SUMOylation by a Stress-Specific Small Ubiquitin-Like Modifier E2 Conjugase Is Essential for Survival of Chlamydomonas reinhardtii under Stress Conditions

Amy R. Knobbe2, Kempton M. Horken, Thomas M. Plucinak3, Eniko Balassa, Heriberto Cerutti, and Donald P. Weeks*

Department of Biochemistry (A.R.K., K.M.H., T.M.P., D.P.W.) and; School of Biological Sciences (E.B., H.C.), University of Nebraska, Lincoln, Nebraska 68588

Posttranslational modification of proteins by small ubiquitin-like modifier (SUMO) is required for survival of virtually all eukaryotic organisms. Attachment of SUMO to target proteins is catalyzed by SUMO E2 conjugase. All haploid or diploid eukaryotes studied to date possess a single indispensable SUMO conjugase. We report here the unanticipated isolation of a Chlamydomonas reinhardtii conjugase gene, CrUBC9, in which the previously identified SUMO conjugase gene C. reinhardtii ubiquitin-conjugating enzyme9 (CrUBC9) is deleted. This surprising mutant is viable and unexpectedly, displays a pattern of protein SUMOylation at 25°C that is essentially identical to wild-type cells. However, unlike wild-type cells, mu5 fails to SUMOylate a large set of proteins in response to multiple stress conditions, a failure that results in a markedly reduced tolerance or complete lack of tolerance to these stresses. Restoration of expected stress-induced protein SUMOylation patterns as well as normal stress tolerance phenotypes in mu5 cells complemented with a CrUBC9 gene shows that CrUBC9 is an authentic SUMO conjugase and, more importantly, that SUMOylation is essential for cell survival under stress conditions. The presence of bona fide SUMOylated proteins in the mu5 mutant at 25°C can only be explained by the presence of at least one additional SUMO conjugase in C. reinhardtii, a conjugase tentatively identified as CrUBC3. Together, these results suggest that, unlike all other nonpolyploid eukaryotes, there are at least two distinct and functional SUMO E2 conjugases in C. reinhardtii, with a clear division of labor between the two sets: One (CrUBC9) is involved in essential stress-induced SUMOylations, and one (CrUBC3) is involved in housekeeping SUMOylations.

The modification of proteins by small ubiquitin-like modifier (SUMO) in eukaryotes is considered essential for normal cell growth and development (Geiss-Friedlander and Melchior, 2007). Posttranslational modification of a protein by SUMO occurs in an enzymatic pathway highly analogous to the ubiquitination pathway and involves three types of enzymes: a SUMO E1 activase, a SUMO E2 conjugase, and a SUMO E3 ligase (Geiss-Friedlander and Melchior, 2007). The role of the SUMO E2 conjugase is to catalyze the formation of an isopeptide bond that connects the C terminus of SUMO to the ε-amino group of a Lys residue within a target protein (Maturin et al., 1996; Desterro et al., 1997; Johnson and Blobel, 1997). Across a wide range of phylogenies of haploid and diploid organisms, a single gene has been identified that encodes for a SUMO E2 conjugase. SUMO E2 conjugase mutations that cause loss of function are lethal, strongly suggesting that SUMOylation is essential for cell viability (Seufert et al., 1995; Hayashi et al., 2002; Nacerddine et al., 2005; Saracco et al., 2007). In the fission yeast Schizosaccharomyces pombe, deletion of the hydroxy urea sensitive5 (HUS5) SUMO E2 conjugase gene results in an hus5 mutant that, although viable, shows severe growth defects (al-Khodairy et al., 1995), which is, again, consistent with an essential role for SUMOylation in normal cell growth. SUMO E2 conjugases are similar in sequence to ubiquitin conjugase enzymes, and initial reports of various SUMO E2 conjugase genes before the identification of SUMO as a posttranslational modification led to their prediction as ubiquitin-conjugating enzymes (UBCs; al-Khodairy et al., 1995; Seufert et al., 1995). However, although there is analogy or even homology between the given components of the two pathways, the SUMOylation and ubiquitination cascades are nonoverlapping. The SUMO E2 conjugase cannot form a thioester with ubiquitin, and similarly, ubiquitin conjugases are incapable of forming thioesters with SUMO (Desterro et al., 1997).

Another important distinction between the ubiquitin and SUMO pathways is the number of genes identified for each component in the pathway. Given the vast
number of proteins modified by SUMO or ubiquitin, proper selection of targets, timing of modification, and intracellular localization of these reactions require a great deal of regulation and specificity. The ubiquitin pathway accomplishes this through the use of numerous E2 conjugases and E3 ligases in various combinations. As an example, as many as 25 ubiquitin E2 conjugases have been identified in the Arabidopsis (Arabidopsis thaliana) genome along with hundreds of potential ubiquitin E3 ligases (Bachmair et al., 2001; Kraft et al., 2005). Compared with the hundreds of putative ubiquitin E3 ligases in Arabidopsis, only two SUMO E3 ligases have been identified (Miura et al., 2005; Huang et al., 2009; Ishida et al., 2009). In striking contrast to the numerous ubiquitin E2 conjugase enzymes identified in Arabidopsis and other eukaryotes, only a single SUMO E2 enzyme has been identified in virtually every organism for which the SUMOylation pathway has been characterized (Seufert et al., 1995; Yasugi and Howley, 1996; Hayashi et al., 2002; Nacerddine et al., 2005; Saracco et al., 2007). A technical exception to this rule is provided by several land plants that have undergone various rounds of polyploidization or entire genome fusions during interspecies hybridizations (Renny-Byfield and Wendel, 2014) and, thus, contain multiple SUMO E2 conjugase genes (Novatchkova et al., 2012). Two other technical exceptions are zebrafish (Danarerio; Nowak and Hammerschmidt, 2006) and rice (Oryza sativa; Nigam et al., 2008), which contain two nearly identical SUMO E2 conjugase genes that are apparent products of recent gene duplications.

Thus, there exists a marked dichotomy between the need of cells for multiple ubiquitin E2 conjugases to posttranslationally modify proteins in response to diverse external and internal signals and the ability of a single SUMO E2 conjugase to accomplish all cellular SUMOylation reactions in response to the same diversity of signals (Geiss-Friedlander and Melchior, 2007).

