Prevention of necrotizing enterocolitis with probiotics: a systematic review and meta-analysis

Sonja C Sawh Corresp. 1, Santosh Deshpande 1, Sandy Jansen 1, Christopher J Reynaert 1, Philip M Jones 2

1 Department of Pharmacy, London Health Sciences Centre, London, Ontario, Canada
2 Departments of Anesthesia & Perioperative Medicine and Epidemiology & Biostatistics, University of Western Ontario, London, Ontario, Canada

Corresponding Author: Sonja C Sawh
Email address: sonja.sawh@lhsc.on.ca

Context Necrotizing enterocolitis (NEC) is the most frequent gastrointestinal emergency in neonates. The microbiome of the preterm gut may regulate the integrity of the intestinal mucosa. Probiotics may positively contribute to mucosal integrity, potentially reducing the risk of NEC in neonates.

Objective To perform an updated systematic review and meta-analysis on the efficacy and safety of probiotics for the prevention of NEC in premature infants.

Data Sources Structured searches were performed in: Medline, Embase, and the Cochrane Central Register of Controlled Trials (all via Ovid, from 2013 to January 2015). Clinical trial registries and electronically available conference materials were also searched. An updated search was conducted June 3, 2016.

Study Selection Randomized trials including infants less than 37 weeks gestational age or less than 2500 g on probiotic vs. standard therapy.

Data Extraction Data extraction of the newly-identified trials with a double check of the previously-identified trials was performed using a standardized data collection tool.

Results Thirteen additional trials (n = 5033) were found. The incidence of severe NEC (RR 0.53 [95% CI 0.42 to 0.66]) and all-cause mortality (RR 0.79[95% CI 0.68 to 0.93]) were reduced. No difference was shown in culture-proven sepsis RR 0.88 [95% CI 0.77 to 1.00].

Limitations Heterogeneity of organisms and dosing regimens studied prevent a species-specific treatment recommendation from being made.

Conclusions Preterm infants benefit from probiotics to prevent severe NEC and death.
Prevention of necrotizing enterocolitis with probiotics: a systematic review and meta-analysis

Sonja C. Sawh, BScPhm, ACPR
1
Santosh Deshpande, BScPhm
1
Sandy Jansen, BScPhm, MHS
1
Christopher Reynaert, B.Sc. Pharm
1
Philip M Jones, BSc, MSc (Clinical Trials), MD
2

Affiliations:
1 Pharmacy Department, London Health Sciences Centre, London, ON, Canada
2 Departments of Anesthesia & Perioperative Medicine and Epidemiology & Biostatistics, University of Western Ontario, London, ON, Canada

Address correspondence to:
Sonja Sawh, Pharmacy Department
London Health Sciences Centre
339 Windermere Rd, London ON, Canada
N5A 5A5
sonja.sawh@lhsc.on.ca 519-685-8500 extension 36543
Abstract

Context
Necrotizing enterocolitis (NEC) is the most frequent gastrointestinal emergency in neonates. The microbiome of the preterm gut may regulate the integrity of the intestinal mucosa. Probiotics may positively contribute to mucosal integrity, potentially reducing the risk of NEC in neonates.

Objective
To perform an updated systematic review and meta-analysis on the efficacy and safety of probiotics for the prevention of NEC in premature infants.

Data Sources
Structured searches were performed in: Medline, Embase, and the Cochrane Central Register of Controlled Trials (all via Ovid, from 2013 to January 2015). Clinical trial registries and electronically available conference materials were also searched. An updated search was conducted June 3, 2016.

Study Selection
Randomized trials including infants less than 37 weeks gestational age or less than 2500 g on probiotic vs. standard therapy.

Data Extraction
Data extraction of the newly-identified trials with a double check of the previously-identified trials was performed using a standardized data collection tool.

Results
Thirteen additional trials (n = 5033) were found. The incidence of severe NEC (RR 0.53 [95% CI 0.42 to 0.66]) and all-cause mortality (RR 0.79 [95% CI 0.68 to 0.93]) were reduced. No difference was shown in culture-proven sepsis RR 0.88 [95% CI 0.77 to 1.00].

Limitations
Heterogeneity of organisms studied prevent a species-specific treatment recommendation from being made.

Conclusions
Preterm infants benefit from probiotics to prevent severe NEC and death.
Introduction

Rationale

Necrotizing enterocolitis (NEC) is a gastrointestinal (GI) syndrome characterized by transmural inflammation and necrosis of the large or small bowel and subsequent translocation of gas-forming organisms into the intestinal wall.1,2 Primarily seen in infants, the incidence of NEC is inversely correlated with gestational age (GA) and birth weight.3,4 The overall incidence of NEC in all infants \leq 33 weeks GA in a survey of Canadian neonatal intensive care units (NICUs) was 5%, and 7% for infants less than 1500 g birth weight in 2013.5 The consequences of NEC are potentially devastating — 20% to 40% of patients require surgical intervention and mortality ranges from 15% to 30%.6,7 Survivors of NEC risk significant morbidity including short gut syndrome, strictures, and neurodevelopmental impairment.5,6

The signs and symptoms of NEC were classified by Bell in 1978 and gave rise to modified criteria for diagnosis of NEC in 1996 by Neu.7 The modified Bell’s criteria describe the systemic clinical signs of NEC, the important GI signs (which can help differentiate NEC from sepsis), and the radiologic features.

The immature GI tract of preterm infants is particularly susceptible to mucosal injury from a variety of factors. Intestinal and immunological deficiencies associated with prematurity, enteral feeding, microbial overgrowth, and circulatory instability have all been implicated in the pathogenesis of NEC.8

Recent research has focused on microbial overgrowth in the GI tract of premature infants, with an overabundance of pathogenic organisms and lack of microbial diversity being key discoveries. These observations imply that a disturbance in the microbiome, and not a single
pathogen, may be a causative factor of NEC. The lower prevalence of protective *Lactobacillus* or *Bifidobacterium* species in preterm infants compared to term infants make probiotics a potential intervention for the prevention of NEC.

Previous systematic reviews

At the time of our search, there were two recent systematic reviews and meta-analyses on this topic. The Cochrane review on this topic is thorough, but it was last updated in October 2013. The Yang review included many of the same studies but included additional studies as a result of a Chinese trial database search. Since the publication of these two systematic reviews, more large randomized clinical trials have been published.

Objective

The objective of this systematic review was to assess the efficacy and safety of probiotics for the prevention of NEC in premature infants. We planned to update the previous systematic reviews using similar eligibility criteria.

Methods

Protocol/registration

The systematic review methods and analysis plans were undertaken according to published guidelines by PRISMA.

Eligibility criteria

Studies: All randomized clinical trials were considered for inclusion. No language restrictions were applied.

Participants: Infants of less than 37 weeks gestation or weighing less than 2500 g at birth.

Interventions: Probiotics in any species and any dose, or prebiotic/probiotic combinations (synbiotics) of any species and any dose.
Comparators: Probiotic products with different species than the intervention group (i.e. RCTs comparing one species to another head-to-head), placebo, or standard therapy.

Outcomes: The primary outcome of the review was the incidence of severe NEC (Bell’s Stage 2 or greater). Secondary outcomes included all-cause mortality, all-cause sepsis, culture-proven sepsis, bacterial sepsis, fungal sepsis, length of stay in hospital, time to achieve full feeds, duration of parenteral nutrition, and weight gain.

Outcome definitions

1. Sepsis was accepted as defined by the authors of the individual trials.

2. Culture-proven sepsis was accepted as defined by the authors but needed to include a positive culture (blood, urine, or cerebrospinal fluid) to qualify.

3. Length of stay in hospital and length of stay in NICU were considered equivalent. Many studies discharged infants home directly from the NICU.

4. We considered the outcome “age at which full enteral feeding was reached” to be the same as “time to reach full feeds”. We considered the “age at which parenteral nutrition stopped” to be the same as the outcome of “duration of parenteral nutrition”.

5. We subgrouped trials in duration of therapy categories based on the durations reported in the results section of each paper, not the planned duration. We only placed a trial in a specific subgroup if the duration category encompassed the median and the entire interquartile range (IQR) reported in the study paper.

Information Sources & Search

Pre-existing trials

Randomized clinical trials included in the previous systematic reviews\(^{11,12}\) (hereafter referred to as the “old trials”) were included in this review. Chinese language studies were
translated to complete the data extraction.13–15,18,19 The studies by Romeo20 and Underwood21 were divided into two separate trials due to multiple arms.

Updated Search

Trials published after completion of the two previous systematic reviews (hereafter referred to as the “new trials”) were identified by searches of Medline, Embase, and the Cochrane Central Register of Controlled Trials. The search was developed and conducted by one of the authors. See Supplementary materials Appendix A for the detailed search strategies for the three databases used in this review. Limits were applied to obtain trials from 2013 onwards. No language restrictions were applied.

Updated searches were conducted January 19, 2015. Clinical trial registries were searched on January 14, 2015. Abstracts and conference proceedings were searched on January 15, 2015. On June 3, 2016 another full update of our search strategy was conducted.

We searched for ongoing, unpublished, and terminated trials using the National Library of Medicine and National Institutes of Health clinical trials database and the World Health Organization International Clinical Trials Registry Platform.22,23 Other sources included electronically available conference materials (2014) from the Society of Pediatric Research (SPR) and the European Society of Pediatric Research (ESPR).24,25

Study selection

After de-duplication, two reviewers independently screened titles and abstracts for inclusion using a standardized screening tool. Full text screening was completed independently in duplicate by two authors using a full-text screening tool. Cohen’s Kappa was used to assess agreement between the two reviewers on the selection of full-text articles for inclusion.26
A standardized data collection form was developed \textit{a priori} and two authors independently extracted the relevant outcomes and validity criteria from the new trials. The data pertaining to the old trials, including risk of bias assessment, was extracted by one author. Disagreements were resolved by consensus and a third party was consulted if necessary. Author contact was attempted for outcome data in the included trials which was missing or unclear. The complete list of the data extracted from the included trials is included in Supplementary materials, Appendix B.

