Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines

Inge Seim,*†‡ Penny L. Jeffery,*†‡ Patrick B. Thomas,*†‡ Colleen C. Nelson,† and Lisa K. Chopin,*†‡
*Comparative and Endocrine Biology Laboratory, †Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, and ‡Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, Brisbane, Queensland 4102, Australia

ORCID IDs: 0000-0001-8594-7217 (I.S.); 0000-0002-3649-7923 (P.B.T.); 0000-0001-6410-4843 (C.C.N.)

ABSTRACT The bone metastasis-derived PC3 and the lymph node metastasis-derived LNCaP prostate cancer cell lines are widely studied, having been described in thousands of publications over the last four decades. Here, we report short-read whole-genome sequencing (WGS) and de novo assembly of PC3 (ATCC CRL-1435) and LNCaP (clone FGC; ATCC CRL-1740) at ~70 × coverage. A known homozygous mutation in TP53 and homozygous loss of PTEN were robustly identified in the PC3 cell line, whereas the LNCaP cell line exhibited a larger number of putative inactivating somatic point and indel mutations (and in particular a loss of stop codon events). This study also provides preliminary evidence that loss of one or both copies of the tumor suppressor Capicua (CIC) contributes to primary tumor relapse and metastatic progression, potentially offering a treatment target for castration-resistant prostate cancer (CRPC). Our work provides a resource for genetic, genomic, and biological studies employing two commonly-used prostate cancer cell lines.

KEYWORDS prostate cancer human cell line WGS sequencing genomics Genome Report

Cultured cancer cell lines, such as the human-derived PC3 and LNCaP, are critical for prostate cancer research. The androgen-dependent LNCaP cell line (clone FGC) is derived from a lymph node metastasis (Horoszewicz 1980; Horoszewicz et al. 1983), and the androgen-independent PC3 cell line is derived from a bone metastasis (Kaighn et al. 1979). Since their development, almost 40 yr ago, they have emerged as major tools in prostate cancer research (with PubMed searches 15.01.17 for “PC3 AND prostate” and “LNCaP AND prostate” returning 3266 and 7080 hits, respectively). While these cell lines have been interrogated using array- and sequencing-based technologies (Liu et al. 2008; Barretina et al. 2012; Spans et al. 2012; Klijn et al. 2015), whole-genome sequences for the PC3 and LNCaP cell lines have not been published. Albeit currently relatively costly, WGS offers better coverage than exome sequencing, and improved detection of single nucleotide and small indel mutations and structural variants such as copy number alterations (Meynert et al. 2014; Belkadi et al. 2015; Warr et al. 2015).

MATERIALS AND METHODS

Cell lines
PC3 (ATCC CRL-1435) and LNCaP clone FGC (ATCC CRL-1740; hereafter termed LNCaP) prostate cancer cell lines were obtained from the American Type Culture Collection (ATCC, Rockville, MD), and maintained in Roswell Park Memorial Institute RPMI 1640 medium (Invitrogen, Carlsbad, CA) with 10% Fetal Calf Serum (Thermo Fisher Scientific, Waltham, MA), supplemented with 100 U/ml penicillin G and 100 ng/ml streptomycin (Invitrogen). All cell lines were passaged at 2–3-d intervals on reaching 70% confluence using TrypLE Select (Invitrogen). Cell morphology and viability were monitored by microscopic observation and regular Mycoplasma testing was performed (Universal Mycoplasma Detection Kit; ATCC).

Sequencing
DNA was extracted using a QIAamp DNA mini kit (QIAGEN, Hilden, Germany) from low passage (passage four) PC3 and LNCaP cell lines, cultivated from frozen stocks obtained directly from the ATCC. Sequencing was performed by Macrogen (Seoul, South Korea). Briefly,
library preparation was performed using a TruSeq Nano DNA kit (Illumina, San Diego, CA) with a target insert size of 350 bp. Paired-end libraries (150 bp) were sequenced using a HiSeqX sequencer (Illumina). Base calls were converted into FASTQ files using bcl2fastq v2.15.0 and provided to our laboratory.

Normal prostate data

Raw data from normal human prostate samples were obtained from the National Institutes of Health’s Cancer Genome Atlas (The Cancer Genome Atlas Research Network 2015) (NCBI dbGaP: phs000178.v9.p8). These included a WGS sample (PCAWG.e22e63de-c436-43c0-a595-022622c1fe06) and three RNA-seq samples (120215-UNC10-SN254-0327-AC0CMACXX-ACTTTGA-L005, 120502-UNC14-SN744-0235-BD0YUTACXX-ACTTTGA-L005, and 130221-UNC9-SN296-0338-BC1PYCACXX-TGACCA-L008). The WGS file (101 bp paired-end library; 950 M reads) was provided as an unaligned BAM (uBAM) file and converted to FASTQ files using bamUtil v1.0.14 genome.sph.umich.edu/wiki/BamUtil.

Data processing

Raw reads (FASTQ) were trimmed using scythe v0.994 github.com/vsbuffalo/scythe, with default settings, to remove low quality bases and read-pairs, and contaminating adapter sequences.