In addition to the requirement for protein SUMOylation to maintain cell viability, changes in SUMOylation patterns have long been associated with response to stress conditions. In mammalian cells, SUMO1 is predominantly conjugated to proteins under nonstress conditions, whereas SUMO2 and SUMO3 are conjugated to proteins in response to a variety of abiotic stresses, including heat stress, salt stress, and oxidative stress (Saitoh and Hinchey, 2000; Šramko et al., 2006). Similar observations have been made in regard to the preferential use of the proteins AtSUMO1 and AtSUMO2 for SUMOylation in response to a variety of stresses in Arabidopsis (Kurepa et al., 2003; Saracco et al., 2007). The types of proteins modified by SUMO in several different organisms under stress conditions have been identified through proteomic analysis and typically include several hundred different proteins (Colebiowski et al., 2009; Miller et al., 2010; Bruderer et al., 2011; Miller and Vierstra, 2011). Given that SUMO E2 conjugase deletion mutants are lethal, the importance of SUMOylation in stress response has been determined largely from analyzing viable individual E3 ligase and SUMO protease mutants in response to stress. Mutants of the Arabidopsis E3 ligase SIZ1 show increased sensitivity to phosphate deprivation, excess copper, temperature stress, and drought stress (Miura et al., 2005, 2007; Yoo et al., 2006; Catala et al., 2007; Chen et al., 2011). Interestingly, siz1 (E3 ligase) mutants in Arabidopsis show increased tolerance to salt stress (Miura et al., 2011), whereas the SUMO protease (isopeptidase) double mutant, ots1 ots2 (for overly sensitive to salt1 overly sensitive to salt2) shows extreme sensitivity to salt (Conti et al., 2008). Another indirect indication of the role of SUMOylation in the response of plants to stress is the recent observation linking changing levels of SUMOylation to changing levels of salicylic acid (Villajuana-Bonequi et al., 2014).

The role of SUMO during stress is best understood in response to heat stress. The heat shock-associated transcription factors (HSFs) HSF1, HSF2, and HSF4b are modified by SUMO in mammalian cells (Goodson et al., 2001; Hong et al., 2001; Hietakangas et al., 2006). SUMOylation increases the DNA binding activity of these transcription factors (Goodson et al., 2001; Hong et al., 2001). In addition, HSF1, which modulates the induction of heat shock protein gene expression in response to elevated temperatures, is SUMOylated upon heat stress, an event that prompts relocalization of HSF1 to nuclear granules (Hong et al., 2001).

In Arabidopsis, HSFA2 is targeted for SUMOylation during extended exposure to heat stress and recovery (Coher-Peer et al., 2010). In this case, SUMOylation negatively regulates the activity of this transcription factor. In addition to heat stress, the SUMOylation system of plants plays a key role in response to numerous other biotic and abiotic stress conditions (Šramko et al., 2006; Park and Yun, 2013; Xu and Yang, 2013).

In our initial characterization of the SUMOylation system of Chlamydomonas reinhardtii, we identified a protein named CrUBC9 as the most likely SUMO E2 conjugase in this organism and showed that it possessed SUMO E2 conjugase activity in vitro (Wang et al., 2008). Additionally, it was shown by immunoblot analysis that SUMOylation patterns markedly changed in response to various abiotic stress conditions (Wang et al., 2008). Because in virtually every other haploid or diploid organism studied, a single SUMO E2 conjugase had been identified, it was presumed that CrUBC9 was likely the only SUMO E2 conjugase present in the C. reinhardtii genome and that it was essential for cell viability. However, here, we report the isolation of a viable deletion mutant, mut5, which lacks the CrUBC9 gene and yet, displays no obvious growth defect under nonstress conditions. The viability of mut5 allowed a unique opportunity to study the role of the SUMOylation changes previously observed under abiotic stress conditions. In addition, if CrUBC9 was the only functional SUMO conjugase in C. reinhardtii, the viability of mut5 presented an intriguing set of possibilities: (1) C. reinhardtii does not require SUMOylation for viability (because mut5 was clearly viable and apparently healthy), or (2) C. reinhardtii contains at least two functional SUMO conjugases. We report here that CrUBC9 is essential for SUMOylation in response to abiotic stress and that this SUMOylation
response is required for cell growth and/or survival during exposure to stress conditions. We also document the presence of SUMOylated proteins in mut5 under nonstress conditions, despite the complete lack of CrUBC9, indicating the presence of an additional functional SUMO conjugase. Bioinformatic analysis is presented indicating that CrUBC3 is likely the second SUMO conjugase. Together, these data provide strong evidence that C. reinhardtii is unique among other organisms in that it contains two distinct SUMO E2 conjugases with a distinct division of labor in carrying out SUMOylation functions (i.e. a stress-specific SUMO conjugase, CrUBC9, that is indispensable for SUMOylation and cell survival under stress conditions and a second SUMO E2 conjugase, CrUBC3, that is responsible for SUMOylations under nonstress conditions.

RESULTS

mut5 Contains a Complete Deletion of the CrUBC9 Gene

In the course of screening for mutants defective in RNA interference (Ibrahim et al., 2006, 2010), the mutant, mut5, was identified. Although mut5 lacked a strong RNA interference phenotype, sequencing of DNA in proximity to the insertion site of the paromomycin resistance selectable marker gene used to generate mut5 revealed a deletion of nucleotides 9166813 to 9188745 on chromosome 2 of the C. reinhardtii genome (http://genome.jgi-psf.org/Chlre4/Chlre4.home.html). This deletion includes the entire CrUBC9 gene (Protein ID 57440) as well as four neighboring genes, including three non-annotated genes (Protein IDs 158096, 148626, and 148627) and the predicted protein Motile19 (Protein ID 173947). Despite deletion of the presumably essential CrUBC9 gene, mut5 was viable and grew at normal rates when cultured at 25°C (see data below).

CrUBC9 Is Dispensable for SUMOylation under Nonstress Conditions But Required for Stress-Induced SUMOylation

It was previously shown that multiple high-Mᵦ proteins are SUMOylated in C. reinhardtii in response to a heat shock of 42°C (Wang et al., 2008). To determine if mut5, which lacks the CrUbc9 gene, is capable of this stress-induced SUMOylation, wild-type and mut5 cultures were shifted to 42°C for 1 h, and the patterns of SUMOylation in these cultures were detected and analyzed on immunoblots using anti-SUMO antibodies (Fig. 1). Wild-type cells grown at 25°C show one major protein at approximately 130 kD but few, if any, other high-Mᵦ SUMOylated proteins. In comparison, when cells were exposed to 42°C, many high-Mᵦ proteins (>65 kD) were modified by SUMO as previously observed. These newly modified proteins are detectable within 30 min after the shift of cells to 42°C and persist throughout prolonged heat stress (Supplemental Fig. S1). Interestingly, mut5 cells grown at 25°C showed a similar pattern of SUMOylation compared with wild-type cells grown at 25°C, despite the complete lack of a functional CrUBC9 gene. In marked contrast to wild-type cells, mut5 cells shifted to 42°C lack the ability to support SUMOylation of high-Mᵦ proteins and, instead, show a SUMOylation pattern that appears identical to nonstressed cells (Fig. 1; Supplemental Fig. S1). These results show that mut5 is incapable of SUMOylating proteins in response to a shift to 42°C and therefore, suggest that the CrUBC9 protein is required for heat-stress induced SUMOylation.

