Characteristics of the chemical composition of *Artemisia pontica* L.

O. I. Panasenko,, V. I. Mozul, O. M. Denysenko, I. I. Aksonova, T. V. Oberemko

1 Zaporizhzhia State Medical University, Ukraine, 2 LLC "PMD-UKRAINE", Kyiv

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article

The aim of this work is to determine the qualitative and quantitative characteristics of biologically active compounds of *Artemisia pontica* L. Definition prospects of medicinal herbal raw materials in the treatment of diseases.

Materials and methods. Research material (*Artemisia pontica* L. herb) was collected in August 2019 in the Zaporizhzhia region, Ukraine. The tincture was obtained by maceration. So, the tincture was being extracted with methyl alcohol at room temperature for 10 days. The tincture was extracted with methyl alcohol at room temperature for 10 days according to the method of preparing tinctures. The study of the chemical composition of tincture of *Artemisia pontica* L. was carried out using gas chromatograph Agilent 7890B GC System (Agilent, Santa Clara, CA, USA) with mass spectrometric detector Agilent 5977 BGC/MSD (Agilent, Santa Clara, CA, USA) and chromatographic column DB-5ms (30 m × 250 mкм × 0,25 mкм).

Results. 26 compounds were identified by analysis. Compounds such as n-hexadecanoic acid (16.71 %), 9,12,15-(Z,Z,Z)-octadecatrienoic acid (13.29 %), 2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydronaphthalen-2-yl)-propionic acid (8.80 %), 8-nitro-(1H)quinolin-4-ol-2-one (6.45 %) and neophytadiene (4.66 %) prevail in tincture. A literature review showed that n-hexadecanoic acid stimulates anti-inflammatory processes in human immune cells through TLR4 receptors, it has antitumor and anti-inflammatory activity and it also has anti-inflammatory effects. Derivatives of 9,12,15-(Z,Z,Z)-octadecatrienoic acid are used in diabetes therapy. 2-(4a,8-Dimethyl-7-oxo-1,2,3,4,4a,7-hexahydronaphthalen-2-yl)-propionic acid is an immunosuppressant and probably improves tissue insulin sensitivity. In addition, it is necessary to underline the presence of neophytadiene that has an anti-inflammatory effect. The presence of β-phellandrene provides insecticidal and eucalyptol anti-inflammatory effects.

Conclusions. Considering the individual actions of the individual components, *Artemisia pontica* L. herb can be recommended for further research on its anti-inflammatory, antidiabetic, and antitumor effects.

Key words: *Artemisia pontica*, chromatographic spectroscopy, component composition, quantitative content.

Current issues in pharmacy and medicine: science and practice 2021; 14 (1), 23–28

Xарактеристика хімічного складу *Artemisia pontica* L.

О. І. Панасенко, В. І. Мозуль, О. М. Денисенко, І. І. Аксьонова, Т. В. Оберемко

Мета роботи — встановлення якісних і кількісних характеристик біологічно активних сполук *Artemisia pontica* L.; визначення перспектив використання лікарської рослинної сировини для лікування захворювань.

Матеріал та методи. Матеріал для дослідження (*Artemisia pontica* L. трава) зібраний у серпні 2019 р. у Запорізькій області. Настойку одержували методом мацерації. Сировину екстрагували метиловим спиртом за кімнатної температури протягом 10 днів. Хімічний склад настойки *Artemisia pontica* L. вивчали за допомогою газового хроматографа Agilent 7890B GC System (Agilent, Santa Clara, Каліфорнія, США) з мас-спектрометричним детектором Agilent 5977 BGC/MSD (Agilent, Santa Clara, CA, США) та хроматографічної колонки DB-5ms (30 м × 250 mкм × 0,25 mкм).

Результати. Під час аналізу встановили 26 сполук. У настойці переважали такі сполуки, як н-гексадеканова кислота (16,71 %), 9,12,15-(Z,Z,Z)-октадекатриєнова кислота (13,29 %), 2-(4a,8-диметил-7-оксо-1,2,3,4,4а,7-гексагідронафтален-2-ил)-пропіонова кислота (8,80 %), 8-нітро-(1Н)хінолін-4-ол-2-он (6,45 %) та неофітадієн (4,66 %). Огляд фахової літератури показав, що н-гексадеканова кислота стимулює протизапальні процеси в імунних клітинах людини через рецептори TLR4, має протипухлинну, протидіабетичну та протизапальну дію.

