Association of IL-1β, IL-1α and IL-10 single nucleotide polymorphisms with Mini-Mental State Examination and event-related potentials

CURRENT STATUS: POSTED

Mirjana Babić Leko
Sveuciliste u Zagrebu Medicinski fakultet

Matea Nikolac Perković
Institut Ruder Boskovic

Magdalena Krbot Skorić
Klinicki Bolnicki Centar Zagreb

Nataša Klepac
Klinicki Bolnicki Centar Zagreb

Dubravka Švob Štrac
Institut Ruder Boskovic

Fran Borovečki
Klinicki Bolnicki Centar Zagreb

Nela Pivac
Institut Ruder Boskovic

Patrick R. Hof
Icahn School of Medicine at Mount Sinai

Goran Simic
Sveuciliste u Zagrebu Medicinski fakultet

goran_simic@hotmail.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-6339-9261

DOI: 10.21203/rs.2.18551/v1

SUBJECT AREAS
 Neurobiology of Disease
KEYWORDS

Neuroinflammation, Alzheimer’s disease, genetics, polymorphisms, MMSE, event-related potentials, IL-10, IL-1
Abstract
Background: Neuroinflammation is enhanced in Alzheimer’s disease (AD) brain. Its association with both amyloid and tau pathology is well documented. Activated microglia in the AD brain release pro-inflammatory cytokines that can damage neurons, while anti-inflammatory cytokines are also released to oppose this process. Association of IL-1β -1473C/G, IL-1α -889C/T and IL-10 -1082G/A polymorphisms with AD has been amply documented previously. In this study we assessed whether people carrying certain genotypes in these polymorphisms were more prone to disease progression as tested by the Mini-Mental State Examination (MMSE) scores and event-related potentials (ERP).

Methods: After blood collection, isolation of DNA and determination of polymorphisms, 226 subjects were tested neuropsychologically using MMSE (including AD patients, mild cognitive impairment patients, patients with other causes of dementia, and healthy controls). ERP were measured by electroencephalography (EEG) in this cohort.

Results: MMSE scores were significantly lower in patients carrying the G allele in the IL-1β -1473, T allele in the IL-1α -889, and A allele in the IL-10 -1082 polymorphism. The P300 latency was significantly prolonged in patients carrying the G allele in the IL-1β -1473 polymorphism.

Conclusions: Patients carrying risk genotypes in IL-1β -1473, IL-1α -889 and IL-10 -1082 polymorphisms may be susceptible to faster disease progression. Additionally, IL-1β -1473 polymorphism may represent a strong genetic biomarker of AD.

Background
In addition to amyloid β protein and tau pathology, neuroinflammation plays a key role in the development of Alzheimer’s disease (AD) [1–4]. During sustained neuroinflammation in AD brain, pro-inflammatory cytokines released from microglia, such as interleukin (IL)-1α, IL-1β, IL-6 and tumor necrosis factor α (TNFα), lead to neuron damage [5,6], while anti-inflammatory cytokines (like IL-10) are also released to maintain homeostasis [7]. Association of IL-1β -1473C/G, IL-1α -889C/T and IL-10 -1082G/A single nucleotide polymorphisms (SNPs) with AD has been shown in many studies [8–25]. These polymorphisms could affect the amount of produced mRNA and proteins [26–30]. Thus, patients carrying certain genotypes in IL-1β -1473C/G, IL-1α -889C/T and IL-10 -1082G/A
polymorphisms may present with increased amount of pro-inflammatory cytokines (IL-1β and IL-1α) and decreased amount of anti-inflammatory cytokines (IL-10) and consequently be more vulnerable to inflammatory mechanisms that could lead to AD [3,31]. Because event-related potentials (ERP) measured by electroencephalography (EEG) and Mini-Mental State Examination (MMSE) scores show potential in early and differential diagnosis of AD [32,33], we assessed whether MMSE scores and evoked potentials differed among patients carrying particular IL-1β -1473C/G, IL-1α -889C/T and IL-10 -1082G/A genotypes, which would in turn indicate a genetic predisposition to develop AD or for being prone to faster disease progression.

