Ecological Risk Assessment of Heavy Metals in Surface Soil of Qinghai Lake Area Based on Occurrence Forms

Ruojin Wang (mengj@suun.edu.cn)
Shaanxi Normal University

Tianjie Shao
Shaanxi Normal University

Peiru Wei
Jiangsu Fangyang Water Co. Lid.

Zongyan Chen
Qinghai Normal University

Gejuan Fu
Xi’an Environmental Monitoring Station

Shumiao Ma
Zhongsheng Environment Technology Development Co. Lid.

Research Article

Keywords: soil heavy metals, occurrence form analysis, ecological risk assessment, Qinghai Lake

Posted Date: August 19th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-803590/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

In this paper, the content and speciation of Cd, Cr, Pb, As, Cu, Zn and Ni in 87 groups of soil samples collected by grid method were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry, to explore the speciation characteristics and ecological risk status of heavy metals in surface soil around Qinghai Lake. The results show that: Cd and Pb, compared with Cr, As, Cu, Zn and Ni, in the surface soil around Qinghai Lake are the most seriously polluted. Heavy metal speciation analysis showed that the proportion of weak acid soluble components of Cd was relatively high, with strong mobility and high environmental risk. The reducible components of Zn and Pb account for a relatively high proportion, while the oxidizable components of Cu, Cd and Pb account for a relatively high proportion. The high percentage of residual Cr, Ni and As indicates that they are relatively stable. The extractable content of Cd, Pb and Zn is relatively high, and their activities are strong, which have a great impact on the food chain. The results of Inductively Coupled Plasma-Atomic Emission Spectrometry and the ratio of secondary phase and primary phase showed that Cd and Pb had more serious ecological risk than other heavy metals. According to the results of soil speciation and ecological risk assessment of heavy metals around Chinese and foreign lakes, although the speciation characteristics of heavy metals are different, the pollution of Cd is relatively large. To sum up, heavy metal pollution in soil around Qinghai Lake area has occurred, and there is a serious ecological risk, so it is urgent to take corresponding monitoring and formulate treatment plan.

Synopsis:

This article is mainly through the speciation and risk analysis of heavy metals in surface soil around Qinghai Lake area, to provide regulatory reference for this area.

Abstract

The interaction between soil, organisms and surrounding environment continuously provides resources for human beings and ecology, is an important part of human environment, and is the basis of natural ecosystem and agricultural crop production [1–3]. Heavy metals are the most important persistent toxic pollutants in soil, and their effects are difficult to prevent and irreversible [4]. With the continuous development of economy, the expanding scope of people's activities and the continuous updating of technologies, pollutants enter the soil, resulting in the continuous accumulation of heavy metals in the soil, which in turn poses a threat to human beings and the ecological environment [5–6]. Heavy metals' forms transform each other through adsorption, migration and transformation in the soil, resulting in different environmental effects, and their migration and toxicity will also vary with different forms [7].

According to the Bulletin of National Soil Pollution Survey published in 2014, the total soil exceeding standard rate reached 16.1%, among which 7 heavy metal pollutants such as As, Cd, Ni, As, Pb, Cr and Zn exceeded the standard point rate by 7.0%, 4.8%, 2.7%, 2.1%, 1.5%, 1.1% and 0.9%, respectively. Since 2000, with the rapid economic development, soil heavy metal pollution in China has been increasingly intensified. As for the speciation of soil heavy metals, studies have shifted from mining areas [8–9], industrial areas [10–11], and along traffic roads [12] to sewage irrigation areas [13–14], orchards [15–16], wetlands [17–18] and agricultural land [19–20]. At present, the research on heavy metals in lakes at home and abroad mainly focuses on the coastal areas, lakes around urban areas, urban important landscape water and sediments, etc., and also includes the study on the characteristics and forms of heavy metals in lakes and their sediments, ecological assessment, risk assessment, etc. [21–25].

Qinghai Lake is the largest inland saltwater lake in China, with spectacular and beautiful scenery and vast territory. It is an important water body to maintain the ecological security of the northern part of the Qinghai-Tibet Plateau [26]. Its shore is an important animal husbandry area in the northeastern part of the Qinghai-Tibet Plateau, with vast natural
pastures, large fertile fields, rich pastures and mineral resources, which is a national key ecological protection zone. Soil nutrients and soil water resources are the focus of many geographers [27–28]. There have been some researches on the heavy metals in the soil of Qinghai Lake area, and some important results have been obtained [29–30]. For example, Wang et al. [31] analyzed the heavy metals in the northeastern surface soil of Qinghai Lake Basin, and found that copper and zinc were deficient and lead was enriched compared with the continental crust, so as to study the geochemical model, determine the possible sources and discuss the meaning of chemical weathering. Chang Huajin et al. [32] evaluated the pollution degree and source analysis of 9 heavy metals in the sediments of the lower reaches of the Shaliu River, and evaluated their risk degree. Lin et al. [33] analyzed the influence of salinity, pH and other factors on the content of heavy metal cadmium in sediments and topsoil in Qinghai Lake area, and found that the enrichment degree of cadmium in lake sediments was significantly higher than that in the surface soil around the lake. But these studies mainly focus on the lake water body, and the evaluation of the river sediment of heavy metal content, and limited to a small area of Qinghai Lake or a particular landscape type, to be carried out for the entire system research of soil heavy metal pollution around Qinghai Lake region, there is almost no study of heavy metals in the region and based on the ecological risk assessment in the form of heavy metals. Recently, with the impact of climate change, tourism development and surrounding enterprises [34], the environment in the surrounding areas of Qinghai Lake has been damaged, and grassland degradation, desertification and other ecological problems have occurred in the land [35–36]. These uncertain factors will lead to the different distribution and proportion of heavy metals in the soil, and also have a certain impact on their migration. Therefore, the analysis of soil heavy metal speciation is an indispensable part in the study and evaluation of environmental pollution. In view of this, this paper takes the whole area around Qinghai Lake as the research object, and discusses the pollution distribution characteristics, occurrence forms and ecological risks of heavy metals in the surface soil of this region, so as to provide theoretical support and practical data reference for the protection of the ecological environment and human health in Qinghai Lake region.

