Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production

Wang, Mengge; Wei, Yongjun; Ji, Boyang; Nielsen, Jens

Published in:
Frontiers in Bioengineering and Biotechnology

Link to article, DOI:
10.3389/fbioe.2020.594081

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wang, M., Wei, Y., Ji, B., & Nielsen, J. (2020). Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Frontiers in Bioengineering and Biotechnology, 8, [594081]. https://doi.org/10.3389/fbioe.2020.594081
Advances in Metabolic Engineering of *Saccharomyces cerevisiae* for Cocoa Butter Equivalent Production

Mengge Wang¹, Yongjun Wei¹*, Boyang Ji²,³ and Jens Nielsen²,³,⁴

¹ Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China, ² Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden, ³ Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark, ⁴ BioInnovation Institute, Copenhagen, Denmark

Cocoa butter is extracted from cocoa beans, and it is mainly used as the raw material for the production of chocolate and cosmetics. Increased demands and insufficient cocoa plants led to a shortage of cocoa butter supply, and there is therefore much interesting in finding an alternative cocoa butter supply. However, the most valuable component of cocoa butter is rarely available in other vegetable oils. *Saccharomyces cerevisiae* is an important industrial host for production of chemicals, enzyme and pharmaceuticals. Advances in synthetical biology and metabolic engineering had enabled high-level of triacylglycerols (TAG) production in yeast, which provided possible solutions for cocoa butter equivalents (CBEs) production. Diverse engineering strategies focused on the fatty acid-producing pathway had been applied in *S. cerevisiae*, and the key enzymes determining the TAG structure were considered as the main engineering targets. Recent development in phytomics and multi-omics technologies provided clues to identify potential targeted enzymes, which are responsible for CBE production. In this review, we have summarized recent progress in identification of the key plant enzymes for CBE production, and discussed recent and future metabolic engineering and synthetic biology strategies for increased CBE production in *S. cerevisiae*.

Keywords: cocoa butter equivalents, *Saccharomyces cerevisiae*, metabolic engineering, synthetic biology, lipid biosynthesis

INTRODUCTION

Cocoa butter (CB) is mainly extracted from cocoa beans of cocoa tree (*Theobroma cacao*), and is usually used as food flavor and cosmetics additive (Jahurul et al., 2013). With the economic development, global demands of chocolate and other CB-based products increase. As the main sources of CB, the cocoa tree can only grow in the tropical area with limited planting area, and the large-scale cocoa farming would occupy the rain forest space and thus threat the global food supplies (Clough et al., 2009). Moreover, the pest damage and infectious disease of cocoa tree might reduce CB yields (Drenth and Guest, 2016). Therefore, CB supply is quite limited, and an alternative CB supply is of interest.

CB is mainly composed of three different kinds of triacylglycerols (TAG), including 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C₁₆:0–C₁₈:1–C₁₆:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C₁₆:0–C₁₈:1–C₁₈:0), and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C₁₈:0–C₁₈:1–C₁₈:0) (Lipp and Anklam, 1998; Vieira et al., 2015). SOS is the key CB flavor composition, and it is the most...
valuable composition in CB (Jahurul et al., 2013). Cocoa butter equivalents (CBEs) are lipids that have similar physicochemical properties as CB, and vegetable oils are often used as CBEs (Lipp and Anklam, 1998; Sonwai et al., 2014). Though the POP and POS contents are high in some vegetable oils, such as coconut oil and palm oil, the SOS content in vegetable oils is low (Lipp and Anklam, 1998). The properties of these vegetable oils-derived CBEs normally are different with CB, since they have lower melting temperature and the mouth feeling is different with CB (de Silva Souza and Block, 2018). Shea butter and a few other tropical butters are ideal CBEs (Zeng et al., 2020), but their supply is limited due to their limited distribution in the tropical area.

