Efficacy of obstructive sleep apnea treatment by antileukotriene receptor and surgery therapy in children with adenotonsillar hypertrophy: A descriptive and cohort study

Dien Tran-Minh¹, Anh Phi-Thi-Quynh¹, Phuc Nguyen-Dinh² and Sy Duong-Quy¹,4,5*

¹Department of ENT, National Pediatric Hospital, Hanoi, Vietnam, ²Department of ENT, Hanoi University of Medicine, Hanoi, Vietnam, ³Sleep Lab Center, Lam Dong Medical College and Bio-Medical Research Center, Dalat, Vietnam, ⁴Immuno-Allergology Division, Hershey Medical Center, Penn State Medical College, State College, PA, United States, ⁵Department of Outpatient Expert Consultation, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam

Background: Prevalence of obstructive sleep apnea (OSA) in children with adenotonsillar hypertrophy is high and related to the occlusion of the upper airway. The main treatments of OSA in these children are adenotonsillectomy. However, this intervention is an invasive method with a various success rate. Thus, the indications of tonsillectomy remain debatable and non-invasive treatment is still a potential choice in these patients.

Methods: It was a cross-sectional and interventional study. This study included children aged from 2 to 12 years-old who were diagnosed with OSA by respiratory polygraphy and had tonsillar hypertrophy with/without adenoid hypertrophy. All main data including age, gender, height, weight, body mass index (BMI), clinical symptoms, and medical history were recorded for analysis. Physical examination and endoscopy were done to evaluate the size of tonsillar and adenoid hypertrophy by using Brodsky and Likert classifications, respectively. The severity of OSA was done by using the classification of AHI severity for children.

Results: There were 114 patients (2–12 years old) with a mean age of 5.5 ± 2.1 years included in the present study. The main reasons for consultations were snoring (96.7%), a pause of breathing (57.1%), an effort to breathe (36.8%), unrefreshing sleep (32%), doziness (28.2%), and hyperactivity (26.3%). There were 36% of subjects with tonsillar hypertrophy grade 1–2, 48.2% with grade 3, and 15.8% with grade 4 (Brodsky classification); among them, there were 46.5% of subjects with grades 1–2 of adenoid hypertrophy, 45.6% with grade 3, and 7.0% with grade 4 (Likert classification). The mean AHI was 12.6 ± 11.2 event/h. There was a significant correlation between the mean AHI and the level of tonsillar and adenoid hypertrophy severity ($r = 0.7501$ and $r = 0.7903$; $p < 0.05$ and $p < 0.05$, respectively). The improvement of clinical symptoms of study subjects was found in both groups treated with ALR (antileukotriene receptor) or ST (surgery therapy). The symptoms related to OSA at night...
including snoring, struggle to breathe, sleeping with the mouth open, and stopping breathing during sleep were significantly improved after treatment with ATR and with ST \((p < 0.001\) and \(p = 0.001\), respectively). The mean AHI was significantly reduced in comparison with before treatment in study subjects treated with ALR \((0.9 \pm 1.0 \text{ events/h; } p = 0.001)\) or with ST \((3.5 \pm 1.4 \text{ vs. } 23.4 \pm 13.1 \text{ events/h; } p < 0.001)\).

Conclusion: The treatment of OSA due to adeno-tonsillar hypertrophy with ALR for moderate OSA or surgery for severe OSA might reduce the symptoms related to OSA at night and during the day.

KEYWORDS
adenotonsillar hypertrophy, OSA, apnea-hypopnea index, snoring, antileukotriene receptor, adenotonsillectomy

Introduction

Obstructive sleep apnea (OSA) is a complete or partial obstruction of the upper airway during sleep and leads to intermittent hypoxia, the creation of oxidative stress, and fragmented sleep \((1, 2)\). OSA can be found in adults, children, and infants \((3)\). The prevalence of OSA in childhood is \(\sim 1-4\%\) and depends on diagnostic criteria \((4)\). Significantly, the prevalence of pediatric OSA has two peak periods. The first peak occurs in children between 2 and 8 years with enlarged tonsils and adenoids. The second peak appears during adolescence with weight gain \((5)\).

