the specified object, which, along with full-genome sequencing data, can be used to screen for genes responsible for breeding traits. Most of these traits, especially specific resistance to one or another pathogen, were transferred to the cultivated tomato by crossing with wild species, therefore, special attention was paid in the article to identifying and marking resistance genes to a variety of viral, fungal and bacterial pathogens occurring in Western Siberia and adjacent areas. Another important aspect for breeding is the nutrient content of tomato fruits, including carotenoids, vitamins, sugars, organic acids, etc. Recently, due to modern technologies of sequencing, SNP-genotyping, the development of new bioinformatic approaches, it has become possible to establish genetic cascades determining the biochemical composition of tomato fruits, to identify key genes that can be used in the future for marker-associated selection of nutritional value. And, finally, genetic works devoted to the problem of the optimal dates of fruit ripening in certain climatic conditions and their prolonged storage without loss of quality are discussed.

Key words: tomato; selection; DNA marker; pathogen; resistance; ripening time; shelf life.

For citation: Shcherban A.B. Prospects for marker-associated selection in tomato Solanum lycopersicum L. Vavilov Journal of Genetics and Breeding. 2019;23(5):534-541. DOI 10.18699/VJ19.522 (in Russian)
секвенированы геномы культурного сорта Heinz 1706 и дикого предка томата Solanum pimpinellifolium L. (DOI 10.1038/nature11119). Томат (2n = 2x = 24) имеет относи­тельно компактный геном размером 950 млн п. н. Он со­держит около 35000 генов и в ходе эволюции подвергся двум раундам триплоидизации (120 и 70 млн лет назад), при этом второй раунд был до расхождения томата с кар­тофелем. Предполагают, что процесс полиплоидизации способствовал неофункционализации генов, отвечающих за созревание и химический состав плодов, что привело к формированию у томата признака мягкоплодности, имеющего огромное значение для распространения се­мян (Howe, Smallwood, 1982). Данные секвенирования доступны через веб-сайт SOLGenomics Network (SGN) (http://solgenomics.net/http://solgenomics.net). Плоды томата обогащены витаминами A и C, рядом минералов и других БАВ, в том числе ликопином, который относится к анти­оксидантам (Rao A.V., Rao L.G., 2007).

Родина томата — Южная Америка, где до сих пор встречается его дикое и полукультурные формы. В середине XVI в. томат попал через Испанию и Португалию в Европу в качестве декоративного растения, так как его плоды долгое время считались несъедобными. В конце XVIII в. томат появился в России, и вначале его также воздели­вали в декоративных целях. Овощной культурой томат стал благодаря ученому-агроному А.Т. Болотову, который разработал рассадный способ выращивания и метод до­зревания (дозревание зеленых плодов после их сбора).

ДНК-маркеры
В настоящее время наличие полных геномных последо­вателей (см. выше) дает возможность эффективно проводить поиск различных генов, отвечающих за ценные признаки, а также соответствующих ДНК-маркеров для маркер-ориентированной селекции (MAS) новых форм томата. Разработано большое количество этих маркеров, в том числе RFLP (полиморфизм длины рестриционных фрагментов) (Tanksley et al., 1992), а также ПЦР-маркеры, включающие RAPD (случайно амплифицированная поли­морфная ДНК), AFLP (полиморфизм длины амплифи­цированных фрагментов), SSR (простые повторяющие­ся последовательности) (Saliba-Colombani et al., 2000; Ohyama et al., 2009). На современном этапе наиболее эф­фективны SNP-маркеры (одиннуклеотидный полимор­физм), и в рамках этой технологии на томате были успешно апробированы такие методологические подходы, как использование SNP-анализа EST для высокопроизводитель­ного генотипирования (Shirasawa et al., 2010), широ­комасштабное геномное секвенирование для выявления SNP, влияющих на функции белков (http://plant1.kazusa. or.jp/tomato/http://plant1.kazusa.or.jp/tomato). Разработаны полиморфные маркеры для геномной селекции томата на основе DArT (ДНК-чип технология изучения разнообра­зия) (Van Schalkwyk et al., 2012).

Однако следует отметить, что, несмотря на множество разработанных ДНК-маркеров, в практической селекции томата используются в основном маркеры для качествен­ных признаков, таких как специфическая устойчивость к патогенам. Что касается количественных признаков (QTL), то использование соответствующих маркеров пока препятствуют их слабая сцепленность с этими признаками, низкий полиморфизм, нежелательные плейотропные эффекты, а также отсутствие валидации на разнообразном материале линий и сортов (Foolad, Panthee, 2012). В связи с этим проблема поиска новых эффективных молекуляр­ных маркеров, пригодных для использования на широком круге сортов и популяций, остается актуальной.

Основные направления селекции томата в условиях Западной Сибири
Томат — теплолюбивая культура, и климат Западной Сиби­ри не всегда благоприятствует его урожайности. К тому же томат подвержен многочисленным инфекционным заболев­аниям. Отсюда вытекает необходимость создания новых сортов и гибридов, способных давать высокий урожай и обладать комплексом хозяйственно ценных признаков, таких как устойчивость к патогенам, срок созревания в связи с коротким вегетационным периодом, лежкость и др. Как известно, MAS дает возможность вести отбор по многим признакам одновременно и позволяет значи­тельно (в 2–3 раза) сократить сроки получения новых сортов по сравнению с классической селекцией. Однако в Сибирском регионе до сих пор не получен ни один сорт или гибрид томата с использованием MAS. В связи с этим представляется актуальным обобщить основные результа­ты, полученные в мире на этой культуре с помощью MAS, с акцентом на тех направлениях, которые соответствуют условиям Западной Сибири и прилегающих территорий.

