Assessing the role of energy finance, green policies, and investment towards green economic recovery

Haiming Liu1 · Yuk Ming Tang2,3 · Wasim Iqbal4 · Hassan Raza5

Received: 15 June 2021 / Accepted: 19 October 2021 / Published online: 9 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Settling a “green recovery” at the center of all economic recuperation procedures is progressively seen as the finest and as the only way nations could restore their economies. Therefore, this study assesses the role of energy finance, green policies, and investment towards green economic recovery in the USA by using a linear econometric approach and nonlinear (DSGE) model. Considering the fiscal tax-lowering rate, for instance, the study evaluates the effects of fiscal measures on local fiscal pressures in the USA regarding the pandemic. The regression analysis shows that both energy finance and green energy policies have positive and statistically significant impacts on green investment. The results from the linear econometric approach indicate that every additional state green energy policy tool adopted is associated with 1% more green investment in the USA. In addition, the findings show that green policies in human resources and R&D of green energy technologies prompt a sustainable green economy through labor and technology-oriented production activities. Implications for scholars, investors, technology managers, and policymakers are derived and discussed.

Keywords Energy finance · Green policies · Fiscal space · Public healthcare expenses · Fiscal measures

Introduction
This corona pandemic is the most recent pandemic of many others that have brought the world to its knees. The pandemic has destabilized the economic structure of economies coupled with uncertainties in the world. As a result, governments all over the world have put in place stimulus packages to reduce the cascading effects of the pandemic on their economies (Kim et al. 2021; Cui et al. 2020). History is replete with fiscal measure policymakers instituted to mitigate the impact of past pandemics, which will serve as pointers to the current pandemic. The topmost response of the government in tackling the pandemic is solving the problems faced by the health sector due to the pandemic (Sarkodie and Owusu 2020; Falcone et al. 2018). A means to measure the fiscal approachability is to ascertain the impact of trends due to health expenditure, from an objective viewpoint of budgetary spending, as well as after cyclical disruptions occasioned by the pandemic. This study evaluates how public health expenditure has been impacted by the pandemic through various structural parameters since countries have been hit by the pandemic (Ridzuan and Abd Rahman 2021).
The continued spread of the pandemic across the world manifesting itself in different variants is dislocating economies of advanced and developing countries alike. Financial authorities did not hesitate to respond swiftly to the pandemic; the State Reserve and other major central banks fell on their 2008–2009 financial crunch strategies to deal with the current pandemic. Following these steps, fiscal authorities globally crafted and institutionalized balancing packages to aid the sustenance of firms’ and households’ financial positions (Can and Canöz 2021; Falcone 2020). The exogenous shock emanating from the pandemic first dislocated supply chains across the world, followed by lockdowns resulting in no air travel and travel restrictions in the cruises and tourism businesses. Furthermore, physically distancing coupled with lockdowns culminated in the closing of entertainment centers, and office workers across the services industries, having negative cascading impacts on industries (Pogorletskiy and Pokrovskaia 2021).

The COVID-19 crisis sparked worldwide and quick policy response measures around the world. These are anchored on preventative and palliative health measures and wide-ranging macroeconomic policy measures such as fiscal and monetary aid to businesses reeling under the impacts of the pandemic (Burger and Calitz 2021). This study looks solely at fiscal responses to the pandemic. In developed, developing, and emerging countries, the virus has mainly disorganized the operations of firms and their staff in the private sector, public sector activity, and employment not affected so much (Elgin et al. 2020). Hence, fiscal policy measures to deal with COVID-19 effects are aimed at having businesses thriving during the pandemic and reduce short unemployment. In reality, fiscal response measures were important and on time. However, concerns have been raised as to whether the fiscal response measures in countries were of the right type, or were too extensive, as well as conditional cash transfers to boost consumption could have been added.

The differences in health spending in many countries are attributed mainly to variations in per-capita incomes as elucidated by (Úna et al. 2020) in which they argued that healthcare spending is a costly good having an elasticity value above unitary. On the contrary, recent studies have revealed the necessity of non-earning factors such as comparative cost of healthcare, gross mortality ratios, technical inventions, joblessness, entry of people to countries factor, and political factors (Heyden and Heyden 2021; Falcone 2018). Furthermore, other than structural challenges impacting the health sector, it is discovered that seasonal disruptions usually lead to the cutting of healthcare spending. Kalemlı-Ozcan et al. (2020) talk about how European countries faced with the 2008 financial crisis cut off their budgetary allocation to the health sector. The common characteristic from the studies referenced is the heterogeneity and the changing impacts among the healthcare expenditure and the resultant impact in different countries as told by Moura et al. (2019). Besides, the actual challenge is the coordination and accountable handling of health care expenses due to the pandemic occurrence.

In addition, other than COVID-19 being one of the deadly pandemics, WHO lists Ebola, SARS, and HIV AIDS as some of the diseases comparable. One of the main challenges of mitigating the havoc wrecked by the pandemic is a burden-sharing between the public health authorities and the actors of the private sector (Heyden and Heyden 2021). Kalemlı-Ozcan et al. (2020) say lack of federal financing on studies on the pandemic, medication, and community level existed during the years of the AIDS epidemic in the USA. Ideologies and red tape have brought about minimal coordination in policymaking, and finance initially devoted to pre-planned health programs was diverted to fight the AIDS diseases. Fiscal realignments of financing are mainly due to different fiscal programs and limitations on the levels of public budget shortfalls that the countries can have as well as subsequent burden-sharing resulting from that (Chinoy and Jain 2021; Wang and Zhi 2016) application of an open dynamic economic model reveals the optimum public program for making room for public spending more in South Africa. The logic behind this inference is that huge healthcare spending coupled with some epidemiological containment measures was implemented as a result of the high increased dependency ratio. The growing population was discovered to be more likely to contract the AIDS Epidemic which is in line with Fargnoli (2020). This brings about an increase in current debt levels but postpones the debt payoffs to the forthcoming years. As the aforementioned situation shows nation-level fiscal effects, Onofri et al. (2021) contended that health spending increased beyond $10 trillion for 188 nations between 1995 and 2015 culminating in the containment and the cure of AIDS to a great length. Extensive spending was mainly carried out by the nations and multilateral development aid from diverse bodies to combat HIV/AIDS, and at the same time, a nominal 10% was committed for out-of-pocket expenses as piloted in 2015.

Unlike other studies that evaluate economic policy measures in reaction to the pandemic, we consider at a different angle by analyzing the consequences of handovers to house owners and company bailouts, accordingly. We analyzed the USA and subsequent fiscal policy responses by using linear (econometric estimation) and nonlinear (DSGE model). Ours applies a fundamental model as done in Elenev et al. (2020) and in several aspects nevertheless more wide-ranging than that in other studies, hence making room to evaluate a varied set of fiscal policies (Chau et al. 2021a; Fong et al. 2021; Osorio-Saez et al. 2021; Yu et al. 2022), thus leading us to discover greater differences regarding the multipliers of directed (UI) vs. undirected (lump-sum) handovers. In this study, the researcher reveals
that without rich household different characteristics, the cascading effects for direct cash handovers are more than those for indirect ones. Importantly, this analysis changes without exogenous shocks occasioned by the pandemic, implying that the applied model shows an important degree of country dependence (Chau et al. 2021b; Lau et al. 2021; Liu et al. 2021; Iqbal et al. 2021d). This is in line with the vast amount of employment multiplier the study finds for liquidity assistance policies (Iqbal et al. 2021c). The fiscal ramifications of the ubiquitous COVID-19 are being researched at early stages as a comprehensive framework can be derived after the pandemic has lost its steam in several countries and the new normal is over. Our study is perhaps the foremost of its kind to analyze and provide evidence of the fiscal reaction of nations to past contagions. We delimit mainly the study to the fiscal reaction of the health sector as it is an urgent challenge when a contagion happens. The WPUI (World Pandemic Uncertainty Index) is applied as the likely parameter regarding the signal of the contagion (Ahir et al. 2018). To determine the different reactions by information-laggard and information-led nations in increasing healthcare spending in reaction to the contagion worries, non-linearity compared with earnings levels has been applied. Ultimately, the difference in fiscal reactions compared with the fiscal space of nations is also analyzed.

