Emergence of Pathogenic Strains of *Staphylococcus aureus* in Goat Milk and Their Comparative Response to Antibiotics

Iqra Muzammil¹, Muhammad Ijaz Saleem¹, Amjad Islam Aqib²,³, Ambreen Ashar³, Syed Ashar Mahfooz², Sajjad ur Rahman², Muhammad Shoaib³, Muhammad Aamir Naseer¹, Imran Khan Sohrani¹, Javeed Ahmad¹, Razaullah Saqi¹, Fizzah Laeeq Lodhi¹ and Qaisar Tanveer⁵

¹Department of Clinical Medicine and Surgery, Faculty of Veterinary Science, University of Agriculture, Faisalabad-38000
²Department of Medicine, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur-63100
³Government College for Women University, Faisalabad-38000
⁴Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad-38000
⁵Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad-38000

ABSTRACT

The nutraceutical milk of goat in agro-based countries is at risk of contamination with pathogenic strains of *Staphylococcus aureus*. The current study was designed to investigate prevalence of pathogenic strains of *S. aureus*, assessment of risk factors, and *in-vitro* antibiogram of non-biofilm producing *S. aureus* (nbpSA) and biofilm positive *S. aureus* (bpSA) from mastitic goats. The purposive sampling technique was applied to collect n=200 milk samples from different regions of goat populated areas of district Faisalabad-Pakistan. Using surf field mastitis test, collected milk samples were screened for subclinical mastitis at the spot for subsequent identification of pathogenic strains of *S. aureus* through microbiological examination in the laboratory. Non-probability statistical tools conferred 42% (84/200, CI=35.37-48.93) prevalence of subclinical mastitis, 38.1% *S. aureus* (32/84, CI=28.45-48.79), 15.6% MRSA (5/32, CI=6.87-31.76), 46.9% haemolytic *S. aureus* (15/32, CI=30.87-63.56) and 34.4 % biofilm producing *S. aureus* (11/32, CI=20.41-51.69). Earthen floor type (OR=1.75, *p*=0.0996), poor drainage system (OR=7.33, *p*=0.002), pond as source of drinking water (OR=2.05, *p*=0.179), stall feeding (OR=7.27, *p*<0.001), 4-6 years of age of goat (OR=4.2, *p*=0.0874), and teat injury (OR=13.74, *p*<0.001) were potential risk factors for subclinical mastitis. The *in-vitro* findings of current study revealed 100% sensitivity of *S. aureus* against gentamicin, oxytetracycline, amoxicillin, and linezolid while 80% of biofilm negative *S. aureus* (nbpSA) showed sensitivity against amoxicillin+clavulanic acid. None of the isolate from bpSA and nbpSA was resistant against linezolid, gentamicin, and oxytetracycline in this study. bpSA were highly resistant against amoxicillin and vancomycin. The study found higher prevalence of pathogenic strains of *S. aureus*, higher number of potential risk factors, and diversified responses to antibiotic.

INTRODUCTION

Livestock plays an important role in the agriculture sector of Pakistan. The total goat population of Pakistan is up to 74.1 million to produce 0.915 million tons of milk and 0.717 million tons of mutton annually (Anonymous, 2018). Milk production in goats is an active and emergent business in harsh climate areas where large ruminants cannot be reared or are difficult to rear and it largely contributes to the mainstream dairy milk production (Silanikove et al., 2010). Milk of goats has certain properties like better digestibility, alkalinity, buffer capacity and medicinal importance which make goat milk better than human and cow milk (Park, 2001). Mastitis can be illustrated as a result of pathological alterations in mammary glands resulting in elevation in somatic cell count of milk (Contreras et al., 2003). Mastitis occurs as clinical and/or subclinical form (Aqib et al., 2018). In clinical mastitis, signs of inflammation, redness, heat and pain are present, whereas there are no obvious indications of swelling in subclinical mastitis except decrease in milk production and increased somatic cell count (Sarker and...
Sub-clinical mastitis has occurrence of 45% in goats in Punjab whereas 53.3% in Khyber-Pakhtunkhwa (KPK), Pakistan (Najeeb et al., 2013; Ali et al., 2010).

Subclinical mastitis in goats is predominantly caused by transmissible bacteria e.g. *Staphylococcus* spp., *Streptococcus* spp., *Pasteurella* spp. and *E. coli* (Persson and Olofsson, 2011; Contreras et al., 2007). *Staphylococcus aureus* is the major causative agent where its frequency of isolation and identification vary from 4-40% of the entire isolated pathogens (Leitner et al., 2007). Antimicrobial resistance is reported in *S. aureus* probably due to excessive administration of antimicrobials (over-prescription, suboptimal termination of treatment regimen and/or insufficient dose administration of antimicrobials) resulting in lateral gene transfer (transformation, transduction and conjugation) of DNA from resistant strain for survivability (Castro-Sánchez et al., 2016). *S. aureus* can produce biofilm which act as a protective layer for the pathogen and provides continuous persistence via development of resistant genes e.g. *mecA, vanA, icaA, icaB* etc. (Jyothi et al., 2018). Production ability of coagulase enzyme is considered a significant phenotypic determinant in *S. aureus* linked with pathogenicity (Moreillon et al., 1995). Multiple drug resistance (MDR) is one of additional challenges in bacterial mastitis (Hameed et al., 2007). In 1972, first MRSA was isolated from dairy mastitic milk (Devriese et al., 1972). MRSA is now becoming major bacterial etiology of mastitis in addition to its isolation from vaginal and nasal swabs of animals (Cortimiglia et al., 2015).

