Abstract. Let $R = k[x_1, \ldots, x_n]$, where k is a field. The path ideal of length $t \geq 2$ of a directed graph G is the monomial ideal, denoted by $I_t(G)$, whose generators correspond to the directed paths of length t in G. Let Γ be a directed rooted tree. We characterize all such trees whose path ideals are unmixed and Cohen-Macaulay. Moreover, we show that $R/I_t(\Gamma)$ is Gorenstein if and only if the Stanley-Reisner simplicial complex of $I_t(\Gamma)$ is a matroid.

1. Introduction

Let G be a directed graph over n vertices and t be a fixed integer such that $2 \leq t \leq n$. A sequence v_{i_1}, \ldots, v_{i_t} of distinct vertices, is called a path of length t if there are $t - 1$ distinct directed edges e_1, \ldots, e_{t-1} where e_j is a directed edge from v_{i_j} to v_{i_j+1}. Then the path ideal of G of length t is the monomial ideal

$$I_t(G) = (x_{i_1} \cdots x_{i_t} : v_{i_1}, \ldots, v_{i_t} \text{ is a path of length } t \text{ in } G)$$

in the polynomial ring $R = k[x_1, \ldots, x_n]$ over a field k. Some properties of the path ideal of cycles and trees were studied in [5] and [9].

In this paper, we focus on the path ideals of trees. Throughout the paper, we mean by tree, a directed rooted tree and by a path, a directed path. We investigate some algebraic properties of this ideal. In [12], a characterization of all trees whose edge ideals, that is the case $t = 2$, are Cohen-Macaulay is given. Also, in [7], a characterization of all chordal graphs whose edge ideals are Cohen-Macaulay (resp. Gorenstein) is given. When G is a tree, it is obviously chordal. So, their results also hold for trees. In this paper, for a tree, we generalize these results for all $t \geq 2$.

This paper is organized as follows. In the next section, we recall several definitions and terminology which we need later. In Section 3, we characterize all trees whose path ideals are unmixed and hence Cohen-Macaulay. For this purpose, we use the correspondence between clutters and simplicial complexes and the fact that the facet simplicial complex associated to the paths of length t of Γ is a simplicial tree. In Section 4, we show that complete intersection and Gorenstein properties of the path ideal of a tree are equivalent to the property that the tree has only one directed path of length t. Moreover, we prove that this is the case if and only if the Stanley-Reisner simplicial complex of the path ideal is a matroid. Finally, we deduce that these conditions are equivalent to Cohen-Macaulayness of all symbolic and ordinary powers of the ideal.

2. Preliminaries

A simplicial complex Δ on the vertex set $V(\Delta) = \{v_1, \ldots, v_n\}$ is a collection of subsets of $V = V(\Delta)$ such that if $F \in \Delta$ and $G \subseteq F$, then $G \in \Delta$. (We sometimes write $[n]$ for the set of vertices of a simplicial complex or a graph).

An element in Δ is called a face of Δ, and $F \in \Delta$ is said to be a facet if F is maximal with respect to inclusion. Let F_1, \ldots, F_q be all the facets of simplicial complex Δ. We
sometimes write $\Delta = \{F_1, \ldots, F_q\}$. A vertex which is contained only in one facet, is called a free vertex of Δ. For every face $G \in \Delta$, we define the star and link of G as below

$$
st_{\Delta} G = \{ F \in \Delta : G \cup F \in \Delta \},$$

$$
\text{lk}_{\Delta} G = \{ F \in \Delta : G \cap F = \emptyset, G \cup F \in \Delta \}.$$

The dimension of a face F is $|F| - 1$. Let $d = \max\{|F| : F \in \Delta\}$, then the dimension of Δ, denoted by $\dim(\Delta)$, is $d - 1$. We say that Δ is pure if all its facets have the same dimension.

Let $f_i = f_i(\Delta)$ denote the number of faces of dimension i. The sequence $f(\Delta) = (f_0, f_1, \ldots, f_{d-1})$ is called the f-vector of Δ. By the convention, we set $f_{-1} = 1$.

The reduced Euler characteristic $\tilde{\chi}(\Delta)$ of Δ is given by

$$
\tilde{\chi}(\Delta) = -1 + \sum_{i=0}^{d-1} (-1)^i f_i.
$$

The facet ideal of Δ is

$$
I(\Delta) = \left(\prod_{x \in F} x : x \text{ is a facet of } \Delta \right).
$$

Now we define the simplicial complex $\Delta_t(G)$ to be

$$
\Delta_t(G) = \{ \{v_{i_1}, \ldots, v_{i_t} : v_{i_1}, \ldots, v_{i_t} \text{ is a path of length } t \text{ in } G \},
$$

where G is a directed graph. So we have $I_t(G) = I(\Delta_t(G))$.