1 Methods And Materials

1.1 Overview of the study area

The study area is located in the northeast of Qinghai-tibet plateau around Qinghai Lake region, namely G109 highway, G315 road, the east and the west road within the surrounding area, surrounding monsoon region in the eastern part of our country, arid zone of northwest and southwest GaoHan District intersection zone, belongs to the typical plateau semi-arid, cold climate [37], where an average elevation of 3000 m above, and terrain tilt from west to east. It is high in the northwest and low in the southeast, and has two landforms: Qinghai-Tibet Plateau and Loess Plateau. It is snowy in winter and rainy in summer and autumn, with low temperature, big regional differences, big temperature difference between day and night, insufficient precipitation and concentrated period, distinct dry and wet season, intense sunshine and long time, solar radiation intensity increasing from southeast to northwest [38], annual average temperature ranging from −4.6°C to 4.0°C, annual average precipitation ranging from 291.0 to 579.0 mm, mostly concentrated in June to September [39]. Due to landform, climate, land use type and other factors, different land types in Qinghai Lake area mainly include mountain meadow soil, mountain shrub meadow soil, chernozem soil, chestnut soil, aeolian sand soil, etc. [40].

1.2 Methods for sample collection and determination

Before sampling, ArcGIS software was used to divide the remote sensing images of the area around Qinghai Lake into grids. A sampling point was laid out in each grid with a sampling density of 5 km. During the sampling in late May 2019, the sampling points were reasonably laid out by adjusting the location due to the actual factors such as terrain, buildings and Bridges, etc., through field survey. The distribution of sampling points is shown in Fig. 1. A total of 87 groups of mixed surface soil samples (0 ~ 20cm) were collected by five-point method, including 79 grassland sites, 4
farmland sites (No. 54, 59, 60 and 82) and 4 sandy land sites (No. 5, 6, 29 and 30). The elevations of sampling points ranged from 3140 m to 3237 m.

The soil samples were pre-treated and the microwave digestion process was carried out in accordance with the "Microwave Digestion Method for Total Metal Elements in Soil and Sediments" (HJ832-2017) issued by the Ministry of Environmental Protection. After digestion, the content and speciation of heavy metals in the soil were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after the supernatant was mixed to 25 mL at a constant volume and stood for 60 minutes.

1.3 Extraction and analysis of heavy metal speciation in samples

At present, Tessier method and BCR method are often used to classify heavy metal speciation in soil and sediments, including their improved methods. Among them, BCR three-step continuous extraction method has more practical significance and has been applied in the study of heavy metal speciation in soil by many scholars [41–42]. In this study, the improved BCR continuous extraction method was used to extract the heavy metal speciation from the surface soil samples around Qinghai Lake. See the references for the experimental process [43–44]. Finally, the measured values of various forms of heavy metal elements in the soil were calculated, and the recovery rate was 100% ±20%, indicating that the results of the speciation extraction in this study were reliable.

1.4 Quality control and data processing

This experiment in order to guarantee the reliability and accuracy of the experimental data, determine the time resolution of 16 samples to add two blank sample, morphological analysis process each step 2 blank samples were set up, take 10% of the sample do parallel sample analysis at the same time, the quality of the results of the analysis precision of test, the results measured the relative deviation meets the requirement of quality control [45–46]. Microsoft Excel 2016 and SPSS 20.0 software were used to make descriptive statistics and analysis of the data of soil heavy metal content, and the analysis results were plotted. The distribution map of soil sampling points was made by using ArcGIS 10.5.

2 Results And Discussion

2.1 Analysis of heavy metal content and physicochemical indexes in soil

Descriptive statistical analysis of the heavy metal content of surface soil around Qinghai Lake and the physical and chemical properties of the soil are shown in the following table (Table 1). The results show that The average contents of heavy metals Cd, Cr, Pb, As, Cu, Zn and Ni in the soil were 0.62 mg/kg, 41.35 mg/kg, 21.86 mg/kg, 11.73 mg/kg, 19.33 mg/kg, 63.51 mg/kg and 21.18 mg/kg (Table 1). On the whole, only the mean contents of heavy metals Cd, Pb and As in the soil of the study area exceed the background value of heavy metals in Qinghai Lake soil [47]. From the perspective of single heavy metal elements, the content of Cd in the soil with the number of sample points accounting for about 84% exceeded the background value, accounting for the largest proportion. Among them, the content of 7 sample points even exceeded 5 mg/kg, which was about 40 times of the background value of the soil, seriously exceeding the background value. When the number of samples accounted for 59.8%, the multiple of Pb content in the soil exceeded the background value by less than 1 times. As, Cu, Zn, Cr and Ni accounted for 40, 35, 25, 12 and 8 samples that exceeded the background value, and the multiples beyond the background value were generally less than 0.5 times. In addition, the soil pH value of the sample sites in the study area ranged from 7.08 to 10.14, with an average value of 8.07. According to the soil pH classification standard, the surface soil in the study area was alkaline on the whole, and the pH value of all the soil sample sites was alkaline. However, the variation coefficient of the seven heavy
metals in the soil was only larger, Cd, which was 2.29 (Table 1), indicating that Cd in the soil in the study area was more affected by external factors than other elements. In conclusion, the soil in the study area has been polluted by heavy metals, among which Cd and Pb are the most seriously polluted, followed by Cr, As, Cu, Zn and Ni.