Treatment with broad spectrum antibiotics along with anti-inflammatory drugs is used to treat mastitis in goats. Mechanism of development of drug resistance in bacteria associated with goat mastitis is very important to understand transmission frequency, better management strategies and developing valuable remedial interference (Aqib et al., 2018a; Merz et al., 2016). Therefore, epidemiological studies of pathogenic strains of *S. aureus* along with their response to antibiotics are necessary for prevention and treatment protocols. Subclinical mastitis in goats remained as neglected issue despite of its increasing prevalence and antimicrobial resistance of bacterial etiologies. Current study was thus designed to investigate the occurrence of different pathogenic strains of *S. aureus*, associated risk factors, and *in-vitro* antibiogram of biofilm positive and biofilm negative *S. aureus* in mastitic goats from Faisalabad, Pakistan.

MATERIALS AND METHODS

Sampling plan and screening for subclinical mastitis

Faisalabad is the second biggest city of province Punjab and the third most populated city of Pakistan having a total area of 5,856km². Purposive sampling technique (Thrusfield, 2007) was applied to collect milk samples (n= 200) from dairy farms located in district Faisalabad (Samundri, n= 62; Rasoolpur, n= 60; Livestock Farm of University of Agriculture Faisalabad, n= 36; Jhupal, n= 42) depending upon the willingness of the farmers to participate in the study and accessibility to Mastitis Research Laboratory, University of Agriculture Faisalabad, Pakistan. Milk samples were collected by strictly following the guidelines of National Mastitis Council of the USA (Reyher and Dohoo, 2011). Samples were screened by using Surf Field Mastitis test (SFMT) proposed by Muhammed et al. (2010). The SFMT positive milk samples, maintained in cold chain (4°C), were transferred to Mastitis Research Laboratory, University of Agriculture Faisalabad, Pakistan and preserved at -20°C till further process (Cengiz et al., 2015).

Risk factor analysis

A questionnaire comprising information like age of animal, type of housing, type of drainage system, type of floor, condition of floor, farm hygiene, source of drinking water, feeding system, vaccination against diseases, deworming, mastitis control program, parity number, stage of lactation, body condition score, milk consistency, milk yield, and teat injury was filled at the time of sampling to assess risk factors associated with mastitis. The risk factors were assumed based on the previous studies conducted by Amin et al. (2011) and Megersa et al. (2010).

Identification of pathogenic strains of S. aureus

SFMT positive samples were cultured on blood agar at 37°C for 24 h. Characteristic pinpoint colonies were further cultured on Mannitol Salt Agar, selective and differential medium for *S. aureus*, following the same incubation conditions. Series of biochemical tests were performed following guidelines of Bergey’s Manual of Determinative Bacteriology (Bergey and Holt, 1994).

Isolates were identified for their expression as α, β and γ haemolysis on blood agar by inoculating *S. aureus* on blood agar at 37°C for 24 h. Methicillin resistant *S. aureus* were identified by their resistance against oxacillin disc following standard protocol described in clinical and laboratory standard institute. Biofilm was identified by Congo Red Agar (CRA) method, a previously established method (Freeman et al., 1989). For biofilm identification, fresh culture of *S. aureus* was grown on CRA and incubated for 24 h at 37°C. After incubation, colour of colonies indicated strength of biofilm i.e. pinkish red colonies - no biofilm production; slight blackish -weak production; black sheeting - moderate production; and jet black dry
In-vitro drug response against bpSA and nbpSA

In-vitro drug response was evaluated using the Kirby Bauer disc diffusion test. The positive isolates were subjected to testing against various antibiotics such as vancomycin (30µg), chloramphenicol (10µg), oxytetracycline (30µg), trimethoprim+ sulphamethoxazole (25µg), gentamicin (10µg), linezolid (30µg), amoxicillin-clavulanic acid (20µg), amoxicillin (10µg), and oxacillin (1µg). Fresh cultures adjusted at 1.5×10^8 CFU were swabbed on Muller Hinton Agar whereas antibiotic discs were aseptically placed at equal distances from each other following the guidelines of CLSI (2015). Incubation was given at 37°C for 18-20 h and zone of inhibitions were measured by Vernier Callipers in millimetres and compared with provided standards.

Statistical analysis

The obtained data were analysed by descriptive statistics for occurrence of *S. aureus* and antibacterial activity of antibiotics whereas risk factor analysis was assessed by odd’s ratio at 5% probability using IBM SPSS (version 20).

