Extrapolation of IAPWS-IF97 data: The liquid and gas densities on the saturation line near the critical point of H$_2$O

V F Ochkov1, V A Rykov2, S V Rykov2, E E Ustyuzhanin1 and B E Znamensky1

1 National Research University Moscow Power Engineering Institute, Krasnokazarmennaya 14, Moscow 111250, Russia
2 ITMO University, Kronverkskiy 49, Saint-Petersburg 197101, Russia

E-mail: ochkov@twt.mpei.ac.ru

Abstract. An analysis of some literary sources is made in the work. These sources describe the liquid density (ρ_l) and the gas density (ρ_g), which are related to the saturation line near the critical point of H$_2$O. In the analysis, we have considered analytical forms of (i) an equation of state (EOS) that is included in a formulation IF95 and recommended by IAPWS and (ii) $\rho_l(T)$ and $\rho_g(T)$ equations among them Anisimov models they are valid in a narrow temperature interval. We have analyzed ρ_l, ρ_g, T data included in tables IF97. A combined scaling model is elaborated in the work. This model has a modern structure and meets the scaling theory of critical phenomena. We have got $\rho_l(T)$ and $\rho_g(T)$ equations on the basis of the combined scaling model. Our analysis shows that these equations satisfactorily reproduce ρ_l, ρ_g, T data, which are related to tables IF97 and valid in a wide temperature interval. These equations have been used to generate ρ_l, ρ_g, T data and to compare them with the results, which are determined the basis of analytical forms including EOS IF95. Numerical data are got in some extrapolation region near the critical temperature.

1. Introduction

These are several sources, which describe the liquid density (ρ_l) and the gas density (ρ_g) related to the saturation line near the critical point of H$_2$O. In our analysis of the sources, we have considered two analytical forms:

- an equation of state (EOS) that is named as EOS IF95 and included in a formulation IF95 [1]; this EOS is recommended by the International Association for the Properties of Water and Steam (IAPWS) for scientific investigation;
- $\rho_l(\tau)$ and $\rho_g(\tau)$ equations including Anisimov models [2], where $\tau = (T_c - T)/T_c$ is a relative temperature.

We have analyzed tabulated ρ_l, ρ_g, T data among them:

- data [3], which are included in tables IF97 and recommended by IAPWS;
- results presented in works of Anisimov et al [2] and Alexandrov et al [4, 5].
Table 1. The parameters of models (1) and (2).

ρ_l, kg/m3	T_c, K	α	β	Δ	B_{s0}	B_{s1}	B_{d0}	B_{d1}
322.778	647.067	0.11	0.325	0.5	1.975	0.59	-1.48	4.3

EOS IF95 have an analytical form. So, at first, this EOS can satisfactorily reproduce ρ_l, ρ_g, T data related to a regular part of the thermodynamic surface. At second, this EOS does not follow ST and has no opportunity to describe a singular behavior of row functions, for example, $d\rho_l/d\tau \to \infty$ when $\tau \to 0$, $df_d/d\tau \to \infty$ when $\tau \to 0$, here $f_d = (\rho_l + \rho_g)(2\rho_c)^{-1} - 1$ is the mean diameter. At third, this EOS allowed us to determine ρ_l, ρ_g, T data in the interval $10^{-5} < \tau < 10^{-1}$ or in the critical region related to the phase transition from the liquid to the vapor. Our analysis has shown that the accuracy of these numerical data is lower than the accuracy of the data, which are calculated in the regular region.

This is an interesting problem to improve the accuracy of EOS in a wide range of temperatures and pressures, including the critical region. The problem of EOS designing has been considered in some works e.g. [1, 3, 6–13]. Authors of [6–9, 13] have elaborated EOSs, which are related to some metals. In the case, the critical points are located at high temperatures and high pressures. Authors of [11, 12] have considered a singular behavior, which is related to functions $[\rho_l(\tau), \rho_g(\tau), f_d(\tau), \ldots]$ and connected with EOS of Al, Cu and U near the critical point.

