Showcasing research from the Schulz material research lab at the University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE).

Synthesis of Bi₂Te₃ and (BiₓSb₁₋ₓ)₂Te₃ nanoparticles using the novel IL [C₄mim][Bi₃I₁₂]

Thermal decomposition of the single source precursor (Et₂Sb)₂Te and the reactive IL [C₄mim][Bi₃I₁₂] yields crystalline tetradyntite-type (BiₓSb₁₋ₓ)₂Te₃ (x = 0.25, 0.5, 0.75, 1.0) nanoparticles at moderate temperatures without formation of Bi-rich material phases.

See S. Schulz et al., Dalton Trans., 2016, 45, 15326.
Synthesis of Bi$_2$Te$_3$ and (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ nanoparticles using the novel IL [C$_4$mim][Bi$_3$I$_{12}$]

M. Loor, G. Bendt, U. Hagemann, C. Wölper, W. Assenmacher and S. Schulz

The novel Bi-containing reactive ionic liquid [C$_4$mim][Bi$_3$I$_{12}$], which was synthesized in quantitative yield by equimolar reaction of BiI$_3$ and [C$_4$mim]I, was used as a novel Bi-source for the ionothermal synthesis of Bi$_2$Te$_3$ nanoparticles by reaction with (Et$_3$Si)$_2$Te in the ionic liquid [C$_4$mim][I]. The solid state structure of [C$_4$mim][Bi$_3$I$_{12}$] was determined by single crystal X-ray diffraction. In addition, the ionothermal synthesis of the single source precursor (Et$_2$Sb)$_2$Te and [C$_4$mim][Bi$_3$I$_{12}$] yielded the ternary (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ (x = 0.25, 0.5, 0.75) nanoparticles. The chemical composition and phase purity of the tetradymite-type materials were determined by EDX and XRD and the surface composition of the nanoparticles was further investigated by IR and XPS. In addition, the morphology of the nanoparticles was investigated by SEM and TEM.

Introduction

The synthesis of highly efficient thermoelectric materials for technical application as thermoelectric generators TEG, which allow the conversion of waste thermal energy into electric energy, has attracted considerable attention in recent years. Even though radioisotope thermoelectric generators (RTG), which were used in specific technical applications such as energy supply of satellites and space probes, have been known since the 1950s, their low thermoelectric efficiency, which is given by the dimensionless figure of merit $ZT = (\alpha^2\sigma/\lambda)T$ (α = Seebeck coefficient, σ = specific electrical conductivity, λ = thermal conductivity = sum of electronic λ_e and lattice λ_l contribution, T = absolute temperature [K]), inhibited their broad technical application.

Semiconducting materials with heavy elements are very promising materials due to their high effective masses. Among many different systems, which have been investigated in the last decades, Sb$_2$Te$_3$, Bi$_2$Te$_3$ and the solid ternary solutions (Sb$_x$Bi$_{1-x}$)$_2$Te$_3$ are still some of the most effective materials for technical applications operating near room temperature. These materials show high electrical conductivities and high Seebeck coefficients combined with glass-like low thermal conductivities. They are isosstructural and crystallize in the tetradymite-type structure, with the Te atoms building a closed packing structure perpendicular to the c-axis in $R3m$:H and the stacking sequence chh in Jagodzinski-symbols. The stacking sequence $(A\bar{A}B\bar{B})_{n}$ results in the formation of double layers of edge-sharing Bi(Sb)$_2$Te$_3$ octahedra consisting of 5 atom layers (quintuple layer) with the sequence Te1–Bi(Sb)–Te2–Bi(Sb)–Te1 and the composition (Bi(Sb))$_2$Te$_3$. The bonding inside the quintuple layer can be described as mixed covalent-ionic, while only weak van der Waals bonding is observed between the quintuple layers.

Nanostructuring has been identified in the late nineties of the last century as a promising method for increasing the thermoelectric efficiency (ZT) of a given material, resulting from the decreased thermal conductivity of the material due to an efficient phonon scattering at boundaries and interfaces, and a simultaneously increased Seebeck coefficient due to both quantum confinement effects and the modification of the electronic band structure. In addition, ternary solid solutions (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ showed enhanced ZT values compared to the corresponding binary materials (Bi$_2$Te$_3$, Sb$_2$Te$_3$) as was demonstrated for (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ single crystals ($z = 3.2 \times 10^{-3} \text{ K}^{-1}$ at room temperature7) and p-type (Bi$_{0.26}$Sb$_{0.74})_2$Te$_3$ nanocomposites ($z = 3.52 \times 10^{-3} \text{ K}^{-1}$ at room temperature8). Poudel et al. reported record-high ZT values of 1.4 at 373 K for bulk (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ with embedded nanostructures9a and Xie et al. observed a maximum ZT value of 1.56 at 300 K for the p-type (Bi$_{0.26}$Sb$_{0.74})_2$Te$_3$ material, which is roughly a 50% improvement compared to commercial Bi$_2$Te$_3$.