SUMOylated Proteins Are Present in mut5 Despite the Lack of a Functional CrUBC9 E2 Conjugase

The pattern of proteins detected with anti-SUMO antibodies in mut5 extracts appeared identical to the pattern of proteins detected in nonstressed wild-type cells grown at 25°C (Fig. 1). Because mut5 has a complete deletion of the CrUBC9 gene, the presence of SUMOylated proteins in mut5 strongly suggests the presence of at least one additional functional SUMO E2 conjugase in the C. reinhardtii genome. To confirm that the bands detected in these blots are, indeed, SUMOylated proteins, a competition assay was performed by pre-incubating anti-SUMO antibodies with excess recombinant SUMO to sequester SUMO antibodies and thus, diminish or ablate the signal obtained from any bona fide SUMO proteins on protein blots of cell extracts. Recombinant CrSUMO96, the protein against which the anti-SUMO antibodies were generated, was preincubated with anti-SUMO antibodies before application to a protein blot of

![Image](https://example.com/image1.png)

Figure 1. mut5 fails to accumulate high Mᵦ SUMOylated proteins in response to heat shock at 42°C. Protein-blot analysis was performed with total cell extracts of C. reinhardtii CC124 and mut5 cultures grown at 25°C (lanes 1 and 4) or after shifting of these cells to 42°C for 30 or 60 min (lanes 2 and 3, CC124; and lanes 5 and 6, mut5, respectively). SUMOylated proteins in these cell extracts were separated on BisTris SDS-PAGE gels and detected on protein blots with anti-SUMO antibodies (upper). Extracts from equal numbers of cells were loaded into each lane, and staining of the protein blot with Reactive Brown stain was used to show similar loading between lanes (lower).
wild-type and mut5 extracts isolated from cells maintained at either 25°C or 42°C. As a negative control, anti-SUMO antibodies were also preincubated with either a nonfat dry milk-based blocking reagent alone or recombinant C. reinhardtii Ubiquitin 1A (CrUBIQ1A). These mixtures were then applied independently to identical protein blots (Fig. 2). In blots of proteins from wild-type cells, recombinant CrSUMO96 competed away the signal of all of the high-Mr proteins (greater than 65 kD) in extracts isolated from cells subjected to 42°C, indicating that these proteins are, indeed, SUMOylated in response to heat shock. In addition, in blots of proteins from both nonstressed wild-type and mut5 cell extracts, signals from several bands were competed away, including the prominent band at approximately 130 kD (Fig. 2, middle). These observations confirm that SUMOylation of proteins occurs in both mut5 and wild-type cells under nonstress conditions in addition to the SUMOylation of new proteins that occurs under stress conditions in wild-type cells. Importantly, preincubation of the anti-SUMO antibodies with recombinant ubiquitin (CrUBIQ1A) failed to compete away the signal from those same proteins, indicating that the antibodies are specific for SUMO (Fig. 2, bottom). Furthermore, the anti-SUMO antibodies failed to recognize recombinant CrUBIQ1A on those same blots (Fig. 2, lane U), suggesting that the anti-SUMO antibodies do not cross react with ubiquitin and are specifically recognizing SUMOylated proteins. Together, these data provide compelling evidence that at least one SUMO conjugase in addition to CrUBC9 is present in C. reinhardtii cells.

CrUB3 Is Most Likely the Second SUMO E2 Conjugase Gene in C. reinhardtii

Previous analyses of potential SUMO E2 conjugases in C. reinhardtii (Wang et al., 2008) suggested that, among the candidate genes, CrUBC9 was the most similar to verified SUMO E2 conjugase genes found in other eukaryotic organisms. In that same analysis, however, it was noted that the distinction between some of the candidate enzymes as SUMO conjugases versus ubiquitin conjugases was uncertain (Wang et al., 2008). Given that the data presented above confirm the presence of SUMOylated proteins in mut5, we sought to determine which of the other three candidate proteins might be the second SUMO conjugase that is responsible for SUMOylation under nonstress conditions.

To distinguish between SUMO-conjugating enzymes and UBCs, an amino acid sequence alignment was generated that allowed comparisons of the four C. reinhardtii proteins previously identified as potential SUMO conjugase enzymes (including CrUBC9) with the bona fide SUMO-conjugating enzyme from yeast (Saccharomyces cerevisiae; ScUBC9) as well as all verified UBCs from this organism that were similar in length to the candidate conjugase enzymes from C. reinhardtii (Supplemental Fig. S2). The crystal structure of the mouse/human SUMO conjugase identified an insertion of amino acids in the N-terminal region of the protein compared with ubiquitin conjugase enzymes (Tong et al., 1997). The alignment in Supplemental Figure S2 reveals a similar insertion for ScUBC9 compared with the yeast ubiquitin conjugase enzymes as well as just two C. reinhardtii proteins, CrUBC9 and CrUBC3. This insert includes two residues (DG) that are 100% conserved among all three and also present in the 5-amino acid insertion previously identified in human and mouse Ubc9 proteins (Tong et al., 1997). Similarly, a comparison of the sequences reveals that, for
both CrUBC9 and CrUBC3, the yeast SUMO conjugase is the best yeast homolog in the alignment (61.78% and 52.60% identity to ScUBC9, respectively), whereas for the other two C. reinhardtii proteins, a yeast ubiquitin conjugase is a better ortholog (Supplemental Table S1).

A phylogenetic tree generated using the top BLAST hits from the UniProt/SwissProt database for each of four proteins as well as additional E2 conjugase enzymes revealed that CrUBC9 and CrUBC3 clustered with known SUMO E2 conjugases, whereas the other two previously identified proteins cluster with known ubiquitin E2 conjugases (Fig. 3).

As an initial comparison of CrUBC9 and CrUBC3, transcript levels for mRNAs encoding these two proteins were analyzed under nonstress (25°C) and stress (42°C) conditions (Supplemental Fig. S3). Under nonstress conditions, CrUBC9 mRNA is more abundant (approximately 17-fold higher than CrUBC3 mRNA). Upon heat stress, the two transcripts produce diametrically different responses. In response to 42°C, CrUBC9 transcripts increased approximately 2.7-fold compared with nonstress conditions. CrUBC3, however, shows a drastic decrease in transcript abundance upon heat stress, with transcript levels being reduced to a level approximately 52-fold lower than under nonstress conditions (Supplemental Fig. S3). The opposite response of CrUBC9 and CrUBC3 transcript levels to heat stress strongly suggests that CrUBC9 and CrUBC3 perform distinct functions under stress and nonstress conditions, respectively. In addition, the increase in CrUBC9 transcripts in response to heat stress is consistent with the key role that CrUBC9 plays in this and other stress responses as described below.

mut5 Lacks the Ability to SUMOylate Proteins under a Variety of Stress Conditions

