Identification of DNA Methylation Changes in Newborns Related to Maternal Smoking during Pregnancy

Christina A. Markunas,1* Zongli Xu,1* Sophia Harlid,2 Paul A. Wade,2 Rolv T. Lie,3,4 Jack A. Taylor,1,2 and Allen J. Wilcox1

1Epidemiology Branch, and 2Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA; 3Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; 4Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway

*These authors contributed equally to this work.

BACKGROUND: Maternal smoking during pregnancy is associated with significant infant morbidity and mortality, and may influence later disease risk. One mechanism by which smoking (and other environmental factors) might have long-lasting effects is through epigenetic modifications such as DNA methylation.

OBJECTIVES: We conducted an epigenome-wide association study (EWAS) investigating alterations in DNA methylation in infants exposed in utero to maternal tobacco smoke, using the Norway Facial Cleft Study.

METHODS: The Illumina HumanMethylation450 BeadChip was used to assay DNA methylation in whole blood from 889 infants shortly after delivery. Of 889 mothers, 287 reported smoking—twice as many smokers as in any previous EWAS of maternal smoking. CpG sites related to maternal smoking during the first trimester were identified using robust linear regression.

RESULTS: We identified 185 CpGs with altered methylation in infants of smokers at genome-wide significance (q-value < 0.05; mean Δβ = ± 2%). These correspond to 110 gene regions, of which 7 have been previously reported and 10 are newly confirmed using publicly available results. Among these 10, the most noteworthy are FRMD4A, ATP9A, GALNT2, and MEG3, implicated in processes related to nicotine dependence, smoking cessation, and placental and embryonic development.

CONCLUSIONS: Our study identified 10 genes with newly established links to maternal smoking. Further, we note differences between smoking-related methylation changes in newborns and adults, suggesting possible distinct effects of direct versus indirect tobacco smoke exposure as well as potential differences due to age. Further work would be needed to determine whether these small changes in DNA methylation are biologically or clinically relevant. The methylation changes identified in newborns may mediate the association between in utero maternal smoking exposure and later health outcomes.

CITATION: Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, Wilcox AJ, 2014. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect 122:1147–1153; http://dx.doi.org/10.1289/ehp.1307892

Introduction

Cigarette smoke contains > 7,000 chemicals, of which hundreds are known to be harmful and at least 69 are known to cause cancer [Centers for Disease Control and Prevention (CDC) 2010]. Although the significant health effects of smoking are well recognized, smoking remains the largest preventable cause of death in the United States (CDC 2010). In addition to the deleterious direct effects on the person who smokes, smoking can also have indirect effects, for example, on the developing embryo or fetus. Maternal smoking during pregnancy is associated with substantial infant morbidity and mortality (Dietz et al. 2010). Although smoking is a modifiable risk behavior that influences the health of both the infant and the mother, only about 45% of women who report that they smoke 3 months before pregnancy quit during pregnancy (CDC 2012). Exposure to the fetus thus remains an important area of research, with little known about the molecular changes that occur in newborns in response to maternal tobacco smoke exposure in utero [reviewed by Suter et al. (2013)]. These studies have examined changes in DNA from placenta, cord blood, buccal cells, or granulocytes by taking either a targeted (i.e., one or a few genes) or a more global approach (i.e., epigenome-wide). However, only one study to date has used a high-density DNA methylation array (the Illumina HumanMethylation450 BeadChip), to assess DNA methylation in newborns related to maternal smoking during pregnancy (Joubert et al. 2012).

To further explore DNA methylation changes in infants related to maternal smoking during pregnancy, we performed an epigenome-wide association study (EWAS) using whole blood from 889 infants in the Norway Facial Clefts Study (NCL), including 287 whose mothers smoked during the first trimester. As a replication set, we used publicly available results [obtained from Supplemental, Table S1, in Joubert et al. (2012)] and considered two levels of replication: a) site level at the exact CpG and b) gene level for other CpG sites in or near the same gene. In addition, we considered the overlap between smoking-associated methylation in adults and newborns, with special focus on genes that may be unique to each.

Methods

Study population. The present study is based on infants from the NCL. NCL is a national population-based case-control study of cleft lip and cleft palate, disorders characterized by the incomplete fusion of the lip and/or palate.

Address correspondence to A.J. Wilcox, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop A3-05, Research Triangle Park, NC 27709 USA. Telephone: 1 (919) 541-4660. E-mail: wilcox1@niehs.nih.gov

Supplemental Material is available online (http://dx.doi.org/10.1289/ehp.1307892).

