New experimental limits on double-beta decay of osmium

P. Bellia,b, R. Bernabeia,b,1, F. Cappellac,d, V. Caraccioloa,b,e, R. Cerullia,b, F.A. Danevichf, A. Incicchittic,d, D.V. Kasperovychf, V.V. Kobychevf, G.P. Kevtung,h, N.G. Kevtung, M. Laubensteine, V. Merloa,b, D.V. Podai, O.G. Polischukf, A.P. Shcherbang, S. Tessalinaa, V.I. Tretyakf

aINFN, sezione di Roma “Tor Vergata”, I-00133 Rome, Italy
bDipartimento di Fisica, Università di Roma “Tor Vergata, I-00133 Rome, Italy”
cINFN, sezione di Roma, I-00185 Rome, Italy
dDipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Rome, Italy
eINFN, Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy
fInstitute for Nuclear Research of NASU, 03028 Kyiv, Ukraine
gNational Science Center “Kharkiv Institute of Physics and Technology”, 61108 Kharkiv, Ukraine
hV.N. Karazin Kharkiv National University, 4, 61022 Kharkiv, Ukraine
iUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
jJohn de Laeter Centre for Isotope Research, GPO Box U 1987, Curtin University, Bentley, WA, Australia

Abstract

Double-beta processes in 184Os and 192Os were searched for over 15851 h at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. by using a 118 g ultra-pure osmium sample installed on the endcap of a 112 cm3 ultra-low-background broad-energy germanium detector. New limits on double-electron capture and electron capture with positron emission in 184Os were set at the level of $\lim T_{1/2} \sim 10^{16} - 10^{17}$

1Corresponding author at: Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy. E-mail address: rita.bernabei@roma2.infn.it (R. Bernabei)
In particular, the $2\nu 2K$ and $2\nu KL$ decays of 184Os to the ground state of 184W are restricted as $T_{1/2} \geq 3.0 \times 10^{16}$ yr and $T_{1/2} \geq 2.0 \times 10^{16}$ yr, respectively. A lower limit on the half-life for the double-beta decay of 192Os to the first excited level of 192Pt was set as $\text{lim } T_{1/2} = 2.0 \times 10^{20}$ yr at 90% C.L.

Keywords: 184Os, 192Os, Double-beta decay, Low-background gamma spectrometry

1 Introduction

Double-beta (2β) decay of atomic nuclei is a key process to study properties of neutrino and weak interaction, and to search for effects beyond the Standard Model of particles and interactions (SM). While the 2β decay with the emission of two neutrinos ($2\nu 2\beta$) is allowed by the SM and already observed in several nuclides with half-lives in the $(10^{18} - 10^{24})$ yr range [1], the neutrinoless mode of the decay ($0\nu 2\beta$) is forbidden in the framework of the SM since the process breaks the lepton number L by two units [2, 3, 4, 5, 6] and probes the Majorana nature of the neutrino (the particle is equal to its antiparticle) [7, 8]. The $0\nu 2\beta$ decay remains unobserved despite more than seventy years of experimental attempts. The most sensitive experiments give limits on the $0\nu 2\beta$ decay half-life for several nuclei at the level of $\text{lim } T_{1/2} \sim (10^{24} - 10^{26})$ yr [9, 10, 11, 12, 13]. Assuming the mass mechanism of the $0\nu 2\beta$ decay by exchange of a virtual light Majorana neutrino, the region of half-life limits corresponds to effective Majorana neutrino mass limits in the range of $\langle m_{2\beta} \rangle \sim (0.1 - 0.5)$ eV. The range of $\langle m_{2\beta} \rangle$ limits is due to the possible quenching of the axial vector coupling constant g_A (used to calculate the effective neutrino mass from the experimental half-life limits) [14, 15] and the uncertainty of nuclear-matrix-element calculations (see, e.g., discussion and references in [16]).

The experimental sensitivity to double-electron capture (2EC), electron capture with positron emission (ECβ^+), and double-positron decay ($2\beta^+$) is substantially lower than the sensitivity of the experiments to search for 2β decay with electrons emission ($2\beta^-$). At the same time, the mechanisms of the neutrinoless 2EC, ECβ^+ and $2\beta^+$ processes are the same as for the $0\nu 2\beta^-$ decay and thus, the investigations of the 2EC, ECβ^+ and $2\beta^+$ decays can give essentially the same information about properties of the neutrino and
the weak interaction.

However, there are important arguments to develop experimental methods to search for the $0\nu 2\text{EC}$, $0\nu \text{EC}$, β^+ and β^+ decays owing to the potential clarification of the mechanism of the $0\nu 2\beta^-$ decay when observed: whether it is mediated by the mass mechanism with exchange by virtual light Majorana neutrinos or with a possible contribution of right-handed currents in the weak interaction \cite{17}. In addition there is an interesting possibility of a resonant $0\nu 2\text{EC}$ process that can increase the $0\nu 2\text{EC}$ decay probability up to the six orders of magnitude in case the parent and daughter atoms’ energies are degenerate \cite{18, 19, 20, 21, 22}.