The rest of the paper is organized as follows: the “Method and data” section deals with methodology, the “Results and discussion” section presents results and discussion, and finally, the conclusion and policy recommendation are presented in the “Conclusion and policy implication” section.

Method and data

Theoretical understanding

The current study is modeled theoretically, in order to comprehend how public as social goods providers respond to pointers occasioned by the pandemic uncertainty as well as who does not have equal access to information (Hou et al. 2019; Iqbal et al. 2019a, 2021b, a; Anser et al. 2020; Khokhar et al. 2020; Abbas et al. 2021). From the beginning, it is believed that a two-pronged decision plan is being implemented by the nation, where the first phrase connotes the immediate reaction and the second phase is the past reaction (Chakrabarty and Roy 2021). In the initial phase, a country selects a fractional before pandemic healthcare budget allocation that maximizes the highest degree of social being, considering country-specific conditions. In the second phase, when information about the contagion is obtained and reports are authenticated, the government reacts again. The COVID-19 uncertainty is constructed by taking a social welfare equation as follows (van der Wielen and Barrios 2021):

\[V = V(m, h) \]

where \(m \) indicates the fiscal allocations on all other goods excluding healthcare (\(h \))-related fiscal allocations. The final form is given as \((h = x + s) \). Here \(x \) presents the expenditure related to the healthcare expenditure in the contagion-free period while \(s \) indicates the stochastic term occasioned by the pandemic, resulting in the rise in \(h \) (van der Wielen and Barrios 2021).

We apply the method of backward solution, where expectations of future uncertainties determine present behavioral outcomes (Daermos et al. 2021). We start from phase 2, where the pointers about the pandemic have spread. The government aims to get greater utility from the social welfare objective of the government given as \(V(m, h) \) tied to the fiscal balance constraint \(m + h = y \) and select the maximum health expenditure where \(Y \) stands for the earnings. The fiscal state of the government will be the reference point to know the government debt level and to ascertain if the government can finance the deficit.

Now, retrospectively looking at the first phase, the country studies the cues and determines the expenses on health before pandemic and expenditures on other public goods. The social welfare equation is presented as follows:

\[D(w, a) = E(V(s)w) + a = \int V(Y, Z)\pi(dz/w) + a \]

During the initial stages, the government decides half disbursement of monies based on optimizing anticipated utility given. The government selects the fractional disbursement of financing by taking full advantage of anticipated utility as shown by non-government signal max \(V(w, a) \) (Bordo and Levy 2021). By coupling the culmination of the signal, the equation in its indirect form forecasts the amount of money the government is to spend at the initial and after the elapse of the first phase, taking cognizance of signals from the pandemic’s discourse in the country (Wei and Han 2021).

\[\frac{1}{Q_i} = m\left\{ 1, \left(\frac{\pi}{\pi} \right)^{\varphi_m} \right\} \left(\frac{P_t^m}{P_{t-1}} \right)^{\varphi_a} \left(\frac{1 - N^m_t - N^n_t}{U} \right)^{\varphi_u} \]

The interest rate hence reacts to variations in changes in prices in the \(n \) (numeraire) sector and the services sector and the move away of the joblessness rate from its constant state level \(U \). The financial authority has outflows related to non-service consumption \(G_t \), joblessness cover \(U_{in} \) and debt repayments \(\frac{G_t^m}{\pi_i} \). Its inflows are labor income/payroll taxes \(\tau^l_i(N^n_t + N^m_t) \), capital income/profit taxes \(\tau^p_iP^n_t \), debt issuance
Longitudinal regression approaches with threshold variables applying (Stavytskyy et al. 2020) approach have been studied. However, the Seccareccia and Rochon (2020) approach is seen to be contrary to macroeconomic applications; compared to this research, the approach is right for the static longitudinal data model, and the fixed effects regression in its form demands covariates to be exogenously robust. Thus, in this analysis, a long-drawn-out model of Bradley (2021) was suggested by Piskorski and Seru (2021) incorporating the dynamic correlation with the explained covariates, commonly referred to as a non-static longitudinal threshold model. The FD-GMM regression approach is applied to solve the issue of likely endogeneity and applying (Lin and Jia 2019) kind of instrumentation (Baniya et al. 2020).

Regarding this study, a threshold approach is applied to delve into why the impact of the contagion indicators on health spending changes with the levels of public funds and per-capita income as encapsulated (Iqbal et al. 2019b; Abbas et al. 2020; Baloch et al. 2020; Fu et al. 2021; Yumei et al. 2021). Due to the nonexistence of prompt reactions to the contagion indicators, it is imperative to examine the challenges in a robust framework. The model is given below (Dewianawati 2020),

\[
\text{GHE}_{it} = \alpha + \beta_1 \text{PPP}_{it-1} + \beta_2 \text{ESP}_{it-1} + \beta_3 \text{WS}_{it-1} + \beta_4 \text{AB}_{it-1} + \beta_5 \text{LGRF}_{it-1} + \beta_6 \text{GC}_{it-1} + \beta_7 \text{CRF}_{it-1} + \beta_8 \text{LA}_{it-1} + \beta_9 \text{ER}_{it-1} + \beta_{10} \text{IR}_{it-1} + \eta_{it}
\]

(7)

where GHE represents the explained variable and stands for a percentage of GDP, public health expenditure; \(\alpha \) is

Table 1 Variables and its description

Variable	Description	PPP
Paycheck Protection Program	ESP	
Economic Stabilization Program	ESP	
Worker support	WS	
Additional benefits	AB	
Local Govt Relief Fund	LGRF	
Govt. consumption	GC	
COVID-19 relief fund	CRF	
Liquidity assist	LA	
Employment	ER	
Interest rate	IR	

an intercept; PPP is Paycheck Protection Program; ESP is Economic Stabilization Program; WS is work support; AB shows additional benefits; LGRF is Local Govt Relief Fund; GC shows government consumption; CRF is the COVID-19 relief fund; LA is liquidity assistance; ER shows employment rate; IR is the interest rate (Table 1); and η is the stochastic error terms.

The upper limit value is replicated inside the subcategory of explanatory variables. The upper limit estimates which minimize the econometric model are the optimum regressed variables. Currently, this study wants to assess the countercyclicality and fiscal procyclicality of the COVID-19 uncertainties, the study applied public health expenditure as the percentage of GDP as the dependent variables, and real per-capita GDP and the pandemic uncertainty(PUI) as given in the model and exogenous independent parameters, correspondingly (De Vito and Gómez 2020). The encouraging positive reaction of fiscal monetary expenditure to the virus uncertainty has been explained as economic as fiscal procyclicality and adverse response as fiscal countercyclicality. The plagues have been seen as having a healthcare sequence where the increased trepidation brings prosperous time and decreased trepidation brings bust. Now the comparative reaction of the public health spending and non-government health spending has been examined. These two effects have been encapsulated by applying the per-capita gross national income and ratio of public debt to gdp as the threshold variables. These analyses are examined together simultaneously and lagged sources to encapsulate the changing impacts of health sector expenditure.

