Structural and vibrational spectroscopic studies of new phases with sillenite type in the system Bi$_2$O$_3$- In$_2$O$_3$ –MgO

Hajar Ait Oulahyane*, Abdeslam Chagraoui, Leila Loubbidi, Lamia Bourja, Omar Ait Sidi Ahmed and Abdelmjid Tairi

Laboratory of Analytical Chemistry and Physico-chemistry of Materials (LCAPM), Faculty of Sciences Ben M’Sik, University Hassan II, Casablanca, Morocco

Abstract: The anion and cation deficient phase Bi$_{19.95}$In$_{0.05}$O$_{5.5}$ (Bi$_{1.5}$In$_{0.1}$O$_3$) was synthesized and experimentally investigated using X-ray diffraction and vibrational spectroscopy (Infrared and Raman). The non-stoichiometric phases are similar to sillenite family type γ-Bi$_2$O$_3$ and crystallize in the I23 space group. The crystal structure was determined by full profile Rietveld analysis of the powder diffractogram. It is formed by a sequence of BiO$_2$E polyhedra (E lone pair of bismuth) and MO$_4$ polyhedra (M = In, Mg). The set of MO$_4$ polyhedra are localized in cavities generated by BiO$_2$E polyhedra. The vibrational spectroscopic study revealed the existence of three regions; low, intermediate and high-frequency region. They are attributed to Bi-O stretching mode, In / Mg-O vibrations and cationic displacements respectively.

Key words: Sillenite; X-ray diffraction; IR; RAMAN.

1. Introduction

Recently, materials having elements with outer electronic configuration ns2, particularly sillenite phases, have been extensively studied because of their remarkable properties such as; piezoelectricity, optoelectronics, photocatalysis, dielectricity ... 1-8.

Indeed the sillenite phase is isolated for the first time by Silen in 1937 and admits as formula Bi$_{12}$MO$_{20}$ (M= Si, Ti, Ge) 9. Several studies have been conducted, in particular on the crystalline structure, such as those of Levin and Roth 10, and Radev et al. 11 that have determined the crystal structure of Bi$_{12}$ (Bi$_{2/3}$Zn$_{1/3}$) O$_{19.33}$ and Bi$_{12}$ (Bi$_{3/4}$Fe$_{1/4}$)O$_{19.5}$ by neutron diffraction.

The stability of sillenite phase is achieved by adding small amounts of desired oxides such as Li$_2$O, ZnO, Ga$_2$O$_3$, As$_2$O$_3$, P$_2$O$_5$, V$_2$O$_5$...without exceeding 8 mol% 12,13. Generally, sillenites are stoichiometric or sub-stoichiometric. The defects appear in both cationic and anionic sub-lattices 14. Several structural models were established 15. The models proposed by Radev et al and confirmed later by J.C Champarnaud 16,17 seem more convincing. These models revealed that sillenite is related to the γ-Bi$_2$O$_3$ variety and is written as Bi$_{12}$ ((BiO)$_{0.8}$ (InO)$_{0.2}$) O$_{16}$ =Bi$_{12}$ Bi$_{0.8}$ O$_{19.2}$.

The sillenite compounds Bi$_{12}$ M$_x$O$_{2x}$ crystallize in the I23 space group. The crystalline structure is formed by a three-dimensional sequence of BiO$_2$E polyhedra (E lone pair). These polyhedra share the edges and the vertices by M$^{2+}$O$_4$ tetrahedra. The M$^{2+}$ cation may be a tetravalent element in the case of stoichiometric sillenite or a combination of elements with an average value of four.

In the present work, On the one hand, the new phases isolated within the Bi$_2$O$_3$-In$_2$O$_3$-MgO system have been studied and identified as belonging to sillenite family. On the other hand, these phases were examined using Infrared and Raman spectroscopy techniques. The X-ray analysis was performed using the Rietveld structure refinement by full prof program 18. The influence of dopant content; indium (single doping) or In and Mg (codoping) on the sillenite structural features has been discussed.

2. Experimental section

2.1. Preparation

The synthesized compounds have been stabilized with a solid-state method using the appropriate quantities of highly pure oxides powder α Bi$_2$O$_3$, MgO and In$_2$O$_3$ with high purity (Aldrich brand). These oxides were heated at successively higher temperatures 700°C (24h) and 800°C (24h) with several intermediate grindings and followed by quenching.

