Characteristics of mangrove ecosystems in Weda Bay: Environment, Vegetation, and Aboveground Carbon Stocks

Suyadi
Research Center for Biology - Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor km 46, Cibinong 16911, Bogor, Jawa Barat, Indonesia

E-mail: suya009@lipi.go.id and yadi_pdt@yahoo.com

Abstract. Weda Bay is one of the largest mangrove habitat in North Maluku and one of mega-biodiversity spots in Indonesia. However, data and information of mangrove vegetation and its ecosystem services particularly carbon stocks were limited. Mangroves were mapped using GIS-remote sensing and vegetation were sampled using transects in five sites of mangroves across Weda Bay. Transects were extended from seaward to landward to cover all vegetation variation and hydrodynamic conditions. Environmental data (water and substrate): temperature, pH, Dissolved Oxygen (DO), particle size of sediment, and nutrient (phosphate and nitrate) were collected. The objective is to identify characteristics of mangrove landscape and vegetation, it is environment, and it ecosystem services in term of aboveground carbon stocks. The study showed that the characteristics of landscape and vegetation of mangrove varied among hydrodynamic conditions. The bay is important habitat for 8.5% (17 species) of mangrove species in Indonesia. *Rhizophora apiculata* and *Bruguiera gymnorrhiza* were the most dominant mangroves. The environmental conditions of Weda Bay particularly northern part of the bay were suitable for mangrove growth. Substrate of mangrove did not vary significantly with distance from the seaward which was mainly dominated by mud and clay (3.9 - 63 µm). Mean water temperature in the mangrove area was 29.3°C, salinity 34.1 psu, mean water suspension was 46 mg l⁻¹, mean dissolved oxygen was 3.2 mg l⁻¹, and water current was 10 m s⁻¹. Aboveground carbon stock was considerable (752 ± 17.6 Mg C ha⁻¹). Change in aboveground carbon stocks over the distance from the seaward edge to landward edge was not significantly different. In contrast, aboveground carbon stocks varied among hydrodynamic conditions: estuarine, delta, and riverine mangroves. Delta mangrove contained the highest carbon stock (993 ± 27.7 Mg C ha⁻¹), followed by estuarine mangroves (645 ± 12.2 Mg C ha⁻¹) and riverine mangroves (244 ± 8.6 Mg C ha⁻¹). However, this ecosystem faced some threats such as mangrove extraction and plastic pollution. Better mangrove management e.g. reducing mangrove extraction and pollution are required to protect the functions and ecosystem services of mangroves. In addition, conserving mangrove forests will allow the government to achieve blue economy goals and to mitigate climate change through carbon sequestration.

Keywords: Mangrove, landscape, spatial metrics, vegetation, Weda Bay, aboveground carbon
1. Introduction

Indonesia is the largest habitat (23%) of global mangrove [1]. Mangrove grow in the interface areas between terrestrial and estuarine (marine ecosystem) known as lagoon, estuary, river, and coastal area. Mangroves are categorized as true mangroves and false mangroves (associate mangroves). About 67% (40 species) of true mangrove species in the world can be found in Indonesia [2]. At least 14 species of mangroves in Indonesia are endangered species and three of them are endemic species [2][3].

The importance of mangrove forest providing a variety of ecological function has been well documented. This ecosystem is habitat for both terrestrial species (such as birds, monkeys, snakes, and mammals) and marine biota (such as molusk, fishes, and crabs) [4]. Mangroves also important as spawning and nursery ground of fishes which is crucial for their life cycle [4]. The ecosystem also support numerous ecosystem services including shoreline protection, sediment control, filtering runoff, and nutrient and organic matter processing. The social and cultural values of mangrove forests are also well known including for traditional and educational resources. The economic values of mangrove forest is at least US$ 1.6 billion y\(^{-1}\) [5][6].

The potential of mangrove ecosystem as explained above is important to help the government to achieve blue economy goals particularly for food security [7]. For example, mangrove plants (leaf, fruite, wood bark, etc.) are important raw material of food, medicine, and other products including wax and handicraft [4]. Mangrove forests potentionally can be used to achieve at least five aspects of blue economy including coastal management and conservation, climate change mitigation and adaptation (blue carbon), tourism, fisheries, and small island management [8].

One of the largest habitat of mangrove in Indonesia is Weda Bay, Halmahera Island, North Maluku. Halmahera sea (including Weda Bay) is one of the Indonesian Troughflow (ITF) which play an important role for climatic and oceanic prediction, in turn useful for sea transportation, fisheries, and marine infrastructure development [9]. Coastal areas of Weda Bay is central of development and more than 65% of human population living in the coastal zone, 150 km of a coastaline. This drive mangrove deforestation and degradation for coastal development, aquaculture, and human settlement. Mangrove ecosystem also face tremendous threats due to human activities such as wood exploitation and industries. For example, marine ecosystem of Weda Bay including mangroves and waters are threatened due to tailing from Weda Bay Nickel (WBN Project) [10].