Similar to SUMOylation patterns observed during stress imposed by the 42°C heat treatment, C. reinhardtii also modifies high-M_r proteins with SUMO in response to salt, osmotic, and 37°C stress conditions (Wang et al.,...
2008). To determine if the SUMOylation deficiency observed in mut5 occurs for all of these abiotic stress treatments, wild-type and mut5 cells were exposed to these and other stress conditions and analyzed by immunoblot analysis with anti-SUMO antibodies. In response to heat stress at 37°C, salinity stress with 175 mM NaCl, osmotic stress with 300 mM sorbitol, and reactive oxygen species stress with 2 mM hydrogen peroxide (H$_2$O$_2$), wild-type cells showed SUMOylation of high-M$_r$ proteins in a pattern similar to that observed with incubation at 42°C (Supplemental Fig. S4). In contrast, under these four additional abiotic stress conditions, mut5 cells showed no change in SUMOylation patterns between nonstressed and stressed conditions, indicating that CrUBC9 is required for stress-induced SUMOylation in response to a variety of environmental adversities.

To determine if CrUBC9 is involved in SUMOylation in response to carbon deprivation, SUMOylation patterns were determined in wild-type and mut5 cells deprived of a carbon source by placing them in the dark and removing acetate from the growth medium. However, attempts to deprive cells of all carbon by placing them in Tris-acetate phosphate (TAP) medium lacking acetate and incubating in the dark proved rapidly lethal for cells. Therefore, to slow the rate of cell death and slow the rate of carbon deprivation, cells were placed in TAP medium containing one-half the normal concentration of acetate and incubated in the dark. Within 48 h, wild-type cells grown in the dark in the presence of medium containing one-half-strength acetate exhibited SUMOylation of several medium to high-M$_r$ proteins (Supplemental Fig. S5). In contrast, mut5 cells incubated in a similar manner displayed no change in SUMOylation pattern. A control culture incubated in full-strength TAP medium in the dark, likewise, showed no change in SUMOylation pattern, indicating that the changes observed in wild-type cells were the result of carbon deprivation and not simply the result of dark incubation (Supplemental Fig. S5, last two lanes). An unexplored point of interest is that the pattern of SUMOylation observed with carbon (acetate) starvation is distinct from those observed under other abiotic stresses.

Knobbe et al.

Given that mut5 can grow and SUMOylate the same set of proteins as wild-type cells at 25°C but is incapable of SUMOylation under the stress conditions tested above, it was possible that a growth defect phenotype might be manifested under stress conditions in the absence of CrUBC9. To test this possibility, the growth of wild-type and mut5 cultures in liquid medium was compared at 20°C and 37°C, a temperature known to induce SUMOylation in C. reinhardtii (Supplemental Fig. S4). Dilute cultures of wild-type and mut5 were placed at either 20°C or 37°C, and their growth was monitored over the course of 72 h (Fig. 4A). Growth curves for both wild-type and mut5 cells were similar at 20°C, indicating no deleterious effect on cell viability or growth in mut5 under nonstress conditions. Growth of wild-type cells incubated at 37°C lagged behind both wild-type and mut5 cultures grown at 20°C but still showed increased cell numbers over the course of 72 h. In contrast, mut5 failed to show significant growth at 37°C, only reaching an optical density at 660 nm (OD$_{660}$) 6 times higher than its initial OD$_{660}$ by the end of 72 h. The lack of growth observed for mut5 at 37°C raised the possibility that extended exposure to elevated temperatures might prove lethal in cells lacking CrUBC9. To test this conjecture, cultures normalized for cell densities were spotted in a 1:4 dilution series on multiple plates containing TAP medium and incubated at 37°C. Individual plates were removed to room temperature after 24, 48, and 72 h at 37°C (Fig. 4B) and allowed to incubate for an additional 4 to 6 d at room temperature to assess cell viability. The spot tests revealed that wild-type cells maintained on a TAP plate at 37°C for 72 h showed no apparent loss in cell viability (Fig. 4B, rows 1 and 2). However, after just 24 h at 37°C, a loss of viability was apparent with mut5 cells. Loss in viability increased in severity over the course of 72 h to the point that virtually no viable mut5 cells remained after 72 h (Fig. 4B, 3). To better estimate how quickly mut5 cells die at 37°C, very dilute (400 cells per 1 mL) cultures of CC124 and mut5 were again shifted to 37°C, and 250-μL aliquots from these cultures were plated on TAP plates at 24 and 48 h after the shift. The number of colony forming units arising on each plate was taken as a count of the number of living cells in that culture (Fig. 4C). Wild-type cells again showed marked growth over 2 d at 37°C. However, within 24 h at 37°C, the number of colony forming units for mut5 cells had decreased by one-half, and no viable cells were detected at 48 h. The sensitivity of mut5 cells to incubation at 37°C combined with its failure to SUMOylate high-M$_r$ proteins in response to heat stress strongly suggest that the ability of wild-type cells to survive at 37°C is dependent upon SUMOylation of target proteins by CrUBC9.

To determine potential phenotype changes in mut5 when placed under salinity or osmotic stress, the growth of mut5 cells was compared with wild-type cells in the presence of NaCl or sorbitol, respectively. Normalized cultures were spotted in a 1:4 dilution series on TAP plates and TAP plates supplemented with 300 mM sorbitol or 175 mM NaCl. When 1:4 dilution series of wild-type and mut5 cells were spotted on TAP plates, similar growth could be observed between the two, consistent with the growth in liquid culture (Supplemental Fig. S6, A and B, top). However, when those same cells were spotted on TAP + 300 mM sorbitol plates, both wild-type and mut5 cells were capable of growth, but mut5 exhibited a reduced growth rate compared with wild-type cells (Supplemental Fig. S6A). When wild-type and mut5 cells were spotted on medium containing 175 mM NaCl, wild-type cells showed strongly reduced growth
compared with control cells spotted on a TAP plate. In contrast, mut5 cells were incapable of growth on plates containing 175 mM NaCl (Supplemental Fig. S6B). Together, these data strongly suggest that SUMOylation of proteins by CrUBC9 enables *C. reinhardtii* cells to tolerate fluctuations in both their temperature and osmotic environments. Without these protein modifications, survival of *C. reinhardtii* cells under these conditions becomes impossible or severely compromised.

