Molecular Characterization of Fungal Colonization on the Provox™ Tracheoesophageal Voice Prosthesis in Post Laryngectomy Patients

Hasti Kamali Sarvestani 1, Roshanak Daie Ghazvini 1, Seyed Jamal Hashemi 1,2, Mohsen Gerami Shoar 1, Saham Ansari 3, Zahra Rafat 4, Aslan Ahmadi 5, Pedram Borghaei 6, Miad Elahi 6, Abbas Rahimi Foroushani 7, Muhammad Ibrahim Getso 1,8, Shima Aboutalebian 9, Fatemeh Safari 10, Pegah Ardi 1

Abstract

Background: Tracheoesophageal voice prostheses (TVPs) have been the gold standard in rehabilitation, after laryngectomy, producing faster and premier voicing towards esophageal speech. Fungal colonization shortens the device’s lifetime and leads to prosthesis dysfunction, leakage, and subsequent respiratory infection. Therefore, in the current study, we aimed to investigate the fungal colonization patterns and to propose prophylactic measures that shall increase the longevity of voice prosthesis.

Methods: Failed TVPs were removed - due to leakage and/or aspiration - from 66 post laryngectomy patients and examined. They were referred to Amiram and Rasoul Hospital, the main centers of Ear, Nose, and Throat in Tehran, Iran from April 2018 to January 2020. Fungal colonization patterns were assessed using DNA sequencing techniques. Furthermore, the susceptibility to fluconazole, amphotericin B, nystatin, and white vinegar was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.

Results: Resident fungal species from the upper airways colonized all the 66 TVPs (100%). Diabetes (31%) and smoking (98%) were the predominant underlying disease and predisposing factors, respectively. Among the 79 fungal agents isolated from the 66 TVPs, Candida glabrata (n=25, 31.7%) was the most common. A significant reduction in minimum inhibitory concentration (MIC) values were observed for white vinegar when used alone (P<0.05).

Conclusion: White vinegar at a very low concentration could decrease the amount of fungal colonization on TVPs without any adverse effects; its wide accessibility and affordability ensure a decrease in the overall health cost.

Keywords: Voice prostheses; Fungal colonization; Antifungal susceptibility test; Candida
Introduction

A total laryngectomy or laryngopharyngectomy is a decisive treatment modality in 15-40% of patients with loco regionally advanced cancer of the larynx or hypopharynx. The most crippling side effect of total laryngectomy is the loss of the patient’s speech (1).

After a laryngectomy, the respiratory tract is detached and the patients have to breathe by an artificial hole through the neck - a tracheostoma. A one-way bypass vent is located between the trachea and the esophagus. The patients could speak by closing the tracheostoma with a finger, pushing air into the tracheoesophageal conduit through the esophagus, and the residual muscles function as pseudo-vocal cords (1, 2).

Post laryngectomy patients use silicone rubber voice prostheses to rehabilitate their voices after total laryngectomy (3-5). The average life of these devices is 3-6 months, with considerable variation of several days to several years, depending on the type of patient, their demographic features, characteristics of TVP material such as silicone, and valve resistance (6-11).

Leakages and other problems of the TVP such as displacement, infections, or fistula-formation, including granulation tissue formation force patients to replace the device (12-14). Studies have proposed reasons for the varied device’s lifetime that include patient’s characteristics (e.g. location of living, dietary template, use of antifungal treatment, manner of cleaning, type of disinfectant), treatment procedure (e.g. prior radiotherapy and number of it, follow-up support), and socioeconomic factors (15-18).

The esophagus is a non-sterile environment, due to its proximity to the oral cavity and the inhabiting microflora, providing a steady fount of fungi to colonize TVPs (20). The leading problem that reduces the average life of TVPs is colonization by yeasts. Following colonization, the yeast cells produce either pseudohyphae or hyphae on TVPs, predisposing to leakage, and aspiration through the device or increased airflow resistance during speech (7-9, 19). In 1986, Mahieu et al. described the first *Candida* vegetation on silicone voice prostheses due to fungal colonization (21). Since that time, some studies have recognized the colonization of TVPs by *Candida* species (22,23). *C. albicans* predominates on TVPs, but *C. glabrata* and *C. krusei* have also been frequently isolated. These mentioned species should be a source of concern because of their reported resistance to azoles (22-25).

