Are Metaphyseal Sleeves a Viable Option to Treat Bone Defect during Revision Total Knee Arthroplasty? A Systematic Review

Tommaso Bonanzinga¹ Ibrahim Akkawi² Akos Zahar³ Thorsten Gehrke³ Carl Haasper³ Maurilio Marcacci¹

¹ Center for Functional and Biological Reconstruction of the Knee, Humanitas Clinical and Research Center, Milan, Italy
² Orthopaedics and Traumatology Unit, Villa Erbosa Hospital, Bologna, Italy
³ Joint Replacement Department, Helios ENDO-Klinik, Hamburg, Germany

Abstract

Purpose Bone loss is a challenging problem during revision total knee arthroplasty (TKA). Several studies have been published on the use of metaphyseal sleeves during revision TKA. Therefore, the aim of this systematic review was to summarize the clinical and radiographic outcomes of the use of metaphyseal sleeves in the setting of revision TKA.

Methods A comprehensive search of PubMed, MEDLINE, CINAHL, Cochrane, EMBASE, and Google Scholar was performed, covering the period between January 1, 2000, and August 12, 2017. Various combinations of the following key words were used: "metaphyseal," "sleeves," "knee," and "revision." A total of 10 studies were included in the present systematic review.

Results A total of 904 patients with 928 implants were recorded with a mean age of 69 years. They were evaluated at a mean follow-up of 45 months. Overall 1,413 sleeves, 888 in the tibia and 525 in the femur, were implanted. There were 36 septic re-revisions of the prosthetic components (4%). Five sleeves were found loose during septic re-revision; therefore, the rate of septic loosening of the sleeves was 0.35%. An aseptic re-revision of the prosthetic components was performed 27 times (3%). Ten sleeves were found loose during aseptic re-revision; therefore, the rate of aseptic loosening of the sleeves was 0.7%. Intraoperative fractures occurred 44 times (3.1%). Finally, clinical outcome was improved at final follow-up.

Conclusion Metaphyseal sleeves demonstrate high radiographic signs of osteointegration, low septic loosening rate, low intraoperative fractures rate, and a good-to-excellent clinical outcome. Hence, they are a valid option to treat large metaphyseal bone defect during revision TKA.

Level of Evidence This is a systematic review of level IV studies.

Published online: 2019-10-11

DOI https://doi.org/10.1055/s-0039-1697611. ISSN 2282-4324.

Copyright © 2019 Georg Thieme Verlag KG Stuttgart · New York
Introduction

By 2030, in the United States, the demand for primary total knee arthroplasties (TKAs) and revision TKA is projected to grow by 673 and 601%, respectively, from the level in 2005. Bone loss is a challenging problem during revision TKA, which can prevent the correct positioning and alignment of the prosthetic components, and the establishment of a stable bone–implant interface. There are several techniques to address this problem that depend on the location and dimension of bone loss. Small bone defects can be managed with morcellized bone graft, cement, or bone substitutes, whereas large defects can be addressed by impaction grafting, use of bulk structural allografts, resection prostheses, and allograft–prosthesis composite.

Recently, other techniques have been described to manage large bone defects during revision TKA. The options are trabecular tantalum cones and titanium metaphyseal sleeves. Trabecular tantalum cones are implanted in direct contact with the host bone, and the prosthetic components are then cemented inside the cones. Tantalum cones are an effective solution to address bone defects with low incidence of complications at short- to midterm follow-up. Metaphyseal sleeves are another strategy to manage large bone defects in revision TKA. Similarly to tantalum cones, metaphyseal sleeves provide a stable mechanical support for the prosthetic component. The prosthetic components are fixed to the sleeve with a Morse taper. Disadvantages of metaphyseal sleeves include the following: first, the elevated costs; second, the difficult extraction during revision TKA of a well-fixed implant after bone growth that could be associated with periprosthetic fracture and significant bone loss. Third, they are implant-specific and are coupled to the revision implant by a Morse taper that limits the surgeon’s options with respect to the type of device.

