Species distribution and antifungal susceptibility patterns of Candida isolates from a public tertiary teaching hospital in the Eastern Cape Province, South Africa

P. Mnge1, B.I. Okeleye1,3, S.D. Vasaikar1,2 and T. Apalata1,2

1Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa
2National Health Laboratory Services, Mthatha, South Africa
3Phytomedicine and Phytopharmacology Research Group, Department of Plant Science, University of the Free State, Phuthaditjhaba, South Africa

Abstract

Candida species are the leading cause of invasive fungal infections, and over the past decade there has been an increased isolation of drug resistant Candida species. This study aimed to identify the species distribution of Candida isolates and to determine their unique antifungal susceptibility and resistance patterns. During a cross-sectional study, 209 Candida isolates (recovered from 206 clinical samples) were collected and their species distribution was determined using ChromAgar Candida. The Vitek-2 system (Biomerieux, South Africa) was used to determine minimum inhibitory concentrations (MICs) to azoles (fluconazole, voriconazole), echinocandins (caspofungin, micafungin), polyenes (amphotericin B) and flucytosine. Four species of Candida were isolated, of which C. albicans was the most frequent, isolated in 45.4% (95/209) of the isolates, followed by C. glabrata: 31.1% (65/209). The MICs of the different antifungal drugs varied amongst the species of Candida. From the 130 isolates tested for MICs, 90.77% (112/130) were susceptible to all antifungal drugs and 6.9% (9/130) of the isolates were multi-drug resistant. C. dubliniensis (n=2) isolates were susceptible to all the above mentioned antifungal drugs. There was no significant difference in species distribution amongst clinical specimens and between patients’ genders (P > 0.05). An increase in MIC values for fluconazole and flucytosine towards the resistance range was observed. To our knowledge, this is the first report on surveillance of Candida species distribution and antifungal susceptibility at a public tertiary teaching hospital in Eastern Cape, South Africa.

Key words: Candida species; Distribution; Antifungal susceptibility; Identification; South Africa

Introduction

Candida species are commensal fungi of the human gastrointestinal tract, lower genital tract and mouth cavity. Among immunocompetent individuals, Candida species have an inherently low virulence. The incidence of candidiasis is more frequent in immunocompromised patients with impaired physiological and cellular barriers. Candida species colonize and invade host tissues wherein they cause localized to invasive systemic infections, which disseminate hematogenously to various organs of the body (1). Candida species are the leading cause of mycoses worldwide and the fourth leading cause of invasive nosocomial bloodstream infections with significant crude mortality and morbidity rates (2–5). In South Africa, the incidence and prevalence of Candida species is not well documented, however C. albicans remains the leading cause of candidiasis worldwide (6–9). Recent epidemiological reports indicate a change in species distribution patterns of Candida infections, with an increasing frequency of non-Albicans Candida species such as C. glabrata and C. parapsilosis being isolated from clinical samples (10,11).

In African health care settings, amphotericin B and fluconazole are routinely used to treat Candida infections (9,12). The changes in the epidemiology of Candida species is in parallel with the emergence of antifungal drug resistant species. Antifungal drug resistance is associated with an uncontrolled distribution and prolonged use of antifungals to treat recurrent infections in immunocompromised patients (13,14). Furthermore, as it is imperative for
laboratories to provide identification to the species level, there is continued isolation of new species which are resistant to currently available antifungals.

The growing trend in antifungal drug resistance and emergence of new species of Candida, poses a need for regional surveillance of antifungal drug susceptibility profiles, since in vitro drug susceptibility patterns are associated with therapeutic outcome. This study sought to determine the distribution and in vitro susceptibility profiles of Candida species isolated from patients attending Nelson Mandela Academic Complex, a public tertiary teaching hospital in Mthatha, Eastern Cape.

Material and Methods

Study population and sampling strategy
A total of 209 Candida isolates (from 206 clinical samples) were collected during a cross-sectional study among patients at Nelson Mandela Academic Complex in Mthatha. A standardized data collection form was used to collect information on patients’ demographics (age and gender) and clinical history from medical records. Permission to collect patient’s clinical data, including laboratory information, was obtained from the hospital and laboratory managers. Ethical clearance was obtained from the Research Ethics Committee of Walter Sisulu University (Ethics Ref. No. 038/13).