OSA can lead to dire health consequences and a significant economic burden without prompt diagnosis and treatment \((6)\). Children with OSA can have central nervous system disturbances such as attention deficit hyperactivity, depression, lack of concentration, and excessive daytime sleepiness \((7)\). In addition, children with OSA have reported for risk of long-term cardiovascular consequences, including hypertension, arrhythmia, abnormal ventricular morphology, impaired ventricular contractility, and elevated right heart pressure \((8, 9)\). Evenly, OSA can lead to death in children, especially sudden death at night \((10)\).

The choice of OSA treatment will depend upon age, clinical symptoms, comorbidities, risk factors, and polysomnography (PSG) results \((11)\). Because in children, tonsillar and adenoid hypertrophy is a major cause of OSA, most children can be treated with surgical adenotonsillectomy \((12)\). However, children reveal a high risk for postoperative complications and the effects of long-term tonsillar hypertrophy on the immune system \((13, 14)\). Therefore, pharmacologic therapy can be considered to initiate mild to moderate OSA. Interestingly, tonsillar tissue from children with OSA was reported to overexpress CysLT1, so some RCT applied montelukast for treatment. These reports showed improvement in the severity of OSA and adenoidal hypertrophy in children with non-severe OSA \((15-17)\).

Therefore, the present study was conducted to evaluate the clinical efficacy of antileukotriene drugs and adenotonsillectomy in OSA children with tonsillar hypertrophy.

Methods

Subjects

There were 114 children from 3 to 12 years old included in the present study from August 2016 to December 2019 in National Pediatric Hospital in Vietnam. The present study was approved by the Ethical Committee of Hanoi Medical University and National Pediatric Hospital (No 99/HDDD-DHYHN).

Inclusion criteria

Children having all the following criteria were included in the present study: tonsillar hypertrophy, OSA defined by AASM (American Academic of Sleep Medicine), aged from 3 to 12 years old, and agreement from patients and their guardians.

Exclusion criteria

Children having one of the following criteria were excluded from the study: cranial-facial abnormal structure, Down syndrome, Pierre-Robin syndrome, Treacher Collin syndrome, micro crania, other disorders of the upper airway, neuro-muscular junction disorder such as myasthenia gravis, coagulopathy, renal failure, heart failure, or disagreement from patients and their guardians. All children currently treated with corticosteroids (oral, inhaled or intranasal form) or antihistamines (oral form) or nasal decongestants were also excluded from the study. Patients under antileukotriene therapy with increasing symptoms and refusing surgical treatment were also excluded from the present study.
Methods

Study design
It was a cross-section study; all study subjects with tonsillar hypertrophy received medical treatment if they had a mild-moderate OSA (Group 1) or surgical treatment if they had severe OSA (Group 2); those who were unresponsive to medical treatment after 1 month also received surgical treatment (Group 3; Figure 1). To avoid the bias, OSA children with comorbidities or who were not adherent to antileukotriene therapy during follow-up (monthly) were also excluded from the study. The compliance of antileukotriene therapy was evaluated monthly for each study subject.

Respiratory polygraphy
OSA was defined with polygraphy by using the apnea–hypopnea index (AHI) to classify the severity of OSA as recommended: normal (non-OSA): AHI ≤ 1/h; mild OSA: 1/h < AHI ≤ 5/h; moderate OSA: 5/h < AHI ≤ 10/h; severe OSA: AHI > 10/h (18, 19). Polygraphy was done with Apnea Link (ResMed; San Diego, California, USA).

Tonsillar and adenoid hypertrophy evaluation
Tonsillar hypertrophy was defined by using Brodsky’s grading scale (20). There are 5 levels of tonsil hypertrophy based on the ratio of tonsil to the pharynx (distance between two anterior pillars), including grade 0 (located in the cavity), grade 1: occupied < 25% of the distance between the two anterior pillars, grade 2/3 and 4: occupied 25–50%/50–75%/ and > 75% of the distance between the two anterior pillars, respectively.