As a consequence, the synthesis of nanoparticles and thin films of tetradymite-type materials has received increasing...
interest. Unfortunately, their strong tendency to form antisite defects, which refers to the occupation of Te sites by Bi atoms or Bi sites by Te atoms and, as a consequence, the formation of either p- or n-type doped materials, often diminish their thermoelectric performance.10 In addition, the facile incorporation of excess bismuth into Bi2Te3 yield Bi-rich material phases, which typically adopt sandwich-like structures of the general form (Bi2)n(Bi2Te3)m, in which the quintuple layers are separated by Bi-bilayers13 as can be observed in tsmoite BiTe, pilseinite Bi2Te2 and hedleyite Bi2Te3, respectively.

The synthesis of bulk and nanostructured p-type (Bi(Sb1−x)2)xTe3 has been widely investigated.26,12 Bismuth-rich Bi2Te3 and (Sb1Bi1−x)xTe2 particles were obtained from the reduction of bismuth/antimony acetate with oleylamine (OA) in dodecanethiole and subsequent reaction with trioctyltellurophosphorane (TOPTe)13 as well as by reaction of TOPTe and bismuth olate.14 In addition, hexagonal Bi2Te3 plates were obtained upon thermolysis of bismuth nitrate and TOPTe in octadecene and oleic acid15 and by reaction of BiCl3 and TOPTe in thiglycic acid in a microwave assisted synthesis.16 The resulting material, which was sub-atomically doped with sulfur, showed a remarkably high zT value (1.1). In addition, Reid et al. recently demonstrated that [BiCl3(TeO2Bu3)] is a suitable single source precursor for the MOCVD (metal organic chemical vapor deposition) deposition of high-quality Bi2Te3 thin films.17 In addition to the widely applied Te source TOPTe, bis(triethylsilyl)tellurane (Et3Si)2Te has been demonstrated to be a promising low-temperature Te-precursor. Sb2Te3 and Bi2Te3 thin films were deposited by ALD process (atomic layer deposition)18 and by low-temperature MOCVD process.19 In addition, (Et3Si)2Te was successfully applied for the wet chemical synthesis of multiple Bi–Bi2Te3.20 Therefore, we became interested in the development of alternate Bi precursors and began to investigate the use of complex bismuth halide anions such as [Bi3I12]3+, which have been synthesized in the past.23–26 Hence, we synthesized the novel reactive IL [C4mim]3[Bi3I12] 1 in high yield by reaction of [C4mim]I and BiI3 (Scheme 1).

1, which shows a melting point of 98 °C, was obtained as a bright yellow powder at ambient temperature. The yellow color of [C4mim]3[Bi3I12] 1 was found to intensify upon cooling to −196 °C; whereas it turns red and finally becomes metallic-like, almost black-purple upon heating to 250 °C (Fig. S8†). Both processes are fully reversible. Even though the reason for this thermochromic behavior is not yet clear, we believe that the color change upon cooling and heating results from a phase transition of 1. Phase transition reactions are well known for bismuth(III)iodides, for which more than 60 compounds have been structurally characterized and which show a large structural diversity. To date, almost 20 different structural types have been reported.27 The structures were found to largely depend on the specific cation. A templating effect of the cations has been identified as the major structure determining factor that induces the formation of various metalhalide networks. In the case of (2-Mim)Bi4, a change of the electron lone pair activity of the bismuth atom was also found to play a major role in the phase transition mechanism.27 A DSC study revealed an exothermic process around −50 °C and the melting point was also observed (Fig. S9†).

1 is highly soluble in strong polar, aprotic solvents such as acetonitrile and DMSO and barely soluble in less polar solvents, e.g. ethanol and methanol, while it is insoluble in non-polar solvents such as pentane and hexane as well as in water. In comparison to the NMR spectra of [C4mim]I the aromatic signals of 1 are high-field shifted by 0.2 ppm in the 1H NMR and by 4 ppm in the 13C NMR spectra, while the resonances due to the aliphatic groups show a low-field shift by the same amounts (Fig. S1 and S2†), indicating stronger electronic interactions between the positively charged aromatic system with the [Bi3I12]3− anion compared to the iodine anion, hence resulting in an increased electron density in the aromatic system but a decreased electron density in the aliphatic chain. The IR spectrum of 1 shows the typical absorption

![Scheme 1](attachment:image)
bands for the [C₄mim]⁺ cation and additional sharp absorption bands between 1150 cm⁻¹ and 930 cm⁻¹, which can be ascribed to the Bi-I-stretching vibrations (Fig. S3†).‡

Single crystals of 1 were obtained by re-crystallization from ethanolic solution. [C₄mim]₃[Bi₃I₁₂] crystallises in the monoclinic space group P2₁/c. The asymmetric unit comprises three cations at general positions and two anions at special positions (centre of inversion) as was previously observed for the majority of the known [Bi₃I₁₂] polyanions. The two independent anions lead to an occupation of all vertices and face-centres of the unit cell similar to a cubic closest packing of spheres. However, their anisotropic shape – they are best described as a linear arrangement of three face-sharing BiI₆ octahedra – prevents cubic symmetry. The cations fill the voids where the ones labelled X₁x and X₃x can be found in the pseudo-tetragonal gap, while the X₂x-labelled and its symmetry equivalent share the pseudo-octahedral gap.

