A Transient Interaction between the Phosphate Binding Loop and Switch I Contributes to the Allosteric Network between Receptor and Nucleotide in Ga\textsubscript{i1}§

Received for publication, December 10, 2013, and in revised form, February 27, 2014. Published, JBC Papers in Press, March 4, 2014, DOI 10.1074/jbc.M113.539064

Tarjani M. Thaker1, Maruf Sarwar1, Anita M. Preininger3, Heidi E. Hamm4,1, and T. M. Iversen4,3,2

From the 4Department of Biochemistry and the 6Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232

Background: G proteins couple receptor binding to nucleotide release via an allosteric network.

Results: Mutation of allosteric sites of Ga\textsubscript{i1} stabilizes a transient signaling conformation and may highlight an allosteric connection between receptor and nucleotide.

Conclusion: The P-loop interacts with Switch I in the K345L variant of Ga\textsubscript{i1}.

Significance: G protein signaling is critical for numerous cellular functions, and GDP release is the rate-limiting step of the cycle.

Receptor-mediated activation of the Ga subunit of heterotrimeric G proteins requires allosteric communication between the receptor binding site and the guanine nucleotide binding site, which are separated by \textgtrsim 30 \textring{A}. Structural changes in the allosteric network connecting these sites are predicted to be transient in the wild-type Ga subunit, making studies of these connections challenging. In the current work, site-directed mutants that alter the energy barriers between the activation states are used as tools to better understand the transient features of allosteric signaling in the Ga subunit. The observed differences in relative receptor affinity for intact Ga\textsubscript{i1} subunits versus C-terminal Ga\textsubscript{i1} peptides harboring the K345L mutation are consistent with this mutation modulating the allosteric network in the protein subunit. Measurement of nucleotide exchange rates, affinity for metarhodopsin II, and thermostability suggest that the K345L Ga\textsubscript{i1} variant has reduced stability in both the GDP-bound and nucleotide-free states as compared with wild type but similar stability in the GTP\textsubscript{yS}-bound state. High resolution x-ray crystal structures reveal conformational changes accompanying the destabilization of the GDP-bound state. Of these, the conformation for Switch I was stabilized by an ionic interaction with the phosphate binding loop. Further site-directed mutagenesis suggests that this interaction between Switch I and the phosphate binding loop is important for receptor-mediated nucleotide exchange in the wild-type Ga\textsubscript{i1} subunit.

Heterotrimeric G proteins (Ga\textsubscript{b}\gamma) switch between activation states to elicit cellular responses (1). In the Ga subunit, signaling competence is encoded into surface conformations that reflect the identity of bound guanine nucleotide. The GTP-bound form of the Ga subunit is considered the activated state as its Switch regions adopt conformations that can interact with effector molecules. Hydrolysis of GTP to GDP changes the conformations of these regions and converts the Ga subunit to a state that instead associates with Gb\gamma. GDP-bound Gb\gamma then traffics to the membrane where it can interact with G protein-coupled receptor (GPCR).3 The GPCR in turn facilitates release of GDP from the Ga subunit. Subsequent binding of GTP both completes the G protein signaling cycle and is the rate-limiting step of G protein signaling (1).

Biochemical, kinetic, and structural characterizations have identified binding sites for GPCR on the Ga subunit (2–15). This contiguous surface includes the N terminus (2–7), the \textalpha4–\textbeta6 loop (8–13), the \textalpha3–\textbeta5 loop (14), and the C terminus of Ga (3) and is located \textgtrsim 30 \textring{A} away from the guanine nucleotide binding site (15–17) (Fig. 1). Of these receptor-interacting elements, perhaps the best studied is the C terminus, with EPR spectroscopy (18, 19) and x-ray crystallography (15), both indicating that the terminal helix (a5) undergoes a roto-translation upon receptor binding that is critical for nucleotide release.

The importance of the C terminus in receptor binding was first revealed using peptide mimetics of various regions of the G protein (3). Interestingly, combinatorial libraries of peptide mimetics of the Ga C terminus containing systematic sequence substitutions identified mutations with improvements in affinity for rhodopsin over the parent sequence (20). The greatest increase in affinity was \textasciitilde 200-fold and was associated with a lysine-to leucine substitution (K341L in Ga, K345L in Ga\textsubscript{i1}) (20, 21). Later, a Ga peptide harboring this substitution

1 To whom correspondence may be addressed: Dept. of Pharmacology, 442 Robinson Research Bldg., Vanderbilt University Medical Center, Nashville, TN 37232-6600. Tel.: 615-322-7817; Fax: 615-343-1084; E-mail: Heidi. hamm@vanderbilt.edu.

2 To whom correspondence may be addressed: Dept. of Pharmacology, 460 Robinson Research Bldg.; 23rd Ave South at Pierce, Vanderbilt University Medical Center, Nashville, TN 37232-6600. Tel.: 615-322-7817; Fax: 615-343-6532; E-mail: tina.iverson@vanderbilt.edu.

3 The abbreviations used are: GPCR, G protein-coupled receptor; GTP\textsubscript{S} guanosine 5'-[\gamma-thio]triphosphate; EMB, extra meta II buffer; meta II, metharhodopsin II; NEB, nucleotide exchange buffer; P-loop, phosphate binding loop; ROS rod outer segment.

4 This work was supported, in whole or in part, by National Institutes of Health Grants GM095633 (to T. M. I.), EY006062 (to H. E. H.), and P30EY008126 (a Vanderbilt Core Grant in Vision Research). § The atomic coordinates and structure factors (codes 4N0D and 4N0E) have been deposited in the Protein Data Bank (http://wwpdb.org/).

§ This article contains supplementary Movie 1. The atomic coordinates and structure factors (codes 4N0D and 4N0E) have been deposited in the Protein Data Bank (http://wwpdb.org/).
was used as a tool to stabilize opsin and metarhodopsin II for structure determination (22–25).

Surprisingly, however, when the K341L mutation was introduced into chimeric Gαi/Goαi, it did not similarly improve the affinity for receptor (26). Because both G proteins and cognate GPCRs transmit signals via allosteric networks, one possibility for this apparent contradiction is that this C-terminal mutation influences the allosteric network within the Gα subunit in a way that disfavors the receptor binding state and thus reduces receptor coupling efficiency and GDP release. Here, we used the K345L variant of Gαi to probe the allosteric pathway linking receptor binding to guanine nucleotide exchange. Our results combine measurements of basal and receptor-catalyzed nucleotide exchange, receptor binding studies, high resolution crystallography, and stability measurements to demonstrate how the K345L mutation alters the different nucleotide-bound states of the Gα subunit. An interaction between the P-loop and Switch I in the crystal structure of the K345L Gαi subunit identifies one potential conformational intermediate of nucleotide exchange. This allows us to propose a new connection between structural elements of Gα subunits, and suggests how the P-loop and Switch I help to coordinate nucleotide release.