The Stanley-Reisner ideal of Δ is the monomial ideal

$$
I_\Delta = \left(\prod_{x \in F} x : F \notin \Delta \right).
$$

The Stanley-Reisner ring of Δ is $k[\Delta] = R/I_\Delta$.

Let $\Delta = \{F_1, \ldots, F_q\}$. A vertex cover of Δ is a subset A of V, with the property that for every facet F_i there is a vertex $v_j \in A$ such that $v_j \in F_i$. A minimal vertex cover of Δ is a subset A of V such that A is a vertex cover and no proper subset of A is a vertex cover of Δ. The minimum number of vertices in a vertex cover is called the covering number of Δ, and it coincides with the height of $I(\Delta)$, $\text{ht}(I(\Delta))$. A simplicial complex Δ is unmixed if all of its minimal vertex covers have the same cardinality.

Recall that a finitely generated graded module M over a Noetherian graded k-algebra S is said to satisfy the Serre’s condition S_r if depth $M_P \geq \min(r, \dim M_P)$, for all $P \in \text{Spec}(S)$. Thus, M is Cohen-Macaulay if and only if it satisfies the Serre’s condition S_r for all r.

A graded R-module M is called sequentially Cohen-Macaulay (resp. sequentially S_r) (over k) if there exists a finite filtration of graded R-modules $0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$ such that each M_i/M_{i-1} is Cohen-Macaulay (resp. S_r), and the Krull dimensions of the quotients are increasing, i.e.

$$
\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1}).
$$

Theorem 2.1. (see [3] Lemma 3.6 and [4] Corollary 2.7) Let I be a squarefree monomial ideal in $R = k[x_1, \ldots, x_n]$. Then R/I is Cohen-Macaulay (resp. S_r) if and only if R/I is sequentially Cohen-Macaulay (resp. sequentially S_r) and I is unmixed.

A clutter \mathcal{C} with finite vertex set X is a family of subsets of X, called edges, none of which is included in another. The set of vertices and edges of \mathcal{C} are denoted by $V(\mathcal{C})$ and $E(\mathcal{C})$, respectively. The set of edges of a clutter can be viewed as the set of facets of a simplicial complex.
Let C be a clutter with finite vertex set $X = \{v_1, \ldots, v_n\}$ with no isolated vertices, i.e., each vertex occurs in at least one edge. The edge ideal of C, denoted by $I(C)$, is the ideal of R generated by all monomials $\prod_{v_i \in E} x_i$ such that $E \in E(C)$. The edge ideal of a clutter could be seen as the facet ideal of its corresponding simplicial complex.

A clutter has the König property if the maximum number of pairwise disjoint edges equals the covering number. A perfect matching of C of König type is a collection E_1, \ldots, E_g of pairwise disjoint edges whose union is X and such that g is the height of $I(C)$.

Let A be the incidence matrix of a clutter C. A clutter C has a cycle of length r if there is a square sub-matrix of A of order $r \geq 3$ with exactly two 1’s in each row and column. A clutter without odd cycles is called balanced and an acyclic clutter is called totally balanced.

A leaf of a simplicial complex Δ is a facet F of Δ such that either F is the only facet of Δ, or there exists a facet G in Δ, $G \neq F$, such that $F \cap F' \subseteq F \cap G$ for every facet $F' \in \Delta$, $F' \neq F$. A simplicial complex Δ is a called simplicial tree if Δ is connected and every non-empty subcomplex Δ' contains a leaf. By a subcomplex, we mean any simplicial complex of the form $\Delta' = \langle F_{i_1}, \ldots, F_{i_q} \rangle$, where $\{F_{i_1}, \ldots, F_{i_q}\}$ is a subset of the facets of Δ. We adopt the convention that the empty simplicial complex is also a simplicial tree. A simplicial complex Δ with the property that every connected component of Δ is a simplicial tree is called a simplicial forest.

In [6], it was shown that a clutter C is totally balanced if and only if it is the clutter of the facets of a simplicial forest [6, Theorem 3.2]. Moreover, in [2], it was shown that a simplicial tree (forest) has the König property [2, Theorem 5.3].

3. Trees with Cohen-Macaulay path ideals

A tree Γ can be viewed as a directed graph by picking any vertex of Γ to be the root of the tree, and assigning to each edge the direction “away” from the root. Because Γ is a tree, the assignment of a direction will always be possible. A leaf is any vertex in Γ adjacent to only one other vertex. The level of a vertex v, denoted level(v), is one fewer than the length of the unique path starting at the root and ending at v. The height of a tree, denoted height(Γ), is then given by height$(\Gamma) := \max_{v \in V} \text{level}(v)$.

