Exploring the effects of Delta Baryons in magnetars

Kauan Dalfovo Marquez
marquezkauan@gmail.com

with the collaboration of
D. P. Menezes, V. Dexheimer, D. Chatterjee, M. R. Pelicer and B. C. T. Backes

25/10/2022
- DEXHEIMER, V.; MARQUEZ, K. D.; MENEZES, D. P. Delta baryons in neutron-star matter under strong magnetic fields. EUROPEAN PHYSICAL JOURNAL A 57 216, 2021. [arXiv:2103.09855]

- BACKES, B. C. T.; MARQUEZ, K. D.; MENEZES, D. P. Effects of strong magnetic fields on the hadron-quark deconfinement transition. EUROPEAN PHYSICAL JOURNAL A 57 229, 2021. [arXiv:2103.14733]

- MARQUEZ, K. D.; PELICER, M. R.; GHOSH, S.; PETERSON, J.; CHATTERJEE, D.; DEXHEIMER, V.; MENEZES, D. P. Exploring the effects of Delta Baryons in magnetars. PHYSICAL REVIEW C 106 035801, 2022. [arXiv:2205.09827]
\[\mathcal{L} = \sum_b \bar{\psi}_b \left[\gamma_\mu \left(i \partial_\mu - g_{\omega b} \omega_\mu - g_{\phi b} \phi_\mu - \frac{g_{\rho b}}{2} \vec{\tau} \cdot \vec{\rho}_\mu \right) - M \right] \psi_b \]

\[+ \frac{1}{2} (\partial_\mu \sigma \partial^\mu \sigma - m^2 \sigma^2) - \frac{\lambda_1}{3} \sigma^3 - \frac{\lambda_2}{4} \sigma^4 \]

\[- \frac{1}{4} \Omega_{\mu \nu} \Omega^{\mu \nu} + \frac{1}{2} m^2 \omega_\mu \omega_\mu - \frac{1}{4} \Phi_{\mu \nu} \Phi^{\mu \nu} + \frac{1}{2} m^2 \phi_\mu \phi^\mu \]

\[- \frac{1}{4} \vec{R}_{\mu \nu} \cdot \vec{R}^{\mu \nu} + \frac{1}{2} m^2 \vec{\rho}_\mu \cdot \vec{\rho}_\mu + g_{\omega \rho} \omega_\mu \omega^\mu \vec{\rho}_\mu \cdot \vec{\rho}_\mu , \quad (1) \]
Relativistic effective models in compact star description

\[\mathcal{L} = \sum_b \bar{\psi}_b \left[\gamma_{\mu} \left(i \partial^\mu - g_{\omega b} \omega^\mu - g_{\phi b} \phi^\mu - \frac{g_{\rho b}}{2} \vec{\tau} \cdot \vec{\rho}^\mu \right) - M \right] \psi_b \]

\[+ \frac{1}{2} \left(\partial_{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^2 \sigma^2 \right) - \frac{\lambda_1}{3} \sigma^3 - \frac{\lambda_2}{4} \sigma^4 \]

\[- \frac{1}{4} \Omega_{\mu \nu} \Omega^{\mu \nu} + \frac{1}{2} m_{\omega}^2 \omega_{\mu} \omega^\mu - \frac{1}{4} \Phi_{\mu \nu} \Phi^{\mu \nu} + \frac{1}{2} m_{\phi}^2 \phi_{\mu} \phi^\mu \]

\[- \frac{1}{4} \vec{R}_{\mu \nu} \cdot \vec{R}^{\mu \nu} + \frac{1}{2} m_{\rho}^2 \vec{\rho}_{\mu} \cdot \vec{\rho}^\mu + g_{\omega \rho} \omega_{\mu} \omega^\mu \vec{\rho}_{\mu} \cdot \vec{\rho}^\mu, \]

(1)