Yeasts are attractive choices for industrial-scale microbial oleochemical production (Zhao et al., 2016b; Spagnuolo et al., 2019). The accumulation of TAGs is a way for carbon storage in yeast, and the main TAGs of yeast are composed of C16 and C18 fatty acids (Klug and Daum, 2014). Many yeasts are generally recognized as safe (GRAS) species and can be used in the food and cosmetic industry, enabling yeasts as potential CBE production hosts. Several different wild-type yeast species had been used for CBE production (Wei et al., 2017b), and Saccharomyces cerevisiae is the most widely used microbial cell factories. However, no SOS was detected in the lipidome of S. cerevisiae BY4741 (Ejsing et al., 2009), and the SOS content of S. cerevisiae CEN.PK113-7D was low (Ejsing et al., 2009). Therefore, metabolic engineering and other synthetic biology strategies need to be applied to increase CBE production of S. cerevisiae, especially the SOS production. Metabolic engineering of S. cerevisiae for CBE or SOS production requires understanding the lipid biosynthetic pathway of S. cerevisiae and plants.

FATTY ACID BIOSYNTHESIS IN S. cerevisiae

In S. cerevisiae, glucose is converted into Glycerol-3-phosphate (G-3-P) through glycolysis, which is the precursor of TAG backbone. Part of G-3-P is further converted into pyruvate, which is used to synthesize acetyl-CoA by pyruvate dehydrogenase complex (PDHC) in mitochondria (Krivoruchko et al., 2015). Most acetyl-CoA generated in mitochondria is consumed in the tricarboxylic acid (TCA) cycle. In the cytosol, the pyruvate dehydrogenase (PDH) bypass converts pyruvate to acetyl-CoA via three steps catalyzed by pyruvate decarboxylase (PDC), acetaldehyde dehydrogenase and two acetyl-CoA synthetase (ACS1 and ACS2) (Figure 1A; Zhang et al., 2018).

In an initial step, acetyl-CoA is carboxylated by the addition of CO2 to malonyl-CoA with Acetyl-CoA carboxylase (Acc1p). Malonyl-CoA is used as building blocks, and acetyl-CoA is used as the precursor in the fatty acid biosynthesis. The fatty acid biosynthesis is catalyzed by fatty acid synthase, a multienzyme complex consisting of Fas1p and Fas2p. The fatty acid types of S. cerevisiae are determined by the genetic background, carbon source and other effects, which usually contain C16 and C18 fatty acids with one or none double bond (Wei et al., 2017b). The ACC1, FAS1, and FAS2 in wild-type yeast strains were replaced with same strong constitutive promoter in order to produce fatty acid consistently (Tang et al., 2015). The fatty acyl-CoA length is decided by the elongases of Elo1p, Elo2p, and Elo3p (Tehlivets et al., 2007). Usually, Elo1p controls medium length-chain fatty acid synthesis (C12 to C16), while Elo2p and Elo3p are responsible for long-chain fatty acid synthesis (up to C26) (Rossler et al., 2003; Wenning et al., 2017). Approximately 70–80% of the total fatty acids in yeasts are monounsaturated fatty acid in a wide range of cultivation conditions, which are synthesized from saturated fatty acyl-CoA precursors by the Δ9-fatty acid desaturase of Ole1p (Martin et al., 2007).

