Hybrid Feedback Control for Exponential Stability and Robust H_{∞} Control of a Class of Uncertain Neural Network with Mixed Interval and Distributed Time-Varying Delays

Charuwat Chantawat 1, Thongchai Botmart 1,*, Rattaporn Supama 1, Wajaree Weera 2* and Sakda Noinang 3

1 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; charuwat.c@kkumail.com (C.C.); rattapornsupama@kkumail.com (R.S.)
2 Department of Mathematics, Faculty of Science, University of Phayao, Phayao 56000, Thailand
3 Department of Mathematics Statistics and Computer, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; sakda.n@ubu.ac.th

* Correspondence: thongbo@kku.ac.th (T.B.); wajaree.we@up.ac.th (W.W.)

Abstract: This paper is concerned with the problem of robust H_{∞} control for uncertain neural networks with mixed time-varying delays comprising different interval and distributed time-varying delays via hybrid feedback control. The interval and distributed time-varying delays are not necessary to be differentiable. The main purpose of this research is to estimate robust exponential stability of uncertain neural network with H_{∞} performance attenuation level γ. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional (LKF) with triple integral terms, the employment of a tighter bounding technique, some slack matrices and newly introduced convex combination condition in the calculation, improved delay-dependent sufficient conditions for the robust H_{∞} control with exponential stability of the system are obtained in terms of linear matrix inequalities (LMIs). The results of this paper complement the previously known ones. Finally, a numerical example is presented to show the effectiveness of the proposed methods.

Keywords: neural networks; H_{∞} control; hybrid feedback control; mixed time-varying delay

1. Introduction

During the past decades, the problem of the reliable control has received much attention [1–11]. Neural networks have received considerable due to the effective use of many aspects such as signal processing, automatic control engineering, associative memories, parallel computation, fault diagnosis, combinatorial optimization and pattern recognition and so on [12–14]. It has been shown that the presence of time delay in a dynamical system is often a primary source of instability and performance degradation [15]. Many researchers have paid attentions to the problem of robust stability for uncertain systems with time delays [16–19]. The H_{∞} controller can be used to guarantee closed loop system not only a robust stability but also an adequate level of performance. In practical control systems, actuator faults, sensor faults or some component faults may happen, which often lead to unsatisfactory performance, even loss of stability. Therefore, research on reliable control is necessary.

On the other hand, the H_{∞} control of time-delay systems are practical and theoretical interest since time delay is often encountered in many engineering and industrial processes [20–22]. Most of works have been focused on the problem of designing a robust H_{∞} controller that stabilizes linear uncertain systems with time-varying norm bounded parameter uncertainty in the state and input matrices. The problem of designing a robust reliable H_{∞} controller for neural networks is considered in [23]. Ref [24] have studied the problem of delay dependent robust H_{∞} control for a class of uncertain systems with distributed time-varying delays. The parameter uncertainties are supposed to be time-varying and
norm bounded. The problem of H_∞ control design usually leads to solving an algebraic Lyapunov equation. It should be noted that some works have been dedicated to the problem of robust reliable control for nonlinear systems with time-varying delay [2,4,7]. However, to the best of the authors’s knowledge, so far the research on robust reliable H_∞ control is still open problems, which are worth further investigations.

Motivated by above discussion, in this paper we have considered the problem of a robust H_∞ control for a class of uncertain systems with interval and distributed time-varying delays. The parameter uncertainties are supposed to be time varying and norm bounded. A sufficient condition for the H_∞ performance level for all admissible parameters uncertainties.

The main contributions of this paper are given as follows,

- This research is the first time to study hybrid feedback control for exponential stability and robust H_∞ control of a class of uncertain neural network with mixed interval and distributed time-varying delays.
- A novel LKF $V_1(t,x_1) = x^T(t)P_1x(t) + 2x^T(t)P_2 f_{h_2} x(s)ds + \left(\int_{-h_2}^{0} x(s)ds \right)^T P_3 \int_{-h_2}^{0} x(s)ds + 2 \left(\int_{-h_2}^{0} x(s)ds \right)^T P_5 \int_{-h_2}^{0} x(s)ds + 2 \left(\int_{-h_2}^{0} x(s)ds \right)^T P_4 \int_{-h_2}^{0} x(s)ds$ is first proposed to analyze the problem of robust H_∞ control for uncertain neural networks with mixed delays and augmented Lyapunov matrix $P_i (i = 1,2,\ldots,6)$ do not need to be positive definiteness of the chosen LKF compared with [23].
- The problem of robust H_∞ control for uncertain neural networks with mixed time-varying delays comprising of interval and distributed time-varying delays, these delays are not necessarily differentiable.
- For the neural networks system (1), the output $z(t)$ contains the deterministic disturbance input $w(t)$ and the feedback control $u(t)$ which is more general and applicable than [23–28].

The rest of this paper is organized as follows. In Section 2, some notations, definitions and some well-known technical lemmas are given. Section 3 presents the H_∞ control for exponential stability and the robust H_∞ control for exponential stability. The numerical examples and their computer simulations are provided in Section 4 to indicate the effectiveness of the proposed criteria. Finally, this paper is concluded in Section 5.

2. Model Description and Mathematic Preliminaries

The following notation will be used in this paper: \mathbb{R} and \mathbb{R}^+ denote the set of real numbers and the set of nonnegative real numbers, respectively. \mathbb{R}^n denotes the n–dimensional space. $\mathbb{R}^{n \times r}$ denotes the set of $n \times r$ real matrices. $\mathbb{C}([-\bar{\varphi},0],\mathbb{R}^n)$ denotes the space of all continuous vector functions mapping $[-\bar{\varphi},0]$ into \mathbb{R}^n where $\bar{\varphi} \in \mathbb{R}^+$. A^T and A^{-1} denote the transpose and the inverse of matrix A, respectively. A is symmetric if $A = A^T$, $\lambda(A)$ denotes all the eigenvalue of A, $\lambda_{\max}(A) = \max\{ Re \lambda : \lambda \in \lambda(A) \}$, $\lambda_{\min}(A) = \min\{ Re \lambda : \lambda \in \lambda(A) \}$, $A > 0$ or $A < 0$ denotes that the matrix A is a symmetric and positive definite or negative definite matrix. If A, B are symmetric matrices, $A > B$ means that $A - B$ is positive definite matrix, I denotes the identity matrix with appropriate dimensions. The symmetric term in the matrix is denoted by \ast. The following norms will be used: $\| \cdot \|$ refers to the Euclidean vector norm; $\| \varphi \|_c = \sup_{t \in [-\bar{\varphi},0]} \| \varphi(t) \|$ stands for the norm of a function $\varphi(\cdot) \in \mathbb{C}([-\bar{\varphi},0],\mathbb{R}^n)$.
Consider the following neural network system with mixed time delays

\[
\begin{align*}
 \dot{x}(t) &= -Ax(t) + Bf(x(t)) + Cg(x(t - h(t))) + D \int_{t-d(t)}^{t} h(x(s))ds + Ew(t) + \mathcal{U}(t), \\
 z(t) &= A_1 x(t) + B_4 x(t - h(t)) + C_1 u(t) + D_1 \int_{t-d(t)}^{t} x(s)ds + E_1 w(t), \\
 x(t) &= \phi(t), \quad t \in [-\varrho, 0],
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n\) is the state vector, \(w(t) \in \mathbb{R}^n\) the deterministic disturbance input, \(z(t) \in \mathbb{R}^n\) the system output, \(f(x(t))\), \(g(x(t))\), \(h(x(t))\) the neuron activation function, \(A = \text{diag}\{a_1, \ldots, a_n\} > 0\) is a diagonal matrix, \(B, C, D, E, A_1, B_4, C_1, D_1, E_1\) are the known real constant matrices with appropriate dimensions. Then, substituting it into (1), it is easy to get the following:

\[
\begin{align*}
 \dot{x}(t) &= \left[-A + B_1 K\right]x(t) + Bf(x(t)) + Cg(x(t - h(t))) + D \int_{t-d(t)}^{t} h(x(s))ds \\
 &\quad + Ew(t) + B_2 K x(t - \tau(t)) + B_3 \int_{t-d_1(t)}^{t} x(s)ds, \\
 z(t) &= [A_1 + C_1 K]x(t) + B_4 x(t - h(t)) + D_1 \int_{t-d(t)}^{t} x(s)ds + E_1 w(t), \\
 x(t) &= \phi(t), \quad t \in [-\varrho, 0],
\end{align*}
\]

where the time-varying delays function \(h(t), \tau(t), d(t)\) and \(d_1(t)\) satisfy the condition

\[
\begin{align*}
 0 &\leq h_1 \leq h(t) \leq h_2, & 0 &\leq d(t) \leq d, \\
 0 &\leq \tau(t) \leq \tau, & 0 &\leq d_1(t) \leq d_1,
\end{align*}
\]

where \(h_1, h_2, \tau, d, d_1, \varrho = \max\{h_2, \tau, d, d_1\}\) are real constant scalars and we denote \(h_{12} = h_2 - h_1\).

Throughout this paper, we consider activation functions \(f(\cdot)\), \(g(\cdot)\) and \(h(\cdot)\) satisfy Lipschitzian with the Lipschitz constants \(\tilde{f}_i, \tilde{g}_i, \tilde{h}_i > 0\):

\[
\begin{align*}
 |f_i(x_1) - f_i(x_2)| &\leq \tilde{f}_i |x_1 - x_2|, \\
 |g_i(x_1) - g_i(x_2)| &\leq \tilde{g}_i |x_1 - x_2|, \\
 |h_i(x_1) - h_i(x_2)| &\leq \tilde{h}_i |x_1 - x_2|,
\end{align*}
\]

where \(i = 1, 2, \ldots, n, \forall x_1, x_2 \in \mathbb{R}\) and we denote that

\[
\begin{align*}
 F &= \text{diag}\{\tilde{f}_i, i = 1, 2, \ldots, n\}, \\
 G &= \text{diag}\{\tilde{g}_i, i = 1, 2, \ldots, n\}, \\
 H &= \text{diag}\{\tilde{h}_i, i = 1, 2, \ldots, n\}.
\end{align*}
\]

Remark 1. If \(B_2 = 0, B_3 = 0, B_4 = 0, D_1 = 0, E_1 = 0, f(\cdot) = g(\cdot) = h(\cdot)\), the system (3) turns into the neural network with activation functions and time-varying delays proposed by [23].
\[\dot{x}(t) = [-A + B_1K]x(t) + Bf(x(t)) + Cf(x(t-h(t)) + D \int_{t-d(t)}^t f(x(s))ds + Ew(t), \]
\[z(t) = [A_1 + C_1K]x(t), \]
\[x(t) = \phi(t), \quad t \in [-\varrho, 0]. \]

Hence, the system (3) is a general neural networks model, with (7) as the special case.