For the reasons of scientific analysis, data on fiscal policies from 118 countries were obtained. The data concerning public and private health expenditure are taken as a ratio to GDP and the data regarding real per-capita GDP were sourced from the WDI. A great figure signifies a greater debate about the COVID-19 and the inverse is the case. In addition, the day-by-day policy rate data were obtained from DataStream, while data about traditional monetary policy releases are gathered by hand from central financial institutions’ websites, and the different monetary policy releases of the study countries. A 4-weekly data for trade openness, financial development, and industrialization are derived from the WDI. Economic data are gathered by the researchers from the repository of the countries and the releases of economic policies. The Forex rate for the USA is indexed by dollar, while other forex rates are determined by applying the spot rate for each country’s currency alongside the dollar. The data for every day approved cases for COVID-19 are derived from WHO.

Results and discussion

Table 2 presents the results of fiscal multipliers. The findings reveal that tax cut shows the effects of tax decrease policy ease the entire financial system and home-grown economic pressure. The tax cut ratio was decreased by 18% to 12%, and the real GDP grew by 0.22%, which depicts the tariff cut policy boosted country economic wide increase. Furthermore, people’s earnings and cumulative spending grew by 1.79 to 1.03%, correspondingly. The population’s livelihoods advanced, and the growth in the population’s spending multiplied overall common necessities, hence invigorating robust economic advancements.

Table 3 presents the results of fiscal multiplier pandemic shocks. Trade-in abroad and financing grew by 1.41% and 0.21% correspondingly, implying the tariff cut had lowered companies’ expenses and goods values and bettered the affordability of goods traded abroad. The strategy has steadied the outlooks and boosted the financing demand of marketplace institutions. Firstly, the multiplier in ordinary periods is less than that within the pandemic phase. This is accurate for all economic policy vehicles; however, it is uniquely eye-catching for cash bailout to companies: the work multipliers are too insignificant in ordinary years (0.32 vs. 2.51 in the contagion), and the GDP multipliers are even discouraging (−0.11 vs. 0.45). Cash aid to companies is thus not advisable during good times; however, it gives calming impacts on jobs in the event of an exogenous shock like the pandemic. Second, the categorizing of multipliers for jobs varies in ordinary periods and the event of a pandemic. As depicted in the preceding analysis, UI overshadows tax decreases or lump-sum handovers during the contagion.

Table 2 Fiscal multipliers

Description	FM(1)	FM(2)	FM(3)	FM(4)	FM(5)
Govt. consumption	1.4353	0.9853	0.6344	0.0086	1.3376
Tax relief	0.4314	1.2745	1.2543	0.0274	0.5855
Economic Stabilization Program	0.5437	2.4325	1.2666	0.0777	0.3427
Transfer	0.6769	1.6532	1.6532	0.0874	0.6622
Liquidity assistance	1.4536	2.4875	2.4732	−0.0394	0.6643

Table 3 Fiscal multipliers pandemic shock

Description	FM(1)	FM(2)	FM(3)	FM(4)	FM(5)
Govt. consumption	0.8468	0.4005	0.2714	−0.1561	0.8054
Tax relief	0.3982	1.2406	1.1281	−0.0634	0.3792
Economic Stabilization Program	0.3612	1.2686	1.0891	−0.0718	0.3445
Transfer	0.3815	1.1805	1.0769	−0.0599	0.3633
Liquidity assistance	0.3197	0.1512	0.0462	−0.0750	−0.1091
Tables 2 and 3 depict that to evaluate the robustness of the model and make a point that the measurement produces reasonable outcomes, we recalculated fiscal multipliers for similar policy instruments excluding the pandemic shock. Hence, we apply the measured model to estimate the fiscal multipliers in “ordinary times” where no shocks exist other than the stimulus and the baseline without stimulus economy in its stable condition. The GDP and job multipliers of countries’ spending range from 0.81 and 0.85, correspondinglly, which are well between the scope of figures that have been researched into by previous studies on the impacts of government buys. 0.34 and 0.39 are the multipliers for tax and transfer policies, which are quite low. These estimates are insignificant and are in line with the estimated values of past studies for tax rebates from the US. This, again, is in line with major findings that these policies are inclined to be substandard to explicit government buys regarding employment incentives. These analyses imply the model construct and measurement produced reasonable outcomes that are in line with the literature.

Practical analysis displayed in Table 4 supported the hypothetical framework by assessing the fiscal responses to indicators as a result of the pandemic. The factor for an independent parameter when the upper limit parameter is examined is that high-earning nations are inclined to a fiscal procyclical impact to pandemic insecurities at level; on the other hand, least-developed countries have similar impacts at lag. It is believed that it is a result of information irregularities among different nations, especially in determining the scale and type of devastation brought by the pandemic rounds. This is particularly in line with how nations react to different phases of the seasonality occasioned by the business cycle as allude to by Siddik (2020) who says it is one of the key areas of non-linearities to fiscal impacts. These asymmetries could be foreseen or unforeseen owing to the competence of the government in authority.

Results in Table 5 depict that “Pandemic + tax cut” shows the effect of the pandemic on the consequence of 2018–2019. VAT cut program matched with the consequences of the value-added tax cut policy in 2018–2019; the real GDP increase ratio plummeted from 0.21 to −6.73%. The cause for this noticeable fall in the growth ratio was that the increase ratios of the “troika”—people’ spending, financing, and trade abroad—reduced from 1.03%, 0.21%, and 1.41% to −10.17%, −5.43%, and −7.34%, correspondingly. People’s earnings equally reduced considerably, having the increase rate decreasing from 1.79 to −4.97%. Furthermore, the previous economic increase ratio digresses as a result of the pandemic. As a result of the COVID-19, the increase rate of the public fiscal revenue of the main and local government plummeted from −5.71% and −5.6% to −12.54% and −13.31%, correspondingly, and the country’s fiscal power was sternly reduced. Local economic pressure increased

Table 4 Regression analysis
ESP
WS
AB
LGRF
GC
CRF
LA
ER
IR
R-squared
Exchange rate regime
*, **, and *** indicate the level of significance at 10%, 5%, and 1% respectively. All regressions include regional, and version dummies. Robust t statistics are in parentheses.
by 0.38 to 0.435, and main economic pressure more than increased twofold, growing by 0.061 to 0.142. Economic headwinds cannot be sidetracked, and fiscal robustness is crucial to secure the nation’s entire financial system’s proper functioning and long-run viability. The increased ratio of the value-added tax, spending tax, manufacturing tax, and house owners’ earnings plummeted from −15.22%, 1.15%, 2.65%, and 1.79% to −21.13%, −5.32%, −6.98%, and −4.97%, correspondingly. Production taxes, a very key means of earning for indigenous authorities, fell greatly, reiterating the opinion that indigenous authority’s economic pressure is growing.

Regarding the information irregularities in lesser-earning nations, the challenge is even severe as elucidated by Iqbal et al. (2020) due to the fact that they are faced with sub-standard regulatory and governance systems. These findings are corroborated by Afonso et al. (2010) who say the past effects could be more pronounced due to time differences in hiring, training, and retraining; distribution of funds; and indigenous economics readjustment to shocks. Besides, the delay in fiscal response, according to Faria-e-Castro (2021) is the ramifications of external political shocks and voting activities. However, the diversity in indications at simultaneous and past year implies the lack of dedication to healthcare expenditure notwithstanding the health sector’s devastation by the pandemic.