The ^{184}Os isotope is one of the potentially 2EC and EC, β^+ decaying nuclides with the decay energy $Q_{2\beta} = 1452.8(7)$ keV \cite{23} and a rather small isotopic abundance $\delta = 0.02(2)$\% \cite{24}. A simplified decay scheme of ^{184}Os is shown in Fig. 1.

Another osmium isotope, the ^{192}Os, is potentially $2\beta^-$ active with decay energy $Q_{2\beta} = 406(3)$ keV \cite{23} and isotopic abundance $\delta = 40.78(32)$\% \cite{24}. The decay scheme of ^{192}Os is shown in Fig. 2. As one can see from Figs. 1 and 2 some possible 2β decay processes in ^{184}Os and ^{192}Os are expected to be accompanied by emission of γ quanta that can be identified by the γ-spectrometry method.

An experiment to search for rare decays of naturally occurring osmium nuclides with emission of γ quanta has been carried out at the LNGS (depth of 3600 meters of water equivalent (m w.e.)) by using a sample of ultrapure osmium and ultra-low-background germanium γ detectors of the STELLA facility \cite{27}. The data of the experiment’s first stage \cite{28, 29} were used to derive half-life limits at the level of $\lim T_{1/2} \sim 10^{14} - 10^{17}$ yr for 2EC and EC, β^+ processes in ^{184}Os, and the $\lim T_{1/2} = 5.3 \times 10^{19}$ yr was reached for the $2\beta^-$ decay of ^{192}Os to the first 2^+ 316.5 keV excited level of ^{192}Pt. However, the experiment’s sensitivity was limited by a rather poor detection efficiency due to self-absorption of γ quanta in the osmium sample that was in the form of four metal ingots with diameter in the range of $(7–10)$ mm \cite{3}.

The poor detection efficiency was especially a troublesome issue for the main goal of the experiment, which was the search for α decay of ^{184}Os and ^{186}Os to excited levels of daughter nuclei with emission of γ quanta of rather low energies 103.6 keV and 100.1 keV, respectively. To increase the detection

\footnotetext{2It should be noted that osmium is the densest naturally occurring element with the density of 22.587 g/cm3 \cite{30}.}
efficiency, the ingots were cut into thin slices with a thickness of (0.79 – 1.25) mm by using a method of electroerosion cutting. Moreover, the Os sample was placed on a specially developed ultra-low background broad-energy germanium (BEGe) detector with improved detection efficiencies and energy resolutions in the energy region from several keV to several hundreds keV. The optimization exhibited a substantial improvement of the experimental sensitivity and lower limits were set for the α decays of 184Os and 186Os to the first excited levels of daughter nuclei as $\lim T_{1/2}(^{184}$Os) = 6.8×10^{15} yr and $\lim T_{1/2}(^{186}$Os) = 3.3×10^{17} yr. It should be noted that the limits are already well above the theoretical predictions for the nuclides half-lives.
Figure 2: Decay scheme of ^{192}Os [26]. The $Q_{\beta\beta}$ value is from [23].

relative to the α decays [31].

A new stage of the experiment is in progress by using the Os sample directly placed on the crystal of the Ge detector as described in ref. [32] to further increase the detection efficiency of the low-energy γ-ray quanta expected in the α decays of ^{184}Os and ^{186}Os to the first excited levels of the daughter nuclei. On the other token, in the present study the data of the already completed measurements [31] are utilized to search for 2β processes in ^{184}Os and ^{192}Os with emission of X-ray and γ-ray quanta.

2 Experiment and data analysis

The production of the Os sample, the accurate determination of the Os sample isotopic composition, the low-background measurements and data analysis are described in detail in [31]. Here we briefly describe the main features of the experiment.

The Os sample was prepared from osmium metal obtained by electron-beam melting with further purification by electron-beam zone refining. The obtained ingots were cut (after the first stage of the experiment [28]) into thin slices with a thickness of $(0.79 - 1.25)$ mm by electroerosion cutting with a brass wire in kerosene.

The isotopic composition of the osmium sample was measured by using negative thermal ionization mass spectrometry. The isotopic concentration of ^{184}Os was determined as $0.0170(7)$% [31], with an accuracy essentially higher than that of the adopted reference value of $0.02(2)$% [24]. The ^{192}Os isotopic
abundance was measured as 40.86(5)% (the reference value is 40.78(32)% [24]).

The Os slices with a total mass of 117.96(2) g were assembled on the top and around of the BEGe detector endcap. The active volume of the detector is 112.5 cm3; the endcap of the detector is made of 1.5 mm aluminium to increase the detection efficiency to low energy γ quanta. The detector with the Os sample was shielded by layers of \approx 5 cm thick high-purity copper and 20 cm thick lead. The experiment was running at the STELLA facility of the LNGS.