White vinegar has been proven as a natural antifungal product that can be used to treat many fungal infections (27). Vinegar had considerable antifungal properties against *Candida* spp. isolated from patients with denture stomatitis thus can be used as a therapeutic alternative in these patients (28). To the best of our knowledge, the present study is the first research in Iran, which aimed to investigate the fungal colonization patterns of TVPs and the susceptibility patterns of isolated agents to commonly used antifungals. The study is also the first in the world to examine the antifungal activity of white vinegar - a low-cost product with minimal side effects - against fungal agents isolated from TVPs.

Materials and Methods

We conducted this study on a randomized group of patients who used TVPs following a total laryngectomy. They were referred to Amiralam and Rasoul Hospital, the main centers of Ear, Nose, and Throat in Tehran, Iran. We investigated 66 TVPs from April 2018 to January 2020. Specialists examined prominent TVP defects including granulation tissue formation force patients to replace the device (12-14). Studies have proposed reasons for the varied device’s lifetime that include patient’s characteristics (e.g. location of living, dietary template, use of antifungal treatment, manner of cleaning, type of disinfectant), treatment procedure (e.g. prior radiotherapy and number of it, follow-up support), and socioeconomic factors (15-18).

The esophagus is a non-sterile environment, due to its proximity to the oral cavity and the inhabiting microflora, providing a steady fount of fungi to colonize TVPs (20). The leading problem that reduces the average life of TVPs is colonization by yeasts. Following colonization, the yeast cells produce either pseudohyphae or hyphae on TVPs, predisposing to leakage, and aspiration through the device or increased airflow resistance during speech (7-9, 19). In 1986, Mahieu et al.
their guardians before sample collection. All data were de-identified.

Statistical analysis

Data are expressed as average, statistical significance between groups was determined by unpaired student’s t-test using p<0.05 as a criterion for significance.

Culture and phenotypic examination

Direct microscopic examination was conducted using 10% potassium hydroxide. All samples were cultured on Sabouraud dextrose agar with chloramphenicol (SC, Merck, Germany) and incubated at 30 °C for 15 days. Yeast colonies were sub-cultured on CHROMagar Candida (CHROMagar Microbiology, Paris, France) and incubated at 35 °C for two days.

Molecular identification

From the purified extracted DNA, a fragment of the ITS gene was amplified using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′) primers under the following thermal conditions: 95°C for 5 min; followed by 35 cycles of 94 °C for 30 s, 45°C for 30 s, and 72°C for 45 s; then, one final extension at 72°C for 5 min. PCR products were subjected to single direction sequencing using forward primer (Bioneer, South Korea). The results were checked visually using Chromas version 3.5.1 (http://technelysium.com.au/wp). The species were compared with the GenBank reliable sequences and were identified using the basic local alignment search tool of the National Center for Biotechnology Information (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The phylogenetic dendrogram was constructed using the Molecular Evolutionary Genetics Analysis (MEGA) version X (26).

In vitro antifungal susceptibility testing

Antifungal susceptibility testing (AFST) was performed according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) M27-A3 and M27-S4 documents (28, 29). The antifungal agents tested were fluconazole (FLC), Amphotericin B (AMB), Nystatin (NYS) (Sigma, St. Louis, MO, USA), and white vinegar (4%). Equal volumes of the highest concentrations of vinegar (1% citric acid) and nystatin (32 mg/L) or amphotericin B (16 mg/L) or fluconazole (64 mg/L) were combined and added to the wells. The highest concentration of vinegar in this study was 1% citric acid. *C.parapsilosis* ATCC 22019 was used as quality control strains. Briefly, homogeneous conidial suspensions were spectrophotometrically measured at the 530 nm wavelength and a percent transmission within the range of 75-77%. The final inoculum suspension was adjusted in RPMI-1640 with L-glutamine and without sodium bicarbonate (Sigma-Aldrich, St. Louis, MO, USA), with 0.165 M morpholine propane sulfonic acid (MOPS, Sigma-Aldrich, St. Louis, MO, USA). The 96-wells were incubated at 35°C and examined visually after 24 and 48 h to determine MIC values according to the CLSI recommendations. The geometric mean (GM) MICs, MIC50, MIC90, and MIC ranges were calculated.