The following definition and lemma are necessary in the proof of the main results:

Definition 1 ([29]). Given \(\alpha > 0 \). The zero solution of system (1), where \(u(t) = 0, w(t) = 0 \), is \(\alpha \)-stable if there is a positive number \(N > 0 \) such that every solution of the system satisfies
\[||x(t, \phi)|| \leq N||\phi||e^{-\alpha t}, \quad \forall t \leq 0. \]

Definition 2 ([29]). Consider \(\alpha > 0 \) and \(\gamma > 0 \). The \(H_\infty \) control problem for system (1) has a solution if there exists a memoryless state feedback controller \(u(t) = Kx(t) \) satisfying the following two requirements:

(i) The zero solution of the closed-loop system, where \(w(t) = 0 \),
\[\dot{x}(t) = -Ax(t) + Bf(x(t)) + Cg(x(t-h(t)) + D \int_{t-d(t)}^t h(x(s))ds + \mathcal{W}(t), \]

is \(\alpha \)-stable.

(ii) There is a number \(c_0 > 0 \) such that
\[\sup_{c_0 ||\phi||^2 + \int_0^\infty ||w(t)||^2 dt} \frac{\int_0^\infty ||z(t)||^2 dt}{c_0 ||\phi||^2 + \int_0^\infty ||w(t)||^2 dt} \leq \gamma, \]
where the supremum is taken over all \(\phi(t) \in C([-\varrho, 0], \mathbb{R}^n) \) and the non-zero uncertainty \(w(t) \in L_2([0, \infty], \mathbb{R}^n) \).

Lemma 1 ([30], Cauchy inequality). For any symmetric positive definite matrix \(N \in M_{n \times n} \) and \(x, y \in \mathbb{R}^n \) we have
\[\pm 2x^T y \leq x^T Nx + y^T N^{-1} y. \]

Lemma 2 ([30]). For a positive definite matrix \(Z \in \mathbb{R}^{n \times n} \), and two scalars \(0 \leq r_1 < r_2 \) and vector function \(x : [r_1, r_2] \rightarrow \mathbb{R}^n \) such that the following integrals are well defined, one has
\[\left(\int_{r_1}^{r_2} x(s)ds \right)^T Z \left(\int_{r_1}^{r_2} x(s)ds \right) \leq (r_2 - r_1) \int_{r_1}^{r_2} x^T(s)Zx(s)ds. \]

Lemma 3 ([31]). For any positive definite symmetric constant matrix \(P \) and scalar \(\tau > 0 \), such that the following integrals are well defined, one has
\[-\int_{-\tau}^{0} \int_{t+\theta}^{t} x^T(s)Px(s)dsd\theta \leq -\frac{2}{\tau^2} \left(\int_{-\tau}^{0} \int_{t+\theta}^{t} x(s)dsd\theta \right)^T P \left(\int_{-\tau}^{0} \int_{t+\theta}^{t} x(s)dsd\theta \right). \]

Lemma 4 ([32]). For given matrices \(H, E, F \) with \(FT = F^T \leq I \) and a scalar \(\epsilon > 0 \), the following inequality holds:
\[HFE + (HFE)^T \leq \epsilon HH^T + \epsilon^{-1} E^T E. \]

3. Stability Analysis

In this section, we will present stability criterion for system (3).
Consider a Lyapunov–Krasovskii functional candidate as

\[V(t, x_i) = \sum_{i=1}^{14} V_i(t, x_i), \]

where

\begin{align*}
V_1(t, x_i) &= x^T(t) P_1 x(t) + 2 x^T(t) P_2 \int_{-\infty}^{t} x(s) ds \\
&\quad + \left(\int_{t-h_2}^{t} x(s) ds \right)^T P_3 \int_{-\infty}^{t} x(s) ds + 2 x^T(t) P_4 \int_{-\infty}^{0} \int_{t+s}^{t} x(\theta) d\theta ds \\
&\quad + 2 \left(\int_{-\infty}^{0} \int_{t+s}^{t} x(\theta) d\theta ds \right)^T P_5 \int_{-\infty}^{t} x(s) ds \\
&\quad + \left(\int_{-\infty}^{0} \int_{t+s}^{t} x(\theta) d\theta ds \right)^T P_6 \int_{-\infty}^{t} x(s) ds,
\end{align*}

\begin{align*}
V_2(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} x^T(s) R_1 x(s) ds, \\
V_3(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} x^T(s) R_2 x(s) ds, \\
V_4(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) Q_1 \dot{x}(\theta) d\theta ds, \\
V_5(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) Q_2 \dot{x}(\theta) d\theta ds, \\
V_6(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) Z_2 \dot{x}(\theta) d\theta ds, \\
V_7(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) L h(\theta) \dot{x}(\theta) d\theta ds, \\
V_8(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) S_2 u(\theta) d\theta ds, \\
V_9(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) S_1 \dot{u}(\theta) d\theta ds, \\
V_{10}(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) Z_1 \dot{x}(\theta) d\theta duds, \\
V_{11}(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) W_1 \dot{x}(\theta) d\theta dsd\tau, \\
V_{12}(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) W_2 \dot{x}(\theta) d\theta dsd\tau, \\
V_{13}(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) W_3 \dot{x}(\theta) d\theta dsd\tau, \\
V_{14}(t, x_i) &= \int_{-\infty}^{0} e^{2(\kappa t)} \dot{x}^T(\theta) Q_3 x(\theta) d\theta ds.
\end{align*}

Remark 2. Note that the Lyapunov–Krasovskii functional, \(P_i \) (\(i = 1, 2, \ldots, 6 \)) in \(V_3(t, x_i) \) are not necessary to be positive definite.

Proposition 1. Given \(\alpha > 0 \), the Lyapunov–Krasovskii functional (8) is positive definite, if there exist matrices \(P_1 = P_1^T \), \(P_3 = P_3^T \), \(P_6 = P_6^T \), \(P_2 \), \(P_4 \), \(P_5 \), \(Q_1 > 0 \), \(Q_2 > 0 \), \(Q_3 > 0 \), \(R_1 > 0 \),
Remark 3. It is noted that the previous works [23–28] consider the Lyapunov matrices P_1, P_3 and P_6 which are positive definite. In our paper, we remove this restriction by applying the method of
constructing complicated Lyapunov $V_1(t, x_1), V_3(t, x_1), V_5(t, x_1)$ and $V_{13}(t, x_1)$ as shown in the proof of Proposition 1. Hence, P_1, P_2 and P_6 are only real matrices. It can be seen that our paper are more applicable and less conservative than aforementioned works.

Theorem 1. Given $\alpha > 0$, The H_∞ control of system (3) has a solution if there exist symmetric positive definite matrices $Q_1, Q_2, Q_3, R_1, R_2, S_1, S_2, S_3, W_1, W_2, W_3, Z_1, Z_2, Z_3, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5$ diagonal matrices $U > 0, U_2 > 0, U_3 > 0$, and matrices $P_1 = P_1^T$, $P_3 = P_3^T$, $P_5 = P_5^T$, P_2, P_4, P_5 such that the following LMIs hold:

$$\begin{align*}
\Xi_1 &= \begin{bmatrix}
\Pi & F^T P_1 & P_1 & 2dP_1 & 4P_1 & 2d_1 & P_1 & P_1 & P_1
\end{bmatrix} < 0, & (14) \\
\Xi_2 &= \begin{bmatrix}
-0.4R_1 & R_1 & R_1 & 2dR_1 & 2dR_1 & 2dR_1 & R_1 & R_1 & R_1
\end{bmatrix} < 0, & (15) \\
\Xi_3 &= \begin{bmatrix}
-0.5e^{-2\alpha h_2}Q_2 + N
\end{bmatrix} < 0, & (16) \\
\Xi_4 &= \begin{bmatrix}
-0.1R_1 + \tau^2 B_1^T S_1 B_1
\end{bmatrix} < 0, & (17)
\end{align*}$$

where

$$\Pi = \begin{bmatrix}
\Pi_{1,1} & \Pi_{1,2} & \Pi_{1,3} & \Pi_{1,4} & \Pi_{1,5} & \Pi_{1,6} & \Pi_{1,7} & \Pi_{1,8} & \Pi_{1,9} & \Pi_{1,10} \\
\Pi_{2,1} & \Pi_{2,2} & \Pi_{2,3} & \Pi_{2,4} & \Pi_{2,5} & \Pi_{2,6} & \Pi_{2,7} & \Pi_{2,8} & \Pi_{2,9} & \Pi_{2,10} \\
\Pi_{3,1} & \Pi_{3,2} & \Pi_{3,3} & \Pi_{3,4} & \Pi_{3,5} & \Pi_{3,6} & \Pi_{3,7} & \Pi_{3,8} & \Pi_{3,9} & \Pi_{3,10} \\
\Pi_{4,1} & \Pi_{4,2} & \Pi_{4,3} & \Pi_{4,4} & \Pi_{4,5} & \Pi_{4,6} & \Pi_{4,7} & \Pi_{4,8} & \Pi_{4,9} & \Pi_{4,10} \\
\Pi_{5,1} & \Pi_{5,2} & \Pi_{5,3} & \Pi_{5,4} & \Pi_{5,5} & \Pi_{5,6} & \Pi_{5,7} & \Pi_{5,8} & \Pi_{5,9} & \Pi_{5,10} \\
\Pi_{6,1} & \Pi_{6,2} & \Pi_{6,3} & \Pi_{6,4} & \Pi_{6,5} & \Pi_{6,6} & \Pi_{6,7} & \Pi_{6,8} & \Pi_{6,9} & \Pi_{6,10} \\
\Pi_{7,1} & \Pi_{7,2} & \Pi_{7,3} & \Pi_{7,4} & \Pi_{7,5} & \Pi_{7,6} & \Pi_{7,7} & \Pi_{7,8} & \Pi_{7,9} & \Pi_{7,10} \\
\Pi_{8,1} & \Pi_{8,2} & \Pi_{8,3} & \Pi_{8,4} & \Pi_{8,5} & \Pi_{8,6} & \Pi_{8,7} & \Pi_{8,8} & \Pi_{8,9} & \Pi_{8,10} \\
\Pi_{9,1} & \Pi_{9,2} & \Pi_{9,3} & \Pi_{9,4} & \Pi_{9,5} & \Pi_{9,6} & \Pi_{9,7} & \Pi_{9,8} & \Pi_{9,9} & \Pi_{9,10} \\
\Pi_{10,1} & \Pi_{10,2} & \Pi_{10,3} & \Pi_{10,4} & \Pi_{10,5} & \Pi_{10,6} & \Pi_{10,7} & \Pi_{10,8} & \Pi_{10,9} & \Pi_{10,10} \\
\end{bmatrix} < 0.$$
\[\Xi_{2(4,4)} = -2de^{-2\alpha t}u, \quad \Xi_{2(5,5)} = -4e^{-2\alpha t}S_1, \quad \Xi_{2(6,6)} = -2d_3e^{-2\alpha t}S_2, \]
\[\mathcal{N} = e^{-2\alpha t}B^T_1S_1B_1 + dB^T_1S_2B_1 + B^T_1S_3B_1. \]