Methods

Subjects

A cohort of 226 patients hospitalized at Clinical Hospital Center Zagreb participated in this study. They gave informed consent for participation in the study. Of them, 113 suffered from AD, 53 from mild cognitive impairment (MCI), 52 from other causes of dementia (22 from frontotemporal dementia [FTD], 2 from Parkinson’s disease [PD], 14 from vascular dementia [VaD], 7 from dementia with Lewy bodies [DLB], 3 from mixed dementia [AD+VaD], 1 from corticobasal syndrome [CBS], and 3 from nonspecific dementia [ND]), and 8 were healthy controls (HC) (Table 1). They all underwent neuropsychological testing using the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog), the Montreal Cognitive Assessment (MoCA) and the MMSE. Also, neurological examination and full blood tests (serology for Lyme’s disease and syphilis, thyroid function test, levels of folic acid and vitamin B12) were done. Diagnosis of AD was established by the criteria of the National Institutes on Aging – Alzheimer’s Association (NIA-AA) [34], MCI by the criteria of Albert et al. [35] and Petersen et al. [36], FTD by the criteria of Neary et al. [37], while VaD was diagnosed using Hachinski Ischemic Score (HIS) [38] and the criteria of the National Institute for Neurological Disorders and Stroke—Association Internationale pour la Recherche et l’Enseignement en Neurosciences (NINCDS-AIREN) [39]. All procedures were performed in accord with the Helsinki Declaration [40] and were approved by the Ethical Committee of the Clinical Hospital Center Zagreb (case no. 02/21 AG, class 8.1-18/82-2 from April 24, 2018) and by the Central Ethical Committee of the University of

Determination of polymorphisms
Venous blood was collected in plastic syringes with 1 ml of acid citrate dextrose as an anticoagulant. Salting-out method [41] was used for isolation of DNA from peripheral blood. SNPs were determined by ABI Prism 7300 Real Time PCR System apparatus (Applied Biosystems, Foster City, CA), using following TaqMan SNP Genotyping Assays (Applied Biosystems); *IL-1*α -889C/T (rs1800587), *IL-1*β -1473G/C (rs1143623) and *IL-10* -1082G/A (rs1800896).

Measurement of event-related potentials
ERP (P300 and N200) were measured using EEG in the Laboratory for Cognitive and Experimental Neurophysiology at the University Hospital Centre, Zagreb. For ERP measurement, 32 electrodes were placed on the head of patients according to the international 10/20 system. Overall 54 subjects (31 AD, 19 MCI patients and 4 HC) were tested by an auditory oddball paradigm. During the testing, participants were sitting in an auditory sound-proof chamber with headphones on. They had to count all target auditory tones among non-target and interfering tones. Some subjects participated in the auditory oddball paradigm with two frequencies, while the others participated in the auditory oddball paradigm with three frequencies. In the first paradigm, ERP were measured while subjects tried to differentiate target from non-target tone, whereas in the second paradigm, participants tried to differentiate target tone from non-target and interfering tones, as described previously [32].

Statistical analysis
Statistical analysis was performed with SPSS 19.0.1 (SPSS, Chicago, IL, USA), with the level of statistical significance set at $\alpha = 0.05$. We tested data normality using the Kolmogorov-Smirnov test.
However, non-parametric statistics were mostly used due to the small number of subjects in some groups. MMSE scores and ERP latencies were compared among groups using the non-parametric Kruskal-Wallis test. A post-hoc non-parametric test to correct p values was used for pairwise comparisons.

Results

IL-1β rs1143623, IL-1α -889C/T, IL-10 -1082G/A genotype and MMSE

MMSE scores were significantly lower when all subjects ($U=5132; Z=-1.965; p=0.049$), or AD, MCI and HC subjects ($U=3001; Z=-2.013; p=0.044$), or only AD and MCI patients were grouped together ($U=2573; Z=-2.405; p=0.016$) for CG and GG compared to CC IL-1β rs1143623 genotypes (Figure 1). MMSE scores were significantly lower in all subjects with TT and TC compared to CC IL-1α -889C/T genotypes ($U=5265; Z=-2.072; p=0.038$; Figure 2). MMSE scores were significantly lower in MCI patients with AA and AG compared to GG IL-10 -1082G/A genotypes ($U=107.5; Z=-2.167; p=0.030$; Figure 3).

IL-1β rs1143623, IL-1α -889C/T, IL-10 -1082G/A genotype and event-related potentials

P300 latency was significantly prolonged in patients with CG and GG compared to CC IL-1β rs1143623 genotypes ($t = -2.142, df = 52, p = 0.037$; Figure 4). There was no significant difference in N200 latency in patients with different IL-1β rs1143623, IL-1α -889C/T and IL-10 -1082G/A genotypes. Also, P300 latency did not differ among patients with different IL-1α -889C/T and IL-10 -1082G/A genotypes.