Bond lengths and angles of the cations show typical values. The conformation of the butyl group of the cations differs depending on the space available to fill (Cₓ5–Cₓ6–Cₓ7–Cₓ8: −170(2)° (x = 1), 66(2)° (x = 2), 175(2)° (x = 3)). The range of Bi–I bond lengths matches well with those previously reported by Carmalt et al. and others for [Bi₃I₁₂] and [Bi₄I₁₆] polyanions.²³–²⁵ These polyanions can be described as central BiI₆− octahedra units with neutral BiI₃ moieties capping two of its trans oriented faces. The independent anions are roughly perpendicular to one another (Bi₁1–Bi₂12–Bi₂12 74.22(1)°) and parallel to the (100) plane. Inter-halide interactions lead to the formation of layers parallel to this plane (Table S1†). These layers are interconnected by non-classical hydrogen bonds between anion and cations (Table S2†).²⁶

Synthesis of Bi₂TeX nanoparticles

Thermolysis of (Et₃Si)₂Te and [C₄mim]₃[Bi₃I₁₂] in a solution of 10 mL of [C₄mim]I and 3 mL oleylamine (OA) at 150 °C yielded pure Bi₂TeX nanoparticles according to EDX studies (Scheme 2). We recently demonstrated that OA reacts with (Et₃Si)₂Te at ambient temperature with formation of silylamines (Et₃SiOA) and tellurium polyanions,²⁸ which then consequently react with [C₄mim]₃[Bi₃I₁₂] with the formation of Bi₂TeX. We also investigated a microwave-assisted synthesis, since this technique was found to be very promising for the generation of pure Sb₂TeX nanoparticles.²² A solution of (Et₃Si)₂Te and [C₄mim]₃[Bi₃I₁₂] in 10 mL of [C₄mim]I and 3 mL of OA was heated to 150 °C by microwave irradiation and the resulting particles were treated as mentioned before. However, slightly Te-rich materials were formed according to EDX studies (Table 1).

We further investigated the presence of any kind of organic molecules, i.e. solvent molecules or capping agents, on the surface of the materials as-obtained from thermolysis reactions of the precursors in [C₄mim]I and OA. IR spectroscopy clearly demonstrated that the resulting Bi₂TeX nanoparticles do not contain OA (capping agent) on the surface as can clearly be seen by comparing the IR spectra of the nanoparticles and that of pure OA (Fig. 2). In addition, neither the IL nor acetonitrile (washing solvent) bind to the nanoparticles. According to these IR studies, the nanoparticles are considered to be almost capping-agent free.

The resulting materials were investigated by powder X-ray diffraction (PXRD), which clearly proved the formation of Bi₂TeX in all experiments (Fig. 3). The peaks can be indexed on the basis of phase-pure Bi₂TeX (PDF 15-863), but the materials obtained in ionothermal syntheses in [C₄mim]I in the absence of elemental tellurium as well as in microwave assisted reactions in [C₄mim]I and OA showed additional reflexes at 23°, 38°, and 44°, respectively, which indicate the presence of small impurities of elemental tellurium. In contrast, the ionothermal synthesis in a mixture of [C₄mim]I and oleylamine yielded phase pure Bi₂TeX.

The lattice parameters for the nanosized Bi₂TeX particles, which were refined to a = 4.388(8) Å, c = 30.517(7) Å and

![Scheme 2 Synthesis of Bi₂TeX nanoparticles.](Image)

Table 1 Chemical composition of the Bi₂TeX nanocrystals determined by EDX spectroscopy

	[C₄mim]I	[C₄mim]I/OA	[C₄mim]I/OA²
Bi (%)	29.00 ± 1.00	40.73 ± 1.41	38.93 ± 1.25
Te (%)	71.00 ± 1.64	59.27 ± 1.36	61.07 ± 1.33

†Thermal treatment to 150 °C. ‡Thermal treatment to 150 °C with OA.

¹H, ¹³C NMR and IR spectra of [C₄mim]I and [C₄mim]I[Bi₃I₁₂]: in situ NMR spectroscopic studies of the reaction of (Et₃Si)₂Te and 1; thermal behaviour of 1 upon heating and cooling; central structural parameters of 1 and EDX results from STEM spot analyses on single crystals.

This journal is © The Royal Society of Chemistry 2016
V = 509.0(7) Å³, are in good agreement with the values reported for Bi₂Te₃ (PDF 15-863). The broadening of the full width half maximum (FWHM) of the peaks indicate an average crystal size of roughly 55 nm (Table 2).

We then investigated the stability of the Bi₂Te₃ nanoparticles toward oxidation reactions upon exposure to air by X-ray photoelectron spectroscopy (XPS).

A freshly prepared Bi₂Te₃ sample was shown to contain an oxygen-free surface. After exposure for different periods of time, the materials were again investigated by XPS. The changes of the Bi 4f and Te 3d signals are depicted in Fig. 4. It can clearly be seen, that the particles are fairly stable for an hour, showing only the metallic peaks at 157.2 eV for Bi 4f and 572 eV for Te 3d. These values agree with the literature values for Bi₂Te₃. After one day of exposure to air additional peaks due to the presence of both bismuth oxide at 159 eV and tellurium oxide at 576.6 eV binding energy can be observed. Oxide intensities increase dramatically after 1 month, so that more than 50% of the surface metal atoms (Bi 53%, Te 64%) are oxidised (Table 3). These findings agree with the results very recently observed for surface oxidation reactions of binary and ternary bismuth chalcogenides, in which Bi₂Te₃ and Bi₂Te₂Se were found to easily oxidise upon exposure to air while Bi₂Se₃ was significantly more stable toward oxidation. As a consequence, the nanoparticles have to be stored and handled under inert gas conditions to avoid surface oxidation reactions.