Results

We enrolled 66 patients with failed voice protheses, including 56 (84.4%) males and 10 (15.2%) females, in the current study. The patients were within the age range of 32–89 years, and the highest prevalence was found in the age group of 65-75 years (Table 1). Diabetes was the underlying disease in 31% of patients and smoking was the most prevalent predisposing factor (98%) (Table 2). All of the patients had probiotic dairy in their food regime. No antifungal was used as prophylaxis against the fungal colonization of TVPs.
Table 1: The distribution of 66 patients with leakage through the tracheoesophageal voice prostheses based on their gender in different age groups

Patients (n=66)	Gender	Age ranges (years)					
		32–42	43–53	54–64	65–75	75–85	>85
Male	2	7	19	22	4	1	
	(3.03)	(10.60)	(28.78)	(33.33)	(6.06)	(1.51)	
Female	2	2	3	4	1	0	
	(3.03)	(3.03)	(3.03)	(4.54)	(1)	(0)	
Total (n) (%)	-	4	9	21	25	5	1
	(6.06)	(13.63)	(31.81)	(37.87)	(7.57)	(1.51)	

Table 2: Underlying diseases and predisposing factors of total laryngectomy patients

Underlying diseases and predisposing factors	Percentage of patients
Tobacco smoker	98
Alcohol intemperance	38
Diabetes mellitus	31
HIV positive	2

All the 66 TVPs had positive results for yeast colonization upon microscopic examination. They were screened based on their colony colors on CHROMagar *Candida* after 48 h of incubation at 37°C (Table 3).

Table 3: Distribution of the colony colors within each yeast species using CHROMagar *Candida* medium

Species	Colony colors
Candida glabrata	Pink(12)
	Purple(29)
Candida albicans	Green (22)
Candida krusei	Pale pink (10)
	Purple(2)
Candida tropicalis	Dark blue (11)

Based on the analysis of the ITS gene sequences, the majority of isolates were identified as *C. glabrata* (25/79, 31.7%), *C. tropicalis* (19/79, 24.0%), and *C. albicans* (18/79, 22.8%). Therefore, the prevalence of *C. glabrata* in this study was higher than that of *C. albicans*. The spectrum of fungal species and their frequency are presented in Table 4.

Table 4: The spectrum of isolated fungi from 66 failed tracheoesophageal voice prostheses

Fungi	Frequency	Percent
C. glabrata	25	31.7
C. tropicalis	19	24
C. albicans	18	22.8
C. krusei	13	16.5
C. pseudotropicalis	2	2.5
Geotrichum candidum	2	2.5
Total	79	100
Furthermore, mixed fungal-bacterial colonization was observed in 59 (89%) of 66 TVPs.

Table 5 lists the geometric mean (GM), MIC, MIC ranges, MIC50, and MIC90 of three anti-
fungal agents and the combination of these drugs with vinegar against 85 isolated Candida species.

Table 5: The geometric mean, MIC ranges, MIC50 and MIC90 values obtained by testing the susceptibility of 79 Candida spp. and Geotrichum isolates to the antifungal agents and vinegar

Strains	Antifungals	GM±	MIC range	MIC50	MIC90
	FLC	23.35	8-32	1/0.063	2/0.25
	FLC/V	1.28	1-4/0.063	1/0.063	2/0.25
C. glabrata	AMBe	1.31	1-2	1	2
(n:23)	AMB/V	3.31	2-4/0.125	4/0.25	4/0.25
	NYSb	2.7	2-4	2	4
	NYS/V	0.23	0.25-0.5/0.063-0.125	0.25/0.063	0.25/0.063
	V	0.1	0.5	0.5	0.5
	FLC	0.78	0-125-4	1	4
	FLC/V	1.07/0.015	0.25-4/0.004-0.032	1/0.016	2/0.032
C. albicans	AMB	0.97	1-2	1	2
(n:18)	AMB/V	5.2/0.38	2-8/0.125-0.5	4/0.25	8/0.5
	NYS	1.73	0-5-4	2	4
	NYS/V	1.21/0.10	1-2/0.063-0.125	1/0.063	2/0.125
	V	0.25	0.25	0.25	0.25
	FLC	12.66	8-16	8/0.125	16/0.25
	FLC/V	9.12/0.19	8-16/0.125-0.25	8/0.125	16/0.25
C. krusei	AMB	0.88	0-5-2	1	2
(n:13)	AMB/V	1.61/0.11	1-4/0.063-0.25	1/0.063	2/0.125
	NYS	1.57	1-2	2	2
	NYS/V	1.74/0.08	1-2/0.063-0.125	2/0.063	2/0.125
	V	0.25	0.25	0.25	0.25
	FLC	7.88	4-16	8	16
	FLC/V	6.27/0.125	4-16/0.063-0.25	8/0.125	16/0.25
C. tropicalis	AMB	0.78	0.5-4	1	2
(n:19)	AMB/V	2/0.125	2/0.063-0.25	1/0.125	2/0.25
	NYS	1.41	0.5-2	1	2
	NYS/V	1.24/0.09	0.5-2/0.063-0.25	1/0.125	2/0.25
	V	0.5	0.5	0.5	0.5
	FLC	4	4		
	FLC/V	8/0.125	8/0.125		
C. pseudotropicalis	AMB	1	1		
(n:2)	AMB/V	4/0.25	4/0.25		
	NYS	4	4		
	NYS/V	4/0.125	4/0.125		
	V	0.5	0.5		
	FLC	16	16		
	FLC/V	8/0.125	8/0.125		
Geotrichum candidum.	AMB	0.5	0.5		
(n:2)	AMB/V	2/0.125	2/0.125		
	NYS	8	8		
	NYS/V	4/0.125	4/0.125		
	V	0.5	0.5		

