Theoretical study of UV spectra of diazaphenanthrenesulfonamides calculated by AM1 and DFT B3-LYP methods

To cite this article: Barbara Dondela and Lidia Chrzastek 2007 J. Phys.: Conf. Ser. 79 012042

View the article online for updates and enhancements.
Theoretical study of UV spectra of diazaphenanthrenesulfonamides calculated by AM1 and DFT B3-LYP methods

Barbara Dondela*, Lidia Chrząstek
Institute of Chemistry and Environmental Protection, Jan Długosz University of Częstochowa, Armii Krajowej Ave 13/15, 42-201 Częstochowa, Poland
e-mail: b.dondela@ajd.czest.pl

Abstract. Two diazaphenanthrenesulfonamides have been synthesized. For calculation of experimental and theoretical UV values of these compounds the AM1 CI method has been used; their geometry optimisation was made with AM1 CI and DFT B-3 LYP methods.

1. Introduction

The present work is a continuation of our study concerning correlations of experimental and calculated UV spectral values for isomeric 1,5- and 4,6- diazaphenanthrenes (dап) 1,2 and their derivatives [1,2]; similar investigations were made for daps substituted with formyl [3], methyl [4] and amino groups [2,5] and with Br atom [6,7] as well as of their quaternary salts [1,8] and N-oxides [9].

Daps 1,2 and related compounds are interesting for their reactivity and biological properties; the presence of two nitrogen atoms in the molecule enables their complexation with metal ions [10], quaternization [11] and N-oxidation [12].

Dap quaternary salts [11] and N-oxides [12] undergo a variety of reactions; some quaternary salts are precursors of ylides serving as 1,3-dipoles in cycloaddition reactions [13]; N-alkyl salts of daps may be converted into corresponding N-alkylbenzonaphthyridones [14]. Nitration of daps followed by reduction affords aminodaps which after diazotization and coupling yield azo dyes [15]. Methyldaps may be nitrated to give nitro methyldaps [16] or oxidised with SeO$_2$ yielding formyldaps [17]. Crystallographic structure determination of a few dap derivatives [20,21] has been made.

Daps are interesting for their potential use as pharmaceutics, some compounds of this class show antibacterial, fungicidal and antineoplastic activities [16-18] and influence the enzymic activity in plants [19].

In the present paper we describe reaction of aminodaps 3,4 with benzenesulfonyl chloride yielding dap sulfonamides 5,6 as well as correlations of experimental and calculated UV spectral values of these compounds, along with their geometry optimisation.
For calculation of UV spectral values of 5 and 6 and for correlation of their experimental and theoretical wavenumber values we chose AM1 CI method, (next referred to as AM1) and for geometry optimisation the AM1 and ab initio DFT B-3 LYP (next referred to as DFT) methods.

AM1 method is parametrised for heteroaromatic compounds and is used in calculations of optimised geometries, electronic properties, total energy and heat of formation values [22-26].

DFT, i.e. density functional theory is useful for determination of the structure and energetics of molecules. From primary results of DFT calculations, such as electron density, the spin density, the total energy and one-particle energies, the electronic and magnetic properties of molecules may be derived [27-29].

The UV spectra of 5,6 have been compared with those of parent daps 1,2 and of aminodaps 3,4.

2. Experimental

The UV spectra have been recorded in 1,2- dichloroethane solution (c = 10⁻⁴ M) on UV-vis Specord spectrophotometer. Calculations were made by AM1 CI 15 and by DFT B-3 LYP/3-21 G methods. The results have been obtained on a Pentium III 733 MHz computer with the use of HyperChem 4.5 program.

Compounds 5,6 have been synthesised by reacting aminodaps [2] with benzenesulfonyl chloride as follows: Aminodiazaphenanthrene (3 or 4) (0,195 g; 1 mmol) dissolved in ethanol (2 cm³) was treated with benzenesulfonyl chloride (0,172 g, 1 mmol) and refluxed for 2 hours. To a cooled reaction mixture conc. HCl (4 cm³) was added, the formed solid was filtered off and recrystallised from 95% ethanol. 5, m.p. 176° C, yield 51%; 6, m.p. 170° C, yield 42 %.