According to SEM studies, the Bi₂Te₃ materials as-obtained in a solution of [C₄mim][Bi₃I₁₂] and oleylamine (OA) contain Bi₂Te₃ nanoplates with an average size of about 50 nm and a more or less hexagonal shape (Fig. 5c). These nanoplates are highly agglomerated as was expected due to the lack of any capping agents on the surface as was demonstrated by IR spectroscopy. Hence, TEM bright field images show plate-like particles with a size ranging from 20 to 100 nm (Fig. 5a and b), which are heavily inter-grown, reminiscent of sintered powder. The particles show diffraction contrast and are thus considered as crystalline. Selected area electron diffraction (SAED; Fig. 5d)
taken from a crystal covered region gives a powder ring pattern with d-values as expected for Bi$_2$Te$_3$.

The synthesis of phase-pure Bi$_2$Te$_3$ nanoparticles proves the promising potential of the novel reactive IL $[\text{C}_4\text{mim}]_3[\text{Bi}_3\text{I}_{12}]$ to serve as a Bi-source in materials synthesis. The formation of Bi-rich materials such as BiTe or Bi$_4$Te$_3$, which was often observed in reactions of metal organic precursors as a result of the often thermally rather unstable Bi precursors, is completely avoided in the reaction with the reactive Te-source $\text{(Et}_3\text{Si})_2\text{Te}$, indicating a constant release of Bi under the specific reaction conditions.

Synthesis of ternary (Bi$_x$Sb$_{1-x})_2$Te$_3$ nanoparticles

After the successful synthesis of phase-pure Bi$_2$Te$_3$ nanoparticles, we became interested in the synthesis of ternary solid solutions of (Bi$_x$Sb$_{1-x})_2$Te$_3$. Since the thermolysis of the single source precursor $\text{(Et}_2\text{Sb})_2\text{Te}$ was previously established for the synthesis of highly stoichiometric Sb$_2$Te$_3$ nanoplates, we investigated its thermolysis in the presence of different amounts of the reactive IL $[\text{C}_4\text{mim}]_3[\text{Bi}_3\text{I}_{12}]$ in 10 mL of $[\text{C}_4\text{mim}]\text{I}$. After thermolysis at 150 °C, the resulting black solid was isolated by centrifugation and purified by repeatedly washing with acetonitrile (Scheme 3). Ternary materials of the general type (Bi$_x$Sb$_{1-x})_2$Te$_3$ were obtained in all cases, even though they showed a slight tellurium deficit. In addition, a general trend for bismuth-rich particles was observed (Table 4). The reactions probably proceed

![Fig. 4](image)

Fig. 4 Change of the Bi 4f and Te 3d XPS signals of Bi$_2$Te$_3$ nanoparticles upon exposure to air.

![Fig. 5](image)

Fig. 5 TEM bright field images (a, b); SEM image (c) and contrast inverted selected area electron diffraction pattern of Bi$_2$Te$_3$ (Philips CM30 T β300 keV) and simulated ring pattern as overlay SAED (d) of Bi$_2$Te$_3$ nanoparticles.23

Exposure to air	Bi-oxide/%	Te-oxide/%
None	0	0
1 hour	0	0
1 day	22	27
1 month	53	65

Table 3 Percentage of oxidised metal atoms after exposure to air as determined by XPS

Table 4 EDX results from the (Bi$_x$Sb$_{1-x})_2$Te$_3$ nanoparticles

x	Bi (%)	Sb (%)	Te (%)
0.25	12.4 ± 0.6	28.3 ± 0.9	59.3 ± 1.8
0.5	22.5 ± 0.9	19.3 ± 0.5	58.2 ± 1.3
0.75	30.1 ± 1.2	11.3 ± 0.5	58.7 ± 1.6

Scheme 3 Thermolysis of the single source precursor (Et$_2$Sb)$_2$Te; reaction of (Et$_2$Sb)$_2$Te and $[\text{C}_4\text{mim}]_3[\text{Bi}_3\text{I}_{12}]$ 1 for the synthesis of (Bi$_x$Sb$_{1-x})_2$Te$_3$ nanoparticles.
with the initial formation of small Sb$_2$Te$_3$ nanoparticles, in which the antimony content is consequently substituted by bismuth successively provided from the reactive IL 1.

PXRD studies proved the formation of phase pure ternary materials (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ (Fig. 6). The successful substitution of bismuth by antimony in the tetradymite-type material can be monitored by a slight shift of the reflections toward higher angles with increasing antimony concentration, resulting in decreasing lattice parameters as was expected due to the replacement of the large bismuth atoms by smaller antimony atoms. This is confirmed by the refinement of the lattice parameters, which show a monotonically decreasing cell volume (Table 5).

Compared to the phase-pure Bi$_2$Te$_3$ nanoparticles, the XRDs of the as-prepared ternary solid solutions (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ showed increasing peak broadening, clearly indicating a steadily decreasing size of the crystalline domains with increasing bismuth concentration (Fig. 6). In addition, anisotropic peak broadening becomes more dominant, underlining the preferential growth along the ab-plane perpendicular to the c-axis, which manifests itself in a relatively sharp (110) reflection at 41.12° (2θ) compared to the other reflections, i.e. the neighboring (1010) reflex at 37.8°.