TAG BIOSYNTHESIS IN S. cerevisiae

Phosphatidic acid (PA) is a vital component in the acylglycerol lipid metabolism. PA is synthesized by two different pathways, the G-3-P pathway and the dihydroxyacetone phosphate (DHAP) pathways (Figure 1A). The conversion between G-3-P and DHAP can reversely be catalyzed by glycerol-3-phosphate dehydrogenase (Gpd1p and Gut2p). The acyl-CoA is transferred to the sn-1 position of glycerol-3-phosphate (G-3-P) to form 1-acetyl-G-3-P (LPA) which is mainly catalyzed with the enzyme of acyl-CoA:glycerol-sn-3-phosphate acyl-transferase (GPAT, Sct1p, and Gpt2p) or to DHAP which is catalyzed with acyl-CoA:DHAP acyltransferase (DHAPAT). G-3-P pathway is the main pathway for lysophosphatidic Acid (LPA) formation in S. cerevisiae (Kruger and Daum, 2014; Fakas, 2017). Subsequently, an acyl chain was added to the sn-2 position by lysophosphatidate acyl-transferase (LPAT, Slc1p, Ale1p, or Loa1p) to yield PA. PA can either be dephosphorylated to diacylglycerol (DAG) by phosphatidic acid phosphatase (Pah1p), or converts to phospholipids by Phosphatidate cytidylyltransferase (Cds1p). Phospholipids can further convert to TAGs via the acyltransferase Lro1p. DAG is the substrate for TAG synthesis by acyl-CoA:diacylglycerol acyl-transferase (DGAT) of Dga1p (Coleman and Lee, 2004; de Kroon et al., 2013). Besides, PA can also be used for other lipids synthesis, such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), and phosphatidylinositol (PI) (de Kroon et al., 2013). TAG can be degraded to free fatty acids (FFA) with triacylglycerol lipase (Tgl3p, Tgl4p, and Tgl5p). The FFA is further converted to acetyl-CoA via Faa1p, Faa4p, Pox1p and other enzymes in peroxisome (Figure 1A).

LIPID BIOSYNTHESIS IN PLANT

The de novo lipid biosynthetic pathway of plant and S. cerevisiae is different (Figure 1; Bates et al., 2013; Fakas, 2017). In plant, the major biochemical reactions for TAG biosynthesis includes plastid fatty acid synthesis step, acyl editing step and TAG synthesis step, which mainly occur in plastid, mitochondria and endoplasmic reticulum (ER). The precursors for plant fatty acid synthesis are Acetyl-CoA and malonyl-ACP, which are converted to fatty acids-ACP through catalysis by ketocyl-ACP synthase (KAS) and several other enzymes in plastid and mitochondria (Baud and Lepiniec, 2010; Bates et al., 2013). The fatty acid ACP are further converted to fatty acids via ACP thioesterase (PATA
In order to increase CBE production in backbone, two steric acids (C18:0), and one oleic acid (C18:1).

In S. cerevisiae, the current efforts focused on: (1) increasing fatty acids especially C18 compositions via directing metabolic flux toward lipid synthesis; (2) overexpression of acyl-CoA transferases specially for CBE synthesis.

The acetyl-CoA carboxylase Acc1p can convert acetyl-CoA to malonyl-CoA, and the ACC1 expression level affects fatty acid composition in S. cerevisiae. By overexpression of ACC1, FAS1, and FAS2, TAG production increased four-fold over the control strain (Runguphan and Keasling, 2014). In another study, ACC1 variant ACC1S659A S1157A (ACC1***) can abolish snf1 regulation and increased fatty acid production (Shi et al., 2014). Expression of ACC1*** can increase TAG production, especially increased C18 composition and decreased C16:1 composition (Bergenholm et al., 2018). The Elo1p is responsible for the elongation of C16 and C18 fatty acids, while Elo2p and Elo3p are responsible for very long chain fatty acids biosynthesis. The overexpression of ELO1 increase C18:1 titer. However the TAG content didn’t change. Combination of engineering ACC1**, OLE1 and ELO1 significantly increases TAG content and SOS content 5.8-fold and 48-fold, respectively (Bergenholm et al., 2018).