RESULTS

Prevalence of subclinical mastitis and pathogenic strains of *S. aureus*

The present study found overall 42.0% (84/200) prevalence of subclinical mastitis from goats based on Surf Field Mastitis Test (SFMT). The prevalence of subclinical mastitis was found higher in Jhapal (59.5%) followed by Samundri (38.7%), Rasoolpur (38.3%) and UAF Livestock Farm (33.3%) while there was non-significant association (*p* > 0.05) among different areas. The overall prevalence of *S. aureus* was found 38.1% while among *S. aureus* there was 15.6% MRSA, 46.9% haemolytic *S. aureus*, 34.4% biofilm producing *S. aureus* during current study. The higher prevalence of *S. aureus* and MRSA was noted from livestock farm (50.0% and 33.3%) followed by Samundri (33.3% and 12.5%), Rasoolpur (39.1% and 11.1%) and Jhapal (36.0% and 11.1%). The percentage of haemolytic *S. aureus* and biofilm producing *S. aureus* was 83.3% and 83.3% from UAF livestock farm, 44.4% and 33.3% from Rasoolpur, 37.5% and 12.5% from Samundri, and 33.3% and 22.2% from Jhapal, respectively. The study found non-significant difference (*p* > 0.05) for *S. aureus*, MRSA and haemolytic *S. aureus* while significant difference was noted for biofilm producing *S. aureus* among different areas of study (Table I; Fig. 1).

Table I.- Prevalence of subclinical mastitis, *Staphylococcus aureus*, methicillin resistant *S. aureus*, hemolytic and biofilm producing *Staphylococci* from different areas of Faisalabad.

Area	Subclinical mastitis (SM) on SFMT basis*	*Staphylococcus aureus*	Methicillin resistant *S. aureus* within *S. aureus*	Haemolytic *S. aureus*	Biofilm producing *S. aureus*
Samundri	No. observed 24/62 8/24 1/8 3/8 1/8	38.7 33.3 12.5 37.5 12.5	27.58-51.15 17.97-53.29 2.24-47.09 13.68-69.43 2.24-47.09		
Prevalence (%)	38.7 33.3 12.5 37.5 12.5				
CI (95%)	27.58-51.15 17.97-53.29 2.24-47.09 13.68-69.43 2.24-47.09				
Rasoolpur	No. observed 23/60 9/23 1/9 4/9 3/9	38.3 39.1 11.1 44.4 33.3	27.09-50.98 22.16-59.21 1.99-43.50 18.87-73.33 12.06-64.58		
Prevalence (%)	38.3 39.1 11.1 44.4 33.3				
CI (95%)	27.09-50.98 22.16-59.21 1.99-43.50 18.87-73.33 12.06-64.58				
UAF livestock farm	No. observed 12/36 6/12 2/6 5/6 5/6	33.3 50.0 33.3 83.3 83.3	20.21-49.66 25.38-74.62 9.68-70.00 43.65-96.99 43.65-96.99		
Prevalence (%)	33.3 50.0 33.3 83.3 83.3				
CI (95%)	20.21-49.66 25.38-74.62 9.68-70.00 43.65-96.99 43.65-96.99				
Jhapal	No. observed 25/42 9/25 1/9 3/9 2/9	59.5 36.0 11.1 33.3 22.2	44.49-72.95 20.25-55.48 2.24-47.09 12.06-64.58 6.32-54.74		
Prevalence (%)	59.5 36.0 11.1 33.3 22.2				
CI (95%)	44.49-72.95 20.25-55.48 2.24-47.09 12.06-64.58 6.32-54.74				
Total	No. observed 84/200 32/84 5/32 15/32 11/32	42.0 38.1 15.6 46.9 34.4	35.37-48.93 28.45-48.79 6.87-31.76 30.87-63.56 20.41-51.69		
Prevalence (%)	42.0 38.1 15.6 46.9 34.4				
CI (95%)	35.37-48.93 28.45-48.79 6.87-31.76 30.87-63.56 20.41-51.69				

p<0.05 indicate significant difference. Among different areas subclinical mastitis, *, *p*=0.072; †, *p*=0.799 and ‡, *p*=0.623; @, *p*=0.244; †, *p*=0.034.
Table II.- Risk factors associated with spread of mastitis in dairy goats.

