Haemodynamic effects of hyperventilation on healthy men with different levels of autonomic tone

V. A. Zavhorodnia*, O. I. Androshchuk*, T. H. Kharchenko**, L. I. Kudii*, S. O. Kovalenko*

*Cherkasy Bohdan Khmelnytsky National University, Cherkasy, Ukraine
**Sumy A. S. Makarenko State Pedagogical University, Sumy, Ukraine

Keywords: sympathetic tone; parasympathetic tone; vagal tone; central haemodynamics; hypocapnia.

Introduction

Studies of hyperventilation in the human body are quite numerous and stipulated by its presence in life activity, as well as by its application in diagnosis, correction and prediction of functional state (Eckberg et al., 2016; Burman et al., 2018; Mutch et al., 2018). Hyperventilation syndrome was described for the first time in a classic study of Da Costa (Morgan, 1983). The increase of respiratory frequency and minute volume is conditioned by the action of stress factors (military training) on a person. With hyperventilation, there is a restoration of consciousness and self-breathing with the disappearance of spindle activity. Loss of consciousness is associated with the partial involvement of the ascending activating mesodiencephalic reticular formation. Hypocapnia causes microvascular spasm, oxygen deficiency, and energy starvation of the body cells. Under normal conditions, the deterioration of health resulting from hypocapnia and stress lasts for years and decades. It leads to the so-called “diseases of civilization”: ischemic heart disease, hypertension, insomnia, migraine, constipation, vegetative-vascular dystonia, osteochondrosis. It has been found that the concentration of CO₂ in such patients is 20–40% below normal. To achieve full recovery, it is necessary to lead the gas composition to normal, to eliminate hypocapnia (Salinet et al., 2019). Normocapnia is a condition in which the concentration of carbon dioxide in the arterial blood corresponds to 35–45 mm Hg. It has been established (Kavanagh, 2002; Drogozov et al., 2016) that the metabolic rate of carbon monoxide (IV) at rest under standard conditions (STPD) is 150 mL/min. The body’s CO₂ reserves are known to be divided into several fractions. The central fraction is about 2.5 l and is quickly flushed with hyperventilation. The peripheral fraction is distributed in: tissues with low blood supply (fat and bone tissues), organs with moderate blood supply (muscles) and organs with intensive blood supply and low own mass (brain and kidneys) (Shurygin, 2000). The optimal concentration of carbon (IV) oxide in the arterial blood, in which the blood supply of vital organs being 100%, is in the range from 6.0% to 6.5% (Mishustin, 2007; Semenov, 2016), and 5.6% according to some sources (Lyzygub et al., 2015). A concentration of CO₂ from 4.5% to 4.0% is considered to be a risk zone and from 4.0% to 3.6% - a
zone of pathological conditions. Its further reduction from 3.6% to 3.0% indicates the possibility of life-threatening diseases. From this, it follows that the concentration of carbon dioxide in the arterial blood is the most important information and diagnostic indicator, and the development of effective ways of its normalization will contribute to maintaining good health (Shaov et al., 2009; Zavjalova, 2011).

There are the following mechanisms to maintain normal CO₂ content. They are bronchial and vascular spasm, the increased cholesterol production in the liver as a biological insulator sealing cell membranes in the lungs and vessels, lowering blood pressure (hypotension) leading to the decreased removal of carbon (IV) oxide (Zav'jalova, 2011; Drogovoz, 2017).

Molecular carbon dioxide easily crosses the blood-brain barrier and acts on the central chemoreceptors of the medulla oblongata. It is known to contain the retropozepid nucleus and the rostral medullary raphe, which mediate adaptive changes in breathing. The nucleus consists of a bilateral accumulalement of glutamnergic neurons that respond to the enhancement of local PCO₂ by cell-autonomous and paracrine (global) mechanisms and receive additional sensory information from carotid bodies. These neurons also innervate the area of the brain stem responsible for the respiratory rhythm. The astrocytes that are the part of this nucleus affect the release of ATP depending on the change in CO₂H⁺ to enhance the activity of chemosensitive neurons. The increase in carbon dioxide contributes to the release of ATP from a cell, leading to its destruction in the extracellular space and the release of adenosine, which is a powerful neuromodulator and serves to limit the functions of chemoreceptors, inhibiting hyperventilation. The rostral-medullary raphe dominated by serotonergic neurons, is believed to play a leading role in the regulation of carbon dioxide. However, CO₂ affects the peripheral chemoreceptors of the aortic arch. It is estimated that 80% of carbon dioxide is perceived by central chemoreceptors, while 20% – by peripheral ones (Guyenet, 2012; Singh, 2017; Falquetto et al., 2018; Bhandare et al., 2019). The decrease in the concentration of carbon dioxide in the blood leads to an increase in oxygen affinity for haemoglobin, and therefore, in the development of hypoxia with all its consequences. The contradiction of these two haemo-stimuli presents complexity in quantifying haemodynamic reactivity, as hypoxia causes cerebral vasodilation, whereas breathing-induced hypcapnia causes vasoconstriction. However, Willie’s study clearly shows the comparatively greater importance of CO₂ for the regulation of cerebral blood flow (Willie et al., 2015; Lafave et al., 2019).