Several yeast fatty acid production platforms for oleochemistry have been established (Supplementary Table S1; Li et al., 2014; Runguphan and Keasling, 2014; Leber et al., 2015; Zhou et al., 2016a,b; Dai et al., 2018; Ferreira et al., 2018a). Strengthening fatty acid biosynthetic pathway and weakening the degradation pathway increased C18 compositions and decreased C16:1 composition, and the final FFA titer reached 10.4 g/L (Zhou et al., 2016b). Further relieving the side-pathway competition by harnessing yeast peroxisomes increased the production of fatty-acid-derived chemical of fatty alcohols, alkanes and olefins up to seven-fold (Zhou et al., 2016a). By simplifying the lipid metabolic network with the redirection of fatty acid metabolism and the reduction of feedback regulation, a strain with 129 mg.g DCW−1 free fatty acid production was achieved (Ferreira et al., 2018b). Moreover, by global rewiring of cellular metabolism and adaptive laboratory evolution, the Crabtree effect of S. cerevisiae can be abolished, which is help for the acetyl-CoA derived product accumulation (Dai et al., 2018). The S. cerevisiae strain was reprogrammed from alcoholic fermentation to lipogenesis, and the final FFA titer reached 33.4 g/L (Yu et al., 2018). Overexpression of ACC1**, PAH1 and DGA1, and disruption of TGL3, TGL4, TGL5, ARE1, POX1, and PXA1, lead to the final TAG accumulation of 254 mg.g DCW−1, reaching 27.4% of the maximum theoretical yield in S. cerevisiae, which is the highest TAG titer reported in S. cerevisiae (Ferreira et al., 2018a).

GPAT, LPAT, and DGAT are the key enzymes in CBE/SOS production (Maraschin et al., 2019). The identification of plant SOS biosynthetic genes and their expression in S. cerevisiae can enhance SOS production (We et al., 2017a, 2018). There are two GPAT (Gat1p and Gat2p) and one DHAPAT in S. cerevisiae. The double deletions of both Gat1p (also known as GPT2) and Gat2p (also known as SCT1) leads to yeast lethality, showing that Gat1p and Gat2p are essential in TAG synthesis (Zheng and Zou, 2001). The acyl-specificity of Gat1p is diverse, as it can use a broad range of fatty acids as substrates; while the Gat2p displayed preference toward C16 fatty acids, suggesting that Gat1p and Gat2p can’t be used to synthesize large amount of SOS directly in S. cerevisiae (Zheng and Zou, 2001). Plants usually contains three different types of GPAT genes, which are located in the plastid, mitochondria or cytoplasm (Yang et al., 2012). Among the 10 GPAT genes of Arabidopsis thaliana, GPAT-4, -6 and -8 genes strongly preferred C16:0 and C18:1 ω-oxidized acyl-CoAs over other substrates, providing hints that these GPAT genes might be responsible for SOS production in plants (Yang et al., 2012).

LPAT (EC 2.3.1.51) is believed to have the highest substrate specificity. In S. cerevisiae, LPATs were identified to acylate LPA with a range of different acyl-CoAs, including C18:1, C22:1, and C24:0-CoA. Introducing LPAT genes from S. cerevisiae into Arabidopsis resulted in 8% to 48% increase of very-long-chain fatty in TAGs, showing that yeast LPAT genes would not be suitable for CBE production (Zou et al., 1997). Diverse LPATs that acylate the sn-2 of LPA to form PA have been identified, and eight LPAT genes were found in cocoa genome, which can
be classified into three different clusters based on amino acid identities (Argout et al., 2011). Expression of some LPAT genes can significantly increase TAG production in S. cerevisiae (Wei et al., 2017a, 2018).

As previously described, two main pathways are responsible for TAG production from DAG in S. cerevisiae. Phospholipid:diacylglycerol acyltransferase (PDAT, EC 2.3.1.158) uses PLs as acyl donors, and it distributes in...
yeast and plants (Liu et al., 2012). DGAT catalyzes the last step of TAG biosynthesis from DAG and acyl-CoA. DGAT is an acyl-CoA dependent enzyme, which catalyzes the final and only committed step of the Kennedy pathway. DGAT is essential for TAG biosynthesis in seed. Overexpression of the yeast diacylglycerol acyltransferase (DGAl) can lead to TAG production increase in the Δsnf2 disruptant of S. cerevisiae (Kamisaka et al., 2007). Two different families of DGAT1 and DGAT2 are available in yeast, plants, and DGATs from different species show diverse substrate preferences (Yen et al., 2008). For example, in A. thaliana, DGAT1 displays preference to C16:0, while DGAT2 displays preference to C16:1 (Aymé et al., 2014). The Overexpression of four DGAT1 genes from Brassica napus in S. cerevisiae increased TAG biosynthesis (Greer et al., 2015). Moreover, expression of Arabidopsis DGAT gene in yeast increased 200–600 folds of yeast DGAT activity, which can lead to 3–9 folds TAG increase, showing DGAT might be a useful target for CBE accumulation in S. cerevisiae (Bouvier-Navé et al., 2000).