Moreover, stabilizing feedback control is given by

\[u(t) = B_1P_1^{-1}x(t), \quad t \geq 0, \]

and the solution of the system satisfies

\[||x(t, \phi)|| \leq \sqrt{\frac{\lambda_2}{\lambda_1}} ||\phi||e^{-at}, \quad t \geq 0. \]

Proof. Choosing the Lyapunov–Krasovskii functional candidate as (8), It is easy to check that

\[\lambda_1 ||x(t)||^2 \leq V(t, x_t), \forall t \geq 0, \quad \text{and} \quad V(0, x_0) \leq \lambda_2 ||\phi||^2. \quad (18) \]

We take the time-derivative of \(V_t \) along the solutions of system (3)

\[\dot{V}_1(t, x_t) = 2x^T(t)P_1\dot{x}(t) + 2x^T(t)P_2[x(t) - x(t - h_2)] + 2\left(\int_{t-h_2}^t x(s)ds \right)^T P_2x(t) \\
+ 2[x(t) - x(t - h_2)]^T P_3 \int_{t-h_2}^t x(s)ds + 2x^T(t)P_4[h_2x(t) - \int_{t-h_2}^t x(s)ds] \\
+ 2\left(\int_{t-h_2}^t \int_{t+s}^t x(\theta)d\theta ds \right)^T P_4\dot{x}(t) \\
+ 2\left(\int_{t-h_2}^t x(s)ds \right)^T P_3[h_2x(t) - \int_{t-h_2}^t x(s)ds] \\
+ 2[x(t) - x(t - h_2)]^T P_5 \int_{t-h_2}^t \int_{t+s}^t x(\theta)d\theta ds \\
+ 2[h_2x(t) - x(t - h_2)]^T P_6 \int_{t-h_2}^t \int_{t+s}^t x(\theta)d\theta ds \\
= -2x^T(t)AP_1x(t) + 2x^T(t)B^T_1B_1x(t) + 2\dot{f}^T(x(t))B^T_1P_1x(t) \\
+ 2\dot{g}^T((x(t - h(t)))C^TP_1x(t) + 2\left(\int_{t-d(t)} x(s)ds \right)^T D^TP_1x(t) \\
+ 2w^T(t)E^TP_1x(t) + 2u^T(t - \tau(t))B^T_1P_1x(t) \\
+ 2\left(\int_{t-d(t)} x(s)ds \right)^T B^T_1P_1x(t) + 2x^T(t)P_2[x(t) - x(t - h_2)] \\
+ 2\left(\int_{t-h_2}^t x(s)ds \right)^T P_2\dot{x}(t) + 2[x(t) - x(t - h_2)]^T P_3 \int_{t-h_2}^t x(s)ds \\
+ 2x^T(t)P_4[h_2x(t) - \int_{t-h_2}^t x(s)ds] + 2\left(\int_{t-h_2}^t \int_{t+s}^t x(\theta)d\theta ds \right)^T P_4\dot{x}(t) \\
+ 2\left(\int_{t-h_2}^t x(s)ds \right)^T P_3[h_2x(t) - \int_{t-h_2}^t x(s)ds] \\
+ 2[x(t) - x(t - h_2)]^T P_5 \int_{t-h_2}^t \int_{t+s}^t x(\theta)d\theta ds \\
+ 2[h_2x(t) - x(t - h_2)]^T P_6 \int_{t-h_2}^t \int_{t+s}^t x(\theta)d\theta ds,
By Lemmas 1 and 2, we have

\begin{align*}
V_2(t, x_t) &= x^T(t)R_1x(t) - e^{-2\alpha h}x^T(t - h_1)R_1x(t - h_1) - 2\alpha V_2,
V_3(t, x_t) &= x^T(t)R_2x(t) - e^{-2\alpha h}x^T(t - h_2)R_2x(t - h_2) - 2\alpha V_3, \\
V_4(t, x_t) &\leq h_1^2\dot{V}^T(t)Q_1\dot{x}(t) - h_1e^{-2\alpha h}\int_{t-h_1}^{t} \dot{V}^T(s)Q_1\dot{x}(s)ds - 2\alpha V_4, \\
V_5(t, x_t) &\leq h_2^2\dot{V}^T(t)Q_2\dot{x}(t) - h_2e^{-2\alpha h}\int_{t-h_2}^{t} \dot{V}^T(s)Q_2\dot{x}(s)ds - 2\alpha V_5, \\
V_6(t, x_t) &\leq h_{12}\dot{x}(t)Z_2\dot{x}(t) - h_{12}e^{-2\alpha h}\int_{t-h_{12}}^{t} \dot{x}(s)Z_2\dot{x}(s)ds - 2\alpha V_6, \\
V_7(t, x_t) &\leq dh^T(x(t))Uh(x(t)) - e^{-2nd}\int_{t-d}^{t} h^T(x(s))Uh(x(s))ds - 2\alpha V_7, \\
V_8(t, x_t) &\leq d_1u^T(t)S_2u(t) - e^{-2ad_1}\int_{t-d_1}^{t} u^T(s)S_2u(s)ds - 2\alpha V_8, \\
V_9(t, x_t) &\leq \tau^2\dot{u}^T(t)S_1\dot{u}(t) - \tau e^{-2\alpha \tau}\int_{t-\tau}^{t} \dot{u}^T(s)S_1\dot{u}(s)ds - 2\alpha V_9, \\
V_{10}(t, x_t) &\leq h_{12}h_2\dot{x}(t)Z_1\dot{x}(t) - e^{-4\alpha h_2}\int_{h_2}^{t} \dot{x}(t)Z_1\dot{x}(t)dsd\theta - 2\alpha V_{10}, \\
V_{11}(t, x_t) &\leq h_1\dot{x}(t)W_1\dot{x}(t) - e^{-4\alpha h_1}\int_{h_1}^{t} \dot{x}(t)W_1\dot{x}(t)dsd\tau - 2\alpha V_{11}, \\
V_{12}(t, x_t) &\leq h_2\dot{x}(t)W_2\dot{x}(t) - e^{-4\alpha h_2}\int_{h_2}^{t} \dot{x}(t)W_2\dot{x}(t)dsd\tau - 2\alpha V_{12}, \\
V_{13}(t, x_t) &\leq h_2\dot{x}(t)W_3\dot{x}(t) - e^{-4\alpha h_2}\int_{h_2}^{t} \dot{x}(t)W_3\dot{x}(t)dsd\tau - 2\alpha V_{13}, \\
V_{14}(t, x_t) &\leq dx^T(t)Q_3x(t) - e^{-2nd}\int_{t-d}^{t} x^T(s)Q_3x(s)ds - 2\alpha V_{14}.
\end{align*}
and the Leibniz–Newton formula gives

\[-\tau e^{-2\alpha t} \int_{t-\tau}^{t} \dot{u}(s) S_2 \dot{u}(s) ds \leq -\tau(t)e^{-2\alpha t} \int_{t-\tau(t)}^{t} \dot{u}(s) S_2 \dot{u}(s) ds\]

\[\leq -e^{-2\alpha t} \left(\int_{t-\tau(t)}^{t} \dot{u}(s) ds \right)^T S_2 \left(\int_{t-\tau(t)}^{t} \dot{u}(s) ds \right)\]

\[\leq -e^{-2\alpha t} u^T(t) S_1 u(t) + 2e^{-2\alpha t} u^T(t) S_1 u(t - \tau(t))\]

\[-e^{-2\alpha t} u^T(t - \tau(t)) S_1 u(t - \tau(t))\]

\[-e^{-2\alpha t} u^T(t) S_1 u(t) + 2e^{-2\alpha t} u^T(t) S_1 u(t)\]

\[+ \frac{e^{-2\alpha t}}{2} u^T(t - \tau(t)) S_1^{-1} S_1 u(t - \tau(t))\]

\[-e^{-2\alpha t} u^T(t - \tau(t)) S_1 u(t)\]

\[= e^{-2\alpha t} x^T(t) \Phi^{-1} B_1^T S_1 B_1 \Phi^{-1} x(t)\]

\[+ \frac{e^{-2\alpha t}}{2} u^T(t - \tau(t)) S_1 u(t - \tau(t)).\]

Denote

\[\sigma_1(t) = \int_{t-h_2}^{t-h_1} \dot{x}(s) ds, \quad \sigma_2(t) = \int_{t-h_1}^{t-h_1} \dot{x}(s) ds.\]

Next, when \(0 < h_1 < h(t) < h_2\), we have

\[\int_{t-h_2}^{t-h_1} \dot{x}^T(s) Z_2 \dot{x}(s) ds = \int_{t-h_2}^{t-h_1} \dot{x}^T(s) Z_2 \dot{x}(s) ds + \int_{t-h_1}^{t-h_1} \dot{x}^T(s) Z_2 \dot{x}(s) ds.\]

Using Lemma 2, we get

\[h_{12} \int_{t-h_2}^{t-h_1} \dot{x}^T(s) Z_2 \dot{x}(s) ds \geq \frac{h_{12}}{h_2 - h(t)} \sigma_1^T(t) Z_2 \sigma_1(t),\]

and

\[h_{12} \int_{t-h_1}^{t-h_1} \dot{x}^T(s) Z_2 \dot{x}(s) ds \geq \frac{h_{12}}{h(t) - h_1} \sigma_2^T(t) Z_2 \sigma_2(t),\]

then

\[h_{12} \int_{t-h_2}^{t-h_1} \dot{x}^T(s) Z_2 \dot{x}(s) ds \geq \frac{h_{12}}{h_2 - h(t)} \sigma_1^T(t) Z_2 \sigma_1(t) + \frac{h_{12}}{h(t) - h_1} \sigma_2^T(t) Z_2 \sigma_2(t)\]

\[= \sigma_1^T(t) Z_2 \sigma_1(t) + \frac{h(t) - h_1}{h_2 - h(t)} \sigma_1^T(t) Z_2 \sigma_1(t)\]

\[+ \sigma_2^T(t) Z_2 \sigma_2(t) + \frac{h_2 - h(t)}{h(t) - h_1} \sigma_1^T(t) Z_2 \sigma_2(t).\]

By reciprocally convex with \(a = \frac{h_2 - h(t)}{h_{12}}, b = \frac{h(t) - h_1}{h_{12}},\) the following inequality holds:

\[\begin{bmatrix} \sqrt{\alpha a} \sigma_1(t) \\ -\sqrt{\alpha a} \sigma_2(t) \end{bmatrix}^T \begin{bmatrix} Z_2 & Z_3 \\ Z_3 & Z_2 \end{bmatrix} \begin{bmatrix} \sqrt{\alpha a} \sigma_1(t) \\ -\sqrt{\alpha a} \sigma_2(t) \end{bmatrix} \geq 0,\]
which implies
\[
\frac{h(t) - h_1}{h_2 - h(t)} \sigma_1^T(t) Z_2 \sigma_1(t) + \frac{h_2 - h(t)}{h(t) - h_1} \sigma_2^T(t) Z_2 \sigma_2(t) \geq \sigma_1^T(t) Z_3 \sigma_2(t) + \sigma_2^T(t) Z_3^T \sigma_1(t).
\]
(25)