Устойчивость томата к патогенам
Большинство генов устойчивости было идентифицирова­но в составе дикорастущих видов и затем путем скрещи­вания перенесено в культурный томат (Foolad, Panthee, 2012). В Сибири на первом месте по значимости находят­ся грибные заболевания томата, а именно: фитофтороз, кладоспориоз (защищенный грунт), септориоз (открытый грунт), фузариоз и вертициллез. Из бактериальных заболеваний наиболее распространены бактериальный поздний грунт), фузариоз и вертициллез. Из бактериальных заболеваний наиболее распространены бактериальная пятиностись и бактериальный рак. Вирусные заболевания не столь актуальны для Сибири, хотя в отдельные годы случаются эпифитотии.

Устойчивость к грибным заболеваниям
Устойчивость к фитофторозу. Фитофтороз (Late Blight; LB), вызываемый ооцистом Phytophthora infestans, — одно из самых разрушительных заболеваний томата в регионах с высокой влажностью и прохладным климатом, приводит к потере урожая до 100 %. Потери могут быть в форме падения урожайности, пониженного качества плодов, на­пример низкого удельного веса, уменьшения лежкости и т. д. Из-за большого экономического эффекта патологии и генетика этого заболевания интенсивно исследуются на протяжении многих лет. У дикорастущего томата S. pimpinellifolium идентифицированы три основных гена устой­чивости, Ph-1, Ph-2 и Ph-3, картированные на хромосомах 7, 10 и 9 соответственно (Black et al., 1996; Moreau et al., 1998). Наиболее сильный ген устойчивости, Ph-3, обеспечивает неполную доминантную резистентность к широкому спектру изолятов P. infestans (Chunwongse et al., 2002). Анализ его первичной структуры показал, что
он кодирует CC-NBS-LRR (coiled-coil nucleotide-binding leucine-rich repeat) – белок, который относится к обширному классу NBS-LRR генов растений (Zhang et al., 2014). Тем не менее даже этот ген не обеспечивает резистентность к наиболее агрессивным изолям фитофторы. В этих случаях эффективной оказалась комбинация двух генов, PH-2 и PH-3, которые были успешно перенесены в ряд коммерческих сортов с помощью разработанных доминантных CAPS-маркеров (Robbins et al., 2010; Zhang et al., 2014). Работа по выделению и анализу новых генов устойчивости к фитофторозу продолжается. В частности, выявлен целый ряд QTL, несущих гены устойчивости, которые пока не локализованы (Merk, Foolad, 2012; Panthee et al., 2017).

Устойчивость к фузариозу. Fusarium oxysporum – почвенный гриб, вызывающий у томата болезнь увядания. Поражает все ткани растения и может длительно сохраняться в виде хламидоспор в почве и на растительных остатках, не теряя вирулентности. В настоящее время идентифицированы три рисы этого гриба; в России наибольший ущерб в защищенном грунте приносит раса 1, в отдельных хозяйствах встречается раса 2 (Игнатова, 2001). Ген I, обеспечивающий высокую устойчивость к расе 1, и ген I-2, дающий устойчивость к расам 1 и 2, были картированы на коротком и длинном плечах хромосомы 11 соответственно (Ori et al., 1997; Scott et al., 2004). Эти гены наиболее часто использовали в селекции на устойчивость к фузариозу, однако в последнее время большое распространение получает раса 3, соответствующий ген устойчивости был подробно картирован на хромосоме 7 (Lim et al., 2008). Существуют различные сцепленные ПЦР-маркеры к каждому из трех генов; наиболее эффективны маркеры устойчивости к расам 1 и 3 (Barillas et al., 2008; Atrens et al., 2010).

Разновидность фузариоза – фузариозная корневая гниль, вызываемая другим штаммом Fusarium oxysporum. Резистентность была установлена в индуцированном мутанте S. peruvianum, и единственный ген резистентности Fr l был картирован на хромосоме 9 вблизи гена Tm-2 (Vakalounakis et al., 1997). Впоследствии были разработаны маркеры RAPD для Fr l (Tanyolac, Akkale, 2010), однако к настоящему времени существует не много коммерческих сортов и линий, устойчивых к этой болезни.

Устойчивость к кладоспориозу. Кладоспориоз (бурая пятнистость) распространен почти во всем мире и особенно распространен в Западной Сибири и Казахстане. Характерна высокая устойчивость к этой болезни. Устойчивость к кладоспориозу контролируется тремя независимыми генами: Rx-1, Rx-2 и Rx-3 (Kabelka et al., 2002; Coaker, Francis, 2004). Есть данные по маркерам (Coaker, Francis, 2004), однако нет информации по их использованию.

