Recent advances in exploring the heavy metal(loid) resistant microbiome

Xiuli Haoa,b,c,1,*, Jiaojiao Zhua,b,1, Christopher Rensingd, Ying Liua,b, Shenghan Gaoa,b, Wenli Chena, Qiaoyun Huanga,b,c, Yu-Rong Liua,b,c,*

a State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
b College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
c Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
d Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

\textbf{Article history:}
Received 26 September 2020
Received in revised form 3 December 2020
Accepted 5 December 2020
Available online 14 December 2020

\textbf{Keywords:}
Heavy metal(loid) resistant microbiota
Distribution pattern
Metal resistome
Biotic selection
Copper and silver
Zinc, lead and cadmium
Arsenic
Mercury

\textbf{Abstract}
Heavy metal(loid)s exert selective pressure on microbial communities and evolution of metal resistance determinants. Despite increasing knowledge concerning the impact of metal pollution on microbial community and ecological function, it is still a challenge to identify a consistent pattern of microbial community composition along gradients of elevated metal(loid)s in natural environments. Further, our current knowledge of the microbial metal resistome at the community level has been lagging behind compared to the state-of-the-art genetic profiling of bacterial metal resistance mechanisms in a pure culture system. This review provides an overview of the core metal resistant microbiome, development of metal resistance strategies, and potential factors driving the diversity and distribution of metal resistance determinants in natural environments. The impacts of biotic factors regulating the bacterial metal resistome are highlighted. We finally discuss the advances in multiple technologies, research challenges, and future directions to better understand the interface of the environmental microbiome with the metal resistome. This review aims to highlight the diversity and wide distribution of heavy metal(loid)s and their corresponding resistance determinants, helping to better understand the resistance strategy at the community level.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

\textbf{Contents}
1. Introduction .. 95
2. Bacterial heavy metal(loid) resistome: From pure culture to microbiome 95
3. The core heavy metal(loid) resistant microbiota ... 97
4. Microbial responses to heavy metal(loid) pollution ... 99
4.1. Contrasting taxonomic response .. 99
4.2. Microbial diversity patterns under heavy metal(loid) stress 99
5. Evolution and distribution of heavy metal(loid) resistance genes in the environment 101
6. Overlooked biotic factors shaping bacterial heavy metal(loid) resistome 102
7. Summary and outlook .. 103
\textbf{CRediT authorship contribution statement}

\textbf{Declaration of Competing Interest}

\textbf{Acknowledgements}

\textbf{Appendix A. Supplementary data}

\textbf{References} ... 106

* Corresponding authors at: State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
E-mail addresses: xlxhao@mail.hzau.edu.cn (X. Hao), yrliu@mail.hzau.edu.cn (Y.-R. Liu).
1 These authors contribute equally to this work

https://doi.org/10.1016/j.csbj.2020.12.006
2001-0370© 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Heavy metal(loid)s are natural constituents of the earth’s crust and persistent in the environment. Release of heavy metal(loid)s naturally occurs through weathering, geothermal activities, forest fires, and microbial activities. However, this process has been accelerated rapidly by anthropogenic activities, causing the increased global dispersion of heavy metal(loid)s thereby constituting a great threat for human and ecosystem health [1,2]. The widespread heavy metal(loid) pollution is highly coincident with increasingly advanced civilizations in human history [2]. For instance, changes of lead in dated deposits were coincident with the prosperity and eclipse of the Roman Empire (over 2000 years ago), the Industrial Revolution (over 200 years ago), as well as the promotion and phase-out of leaded gasoline (over 50 years ago) [3,4]. Similarly, elevated copper deposition in Greenland ice could be correlated to ancient mining and smelting activities during Roman and medieval times in Europe and China [5]. Nowadays, anthropogenic heavy metal(loid) emissions into the environment has exceeded the tolerable baseline of natural cycling in many ecosystems. Not surprisingly, urbanized areas with intensive mining and industrial activities are typical hot spots of heavy metal (loid) contamination. The antimicrobial properties of heavy metal (loid)s, such as silver, mercury, copper, zinc and arsenic, have long been appreciated before the discovery and widespread use of antibiotics [6,7]. Some useful products, such as copper alloy, exhibit a high biocidal efficacy against a range of nosocomial pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, Escherichia coli O157: H7, Pseudomonas aeruginosa and SARS-CoV-2 [8–12]. Due to the high antimicrobial efficacy, heavy metal(loid)-based antimicrobial agents or commercial products are broadly applied in public health, medical treatments, agriculture and livestock industry. Additionally, metal(loid)s are supplemented in feed for growth promotion and disease prevention. Over the last decades, elevated copper and zinc contents have been reported in livestock manures and sewage sludge worldwide [13–16]. With manure/sewage-sludge application and irrigation with wastewater, thousands tons of heavy metal(loid)s enter and accumulate in soils, sediments and aquatic ecosystems, posing a global threat to agriculture products, ecosystems and human health [6,17,18].

Enriched heavy metal(loid)s in the environment, either released from natural sources or anthropogenic activities, constitute a great selective pressure for the development and spread of heavy metal (loid) resistance determinants. As a side effect, increased abundance and selection for heavy metal(loid) resistance also boosts the spread of antibiotic resistance through co-selection [19]. Antimicrobial heavy metal(loid)s target multiple cellular processes by inducing oxidative stress, destabilizing protein function, impairing the integrity of membranes, interfering with nutrient assimilation, and causing DNA damage [6]. The mechanisms leading to toxicity might differ and depend on the intrinsic properties of the individual metal. In some circumstances, different mixtures of metals can have joint toxic effects. To defend themselves from metal toxicity, microbes have evolved sophisticated mechanisms of adaption and resistance. To date, the genetic basis of microbial heavy metal(loid) resistance has been elucidated in detail from different perspectives [20–24]. Essentially, the diverse determinants maintaining heavy metal(loid) homeostasis can be divided into four categories: energy-dependent efflux (ATPase, RND, CDF family), enzymatic detoxification (redox and (de)methylation), intracellular sequestration, and reduction of uptake. Other unspecific mechanisms enhancing bacterial resistance to heavy metal(loid)s are also well documented. For example, biofilm formation protects microorganisms from toxic heavy metal(loid)s [25,26]. Bacteria secret extracellular polymers or siderophores to trap heavy metal(loid)s, reduce the bioavailability, and alleviate stress [25,27]. Today, studies of metal resistance mechanisms have facilitated the development of many fields such as bioremediation of metal-contaminated environments [28–30], and bio-mining of minerals from ores or effluents from industrial operations [31]. Additionally, it is beneficial to elucidate the increasing development of microbial resistance to heavy metal(loid)s and antibiotics, and to prevent failure when using antimicrobial products [32,33].