Discussion

The goal of this study was to test whether polymorphisms in genes for IL-1β, IL-1α and IL-10 are associated with MMSE scores and ERP. Polymorphisms in IL-1β, IL-1α and IL-10 genes could lead to different transcription products and consequently influence the amount of the produced proteins [26-30]. Increase in production of pro-inflammatory cytokines (IL-1β and IL-1α) and decrease in production of anti-inflammatory cytokines (IL-10) would result in increased inflammation that favours development of AD [1,2,31]. We show that MMSE scores are significantly lower in carriers of a G allele.
in *IL-1β* –1473, T allele in *IL-1α* –889, and A allele in *IL-10* –1082 polymorphisms, while P300 latency is significantly prolonged in carriers of a G allele in *IL-1β* –1473 polymorphism.

Pro-inflammatory cytokine IL-1β contributes to inflammation-mediated cognitive decline [42].

Association of *IL-1β* polymorphisms with AD was reported before by numerous studies [43–46]. *IL-1β* +3953, *IL-1β* –31 and *IL-1β* –511 polymorphisms were mainly tested [43–46], although the results of our previous study [18] showed that levels of various cerebrospinal fluid (CSF) biomarkers (amyloid β₁₋₄₂, total tau, phosphorylated tau isoforms and visinin-like protein 1) were pathological in patients carrying a G allele in the *IL-1β* –1473 polymorphism. The results of the present study are further strengthening the association of *IL-1β* –1473 polymorphism with AD, as MMSE scores were lower and P300 latencies increased in patients carrying a G allele in the *IL-1β* –1473 polymorphism. Distribution of *IL-1β* –1473 genotypes between AD patients and HC was assessed in only two studies that reported no differences [47,48]. Our results disagree with these results as well as those of Lee and collaborators [28] showing that presence of the G allele in *IL-1β* –1473 polymorphism leads to weaker promoter activity and consequently lower levels of IL-1β protein. Thus, further analyses on the distribution of *IL-1β* –1473 genotypes between AD patients and HC and the influence of *IL-1β* –1473 polymorphism on the amount of produced IL-1β protein should be conducted.

The association of SNPs in genes for other pro-inflammatory cytokines and vulnerability of AD was also tested. Pro-inflammatory *IL-1α* cytokine is overexpressed in AD brain [49]. As presence of a T allele in the *IL-1α* –889 polymorphism leads to increase in transcriptional activity of the *IL-1α* gene [29,30], this could explain why carriers of a T allele in the *IL-1α* –889 polymorphism have higher risk for AD [8–17]. Our recent study showed that there is no association between CSF AD biomarkers and *IL-1α* –889 genotypes [18]. However, the present study indicates that although the *IL-1α* –889 polymorphism is not suitable as an early genetic biomarker of AD, it could be an index of disease severity as patients carrying the T allele in *IL-1α* –889 polymorphism have significantly lower MMSE scores. According to these results, T allele carriers could be more vulnerable to disease progression. Our results agree with previous studies showing increased risk of AD in carriers of a T allele in the *IL-1α* –889 polymorphism [8–17,46,50–52]. However, due to the facts that many studies did not reveal
an association of the *IL-1α* –889 polymorphism and AD [53–75] and that our recent study failed to detect an association of this polymorphism with CSF AD biomarkers [18], these results should be validated in larger cohorts.

Polymorphisms in the anti-inflammatory cytokine IL-10 gene are also associated with AD. Production of IL-10 is significantly decreased in carriers of A allele in *IL-10* –1082 polymorphism [26,27]. Also, carriers of an A allele in *IL-10* –1082 polymorphism have an increased risk for AD [19–25,76–78]. Our results support these studies as MMSE scores were significantly lower in MCI patients with the *IL-10* –1082 A genotype. Additionally, these results are in accord with our recent study showing that CSF p-tau_{181} levels are pathological in patients carrying the AA *IL-10* –1082 genotype [18]. However, it should kept in mind that other studies failed to detect an association between the *IL-10* –1082 polymorphism and AD [46,72,79–86] or showed opposite results (association of the G allele in *IL-10* –1082 polymorphism with increased risk for AD) [71,74].

Conclusion

In conclusion, our study shows that patients with the *IL-1β* –1473 G, *IL-1α* –889 T and *IL-10* –1082 A genotypes have significantly lower MMSE scores. Additionally, patients carrying a G allele in the *IL-1β* –1473 polymorphism have prolonged P300 latencies. These results indicate that these risk genotypes could represent genetic biomarkers of disease progression [87] and as such should be further correlated with neuroimaging and genetic biomarkers of AD. The most important finding of this study is the association of the *IL-1β* –1473 polymorphism with MMSE scores and P300 ERP. This finding together with our previous results [18] indicates that the *IL-1β* –1473 polymorphism could be strong genetic biomarker of AD.