Слюпки 9,12,15-(Z,Z,Z)-октадекатриєнової кислоти використовують у терапії діабету. 2-(4a,8-Диметил-7-оксо-1,2,3,4,4а,7-гексагідронафтален-2-ил)-пропіонова кислота є імунодепресантом і, ймовірно, поліпшує чутливість тканин до інсуліну. Необхідно підкреслити наявність β-фелландрену та евкаліптолу, які можуть бути використані як інсектициди та противірубантові елементи.
The genus Artemisia L. includes more than 400 species that belong to the Asteraceae family. *Artemisia pontica* L. is a shrub with a height of 40–100 cm with a creeping rhizome and a lignified stem in the lower part, densely leafy from the middle and above [1].

This is an ornamental plant. It is distributed mainly in the southern part of Central and Eastern Europe. In Ukraine, *Artemisia pontica* L. is found in Mykolaiv, Odesa, and Zaporizhzhia regions. It grows in dry meadows, clearings, forest edges, and the steppes [2].

It is used in medicine as an antiseptic for the oral cavity (Maraslavin, Bulgaria). Research data revealed the presence of anti-inflammatory, analgesic, wound healing, antifungal, and antimicrobial effects [3,4].

Artemisia pontica L. was previously cultivated as a spicy-aromatic plant in Western Europe and North America. Although *Artemisia pontica* L. is grown as an ornamental plant in gardens, it can also be used as feed for small livestock, horses, and camels [5].

There are evident facts that plants of the genus *Artemisia L.* have anthelmintic, antibacterial, antifungal, repellent, narcotic [6–8], antioxidant [9–11] properties. However, they also have toxic effects [6,12].

Despite the potential perspective of using this plant in medicine, the chemical composition of *Artemisia pontica* L. populations that grow in Ukraine is not well investigated. Before the research of the chemical composition of the herb *Artemisia pontica* L. was conducted.

Aim

To determine the qualitative and quantitative characteristics of biologically active compounds of *Artemisia pontica* L. Definition prospects of medicinal herbal raw materials in the treatment of diseases.

Materials and methods

Plant materials. Research material (*Artemisia pontica* L. herb) was collected in August 2019 in the Zaporizhzhia region. Herbary samples were deposited at the herbarium of the Faculty of Pharmacy of Zaporizhzhia State Medical University.

Extraction. According to the general method of preparing tinctures, the tincture was obtained by maceration. The tincture was being extracted with methyl alcohol at room temperature for 10 days [13]. Then 0.1 ml of tincture was placed in a 1 ml micro flask and was brought with methanol to 0.5 ml.

Equipment. The completeness of the reactions and the individuality of the resulting compounds were controlled by the gas chromatograph Agilent 7890B with a 5977B mass spectrometry detector. The column was DB-5ms 30 m × 250 μm × 0.25 μm with length. The gas-carryer speed (helium) was 1.6 ml/min. Injection volume was 0.5 μl. The separation of the flow was 1:50. The temperature of the sampling unit was 230 °C → 12 °C/s → 275 °C. Thermostat temperature: programmable, 240 °C (1-minute
Characteristic of the chemical composition of Artemisia pontica L.

Results

It was found that the methanol tincture of _Artemisia pontica_ L. contains 26 different components. Among them, it was identified: 5 fatty acids (41.24 %), terpenoids of different classes – 16 (29.83 %), heterocyclic compounds – 2 (7.67 %), alkenes – 1 (6.33 %), triterpenes of carboxylic acids – 1 (1.23 %), cycloalkane alcohol – 1 (0.89 %).

Compounds such as N-hexadecanoic acid (16.71 %), 9,12,15-(Z,Z,Z)-octadecatrienoic acid (13.29 %), 2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydonaphthalen-2-yl)-pro- pionic acid (8.80 %), 8-nitro-(1H)quinolin-4-ol-2-one (6.45 %) and neophytadiene (4.66 %) are quantitatively prevail among the total content of all components.

The results of the study are in Table 1.