Metal(loid)s are of importance for many biological functions such as respiration, photosynthesis, carbon and nitrogen cycling [34–36]; however, most microorganisms and ecological processes in the environment are vulnerable to heavy metal(loid) pollution [37]. The resistance and resilience of environmental microorganisms to heavy metal(loid) perturbation rely on many factors. For example, microbial intrinsic detoxification systems largely determine their survival in heavy metal(loid) polluted environment. Other (a)biotic factors influencing heavy metal(loid) toxicity and microbial fitness may also play a vital role in complex environments. Despite increasing concerns on the ecological effect of heavy metal(loid) exposure on the microbial community and function, several crucial questions on the core metal resistant microbiome are still not solved. The term “heavy metal(loid) resistant microbiome” contains the resistant microbiota, metal resistome, and their interactions with surrounding biotic and abiotic environments. The core heavy metal(loid) resistant microbiota is a suite of members shared among microbial consortia from an individual or a multiple-metal polluted environment. They are not necessarily found in every environment and resistant to all heavy metal(loid)s, but are fairly constant regardless of geographical region. Heavy metal(loid) resistome is termed as “the collection of all genes conferring metal resistance in a given environment, including both intrinsic genes and acquired resistance genes via horizontal gene transfer (HGT).” This review chronicles the discovery and development of major microbial heavy metal(loid) resistance determinants, and discusses the prevailing knowledge gap between resistome studies based on individual isolates and the microbial community. By investigating previously published sequencing data, we summarized the profile of metal-resistant microbiota and resistome distributed in natural/managed ecosystems, and further interpreted the major biotic and abiotic factors driving the structure of the core metal resistant microbiome. The influence of heavy metal(loid)s on the animal-related microbiome is not included. Finally, we discussed methodological challenges and the future direction of heavy metal(loid) resistome.

2. Bacterial heavy metal(loid) resistome: From pure culture to microbiome

Investigation of bacterial heavy metal(loid) resistance mechanisms, which began using several prominent isolates, has been carried out for decades. To date, substantial efforts have been devoted to identify the genetic basis of heavy metal(loid) resistance, elaborate relevant biochemical pathways, and characterize the structural basis of critical components in heavy metal(loid) resistance determinants. Another related goal has been the elucidation of the evolution, distribution and biological function of these heavy metal(loid) resistance determinants across prokaryotes. These studies laid a solid foundation for the systemic understanding on how bacteria deal with toxic heavy metal(loid)s and maintain homeostasis. Here, we summarize the discovery of several crucial heavy metal(loid) resistance systems, including mercury, arsenic, copper, silver, zinc, cobalt, nickel and chromate (Fig. 1).
Mercury resistance was the first thoroughly studied bacterial heavy metal(loid) resistance system, which started from discovering mercury resistance R-factors in clinical isolates and followed with the generation of mercury hypersensitivity mutants in the late 1960s-1970s [38–40]. Later, genes involved in mercury resistance were gradually elucidated, including mercuric reduction (merA) [41,42], organomercurical cleavage (merB) [43,44], mercuric ion transport (merP, merT, merC) [45–47], regulator (merR and merD) [40,48–52], and mercury methylation (hgcA and hgcB) [53]. Fig. 1B shows the schematic representation of mercury resistance mechanism. Detailed information on mercury resistance was discussed in other excellent reviews [54,55].
Arsenic biotransformation and transport is another well-studied resistance system, which was mainly conducted by Rosen and colleagues since 1981/1982 [56,57]. The \textit{ars} operon with many diverse variants is widely distributed in nearly all Prokaryotes to defend against ubiquitous arsenic in the environment [58]. Arsenic resistance mechanisms can be divided into inorganic and organic arsenic detoxification systems (Fig. 1B). The molecular mechanism of inorganic arsenic detoxification, including the typical \textit{arsRDABCD} operon [59–64] and \textit{acr3} [65], was initially studied in several pioneer R plasmids. With the massive application of organoarsenic-containing herbicides and pesticides worldwide [1], organoarsenical detoxification pathways were soon identified in bacteria isolated from organoarsenical contaminated environments. The detoxification system is composed of ArsP responsible for R oxasone (Rox) and Monomethylarsonous acid (MMA(III)) efflux [66,67], Ars conferring 1-arseno-3-phosphoglycerate (1A3PG) efflux [68], and enzymes responsible for biotransformation of organic arsenicals encoded by \textit{arsM}, \textit{arsH} and \textit{arsI} [69–71]. The newly reported efflux transporter ArsK is responsible for As(III), Methylarsinite (\textit{MAS}(III)) and Rox(III) resistance [72].

Copper is one of the essential but also toxic metal(loid)s for microorganisms. The intracellular copper homeostasis is strictly controlled via delicate mechanisms (Fig. 1C). The plasmid-born \textit{cop} operon was initially identified in \textit{Pseudomonas syringae} isolated from Californian tomato fields using copper as an antifungal agent. \textit{CopABCDRS} in \textit{P. syringae} is the first identified plasmid-encoded system involving the sequestration of copper in the periplasm and outer membrane [73–75]. Chromosomal homologs of \textit{copABCD} were also identified in \textit{P. syringae}, conferring an enhanced copper resistance [76]. Meanwhile, another plasmid-encoded pco operon was identified in \textit{E. coli} strain isolated from the piggery, where copper was used as a feed additive in Australia [77]. The \textit{pco} operon is co-located with the \textit{sil} operon, constituting a larger operon with a high copper resistance [78]. The basic \textit{pco} operon \textit{pcoABCDRS} in \textit{E. coli} is homologous to \textit{cop} operon in \textit{P. syringae} [77,79,80]. Additional \textit{cop} genes, assembled as \textit{copVMKNSRABCDDJIGEQLQHE}, were later identified in \textit{Cupravidus metallidurans} CH34 megaplasmid pMOL30, handling both periplasmic and cytoplasmic copper detoxification [81]. In addition to plasmid-encoded \textit{pco} systems, there are three major chromosomal determinants responsible for copper resistance in \textit{E. coli}. Copper-translocating P-type ATPase, named as \textit{CopA}, is essential transporter for cytoplasmic Cu(I) efflux in \textit{E. coli} [82]. Other independent copper resistant systems, including \textit{cxeO} and \textit{cus} operon, are responsible for periplasmic copper detoxification. The multicomponent oxidase \textit{CxeO} contains similar methionine-rich regions as present in \textit{PcoE} in \textit{E. coli} and \textit{CopA} in \textit{P. syringae}, and could oxidate the toxic Cu(I) into less toxic Cu(II) in the periplasm [83–85]. \textit{CusCFBARS} is another important system for periplasmic copper detoxification under both aerobic and anaerobic conditions [83,86–88]. Microorganisms lacking \textit{CusCFBARS} homologs, such as many strains of \textit{Salmonella} and \textit{Yersinia}, possess alternative \textit{CueP} as functional substitutes [89,90]. In the case of silver, the molecular basis of silver resistance, the \textit{sil operon}, was well studied in \textit{Salmonella} [91]. The \textit{sil operon} is regulated by a two-component membrane sensor and regulator \textit{SilRS}. It consists of two parallel efflux pumps: a specific Ag(I)-translocating P-type ATPase (SilAP) and a cation/proton antiporter (SilCBA) with SilE serving as silver-specific periplasmic binding protein (Fig. 1C).

As is the case with copper, zinc, cobalt and nickel are also essential micronutrients required for microorganisms, but are toxic when in excess. \textit{CzcCBA} (for cadmium, zinc and cobalt resistance) and \textit{CnrCBA} (Co and Ni resistance) are two homologous divergent cation efflux systems, which were initially reported in \textit{Alcaligenes eutrophus} (today \textit{Cupravidus metallidurans} CH34 plasmid pMOL30 [92,93]. \textit{Ncc} is the third divergent divergent cation resistance system for nickel, cadmium, and cobalt resistance [94]. Additionally, ZntA from \textit{E. coli} and CadA from \textit{Staphylococcus aureus} are two important cation-translocating P-type ATPases catalyzing the efflux of zinc, lead and cadmium [95–97]. Other systems, such as zinc exporter \textit{ZiaA} in \textit{Synechocystis} [98] and metallothionein \textit{SmtA} [99], also contribute to zinc homeostasis (Fig. 1D).