Several studies have been published on the use of metaphyseal sleeves during revision TKA. Therefore, the purpose of this systematic review is to review the available literature to evaluate whether the metaphyseal sleeves are a valid option to address large metaphyseal bone loss in the setting of complex revision TKA.

Methods

A comprehensive search of PubMed, MEDLINE, CINAHL, Cochrane, EMBASE, and Google Scholar was performed, covering the period from January 1, 2000, to August 12, 2017. The following combinations were used: metaphyseal AND sleeves, metaphyseal AND sleeves AND revision arthroplasty, metaphyseal AND sleeves AND revision replacement, metaphyseal AND sleeves AND revision total knee replacement, and metaphyseal AND sleeves AND revision TKA. Two reviewers have independently examined the titles and abstracts from all identified articles to assess their appropriateness to this research. Full-text articles were downloaded or purchased when required. In addition, each reference list from the identified articles was manually checked to verify that relevant articles were not missed. All the studies were in English language. In vitro studies, case reports, surgical technique papers, or studies assessing the use of metaphyseal sleeves during primary TKA were excluded. Reports on retrieved implants or other studies where it was not possible to collect data of the implants were excluded as well. Furthermore, each study was evaluated in terms of the following variables: the number of patients, patient age, follow-up time (range), the number of implants, level of constraint, type of bone defect according to the Anderson Orthopaedic Research Institute (AORI) classification, and the number of metaphyseal sleeves implanted (tibia/femur). Complications such as intraoperative fractures (with or without intraoperative fixation) were collected as well. The included studies were also evaluated in terms of re-revisions and the data classified as septic re-revisions or aseptic re-revisions. Among the re-revision procedures, either septic or aseptic, the status of the involved sleeves was recorded. Finally, the aseptic survival rate of the sleeves was collected.

Results

The quality of reporting of meta-analysis flow diagram illustrates the number of studies that have been identified, included, and excluded, along with the reasons for exclusion (Fig. 1). A total of 15 articles reported the outcome of the use of metaphyseal sleeves for treating large bone defects during revision TKA were identified on the initial literature search. Of these, five were excluded. In particular, Jones et al analyzed both primary and revision TKA, Dalury and Barrett did not report the number of sleeves, and Gottsch et al did not specify the status of the sleeves of the re-revised cases. Finally, Nadorf et al conducted an in vitro study. Hence, a total of 10 papers published from January 1, 2000, to August 12, 2017, that reported clinical data on the management of metaphyseal bone loss using metaphyseal sleeves in the setting of complex revision TKA were included in the present systematic review. All the papers were case series (Level of Evidence IV). Three papers were prospective and seven papers were retrospective.

Patients’ Demographics

In the 10 studies included, the data of 904 patients who received 928 revision TKAs were recorded. They had a mean age of 69 years. The patients were evaluated at a mean follow-up of 45 months (range: 24–115 months) (Table 1).

Surgical Reports

The level of constraint of the implants was clearly specified in all cases: 4 implants were cruciate-retaining (CR), 195 were posterior-stabilized (PS), 686 were varus-valgus condylar constrained, and 43 were rotating hinge. A detailed AORI classification of the bone defects was provided in seven studies with a total of 1,289 defects (including both femoral and tibial). A total of 209 bone defects were type 1, 323 type 2A, 625 type 2B, and 132 type 3. In one study, the number of type 2A and 2B bone defects was not specified, and in other two studies, the number of all types of bone defects was not specified.
sleeves has been reported in all analyzed studies; overall 1,413 sleeves, 888 in the tibia and 525 in the femur, were implanted (Table 2).