Mapping of genome reads to reference genome: FASTQ files were mapped to human reference genome GRCh38 build 82 (the reference genome in all subsequent analyses) using BWA-MEM (Li 2013), available in v0.7.12-r1039, and a sorted BAM file was generated by SAMtools v1.3.1 (Li et al. 2009). Genome coverage was estimated using QualiMap v2.2.1 (García-Alcalde et al. 2012; Okonechnikov et al. 2016).

de novo genome assembly: PC3 and LNCaP genomes were assembled de novo using SGA v0.10.15 (Simpson and Durbin 2012) (available at github.com/itsa/sga), as outlined in the user manual, except that assembled contigs were indexed using BWA-MEM (Li 2013) instead of the bundled Python script sga-align (calls BWA sample: bwa mem -t `CPU final-contigs.fa SREAD1 SREAD2 | samtools view -F2304 -b -o reads.bam -`). Resulting scaffolds were gap filled using “sga gapfill” and error-corrected FASTQ reads. The genome assemblies (gapped scaffolds) were evaluated using QUAST v4.3 (Gurevich et al. 2013) and the human reference genome. Genes of interest were interrogated in the assembled genomes using BLAST, via a local instance of Sequence-Server v1.0.9 (Priyam et al. 2015), and GMAP v2016-11-07 (a genomic mapping and alignment program for mRNA and EST sequences) (Wu and Watanabe 2005).

Single nucleotide variant (SNV) and short indel calling: Samtools v1.3.1 mpileup and bcftools (Li et al. 2009) were used to interrogate indexed BAM files of reads aligned to the reference genome and generate a VCF (Variant Call Format) file of SNVs and short indel variants. Variants (likely to be common germline variants) present in HapMap (Gibbs et al. 2003), 1000 genomes phase 3 (2504 human genomes) (Sudmant et al. 2015), and the National Heart Lung and Blood Institutes Exome Sequencing Project (Tennessen et al. 2012) (bundled variant data file available at https://gnomad.broadinstitute.org) were excluded.

Next, variant files (VCF) were filtered using SnpSift (Cingolani et al. 2012a) with the following parameters: QUAL ≥ 200 && DP ≥ 30; where QUAL denotes minimum variance confidence and DP total depth threshold. Filtered variants were annotated using SnpEff v4.3g (Cingolani et al. 2012b).

Copy number variation (CNV) calling: To screen PC3 and LNCaP genomes for CNV, we employed the R package “cn.mops” (Copy Number estimation by a Mixture Of PoissonS) (Klambauer et al. 2012). Briefly, paired-end reads from PC3 and LNCaP were aligned to the reference genome and compared with normal prostate reads to obtain genome-wide read-depth profiles. Custom R scripts were used to parse the output.

Gene expression potential analysis: We interrogated publicly available transcriptome data from PC3 (Wang et al. 2015) (NCBI GEO: GSE65112) and LNCaP cells (Metzger et al. 2016) (NCBI GEO: GSE64529). In addition, transcriptome data from normal prostate samples were obtained from TCGA (see above). Briefly, paired-end reads were trimmed using scythe, and aligned to human reference genome GRCh38 build 82 using the spliced-read mapper TopHat (v2.0.9) (Kim et al. 2013) and reference gene annotations to guide the alignment. Raw gene counts were computed from the generated BAM files by FeatureCounts v1.4.5-p1 (Liao et al. 2014), counting exons features of the gene annotation file (gtf) in order to include noncoding RNA genes. FeatureCounts output files were analyzed using the R programming language (v.3.2.2) (R Core Team 2013). Raw counts were normalized by Trimmed Mean of M-values (TMM) correction (Robinson and Oshlack 2010; Robinson et al. 2010). The expression of genes in normal prostate, LNCaP, and PC3 was assessed using the Universal expression Code (UPC) method (Piccolo et al. 2013), available in the R package “SCAN.UPC”. This method estimates the active/inactive state of genes in a sample, where a UPC value > 0.5 indicates that a gene is actively transcribed.

cBioPortal analysis: Data on copy number alterations in prostate cancer tumor tissue were obtained using the cBioPortal tool (www.cbioportal.org) (Cerami et al. 2012; Gao et al. 2013) with the following parameters: “GENE: HOMDEL HETLOSS,” where “GENE” denotes a gene symbol. Clinical information was also downloaded and the data further analyzed using custom R scripts.

The following cBioPortal prostate cancer data sets were interrogated: ‘NEPC (Trento/Cornell/Broad 2016)’ (34 primary and 73 metastatic tumors) (Beltran et al. 2016), ‘Prostate (Broad/Cornell 2013)’ (55 primary tumors and 1 metastatic tumor) (Baca et al. 2013), ‘Prostate (FFHRC, 2016)’ (19 primary and 30 metastatic tumors) (Kumar et al. 2016), ‘Prostate (MICH), (11 primary and 47 metastatic tumors) (Grasso et al. 2012), ‘Prostate (MSKCC 2010)’ (157 primary and 37 metastatic tumors) (Taylor et al. 2010), ‘Prostate (MSKCC 2014)’ (101 primary and 3 metastatic tumors), (Hieronymus et al. 2014), ‘Prostate (SU2C)’ (150 metastatic tumors) (Robinson et al. 2015), and ‘Prostate (TCGA)’ (492 primary and 1 metastatic tumors) (The Cancer Genome Atlas Research Network 2015).