Устойчивость к бактериальным болезням. Бактериальный рак (Bacterial cancer), вызываемый палочковидной бактерией Clavibacter michiganensis, – заболевание томата, распространенное по всему миру и одно из самых трудно контролируемых. Инфицирование происходит через механически поврежденные ткани. Наибольшему риску подвержены тепличные томаты. Работы по картированию с использованием скрещивания S. lycopersicum с резистентным образом S. habrochaites LA 407 позволили идентифицировать и точно картировать два крупных QTL на хромосомах 2 (Rcm2.0) и 5 (Rcm5.1), которые отвечают за 68 % вариации экспрессивности (Kabelka et al., 2002; Coaker, Francis, 2004). Есть данные по маркерам (Coaker, Francis, 2004), однако нет информации по их использованию.

Устойчивость к вирусам. Устойчивость к вирусу томатной мозаики. Вирус томатной мозаики (ToMV) – один из наиболее стабильных...
Перспективы маркер-ориентированной селекции томата Solanum lycopersicum L.

А.Б. Щербань

2019

23 • 5

У авторов отсеквенировали этот ген у сортов с генотипами регулятор развития хлоропластов (Powell et al., 2012). Кодирующий транскрипционный фактор GLK2, локализованный на хромосоме 9, блокирует передвижение вируса от клетки к клетке, а также вызывает реакцию гиперчувствительности (Meshi et al., 1989). Наибольшая эффективность наблюдается при сочетании всех трех доминантных генов в гомо- или гетерозиготном состоянии (Пухальский, 2007). Для каждого из них были разработаны ПЦР-маркеры (Dax et al., 1998; Sobir et al., 2000; Arens et al., 2010).

Устойчивость к бронзовости. Болезнь вызывается тос­пивирусом бронзовой томата (tomato spotted wilt virus, TSWV). Приводит к снижению урожайности растений (более 50 %) и ухудшению качества продукции. TSWV-вирус имеет чрезвычайно широкий круг растений-хозяев, что создает высокий риск заражения. Известно восемь основ­ных генов устойчивости, в том числе доминантные гены Sw-1a, Sw-1b, Sw-5, Sw-6 и Sw-7 и рецессивные гены sw-2, sw-3 и sw-4 (Stevens et al., 1992). Самый эффективный ген устойчивости к TSWV – ген Sw-5, локализованный на длинном плече хромосомы 9, и поскольку он является расо­специфическим, то часто используется в практи­ческой селекции. Тем не менее существует опасность преодоления Sw-5 новыми штаммами TSWV; вирулент­ность к этому гену устойчивости была зарегистрирована в нескольких странах (Scott, 2007). Разработано большое количество ПЦР-маркеров для выявления Sw-5 (Smiech et al., 2000; Langella et al., 2004; Garland et al., 2005).

Размер и окраска плодов, содержание в них биологически активных веществ

Признак «равномерное созревание» определяется ге­нетическим локусом uniform ripening (u), от которого зависит количество и распределение хлорофилла в не­зерлых плодах (Bohn, Scott, 1945). Доминантный аллель U определяет обычное, неравномерное созревание, при котором верхняя часть незрелого плода имеет темно­зеленую, а нижняя – светло­зеленную окраску. Растения, гомозиготные по рецессивному аллелю u (u/u), дают равномерно созревающие плоды, которые в незрелом состоянии имеют одинаково бледно­зеленую окраску со всех сторон. Первоначальная селекция привела к от­бору таких форм томата, поскольку для них характерна равномерная красная окраска зрелых плодов. В 2012 г. с использованием генетического картирования была установлена локализация локуса U на коротком плече 10-й хромосомы и идентифицирован ген GLK2, кодирующий транскрипционный фактор Golden 2-like­регулятор развития хлоропластов (Powell et al., 2012). Авторы отсеквенировали этот ген у сортов с генотипами U/U и u/u и обнаружили, что в первом случае ген GLK2 кодирует полноценный регуляторный белок длиной в 310 а. о., тогда как в случае резцессивного альлеля и из­за встав­ки одного нуклеотида образовался преждевременный стоп­кодон, что приводит к синтезу нефункционального белка. С помощью генетической трансформации показано, что именно эта мутация, блокирующая ген GLK2, отвечает за фенотип равномерной окраски и связанное с ним уменьшение количества хлорофилла в плодах. Последнее, в свою очередь, вызывает уменьшение уров­ня фотосинтеза и достоверному снижению содержания растворимых сухих веществ в соке плодов. В результате культурные формы томата с генотипом u/u имеют более низкие вкусовые и питательные качества по сравнению с предковыми формами.

В 2017 г. в журнале Science была опубликована статья D. Tieman с коллегами (2017), в которой исследовано более 300 современных и традиционных сортов томата с исполь­зованием геномного секвенирования и биохимического анализа. В этой работе установлено 28 соединений, от­вечающих за органолептические качества томата, и на ос­нове полногеномного поиска ассоциаций (GWAS) иденти­фицированы SNP, связанные с концентрацией этих хими­ческих соединений. В результате было идентифицировано несколько основных генов, отвечающих за насыщенность вкуса помидоров. Так, ген Lin5 кодирует экстраклеточную инвертазу, которая катализирует гидролиз сахарозы до низкомолекулярных глюкозы и фруктозы. Современные и дикорастущие сорта отличаются всего одной SNP в со­ставе данного гена, приводящей к замене Asn→Asp. Эта замена в структуре фермента, по­видимому, отвечает за низкое содержание сахара и увеличение размера плодов у современных сортов томата относительно его дикорасту­щих форм или стародавних сортов. Другой пример: ген E8, регулирующий синтез этилена – гормона созревания. У большинства современных сортов этот гормон имеет повышенную активность, что приводит к более высокой, по сравнению со стародавними сортами, концентрации метилсалицилата и гваякола – веществ с неприятным вкусом. Современные и дикорастущие сорта отличаются всего одной SNP в регуляторных районах гена E8, которые, по­видимому, отвечают за указанные различия (Tieman et al., 2017).

