Increased K\(^+\) Efflux and Apoptosis Induced by the Potassium Channel Modulatory Protein KChAP/PIAS3\(\beta\) in Prostate Cancer Cells*

Barbara A. Wible‡‡, Liming Wang, Yuri A. Kuryshev, Aruna Basu, Subrata Haldar††, and Arthur M. Brown**

From the Rammelkamp Center for Education and Research, MetroHealth Campus, and the Departments of *Biochemistry, ‡‡Physiology and Biophysics, ††Pharmacology, and ‡‡‡Ireland Cancer Center, Case Western Reserve University, Cleveland, Ohio 44109.

K\(^+\) channel-associated protein/protein inhibitor of activated STAT (KChAP/PIAS3\(\beta\)) is a potassium (K\(^+\)) channel modulatory protein that boosts protein expression of a subset of K\(^+\) channels and increases currents without affecting gating. Since increased K\(^+\) efflux is an early event in apoptosis, we speculated that KChAP might induce apoptosis through its up-regulation of K\(^+\) channel expression. KChAP belongs to the protein inhibitor of activated STAT family, members of which also interact with a variety of transcription factors including the proapoptotic protein, p53. Here we report that KChAP induces apoptosis in the prostate cancer cell line, LNCaP, which expresses both K\(^+\) currents and wild-type p53. Infection with a recombinant adenovirus encoding KChAP (Ad/KChAP) increases K\(^+\) efflux and reduces cell size as expected for an apoptotic volume decrease. The apoptosis inducer, staurosporine, increases endogenous KChAP levels, and LNCaP cells, 2 days after Ad/KChAP infection, show increased sensitivity to staurosporine. KChAP increases p53 levels and stimulates phosphorylation of p53 residue serine 15. Consistent with activation of p53 as a transcription factor, p21 levels are increased in infected cells. Wild-type p53 is not essential for induction of apoptosis by KChAP, however, since KChAP also induces apoptosis in DU145 cells, a prostate cancer cell line with mutant p53. Consistent with its proapoptotic properties, KChAP prevents growth of DU145 and LNCaP tumor xenografts in nude mice, indicating that infection with Ad/KChAP might represent a novel method of cancer treatment.

Apoptosis, or programmed cell death, is a multistage process starting with cell shrinkage followed by chromatin condensation, caspase activation, and cellular fragmentation with subsequent removal of apoptotic bodies by neighboring cells. Early cell shrinkage is due in part to increased K\(^+\) efflux (reviewed in Ref. 1). Loss of K\(^+\) during apoptosis is not an epiphenomenon but is critical to its progression. Block of K\(^+\) currents by channel-specific drugs or high extracellular K\(^+\) prevents apoptosis (2–5). Importantly, caspase activation, considered the point of no return in apoptosis, only occurs after cellular K\(^+\) loss (6). Despite the importance of this process, virtually nothing is known about the mechanisms generating increased K\(^+\) efflux. Here, we investigate the link between the actions of a K\(^+\) channel modulatory protein, KChAP/PIAS3\(\beta\), and apoptosis in tumor cells.

KChAP/PIAS3\(\beta\) is a K\(^+\) channel modulatory protein that exhibits “chaperone-like” behavior toward a subset of K\(^+\) channels (7–9). KChAP, a soluble protein, binds transiently to the cytoplasmic NH\(_2\)-termini of its target channels and increases channel expression in a transcription-independent manner. Both total channel protein and surface expression are increased in response to KChAP. We hypothesized that the increased K\(^+\) channel expression conferred by KChAP might be associated with apoptosis.

In addition to K\(^+\) channels, KChAP/PIAS3\(\beta\) interacts with other binding partners, most notably a variety of transcription factors. KChAP belongs to the protein inhibitor of activated STAT (PIAS) gene family. There are four mammalian members of this family: 1) KChAP (7/PIAS3), 2) PI, propidium iodide; potassium-binding benzofuran isophthalate; TUNEL, terminal deoxynucleotidyl transferase-mediating dUTP nick end labeling; PARP, poly(ADP-ribose) polymerase.

† The abbreviations used are: KChAP, K\(^+\) channel-associated protein; PIAS, protein inhibitor of activated STAT; STAT, signal transducers and activators of transcription; STS, staurosporine; Ad, adenovirus; GFP, green fluorescent protein; PBS, phosphate-buffered saline; MOI, multiplicity of infection; PI, propidium iodide; potassium-binding benzofuran isophthalate; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling; PARP, poly(ADP-ribose) polymerase.
express both KChAP for infection of LNCaP cells, selected because they
contain adenovirus containing KChAP cDNA was constructed
(AdKChAP) for infection of LNCaP cells. To test this hypothesis, a nonreplicating, recombi-
nating p53. To test this hypothesis, a nonreplicating, recombi-
nating p53. To test this hypothesis, a nonreplicating, recombi-

The total amount of KChAP from the recombinant adenovirus, Ad/KChAP, was verified by
expression of KChAP into LNCaP and DU145 tumor xenografts in nude mice

Cell Culture and Adenovirus Infection

LNCaP, DU145, and Jurkat cells were obtained from the American
Type Culture collection. LNCaP and Jurkat cells were maintained in RPMI medium with 10% fetal bovine serum, while DU145 cells were
propagated in Dulbecco’s modified Eagle’s medium plus 10% fetal bovine
serum. All media also contained 100 units/ml penicillin and 100
µg/ml streptomycin. In the LNCaP experiments with high extracellular
K+ in the medium, RPMI medium was assembled from the individual
components as outlined by Invitrogen so that we could adjust the
[K+]o. The total amount of K+ plus Na+ in the media was kept constant at
108 ± 4 mOsm so that when [K+]o was elevated, [Na+]o was correspondingly
decreased. Staurosporine (STS) was from Sigma, and a 1 mM stock
solution was prepared in Me2SO and stored at −20 °C. A final concen-
tration of 1 µM was used to induce apoptosis.

