Amalgamated Free Products, Unstable Homotopy Invariance, and the Homology of $SL_2(Z[t])$

Kevin P. Knudson⋆
Department of Mathematics, Northwestern University, Evanston, IL 60208
e-mail: knudson@math.nwu.edu

Received: / Revised version:

Abstract We prove that if R is a domain with many units, then the natural inclusion $E_2(R) \to E_2(R[t])$ induces an isomorphism in integral homology. This is a consequence of the existence of an amalgamated free product decomposition of $E_2(R[t])$. We also use this decomposition to study the homology of $E_2(Z[t])$ and show that a great deal of the homology of $E_2(Z[t])$ maps nontrivially into the homology of $SL_2(Z[t])$. As a consequence, we show that the latter is not finitely generated in all positive degrees.

Key words amalgamated free product – group homology – homotopy invariant presheaf – elementary matrices

Introduction

The fundamental theorem of algebraic K-theory asserts that if A is a regular ring, then there is a natural isomorphism $K_i(A[t]) \cong K_i(A)$ for all $i \geq 0$. More generally, a presheaf \mathcal{F} on the category of schemes over a base S is \textit{homotopy invariant} if $\mathcal{F}(X \times A^1) \cong \mathcal{F}(X)$ for all schemes X. The utility of homotopy invariant presheaves is well-documented (see \textit{e.g.}, [10,11,12]).

The existence of homotopy invariance in K-theory suggests that one search for unstable analogues. In a previous work [4], the author showed that such a statement is true for infinite fields k: the natural map $G(k) \to G(k[t])$ induces an isomorphism in integral homology for

⋆ Supported by an NSF Postdoctoral Fellowship, grant no. DMS-9627503
G = SL_n, GL_n, PGL_n. Since homotopy invariance in K-theory holds for all regular rings, one might hope that the above isomorphism holds for rings other than infinite fields.

For a ring A, denote by E_n(A) the subgroup of GL_n(A) generated by the elementary matrices. In many cases, the group E_n(A) coincides with SL_n(A) (e.g., A local or Euclidean), but this need not always be so. In this paper, we study the homology of the group E_2(R[t]).

Our first result is the following.

Theorem A If R is an integral domain with many units, then the inclusion E_2(R) → E_2(R[t]) induces an isomorphism

\[H_{\bullet}(E_2(R), \mathbb{Z}) \cong H_{\bullet}(E_2(R[t]), \mathbb{Z}). \]

The definition of a ring with many units will be recalled below. The principal example of such a ring is a local ring with infinite residue field (or an algebra over such a ring).

Let k be an infinite field and denote by Sch/k the category of smooth affine schemes over k. In this setting, Theorem A admits the following geometric interpretation.

Corollary The presheaves \(\mathcal{H}_i = H_i(E_n(-), \mathbb{Z}) \) are homotopy invariant on Sch/k.

One would hope that a similar statement holds for \(H_i(E_n(-), \mathbb{Z}) \) for \(n > 2 \), but so far we have been unable to prove it. What is clear, as the following example of Weibel [13] shows, is that if Theorem A is to admit a generalization to the case \(n > 2 \), then the hypotheses on the ring R will have to be strengthened.

Example Consider the local ring of the node at the singularity—

\[R = (k[x, y]/(y^2 - x^3 - x^2))(x, y). \]

This is a one-dimensional noetherian local domain, and, if k is infinite, is a ring with many units. However, if \(H_\bullet(E_n(R), \mathbb{Z}) \cong H_\bullet(E_n(R[t]), \mathbb{Z}) \) for all \(n \), then in particular \(H_2(E(R), \mathbb{Z}) \cong H_2(E(R[t]), \mathbb{Z}) \); i.e., \(K_2(R) \cong K_2(R[t]) \). But in [13] it is shown that \(K_2(R) \neq K_2(R[t]) \).

Thus, it seems that one must assume that R is at least regular, and it is not at all clear how to use this property.

