Performance of bush type frenchbean varieties (*Phaseolus vulgaris* L.) with or without *rhizobium* inoculation

K. Das, S. Datta* and S. Sikhdar

Department of Vegetable and Spice Crops,
Uttar Banga Krishi Viswavidyalaya, Pundibari-736 165, Cooch Behar, West Bengal, India.

Received: 16-01-2018

Accepted: 20-04-2018

DOI: 10.18805/IJARe.A-4981

ABSTRACT

An experiment was conducted during the *rabi* season of the years 2015-16 and 2016-17 at the Instructional Farm of Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar to study the performance of eight bush type french bean (*Phaseolus vulgaris* L.) varieties (Shagun, Victoria, Falguni, Falkon Improved, Arka Komal, special Jhhati Beans, Nandini and Basuki) regarding growth, fresh pod yield and quality in this region with and without *Rhizobium* inoculation. The experiment was laid out in factorial randomized block design with three replications. In case of inoculation treatment, irrespective of varietal differences, seeds were treated with *Rhizobium* phaseoli 10g/kg of seed. Common fertilizer dose of 80:40:40 N:P:K Okg/ha was applied in each plot. The experimental results revealed that *Rhizobium* inoculation increased the yield and quality parameters viz., protein %, vitamin-A content and ascorbic acid content in the fresh pods of the frenchbean varieties. However, flowering and harvesting were recorded earlier in without *Rhizobium* inoculation treatment due to less accumulation of nitrogen content inside the plant bodies. Under *Rhizobium* inoculation Special Jhhati Beans recorded the highest pod yield (23.05 tonnes/ha) followed by Victoria (22.43 tonnes/ha) and Arka Komal (21.95 tonnes/ha). Regarding without inoculation treatment Arka Komal recorded the higher yield (20.05 tonnes/ha) followed by Special Jhhati Beans (20.01 tonnes/ha) and Nandini (18.76 tonnes/ha). Considering the benefit: cost ratio, french bean varieties ‘Special Jhhati Beans’ and ‘Victoria’ might be selected for the terai region of West Bengal with a benefit: cost ratio of 2.94 and 2.83 respectively.

Key words: French bean, *Rhizobium*.

INTRODUCTION

French bean (*Phaseolus vulgaris* L.), the important leguminous vegetable is originated in warm temperate region of Central America (Mexico and Guatemala) and Southern America which is mainly grown for its tender green pod as well as dry beans (Rajmah). French beans are grown throughout the world and contribute nearly 30% of the total production of food legumes (Vasishtha and Srivastava, 2012). Majority of population in India are vegetarian and increased consumption of French bean as a pulse and vegetable can appropriately supplement their nutritional requirement (Singh et al., 2009) being rich source of nutrient and minerals viz., protein content 17.5-28.7 % in dry seeds and 1.0-2.5 % in green pods, 3.2-5.0 % mineral matter, 4.2-6.3% crude fibre, 1.2-2.0 % crude fat and 340-450 Kcal energy (Sardana et al., 2000). In present days French bean is gaining popularity in the eastern and north eastern states of India as vegetable crops. Specifically its cultivation is becoming integral part of general cropping system in terai region of West Bengal due to having higher suitability during winter season. To meet the ever increasing demand of the crop achievement of higher yield of different varieties of french bean suitable for this region under favorable growing environment with proper evaluation is of foremost important for breeding. In addition, acclimatization of newly introduced established varieties in a particular region may result in higher yields as phenotypic expression is output of complex interaction between concerned genotypic material as well as the environmental components (Singh, 2012). Beside the genotypic performances, *Rhizobium* treatment may influence the yield potentiality of the varieties due to formation of complex symbiotic relationship which make an important contribution to plant nutrition (Leikam et al., 2007). *Rhizobia* bacteria interact with legume host plants to change atmospheric dinitrogen (N$_2$) gas into usable nitrogen (N$_2$) gas into a form usable by the host plant and subsequent crops. This process is called symbiotic nitrogen fixation. The *Rhizobia* bacteria inhabit nodules on the roots of host legume plants. The host plant provides energy for the reactions through which the bacteria convert atmospheric dinitrogen (N$_2$) gas into usable nitrogen (Leikamet al., 2007). So, keeping all these information in purview present investigation was undertaken with the objectives of screening of the eight bush type frenchbean genotypes with respect to growth, yield and quality components as well as evaluate the effect of seed treatments with *Rhizobium* on growth, yield and quality of frenchbean.