EXPERIMENTAL PROCEDURES

Gαi Expression and Purification — The cDNA encoding *Rattus norvegicus* Gαi was amplified from the pPAL7 vector (generously donated by Dr. Ongun Onaran (Ankara University)) using appropriate primers and subcloned into the pSV277 expression vector (Vanderbilt University) to include an N-terminal hexahistidine tag and a thrombin cleavage site. The E43A and K345L mutations were introduced using the QuikChange Lightning site-directed mutagenesis kit (Stratagene) and confirmed by DNA sequencing (GenHunter).

Gαi was expressed in *Escherichia coli* BL21-Gold (DE3) as described (27). Briefly, cultures were grown at 37 °C in 2 × YT medium with 50 μg/ml kanamycin A until the A_600 reached 0.6. Expression was induced with 30–60 M isopropyl 1-thio-β-D-galactopyranoside for 18–20 h at 22 °C. Cells were harvested by centrifugation and frozen at −80 °C.

Before purification, cell pellets were thawed and resuspended in ice-cold lysis buffer (50 mM NaHPO4, 300 mM NaCl, 2 mM MgCl2, 5 mM β-mercaptoethanol, 20 μM GDP, pH 8.0) supplemented with 0.1 mM PMSF or 1 mM Pefabloc and 1 μg/ml aprotinin, leupeptin, and pepstatin. The resuspended cells were disrupted by sonication, and the lysate was clarified by centrifugation for 1 h at 200,000 × g (50,000 rpm in a Ti70 rotor). The supernatant was treated with 10 μg/ml DNase and RNase, filtered, and added in batch to TALON Cobalt affinity resin equilibrated in lysis buffer. After 1 h at 4 °C, the resin was transferred to a gravity flow column and washed with lysis buffer, then lysis buffer supplemented with 5 mM imidazole pH 8.0. Protein was eluted with lysis buffer supplemented with 100 mM imidazole, pH 8.0, concentrated using an Amicon 10-kDa molecular weight cutoff centrifugal concentrator at 2000 × g, then diluted 20-fold. Thrombin was added (1 unit/mg of purified protein), and the sample was incubated overnight at 4 °C to cleave the N-terminal affinity tag. The protein sample was further purified over TALON Cobalt affinity resin equilibrated in lysis buffer and by size exclusion chromatography on a Superdex S200 10/300GL column equilibrated in storage buffer (50 mM Tris-Cl, 200 mM NaCl, 2 mM MgCl2, 1 mM EDTA, 1 mM DTT, 20 μM GDP, pH 8.0). Purified Gαi1 was concentrated to 10 mg/ml as determined by the BCA assay (Pierce) in triplicate, and glycerol was added to 10% (v/v) before storage at −80 °C. The purified protein contained two additional N-terminal residues (Gly-Ser) derived from the thrombin recognition sequence.

Rhodopsin and Transducin Purification — Endogenous rhodopsin and transducin were purified as previously described (28). Briefly, dark-adapted rhodopsin was stored as aliquots of urea-washed rod outer segment (ROS) membranes that were prepared by washing retinas twice with EDTA buffer (10 mM Tris-Cl, 1 mM EDTA, 1 mM DTT, pH 7.5) and once with urea buffer (10 mM Tris-Cl, 1 mM EDTA, 1 mM DTT, 7 M urea, pH 7.5). Pelleted membranes were then resuspended in 10 mM MOPS, 200 mM NaCl, 2 mM MgCl2, 1 mM DTT, 100 μM PMSF, pH 7.5, and aliquots stored at −80 °C.

Transducin was purified from light-adapted bovine ROS membranes. Membranes were washed 4 times with isotonic buffer (5 mM Tris-Cl, 130 mM KCl, 0.6 mM MgCl2, 1 mM EDTA, 1 mM DTT, pH 8.0) and two times with hypotonic buffer (5 mM Tris-Cl, 0.6 mM MgCl2, 1 mM EDTA, 1 mM DTT, pH 8.0). Transducin was then released into the supernatant by resuspending ROS membranes with hypotonic buffer containing 0.1 mM GTP. The membranes were pelleted by centrifugation, and the supernatant containing transducin was dialyzed against transducin storage buffer (20 mM Tris-Cl, 200 mM NaCl, 10 μM...
GDP, 5 mM β-mercaptoethanol, 10% glycerol, pH 7.5). Purified transducin was stored at -80 °C.

Basal and Receptor-mediated Nucleotide Exchange—The rate of GDP exchange for GTPγS in Gαi1, was determined by monitoring the increase in intrinsic tryptophan fluorescence (λex = 290 nm, λem = 340 nm) using a Varian Cary Eclipse fluorescence spectrometer. The fluorescence signal from basal nucleotide exchange was measured at 21 °C. In this assay the basal fluorescence from 500 nM wild-type or variant Gαi1 (in 50 mM Tris-Cl, 200 mM NaCl, 2 mM MgCl2, 1 mM DTT, pH 7.5) was collected for 5 min, after which time 10 μM GTPγS was added and mixed by pipetting. The fluorescence was then recorded for a minimum of 60 min. Receptor-mediated nucleotide exchange was monitored for heterotrimeric G protein, Gαi1βi1γi1, reconstituted by incubating wild-type or variant Gαi1 with Gβi1γi1 purified from endogenous transducin in a 1:1 molar ratio for at least 20 min. 2 μM dark rhodopsin in urea-washed ROS membranes was added to 500 nM heterotrimeric G protein in assay buffer and incubated in the dark for a minimum of 20 min to allow complex association. GTPγS was added to a final concentration of 10 μM mixed by pipetting and fluorescence-monitored for an additional 5 min to measure the basal signal. Finally, the samples were light-activated and mixed by pipetting, and the fluorescence signal from receptor-mediated nucleotide exchange was monitored at 21 °C for a minimum of 60 min. Time courses for both basal and receptor-mediated nucleotide exchange experiments were determined empirically by monitoring fluorescence signal decay after the addition of GTPγS and were 60 and 90 min, respectively, in the experiments reported here. Nucleotide exchange rates were calculated from data for three independent experiments with four replicates per experiment and fit in Prism Version 6.0c using a one-site exponential association equation of the form

\[
F = F_0 + (F_{\text{max}} - F_0)(1 - e^{-kt})
\]

(Eq. 1)

where \(t \) is time (min), \(F_0 \) is the magnitude of the fluorescence signal at \(t = 0 \), \(F_{\text{max}} \) is the maximum fluorescence signal, \(F \) is the fluorescence signal observed at time \(t \), and \(k \) is the rate constant (min\(^{-1}\)). Values were normalized to wild-type Gαi1.