There is another reason to study the homology presheaves \(\mathcal{H}_i = H_i(E_n(-), \mathbb{Z}) \). If one could show that the \(\mathcal{H}_i \) are homotopy invariant and admit transfer maps (i.e., for a finite flat morphism \(R \to S \) there is a map \(\mathcal{H}_i(S) \to \mathcal{H}_i(R) \) satisfying the usual properties), then one could prove the Friedlander–Milnor conjecture [2] for \(SL_n \): If G is a reductive group scheme over an algebraically closed field k and if
$p \neq \text{char } k$, then

$$H^\bullet_{et}(BG_k, \mathbb{Z}/p) \cong H^\bullet(BG(k), \mathbb{Z}/p).$$

Here, BG_k is the simplicial classifying scheme of G_k and $BG(k)$ is the classifying space (= simplicial set) of the discrete group $G(k)$ of k-rational points. Unfortunately, the H_i do not appear to admit transfers. However, it would still be interesting to know if the H_i are homotopy invariant.

Theorem A is a consequence of the existence of an amalgamated free product decomposition

$$E_2(R[t]) \cong E_2(R) \ast_{B(R)} B(t)$$

where, for a ring A, $B(A)$ denotes the upper triangular subgroup. This follows from Nagao's decomposition of $SL_2(k[t])$ (k a field) and some straightforward group-theoretic considerations. In particular, for $R = \mathbb{Z}$ we have $E_2(\mathbb{Z}[t]) \cong SL_2(\mathbb{Z}) \ast_{B(\mathbb{Z})} B(\mathbb{Z}[t])$ (note that $E_2(\mathbb{Z}) = SL_2(\mathbb{Z})$). This allows us to make partial computations of the homology of $SL_2(\mathbb{Z}[t])$. Grunewald, Mennicke, and Vaserstein [3] have shown that $SL_2(\mathbb{Z}[t])$ has free quotients F of countable rank and that the projection $SL_2(\mathbb{Z}[t]) \rightarrow F$ may be taken so that all unipotent elements (and hence all elements of $E_2(\mathbb{Z}[t])$) lie in the kernel. This was generalized and improved by Krstić and McCool [5], who showed that the same is true for any domain R which is not a field. This implies that $H_\bullet(SL_2(\mathbb{Z}[t]), \mathbb{Z})$ contains the homology of a countably generated free group as a direct summand. Note, however, that this only shows that $H_1(SL_2(\mathbb{Z}[t]), \mathbb{Z})$ has infinite rank.

The amalgamated free product decomposition for $E_2(\mathbb{Z}[t])$ allows us to compute its homology. We show that $H_i(E_2(\mathbb{Z}[t]), \mathbb{Z})$ contains a countably generated free summand for $i \geq 1$. It is not clear, a priori, that any homology classes map nontrivially into $H_\bullet(SL_2(\mathbb{Z}[t]), \mathbb{Z})$. We show that this is indeed the case.

Theorem B For each $i \geq 0$, the map

$$H_i(E_2(\mathbb{Z}[t]), \mathbb{Z}) \rightarrow H_i(SL_2(\mathbb{Z}[t]), \mathbb{Z})$$

is nontrivial.

Corollary For each $i \geq 1$, the group $H_i(SL_2(\mathbb{Z}[t]), \mathbb{Z})$ is not finitely generated.

In the case $i = 1$ we see that $H_1(E_2(\mathbb{Z}[t]))$ maps nontrivially into $H_1(SL_2(\mathbb{Z}[t]))$. Since all elementary matrices map to 1 in the free quotient F, the image of $H_1(E_2(\mathbb{Z}[t]))$ intersects the copy of
$H_1(F) \subset H_1(SL_2(\mathbb{Z}[t]))$ trivially. Hence we have found a nontrivial, nonfinitely generated summand orthogonal to $H_1(F)$.

Theorem B is proved by considering the (surjective!) homomorphisms $\varphi_p : E_2(\mathbb{Z}[t]) \to SL_2(\mathbb{F}_p[t])$ obtained by reducing polynomials modulo p. We show that classes in $H_i(E_2(\mathbb{Z}[t]), \mathbb{Z})$ map nontrivially into $H_i(SL_2(\mathbb{F}_p[t]), \mathbb{Z})$ under φ_p^*. The result follows since the map φ_p factors through $SL_2(\mathbb{Z}[t])$.

