Development of QSRR model for hydroxamic acids using PCA-GA-BP algorithm incorporated with molecular interaction-based features

Yiming Niea, Jia Lib, Xinying Yangb, Xuben Houa and Hao Fanga

aDepartment of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China

bDepartment of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China

CONTENTS

Table S1. The retention time of each analyte...1

Table S2. The docking scores of each analyte...6

Table S3. The principle components of matrix 1. ..7

Table S4. The principle components of matrix 2. ...8

* Corresponding Authors:

Phone/fax: +86-531-8838-2010 E-mail address: xinyingyang@sdu.edu.cn (Xinying Yang),
Phone/fax: +86-531-8838-0720 E-mail address: hxb@sdu.edu.cn (Xuben Hou),
Phone/fax: +86-531-8838-1168 E-mail address: haofangcn@sdu.edu.cn (Hao Fang).
Table S1. The retention time of each analyte.

Compound NO.	Structure	retention time / min
1	![Structure 1](image1.png)	3.6
2	![Structure 2](image2.png)	8.77
3	![Structure 3](image3.png)	2.71
4	![Structure 4](image4.png)	2.86
5	![Structure 5](image5.png)	4.23
Table S2. The docking scores of each analyte.

Compound NO.	Total_Score	Crash	D_SCORE	PMF_SCORE	G_SCORE	CHEMSCORE
1	3.04	-1.29	-72.625	-36.356	-126.806	-16.212
2	1.5	-0.94	-83.299	-54.325	-137.703	-19.715
3	2.45	-1.38	-91.347	-42.177	-167.772	-17.575
4	3.51	-1.18	-87.542	-44.06	-169.457	-20.404
5	2.8	-2.1	-101.124	-46.507	-209.161	-21.027
6	3.26	-2.44	-120.022	-58.321	-251.997	-18.985
7	2.63	-0.67	-79.73	-42.222	-161.64	-16.998
8	1.66	-1.07	-79.731	-36.845	-111.582	-20.181
9	3.21	-1.26	-86.354	-33.603	-161.909	-16.822
10	3.11	-1.62	-97.64	-37.904	-210.336	-20.227
11	4.16	-1.38	-96.107	-51.894	-194.589	-15.782
12	3.69	-2.08	-103.423	-62.16	-222.057	-16.242
13	4.35	-1.95	-103.306	-58.944	-211.189	-14.623
14	3.94	-1.41	-96.857	-43.467	-198.025	-12.939
15	3.04	-1.26	-81.698	-40.866	-178.101	-11.344
16	3.96	-1.12	-92.128	-49.257	-202.407	-14.046
17	2.77	-0.88	-77.205	-43.882	-160.972	-16.714
18	2.99	-1.18	-83.386	-32.969	-150.993	-14.744
19	3.45	-1.5	-100.604	-49.717	-179.573	-20.229
20	2.33	-1.35	-90.196	-45.506	-174.371	-16.632
21	1.63	-0.76	-73.083	-41.787	-144.782	-16.502
22	2.6	-1.1	-90.244	-35.359	-175.682	-21.791
23	2.97	-0.92	-87.896	-62.003	-162.12	-28.166
24	3.1	-1.02	-89.107	-59.208	-153.547	-14.248
25	2.72	-1.25	-83.762	-43.364	-171.507	-5.438
26	2.86	-0.88	-84.902	-48.705	-176.279	-8.387
27	3.9	-2.02	-101.804	-53.741	-200.029	-10.295
Table S3. The principle components of matrix 1.