a GM: Geometric mean; b MIC: Minimum inhibitory concentration; c MIC50: minimal concentration that inhibits 50% of isolates; d MIC90: minimal concentration that inhibits 90% of isolates; e FLC: Fluconazole, f V: Vinegar; g AMB: Amphotericin B, h NYS: Nystatin, i FLC/V: combination of fluconazole and vinegar, j AMB/V: combination of amphotericin B and vinegar, k NYS/V: combination of nystatin and vinegar
Discussion

There is a lot of interest in the performance of post laryngectomy vocal rehabilitation. The highest quality of voice rehabilitation after total laryngectomy can be accomplished with TVP that functions as walls separating the trachea from the esophagus (3, 4). On the other hand, the oral cavity and oropharynx are believed to be the continuous fount of bacteria and yeast species to the prostheses located in the tracheoesophageal shunt. The bacterial and fungal growth on the TVPs can significantly decrease their life span (6, 7). The microbiological analysis in our study revealed the simultaneous presence of bacteria and fungi in 89% of failed TVPs removed from our patients.

In India, a combination of yeast and bacteria in approximately 55% of culture samples was related to TVPs (30). In addition, the bacteria and fungi were the main part of the microbial plaque on TVPs including normal oral or periodontal flora (8,23,31-33). The bacteria and fungi might have been acting synergistically by enhancing damage to the prosthesis, s surface, in addition to promoting colonization. Moreover, in the current study, we recovered pure yeast cultures from 11% of prostheses. The prevalence of yeasts in the oral cavity is estimated to vary between 20% and 40% in healthy individuals (31).

Irradiation to the head and neck regions, combined with surgical therapy, may further alter the oral flora and saliva composition to favor oral yeast colonization. In the current study, C. glabrata was the most common fungi isolated. This finding contradicts the previous studies, which showed a predominance of C. albicans in the majority of fungal isolates (21, 32-35, 36). However, it corroborates the results of another study that confirmed a high proportion (79%) of Candida contamination on malfunctioning voice prosthesis, with a dominance of non-albicans strains, which is consistent with the results of our study (1).

Following the widespread use of immunosuppressive therapy and broad-spectrum antimycotic prophylaxis, C. glabrata has emerged as an important opportunistic pathogen in the oral mucosa. The use of dentures, immunosuppression, antibiotic therapy, and aging are risk factors for oral colonization or infection with C. glabrata. Compared to C. albicans, C. glabrata exhibits higher prosthesis -surface-adherence ability (37).

Several studies have discussed using probiotics as an alternative treatment for candidiasis (38-41). Nevertheless, our study showed that probiotic consumption is ineffective on Candida colonization of the oral mucosa because all patients included in this study used probiotic dairy in their food regime and had fungal colonization on their TVPs.

Most of the patients in the current study (37.87%) were between the age of 65 and 75 years old. Due to immunosenescence, a high proportion of elderly persons are prone to many diseases including laryngeal cancer. At old age, the immune system functions poorly and this can make individuals in these age groups more susceptible to Candida colonization and/or infection (41).

In this study, the male-to-female ratio was 5:1 and there was a significant difference in the prevalence of laryngeal cancer between genders. Laryngeal cancer in male patients is associated with more tobacco and alcohol usage. The large sex difference in patients with laryngeal cancer was highlighted as male: female ratio of 14.9: 1 (42). The male to female ratio diminished considerably in the last century because more women smoke cigarettes in the cancer age group (43).