We used two KChAP antibodies in this study, both of which were
raised against a bacterial fusion protein that consisted of the COOH-terminal 169 amino acids of KChAP
(5). It recognizes both endogenous and overexpressed KChAP. 088 was
raised against a peptide in the NH2 terminus of KChAP that is not present
in PIA33 (SPSPLASIPPTLPTGGLPKREVDMH), hence the PIA33α and PIA33β/KChAP nomenclature used here. 088 recog-
ifies overexpressed but not endogenous KChAP. Affinity-purified
antibodies were used in Western blotting. Other antibodies used for West-
ern blotting to detect the following proteins were obtained from
commercial sources: p53 (DO-1; Santa Cruz Biotechnology, Inc., Santa
Cruz, CA); STAT1, STAT3, and cyclins A, B, and D3 (Transduction
Laboratories, Lexington, KY); actin (clone AC-40; Sigma); phospho-p53
(Ser15) (Cell Signaling Technology, Inc., Beverly, MA); PARP (we used
antibodies interchangeably that recognize both intact and cleaved
PARP, one from Cell Signaling Inc. and one from BD Pharmingen (San
Diego, CA)); RB1 (BD Pharmingen); and p21 (WAF1/A1, Oncogene
Research Products, Boston, MA).

Cells were lysed in a buffer consisting of 1% Triton X-100, 150 mM
NaCl, 50 mM Tris, 1 mM EDTA, pH 7.5 containing freshly added pro-
tease inhibitors (Complete; Roche Molecular Biochemicals) and the
phosphatase inhibitors sodium fluoride (50 mM) and sodium orthova-
nodate (1 mM) for 30 min on ice. Insoluble debris was pelleted at 20,800 ×
g for 10 min at 4 °C. Lysate protein concentrations were determined by
the BCA method (Pierce), and aliquots were boiled in a reducing SDS
sample buffer to denature protein. SDS-PAGE gels were blotted to
polyvinylidene difluoride membranes using a semidry blotting appara-
tus. Blots were blocked overnight in 5% milk (Bio-Rad) in PBS-T (PBS
[0.1% Tween 20] at 4 °C). Primary antibodies in PBS-T with 0.1% Tween 20
were washed with PBS-T and incubated with horseradish peroxidase-
conjugated secondary antibodies (Amersham Biosciences) in blocking
buffer for 1 h at room temperature. Blots were developed with the ECL-Plus kit (Amersham Biosciences).

Full-length KChAP (residues 1–619) in the GAL4 activation domain
vector, pGAD424, was used as described (5). Murine p53 residues
90–390 in a GAL4 DNA binding domain vector was from the CLON-
TECH Matchmaker yeast two-hybrid kit. The murine p53 carboxy-
terminal residues (290–390) and subfragments (Phe225–Thr257) and
(Phe-Thr257) with EcoRI and SalI sites incorporated at the 5′- and
3′-ends of the fragments, respectively, were generated by PCR. PCR
products were subcloned using TOPO cloning (Invitrogen; Carlsbad,
CA) and sequenced before cloning in frame into pGBT9 and pGAD424.
Yeast strain Y190 was transformed with combinations of pGBT9 and
pGAD424 plasmids, and interaction was determined by β-galactosidase
filter assays as previously described (7).

DNA degradation was assessed in cells overexpressing Ad/KChAP or
Ad/LacZ using the kit from Trevigen. Briefly, 106 cells/ml were mixed
with molten low melting agarose at a ratio of 1:10. Immediately, 50 µl
of this mixture was spread onto slides. Slides were immersed in pre-
chilled lysis solution at 4 °C for 30 min. After a brief rinse in 1× TBE,
the slides were subjected to horizontal electrophoresis at 1 V/cm (meas-
ured electrode to electrode) for 11 min. The slides were then put in
ice-cold methanol for 5 min followed by a 5-min incubation at room
temperature in ethanol. After drying, the slides were stained with
SYBR green for epifluorescence microscopy.

Apoptosis Induction by KChAP/PIAS3β Adenovirus

K+ Content—At 72 h postinfection with either Ad/GFP or Ad/KChAP
(MOI = 100), LNCaP cells were collected by trypsin treatment and
washed in PBS. The K+ sensitive dye, potassium-binding benzofuran
isophthalate (PBFI) (Molecular Probes, Inc., Eugene, OR) was dissolved
in 100% DMSO at a concentration of 127 (Molecular Probes) and incubated with the cells in
standard medium at a final concentration of 5 µg/ml for 1 h at 37 °C. The
cells were then chilled on ice, and propidium iodide (5 µg/ml) was added.
Flow cytometry was performed with a Becton Dickinson FACS Vantage
machine. Ten thousand cells from each treatment group were analyzed.
Excitation of PBFI was at 340 nm, and emission was captured at 425
nm. Propidium iodide was excited by a 488-nm argon laser at the same
time. DNA Content—For analysis of DNA content, cells were trypsinized
either 24 or 72 h postinfection as described above, washed with PBS,
and fixed in cold 70% ethanol for at least 8 h at −20 °C. After washing in
PBS, propidium iodide (5 µg/ml) was added. Ten thousand cells were analyzed by flow cytometry for each sample using a Becton Dickinson
FACScan (excitation at 488 nm).
Tumor Production and Adenovirus Injection in Nude Mice

Tumor cells (DU145 or LNCaP; 2 × 10^6 cells/injection site) were suspended in serum-free Dulbecco’s modified Eagle’s medium, mixed with an equal volume of cold Matrigel on ice, and injected subcutaneously into both flanks of 8–9-week-old female BALB/c nude mice. Tumor growth was monitored using calipers every 2–3 days. Tumor volume was calculated as \((L \times W^2)/2\), where \(L\) represents length and \(W\) is width in millimeters. When tumors reached an average size of 50–60 mm^3 (about 2 weeks for DU145 and 5 weeks for LNCaP), mice were divided into three treatment groups: 1) PBS, 2) Ad/GFP, and 3) Ad/KChAP. Both tumors on an individual mouse received the same treatment. Ad/GFP and Ad/KChAP were diluted in sterile PBS to 5 × 10^8 plaque-forming units/μl. Injections (1 μl/mm^3 of tumor) were delivered directly into the tumors every 2–3 days for a total of three injections per week. Assuming 10^6 cells per mm^3 of tumor, about 500 plaque-forming units of virus per tumor cell was injected at 48–72 h intervals. Mice were sacrificed by cervical dislocation 48 h after the final injection, and tumors were dissected and frozen in liquid nitrogen. During the experiments, the animals were housed and handled in accordance with the National Institutes of Health guidelines.

