Potential Global-Local Inconsistency in Species-Area Relationships Fitting

Xubin Pan1*, Xiuling Zhang2, Feng Wang3* and Shuifang Zhu1*

1 Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China, 2 School of Mathematics, Tsinghua University, Beijing, China, 3 Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China

The Species-Area Relationship (SAR) has been widely employed to assess species diversity and predict species extinction. Thus far, although many functions were proposed to fit SAR based on field observations or simulation results, the shape of SAR curve has been debated extensively over decades. Here we uncover a potential global-local inconsistency in SARs fitting simulation blocked by the limitation of large area sampling before. The results indicated that power and logarithm SAR formulas were good for the fitting if the sampling area range is not large which is also the practical sampling interval in the field. However, for the logarithm SAR fitting, a sigmoid curve occurred in the \(\log_{10} (\text{Area}) - \text{Number of Species} \) plane, and for the power SAR fitting, the curve is convex instead of a straight line as assumed when linear regression was applied. In conclusion, neither the power SAR nor the logarithm SAR fitted to simulated data is linear at large sampling range as commonly assumed in previous studies, no matter the distribution of species abundance is log-normal or negative-binomial, which unmasks the global-local inconsistency in SARs fitting. Thus, misestimates of total number of species or other derivation parameters can occur if the fitted relationship is extrapolated beyond the range of the small and intermediate sampling size.

Keywords: log-normal distribution, negative-binomial distribution, power SAR, logarithm SAR, species-abundance distribution, extrapolation

INTRODUCTION

Species-Area Relationship (SAR) is one of the most studied patterns in ecology, and has been widely employed to assess species diversity and predict species extinction (Tjørve and Tjørve, 2008). Thus far, although many functions were proposed for fitting SAR based on field observations or simulation results, the shape of SAR curve has been debated extensively over decades (Tjørve, 2003; Tjørve et al., 2008). Among various functions of SAR, two are best known and most commonly applied, the power format proposed by Arrhenius (1921), \(S_A = cA^z \), where \(S_A \) is the number of species in area \(A \), and \(c \) and \(z \) are fitted constants (Arrhenius, 1921), and the logarithm format proposed by Gleason (1922), \(S_A = a + b \ln A \), where \(a \) and \(b \) are fitted constants (Gleason, 1922). Compared to logarithm SAR, power SAR has parameters corresponding to ecological meanings (Tjørve, 2003), where \(c \) is the number of species per area (analogous to \(\alpha \) diversity) and \(z \) is the self-similarity index (analogous to \(\beta \) diversity) (Tjørve and Tjørve, 2008). The power SAR was even proposed as a universal model (Dengler, 2008). The application of the power SAR, however, is still in controversy due to potential risks in the process of sampling and parameters estimating, which often leads to underestimate or overestimate of species diversity and extinction rate (Collins et al., 2002; He and Hubbell, 2011; Pan, 2013, 2015). One reason is that an important global factor of the identification of total area and corresponding total number of species has been overlooked for years (Pan, 2013, 2015).
Moreover, the shape of SAR curve can be affected by species-abundance distribution (SAD), and several studies attempted to address potential links between the two (He and Legendre, 2002; Green and Ostling, 2003; Tjørve and Tjørve, 2008). For example, for the community with species distributed randomly and independently, SAR can be calculated from SAD (the formula is shown in Methods) (Coleman, 1981). Obviously, the way of sampling is crucial for bridging the SAR and SAD, and accurate fitting is possible only if complete and detail sampling is carried out in accordance with statistic requirement. However, since detail sampling at a large scale is not practical, the fitting (i.e., parameterization) of SAR is usually based on the sampling at a small scale. However, high goodness of fit at the local range does not necessarily expect the same goodness of fit at the global range, partly because local sampling is more likely to misestimate or overlook the existence of rare species (Preston, 1948; Verberk, 2011).