The dependence of the concentration of carbon dioxide and haemoglobin affinity for O₂ is due to the Verigo-Bohr effect, according to which a decrease in the level of CO₂ in the blood increases the binding energy of oxygen for haemoglobin and complicates its diffusion into tissues. This physiological phenomenon was discovered by B. F. Verigo, a Russian physiologist, at the end of the 19th century, and it was confirmed by C. Bohr, a Danish physician, ten years later. In the body, CO₂ dissolves in the tissue fluid, forming carbonic acid, which changes the pH in the acidic direction: CO₂ + H₂O = H₂CO₃. The lower the pH of the blood, the lower the affinity of haemoglobin for oxygen. Under the influence of carbonic acid and bicarbonate, the acid dissociates into ions: H⁺ and HCO₃⁻. The HCO₃⁻ anion interacts with the K⁺ and Na⁺ cations, resulting in a change in the buffer equilibrium toward the alkaline reaction. It is worth noting that in plasma, CO₂ dissolves slowly, and in the erythrocyte, the rate of this reaction increases thousands of times due to the presence of the enzyme. A small amount of CO₂ is transferred in the compound with haemoglobin provided by nucleophilic N-centers. The physiological norm of blood pH ranges from 7.35–7.45, which is provided by the buffer capacity of the blood, lung and kidney function (Grishni et al., 2011; Bukov & Belousova, 2016; Drogovoz et al., 2017). The relationship between PaCO₂ and pH can be represented by the following rules:

- when PaCO₂ increases by 20 mm Hg, the pH decreases by 0.1;
- when PaCO₂ decreases by 10 mm Hg, the pH increases by 0.1;
- changes in pH beyond these limits are the result of metabolic disorders.

The kidneys (metabolic buffer) maintain a normal acid-base balance by dual mechanisms: reabsorption of bicarbonate (HCO₃⁻) in the proximal tubules or excretion in the distal nephron. These mechanisms take from several hours to several days. When the lungs and kidneys work together, the pH of the blood is maintained by equilibrating 1 part of acid to 20 parts of base (Bajmakanova, 2013). Impact on the reabsorption of HCO₃⁻ provides the effective volume of arterial blood, glomerular filtration rate, serum chloride and potassium concentration. According to the studies by Leacy et al. (2018), gradual climbing of mountains is accompanied by hypoxic hypocapnia; normal arterial pH is maintained by means of renal compensation. In respiratory alkalosis, the kidneys contribute to a decrease in the reabsorption of bicarbonate, i.e. H⁺ retention and an increase in potassium bicarbonate output are observed. This process helps to maintain the pH of the extracellular environment to neutralize the effect of low pCO₂, which is the primary disorder with respiratory alkalosis (Leacy et al., 2018). In the studies of Zouboules et al. (2018), the concept of renal reactivity index is introduced showing the dependence of bicarbonate and PaCO₂ concentration during gradual climbing to a height. Strong negative correlation is found between these indicators (r < 0.71; P = 0.001) from the baseline at all heights (Zouboules et al., 2018).

The revealed changes of EEG during the prolonged hyperventilation are found to depend directly on the level of carbon (IV) oxide. Hypocapnia with a CO₂ concentration of 15 mm Hg causes a more active intensification of both intracortical and deep limbic-reticular effects of the brain, which are manifested in the increase of all types of cerebral activity, and in more than 70% in the generalized paroxysmal activity. The recovery of the original EEG pattern after hyperventilation occurs long before the restoration of the carbon dioxide voltage (Djomin & Poskotinova, 2017).

Carbon dioxide in physiological concentrations affects the tone of smooth muscles, expands the small arteries and capillaries in the place of spasm, normalizes the tone of veins, relieves spasm, and tones the smooth muscles of all organs. It also reduces the viscosity of colloid solutions improving metabolism and the increased speed of biochemical processes (Lyzogub et al., 2015).

The increase in the tone of the cerebral arteries under the action of hypocapnia is considered to be a compensatory mechanism in response to a decrease in the heart rate and pulse blood flow. Carbonic acid in humoral and reflexive way from the chemoreceptors of the vascular zones has a stimulating effect on the reticular formation of the trunk and then on the cerebral cortex. Reducing the partial pressure of CO₂ in the blood is accompanied by a decrease in stimulating effects and leads to the increased thalamic-cortical synchronization, activation of the anterior parts of the hypothalamus and hypertension of the cortex. Under the influence of hypocapnia and gas alkalosis, there is a spasm of the brain vessels, which leads to a decrease in the supply of oxygen and glucose to the brain with transient hypoxia and ischemia accompanied by a decrease in frequency and an increase in alpha rhythm and delta activity. Changes in the form of an increase in alpha rhythm synchronization, the appearance of bilateral synchrony, the intensification of slow-wave outbreaks in the anterior parts may be explained by the indirect influence on the hypothalamic-diencephalic structures (Gnezdicki, 2010).

Gas alkalosis in hyperventilation has a specific effect on vascular tone and causes narrowing not only of the brain vessels but also coro-

nary and peripheral ones, the vessels of intestines, liver, kidneys; at the same time, there is an expansion of skeletal muscle vessels. There is a redistribution of regional circulation and reduction of coronary and cerebral blood flow. It is proved that the majority of patients with acute stroke are hypocapnic (Curley et al., 2010; Grishin et al., 2012; Nagibovich et al., 2016; Salmet et al., 2019).

Hypocapnia is found to cause a decrease in the heart rate variability and an increase in the variability of QT interval on the electrocardiogram, an increase in the heart rate. At the same time, slow breathing with a low inhalation-exhalation rate, accompanied by hypercapnia, is associated with greater power in the high-frequency component of heart rate variability (Sullivan et al., 2004; Van Diest et al., 2014).

Numerous studies show that changes in the diameter of the internal carotid artery is positively associated with the reactivity of PaCO₂ (~ 25%), while the spiral artery cross-section does not respond to the change in CO₂ in the arterial blood, but with severe hypoxia, 9% in-
crease in its diameter is observed (Willie et al., 2012; Sato et al., 2012). At the same time, the blood flow rate is characterized with less reactivity in the anterior and posterior cerebral arteries than in the vertebral and carotid.

