RESEARCH PAPER

Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems

Arnaud Capron¹, Xue Feng Chang², Hardy Hall³, Brian Ellis³, Rodger P. Beatson² and Thomas Berleth¹*¹

¹ University of Toronto-CSB, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
² British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada, V5G 3H2
³ University of British Columbia – Michael Smith Laboratories, #301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada

* To whom correspondence should be addressed. E-mail: thomas.berleth@utoronto.ca

Received 3 April 2012; Revised 11 October 2012; Accepted 15 October 2012

Abstract

Fibre properties and the biochemical composition of cell walls are important traits in many applications. For example, the lengths of fibres define the strength and quality of paper, and lignin content is a critical parameter for the use of biomass in biofuel production. Identifying genes controlling these traits is comparatively difficult in woody species, because of long generation times and limited amenability to high-resolution genetic mapping. To address this problem, this study mapped quantitative trait loci (QTLs) defining fibre length and lignin content in the Arabidopsis recombinant inbred line population Col-4×Ler-0. Adapting high-throughput phenotyping techniques for both traits for measurements in Arabidopsis inflorescence stems identified significant QTLs for fibre length on chromosomes 2 and 5, as well as one significant QTL affecting lignin content on chromosome 2. For fibre length, total variation within the population was 208% higher than between parental lines and the identified QTLs explained 50.58% of the observed variation. For lignin content, the values were 261 and 26.51%, respectively. Bioinformatics analysis of the associated intervals identified a number of candidate genes for fibre length and lignin content. This study demonstrates that molecular mapping of QTLs pertaining to wood and fibre properties is possible in Arabidopsis, which substantially broadens the use of Arabidopsis as a model species for the functional characterization of plant genes.

Key words: Arabidopsis, composite interval mapping, fibre, lignin, high-throughput, QTL.

Introduction

Wood properties are of great significance to the multitude of nations that produce pulp and paper products. Variation in pulp properties, notably fibre morphology and physical properties such as fibre length, width, strength, and coarseness, have a profound influence on the properties of paper products (Dinwoodie, 1965; Page and Seth, 1980). In woody plants used for pulp production, the traditional method of improving fibre quality has been through tree breeding (Via et al., 2004). Recent work has shown that woody plant fibre cell dimensions and strength are under genetic control (Yu et al., 2001). Lignin, a major chemical component of wood, also plays an important role in defining the properties of pulp-based products. The lignin content of pulp fibres has to be carefully controlled in order to balance paper strength and optical qualities, and removal of lignin in the pulping process is both costly and environmentally detrimental (Odendahl, 1994; Biermann, 1996). Moreover, lignin content is also a critical parameter in the generation of biofuels from cellulosic materials (Mansfield et al., 2012). Cellulosic biomass, for example from woody species, has become increasingly important as a source of bioenergy...
that is not in competition with food production (Somerville et al., 2010).

Genetic engineering has demonstrated that direct gene manipulation can improve biomass production or wood properties in woody species (Eriksson et al., 2000; Pilate et al., 2002; Ranocha et al., 2002; Bjurbäger et al., 2010; Li et al., 2011; Zawaski et al., 2011), but due to strong resistance in the marketplace to the use of genetically modified organisms, it would be preferable to obtain similar results through traditional breeding strategies.

Long generation times, variable growth conditions, and comparatively scarce genomic resources have limited the use of high-resolution genetic mapping in tree breeding, although each of these limitations is addressed in emerging tree genomic systems, such as *Populus trichocarpa* (Tuskan et al., 2006; Jansson and Douglas, 2007). A genetic model plant such as *Arabidopsis thaliana*, on the other hand, is well suited for genetic studies involving large numbers of individuals over multiple generations, because of its small size and short life cycle. Furthermore, a large number of *Arabidopsis* recombinant inbred line (RIL) populations are readily available from stock centres and some of them have been thoroughly characterized genetically (Reiter et al., 1992; Lister and Dean, 1993). *Arabidopsis* RIL populations have been used for fast and accurate identification of numerous quantitative trait loci (QTLs) controlling traits such as circadian rhythm (Swarup et al., 1999), the effects of various nutrients and minerals (Bentsink et al., 2003; Harada et al., 2004; Harada and Leigh, 2006; Reymond et al., 2006; Waters and Grusak, 2008; Zeng et al., 2008; Ghandilyan et al., 2009), resistance to predators (Pfalz et al., 2007), stress responses (McKay et al., 2008), biomass accumulation (Liseck et al., 2008), heterosis (Liseck et al., 2009), and salicylic acid pathway responses (Alcazar et al., 2009).