Cd	Cr	Pb	As	Cu	Zn	Ni	pH	Organic	Grain composition(clay ratio)	
Minimum	0.05	11.50	7.46	0.96	2.06	17.30	6.23	7.08	1.23	0.00%
Maximum	5.57	60.93	35.09	18.52	74.38	98.62	31.62	10.14	103.05	100.00%
Mean	0.62	41.35	21.86	11.73	19.33	63.51	21.18	8.07	34.60	9.40%
Coefficient of variation (CV)	2.29	0.32	0.30	0.32	0.46	0.31	0.33	0.06	0.67	1.45
Background value of soil in Qinghai Lake [48]	0.14	54.17	20.47	11.66	19.72	64.28	24.96	-	-	-

Note: Unit of heavy metal content in the table: mg/kg

2.2 Speciation analysis of heavy metals in soil

The speciation of heavy metals in soil varies according to the living environment and changes to different degrees, which is closely related to the toxicity, migration and circulation of heavy metals in nature [5, 48]. In the improved BCR speciation extraction process, the heavy metals can be divided into four kinds of occurrence states: weak acid soluble state, reducible state, oxidizable state and residue state [49].

The mean analysis results of heavy metal occurrence speciation in the surface soil around Qinghai Lake are shown in Fig. 2. In terms of different heavy metals, the morphology of the 7 heavy metal elements are as follows: the weak acid soluble state and residue state of Cd are the most, followed by oxidizable state and reducible state. Cr, Pb, As, Cu, Zn and Ni have the largest proportion of residual states, and the smallest proportion of weak acid soluble states. The morphology of Cr, As, Cu and Ni is the same, and the oxidizable state is larger than the reducible state. The morphology of Pb and Zn is the same, and the oxidizable state is smaller than the reducible state.

In terms of the content ratios of different forms, the order of the proportion of the seven heavy metals in the surface soil around Qinghai Lake was Cd (34.8%) > Pb (9.8%) > Zn (9.4%) > Cu (4.3%) > Ni (2.5%) > Cr (2.3%) > As (2.1%). The order of reducible specific gravity was Zn (32.8%) > Pb (27.8%) > Cd (13.8%) > As (11.3%) > Ni (9.5%) > Cu (7.6%) > Cr (5.3%). The order of oxidation state specific gravity was Cu (36.8%) > Cd (25.3%) > Pb (22.8%) > As (18.5%) > Ni (14.7%) > Cr (14.3%) > Zn (12.2%). The order of residual specific gravity was Cr (78.1%) > Ni (73.3%) > As (68.1%) > Cu (51.3%) > Zn (45.6%) > Pb (39.6%) > Cd (26.1%).

It can be seen that Cr, Pb, As, Cu, Zn and Ni are mainly in the form of residual heavy metals, which are stable and difficult to be released and absorbed by plants, so they have little impact on the food chain [50], while Cd is mainly in the weakly acid soluble state. Weakly acid soluble, reducible and oxidizable heavy metals are all extractable states, and the higher the proportion of extractable states, the stronger the migration and toxicity of heavy metals [51]. The extractable contents of heavy metals Cd, Cr, Pb, As, Cu, Zn and Ni in the topsoil of the study area were Cd (73.9%) > Pb
(60.4%) > Zn (54.4%) > Cu (48.7%) > As (31.9%) > Ni (26.7%) > Cr (21.9%). It can be seen that the extractable contents of Cd, Pb and Zn account for a large proportion, all of which exceed 50%. Therefore, they have strong activity, are easy to be transferred, transformed and absorbed by plants, and have a great impact on the food chain. For example, plants, earthworms and other animals in the soil, cattle and sheep and other animals in the land eat them, thus harming human health. The extractable contents of Cu, As, Ni and Cr accounted for between 20%-50%, which was relatively low. The migration and transformation ability was low, which was in a relatively stable state, and had low bioavailability and toxicity.

2.3 Ecological risk assessment of heavy metals in soil

The following two methods are used to evaluate the ecological risk of heavy metals in soil: risk assessment coding index and comparison value method of secondary phase and primary phase.

(1) The RAC risk assessment coding index proposed by Perin [52] in 1985 can be used to evaluate the bioavailability and availability of metals in solid media [53], which is determined by the ratio of exchangeable (i.e. weak-acid soluble) metals to the total content of a metal. According to the magnitude of the ratio, the risk was divided into five levels [54]: RAC < 1%, no risk, 1% ≤ RAC ≤ 10%, low risk, 10% < RAC ≤ 30%, moderate risk, 30% < RAC ≤ 50%, high risk, RAC > 50%, very high risk.