Such components as n-hexadecanoic acid with a retention time of 16.27 min and 9,12,15-(Z,Z,Z)-octadecatrienoic acid (RT = 17.917 min) were identified on chromatogram of the components of _Artemisia pontica_ L. (Fig. 1).

Discussion

The populations of _Artemisia pontica_ L. that grow on the territory of Ukraine differ significantly from the populations of other countries in chemical composition. The main active ingredients of the Kazakhstan fraction are flavonoids 7-O-methyl- and 4',7-di-O-methyl-esters of apigenin [14], while the Ukrainian fraction is dominated by fatty acids. Regarding the study of the component composition of water extracts of other _Arte-

Table 1. Qualitative and quantitative composition of biologically active substances of _Artemisia pontica_ L.

RT, min	Compound Label	Area Sum %
1.	β-phellandrene	3.69
2.	Eucalyptol	3.37
3.	2-methyl-5-(1-methylethyl)-, (1α, 2β, 5α)-bicyclo[3.1.0]hexan-2-ol	0.95
4.	(1R,4R,5S)-1-isopropyl-4-methoxy-4-methylbicyclo[3.1.0]hexane	1.37
5.	endo-borneol	1.25
6.	L-α-terpineol	1.1
7.	1-deoxy-inositol	0.89
8.	Caryophyllene oxide	1.22
9.	Quinic acid	1.23
10.	Neointermedeol	1.26
11.	Chamazulene	1.2
12.	Tetradecanoic acid	0.92
13.	1-heptatriacotanol	1.71
14.	Neophytadiene	4.66
15.	Phytol, acetate*	1.21
16.	Phytol, acetate*	1.91
17.	8-nitro-(1H)quinolin-4-ol-2-one	6.45
18.	n-hexadecanoic acid	16.71
19.	4-(3-mercaptop-4-methyl-5-(4H-1,2,4-triazolyl))-pyridine	1.22
20.	2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydonaphthalen-2-yl)-propionic acid	8.8
21.	Phytol	4.4
22.	9,12-(Z,Z)-octadecadienoic acid	1.52
23.	9,12,15-(Z,Z,Z)-octadecatrienoic acid	13.29
24.	2,6,10,15,19,23-(all-E)-hexamethyl-1,6,10,14,18,22-tetracosahexaen-3-ol	2.07
25.	1-heptatriacotanol	2.5
26.	17-pentatriacontene	1.67

*: these compounds are believed to be isomers.
misia L. species, Russian scientists found that laminitol was the dominant component of aqueous extracts of A. absinthium L., A. latifolia Ledeb., A. armeniaca Lam. [15].

Considering the terpenoid fraction, the majority of the Ukrainian population are β-phellandrene and eucalyptol. Cimol and 1,8-cineole prevail in Siberian populations [16]; α-thujone [17] dominates in Moroccan population; 1,8-cineole and camphor prevail in Bulgarian population [18].

It should be noted that the terpenoid fraction of Artemisia pontica L. was significantly different in chemical composition from the other representatives of the genus Artemisia L. For example, A. absinthium L. had the highest α-myrcene content, A. austriaca Jacq. had camphor [9], and A. frigida Willd. had 1,8-cineole and camphor, A. argyrophylla contained artemisia ketone and artemisia alcohol acetate [19].

The literature review illustrated that n-hexadecanoic acid (palmitic acid) was the most common fatty acid in nature, which was a part of the glycerides of most animal fats, vegetable oils, and waxes. It had stimulated anti-inflammatory processes in human immune cells through TLR4 receptors [20], it had antitumor and antidiabetic activity [21] and it also had anti-inflammatory effects [22].

9,12,15-(Z,Z,Z)-octadecatrienoic acid was an isomer of 9,12,15-(Z,Z,Z)-octadecatrienoic acid that was better known as pinolenic acid. It had been established that pinolenic acid can affect immune processes [23], and it was a dual FFA1/FFA4 agonist with potential effect against metabolic diseases such as insulin resistance and type 2 diabetes [24].

There was also experimental data on the presence of cholesterol-lowering effect on the LDL receptor activity of human hepatoma HepG2 cells [25]. Investigations of pinolenic acid as an inhibitor of human breast cancer MDA-MB-231 cell metastasis in vitro may be perspective [26].