3. Results and discussion

The experimental and calculated UV spectral data of 5 and 6 are given in Table 1. The comparison of experimental wavenumber values of 5,6 with those of corresponding parent daps 1,2 [5] and with aminodaps 3,4 [2] is shown in Table 2.
Table 1
Experimental UV data along with calculated by AM1 method wavenumber and oscillator strength values in the dipole length approximation for 5 and 6.

	Experimental	Calculated		
	$\bar{\nu}$ x 10^3 (cm$^{-1}$)	log ε	$\bar{\nu}$ x 10^3 (cm$^{-1}$)	f
5				
α	28.4	3.530	27.428	0.078
β	40.1	4.041	40.766	0.476
6				
α	31.6	3.580	32.806	0.066
β	41.7	3.710	40.073	0.534

Table 2
Differences in the experimental wavenumber values of α, p and β bands for 5,6 as compared with corresponding parent daps 1,2 and aminodaps 3,4

Band	$\bar{\nu}$ Differences $\times 10^3$ (cm$^{-1}$)	5/1	6/2	5/3	6/4
α	+0.17	-3.80	-2.30	-7.50	
p	-0.36	+1.20	-0.30	-1.90	
β	+1.40	+3.23	+1.00	+1.83	

Positive values denote red, negative blue shifts.

Comparison of experimental wavenumber values for 5,6 with those of parent daps 1,2 indicates the red shift of β bands. Similar comparison with wavenumber values of aminodaps 3,4 shows the blue shift of α and p bands, and the red shift for β bands. The strongest red shift was observed for β band of 6/2, and the strongest blue shift for α band of 6/4.

The correlations of observed and calculated with AM1 method wavenumbers of 5,6 are:

For 5/6:

For 5:

$a = 0.801$ $b = -8.023$ $r = 0.986$

For 6:

$a = 0.860$ $b = 4.732$ $r = 0.997$

The correlations of observed and calculated by AM1 method wavenumber values for 5,6 with corresponding parent daps 1,2 and aminodaps 3,4 are:

For 5/1: $a = 0.907$ $b = 2.302$ $r = 0.971$

For 5/3: $a = 0.905$ $b = 3.068$ $r = 0.992$

For 6/2: $a = 1.064$ $b = -1.714$ $r = 0.958$

For 6/4: $a = 1.069$ $b = -2.086$ $r = 0.972$

The above correlations show higher r coefficients for comparison of wavenumber values of 5,6 with corresponding aminoderivatives 3 and 4 than those for comparison with parent daps 1,2 respectively; among them the highest r is for 5/3 ($r = 0.992$).

The total and binding energy values as well as dipole moments for 5,6 calculated by AM1 and DFT methods are presented in Table 3.
Table 3
Total energy, binding energy, heat of formation and dipole moments values for 5,6 calculated by AM1 and DFT methods

	AM1	DFT		
	5	6	5	6
Total energy (eV)	-3947.847	-3947.936	-3597.588	-3598.109
Binding energy (eV)	-183.901	-183.987	-179.829	-179.905
Heat of formation (eV)	2.094	2.006	2.051	2.004
Dipole moments (D)				
M_x	-1.986	1.490	-1.824	1.427
M_y	-1.542	1.457	-1.327	1.322
M_z	2.062	-1.776	2.109	-1.661
$M(M)$	3.251	2.738	3.151	2.348

The results show that the total energy values of 5 and 6 calculated so by AM1 as well as by DFT methods are comparable and stability of these compounds is nearly the same. In the case of DFT calculations, the total energy values for 5 and 6 show slightly higher stability than those obtained by AM1 method. Dipole moment values of 5 and 6 calculated by DFT are lower than those obtained by AM1 method, respectively.

The AM1 and DFT methods have been used for optimisation of geometry of 5,6; bond length and angle values are given in Table 4.