We thank all individuals for participating in the Norway Facial Clefts Study. In addition, we thank B. Joubert and L. Wilson, as well as three anonymous reviewers for critically reviewing our manuscript.

This research was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences. The authors declare they have no actual or potential competing financial interests.

Received: 15 November 2013; Accepted: 6 June 2014; Advance Publication: 6 June 2014; Final Publication: 1 October 2014.
3-level smoking variable must be significant (FDR $q < 0.05$) when treated as a continuous variable in the robust linear regression model. One mother used snuff tobacco; her baby was excluded from all analyses.

Analysis. A description of DNA methylation data generation (Illumina HumanMethylation450), quality assessment, and pre-processing (e.g., normalization) are provided (see Supplemental Material, Methods: Data generation, Data cleaning and quality assessment, and Data pre-processing). After exclusions (See Supplemental Material, Methods: Data cleaning and quality assessment), 889 samples ($n_{\text{smokers}} = 287$, $n_{\text{nonsmokers}} = 602$) and 357,320 CpG probes remained for analysis. A robust linear regression model was employed using the R package, MASS (Venables and Ripley 2002), to test the association between maternal smoking status (binary variable: active smokers versus nonsmokers and passive/infrequent smokers) and methylation ($β$-value) at each CpG site, adjusting for facial cleft status (control, cleft lip with or without cleft palate, and cleft palate only), infant’s sex, and two technical factors: batch effects (96-well plate) and bisulfite conversion efficiency (model 1) (see Supplemental Material, Methods, Data pre-processing). A sensitivity analysis was also conducted adjusting for several potential confounders. Maternal alcohol consumption, education, age, body mass index (BMI), dietary folate, folic acid supplement use, multivitamin use, parity, gestational age, and infant’s birth weight were all considered as possible confounders. Only those associated with maternal smoking ($p < 0.05$) were included in the final model.

Table 1. Characteristics of mothers in the study according to maternal smoking (n or mean ± SD).

Characteristic	Nonsmokers	Smokers	p-Value*
All mothers	602	287	4.7×10^{-4}
Alcohol use†			
0	410	158	
1–3	104	64	
4–6	37	20	
$≥ 7$	45	42	
Education			
Less than high school	57	61	
High school and above	545	226	
Parity‡			0.12
1	239	128	
2	209	102	
3	117	39	
$≥ 4$	37	18	
Age at delivery (years)	29.6 ± 4.9	28.0 ± 4.9	3.1×10^{-6}
Prepregnancy BMI (kg/m²)	23.6 ± 4.1	23.4 ± 4.3	0.56
Folic acid supplement (μg)			0.02
0	354	194	
1–399	134	59	
$≥ 400$	114	35	
Dietary folate (μg)			0.18
0–171	163	88	
172–214	150	56	
215–264	123	65	
$≥ 265$	136	54	
Multivitamins‡			0.36
No	391	196	
Yes	211	91	

* p-Values were calculated from Fisher’s exact test for categorical variables and Student’s t-test for numerical variables.

Table 2. Characteristics of infants in the study according to maternal smoking (n or mean ± SD).

Characteristic	Nonsmokers	Smokers	p-Value*
All Infants	602	287	0.25
Sex			
Female	252	132	
Male	350	155	
Facial cleft status			1.8 $\times 10^{-4}$
Control	347	126	
Cleft lip with or without cleft palate	160	113	
Cleft palate only	95	48	
Gestational age (weeks)	38.4 ± 7.7	37.2 ± 9.9	0.06
Birth weight (kg)	3.6 ± 0.6	3.4 ± 0.7	3.4 $\times 10^{-6}$

* p-Values were calculated from Fisher’s exact test for categorical variables and Student’s t-test for numerical variables.

*Nominally associated ($p < 0.05$) with maternal smoking status during pregnancy (smokers vs. nonsmokers).
Smoking-related methylation changes in newborns

(Tables 1 and 2) and that could potentially influence DNA methylation were added to the secondary model, referred to below as model 2. Cellular heterogeneity is a potential confounder if the distribution of blood cell subtypes differs by maternal smoking status. To correct for cellular heterogeneity, we implemented the method developed by Houseman et al. (2012) to estimate five different cell proportions for each sample and then adjust for those in our robust linear regression model (model 2). A reference data set [GSE35069 (Reinius et al. 2012)] was used first to identify DNA methylation profiles that were specific to each of the five cell subtypes. This information was then used to generate sample-specific cell proportion estimates that were included in model 2 to correct for five leukocyte subtype proportions (see Supplemental Material, Table S1, for a comparison between newborns exposed and unexposed). To correct for multiple testing, we estimated the FDR using the q-value framework (Storey and Tibshirani 2003).