Immunohistochemistry and Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) Assay of Tumor Sections

Eight-micron sections were prepared from frozen tumors dissected from the three treatment groups (PBS, Ad/GFP, and Ad/KChAP), mounted, and fixed on glass slides. Overexpressed KChAP was detected by incubating sections with the 088 antibody (1:100 dilution in 0.2% gelatin plus 0.5% bovine serum albumin/PBS) for 2 h at room temperature, washing with PBS, and incubating with biotinylated anti-rabbit secondary antibody (1:200) for 1 h at room temperature. Color development was done with the ABC and DAB kits from Vector Laboratories following their instructions. Apoptosis of cells in tumors subjected to different treatments was determined by the TUNEL assays using the Apo-Tag kit (Oncor, Inc.), following the manufacturer’s instructions.

RESULTS

KChAP Increases K\(^+\) Efflux in LNCaP Cells—We originally identified KChAP as a potassium channel regulatory protein that acts to increase K\(^+\) channel expression in a “chaperone-like” fashion in heterologous expression systems. Since one of the first events in apoptosis is cell shrinkage mediated, in part, by efflux of potassium, we speculated that KChAP may play a role in increasing K\(^+\) currents and thus promote apoptosis. We chose to work with several well studied cancer cell lines, since the induction of apoptosis in these cells by a novel protein might lead to new therapeutic strategies. To determine how KChAP affected K\(^+\) currents in these cells, we first overexpressed KChAP in the prostate cancer line LNCaP through the use of a recombinant adenovirus construct. Infection of LNCaP cells with adenovirus overexpressing GFP (Ad/GFP), at an MOI of 100, resulted in greater than 95% of the cells expressing GFP cells with adenovirus overexpressing GFP (Ad/GFP), at an MOI of 100, resulted in greater than 95% of the cells expressing GFP. LNCaP cells were infected with either Ad/GFP or Ad/KChAP (MOI of 100) for 24 h, after which they were loaded with the potassium surrogate rubidium (Rb\(^+\)) and assayed for Rb\(^+\) release by flame atomic absorption spectroscopy. As shown in Fig. 1A, KChAP-overexpressing cells showed a significant increase (about 20%) in the fraction of Rb\(^+\) released compared with cells infected with a GFP virus.

We measured the relative amount of K\(^+\) in Ad/KChAP-infected cells at later times after infection using flow cytometry with the potassium-sensitive dye, PBFI. LNCaP cells were harvested 72 h postinfection with Ad/KChAP (MOI = 100). Uninfected cells were used for comparison, since the expression of GFP would have interfered with the detection of the dye. In Fig. 1B, the amount of PBFI fluorescence reflecting intracellular K\(^+\) was plotted against propidium iodide (PI) fluorescence. Cells with high PI intensity (R1 section) were dead cells and thus not analyzed further. In cells with low PI fluorescence (live cells, sections R2 and R3), there was a clear shift of the population to lower intracellular K\(^+\) levels. Since we are measuring total K\(^+\) and not K\(^+\) concentration, this decrease in K\(^+\) may reflect cell shrinkage. When the cells in R2 and R3 were replotted to examine cell size (reflected in the forward scatter values collected from the flow cytometer) versus intracellular K\(^+\) (Fig. 1C), we found that this is the case. In KChAP-infected cells, there was a dramatic decrease in average cell size that paralleled the decrease in intracellular K\(^+\). Thus, KChAP stimulated release of K\(^+\) from cells when measured 24 h after introduction of the Ad/KChAP virus and produced a significant decrease in cell size when assessed 72 h postinfection. From the data in Fig. 1C, it also appeared that the concentration of K\(^+\) was decreased in apoptotic, Ad/KChAP-infected cells. For example, the smallest uninfected cells fell into sector b3 (<400 cell size units), whereas the majority of the smallest KChAP-infected cells fell into sector b4 (Fig. 1C).

KChAP Sensitizes Cells to Apoptotic Stimuli—Since KChAP increases K\(^+\) efflux and shrinks LNCaP cells, we hypothesized that if KChAP was a proapoptotic protein, overexpression in LNCaP cells should sensitize the cells to apoptosis induced by STS. LNCaP cells 2 days postinfection (MOI of 100) with either Ad/GFP or Ad/KChAP were treated with STS and lysed, and apoptosis was assessed by PARP cleavage on Western blots. As shown in Fig. 2A, no PARP cleavage was detected in cells overexpressing either GFP or KChAP 2 days after infection. PARP cleavage was detected as early as 2 h after the addition of STS (1 μM) in KChAP-expressing cells and was about 50% complete at 6 h. This is in contrast to GFP-expressing cells in which PARP cleavage was not detectable at all until 6 h of STS treatment. KChAP expression was examined with the 899 antibody, which detects both endogenous and overexpressed KChAP. Overexpressed KChAP migrates at the same position as the endogenous 68-kDa doublet and largely disappears as PARP cleavage progresses. Thus, KChAP makes LNCaP cells more sensitive to STS-induced apoptosis.

In the course of these experiments, we observed an increase in the amount of endogenous KChAP detected in cells exposed to STS. Fig. 2B shows Western blots of endogenous KChAP from both LNCaP and Jurkat cells treated for various lengths of time with 1 μM STS. Multiple bands are detected in both cell lysates with the KChAP 899 antibody: a 68-kDa doublet that is close to the predicted molecular weight of KChAP and PIA3 and an upper band of about 85 kDa. Fig. 2B shows that the signal of the 68-kDa doublet obtained with the KChAP 899 antibody is increased as early as 1 h after the addition of STS. The signal then drops to control levels or lower after about 6 h in LNCaP cells and around 4–6 h in Jurkat cells. This peak in immunoreactivity largely precedes detection of PARP cleavage, a marker for apoptosis. Once significant PARP cleavage is detected, much less KChAP is detected by Western blotting. There was no change in the 85-kDa band. This phenomenon is not limited to STS, since the same pattern was also obtained with the apoptosis-inducing drug camptothecin (data not shown). Whether the increased signal on Western blots is due to increased KChAP protein levels or posttranslational modification of the protein to make antibody binding more accessible is not yet known. However, this pattern is consistent with a proapoptotic protein that is up-regulated or activated early after the apoptotic stimulus.