Example 3.1. Let Γ be the tree in the Figure[4] in which v_1 is the root and height$(\Gamma) = 3$. Also, let $t = 4$. Then we have

$$I_4(\Gamma) = (x_1x_2x_4x_8, x_1x_2x_4x_9, x_1x_3x_6x_{10}, x_1x_3x_7x_{11}).$$
Throughout the paper, we mean by a tree, a directed rooted tree as above and by a path, a directed path. By abuse of notation, we use $F = \{v_1, \ldots, v_t\}$ where $\text{level}(v_i) < \cdots < \text{level}(v_t)$, to denote the path of length t in a tree Γ which starts from v_i and ends at v_t, and also the corresponding facet in $\Delta_t(\Gamma)$.

In [5], it was shown that:

Theorem 3.2. [5 Theorem 2.7] Let Γ be a tree over n vertices and $2 \leq t \leq n$. Then $\Delta_t(\Gamma)$ is a simplicial tree.

Theorem 3.3. [5 Corollary 2.12] Let Γ be a tree over n vertices and $2 \leq t \leq n$. Then $R/I(\Gamma)$ is sequentially Cohen-Macaulay.

In this section, we focus on some other properties of the path ideal of a tree. We determine when this ideal is unmixed and hence Cohen-Macaulay.

Remark 3.4. Note that by removing leaves at level strictly less than $(t-1)$ from a tree Γ and repeating this process until Γ has no more such leaves, one obtains a tree denoted by $C(\Gamma)$. In [1], this process is called cleaning process and the tree $C(\Gamma)$ is called the clean form of Γ. Note that the generators of $I_1(C(\Gamma))$ and $I_t(C(\Gamma))$ are the same (but in different polynomial rings). So, the graded Betti numbers of these two ideals are also the same.

Now, we want to introduce a class of trees which plays an important role in the main result of this section.

Definition 3.5. Let Γ be a tree over n vertices and $2 \leq t \leq n$. Suppose that F_1, \ldots, F_m are all facets of $\Delta = \Delta_t(C(\Gamma))$ containing a leaf of $C(\Gamma)$ such that each leaf belongs to exactly one of them. If $V(\Delta)$ is the disjoint union of F_1, \ldots, F_m, then we say that Γ is t-partitioned (by F_1, \ldots, F_m).

Now, let Γ be a t-partitioned tree (by F_1, \ldots, F_m). We define a t-branch of Γ, as a path of length $t+1$, say P, which starts at a vertex of some F_i, like x, and $P \cap F_i = \{x\}$. Then, for each $i = 1, \ldots, m$, we define degree of F_i, as $\text{Deg}_t(F_i) := \text{number of vertices of } F_i$ which are the first vertices of a t-branch of Γ.

Moreover, we define degree of Γ, as $\text{Deg}(\Gamma) := \max\{\text{Deg}_t(F_i) : 1 \leq i \leq m\}$.

We call a t-branch of Γ, initial if it intersects some F_i in the first vertex of F_i. Otherwise, we call it non-initial.

Also, we define level of a t-branch P of Γ, denoted by $\text{level}(P)$, as the level of the vertex x, where $P \cap F_i = \{x\}$ for some $i = 1, \ldots, m$.

Definition 3.6. Let Γ be a t-partitioned tree over n vertices and $2 \leq t \leq n$. We say that Γ is fitting t-partitioned, if the following hold:

1. $\text{Deg}(\Gamma) \leq 1$; and
2. $\text{level}(P) \leq t-1$, for each non-initial t-branch P of Γ.

Example 3.7. (a) Let Γ be the tree in Figure 1 and $t = 4$. Then, the set of vertices of $C(\Gamma)$ is not disjoint union of $F_1 = \{v_1, v_2, v_4, v_8\}$, $F_2 = \{v_1, v_2, v_4, v_9\}$, $F_3 = \{v_1, v_3, v_5, v_{10}\}$ and $F_4 = \{v_1, v_3, v_7, v_{11}\}$. So, Γ is not 4-partitioned. Note that by cleaning Γ, the only vertex which is removed, is v_5.

(b) Let Γ_1 be the tree in Figure 2 and $t = 3$. Note that vertex v_3 is removed in $C(\Gamma_1)$. So, the vertex set of $C(\Gamma_1)$ is the disjoint union of $F_1 = \{v_1, v_4, v_7\}$, $F_2 = \{v_2, v_5, v_8\}$ and $F_3 = \{v_6, v_9, v_{10}\}$ and hence Γ_1 is 3-partitioned (by F_1, F_2, F_3). The 3-branches of Γ_1 are $P_1 = \{v_1, v_2, v_5, v_8\}$, $P_2 = \{v_1, v_2, v_6, v_9\}$ and $P_3 = \{v_2, v_6, v_9, v_{10}\}$ which are all initial. Also, P_1 and P_2 intersect F_1, and P_3 intersects F_2. We have $\text{level}(P_1) = \text{level}(P_2) =$
level(v_1) = 0 and level(P_2) = level(v_2) = 1. Moreover, note that $\text{Deg}_{\Gamma_1}(F_1) = \text{Deg}_{\Gamma_1}(F_2) = 1$, $\text{Deg}_{\Gamma_1}(F_3) = 0$ and hence $\text{Deg}(\Gamma_1) = 1$. Thus, by Definition 3.6, Γ_1 is a fitting 3-partitioned tree.