The geometry optimisation for positions of the dap structure obtained by both methods shows for compounds 5 and 6 the C10a-C10b bonds as the longest ones, (except for C6a-C7 bond value of 6 calculated by AM1, which is slightly higher).

The calculations with AM1 method indicate the N5-C6 bonds as the shortest ones for 5 and 6, similar result is for N5-C6 bond of 6 calculated by DFT. In the case of 5 however, after DFT method the N1-C2 bond is the shortest. The results of both methods show bonds S12-C15 as the longest ones in whole molecules of 5 and 6.

Analysing angle values, both methods show angles at ortho positions to nitrogen atoms, i.e. angle N5-C6-C6a for 5, and angle C4a-C5-N6 for 6 as the largest ones. Both methods show for 5 as the smallest the angles C6a-C10a-C10b; the smallest angles for 6 calculated by AM1 and by DFT methods are C10b-C4a-C5 and C6a-C10a-C10b, respectively.

Comparing angle values in whole molecules of 5 and 6, the largest angles are those at NH group, i.e. C10-N11-S12 and C7-N11-S12, respectively.
Table 4

Bond lengths and angles for 5,6 calculated by AM1 and DFT methods

Bond length (Å)	AM1	DFT	
N1-C2	1.329	C1-C2	1.309
C2-C3	1.417	C2-C3	1.420
C3-C4	1.387	C3-C4	1.386
C4-C4a	1.425	C4-C4a	1.405
C4a-C10b	1.397	C4a-C10b	1.400
C10b-N1	1.368	C10b-N1	1.387
C4a-N5	1.393	C4a-N5	1.382
N5-C6	1.303	N5-C6	1.312
C6-C6a	1.451	C6-C6a	1.450
C6a-C10a	1.416	C6a-C10a	1.407
C10a-C10b	1.463	C10a-C10b	1.472
C6a-C7	1.405	C6a-C7	1.408
C7-C8	1.381	C7-C8	1.378
C8-C9	1.396	C8-C9	1.399
C9-C10	1.408	C9-C10	1.407
C10-C10a	1.435	C10-C10a	1.424
C10-N11	1.401	C10-N11	1.411
C11-N12	1.637	C11-N12	1.635
C12-O13	1.402	C12-O13	1.411
C12-O14	1.408	C12-O14	1.410
C12-C15	1.687	C12-C15	1.685
C15-C16	1.401	C15-C16	1.399
C16-C17	1.392	C16-C17	1.398
C17-C18	1.396	C17-C18	1.395
C18-C19	1.395	C18-C19	1.385
C19-C20	1.393	C19-C20	1.395
C20-C15	1.401	C20-C15	1.400

Angle (°)	AM1	DFT	
N1-C2-C3	124.029	C1-C2-C3	118.775
C2-C3-N4	118.258	C2-C3-N4	123.725
C3-C4-N4	119.414	C3-C4-N4	117.429
C4-C4a-C10b	118.542	C4a-C10b-C1	117.258
C10b-N1-C2	119.265	C10b-N1-C2	119.503
C4a-N5-C6	117.772	C4a-N5-C6	124.063
N5-C6-C6a	124.937	N5-C6-C6a	119.753
C6-C6a-C10a	119.224	C6a-C10a-C10b	112.706
C6a-C10b-C10a	116.824	C6a-C10b-C10a	118.313
C10b-C10b-C4a	116.226	C10b-C10b-C4a	119.119
C4a-C4b-N5	123.007	C4a-C4b-N5	119.233
C6a-C7-C8	117.918	C6a-C7-C8	118.643
C7-C8-C9	120.141	C7-C8-C9	120.909
C8-C9-C10	121.519	C8-C9-C10	121.078
C9-C10-C10a	119.047	C9-C10-C10a	119.233
C10-C10a-C6a	117.783	C10-C10a-C6a	119.828
C10a-C6a-C7	121.788	C10a-C6a-C7	119.194
C10-N11-S12	125.348	C10-N11-S12	126.483
C11-S12-O13	112.245	C11-S12-O13	110.814
C12-O14-N12	110.644	C12-O14-N12	110.883
C13-O15-N12	120.554	C13-O15-N12	120.638
C14-C15-N12	120.799	C14-C15-N12	120.786
C15-C16-N12	119.842	C15-C16-N12	119.857
C16-C17-N12	119.997	C16-C17-N12	120.005
C17-C18-N12	119.879	C17-C18-N12	119.897
C18-C19-N12	120.758	C18-C19-N12	120.785
C19-C20-N12	118.725	C19-C20-N12	118.707
References