Isolation and identification of Candida species
Yeast cells isolated from clinical samples were stored in 10% glycerol (Sigma-Aldrich, South Africa) at –20°C until further use. Isolates were sub-cultured onto freshly prepared Sabaroud dextrose (SAB) agar and incubated overnight at 37°C. The germ tube test was used for the presumptive identification of Candida species. Briefly, 24-h fresh cultures were inoculated on 3 drops of human serum and incubated at 37°C. After 2.5 h, the formation of germ tubes was observed under microscopy (40× objective). The ability of Candida species to form differentially colored colonies on chromogenic assay (ChromAgar Candida, Media-mage, South Africa) was used to identify Candida isolates to the species level. Inocula from 24–48 h SAB-agar cultures were re-cultured onto commercially prepared ChromAgar Candida plates and incubated for 48–72 h at 37°C. Intense colony coloration was observed after incubation and species differentiation was done according to the manufacturer’s instructions (14,15).

Antifungal susceptibility assay
The antifungal susceptibility profile of Candida species was determined using the Vitek 2 Systems Version 07.01 (Biomerieux, South Africa) following the CLSI document M27-A3 (2015) (16). The antifungal agents tested were amphotericin B, fluconazole, voriconazole, caspofungin, micafungin and fluconazole. The test was carried out according to the manufacturer’s instructions. About 2–3 colonies of 24-h Candida cultures were inoculated into 5-mL glass tubes containing 3 mL of 10% saline, adjusted to 2 McFarland standards. Vitek 2 cards with 12-fold serial dilutions of antifungals were placed onto the test tube and loaded onto the Vitek cassette. Loaded cassettes were then placed onto the Vitek instrument and incubated for 9 to 33 h depending on the sample. Standard strains C. albicans ATCC 90028 and C. parapsilosis ATCC 22019 were used for quality control. The antifungal susceptibility of the isolates was interpreted as sensitive (S), intermediate (I), and resistant (R) according to the CLSI interpretative breakpoints criteria (16,17). The chi-square test was used to test for significant associations between the defined variables, while ANOVA was used to test the difference between groups. SPSS (IBM, USA) version 20.0 for Windows was used for all statistical analyses.

Results

Species distribution
A total of 209 isolates of Candida were obtained from 206 clinical specimens; the highest number of isolates were from urine specimens (46.5%, n=97), followed by vaginal swabs (30.6%, n=64). The mean age of the patients was 29.7 ± 1.97 years, ranging from 1 month to 87 years. The gender distribution of patients, based on clinical records was 148 (71.9%) females and 46 (22.3%) males. For 5.8% (12/206) isolates, the gender was not stated in clinical records. C. albicans accounted for 45.5% (95/209) of the species isolated while 31.1% (65/209) of the species were C. glabrata, 12.4% (26/209) C. tropicalis, and C. dubliniensis accounted for 11.0% (23/209) of the total isolates (Table 1). There was no significant difference in species distribution amongst clinical specimens (X²=36; DF=66, and P=0.99) and between patients’ genders (X²=11.964; DF=22, and P=0.958).

Antifungal susceptibility testing
The minimum inhibitory concentrations (MICs) and antifungal susceptibility of Candida species to the various antifungal drugs are summarized in Tables 2 and 3. The results are presented by species as cumulative counts of susceptible organisms at each concentration throughout the full dilution series.

For C. albicans, resistance to fluconazole was 4.6% (5/109 at MIC ≥ 64 μg/mL), voriconazole resistance was 2.8% (3/109, MIC ≥ 8 μg/mL), caspofungin and micafungin resistance were 3.7% (4/109 at MIC ≥ 4 μg/mL). In addition, voriconazole resistance was 2.8% (3/109, MIC ≥ 8 μg/mL) and fluconazole resistance was 3.7% (4/109, MIC ≥ 4 μg/mL). Intermediate resistance to fluconazole (MIC=8 μg/mL) and fluconazole (MIC=16 μg/mL) was observed in 2 isolates of C. albicans and 1 other isolate exhibited intermediate resistance to voriconazole at MIC of 2 μg/mL.
Table 1. Distribution of Candida species among clinical specimens (n=209).