Study outcome data published in duplicate was included once, but all versions of the publication were utilized for maximal data extraction. In the event of inconsistency between multiple reports of one study, the peer-reviewed publication was used as the primary data set.

Two authors independently assessed the risk of bias for each of the new included studies using the criteria outlined in the \textit{Cochrane Handbook for Systematic Reviews of Interventions}.27 A summary table and a graph for risk of bias were created using Review Manager (RevMan) software.28 The risk of bias assessment from the studies included in the previous systematic reviews11,12 were double-checked for accuracy by a single author.

When possible, the results were synthesized using RevMan 5.3.28 A random effects model27 was chosen to account for the clinical and statistical heterogeneity expected when including different species and regimens of probiotics, different neonatal ages and weights, different feeding regimens (breast milk, formula, combination feeding, and parenteral nutrition supplementation as needed), as well as the varied countries conducting RCTs in this area. Relative risks (RRs) with 95\% confidence intervals (CI) were used for dichotomous variables.
and mean differences (MDs) with 95% CIs for continuous variables. If the continuous variables
in the studies were measured in different scales, we calculated the standardized mean difference
(SMD).

Analysis was done on an intention-to-treat (ITT) basis.27 If patients discontinued the
intervention after randomization, they were still counted in our analysis for outcomes (such as
mortality) where this was possible. Author contact was attempted to clarify any missing outcome
data.

If trials had two intervention arms, both of which contained a probiotic, both probiotic
arms were included and the number of patients in the comparator arm divided by the number of
active arms to prevent double counting. If the trial had two or more intervention arms and only
one of them contained a probiotic, the data from the corresponding non-probiotic arm was used
as the comparator.27 In trials where patients received a co-intervention, the co-intervention had to
be present in both the active and control arms to be included.

The I^2 statistic was used to quantify statistical heterogeneity (the percentage of total
variation across studies due to heterogeneity). Statistical heterogeneity as measured by I^2 was
described as “small” (\(\leq 25\%\)), “moderate” (between 26\% and 49\%) and “large” (\(\geq 50\%\)).29
Forest plots were visually inspected for possible sources of heterogeneity.

\textit{Additional Analysis}

Subgroup analysis was planned \textit{a priori} for the following subgroups: infant weight
(exremely-low birth weight (ELBW) [less than 1000 g] and very low birth weight (VLBW) [less
than 1500 g]), timing of probiotic initiation, duration of probiotic therapy, sepsis types (including
“any sepsis”), and use of breast milk vs. formula for feeding.
Results

Study Selection

The previously published systematic reviews included a total of 37 unique randomized clinical trials.13–15,19–21,30–52 Electronic database searches (including the 2016 search update) yielded 475 citations, conference searching yielded 115 citations, and clinical trials database searching yielded 35 citations. After de-duplication, 412 citations remained for title and abstract screening (see Figure 1 for the detailed flow diagram of study selection). Cohen’s Kappa was 0.723 (good agreement) between the two reviewers for selection of new full-text trials for inclusion.53 The study by Manzoni 201454 was included in our review as it was a randomized extension of a previously published trial.42 The ProPrems study was added to the previous review as unpublished data, but is now published and was included in our review.46 The updated search in 2016 resulted in a follow up to the Oncel trial55 (Akar56), and new trials by Costeloe57 (previously on our ongoing trials list), Dilli58, Dutta59, Sinha60 and Tewari61. Three trials included in previous reviews were excluded from our review as they were determined to be non-randomized.62–64 The overall updated search added a total of 13 randomized controlled trials (two trials split due to multiple arms) with over 5000 new evaluable patients to previous systematic reviews, bringing the total to 42 included trials.18,54,55,57–61,65–68

Study Characteristics

When verifying the outcome data included in the previous reviews, a number of methodological flaws and errors of data synthesis were noted.11,12 A decision was made to re-extract the data from the “old trials” instead of re-entering the data from the previously published reviews (see Supplementary materials, Appendix C).

See Table 1 for characteristics of included studies. All studies were conducted in preterm infants admitted to the NICU. Twenty-four studies limited birth weight to 1500 g or less. Weight
was not part of the inclusion criteria in nine studies.13,18,33,44,45,52,57,59,61 Gestational age was not part of the inclusion criteria in five studies but all of these studies had birth weight inclusion criteria for preterm infants less than 1500 g.32,37,39,41,54 One trial did not specify gestational age but enrolled babies 1500-2500 g.60 Five trials were translated from Chinese for use in the review.13–15,18,38

Type of feeding was variable across the included trials. Nine trials included infants exclusively fed breastmilk.39,41,49,50,60,61,66,69 One trial had infants fed exclusively preterm formula.52 The trials published in Chinese did not consistently specify this information on translation.13–15,19,38 Costeloe had 46\% of infants exclusively fed breastmilk, but the rest of the infants had a combination of feeding types.57 Overall, the number of trials were split evenly between multiple species and single species probiotics (22 trials each). The Sari trial (\textit{Bacillus coagulans} formerly known as \textit{Lactobacillus sporogenes})51 and the Tewari trial (\textit{Bacillus clausii})61 used single species that were not used in any other trial. Sinha used a multi-organism product containing eight species.60 All studies used a variety of organisms and dose regimens. Comparators were matching placebo, standard therapy, or prebiotics (two trials).54,58 There were no trials comparing one probiotic preparation with another, but two trials had multiple arms with different probiotics.20,21 One trial used varying durations of probiotics and doses but fit within the range of doses and duration of therapy seen with all included trials, so the three treatment arms were combined into one.59

Timing of probiotic initiation was variable. Twenty-one trials started probiotics with the first feed, six trials started within 48 hours of birth, one within 72 hours, four within the first week, and in twelve trials therapy started at the “more than 48 hours” time point.
Duration of probiotic therapy ranged from 7 days to 6 weeks. One trial did not specify a duration of therapy. Most studies were classified in the “28 days or more” subgroup for the purposes of analysis by extraction of the actual duration of therapy (when provided) in trials that specified duration as “until discharge”.

Outcomes

Risk of Bias within Studies

See Supplemental Figure 1 for the risk of bias assessment for all included trials. All included trials were randomized (five were judged to have uncertainty around the method of randomization). All of these trials were previously included in the AlFaleh review.

Seven trials had a degree of selective reporting one of the trials being from the updated search. Of the translated trials, randomization was clearly stated, but uncertainty remains about blinding status, allocation concealment, and selective reporting.

Synthesis of Results

Two of the “old trials” did not contribute any outcome data to the meta-analysis and were excluded. Data used for the Mohan trial in the previous review appears to be based on personal communication with the authors and could not be corroborated with the published trial. Li did not report on any usable outcomes.

All infants

The primary outcome, severe NEC, was significantly reduced in infants who received probiotics compared to placebo with 38 trials (10,520 patients) reporting on this outcome — RR 0.53 [95% CI 0.42 to 0.66] - see Figure 2. The incidence of culture-proven sepsis was not different between the probiotics and control — RR 0.88 [95% CI 0.77 to 1.00] in 31 trials comprising 8707 patients, see Figure 3. The incidence of all-cause mortality was significantly reduced in infants receiving probiotics in 29 trials (9507 patients) — RR 0.79 [95% CI 0.68 to
Other statistically significant findings included shorter duration of hospitalization, increased weight gain (g/day), and reduced time to reach full enteral feeds, all in favor of using probiotics (Table 2).

There was a moderate to large degree of heterogeneity in the results for culture-proven sepsis, duration of hospitalization, duration of parenteral nutrition, and time to achieve full feeds.

VLBW Infants

The incidence of severe NEC was significantly reduced in VLBW infants who received probiotics compared to placebo including 25 trials (6587 patients) — RR 0.47 [95% CI 0.36 to 0.61] (Figure 5). The incidence of all-cause mortality was significantly reduced in VLBW infants who received probiotics compared to infants who received placebo in 24 trials (6736 patients) with RR 0.74 [95% CI 0.61 to 0.90]. Compared to VLBW infants who received placebo, those who received probiotics had a significantly reduced duration of parenteral nutrition (Table 2).

There was significant heterogeneity in the outcomes of duration of hospitalization, and time to full feeds.

ELBW infants

Eight trials reported outcome data on this weight group. The only trial to enroll infants solely in this weight group was Al-Hosni. ELBW infants were a pre-specified subgroup in the Jacobs trial. In the remaining six trials, outcome data for ELBW infants was presented as a post-hoc subgroup analysis. ELBW infants who received probiotics had a significantly shorter duration of hospitalization and reached full enteral feeding sooner compared to infants who received placebo, see Table 2.
No statistically significant differences were demonstrated for the incidence of NEC (Figure 6), mortality, culture-proven sepsis, any bacterial sepsis and any fungal sepsis. There was significant heterogeneity in the outcomes of culture-proven sepsis and mortality. Other outcomes were only reported in a small number of patients and trials.

Initiation of Probiotics

Severe NEC was significantly reduced in trials where patients were started on probiotics at more than 48 hours of age — RR 0.36 [95% CI 0.24 to 0.53] or in those trials where probiotics were started at the time of the first feed — RR 0.55 [95% CI 0.41 to 0.75] (Supplemental Figure 2). The incidence of culture-proven sepsis was significantly reduced in the 11 trials in which therapy was started at more than 48 hours of age — RR 0.65 [95% CI 0.51 to 0.82]. A reduction in the incidence of mortality was significant in trials when probiotics were started with the first feed — RR 0.68 [95% CI 0.51 to 0.90].

Duration of Probiotics

Subgroups with probiotic duration of at least 14 days or until discharge were statistically significant for a reduced incidence of severe NEC (Supplemental Figure 3). The largest amount of data was in the 28 days or more category, with 28 trials contributing outcome data.