![Energy spectrum measured with the Os sample by the ultra-low-background BEGe detector over 15851 h (solid line). The detector’s background energy spectrum over 1660 h, normalized to the Os sample’s measured time, is shown by circles. The energies of γ peaks are in keV.](image)

The energy spectra measured with the Os sample over 15851 h and background data taken over 1660 h are presented in Fig. 3. The lower counting-rate in the spectrum with the sample below \sim 0.4 MeV can be
explained by the very high density of osmium that absorbs effectively external radiations from the shielding materials surrounding the detector (mainly bremsstrahlung from 210Bi in the lead shield). The analysis of the γ peaks observed in the spectra allowed us to estimate the Os sample radioactive contamination to be rather low, with only 40K and 137Cs detected (see Table 1 and [28] for details of the analysis). Other γ peaks observed in the spectrum measured with the Os sample are statistically indistinguishable from the background. Thus only limits were set for 60Co and daughters of 232Th, 235U and 238U (a possible contamination of the sample by 241Am will be discussed in Section 2.1).

Table 1: Radioactive trace impurities in the Os sample.

Decay chain	Radionuclide	Specific activity (mBq/kg)
	40K	11 ± 4
	60Co	≤ 1.3
	137Cs	0.5 ± 0.1
	241Am	≤ 5.6
232Th	228Ra	≤ 6.6
	228Th	≤ 16
235U	235U	≤ 8.0
	231Pa	≤ 3.5
	227Ac	≤ 1.1
238U	238U	≤ 35
	226Ra	≤ 4.4
	210Pb	≤ 180

The dependence of the energy resolution of the detector (full width at half maximum, FWHM, in keV) on the energy of γ-ray quanta (E_γ, in keV) was determined using the γ peaks of 40K, 208Tl, 210Pb, 214Pb, and 214Bi observed in the data of the long-time measurements as following:

$$\text{FWHM (keV)} = 0.57(5) + 0.029(2) \times \sqrt{E_\gamma}.$$ (1)
2.1 Limits on 2EC and ECβ^+ processes in 184Os

There are no peculiarities in the experimental data which could be ascribed to 2β-decay processes in 184Os. Thus, we report the limits on the 184Os half-life relative to the different channels and modes of the 2β decay adopting the following formula:

$$\text{lim } T_{1/2} = \frac{N \cdot \ln 2 \cdot \eta \cdot t}{\text{lim } S},$$ \hspace{1cm} (2)

where N is the number of 184Os nuclei in the sample (6.35×10^{19}), η is the detection efficiency, t is the time of measurement, and $\text{lim } S$ is the upper limit on the number of events of the effect searched for which can be excluded at a given confidence level (C.L.).

The fastest decay of 184Os is theoretically expected to be the 2ν2EC, mainly absorbing the K and/or L electron shells. In case of 2ν2K, 2νKL, and 2ν2L capture in 184Os, a cascade of X-rays and Auger electrons of the W atom is expected. However, the 2ν2L decay cannot be detected in the present experiment since the energies of the L X-rays of tungsten (7.4 keV–11.7 keV) are below the detector’s energy threshold.

The response of the BEGe detector to the 2ν2K and 2νKL decays of 184Os was simulated with the help of the EGSnrc package [33] assuming the following energies and intensities of X-ray from the K shell of W atom: 57.43 keV (Kα_3, 0.021%), 57.98 keV (Kα_2, 27.4%), 59.32 keV (Kα_1, 47.6%), 66.95 keV (Kβ_3, 5.33%), 67.24 keV (Kβ_1, 10.3%), 67.69 keV (Kβ_5, 0.24%), 69.07 keV (Kβ_2, 3.56%), 69.27 keV (Kβ_4, 0.54%) [34]. For L$_1$, L$_2$ and L$_3$ shells X-ray quanta with the mean energy value of 9.5 keV and intensity of 25% were simulated. Auger electrons and X-rays with smaller energy were not simulated, considering the very low probability of reaching the detector for such small energy electrons and X-ray quanta. The simulated energy distributions for the 2ν2K and 2νKL decays of 184Os are shown in Fig. 4.

The energy spectrum accumulated with the Os sample was fitted by the simulated 2ν2K (2νKL) distribution plus a sum of several Gaussian functions to describe the X-ray peaks of Os, Pb, Bi and Po present in the spectrum (see Fig. 5). The fits in the energy interval (55–81) keV, where K X-rays of W are, return area of the effects searched for: $S = (−74 ± 86)$ counts $((−87 ± 83)$ counts) that is no evidence for the 2ν2K (2νKL) decay. The

\footnote{It should be noted that K X-ray peaks of Os are absent in the background data, while the Pb, Bi and Po X-ray peaks are clearly observed in both spectra.}
fits quality is very good: $\chi^2/\text{n.d.f.} = 61.5/81 = 0.759$ ($\chi^2/\text{n.d.f.} = 59.2/81 = 0.731$), where n.d.f. is number of degrees of freedom. According to the recommendations \cite{35}, 78 (65) counts should be accepted as $\lim S$ at 90% C.L.\footnote{All the half-life limits in the present work are given at 90% C.L.} Taking into account the detection efficiency simulated with the help of the EGSnrc package $\eta = 2.911\% (1.635\%)$, the following half-life limits were set for the $2\nu2K$ and $2\nu KL$ decays of ^{184}Os to the ground state of ^{184}W:

$$T_{1/2}(2\nu2K) > 3.0 \times 10^{16} \text{ yr},$$

$$T_{1/2}(2\nu KL) > 2.0 \times 10^{16} \text{ yr}.$$
Figure 5: Energy spectra measured with the Os sample (solid histogram) and background data (circles) in the energy region where K X-rays of W are expected from the 2ν2K and 2νKL decays of 184Os. The fit of the data by the background model is shown by solid line, while the excluded effect of the 2ν2K decay is presented by dashed line (the excluded distribution is multiplied by a factor 10 for better visibility). Note that the two spectra are not normalized to the time; the acquisition times are 15851 h and 1660 h, respectively.

the ones obtained in the previous work for the 2ν2K decay of 184Os [28] are given in Table 2.