(c) Let Γ_2 be the tree in Figure 3 and $t = 3$. We have $C(\Gamma_2) = \Gamma_2$. Also, $F_1 = \{v_1, v_2, v_3\}$, $F_2 = \{v_4, v_5, v_7\}$ and $F_3 = \{v_6, v_8, v_9\}$ are the facets mentioned in Definition 3.5. The vertex set of Γ_2 is the disjoint union of F_1, F_2 and F_3. So, Γ_2 is 3-partitioned. In addition, $P_1 = \{v_2, v_4, v_5, v_7\}$, $P_2 = \{v_2, v_4, v_5, v_6\}$, and $P_3 = \{v_5, v_6, v_8, v_9\}$ are the only 3-branches of Γ_2, where both of them are non-initial and we have level(P_1) = level(P_2) = level(v_2) = 1 and level(P_3) = level(v_5) = 3. Although $\text{Deg}(\Gamma) = \text{Deg}_{\Gamma_2}(F_1) = \text{Deg}_{\Gamma_1}(F_2) = 1$, Γ_2 is not fitting 3-partitioned, since level(P_2) = 3 > 2.

(d) Let Γ_3 be the tree in Figure 4 and $t = 3$. We have $C(\Gamma_3) = \Gamma_3$. Also, the vertex set of Γ_3 is the disjoint union of $F_1 = \{v_2, v_5, v_8\}$, $F_2 = \{v_1, v_3, v_6\}$ and $F_3 = \{v_4, v_7, v_9\}$. So, Γ_3 is 3-partitioned. In addition, $P_1 = \{v_1, v_2, v_5, v_8\}$ and $P_2 = \{v_1, v_4, v_7, v_9\}$ are the only 3-branches of Γ_3, where both of them are initial and we have level(P_1) = level(P_2) = level(v_1) = 0. Also, we have $\text{Deg}(\Gamma_3) = \text{Deg}_{\Gamma_3}(F_2) = 1$ and so Γ_3 is a fitting 3-partitioned tree.
such that

Theorem 3.9. [8, Corollary 2.19] Let C be a totally balanced clutter with the K"onig property. Then C is unmixed if and only if there is a perfect matching E_1, \ldots, E_g of K"onig type such that E_i has a free vertex for all i, and for any two edges E, E' of C and for any edge E_i of the perfect matching, one has that $E \cap E_i \subset E' \cap E_i$ or $E' \cap E_i \subset E \cap E_i$.

We need the following theorem to prove the main result of this section:

Theorem 3.10. Let Γ be a tree over n vertices and $2 \leq t \leq n$. Then $I_t(\Gamma)$ is unmixed if and only if Γ is fitting t-partitioned.

Proof. By Theorem 3.2 and Remark 3.3, we have $\Delta = \Delta_1(C(\Gamma))$ is a simplicial tree. Moreover, a simplicial tree is totally balanced by [6, Theorem 3.2] and also has the K"onig property by [2, Theorem 5.3]. Also, note that $\Delta = \Delta_1(\Gamma)$.

"Only if" Suppose that $I_t(\Gamma)$ is unmixed. So, Δ is unmixed. Thus, by Theorem 3.3 and Remark 3.4, there exist disjoint facets F_1, \ldots, F_m of Δ such that E_i has a free vertex for all i and $V(\Delta) = \bigcup_{i=1}^m E_i$, where $g = \text{ht}(I_t(\Gamma))$. Suppose that F_1, \ldots, F_m are all facets of Δ containing a leaf of $C(\Gamma)$ such that each leaf belongs to exactly one of them. First we show that $V(\Delta) = \bigcup_{j=1}^m F_j$. Let $E_i = \{v_{i_1}, \ldots, v_{i_t}\}$ for each $i = 1, \ldots, g$, where $\text{level}(v_{i_1}) < \cdots < \text{level}(v_{i_t})$. Now fix an integer $i = 1, \ldots, g$. We consider two following cases:

Case (1). Suppose that v_{i_1} is a leaf of $C(\Gamma)$. Note that if a leaf of $C(\Gamma)$ is not the root, then it is contained in exactly one facet of Δ, that is some F_j. So, in this case, there exists $j_i \in \{1, \ldots, m\}$ such that $E_i = F_{j_i}$.