Species of Probiotics

Outcomes were compared according to the various probiotic species included in the trials. Incidence of severe NEC was significantly reduced in infants receiving a Lactobacillus species (8 trials) — RR 0.61 [95% CI 0.40 to 0.95], Bifidobacterium species (6 trials) — RR 0.37 [95% CI 0.14 to 0.97], or multispecies (two or more) supplement (18 trials) — RR 0.41 [95% CI 0.29 to 0.56]. Incidence of NEC was not significantly different from control in infants receiving only a Saccharomyces boulardii supplement (2 trials) — RR 0.72 [95% CI 0.33 to
1.54]. Incidence of culture-proven sepsis was not significantly different from control in infants receiving any probiotic species. Incidence of mortality was significantly reduced only in infants receiving a multispecies supplement (15 trials) — RR 0.66 [95% CI 0.5 to 0.87].

Breast milk vs. formula feeding

Comparison of the rates of severe NEC between infants fed using breast milk alone and those fed formula alone was not possible due to the lack of studies containing infants fed only formula.

Discussion

This review was done in accordance with current guidelines and strict attention to best practice of systematic reviews and meta-analysis. It has added randomized data from over 5000 infants to the previous meta-analyses. Based on high-quality evidence, the use of probiotics in preterm infants reduces the incidence of severe NEC. The effect size has changed slightly in comparison to the Cochrane review but the precision of the result remains the same, despite the additional patients. This may be related to the wide range of probiotic species and regimens included in the analysis and use of the more conservative random effects model for meta-analysis. There was no statistical heterogeneity in the primary outcome, despite the inclusion of diverse probiotic regimens and species. No other intervention to prevent NEC has demonstrated this effect size.

This review showed a decrease in all-cause mortality with probiotics, which confirms the findings of previous reviews and re-affirms the important benefit of this therapy.

The concern about bacterial translocation beyond the preterm infant gut should be reflected in the outcome of culture-proven sepsis and/or all-cause mortality. This review found
no increased risk of culture-proven sepsis. No sepsis due to probiotic species was reported among the included trials.

A statistically significant reduction of three days was shown in duration of hospitalization. The clinical significance of this reduction is unclear given a mean length of stay in Canadian NICUs of 63.2 days in 2013.73

The reduction in the duration of parenteral nutrition and time to full enteral feeds is of importance for this patient population, as prolonged parenteral nutrition may be associated with increased hospital stay, mortality, and morbidity.74 Recently published evidence-based guidelines echo the need and benefits of achieving full feeds in an efficient manner.75

In the ELBW infants, the lack of benefit on severe NEC, culture-proven sepsis or mortality outcomes was consistent with the previous reviews (despite the addition of four new randomized trials almost doubling the number of infants studied). The direction and magnitude of the point estimates for the effect of probiotics on the incidence of severe NEC and all-cause mortality are consistent with those of the “all infant” sample.

The incidence of NEC and mortality outcomes had little to no heterogeneity which gives substantial confidence in those results. The substantial heterogeneity in sepsis, duration of hospitalization and duration of parenteral nutrition outcomes would suggest caution in interpreting the results.
Timing of probiotic initiation is a clinically important question which was not resolved in the previous reviews. In this review, subgroups for timing mirrored those in the Alfaleh review. The time of initiation of probiotics seemed to have a variable influence on the main three outcomes of severe NEC, culture-proven sepsis, and mortality. When probiotics were started very early (48 hours of age or less) there was no difference in any of the outcomes. There were few trials placed in this category, and therefore the outcomes may lack power to detect a statistical difference. Many trials described initiating probiotic supplementation at the time of first feeding. Without access to individual patient level data, it is unclear how many of the infants categorized into this group could also be included in the 48 hours of age or less category. Consequently, we cannot definitively state that probiotic supplementation should be withheld until at least 48 hours of age or until feeding. Starting probiotics with the initiation of feeds did reduce the incidence of both NEC and mortality and does have some practical advantages in terms of drug administration which make it an opportune time to initiate probiotic prophylaxis. There was a lack of effect on mortality when probiotic supplementation was started after 48 hours of age. We can find no explanation for this, especially since the benefit on NEC remained when therapy was started after 48 hours.

Determining the appropriate duration of therapy is equally important as the timing of initiation. Clinically it seems prudent to continue therapy for as long as there is risk for NEC. A minimum of two weeks of probiotic therapy continued for as long as the patient is judged to be at risk (up to six weeks) can be recommended, since trials in these subgroups showed a lower incidence of NEC.
Feeding infants with human milk compared to formula has been previously shown to have a protective effect on the incidence of NEC.76,77 This review found only one trial in which infants were fed exclusively formula (most other trials included a combination of feeding types), precluding definitive conclusions based on feeding method. The majority of infants were fed a combination of human milk and formula reflecting clinical practice. Future trials may consider having a pre-defined subgroup of breastfed vs. formula fed infants to definitively answer this question.

A post hoc subgroup analysis to examine if the effects on severe NEC were consistent based on the underlying background incidence of NEC across the included trials (grouped by less than 5%, 5-7% and more than 7%5) was undertaken. Most of the trials were in the low baseline incidence subgroup (18 trials, 4905 patients). The primary outcome remained significant across all groups and reinforces that no matter the institution’s incidence of NEC, infants had the same reduction in severe NEC.

In many countries, probiotics are not regulated as drugs and products are not subject to the same rigorous quality assurance standards.78 Stability and/or species testing was confirmed in nine of the included trials.21,30,36,43,44,65,68,79 Hospitals either did their own testing or requested the information from the manufacturer of the probiotic being studied. Institutions are encouraged to conduct their own quality assessment or request quality certificates from the manufacturer of the product being used.80,81

\textit{Limitations}

The limitations to this systematic review were as follows:

1. Three of the Chinese language trials16,82,83 included in the older review12 could not be obtained in full text and were not included in this review.
2. No unpublished data was requested from any of the manufacturers of probiotic products assessed in this review.

3. Only one trial in the previous review addressed long term neurodevelopmental outcomes, but this information could not be confirmed.37 Akar 201656 and the abstract from one of the ProPrems conference presentations84 also reports on neurodevelopmental outcomes. If the Kitijama37 and ProPrems results were available these could be combined for a summary effect estimate in a future review.

\textit{Remaining Uncertainties}

The outcome of fungal sepsis showed a definite benefit with no heterogeneity (Table 2).

Some of the included studies employed antifungal prophylaxis (either systemic or topical) in their infants as per their normal NICU practice. This choice is not the routine practice at all institutions and is not standard practice.85,86 The impact of these studies with background antifungal therapy was not explored in sensitivity analyses but could be considered in future reviews for its impact on the outcome of fungal sepsis.

Which probiotic product to use remains uncertain, since the total body of evidence comprises a heterogeneous group of probiotics (individual species and combination products, and regimens). In the previous review, only the \textit{Lactobacillus} and multispecies supplements were shown to be effective for this outcome. We would recommend a regulatory body-approved product and that quality assessment be requested from the manufacturer to validate the purity of product. The evidence of benefit was clear for \textit{Lactobacillus} or \textit{Bifidobacterium} species and multiple species products so any of these would be reasonable choices.

\textbf{Conclusions}
For infants born at less than 37 weeks gestation or less than 2500 g birth weight there is clear benefit from the use of probiotics to prevent severe NEC and all-cause mortality, with no increase in culture-proven sepsis. We would recommend using probiotics in premature infants with these characteristics. The evidence for babies of birth weight less than 1000 grams is less clear and we cannot make as strong a recommendation in this class of infants.

Acknowledgements
We gratefully acknowledge the following LHSC pharmacists for their expertise in translating the Chinese language papers: Emily Chen, Rachel Fu, Vicky Luo, and Boris Tong. We thank Brenda Sampson for her efforts in obtaining articles and the LHSC library staff Valerie Kowalkowski and Juanita Meyer in locating articles.

Table 1: Characteristics of Included Studies
Figure 1: PRISMA Flow Diagram
Figure 2: Severe (≥ Stage 2 Bell’s Criteria) NEC - all infants
Figure 3: Culture-proven sepsis - all infants
Figure 4: Mortality - all infants
Table 2: Additional important findings
Figure 5: Severe NEC - VLBW (Less than 1500 g) infants
Figure 6: Severe NEC - ELBW (Less than 1000 g) infants

References
1. Thompson AM, Bizzarro MJ. Necrotizing enterocolitis in newborns: Pathogenesis, prevention and management. Drugs. 2008;68(9):1227-1238. DOI:10.2165/00003495-200868090-00004.
2. Morgan JA, Young L, McGuire W. Pathogenesis and prevention of necrotizing enterocolitis. Curr Opin Infect Dis. 2011;24(3):183-189.
3. DOI:10.1097/QCO.0b013e328345d5b5.
3. Sharma R, Hudak ML. A Clinical Perspective of Necrotizing Enterocolitis: Past, Present, and Future. Clin Perinatol. 2013;40(1):27-51. DOI:10.1016/j.clp.2012.12.012.
4. Choi YY. Necrotizing enterocolitis in newborns: update in pathophysiology and newly emerging therapeutic strategies. Korean J Pediatr. 2014;57(12):505.
5. DOI:10.3345/kjp.2014.57.12.505.
6. Henry MCW, Moss RL. Neonatal necrotizing enterocolitis. Semin Pediatr Surg. 17(2):98-109. DOI:10.1053/j.sempedsurg.2008.02.005.
7. Holman RC, Stoll BJ, Curns AT, Yorita KL, Steiner CA, Schonberger LB. Necrotising
enterocolitis hospitalisations among neonates in the United States. *Paediatr Perinat Epidemiol.* 2006;20(6):498-506. DOI:10.1111/j.1365-3016.2006.00756.x.