Corresponding author’s e-mail: suchanddatta@rediffmail.com
Materials and methods

Present investigation was conducted at the Instructional Farm of Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar (26°19'86" N latitude and 89°23'53"E longitude, at an elevation of 43 meter above the mean sea level), West Bengal, India during the winter seasons of 2015-16 and 2016-17. The soil of the experimental site is sandy loam in nature having a pH of 5.78 with 0.89% organic carbon, 117.6 kg/ha available nitrogen, 15.0 kg/ha available phosphorus and 104.23 kg/ha available potassium. This region comes under subtropical humid region with an average minimum temperature ranging from 7 to 8 °C to and maximum of 24 to 33.2 °C during the experimental period (Nov- March).

The experiment was laid out in randomized block design with three replications. Treatments consist of eight bush type frenchbean genotypes namely Shagun, Victoria, Falguni, Falkon Improved, Arka Komal, Special Jhati Bean, Nandini and Basuki with or without rhizobium inoculation. In case of Rhizobium inoculation seed was treated with *Rhizobium phaseoli* @ 10g/kg of seeds. Frenchbean seeds were sown in the field maintaining a spacing of 45 cm x 15 cm with following of all standard package of practices. Sowing was done in middle of November of each year and harvesting was started from last week of February and was continued till March. Common fertilizer dose N:P:K @ 80:40:40 kg/ha was applied. Data was recorded for growth, yield attributing parameters and yield that include plant height, number of primary branches per plant, flowering, first and last harvest of the concerned varieties, pod length, pod width, number of pods per plant, individual pod weight, yield per plant, total yield, nodule parameters like number of nodules per plant, dry weight of nodules per plant and three quality parameters include ascorbic acid content, Vitamin-A content and protein content of the fresh pods of frenchbean. Ascorbic acid content and beta carotene content of the fresh pods was determined by the method recommended by Ranganna (2001). Protein content of fresh pods of frenchbean was estimated by Lowry (1951) procedure.

The data obtained different parameters were subjected to statistical analysis by the Analysis of Variance method (Gomez and Gomez, 1984) and the significance of different sources of variations were tested by Error Mean Square by Fisher and Snedecor’s ‘F’ test at probability level 0.05. For determination of critical difference at 5% level of significance, Fisher and Yates’ table was consulted.

Results and discussion

Morphological characters: Average performance over two consecutive years recorded regarding morphological traits (Table 1) clearly indicated the significantly predominant effect of *Rhizobium* inoculation over the control irrespective of varieties for all the traits viz., plant height (42.40 cm),

![Table 1](image_url)

Volume 52 Issue 3 (June 2018)
number of primary branches (3.82), number of nodule per plant (22.13) and dry weight of nodule per plant (26.30 mg).

However, among the different varieties, maximum plant height (45.13 cm) was recorded by Shagun and Arka Komal produced significantly higher number of primary branches i.e., 4.05. Present finding was supported by earlier research work of Anjanappa et al., (2000). Considering the interaction effect, the highest plant height of 46.37 cm was obtained from Shagun when grown with Rhizobium inoculation treatment and Nandini recorded the lowest plant height (37.20 cm) when grown without Rhizobium inoculation treatment. Whereas, Arka Komal treated with inoculation was recorded for significantly highest numbers of primary branches i.e., 4.33.