The paper is organized as follows. In Section 1 we deduce the amalgamated free product decomposition for $E_2(R[t])$. In Section 2 we prove Theorem A. In Section 3 we discuss the homology of $E_2(\mathbb{Z}[t])$. In Section 4 we study the homology of $SL_2(\mathbb{F}_p[t])$. Section 5 contains the proof of Theorem B. Finally, Section 6 deals with other homology classes in $H_*(SL_2(\mathbb{Z}[t]), \mathbb{Z})$.

Notation If A is a ring (always assumed commutative with unit), then A^\times denotes the multiplicative group of units. If G is an abelian group, then nG denotes the subgroup of G annihilated by n. If no coefficient module is specified, homology groups are to be interpreted as integral homology.

Acknowledgements I would like to thank Dick Hain and Andrei Suslin for many valuable conversations. I am indebted to Chuck Weibel for the example above. Finally, I thank Mark Walker for listening to me talk about homotopy invariance.

1 Amalgamated Free Products

Recall the following theorem of Nagao [6]. Let k be a field. Then we have an amalgamated free product decomposition

$$SL_2(k[t]) \cong SL_2(k) *_{B(k)} B(k[t])$$

where for a ring A, $B(A)$ denotes the subgroup of upper triangular matrices. We will make use of the following result of Serre ([8], Prop. 3, p. 6).

Proposition 1.1 Suppose that G is an amalgamated free product, $G = G_1 *_{A} G_2$. Let $H_i \subseteq G_i$ be subgroups such that $H_1 \cap A = B = H_2 \cap A$. Denote by H the subgroup of G generated by the H_i. Then the evident homomorphism

$$H_1 *_{B} H_2 \longrightarrow H$$

is an isomorphism. \(\Box\)
Let R be an integral domain with field of fractions Q and consider the subgroups $E_2(R) \subseteq E_2(Q) (= SL_2(Q))$ and $B(R[t]) \subseteq B(Q[t])$. Observe that $E_2(R) \cap B(Q) = B(R) = B(R[t]) \cap B(Q)$.

Corollary 1.2 There is a decomposition

$$E_2(R[t]) \cong E_2(R) *_{B(R)} B(R[t]).$$

Proof It is clear that the group H generated by $E_2(R)$ and $B(R[t])$ is contained in $E_2(R[t])$. The reverse inclusion follows since $E_2(R)$ contains the permutation matrix $\begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}$ and hence H contains all upper and lower triangular matrices. \qed

2 Rings with Many Units

In this section, we shall prove Theorem A.

Definition 2.1 A ring A is an $S(n)$-ring if there exist $a_1, \ldots, a_n \in A^\times$ such that the sum of any nonempty subfamily of the $\{a_i\}$ is a unit. If A is an $S(n)$-ring for every n, then we say that A has many units.

Examples of rings with many units include local rings with infinite residue fields and algebras over such rings. However, a ring having infinitely many units need not be a ring with many units. An example is the local ring $\mathbb{Z}(p)$. In fact, $\mathbb{Z}(p)$ is an $S(p^1)$-ring, but not an $S(p)$-ring.

Rings with many units satisfy the following property (see [7], Thm. 1.10).

Proposition 2.2 If R has many units, then the inclusion $B(R) \to B(R[t])$ induces an isomorphism in integral homology. \qed

Theorem 2.3 Suppose R is an integral domain with many units. Then the inclusion $E_2(R) \to E_2(R[t])$ induces an isomorphism

$$H_\bullet(E_2(R), \mathbb{Z}) \xrightarrow{\cong} H_\bullet(E_2(R[t]), \mathbb{Z}).$$

Proof The amalgamated free product decomposition yields a Mayer–Vietoris sequence for computing $H_\bullet(E_2(R[t]), \mathbb{Z})$. Since the evident map $H_\bullet(B(R), \mathbb{Z}) \to H_\bullet(B(R[t]), \mathbb{Z})$ is split injective for any domain R, the long exact sequence breaks up into short exact sequences

$$0 \to H_i(B(R)) \to H_i(B(R[t])) \oplus H_i(E_2(R)) \to H_i(E_2(R[t])) \to 0$$
(this is valid for any domain R). By Proposition 2.2, $H_i(B(R)) \cong H_i(B(R[t]))$ if R has many units so that the map

$$H_i(E_2(R), \mathbb{Z}) \to H_i(E_2(R[t]), \mathbb{Z})$$

is an isomorphism. \(\square \)

Remark 2.4 Evidently, this approach will not work for computing $H_\bullet(E_n(R[t]))$ for $n \geq 3$ since no such amalgamated free product decomposition exists.