KChAP Alone Induces Apoptosis in LNCaP Cells—The data in Fig. 2 are consistent with KChAP as a proapoptotic protein, and in Fig. 1, we showed that KChAP promotes K\(^+\) loss and cell shrinkage. Is KChAP overexpression alone sufficient to induce apoptosis? In Fig. 2A, we saw no PARP cleavage in Ad/KChAP-infected LNCaP cells at 2 days postinfection in the absence of STS. When infected LNCaP cultures were examined microscop-
ically at later times after infection, however, we observed that many of the cells had become detached from the culture dish, consistent with cell death. We assayed for apoptosis in cells 3 days after infection using the COMET assay to detect DNA degradation. In these experiments, control infections were done with Ad/LacZ to prevent interference of GFP with the COMET assay. Fig. 3 shows the results of four independent infections. The top panel shows a typical field of nuclei assayed from cells infected with Ad/LacZ (left) or Ad/KChAP (right). Quantitation of the number of COMET-positive cells is presented in the table below. A substantial increase (about 25-fold) in the number of cells with degraded DNA is observed in cells overexpressing KChAP compared with LacZ (an average of 24.4% COMET-positive versus 0.8%, respectively).

In addition to the COMET assay, we also examined PARP cleavage in cells 3 days postinfection (Fig. 3, bottom panel). Lysates from LNCaP cells infected with either Ad/LacZ or Ad/KChAP at an MOI of 100 were probed with anti-PARP antibody on Western blots. Lysates from three different batches of infected cells showed detectable PARP cleavage coincident with the expression of KChAP. The KChAP antibody 088, which only detects overexpressed KChAP, was used to verify Ad/KChAP viral infection. Thus, overexpression of KChAP is able to trigger apoptosis in LNCaP cells, with both
DNA degradation and PARP cleavage appear 3 days after infection.

KChAP Overexpression Increases p53 Levels and p53-Serine 15 Phosphorylation—p53, a tumor suppressor protein mutated in about 50% of all human cancers, is able to induce apoptosis as well as produce cell cycle (G1) arrest (reviewed in Ref. 21). PIASy and PIAS1 have both been shown to interact with p53 but with differential effects on the ability of p53 to stimulate transcription (15, 19). We asked whether KChAP also interacted with p53 by using yeast two-hybrid analysis. Murine p53 (residues 90–390), with the transactivation domain removed, was found to interact with KChAP (Fig. 4A, left panel). The 98-amino acid fragment of KChAP, KChAP-M, which interacts with Kv channel NH2 termini in yeast two-hybrid assays (8), also interacted with p53 (Fig. 4A, right). Further truncation of p53 revealed that the carboxyl-terminal 100 residues of p53 (p53CT; Val290–Asp390) were sufficient for interaction with KChAP. p53 is a functional homotetramer, and the tetramerization domain has been localized to the COOH terminus (22). The p53 carboxyl terminus (p53CT) interacts with itself in yeast two-hybrid assays (Fig. 4A, right). To further localize the sites of KChAP interaction in p53, we constructed a 28-amino acid fragment (Phe324–Thr352) from the p53 carboxyl terminus that encompassed the tetramerization domain. This fragment interacted with itself as well as KChAP (Fig. 4A). Deletion of 10 residues from the NH2 terminus of this domain (Phe334-Thr352) eliminated self-interaction as well as interaction with KChAP. Thus, KChAP is also able to interact with p53, and the assembly domain of p53 appears to be critical for this interaction.

We next asked how overexpression of KChAP affected endogenous p53 in LNCaP cells. LNCaP cells have wild-type p53 (23), and low endogenous levels are maintained through a complex set of regulatory mechanisms. Since wild-type p53 can produce apoptosis in many cell types, we examined Ad/GFP- and Ad/KChAP-infected LNCaP lysates for p53 levels. Western blotting for total p53 protein with the DO1 antibody showed an increased amount in KChAP-overexpressing cells 3 days postinfection (Fig. 4B). The increased p53 levels were coincident with an increase in the reactivity of an antibody specific for p53 phosphorylated on serine 15. Phosphorylation at serine 15 is a key event in p53 activity and is linked to increased transcriptional activity of p53 (24). We further investigated this phosphorylation event by using an antibody that recognizes the serine 15-phosphorylated p53. The reactivity of this antibody was also increased in KChAP-overexpressing cells (Fig. 4B). Thus, KChAP overexpression increases endogenous p53 levels and p53-Serine 15 phosphorylation in LNCaP cells.

DNA degradation and PARP cleavage apparent 3 days after infection.

FIG. 2. KChAP appears as a pro-apoptotic protein. A, overexpression of KChAP via an adenovirus/KChAP construct (Ad/KChAP) accelerates the rate at which LNCaP cells undergo STS-induced apoptosis. Apoptosis in LNCaP cells infected with either Ad/GFP or Ad/KChAP (MOI of 100; greater than 95% of cells infected) was monitored by examining PARP cleavage on Western blots. KChAP, both endogenous and overexpressed, was detected with the KChAP antibody (899). B, KChAP (68 kDa) immunoreactivity increases in LNCaP and Jurkat T-cells treated with STS (1 µM). Western blot analysis of KChAP and PARP expression in lysates of LNCaP and Jurkat cells shows increased reactivity of the 68-kDa band with the KChAP antibody after treatment with STS. Increased immunoreactivity is maintained until significant PARP cleavage is detected, after which the signal drops to control levels or below.

FIG. 3. KChAP overexpression produces DNA degradation and PARP cleavage in LNCaP cells. A, COMET assay to detect DNA degradation in LNCaP cells 3 days postinfection with Ad/LacZ or Ad/KChAP (MOI = 100). Cells were counted from four separate infections. An example of a field of cells examined for each type of infection is shown in the upper panels. Quantitation of each infection is presented below. An average of 0.8% of Ad/LacZ-infected cells were COMET-positive compared with an average of 24.4% of Ad/KChAP-infected cells (p < 0.001). B, Western blot of overexpressed KChAP (detected with 088 antibody) and PARP cleavage in LNCaP lysates prepared from cells as described for A. Each lane represents lysate from a separate batch of infected cells.