Then, we can get from (22)–(25) that
\[
-e^{-2ah_2} h_1 \int_{t-h_2}^{t} \dot{x}(s) Z_2 \dot{x}(s) ds \leq -e^{-2ah_2} \left[\sigma_1^T(t) Z_2 \sigma_1(t) + \sigma_2^T(t) Z_2 \sigma_2(t) + \sigma_1^T(t) Z_3 \sigma_2(t) + \sigma_2^T(t) Z_3^T \sigma_1(t) \right].
\]
(26)

By using Lemmas 2 and 3, we obtain
\[
-h_1 e^{-2ah_2} \int_{t-h_1}^{t} \dot{x}(s) Q_1 \dot{x}(s) ds \leq -e^{-2ah_2} \left(\int_{t-h_1}^{t} \dot{x}(s) ds \right)^T Q_1 \left(\int_{t-h_1}^{t} \dot{x}(s) ds \right) = -e^{-2ah_1} \left[x(t) - x(t - h_1) \right]^T x(t) - x(t - h_1),
\]
(27)
By using the following identity relation:

\[
0 = -\dot{x}(t) - Ax(t) + Bf(x(t)) + Cg(x(t-h(t))) + Ew(t) + D \int_{t-d(t)}^{t} h(s) ds \\
+ B_1 u(t) + B_2 u(t - \tau(t)) + B_3 \int_{t-d_1(t)}^{t} u(s) ds,
\]

we have

\[
0 = -2x^T R_1 \dot{x}(t) - 2x^T R_1 Ax(t) + 2x^T R_1 Bf(x(t)) + 2x^T R_1 Cg(x(t-h(t))) \\
+ 2x^T R_1 D \int_{t-d(t)}^{t} h(s) ds + 2x^T R_1 Ew(t) + 2x^T R_1 B_1 u(t) \\
+ 2x^T R_1 B_2 u(t - \tau(t)) + 2x^T R_1 B_3 \int_{t-d_1(t)}^{t} u(s) ds.
\]

By Lemmas 1 and 2, we get

\[
2x^T R_1 B f(x(t)) \leq \dot{x}(t) R_1 B U_2^{-1} B^T \dot{x}(t) + f^T(x(t)) U_2 f(x(t)),
\]

\[
2x^T R_1 C g(x(t-h(t))) \leq \dot{x}(t) R_1 C U_3^{-1} C^T \dot{x}(t) \\
+ g^T(x(t-h(t))) U_3 g(x(t-h(t))),
\]

\[
2x^T R_1 D \int_{t-d(t)}^{t} h(s) ds \leq 2d e^{2ad} \dot{x}(t) R_1 D U_1^{-1} D^T \dot{x}(t) \\
+ \frac{e^{-2ad}}{2d} \left(\int_{t-d(t)}^{t} h(s) ds \right)^T U \int_{t-d(t)}^{t} h(s) ds,
\]

\[
2x^T R_1 E w(t) \leq 2 \dot{x}(t) R_1 E^T E R_1 \dot{x}(t) + \frac{T}{2} w^T(t) w(t),
\]

\[
2x^T R_1 B_1 u(t) \leq \dot{x}(t) R_1 B_1 S_2^{-1} B_1^T \dot{x}(t) + u^T(t) S_2 u(t) \\
= \dot{x}(t) R_1 B_1 S_2^{-1} B_1^T \dot{x}(t) \\
+ x^T(t) P_1^{-1} B_1^T S_2 B_1 P_1^{-1} x(t),
\]

\[
2x^T R_1 B_2 u(t - \tau(t)) \leq 4e^{2ax} \dot{x}(t) R_1 B_2 S_1^{-1} B_2^T \dot{x}(t) \\
+ \frac{e^{-2ax}}{4} u^T(t - \tau(t)) S_2 u(t - \tau(t)),
\]

\[
2x^T R_1 B_3 \int_{t-d_1(t)}^{t} u(s) ds \leq 2d_1 e^{2ad_1} \dot{x}(t) R_1 B_3 S_2^{-1} B_3^T \dot{x}(t) \\
+ \frac{e^{-2ad_1}}{2d_1} \left(\int_{t-d_1(t)}^{t} u(s) ds \right)^T S_2 \left(\int_{t-d_1(t)}^{t} u(s) ds \right) \\
\leq 2d_1 e^{2ad_1} \dot{x}(t) R_1 B_3 S_2^{-1} B_3^T \dot{x}(t) \\
+ \frac{e^{-2ad_1}}{2} \int_{t-d_1(t)}^{t} u^T(s) S_2 u(s) ds.
\]
From (19)–(30), we obtain
\[
V(t, x_t) + 2aV(t, x_t) \leq \gamma w^T(t)w(t) + \xi^T(t)\mathcal{M}_1\xi(t) + x^T(t)\mathcal{M}_2x(t)
\]
\[+ x^T(t)\left[A_1^T \Pi_1 + A_1^T C_1 B_1 P_1^{-1} + 2 \alpha_1 e^{2 \alpha_1 t} P_1 B_2 S_2^{-1} B_2^T P_1 + 2 \alpha_1 \gamma \right] w(t)\]
\[+ x^T(t)\left[P_1^{-1} B_1^T C_1^T A_1 + P_1^{-1} B_1^T C_1^T B_1 P_1^{-1} + 2 \alpha_2 \gamma \right] x(t)
\]
\[+ 2x^T(t)\left[A_1^T B_4 + P_1^{-1} B_1^T C_1^T B_4 \right] x(t - h(t))\]
\[+ 2x^T(t)\left[A_1^T E_1 + P_1^{-1} B_1^T C_1^T E_1 \right] w(t)
\]
\[= \int_{t-d}^{t} x(s)ds \right] + 2\left(\int_{t-d}^{t} x(s)ds \right) T D_1^T D_1 \int_{t-d}^{t} x(s)ds
\]
\[+ 2\left(\int_{t-d}^{t} x(s)ds \right) T D_1^T E_1 w(t),
\]
where
\[
\mathcal{M}_1 = \Pi_1 + F_1^T U_2^{-1} P_1 F + P_1 U_2^{-1} P_1 + 2 \alpha_1 e^{2 \alpha_1 t} P_1 B_2 S_2^{-1} B_2^T P_1
\]
\[+ 2 \alpha_1 \gamma P_1 U_2^{-1} \]
\[+ \frac{2 \alpha_1 \gamma}{\gamma} R_1 E_1^T E_1 R_1,
\]
\[
\mathcal{M}_2 = -0.4 R_1 + R_1 B_1 U_2^{-1} B^T R_1 + R_1 C_1 U_2^{-1} C^T R_1 + 2 \alpha_2 e^{2 \alpha_2 t} R_1 DT^T R_1
\]
\[+ 2 \alpha_2 \gamma R_1 B_2 S_2^{-1} B_2^T R_1 + 2 \alpha_2 \gamma \gamma R_1 B_2 S_2^{-1} B_2^T R_1 + 2 \alpha_2 \gamma \gamma R_1 B_2 S_2^{-1} B_2^T R_1
\]
\[+ \frac{2 \alpha_2 \gamma}{\gamma} R_1 E_1^T E_1 R_1,
\]
\[
\mathcal{M}_3 = -0.5 e^{-2 \alpha_3 t/2} Q_2 + d P_1^{-1} B_2^T S_2 B_1 P_1^{-1} + e^{-2 \alpha_3 t/2} P_1^{-1} B_1^T S_1 B_1 P_1^{-1} + P_1^{-1} B_1 S_2 B_2^T P_1^{-1}
\]
\[
\mathcal{M}_4 = -0.1 R_1 + \tau^2 P_1^{-1} B_2^T S_1 B_1 P_1^{-1},
\]
\[
\xi(t) = \left[x^T(t) \ x^T(t-h_1) \ x^T(t-h_2) \ x^T(t-h_3) + \int_{t-h_1}^{t} x(s)ds + \int_{t-h_2}^{t} x^T(s)ds
\]
\[+ \int_{t-h_2}^{t} x^T(s)ds + \int_{t-h_3}^{t} x^T(s)ds \right].
\]

Using the Schur complement lemma, pre-multiplying and post-multiplying \(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 \) and \(\mathcal{M}_4 \) by \(P_1 \) and \(P_1 \) respectively, the inequality \(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 \) and \(\mathcal{M}_4 \) are equivalent to \(\Xi_1 < 0, \Xi_2 < 0, \Xi_3 < 0 \) and \(\Xi_4 < 0 \) respectively, and from the inequality (31) it follows that...
\[V(t, x_t) + 2\alpha V(t, x_t) \leq \gamma w^T(t)w(t) - x^T(t) \left[A^T_1 A_1 + A^T_1 C_1 B_1 P_1^{-1} \right] x(t) \]
\[-x^T(t) \left[P_1^{-1} B_1^T C_1^T B_1 P_1^{-1} + P_1^{-1} B_1^T C_1^T A_1 \right] x(t) \]
\[-2x^T(t) \left[A^T_1 B_4 + P_1^{-1} B_1^T C_1^T B_4 \right] x(t - h(t)) \]
\[-2x^T(t) \left[A^T_1 D_1 + P_1^{-1} B_1^T C_1^T D_1 \right] \int_{t-d}^{t} x(s)ds \]
\[-2x^T(t - h(t)) B_1^T D_1 \int_{t-d}^{t} x(s)ds \]
\[-2x^T(t - h(t)) B_1^T B_4 x(t - h(t)) \]
\[-\left(\int_{t-d}^{t} x(s)ds \right)^T D_1^T E_1 w(t) \]
\[-2 \left(\int_{t-d}^{t} x(s)ds \right)^T D_1^T E_1 w(t) \]
\[-2x^T(t - h(t)) B_1^T E_1 w(t) \]
\[-w^T(t) E_1^2 E_1 w(t) \]