3 The Homology of $E_2(\mathbb{Z}[t])$

We now shift gears and study the homology of $E_2(\mathbb{Z}[t])$. Theorem 2.3 does not apply in this case since \mathbb{Z} does not have many units. It is possible to calculate $H_\bullet(E_2(\mathbb{Z}[t]), \mathbb{Z})$ explicitly, but the final answer is a bit complicated. For this reason, we will compute only a part of the integral homology in detail. We also compute the homology of $E_2(\mathbb{Z}[t])$ with F_p-coefficients.

For each i we have a short exact sequence

$$0 \to H_i(B(\mathbb{Z})) \to H_i(B(\mathbb{Z}[t])) \oplus H_i(SL_2(\mathbb{Z})) \to H_i(E_2(\mathbb{Z}[t])) \to 0.$$

Observe that $B(\mathbb{Z}[t]) = B(\mathbb{Z}) \times t\mathbb{Z}[t]$ so that for any principal ideal domain k we have the Künneth exact sequence

$$0 \to \bigoplus_{l+m=i} H_l(B(\mathbb{Z}), k) \otimes H_m(t\mathbb{Z}[t], k) \to H_i(B(\mathbb{Z}[t]), k) \to \bigoplus_{l+m=i-1} \operatorname{Tor}_1^k(H_l(B(\mathbb{Z}), k), H_m(t\mathbb{Z}[t], k)) \to 0.$$

In particular, if k is a field we have

$$H_\bullet(B(\mathbb{Z}[t]), k) \cong H_\bullet(B(\mathbb{Z}), k) \otimes H_\bullet(t\mathbb{Z}[t], k).$$

Suppose k is the finite field F_p. Then we have the following result.

Proposition 3.1 If $p \geq 3$, then for $R = \mathbb{Z}, \mathbb{Z}[t]$,

$$H_\bullet(B(R), F_p) = H_\bullet(R, F_p) = \bigwedge_{F_p}^\bullet (R \otimes F_p).$$

If $p = 2$, then

$$H_\bullet(B(\mathbb{Z}[t]), F_2) = (H_\bullet(\mathbb{Z}/2, F_2) \otimes H_\bullet(\mathbb{Z}, F_2)) \otimes \bigwedge_{F_2}^\bullet tF_2[t].$$
If $p \geq 3$, the homology of $E_2(\mathbb{Z}[t])$ is

$$H_i(E_2(\mathbb{Z}[t]), \mathbb{F}_p) = \begin{cases} \mathbb{F}_p & i = 0 \\ t\mathbb{F}_p[t] \oplus \mathbb{Z}/12 \otimes \mathbb{F}_p & i = 1 \\ \wedge_i \mathbb{F}_p[t] \oplus H_i(SL_2(\mathbb{Z}), \mathbb{F}_p) & i \geq 2. \end{cases}$$

In particular, if $p \geq 5$, then for $i \geq 2$

$$H_i(E_2(\mathbb{Z}[t]), \mathbb{F}_p) = \wedge_i \mathbb{F}_p[t].$$

Proof Consider the short exact sequence

$$0 \to H_i(B(\mathbb{Z}), \mathbb{F}_p) \to H_i(B(\mathbb{Z}[t]), \mathbb{F}_p) \oplus H_i(SL_2(\mathbb{Z}), \mathbb{F}_p) \to H_i(E_2(\mathbb{Z}[t]), \mathbb{F}_p) \to 0.$$
The integral homology is similarly complicated and we leave it to the interested reader to write it down. What is important for our purposes is the following.

Proposition 3.4 For each i, $H_i(E_2(Z[t]), Z)$ contains $\wedge_i tZ[t]$ as a direct summand. Moreover, the element $t^{l_1} \wedge \cdots \wedge t^{l_i}$ maps to the element $t^{l_1} \wedge \cdots \wedge t^{l_i}$ in $\wedge_i F_p tP_p[t] \subseteq H_i(E_2(Z[t]), F_p)$ under the map induced by reducing coefficients modulo p.

