Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities

Jack A. Gilbert1*, Dawn Field2, Ying Huang3, Rob Edwards4,5, Weizhong Li3, Paul Gilna3, Ian Joint1

1 Plymouth Marine Laboratory, Prospect Place, Plymouth, United Kingdom, 2 NERC Centre for Ecology and Hydrology, CEH Oxford, Oxford, United Kingdom, 3 California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, California, United States of America, 4 Department of Computer Science, San Diego State University, San Diego, California, United States of America, 5 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America

Abstract

Background: Sequencing the expressed genetic information of an ecosystem (metatranscriptome) can provide information about the response of organisms to varying environmental conditions. Until recently, metatranscriptomics has been limited to microarray technology and random cloning methodologies. The application of high-throughput sequencing technology is now enabling access to both known and previously unknown transcripts in natural communities.

Methodology/Principal Findings: We present a study of a complex marine metatranscriptome obtained from random whole-community mRNA using the GS-FLX Pyrosequencing technology. Eight samples, four DNA and four mRNA, were processed from two time points in a controlled coastal ocean mesocosm study (Bergen, Norway) involving an induced phytoplankton bloom producing a total of 323,161,989 base pairs. Our study confirms the finding of the first published metatranscriptomic studies of marine and soil environments that metatranscriptomics targets highly expressed sequences which are frequently novel. Our alternative methodology increases the range of experimental options available for conducting such studies and is characterized by an exceptional enrichment of mRNA (99.92%) versus ribosomal RNA. Analysis of corresponding metagenomes confirms much higher levels of assembly in the metatranscriptomic samples and a far higher yield of large gene families with >100 members, ~91% of which were novel.

Conclusions/Significance: This study provides further evidence that metatranscriptomic studies of natural microbial communities are not only feasible, but when paired with metagenomic data sets, offer an unprecedented opportunity to explore both structure and function of microbial communities – if we can overcome the challenges of elucidating the functions of so many never-seen-before gene families.

Introduction

DNA sequence based metagenomics has become a standard tool for the analysis of natural microbial communities in marine environments [1,2,3]. It involves the sequencing of random community DNA from environmental samples and subsequent determination of taxonomic and protein-encoding gene diversity. However, questions of how natural bacterial assemblages respond to perturbations in environmental conditions, are better answered by analysis of community mRNA than genomic DNA [4].

Historically, metatranscriptomic studies have involved either the use of microarrays [5] or mRNA-derived cDNA clone libraries [6]. These approaches have produced significant insight into the metatranscriptome of different communities but have limitations when exploring the diversity of natural communities. Firstly, a microarray only gives information about those sequences for which it was designed and it is usual to screen for gene sequences that are already known (e.g. from a gene-library or metagenomic sources). Secondly, although transcript cloning avoids this problem through the random amplification and sequestering of environmental mRNA fragments, it introduces other biases; e.g. any cloned transcripts that encode toxic products or titrates host DNA-binding factors will skew the relative abundance of sequences.

More recently, the first metatranscriptomic studies using high-throughput sequencing technology (pyrosequencing) have been published [7,8,9]. Two studies of soil communities have sequenced total RNA for the purpose of exploring both community structure, through the analysis of ribosomal RNA (rRNA), and community
function, through the study of mRNA [7,8]. The first study of a marine microbial community metatranscriptome focused on mRNA analysis and achieved an enrichment of ~50% mRNA [9].

Ideally, if the study of mRNA is the prime purpose of a metatranscriptomic study, further enrichment is desirable. Here we present a study of a complex marine microbial metatranscriptome enriched to 99.92% mRNA [10]. Metatranscriptomes were generated from 4 samples taken at two time points in a replicated mesocosm (11,000 liters) study involving an induced phytoplankton bloom [10]. Pyrosequencing technology (GS-FLX pyrosequencer) was used to generate four metatranscriptomes and four corresponding metagenomes with an average sequence length of 215 bp from the middle and end time point in the phytoplankton bloom. This experiment provided an opportunity to obtain replicate samples to explore the use of this approach for detecting changes in the expression of genes over time. The primary focus of the mesocosm experiment was to study the response of marine microbes to the increase in ocean acidification that is resulting from dissolution of anthropogenic CO₂ [10] and these results will be described in detail elsewhere. The immediate purpose of this study was to 1) demonstrate the feasibility of obtaining highly enriched samples of mRNA (>90%) from these communities, 2) determine whether differences in expression could be identified between time points of this controlled experiment [10], and finally 3) to determine what proportion of the most highly expressed genes using such a methodology might be novel.

Methods

Sampling, cDNA synthesis and sequencing

Water samples were obtained from a replicated mesocosm study (two treatments, each in triplicate) established in coastal waters of a fjord close to Bergen, Norway (60.27°N; 5.22°E). Each mesocosm contained 11,000 L of coastal water and two of the six mesocosms were sampled for this study. To induce the phytoplankton bloom, nitrate and phosphate were added. Water samples were taken at the peak and immediately following the collapse of the phytoplankton bloom from both a high CO₂ and control mesocosm.

The nucleic acid extraction methodologies are briefly outlined in Gilbert et al. [10] but are fully described here. To isolate DNA and RNA, 15 L of water from each sample was filtered through a 140 mm diameter, 1.6 μm GF/A filter (Whatman), to reduce extraneous sequences resulting from random nucleotide incorporation [14] and to remove RNA contaminants. DNA and RNA were then isolated. 9.5 μL of the purified mRNA was then eluted in 25 μL of TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA) and was further purified with the MEGAclear™ kit (Ambion) to remove small RNAs and small contaminants. Purified mRNA was eluted in 10 μL of nuclease free water and stored at ~80°C until further analysis. 0.5 μL of the purified mRNA was then checked using the Agilent bioanalyser for removal of genomic DNA and ribosomal RNAs. The mRNA concentration was estimated using the Agilent bioanalyser software to average 450 ng μL⁻¹.

mRNA was estimated to be approximately 8% of total RNA isolated. 9.5 μL of the purified mRNA was then applied to a reverse transcription reaction using the SuperScript® III enzyme (Invitrogen) with random hexamer primers (Promega). The cDNA was treated with RiboShredder™ RNase Blend (Epicon) to remove trace RNA contaminants. To improve the yield of cDNA, 1 μL of each sample was subjected to random amplification using the GenomiPHI™ method (GE Healthcare) yielding approximately 4 μg of cDNA. GenomiPHI technology produces branched DNA molecules that are recalcitrant to the pyrosequencing methodology. Therefore amplified samples were treated with S1 nuclease using the method of Zhang et al. [13]. DNA and cDNA were then subjected to random amplification using the GenomiPHI method and were then subjected to random amplification using the GenomiPHI method and the reads from all eight samples were clustered (Table 1) as they include exact duplicates and failed sequences that are replete with uncharacterized nucleotides. Metatranscriptomic and metagenomic data sets were deposited in NCBI's Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE10119. All data is also deposited with the Short Reads Archive (NCBI) under accession number SRA000266. These datasets are also available with richer annotates in ISATAB format [14] compliant with the “Minimum Information about a (Meta) Genome Sequence” (MIGS) specification [15].