Significantly highest number of nodules per plant was observed in Nandini (26.85) followed by Basuki (23.55) and Victoria (20.85); whereas, lowest number was observed in Special Jhhati Beans (11.60). Nodules dry weight per plant was highest in Basuki (30.44 mg) followed by Nandini (29.90) and lowest dry weight of nodules per plant was obtained from Arka Komal (10.17 mg). With respect to interaction factors, the highest number of nodules per plant was observed in Nandini (33.50) followed by Basuki (29.27) and Victoria (26.34) when treated with Rhizobium inoculation. Similar kind of tendency was recorded for nodules dry weight per plant.

Flowering and fruiting attributes: Table 2 clearly indicated the significant positive effect of Rhizobium inoculation on earliness and fruiting span. Rhizobium inoculation was recorded with delayed flowering (53.02 days) in comparison to control that might be due to up-regulated vegetative growth due to increased number of seeds per pod and 100 seed weight as referred by Yadegari and Rahaman (2010). Besides higher pod length (13.74 cm) and pod width as a result of more nitrogen accumulation inside the plant body. Nandini followed by Arka Komal were recorded to be earliest flowering i.e., 47.17 DAS and 47.58 DAS, respectively. As a result, earliest harvesting was started from Nandini (55.09 DAS) followed by Arka Komal (55.67 DAS). The differences in flowering duration in French bean varieties may be ascribed to genetic disparity as reported by Hussain (2005), Rana and Kumar (2008), Pandey et al., (2011) and Prakash and Ram (2014). Interaction effect depicted the influence of Rhizobium inoculation on vegetative growth to promote delayed flowering i.e., earliest flowering was observed in Nandini (46.00 DAS) followed by Arka Komal (46.17 DAS) when grown without Rhizobium inoculation and delayed flowering observed in Special Jhhati Beans (59.00 DAS) grown with Rhizobium inoculation treatment. As a result of delayed flowering, late harvesting, i.e., crop duration was also increased significantly in Rhizobium inoculation treatment (105.77 DAS) than without Rhizobium inoculation (100.54 DAS). Longest crop duration was obtained from Falguni (104.92 DAS) and shortest was in Basuki (100.67 DAS). Considering the interaction effects, harvesting was also earliest in Nandini (54.00 DAS) followed by Arka Komal (54.34 DAS) when grown without Rhizobium inoculation treatment and the most delayed harvesting was obtained from Special Jhhati Beans (66.84 DAS) when grown with Rhizobium inoculation treatment as a result of delayed flowering.

Fruit characters, yield attributes and yield: The pooled analysis of two years data clearly revealed that (Table 3) Rhizobium inoculation has a little effect on podlength and width, but all the rest yield components affected significantly in positive direction. The increase in individual pod weight due to might be due to increased number of seeds per pod and 100 seed weight as referred by Yadegari and Rahaman (2010). Besides higher pod length (13.74 cm) and pod width

Table 2: Flowering and fruiting attributes of different varieties of French bean under Rhizobium inoculation and control.

Characters	Days to 50% flowering(DAS)	Days to first harvest(DAS)	Days to last harvest(DAS)							
	2015-16	2016-17 Pooled	2015-16	2016-17 Pooled	2015-16	2016-17 Pooled				
	Rhizobium inoculation		Rhizobium inoculation		Rhizobium inoculation					
	1(with inoculation)	53.54	52.50	53.02	61.33	60.25	60.79	105.29	106.25	105.77
	1(without inoculation)	50.79	50.04	50.42	58.67	57.75	58.21	99.83	101.25	100.54
	SEm±	0.39	0.42	0.30	0.37	0.39	0.28	0.57	0.55	0.39
	CD at 5%	1.13	1.21	0.84	1.08	1.15	0.79	1.64	1.61	1.12
Variety	V1(Shagun)	55.17	53.00	54.09	63.00	60.83	61.92	102.50	103.50	103.00
	V1(Victoria)	52.50	50.50	51.50	60.50	58.17	59.34	102.16	103.33	102.75
	V1(Falguni)	52.00	51.00	51.50	59.83	58.17	59.00	103.67	106.17	104.92
	V1(ArkaKomal)	47.83	47.33	47.58	56.00	55.33	55.67	102.50	104.50	103.50
	V1(Falkon Improved)	54.67	53.33	54.00	62.17	61.00	61.93	103.83	104.83	104.33
	V1(Special Jhhati Beans)	57.67	57.50	57.59	65.50	65.50	65.50	103.00	103.50	103.25
	V1(Nandini)	47.17	47.17	47.17	55.00	55.17	55.09	102.83	102.83	102.83
	V1(Basuki)	50.33	50.33	50.33	58.00	57.83	57.92	100.00	101.33	100.67
	SEm±	0.78	0.83	0.59	0.74	0.79	0.56	1.13	1.11	0.79
	CD at 5%	2.26	2.42	1.68	2.16	2.29	1.58	N.S.	N.S.	2.23