List Of Abbreviations

AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s Disease Assessment Scale-cognitive subscale; CBS, corticobasal syndrome; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; EEG, electroencephalography; ERP, event-related potentials; FTD, frontotemporal dementia; HC, healthy control; HIS, Hachinski Ischemic Score; IL, interleukin; K-W, Kruskal-Wallis; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; ND,
nonspecific dementia; NINCDS-AIREN, National Institute for Neurological Disorders and Stroke - Association Internationale pour la Recherche et l'Enseignement en Neurosciences; PD, Parkinson’s disease; p-tau\textsubscript{181}, tau phosphorylated at Thr 181; SNP, single nucleotide polymorphisms; TNFα, tumor necrosis factor α; VaD, vascular dementia.

Declarations

Ethics approval and consent to participate

All procedures were approved by the Ethical Committee of the Clinical Hospital Center Zagreb (case no. 02/21 AG, class 8.1-18/82-2 from April 24, 2018) and by the Central Ethical Committee of the University of Zagreb Medical School (case no. 380-59-10106-18-111/126, class 641-01/18-02/01 from June 20, 2018). All patients gave informed consent for participation in this study.

Consent for publication

All patients gave consent for publication.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was funded by The Croatian Science Foundation grant IP-2019-04-3584 (“Role of blood-brain barrier, innate immunity, and tau protein oligomerization in the pathogenesis of Alzheimer’s disease”) to GŠ and by the Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience CoRE-NEURO (“Experimental and clinical research of hypoxic-ischemic damage in perinatal and adult brain”; GA KK01.1.1.01.0007 funded by the European Union through the European
Regional Development Fund), and in part by NIH grant P50 AG005138 to PRH.

Authors' contributions

GŠ conceived and directed the study. NK and FB performed the clinical assessments. MKS performed the measurement of evoked potentials. MNP, DŠŠ, MBL and NP determined IL-1β, IL-1α and IL-10 genotypes. MBL and GŠ completed statistical analysis. PRH substantially contributed to the interpretation of data and to manuscript preparation. All authors contributed to revising and editing the manuscript critically for important intellectual content. All authors read and approved the final version of the manuscript. All authors met the criteria for authorship, as defined by the International Committee of Medical Journal Editors.

Acknowledgments

Not applicable.

References

1. Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2019;168:99-145.
2. Španić E, Langer Horvat L, Hof PR, Šimić G. Role of microglial cells in Alzheimer’s disease tau propagation. Front Aging Neurosci. 2019;11:271.
3. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:1-5.
4. Ising C, Heneka MT. Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis. 2018;9:120.
5. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28:8354-60.
6. Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s
disease, role of cytokines. ScientificWorldJournal. 2012;2012:756357.

7. Su F, Bai F, Zhang Z. Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neurosci Bull. 2016;32:469-80.

8. Du Y, Dodel RC, Eastwood BJ, Bales KR, Gao F, Lohmüller F, et al. Association of an interleukin 1α polymorphism with Alzheimer’s disease. Neurology. 2000;55:480-3.

9. Grimaldi LM, Casadei VM, Ferri C, Veglia F, Licastro F, Annoni G, et al. Association of early-onset Alzheimer’s disease with an interleukin-1α gene polymorphism. Ann Neurol. 2000;47:361-5.

10. Nicoll JA, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, et al. Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann Neurol. 2000;47:365-8.

11. Rebeck GW. Confirmation of the genetic association of interleukin-1A with early onset sporadic Alzheimer’s disease. Neurosci Lett. 2000;293:75-7.

12. Combarros O, Sánchez-Guerra M, Infante J, Llorca J, Berciano J. Gene dose-dependent association of interleukin-1A [-889] allele 2 polymorphism with Alzheimer’s disease. J Neurol. 2002;249:1242–5.

13. Hedley R, Hallmayer J, Groth DM, Brooks WS, Gandy SE, Martins RN. Association of interleukin-1 polymorphisms with Alzheimer’s disease in Australia. Ann Neurol. 2002;51:795-7.

14. Sciacca FL, Ferri C, Licastro F, Veglia F, Biunno I, Gavazzi A, et al. Interleukin-1B polymorphism is associated with age at onset of Alzheimer’s disease. Neurobiol Aging. 2003;24:927-31.

15. Hayes A, Green EK, Pritchard A, Harris JM, Zhang Y, Lambert JC, et al. A polymorphic variation in the interleukin 1A gene increases brain microglial cell activity in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75:1475-7.
16. Seripa D, Matera MG, Forno GD, Gravina C, Masullo C, Daniele A, et al. Genotypes and haplotypes in the IL–1 gene cluster: analysis of two genetically and diagnostically distinct groups of Alzheimer patients. Neurobiol Aging. 2005;26:455–64.