Data and information about conditions and characteristics of mangrove forest in Weda Bay is very limited, especially mangrove landscape and vegetation, mangrove environment, and its ecosystem services in term of aboveground carbon stocks. These data and information is required to achieve blue economy goals particularly to better manage and ensure sustainable use of mangrove forests. In addition, aboveground carbon (blue carbon) stock assessment is crucial to mitigate climate change. The aims of this study are: (1) to identify the conditions and characteristics of mangrove landscape and vegetation; (2) to assess the characteristics of environmental conditions of mangroves; (3) to quantify an ecosystem services in term of aboveground carbon stocks of mangroves forests. GIS-remote sensing, survey of mangrove vegetation and its environment (water and substrate), and particle analysis were conducted to address the described objectives.

2. Methodology

The study was undertaken in Weda Bay, Halmahera, North Maluku, Indonesia (Figure 1). Weda Bay is surrounded by Halmahera Island in north and west, and some small islands (< 200 km\(^2\)) in south and west. The coastal morphology of Weda Bay is relatively flat with some medium size of rivers, but some coastal areas are steep, the depth of the bay up to 1700m particularly toward Halmahera Sea. Mean water temperature was 29.2°C (range from 24 to 45 °C), mean salinity was 34.0, and mean dissolved oxygen was 7.0 mg l\(^{-1}\). The land surrounded the bay was urban area (Weda City) and rural area.
Three main methods were applied: GIS-Remote sensing, vegetation survey, and environment (water and sediment/substrate) samplings (Figure 2). Landsat Enhanced Thematic Mapper (ETM) year 1974 and Landsat Operational Land imager (OLI) images year 2013 were used to map mangrove cover change and characteristics of mangrove landscape. Landsat images were downloaded from the US Geological Survey (USGS) Website (https://earthexplore.usgs.gov). The improved image analysis (Maximum Likelihood Classification and Knowledge-Based Classification) was applied for image classification [11]. Maps were processed and analysed using ArcGIS 10.2 and coordinates were presented in terms of Universal Transverse Mercator (UTM). Mangrove landscape characteristics in term of spatial metrics were assessed using ArcGIS 10.5 and exported to Fragstats [12]. Landscape and vegetation characteristics were calculated by hydrodynamic categories: estuarine, delta, and riverine mangroves [11]. Digital Elevation Model 2012 was applied to assess geomorphology of coastal area including rivers, sloop, etc.

Figure 1. Study area of Weda Bay and five locations of mangrove transects in the bay.
Figure 2. Flowchart of methods: GIS-Remote sensing, vegetation survey, and environment (water and substrate) survey used in the study

A vegetation survey was conducted in March 2013 in eight mangrove transects containing total 112 plots (Table 1) representing estuarine mangroves, riverine mangroves, and delta/island mangroves located in five locations in Weda Bay (Figure 1). Transects were extended from the landward edge to seaward fringe. Size of plot for trees was 10 x 10 m, for saplings was 5 x 5 m, and for seedlings was 1 x 1 m. We measured diameter breast height (DBH) and height of trees and saplings and counted seedlings. Trees defined as stem with diameter > 10 cm, tree height > 4 m, saplings were diameter 2 -< 10 cm, height 2-4 m, and seedlings were diameter < 2 cm, height < 2 m. Vegetation data were analysed to identify vegetation characteristics including species composition, zonation, density, importance value index, and SIMPSON’s diversity index using formula developed by Cox [13]. A generic allometric equations developed by Chave et al. [14] was applied to quantify aboveground biomass and then converted into aboveground carbon stocks using the wood carbon fraction of 0.50 determined for tropical mangroves [15]. Monte Carlo simulation approach developed by Yanai et al. [16] was modified and applied to estimate the uncertainty in aboveground carbon stocks. Seedlings were excluded from the above ground carbon stock estimation because their carbon stock is negligible [15].

Table 1. Location of transects used for vegetation and environmental survey

Code	Location	Category	No. of plots	Latitude	Longitude
B1	Halmahera Botlol 1	Estuarine	10	00°18'24.8''	128°00'10.6''
B1	Halmahera Botlol 2	Estuarine	21	00°16'08.7''	128°47'49.8''
B2	Yevi	Estuarine	19	00°20'13.9''	127°53'51.6''
Top layer sediment (10 cm) samples were collected in the centre of plots along the transects using a piston corer. Sediment was analysed using Particle analyser Malvern-Mastersizer 3000 to measure particle size and to assess sediment types. Water samples were collected in the tidal channel near the plots. It used to measure dissolved oxygen, salinity, phosphate, and nitrate.