N.S. Non significant.
Table 3: Fruit characters, yield attributes and yield of different varieties of French bean under Rhizobium inoculation and control.

Characters	Year	Rhizobium inoculation	I (without inoculation)	I (with inoculation)	I (Special Jhhati Beans)	I (Arka Komal)	I (Falguni)	I (Victoria)	I (Nandini)	I (Falkon Improved)	I (Shagun)	Pooled 2015-16	Pooled 2016-17	Pooled 2015-16-17	Pooled 2016-17
Pod length (cm)		12.78	13.79	13.74	13.88	14.01	14.05	14.06	14.06	14.05	14.11	14.20	14.32	14.29	14.32
Pod width (cm)		0.79	1.36	1.36	1.35	1.35	1.36	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Yield/plant (g)		6.68	13.73	13.73	13.72	13.73	13.75	13.75	13.75	13.75	13.74	13.74	13.75	13.75	13.75
Number of pods per plant		22.34	22.34	22.34	22.34	22.34	22.34	22.34	22.34	22.34	22.34	22.34	22.34	22.34	22.34
Total fresh yield (tonnes/ha)		20.73	20.73	20.73	20.73	20.73	20.73	20.73	20.73	20.73	20.73	20.73	20.73	20.73	20.73

Quality parameters: Data represented in Table 4 indicated that quality parameters like β-carotene content (IU), ascorbic acid content (mg/100g) and protein content (%) of the fresh French bean pods showed significant variation in different genotypes as well as Rhizobium inoculation treatment. Up regulation of bio-synthetic pathway on Rhizobium inoculation was noted for Vitamin-A (612.96 IU), ascorbic acid content (mg/100g) and protein content (%) of the fresh French bean pods showed significant variation in different genotypes as well as Rhizobium inoculation treatment. However, significantly the longest pod length (14.25 cm), wider pod width (1.27 cm) and highest individual pod weight (6.79 g) was recorded by Arka Komal, whereas shortest pod length (12.78 cm) was observed in Victoria and smallest pod width (0.64 cm) and lowest individual pod weight (3.79 g) were noticed in Falguni. The variation in pod length, pod width and individual pod weight of French bean varieties observed in the present study may be due to their inherent traits and to some extent by environmental factors. Similarly, variability for pod length and pod width in different varieties of French bean was also reported by Kumar et al., (2014) and Das et al., (2014). Variation in number of pods per plant in different varieties was reported by Ramana et al., (2010) in french bean and Sharma et al., (2014) in pea. The highest yield per plant (83.70 g) and total fresh pod yield (21.53 tonnes/ha) were obtained from Special Jhhati Beans followed by Arka Komal having yield per plant of 78.02 g and yield of 21.03 tonnes/ha. Nandini (73.86 g) and Victoria (72.86 g) are statistically at par with respect to yield per plant and lowest pod yield per plant was recorded in Falguni (44.66 g). The results are also consensus with the findings of Das et al., (2014) in French bean with different varieties. The variation in yield might be due to significant genotypic x environmental interactions as reported by Devi et al., (2015). Considering the interaction effects, Arka Komal produced the longest pod length (14.36 cm) biggest pod width (1.27 cm) and highest individual pod weight (6.86 g) when grown with Rhizobium inoculation, whereas, shortest pod length (12.61 cm) was observed in Victoria and smallest pod width (0.61 cm) and lowest individual pod weight (3.61 g) was recorded by Arka Komal, whereas shortest pod length (12.78 cm) was observed in Victoria and smallest pod width (1.27 cm) and lowest individual pod weight (6.79 g) was noticed in Falguni when grown without Rhizobium inoculation treatment. Higher number of pods per plant was obtained from Special Jhhati Beans (24.26) followed by Nandini (20.32), Victoria (18.69) and was lowest in Falguni (12.84). The findings of genotypic variation in number of pods per plant is also supported by Das et al., (2014) and Yadav et al., (2015) for different varieties in another experiment. The highest yield per plant (85.97 g) and total fresh pod yield (23.05 tonnes/ha) were obtained from Special Jhhati Beans when grown with Rhizobium inoculation treatment, whereas lowest yield per plant (41.84 g) and total fresh pod yield (13.77 tonnes/ha) in Falguni were recorded when grown without Rhizobium inoculation treatment.