2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydrophthalen-2-y1)-propionic acid was a propionic acid derivative that was known to be a lower fatty acids content in liver and plasma, reduces food intake, exerts immunosuppressive actions and probably improves tissue insulin sensitivity [27].

In addition, it was necessary to underline the presence of neophytadiene that has an anti-inflammatory effect [28].

The presence of β-phellandrene provides insecticidal [29] and eucalyptol anti-inflammatory effect [30,31].

Considering the given all the above the herb Artemisia pontica L. can be recommended for further studies due to its anti-inflammatory, antidiabetic and antitumor effects.

Conclusions

1. For the first time the qualitative and quantitative composition of the components of the Artemisia pontica L. herb that grows in Ukraine was established by using a gas chromatogram;

2. It was identified 26 components that belong to different classes of biologically active compounds;

3. The quantitative content was dominated by n-hexadecanoic acid (16.71 %), 9,12,15-(Z,Z,Z)-octadecatrienoic acid (13.29 %), 2-(4a,8-dimethyl-7-oxo-1,2,3,4,4a,7-hexahydrophthalen-2-y1)-propionic acid (8.80 %), 8-nitro-(1H) quinolin-4-ol-2-one (6.45 %), and neophytadiene (4.66 %). Considering their biological effect, the studied raw materials can be recommended for further studies on anti-inflammatory, antidiabetic, and antitumor effects.

Prospects for further research. The herb of Artemisia pontica L. is a source of biologically active substances that have anti-inflammatory, antidiabetic and antitumor effects.

Funding

The research is an integral part of the joint complex work of Department of Pharmacognosy, Pharmacology and Botany of Zaporizhzhia State Medical University.

Conflicts of interest: authors have no conflict of interest to declare.

Information about authors:

Panasenko O. I., Dr. hab., Professor, Head of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Ukraine.

Mozul V. I., PhD, Associate Professor of the Department of Pharmacognosy, Pharmacology and Botany, Zaporizhzhia State Medical University, Ukraine.

Denysenko O. M., PhD, Associate Professor of the Department of Pharmacognosy, Pharmacology and Botany, Zaporizhzhia State Medical University, Ukraine.
References