(2) The secondary phase compared to native (RSP) is a kind of value method based on soil and sediment geology to assess the size of the migration of heavy metals in sediment source and release risk method [55–56], to express the degree of heavy metal pollution said secondary phase (except the residue of other form) and heavy metal content in the primary phase (residue) the ratio of RSP < 1 for pollution-free, 1 ≤ RSP < 2 is light pollution, 2 ≤ RSP < 3 is moderate pollution, and RSP ≥ 3 is heavy pollution [57].

The results of the risk assessment coding index RAC and the comparison value of secondary phase to primary phase RSP are shown in Table 2. In terms of RAC, the mean values of the risk assessment coding index for heavy metals in 87 samples were 34.8% (Cd), 2.3% (Cr), 11.4% (Pb), 2.1% (As), 4.3% (Cu), 9.4% (Zn) and 2.5% (Ni), respectively. It can be seen that, except high risk Cd and medium risk Pb, the other five heavy metals all have low ecological risk. According to the RSP method, the mean value of the RSP for the secondary phase and primary phase of each heavy metal in 87 samples in the study area showed that there was moderate pollution of Cd, slight pollution of Pb and Zn, and no pollution of other heavy metals. In conclusion, Cd and Pb are serious heavy metals in the surface soil around Qinghai Lake.

| Ecological risk assessment of heavy metals in topsoil around Qinghai Lake. |
|-----------------|---|---|---|---|---|---|---|
| | Cd | Cr | Pb | As | Cu | Zn | Ni |
| Average RAC/% | | | | | | | |
| RAC risk level | High risk | Low risk | Moderate risk | Low risk | Low risk | Low risk | Low risk |
| Average RSP | 2.7 | 0.3 | 1.5 | 0.5 | 0.9 | 1.2 | 0.4 |
| RSP risk level | Moderate pollution | No pollution | Light pollution | No pollution | No pollution | Light pollution | No pollution |
2.4 Comparison of heavy metal speciation in soils around various domestic and foreign river basins

There have been some studies on the soil heavy metal speciation around lakes or river basins at home and abroad. Combined with the literature found, this paper summarized the study on the soil heavy metal speciation around lakes in China and compared it with the results of this study on the percentage of each heavy metal speciation in the total soil around Qinghai Lake, as shown in Table 3.

Table 3: Comparison of the proportions of four forms of heavy metals in soils around Qinghai Lake and other watersheds.

Heavy metal	Qinghai Lake	Daye Lake Basin [58]	Three Gorges Reservoir [59]	Yangtze River [60]	Yellow River Delta [61]	Turkey Göksu Delta [64]	Sapanca Lake [65]	Sinú River [66]
Cd	a > d > b > c	d > a > c > b	a > d > c > b	b > c > d > a	d > c > b > a	b > c > d > a	b > c > d > a	
Cr	d > b > c > a	-	d > b > c > a	-	d > b > c > a	d > b > c > a	-	
Pb	d > c > b > a	d > c > b > a	d > c > a > b	d > c > b > a	b > d > c > a	c > d > b > a	b > c > d > a	
As	d > b > c > a	-	d > c > b > a	-	d > b > c > a	b > c > a > d	-	
Cu	d > b > c > a	d > b > c > a	d > c > b > a	d > c > b > a	b > c > d > a	d > c > b > a	b > c > d > a	
Zn	d > c > b > a	d > b > c > a	-	d > c > b > a	a > b > d > c	d > c > b > a	b > c > d > a	
Ni	d > b > c > a	-	-	-	d > c > b > a	b > d > c > a	b > c > d > a	

Note: the weak acid soluble state, oxidizable state, reducible state and residual state in the table are represented by a, b, c and d respectively.

Compared with the area around Qinghai Lake, the following results were obtained: (1) Compared with the area around Qinghai Lake, the forms of Cd in the soil heavy metals in Daye Lake Basin were mainly dissolved in weak acid and residual state, and the residual state accounted for the largest proportion of Pb, Cu and Zn forms. (2) Compared with that in the Three Gorges Reservoir area and the Qinghai Lake area, the forms of Cd in the soil heavy metals are mainly dissolved in weak acid and residual state, and the proportion of residual state in the forms of Cr, Pb, As, Cu and Zn is the largest. (3) Compared with the area of Qinghai Lake and Wuhan section of Yangtze River, the forms of Cd in soil heavy metals are mainly weak acid soluble and residual state, and the proportion of weak acid soluble state is the largest, while the proportion of residual state of Cr, Pb, As, Cu, Zn and Ni is the largest. (4) Compared with the Qinghai Lake area, the forms of Cd in the Yangtze River area are mainly dissolved in weak acid and residual state, and the proportion of residual state in Pb and Cu forms is the largest. (5) Compared with the Qinghai Lake area, the proportions of Cd, Cu and Zn in soil heavy metals in the Goksu Delta area were relatively small, contrary to the situation in the Qinghai Lake area, while the proportions of Cr, Pb, As and Ni in soil heavy metals were relatively large. (6) Compared with the Sapanca Lake area, the proportion of weak acid soluble state in the form of soil heavy metals Cd in the Sapanca Lake area is relatively small, contrary to the situation in the Qinghai Lake area, while the proportion of oxidizable state in the form of As is relatively large, and the proportion of residual state in the form of Cr, Pb, Cu and Zn is the largest. (7) Compared with the Qinghai Lake area, the proportion of weak acid dissolved state of Cd in the Sinú River...
River area is relatively small, contrary to the situation in the Qinghai Lake area, and the proportion of residue state of Pb, Cu, Zn and Ni in the soil is relatively small, contrary to the situation in the Qinghai Lake area.