Every 2EC transitions of 184Os to excited levels of 184W should be accompanied by X-rays of W, too. Thus, the half-life limits on the 2ν2K and 2νKL decays of 184Os to the 111.2 keV excited level of 183W were estimated by using the already obtained limit S values for the 2ν2K and 2νKL decays to the ground state of 184W. The detection efficiencies for the decays calculated with the EGSnrc package and the event generator DECAY0 [36, 37].
Table 2: Half-life limits on 2β processes in ^{184}Os and ^{192}Os.

Transition	Level of daughter nucleus (keV)	E_{γ} (keV)	Detection efficiency	$\text{lim } S$	Experimental limits, $T_{1/2}$ (yr) at 90% C.L.	
					Present work	Previous result
$^{184}\text{Os} \rightarrow ^{184}\text{W}$						
2ν2K	g.s.	57 – 69	2.911%	78	$\geq 3.0 \times 10^{16}$	$\geq 1.9 \times 10^{14}$
2νKL	g.s.	57 – 69	1.635%	65	$\geq 2.0 \times 10^{16}$	
2ν2K	$2^+ 111.2$	57 – 69	3.487%	78	$\geq 3.6 \times 10^{16}$	$\geq 3.1 \times 10^{15}$
2νKL	$2^+ 111.2$	57 – 69	1.959%	65	$\geq 2.4 \times 10^{16}$	$\geq 3.1 \times 10^{15}$
2νEC	$2^+ 111.2$	111.2	0.340%	37	$\geq 7.3 \times 10^{15}$	$\geq 3.1 \times 10^{15}$
2ν2EC	$2^+ 903.3$	903.3	1.230%	4.9	$\geq 2.0 \times 10^{17}$	$\geq 3.2 \times 10^{16}$
2νEC	$0^+ 1002.5$	891.3	2.397%	6.8	$\geq 2.8 \times 10^{17}$	$\geq 3.8 \times 10^{17}$
2ν2EC	$2^+ 1121.4$	757.3	0.802%	6.2	$\geq 1.0 \times 10^{17}$	$\geq 6.9 \times 10^{16}$
2νKL	(0^+) 1322.2	903.3	1.056%	4.9	$\geq 1.7 \times 10^{17}$	
2ν2L	$2^+ 1386.3$	1275.1	0.967%	26	$\geq 3.0 \times 10^{16}$	
2ν2L	3^+ 1425.0	903.3	0.518%	4.9	$\geq 8.4 \times 10^{16}$	
2ν2L	$2^+ 1431.0$	1319.8	1.002%	18	$\geq 4.4 \times 10^{16}$	
0ν2K	g.s.	1313.1 – 1314.5	1.838%	9.0	$\geq 1.6 \times 10^{17}$	$\geq 2.0 \times 10^{17}$
0νKL	g.s.	1370.5 – 1373.8	1.827%	11	$\geq 1.3 \times 10^{17}$	$\geq 1.3 \times 10^{17}$
0ν2L	g.s.	1427.9 – 1433.1	1.833%	20	$\geq 7.3 \times 10^{16}$	$\geq 1.4 \times 10^{17}$
0ν2K	$2^+ 111.2$	1201.9 – 1203.3	1.911%	20	$\geq 7.6 \times 10^{16}$	$\geq 3.3 \times 10^{17}$
0νKL	$2^+ 111.2$	57 – 69	1.584%	65	$\geq 1.9 \times 10^{16}$	
0ν2EC	$2^+ 903.3$	903.3	1.019%	4.9	$\geq 1.7 \times 10^{17}$	$\geq 2.8 \times 10^{16}$
0ν2EC	$0^+ 1002.5$	310.6 – 312.0	3.773%	14	$\geq 2.1 \times 10^{17}$	$\geq 3.5 \times 10^{17}$
0ν2EC	$2^+ 1121.4$	757.3	0.736%	6.2	$\geq 9.4 \times 10^{16}$	$\geq 6.4 \times 10^{16}$
0νKL	(0^+) 1322.2	903.3	1.045%	4.9	$\geq 1.7 \times 10^{17}$	$\geq 2.8 \times 10^{16}$
0ν2L	$2^+ 1386.3$	1275.1	0.966%	26	$\geq 3.0 \times 10^{16}$	$\geq 6.7 \times 10^{16}$
0ν2L	(3^+) 1425.0	903.3	0.517%	4.9	$\geq 8.4 \times 10^{16}$	
Resonant 0ν2L	$2^+ 1431.0$	1319.8	1.005%	18	$\geq 4.4 \times 10^{16}$	$\geq 8.2 \times 10^{16}$
2νECβ^+	g.s.	511	7.526%	58	$\geq 1.0 \times 10^{17}$	$\geq 2.5 \times 10^{16}$
2νECβ^+	$2^+ 111.2$	511	7.271%	58	$\geq 1.0 \times 10^{17}$	$\geq 2.5 \times 10^{16}$
0νECβ^+	g.s.	511	7.403%	58	$\geq 1.0 \times 10^{17}$	$\geq 2.5 \times 10^{16}$
0νECβ^+	$2^+ 111.2$	511	7.191%	58	$\geq 9.9 \times 10^{16}$	$\geq 2.4 \times 10^{16}$
$^{192}\text{Os} \rightarrow ^{192}\text{Pt}$						
$2\beta^-(2\nu+0\nu)$	$2^+ 316.5$	316.5	4.820%	45	$\geq 2.0 \times 10^{20}$	$\geq 5.3 \times 10^{19}$
are slightly higher than those relative to the g.s. transitions, leading to a slightly higher half-life limits on the decays (the limits are presented in Table 2).