Results

Epigenome-wide association study.

Epigenome-wide association results based on model 1 are presented in Figure 1. In addition, a volcano plot and quantile-quantile (Q-Q) plot are provided as Supplemental Material (Figures S1–S2). Further adjustment for potential confounders in model 2 (maternal alcohol use, maternal education, maternal age at delivery, maternal folic acid supplement use, infant’s birth weight, and five different leukocyte cell type proportions) did not substantively affect the results as assessed by examining the correlation between the p-values and β-coefficients across all CpGs tested (see Supplemental Material, Figure S3). The more parsimonious model, model 1, was therefore selected as the primary model. Of 357,320 CpG sites tested for association with maternal smoking, we identified 185 CpG sites with altered methylation at genome-wide significance (FDR q < 0.05) (see Supplemental Material, Tables S2–S3) found within 110 gene regions. The term “gene region” was used to annotate CpGs located within or outside the transcribed region of a gene. The gene region for each CpG probe was defined as the nearest gene if the CpG site was intergenic or the gene itself if the CpG site was located within the gene body (see Supplemental Material, Table S3). Comparing exposed and unexposed infants, 43% of the 185 CpGs had decreased methylation (negative β-coefficient), and 57% had increased methylation (positive β-coefficient). The average percentage change in methylation (mean β_smokers – mean β_unexposed) was small, ranging from −8% to 7% with a mean of −2% for sites with decreased methylation and 2% for sites showing increased methylation.

Further annotation of the significant CpG sites, including distance to the closest transcription start site (TSS) and whether it is located within a CpG island, shelf, or shore is provided (see Supplemental Material, Table S4). We compared the distribution of the 185 differentially methylated CpG sites among genomic regions (CpG island, shelf, shore, or non-island), using the Illumina HumanMethylation450 BeadChip as a reference (see Supplemental Material, Table S5). In particular, we observed a significant enrichment for CpG shores when we examined all 185 CpGs (chi-square test, p = 0.002); the same thing was observed when the analysis was restricted to those 80 sites with decreased methylation (chi-square test, p = 0.003).

The relationship between the extent of smoke exposure and the level of methylation was also assessed. Of the 185 genome-wide significant CpG sites, only 107 CpGs (58%) showed evidence of a dose-response relationship (see Supplemental Material, Figure S4 and Table S6). When our results were restricted to the 23 novel CpG sites confirmed at the site level or gene level (Table 3), 18 of the sites (78%) showed a dose-response relationship. Expanding that list of 23 CpGs to include all 62 CpG sites confirmed at the site level or gene level, 49 (79%) met the criteria for a dose–response relationship. Further, CpGs with the smallest p-values had the highest proportion of dose-response relationships (see Supplemental Material, Table S7), with 91% of the CpGs showing a dose–response relationship with p < 1 × 10^{-10}.

Replication using publicly available EWAS results. We identified 185 CpGs (corresponding to 110 gene regions) with altered methylation at genome-wide significance (FDR q < 0.05; see Supplemental Material, Tables S2–S3). To replicate our findings, we used results from the only previous maternal smoking study using Illumina HumanMethylation450 BeadChips [results obtained from Supplemental Table S1 in Joubert et al. (2012); see also Supplemental Material, Table S8]. In the study by Joubert et al. (2012), which used a conservative Bonferroni correction for 473,844 tests (p < 1.06 × 10^{-7}) as the criterion for genome-wide significance, 26 CpGs were reported as genome-wide significant. We first describe our confirmation of those 26 CpGs (10 gene regions) that we further classify as either established (n = 5) identified previously at...
smoking-related CpGs previously reported, Joubert et al. (2012) provided results for 74 nominally significant CpGs (part of their top 100 findings) representing 69 gene regions that did not meet their strict criteria for genome-wide significance (Bonferroni correction, \(p < 1.06 \times 10^{-7} \)). We used this set of results to serve as an independent replication set for our novel findings [146 CpGs corresponding to 103 gene regions not previously implicated (Figure 2B; also see Supplemental Material, Table S8)], which we describe in detail below.

