Development of 27 new microsatellite markers for the shanny Lipophrys pholis

L.-L. Jeannot1 · C. Mouronvalle1 · C. Peyran1 · A. Blanco2,3 · S. Planes1

Received: 20 January 2022 / Accepted: 18 May 2022 / Published online: 20 June 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Background The shanny Lipophrys pholis is an intertidal fish that is widely distributed throughout the Northeast Atlantic. Characterized by limited adult mobility and a long pelagic larval duration, the shanny stands as an ideal model to better understand larval dispersal and connectivity dynamics, which are critical parameters with implications for marine conservation and management.

Methods and results To this aim, we developed 27 highly polymorphic microsatellite markers and characterized a population of 42 individuals, presenting an average allelic diversity of 20.1 alleles per locus and heterozygosity ranging from 0.619 to 1.

Conclusions This set of newly developed microsatellite markers will be useful in providing critical insights into the processes which shape L. pholis gene flow and connectivity patterns and can be used to investigate local parentage lineages.

Keywords Microsatellite · Genetic diversity · Blenniidae · Lipophrys pholis

Introduction

Connectivity among geographically distant populations is a key aspect in the ecology of marine organisms, as it shapes metapopulation dynamics, determines genetic diversity, and drives resiliency of populations to environmental disturbances and exploitation [1]. Understanding population connectivity has proven valuable in identifying dispersal-related processes, with important consequences for conservation and management through the design of ecologically relevant protected areas and fisheries management units [2]. Connectivity dynamics vary widely among marine organisms, including intertidal fish [3], according to oceanographic characteristics and life-history traits. In particular, pelagic larval duration has long been associated with dispersal capabilities, with often greater genetic homogeneity for species with a long planktonic phase [4].

The shanny Lipophrys pholis (Linnaeus, 1758, Pisces: Blenniidae) is a common resident fish of the intertidal rocky shores of the Northeast Atlantic that is particularly useful for biomonitoring ecosystem health (e.g. for detecting organic contaminants [5]), as its life-history traits reflect local environmental conditions. Due to its high abundance as well as its restricted home range [6], it has been used as a model species in marine physiology [7] and to study the exposure to genotoxins [8]. L. pholis presents a wide distribution, ranging from Norway to Mauritania in latitude, and from the Azores and Madeira in the Atlantic to the Western Mediterranean in longitude [9]. Its life-cycle includes a long larval dispersal period of 57 to 73 days [10] after which they remain in the same intertidal pool for the rest of their lifecycle, with little adult migration [11]. These characteristics also make it an ideal model for investigating genetic differentiation in marine fishes with a long pelagic larval duration.

Earlier genetic studies, based on mitochondrial DNA, suggest that the Atlantic populations of L. pholis can be separated into two groups [12, 13]. One population from the European coastline (UK to Morocco) to Madeira displays a lack of phylogeographic structure along the Atlantic coast and high genetic diversity throughout its range implying
large-scale connectivity between shanny populations along the European coastline. A second genetically distinct population is situated in the Azores. Nevertheless, these patterns of high genetic connectivity do not necessarily oppose small-scale demographic processes [14]. In fact, cross-scale research linking local and broader geographic scale patterns of larval exchange is key to understanding population dynamics and resource management [15] and is valuable in shedding light on scale-related demographic exchange [16]. As such, \(L. \text{pholis} \) may present finer scale genetic differentiation patterns which have yet to be detected. Research on the genetics of \(L. \text{pholis} \) has largely been assessed through mitochondrial (Control Region, D-Loop, 12S, and 16S) and nuclear (S7) sequence data but has failed to provide information on fine-scale connectivity [12, 13, 17]. Microsatellites have been a widely used tool in genetic studies since the 1990s because of their high polymorphism, their abundance, and their dispersion throughout eukaryotic genomes [18]. By using a panel of several microsatellite loci, a unique genotype profile can be produced for each organism tested, leading to their individual identification. Only one study has developed and used microsatellite markers to study interspecific amplification, but it did not focus on genetic structure [19]. Guillemaud et al. [19] only developed four specific markers for the shanny, which is insufficient to conduct population structure and parentage analyses [19]. The goal of this study was to develop an additional set of de novo microsatellites for \(L. \text{pholis} \) to extend the existing set, in order to investigate the Northeast Atlantic population structure at a finer geographic scale.