Clustering of DNA and mRNA and prediction of partial ORFs (pORFs)

Clustering analysis was performed on the raw reads and translated peptide sequences (see below) using the CD-HIT package [16]. The reads from all eight samples were clustered together with CD-HIT-EST program. Sequences were clustered if the identity was ≥95% (++ or +− strand) and the length of the alignment was ≥40 bp and ≥80% length of the shorter sequence. The clustering results show the internal structure of the combined dataset including number of non-redundant sequences, distribution of clustering, number of singletons, etc. The same analysis was applied to each individual sample by counting only the sequences from that sample. Results are shown in rows 5–11 in Table 1.
Table 1. Comparison of DNA and mRNA from samples from mid- and post-phytoplankton bloom.

	Mid-Bloom	Post-Bloom	Combined data								
	DNA-High CO₂	mRNA-High CO₂	DNA-Present Day	mRNA-Present Day	DNA-Present CO₂	mRNA-Present CO₂	DNA-Present Day	mRNA-Present Day	All DNA	All mRNA	All samples
Total size (Mbp)	47,289,282	30,567,377	38,021,523	59,316,369	2,810,955	68,187,679	26,982,195	205,784,939			
Total No. of reads	209,073	131,089	134,915	162,871	96,201	304,020	116,192	506,353			
Average length (bp)	226	233	229	233	172	226	224	232			
% of rRNA genes	0.33	0.16	0.31	0.1	0.17	0.03	0.24	0.03			
Absolute number of unique nucleotide sequence clusters	170,580	65,717	112,459	67,283	257,375	9,349	232,729	10,703			
Normalized number of clusters	86,791	50,320	84,096	67,283	43,213	9,349	87,112	9,281			
Total number of reads in top cluster	12	988	23	932	19	20	2,019	191,822			
Clustering: 1 sequence	141,340	56,126	94,386	55,691	16,545	9,281	183,028	224,198			
2–9 sequences	29,232	8,824	18,072	10,367	8,106	9,281	49,681	238,655			
10–99 sequences	8	652	1	1,032	77	20	673	1,083,644			
100+ sequences	0	115	0	193	0	247	0	619			
SEED Subsystem hits	130,567	75,884	120,141	83,076	161,789	175,477	18,315	n/a			
Total pORFs	419,565	284,665	279,061	345,502	532,373	637,896	1,868,895	1,157,305			
Unique pORFs at 95%	358,705	140,763	242,317	147,697	151,266	183,028	437,149	494,604			
Protein clusters	321,839	120,220	223,888	121,547	382,762	452,754	1,083,644	1,228,601			
Protein clusters with similarity to:	11	296	3	468	29	516	31	695			
PFAM	9	19	1	23	14	56	13	379			
TIGRfami	9	0	1	0	12	0	7	476			
COG	10	2	1	0	18	0	17	20			
Number of novel Protein clusters	0	276	2	444	9	447	12	609			

Size, clustering and annotation data were generated by CAMERA. rRNA and subsystem hits were generated by SEED.

*Analysis of sequences against the Ribosomal Database Project II (RDP-II) and the European Ribosomal large subunit (LSU) database.
*Based on clustering at 95% identity over 80% length of a sequence and over 120 bp.
For direct comparison of samples, individual rarefaction analysis, by R (http://www.r-project.org/) and the vegan package (http://cc.oulu.fi/~jarioksa/softhelp/vegan.html), was used to estimate the number of clusters in each sample after adjusting sample size of each dataset to be equivalent to the number of reads in the smallest dataset (mRNA - High CO₂).
Partial Open Reading Frames (pORFs) from six reading frame translation from all reads using translation table 11, starting at the beginning of a read or first ATG after previous stop codon, ending at the end of a read, or at a stop codon and being at least 30 contiguous amino acids.
Total pORF reads clustered at 95% identity of over 80% length of sequences.
Clusters are identified using the representative sequences of each cluster from the 95% step to cluster at 60% identity of over 80% length of sequences.
The dominant clusters (≥10 non-redundant sequences) with the exclusion of spurious pORFs.
Protein families database.
The Institute for Genomic Research protein database.
NCBI clusters of orthologous groups database.
With ≥10 non-redundant clustered sequences excluding spurious ORFs.
N/a – not analyzed.
doi:10.1371/journal.pone.0003042.t001
ORFs (including pORFs) were then predicted. Since genes cannot be reliably predicted from such short reads, we applied the methodology used in the Global Ocean Survey (GOS) study [2,3], calling pORFs from all six reading frames. As the current study had overall shorter reads than the GOS study (average of 215 bp instead of 822 bp) pORFs had to contain at least 30 amino acids. In total, 3,026,200 pORFs were detected. The approach of six reading frame translation can result in many non-coding (shadow) pORFs, or spurious pORFs. However, this is less likely with short sequence data because the translations from non-coding frames are usually too short (due to random occurrence of stop codons) to rank as pORFs using our selected cut-off threshold.

The protein gene coding density, according to the most recent NCBI RefSeq database for microbial organisms (ftp://ftp.ncbi.nih.gov/refseq/release/release-statistics/RefSeq-release27.01062008.stats.txt), is about 0.25 million amino acid per 1 million base pairs (bp). This study, which obtained 162 million amino acids from 323 million bp of sequence, shows only 50% of these pORFs were spurious. Clustering of pORFs can further help to exclude spurious pORFs which are more likely to remain singletons.