Another approach to search for 2EC transitions of 184Os to excited levels of 184W is based on the analysis of the experimental data in a region where γ peaks after de-excitation of 184W are expected. For example, Fig. 6 shows a part of the energy spectrum measured with the Os sample where a γ peak with the energy 111.2 keV after the 2ν2EC decay of 184Os to the 111.2 keV excited level of 184W is expected. The data were fitted by a

5 This happens due to a rather big internal electron conversion coefficient $\alpha = 2.57$ for the γ quanta emitted in de-excitation of the 111.2 keV excited level of 184W. As a result, additional K X-rays are coming from the internal conversion process of the 111.2-keV level de-excitation.

6 It should be stressed that limits obtained in such a way are valid for capture from any shells, not only for 2K or KL decays.
simple model consisting in a linear function (to describe the background) and a Gaussian function centered at 111.2 keV with the width calculated by applying the formula as the effect searched for. The fit returns a peak area \((-2.1 \pm 23.7)\) counts that gives \(\lim S = 37\) counts at 90% C.L. (the excluded peak is shown in Fig. 6 too). The detection efficiency for \(\gamma\) quanta with energy 111.2 keV in the decay was simulated by using the EGSnrc package and the event generator DECAY0 obtaining \(\eta = 0.340\%\). This substantially smaller detection efficiency (in comparison to the X-ray expected in the 2\(\nu\)K and 2\(\nu\)KL decays) can be explained by the rather big internal electron conversion coefficient \(\alpha = 2.57\) for the 111.2-keV \(\gamma\)-transition. As a result, the half-life limit for the 2\(\nu\)EC decay of \(^{184}\)Os to the 111.2 keV excited level of \(^{184}\)W is \(\lim T_{1/2} = 7.3 \times 10^{15}\) yr.

The half-life limits for the decays of \(^{184}\)Os to several excited levels of \(^{184}\)W were obtained in a similar way. The results of the analysis are presented in Table 2.

In the neutrinoless 2EC process in \(^{184}\)Os from K and L shells to the ground state of \(^{184}\)W the energy excess is supposed to be taken away by a bremsstrahlung \(\gamma\) quanta with an energy \(E_\gamma = Q_{23} - E_{b1} - E_{b2}\), where \(E_{bi}\) are the binding energies of the captured electrons on the atomic shells of the daughter W nuclide. For example, to estimate the half-life limit for the 0\(\nu\)2K decay of \(^{184}\)Os, the experimental spectrum measured with the Os sample was fitted in the energy interval 1300 – 1325 keV by the sum of a straight line (background) and a Gaussian-shaped peak with a width determined using the formula (1). The peak position was varied within the energy interval \((1313.8 \pm 0.7)\) keV determined by the accuracy of the \(Q_{23}\) value \([23]\). The maximum peak area returned by the fits \((2.3 \pm 4.1)\) counts, see Fig. 7 (a)) was considered, leading to \(\lim S = 9.0\) counts and \(\lim T_{1/2} = 1.6 \times 10^{17}\) yr. In the case of the 0\(\nu\)KL and 0\(\nu\)2L decays the ranges of the intervals in which the peaks searched for may appear were slightly larger due to the different values of the binding energies on the L\(_1\), L\(_2\) and L\(_3\) shells of the W atom: 12.1 keV, 11.5 keV and 10.2 keV, respectively. The parts of the energy spectrum measured with the Os sample in the regions of interest, the fitting curves, and the excluded peaks are shown in Fig. 7.

