Data in Brief

Microarray gene expression profiling reveals potential mechanisms of tumor suppression by the class I HDAC-selective benzoylhydrazide inhibitors

Iqbal Mahmud, Daqing Liao *

Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610, United States

Abstract

Histone deacetylase (HDAC) inhibitors (HDIs) have therapeutic potentials for treating cancer and other diseases. Modulation of gene expression by HDIs is a major mechanism underlying their therapeutic effects. A novel class of HDIs with a previously undescribed benzoylhydrazide scaffold has been discovered through a high throughput screening campaign. Using microarray profiling of gene expression, we have previously demonstrated that treatment of breast cancer cells with a lead benzoylhydrazide HDI UF010 results in cell cycle arrest and apoptosis, likely through activation of tumor suppression pathways with concurrent inhibition of oncogenic pathways. In this brief report, we show methodological and analytical details and discuss additional pathways such as immune signaling that are affected by UF010. Raw and processed data from the microarray were deposited in NCBI’s Gene Expression Omnibus (GEO) database under the accession number: GSE56823.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications

Organism/cell line/tissue: Human/MDA-MB-231/Breast, derived from metastatic site (pleural effusion)
Sex: Female (51 years adult)
Sequencer or array type: Affymetrix GeneChip Human Transcriptome Array 2.0
Data format: CEL files
Experimental factors: Cultured MDA-MB-231 cells exposed to DMSO control (n = 3) or benzoylhydrazide HDAC inhibitor UF010 (n = 3)
Experimental features: Assess effects of UF010 treatment on global gene expression in cancer cells
Consent: N/A
Sample source location: ATCC (www.atcc.org)

1. Direct link to deposited genomic data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56823.

* Corresponding author at: Department of Anatomy and Cell Biology, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610, United States. E-mail address: dliao@ufl.edu (D. Liao).

2. Experimental design, materials and methods

2.1. Experimental design

A novel class of small molecule HDIs with a benzoylhydrazide scaffold has been discovered recently [1]. They are specific to class I HDACs 1–3 and appear to exhibit fast-on/slow-off target-binding mechanism. Therefore, the new inhibitors are distinct chemically and mechanistically from known HDIs such as hydroxamic acids and benzamides. As histone deacetylation plays a major role in transcriptional regulation [2–4], we have assessed impact of the new HDIs on global gene expression. We used the triple-negative breast cancer cell line MDA-MB-231 and the benzoylhydrazide analog UF010 to interrogate effects of the new HDIs on gene expression. The experimental design is summarized in Fig. 1.

2.1.1. Cell culture and drug treatment

MDA-MB-231 cells were obtained from ATCC and cultured with Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% bovine calf serum, penicillin to 10 units/ml, and streptomycin to 10 µg/ml. Cells (500,000 cells per well) were seeded in a 6-well plate. At 24 h after seeding, dimethyl sulfoxide (DMSO) or UF010 was added. The final concentration for UF010 was 1 µM.
2.1.2. RNA isolation and processing

Total RNAs from the treated cells were isolated using the RNeasy kit (Qiagen) and submitted to the Gene Expression Core of the University of Florida Interdisciplinary Center for Biotechnology Research. A NanoDrop Spectrophotometer (NanoDrop Technologies, Inc.) was used to determine RNA concentration and sample quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.).

2.1.3. Microarray probe preparation, hybridization and data acquisition

The Ambion® WT Expression Kit, the GeneChip WT Terminal Labeling and Controls Kit (Affymetrix) were used for all microarray probe preparation following manufacturer’s protocols. We used 200 ng of total RNA as template for cDNA synthesis. The resulting cDNA was used as template for in vitro transcription (IVT) to generate antisense RNAs, which were then used to produce sense DNA. The sense strand DNA was fragmented, biotinylated, and hybridized with rotation at 45 °C for 16 h to microarray chips (GeneChip® Human Transcriptome Array 2.0, Affymetrix). The arrays were washed and stained with streptavidin-phycoerythrin (SAPE) with an Affymetrix Fluidics Station 450, and scanned using a GeneChip® 7G scanner (Affymetrix).