The CrUBc9 Gene Complements the mut5 Mutant Phenotype

To show that the lack of SUMOylation and other phenotypes observed in mut5 is specifically the result of the CrUBC9 deletion, complementation of mut5 with a CrUBC9 transgene was attempted. The inability of mut5 cells to grow at 37°C was used to screen for complemented cells that were able to grow at this temperature after transformation with a plasmid containing a CrUBC9 transgene (Fig. 5A). mut5 cells were cotransformed with a plasmid containing a CrUBC9 complementary DNA (cDNA) modified to include a single CrUBC9 intron and a plasmid containing the *Streptomyces hygroscopicus* aminoglycoside phosphotransferase7 gene that confers resistance to hygromycin B (Berthold et al., 2002). Hygromycin B-resistant transformants were spotted on TAP plates and incubated at 37°C to assess their growth. Three lines that appeared to grow at 37°C were rescreened and compared with wild-type and mut5

Figure 4. mut5 is not viable at 37°C. A, Growth of wild-type and mut5 cultures at 20°C and 37°C was monitored every 24 h for 72 h and reported as OD₆₆₀ relative to the starting OD₆₆₀ for each culture. Data points are the average of three independent cultures, and error bars represent the sd. B, A 1:4 dilution series of wild-type and mut5 cells was spotted in duplicate lanes on four individual TAP plates. One was incubated at 25°C, whereas the remaining three were incubated at 37°C in the light. Plates were shifted from 37°C to 25°C at the indicated number of days. C, Wild-type and mut5 cultures were diluted to a concentration of 400 cells mL⁻¹; 250-μL aliquots were plated from initial dilutions and then every 24 h for 48 h after shifting to 37°C. Data points reflect the relative number of cells for each aliquot based on the original dilution and are the average of three independent experiments. Error bars represent the sd.
controls to confirm their phenotypes (Fig. 5B). Not only was growth at 37°C restored, but all three transformants also showed renewed ability to support SUMOylation of high-M₆ proteins at 42°C (Fig. 5C). Expression of the newly introduced CrUBC9 gene was confirmed by reverse transcription (RT)-PCR of isolated RNA (Fig. 5D). Complemented lines also showed restored ability to grow on TAP medium supplemented with 300 mM sorbitol and SUMOylate high-M₆ proteins in response to carbon deprivation (Supplemental Fig. S7). Combined, these results confirm that the deletion of CrUBC9 in mut5 is responsible for the lack of SUMOylation observed in response to various stress conditions as well as the associated phenotypes.

Localization of CrUBC9

Complementation of mut5 with a chimeric trans-gene encoding the CrUBC9 protein fused to the mCherry fluorescent protein through a flexible linker region consisting of four repeats of the amino acid sequence Glu-Ala-Ala-Arg (4XEAAR; Elrouby and Coupland, 2010; Supplemental Fig. S8A) was used to determine the in situ localization of CrUBC9 in living cells. The complemented mut5 mutant displayed partially restored growth at 37°C (Supplemental Fig. S8B) and the ability to SUMOylate high-M₆ proteins in response to heat shock treatment (Supplemental Fig. S8C). Examination of these cells by confocal microscopy showed a pattern consistent with nuclear localization of CrUCB9 at 25°C as well as during increasing times of exposure to 42°C (Supplemental Fig. S9). Examination at a higher magnification (Fig. 6, A and B) showed that, whereas the preponderance of CrUBC9 resided in the nucleus, trace amounts could be detected in the cytoplasm. This is compared with a control culture expressing mCherry alone, in which the mCherry signal is readily detected in both the nucleus and the cytoplasm (Fig. 6C).

DISCUSSION

Initial characterization of the SUMOylation system in C. reinhardtii included the identification of a putative SUMO E2 conjugase (CrUBC9) that showed in vitro SUMOylation activity (Wang et al., 2008). SUMOylation has been implicated in many important cellular processes, and in a variety of taxonomic groups, SUMO or SUMO pathway mutants are lethal (Seufert et al., 1995; Hayashi et al., 2002; Nacerddine et al., 2005; Saracco et al., 2007). There are two reports of viable specific primers was used to detect the production of CrUbc9 transcripts. The next to last lane contains the product from RT-PCR amplification of a cDNA clone of CrUBC9. Expression of CrUbc3 was used as a control. Lanes marked H₂O are negative controls with no template RNA added.

Figure 5. Complementation of mut5 with CrUBC9. A, Diagram of the pGenD-Ubc9.int2 expression cassette. Shown are NotI and EcoRI sites used for cloning CrUbc9 cDNA between the C. reinhardtii PsaD gene promoter and terminator regions in the pGenD vector as well as endogenous Ncol and ScaI sites used for adding the second intron of the CrUBC9 gene. B, mut5 lines 1, 4, and 7 putatively complemented with the CrUBC9 gene construct pGenD-Ubc9.int2 were screened for their ability to grow at 37°C. Normalized cell cultures of wild-type, mut5, and complemented lines were spotted on two TAP plates, one of which was incubated at 25°C as a control and one of which was incubated at 37°C for 3 d before shifting to 25°C to assess growth. C, Putative complemented lines were tested for the ability to SUMOylate proteins in response to 42°C. Cell cultures were shifted to 42°C for 1 h, and whole-cell extracts were analyzed for SUMOylation by immunoblot with anti-SUMO antibodies. D, Confirmation of the expression of CrUBC9 in complemented lines by RT-PCR analysis. RNA was isolated from wild-type, mut5, and complemented lines. RT-PCR using CrUbc9-
SUMOylation mutants in S. pombe and Aspergillus nidulans; however, they both exhibit severe growth defects, including reduced cell growth and abnormal cell morphology (al-Khodairy et al., 1995; Wong et al., 2008). The role of SUMOylation in stress response has been shown in both yeast and Arabidopsis in experiments in which the overexpression or heterologous expression of Ubc9 enzymes resulted in increased stress tolerance (Hiraishi et al., 2006; Karan and Subudhi, 2012). Therefore, discovery of mut5, a mutant completely lacking the previously identified SUMO conjugate CrUBC9, was unexpected.

mut5 displayed no obvious growth defect, and under nonstress conditions, mut5 grew at a rate comparable with wild-type cells (Fig. 4A). However, unlike wild-type cells subjected to various stress conditions, mut5 failed to SUMOylate any of a large set of high-Mr proteins when placed in the same stress conditions (Fig. 1; Supplemental Figs. S4 and S5). Moreover, although wild-type cells readily survived the stress conditions, mut5 displayed little or no tolerance to all the stress conditions tested (Figs. 4 and 5; Supplemental Fig. S6). These results combined with our previous demonstration that CrUBC9 has SUMO E2 conjugase activity in vitro (Wang et al., 2008) and the observation that complementation of mut5 with a CrUBC9 transgene restored SUMOylation in response to various stresses (Fig. 5, B and C; Supplemental Fig. S7) provide definitive evidence that CrUBC9 is a functional SUMO E2 conjugase in C. reinhardtii and moreover, uniquely a stress-specific SUMO E2 conjugase, a phenomenon not previously observed in other organisms. The fact that SUMOylation of proteins is essential for survival of C. reinhardtii under harsh conditions bolsters the hypothesis that the extensive stimulation of protein SUMOylation observed in numerous other eukaryotes under stress conditions (Saitoh and Hinchey, 2000; Kurepa et al., 2003; Šramko et al., 2006), likewise, is essential to their survival.

