Divergence Method for Exponential Stability Study of Autonomous Dynamical Systems

IGOR B. FURTAT, (Senior member, IEEE), PAVEL A. GUSHCHIN,
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences (IPME RAS)

Corresponding author: Igor B. Furtat (e-mail: cainenash@mail.ru).

The results in Sections III and V were developed under support of Russian Science Foundation (grant 18-79-10104, https://rscf.ru/en/project/18-79-10104/) in IPME RAS. The results in Sections IV were developed under support of goszadanie no. 121112500298-6 (EGISU NIOKTR) in IPME RAS.

ABSTRACT The recent proposed divergence method is used for investigation of an exponential stability of autonomous dynamical systems. New necessary conditions are derived by using Divergence theorem. Taking into account the relation between gradient and divergence of the vector field, novel sufficient conditions are obtained. The sufficient conditions are applied for design the state-feedback control laws ensuring exponential stability of the closed-loop system. Examples illustrate the efficiency of the proposed methods.

INDEX TERMS Autonomous system, sufficient condition, Divergence theorem, control, divergence of the vector field, exponential stability.

I. INTRODUCTION

THE paper is devoted to the development of divergence method for stability study of dynamical systems. Interest of this method is associated with its relationship to many problems in physics and mechanics, in particular to processes that are described by the continuity equation [1]–[4].

First results of stability study of dynamical systems by using a divergence and flow of the vector field were proposed in [5]–[8] for second order dynamical systems. These results were improved in [9]–[13] for arbitrary order systems. An overview of these and others corresponding methods is described in more detail in [14]–[17]. Also, in [14]–[17] new necessary and sufficient stability conditions were proposed. Differently from [9]–[13] methods [14]–[17] allow one to extend the class of investigated systems. Additionally, in [14]–[17] the relation between necessary and sufficient conditions as well as continuity equation in electromagnetism, fluid dynamics, energy and heat, probability distributions, and quantum mechanics is established. However, all of these methods are proposed for investigation of stability or asymptotic stability, but not exponential one.

There are many tasks where stability and asymptotic stability is not enough. For example, the exponentially stable systems are more robust under parametric uncertainty and external disturbances, than stable or asymptotically stable systems [18], [19]. Also, if continuous system is an exponentially stable, then it remains stable under discrete control [20]. Currently, tasks with discrete controls are widespread, e.g., networked control [21]–[23], security control [24], event-triggered control [25], [26], sampled-data control [27], etc.

Therefore, the main contribution of the present paper is a generalization of results [14]–[17] to solution of the following problems:

i) design new necessary and sufficient exponential stability conditions;
ii) design new method of control law design ensuring exponential stability of the closed-loop systems.

The paper is organized as follows. Section II describes problem formulation. Section III proposes necessary and sufficient exponential stability conditions. Section IV describes application of the proposed results to linear systems. Section V proposes methods for designing the state feedback control laws. All proposed theoretical results are illustrated by numerical examples. Finally, Section VI collects some conclusions.

Notations. In the paper the superscript T stands for matrix or vector transposition; \(\mathbb{R}^n \) denotes the \(n \) dimensional Euclidean space with the vector norm \(\| \cdot \| \); \(\mathbb{R}^{n \times m} \) is the set of all \(n \times m \) real matrices; \(\nabla \{ W(x) \} = \left[\frac{\partial W}{\partial x_1}, ..., \frac{\partial W}{\partial x_n} \right]^T \).
is a gradient of the scalar function \(W(x) \): \(\nabla \cdot \{ h(x) \} = \frac{\partial h_1}{\partial x_1} + ... + \frac{\partial h_n}{\partial x_n} \) is a divergence of the vector field \(h(x) = [h_1(x), ..., h_n(x)]^T \); \(\text{int}\{ \bar{\Upsilon} \} \) is the set of interior points in \(\bar{\Upsilon} \). We mean that the equilibrium point is stable if it is Lyapunov stable [28].