Materials and methods

Biological samples and DNA extraction

For this study, nine \(L. \text{pholis} \) samples originating from six sample sites in Galicia, Spain (Corrubedo Cape, Couso Cape, O Grove, Ons Island, Cies Island, Silleiro Cape) were used to develop a database of species-specific microsatellites. Additionally, 42 samples from Ons Island (42°23′28.4 N °8°55′24.0 W) within the Islas Atlánticas Marine Park (Pontevedra, Spain) were characterized using the newly developed set of markers. Individuals were collected using hand nets in multiple tide pools within sample locations. After collection, fin clips were preserved in 70% ethanol, and frozen until DNA extraction was performed at the laboratory. Genomic DNA was extracted from all samples using the QIAamp® 96 DNA QIAcube® HT robotic workstation (Qiagen, Hilden, Germany) following the manufacturer’s instructions. DNA templates were then diluted at 50 ng/µL and stored at – 24 °C.

Development of new microsatellite markers

After extraction, the DNA was sent to GenoScreen (Lille, France) for high-throughput genomic sequencing and library preparation, using the approach described in Abdelkrim (2009) [20] to provide a database of microsatellites. The paired-end 2 × 250 sequence run was done on an Illumina MiSeq platform, and the resulting reads were merged by the Usearch software. A final analysis of the raw sequences was done using QDD v.3, which treats all bioinformatics steps from raw sequences until Polymerase Chain Reaction (PCR) primers are obtained and relies on BLAST, ClustalW and Primer3 programs for adapter removal, microsatellite detection, redundancy detection, and sequence selection with target microsatellites and primer design. The default parameters used for QDD were 200 bp flanking region length, removal of sequences shorter than 80 bp, 95% minimum pairwise identity between sequences of a contig, and a 66% minimum of sequences with the same base at a site to be considered as a consensus. Primer design settings were set for a PCR product between 90 and 300 bp, with primer length set between 18 and 27 bp. Following this initial sequencing step, 2331 primer pairs were obtained, from which 50 pairs were selected based on repeat number, motif (di-, tri-, or tetranucleotide), and PCR product size (≥ 100 bp). Primers were then tested individually using PCR to determine optimal annealing temperature. PCR was performed with reaction volume of 11 µL, containing 5 µL of Master Mix Type-it 2X (Qiagen) which included all materials required for the PCR amplification (HotStarTaq Plus DNA Polymerase, dNTP mix with 200 µM each, and PCR buffer containing 6 mM MgCl2), 6 µL RNase-free water, 1 µL of forward and reverse primers (2 µM diluted in TE pH 8 buffer), and 1 µL of 50 ng/µL genomic DNA solution. The PCR conditions were as follows: an initial denaturation step at 95 °C for 5 min, 40 cycles of 95 °C for 30 s, chosen annealing temperature (53 °C to 65 °C, see Table 1) for 90 s, 72 °C for 30 s, and a final 30 min extension step at 60 °C. Electrophoresis was carried out at 100 V on 2% agarose gels for microsatellite size characterization as well as for preliminary detection of polymorphism. Thirty microsatellites were chosen and included in five multiplex panels designed by combining loci of different allele sizes and identical primer annealing temperatures. In order to proceed with genotyping, forward primers were labeled with fluorescent dyes FAM, YAKYE, ATTO550, and ATTO565 (Eurofins, Luxembourg). Amplifications were carried out with PCR conditions identical to those previously described. PCR products from all samples were sent to GenoScreen for fragment visualization using an Applied Biosystems 3730 Sequencer, where an internal ladder was
Locus	Primer sequence	Repeat motif	T_n (°C)	Size range (bp)	N	N_a	H_e	H_o	F_{IS}	Genbank accession number
AAAC45	F:GGTTAAAGTCCAGCTTGATGCC R:ATACCTGTGAGCCACATGTT	(TGTT)₁₄	53	122–242	41	18	0.909	0.927	−0.019	OL690375
AAC46	F:ACCAGATTAAACCTTGACCCAGCA R:CCCTGAGCTTCAGCTCCACG	(TTG)₁₄	53	117–165	41	13	0.750	0.732	0.024	OL690376
AAG27	F:TCCCTGAGAAGTGGGAAATGGT R:TGGACAAGAAACAAAGTAGTGAAG	(AAG)₂₁	53	197–320	42	14	0.840	0.881	−0.049	OL690377
AC23	F:CCTGACACTCTGCTGCGCTTG R:CCGATCTATATCAATGCGATGCG	(TG)₂₄	53	264–302	41	8	0.777	0.781	−0.004	OL690378
AGC06	F:TACCTTTCCCTGCTCCCTGCTCT R:AATCGCTTCCATCTGAGAACT	(TG)₃₂	53	181–295	41	29	0.958	1.000	−0.044	OL690379
ATCC29	F:AGTCACTACACCAGTGCCAGAA R:GCTTGCAACTTACCTGGGA	(CCAT)₂₀	53	206–290	42	15	0.912	0.857	0.060	OL690380
ACAT28	F:GCATGAAAGCCTACCTGTTG	(ACAT)₂₁	55	118–210	42	17	0.901	0.881	0.022	OL690381
AC15	F:ACACTCTGCTCTACCTGGG R:ACAGAAACCTCAAGTGGCCGC	(GT)₂₇	55	265–367	42	27	0.924	0.857	0.073	OL690382
ATC31	F:GAGGAAAGAAGATCAGGAGCC	(TGA)₁₉	55	242–366	42	16	0.884	0.905	−0.024	OL690383
AT43	F:TTCTTGCTCTCGAATCGGG R:CAAATGCTACACACCAGGTT	(TA)₁₄	55	253–291	41	17	0.804	0.805	−0.001	OL690384
AC17	F:GCCTGAGATAAGCTGCAACA R:GACGTACCCATACGTTGGT	(TG)₂₇	55	142–304	41	34	0.946	0.658	0.307***	OL690403
AGG47	F:GGAGCACAAGTCAAGGACCAT R:GCTTTGCAAGGGCGACATGA	(GAG)₁₃	55	221–251	37	8	0.681	0.432	0.368***	OL690404
AC41	F:ACGACATGTGATCTCTCCTGCA R:GTTTTCATCACAACCGCAG	(AC)₁₆	57	103–181	42	20	0.851	0.881	−0.035	OL690385
AGAT02	F:TGATCCATATTGCTAGCACATG R:AGAAATTCGTTAAGTCCCGGT	(ATCT)₃₇	57	218–354	42	24	0.953	0.929	0.026	OL690386
AGC25	F:TGACACTGCTGCTCGATG	(AGC)₂₄	57	157–253	42	21	0.937	0.929	0.009	OL690387
AG11	F:CGCCAGCCGCTCGAGGTTAAAC R:GCCTAGTAAAGACCGCTGCTT	(TC)₂₉	57	143–213	41	24	0.954	1.000	−0.048	OL690388
AG16	F:GTCGGCATTAGCACAACGTGG R:AACTGAAAGCTGCTGTGTT	(AG)₂₇	57	260–338	40	21	0.946	0.975	−0.030	OL690389
Table 1 (continued)