Specimen	C. albicans	C. glabrata	C. tropicalis	C. dubliniensis	n	Percentage (%)
Urine	44	32	12	9	97	46.5%
Vaginal swab	24	19	11	10	64	30.6%
Sputum	14	6	1	2	23	11.0%
Blood culture	10	5	1	0	16	7.7%
Pus	2	0	0	1	3	1.4%
Unknown	1	1	1	0	3	1.4%
Ascetic fluid	0	2	0	1	3	1.4%

Table 2. Minimum inhibitory concentrations (MIC) of clinical isolates of Candida (n=130) to various antifungal drugs.

Antifungal	MIC range (μg/mL)*											
	0.065	0.125	0.25	0.5	1	2	4	8	16	32	64	
Fluconazole												
C. albicans	84	4	4	10	1	6						
C. glabrata	5	3	1	2								
C. tropicalis	5	2	2									
C. dubliniensis	2											
Voriconazole												
C. albicans	96	4	1	4	1	1	2					
C. glabrata	9											
C. tropicalis	7											
C. dubliniensis	2											
Caspofungin												
C. albicans	102	3	4	4								
C. glabrata	9											
C. tropicalis	6											
C. dubliniensis	2											
Micafungin												
C. albicans	101	2	2	2								
C. glabrata	6	3										
C. tropicalis	6	1										
C. dubliniensis	2											
Amphotericin B												
C. albicans	72	31	2	4								
C. glabrata	3	6										
C. tropicalis	6	1										
C. dubliniensis	2											
Flucytosine												
C. albicans	103	2	2	2								
C. glabrata	7	3										
C. tropicalis	6	1										
C. dubliniensis	2											

* MIC breakpoints’ interpretation: fluconazole susceptible: MIC ≤8 μg/mL; fluconazole intermediate: MIC 16–32 μg/mL; fluconazole resistant: MIC ≥64 μg/mL; micafungin and caspofungin susceptible: MIC ≤0.25; micafungin and caspofungin intermediate: no clinical breakpoint; micafungin and caspofungin resistant: MIC ≥1 μg/mL; flucytosine susceptible: MIC ≤4 μg/mL; flucytosine intermediate: MIC 8–16 μg/mL; flucytosine resistant: MIC ≥32 μg/mL; voriconazole susceptible: MIC ≤1 μg/mL; voriconazole intermediate: MIC 2 μg/mL; voriconazole resistant: MIC ≥4 μg/mL; amphotericin B susceptible: MIC ≤1 μg/mL; amphotericin B Intermediate: no clinical breakpoint; amphotericin B resistant: MIC >1 μg/mL.
A similar resistance pattern was observed in 2 isolates of both C. glabrata and C. tropicalis. One isolate from each species was fully resistant to all antifungal drugs, while the other isolate was resistant to all antifungal drugs except flucytosine at MIC 416 µg/mL in C. glabrata and MIC 32 µg/mL in C. tropicalis. Notably, at flucytosine MIC of 16 µg/mL (susceptible), 3 (2.6%) C. albicans and 2 (18.2%) C. glabrata isolates were resistant to all other classes of antifungals. Two isolates of C. albicans were resistant to all antifungals, except flucytosine (MIC 100%).

A similar resistance pattern was observed in 2 isolates of both C. glabrata and C. tropicalis. One isolate from each species was fully resistant to all antifungal drugs, while the other isolate was resistant to all antifungal drugs except for flucytosine at MIC 416 µg/mL in C. tropicalis and MIC 32 µg/mL in C. glabrata. Notably, at flucytosine MIC of 16 µg/mL (susceptible), 3 (2.6%) C. albicans and 2 (18.2%) C. glabrata isolates were resistant to all other classes of antifungals. Two isolates of C. albicans were resistant to all antifungals, except flucytosine (MIC 100%) and intermediate to voriconazole at MIC of 2 µg/mL.