II. PROBLEM FORMULATION

In the paper we consider autonomous systems. An autonomous systems (or time-invariant systems) are described by autonomous differential equations which do not explicitly depend on time, i.e.

\[
\dot{x}(t) = f(x(t)).
\]

Here \(x = [x_1, ..., x_n]^T \) is the state, \(f = [f_1, ..., f_n]^T : D \rightarrow \mathbb{R}^n \) is the continuously differentiable function in \(D \subset \mathbb{R}^n \). The set \(D \) contains the origin and \(f(0) = 0 \). Assume that the domain of attraction \(D_A \) of the equilibrium point \(x = 0 \) coincides with the domain \(D \). However, all obtained results is valid if \(D_A \subset D \) or \(D_A = \mathbb{R}^n \).

It is required to design new exponential stability conditions in the divergence form. The proposed results will be obtained by using resent methods [14]–[17].

III. STABILITY CONDITIONS

In [14]–[17] new necessary asymptotic stability conditions were obtained. Now, we generalize these results for getting new necessary exponential stability conditions.

Denote by \(\bar{\Upsilon} = \{ x \in D : \mu(x) = C, C > 0 \} \) and \(V = \bar{\Upsilon} \cup \text{int}\{ \bar{\Upsilon} \} \), as well as denote by \(\tilde{\Upsilon} = \{ x \in D : \mu^{-1}(x) = C, C > 0 \} \) and \(\tilde{V} = \bar{\Upsilon} \cup \text{int}\{ \bar{\Upsilon} \} \).

Theorem 1: If the equilibrium point \(x = 0 \) of (1) is an exponentially stable, then there exists twice differentiable function \(\mu(x) > 0 \) in \(x \in D \setminus \{ 0 \}, \mu(0) \geq 0 \) and \(|\nabla \{ \mu(x) \}| \neq 0 \) for any \(x \in D \setminus \{ 0 \} \) such that one of the following conditions holds:

(i) \(\int_V \nabla \cdot \left(|\nabla \{ \mu(x) \}| f(x) + \alpha \frac{\mu(x)}{|\nabla \{ \mu(x) \}|} \nabla \{ \mu(x) \} \right) dV \leq 0 \),

(ii) \(\int_V \nabla \cdot \left(|\nabla \{ \mu^{-1}(x) \}| f(x) - \alpha \frac{\mu^{-1}(x)}{|\nabla \{ \mu^{-1}(x) \}|} \nabla \{ \mu^{-1}(x) \} \right) dV \geq 0 \)

where \(\alpha > 0 \).

Proof 1: Since the equilibrium point \(x = 0 \) of (1) is an exponentially stable, then, according to [28, Corollary 3.4] and taking \(\mu(x) \) as Lyapunov function, the following inequality holds

\[
\dot{\mu}(x) \leq -\alpha \mu(x).
\]

Considering \(\dot{\mu}(x) = \nabla \{ \mu(x) \} f(x) \), integrate (2) as follows

\[
\int_T \nabla \mu(x) f(x) + \alpha \mu(x) \right) dT \leq 0.
\]

By using Divergence theorem, rewrite (3) in the form (i \(T_1 \)).

Considering \(\nabla \{ \mu^{-1}(x) \} = -\mu^{-2}(x) \nabla \{ \mu(x) \} \), rewrite (2) as follows

\[
\nabla \{ \mu^{-1}(x) \} f(x) \geq \alpha \mu^{-1}(x).
\]

Integrating (4), we have

\[
\int_T \left[\nabla \mu^{-1}(x) f(x) - \alpha \mu^{-1}(x) \right] dT \geq 0.
\]

By using Divergence theorem, rewrite (5) in the form (ii \(T_1 \)). Theorem 1 is proved.

Remark 1: The conditions (i \(T_1 \)) and (ii \(T_1 \)) are presented in the integral forms. However, it can be rewritten in the corresponding differential forms if

(i \(R_1 \)) \(\nabla \cdot \left(|\nabla \{ \mu(x) \}| f(x) + \alpha \frac{\mu(x)}{|\nabla \{ \mu(x) \}|} \nabla \{ \mu(x) \} \right) \leq 0 \),

(ii \(R_1 \)) \(\nabla \cdot \left(|\nabla \{ \mu^{-1}(x) \}| f(x) - \alpha \frac{\mu^{-1}(x)}{|\nabla \{ \mu^{-1}(x) \}|} \nabla \{ \mu^{-1}(x) \} \right) \geq 0 \).

Illustrate the result of Theorem 1 in the following example.