1. *Artemisia pontica L.* (n.d.). *The Plant List.* http://www.theplantlist.org/tpl/1.1/tpl.php?domain=species&id=3675
2. Komarov, V. I., Shishkina, B. K., & Bobrova, E. G. (Eds.). (1961). *Flora SSSR [Flora of the USSR]* (Vol. 26). Izd. Akad. Nauk SSSR. [in Russian].
3. Marasalëvë. (n.d.). *Kompendium – İkisarsı preparati* (https://kompendium.com/index.php?lang=ru&dc=1).
4. Savchenko, L. N., Marina, T. F., & Lukashuk, S. P. (2012). Sovremennye podkhody k lenchenu i profilaktiki zabolovaniy parodonta [Modern approaches to the treatment and prevention of periodontal disease]. *Izvestia of Samara Scientific Center of the Russian Academy of Sciences* (1), 176-179. [in Russian].
5. Chopik, V. I., Duddchenko, L. G., & Krasnova, A. N. (1983). *Dikorastushche poleznuye rasteniya Ukrainy* [Wild useful plants of Ukraine]. Kiev: Naukova dumka. [in Russian].
6. Rezaeinezhadi, A., & Kamlirad, S. (2008). Chemical composition of the essential oil of *Artemisia absinthium* growing wild in Iran. *Pakistan journal of biological sciences* : PJBS, 11(6), 946-949. https://doi.org/10.3923/pjbs.2008.946.949
7. Dhen, N., Majdoub, O., Souguir, S., Tayeb, W., Laarli A., & Chaieb, I. (2014). Chemical composition and fumigant toxicity of *Artemisia absinthium* essential oil against *Rhyzopertha domincia* and *Spodoptera littoralis*. *Tunisian Journal of Plant Protection*, 9(1), 67-68. [in Arabic].
8. Rezaeinezhadi, A., & Khamcoli, S. (2008). Chemical composition of the essential oil of *Artemisia absinthium* growing wild in Iran. *Pakistan journal of biological sciences* : PJBS, 11(6), 934-937. https://doi.org/10.3923/pjbs.2008.934.937
9. Altunkaya, A., Yildirm, B., Ekici, K., & Terzioğlu, Ö. (2014). Determining essential oil composition, antibacterial and antioxidant activity of water plant extracts. *GIDA, 39*(1), 17-24.
10. Rajhi, L., Chograni, H., Elferichchi, M., Zaouali, Y., Zoghlimi, N., & Milki, A. (2013). Variations in Tunisian wormwood essential oil profiles and phenolic contents between leaves and flowers and their effects on antioxidant activities. *Industrial Crops and Products*, 46, 290-296. https://doi.org/10.1016/j.indcrop.2013.01.036
11. Msadaa, K., Salem, N., Bachrouch, O., Bouslimi, S., Tammam, S., Aliafiy, A., Sane, K. A., Ammar, W. B., Azeizi, S., Brahim, A. H., Hammani, M., Selmi, S., Liman, F., & Marzouk, B. (2015). Chemical Composition and Antioxidant and Antimicrobial Activities of Wormwood (*Artemisia absinthium* L.) Essential Oils and Phenolics. *Journal of Chemistry, 2015*, Article ID 804658. https://doi.org/10.1155/2015/804658
12. Judzentiene, A., Budiene, J., Gircyte, R., Masotti, V., & Lafont-Schwob, I. (2012). Toxic Activity and Chemical Composition of Lithuanian Wormwood (*Artemisia absinthium* L.) Essential Oils. *Records of Natural Products*, 6(2), 180-183.
13. Ministry of Health of Ukraine. (1993, September 7). *Pro zatverdzhennia Instruktziy po pryhotuvanniu v aptekah likarskykh form z ridkym dyspersnym seredovyschem [About the statement of the Instruction on preparation in drugstores of dosage forms with the liquid dispersion environment]* (No. 1971). https://zakon.rada.gov.ua/laws/show/vo19728-93#Text
14. Talzhanov, N. A., Sadreybekov, D. T., Smagulova, F. M., Tkachev, A. V., Atazhanova, G. A., Tuleev, B. I., & Azekeon, S. M. (2005). Components of *Artemisia pontica* Chemistry. *Natural Chemical Products, 41*, 178-181.
15. Rzhevskii, S. G., Potapov, M. A., Shikhaliyev, Kh. S., & Fedulova, T. P. (2019). Analiz komponentnogo sostava vodnykh ekstraktov *Artemisia absinthium* L., *Artemisia armeniaca* Lam., i *Artemisia latifolia* Ledeb. [Analysis of the component composition of aquatic extracts of *Artemisia absinthium* L., *Artemisia armeniaca* Lam., and *Artemisia latifolia* Ledeb.]. *Khimiya rastitel'nogo syr'ya*, (4), 285-292. [in Russian]. https://doi.org/10.14258/jcr.2019045149
16. Khania, M. A., Serykh, E. A., Korolov, A. Yu., Belchenko, L. A., Pokrovskii, L. M., & Tkachev, A. V. (2000). Sostav efirnogo masla sibirskikh populatsii *Artemisia pontica* L. [Composition of essential oil of siberian populations *Artemisia pontica* L.]. *Khimiya rastitel'noho syr'ya*, (3), 85-94. [in Russian].
17. Derwich, E., Benziane, Z., Boukri, A. (2009). Chemical compositions and insecticidal activity of essential oils of three plants *Artemisia SP:* *Artemisia herba-alba, Artemisia absinthium* and *Artemisia Pontica* (Morocco). *Electronic Journal of Environmental, Agricultural and Food Chemistry*, 8(11), 1202-1211.
18. Bos, R., Stojanova, A. St., Woerdenbag, H. J., Koulman, A., & Quax, W. J. (2005). Volatile components of the aerial parts of *Artemisia pontica* L. grown in Bulgaria. *Flavour and Fragrance Journal*, 20(2), 145-148. https://doi.org/10.1002/ffj.1399
19. Korolov, E. A., & Tkachev, A. V. (2010). Chemical Composition of the Essential Oil from Two Wormwood Species *Artemisia frigida* and *Artemisia argyrophylla*. *Russian Journal of Bioorganic Chemistry, 2010*, 26(7), 884-893. https://doi.org/10.1134/S1070759910070102
20. Nicholas, D. A., Zhang, K., Fang, H., C, Glasgow, S., Arun, A. W., Untermaehrer, J., Payne, K. J., Langridge, W., & Leon, M. (2017). Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. *PloS one*, 12(5), e0176793. https://doi.org/10.1371/journal.pone.0176793.
21. Thiruvasukkarasu, K., Rajkumar, P., Selvaraj, S., & Kumaresan, S. (2016). GC-MS analysis of Gymnema sylvestre leaves medicinal extract for antiabetic and anticancer drug identification. *Journal of Chemical and Pharmaceutical Sciences, 9*(2), 1011-1013.
22. Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadacasan, S., & Haridas, M. (2012). Anti-inflammatory property of *n*-hexadecanoic acid: structural evidence and kinetic assessment. *Chemical biology & drug design*, 80(3), 434-439. https://doi.org/10.1111/j.1747-063X.2012.01416.x
23. Matsuo, N., Osada, K., Kodama, T., Lim, B. O., Nakao, A., Yamada, K., & Sugano, M. (1998). Effects of gamma-linolenic acid and its positional isomer pinolenic acid on immune parameters of brown-Norway rats. *Prostaglandins, leukotrienes, and essential fatty acids*, 54(4), 239-229. https://doi.org/10.1006/psle.1997.2786
24. Christiansen, E., Watterson, K. R., Stocker, C. J., Sokol, E., Jenkins, L., Simon, K., Grundmann, M., Petersen, R. K., Wargent, E. T., Hudson, B. D., Kostenis, E., Ejinger, C. S., Cawthorne, M. A., Milligan, G., & Ulven, T. (2015). Activity of dietary fatty acids on FFAT1 and FFAT4 and characterisation of pinolenic acid as a dual FFAT1/FFAT4 agonist with potential effect against metabolic diseases. *The British journal of nutri*., 113(11), 1677-1688. https://doi.org/10.1111/1365-2699.12787.
25. Lee, J. W., Lee, K. W., Lee, S. W., Kim, I. H., & Rhee, C. (2004). Selective increase in pinolenic acid (all-cis-5,9,12,15-83) in Korean pine nut oil by crystallization and its effect on LDL-receptor activity. *Lipids*, 39(4), 383-387. https://doi.org/10.1007/s11775-004-1242-2