Pod length (0.79 cm) higher values of individual pod weight (5.31 g), pods per plant (17.91), yield per plant (69.11g) and total fresh yield (20.73 tonnes/ha) was obtained from Rhizobium inoculation treatment than without inoculation treatment. However, significantly the longest pod length (14.25 cm), wider pod width (1.27 cm) and highest individual pod weight (6.79 g) was recorded by Arka Komal, whereas shortest pod length (12.78 cm) was observed in Victoria and smallest pod width (0.64 cm) and lowest individual pod weight (3.79 g) were noticed in Falguni. The variation in pod length, pod width and individual pod weight of French bean varieties observed in the present study may be due to their inherent traits and to some extent by environmental factors. Similarly, variability for pod length and pod width in different varieties of French bean was also reported by Kumar et al., (2014) and Das et al., (2014). Variation in number of pods per plant in different varieties was reported by Ramana et al., (2010) in french bean and Sharma et al., (2014) in pea. The highest yield per plant (83.70 g) and total fresh pod yield (21.53 tonnes/ha) were obtained from Special Jhhati Beans followed by Arka Komal having yield per plant of 78.02 g and yield of 21.03 tonnes/ha. Nandini (73.86 g) and Victoria (72.86 g) are statistically at par with respect to yield per plant and lowest pod yield per plant was recorded in Falguni (44.66 g). The results are also consensus with the findings of Das et al., (2014) in French bean with different varieties. The variation in yield might be due to significant genotypic x environmental interactions as reported by Devi et al., (2015). Considering the interaction effects, Arka Komal produced the longest pod length (14.36 cm) biggest pod width (1.27 cm) and highest individual pod weight (6.86 g) when grown with Rhizobium inoculation, whereas, shortest pod length (12.61 cm) was observed in Victoria and smallest pod width (0.61 cm) and lowest individual pod weight (3.61 g) was recorded by Arka Komal, whereas shortest pod length (12.78 cm) was observed in Victoria and smallest pod width (1.27 cm) and lowest individual pod weight (6.79 g) was noticed in Falguni when grown without Rhizobium inoculation treatment. Higher number of pods per plant was obtained from Special Jhhati Beans (24.26) followed by Nandini (20.32), Victoria (18.69) and was lowest in Falguni (12.84). The findings of genotypic variation in number of pods per plant is also supported by Das et al., (2014) and Yadav et al., (2015) for different varieties in another experiment. The highest yield per plant (85.97 g) and total fresh pod yield (23.05 tonnes/ha) were obtained from Special Jhhati Beans when grown with Rhizobium inoculation treatment, whereas lowest yield per plant (41.84 g) and total fresh pod yield (13.77 tonnes/ha) in Falguni were recorded when grown without Rhizobium inoculation treatment. Higher number of pods per plant was obtained from Special Jhhati Beans (24.26) followed by Nandini (20.32), Victoria (18.69) and was lowest in Falguni (12.84). The findings of genotypic variation in number of pods per plant is also supported by Das et al., (2014) and Yadav et al., (2015) for different varieties in another experiment. The highest yield per plant (85.97 g) and total fresh pod yield (23.05 tonnes/ha) were obtained from Special Jhhati Beans when grown with Rhizobium inoculation treatment, whereas lowest yield per plant (41.84 g) and total fresh pod yield (13.77 tonnes/ha) in Falguni were recorded when grown without Rhizobium inoculation treatment.
acid content (15.43 mg/100g fresh pod) and protein content (2.09%). Although, enhancement of protein content in fresh pods compared to without inoculation (1.44%) ascribed due to higher nitrogen accumulation inside the plant body as supported by Khafa (2013). With respect to different varieties, Vitamin- A content in fresh pods was highest in Falkon Improved (618.48 IU) followed by Nandini (618.17 IU). The highest ascorbic acid content (18.86 mg/100g fresh pod) was obtained from Shagun followed by Victoria (17.02 mg/100g fresh pod) and Falguni (15.77 mg/100g fresh pod) and lowest amount of ascorbic acid content was recorded in Basuki (10.12 mg/100g fresh pod). These findings were supported by earlier research (Rashid, 2014). Significantly, the highest amount of protein content was estimated in Falguni (2.28%) followed by Falkon Improved (2.04%) and Special Jhhati Beans (1.80%) and was lowest in Arka Komal (1.46%).