Anisimov models are related to functions $[\rho_l(\tau), \rho_g(\tau), f_d(\tau), \ldots]$ and have been developed in 1990 [2]. These models include critical indices ($\alpha_1 = 0.109$, $\beta_1 = 0.325$) and can be written in the form

$$f_s = B_{s0}\tau^{\beta_1} + B_{s1}\tau^{\beta_1+\Delta},$$

$$f_d = B_{d0}\tau^{1-\alpha_1} + B_{d1}\tau,$$

where $f_s = (\rho_l - \rho_g)(2\rho_c)^{-1}$ is the order parameter, $\Delta = 0.5$ is the correction included in the first non-asymptotic member [14], $C = (B_{si}, B_{di})$ are the coefficients got by a statistical treatment of the input ρ_l, ρ_g, T data, ρ_c, T_c are the critical parameters taken as literature data.

Equations (1) and (2) include a linear component and scaling components with indices α_1 and β_1. These models follow to the scaling theory of critical phenomena (ST) and are characterized by the fact that they comprise singular components, for example, $B_{s0}\tau^{\beta_1}$; it means that the derivative $df_s/d\tau$ is singular ($df_s/d\tau \approx B_{s0}\tau^{\beta_1-1} \to \infty$ when $\tau \to 0$). These models are based on the density data accumulated up to 1980 in the interval $\tau = 0.002$–0.03. Their parameters are placed in table 1.

We have planned in the investigation to elaborate a combined scaling model that follow some border conditions:

(i) the model is connected with properties (ρ_l, ρ_g, f_d, f_s) and includes critical characteristics $D = (T_c, \rho_c, \alpha, \beta \ldots)$ and coefficients $C = (B_{si}, B_{di})$;

(ii) its structure is modern, correlated with ST and contains scaling components;

(iii) there are regular components in this model; they allow us to increase the applicability area up to $\tau \approx 0.1$ in a comparison with the area of models (1) and (2);

(iv) D characteristics and C coefficients are calculated on the basis of a statistical treatment that include reliable ρ_l, ρ_g, T data in the area $10^{-3} < \tau < 0.1$.

2. A choice of scaling models for f_d and f_s

An improvement of models (1) and (2) has been made in several steps. The first one is related to Anisimov models [15] those have been developed in 2007 and written in the form

$$ f_s = B_{d0}\tau^{\beta_1} + B_{s1}\tau^{\beta_1+\Delta}, $$

$$ f_d = B_{d0}\tau^{1-\alpha_1} + B_{d1}\tau + B_{d2}\tau^{2\beta_1}. $$

Equation (4) meets the following conditions:

- it involves an additional singular component in a comparison with a structure of (2);
- the indices $D = (\alpha_1, \beta_1)$ follow the inequality: $1 > 1 - \alpha_1 > 2\beta_1$;
- the second singular component is dominant over other components in some temperature region, $0 < \tau < \tau_A$.

In the interval $0 < \tau < \tau_A$ equations (3), (4) can be written as

$$ f_s = B_{d0}\tau^{\beta_1}, \quad f_d = B_{d2}\tau^{2\beta_1}. $$

Equations (4), (5) are characterized by a fact that $df_d/d\tau$ is singular ($df_d/d\tau \approx B_{d2}\tau^{2\beta_1-1}$, when $\tau \rightarrow 0$).

Models (4), (5) contain an additional scaling component $B_{d2}\tau^{2\beta_1}$ that is discussed since 2003 in few studies including [11, 12, 15–18]. Authors of [18] have got models, which work in the asymptotic region of T_c and have a form

$$ f_s = B_{d0}\tau^{\beta_3}, \quad f_d = B_{d0}\tau^{2\beta_3}, $$

where $2\beta_3 = 1 - v < 1$.

It is shown in [18] that models (6) follow such criteria as

- $B_{d0} > 0$, $B_{s0} > 0$;
- f_d includes a linear component if $v = 0$;
- f_d includes a singular component, $B_{d0}\tau^{2\beta_3}$, and does not contain a linear member, if the condition $0 < v < 1$ takes place, for example, $\beta_3 = 1/3$ if $v = 1/3$.

Numerical data on parameters (B_{di}) (4) are obtained in [15] for multiple substances including SF$_6$ and N$_2$ in the range, $1 \times 10^{-4} < \tau < 6 \times 10^{-2}$; it can be seen that

- the value of B_{d2} depends on substances and can be positive (SF$_6$ etc) and negative (N$_2$ etc);
- B_{d0}, B_{d2} coefficients have the opposite signs;
- the authors of [15] have attracted the input ρ_1, ρ_0, T data to estimate values of (B_{d1}, B_{s1}); some information on the heat capacity, C_v, and the saturation pressure, P, are also used;
- values of $D = (\rho_c, T_c)$ are selected as the data taken from the literature.