7. Sia KL, Gold L, Jacobs S, Cheong J, Opie G, Garland S, Donath S, Hickey L, Boland R, Webster C. Hospital DRG costing and health services use of very pre-term infants from the ProPrems Neuro study across 10 hospitals in Australia and New Zealand. *Value Heal.* 2014;17(7):A518-A519. DOI: 10.1016/j.val.2014.08.1613

8. Schanler RJ. Pathology and pathogenesis of necrotizing enterocolitis in newborns. In: Post T, ed. *UpToDate.* Waltham, Mass.: UpToDate; 2015. www.uptodate.com Accessed: March 16, 2015.

9. Terrin G, Scipione A, De Curtis M. Update in pathogenesis and prospective in treatment of necrotizing enterocolitis. *Biomed Res Int.* 2014;2014:543765. DOI:10.1155/2014/543765.

10. Morowitz MJ, Poroyko V, Caplan M, Alverdy J LD. Redefining the role of intestinal microbes in the pathogenesis of necrotizing enterocolitis. *Pediatrics.* 2010;125(4):777-785. DOI:10.1542/peds.2009-3149

11. AlFaleh KAJ. Probiotics for prevention of necrotizing enterocolitis in preterm infants. *Cochrane Database Syst Rev.* 2014;(4). DOI:10.1002/14651858.

12. Yang Y, Guo Y, Kan Q, Zhou XG, Zhou XY, Li Y. A meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. *Brazilian J Med Biol Res = Rev Bras Pesquis médicas e biológicas / Soc Bras Biofisica.* 2014;47(9):804-810. DOI:10.1590/1414-431X20143857.

13. Ke D, Su Z, Li L. [Effects of Bifido supplement for prevention of necrotizing enterocolitis in preterm infants: a randomized controlled trial]. *Chinese Pediatr Emerg Med.* 2008;12:69-71.

14. Huang B, Yang H, Huang X. [Probiotics supplementation for prevention of necrotizing enterocolitis in very low-birth-weight neonates: a randomized, controlled trial]. *J Guangdong Med Coll.* 2009;27(1):37-39.

15. Ren B. [Preventive effect of Bifidobacterium tetravaccine tablets in premature infants with necrotizing enterocolitis]. *J Pediatr Pharm.* 2010;16:24-25. http://en.cnki.com.cn/Article_en/CJFDTOTAL-EKYX201002013.htm.

16. Di M, Li X. [Effects of Bifidobacterium supplementation for prevention of necrotizing enterocolitis in pre-term infants: a randomized, controlled trial]. *Zhong Guo She Qu Yi Shi (Chinese J Commun Dr.)* 2010;231:69.

17. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;339(7):6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2707599&tool=pmcentrez&rendertype=abstract. DOI: 10.1371/journal.pmed.1000097

18. Hua X-T, Tang J, Mu D-Z. [Effect of oral administration of probiotics on intestinal colonization with drug-resistant bacteria in preterm infants]. *Zhongguo Dang Dai Er Ke Za Zhi.* 2014;16(6):606-609. http://www.ncbi.nlm.nih.gov/pubmed/24927436.
19. Yang S, Yi H, Gan B. [The clinical application value of endangered preterm infants given earlier amounts of micro feedings and adding probiotics]. *J Pediatr Pharmacydiat Pharm.* 2011;17:21-24.

20. Romeo MG, Romeo DM, Trovato L, Oliveri S, Palermo F, Cota F, Betta P. Role of probiotics in the prevention of the enteric colonization by Candida in preterm newborns: incidence of late-onset sepsis and neurological outcome. *J Perinatal.* 2011;31(1):63-69. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3016918&tool=pmcentrez&rendertype=abstract. Accessed January 12, 2015. DOI: 10.1038/jp.2010.57

21. Underwood MA, Salzman NH, Bennett SH, Barman, M, Mills, DA, Marcobal, A,Tancredi, DJ, Bevins, CL, Sherman, Michael P. A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acids. *J Pediatr Gastroenterol Nutr.* 2009;48(2):216-225. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2743418&tool=pmcentrez&rendertype=abstract. Accessed January 14, 2015. DOI: 10.1097/MPG.0b013e31818de195

22. National Library of Medicine. clinicaltrials.gov. https://clinicaltrials.gov/. Accessed January 14, 2015.

23. World Health Organization International Clinical Trials Registry Platform. http://apps.who.int/trialsearch. Accessed January 14, 2015.

24. American Pediatric Society/Society for Pediatric Research. https://www.aps-spr.org/home.asp. Accessed January 15, 2015.

25. European Society of Pediatric Research. http://www.espr.info/. Accessed January 15, 2015.

26. Freelon D. ReCal. http://dfreelon.org/utils/recalfront/recal2/. Accessed February 18, 2015.

27. Higgins JP, Deeks J, Altman DG, Cochrane Statistical Methods Group. Special Topics in Statistics. In: Higgins J, Green S, eds. *Cochrane Handbook for Systematic Reviews of Interventions.* 5.1.0 The Cochrane Collaboration; 2011. www.cochrane-handbook.org.

28. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

29. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ Br Med J.* 2003;327(7414):557-560. DOI:10.1136/bmj.327.7414.557.

30. Al-Hosni M, Duenas M, Hawk M, Stewart LA, Borghese RA, Cahoon M, Atwood L, Howard D, Ferrelli K, Soll, R. Probiotics-supplemented feeding in extremely low-birthweight infants. *J Perinatol.* 2012;32(4):253-259. DOI:10.1038/jp.2011.51.

31. Bin-Nun A, Bromiker R, Wilschanski M, Kaplan M, Rudenski B, Caplan M, Hammerman C. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. *J Pediatr.* 2005;147(2):192-196. DOI:10.1016/j.jpeds.2005.03.054.

32. Braga TD, da Silva GAP, de Lira PIC, de Carvalho Lima M. Efficacy of Bifidobacterium breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-
low-birth-weight preterm infants: a double-blind, randomized, controlled trial. *Am J Clin Nutr.* 2011;93(1):81-86. http://ajcn.nutrition.org/content/93/1/81.full. Accessed January 14, 2015.

33. Costalos C, Skouteri V, Gounaris A, Sevastiadou S, Triandafilidou A, Ekonomidou C, Kontaxaki F, Petrochilou V.. Enteral feeding of premature infants with Saccharomyces boulardii. *Early Hum Dev.* 2003;74(2):89-96. http://www.ncbi.nlm.nih.gov/pubmed/14580749. Accessed January 14, 2015.

34. Dani C, Biadaioli R, Bertini G, Martelli E, Rubaltelli FF. Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. *Biol Neonate.* 2002;82(2):103-108. http://www.ncbi.nlm.nih.gov/pubmed/12169832. Accessed January 14, 2015.

35. Demirel G, Erdeve O, Celik IH, Dilmen U. Saccharomyces boulardii for prevention of necrotizing enterocolitis in preterm infants: a randomized, controlled study. *Acta Paediatr.* 2013;102(12):e560-e565. http://www.ncbi.nlm.nih.gov/pubmed/24028629. Accessed January 14, 2015.

36. Fernandez-Carrocera LA, Cabanillas-Ayon M, Gallardo-Sarmiento RB, Garcia-Perez CS, Montano-Rodriguez R, Echaniz-Aviles MO S-HA. Double-blind, randomised clinical assay to evaluate the efficacy of probiotics in preterm newborns weighing less than 1500 g in the prevention of necrotising enterocolitis. *Arch Dis Child Fetal Neonatal Ed.* 2013;98(1):F5. DOI: 10.1136/archdischild-2011-300435

37. Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M. Early administration of Bifidobacterium breve to preterm infants: randomised controlled trial. *Arch Dis Child Fetal Neonatal Ed.* 1997;76(2):F101-F107. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1720633&tool=pmcentrez&rendertype=abstract. Accessed January 14, 2015.

38. Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y. Effects of bifidobacterium breve supplementation on intestinal flora of low birth weight infants. *Pediatr Int.* 2004;46(5):509-515. DOI: 10.1111/j.1442-200x.2004.01953.x

39. Lin H-C, Su B-H, Chen A-C, Lin T-W, Tsai C-H, Yeh TF, Oh W. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. *Pediatrics.* 2005;115(1):1-4. DOI: 10.1542/peds.2004-1463

40. Lin H-C, Hsu C-H, Chen H-L, Chung M-Y, Hsu J-F, Lien R-I, Tsao L-Y, Chen C-H, Su, B-H. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. *Pediatrics.* 2008;122(4):693-700. DOI: 10.1542/peds.2007-3007

41. Manzoni P, Mostert M, Leonessa ML, Priolo C, Farina D, Monetti C, Latino MA, Gomirato G.. Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. *Clin Infect Dis.* 2006;42(12):1735-1742. DOI: 10.1086/504324

42. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, Stolfi I, DecembrinoL, Laforgia N, Vagnarelli F, Memo L, Bordignon L, Saia OS, Maule M, Gallo
626 E, Mostert M, Magnani C, Quercia M, Bollani L, Pedicino R, Renzullo L, Betta P, Mosca
627 F, Ferrari F, Magald R, Stronati M, Farina D. Bovine lactoferrin supplementation for
628 prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial.
629 JAMA. 2009;302(13):1421-1428. http://www.ncbi.nlm.nih.gov/pubmed/19809023.
630 Accessed December 22, 2014. DOI: 10.1001/jama.2009.1403
631 43. Mihatsch WA, Vossbeck S, Eikmanns B, Hoegel J, Pohlandt F. Effect of Bifidobacterium
632 lactis on the incidence of nosocomial infections in very-low-birth-weight infants: a
633 randomized controlled trial. Neonatology. 2010;98(2):156-163.
634 http://www.ncbi.nlm.nih.gov/pubmed/20234140. Accessed January 14, 2015. DOI:
635 10.1159/000280291
636 44. Millar MR, Bacon C, Smith SL, Walker V, Hall MA. Enteral feeding of premature infants
637 with Lactobacillus GG. Arch Dis Child. 1993;69(5 Spec No):483-487.
638 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1029589&tool=pmcentrez&re
639 ndertype=abstract. Accessed January 14, 2015.
640 45. Mohan R, Koebnick C, Schildt J, Schmidt M, Mueller M, Possner M, Radke M, Blaut M. .
641 Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of
642 preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol.
643 2006;44(11):4025-4031.
644 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1698302&tool=pmcentrez&re
645 ndertype=abstract. Accessed December 22, 2014. DOI: 10.1128/JCM.00767-06
646 46. Jacobs SE, Tobin JM, Opie GF, Donath S, Tabrizi SN, Pirotta M, Morley CJ, Garland
647 SM. Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled
648 trial. Pediatrics. 2013;132(6):1055-1062. DOI: 10.1542/peds.2013-1339
649 47. Reuman PD, Duckworth DH, Smith KL, Kagan R, Bucciarelli RL, Ayoub EM. Lack of
650 effect of Lactobacillus on gastrointestinal bacterial colonization in premature infants.
651 Pediatr Infect Dis. 1986;5(6):663-668.
652 48. Rojas MA, Lozano JM, Rojas MX, Rodriguez VA, Rondon MA, Bastidas JA, Perez, Luis
653 A, Rojas C, Ovalle O,Garcia-Harker, JE, Tamayo ME, Ruiz GC, Ballesteros A, Archila
654 MM, and Arevalo M. Prophylactic probiotics to prevent death and nosocomial infection in
655 preterm infants. Pediatrics. 2012;130(5):e1113-e1120. DOI: 10.1542/peds.2011-3584
656 49. Rougé C, Piloquet H, Butel M-J, Berger B, Rochat, F, Ferraris L, Des Robert C, Legrand
657 A, de la Cochetière MF, N'Guyen J-M, Vodovar M, Voyer M, Darmaun D, and Rozé, J-C.
658 Oral supplementation with probiotics in very-low-birth-weight preterm infants: a
659 randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2009;89(6):1828-
660 1835. DOI:10.3945/ajcn.2008.26919
661 50. Samanta M, Sarkar M, Ghosh P, Ghosh J kr, Sinha M kr, and Chatterjee S. Prophylactic
662 probiotics for prevention of necrotizing enterocolitis in very low birth weight newborns. J
663 Trop Pediatr. 2009;55(2):128-131. DOI: 10.1093/tropej/fmn091.
664 51. Sari FN, Dizdar EA, Oguz S, Erdeve O, Uras N, and Dilmen U. Oral probiotics:
665 Lactobacillus sporogenes for prevention of necrotizing enterocolitis in very low-birth
666 weight infants: a randomized, controlled trial. Eur J Clin Nutr. 2011;65(4):434-439.
667 http://www.ncbi.nlm.nih.gov/pubmed/21245887. Accessed January 14, 2015. DOI:
Stratiki Z, Costalos C, Sevastiadou S, Kastanidou O, Skouroliaakou M, Giakoumatou A, and Petrohilou V. The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. *Early Hum Dev*. 2007;83(9):575-579. DOI:10.1016/j.earlhumdev.2006.12.002.

Altman D. *Practical Statistics for Medical Research*. 2nd edition. Boca Raton, FL: Chapman & Hall/CRC; 2001.

Manzoni P, Meyer M, Stolfi I, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, Decembrino L, Laforti N, Vagnarelli F, Memo L, Bordignon L, Maule M, Gallo E, Mostert M, Quercia M, Bollani L, Pedicino R, Rentullo L, Betta P, Ferrari F, Alexander T, Magaldi R, Farina D, Mosca F, Stronati M. Bovine lactoferrin supplementation for prevention of necrotizing enterocolitis in very-low-birth-weight neonates: a randomized clinical trial. *Early Hum Dev*. 2014;90 Suppl 1:S60-S65. DOI: 10.1016/S0378-3782(14)70020-9

Oncel M, Sari FN, Arayici S, Guzoglu N, Erdeve O, Uras N, Oguiz S S, Dilmu N.. Lactobacillus Reuteri for the prevention of necrotising enterocolitis in very low birthweight infants: a randomised controlled trial. *Arch Dis Child Fetal Neonatal Ed*. 2014;99(2):F110-F115. http://fn.bmj.com/content/99/2/F110.full.pdf. DOI: 10.1136/archdischild-2013-304745

Akar M, Eras Z, Oncel MY, Arayici S, Guzoglu N, Canpolat FE, Uras N, Oguiz SS. Impact of oral probiotics on neurodevelopmental outcomes in preterm infants. *J Matern Neonatal Med*. 2016;1-5. DOI:10.1080/14767058.2016.1174683.

Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. *Lancet*. 2016;387(10019):649-660. http://www.ncbi.nlm.nih.gov/pubmed/26628328. Accessed November 30, 2015. DOI: 10.1016/S0140-6736(15)01027-2

Dilli D, Aydin B, Fettah ND, Özuyazici E, Beken S, Zenciroğlu A, Okumus N, Ozyurt BM, İpek MS, Akgül A, Turan O, and Bozdağ S. The pre-crucial study: effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. *J Pediatr*. 2015;166(3):545-551. DOI:10.1016/j.peds.2014.12.004

Dutta S, Ray P, Narang A. Comparison of stool colonization in premature infants by three dose regimes of a probiotic combination: a randomized controlled trial. *Am J Perinatol*. 2015;32(8):733-740. DOI: 10.1055/s-0034-1395473

Sinha A, Gupta SS, Chellani H, Maliye C, Kumari V, Arya S, Garg BS, Gaur SD, Gaind R, Deotale V, Taywade M, Prasad MS, Thavraj V, Mukherjee A and Roy M. Role of probiotics VSL#3 in prevention of suspected sepsis in low birthweight infants in India: a randomised controlled trial. *BMJ Open*. 2015;5(7):e006564. DOI:10.1136/bmjopen-2014-006564

Tewari VV, Dubey SK and Gupta GD. Bacillus clausii for Prevention of Late-onset Sepsis in Preterm Infants: A Randomized Controlled Trial. *J Trop Pediatr*. 2015;61(5):377-384. DOI:10.1093/tropej/fmv050
62. Fu H, Song Y. [A clinical observation of Bacillus subtilis on neonatal necrotizing enterocolitis]. MCH Care China. 2012;27:2862-2863.

63. Hunter C, Dimaguila MAVT, Gal P, Wimmer JE Jr, Ransom JL, Carlos RQ, McC Smith M and Davanzo CC. Effect of routine probiotic, Lactobacillus reuteri DSM 17938, use on rates of necrotizing enterocolitis in neonates with birthweight < 1000 grams: a sequential analysis. BMC Pediatr. 2012;12:142.

64. Li H, Qiao L, Huang L. [Preventive effect of microecological preparation on neonatal necrotizing enterocolitis of 412 premature infants]. J Appl Clin Pediatr. 2011;26:622-623. DOI: 10.3969/j.issn.1003-515X.2011.08.025

65. Patole S, Keil AD, Chang A, Nathan E, Doherty D, Simmer K, Esvaran M, and Conway P. Effect of Bifidobacterium breve M-16V supplementation on fecal bifidobacteria in preterm neonates--a randomised double blind placebo controlled trial. PLoS One. 2014;9(3):e89511. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940439/. DOI: 10.1371/journal.pone.0089511

66. Roy A, Chaudhuri J, Sarkar D, Ghosh P, Chakraborty S. Role of enteric supplementation of Probiotics on late-onset sepsis by Candida species in preterm low birth weight neonates: A randomized, double blind, placebo-controlled trial. N Am J Med Sci. 2014;6(1):50-57. DOI:10.4103/1947-2714.125870.

67. Serce O, Benzer D, Gursoy T, Karatekin G, Ovali F. Efficacy of Saccharomyces bouardii on necrotizing enterocolitis or sepsis in very low birth weight infants: a randomised controlled trial. Early Hum Dev. 2013;89(12):1033-1036. DOI:10.1016/j.earlhumdev.2013.08.013.

68. Van Niekerk E, Kirsten GF, Nell DG, and Blaauw R. Probiotics, feeding tolerance, and growth: a comparison between HIV-exposed and unexposed very low birth weight infants. Nutrition. 2014;30(6):645-653. DOI:10.1016/j.nut.2013.10.024.

69. Van Niekerk E, Nell DG, Blaauw R and Kirsten GF. Human milk oligosaccharides differ between HIV-infected and HIV-uninfected mothers and are related to necrotizing enterocolitis incidence in their preterm very-low-birth-weight infants. J Nutr. 2014;144(8):1227-1233. http://jn.nutrition.org/content/144/8/1227.full.pdf.

70. Foster J, Cole M. Oral immunoglobulin for preventing necrotizing enterocolitis in preterm and low birth-weight neonates. Cochrane database Syst Rev. 2004;(1):CD001816. DOI:10.1002/14651858.CD001816.pub2.

71. Bury RG, Tudehope D. Enteral antibiotics for preventing necrotizing enterocolitis in low birthweight or preterm infants. Cochrane database Syst Rev. 2001;(1):CD000405. DOI:10.1002/14651858.CD000405.

72. Pammi M, Abrams SA. Oral lactoferrin for the prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane database Syst Rev. 2015;2:CD007137. DOI:10.1002/14651858.CD007137.pub4.

