Sex and the public
Social eavesdropping, sperm competition risk and male mate choice

Martin Plath and David Bierbach*

Department of Ecology & Evolution; J.W. Goethe University Frankfurt; Frankfurt, Germany

Key words: audience effect, communication networks, mate choice copying, non-independent mate choice, sexual selection

Mate choice can be sensitive to social cues from neighboring individuals, e.g., animals can copy mate choice decisions. Males that are at risk of being copied by others may respond to this with reduced preference expression (“audience effects”). We review the various pathways by which sperm competition risk affects (1) male mate copying behavior and (2) audience effects. For example, a recent study suggests that males gather complex social information on rivals’ sexual competitiveness (sexual activity and attractiveness to females) and respond with reduced expression of mating preferences only “when it matters,” i.e., when a sexually competitive rival is present.

Sexual selection, e.g., through mate choice, is an important evolutionary driver and individuals may integrate a wide range of information in their assessment of mate quality. Mate choice is not only based on external characteristics (morphological, behavioral or other) of potential mating partners, but also the social environment in which mating occurs plays an essential role (non-independent mate choice2-4). Especially in group-living animals5 communication events—such as communicatory interactions between sending (courting) males and receiving (choosing) females—typically do not occur in privacy, but in a public domain.6-11 Living in a social (or communication) network6-11 enables animals to eavesdrop on other individuals’ mating decisions and utilize the extracted information.8,10,15-17 The most intensely studied type of social eavesdropping is mate choice copying,2-3,18-21 but also males that are at risk of being copied by others may respond to this with reduced preference expression (“audience effects”). In livebearing fishes (family Poeciliidae), where females often mate multiply,25,26 sperm competition risk (SCR) is a decisive factor affecting males’ fitness (reproductive success), but its role for non-independent mate choice was largely unknown. We demonstrate that SCR plays a significant role for (1) male mate copying behavior (with males copying less when SCR is high)7 and (2) audience effects. For instance, SCR leads males to deceive rivals about their actual mating preferences.28 Moreover, a recent study29 uncovered a surprisingly complex case of social information use: males eavesdrop on rivals’ sexual competitiveness (sexual activity and attractiveness to females) and respond with reduced preference expression only “when it matters,” i.e., when being observed by a sexually competitive rival.

Sexual selection theory often assumes that mate choice decisions are based on genetically inherited internal factors (i.e., innate search images) that enable individuals to select among several potential mates (Fig. 1A) and accordingly, an increasing body of literature provides direct (e.g., through parent-offspring comparisons)30,31 or indirect evidence (e.g., from the investigation of common garden reared individuals)32-34 for a genetic basis of mating preferences. Still, several studies exemplified that mate choice in nature is a complex process that also involves the acquisition of information from the social environment.3,21,35 (Fig. 1B). This does not come as a surprise as animal behavior in general typically is a product of both innate (genetic) and environmental factors.36,37

Much research has been conducted on female mate choice, and various theories have been forwarded to explain the adaptive significance of female mating preferences.1,38-40 However, it is well established that also males express mating preferences,41-45 especially if mating or sperm production is costly46-49 and if females differ in their resource value,50,51 such as numbers of oocytes in the female ovary.52 In modern bony fishes (Teleostei), for example, female fecundity is typically a correlate of body size, and males prefer to mate with larger, more fecund females (e.g., in two-spotted gobies, Gobiusculus flavescens,53 guppies, Poecilia reticulata,54 Atlantic mollies, P. mexicana,55,56 and haplochrome cichlids, Astatotilapia flavijosephi).56

Male teleosts assess females’ quality not only on the basis of body size, but a range of other phenotypic traits may also be relevant.57,58 However, in stark contrast to female mate choice, sperm competition risk (SCR) and intensity (SCI) can affect male mate choice,6-27,59-62 Obviously, a male’s reproductive fitness is at stake when sperm from two or more males compete for fertilization of a clutch,63,64 or—in internally fertilizing species—within a single female’s genital tract.26,65,66 In this review, we provide a brief overview of recent findings in the field of socially influenced (non-independent) male mate choice. We emphasize the role played by SCR for various aspects of non-independent male mate choice.
Especially in internal fertilizing species, such as livebearing fishes (family Poeciliidae), where females mate multiply,67 and females can store sperm for several consecutive broods,26,68,69 sperm competition is intense. Poeciliid broods are typically sired by several males (e.g., P. reticulata;26,70 sailfin molly, P. latipinna;71,72 green swordtails, Xiphophorus hellerii), which may be due, in part, to benefits for females of mating multiply,25 but also to coercive male mating behavior, i.e., forced copulations.24,27 Obviously, females’ behavior (i.e., their past and anticipated future sexual interactions) and especially the behavior of surrounding males can have a profound effect on SCR and thus, are likely to affect males’ fitness (reproductive success). It seems straightforward to predict that the SCR a male is facing while choosing a mate is likely to affect his mate choice,23,61,62,78 and males are predicted to evolve counter-strategies to reduce SCR.79