Using the publically available results consisting of 74 nominally significant CpGs, we find confirmation of 9 CpGs in 8 gene regions (GNG12, LOC284998, VGLL4, FRMD4A, CUX2, MEG3, FTO, and AP7PA). Further, we identified genome-wide significant CpGs in 2 additional gene regions (GALNT2 and KIF26B) where a different CpG site in the same gene region showed altered DNA methylation (i.e., the exact CpG sites were not identical). In total, we identified 11 CpGs in 2 gene regions and 15 CpGs in the 8 gene regions that met genome-wide significance in our study (FDR \(q < 0.05 \), Figure 2B, Table 3). This set of 10 genes is the focus of the discussion below. Five of these 10 gene regions—GNG12, GALNT2, FRMD4A, MEG3, and FTO—contain multiple differentially methylated CpG sites at genome-wide significance. Notably, all confirmed new findings was related to the direction of methylation change. In contrast to newborns, where 43% of CpGs had decreased methylation, > 70% of the CpGs identified

Table 3. Novel CpG sites confirmed at the site or gene level.\(^a\)

Probe	Chromosome	Basepair [hg19]	Nearest gene	Model 1	Replication 450K p-value	
cg25189904	1	68298483	GNG12	-0.02	9.08 × 10^{-6}	4.98 × 10^{-4}
cg26764244	1	68299511	GNG12	-0.023	6.68 × 10^{-6}	4.47 × 10^{-4}
cg18073066	2	105363536	LOC284998	-0.006	7.63 × 10^{-12}	3.42 × 10^{-7}
cg18096897	3	11623873	VGLL4	-0.018	4.10 × 10^{-6}	2.20 × 10^{-4}
cg20344448	10	14372431	FRMD4A	0.015	2.97 × 10^{-6}	3.48 × 10^{-4}
cg18113497	10	14372879	FRMD4A	0.024	6.85 × 10^{-6}	3.48 × 10^{-4}
cg25462840	10	14372910	FTO	0.022	3.15 × 10^{-6}	1.53 × 10^{-4}
cg15507349	10	14373013	FTO	0.024	2.45 × 10^{-6}	2.92 × 10^{-4}
cg00029629	12	111371203	CUX2	-0.009	9.82 × 10^{-6}	1.53 × 10^{-4}
cg08890721	14	101294147	MEG3	0.013	1.86 × 10^{-5}	2.92 × 10^{-4}
cg42410709	14	101294430	MEG3	0.013	1.67 × 10^{-6}	9.84 × 10^{-4}
cg00253658	16	54210496	FTO	0.059	1.37 × 10^{-6}	9.84 × 10^{-4}
cg26681628	16	54210550	FTO	0.023	4.05 × 10^{-6}	3.48 × 10^{-4}
cg08763752	16	54228358	FTO	0.012	2.41 × 10^{-6}	2.92 × 10^{-4}
cg03392932	20	50312490	ATP9A	-0.013	2.21 × 10^{-6}	1.38 × 10^{-4}
cg16517298	21	230413174	GALNT2	-0.027	6.09 × 10^{-6}	1.38 × 10^{-4}
cg19727585	21	230415185	GALNT2	-0.018	1.15 × 10^{-6}	1.38 × 10^{-4}
cg24581105	21	230415255	GALNT2	-0.025	1.26 × 10^{-6}	1.38 × 10^{-4}
cg00589617	21	230415343	GALNT2	-0.029	1.07 × 10^{-6}	1.38 × 10^{-4}
cg05697274	21	230415377	GALNT2	-0.026	1.75 × 10^{-6}	1.38 × 10^{-4}
cg24250902	21	230415547	GALNT2	-0.032	1.13 × 10^{-6}	2.92 × 10^{-4}
cg03144619	21	230416668	KIF26B	-0.037	2.17 × 10^{-6}	1.38 × 10^{-4}
cg93861818	21	245330018	KIF26B	0.026	1.54 × 10^{-6}	2.92 × 10^{-4}

\(^a\)Site/gene region was not part of the 26 sites/10 gene regions that met genome-wide significance in Joubert et al. (2012) (Bonferroni correction, \(p < 1.06 \times 10^{-7} \)) but was confirmed using their results containing 74 additional nominally significant sites/89 gene regions. \(^b\) Negative coefficient indicates reduced methylation in infants whose mothers smoked. \(^c\) Replication at the site level using a previously published study (Joubert et al. 2012) that used Illumina HumanMethylation450 BeadChips. Those sites without direct confirmation were included if they were genome-wide significant in our study and a different CpG site in the same gene region was identified by Joubert et al. (2012) (e.g., GALNT2). \(^d\) Met our criteria for dose response (see “Methods,” “Tobacco smoke exposure,” for details). \(^e\) Met Bonferroni correction (\(p < 1.4 \times 10^{-7} \)).
Smoking-related methylation changes in newborns in adult smokers had decreased methylation. However, there is some limited evidence, at least in adults, that this finding may be tissue specific (Monick et al. 2012).

