Channel Polarization on \(q\)-ary Discrete Memoryless Channels by Arbitrary Kernels

Ryuhei Mori
Graduate School of Informatics
Kyoto University
Kyoto, 606–8501, Japan
Email: rmori@sys.i.kyoto-u.ac.jp

Toshiyuki Tanaka
Graduate School of Informatics
Kyoto University
Kyoto, 606–8501, Japan
Email: tt@i.kyoto-u.ac.jp

Abstract—A method of channel polarization, proposed by Arıkan, allows us to construct efficient capacity-achieving channel codes. In the original work, binary input discrete memoryless channels are considered. A special case of \(q\)-ary channel polarization is considered by Şaşoğlu, Telatar, and Arıkan. In this paper, we consider more general channel polarization on \(q\)-ary channels. We further show explicit constructions using Reed-Solomon codes, on which asymptotically fast channel polarization is induced.

I. INTRODUCTION

Channel polarization, proposed by Arıkan, is a method of constructing capacity achieving codes with low encoding and decoding complexities [1]. Channel polarization can also be used to construct lossy source codes which achieve rate-distortion trade-off with low encoding and decoding complexities [2]. Arıkan and Telatar derived the rate of channel polarization [3]. In [4], a more detailed rate of channel polarization which includes coding rate is derived. In [1], channel polarization is based on a \(2 \times 2\) matrix. Korada, Şaşoğlu, and Urbanke considered generalized polarization phenonemon which is based on an \(\ell \times \ell\) matrix and derived the rate of the generalized channel polarization [5]. In [6], a special case of channel polarization on \(q\)-ary channels is considered. In this paper, we consider channel polarization on \(q\)-ary channels which is based on arbitrary mappings.

II. PRELIMINARIES

Let \(u_{\ell-1}^{\ell-1}\) and \(u_j^j\) denote a row vector \((u_0, \ldots, u_{\ell-1})\) and its subvector \((u_i, \ldots, u_j)\). Let \(\mathcal{F}\) denote the complement of a set \(\mathcal{F}\), and \(|\mathcal{F}|\) denotes cardinality of \(\mathcal{F}\). Let \(\mathcal{X}\) and \(\mathcal{Y}\) be an input alphabet and an output alphabet, respectively. In this paper, we assume that \(\mathcal{X}\) is finite and that \(\mathcal{Y}\) is at most countable. A discrete memoryless channel (DMC) \(W\) is defined as a conditional probability distribution \(W(y | x)\) over \(\mathcal{Y}\) where \(x \in \mathcal{X}\) and \(y \in \mathcal{Y}\). We write \(W : \mathcal{X} \rightarrow \mathcal{Y}\) to mean a DMC \(W\) with an input alphabet \(\mathcal{X}\) and an output alphabet \(\mathcal{Y}\). Let \(q\) be the cardinality of \(\mathcal{X}\). In this paper, the base of the logarithm is \(q\) unless otherwise stated.

Definition 1: The symmetric capacity of \(q\)-ary input channel \(W : \mathcal{X} \rightarrow \mathcal{Y}\) is defined as

\[
I(W) := \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \frac{1}{q} W(y | x) \log \frac{W(y | x)}{\sum_{y' \in \mathcal{Y}} W(y' | x)}. \]

Note that \(I(W) \in [0, 1]\).

Definition 2: Let \(\mathcal{D}_x := \{y \in \mathcal{Y} | W(y | x) > W(y | x'), \forall x' \in \mathcal{X}, x' \neq x\}\). The error probability of the maximum-likelihood estimation of the input \(x\) on the basis of the output \(y\) of the channel \(W\) is defined as

\[
P_e(W) := \frac{1}{q} \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{D}_x} W(y | x).
\]

Definition 3: The Bhattacharyya parameter of \(W\) is defined as

\[
Z(W) := \frac{1}{q(q-1)} \sum_{x \in \mathcal{X}, x' \in \mathcal{X}, x \neq x'} Z_{x,x'}(W)
\]

where the Bhattacharyya parameter of \(W\) between \(x\) and \(x'\) is defined as

\[
Z_{x,x'}(W) := \sum_{y \in \mathcal{Y}} \sqrt{W(y | x) W(y | x')}.
\]

The symmetric capacity \(I(W)\), the error probability \(P_e(W)\), and the Bhattacharyya parameter \(Z(W)\) are interrelated as in the following lemmas.