Global genomic and transcriptomic analyses identified thirteen potential GPATs, eight potential LPATs, and two DGATs in T. cacao (Wei et al., 2017a, 2018). The overexpression of single or multiple cocoa genes in S. cerevisiae increased CBE production. The combinational expression of GPAT, LPAT, and DGAT genes showed 134-fold production of TAG over the control strain, showing these genes from cocoa have great potential for CB production (Supplementary Table S1; Wei et al., 2018). Shea butter contains high-level SOS, and their GPATs, LPATs, and DGATs had been identified through the transcriptomics analyses and the functional heterologous expression in S. cerevisiae (Wei et al., 2019). In the future, mining more specific and efficient enzymes for CBE production would help to increase CBE composition in S. cerevisiae.

PLANT GENE MINING AND THEIR APPLICATIONS FOR INCREASED CBE PRODUCTION

With the development of sequencing technologies, huge amounts of plant genomic or transcriptomic data had been generated (Leebens-Mack et al., 2019). The strategy to identify novel key CBE or other natural product biosynthetic genes had been extensively developed and applied (Wang et al., 2015). In general, plant samples were collected, and genome and/or transcriptome were obtained by next-generation or third generation sequencing technologies. The genome or transcriptome were assembled and annotated (Figure 2A). Plants usually harbor several enzymes for one biochemical reaction, therefore, quick identification of key enzymes for CBE production are essential. For CBE production, the potential genes involved in TAG biosynthesis can be identified based on the similarity or phylogeny (Wei et al., 2017a). Sequence similarity network, which clustered sequences based on pairwise similarity can be applied to classify sequences into subgroups. While phylogenetic analysis can give more direct insights into the relationships between newly identified genes and characterized genes. Based on phylogeny, potential CBE production genes can be identified via their neighboring characterized genes (Figure 2B). Several GPATs, LPATs, and DGATs had been identified from multi-omics data with such strategy (Wei et al., 2017a, 2018). In previous studies, cocoa GPAT, LPAT, and DGAT genes that are similar to the characterized genes or different from the known enzymes with C16 as preferred substrates were selected for experimental measurement in yeast (Wei et al., 2017a). The identified efficient/potential genes can then be used for further metabolic engineering or synthetic biology modification of S. cerevisiae. During the typical metabolic engineering cycle of Design-Build-Test-Learn (DBTL), lipid biosynthetic pathway can be redesigned and rewired (Nielsen and Keasling, 2016; Ko et al., 2020; Figure 2C). The designed pathway can be further built with advanced synthetic biology and systems biology tools to generate strains with high-level CBE production. When the TAG/CBE titer, rate and yield (TRY) of the engineered strains are high enough, they will be used for further large-scale fermentation; if the TRY are low, novel engineering strategies should be used for next round strain optimization until high TRY are obtained (Nielsen and Keasling, 2016; Ko et al., 2020).

