This is the accepted manuscript made available via CHORUS. The article has been published as:

Thermal Hall Effect of Spin Excitations in a Kagome Magnet
Max Hirschberger, Robin Chisnell, Young S. Lee, and N. P. Ong
Phys. Rev. Lett. 115, 106603 — Published 3 September 2015
DOI: 10.1103/PhysRevLett.115.106603
The thermal Hall effect of spin excitations in a Kagome magnet.

Max Hirschberger1, Robin Chisnell2,†, Young S. Lee2,3, and N. P. Ong1,∗
1Department of Physics, Princeton University, Princeton, NJ 08544
2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
3Departments of Applied Physics and Photon Science, Stanford University and SLAC National Accelerator Laboratory, Stanford, CA 94305
(Dated: July 28, 2015)

At low temperatures, the thermal conductivity of spin excitations in a magnetic insulator can exceed that of phonons. However, because they are charge neutral, the spin waves are not expected to display a thermal Hall effect. However, in the Kagome lattice, theory predicts that the Berry curvature leads to a thermal Hall conductivity \(\kappa_{xy}\). Here we report observation of a large \(\kappa_{xy}\) in the Kagome magnet \(\text{Cu}(1,3\text{-bdc})\) which orders magnetically at 1.8 K. The observed \(\kappa_{xy}\) undergoes a remarkable sign-reversal with changes in temperature or magnetic field, associated with sign alternation of the Chern flux between magnon bands. The close correlation between \(\kappa_{xy}\) and \(\kappa_{xx}\) firmly precludes a phonon origin for the thermal Hall effect.

PACS numbers: 72.10.Di, 72.20.My, 72.25.-b, 75.30.-m, 75.30.Ds

In a magnetic insulator, experiments on the magnon heat current can potentially yield incisive information on novel quantum magnets. An example is the chiral magnet \([1]\), in which unusual spin textures engender a finite Berry curvature \(\Omega(k)\) \((\Omega(k)\) acts like a magnetic field in \(k\) space). In its presence, a magnon wave packet subject to a potential gradient acquires an anomalous velocity perpendicular to the gradient \([2–4]\). The most surprising outcome \([1, 5, 6]\) is that the neutral heat current can be deflected left or right by a physical magnetic field \(H\) as if a Lorentz force were present. The predicted thermal Hall conductivity \(\kappa_{xy}\) was observed in two recent experiments on the ordered magnet \(\text{Lu}_2\text{V}_2\text{O}_7\) \([7]\) and the a frustrated quantum magnet \(\text{Tb}_2\text{Ti}_2\text{O}_7\) \([8]\). However, to test more incisively the role of \(\Omega(k)\) and to exclude a phononic origin \([9]\), we need results that can be compared with microscopic calculations based on \(\Omega(k)\). An interesting prediction based on the Chern number sign-alternation between magnon bands is the induced sign-change in \(\kappa_{xy}\) when either temperature or field is varied. Here we report measurements on the planar Kagome magnet \(\text{Cu}(1,3\text{-benzenedicarboxylate})\) \([\text{Cu}(1,3\text{-bdc})]\) \([10–12]\) which can be confront calculations on the same material \([13]\). The close correlation between \(\kappa_{xy}\) and \(\kappa_{xx}\) precludes identifying the former with phonons.