Based on the results in Table 3, it is further concluded that: (1) Compared with the soil heavy metals in the surrounding areas of lakes in China, the forms of Cd are mainly dissolved in weak acid and residual state, while the forms of Cr, Pb, As, Cu, Zn and Ni are mostly residual state. (2) Compared with the concentrations of heavy metals in soils around lakes in foreign countries, the concentrations of heavy metals Cd in foreign countries are opposite to those in China. For Cr, Pb, As, Cu, Zn and Ni in foreign countries, the proportions of oxidizable and reducible states are larger than those in China, and the proportions of residual states are smaller than those in China.

In addition, the ecological risk assessment based on the form of heavy metals in soil around lakes at home and abroad was compared, and the results were detailed in Table 4. The data in the table show that: (1) Compared with Qinghai Lake area, the RAC index shows that the pollution of Cd is more serious, while the pollution of Pb, Cu and Zn is less. (2) Compared with Qinghai Lake area, Rac index showed that Cd was more serious than Cr, Pb, As, Cu and Zn in the Three Gorges Reservoir area. (3) RSP index showed that only As was unpolluted in Zhanjiang Bay and Qinghai Lake, and Cd was the most polluted heavy metal in both regions. (4) Compared with Qinghai Lake area, Rac index and RSP index showed that Cd was the most polluted heavy metal in Jiulong River basin, while Cr, As and Ni were less polluted in the two regions. (5) Compared with Qinghai Lake, the RAC index showed that the pollution of Cr, Cu, Zn and Ni in Sapanca Lake area was less than that in Qinghai Lake area. (6) Compared with Qinghai Lake area, the RAC index shows that the pollution of Cu, Zn and Ni is less, while the pollution of Cd is more serious in the Sinu River area.

Based on the further analysis in Table 4 and Table 5, it can be concluded that the pollution of Cd in the soil heavy metals around lakes in China is the most serious compared with other heavy metals, and the risk level is basically high, while the pollution risk in foreign regions is relatively low.
Table 4
Comparison of heavy metals in soil around Qinghai Lake area and other drainage basins by RAC.

Area	RAC (%)	Cd	Cr	Pb	As	Cu	Zn	Ni
Qinghai Lake	Average	34.8	2.3	11.4	2.1	4.3	9.4	2.5
Risk level	High	Low	Moderate	Low	Low	Low	Low	
Daye Lake Basin [58]	Average	24.2	-	5.0	-	9.4	5.8	-
Risk level	Moderate	-	Low	-	Low	Low	-	
Three Gorges Reservoir [59]	Average	32.4	0.9	0.9	2.1	2.9	5.0	-
Risk level	High	No	No	Low	Low	Low	-	
Jiulong River basin [63]	Average	47.2	1.7	22.6	13.1	20.3	28.6	6.9
Risk level	High	Low	Moderate	Moderate	Moderate	Moderate	Low	
Sapanca Lake[65]	Average	17.4	1.7	9.4	19.6	7.1	8.4	5.0
Risk level	Moderate	Low	Low	Moderate	Low	Low	Low	
Sinú River[66]	Average	3.0	-	3.0	-	4.0	5.0	4.0
Risk level	Low	-	Low	-	Low	Low	Low	

Note: the reference value of heavy metals in the table is that the coefficient of variation is more than 1, The potential ecological hazard index Er > 10.

Table 5
Comparison of heavy metals in soil around Qinghai Lake area and other drainage basins by RSP.

Area	RSP	Cd	Cr	Pb	As	Cu	Zn	Ni
Qinghai Lake	Average	2.7	0.3	1.5	0.5	0.9	1.2	0.4
Risk level	Moderate	No	Light	No	No	Light	No	
Zhanjiang Bay [62]	Average	9.2	2.5	6.0	0.7	9.9	9.7	8.0
Risk level	Heavy	Moderate	Heavy	No	Heavy	Heavy	Heavy	
Jiulong River basin [63]	Average	5.1	0.3	2.6	0.5	1.7	1.3	0.4
Risk level	Heavy	No	Moderate	No	Light	Light	No	

Note: the reference value of heavy metals in the table is that the coefficient of variation is more than 1, The potential ecological hazard index Er > 10.

Combined with the soil heavy metal speciation distribution and ecological risk assessment in the surrounding areas of lakes at home and abroad, the comprehensive results show that the soil heavy metal pollution in the area around
Qinghai Lake is not the most serious on the whole, and the indexes are not much different from those in other areas as a whole, but the indexes in some areas are relatively serious. In a word, Cd is a heavy metal that is easily affected by external factors. According to RAC and RSP indexes, Cd pollution is relatively large both at home and abroad, and the ecological risks in different regions are different to some extent, and some regions are relatively large, which should be paid attention to.

3 Conclusion

According to the above measurement and analysis of heavy metal content in 87 surface soil samples from the area around Qinghai Lake, the surface soil of the area around Qinghai Lake is polluted to different degrees, among which Cd, Pb and As exceed the background value of heavy metals in the soil of Qinghai Lake, while the others are not. Soil Cd pollution levels in the study area is relatively serious, has strong mobility and high environmental risk, easily influenced by outside factors, mainly in the form of the state of weak acid soluble and Cd, Pb, and can extract the states of the zinc content is higher, activity is stronger, a greater influence on the description of the food chain, and the ecological risk of Cd and Pb is serious. Combined with the research findings of relevant areas at home and abroad, the law is consistent. Therefore, these two heavy metals should be the key elements to be paid attention to in the later treatment of soil heavy metal pollution in this region. It is suggested that relevant measures should be taken to reduce their biological effectiveness.