К важнейшим БАВ плодов томата относятся картофино­ды, класс 40­углеродных углеводородов, которые пред­ставлены оранжевыми, красными и желтыми пигментами, синтезируемыми в различных органах растений. Эти вещества участвуют в разнообразных физиологических процессах роста, развития растений, реакции на внешние стимулы. К настоящему времени установлены гены био­синтеза, а также транскрипционные факторы и гормоны, регулирующие метаболизм картофиноидов под действием внешних факторов (Liu et al., 2015). В частности, вы­явлены ключевые гены­регуляторы, определяющие кон­центрацию ликопина — самого распространенного на­ридного компонента рациона человека, снижающего риск рака и сердечно­сосудистых заболеваний (Ford, Erdman, 2012). Недавно с помощью геномного редактирования был учен в пять раз синтез ликопина в плодах томата за
счет нокаута генов, контролирующих конверсию ликопина в β- и α-каротин (Li et al., 2018).

Выявлены специфические полиморфизмы, отвечающие за конкретные сортовые признаки окраски плодов томата. Формирование темно-красной окраски у сорта Black Cherry обусловлено потерей функции белка ликопин-β-циклизаз в результате мутации сдвигая рамки считывания в кодирующей части соответствующего гена. Аналогичная мутация, приводящая к стоп-кодону и укороченному белку, была получена у Psu 1 фитоен-сингетазы, лежит в основе желтой окраски плодов (Affitos et al., 2014).

Форма и размер плодов томата коррелируют с числом семенных камер-лукол (locule). Два QTL, lc и fas, оказывают максимальный эффект на эти признаки и могут действовать синергически, обуславливая экстремально высокое количество лукол (Cong et al., 2008; Munos et al., 2011). Fas является самым сильным геном (вариация числа лукол 2–6 лукол), тогда как lc действует слабее (3–4 луколы). Два SNP, T→C и A→G, связаны с аллелем высокого числа лукол lc6. Анализ первичной структуры гена lc обнаружил, что все 2-гнездовые образцы томата имеют le1 аллель, а 3-, 4-гнездовые – аллель le2. Ген Fas кодирует YABBY-подобный транскрипционный фактор (Cong et al., 2008). Аллель fas, возник в результате инверсии участка 294 т. п. н. на хромосоме 11, что привело к включению гена Fas из-за пространственного разобщения экзонов 1 и 2 (Huang, van der Knaap, 2011).

Особенности формирования растений и созревания плодов

Детерминантность. Для защищенного грунта в условиях Сибири наиболее подходящими являются растения томата индетерминантного типа. Для них характерны непрерывный рост и равномерное в течение нескольких месяцев созревание плодов. Для открытого грунта более приемлемы детерминантные генотипы, основной отличительный признак которых – прекращение роста побегов после формирования 2–6 соцветий. Такие генотипы, как правило, раннеспелые, что предотвращает потерю урожая вплоть до наступления короткого дня (индетерминантный, медленно созревающий). Плоды гетерозиготных растений также имеют повышенную лежкость (среднее значение между родительскими формами), устойчивость к гниению, но при этом обладают приемлемыми для потребителя цветом и вкусом. К тому же растения имели повышенную урожайность, а также показатели, как содержание ликопина, сухого вещества, консистенции плодов, содержание аксокбиновой кислоты, были промежуточными по сравнению с их родителями. Вследствие этого формы, несушие гены alc, nor и rin, получили широкое распространение в коммерческих сортах томата во многих странах (Garg et al., 2008).

В 2002 г. в Science вышла статья, посвященная гену rin (Vrebalov et al., 2002). Этот ген находится на коротком плече хромосомы 5 и кодирует MADS-box-транскрипционный фактор, который регулирует множество различных генов развития, в том числе связанных с биосинтезом этилена. Были также клонированы и проанализированы гены alc и nor (Moore et al., 2002). Ген alc (синомим DFD; delayed fruit deterioration) имеет некоторые преимущества для селекции, поскольку для него характерен меньший негативный эффект на качество плодов, окраску, ароматические свойства и устойчивость к бактериальным заболеваниям (Garg et al., 2008). Репессивная мутация alc вызвана неполной заменой T→A в позиции 317 кодирующей последовательности, приводящей к замене Val→Asp (Casals et al., 2012). С использованием CRISPR/Cas9 в одном из сортов аллель ALC был заменен аллелем alc посредством гомологической рекомбинации (Yu et al., 2017).

Функциональная мужская стерильность

Успешную селекцию томата весьма затрудняет низкое генетическое разнообразие, обусловленное способом его размножения (самополление) и эффектом «бутылочного горлышка» в процессе интродукции. Английский ученый Ч. Рик впервые стал использовать методы интродукции и генетического материалов из дикорастущего томата в культурные (Rick, 1960). Большая часть сортов томата была получена с помощью гибридизации.