2.2. X-ray diffraction

The final products have been monitored by X-ray powder diffraction (XRD) using a Philips X’Pert PRO

*Corresponding author: Hajar Ait Oulahyane
Email address: hajar.aitoulahyane@gmail.com
DOI: http://dx.doi.org/10.13171/mjc10120011123hao
diffractometer and Cu-K-alpha (λ=1.5406Å) radiation. The structural refinements were undertaken from the powder data. The patterns were scanned through steps of 0.02° (2θ), between 10° and 70° (2θ) with a fixed time counting of 60 s. The study of the structure is conducted by analyzing the profile of X-ray diffraction diagrams of powder with the program Fullprof 18 using the pseudo-Voight function.

2.3. IR spectrum
IR spectrum was recorded by using Bruker Tensor 27 with prepared pellets (1mg + 99mg KBr) in a frequency range of 400-4000 cm⁻¹.

2.4. Raman Spectrum
Raman spectrum was recorded by using DXR RAMAN spectrometer with exciter wavelength of 663nm and a power of 6 MW.

3. Results and discussion
3.1. Structural studies
In this paper, the structural analysis was focused on three compositions, namely Bi₀.⁹₅ In₀.₀₅ O₁.₅, Bi₀.⁹₀In₀.₀₅Mg₀.₀₅O₁.₄₇₅ and Bi₀.₈₀In₀.₁₅Mg₀.₁₅O₁.₄₅. We present Bi₀.⁹₅ In₀.₀₅ O₁.₅ (Bi₁.₉ In₀.₁ O₃) as an example. The results of the other compositions will be published later.

On the basis of γBi₂O₃ phase structure previously determined by Radev¹¹, we carried out our structural study by distributing the cations on the possible sites. The chemical form of this compound can be written: Bi₁₂ [(Bi₀.₁₆ In₀.₆₄) □ O₃] ₀.₈ (□O₄)₀.₂ O₁₆. Table 1 contains the experimental conditions and the structural parameters of this composition.

- **First case:**
 Bi₁ → 24f, Bi₂, In →2a, O₁ →24f, O₂ →8c, O₃ →8c
 Many refinement cycles are performed and lead to good reliability values (Table 1). However, the calculated distances of coordination polyhedra are incorrect.

- **Second case:**
 Bi₁ → 24f, In →2a, O₁→24f, O₂→8c, O₃→8c
 The final refinement led to an occupancy rate of Bi atom >1 on 24f site, which contradicts the total filling on this site.

- **Third case:**
 The atoms Bi and In, initially occupying the sites 24f and 2a respectively (according to the first case), were redistributed in the nearby sites admitting, therefore, the atomic positions given in Table 2.

The final refinement seems to be in good agreement with the occupancy rates and the calculated distances (Tables 2 and 3).

Table 1. Experimental details and crystallographic data of Bi₀.⁹₅ In₀.₀₅ O₁.₅.

SG	a(Å)	angular range	Step of measure	Number of refined parameters	Rp	Rwp	Rexp	Rs (%)	Rf (%)
I23	10.1089(3)	10° <2θ< 70°	0.02°/min	89	21.6	25.5	18.8	4.99	4.46

Table 1. Refined atomic coordinates and thermal agitation factors of Bi₀.⁹₅ In₀.₀₅ O₁.₅.

Atomes	Symmetry	x	y	Z	Biso	Occ
Bi₁	24f	0.176(3)	0.3170(2)	0.0168(3)	1.151(3)	1.000
Bi₂	2a	0.005	0.005	0.005	0.200	0.008(9)
In	8c	0.000	0.000	0.000	0.200	0.010(7)
O₁	24f	0.139(3)	0.258(3)	0.506(4)	0.200	1.000
O₂	8c	0.201(4)	0.201(4)	0.201(4)	0.200	0.300
O₃	8c	0.888(4)	0.888(4)	0.888(4)	0.200	0.300
Table 2. Main interatomic distances (Å), angles (°) and bond valences in Bi$_{0.95}$In$_{0.05}$O$_{1.5}$.