Case (2). Suppose that v_{i_1} is not a leaf of $C(\Gamma)$. Then there exists a vertex x with level greater than v_{i_1}’s and adjacent to v_{i_1}. Thus, v_{i_2}, \ldots, v_{i_t} are contained in the facet $G = \{v_{i_2}, \ldots, v_{i_t}, x\}$ and hence are not free. But E_i has a free vertex, so v_{i_1} should be free. Therefore, v_{i_1} is the root of $C(\Gamma)$, since otherwise there is a vertex of level less than v_{i_1} and adjacent to it and so v_{i_1} is contained in another facet, a contradiction. If v_{i_1} is not a leaf, then there exists a vertex $y \neq v_{i_1}$ adjacent to v_{i_1} such that $\text{level}(v_{i_2}) = \text{level}(y)$. Thus, v_{i_1} and y are contained in a path of length t and so a facet of Δ, since $C(\Gamma)$ does not have any leaves at level strictly less than $(t - 1)$. So, v_{i_1} is not a free vertex, a contradiction.
Therefore, v_i is a leaf of $C(\Gamma)$ which is just contained in E_i. So, by the way of picking F_i’s, there exists $j_i = 1, \ldots, m$ such that $E_i = F_{j_i}$.

Thus, we show that the F_i’s are disjoint. If for each $i = 1, \ldots, m$, the last vertex of F_i is a leaf, then F_i is equal to some E_i and so the result follows. If there exists some F_i which contains the root, say z, as a leaf and its last vertex is not a leaf, then z is only contained in F_i and the other F_i’s are as the previous case and so they are disjoint, by our assumption. We may assume that $i = 1$. Let α be the number of vertices of F_i not contained in $\bigcup_{j=2}^{m} F_j$. So, $0 < \alpha \leq t$, since z has this property. On the other hand, $V(\Delta)$ is the disjoint union of E_i’s. Hence, we have $gt = (m-1)t + \alpha$. Thus, $\alpha = t$ and $g = m$. So, F_i’s are disjoint and so $V(\Delta)$ is the disjoint union of F_1, \ldots, F_m. Hence, Γ is t-partitioned (by F_1, \ldots, F_m). Also, without loss of generality, we can assume that $F_i = E_i$ for each $i = 1, \ldots, m$.

Now suppose that Γ is not fitting t-partitioned. So, we have $\deg(\Gamma) > 1$ or there exists a non-initial t-branch P of Γ such that $\text{level}(P) \geq t$.

If $\deg(\Gamma) > 1$, then there exists an integer $i = 1, \ldots, m$ such that $\deg(P_i) > 1$. Thus, F_i contains at least two distinct vertices v_{i_1} and v_{i_2} which are the first vertices of two different t-branches, say P and P'. So, P and P' are paths of length $t+1$ starting from v_{i_1} and v_{i_2}, respectively. Clearly, by omitting the last vertex of P (resp. P'), we get a path of length t starting from v_{i_1} (resp. v_{i_2}), say $P_{v_{i_1}}$ (resp. $P_{v_{i_2}}$). So, we have $P_{v_{i_1}} \cap F_i = \emptyset$ and $P_{v_{i_2}} \cap F_i = \{ v_{i_1} \}$, none of them contains the other. By Theorem 3.9, it is a contradiction, since Δ is unmixed.

Now, suppose that there exists a non-initial t-branch P of Γ such that $\text{level}(P) \geq t$. Also, suppose that v_{i_1} is the intersection of P and some F_i. So, v_{i_1} is not the first vertex of F_i and $\text{level}(v_{i_1}) \geq t$. Let $P_{v_{i_1}}$ be a path of length t starting from v_{i_1} (as we discussed in the previous case). So, we have $P_{v_{i_1}} \cap F_i = \{ v_{i_1} \}$. On the other hand, since $\text{level}(v_{i_1}) \geq t$ and v_{i_1} is not the first vertex of F_i, there is a path of length t in $C(\Gamma)$ ending at $v_{i_{t-1}}$, say H. Thus $H \cap F_i = \{ v_{i_1}, \ldots, v_{i_{t-1}} \}$. Therefore, none of $H \cap F_i$ and $P_{v_{i_1}} \cap F_i$ contains the other, again a contradiction, by Theorem 3.9. Thus Γ is a fitting t-partitioned tree.

