Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia

Martin Moder1, Georgia Velimezi1, Michel Owusu1, Abdelghani Mazouzi1, Marc Wiedner1, Joana Ferreira da Silva1, Lydia Robinson-Garcia1, Fiorella Schischlik1, Rastislav Slavkovsky1,8, Robert Kralovics1, Michael Schuster1, Christoph Bock1, Trey Ideker2,3,4,5, Stephen P. Jackson6,7, Jörg Menche1 & Joanna I. Loizou1

Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.

1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria. 2 Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA 92093, USA. 3 Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. 4 Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA. 5 The Cancer Cell Map Initiative, La Jolla, CA 92093, USA. 6 The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QH, UK. 7 The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK. 8 Present address: Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic. Martin Moder and Georgia Velimezi contributed equally to this work. Correspondence and requests for materials should be addressed to J.I.L. (email: jloizou@cemm.oeaw.ac.at)
Maintaining genome integrity via repair of DNA damage is a key biological process required to suppress diseases including cancer, ageing-related pathologies and diseases associated with developmental defects and neurological disorders\(^1\). Defects in DNA repair genes cause various rare heritable diseases. One such disease is Fanconi anemia (FA) that is caused by defects in FA genes and is characterized by bone marrow failure, congenital defects, cancer predisposition and chromosome fragility\(^2\). FA is believed to result from impaired repair of DNA interstrand crosslink (ICL) damage, leading to accumulation of DNA damage and genome instability. Furthermore, FA patients that develop cancer cannot be treated with standard chemotherapy, including crosslinking agents, as they are hypersensitive to such compounds.

Synthetic viability is the suppression of a genetic defect or phenotype by mutation or abrogation of another gene or pathway. Recently, haploid genetic screens have emerged as a powerful method to perform suppression screens in human cells\(^3,4\). Using near-haploid cell lines, such as HAP1, in combination with a CRISPR-Cas9 inactivating library and insertional mutagenesis, knock-outs for nearly all non-essential human genes can be generated\(^5\).

Here, we introduce an approach for the systematic identification of synthetic viable interactions in human cells, illustrated with FA defective cells. We identified synthetic viable interactions for FA by performing genome-wide screens on isogenic human haploid cells lacking the FA complementation group C (FANCC) protein, following exposure to the DNA ICL-inducing agent mitomycin C (MMC). We identify the BLM helicase complex as a suppressor of Fanconi anemia phenotypes in human cells, demonstrating that systematic screening approaches can be used to reveal genetic viable interactions for DNA repair defects.

Results

Genome-wide screens identify synthetic viable interactions. To validate the use of HAP1 as a cellular model system in which to identify genetic synthetic viable interactions for genes associated with DNA repair, we reproduced a reported synthetic viable interaction that occurs between lamin A (mutated in the premature-ageing disease Hutchinson-Gilford progeria syndrome) and the acetyl-transferase protein NAT10\(^6\). Hence, we utilized CRISPR-Cas9 lamin A mutant HAP1 cells (ΔLMNA) (Supplementary Fig. 1a) which displayed a misshaped nuclear morphology that could be corrected upon the addition of a NAT10 inhibitor (Remodelin) (Supplementary Fig. 1b). Next, we targeted FANCC in HAP1 cells using CRISPR-Cas9, generating a frame-shift mutation (Supplementary Fig. 1c) and subsequently the loss of FANCC protein expression (Supplementary Fig. 1d). Resulting FANCC mutant cells (ΔFANCC) were hypersensitive to MMC, both in a short-term dose-response assay (Supplementary Fig. 1e) and in a long-term colony formation assay (Supplementary Fig. 1f, g).