	Bi$^{(1)}$	O$_{1}^{(1)}$	O$_{2}^{(1)}$	O$_{3}^{(1)}$	O$_{4}^{(2)}$	O$_{5}^{(3)}$	Valence
O1$^{(1)}$	2.42(3)	2.02(3)	2.89(4)	2.216(3)	2.535(2)	0.411	
O2$^{(1)}$	90(2)	2.52(3)	2.89(4)	2.216(3)	2.535(2)	0.314	
O3$^{(1)}$	71.3(2)	125(2)	2.02(3)	2.216(3)	2.535(2)	1.212	
O4$^{(2)}$	87.0(1)	149.6(2)	75.0(2)	2.216(3)	2.535(2)	0.719	
O5$^{(3)}$	174.9(2)	110.3(1)	84.5(1)	91.6(3)	2.535(2)	0.303	

	Bi$^{(2)}$	O$_{1}^{(3)}$	O$_{2}^{(3)}$	O$_{3}^{(3)}$	O$_{4}^{(3)}$	Valence
O1$^{(3)}$	2.039(9)	1.92503(3)	1.92503(3)	1.92503(3)	1.189	
O2$^{(3)}$	107.01(4)	1.92(5)	1.92503(3)	1.92503(3)	1.579	
O3$^{(3)}$	107.01(4)	107.01(4)	1.92(5)	1.92503(3)	1.579	
O4$^{(3)}$	107.01(4)	107.01(4)	107.01(4)	1.925(3)	1.579	

	In	O$_{1}^{(5)}$	O$_{2}^{(5)}$	O$_{3}^{(5)}$	O$_{4}^{(5)}$	Valence
O1$^{(5)}$	1.952(4)	1.95244(3)	1.95244(3)	1.95244(3)	0.874	
O2$^{(5)}$	109.4(7)	1.952(4)	1.95244(3)	1.95244(3)	0.874	
O3$^{(5)}$	109.4(7)	109.4(7)	1.952(4)	1.95244(3)	0.874	
O4$^{(5)}$	109.4(7)	109.4(7)	109.4(7)	1.952(4)	0.874	

The experimental, calculated X-ray diffraction Rietveld refinement are represented in Figure 1. patterns and differential spectrum obtained by using

Figure 1. Observed, calculated and difference powder XRD patterns of Bi$_{0.95}$In$_{0.05}$O$_{1.5}$.
3.2. Structure
The structure of Bi$_{0.95}$In$_{0.05}$O$_{1.5}$ (Bi$_{1.9}$In$_{0.1}$O$_3$) is illustrated in Figure 2.

Figure 2. Three-dimensional view of Bi$_{0.95}$In$_{0.05}$O$_{1.5}$

Note: We have simplified the structure representation by placing In/Bi2 on the same site.

Figure 3. The octahedral arrangement of Bi$_{3+}$ with five atoms of oxygen and the lone pair of bismuth

Figure 4. View of the In$_{3+}$ environment
Figure 5. View of the Bi$_2^{3+}$ environment

Figure 6. Three-dimensional environment of octahedron Bi$_1$O$_3$E and tetrahedron (In/Bi$_2$) O$_4$
The structure consists of a three-dimensional sequence of BiO$_3$E (E lone pair) polyhedra (Fig.3) stereochemically active of Bi$^{3+}$ sharing alternatively edges and vertices.

This lattice system contains tetrahedral cavities occupied by Bi$^{3+}$/ In$^{3+}$. The substitution of bismuth by indium of a smaller size will cause a decrease of lattice parameter a (γ Bi$_2$O$_3$ = 10.25Å) to 10.10Å.

Some changes have been observed in this structure in comparison with the ideal sillenite structure Bi$_{12}$MO$_{20}$ (Bi$_{12}$SiO$_{20}$) (Fig.7).

These modifications are manifested by a mutual displacement of Bi and In atoms and also oxygen atoms located in the equatorial plane of BiO$_3$E polyhedra (Fig. 6). Three types of polyhedra surrounding Bi$^{3+}$ (24f site) are envisaged.

- **Bi$_4$O$_3$E** environment (Fig.3) is a distorted polyhedra. Bi-O distances vary from 2.02 Å to 2.88Å; the average distance Bi-O is of the order of 2.43Å as established by Shannon 20 RBi$^{3+}$+ RO2=$1.03+1.40$ Å.

- **Bi$_2$O$_4$ and InO$_4$** polyhedra: This type of polyhedron is similar to that encountered for many compounds of sillenite structure 21. Bi$_3$ atom is surrounded by 4 oxygens at distances varying between 1.93Å and 2.04Å (Fig.5). The longest distance Bi-O leads to a modification of the lone pair E orientation on the one hand and the environment of the connected coordination polyhedra on the other hand.