Chromate is a highly toxic metal widespread in the environment. Bacterial chromate reduction could convert the soluble and toxic Cr(VI) to insoluble and less toxic Cr(III), which is vital for environmental bioremediation [100]. Chromate reduction is conducted by several reductases, such as ChrK, YieF, NfsA, and lipoyl dehydrogenase (LpDH) [101,102] (Fig. 1E). \textit{ChrA} is a chromate efflux transporter found in plasmids of \textit{P. aeruginosa} [103] and \textit{C. metallidurans} (formerly known as \textit{Ralstonia metallidurans}, or \textit{A. eutrophus}) [104,105]. Additional \textit{chr} determinants, including \textit{chrlBACEF} on plasmid pMOL28 and \textit{chrBAF} on the chromosome, were further identified in \textit{C. metallidurans} [106]. These determinants are widespread on both plasmids and chromosomes.

The natural environment is composed of an enormous abundance and diversity of microorganisms with various physiological properties and differing tolerance to pollutants. When encountering heavy metal(loid) stress, the discrepancy in species adaption to heavy metal(loid)s may lead to a dramatic shift within natural populations and their ecological function. The interference and re-construction of the population will not only be accompanied with a succession of the microbe community, but will also affect the distribution and longevity of specific resistance genes in the environment. Elaborating the response and development of core resistant microorganisms and resistome under heavy metal(loid) selective pressure is essential to understand the ecological impact of heavy metal(loid)s on microbial succession and their potential environmental risks. However, compared to molecular mechanisms investigated in pure culture isolates, our knowledge on the microbial resistome to heavy metal(loid)s at the community level has lagged far behind. The fundamental mechanisms by which microbial populations adapted to heavy metal(loid) stress and their preference for resistance strategy in the natural environment remain virtually unknown. The knowledge gap could be partly due to the diverse microbes and methodological challenges, which will be discussed in the sections below.

3. The core heavy metal(loid) resistant microbiota

Microorganisms drive vital biogeochemical processes, including carbon turnover, nutrient cycling and pollutant transformation. However, they are highly sensitive to heavy metal(loid)s compared to animals and plants in the same environment [107]. In particular, prokaryotic populations, in terms of biomass, activity and diversity, are more vulnerable to heavy metal(loid) pollution than eukaryotes [108,109]. Thus, microorganisms are frequently considered as potential ecological indicators for heavy metal(loid) pollution [110]. With advances in Next-Generation Sequencing (NGS), a growing number of studies have illustrated the impact of heavy metal(loid) pollution on microbial communities in many ecosystems [111–115]. However, our knowledge regarding community changes under heavy metal(loid) pollution is mainly from studies at a local scale; little is known about the core resistant microbiome at a scale across different ecosystems.

Here, we retrieved metadata from published studies in the Web of Science database to give an overview on the profile of core heavy metal(loid) resistant microbiota and their distribution pattern. We only focus on the influence of heavy metal pollution on microbiota and resistome in natural environments. Our search terms included “microbial community” and “heavy metal”. Research articles were checked manually to remove duplicates, irrelevant articles, and articles without accession number. We use a bacterial dataset with...
V3–V4 hypervariable regions of the 16S rRNA gene to illustrate the preliminary profile of the core microbiota under heavy metal(loid) polluted environments (Fig. 2). Eventually, 186 samples from 5 independent research articles met the criteria and were selected for analysis (Table S1). Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Nitrospirae, Desulfobacterota, Myxococcota and Firmicutes were identified as the dominant phyla persistent in a variety of heavy metal(loid) contaminated environments. Proteobacteria was the most widespread and ubiquitous bacterial group in the environment. It contains both slow-growing oligotrophic and fast-growing copiotrophic taxa with extensive metabolic properties and wide niche breadth, enabling Proteobacteria to occupy a wide range of habitats [116]. Furthermore, bacteria belonging to Proteobacteria possess a variety of heavy metal(loid) resistance determinants. Metagenome analysis of river sediments with chronic heavy metal pollution identified the most variety and abundance of heavy metal(loid) resistance genes in Proteobacteria, followed by Actinobacteria and Bacteroidetes [117,118]. With the capability of strong adaption and tolerance, Proteobacteria has been reported to be a predominant heavy metal(loid) resistant phylum in many polluted environments [119–121]. The importance of Proteobacteria as a core heavy metal(loid) resistant phylum is also confirmed in studies using isolation-based methods. By compiling literature related to heavy metal(loid) resistant isolates from various environments, we found over 66% of studied isolates belong to Proteobacteria, most of which were Gammaproteobacteria (52.84%) (Fig. 3). Acidobacteria is another prevalent population present in heavy metal(loid) polluted areas. As k-strategists, Acidobacteria species grow slowly, but are well adapted to acidic and oligotrophic niches due to their extensive metabolic versatility and acidic tolerance [122]. Therefore, acidification and reduced availability of nutrients in heavy metal(loid) polluted areas favor the survival of Acidobacteria. Other abundant phyla, such as Chloroflexi and Nitrospirae, are reportedly involved in nitrogen cycling in heavy metal(loid) polluted sites [123].

Fig. 2. Profile of the core heavy metal(loid) resistant microbiome. A. Hierarchical cluster of samples retrieved from studies on heavy metal(loid) polluted environments. Cluster was analyzed based on the Bray-Curtis dissimilarity of relative abundance of amplicon sequence variants (ASVs) at the phylum level. Branches of the tree are colored according to habitat. Colors in the outer ring represent detailed information including both habitat and location. B. The mean relative abundance of top 10 phyla across samples from different environments. The remaining phyla are classified into “Others”. Community composition is clustered according to the Bray-Curtis dissimilarity of the mean relative abundance. Silva 138.1 was used for taxonomy classification. C. Boxplot showing a difference in richness among different groups (P < 0.001, Kruskal-Wallis test). D. Non-metric multidimensional scaling (NMDS) analysis based on the unweighted-UniFrac distance of ASV matrix showing changes in community structure in different groups (PERMANOVA, P < 0.05).
show a comparable bacterial composition at the phylum level. In dryland, we observed a higher relative abundance of Proteobacteria and Actinobacteria, but less Chloroflexi than those in paddy soil and sediment. Communities from the mining area and sludge are distinct. In these habitats, Proteobacteria are less abundant than in other environments, while other phyla such as Actinobacteria, Chloroflexi, or Bacteroidetes become dominant (Fig. 2B). The taxonomic diversity of core heavy metal(loid) resistant microbiomes varies significantly with environmental habitats (P < 0.001), where the mining area and sludge show the lowest diversity (Fig. 2C). The non-metric multidimensional scaling (NMDS) ordination revealed that samples from sediment, sludge and mining sites possess distinct bacterial communities compared to other habitats. Samples from paddy soil overlap extensively regardless of the geographical location, but the microbiome is separate from dryland samples (Fig. 2D). These results suggest that environmental habitat has a strong impact on heavy metal(loid) resistant microbiome, which exceeds the effects from heavy metal(loid)s (types and concentration) and geographical locations.

4. Microbial responses to heavy metal(loid) pollution

4.1. Contrasting taxonomic response

Although the overall shift in bacterial composition under heavy metal(loid) pollution has been consistently reported [124–131], contrasting responses are observed when comparing specific phyla across studies. For instance, the relative abundance of Actinobacteria increased in metal contaminated soil from Hunan, China [132], and in nickel polluted rhizosphere soil in Greece [133], but decreased in metal-contaminated paddy soils from Zhejiang, China [134]. Similar conflicting results were also found for Proteobacteria, where a steady decline in the relative abundance of Proteobacteria was observed along a copper gradient in grassland soil, Denmark [135], but a consistent or increased abundance was reported in other field studies [115,136]. These inconsistent responses not only reflect the complex interaction between heavy metal(loid)s and diverse bacterial communities, but also indicate heavy metal(loid) stress could not be the only key factor shaping the core resistant microbiome.