Proof Arguing as in the proof of Proposition 3.3 we see that the group $H_i(B(Z[t]), Z)/H_i(B(Z), Z)$ contains a copy of the tensor product $H_0(B(Z), Z) \otimes H_i(tZ[t], Z)$. Since $tZ[t]$ is a torsion-free abelian group, its integral homology is simply an exterior algebra; i.e., $H_i(tZ[t], Z) = \wedge_i Z[t]$. The second assertion follows by considering the homomorphism of Mayer–Vietoris sequences induced by reducing coefficients modulo p. \qed

4 The Homology of $SL_2(F_p[t])$

In this section we compute the homology of the group $SL_2(F_p[t])$. As before, the amalgamated free product decomposition of $SL_2(F_p[t])$ yields a collection of short exact sequences

$$0 \to H_i(B(R)) \to H_i(B(F_p[t])) \oplus H_i(SL_2(F_p[t])) \to H_i(SL_2(F_p[t])) \to 0.$$

Observe that if ℓ is a prime distinct from p, then the natural map

$$H_i(B(F_p), F_\ell) \to H_i(B(F_p[t]), F_\ell)$$

is an isomorphism for all i. This follows by considering the Hochschild-Serre spectral sequence associated to the extension

$$0 \to R \to B(R) \to F_p^\times \to 1 \quad (4.1)$$

for $R = F_p, F_p[t]$. Since $H_q(R, F_\ell) = 0$ for $q > 0$, the claimed isomorphism follows. As a consequence, we see that for all i,

$$H_i(SL_2(F_p[t]), F_\ell) = H_i(SL_2(F_p), F_\ell)$$

for $\ell \neq p$. (This was proved, in greater generality, by C. Soulé [9].)

If we consider integral or F_p coefficients, however, the situation is much different.

Lemma 4.1 For $R = F_p, F_p[t]$, we have

$$H_i(B(R), F_p) = H_0(F_p^\times, H_i(R, F_p)).$$
Proof Consider the Hochschild–Serre spectral sequence associated to the extension (4.1); it has E^2-term

$$E^2_{r,s} = H_r(F_p^\times, H_s(R, F_p)).$$

Since $|F_p^\times| = p - 1$ is invertible in F_p, we see that $E^2_{r,s} = 0$ for $r > 0$ (see [1], p. 84). □

The action of $\alpha \in F_p^\times$ on R is $\alpha : x \mapsto \alpha^2 x$. Thus, if $p = 2$ or 3, we have the following.

Corollary 4.2 If $p = 2$ or 3, then for all $i \geq 0$,

$$H_i(B(R), F_p) = H_i(R, F_p).$$

Proof In this case, $(F_2^\times)^2 = \{1\} = (F_3^\times)^2$ so that F_p^\times acts trivially on $H_i(R, F_p)$. □

Corollary 4.3 If $p = 2$ or 3, then for all $i \geq 0$,

$$H_i(SL_2(F_p[t]), F_p) = H_i(SL_2(F_p), F_p) \oplus H_i(B(F_p[t]), F_p)/H_i(B(F_p), F_p).$$

In particular, $H_i(SL_2(F_p[t]), F_p)$ contains a copy of $\bigwedge^i_p tF_p[t]$ as a direct summand.

Proof If $p = 2$ or 3, then $B(F_p[t]) = B(F_p) \times tF_p[t]$. Hence the group $H_i(B(F_p[t]), F_p)/H_i(B(F_p), F_p)$ consists of

$$\bigoplus_{l+m=i, l<i} H_l(F_p, F_p) \otimes H_m(tF_p[t], F_p).$$

This contains $H_i(tF_p[t], F_p)$ as a summand and this, in turn, contains $\bigwedge^i_p tF_p[t]$ as a summand. □

The calculation of the integral homology is obviously more complicated, even for $p = 2, 3$. However, we make the following observation.

Proposition 4.4 If $p = 2$ or 3, then for all $i \geq 0$, $H_i(SL_2(F_p[t]), Z)$ contains a copy of $\bigwedge^i_Z tF_p[t]$. Furthermore, the element $t^{l_1} \cdots t^{l_i} \in \bigwedge^i_Z tF_p[t]$ maps to $t^{l_1} \wedge \cdots \wedge t^{l_i} \in \bigwedge^i_F tF_p[t] \subseteq H_i(SL_2(F_p[t]), F_p)$ under the map induced by reducing coefficients modulo p.