Audience effects are defined as behavioral changes induced by the presence of other (by-standing) individuals that may or may not extract information from the observed communication events23,24 (Fig. 2C). Beside audience induced changes in signaling and courtship behavior,87,88 the presence of a conspecific audience also has the potential to affect males’ mate choice decisions.23,28,29,62,89-91 Poecilia mexicana males, e.g., cease expressing mating preferences and reduce their sexual activity when another male is present,89 which may be a response to avoid unintended interception of information about their mating preferences.23,62 On top of that, it appears that P. mexicana males deceive rivals about their mating preferences by directing their first sexual interaction (leading to increased SCR). As predicted, males from the latter group copied less, demonstrating that P. mexicana males indeed respond to perceived SCR when copying each other’s mate choice.27

Figure 1. (A) Schematic view of an idealized mate choice situation in a classical binary choice test. Mate choice is thought of as a process of mate quality assessment involving the choosing individual (C) and two potential mating partners (stimuli, S1 and S2). (B) Mate choice in a communication network involving multiple senders and receivers of information. For simplicity, most studies to date have focused on interactions between four individuals. In this example, a by-standing individual (the audience, A) may affect the focal individual’s mate choice, but also interactions between S1 and S2, and between A and both stimuli are acknowledged.

Social Eavesdropping:

Males Copy Other Males’ Choices

Social eavesdroppers are by-standing individuals that may extract information about the quality of the observed individuals by using information of signaling interactions3,16 (Fig. 2A). In the context of mate choice the most intensely studied form of social eavesdropping is mate choice copying, which has been defined as a process during which a female’s probability of choosing a given male increases if other females have previously chosen that male18 (Fig. 2B). Most studies on mate choice copying have focused on females,2,21,35 but also males copy other males’ choices (P. latipinna;30,81 pipefish, Syngnathus typhle;82 three-spined stickleback, Gasterosteus aculeatus).83

The adaptive significance of male mate choice copying in poeciliids could be linked to reduced costs for searching a receptive female.80 Poeciliid females are receptive only as virgins or for few days post partum84,85 and accordingly, only a small proportion of females in a population are receptive at a time.39,69 As poeciliid males need to approach females to test their receptivity by nipping at the female’s genital opening,86 copying other males’ mate choice may allow saving considerable energetic and opportunity costs (sensu85).

Nevertheless, male mate choice copying in internally fertilizing species—like livebearing fishes—remains a conundrum, as males incur increased SCR when choosing another male’s previous mate. In a recent study, we therefore asked whether male Atlantic mollies (P. mexicana) would copy less under increased SCR.27 We created two copying situations with different levels of SCR: a fraction of the focal males were allowed to copy from visual interactions between a stimulus female and a model male (representing low SCR) while another fraction of males could observe direct (sexual) interactions (leading to increased SCR). As predicted, males from the latter group copied less, demonstrating that P. mexicana males indeed respond to perceived SCR when copying each other’s mate choice.27

Figure 2A

Social eavesdropping involves the monitoring of a female by a by-standing male to determine whether he attracts a given female by her sexual signaling. After that, the by-standing male can use this information to adjust his own sexual behavior.3

Figure 2B

Mate choice copying is thought of as a process during which a female’s probability of choosing a given male increases if other females have previously chosen that male.18
kept together with a female and thus, was perceived by the other male as sexually active, while the other male was alone and thus, perceived as sexually inactive. In subsequent mate choice tests with different stimulus females, the males from each dyad served as focal and audience males, and vice versa. Focal males ceased to show mating preferences only when they had perceived their rivals as sexually active (Fig. 4A). In addition, focal males that were observed by a sexually active rival showed a stronger behavioral response when rivals were larger and thus, more attractive to females (Fig. 4B). This suggests that male fish are indeed able to remember and strategically exploit information about rivals when performing mate choice; in essence, males respond to an audience only “when it matters.”

Altogether, the aforementioned studies exemplify the various effects of social eavesdropping on male mate choice. Males make use of socially acquired information (mate choice copying), but also males that are at risk of being copied respond to this (audience effects), which may be a strategy to reduce sperm competition risk.