Kaplan–Meier survival analysis: Kaplan–Meier survival analysis was performed to compare disease-free survival (DFS) in patient groups stratified by CNVs. DFS is defined as the time to either recurrence or relapse, second cancer, or death (Gill and Sargent 2006). In the context of prostate cancer, DFS is a suitable surrogate for overall survival (OS), given that metastatic disease is not curable and recurrence of disease would be expected to contribute significantly to mortality.

The Prostate (MSKCC 2010), ‘Prostate (MSKCC 2014),’ and ‘Prostate (TCGA)’ cBioPortal data sets were interrogated. Kaplan–Meier survival analysis (Rich et al. 2010) was performed using the R package “survival” (Therneau 2013), fitting survival curves (survfit) and
computing log-rank P-values using the survdiff function, with $p = 0$ (equivalent to the method employed by UCSC Xena; see goo.gl/4knf62). Survival curves were plotted where survival was significantly different between two groups (log-rank $P \leq 0.05$). Groups with <10 samples with recorded events were considered unreliable (Mallett et al. 2010).

Gene ontology term enrichment analysis

Gene enrichment analyses were performed using DAVID (Database for Annotation, Visualization and Integrated Discovery) (Huang et al. 2009a). All gene groups are potentially informative, despite lower rankings, and serve to guide biological interpretation (Huang et al. 2009b).

Data availability

The genome reads reported in this paper have been deposited in the BioProject database as PRJNA361315 (PC3) and PRJNA361316 (LNCaP). Code used to generate the data and CNV analysis output files (tabulated text files) are available at github.com/sciseim/PCaWGS. Genome assemblies (FASTA format) (Seim 2017a,b), and filtered and annotated single-nucleotide and indel variation data files (VCF format) (Seim 2017c), have been deposited at Zenodo. A BLAST server is available at http://ghrelinlab.org.

RESULTS AND DISCUSSION

WGS

PC3 and LNCaP prostate cancer cells were obtained directly from ATCC, cultured for four passages, and 150 bp paired-end reads obtained using an Illumina HiSeqX sequencer. Following read trimming, 1.53 billion reads from PC3 were retained, of which 99.9% could be aligned to the Ensembl GRCh38.82 human reference genome at $\sim 71 \times$ mean coverage (Figure 1A). Similarly, we obtained 1.49 billion trimmed reads from LNCaP with a 99.9% alignment rate and mean coverage of $\sim 69 \times$ (Figure 1B).

We also performed *de novo* genome assembly to allow characterization of whole-gene loci by BLAST and other mappers. The final, gap-filled PC3 genome assembly consisted of 1.66 M scaffolds (largest scaffold 692.4 kb) with an N50 of 23.3 kb and an NG50 (number of sequences with lengths equal to or larger than N50) of 22.4 kb. The LNCaP assembly consisted of 1.70 M scaffolds (largest scaffold 536.0 kb) at an N50 value of 44.4 kb and NG50 of 45.0 kb.

Single-nucleotide and indel variation

After excluding common germline sequence variants (SNVs and short indels), filtering by SnpSift (Cingolani et al. 2012a), and annotation by SnpEff (Cingolani et al. 2012b), we identified in LNCaP 0.94 M and in PC3 0.56 M sequence variants (SNVs and short indels) that were private or
unique to the particular cell line (Table 1). As expected, the majority of variants were found in noncoding regions.

In particular, we noted that LNCaP had a larger number of stop gained events, which are changes predicted to confer nonsense mutations and result in nonfunctional proteins or proteins with reduced function (Table 1). In LNCaP, SNVs and indel variants contributed 378 stop gained events in 209 genes. We next identified a reduced function (Table 1). In LNCaP, SNVs and indel variants were found in noncoding regions.

There was a significant enrichment for HLA class II antigen presenting genes associated with the immune response (Table 3; Fisher’s exact P ~ 0.05). It has recently been shown that the PC3, LNCaP, and DuPro (but not the DU145) prostate cancer cell lines and prostate cancer tissues express HLA class II molecules (Younger et al. 2008; Doonan and Haque 2015). However, we could not identify any prostate cancer patients with stop lost events in these genes using the cBioPortal tool (Cerami et al. 2012; Gao et al. 2013) (data not shown). While evasion of the antitumour immune response is an emerging research area (Drake 2010; Corrales et al. 2016), caution should be exercised when considering the use of PC3 cells in these studies. Sequence variant analysis and interrogation of the PC3 de novo genome assembly by BLAST and GMAP confirmed that the tumor suppressor p53 (TP53) is inactivated by a single frameshift event (p.A138fs; indel; c.4955A in NCBI RefSeq NM_000546) (Carroll et al. 1993) (Figure 2A).