Lemma 4:

\[
P_e(W) \leq (q-1)Z(W).
\]

Lemma 5: [6]

\[
I(W) \geq \log \frac{q}{1 + (q-1)Z(W)} \quad I(W) \leq \log(q/2) + (\log 2) \sqrt{1 - Z(W)^2} \quad I(W) \leq 2(q-1)(\log e) \sqrt{1 - Z(W)^2}.
\]

Definition 6: The maximum and the minimum of the Bhattacharyya parameters between two symbols are defined as

\[
Z_{\text{max}}(W) := \max_{x \in \mathcal{X}, x' \in \mathcal{X}, x \neq x'} Z_{x,x'}(W) \quad Z_{\text{min}}(W) := \min_{x \in \mathcal{X}, x' \in \mathcal{X}} Z_{x,x'}(W).
\]

Let \(\sigma : \mathcal{X} \rightarrow \mathcal{X}\) be a permutation. Let \(\sigma^i\) denote the \(i\)th power of \(\sigma\). The average Bhattacharyya parameter of \(W\) between \(x\) and \(x'\) with respect to \(\sigma\) is defined as the average of
as D_{MC}s with transition probabilities $x \rightarrow X$

III. CHANNEL POLARIZATION ON q-ARY DMC INDUCED BY NON-LINEAR KERNEL

We consider a channel transform using a one-to-one onto mapping $g : \mathcal{X}^e \rightarrow \mathcal{X}^e$, which is called a kernel. In the previous works [11, 13], it is assumed that $q = 2$ and that g is linear. In [6], \mathcal{X} is arbitrary but g is restricted. In this paper, \mathcal{X} and g are arbitrary.

Definition 7: Let $W : \mathcal{X}^e \rightarrow \mathcal{Y}$ be a DMC. Let $W^g_\ell(x_0^{n\ell} : x_0^{n\ell−1}) = \frac{1}{q^{\ell+1}} \sum_{u_0^{n\ell−1}} W^{(g^\ell(x_0^{n\ell−1}) | g(u_0^{n\ell−1}))}.$

Definition 8: Let $\{B_i\}_{i=0, 1, \ldots}$ be independent random variables such that $B_i = k$ with probability $\frac{1}{n\ell}$, for each $k = 0, 1, \ldots, \ell − 1$.

In probabilistic channel transform $W \rightarrow W^{(B_i)}$, expectation of the symmetric capacity is invariant due to the chain rule for mutual information. The following lemma is a consequence of the martingale convergence theorem.

Lemma 9: There exists a random variable I_∞ such that $I(W^{(B_i)} \cdots (B_{i+1}))$ converges to I_∞ almost surely as $n \rightarrow \infty$.

When $q = 2$ and $g(u_i) = (u_0 + u_1, u_1)$, Arkan showed that $P(I_\infty \in \{0, 1\}) = 1$ [11]. This result is called channel polarization phenomenon since subchannels polarize to noiseless channels and pure noise channels. Korada, Sapoglu, and Urbanke consider channel phenomenon when $q = 2$ and g is linear [5].

From Lemma 3 $I(W)$ is close to 0 and 1 when $Z(W)$ is close to 1 and 0, respectively. Hence, it would be sufficient to prove channel polarization if one can show that $Z(W^{(B_i)} \cdots (B_{i+1}))$ converges to $Z_\infty \in \{0, 1\}$ almost surely. Here we instead show a weaker version of the above property in the following lemma and its corollary.