The pORFs were clustered with two-step CD-HIT runs. At the first step, pORFs were clustered at 95% identity over 80% of sequence length in order to identify non-redundant sequences. The non-redundant sequences were further clustered at 60% identity, over 80% of sequence coverage, to find clusters of homologous pORFs or protein families (see row d, e, f in Table 1). Here, we only use the non-redundant sequences to count the size of each cluster so that the large clusters reported in row k in Table 1 contain diverse sequences. The same clustering techniques were also applied to the data from the metatranscriptomic study of Frias-Lopez and colleagues [9] (Table S1).

Dividing pORFs into ‘predicted,’ ‘spurious’ and ‘putative’

The clusters of pORFs were annotated by comparison to the PFAM database (http://pfam.sanger.ac.uk/) by Hmmer, TIGRFam database (http://www.tigr.org/TIGRFAMs/) by Hmmer and the COG database (http://www.ncbi.nlm.nih.gov/COG/) by RPS-BLAST (reversed PSI-BLAST). All analyses were annotated with an expect value cut-off of 0.001. Hmmer analysis was performed in fragmental mode, and each hit also had to pass the TC score. The pORFs with significant matches to these reference databases were confirmed as genes, while the pORFs that overlapped with them from a different reading frame (the shadow pORFs) were deemed spurious pORFs. From this final analysis of the 3,026,200 pORFs, 494,253 could be confirmed as predicted proteins, 459,150 excluded as spurious pORFs, and the remainder (2,072,797) marked as “putative proteins”. The combined predicted and putative proteins were used for subsequent analysis.

PCR detection of dominant orphan gene clusters in environmental DNA and mRNA

To validate the presence of highly expressed orphaned sequence clusters in the environment we randomly selected 27 of the most highly expressed nucleotide clusters. It was necessary to establish the presence of these sequences in both original DNA samples and cDNA samples to show they were not artefacts of cDNA amplification by GenomiPHI. To further cluster the 609 dominant nucleotide clusters (>100 sequences per cluster) for the purpose of designing PCR primers, all clusters were re-clustered at 95% identity over at least 40 base pairs. This allowed sequences with small 5′ or 3′ overlaps to be clustered together and increased the probability that the sequences assayed represented different transcripts. This reduced the number of dominant clusters from 609 to 85 (Table S2) and resulted in a significant increase in the number of clusters with more than 5,000 reads each. The maximum number of sequences in the largest cluster was 31,642 and 15 clusters now contained more than 5,000 reads. This provided a smaller pool of sequences for analysis and reduced the likelihood of amplifying similar sequences.

Primers were designed to screen 27 of these potential transcripts using the batch Primer3 online interface (http://probes.pw.usda.gov/cgi-bin/batchprimer3/batchprimer3.cgi), with the following conservative rules. First, we targeted the ‘representative’ sequence of each cluster (as opposed to the consensus sequence) to maximize the length of the query DNA sequence and avoid use of chimeric sequence that could have resulting from false assembly of the original 609 clusters. Second, we iteratively explored a range of parameters to find a rule that allows us to automatically create primers (no manual inspection required) for all 85 loci using a single set of optimality criteria that were as stringent as possible. In the end, we took the default parameters of the interface and optimized the following parameters: annealing temp (55°C), overall length of product (100 bp), primer size (20 bp), G+C content (50%) and minimum “maximum self-complementary”. Exact optimality criteria used for the selection of each batch of primers is available from the authors.

Individual transcript sequences were amplified by PCR from the environmental DNA used for the metagenomic analyses (co-extracted with the mRNA used for the metatranscriptomic approach), purified mRNA prior to RT-PCR and cDNA prior to GenomiPHI amplification. Each of the 54 primers (http://nbcr.noa.ac.uk/nbcrfs/public/Joint/metatranscript_primers.xls) were diluted to a working concentration of 10 pmol µL⁻¹. Approximately 10 ng of environmental DNA, cDNA or mRNA was added to a 25 µL PCR reaction with final concentrations of 1× PCR buffer (Promega), 2.5 mM MgCl₂, 0.2 mM deoxy nucleoside triphosphates (Invitrogen), 0.4 pmol of each primer, and 1 unit of Taq DNA polymerase (Promega). Negative controls used were Escherichia coli K12 genomic DNA and sterile water. Reactions were cycled with a PTC 1000 thermal cycler (MJ Research) using the following conditions: 94°C for 2 minutes, 30 cycles of 94°C for 1 minute, 55°C for 1 minute, 72°C for 2 minutes, and a final extension of 72°C for 10 minutes. Products were visualised by agarose gel electrophoresis (1.8%).

Results and Discussion

We demonstrate the feasibility of conducting metatranscriptomic studies on RNA samples highly enriched for mRNA from natural microbial communities. This is the first time such a high level of enrichment has been achieved in a metatranscriptomic study (Table 2). Eight samples, four DNA and four mRNA, were processed producing a total of 323,161,989 bp (117.4 Mbp of mRNA and 205.7 Mbp of DNA). This exceeds previously published metatranscriptomic studies because of the inclusion of replicated samples. By further contrast, this is equivalent to 5.1% of the total bp sequenced, and 19% of the number of reads of the recent Global Ocean Survey (GOS) sequencing effort [2]. Here we present an analysis of these data that confirms the high level of enrichment for mRNA and the high levels of assembly of mRNA sequences compared to the DNA of the metagenomes; we also speculate on the potential coverage of the natural metatranscriptome sampled and discuss potential biases introduced by this methodology and provide evidence against the large-scale generation of mosaics and artefacts by the use of GenomiPHI amplification. We then discuss the proportion of these mRNAs that match protein databases, discuss the most abundant ‘known’ clusters, and compare the metatranscriptome
Table 2. Comparison of methods described by current manuscript with the three most recent methods for analysing microbial metatranscriptomes.