Table 5

x	a [Å]	c [Å]	V [Å3]	Size [nm]
1	4.388(8)	30.517(7)	509.0(7)	38.3(9)
0.75	4.360(6)	30.449(2)	501.4(1)	33.6(6)
0.5	4.319(9)	30.496(2)	492.8(6)	25.7(2)
0.25	4.291(9)	30.580(4)	487.8(3)	22.9(3)

As was observed for the Bi$_2$Te$_3$ nanoplates, the as-prepared (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ materials also consist of hexagonal nanoplates, which again are highly agglomerated. The average size of the nanoparticles according to SEM studies ranges from roughly 50 nm to 100 nm (Fig. 7).

TEM studies confirm the hexagonal plate-like shape of the (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ materials with the growth direction perpendicular to the c-axis and a broad size distribution. Although some of the larger hexagonal plates consist of an intergrowth of several crystalline domains, crystals from 10 to 200 nm in size are present in each of the (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ materials (Fig. 8a–c). EDX spot analyses in the STEM mode on single crystals (Table S3†) confirm the composition corresponding to the sum formula (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ with $x = 0.25$, 0.5 and 0.75 and

Fig. 6 Powder X-ray diffractogram of (Bi$_{0.75}$Sb$_{0.25}$)$_2$Te$_3$ nanoparticles and reference for (Bi$_0.5$Sb$_0.5$)$_2$Te$_3$ (PDF 072-1853).33

Fig. 7 SEM image of (Bi$_{0.5}$Sb$_{0.5}$)$_2$Te$_3$.

Fig. 8 TEM bright field images of (Bi$_x$Sb$_{1-x}$)$_2$Te$_3$ with (a) $x = 0.25$; (b) $x = 0.5$; (c) $x = 0.75$. (d) Electron diffraction pattern of a (Bi$_{0.25}$Sb$_{0.75}$)$_2$Te$_3$ crystal along c^*.

The determination of the crystal size of anisotropic particles such as thin plates by using the Scherrer equation is always problematic. Values should therefore be taken with care.
Synthesis of 1-butyl-3-methyl-imidazolium iodide [C₄mim]I
22 mL (0.276 mol) 1-methylimidazole (99%, Sigma Aldrich) was dissolved in 100 mL of acetonitrile and 1-iodobutane (0.308 mol, 35 mL) was added dropwise in the dark at 0 °C. The solution was stirred at ambient temperature for 12 h and then all volatiles were removed under dynamic vacuum. The resulting residue was washed with 150 mL of ethyl acetate. After removal of the solvent, the remaining yellowish oil was dried for 72 h under dynamic vacuum at 50 °C.

Yield: 59.47 g (81%).

1H NMR (300 MHz, 25 °C, DMSO-d₆): δ (ppm) 9.14 (s, 1H), 7.76 (dt, 2J_H-H = 13.5 Hz, 2J_H-I = 1.7 Hz, 2H), 4.19 (t, 2J_H-H = 7.2 Hz, 2H), 3.88 (s, 3H), 1.79 (dt, 2J_H-H = 20.2 Hz, 2J_H-I = 1.8 Hz, 2H), 4.16 (t, 2J_H-H = 14.8 Hz, 2J_H-I = 7.5 Hz, 2H), 1.29 (m, 2H), 0.93 (t, 2J_H-H = 7.3 Hz, 3H).

Synthesis of [C₄mim][Bi₃I₁₂] 1
14.91 g (0.561 mol) [C₄mim]I and 27.57 g (0.468 mol) BiI₃ were added to 500 mL ethanol and the resulting suspension was stirred at ambient temperature for 5 d. The resulting bright yellow solid was separated via filtration, washed with 100 mL of ethanol and carefully dried for 72 h under dynamic vacuum.

Yield: 30.87 g (77.16%). Melting point: 98 °C.

1H NMR (300 MHz, 25 °C, DMSO-d₆): δ (ppm) 9.11 (s, 1H), 7.73 (dt, 2J_H-H = 20.2 Hz, 2J_H-I = 1.8 Hz, 2H), 4.16 (t, 2J_H-H = 7.2 Hz, 2H), 3.85 (s, 3H), 1.76 (m, 2H), 1.29 (m, 2H), 0.93 (t, 2J_H-H = 7.3 Hz, 3H).

Synthesis of Bi₂Te₃ nanoparticles
3.4 g (3.9 mmol) of 1 was dissolved in 10 mL of [C₄mim]I or in a mixture of 10 mL of [C₄mim]I and 3 mL of oleylamine in a centrifuge tube and the mixture was stirred for 1 h at 100 °C. 1.24 g (3.47 mmol) (Et₃Si)₂Te were then added and the resulting black suspension was stirred for 12 h at 150 °C. The resulting colloidal solutions were centrifuged (2500 rpm), washed with 6 × 15 mL acetonitrile and 2 × 15 mL hexane, and dried at room temperature under vacuum.

Synthesis of (Bi,Sb)₁₋ₓTe₃ nanoparticles
In a centrifuge tube, an appropriate amount (see Table 6) of [C₄mim][Bi₃I₁₂] was dissolived in 2 mL [C₄mim]I and stirred for 1 h at 100 °C. 137 µl (1.44 mmol) (Et₂Sb)₂Te were then added and the solution was stirred for 12 hours at 150 °C. The resulting black particles were washed with 6 × 15 mL acetonitrile.