The Bi/In environment is a regular tetrahedra, as shown in Figures 5 and 6, the In-O$_x$ distance is 1.95Å. The distribution of Bi$^{3+}$/In$^{3+}$ on the tetra 8c and 2a sites, respectively, generates the creation of anionic vacancies. If this bond is excluded, the environment Bi$_2$O$_3$ E will be surrounded by three oxygens and E. The lone pair E is directed to the missing vertex of the Bi$_2$O$_3$ E tetrahedra.

Furthermore, the existence of anionic and cationic vacancies in 8c site leads to changes in bond lengths within the polyhedra in Bi$_{12}$O$_{16}$ lattice. In Table 4, we have grouped the main distances obtained in certain sillenite phases (Bi$_{12}$GeO$_{20}$ and γBi$_2$O$_3$) compared to the distance of the new phase isolated in the Bi$_{12}$O$_{20}$ In$_{0.05}$ – MgO system.

Table 4. Comparison of bismuth coordination polyhedra in Bi$_{12}$GeO$_{20}$, γBi$_2$O$_3$ and Bi$_{10.95}$In$_{0.05}$O$_{1.5}$

	Bi$_2$GeO$_{20}$	γBi$_2$O$_3$	Bi$_{10.95}$In$_{0.05}$O$_{1.5}$
Bi-O1	2.072	2.045	2.023
Bi-O1	2.221	2.402	2.423
Bi-O1	2.622	2.456	2.523
Bi-O2	2.2141	2.2788	2.216
Bi-O3	2.6241	2.561	2.535

3.2. Raman spectroscopy analysis

Raman spectrum of the crystal Bi$_{10.95}$In$_{0.05}$O$_{1.5}$ is illustrated in Figure.8. We have also reported the Raman spectrum of Bi$_{12}$TiO$_{20}$ as a comparison (Table 5). The spectrum was recorded in 100-800 cm$^{-1}$ spectral range at room temperature. The attribution of Raman peaks was based on previous work 22. At first glance, the spectra are broadly comparable to the Bi$_{12}$TiO$_{20}$ spectrum with a slight difference in intensities. This difference seems to be due to the doping elements In and Mg on the one hand and the other hand, to the interaction of BiO$_3$ polyhedra with their counterparts In / Mg O$_x$.

Figure 7. Ideal sillenite structure (Bi$_{12}$MO$_{20}$) 19
Table 5. Attribution of observed Raman peaks for Bi$_{0.95}$ In$_{0.05}$ O$_{1.5}$ spectrums.

Peak’s number	Bi$_{0.95}$ In$_{0.05}$ O$_{1.5}$	Symmetry mode	Type of vibration 22,24
1	48.37	T	Bi, Ti and Mg vibrations
2	72.54	E	Stretching vibrations Bi, O$_2$ and O$_3$
3	117.24	E	Stretching vibrations Bi and O$_2$
4	132.70	A	Bi and O$_2$ vibration
5	159.66	A	Vibration of Bi and all O atoms
6	194.35	T	Stretching of Bi–O$_2$, deformation of Bi–O$_2$–Bi and weak Bi–O$_1$ rocking
7	245.006	A	Bi–O$_1$ rocking and weak stretching vibration O$_2$
8	301.82	A	Vibration of O$_2$ atoms and weak Bi–O$_1$ rocking
9	368.15	T	Deformation of O$_1$Bi-O$_2$ and O$_1$-Bi-O$_3$
10	521.74	A	Vibration of O$_1$ atoms
11	616.30	E	Stretching vibrations O$_3$ and weak Bi-O$_1$ and Bi-O$_2$ rocking
12	818.59	FTO	Antisymmetric stretching vibration of TiO$_4$ tetraedra

Indium oxide usually absorbs 800-300 cm$^{-1}$ radiation 23. In our compound (Fig.8), a peak at 818.59 cm$^{-1}$ is actually observed and therefore attributed to the In-O$_4$ tetrahedra.

The shoulder observed at about 368.15 cm$^{-1}$ is probably assigned to Bi-O-In bonds because the mass of bismuth is higher than that of indium. As a result, the oscillations of In-O$_4$ tetrahedra are small.

Peaks observed at 117.24 and 301.82 cm$^{-1}$ frequency are due to symmetrical vibrations of Bi-O$_1$/O$_2$.