Method	Leininger et al [7]; Urich et al [8]	Frias-Lopez et al. [9]	Gilbert et al [10] (and this study)
Habitat	Soil (Nutrient-poor, sandy-soil)	Marine (oligotrophic ocean)	Marine (eutrophic coastal waters)
Total biological samples	1 (1 metatranscriptome)	1 (1 metatranscriptome, 1 metagenome)	4 (4 metatranscriptomes, 4 metagenomes)
Total DNA/RNA (Millions bp)	~25.32	~60.1	~322.2
RNA purification methodology	Griffiths et al [11] method from 6 g of soil	miVana RNA isolation kit (Ambion) from 1 L of sea water	Neufeld et al, [12] method and MinElute RNA cleanup (Qiagen) from 15 L of seawater
mRNA isolation and amplification methodology	N/A *	mRNA amplification using MMessageAmp II-Bacterial kit (Ambion)	MicrobeExpress and Megaclear kit (Ambion), GenomiPHI amplification (GE Healthcare)
RNA sequencing	GE20-pyrosequencing	GS-20 pyrosequencing	GS-flx pyrosequencing
Average length	98 bp	112 bp	215 bp
Yield of mRNA sequences	8.2%	47.1%	99.9%
Yield of orphaned sequences	22% (60% of mRNA assigned tags) 1	89.5% 2	87% 2

1 based on hits to nucleotide sequences using the MG-RAST Seed database.
2 based on hits to potential open reading frames using the PFAM, TIGRfam and COG protein databases.
* Not performed, rRNA and mRNA expressly sequenced together to examine both community structure and function.

To determine the similarity of each dataset to each other, total nucleic acids between each database and total partial ORFs (pORFs) between each database were compared to provide an indication of the number of homologous sequences shared between each pair of datasets (Table S3). This demonstrated that each DNA dataset shared approximately 10% to 25% of the nucleic acid sequences and 20% to 33% of the pORF sequences. This suggests that the majority of sequences within each group were unique (singletons) to each dataset; a similar result was seen in the Global Ocean Survey where the metagenomes of different regions were compared [2]. The comparison between mRNA datasets showed a clear delineation between mid-bloom and post-bloom, with mid-bloom mRNA sharing ~50% of their nucleic acid transcripts and post-bloom sharing >95% of their nucleic acid transcripts. This result was consistent when the datasets were compared between time points, with ~50% of mid-bloom transcripts being homologous with ~90% of post-bloom transcripts (Table S3). We postulate below that this difference could be due to an over-abundance of viral transcripts in the post-bloom environment causing the metatranscriptomes to become more homogenous.

It was expected that the metatranscriptome from the post-bloom environment would be more similar to the metagenome from the post-bloom environment than the mid-bloom samples. The comparison clearly demonstrates this (Table S3). The mid-bloom metagenomes also had greater homology to the mid-bloom metatranscriptomes than the post-bloom metatranscriptomes.

Clustering of DNA and mRNA sequences confirms higher levels of assembly of mRNAs and differences between time points

To determine the possible level of assembly of sequence clusters, total DNA and mRNA sequences were analyzed using a metagenomic sequence analysis pipeline developed at CAMERA (Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis [20]) (access to this pipeline can be arranged by contacting the corresponding author). The number of unique sequences was calculated by clustering un-assembled sequence reads as described in the Materials and Methods [16].

As shown in Table 1 an average of 79% of the DNA-derived metagenome sequences from both mid- and post-bloom samples were unique (singletons). This confirms the low level of coverage of the genomes in this sample and the high diversity. In contrast, the mRNA-derived sequences showed much higher levels of clustering, with an average of 45% of the sequences from the mid-bloom (time point 1) and only 9.3% of the post-bloom sequences (time point 2) being unique (Table 1) (calculated by dividing the total number of unique sequence clusters by the total number of
sequence reads). Strikingly, only five of the 609 largest nucleotide-level mRNA clusters (those with ≥100 sequences) had an observed match in any of the DNA metagenomes. This low level of homology between mRNA sequences and the community DNA metagenome was previously noted [9] and is expected given the sparse sequence coverage for the much larger metagenome. The metagenome was previously noted [9] and is expected given the low level of homology between mRNA sequences and the community DNA metagenome. This low level of homology as it is possible for any of the RNA clusters to actually come from the same transcript. For example, an mRNA cluster from the first 25% of a given gene (average gene length ~950 bp [21]) would appear to have no match even if the DNA library captured the other 75% of the gene. Unfortunately, there is no way to resolve this issue given the small size of sequences currently generated with pyrosequencing methodology.

To directly compare the level of assembly (diversity) in the eight samples, individual rarefaction was used to normalize the number of clusters to an equivalent sampling effort (i.e. that of the smallest sample) (Table 1). The number of clusters in all four DNA samples was surprisingly uniform and was double the number of clusters from the mid-bloom and nine times from the post-bloom mRNA samples. These results show that the metatranscriptome is smaller than the metagenome, assembles better, and that the expression of genes is different for mid-bloom and post-bloom communities. Of these an average of 0.23% of mid-bloom and 2.3% of post-bloom transcript clusters included more than 100 sequences. In other words, the transcription profile became more homogenous in the post-bloom situation.

Based on this clustering, we compared the total number of clusters found to the total number expected within a given water sample. To generate a rough estimate of potential metatranscriptome coverage, we used the approach of Poretsky et al. [6] to estimate that each water sample contained ca. 80,000 unique transcripts. This estimate is based on the observed number of dominant taxa and bacterial abundance (data not shown). This is the same order of magnitude as the number of unique mRNA sequences identified (Table 1) suggesting that this study may have achieved a reasonable coverage of the community metatranscriptome (in comparison, the metagenomes were vastly under-sampled). This is clearly an upper estimate, and given that the top 609 nucleotide clusters could be collapsed with less conservative clustering criteria into 85 larger clusters (see Materials and Methods), the actual number of transcripts could be 7-fold or more lower. Indeed the real value could be even lower, since one functional transcript may be coded for by more than one cluster (Table 3). We have previously shown this for another gene, phnA, that encodes phosphonooacetate hydrolase; the phnA1 from one organism had twelve hits within the metagenomic data, which were spread out over the gene [10]. Using the clustering methodology outlined here, this method would have identified this one gene as belonging to six different clusters due to overlap between the 12 sequences.

Evidence against potential biases in detecting naturally occurring mRNA clusters introduced by GenomiPHI

There are two key biases that might be introduced using the methodology presented here. Firstly, the time required to concentrate the community by filtration is longer than the half-life of mRNA, but this is true of most methods used to analyze the metatranscriptome of aquatic samples [6]. Recent studies however, have used smaller volumes (e.g. ~1 L [9]), and the current methodology would still be effective using these smaller volumes. However, in the current study this methodology was run concomitantly with other analyses that required a significant amount of DNA, e.g. fosmid library production [10].

Secondly, amplification of cDNA using GenomiPHI could introduce artefactual sequences (although evidence of such a bias for transcriptome amplification does not exist [22]). Such artefacts could include mosaic or artefactual sequences that could explain the large number of orphan transcripts found in this study. We therefore performed four types of subsequent analyses to attempt to validate these clusters.