The other type of seasonality in public healthcare budgetary allocations happens when public debt is quite high in nations. Heavily indebted nations are usually faced with fiscal procyclicality to a certain degree but adapt swiftly to limit expenditure breakup. Chakrabarty and Roy (2021) contended fiscal healthcare is constrained in many economies and government debt is one of the main restraints. Fiscal space is the ability of a country to give more budgetary allocations for the required objective, not distorting the sustainability of the country’s financial system. One of the causes responsible for heavily indebted countries reacting contemporaneously to the COVID-19 concerns is due to the frequent re-ordering of spending undertaken in the critical areas of the economy as alluding to by e Castro (2020) and Lacalle (2020). Hence, countries are compelled to the creation of fiscal space for health in the event of disease outbreak concerns; nevertheless, as a result of tight spending window, governments immediately realign and reduce spending in the coming phase. Inversely, the lesser indebted nations double down on health sector outflow after the indicators increased in the ensuing phase. They rely on the self-producing arm of the economy to financial security from the pandemic at first and stick to their financial plans and thus procrastinate their disbursement of funds.

In this vein, the harmonizing of self and civic supplies in the scenario of the pandemic is an important puzzle to solve.

| Table 5 Panel regression of micro-financial and fiscal policy measures |
|---------------------------------|--------|--------|--------|--------|--------|
| Variable | Macro-fin. | Macro-fin. | Macro-fin. | Fiscal | Fiscal |
| PPP | 5.14*** | 6.78*** | 5.01*** | 3.87*** | 3.00*** |
| | (7.987) | (5.46) | (5.98) | (5.23) | (4.58) |
| ESP | 0.28*** | 0.29*** | 0.05*** | 0.54*** | |
| | (2.99) | (2.32) | (5.39) | | |
| WS | 4.013*** | 2.995*** | −6.746** | −1.263*** | |
| | (6.45) | (3.98) | (−3.42) | (−4.13) | |
| AB | 0.04*** | −0.06*** | 0.18*** | 0.06*** | |
| | (1.99) | (−3.69) | (−1.532) | (8.47) | |
| LGRF | −0.38*** | −0.08*** | −0.29** | −0.34** | |
| | (−5.10) | (−4.14) | (−6.45) | (−5.42) | |
| GC | −0.041** | 0.06*** | | |
| | (−0.24) | | | |
| CRF | −0.03*** | | | −0.006* |
| | (−4.21) | | (−0.68) | |
| LA | 6.87*** | 4.26*** | | |
| | (3.8) | (4.1) | | |
| ER | 3.99*** | 5.23*** | | |
| | (5.87) | (12.46) | | |
| IR | −0.32*** | | | −0.05*** |
| | (−7.95) | | (−4.87) | |
| R-squared | 0.63 | 0.6 | 0.5 | 0.5 | 0.56 | 0.74 |
| Exchange rate regime | No | No | Yes | No | No | Yes |

*, **, and *** indicate the level of significance at 10%, 5%, and 1% respectively.
The divergent views being held following the push to expand capacities and ever-increasing prosperity might bring about disparities in growth programs being pursued by the countries as stated by Jinjarak et al. (2021). In addition, the analysis in Table 6 depicts the comparative spending approachability of the countries and the self-sector in the pandemic insecurities. On minimal-earning nations, the comparative dependence is greatly on the government sector than the self-sector, but the highly free enterprise economy high-earning nations incline towards strong self-sector financing. This analysis is in line with the views of Chakraborty and Thomas (2020). The researchers also discovered that the increase of the pandemic pointers becomes more pronounced in the ensuing phase; the comparative requirement for assistance from the self-sector grows as the financing from the government accounts become depleted in which virulent will grow as time progresses due to the self-sector reluctance to release money particularly if it anticipates government will hike taxes to make up for the fiscal gap. More so, an expansion in public spending strains interest rates up the curve, resulting in reduced private sector participation, usually called the crowding-out impact as referred to by Guo and Shi (2021). Nevertheless, the supremacy of the self-sector in banking rolling outflow of the health arm is similar among the low-debt nations.

Forecast for the COVID-19 pandemic

But then, the researchers forecasted the variations in government health sector outflows to be a percentage of GDP in 2020 applying the regressed model and readily accessed data on the COVID-19 insecurities index. We categorized the first 20 nations based on the figures of daily reported infections across the nations (Hutchison 2020). The anticipated increase in government outflows in the healthcare sector regarding the pandemic reveals how governments approach the concerns and insecurity pointers from the pandemic, and the gross lack of funding in the healthcare sector, before the beginning of COVID-19. The GDP multipliers think that it might not be ideal to institute strategies to balance GDP given the current conditions. The multiplier was however analyzing for comprehensiveness. The analysis that gives the biggest multiplier is government spending. It is well recognized that it is less likely to outpace government spending in this type of model (Gechert et al. 2019), particularly without

Table 6 Policy rate analysis

	Policy rate	Res. req.	Macro-financial	Fiscal
PPP	-216.4***	-68.08***	7.76***	21.43***
	(-7.06)	(-5.67)	(2.68)	(5.96)
ESP	0.324***	2.42***	0.40***	0.31***
	(2.03)	(6.23)	(6.74)	(4.57)
WS	0.46***	-2.23***	-0.23***	-0.03***
	(3.95)	(-3.14)	(-2.41)	(-0.54)
AB	0.3104***	0.787***	0.4433***	0.3614
	(-0.62)	(-2.78)	(5.76)	(3.21)
LGRF	0.04*	0.05**	0.03**	0.03**
	(1.08)	(0.65)	(3.24)	(3.68)
GC	-0.31*	2.03***	0.03**	-0.31***
	(-1.45)	(3.15)	(0.76)	(-5.17)
CRF	0.2134**	0.2165***	0.1394**	0.1504***
	(0.0021)	(0.0281)	(0.004)	(0.068)
LA	0	0	0	0
ER	-2.0341***	-2.4537***	4.923***	3.425***
	(-4.12)	(-3.28)	(2.58)	(3.41)
IR	-0.223***	-2.624**	-4.634**	-4.635**
	(-0.012)	(-4.428)	(2.148)	(4.341)

Table 7 System regression analysis for forecasting COVID-19 pandemic

Equation	Policy rate	Res. req.	Macro-financial
PPP	-0.59***	-0.40***	-0.23***
	(-6.58)	(-4.58)	(-6.25)
ESP	-21.48***	-14.57***	5.04***
	(-6.25)	(-5.26)	(3.9)
WS	0.07***	-0.031**	-0.03*
	(0.145)	(-0.58)	(-2.10)
AB	0.23**	-0.52***	0.214***
	(3.42)	(-4.57)	(4.76)
LGRF	0.6454**	0.7435***	0.422***
	(3.52)	(3.21)	(3.89)
GC	0.31***	0.41***	0.02*
	(3.45)	(4.89)	(2.21)
CRF	-0.68***	0.05***	-0.318***
	(-2.99)	-0.21	(-4.15)
LA	0.35***	0.21***	0.64**
	(0.205)	(0.210)	(0.214)
ER	-5.87***	-7.65***	-5.48***
	(-3.47)	(-5.87)	(-5.48)
IR	0.387***	0.535**	0.749***
	(4.474)	(4.452)	(5.033)

* * *, **, and *** indicate the level of significance at 10%, 5%, and 1% respectively

Robust associations between the incomes of individual consumers and the financial terrain. Payroll tax cuts, increases in UI, and unconditional transfers all produced nearly the same results.