Authors of [17] have proposed models, which operate in an asymptotic region of T_c for SF$_6$ and written as

$$ f_s = B_{d0}\tau^{\beta_4} + B_{s1}\tau^{\beta_4+\Delta}, \quad f_{d \text{ opt}} = B_{d0}\tau^{1-\alpha_4} + B_{d \text{ exp}}\tau^{2\beta_4}, $$

where $D = (T_c, \rho_c, \alpha_4, \beta_4, B_{d0}, B_{d0}, B_{d \text{ exp}})$ are the characteristics determined on a basis of the experimental ρ_1, ρ_0, T data placed in the interval $2 \times 10^{-4} < \tau < 0.01$, $\alpha_4 = 0.1099, \beta_4 = 0.3474, B_{d0} = 0.4695, B_{d \text{ exp}} = 0.0518$.

The second step of the modernization is connected with combined scaling models [19] written in the forms

$$ f_s = B_{d0}\tau^{\beta_4} + B_{s1}\tau^{\beta_4+\Delta} + B_{d0}\tau^{\beta_4+2\Delta} + B_{s3}\tau^2 + B_{s4}\tau^3, $$

$$ f_d = B_{d0}\tau^{1-\alpha_4} + B_{d1}\tau^{1-\alpha_4+\Delta} + B_{d2}\tau^{1-\alpha_4+2\Delta} + B_{d3}\tau^2 + B_{d4}\tau^3, $$

Equation (4) meets the following conditions:

- it involves an additional singular component in a comparison with a structure of (2);
- the indices $D = (\alpha_1, \beta_1)$ follow the inequality: $1 > 1 - \alpha_1 > 2\beta_1$;
- the second singular component is dominant over other components in some temperature region, $0 < \tau < \tau_A$.

In the interval $0 < \tau < \tau_A$ equations (3), (4) can be written as

$$ f_s = B_{d0}\tau^{\beta_1}, \quad f_d = B_{d2}\tau^{2\beta_1}. $$

Equations (4), (5) are characterized by a fact that $df_d/d\tau$ is singular ($df_d/d\tau \approx B_{d2}\tau^{2\beta_1-1}$, when $\tau \rightarrow 0$).

Models (4), (5) contain an additional scaling component $B_{d2}\tau^{2\beta_1}$ that is discussed since 2003 in few studies including [11, 12, 15–18]. Authors of [18] have got models, which work in the asymptotic region of T_c and have a form

$$ f_s = B_{d0}\tau^{\beta_3}, \quad f_d = B_{d0}\tau^{2\beta_3}, $$

where $2\beta_3 = 1 - v < 1$.

It is shown in [18] that models (6) follow such criteria as

- $B_{d0} > 0$, $B_{s0} > 0$;
- f_d includes a linear component if $v = 0$;
- f_d includes a singular component, $B_{d0}\tau^{2\beta_3}$, and does not contain a linear member, if the condition $0 < v < 1$ takes place, for example, $\beta_3 = 1/3$ if $v = 1/3$.

Numerical data on parameters (B_{di}) (4) are obtained in [15] for multiple substances including SF$_6$ and N$_2$ in the range, $1 \times 10^{-4} < \tau < 6 \times 10^{-2}$; it can be seen that

- the value of B_{d2} depends on substances and can be positive (SF$_6$ etc) and negative (N$_2$ etc);
- B_{d0}, B_{d2} coefficients have the opposite signs;
- the authors of [15] have attracted the input ρ_1, ρ_0, T data to estimate values of (B_{d1}, B_{s1}); some information on the heat capacity, C_v, and the saturation pressure, P, are also used;
- values of $D = (\rho_c, T_c)$ are selected as the data taken from the literature.