PC3 shared 0.26 M sequence variants (166,912 SNVs and 89,919 indels) with LNCaP, and 21 of these constituted stop lost events (Table 1). Overrepresented biological processes in PC3 and LNCaP included “O-glycan processing” (the mucins MUC3A and MUC6) and “extracellular matrix disassembly” (the trypsinogens PRSS1 and PRSS2) (Table 2). Interestingly, while we have identified MUC3A stop gained events in PC3 and LNCaP, cell lines generated from Caucasian patients, a recent study suggests that MUC3A protein-changing variants are rare in Caucasians and predominant in African Americans, the subpopulation with the highest prevalence of prostate cancer, where MUC3A changes are observed in 88% of patients (Lindquist et al. 2016).

Taken together, these data indicate that protein-coding genes in LNCaP are perturbed extensively by point and indel mutations. Even

Table 1 SNV and indel variant-calling statistics of the prostate cancer cell lines PC3 and LNCaP

Number and percentage of variants by type	PC3 Private	LNCaP Private	Shared
SNVs	318,380	404,282	166,912
Indels	618,149	156,182	89,919
Number of events by type			
3′-UTR	15,572	10,500	3938
5′-UTR premature start codon	211	289	49
5′-UTR	2613	1868	692
Conservative_inframe_deletion	39	22	7
Conservative_inframe_insertion	468	119	72
Disruptive_inframe_deletion	62	19	7
Disruptive_inframe_insertion	172	64	44
Downstream_gene	107,761	56,728	29,770
Frameshift	276	167	44
Intergenic_region	563,630	326,261	175,014
Intron	916,272	576,268	191,182
Missense	3520	5717	1667
Non_coding_transcript_exon	5848	3846	2091
Non_coding_transcript	18	10	1
Protein_protein_contact	120	17	5
Sequence_feature	7978	5930	1457
Splice_acceptor	80	131	21
Splice donor	56	138	17
Splice_region	1313	1174	437
Start_lost	16	14	3
Stop_gained	58	378	29
Stop_lost	25	4	9
Structural_interaction	1160	808	1
Synonymous	2402	2727	81
Upstream_gene	107,281	57,447	1301

Common germline variants were excluded and variants were further filtered using SnpSift, with a total depth threshold at 30 (DP ≥ 30) and a minimum variant confidence of 200 (QUAL ≥ 200), and annotated by SnpEff. SNV, single nucleotide variant; UTR, untranslated region.
Table 2 Significantly overrepresented biological processes associated with sequence variants contributing stop_gained events in the PC3 and LNCaP prostate cancer cell lines

GO Term	Genes	Fisher’s Exact P
PC3 private sequence variants		
Detection of bacterium	HLA-DRB1, HLA-A, HLA-DRB5, HLA-B	5.1E−10
Antigen processing and presentation	HLA-DRB1, HLA-A, HLA-DRB5, HLA-B	2.4E−07
Interferon-γ-mediated signaling pathway	HLA-DRB1, HLA-A, HLA-DRB5, HLA-B	6.7E−07
Immune response	HLA-DRB1, HLA-A, HLA-DRB5, HLA-B, IL1A	4.7E−05
Antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independent	HLA-A, HLA-B	2.9E−06
Regulation of interleukin-10 secretion	HLA-DRB1, HLA-DRB5	2.9E−06
Regulation of interleukin-4 production	HLA-DRB1, HLA-DRB5	5.8E−06
Protection from natural killer cell mediated cytotoxicity	HLA-A, HLA-B	9.6E−06
Immunoglobulin production involved in immunoglobulin mediated immune response	HLA-DRB1, HLA-DRB5	9.6E−06
Humoral immune response mediated by circulating immunoglobulin	HLA-DRB1, HLA-DRB5	2E−05
Antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent T-helper 1-type immune response	HLA-DRB1, HLA-DRB5	3.5E−05
Positive regulation of T cell mediated cytotoxicity	HLA-A, HLA-B	7.5E−05
Inflammatory response to antigenic stimulus	HLA-DRB1, HLA-DRB5	0.0001
Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II	HLA-DRB1, HLA-DRB5	0.00013
Negative regulation of interferon-γ production	HLA-DRB1, HLA-DRB5	0.00036
Positive regulation of insulin secretion involved in cellular response to glucose stimulus	HLA-DRB1, HLA-DRB5	0.00039
Antigen processing and presentation of peptide antigen via MHC class I	HLA-A, HLA-B	0.00041
Negative regulation of T cell proliferation	HLA-DRB1, HLA-DRB5	0.00063
Protein tetramerization	HLA-DRB1, HLA-DRB5	0.00074
Antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent Type I interferon signaling pathway	HLA-A, HLA-B	0.0019
T cell costimulation	HLA-DRB1, HLA-DRB5	0.0028
Antigen processing and presentation of exogenous peptide antigen via MHC class II	HLA-DRB1, HLA-DRB5	0.0038
Protein deubiquitination	USP17L18, USP17L11	0.0044
LNCaP private sequence variants		
Bundle of His cell to Purkinje myocyte communication	GPR155, GNAS, CBR3, CHL1	0.00012
Response to nitrosative stress	PRKCG, CD3E, NLRP3	0.00068
Cognition	FPGT-TNNI3K, TNNI3K	0.0008
Interleukin-1 β production	MEN1, NTRK3, PAX6, PRKDC	0.0011
Positive regulation of interleukin-4 production	LAMA2, PRKCG, ROBO1, PAX6, SPTBN1, CHL1	0.0012
Humoral immune response mediated by circulating immunoglobulin Type B pancreatic cell differentiation	GCLC, DUSP6	0.0023
Negative regulation of protein phosphorylation	NTRK3, AP1B1, FREM2, ROBO1, PRKDC, TBC1D32	0.004
Axon guidance	LRP3, CASP1	0.0076
Heart development	LAMA2, FREM2, ROBO1, STAB1, ITGB4, VTN, CERCAM, COL16A1, CHL1, AOC3	0.014
Receptor-mediated endocytosis	EXO1, HLA-DQB1	0.016
Cell adhesion	MEN1, PAX6	0.027
Shared sequence variants (PC3 and LNCaP)		
Sensory perception of taste	TAS2R43, TAS2R31	0.00048
Detection of chemical stimulus involved in sensory perception of bitter taste	TAS2R43, TAS2R31	0.00092
O-glycan processing	MUC3A, MUC6	0.0021
Digestion	PRSS2, PRSS1	0.0023
Extracellular matrix disassembly	PRSS2, PRSS1	0.0033