73. The Canadian Neonatal Network. The Canadian Neonatal Network Annual Report 2013.
750 Toronto, Ontario, Canada; 2011.
751 http://www.canadianneonatalnetwork.org/Portal/LinkClick.aspx?fileticket=lreR0871sjA=
752 &tabid=39.
753 74. Flidel-Rimon O, Friedman S, Lev E, Juster-Reicher A, Amitay M, Shinwell ES. Early
754 enteral feeding and nosocomial sepsis in very low birthweight infants. Arch Dis Child -
755 Fetal Neonatal Ed. 2004;89 (4):F289-F292. DOI:10.1136/adc.2002.021923.
756 75. Dutta S, Singh B, Chessell L, Wilson J, Janes M, McDonald K, Shahid S, Gardner VA,
757 Hjartarson A, Purcha M, Watson J, De Boer C, Gaal B, and Fusch C. Guidelines for
758 Feeding Very Low Birth Weight Infants. Nutrients. 2015;7(1):423-442.
759 DOI:10.3390/nu7010423.
760 76. Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawöger R, Kiechl-Kohlendorfer U, Chan
761 GM, Blanco CL, Abrams S, Cotten CM, Laroia N, Ehrenkranz RA, Dudell G, Cristofalo
762 EA, Meier P, Lee ML, Rechtman DJ, and Lucas A. An exclusively human milk-based
763 diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk
764 and bovine milk-based products. J Pediatr. 2010;156(4):562-567.e1.
765 DOI:10.1016/j.jpeds.2009.10.040.
766 77. Meinzen-Derr J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF. Role of
767 human milk in extremely low birth weight infants’ risk of necrotizing enterocolitis or
768 death. J Perinatol. 2009;29(1):57-62. DOI:10.1038/jp.2008.117.
769 78. Venugopalan V, Shriner KA, Wong-Beringer A. Regulatory oversight and safety of
770 probiotic use. Emerg Infect Dis. 2010;16(11):1661-1665.
771 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3294522&tool=pmcentrez&re
772 ndertype=abstract. Accessed March 31, 2015.
773 79. Van Niekerk E, Nel DG, Blaauw R, Kirsten GF. Probiotics Reduce Necrotizing
774 Enterocolitis Severity in HIV-exposed Premature Infants. J Trop Pediatr. February 2015.
775 DOI:10.1093/tropej/fmv004.
776 80. Chan L-N. Probiotics for Neonates: Safety for Prime Time Questioned without Regulatory
777 Changes. J Pediatr. 166(2):502. DOI:10.1016/j.jped.2014.10.041.
778 81. Barrington KJ, Janvier A. Reply. J Pediatr. 166(2):502-503.
779 DOI:10.1016/j.jped.2014.10.063.
780 82. Deng J, Chen K. [Early minimal feeding combined with probiotics to prevent necrotizing
781 enterocolitis in preterm infant]. Chinese J Mod Drug App. 2010;4:13-14.
782 83. Zhou N. [The observation of effect of probiotics in the prevention of neonatal necrotizing
783 enterocolitis]. Chinese J Ethnomed Ethnopharm. 2012;21:81.
784 84. Jacobs SE, Leah Hickey, Susan Donath, Gillian Opie, Peter Anderson, Suzanne Garland
785 JC. Probiotics and Neurodevelopment in Very Preterm Infants: Follow-Up of a
786 Randomised Controlled Trial. In: Pediatric Academic Societies’ Annual Meeting. ; 2016.
787 https://www.pas-meeting.org/.
788 85. Benjamin DK Jr, Hudak ML, Duara S, Randolph DA, Bidegain M, Mundakel GT,
789 Natarajan G, Burchfield DJ, White RD, Shattuck KE, Neu N, Bendel CM, Kim MR, Finer
NN, Stewart DL, Arrieta AC, Wade KC, Kaufman DA, Manzoni P, Prather KO, Testoni D, Berezny KY, Smith PB; Fluconazole Prophylaxis Study Team. Effect of fluconazole prophylaxis on candidiasis and mortality in premature infants: a randomized clinical trial. *JAMA*. 2014;311(17):1742-1749. DOI:10.1001/jama.2014.2624.

Austin N, Darlow BA, McGuire W. Prophylactic oral/topical non-absorbed antifungal agents to prevent invasive fungal infection in very low birth weight infants. *Cochrane database Syst Rev*. 2013;3:CD003478. DOI:10.1002/14651858.CD003478.pub4.
Table 1 (on next page)

Characteristics of included trials
Identifier	Inclusion Criteria	Gestational Age	Birth weight	Other inclusion criteria	Number randomized in each group	Probiotic Species (Brand names)	Total Dose (cfu/day)	Initiation	Duration	Feeding (B, PF, F, Mixed)
Al-Hosni 2012	"preterm"	30	501-1000 g	14 days of age or less at the time of initiation of feeds	Probiotic: 50 Control: 51	Lactobacillus rhamnosus GG LGG – 0.5 billion (Culturelle®)	1 billion	At the time of first feeding	28 days or more	Not stated
Bin-Nun 2005	"preterm"		Less than 1500 g	None	Probiotic: 72 Control: 73	Lactobacillus casei – 0.002 to 2 billion (ABC Dophilus®)	0.035 to 3.5 billion	48 hours or less		Mixed
Braga 2011	None	750-1499 g	Born locally and admitted to NICU	Probiotic: 119 Control: 112	Lactobacillus casei – 0.002 to 2 billion (ABC Dophilus®)	0.035 to 3.5 billion	48 hours or less		Mixed	
Costalos 2003	28-32 weeks	None	None	Probiotic: 51 Control: 36	Saccharomyces boulardii	2 billion	At the time of first feeding	28 days or more		Mixed
Costeloe 2016	23 weeks up to 30 weeks and 6 days	None	None	Probiotic: 650 Control: 660	Lactobacillus casei – 0.002 to 2 billion (ABC Dophilus®)	0.067 – 6.7 billion	48 hours or less	28 days or more	Mixed/B (46%)	
Dani 2002	Less than 33 weeks	Less than 1500 g	None	Probiotic: 295 Control: 290	Lactobacillus rhamnosus GG (Dicoflor®)	6 billion	At the time of first feeding	28 days or more	Mixed	
Demiril 2013	Less than 32 weeks	1500 g or less	Survival to start enteral feeding	Probiotic: 135 Control: 136	Lactobacillus boulardii (Reflor®)	5 billion	At the time of first feeding	28 days or more	Mixed	
Dilli 2015	Less than 32 weeks	Less than 1500 g	7 days of age or less at the time of initiation of feeds	Probiotic: 100 Synbiotic: 100 Prebiotic: 100 Control: 100	B. lactis 5 billion B. lactis 5 billion + inulin Inulin 900 mg (Maflor®)	5 billion	More than 48 hours	28 days or more	Mixed	
Dutta 2015	27 – 33 weeks		Aged less than 96 hrs, likely to remain in hospital or reside within 30 km for 28 days, tolerating 15 mL/kg/d of milk feeds	Probiotic: 100 Control: 100	B. lactis 5 billion B. lactis 5 billion + inulin Inulin 900 mg (Maflor®)	5 billion	More than 48 hours	28 days or more	Mixed	
Fernández-Carrasco 2013	"preterm"	Less than 1500 g	None	Probiotic: 75 Control: 75	Lactobacillus acidophilus - 1 billion Lactobacillus rhamnosus - 0.44 billion	2.65 billion	At the time of first feeding	28 days or more	Mixed	
STUDY	WEEKS	BIRTHWEIGHT	BOC	PROBIOTIC	DOSAGE	PROTOCOL	OUTCOME			
-------	-------	-------------	-----	-----------	--------	----------	---------			
Hua 2014	Less than 37 weeks	None	Anticipated to start enteral feeding within 72 hrs. Anticipated length of stay at least 7 days.	Probiotic: L casei - 1 billion Lactobacillus plantarum - 0.176 billion B infantis - 0.0276 billion S thermophillus - 0.0066 billion (Lactipan®)	Biﬁdobacterium longum Lactobacillus bulgaricus S thermophilus (Golden Bifid®)	3 billion	At the time of first feeding	14 to 27 days	Mixed	
Huang 2009	28-32 weeks	Less than 1500 g	None	Probiotic: Bifidobacterium adolescentis	0.05 billion	More than 48 hrs	Up to 13 days	Unknown		
Jacobs 2013 (ProPrems)	Less than 32 weeks	Less than 1500 g	Enrolled within 72 hours of birth.	Probiotic: B bifidus - 0.35 billion L acidophilus - 1 billion (Bifico®)	Biﬁdobacterium adolescentis	1 billion	More than 48 hrs	28 days or more	Mixed	
Ke 2008	Less than 37 weeks	None	None	Probiotic: Enterococcus faecalis - 1 billion B longum - 1 billion L acidophilus - 1 billion (Bifico®)	Biﬁdobacterium adolescentis	3 billion	More than 48 hrs	Until Discharge	Unknown	
Kitajima 1997	None	Less than 1500 g	None	Probiotic: B breve YIT4010 (Yakult® Honsya Co. Ltd., Tokyo, Japan)	Biﬁdobacterium adolescentis	0.5 billion	At the time of first feeding	28 days or more	Mixed	
Li 2004	27.8-37.6 weeks	780-2250 g	Slated as low birth weight infants	Probiotic: B breve	Biﬁdobacterium adolescentis	0.32 billion	48 hours or less	Until Discharge	Unknown	
Lin 2005	None	Less than 1500 g	None	Probiotic: L acidophilus - 1 billion/250 mg cap B infantis - 1 billion/250 mg cap	Biﬁdobacterium adolescentis	1 billion/kg	At the time of first feeding	28 days or more	B	
Lin 2008	Less than 34 weeks	Less than 1500 g	None	Probiotic: L acidophilus - 1 billion/250 mg cap B bifidum - 1 billion/250 mg cap	Biﬁdobacterium adolescentis	1 billion/kg	At the time of first feeding	Until Discharge	Mixed	
Manzoni 2006	None	Less than 1500 g	Less than 3 days of age, started oral feeding with human milk, no baseline fungal colonization at enrollment, no other antifungal prophylaxis, oral feeding was stable and was tolerated by neonate	Probiotic: L rhamnosus GG (Dicoflor®)	Biﬁdobacterium adolescentis	6 billion	More than 48 hrs	28 days or more	B	
Manzoni 2014	None	Less than 1500 g	Less than 48 hours of age	Synbiotic: L rhamnosus GG 6 billion + Bovine Lactoferrin 100 mg (Dicoflor®) Bovine Lactoferrin 100 mg (Dicofarm®)	Biﬁdobacterium adolescentis	6 billion	More than 48 hrs	28 days or more	Mixed	
Mihatsch 2010	Less than 30 weeks	Less than 1500 g	None	Probiotic: B bifidus - 0.35 billion L acidophilus - 1 billion (Nestlé®)	Biﬁdobacterium adolescentis	12 billion/kg	At the time of first feeding	28 days or more	Mixed	
Study Year	Duration	Gestation	Birth Weight	Probiotics	Control	Description				
------------	----------	-----------	--------------	------------	---------	-------------				
Millar 1993	33 weeks or less	None	None	Probiotic: 10 (L. rhamnosus GG)	Control: 10	0.2 billion at the time of first feeding				
Mohan 2006	Less than 37 weeks	None	None	Probiotic: 37 (B. lactis Bb12)	Control: 32	4.8 billion 48 hours or less				
Oncel 2014	32 weeks or less	1500 g or less	None	Probiotic: 200 (L. reuteri DSM 17938)	Control: 200	0.1 billion at the time of first feeding				
Patole 2014	Less than 33 weeks	Less than 1500 g	Ready to commence or on enteral feeds for <12 hours	Probiotic: 77 (B. infantis)	Control: 70	3 billion at the time of first feeding				
Ren 2010	28-33 weeks	1000-1800 g	None	Probiotic: 80 (L. acidophilus)	Control: 70	0.016 billion at the time of first feeding				
Reuman 1986	*preterm*	Less than 2000 g	Greater than 24 hrs, but less than 72 hrs old	Probiotic: 15 (L. acidophilus)	Control: 15	0.018 billion within 72 hrs				
Rojas 2012	*preterm*	2000 g or less	None	Probiotic: 372 (L. reuteri DSM 17938)	Control: 378	0.1 billion 48 hours or less				
Romeo 2011	Less than 37 weeks	Less than 2500 g	Age < 2wks feeds within 72 hrs	Probiotic (L. reuteri): 83	Control: 83	0.1 billion L. reuteri or 6 billion L. rhamnosus more than 48 hrs				
Rougé 2009	Less than 32 weeks	Less than 1500 g	Postnatal age <= 2 week, the absence of any disease other than those linked to prematurity and the start of enteral feeding	Probiotic: 43 (L. rhamnosus)	Placebo: 49	0.8 billion at the time of first feeding				
Roy 2014	Less than 37 weeks	Less than 2500 g	Stable oral feeding within 72 h of birth, adequate renal and liver function, a postnatal age < 2 week	Probiotic: 56 (L. acidophilus)	Control: 56	1.25 billion more than 48 hrs				
Samanta 2009	Less than 32 weeks	Less than 1500 g	Started feed enterally and survived beyond 48 h of life	Probiotic: 91 (B. infantis)	Control: 95	20 billion more than 48 hrs				
Sari 2011	Less than 33 weeks	Less than 1500 g	Who survived to feed enterally	Probiotic: 110 (Bacillus coagulans)	Control: 111	0.35 billion at the time of first feeding				
Study	Weeks or Less	Birth Weight	Feeding Method	Probiotic	Control	Probiotic Description	Control Description	Duration	Start of Therapy	Notes
-------	---------------	--------------	----------------	------------	---------	------------------------	--------------------	----------	-----------------	-------
Serce 2013²⁷	32 weeks or less	1500 g or less	Survival to feed enterally	Probiotic: 104	Control: 104	S boulardii (Reflor®)	1 billion	At the time of first feeding	28 days or more	Mixed
Sinha 2015³⁰	None	1500-2500 g	Residing within 20-25 km of hospital and not planning to shift residences for at least the next 2 months	Probiotic: 668	Control: 672	VSL#3®: Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii spp bulgaricus.	10 billion	Within the first week	28 days or more	B
Stratiki 2007³²	27 to 37 weeks	None	formula fed	Probiotic: 41	Control: 34	B lactis (Prenan Nestlé®)	0.2 billion/kg	48 hours or less	Not stated	PF
Tewari 2015³¹	27-30 weeks + 6 days and 31-33 weeks + 6 days	None	None	Probiotic:123	Control:121	Bacillus clausii 2 billion (Enterogermina®)	6 billion	More than 48 hrs	28 days or more	B
Underwood 2009²⁴	Less than 35 weeks	750 to 2000 g	Younger than 7 days old	Probiotic: (Culturelle): 30	Probiotic: (ProBioPlus): 31	L rhamnosus GG - 10 billion/cap (ProBioPlus DDS) B infantis - 10 billion/cap B bifidum - 10 billion/cap B longum - 10 billion/cap L acidophilus - 10 billion/cap (Culturelle®)	0.5 billion Culturelle or 2 billion ProBioPlus	Within the First Week	28 days or more	Mixed
Van Niekerk 2014^{48,50}	Less than 34 weeks	500 to 1250 g	HIV exposed and unexposed born to HIV positive or negative mothers who agreed to breastfeed	Probiotic: 91	Control: 29	L rhamnosus GG - 0.35 billion B infantis - 0.35 billion (Pro-B2®)	0.7 billion	At the time of first feeding	28 days or more	B
Yang 2011¹⁹	Less than 37 weeks	<1500 to >2500 g	2 week length of stay and admitted within 24 hours	Probiotic: 31	Control: 31	L longum - 0.005 billion L acidophilus - 0.005 billion E faecalis - 0.005 billion	0.03 billion	At the time of first feeding	Up to 13 days	Unknown

