The results of irradiation tests on Ce-doped sol-gel silica using X- and γ-rays up to 10 kGy are reported, in order to investigate the radiation hardness of this material for high energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 mol% and 0.05 mol% are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.

An extremely good radiation hardness is a crucial property of the material for such applications: the most challenging requirements are expected in the High Luminosity Large Hadron Collider phase (HL-LHC) [7], in which the radiation-induced absorption coefficient of the scintillator material should be kept below 1-2 m⁻¹ even after a cumulated dose of 300 kGy. In the last years, it has been proposed that scintillators based on glass matrices could be a good alternative to several crystals, for their easy preparation, shaping possibilities, and lower costs of production [8, 9]. Moreover, glass synthesis by sol-gel technique can be performed by using high purity precursors, reducing the level of unwanted impurities that can give rise to extrinsic color centers under irradiation [10].

The degradation of the attenuation length of Ce-doped crystalline matrices after irradiation has been intensively studied: LuAG:Ce [6, 11] and YAG:Ce [12] single crystal fibers have been characterized under high levels of γ and proton irradiation fields. On the other hand, it has never been investigated in Ce-doped silica fibers.

In this work, we present a detailed study of the optical properties under irradiation and of the radiation resistance of Ce-doped silica fibers, as the results of irradiation tests using γ-rays from a 60Co source and X-rays up to an integrated dose of several kGy.

Recent studies demonstrated that rare-earth (RE) doped glasses prepared by sol-gel route are suitable materials for the realization of scintillating optical fiber sensors, opening their application perspectives for real-time dosimetry in medical systems [1], as well as for high energy physics (HEP) applications. Silica fibers could be applied as wavelength shifters for the collection and transport of light in HEP experiments [2]. Their use as the active scintillating material in a sampling electromagnetic Spaghetti Calorimeter (SPACAL) [3, 4] or as the scintillating component in a dual-readout calorimeter [5, 6], coupled with undoped fibers exploiting Cherenkov light, has also been recently proposed.

Fig. 1. Pictures of 0.05% Ce-doped optical fibers (a) before (on the left) and after 1 kGy irradiation. Panels b and c report the parent silica glass bulk sample before and after irradiation, respectively.
Ce-doped silica glasses with Ce concentrations of 0.0125 mol% and 0.05 mol% were prepared by the sol-gel method using tetramethyloxysilicate (TMOS) and Ce(III) nitrate as precursors. Alcogels were obtained after gelation and subsequently dried in a thermostatic chamber for a few weeks. The obtained xerogels were densified at 1225 °C in oxidizing (O₂) atmosphere, in order to obtain Ce-doped preforms with dimensions of 70 mm in length and 10 mm diameter. The preforms were then drawn at a temperature of about 1900 K into fiber by Polymicro Technologies (Phoenix, USA), using a fluorinated SiO₂ cladding wrapping the Ce-doped core, in order to guarantee the light guiding by the core-cladding interface. The fibers were then left uncoated. The final core diameter is 0.66 mm and the final fiber diameter is 0.75 mm. Fibers were cut into 20 cm pieces for measurement purposes.

In Fig. 1, pictures of a Ce-doped fiber and the parent glass bulk sample before and after irradiation are shown. After the exposure to ionizing radiation, the sample displayed coloration mostly in the Ce-doped core, where the luminescent activator is present. Therefore, we suggest that defects responsible for the formation of radiation-induced absorption bands in the visible range are likely related to the RE presence, as already observed on double-side readout: the pulsed LED light source at about 2.2 eV is 0.07 cm⁻¹ and 0.14 cm⁻¹ for the SiO₂:0.0125% Ce- and SiO₂:0.05% Ce-doped fibers respectively. This new absorption contribution is superimposed to the typical RL spectrum of Ce³⁺, leading to a reduction of the transmitted scintillation light. In this respect, we remark that a lower energy emission in the near IR would be much less affected by radiation damage of the fibers.

The radiation-induced absorption coefficient is clearly lower for the less concentrated Ce-doped fiber sample: this points to a dominant role of the reduction of the Ce content in the improvement of the radiation hardness. It is also the cause of a shift towards higher energies of the absorption edge.