Rhodopsin Binding—Wild-type and variant Gαi1 binding to rhodopsin was measured in urea-washed ROS membranes as previously described (29). Gαi1 (5 μM) was incubated with Gβγ (10 μM) and rhodopsin (50 μM) in binding buffer (50 mM Tris-Cl, 100 mM NaCl, 2 mM MgCl2, pH 8.0) for 30 min at 4 °C and assessed under three different conditions: dark-adapted, after light activation, and after light activation with the addition of GTPγS (100 μM). Supernatants were separated from membranes by centrifugation at 200,000 × g for 1 h, and the dark-adapted supernatants were removed under dim red light. Isolated fractions were boiled, visualized by Coomassie-stained SDS-PAGE, and quantified by densitometry using a Bio-Rad Multidoc. Quantities of 37-kDa Gαi1, in either the soluble or insoluble fraction are expressed as a percentage of the total protein in both. Data reported are the average of at least three independent experiments.

Extra Metarhodopsin II Formation—The formation of metarhodopsin II in ROS membranes was measured on an Amino DW2000 spectrophotometer in the presence of increasing concentrations of G proteins previously described (4). Heterotrimeric G protein was reconstituted from purified wild-type or variant Gαi1 in the same manner as used for receptor-mediated nucleotide exchange measurements. Rhodopsin (2 μM) in dark-adapted urea-washed ROS membranes were incubated with varying concentrations of wild-type or K345L Gαi1βi1γi1 in Extra Meta II buffer (50 mM HEPES, 100 mM NaCl, 1 mM MgCl2, 1 mM DTT, pH 8.0) on ice for ~10 min. Absorption spectra for both dark and light-adapted samples were then collected at 4 °C. After collection of a dark-adapted spectrum, samples were exposed to 2 quick flashes of light (~30 s apart. The light-adapted spectrum was then immediately collected. The extra meta II signal was calculated as the change in meta II formation (\(\Delta A_{380 \text{nm}} = \Delta A_{440 \text{nm}} \)) before and after light activation at 4 °C. The EC50 values for wild-type and mutant Gαi1 were calculated by plotting data as a function of the Gαi1βi1γi1 concentration and fit to a four-parameter, variable slope equation (21) of the form

\[
Y = bottom + \frac{top - bottom}{1 + 10^{logEC50-x}} \times \text{hillslope}
\]

(Eq. 2)

where \(Y \) is the meta II signal, \(top \) is the \(Y \) value at the top plateau, \(bottom \) is the \(Y \) value at the bottom plateau, \(x \) is the log of the concentration of Gαi1βi1γi1, and hill slope is the slope factor or the Hill slope (unit-less).

In Silico Modeling of Gα C Terminus Binding to Rhodopsin—The structure of opsin bound to the high affinity peptide of the Gα C terminus (PDB entry 3DQB (22)) and the structure of the \(\beta_2 \)-adrenergic receptor bound to Gαs (PDB entry 3SN6 (15)) were superimposed and prepared for in silico analysis in Maeestro (Schrödinger LLC) (30). The position equivalent to Gαi1345 in peptide and in Gαs was mutated in silico to either the amino acid originally in the structure (Arg or Leu) or the converse and set to the most favorable rotamer. A truncated-Newton energy minimization of all four structures was performed in the Maestro Workspace GUI using the program Prime (31, 32) and the OPLS_2005 all atom molecular mechanics force field (33). The Surface Generalized Born (VSG) continuum solvation model (34) was also applied. To relax the structures around the mutations, the side chains were left unrestrained during the minimization. The energy minimizations were performed for two iterations and 65 steps per iteration. Resultant changes in receptor-Gα interactions were evaluated visually in Coot (35). After this procedure, structures of the crystallized entities (positive control calculations) were in close agreement with the deposited coordinates and structure factors.

Differential Scanning Fluorimetry to Measure Thermostability—Differential scanning fluorimetry was performed as described (36). Protein samples were diluted to a final concentration of 5 μM in assay buffer containing 5× SYPRO Orange (Bio-Rad) and 50 μM GDP or GTPγS. Thermostability was screened in both the extra meta II (EMB) assay buffer and nucleotide exchange (NEB) assay buffer. Triplicate samples were prepared in 20-μl volumes and transferred to a clear low profile 96-well PCR plate (Bio-Rad) and equilibrated at 25 °C for 2 min in a Bio-Rad
Allosteric Mechanisms of G_{α_i} Activation

TABLE 1
Crystallographic data collection and refinement statistics

	GDP-bound	GTPγS-bound
Data collection		
Beamline	21-1D-D	21-1D-G
Wavelength	1.078 Å	0.979 Å
Space group	P3 2 1	
Unit cell dimensions		
a	121.5 Å	79.6 Å
b	121.5 Å	79.6 Å
c	68.2 Å	104.8 Å
Resolution range	50-2.10 Å	50-1.55 Å
Number of reflections	143,580	419,345
Unique reflections	29,073	55,216
R$_{free}$	5.3% (35.0%)	6.9% (38.6%)
Completeness	99.7% (100%)	97.7% (92.0%)

Refinement		
R$_{cryst}$	17.9%	15.6%
R$_{cryst}$*	21.5%	18.7%
Ramachandran*	92.1%	93.6%
Additionally allowed	7.9%	6.4%
Generously allowed	0.0%	0.0%
Disallowed	0.0%	

* Values in parentheses are for the highest resolution shell.
* R$_{cryst}$ = $\sum_{hkl}||F_o|| - ||F_c||/\sum_{hkl}||F_o||$, where F_o and F_c are the observed and calculated structure factor amplitudes, and $\langle \rangle$ is the weighted mean of I.
* $\langle \rangle = \text{mean intensity} / \text{mean error}$.
* R_{free} is the same as R_{cryst} calculated on 5% of the reflections in GDP-bound G_{α_i}.K_{345L}.