Arbitrary hyperventilation is accompanied by changes in autonomic nerve regulation with a predominance of sympathetic effects leading to anger and panic attacks. Changes in cardiac activity and hemodynamics, decrease in the functionality of distant analyzers, and the level of psychomotor performance deepened with the increase in hypocapnia, are observed. The decrease in the activity in the respiratory center during hyperventilation, leads to a change in the propagation of excitation from it to the cortex of the cerebral hemispheres and spinal motor centers. Hypocapnia-induced vasoconstriction significantly inhibits neural activity (Szabo et al., 2011; Nagibovich et al., 2016). It was confirmed that the reduction of carbon dioxide in the body stimulated the conagulation function of the blood, contributing to the development of thrombophlebitis in combination with the slow blood flow in the veins. Hypocapnia leads to increased mucus secretion in the bronchi, nasal passages, development of adenoids and polyps. There is a thickening of membranes due to the accumulation of cholesterol contributing to the development of tissue sclerosis. Endogenous catecholamine release is activated (Grishin et al., 2012; Lyzogub et al., 2015).

It is established that the decrease in PCO₂ in the lungs causes vasodilation; in the gastrointestinal system, there are changes in perfusion, treatment of electrolytes and motility: the tone of the colon increases and the phase contractility in the transverse and sigmoid region increases, which can be explained by the suppression of sympathetic innervation and the direct effect of hypocapnia on the smooth muscles of the intestine (Foster et al., 2001; Panina, 2003; Grishin et al., 2012; Sur & Shah, 2019).

The physiological concentration of carbon dioxide has a positive effect on the permeability of membranes, namely, it normalizes the excitability of nerve cells. It helps to withstand stress, to avoid nervous over-stimulation and, as a consequence, to relieve insomnia and migraines. It also stimulates the release of vasoactive substances as histamine, acetylcholine, serotonin, and kinins by nerve endings; these substances expand coronary vessels and result in a decrease of the heart rate and blood pressure (Makarenkova et al., 2012). At the same time, the excitability of nerve fibers increases as with the hyperventilation. As Ca²⁺ and H⁺ ions competitively bind to plasma proteins, a decrease in the H⁺ concentration causes an increase in the number of the bound Ca²⁺ ions. Their content in plasma and intercellular fluid decreases, leading to a decrease in transmembrane potential and an increase in the permeability of the cell membrane for Na⁺ ions. Besides, the reduction of Ca²⁺ in the extracellular fluid influences myocardial contraction force (Panina, 2003; Makarenkova et al., 2012).

Pregnant women are found to be also exposed to hypocapnia (30.7 ± 3.7 mm Hg), and especially women in the second stage of childbirth, in which even lower values of PetCO₂ (20.8 ± 5.9 mm Hg) are detected, which probably affects the optimal cerebral oxygenation of the fetus (Tomimatsu et al., 2012).

The CO₂ introduced into the body creates a state of hypercapnia accompanied with vasodilation being the result of its direct activity on the smooth muscle cells of arterioles, an increase in capillary blood flow and, as a consequence, an increase in tissue oxygenation. Carbon (IV) oxide stimulates the secretion of growth factors, such as vascular endothelial growth factor, which results in the formation of new blood vessels (neovascularization) and revascularization. The state of hypercapnia is not harmful to the body, since excess gas can simply be removed through the lungs. The introduction of carbon dioxide is often used to treat hypertensive stenosis, since its vasodilator effect enhances tissue perfusion and improves local blood flow, leading to a decrease in lympherema (Khati et al., 2018).

An increase in CO₂ concentration leads to an increase in the rate of cerebral blood flow, and its decrease – to a decrease; besides, with hyperventilation, intracranial pressure is reduced due to the induction of cerebral vasoconstriction with a further decrease in cerebral blood volume. The cross-sectional area of the middle cerebral artery is found to increase by approximately 8% during hypercapnia. The reaction of the rate of cerebral blood flow to the concentration of carbon dioxide is due to changes in the resistance of cerebral resistance vessels, the mechanism of which has not been fully studied. Vasodilation with the introduction of carbon (IV) oxide is possibly due to the accumulation of H⁺ and activation of K⁺ channels in vascular smooth muscle cells. Carbon dioxide also increases average blood pressure (BP, with reverse breathing for more than 2 min), which can lead to an increase in perfusion pressure against autoregulation failure and affect the speed of cerebral blood flow. Thus, a threshold of PetCO₂ (42 mm Hg) is found; to achieve it, the enhancement of cerebral blood flow reflects true cerebrovascular reactivity to carbon dioxide without the dependence on changes in systemic BP (Stocchetti et al., 2005; Kulikov et al., 2017).

It has been investigated that raising CO₂ to 0.7–1.2% within 23 days contributes to a 33% increase in the rate of cerebral blood flow compared to the background during the first 1–3 days, after which this indicator gradually decreases to the previous level. Time-dependent changes in vascular reactivity may be stipulated by either a delay in carbon dioxide in the extracellular brain fluid, or a progressive increase in ventilation, or both ones (Cassaglia et al., 2008; Miller et al., 2018).

Hypercapnia has been shown to increase the diameter of the inferior vena cava, leading to a decrease in venous return of the blood, resulting in a decrease in cardiac output. An increase in CO₂ concentration contributes to a decrease in peripheral vascular resistance, right ventricular hypertrophy, and arrhythmias. It also produces negative inotropic and chronotropic effects (the occurrence of bradycardia), due to changes in the sensitivity of the vagus nerve nuclei to the influence of CO₂, which slows the cardiac output. The action of carbon dioxide expands the peripheral arterioles, resulting in redistribution of blood in favour of an increase in peripheral volume, with the filtration equilibrium point in the capillaries shifting distally, causing fluid movement beyond the vascular bed and the loss of plasma volume. Accordingly, the effective volume of circulation decreases, which stimulates the sympathetic nervous system, the production of renin and vasopressin. In order to maintain intravascular volume, the kidneys respond by vasoconstriction and retain sodium (Shoemaker et al., 2001; Bakovic et al., 2006; Gavrisijuk, 2006). Hypercapnia has been shown to decrease blood flow in the hepatic, renal, and musculoskeletal flow, while gastrointestinal, myocardial, and cerebral blood flow increase. There is also a decrease in blood pressure (Solov’eva et al., 2013; Coverdale et al., 2016).