Discussion

We conducted an EWAS investigating alterations in DNA methylation in infants indirectly exposed in utero to maternal tobacco smoke. We identified 185 CpG sites that met genome-wide significance (FDR \(q < 0.05 \)). Publicly available results from a recent EWAS of maternal smoking were used to confirm some of our findings (Joubert et al. 2012). We also described similarities and differences between smoking-related methylation changes in adults and newborns.

Our study confirmed 5 of 5 previously replicated maternal smoking-related CpG sites representing 3 gene regions. We also replicated another 17 of 21 CpGs, representing 3 additional gene regions, that had achieved genome-wide significance in the previous study but were not replicated in their small replication population using a Bonferroni correction for multiple tests (Joubert et al. 2012). Most of these CpGs, however, had \(p \)-values \(< 0.05 \). Most important, we provide new findings of 8 gene regions associated with maternal smoking where, using the publicly available results from Joubert et al. (2012), there was exact CpG site confirmation and 2 gene regions where different CpGs showed evidence of association (Table 3). From this set of 10 genes with newly established links to maternal smoking, the most noteworthy include MEG3 (maternally expressed 3), FRMD4A (FERM domain containing 4A), ATP9A (ATPase, class II, type 9A), and GALNT2 (UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2), discussed in detail below.

In MEG3 we find 2 genome-wide significant CpGs and 1 nominally associated CpG with increased methylation in infants of mothers who smoked (see Supplemental Material, Figure S5). MEG3 is an imprinted gene (paternal allele silenced, maternal allele expressed) that encodes a long noncoding RNA implicated in tumorigenesis (Benetatos et al. 2011) and embryonic development (Zhou et al. 2010). Previous studies suggest a potential link between MEG3, tobacco smoke, and development. Expression of MEG3 is down-regulated in immortalized human bronchial epithelial cells in response to treatment with cigarette smoke condensate but can be reactivated following 5-aza-2-deoxycytidine treatment (Hu et al. 2009). This suggests that the smoking-related decrease in expression may be associated with increased DNA methylation, consistent with the direction of effect found in newborns of mothers who smoke. Related to development, maternal cigarette smoking during pregnancy causes reduced birth weight (Suter et al. 2013), and expression of MEG3 is down-regulated in placenta with intrauterine growth restriction (McMinn et al. 2006), as was observed in human bronchial epithelial cells treated with cigarette smoke condensate. However, unlike the direction of effect observed in the previous study, MEG3 is up-regulated in placentas of women smokers compared with nonsmokers (Votavova et al. 2011). Given these inconsistent findings, additional studies are needed to clarify this relationship.

The DLK1/MEG3 imprinting domain on 14q32.2 has two differentially methylated regions (DMRs), the MEG3-DMR (secondary, postfertilization-derived DMR; located near our smoking-associated CpGs) and IG-DMR (primary, germline-derived intergenic DMR) (Skaar et al. 2012) that are hypothesized to act as imprinting control centers in the body and placenta, respectively (Kagami et al. 2010). Although the mechanism by which the MEG3-DMR regulates imprinting is not well understood, CTCF (CCCTC-binding factor) is thought to be involved (Skaar et al. 2012), perhaps by modulating chromatin boundary formation (Wylie et al. 2000). The MEG3 smoking-associated CpGs identified in our study are located at the border of the MEG3-DMR immediately adjacent to two putative CTCF binding sites (Wylie et al. 2000; also see Supplemental Material, Figure S5). If increased methylation in newborns of smokers inhibits CTCF binding, it could result in decreased expression of MEG3 and other maternally expressed genes, as well as increased expression of paternally expressed genes in that region (Kagami et al. 2010). Disregulation of MEG3 could potentially affect embryonic development and, if the altered methylation state persists for an extended period of time, have long-term health effects.

We identified altered methylation of CpGs near two genes, FRMD4A and ATP9A, associated with nicotine (Yoon et al. 2012) and substance dependence (Johnson et al. 2012).
and the ability to quit smoking (Uhl et al. 2008). Increased methylation at 4 CpGs in newborns of smokers was observed in FRMD4A, a scaffolding protein implicated in the regulation of epithelial polarity (Ikenouchi and Umeda 2010). Decreased methylation with smoking exposure was found at 1 CpG in ATP9A, a class 2 P4-ATPase that localizes to endosomes and the trans-Golgi network (Takatsu et al. 2011). Although findings are not consistent across all studies, maternal smoking during pregnancy has been previously associated with smoking-related traits in offspring (e.g., nicotine dependence) even after accounting for postnatal exposure to tobacco smoke (Al Mamun et al. 2006; Kandel et al. 1994; Kardia et al. 2003; Lieb et al. 2003; Selya et al. 2012); however, the possibility cannot be ruled out that these associations are attributable to unmeasured confounding. An animal study provides further support for an association by showing a neurotoxicant effect of prenatal nicotine exposure in rats that persisted into adolescence (Abreu-Villaca et al. 2004). Authors suggested that if similar, persistent alterations occurred in offspring of mothers who smoked during pregnancy, this could contribute to an increased susceptibility of nicotine dependence in adolescence. Thus, if the altered methylation states of FRMD4A and/or ATP9A persisted through adolescence, these could potentially contribute to the observed relationship between maternal smoking and smoking-related traits, such as nicotine dependence, in offspring.