Example 1: Consider the system

\[
\begin{align*}
\dot{x}_1 &= -x_1 - x_1 x_2^2 - x_3^3, \\
\dot{x}_2 &= -2x_2 - x_2 x_1^2 - x_2^2,
\end{align*}
\]

with the equilibrium point \((0, 0)\). The phase portrait of (6) is shown in Fig. 1. Here and below, phase trajectory has its own colour for appropriate initial point.
\[\nabla \{ \mu(x) \} = 2\beta(x_1^2 + x_2^2)^{\beta-1} x, \]
\[\nabla \{ \mu^{-1}(x) \} = -2\beta(x_1^2 + x_2^2)^{-\beta-1} x, \]
\[|\nabla \{ \mu(x) \}| = 2\beta(x_1^2 + x_2^2)^{\beta-0.5}, \]
\[|\nabla \{ \mu^{-1}(x) \}| = 2\beta(x_1^2 + x_2^2)^{-\beta-0.5}, \]
\[\frac{\mu(x)}{|\nabla \{ \mu(x) \}|} \nabla \{ \mu(x) \} = (x_1^2 + x_2^2)^{\beta-0.5} x, \]
\[\frac{\mu^{-1}(x)}{|\nabla \{ \mu^{-1}(x) \}|} \nabla \{ \mu^{-1}(x) \} = -(x_1^2 + x_2^2)^{-\beta-0.5} x, \]
\[\nabla \cdot \{ \nabla \{ \mu(x) \} \} f(x) \leq -2\beta(x_1^2 + x_2^2)^{\beta-0.5} \times (2\beta + 2 + (2\beta + 3)(x_1^2 + x_2^2))^2, \]
\[\nabla \cdot \{ \nabla \{ \mu^{-1}(x) \} \} f(x) \geq 2\beta(x_1^2 + x_2^2)^{-\beta-0.5} \times (2\beta - 2 + (2\beta - 3)(x_1^2 + x_2^2))^2, \]
\[\nabla \cdot \{ \frac{\mu(x)}{|\nabla \{ \mu(x) \}|} \nabla \{ \mu(x) \} \} = (2\beta + 1)(x_1^2 + x_2^2)^{\beta-0.5}, \]
\[\nabla \cdot \{ \frac{\mu^{-1}(x)}{|\nabla \{ \mu^{-1}(x) \}|} \nabla \{ \mu^{-1}(x) \} \} = (2\beta - 1)(x_1^2 + x_2^2)^{-\beta-0.5}. \]

Using the last relations, verify the conditions (i) and (ii):
\[\nabla \cdot \{ |\nabla \{ \mu(x) \}| \} f(x) + \alpha \frac{\mu(x)}{|\nabla \{ \mu(x) \}|} \nabla \{ \mu(x) \} \leq -2\beta(\beta + 1)(x_1^2 + x_2^2)^{\beta-0.5} - 2\beta(2\beta + 3)(x_1^2 + x_2^2)^2 < 0 \text{ for } \alpha < \frac{4\beta(\beta + 1)}{2\beta + 3}, \]
\[\nabla \cdot \{ |\nabla \{ \mu^{-1}(x) \}| \} f(x) - \alpha \frac{\mu^{-1}(x)}{|\nabla \{ \mu^{-1}(x) \}|} \nabla \{ \mu^{-1}(x) \} \geq 2\beta(\beta - 2 + (2\beta - 3)(x_1^2 + x_2^2)) > 0 \text{ for } \beta \geq 2 \text{ and } \alpha < \frac{4\beta(\beta - 3)}{2\beta - 3}. \]

As a result, the equilibrium point \(x = 0 \) is an exponentially stable.

In the next theorem we introduce new auxiliary function \(\xi(x) \) that allows one to extend the class of investigated systems in comparison with Theorem 1.