Compound NO.	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
1	-24.64	-6.07	7.96	-0.17	-9.43	-3.20	-0.85	0.56
2	25.20	-4.65	-2.59	-3.17	-2.96	0.36	-0.42	2.00
3	1.71	3.97	2.22	2.55	1.45	-2.59	2.52	0.74
4	-1.73	6.54	0.54	0.96	0.32	0.00	1.40	-0.28
5	1.95	4.19	2.54	1.89	1.72	-2.99	2.08	0.84
6	14.85	-7.31	7.50	-0.91	-5.66	3.22	-0.25	-0.54
7	-7.95	7.12	-0.84	-5.48	0.14	0.67	-0.86	0.96
8	7.06	6.50	-3.23	-2.59	-2.15	0.27	-0.16	0.34
9	-0.07	5.58	1.72	0.95	1.15	-1.62	1.13	-0.80
10	8.90	4.96	-2.25	-1.28	-1.27	-1.52	0.05	0.28
11	4.87	-9.09	-6.15	-2.97	-0.68	-3.94	-0.97	-1.19
12	-0.15	-10.08	0.29	-2.49	2.93	-2.96	0.08	-2.05
13	-0.05	-8.88	0.53	-2.10	2.77	-0.80	-0.24	-0.47
14	10.17	-4.24	7.85	-0.29	2.08	5.57	2.06	-0.46
15	-12.84	-4.75	3.83	-3.23	6.86	2.88	-0.83	3.77
16	-4.70	-6.58	-0.19	-1.88	3.74	0.10	0.77	-4.90
17	-3.65	7.38	-0.73	0.36	-0.49	1.66	0.68	-0.36
18	-2.03	6.31	0.17	1.64	0.11	0.36	1.50	-0.66
19	3.62	2.69	2.95	3.24	1.80	-4.04	2.57	0.86
20	7.36	5.28	4.70	6.75	3.04	-1.03	-8.38	-0.75
21	-11.36	9.87	-2.70	-5.61	-1.45	3.26	-1.42	-2.07
22	9.13	5.20	-2.28	-1.96	-1.79	-1.10	-0.69	0.66
23	-3.43	7.62	-0.54	0.55	-0.47	1.47	0.58	-0.58
24	-7.31	-5.35	-4.01	-2.90	1.99	-0.89	-1.37	3.33
25	-6.73	-4.02	-6.52	4.68	-1.53	2.17	-0.79	-0.50
26	-4.91	-5.41	-5.71	6.47	-1.25	2.86	0.82	0.25
27	-3.25	-6.77	-5.05	6.99	-0.95	1.86	0.99	1.01
Table S4. The principle components of matrix 2.

Compo und NO.	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
1	-24.75	-5.42	-6.61	3.92	-9.83	-2.62	-1.35	1.75	-1.13
2	24.77	-4.01	3.97	2.55	-2.91	1.61	-1.35	4.93	-1.93
3	1.62	3.65	-3.50	-2.46	1.02	-2.37	1.96	1.71	-0.20
4	-1.81	6.35	-1.60	-1.35	0.43	-0.26	1.63	-0.36	0.08
5	2.02	3.56	-3.92	-1.75	1.55	-3.27	1.93	0.71	0.70
6	14.93	-8.11	-6.44	3.83	-5.38	2.51	0.78	-3.55	3.06
7	-8.12	7.63	1.46	3.98	1.04	1.40	-0.47	1.36	-0.29
8	6.76	7.20	3.34	1.10	-1.86	0.78	0.00	0.92	0.43
9	-0.23	5.42	-2.75	-1.21	1.04	-1.41	1.03	0.51	-1.25
10	8.79	4.91	1.80	0.22	-0.77	-1.71	0.62	-0.85	1.28
11	4.58	-8.65	7.05	1.59	-0.11	-3.87	-0.89	-0.28	-0.68
12	-0.18	-10.17	0.68	2.77	3.20	-3.35	-0.03	-1.80	-0.49
13	-0.14	-9.13	0.19	2.19	3.09	-1.12	0.02	-1.25	0.74
14	10.02	-4.88	-7.34	2.00	1.91	5.64	2.08	0.27	-2.09
15	-12.98	-4.63	-3.07	3.17	6.86	3.43	-1.16	2.55	2.78
16	-4.90	-6.53	0.74	1.58	3.89	-0.13	0.75	-2.30	-4.57
17	-3.81	7.36	-0.14	-1.25	-0.28	1.65	0.94	-0.32	0.31
18	-2.24	6.25	-1.37	-2.24	-0.01	0.49	1.60	-0.04	-0.70
19	3.60	2.08	-4.30	-2.65	1.37	-4.22	2.02	1.00	0.52
20	7.25	4.52	-6.66	-5.70	1.69	-0.47	-8.71	-1.57	-0.54
21	-11.55	10.66	3.29	3.76	-0.47	3.62	-0.52	-1.97	-0.56
22	8.93	5.55	2.19	0.85	-1.41	-0.82	-0.33	0.25	0.90
23	0.68	8.15	6.09	5.33	-0.70	-1.17	-0.51	-2.98	0.31
24	-7.52	-4.94	4.70	1.46	2.32	-0.48	-1.66	2.55	2.67
25	-7.06	-4.01	5.08	-6.40	-2.05	2.34	-0.55	-0.15	-0.88
26	-5.24	-5.45	4.05	-7.55	-2.01	2.77	0.81	0.03	-0.18
27	-3.40	-7.36	3.07	-7.74	-1.60	1.03	1.38	-1.10	1.71