Proof For any abelian group A, the map $\bigwedge^i_Z A \to H_*(A, Z)$ is injective [1], p. 123. It follows that $H_i(B(F_p[t]), Z)$ contains a copy of $H_0(B(F_p), Z) \otimes H_i(tF_p[t], Z)$, which, in turn, contains a copy of $\bigwedge^i_Z tF_p[t]$. Thus, the group $H_i(SL_2(F_p[t]), Z)$ does also. The second assertion follows from the naturality of the map induced in homology by the coefficient homomorphism $Z \to F_p$. □
The situation for primes greater than 3 is made more difficult by the fact that $(F_p^\times)^2 \neq \{1\}$ for $p \geq 5$. Thus, the calculation of $H_*(B(F_p))$ and $H_*(B(F_p[t]))$ is more involved. Since considering the primes 2 and 3 is sufficient for our purposes here, we leave the case $p \geq 5$ to the interested reader.

5 The Homology of $SL_2(Z[t])$

In this section we prove Theorem B (which was stated in the introduction). We first demonstrate the following result.

Proposition 5.1 If $p = 2$ or 3, then the natural map

$$H_i(E_2(Z[t]), Z) \to H_i(SL_2(F_p[t]), Z)$$

induced by $\varphi_p : E_2(Z[t]) \to SL_2(F_p[t])$ maps the element $t^{l_1} \land \cdots \land t^{l_i} \in \land^i_j tZ[t]$ to $t^{l_1} \land \cdots \land t^{l_i} \in \land^i_j tF_p[t]$. The same is true with F_p-coefficients.

Proof Consider the commutative diagram

$$\begin{array}{c}
H_i(B(Z)) \to H_i(B(Z[t])) \oplus H_i(SL_2(Z)) \to H_i(E_2(Z[t])) \\
\downarrow \quad \downarrow \quad \downarrow \\
H_i(B(F_p)) \to H_i(B(F_p[t])) \oplus H_i(SL_2(F_p)) \to H_i(SL_2(F_p[t])).
\end{array}$$

Since $t^j \in tZ[t]$ maps to $t^j \in tF_p[t]$, the claim is clear. The second assertion follows similarly. \square

Consider the inclusion $j : E_2(Z[t]) \to SL_2(Z[t])$ and the induced map j_* on homology. For each i-tuple $\underline{l} = (l_1, \ldots, l_i)$, $l_1 < \cdots < l_i$, denote by $x_{\underline{l}}$ the homology class $j_*(t^{l_1} \land \cdots \land t^{l_i}) \in H_i(SL_2(Z[t]), Z)$.

Theorem 5.2 For each i-tuple \underline{l}, the class $x_{\underline{l}}$ is nontrivial. Moreover, if \underline{m} is another i-tuple distinct from \underline{l}, then $x_{\underline{l}}$ and $x_{\underline{m}}$ are distinct. Thus, the group $H_i(SL_2(Z[t]), Z)$ is not finitely generated for all $i \geq 1$.

Proof Let $p = 2$ or 3. Consider the commutative diagram

$$\begin{array}{c}
E_2(Z[t]) \xrightarrow{j} SL_2(Z[t]) \\
\varphi_p \downarrow \quad \downarrow \pi_p \\
SL_2(F_p[t])
\end{array}$$

and the induced commutative diagram

$$\begin{array}{c}
H_i(E_2(Z[t]), Z) \xrightarrow{j_*} H_i(SL_2(Z[t]), Z) \\
\varphi_{p*} \downarrow \quad \downarrow \pi_{p*} \\
H_i(SL_2(F_p[t]), Z)
\end{array}$$
in homology. Since \(\varphi_{p^k}(t^i \wedge \cdots \wedge t^i) = t^i \wedge \cdots \wedge t^i \), we see that
\[\pi_{p^k}(t^i \wedge \cdots \wedge t^i) \neq 0 \]
and hence \(x_\ell \) is nontrivial. Moreover, since \(\varphi_{p^k}(t^i \wedge \cdots \wedge t^i) \neq \varphi_{p^k}(t^{m_1} \wedge \cdots \wedge t^{m_i}) \), we see that \(x_\ell \neq x_m \) provided \(\ell \neq m \). \hfill \Box

Corollary 5.3 For each \(i \)-tuple \(\ell \), the element \(x_\ell \) has either infinite order or order divisible by 6.