Table 7 presents the results of system regression analysis for forecasting the COVID-19 pandemic. The happening of COVID-19 produced significant effects on the economy of the globe as well as trade. The WTO brought to the public its 2020–2021 trade increase projection study on 8 April 2020. The positive forecast was that international trade would increase by 13%, and the negative forecast was that international trade will fall by 32%. According to the impacts of COVID-19 on the side of supply, and global trade, the underlisted consequences are deduced: consumers’ propensity to consume reduced by 5%, financing of varied sectors plummeted by 5%, labor availability plummeted to 10%, and actual trade abroad fell to 10%. About differences in program approaches to the nations, it is obvious that European nations such as the UK, Italy, and Germany have been prepared to approach the COVID-19 indicators by a larger amount of expansion in healthcare spending. Intriguingly, the first three nations most affected by COVID-19 such as the USA, India, and Brazil are positioned in the 14th, 16th, and 12th levels correspondingly, if they are ranked according to the increase in their healthcare spending. It explains the policy approaches in nations that are at variance to the increasing pandemic infections. So far as the share of fatalities announced by the leading three countries are involved, it is not at par with the mean fatality’s ratios among the first 20 nations; nevertheless, there are nations such as Chile, Germany, and Spain that swiftly approached the pandemic irrespective of fewer fatalities from the pandemic. Utilizing a different view, the deepened program approach could be tied to macroeconomic terrain such as the debt status of nations instead of the fatalities from COVID-19. While Chile, Germany, and Spain were identified to be heavily debated nations regarding the gotten upper limit value of debt, the moderate approach of the most affected nations is attributed to the procrastination in studying the pandemic warming indicators, before strategizing to distribute monies (Chakrabarty and Roy 2021; Ahir et al. 2018).

Robustness analysis

The results of the robustness analysis are presented in Table 8. We broaden the analysis in pandemic concern indicators through the COVID-19 as well as the fatalities per 1000 people for each nation. We discovered the analysis follows a similar pattern from the earlier analysis, where we examine the approaches to the pandemic warning indicators that are controlled mainly by the prevailing macroeconomic environment. Handovers and public spending of non-services work in long-established cumulative demand impacts, hence growing demand for non-sector goods and income in this area; nevertheless, no bearings exist on different kinds of customers. Ultimately, cash aid to non-service area enterprises maintain earnings in this area perhaps.

Table 9 depicts the variations in foremost macroeconomic parameters, the resultant figures of different enterprises, and economic pressure after the alternating elasticity factor. Influenced by the bearings of the value-added tax cut program, China’s real GDP expanded by 0.18% (the actual GDP increase ratio in the former model 0.21%) and indigenous economic pressure grew by 0.342 to 0.379 (and indigenous economic challenges calculated from the previous equation was 0.38 to 0.435). This analysis is equally in line with a similar analysis of the previous equation, and the expansion ratio of several macroeconomic parameters and the resultant figures of diverse sectors are equally unique, showing
the robustness of the analysis and the high predictability of the equation.

The fatalities of people ratio of 67% are quite comparable in the UK and the USA; nevertheless, the UK reacted more than twice ahead of the USA in their program deliberations for the COVID-19. But then, high-level debt saddled nations to push for an aggressive concurrent program approach. Hence, the strength of the pandemic warning indicators informs greatly the amount of government healthcare spending needed during the pandemic. Subdued pandemic indicators do not imply the reduced occurrence of the pandemic; nevertheless, it is the comparative indecision of government at the initial stages of the COVID-19 occurrence. This is perhaps assigned to the reason that nations that approached the pandemic head-on earlier did well in containing the havoc wreaked by the pandemic, by reporting fewer fatalities. In other words, the weaker the fiscal program through the COVID-19 phase, the more depressed the forex rates and the dwindling in the infection’s patterns. For growth, economic programs can grow indigenous currency circulation in the economy, and hence grows the need for abroad currency, which makes the local currency lose value. Simultaneously, a weaker economic program betters credit environment that brings reduced infections. The study reveals that economic programs instituted throughout the COVID-19 phase acted crucially in controlling financial systems. Table 9 depicts the analysis of the factors which are not significant, implying that beneath different environments, no significant other bearings of the seriousness of the COVID-19 pandemic can be passed to out-of-fashion economic programs for the forex markets.

Discussion

The pandemic has brought about an unparalleled fall in the world’s pursuits. The growing infection cases in advanced and emerging nations have resulted in restrictions in movements and greater destabilizations of the global economic order, in a manner not seen before (Baldwin and di Mauro, 2020, Gopinath, 2020). A case in point is, the world’s GDP fell by over 4.9% in quarter 2 of 2020, as a result of financial destabilization. The fall in global supplies of traded goods far outweighed that of the 2007–2008 financial crunch (Cantore and Freund 2021). As a result, the world’s commerce plummeted by 3.5% owing to slack demand and deliveries. The resultant ban on movement around the world due to COVID-19 stalled the world’s supplies, lowering the total demand (Muhafidin 2020). The spending on merchandise saw a remarkable fall greatly as a result of sharp income fall and consumer trust. Similarly, customers became adamant to spend on merchandise.

Table 9 Robustness checks with percentage pointcuts

Policy rate	Policy rate	Policy rate	Reserve requirements	
PPP	−2.23***	−2.35***	−3.11***	−0.59**
	(−6.99)	(−7.06)	(−8.76)	(−3.24)
ESP	−0.041***	0.04***	0.04***	0.04***
	(−4.54)	(−2.75)	(−2.54)	(−2.54)
WS	−0.0087*	0.0003	0.003	0.003
	(−3.21)	(−0.48)	(−0.35)	(−0.35)
AB	−0.28**	−0.06***	0.08***	0.08***
	(−2.45)	(−0.56)	(−0.41)	(−0.41)
LGRF	0.03***	−0.04***	−0.23***	−0.23***
	(−0.04)	(−2.34)	(−0.73)	(−0.73)
GC	−0.79***	0.05***	(−8.02)	(−4.001)
CRF	−0.65***	0.24***	(−4.54)	(−2.34)
LA	0.06***	0.062**	(−5.24)	(−2.34)
ER	0.002**	0.004***	(−0.62)	(−0.560)
IR	−0.04***	−0.04**	(−4.45)	(−2.23)
R-squared	0.07	0.22	0.3	0.23
Exch. rate dummies	NO	NO	YES	YES

* *, **, and *** indicate the level of significance at 10%, 5%, and 1% respectively.
because of the concerns of the COVID-19 disease (Gootjes and de Haan 2020).

Job insurance throughout the pandemic thinks of lifetime growth in insurance premiums. To come to a value of $200 billion, the jobless cover bailouts for an agent is increased by 82% while the effects are remarkably bigger on debtor spending, which grows with impacts. This is likely predictable: workforce tax decreases profit for people who are still in jobs when greater numbers of people are laid off. Regarding joblessness cover, it is the inverse that exists: it profits jobless people when a greater proportion of people become jobless. The increase in debtor spending balances non-services, as shown in the 5th section. Besides, it is worth noting that the involvement occurs only in a ¼; however, the effects are permanent. This is because the costs for debtors accessing money continue to be down the curve, as the expansion in joblessness covers lessens sizably non-payment charges (as joblessness people are inclined to have greater non-payment charges than those employed), which culminates in an indirect recapitalization of the financial system.