Locus	Primer sequence	Repeat motif	T_a (°C)	Size range (bp)	N	N_a	H_e	H_o	F_{IS}	Genbank accession number
ATCC40	F:ATGTTAGAGGCTCCATCGC	(GGAT)$_{16}$	57	225–325	41	20	0.924	0.951	−0.030	OL690390
	R:AAATGAGGCAGTGAGGTG									
AGAT09	F:GACGACCCCTACACGCTCTG	(GATA)$_{20}$	60	208–421	42	35	0.971	0.952	0.019	OL690391
	R:GGAAAGAGACCAAGGAGACG									
AGG49	F:TCAGAGGACACTCGAGGTCC	(GAG)$_{12}$	60	227–278	42	10	0.803	0.691	0.142*	OL690392
	R:TTGCTCTGACTCCATCTGG									
ATC30	F:CCTTACGACTCCATATG	(ATC)$_{19}$	60	276–384	42	19	0.857	0.929	−0.084	OL690393
	R:AGATGCTGACACCTGATGAGAGA									
ATC44	F:AGAAAACCTGCTTGTCTTA	(CAT)$_{14}$	60	202–277	42	17	0.914	0.929	−0.016	OL690394
	R:CCACAAACCACTCCAT									
AT50	F:ACAGGAGTGAATTTAGTCTCC	(AT)$_{12}$	60	180–206	42	8	0.657	0.619	0.058	OL690395
	R:TGACTGTATGGAGAATATTGGCA									
AG08	F:TACGGTTAGTACAGGTGTTG	(GA)$_{30}$	60	256–390	40	29	0.950	0.600	0.371***	OL690402
	R:TTCACGCTGAAAGGCCATG									
AGAT04	F:TACATTGTATTTATCTATTTTTGAATTT	(TAGA)$_{34}$	63	208–380	42	25	0.944	0.929	0.016	OL690396
	R:GACCCGCTACGATAAACA									
AGC33	F:GGTTCTCCTCGCTAGGCTTT	(CTG)$_{18}$	63	215–356	41	27	0.942	0.951	−0.010	OL690397
	R:AGAGGGGACAATTGAGGCG									
AG20	F:GAAGAGAGGAGGGGTGAGAG	(CT)$_{25}$	63	261–311	42	13	0.858	0.833	0.029	OL690398
	R:AGCCTCCTCCTGAGAAGCCT									
ATCC38	F:GTCACATGTCATCCAGCCCAT	(CATC)$_{17}$	63	119–179	41	11	0.753	0.658	0.127	OL690399
	R:GCACATGTCCTGGGTGTAT									
AG22	F:TCCTAATCTGACTCTATGT	(CT)$_{25}$	63	179–377	42	31	0.953	0.929	0.026	OL690400
	R:ACTGAAAGGCTACTCGAG									
AG10	F:ACCTCAATATACTGCTGTTCA	(CT)$_{29}$	63	212–364	42	42	0.972	0.929	0.045	OL690401
	R:CTCCTCGCTGACACTCATG									