Lemma 10: Let $\{\mathcal{Y}_n\}_{n \in \mathbb{N}}$ be a sequence of discrete sets. Let $\{W_n : \mathcal{X} \rightarrow \mathcal{Y}_n\}_{n \in \mathbb{N}}$ be a sequence of q-ary DMCs. Let σ and τ be permutations on \mathcal{X}. Let $W_n^\sigma, W_n^\tau : \mathcal{X}^e \rightarrow \mathcal{Y}_n^e$ be defined as DMCs with transition probabilities $x \rightarrow X$

Proof: Let $Z_\infty Z_{x, x'}(W)$ over the subset $\{(z, z') = (\sigma^i(x), \sigma^i(x')) \in \mathcal{X}^2$ for $i = 0, 1, \ldots, q^n−1\}$

$$Z_{x, x'}(W) := \frac{1}{q^n} \sum_{i=0}^{q^n−1} Z_{\sigma^i(x), \sigma^i(x')}(W).$$

Since $I(W_n^g) = I(Z(Y_1, Y_2))$ and $I(W_n^h) = I(Z(Y_1)$

$$I(Z|Y_1, Y_2) - I(Z|Y_1) = I(Z|Y_2 | Y_1)$$

tends to 0 by the assumption. Since the mutual information is lower bounded by the cut-off rate, one obtains

$$P(z, y) = 0$$

and

$$P(z, y) = 1$$

for any $z, x \in \mathcal{X}^2$. It consequently implies that for any $\delta \in (0, 1/2), there$ exists m such that

$$P_{\infty}Z_{x, x'}(W) \leq (\delta, 1 - \delta)$$

for any $x, x' \in \mathcal{X}$ and $n \geq m$.
Variables ranging over a permutation \(v \) such that \(\sigma(\cdot) \) and \(\tau(\cdot) \) are invariant under an operation \(G \) we assume that \(G \) is a lower triangle and, perturbation matrices, without loss of generality we assume that \(G \) is a lower triangle matrix and that \(G_{kk} = 1 \) where \(k \in \{0, \ldots, \ell - 1\} \) is the largest number such that the number of non-zero elements in \(k \)-th row of \(G \) is greater than 1, and where \(G_{ij} \) denotes \((i, j) \) element of \(G \).

Theorem 13: Assume that \(\mathcal{X} \) is a field of prime cardinality, and that linear kernel \(G \) is not diagonal. Then, \(P(I_{\infty} \in \{0, 1\}) = 1 \).

Proof: It holds

\[
W(k)(y_0^{\ell-1}, u_k^{\ell-1} | u_k) = \frac{1}{q^{\ell-1}} \prod_{j=1}^{\ell-1} \left(\sum_{x \in \mathcal{X}} W(y_j | x) \right) \times \prod_{j \in S_0} \prod_{j \in S_1} W(y_j | G_{kj} u_k + x_j)
\]

where \(S_0 := \{ j \in \{0, \ldots, \ell - 1\} | G_{kj} = 0 \} \), \(S_1 := \{ j \in \{0, \ldots, \ell - 1\} | G_{kj} \neq 0 \} \), and \(x_j \) is \(j \)-th element of \((u_0^{\ell-1}, 0^{\ell-1}) G \) where \(G \) is the zero matrix of length \(\ell \).

Let \(m \in \{0, \ldots, \ell - 1\} \) be such that \(G_{km} \neq 0 \). Since each \(k^{-1} \) occurs with positive probability \(1/q^\ell \), we can apply Lemma\ref{lem:coro10} with \(\sigma(x) = x \) and \(\tau(x) = G_{km} x + z \) for arbitrary \(z \in \mathcal{X} \). Hence, for sufficiently large \(m \), \(\mathcal{Z}_{x,x'}^m(W(B_1) \circ \cdots \circ (B_m)) \) is close to 0 or almost surely where \(\mu(x) = G_{km} x + z \) for any \(x \in \mathcal{X} \) such that \(|Z| \) is close to 1 when \(\mu_0(z) = z + x' - x \) for \(x \neq x' \), \(Z_{x,x'}^m(W(B_1) \circ \cdots \circ (B_m)) \) is close to 0 and only if \(Z(W(B_1) \circ \cdots \circ (B_m)) \) is close to 0 or 1, respectively.