Compared to field sampling subject to incomplete surveying, computer simulation sampling can provide a more feasible approach to fitting SAR (Tjørve and Tjørve, 2008). Moreover, computer simulation enables us to scrutinize the patterns of SAR at any level, and thereby can help explore whether the inconsistency of SAR may occur between global and local levels.

As abovementioned, the range of sampling is crucial for fitting SAR, and therefore this study will try to reveal potential misguidance and risks of extrapolation. In this study, we tested whether the patterns of the two SARs were consistent at the global and local levels through numerical analysis. The power and logarithm SARs were used to simulate data from two types of species-abundant distributions (negative-binomial (NB) and log-normal (LN) distributions) at the global level. We also evaluated parameter variation and potential misguidance of extrapolation.

METHODS

Data Simulation

A simulation program in the R platform (R version 3.2.0, R Core Team, 2015) was used to generate sampling data. The total area was set as 1,000,000 points, and each individual of every species occupied one point. The occurrence of plant species was simulated following two distribution patterns, negative-binomial (NB) and log-normal (LN) distributions (selected from dozens of distributions, McGill et al., 2007). Individuals of 100 and 500 species were generated randomly at initial status of simulation species distribution.

Data Transformation

As former studies proposed (Coleman, 1981), for a community where resident species is distributed randomly and independently, the SAR curve can be formulated as R Core Team (2015)

\[
S_A = S_{TA} = \sum_{i=1}^{STA} \left(1 - \frac{A}{TA} \right)^{N_i} = \sum_{i=1}^{STA} \left(1 - \left(1 - \frac{A}{TA} \right)^{N_i} \right)
\]

(1)

where \(S_{TA} \) is the total number of species in the total area (TA), and \(N_i \) is the number of individuals of per species \(i \). This formula was used to calculate SAR based on simulated data.

Two functions, which are \(S_A = a + b^*lnA \) (i.e., the logarithm SAR) and \(\log S_A = \log c + z \log A \) (i.e., the logarithm format of the power SAR) are used to fit SARs based on simulated data. Thus, the area is log-transformed in both fittings. The number of species was not transformed in the logarithm SAR fitting but log-transformed in the power SAR fitting.

RESULTS AND DISCUSSION

The simulated SADs are shown in Figure 1. The range of number of individuals of each species of negative-binomial distribution is smaller than that of log-normal distribution, which means the latter has more rare species compared to the former. In addition, the average number of individuals of each species for 100 species is more (five times) than that for 500 species, meaning that the latter SAR has more rare species compared to the former SAR.

For the sampling data, the (log-transformed) area was plotted against the number of species (log-transformed or not) in Figures 2, 3. For the log\(_{10}\) (Area)—Number of Species, the curves...
showed downward trend (concave) when the sampling area was small, while the curves shifted to upward trend (convex) when the sampling area reached an inflection point (Figures 2A,B). And it is faster for 100 species to reach the total number of species than that of 500 species. This situation is the same as the NB compared to the LN. For the \(\log_{10} (\text{Area}) - \log_{10} (\text{Number of Species}) \), the curves showed an upward trend (convex) (Figures 3A,B). Similarly, it is faster for 100 species reach the total number of species than that of 500 species. This situation is the same as the NB compared to the LN. Moreover, the shape of the curves was not largely different for both NB and LN distributions and the total number of species (100 and 500), while the detailed shape of the curves was affected. In summary, the shape of curves was steeper for the NB distribution than for the LN distribution, and the shape of curves was steeper for 100 species than for 500 species.