17. Zhou Y, Zhang Z, Zhang J, He X, Xu T. [Association between interleukin-1 alpha-889 C/T polymorphism and Alzheimer’s disease in Chinese Han population]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2006;28:186–90.

18. Babić Leko M, Nikolac Perković M, Klepac N, Švob Štrac D, Borovečki F, Pivac N, et al. IL–1β, IL–6, IL–10, and TNFα single nucleotide polymorphisms are associated with cerebrospinal fluid levels of biomarkers of Alzheimer’s disease. Res Sq Prepr. 2019.

19. Arosio B, Mastronardi L, Vergani C, Annoni G. Interleukin–10 promoter polymorphism in mild cognitive impairment and in its clinical evolution. Int J Alzheimers Dis. 2010;2010:1–5.

20. Bagnoli S, Cellini E, Tedde A, Nacmias B, Piacentini S, Bessi V, et al. Association of IL10 promoter polymorphism in Italian Alzheimer’s disease. Neurosci Lett. 2007;418:262–5.

21. Combarros O, Sánchez-Juan P, Riancho JA, Mateo I, Rodríguez-Rodríguez E, Infante J, et al. Aromatase and interleukin–10 genetic variants interactively modulate Alzheimer’s disease risk. J Neural Transm. 2008;115:863–7.

22. Fraga VG, Guimarães HC, Teixeira AL, Barbosa MT, Carvalho MG, Caramelli P, et al. Polymorphisms in cytokine genes influence cognitive and functional performance in a population aged 75 years and above. Int J Geriatr Psychiatry. 2017;32:1401–10.

23. Lio D, Licastro F, Scola L, Chiappelli M, Grimaldi LM, Crivello A, et al. Interleukin–10 promoter polymorphism in sporadic Alzheimer’s disease. Genes Immun. 2003;4:234–8.
24. Vargas-Alarcón G, Juárez-Cedillo E, Martínez-Rodríguez N, Fragoso JM, García-Hernández N, Juárez-Cedillo T. Association of interleukin-10 polymorphisms with risk factors of Alzheimer’s disease and other dementias (SADEM study). Immunol Lett. 2016;177:47–52.

25. Vural P, Değirmencioğlu S, Parıldar-Karpuzoğlu H, Doğru-Abbasoğlu S, Hanagasi HA, Karadağ B, et al. The combinations of TNFα-308 and IL-6 -174 or IL-10 -1082 genes polymorphisms suggest an association with susceptibility to sporadic late-onset Alzheimer’s disease. Acta Neurol Scand. 2009;120:396–401.

26. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson I V. An investigation of polymorphism in the interleukin-10 gene promotor. Eur J Immunogenet. 1997;24:1–8.

27. Crawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P. Polymorphic haplotypes of the interleukin-10 5’ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum. 1999;42:1101–8.

28. Lee K-A, Ki C-S, Kim H-J, Sohn K-M, Kim J-W, Kang WK, et al. Novel interleukin 1beta polymorphism increased the risk of gastric cancer in a Korean population. J Gastroenterol. 2004;39:429–33.

29. Dominici R, Cattaneo M, Malferrari G, Archi D, Mariani C, Grimaldi L, et al. Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1α. Immunogenetics. 2002;54:82–6.

30. Wei X, Chen X, Fontanilla C, Zhao L, Liang Z, Dodel R, et al. C/T conversion alters interleukin-1A promoter function in a human astrocyte cell line. Life Sci. 2007;80:1152–6.

31. Magalhães CA, Carvalho M das G, Sousa LP de, Caramelli P, Gomes KB. Alzheimer’s
disease and cytokine IL-10 gene polymorphisms: is there an association? Arq Neuropsiquiatr. 2017;75:649-56.

32. Babić Leko M, Krbot Skorić M, Klepac N, Borovečki F, Langer Horvat L, Vogrinc Ž, et al. Event-related potentials improve the efficiency of cerebrospinal fluid biomarkers for differential diagnosis of Alzheimer’s disease. Curr Alzheimer Res. 2018;15:1244-60.

33. Boban M, Malojčić B, Mimica N, Vuković S, Zrilić I, Hof PR, et al. The reliability and validity of the mini-mental state examination in the elderly Croatian population. Dement Geriatr Cogn Disord. 2012;33:385-92.

34. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–9.

35. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:270–9.

36. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.

37. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546-54.

38. Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, et al. Cerebral blood flow in dementia. Arch Neurol. 1975;32:632-7.

39. Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al.
Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250-60.

40. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191-4.

41. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

42. Benke KS, Carlson MC, Doan BQ, Walston JD, Xue QL, Reiner AP, et al. The association of genetic variants in interleukin-1 genes with cognition: findings from the cardiovascular health study. Exp Gerontol. 2011;46:1010-9.