To identify synthetic viable interactions for FANCC, we set up two genome-wide approaches to screen for mutations that alleviate the hypersensitivity of ΔFANCC cells to MMC-induced DNA damage (Fig. 1a). To this end, we exposed these cells to the Genome-Scale CRISPR Knock-Out (GeCKO) library\(^10\) or insertional mutagenesis\(^8\), the latter disrupting genes by random insertion of a gene-trap cassette into the genome. Cells were subsequently grown under MMC selection, leaving 5–10% of ΔFANCC cells viable. Cells resistant to MMC were recovered and subjected to next generation sequencing, to identify either the enriched guide RNAs (gRNAs) or positions of insertional gene-trap mutagenesis. Sequencing of the CRISPR library revealed a sufficient number of reads, covering each gRNA around 300 times (Supplementary Fig. 2a, b). More than 99% of all gRNAs present in the CRISPR library were detected (Supplementary Fig. 2c). Use of insertional mutagenesis resulted in the targeting of >7000 genes with a total number of 22,772 unique insertions (Supplementary Table 1). For both genome-wide screens, the CRISPR-Cas9 mediated editing and insertional mutagenesis screen, we used human haploid HAP1 cells since the likelihood to receive loss-of-function mutations is increased by the fact that only one genetic allelic need to be altered to yield a null phenotype\(^10,11\). All experiments confirming the results of the genome-wide screens were performed using diploid HAP1 clones.

Encouragingly, both approaches led to the identification of NAD(P)Hquinone oxidoreductase1 (NQO1) as highly enriched in ΔFANCC cells treated with MMC, compared to untreated wild-type (WT) cells (Fig. 1b, c). NQO1 functions as a positive control, since it is known that loss of NQO1 renders cells less sensitive to MMC due to its functions as one of several bioreductases, converting MMC from a pro-drug to an active form that can lead to ICLs\(^12\). Moreover, NQO1 is found to carry loss-of-function mutations in cancers that are MMC resistant\(^13\). Using the CRISPR library, as well as insertional mutagenesis, we identified the enrichment of several NQO1 gRNAs and multiple NQO1 inactivating insertions, respectively (Supplementary Fig. 3a, b). To validate this genetic interaction, we designed gRNAs to target NQO1 with Cas9 nickase\(^14\) (Supplementary Fig. 3c) and confirmed that editing resulted in a pool of frame-shift mutations by immunoblotting (Supplementary Fig. 3d). Both WT and ΔFANCC cells targeted for NQO1 (‘WT + NQO1 gRNA’ and ‘ΔFANCC + NQO1 gRNA’, respectively) displayed reduced MMC toxicity in both a short-term dose-response assay (Supplementary Fig. 3e) and a long-term colony formation assay (Supplementary Fig. 3f, g).

Loss of BLM complex rescues sensitivity of FA cells to ICLs. We identified several members of the BLM complex, using both genome-wide CRISPR libraries (where we identified all four complex members: BLM, RM11, RM12 and TOP3A) and insertional mutagenesis (where we identified BLM and RM11) (Fig. 1b, c), and followed up on this finding. The BLM complex forms part of a multienzyme DNA helicase and includes DNA Topoisomerase III Alpha (TOP3A), RM11, RM12, and the BLM helicase. The BLM complex is bridged to the FA complex via FANCMP\(^15\), and indeed gRNAs targeting FANCMP were also enriched using the CRISPR library (Fig. 1b and Supplementary Fig. 4a). The BLM complex functions in the resolution of DNA structures that arise during the process of homologous recombination (HR) repair\(^16\). By comparing enriched genes in the CRISPR screen performed on MMC-treated ΔFANCC cells to enriched genes identified by an additional CRISPR screen performed on MMC-treated WT cells, we found that loss of the BLM complex specifically rescued ΔFANCC but had little or no effect in WT cells (Supplementary Fig. 4a). This indicates that the observed phenotype of increased resistance upon loss of BLM is specific to FANCMP deficient cells and most likely does not result from general pro-survival effects due to diminished MMC uptake, impaired apoptotic signaling or perturbed MMC activation. All six gRNAs for BLM and RM11 were enriched in the CRISPR screen (Supplementary Fig. 4b). In addition, inactivating insertion sites within BLM and RM11 in the gene-trap screen were identified (Supplementary Fig. 4c).