Stop_gained events are denoted changes predicted to confer nonsense mutations and result in nonfunctional proteins or proteins with reduced function. Gene enrichment analysis was performed using DAVID (Database for Annotation, Visualization and Integrated Discovery). MHC, major histocompatibility complex; ER, endoplasmic reticulum; TAP, transporter associated with antigen processing.
Table 3 Putative deleted genes and their expression in the LNCaP and PC3 prostate cancer cell lines

Symbol	Description	CNV Region	Gene Start	Gene End	NP	LNCaP UPC	PC3 UPC
LNCaP							
PWRN1	Prader-Willi region nonprotein coding RNA 1	15:24430001–24520000	24493137	24652130	0.0	0.0	0.0
ATP6V0A1	ATPase H+ transporting V0 subunit a1	17:42110001–42520000	42458844	42522611	1	1	0
CDH18	Cadherin 18	5:19850001–19960000	19472951	20575873	0	0	0
CIC	Capicua transcriptional repressor	19:42280001–42320000	42266857	42295797	1	1	0
CTNNNA1	Catenin α 1	5:13877001–13898000	13861096	138935034	1	1	0
DOX3Y	DEAD-box helicase 3, Y-linked	Y:11530001–1650000	12904108	12920478	1	0	0
DHX58	DExH-box helicase 58	Y:11530001–1450000	42101404	4212733	1	0	0
DYDC1	DYP30 domain containing 1	10:80250001–80560000	80336105	80356755	0	0	0
DYDC2	DYP30 domain containing 2	10:80250001–80560000	80344745	80368073	0	0	0
FAM213A	Family with sequence similarity 213 member A	10:80250001–80560000	80407829	80437115	1	1	0
GDHC	GH3 domain containing	17:42110001–42520000	42188799	42194532	1	1	0
HCRT	Hypocretin neuropeptide precursor	17:42110001–42520000	42184060	42185452	1	0	0
HSPB9	Heat shock protein family B (small) member 9	17:42110001–42520000	42121431	42123352	0	0	0
KAT2A	Lysine acetyltransferase 2A	17:42110001–42520000	42113108	42121358	1	1	0
KCNH4	Potassium voltage-gated channel Subfamily H member 4	17:42110001–42520000	42156891	42181278	0	0	0
LIPJ	Lipase family member J	10:87910001–88750000	8856753	88604976	0	0	0
LRRTM2	Leucine rich repeat transmembrane neuronal 2	5:13877001–13898000	138868923	138875368	0	0	0
MAT1A	Methionine adenosyltransferase 1A	10:80250001–80560000	80271820	80289484	0	0	0
MIR548AT	MicroRNA 548at	Y:11530001–1450000	1452638	14854650	1	0.2	0
NLGN4Y	Neureilin 4, Y-linked	Y:11530001–1650000	1452638	14854650	1	0	0
PAFAH1B3	Platelet activating factor acetylhydrolase 1b catalytic subunit 3	19:42280001–42320000	42297033	42303546	1	0.7	0
PRR19	Proline rich 19	19:42280001–42320000	42302098	42310821	0	0	0
PTEN	Phosphatase and tensin homolog	10:87910001–88750000	87863113	87917930	1	1	0
PTRF	Polymerase I and transcript release factor	17:42110001–42520000	42402452	42423517	1	0	0
RAB5C	RAB5C, member RAS oncogene family	17:42110001–42520000	42124976	42155044	1	1	0
RNLS	Renalase, FAD dependent amine oxidase	10:87910001–88750000	88273684	88584330	0.6	0	0
SH2D4B	SH2 domain containing 4B	10:80250001–80560000	80537902	80546560	0	0	0
SL1	SL1 nucleotide exchange factor	5:13877001–13898000	13896720	139293557	1	1	0
SRRP1	Signal regulatory protein β 1	20:1580001–1620000	1620061	1620061	0	0	0
STAT3	Signal transducer and activator of transcription 3	17:42110001–42520000	42313324	42388568	1	1	0
STAT5A	Signal transducer and activator of transcription 5A	17:42110001–42520000	42275474	42318914	1	0	0
STAT5B	Signal transducer and activator of transcription 5B	17:42110001–42520000	42199168	42276707	1	1	0
MEM145	Transmembrane protein 145	19:42280001–42320000	42313325	42352062	0	0	0
TMSB4Y	Thymosin β 4, Y-linked	Y:11530001–1650000	13703567	13706024	0	0	0
TSPAN14	Tetraspans 14	10:80250001–80560000	80454166	80533123	1	1	0
TSFY1	Testis-specific protein, Y-linked 1	Y:9460001–1020000	9466955	9490081	0	0	0
TTTY13	Testis-specific transcript, Y-linked 13 (nonprotein coding)	Y:21420001–21630000	21583600	21594666	0	0	0
TTTY15	Testis-specific transcript, Y-linked 15 (nonprotein coding)	Y:11530001–1650000	12662334	12692323	1	1	0
USP9Y	Ubiquitin specific peptidase 9, Y-linked	Y:11530001–1650000	12701231	12860839	1	1	0
UTY	Ubiquitously transcribed tetratricopeptide repeat containing, Y-linked	Y:11530001–1650000	13248379	13480673	1	1	0