Table 6 Amount of [C₄mim][Bi₃I₁₂] 1 used for the synthesis of (Bi,Sb)₁₋ₓTe₃ nanoparticles

x	m 1 [mg]	n 1 [mmol]
0.25	103	0.04
0.5	205	0.08
0.75	308	0.12
Single crystal X-ray diffraction

Crystallographic data of 1 were collected on a Bruker D8 Kappa APEX2 diffractometer (MoKα radiation, λ = 0.71073 Å) at 100(1) K: [C24H45Bi3I12N6], M = 2567.40, red crystal, (0.145 × 0.094 × 0.047 mm); monoclinic, space group P21/c; a = 17.5900(9) Å, b = 15.9186(7) Å, c = 19.3836(9) Å; α = 90°, β = 96.503(3)°, γ = 90°, V = 5392.6(4) Å³; Z = 4; μ = 16.658 mm⁻¹; ρcalc = 3.162 g cm⁻³; 87 677 reflexes (θmax = 28.408°), 13 458 unique (Rint = 0.1193); 415 parameters; largest max./min. in the final difference Fourier synthesis 2.693 e Å⁻³−2.694 e Å⁻³⁻¹; max./min. transmission 0.41/0.75; R1 = 0.0423 (I > 2σ(I)), wR2 = 0.0864 (all data). The solid-state structure of 1 is shown in Fig. 1. The structure was solved by direct methods (SHELXS-97)³⁵ and refined anisotropically by full-matrix least-squares on F² (SHELXL-2014).³⁶ Absorption corrections were performed numerical based on indexed faces (Bruker AXS APEX2). Hydrogen atoms were refined using a riding model or rigid methyl groups.

The crystallographic data of 1 (excluding structural factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1479636.

Instrumentation

IR spectroscopy. IR spectra were recorded in a glovebox using an ALPHA-T FT-IR spectrometer equipped with a single reflection ATR sampling module.

NMR spectroscopy. ¹H (300 MHz) and ¹³C [¹H] (75.5 MHz) NMR spectra (δ in ppm) were recorded using a Bruker Avance DXP-300 spectrometer and were referenced to internal DMSO-d₆ (¹H: δ = 2.50; ¹³C: δ = 39.52).

XPS. XPS studies were performed using a Versaprobe II™ (Ulvac-Phi) with monochromatic Al Kα light at 1486.6 eV photon energy. The emission angle between the analyzer and sample is 45°. The Cu 2p signal at 932.67 eV binding energy of a sputter-cleaned Cu foil was used as the binding energy reference. The foil and the powder were put onto insulating double-sided tape and charged e⁻. The foil and the powder were put onto insulating double-sided tape without further grinding.

Electron microscopy. Particle size and morphology as well as the elemental composition of the powders were analyzed by scanning electron microscopy (SEM) using a Jeol JSM 6510 microscope equipped with a Bruker Quantax 400 spectrometer (EDX, chemical composition). TEM studies were conducted on transmission electron microscopes: (i) FEI Philips CM30 T/LaB₆ operated at 300 kV and (ii) FEI-Philips CM300 UT/FE/FEG operated at 300 kV. Both microscopes are equipped with Gatan CCD’s for image recording and with Thermo NSS systems for EDS analysis using a Si(Li) Nanotrace and a HP-Ge EDS detector, respectively. The samples were prepared on perforated carbon foils without further grinding.

Powder X-ray analysis. PXRD patterns were obtained at ambient temperature (25 ± 2 °C) using a Bruker D8 Advance powder diffractometer in the Bragg-Brentano mode with Cu Kα radiation (λ = 1.5418 Å, 40 kV, and 40 mA). The powder samples were investigated in the range of 5 to 90° 2θ with a step size of 0.01° 2θ and a counting time of 0.3 s. Rietveld refinement was performed with the program package TOPAS 5.0 from Bruker. The instrumental correction was determined using LaB₆ powder from NIST (National Institute of Standards and Technology) as the standard reference material and taken into account for each refinement.

Conclusions

The novel Bi source [C₄mim]₃[Bi₃I₁₄] 1 containing the complex [Bi₃I₁₄]⁻³ trion was synthesized and structurally characterized. 1 is a promising Bi source for the preparation of phase pure Bi₄Te₃ material in ILs using ionothermal synthesis. The formation of Bi-rich material phases, as has been often described for other synthetic routes, is completely avoided. The Bi₄Te₃ nanoparticles are surfactant free according to IR spectroscopic studies and are easily oxidised upon exposure to air.

In addition, co-thermolysis of 1 with the single source precursor (Et₂Sb)₃Te in different molar ratios in [C₄mim]₄ allowed for the synthesis of a whole range of ternary solid solutions of the general formula (BiₓSb₁₋ₓ)₃Te₃, which were characterized by XRD, SEM, EDX and TEM.

Acknowledgements

S. Schulz gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) within the Priority Program SPP 1708 “Material Synthesis near Room Temperature” and the University of Duisburg-Essen.