Microsatellite markers were included in five multiplexes corresponding to the annealing temperature T_a in degrees. N number of samples, N_a number of alleles, H_e observed heterozygosities, H_o expected heterozygositys, F_{IS} fixation index following Weir and Cockerham.

Indicates significant F_{IS} values ($p < 0.05$; ***$p < 0.001$). AG08, AC17 and AGG47 presented null alleles.
added to each sample in order to ensure accurate sizing (GeneScan 500 LIZ, Applied Biosystems). Allele sizes were scored in GENEMAPPER software v.5 (Applied Biosystems), with ambiguous peaks assigned as missing data to avoid errors in genotyping.

Data analysis

The software MICRO-CHECKER v 2.2.3 [21] was used to detect null alleles, potential scoring errors as well as to test for large allele dropout. The total number of alleles N_a was calculated in GenAlEx 6.503 [22]. Observed (H_o) and expected (H_e) heterozygosities were estimated through GENETIX v 4.05.2 [23], which was also used to compute the inbreeding coefficient (F_{IS}) and linkage disequilibrium (LD) by permutations (1000 permutations each). Holm-Bonferroni correction was applied to LD analysis to adjust p-values for multiple comparisons.

Results and discussion

Out of the 50 primer pairs that were tested in this study, 30 polymorphic loci exhibiting clear amplification profiles were successfully developed. Analysis with MICRO-CHECKER revealed the presence of null alleles in three loci (AG08, AC17, AGG47), which also featured high and significant F_{IS} values as well as a noticeable difference between expected and observed heterozygosity (Table 1) compared to other markers, indicative of a departure from the Hardy–Weinberg equilibrium. These loci were removed from the dataset for further analysis, and no other large allele dropout or allele scoring errors were detected in the rest of the marker set. No significant LD was detected between the retained loci after Holm-Bonferroni correction.

While previous studies only developed dinucleotide markers, the new panel of microsatellite markers was characterized by an almost equal distribution of motif abundance percentages, with a majority of di- (37%), tri- (33%), and tetranucleotide repeats (29%) [19]. Although less abundant than dinucleotides in the genome, tri- and tetranucleotide repeats are traditionally sought-after due to the large number of base-pair differentiating alleles: this makes variations in the number of repeats simpler to identify during the genotyping process, therefore removing possible biases, such as stuttering [24]. After 42 individuals from Ons Island were screened with the 27 newly developed loci, a total of 568 alleles were revealed in the dataset, which was deemed robust enough to study the structure and parentage of the *L. pholis* population [25].