Factor	Variables	No. positive	Percentage (%)	Odds ratio	C.I (95%)	p-value
Housing type						
Open	29/80	36.25	1.093	0.49-2.46	0.829	
Street	13/38	34.21	1	-	-	
Backyard	42/82	51.21	2.019	0.91-4.48	0.084	
Floor type						
Earthen	40/80	50.00	1.75	0.90-3.41	0.099	
Bricks	20/54	37.03	1.029	0.49-2.17	0.939	
Cemented	24/66	36.36	1	-	-	
Condition of floor						
Even	56/120	46.67	1.625	0.91-2.91	0.102	
Uneven	28/80	35.00	1	-	-	
Drainage system						
Poor	16/24	66.67	7.333	2.54-21.21	0.0002	
Partially controlled	56/120	46.67	3.208	1.54-6.67	0.002	
Farm hygiene						
Very poor	9/32	28.13	0.671	0.24-1.85	0.44	
Poor	17/40	42.5	1.267	0.51-3.15	0.61	
Normal	44/90	48.89	1.64	0.75-3.57	0.213	
Good	14/38	36.84	1	-	-	
Source of drinking water						
Underground	21/44	47.72	1.454	0.73-2.88	0.282	
Bucket	54/140	38.57	1	-	-	
Feeding						
Grazing	27/100	27.00	1	-	-	
Stall feeding	35/48	72.92	7.279	3.35-15.80	<0.0001	
Mixed	22/52	42.31	1.983	0.98-4.01	0.057	
Vaccinated against diseases						
Yes	25/124	20.16	2.467	1.23-4.95	0.011	
No	59/76	77.63	1	-	-	
Deworming						
Yes	53/128	43.41	1	-	-	
No	31/72	43.05	1.069	0.60-1.92	0.82	
Mastitis control measures						
Yes	30/76	39.47	1	-	-	
No	54/124	43.55	1.183	0.66-2.11	0.571	
Age						
Up to 2 years	13/42	31.0	3.138	0.62-15.85	0.166	
2-4 years	29/102	28.4	2.781	0.59-13.01	0.194	
4-6 years	12/32	37.5	4.2	0.81-21.77	0.087	
6-8 years	2/16	12.5	1	-	-	
Above 8 years	1/8	12.5	1	0.08-13.02	1	
Parity						
1-2 kidding	27/49	55.10	0.859	0.28-2.63	0.79	
2-4 kidding	20/34	58.82	1	0.31-3.26	1	
>5 kidding	10/17	58.82	1	-	-	
Stage of lactation						
Early	23/42	54.76	1	-	-	
Mid	12/23	52.17	0.901	0.33-2.50	0.841	
Late	22/35	62.86	1.398	0.56-3.49	0.473	
Body condition score (BCS)						
Poor	29/47	61.70	1.381	0.40-4.77	0.609	
Normal	20/40	50.00	0.857	0.24-3.00	0.809	
Good	7/13	53.84	1	-	-	
Milk consistency						
Thin	70/165	42.42	1.228	0.51-2.97	0.648	
Thick	9/24	37.50	1	-	-	
Purulent	5/11	45.45	1.389	0.33-5.90	0.656	
Milk yield						
Decreased	27/45	60.00	1.25	0.36-2.78	0.584	
Not Decreased	30/55	54.54	1	-	-	
Teat injury						
Yes	59/76	77.63	13.743	6.86-27.55	<0.0001	
No	25/124	20.16	1	-	-	

C.I, confidence interval set at 95%; *p< 0.05 indicate significant difference.
Risk factor analysis

The findings of the current study presented type of drainage system, type of feeding, vaccination against diseases, and teats injury as potential risk factors ($p< 0.05$) of subclinical mastitis. Poor type of drainage system ($p= 0.0002$) and stall feeding ($p< 0.0001$) showed higher odds of getting mastitis compared to partially controlled drainage system ($p= 0.0018$) and mixed feeding ($p= 0.0572$), respectively. The risk factor analysis revealed backyard type of housing showing higher odds of getting mastitis ($p= 0.0843$) as compared to open type of housing ($p= 0.8289$). Similar findings were found in case of earthen type of floor ($p= 0.0996$) as compared to brick floor ($p= 0.9393$). Mid stage of lactation ($p= 0.8414$), 1-2 kidding ($p= 0.7900$), normal body condition scoring ($p= 0.8096$) were not proved to be potential risk factors of subclinical mastitis (Table II).

Antibiotic Susceptibility testing against S. aureus and biofilm producing S. aureus

The in-vitro findings of current study revealed 100% sensitivity of S. aureus against gentamicin, oxytetracycline, amoxicillin, and linezolid while 80% of biofilm negative S. aureus (nbpSA) showed sensitivity against amoxicillin + clavulanic acid (Table III; Fig. 1). Higher percentages of goat milk based resistant isolates were noted from bpSA and nbpSA against vancomycin, chloramphenicol, oxacillin, amoxicillin+clavulanic acid and amoxicillin. None of the isolate from bpSA and nbpSA was resistant against linezolid, gentamicin, and oxytetracycline in this study. In case of oxacillin, amoxicillin clavulanate and trimethoprim+sulphamethoxazole, there was significant ($p<0.05$) difference at intermediate cadre, and same was observed at sensitive cadre of isolates. The antibiotics did not differ significantly in efficacies between sensitive bpSA strains and sensitive nbpSA strains (Table III).

DISCUSSION

Prevalence of subclinical mastitis, S. aureus, MRSA, hemolytic and biofilm producing S. aureus

The prevalence of subclinical mastitis in current study was in line with findings of Najeeb et al. (2013) who reported 45% subclinical mastitis from goats. On the other hands, 37.5% and 53% subclinical mastitis in goats was also noted in previous studies by Abo-Shama (2014) and Ali et al. (2010). S. aureus has been formerly described

Antibiotic	Resistant %	Intermediate %	Sensitive %
Vancomycin	20	57.14	0.021
Oxacillin	40	0.000	0.383
Amoxicillin+Clavulanic acid	0	42.86	0.322
Linezolid	0	0	N/A
Gentamicin	0	0	N/A
Trimethoprim+Sulphamethoxazole	20	0	0.689
Oxytetracycline	0	0	N/A
Chloramphenicol	40	14.29	0.047
Amoxicillin	0	71.43	0.057

NBPSA, non-biofilm producing S. aureus; BPSA, biofilm producing S. aureus; NA, not applicable.
as one of the most significant causative agent in caprine mastitis (Ali et al., 2010; Najeeb et al., 2013). Higher biofilm positive S. aureus in current study was in contradiction with findings of França et al. (2012) who reported 7.6% bpSA based on CRA from caprine milk.