Outcomes and Complications
Overall, there were 36 septic re-revisions of the prosthetic components out of 928 procedures (4%). A total of five sleeves were found loose during septic re-revision; therefore, the rate of septic loosening of the sleeves was 0.35% (5/1,413). An aseptic re-revision of the prosthetic components was performed 27 times out of 928 procedures (3%). A total of 10 sleeves were found loose during aseptic re-revision; therefore, the rate of aseptic loosening of the sleeves was 0.7% (10/1,413). Intraoperative fractures occurred 44 times (44/1,413 = 3.1%), and 6 (6/1,413 = 0.42%) of them required surgical fixation (Table 3). Clinical outcome of metaphyseal sleeves was evaluated with Oxford Knee Score (OKS), Knee Society Score (KSS), Knee Society Function Score (KSFS), Short Form 12 Physical Score (SF 12 PS), Short Form 12 Mental Score (SF 12 MS), Short Form 36 Physical Score (SF 36 PS), Short Form 36 Mental Score (SF 36 MS), and Western Ontario and McMaster Universities Arthritis Index (WOMAC). Chalmers et al15 and Fedorka et al17 did not report any clinical outcome, Bugler et al14 reported only the postoperative values of OKS and KSS scores, and Watters et al23 did not report the preoperative OKS score. For the other scores, both pre- and final follow-up values were reported. There was a statistically significant improvement at final follow-up in all these scores, except of the SF 36 MS20 and KSFS scores11 (Table 4).

Discussion
The main finding of this review is that the use of metaphyseal sleeves to treat bone defects encountered during revision TKA is associated with a low septic and aseptic loosening rate, a low intraoperative fracture rate, and a good-to-excellent clinical outcome at a mean follow-up of 45 months.

Metaphyseal sleeves have demonstrated to have a high osteointegration rate that is confirmed by the results of the present review. The aseptic loosening rate of the 1,413 sleeves in all the studies included in this review was 0.7%. The survivorship free of revision for aseptic loosening of the metaphyseal sleeves ranged from 98 to 100%. Alexander et al11, Barnett et al12, Bugler et al14, and Martin-Hernandez et al22 reported a survivorship free of revision for aseptic loosening of the metaphyseal sleeves of 100%. These results are
Table 2: Details of the number and type of implants, and the number of bone defects and sleeves

Author	No. of implants	Constraint	Type of bone defect according to AORI (T/F)	No. of sleeves (T/F)
Graichen et al19	121	PS 77	2A 77 (77/0)	193 (119/74)
		VVC 27	2B 83 (37/46)	
		RH 17	3 35 (7/28)	
Huang et al20	83	VVC 73	1 13 (9/4)	119 (83/36)
		RH 10	2A 1 (1/0)	2B 93 (86/25)
				3 12 (5/7)
Alexander11	28	VVC 28	2B n.s. (n.s.)	28 (28/0)
				3 n.s. (n.s.)
Bugler et al14	35	VVC 35	1 37 (20/17)	59 (34/25)
				2 29 (13/16)
Barnett et al12	34	PS 7	2 n.s. (n.s.)	34 (34/0)
		VVC 24	3 n.s. (n.s.)	
		RH 3		
Agarwal et al10	104	CR 4	1 2 (0/2)	164 (101/63)
		PS 45	2A 33 (27/6)	
		VVC 55	2B 85 (39/46)	
				3 13 (11/2)
Martin-Hernandez22	134	VVC 134	1 133 (63/70)	268 (134/134)
				2A 62 (32/30)
				2B 73 (39/34)
Chalmers et al15	227	PS 51	1: 55 (44/11)	322 (199/123)
		VVC 166	2A: 104 (74/30)	
		RH 10	2B: 135 (64/71)	
				3: 28 (17/11)
Fedorka et al17	46	VVC 46	1: 6 (%)	74 (45/29)
				2A: 38 (30/8)
				2B: 33 (2/31)
				3: 23 (17/6)
Watters et al23	116	15 PS	2A: 8 (5/3)	152 (111/41)
		98 VVC	2B: 123 (89/34)	
		3 RH	3: 21 (17/4)	

Abbreviations: AORI, Anderson Orthopaedic Research Institute; CR, cruciate retaining; F, femoral; No., number; n.s., not specified; PS, posterior stabilized; RH, rotating hinged; T, tibial; VVC, varus–valgus constrained.