The highest sensitivity to the 0\(\nu\)2EC decays of \(^{184}\)Os to the excited levels of \(^{184}\)W (denoted here as \(E^*\)) was achieved either searching for \(\gamma\) peaks with certain energy emitted after de-excitation of the excited levels (as e.g. for the transitions to the levels \(2^+\) 903.3 keV and \(2^+\) 1121.4 keV) or analysing the data in the energy region where the bremsstrahlung \(\gamma\) quanta with the
Figure 7: Parts of the energy spectrum measured with the Os sample where bremsstrahlung γ peaks from the $0\nu 2K$ (a), $0\nu KL$ (b), and $0\nu 2L$ (c) captures in 184Os to the ground state of 184W are expected. The fits of the data are shown by solid lines, while the excluded peaks are presented by dashed lines. The horizontal lines (above the arrows labelling the energy of the peaks searched for) show the energy uncertainty due to the error of the $Q_{2\beta}$ value of 184Os plus the difference of the L$_1$, L$_2$ and L$_3$ shells binding energies.

energy $E_\gamma = Q_{2\beta} - E^* - E_{b1} - E_{b2}$ are expected (the case of decays to the levels 2$^+ 111.2$ keV and 0$^+$ 1002.5 keV). The results of the analysis are again presented in Table 2.

Neutrinoless double-electron captures to the excited levels (0)$^+$ 1322.2
keV and $2^+ 1386.3$ keV have been considered as resonant ones \cite{28}. However, double-electron capture to the excited level $(0)^+ 1322.2$ keV is energetically favoured from K and L shells\footnote{Although with a lower probability, capture from higher shells (M, N, O) is also allowed.}, while the $2^+ 1386.3$ keV level favours the electron capture from the L shell. The transitions are far from resonant condition taking into account the rather big difference $\Delta = Q_{23} - E^* - E_{b1} - E_{b2}$: $\Delta = [(49.0 - 50.9) \pm 0.7]$ keV for the 0νKL to the 1322.2-keV level, and $\Delta = [(42.3 - 46.1) \pm 0.7]$ keV for the 0ν2L transition to the 1386.3-keV level. Nevertheless, the decays were restricted analysing the experimental data in the energy regions where intense γ peaks from the decays are expected. In addition, a half-life limit on the kinematically allowed 0ν2L transition of 184Os to the $(3)^+ 1425.0$ excited level of 184W with $\Delta = [(3.6 - 7.4) \pm 0.7]$ keV was set in the present work (the results of the analysis are presented in Table 2). Only the transition to the $2^+ 1431.0$ keV level from the L shells remains a candidate for the resonant decay taking into account the region of Δ values from -3.1 keV to 2.1 keV. A search for the resonant 0ν2L transition was realized analysing the experimental energy spectrum gathered with the Os sample in the energy region where a peak with energy 1319.8 keV is expected. However, the obtained limit (see Table 2) is weaker than the previous result due to the rather low detection efficiency for high energy γ-ray quanta of the used BEGe detector.

The electron capture with positron emission in 184Os should lead to the emission of two annihilation γ quanta with energy 511 keV, causing an extra counting rate in the annihilation peak. The energy spectra taken with the Os sample and the background data were fitted in the energy interval (490 – 540) keV with a model constructed from a 511 keV peak and a linear function to describe background. The peak’s width was a free parameter of the fit to take into account a typically bigger width of the annihilation peak due to the Doppler broadening. The fits of the spectra measured with the Os sample and of the background data in the vicinity of the annihilation peak are shown in Fig. 8. There are (346 ± 32) counts in the 511 keV peak in the data gathered with the Os sample, while the annihilation-peak area in the background spectrum is (60 ± 13) counts, which leads to the residual peak area $(−227 \pm 128)$ counts and to the limb $S = 58$ counts after the normalization of the expected number of background counts to the time of measurement with the Os sample. Taking into account the detection efficiency for the annihilation γ quanta (slightly different depending on the decay mode: 2ν
or 0ν, see Table 2, one can obtain the half-life limits for the $2\nu EC\beta^+$ and $0\nu EC\beta^+$ decays of 184Os to the ground state of 184W presented in Table 2. Moreover, limits on the $2\nu EC\beta^+$ and $0\nu EC\beta^+$ decays to the 111.2 keV excited level of 184W were obtained by using the annihilation-peak analysis, too.

![Energy Spectra](image)

Figure 8: Part of the energy spectra measured with the Os sample in the vicinity of the 511 keV annihilation peak. The background data are presented by dots. The fits of the data are shown by the solid lines. Note that the two spectra are not normalized to the time; the acquisition times are 15851 h and 1660 h, respectively.

Most of the limits obtained in the present work are higher than the limits resulted in the previous stage of the experiment [28]. The largest improvement (more than two orders of magnitude) was achieved for the $2\nu 2K$ decay, while the $2\nu KL$ process was investigated for the first time. Also the 2ν double-electron capture to the $(0)^+ 1322.2$ keV, $2^+ 1386.3$ keV and $2^+ 1431.4$ keV excited levels of 184W were studied for the first time. However, the sensitivity of the present experiment is worse for some decay channels.
emitting high energy γ quanta because of the lower detection efficiency of the used BEGe detector.