RESULTS

Basal and Receptor-mediated Nucleotide Exchange of the K345L G_{α_i} Subunit—A hallmark of G_{α} subunits is the ability to exchange GDP for GTP. Recombinant G_{α_i} activation was assessed by comparing normalized basal and receptor-mediated nucleotide exchange rates calculated from the increase in intrinsic tryptophan fluorescence upon the addition of nonhydrolyzable GTP analog, GTPγS. The normalized K345L G_{α_i} exchange rates were ∼30 and 20% slower under basal and receptor-mediated conditions, respectively, than wild-type G_{α_i} (Fig. 2; Table 2).

Binding and Activation of the K345L $\text{G}_{\alpha_i}\beta\gamma_i$ by Rhodopsin—Receptor-catalyzed GTP release from G_{α} subunits depends on efficient coupling between GDP-bound $\text{G}_{\alpha}\beta\gamma_i$ and activated receptor to promote and stabilize the nucleotide-free state of G_{α}. The effect of the K345L mutation in the G_{α_i} subunit on the ability of the G protein to couple to receptor was assessed by measuring the amount of reconstituted $\text{G}_{\alpha_i}\beta\gamma_i$ bound to rhodopsin in ROS membranes (Fig. 3, A and B). Comparison of wild-type and K345L G_{α_i} subunits recovered in the membrane-bound fraction after light activation revealed reduced binding of K345L G_{α_i}. Conversely, the relative amount of G_{α_i} released into the soluble fraction after light activation was greater for K345L G_{α_i}. This indicates a lowered coupling efficiency of G protein containing the K345L G_{α_i} with light-activated receptor.

The extra meta II assay was used as a complementary method to clarify whether the lowered functional coupling efficiency of GDP-bound K345L G_{α_i} was determined by molecular replacement in Phaser (39) using the GTPγS-bound K345L G_{α_i} structure as a search model. Initial model building used composite omit maps and was performed in Coot (35). Subsequent iterative rounds of refinement in Phenix (40) and model building in Coot (35) were performed to improve model quality, with sequential omit mapping used during the entire refinement process to minimize bias to the search model. Geometry was assessed in Procheck (41) and Molprobity (42). Figs. 1, 5, 6, and 9 were prepared using PyMOL (43). Supplemental Movie 1 was prepared in PyMOL (43) and Chimera (44).
was a result of reduced receptor affinity. Using this method, the affinity between activated receptor and wild-type or K345L Gα₁_{II}β₁γ₁ (Fig. 3C; Table 2) was quantified. The affinity between rhodopsin and wild-type Gα₁β₁γ₁ (Kₐ = 1.03 ± 0.10 μM) was found to be comparable to that previously determined by kinetic light scattering (Fig. 1A) and could have different contacts. Accordingly, in silico modeling of rhodopsin bound to wild-type or K345L Gα₁ in the context of either a peptide or the intact subunit was based upon the opsin-Gα peptide costructure (22) and the Gα₁β₁-Gα₁ adrenergic peptide costructure (15, 22, 23) and could have different contacts. These calculations (not shown) did not offer an obvious explanation, such as steric clash or loss of hydrogen-bonding interactions, for the observed difference in affinity of the GDP-bound K345L Gα₁ (Kₐ = 1.86 ± 0.13 μM) had a modestly reduced affinity.

The difference in affinity between peptide containing the K345L mutation (20) and intact protein harboring this sequence might have several origins. For example, the orientations of the bound peptide and the Gα₁ C terminus differ significantly in the opsin-Gα peptide costructure and the β₁-Gα₁ costructure (15, 22, 23) and could have different contacts. Accordingly, in silico modeling of rhodopsin bound to wild-type or K345L Gα₁ in the context of either a peptide or the intact subunit was based upon the opsin-Gα peptide costructure (22) and the Gα₁β₁-Gα₁ adrenergic peptide costructure (15), respectively. These calculations (not shown) did not offer an obvious explanation, such as steric clash or loss of hydrogen-bonding interactions, for the observed difference in affinity of the GDP-bound K345L Gα₁ in the context of Gα subunits (26) versus the corollary C-terminal Gα peptide (20, 21). This prompted speculation that the allosteric network connecting receptor binding to nucleotide release had been modified.

Thermostability of the K345L Gα₁ Variant—To identify how the K345L Gα₁ substitution influences the stability of the nucleotide binding states of Gα₁, the thermostability of the wild-type and the K345L variant was measured in the presence of GDP (Fig. 4A; Table 2) or GTPγS (Fig. 4B; Table 2). Consistent with previous studies, both wild-type and K345L Gα₁ are more stable when bound to GTPγS than when bound to GDP (45–47). The Tₘ values for GTPγS-bound wild-type and K345L Gα₁ were statistically identical. In comparison, the Tₘ of the GDP-bound K345L Gα₁ variant was decreased by 2.89 ± 0.04 °C as compared with wild-type Gα₁ (Table 2) indicating that this substitution selectively destabilizes the GDP-bound state.

Structures of the GTPγS- and GDP-bound K345L Gα₁ Subunit—To examine the architectural changes in the K345L Gα₁ variant, crystal structures in the GDP- and GTPγS-bound states were determined to 2.1 and 1.5 Å resolution, respectively (Table 1). The resolution of these structures is among the highest observed for any Gα subunit with each respective nucleotide. Superposition of corresponding backbone Ca atoms of GTPγS-bound K345L Gα₁ and GTPγS-bound wild-type Gα₁ (PDB entry 1GIA (47) resulted in a root mean square deviation of 0.330 Å (308 Ca atoms aligned out of 321 total) suggesting little overall conformational change accompanied the mutation. It is notable that residues at the N and C termini that have not previously been resolved in crystal structures of GTPγS-bound Gα₁ proteins were clearly observed in the electron density in the current structure (Fig. 5, A and B). These additional residues contribute to the formation of an extended β1 strand at the N terminus (Fig. 5A) and assignment of the α5 helix C terminus to residue 351 (Fig. 5B). At this time it is unclear whether the observation of the residues at the termini is a direct result of the mutation or is caused by crystal-to-crystal variation.