Adenoid hypertrophy was defined by Likert’s classification (21). There are 5 levels of adenoid hypertrophy based on the occlusion of posterior nasal aperture, including grade 1: occluded from 0 to 25%, grade 2: occluded from 25 to 50%, grade 3: occluded from 50 to 75%, and grade 4: occluded > 75% of posterior nasal aperture.

Data collection
All data on age, gender, height, weight, BMI, medical and family history, clinical characteristics, PSQ (Pediatric Sleep Questionnaire) scores, Mallampati classification, SSS (snoring severity scale) scores, and PG parameters (AHI, SpO2, pulse, and frequency of snoring) of the study subjects were collected for statistical analyses.

Statistical analysis
Epidata and Stada 15 were used to analyze the recorded data. Continuous variables were presented as mean ± standard deviation (SD). Skewness-Kurtosis test was used for evaluating the normal distribution and Kruskal–Wallis test was done for performing the pairwise comparison. Multiple regression analysis was performed to measure the correlation between AHI and continuous variables with coefficient R of Pearson for normal distribution or Spearman for non-normal distribution variables.

Results
Clinical characteristics and respiratory features of study subjects
There were 114 patients (2–12 years old) with a mean age of 5.5 ± 2.1 years included in the present study. The gender rate was 3.1/1 (male/female) (Table 1A). The percentage of subjects in the age group of 3–8 years old was 75.5% and underweight was 27.2%. For medical history, there was 33.2% of patients had allergic rhinitis, 11.2% of asthma, and 68.4% with a family history of snoring (Table 1A).

The main reasons for consultations were snoring (96.7%), a pause of breathing (57.1%), an effort to breathe (36.8%), unrefreshing sleep (32%), doziness (28.2%), hyperactivity (26.3%), loss of concentration (17.5%), daytime sleepiness (14.9%), nasal congestion nose at night (13.2%), and wake up during sleep (12.3%) (Table 1A).

ENT examination showed that 36% of subjects with tonsillar hypertrophy grade 2, 48.2% with grade 3, and the most common age was from 3 to 8 years old (75.4%). There were 46.5% of subjects with grades 1–2 of adenoid hypertrophy and 45.6% with grade 3 (Table 1A). The classification of tonsillar and adenoid hypertrophy severity was presented in Table 1B.

Respiratory polygraphy of study subjects showed that the average apnea hypopnea index (AHI) was 12.6 ± 11.2 event/h; the lowest oxygen saturation was 75.7 ± 13.7%, and the number of events of snoring was 426.3 ± 315.9 (Table 1A). There was an increasing and significant correlation between the mean AHI and the level of tonsillar and adenoid hypertrophy severity (r = 0.7601 and r = 0.7903; p < 0.05 and p < 0.05, respectively; Figure 2).

Characteristics of study subjects classified by treatments
The results showed that subjects treated with surgical therapy (ST) were younger and had higher BMI than those treated with anti-leukotriene receptors (ALR) (4.9 ± 1.9 and 17.7 ± 3.6 vs. 5.9 ± 2.1 years and 16.4 ± 2.8 kg/m²; p = 0.004 and p =
FIGURE 1
Flow-chart of study process. AHI, apnea-hypopnea index; PSQ, pediatric sleep quality; RPS, respiratory polysomnography.

Clinical improvements of treatments in study subjects

The improvement of clinical symptoms of study subjects with OSA was found in both groups of treatment with ALR and ST (Table 3). The symptoms related to OSA at night including snoring, struggle to breathe, sleeping with the mouth open, and stopping breathing during sleep were significantly improved after treatment with ATR and with ST (p < 0.001 and p = 0.001, respectively; Table 3).

The results of the present study showed that the daytime symptoms due to the consequences of OSA such as breathing by mouth, daytime sleepiness, difficulty sustaining attention in tasks, failure of attention to details, loss of things (toys, pencils...), or easily distracted by extraneous stimuli were...
TABLE 1A Clinical characteristics and respiratory polygraphy features of study subjects.