2.2 Limit on $2\beta^-$ decay of 192Os to the first excited level of 192Pt

There is no evidence in the data for a peak at the energy 316.5 keV, expected in the $2\beta^-$ decay of 192Os to the first 2^+ 316.5 keV excited level of 192Pt. To estimate a limit S value for the 316.5 keV peak area, the energy spectrum taken with the Os sample was fitted by a model consisting of a Gaussian peak at energy 316.5 keV (with the width determined by formula (1)) and a linear function to describe the background. The best fit (χ^2/n.d.f. = 31.9/58 = 0.550) achieved in the energy interval (307 – 322) keV returns as peak area: (8.1 ± 22.5) counts, which corresponds to limit $S = 45$ counts. The fitting

![Energy Spectrum](image)

Figure 9: Part of the energy spectrum measured with the Os sample where a peak with energy 316.5 keV from the $2\beta^-$ decay of 192Os to the first 2^+ 316.5 keV excited level of 192Pt is expected. The fit of the data is shown by the solid line, while the excluded γ peak is presented by the dashed line.
curve and the excluded peak are shown in Fig. 9. With detection efficiency of $\eta = 4.820\%$ and 1.526×10^{23} number of 192Os nuclei in the sample, the half-life limit $T_{1/2} \geq 2.0 \times 10^{20}$ yr was obtained, valid for both the 0ν and 2ν decay modes. This limit improves of 4 times the result of the previous experiment (see Table 2).

3 Conclusions

Double-beta processes in 184Os and 192Os were searched for over 15851 h using an ultra-low-background broad-energy germanium detector with an active volume of 112 cm3, optimized for low-energy γ-ray spectrometry. The sample of ultra-pure osmium with a mass of 118 g and with a thickness of $(0.79 - 1.25)$ mm was placed on the detector end-cap. The experiment was carried out in the STELLA facility of the LNGS.

New improved half-life limits on most of the 2β decay channels of 184Os were set at the level of $\lim T_{1/2} \sim 10^{16} - 10^{17}$ yr at 90% C.L. A particular progress was achieved for the $2\nu2K$ and $2\nu KL$ processes in 184Os (the $2\nu KL$ decay was analyzed for the first time) thanks to the substantial improvement of the detection efficiency with the thin Os sample and the use of the BEGe detector with high detection efficiency and good energy resolution to X-ray quanta expected in the decays. The half-lives of the 184Os $2\nu2K$ and $2\nu KL$ decays were measured to be: $T_{1/2} \geq 3.0 \times 10^{16}$ yr and $T_{1/2} \geq 2.0 \times 10^{16}$ yr, respectively. The newly determined lower half-life limit on the $2\beta^-$ decay of 192Os to the first excited level of 192Pt, $\lim T_{1/2} = 2.0 \times 10^{20}$ yr, improves the previous limit by 4 times.

The results of the present experiment are very far from theoretical estimates of the 184Os decay probability. While there are no estimates of the half-lives for the two-neutrino $2EC$ or $EC\beta^+$ processes, the existing calculations for the half-life of 184Os concerning the $0\nu2EC$ decay to the 1322.2 keV level of 184W are at level of $T_{1/2} \sim 10^{28} - 10^{31}$ yr (assuming the mechanism of the decay by exchange of a virtual light Majorana neutrino with $\langle m_{2\beta} \rangle = 0.1$ eV) [21, 38].

The sensitivity of the experiment could be improved by $4 - 6$ orders of magnitude by using osmium enriched in the 184Os isotope and by increasing the sample mass and the number of BEGe detectors, and further reducing the background level (e.g., by utilization of the background-reduction technique applied in the GERDA experiment [9]). Surprisingly, such an experiment
looks practically realistic despite the very low natural isotopic abundance of 184Os. Osmium isotopes could be enriched by gas centrifugation [39], at present the only viable technology to produce large amounts of isotopically enriched materials.

4 Acknowledgements

The group from the Institute for Nuclear Research of NASU (Kyiv, Ukraine) was supported in part by the National Research Foundation of Ukraine Grant No. 2020.02/0011. D.V. Kasperovych, and O.G. Polischuk were supported in part by the project “Investigations of rare nuclear processes” of the program of the National Academy of Sciences of Ukraine “Laboratory of young scientists”.

References

[1] A.S. Barabash, Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review, Uniberse 6 (2020) 159.

[2] F.F. Deppisch, M. Hirsch, H. Päs, Neutrinoless double-β decay and physics beyond the standard model, J. Phys. G 39 (2012) 124007.

[3] S.M. Bilenky, C. Giunti, Neutrinoless double-β decay: A probe of physics beyond the standard model, Int. J. Mod. Phys. A 30 (2015) 1530001.

[4] S. Dell'Oro, S. Marcocci, M. Viel, F. Vissani, Neutrinoless Double Beta Decay: 2015 Review, AHEP 2016 (2016) 2162659.

[5] J.D. Vergados, H. Ejiri, F. Simkovic, Neutrinoless double beta decay and neutrino mass, Int. J. Mod. Phys. E 25 (2016) 1630007.

[6] M.J. Dolinski, A.W.P. Poon, W. Rodejohann, Neutrinoless double beta decay: Status and prospects. Annu. Rev. Nucl. Part. Sci. 69 (2019) 219.

