Effective interactions in the delta-shells potential

R. Navarro Pérez · J. E. Amaro · E. Ruiz Arriola

Received: 27-IX-2012

Abstract We determine two-body Skyrme force parameters from a Nucleon-Nucleon interaction as a function of the maximal momentum fitting NN scattering data. We find general agreement with V_{lowk} interactions based on high quality potentials.

Keywords Effective NN interactions · Skyrme forces

The use of effective interactions in Nuclear Physics is rather old and dates back to the pioneering works of Moshinsky \[1\] and Skyrme \[2\]. One of the advantages in doing so is that, as compared to ab initio calculations, the nuclear many body wave function has a much simpler structure since short range correlations play a marginal role allowing for a fruitful implementation of mean field Hartree-Fock calculations \[3\]-\[4\].

At the two body level the effective interaction of Moshinsky \[1\] and Skyrme \[2\] reads

$$V(p', p) = \int d^3x e^{-ix\cdot(p'-p)}\tilde{V}(x)$$

$$= t_0(1 + x_0 p_0) + \frac{t_1}{2}(1 + x_1 P_0)(p'^2 + p^2)$$

$$+ t_2(1 + x_2 P_0)p'\cdot p + 2iW_0 S \cdot (p' \wedge p)$$

$$+ \frac{t_3}{2}\left[\sigma_1 \cdot p \sigma_2 \cdot p + \sigma_1 \cdot p' \sigma_2 \cdot p' - \frac{1}{3}\sigma_1 \cdot \sigma_2 (p'^2 + p^2)\right]$$

$$+ \frac{t_4}{2}\left[\sigma_1 \cdot p \sigma_2 \cdot p' + \sigma_1 \cdot p' \sigma_2 \cdot p - \frac{2}{3}\sigma_1 \cdot \sigma_2 p'\cdot p\right] + O(p^4)$$

(1)

Supported by Spanish DGI (grant FIS2011-24149) and Junta de Andalucía (grant FQM225). R.N.P. is supported by a Mexican CONACYT grant.

Presented by R.N.P. at the 20th International IUPAP Conference on Few-Body Problems in Physics, 20 - 25 August, 2012, Fukuoka, Japan.

R. Navarro Pérez
Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional Universidad de Granada, E-18071 Granada, Spain.
E-mail: rnavarrop@ugr.es
where $P_{\sigma} = (1 + \sigma_1 \cdot \sigma_2)/2$ is the spin exchange operator with $P_{\sigma} = -1$ for spin singlet $S = 0$ and $P_{\sigma} = 1$ for spin triplet $S = 1$ states. In Ref. [6] the parameters of Eq. (1) where determined from just NN threshold properties such as scattering lengths, effective ranges and volumes without explicitly taking into account the finite range of the NN interaction.

Our aim here is to compute the Skyrme parameters from an analysis of NN scattering data below pion production threshold rather than to a fit to double-closed shell nuclei and nuclear matter saturation properties as it is usually done [3, 4, 5].

While the idea of effective interactions is conceptually simple and rather appealing computationally there is no unique or universal definition since any different method assumes a particular off-shell extrapolation which cannot be tested experimentally. On the other hand effective interactions such as Eq. (1) truly depend on the relevant wavelengths involved. This becomes clear in the V_{lowk} method [7, 8], where one truncates the model space Hamiltonian for states with CM momentum $p \leq \Lambda$. However, in order to be able to implement this method one needs a choice of a phenomenological potential which besides fitting the data satisfactorily provides the half-off-shell scattering amplitude.

In the present contribution we define the interaction Eq. (1) by fitting a potential to NN phase-shifts below a given maximum CM momentum $p \leq \Lambda$. To proceed we use the delta-shells local potential for partial waves $V_{JS}^{l,l'}(r) = \sum_i \left(\lambda_{JS}^{l,l'} \right) \delta(r - r_i)$ $r \leq 3\text{fm}$ (2) proposed by Avilés long ago [9] for the short range part. In addition we take the One-Pion-Exchange (OPE) and electromagnetic tail for $r \geq 3\text{fm}$. With this potential and below pion production threshold $p \leq \sqrt{M_N m_\pi} = 362\text{MeV}$ a description of scattering observables can be achieved with $\chi^2/\text{d.o.f} = 1.06$ [10], of comparable high quality as the benchmarking fits of the Nijmegen group [11, 12] and subsequent AV18 [13], CD-Bonn [14] and Spectator model [15] potentials. The rationale behind the schematic form of Eq. (2) is based on the expectation that a coarse graining of the interaction to a given wavelength should not display fluctuations of the interactions to shorter distances than $\Delta r \sim 1/\sqrt{M_N m_\pi} = 0.54\text{fm}$.