Theorem 2: If the equilibrium point \(x = 0 \) of (1) is an exponentially stable, then there exists twice differentiable function \(\mu(x) > 0 \) and differentiable function \(\xi(x) > 0 \) in \(x \in D \setminus \{0\}, \mu(0) \geq 0 \) and \(|\nabla \{ \mu(x) \}| \neq 0 \) for any \(x \in D \setminus \{0\} \) such that one of the following conditions holds:

(i) \[\int_D \nabla \cdot \{ \nabla \{ \mu(x) \} \} f(x) + \alpha \frac{\mu(x)}{|\nabla \{ \mu(x) \}|^2} \nabla \{ \mu(x) \} \leq 0, \]

(ii) \[\int_D \nabla \cdot \{ \nabla \{ \mu^{-1}(x) \} \} f(x) - \alpha \frac{\mu^{-1}(x)}{|\nabla \{ \mu^{-1}(x) \}|^2} \nabla \{ \mu^{-1}(x) \} \geq 0. \]

where \(\alpha > 0. \)

In particular, choosing \(\xi(x) = |\nabla \{ \mu(x) \}| \), we have the condition of Theorem 1.

Remark 2: The conditions (i) and (ii) can be rewritten in the corresponding differential forms if

(i) \[\int_D \nabla \cdot \{ \nabla \{ \mu(x) \} \} f(x) + \alpha \frac{\mu(x)}{|\nabla \{ \mu(x) \}|^2} \nabla \{ \mu(x) \} \leq 0, \]

(ii) \[\int_D \nabla \cdot \{ \nabla \{ \mu^{-1}(x) \} \} f(x) - \alpha \frac{\mu^{-1}(x)}{|\nabla \{ \mu^{-1}(x) \}|^2} \nabla \{ \mu^{-1}(x) \} \geq 0. \]

Let us show in the following example, that Theorems 1 and 2 ensure only necessary conditions.

Example 2: Choose \(\xi(x) = 1 \) and \(\mu(x) = |x|^{2\beta} \). Thus,
\[\nabla \{ \mu(x) \} = 2\beta|x|^{2\beta-2} x, \quad |\nabla \{ \mu(x) \}| = 2\beta|x|^{2\beta-1}, \quad \text{and} \quad \frac{\mu(x)}{|\nabla \{ \mu(x) \}|^2} \nabla \{ \mu(x) \} = \frac{\kappa}{2\beta}. \]

Taking into account condition (i), we have
\[\nabla \cdot \{ f(x) \} \leq -\frac{\kappa}{2\beta} < 0. \]

Note, that the necessary stability condition [5–10] looks like \(\nabla \cdot \{ f(x) \} < 0. \)

The next theorem generalises the sufficient stability condition [14–17] to exponential one.

Theorem 3: Let \(\mu(x) \) be a positive definite continuously differentiable function in \(D, \alpha > 0 \) and \(x = 0 \) be an equilibrium point of the system (1). If one of the following inequalities

(i) \[\nabla \{ \mu(x) \} f(x) \leq -\mu(x)[\alpha - \nabla \cdot \{ f(x) \}], \]

(ii) \[\nabla \{ \mu^{-1}(x) \} f(x) \geq \alpha \mu^{-1}(x) \quad \text{and} \quad \nabla \cdot \{ f(x) \} \leq 0, \]

(iii) \[\nabla \{ \mu(x) \} f(x) \leq -\mu(x) \quad \text{and} \quad \nabla \{ \mu^{-1}(x) \} f(x) \geq \alpha \mu^{-1}(x), \]

holds for \(x \in D \setminus \{0\} \), then \(x = 0 \) is an exponentially stable.

Proof 2: Consider each case (i)-(ii)-(iii) separately. Rewrite inequality (i) as follows
\[\nabla \cdot \{ \mu(x) f(x) \} - \nabla \cdot \{ f(x) \} \mu(x) \leq -\alpha \mu(x). \]

Taking into account well-known relation [3]
\[\nabla \{ \mu(x) \} f(x) = \nabla \cdot \{ \mu(x) f(x) \} - \nabla \cdot \{ f(x) \} \mu(x), \]

represent the left-hand side of (8) in the form (2), i.e., \(x = 0 \) is an exponentially stable.

From (ii) we have
\[\nabla \cdot \{ \mu(x) f(x) \} \\
- \mu(x) \nabla \cdot \{ \mu^{-1}(x) f(x) \} \leq -2\alpha \mu(x). \]

Taking into account the first expression in (9), rewrite (10) as follows
\[\nabla \{ \mu^{-1}(x) \} f(x) \geq \alpha \mu^{-1}(x). \]

Considering \(\nabla \{ \mu^{-1}(x) \} f(x) \geq \alpha \mu^{-1}(x) \), we get (2).

