Phenolic Content and Enzyme Inhibition Activities
Barbarea auriculata var. paludosa, B. integrifolia and B. plantaginea (Brassicaceae)'s

Merve Badem¹*, Sıla Ozlem Sener², Nuriye Korkmaz¹, Seyda Kanbolat¹, Sermet Yıldırım¹, Ufuk Ozgen², Rezzan Alıyazıколоğlu¹ and Ali Kandemir³

¹Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey.
²Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey.
³Department of Biology, Faculty of Science, Erzincan University, 24000, Erzincan, Turkey.

Authors’ contributions
This work was carried out in collaboration among all authors. Author AK collected and identified the plants. Authors MB, SOS, NK, SK, SY, UO, RA designed the studies and performed the analysis. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2020/v32i930486
Editor(s):
(1) Dr. Vasudevan Mani, Qassim University, Saudi Arabia.
(2) Dr. Mohamed Fathy, Assiut University, Egypt.
Reviewers:
(1) Uzuazokaro M. Agatemor, Novena University, Nigeria.
(2) T. C. Venkateswarlu, Vignan's Foundation for Science, Technology & Research, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/57426

Received 07 April 2020
Accepted 12 June 2020
Published 20 June 2020

ABSTRACT

Barbarea genus has been presented about 12 species, 9 taxon are endemic, in Turkey. In this study, enzyme inhibition was carried out on methanolic extract, chloroform extract, ethyl acetate extract, and the remaining aqueous phases from the aerial parts of B. auriculata var paludosa, B. integrifolia, and B. plantaginea species and HPLC studies were carried on their methanolic extract in the present study for the first time. Phenolic compounds were determined using reverse phase-high performance liquid chromatography (RP-HPLC). p-OH benzoic acid, vanillic acid, syringaldehyde, coumaric acid, synapic acid and benzoic acid were detected as major phenolic compounds in the species. Assay of enzyme inhibition activities were done using...
spectrophotometric methods. Results of these studies reveal that the extracts from these species have moderate tyrosinase, AChE and BuChE inhibitory activity. In the biological activity studies, it was observed that *B. integrifolia* was the highest activity.

Keywords: Barbarea; brassicaceae; enzyme inhibition; phytochemical.

1. **INTRODUCTION**

Turkey is situated in the junction of three different phytogeographic regions (Mediterranean, Irano-Turanian, Euro-Siberian) [1]. Turkey being a leading country in terms of medicinal and endemic plants in the World, has a rich flora [2]. About 10000 flowering and fern plant species have inherently grown in Turkey and the rate of endemism is high (30% of them are endemic) [3-5].

B. integrifolia (Brassicaceae) has presented about 20 species in Europe and Asia, 12 species, 9 taxon are endemic, in Turkey. The leaves of *B. integrifolia* species have been used as food (for making salad), wound healing and diuretic [1].

Alzheimer’s disease (AD) is a neurodegenerative ailment defined by memory defect. One of the most evident biochemical change for the ailment is a decrease acetylcholine levels in nerve cells [6]. Acetylcholinesterase (AChE) and butyryl-cholinesterase are two key enzymes hydrolysing acetylcholine [7]. Nowadays, synthetic cholinesterase inhibitors are one of the potent agent for treatment of AD. But, they have side effects such as hepatotoxicity and gastrointestinal problems [8]. So, researchers have been focused on cholinesterase inhibitors obtained from natural products.

Tyrosinase is well-known as a polyphenol oxidase enzyme, being charge of melanin biosynthesis [9]. Hyperpigmentation defined increasing of melanin production induces actinic damage, melasma, freckle and age-related stains [10]. The tyrosinase inhibitors are potential agents using to treat these hyperpigmentation diseases [11]. Moreover, Tyrosinase inhibitors have been evidenced to be used to cure neurotoxic diseases like Parkinson [12].

Phenolic compounds evidenced wide range of significant biological activities such as antioxidant, antiaging, antimicrobial, memory stimulating effect, hepatoprotective, anticholine-sterase and antityrosinase. Some phenolic compounds including p-hydroxy benzoic acid, (2) vanillic acid, (3) syring aldehyde, (4) p-coumaric acid, (5) sinapic acid, (6) benzoic acid, (7) quercetin have anticholinesterase and antyrosinase activities [13,14].