In magnets with strong spin-orbit interaction, competition between the Dzyaloshinskii-Moriya (DM) exchange \(D\) and the Heisenberg exchange \(J\) can engender canted spin textures with long-range order (LRO). Katsura, Nagoasa and Lee (KNL) \([1]\) predicted that, in the Kagome and pyrochlore lattices, the competition can lead to a state with extensive chirality \(\chi = \mathbf{S}_i \cdot \mathbf{S}_j \times \mathbf{S}_k\) \((\mathbf{S}_i\) is the spin at site \(i\)) and a large thermal Hall effect. Subsequently, Matsumoto and Murakami (MM) \([5, 6]\) amended KNL’s calculation using the gravitational-potential approach \([14, 15]\) to relate \(\kappa_{xy}\) directly to the Berry curvature. In the boson representation of the spin Hamiltonian, \(\chi\) induces a complex “hopping” integral \(t = \sqrt{t^2 + D^2} \cdot e^{i\phi}\) with \(\tan \phi = D/J\) (Fig. 1A, inset) \([1, 5, 13]\). Hence as they hop between sites, the bosons accumulate the phase \(\phi\), which implies the existence of a vector potential \(\mathbf{A}(k)\) permeating \(k\) space. The Berry curvature \(\Omega(k) = \nabla_k \times \mathbf{A}(k)\) imparts an anomalous velocity to magnons, leading to a thermal Hall conductivity \(\kappa_{xy}\). Each magnon band \(n\) contributes a term to \(\kappa_{xy}\) with a sign determined by the integral of \(\Omega(k)\) over the Brillouin zone (the Chern number). Recently, Lee, Han and Lee (LHL) \([13]\) calculated how \(\kappa_{xy}\) undergoes sign changes as the occupancy of the bands changes with \(T\) or \(B\).

The Kagome magnet \(\text{Cu}(1,3\text{-bdc})\) is comprised of stacked Kagome planes separated by \(d = 7.97\) Å \([10–12]\). The spin-\(\frac{1}{2}\) \(\text{Cu}^{2+}\) moments interact via an in-plane ferromagnetic exchange \(J = 0.6\) meV (details in supplementary information SI).

As we cool the sample in zero \(B\), the thermal conductivity \(\kappa\) (nearly entirely from phonons) initially rises to a very broad peak at 45 K (Fig. 1A). Below the peak, \(\kappa\) decreases rapidly as the phonons freeze out. Starting near 10 K, the spin contribution \(\kappa^s\) becomes apparent. As shown in Fig. 1B, this leads to a minimum in \(\kappa/\kappa_{ph}\) at \(T_C\) \((1.85\) K) followed by a large peak at \(\sim 1.2 T_C\). Factoring out the entropy, we find that \(\kappa/T\) (red curve) increases rapidly below \(T_C\). This reflects the increased stiffening of the magnon bands as LRO is established. Below 800 mK, the increase in \(\kappa/T\) slows to approach saturation. The open black circles represent the phonon conductivity \(\kappa_{ph}\) deduced from the large-B values of \(\kappa_{xy}(T, H)\) (see below). Likewise, \(\kappa_{ph}/T\) is plotted as open red circles. The difference \(\kappa - \kappa_{ph}\) is the estimated thermal conductivity of magnons \(\kappa^s\) in zero \(B\).

Given that \(\text{Cu}(1,3\text{-bdc})\) is a transparent insulator, it exhibits a surprisingly large thermal Hall conductivity (Fig. 2). Above \(T_C\), the field profile of \(\kappa_{xy}\) is nonmonotonic, showing a positive peak at low \(B\), followed by a zero-crossing at higher \(B\) (see curve at 2.78 K in Fig.
resulting from Δ is evident in both the exponential suppression of the magnon population exponentially at large K in Fig. 3D. Within the uncertainty, it also decreases in a recent neutron scattering experiment. The g-factor is the Bohr magneton, and μ_B is the absolute constant for the g-factor. The inferred value of g (~1.6) is consistent with the Zeeman gap measured in a recent neutron scattering experiment.

For comparison, we have also plotted $-\kappa_{xy}/T$ at 0.47 K in Fig. 2D. Within the uncertainty, it also decreases exponentially at large B with a slope close to Δ. Hence the exponential suppression of the magnon population resulting from Δ is evident in both κ_{xx} and κ_{xy}.