The initial identification of QTLs in *Arabidopsis* has enabled subsequent detailed genetic studies to unravel the molecular mechanisms controlling the traits associated with the QTLs, and these insights have often contributed to a better understanding of angiosperm plant biology in general (El-Assal et al., 2008) and pre-weighed 0.45 µm nylon membrane using a Millipore filter. The ground stems were then extracted using a rapid extraction method as described by Chang et al. (2003). Five millilitres of the fibre suspension was dispensed into a 600 ml plastic beaker for FQA analysis. The fibre suspension was subsequently filtered through a Britta Dynamic Drainage Jar using 3 l of water, stirred using an overhead stirrer at 200 r.p.m. (TAPPI 1992) to collect fibres retained on the 200-mesh screen (105 µm opening). The retained fibres were rinsed off the filter mesh, collected in a 50 ml centrifugal tube and diluted to a total volume of 50 ml with distilled water. The fibre suspensions were inspected visually and fibre bundles, if present, were removed manually using a fine needle. Triplicate measurements were performed on 10 mg samples taken from individual stems of the same line.

Fibre quality analyser measurements

Fibre length was determined using a FQA (OpTest; Hawkesbury, ON, Canada) with a cytometric flow cell and image analysis system capable of rapidly and accurately measuring fibre curl, kink, and length distributions (Olson et al., 1995; Roberson et al., 1999). Five millilitres of the fibre suspension was dispensed into a 600 ml plastic beaker for FQA analysis. This sample was then diluted automatically to exactly 600 ml by the FQA. The fibre input was adjusted to a targeted events s⁻¹ measurement range of 25–40 fibres s⁻¹. The length weighted fibre length is reported.

Removal of extractives

The inflorescence stems of *Arabidopsis* accessions were first ground using a microball mill to pass through a 80-mesh screen. Prior to extraction, the ground samples were dried in a vacuum oven at 40 °C for 48 h and conditioned in a vacuumed desiccator over phosphorus pentoxide overnight. The ground stems were then extracted using a rapid extraction by washing method. The procedure was based on Morrison’s quick extraction method (Morrison, 1972) with a reduction in sample particle size and weight, and passage through a fine filtration membrane. Approximately 0.1 g of dried 80-mesh sample was put in a test tube, soaked with 15 ml of distilled water, heated in a water bath at 65 °C for 30 min with occasional shaking, and then filtered hot through a dry and pre-weighed 0.45 µm nylon membrane using a Millipore filter. The residue was first washed with 20 × 2 ml of deionized water and then sequentially with 20 × 1 ml each of ethanol, acetone, and diethyl ether. The residue was then transferred to a pre-weighed aluminium pan in preparation for lignin content measurement.

Lignin content measurement

The procedure used was as described by Chang et al. (2008). Dried 80-mesh samples (5 ± 1 mg) of the ground and extracted *Arabidopsis* stems were weighed to the nearest 0.01 mg, and then digested with 1.0 ml of 25% acetyl bromide in acetic acid in a 70 °C water bath for...
30 min with shaking at 10 min intervals. After cooling at room temperature, the samples were stored in an ice bath for 5 to 120 min, and 5.0 ml of acetic acid was added to each sample. After mixing, 30 µl aliquots of the mixed content, in triplicate, were transferred to the wells of a 96-well quartz microplate. Transfer of the samples to the microplate was completed within 5 min before sequentially adding 40 µl of 1.5 M NaOH, 30 µl of 0.5 M hydroxylamine hydrochloride, and 150 µl of acetic acid to each well using a ten-channel multiple pipette. The absorbance of the solutions in the wells at 280 nm was measured using a Perkin-Elmer Wallac 1420 microplate reader. A blank was included to correct for background absorbance by the reagents.