У томата производство гибридных семян имеет большую трудоемкость в связи с необходимостью изоляции и кастрации цветков, поэтому использование линий с признаком функциональной мужской стерильности (ФМС) – самый эффективный способ получения гибридных семян. У томата этот признак обусловлен отклонениями в развитии цветка и включает следующие типы ФМС: лонговерни (ex, ex-2), ps, ps-2 (Куземенский, 2004). Последний тип наиболее широко используется в селекции томата. Тычинки у растений тип ps-2 имеют обычную структуру, фертильные пыльцевые зерна, но пыльники не вскрываются.
СЕЛЕКЦИЯ РАСТЕНИЙ НА ИММУНИТЕТ И ПРОДУКТИВНОСТЬ / PLANT BREEDING FOR IMMUNITY AND PERFORMANCE

А.Б. Щербань

ПЕРСПЕКТИВЫ МАРКЕР-ОРИЕНТИРОВАННОЙ
селекции томата Solanum lycopersicum L.

2019
23-5

ются. Ген *Ps-2*, контролирующий этот тип стерильности, был идентифицирован в составе хромосомы 4, изолирован, и его первичная структура была изучена (Gorguet et al., 2009). Он кодирует фермент полигалактуроназу, который влияет на жесткость клеточной стенки путем расщепления пектинов. За фенотип *ps-2* отвечает единственная мутация, нарушающая спайлинг мРНК, в результате чего образуются ее аберрантные формы. К этому гену был разработан целый ряд маркеров: SNP (Gorguet et al., 2009), CAPS (Staniszek et al., 2012) и др.

Заключение

Работы по полному секвенированию генома томата и построению генетических карт высокого разрешения заложили фундамент для быстрого и эффективного поиска генов, отвечающих за важные селекционные признаки, а также создания соответствующих этим генам ДНК-маркеров, которые могут быть использованы в маркер-ориентированной селекции новых форм томата. Особенно актуальны для умеренного климата маркеры таких генов, отвечающих за устойчивость к ряду распространенных патогенов различной природы, ценных БАВ, например, признаков, как устойчивость к ряду распространенных патогенов, определяющих оптимальный срок созревания плодов в условиях короткого лета и высокого риска вредителей, в том числе на пестицидную селекцию построению генетических карт высокого разрешения за счет того, что к настоящему времени выявлены и охарактеризованы ключевые гены, отвечающие за эти признаки, что позволяет на основе молекулярных маркеров разрабатывать стратегии скрещивания и отбора по этим генам, осуществлять их пирамидирование, а также направленную модификацию с помощью современных методов геномного редактирования.

Список литературы / References

Ингатова С.Н. Роль наследственного потенциала по устойчивости у томата в системе комплексной защиты в закрытом грунте. Гавриш. 2001;6:18-20. [Ingatova S.I. The role of tomato hereditary potential for resistance in the system of integrated protection in protected ground. Gavrish. 2001;6:18-20. (in Russian)]

Кузьменский А.В. Селекционно-генетические исследования мутантных форм томата. Харьков, 2004. [Kuz’emskiy A.V. Studies of Mutant Forms of Tomato with Respect to Breeding. Kharkov, 2004. (in Russian)]

Пухальский В.А., Одинцова Т.И., Ивекова Л.И., Андреева Э.Н., Косьмидова Т.Б., Истомина Е.А., Славохотова А.А., Бадаева Е.Д., Билинская Е.Н., Козлова Г.В., Оболенкова Л.А., Славохотова А.А., Шиян А.Н., Коопер А., Ребека Е., де Кейс Б., ван ден Гам Р. Перспективы маркер-ориентированной селекции томата. Новости генетики. 2008;3:235-239. DOI 10.1007/s00122-008-1000-z.

Заключение

Работы по полному секвенированию генома томата и построению генетических карт высокого разрешения заложили фундамент для быстрого и эффективного поиска генов, отвечающих за важные селекционные признаки, а также создания соответствующих этим генам ДНК-маркеров, которые могут быть использованы в маркер-ориентированной селекции новых форм томата. Особенно актуальны для умеренного климата маркеры таких генов, отвечающих за устойчивость к ряду распространенных патогенов различной природы, ценных БАВ, например, признаков, как устойчивость к ряду распространенных патогенов, определяющих оптимальный срок созревания плодов в условиях короткого лета и высокого риска вредителей, в том числе на пестицидную селекцию построению генетических карт высокого разрешения за счет того, что к настоящему времени выявлены и охарактеризованы ключевые гены, отвечающие за эти признаки, что позволяет на основе молекулярных маркеров разрабатывать стратегии скрещивания и отбора по этим генам, осуществлять их пирамидирование, а также направленную модификацию с помощью современных методов геномного редактирования.

Список литературы / References

Ингатова С.Н. Роль наследственного потенциала по устойчивости у томата в системе комплексной защиты в закрытом грунте. Гавриш. 2001;6:18-20. [Ingatova S.I. The role of tomato hereditary potential for resistance in the system of integrated protection in protected ground. Gavrish. 2001;6:18-20. (in Russian)]

Кузьменский А.В. Селекционно-генетические исследования мутантных форм томата. Харьков, 2004. [Kuz’mensky A.V. Studies of Mutant Forms of Tomato with Respect to Breeding. Kharkov, 2004. (in Russian)]

Пухальский В.А., Одинцова Т.И., Ивекова Л.И., Андреева Э.Н., Косьмидова Т.Б., Истомина Е.А., Славохотова А.А., Бадаева Е.Д., Билинская Е.Н., Козлова Г.В., Оболенкова Л.А., Славохотова А.А., Шиян А.Н., Коопер А., Ребека Е., де Кейс Б., ван ден Гам Р. Перспективы маркер-ориентированной селекции томата. Новости генетики. 2008;3:235-239. DOI 10.1007/s00122-008-1000-z.