Many variables could contribute to bacterial community shifts under heavy metal(loid) pollution, including profiles of heavy metal(loid)s (e.g., types, toxicity, pollution level, exposure history and synergistic effects), environmental factors, and the legacy effect of the local microbiome. For instance, chronic or short-term exposure to the same metal pollutant led to an opposite trend in Actinobacteria abundance [134]. In addition to heavy metal(loid)s, other abiotic factors, such as pH, organic matter and nutrient content, directly or indirectly affect microbial responses through influencing the fate and toxicity of heavy metal(loid)s entering the environment [108,137], or affecting the physiological status of bacterial cells. Some studies indicate that even in highly contaminated environments, environmental factors, especially nutrient availability, could mitigate the selective pressure of heavy metal(loid)s on the microbial community, especially in the nutrient-limited marine environment [122,138,139]. Additionally, physiological traits and intrinsic resistance of the initial microbial community are of importance for taxonomic responses under heavy metal(loid) stress. Microbial traits such as life-history strategy, stress tolerance, physiological plasticity, dormancy potential and detoxification systems are directly related to microbial community resistance to heavy metal(loid)s [140]. For example, microbial species with the ability to produce spores/myxospores or generate a robust biofilm are prevalent in soil with high copper pollution [141]. Further, horizontal gene transfer of heavy metal (loid) resistance genes could enhance community tolerance without phylogenetic changes. It should be noted that taxonomic responses to heavy metal(loid) perturbation is usually quantified by the relative abundance of taxa within a community. It better reflects the rank order of taxa rather than changes in real numbers. Certain taxa with the same absolute abundance in different communities could display different trends in relative abundance [142]. Therefore, after an investigation of overall community composition changes through amplicon sequencing, absolute quantification of specific taxa is highly recommended to access their responses to heavy metal(loid)s.

4.2. Microbial diversity patterns under heavy metal(loid) stress

Higher microbial diversity is insurance for resistance and resilience of microbial community and function (the insurance hypothesis) [143]. Therefore, microbial diversity is a commonly used
index for heavy metal(loid) polluted environments. However, contrasting observations always appear when assessing the impact of heavy metal(loid)s on microbial diversity and functionality in both terrestrial and aquatic ecosystems. Microbial diversity could either decrease, increase, or remain constant along with heavy metal(loid) gradients (Fig. 4A). In general, reduced diversity is frequently observed in studies with severe heavy metal(loid) contamination, or short-term exposure experiments in the laboratory. Strong selection occurs by heavy metal(loid)’s purging sensitive taxa, leading to the proliferation of a few specific resistant groups and resulting in a subsequent decrease in diversity. In other cases, exposure to a low concentration of essential metals such as copper and zinc will promote growth of a wide range of bacteria, which is accompanied by an increase in microbial diversity. Previous studies have shown that the diversity patterns of soil and benthic prokaryotic community in metal polluted environments followed the intermediate disturbance hypothesis [123,144]. Alternatively, microbial diversity may not be affected, even under chronic and high levels of pollution [145]. The constant diversity could be due to the strong resistance and resilience of the initial community, the capacity to acquire resistance through horizontal gene transfer, or turnover of dominant taxa without influencing microbial diversity [133,146,147]. Further, different responses of the rare biosphere to heavy metal(loid) pressure could result in changes in microbial diversity in different ways. The rare biosphere possesses huge genetic diversity and contributes greatly to microbial diversity, functionality, and ecosystem stability [148]. When encountering a disturbance, rare species susceptible to heavy metal(loid) toxicity will be eliminated. Extinction of highly diverse rare species leads to a severe decline of microbial diversity [37,149]. For example, a previous study showed heavy metal pollution reduced more than 99.9% of the bacterial diversity via eliminating rare taxa in pristine soil [37]. However, the rare biosphere may contain taxa that are tolerant to heavy metal(loid) pollution. These rare taxa could remain rare under adaptive condition, or become dominant when the conditions are favorable [150,151], leading to different responses of microbial diversity.

Links between microbial composition, diversity and functionality are complex (Fig. 4B and C). Liu et al. reported consistent responses of microbial taxonomic and functional traits with increased mercury content at the regional scale [123]. However, uncoupled patterns between microbial community and function could be due to horizontal gene transfer, functional redundancy, and changes in rare taxa. Coupled and uncoupled patterns between microbial community and function could be due to horizontal gene transfer, functional redundancy, and changes in rare taxa.
but keystone species responsible for important functional processes, leading to great changes in function rather than in composition.

5. Evolution and distribution of heavy metal(loid) resistance genes in the environment

Due to their ability of rapid adaption, microbes are considered as living fossils recording contemporary environmental changes such as heavy metal(loid) pollution [153]. Heavy metal(loid)s were high in primordial anoxic oceans and hydrothermal vents where life likely first arose, presenting one of the first challenges for early microorganisms. Therefore, microbial heavy metal(loid) resistance determinants are believed to be as ancient as the evolution of life on Earth. With the rise of oxygen during the Great Oxidation Event (GOE, 2.4 Bya), more diverse heavy metal(loid) species appeared and became bioavailable [154,155]. Bacteria, in turn, evolved novel enzymatic systems to accommodate dramatic changes in heavy metal(loid) toxicity. Therefore, the current heavy metal(loid) resistance determinants are thought to be the consequence of billions of years of selection by geological heavy metal(loid)s and later by anthropogenic influence. This is verified by a recent study showing the expansion of arsenic resistance systems from reduced arsenic detoxification to diverse Ars operon conferring arsenic resistance to both reduced and oxidized arsenic species during/after the GOE [153].

Vertical inheritance, horizontal gene transfer, gene duplication, and mutation are major mechanisms involved in the evolution of heavy metal(loid) resistance genes in contaminated environments. As we have discussed above, heavy metal(loid)s provide a selective advantage for resistant populations, leading to the thriving of specific populations. The inherent resistance determinants possessed by surviving populations could be passed down to subsequent generations, and thereby become abundant in the polluted environment. For instance, enriched Rhodanobacter contributes to the overabundance of multiple genes encoding heavy metal(loid) resistance determinants in uranium-contaminated groundwater [156]. A Geobacter population with the gene hgoA encoding enzymes responsible for mercury methylation was shown to dominate mercury methylating communities in metal-affected paddy soil and lake sediments [157,158]. Horizontal gene transfer is also of importance for the development of heavy metal(loid) resistance. It has been suggested that heavy metal(loid)s modulate conjugation-mediated horizontal gene transfer in a type and dose-dependent manner [159]. In natural and anthropogenic environments, re-assembly of gene clusters or genomic islands conferring heavy metal(loid) resistance is commonly identified in isolates from heavy metal(loid) enriched environments such as mining sites, livestock farms, hospitals and sewage [160–162]. These reassembled clusters contain multiple resistance operons flanked with mobile genetic elements, conferring a robust resistance to multiple heavy metal(loid)s. For instance, copper homeostasis and silver resistance island (CHASRI), is widely present in Enterobacteriaceae members. CHASRI arose from the assembly of several pre-existing cus and pco clusters in E. cloacae, Pseudomonas spp. and Shewanella spp., but has a distinct evolution path from inherited clusters. Recombination of multiple types of genes encoding functions conferring copper resistance enables a robust copper resistance across (an)aerobic environments. Interestingly, CHASRI diversification highly coincided with historically anthropogenic copper production during the Roman Empire, the Song Dynasty and the post-Industrial Revolution, indicating anthropogenic impacts on the generation of novel genetic clusters [161]. In addition, the generation of genetic variation by a point mutation in existing resistance genes is another way to accelerate heavy metal(loid) detoxification. For example, previous studies observed a 10-fold decline in abundance of the merA gene, but a constant abundance of housekeeping genes, from the old to newly deposited sediments with higher mercury content. Instead of increasing gene copy numbers, bacteria living in the newly deposited sediment evolved more effective mercury reductases (MerA) by replacing one amino acid. Not surprisingly, the rapid evolution of merA again coincided with changes in anthropogenic mercury emission during the Industrial Revolution [163,164].