3. Result and discussion
3.1. Characteristics of mangrove landscape

Total area of mangrove forest in Weda Bay in 2013 was 2,227 ha. This estimation may underestimate because the map of mangrove forest cover was produced using medium spatial resolution images could not detect small patches of mangrove forest. Mangrove forests were distributed mainly in northern part of the bay (Figure 3). There was not much change of mangrove forest cover during the study period 1974–2013, deforestation rate: 2.5 ha y⁻¹ (0.11 % y⁻¹). However, the study found extensive plastic pollution and mangrove extraction in mangrove area particularly in Weda City.
The spatial metrics of estuarine and riverine mangrove were similar, they were complex landscape ecosystem (Table 2). In contrast, spatial metrics of delta mangrove was very different from estuarine and riverine mangroves. Delta mangrove was less complex (mean patch size: 13 ha, mean perimeter: 2.1 km, and mean shape index: 1.21) and more isolated (proximity index: 112) than estuarine and riverine. Similar finding was found in temperate mangroves of Auckland, New Zealand which spatial metrics of delta mangroves were different from estuarine and riverine mangroves [11]. Information of mangrove landscape characteristics in term of spatial metrics provided ecological meaningful such as complexity and connectivity of mangrove landscape ecosystem. For example, spatial metrics of mangrove landscape affect marine biota living in the mangroves (e.g. community structure, foraging behaviour, migration) and ecosystem services of mangroves such as shore protection [17][18][19] [20].

Table 2. Spatial characteristics of hydrodynamic categories of mangroves: estuarine, delta, and riverine
Estuarine mangroves

Mean patch size (ha)
Mean perimeter (km)
Mean shape index
Mean proximity index

3.2. Characteristics of mangrove vegetation

This study managed to record 17 species of mangrove (11 family) in the Weda Bay, North Maluku (Table 3). This showed that the bay was habitat for 8.5% of mangrove species in Indonesia [2]. Thirteen of the mangrove species in Weda Bay were true mangroves and four species were false mangrove. Most of false mangroves were presence in riverine and estuarine mangroves (Table 4). Bruguiera gymnorrhiza, Rhizophora apiculata, and Rhizophora stylosa were the most common species which present in all mangrove categories (estuarine, riverine, and delta). Some mangroves were only found in riverine such as Excoecaria agallocha, Hibiscus tiliaceus, Barringtonia asiatica, Heritiera littoralis, and Pandanus tectorius. Mean diameter of mangrove trees was 22 cm and mean height was 17 m. Mean diameter of saplings was 6 cm and mean height was 5 m. There was no significant difference of diameter and height for estuarine, delta, and riverine mangroves.

Table 3. Species composition in Weda Bay, Halmahera, North Maluku
No

1
2
3
4
5
6
7
8
9
Table 4. Presence of mangrove species in eight transect of estuarine, delta, and riverine

Species	Estuarine Yevi	Delta / Island	Riverine	Maturing tanjung
1. Nypa fruticans				
2. Lumnitzera littorea				
3. Excoecaria agallocha				
4. Barringtonia asiatica				
5. Hibiscus tiliaceus				
6. Thespesia populnia				
7. Xylocarpus granatum				
8. Aegiceras floridum				
9. Pandanus tectorius				
10. Aegialitis annulata				
11. Bruguiera gymnorrhiza				
12. Ceriops tagal				
13. Rhizophora apiculata				
14. Rhizophora mucronata				
15. Rhizophora stylosa				
16. Sonneratia alba				
17. Heritiera littoralis				

Mangrove vegetation particularly estuarine mangroves in Weda Bay formed zonation pattern: fringe (seaward) zone, middle zone, and landward zone. Fringe zone was dominated by *Rhizophora apiculata*. Middle zone was mixed vegetation (*Rhizophora mucronate, Ceriops tagal, Bruguiera gymnorrhiza*). Landward zone was mixed true mangrove and false mangrove vegetation (e.g. *Hibiscus tiliaceus* and *Pandanus tectorius*). However, zonation was not always clear because there was overlap zonation in some locations such as Yevi and Botlol. There was no clear mangrove zonation for delta and riverine mangroves. Some studies found that mangrove zonation was closely related to soil types (mud, sand, clay), salinity, wave, flooding and tide [21][22][23]. Noor et al. [2] associated mangrove zonation with ecological function such as community structure of mollusk sand crabs.