The results of the interaction effects revealed that, the highest vitamin- A content was recorded in Falkon Improved (623.15 IU) followed by Nandini (622.26 IU) with Rhizobium inoculation. The highest ascorbic acid content was recorded in Shagun (20.01 mg/100g fresh pod) and significantly highest amount of protein content was estimated in Falguni (3.09%). In all the cases interaction effect for non-inoculated treatments were resulted lower than the inoculated one.

CONCLUSION

From the present study, it may be concluded that Rhizobium inoculation increase the growth and yield parameters of the French bean and ultimately increase yield of French bean. Among the bush type French bean varieties, maximum fresh pod yield was recorded in Special Jhhati Beans (21.53 tonnes/ha) which is also statistically at par with Arka Komal (21.01 tonnes/ha). More than 20 tonnes/ha yield was recorded in Victoria (20.58 tonnes/ha) and Nandini (20.15 tonnes/ha). Considering the benefit: cost ratio, French bean varieties Special Jhhati Beans and Victoria might be selected for the terai region of West Bengal.

REFERENCES

Anjanappa, M., Reddy, N.S., Krishnappa, K. S., Murali, K. and Pitchaimuthu, M. (2000). Performance of French bean Varieties under Southern Dry Region of Karnataka. *Karnataka Journal of Agricultural Science*, 13:503-505.

Das, R., Thapa, U., Debnath, S., Lyngdoh, Y. A., and Mallick, D., (2014). Evaluation of French bean (*Phaseolus vulgaris* L.) genotypes for seed production. *Journal of Applied and Natural Science*, 6: 594 – 598.

Devi, J., Sharma, A., Singh, Y., Kaoch, V. and Sharma, K. C., (2015). Genetic variability and character associa-tion studies in french bean (*Phaseolus vulgaris* L.) under North-Western Himalayas. *Legume Research*, 38: 149-156.

Gomez, K. A., and Gomez, A. A., (1984). Statistical Procedures for Agricultural Research (2 ed). Jhon Wiley and Sons .Newyork, 84-97.

Hussain, M. M., (2005). Yield and quality of Bush bean (*Phaseolus vulgaris* L.) genotypes as influenced by date of sowing. *M.Sc. Thesis*, Bangabandhu Sheikh Mujibur Rahman Agricultural University.Gazipur, Bangladesh.

Kalyani, D. L., (2012) Performance of of cluster bean genotypes under varied time of sowing. *Legume Research*, 35 : 154-158

Khafa, B. P., (2013).Response of Common Bean Genotypes to Inoculation with Rhizobia and Effects of P and N on Biological Nitrogen Fixation. *M.Sc. (Agriculture) Thesis*, Sokoine University of Agriculture., Morogoro, Tanzania.
Kumar, A., Singh, P. K., Rai, N., Bhaskar, G. and Datta, D., (2014). Genetic diversity of French bean \textit{(Phaseolus vulgaris L.)} genotypes on the basis of morphological traits and molecular markers. \textit{Indian Journal of Biotechnology. 13:} 207-213.