Letting \(w(t) = 0 \), and since
\[-x^T(t) \left[A^T_1 A_1 \right] x(t) \leq 0, \]
\[-x^T(t) \left[A^T_1 C_1 B_1 P_1^{-1} \right] x(t) \leq 0, \]
\[-x^T(t) \left[P_1^{-1} B_1^T C_1^T A_1 \right] x(t) \leq 0, \]
\[-x^T(t) \left[P_1^{-1} B_1^T C_1^T B_4 P_1^{-1} \right] x(t) \leq 0, \]
\[-2x^T(t) \left[A^T_1 B_4 \right] x(t - h(t)) \leq 0, \]
\[-2x^T(t) \left[P_1^{-1} B_1^T C_1^T B_4 \right] x(t - h(t)) \leq 0, \]
\[-2x^T(t) \left[A^T_1 D_1 \right] \int_{t-d}^{t} x(s)ds \leq 0, \]
\[-2x^T(t) \left[P_1^{-1} B_1^T C_1^T D_1 \right] \int_{t-d}^{t} x(s)ds \leq 0, \]
\[-x^T(t - h(t)) B_1^T B_4 x(t - h(t)) \leq 0, \]
\[-2x^T(t - h(t)) B_1^T D_1 \int_{t-d}^{t} x(s)ds \leq 0, \]
\[-\left(\int_{t-d}^{t} x(s)ds \right)^T D_1^T E_1 w(t) \]
\[-2 \left(\int_{t-d}^{t} x(s)ds \right)^T D_1^T E_1 w(t) \]
\[-w^T(t) E_1^2 E_1 w(t) \]

we finally obtain from the inequality (32) that
\[\dot{V}(t, x_t) + 2\alpha V(t, x_t) \leq 0, \]
we have
\[\dot{V}(t, x_t) \leq -2\alpha V(t, x_t), \forall t \geq 0. \] (33)

Integrating both sides of (33) from 0 to \(t \), we obtain
\[V(t, x_t) \leq V(0, x_0)e^{-2\alpha t}, \forall t \geq 0. \]
Taking the condition (18) into account, we have
\[\lambda_1 ||x(t)||^2 \leq V(t, x_t) \leq V(0, x_0) e^{-\lambda t} \leq \lambda_2 ||\phi||^2 e^{-\lambda t}. \]

Then, the solution ||x(t, \phi)|| of the system (3) satisfies
\[||x(t, \phi)|| \leq \sqrt{\frac{\lambda_2}{\lambda_1}} ||\phi|| e^{-\alpha t}, \quad \forall t \geq 0, \tag{34} \]
which implies that the zero solution of the closed-loop system is α-stable. To complete the proof of the theorem, it remains to show the γ—optimal level condition (ii). For this, we consider the following relation:
\[
\int_0^t ||z(s)||^2 - \gamma ||w(s)||^2 ds = \int_0^t ||z(s)||^2 - \gamma ||w(s)||^2 \\
+ \dot{V}(s, x_s) ds - \int_0^t \dot{V}(s, x_s) ds.
\]
Since \(V(t, x_t) \geq 0 \), we obtain
\[
- \int_0^t \dot{V}(s, x_s) ds = V(0, x_0) - V(t, x_t) \leq V(0, x_0), \forall t \leq 0.
\]
Therefore, for all \(t \leq 0 \)
\[
\int_0^t ||z(s)||^2 - \gamma ||w(s)||^2 ds \leq \int_0^t ||z(s)||^2 - \gamma ||w(s)||^2 \\
+ \dot{V}(s, x_s) ds + V(0, x_0). \tag{35}
\]

From (32) we obtain that
\[
V(t, x_t) \leq \gamma w^T(t) w(t) - x^T(t) \left[A_1^T A_1 + A_1^T C_1 B_1 P_1^{-1} + P_1^{-1} B_1^T C_1^T A_1 \right] x(t) \\
- x^T(t) P_1^{-1} B_1^T C_1^T B_1 P_1^{-1} x(t) - 2x^T(t) \left[A_4^T B_4 + P_1^{-1} B_1^T C_1^T B_4 \right] x(t - h(t)) \\
- 2x^T(t) \left[A_4^T D_4 + P_1^{-1} B_1^T C_1^T D_4 \right] \int_{t-d}^t x(s) ds \\
- 2x^T(t) \left[A_1^T E_1 + P_1^{-1} B_1^T C_1^T E_1 \right] w(t) - x^T(t - h(t)) B_4^T D_4 x(t - h(t)) \\
- 2x^T(t - h(t)) B_4^T E_4 w(t) - \left(\int_{t-d}^t x(s) ds \right)^T D_4^T D_4 \int_{t-d}^t x(s) ds \\
- 2 \left(\int_{t-d}^t x(s) ds \right)^T D_4^T E_4 w(t) - 2x^T(t - h(t)) B_4^T D_4 \int_{t-d}^t x(s) ds \\
- w^T(t) E_4^T E_4 w(t) - 2x V(t, x_t). \tag{36}
\]

Observe that the value of \(||z(t)||^2 \) is defined as
\[
\|z(t)\|^2 = z^T(t)z(t)
= x^T(t)\left[A_1^T A_1 + A_1^T C_1 B_1 P_{1}^{-1} + P_{1}^{-1} B_1^T C_1^T A_1 + P_{1}^{-1} B_1^T C_1^T C_1 B_1 P_{1}^{-1}\right]x(t)
+ 2x^T(t)\left[A_1^T B_4 + P_{1}^{-1} B_1^T C_1^T B_4\right]x(t-h(t))
+ x^T(t-h(t))B_4^TB_4x(t-h(t))
+ 2x^T(t)\left[A_1^TD_1 + P_{1}^{-1} B_1^T C_1^T D_1\right]\int_{t-d(t)}^{t}x(s)ds
+ 2\int_{t-d(t)}^{t}x(s)ds
\]
\[(37)\]

\[
+ 2x^T(t)\left[A_1^TE_1 + P_{1}^{-1} B_1^T C_1^T E_1\right]w(t)
+ 2x^T(t-h(t))B_4^TE_1w(t)
+ \left(\int_{t-d(t)}^{t}x(s)ds\right)^T D_1^TD_1\int_{t-d(t)}^{t}x(s)ds
+ 2\left(\int_{t-d(t)}^{t}x(s)ds\right)^T D_1^TE_1w(t)
+ w^T(t)E_1^TE_1w(t).
\]

Submitting the estimation of \(\dot{V}(t, x_t)\) and \(\|z(t)\|^2\), we obtain
\[
\int_{0}^{t}||z(s)||^2 - \gamma ||w(s)||^2 ds \leq \int_{0}^{t} [-2\alpha V(t, x_t)]ds + V(0, x_0).
\]

Hence, from (38) it follows that
\[
\int_{0}^{t}||z(s)||^2 - \gamma ||w(s)||^2 ds \leq V(0, x_0) \leq \lambda_2 ||\phi||^2,
\]
equivalently,
\[
\int_{0}^{t}||z(s)||^2 dt \leq \int_{0}^{t} \gamma ||w(s)||^2 ds + \lambda_2 ||\phi||^2.
\]

Letting \(t \to \infty\), and setting \(c_0 = \frac{\lambda_2}{\gamma}\), we obtain that
\[
\frac{\int_{0}^{\infty}||z(t)||^2 dt}{c_0||\phi||^2 + \int_{0}^{\infty}||w(t)||^2 dt} \leq \gamma,
\]
for all non-zero \(w(t) \in L_2([0, \infty], \mathbb{R}^n), \phi(t) \in C([-\tau, 0], \mathbb{R}^n]\). This completes the proof of the theorem. \(\square\)

For neural networks with parameter uncertainties, we consider the following system
\[
\dot{x}(t) = \left[-(A + \Delta A) + B_1 K\right]x(t) + \left[B + \Delta B\right]f(x(t)) + \left[C + \Delta C\right]g(x(t - h(t)))
+ \left[E + \Delta E\right]\int_{t-d(t)}^{t} h(x(s))ds + \dot{E}w(t) + B_2 Kx(t - \tau(t)) + B_3 K\int_{t-d(t)}^{t} x(s)ds,
\]
\[
z(t) = \left[A_1 + C_1 K\right]x(t) + B_4 x(t - h(t)) + D_1 \int_{t-d(t)}^{t} x(s)ds + E_1 \dot{w}(t),
\]
\[
x(t) = \phi(t), \ t \in [-\tau, 0],
\]
where \(\Delta A, \Delta B, \Delta C\) and \(\Delta D\) are the unknown matrices, denoting the uncertainties of the concerned system and satisfying the following equation:
\[
[A \Delta A \Delta B \Delta C \Delta D] = N\dot{\Phi}(t)[E_A E_B E_C E_D],
\]
(40)
where E_A, E_B, E_C and E_D are known matrices, $\tilde{F}(t)$ is an unknown, real and possibly time-varying matrix with Lebesgue measurable elements and satisfies

$$\tilde{F}^T(t)\tilde{F}(t) \leq I.$$

(41)

Then, we have the following theorem.

Theorem 2. Given $\alpha > 0$, The H_{∞} control of system (39) has a solution if there exist symmetric positive definite matrices Q_1, Q_2, Q_3, R_1, R_2, S_1, S_2, S_3, W_1, W_2, W_3, Z_1, Z_2, Z_3, diagonal matrices $U > 0$, $U_2 > 0$, $U_3 > 0$, and matrices $P_1 = P_1^T$, $P_3 = P_3^T$, $P_6 = P_6^T$, P_9, P_4, P_5 such that the following LMI hold:

$$\Omega_1 = \left[\begin{array}{cccccc} \tilde{Z}_1 & P_3 N & P_1 N & P_1 N & 4dP_1 N \\ * & -I & 0 & 0 & 0 \\ * & * & -I & 0 & 0 \\ * & * & * & -I & 0 \\ * & * & * & * & -e^{-2\alpha d} I \end{array} \right] < 0,$$

(42)

$$\Omega_2 = \left[\begin{array}{cccccc} \tilde{Z}_2 & R_1 N & R_1 N & R_1 N & 4dR_1 N \\ * & -I & 0 & 0 & 0 \\ * & * & -I & 0 & 0 \\ * & * & * & -I & 0 \\ * & * & * & * & -e^{-2\alpha d} I \end{array} \right] < 0,$$

(43)

$$\Xi_3 = \left[\begin{array}{c} -0.5e^{-2\alpha d_3}Q_2 + \mathcal{M} \end{array} \right] < 0,$$

(44)

$$\Xi_4 = \left[\begin{array}{c} -0.1R_1 + \tau^2 B_4^T S_1 B_1 \end{array} \right] < 0,$$

(45)

where

$$\tilde{Z}_1 = \left[\begin{array}{cccccc} \hat{\Pi} & F^T P_1 & P_1 & 4dP_1 D & 4P_1 B_2 & 2d_1 P_1 B_3 & P_1 E \\ \ast & -U_2 & 0 & 0 & 0 & 0 & 0 \\ \ast & * & -U_3 & 0 & 0 & 0 & 0 \\ \ast & * & * & Z_{1(4,4)} & 0 & 0 & 0 \\ \ast & * & * & Z_{1(5,5)} & 0 & 0 & 0 \\ \ast & * & * & * & Z_{1(6,6)} & 0 & 0 \\ \ast & * & * & * & * & * & -0.5\gamma \end{array} \right] < 0,$$