Tree and sapling density in riverine mangrove was high, mean density 533 stem ha\(^{-1}\) and 667 stem ha\(^{-1}\), respectively. This finding was in line with study conducted in Sundarbans, Bangladesh that...
mangrove density was higher in upriver than downstream due to low salinity [24]. Density of mangrove trees in delta mangrove such as Dadawe (417 stem ha$^{-1}$) and Bori-Bori (436 stem ha$^{-1}$) were high (>400 stem ha$^{-1}$) (Table 5). Our field observation showed that the condition of these delta mangroves vegetation (Dadawe and Bori-Bori) were good. In contrast, the density of mangrove in Yevi, Way Obus, and Imam were low, 268, 278 and 340 stem ha$^{-1}$, respectively. Some disturbances such as wood extractions for firewood and plastic pollution were found in these locations. The study also found mangrove recovery or mangrove succession in Botlol 1 due to mangrove logging in 1980s.

Different from tree density, the density of saplings in Yevi, Way Obus, and Imam were high, 916, 765, and 500 stem ha$^{-1}$, respectively (Table 5). This may related with wood extractions for firewood which provide space or canopy gap for seedlings and sapling establishment and growth. Other studies showed that establishment and growth of seedlings and saplings occur in canopy gaps where sufficient light is available and intra-species competition is low [25][26][27]. In contrast, sapling density in Bori-Bori was very low (138 stem ha$^{-1}$). This can be explained by the high tree density and high basal area (6.56 m2 ha$^{-1}$) of mangrove trees in the island.

Table 5. Density and basal area of trees and saplings of mangroves in Weda Bay

Transects	Trees	Saplings			
	Density (stem ha$^{-1}$)	Basal area (m2 ha$^{-1}$)	Density (stem ha$^{-1}$)	Basal area (m2 ha$^{-1}$)	
Estuarine	Botlol 1	570	10.5	560	0.34
Estuarine	Botlol 2	429	10.9	410	0.34
Estuarine	Yevi	268	2.27	916	0.24
Estuarine	Way Obus	278	11.3	765	0.45
Delta	Pulau Imam	340	1.68	500	0.07
Delta	Pulau Dadawe	417	2.05	483	0.07
Delta	Pulau Bori-Bori	436	6.56	138	0.02
Riverine	Matuting tanjung	533	10.4	667	0.30

The SIMPSON’S diversity index showed riverine mangrove was the most divers mangroves in Weda Bay (mean index: 0.74), followed by estuarine (mean index: 0.54) and delta mangroves (mean index: 0.45). Mangrove trees and saplings in Way Obus was the most divers among other transects (Table 6). This was correlated with the coastal geomorphology of Way Obus (relatively flats and long river) and conditions of substrate (mainly mud) which suitable for mangrove growth. Suitable habitat (substrate, geomorphology, tide, temperature, and salinity) are the most important factors influencing mangrove diversity [4]. Mangrove in delta mangroves (e.g. Bori-Bori) was less diverse (Table 6), this was due to the density and basal area in this delta mangroves was high (Table 5), so mangrove establishment and survival was low due to intra-species competition. Suyadi et al. [11] found that delta mangroves were characterized as low spatial heterogeneity or less complex (short edge perimeter and regular shape) and it was isolated from other mangrove patches. These characters explained low diversity of mangrove in Bori-Bori. This was also supported by the characteristics of delta mangrove landscape: regular shape, less connected, less edge perimeter, and less disturbance (Table 1).
Table 6. SIMPSON’S Diversity Index of trees and saplings of mangroves in Weda Bay

Transects	SIMPSON’S Diversity Index	
	Trees	Saplings
Estuarine Botlol 1	0.33	0.25
Estuarine Botlol 2	0.59	0.56
Estuarine Yevi	0.50	0.30
Estuarine Way Obus	**0.75**	**0.70**
Delta Pulau Imam	0.63	0.69
Delta Pulau Dadawe	0.49	0.28
Delta Pulau Bori-Bori	**0.23**	**0.20**
Riverine Matuting tanjung	0.74	0.66

The most common species of mangroves in Weda Bay was *Rhizophora apiculata* dan *Bruguiera gymnorrhiza* (Table 7). These species were dominant in all transects (except Dadawe) and at all stage of mangroves (trees, saplings, and seedlings). This different from Komiyama et al. [28] found that *Sonneratia alba* was the most dominant species in Halmahera. This is due to species shifting caused by change of substrate, climatic factors, and oceanic factors. Mangrove expansion and species shifting driven by change of substrate, climatic factors, and oceanic factors are occurred in other region such in New Zealand, Australia, and USA [29][30][31][32]. Substrate of mangrove in Weda Bay may change due to sedimentation (land erosion) driven by land clearing and land mining (coastal mining) around the bay. Change in mangrove substrate (mudflat) in Auckland, New Zealand was mainly driven by land-based or catchment factors such as forest cover and sediment accumulation rate [29]. Dadawe was dominated by *Rhizophora stylosa* (Table 7) due to the substrate in this area was dominated by sand and it was less connected to other mangroves.