The ability to use a CrUBC9 gene fused with an mCherry coding region for complementation of the growth defect of mut5 at 37°C allowed us to determine the subcellular localization of CrUBC9. Fluorescent confocal microscopy (Fig. 6) showed distinct and nearly exclusive localization of CrUBC9 to the structurally distinct nucleus of C. reinhardtii. This observation complements our earlier studies that used anti-SUMO polyclonal antibodies to detect SUMOylated proteins in the nuclei of fixed cells (Wang et al., 2008). UBC9 homologs identified in other organisms also localize to the nucleus as do proteins targeted for SUMOylation in response to heat stress (Rodriguez et al., 2001; Bruderer et al., 2011).

Our results show that CrUBC9 is categorically required for SUMOylation in response to stress in C. reinhardtii but apparently dispensable under normal growth conditions. This is evidenced by the lack of any observable negative phenotypes in mut5 compared with wild-type cells under nonstress conditions (Fig. 4A) as well as the observation that SUMOylation patterns are identical between wild-type and mut5 cells at 25°C (Fig. 1). These observations are intriguing, because virtually every other haploid or diploid organism studied to date has a single essential SUMO E2 conjugase (Saitoh and Hinchey, 2000; Kurepa et al., 2003; Šramko et al., 2006). Competition assay results verified that the proteins detected under nonstress conditions in both wild-type and mut5 cells are, indeed, SUMOylated (Fig. 2), providing convincing evidence that a second SUMO conjugase must exist in C. reinhardtii. The original description of the SUMO system in C. reinhardtii raised the possibility that the genome could contain as many as four SUMO conjugase enzymes, including CrUBC9, but none of the proposed enzymes was more than 54% identical to CrUBC9 (Wang et al., 2008). A deeper analysis comparing verified yeast E2 conjugase sequences with candidate C. reinhardtii SUMO and ubiquitin E2 conjugases in this study (Fig. 3; Supplemental Table S1) points to CrUBC3 as the putative secondary SUMO E2 conjugase in C. reinhardtii. Marked amino acid sequence differences between CrUBC9 and this second putative SUMO conjugase are perhaps not surprising given the distinctly different roles that each must play in SUMOylation of proteins in C. reinhardtii, with CrUBC9 responsible for SUMOylation under stress conditions and CrUBC3 likely responsible for housekeeping SUMOylation functions needed for cell growth and division under normal nonstress conditions. Future studies will be aimed at providing verification or denial of CrUBC3 as this second SUMO E2 conjugase.
Cultures were grown in TAP medium (Harris, 2009) unless otherwise stated. For growth curves at 20°C and 37°C, wild-type and mutants were cultured in TAP medium supplemented with 3M sorbitol was added to liquid culture to prevent photosynthesis. Control cultures of wild-type cells were resuspended in liquid culture to a density of 400 cells per mL, so that a 250-μL aliquot of cells from the original dilution as well as after 24 h at 37°C were plated on TAP plates and incubated at 25°C. The resulting plasmid was named pGenD-Ubc9.int2. This plasmid was cotransformed with pPsaD-Ubc9.int2 and pPhy3, which confers resistance to Hygromycin B (Berthold et al., 2002), using standard electroporation conditions (Shigemowara et al., 1998). Transformants were selected on medium containing 50 μg mL⁻¹ Hygromycin B. Individual transformants were picked into 100 μL of TAP medium in 96-well plates. One plate was incubated at 25°C, whereas the other was incubated at 37°C after 3 d. Colonies that showed growth at 37°C 3 d after 3 were rescreened in a similar dilution series of each transformant that was subsequently spotted on two individual TAP plates. One plate was incubated at 25°C, whereas the other was incubated at 37°C 3. These restriction sites were used to clone the intron at the 5′ end and an endogenous SacI site in the coding region flanking the intron at the 3′ end. These restriction sites were used to clone the intron into the CrUBC9 cDNA. The resulting plasmid was named pGenD-Ubc9.int2.

For complementation, mutants cells were cotransformed with pPhy3 and pPhy3, which confers resistance to Hygromycin B (Berthold et al., 2002), using standard electroporation conditions (Shigemowara et al., 1998). Transformants were selected on medium containing 50 μg mL⁻¹ Hygromycin B. Individual transformants were picked into 100 μL of TAP medium in the first and fourth rows of a 96-well plate and grown for 24 to 48 h at 25°C. The second, third, and fifth through eighth rows of the same plate were used to generate a 1:4 dilution series of each transformant that was subsequently spotted on two individual TAP plates. One plate was incubated at 25°C, whereas the other was incubated at 37°C 3. For expression of a CrUBC9-4XEAAAR-mCherry fusion, CrUBC9 cDNA was amplified from CC124 cells using Trizol LS (Invitrogen) according to the manufacturer's recommendations. UBIQ1A mRNA was amplified from CC124 total RNA using the following primers: 5′-CCCCCATATGGAGAATTGTGTGAAGAACCCCT-3′ and 5′-CCCGAGATGACGCAACACATCTTCCAGCC-3′ (EcoRI site underlined). UBIQ1A cDNA was cloned into pET-28b using NdeI and EcoRI restriction sites. UBIQ1A was overexpressed and purified using the same conditions as noted above for CrSUMO6. Proteins were quantified using the Bio-Rad Protein Quantification Kit (Bio-Rad). For assays testing for the specificity or nonspecificity of SUMO antibody binding cells on immunoblots, proteins in equivalent amounts of extracts of CC124 and mutants from both 25°C and 37°C were analyzed by immunoblot analysis. The anti-SUMO primary antibodies were preincubated in a dry milk dilution of 1:10,000 dilution. After incubation in primary antibody, blots were washed two times with TBST before incubation in secondary antibody, blots were washed two times in TBST and one time with Tris-buffered saline. Protein bands bound by primary antibodies and adherent HRP-labeled antibodies were detected with SuperSignal West Pico Chemiluminescent Substrate (Pierce). The anti-SUMO primary antibody is a polyclonal antibody directed against the CrSUMO6 protein of C. reinhardtii and has been previously described (Wang et al., 2008). A 1:1,000 dilution of the third bleed was used for detection of SUMO proteins. Antibodies to inorganic carbon accumulation mutant5 protein have been previously described (Wang et al., 2005) and were used at a 1:10,000 dilution. Secondary antibody for anti-SUMO and anti-Cr5 primary antibodies were HRP-linked donkey anti-rabbit IgG used at a 1:1,000 dilution.
5′-GAACCTGATGATGGACTAGTCGAGG-3′ and 5′-AAACAGACTCTCGGAGGC-3′ (BglII site underlined). A segment of DNA encoding four repeats of Glu, Ala, Ala, Ala, and Arg (4XEAAAR) was generated by annealing the GAT fragment encoded four EAAAR repeats

| 5′-CGCAGCCTCGCG-GGCAGCCGCCTC-3′ | | |

C. reinhardtii UniProt/SwissProt database for each of four putative SUMO conjugases from ClustalOmega (Sievers et al., 2011). The alignment was generated using the CrUBC9-4XEAAAR-mCherry fusion. The previously described endogenous Ncd site of the CrUBC9 cDNA and EcoRI site of the mCherry cDNA were used to ligate the fusion in pGenUshcint2. The resulting plasmid was named pUsh.