From (iii), one gets
\[\nabla \cdot \{ \mu(x) f(x) \} - \mu(x) \nabla \cdot \{ \mu^{-1}(x) f(x) \} \leq -2\alpha \mu(x). \]

Taking into account \(\nabla \{ \mu(x) \} f(x) = -\mu(x) \nabla \cdot \{ \mu^{-1}(x) f(x) \} + \nabla \cdot \{ f(x) \} \mu(x) \) \(\leq -2\alpha \mu(x). \)]

Taking into account \(\nabla \{ \mu(x) \} f(x) = -\mu(x) \nabla \cdot \{ \mu^{-1}(x) f(x) \} + \nabla \cdot \{ f(x) \} \mu(x) \) derived from (9), we get (2) from (13). Theorem 3 is proved.

Example 3: Consider the system
\[\dot{x}_1 = -x_1 + x_2 - x_1 x_2^2 - x_1^3, \]
\[\dot{x}_2 = -x_1 - x_2 - x_2 x_1^2 - x_2^3. \]
with the equilibrium point \((0, 0)\). The phase portrait of (14) is shown in Fig. 2.

Investigate the equilibrium point of (14). According to Theorem 3, introduce \(\mu(x)\) in the form (7). Calculate the following auxiliary expressions

\[
\nabla \cdot \{ f(x) \} = -2 - 4x_1^2 - 4x_2^2, \quad (15)
\]

\[
\nabla \cdot \{ \mu(x)f(x) \} = -2\beta(x_1^2 + x_2^2)^{\beta-1}[x_1^2 + x_2^2 + 2x_1^2 x_2^2 + x_1^4 + x_2^4] - 2(x_1^2 + x_2^2)^\beta (1 + 2x_1^2 + 2x_2^2), \quad (16)
\]

\[
\nabla \cdot \{ \mu^{-1}(x)f(x) \} = (x_1^2 + x_2^2)^{-\beta}[-2 + 2\beta + (2\beta - 4)(x_1^2 + x_2^2)]. \quad (17)
\]

Taking into account (16), verify the condition (i) \(T_2\)

\[
\nabla \cdot \{ \mu(x)f(x) \} \leq \beta(x_1^2 + x_2^2)^{\beta-1}[x_1^2 + x_2^2] - 2(\beta + 1)(x_1^2 + x_2^2)^\beta. \quad (22)
\]

Taking into account (17), verify the condition (ii) \(T_2\)

\[
\nabla \cdot \{ \mu^{-1}(x)f(x) \} \geq (1.5\beta - 2)(x_1^2 + x_2^2)^{-\beta} - 0.5\beta(x_1^2 + x_2^2)^{-\beta-1}(x_1^2 + x_2^2). \quad (24)
\]

Using (23) and (24), the condition (iii) \(T_2\) holds. **Example 5.** Consider the pendulum (see Fig. 4 [28]) which is described by the following equation

\[
\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2,
\end{align*}
\]

where \(x_1\) is the deflection angle of the rod from the vertical axis, \(x_2\) is the angular velocity, \(g\) is the acceleration of gravity, \(l\) is the rod length, \(k\) is the friction coefficient, \(m\) is the cargo mass. Let us investigate the equilibrium point \((0, 0)\). The phase portrait of (25) in the vicinity of \((0, 0)\) is shown in Fig. 5 for \(\frac{g}{l} = 1\) and \(\frac{k}{m} = 1\).

Denote by \(a = \frac{g}{l}\) and \(b = \frac{k}{m}\). Introduce \(\mu(x)\) as follows

\[
\mu(x) = a[1 - \cos(x_1)] + 0.5x_2^2.
\]
of V along the trajectories of (25), one gets $\dot{V} = -abx_2^2$ [28]. Thus, only asymptotic stability can be established by using Lyapunov method for the same V and μ.