Table 3: Postoperative complications

Author	Septic re-revision of the prosthetic components (loose sleeves)	Aseptic re-revision of the prosthetic components (loose sleeves)	Intraoperative fractures (surgical fixation)	Aseptic survival rate of the sleeves, %
Graichen et al19	4 (0)	4 (4)	0	98
Huang et al20	6 (0)	3 (2)	0	98.3
Alexander11	0	0	0	100
Bugler et al14	0	0	1 (0)	100
Barnett et al12	1 (0)	3 (0)	1 (1)	100
Agarwal et al10	2 (2)	0	0	100
Martin-Hernandez22	2 (0)	0	11 (0)	100
Chalmers et al15	12 (0)	3 (2)	15 (2)	99.4
Fedorka et al17	3 (3)	2 (2)	0	97.3
Watters et al23	6 (0)	10 (0)	3 (3)	99.3
due to the fact that metaphyseal sleeves have a high-volume porosity (50–80%), and this high porosity facilitates bone ingrowth in the metaphysis that is often preserved in revision TKA.

In the present review, moreover, the overall incidence of septic re-revision of the prosthetic components was 4%, which compares favorably with the infection rate (5–10%) reported when using allografts to fill bone defect in revision TKA. A possible explanation could be that using metaphyseal sleeves may considerably shorten operative times compared with allografting that is a time-consuming procedure.

The results of the present review show that the use of metaphyseal sleeves during revision TKA is associated with a low intraoperative fractures rate (3.1%). These fractures were associated with sleeve preparation and/or insertion, and most of them (86.3%) were not displaced and therefore did not require surgical treatment.

Barnett et al stated that broach-only preparation of the metaphysis is familiar to arthroplasty surgeons and easily reproducible; moreover, iatrogenic fracture during broaching is easily avoidable with careful preparation, similar to femoral canal preparation in hip arthroplasty.

Finally, good-to-excellent clinical outcomes at short- to midterm follow-up of patients who underwent revision TKA using metaphyseal sleeves to fill the bone loss has been reported in the studies included in this review (►Table 4).

Bugler et al found that KSSs were good or excellent in 83% of patients (20% good, 63% excellent) at short-term follow-up (mean: 39 months, range: 24–62 months). Martin-Hernandez et al reported a statistically significant postoperative improvement of KSS, SF12, SF36, and WOMAC at a midterm follow-up (mean: 71.5 months, range: 36–107 months). This study has some limitations. First is the small number of patients analyzed in the majority of the published papers with the exceptions of four studies. Second, all the results reported were at short-term follow-up with a mean of 45 months (range: 24–62), except the studies of Fedorka et al, Martin-Hernandez et al, and Watters et al, who reported a midterm outcome. However, as demonstrated by Schorer et al, at least 50% of all revisions occur in the first 2 to 3 years. Hence, even after a short period of time, a strong tendency of the results can be seen at stated by Graichen et al.

In conclusion, the use of metaphyseal sleeves to handle large metaphyseal bone defect in the setting of revision TKA has been demonstrated to be a valuable option with a high osteointegration rate, low septic loosening rate, low intraoperative fractures rate, and good-to-excellent clinical outcome at mean follow-up of 45 months. Further studies are needed in a larger number of patients with longer follow-up to determine the survivability and the long-term effectiveness of these titanium metaphyseal sleeves.

Conflict of Interest
None declared.