The aim of the study was to investigate enzyme inhibition on methanolic extract, chloroform, ethyl acetate, and the remaining aqueous phases from the aerial parts of *B. auriculata var. paludosus*, *B. integrifolia*, and *B. plantaginea* species and to screen phytochemical profile of methanolic extracts of the plants in terms of phenolic compounds (p-hydroxy benzoic acid, (2) vanillic acid, (3) syring aldehyde, (4) p-coumaric acid, (5) sinapic acid, (6) benzoic acid, (7) quercetin) using HPLC technique. It is first study about phytochemical and biological activity of these species.

2. **MATERIALS AND METHODS**

2.1 **Chemicals and Instrumentation**

The following chemicals and reagents were: chloroform, ethyl acetate, methanol, ethanol, galanthamine, 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (Trolox), α-Kojic acid, tyrosinase, hexane, vanillin, formik acid, p-OH benzoic acid, vanillic acid, syringaldehyde, coumaric acid, synapic acid, querocetin, benzoic acid (Sigma-Aldrich); acetic acid and acetoniitrile (Merck). BMG Labtech Spectrostar Nano spectrophotometer has been used to measure the absorbance in biological activity studies.

2.2 **Plant Material**

B. auriculata var. paludosus, *B. plantaginea* and *B. integrifolia* were collected from The mount of Pöşke in Erzincan (2100 m), Çimen village of Kelkit district (Gümüşhane, 1750 m) and Uzunkol village of Kelkit (Gümüşhane, 1900 m), respectively and identified by Ali Kandemir. The herbarium materials have been stored at the Herbarium Faculty of Science, Erzincan Binali Yıldırım University (Kandemir 10863, 10864, 10865).
2.3 Preparation of Extracts of the Barbarea Species

Dried and powdered of aerial parts of the species (min. 250 g) were extracted with 1000 mL of methanol at room temperature and filtered. The filtrates were concentrated at low pressure and the methanol extracts were obtained. The methanol extracts were dissolved in water:methanol (9:1) and partitioned with chloroform and ethyl acetate, respectively. Then the solvents were concentrated at low pressure to give the chloroform, ethyl acetate and remaining aqueous extracts. The extracts were further used for HPLC analysis and biological activity studies.

2.4 Determination of Enzyme Inhibition Activity

2.4.1 Cholinesterase inhibition

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitions were determined to assess cholinesterase inhibitory activity in the study. The assay was carried on by a modified colorimetric Ellman method with a 96-well microplate by ELISA microplate reader [15]. Acetylthiocholine iodide and butrylthiocholine iodide were employed as substrates. (DTNB) was used as reagent. The samples were dissolved in sodium phosphate buffer (pH 8) range of concentration of 25-1000 µg/mL. Next, 130 µL of sodium phosphate buffer, 10 µL of the tested sample and 20 µL of the enzyme were added and incubated for 15 min at 25°C. Then, 20 µL of DTNB and 20 µL of substrat were put in all wells. Absorbance was recorded at 412 nm spectrophotometrically. The percentage of AChE and BChE inhibition values were calculated as shown the following formula and compared with galantamine used as reference. The results were given as IC50 levels.

\[
\% \text{ inhibition} = 100 - \frac{[(A1 / A2) \times 100]}{A1}
\]

\[A1 = \text{Absorbance of the sample solutions at 412 nm}\]
\[A2 = \text{Average absorbance of the control solutions at 412 nm.}\]

2.4.2 Tyrosinase inhibition

A modified dopachrome method was used to assess the tyrosinase inhibitory activity [16]. L-DOPA and various concentrations of α-kojic acid solutions were used as a substrate and as reference. The analysis was performed with a 96-well microplate by ELISA microplate reader. The samples were prepared a concentration range of 25-1000 µg/mL in DMSO of phosphate buffer (pH 6.8). 120 µL of 0.2 M phosphate buffer (pH 6.8) and 40 µL tyrosinase solution for A wells; 160 µL of 0.2 M phosphate buffer (pH 6.8) for B wells; 80 µL of 0.2 M phosphate buffer (pH 6.8), 40 µL tyrosinase solution and 40 µL sample solution for C wells; 120 µL of 0.2 M phosphate buffer (pH 7.0) and 40 µL sample solution for D wells were added and incubated for 10 min at 23°C. Then, 2.5 mM L-DOPA solution (40 µL) was added to the wells. After the incubation for 10 min at 23°C, the absorbance was measured at 490 nm. The percentage of tyrosinase inhibition was calculated by the following formula and the results were given as IC50 levels.