Acknowledgements

We thank Holger Geupel for help with animal care. This work is supported by the German Research Foundation (DFG; PL 470/3-1).
2.Inactive audience males. are from Spearman rank order tests. The strength of male preferences decreased with increasing N - mating preferences (preference scores). Body size differences in the tested male dyads (t -active (paired ± SEM) reveals that male preferences were more affected when the rival was perceived as sexually "son of preference scores (fraction of time near preferred female during 2nd-1st test parts, means were determined as the audience male’s standard length (SL)—focal male’s SL. s- and p-values 3. Changes in P. mexicana male mating preferences induced by the presence of a familiar audience male.29 Males of a dyad (one sexually active and one sexually inactive male) were tested for their preferences while successively serving both as focal and audience males. (A) A comparison of preference scores (fraction of time near preferred female during 2nd-1st test parts, means ± SEM) reveals that male preferences were more affected when the rival was perceived as sexually active (paired t-test; *p < 0.05). (B) Correlation between body size differences and changes in male mating preferences (preference scores). Body size differences in the tested male dyads (N = 21) were determined as the audience male’s standard length (SL)—focal male’s SL. r² and p-values are from Spearman rank order tests. The strength of male preferences decreased with increasing rival body size when the audience was perceived as sexually active, but not in the case of sexually inactive audience males.