Parameters	Study subjects (n = 114)	Parameters	Study subjects (n = 114)	
	Mean ± SD	n (%)	Mean ± SD	n (%)
Age, years	5.5 ± 2.1	-	-	Tonsillar hypertrophy
BMI, kg/m²	16.9 ± 3.2	-	-	Grade 1–2
Gender	Male	75.4	-	Grade 3
	Female	24.6	-	Grade 4
Main reason of consultation	Snoring	96.7	-	Adenoid hypertrophy
	Doziness	28.2	-	Grade 1–2
	Hyperactivity	26.3	-	Grade 3
	Loss of concentration	17.5	-	Grade 4
	Effort to breath	36.8	-	Respiratory polygraphy
	Unrefreshing sleep	32.0	-	AHI (event/h)
	Doziness	28.2	-	Mild
	Hyperactivity	26.3	-	Moderate
	Loss of concentration	17.5	-	Severe
	Effort to breath	36.8	-	
	Unrefreshing sleep	32.0	-	
	Doziness	28.2	-	
	Hyperactivity	26.3	-	
	Loss of concentration	17.5	-	
	Effort to breath	36.8	-	
	Unrefreshing sleep	32.0	-	

BMI, body mass index; AHI, apnea-hypopnea index.

TABLE 1B The classification of tonsillar hypertrophy and adenoid hypertrophy by age group.

Age group	Tonsillar hypertrophy severity	Total N (%)	Adenoid hypertrophy severity	Total N (%)				
	Grade 1+2 N (%)	Grade 3 N (%)	Grade 4 N (%)		Grade 1+2 N (%)	Grade 3 N (%)	Grade 4 N (%)	
<3 years	3 (18.8)	10 (62.5)	3 (18.8)	16 (100.0)	4 (25.0)	8 (50.0)	4 (25.0)	16 (100.0)
3–5 years	6 (18.8)	20 (62.5)	6 (18.8)	32 (100.0)	12 (37.5)	18 (56.2)	2 (6.3)	32 (100.0)
5–8 years	23 (42.6)	23 (42.6)	8 (14.8)	54 (100.0)	27 (50.0)	25 (46.3)	2 (3.7)	54 (100.0)
>8 years	9 (75.0)	2 (16.7)	1 (8.3)	12 (100.0)	11 (91.7)	1 (8.3)	0 (0.0)	12 (100.0)
Total	41 (36.0)	55 (48.2)	18 (15.8)	114 (100.0)	54 (46.5)	52 (45.6)	8 (7.0)	114 (100.0)

improved significantly after treatment with either ALR or ST (Table 3). Other improvements in study subjects’ behavior were also recorded after treatment (Table 3).

The results showed that the mean AHI was significantly reduced in comparison with before treatment in study subjects treated with ALR (0.9 ± 1.0 vs. 3.9 ± 2.7 events/h; p = 0.001; Table 3) or with ST (3.5 ± 1.4 vs. 23.4 ± 13.1 events/h; p < 0.001; Table 3). Nadir SpO2 was significantly improved in study subjects treated with ALR or ST (83.7 ± 11.8 vs. 78.8 ± 11.9% and 81.4 ± 11.3 vs. 71.9 ± 14.9%; p = 0.16 and p = 0.002, respectively; Table 3). Snoring events were also reduced with LTR treatment or ST vs. before in all study subjects (154.8 ± 104.2 vs. 276.6 ± 257.3 events/h and 221.3 ± 256.4 vs. 663.6 ± 433.2 events/h; p = 0.120 and p = 0.080, respectively; Table 3).

Discussion

In the present study, OSA happened mainly in children from 5 to 8 years old and predominantly in boy (Tables 1A,B). Previous studies in both adults and children demonstrated that the prevalence of OSA in men is higher than women; and it might due to the respiratory tract of men are longer than women and more soft structure distribution in the upper respiratory tract (1). Although the percentage of children with low weight is low, there is only few children with overweight or obesity.
Correlation between degree of tonsilar and adenoid hypertrophy and apnea-hypopnea index (AHI).

TABLE 2 Anthropometric and respiratory polygraphy characteristics of study subjects classified by treatments.