Hemolysins are involved in various pathological processes. Kenny et al. (1992) reported that haemolytic toxins can develop clinical signs in mastitis cases, and Ebrahimi et al. (2007) reported that the udder of mastitic goats contain hemolytic Staphylococci. In the current study, 15.6% of S. aureus were found to be resistant to methicillin which was in line with the previous results of 9.2% as discussed by El-Deeb et al. (2018), 20% by Bochev and Russenova (2005), and 28.57% by Ebrahimi et al. (2007). The methicillin-resistant Staphylococci cannot be successfully treated with beta-lactam antibiotics as discussed by previous studies (Aqib et al., 2018b; Dar et al., 2006).

Risk factors

Potential risk factors of current study were in line with findings of previous studies conducted in Pakistan. Feeding system is significant factor for subclinical mastitis. Poor drainage system or farm hygiene can lead to occurrence of mastitis (Ali et al., 2010; Aqib et al., 2019; Najeeb et al., 2013). Teat injury is also strongly associated with mastitis (Ferdous et al., 2018). Wound on the teats and udder facilitates the entry of microbes into the glands, leading to mastitis (Gebrewahid et al., 2012). The findings of current study were in line with those of previous trials conducted on prevalence of subclinical mastitis in goats by Ali et al. (2010) and Najeeb et al. (2013).

Antibiogram

The results of current study were in line with those reported by Ali et al. (2010) and Saleem et al. (2018) who found 80-100% of S. aureus sensitive against these antibiotics. The decreased use of gentamicin in the late 1990’s and obvious shift in strains of clinical isolates of S. aureus were major factors for increased gentamicin sensitivity (Kleven et al., 2006). Oxytetracycline is used as first line treatment by field workers. Opplinger et al. (2012) also suggested that S. aureus isolated from farm workers were 100% sensitive to oxytetracycline.

Vancomycin resistance is a rising problem in S. aureus isolates and their number is increasing day by day which may be due to the acquired resistance as occurred in case of methicillin (Marques et al., 2013). Glycopeptide antibiotics such as vancomycin are last choice for the severe clinical infections of MRSA throughout the world. But the continuous use of vancomycin for handling of MDR S. aureus infections has caused a decrease in vancomycin sensitivity in many countries (Hiramatsu et al., 1997; Rağbetli et al., 2016). Vancomycin resistance in S. aureus when studied at genomic level shows that the development of vanA gene is associated with this behaviour (Akpaka et al., 2017). Mastitis is well known for its deterioration and lack of response to treatment chiefly due to resistance by bacteria against antibiotics (Shamila-Syuhada et al., 2016).

CONCLUSION

The present study found overall higher prevalence of subclinical mastitis (42%) in goats with increased percentage of S. aureus (3.8.1%) and pathogenic strains of S. aureus (MRSA 15.6%, hemolytic S. aureus 46.9%, and biofilm producing S. aureus 34.4%). Risk factor analysis revealed type of drainage system, type of feeding, and teats injury as potential risk factors of mastitis. The in vitro drug trial indicated higher sensitivity of S. aureus against oxytetracycline, trimethoprim + sulphamethoxazole, gentamicin and linezolid against S. aureus and biofilm producing S. aureus. Biofilm producing S. aureus were highly resistant against amoxicillin and vancomycin. Current study reports higher prevalence of pathogenic strains of S. aureus, larger number of potential risk factors, and diversified response of antibiotic susceptibilities which suggest extensive molecular studies and development of effective preventive measures.

Statement of conflict of interest

The authors have declared no conflict of interest.

REFERENCES

Abo-Shama, U.H., 2014. Prevalence and antimicrobial susceptibility of Staphylococcus aureus isolated from cattle, buffalo, sheep and goats raws milk in Sohag governorate, Egypt. Assiut Vet. Med. J., 60: 141.

Akpaka, P.E., Roberts, R. and Monecke, S., 2017. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. J. Infect. Publ. Hlth., 10: 316-323. https://doi.org/10.1016/j.jiph.2016.05.010

Ali, Muhammad, G., Ahmad, T., Khan, R., Anwar, H., Farooqi, F.A., Manzoor, M.N. and Usama, A.R., 2010. Prevalence of caprine sub-clinical Mastitis, its etiological agents and its sensitivity to antibiotics in indigenous breeds of Kohat, Pakistan. Pakistan J. Life Soc. Sci., 8: 63-67.