2.1.4. Microarray data quality control and analysis

The Affymetrix® Expression Console™ Software (Version 1.3) was used to generate.txt files for each RNA hybridization. All subsequent data analyses were performed in R 3.0.0 (http://www.R-project.org/). The Limma package [5] was used for background adjustment, summarization and quantile normalization. Normalization was made using the Robust Multichip Average (RMA) pre-normalization algorithm [6]. Data quality was assessed using various quality control measures. Specifically, density plots were generated to assess log-intensity distributions across a chip. The ideal distributions of the chips show no significant variation (Fig. 2A). An intensity boxplot (Fig. 2B) was used to compare the probe intensity levels between the arrays of the dataset. After normalization, the median lines are not significantly different from each other (Fig. 2B). A heatmap of the six samples was constructed to compare the probe-set signal value from UF010-treated cells with control (Fig. 2C). For each replicate array, each probe-set signal value from UF010-treated samples was compared to the probe-set signal value of DMSO-treated control samples to give gene expression ratios. Differentially expressed genes were identified using the Limma package with a Benjamini and Hochberg false discovery rate multiple testing correction. The statistically significant or differentially expressed genes were calculated using volcano plot analysis with a fold change (FC) threshold of >1.5 and a p value of <0.05.

2.1.5. Ingenuity pathway analysis

The Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems Inc., Redwood City, CA) was used for functional enrichment analysis of the selected statistically significant genes in each of these experimental groups. The association between the genes in the dataset and a functional pathway were made using Fisher’s exact test. Functional groups (or pathways) with a P value less than 0.05 and at least one focused molecule in a pathway were considered to be statistically significant.

3. Results

Analyses of the microarray dataset reveal that the benzoylhydrazide HDI UF010 induces gene activation and repression, consistent with findings by others that HDIs can up and downregulate gene expression.
HDAC3 selectivity is achieved by modifying the exhibit strong selectivity for HDACs 1 and 2 vs. HDAC3 [22], while and carbonyl groups in a bidentate manner [22]. Benzamide derivatives potency [1]. UF010 shows a fast-on/slow-off target binding mechanism. with a form selectivity. Nonetheless, isoform selectivity can be achieved and the UF Health Cancer Center. (Dr. Jiqiang Yao) for microarray data ac-

Acknowledgments

Con

whether unique chemistry and pharmacology of the benzylhydrazide HDIs can be discovered. Hydroxamic acids are potent HDIs and exhibit strong Zn2+–binding property, which limits their iso-

selectivity. Nonetheless, isoform selectivity can be achieved through modifying the “cap” moiety that interacts with the residues in the rim outside the substrate tunnel [21]. Benzamide analogs occupy the catalytic center of HDACs and coordinate Zn2+ using the amine and carbonyl groups in a bidentate manner [22]. Benzamide derivatives with a five or six-membered aromatic ring “internal cavity” motif exhibit strong selectivity for HDACs 1 and 2 vs. HDAC3 [22], while HDAC3 selectivity is achieved by modifying the “cap” groups [21]. The benzylhydrazide HDIs appear to use a linear aliphatic chain to bind the internal hydrophobic cavity of HDACs and they display notable selectivity for HDAC3, while inhibiting HDACs 1 and 2 with similar potency [1]. UF010 shows a fast-on/slow-off target binding mechanism. Whether the unique chemistry and pharmacology of the benzylhydrazide HDIs can result in distinct modulation of gene expres-

Conflict of interest

None.

References

[1] Y. Wang, R.L. Stowe, C.E. Pinello, G. Tian, F. Madoux, D. Li, L.Y. Zhao, J.L. Li, Y. Wang, Y. Wang, H. Ma, P. Hodder, W.R. Roush, D. Liao, Identification of histone deacetylase inhibi-

itors with benzylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol. 22 (2015) 273–284 (http://www.ncbi.nlm.nih.gov/pubmed/25969904).

[2] C.A. Hassig, T.C. Fleischer, A.N. Billin, S.L. Schreiber, D.E. Ayer, Histone deacetylase acti-
vity is required for full transcriptional repression by mSin3A. Cell 89 (1997) 341–347 (http://www.ncbi.nlm.nih.gov/pubmed/91013).

[3] L. Nagy, H.Y. Kao, D. Chakravarti, K.J. Lin, C.A. Hassig, D.E. Ayer, S.L. Schreiber, R.M. Evans, Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89 (1997) 373–380 (http://www.ncbi.nlm.nih.gov/pubmed/910137).

[4] Z. Wang, C. Zang, K. Cai, D.E. Schones, A. Barski, W. Peng, K. Zhao, Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138 (2009) 1019–1031 (http://www.ncbi.nlm.nih.gov/pubmed/19688979).

[5] C.D. Smyth, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3 (2004) (Article 3) (http://www.ncbi.nlm.nih.gov/pubmed/16648009).