In GALNT2 we identified 7 CpGs at genome-wide significance that showed decreased methylation in newborns of smokers. GALNT2 is associated with lipid levels (Teslovich et al. 2010), insulin signaling (Marucci et al. 2013a), hyperglycemia (Marucci et al. 2013b), and the malignant behavior of hepatocellular carcinoma (Wu et al. 2011). GALNT2 may also play a role in extravillous trophoblast invasion, which is important for placental development (Liao et al. 2012). Aberrant DNA methylation of GALNT2, which has so far been identified only in newborns exposed and not adults, may affect the development of the placenta and could subsequently influence the health of the fetus.

In this study we described some unique and common aspects of smoking-related methylation changes in adults and newborns. Less than half of the maternal smoking-related genes that are now well established in newborn studies were identified in any of the three published adult smoking studies. Moreover, some of the best-established adult smoking-related gene regions (e.g., F2RL3) were not among the top results from either of the newborn studies. These observations suggest that there could be distinct effects of direct tobacco smoke exposure in adults versus indirect tobacco smoke exposure in utero. There are several plausible explanations for this observation:

- **Age-related susceptibility**: The epigenome of the developing embryo and fetus is thought to be particularly susceptible to environmental exposures because many epigenetic changes are occurring along with rapid cell division (Perera and Herbstman 2011).
- **Tissue-specific alterations related to age at exposure**: Exposure during development may be more likely to induce widespread changes (i.e., many tissues affected), whereas exposure during adulthood may be more likely to induce restricted changes, perhaps identifiable in only one or a few tissues (Rakyan et al. 2011).
- **Exposure variability**: The exposure itself and/or age-related differences in the response to exposure. Response to an environmental exposure, such as tobacco smoke, may vary by age due to differences in one’s metabolism and capacity to detoxify the components of tobacco smoke (Aldridge et al. 2003). For example, in response to tobacco smoke, age-dependent expression (Eke et al. 1997) of genes involved in metabolizing components of tobacco smoke has been reported.
- **Power of the studies**: It is also possible that future newborn and adult studies with larger sample sizes will find more overlap of these genes.

There are several limitations to our study. We were able to confirm only some of our findings using publicly available results. Our confirmations were based on the top 100 sites described in a previously published study (Joubert et al. 2012), so we are unable to comment on the total number of CpGs that are currently lacking replication, given the fact that we did not have access to a complete replication set. Even with this limited list we were able to identify 10 new genes related to maternal smoking, including some with biologically plausible functions. Our correction for multiple testing was based on a reduced number of probes after filtering out the least variable 20% of CpGs. The alternative of filtering by degree of difference may induce FDR bias, but there is no evidence of such bias when filtering by variability (van Iterson et al. 2010). As a further check, we compared our results with and without filtering; the findings were essentially unchanged. Of the 23 novel CpG sites confirmed at the site or gene level (Table 3), all but one remained significant at a genome-wide level without filtering (FDR q < 0.05), whereas the one exception (cg03687532) had an FDR q = 0.06. These additional results provide some reassurance about the robustness of our conclusions. Another potential limitation is that we used self-reported smoking as opposed to a more objective measure, such as cotinine. However, self-reported smoking is generally considered to be a valid measure of smoking. Self-reported maternal smoking and plasma cotinine concentrations were compared in the Mother and Child Cohort Study, another population-based Norwegian study conducted during 2002–2003. That study reported a high level of validity for the self-reported data (Kvalvik et al. 2012). In our study, mean birth weight was reduced with maternal smoking (Table 2), consistent with the usual expected effect of smoking on the fetus. If there was underreporting of smoking during pregnancy, this type of misclassification would only reduce our power, and would not explain our detection of 185 CpG sites at genome-wide significance. Furthermore, in the absence of further validation (e.g., pyrosequencing) and functional work, it is not known whether these changes are biologically relevant or which gene or genes they affect, if any. It also remains to be seen whether these small changes in DNA methylation will be of clinical relevance.