To validate the above findings, we generated BLM, RM11 or FANCMP deficient cells both in a WT background and in a ΔFANCC background. Single and double knock-out clones were confirmed by Sanger sequencing (Supplementary Fig. 4d) and immunoblotting (Supplementary Fig. 4e). Thus we confirmed that while loss of RM11, BLM or FANCMP in a WT background...
sensitivity to cisplatin. In addition, it has been shown that de
Δ
MMC sensitivity, loss of one of these three factors in a FANCC-

Δ HAP1 cells (Protein Hef ortholog) in a FANCC-

Δ FANCM resulted in enhanced MMC resistance (Fig. 1d–f). In support of our findings, it has been reported that disruption of FANCM (Protein Hef ortholog) in a FANCC-deficient background in chicken DT40 cells suppresses cellular sensitivity to cisplatin. In addition, it has been shown that mouse embryonic fibroblasts lacking both FANCB (another member of the FA core complex) and BLM are less sensitive to MMC than FANCB single mutants. However, intriguingly chicken DT40 cells lacking both FANCC and BLM are not noticeably less sensitive than FANCC single mutants and this discrepancy may be due to species variation.

Since FANCC is part of the FA core complex, we next investigated whether loss of BLM or RM1 could rescue cells lacking FANCI and FANCD2, that make up the FA I-D2 complex and function downstream of the FA core complex. To this end, we generated FANCI and FANCD2 mutant HAP1 cells (ΔFANCI and ΔFANCD2), as well as ΔFANCIΔRM1 and ΔFANCD2ΔBLM double-deficient cells (Supplementary Fig. 4f, g). We observed that loss of RM1 or BLM could rescue the MMC hypersensitivity of FANCI and FANCD2 deficient cells, but did not enhance MMC resistance in WT cells (Fig. 1g, h), indicating that this synthetic viable (genetic suppression) interaction is not limited to FA core complex components.

To investigate whether the observed genetic interaction between FA and the BLM complex was specific to MMC, we treated cells with two additional crosslinking agents, cisplatin and 1,2,3,4-diepoxybutane (DEB) (Fig. 2a, b). In addition, we treated cells with acetaldehyde, which is considered to be an endogenous source of crosslinking damage in FA cells (Fig. 2c). We noted that loss of BLM alleviated the cellular hypersensitivity of ΔFANCC cells to all of these crosslinking agents.

p53 is partially functional in HAP1 cells. Because DNA-damage induced cell death of FA cells has been shown to occur in a p53 dependent manner, and since we did not retrieve TP53 or its effectors in either of the genome-wide loss-of-function screens, we next investigated the functionality of p53 in HAP1 cells. Sequencing of TP53 confirmed a previously reported point mutation (Supplementary Fig. 5a). To test whether this mutation impacted on cell survival of FA cells following exposure
to MMC, we generated HAP1 cells lacking p53 (ΔTP53) as well as cells lacking both FANCC and p53 (ΔFANCCΔTP53) (Supplementary Fig. 5b, c). Next, we treated these cells with MMC in both short-term and long-term dose-response assays (Supplementary Fig. 5d–f). We noted that loss of p53 only slightly increased the resistance of ΔFANCC cells to MMC (Supplementary Fig. 5d–f). This led us to address p53 functionality in HAP1 cells. Thus, we treated human A549 cells (a TP53 WT cell line) and HAP1 cells with Nutlin-3a, an MDM2 inhibitor. This enhanced p53 stability in A549 cells and ensuing induction of the p21 protein (Supplementary Fig. 5g). While we did observe low levels of p21 protein in HAP1 cells, this was not increased upon Nutlin-3a treatment, nor did Nutlin-3a increase p53 protein levels in such cells. Next, we tested whether Nutlin-3a treatment could sensitize HAP1 cells in both short-term and long-term dose-response assays (Supplementary Fig. 5h–j). We did not observe an increased sensitization to Nutlin-3a, which taken together with our other data, these findings indicate that p53 is only partially functional in HAP1 cells.