DNA degradation and PARP cleavage apparent 3 days after infection.

KChAP Overexpression Increases p53 Levels and p53-Serine 15 Phosphorylation—p53, a tumor suppressor protein mutated in about 50% of all human cancers, is able to induce apoptosis as well as produce cell cycle (G1) arrest (reviewed in Ref. 21). PIASy and PIAS1 have both been shown to interact with p53 but with differential effects on the ability of p53 to stimulate transcription (15, 19). We asked whether KChAP also interacted with p53 by using yeast two-hybrid analysis. Murine p53 (residues 90–390), with the transactivation domain removed, was found to interact with KChAP (Fig. 4A, left panel). The 98-amino acid fragment of KChAP, KChAP-M, which interacts with Kv channel NH2 termini in yeast two-hybrid assays (8), also interacted with p53 (Fig. 4A, right). Further truncation of p53 revealed that the carboxyl-terminal 100 residues of p53 (p53CT; Val290–Asp390) were sufficient for interaction with KChAP. p53 is a functional homotetramer, and the tetramerization domain has been localized to the COOH terminus (22). The p53 carboxyl terminus (p53CT) interacts with itself in yeast two-hybrid assays (Fig. 4A, right). To further localize the sites of KChAP interaction in p53, we constructed a 28-amino acid fragment (Phe324–Thr352) from the p53 carboxyl terminus that encompassed the tetramerization domain. This fragment interacted with itself as well as KChAP (Fig. 4A). Deletion of 10 residues from the NH2 terminus of this domain (Phe334-Thr352) eliminated self-interaction as well as interaction with KChAP. Thus, KChAP is also able to interact with p53, and the assembly domain of p53 appears to be critical for this interaction.

We next asked how overexpression of KChAP affected endogenous p53 in LNCaP cells. LNCaP cells have wild-type p53 (23), and low endogenous levels are maintained through a complex set of regulatory mechanisms. Since wild-type p53 can produce apoptosis in many cell types, we examined Ad/GFP- and Ad/KChAP-infected LNCaP lysates for p53 levels. Western blotting for total p53 protein with the DO1 antibody showed an increased amount in KChAP-overexpressing cells 3 days postinfection (Fig. 4B). The increased p53 levels were coincident with an increase in the reactivity of an antibody specific for p53 phosphorylated on serine 15. Phosphorylation at serine
15 in p53 has been shown to have several functional consequences: 1) increased stability of p53 by prevention of binding to the regulatory protein MDM2, thus reducing ubiquitination and proteosomal degradation (24), and 2) activation of p53 as a transcription factor (25). We also examined the level of STAT proteins, since several members of the PIAS family have been shown to interact with STATs. No changes were detected in either STAT1 or STAT3 levels. These observations suggest that part of the proapoptotic effects of KChAP may be exerted through the up-regulation and activation of p53.

Since KChAP increases K⁺ efflux as well as activation of p53 and apoptosis in LNCaP cells, we next asked whether these three events are interdependent (i.e. is K⁺ loss required for KChAP-mediated p53 activation and apoptosis?). K⁺ efflux was blocked by incubating cells in media with high extracellular K⁺. Cells were infected with Ad/GFP or Ad/KChAP in medium with increasing concentrations of K⁺ (from 5 to 50) and maintained for 72 h prior to lysis. Fig. 4C shows that apoptosis, detected by PARP cleavage, is largely blocked in cells bathed in 50 mM K⁺. There is a small, basal level of PARP cleavage apparent in GFP-expressing cells in 50 mM K⁺, which is not accentuated in KChAP-expressing cells. Although KChAP-induced apoptosis is blocked in high extracellular K⁺, phosphorylation of p53 on serine 15 still occurs. Therefore, K⁺ efflux, although required for apoptosis, is not required for p53 activation.

KChAP Produces G₀/G₁ Cell Cycle Arrest—When p53 is activated as a transcription factor, one of its major targets is the cell cycle arrest protein, p21, and increased p21 expression has been linked to cell cycle arrest at G₀/G₁ (26). We examined the expression of p21 in Ad/KChAP-infected LNCaP cells harvested 24, 48, and 72 h postinfection. As shown in Fig. 5A, a dramatic increase in p21 levels was detected by Western blotting as early as 24 h postinfection. This increased expression was maintained at 48 and 72 h after infection and was coincident with elevated p53 levels observed at 24, 48, and 72 h in KChAP-overexpressing cells. Since elevated p21 would be expected to produce G₀/G₁ arrest, we examined the expression of a cell cycle marker protein, retinoblastoma (Rb). Rb exhibits cell cycle-specific phosphorylation (27); in G₀/G₁ cells, Rb is hypophosphorylated and migrates more rapidly on SDS-PAGE, providing a useful marker for cell cycle arrest. In GFP-expressing cells, two forms of Rb are detected: an upper, hyperphosphorylated form and a lower, hypophosphorylated form (Fig. 5A). In KChAP-expressing cells, only the lower, hypophosphorylated form is detected. This is seen as early as 24 h postinfection and is maintained throughout the assay period. In Fig. 5B, we examined the expression of several other cyclins as cell cycle markers. Cyclins A and B are mitotic cyclins whose levels decrease during G₀/G₁ (28). In KChAP-infected LNCaP cells, the levels of both cyclins A and B fall dramatically, consistent
with G1/G1 arrest. Conversely, a cyclin up-regulated during G1 (cyclin D3) (29) is expressed at higher levels in KChAP-overexpressing cells than in control cells. Consistent with this observation, the levels of two mitotic cyclins A and B were significantly decreased, whereas the level of cyclin D3, a protein presumed to be dominant in G1, was increased.

Cell cycle arrest and apoptosis induced by KChAP were also examined by flow cytometry of infected cells. Ad/GFP and Ad/KChAP-infected cells were either infected or stained as the hypophosphorylated form predominates at this stage. Western blot analysis of cyclins confirms the G0/G1 arrest mediated by KChAP on LNCaP cells. An early event (within 24 h after infection) is the arrest of cells in G0/G1. The data are plotted in Fig. 5A.