These results are supported by measurements of the attenuation length of photo-luminescence (PL) emission, chosen as the main practical parameter to characterize the fibers, due to their small cross-section and high aspect ratio. The measurements were performed with a homemade setup, by illuminating the fiber with a 370 nm pulsed LED moving at constant speed (2.6 cm/s) along its longitudinal axis, as shown in Fig. 3, and monitoring the luminescence output through dry coupling both fiber ends to two Hamamatsu H4661 photomultiplier tubes (PMT) working at 2.3 kV . Long-pass filters (ThorLabs FGL420) were used to avoid parasitic excitation light. The LED was coupled through an optical fiber to a collimator, providing a beam size of about 2-3 mm. The LED pulse duration was 150 ns and the frequency 10 kHz. The double-side readout of the light allows to correct the measurement in case of small variations of the LED intensity and to compensate for fluctuations along the fiber, improving the reliability of the attenuation measurement and simplifying the readout procedure, as discussed in [6].

The results are shown in Fig. 4. The attenuation length curves follow a single exponential decay according to Eq. 1, where Sᵣ and Sᵢ are the signal intensities recorded by the two photodetectors, Iᵣ is the attenuation length of the fiber, defined as the distance at which the incident beam is reduced of a factor 2.
We underline that attenuation length results are in good agreement with OA measurements, confirming an improvement of the radiation hardness of silica fibers with the reduction of Ce concentration. In fact, the attenuation length was estimated to be around 80 cm in thickness and 8.5 mm diameter, were also studied using a Varian Cary 50 Spectrophotometer, and the results are reported in the inset, numerical fit (red solid line) of the radiation-induced absorption spectrum after 10.3 kGy carried out as a sum of three Gaussian components (black and gray dashed lines).

\[
\frac{S_{\text{right}}}{S_{\text{left}}} = A_0 \exp \left(-\frac{2x}{\lambda_{\text{att}}} \right) \tag{1}
\]

In practice, the reciprocal of the attenuation length has a physical meaning similar to that of the absorption coefficient for spectrally unresolved measurements.

Panel (a) of Fig. 4 displays the attenuation length curves for SiO$_2$:0.0125% Ce- and SiO$_2$:0.05% Ce-doped fibers: the reduction of Ce concentration improves the attenuation length of the glass fibers both before and after 1 kGy γ irradiation, performed at the IONISOS irradiation facility in both cases. In fact, the attenuation length was estimated to be around 80 cm and 45 cm before irradiation and around 10 cm and 5 cm after irradiation for the SiO$_2$:0.0125% Ce- and SiO$_2$:0.05% Ce-doped fibers respectively (panel (b) of Fig. 4). Following several repetitions of the experiment, a statistical uncertainty of 25% has been associated to the attenuation length values.

We underline that attenuation length results are in good agreement with OA measurements, confirming an improvement of the radiation hardness of silica fibers with the reduction of Ce concentration. In fact, the attenuation length values after irradiation (10 and 5 cm) are rather consistent with the absorption coefficient values in the maximum of the visible region (0.07 and 0.14 cm$^{-1}$). The two methods allow a direct comparison of the response of the investigated materials in fiber shape.

Attenuation length measurements permit to detect the light emitted directly by luminescent centers, reproducing conditions more similar to those found during the effective operation of HEP detectors. However, the evaluation of the attenuation does not consider variations in the emitted light spectral shape, but only a uniform reduction of the luminescence intensity. The two techniques can thus be regarded as complementary in the estimation of the absorption features of the fibers under investigation.

The attenuation length trend as a function of dose is reported in panel (b) of Fig. 4: in this case, a recovery of about 22% followed over 15 days can be observed. For a deeper understanding of the optical absorption response, the OA spectra as a function of irradiation dose of a sample cut from the residual of fiber drawing process (denoted in the following as melted sample), with dimensions 2.5 mm in thickness and 8.5 mm diameter, were also studied using a Varian Cary 50 Spectrophotometer, and the results are reported.
with the emission spectrum of Ce-doped silica (dotted line of width of the bands points towards the presence of contributions (b) are shown. The latter have been calculated as the differences (Casaccia R. C., Rome, Italy) irradiation facilities [16]. This recovery rate is comparable to that of fibers, estimated color centers filling and RT release is established which actually to be around 10% after 1 day monitoring. The observation of RT recovery indicates that a dynamical equilibrium between the OA spectra as a function of recovery time was monitored induced absorption increases monotonically with increasing respect to the Pr-doped one. making the Ce-doped silica a more radiation hard material with by about a factor 4 in the 0.05% Ce-doped melted sample with the radiation-induced absorptions. We put in evidence that the show a similar absorption shape, suggesting that the drawing processes, probably due to a silica network rearrangement and a consequent reduction of defect concentrations occurring during this high temperature process. Moreover, both trough a spectroscopic and a practical approach, it is shown that also a reduction of Ce content inside the silica fiber core leads to an improvement of the radiation hardness, suggesting that radiation-induced defects are related to the presence of the dopant. These results can guide the future engineering of scintillating silica fibers, that will take into account the possibility to reach a satisfactory optimization of both emission intensity and radiation hardness.