Model	\(n_0 \)	\(B/A \)	\(K \)	\(S \)	\(L \)	\(M/m \)
GM1	0.153	16.33	300.5	32.5	94	0.70
L3\(\omega \rho \)	0.156	16.20	256	31.2	74	0.69
DDME2	0.152	16.14	251	32.3	51	0.57
Constr.	0.148–0.170	15.8–16.5	220–260	28.6–34.4	36.0–86.8	0.6–0.8

Table: symmetric nuclear matter properties at saturation density for the models employed in this work.
\[\mu_b = \mu_n - q_b \mu_e \]
\[\sum_{i=b,l} q_i n_i = 0 \]
\[\mu_b = \mu_n - q_b \mu_e \] (2)

\[\sum_{i=b,l} q_i n_i = 0 \] (3)

\[\varepsilon = \sum_b \frac{1}{\pi^2} \int_0^{p_F} dp \, p^2 \sqrt{p^2 + M_b^2} + \frac{1}{2} m^2 \sigma_0^2 + \frac{\lambda_1}{3} \sigma_3^3 + \frac{\lambda_2}{4} \sigma_4^4 \\
- \frac{1}{2} m^2 \omega_0^2 - \frac{1}{2} m^2 \phi_0^2 - \frac{1}{2} m^2 \rho_0^2 - g_{\omega \rho} \omega_0^2 \rho_0^2 + \varepsilon_{\text{leptons}}, \] (4)

\[P = -\varepsilon + \sum_b \mu_b n_b \] (5)
\[\mu_b = \mu_n - q_b \mu_e \]
\[\sum_{i=b,l} q_i n_i = 0 \]
\[\varepsilon = \sum_b \frac{1}{\pi^2} \int_{p\mu}^{p_{Fb}} dp \, p^2 \sqrt{p^2 + M_b^2} + \frac{1}{2} m^2 \frac{\rho^2}{3} \sigma^2 + \frac{\lambda_1}{3} \sigma^3 + \frac{\lambda_2}{4} \sigma^4 \]
\[-\frac{1}{2} m^2 \omega_0^2 - \frac{1}{2} m^2 \phi_0^2 - \frac{1}{2} m^2 \rho_0^2 - g_{\omega \omega} \omega_0^2 \rho_0^2 + \varepsilon_{\text{leptons}}, \]
\[P = -\varepsilon + \sum_b \mu_b n_b \]
\[\frac{dP}{dr} = - \frac{[\varepsilon(r) + P(r)] [m(r) + 4\pi r^3 P(r)]}{r [r - 2m(r)]}, \]
\[m(r) = \int_0^r dr' 4\pi r'^2 \varepsilon(r') \].
Relativistic effective models in compact star description

	M_b (MeV)	$q_b(e)$	I_{3b}	S_b	μ_b/μ_N	κ_b/μ_N
p	939	$+1$	$+1/2$	$1/2$	2.79	1.79
n	939	0	$-1/2$	$1/2$	-1.91	-1.91
Λ	1116	0	0	$1/2$	-0.61	-0.61
Σ^+	1193	$+1$	$+1$	$1/2$	2.46	1.67
Σ^0	1193	0	0	$1/2$	1.61	1.61
Σ^-	1193	-1	-1	$1/2$	-1.16	-0.37
Ξ^0	1315	0	$+1/2$	$1/2$	-1.25	-1.25
Ξ^-	1315	-1	$-1/2$	$1/2$	-0.65	0.06
Δ^{++}	1232	$+2$	$+3/2$	$3/2$	4.99	3.47
Δ^+	1232	$+1$	$+1/2$	$3/2$	2.49	1.73
Δ^0	1232	0	$-1/2$	$3/2$	0.06	0.06
Δ^-	1232	-1	$-3/2$	$3/2$	-2.45	-1.69

$$g_{ib} = x_{ib} g_i$$

(8)
Figure 2 The $P - \dot{P}$ diagram illustrating the placement of the different isolated neutron star classes. The blue dots mark pulsars detected both in the radio and X-ray bands, the red ones those observed only at X-ray energies. The lines of constant age and magnetic field are also shown (courtesy R.P. Mignani).
Matter composition under extreme magnetic fields