Заключение

Работы по полному секвенированию генома томата и построению генетических карт высокого разрешения заложили фундамент для быстрого и эффективного поиска генов, отвечающих за важные селекционные признаки, а также создания соответствующих этим генам ДНК-маркеров, которые могут быть использованы в маркер-ориентированной селекции новых форм томата. Особенно актуальны для умеренного климата маркеры таких генов, отвечающих за устойчивость к ряду распространенных патогенов различной природы, ценных БАВ, например, признаков, как устойчивость к ряду распространенных патогенов, определяющих оптимальный срок созревания плодов в условиях короткого лета и высокого риска вредителей, в том числе на пестицидную селекцию построению генетических карт высокого разрешения за счет того, что к настоящему времени выявлены и охарактеризованы ключевые гены, отвечающие за эти признаки, что позволяет на основе молекулярных маркеров разрабатывать стратегии скрещивания и отбора по этим генам, осуществлять их пирамидирование, а также направленную модификацию с помощью современных методов геномного редактирования.

Список литературы / References

Ингатова С.Н. Роль наследственного потенциала по устойчивости у томата в системе комплексной защиты в закрытом грунте. Гавриш. 2001;6:18-20. [Ingatova S.I. The role of tomato hereditary potential for resistance in the system of integrated protection in protected ground. Gavrish. 2001;6:18-20. (in Russian)]

Кузьменский А.В. Селекционно-генетические исследования мутантных форм томата. Харьков, 2004. [Kuz’emskiy A.V. Studies of Mutant Forms of Tomato with Respect to Breeding. Kharkov, 2004. (in Russian)]

Пухальский В.А., Одинцова Т.И., Ивекова Л.И., Андреева Э.Н., Косьмидова Т.Б., Истомина Е.А., Славохотова А.А., Бадаева Е.Д., Билинская Е.Н., Козлова Г.В., Оболенкова Л.А., Славохотова А.А., Шиян А.Н., Коопер А., Ребека Е., де Кейс Б., ван ден Гам Р. Перспективы маркер-ориентированной селекции томата. Новости генетики. 2008;3:235-239. DOI 10.1007/s00122-008-1000-z.

Заключение

Работы по полному секвенированию генома томата и построению генетических карт высокого разрешения заложили фундамент для быстрого и эффективного поиска генов, отвечающих за важные селекционные признаки, а также создания соответствующих этим генам ДНК-маркеров, которые могут быть использованы в маркер-ориентированной селекции новых форм томата. Особенно актуальны для умеренного климата маркеры таких генов, отвечающих за устойчивость к ряду распространенных патогенов различной природы, ценных БАВ, например, признаков, как устойчивость к ряду распространенных патогенов, определяющих оптимальный срок созревания плодов в условиях короткого лета и высокого риска вредителей, в том числе на пестицидную селекцию построению генетических карт высокого разрешения за счет того, что к настоящему времени выявлены и охарактеризованы ключевые гены, отвечающие за эти признаки, что позволяет на основе молекулярных маркеров разрабатывать стратегии скрещивания и отбора по этим генам, осуществлять их пирамидирование, а также направленную модификацию с помощью современных методов геномного редактирования.
Grushetskaya Z.E., Lemesh V.A., Poliksenova V.D., Khotyleva L.V. Mapping of the Cf-6 tomato leaf mould resistance locus using SSR markers. Russ. J. Genet. 2007;43:1266-1270. DOI 10.1134/S1022795407100099.

Howe H.F., Smallwood J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 1982;13:201-228.

Huang Z., van der Knaap E. Tomato fruit weight 11.3 maps close to fasci- ciated on the bottom of chromosome 11. Theor. Appl. Genet. 2011; 123(3):465-474. DOI 10.1007/s00122-011-1599-3.

Kabelka E., Fanchino B., Francis D.M. Two loci from \textit{Lycopersicon hirsutum} LA407 confer resistance to strains of \textit{Clavibacter michiganensis} subspp michiganensis. Phytopathology. 2002;92:504-510. DOI 10.1094/PHYTO-2002-92.5.504.

Kawchuk L.M., Lynch D.R., Hachey J., Bains P.S., Kulcsar F. Identification of a codominant amplified polymorphic DNA marker linked to the verticillium wilt resistance gene in tomato. Theor. Appl. Genet. 1994;89:661-664.

Langella R., Ercolano M.R., Monti L.M., Frascarci L., Barone A. Molecular marker assisted transfer of resistance to TSWV in tomato elite lines. J. Horticult. Sci. Biotechnol. 2004;79:806-810. DOI 10.1080/14620316.2004.11511846.

Li X., Wang Y., Chen S., Tian H., Fu D., Zhu B., Luo Y., Zhu H. Lyco- punene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant. Sci. 2018;9:1-12. DOI 10.3389/fpls.2018.00559.

Lim G., Wang G.P., Hemmeng M., McGrath D.J., Jones D.A. High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interpersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Theor. Appl. Genet. 2008;118:57-75. DOI 10.1007/s00122-008-0876-2.