To determine fiscal responses, it is imperative to differentiate between parameters that seem like fiscal stimulus and those that are actual economic incentives to boost spending. The dictionary meaning of stimulus means anything that induces action, and in the fiscal domain, it connotes conscious financial move through more government spending, tax decreases, cash give-outs, or more charitable societal safety net disbursement to induce financial pursuit. Fiscal incentives are geared towards the demand aspect of the equation, and it is a tool applied to spur total spending in the entire economy in order to avoid economic retrogression. Otherwise, Economic aid is fundamentally geared towards the supply aspect of the economy, to normalize manufacturing through tax holidays, even though tax holidays can pose ancillary demand impacts that might cause future product profits. An example is when corporate tax decreases or financing allowances spur greater investment. There is a significant variation between Keynesian economists on explicit public spending and cash assistance to spur cumulative demand countrywide, and enterprises’ tariffs reprieve policies to offset government-authorized cumulative supply crisis, even if with some associated cumulative demand outcomes. The overarching aim of putting any fiscal response policy to any economic meltdown is to within a short time lessen the responsibility of the public sector on the supply arm of the economy, comprising mainly of minor and big companies. Commerce generates the majority of employment opportunities in the country and that is the hub of output development, and actual salary-investing policies are implemented to benefit employees.

Company tax holidays for example give fiscal reprieve for enterprises that counteract the declining viability of companies and retrenchment, which nevertheless would not induce productivity during a crisis. In this manner, fiscal alleviation varies noticeably from the fiscal stimulus of the basic Keynesian type, purposefully to strengthening the demand aspect of the country, through expanded government expenditure in different forms, comprising cash handovers to incentivize spending. These two macroeconomic tools of fiscal alleviation and fiscal incentivization imply larger budget gaps and bigger government debt, important macroeconomic parameters Keynes harmoniously excluded from this concept. However, within the motive is why fiscal stimulus, in reality, is not likely to spur any money-making occupation in actual terms provided long-run impacts down the curve are accounted for. The reason that fiscal stimulus such as additional government expenditure geared towards incentivizing cumulative demand has counterbalancing bearings on other parts of the economy that ultimately cancels out the impacts. An additional government spending increases the budget shortfall and surely the amount of government expenditure altogether in the first scenario. Hitherto, public expenditure is just one of the parts of overall expenditure and, as regular bachelor degree teaching material explains, about a country that has well-functioning globally amalgamated financial centers, trade-offs are part of private investment and actual goods trade abroad will eventually happen due to larger budget shortfall, and the use of a public instrument of debt financing “masses out” the private sector or brings in capital from overseas, resulting in higher forex rate and reduced mechanize traded abroad.

Conclusion and policy implication

This distinctive study’s impact is to model the non-linear correlation between the contagion indicators, government health spending applying the Dynamic Longitudinal threshold methodology. This methodology makes room to encapsulate the upper limit level per-capita earnings and public debt, which ultimately establishes the fiscal approaches to diverse COVID-19 indicators. By investigating the readiness of nations in previous contagions, this analysis elucidates how the nations have conventionally undertaken re-prioritization of expenses to attend to the current needs of the health sector. The differences in procyclical impact among earnings and debt types of nations get more visible as pandemic indicators incline to affect the lesser-earning nations relative to higher-income nations, which is due to information irregularities among nations. These findings are in line with pandemic indicators experienced around the world throughout the period of the ubiquitous COVID-19. Some fiscal approaches would require encapsulating the infection ratios and the fatalities during the pandemic, as well as the prevailing economic situation, according to the past
accomplishments of the economy. As the nations are grappling with the COVID-19 contagion, this study reiterates the vital importance of information asymmetries among nations in formulating stimulus packages for the health sector. The less-developed nations are more exposed to the pandemic cycles due to inadequate good health infrastructure. Thus, it is important that the government sector and the self-sector work in unison in reviving the health sector, particularly when the pandemic indicators are at the initial stages.

The findings have cautions and hypotheses for critical thoughts, its hypotheses emanating from different vital parts of fiscal policy study, for instance, the dimensions of interposition (Bui 2018) and the likely unison and (Faria-e-Castro 2021) among programs (Faria-e-Castro 2018). The present analysis also hypothesizes from the endogenous labor distribution choices, which is crucial to examine the short-term effects of policies in the form of tax decrease and UI. On the contrary, prevailing research proposes that these inducement challenges did not influence in any manner as in the view of Ashihara and Kameda (2018). Ultimately, it fully hypothesizes the likelihood of that fiscal policy can be applied to lower the length and force of the shock occasioned by the pandemic; it equally hypothesizes from the reality that encouraging commercial pursuits might be counter-productive in curtailing the pandemic.

The tax decreases are crucial to cut businesses’ outlays and aid market bodies in surmounting these challenges and actualizing economic growth. The real GDP increased by 0.21%, and people’s spending, and cumulative financing, overall merchandise traded abroad, and the productions worth of all businesses grew significantly; nevertheless, as a result of the cut of VAT earnings, indigenous economic challenges grew from 0.342 to 0.38, a growth of 10.96. The real GDP expansion fell from 0.22 to −6.73% and people’s earnings, overall financing, overall merchandise traded abroad, and the production worth of different businesses in the economy all plummeted significantly. Furthermore, the fiscal resources of indigenous authorities have seriously declined from 0.38 to .0435, a growth of 14.53%.

To put it differently, the occurrence of COVID-19 deteriorated the diffusion of the traditional monetary program to 10-year public maturity, exchange rate, and diffusion. However, the deteriorating effects on the diffusion of the traditional monetary program to stock centers are near significant. This implies the occurrence of the pandemic has deteriorated the diffusion of traditional monetary policy programs to financial markets to an additional noteworthy level as the impacts of the traditional monetary program on all four financial centers are not felt much during the pandemic. The heightened seriousness of the pandemic moderated the diffusion of modern monetary policies to stock and exchange rate markets:

(i) The COVID-19 pandemic has deteriorated the diffusion of economic policy to financial markets in three means. Firstly, financiers did not anticipate the immature, not-enough, and indeterminate economic programs commenced throughout the pandemic phase. This dearth of understanding let market actors less open to economic programs as they should be in ordinary phases.

(ii) Second, even though the growth monetary programs were formulated to ensure actors take part in financial and commercial undertakings, the restrictions of movements and lockdowns announced by countries globally prohibited commercial ventures (Sharif et al. 2020).

(iii) Third, a financier in markets all in all responded immediately to economic programs broadcasted by relocating their assets to greater producing holdings. Nevertheless, studies proved that majority of assets are comparatively ineffectual in protecting their investment amidst the pandemic (Ji et al. 2020). Financiers are less willing to relocate cash to benign assets by changing financial instruments when COVID-19 circulated across the globe, making systematic perils for investors. Thus, they responded in a gradual manner to economic policy.

Availability of data and materials The data can be available upon request.

Authors contribution Haiming Liu: conceptualization; data curation; methodology; writing—original draft; data curation; visualization; supervision. Y. M. Tang: visualization, editing. Wasim Iqbal: review methodology; writing—original draft; data curation; visualization; editing. Hassan Raza: writing—review and editing; software

Declarations

Ethical approval and consent to participate We declare that we have no human participants, human data or human tissues.

Consent for publication N/A

Competing interests The authors declare no competing interests.