(46)

$$\hat{\Pi} = \left[\begin{array}{cc} \Pi_{11} & \Pi_{12} \\ \ast & \Pi_{22} \end{array} \right] < 0,$$

(47)

$$\Pi_{11} = \left[\begin{array}{cccccc} \Pi_{1,1} & \Pi_{1,2} & 0 & \Pi_{1,4} & \Pi_{1,5} \\ \ast & \Pi_{2,2} & \Pi_{2,3} & \Pi_{2,4} & 0 \\ \ast & \Pi_{3,3} & \Pi_{3,4} & 0 & 0 \\ \ast & \Pi_{4,4} & 0 & 0 & 0 \\ \ast & * & * & * & \Pi_{5,5} \end{array} \right]$$

(48)

$$\Pi_{12} = \left[\begin{array}{cccccc} \Pi_{1,6} & \Pi_{1,7} & 0 & \Pi_{1,9} & -A^T R_1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -P_3 & 0 & 0 & -P_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

(49)

$$\Pi_{22} = \left[\begin{array}{cccccc} \Pi_{6,6} & 0 & \Pi_{6,9} & P_2 & 0 \\ \ast & \Pi_{7,7} & 0 & 0 & 0 & 0 \\ \ast & \Pi_{8,8} & 0 & 0 & 0 & 0 \\ \ast & \ast & -2\alpha P_6 & P_4 & 0 & 0 \\ \ast & \ast & \ast & \Pi_{10,10} & 0 & 0 \\ \ast & \ast & \ast & \ast & \Pi_{11,11} \end{array} \right]$$

(50)
\begin{align*}
\hat{\Pi}_{1,1} &= -AP_1 - P_1 A^T + B_1 B_1 + B_1^T B_1^T + B^T U_2 B + P_2 + P_2^T + h_2 P_4 + h_2 P_4^T \\
&- e^{-2ah_1} Q_1 + d Q_3 - 0.5 e^{-2ah_2} Q_2 + F^T U_2 F - e^{-4ah_1} (W_1 + W_1^T) \\
&- e^{-4ah_2} (Z_1 + Z_1^T + W_2 + W_2^T + W_3 + W_3^T) + E_4^T E_A + F^T E_B E_B F \\
&+ E_A^T E_A + F^T E_B E_B F + R_1 + R_2 + dH^T U H - 2a P_1, \\
\hat{\Pi}_{1,2} &= e^{-2ah_1} Q_1, \quad \hat{\Pi}_{1,4} = -P_2 + e^{-2ah_2} Q_2, \quad \hat{\Pi}_{1,5} = 2h_1^{-1} e^{-2ah_1} W_1, \\
\hat{\Pi}_{1,6} &= P_3 - P_4 + h_2 P_5^T + 2h_2^{-1} e^{-4ah_2} (W_2 + W_3) - 2a P_2, \quad \hat{\Pi}_{1,7} = 2h_1^{-1} e^{-4ah_2} Z_4, \\
\hat{\Pi}_{1,9} &= P_3 + h_2 P_6 - 2a P_4, \quad \hat{\Pi}_{1,2,2} = -e^{-2ah_1} (R_1 + Q_1) - e^{-2ah_2} Z_2, \\
\hat{\Pi}_{2,3} &= e^{-2ah_2} (Z_2 - Z_3), \quad \hat{\Pi}_{2,4} = e^{-2ah_2} Z_3, \\
\hat{\Pi}_{3,3} &= -e^{-2ah_2} (Z_2 + Z_2^T) + e^{-2ah_2} (Z_3 + Z_3^T) + G^T C^T U_3 C G + G^T U_3 G \\
&+ G^T E_C G + G^T E_C E_C G, \\
\hat{\Pi}_{3,4} &= e^{-2ah_2} (Z_2 - Z_3), \quad \hat{\Pi}_{4,4} = -e^{-2ah_2} (Z_2 + R_2 + Q_2), \\
\hat{\Pi}_{5,5} &= -h_1^{-2} e^{-4ah_1} (W_1 + W_1^T), \\
\hat{\Pi}_{6,6} &= -P_5 - P_5^T - 2a P_5 - h_2^{-2} e^{-4ah_2} (W_2 + W_2^T + W_3 + W_3^T), \\
\hat{\Pi}_{7,7} &= -h_2^{-2} e^{-4ah_2} (Z_1 + Z_1^T), \quad \hat{\Pi}_{8,8} = -d^{-1} e^{-2ad} Q_3, \\
\hat{\Pi}_{10,10} &= -1.5 R_1 + h_1^2 Q_1 + h_2^2 Q_2 + h_2^2 Z_2 + h_1 h_2 Z_1 + h_1 W_1 + h_2 W_2 + h_2 W_3, \\
\hat{\Pi}_{11,11} &= -e^{-2ad} U + e^{-2ad} E_D E_D + e^{-2ad} E_D E_{\bar{D}}, \\
\Xi_{1(4,4)} &= -2d e^{-2ad} U, \quad \Xi_{1(5,5)} = -4e^{-2at} S_1, \quad \Xi_{1(6,6)} = -2d_1 e^{-2ad} S_2, \\
\Xi_{2(4,4)} &= -2d e^{-2ad} U, \quad \Xi_{2(5,5)} = -4e^{-2at} S_1, \quad \Xi_{2(6,6)} = -2d_1 e^{-2ad} S_2.
\end{align*}

Moreover, stabilizing feedback control is given by

\[u(t) = B_1 P_1^{-1} x(t), \quad t \geq 0, \]

and the solution of the system satisfies

\[||x(t, \phi)|| \leq \sqrt{\frac{\lambda_2}{\lambda_1}} ||\phi|| e^{-\alpha t}, \quad t \geq 0. \]

Proof. We choose the similar Lyapunov–Krasovskii functional in Theorem 1, where matrices \(A, B, C \) and \(D \) in (19) and (29) are replaced by \(A + N \tilde{F}(t) E_A, B + N \tilde{F}(t) E_B, C + N \tilde{F}(t) E_C \) and \(D + N \tilde{F}(t) E_D \), respectively. By Lemmas 1 and 2, we have
\[
\begin{align*}
-2x^T(t)E_A^T(t)NN^TP_1x(t) & \leq x^T(t)E_A^T(t)P_1NN^TP_1x(t) + x^T(t)P_1NN^TP_1x(t), \\
2f^T(x(t))E_B^T(t)NN^TP_1x(t) & \leq x^T(t)E_B^T(t)P_1NN^TP_1x(t), \\
2g^T(x(t-h(t)))E_C^T(t)NN^TP_1x(t) & \leq x^T(t-h(t))G^T(t)E_C^T(t)Gx(t-h(t)) + x^T(t)P_1NN^TP_1x(t),
\end{align*}
\]
\[
2 \left(\int_{t-d(t)}^t h(x(s))ds \right)^T E_D^T(t)NN^TP_1x(t) \leq e^{-2ad} \int_{t-d}^t h^T(x(s))ds \\
& \quad \times E_D^T(t) \int_{t-d}^t h(x(s))ds \\
& \quad + 4de^{2ad} \int_{t-d}^t h^T(x(s))Ue^T(x(s))ds \\
& \quad + 4de^{2ad} \int_{t-d}^t h^T(x(s))Ue^T(t)P_1x(t),
\]
\[
2\dot{x}^T(t)R_1NF(t)E_D \int_{t-d(t)}^t h(x(s))ds \leq 4de^{2ad} \dot{x}^T(t)R_1NN^T R_1\dot{x}(t) \\
& \quad + e^{-2ad} \int_{t-d}^t h^T(x(s))ds \\
& \quad \times E_D^T(t) \int_{t-d}^t h(x(s))ds,
\]
\[
2x^T(t)R_1D \int_{t-d(t)}^t h(x(s))ds \leq 4de^{2ad} \dot{x}^T(t)R_1DU^{-1}D^T R_1\dot{x}(t) \\
& \quad + e^{-2ad} \int_{t-d}^t h^T(x(s))ds \\
& \quad \times E_D^T(t) \int_{t-d}^t h(x(s))ds,
\]
\[
-2x^T(t)R_1NF(t)E_Ax(t) \leq \dot{x}^T(t)R_1NN^T R_1\dot{x}(t) + x^T(t)E_A^T(t)E_Ax(t), \\
2\dot{x}^T(t)R_1NF(t)E_Bf(x(t)) \leq \dot{x}^T(t)R_1NN^T R_1\dot{x}(t) + x^T(t)F^T(t)E_B Fx(t), \\
2\dot{x}^T(t)R_1NF(t)E_CG(x(t-h(t))) \leq \dot{x}^T(t)R_1NN^T R_1\dot{x}(t) + x^T(t-h(t))G^T(t)E_C Gx(t-h(t)).
\]

From (46), we get
\[
\zeta^T(t)\bar{\Xi}_1\zeta(t) + x^T(t)P_1NN^TP_1x(t) + x^T(t)P_1NN^TP_1x(t) \\
+ x^T(t)P_1NN^TP_1x(t) + 4de^{2ad} \dot{x}^T(t)P_1NN^TP_1x(t) \leq 0,
\]
\[
\dot{x}^T(t)\bar{\Xi}_2\dot{x}(t) + x^T(t)R_1NN^T R_1\dot{x}(t) + x^T(t)R_1NN^T R_1\dot{x}(t) \\
+ x^T(t)R_1NN^T R_1\dot{x}(t) + 4de^{2ad} \dot{x}^T(t)R_1NN^T R_1x(t) \dot{x}(t) \leq 0,
\]
where \(\zeta^T(t) = \left[\xi^T(t) \int_{t-d}^t h^T(x(s))ds \right]. \)

By using the Schur complement lemma, the inequality (47) and (48) are equivalent to \(\Omega_1 < 0 \) and \(\Omega_2 < 0 \) respectively. By the similar proof of Theorem 1, so the proof is completed. \(\square \)

Remark 4. The time delay in this paper is identified as a continuous function which serve on a given interval that the lower and upper bounds for the time-varying delay exist. Moreover, the time delay function is not necessary to be differentiable. In some previous works, the time delay function needs to be differentiable which are shown in [24–26,33–37].
4. Numerical Examples

In this section, we provide two numerical examples with their simulations to demonstrate the effectiveness of our results.