Parameters	Total study subjects (n = 114)	Subjects treated with ST (n = 51)	Subjects treated with ALR (n = 63)	p*
Anthropometry				
Age	5.5 ± 2.1	4.9 ± 1.9	5.9 ± 2.1	0.004
BMI	16.9 ± 3.2	17.7 ± 3.6	16.4 ± 2.8	0.030
Gender	-	-	-	
Male, %	75.4	82.4	69.8	0.063
Female, %	24.6	17.6	30.2	0.123
Respiratory polygraphy				
AHI (event/h), mean ± SD	12.6 ± 11.2	23.4 ± 13.1	3.9 ± 2.7	<0.001
Mild, N (%)	48 (42.1)	1 (2.0)	47 (74.6)	<0.001
Moderate, N (%)	22 (19.3)	6 (11.8)	16 (25.4)	<0.001
Severe, N (%)	44 (38.6)	44 (86.2)	0 (0.0)	<0.001
SpO2, mean ± SD (%)	95.2 ± 5.6	94.0 ± 7.7	96.3 ± 2.4	0.008
SpO2 in the OSA period, mean ± SD (%)	80.6 ± 12.8	74.2 ± 13.9	86.0 ± 8.8	0.001
Nadir SpO2, mean ± SD (%)	75.7 ± 13.7	71.9 ± 14.9	78.8 ± 11.9	0.012
Average pulse, mean ± SD (%) (p/m)	87.7 ± 16.5	93.8 ± 18.7	82.7 ± 12.6	0.001
Snoring, mean ± SD (%) (event)	426.3 ± 315.9	633.6 ± 433.2	276.6 ± 257.3	0.054

BMI, body mass index; AHI, apnea-hypopnea index; SG, surgical the rapy; ALR, anti-leukotriene receptor. *Subjects with ALR vs. SG.

(Table 1). This result is similar with other studies in Asia and different with those done in Western countries where high BMI increases the prevalence of OSA (19, 22, 23). In the present study, there is nearly all children had snoring at night (Table 1). This symptoms might be related to upper airway obstruction caused by tonsillar and/or adenoid hypertrophy. Obviously, the adeno-tonslar hypertrophy was found mainly in children from 3 to 8 years old with the high rate in the present study (Table 1A). It is similar to the results of other authors and suggest that the main risk for the development of OSAS in young children is hypertrophy of tonsil and adenoid (12, 14).

It is clear that in the present study, the diagnosis of OSA is based on AHI measured by respiratory polygraphy as recommended by guidelines (5, 18, 24). AHI has been defined as
TABLE 3 Modification of clinical symptoms and respiratory polygraphy after treatment.

Symptoms	Study subjects treated with ALR (n = 63)	Study subjects treated with ST (n = 51)						
	Pre	Post	Δ	p*	Pre	Post	Δ	p*
	X	SD	X	SD	X	SD	X	SD
Snoring	3.1	0.4	1.2	0.4	1.87	<0.001		
Snoring loudly	2.2	0.9	0.7	0.6	1.59	<0.001		
Struggle to breath	1.9	0.8	0.3	0.2	1.68	<0.001		
Sleep with opening mouth	2.2	0.7	0.7	0.5	1.48	<0.001		
Stop breathing during sleep	0.6	0.4	0.1	0.3	0.52	<0.001		
Congested nose at night	2.1	0.8	0.7	0.5	1.38	<0.001		
Daytime symptoms								
Tend to breathe by mouth during the day	1.2	0.8	0.3	0.2	0.89	0.001		
Daytime sleepiness	0.7	0.2	0.4	0.3	0.26	0.03		
Difficulty for sustaining attention in tasks	1.7	0.9	1.3	0.7	0.43	0.001		
Fail of attention to details	1.8	0.8	1.3	0.7	0.46	<0.001		
Lost of things (toy, pencil...)	1.5	1.3	1.2	1.1	0.31	<0.001		
Easily distracted by extraneous stimuli	1.6	0.9	1.3	0.9	0.29	<0.001		
Behavior								
Fidgets with hands or fisting on seat	1.2	1.1	0.9	0.8	0.32	0.001		
Leaving seat in classroom	1.0	1.9	0.7	0.7	0.28	0.001		
Answering before question completed	0.9	0.5	0.8	0.7	0.11	0.22		
Respiratory polygraphy								
AHl, mean ± SD (events/h)	3.9	2.7	0.9	1.0	3.0	3.0	3.0	3.0
SpO2, mean ± SD (%)	96.3	2.4	95.5	4.8	3.7	7.7	95.2	3.6
SpO2 in OSA periode, mean ± SD (%)	86.0	8.8	88.4	7.8	2.6	2.6	74.2	9.4
Nadir SpO2, mean ± SD (%)	78.8	11.9	83.7	11.8	4.9	4.9	71.9	14.9
Minimum pulse, mean ± SD (p/min)	56.3	9.6	63.9	23.5	7.6	7.6	62.6	24.5
Maximum Pulse, mean ± SD (p/min)	138.5	38.7	121.7	30.8	16.8	16.8	145.8	31.3
Average pulse, mean ± SD (p/min)	82.8	12.6	70.5	26.2	12.3	12.3	93.8	18.7
Snoring, mean ± SD (events)	276.6	257.3	154.8	104.2	121.8	121.8	663.6	433.2