Genes encoding heavy metal(loid) resistance determinants are prevalent across different taxonomic groups. However, an uneven distribution and a great divergence of these heavy metal(loid) resistance determinants are present in a host-dependent way. Metagenome analysis of environmental and human-related samples displayed a strong correlation between metal resistance genes richness and bacterial genus richness [165]. This result is also supported by investigating the distribution of heavy metal(loid) resistance genes on bacterial genomes. For instance, genes encoding CusB and CusF-like proteins are only prevalent in Proteobacteria groups, particularly in alpha-, beta-, delta- and gamma- Proteobacteria [166]. Even for highly homologous genes (e.g., mer and ars operon), variations still exist across bacterial hosts. For example, the merB gene encoding an organomercurial lyase was identified in 50% of Pseudomonas mer operons [167], but rarely found in E. coli [39]. Uneven distribution of other homologous operons is observed in different bacterial groups, such as the copper resistance operon cop in Pseudomonas and Xanthomonas, and pco operon in E. coli [22]. Further, horizontal gene transfer results in a random distribution of genes encoding heavy metal(loid) resistance determinants across phylogenetic boundaries, generating a more complicated distribution of heavy metal(loid) resistance genes in natural environments.

Considering the discrepancy in microbial phylogenetic community structure in different habitats, we propose that the distribution of genes encoding heavy metal(loid) resistance determinants may vary between environmental habitats, while horizontal gene transfer could lessen the correlation between heavy metal(loid)s resistome and phylogenetic signature [168]. This hypothesis is supported by several studies investigating resistance strategies to heavy metal(loid)s. For instance, metagenome comparison across various environmental habitats showed a niche differentiation in both taxonomic composition and heavy metal(loid) resistome [165]. In this study, samples from external environments (e.g., soil, water, sediment, and smog, etc.) contain more abundance, higher richness, but lower beta diversity of biocide/metal resistance genes than human and animal-related samples. This result indicated the natural environment represents a large reservoir harboring heavy metal(loid) resistance genes. However, the heavy metal(loid) resistome is not always coincident with taxonomic profiles. For example, biocide and metal resistome in different sites of the human body (an exception being oral samples) displayed overlap, although the different sites have distinct taxonomic profiles [165]. Niches differentiation of the heavy metal(loid) resistome was also observed when comparing terrestrial, mangroves and ocean ecosystems [169], even in soil with different physicochemical properties [170]. As the main reservoir of various anthropogenic pollutants, estuarine and marine sediment could represent specific niches for the resistant microbiome [131]. For instance, previous studies identified the presence of divergent mer genes in estuarine and marine environment compared to the well-characterized mer operons from terrestrial, clinical and freshwater environments [171,172].

Environmental physicochemical properties (e.g., pH, organic matter, (an)aerobic status, Fe-Mn oxides, etc.) were shown to affect heavy metal(loid) speciation, bioavailability, and transport in the environment, leading to discrepancies in heavy metal(loid) resis-
tomes. A previous study showed that soil with low pH favors genes encoding functions involved in metal acquisition and multiple heavy metal(loid) and antibiotic efflux systems [170]. The uneven distribution of heavy metal(loid) resistance genes could be due to the enhanced impact of toxicants under low pH conditions. Additionally, heavy metal(loid) efflux by the cation diffusion facilitator (CDF) is pH-dependent and driven by a proton motive force. Increased H+ at a low pH environment could affect the efflux of CDF transporters (e.g., ZitB and CzcD) [173]. The impact of environmental properties was observed in the mercury transporter MerC, where the uneven distribution of merC in brackish water and freshwater could be related to the effects of Na+ on Hg2+ transport [174]. Together, discrepancies in environmental properties and initial microbial community in different habitats may result in niche-preference of the core heavy metal(loid) resistome. However, the distribution pattern, driving factor and mechanism behind the ecological division of heavy metal(loid) resistance genes remain virtually unknown. Further studies are needed to investigate the development of resistance strategies in different niches and underlying reasons.

6. Overlooked biotic factors shaping bacterial heavy metal(loid) resistome

There is no doubt that geographic and anthropogenic activities contribute greatly to the emergence, persistence, and evolution of bacterial heavy metal(loid) resistance in the environment. However, compared to the increased knowledge on the impact of abiotic and anthropogenic factors, the role of microbial interactions in maintaining metal resistance is largely ignored. The evolutionary history of microbial interaction could be traced back to 3.5 billion years ago [175]. In the figuratively speaking microbial jungle, heavy metal(loid)s are used as an offensive weapon against competitors or predators. Thus, the intense interaction among bacteria or even across microbial kingdoms could represent a long-term and robust driver for the development of the heavy metal (loid) resistome. In addition, heavy metal(loid) pollution altered microbial interactions, which could further change host-associated microbiota and resistome. As reported in previous studies, heavy metal pollution affected the interaction between heterotrophic bacteria and cyanobacteria from estuary [176], and archaea-bacteria interaction in long-term contaminated soil [132]. In this section, we will provide insight into heavy metal (loid)-mediated interactions and selection for heavy metal(loid) resistant bacteria (Fig. 5).

The secretion of antimicrobial compounds, such as antibiotics, is one of the critical competitive strategies employed by microorganisms to kill or suppress the growth of competitors. Microorganisms were shown to produce secondary metabolites with antimicrobial activity to maintain a competitive advantage under nutrient-limited conditions [177]. A recent study proposes an antibiotic property of methylarsenicals, including MAs(III) (methylarsenite) and AST (arsinothricin), in bacterial warfare for dominance. Some microbial groups which are capable of reducing MAs(V) (methylarsenate) to MAs(III), utilize the produced toxic MAs(III) to inhibit or kill off competitors without corresponding

Fig. 5. Selection of microbial interactions in heavy metal(loid) resistant bacteria. A. Bacteria secret toxic methylarsenicals (MAs(III) and AST) to kill off their competitors without detoxification system. MAs(III): methylarsenite; AST: arsinothricin. B. Siderophore-mediated interspecies cooperation and competition. C. Heavy metal(loid)-mediate host innate immune defense against pathogens. D. Selection of protozoan predation for bacterial heavy metal(loid) resistance.
detoxification system [178]. To survive in a MAs(III)-mediated battle, microbial species have evolved several MAs(III) detoxification mechanisms including re-oxidation of MAs(III) to less toxic MAs (V) by ArsH, degradation of MAs(III) to less toxic As(III) by ArsI, or efflux MAs(III) out of the cell through ArsP and ArsK. AST is another broad-spectrum methylarsenical antibiotic synthesized by some soil bacteria. Bacteria with the arsN gene could detoxify AST, thereby having a competitive advantage over sensitive bacteria [179].