Authors of [17] have proposed models, which operate in an asymptotic region of T_c for SF$_6$ and written as

$$ f_s = B_{d0}\tau^{\beta_4} + B_{s1}\tau^{\beta_4+\Delta}, \quad f_{d \text{ opt}} = B_{d0}\tau^{1-\alpha_4} + B_{d \text{ exp}}\tau^{2\beta_4}, $$

where $D = (T_c, \rho_c, \alpha_4, \beta_4, B_{d0}, B_{d0}, B_{d \text{ exp}})$ are the characteristics determined on a basis of the experimental ρ_1, ρ_0, T data placed in the interval $2 \times 10^{-4} < \tau < 0.01$, $\alpha_4 = 0.1099, \beta_4 = 0.3474, B_{d0} = 0.4695, B_{d \text{ exp}} = 0.0518$.

The second step of the modernization is connected with combined scaling models [19] written in the forms

$$ f_s = B_{d0}\tau^{\beta_4} + B_{s1}\tau^{\beta_4+\Delta} + B_{d0}\tau^{\beta_4+2\Delta} + B_{s3}\tau^2 + B_{s4}\tau^3, $$

$$ f_d = B_{d0}\tau^{1-\alpha_4} + B_{d1}\tau^{1-\alpha_4+\Delta} + B_{d2}\tau^{1-\alpha_4+2\Delta} + B_{d3}\tau^2 + B_{d4}\tau^3, $$

where $2\beta_3 = 1 - v < 1$.
where \((B_{si}, B_{di}; i = 0, 1, 2)\) are the coefficients related to \(F_{\text{scale}}\) part of the models, \((B_{si}, B_{di}; i = 3, 4)\) are the coefficients related to \(F_{\text{reg}}\) part.

\(F_{\text{scale}}\) meets ST. Models (8) and (9) include \(D = (T_c, \rho_c, \alpha_4, \beta_4, \ldots)\) characteristics and \(C = (B_{si}, B_{di})\) coefficients, which are determined on a basis of statistical treatment of experimental \(\rho_t, \rho_g, T\) data. The treatment is a nonlinear least squares method (NRMS) that is used in [17–19]. Numerical results [17–19] show that models (8) and (9) are adopted to a group of substances. In the case, an approximation error, \(\delta f_d\), is in a satisfactory agreement with the error, \(\delta f_{d\text{tab}}\), of the input points in the temperature range from \(\tau_{ow} = 10^{-4}\) to the relative temperature that is close to the triple point, \(\tau_{tr}\). Parameters of equations (8) and (9) are given in [19] for \(H_2O\) including \(D\) values: \(\alpha_4 = 0.1324, \beta_4 = 0.34594, T_c = 647.18\) K, \(\rho_c = 321.915\) kg/m\(^3\), \(B_{s0} = 2.2234, B_{d0} = 1.2095\).

The third step is related to integrating \(B_{d\text{exp}}\tau^{2\beta_4}\) component in (9). We have considered a form

\[
\delta f_d = B_{d0}\tau^{1-\alpha_4} + B_{d\text{exp}}\tau^{2\beta_4} + B_{d1}\tau^{1-\alpha_4+\Delta} + B_{d3}\tau^2 + B_{d4}\tau^3. \tag{10}
\]

It is planned in the work to determine \(D\) characteristics and \(C\) coefficients of equations (8) and (10) with the usage of the input \(\rho_t, \rho_g, T\) data related to tables IF97 [3]. We have to underline that equations (8) and (10) are a new variant of combined scaling models. First of all, it meets the criterion of “complete scaling” that is described by Fisher M. in his pioneer work [16]. Equation (10) is aimed to improve the traditional structure of \(f_d\) model and to increase an accuracy of \(f_d\) model in a wide temperature interval including the critical region. The equation reflects current trends of ST.

In the asymptotic region, equation (10) has a form \(f_d = B_{d\text{exp}}\tau^{2\beta_4}\) and correlates with equation (6). It is shown in [18] that \(f_d\) can include a linear component if \(\beta_3 = 0.5\). In our case (see below), \(\beta_4 = 0.34593\). We have considered an option of equation (10) that has included a linear component. In the case, the approximation error, \(\delta f_d\), has been significantly higher than the error, \(\delta f_{d\text{tab}}\) which depends on the error of the \(\rho_t, \rho_g, T\) data [3].