[7] E. Majorana, Symmetrical theory of electrons and positrons, Nuovo Cimento 14 (1937) 171.
[8] J. Schechter and J.W.F. Valle, Neutrinoless double-β decay in $SU(2) \times U(1)$ theories, Phys. Rev. D 25 (1982) 2951.

[9] M. Agostini et al. (GERDA Collaboration), Final Results of GERDA on the Search for Neutrinoless Double-β Decay, Phys. Rev. Lett. 125 (2020) 252502.

[10] O. Azzolini et al., Final Result of CUPID-0 Phase-I in the Search for the 82Se Neutrinoless Double-β Decay, Phys. Rev. Lett. 123 (2019) 032501.

[11] E. Armengaud et al. (CUPID-Mo Collaboration), A new limit for neutrinoless double-beta decay of 100Mo from the CUPID-Mo experiment, submitted to Phys. Rev. Lett.; arXiv:2011.13243 [nucl-ex].

[12] D.Q. Adams et al. (CUORE Collaboration), Improved Limit on Neutrinoless Double-Beta Decay in 130Te with CUORE, Phys. Rev. Lett. 124 (2020) 122501.

[13] A. Gando et al. (KamLAND-Zen Collaboration), Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503.

[14] J. Barea, J. Kotila, F. Iachello, Nuclear matrix elements for double-β decay, Phys. Rev. C 87 (2013) 014315.

[15] J. Suhonen, J. Kostensalo, Double β Decay and the Axial Strength, Front. in Phys. 7 (2019) 29.

[16] A. Giuliani, F.A. Danevich, V.I. Tretyak, A multi-isotope $0\nu2\beta$ bolometric experiment, Eur. Phys. J. C 78 (2018) 272.

[17] M. Hirsch et al., Nuclear structure calculation of $\beta^+\beta^+$, β^+EC, and EC/EC decay matrix elements, Z. Phys. A 347 (1994) 151.

[18] R. Winter, Double K capture and single K capture with positron emission, Phys. Rev. 100 (1955) 142.

[19] M.B. Voloshin, G.V. Mitselmakher, R.A. Eramzhyan, Conversion of an atomic electron into a positron and double β^+ decay, JETP Lett. 35 (1982) 656.
[20] J. Bernabeu, A. De Rujula, C. Jarlskog, Neutrinoless double electron capture as a tool to measure the electron neutrino mass, Nucl. Phys. B 223 (1983) 15.

[21] M.I. Krivoruchenko et al., Resonance enhancement of neutrinoless double electron capture, Nucl. Phys. A 859 (2011) 140.

[22] K. Blaum et al., Neutrinoless double-electron capture, Rev. Mod. Phys. 92 (2020) 045007.

[23] M. Wang et al., The Ame2016 atomic mass evaluation, Chin. Phys. C 41 (2017) 030003.

[24] J. Meijsa et al., Isotopic compositions of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem. 88 (2016) 293.

[25] C.M. Baglin, Nuclear Data Sheets for $A = 184$, Nucl. Data Sheets 111 (2010) 275.

[26] C.M. Baglin, Nuclear Data Sheets for $A = 192$, Nucl. Data Sheets 113 (2012) 1871.

[27] M. Laubenstein, Screening of materials with high purity germanium detectors at the Laboratori Nazionali del Gran Sasso, Int. J. Mod. Phys. A 32 (2017) 1743002.

[28] P. Belli et al., First search for double-β decay of 184Os and 192Os, Eur. Phys. J. A 49 (2013) 24.

[29] P. Belli et al., First search for double beta decay of osmium by low background HPGe detector, Proc. of 4-th Int. Conf. on Current Problems in Nucl. Phys. and At. Energy (NPAEKyiv2012), Kyiv, 2013, p. 357.

[30] W.M. Haynes et al. (eds.), CRC Handbook of Chemistry and Physics, 97th ed. (CRC Press, Boca Raton, 2017).

[31] P. Belli et al., Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta, Phys. Rev. C 102 (2020) 024605.

[32] S.S. Nagorny, M. Laubenstein, S. Nisi, Measurement of 190Pt alpha decay modes with gamma emission using a novel approach with an ultra-low-background high purity germanium detector, accepted by JINST (in publication).
[33] I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: Monte Carlo simulation of electron and photon transport, NRCC Report PIRS-701, Ottawa, 2003.

[34] S.Y.F. Chu, L.P. Ekström and R.B. Firestone, WWW Table of Radioactive Isotopes, database version 1999-02-28 from URL http://nucleardata.nuclear.lu.se/toi/.

[35] G.J. Feldman, R.D. Cousins, Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873.

[36] O.A. Ponkratenko et al., Event generator DECAY4 for simulating double-beta processes and decays of radioactive nuclei, Phys. At. Nucl. 63 (2000) 1282.

[37] V.I. Tretyak, in preparation.

[38] C. Smorra, Q value and half-life of double-electron capture in 184Os, Phys. Rev. C 86 (2012) 044604.

[39] http://www.ecp.ru/activity/nuclear/isotope_tbl (in Russian).