This result is a simple generalization of the special case considered by Šaşoğlu, Telatar, and Arikan. For a prime power \(q \) and a finite field \(\mathcal{X} \), we show a sufficient condition for channel polarization in the following corollary.

Corollary 14: Assume that \(\mathcal{X} \) is a field and that a linear kernel \(G \) is not diagonal. If there exists \(j \in \{0, \ldots, k-1\} \) such that \(G_{kj} \) is a primitive element. Then, \(P(I_{\infty} \in \{0, 1\}) = 1 \).

Proof: By applying Lemma\ref{lem:coro10} one sees that for almost every sequence \(b_1, \ldots, b_m \) of \(0, \ldots, \ell - 1 \), and for any \(\delta \in (0, 1/2) \), there exists \(m \) such that \(|Z_{x,x'}^m(W(B_1) \circ \cdots \circ (B_m))| \neq |\delta, 1 - \delta| \) for any \(x \in \mathcal{X}, x' \in \mathcal{X} \) and \(n \geq m \).

If a kernel is linear, a more detailed condition is obtained.

Definition 12: Assume \((\mathcal{X}, +, \cdot)\) be a commutative ring. A kernel \(g : \mathcal{X}^d \to \mathcal{X}^d \) is said to be linear if \(g(a x + b z) = a g(x) + b g(z) \) for all \(a, b \in \mathcal{X} \), \(x, z \in \mathcal{X}^d \), and \(\mathcal{X}^d \in \mathcal{X}^d \).

If \(g \) is linear, \(g \) can be represented by a square matrix \(G \) such that \(g(u_0^{\ell-1}) = u_0^{\ell-1} G \). Let \(u_0^{\ell-1}, X_0^{\ell-1} \) and \(Y_0^{\ell-1} \) denote random variables taking values on \(\mathcal{X}^d, \mathcal{X}^d \) and \(\mathcal{X}^d \), respectively, and obeying distribution

\[
P(U_0^{\ell-1} = u_0^{\ell-1}, X_0^{\ell-1} = x_0^{\ell-1}, Y_0^{\ell-1} = y_0^{\ell-1}) = \frac{1}{q^{2\ell}} W_{\ell, \ell-1}(y_0^{\ell-1} | u_0^{\ell-1} G) \mathbb{1}\{x_0^{\ell-1} V = u_0^{\ell-1}\}
\]

where \(V \) denotes an \(\ell \times \ell \) full-rank upper triangle matrix. There exists a one-to-one correspondence between \(X_0^{\ell-1} \) and \(U_0^{\ell-1} \) for all \(i \in \{0, \ldots, \ell - 1\} \). Hence, statistical properties of \(W^{(i)} \) are invariant under an operation \(G \to VG \). Further, a permutation of columns of \(G \) does not change statistical properties of \(W^{(i)} \) either. Since any full-rank matrix can be decomposed to the form \(VLP \) where \(V, L, \) and \(P \) are upper triangle, lower triangle, and permutation matrices, without loss of generality we assume that \(G \) is a lower triangle and that \(G_{kk} = 1 \) where \(k \in \{0, \ldots, \ell - 1\} \) is the largest number such that the number of non-zero elements in \(k \)-th row of \(G \) is greater than 1, and where \(G_{ij} \) denotes \((i, j) \) element of \(G \).

IV. Speed of Polarization

Ankara and Telatar showed the speed of polarization \cite{Art}. Korada, Šaşoğlu, and Urbanke generalized it to any binary linear kernels \cite{KOR}.
Proposition 15: Let \(\{\hat{X}_n \in (0, 1)\}_{n\in\mathbb{N}} \) be a random process satisfying the following properties.

1) \(\hat{X}_n \) converges to \(\hat{X}_\infty \) almost surely.
2) \(\hat{X}_{n+1} \leq \hat{c} \hat{X}_{D_n} \) where \(\{D_n \geq 1\}_{n\in\mathbb{N}} \) are independent and identically distributed random variables, and \(\hat{c} \) is a constant.