Proof Note that \(\varphi_{p^k}(t^i \wedge \cdots \wedge t^i) \) is an element of order \(p \) in the group \(H_i(SL_2(F_p[t]), \mathbb{Z}) \) (since this group is all \(p \)-torsion). It follows that \(x_\ell \) has order divisible by the least common multiple of 2 and 3 (if it is not infinite). \hfill \Box

Remark 5.4 We can glean further information by reducing modulo primes \(p \geq 5 \). By Lemma 4.1,

\[H_i(B(F_p[t]), F_p) = H_0(F_p^\times, H_i(F_p[t], F_p)) \]

where \(\alpha \in F_p^\times \) acts on \(F_p[t] \) via \(\alpha : x \mapsto \alpha^2 x \). Now, \(H_i(F_p[t], F_p) \) contains \(\Lambda_{F_p}^i t F_p[t] \) as a direct summand and if \(i \) is a multiple of \((p - 1)/2 \), then, by Fermat’s Little Theorem, \(F_p^\times \) acts trivially on \(\Lambda_{F_p}^i t F_p[t] \). This implies that for \(i = n(p - 1)/2 \), \(H_i(SL_2(F_p[t]), F_p) \) contains a copy of \(\Lambda_{F_p}^i t F_p[t] \). Hence, if \(\ell \) is an \(i \)-tuple, \(i = n(p - 1)/2 \), then \(x_\ell \) has order divisible by \(2 \cdot 3 \cdot p \). For example, the \(x_\ell \) in \(H_{2n} \) have order divisible by \(2 \cdot 3 \cdot 5 = 30 \), those in \(H_{3n} \) have order divisible by \(2 \cdot 3 \cdot 7 = 42 \), etc. Given this, it seems reasonable to conjecture that the \(x_\ell \) have infinite order.

6 Other Classes in \(H_\bullet(SL_2(Z[t]), Z) \)

In [5], Krstić and McCool exhibit a basis of a free retract \(F \) of the quotient \(SL_2(Z[t])/U_2(Z[t]) \) (here, \(U_2(Z[t]) \) denotes the subgroup generated by unipotent matrices). It consists of elements \(h_{p,k} \) where \(p \geq 2 \) and \(k \geq 1 \). The elements \(h_{p,k} \) are defined as

\[h_{p,k} = \begin{pmatrix} 1 + pt^k & t^{3k} \\ p^3 & 1 - pt^k + p^2t^{2k} \end{pmatrix}. \]

Thus, the elements \(\overline{h}_{p,k} \in H_1(SL_2(Z[t]), Z) \) form the basis of a free direct summand; denote this summand by \(Z\{\overline{h}_{p,k}\} \). Then we may write

\[H_1(SL_2(Z[t]), Z) = H_1(SL_2(Z), Z) \oplus Z\{\overline{h}_{p,k}\} \oplus X, \]
where \(X \) is some abelian group.

Since \(E_2(\mathbb{Z}[t]) \subset U_2(\mathbb{Z}[t]) \), the elements

\[
x_k = \begin{pmatrix} 1 & t^k \\ 0 & 1 \end{pmatrix}
\]

map to 1 in \(F \). Thus, the elements \(\overline{x}_k \) map into the summand \(X \subset H_1(SL_2(\mathbb{Z}[t]), \mathbb{Z}) \). Hence we see that \(X \) is also not finitely generated.

Consider the homomorphism \(\pi_p : SL_2(\mathbb{Z}[t]) \rightarrow SL_2(\mathbb{F}_p[t]) \). Then we have the following.

Proposition 6.1 The kernel of the map

\[
\pi_{ps} : H_1(SL_2(\mathbb{Z}[t]), \mathbb{Z}) \rightarrow H_1(SL_2(\mathbb{F}_p[t]), \mathbb{Z})
\]

is not finitely generated.