32% of patients in the current study were diabetic. Previous studies of oral mucosa in diabetic groups have shown Candida colonization rates between 21.0% and 77.0% (44- 46). Based on the available evidence to date, clinical practice guidelines state that the most effective treatment of Candida colonization on TVPs is removal and replacement of the device, however, the devices are costly, so decontamination is more economical than replacement of the devices. To date the most commonly accepted decontamination methods are antifungals. However, antifungal resistance among yeasts has been a major clinical
challenge. The latter is worrisome since the non-albicans strains are less susceptible to antifungals (e.g. *C. glabrata* to fluconazole), have intrinsic resistance to some agents (e.g. *C. krusei* to fluconazole), or show resistance to echinocandins (e.g. *C. tropicalis*) (31). Besides, antifungal drugs may be limited by drug-drug interactions and serious adverse effects/toxicities that prevent their prolonged use or dosage escalation (47). Therefore, there is still a need to embark on methods, which are cost-effective and easy to incorporate into the patient's daily lifestyle.

In this study, we tested the in vitro activities of fluconazole, amphotericin B, nystatin, and edible vinegar against the *Candida* spp. Furthermore, fluconazole, amphotericin B, and nystatin were combined with vinegar. The results of the current study showed that all the isolated *Candida albicans* and non-albicans species displayed extremely low MIC for edible vinegar. Especially *C. krusei*, which is most noteworthy for its innate resistance to the antifungal agent fluconazole. Besides, reduced susceptibility to other drugs, *C. krusei* displayed extremely low MIC for edible vinegar. Raj et al. evaluated the effectiveness of vinegar, lime, and saltwater as potential household decontaminants for toothbrushes and concluded that commonly used household materials can be potential decontaminants for toothbrushes and showed that vinegar was the most effective decontamination agent followed by lime and saltwater (48).

Solitary use of some compounds (clove oil, onion juice, thyme oil, H2O2, NaCl, Dettol, and apple cider vinegar) showed a high antifungal response against *C. albicans*, but the efficacy was reduced when used in combination (49). In addition, Jabir et al. reported apple cider vinegar and acetic acid to have significant antifungal activity against *Aspergillus niger, A. flavus*, fluconazole-resistant *C. albicans* and non-albicans species (50).

Conclusion

Resident fungal species from the upper airways unavoidably colonize the silicone surfaces and the use of prophylaxis with minimal adverse effects shall be an effective strategy. *Candida* non-albicans was the most common fungal agents isolated from the failed TVPs. Our study confirmed that white vinegar at a very low concentration could decrease the amount of fungal colonization on TVPs without any adverse effects.

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Acknowledgments

The funding from Tehran University of Medical Sciences, Tehran, Iran, supported this work (Grant No: 45247).

Conflict of interest

The authors declare that there is no conflict of interests.

References

1. Somogyi-Ganss E, Chambers MS, Lewin JS, et al (2017). Biofilm on the tracheoesophageal voice prosthesis: considerations for oral decontamination. *Eur Arch Otorhinolaryngol*, 274(1):405-413.
2. Van Den Hoogen FJ, Oudes MJ, Hombergen G, et al (1996). The Groningen, Nijdam, and Provox voice prostheses: a prospective clinical comparison based on 845 replacements. *Acta Otolaryngol*, 116(1):119-24.
3. Parker A, O’Leary I, Wight R, et al (1992). The Groningen valve voice prosthesis in Sheffield: a 4-year review. *J Laryngol Otol*, 106(2):154-6.
4. Khardori N, Yassien M (1995). Biofilms in device-related infections. *J Ind Microbiol*, 15(3):141-7.
5. Perry A (1997). The role of the speech and language therapist in voice restoration after laryngectomy. *J Laryngol Otol*, 111(1):4-7.
6. Bauters TG, Moerman M, Vermeersch H (2002). Colonization of voice prostheses by \textit{albicans} and non-\textit{albicans} \textit{Candida} species. \textit{Laryngoscope}, 112(4):708-12.

7. van Weissenbruch R, Albers FW, Bouckaert S, et al (1997). Deterioration of the Provox silicone tracheoesophageal voice prosthesis: microbial aspects and structural changes. \textit{Acta Otolaryngol}, 117(3):452-8.