Back to the SAR calculated from SAD, the sampling size, the number of individuals per species and their correspondence are
important, besides the evenness of SAD. In Figure 4, it showed the \(1-(1-A/TA)^{N_t} = 0.01, 0.05, 0.95, \) and 0.99 for the number of individual of a single species. If the sampling area in the space between the 0.01–0.99 lines cyan and blue (or 0.05–0.95 lines pink and green, Section 2 in Figure 4), the number of individuals per species will play a numerical function in the SAR function. These situations also included the transition from the area (Section 1 in Figure 4) below the line cyan (or pink) to the area (Section 2 in Figure 4) above the line cyan (or pink), and the transition from the area (Section 2 in Figure 4) below the line blue (or green) to the area (Section 3 in Figure 4) above the line blue (or green). Obviously, different number of individuals will lead to different additional function in different sampling areas (Tjørve and Tjørve, 2008). If the sampling area is small, only common species have influence on the SAR curve, and rare species are rarely present in the samples due to their low abundance (Preston, 1948; Verberk, 2011); if the sampling area is intermediate, only rare species have influence on the SAR curve, because the value calculated from common species (almost) equals 1; if the sampling area is large, no species has influence on the SAR curve because all species (almost) equals 1.

Obviously the parameters of curves (Figures 2, 3) in this study are affected by the SAD of simulated data (Figure 1) and the total number of species.

As showed in a generalized schematic diagram of the SARs (Figures 5A, B), species abundance distributions largely affect the shape of SAR curves, which is in accordance with the findings in previous studies (Allen and White, 2003; Green and Ostling, 2003; Sizling and Storch, 2004; Dengler, 2008; Tjørve and Tjørve, 2008; Tjørve et al., 2008; Mokany et al., 2013; Rybicki and Hanski, 2013; Guo, 2015; Harte and Kitzes, 2015). The curve of the logarithm SAR sampling [i.e., \(\log_{10}(\text{Area})-\text{Number of Species}\)] showed a sigmoid shape that can be divided into two sections, concave section when the sampling area is small until...
the inflection point, and convex section. However, the curve of
the power SAR sampling (i.e., \log_{10} (Area)–\log_{10} (Number of
Species)) only has convex section. As shown in Figure 5, the
power and logarithm SAR relationship can be linearly well-fitted
if the sampling size is not large. And the total number of species is
the determinant factor on how height of the plateau will be. The
classical SARs were usually fitted to field observations when the
sampling size is small or intermediate. It is, however, not practical
to scrutinize all the species with accurate numbers in a large area
(Pan and Zhu, 2015), and that is the way of extrapolation often
used in the literature.

In the convex section of a curve, the slope decreases as
the area increases, therefore it can lead to overestimate of
parameters if one assumes the slope is constant (Figure 6A).
For example, the SAR fitting in the small sampling area (a1
and a2) and in the large sampling area (a3 and a4) causes an
overestimate of the left intercept (LI) and the right intercept
(RI), respectively. Meanwhile, the SAR fitting in the small
sampling area has lower LI and higher RI than that in the
large sampling area. Overestimate of the number of species
would be even higher at the end of a curve. However, in the
concave section of an SAR curve, underestimate would
occur for the left and right intercepts (Figure 5A), respectively.
Therefore, the linear extrapolation of the SAR fitting would
be problematic, since the range of the sampling area greatly
affects the linearity of the SAR. If the sampling range covers
both the concave and convex sections [e.g., in the \log_{10}
(Area)–Number of Species], misestimate can also occur and
would be a little complicated, with one possibility that the left
intercept would be underestimated while the right intercept
would be overestimated. Thus, the total number of species,
derived from the extrapolation from power and logarithm SARs,
is not accurate, although this is a very global important parameter
for other parameter estimates such as extinction rate (Pan,
2013).

In the convex section of the two SAR curves (Figures 5A, B),
the fittings can also be different. Moreover, the estimated
parameters (i.e., the slope and intercept) would vary if the
sampling areas vary, and even a curve will not exist when the
sampling area reached a certain value (Figure 6B). A pattern
similar to that in Figure 6B was found in the log-log SAR
of Highlands Hammock State Park, Florida, thus there is not
necessarily proportionately fewer species loss at broader spatial
scales (Powell et al., 2013). This implied that the linear fitting
and the comparison of two or more power or logarithm SARs
is less problematic only when the sampling area is within
the appropriate range. Considering the impact of incomplete
surveying and Preston and Pan’s effect on the SAD, this SAR
comparison will not make any ecological meaning without
mathematical endorsement.