Discussion

The study sought to compare the species distribution pattern of Candida and to compare the antifungal susceptibility patterns of 6 antifungal drugs against the isolated species of Candida. The most common species isolated was C. albicans, and this finding is similar to previously published reports in South Africa, where C. albicans was the most common species isolated from vaginal and urine samples from female patients can be explained by the imbalance in vaginal microflora as a result of diabetes and vaginal estrogenization, which in turn...
gives rise to vulvovaginal candidiasis (21,22). Symptomatic vulvovaginal candidiasis (VVC) occurs in women aged 18–84 years and is associated with a significant morbidity rate. Approximately 75% of women experience one episode of VVC in their lifetime (23–25). The underlying medical conditions for the isolates were vaginal discharge, retroviral disease and pelvic inflammatory discharge. On most urine samples, the clinical diagnosis was stated as illegible thus making it difficult to ascertain if the presence of yeast in urine represents a true infection or merely colonization and contamination of the bladder (26).

The ongoing change in the epidemiology of *Candida* species is in parallel with the emergence of antifungal drug resistant *Candida* species (14). This is especially true for fluconazole, which is used as the first line drug treatment for hematological malignancy, HIV/AIDS and oropharyngeal candidiasis in South Africa and Africa as a whole. This, in for hematological malignancy, HIV/AIDS and oropharyngeal candidiasis infections (14,28).

The antifungal susceptibility of echinocandins and liposomal amphotericin B against *Candida* biofilms was investigated by Marcos-Zambrano (33). It was found that *C. tropicalis* biofilms had the highest level of resistance and amphotericin B was unable to reduce the metabolic activity of the biofilms. In a study conducted by Blignaut et al. (34), the South African clade of *C. albicans* had an 8.4% level of resistance to amphotericin B and the clade was found to be naturally resistant to that drug. That finding is supported in this study, in which *C. tropicalis* isolates had a 25% level of resistance compared to *C. albicans* and *C. glabrata*. Although the results are statistically not significant, this finding has to be considered when amphotericin B is used to treat *C. tropicalis* infections. This is equally important, since amphotericin B is routinely used to treat fluconazole-resistant infections (33).

There was a degree of variability in the MIC values within the same class of antifungals, for example the MIC range for micafungin was between 0.025 to 4 µg/mL and caspofungin MIC ranged from 0.065 to 8 µg/mL. On the other hand, MIC values for fluconazole ranged from 1 to 64 µg/mL and for voriconazole from 0.125 to 16 µg/mL. A similar pattern was also observed by Villareal et al. (35) in *C. glabrata* isolates. The differences in MIC values within species and classes are indicative of species-specific resistance patterns. Hence, there is a need for regional surveillance of fungal species distribution, and antifungal therapeutic regimes should be implemented based on epidemiological data and antifungal sensitivity. The low MICs and increased spectrum of activity for voriconazole and micafungin in *C. albicans* and non-*albicans* species suggest good clinical activity for these drugs.

The epidemiology of *Candida* infections in Africa, a home for new and emerging drug-resistant *Candida* species, is not well documented (9,14), and this study presented the first regional surveillance in the Eastern Cape province to investigate the prevalence and antifungal susceptibility patterns of *Candida* isolates.

Acknowledgments

We would like to thank the staff of National Health Laboratory Services (Mthatha) for their support in sample collection, Mrs. N. Sibathathu for her technical assistance in conducting laboratory experiments, the National Research Foundation (South Africa) for financial support, and lastly the staff of Division of Medical Microbiology, Department of Pathology and Laboratory Medicine (Walter Sisulu University) for assisting the successful completion of the study.

References

1. Quindos G. Epidemiology of candidemia and Invasive candidiasis changing face. *Rev Iberoam Micol* 2013; 271: 1–7.

2. Madhavan P, Jamal F, Chang PP. Laboratory isolation and identification of *Candida* species. *J Appl Sci* 2011; 11: 2870–2877, doi: 10.3923/jas.2011.2870.2877.
3. Sanglard D, Kuchler K, Fischer F, Pagani JL, Monod M, Billie J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involves specific multidrug transporters. Antimicrob Agents Chemother 1995; 39: 2378–2386, doi: 10.1128/AAC.39.11.2378.

