Humans are dramatically and possibly irrevocably altering the global ecosystem, resulting in ecological boundaries between humans and non-human primates (NHPs) that are porous and increasingly blurred. By 2050 it is estimated that 9.6 billion humans will cover the earth (Gerland et al. 2014). In almost all countries where NHPs naturally occur, humans have converted forest habitats into an agriculture-dominated landscape to serve the demand for meat, palm oil or fruits (Estrada et al. 2017). This dramatic shift in landscape ecology has resulted in an ever-growing human–domestic livestock–NHP interface. Estrada et al. (2017) estimated that approximately 60% of all known NHP taxonomic families are threatened with extinction and a further 75% of all NHP species-populations are decreasing. The speed and the extent of these anthropocentric ecological changes are the main drivers for emerging infectious diseases of wildlife (Daszak et al. 2000) and spillovers from wildlife to humans (Karesh et al. 2012).

This volume has emerged out of the recognition that the human–monkey interface far exceeds the one shared between humans and great apes. Millions of monkeys share habitat with more than a billion humans. There are currently 315 recognized monkey species distributed across the planet compared to seven recognized great ape species (Mittermeier 2013; Nater et al. 2017). Studies of synanthropic monkeys, such as macaques (Macaca spp.), baboons (Papio spp.), vervets (Cercopithecus spp.) or capuchins (Cebus spp. and Sepajus spp.), which thrive in the ecological niches that humans make as they alter the habitat, provide critical insights into the field of One Health (Oberste et al. 2012). Monkeys’ behaviour, ecology and health
are often impacted by their mutual and extensive overlap with humans. Studies have shown that in some species of macaques, population densities and birth rates increase when these behavioural and ecologically flexible monkeys occupy the same environment as humans (see Chap. 2). In contrast, great ape populations are known to suffer when they overlap with human populations (Walsh et al. 2003). Certainly, not all monkeys are as successful as macaques or baboons and the majority of monkey species are critically endangered (Estrada et al. 2017). But there is no denying that the large number of monkey genera and monkeys’ ability to maintain very large groups while exploiting human habitats yields a monkey–human interface that far exceeds the one shared between humans and their closest relatives, the great apes. Moreover, large numbers of monkeys are kept as pets and for decades certain species of monkeys have been used for basic and applied research. Taken together, these contexts further extend and intensify the contact rate between humans and monkeys.

The use of monkeys in biomedical research underscores the potential for humans and monkeys to share pathogens. Several examples exist where baboons have become naturally infected with pathogens that are known to infect and cause disease in humans (Nasher 1988; Drewe et al. 2012; Mafuyai et al. 2013; Knauf et al. 2018; Thiele et al. 2018; Imwong et al. 2019) (Chaps. 4 and 5). Macaques, the Darwinian superstars of the NHP-world, known for their ability to co-exist in virtually any environment, are naturally infected with malaria parasites (Imwong et al. 2019), multi-resistant bacteria (Chap. 7), as well as one of the most feared and presumably misunderstood pathogens, the Macacine herpesvirus 1 (Chap. 8). However, the role that monkey species play as a natural pathogen source and disease reservoir for human infection is in many cases not well understood (e.g. Chagas and Trypanosomiasis, Chap. 15).

For humans, the term ‘Neglected Tropical Diseases’ is used to describe diseases that affect the poorest and marginalized populations which have limited access to healthcare (Hotez and Kamath 2009). However, the term doesn’t refer to the frequency and/or intensity of research on a given disease. As a consequence, the World Health Organization categorizes well-studied diseases such as rabies (Chap. 11) or soil-transmitted helminths (Chap. 13) as Neglected Tropical Diseases in humans. In this book, and in contrast to the term ‘Neglected Tropical Diseases’ in humans, we apply the term ‘Neglected Diseases’ to pathogens in monkeys that, in our view, are truly under-studied.

Providing the framework for all the chapters in this book is the concept of One Health, which recognizes the connections between human, animal and environmental health and is widely accepted in public health. A common misconception of One Health is that its directionality is artificially skewed in favour of human health. As the authors throughout this volume demonstrate, that is certainly not the case. Pathogens can be transmitted in all directions and there are numerous examples where wild NHPs acquired diseases from humans (reviewed in (Dunay et al. 2018)) or share diseases with livestock as documented with Reston ebolavirus (Chap. 12). The current 2019 coronavirus outbreak (Wu et al. 2020), which likely has its origin in wildlife (Andersen et al. 2020), is the most recent reminder that our understanding of diseases in the context of natural ecosystems is key to disease management and elimination. Knowledge on biodiversity and (in this case human) behaviour is as important as the
full molecular characterization of a pathogen. Chapters 2 and 3 discuss these aspects and issue a call to overcome the widespread silo mentality in monkey disease research.