Example 1. Consider neural networks (3) with parameters as follows:

\[
A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} -0.7 & 0.2 \\ 0.4 & -0.1 \end{bmatrix}, \quad C = \begin{bmatrix} 0.7 & -0.8 \\ 0.5 & -0.9 \end{bmatrix}, \quad D = \begin{bmatrix} 0.7 & -0.7 \\ -0.1 & -0.4 \end{bmatrix}, \quad E = \begin{bmatrix} -0.1 & 0.2 \\ 0 & 0.4 \end{bmatrix}, \quad F = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.3 \end{bmatrix},
\]

\[
G = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.4 \end{bmatrix}, \quad H = \begin{bmatrix} 0.4 & 0 \\ 0 & 0.2 \end{bmatrix}, \quad A_1 = \begin{bmatrix} -0.2 & 0.3 \\ 0 & -0.4 \end{bmatrix},
\]

\[
B_1 = \begin{bmatrix} -0.4 & 0 \\ 0 & -0.4 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}, \quad B_4 = \begin{bmatrix} -0.4 & 0 \\ -0.1 & -0.5 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 0.2 & 0.1 \\ 0 & -0.5 \end{bmatrix}, \quad D_1 = \begin{bmatrix} 0.2 & 0.1 \\ 0 & -0.4 \end{bmatrix},
\]

\[
E_1 = \begin{bmatrix} 0.1 & 0 \\ 0.1 & 0.3 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},
\]

\[
f(\cdot) = g(\cdot) = 0.2 \left[|x_1(t) + 1| - |x_1(t) - 1| - |x_2(t) + 1| - |x_2(t) - 1| \right], \quad h(\cdot) = \tanh(\cdot).
\]

From the conditions (14)–(17) of Theorem 1, we let \(\alpha = 0.01, h_1 = 0.1, h_2 = 0.3, d = 0.3, d_1 = 0.5, \) and \(\tau = 0.4. \) By using the LMI Toolbox in MATLAB, we obtain \(\gamma = 1.7637 \),

\[
P_1 = \begin{bmatrix} 0.9248 & -0.1581 \\ -0.1581 & 0.7921 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0.0948 & -0.0501 \\ -0.0521 & 0.1187 \end{bmatrix},
\]

\[
P_3 = \begin{bmatrix} -0.3225 & 0.0156 \\ 0.0156 & -0.3867 \end{bmatrix}, \quad P_4 = \begin{bmatrix} 0.0011 & -0.0006 \\ -0.0006 & 0.0013 \end{bmatrix},
\]

\[
P_5 = \begin{bmatrix} -0.0020 & -0.0002 \\ -0.0001 & -0.0028 \end{bmatrix}, \quad P_6 = \begin{bmatrix} 0.0146 & -0.0020 \\ -0.0020 & 0.0161 \end{bmatrix},
\]

\[
Q_1 = \begin{bmatrix} 0.5107 & -0.0462 \\ -0.0462 & 0.5004 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 0.4714 & -0.0328 \\ -0.0328 & 0.5166 \end{bmatrix},
\]

\[
Q_3 = \begin{bmatrix} 0.4332 & 0.0043 \\ 0.0043 & 0.4422 \end{bmatrix}, \quad R_1 = \begin{bmatrix} 0.1392 & -0.0521 \\ -0.0521 & 0.1790 \end{bmatrix},
\]

\[
R_2 = \begin{bmatrix} 0.4409 & -0.0481 \\ -0.0481 & 0.4248 \end{bmatrix}, \quad S_1 = \begin{bmatrix} 0.2493 & -0.0177 \\ -0.0177 & 0.2606 \end{bmatrix},
\]

\[
S_2 = \begin{bmatrix} 0.8199 & -0.0161 \\ -0.0161 & 0.8399 \end{bmatrix}, \quad S_3 = \begin{bmatrix} 0.5445 & -0.0353 \\ -0.0353 & 0.6032 \end{bmatrix},
\]

\[
U = \begin{bmatrix} 1.5450 & 0 \\ 0 & 1.5450 \end{bmatrix}, \quad U_2 = \begin{bmatrix} 1.0492 & 0 \\ 0 & 1.0492 \end{bmatrix},
\]

\[
U_3 = \begin{bmatrix} 0.9085 & 0 \\ 0 & 0.9085 \end{bmatrix}, \quad W_1 = 10^{-3} \begin{bmatrix} 7.4622 & -0.0421 \\ -0.0421 & 7.5146 \end{bmatrix},
\]

\[
W_2 = \begin{bmatrix} 0.0518 & -0.0083 \\ -0.0083 & 0.0582 \end{bmatrix}, \quad W_3 = \begin{bmatrix} 0.0203 & -0.0007 \\ -0.0007 & 0.0207 \end{bmatrix},
\]

\[
Z_1 = \begin{bmatrix} 0.0349 & -0.0002 \\ -0.0002 & 0.0353 \end{bmatrix}, \quad Z_2 = \begin{bmatrix} 0.8015 & -0.1874 \\ -0.1874 & 0.8118 \end{bmatrix},
\]

\[
Z_3 = \begin{bmatrix} 0.2777 & 0.0028 \\ 0.0028 & 0.3139 \end{bmatrix}.
\]
The feedback control is given by

\[u(t) = B_1 P_1^{-1} x(t) = \begin{bmatrix} -0.4478 & -0.0894 \\ -0.0894 & -0.5228 \end{bmatrix} x(t), \quad t \geq 0. \]

Moreover, the solution \(x(t, \phi) \) of the system satisfies

\[||x(t, \phi)|| \leq 1.2300 e^{-0.01t} ||\phi||_c. \]

Figure 1 shows the response solution \(x(t) \) of the neural network system (3) where \(w(t) = 0 \) and the initial condition \(\phi(t) = [-0.1 \ 0.1]^T \).

Figure 2 shows the response solution \(x(t) \) of the neural network system (3) with the initial condition \(\phi(t) = [-0.1 \ 0.1]^T \).
Example 2. Consider neural networks (39) with parameters as follows:

\[
A = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} -0.7 & 0.2 \\ 0.4 & -0.1 \end{bmatrix}, \quad C = \begin{bmatrix} 0.7 & -0.8 \\ 0.5 & -0.9 \end{bmatrix},
\]

\[
D = \begin{bmatrix} 0.7 & -0.7 \\ -1 & -0.4 \end{bmatrix}, \quad E = \begin{bmatrix} -0.1 & 0.2 \\ 0 & 0.4 \end{bmatrix}, \quad F = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.3 \end{bmatrix},
\]

\[
G = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.4 \end{bmatrix}, \quad H = \begin{bmatrix} 0.4 & 0 \\ 0 & 0.2 \end{bmatrix}, \quad A_1 = \begin{bmatrix} -0.2 & 0.3 \\ 0 & -0.4 \end{bmatrix},
\]

\[
B_1 = \begin{bmatrix} 0.3 & -0.1 \\ 0.2 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} -0.2 & 0 \\ 0 & 0.1 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 0.1 & 0 \\ 0 & -0.3 \end{bmatrix},
\]

\[
B_4 = \begin{bmatrix} -0.4 & 0 \\ -0.1 & -0.5 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 0.2 & 0.1 \\ 0 & -0.5 \end{bmatrix},
\]

\[
D_1 = \begin{bmatrix} 0.2 & 0.1 \\ 0 & -0.4 \end{bmatrix}, \quad E_1 = \begin{bmatrix} 0.1 & 0 \\ 0.1 & 0.3 \end{bmatrix},
\]

\[
N = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_A = E_B = \begin{bmatrix} 0.4 & 0 \\ 0 & 0.4 \end{bmatrix},
\]

\[
E_C = \begin{bmatrix} 0.6 & 0 \\ 0 & 0.6 \end{bmatrix}, \quad E_D = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix},
\]

\[
f(\cdot) = g(\cdot) = 0.2 \begin{bmatrix} |x_1(t) + 1| - |x_1(t) - 1| \\ |x_2(t) + 1| - |x_2(t) - 1| \end{bmatrix},
\]

\[h(\cdot) = \tanh(\cdot), \quad \bar{f}(t) = \begin{bmatrix} \sin(t) \\ 0 \\ 0 \end{bmatrix}.\]

From the conditions (42)–(45) of Theorem 2, we let \(\alpha = 0.01, h_1 = 0.1, h_2 = 0.3, d = 0.3, d_1 = 0.5,\) and \(\tau = 0.4.\) By using the LMI Toolbox in MATLAB, we obtain

\[
P_1 = \begin{bmatrix} 0.7130 & -0.0418 \\ -0.0418 & 0.6099 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0.0036 & 0.0030 \\ 0.0040 & 0.0074 \end{bmatrix},
\]

\[
P_3 = \begin{bmatrix} 0.0842 & 0.0047 \\ 0.0047 & 0.0822 \end{bmatrix}, \quad P_4 = 10^{-4} \begin{bmatrix} 3.9360 & 2.9290 \\ 4.1062 & 7.8329 \end{bmatrix},
\]

\[
P_5 = 10^{-3} \begin{bmatrix} 7.7772 & 0.7065 \\ 0.7274 & 7.8126 \end{bmatrix}, \quad P_6 = \begin{bmatrix} 0.0107 & 0.0088 \\ 0.0088 & 0.0175 \end{bmatrix},
\]

\[
Q_1 = \begin{bmatrix} 0.3415 & -0.0824 \\ -0.0824 & 0.2748 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 0.0819 & 0.0527 \\ 0.0527 & 0.1249 \end{bmatrix},
\]

\[
Q_3 = \begin{bmatrix} 0.1095 & 0.0935 \\ 0.0935 & 0.1220 \end{bmatrix}, \quad R_1 = \begin{bmatrix} 0.0417 & -0.0025 \\ -0.0025 & 0.0410 \end{bmatrix},
\]

\[
R_2 = \begin{bmatrix} 0.6112 & -0.1130 \\ -0.1130 & 0.4407 \end{bmatrix}, \quad S_1 = \begin{bmatrix} 0.2316 & 0.0486 \\ 0.0486 & 0.0856 \end{bmatrix},
\]

\[
S_2 = \begin{bmatrix} 0.2987 & 0.2759 \\ 0.2759 & 0.5621 \end{bmatrix}, \quad S_3 = \begin{bmatrix} 0.1103 & 0.0690 \\ 0.0690 & 0.1068 \end{bmatrix},
\]

\[
U = \begin{bmatrix} 6.8799 & 0 \\ 0 & 6.8799 \end{bmatrix}, \quad U_1 = \begin{bmatrix} 0.3898 & 0 \\ 0 & 0.3898 \end{bmatrix},
\]

\[
U_2 = \begin{bmatrix} 0.4546 \\ 0 \end{bmatrix}, \quad W_1 = 10^{-3} \begin{bmatrix} 0.0052 & 0.0047 \\ 0.0047 & 0.0084 \end{bmatrix},
\]

\[
W_2 = \begin{bmatrix} 0.0016 & 0.0015 \\ 0.0015 & 0.0027 \end{bmatrix}, \quad W_3 = \begin{bmatrix} 0.0030 & 0.0029 \\ 0.0029 & 0.0053 \end{bmatrix}.
\]
\[Z_1 = \begin{bmatrix} 0.0086 & 0.0079 \\ 0.0079 & 0.0140 \end{bmatrix}, \quad Z_2 = \begin{bmatrix} 0.4969 & -0.1357 \\ -0.1357 & 0.4097 \end{bmatrix}, \quad Z_3 = \begin{bmatrix} 0.0085 & 0.0078 \\ 0.0078 & 0.0137 \end{bmatrix}. \]

The feedback control is given by
\[
u(t) = B_1 P_1^{-1} x(t) = \begin{bmatrix} -0.4224 & -0.0290 \\ -0.0386 & -0.6584 \end{bmatrix} x(t), \quad t \geq 0.\]

Moreover, the solution \(x(t, \phi) \) of the system satisfies
\[||x(t, \phi)|| \leq 1.2049 e^{-0.1 t} ||\phi||_c. \]

Figure 3 shows the response solution \(x(t) \) of the neural network system (39) where \(w(t) = 0 \) the initial condition \(\phi(t) = [-0.15 \ 0.15]^T \).