[6] R.A. Izarzary, B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J. Antonellis, U. Schfer, T.P. Spingler, Application, normalisation, and summarization of high density oligonucleotide array probe level data. Bioinformatics 20 (2004) 245–264 (http://www.ncbi.nlm.nih.gov/pubmed/1295520).

[7] Y.J. Kim, C.B. Greer, K.R. Cecchini, L.N. Harris, D.P. Tuck, T.H. Kim, HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockage. Oncogene 32 (2013) 2828–2835 (http://www.ncbi.nlm.nih.gov/pubmed/2343541).

[8] M.S. Kortenhorst, M.D. Wissing, R. Rodriguez, S.K. Kachhap, J.J. Pans, V. der Groep, H.M. Verheul, A. Gupta, P.D. Altena, E. van der Wall, M.A. Carducci, P.J. Van Dien, L. Marchionni, Analysis of the genomic response of human prostate can-

cer cells to histone deacetylase inhibitors. Epigenetics 8 (2013) 907–920 (http://www.

nih.gov/pubmed/239383).

[9] H. Bolden, W. Shi, K. Jankowski, C.Y. Kan, L. Cluse, B.P. Martin, K.L. Mackenzie, G.K. Smyth, R.W. Johnstone, HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis. 4 (2013) e519 (http://www.ncbi.nlm.nih.gov/pubmed/23449453).

[10] Y. Yang, S.N. Vassiliadis, D. Lauer, P.G. Shaw, N.E. Davidson, Inhibitors of histone de-
methylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells. Breast Cancer Res. Treat. 131 (2012) 777–789 (http://www.ncbi.nlm.nih.gov/pubmed/21452019).

[11] T. Roger, J. Laprun, D. Le Roy, C. Guy, M. Montebelli, T. Koesseli, X.C. Ding, A.L. Chanson, M.K. Reymond, I. Miconnet, J. Schrenzel, P. Francois, T. Calandra, Histone deacetylase inhibitors impaire immune responses to Toll-like receptor ago-
nists and to infection. Blood 117 (2011) 1205–1217 (http://www.ncbi.nlm.nih.gov.

pubmed/20956800).

[12] M.J. LaBonte, P.M. Wilson, F. Fazzone, S. Grosjen, H.J. Lenz, R.D. Laden, DNA micro-
array profiling of different genes regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med. Genet. 2 (2009) 67 (http://www.ncbi.nlm.nih.gov/pubmed/19948057).

[13] BM. Muller, L. Jana, A. Kasajima, A. Lehmann, J. Pinzler, J. Budzies, K.J. Winzer, M. Dietel, W. Weichert, C. Denkert, Differential expression of histone deacetylases HDAC 1, 2 and 3 in human breast cancer–overexpression of HDAC2 and HDAC3 is as-

sociated with clinicopathological indicators of disease progression. BMC Cancer 13 (2013) 215 (http://www.ncbi.nlm.nih.gov/pubmed/23627572).

[14] W. Weichert, C. Denkert, A. Noske, S. Darb-Esfahani, M. Dietel, S.E. Kalloger, D.G. Huntsman, M. Kobel, Expression of class I histone deacetylases indicates poor prog-
nosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 10 (2008) 1021–1027 (http://www.ncbi.nlm.nih.gov/pubmed/18714364).

[15] W. Weichert, A. Roske, V. Gekeler, T. Beckers, M.P. Ebert, M. Pross, M. Dietel, C. Denkert, C. Rocken, Association of patterns of class I histone deacetylation expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 9 (2008) 139–148 (http://www.ncbi.nlm.nih.gov/pubmed/18270460).

[16] W. Weichert, A. Roske, V. Gekeler, T. Beckers, C. Stumph, K. Jung, E.R. Friztges, S. Niespor, C. Denkert, M. Dietel, G. Kristiansten, Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98 (2008) 604–610 (http://www.ncbi.nlm.nih.gov/pubmed/18212746).

[17] W. Weichert, A. Roske, S. Niespor, A. Noske, A.C. Buckendahl, M. Dietel, V. Gekeler, M. Boehm, T. Beckers, C. Denkert, Class I histone deacetylase expression has inde-
pendent prognostic impact in human colorectal cancer: specific role of class I his-

tone deacetylases in vitro and in vivo. Clin. Cancer Res. 14 (2008) 1669–1677 (http://www.

nih.gov/pubmed/1829257X).