IV. STABILITY OF LINEAR SYSTEMS

Consider the linear system

$$\dot{x} = Ax,$$ \hspace{1cm} (29)

where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$. Introduce $\mu(x) = (x^T Q x)^\beta$ with $Q = Q^T > 0$ and β is a positive integer. Calculate the following relations

$$\nabla \cdot \{ \mu(x) f(x) \} = \beta (x^T Q x)^{\beta - 1} x^T [QA + ATQ + \frac{\text{trace}(A)}{\beta} Q] x,$$

$$\nabla \cdot \{ \mu^{-1}(x) f(x) \} = -\beta (x^T Q x)^{-\beta - 1} x^T [QA + ATQ - \frac{\text{trace}(A)}{\beta} Q] x.$$ \hspace{1cm} (30)

According to condition (i) and (30), the linear system (29) is an exponentially stable if $\nabla \cdot \{ \mu(x) f(x) \} + \mu(x) \nabla x \cdot f(x)] = \beta (x^T Q x)^{\beta - 1} x^T [QA + ATQ + \frac{\alpha}{\beta} Q] x \leq 0$ or

$$QA + ATQ + \frac{\alpha}{\beta} Q \leq 0.$$ \hspace{1cm} (31)

The inequality (31) is the well-known linear matrix inequality for exponential stability of linear system (29) [29].

According to condition (ii) and (30), the linear system is exponential stable if $\nabla \cdot \{ \mu^{-1}(x) f(x) \} - \alpha \mu^{-1}(x) = \beta (x^T Q x)^{-\beta - 1} x^T [QA + ATQ + \frac{\alpha}{\beta} Q] x \geq 0$ or

$$QA + ATQ + \frac{\alpha - \text{trace}(A)}{\beta} Q \leq 0,$$

$$\text{trace}(A) \leq 0.$$ \hspace{1cm} (32)

The result (32) is similar to (31).

According to condition (iii) and (30), the linear system is exponential stable if $\nabla \cdot \{ \mu^{-1}(x) f(x) \} + \alpha \mu^{-1}(x) = \beta (x^T Q x)^{-\beta - 1} x^T [QA + ATQ + \frac{\alpha}{\beta} Q] x \leq 0$ or

$$QA + ATQ + \frac{\alpha}{\beta} Q \leq 0,$$

$$QA + ATQ + \frac{\alpha - \text{trace}(A)}{\beta} Q \leq 0,$$ \hspace{1cm} (33)

$$\text{trace}(A) \leq 0.$$ \hspace{1cm}

The results (33) are similar to (31).

V. CONTROL LAW DESIGN

Consider a dynamical system in the form

$$\dot{x} = \psi(x, u),$$ \hspace{1cm} (34)

where $x \in D \subset \mathbb{R}^n$, $u(x) \in \mathbb{R}^m$ is the control signal, $\psi(x, u) = \xi(x) + g(x)u(x)$, the functions $\xi(x)$, $g(x)$ and $u(x)$ are continuously differentiable in D, $\psi(0, u(0)) = 0$ and the system (34) is stabilizable in D.

Theorem 4: Let $\mu(x)$ be a positive definite continuously differentiable function in $x \in D$. The closed-loop system is an exponentially stable if the control law $u(x)$ is chosen such that one of the following conditions holds:

(i) $\nabla \cdot \{ \mu(x) \psi(x, u) \} \leq -\mu(x) (\alpha - \nabla \cdot \{ \psi(x, u) \})$;

(ii) $\nabla \cdot \{ \mu^{-1}(x) \psi(x, u) \} \leq -\mu^{-1}(x) (\alpha - \nabla \cdot \{ \psi(x, u) \})$;

(iii) $\nabla \cdot \{ \mu^{-1}(x) \psi(x, u) \} \leq -\mu^{-1}(x) (\alpha - \nabla \cdot \{ \psi(x, u) \})$. \hspace{1cm}

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
(ii) \(\nabla \cdot \{ \mu^{-1}(x)\psi(x, u) \} \geq \alpha \mu^{-1}(x) \) and \(\nabla \cdot \{ \psi(x, u) \} \leq 0; \)

(iii) \(\nabla \cdot \{ \mu(x)\psi(x, u) \} \leq -\alpha \mu(x) \) and \(\nabla \cdot \{ \mu^{-1}(x)\psi(x, u) \} \geq \alpha \mu^{-1}(x) \),

holds for any \(x \in D \setminus \{0\} \), where \(\alpha > 0 \).