CNV regions are listed for putative homozygous deletion events (CNV = 0). UPC refers to Universal eXpression Code score, where UPC value > 0.5 indicates that a gene is actively transcribed. CNV, copy number variation; NP, normal prostate tissue; RAB5C, Ras-related protein Rab-5C; FAD, flavin adenine dinucleotide.
after filtering steps, our LNCaP data (at passage four from the ATCC stock) reveal a clear difference in the number of particular variant events compared to PC3. However, previous exome sequencing work suggests that the genome of the parental LNCaP strain sequenced here (clone FGC) and its derived strains are inherently unstable (Spans et al. 2012, 2014), and this could give rise to the apparently high mutation rate in these cell lines. In general, the bulk of variation in these cell lines is chromosomal rearrangement, including gene deletions and duplications.

Putative gene loss

Most human cancers have CNVs, which impact upon gene dosage through loss or gain of whole chromosomes or chromosome segments (Hanahan and Weinberg 2011). Previous studies have described CNVs in PC3 and LNCaP using targeted techniques, such as exome sequencing. However, WGS, together with continuously updated gene annotations, offers improved detection of copy number changes (Meynert et al. 2014; Belkadi et al. 2015; Watt et al. 2015). CNVs were identified using the R package cn.mops (Klambauer et al. 2012). In particular, we wished to identify genes that are lost in PC3 and LNCaP. The absence of this information can misinform even the most well-designed in vitro or cell line xenograft experiment (e.g., where a gene in an important pathway is lost). In the context of CNV analysis, we were interested in identifying putative homozygous deletions (CNV = 0; CNV0 events), i.e., genes that are inactivated by partial or complete gene deletion. To inform this analysis, we also considered the transcriptional potential of each gene by analyzing publicly available transcriptome (RNA-seq) data from normal prostate, LNCaP, and PC3. Genes with a UPV value of ~0.5 were considered inactive (Piccolo et al. 2013).

Although a large number of SNVs and indel variations were observed in LNCaP, only a single homozygous deletion event (CNV0) was observed in this cell line. In the complex Prader-Willi gene locus there was a putative loss of PWSRN1, a gene associated with epigenetic reprogramming during spermatogenesis (Wawrzik et al. 2009) (Table 3).

In contrast to LNCaP, 39 CNV0 events were found in PC3 (Table 3). CNV of the Y chromosome was evident from the PC3 sequence coverage (Figure 1A). In agreement with previous studies employing cDNA microarrays (Clark et al. 2003) and multicolor fluorescence in situ hybridization (Aurich-Costa et al. 2001), our CNV analysis revealed that large regions of the Y chromosome (including eight genes) were deleted in PC3 (Table 3). Several genes on chromosome 5 (CDH18, CTNNA1, LRRM2, and SIL1), chromosome 10 (DYDC1, DYDC2, FAM213A, LIPJ, MAT2A, PTHR1, RNLS, SH2D4B, and TSPAN14), and chromosome 17 (ATP6V0A1, DHX58, GDHC, HCR, HSPB9, KAT2A, KCHN4, MIR548AT, PTER, RAF5B, PTEN, RH3, ST3A3, and ST3B3) have also previously been reported to be deleted in PC3 (Liu et al. 2008; Krohn et al. 2012; The Cancer Genome Atlas Research Network 2015; Ibeawuchi et al. 2015).