8. Van Weissenbruch R, Bouckaert S, Remon JP, et al (1997). Chemoprophylaxis of fungal deterioration of the Provox silicone tracheoesophageal prosthesis in post laryngectomy patients. \textit{Ann Otol Rhinol Laryngol}, 116(4):329-37.

9. De Carpentier JP, Ryder WD, Saeed SR, et al (1996). Survival times of Provox valves. \textit{J Laryngol Otol}, 110(1):37-42.

10. Kress P, Schafer P, Schwerdtfeger FP, et al (2014). Are modern voice prostheses better? A lifetime comparison of 749 voice prostheses. \textit{Eur Arch Otorhinolaryngol}, 271(1):133-40.

11. Lorenz KJ, Maier H (2010). [Voice rehabilitation after laryngectomy. Initial clinical experience with the Provox-Vega® voice prosthesis and the SmartInserter® system]. \textit{HNO}, 58(12):1174-83.

12. Bozec A, Poissonnet G, Chamorey E, et al (2010). Results of vocal rehabilitation using tracheoesophageal voice prosthesis after total laryngectomy and their predictive factors. \textit{Eur Arch Otorhinolaryngol}, 267(5):751-8.

13. Makite AA, Niemensivu R, Juvas A, et al (2003). Postlaryngectomy voice restoration using a voice prosthesis: a single institution's ten-year experience. \textit{Ann Otol Rhinol Laryngol}, 112(12):1007-10.

14. Leder SB, Erskine MC (1997). Voice restoration after laryngectomy: experience with the Blom-Singer extended-wear indwelling tracheoesophageal voice prosthesis. \textit{Head Neck}, 19(6):487-93.

15. Lequeux T, Badreldin A, Saussez S, et al (2003). A comparison of survival lifetime of the Provox and the Provox2 voice prosthesis. \textit{J Laryngol Otol}, 117(11):875-8.

16. Cornu AS, Vlantis AC, Elliott H, et al (2003). Voice rehabilitation after laryngectomy with the Provox voice prosthesis in South Africa. \textit{J Laryngol Otol}, 117(1):56-9.

17. Hilgers FJ, Ackerstaff AH, Jacobi I, et al (2010). Prospective clinical phase II study of two new indwelling voice prostheses (Provox Vega 22.5 and 20Fr) and a novel anterograde insertion device (Provox Smart Inserter). \textit{Laryngoscope}, 120(6):1135-43.

18. Lorenz KJ, Grieser I, Ehrhart T, et al (2010). Role of reflux in tracheoesophageal fistula problems after laryngectomy. \textit{Ann Otol Rhinol Laryngol}, 119(11):719-28.

19. Leunisse C, van Weissenbruch R, Busscher HJ, et al (2001). Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prostheses—an electron microscopical study. \textit{J Biomed Mater Res}, 58(5):556-63.

20. Lopez D, Vlamakis H, Kolter R (2010). Biofilms. \textit{Cold Spring Harb Perspect Biol}, 2(7): a00398.

21. Mahieu HF, van Saene HK, Rosingh HJ, et al (1986). \textit{Candida} vegetations on silicone voice prostheses. \textit{Arch Otolaryngol Head Neck Surg}, 112(3):321-5.

22. Galli J, Calo L (2018). Biofilm in voice prosthesis: A prospective cohort study and laboratory tests using sonication and SEM analysis. \textit{Clin Otolaryngol}, 43(5):1260-1265.

23. Schultd T, Dommerich S, Pau HW, et al (2010). Time course of microbial colonization of different voice prostheses. \textit{Laryngorhinootologie}, 89(10):606-11.

24. Berti K, Zatorska B, Leonhard M, et al (2013). Oral microbial colonization in laryngectomized patients as a possible cofactor of biofilm formation on their voice prostheses. \textit{J Clin Periodontol}, 40(9):833-40.

25. Talpaert MJ, Balfour A, Stevens S, et al (2015). Candida biofilm formation on voice prostheses. \textit{J Med Microbiol}, 64(3):199-208.

26. Kumar S, Stecher G, Li M, et al (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. \textit{Mol Biol Evol}, 35(6):1547-1549.

27. Oramah HA, Yoshimura T (2013). Antifungal, and antiseptic activities of wood vinegar from Vitex pubescens Vahl. \textit{J Wood Sci}, 59(4):344-350.

28. Clinical and laboratory standards institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, third edition, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2008 CLSI document M27-A3.