4. Bruder-Nascimento A, Camargo CH, Sugizak MF, Sadatsune T, Montelli AC, Monelli AL, et al. Species distribution and susceptibility profile of Candida species in a Brazilian public tertiary hospital. BMC Res Notes 2010; 3: 1–5, doi: 10.1186/1756-0500-3-1.

5. Bhoooshon S, Gayal A, Agrawa lA, Verma V. Prevalence and drug resistant of Candida species in pediatrics patients in Tertiary Care Hospital, North India. J Microbiol Biomed Res 2015; 1: 1–6.

6. Okonko JO, Odu NN, Kolade A, Nwanze J. Detection and prevalence of Candida isolates among patients in Ibadan, Southwestern Nigeria. J Microbiol Biotechnol Res 2011; 1: 176–184.

7. Pfanner MA, Diekama DJ. Epidemiology of invasive candidiasis: A persistent public health problem. Clin Microbiol Rev 2007; 20: 133–163, doi: 10.1128/CMR.00029-06.

8. Owatade FJ, Gulube Z, Ramla S, Patel M. Antifungal susceptibility of Candida albicans isolated from the oral cavities of patients with HIV infection and cancer. South African Dental J 2016; 71: 8–11.

9. Makhnado NA, Ismal F, Dango Y, Chephe TJH, Hoosen AA, Chabeleng M. Antifungal susceptibility profile of yeast isolates from sterile sites at a public teaching hospital in South Africa. South African J Infect Dis 2014;29: 97–100.

10. Nnadi NE, Ayanimbime GM, Scordino F, Okolo MO, Enwean IB, Crisea G, et al. Isolation and molecular characteriza tion of C. africana from Jos, Nigeria. Med Mycol 2012; 50: 765–767, doi: 10.3109/13693786.2012.662598.

11. Chow JK, Golan Y, Ruthezer R, Karchmer AW, Carmeli Y, Chabeleng M. Antifungal susceptibility pro file of yeast isolates from sterile sites at a public teaching hospital in South Africa. South African J Infect Dis 2014; 29: 97–100.

12. Abrantes PMDS, McArthur CP, African CWJ. Multi-drug resistance (MDR) oral Candida species isolated from HIV-positive patients in South Africa and Camero on. Diag Microbiol Infect Dis 2014; 79: 222–227, doi: 10.1016/j.diagmicrobio.2013.09.016.

13. Hajreh RA, Sofar AN, Harrison LH, Lyon GM, Hartington- Skagg s BA, Mirza SA, et al. Incidence of bloodstream infec tions due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 2004; 42: 1519–1527, doi: 10.1128/JCM.42.4.1519-1527.2004.

14. Efushnie AM, Oduyobo O, Osuagwu CS, Koenig B. Species distribution and antifungal susceptibility of Candida isolates from pregnant women in a tertiary hospital in nigeria. African J Clin Exp Microbiol 2016; 17: 183–189, doi: 10.4314/ajcem.v17i3.5.

15. ChromAgar: The Chromogenic Media Pioneer. NT-EXT-001. Version 7.

16. Wayne PA. Reference method for broth dilution antifungal susceptibility testing of yeasts. Clin Lab Standards Inst 2008; 3: M27-A3.

17. Behzadi P, Behzadi E, Ranjar Bar. Urinary tract infections and C. albicans. Centr Eur J Eurrol 2015; 68: 96–101.

18. Dramowski A, Cotton MF, Rabie H, Whitelaw A. Trends in paediatric bloodstream infections at a South African referral hospital. BMC Paediatrics 2015; 15: 33–44, doi: 10.1186/s12887-015-0354-3.

19. Olaniran O, Adefusi OF, Ido wu OJ, Oladipo OA, Afolayan DO, Aderibigbe I, et al. Isolation and evaluation Candida species of among pregnant women in Obafemi Awolowo University teaching hospital, ile-Ife. Nigeria. J Clin Microbiol Case Reports 2015; 1: 1–6.