Since the system (34) is stabilizable in \(D \), then the proof of Theorem 4 is similar to the proof of Theorem 3 (denoting by \(f(x) = \psi(x, u(x)) \).

Example 6. Consider the system

\[
\begin{align*}
\dot{x}_1 &= -x_1 + x_2 - x_1^3 - x_1 x_2^2, \\
\dot{x}_2 &= u.
\end{align*}
\]

Choose \(\mu(x) \) in the form (7). Find the following relations

\[
\begin{align*}
\nabla \cdot \{ \mu(x)\psi(x, u) \} &= 2\beta(x_1^2 + x_2^2)^{\beta - 1} \times (-x_1^2 + x_1 x_2 - x_1^4 - x_1^2 x_2^2 + x_2 u) \\
&+ (x_1^2 + x_2^2)^{\beta - 1}(-1 - 3x_1^2 - x_2^2 + \frac{\partial u}{\partial x_2}), \\
\nabla \cdot \{ \mu^{-1}(x)\psi(x, u) \} &= \beta(x_1^2 + x_2^2)^{\beta - 1} \times ((x_1^2 + x_2^2)(-1 - 3x_1^2 - x_2^2 + \frac{\partial u}{\partial x_2}) \\
&+ 2\beta(x_1^2 - x_1 x_2 + x_1^4 + x_1^2 x_2^2 - x_2 u)),
\end{align*}
\]

Introducing

\[u = -x_1 - x_2 - x_2 x_1^3 - x_2^3, \]

rewrite (36) as follows

\[
\begin{align*}
\nabla \cdot \{ \mu(x)\psi(x, u) \} &= -(x_1^2 + x_2^2)^{\beta} \times (2\beta + 2\beta(x_1^2 + x_2^2) - (2 - 4x_1^2 - 4x_2^2)) \\
&\leq -(x_1^2 + x_2^2)^{\beta} \times (2\beta - (-2 - 4x_1^2 - 4x_2^2)), \\
\nabla \cdot \{ \mu^{-1}(x)\psi(x, u) \} &= (x_1^2 + x_2^2)^{\beta} \times [\beta - 1 + (\beta - 2)x_1^2 + (\beta - 2)x_2^2] \\
&\geq 2[\beta - 1](x_1^2 + x_2^2)^{\beta} \text{ for } \beta \geq 3.
\end{align*}
\]

Thus, the conditions (i) and (iii) hold. Additionally estimating

\[
\begin{align*}
\nabla \cdot \{ \mu(x)\psi(x, u) \} &\leq -(x_1^2 + x_2^2)^{\beta}(2\beta - (-2 - 4x_1^2 - 4x_2^2)) \\
&\leq -2\beta(x_1^2 + x_2^2)^{\beta},
\end{align*}
\]

we have fulfilment of the condition (iii).

VI. CONCLUSIONS

In this paper the recent divergence method [14]–[17] is used for investigation of an exponential stability of autonomous dynamical systems. The property of exponential stability makes it possible to increase system robustness to certain types of perturbations and uncertainties. New necessary and sufficient exponential stability conditions are derived from [14]–[17]. Examples illustrate the efficiency of the proposed method by the simulations.

The advantage of the proposed method is that the formulated necessary and sufficient conditions have the form of a continuity equation, which is widely used in mechanics and physics, as well as in some industrial tasks [30]. The difficulties are in the selection of the density function (auxiliary function \(\mu(x) \)) such that the obtained conditions hold. This problem is equivalent to the problem of finding the Lyapunov function.
The results in Sections III and V were developed under support of Russian Science Foundation (grant 18-79-10104, https://rscf.ru/en/project/18-79-10104/) in IPME RAS. The results in Sections IV were developed under support of goszadanie no. 121112500298-6 (EGISU NIOKTR) in IPME RAS.