KChAP-mediated G0/G1 arrest but is not required for apoptosis. Thus, Western blotting of KChAP-infected cell lysates confirmed the G0/G1 arrest mediated by KChAP in LNCaP cells. LNCaP cells infected with Ad/GFP or Ad/KChAP at two different MOI (100 and 200), were examined 24 h postinfection. Rb expression confirmed G0/G1 arrest as seen in A. Consistent with this observation, the levels of two mitotic cyclins A and B were significantly decreased, whereas the level of cyclin D3, a protein presumed to be dominant in G1, was increased.

Steady-state p53 levels are already high in DU145 cells, as is often seen when p53 is mutated, and those levels do not increase with KChAP overexpression. The phosphorylation of p53 on serine 15 is still increased in KChAP-overexpressing cells, however. Unlike LNCaP cells, there was no up-regulation of p21 evident from Western blots in KChAP-overexpressing DU145 cells (data not shown), confirming that p53 is not an active transcription factor in DU145 cells. Furthermore, flow cytometry of infected DU145 cells showed that the G0/G1 arrest that was apparent in KChAP-overexpressing LNCaP cells was absent from DU145 cells (data not shown). Taken together, these results suggest that wild-type p53 may be involved in KChAP-mediated G0/G1 arrest but is not required for apoptosis.

KChAP Prevents in Vivo Growth of Subcutaneous Implants of Human Prostate Cancer Cells—We have shown that KChAP is a potent inducer of apoptosis in cell lines with diverse p53 status. To assess its potential usefulness as an anti-cancer agent, we created subcutaneous tumors in nude mice by injecting either DU145 or LNCaP cells into the flank area. DU145 cells, mixed with Matrigel, formed established tumors in the flanks of nude mice in about 2 weeks. Once tumors were established, Ad/KChAP was injected directly into the tumors every 48–72 h for a total of nine injections over a period of 19 days. Two batches of control tumors were injected with either PBS or Ad/GFP. As shown in Fig. 8A, injection of Ad/KChAP significantly suppressed the growth of DU145 tumors compared with Ad/GFP or PBS treatments. In the animals treated with Ad/KChAP, the mean tumor volume was 81 mm3 after 19 days (n = 8). In contrast, the mean tumor volume reached 492 mm3 in the Ad/GFP-treated group (n = 8) and 716 mm3 in the PBS-injected controls (n = 10). At the conclusion of the treatment period, mice in the Ad/KChAP-treated group were active and appeared normal in contrast to the mice in the other two groups, which had difficulty moving because of the tumor burden and appeared ill.

Tumors from each of the three treatment groups were harvested 2 days after the last injection and processed for immu-
FIG. 6. Flow cytometry analysis of effects of KChAP on LNCaP cells. A. LNCaP cells infected with Ad/GFP or Ad/KChAP (both at MOI = 100) were fixed in cold 70% ethanol 24 h (left) or 72 h (right) after infection and stained with propidium iodide. Ten thousand cells from each sample were analyzed using FACScan as detailed under "Experimental Procedures." The x axis shows propidium iodide intensity, representing DNA content, and the y axis shows the number of events, representing cell numbers. B, histogram of cell cycle distribution. G0/G1, S, and G2/M phases are indicated. The sub-G0/G1 (DAB) population represents apoptotic cells. The data shown are representative of three independent experiments.
FIG. 7. KChAP induces apoptosis in p53 mutant DU145 cells. Western blots of lysates prepared 72 h postinfection from DU145 cells infected with either Ad/GFP or Ad/KChAP at two different MOI, 200 and 400. Overexpressed KChAP was detected with the 088 antibody. The PARP antibody detected both the 116-kDa intact protein as well as the 85-kDa cleavage product. Steady-state p53 levels were detected with the DO1 monoclonal antibody, and the phosphorylation state of p53-serine 15 was assessed with a specific polyclonal antibody. Actin was included as a loading control.

nohistochemistry. When dissected, Ad/KChAP-treated tumors were all localized subcutaneously with clear boundaries, while most tumors from the two control groups were found to penetrate into adjacent tissues and organs and had a well-established blood supply. Sections were stained with KChAP antibody 088 to detect overexpressed KChAP, and parallel sections were assayed for TUNEL-positive cells (i.e. apoptotic cells with fragmented DNA). Staining with the KChAP 088 antibody was seen in many cells from tumors injected with Ad/KChAP with very little background staining in tumors treated with either Ad/GFP or PBS (Fig. 8B, right panels). We have seen previously that the 088 antibody does not stain either DU145 or LNCaP cells in culture. As predicted from our in vitro data, overexpression of KChAP was accompanied by apoptosis in the infected tumor cells as the comparison of TUNEL-positive cells from each of the three treatment groups showed (Fig. 8B, left panels). A low background level of TUNEL-positive cells was seen in Ad/GFP- and PBS-treated tumors with a significant enhancement in the number of TUNEL-positive or apoptotic cells seen in KChAP-overexpressing tumors.

We also tested LNCaP cells in nude mice, but, in contrast to DU145 cells, LNCaP cells did not generate a sufficient number of large tumors, even 5 weeks after injection of cells, to do a complete experiment. However, in the few large tumors that were produced, we observed similar results with Ad/KChAP injection. Overexpressed KChAP shrunk LNCaP tumors to half their original size, whereas Ad/GFP- or PBS-treated tumors tripled tumor volume in a 5-week period (data not shown). Immunohistological examination of LNCaP-derived tumor sections showed 088 antibody-positive staining that correlated with increased apoptosis and TUNEL-positive cells (data not shown).