20. Fortún J, Martin-Dávila P, Pedrosa EG, Pintado V, Cobo T, et al. Emerging trends in candidemia: A higher incidence but a similar outcome. J Infect 2012, 65: 68–70, doi: 10.1016/j.jinf.2012.02.011.

21. Yapur N. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 2014; 10: 95–106, doi: 10.2147/TCRM.S40160.

22. Mending W, Brasch J. Guideline vulvovaginal candidosis (2010) of the German society for gynecology and obstetrics, the working group for infections and infectimmunology in gynecology and obstetrics, the germansociety of dermatology, the board of german dermatologists and the german speaking mycological society. Mycoses 2012; 55: 1–13, doi: 10.1111/j.1439-0507.2012.02185.x.

23. Shrivastav VK, Shukla D, Shrivastav A, Jana AM. Prevalence of vaginal candidiasis in diabetic women of Madhya Pradesh, India. Int J Current Microbiol Appl Sci 2015; 4: 834–846.

24. Apalata T, Carr WH, Sturm WA, Longo-Mbenga B, Moodley P. Factors associated with symptomatic vulvovaginal candidiasis: A study among women attending a primary healthcare clinic in KwaZulu-Natal, South Africa. Ann Med Health Sci Res 2014; 3: 410–416, doi: 10.4103/2141-9248.133470.

25. Oyewo OA, Okoliegbe IN, Alkhallil S, Ishah P. Prevalence of vaginal candidiasis among pregnant women attending Federal University of Technology, Minna, Nigeria, Bosso Clinic. Res J Pharm Biol Chel Sci 2013; 4: 113–120.

26. Nucci M, Colombo AL. Emergence of resistant Candida in neutropenic patients. Braz J Infect Dis 2002; 6: 124–128, doi: 10.1590/S1413-86702002000300004.

27. Sebit A, Kiem TE, Pelli D, Cathurvedi V, Wong M, Doney A, et al. Candida dubliniensis at a cancer. Clin Infect Dis 2001; 32: 1034–1038, doi: 10.1086/319599.

28. Perlin DS, Shor E, Zhao Y. Update on antifungal drug resistance, Curr Clin Micro Rpt 2015; 2: 84–95, doi: 10.1007/s40588-015-0015-1.

29. Mulu A, Kassu A, Anagaw B, Moges B, Gelaw A et al. Frequent detection of ‘azole’ resistant Candida species among late presenting AIDS patients in northwest Ethiopia. BMC Infect Dis 2013; 13: 1–10, doi: 10.1186/1471-2334-13-82.

30. Mukherjee P, Wang M. Antifungal drug resistance: signific ance and mechanisms. Informa Healthcare 2010: 63–86.

31. Challier C, Sissy CEL, Bachelier-Bassi S, Schemlia A, Quensn G, Sitterlé E, et al. Acquired fluconazole resistance during combination therapy with caspofungin and fluconazole for Candida glabrata cystitis. Antimicrob Agents Chemother 2016; 60: 846–850, doi: 10.1128/AAC.02265-15.

32. Locke JB, AlmaguerAL, Zuill DE, Bartizal K. Characterization of in vitro resistance development to the novel echinocandin CD101 in Candida species. Antimicrob Agents Chemother 2016; 60: 6100–6107, doi: 10.1128/AAC.00620-16.
33. Marcos-Zambrano LJ, Gómez-Perosanz M, Escríbano P, Zaragoza O, Bouza E, Guinea J. Echinocandin-resistant yeast species: biofilm production and anti-biofilm activity of echinocandins and liposomal amphotericin B. *Antimicrob Agents Chemother* 2015;1–28.

34. Blignaut E, Molepo J, Pujol C, Soll DR, Pfaller MA. Clade-related amphotericin B resistance among South African *Candida albicans* isolates. *Diagn Microbiol Infect Dis* 2005;53:29–31, doi: 10.1016/j.diagmicrobio.2005.03.013.

35. Villareal NC, Fothergill AW, Kelly C, et al. *Candida glabrata* resistance to caspofungin during therapy. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington: American Society for Microbiology; 2004.