In their study Harrison et al. (2017), the observation of video-based surgery shows an increase in respiratory rate and a decrease in eCO₂ in women. At the same time, there are significant shifts in haemodynamics. A meta-analysis of the literature shows that stroke survivors have low levels of CO₂ in the blood and cerebral blood flow (Salinet et al., 2019). Several studies show that hypocapnia with hyperventilation affects not only the level of blood flow in the brain but also modulates its response to various stimuli (Boulet et al., 2016; Smielewski et al., 2018; Tsuji et al., 2018).

Hyperventilation and the shortness of breath coming after it significantly increase coronary blood flow. Thus, in experiments on anesthetized pigs, shortness of breath after hyperventilation led to a significant increase in coronary blood flow, which was determined with magnetic resonance (by 346% compared with 97% increase during shortness of breath). In coronary artery stenosis, the differences were leveled (Fischer et al., 2016). However, hyperventilation followed by shortness of breath was successfully used as a non-pharmacological vasocoactive impulse to stimulate changes in the oxygenation of myocardium including in patients with coronary heart disease (Fischer et al., 2018). Allan’s work (Allan et al., 2015) shows that hyperventilation leads to an increase in blood pressure variability in patients with ischemic attack.

The reactivity of the cardiovascular system to physiological stimuli in healthy people may vary significantly depending on the conditions (Lutsenko & Kovalenko, 2017) and be determined by individual and typological characteristics (Kovalenko & Kudii, 2006). One of these typological indicators is the level of autonomic tone (Spitsin et al., 2018). It is proved that its initial level can determine the nature of the body’s response to stress (Wildé, 1957).

Regul. Mech. Biosyst., 2020, 11(1)
Therefore, the purpose of our research is to study changes in central haemodynamics with 10-minute regulated breathing at a rate of 30 cycles per minute and during recovery after the test in healthy men with different levels of autonomic tone.

Materials and methods

The study was conducted in compliance with the basic bioethical principles of the European Council Convention on Human Rights and Biomedicine (04.04.1997), Helsinki Declaration of the World Medical Association on Ethical Principles of Conducting Medical Research Involving Human Subjects (1994–2008), the Order of Ministry of Healthcare (Ukraine) No 690 dated 23.09.2009. All participants gave written permission for participation in the measurements and for publication of their results. The measurements were made on 77 healthy young men aged 18–23 years (an average age 20.23 ± 0.18) under conditions close to the state of basal metabolism. All persons participated in the study voluntarily, were found to be healthy according to the medical examination, did not have acute and chronic diseases. Before completing the tasks, they were informed of the purpose and objectives of the measurements, the sequence and the content of the test loads, and gave written permission for the research and the scientific use of their results. The day before the examination, the subjects did not drink alcohol, coffee, stimulants or sedatives, did not have great emotional and physical activity. Breath capnography, chest rheoplethysmogram, cardio intervals were recorded for 5 minutes while sitting quietly, for 10 minutes of the regulated breathing at a frequency of 30 cycles per minute and 40 minutes of the recovery period after the test.

The chest rheoplethysmogram was recorded on the rheograph of XAI-medica standard (XAI-medica, Kharkiv, Ukraine) (Fig. 1), capnogram – in the lateral flow on the capnograph of DATEX NORMOCAP (Datex, Finland); the duration of R-R intervals was determined with the cardio sensor of Polar WIND Link, the receiver of Polar Windlink in the program of Polar Protainer 5.0 (Polar Electro OY, Finland). Systolic (APs) and diastolic (APd) arterial blood pressure was measured with Korotkov’s auscultative method by mercury tonometer (Riester, Germany).

\[\text{CO}_2 \text{ level at the end of exhalation (PetCO}_2\) \text{ was evaluated according to capnogram. The average blood pressure (APm) was calculated by the formula of Hickkam} (\text{Ramaat et al., 2003}). \text{Stroke volume indicator (SV) was given by the formula of W. G. Kubicek} (\text{Kubichek, 1970}). \text{The duration of tension phase (TPh), ejection phase (EPh), stroke index (SI), heart index (HI), general peripheral resistance (GPR), ejection speed (ES) were calculated according to generally accepted methods} (\text{Klabunde, 2012}). \text{Tension index (TI) was calculated as a ratio of TPh to EPh in percentage.}

An indicator of the normalized power of the spectrum in the range of 0.15 - 0.4 Hz (HFnorm) reflecting the level of vagosympathetic balance was evaluated according to 5-minute records of cardiointervalogram at rest and under experimental influences (Malik et al., 2019). Three groups of persons were distinguished according to this indicator at rest by the method of signal deviations; they are sympathicotonic (I, n = 22) up to 40 conditional units (c.u.), normotonic (II, n = 30) from 40 to 60 c.u., and parasympathicotonic ones (III, n = 25) from 60 c.u.

The physiological indicators were evaluated as the difference between their level during the experimental influences and in the background. Statistical analysis due to the normality of sample distribution (by Shapiro-Wilk test) was made by parametric methods. The data in the tables and text are presented as mean ± standard error \((x ± SE)\). The probability of differences was estimated Fisher’s F-test by ANOVA method.

Results

There were differences in PetCO2 and central haemodynamics functioning at rest depending on the initial level of autonomic tone. Thus, in the parasympathicotonic persons, PetCO2 was higher \((41.29 ± 0.50 \text{ mm Hg}, P < 0.01)\) than in group I \((39.28 ± 0.77 \text{ mm Hg}, P < 0.01)\) and II \((39.45 ± 0.61 \text{ mm Hg}, P < 0.01)\). Immediately after the start of the regulated breathing at a rate of 30 cycles per minute, there was a significant decrease in PetCO2 in all groups with its lowest values reached in the 5–7 minutes of the test (Fig. 1). During the test, the decrease in PetCO2 was observed to be more expressed in normotonic persons \((-23.07 ± 0.85 \text{ mm Hg})\) compared to group I \((-20.19 ± 1.35 \text{ mm Hg}, P < 0.05)\) and III \((-20.10 ± 1.02 \text{ mm Hg}, P < 0.01)\). After the test with hyperventilation, PetCO2 was rapidly increased. This indicator was not restored to the initial values in any typological group up to 40 minutes of registration after the test.