Declarations

Funding and acknowledgments: This research was financially supported by Open fund project of Key Laboratory of environment and ecology in Qinghai Tibet Plateau No: 2018-QHS-K04. We also thank the anonymous reviewer for very helpful comments that improved the quality of the manuscript significantly.

Conflicts of Interest: The authors declared that they have no conflicts of interest to this work.

References

1. Li Zhang J, McKinley M, Cooper W, Han F, Liu Y, Song M, Peng X, Liu W, Yang (2020) Hangxin Cheng. Transfer processes of potential toxic elements (PTE) between rock-soil systems and soil risk evaluation in the Baoshan area, Yunnan Province, Southwest China [J]. Appl Geochem 121:104712
2. Nihal Gujre A, Soni L, Rangan, Daniel CW, Tsang (2021) Sudip Mitra. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review [J]. Environ Pollut 268:115549
3. Beidou Xi H, Yu Y, Li Q, Dang W, Tan Y, Wang D, Cui (2021) Sudip Mitra. Insights into the effects of heavy metal pressure driven by long-term treated wastewater irrigation on bacterial communities and nitrogen-transforming genes along vertical soil profiles [J]. J Hazard Mater 403:123853
4. Zhang J, Liu Y, Wang YSun,H, Cao X, Li X (2020) Effect of soil type on heavy metals removal in bioelectrochemical system [J]. Bioelectrochemistry 136:107596
5. Nan Y, Liu W, Xie H, Gao L, Han Y, Wang M, Li H (2016) Distribution and assessment of heavy metals in the surface sediment of Yellow River, China [J]. J Environ Sci 39:45–51
6. Tania Sarwar M, Shahid, Natasha S, Khalid AH, Shah (2020) Naveed Ahmad, Muhammad Asif Naeem, Zia ul Haq, Behzad Murtaza, Hafiz Faiq Bakhat. Quantification and risk assessment of heavy metal build-up in soil-plant system after irrigation with untreated city wastewater in Vehari, Pakistan [J]. Environ Geochem Health 42:4281–4297
7. Xuelu Gao F, Zhou C-T, Chen A (2014) Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals [J]. Environ Int 62:12–30
8. Jing Li Z, Xie Y, Zhu N, Ravi (2005) Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine [J]. J Environ Sci 17(6):881–885
9. Ke Yang D, Li Z, Zhou (2010) Health Risk Evaluation of Heavy Metal Pollution in the Vicinage of the Pb/Zn Smelling Slag [J]. Disaster Advances 3(4):254–257
10. Li F, Oh ZFan, PXiao,K, Ma X, Hou W (2009) Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China [J]. Environ Geol 57(8):1815–1823
11. Qicong Ling S, Bao YZ (2006) The environmental pollution character and its ecological effect of a large scale smelter [J]. China Environmental Science 26(5):603–608
12. Zailan Wang J, He Y, Zhi Z, Wang L, Wang H, Liu C, Lv, Chao Jiang (2006) The Distribution Characteristics of Heavy Metals Pollutants in Soil-plant System Along Highway [J]. Journal of Nanjing Forestry University Natural Sciences Edition 30(4):15–20
13. Wen Hu, Wang H, Zha T, Pu J, Wang Y. Metal Contamination and Fractionation in Sewage-Irrigated Soils Along the Liangshui River, Beijing, China [J]. Soil & Sediment Contamination, 2010, 19(4): pp 487–503
14. Bailin Liu S, Ai R, Guo LRen, Wenya, Zhang Y, Zhang (2016) Chemical Fractions and Mobility of Cd, Cu, Pb and Zn in Soil Profile of a Sewage Irrigation Area, Northwest China [J]. Journal of Residuals Science Technology 13:13–20
15. Sungur Ali (2016) Heavy metals mobility, sources, and risk assessment in soils and uptake by apple (Malus domestica Borkh.) leaves in urban apple orchards [J]. Arch Agron Soil Sci 62(8):1051–1065
16. Chuancheng Fu C, Tu H, Zhang Y, Li L, Li Q, Zhou KG, Scheckel, Yongming Luo (2020) Soil accumulation and chemical fractions of Cu in a large and long-term coastal apple orchard, North China [J]. J Soils Sediments 20(10):3712–3721
17. Pinhua Xia L, Ma R, Sun Yu, Yang X, Tang D, Yan T, Lin Y, Zhang Y, Yi (2020) Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China [J]. Science of The Total Environment 740:140231. DOI:10.1016/j.scitotenv.2020.140231
18. Wei J, Wei O, Hao F, Wang F, Liu B (2014) Long-term cultivation impact on the heavy metal behavior in a reclaimed wetland, Northeast China [J]. J Soils Sediments 14(3):567–576
19. Feilong Wu D, Lin D, Su (2010) The Effect of Planting Oilseed Rape and Compost Application on Heavy Metal Forms in Soil and Cd and Pb Uptake in Rice [J]. Agricultural Sciences in China 10(2):267–274
20. Yanjun Ren M, Lin Q, Liu Z, Zhang X, Fei R, Xiao X Lv. Contamination assessment, health risk evaluation, and source identification of heavy metals in the soil-rice system of typical agricultural regions on the southeast coast of China [J]. Environmental Science and Pollution Reasearch (2020) DOI: 10.1007/s11356-020-11229-6
21. Zhang M, Sun X, Xu J (2020) Heavy metal pollution in the East China Sea: A review [J]. Mar Pollut Bull 159:111473