Firstly, to generate empirical evidence of the presence of these clusters in the original water samples and to test for chimeras, a PCR analysis was performed that targeted 27 of the most highly expressed orphan clusters. PCR reactions were performed on 1) the original environmental DNA preparations, 2) unamplified cDNA and 3) mRNA (this was a negative control, since it is DNA-free). Amplification products were detected for all 27 selected target sequences in at least one of the environmental DNA samples (Table S2). None of the sequences could be detected in any of the 4 mRNA samples (negative controls) confirming an absence of contamination of DNA. All 27 transcripts were found in all four cDNA samples. For the mid-bloom time points, 12 and 11 of the transcripts respectively were identified in the high CO2 and control environmental DNA samples (Table S2). Some, but not all, of these transcripts were of lower abundance when normalized to sequencing effort (data not shown).

Secondly, this is the first published metatranscriptomic study to include biological replicates (Table 2) making it possible to compare observed transcripts generated from independent samples using the same methodology. Of the four metatranscriptomes analyzed, transcript clusters showed similar abundance in both peak bloom samples and both post bloom samples (Table 1, Table S2). Since all four metatranscriptomes were generated using the same mRNA enrichment methodology, this level of observed similarity of abundant transcripts would not be expected by chance and provides strong evidence that the difference seen between time points in both the treatment and control samples are due to biological differences in the composition of the community within the bloom (Table S2).

Thirdly, we compared the functional profiles of the metagenomes and metatranscriptomes (Fig. 1). All eight data sets were annotated using similarity matching against SEED subsystems [17]. While this approach only validates transcripts with observable homology to genes in known subsystems, it still shows that the metatranscriptome functional profile does not significantly differ from that of the metagenome (one-way Anosim R = 0.271, p = > 0.05). For this analysis, the number of sequences with significant identity to each metabolic gene in a functional category in the SEED subsystem database were normalised to the sequencing effort for each sample (Fig. 1) and sequences which could not be annotated in this way were not included.

Fourthly, we compared the level of assembly and novelty between our four mRNA and DNA samples and that of the only previously published metatranscriptomic study of a marine microbial community [9]. All samples were translated in all six reading frames into contiguous peptides of at least 30 amino acids without a stop codon, spurious pORFs were removed, leaving 2,567,050 predicted or putative pORFs (See Materials and Methods, Table 1). These pORFs were clustered to assess the diversity of function from each sample, and were compared against known databases to provide basic annotation of known proteins and potential identification of novel pORFs. As shown in Table 1, the majority of the highly clustered (≥10 non-redundant sequences per cluster) transcripts (~94% mid-bloom and ~87% post-bloom) were novel clusters that may represent uncharacterized proteins.

The mRNA samples from the current study yielded 1 to 2 orders of magnitude more novel protein clusters than their corresponding DNA samples when normalized to size (Table 1). Surprisingly, this high level of diversity was actually exceeded by the previously
Table 3. Top ten most abundant identifiable transcripts identified from pORF clustering.

Rank	COG	No. of Seqs (nr)	No. of clusters	Annotation	TIGRfam ID	No. of Seqs (nr)	No. of clusters	Annotation	PFAM ID	No. of Seqs. (nr)	No. of clusters	Annotation
1	COG0209	464 (149)	12	Ribonucleotide reductase, alpha subunit	TIGR02505	526 (190)	13	ribonucleoside-triphosphate reductase, adenosylcobalamin-dependent	PFO2407	27147 (815)	44	Putative viral replication protein
2	COG0443	330 (156)	11	Molecular chaperone	TIGR02348	359 (158)	11	chaperonin GroL	PFO0910	15101 (595)	28	RNA helicase
3	COG0459	359 (158)	11	Chaperonin GroEL (HSP60 family)	TIGR02350	330 (156)	11	chaperone protein DnaK	PFO0005	372 (212)	18	ABC transporter
4	COG0376	96 (46)	9	Catalase (peroxidase II)	TIGR01369	214 (108)	9	carbamoyl-phosphate synthase, large subunit	PFO0004	326 (149)	13	ATPase family associated with various cellular activities (AAA)
5	COG0458	214 (108)	9	Carbamoylphosphate synthase large subunit	TIGR02188	236 (120)	9	acetate-CoA ligase	PFO0012	330 (156)	11	Hsp70 protein
6	COG5265	236 (126)	9	ABC-type transport system involved in Fe-S cluster assembly, permease and ATPase components	TIGR00630	224 (103)	8	excinuclease ABC, A subunit	PFO0118	359 (158)	11	TCP-1/cpn60 chaperonin family
7	COG0086	210 (96)	8	DNA-directed RNA polymerase, beta subunit/160 kD subunit	TIGR00936	257 (118)	8	adenosylhomocysteine	PFO0006	292 (122)	10	ATP synthase alpha/beta family, nucleotide-binding domain
8	COG0178	224 (103)	8	Excinuclease ATPase subunit	TIGR02013	219 (82)	7	DNA-directed RNA polymerase, beta subunit	PFO0009	399 (148)	10	Elongation factor Tu GTP binding domain
9	COG0499	257 (118)	8	S-adenosylhomocysteine hydrolase	TIGR02506	267 (78)	7	ribonucleoside-diphosphate reductase, alpha subunit	PFO2867	326 (101)	9	Ribonucleotide reductase, barel domain
10	COG0085	219 (82)	7	DNA-directed RNA polymerase, beta subunit/140 kD subunit	TIGR01242	178 (84)	6	26S proteasome subunit P45 family	PFO0501	228 (116)	8	AMP-binding enzyme

This table only includes the pORF clusters with > 10 non-redundant sequences. No. of Seqs. refers to the number of sequences which contribute to that cluster, in brackets are the number of non-redundant sequences which contribute to that cluster.

doi:10.1371/journal.pone.0003042.t003
published Frias-Lopez study [9]. Clustering of that data according to the same criteria showed that ~98% of metatranscriptomic sequences were unique (Table S1). To directly compare the annotation of pORFs for this study with that of the Frias-Lopez study [9], we applied the same clustering techniques for the translated proteins to their raw data (Table S1). A total of 1,826 pORF clusters containing >10 non-redundant sequences were found (DNA, rRNA and mRNA) and 865 pORF clusters remained after all rRNA clusters were removed. If the values for novel protein clusters are normalised to sequencing effort, we see that the Frias-Lopez study identified 1.8× the number of novel protein sequences per sequencing effort when compared to the current study. This phenomenon can be partially explained by the differences in read lengths between the studies (Table 2), as longer read lengths are more likely to be positively annotated than shorter read lengths [23,24].