Amin, M.A., Samad, M.A. and Rahman, A.K.M.A.,
Emergence of Pathogenic Strains of *S. aureus* in Goat Milk

2011. Bacterial pathogens and risk factors associated with mastitis in Black Bengal goats in Bangladesh. *Bangladesh J. vet. Med.*, 9: 155-159. https://doi.org/10.3329/bjvm.v9i2.13458

Anonymous, 2018. *Pakistan economic survey 2017-18*. Finance Division, Govt. of Pakistan. Available at: http://www.finance.gov.pk/survey_1718.html (Accessed on 20 August, 2020).

Aqib, A.I., Ijaz, M., Anjum, A.A., Malik, M.A.R., Mehmood, K., Farooqi, S.H. and Hussain, K., 2017. Antibiotic susceptibilities and prevalence of Methicillin resistant *Staphylococcus aureus* (MRSA) isolated from bovine milk in Pakistan. *Acta Trop.*, 176: 168-172. https://doi.org/10.1016/j.actatropica.2017.08.008

Aqib, A., Ijaz, M., Farooqi, S. and Raza, A., 2018. Dairy *Staphylococcus aureus*: Epidemiology, drug susceptibilities, drug modulation, and preventive measures. In: *Staphylococcus aureus* (eds. H. Hemeg, H. Ozbak and F. Afrin). IntechOpen. https://doi.org/10.5772/intechopen.74552

Aqib, A.I., Anjum, A.A., Ijaz, M., Hussain, R., Ahmed, R., Farooqi, S.H., Aslam, H., Hussain, K., Mehmood, K. and Zhang, H., 2018a. Development and evaluation of vaccine against *Staphylococcus aureus* recovered from naturally occurring mastitis in she-camels. *Microb. Pathog.*, 117: 341-347. https://doi.org/10.1016/j.micpath.2018.03.003

Aqib, A.I., Ijaz, M., Farooqi, S.H., Ahmed, R., Shoaib, M., Ali, M.M., Mehmood, K. and Zhang, H., 2018b. Emerging discrepancies in conventional and molecular epidemiology of methicillin resistant *Staphylococcus aureus* isolated from bovine milk. *Microb. Pathog.*, 116: 38-43. https://doi.org/10.1016/j.micpath.2018.01.005

Berger, D.H. and Holt, J.G., 1994. *Berger’s manual of determinative bacteriology*. Williams and Wilkins, Baltimore, MA.

Bochev, I. and Russenova, N., 2005. Resistance of *Staphylococcus* spp. strains isolated from goats with subclinical mastitis. *Bulgarian J. vet. Med.*, 8: 109-118.

Castro-Sánchez, E., Moore, L.S.P., Husson, F. and Holmes, A.H., 2016. What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. *BMC Infect. Dis.*, 16: 465. https://doi.org/10.1186/s12879-016-1810-x

Cengiz, S., Dinc, G. and Cengiz, M., 2015. Evaluation of antimicrobial resistance in *Staphylococcus* Spp. isolated from subclinical mastitis in cows. *Pakistan Vet. J.*, 35: 334-338.

CLSI, 2015. *Performance standards for antimicrobial susceptibility testing*. Twenty-Second Informational Supplement Clinical and Laboratory Standards Institute, CLSI document M100-S16CLSI, Wayne, PA.

Contreras, A., Luengo, C., Sanchez, A. and Corrales, J.C., 2003. The role of intramammary pathogens in dairy goats. *Livist. Prod. Sci.*, 79: 273-283. https://doi.org/10.1016/S0301-6226(02)00172-0

Contreras, A., Sierra, D., Sánchez, A., Corrales, J.C., Marco, J.C., Paape, M.J. and Gonzalo, C., 2007. Mastitis in small ruminants. *Small Rumin. Res.*, 68: 145-153. https://doi.org/10.1016/j.smallrumres.2006.09.011

Cortimiglia, C., Bianchini, V., Franco, A., Caprioli, A., Battisti, A., Colombo, L., Stradiotto, K., Vezzoli, F. and Luini, M., 2015. Prevalence of *Staphylococcus aureus* and methicillin-resistant *S. aureus* in bulk tank milk from dairy goat farms in Northern Italy. *J. Dairy Sci.*, 98: 2307-2311. https://doi.org/10.3168/jds.2014-8923

Dar, J.A., Thoker, M.A., Khan, J.A., Ali, A., Khan, M.A., Rizwan, M., Bhat, K.H., Dar, M.J., Ahmed, N. and Ahmad, S., 2006. Molecular epidemiology of clinical and carrier strains of methicillin resistant *Staphylococcus aureus* (MRSA) in the hospital settings of north India. *Annls clin. Microbiol. Antimicrob.*, 5: 22. https://doi.org/10.1186/1476-0711-5-22

Devriese, L.A., Van Damme, L.R. and Famerée, L., 1972. Methicillin (cloxacillin) resistant *Staphylococcus aureus* strains isolated from bovine mastitis cases. *Z. Vet. Reihe B*, 19: 598-605. https://doi.org/10.1111/j.1439-0450.1972.tb00439.x

Ebrahimi, A., Lotfalian, S. and Karimi, S., 2007. Drug resistance in isolated bacteria from milk of sheep and goats with subclinical mastitis in Shahrekord district. *Iranian J. vet. Res.*, 8: 76-79.