Available at: \textbf{http://ijph.tums.ac.ir}
29. Clinical and laboratory standards institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Fourth Informational Supplement, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2012 CLSI document M27–S4.

30. Chaturvedi P, Syed S, Pawar P, et al (2014). Microbial colonization of Provox voice prosthesis in the Indian scenario. *Indian J Cancer*, 51(2):184-8.

31. Sardi J, Scorzoni I, Bernardi T, et al (2013). *Candida* species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products, and new therapeutic options. *J Med Microbiol*, 62(1):10-24.

32. Mahieu HF, van Saene JJ, den Besten J, et al (1986). Oropharynx decontamination preventing *Candida* vegetation on voice prostheses. *Arch Otolaryngol Head Neck Surg*, 112(10):1090-2.

33. Izdebski K, Ross JC, Lee S (1987). Fungal colonization of tracheoesophageal voice prosthesis. *Laryngoscope*, 97(5):594-7.

34. G Jolanda Elving, Henny C van der Mei, Henk J Busscher, et al (2002). Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. *Ann Otol Rhinol Laryngol*, 111(3):200-3.

35. Buijssen KJ, Harmsen HJ, van der Mei HC, et al (2007). Lactobacilli: Important in biofilm formation on voice prostheses. *Otolaryngol Head Neck Surg*, 137:505-7.

36. Sarvestani HK, Ghazvini RD, Hashemi SJ, et al (2019). Investigation of etiologic agents and clinical presentations of otomycosis at a tertiary referral center in Tehran, Iran. *Iran J Public Health*, 48(2):331-337.

37. Li L, Redding S, Dongari-Bagtzoglou A (2007). *Candida* glabrata, an emerging opportunistic pathogen. *J Dent Res*, 6(3):204-15.

38. Falagas ME, Betsi GI, Athanasiou S J (2006). Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. *J Antimicrob Chemother*, 58(2):266-72.

39. Martinez RC, Franceschini SA, Patta MC, et al (2009). Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. *Lett Appl Microbiol*, 48(3):269–74.

40. Zwolinska-Wcislo M, Brzozowski T, Mach T, et al (2006). Are probiotics effective in the treatment of fungal colonization of the gastrointestinal tract? Experimental and clinical studies. *J Physiol Pharmacol*, 57 Suppl 9:35-49.

41. Gavazzi G, Krause K-H (2002). Aging and infection. *Lancet Infect Dis*, 2 (1):659-66.

42. Ahmed PI, Gleson GA (1970). Changes in cigarette smoking habits between 1955 and 1966. US Department of Health, Education, and Welfare, Public Health Service.

43. Wynder EL, Covey LS, Mabuchi K, et al (1976). Environmental factors in cancer of the larynx. a second look. *Cancer*, 38(4):1591-601.

44. Manfredi M, Al-karaawi Z, McCullough MJ, et al (2002). The isolation, identification, and molecular analysis of *Candida* spp. isolated from the oral cavities of patients with diabetes mellitus. *Oral Microbiol Immunol*, 17(9):181–5.

45. Willis AM, Coulter WA, Sullivan DJ, et al (2000). Isolation of *C. dubliniensis* from insulin-using diabetes mellitus patients. *J Oral Pathol Med*, 29 (1):86–90.

46. Aly FZ, Blackwell CC, Mackenzie DA, et al (1995). Identification of oral yeast species isolated from individuals with diabetes mellitus. *Myosotis*, 38 (3-4):107–10.

47. Wiederhold NP (2017). Antifungal resistance: current trends and future strategies to combat. *Infect Drug Resist*, 29(10):249-259.

48. Raj VB, Madan Kumar PD, Balaji S (2017). Effectiveness of vinegar, lime, and saltwater as potential household decontaminants for toothbrushes. *J Indian Assoc Public Health Dent*, 15 (1):8-10.

49. Al-Salhi SS, Jumaah IA (2017). The activity of Some Disinfectants, Detergents, and Essential Oils on Growth of the yeast *Candida* albicans. *Al-Mustansiriyah J Sci*, 28(1):25-34.

50. Jabir HB, Abbas FN, Khalaf RM (2011). In vitro assessment of the antifungal potential of apple cider vinegar and acetic acid versus fluconazole in clinical isolates of otomycosis. *Thi-Qar Medical Journal (TQMJ)*, 5(1):126-133.

Available at: http://ijph.tums.ac.ir