Multidisciplinary teamwork requires a vocabulary that is clear and understandable across all disciplines (Hallmaier-Wacker et al. 2017). This volume includes contributions from researchers representing numerous disciplines including primatology, veterinary and human medicine, microbiology, ecology and epidemiology. Traditionally, different disciplines use the same term in different ways. Finding a common language is, therefore, the first step when multidisciplinary teams are created. In an ecologist’s understanding, for example, the term ‘parasites’ is mostly inclusive of any viruses, bacteria or parasites. In medicine, however, the term ‘parasites’ is used to describe protozoa, helminths and ectoparasites. In this book, and to overcome translation errors between the disciplines, we applied a single language across all chapters. In general, we followed the definitions used in medical and infectious diseases research. Table 1.1 provides a list of terms and how they are used across all chapters in this book.

Table 1.1 List of terms that are used in divergent ways across the different research disciplines and the definition of the term and how it is used in this book

Terminology	Definition	References
Primate	Non-human primates and humans	Mittermeier (2013)
Non-human primate	Non-human primates excluding humans	Mittermeier (2013)
Ape	Great- (gorilla, chimpanzee, bonobo, orangutan) and small-apes (gibbons and siamangs)	Mittermeier (2013)
Bacterium	A unicellular prokaryotic microorganism that has its own metabolism	Quinn et al. (2016)
Virus	A nonliving submicroscopic infectious agent that contains RNA or DNA surrounded by proteins. It depends on a living cell for replication	Quinn et al. (2016)
Parasite	A protozoa, helminth or ectoparasite that lives on or in and at the expenses of a larger organism called the host	Bowman (2009)
Macroparasite	Helminths and all ectoparasites	Quinn (2016)
Microparasite	Parasites that are not seen by the naked eye (e.g. protozoa)	Quinn (2016)
Pathogen	A microbe that is capable of causing host damage	Casadevall and Pirofski (1999)
One Health	Recognizes that the health of humans, animals and ecosystems is connected and involves a coordinated, collaborative, interdisciplinary and cross-sectoral approach to fight infectious diseases. The approach is based on the Manhattan Principles (Cook et al. 2004)	Zinsstag (2012)
Eco(system) Health	Presupposes that human survival depends on healthy and diverse ecosystems. It strives for the health of people, animals and ecosystems by promoting discovery and understanding through transdisciplinary action-research	Zinsstag (2012)
Global Health	Collaborative transnational research and actions for promoting health for all	Beaglehole and Bonita (2010)
Team science	Research collaboration among investigators from different disciplines who work interdependently to share leadership and responsibility	Tebes and Thai (2018)
Many chapters deal with pathogens that infect wild and captive monkeys alike, such as tapeworms (Chap. 14), morbilliviruses (Chap. 9) and simian foamy viruses (Chap. 10). However, some of the pathogens such as the bacterium *Chlamydia trachomatis* (Chap. 6) are not yet reported as natural infections in free-living NHPs. Infection pathways are complex and they depend on multiple factors such as animal density, animal behaviour, the immune and nutritional status, the ecology and dynamics of the disease or the infectious dose (Plowright et al. 2017).

We sincerely hope that this book will inspire and foster new research collaborations on diseases in monkeys. Compared to the critical situation in great apes, many monkey species have a realistic chance of survival in a human-dominated landscape. This, however, requires monitoring of disease transmission between monkeys and humans while also protecting remaining habitats. Monkey health is a team sport (Chap. 3), and this book should motivate primatologists, conservationists, behaviour scientists, physicians, veterinarians and disease researchers to collaborate. In chap. 16, Wolf and colleagues provide a detailed example of these types of collaborations in action at Gombe National Park in Tanzania.