Loss of BLM reduces DNA damage and apoptosis of FA cells. To probe the molecular mechanism of the observed suppression, we measured generation and clearance of DNA damage using

![Graphical representation of the experimental results](image-url)
Ser-139 phosphorylated histone H2AX (γH2AX) as a marker (Fig. 2d). This analysis indicated a reduction in DNA damage at later time points (48 and 72 h) in ΔFANCCΔBLM cells compared to ΔFANCC cells which correlated with reduced levels of apoptosis (Fig. 2e and Supplementary Table 2). Next, we measured the impact of loss of BLM in ΔFANCC cells on chromosomal instability by assessing chromosomal aberrations (Fig. 2f). This indicated that shortly after ICL induction (24 h after MMC treatment), the number of chromosomal breaks and gaps in ΔFANCCΔBLM cells were not significantly altered, compared to ΔFANCC.

Loss of BLM does not rescue general HR defects. DNA double-strand breaks are generated as an intermediate structure during ICL repair and are repaired through HR26. To test whether loss of BLM can rescue the DNA-damage hypersensitivity of cells defective in other HR proteins, we tested whether effects resulting from depletion of BRCA1 could be compensated for by loss of BLM. Hence, we depleted BRCA1 in WT and ΔFANCC cells, then exposed them to MMC (Supplementary Fig. 6a–c). These data indicated that loss of BLM did not alleviate the sensitivity of BRCA1 depleted cells to MMC, indicating that this genetic interaction with BLM is specific to the FA pathway.

MUS81 loss does not sensitize ΔFANCCΔBLM cells to MMC. The BLM complex, also known as ‘dissolvasome’, can dissolve catenated DNA structures that arise during replication and HR repair27. The helicase activity of BLM in combination with the topoisomerase activity of TOP3A are required to dissolve the toxic intermediate. In the absence of the BLM complex, however, efficient and competent alternative non-homologous end-joining 32, a repair pathway that results in DNA sequence alterations and has also been shown to be involved in ICL repair13. Thus, loss of BLM might relieve suppression of alternative end-joining and promote repair of the lesions in an error-prone manner, a hypothesis supported by our data showing reduced γH2AX foci upon treatment with MMC, with transient decreasing chromosomal aberrations. This is supported by the partial sensitization of ΔFANCCΔBLM cells to MMC upon inhibition of PARP.

In conclusion, through the use of parallel genome-wide screens, we have shown that synthetic viable (genetic suppression) interactions for Fanconi anemia can be systematically identified in human cells. We discovered that loss of the BLM complex rescues survival of Fanconi anemia deficient cells upon generation of DNA damage by reagents that generate ICLs.

Methods

Cell lines and culture conditions. HAP1 cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM) from GibCO™, containing L-Glutamine and 25 mM HEPEs and supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin (P/S). HEK293T cells for virus production were expanded in Dulbecco’s Modified Eagle Medium (DMEM) from GibCO, supplemented with 10% FBS. A549 cells were grown in DMEM supplemented with 10% FBS and 1% P/S. All cells were grown at 37 °C in a 3% oxygen and 5% CO₂ atmosphere. Diploid HAPI clones used for all experiments (except the genome-wide screens) were obtained by serial dilution of mixed populations of cells (consisting of both haploid and diploid cells), followed by confirmation of the ploidy status by FACS. All cell lines used in this publication were tested negative for mycoplasma contamination using the MycoAlert® Mycoplasma Detection Kit.