Superposition of GDP-bound K345L Gα₁ and GDP-bound wild-type Gα₁ (PDB entry 1GDD (48) resulted in a root mean square deviation of 0.473 Å between Ca atoms (321 Ca atoms aligned out of 330 total). Interestingly, the majority of the structural differences observed in the GDP-bound K345L Gα₁ structure occurred within functionally important motifs. The Switch regions in the GDP-bound K345L Gα₁ structure displayed the most significant conformational changes. The Switch I position was marked by an inward shift (Fig. 6A) as compared with wild type. This reorientation positioned Switch I in closer proximity to the α- and β-phosphates of the bound GDP. Accompanying the new position of Switch I in the K345L Gα₁ structure was the formation of a salt bridge (2.3 Å) between Arg-178 from Switch I and Glu-43 of the P-loop (Fig. 6B). Moreover, Switch II and III differed in both structure and orientation as compared with wild-type Gα₁. Although Switch II is still not completely visible, 5 of the 17 Switch II residues and

Table 2

Results from biochemical characterizations of Gα₁ proteins

	Wild type	K345L	E43A
Normalized nucleotide exchange rates			
Basal (min⁻¹)	0.0180 ± 0.0006	0.0126 ± 0.0007	0.0176 ± 0.0005
Δ rates (basal)	−30%	−2%	−35%
Receptor-mediated (min⁻¹)	0.20 ± 0.01	0.164 ± 0.005	0.131 ± 0.005
Δ rates (receptor-mediated)	−19%	−35%	−35%
Rhodopsin binding affinity			
Kᵦ (µM)	1.03 ± 0.10	1.86 ± 0.13	2.15 ± 0.69
Tᵦ(°C) (NEB)			
ΔTᵦ	−2.89	−1.49	−2.01
Tᵦ(°C) (EMB)			
ΔTᵦ	−2.83	−1.63	−2.30

*NEB and EMB are two different buffers that are optimized for each of the functional assays, as described under “Experimental Procedures.” Thermostability was measured in each buffer to ensure that differences in functional measurements were not artifacts of buffer composition.
two of the six Switch III residues that were not observed in GDP-bound wild-type Ga₁₁ were clearly resolved (Fig. 6C). Interestingly, these adopted a conformation that differed from GDP-bound Ga₁₁ (49) (Fig. 6D) and GTPγS-bound Ga₁₁ (47) (Fig. 6E). It is possible that the altered Switch I orientation and the P-loop/Switch I salt bridge observed in the GDP-bound K345L Ga₁₁ structure help promote these unique Switch II and Switch III conformations.

Validation of the Conformational Changes in the K345L Ga₁₁ as a Part of the Allosteric Network—The functional characterization presented here suggests that the K345L mutation stabilizes a transiently formed structural state sampled during Ga₁₁ activation. Consistent with the role of these conformations in allosteric signaling, most of the residues that adopt conformations different from wild-type Ga₁₁ have previously been mutagenized and exhibit altered signaling characteristics (18, 19, 50–53).

To further validate that the observed conformational changes are important for allosteric signaling, we selected Glu-43 as a target for mutagenesis. In the GDP-bound K345L Ga₁₁ structure, Glu-43 forms a salt bridge to Arg-178 that links...
Allosteric Mechanisms of G_{α_1} Activation

The K345L Substitution in G_{α_1} Influences the Guanine Nucleotide Binding States Differently—G proteins and cognate GPCRs mediate signaling via conformational changes in response to either bound guanine nucleotides or agonist, respectively. In GPCRs, it has been proposed that the signaling states are not necessarily discrete, but that most receptors instead adopt a continuum of conformations along an energy landscape (54), with crystal structures representing snapshots of transient states formed along the activation pathway (55–59). Indeed, many receptors exhibit basal activity, and these can spontaneously sample the active state in the absence of agonist (58, 60, 61). The analogous observation of basal nucleotide exchange in G_{α_1} subunits requires sampling of the nucleotide-free state in the absence of receptor. This suggests that G proteins similarly have intrinsic conformational heterogeneity that allows spontaneous sampling of multiple conformational states, albeit to a substantially lower extent.

FIGURE 6. Structural features of K345L G_{α_1}. A, orientation of Switch I observed in the structure of GDP-bound K345L G_{α_1} (green) compared with GDP-bound wild-type (PDB entry 1GDD (48); pink), GTP-γS-bound wild-type (PDB entry 1GIA (47); purple), GTP-γS-bound K345L G_{α_1} (orange), and GDP-AlF_4^-–bound G_{α_1} (PDB entry 1GF1 (47); teal). B, stereoview of the salt bridge between Glu-43 and Arg-178 in the GDP-bound K345L G_{α_1} subunit. Coloring for the overlaid structures is the same as panel A. The closest distance between a Glu-43O and the Arg-178N atom in any of the wild-type structures is 3.1 Å in the GTP-γS-bound G_{α_1} (PDB entry 1GIA (47); purple). This could be considered a long hydrogen bond, but it is noted that the temperature factors of both side chains are elevated in that structure. C–E, SwII and SwIII from GDP-bound K345L G_{α_1} (green) superimposed with GDP-bound wild-type G_{α_1} (PDB entry 1GDD (48); pink) (C), GDP-bound wild-type G_{α_1} (PDB entry 1TAG (49); blue) (D) and GTP-γS-bound wild-type G_{α_1} (PDB entry 1GIA (47); purple) (E).

FIGURE 7. Biochemical properties of wild-type and E43A G_{α_1}. Data for E43A G_{α_1} subunits are shown as dashed bars, data for wild-type G_{α_1} subunits are shown as solid bars. A, basal and receptor-mediated nucleotide exchange rates measured as a function of intrinsic fluorescence. B, rhodopsin affinity for G_{α_1}, G_{β_1}, and G_{γ_1} determined by the extra meta II assay for wild-type (●) and E43A (▲) G_{α_1}, G_{β_1}, G_{γ_1}, and C and D, fluorescence analysis of heat-induced melting of wild-type and E43A G_{α_1}. Protein sample in NEB or EMB buffer was incubated with GDP (C) or GTP-γS (D). Results shown are the mean ± S.E. of at least two independent experiments (**, $p < 0.01$; ****, $p < 0.0001$).
Allosteric Mechanisms of Ga11 Activation

extent. Subsequent biophysical investigations suggest that the nucleotide-free form of the G protein is the most conformationally dynamic and is destabilized relative to the GDP- or GTP-bound forms; however, it retains an intact fold competent for signaling (62–65).

Numerous transient conformational states may bridge the conversion between the GDP- and GTP-bound forms of the Ga subunit. The majority of published Ga mutations are associated with an increase in both intrinsic and receptor-mediated nucleotide exchange (for example, Refs. 18, 29, and 51–53)), which can result either from a shift of the conformational equilibrium to favor the nucleotide-free and GTP-bound states or from destabilization of the fold to result in spontaneous nucleotide release. In contrast, a reduction in both basal and receptor-mediated nucleotide exchange could potentially be attributed to one of several routes. Several lines of evidence suggest that Lys-345 is directly involved in the allosteric coupling of receptor binding to guanine nucleotide exchange (for example, Refs. 18, 29, and 51–53)), which

FIGURE 8. Qualitative model for the alteration of the stability in K345L Ga11. A conceptual model for the relative free energy differences between nucleotide binding states in wild-type (solid line) and K345L (dashed line) Ga11.