Peaks below 616.30 cm$^{-1}$ are mainly attributed to Bi-O vibrations. The set of frequency attributions observed is shown in Table 5. In agreement with the crystalline structure, the MO$_4$ tetrahedra are surrounded by 12 Bismuth atoms, and thus the displacements of these tetrahedra are weak.

It seems that the IR mode relating to bismuth (high mass) must indeed move to the low frequencies; it is not indistinguishable from other lattice vibrations. The constant force Bi-O is therefore strong. Moreover, the frequencies ν3 of the InO$_4$ and BiO$_4$ tetrahedra are lowered approximately by 50 cm$^{-1}$ to those observed in ions. This effect is attributed to the existence of Bi-O-In bonds with tetrahedral sites by M^{3+}.

Figure 8. Raman spectrum of Bi$_{0.95}$ In$_{0.05}$ O$_{1.5}$
3.3. Infrared spectroscopy analysis
IR spectrum of the crystal Bi$_{0.95}$In$_{0.05}$O$_{1.5}$ is illustrated in the Figure. 9. The significant band frequencies of Bi$_{0.95}$ In$_{0.05}$ O$_{1.5}$ are given in Table 6. The bands observed between 467.49 and 633.34 cm$^{-1}$ are attributed to Bi-O vibration modes. The one that appeared at 831.91 cm$^{-1}$ is assigned to the Bi-O-Bi vibration modes.

![Figure 9. IR spectrum of Bi$_{0.95}$In$_{0.05}$O$_{1.5}$](image)

Table 6. band frequencies of Bi$_{0.95}$In$_{0.05}$O$_{1.5}$

Our work	Ref25	Attribution
Bi$_{0.95}$In$_{0.05}$O$_{1.5}$		
467.49	457	Vibration mode of Bi-O
527.26	535	
575.04	586	
633.34	663	
831.91	-	Vibration mode of Bi-O-Bi26

4. Conclusion
The results of structural refinements are in perfect agreement with those determined by16,17 on sillenite compounds. The structure is formed by a sequence of BiO$_5$ polyhedra linked together by edges. These polyhedra are connected by Bi/InO$_4$ tetrahedra via O$_3$ atoms.

The phases are non-stoichiometric on both the anion and cation sublattice. They are similar to γBi$_2$O$_3$ type sillenite phase. The substitution of Bi by In of a smaller size causes a lattice parameter decrease. Three regions are elucidated by the vibrational spectroscopic study. The low-frequency region is attributed to cations displacement, the second region, which corresponds to medium frequencies, is attributed to stretching vibration modes of Bi-O however, the high frequencies (observed in the third region) are assigned to the deformation bonds of Bi / In - O-Bi.

References
1- S. Iyyapushpam, S. T. Nishanthi, D. Pathinettam Padiyan, Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics, *J Alloys Compd*, 2014, 601, 85–87.
2- S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, Heterojunctioned BiOCl/Bi$_2$O$_3$, a new visible light photocatalyst, *J Catal*, 2009, 262, 144–149.
3- J. Zeng, J. Li, J. Zhong, S. Huang, W. Shi, J. He, Synthesis, characterization and solar photocatalytic performance of In$_2$O$_3$-decorated Bi$_2$O$_3$, *Mater Sci Semicond Process*, 2013, 16, 1808–1812.
4- J. Eberl, H. Kisch, Visible light photo-oxidations in the presence of α-Bi$_2$O$_3$, *Photochem Photobiol Sci*, 2008, 7, 1400.
5- H.-Y. Jiang, K. Cheng, J. Lin, Crystalline metallic Au nanoparticle-loaded α-Bi$_2$O$_3$
microrods for improved photocatalysis, Phys Chem Chem Phys, 2012, 14, 12114.

6- Z. Ai, Y. Huang, S. Lee, L. Zhang, Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation, J Alloys Compd, 2011, 509, 2044–2049.

7- I. F. Vasconcelos, M. A. Pimenta, A. S. B. Sombra, Optical properties of Bi2Ti3O9 (BSO) and Bi12TiO20 (BTO) obtained by mechanical alloying, J Mater Sci, 2001, 36, 587–592.

8- M. Mesrar, T. Lamcharfi, N.-S. Echatou, F. Abdi, F. Z. Abijayye, M. Haddad, Effect of barium doping on electrical and electromechanical properties of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3, MeditarrJChem, 2019, 8, 198.