Conclusions

Consistent with previous reports, we found maternal smoking during pregnancy to be associated with an altered DNA methylation profile in infants. Of particular interest were findings in FRMD4A, ATP9A, GALNT2, and MEG3—genes that are implicated in processes related to nicotine dependence, smoking cessation, and placental and embryonic development. Further, we described some unique aspects of DNA methylation changes in adults compared with newborns. Direct and indirect in utero smoke exposure appear to elicit differential epigenetic responses that may be attributable to age-related differences in susceptibility to tobacco smoke, tissue-specific alterations related to age at exposure, variation in the exposure itself, and/or age-related differences in the response to exposure. It remains to be seen whether the small changes in DNA methylation identified (mean Δβ = ± 2%) are biologically or clinically relevant. Future studies examining the persistence of DNA methylation changes due to an in utero exposure throughout life, and particularly associations of these changes with health phenotypes later in life (i.e., DNA methylation as a mediator of health effects), will be of particular interest.
REFERENCES

Abreu-Villaca Y, Seidler FJ, Slotkin TA. 2004. Does prenatal nicotine exposure sensitize the brain to nicotine-induced neurotoxicity in adolescence? Neuropharmacology 29:1440–1453.

Ali Mamun A, O’Callaghan FV, Aliati R, O’Callaghan M, Najman JM, Williams GM, et al. 2006. Does maternal smoking during pregnancy predict the smoking patterns of young adult offspring? A birth cohort study. Tob Control 15:452–457.

Aldridge JE, Gibbons JA, Flaherty ML, Kreider ML, Romano JA, Levin ED. 2003. Heterogeneity of toxicant response: sources of human variability. Toxicol Sci 73:6–20.

Benetatos L, Vartholomatos G, Hatzipimichalis E. 2011. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 129:773–779.

CDC (Centers for Disease Control and Prevention). 2010. 2010 Surgeon General’s Report—How Tobacco Smoke Causes Disease: The Behavioral and Biological Basis for Smoking-Attributable Disease. Available: http://www.cdc.gov/tobacco/data_statistics/sgr/2010/ (accessed 16 July 2013).

CDC (Centers for Disease Control and Prevention). 2012. PRAMS and Smoking. Available: http://www.cdc.gov/prams/tobaccoandprams.htm (accessed 16 July 2013).

Dietz PM, England LJ, Shapiro-Mendoza CK, Tong VT, Farr SL, England LJ, Shapiro-Mendoza CK, Tong VT, Farr SL, Callaghan WM. 2010. Infant morbidity and mortality attributable to prenatal smoking in the U.S. J Am Prev Med 39:45–52.

Eke BC, Vural N, Iscan M. 1997. Age dependent differential effects of cigarette smoke on hepatic and pulmonary xenobiotic metabolizing enzymes in rats. Arch Toxicol 71:696–702.

Gluckman PD, Hanson MA. 2004. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 56:311–317.

Houseman EA, Accomando WP, Koestler DC, Christensen BC, Gluckman PD, Hanson MA. 2004. Developmental origins of complex. Proc Natl Acad Sci USA 101:748–753.

Kandel DB, Wu P, Davies M. 1994. Maternal smoking during pregnancy and smoking by adolescent daughters. Am J Epidemiol 139:1607–1613.

Kardia SL, Pomerleau CS, Roze KS, Marks JL. 2003. Association of parental smoking history with nicotine dependence, smoking rate, and psychological cofactors in adulthood. Nicotine Tob Res 5:341–351.

Kvalvik LG, Nilsen RM, Skjaerven R, Vollset SE, Midthun D, Ueland PM, et al. 2012. Self-reported smoking status and plasma cotinine concentrations among pregnant women in the Norwegian Mother and Child Cohort Study. Pediatr Res 71:101–107.

Liao WC, Chen CH, Liu CH, Huang MJ, Chen CW, Hung JS, et al. 2012. Expression of GALNT2 in human extravesical trophoblasts and its suppressive role in trophoblast invasion. Placenta 33:1005–1011.

Lieb R, Schreier A, Pfister H, Wittench HU. 2003. Maternal smoking and smoking in adolescents: a prospective community study of adolescents and their mothers. Eur Addict Res 9:120–130.

Marucci A, Cozzolino F, Dimatteo C, Monti M, Pucci P, Trischitta V, et al. 2013a. Role of GALNT2 in the modulation of ENPP1 expression, and insulin signaling and action: GALNT2, a novel modulator of insulin signaling. Biochim Biophys Acta 1833:1388–1395.