Tabel 7. Importance value index (%) of trees, saplings, and seedlings of mangroves

	Estuarine	Delta / Island	Riverine					
	Botlol 1	Botlol 2	Yevi	Way Obus	Imam	Dadawe	Bori-Bori	Matuting
Trees								
Aegiceras floridum	4							
Bruguiera gymnorrhiza	36	39	47	33	57	40	87	38
Ceriops tagal	6							
Excoecaria agallocha	3							
Heritiera littoralis								3
Hibiscus tiliaceus								
Lumnitzera littorea	6							
Rhizophora apiculata	61	50	47	45	28			55
Rhizophora mucronata	4							
Aboveground carbon stocks

Aboveground carbon stock of mangrove forest in Weda Bay was 725 Mg C ha\(^{-1}\) (± 17.6 s.e.m.) across all eight transects (112 plots), with 96% stored in trees (699 ± 16.87 Mg C ha\(^{-1}\)), 4% in saplings (26 ± 0.68 Mg C ha\(^{-1}\)). This fall within the range observed in some mangrove area in Southeast Asia [33]. However, the aboveground carbon stocks in this study higher than reported by Rahman et al [24] in Sundarban, Bangladesh and it was much higher than aboveground carbon stocks of temperate mangroves in New Zealand [11][34]. Aboveground carbon stocks in delta mangroves (993 ± 27.7 Mg C ha\(^{-1}\)) were significantly higher than those in estuarine mangroves (645 ± 12.2 Mg C ha\(^{-1}\), \(p = 0.003\)) and riverine mangroves (244 ± 8.6 Mg C ha\(^{-1}\), \(p = 0.026\)), \(\chi^2 (2) = 8.92, p = 0.02\). In contrast, aboveground carbon of riverine mangrove in temperate region was higher than estuarine and delta mangroves [11]. Aboveground carbon stocks were closely related with canopy height and basal area [24][33]. But, it was not vary along transects from seaward to landward.

Rhizophora stylosa

Species	Saplings	Seedlings
Rhizophora stylosa	7	17
Sonneratia alba	3	21
Xylocarpus granatum	2	7

Saplings

Species	Saplings	Seedlings
Aegiceras floridum	5	27
Bruguiera gymnorrhiza	25	45
Ceriops tagal	10	35
Excoecaria agallocha		33
Heritiera littoralis		35
Hibiscus tiliaceus		35
Rhizophora aciculata	69	55
Rhizophora mucronata	6	3
Rhizophora stylosa	3	17
Sonneratia alba	11	24
Thespesia populnia		100
Xylocarpus granatum		27

Seedlings

Species	Saplings	Seedlings
Bruguiera gymnorrhiza		100
Ceriops tagal		27
Heritiera littoralis		18
Lumnitzera littorea		3
Rhizophora aciculata	45	55
Rhizophora mucronata	3	3
Rhizophora stylosa	17	100
Some sources of uncertainty in the aboveground carbon stock estimation were allometric equation, sampling error, and measurement error. The Monte Carlo simulation showed that allometric equation was the highest source of uncertainty contributes 1.82% to the uncertainty in aboveground carbon tree stock estimates and 3.17%. This generic allometric equation [14] resulted higher uncertainty for temperate mangroves, up to 3.65% [29]. Local-species specific allometric equation is required to get low uncertainty in aboveground carbon stocks estimation.

3.4. Mangroves environments (coastal morphology, substrate, and waters)

Analysis of Digital Elevation Model (DEM) showed that coastal morphology of the northern part of Weda Bay (Figure 1: B2, B1, and B5) was relatively flat with some rivers. Morphology of the delta / islands such as Bori-bori Island, Dadawe Island, and Imam Island were flat and muddy. These conditions are suitable for mangrove growth [2]. Flat coastal morphology and the length of river were significantly correlated with the growth and thickness of mangroves [35]. However, western part of Weda Bay (Figure 1: B3) was steep and the rivers were narrow and short, so it was not suitable for mangrove growth.

Particle size analysis found that mud was the most dominant substrate of mangrove in Weda Bay. Mud was particles between 3.9 and 63 μm (silt and clay) and it was not vary along transects from seaward to landward. Sedimentation process (land erosion), often silt and clay rich, creates mudflats which physical condition facilitating mangrove establishment [36][37][38][39]. Other studies also found that the potential habitat of mangrove increase with sediment accumulation rate which resulted mudflats in coastal areas [40][41]. Catchment factors (e.g. sediment accumulation rate associated with upland forest cover) was the main factor of mangrove expansion in New Zealand, followed by oceanic factors (wave and salinity), and climatic factors (temperature) [29]. Substrate also determined species composition, for example, Avicennia marina and Rhizophora mucronata prefer to growth in muddy areas [23].