22. Solis C, Isaac-Olive K, Mireles A, Vidal-Hernandez M (2009) Determination of trace metals in cow’s milk from waste water irrigated areas in Central Mexico by chemical treatment coupled to PIXE [J]. Microchem J 91:9–12
23. Shikazono N, Tatewaki K, Mohiuddin KM, Nakano T, Zakir HM (2012) Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Center Japan [J]. Environmental Geochemistry Health 34:13
24. Ping Zhang X, Pan Q, Wang G, Ge Y, Huang (2020) Toxic effects of heavy metals on the freshwater benthic organisms in sediments and research on quality guidelines in Poyang Lake, China [J]. J Soils Sediments 20:3779–3792
25. Feifei Che J, Chen B, Zhang X, Jiang S, Wang (2020) Distribution, risk and bioavailability of metals in sediments of Lake Yamdrok Basin on the Tibetan Plateau, China [J]. J Environ Sci 97:169–179
26. Li H (2014) Lin Ma. Annual distribution and interannual variation of precipitation in Qinghai Lake Basin [J]. Water Conservancy Science Technology Economy 20(10):80–81
27. Lei Liu X, Li Z, Jiang J, Wei M, Nan (2017) Variation in soil water content along different altitude gradients in the Qinghai Lake Watershed [J]. Resources Science 39(2):263–275
28. Ling Wang J, Shi H, Shi W, Ou C, Wang Y, Xing (2019) Effects of nitrogen and phosphorus addition on forage and soil nutrients in alpine grasslands around Qinghai Lake [J]. Praticultural Science 36(12):3065–3075
29. Qiugui Wang Z, Sha J, Wang J, Du J, Hu Y (2019) Ma. Historical changes in the major and trace elements in the sedimentary records of Lake Qinghai, Qinghai–Tibet Plateau: implications for anthropogenic activities [J]. Environ Geochem Health 41:2093–2111
30. Fancui Kong Z, Sha X, Luo J, Du JJ, Willard J, Mooref S, Yang Y (2019) Weigang Su. Evaluation of lacustrine groundwater discharge and associated nutrients, trace elements and DIC loadings into Qinghai Lake in Qinghai-Tibetan Plateau, using radium isotopes and hydrological methods [J]. Chem Geol 510:31–46
31. Ping Wang J, Cao Y, Han Z, Jin F, Wu F, Zhang (2015) Elemental distribution in the topsoil of the Lake Qinghai catchment, NE Tibetan Plateau, and the implications for weathering in semi-arid areas [J]. J Geochem Explor 152:1–9
32. Huajin C, Cao G, Chen K (2017) Xiaozhou Sun. Pollution and Potential Ecological Risk of Heavy Metals in Sediment from the Lower Reaches of Shaliuhe River, Qinghai Lake Watershed [J]. Scientia Geographica Sinica 37(2):259–265
33. Chunye Lin Y, Xue X, Zhang D, Renqin X, Zhou Y, Cao B, Guo, Xitao Liu (2018) Distribution of cadmium among multimedia in Lake Qinghai, China [J]. Environ Earth Sci 77:153
34. Li XY, Ma YJ, Xu HY, Wang JH, Zhang DS (2009) Impact of land use and land cover change on environmental degradation in lake Qinghai watershed, northeast Qinghai-Tibet Plateau [J]. Land Degrad Dev 20(1):69–83
35. Haicheng Wei, Chongyi E, Jing Zhang Y, Suna Q, Hou R, Duan (2020) Climate change and anthropogenic activities in Qinghai Lake basin over the last 8500 years derived from pollen and charcoal records in an aeolian section [J]. Catena 193:104616
36. Mamehpour N, Rezapour S, Ghaemian N (2021) Quantitative assessment of soil quality indices for urban croplands in a calcareous semi-arid ecosystem [J]. Geoderma 382:114781
37. Xu X, Yuan L, Jiang Z, Chen C, Cheng S (2020) Lake level changes determined by Cryosat-2 altimetry data and water-induced loading deformation around Lake Qinghai [J]. Adv Space Res 66:2568–2582
38. Research Center for tour guide qualification examination (2018) Basic knowledge of local tour guide [M]. Liaoning University Press, Liaoning
39. Dejun Wan Z, Jin Y, Wang (2012) Geochemistry of eolian dust and its elemental contribution to Lake Qinghai sediment [J]. Appl Geochem 27:1546–1555
40. Qiugui Wang Z, Sha J, Wang Q, Zhong P, Fang Y, Ma J, Du (2020) Vertical distribution of radionuclides in Lake Qinghai, Qinghai-Tibet Plateau, and its environmental implications [J]. Chemosphere 259:127489
41. Christine M, Davidson RP, Thomas SE, McVey R, Perala D, Littlejohn, Allan M (1994) Ure. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments [J]. Anal Chim Acta 291(3):277–286
42. Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. J Environ Monit 1(1):57–61
43. Zhang M, Zijing F, Hu Z (2020) Xingzhang Luo. Enhanced anaerobic digestion with the addition of chelator-nickel complexes to improve nickel bioavailability [J]. Sci Total Environ 759:143458
44. Sahuquillo A, Rauret G, Bianchi M, Rehnert A, Muntau H (2003) Mercury determination in solid phases from application of the modified BCR-sequential extraction procedure: a valuable tool for assessing its mobility in sediments [J]. Anal Bioanal Chem 375:578–583