Differences between sequence abundances in metatranscriptomes and metagenomes

The benefits of applying both metatranscriptomic and metagenomic analysis to the same biological samples include the potential to detect differential expression of mRNAs (function) between communities under different environmental conditions, while the metagenome (DNA) can also provide a frame-of-reference for the total potential of the community metatranscriptome. Using the proportion of DNA and mRNA sequences that had homology to known proteins, we were able to make phylum-level taxonomic assignments using annotations from the SEED databases [18] (Fig. 2). Comparison of the 4 DNA and 4 mRNA samples shows them to be significantly different in taxonomic composition (by one-way Anosim analysis, R = 0.385, p<0.03). Despite this, comparisons of all subsets of the data failed to reveal any significant differences (perhaps due to small sample sizes – data not shown). This suggests that changes seem in mid- and post-bloom time points are due more to changes in particular genes within taxa, than large-scale changes in the abundances of phyla-level taxonomic groups. Some potential qualitative changes can be seen within these patterns that may contribute to this significant difference between DNA and mRNAs including an increased number of transcripts from the Bacteroidetes phylum (an important group in macromolecule degradation) during the mid-bloom sample compared to its proportion of the same sample of DNA (Bacteroidetes was only the 4th most abundant metagenomic group but had the 3rd highest transcriptional activity) (Fig. 2).

The most abundant ‘known’ transcripts found in the metatranscriptome and metagenome

The most abundant ‘known’ pORF clusters included a large number of housekeeping genes. All pORF clusters with >10 non-redundant sequences were annotated by comparison to the PFAM, TIGRfam and COG databases (Table 3). Whilst the PFAM annotations yielded significant numbers of viral proteins, viral sequences were absent from both the TIGRfam and COG annotations (viral annotations discussed in next section).

Figure 1. Relative abundance of sequence types identified for each sample. Number of sequences per metabolism subsystem were normalised to sequencing effort for each sample and then relative abundance for each was calculated as a percentage. doi:10.1371/journal.pone.0003042.g001
Among the most abundant sequences with annotations are stress-induced chaperonin proteins (Table 3), which are potentially expressed in response to the low pH or high CO₂ concentration stress found in the ocean acidification mesocosm samples. This is corroborated by the distribution of sequences with ~60% (1.4× increase) of the chaperonin transcript sequences coming from the high CO₂ mesocosms. This is mirrored by the metagenomic data in which ~55% (1.2× increase) of the chaperonin gene sequences are found in the high CO₂ environment. However, it is possible that these proteins are induced when the bacteria are being filtered, and hence this could be an artefact caused by the sampling procedure; using smaller starting volumes should alleviate this. Neither of these proteins were identified as being abundant in the dominant pORF clusters (>10 non-redundant sequences) from study by Frías-Lopez et al. [9] which utilised only 1 L sampling volumes and may have reduced stress on the bacteria by reducing the filtration time.

A range of proteins considered to be ubiquitous in cellular processes also ranked among the most abundant sequences that could be annotated. These included ribonucleotide reductase proteins (COG0209, TIGR02505, TIGR02506, PF02867), which were matched in all 3 reference databases (Table 3), as were proteins involved in ABC transporters, ATPase activity and AMP-binding (COG3265, TIGR00630, PF00004, PF00005, PF00006, PF00501). RNA polymerases (COG0085, COG0086, TIGR02013) were only assigned by the COG and TIGRFam
Novel Marine Metatranscripts

Table 4. BLASTN comparison of total nucleic acids, representative sequences from nucleic acid clusters and representative sequences from pORF clusters from this study and the Frias-Lopez study [9].

	DNA, DNA nuc-clusters	DNA pORF clusters	mRNA, mRNA nuc-clusters	mRNA pORF clusters
Frias-Lopez et al [9]	44261 (10.7)	102637 (10.3)	19359 (4.67)	56835 (11.2)
DNA nuc-clusters	35575 (10.6, 8.6)	59918 (9.5, 6)	15564 (4.65, 3.75)	11698 (8.8, 2.3)
DNA pORF clusters	59774 (15, 14.4)	40002 (3.7, 4)	21302 (5.5, 5.1)	17672 (7.5, 3.5)
mRNA	64609 (52.4)	18602 (1.9)	58123 (45)	2680 (0.53)
mRNA (rRNA removed)	15179 (24.1, 11.8)	15598 (1.57, 1.6)	13121 (20.8, 10.2)	2162 (0.43, 0.42)
mRNA nuc-clusters	27094 (38.7, 21.1)	10689 (1.7, 1.07)	22289 (31.9, 17.4)	1942 (1.45, 0.38)
mRNA nuc-clusters (rRNA removed)	8338 (19, 6.5)	9631 (15, 1)	6171 (14, 5)	1624 (1.2, 0.3)
mRNA-pORF clusters	4330 (9, 3.4)	5484 (0.5, 0.55)	2372 (5, 1.8)	1736 (0.7, 0.34)

For each comparison two values are given, the first value is the percentage of Frias-Lopez data which is homologous to data from the current study; the second is the percentage of data from the current study which is homologous to the Frias-Lopez data. Comparisons were performed using BLASTN with the current studies dataset as reference database, and the Frias-Lopez dataset as the query. The (b-v) parameter in BLASTN was set to 40,000. For every query sequence, every similar sequence in the reference dataset is identified. Sequences from both datasets that meet the criteria of an E-value <0.001 were included. Percentage values in parentheses are calculated by dividing each value by the total number of sequences/representative sequences for each dataset. For the Frias-Lopez data: Total DNA = 414,323, Total DNA nuc-clusters – 334,940, Total DNA pORF clusters – 390,599, Total mRNA = 128,234, Total mRNA (rRNA removed) - 63,111, Total mRNA nuc-clusters – 69,948, Total mRNA pORF clusters – 1,083,644, Total mRNA – 506,353, Total mRNA nuc-clusters – 133,447, Total mRNA pORF clusters – 238,655. Percentage values in bold are normalised by divided each value through the Total DNA or Total RNA for the relevant study. Nuc-cluster refers to nucleotide clusters. doi:10.1371/journal.pone.0003042.t004

Annotations. Other abundant pORF clusters (>10 non-redundant sequences) encoded catalases/peroxidases (COG0037), carboxymethyl-hexose synthase (PFAM database (12.7% in total)).