2. Initiation of probiotic therapy was categorized to fit the defined subgroups for data analysis.
3. Duration of probiotic therapy was categorized to fit the defined subgroups for data analysis.
4. Handled as two trials (4 arms).
5. Randomized extension of the 2009 publication.
6. Handled as two trials to account for the 3 arms in the trial.
7. Included two randomized clinical studies, one of HIV-exposed and one of HIV-unexposed preterm infants which were analyzed as two trials.
8. B: breastfeeding only, PF: preterm formula, F: formula, Mixed: mixed feeding types
Table 2 (on next page)

Table 2 - Additional Important Findings
Table 2 - Additional important findings

Outcome	Number of studies / participants	Effect size	95% CI	I² (%)
All Infants				
Bacterial sepsis	9 / 2212	RR 0.86	0.62 to 1.18	52
Fungal sepsis	12 / 3756	RR 0.67	0.43 to 1.06	10
Duration of hospitalization (days)	16 / 4915	MD -3.2	-5.5 to -0.9	84
Weight gain (g/day)	3 / 314	MD +1.7	1.0 to 2.3	0
Time to achieve full feeds (days)	17 / 4448	MD -1.2	-2.2 to -0.1	93
VLBW infants				
Culture-proven sepsis	24 / 6616	RR 0.93	0.82 to 1.05	15
Duration parenteral nutrition (days)	4 / 1210	MD -1.2	-2.3 to -0.02	0
ELBW infants				
Culture-proven sepsis	6 / 1703	RR 0.95	0.72 to 1.26	41
Mortality	4 / 1122	RR 0.92	0.046 to 1.83	47
Duration of hospitalization (days)	2 / 218	MD -6.4	-12.6 to -0.1	0
Time to achieve full feeds (days)	2 / 218	MD -1.8	-2.9 to -0.7	0

MD: mean difference, RR: risk ratio, CI: confidence interval, NEC: necrotizing enterocolitis, VLBW: very low birth weight (<1500 g), ELBW: extremely low birth weight (<1000 g)
Figure 1 (on next page)

PRISMA Flow Diagram
Clinical trials registries (n = 35)
Conference abstracts (n = 115)

Electronic databases (Embase, Medline, Central) (n = 475)

Previous systematic reviews (n = 51)

Records screened after deduplication:
- Trial registries (n = 28)
- Conference abstracts (n = 115)
- Electronic databases (n = 233)
- Previous systematic reviews (n = 36)
 (n = 412)

Records excluded after title and abstract screening:
- Trial registries (n = 25)
- Electronic databases (n = 195)
 (n = 220)

Full-text articles assessed for eligibility:
- Trial registries (n = 3)
- Conference abstracts (n = 115)
- Electronic databases (n = 38)
- Previous systematic reviews (n = 36)
 (n = 192)

Records excluded after full-text screening:
- Additional records of already included trials (electronic databases n = 5, conference abstracts n = 1)
- Conference abstracts (n = 112)
- Electronic databases (n = 22)
- Previous systematic reviews (n = 6)
 (n = 146)

Studies included in qualitative synthesis
- Trial registries (n = 3)
- Conference abstracts (n = 2)
- Electronic databases (n = 11)
- Previous systematic reviews (n = 30)
 (n = 46)

Records excluded:
- Trial registries (n = 3 - ongoing trials)
- Conference abstracts (n = 2 - not available in full-text)
- Previous systematic reviews (n = 2 - no data added)
 (n = 7)

Studies included in quantitative synthesis (meta-analysis)
- Electronic databases (n = 13)
- Previous systematic reviews (n = 29)
 (n = 42)

Records added; trial split due to multiple arms:
- Electronic databases (n = 2)
- Previous systematic reviews (n = 1)
Figure 2 (on next page)