Competition for micronutrients such as iron is another metal-mediated strategy in microbial interaction. Bacteria secrete siderophores to scavenge iron in iron-limited environments for growth and function. To date, siderophore-mediated interspecies cooperation and competition have been shown as critical drivers for bacterial co-evolutionary dynamics in nature and infectious settings [180–183]. Bacteria producing high-iron-affinity siderophores are more competitive than those producing low-iron-affinity siderophores under iron-limiting conditions. A recent study reports the suppression of pathogens by the rhizosphere microbiome through the depletion of iron from pathogens [184]. Simultaneously, the use of heterologous siderophore also provokes competition between siderophore producers and cheaters taking up heterologous siderophore without pay. Further, the evolutionary arms race for iron is also of importance in host-pathogen interactions. The iron restriction is one of the main mechanisms of the host immune response against invading pathogens. To inhibit pathogen growth and repair, host cells evolve a series of iron-withdrawal mechanisms counteracting iron acquisition pathways in pathogens [185].

The other typical example of an interaction involving heavy metal(loid)s is the host innate immune defense against infecting pathogens utilizing heavy metal(loid) toxicity. Copper and zinc have been reported as important weapons to kill invading pathogens. In contrast to simultaneously occurring iron depletion, copper and zinc are accumulated in the phagosome of macrophages to poison invading bacteria during infection. Simultaneously, iron and manganese, which are required for Fe-S cluster repair and oxidative defense, are withdrawn by NRAMP1 (natural and manganese transporters) in amoeba during predation. Meanwhile, the deletion of copper, zinc, or arsenic resistance determinants reduces the fitness of intracellular bacteria against protozoan digestion [186,187]. Protozoa are highly diverse and ubiquitous in natural environments, and they are thought to regulate microbial diversity, composition and functionality through trophic regulation [188,189]. Considering the long evolutionary history between protozoa and bacteria, protozoan predation may play an essential role in maintaining bacterial heavy metal(loid) resistance. However, this continual selection has long been overlooked.

7. Summary and outlook

Heavy metal(loid)s pose an intense selective pressure for the development of resistant populations and diverse detoxification systems. Previous studies in individual isolates provide a state-of-art molecular mechanism responsible for bacterial heavy metal(loid) resistance, including both ubiquitous operons and specific determinants with narrow-spectrum hosts. However, the isolated bacteria only represent a small and partly biased fraction of the microbiota in the environment. We know little about the distribution patterns of genes encoding heavy metal(loid) resistance determinants and the microbial community's strategies to avoid heavy metal(loid) toxicity. Filling this knowledge gap would enable to better understand the results obtained pure culture and at the community level.

Fig. 6 summarizes the framework to investigate microbial resistance profiles from different perspectives. For instance, pollution-induced community tolerance (PICT) is a commonly used approach to determine the community tolerance to heavy metal(loid)s, and BIOLOG ECO microplates are widely employed to interpret...
metabolic activities of the microbial community of interest via determining their capacities to utilize different carbon sources [190]. Amplicon sequencing is mainly employed to illuminate taxonomic changes of the microbial community. Only a few studies have used this method to monitor the diversity and structure of genes conferring heavy metal(loid) resistance [157,163]. The less frequent use of amplicon sequencing in heavy metal(loid) resistance analysis could partly be due to the high diversity and low conservation of heavy metal(loid) resistance genes, and the lack of reliable primers and specialized databases for analysis of the bacterial heavy metal(loid) resistome [191]. Metagenomics allows deep mining of the heavy metal(loid) resistome and identification of novel genes. It allowed resolving several technical limitations presented in other approaches, such as PCR-related biases and low-resolution views. However, the increased cost for high-resolution analysis hinders the large-scale application of the metagenomics approach. Therefore, metagenomic sequencing is often combined with amplicon sequencing, where amplicon sequencing analyzes a broad set of samples and provides an overall survey of the community composition, while metagenomics is used to further interpret functional profiling in subsamples [192]. The lack of comprehensive primer or probe sets is another challenge for detecting a comprehensive heavy metal(loid) resistome. Currently, there is no independent microarray-based chip available for genes conferring heavy metal(loid) resistance. Only a metal resistance module in Geochip is available, which consists of 44 metal(loid)s resistance genes involved in the detoxification of 13 metals [193]. However, most of the probes in the metal resistance module detect genes functioning as transporters, and only a few genes are present as arsenic and mercuric reduction and organomercural lyase [194]. For qPCR-based quantification approach, currently available degenerate primers for heavy metal(loid) resistance genes are limited, which cannot represent the diverse detoxification systems in the environment. As shown in Table 1, the majority of available primers target genes encoding heavy metal(loid) resistance genes, and some degenerate primers were initially designed for only specific groups of bacteria. The coverage and specificity of these primers should be of concern when used to quantify environmental samples. A recent developed As-Chip is a high throughput detection tool for qPCR (HT-qPCR) to evaluate arsenic biogeochemical cycling [195]. This chip contains 81 primer sets targeting 19 genes involved in different arsenic metabolic and resistance pathways. It has been successfully applied to investigate the arsenic resistome in soil and the earthworm intestine [195,196].

Taken together, approaches used for metal resistant microbiome study have different merits and drawbacks (Table 2). Therefore, integrating multi-scaled methods will provide better insights into heavy metal(loid) resistant microbiome and resistome.

Table 1

Heavy metal(loid)	Genes	Function	Sequence(5'-3')	Sample type	Reference
Cu	copA	Efflux	F: GTCCGCTATCGCCTG	Sediments from mining-waste discharge canal and marine, intertidal samples, freshwater	[220]
	cufA	Efflux	R: GGCGGGTCATTAGATTGG	Marine sediments, sewage sludge, swine manure	[221]
	pcoA	Redox	F: GCTGGATGCGAGTGAAGAA	Marine sediments, sewage sludge, swine manure	[222]
	pcoD	Binding	R: CTTCTGGAGCTAGCCGTC	Marine sediments, sewage sludge, swine manure	[222]
	tcrB	Efflux	F: CATCCAGGGACGTCGAGAAG	Marine sediments, sewage sludge, swine manure	[223]
Zn	znA	Efflux	F: TTTCAGCGGCTGGTGTA	Marine sediments, sewage sludge, swine manure	[222]
Ni	merB	Efflux	F: CTTCCGGCCAGACTTCCAG	Rhizosphere	[224]
	mnrA	Efflux	F: CAGGACGAGTTCGGTGGTGT	Rhizosphere	[224]
Co/Zn/Cd	czcA	Efflux	F: GCCGCGTCTGGCTGGTGTA	Sediment, seawater	[225]
	czcC	Efflux	F: AAGGACGAGTTCGGTGGTGT	Sediment, water, biofilm, soil	[226]
	czcD	Efflux	F: CTTCTGGAGCTAGCCGTC	Sediment, water, biofilm, soil	[226]
Ni/Co	nccA	Efflux	F: TTYAGCCAGGTGAGATATGGT	Sediment, water, biofilm, soil	[228]
Pb	pbrT	Uptake	F: AGCCGCGCCAGCCGAGCGTA	Sediment, water, biofilm, soil	[226]
Hg	hgA	Redox	F: GGACGCCTACGCTGGTGTA	Paddy Soils, forest soils, lakes, wastewater, compost	[227]
	merA	Redox	F: CTCGCGTACGCGCTGGTGTA	Sediment, seawater	[164]
	merB	C-Hg lyase	F: TGGGTCATATATTTTAGAC	Fecal, soil, sediment	[228]
	merC	Uptake	F: CATTGGCGATTCTGCTGAT	Fecal, soil, sediment	[228]
	merD	Regulator	F: CAGGCGCCAGGCGCTGCTGGT	Fecal, soil, sediment	[228]
	merR	Regulator	F: GCGCGCCAGGCGCTGCTGGT	Wastewater treatment plant	[229]
	merP	Binding	F: CGCGTCGCGCCGCTGGTGTA	Sediment, seawater	[164]
	merT	Uptake	F: RGGCGGCACGCGCTGGTGTA	Sediment, seawater	[164]
Advantages and limitations of methods for heavy metal(loid) resistome study.