Data analysis

Data analysis was carried out using the R statistical language (R Development Core Team, 2009). Broad sense heritability was estimated using the analysis of variance component in the lme4 package. Variance components for the lines and for the experiments were calculated with the model:

$$H^2 = \frac{Var(\text{lines})}{Var(\text{lines}) + Var(\text{Residual})}$$

Best linear unbiased predictor (BLUP) values for each line were also calculated with the lme4 package. Variance components for the lines and the experiments were calculated using the same model as for the heritability, and the random effects for each line were extracted with the ranef function.

A composite interval method was performed with the R/qtl (Broman et al., 2003) analysis package. The imputation method was selected, with 256 draws, an error of 0.001, and 2.5 cm steps. The composite interval mapping was done with the imputation method, with three covariables and a 10 cm window:

$$\text{cim(\text{cross}, \text{method}=\text{imp}, \text{window}=10, \text{n.marcovar}=3)}$$

Calculations were performed on each experimental data set independently and also on the calculated BLUP values for fibre length and lignin content using the same method. The significant thresholds were determined by performing 1000 permutations. The multiple QTL model was devised using the fitqtl function. Results obtained from the composite interval mapping analysis were used to construct the QTLs and their positions were used in a simple additive model. The resulting model was used to assess the effect of each QTL on the trait (percentage of explanation of the observed total variance).

Analysis of variance (ANOVA) was performed to test the association of the genotype of selected markers with the observed trait, using the gee and multcomp packages.

Candidate gene selection

The list of all protein-encoding genes included in the intervals delimited by FQ2 and FQ5 (see Results) was screened for genes with enriched expression in the second–internode data set of the Bio-Array Resources for Plant Biology’s expression browser (http://bar.utoronto.ca/welcome.htm). The selected cut-off was 1.5 on the log2 scale. Additional genes were also retained for their known connection to fibre and cell-wall development or auxin/gibberellin connection. The selected list of genes was then screened for mismatches at the amino acid level between the resequenced Col-0 genome (Cao et al., 2011) and the Ler-0 genome (Gan et al., 2011), using the Blastx algorithm (Altschul et al., 1997). Genes showing at least one change at the amino acid level were considered as candidates. For the LQ2 interval (see Results), the same method was applied, but additional genes were limited to lignin metabolism/synthesis.

Results

Fibre length measurements

The Col-4×Ler-0 RIL population created by Lister and Dean (1993) was chosen to produce the stem tissues used for the analysis. To collect material for fibre length measurements, the RIL population was grown in three independent biological samples. A single, central inflorescence stem from each line was used in the first experiment, referred to as Fibre1, whilst two stems from two individuals per line were pooled together in the two subsequent experiments, referred as Fibre2 and Fibre3. Great care was taken to minimize contamination from other cell types, typically leading to a very clean fibre preparation (data not shown). The FQA analysis yielded considerably higher fibre length values in the Col-4 parental line than in the Ler-0 parental line, as shown by a t-test ($P < 0.001$), the mean value across the three experiments being 0.977 and 0.757 mm, respectively.

The fibre length values determined across the entire set of RILs showed a wider range than the values observed for the parental lines, which indicated the possibility of transgressive segregation (Fig. 1). The shortest measured fibres within the RILs were 0.626 mm long, 87.9% of the minimum Ler value, whilst the longest were 1.287 mm, 122.5% of the longest Col value (Table 1). Broad sense heritability for the trait was estimated to be 62.3%. The histograms from the individual experiments for Fibre1, Fibre2, and Fibre3 (Fig. 1A, B, and 1C, respectively) showed a similar structure. In each, a main peak was associated with shorter fibres, as indicated by the median values in Table 1, with a trailing end towards the longer values.