References

Abbas Q, Hanif I, Taghizadeh-Hesary F et al (2021) Improving the energy and environmental efficiency for energy poverty reduction Abbas Q, Nurunnabi M, Alfakhri Y et al (2020) The role of fixed capital formation, renewable and non-renewable energy in economic growth and carbon emission: a case study of Belt and Road Initiative project. Environ Sci Pollut Res 27. https://doi.org/10.1007/s11356-020-10413-y
Afonso A, Agnello L, Furcieri D (2010) Fiscal policy responsiveness, persistence, and discretion. Public Choice. https://doi.org/10.1007/s11127-009-9577-x

Ahir H, Bloom N, Furcieri D (2018) The World Uncertainty Index. SSRN Electron J. https://doi.org/10.2139/ssrn.3275033

Akrofi MMC, Antwi SH (2020) COVID-19 energy sector responses in Africa: a review of preliminary government interventions. Energy Res Soc Sci

Anser MK, Iqbal W, Ahmad US et al (2020) Correction to: environ-

Anon H, Bloom N, Furcieri D (2018) The World Uncertainty Index. SSRN Electron J. https://doi.org/10.2139/ssrn.3275033

Ashihara K, Kameda K (2018) Is fiscal expansion more effective in a financial crisis? Appl Econ Lett. https://doi.org/10.1080/13504861.2017.1299098

Baloch ZA, Tan Q, Iqbal N et al (2020) Trilemma assessment of energy intensity, efficiency, and environmental index: evidence from BRICS countries. Environ Sci Polit Res 27. https://doi.org/10.1007/s11356-020-09578-3

Baniya S, Rocha N, Ruta M (2020) Trade effects of the New Silk Road: a gravity analysis. J Dev Econ. https://doi.org/10.1016/j.jdeveco.2020.102467

Bordo MD, Levy MD (2021) Do enlarged fiscal deficits cause inflation? The historical record. Econ Aff. https://doi.org/10.1111/ecaf.12446

Bradley P (2021) An institutional economics framework to explore sustainable production and consumption. Sustain Prod Consum. https://doi.org/10.1016/j.spc.2021.02.035

Bui D-T (2018) Nonlinear effects of fiscal policy on national saving. J Asian Bus Econ Stud. https://doi.org/10.1108/04-2018-0001

Burger P, Calitz E (2021) Covid-19, economic growth and South African fiscal policy. South African J Econ. https://doi.org/10.1111/saje.12270

Can CK, Canöz I (2021) Testing minsky’s financial fragility hypothesis for Turkey’s public finances. Public Finan Q. https://doi.org/10.3551/PFQ_2020_4_4

Cantore C, Freund LB (2021) Workers, capitalists, and the government: fiscal policy and income (re)distribution. J Monet Econ. https://doi.org/10.1016/j.jmoneco.2021.01.004

Chakraborty HS, Roy RP (2020) Trade effects of the New Silk Road: a gravity analysis. J Dev Econ. https://doi.org/10.1016/j.jdeveco.2020.102276

Chakraborty L, Thomas E (2020) Covid-19 and macroeconomic uncertainty: fiscal and monetary policy response. Econ. Polit. Wkly. 55:15–18

Chau KY, Law KMY, Tang YM (2021a) Impact of self-directed learning and educational technology readiness on synchronous E-learning. J Organ End User Comput 33:1–20. https://doi.org/10.4018/joeuc.2021110102

Chau KY, Tang YM, Liu X et al (2021b) Investigation of critical success factors for improving supply chain quality management in manufacturing. Enterp Inf Syst 00:1–20. https://doi.org/10.1080/17517755.2021.1880642

Chinoy SZ, Jain T (2021) Fiscal policy and growth in a post-COVID-19 world. Econ. Polit. Wkly.

Cui H, Wang R, Wang H (2020) An evolutionary analysis of green finance sustainability based on multi-agent game. J Clean Prod 269:121799. https://doi.org/10.1016/j.jclepro.2020.121799

Dafermos Y, Gabor D, Michell J (2021) The Wall Street Consensus in pandemic times: what does it mean for climate-aligned development? Can J Dev Stud. https://doi.org/10.1080/02255189.2020.1865137

De Vito A, Gómez JP (2020) Estimating the COVID-19 cash crunch: global evidence and policy. J Account Public Policy. https://doi.org/10.1016/j.jaccpubpol.2020.106741

Dewianawati D (2020) Kebijakan Fiskal dan Kebijakan Moneter Terhadap Produktivitas Pelaku UMKM Melalui Variabel Mediasi Keberhasilan Penanganan Covid-19 (Studi pada Pelaku UMKM di Kota Mojokerto). J Entrep Bus Econ Educ Res

DORUK ÖT, KONUK S, ATICI R (2021) Short-term working allowance and firm risk in the post-COVID-19 period: novel matching evidence from an emerging market. Financ Res Lett. https://doi.org/10.1016/j.frl.2021.102021

e Castro MF, (2020) Fiscal policy and COVID-19: insights from a quantitative model. Econ Synopses. https://doi.org/10.20955/es.2020.8

Elencas Y, Landvoigt T, Van Nieuwerburgh S (2020) Can the COVID-19 effects save the economy? SSRN Electron J. https://doi.org/10.2139/ssrn.3593108

Elgin C, Basbug G, Yalaman A (2020) Economic policy responses to a pandemic: developing the Covid-19 economic stimulus index. Covid Econ

Falcone PM (2020) Environmental regulation and green investments: the role of green finance. Int J Green Econ 14:159–173. https://doi.org/10.1504/IJGE.2020.109735

Falcone PM (2018) Green investment strategies and bank-firm relationship: a firm-level analysis. Econ Bull 38:2225–2239

Falcone PM, Morone P, Sica E (2018) Greening of the financial system and fueling a sustainability transition: a discursive approach to assess landscape pressures on the Italian financial system. TechNol Forecast Soc Change 127:23–37. https://doi.org/10.1016/J.TECHFORE.2017.05.020

Fargnoli R (2020) Adapting the EU economic governance to new macroeconomic and political realities. Intereconomics. https://doi.org/10.1007/s10722-020-0922-0

Faria-e-Castro M (2021) Fiscal policy during a pandemic. J Econ Dyn Control. https://doi.org/10.1016/j.jedc.2021.104088

Faria-e-Castro M (2018) Fiscal multipliers and financial crises. Work Pap Ser. https://doi.org/10.20955/wp.2018.023

Fong KNK, Tang YM, Sie K et al (2021) Task-specific virtual reality training on hemiparetic upper extremity in patients with stroke. Virtual Real. https://doi.org/10.1007/s10055-021-00583-6

Fu FY, Alharthi M, Bhatti Z et al (2021) The dynamic role of energy security, energy equity and environmental sustainability in the dilemma of emission reduction and economic growth. J Environ Manage 280. https://doi.org/10.1016/j.jenvmann.2020.111828

Geichert S, Horn G, Paetz C (2019) Long-term effects of fiscal stimulus and austerity in Europe. Oxf Bull Econ Stat. https://doi.org/10.1111/obes.12287

Gootjes B, de Haan J (2020) Pro cyclicality of fiscal policy in European Union countries. J Int Money Financ. https://doi.org/10.1016/j.jimonfin.2020.102276

Guo YM, Shi YR (2021) Impact of the VAT reduction policy on local fiscal pressure in China in light of the COVID-19 pandemic: a measurement based on a computable general equilibrium model. Econ Anal Policy. https://doi.org/10.1016/j.eap.2020.12.010

Heyden KJ, Heyden T (2021) Market reactions to the arrival and containment of COVID-19: an event study. Financ Res Lett. https://doi.org/10.1016/j.frl.2020.101745

Hou Y, Iqbal W, Shaikh GM et al (2019) Measuring energy efficiency and environmental performance: a case of South Asia. Processes 7. https://doi.org/10.3390/pr7060325

Hutchison MM (2020) The global pandemic, policy space and fiscal rules to achieve stronger stabilization policies. Seoul J Econ. https://doi.org/10.22904/sje.2020.33.3.003

Iqbal S, Bilal AR, Nuruunnabi M et al (2021a) It is time to control the worst: testing COVID-19 outbreak, energy consumption and CO2 emission. Environ Sci Polit Res 28. https://doi.org/10.1007/s11356-020-11462-z