Confocal Microscopy

Live images of C. reinhardtii were captured using a Nikon A1 confocal imaging system mounted on a Nikon Eclipse 90i microscope with a 100× objective. mCherry fluorescent signal was acquired with 561.5-nm excitation and 570- to 620-nm emission, and chlorophyll autofluorescence signal was acquired at 461-nm excitation and 662- to 757-nm emission and pseudocolored green for visualization. Control cells expressing free mCherry were generated as previously described (Rasala et al., 2013).

Bioinformatic Analysis of SUMO Conjugase Candidates in C. reinhardtii

To identify potential additional SUMO conjugase candidates, an alignment was generated with CrUBC9 (Cref02.g142000), CrUBC3 (Cref03.g167000), Cre16.g93700, and Cre06.g922800 using sequences deposited in Phytozome (http://www.phytozome.jgi.doe.gov/) and known SUMO conjugase and ubiquitin conjugase enzymes excluded were those with a length drastically different (Q02159.1), ScUBC11 (P52492.1), and ScUBC12 (P52490.1). The only ubiquitin was generated with CrUBC9 (Cre02.g142000), CrUBC3 (Cre03.g167000), CrUBC7 (Q02159.1), ScUBC11 (P52492.1), and ScUBC12 (P52490.1). The only ubiquitin conjugase enzymes excluded were those with a length drastically different from the C. reinhardtii candidate proteins. The alignment was generated using ClustalOmega (Sievers et al., 2011).

To generate a phylogenetic tree, an alignment of the top homologs in the UniProt/SwissProt database for each of four putative SUMO conjugases from C. reinhardtii as well as selected other E2 conjugase sequences, including ubiquitin fold modifier1 E2 conjugases, Related to ubiquitin1/neutral precursor cell expressed, developmentally down regulated 2 conjugases, SUMO E2 conjugases, and Ubiquitin E2 conjugases, was generated using MUSCLE (Edgar, 2004). Gaps in the alignment were removed using GBLOCKS (Castresana, 2000). A tree was generated from the resulting alignment with PhyML (Guindon et al., 2010) using the substitution model LG (Le and Gascuel, 2008) and performing bootstrap analysis on 10 replicates. Annotation of the tree and highlighting of selected clusters were performed using MEGA6 (Tamura et al., 2013).

Quantification of Expression Levels of CrUBC9 and CrUBC3

For quantitation of expression levels of CrUBC9 and CrUBC3 transcripts, total RNA was isolated from CC124 C. reinhardtii cells grown at 25°C and after a shift to 42°C for 1h using Trizol LS (Invitrogen) according to the manufacturer’s recommendations. Contaminating DNA was removed by treatment with DNAseI (ThermoScientific). cDNA was synthesized from 2 μg of total RNA with oligo (dT) primers using the Plexor Two-Step qRT-PCR System (Promega). Synthesized cDNA was diluted 1:2 in 1 μl MOPls1.5 μl EDTA and used as substrate for a quantitative PCR reaction according the Plexor Two-Step qRT-PCR System recommendations using 0.2 μl each primer (Biosearch Technologies). Primer pairs for quantitative PCR were as follows: CrUBC3, 5'-FAM-isoC-GCTGGGCTA-CAGCTTGGGAT-3′ and 5'-GATACCAAGGGCCGGAGGAAG-3′; CrUBC9, 5'-CAL Fluor Orange 560-isoC-TAGGCCACAGTACCAGGAG-3′ and 5'-CTCACCAGTACCTACGGGAG-3′; and G-Protein, 5′-Quasar 670 iso-C-GTGGTGCTGCAAGGGAGA-3′ and 5′-GACAAGACCATCAACGGTGCAAC-3′.

G-Protein and CrUBC9 primers were multiplexed in a single reaction. The efficiency of amplification for each set of primers was calculated and used to quantify the relative transcript abundance relative to CrUBC9 at 25°C (Pfaffl, 2001). Efficiencies for the primer pairs were as follows: CrUBC9, 83%; CrUBC3, 82%; and G-Protein, 82%.

Sequence data for this article are listed in Supplemental Table S2.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. mut5 is unable to SUMOylate stress-related proteins during prolonged heat stress at 42°C.

Supplemental Figure S2. Amino acid sequence alignments comparing verified yeast SUMO and ubiquitin E2 conjugases with putative SUMO and ubiquitin E2 conjugases from C. reinhardtii.

Supplemental Figure S3. Comparison of CrUBC9 and CrUBC3 mRNA levels in wild-type cells in response to heat shock.

Supplemental Figure S4. mut5 fails to SUMOylate high-M, proteins in response to diverse abiotic stresses.

Supplemental Figure S5. mut5 fails to SUMOylate high-M proteins in response to carbon source deprivation.

Supplemental Figure S6. Phenotypes of mut5 under osmotic and salt stresses.

Supplemental Figure S7. Phenotypes of complemented mut5.

Supplemental Figure S8. Complementation of mut5 with a CrUBC9-4XEAAAR-mCherry fusion.

Supplemental Figure S9. CrUBC9 localizes to the nucleus at 25°C and 42°C.

Supplemental Table S1. Identification of the closet orthologs to SUMO E2 conjugases and ubiquitin E2 conjugases in yeast and C. reinhardtii.

Supplemental Table S2. Annotation of protein sequences used for generation of the phylogenetic tree.

ACKNOWLEDGMENTS

We thank Dr. Jeff Mower for generous assistance with phylogenetic analyses of the E2 conjugase families.

Received December 19, 2014; accepted January 11, 2015; published January 22, 2015.