Gene editing. Guide RNA pair design and cloning: For the generation of NQO1-CRISPR knock-out cells, the Cas9 double-nickase system was used14. By combining the CRISPR Design Tool (http://crispr.mit.edu/) and the Desktop Genetics tool (https://www.desktopgen.com/landing), we selected a pair of two guide RNA (gRNAs) sequences of 20 base pairs each, targeting exon 3 of the human NQO1 gene (ENS500000181019) with an offset distance of 9 base pairs. The gRNA sequences used were the following: NQO1-guideA (Sense): 5′-TAAAGCCAGAACA-GACTGCGGC-3′ and NQO1-guideB (Antisense): 5′-CTACTAGCGACCA-TATTG-3′. The gRNA oligonucleotides were annealed and cloned into the pSpCas9n(BB)-2A-Puro (PX462) V2.0 vector (Addgene plasmid # 62987), following the recommended protocol15.

Plasmid transfection: pSpCas9n(BB)-2A-Puro-NQO1-guideA and -guideB constructs were co-transfected into HAPI cells using Xfect transfection reagent (Takara Bio USA, Inc.). After 2 days of selection with puromycin, loss of protein expression was tested by immunoblotting.

CRISPR-Cas9-mediated editing: AlMNA and HAPI cells were purchased from Horizon Genomics. CRISPR-Cas9 knock-outs of FANCC, FANCI and BLM were
generated in collaboration with Horizon Genomics. CRISPR-Cas9 knock-outs of RMI1, FANCQ, FANCQ/BLM, FANCQ/RMI1, FANCE/RMI1, and FANCD2/BLM were generated using the protocol of Horizon Genomics. Sequences for gRNAs were designed by Horizon Genomics or with the use of http://crispr.mit.edu/ and https://www.deskgen.com/landing/, respectively. Sequences of gRNAs used were:

- **FANCQ**: 5′-CCAGAACGGTACAGAACTGGT-3′
- **FANCE**: 5′-GTATCCAGTTGGTAACTGCT-3′
- **FANCN(1)**: 5′-AAAGAAGTCTTATGCGGCGC-3′
- **FANCN(2)**: 5′-GTTCTACAAGACTTCCAC-3′
- **BLM**: 5′-AGATTCGTCGACAGCTCCGA-3′
- **RMI1**: 5′-ATGTAAGTGACACCTTGAT-3′
- **P53**: 5′-TCCTAGACTTTCTTACGAGC-3′

Sanger sequencing. Genomic DNA was extracted using the Viagen Biotech DirectPCR Lysis Reagent (Cell) according to the manufacturer's protocol. Genomic regions around the gRNA-targeted sequences were amplified using the following primer pairs:

- **FANCQ-For**: 5′-CACAACCTACACATACGATTGGC-3′
- **FANCQ-Rev**: 5′-ACTAAACAAAGAAAGGATCCTGTTCC-3′
- **FANCD2-For**: 5′-CTTTTTTAAAGCCCTTTAACCATTGCT-3′
- **FANCD2-Rev**: 5′-TTTCTCAGCAGCAGGCAAGAC-3′
- **BLM-For**: 5′-GGACAGATGTGTTGCTGTT-3′
- **BLM-Rev**: 5′-GTATACGAGGTAATTTTCCTTCAGTG-3′
- **RMI1-For**: 5′-AAAAAATCTAAAGGGTGTGCCTGTC-3′
- **RMI1-Rev**: 5′-GAGCAGTGCTTACTCTTACAAAGTG-3′
- **P53-For**: 5′-TTATAGGAGCTAAACAACGAGA-3′
- **P53-Rev**: 5′-ATCTACAGAGCTCAACGACAT-3′

The following sequencing primers were used:

- **FANCQ-5′-ACCTAAACAAAGAAAGGATCCTGTTCC-3′**
- **FANCD2**: 5′-TTTTTTAAAGCCCTTTAACCATTGCT-3′
- **FANCD2**: 5′-TTTCTCAGCAGCAGGCAAGAC-3′
- **BLM**: 5′-GGACAGATGTGTTGCTGTT-3′
- **RMI1**: 5′-GAGCAGTGCTTACTCTTACAAAGTG-3′
- **P53**: 5′-TTATAGGAGCTAAACAACGAGA-3′
- **P53-Rev**: 5′-ATCTACAGAGCTCAACGACAT-3′