Table 4 Clinical outcomes

Author	Preop OKS	FU OKS	Preop KSS	FU KSS	Preop KSF	FU KSF	Preop SF12 PS	FU SF12 PS	Preop SF12 MS	FU SF12 MS	Preop SF36 PS	FU SF36 PS	Preop SF36 MS	FU SF36 MS	Preop WOMAC	FU WOMAC	P-Value
Graichen et al	36	78.2	52	68.8													<0.01
Huang et al		47.9	61.1	43.3	56.3	61.8	69.4*	55.3	25.9								<0.001
Alexander	n.s.	55.5	92	50	50*												<0.001
Bugler et al	n.s.	81.3	n.s.	58.1	n.s.	38.3	n.s.	47.1									
Barnett et al	41.6	88.7	41.7	75													<0.001
Agarwal et al	23	32															<0.001
Martin-Hernandez	33	78	30	80	27	44	43	54									
Watters et al	40	82	45	75													<0.0001

Abbreviations: FU, follow-up; KSS, Knee Society Score; KSF, Knee Society Function Score; n.s., not specified; OKS, Oxford Knee Score; Preop, preoperative; SF 12 PS, Short Form 12 Physical Score; SF 12 MS; Short Form 12 Mental Score; WOMAC, Western Ontario and McMaster Universities Arthritis Index.