FIGURE 9. A model for allosteric Ga activation. Coloring is the same as Fig. 1, with the Glu-43 and Arg-178 side chains highlighted in blue. In the left panel, the GDP-bound Ga subunit is shown in its Gβγ-bound conformation (Gβγ omitted for clarity) and is based on the Ga11,βγ heterotrimer structure (PDB entry 1GP2 (16)). In the center panel, the conformation of the C terminus of the Ga subunit is based on the K341L Ga11, peptide-bound meta II costructure (PDB entry 3PQR (23)) with the conformation of the Ga subunit a hybrid between the GDP-bound K345L Ga11, structure, and the receptor-bound Ga11 structure (PDB entry 3SN6 (15)). In the right panel, the conformation of helical domain is from a computational model of the rhodopsin-Gi, costructure (67) and is based on the direction of rotation observed in the receptor-bound Ga11 structure (PDB entry 3SN6 (15)) and the magnitude of the rotation measured in site-directed spin labeling–double electron-electron resonance and electron microscopy studies (69, 79).
used to stabilize the position of the α5 helix in an activated conformation, which resulted in a dramatic increase in basal nucleotide exchange and suggested that the α5 helix dipole could contribute to GDP release (29). Finally, the structure of the β2-adrenergic receptor in complex with cognate Goα showed a significant roto-translation of the α5 helix as compared with the position observed in any other structure of a Goα subunit (15).

Although the α5 helix has been the most extensively studied contributor to Goα activation, additional conformational changes have been identified using mutagenesis (67, 72, 73), biophysical (18, 69, 72), and computational approaches (71, 74, 75). Molecular dynamics simulations proposed that receptor recognition stabilizes the αN-β1 junction and the β2-β3 hairpin of the Goα subunit (74, 75), and fluorescence studies indeed revealed receptor-mediated changes in the solvent accessibility of these regions (7, 72) (Fig. 9, orange). Complimentary EPR studies revealed receptor-mediated changes in the mobility of spin labels on the β1, β2, and β6 strands of Goα (Fig. 9, orange) (18, 50). Biochemical studies probing the α5/α1 helical junction also suggest a role for the α1 helix (Fig. 9, yellow) where its interaction with α5 assists in the destabilization of interactions between the nucleotide and the phosphate binding P-loop (Fig. 9, green) (52). Fluorescently labeled Goα further exhibited receptor-dependent changes in the environments of the Switch I and Switch II elements (Fig. 9, green) consistent with variability during receptor-initiated nucleotide exchange (18, 69).

Our results identify a conformation of the Goα subunit that we hypothesize may be transiently adopted during activation. In this conformation, the position of Switch I is stabilized by its interaction with the P-loop (Fig. 9, blue). A similar interaction is observed in structures of inhibited Go subunits (76–78) and in the context of the Gβγ subunits (16, 17) prompting an analogy to a “seatbelt” that prevents GDP release (16). Consistent with the role of this interaction in controlling nucleotide release, the distance between the closest Glu-43O and Arg-178N atoms lengthens under conditions that promote nucleotide exchange (75).

However, if the sole functional role of this interaction were to prevent GDP release, we would anticipate that the mutation of Glu-43 to alanine would dramatically increase receptor-mediated nucleotide exchange. Our observed reduction of receptor-mediated nucleotide exchange in the E43A Goα1 subunit is thus initially counterintuitive. There are numerous possibilities for this unanticipated biochemical behavior. For example, significant denaturation or conversion of the E43A Goα1 subunit to a nonfunctional state could have occurred over the time course of the experiments; however, we did not detect behaviors reflecting folding problems. Instead, we propose that the interaction between the P-loop and Switch I is a transient feature of Goα activation. Recent hydrogen-deuterium exchange measurements in Goα are consistent with the hypothesis that this interaction is indeed a conformation of the receptor-associated Goα subunit before GDP release (76). Given the increased ordering of Switch I and Switch II in the structure of the GDP-bound K345L Goα1 variant, we hypothesize that the formation of the salt bridge between Glu-43 and Arg-178 (Fig. 9, blue) stabilizes these loops before GDP release by receptor-associated Goα.

The final step in nucleotide release is rotation of the helical domain of the Goα subunit away from the GTPase domain (Fig. 9, violet). Cross-linking of the GTPase and helical domains established that this domain separation is required for receptor-catalyzed nucleotide exchange (69). The magnitude and direction of the rotation is suggested by site-directed spin labeling-double electron-electron resonance (69), electron microscopy (79), and the crystal structure of the β2-adrenergic receptor in complex with cognate Goα (15), respectively.

Conclusions—This study allows the connection of structural elements involved in nucleotide exchange in Goα subunits via a putative transient interaction between the P-loop and Switch I. We hypothesize that interaction between the P-loop and Switch I may stabilize the Goα1 subunit before GDP release. Taken within the context of previous literature, these findings add to the known structural elements that contribute to the allosteric mechanism of GDP release from Goα subunits. The complexity of this process suggests that there must be precise coordination between numerous components of the Goα subunit.

Acknowledgments—We thank Dr. Ali I. Kaya both for assistance with the rhodopsin binding studies and for informative discussions, James Gilbert for assistance with Gβγ1, preparation, and Dr. Kathryn McCulloch and Chrystal Starbird for critical reading of this manuscript. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy Office of Science by Argonne National Laboratory, was supported by the United States Department of Energy under Contract DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corp. and the Michigan Technology Tri-Corridor (Grant 085P1000817).