Quantitative reverse transcription PCR (RT-PCR). Cells were collected and RNA was isolated using Trizol extraction (following manufactures instructions). RNA was treated with 1 μl DNase (Sigma) and then reverse transcribed with the SuperScript III Reverse Transcriptase protocol (Invitrogen) to obtain cDNA. An amount of 1 μg of cDNA template was used for the qRT-PCR using SYBR Green qPCR Mastermix (Qiagen). Analysis was performed in biological triplicates using expression of GAPDH for normalization of data. The PCR was performed on a 7900HT Fast Real-Time PCR System (Applied Biosystems). Analysis was performed in biological triplicates using the following primers:

- 5′-AAACCTATAGACACAGAGGAC-3′; 5′-GGCTGTGGGGTTTCT-3′
- 5′-TTATAGGAGGTCAAATAAGCAGCA-3′
- 5′-TTATAGGAGGTCAAATAAGCAGCA-3′
- 5′-TTATAGGAGGTCAAATAAGCAGCA-3′
- 5′-TTATAGGAGGTCAAATAAGCAGCA-3′
- 5′-TTATAGGAGGTCAAATAAGCAGCA-3′
- 5′-TTATAGGAGGTCAAATAAGCAGCA-3′

Remodelin incubation and microscopy. Cells were adhered onto coverslips and incubated with Remodelin at 1 μM for 2 days. To visualize nuclei, cells were subsequently fixed with 4% paraformaldehyde in PBS and stained with 4′,6-diamidino-2-phenylindole (DAPI). Images of cells were acquired using a Deconvolution microscope (Leica). CellProfiler software was used to quantify nuclear circularity and nuclear area from DAPI staining pictures, using the ‘object size shape’ measurement.

γH2AX staining and analysis. Cells were seeded in three 96-well plates (black wells of flat bottom tissue culture treated imaging microplates from Falcon) and left to adhere over-night. Cells were either treated with 60 nM MMC or left untreated. The experiments were done in triplicate wells. After 24, 48, and 72 h of treatment, cells were fixed with 100% methanol. Staining: Cells were blocked for 1 h with Blocking Buffer (10% FCS and 0.1% Triton X-100 in PBS), incubated for 1 h with the primary antibody (Anti-phospho-Histone H2A.X Ser139, clone NB2001, from Millipore/Upstate) at a dilution of 1:1000 in Blocking Buffer, washed three times with PBS, incubated for 1 h with secondary antibody (Alexa Fluor 488 goat anti-mouse IgG, H+L, from Invitrogen) diluted at 1:600 along with DAPI (0.2 mg/ml stock from Sigma-Aldrich), diluted at 1:1000 in Blocking Buffer, washed 3 times and left in PBS. Cells were imaged on the Operetta-High Content Imaging System (Perkin Elmer, x20 objective). The image analysis software CellProfiler was used to quantify the integrated intensity of nuclear γH2AX. Apoptotic cells were excluded from the analysis. For each condition, at least 1000 cells were counted, except for ΔFANCQ time point 2 and 3 where 877 and 426 cells (respectively) were obtained. Using R and various data processing packages, normalization of the threshold used was determined from γH2AX positive (integrated intensity > 10) and negative cells was determined by comparing treated and untreated cells.

Measurement of apoptosis. Cells were seeded as triplicates on day 1 in 10 cm dishes and treated with 46 nM MMC on day 2, day 3, and day 4. On day 5, cells were stained using the PE Annexin V Apoptosis Detection Kit I from BD Biosciences according to the provided protocol and analyzed by flow cytometry.