LHL [13] have calculated $\kappa_{xy}(T, B)$ applying the Holstein-Primakoff (HP) representation below and above T_C, and Schwinger bosons (SB) above T_C. In the ordered phase, the HP curves capture the sign changes observed in $\kappa_{xy}(T, H)$: a purely n-type curve at the lowest T and, closer to T_C, a sign-change induced by a p-type term. Moreover, the calculated curves at each T exhibit the high-field suppression, in agreement with Fig. 3D. For Sample 3, the peak values of κ_{xy} agree with the HP curves (0.04 K at $T = 0.4$ K; 0.2 K at 4.4 K). In the paramagnetic region, however, our field profiles disagree with the SB curves. Above T_C, κ_{xy} is observed to be p-type at all B whereas the SB curves are largely n-type apart from a small window at low B. The comparison suggests that the HP approach is a better predictor than the SB representation even above T_C.

A weak κ_{xy} was reported in Ref. [9] and identified with phonons. A phonon Hall effect based on the Berry curvature was calculated in Refs. [16, 17]. Here, however, the evidence is compelling that κ_{xy} arises from spin excitations. The close correlation between the profiles of κ_{xx} and κ_{xy} vs. T implies that they come from the same heat carriers. Moreover, the plots in Fig. 3D and Eq. 1 show that, when a gap opens, both the longitudinal and Hall channels are suppressed at the same rate versus B. To us this is firm evidence for spin excitations – the phonon current cannot be switched off by a gap opening in the spin spectrum (we discuss this further in SI).

In addition to confirming the existence of a large κ_{xy} in the Kagome magnet, the measured κ_{xy} can be compared with calculations. For chiral magnets, κ_{xy} is capable of probing incisively the effect of the Berry curvature on transport currents.
Acknowledgement We acknowledge support from the US National Science Foundation through the MR-SEC grant DMR 1420541. N.P.O. was supported by US Army Office of Research (contract W911NF-11-1-0379) and by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4539. The work at MIT was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under grant no. DE-FG02-07ER46134.

†Present address of RC: NIST Center for Neutron Research, Gaithersburg, MD 20899.