“If” Suppose that Γ is a fitting t-partitioned tree (by F_1, \ldots, F_m). We should show that Δ is unmixed. Since F_i’s are disjoint, we have $m \leq \text{ht}(I_i(\Gamma)) =$ covering number of Δ. Let v_{i_1} be the first vertex of F_i, for all $i = 1, \ldots, m$. It is not difficult to see that $S = \{ v_{i_1}, \ldots, v_{i_m} \}$ is a minimal vertex cover of Δ. Thus $\text{ht}(I_i(\Gamma)) = m$. So, we have F_1, \ldots, F_m is a perfect matching of König type for Δ, since Γ is t-partitioned. Moreover, each F_i contains a leaf of $C(\Gamma)$ and hence it has a free vertex. Therefore, by Theorem 3.9 it is enough to show that for any two facets E and E' of Δ and for each F_i, one has $E \cap F_i \subset E' \cap F_i$ or $E' \cap F_i \subset E \cap F_i$. So, fix an integer $i = 1, \ldots, m$ and suppose that E and E' are two facets of Δ. If $E \cap F_i = \emptyset$ or $E' \cap F_i = \emptyset$, then there is nothing to prove. So, suppose that both of the intersections are non-empty. Now, since $\deg(\Gamma) \leq 1$, we can consider the following cases:

Case (1). Suppose that $\deg(P_i) = 0$. So, there does not exist any t-branch intersecting F_i. Thus, none of the vertices of F_i is contained in some path of length t whose last vertex does not belong to F_i, since the F_i’s are disjoint. So, the only possible choice for E and E' is such that the last vertices of E and E' belong to F_i. Let v_{i_1} and v_{i_2} be the last vertices of E and E', respectively. Also, suppose that $\text{level}(v_{i_1}) \leq \text{level}(v_{i_2})$. Note that because $C(\Gamma)$ is a tree, there exists a unique path from the root to each vertex. So, we have $E \cap F_i = \{ v_{i_1}, \ldots, v_{i_t} \} \subseteq \{ v_{i_1}, \ldots, v_{i_{t-1}} \} = E' \cap F_i$, as desired.

Case (2). Suppose that $\deg(P_i) = 1$. So, there is exactly one vertex x in F_i intersecting some t-branches of Γ. Thus, we can only choose those paths whose last vertices belong to F_i or paths of the form P_x (similar to what we explained in “Only if” part) or paths whose
last vertices belong to a path of the form \(P_x \), as \(E \) and \(E' \). Note that, those paths whose last vertices belong to \(F_i \) contains \(x \), since \(x \) is the first vertex of \(F_i \) or level(\(x \)) \(\leq t - 1 \). Thus, in each choice, we have \(E \cap F_i \subseteq E' \cap F_i \) or \(E' \cap F_i \subseteq E \cap F_i \). Therefore, similar to the previous case, we get the result.

Combining Theorem 3.10, Theorem 3.3 and Theorem 2.1, we have the following important corollary:

Corollary 3.11. Let \(\Gamma \) be a tree over \(n \) vertices, \(2 \leq t \leq n \) and \(r \geq 2 \). Then the following conditions are equivalent:

(i) \(R/I_t(\Gamma) \) is unmixed.

(ii) \(R/I_t(\Gamma) \) is Cohen-Macaulay.

(iii) \(R/I_t(\Gamma) \) is \(S_r \).

(iv) \(\Gamma \) is fitting t-partitioned.

By the above corollary and Example 3.7, we have that \(\Gamma \) and \(\Gamma_2 \) are not Cohen-Macaulay, but \(\Gamma_1 \) and \(\Gamma_3 \) are.

As a consequence of Corollary 3.11, we have the following corollary on the simplest kind of trees, i.e. lines. By \(L_n \), we mean the line over \(n \) vertices with directed edges \(e_1, \ldots, e_{n-1} \), where \(e_i \) is from \(v_i \) to \(v_{i+1} \) for \(i = 1, \ldots, n-1 \).

Corollary 3.12. Let \(2 \leq t \leq n \). Then \(R/I_t(L_n) \) is Cohen-Macaulay if and only if \(t = n \) or \(n/2 \).

Remark 3.13. Suppose that \(F_1, \ldots, F_m \) are all facets of \(\Delta = \Delta_t(C(\Gamma)) \) containing a leaf of \(C(\Gamma) \) such that each leaf belongs to exactly one of them. Note that by the proof of Theorem 3.10 if \(R/I_t(\Gamma) \) is Cohen-Macaulay, then we have \(\text{ht}(I_t(\Gamma)) = m \). So, \(\text{depth}(R/I_t(\Gamma)) = \dim(R/I_t(\Gamma)) = n - m \) and hence \(\text{pd}(R/I_t(\Gamma)) = m \), by Auslander-Buchsbaum formula.

Remark 3.14. Note that for \(t = 2 \), Corollary 3.11 yields the previous result on the Cohen-Macaulayness of the edge ideal of a tree (see [12, Theorem 6.3.4] and the main theorem of [7]). In the case \(t = 2 \), there are not any differences between various directions assigning to \(\Gamma \). So, one can pick each vertex as a root and obtain \(I_2(\Gamma) = I(\Gamma) \).