Metaphase spreads. Cells were seeded in 10 cm dishes and treated with MMC for the indicated times. Colcemid (KaryoMaxTM, Gibco, Thermo Fisher Scientific) was added at a final concentration of 500 ng/ml 3 h before harvesting. Cells were trypsinized and incubated in KCI 0.075 M (KaryoMaxTM, Gibco, Thermo Fisher Scientific) for 6 min. After centrifugation, cells were resuspended in fixation solution (methanol:acetic acid 3:1) and incubated for 15 min on ice. Fixation was repeated and the cells were left in PBS. Centrifugation and re-suspension in fresh fixation solution was repeated two times. Metaphase spreads, slide preparation and measurement of chromosomal aberrations was performed at Karyologic Inc (North Carolina, USA).
containing supernatant was centrifuged at 700 g for 10 min and then filtered through a 0.45 μm filter (Millipore Sterilpur HV/PVDF). Cells were infected with a virus defining the hit-gene (ret) between 0 points with p < 0.001 and fold-change ≥ 2. In the second step, hit selection was optimized using linear discriminant function analysis. Dose-points of survival curves indicate the mean of biological triplicates, with S.E.M. shown as error bars. The p-values for the γH2AX staining were determined by two-way ANOVA. Means and S.E.M. of biological triplicates are plotted. The p-values for the insertion/deletion analysis were calculated using a two-tailed Fisher's exact test. If the numbers are presented as error bars, the p-value is indicated in the figure. Bar graphs were generated using GraphPad Prism 7.01 (GraphPad Software, La Jolla, CA). NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01439-x ARTICLE

Genome-wide insertion mutagenesis screen. For gene-trap insertional mutagenesis we followed the published protocol6 as described briefly following: Gene-trap virus was produced in HEK293T, that were seeded in 15 cm dishes and transfected with the gene-trap plasmid and packaging plasmids VSVG, gag-pol and pAdVex Vector (Promega) using Lipofectamine® 2000 Transfection reagent (Invitrogen, ThermoFisher Scientific) according to manufacturer’s protocol. The following day, medium was replaced with fresh DMEM (20% FBS, 1% Pen/strep) at 4°C 2 min; loop 18× (94 °C 30 s; 55 °C 30 s; 68 °C 1 min) 68 °C 7 min. PCR2 products were purified by running them on agarose gel and DNA was extracted using the Promega Wizard® SV Gel and PCR Clean-Up System. Barcoded samples were pooled and submitted to the Biomedical Sequencing Facility (BSF) for 12 base pair single nucleotide barcoding. Barcoded samples were sequenced from the CRISPR library de-multiplexed by the BSF. Enrichment analysis for gRNAs was performed using the MAGeCK-VISPR analysis and visualization software8 by comparing the MMC treated ΔFANCC sample to WT untreated, or WT MMC treated to WT untreated respectively (positive selection).

Statistical analysis. For gene-trap and CRISPR library screens, hit selection was performed in two steps. First, each data set was partitioned into two groups, non-selected WT HAP1 vs. MMC treated HAP1. For each gene a one-sided Fisher’s exact-test was applied to estimate a significant enrichment of insertions over an unselected control data set.