References
1. Anderson M. Sexual Selection. Princeton: Princeton University Press 1994.
2. Westneat DF, Walters A, McCarthy TM, Harch MI, Hein WK. Alternative mechanisms of non-independent mate choice. Anim Behav 2000; 59:467-76.
3. Bonnie KE, Earley RL. Expanding the scope for social information use. Anim Behav 2007; 74:171-81.
4. Earley RL. Social eavesdropping and the evolution of conditional cooperation and cheating strategies. Phil Trans R Soc B 2010; 365:2675-86.
5. Krause J, Ruxton GD. Living in Groups. Oxford: Oxford University Press 2002.
6. Valone TJ, Templeton JP. Public information for the assessment of quality: a widespread social phenomenon. Phil Trans R Soc Lond B 2002; 357:1549-57.
7. Danchin E, Giraldeau LA, Valone TJ, Wagner RH. Public information: from noisy neighbors to cultural evolution. Science 2004; 305:487-91.
8. Dahlsten T. Public, private or anonymous? Facilitating and countering eavesdropping. In: McGregor PK, Ed. Animal Communication Networks. Cambridge: Cambridge University Press 2005; 38-62.
9. Grossnick L, Clement TS, Fernald RD. Fish can infer social rank by observation alone. Nature 2007; 445:429-32.
10. Valone TJ. From eavesdropping on performance to copying the behavior of others: a review of public information use. Behav Ecol Sociobiol 2007; 62:1-14.
11. Duenen M, Dugatkin LA. Communication networks. In: Evans J, Pilastro A, Schupp I, Eds. Ecology and Evolution of Livebearing Fishes (Poeciliidae). Chicago University Press 2011.
12. McGregor PK, Peake T. Communication networks: social environments for receiving and signaling behaviour. Acta Ethol 2000; 2:71-81.
13. Earley RL, Dugatkin LA. Fighting, mating and networking: pillars of poeciliid sociality. In: McGregor PK, Ed. Animal communication networks. Cambridge: Cambridge University Press 2005; 84-113.
14. Matus R, Schlupp I. Performing in front of an audience: signalers and the social environment. In: McGregor PK, Ed. Animal Communication Networks. Cambridge: Cambridge University Press 2005; 63-83.
15. Naguib M, Amrhein V, Kunc HP. Effects of territorial intrusions on eavesdropping neighbors: communication networks in nightingales. Behav Ecol 2004; 15:1011-5.
16. Peake TM. Eavesdropping in communication networks. In: McGregor PK, Ed. Animal Communication Networks. Cambridge: Cambridge University Press 2005; 13-37.
17. Ferjimanmons, LP Foote JR, Racleffie LM, Mennill DJ. Eavesdropping and communication networks revealed through playback and an acoustic location system. Behav Ecol 2008; 19:824-9.
18. Prett-Jones S. Independent versus non-independent mate-choice: do females copy each other? Am Nat 1992; 140:1000-9.
19. Dugatkin LA. Sexual selection and imitation: females copy the mate choice of others. Am Nat 1992; 139:1584-9.
20. Nodell SE, Valone TJ. Mate choice copying as public information. Ecol Letters 1998; 1:76-6.
21. Wite K. Learning and mate choice. In: Brown C, Laland KN, Krause J, Eds. Fish cognition and behavior. Oxford: Blackwell Publishing 2006; 70-95.
22. Marler P, Dufy A, Pickert R. Vocal communication in the domestic chicken II. Is a sender sensitive to the presence and nature of a receiver? Anim Behav 1986; 34:194-8.
23. Plath M, Schlupp I. Misleading mollies—the effect of an audience on the expression of mating preferences. Comun Integr Biol 2008; 2:199-203.
24. Zuberbuhler K. Audience effects. Curr Biol 2008; 11:189-90.
25. Evans JP, Magurran AE. Multiple benefits of multiple mating in guppies. Proc Nat Ac Sci USA 2000; 97:10074-6.
26. Becher SA, Magurran AE. Multiple mating and reproductive skew in Trinidadian guppies. Proc R Soc Lond B 2004; 271:1009-14.
27. Beerbach D, Kronmarchen C, Hennig-Schulz C, Stadler S, Plath M. Sperm competition risk affects male mate choice copying. Behav Ecol Sociobiol 2011.
28. Plath M, Richter S, Tiedemann R, Schlupp I. Male fish deceive competitors about mating preferences. Curr Biol 2008; 18:1138-41.
37. Princeton, New Jersey: Princeton University Press 1997.
38. Schlupp I. Choosy males from the underground: male
39. B 2001; 98:13155
40. K M
41. Behav Ecol Sociobiol 2009; 63:381
42. effect alters male but not female mating preferences.
43. P mollies, Poecilia mexicana (Poeciliidae, T eleostei).
44. Sæthers Bonduriansky R.
45. D E R
46. R B ierbach D, Girndt A, Hamfler S, Klein M, Mücksch
47. preferences for male traits in Poecilia reticulata.
48. signifer. Behav Ecol Sociobiol 2004; 56:253
49. Turner GF, Seehausen O. Individual variation in
50. about rivals to adjust their mate choice. Biol Lett 2011;
51. Turner GF, Seehausen O. Female variation in male
52. preferences for female coloration in a polymor-
53. T urner GF , Seehausen O. Individual variation in male
54. K 2001; 12:402
55. Turner GF, Seehausen O. Individual variation in female
56. matriarchy approach. Fourth edition. Oxford: Blackwell 1997;
57. Macklomb, Pseudomugil
58. Thiele M, Forsgren E. Male mate choice selects for
59. Tatarnikov A, Healey CIM, Gerber GF, Avise JC. Pronounced reproductive skew in a natural population of green swordtails, Xiphophorus helleri. Mol Ecol 2008; 17:4522-34.
60. Evans JP, Plaistro A, Rammarine IW. Sperm transfer through forced matings and its evolutionary implica-
61. Platth M, Mokowicz AM, Schlupp I, Tobler M. Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 2007; 18:680-8.
62. Platth M. Male mating behavior and costs of sexual harassment for females in caverneouls and extremo-
63. Phillips KA, Houde AE. Geographic variation in female
64. Sæthers Bonduriansky R. Costs influence sequential
65. About the evolution of multiple paternity and its implications in natural guppy (Poecilia reticulata) populations. Biol J Linn Soc 2003; 78:605-12.
66. Platth M, Mokowicz AM, Schlupp I, Tobler M. Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 2007; 18:680-8.
67. Platth M. Male mating behavior and costs of sexual harassment for females in caverneouls and extremo-
68. Phillips KA, Houde AE. Geographic variation in female
69. Sæthers Bonduriansky R. Costs influence sequential
70. About the evolution of multiple paternity and its implications in natural guppy (Poecilia reticulata) populations. Biol J Linn Soc 2003; 78:605-12.
71. Platth M, Mokowicz AM, Schlupp I, Tobler M. Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 2007; 18:680-8.
72. Platth M. Male mating behavior and costs of sexual harassment for females in caverneouls and extremo-
73. Phillips KA, Houde AE. Geographic variation in female
74. Sæthers Bonduriansky R. Costs influence sequential
75. About the evolution of multiple paternity and its implications in natural guppy (Poecilia reticulata) populations. Biol J Linn Soc 2003; 78:605-12.
76. Platth M, Mokowicz AM, Schlupp I, Tobler M. Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 2007; 18:680-8.
77. Platth M. Male mating behavior and costs of sexual harassment for females in caverneouls and extremo-
78. Phillips KA, Houde AE. Geographic variation in female
79. Sæthers Bonduriansky R. Costs influence sequential
80. About the evolution of multiple paternity and its implications in natural guppy (Poecilia reticulata) populations. Biol J Linn Soc 2003; 78:605-12.
81. Platth M, Mokowicz AM, Schlupp I, Tobler M. Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 2007; 18:680-8.
82. Platth M. Male mating behavior and costs of sexual harassment for females in caverneouls and extremo-
83. Phillips KA, Houde AE. Geographic variation in female
84. Sæthers Bonduriansky R. Costs influence sequential
85. About the evolution of multiple paternity and its implications in natural guppy (Poecilia reticulata) populations. Biol J Linn Soc 2003; 78:605-12.
86. Platth M, Mokowicz AM, Schlupp I, Tobler M. Sexual harassment in live-bearing fishes: comparing courting and non-courting species. Behav Ecol 2007; 18:680-8.
87. Platth M. Male mating behavior and costs of sexual harassment for females in caverneouls and extremo-
88. Phillips KA, Houde AE. Geographic variation in female
89. Sæthers Bonduriansky R. Costs influence sequential
90. About the evolution of multiple paternity and its implications in natural guppy (Poecilia reticulata) populations. Biol J Linn Soc 2003; 78:605-12.