Further validation of metatranscriptomes and metagenomes by direct comparison to an oligotrophic ocean metatranscriptome

Both the validity and nature of mRNA transcripts from this experiment were explored by direct comparison with the Frias-Lopez data set (Table 2) [9]. There was some overlap of sequences, including both house-keeping genes and a few of the most highly expressed novel orphan clusters. But the analysis also highlights the extensive diversity between these samples which, while both taken from the marine environment, came from two distinct marine habitats (Table 2).

Specifically, comparisons were generated using BLASTN (Table 4) for 3 versions of the two data sets: 1) total sequences, 2) representative mRNA sequences from each nucleotide cluster and 3) representative sequences from each pORF cluster. Both mRNA and DNA sequences were compared separately. Values for the Frias-Lopez cDNA following removal of the rRNA sequences were also used for comparison. The most abundant clusters of the current study were also compared to the Frias-Lopez full mRNA and DNA datasets (Table 5).

About 10% of the sequences in the two metagenomes are shared, but the shared proportion of DNA pORFs is higher (15%) for the Frias-Lopez study and considerably lower (3.7%) for the current study. Interestingly, this trend is confirmed by the DNA-mRNA comparisons in which the total proportion of DNA matches is always far lower than the proportion of mRNA (Table 4). At the highest level of assembly, comparisons of pORF clusters reveal that 9% and 7.5% of the mRNAs are shared with the relevant metagenome. Smaller proportions of the pORF mRNAs of each study (5.0% and 0.7%) showed similarities to each other suggesting that different subsets of the “potential metatranscriptome” of the two communities are expressed in the two habitats.
Table 5. BLASTN comparison of the reference sequences of the abundant nucleic acid clusters (>10 and >100 sequences per cluster) from the current study to the total combined mRNA and DNA sequences from the Frias-Lopez et al [9] study.

Frias-Lopez et al [9] study	mRNA homologues (%)	DNA homologues (%)	
Current Study	mRNA clusters (10–99 sequences)	107 (2.9%)	326 (9%)
85 nucleotide clusters (>100 sequences)	1 (1.2%)	4 (4.7%)	

The 3649 clusters have >10 sequences and the 85 clusters are ‘contigs’ of all 609 clusters with >100 sequences (as described in the Materials and Methods). doi:10.1371/journal.pone.0003042.t005

Shared sequences are expected to include housekeeping genes, as suggested by the homology between many of the largest identifiable clusters found in both studies (Table 4 and Table 6). Similarities among the mostly highly expressed abundant clusters are still very rare (Table 5). This could be a result of niche-specific genes (or post-bloom specific genes in this study) and/or the heavy viral load associated with the collapsing algal bloom conditions for the current study. This viral load hypothesis is potentially confirmed by an observed anomaly seen in Table 4. The relative percentage of total nucleic acid comparisons is higher than the comparison between nucleic acid clusters (nuc-clusters) for each analysis except when comparing our mRNA nucleotide clusters (mRNA nuc-clusters). The relative percentage increases from 0.53% to 1.45%, and is seen again when comparing against the Frias-Lopez mRNA following removal of the rRNA, whereby the values are 0.43% increasing to 1.2% (Table 4). We hypothesise that this anomaly is caused by the major clusters of the Frias-Lopez mRNA homolog’s being singletons in our mRNA data, hence on clustering, their contribution to the percentage calculation is more significant. This highlights the fact that the abundant sequences in our mRNA data are not abundantly expressed in the Frias-Lopez data, which is to be expected if they are viral sequences.

The number of protein sequences that can be annotated through comparison to PFAM, TIGRfam or COG was approximately 2.5% prior to removal of rRNA sequences and 4.3% following removal. This is far lower than the 36.5% from our study which could be annotated (8.5 fold more) (Tables 2 and Table S1). When comparing the annotation of the top 10 most abundant pORF clusters (>10 non-redundant sequences) found in the Frias-Lopez studies (Table 6) (by PFAM), 7 (by TIGRfam) and 5 (by COG) clusters are found in both studies as abundant clusters (>100 sequences per pORF cluster). For example, the 1st and 2nd most abundant PFAM annotation for the Frias-Lopez study (PF00004) are the 4th and 10th most abundant PFAM annotation for the current study (Table 3 & 6).

Summary

The ability to assess natural metatranscriptomes of complex microbial communities under different environmental conditions represents a significant advance in our ability to link community structure with function and DNA genotypes (sequences) with corresponding phenotypes. The approach presented here expands the available methodologies for assaying metatranscriptomes with >99% enrichment from total RNA (by removal of ribosomal RNA) and demonstrates that changes in expression of transcripts can be observed between time points. The outputs of this study include a large number of novel, highly expressed sequence clusters and confirmation that the majority of these clusters are orphaned and therefore further prove the utility of this approach for use in discovering novel genetic capacity [9]. The computational analyses produced in this study also demonstrates the critical importance of access to public portals, namely CAMERA [20] and SEED [17,18], for the processing of such vast quantities of complex data.

Supporting Information

Table S1 Comparison of DNA and mRNA from samples collected by Frias-Lopez et al [9].

Table S2 Information about the 85 most abundant nucleotide clusters. Including size, number of sequences in cluster, distribution of abundance of mRNA and DNA sequences within each cluster and the presence or absence of those clusters for which PCR amplification from environmental DNA was performed. T1B1 refers to high CO2 from the mid-bloom; T1B6 refers to present day CO2 from the mid-bloom; T2B1 refers to high CO2 from the post-bloom; T2B6 refers to present day CO2 from the post-bloom.

Table S3 Number of (A) nucleotide sequence and (C) partial ORF sequence homologues found between the eight datasets from the current study. Percentage of (B) nucleotide sequence and (D) partial ORF sequence homologues found between the eight datasets from the current study. Percentage of (B) nucleotide sequence and (D) partial ORF sequence homologues found between the eight datasets from the current study. T1B1 = Mid-Bloom, High CO2. T1B6 = Mid-Bloom, Present Day. T2B1 = Post-Bloom, High CO2. T2B6 = Post-Bloom, Present Day. pORF percentages are based on total pORFs, denoted d in Table 2.

