Response:
Thank you for reading our research work and responding to it. We appreciate your point of view in looking into this new concept, and we have tried to explain your queries in the possible ways.

We read with interest the article by Kodamanchili et al.,

Response:

Author’s Response to Trendelenburg Ventilation in Acute Respiratory Distress Syndrome: Should We Do More than Proning?

Saiteja Kodamanchili

Keywords: Acute respiratory distress syndrome, Coronavirus disease-2019 acute respiratory distress syndrome, Pressure support.

Indian Journal of Critical Care Medicine (2022): 10.5005/jp-journals-10071-24294

We encountered in ARDS. For which we clearly don't know what could have caused the improved lung performance, for which we assumed few theories as explained.

Since we have not done till now in ARDS lungs, so we too clearly don't know what could have caused the improved lung performance, for which we assumed few theories as explained.

While Trendelenburg's position leads to a decrease in FRC, it will not lead to an improved TV delivery for the same pressures, unless there is an associated improvement in lung compliance. Trendelenburg's position led to a worsening in lung compliance and resistance in patients ventilated with 15-degree head-down tilt in elective surgery.

In the study cited by Kodamanchili et al., Trendelenburg's position decreased the total lung compliance by 17% when the head-down position reached 20 degrees in anesthetized children. However, these were subjects with otherwise normal lungs and not the stiff lungs we frequently encounter in ARDS.

(Yes, as you rightly mentioned sir/madam, but no proper study was done till now in ARDS lungs, so we too clearly don't know what could have caused the improved lung performance, for which we assumed few theories as explained).

The Parachute theory proposed by the authors regarding reconfiguration of the diaphragm in Trendelenburg position improving mechanical efficiency is seen in spontaneously breathing patients with low cervical spinal cord injury. While ARDS patients on mechanical ventilation may have varying degrees of diaphragmatic thinning and dysfunction, they are physiologically different from patients with spinal cord injury. The benefit of diaphragmatic reconfiguration in head-down could benefit only if the patients were spontaneously breathing and not when they are paralyzed by neuromuscular blockers.

(Yes, it was in spontaneously breathing patients, which might also be playing some role in ventilated ARDS patients and needs further validation mentioned in our paper).

The question is why did the authors observe such improvement with Trendelenburg's position. Rezoagli et al. described a case of 63-year-old lady who showed similar improvement in lung compliance (from 12 to 14 mL/cm of H2O) with Trendelenburg position. They used EIT and found that head-down position from supine led to a decrease in overdistention of the lung by 21%, and an improvement in stress index of the lung. Essentially, the decrease in end-expiratory lung volume (EELV) in Trendelenburg's position resulted in the lungs moving to a more compliant position on the pressure–volume curve. This led to a decrease in tidal overinflation, which was reflected by an improvement in compliance and driving pressures. The decrease in lung overdistension was seen mainly in the nondependent lung areas. A recent observational study by Marrazzo et al. noted similar
improvement in lung compliance in 20 patients with coronavirus disease-2019 (COVID-19)-related ARDS when the head position was lowered from 40 degrees head-up to a flat-supine position. Based on these observations, the “rigid chest wall” theory suggested by Kodamanchili et al. may have some merit, although the amount of lung recruitment might vary between dependent and nondependent lung zones.

Therefore, ARDS patients showing improvement in respiratory mechanics following head-down position should alert us to the possibility of tidal overinflation. This could serve as an indicator for PEEP titration with significant improvement in compliance in head-down position indicating a need to reduce PEEP. This appears to be an exciting area of research for optimizing ventilation in ARDS patients.

**Orcid**

Saiteja Kodamanchili [https://orcid.org/0000-0003-1033-0321](https://orcid.org/0000-0003-1033-0321)

**References**

1. Kodamanchili S, Saigal S, Anand A, Panda R, Priyanka TN, Balakrishnan GT, et al. Trendelenburg ventilation in patients of acute respiratory distress syndrome with poor lung compliance and diaphragmatic dysfunction. Indian J Crit Care Med 2022;26(3):319–321. DOI: 10.5005/jp-journals-10071-24127.
2. Fahy BG, Barnas GM, Nagle SE, Flowers JL, Njoku MJ, Agarwal M. Effects of Trendelenburg and reverse Trendelenburg postures on lung and chest wall mechanics. J Clin Anesth 1996;8(3):236–244. DOI: 10.1016/0952-8180(96)00017-7.
3. Regli A, Habre W, Saudan S, Mamie C, Erb TO, von Ungern-Sternberg BS, et al. Impact of Trendelenburg positioning on functional residual capacity and ventilation homogeneity in anaesthetised children. Anaesthesia 2007;62(5):451–455. DOI: 10.1111/j.1365-2044.2007.05030.x.
4. Gutierrez CJ, Stevens C, Merritt J, Pope C, Tanasescu M, Curtiss G. Trendelenburg chest optimization prolongs spontaneous breathing trials in ventilator-dependent patients with low cervical spinal cord injury. J Rehabil Res Dev 2010;47(3):261–272. DOI: 10.1682/jrrd.2009.07.0099.
5. Rezoagli E, Bastia L, Grassi A, Chieregato A, Langer T, Grasselli G, et al. Paradoxical effect of chest wall compression on respiratory system compliance. Chest 2021;160(4):1335–1339. DOI: 10.1016/j.chest.2021.05.057.
6. Marrazzo F, Spina S, Forlino C, Guarneri M, Giudici R, Bassi G, et al. Effects of trunk inclination on respiratory mechanics in patients with COVID-19-associated acute respiratory distress syndrome: let’s always report the angle! Am J Respir Crit Care Med 2022;205(5):582–584. DOI: 10.1164/rccm.202110-2360LE.