4. Trees with Gorenstein path ideals

In this section, we determine complete intersection and Gorenstein path ideals of trees. Also, as a consequence, we characterize those trees such that all powers of their path ideals are Cohen-Macaulay.

First recall that a **matroid** is a collection of subsets of a finite set, called independent sets, with the following properties:

(i) The empty set is independent.

(ii) Every subset of an independent set is independent.

(iii) If \(F \) and \(G \) are two independent sets and \(F \) has more elements than \(G \), then there exists an element in \(F \) which is not in \(G \) that when added to \(G \) still gives an independent set.

Clearly, we may consider a matroid as a simplicial complex.

Also, note that the path ideal of length \(t \) of a tree \(\Gamma \), can be viewed as a Stanley-Reisner ideal of a simplicial complex \(\Delta_{n,t} \) by setting: \(F \subseteq [n] \) is a face of \(\Delta_{n,t} \) if and only if \(F \) contains no \(t \) consecutive vertices. So, we have \(I_t(\Gamma) = I_{\Delta_{n,t}} \).

Moreover, we need the following characterization of Gorenstein simplicial complexes:

Theorem 4.1. [10, Chapter II, Theorem 5.1] Fix a field \(k \) (or \(\mathbb{Z} \)). Let \(\Delta \) be a simplicial complex and \(\Delta := \text{core}(\Delta) \). Then the following are equivalent:

(i) \(\Delta \) is Gorenstein.

(ii) either (1) \(\Delta = \emptyset \), or (2) \(\Delta \) is Cohen-Macaulay over \(k \) of dimension
4.1. So, $\Delta_{n,t}$ is a matroid.

Proof. (i) \Rightarrow (ii) follows by \cite[Theorem 3.6 and Theorem 4.3]{11}.

(ii) \Rightarrow (iv) Suppose that $R/I(\Gamma)$ is Cohen-Macaulay and hence by Corollary 3.11, Γ is fitting t-partitioned (by F_1, \ldots, F_m). Without loss of generality, we assume that F_1 is the path containing the root of Γ. Moreover, let $F = \{v_1, \ldots, v_t\}$, with level$(v_i) < \cdots < $ level(v_s), for all $i = 1, \ldots, m$. Now, suppose on the contrary that $C(\Gamma)$ is not L_t. So, $m > 1$, because Γ is t-partitioned. Therefore, there exists some F_i which constructs a path of length $t + 1$ with a vertex v_1 of F_1, in which $s = 1, \ldots, t$. In other words, $\{v_1\} \cup F_1$ is a t-branch of Γ. We assume that $i = 2$. Let $G := [n] \setminus \bigcup_{j=1}^{m} \{v_i\}$ for all $i = 1, \ldots, m$. So, G does not contain any t consecutive vertices. Without loss of generality, we have $\dim(\Delta_{n,t}) + 1 = \dim(R/I(\Gamma)) = n - m > 1$. Now we consider two cases:

Case (1). Let $s = 1$. Then set $H := G \setminus \{v_1, v_2\}$. Note that H does not contain any t consecutive vertices. Hence it is a face of $\Delta_{n,t}$ of cardinality $n - m - 2$. Also, we have $\text{lk}_{\Delta_{n,t}} H = \{v_1, v_2\}$, which is a path over four vertices.

Case (2). Let $s > 1$. Then set $H := G \setminus \{v_1, v_2\}$. Note that H does not contain any t consecutive vertices. Hence it is a face of $\Delta_{n,t}$ of cardinality $n - m - 2$. Also, we have $\text{lk}_{\Delta_{n,t}} H = \{v_1, v_2, v_3, v_4\}$, which is a path over four vertices.

Thus, by the above cases, we see that $\text{lk}_{\Delta_{n,t}} H$ is not of the forms mentioned in Theorem 4.3. So, $\Delta_{n,t}$ is not Gorenstein, a contradiction to the fact that $R/I(\Gamma)$ is Gorenstein.