\[
\% \text{ inhibition} = \frac{[(A-B)-(C-D)]}{(A-B)} \times 100
\]

2.5 HPLC Analysis of Phenolic Compounds and Benzoic Acid in the Species

Vanillic acid, p-hydroxybenzoic acid, syringaldehyde, p-coumaric acid, sinapic acid, benzoic acid and quercetin were analysed using HPLC technique. a reverse phase column (150 × 4.6 mm i.d, 5 µm) (Waters Spherisorb, Milfort, MA, USA), on a gradient program with the assistance of a two-solvents system [A: 100% methanol; B: 2% acetic acid in water (pH 2.8)], and a constant solvent flow rate set to 1.5 mL min⁻¹ on a HPLC system (Shimadzu Corporation, LC 20 AT, Kyoto, Japan) (Table 1) were used for HPLC analysis. The injection volume was 20 µL. Signals were identified using DAD detection at a column temperature of 25°C. HPLC analyses were performed modified methods in our previous study [17,18].

3. RESULTS

3.1 The Results of Enzyme Inhibition Studies

The results from enzyme inhibition studies of B. auriculata var. paludosa, B. integrifolia, and B. plantaginea have been included in Table 1.

3.2 The Results of HPLC Analysis of Phenolic Compounds and Benzoic acid in the Species

The results from HPLC analysis methanolic extracts of B. auriculata var. paludosa, B.
integifolia, and *B. plantaginea* have been showed in Table 2. The chromatograms of phenolic standards and methanolic extract of the species are displayed in Figs. 1-4.

4. DISCUSSION

Previous studies show that some *Barbarea* species and their isolated compounds have important biological effects for human health. It was reported that (R)-5-phenyl-2-oxazolidinone called barbarin was obtained from *B. orthocerus* and barbarin has inhibitory effect on the tyrosinase enzyme as strong as kojic acid [19]. Some studies showed that *B. orthocerus* has anti-inflammatory effect by inhibiting NO synthesis in various cell types and may have a preventive effect in neurodegenerative diseases such as NO-related Parkinson and Alzheimer's disease [20].

Fig. 1. HPLC chromatogram of phenolic standards

Peak identification: (1) p-hydroxy benzoic acid, (2) vanillic acid, (3) syringaldehyde, (4) p-coumaric acid, (5) sinapic acid, (6) benzoic acid, (7) quercetin

Table 1. Acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase inhibitor activities

Samples	AChE Inhibitory Activity	BuChE Inhibitory Activity	Tyrosinase Inhibitory Activity
	IC50 değerî (µg/mL)	IC50 değerî (µg/mL)	IC50 değerî (µg/mL)
B. auriculata			
Methanolic extract	150.95±2.65	679.04±9.36	502.5824±3.68
Etoc extract	203.176±6.02	158.8892±4.31	582.6123±3.26
Aqueous extract	152.1257±2.81	161.9107±2.03	587.1096±0.32
Chloroform extract	269.9255±0.86	165.9243±1.61	859.456±1.67
B. integrifolia			
Methanolic extract	206.9±4.48	247.68±3.89	413.8071±1.13
Etoc extract	202.7765±1.23	147.0933±1.79	623.563±0.95
Aqueous extract	189.5929±2.18	69.17957±2.25	480.9188±1.02
Chloroform extract	193.4644±1.25	133.8981±1.79	960.9375±2.03
B. plantaginea			
Methanolic extract	243.26±4.18	308.14±5.21	>1000
Etoc extract	379.94±1.38	229.7585±1.02	>1000
Aqueous extract	202.0273±2.08	243.0346±1.15	964.5861±2.32
Chloroform extract	320.4593±1.25	200.0563±1.16	>1000
α-Kojik acid	1.4454±0.06	7.1154±0.21	3.4819±1.19
Galanthamine			
Table 2. Phenolic and benzoic acid composition of the methanolic extracts of *Barbarea* species