43. Ma SL, Tang NLS, Lam LCW, Chiu HFK. Lack of Association of the Interleukin-1β Gene Polymorphism with Alzheimer’s Disease in a Chinese Population. Dement Geriatr Cogn Disord. 2003;16:265-8.

44. Wang W-F, Liao Y-C, Wu S-L, Tsai F-J, Lee C-C, Hua C-S. Association of interleukin-I beta and receptor antagonist gene polymorphisms with late onset Alzheimer’s disease in Taiwan Chinese. Eur J Neurol. 2005;12:609-13.

45. Payão SLM, Gonçalves GM, de Labio RW, Horiguchi L, Mizumoto I, Rasmussen LT, et al. Association of interleukin 1β polymorphisms and haplotypes with Alzheimer’s disease. J Neuroimmunol. 2012;247:59–62.

46. Mun M-J, Kim J-H, Choi J-Y, Jang W-C. Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: An update meta-analysis. Meta Gene. 2016;8:1-10.

47. Mustapić M, Presečki P, Mimica N, Pivac N, Folnegović Šmalc V, Mück-Šeler D. Dopamine beta-hydroxylase and inflammatory cytokines in Alzheimer’s disease. Period Biol 112, Suppl 1 - Final Program Abstr B 6th Croat Congr Pharmacol with Int Particip. 2010;41.

48. Yin Y, Liu Y, Pan X, Chen R, Li P, Wu H-J, et al. Interleukin-1β promoter polymorphism
enhances the risk of sleep disturbance in Alzheimer’s disease. Chiba-Falek O, editor. PLoS One. 2016;11:e0149945.

49. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.

50. Hua Y, Zhao H, Kong Y, Lu X. Meta-analysis of the association between the interleukin-1A –889C/T polymorphism and Alzheimer’s disease. J Neurosci Res. 2012;90:1681–92.

51. Li B-H, Zhang L-L, Yin Y-W, Pi Y, Guo L, Yang Q-W, et al. Association between interleukin-1α C(−889)T polymorphism and Alzheimer’s disease: a meta-analysis including 12,817 subjects. J Neural Transm. 2013;120:497–506.

52. Qin X, Peng Q, Zeng Z, Chen Z, Lin L, Deng Y, et al. Interleukin-1A −889C/T polymorphism and risk of Alzheimer’s disease: a meta-analysis based on 32 case-control studies. J Neurol. 2012;259:1519–29.

53. Minster RL, DeKosky ST, Ganguli M, Belle S, Kamboh MI. Genetic association studies of interleukin–1 (IL–1A and IL–1B) and interleukin–1 receptor antagonist genes and the risk of Alzheimer’s disease. Ann Neurol. 2000;48:817–9.

54. Ki CS, Na DL, Kim DK, Kim HJ, Kim JW. Lack of association of the interleukin–1alpha gene polymorphism with Alzheimer’s disease in a Korean population. Ann Neurol. 2001;49:817–8.

55. Prince JA, Feuk L, Sawyer SL, Gottfries J, Ricksten A, Nägga K, et al. Lack of replication of association findings in complex disease: an analysis of 15 polymorphisms in prior candidate genes for sporadic Alzheimer’s disease. Eur J Hum Genet. 2001;9:437–44.

56. Fidani L, Goulas A, Mirtsou V, Petersen RC, Tangalos E, Crook R, et al. Interleukin-1A polymorphism is not associated with late onset Alzheimer’s disease. Neurosci Lett.
57. Green EK, Harris JM, Lemmon H, Lambert JC, Chartier-Harlin MC, St Clair D, et al. Are interleukin-1 gene polymorphisms risk factors or disease modifiers in AD? Neurology. 2002;58:1566-8.

58. Mattila KM, Rinne JO, Lehtimäki T, Röyttä M, Ahonen JP, Hurme M. Association of an interleukin 1B gene polymorphism (-511) with Parkinson’s disease in Finnish patients. J Med Genet. 2002;39:400-2.

59. Pirskanen M, Hiltunen M, Mannermaa A, livonen S, Helisalmi S, Lehtovirta M, et al. Interleukin 1α gene polymorphism as a susceptibility factor in Alzheimer’s disease and its influence on the extent of histopathological hallmark lesions of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2002;14:123-7.

60. Tsai S-J, Liu H-C, Liu T-Y, Wang K-Y, Hong C-J. Lack of association between the interleukin–1alpha gene C(-889)T polymorphism and Alzheimer’s disease in a Chinese population. Neurosci Lett. 2003;343:93–6.