CONCLUSION AND PERSPECTIVE

Based on the high-fatty acid production S. cerevisiae platform strains (Ferreira et al., 2018a; Yu et al., 2018), metabolic engineering to increase specific TAG productivity by introducing efficient enzymes of GPAT, LPAT, and DGAT would benefit CBE production. With the development of DNA sequencing technology, the whole-genome sequencing and transcriptomics of numerous plants have enabled systematic analysis of TAG and lipid production pathways in different plant species, which has provided the basis for future screening of efficient GPAT/LPAT/DGAT candidates (Cheng et al., 2018). By integrating the transcriptomics and lipidomics data, it will help to identify specific enzymes engaged in the production of targeted TAGs. Furthermore, in terms of engineering yeast, the enhancement of acetyl-CoA and malonyl-CoA pool by disruption of the PDC genes or engineering key fatty acid biosynthetic genes (ACCI, FAA1, FAA4, FAS, et al.), enhancing/balancing cofactor of NADPH supply, down-regulating competing pathways, harnessing yeast sub-organelle metabolism will increase CBE production in engineered S. cerevisiae (Shi et al., 2014; Zhou et al., 2016a,b; Dai et al., 2018; Yan and Pfleger, 2020). The TAG lipases encoded by TGL3 and TGL4 genes had been confirmed to involve in the TAG degradation (Dulermo et al., 2013). The blockage of TAG entering into the degradation pathways could also be an efficient strategy. Moreover, appropriate low-cost substrates (such as xylose and other lignocellulose components) can also be used to reduce microbial CBE production cost in the future (Hou et al., 2017). The adaptive laboratory evolution might help to increase strain adaptation to recalitrant substrates, in order to produce high-level fatty acid-derived chemicals from recalitrant substrates or one carbon source of CO2/CH4, which might be
applied in the future CBE production (Pereira et al., 2019; Cao et al., 2020; Liu et al., 2020; Zhu et al., 2020). Considering oleaginous yeasts can produce high-level lipids naturally (Wei et al., 2017b), metabolic engineering of selected oleaginous yeasts can be an alternative choice in the future (Kamineni and Shaw, 2020; Wang et al., 2020).

Bioconversion of CBE using engineered *S. cerevisiae* is one promising way to satisfy growing CB demand. Efficient genes of GPATs, LPATs, and DGATs encoding for SOS production from oil crops can be screened using both computational and experimental approaches. The expression of these lipid biosynthetic genes in *S. cerevisiae* chasis with high-level C18:0- and C18:1-production ability would strongly increase the CBE production. Metabolic engineering and rewiring have enabled turning *S. cerevisiae* from alcoholic fermentation to lipogenesis, and further systems biology, synthetic biology, evolutionary engineering and other advanced systems metabolic engineering strategies might further increase CBE production in *S. cerevisiae*.

REFERENCES

Argout, X., Salle, J., Aury, J.-M., Guitlinan, M. J., Droc, G., Gouzy, J., et al. (2011). The genome of *Theobroma cacao*. Nat. Genet. 43, 101–108. doi: 10.1038/ng.736
Aymé, L., Baud, S., Dubreucq, B., Joffre, F., and Chardot, T. (2014). Function and localization of the *Arabidopsis thaliana* diacylglycerol acyltransferase DGAT2 expressed in yeast. *PLoS One* 9:e92237. doi: 10.1371/journal.pone.092237
Bates, P. D., Stynne, S., and Ohlrogge, J. (2013). Biochemical pathways in seed oil synthesis. *Curr. Opin. Plant Biol.* 16, 358–364. doi: 10.1016/j.pbi.2013.02.015
Baud, S., and Lepiniec, L. (2010). Physiological and developmental regulation of seed oil production. *Prog. Lipid Res.* 49, 235–249. doi: 10.1016/j.plipres.2010.01.001
Bergenholtm, D., Gossing, M., Wei, Y., Siewers, V., and Nielsen, J. (2018). Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids. *Biotechnol. Bioeng.* 115, 932–942. doi: 10.1002/bit.26518
Bouvier-Navé, P., Benveniste, P., Oelkers, P., Sturley, S. L., and Schaller, H. (2000). Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. *Eur. J. Biochem.* 267, 85–96. doi: 10.1046/j.1432-1327.2000.00961.x
Cao, M., Tran, V. G., and Zhao, H. (2020). Unlocking nature’s biosynthetic potential by directed genome evolution. *Curr. Opin. Biotechnol.* 66, 95–104. doi: 10.1016/j.copbio.2020.06.012
Cheng, S., Melkonian, M., Smith, S. A., Brockington, S., Delaux, P. M., et al. (2018). 10KP: a phylodiverese genome sequencing plan. *Gigascience* 7, 1–9. doi: 10.1093/gigascience/giy013
Clough, Y., Faust, H., and Tscharntke, T. (2009). Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. *Conserv. Lett.* 2, 197–205. doi: 10.1111/j.1755-263X.2009.00072.x
Coleman, R. A., and Lee, D. P. (2004). Enzymes of triacylglycerol synthesis and their regulation. *Prog. Lipid Res.* 43, 134–176. doi: 10.1016/S0163-7827(03)00051-1
Dai, Z., Huang, M., Chen, Y., Siewers, V., and Nielsen, J. (2018). Global rewiring of cellular metabolism renders Saccharomyces cerevisiae crabtree negative. *Nat. Commun.* 9, 3059–3059. doi: 10.1038/s41467-018-05409-9
de Kroon, A. I., Rijken, P. J., and De Smet, C. H. (2013). Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. *Prog. Lipid Res.* 52, 374–394. doi: 10.1016/j.plipres.2013.04.006
de Silva Souza, C., and Block, J. M. (2018). Impact of the addition of cocoa butter equivalent on the volatile compounds profile of dark chocolate. *J. Food Sci. Technol.* 55, 767–773. doi: 10.1007/s13197-017-2899-6
Drenth, A., and Guest, D. I. (2016). Fungal and oomycete diseases of tropical tree fruit crops. *Annu. Rev. Phytopathol.* 54, 373–395. doi: 10.1146/annurev-phyto-080615-095944