Higher diastolic blood pressure (APd) was registered in sympathicotonic persons compared to group III \((79.3 ± 1.7 \text{ mm Hg and } 75.2 ± 1.3 \text{ mm Hg, } P < 0.05\text{ respectively})\) and APm \((94.1 ± 1.9 \text{ mm Hg and } 90.9 ± 1.3 \text{ mm Hg, } P < 0.05\text{ respectively})\). This trend was observed throughout the study. However, the normotonic persons were characterized with the highest reactivity at the end of recovery period APm \((0.33 ± 0.43 \text{ mm Hg, } P < 0.05)\).
Thus, in the background, high TII and, accordingly, TPH, as well as the shortest EPH and ES were observed in sympatheticotonic subjects. A decrease in TPH, TII was found during hyperventilation especially in the men of group III compared to group I. The highest TII reactivity was determined in sympatheticotonic subjects (–1.09 ± 0.94%, \(P < 0.05 \)). In the recovery period, a decrease in TII was found in group II and especially in group III compared to group I. The highest TI reactivity was determined in sympatheticotonic subjects (–1.94 ± 1.74 mL/m², \(P < 0.05 \)); a decrease in GPR was found to a greater extent in groups II and III. An increase in HI was found in all groups during the test with the least reactivity in parasympathicotonic subjects being 0.18 ± 0.09 L/m²·min (\(P < 0.05 \)) on 5-minute test.

In the recovery period, an increase in t-R-R and SI was found in all typological groups. After the test, the least SI reactivity was found in sympatheticotonic subjects (–1.88 ± 1.34 mL/m², \(P < 0.05 \)), while the least GPR reactivity was observed in the normotonic group (–290 ± 91.7 dynes/cm², \(P < 0.05 \)).

Certain differences were found in the indicators of cardiodynamics between the persons with different initial levels of autonomic tone (Table 2).

Discussion

The regularities identified in our studies are largely confirmed and explained by the analysis of other researches on the reactivity of different systems of human body depending on the initial level of autonomic tone. Thus, the study of Sklyba et al (2017) evaluated the functional state of the autonomic nervous system according to the indicators of heart rate variability with the determination of the initial autonomic tone and autonomic reactivity in athletes with different levels of sensorimotor reactivity. The autonomic tone, identified among most athletes with a medium level of sensorimotor response, was characterized by a background eutonia, and sympathotonia was significantly more prevalent among the group of athletes with a high level of sensorimotor response compared to the athletes with its medium and low level. Autonomic imbalance, manifested by hypersympathicotonic reactivity, was determined among the athletes with high and medium levels of sensorimotor response, which indicated the tension of the cardiovascular system functioning and reduction in the adaptive capacity of the body. The importance of considering the autonomic tone in the pathologies of the cardiovascular system in sleep disorders is

Table 1

Central haemodynamics indicators during and after the test of the regulated breathing at a rate of 30 cycles per minute in healthy young men with different initial levels of autonomic tone (x ± SE)

Indicators	Groups	Background	Test (5 min)	Test (10 min)	Recovery (5 min)	Recovery (40 min)
t-R-R, ms	I	794.4 ± 23.2	691.1 ± 20.1	722.8 ± 21.1	865.6 ± 23.8	857.5 ± 22.1
	II	884.4 ± 23.2*	750.1 ± 23.5*	780.8 ± 23.8*	914.0 ± 26.3*	912.1 ± 31.0*
	III	993.3 ± 30.4*	744.0 ± 26.8*	795.8 ± 31.09	909.3 ± 26.99	906.5 ± 29.59*
SI, mL/m²	II	35.63 ± 2.25*	35.65 ± 2.07*	36.73 ± 1.90*	38.19 ± 3.24*	36.93 ± 2.43*
	III	40.02 ± 3.04*	35.54 ± 1.95*	37.89 ± 2.12*	40.72 ± 2.74*	41.96 ± 3.07*
HI, L/m²·min	II	2.19 ± 0.11	2.61 ± 0.12	2.38 ± 0.11	1.98 ± 0.08	2.01 ± 0.08
	III	2.36 ± 0.12	2.76 ± 0.14*	2.75 ± 0.12*	2.38 ± 0.15*	2.26 ± 0.11*
GPR, dyn/s·cm²	II	1848.0 ± 88.3	1681.0 ± 78.8	1708.6 ± 78.1	2038.9 ± 98.9	1970.6 ± 85.6
	III	1838.4 ± 144.9	1521.4 ± 77.2*	1509.9 ± 83.5*	1844.3 ± 122.8	1845.7 ± 136.9
		1796.8 ± 134.7	1473.0 ± 92.9*	1457.5 ± 74.8*	1765.0 ± 98.7*	1818.0 ± 147.7

Note: * – P < 0.05 when comparing group I; # – P < 0.05 when comparing group II and III; by ANOVA method with Bonferroni correction.