ALR, anti-leukotriene receptor; SG, surgical therapy. *Post vs. pre treatment.
FIGURE 3
Modification of OSA severity after treatment in study subjects. AHI, apnea-hypopnea index; ALR, anti-leukotriene receptor; SG, surgical therapy.

FIGURE 4
Endoscopic images of adenoid hypertrophy (A–C) and tonsillar hypertrophy (D–F).

the total number of apnea and hypopnea divided by the number of sleeping hours. In children, the cut-off of AHI from 1–5, 5–10 and >10 has been used to refer to mild, moderate, and severe OSA respectively (25). This cut-off is much lower than those in adults (from 5–15, 15–30 and >30). Previous studies demonstrated that children are not mini-adults because many of their physical development processes happening during sleep (18, 24). Therefore, OSA leads to the differences in symptoms, influences and decisions on treatment options between children and adults (12, 14, 24, 25). In the present study, the mean AHI
of study subjects is 12.6 ± 11.2 events/hour and considered as severe OSA. Although, OSA has been well developed in Vietnam in the last 10 years, the early detection of OSA is still difficult, particularly in children. In addition, the costs of respiratory polygraphy or polysomnography are still high and the techniques are time consuming in comparing with other diagnostic tests.

Interestingly, the present study found that there is a significant correlation between the hypertrophy of tonsils and adenoid with the severity of OSA measured by AHI (Figure 2). This result is similar to that reported from other authors (18, 25). Li et al. conducted a study on 1150 children and found that the size of the tonsils was an independent risk factor of OSA (26). The size of the tonsils increased by 25–50% could increase the risk of OSA by two times (OR = 2.0 and p = 0.036), the size of the tonsil increased 50–75% could increase the risk of OSA by five times (OR = 5.0 and p = 0.022), and if it increased by 75–100%, induced the risk of OSA by eight times (OR = 8.1 and p < 0.001).

Besides that, different studies using universal snoring tools (scales or machines), also revealed the positive correlations between snoring severity (frequency, duration, time, or intensity) and AHI; it was also consistent with the results of present study (data not shown). Moreover, when studying the correlation between nadir SpO2 and AHI, the present study found out a significant correlation between two parameters: the more severe of AHI level, the lower level of nadir SpO2 found out a significant correlation between two parameters: the

Table 3

beside of that, different studies using universal snoring tools (scales or machines), also revealed the positive correlations between snoring severity (frequency, duration, time, or intensity) and AHI; it was also consistent with the results of present study (data not shown). Moreover, when studying the correlation between nadir SpO2 and AHI, the present study found out a significant correlation between two parameters: the more severe of AHI level, the lower level of nadir SpO2 found out a significant correlation between two parameters: the.

OSA did not have any comorbidities or other current treatments. This result was similar to previous published reports (12, 25).