Iqbal S, Taghizadeh-Hesary F, Mohsin M, Iqbal W (2021b) Assessing the role of the green finance index in environmental...
pollution reduction. Estud Econ Agr 39. https://doi.org/10.25115/eeea.v39i3.4140

Iqbal W, Altaf A, Fatima A et al (2019a) A DEA approach for assessing the energy, environmental and economic performance of top 20 industrial countries. Processes 7. https://doi.org/10.3390/PR7120092

Iqbal W, Fatima A, Yumei H et al (2020) Oil supply risk and affecting parameters associated with oil supplementation and disruption. J Clean Prod:255. https://doi.org/10.1016/j.jclepro.2020.120187

Iqbal W, Tang YM, Chau KY et al (2021c) Nexus between air pollution and NCOV-2019 in China: application of negative binomial regression analysis. Process Saf Environ Prot 150. https://doi.org/10.1016/j.psep.2021.04.039

Iqbal W, Tang YM, Lijun M et al (2021d) Energy policy paradox on environmental performance: the moderating role of renewable energy patents. J Environ Manage 297:113230. https://doi.org/10.1016/J.JENVMAN.2021.113230

Iqbal W, Yumei H, Abbas Q et al (2019b) Assessment of wind energy potential for the production of renewable hydrogen in Sindh Province of Pakistan. Processes 7. https://doi.org/10.3390/pr7040196

Q J, Zhang D, Zhao Y (2020) Searching for safe-haven assets during the COVID-19 pandemic. Int Rev Financ Anal. https://doi.org/10.1016/j.irfa.2020.101526

Jinjarak Y, Ahmed R, Nair-Desai S et al (2021) Pandemic shocks and fiscal-monetary policies in the Eurozone: COVID-19 dominance during January–June 2020. Oxf Econ Pap. https://doi.org/10.1093/oxrep/gpa010

Kalemi-Ozcan S, Gourinchas P-O, Penciakova V, Sander N (2020) COVID-19 and SME failures. IMF Work Pap. https://doi.org/10.5089/978153557748.001

Khokhar M, Iqbal W, Hou Y et al (2020) Assessing supply chain performance from the perspective of Pakistan’s manufacturing industry through social sustainability. Processes 8. https://doi.org/10.3390/pr8091064

Kim D, Kim M, Shim M (2021) The macroeconomic consequences of stimulating online consumption during COVID-19. Glob Econ Rev. https://doi.org/10.1080/1226508X.2021.1875868

Lacalle D (2020) Monetary and fiscal policies in the COVID-19 crisis: Will they work? J Bus Account Financ Perspect. https://doi.org/10.35995/jbap.2030018

Lau YY, Tang YM, Chau KY et al (2021) COVID-19 crisis: exploring community of inquiry in online learning for sub-degree students. Front Psychol 12:1–14. https://doi.org/10.3389/fpsyg.2021.679197

Lin B, Jia Z (2019) What will China’s carbon emission trading market affect with only electricity sector involvement? A CGE based study. Energy Econ. https://doi.org/10.1016/j.eneco.2018.11.030

Liu Z, Tang YM, Chau KY et al (2021) Incorporating strategic petroleum reserve and welfare losses: a way forward for the policy development of crude oil resources in South Asia. Resour Policy 74:102309. https://doi.org/10.1016/j.resourpol.2021.102309

McKibbin W, Vines D (2020) Global macroeconomic cooperation in response to the COVID-19 pandemic: a roadmap for the G20 and the IMF. Oxford Rev Econ Policy. https://doi.org/10.1093/oxrep/graa032

Moura A, Salm M, Douwen R, Remmerswaal M (2019) Causes of regional variation in Dutch healthcare expenditures: evidence from movers. Heal Econ (United Kingdom). https://doi.org/10.1002/hec.3917

Muhafidin D (2020) The role of fiscal policy and monetary policy in environmental degradation in Indonesia. Int J Energy Econ Policy. https://doi.org/10.32479/ijEEP.9586

Nasar LM (2020) Interaction between the financial market and economic policies: an approach based on the crisis caused by the COVID-19 in Brazil. J Econ Financ Manag Stud. https://doi.org/10.47191/fevms/v-3-112-12

Onofre M, Ciguer Gavriluta AF et al (2021) Effects of the covid-19 pandemic on the budgetary mechanism established to cover public health expenditure. A case study of Romania. Int J Environ Res Public Health. doi. https://doi.org/10.3390/ijerph18031134

Osorio-Saez EM, Eryilmaz N, Sandoval-Hernandez A et al (2021) Survey data on the impact of COVID-19 on parental engagement across 23 countries. Data Br 35:106813. https://doi.org/10.1016/j.dib.2021.106813

Piskorski T, Seru A (2021) Debt relief and slow recovery: a decade after Lehman. J Financ Econ. https://doi.org/10.1016/j.jfi.2020.12.008

Pogorletskiy AI, Pokrovskaya NV (2021) Comparative analysis of fiscal regulation measures of the G20 countries in the era of the coronavirus crisis and in the post-coronavirus perspective. J Appl Econ Res. https://doi.org/10.15826/vestnik.2021.20.1.002

Ridzuan MR, Abd Rahman NAS (2021) The deployment of fiscal policy in several ASEAN countries in dampening the impact of COVID-19. J Emerg Econ Islam Res. https://doi.org/10.24191/jjeir.v9i1.9156

Sarkodie SA, Owusu PA (2020) Global assessment of environment, health and economic impact of the novel coronavirus (COVID-19). Environ Dev Sustain. https://doi.org/10.1007/s10668-020-00801-2

Seccareccia M, Rochon LP (2020) What have we learned from the COVID-19 crisis? Domestic and international dimensions and policy options for a post-coronavirus world: introduction. Int J Polit Econ. https://doi.org/10.1080/08919119.2020.1857588

Sharif A, Aloui C, Yarovaya L (2020) COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: fresh evidence from the wavelet-based approach. Int Rev Financ Anal 70. https://doi.org/10.1016/j.irfa.2020.101496

Siddik MNA (2020) Economic stimulus for COVID-19 pandemic and its determinants: evidence from cross-country analysis. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e05634

Styvartzky A, Kharlamova G, Giedraitis V et al (2020) Can key interest rates decrease output gaps? Invest. Manag. Financ, Innov

Una G, Allen R, Pattanaik S, Suc G (2020) Special series on fiscal transfers in. Int Monet Fund

van der Wiel W, Barrios S (2021) Economic sentiment during the COVID pandemic: evidence from search behaviour in the EU. J Econ Bus. https://doi.org/10.1016/j.jeconbus.2020.105970

Wang Y, Zhi Q (2016) The role of green finance in environmental protection: two aspects of market mechanism and policies. Energy Procedia 104:311–316. https://doi.org/10.1016/j.egypro.2016.12.053

Wei X, Han L (2021) The impact of COVID-19 pandemic on transmission of monetary policy to financial markets. Int Rev Financ Anal. https://doi.org/10.1016/j.irfa.2021.101705

Yu J, Tang YM, Chau KY et al (2022) Role of solar-based renewable energy in mitigating CO2 emissions: evidence from quantile-on-quantile estimation. Renew Energy 182:216–226. https://doi.org/10.1016/j.renene.2021.10.002

Yumei H, Iqbal W, Nurunnabi M et al (2021) Nexus between corporate social responsibility and firm’s perceived performance: evidence from SME sector of developing economies. Environ Sci Pollut Res:28. https://doi.org/10.1007/s11356-020-10415-w

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.