Supplemental Materials

Estimation of interannual trends of ammonia emissions from agriculture in Jiangsu Province from 2000 to 2017

Jiayu Huang, Ruonan Xiong, Li Fang, Tianling Li and Weishou Shen

Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China

Table S1. The comparison of different studies in terms of the agricultural NH₃ emission contributed by livestock and poultry farming and nitrogen fertilizer application

Research area	References	Livestock and poultry farming	Nitrogen fertilizer application		
		Ammonia emission (kt)	Proportion	Ammonia emission (kt)	Proportion
China	Dong et al. 2010	8678.2	56.76%	6612.3	43.24%
	Li et al. 2012	8300	82.18%	1800	17.82%
	Zhang et al. 2018	5310	51.25%	5050	48.75%
Yangtze River Delta	Dong et al. 2009	203.28	47.21%	227.33	52.79%
Shanghai	Fang et al. 2015	33.4	64.11%	18.7	35.89%
Suzhou	Zhou et al. 2016	8.08	62.54%	4.84	37.46%
	Li et al. 2019	7.58	84.89%	1.35	15.11%
Dong, W., J. Xing, S. Wang. 2010. Temporal and Spatial Distribution of Anthropogenic Ammonia Emissions in China: 1994–2006. *Environmental Science* 31(7): 1457–1463.

Dong, Y., C. Chen, C. Huang, H. Wang, L. Li, P. Dai, J. Jia. 2009. Anthropogenic Emissions and Distribution of Ammonia Over the Yangtze River Delta. *Acta Scientiae Circumstantiae* 29 (8): 1611–1617.

Fang, X., G. Shen, X. Xu, X. Qian, J. Li, Z. Zhao, S. Yu, K. Zhu. 2015. Agricultural Ammonia Emission Inventory and Its Distribution Characteristics in Shanghai. *Acta Agriculturae Zhejiangensis* 27(12): 2177–2185.

Feng, X., J. Chen, T. Jiang, J. Qian, H. Ye. 2017. Agricultural Ammonia Emission Inventory and Its Spatial Distribution in Sichuan Province from 2005 to 2014. *Environmental Science* 38(7): 2728–2737.

Li, X., H. Li. 2012. Emission and distribution of NH3 and NOx in China. *China Environmental Science* 32(1): 37–42.

Li, X., S. Song, W. Zhou, J. Hao, D. Worsnop, J. Jiang. 2019. Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. *Atmospheric Chemistry and Physics* 19 (19): 12163–12174.

Zhang, L., Y. Chen, Y. Zhao, D. Henze, L. Zhu, Y. Song, F. Paulot, et al. 2018. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. *Atmospheric Chemistry and Physics* 18 (1): 339–355.

Zhou, J., S. Liu, Y. Tan, F. Qian, Y. Liang, J. Wu. 2016. Anthropogenic Ammonia Emission Inventory and Its Spatial Distribution in Suzhou City. *Research of Environmental Sciences* 29 (8): 1137–1144.