The number of alleles found per locus ranged between 8 (AT50) and 42 (AG10) with an average of 20.074 alleles per locus (Table 1). Excluding the three loci which exhibited null alleles, average expected heterozygosity (H_e) was 0.8832, ranging between 0.6566 and 0.9722, and the observed heterozygosity (H_o) ranged from 0.619 to 1 with an average of 0.8754. The difference between H_e and H_o was less than 1% with slightly fewer heterozygotes observed than expected. The new panel of loci showed a high level of genetic diversity and high heterozygosity levels, which is in line with the previous study on *L. pholis* that used microsatellites [19], although recent findings seem to suggest this may not be the case throughout its distribution range and may also vary according to sampling years [26]. Similar to other marine species, the high diversity shown here is likely correlated with a combination of life-history traits, such as small body length [27] and large population size [28–30]. Moreover, *L. pholis* also displayed high diversity when other genetic markers were used at a larger geographic scale of hundreds of kilometers [12, 17].

Excluding the loci that presented null alleles, only one marker (AGG49) presented a significant F_{IS} value (p-value = 0.047), suggesting heterozygote deficiency which could be attributed to inbreeding, the presence of null alleles, a Wahlund effect, or selection [31]. In the shanny, occupancy of a tide pool is based on body size [32]. As individuals were sampled from multiple tide pools, it is possible that sampling included individuals from genetically distinct cohorts influenced by interannual current variability. However, a Wahlund effect would typically be observed at all loci, similar to inbreeding. Furthermore, loci with possible null alleles were discarded from the set of markers following analysis by MICRO-CHECKER, which did not detect evidence for null alleles in AGG49.

The successful amplification of a large number of markers (27 de novo markers) and the high levels of polymorphism found in the samples suggest that these newly developed microsatellite markers can be effectively used in *L. pholis* to make inferences about genetic diversity, family structure and to assess potential dispersal patterns. Having a large panel of microsatellite markers is also fundamental in the study of patterns of connectivity among populations and these newly developed markers will help to shine a light on gene flow patterns in future genetic studies.

Acknowledgements We thank C. Tardy for her help with genotyping and data analysis.

Funding This work is framed within the project ORGANISE in which A. B. was supported by the Axencia Galega de Innovación (GAIN), Xunta de Galicia (Grant ED481B 2018/68).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.
Ethical approval Sampling was conducted by A. B. under a permit delivered by the Atlantic Islands of Galicia Maritime-Terrestrial National Park. A. B. has been trained, is aware of and fully complies with all current ethical guidelines of the European Commission (Article 9 of the Directive 2010/63/EU) and national legislation regarding animal research.