Notes and references

1 M. H. Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir and M. Mohamad, Renewable Sustainable Energy Rev., 2014, 30, 337.
2 (a) B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, Science, 2008, 320, 634; (b) F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. H. Lee and N. V. Myung, Electrochim. Acta B, 2008, 53, 8103; (c) I. S. Beloborodov, A. V. Lopatin and V. M. Vinokur, Rev. Mod. Phys., 2007, 79, 469; (d) G. J. Snyder and E. S. Toberer, Nat. Mater., 2008, 7, 105; (e) E. L. Bell, Science, 2008, 321, 1457; (f) G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleuriel and T. Caillat, Int. Mater. Rev., 2003, 48, 45.
3 J. Sommerlatte, K. Nielsch and H. Böttner, Phys. J., 2007, 6, 35.
4 (a) D. M. Rowe, in CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL, 1995; (b) J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids, 1958, 5, 142;
12 (11) J. W. G. Bos, H. W. Zandbergen, M.-H. Lee, N. P. Ong and A. Lorke, U. Hagemann and W. Assenmacher, Solid State Sci., 2008, 10, 651.

5 (a) Z. Wang, J. E. Alaniz, W. J. Jang, E. Garay and C. Dames, Nano Lett., 2011, 11, 2206; (b) Q. G. Zhang, Q. X. Yu, W. Wang and X. G. Li, Adv. Mater., 2010, 22, 1959; (c) J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science, 2008, 321, 554; (d) J. P. Heremans, C. M. Thrush and D. T. Morelli, Phys. Rev. B: Condens. Matter, 2004, 70, 115334; (e) A. J. Minnich, M. S. Dresselhaus, Z. Ren and G. Chen, Energy Environ. Sci., 2009, 466.

6 (a) C. J. Vineis, A. Shakoueri, A. Majumdar and M. G. Kanatzidis, Adv. Mater., 2010, 22, 3970; (b) Y. C. Lan, A. J. Minnich, G. Chen and Z. F. Ren, Adv. Funct. Mater., 2010, 20, 357.

7 (a) T. Caillat, M. Carle, P. Pierrat, H. Scherrer and S. J. Scherrer, Phys. Chem. Solids, 1992, 53, 1121; (b) T. Caillat, L. Gailliard, H. Scherrer and S. J. Scherrer, Phys. Chem. Solids, 1993, 54, 575.

8 M. Y. Kim, Y. H. Yeo, D. H. Park and T. S. Oh, Ceram. Int., 2012, 38, 529.

9 W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt, J. Appl. Phys., 2009, 105, 113713.

10 Z. Stary, J. Horak, M. Stordevir and M. Stolzer, J. Phys. Chem. Solids, 1988, 49, 29.

11 J. W. G. Bos, H. W. Zandbergen, M.-H. Lee, N. P. Ong and R. J. Cava, Phys. Rev. B: Condens. Matter, 2007, 75, 195203.

12 (a) X. Fan, X. Cai, Z. Rong, F. Yang, G. Li and Z. Gan, J. Alloys Compd., 2014, 607, 91; (b) Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren, Nano Lett., 2010, 8, 2580; (c) W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt, Appl. Phys. Lett., 2009, 94, 102111; (d) W. Xie, S. Wang, S. Zhu, J. He, X. Tang, Q. Zhang and T. M. Tritt, J. Mater. Sci., 2013, 48, 2745; (e) Y. Xiao, J. Yang, G. Li, M. Liu, L. Fu, Y. Luo, W. Li and J. Peng, Intermetallics, 2014, 50, 20; (f) Y. Zhang and G. D. Stucky, Chem. Mater., 2014, 26, 837.

13 M. Schelle, N. Oeschler, I. Veremchuk, K.-G. Reinsberg, A.-M. Kreuziger, A. Kornowski, J. Brøekaert, C. Klinke and H. Weller, ACS Nano, 2010, 4, 4283.

14 V. Stavila, D. B. Robinson, M. A. Hekmaty, R. Nishimoto, D. L. Medlin, S. Zhu, T. M. Tritt and P. A. Sharma, ACS Appl. Mater. Interfaces, 2013, 5, 6678.

15 L. Chen, Q. Zhao and X. Ruan, Mater. Lett., 2012, 82, 112.

16 R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc and G. Ramanath, Nat. Mater., 2012, 11, 233.

17 S. L. Benjamin, C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, E. Koukharenko, W. Levason and G. Reid, J. Mater. Chem. A, 2014, 2, 4865.

18 (a) K. Knapas, T. Hatpanpáa, M. Ritala and M. Leskelä, Chem. Mater., 2010, 22, 1386; (b) S. Zastrow, J. Gooth, T. Boehnert, S. Heiderich, W. Toellner, S. Heimann, S. Schulz and K. Nielsch, Semicond. Sci. Technol., 2013, 28, 035010; (c) C. Bae, T. Bohnert, J. Gooth, S. Lim, S. Lee, H. Kim, S. Heimann, S. Schulz, H. Shin and K. Nielsch, Semicond. Sci. Technol., 2014, 29, 064003.