References

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nat Med 26:450–452. https://doi.org/10.1038/s41591-020-0820-9

Beaglehole R, Bonita R (2010) What is global health? Glob Health Action 3(1):5142

Bowman DD (2009) Georgie’s parasitology for veterinarians. https://www.elsevier.com/books/georgis-parasitology-for-veterinarians/bowman/978-1-4160-4412-3

Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67(8):3703–3713

Cook RA, Karesh WB, Ososky SA (2004) The Manhattan principles on “one world”, One Health”. http://www.oneworldonehealth.org/

Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287(5452):443–449

Drewe JA, O’Riain MJ, Beamish E, Currie H, Parsons S (2012) Survey of infections transmissible between baboons and humans, Cape Town, South Africa. Emerg Infect Dis 18(2):298–301

Dunay E, Apakupakul K, Leard S, Palmer JL, Deem SL (2018) Pathogen transmission from humans to great apes is a growing threat to primate conservation. EcoHealth 15(1):148–162

Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Fiore AD et al (2017) Impending extinction crisis of the world’s primates: why primates matter. Sci Adv 3(1):e1600946 https://doi.org/10.1126/sciadv.1600946

Gerland P, Raftery AE, Sevčíková H, Li N, Gu D, Spoorenberg T et al (2014) World population stabilization unlikely this century. Science (New York, NY) 346(6206):234–237

Hallmaier-Wacker LK, Munster VJ, Knauf S (2017) Disease reservoirs: from conceptual frameworks to applicable criteria. Emerg Microbes Infect 6(9):e79

Hotez P, Kamath A (2009) Neglected tropical diseases in sub-saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis 3(8):e412

Imwong M, Madmanee K, Suwannasin K, Kunasol C, Peto TJ, Tripura R et al (2019) Asymptomatic natural human infections with the simian malaria parasites *Plasmodium cynomolgi* and *Plasmodium knowlesi*. J Infect Dis 219(5):695–702
Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M et al (2012) Ecology of zoonoses: natural and unnatural histories. Lancet 380(9857):1936–1945

Knauf S, Gogarten JF, Schuenemann VJ, Nys HMD, Düx A, Strouhal M et al (2018) Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue. Emerg Microbes Infect 7(1):1–4

Mafuyai HB, Barshep Y, Audu BS, Kumbak D, Ojbe TO (2013) Baboons as potential reservoirs of zoonotic gastrointestinal parasite infections at Yankari National Park, Nigeria. Afr Health Sci 13(2):252–254

Mittermeier RA (2013) Introduction. In: Handbook of the mammals of the world. Primates; volume 3. Lynx Edicions, Barcelona, pp 13–26

Nasher AK (1988) Zoonotic parasite infections of the Arabian sacred baboon Papio hamadryas arabicus in Asir Province, Saudi Arabia. Ann De Parasitol Humaine Et Comparée 63(6):448–454

Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, Groves C, Pybus M, Sonay TB, Roos C, Lameira AR, Wich SA, Askew J, Davila-Ross M, Fredriksson G, de Valles G, Casals F, Prado-Martinez J, Goossens B, Verschoor EJ, Warren KS, Singleton I, Marques DA, Pamungkas J, Perwitasari-Farajallah D, Rianti P, Tuuga A, Gut IG, Gut M, Orozco-ter Wengel P, van Schaik CP, Bertranpetit J, Anisimova M, Scally A, Marques-Bonet T, Meijaard E, Krützen M (2017) Morphometric, behavioral, and genomic evidence for a new Orangutan Species. Curr Biol 27:3487–3498.e10. https://doi.org/10.1016/j.cub.2017.09.047

Oberste MS, Feeroz MM, Maher K, Nix WA, Engel GA, Hasan KM et al (2012) Characterizing the picornavirus landscape among synanthropic nonhuman primates in Bangladesh, 2007 to 2008. J Virol 87(1):558–571

Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL et al (2017) Pathways to zoonotic spillover. Nat Rev Microbiol 15(8):502–510

Quinn PJ, Markey BK, Leonard FC, Fritzpatrick ES, Fanning S (2016) Concise review of veterinary microbiology. Wiley Blackwell, Chichester

Tebes JK, Thai ND (2018) Interdisciplinary team science and the public: steps toward a participatory team science. Am Psychol 73(4):549–562

Thiele EA, Eberhard ML, Cotton JA, Durrant C, Berg J, Hamm K et al (2018) Population genetic analysis of Chadian Guinea worms reveals that human and non-human hosts share common parasite populations. PLoS Negl Trop Dis 12(10):e0006747

Walsh PD, Abernethy KA, Bermejo M, Beyers R, Wachter PD, Akou ME et al (2003) Catastrophic ape decline in western equatorial Africa. Nature 422(6932):611–614

Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y, Yuan M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L, Holmes EC, Zhang Y-Z (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269. https://doi.org/10.1038/s41586-020-2008-3

Zinsstag J (2012) Convergence of EcoHealth and one health. EcoHealth 9:371–373. https://doi.org/10.1007/s10393-013-0812-z