DISCUSSION

We have shown that infection of a recombinant adenovirus overexpressing KChAP/PIAS3β (Ad/KChAP) in LNCaP and DU145 prostate cancer cells produces apoptosis, and direct injection of Ad/KChAP into xenografts of LNCaP and DU145 cells in nude mice suppresses tumor growth. These data support a link between overexpression of KChAP/PIAS3β and the increased K+ efflux that results during apoptotic volume decrease. Increased K+ efflux from Ad/KChAP-infected LNCaP cells was shown by Rb+ flux measurements, and decreased intracellular K+ and cell shrinkage were demonstrated by flow cytometry. Apoptosis in Ad/KChAP-infected LNCaP cells was blocked by high extracellular K+, indicating that KChAP-enhanced K+ efflux is critical for apoptosis. The identity of the K+ channel(s) that carries the increased outward current has not yet been determined. We attempted to infect cells in the presence of K+ channel blockers such as 4-AP, TEA, and quinidine to assess the effects on apoptosis, but these experiments were unsuccessful, since the drugs also interfered with viral infection. LNCaP cells are known, however, to possess several outward K+ currents including voltage-gated delayed rectifier channels (30, 31) as well as several two-pore K+ channel-like currents.2 Recently, two-pore K+ channels were proposed as candidates for mediating apoptotic volume decrease (32). Future experiments should reveal both the K+ channels mediating apoptotic volume decrease in LNCaP cells and the role of KChAP in modulating these channels. With the results presented here, we propose that KChAP is an attractive candidate for the long sought after mediator of apoptotic volume decrease.

KChAP/PIAS3β not only affects K+ channels but, as a member of the PIAS family, interacts with a variety of transcription factors. We have found that KChAP/PIAS3β, like other members of the PIAS family, binds to p53 and alters its transcriptional activity. Interestingly, the same KChAP domain that binds to Kv channel NH2 termini (i.e. the 98-amino acid M fragment) (8) also interacts with p53 in yeast two-hybrid experiments. We have identified a 28-residue fragment from the COOH terminus of p53, consisting of the tetramerization domain, which is sufficient for interaction with KChAP. This result is consistent with a recent report indicating that PIAS1 also interacts with the tetramerization domain of p53 (19).

Our data show that KChAP/PIAS3β activates p53 in LNCaP cells. When p53 is activated as a transcription factor, the cell cycle arrest protein gene, p21, is a target. We see both increased total p53 and p21 levels in Ad/KChAP-infected LNCaP cells, suggesting an activation of p53. PIAS1 has been shown to interact with p53 and activate its transcriptional activity (19). Another PIAS family member, PIASy, interacts with p53 but depresses rather than enhances its activity as a transcription factor (15), suggesting distinct functions of individual PIAS proteins.

One mechanism whereby PIAS proteins might activate p53 is suggested by our observation of increased p53 phosphorylation on serine 15 in Ad/KChAP-infected cells. Phosphorylation of this residue has been shown previously to correlate with increased stability of p53 as well as increased transcriptional activity (24, 25). KChAP-induced loss of K+ is not required for p53 activation, since serine 15 phosphorylation is also detected in cells bathed in high extracellular K+. This effect is distinct from caspase activation, which requires loss of intracellular K+. It is not known whether other PIAS proteins induce the same modification in p53 or how KChAP produces this posttranslational modification. Several kinases have been implicated in the phosphorylation of p53 serine 15 including ATM, ATR, and c-Jun N-terminal kinase (reviewed in Ref. 33). Interestingly, PIAS1 has been shown to induce apoptosis in U2OS cells via activation of c-Jun N-terminal kinase (34), suggesting a possible link between c-Jun N-terminal kinase and p53 phosphorylation. We have observed activation of c-Jun N-terminal kinase as well as p38 and extracellular signal-regulated kinase 1 and 2 kinases in Ad/KChAP-infected LNCaP cells.2

The pleiotropic nature of PIAS protein action as well as the variety of binding partners identified thus far must now be considered in light of the recent implication of PIAS proteins as SUMO-1 E3 ligases. PIAS1 has been shown to catalyze the

2 B. A. Wible, L. Wang, Y. A. Kuryshchev, A. Basu, S. Haldar, and A. M. Brown, unpublished observations.
FIG. 8. Ad/KChAP inhibits growth of DU145 tumor xenographs in nude mice. A, comparison of average DU145 tumor sizes among three treatment groups: PBS, Ad/GFP, Ad/KChAP. DU145 cells injected into the flanks of nude mice were allowed to reach a volume of ~50 mm³, after which the tumors were injected every 48–72 h with either PBS, Ad/GFP, or Ad/KChAP for a total of nine injections over a 19-day period. By day 7, the tumor volume of Ad/KChAP-injected tumors was significantly less than either PBS or Ad/GFP-injected tumors (*, p < 0.01). There was no significant difference in tumor size between the PBS and Ad/GFP control groups. B, KChAP immunohistochemistry and TUNEL assay in tumor sections from animals sacrificed 2 days after the last injection (i.e., day 21 after the start of treatment). KChAP overexpression was detected in treated tumor sections with the KChAP 088 antibody and colorimetric detection (right panels), and corresponding apoptosis was detected with the TUNEL assay (left panels).
sumoylation (i.e. covalent attachment of the small ubiquitin-like modifier protein, SUMO-1) of p53 in mammalian cells (35), and interestingly, sumoylation was previously reported to increase the transcriptional activity of p53 (36, 37). In Saccharomyces cerevisiae, the PIAS homolog, Siz1, has been shown to act as an E3-like factor for SUMO-1 conjugation to the septins, a process required for yeast budding (38–40). In addition, the transcriptional activity of the androgen receptor, another PIAS-binding protein, can be modified by sumoylation (41), and interestingly, sumoylation was previously reported to increase the transcriptional activity of p53 (36, 37). In

The proapoptotic properties of KChAP/PIAS3 overexpression suggested that it might present a novel method of anti-tumor therapy. We tested this idea by direct injection of Ad/KChAP adenovirus into xenograft tumors of DU145 and LNCaP cells in nude mice and observed a striking growth inhibition in tumors derived from both cell types. Importantly, wild-type p53 is not required for KChAP/PIAS3-mediated apoptosis, since LNCaP and DU145 cells express wild-type and mutant p53, respectively. KChAP induction of p53-independent apoptosis may be important therapeutically, since 50% of human tumors express mutant p53. There is currently great interest in developing novel apoptosis-based anti-cancer treatments (42), and our data suggest that KChAP/PIAS3 may provide a novel molecule for therapeutic development.