Funding This work has been supported by the H2020 projects AIDA-2020 (GA no. 654168), INTELUM (GA no. 644260), ASCIMAT (GA no. 690599), and SPARK (GA no. 16290).

REFERENCES

1. I. Veronese, N. Chiodini, S. Cialdi, E. D’Ippolito, M. Fasoli, S. Gallo, S. La Torre, E. Mones, A. Vedda, and G. Loi, Phys. Med. Biol. 62, 4218 (2017).
2. R. Becker, G. Dersertori, A. Gandotti, Q. Huang, D. Luckey, W. Lustermann, S. Lutter, F. Netti-Tedaldi, F. Pandolfo, F. Pauss, M. Peruzzi, M. Quittnat, and R. Wallny, J. Phys.: Conf. Ser. 587, 012039 (2015).
3. A. Benaglia, M. Lucchini, K. Pauwels, C. Tully, T. Medvedeva, A. Heering, C. Dujardin, V. Kononets, K. Lebbou, N. Aubry, S. Faraj, G. Ferro, P. Lecoq, and E. Auffray, J. Instrum. 11, P05004 (2016).
4. M. Lucchini, T. Medvedeva, K. Pauwels, C. Tully, A. Heering, C. Dujardin, K. Lebbou, P. Lecoq, and E. Auffray, J. Instrum. 8, P101017 (2013).
5. M. Cascella, S. Franchino, and S. Lee, “Fiber and crystals dual readout calorimeters,” in “The Future of High Energy Physics – Some Aspects,” (World Scientific Publishing Co. Pte. Ltd., 2017), p. 277.
6. K. Pauwels, C. Dujardin, S. Gundacker, K. Lebbou, P. Lecoq, M. Lucchini, F. Moretti, A. G. Petrosyan, X. Xu, and E. Auffray, J. Instrum. 8, P09019 (2013).
7. D. Contardo, M. Klute, J. Mans, L. Silvestris, and J. Butler, “Technical Proposal for the Phase-II Upgrade of the CMS detector,” Tech. Rep. CERN-LHCC-2015-010. LHCC-P-008. CMS-TRD-15-02, CERN, Geneva (2015).
8. M. J. F. Empizo, M. Cadatal-Raduban, T. Murata, Y. Minami, K. Kawano, K. Yamano, T. Shimizu, N. Sarukura, M. Guzik, Y. Guyot, and G. Boulon, J. Lumin., http://dx.doi.org/10.1016/j.jlumin.2017.08.029 (2017).
9. T. Tanigida, J. Ueda, H. Masai, Y. Fujimoto, and S. Tanabe, J. Non-Cryst. Solids 431, 140 (2016).
10. A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, Chem. Mater. 18, 6178 (2006).
11. V. Kononets, E. Auffray, C. Dujardin, S. Gridin, F. Moretti, G. Patton, K. Pauwels, O. Sidletskiy, X. Xu, and K. Lebbou, J. Cryst. Growth 345, 31 (2016).
12. M. Lucchini, K. Pauwels, K. Blazeik, S. Ochesanu, and E. Auffray, IEEE Trans. Nucl. Sci. 63, 586 (2016).
13. F. Cova, M. Fasoli, F. Moretti, N. Chiodini, K. Pauwels, E. Auffray, M. Lucchini, E. Borel, I. Veronese, E. D’Ippolito, and A. Vedda, J. Lumin. 192, 661 (2017).
14. M. Fasoli, A. Vedda, A. Lauria, F. Moretti, E. Rizzelli, N. Chiodini, F. Meinardi, and M. Nikl, J. Non-Cryst. Solids 355, 1140 (2009).
15. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
16. S. Baccaro and A. Cemmi, J. Phys.: Conf. Ser. 763, 012001 (2016).

Fig. 6. Radiation-induced absorption coefficient at 2.2 eV of SiO₂:0.05% Ce-doped melted sample as a function of (a) dose, (b) RT recovery time and (c) annealing temperature. The ordinate scales are the same in the three panels.
FULL REFERENCES

1. I. Veronese, N. Chiodini, S. Cialdi, E. D’Ippolito, M. Fasoli, S. Gallo, S. La Torre, E. Mones, A. Vedda, and G. Loi, “Real-time dosimetry with Yb-doped silica optical fibres,” Phys. Med. Biol. 62, 4218 (2017).