Aктуальні питання фармацевтичної і медиичної науки та практики. — 2021. — Т. 14, №1(35)
[26] Chen, S. J., Hsu, C. P., Li, C. W., Lu, J. H., & Chuang, L. T. (2011). Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis in vitro. *Food chemistry*, 126(4), 1708-1715. https://doi.org/10.1016/j.foodchem.2010.12.064

[27] Al-Lahham, S. H., Peppelenbosch, M. P., Roelofs, H., Vonk, R. J., & Venema, K. (2010). Biological effects of propionic acid in humans: metabolism, potential applications and underlying mechanisms. *Biochimica et biophysica acta*, 1801(11), 1175-1183. https://doi.org/10.1016/j.bbapap.2010.07.007

[28] Bhardwaj, M., Sali, V. K., Mani, S., & Vasanthi, H. R. (2020). Neophytadiene from Turbinaria ornata Suppresses LPS-Induced Inflammatory Response in RAW 264.7 Macrophages and Sprague Dawley Rats. *Inflammation*, 43(3), 937-950. https://doi.org/10.1007/s10753-020-01179-z

[29] Cheng, Z., Jiang, J., Yang, X., Chu, H., Jin, M., Li, Y., Tao, X., Wang, S., Huang, Y., Shang, L., Wu, S., Hao, W., & Wei, X. (2017). The research of genetic toxicity of β-phellandrene. *Environmental toxicology and pharmacology*, 54, 28-33. https://doi.org/10.1016/j.etap.2017.06.011

[30] Juergens, U. R., Dethlefsen, U., Steinkamp, G., Gillissen, A., Repges, R., & Vetter, H. (2003). Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. *Respiratory medicine*, 97(3), 250-256. https://doi.org/10.1053/remed.2003.1452

[31] Juergens, U. R., Engelen, T., Racké, K., Stöber, M., Gillissen, A., & Vetter, H. (2004). Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. *Pulmonary pharmacology & therapeutics*, 17(5), 281-287. https://doi.org/10.1016/j.pupt.2004.06.002