\begin{equation}
\int d^3 k \rightarrow \frac{|q| B}{(2\pi)^2} \sum_{\nu} \int d k_z, \quad \text{where} \quad \nu = n + \frac{1}{2} - \frac{s}{2} \frac{q_b}{|q_b|}
\end{equation}

\begin{equation}
\nu_{\text{max} b}(s) = \left\lfloor \frac{(E_{Fb}^* + s\kappa B)^2 - M_{b}^{*2}}{2|q_b|B} \right\rfloor
\end{equation}
\[
\int d^3k \rightarrow \frac{|q|B}{(2\pi)^2} \sum_{\nu} \int dk_z, \quad \text{where} \quad \nu = n + \frac{1}{2} - \frac{s}{2} \frac{q_b}{|q_b|}
\]

\[
\nu_{\text{max}b}(s) = \left[\frac{(E_{Fb}^* + s\kappa B)^2 - M_b^* 2}{2 |q_b|B} \right]
\]

$q_b = 0$:

\[
k_{F,b}^2(s) = E_{Fb}^* 2 - (M_b^* - s\kappa B)^2
\]

\[
n_b = \frac{1}{2\pi^2} \sum_s \left\{ \frac{k_{Fb}^3(s)}{3} - s\kappa B \left[\frac{1}{2} \left(M_b^* - s\kappa B \right) k_{Fb}(s) E_{Fb}^* 2 \left(\arcsin \left(\frac{M_b^* - s\kappa B}{E_{Fb}^*} \right) - \frac{\pi}{2} \right) \right] \right\}
\]

\[
n_{sb} = \frac{M_b^*}{4\pi^2} \sum_s \left[E_{Fb}^* k_{Fb}(s) - (M_b^* - s\kappa B)^2 \ln \left| \frac{k_{Fb}(s) + E_{Fb}^*}{M_b^* - s\kappa B} \right| \right]
\]

$q_b \neq 0$:

\[
k_{F,b}^2(\nu, s) = E_{Fb}^* 2 - \left(\sqrt{M_b^* 2 + 2\nu |q_b|B - s\kappa B} \right)^2
\]

\[
n_b = \frac{|q_b|B}{2\pi^2} \sum_{\nu, s} k_{Fb}(\nu, s)
\]

\[
n_{sb} = \frac{|q_b|B M_b^*}{2\pi^2} \sum_{s, \nu} \sqrt{M_b^* 2 + 2\nu |q_b|B - s\kappa B} \ln \left| \frac{k_{Fb}(\nu, s) + E_{Fb}^*}{\sqrt{M_b^* 2 + 2\nu |q_b|B} - s\kappa B} \right|
\]
Figure: Particle composition of neutron-star matter with Δs, with $B = 0$ (top panels) and magnetic field $B = 3 \times 10^{18}$ G (bottom panels), when considering (solid lines) or disregarding (dashed lines) the effects of the AMMs.
Matter composition under extreme magnetic fields

\[Y_{\text{spin}} = \frac{\sum_{b,s} s n_b(s)}{\sum_{b,s} n_b(s)} , \]

(17)

Figure: Spin polarization fraction as a function of baryon number density for neutron-star matter with magnetic field \(B = 3 \times 10^{18} \) G, when considering (solid lines) or disregarding (dashed lines) the effects of the AMMs.
Macroscopic structure effects of magnetic fields

![Graph showing the relationship between stellar mass and equatorial radius for different compositions and interaction strengths.](image)

Figure: Stellar mass as a function of equatorial radius for different compositions and interaction strengths, for central magnetic fields $B = 0$ (solid lines), $B = 5 \times 10^{17}$ G (dashed lines), and $B = 10^{18}$ G (dotted lines).