Liu L., Shao S.Z., Zhang Z.M. Regulation of carotenoid metabolism in tomato. Mol. Plant. 2015;8:28-39. DOI 10.1016/j.molp.2014.11.006.

Merk H.L., Foolad M.R. Parent-offspring correlation estimate of heritability for late black resistance conferred by an accession of the tomato wild species \textit{Solanum pimpinellifolium}. Plant Breeding. 2012; 131:203-210.

Meshti T., Motoyoshi F., Adachi A., Watanabe Y., Takamatsu N., Oka- da Y. Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, \textit{Tm}-1. EMBO J. 1988;7:1575-1581.

Meshti T., Motoyoshi F., Maeda T., Yoshivohka S., Watanabe H., Oka- da Y. Mutations in the tobacco mosaic virus 30-kDa protein gene overcome \textit{Tm}-2 resistance in tomato. Plant Cell. 1989;1:515-522.

Moore S., Vrebavol J., Payton P., Giovannioni J. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot. 2002;53:2023-2030. DOI 10.1093/jxb/erf057.

Moreau P., Thquet P., Olivier J., Laterrot H., Grimsly N. Genetic mapping of \textit{Ph}-2, a single locus controlling partial resistance to \textit{Phytophthora infestans} in tomato. Mol. Plant-Microbe Interact. 1998; 11:259-269. DOI 10.1094/MPMI.1998.11.4.259.

Muñoz S., Ranc N., Botton E., Béard A., Rolland S., Duffé P., Carre- roto Y., Le Paslier M.-C., Delalande C., Bouzayen M., Brunel D., Causse M. Increase in tomato locule number is controlled by two \textit{CEN} loci (QTL) for resistance to late blight in tomato. Int. J. Mol. Sci. 2017;18:1589. DOI 10.3390/ijms18071589.

Nagai T., Carmel-Goren L., Hareven D., Guttinger T., Alvarez J., Ga- nal M., Zamir D., Lifschitz E. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meri- stems and is the ortholog of \textit{CEN} and \textit{TFI1}. Development. 1998; 125:1979-1989.

Pszenny A.T., Nguyen C.V., Hill T., Cheng K.L., Figureuza-Balderas R., Aktas H., Ashrafi H., Pons C., Fernández-Mañoz R., Vicente A., Lopez-Baltazar J., Barry C.S., Liu Y., Chetelat R., Granell A., Van Deynze A., Giovanni, N., Bennett A.B. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science. 2012;336:1711-1715. DOI 10.1126/science.1222218.

Rao A.V., Rao L.G. Carotenoids and human health. Pharmacol. Res. 2007;55:207-216. DOI 10.1016/j.phrs.2007.01.012.

Rick C.M. Hybridization between \textit{Lycopersicon esculentum} and \textit{Solanum pennelli}: phylogenetic and cytogenetic significance. Proc. Natl. Acad. Sci. USA. 1960;46:78-82.

Robbins M.D., Masud M.A.T., Panthee D.R., Gardner R.G., Francis D., Stevens M.R. Marker-assisted selection for coupling phase resis- tance to tomato spotted wilt virus and Phytophthora infestans (late blight) in tomato. HortScience. 2010;45:1424-1428.

Saliva-Colombani V., Caussé M., Gervais L., Phioluizi J. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an in- traspecific map of the tomato genome. Genome. 2000;43:29-40. DOI 10.1139/g09-099.

Scott J.W. Breeding for resistance to viral pathogens. Eds. M.K. Raz- dan, A.K. Matteo. Genetic Improvement of Solanaceous Crops. Vol. 2. Tomato. Enfield: Science Publishers, 2007;457-485.

Scott J.W., Agrama H.A., Jones J.P. RFLP-based analysis of recombi- nation among resistance genes to \textit{Fusarium} wilt races 1, 2, and 3 in tomato. J. Am. Soc. Hort. Sci. 2004;129:394-400.

Shirasawa K., Isobe S., Hirakawa H., Nakamura Y., Sato S., Tabata S. SNP discovery and linkage map construction in cultivated tomato. DNA Res. 2010;17(6):381-391. DOI 10.1093/dnares/dsq024.

Smich M., Rusinowski Z., Malepszy S., Niemirowicz-Szczyt K. New RAPD markers of tomato spotted wilt virus (TSWV) resistance in \textit{Lycopersicon esculentum} Mill. Acta Physiol. Plantarum. 2000;22: 299-303.

Sobir O.T., Murata M., Motoyoshi F. Molecular characterization of the SCAR markers tightly linked to the \textit{Tm}-2 locus of the genus \textit{Lycopersicon}. Theor. Appl. Genet. 2000;101:64-69.

Soyk S., Müller N.A., Park S.J., Schmaaltech I., Jiang K., Hayama R., Zhang L., Van Eck J., Jiménez-Gómez J.M., Lippman Z.B. Variation in the flowering gene \textit{SELF PRUNING 5G} promotes day- to-early yield in tomato. Nat. Genet. 2017;49:162-168. DOI 10.1038/ng.3733.

Staniauszek M., Szaek K., Koikz E.U., Nowakowska M., Marczew- ki W. The novel \textit{CEN} ps-2 gene regulates tomato leaf mould resistance locus using \textit{CEN} ps-2 specific markers for selection of function- nal male sterile tomato lines in breeding programs and hybrids seed production. J. Agr. Sci. 2012;4(10):61-67. DOI 10.5539/jas.v4n10p61.