Finally, the present study demonstrated that after treatment with ALR or ST, the severity of OSA was significantly reduced in study subjects. It is clear that the percentage of children with moderate or severe OSA was reduced by treated with ALR or ST and the mean SpO2 nadir SpO2 was significantly improved after treatment (Figure 3 and Table 3). These results were similar to previous studies (12, 16, 17, 25). In the present study, surgery therapy seems to be the best effective treatment for children with adenotonsillar hypertrophy associated with or without adenoid hypertrophy (illustrated images from study patients presented in Figure 4) having severe OSA because it improved significantly AHI index and reduced the percentage of severe OSA after intervention procedure (Figure 3). Other works reported the successful rate of treatment for OSA in children with adenotonsillar hypertrophy by surgery method are also very different and depended on centers. The reported successful rates range from 24 to 100% depending on the study criteria.

Finally, the present study showed that after 12 weeks of ALR treatment, there was no case with side effects requiring discontinuation. Hence, this treatment could be an effective therapy for improving both clinical symptoms and respiratory polygraphy. This medical treatment option might be used as an alternative choice of surgery for adenotonsillar hypertrophy. For study children who underwent adenotonsillar hypertrophy surgery, there was only <10% of reported cases with controlled bleeding during or after the first week of surgery. The main limitation of the present study is related to the short duration of patients’ follow-up (three months) with the use of PSQ questionnaires was only 3 months after treatment. Therefore, the long-term follow-up could be necessary for evaluating the significant improvement of recurrent clinical symptoms and hyperactivity and attention deficit in children with OSA.

Conclusion

OSA is common in children with adenotonsillar hypertrophy. Children with OSA usually have the symptoms at night and its consequences during the day. The severity of adenotonsillar hypertrophy is correlated with the severity of OSA measured by apnea-hypopnea index. Fortunately, the treatment of OSA due to adenotonsillar hypertrophy with ALR for moderate OSA or surgery for severe OSA can improve children health by reducing nighttime and daytime symptoms. However, more studies with long-term follow-up are necessary to evaluate the improvement other daytime consequences of OSA in children with adenotonsillar hypertrophy, especially those related to attention deficit and hyperactivity disorders.
Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and approved by Ethical Committee of Hanoi Medical University and National Pediatric Hospital (No. 99/HDDD-DHYHN). Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

Author contributions

DT-M, AP-T-Q, PN-D, and SD-Q: conceptualization, methodology, formal analysis, writing–original draft preparation, and writing–review and editing. DT-M, AP-T-Q, and PN-D: software and validation. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer TNNP declared a shared secondary affiliation with the author SDQ to the handling editor at the time of review.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
the impact of ethnicity. *J Clin Sleep Med.* (2013) 9:853–8. doi: 10.5664/jcsm.2978

24. Corral-Péñafiel J, Pepin JL, Barbe F. Ambulatory monitoring in the diagnosis and management of obstructive sleep apnoea syndrome. *Eur Respir Rev.* (2013) 22:312–24. doi: 10.1183/09059180.00084213

25. Rubinstein BJ, Baldassari CM. An update on the management of pediatric obstructive sleep apnea. *Curr Treat Options Pediatr.* (2015) 1:211–23. doi: 10.1007/s40746-015-0022-8

26. Xiao L, Su S, Liang J, Jiang Y, Shu Y, Ding L. Analysis of the risk factors associated with obstructive sleep apnea syndrome in Chinese children. *Front Pediatr.* (2022) 10:900216. doi: 10.3389/fped.2022.900216

27. Chang SJ, Chae KY. Obstructive sleep apnea syndrome in children. Epidemiology, pathophysiology, diagnosis and sequelae. *Clin Exp Pediatr.* (2010) 53:863–71. doi: 10.3345/klep.2010.53.10.863

28. Spalka J, Kedzia K, Kuczyński W, Kudrycka A, Malolepsza A, Bialasiewicz P, et al. Morning headache as an obstructive sleep apnea-related symptom among sleep clinic patients—a cross-section analysis. *Brain Sci.* (2020) 10:57. doi: 10.3390/brainsci10010057