In conclusion, neither the power SAR nor the logarithm
SAR fitted to simulated data is linear at large sampling range
as commonly assumed in previous studies, no matter the
distribution of species abundance is log-normal or negative-
binomial. Therefore, misestimates can occur if the fitted
relationship is extrapolated beyond the range of the small and
intermediate sampling sizes. However, if we know the full
spatial distribution of all species, we can calculate the SAR
curve from SAD, and the sampling and fitting is not useful
anymore. Here the dilemma of SAR fitting emerges: you will
get the SAR but make mistakes using the sampling and fitting
if you do the extrapolation; you can avoid the mistakes using
more information, but you do not need sampling and fitting
anymore. Obviously, the SAR should be used with caution,
as the extrapolation or prediction should not be made if one
does not know the whole picture, because the global-local
inconsistency exists in SAR (Elith and Leathwick, 2009). In
the future, detailed sampling of SAD with full spatial information
is the direction, instead of counting the number of species
in the area, which also has the Preston and Pan effects in the
practice (Pan and Zhu, 2015). For different types of
SAR, fitting functions and SAD, such as the island SAR with
areas of varying size, whether the linear regression displays
global-local consistency deserves more research (Scheiner,
2003).

In addition, the global-local consistency and inconsistency
should be given more concerns in ecology. In this study,
the community with species distributed randomly and
independently is a simplified case, which still has this
inconsistency. For the complex ecosystem with inaccurate
sampling, spatial-temporal heterogeneity and scale effect, this
inconsistency may be more obvious or more unpredictable.
For example, the effect of global climate change on
different places is different, while one will be hotter, and
the other will be drier. In this situation, how to sample
to infer the whole picture from limited samples is a
challenge for us. A potential method is mass complete
survey of one area conducted by an integrated research
group/program, rather than three or nine repeated samples per
sites.

AUTHOR CONTRIBUTIONS
XP, FW, and SZ designed the research. XP and XZ carried
out the model simulation. XP did the data analysis. XP
and FW drafted the manuscript. XP and SZ revised the
manuscript.

ACKNOWLEDGMENTS
The work is supported by the National Basic Research Program of
China (973 program, 2013CB429905-04), Beijing Nova Program
(Z151100003150107) and National Key Projects for Research
and Development (2016YFC1200802).
REFERENCES

Allen, A. P., and White, E. P. (2003). Effects of range size on species-area relationships. *Evol. Ecol. Res.* 5, 493–499. Available online at: http://www.evolutionary-ecology.com/abstracts/v05/1544.html

Arrhenius, O. (1921). Species and area. *J. Ecol.* 9, 95–99. doi: 10.2307/2255763

Coleman, B. D. (1981). On random placement and species-area relations. *Math. Biosci.* 54, 191–215. doi: 10.1016/0025-5564(81)90086-9

Collins, M. D., Vázquez, D. P., and Sanders, N. J. (2002). Species-area curves, homogenization and the loss of global diversity. *Evol. Ecol. Res.* 4, 457–464. Available online at: http://www.evolutionary-ecology.com/abstracts/v04/1338.html

Dengler, J. (2008). Pitfalls in small-scale species-area sampling and analysis. *Folia Geobot.* 43, 269–287. doi: 10.1007/s12224-008-9014-9

Elith, J., and Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. *Ann. Rev. Ecol. Evol. Syst.* 40, 677–697. doi: 10.1146/annurev.ecolsys.110308.120159

Gleason, H. A. (1922). On the relation between species and area. *Ecology* 3, 158–162. doi: 10.2307/1929150

Green, J. L., and Ostling, A. (2003). Endemics-area relationships: the influence of species dominance and spatial aggregation. *Ecology* 84, 3090–3097. doi: 10.1890/02-3096