Table 2

Cardiodynamics indicators during and after the test of regulated breathing at a rate of 30 cycles per minute in healthy young men with different initial levels of autonomic tone (x ± SE)

Indicators	Groups	Background	Test (5 min)	Test (10 min)	Recovery (5 min)	Recovery (40 min)
TPH, ms	I	138.7 ± 4.5	137.6 ± 4.2	139.4 ± 4.2	136.1 ± 5.3	144.1 ± 4.8
	II	129.7 ± 2.9*	129.2 ± 2.8*	130.0 ± 2.7*	136.0 ± 3.4*	134.6 ± 3.4*
	III	128.0 ± 3.3*	127.2 ± 3.3*	130.0 ± 3.6*	135.0 ± 3.6*	134.4 ± 3.4*
EPH, ms	I	233.6 ± 4.3	234.5 ± 4.3	237.4 ± 4.0	248.1 ± 4.7	246.5 ± 4.1
	II	239.8 ± 7.0	241.8 ± 6.0	249.4 ± 4.8*	269.7 ± 13.2*	259.7 ± 12.0
	III	2464.9 ± 15.6*	240.3 ± 5.3	262.5 ± 9.7*	288.9 ± 16.0*	294.8 ± 19.3*
TI, %	I	37.1 ± 1.0	36.9 ± 0.8	36.9 ± 0.8	36.9 ± 1.0	36.8 ± 0.9
	II	35.3 ± 0.8	34.9 ± 0.6*	34.3 ± 0.6*	34.1 ± 1.0*	34.7 ± 0.9*
	III	33.4 ± 1.0*	34.6 ± 0.7*	33.3 ± 0.7*	32.5 ± 1.0*	32.4 ± 1.2*
ES, mL/s	I	2190.9 ± 9.9	219.5 ± 9.4	2125.9 ± 3.3	206.6 ± 8.5	212.2 ± 8.9
	II	254.9 ± 11.7*	254.2 ± 11.6*	254.1 ± 11.4*	240.9 ± 11.2*	245.4 ± 10.7*
	III	2572.7 ± 11.7*	253.7 ± 13.8*	248.5 ± 13.2*	243.1 ± 12.7*	245.4 ± 12.0*

Note: * – P < 0.05 when comparing group I; # – P < 0.05 when comparing group II and III; by ANOVA method with Bonferroni correction.
discussed (Tumisier et al., 2018). The enhanced autonomic tone along with various stimuli, such as intermittent hypoxia, broken continuity of sleep, reduction of its duration, the increased respiratory effort and short-term hypercapnia can initiate a cascade of pathological changes leading to the deterioration of a person’s condition.

The hemodynamics measurements of pregnant women by Doppler ultrasonography shows that the performance of the fetus heart is significantly influenced by the mother’s autonomic tone level (Lakkino, 2017). Fetal circulation disorders are formed in response to the increased sympathetic and decreased vagal tone.

The confirmation of typological features of cardiovascular system response to any stimuli is genetic research. Sigurdsson et al. (2018) demonstrate that there is a genetic determination for most parameters of autonomic equilibrium. Genetic conditioning for blood pressure and cardiac activity has been clarified. However, the reactivity of haemodynamics on loading, changes in autonomic tone depends on the activity of many genes and can be analyzed by polygenic methods.

According to a meta-analysis of the literature, the origin of heart rate waves in the high frequency range 0.15–0.40 Hz (HF) is almost uniformly high-frequency component of R-R interval oscillations is shown to be highly thoracic segments (higher than T3) and a decrease in variability thus, in patients with spinal anesthesia, the spread of the spinal block really eliminates the high-frequency sympathetic rhythm (Introna et al., 1995).

The genesis of low-frequency waves of heart rhythm remains controversial as some authors believe that their normalized power reflects the activity of the sympathetic division of autonomic nervous system (Kamat & Fallen, 1993; Guzzetti et al., 1994; Malliani et al., 1994; Montano et al., 1994; Lucini et al., 1997; Sesay et al., 2008), others tend to think of both sympathetic and parasympathetic influences in the formation of these oscillations (Appel et al., 1989).

There are several hypotheses for the mechanisms of low-frequency waves of blood pressure and heart rate (Malliani, 1998; Hajnutt & Lukoskhova, 1999). The basic assumption is that such oscillations are the result of periodic amplification and attenuation of signal flow of arterial baroreceptors at the stroke of blood pressure waves of the third order (Hajnutt & Lukoskhova, 1999). Thus, when blood pressure lowers, baroreceptor signals accelerate the heart rate; and they slow it down with high blood pressure. The period duration of such oscillations (8–12 s) is determined by the delay sum in the process time in the efferent branch of reflex baroreceptor arc (Bernardi et al., 1997). However, the LF component increases under the conditions of emotional stress or physical exertion when pressure increases; and baro-reflex impulse increases (Malliani et al., 1991). The power of slow waves increases under the conditions of experimental regional myocardial ischemia in dogs without any changes in blood pressure (Rimoldi et al., 1990). Such changes may be the consequences of an increase in norepinephrine content in blood. This is confirmed by experiments performed during surgery in patients with phaeochromocytoma. The level of norepinephrine concentration in blood plasma correlates with the level of the low-frequency component of the R-R interval spectrum (r = 0.68) (Sesay et al., 2008).

It has been noted (Jansen et al., 1995) that long waves can also occur due to the rhythmic nature of the myogenic reactions of arterioles. It has been established (Myers et al., 2001) that sympathetic influences modulate the Mayer waves due to changes in the resistance of peripheral vessels.

According to some studies (Cevese et al., 1995), slow heart rate waves are of centrogenic origin. It is believed that there is a rhythmic activity with a period of about 10 s of parasympathetic and sympathetic cardiovascular motor neurons of the brain stem. Some measurements (Inoue et al., 1990) show the absence of LF component in the patients with quadriplegia. This was explained by the destruction of the neural pathways that transmit rhythms from the brain to the spinal cord. At the same time, it was shown (Guzzetti et al., 1994; Koh et al., 1994) that there were slow waves of R-R interval and blood pressure in some patients with such disorders. These phenomena were interpreted as manifestations of spinal rhythms affecting vascular background and sinus pacemaker activity (Guzzetti et al., 1994). It was found (Cooley et al., 1998) that there were no waves in the spectrum of blood pressure, R-R interval, and respiratory rate before surgery on two patients with severe heart failure with the implanted artificial left ventricle. The repeated research showed that slow oscillations appeared and became “expressive and dominant” in the spectrum of R-R interval of the emptied heart; and they were absent in the spectrum of blood pressure.