REFERENCES

1. Oldham, W. M., and Hamm, H. E. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71

2. Itoh, Y., Cai, K., and Khorana, H. G. (2001) Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent cross-linking. Use of a chemically preactivated reagent. Proc. Natl. Acad. Sci. U.S.A. 98, 4883–4887

3. Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B., and Hofmann, K. P. (1988) Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241, 832–835

4. Dratz, E. A., Furstenau, J. E., Lambert, C. G., Thireault, D. L., Rarick, H., Schepers, T., Pakhlevanianis, S., and Hamm, H. E. (1993) NMR structure of a receptor-bound G-protein peptide. Nature 363, 276–281

5. Taylor, J. M., Jacob-Mosier, G. A., Lawton, R. G., Remmers, A. E., and Neubig, R. R. (1994) Binding of an α2 adrenergic receptor third intracellular loop peptide to Gβγ and the amino terminus of Goα. J. Biol. Chem. 269, 27618–27624

6. Ho, M. K., Chan, J. H., Wong, C. S., and Wong, Y. H. (2004) Identification of a stretch of six divergent amino acids on the α5 helix of Go16 as a major determinant of the promiscuity and efficiency of receptor coupling. Biochem. J. 380, 361–369

7. Preining, A. M., Parello, J., Meier, S. M., Liao, G., and Hamm, H. E. (2008) Receptor-mediated changes at the myristoylated amino terminus of Goα proteins. Biochemistry 47, 10281–10293

8. Mazzoni, M. R., and Hamm, H. E. (1996) Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin. J. Biol. Chem. 271, 30034–30040

9. Lichtarge, O., Bourne, H. R., and Cohen, F. E. (1996) Evolutionarily conserved Gβγ binding surfaces support a model of the G protein-receptor
Allosteric Mechanisms of Ga1, Activation

complex. Proc. Natl. Acad. Sci. U.S.A. 93, 7507–7511

10. Onrust, R., Herzmark, P., Chi, P., Garcia, P. D., Lichtarge, O., Kingsley, C., and Bourne, H. R. (1997) Receptor and Ry binding sites in the α subunit of the retinal G protein transducin. Science 275, 381–384

11. Bae, H., Anderson, K., Flood, L. A., Skiba, N. P., Hamm, H. E., and Graber, S. G. (1997) Molecular determinants of selectivity in S-hydroxytryptamine 1B receptor-G protein interactions. J. Biol. Chem. 272, 32071–32077

12. Bae, H., Cabrera-Vera, T. M., Depree, K. M., Graber, S. G., and Hamm, H. E. (1999) Two amino acids within the αα helix of Ga1 mediate coupling with S-hydroxytryptamine 1B receptors. J. Biol. Chem. 274, 14963–14971

13. Cai, K., Itoh, Y., and Khorana, H. G. (2000) Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent cross-linking. Use of a photocactivatable reagent. Proc. Natl. Acad. Sci. U.S.A. 98, 4877–4882

14. Grishina, G., and Berlot, C. H. (2000) A surface-exposed region of Ga3, in which substitutions decrease receptor-mediated activation and increase receptor affinity. Mol. Pharmacol. 57, 1081–1092

15. Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Wall, M. A., Coleman, D. E., Lee, E., Potin, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skirot, G., Weiss, W. L., Sunahara, R. K., and Blob, K. B. (2011) Crystal structure of the β2 adrenergic receptor-G protein complex. Nature 477, 549–555

16. Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., and Sprang, S. R. (1995) The structure of the G protein heterotrimer Gα1βγ2. Cell 83, 1047–1058

17. Lambrt, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) The 2.0 angstrom crystal structure of a heterotrimeric G protein. Nature 379, 311–319

18. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L., and Hamm, H. E. (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13, 772–777

19. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L., and Hamm, H. E. (2007) Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proc. Natl. Acad. Sci. U.S.A. 104, 7927–7932

20. Martin, E. L., Ren, J., Schanz, S., Schatz, P. J., and Hamm, H. E. (1996) Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J. Biol. Chem. 271, 361–366

21. Aris, L., Gilchrist, A., Rens-Domiano, S., Meyer, C., Schatz, P. J., Dratz, E. A., and Hamm, H. E. (2001) Structural requirements for the stabilization of rhodopsin II by the C terminus of the α subunit of transducin. J. Biol. Chem. 276, 2333–2339

22. Scheerer, P., Park, J. H., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R. (2004) Ahierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367

23. Banks, J. L., Beard, H. S., Cao, A. E., Damm, W., Farid, R., Felts, A. K., Hamm, H. E., Mainz, D. T., Maple, J. R., Murphy, R., Phillips, D. M., Repasky, M. P., Zhang, L. Y., Berne, B. J., Friesner, R. A., Gallicchio, E., and Levy, R. M. (2005) Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem. 26, 1752–1780

24. Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., and Friesner, R. A. (2011) The VSVGβ2.0 model. A next generation energy model for high resolution protein structure modeling. Proteins 79, 2794–2812

25. Emsley, P., and Cowtan, K. (2004) Coot. Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132

26. Niesen, F. H., Berglund, H., and Vedadi, M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221

27. Morikawa, T., Muroya, A., Nakajima, Y., Tanaka, T., Hirai, K., Sugio, S., Wakamatsu, K., and Kohno, T. (2007) Crystallization and preliminary x-ray crystallographic analysis of the receptor-uncoupled mutant of Gaα3βγ2. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 139–141

28. Otwinowski, Z., and Minor, W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326

29. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674

30. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX. A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221

31. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) Procheck. A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291

32. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Hung, L. W., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity. All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21

33. DeLano, W. L. (2010) The PyMOL Molecular Graphics System, Version 1.3r1, Schrodinger, LLC, New York

34. Pettersen, E. F., Goddard, T. D., Huang, C. S., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF chimera. A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612

35. Sondek, J., Lambrt, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994) GTPase mechanism of G proteins from the 1.7 Å crystal structure of transducin α-GDP-AIF-4. Nature 372, 276–279

36. Noel, J. P., Hamm, H. E., and Sigler, P. B. (1993) The 2.2 Å crystal structure of transducinα complexed with GTPγS. Nature 366, 654–663

37. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R. (1994) Structures of active conformations of Gaα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412

38. Mixon, M. B., Lee, E., Coleman, D. E., Berghuis, A. M., Gilman, A. G., and Sprang, S. R. (1995) Tertiary and quaternary structural changes in Gaα1 induced by GTP hydrolysis. Science 270, 954–960