(iii) \Rightarrow (iv) Suppose that $\Delta_{n,t}$ is a matroid. For $t = 2$, we have $C(\Gamma) = \Gamma$. So, if Γ has more than one edge, then obviously $\Delta_{n,2}$, which is precisely the independence complex of Γ, is not a matroid, a contradiction. Suppose that $t > 2$. Note that every matroid is Cohen-Macaulay (see \cite[Theorem 3.4]{11}). So, we consider F_1, \ldots, F_m similar to the previous part of the proof and suppose on the contrary that $m > 1$. We assume that F_1, F_2 and v_1 are the same as in the previous part. Now we consider two cases:

Case (1). Let $s = 1$. Then set $G := (F_1 \setminus \{v_1\}) \cup (F_2 \setminus \{v_2\})$ and $H := (F_1 \setminus \{v_1\}) \cup (F_2 \setminus \{v_2, v_3\})$. Note that G and H do not contain any t consecutive vertices. Hence they are faces of $\Delta_{n,t}$ of cardinalities $2t - 3$ and $2t - 2$, respectively. On the other hand, $H \setminus G = \{v_1, v_2, v_3\}$. But, $G \cup \{v_1\}$ and $G \cup \{v_2, v_3\}$ do not belong to $\Delta_{n,t}$, since both of them contain t consecutive vertices. Thus, by definition, $\Delta_{n,t}$ is not a matroid, a contradiction.

Case (2). Let $s > 1$. Then set $G := (F_1 \setminus \{v_1, v_2, \ldots, v_{s-1}\}) \cup (F_2 \setminus \{v_{2(s-1)}, v_{2s}\})$ and $H := (F_1 \setminus \{v_1, v_2, \ldots, v_{s-1}\}) \cup (F_2 \setminus \{v_{2(s-1)}, v_{2s}\})$. Note that G and H do not contain any t consecutive vertices. Hence they are faces of $\Delta_{n,t}$ of cardinalities $2t - 3$ and $2t - 2$, respectively. On the other hand, $H \setminus G = \{v_1, v_2, \ldots, v_{s-1}, v_{2(s-1)}\}$. But, we have $G \cup \{v_1, v_2, \ldots, v_{s-1}\}$ and $G \cup \{v_1, v_2, \ldots, v_{s-1}\}$ do not belong to $\Delta_{n,t}$, since both of them contain some t consecutive vertices. Thus, by definition, $\Delta_{n,t}$ is not a matroid, a contradiction.

So, by the above cases, we get the desired result.

(iv) \Rightarrow (i) is clear. \qed
Remark 4.3. Notice that Theorem 4.2 implies the result of [7, Corollary 2.1] about Gorenstein property in the case that $t = 2$ and G is a tree.

Denote by $I^{(m)}$, the m-th symbolic power of the ideal I. We end this section with the following corollary which is obtained by Theorem 4.2 and [11, Theorem 3.6 and Theorem 4.3]:

Corollary 4.4. Let Γ be a tree over n vertices, $2 \leq t \leq n$ and $I := I_t(\Gamma)$. Then the following conditions are equivalent:

(i) I^m (resp. $I^{(m)}$) is Cohen-Macaulay for every $m \geq 1$.

(ii) I^m (resp. $I^{(m)}$) is Cohen-Macaulay for some $m \geq 3$.

(iii) $C(\Gamma)$ is L_t.

References

1. R. R. Bouchat, H. T. H`a and A. O’Keefe, Path ideals of rooted trees and their graded Betti numbers. J. Combin. Theory Ser. A 118, (November 2011), no. 8, 2411-2425.

2. S. Faridi, Cohen-Macaulay properties of square-free monomial ideals. J. Combin. Theory Ser. A 109 (2005), no. 2, 299-329.

3. C. A. Francisco and A. Van Tuyl, Sequentially Cohen-Macaulay edge ideals, Proc. Amer. Math. Soc. (2007), no. 8, 2327-2337.

4. H. Haghighi, N. Terai, S. Yassemi and R. Zaare-Nahandi, Sequentially S, simplicial complexes and sequentially S2 graphs. Proc. Amer. Math. Soc. 139 (2011), no. 6, 1993-2005.

5. J. He and A. Van Tuyl, Algebraic properties of the path ideal of a tree. Comm. Algebra. 38 (2010), 1725-1742.

6. J. Herzog, T. Hibi, N. V. Trung, and X. Zheng, Standard graded vertex cover algebras, cycles and leaves. Trans. Amer. Math. Soc. 360 (2008), no. 12, 6231-6249.

7. J. Herzog, T. Hibi and X. Zheng, Cohen-Macaulay chordal graphs. J. Combin. Theory Ser. A. 113 (2006), 911-916.

8. S. Morey, E. Reyes and R. H. Villarreal, Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of König type. J. Pure Appl. Algebra 212 (2008), no. 7, 1770-1786.

9. S. Saeedi Madani, D. Kiani and N. Terai, Sequentially Cohen-Macaulay path ideals of cycles. Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) No. 4, (2011), 353-363.

10. R. Stanley, Combinatorics and Commutative Algebra. Second Edition, Birkhauser, Boston, (1995).

11. N. Terai and N. V. Trung, Cohen-Macaulayness of large powers of Stanley-Reisner ideals. arXiv. math.AC/1009.0833v1, (2010).

12. R. H. Villarreal, Monomial Algebras. Marcel Dekker, (2001).