Then,
\[
\lim_{n\to\infty} P(\hat{X}_n < 2^{-2^{\beta n}}) = P(\hat{X}_\infty = 0)
\]
for \(\beta < \mathbb{E}[\log_2 D_1] \) where \(\mathbb{E}[\cdot] \) denotes an expectation. Similarly, let \(\{\tilde{X}_n \in (0, 1)\}_{n\in\mathbb{N}} \) be a random process satisfying the following properties.

1) \(\tilde{X}_n \) converges to \(\tilde{X}_\infty \) almost surely.
2) \(\tilde{X}_{n+1} \geq \tilde{c} \tilde{X}_{D_n} \) where \(\{D_n \geq 1\}_{n\in\mathbb{N}} \) are independent and identically distributed random variables, and \(\tilde{c} \) is a constant.

Then,
\[
\lim_{n\to\infty} P(\tilde{X}_n < 2^{-2^{\beta n}}) = 0
\]
for \(\beta > \mathbb{E}[\log_2 \tilde{D}_1] \).

Note that the above proposition can straightforwardly be extended to include the rate dependence [4].

In order to apply Proposition 15 to \(Z_{\max}(W(B_1)\ldots(B_n)) \) and \(Z_{\min}(W(B_1)\ldots(B_n)) \) as \(\hat{X}_n \) and \(\tilde{X}_n \), respectively, the second conditions have to be proven. In the argument of [5], partial distance of a kernel corresponds to the random variables \(\hat{D}_n \) and \(\tilde{D}_n \) in Proposition 15.

Definition 16: Partial distance of a kernel \(g : \mathcal{X}^\ell \to \mathcal{X}^\ell \) is defined as
\[
D^{(i)}_{x,x'}((i-1)) := \min_{v_{i-1},w_{i-1}} d(g(u_{i-1}^{(i-1)}, x, v_{i-1}^{(i-1)}), g(u_{i-1}^{(i-1)}, x', w_{i-1}^{(i-1)}))
\]
where \(d(a, b) \) denotes the Hamming distance between \(a \in \mathcal{X}^\ell \) and \(b \in \mathcal{X}^\ell \).

We also use the following quantities.
\[
D^{(i)}_{x,x'} := \min_{v_{i-1}} D^{(i)}_{x,x'}(v_{i-1}) \quad D^{(i)}_{x,x'}(v_{i-1}) := \max_{x \in \mathcal{X}, x' \in \mathcal{X}} D^{(i)}_{x,x'}(v_{i-1}) \quad D^{(i)} := \min_{x \not= x'} D^{(i)}_{x,x'}.
\]

When \(g \) is linear, \(D^{(i)}_{x,x'}(u_{i-1}^{(i-1)}) \) does not depend on \(x, x' \) or \(u_{i-1}^{(i-1)} \), in which case we will use the notation \(D^{(i)} \) instead of \(D^{(i)}_{x,x'}(u_{i-1}^{(i-1)}) \).

From Lemma 24 in the appendix, the following lemma is obtained.

Lemma 17: For \(i \in \{0, \ldots, \ell - 1\} \),
\[
\frac{1}{q^{2\ell - 2 - \ell}} Z_{\min}(W) D^{(i)}_{x,x'} \leq Z_{x,x'}(W_{\ell}^{(i)}) \leq q^{-1-\ell} Z_{\max}(W) D^{(i)}_{x,x'}.
\]

Corollary 18: For \(i \in \{0, \ldots, \ell - 1\} \),
\[
\frac{1}{q^{2\ell - 2 - 1}} Z_{\min}(W) D^{(i)}_{\min} \leq Z_{\min}(W_{\ell}^{(i)}) \leq q^{-1-\ell} Z_{\max}(W) D^{(i)}_{\min}.
\]

From Proposition 15 and Corollary 18 the following theorem is obtained.

Theorem 19: Assume \(P(I_\infty(W) \in \{0, 1\}) = 1 \). It holds
\[
\lim_{n\to\infty} P(Z(W(B_1)\ldots(B_n)) < 2^{-2^{\alpha n}}) = 0
\]
for \(\beta > (1/\ell) \sum_i \log_q D^{(i)}_{\max} \).