39. Lambrt, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994) Structural determinants for activation of the α-subunit of a heterotrimeric G
protein. Nature 369, 621–628
50. Van Eps, N., Oldham, W. M., Hamm, H. E., and Hubbell, W. L. (2006) Structural and dynamical changes in an α-subunit of a heterotrimeric G protein along the activation pathway. Proc. Natl. Acad. Sci. U.S.A. 103, 16194–16199
51. Posner, B. A., Mixon, M. B., Wall, M. A., Sprang, S. R., and Gilman, A. G. (1998) The A326S mutant of G, α1 as an approximation of the receptor-bound state. J. Biol. Chem. 273, 21752–21758
52. Kapoor, N., Menon, S. T., Chauhan, R., Sachdev, P., and Sakmar, T. P. (2009) Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. J. Mol. Biol. 393, 882–897
53. Singh, G., Ramachandran, S., and Cerione, R. A. (2012) A constitutively active Gα subunit provides insights into the mechanism of G protein activation. Biochemistry 51, 3232–3240
54. Deupi, X., and Kobilka, B. K. (2010) Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology 25, 293–303
55. Rasmussen, S. G., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R., Sanishvili, R., Fischetti, R. F., Schertler, G. F., Weis, W. I., and Kobilka, B. K. (2007) Crystal structure of the β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387
56. Rosenbaum, D. M., Zhang, C., Lyons, J. A., Holl, R., Aragao, D., Arlow, D. H., Rasmussen, S. G., Choi, H. J., Devree, B. T., Sunahara, R. K., Chae, P. S., Gellman, S. H., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., and Kobilka, B. K. (2011) Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469, 236–240
57. Rasmussen, S. G., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., Devree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., and Kobilka, B. K. (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180
58. Nyagaard, R., Zou, Y., Dror, R. O., Mildorf, T. J., Arlow, D. H., Manglik, A., Pan, A. C., Liu, C. W., Fung, J. J., Bokoch, M. P., Thian, F. S., Kobilka, T. S.,shaw, D. E., Mueller, L., Prosser, R. S., and Kobilka, B. K. (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542
59. Ring, A. M., Manglik, A., Kruse, A. C., Enos, M. D., Weis, W. I., Garcia, K. C., and Kobilka, B. K. (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502, 575–579
60. Katritch, V., Cherezov, V., and Stevens, R. C. (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17–27
61. Katritch, V., Cherezov, V., and Stevens, R. C. (2013) Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556
62. Zelent, B., Veklich, Y., Murray, I., Parkes, J. H., Gibson, S., and Liebman, P. A. (2001) Rapid irreversible G protein uncoupling due to intramolecular kinetic bottleneck that precedes Mg2+ “lock” after GTP/GDP exchange. Biochemistry 40, 9647–9656
63. Ridge, K. D., Marino, J. P., Ngo, T., Ramon, E., Brabazon, D. M., and Abdulaev, N. G. (2006) NMR analysis of rhodopsin-transducin interactions. Vision Res. 46, 4482–4492
64. Abdulaev, N. G., Ngo, T., Ramon, E., Brabazon, D. M., Marino, J. P., and Ridge, K. D. (2006) The receptor-bound “empty pocket” state of the heterotrimeric G protein-α-subunit is conformationally dynamic. Biochemistry 45, 12986–12997
65. Thomas, C. J., Brikirarová, K., Hilmer, J. K., Movahed, N., Bothner, B., Sumida, J. P., Tall, G. G., and Sprang, S. R. (2011) The nucleotide exchange factor Ric-8A is a chaperone for the conformationally dynamic nucleotide-free state of Gαs. PLoS ONE 6, e23197
66. Marin, E. P., Krishna, A. G., Archambault, V., Simuni, E., Fu, W. Y., and Sakmar, T. P. (2001) The function of interdomain interactions in controlling nucleotide exchange rates in transducin. J. Biol. Chem. 276, 23873–23880
67. Marin, E. P., Krishna, A. G., and Sakmar, T. P. (2001) Rapid activation of transducin by mutations distast from the nucleotide-binding site. Evidence for a mechanistic model of receptor-catalyzed nucleotide exchange by G proteins. J. Biol. Chem. 276, 27400–27405
68. Marin, E. P., Krishna, A. G., and Sakmar, T. P. (2002) Disruption of the αs helix of transducin impairs rhodopsin-catalyzed nucleotide exchange. Biochemistry 41, 6988–6994
69. Van Eps, N., Preininger, A. M., Alexander, N., Kaya, A. I., Meier, S., Meier, J., Hamm, H. E., and Hubbell, W. L. (2011) Interaction of a G protein with an activated receptor opens the interdomain interface in the α subunit. Proc. Natl. Acad. Sci. U.S.A. 108, 9420–9424
70. Preininger, A. M., Meier, J., and Hamm, H. E. (2013) Conformational flexibility and structural dynamics in GPCR-mediated G protein activation. A perspective. J. Mol. Biol. 425, 2288–2298
71. Hamm, H. E., Kaya, A. I., Gilbert, J. A., 3rd, Busenlehner, L. S., Armstrong, R. N., and Hamm, H. E. (2012) Myristoylation exerts direct and allosteric effects on Gα conformation and dynamics in solution. Biochemistry 51, 1911–1924
72. Preininger, A. M., Meier, J., and Hamm, H. E. (2013) Conformational flexibility and structural dynamics in GPCR-mediated G protein activation. A perspective. J. Mol. Biol. 425, 2288–2298
73. Hermann, R., Heck, M., Henklein, P., Hofmann, K. P., and Ernst, O. P. (2006) Signal transfer from GPCRs to G proteins. Role of the Gα-N-terminal region in rhodopsin-transducin coupling. J. Biol. Chem. 281, 30234–30241
74. Ceruso, M. A., Periolo, X., and Weinstein, H. (2004) Molecular dynamics simulations of transducin. Interdomain and front to back communication in activation and nucleotide exchange. J. Mol. Biol. 338, 469–481
75. Kling, R. C., Lanig, H., Clark, T., and Gmeiner, P. (2013) Active-state conformation and dynamics in solution. J. Biol. Chem. 288, 67244
76. Coleman, D. E., and Sprang, S. R. (1999) Structure of G, α1-GppNHp, autoinhibition in a Gα-protein-substrate complex. J. Biol. Chem. 274, 16669–16672
77. Kimpel, R. J., Kimpel, M. E., Betts, L., Sondek, J., and Siderovski, D. P. (2002) Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature 416, 878–881
78. Thomas, C. J., Du, X., Li, P., Wang, Y., Ross, E. M., and Sprang, S. R. (2004) Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein-α-subunit. Proc. Natl. Acad. Sci. U.S.A. 101, 7560–7565
79. Westfield, G. H., Rasmussen, S. G., Su, M., Dutta, S., DeVree, B. T., Chung, K. Y., Calinski, D., Velez-Ruiz, G., Oleskie, A. N., Pardon, E., Chae, P. S., Liu, T., Li, S., Woods, V. L., Jr., Steyaert, J., Kobilka, B. K., Sunahara, R. K., and Skinioris, G. (2011) Structural flexibility of the Go, α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl. Acad. Sci. U.S.A. 108, 16086–16091