Species	p-OH Benzoic Acid	Vanillic Acid	Syringaldehyde	p-coumaric Acid	Sinapic Acid	Benzoic Acid	Quercetin
B. integrifolia	12.535	9.245	19.543	76.180	97.261	90.589	
B. auriculata var. paluosa	-	66.445	60.553	22.342	170.443	48.754	
B. plantaginea	-	-	-	-	-	16.784	-

Fig. 2. HPLC chromatogram of *B. auriculata* var. *paludosa* methanolic extract

Fig. 3. HPLC chromatogram of *B. integrifolia* methanolic extract
Phenolic compounds have an inhibitory effect on cholinesterase enzymes so they can be protective against neurodegenerative diseases [21-27]. Based on this, tyrosinase and cholinesterase inhibitor effects of three Barbarea species and their phenolic profiles were examined in study.

α-kojic acid was used as positive control to evaluate the tyrosinase inhibitory activity of extracts from species. IC\textsubscript{50} values of α-kojic acid and extracts are shown in Table 1. According to the results, B. plantaginea has weak inhibitory effect on tyrosinase enzyme. Also, the study have showed that B. integrilofia and B. auriculata var. paludosa have moderate tyrosinase inhibitory effect.

The effect of the species on acetyl and butyrylcholinesterase enzymes was investigated by comparison with the galantamine standard. IC\textsubscript{50} values of galantamine and extracts as shown in Table 2. According to the results of acetylcholinesterase enzyme inhibition, the highest inhibitory effect was observed on aqueus extract of B. auriculata. the highest butyrylcholinesterase enzyme inhibition was evidenced aqueus extract of B. integrilofia.

In the literatures, it was found that the phenolic compounds in Barbarea species are as chlorogenic acid, 3,5-dicaffeikinic acid and 1,5-dicaffeikinic acid [28]. p-OH benzoic acid, vanillic acid, syringaldehyde, coumaric acid, synapic acid and benzoic acid were found as phenolic compounds in the Barbarea species by our HPLC analysis. While only benzoic acid is detected in B. plantaginea; It was determined that B. integrilofia contains p-OH benzoic acid, vanic acid, syringaldehyde, coumaric acid, synapic acid and benzoic acid. Also, the presence of vanillic acid, syringaldehyde, coumaric acid, synapic acid and benzoic acid in B. auriculata var. paludosa was proved.

5. CONCLUSION

Phytochemical and biological activity studies were carried out on three Barbarea species for the first time. The datas obtained from the studies will contribute to literatures regarding these species. In addition, the results of biological activity studies have shown that the species have a moderate inhibitory effect on tyrosinase, AChE and BuChE enzymes. Of them, B. integrilofia has the highest BuChE inhibition. It can be related to its rich phenolic contents. The data obtained are important in terms of light on the further studies about the species, as well as showing that the species may be potential sources in the development of drugs of natural origin.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