AUTHOR CONTRIBUTIONS

JN and YW conceived the study. MW, BJ, and YW drafted the manuscript. JN revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (No. 31800079).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fbioe.2020.594081/full#supplementary-material
Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y., and Nielsen, J. (2015). Microbial acetyl-CoA metabolism and metabolic engineering. *Metab. Eng.* 28, 28–42. doi: 10.1016/j.ymben.2014.11.009

Leber, C., Bolson, P., Fernandez-Moya, R., and Da Silva, N. A. (2015). Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in *Saccharomyces cerevisiae*. *Metab. Eng.* 28, 54–62. doi: 10.1016/j.ymben.2014.11.006

Leebens-Mack, J. H., Barker, M. S., Carpenter, E. J., Deyholos, M. K., Gitzendanner, M. A., Graham, S. W., et al. (2019). One thousand plant transcriptions and the phylogenomics of green plants. *Nature* 574, 679–685. doi: 10.1038/s41586-019-1693-2

Li, X., Guo, D., Cheng, Y., Zhu, F., Deng, Z., and Liu, T. (2014). Overproduction of fatty acids in engineered *Saccharomyces cerevisiae*. *Biotechnol. Bioeng.* 111, 1841–1852. doi: 10.1002/bit.25239

Lipp, M., and Anklam, E. (1998). Review of cocoa butter and alternative fats for use in chocolate – Part A. Compositional data. *Food Chem.* 62, 73–97. doi: 10.1016/S0308-8146(97)00160-X

Liu, Q., Siloto, R. M. P., Lehner, R., Stone, S. J., and Weselake, R. J. (2012). *Saccharomyces cerevisiae* genes involved in very-long-chain fatty acid synthesis. *J. Am. Oil Chem. Soc.* 92, 1579–1592. doi: 10.1007/s11746-015-1278-7

Wang, J., Ladesma-Amaro, R. W., Wei, Y., Ji, B., and Ji, X.-J. (2020). Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica – a review. *Bioreour. Technol.* 313:123707. doi: 10.1016/j.biortech.2020.123707

Wang, P., Wei, Y., Fan, Y., Liu, Q., Wei, W., Yang, C., et al. (2015). Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. *Metab. Eng.* 29, 97–105. doi: 10.1016/j.ymben.2015.03.003

Wei, Y., Bergenholtm, D., Gossing, M., Siewers, V., and Nielsen, J. (2018). Expression of cocoa genes in *Saccharomyces cerevisiae* improves cocoa butter production. *Microb. Cell Fact.* 17:11. doi: 10.1186/s12934-018-0866-2