ACKNOWLEDGMENT

REFERENCES

[1] J. Pedlosky, “Geophysical Fluid Dynamics,” Springer Verlag, 1979.
[2] D. McMahon, “Quantum Mechanics Demystified,” 2nd Edition, McGraw-Hill Education, 2013.
[3] V. I. Arnold, “Mathematical Methods of Classical Mechanics, Second Edition,” Springer-Verlag, 1989.
[4] D.J. Griffiths, “Introduction to Electrodynamics (4th Edition),” Cambridge University Press, 2017.
[5] S. K. Zaremba, “Divergence of Vector Fields and Differential Equations,” American Journal of Mathematics, vol. LXXV, pp. 220–234, 1954.
[6] J. Fronteau, “Le théorème de Liouville et le problème général de la stabilité,” Genève: CERN, 1965.
[7] H. I. Brauchli, “Index, divergenz und Stabilität in Autonomen equationen,” Zürich: Abhandlung Verlag, 1968.
[8] M. A. Krasnoselsky, A. I. Perov, A. I. Povolotsky, and P. Zabreiko, Vector fields on the plane. Moscow: Fizmatlit, 1963. (in Russian).
[9] V. P. Zhukov, “On One Method for Qualitative Study of Nonlinear System Stability,” Automation and Remote Control, vol. 39, no. 6, pp. 785–788, 1978.
[10] V. P. Zhukov, “On the Method of Sources for Studying the Stability of Nonlinear Systems,” Automation and Remote Control, vol. 40, no. 3, pp. 330–335, 1979.
[11] V. P. Zhukov, “On the Divergence Conditions for the Asymptotic Stability of Second-Order Nonlinear Dynamical Systems,” Automation and Remote Control, vol. 60, no. 7, pp. 934–940, 1999.
[12] A. Rantzer and P.A. Parrilo, “On Convexity in Stabilization of Nonlinear Systems,” Proc. of the 9th IEEE Conference on Decision and Control, Sydney, Australia (CDC2000), pp. 2942–2946, 2000.
[13] A. Rantzer, “A Dual to Lyapunov’s Stability Theorem,” System & Control Letters, vol. 42, pp. 161–168, 2001.
[14] I. B. Furtat, “Divergent Stability Conditions of Dynamic Systems,” Automation and Remote Control, vol. 81, no. 2, pp. 247–257, 2020, doi: 10.1134/S0005117920020058.
[15] I. Furtat, P. Gushchin, and A. Nekhoroshikh “Divergence Conditions for Stability Study of Autonomous Nonlinear Systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6317–6320, 2020, doi: 10.1016/j.ifacol.2020.12.1758.
[16] I. Furtat and P. Gushchin, “Stability study and control of nonautonomous dynamical systems based on divergence conditions,” Journal of the Franklin Institute, vol. 357, no. 18, pp. 13753–13765, 2020.
[17] I.B. Furtat and P.A. Gushchin, “Stability/Instability Study and Control of Autonomous Dynamical Systems: Divergence Method,” IEEE Transactions on Automatic Control, vol. 9, pp. 23764–23771, 2021, doi: 10.1109/ACCESS.2021.3056942.
[18] P.A. Ioannou and J. Sun. Robust Adaptive Control. Dover Publications, 2013.
[19] A.M. Annaswamy. Robust Adaptive Control. London: Springer, 2014.
[20] A.V. Proskurnikov and M. Mazo Jr. “Lyapunov Event-Triggered Stabilization With a Known Convergence Rate,” IEEE Transaction on Automatic Control, vol. 65, no. 2, pp. 507–521, 2020.
[21] A. Sargolzaei, K. K. Ven, M. N. Abdelghani, S. Sargolzaei and B. Carbunar. “Resilient Design of Networked Control Systems Under Time Delay Switch Attacks, Application in Smart Grid,” IEEE Access, vol. 5, pp. 15901–15912, 2017, doi: 10.1109/ACCESS.2017.2731780.
[22] R. Wang, Q. Sun, P. Zhang, Y. Gui, D. Qin, P. Wang, “Reduced-Order Transfer Function Model of the Droop-Controlled Inverter via Jordan Continued-Fraction Expansion,” IEEE Transactions on Energy Conversion, vol. 35, no. 3, pp. 1585–1595, 2020, doi: 10.1109/TEC.2020.2980033.
[23] R. Wang, Q. Sun, P. Tu, J. Xiao, Y. Gui, P. Wang, “Reduced-Order Aggregate Model for Large-Scale Converters With Inhomogeneous Initial Conditions in DC Microgrids,” IEEE Transactions on Energy Conversion, vol. 36, no. 3, pp. 2473-2484, 2021, doi: 10.1109/TEC.2021.3050434.