LITERATURE CITED

al-Khodairy F, Enoch T, Hagan IM, Carr AM (1995) The Schizochytrium pombe his5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci 108: 475–486

Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F (2001) Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sci 6: 463–470

Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces logrocinus apha 7′-gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Prost 153: 401–412

Bruderer R, Tatham MH, Plechanovova A, Matic I, Garg AK, Hay RT (2011) Purification and identification of endogenous polySUMO conjugates. EMBO Rep 12: 142–148

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552

Catala R, Ouyang J, Abreu IA, Hu Y, Hao H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19: 2925–2966

Chen CC, Chen YY, Yeh KC (2011) Effect of Cu content on the activity of Cu/ZnSOD1 in the Arabidopsis SUMO E3 ligase siz1 mutant. Plant Signal Behav 6: 1428–1430
Cohen-Peer R, Schuster S, Meiri D, Breiman A, Avni A (2010) Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modiﬁes its activity during acquired thermotolerance. Plant Mol Biol 74: 33–45
Conti L, Price G, O’Donnell E, Schwessinger B, Dominy P, Sadanandom A (2008) Small ubiquitin-like modiﬁer proteases OVERLY TOLERANT TO SALTI and -2 regulate salt stress responses in Arabidopsis. Plant Cell 20: 2894–2908
Desterro JMP, Thomson J, Hay RT (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417: 297–300
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797
Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modiﬁer (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci USA 107: 17415–17420
Fischer N, Roachia JDR (2001) Theanking domains of PsA drive efﬁcient gene expression in the nucleus of the green alga Chlamydomonas reinhardii. Mol Genet Genomics 265: 885–894
Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956
Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modiﬁcation patterns in response to heat shock response in Arabidopsis. J Biol Chem 33: 1219–1224
Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2008) SUMO-1 modiﬁcation regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 283: 18513–18518
Guindon S, Dufayard JF, Lefort V,Anisimova M, Hordijk W, Gascuel O (2005) A ﬂexible, fast and accurate approximation to the maximum likelihood distance estimator for phylogenetic trees. Mol Biol Evol 23: 128–141
Harris EH (2009) The Chlamydomonas Sourcebook: Introduction to Chlamydomonas reinhardii. Mol Genet Genomics 282: 863–885
Hiraiishi H, Mochizuki M, Takagi H (2006) Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes. Biocyto Biotechn Biochem 70: 2762–2765
Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modiﬁcation. J Biol Chem 276: 40263–40267
Huang L, Yang S, Zhang S, Liu M, Lai J, Qi Y, Shi S, Wang J, Wang Y, Xie Q, et al. (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J 60: 666–678
Ibrahim F, Rohr J, Jeong WJ, Hesson J, Cерути H (2006) Untemplated oligodeamination promotes degradation of RISC-cleaved transcripts. Science 314: 1893–1898
Ibrahim F, Rymarquis LA, Kim EJ, Becker J, Balassa E, Green PJ, Cерути H (2010) Oligoadenylation promotes degradation of RISC-cleaved transcripts. Proc Natl Acad Sci USA 107: 21387–21392
Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21: 2284–2297
Johnson ES, Blobel G (1997) Ubch9 is the conjugating enzyme for the ubiquitin-like modiﬁer (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 272: 6862–6872
Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307–1320
Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modiﬁer module targets the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135: 1457–1470
Miller MJ, Barrett-Wilt GA, Hua Z, Vierstra RD (2010) Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modiﬁer conjugation in Arabidopsis. Proc Natl Acad Sci USA 107: 16512–16517
Miller MJ, Vierstra RD (2011) Mass spectrometric identiﬁcation of SUMO substrates provides insights into heat stress-induced SUMOylation in plants. Plant Signal Behav 6: 130–133
Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19: 1403–1414
Miura K, Rus A, Shakhova A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, et al. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deﬁciency responses. Proc Natl Acad Sci USA 102: 7760–7765
Miura K, Sato A, Ohla M, Furukawa J (2011) Increased tolerance to salt stress in the phosphate-accumulating Arabidopsis mutants sa1 and pl2 is associated with the high-level expression of a novel RING-like protein. J Biol Chem 286: 21387–21392
Nacereddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 7: 769–779
Nigam N, Singh A, Sahi C, Chandramouli A, Grover A (2008) SUMO-conjugating enzymes of Arabidopsis. Mol Genet Genomics 280: 679–690
Olson B, O’Hara A, Brown GW, Murovsky Y, Vary AM, Larrivee B, others (2003) The small ubiquitin-like modiﬁer (SUMO) in plants. Int Rev Cell Mol Biol 228: 201–267
Oyler GA, Peterson TC, Haerizadeh F, May PP, Dejean A (2001) Comparative genomics of SUMO E3 ligases: assessing the performance of PhyML 3.0. Syst Biol 50: 307–321
Pattathil TS, Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2008) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PHYML 3.0. Syst Biol 57: 130: 1391–1399
Park HJ, Yun DJ (2013) New insights into the role of the small ubiquitin-like modiﬁer (SUMO) in plants. Int Rev Cell Mol Biol 306: 161–209
Pfafﬁ MW (2001) A new mathematical model for relative quantiﬁcation in real-time RT-PCR. Nucleic Acids Res 29: 45
Rasala BA, Barrera DJ, Ng J, Plunick TM, Rosenberg JN, Weeks DP, Oyler GA, Peterson TC, Haerizadeh F, May PP, Dejean A (2001) The small ubiquitin-like modiﬁer (SUMO) in plants. Int Rev Cell Mol Biol 228: 201–267
Ratcliffe OJ, Browne CL, RSP1, others (2001) A novel ubiquitin-like modiﬁer (SUMO) in plants. Mol Biol Cell 12: 4006–4007
Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modiﬁers SUMO-1 versus SUMO-2, 3. J Biol Chem 275: 6525–6538
Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145: 119–134
Seufert W, Fischer B, Jenisch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 375: 78–81
Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardii by electroporation. Genetics 148: 1821–1828
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539
Šramko M, Markus J, Kabát J, Wolff L, Bies J (2006) Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem 281: 40063–40075
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729
Tong H, Hateboer G, Perrakis A, Bernardas R, Saxma TK (1997) Crystal structure of murine/human Ubch9 provides insight into the variability of the ubiquitin-conjugating system. J Biol Chem 272: 21381–21387
Knobbe et al.
764 Plant Physiol. Vol. 167, 2015
Stress-Specific SUMO E2 Conjugase

Villajuana-Bonequi M, Elrouby N, Nordström K, Griebel T, Bachmair A, Coupland G (2014) Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyper-accumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4. Plant J 79: 206–219

Wang Y, Ladunga I, Miller AR, Horken KM, Plucinak T, Weeks DP, Bailey CP (2008) The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of Chlamydomonas reinhardtii. Genetics 179: 177–192

Wang Y, Sun Z, Horken KM, Im CS, Xiang Y, Grossman AR, Weeks DP (2005) Analyses of CIA5, the master regulator of the carbon-concentrating mechanism in Chlamydomonas reinhardtii, and its control of gene expression. Can J Bot 83: 765–779

Wong KH, Todd RB, Oakley BR, Oakley CE, Hynes MJ, Davis MA (2008) Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genet Biol 45: 728–737

Xu P, Yang C (2013) Emerging role of SUMOylation in plant development. Plant Signal Behav 8: e24727

Yasugi T, Howley PM (1996) Identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9. Nucleic Acids Res 24: 2005–2010

Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun DJ, Bressan RA, Hasegawa PM (2006) SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol 142: 1548–1558