References
1. Jackson, S. P. & Bartek, J. The DNA damage response in human biology and disease. Nature 461, 1071–1078 (2009).
2. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).
3. Crossan, G. P. & Patel, K. J. The Fanconi anaemia pathway orchestrates genome editing specificity. Nature 500, 1238–1240 (2013).
4. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 344, 70–73 (2014).
5. Carette, J. E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).
6. Forment, J. V. et al. Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nat. Chem. Biol. 13, 12–14 (2017).
7. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).
8. Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).
9. Larrieu, D., Britton, S., Demir, M., Rodriguez, R. & Jackson, S. P. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Nature 411, 377–380 (2001).
10. Siegel, D., Yan, C. & Ross, D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in disease. Nature Rev. Drug Discov. 10, 333–344 (2011).
11. Cachet, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).
12. Wu, L. & Hickson, I. D. The Bloom-Savitsky DNA-repair pathway. Nat. Rev. Cancer 10, 1434 (2011).
13. Burckstummer, T. et al. A reversible gene trap collection empowers haploid genetic screens. Nucleic Acids Res. 43, 893–903 (2015).
14. Naito, Y. & Nakamura, S. Formaldehyde catabolism is essential in cells deficient for the Fanconi anaemia DNA-repair pathway. Nat. Struct. Mol. Biol. 18, 1432–1434 (2011).
15. Kim, T. M. et al. RECOILS and BLM exhibit divergent functions in cells defective for the Fanconi anaemia pathway. Nucleic Acids Res. 43, 893–903 (2015).
16. Harino, S. et al. Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J. 34, 1421–1432 (2015).
17. Kusakari, M. et al. Formaldehyde catabolism is essential in cells deficient for the Fanconi anaemia DNA-repair pathway. Nat. Struct. Mol. Biol. 18, 1432–1434 (2011).
18. Grécococchea, J. J. et al. Genomic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489, 571–575 (2012).
19. Ceccaldi, R. et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell. Stem. Cell. 11, 36–49 (2012).
20. Easoldt, N. et al. Dynamic selection of CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 24, 2059–2065 (2014).
21. Burckstummer, T. et al. A reversible gene trap collection empowers haploid genetic screens in human cells. Nat. Methods 10, 965–971 (2013).

Received: 28 December 2016 Accepted: 15 September 2017
Published online: 01 November 2017

Data Availability. All data generated or analyzed during this study is included in this published article and its Supplementary Information.
Author contributions
J.I.L. conceived the project; M.M. performed the genome-wide CRISPR screens and G.V. performed the genome-wide insertional mutagenesis screens, with input from M.O., A.M. and R.S.; M.M. and G.V. performed dose-responses and immunoblots and performed and analyzed the Annexin V FACS data with input from M.O.; M.W. generated CRISPR-Cas9 knock-out clones, as well as contributed to dose–response curves and immunoblots; M.M. generated the shMUS81 constructs and cells and performed the related dose-response assays on these cells; L.R.-G. generated the shBRCA1 cells and the RT-qPCR data and with G.V. generated the double nickase Cas9 NQO1 mutants and performed survival assays; M.O. contributed to dose-responses and performed the γH2AX staining and analysis, as well as the FACS for Annexin V; F.S. analyzed the insertional mutagenesis data, along with M.S., who were supervised by R.K. and C.B., respectively; J.F.d.A. assisted with data analysis, along with J.M.; T.I. gave experimental advice. S.P.J. provided Remodelin; J.I.L. wrote the manuscript, with input from all authors.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-01439-x.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements
We thank the Biomedical Sequencing Facility (BSF) at CeMM for all next generation sequencing and related bioinformatics analyses. We thank Thijn Brummelkamp (NKI, The Netherlands) for providing protocols and the WT HAP1 insertional mutagenesis data. ∆FANCD2 cells were kindly provided by Ketan J. Patel (LMB, Cambridge, UK). The FANCM antibody was generously provided by Weidong Wang (NIH, USA). The shRNA constructs for BRCA1 were kindly provided by Sebastian M. Nijman (Ludwig Institute for Cancer Research Ltd, UK). We thank Jan Hickson (University of Copenhagen, Denmark) for providing experimental advice and suggestions. We thank Oscar Fernández-Capetillo (Spanish National Cancer Research Center, Spain) for discussions and input. M.M. was partially funded by an FWF stand-alone grant to J.I.L. (FWF29763). G.V. was funded by an EMBO long-term fellowship (Grant number: ALTF 730 2014) and an FWF stand-alone grant to J.I.L. (FWF29555). L.R.-G. was funded by a Roehringer Ingelheim Fonds PhD fellowship. A.M. was funded by a DOC fellowship (OAW24102). CeMM is funded by the Austrian Academy of Sciences. T.I. was supported by grant ES014811 from the US National Institutes of Health. J.M. was supported by a WWTF career grant (VRG15-005).

ARTICLE