[1] Dondela B., Peszke J., Śliwa W., 2005 J. Mol Struct. Theochem. 753 154.
[2] Peszke J., Chrząstek L., Śliwa W., 2004, Chem. Papers 58 176.
[3] Peszke J., Mianowska J., Śliwa W., 1997 Spectrochim. Acta A 53 2565.
[4] Mianowska B., Śliwa W., 1996 Spectrochim. Acta A 52 397.
[5] Mianowska B., Śliwa W., 1991 Acta Chim. Hung. 128 93.
[6] Mianowska B., Śliwa W., 1994 Acta Chim. Hung. Models Chem. 131 761.
[7] Śliwa W., Mianowska B., 1997 Prace Naukowe Wyższej Szkoły Pedagogicznej, Pedagogical
University Issues, Chemia I, Częstochowa p. 155.
[8] Peszke J., Śliwa W., 2002 Spectrochim. Acta A 58 2127.
[9] Peszke J., 1999 Prace Naukowe Wyższej Szkoły Pedagogicznej, Pedagogical University
Issues, Chemia IV, Częstochowa, p. 129.
[10] Gaudyn A., Śliwa W., 1994 Chem. Papers 48 306.
[11] Bachowska B., Zujewska T., 2001 Aust. J. Chem. 54 105.
[12] Bachowska B., Zujewska T., 2001 Monatsh. Chem. 132 849.
[13] Matusiak G., 1999 Aust. J. Chem. 52 149.
[14] Dondela B., Śliwa W., 2000 Khim. Get. Soedin. 944.
[15] Chrząstek L., Śliwa W., 2001 Chem. Papers 55 42.
[16] Chrząstek L., Mieleniczak M., Staroniewicz Z., Śliwa W., 1999 Khim. Get. Soedin. 139 1396.
[17] Chrząstek L., Mianowska B., Śliwa W., 1994 Aust. J. Chem. 47 2129.
[18] Kovacič R., Kassel M. A., Ames J.R., Feinberg B.A., Śliwa W., 1990 J. Biopharm, Sci. 1 331.
[19] Gurgul E., Herman B., Biczak R., Śliwa W., 1997 Sci. Agric. Bohem. 28 245.
[20] Davydov V., Pavlyuk V., Marciñak B., Dondela B., 2002 Acta Cryst. E 58 484.
[21] Marciñak B., Pavlyuk V., Deska M., 2002 Acta Cryst. E 58 489.
[22] Elias O., Karolyhazy L., Stajer G., Fulop F., Czako K., Harmath V., Barabas O., Keseru K., Matyus P., 2001 J. Mol. Struct. Theochem. 545 75.
[23] Parusel A.B.J, Schamschule R., Kohler G., 2001 J. Mol. Struct. Theochem. 544 253.
[24] Bakalova S., Kaneti J., 2000 Spectrochim. Acta A 56 1443.
[25] Optiz A., Roemer E., Haas W., Gorls H., Werner W., Grafe U., 2000 Tetrahedron 56 5147.
[26] Danilov V. I., Stewart J.P., Les A., Alderfer J.L., 2000 Chem. Phys. Lett. 328 75.
[27] Foresman J. B, Frisch A., 2000 Exploring Chemistry with Electronic Structure Methods,
Gaussian, Pittsburgh, PA, USA
[28] Gross E.K.U., Dreizeler R.H., 1994 Eds., Density Functional Theory, Plenum, New York
[29] Andzelm J., Wimmer E., 1992 J. Chem. Phys. 96 1280.