3. Numerical characteristics of combined scaling models and some comparison results

Searching for the parameters of equations (8) and (10), it has adopted a number of restrictions including the conditions (i) and (ii) formulated on page 2. Characteristics, \(D\), and coefficients, \(C\), of (8) and (10) (table 2) are calculated together on the basis of NRMS [17–19] and input \(\rho_t, \rho_g, T\) data [3]. The array is located in both regular and critical areas in the interval \(\tau = 3 \times 10^{-3} – 0.335\). The number of input points of the array is \(N = 228\), among them 32 points are added to simulate the scattering data in a corridor, \(\delta \rho_{\text{sim}} = \pm 0.2\%\), at relative temperatures \(\tau = 3 \times 10^{-3} to 3 \times 10^{-2}\) (figure 1).

Initial approximations of \(C\) and \(D\) are taken in this method according to results [17,19]; the values of \(D_0 = (T_c, \rho_c, \alpha_4, \beta_4, B_{s0}, B_{d0})_0\) are shown above; \(B_{d\text{exp}0}\) is selected as \(B_{d\text{exp}0} = 0.05\) on the recommendation of [17].

Combined equations \((\rho_t(\tau), \rho_g(\tau))\) are built with an usage of (1) and (2), (8) and (10). The analysis shows that these models satisfactorily reproduce input \(\rho_t, \rho_g, T\) data [3]; thus, deviations, \(\delta \rho_t = 100(\rho_{t\text{exp}} - \rho_{t\text{calc}})/\rho_{t\text{exp}}\), are placed in the range from \(-0.4\%\) to \(0.2\%\) at relative temperatures, \(3 \times 10^{-3} < \tau < 0.33\), and the deviations, \(\delta \rho_g\), lie in the range from \(-0.4\%\) to \(0.3\%\) at temperatures \(3 \times 10^{-3} < \tau < 0.30\) (figure 1). A standard RMS deviation, \(S_t\), is determined as \(S_t = 0.19\%\) for input data on the liquid density at these temperatures. The same deviation, \(S_g\), is determined as \(S_g = 0.21\%\) for the input data on the density at these temperatures. Characteristics \(D = (T_c, \rho_c)\) (table 2) are in a good agreement with \(T_c = 647.096\) K, \(\rho_c = 321.957\) kg/m\(^3\) recommended in [3] (within the error of the latter).

On the basis of numerical \(f_d\) data (10) (figure 2), we have fulfilled some comparisons.
Figure 1. Deviations of the input density data from values obtained on the basis of models (8) and (10): 1—deviations of ρ_l, T data; 2—deviations of ρ_g, T data.

Table 2. The parameters of equations (8) and (10).

ρ_c, kg/m3	T_c, K	α_4	β_4	B_{s0}	B_{s1}	B_{s2}
321.71	647.068	0.1145	0.34593	2.2721	0.029978	-0.093563
B_{s3}	B_{s4}	B_{d0}	$B_{d\exp}$	B_{d1}	B_{d2}	B_{d3}
-0.876712	1.148671	0.8911	0.1145	-0.21952	0.802212	-1.184982

It is shown in figure 2:

- f_d values (10), which are in a satisfactory agreement with values of $f_{d\text{tab}}$ at an interval of temperatures $3 \times 10^{-3} < \tau < 0.33$;
- $B_{d0}\tau^{1-\alpha_4}$ component of (10), it is positive and placed lower than $f_{d\text{tab}}$ at the interval;
- $B_{d\exp}\tau^{2\beta_4}$ component of (10), it is positive and placed lower than $B_{d0}\tau^{1-\alpha_4}$ at the interval.

In figure 3 with an usage of logarithmic coordinates, we have demonstrated a linear behavior of f_d (10) and its scaling components ($B_{d0}\tau^{1-\alpha_4}$, $B_{d\exp}\tau^{2\beta_4}$) at temperatures $3 \times 10^{-3} < \tau < 0.01$. Our analyses allowed us to conclude:

- in the logarithmic scale of coordinates f_d and its scaling components are linear functions; there is determined a relative temperature, $\tau_A \approx 10^{-5}$; an equality, $B_{d0}\tau^{1-\alpha_4} = B_{d\exp}\tau^{2\beta_4} = 0.4 \times 10^{-3}$, is realized at this temperature; an inequality, $(B_{d\exp}\tau^{2\beta_4} > B_{d0}\tau^{1-\alpha_4})$, is satisfied at $\tau < \tau_A$; this interval is a region where $B_{d\exp}\tau^{2\beta_4}$ plays a leading role of f_d (10);
- it is possible to use f_d (10) in an extrapolation region, $10^{-5} < \tau < 3 \times 10^{-3}$.