45. Chen Z, Fu Q, Cao Y, Wen Q, Wu Y (2021) Effects of lime amendment on the organic substances changes, antibiotics removal, and heavy metals speciation transformation during swine manure composting [J]. Chemosphere 262:128342

46. Olukayode O, Jegede KF, Awuah MJ, Renaud M, Cousins BA, Hale SD (2020) Siciliano. Single metal and metal mixture toxicity of five metals to Oppia nitens in five different Canadian soils [J]. J Hazard Mater 392:122341

47. Ping W, Cao JunJi (2010) Feng Wu. Environmental background values and its impact factors of topsoil within the Lake Qinghai catchment, Northeast Tibetan Plateau, China [J]. Journal of Earth Environment 1(3):189–200

48. Parthasarathi Chakraborty PV, Raghunadh Babu VV, Sarma (2011) A multi-method approach for the study of lanthanum speciation in coastal and estuarine sediments [J]. Mar Pollut Bull 81(1):282–288

49. Parthasarathi Chakraborty PV, Raghunadh Babu K, Vudamala D, Ramteke (2014) Kartheek Chennuri. Mercury speciation in coastal sediments from the central east coast of India by modified BCR method [J]. Mar Pollut Bull 81(1):282–288

50. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals [J]. Anal Chem 51(7):844–851

51. Munir MAhmedM, Liu G, Yousaif B, Ali MU (2020) Ayesha Imtiyaz Cheema, Muhammad Saqib Rashid, Abdul Rehman. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil [J]. Environ Pollut 265:114816

52. Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanette ML, Oro AA (1985) Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination [J]. Heavy metals in the environment 2(1):454–456

53. Kunwar P Singh, Dinesh Mohan, VK Singh (2005) Amrita Malik. Studies on distribution and fractionation of heavy metals in Gomti River sediments: atributary of the Ganges, India [J]. J Hydrol 312(1):14–27

54. Pejman A, Bidhendi G, Nabi (2017) Ardestani, Mojtaba, Saeedi, Mohsen, Baghvand, Akbar. Fractionation of heavy metals in sediments and assessment of their availability risk: A case study in the northwestern of Persian Gulf [J]. Mar Pollut Bull 114(2):881–887

55. Jingsheng Chen L, Dong B, Deng L, Wan M, Wang Z, Xiong (1987) Modeling study on copper partitioning in sediments, a case study of Poyang Lake [J]. Acta Sci Circum 7(2):140–149

56. Gao Y, Sun R, Ye C, Liu C, Dai G, Li F (2020) Ecological risk assessment of heavy metal pollution in soil of a lead-zinc mine area in Danzhai County, Guizhou Province, China [J]. Chin J Ecol 39(3):928–936

57. Qiuli Yang G, He HRuilian, YHaixing (2016) Chengqi Lin. Distribution, fractionation, and contamination assessment of heavy metals in offshore surface sediments from western Xiamen Bay, China [J]. Acta Geochim 35(4):355–367

58. Zhang J, Li X, Zhang Q, Li Q, Xiao W, Wang Y, Zhang J (2015) Xiguang Gai. Transportation and Risk Assessment of Heavy Metal Pollution in Water-Soil from the Riparian Zone of Daye Lake, China [J]. Environmental Science 36(01):194–201

59. Zhiyong Zhang (2018) Differences and Their Influencing Factors in Soil and Vegetation Between Water-Level-Fluctuation Zone and Riparian Zone in the Three Gorges Reservoir [D]. Huazhong Agricultural University

60. Fan Yang Z, Hao S, Zhang H, Liu C, Wang Q, Ling (2016) Environment Geochemistry of Heavy Metals in the Alluvial Soils of Yangtze River in Wuhan City [J]. Acta Geol Sin 90(8):1955–1964
61. Yuan Li (2016) The Geochemical Characteristics of the Soils and Red Clay Layers in the Yellow River Delta and Their Environmental Implications [D]. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences

62. Songying Luo W, Xing Q, Liang Z, Deng X, Liu, Xiaowen Quan (2019) Speciation, ecological risk assessment and source analysis of heavy metals in the surface sediments of mangrove wetland in Zhanjiang Bay [J]. Ecology Environmental Sciences 28(2):348–358

63. Chengqi Lin H, Huang G, Hu R, Hao YC, Lin Y (2019) Assessment of the Speciation and Pollution of Heavy Metals in Paddy Soils from the Jiulong River Basin [J]. Environmental Science 40(1):453–460

64. Aydeniz Demir. Speciation, Risk Assessment and Bioavailability of Metals in the Agricultural Soils of the Göksu Delta, Turkey [J]. Soil Sediment Contamination: an International Journal, 2020, 30(3): 292–313. DOI:10.1080/15320383.2020.1839740

65. Asude Ates H, Demire N, Mergul (2020) Risk Assessment and Chemical Fractionation of Heavy Metals by BCR Sequential Extraction in Soil of the Sapanca Lake Basin, Turkey [J]. Polish Journal of Environmental Studies 29(2):1523–1533

66. José M-N (2017) José Pinedo-Hernández, Sergi Diez. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia [J]. Environ Res 154:380–388

Figures

![Figure 1](image-url)
Figure 2

Morphological distribution of surface soil heavy metals in the area around Qinghai Lake.