Stevens M.R., Scott J.S., Gergierich R.C. Inheritance of gene for re- sistance to tomato spotted wilt virus (TSWV) from \textit{Lycopersicon peruvianum} Mill. Euphytica. 1992;59:9-17. DOI 10.1007/BF00025356.

Tanksley S.D., Ganal M.W., Prince J.P., de Vicente M.C., Bonier- bale M.W., Broun P., Fulton T.M., Giovanni N.J., Grandillo S., Martin G.B., Messeguer R., Miller J.C., Miller L., Paterson A.H., Pineda O., Riider M.S., Wing R.A., Wu W., Young N.D. High-den- sity molecular linkage maps of the tomato and potato genomes. Genet. 1992;132:1141-1160.
Tanyolac B., Akkale C. Screening of resistance genes to fusarium root rot and fusarium wilt diseases in F3 family lines of tomato (*Solanum lycopersicum*) using RAPD and CAPS markers. Afr. J. Biotech. 2010;9:2727-2730.

Tierman D., Zhu G., Resende M.F.R., Lin T., Nguyen C., Bies D., Rambla J.L., Beltran K.S.O., Taylor M., Zhang B., Ikeda H., Liu Z., Fisher J., Zemach I., Monforte A., Zamir D., Granell A., Kirt M., Huang S., Klee H. A chemical genetic roadmap to improved tomato flavor. Science. 2017;355(6323):391-394. DOI 10.1126/science.aai1556.

Truong H.T.H., Choi H.-S., Cho M.C., Lee H.E., Kim J.H. Use of Cf-9 gene-based markers in marker-assisted selection to screen tomato cultivars with resistance to *Cladosporium fulvum*. Hort. Environ. Biotechnol. 2011;52:204-210. DOI 10.1007/s13580-011-0164-y.

Vakalounakis D.J., Laterrot H., Moretti A., Ligoigakis E.K., Smardas K. Linkage between *Frl* (*Fusarium oxysporum f. sp. radicis-lycopersici resistance*) and *Tm-2* (tobacco mosaic virus resistance-2) loci in tomato (*Lycopersicon esculentum*). Ann. Appl. Biol. 1997;130:319-323. DOI 10.1111/j.1744-7348.1997.tb06835.x.

Van Schalkwyk A., Wenzl P., Smit S., Lopez-Cobollo R., Kilian A., Bishop G., Hefer C.,十余 D.K. Bin mapping of tomato diversity array (DArT) markers to genomic regions of *Solanum lycopersicum* × *Solanum pennellii* introgression lines. Theor. Appl. Genet. 2012;124:947-956. DOI 10.1007/s00122-011-1759-5.

Vrebalov J., Ruzinsky D., Padmanabhan V., White R., Medrano D., Drake R., Schuch W., Giovannoni J. MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (*Rin*) locus. Science. 2002;296:343-346. DOI 10.1126/science.1068181.

Wang A.X., Meng F.J., Xu X.Y. Development of molecular markers linked to *Cladosporium fulvum* resistant gene *Cf-6* in tomato by RAPD and SSR methods. HortScience. 2007;42:11-15.

Wang H., Hutton S.F., Robbins M.D., Sim S.-C., Scott J.W., Yang W., Jones J.B., Francis D.M. Molecular mapping of hypersensitive resistance to race T3 of tomato bacterial spot from Hawaii 7981 maps to chromosome 11. Phytopathology. 2011;101:1217-1223. DOI 10.1094/PHYTO-12-10-0345.

Wang J.F., Jones J.B., Scott J.W., Stall R.E. Several genes in *Lycopersicon esculentum* control hypersensitivity to *Xanthomonas campestris pv. vesicatoria*. Phytopathology. 1994;84:702-706. DOI 10.1094/Phyto-84-702.

Yang W., Francis D.M. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Am. Soc. Hort. Sci. 2005;130:716-721. DOI 10.21273/JASHS.130.5.716.

Yu Q.-H., Wang B., Li N., Tang Y., Yang S., Yang T., Xu J., Guo C., Yan P., Wang Q., Asmutola P. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long shelf life tomato lines. Sci. Rep. 2017;7:11874. DOI 10.1038/s41598-017-12262-1.

Yu Z.H., Wang J.F., Stall R.E., Vallejos C.E. Genomic localization of tomato genes that control a hypersensitive reaction to *Xanthomonas campestris pv. vesicatoria* (Doidge) Dye. Genetics. 1995;141:675-682.

Zhang C., Liu L., Wang X., Vossen J., Li G., Li T., Zheng Z., Gao J., Guo Y., Visser R.G.F., Li J., Bai Y., Du Y. The *Ph-3* gene from *Solanum pimpinellifolium* encodes CC-NBS-LRR protein conferring resistance to *Phytophthora infestans*. Theor. Appl. Genet. 2014;127:1353-1364. DOI 10.1007/s00122-014-2303-1.

ORCID ID

A.B. Shcherban orcid.org/0000-0003-1000-8228

Благодарности. Работа выполнена при финансовой поддержке проекта Минобрнауки РФ № 0324-2019-0039.

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Поступила в редакцию 25.03.2019. После доработки 17.05.2019. Принята к публикации 20.05.2019.