Numerical data for f_s (10) and some comparisons allow us to find out that f_s (10) is in a satisfactory agreement with $f_{s\text{tab}}$ values built on a basis of input ρ_l, ρ_g, T data [3] at the range of temperatures $3 \times 10^{-3} < \tau < 0.33$.

\[\]
Figure 2. Diameter, \(f_d \) and its components: 1—\(f_{d\text{tab}} \) built on the basis of input \(\rho_l, \rho_g, T \) data; 2—a border, \(f_{d \text{ high}} \); 3—a border, \(f_{d \text{ low}} \); 4—\(f_d(10) \); 5—\(B_d 0 \tau_{1-\alpha} \); 6—\(B_d \exp \tau \beta_4 \).

Figure 4 shows a distribution of deviations, \(\Delta f_s = f_{s\text{tab}} - f_s \), for \(f_s \). Our analyses allowed us to estimate:

- \(f_s \) (8) and the component, \(B_d 0 \tau^{2\beta} \), have a linear form in logarithmic coordinates in the range of temperatures \(3 \times 10^{-3} < \tau < 0.01 \);
- it is possible to use \(f_s \) (8) in an extrapolation region, \(10^{-5} < \tau < 3 \times 10^{-3} \).

We have analyzed some results, which are got in [2] and related to \(f_d(2) \). It can be seen that the presence of a negative coefficient, \(B_d = -1.48 \), (table 1) leads to facts:

- the leading component, \(B_d \tau^{1-\alpha_1} \), is negative and \(df_d/d\tau \approx -B_d \tau^{-\alpha_1} \to \infty \) at \(\tau \to 0 \) (compare with \(f_{d\text{tab}} \) and \(B_d \tau^{1-\alpha_1} \), figures 2 and 3);
- there is a temperature, \(\tau = \tau_B = 1 \times 10^{-3} \); an equality \((B_d \tau + B_d \tau^{1-\alpha_4} = 0, B_d = 4.3) \) is realized at this temperature; values of \(f_d(2) \) become negative in the interval, \(0 < \tau < \tau_B \); it is an abnormal region of \(f_d \) in the case of \(\text{H}_2\text{O} \).

These is the following anomalous behavior: values of \(f_d(2) \) increase when approaching \(T_c \) in a region, \(0 < \tau < \tau_B \). Note, that \(f_{d\text{tab}} \) is reduced steadily when decreases in the investigated interval \(3 \times 10^{-3} < \tau < 0.3 \) (see \(f_{d\text{tab}} \), figure 2).

Results for \((\rho_l, \rho_g, T)\) \(\text{calc} \) have been obtained with a help of models (8) and (10). A similar massive is got with a help of models (1) and (2) [2] in the interval \(1 \times 10^{-5} < \tau < 0.03 \). Local deviations (%) are determined in the form, \(\delta \rho_l = 100(\rho_l(2) - \rho_{l\text{calc}})/\rho_{l\text{calc}} \) for the liquid phase and \(\delta \rho_g = 100(\rho_g(2) - \rho_{g\text{calc}})/\rho_{g\text{calc}} \) for the gas phase. The deviations have the following character:
Figure 3. A behavior of f_d (10) and its components in the interval $0.001 < \tau < 0.1$: 1—f_d (10); 2—a border, f_d high; 3—a border, f_d low; 4—$B_d\alpha\tau^{-1-\alpha_1}$; 5—$B_{d\exp}\tau^{2\beta_4}$.

Figure 4. Deviations of f_{stab} built on the basis of input ρ_l, ρ_g, T data from values of f_s (8).

- $\delta\rho_l = -0.35$ to 0.25%, when $1 \times 10^{-3} < \tau < 0.03$; $\delta\rho_l$ reaches -6.5% at $1 \times 10^{-5} < \tau < 1 \times 10^{-3}$;
- $\delta\rho_g = -0.5$ to 0.6% at $1 \times 10^{-3} < \tau < 0.03$, $\delta\rho_g$ reaches 7%, when $1 \times 10^{-5} < \tau < 1 \times 10^{-3}$.