Wei, Y., Gossing, M., Bergenholtm, D., Siewers, V., and Nielsen, J. (2017a). Increasing cocoa butter-like lipid production of *Saccharomyces cerevisiae* by expression of selected cocoa genes. *AMB Express* 7, 34–34. doi: 10.1186/s13568-017-0335-3

Wei, Y., Ji, B., Siewers, V., Xu, D., Halkier, B. A., and Nielsen, J. (2019). Identification of genes involved in shea butter biosynthesis from *Vitellaria paradoxa* fruits through transcriptomics and functional heterologous expression. *Appl. Microbiol. Biotechnol.* 103, 3727–3736. doi: 10.1007/s00253-019-09720-3

Wei, Y., Siewers, V., and Nielsen, J. (2017b). Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. *Appl. Microbiol. Biotechnol.* 101, 3577–3585. doi: 10.1007/s00253-017-8126-7

Wenning, L., Yu, T., David, F., Nielsen, J., and Siewers, V. (2017). Establishing very long–chain fatty alcohol and wax ester biosynthesis in *Saccharomyces cerevisiae*. *Biotechnol. Bioeng.* 114, 1025–1035. doi: 10.1002/bit.26220

Yan, Q., and Pfleger, B. F. (2020). Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. *Metab. Eng.* 58, 35–46. doi: 10.1016/j.ymen.2019.04.009

Yang, W., Simpson, J. P., Liebigson, Y., Beisson, F., Pollard, M., and Ohirage, J. B. (2012). A land-plant-specific Glycerol-3-phosphate Acyltransferase family in *Arabidopsis* substrate specificity, sn-2 preference and evolution. *Plant Physiol.* 160, 638–652. doi: 10.1104/pp.112.201996

Yen, C. L., Stone, S. J., Koliwad, S., Harris, C., and Farese, R. V. Jr. (2008). Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. *J. Lipid Res.* 49, 2283–2301. doi: 10.1194/jlr.R800018-JLR200

Yu, T., Zhou, Y. J., Huang, M., Liu, Q., Pereira, R., David, F., et al. (2018). Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. *Cell* 174, 1549–1558.e1514. doi: 10.1016/j.cell.2018.07.013

Zeng, J., Shen, J., Wu, Y., Liu, X., Deng, Z. Y., and Li, J. (2020). Effect of adding shea butter stearin and emulsifiers on the physical properties of cocoa butter. *J. Food Sci.* 85, 972–979. doi: 10.1111/1750-3841.15076

Zhang, Y., Nielsen, J., and Liu, Z. (2018). Metabolic engineering of *Saccharomyces cerevisiae* for production of fatty acid-derived hydrocarbons. *Biotechnol. Bioeng.* 115, 2139–2147. doi: 10.1002/bit.26738

Zheng, Z., and Zou, J. (2001). The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in *Saccharomyces cerevisiae*. *J. Biol. Chem.* 276, 41710–41716. doi: 10.1074/jbc.M104729400

Zhou, Y. J., Bujs, N. A., Zhu, Z., Gomez, D. O., Boomsombouti, A., Siewers, V., et al. (2016a). Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. *J. Am. Chem. Soc.* 138, 15368–15377. doi: 10.1021/jacs.6b07394

Zhou, Y. J., Bujs, N. A., Zhu, Z., Qin, J., Siewers, V., and Nielsen, J. (2016b). Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. *Nat. Commun.* 7:11709. doi: 10.1038/ncomms1709

Zhu, Z., Hu, Y., Teixeira, P. G., Pereira, R., Chen, Y., Siewers, V., et al. (2020). Multidimensional engineering of *Saccharomyces cerevisiae* for efficient synthesis of medium-chain fatty acids. *Nat. Catal.* 3, 64–74. doi: 10.1038/s41770-017-0333-1

Zou, J., Katavic, V., Glibin, E. M., Barton, D. L., Mackenzie, S. L., Keller, W. A., et al. (1997). Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. *Plant Cell* 9, 909–923. doi: 10.1105/tpc.9.6.909

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Copyright © 2020 Wang, Wei, Ji and Nielsen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.