Method	Advantages	Limitations
qPCR	• Simple operation and low cost;	• PCR and primer biases;
	• Higher sensitivity and accuracy;	• Primer design requires sequence information of target genes;
	• Capacity for both absolute and relative quantification analysis.	• Time-consuming and laborious when quantifying a large amount of samples;
HT-qPCR	• High throughput;	• PCR and primer biases;
	• Higher sensitivity and accuracy;	• Primer design requires sequence information of target genes;
	• Time-, labor-saving when quantifying a large amount of samples/genes;	• All reactions are carried out under the same program, and the conditions
	• Nanoliter scale reactions save consumables, reagents, and eDNA;	of each PCR reaction cannot be optimized.
	• Capacity for both absolute and relative quantification analysis.	• Nanoliter scale reactions restrict the detection of low abundant genes.
Clone library	• Friendly for longer length of PCR fragments;	• Labor and time-consuming;
	• Amplified fragments are kept on vectors, which are easy to recover.	• Not suitable for a large amount of samples and genes analysis;
Microarray	• High throughput;	• Bias from PCR, clone library preparation, and clone selection.
	• Fair specificity and sensitivity.	• Probe design requires sequence information of target genes;
Amplicon sequencing	• High throughput;	• Require frequent update of probes;
	• Lower cost;	• Data processing and analysis are complex;
	• Can characterize the diversity and structure of heavy metal(loid) resistance genes.	• Potential cross-hybridization affects the accuracy of quantification;
Metagenomics and	• High coverage;	• Can only complete relative quantification analysis;
Metatranscriptomics	• Link microbial taxa with function;	• Available probes target few types and numbers of heavy metal(loid)
	• Can survey microbial genetic diversity of unknown communities and discover novel genes;	resistance genes.
	• Metatranscriptomics can investigate active microbiome and heavy metal(loid) resistome.	• PCR and primer biases;
	• Only provide a relative abundance of potential hosts for heavy metal (loid) resistance genes;	• Lack of reliable specialized database for bacterial heavy metal(loid)
	• Low resolution due to the short length of the amplicon.	resistome;
	• Expensive;	• Higher requirements for DNA quality;
	• Complex data analysis process;	• Sequencing depth affects sequencing results;
	• It only provides a relative abundance of microbial taxa and functional genes.	• It only provides a relative abundance of microbial taxa and functional genes.

especially for samples from the natural environment with a high level of spatial and temporal heterogeneity. For instance, a recent study assessed a mercury-methylating bacterial community via multiple approaches [197]. 16S rRNA gene pyrosequencing along with a mercury contamination gradient did not have sufficient resolution to identify mercury-methylating microbes; while amplicon sequencing of hgcAB and metagenomic analysis provided comparable results. A qPCR-based approach is recommended to quantify the abundance of specific mercury-methylating clades. Additionally, a combination of a culture-dependent method with high-throughput sequencing technologies is of importance for future studies, since findings of novel resistance determinants in environmental isolates will expand our knowledge on detoxification systems, and benefit functional annotation or PCR primer design. In turn, investigation of the core resistant microbiome and resistome through high-throughput sequencing technologies will promote a better understanding of the microbial response and adaption under heavy metal(loid) exposure, which may guide isolation and application of specific isolates for remediation.

Progress in understanding the core heavy metal(loid) resistant microbiome and resistance strategy from local to large-scale or across ecosystems is still a challenge. Rapid advances in high-throughput sequencing technologies enable us to interpret heavy metal(loid) resistant microbiomes in an integrative way. With an increase in high-throughput sequencing data in hand, it is possible to integrate individual local studies from various environments, and gain clues in feature and ecological function of the core heavy metal(loid) resistant microbiota, adaption of a resistance strategy and environmental driving factors. However, the discrepancy in both sample and data processing in different studies is still problematic for integrative analysis. Here, we propose the following five key questions which should be addressed in future studies. 1. What are the features of core heavy metal(loid) resistant microbiomes, and what are the driving factors shaping assemblages of core heavy metal(loid) resistant microbiomes. 2. What is the diversity, abundance, and geographic distribution of heavy metal(loid) resistance genes across different ecosystems? Is there a preference for a specific resistance strategy in different habitats, and what are the underlying mechanisms? 3. To what extent do biotic and abiotic factors affect the core heavy metal(loid) resistant microbiome and resistome? 4. Does the core heavy metal(loid) resistant microbiome also contribute to microbial antibiotic resistance? 5. How can we integrate multiple and novel technologies to interpret the development of the heavy metal(loid) resistant microbiome and resistome?

CRediT authorship contribution statement

Xiuli Hao: Conceptualization, Writing - original draft, Visualization. Jiaojiao Zhu: Writing - original draft, Visualization. Christopher Rensing: Conceptualization, Writing - review & editing. Ying Liu: Data curation, Formal analysis. Shenghan Gao: Data curation, Formal analysis. Wenli Chen: Resources, Writing - review & editing. Qiaoyun Huang: Resources, Writing - review & editing. Yu-Rong Liu: Conceptualization, Resources, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[48] Foster TJ, Brown NL. Identification of the merR gene of R010 and by mer-lac gene and operon fusions. J Bacteriol 1985;163(3):1153–7.

[49] Nucifora G et al. Mercury operon regulation by the merR gene of the organo-mercurial resistance system of plasmid pSU138. J Bacteriol 1989;171(8):4241–7.

[50] N’Bhiriain NN, Silver S, Foster TJ. Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J Bacteriol 1983;155(2):690–703.

[51] Mukhopadhyay D et al. Purification and functional characterization of MerD, a coregulator of the mercury resistance operon in Gram-negative bacteria. J Bacteriol 1991;173(2):6574–82.

[52] Misra TK. Bacterial resistances to inorganic mercury salts and organo-mercurials. Plasmid 1992;27(1):4–16. https://doi.org/10.1016/1046-5923(92)80002-8.

[53] Parks PM et al. The genetic basis for bacterial mercury methylation. Science 2003;339(6125):1332.

[54] Foster TJ. The genetics and biochemistry of mercury resistance. CRC Crit Rev Microbiol 1987;15(2):117–40. https://doi.org/10.3109/10702928709104455.

[55] Silver S, Misra TK. Plasmid-mediated heavy metal resistances. Annu Rev Microbiol 1988;42:717–43. https://doi.org/10.1146/annurev.mi.42.030188.003441.

[56] Silver S et al. Inducible plasmid-determined resistance to arsenite, arsenate, and antimony(III) in Escherichia coli and Staphylococcus aureus. J Bacteriol 1981;146(1):983–96.

[57] Mobley HL, Rosen BP. Energetics of plasmid-mediated arsenate resistance in Pseudomonas aeruginosa. J Bacteriol 1982;151(1):756–66. https://doi.org/10.1128/jb.151.1.756-766.1982.

[58] Misra TK. Bacterial resistances to inorganic mercury salts and organo-mercurials. Plasmid 1992;27(1):4–16. https://doi.org/10.1016/1046-5923(92)80002-8.