Clinical observations and experimental studies indicate that the growth hormone receptor (GHR) mediates the development and progression of cancer (Brooks and Waters 2010), and GHR expression is elevated in prostate cancer cell lines and tissues (Chopin et al. 2013). GHR hyperactivation by autocrine GHR actions are likely to be associated with alternative signaling pathways (Barclay et al. 2010) in PC3. Loss of STAT3 in PC3 has been firmly established experimentally (Yuan et al. 2005; Pencik et al. 2015), and there is evidence to suggest that STAT3 suppresses prostate cancer metastasis and confers a good prognosis (Pencik et al. 2015). We identified a homozygous deletion event spanning four genes (CIC, PAFH1B3, PRR19, and TMEM145) on chromosome 19 in PC3 (Figure 3A). In LNCaP, a genome coverage plot of reads flanking this region revealed a putative heterozygous event (CNV1; loss of a single copy of the same genes) (Figure 3B). Of these four genes, the mammalian homolog of Drosophila CIC (Jiménez et al. 2012) is particularly interesting. CICp6 is a transcriptional repressor of cancer metastasis in a number of cancers (Choi et al. 2015; Okimoto et al. 2015), and there is evidence to suggest that CICp6 suppresses prostate cancer metastasis and confers a good prognosis (Pencik et al. 2015).
of CIC in a subpopulation of H1975 human nonsmall cell lung cancer cell line xenografts rendered them highly metastatic (Okimoto et al. 2017). We interrogated 75 cBioPortal data sets from diverse tumors, confirming that one or two copies of CIC are lost in any cancer type (see Supplemental Material, Figure S1).

CIC is abundantly expressed in normal prostate tissue, whereas its expression is reduced in primary tumors and ablated in metastatic prostate cancer (Choi et al. 2015). To characterize the potential clinical significance of CIC deletions in prostate cancer, we further examined 1311 tumors from eight data sets using the cBioPortal tool. While homozygous deletion events of the four genes deleted in PC3 cells were rare, a substantial fraction of prostate tumors harbored homozygous deletions of these genes (Figure 3C). Approximately 6% of primary prostate tumors had heterozygous deletions and 2% had homozygous deletions of CIC, whereas 21% of metastatic tumors had homozygous CIC deletions and 2% heterozygous deletions (Figure 3D).

Prostate cancer relapse or recurrence frequently results in incurable metastasis, ultimately causing patient death (Wu et al. 2014; Weiner et al. 2016). As CIC deletions were more frequent in metastatic tumors, we reasoned that deletion of one or both copies of CIC is a means by which primary tumors in patients that eventually develop metastatic lesions achieve increased fitness and survival. The association between CIC homozygous deletion events and DFS in primary tumors could not be reliably assessed due to the low number (n = 2) of patients with recorded relapses; however, patients with primary prostate tumors with one lost copy of CIC (heterozygous deletion events) had a significantly worse outcome (P = 0.018, log-rank test) (Figure 3E). Similarly, OS is significantly worse in advanced-stage gastric cancer patients with low CIC expression (Okimoto et al. 2017).

A recent study comparing PC3 and LNCaP reported that the long form of the CIC protein (CIC-L) was not expressed and that the short form (CIC-S) was expressed at extremely low levels in PC3 cells (Choi et al. 2015).
et al. 2015). Our CNV analysis, employing WGS reads, interrogation of the de novo PC3 assembly using BLAST and GMAP, and analysis of RNA-seq reads mapped to the reference genome, failed to detect an intact CIC gene in PC3. We sequenced low-passage PC3 cells sourced directly from ATCC and speculate that the previous study (Choi et al. 2015) detected low-level gene expression by PC3 subpopulations with intact CIC resulting from genetic drift during prolonged subculture (passaging; see Festuccia et al. (1999); Li et al. (2008)).

Taken together, these data suggest that although a rare event in prostate tumors, homozygous deletion of CIC is not an idiosyncrasy of the PC3 cell line. Moreover, loss of a single gene copy of CIC is relatively common in prostate cancer. We speculate that disruption of one or both copies of CIC renders prostate cancer patients susceptible to an adverse disease outcome. A previous study employing forced overexpression of CIC in PC3 and LNCaP demonstrated that CIC is repressed by a trio of microRNAs (Choi et al. 2015). Altered MAPK signaling through the ERK pathway also suppresses endogenous CIC in lung cancer (Okimoto et al. 2017). Collectively, our data raise the possibility that the combination of microRNA repression, altered ERK signaling, and somatic events in the CIC locus promote tumorigenesis and confer a poor disease outcome.

Relevance of findings

In summary, we provide genome sequence data for PC3 and LNCaP, prostate cancer cell lines commonly employed in cancer research.