When \(\hat{Q} \) is a linear kernel represented by a square matrix \(\hat{G} \), \((1/\ell) \sum_i \log_q D^{(i)}_{\max} \) is called the exponent of \(\hat{G} \).

Example 20: Assume that \(\mathcal{X} \) is a field and that \(\alpha \in \mathcal{X} \) is a primitive element. For a non-zero element \(\gamma \in \mathcal{X} \), let
\[
G_{RS}(q) = \begin{bmatrix}
1 & 1 & \cdots & 1 & 0 \\
\alpha^{q-2} & \alpha^{q-3} & \cdots & \alpha^{q-2} & 1 \\
\alpha^{q-2} & \alpha^{q-3} & \cdots & \alpha^{q-3} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\alpha^{q-2} & \alpha^{q-3} & \cdots & \alpha & 1 \\
1 & 1 & \cdots & 1 & \gamma
\end{bmatrix}
\]

Since \(G_{RS}(q) \) can be regarded as a generalization of Arikan’s original matrix. The relation between binary polar codes and binary Reed-Muller codes also holds for \(q \)-ary polar codes using \(G_{RS}(q) \) and \(q \)-ary Reed-Muller codes. From Theorem 13 the channel polarization phenomenon occurs on \(G_{RS}(q) \) for any \(\gamma \neq 0 \) when \(q \) is a prime. When \(\gamma \) is a primitive element, from Corollary 14 the channel polarization phenomenon occurs on \(G_{RS}(q) \) for any prime power \(q \). We call \(G_{RS}(q) \) the Reed-Solomon kernel since the submatrix which consists of \(i \)-th row to \((q - 1) \)-th row of \(G_{RS}(q) \) is a generator matrix of a generalized Reed-Solomon code, which is a maximum distance separable code i.e., \(D^{(i)} = i + 1 \). Hence, the exponent of \(G_{RS}(q) \) is \(1 \sum \log_q (i + 1) \) where \(\ell = q \). Since
\[
\frac{1}{\ell} \sum_{i=0}^{\ell-1} \log_q (i + 1) \geq \frac{1}{\ell \log_q \ell} \int_1^\ell \log_q x dx = 1 - \frac{\ell - 1}{\ell \log_q \ell}
\]
the exponent of the Reed-Solomon kernel tends to 1 as \(\ell = q \) tends to infinity. When \(q = 2^2 \), the exponent of the Reed-Solomon kernel is \(\log_2 24/(4 \log_2 4) = 0.57312 \). In Arikan’s original work, the exponent of the \(2 \times 2 \) matrix is 0.5 [3]. In [5], Korada, Şaşoglu, and Urbanke showed that by using large kernels, the exponent can be improved, and found a matrix of size 16 whose exponent is about 0.51828. The above-mentioned Reed-Solomon kernel with \(q = 2^2 \) is reasonably small and simple but has a larger exponent than binary linear...
kernels of small size. This demonstrates the usefulness of considering q-ary rather than binary channels. For q-ary DMC where q is not a prime, it can be decomposed to subchannels of input sizes of prime numbers \cite{korada2009polar} by using the method of multilevel coding \cite{imai1993new}. The above example shows that when q is a power of a prime, without the decomposition of q-ary DMC, asymptotically better coding scheme can be constructed by using q-ary polar codes with $G_{RS}(q)$.

V. CONCLUSION

The channel polarization phenomenon on q-ary channels has been considered. We give several sufficient conditions on kernels under which the channel polarization phenomenon occurs. We also show an explicit construction with a q-ary linear kernel $G_{RS}(q)$ for q being a power of a prime. The exponent of $G_{RS}(q)$ is $\log_e(q!)/(q \log_q q)$ which is larger than the exponent of binary matrices of small size even if $q = 4$. Our discussion includes channel polarization on non-linear kernels as well. It is known that non-linear binary codes may have a larger minimum distance than linear binary codes, e.g., the Nordstrom-Robinson codes \cite{1996arXiv0901.0536A}. This implies possibility that there exists a non-linear kernel with a larger exponent than any linear kernel of the same size.