Proof If \(p \geq 5 \), then \(H_1(SL_2(\mathbb{F}_p[t]), \mathbb{Z}) = H_1(SL_2(\mathbb{F}_p), \mathbb{Z}) = 0 \) so that \(\pi_{ps} = 0 \). If \(p = 2 \) or 3 then it is not clear that any summand lies in the kernel. But note that \(\pi_p(x_k) = \pi_p(h_{p,k}) \) so that \(\pi_{ps}(\overline{x}_k - \overline{h}_{p,k}) = 0 \) for all \(k \geq 1 \). \(\square \)

Consider the elements \(g_{p,k} \) defined by

\[
g_{p,k} = \begin{pmatrix} 1 & -t^k \\ -p & 1 + pt^k \end{pmatrix}.
\]

Note that each \(g_{p,k} \) is not unipotent; i.e., the matrix

\[
n_{p,k} = \begin{pmatrix} 0 & -t^k \\ -p & pt^k \end{pmatrix}
\]

has infinite order. However, we do have the following.

Lemma 6.2 For each \(k, l \), \(g_{p,k} \equiv g_{p,l} \) modulo \(U_2(\mathbb{Z}[t]) \).

Proof An easy calculation shows that

\[
g_{p,k}^{-1} g_{p,l} = \begin{pmatrix} 1 & t^k - t^l \\ 0 & 1 \end{pmatrix}.
\]

The result follows. \(\square \)

Thus, the set of all \(g_{p,k} \) (for a fixed \(p \)) lies in a single coset of \(U_2(\mathbb{Z}[t]) \). Denote by \(\overline{g}_p \) the induced (nontrivial) element of \(\mathbb{Z}\{\overline{h}_{p,k}\} \).

Proposition 6.3 If \(p = 2 \) or 3, then \(\overline{g}_p + \overline{x}_k \) lies in the kernel of \(\pi_{ps} \) for all \(k \geq 1 \).
Proof Note that \(\pi_p(g_{p,k}) = x_k^{-1} \). It follows then that \(\pi_p^*(\gamma_p) = -t^k \in \bigwedge^1_{\mathbb{Z}} t\mathbb{F}_p[t] \subset H_1(SL_2(\mathbb{F}_p[t], \mathbb{Z})). \) Since \(\pi_p^*(\pi_k) = t^k \), the result follows.

Note that we also have \(\gamma_p + \gamma_{p,k} \in \ker(\pi_p) \) since \(\gamma_p + \pi_k \) and \(\gamma_{p,k} - \pi_k \) lie in the kernel.

References

1. K. Brown, *Cohomology of groups* (Springer–Verlag, Berlin/Heidelberg/New York 1982).
2. E. Friedlander and G. Mislin, Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv. **49**, (1984) 347–361.
3. F. Grunewald, J. Mennicke, and L. Vaserstein, On the groups \(SL_2(\mathbb{Z}[x]) \) and \(SL_2(k[x,y]) \), Israel Jour. Math. **86**, (1994) 157–193.
4. K. Knudson, The homology of special linear groups over polynomial rings, Ann. Sci. École Norm. Sup. (4) **30**, (1997) 385–416.
5. S. Krstić and J. McCool, Free quotients of \(SL_2(k[x]) \), Proc. Amer. Math. Soc. **125**, (1997) 1585–1588.
6. H. Nagao, On \(GL(2, K[x]) \), J. Poly. Osaka Univ. **10**, (1959) 117–121.
7. Yu. Nesterenko and A. Suslin, Homology of the full linear group over a local ring, and Milnor’s \(K \)-theory, Math. USSR Izv. **34**, (1990) 121–145.
8. J-P. Serre, *Trees*, (Springer–Verlag, Berlin/Heidelberg/New York 1980).
9. C. Soulé, Chevalley groups over polynomial rings, in *Homological group theory* (C.T.C. Wall, ed.) (London Math. Soc. Lecture Notes Vol. 36, Cambridge Univ. Press, Cambridge 1979) 359–367.
10. A. Suslin, Algebraic \(K \)-theory of fields, in *Proceedings of the International Congress of Mathematicians* (Berkeley, CA, 1986) (American Mathematical Society, Providence, RI 1987) 222–244.
11. A. Suslin and V. Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. **123**, (1996) 61–94.
12. V. Voevodsky, Homology of schemes, Selecta Math. (N.S.) **2**, (1996) 111–153.
13. C. Weibel, \(K \)-theory and analytic isomorphisms, Invent. Math. **61**, (1980) 177–197.