These data contribute to a catalog of cancer genomes, adding to recent whole-transcriptome sequencing, pharmacological profiling, and whole-exome sequencing efforts (Barretina et al. 2012; Klijn et al. 2015; Iorio et al. 2016) aimed at enhancing our understanding of human disease. For example, the phenomenon of androgen independence in prostate cancer has intrigued scientists for decades. Of the two cell lines interrogated in our study, PC3 is androgen-independent, whereas the LNCaP strain sequenced (LNCaP-FGC) is androgen-dependent. Recent work, including an investigation of 150 patients with metastatic CRPC (Robinson et al. 2015), suggests that anomalies (mutations, amplifications, and deletions) in a number of genes in the androgen receptor pathway play a role in the transition to androgen independence. We speculate that future work—employing WGS, RNA-sequencing, epigenetic profiling, and similar high-throughput methods—on a large number of cell lines and clinical samples is likely to identify genes critical for androgen independence. For instance, an androgen-independent strain of LNCaP (LNCaP-LNO) has been developed from cultures of an early passage of the LNCaP cells sequenced in our study (LNCaP-FGC) (van Steenbrugge et al. 2005). LNCaP-LNO and LNCaP-FGC were compared at the gene expression level (Oosterhoff et al. 2005); hinting that specific gene mutations or copy number events render LNCaP-LNO cells androgen-insensitive.

Raw reads (see Data availability in Materials and Methods) and sequence (SNV and indel) and CNV data are made available. We have generated de novo genome assemblies of both cell lines, allowing genes of interest to be investigated further, enabling, for example, the validation of gene loci associated with novel transcripts obtained from Trinity de novo transcriptome analysis (Grabherr et al. 2011; Haas et al. 2013). In addition, the genomes can be interrogated using a BLAST server, available at http://ghrelinlab.org. We acknowledge the limitations of short-insert (350 bp) genome sequencing, particularly when resolving complex repetitive or heterozygous regions (Rhoads and Au 2015; Merker et al. 2016). However, we anticipate that as sequencing becomes increasingly affordable, our sequencing efforts will complement future long-read genome assembly work and prove useful when correcting for errors (sequence polishing).

Finally, we reveal that one or both copies of CIC, a tumor metastasis suppressor gene, are frequently lost in prostate cancer and could drive metastatic CRPC. We anticipate that further biological insights into the role of Capicua in prostate cancer will shortly be gained by the research community, in line with the ethos of G3: Genes, Genomes, Genetics Genome Reports.

ACKNOWLEDGMENTS

We acknowledge the use of the high-performance computational facilities at the Queensland University of Technology (QUT). This work was supported by the National Health and Medical Research Council of Australia (to I.S., P.L.J., and L.K.C.), the Cancer Council Queensland (to I.S. and L.K.C.), a QUT Vice-Chancellor’s Senior Research Fellowship (to I.S.), the Movember Foundation and the Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award (to L.K.C. and C.C.N.), and the Australian Government Department of Health.

LITERATURE CITED

Adey, A., J. N. Burton, J. O. Kitzman, J. B. Hiatt, A. P. Lewis et al., 2013 The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500: 207–211.

Aurich-Costa, J., A. Vannier, E. Gregoire, F. Nowak, and D. Cherif, 2001 IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines. Genes Chromosomes Cancer 30: 143–160.

Baca, S. C., D. Prandi, M. S. Lawrence, J. M. Mosquera, A. Romanel et al., 2015 Punctuated evolution of prostate cancer genomes. Cell 163: 666–677.

Barclay, J. L., I. M. Kerr, L. Arthur, J. E. Rowland, C. N. Nelson et al., 2010 In vivo targeting of the growth hormone receptor (GHR) Box1 sequence demonstrates that the GHR does not signal exclusively through Jak2. Mol. Endocrinol. 24: 204–217.

Barretina, J., G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin et al., 2012 The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483: 603–607.

Belkadi, A., A. Bolze, Y. Itan, A. Cobat, Q. B. Vincent et al., 2015 Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA 112: 5473–5478.

Beltran, H., D. Prandi, J. M. Mosquera, M. Benelli, L. Puca et al., 2016 Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22: 298–305.

Brooks, A. J., and M. J. Waters, 2010 The growth hormone receptor: mechanism of activation and clinical implications. Nat. Rev. Endocrinol. 6: 515–525.

Carroll, A. G., H. J. Voeller, L. Sugars, and E. P. Gelmann, 1993 p53 oncogene mutations in three human prostate cancer cell lines. Prostate 23: 123–134.

Cerami, E., J. Gao, U. Dugrourou, B. E. Gross, S. O. Sumer et al., 2012 The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2: 401–404.

Choi, N., J. Park, J.-S. Lee, J. Yoe, G. Y. Park et al., 2015 miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget 6: 23533.

Chopin, L., T. Vevers-Lowe, A. F. Philpips, and A. Herington, 2002 Co-expression of GH and GHR isoforms in prostate cancer cell lines. Growth Horm. IGF Reg. 12: 126–136.

Cingolani, P., V. Patel, M. Coon, T. Nguyen, S. Land et al., 2012a Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, Snpsift. Front. Genet. 3: 35.

Cingolani, P., A. Platts, M. Coon, T. Nguyen, L. Wang et al., 2012b A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–92.