According to Malliani et al. (1998), the origin of low-frequency and high-frequency waves of heart rhythm is conditioned by their complex central-peripheral organization and has a complex multicomponent nature. Therefore, the question of applying the methods of heart rate variability analysis to evaluate the autonomic balance of cardiac regulation accurately is debatable. Principles of the possibility of accurate evaluation of “sympathetic-parasympathetic balance” by means of the R-R interval spectrum indicators are supported by Malliani (1996, 1999), Pagani & Malliani, 2000). The researcher considers that HF waves are determined by only parasympathetic influences, and LF – by sympathetic ones; the tone changes of two parts of autonomic nervous system occur reciprocally. However, a different view can be drawn from the analytical review of the literature (Eckberg, 1997; Kovalenko, 2005). In experiments (Koh et al., 1994; Martinmaki et al., 2006), respiratory and long-wave heart rhythms were eliminated with the blockade of M-cholinoreceptors in dogs and humans. No correlation was found between the spectral power at 0.1 Hz frequency and the release of norepinephrine during muscle stimulation (Kingwell et al., 1994).

The measurements (Shezh-Zade et al., 2001) show that the sympathetic nervous system can act on the heart rhythm through parasympathetic terminals, changing the frequency of their burst pulses. At the same time, the results of acute studies in cats show that heart rate variability “reflects a very specific interaction of myogenic, sympathetic and parasympathetic mechanisms aimed at economizing cardiac activity, but does not reflect the balance of tonic effects of extracardial nerves”.

At the same time, according to spectral analysis of cardiac rhythm at gravitational loads, there is a redistribution of vegetative balance towards the predominance of its sympathetic link being, to some extent, a confirmation of the theory of A. Malliani (Hirayama & Miyazaki, 1999). Changes in adrenaline/norepinephrine ratio in the urine of 13 swimmers during seven weeks of training correlated positively with LF/HF index shifts (r = 0.42, P < 0.03) (Atalou et al., 2007). An increase in the normalized power of heart rate waves at low-frequency range is observed with stress influences (Dischman et al., 2000).

According to Ruttkaj-Nedecki, 2001, criticism of this approach should not negate the possible benefit of calculating the LF/HF ratio to characterize the state of regulation of the cardiovascular system. However, one must be more critical of the physiological interpretation of its changes. It has been found (Wagner & Persson, 1994) that the sympathovagal balance can be estimated from the wave amplitude of stress blood volume or blood pressure in different frequency ranges. It is possible to bypass the controversial issues that arise in the analysis of R-R interval oscillations. Thus, studies of rats of the Wistar-Kyoto line and spontaneously hypertensive rats have shown that the power spectrum of blood pressure in the low frequency range is due to sympathetic influences through α-adrenoceptors (Dubrè et al., 2002). Measurements of systolic pressure variability in persons with spinal cord injuries show that at breaks above T3 segment, the power of Mayer waves decreases and their normal re-
sponse to orthostatic test changes (Munokata et al., 2001). Studies on runners (Portier et al., 2001) show after 3 weeks of rest and 12 weeks of endurance training that sympathovagal balance can be estimated by the ratio and changes in the power of blood pressure oscillations in the range of high and low frequencies. However, wave processes in blood pressure can be affected by not only cardiac output fluctuations but also modulation of peripheral vascular tone with sympathetic nerves, NO system activity (Chowdhary et al., 2002).

It has been found (Li et al., 2004; Bar et al., 2009) that variability in blood pressure and stroke volume shows different information about the activity of autonomic nervous system than the analysis of changes in R-R interval duration. One of the factors may be the absence of plausible correlations between the capacities in the same oscillation ranges of different parameters and their changes during blockade of M-choline and β-adrenoceptors, analysis of the relationship of their parameters with the pupil diameter and its response to light. When stimulating the carotid sinuses by the creation of negative pressure at rest, an increase in the power of fast waves of blood pressure, slow waves of blood pressure and heart rate was observed. And at physical activity, such influence increased only the power of BP oscillations in the range of low frequencies.

The wave structure of the heart rhythm can be studied using autocorrelation analysis (Baevskij et al., 2001). However, autocorrelation analysis can show nothing with the changes in the frequency of periodical processes after the cessation of this influence. It can be argued that the output tone of the transformation with different influences (Il’in et al., 2003); it helps to simplify the description of the changes while retaining the most important properties of information. Thus, it can be argued that the output tone of the autonomic nervous system can modulate changes in human haemodynamics in breathing hypocapnia and affect the features of long-term changes after the cessation of this influence.

Conclusion

The initial level of autonomic tone affects the dynamics of CO2 level in the alveolar air during hyperventilation and recovery period after it. A decrease in the duration of R-R interval was found during the hyperventilation test, being the most expressed in normotonic subjects. Heart index increased in all three groups and general peripheral resistance decreased mostly in the groups of normo- and parasympathetic subjects. At the same time, the reliable increase of stroke index and heart index was found. A decrease in the indicators of tension index and ejection speed and an increase in the duration of tension phase and ejection phase were observed in the recovery period after hyperventilation in normotonic subjects and especially parasympathetic compared to sympathetically ones.

References

Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of the heart rate fluctuation: A quantitative probe of beat to beat cardiovascular control. Science, 213, 220–222.

Allan, P. D., Faulkner, J., O'Donnell, T., Lanford, J., Wong, L. K., Saleem, S., Woolley, B., Lammbrich, D., Stoner, L., & Tzeng, Y. C. (2015). Hemodynamical differences between different types of patients with cardiovascular disease. Physiological Reports, 3(11), e12602.

Appel, M. L., Berger, R. D., Satt, G. P., Smith, J. M., & Cohen, R. J. (1989). Beat to beat variability in cardiovascular variables: Noise or music? Journal of the American College of Cardiology, 14, 1139–1148.

Atiaoa, D., Pichot, V., Lacoste, L., Burelle, F., Lacour, J. R., & Chretien, J. C. (2007). Heart rate variability, training variation and performance in elite swimmers. International Journal of Sports Medicine, 28(5), 394–400.