References

1. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466. https://doi.org/10.1146/annurev.marine.010908.163757
2. Jones G, Srinivasan M, Almany G (2007) Population connectivity and conservation of marine biodiversity. Oceanogr (washing DC) 20:100–111
3. Galarza J, Carreras-Carbonell J, Macpherson E et al (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci 106:1473–1478. https://doi.org/10.1073/pnas.0808680106
4. Pascual M, Rives B, Schunter C, Macpherson E (2017) Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12:e0176419
5. Lima D, Santos M, Ferreira A et al (2008) The use of the shanny Lipophrys pholis for pollution monitoring: a new sentinel species for the northwestern European marine ecosystems. Environ Int 34:94–101. https://doi.org/10.1016/j.envint.2007.07.007
6. Hayward PJ, Ryland JS (2017) Handbook of the marine fauna of north-west Europe
7. Trinkaus JP (1988) Directional cell movement during early development of the teleost Blennius pholis: II. Transformation of the cells of epithelial clusters into dendritic melanocytes, their dissociation from each other, and their migration to and invasion of the pectoral. J Exp Zool 248:55–72. https://doi.org/10.1002/ez.1402480108
8. Harvey JS, Lyons BP, Page TS et al (1999) An assessment of the genotoxic impact of the Sea Empress oil spill by the measurement of DNA adduct levels in selected invertebrate and vertebrate species. Mutat Res 441:103–114. https://doi.org/10.1016/S1383-5718(99)00037-6
9. Zander CD (1986) Fishes of the North-eastern Atlantic and the Mediterranean, UNESCO Blenniidae. Paris
10. Carvalho MG, Moreira C, Queiroga H et al (2017) Pelagic larval duration, size at settlement and coastal recruitment of the intertidal blenny Lipophrys pholis. J Mar Biol Assoc United Kingdom 97:197–205. https://doi.org/10.1002/jem.1402480108
11. Martins T, Almada F, Gonçalves A et al (2017) Home sweet home: evidence for nest-fidelity in the rocky intertidal fish, the shanny Lipophrys pholis. J Fish Biol 90:156–166. https://doi.org/10.1111/jfb.13171
12. Francisco SM, Vieira MN, Almada VC (2006) Genetic structure and historical demography of the shanny Lipophrys pholis in the Portuguese coast based on mitochondrial DNA analysis. Mol Phylogenet Evol 39:288–292. https://doi.org/10.1016/j.ympev.2005.12.009
13. Stefani S, Domingues V, Bouton N et al (2006) Phylogeny of the shanny, Lipophrys pholis, from the NE Atlantic using mitochondrial DNA markers. Mol Phylogenet Evol 39:282–287. https://doi.org/10.1016/j.ympev.2005.07.001
14. Hepburn RI, Sale PF, Dixon B, Heath DD (2009) Genetic structure of juvenile cohorts of bicolor damselfish (Stegastes partitus) along the Mesoamerican barrier reef: chaos through time. Coral Reefs 28:277–288. https://doi.org/10.1007/s00338-008-0423-2
15. Hixon M (2011) 60 years of coral reef fish ecology; past, present, future. Bull Mar Sci 87:727–765. https://doi.org/10.5343/bms.2010.1055
16. Carreras-Carbonell J, Macpherson E, Pascual M (2007) High self-recruitment levels in a Mediterranean littoral fish population revealed by microsatellite markers. Mar Biol 151:719–727. https://doi.org/10.1007/s00227-006-0513-z
17. Francisco SM, Faria C, Lengkeek W et al (2011) Phylogeography of the shanny Lipophrys pholis (Pisces: Blenniidae) in the NE Atlantic records signs of major expansion event older than the last glaciation. J Exp Mar Bio Ecol 403:14–20. https://doi.org/10.1016/j.jembe.2011.03.020
18. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x
19. Guillemaud T, Almada F, Santos RS, Cancela ML (2000) Interspecific utility of microsatellites in fish: A case study of (CT)(n) and (GT)(n) markers in the shanny Lipophrys pholis (Pisces: Blenniidae) and their use in other blennioids. Mar Biotechnol 2:248–253. https://doi.org/10.1007/s10227-000-00029
20. Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192. https://doi.org/10.2144/000113084
21. Van Oesterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-2286.2004.00684.x
22. Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460
23. Beltkhir P, Borsa P, Chikhi L, et al (2004) GENETIX 4.05, Population genetics software for Windows TM, Univ Montpellier II
24. Guichoux E, Lagache L, Wagner S et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. https://doi.org/10.1111/j.1755-0998.2011.03014.x
25. Bernatchez L, Duchesne P (2000) Individual-based genotype analysis in studies of parentage and population assignment: how many loci, how many alleles? Can J Fish Aquat Sci 57:1–12. https://doi.org/10.1139/f99-271
26. Francisco SM, Robalo JI (2020) Time matters: genetic composition and evaluation of effective population size in temperate coastal fish species. PeerJ 8:e9098–e9098. https://doi.org/10.7717/peerj.9098
27. Dalongeville A, Andrello M, Mouillot D et al (2016) Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes. J Biogeogr 43:845–857. https://doi.org/10.1111/jbi.12669
28. Kimura M (1983) The Neutral Theory of Molecular Evolution. NY, USA, Cambridge
29. Riccioni G, Landi M, Ferrara G et al (2010) Spatio-temporal population structuring and genetic diversity retention in depleted Atlantic Bluefin tuna of the Mediterranean Sea. Proc Natl Acad Sci 107:2102–2107. https://doi.org/10.1073/pnas.0908281107
30. Therkildsen NO, Nielsen EE, Swain DP, Pedersen JS (2010) Message to可以用中文翻译吗？
31. O’Connell M, Wright JM (1997) Microsatellite DNA in fishes. Rev Fish Biol Fish 7:331–363. https://doi.org/10.1023/A:1018443912945

32. Faria C, Almada V (2005) Microhabitat segregation in three rocky intertidal fish species in Portugal: does it reflect interspecific competition? J Fish Biol 58:145–159. https://doi.org/10.1111/j.1095-8649.2001.tb00504.x

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.