El-Deeb, W., Fayez, M., Elmoslemany, A., Kandeel, M. and Zidan, K., 2018. Methicillin resistant *Staphylococcus aureus* among goat farms in Eastern province, Saudi Arabia: Prevalence and risk factors. *Prevent. vet. Med.*, 156: 84-90. https://doi.org/10.1016/j.prevetmed.2018.05.005

Ferdous, J., Rahman, M.S., Khan, M.I., Khan, M. and Rima, U.K., 2018. Prevalence of clinical and subclinical caprine mastitis of northern region in Bangladesh. *Progr. Agric.*, 29: 127-138. https://doi.org/10.3329/pa.v29i2.38296

França, C.A., Peixoto, R.M., Cavalcante, M.B., Melo, N.F., Oliveira, C.J.B., Vesci, J.L.A., Mota, R.A. and Costa, M.M., 2012. Antimicrobial resistance of...
Staphylococcus spp. from small ruminant mastitis in Brazil. *Pesquisa Vet. Brasil.*, **32**: 747-753. https://doi.org/10.1590/S0100-736X2012000800012

Freeman, D.J., Falkiner, F.R. and Keane, C.T., 1989. New method for detecting slime production by coagulase negative Staphylococci. *J. clin. Pathol.*, **42**: 872-874. https://doi.org/10.1136/jcp.42.8.872

Gebrewahid, T.T., Abara, B.H. and Menghistu, H.T., 2012. Prevalence and etiology of subclinical mastitis in small ruminants of Tigray regional State, north Ethiopia. *Vet. World*, **5**: 103-109. https://doi.org/10.5455/vetworld.2012.103-109

Goh, S.H., Byrne, S.K., Zhang, J.L. and Chow, A.W., 1992. Molecular typing of *Staphylococcus aureus* on the basis of coagulase gene polymorphisms. *J. clin. Microbiol.*, **30**: 1642-1645. https://doi.org/10.1128/JCM.30.7.1642-1645.1992

Hameed, K.G.A., Sender, G. and Korwin-Kossakowska, Jyothi, J.S., Putty, K., Reddy, Y.N., Dhanalakshmi, Hiramatsu, K., Aritaka, N., Hanaki, H., Kawasaki, S., Goh, S.H., Byrne, S.K., Zhang, J.L. and Chow, A.W., 1992. Molecular typing of *Staphylococcus aureus* on the basis of coagulase gene polymorphisms. *J. clin. Microbiol.*, **30**: 1642-1645. https://doi.org/10.1128/JCM.30.7.1642-1645.1992

Goh, S.H., Byrne, S.K., Zhang, J.L. and Chow, A.W., 1992. Molecular typing of *Staphylococcus aureus* on the basis of coagulase gene polymorphisms. *J. clin. Microbiol.*, **30**: 1642-1645. https://doi.org/10.1128/JCM.30.7.1642-1645.1992

Hameed, K.G.A., Sender, G. and Korwin-Kossakowska, A., 2007. Public health hazard due to mastitis in dairy cows. *Anim. Sci. Pap. Rep.*, **25**: 73-85.

Hiramatsu, K., Aritaka, N., Hanaki, H., Kawasaki, S., Hosoda, Y., Horii, S., Fukuchi, Y. and Kobayashi, I., 1997. Dissemination in Japanese hospitals of strains of *Staphylococcus aureus* heterogeneously resistant to vancomycin. *The Lancet*, **350**: 1670-1673. https://doi.org/10.1016/S0140-6736(97)07324-8

Jyothi, J.S., Putty, K., Reddy, Y.N., Dhanalakshmi, K. and Umair, M.A.H., 2018. Antagonistic effect of ursolic acid on Staphylococcal biofilms. *Vet. World*, **11**: 1440. https://doi.org/10.14202/vetworld.2018.1440-1444

Kenny, K., Bastida, F.D. and Norcross, N.L., 1992. Secretion of alpha-hemolysin by bovine mammary isolates of *Staphylococcus aureus*. *Canadian J. vet. Res.*, **56**: 265.

Klevens, R.M., Edwards, J.R., Tenover, F.C., McDonald, L.C., Horan, T., Gaynes, R. and System, N.N.I.S., 2006. Changes in the epidemiology of methicillin-resistant *Staphylococcus aureus* in intensive care units in US hospitals, 1992–2003. *Clin. Infect. Dis.*, **42**: 389-391. https://doi.org/10.1086/499367

Leitner, G., Merin, U., Lavi, Y., Egber, A. and Silanikove, N., 2007. Aetiology of intramammary infection and its effect on milk composition in goat flocks. *J. Dairy Res.*, **74**: 186-193. https://doi.org/10.1017/S0022029906002299

Malinowski, E., Klossowska, A., Kaczmarowski, M., Lassa, H. and Kuzma, K., 2002. Antimicrobial susceptibility of staphylococci isolated from affected with mastitis cows. *Bull. Vet. Inst. Pulawy*, **46**: 289-294.