2. R. Becker, G. Dissertori, A. Gendotti, Q. Huang, D. Luckey, W. Lustermann, S. Lutterer, F. Netti-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittrat, and R. Wallny, “Proof-of-principle of a new geometry for sampling calorimetry using inorganic scintillator plates,” J. Phys.: Conf. Ser. 587, 012039 (2015).

3. A. Benaglia, M. Lucchini, K. Pauwels, C. Tully, T. Medvedeva, A. Heering, C. Dujardin, V. Kononets, K. Lebbou, N. Aubry, S. Faraj, G. Ferro, P. Lecoq, and E. Auffray, “Test beam results of a high granularity LuAG fibre calorimeter prototype,” J. Instrum. 11, P05004 (2016).

4. M. Lucchini, T. Medvedeva, K. Pauwels, C. Tully, A. Heering, C. Dujardin, K. Lebbou, P. Lecoq, and E. Auffray, “Test beam results with LuAG fibers for next-generation calorimeters,” J. Instrum. 8, P10017 (2013).

5. M. Cascella, S. Franchino, and S. Lee, “Fiber and crystals dual readout calorimeters,” in “The Future of High Energy Physics – Some Aspects,” (World Scientific Publishing Co. Pte. Ltd., 2017), p. 277.

6. K. Pauwels, C. Dujardin, S. Gundacker, K. Lebbou, P. Lecoq, M. Lucchini, F. Moretti, A. G. Petrosyan, X. Xu, and E. Auffray, “Single crystalline LuAG fibers for homogeneous dual-readout calorimeters,” J. Instrum. 8, P09019 (2013).

7. D. Contardo, M. Klute, J. Mans, L. Silvestris, and J. Butler, “Technical Proposal for the Phase-II Upgrade of the CMS detector,” Tech. Rep. CERN-LHCC-2015-010. LHCC-P-008. CMS-TDR-15-02, CERN, Geneva (2015).

8. M. J. F. Empizo, M. Cadatal-Raduban, T. Murata, Y. Minami, K. Kawano, K. Yamano, T. Shimizu, N. Sarukura, M. Gutzik, Y. Guyot, and G. Boulon, “Spectroscopic properties of Pr$^{3+}$-doped 20Al (PO$_3$)$_3$-80LiF glasses as potential scintillators for neutron detection,” J. Lumin., http://dx.doi.org/10.1016/j.jlumin.2017.06.029 (2017).

9. T. Yanagida, J. Ueda, H. Masai, Y. Fujimoto, and S. Tanabe, “Optical and scintillation properties of Ce-doped 34Li$_2$O-5MgO-10Al$_2$O$_3$-5SiO$_2$ glass,” J. Non-Cryst. Solids 431, 140 (2016).

10. A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, F. Morazzoni, F. Moretti, R. Scotti, G. Spinolo, A. Baraldi, R. Capelletti, M. Mazzera, and M. Nikl, “Insights into microstructural features governing Ce$^{3+}$ luminescence efficiency in sol-gel silica glasses,” Chem. Mater. 18, 6178 (2006).

11. V. Kononets, E. Auffray, C. Dujardin, S. Gridin, F. Moretti, G. Patton, K. Pauwels, O. Sidletskiy, X. Xu, and K. Lebbou, “Growth of long undoped and Ce-doped LuAG single crystal fibers for dual readout calorimeter,” J. Cryst. Growth 435, 31 (2016).

12. M. Lucchini, K. Pauwels, K. Blazek, S. Ochesanu, and E. Auffray, “Radiation Tolerance of LuAG:Ce and YAG:Ce Crystals under High Levels of Gamma-and Proton-Irradiation,” IEEE Trans. Nucl. Sci. 63, 586 (2016).

13. F. Cova, M. Fasoli, F. Moretti, N. Chiodini, K. Pauwels, E. Auffray, M. Lucchini, E. Bourret, I. Veronese, E. d’Ippolito, and A. Vedda, “Optical properties and radiation hardness of Pr-doped sol-gel silica: Influence of fiber drawing process,” J. Lumin. 192, 661 (2017).

14. M. Fasoli, A. Vedda, A. Lauria, F. Moretti, E. Rizzelli, N. Chiodini, F. Meinardi, and M. Nikl, “Effect of reducing sintering atmosphere on Ce-doped sol-gel silica glasses,” J. Non-Cryst. Solids 355, 1140 (2009).

15. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16 (1998).

16. S. Baccaro and A. Gemmi, “Optical characterization of ion-doped crystalline and glassy matrices operating under hostile environmental conditions,” J. Phys.: Conf. Ser. 763, 012001 (2016).