Baevskij, R. M., Ivanov, G. G., Chirikov, L. V., Gavrilushkin, A. P., Dovgalakovsky, P. K., Bukov, J. A., Mironova, T. F., Priluckij, D. A., Semenov, A. V., Fedorov, V. V., Fleischman, A. N., & Medvedev, M. M. (2001). Analysis variabiliy of time series at ultrasonic brain images using electromagnetic and radiotechnical methods [Analysis of heart rate variability when using different electrocardiographic systems]. Vestnik Arteriologii, 24, 65–87 (in Russian).

Bajmakanova, G. E. (2013). Interpretation of arterial blood gases. Pulmonology and Alergology, 2, 42–45 (in Russian).

Baković, D., Ercević, D., Valić, Z., Sanjilja-Novaković, Ž., Palata, I., Obad, A., & Dujić, Ž. (2006). Increased pulmonary vascular resistance and reduced stroke volume in association with CO2 retention and inferior vena cava dilatation. Journal of Applied Physiology, 101(3), 866–872.

Bir, K. J., Schulte, S., Koelckie, M., Harzenfert, C., Gayd, S., Berg, W., Voss, A., Yerangari, V. K., & Boettiger, M. K. (2009). Correlations between the autonomic modulation of heart rate, blood pressure and the pupillary light reflex in healthy subjects. Journal of the neurological sciences, 15(279), 9–13.

Bernard, L., Pasino, C., Spadacini, G., Varle, S., Leviz, S., Pepoli, M., & Sleight, P. (1997). Arterial baroreceptors as determinants of 0.1 Hz and respiratory-related changes in blood pressure and heart rate spectra. Studies in Health Technology and Informatics, 35, 241–252.

Bhandare, A., Hu, D., & Dule, N. (2019). Analyzing the brainstem circuits for respiratory chemosensitivity in freely moving mice. BioRxiv, 492041, 1–15.

Boulet, L. M., Tynko, M. M., Jamieson, A. N., Ainslie, P. N., Skow, R. J., & Day, T. A. (2016). Influence of prior hyperventilation duration on respiratory chemosensitivity and cerebrovascular reactivity during modified hypercapnic rebreathing. Experimental Physiology, 101(7), 821–835.

Bouten, N., & Tavenear, B. (2004). Stroke volume variation as an indicator of fluid responsiveness. Anesthesia and Analgesia, 98(1), 278–279.

Bukov, J. A., & Belousova, I. M. (2016). Ispol'zovanie dyhatel'nogo trenažera v uchebnom procezse po fiziologii vospitanija s cel'ju korrekcii ventilačionnych tipov u studentov podgotovitel'noj medicinskoj gruppy [The use of a breathing simulator in the educational process for physical education in order to correct ventilation types in students of the preparatory medical group]. Uchenye Zapiski Parnovskogo Universiteta imeni P. F. Lesgafta, 132, 49–54 (in Russian).

Burnum, J., Lukkinen, H., Elius, V., Remes, S., Kuesela, T., & Jarti, T. (2018). Eucapnic voluntary hyperventilation test in children. Clinical Physiology and Functional Imaging, 38(4), 718–720.

Cassaglia, A. P., Griffiths, R. I., & Walker, A. M. (2008). Sympathetic withdrawal augments cerebral blood flow during acute hypoxia in sleeping lambs. Sleep, 31(12), 1729–1734.

Ceyece, A., Grasso, R., Poltronieri, R., & Schena, F. (1995). Vascular resistance and arterial pressure low-frequency oscillations in the anesthetized dog. American Journal Physiology, 268(1), 7–16.

Chowdhury, S., Ng, G. A., Nuttall, S. L., Cootie, J. H., Ross, H. F., & Townsend, J. N. (2002). Nitric oxide and cardiac parasympathetic control in human heart failure. Clinical Science (London), 102(4), 397–402.

Cooley, R. L., Montano, N., & Cogliati, C. (1998). Evidence for a central origin of low-frequency oscillation in RR-interval variability and the regulations of its transformation with different influences (Il’in et al., 2003); it helps to simplify the description of the changes while retaining the most important properties of information. Thus, it can be argued that the output tone of the autonomic nervous system can modulate changes in human haemodynamics in breathing hypocapnia and affect the features of long-term changes after the cessation of this influence.

References

Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of the heart rate fluctuation: A quantitative probe of beat to beat cardiovascular control. Science, 213, 220–222.

Allan, P. D., Faulkner, J., O'Donnell, T., Lanford, J., Wong, L. K., Saleem, S., Woolley, B., Lammbrich, D., Stoner, L., & Tzeng, Y. C. (2015). Hemodynamic differences between different types of patients with cardiovascular disease. Physiological Reports, 3(11), e12602.

Appel, M. L., Berger, R. D., Satt, G. P., Smith, J. M., & Cohen, R. J. (1989). Beat to beat variability in cardiovascular variables: Noise or music? Journal of the American College of Cardiology, 14, 1139–1148.

Atiaoa, D., Pichot, V., Lacoste, L., Burelle, F., Lacour, J. R., & Chretien, J. C. (2007). Heart rate variability, training variation and performance in elite swimmers. International Journal of Sports Medicine, 28(5), 394–400.

Baevskij, R. M., Ivanov, G. G., Chirikov, L. V., Gavrilushkin, A. P., Dovgalakovsky, P. K., Bukov, J. A., Mironova, T. F., Priluckij, D. A., Semenov, A. V., Fedorov, V. V., Fleischman, A. N., & Medvedev, M. M. (2001). Analysis variability of time series at ultrasonic brain images using electromagnetic and radiotechnical methods [Analysis of heart rate variability when using different electrocardiographic systems]. Vestnik Arteriologii, 24, 65–87 (in Russian).

Bajmakanova, G. E. (2013). Interpretation of arterial blood gases. Pulmonology and Alergology, 2, 42–45 (in Russian).