Forest plot showing the effect of probiotics on severe NEC in all infants
Study or Subgroup	Probiotics Events	Control Events	Total	Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
Al-Hodhi 2012	2	50	51	1.3%	1.02 [0.15, 8.98]	
Bin-Nun 2006	1	72	73	1.2%	0.19 [0.01, 0.77]	
Braga 2011	0	119	112	0.8%	0.10 [0.01, 1.02]	
Costalos 2003	5	61	66	3.8%	0.59 [0.34, 0.99]	
Costeloe 2015	51	650	681	18.1%	0.37 [0.27, 0.50]	
Dami 2002	4	295	299	3.2%	0.49 [0.19, 1.51]	
Dammacco 2013	8	135	143	3.9%	0.80 [0.39, 1.65]	
Dalli 2015a	2	100	102	2.2%	0.11 [0.03, 0.47]	
Dalli 2015b	4	100	104	3.8%	0.33 [0.11, 1.00]	
Dutta 2015	0	114	114	0.0%	4.67 [0.23, 70.49]	
Fernandez-Cancino 2013	6	76	82	4.9%	0.59 [0.20, 1.30]	
Hus 2014	0	118	118	0.5%	0.23 [0.01, 4.78]	
Huang 2009	0	66	66	0.9%	0.13 [0.01, 2.53]	
Ks 2008	7	438	445	5.9%	0.30 [0.13, 0.69]	
Katajima 1997	0	46	46		Not estimable	
Lin 2005	2	110	112	2.1%	0.21 [0.05, 0.94]	
Lin 2008	4	222	226	3.7%	0.29 [0.10, 0.89]	
Manzoni 2006	1	39	40	1.0%	0.35 [0.04, 3.23]	
Manzoni 2014	0	236	236	0.7%	0.09 [0.01, 1.70]	
Minakata 2010	2	86	88	1.7%	0.49 [0.09, 2.60]	
Orend 2014	8	200	208	5.0%	0.39 [0.22, 0.70]	
Palis 2014	0	79	79	0.0%	0.34 [0.01, 1.69]	
ProFprems 2013	11	946	957	7.5%	0.46 [0.23, 0.93]	
Rieh 2010	3	60	63	2.4%	0.53 [0.13, 2.12]	
Reunan 1998	0	15	15		Not estimable	
Ruc 2012	0	372	372	8.0%	0.61 [0.27, 1.38]	
Roug 2009	2	48	50	0.9%	2.18 [0.20, 23.21]	
Rou 2014	2	56	58	1.3%	1.05 [0.15, 8.95]	
Samaret 2009	5	91	96	4.5%	0.35 [0.13, 0.92]	
Satt 2011	6	121	127	4.4%	0.60 [0.23, 1.50]	
Sia 2013	7	122	129	4.2%	1.03 [0.36, 2.77]	
Staal 2007	0	41	41	0.0%	0.12 [0.01, 2.23]	
Tawar 2015	0	128	128		Not estimable	
Underwood 2009a	1	30	31	0.7%	0.50 [0.03, 7.45]	
Underwood 2009b multi	1	31	32	0.9%	1.44 [0.66, 3.12]	
Van Niekerk 2014a (-IV-exposed)	0	37	37	0.5%	0.20 [0.01, 4.03]	
Van Niekerk 2014b (-IV-unexposed)	0	54	54	0.5%	0.21 [0.01, 4.22]	
Yang 2011	2	51	53	1.9%	0.67 [0.12, 3.72]	

Total (95% CI): 5304 5216 100.0% 0.53 [0.42, 0.66]

Total events: 170 311

Heterogeneity: Tau² = 0.04; Chi² = 98.08, df = 34 (P = 0.00001); P = 11%

Test for overall effect: Z = 5.91 (P < 0.00001)
Figure 3 (on next page)

Forest plot showing the effect of probiotics on culture-proven sepsis in all infants
Study or Subgroup	Probiotics Events	Probiotics Total	Control Events	Control Total	Weight	Risk Ratio M-H, Random, 95% CI
Al-Heidi 2012	13	50	18	51	2.3%	0.93 [0.45, 1.94]
Bin-Nun 2005	31	72	24	73	5.5%	1.31 [0.88, 2.00]
Costalos 2003	3	51	3	36	0.7%	0.71 [0.15, 3.30]
Costalos 2018	73	600	77	580	7.9%	0.69 [0.71, 1.30]
Dani 2002	14	295	12	290	2.4%	1.15 [0.54, 2.41]
Demir 2013	20	135	21	116	3.9%	0.95 [0.59, 1.69]
Dill 2015a	8	100	13	100	2.1%	0.82 [0.27, 2.94]
Dill 2015b	8	100	10	100	1.9%	0.80 [0.33, 1.94]
Duffa 2015	10	114	8	35	1.7%	0.51 [0.20, 1.31]
Fernandez-Carreno 2013	42	78	44	75	8.2%	0.96 [0.72, 1.28]
Hu 2014	2	119	0	119	0.7%	0.29 [0.08, 0.94]
Lin 2005	22	100	28	108	4.9%	0.63 [0.39, 1.04]
Lin 2008	40	222	24	221	4.9%	1.68 [1.04, 2.69]
Manzoni 2006	13	36	22	44	5.4%	0.91 [0.59, 1.40]
Manzoni 2009	7	101	9	100	1.3%	0.79 [0.33, 2.03]
Milan 1992	0	10	0	10	Not estimable	
Oncel 2014	13	200	25	200	3.1%	0.52 [0.27, 0.99]
Patino 2014	17	79	12	80	2.9%	1.43 [0.73, 2.80]
ProFrem 2013	72	548	89	551	7.9%	0.81 [0.61, 1.08]
Rojas 2012	24	372	17	378	3.4%	1.43 [0.78, 2.63]
Romeo 2011a	1	63	5	62	0.4%	0.19 [0.01, 0.94]
Romeo 2011b	2	83	4	82	0.3%	0.25 [0.09, 0.69]
Roupe 2008	15	45	13	45	3.3%	1.26 [0.67, 2.34]
Roy 2014	31	56	42	64	0.1%	0.74 [0.59, 0.99]
Samardzic 2009	13	98	28	95	3.5%	0.49 [0.27, 0.88]
Sari 2011	28	121	26	121	4.0%	1.12 [0.70, 1.78]
Serc 2013	19	122	25	122	4.0%	0.78 [0.44, 1.31]
Strakos 2007	0	41	3	41	0.2%	0.12 [0.01, 2.23]
Tetani 2015	0	123	11	121	1.9%	0.72 [0.30, 1.72]
Van Niekerk 2014a	2	37	4	37	0.3%	0.59 [0.30, 1.10]
Van Niekerk 2014b	5	64	4	65	1.0%	1.30 [0.87, 2.00]

Total (events) | 4418 | 4289 | 100.0% | 0.88 [0.77, 1.00] |
Figure 4 (on next page)

Forest plot showing the effect of probiotics on all-cause mortality in all infants
Figure 5 (on next page)

Forest plot showing the effect of probiotics in VLBW infants
Table

Study or Subgroup	Prebiotics Events	Control Events	Total	Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
Al-Nassri 2012	2	50	51	1.9%	1.02 [0.15, 8.98]	
Bin-Nun 2005	1	72	73	1.7%	0.19 [0.01, 0.77]	
Braga 2011	0	118	118	0.8%	0.10 [0.01, 0.92]	
Dani 2002	4	285	290	4.9%	0.49 [0.13, 1.61]	
Demirel 2013	6	135	141	9.1%	0.99 [0.30, 2.50]	
Dhill 2013a	2	100	102	3.4%	0.11 [0.03, 0.47]	
Dhill 2015a	4	100	104	5.7%	0.33 [0.11, 1.00]	
Fernandez-Camacho 2013	6	76	82	8.0%	0.50 [0.20, 1.28]	
Kajijima 1997	0	45	45			
Lin 2005	2	180	182	3.1%	0.21 [0.05, 0.94]	
Lin 2008	4	217	221	5.0%	0.29 [0.12, 0.70]	
Manzoni 2006	1	30	31	1.4%	0.35 [0.04, 3.23]	
Manzoni 2014	0	238	238	0.3%	0.03 [0.01, 1.78]	
Mihatsch 2010	2	81	83	2.5%	0.49 [0.09, 2.49]	
Onora 2014	8	200	208	8.4%	0.80 [0.32, 2.20]	
Pastore 2014	0	79	79	0.7%	0.34 [0.01, 0.98]	
Proferias 2013	11	946	957	13.9%	0.45 [0.23, 0.89]	
Rozas 2012	8	176	184	7.0%	0.83 [0.23, 3.09]	
Rouge 2009	2	45	47	1.2%	2.18 [0.20, 23.2]	
Sansores 2009	5	91	96	7.5%	0.35 [0.13, 0.92]	
Sant 2011	6	110	116	7.2%	0.81 [0.23, 2.91]	
Sarve 2013	7	122	129	6.7%	1.00 [0.30, 2.77]	
Tawani 2015	0	61	61			
Van Nielkerk 2014a (HIV-exposed)	0	37	37	0.3%	0.20 [0.01, 4.03]	
Van Nielkerk 2014b (HIV-unexposed)	0	64	64	0.3%	0.21 [0.01, 4.22]	
Total (95% CI)	**3279**	**3308**	**10.0%**	**0.47 [0.36, 0.61]**	**[.]**	**[.]**

Total events: 7981

Heterogeneity: Tau² = 0.00, Chi² = 19.68, df = 22 (P = 0.60), P = 0.0%

Test for overall effect: Z = 5.87 (P < 0.0001)
Figure 6 (on next page)

Forest plot showing the effect of probiotics in ELBW infants
Manuscript to be reviewed

Study or Subgroup	Events	Total	Events	Total	Weight	Risk Ratio M.H, Random, 95% CI
Al-Hassan 2012	2	50	2	51	2.3%	1.02 [0.15, 6.98]
Costelloe 2016	60	317	52	327	88.8%	0.97 [0.88, 1.36]
Lin 2008	4	102	7	79	6.1%	0.44 [0.13, 1.45]
Onoel 2014	5	93	9	103	7.7%	0.62 [0.21, 1.77]
ProPrems 2013	10	235	14	230	13.6%	0.73 [0.33, 1.66]
Roy 2014	1	11	1	11	1.2%	1.00 [0.07, 14.05]
Total (95% CI)	808	810	100.0%	0.86 [0.64, 1.16]		

Total events: 72, 88

Heterogeneity: Tau² = 0.00; Chi² = 2.27, df = 5 (P = 0.81), I² = 0%

Test for overall effect: Z = 1.00 (P = 0.32)