Marques, J.B., Dalmolin, T.V., Bonez, P.C., Agert, V.A., Campos, M.M.A. and de Santos, R.C.V., 2013. Detection of *Staphylococcus aureus* with an intermediate profile to vancomycin (VISA) isolate from Santa Maria, RS. *Brazilian J. Microbiol.*, **44**: 277-279. https://doi.org/10.1590/S1517-83822013000100040

Mathur, T., Singhal, S., Khan, S., Upadhyay, D.J., Fatma, T. and Rattan, A., 2006. Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. *Indian J. med. Microbiol.*, **24**: 25. https://doi.org/10.4103/0255-0857.19890

Megersa, B., Tadesse, C., Abunna, F., Regassa, A., Mekbib, B. and Debela, E., 2010. Occurrence of mastitis and associated risk factors in lactating goats under pastoral management in Borana, Southern Ethiopia. *Trop. Anim. Hlth. Prod.*, **42**: 1249-1255. https://doi.org/10.1017/s1125-010-9557-7

Merz, A., Stephan, P. and Johler, S., 2016. *Staphylococcus aureus* isolates from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. *Front. Microbiol.*, **7**: 319. https://doi.org/10.3389/fmicb.2016.00319

Moreillon, P., Entenza, J.M., Francioli, P., McDevitt, D., Foster, T.J., Francois, P. and Vaudaux, P., 1995. Role of *Staphylococcus aureus* coagulase and clumping factor in pathogenesis of experimental endocarditis. *Infect. Immun.*, **63**: 4738-4743. https://doi.org/10.1128/IAI.63.12.4738-4743.1995

Muhammad, G., Naureen, A., Asi, M.N., Saqib, M. and Fazal-ur-Rehman, 2010. Evaluation of a 3% surf solution (surf field mastitis test) for the diagnosis of subclinical bovine and bubaline mastitis. *Trop. Anim. Hlth. Prod.*, **42**: 457-464. https://doi.org/10.1017/s1125-009-9443-3

Najeeb, M.F., Anjum, A.A., Ahmad, M.U.D., Khan, H.M., Ali, M.A. and Sattar, M.M.K., 2013. Bacterial etiology of subclinical mastitis in dairy goats and multiple drug resistance of the isolates. *J. Anim. Pl. Sci.*, **23**: 1541-1544.

Oliveira, M., Bexiga, R., Nunes, S.F., Carneiro, C., Cavaco, L.M., Bernardino, F. and Vilela, C.L., 2006. Biofilm-forming ability profiling of *Staphylococcus aureus* and *Staphylococcus epidermidis* mastitis isolates. *Vet. Microbiol.*, **118**: 133-140. https://doi.org/10.1016/j.vetmic.2006.07.008

Oppliger, A., Moreillon, P., Charrière, N., Giddee, M., Morisset, D. and Sakwinska, O., 2012. Antimicrobial resistance of *Staphylococcus aureus* strains acquired by pig farmers from pigs. *Appl. environ. Microbiol.*, **78**: 8010. https://doi.org/10.1128/AEM.01902-12
Emergence of Pathogenic Strains of S. aureus in Goat Milk

Park, Y.W., 2001. Hypo-allergenic and therapeutic significance of goat milk. *Fd. Sci. Industr.*, 34: 6-13.

Persson, Y. and Olofsson, I., 2011. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats. *Acta Vet. Scand.*, 53: 15. https://doi.org/10.1186/1751-0147-53-15

Rağbetli, C., Parlak, M., Bayram, Y., Guducuoğlu, H. and Ceylan, N., 2016. Evaluation of antimicrobial resistance in *Staphylococcus aureus* isolates by years. *Interdiscip. Perspect. Infect. Dis.*, 2016: 9171395. https://doi.org/10.1155/2016/9171395

Reyher, K.K. and Dohoo, I.R., 2011. Diagnosing intramammary infections: Evaluation of composite milk samples to detect intramammary infections. *J. Dairy Sci.*, 94: 3387-3396. https://doi.org/10.3168/jds.2010-3907

Saleem, M.I., Saqib, M., Khan, M.S., Muhammad, G. and Rehman, S., 2018. Epidemiological study of mastitis in three different strains of beetal goat in selected districts of Punjab, Pakistan. *Pakistan Vet. J.*, 39: 389-394. https://doi.org/10.29261/pakvetj/2018.118

Sarker, H. and Samad, M.A., 2011. Udder-halve-wise comparative prevalence of clinical and sub-clinical mastitis in lactating goats with their bacterial pathogens and antibiotic sensitivity patterns in Bangladesh. *Bangladesh J. vet. Med.*, 9: 137-143. https://doi.org/10.3329/bjvm.v9i2.13456

Silanikove, N., Leitner, G., Merin, U. and Prosser, C.G., 2010. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. *Small Rumin. Res.*, 89: 110-124. https://doi.org/10.1016/j.smallrumres.2009.12.033

Thrusfield, M.V., 2007. *Veterinary epidemiology*. Blackwell Science, Oxford, Ames, Iowa.