B (G)	n_c (fm$^{-3}$)	ε_c (MeV/fm3)		
	N+H	N+H+\Delta	N+H	N+H+\Delta
0	0.672	0.618 (0.614)	742	658 (657)
5×10^{17}	0.701	0.659 (0.653)	783	712 (708)
1×10^{18}	0.747	0.714 (0.707)	850	786 (783)
0	0.629	0.625	678	672
5×10^{17}	0.680	0.677	747	741
1×10^{18}	0.749	0.746	843	837

Table: Central baryon (n_c) and energy (ε_c) densities as a function of magnetic field strength for neutron stars of radius 12 km with L3ω\rho model for $x_{\sigma\Delta} = x_{\omega\Delta} = 1.0(1.2)$ in the top panel and CMF model in the bottom panel.
Figure: Magnetic field distribution inside a neutron star of mass $1.8M_{\odot}$ and central magnetic field of $B = 5 \times 10^{17}$ G. Solid, dashed, dashed-dotted and dotted are, respectively, the first four even multipoles of the magnetic field norm ($l = 0, 2, 4, 6$).

Figure: Magnetic field distribution inside a neutron star of mass $1.8M_{\odot}$ and central magnetic field of $B = 5 \times 10^{17}$ G. Solid, dashed and dotted are the dominant monopolar ($l = 0$) term at the polar ($\theta = 0$), intermediate ($\theta = \pi/4$) and equatorial ($\theta = \pi/2$) orientations.
Magnetic field effects on the deconfinement transition

K. D. MARQUEZ
ICTP-SAIFR, IFT-UNESP, São Paulo, Brazil

Universo Primordial
LHC, RHIC
Ponto Crítico Final
LQCD
Outras colisões de ions pesados
Plasma de quarks e glúons
Fase Quarkiônica?
Matéria de hadrons
Núcleos
REGIÃO DE TRANSIÇÃO
Supercondutor de cores
Estrelas de nêutron
Estrelas de nêutron

Assimetria
Densidade bariônica (fm$^{-3}$)

Temperatura (MeV)
Figure: Mass-radius diagram for hybrid EoS with chemical equilibrium in both phases, showing results without magnetic field effects.

Figure: Example of equations of state of parameter choices that allow the hadron-quark phase transition to occur at $B = 3 \times 10^{18}$ G.

\[
m_i = m_{i0} + \frac{D}{n_b^{1/3}} + C n_b^{1/3} = m_{i0} + m_l,
\]

(18)
Magnetic field effects on the deconfinement transition

Table: Values for μ_0 (in MeV) and p_0 (in MeV/fm3) for which the conditions of phase coexistence are satisfied at $T = 0$. The latter column specifies whether or not the Bodmer-Witten conjecture is satisfied.

C	\sqrt{D}	$B = 0$	$B = 3 \times 10^{18}$ G	B-W
0	155 MeV	no crossing	no crossing	yes
0.23	155 MeV	$\mu_0 = 1130$	$\mu_0 = 1145$	no
0.365	142 MeV	$\mu_0 = 1105$	$\mu_0 = 1109$	yes
0.5	135.75 MeV	$\mu_0 = 1202$	$\mu_0 = 1242$	yes
0.68	130 MeV	$\mu_0 = 1440$	$\mu_0 = 1475$	yes

K. D. MARQUEZ
ICTP-SAIFR, IFT-UNESP, São Paulo, Brazil
- The understanding of the meson-delta coupling parameters can be refined by symmetry group considerations, as it is made for the hyperon coupling schemes.

- The magnetic field effects on Δ-admixed matter can be more robustly understood by having the complete solution of the spin-$3/2$ Rarita-Schwinger equation under a magnetic field.
- The understanding of the meson-delta coupling parameters can be refined by symmetry group considerations, as it is made for the hyperon coupling schemes.

- The magnetic field effects on Δ-admixed matter can be more robustly understood by having the complete solution of the spin-3/2 Rarita-Schwinger equation under a magnetic field.

Muito Obrigado!

Kauan Dalfovo Marquez
marquezkauan@gmail.com
Exploring the effects of Delta Baryons in magnetars

Kauan Dalfovo Marquez
marquezkauan@gmail.com

with the collaboration of
D. P. Menezes, V. Dexheimer, D. Chatterjee, M. R. Pelicer and B. C. T. Backes

25/10/2022