9- H. AitOulahyane, L. Loubbidi, A. Chagroueni, L. Bourja, S. Villain, O. Ait Sidi Ahmed, A. Moussaoui, A. Menichi, Structural, Electrical and Morphological Properties of Materials Type Sillenite Phase Bi12TiO20, Chemistry Africa, 2019, 2, 57–66.

10- E. M. Levin, R. S. Roth, Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on the polymorphism of Bi2O3, J Res Natl Bur Stand Sect A, 1964, 68A, 197.

11- S. F. Radaev, V. I. Simonov, Yu. F. Kargin, Structural features of γ-phase Bi2O3 and its place in the sillenite family, Acta Crystallogr B Struct Sci, 1992, 48, 604–609.

12- S. F. Radaev, L. A. Muradyan, V. I. Simonov, Atomic structure and crystal chemistry of sillenites: Bi12(Bi3+0.5Fe3+0.5)O19.50 and Bi12(Bi3+0.5Zn3+0.5)O19.53, Acta Crystallogr B Struct Sci, 1991, 47, 1–6.

13- M. Valant, D. Suvorov, A Stoichiometric Model for Sillenites, Chem Mater, 2002, 14, 3471–3476.

14- A. Watanabe, S. Takenouchi, P. Conflant, J.-P. Wignacourt, M. Drache, J.-C. Bolvin, Preparation of a Nonstoichiometric Sillenite-Type Phase in the System Bi2O3-As2O3, Journal of Solid State Chemistry, 1993, 103, 57–62.

15- T. H. Noh, S. W. Hwang, J. U. Kim, H. K. Yu, H. Seo, B. Ahn, D. W. Kim, I. S. Cho, Optical properties and visible-light-induced photocatalytic activity of bismuth sillenites (Bi12XO20, X = Si, Ge, Ti), Ceram Int, 2017, 43, 12102–12108.

16- S. F. Radaev, V. I. Simonov, Y. F. Kargin, V. M. Skorikov, New data on structure and crystal chemistry of sillenites Bi12MsO20±δ, Eur J Solid State Inorg Chem, 1992, 29, 383–392.

17- J.-C. Champarnaud-Mesjard, B. Frit, A structural model for the Bi1−xCdxO1.5−x/2 (0 ≤ x ≤ 0.0256) sillenite-type solid solution, C R Acad Sci Paris, t 2, Série II c, 1999, 2, 369–374.

18- Program Full Prof.2k (Version 5.30 - Mar2012- ILL JRC).

19- Y. Hu, D. C. Sinclair, Relaxor-like Dielectric Behavior in Stoichiometric Sillenite Bi12SiO20, Chem Mater, 2013, 25, 48–54.

20- R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst A, 1976, 32, 751–767.

21- V. I. Burkov, V. S. Gorelik, A. V. Egorysheva, Y. F. Kargin, Laser Raman Spectroscopy of Crystals with the Structure of Sillenite, J Russ Laser Res, 2001, 22, 25.

22- A. V. Egorysheva, V. I. Burkov, Y. F. Kargin, V. G. Plotnichenko, V. V. Koltashev, E. D. Obraztsova, S. V. Terekhov, Atomic Structure Features of Sillenite Crystals as Probed by Raman Spectroscopy, Russ J Inorg Chem, 2005, 50, 238–245.

23- I.-J. Panneerdoss, S. J. Jeyakumar, S. Ramalingam, M. Jothibus, Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV–Visible investigation and optical analysis, Spectrochim Acta, Part A, 2015, 147, 1–13.

24- B. Mihailova, M. Gospodinov, L. Konstantinov, Raman spectroscopy study of sillenites. I. Comparison between Bi12(Si, Mn)O20 single crystals, Journal of Physics and Chemistry of Solids, 1999, 60, 1821–1827.

25- X. Zhu, J. Zhang, F. Chen, Study on visible light photocatalytic activity and mechanism of spherical Bi12TiO20 nanoparticles prepared by low-power hydrothermal method, Applied Catalysis B: Environmental, 2011, 102, 316–322.

26- Zs. Szaller, L. Kovács, L. Pöppfl, Comparative Study of Bismuth Tellurites by Infrared Absorption Spectroscopy, J Solid State Chem, 2000, 152, 392–396.