[59] Parks PM et al. The genetic basis for bacterial mercury methylation. Science 2003;339(6125):1332.

[60] Foster TJ. The genetics and biochemistry of mercury resistance. CRC Crit Rev Microbiol 1987;15(2):117–40. https://doi.org/10.3109/10702928709104455.

[61] Silver S, Misra TK. Plasmid-mediated heavy metal resistances. Annu Rev Microbiol 1988;42:717–43. https://doi.org/10.1146/annurev.mi.42.030188.003441.

[62] Silver S et al. Inducible plasmid-determined resistance to arsenite, arsenate, and antimony(III) in Escherichia coli and Staphylococcus aureus. J Bacteriol 1981;146(1):983–96.

[63] Mobley HL, Rosen BP. Energetics of plasmid-mediated arsenate resistance in Pseudomonas aeruginosa. J Bacteriol 1982;151(1):756–66. https://doi.org/10.1128/jb.151.1.756-766.1982.

[64] Wu J, Rosen BP. The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 1986;2(2):690–703. https://doi.org/10.1111/j.1365-2958.1986.tb00545.x.

[65] Wu J, Rosen BP. The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 1986;2(2):690–703. https://doi.org/10.1111/j.1365-2958.1986.tb00545.x.

[66] Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q. Identification of a novel membrane transporter mediating resistance to organic arsenic in Escherichia coli. Proc Natl Acad Sci 2016;113(21):5935–40. https://doi.org/10.1073/pnas.1522438113.

[67] Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q. Identification of a novel membrane transporter mediating resistance to organic arsenic in Escherichia coli. Proc Natl Acad Sci 2016;113(21):5935–40. https://doi.org/10.1073/pnas.1522438113.
Clark DL, Weiss AA, Silver S. Mercury and organomercurial resistances determined by plasmids in Pseudomonas. J Bacteriol 1977;132(1):186–96.

Forssberg Kj et al. Bacterial phylogeny structures soil resistances across European countries. Nature 2009;459(7247):612–6.

Imchen M et al. Comparative manganese metagenome reveals global prevalence of heavy metals and antibiotic resistomes across different ecosystems. Environ Sci Technol 2008;42(11):4272–6.

Malik AA et al. Bacterial physiological adaptations to contrasting edaphic conditions identified using landscape scale metagenomics. mBio 2017;8(4).

Reyes NS, Frischer ME, Sobecky PA. Characterization of mercury resistance mechanisms in marine sediment microbial communities. FEMS Microbiol Ecol 1999;30(3):273–84.

Barkay T, Liebert C, Gillman M. Environmental significance of the potential for Met(Thr)-mediated reduction of Hg^2+ to Hg. In natural waters. Appl Environ Microbiol 1989;55(5):1196–202.

Chao Y, Fu D. Kinetic study of the antiport mechanism of an Escherichia coli metallotransporter. Biochemistry 2010;49(17):3658–66.

Snyder WB et al. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. SIAM J Appl Math 2001;62(1):123–31.

Chacón KN et al. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proc Natl Acad Sci USA 2014;111(13):5173–8.

Chacin KN et al. Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J Bacteriol 2011;193(10):2381–7.

Kaci A et al. Distinct diversity of the BacMet: antibacterial biocide and metal resistance genes database. J Bacteriol 2009;191(18):5651–6.

Arnesano F et al. A redox switch in CopC: an intriguing copper trafficking complex. J Biol Chem 2004;279(13):12043–50.

Sensfuss C, Reh M, Schlegel HG. No correlation exists between the prevalence of heavy metals and antibiotic resistome across different habitats. Nature 2014;509(7502):612–6.

Liebert CA et al. Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol 1997;63(3):1066–76.

Xiong W et al. Fate of metal resistance genes in arable soil after manure application in a microcosm study. Ecotoxicol Environ Saf 2015;113:59–63.

Hynninen A et al. An efflux transporter PbrA and a phosphatase PbrB in Escherichia coli. Bacteriol Rev 1989;53(2):798–807.

Tu QC et al. GeoChip 4: a functional gene-array-based high-throughput microarray for microorganisms. Appl Environ Microbiol 2006;72(9):5784–9.

Metaphire sieboldi. Environ Sci Technol 2019;53(18):10787–802.

Marrot S et al. Novel polymerase chain reaction primers for the specific detection of bacterial copper P-type ATPases gene sequences in environmental samples. Nucleic Acids Res 2014;42(11):7373–43.

Xu Q et al. CpA conjugative transfer of the autotrophic character and that of plasmids in Pseudomonas strains. J Gen Microbiol 1986;132:997–1007.

Sad SA et al. Microbe-mediated host defence hotspots compete for iron in soil and freshwater Pseudomonas communities. Nat Comm 2017:7,8.

Ford SA et al. Microbe-mediated host defence hotspots. Nat Comm 2016;7.

Andersen SB et al. Long-term social dynamics drive loss of function in pathogenic bacteria. P Natl Acad Sci USA 2015;112(34):10756–61.

Ribbing ME et al. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 2010;8(4):15–25.

Salyers MP et al. Comparison for iron drives phytopathogen control by natural rhizosphere microorganisms. Nat Microbiol 2019;25(8):1502–+.4.

Nair M et al. The struggle for iron - a metal at the host-pathogen interface. Cell Microbiol 2010;12(12):1691–702.

Hao X et al. A role for copper in protozoan grazing - two billion years selecting for bacterial copper resistance. Mol Microbiol 2016;102(4):628–41.

Hao X et al. Bacterial resistance to arsenic protects against protozal killing. Biometals 2017;30(2):307–11.

Oliverio AM et al. The global-scale distributions of soil prokaryotes and their contributions to belowground systems. Sci Adv 2020;6(4).

Gao Z et al. Prostot: puppet masters of the rhizosphere microbiome. Trends Plant Sci 2019;24(2):165–76.

Garland JL, Mills AL. Genetic classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 1991;57(8):2351–9.

Pal C et al. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res 2014;42(21):D1373–4.

Handley KM. Determining microbial roles in ecosystem function: redefining the microbial jungle. Nat Rev Microbiol 2010;8(1):15–25.

Nar Car Aet al. Nickel-resistant pleiotropic autoregulator of Enterococcus faecium, mediated by the rcrA gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol 2006;72(9):5784–9.

Contreras M et al. Characterization of the roles of NikR, a nickel-responsive pleiotropic regulator of Bacillus subtilis. J Bacteriol 2003;185(20):6552–62.

Bosarry L et al. Abundance and diversity of copper resistance genes in the metagenome of microbial microbe communities in relation to the impact of copper on Chinese marine sediments. Mar Pollut Bull 2013;67(1):16–25.

Xiong W et al. Fate of metal resistance genes in arable soil after manure application in a microcosm study. Ecotoxicol Environ Saf 2015;113:59–63.

Hasman H et al. Copper resistance in Enterococcus faecium, mediated by the crzA gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol 2006;72(9):5784–9.

Chaintrel C et al. Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthinae calypina. Appl Environ Microbiol 2007;73(24):8018–22.

Kaci A et al. Distinct diversity of the crzA gene in two sedimentary horizons from a contaminated estuarine core. Environ Sci Pollut Res Int 2014;21(18):10787–802.

Roosa et al. Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environ Pollut 2014;189:43–51.

Liu Y et al. Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient. Appl Environ Microbiol 2014;80(9):2874–8.

Bacterial copper resistance genes and their association with antibiotic resistance genes and microbial community in a municipal wastewater treatment plant. Sci Total Environ 2019;657:1014–22.