Dissolved oxygen in the mangrove ecosystem in Weda Bay was range from 1.18-6.09 mg l⁻¹ and pH of water in the mangrove ecosystem was range from 8.47 and 8.16. Phosphate and nitrate in the water of mangrove ecosystem was range from 0.014 to 0.010 ppm and range from 0.001 to 0.016 ppm, respectively. Organic matter content including phosphate and nitrate is the secondary triggers of
mangrove expansion after mud accretion in Australia [42][43]. Organic matter content enhanced mangrove growth, resulting in both a higher biomass and carbon stock [44][45][46][47]. It was highlighted that organic matter content and nutrient availability was the key factors of mangrove establishment and growth [48], other factors influence mangrove establishment and growth were temperature [49][50] and rainfall [48].

4. Conclusions
The study provided the first detailed mangrove cover dynamics and its spatial metrics in Weda Bay, Maluku Utara, Indonesia. The characteristics of mangrove landscape in term of complexity and connectivity varied among hydrodynamic categories of mangroves (estuarine, delta, and riverine mangroves). Landscape and vegetation of delta mangrove was characterized as less complex, less diverse, and more isolated than other categories. Further, Weda Bay is habitat for 8.5% of mangrove species in Indonesia which Rhizophora apiculata dan Bruguiera gymnorrhiza were the most common species in the bay. Mangrove ecosystems provided significant aboveground carbon stocks and it was varied among hydrodynamic categories of mangroves. Delta mangroves provide substantial aboveground carbon stocks up to 993 ± 27.7 Mg C ha⁻¹ because this mangrove category contains many large and high trees and low disturbance. Most disturbances occurred in estuarine and riverine mangroves were mangrove extraction and plastic pollution. Mangrove management should consider on the hydrodynamic conditions (estuarine, delta, and riverine mangroves). In addition, data and information of aboveground carbon stocks at the hydrodynamic conditions of mangroves are required to get accurate national blue carbon stock inventory. It is clear that mangrove conservation is crucial because this ecosystem is important carbon storage that can be used to mitigate climate change and to achieve blue economy goals.

Acknowledgment
The field survey was supported by DIPA Fund of Balai Konservasi Biota Laut (currently Research Center for Deepsea) – Indonesian Institute of Sciences (LIPI) year 2013. I would like to thank Abraham Simon Leatemia and Iwan Naroli for their assistance during fieldwork. Thank Faisal Hamzah for labwork (analysis of Dissolved Oxygen, Phosphate, and nitrat). Thanks Abdul Basit (coordinator of Weda Bay Expedition) and Dr. Augy Syahailatua (former director of Balai Konservasi Biota Laut).

References
[1] Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Duke, N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154-159, DOI: 10.1111/j.1466-8238.2010.00584.x.
[2] Noor Y.R, M Khazali, I N N Suryadiputra. 2006. Panduan Pengenalan Mangrove di Indonesia. Wetlands International-Indonesia Program, Bogor. Hal. 2, 23-29.
[3] Polidoro, B.A., Carpenter, K.E., Collins, L., Duke, N.C., Ellison, A.M., Ellison, J.C., Farnsworth, E.J., Fernando, E.S. Kathiresan, K., Koedam, N. E., Livingstone, S.R., Miyagi, T., Moore, G., Nam, V., N., Ong, J. E., Primavera, J. H., Salmo, S. G., Sanciangco, J.C., Suardjo, S., Wang, Y., Yong, J.W.H. 201). The loss of species: Mangrove extinction risk ad geographic areas of global concern. PLoS ONE 5(4): e10095. doi:10.1371/journal.pone.0010095.
[4] Duke, N., Ball, M., Ellison, J. 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7(1),27–47.
[5] Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, et al. (1997) The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.
[6] Ruitenbeet H.J. 1994. Modelling economy-ecology linkages in mangroves: Economic evidence for promoting conservation in Binutni Bay, Indonesia. *Ecological Economics* 10. 233 – 247.

[7] St. John, M., Borja, Á., Chust, G., Grigorov, I., Mariani, P., Martin, A. P., Santos, R. S. 2016. A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community. *Frontiers in Marine Science*, 3. [31]. DOI: 10.3389/fmars.2016.00031

[8] World Bank and United Nations Department of Economic and Social Affairs. 2017. *The Potential of the Blue Economy: Increasing Long-term Benefits of the Sustainable Use of Marine Resources for Small Island Developing States and Coastal Least Developed Countries* (Washington DC: World Bank) p 50.

[9] Gordon, A.L., Sprintall, J., Van Aken, H.M., Susanto, D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., and Wirasantosa, S. 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. *Dynamics of Atmospheres and Oceans*, 50:115128.