*pNonsignificant.
References

1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89(4):780–785
2. Radnay CS, Scuderi GR. Management of bone loss: augment, cones, offset stems. Clin Orthop Relat Res 2006;446(446):83–92
3. Vasso M, Beaufils F, Cerciello S, Schiavone Panni A. Bone loss following knee arthroplasty: potential treatment options. Arch Orthop Trauma Surg 2014;134(04):543–553
4. Haidukewych GJ, Hanssen A, Jones RD. Metaphyseal fixation in revision total knee arthroplasty: indications and techniques. J Am Acad Orthop Surg 2011;19(06):311–318
5. Bonanzinga T, Gehrie T, Zahar A, Zaffagnini S, Marcelli C, Haasper C. Are trabecular metal cones a valid option to treat metaphyseal bone defects in complex primary and revision knee arthroplasty? Joints 2017;6(01):58–64
6. Brown NM, Bell JA, Jung Ek, Sporer SM, Paprosky WG, Levine BR. The use of trabecular metal cones in complex primary and revision total knee arthroplasty. J Arthroplasty 2015;30(08(suppl)):90–93
7. Derome P, Sternheim A, Backstein D, Malo M. Treatment of large bone defects with trabecular metal cones in revision total knee arthroplasty: short term clinical and radiographic outcomes. J Arthroplasty 2014;29(01):122–126
8. Kamath AF, Lewallen DG, Hanssen AD. Porous tantalum metaphyseal cones for severe tibial bone loss in revision knee arthroplasty: a five to nine-year follow-up. J Bone Joint Surg Am 2015;97(03):216–223
9. Agarwal S, Azam A, Morgan-Jones R. Metal metaphyseal sleeves in revision total knee replacement. Bone Joint J 2013:95-B(12):1640–1644
10. Alexander GE, Bernasek TL, Crank RL, Haidukewych GJ. Cementless metaphyseal sleeves used for large tibial defects in revision total knee arthroplasty. J Arthroplasty 2013;28(04):604–607
11. Barnett SL, Mayer RR, Gondusky JS, Choi L, Patel JJ, Gorab RS. Use of stepped porous titanium metaphyseal sleeves for tibial defects in revision total knee arthroplasty: short term results. J Arthroplasty 2014;29(06):1219–1224
12. Barrack RL. Evolution of the rotating hinge for complex total knee arthroplasty. Clin Orthop Relat Res 2001;392:292–299
13. Bugler KE, Maheshwari R, Ahmed I, Brenkel IJ, Walmsley PJ. Metaphyseal sleeves for revision total knee arthroplasty: good short-term outcomes. J Arthroplasty 2015;30(11):1990–1994
14. Chalmers BP, Desy NM, Pagano MW, Trousdale RT, Taunton MJ. Survivorship of metaphyseal sleeves in revision total knee arthroplasty. J Arthroplasty 2017;32(05):1565–1570
15. Dalury DF, Barrett WP. The use of metaphyseal sleeves in revision total knee arthroplasty. Knee 2016;23(03):545–548
16. Fedorka CJ, Chen AF, Pagnotto MK, Crosett LS, Klatt BA. Revision total knee arthroplasty with porous-coated metaphyseal sleeves provides radiographic ingrowth and stable fixation. Knee Surg Sports Traumatol Arthrosc 2018;26(05):1500–1505
17. Gottsch D, Lind T, Christiansen T, Schrader HM. Cementless metaphyseal sleeves without stem in revision total knee arthroplasty. Arch Orthop Trauma Surg 2016;136(12):1761–1766
18. Graichen H, Scior W, Strauch M. Direct, cementless, metaphyseal fixation in knee revision arthroplasty with sleeves-short-term results. J Arthroplasty 2015;30(12):2256–2259
19. Huang R, Barrazaeta G, Ong A, et al. Revision total knee arthroplasty using metaphyseal sleeves at short-term follow-up. Orthopedics 2014;37(09):e804–e809
20. Jones RE, Skedros JG, Chan AJ, Beauchamp DH, Harkins PC. Total knee arthroplasty using the S-ROM mobile-bearing hinge prosthesis. J Arthroplasty 2001;16(03):279–287
21. Martin-Hernandez C, Floria-Arnal IJ, Muniesa-Herrero MP, et al. Mid-term results for metaphyseal sleeves in revision knee surgery. Knee Surg Sports Traumatol Arthrosc 2017;25(12):3779–3785
22. Watters TS, Martin JR, Levy DL, Yang CC, Kim RH, Dennis DA. Porous-coated metaphyseal sleeves for severe femoral and tibial bone loss in revision TKA. J Arthroplasty 2017;32(11):3468–3473
23. Nadorf J, Kinkel S, Gantz S, Jakubowitz E, Kretzer JP. Tibial revision knee arthroplasty with metaphyseal sleeves: the effect of stems on implant fixation and bone flexibility. PLoS One 2017(12):0177285
24. Mason JB, Fehring TK. Removing well-fixed total knee arthroplasty implants. Clin Orthop Relat Res 2006;446(446):76–82
25. Engh GA, Ammeen DJ. Bone loss with revision total knee arthroplasty: defect classification and alternatives for reconstruction. Instr Course Lect 1999;48:167–175
26. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Onkologie 2000;23(06):597–602
27. Clatworthy MG, Ballance J, Brick GW, Chandler HP, Gross AE. The use of structural allograft for uncontained defects in revision total knee arthroplasty. A minimum five-year review. J Bone Joint Surg Am 2001;83(03):404–411
28. Hilgen V, Citak M, Vettorazzi E, et al. 10-year results following impaction bone grafting of major bone defects in 29 rotational and hinged knee arthroplasties: a follow-up of a previous report. Acta Orthop 2013;84(04):387–391
29. Lotke PA, Carolan GF, Puri N. Impaction grafting for bone defects in revision total knee arthroplasty. Clin Orth Relat Res 2006;446(446):99–103
30. Lachiewicz PF, Bolognesi MP, Henderson RA, Suleau ES, Vail TP. Can tantalum cones provide fixation in complex revision knee arthroplasty? Clin Orthop Relat Res 2012;470(01):199–204
31. Mabry TM, Hanssen AD. The role of stems and augments for bone loss in revision knee arthroplasty. J Arthroplasty 2001;16(03):411–417
32. Haasper C. Are trabecular metal cones a valid option to treat bone defects with trabecular metal cones in revision total knee arthroplasty? Joints 2017;6(01):58–64
33. Fedorka CJ, Chen AF, Pagnotto MK, Crosett LS, Klatt BA. Revision total knee arthroplasty with porous-coated metaphyseal sleeves provides radiographic ingrowth and stable fixation. Knee Surg Sports Traumatol Arthrosc 2018;26(05):1500–1505
34. Schroer WC, Berend KR, Lombardi AV, et al. Why are total knees failing today? Etiology of total knee revision in 2010 and 2011. J Arthroplasty 2013;28(08 suppl):116–119