APPENDIX

Lemma 21:

$$\frac{1}{Z(x,x')W(x,x')} \leq Z_{x,x'}(W_{u_0^{(i)}}) \leq q(q-1)^{-i} Z_{x,x'}(W_{u_0^{(i)}})$$

Proof: For the second inequality, one has

$$Z_{x,x'}(W_{u_0^{(i)}}) = \sum_{y_0^{(i)}} \sqrt{W_{u_0^{(i)}}(y_0^{(i)} | x)W_{u_0^{(i)}}(y_0^{(i)} | x')}$$

$$= q^i \sum_{y_0^{(i)}} \sqrt{W(i)(y_0^{(i)}, u_0^{(i)} | x)W(i)(y_0^{(i)}, u_0^{(i)} | x')}$$

$$= \frac{1}{q(q-1)^{-i}} \sum_{y_0^{(i)}} \sum_{v_0^{(i)}} W(y_0^{(i)} | u_0^{(i)}, x, v_0^{(i)})W(y_0^{(i)} | u_0^{(i)}, x', v_0^{(i)})$$

$$\leq \frac{1}{q(q-1)^{-i}} \sum_{y_0^{(i)}} \sum_{v_0^{(i)}} W(y_0^{(i)} | u_0^{(i)}, x, v_0^{(i)})W(y_0^{(i)} | u_0^{(i)}, x', v_0^{(i)})$$

The first inequality is obtained as follows.

$$Z_{x,x'}(W_{u_0^{(i)}}) = \sum_{y_0^{(i)}} \sqrt{W(i)(y_0^{(i)} | x)W(i)(y_0^{(i)} | x')}$$

$$= q^i \sum_{y_0^{(i)}} \sqrt{W(i)(y_0^{(i)}, u_0^{(i)} | x)W(i)(y_0^{(i)}, u_0^{(i)} | x')}$$

$$= \sum_{y_0^{(i)}} \left(\sum_{v_0^{(i)}} \left(\frac{1}{q(q-1)^{-i}} \times W(y_0^{(i)} | u_0^{(i)}, u_0^{(i)} | x)W(y_0^{(i)} | u_0^{(i)}, u_0^{(i)} | x') \right) \right)$$

$$\geq \frac{1}{q^2(q-1)^{-i+1}} Z_{x,x'}(W_{u_0^{(i)}}).$$

ACKNOWLEDGMENT

TT acknowledges support of the Grant-in-Aid for Scientific Research on Priority Areas (No. 18079010), MEXT, Japan.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.
[2] S. Korada and R. Urbanke, “Polar codes are optimal for lossy source coding,” 2009. [Online]. Available: http://arxiv.org/abs/0903.0307
[3] E. Arıkan and E. Telatar, “On the rate of channel polarization,” in Proc. 2009 IEEE International Symposium on Information Theory, June 28-July 3 2009, pp. 1493–1495.
[4] T. Tanaka and R. Mori, “Refined rate of channel polarization,” 2010. [Online]. Available: http://arxiv.org/abs/1001.2067
[5] S. Korada, E. Şaşoğlu, and R. Urbanke, “Polar codes: characterization of exponent, bounds, and constructions,” 2009. [Online]. Available: http://arxiv.org/abs/0901.0556
[6] E. Şaşoğlu, E. Telatar, and E. Arıkan, “Polarization for arbitrary discrete memoryless channels,” 2009. [Online]. Available: http://arxiv.org/abs/0908.0302
[7] E. Şaşoğlu, E. Telatar, and E. Arıkan, “Polarization for arbitrary discrete memoryless channels,” in Proc. 2009 IEEE Information Theory Workshop, Taormina, Italy, 11–16 Oct. 2009, pp. 144–148.
[8] H. Imai and S. Hiraoka, “A new multilevel coding method using error-correcting codes,” Information Theory, IEEE Transactions on, vol. 23, no. 3, pp. 371–377, may 1977.
[9] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes. North-Holland Amsterdam, 1977.