61. Clarimón J, Bertranpetit J, Calafell F, Boada M, Tàrraga L, Comas D. Joint analysis of candidate genes related to Alzheimer’s disease in a Spanish population. Psychiatr Genet. 2003;13:85–90.

62. Kuo Y-M, Liao P-C, Lin C, Wu C-W, Huang H-M, Lin C-C, et al. Lack of association between interleukin-1alpha polymorphism and Alzheimer disease or vascular dementia. Alzheimer Dis Assoc Disord. 2003;17:94–7.

63. McCarron MO, Stewart J, McCarron P, Love S, Vinters HV, Ironside JW, et al. Association between interleukin-1A polymorphism and cerebral amyloid angiopathy-related hemorrhage. Stroke. 2003;34:e193–5.

64. Li X-Q, Zhang J-W, Zhang Z-X, Chen D, Qu Q-M. Interleukin-1 gene cluster polymorphisms and risk of Alzheimer’s disease in Chinese Han population. J Neural
65. Nishimura M, Sakamoto T, Kaji R, Kawakami H. Influence of polymorphisms in the genes for cytokines and glutathione S-transferase omega on sporadic Alzheimer’s disease. Neurosci Lett. 2004;368:140-3.

66. Wang H-K, Hsu W-C, Fung H-C, Lin J-C, Hsu H-P, Wu Y-R, et al. Interleukin-1α and -1β promoter polymorphisms in Taiwanese patients with dementia. Dement Geriatr Cogn Disord. 2007;24:104-10.

67. Déniz-Naranjo MC, Muñoz-Fernandez C, Alemany-Rodríguez MJ, Pérez-Vieitez MC, Aladro-Benito Y, Irurita-Latasa J, et al. Cytokine IL–1β but not IL–1α promoter polymorphism is associated with Alzheimer disease in a population from the Canary Islands, Spain. Eur J Neurol. 2008;15:1080-4.

68. Dursun E, Gezen-Ak D, Ertan T, Bilgiç B, Gürvit H, Emre M, et al. Interleukin–1α –889 C/T polymorphism in Turkish patients with late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord. 2009;27:82-7.

69. Hu J, Li G, Zhou D, Zou Y, Zhu Z, Xu R, et al. Genetic analysis of interleukin–1A C(–889)T polymorphism with Alzheimer disease. Cell Mol Neurobiol. 2009;29:81-5.

70. Serretti A, Olgiati P, Politis A, Malitas P, Albani D, Dusi S, et al. Lack of association between interleukin–1α rs1800587 polymorphism and Alzheimer’s disease in two independent European samples. J Alzheimer’s Dis. 2009;16:181-7.

71. Ribizzi G, Fiordoro S, Barocci S, Ferrari E, Megna M. Cytokine polymorphisms and Alzheimer disease: possible associations. Neurol Sci. 2010;31:321-5.

72. Cousin E, Macé S, Rocher C, Dib C, Muzard G, Hannequin D, et al. No replication of genetic association between candidate polymorphisms and Alzheimer’s disease. Neurobiol Aging. 2011;32:1443-51.

73. Vendramini AA, Lábio RW de, Rasmussen LT, Reis NM dos, Minett T, Bertolucci PHF, et
al. Interleukin-8-251T > A, interleukin-1α-889C > T and apolipoprotein E polymorphisms in Alzheimer’s disease. Genet Mol Biol. 2011;34:1–5.

74. Moraes CF, Benedet AL, Souza VC, Lins TC, Camargos EF, Naves JOS, et al. Cytokine gene polymorphisms and Alzheimer’s disease in Brazil. Neuroimmunomodulation. 2013;20:239–46.

75. Tian M, Deng YY, Hou DR, Li W, Feng XL, Yu ZL. Association of IL-1, IL-18, and IL-33 gene polymorphisms with late-onset Alzheimer’s disease in a Hunan Han Chinese population. Brain Res. 2015;1596:136–45.

76. Arosio B, Trabattoni D, Galimberti L, Buccarelli P, Fasano F, Calabresi C, et al. Interleukin–10 and interleukin–6 gene polymorphisms as risk factors for Alzheimer’s disease. Neurobiol Aging. 2004;25:1009–15.

77. Zhang Y, Zhang J, Tian C, Xiao Y, Li X, He C, et al. The -1082G/A polymorphism in IL-10 gene is associated with risk of Alzheimer’s disease: a meta-analysis. J Neurol Sci. 2011;303:133–8.

78. Di Bona D, Rizzo C, Bonaventura G, Candore G, Caruso C. Association between interleukin–10 polymorphisms and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimer’s Dis. 2012;29:751–9.