[10] Uliyah, L., Furqon, B. N., Damanik, R., Setiawan, D. 2010. World Bank must stop the plan to finance the second largest Indonesia Nickel Mine. JATAM, http://english.jatam.org/content/view/129/1/. (Retrieved on 15 December 2013).

[11] Suyadi. 2018. *Spatial distribution of mangroves in the Auckland Region (1940-2014) and implications for aboveground carbon stocks*. A thesis for the degree of Doctor of Philosophy in Environmental Science, University of Auckland, New Zealand.

[12] McGarigal, K., Cushman, S., Ene, E. 2012. In: FRAGSTATSV4: Spatial Pattern Analysis Programfor Categorical and Continuous Maps. html.UniversityofMassachusetts, Amherst. Amherst,MA. http://www.umass.edu/landeco/research/fragstats/

[13] Cox, G.W. 1967. *Laboratory Manual of General Ecology*. MWC. Brown Comp. Publishers, Dubuque, IOWA. 165 hal.

[14] Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D., Kira, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. *Oecologia*, 145(1), 87-99.

[15] Kauffman, J. B., Donato, D. 2012. *Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests*. (No. Working Paper 86). Bogor, Indonesia: Center for International Forestry Research (CIFOR).

[16] Yanai, R. D., Battles, J. J., Richardson, A. D., Blodgett, C. A., Wood, D. M., Rastetter, E. B. 2010. Estimating uncertainty in ecosystem budget calculations. *Ecosystems*, 13(2), 239-248.

[17] Dencer-Brown, A. M., Alfaro, A. C., Milne, A., Perrott, J. 2018. Are view on biodiversity, ecosystem services, and perceptions of NewZealand's mangroves: can we make informed decisions about their removal? *Resources* 7 (23).https://doi.org/10.3390/resources7010023.

[18] Das, S., Crépin, A. 2013. Mangroves can provide protection against wind damage during storms. *Estuar. Coast Shelf Sci*. 134,98–107.https://doi.org/10.1016/j.ecss.2013.09. 021.

[19] Manson, F., Loneragan, N., Phinn, S. 2003. Spatial and temporal variation in distribution of mangroves in Moreton Bay, subtropical Australia: acomparison of pattern metrics and change detection analyses based on aerial photographs. *Estuar. Coast Shelf Sci*. 57(4),653–666.https://doi.org/10.1016/S0277-7714(02)00405-5.

[20] Tran, L. X., Fischer, A. 2017. Spatio temporal changes and fragmentation of mangroves and its effects on fish diversity in CaMau Province (Vietnam). *J.Coast Conserv*. 21 (1),355–368.https://doi.org/10.1007/s11852-017-0513-9.
[21] Chapman, V.J. editor. 1977. *Wet Coastal Ecosystems. Ecosystems of the World: 1*. Elsevier Scientific Publishing Company, 428 hal.

[22] Bunt, J.S., W.T. Williams. 1981. Vegetational Relationships in The Mangroves of Tropical Australia. *Marine Ecology - Progress Series*, 4: 349-359.

[23] van Steenis, C.G.G.J. 1958. Ecology of Mangroves. Introduction to Account of the Rhizophoraceae by Ding Hou, *Flora Malesiana, Ser. I, 5*: 431-441.

[24] Rahman, M., Khan, M. N. I., Hoque, A. F., Ahmed, I. 2014. Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. *Wetlands Ecology and Management*, 1-15. DOI 10.1007/s11273-014-9379-x.

[25] Clarke, P.J. 1994. Base-line studies of temperate mangrove growth and reproduction; Demographic and litter fall measures of leafing and flowering. *Aust.J.Bot.* 42(1), 37–48.

[26] Duke, N.C. 2001. Gap creation and regenerative processes driving diversity and structure of mangrove ecosystems. *Wetl. Ecol. Manag*. 9(3),267–279.

[27] Alongi, D.M. 2009. *The Energetics of Mangrove Forests*. Springer, Queensland, Australia, pp. 129–154.

[28] Komiyama, A., H. Moriya, S. Prawiroatmodjo, T. Tomi, K. Ogino. 1988. *Forest as an Ecosystem, Its Structure and Function; #1: Floristic Composition and Stand Structure*. Dalam Biological System of Mangroves. Laporan Ekspedisi Mangrove Indonesia Timur tahun 1986, Ehime University, Japan. Hal. 85-96.

[29] Suyadi, Gao J, Lundquist CJ, Schwendenmann L. 2019. Land based and climatic stressors of mangrove cover change in the Auckland Region, New Zealand. *Aquatic Conserv: Mar Freshw Ecosyst.* 1–18. DOI.org/10.1002/aqc.3146

[30] Eslami-Andargoli, L., P. Dale, N. Sipe, J. Chaseling. 2009. ‘Mangrove Expansion and Rainfall Patterns in Moreton Bay, Southeast Queensland, Australia.’ *Estuarine, Coastal and Shelf Science* 85(2): 292–298. doi:10.1016/j.ecss.2009.08.011.