Merve Badem, Sıla Özmès Şener and Nuriye Korkmaz would like to acknowledge the
scholarship by the Turkish Scientific and Technical Research Council.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Baytop T. Therapy with medicinal plants in Turkey (past and present). Istanbul University Publications, No. 3255/40, Istanbul: 1984.
2. Özbuçak T, Kultay HG, Ergen Akcin Ö. The contribution of wild edible plants to human nutrition in the Black Sea Region of Turkey. Ethnobotanical Leaflets. 2006;10: 98–103.
3. Özgen U, Kaya Y. Ethnobotanical studies in the villages of the district of Ilica (Province Erzurum), Turkey. Economic Botany. 2004; 58(4):691-696.
4. Güner A, Ozhatay N, Ekim T, Bager KHC. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press. 2001;11.
5. Davis PH. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press. 1988;10.
6. Loizzo MR, Menichini F, Conforti F, Tundis R, Bonesi M, Saab AM, Statti GA, De Cindio B, Houghton PJ, Menichini F, Frega NG. Chemical analysis, antioxidant, anti-inflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem. 2009;117:174–180.
7. Jaen JC, Gregor VE, Lee C, Davis R, Emmerling M. Acetylcholinesterase inhibition by fused dihydroquinazoline compounds. Bioorg Med Chem Lett. 1996; 6:737–742.
8. Schulz V. Ginkgo extract or cholinesterase inhibitors in patients with dementia: What clinical and guidelines fail to consider. Phytomedicine. 2003;10:74–79.
9. Khan MTH. Molecular design of tyrosinase inhibitors: A critical review of promising novel inhibitors from synthetic origins. Pure and Applied Chemistry. 2007;79(12):2277-2295.
10. Hartmann A, Brocker EB, Becker JC. Hypopigmentary skin disorders: current treatment options and future directions. Drugs. 2004;64:89-107.
11. Yamaguchi Y, Hearing VJ. Melanocytes and their diseases. Cold Spring Harbor perspectives in medicine. 2014;4(5): a017046.
12. Asanuma M, Miyazaki I, Ogawa N. Dopamine-or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotoxicology Research. 2003;5(3):165-176.
13. Szwarz J. Anticholinesterase activity of phenolic acids and their derivatives. Zeitschrift für Naturforschung C. 2013; 68(3-4):125-132.
14. Sun L, Guo Y, Zhang Y, Zhuang Y. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibition melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Frontiers in pharmacology. 2017; 8:104.
15. Ellman GL, Courtney DK, Andres JR, Featherstone RM. A new and rapid determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
16. Lkhitwilayawuid K, Sritularak B. A new dimeric stilbene with tyrosinase inhibitory activity from Artocarpus gomezianus. J. Nat. Prod. 2001;64:1457-1459.
17. Korkmaz N, Sener SO, Kanbolat S, Badem M, Aliyazicioğlu R, Abudayyak M, Özgen U. Investigation of antioxidant, cytotoxic, tyrosinase inhibitory activities, and phenolic profiles of Green, White, and Black Teas. Turkish Journal of Biochemistry. 2019;44:278-288.
18. Korkmaz N, Sener SO, Balturtk N, Kanbolat S, Badem M, Aliyazicioglu R, Ozgen U, Kandemir A, Karaoglu SA. Determination of phenolic contents by HPLC, and antioxidant, antimicrobial, antityrosinase, and anticholinesterase activities of Psephellus huber-morathii. Journal of Pharmaceutical Research International. 2019;26:1-10.
19. Zeybek N, Zeybek U. Kapalı tohumlu bitkiler (Angiospermae) sistematigi ve önemli maddeleri. Ege Üniversitesi Eczacılık Fakültesi Yayınları. 1994;2:216-217.
20. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56:5-51.
21. Kaur C, Kapoor HC. Antioxidants in fruits and vegetables-the millennium’s health.
22. Chear NJY, Khaw KY, Murugaiyah V, Lai CS. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity. Journal of Food and Drug Analysis. 2016;24:358-366.

23. Okonogi S, Chaiyana W. Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discoveries Therapeutics. 2012;6:249-255.

24. Gironés Vilaplana R, Valentão P, Andrade PB, Ferreres F, Moreno DA, GarcíaViguera C. Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential. Food Chemistry. 2012;134:2090-2096.

25. Okello EJ, Leylabi R, McDougall GJ. Inhibition of acetylcholinesterase by green and white tea and their simulated intestinal metabolites. Food Function. 2012;3:651-661.

26. Urbain A, Marston A, Grilo LS, Bravo J, Purev O, Purevsuren B, Batsuren D, Reist M, Carrupt PA, Hostettmann K. Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. Journal of Natural Product. 2008;71:895-897.

27. Konrath EL, Santos Passos C, Klein Júnior LC, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease. Journal of Pharmacy and Pharmacology. 2013; 65:1701-1725.

28. Dalby-Brown L, Olsen CE, Nielsen JK, Agerbirk N. Polymorphism for novel tetraglycosylated flavonols in an eco-model crucifer, Barbarea vulgaris. Journal of Agricultural and Food Chemistry. 2011;59:6947-6956.

© 2020 Badem et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.