[1] H. Katsura, N. Nagaosa and P. A. Lee, “Theory of the Thermal Hall Effect in Quantum Magnets,” Phys Rev Lett 104, 066403 (2010).
[2] Di Xiao, Junren Shi, and Qian Niu, “Berry Phase Correction to Electron Density of States in Solids,” Phys. Rev. Lett. 95, 137204 (2005).
[3] Di Xiao, Ming-Che Chang and Qian Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959 (2010).
[4] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong, “Anomalous Hall Effect,” Rev. Mod. Phys. 82, 1539 (2010).
[5] R. Matsumoto and S. Murakami, “Theoretical Prediction of a Rotating Magnon Wave Packet in Ferromagnets,” Phys Rev Lett 106, 197202 (2011).
[6] R. Matsumoto and S. Murakami, “Rotational motion of magnons and the thermal Hall effect,” Phys Rev B 84, 184406 (2011).
[7] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa and Y. Tokura, “Observation of the Magnon Hall Effect,” Science 329, 297-299 (2010).
[8] Max Hirschberger, Jason W. Krizan, R. J. Cava and N. P. Ong, “Large thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet,” Science 348, 106-109 (2015).
[9] C. Strohm, G. L. J. A. Rikken, and P. Wyder, “Phenomenological Evidence for the Phonon Hall Effect,” Phys. Rev. Lett. 95, 155901 (2005).
[10] Emily A. Nytko, Joel S. Helton, Peter Müller, and Daniel G. Nocera, “A Structurally Perfect $S = \frac{1}{2}$ Metal-Organic Hybrid Kagome Antiferromagnet,” J. Am. Chem. Soc. 130, 2922-2923 (2008).
[11] Lital Marcipar, Oren Ofir, Amit Keren, Emily A. Nytko, Daniel G. Nocera, Young S. Lee, Joel S. Helton, and Chris Bains, “Muon-spin spectroscopy of the orgnaometallic spin-$\frac{1}{2}$ kagome-lattice compound Cu(1,3-benzenedicarboxylate),” Phys. Rev. B 80, 132402 (2009).
[12] R. Chisnell, J. S. Helton, D. E. Freedman, D. K. Singh, R. I. Bewley, D. G. Nocera, and Y. S. Lee, “Topological magnon bands in a kagome lattice ferromagnet,” submitted
[13] Hyunyong Lee, Jung Hoon Han and Patrick A. Lee, “Thermal Hall effect of spins in a paramagnet,” Phys. Rev. B 91, 125413 (2015).
[14] J. M. Luttinger, “Theory of Thermal Transport Coefficients,” Phys. Rev. 135, A1505-A1514 (1964).
[15] H. Oji and P. Streda, “Theory of Electronic Thermal Transport - Magnetoquantum Corrections to the Thermal Transport-Coefficients,” Phys Rev B 31, 7291-7295 (1985).
[16] Lifa Zhang, Jie Ren, Jian-Sheng Wang, and Baowen Li, “Topological Nature of the Phonon Hall Effect,” Phys. Rev. Lett. 105, 225901 (2010).
[17] Tao Qin, Jianhui Zhou, and Junren Shi, “Berry curvature and the phonon Hall effect,” Phys. Rev. B 86, 104305 (2012).
FIG. 1: The in-plane thermal conductivity κ (in zero B) measured in the Kagome magnet Cu(1,3-bdc). At 40-50 K, κ displays a broad peak followed by a steep decrease reflecting the freezing out of phonons (Panel A). The spin excitation contribution becomes apparent below 2 K. The inset is a schematic of the Kagome lattice with the LRO chiral state [1]. The arrows on the bonds indicate the direction of advancing phase $\phi = \tan^{-1} D/J$. Panel B plots κ (black symbols) and κ/T (red) for $T < 4.5$ K. Below the ordering temperature $T_C = 1.8$ K, the magnon contribution to κ appears as a prominent peak that is very B dependent. Values of κ and κ/T at large B (identified with the phonon background) are shown as open symbols.
FIG. 2: The thermal Hall conductivity κ_{xy} measured in Cu(1,3-bdc). In Panel A, we plot the strongly non-monotonic profiles of κ_{xy} vs. B in Sample 2. The dispersion-like profile changes sign below ~ 1.7 K. The right scale gives $\kappa_{xy}^{2D}/(k_B^2/\hbar)$ (per plane) obtained by multiplying κ_{xy} by $d\hbar/k_B^2 = 443.2$ (SI units). Panels B and C show corresponding curves in Sample 3 (now plotted as κ_{xy}/T). Above T_C (Panel B), κ_{xy}/T is p type. The behavior below 1.90 K is shown in Panel C. At 1.09 K, the n-type contribution appears in weak B, and eventually changes κ_{xy}/T to n-type at all B. Right scale in C reports $\kappa_{xy}^{2D}/(T k_B^2/\hbar)$. In Panel D, we plot the T dependence of the quantity $[\kappa_{xy}/TB]_0$ which measures the thermal Hall response in the limit $B \to 0$. The T dependence of $[\kappa_{xy}/TB]_0$ closely correlates with κ_{xx}^S vs. T (aside from the sign change).
FIG. 3: The effect of field B on κ_{xx} and scaling behavior at low T, for sample 3. The curves in Panel A show that the B-dependence of κ_{xx} is resolved (in the range $|B| < 14$ T) only at $T < \sim 6.5$ K. The expanded scale in Panel B shows that, near T_C (1.8 K), κ_{xx} has a non-monotonic profile with a V-shaped minimum at $B = 0$ (identified with stiffening of the magnon bands by the field). Below 1 K, however, κ_{xx} has a strictly monotonic profile that terminates in a sharp cusp peak as $B \rightarrow 0$. At each $T < T_C$, the constant “floor” profile at large B is identified with κ_{ph}. The pattern in Panel B simplifies when plotted as κ_{xx}^S/T vs. B/T (Panel C). Multiplying by a scaling factor $s(T)$ collapses all the curves below 1 K to a “universal” curve, shown on log scale in Panel D. The slope at large B gives a Zeeman gap with $g = 1.6$. The Hall curve $-\kappa_{xy}/T$ has a similar slope at large B.