79. Scassellati C, Zanardini R, Squitti R, Bocchio-Chiavetto L, Bonvicini C, Binetti G, et al. Promoter haplotypes of interleukin–10 gene and sporadic Alzheimer’s disease. Neurosci Lett. 2004;356:119–22.

80. Culpan D, Prince JA, Matthews S, Palmer L, Hughes A, Love S, et al. Neither sequence variation in the IL-10 gene promoter nor presence of IL-10 protein in the cerebral cortex is associated with Alzheimer’s disease. Neurosci Lett. 2006;408:141–5.

81. Ramos EM, Lin M-T, Larson EB, Maezawa I, Tseng L-H, Edwards KL, et al. Tumor necrosis factor α and interleukin 10 promoter region polymorphisms and risk of late-
onset Alzheimer disease. Arch Neurol. 2006;63:1165.

82. Shawkatová I, Javor J, Párická Z, Vrazda L, Novák M, Buc M. No association between cytokine gene polymorphism and risk of Alzheimer’s disease in Slovaks. Acta Neurobiol Exp. 2010;70:303–7.

83. Heun R, Kölsch H, Ibrahim-Verbaas CA, Combarros O, Aulchenko YS, Breteler M, et al. Interactions between PPAR-α and inflammation-related cytokine genes on the development of Alzheimer’s disease, observed by the Epistasis Project. Int J Mol Epidemiol Genet. 2012;3:39–47.

84. Torres KC, Araújo Pereira P, Lima GS, Bozzi IC, Rezende VB, Bicalho MA, et al. Increased frequency of T cells expressing IL-10 in Alzheimer disease but not in late-onset depression patients. Prog Neuro-Psychopharmacology Biol Psychiatry. 2013;47:40–5.

85. Kang H-J, Kim J-M, Kim S-W, Shin I-S, Park S-W, Kim Y-H, et al. Associations of cytokine genes with Alzheimer’s disease and depression in an elderly Korean population. J Neurol Neurosurg Psychiatry. 2015;86:1002–7.

86. Toral-Rios D, Franco-Bocanegra D, Rosas-Carrasco O, Mena-Barranco F, Carvajal-García R, Meraz-Ríos M, et al. Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer’s disease: a pilot study. Front Cell Neurosci. 2015;9:148.

87. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1:182–8.

Table

Table 1. Frequency of IL-1α -889C/T, IL-1β -1473C/G and IL-10 -1082G/A genotypes, and MMSE scores and ERP latencies in AD and MCI patients, HC, and in patients with other causes of dementia.
Table

	IL-1α	IL-1β	IL-10	MMSE	Age	Sex						
	TT	CC	TC	CC	GG	GG	AA	AG	Mean ± SD	Median (25–75th percentile)	F/M	
AD	6	64	43	60	7	46	23	35	55	19.9 ± 4.5	73 (67-77)	61/51
MCI	5	30	18	40	1	12	9	24	20	25.1 ± 2.9	70 (59-74)	27/2
HC	7	1	3	2	2	3	1	3	4	27.8 ± 1.9	54 (41-60)	5/3
VaD	2	7	5	9	1	4	2	8	4	22.2 ± 5.0	71 (63-77)	6/8
FTD	14	8	14	2	6	4	7	11	11	16.7 ± 5.2	61 (56-64)	11/11
DLB	2	2	3	5	2	2	4	3	19.3 ± 3.9	70 (68-75)	2/5	
AD + VaD	1	2	2	1	2	1	1	2	19.3 ± 4.0	78 (68-75)	0/3	
PD	1	1	1	1	1	2	2	10	22.5 ± 10.6	62 (63-77)	1/1	
CBS	1	1	1	1	1	1	1	2	27	51 (48-54)	1/0	
ND	1	2	3	1	2	2	1	2	20.7 ± 5.5	68 (63-77)	2/1	

AD: Alzheimer’s disease; AD + VaD: mixed dementia; CBS: corticobasal syndrome; DLB: dementia with Lewy bodies; F, female; FTD: frontotemporal dementia; HC: healthy control; IL: interleukin; M, male; MCI: mild cognitive impairment; ND: nonspecific dementia; PD: Parkinson’s disease; SD: standard deviation; VaD: vascular dementia.

Figures

Figure 1

MMSE scores in A) all subjects, B) AD, MCI patients and HC grouped together, and C) AD and MCI patients grouped together, with different IL-1β rs1143623 genotypes. *p<0.05.
Figure 2

MMSE scores in all subjects with different IL-1α -889C/T genotypes. *p<0.05.
Figure 3

MMSE scores in MCI patients with different IL-10 -1082G/A genotypes. *p<0.05.
Figure 4

P300 latency in AD and MCI patients and HC with different IL-1β rs1143623 genotypes.

*p<0.05.