19 (a) T. J. Grosenhons, R. W. J. Gedridge and C. K. Lowe-Ma, Chem. Mater., 1994, 6, 727; (b) T. Grosenhons, R. Gedridge, R. Scheri and T. Cole, Fifteenth International Conference on Thermoelectrics Proceedings ICT ’96, IEEE, 1996, p. 430; (c) G. Bendt, S. Zastrow, K. Nielsch, P. S. Mandal, J. Sánchez-Barriga, O. Rader and S. Schulz, J. Mater. Chem. A, 2014, 2, 8215; (d) S. Schulz, G. Bendt, J. Sonntag, A. Lorke, U. Hagemann and W. Assenmacher, Semicond. Sci. Technol., 2015, 30, 085021.

20 G. Bendt, A. Weber, S. Heimann, W. Assenmacher, O. Prymak and S. Schulz, Dalton Trans., 2015, 44, 14272.

21 S. Schulz, S. Heimann, J. Friedrich, M. Engenhorst, G. Schiering and W. Assenmacher, Chem. Mater., 2012, 24, 2228.

22 S. Heimann, S. Schulz, J. Schaumann, A. Mudringer, J. Stötzel and G. Schiering, J. Mater. Chem. C, 2015, 3, 10375.

23 (a) S. A. Adonin, E. V. Peresypkina, M. N. Sokolov and V. P. Fedin, J. Struct. Chem., 2015, 56, 795; (b) S. A. Adonin, E. V. Peresypkina, M. N. Sokolov and V. P. Fedin, Russ. J. Coord. Chem., 2014, 40, 867.

24 (a) G. A. Fisher and N. C. Norman, Adv. Inorg. Chem., 1994, 41, 233; (b) A. Okrut and C. Feldmann, Z. Anorg. Allg. Chem., 2006, 632, 409.

25 (a) C. J. Carmalt, L. J. Farruggia and N. C. Norman, Z. Naturforsch., 1995, 50b, 1591; (b) C. J. Carmalt, L. J. Farruggia and N. C. Norman, Z. Anorg. Allg. Chem., 1995, 621, 47.

26 (a) G. R. Desiraju and T. Steiner, in The Weak Hydrogen Bond In Structural Chemistry And Biology, Oxford University Press, 1999; (b) B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629; (c) A. D. Buckingham, J. E. Del Bene and S. A. C. McDowell, Chem. Phys. Lett., 2008, 463, 1; (d) G. Gilli and P. Gilli, in The Nature of the Hydrogen Bond, Oxford University Press, Oxford, UK, 2009; (e) E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg and P. Hobza, Pure Appl. Chem., 2011, 83, 1637; (f) U. Adhikari and S. Scheiner, J. Phys. Chem. A, 2013, 117, 10551; (g) X. Zhang, H. Dai, H. Yan, W. Zou and D. Cremer, J. Am. Chem. Soc., 2016, 138, 4334.

27 (a) W.-X. Chai, L.-M. Wu, J.-Q. Li and L. Chen, Inorg. Chem., 2007, 46, 8698; (b) A. Gagor, M. Węclawik, B. Bondzior and R. Jakubas, CrystEngComm, 2015, 17, 3286.

28 S. Schulz, S. Heimann, K. Kaiser, O. Prymak, W. Assenmacher, J. T. Brüggemann, B. Mallik and A.-V. Mudringer, Inorg. Chem., 2013, 52, 14326.

29 Y. Feutelais, B. Legendre, N. Rodier and V. Agafonov, Mater. Res. Bull., 1993, 28, 591.
30 (a) C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell and J. R. Rumble Jr., *NIST Standard Reference Database 20, Version 3.4. (web version)* (http://srdata.nist.gov/xps/), 2003; (b) H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii and H. Ozaki, *J. Phys.: Condens. Matter*, 2000, **12**, 5607; (c) C. R. Thomas, M. K. Vallon, M. G. Frith, H. Sezen, S. K. Kushwaha, R. J. Cava, J. Schwartz and S. L. Bernasek, *Chem. Mater.*, 2016, **28**, 35; (d) E. J. Menke, M. A. Brown, Q. Li, J. C. Hemminger and R. M. Penner, *Langmuir*, 2006, **22**, 10564.

31 C. R. Thomas, M. K. Vallon, M. G. Frith, H. Sezen, S. K. Kushwaha, R. J. Cava, J. Schwartz and S. L. Bernasek, *Chem. Mater.*, 2016, **28**, 35.

32 Simulation: Jems software java version V3, JEMS-SAAS, P. Stadelmann, Saas-Fee, Switzerland, Input: Bi₂Te₃ ICSD 42546, Only the strongest reflections are shown as rings in the overlay.

33 M. M. Stasova and N. Abrikosov, *Izv. Akad. Nauk SSSR, Neorg. Mater.*, 1970, **6**, 1090.

34 (a) H. J. Breunig and H. Jawad, *Z. Naturforsch.*, 1982, **37b**, 1104; (b) S. Heimann, S. Schulz, D. Bläser and C. Wölper, *Eur. J. Inorg. Chem.*, 2013, **28**, 4909.

35 G. M. Sheldrick, *Acta Crystallogr., Sect. A: Fundam. Crystallogr.*, 1990, **46**, 467.

36 (a) G. M. Sheldrick, *SHELXL-2014, Program for the Refinement of Crystal Structures*, University of Göttingen, Göttingen, Germany, 2014; (b) G. M. Sheldrick, *Acta Crystallogr., Sect. A: Fundam. Crystallogr.*, 2008, **64**, 112; (c) C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *J. Appl. Crystallogr.*, 2011, **44**, 1281.