Remark 5. The advantages of Examples 1 and 2 are the lower bound of the delay \(h_1 \neq 0 \) and interval time-varying delay and distributed time-varying delay are non-differentiable. Moreover, in these examples we still investigate various activation functions and mixed time-varying delays in state and feedback control. Thus, the neural network conditions derived in [23] cannot be applied to these examples.
5. Conclusions

In this paper, the problem of a robust H_∞ control for a class of uncertain systems with interval and distributed time-varying delays was investigated. It is assumed that the interval and distributed time-varying delays are not necessary to be differentiable. Firstly, we considered an H_∞ control for exponential stability of neural network with interval and distributed time-varying delays via hybrid feedback control and a robust H_∞ control for exponential stability of uncertain neural network with interval and distributed time-varying delays via hybrid feedback control. Secondly, by using a novel Lyapunov–Karsovskii functional that the Lyapunov matrix P_i ($i = 1, 2, \ldots, 6$) do not need to be positive definiteness, the employment of a tighter bounding technique, some slack matrices and newly introduced convex combination condition in the calculation, improved delay-dependent sufficient conditions for the robust H_∞ control with exponential stability of the system are obtained. Finally, numerical examples have been given to illustrate the effectiveness of the proposed method. The results in this paper improve the corresponding results of the recent works. In the future work, the derived results and methods in this work are expected to be applied to other systems, for example, H_∞ state estimation of neural networks, exponential passivity of neural networks, neutral-type neural networks, stochastic neural networks, T-S fuzzy neural networks, and so on [24,38–41].

Author Contributions: Conceptualization, T.B. and W.W; Data curation, R.S. and S.N.; Formal analysis, C.C. and T.B.; Funding acquisition, W.W; Investigation, R.S. and S.N.; Methodology, C.C., T.B., W.W. and S.N.; Resources, R.S.; Software, C.C.; Supervision, T.B. and W.W. All authors have read and agreed to the published version of the manuscript.

Funding: The first author was financially supported by the Science Achievement Scholarship of Thailand (SAST). The second author was financially supported by Khon Kaen University. The fourth author was supported by the Unit of Excellence in Mathematical Biosciences (FF64-UoE042) supported by the University of Phayao.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors thank the reviewers for their valuable comments and suggestions, which led to the improvement of the content of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cheng, X.M.; Gui, W.H.; Gan, Z.J. Robust reliable control for a class of time-varying uncertain impulsive systems. J. Cent. South Univ. Technol. 2005, 12, 199–202. [CrossRef]
2. Gao, J.; Huang, B.; Wang, Z.; Fisher, D.G. Robust reliable control for a class of uncertain nonlinear systems with time-varying multi-state time delays. Int. J. Syst. Sci. 2001, 32, 817–824. [CrossRef]
3. Veillette, R.J.; Medanic, J.V.; Perkins, W.R. Design of reliable control systems. IEEE Trans. Autom. Control 1992, 37, 290–304. [CrossRef]
4. Wang, Z.; Huang, B.; Unbehauen, H. Robust reliable control for a class of uncertain nonlinear state-delayed systems. Automatica 1999, 35, 955–963. [CrossRef]
5. Alwan, M.S.; Liu, X.Z.; Xie, W.C. On design of robust reliable control and input-to-state stabilization of uncertain stochastic systems with state delay. Commun. Nonlinear Sci. Numer. Simulat. 2013, 18, 1047–1056. [CrossRef]
6. Yue, D.; Lam, J.; Ho, D.W.C. Reliable control of uncertain descriptor systems with multiple delays. IEEE Proc. Control Theory Appl. 2003, 150, 557–564. [CrossRef]
7. Xiang, Z.G.; Chen, Q.W. Robust reliable control for uncertain switched nonlinear systems with time delay under asynchronous switching. Appl. Math. Comput. 2010, 216, 800–811. [CrossRef]
8. Wang, Z.D.; Wei, G.L.; Feng, G. Reliable control for discrete-time piecewise linear systems with infinite distributed delays. Automatica 2009, 45, 2991–2994. [CrossRef]
9. Mahmoud, M.S. Reliable decentralized control of interconnected discrete delay systems. Automatica 2012, 48, 986–990. [CrossRef]
10. Suebcharoen, T.; Rojiraphisal, T.; Mouktonglang, T. Controlled current quality improvement by multi-target linear quadratic regulator for the grid integrated renewable energy system. J. Anal. Appl. Math. 2021, 19, 47–66.
11. Faybusovich, L.; Mouktonglang, T.; Tsuchiya, T. Implementation of infinite-dimensional interior-point method for solving multi-criteria linear-quadratic control problem. Optim. Methods Softw. 2006, 21, 315–341. [CrossRef]
12. Haykin, S. Neural Networks; Prentice-Hall: Englewood Cliffs, NJ, USA, 1994.
13. Yang, X.; Song, Q.; Liang, J.; He, B. Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J. Franklin Inst. 2015, 352, 4382–4406. [CrossRef]
14. Zhang, H.; Wang, Z. New delay-dependent criterion for the stability of recurrent neural networks with time-varying delay. Sci. China Inf. Sci. 2009, 52, 942–948. [CrossRef]
15. Li, X.; Souza, C.E.D. Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach. IEEE Trans. Automat. Control 1997, 42, 1144–1148. [CrossRef]
16. Ali, M.S.; Balasubramaniam, P. Exponential stability of time delay systems with nonlinear uncertainties. Int. J. Comput. Math. 2010, 87, 1363–1373. [CrossRef]
17. Ali, M.S. On exponential stability of neutral delay differential system with nonlinear uncertainties. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2595–2601.
18. Yoneyama, J. Robust control of uncertain fuzzy systems under time-varying sampling. Fuzzy Sets Syst. 2010, 161, 859–871. [CrossRef]
19. Yoneyama, J. Robust filtering for sampled-data fuzzy systems. Fuzzy Sets Syst. 2013, 217, 110–129. [CrossRef]
20. Francis, B.A. A Course in H∞ Control Theory; Springer: Berlin, Germany, 1987.
21. Keulen, B.V. H∞ Control For Distributed Parameter Systems: A State-Space Approach; Birkhauser: Boston, MA, USA, 1993.
22. Petersen, I.R.; Ugrinovskii, V.A.; Savkin, A.V. Robust Control Design Using H∞ Methods; Springer: London, UK, 2000.
23. Du, Y.; Liu, X.; Zhong, S. Robust reliable H∞ control for neural networks with mixed time delays. Chaos Solitons Fractals 2016, 91, 1–8. [CrossRef]
24. Lakshmanan, S.; Mathiyalagan, K.; Park, J.H.; Sakhthivel, R.; Rihan, F.A. Delay-dependent H∞ state estimation of neural networks with mixed time-varying delays. Neurocomputing 2014, 129, 392–400. [CrossRef]
25. Tian, E.; Yue, D.; Zhang, Y. On improved delay-dependent robust H∞ control for systems with interval time-varying delay. J. Franklin Inst. 2011, 348, 555–567. [CrossRef]
26. Duan, Q.; Su, H.; Wu, Z.G. H∞ state estimation of static neural networks with time-varying delay. Neurocomputing 2012, 97, 16–21. [CrossRef]
27. Liu, Y.; Lee, S.; Kwon, O.; Park, J. A study on H∞ state estimation of static neural networks with time-varying delays. Appl. Math. Comput. 2014, 226, 589–597. [CrossRef]
28. Ali, M.S.; Saravanakumar, R.; Arik, S. Novel H∞ state estimation of static neural networks with interval time-varying delays via augmented Lyapunov–Krasovskii functional. Neurocomputing 2016, 171, 949–954.
29. Thanh, N.T.; Phat, V.N. H_∞ control for nonlinear systems with interval non-differentiable time-varying delay. *Eur. J. Control* 2013, 19, 190–198. [CrossRef]

30. Gu, K.; Kharitonov, V.L.; Chen, J. *Stability of Time-Delay Systems*; Birkhäuser: Berlin, Germany, 2003.

31. Sun, J.; Liu, G.P.; Chen, J. Delay-dependent stability and stabilization of neutral time-delay systems. *Internat. J. Robust Nonlinear Control* 2009, 19, 1364–1375. [CrossRef]

32. Wang, Z.; Liu, Y.; Fraser, K.; Liu, X. Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. *Phys. Lett. A* 2006, 354, 288–297. [CrossRef]

33. Qian, W.; Cong, S.; Sun, Y.; Fei, S. Novel robust stability criteria for uncertain systems with time-varying delay. *Appl. Math. Comput.* 2009, 215, 866–872. [CrossRef]

34. Xu, S.; Lam, J.; Zou, Y. New results on delay-dependent robust H_∞ control for systems with time-varying delay. *Automatica* 2006, 42, 343–348. [CrossRef]

35. Peng, C.; Tian, Y.C. Delay-dependent robust H_∞ control for uncertain systems with time-varying delay. *Inf. Sci.* 2009, 179, 3187–3197. [CrossRef]

36. Wang, C.; Shen, Y. Improved delay-dependent robust stability criteria for uncertain time delay systems. *Appl. Math. Comput.* 2011, 218, 2880–2888. [CrossRef]

37. Wu, Z.G.; Park, J.H.; Su, H.; Chu, J. New results on exponential passivity of neural networks with time-varying delays. *Nonlinear Anal. Real World Appl.* 2012, 13, 1593–1599. [CrossRef]

38. Manivannan, R.; Samidurai, R.; Cao, J.; Alsaaedi, A.; Alsaaedi, F.E. Delay-dependent stability criteria for neutral-type neural networks with interval time-varying delay signals under the effects of leakage delay. *Adv. Differ. Eq.* 2018, 2018, 1–25. [CrossRef]

39. Saravananakumar, R.; Mukaidani, H.; Muthukumar, P. Extended dissipative state estimation of delayed stochastic neural networks. *Neurocomputing* 2020, 406, 244–252. [CrossRef]

40. Shanmugam, S.; Muhammed, S.A.; Lee, G.M. Finite-time extended dissipativity of delayed Takagi-Sugeno fuzzy neural networks using a free-matrixbased double integral inequality. *Neural Comput. Appl.* 2019, 32, 8517–8528.