We have got data for ρ_l, ρ_g, T with a help of the EOS IF95 in an extrapolation region. Our comparison has shown:

- deviations, $\delta\rho_l = 100(\rho_{l[i]} - \rho_{l\text{calc}})/\rho_{l\text{calc}}$, are increasing from 0.05% to 3.2%, if τ decreases from 10^{-3} to 10^{-5};
deviations, \(\delta \rho_g = 100(\rho_g[1] - \rho_g\text{calc})/\rho_g\text{calc} \), are decreasing from \(-0.05\%\) to \(-3.7\%\), if \(\tau \) decreases from \(10^{-3}\) to \(10^{-5}\).

4. Conclusion

Combined scaling models (8) and (10) allow describing \(f_d \) and \(f_s \) in a wide temperature interval including the critical region. A structure of model (10) has \(B_d \exp(\tau^{2\beta_4}) \) component and meets ST. It is got a satisfactory agreement of our calculated \((\rho_l, \rho_g, T)\text{calc}\) data with the input points related to tables IF97 in the critical region. There is a good correlation:

- between \((T_c, \rho_c)\) values and the data recommended in [2];
- between \((\alpha_4, \beta_4)\) indexes and parameters \((\alpha_1, \beta_1)\); the discrepancy between these data lies in the interval \(\pm(1-3)\%\);
- between \((f_s, f_d)\) values (8) and (10) and appropriate values those are built on a base of input \(\rho_l, \rho_g, T\) data [2] at relative temperatures, \(0.003 < \tau < 0.33\).

Equations (8) and (10) can be used in the extrapolation region down to \(\tau = 1 \times 10^{-5}\). We have got \((\rho_l, \rho_g, T)\text{calc}\) data related to models (8) and (10) in this interval. These data can be considered as the first numerical information in the extrapolation region.

Acknowledgments

The reported study was funded by the Russian Foundation for Basic Research (grant No. 16-08-01222).

References

[1] Wagner W and Pruss A 2002 J. Phys. Chem. Ref. Data 31 387–535
[2] Anisimov M A, Rabinovich V A and Sychev V V 1990 Thermodynamics of the Critical State of Individual Substances (Moscow: Energoatomizdat)
[3] IAPWS R7-97(2012): Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam URL http://www.iapws.org
[4] Aleksandrov A A 1998 Teploenergetika 10 64–72
[5] Grigor’yev B A and Aleksandrov A A 2001 Termodynamicheskikh Svoystv Vody i Vodanyogo Para (Moscow: Dom MEI)
[6] Fortov V E, Khishchenko K V, Levashov P R and Lomonosov I V 1998 Nucl. Instr. Meth. Phys. Res. A 415 604–8
[7] Oreshkin V I, Baksht R B, Yu Labetsky A, Rouskikh A G, Shishlov A V, Levashov P R, Khishchenko K V and Glazyrin I V 2004 Tech. Phys. 49 843–8
[8] Khishchenko K V 2008 J. Phys.: Conf. Ser. 98 032023
[9] Khishchenko K V, Zhernokletov M V, Fortov V E, Kirshanov S I, Kovalev A E, Lomonosov I V, Mochalov M A and Shuikin A N 2008 High Temp.–High Pressures 37 291–8
[10] Kudryavtseva I V, Rykov V A and Rykov S V 2008 Journal of IAR 2 36–9
[11] Apfelbaum E M and Vorob’ev V S 2015 J. Phys. Chem. B 119 8419
[12] Apfelbaum E M and Vorob’ev V S 2016 J. Phys. Chem. B 120 4828
[13] Lomonosov I V and Fortova S V 2017 High Temp. 55 585–610
[14] Wegner C 1985 Int. J. Thermophys. 11 421
[15] Wang J and Anisimov M A 2007 Phys. Rev. E 75 051107
[16] Kim Y C, Fisher M E and Orkoulas G 2003 Phys. Rev. E 67 061506
[17] Vorob’ev V S, Rykov V A, Ustjuzhanin E E, Shishakov V V, Popov P V and Rykov S V 2016 J. Phys.: Conf. Ser. 774 012017
[18] Ustjuzhanin E E, Reutov B F, Utenkov V F and Rykov V A 2007 Soft Matter under Exogenic Impact. NATO Science Series II (Edit. S. Rzoska and V. Mazur) vol 242 (Springer) p 325
[19] Ustjuzhanin E E, Shishakov V V, Popov P V, Rykov V A and Frenkel’ M L 2011 Vestnik MEI 6 167–79