Acknowledgments

The authors would like to thank Margaret Hughes and Neil Hall from the NERC / University of Liverpool Advanced Genomics Facility, Simon Thomas, and Bonnie Laverock from Plymouth Marine Laboratory and special acknowledgement to Ludovica Marzo at CEH for her expert help in designing the PCR primers used in the study.

Author Contributions

Conceived and designed the experiments: JAG DF IJ. Performed the experiments: JAG. Analyzed the data: JAG DF YH RAE WL PG. Contributed reagents/materials/analysis tools: JAG IJ. Wrote the paper: JAG DF WL IJ.
Table 6. Top 10 most abundant annotatable transcripts from the Frias-Lopez et al. [9].

PFAM ID	Annotation	TIGRFAM ID	Annotation	A	B	COG ID	Annotation
PF00004	ATPase family associated with various cellular activities (AAA)	TIGR00485	Translation elongation factor Tu	13	2	COG4585	Signal transduction histidine kinase
PF01370	NAD dependent epimerase/dehydratase family	TIGR01242	26S proteasome subunit P45 family	6	1	COG5116	26S proteasome regulatory complex component
PF03143	Elongation factor Tu C-terminal domain	TIGR02639	ATP-dependent Clp protease ATP-binding subunit ClpA	6	1	COG0050	GTPases - translation elongation factors
PF00521	DNA gyrase/topoisomerase IV, subunit A	TIGR00962	ATP synthase F1, alpha subunit	4	1	COG1222	ATP-dependent 26S proteasome regulatory subunit
PF03144	Elongation factor Tu domain 2	TIGR01472	GDP-mannose 4,6-dehydratase	3	1	COG0187	Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV), B subunit
PF00216	Bacterial DNA-binding protein	TIGR01017	Ribosomal protein S4	2	1	COG0568	DNA-directed RNA polymerase, sigma subunit (sigma70/ sigma32)
PF00101	Ribulose bisphosphate carboxylase, small chain	TIGR02521	Type IV pilus biogenesis/stability protein PIVW	1	1	COG1089	GDP-D-mannose dehydratase
PF00016	Ribulose bisphosphate carboxylase large chain, catalytic domain	TIGR00038	translation elongation factor P	0	1	COG0188	Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV), A subunit
PF01106	NifU-like domain	TIGR00050	RNA methyltransferase, TrmH family, group 1	0	1	COG0206	Cell division GTase
PF07719	Tetratricopeptide repeat	TIGR00065	Cell division protein FtsZ	0	1	COG0278	Glutaredoxin-related protein

(B) If a homologue was identified in the current study (A) that too is included. Numbers in columns A and B refer to the number of sequences which were assigned this particular protein annotation. Only pORF clusters with >10 non-redundant sequences were included in this analysis.

doi:10.1371/journal.pone.0003042.t006
References

1. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, et al. (2006) Community genomics among stratified microbial assemblages in the ocean's interior. Science 311: 496–503.

2. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, et al. (2007) The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: 398–431.

3. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, et al. (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5: 432–466.

4. Handelsman J, Tiedge J, Alvarez-Cohen L, Ashburner M, Cann IKO, et al. (2007) The New Science of metagenomics: revealing the secrets of our microbial planet. Washington, DC: The National Academies Press.

5. Parro V, Moreno-Paz M, Gonzalez-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Env Microbiol 9: 453–464.

6. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, et al. (2005) Analysis of microbial gene transcripts in environmental samples. Appl Env Microbiol 71: 4121–4126.

7. Leininger S, Urich T, Schloter M, Schwark L, Qi J, et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806–809.

8. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, et al. (2008) Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome. PLoS ONE 3: e2527. doi:10.1371/journal.pone.0002527.

9. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, et al. (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105: 3805–10.

10. Gilbert JA, Thomas S, Cookey N, Kulakova A, Field D, et al. (2008) Potential for phosphonoacetate utilisation by marine bacteria in temperate coastal waters. Env Microb; Accepted 20th July 2008.

11. Griffiths RJ, Whiteley AS, O’Donnell AG, Bailey MJ (2006) Rapid method for coexpression of DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5480–5491.

12. Neufeld JD, Schafer H, Cox MJ, Boden R, McDonald IR, et al. (2007) Stable-isotope probing implicates Methylophaga spp and novel Gamma-proteobacteria in marine methanol and methylamine metabolism. ISME J 1: 480–491.

13. Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, et al. (2006) Sequencing genomes from single cells by polymerase cloning. Nature Biotech 24: 680–686.

14. Sansone S-A, Rocca-Serra P, Brandizzi M, Brizza M, Field D, et al. (2008) The first RSBI (ISA-TAB) workshop: “can a simple format work for complex studies?” OMICS 12: 143–149.

15. Field D, Garrity G, Gray T, Morrison N, Selengut J, et al. (2008) Towards a richer description of our complete collection of genomes and metagenomes: the “Minimum Information about a Genome Sequence” (MIGS) specification. Nature Biotech 26: 541–7.

16. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.

17. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nuc Acids Res 33: 5691–5702.

18. Aziz RK, Bartels D, Best AA, DeJongh M, Diaz T, et al. (2008) The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9: 75.

19. Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, et al. (2001) Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. Anal Biochem 290: 205–213.

20. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: A Community Resource for Metagenomics. PLoS Biol 5: e75.

21. Xu L, Chen H, Hu X, Zhang R, et al. (2006) Average Gene Length Is Highly Conserved in Prokaryotes and Eukaryotes and Diverges Only Between the Two Kingdoms. Mol Biol Evol 23: 1107–1108.

22. Francois P, Garzoni C, Bento M, Schrenzel J (2007) Comparison of amplification methods for transcriptomic analyses of low abundance prokaryotic RNA sources. J Microbiol Methods 68: 385–391.

23. Wilson GA, Felt-Ellij, Lilley AK, Field D (2007) Large-scale comparative genomic ranking of taxonomically restricted genes (TRGs) in bacterial and archaeal genomes. PLoS ONE 2(3): e324. doi:10.1371/journal.pone.0000324.

24. Lipman DJ, Souvorov A, Koonin EV, Fanchenko AR, Tatusova TA (2002) The relationship of protein conservation and sequence length. BMC Evol Biol 2: 20.