[31] Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., & Krauss, K. W. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. *Global Change Biology*, 20(1), 147-157, DOI: 10.1111/gcb.12341.

[32] Cavanaugh, K. C., J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez, I. C. Feller. 2014. ‘Poleward Expansion of Mangroves is a Threshold Response to Decreased Frequency of Extreme Cold Events’. *Proceedings of the National Academy of Sciences of the United States of America* 111 (2): 723–727. doi:10.1073/pnas.1315800111.

[33] Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M. 2011. Mangroves among the most carbon-rich forests in the tropics. *Nature Geoscience*, 4(5), 293-297, DOI: 10.1038/NGEO1123.

[34] Bulmer, R. H., Schwendenmann, L., Lundquist, C. J. 2016. Allometric models for estimating aboveground biomass, carbon and nitrogen stocks in temperate Avicennia marina forests. *Wetlands*, 36(5), 841-848, DOI: 10.1007/s13157-016-0793-0

[35] Percival M., J.S. Womersley. 1975. Floristic and ecology of the mangrove vegetation of Papua New Guinea, *Bot. Bull.*, 8, 1-95.

[36] Lundquist, C.J., Ramsay, D., Bell, R., Swales, A., Kerr, S. 2011. Predicted impacts of climate change on New Zealand's biodiversity. *Pac. Conserv. Biol.* 17(3),179–191.
[37] Morrisey, D. J., Swales, A., Dittmann, S., Morrison, M. A., Lovelock, C. E., Beard, C. M. 2010. The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review, 48, 43-160

[38] Stokes, D., Healy, T. R., Cooke, P. J. 2010. Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. J. Coast Res. 26(1), 113–122. https://doi.org/10.2112/08-1043.1.

[39] Stokes, D., Healy, T. 2005. Mangrove expansion and their human removal in Tauranga Harbour, New Zealand. 17th Australasian Coastal and Ocean Engineering Conference 2005 and the 10th Australasian Port and Harbour Conference 2005, COASTS and PORTS 2005, 577-582.

[40] Swales, A., Bell, R., Gorman, R., Oldman, J., Altenberger, A., Hart, C., Ovenden, R. 2009. Potential Future Changes in Mangrove Habitat in Auckland's East-Coast Estuaries. Prepared by NIWA for Auckland Council, Auckland Council Technical Report 2009/079, pp.1–30.

[41] Stokes, D., Healy, T. J., Lovelock, C. E. 2015. Mangrove-forest evolution in a sediment-rich estuarine system: opportunists or agents of geomorphic change? Earth Surf. Process. Landforms 40(12), 1672–1687.

[42] Lovelock, Feller, I. C., Ellis, J., Schwarz, A. M., Hancock, N., Nichols, P., Sorrell, B. 2007. Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153(3), 633-641, DOI: 10.1007/s00442-007-0750-.

[43] Lovelock, Sorrell, B. K., Hancock, N., Hua, Q., Swales, A. 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems, 13(3), 437-451, DOI: 10.1007/s10021-010-9329-2.

[44] da Motta Porillo, José Thales, Londe, V., Moreira, F. W. A. 2017. Erratum to: Aboveground biomass and carbon stock are related with soil humidity in a mangrove at the Piraquê-Açu River, southeastern Brazil. Journal of Coastal Conservation, 21(4), 571-571, DOI: 10.1007/s11852-017-0528-2.

[45] Lovelock, C. E., Atwood, T., Baldock, J., Duarte, C. M., Hickey, S., Lavery, P. S., Serrano, O. 2017. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment, 15(5), 257-265, DOI: 10.1002/fee.1491.

[46] Naidoo, G. 2009. Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquatic Botany, 90(2), 184-190, DOI:10.1016/j.aquabot.2008.10.001.

[47] Xiong, Y., Liao, B., Proffitt, E., Guan, W., Sun, Y., Wang, F., Liu, X. 2018. Soil carbon storage in mangroves is primarily controlled by soil properties: A study at Dongzhai Bay, China. Science of the Total Environment, 619, 1226-1235.

[48] Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., Santos, I. R. 2016. Are global mangrove carbon stocks driven by rainfall? Journal of Geophysical Research: Biogeosciences, 121(10), 2600-2609.

[49] Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., Lynch, J. C. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4) 1111. DOI: 10.1029/2002GB001917.

[50] Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Silliman, B. R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO₂. Frontiers in Ecology and the Environment, 9(10), 552-560.