Marucci A, di Mauro L, Menzaghi C, Prudente S, Mangiacotti D, Fini G, et al. 2013b. GALNT2 expression is reduced in patients with type 2 diabetes: possible role of hyperglycemia. PLoS One 8:e70159; doi:10.1371/journal.pone.0070159.

McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, Al Mamun A, O’Callaghan FV, Alati R, O’Callaghan M, et al. 2007. Heterogeneity of toxicant response: sources of human variability. Toxicol Sci 76:3–20.

Mangiacotti D, Fini G, et al. 2013b. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 27:540–549.

Monick MM, Beach SR, Plume J, Sears R, Gerrard M, Braddy GH, et al. 2012. Coordinated changes in AHR hetero-interaction: convergent genome-wide association study results. Nat Med Genet 159B:141–151.

National Institute of Environmental Health Sciences. 2008. Pregnancy, Heredity, and Environment Questionnaire. Available: http://www.niehs.nih.gov/research/atniehs/labs/epi/studies/ncl/questionnaire/ (accessed 7 July 2013).

Perera F, Herbstman J. 2011. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 31:363–372.

Rakyan VK, Down TA, Bailing DJ, Beck S. 2011. Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541.

Reinuo LE, Acevedo N, Joerinck M, Pershagen G, Dahlen SE, Greco D, et al. 2012. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 7:e41361; doi:10.1371/journal.pone.0041361.

Robertson KD. 2005. DNA methylation and human disease. Nat Rev Genet 6:597–610.

Selva AS, Dierker LC, Rose JS, Hederker D, Mermelstein RJ. 2012. Risk factors for adolescent smoking: parental smoking and the mediating role of nicotine dependence. Drug Alcohol Depend 124:311–318.

Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Selya AS, Dierker LC, Rose JS, Hedeker D, Mermelstein RJ. 2000. Novel smoking and the mediating role of nicotine dependence. Hum Mol Genet 9:2197–2205.

Skeaff DA, Li Y, Bernal AJ, Hoyt C, Murphy SK, Jirtle RL. 2012. The human imprintome: regulatory mechanisms, methods, of ascertainment, and roles in disease susceptibility. Epigenetics 7:711–719.

Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445.

Stam EA, Anders AM, Aagaard KM. 2012. Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming. Mol Hum Reprod 18:1–8.

Takatko R, Baba K, Shima T, Umino H, Kato U, Umeda M, et al. 2011. ATP6v1a, a P-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CD45 protein-independent manner. J Biol Chem 286:30679–30687.

Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. 2010. Biological, clinical and population relevance of 50 loci for lipid traits. Nature 466:707–713.

Uhl GR, Liu YR, Dragan T, Johnson C, Walker D, Rose JE, et al. 2008. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch Gen Psychiatry 65:868–876.

van der Velden EM, van der Velden EM, van der Velden EM, van der Velden EM. 2010. Filtering, FDR and power. BMC Bioinformatics 11:450–461.

Venables WN, Ripley BD. 2002. Modern Applied Statistics with S. 4th ed. New York:Springer.

Votavova H, Dostalova Markrovova M, Fejglova K, Vaskova I, Krejci Z, Pastorkova A, et al. 2011. Transcriptome alterations in maternal and fetal cells induced by tobacco smoke. Placenta 32:763–770.

Waterland RA, Blekas KB. 2002. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nut 27:363–388.

Wilcox AJ, Lie RT, Salovil K, Taylor J, McConnaughey DR, Ahlbyf A, et al. 2007. Maternal smoking and smoking in adolescents: a prospective study of parental smoking history with nicotine dependence. Hum Mol Genet 16:1467–1473.

Xiong WC, Chen CH, Liu CH, Huang MJ, Lee JJ, Chen CH, et al. 2011. Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res 71:7270–7279.

Wylie AA, Murph SK, Orton TC, Jirtle RL. 2000. Novel imprinting of DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10:1711–1718.

Yoon D, Kim YJ, Cui WY, Van der Vaart A, Cho YS, Lee JY, et al. 2012. Large-scale genome-wide association studies of Asian population reveals genetic factors in FRMD4A and other loci influencing smoking initiation and nicotine dependence. Hum Genet 131:1009–1021.

Zeilinger S, Kuhnel B, Knoop N, Baurecht H, Kleinschmidt A, Gieger C, et al. 2013. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8:e63812; doi:10.1371/journal.pone.0063812.

Zhou Y, Cheungson P, Nakayama Y, Lawlor MW, Zhong Y, Rice KA, et al. 2010. Activation of paternally expressed genes and perinatal death caused by deletion of the G62 gene. Development 137:2643–2652.

Environmental Health Perspectives • VOLUME 122 • NUMBER 10 • October 2014 1153