For the potential in Eq. (2) one finds after some calculation the result

$$(t_0, x_0 t_0) = \frac{1}{2} \int d^3 x \left[V_{S_1}(r) \pm V_{S_0}(r) \right],$$

$$(t_1, x_1 t_1) = -\frac{1}{12} \int d^3 x r^2 \left[V_{S_1}(r) \pm V_{S_0}(r) \right],$$

$$(t_2, x_2 t_2) = \frac{1}{54} \int d^3 x r^2 \left[V_{P_0}(r) + 3V_{P_1}(r) + 5V_{P_2}(r) \pm 9V_{P_1}(r) \right],$$

$t_V = W_0 = \frac{1}{72} \int d^3 x r^2 \left[2V_{P_0}(r) + 3V_{P_1}(r) - 5V_{P_2}(r) \right],$ $\sqrt{2} \int d^3 x r^2 V_{E_1}(r),$

$t_T = \frac{1}{36} \int d^3 x r^2 \left[-2V_{P_0}(r) + 3V_{P_1}(r) - V_{P_2}(r) \right],$ (3)
Effective interactions in the delta-shells potential

where the ± in the first three equations refers to the first and second possibilities on the l.h.s. We use the delta-shells potential for \(r > r_c \). The effective interaction due to OPE above \(r > r_c \) is given by the following formulas in the isospin invariant case

\[
\begin{align*}
t_0|_{\text{OPE}} &= \frac{f_{NN}^2}{m_\pi^2} \Gamma(2, m_\pi r_c), \quad x_0t_0|_{\text{OPE}} = 0, \\
t_1|_{\text{OPE}} &= \frac{f_{NN}^2}{3m_\pi^2} \Gamma(4, m_\pi r_c), \quad x_1t_1|_{\text{OPE}} = 0, \\
t_2|_{\text{OPE}} &= \frac{5f_{NN}^2}{9m_\pi^2} \Gamma(4, m_\pi r_c), \quad x_2t_2|_{\text{OPE}} = -\frac{4f_{NN}^2}{9m_\pi^2} \Gamma(4, m_\pi r_c), \\
t_V|_{\text{OPE}} &= 0, \\
t_U|_{\text{OPE}} &= \frac{2f_{NN}^2}{15m_\pi^2} \left[3\Gamma(2, m_\pi r_c) + 3\Gamma(3, m_\pi r_c) + \Gamma(4, m_\pi r_c) \right],
\end{align*}
\]

Fig. 1 Dependence of the effective interaction parameters as a function of the maximal CM momentum \(\Lambda \) (in MeV) for which the neutron-proton phase shifts have been fitted. We compare with the AV18-Vlowk potential when \(A_{\text{lowk}} = 2.1 \text{fm}^{-1} \).
Table 1 Skyrme parameters obtained from the AV18-V_{lowk} with $\Lambda_{\text{lowk}} = 2.1\text{fm}^{-1}$ and the charge dependent Delta-shells fit up to $E_{\text{LAB}} = 350\text{MeV}$. Both potentials reproduce the np phase-shifts up to pion production threshold. $t_{0,1,2}$ are in (MeVfm^3), $x_{0,1,2}$ are dimensionless and $t_{U,V,W}$ are in (MeVfm^5).