Acknowledgments—We thank H. Liu and M. Mohan for technical assistance and Dr. T. Scarpa for access to the flame atomic absorption spectrometer at Case Western Reserve University.

REFERENCES

1. Yu, S. P., Canzoniero, L., and Choi, D. W. (2001) Curr. Opin. Cell Biol. 13, 405–411
2. Yu, S. P., Yeh, C. H., Sensi, S. L., Gwag, B. J., Canzoniero, L. M., Farhangzani, Z. S., Ying, H. S., Tian, M., Dugan, L. L., and Choi, D. W. (1997) Science 278, 114–117
3. Yu, S. P., Yeh, C. H., Gottron, F., Wang, X, Grabh, M. C., and Choi, D. W. (1999) J. Neurochem. 73, 933–941
4. Krick, S., Platoshyn, O., Sweeney, M., Kim, H., and Yuan, J. X. (2001) Am. J. Physiol. 280, C970–C979
5. Krick, S., Platoshyn, O., McDaniel, S. S., Rubin, L. J., and Yuan, J. X. (2001) Am. J. Physiol. 281, L887–L894
6. Hughes, F. M., and Cidlowski, J. (1999) Adv. Enzyme Reg. 39, 157–171
7. Wible, B. A., Yang, Q., Kuriyash, Y. A., Accili, E. A., and Brown, A. M. (1998) J. Biol. Chem. 273, 11745–11751
8. Kuriyash, Y. A., Wible, T. I., Brown, A. M., and Wible, B. A. (2000) Am. J. Physiol. 278, C931–C941
9. Kuriyash, Y. A., Wible, B. A., Wible, T. I., Ramirez, A. N., and Brown, A. M. (2001) Am. J. Physiol. 281, C290–C299
10. Chung, C. D., Liao, J., Liu, R. A., Jay, P., Berta, P., and Shuai, K. (1997) Science 278, 1803–1805
11. Valdez, B. C., Henning, D., Perlak, L. B., and Busch, B. (1997) Biochem. Biophys. Res. Commun. 234, 315–340
12. Liu, B., Liao, J., Rao, X., Kusshner, S. A., Chung, C. D., Chang, D. D., and Shuai, K. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 10626–10631
13. Mielenz, A. M., Karvonen, U., Poukka, H., Yan, W., Toppuri, J., Janne, O. A., and Palvimo, J. J. (1999) J. Biol. Chem. 274, 3700–3704
14. Wu, L., Wu, H., Ma, L., Sangiorgi, F., Wu, N., Bell, J. R., Lyons, G. E., and Maxson, R. (1997) Mech. Dev. 65, 3–17
15. Nelson, V., Davis, G. B., and Maxwell, S. A. (2001) Apoptosis 6, 221–234
16. Kotaja, N., Aittomaki, S., Silvennoinen, O., Palvimo, J. J., and Janne, O. A. (2000) Mol. Endocrinol. 14, 1886–2000
17. Yu, S. P., Yeh, C. H., Sensi, S. L., Gwag, B. J., Canzoniero, L. M., Farhangzani, Z. S., Ying, H. S., Tian, M., Dugan, L. L., and Choi, D. W. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 11745–11751
18. Gross, M., Liu, B., Tan, J., French, F. S., Carey, M., and Shuai, K. (2001) Oncogene 20, 3880–3887
19. Meguid, T., Xu, J. H., and Xu, C. W. (2002) J. Biol. Chem. 277, 8255–8259
20. Terstappen, G. C. (1999) Annu. Rev. Biochem. 68, 149–155
21. Bargonetti, J., and Manfredi, J. J. (2002) Curr. Opin. Oncol. 14, 1–6
22. Chene, P. (2001) Oncogene 20, 2611–2617
23. Isaacs, W. B., Carter, B. S., and Ewing, C. M. (1991) Cancer Res. 51, 4716–4720
24. Shieh, S. Y., Ikeda, M., Taya, Y., and Drives, C. (1997) Cell 89, 325–334
25. Dumaz, N., and Meek, D. W. (1999) EMBO J. 18, 7002–7010
26. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995) Cell 82, 675–684
27. Weinberg, R. A. (1995) Cell 81, 323–330
28. Pines, J., and Hunter, T. (1994) EMBO J. 13, 3772–3781
29. Hunter, T., and Pines, J. (1995) Cell 79, 573–582
30. Skyrma, R. N., Prevarskaya, N. B., Dufy-Barbe, L., Odess, M. F., Audin, J., and Palvimo, J. J. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 14145–14150
31. Appella, E., and Anderson, C. W. (2001) Eur. J. Biochem. 265, 2764–2772
32. Liu, B., and Shuai, K. (2001) J. Biol. Chem. 276, 36624–36631
33. Kahy, T., Nishida, T., and Yasuda, H. (2001) Mol. Cell 8, 713–718
34. Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S. E., Scheffner, M., and Del Sal, G. (1999) EMBO J. 18, 6462–6471
35. Rodriguez, M. S., Desterro, J. M., Midgley, C. A., Lane, D. P., and Shieh, S. Y. (1999) EMBO J. 18, 6455–6461
36. Johansen, M. L., and Baudhuin, T. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 13521–13526
37. Takahashi, Y., Toh-e, A., and Kikuchi, Y. (2001) Adv. Enzyme Reg. 39, 157–171
38. Kulcsar, S., Platosz, M., Czakó, J., and Depp, J. (2001) J. Biol. Chem. 276, 48973–48977
39. Poukka, H., Karvonen, U., Janne, O. A., and Palvimo, J. J. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 14145–14150
40. Reed, J. C. (2002) Nat. Rev. Drug Discov 1, 111–121
Increased K⁺ Efflux and Apoptosis Induced by the Potassium Channel Modulatory Protein KChAP/PIAS3 β in Prostate Cancer Cells
Barbara A. Wible, Liming Wang, Yuri A. Kuryshev, Aruna Basu, Subrata Haldar and Arthur M. Brown

J. Biol. Chem. 2002, 277:17852-17862.
doi: 10.1074/jbc.M201689200 originally published online March 4, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M201689200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 42 references, 13 of which can be accessed free at http://www.jbc.org/content/277/20/17852.full.html#ref-list-1