Guo, Q. (2015). “Island biogeography theory: emerging patterns and human effects,” in Reference Module in Earth Systems and Environmental Sciences (Elsevier). Available online at: http://www.elsevier.com/products/publications/island_Biogeography_Theory.pdf/view http://www.sciencedirect.com/science/module/topic/9780124095489/Concept-000009?_issn=1&_city=25

Harte, J., and Kitzes, J. (2015). Inferring regional-scale species diversity from small-plot censuses. *PLoS ONE* 10:e017527. doi: 10.1371/journal.pone.017527

He, F., and Hubbell, S. P. (2011). Species-area relationships always overestimate extinction rates from habitat loss. *Nature* 473, 368–371. doi: 10.1038/nature09985

He, F., and Legendre, P. (2002). Species diversity patterns derived from species-area models. *Ecology* 83, 1185–1198. doi: 10.2307/3071933. Available online at: https://www.jstor.org/stable/3071933?seq=1#page_scan_tab_contents

McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., et al. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. *Ecol. Lett.* 10, 995–1015. doi: 10.1111/j.1461-0248.2007.01094.x

Mokany, K., Jones, M. M., and Harwood, T. D. (2013). Scaling pairwise β-diversity and α-diversity with area. *J. Biogeogr.* 40, 2299–2309. doi: 10.1111/jbi.12175

Pan, X. (2013). Fundamental equations for species-area theory. *Sci. Rep.* 3, 1334. doi: 10.1038/srep01334

Pan, X. (2015). Reconstruct species-area theory using set theory. *Natl. Acad. Sci. Lett.* 38, 173–177. doi: 10.1007/s40009-014-0319-3

Pan, X., and Zhu, S. (2015). Matthew effect in counting the number of species. *Biodivers. Conserv.* 24, 2865–2868. doi: 10.1007/s10531-015-0956-y

Powell, K. L., Chase, J. M., and Knight, T. M. (2013). Invasive plants have scale-dependent effects on diversity by altering species-area relationships. *Science* 339, 316–318. doi: 10.1126/science.1226817

Preston, F. W. (1948). The Commonness and rarity, of species. *Ecology* 29, 254–283, doi: 10.2307/1930989

R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: http://www.R-project.org.

Rybbicki, J., and Hanski, I. (2013). Species-area relationships and extinctions caused by habitat loss and fragmentation. *Ecol. Lett.* 16, 27–38. doi: 10.1111/ele.12065

Scheiner, S. M. (2003). Six types of species-area curves. *Global Ecol. Biogeogr.* 12, 441–447. doi: 10.1046/j.1466-822X.2003.00061.x

Silzing, A. L., and Storch, D. (2004). Power-law species-area relationships and self-similar species distributions within finite areas. *Ecol. Lett.* 7, 60–68. doi: 10.1046/j.1461-0248.2003.00549.x

Tjørve, E. (2003). Shapes and functions of species-area curves: a review of possible models. *J. Biogeogr.* 30, 827–835. doi: 10.1046/j.1365-2699.2003.00877.x

Tjørve, E., Kunin, W. E., Polce, C., and Tjørve, K. M. C. (2008). The species-area relationship: separating the effects of species abundance and spatial distribution. *J. Ecol.* 96, 1141–1151. doi: 10.1111/j.1365-2745.2008.04133.x

Tjørve, E., and Tjørve, K. M. C. (2008). The species-area relationship, self-similarity, and the true meaning of the z-value. Ecology 89, 3528–3533. doi: 10.1890/07-1685.1

Verberk, W. C. E. P. (2011). Explaining general patterns in species abundance and distributions. *Nat. Educ. Knowl.* 3, 38. Available online at: http://www.nature.com/scitable/knowledge/library/explaining-general-patterns-in-species-abundance-and-23162842

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Pan, Zhang, Wang and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.