Parameter	t_0	x_0	t_1	x_1	t_2	x_2	W_0	t_T	t_T
V_{lowk}	-999.6	0.002	1854.2	-0.02	2198.3	-0.91	84.1	1235.2	-3864.0
Delta-shell	-555.3	-0.36	1711.8	-0.05	2746.8	-0.845	108.7	1476.2	-4576.4

$t_T|_{\text{OPE}} = -\frac{2f_{\pi NN}^2}{9m_{\pi}^2} \left[3\Gamma(2,m_{\pi}r_c) + 3\Gamma(3,m_{\pi}r_c) + \Gamma(4,m_{\pi}r_c) \right]$, \hspace{1cm} (4)

where $f_{\pi NN} = g_{\pi NN}m_{\pi}/2m_N$, with $f_{\pi NN}^2/(4\pi) \sim 0.08$ and $\Gamma(n,x) = \int_x^\infty dt e^{-t}t^{n-1}$. These OPE contributions are numerically tiny for $r_c = 3\text{fm}$. From the fit in Ref. [10] we get the results of Table 1. They are compared with the extraction of Ref. [6].

The scale dependence on the fitted np scattering phase-shifts is presented in Fig. 1. Note that the set of Eqs. (3) involve only S- and P-waves as well as the SD-wave mixing but no D-waves. However, the tensor force requires a non-vanishing D-wave. Having this in mind we distinguish three different situations for the case of the triplet 3S_1 wave due to the role played by the tensor force. The “coupled case” corresponds to make a fit to the $^3S_1,^3D_1,^1E_1$ phase-shifts, whereas the “uncoupled case” is obtained from a fit of the 1S_3 potential from the 3S_1 phase shift, without considering the coupling to the 3D_1 channel. Another intermediate case corresponds to just fit 3S_1 and 1E_1 phases taking a vanishing 3D_1 potential. As can be seen from Fig. 1 the uncoupled case resembles best the V_{lowk}-value. Generally, there is a close agreement (note the y-axis scales) with the V_{lowk} results as applied to the AV18 potential when a value of $\Lambda_{\text{lowk}} = 2.1\text{fm}^{-1}$ is taken. A more complete analysis properly weighting the relative importance of D- vs P- and S-waves with inclusion of uncertainties [16,17] will be presented elsewhere. In any case, the enhanced attraction confirms the binding features of doubled closed shell nuclei outlined in Ref. [18].

References

1. M. Moshinsky, Nuclear Physics 8, 19 (1958)
2. T. Skyrme, Nucl.Phys. 9, 615 (1959)
3. D. Vautherin, D. Brink, Phys.Rev. C5, 626 (1972). DOI 10.1103/PhysRevC.5.626
4. E. Chabanat, J. Meyer, P. Bonche, R. Schaeffer, P. Haensel, Nucl.Phys. A627, 710 (1997).
5. M. Bender, P.H. Heenen, P.G. Reinhard, Rev.Mod.Phys. 75, 121 (2003).
6. E. Ruiz Arriola, (2010) arXiv:1009.4161 [nucl-th]
7. S. Bogner, T. Kuo, A. Schwenk, Phys.Rept. 386, 1 (2003).
8. S. Bogner, R. Furnstahl, A. Schwenk, Prog.Part.Nucl.Phys. 65, 94 (2010).
9. J.B. Aviles, Phys. Rev. C6, 1467 (1972).
10. R. Perez, J. Amaro, E. Arriola, (2012) arXiv:1202.2689 [nucl-th]
11. V. Stoks, R. Kompl, M. Rentmeester, J. de Swart, Phys.Rev. C48, 792 (1993).
12. V. Stoks, R. Klomp, C. Terheggen, J. de Swart, Phys.Rev. C49, 2950 (1994).
13. R.B. Wiringa, V. Stoks, R. Schiavilla, Phys.Rev. C51, 38 (1995).
14. R. Machleidt, Phys.Rev. C63, 024001 (2001).
15. F. Gross, A. Stadler, Phys.Rev. C78, 014005 (2008). DOI 10.1103/PhysRevC.78.014005
16. R. Navarro Perez, J. E. Amaro and E. Ruiz Arriola, arXiv:1202.6624 [nucl-th].
17. R. Navarro Perez, J. E. Amaro and E. Ruiz Arriola, arXiv:1206.3508 [nucl-th].
18. R. Navarro Perez, J. E. Amaro and E. Ruiz Arriola, Prog. Part. Nucl. Phys. 67 (2012) 359 arXiv:1111.4328 [nucl-th].