Leikam, D., Lamond, R. E., Bonczkowski, L. C., Hickman, J. S. and Whitney, D. A., (2007). Using Legumes in Crop Rotations. Kansas State University.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Journal of Biological Chemistry., \textbf{193}: 265-275.

Pandey, R.Y., Gautam, D.M., Thapa, R.B., Sharma, M.D. and Padyal, K.P. (2011). Variability of French Bean in the Western Mid Hills of Nepal. \textit{Kasetsart Journal of Natural Sciences, 45:} 780 – 792.

Prakash, J. and Ram, R.B., (2014). Genetic variability, correlation and path analysis for seed yield and yield related traits in French bean \textit{(Phaseolus vulgaris L.)} under Lucknow conditions. \textit{International Journal of Innovative Sciences, 1}: 41-50.

Ramana, V., Ramakrishna, M., Purushotham, K. and Reddy, K. B., (2010). Effect of bio-fertilizers on growth, yield attributes and yield of French bean \textit{(Phaseolus vulgaris L.)}. \textit{Legume Research, 33:} 178-183.

Rana, D.K. and Kumar, A., (2008). Performance of various French bean \textit{(Phaseolus vulgaris L.)} genotypes under mid-hill condition of Garhwal Himalaya. \textit{Progressive Horticulture, 40:} 184-186.

Ranganna, S., (2001). Handbook of Analysis and Quality Control for Fruit and Vegetable Products. Tata McGraw Hill Publishing Co. Ltd. New Delhi., 190-210.

Rashid, A.S. M. and Hossain, M. M., (2014). Yield and quality of green pod production of bush bean \textit{(Phaseolus vulgaris L.)} as influenced by harvesting time. \textit{American-Eurasian Journal of Agricultural and Environmental Sciences, 14:} 1221-1227.

Sardana, V., Dhingrae, K. K., Gille, M.S. and Singh, I. J., (2000). Production Technology of French bean \textit{(Phaseolus vulgaris L.)} Cultivation: A Review. \textit{Journal of Agricultural Review, 21:} 141-154.

Sharma, A., Sharma, M., Sharma, K. C., Singh, Y., Sharma, R. P. and Sharma, G. D. (2014) Standadization of sowing date and cultivars for seed production of garden pea \textit{(Pisum sativum L.)} under Western Himalayas. \textit{Legume Research, 37:} 287-293.

Singh, A. K., Singh, S.B. and Singh, V., (2009). Influence of nitrogen doses on growth and green pod yield parameters of French bean varieties during \textit{kharif} season under subtropical area of Jammu region. \textit{Legume Research, 32:} 142-144.

Singh, B. D., (2012). Plant Breeding. Principles and Methods. KalyaniPublishers. New Delhi. 51.

Vasishtha, H. and Srivastava, R. P., (2012). Genotypic variations in protein, dietary fibre, saponins and lectins in Rajmash beans \textit{(Phaseolus vulgaris L.)}. \textit{Indian Journal of Biochemistry, 25:} 150-153.

Yadav, B.V.S., (2015). Performance of Vegetable French Bean \textit{(Phaseolus vulgaris L.)} as Influenced by Varieties and Sowing Dates under Southern Zone of Andhra Pradesh. \textit{M.Sc. Thesis, Dr. Y. S. R. Agricultural University, Y. S. R. District, Andhra Pradesh.}

Yadegari, M. and Rahamani, H. A., (2010). Evaluation of bean \textit{(Phaseolus vulgaris)} seeds’ inoculation with \textit{Rhizobium phaseoli}an plant growth promoting \textit{Rhizobacteria (PGPR)} on yield and yield components. \textit{African Journal of Agricultural Research, 5:} 792-799.