Lignin content measurements

For lignin content measurements, the RIL population was grown twice to harvest material for biological replicas, labelled Lignin1 and Lignin2. Measured differences in lignin content between the parent lines were inconclusive; a 2% difference was seen between the parents in Lignin1 but almost none in Lignin2 (Table 2). This was confirmed by a t-test, which did not show a statistically significant difference between the parents ($P > 0.60$). The mean value of both experiments was a lignin content of 19.65% (w/w) (Table 2).

In contrast, the mean lignin content values in individual lines of the RIL population ranged from 13.13 to 20.98%. Broad-sense heritability was estimated at 32.3%, possibly indicating a relatively limited genetic influence. The distribution of lignin content values in the Lignin1 and Lignin2 datasets was very similar, as shown in Figs 2A and B.

QTL analysis for fibre length

A genetic map based on the segregation of 676 single-feature polymorphisms (SFPs) in the Col-4×Ler-0 RIL population (Singer et al., 2006) was used to perform a QTL analysis using the fibre length values of 98 lines of the RIL collection, first by interval mapping (data not shown) and then by composite interval mapping (CIM) on each data set independently, using R/qtl (Jansen, 1993; Zeng, 1993, 1994; Jansen and Stam, 1994).
Two significant fibre length QTLs ($P < 0.05$) were mapped to similar genome positions in all three data sets (Fibre1, Fibre2, and Fibre3): based on the chromosome to which they each mapped, they are referred to hereafter as FQ2 and FQ5, respectively.

FQ2 was located on the bottom arm of chromosome 2, with the maximum LOD score positioned between 49.5 and 55 cM (Fig. 3) in the map defined by Singer et al. (2006). The maximum LOD score was observed in the Fibre2 data set at 9.09, and LOD scores in Fibre1 and Fibre3 were also highly significant, with LOD scores of 8.63 and 5.67, respectively (Fig. 3). The extent of the QTL varied slightly between the data sets, but the overall confidence interval could be calculated based on a 2 LOD score drop from the summit of the peak. This placed FQ2 between 43.3 and 57 cM, an interval covering 21 SFP markers (Fig. 3, Table 3).

The second significant QTL, FQ5, was located in the distal part of the top arm of chromosome 5. The maximum LOD score was found between 3 and 8 cM, with a maximum value of 9.90 in the Fibre1 experiment (Fig. 3). The estimated extent of FQ5 with a 2 LOD score drop was between 1.5 and 11.6 cM, which encompassed 17 SFP markers (Table 3).

In order to assess the accuracy of the mapping, BLUP values were calculated from the three experiments and used to perform the CIM calculation, producing results very similar
QTLs controlling fibre length and lignin content in *Arabidopsis*

Fig. 4 showed that the measured fibre length was strongly correlated with the genotype of two markers (C2_081 and C5_008) in all three experiments, a fact further confirmed by ANOVA (Supplementary Table 1 at *JXB* online). These markers were selected as proxies for FQ2 and FQ5, as they were both found as part of the interval identified in all three Fibre experiments. Plants having the Ler allele of FQ2 and the Col allele of FQ5 displayed the largest fibres (mean 0.947–1.086 mm), whilst the opposite allele combination yielded the shortest fibres (mean 0.764–0.821 mm). Fibre lengths in individuals possessing purely Col or Ler alleles at these sites fell in between these extremes.

Further analysis with the R/qtl package using a multiple QTL model (Haley and Knott, 1992; Sen and Churchill, 2001) was performed to estimate the contribution of each QTL to the observed variance, based on a model devised for each data set. In the three data sets, the contribution of FQ5 to the total variance (23.96–29.96%) was consistently higher than that of FQ2 (15.91–22.18%). Importantly, the estimated combined contribution of both QTLs amounted to approximately one-half of the total variance (45.79–50.58% depending on the data set).

QTL analysis for lignin content

The genetic map by Singer et al. (2006) was also used to locate QTLs controlling lignin content. Interval mapping and CIM revealed a strong LOD score peak on chromosome 2 in both independent experiments, indicative of a significant QTL, henceforth referred as LQ2 (Fig. 5). The margins, defined by a 2 LOD score drop, located the QTL between 35.3 and 47.9 cM, an interval containing 23 SFP markers. As for the fibre experiment, BLUP values were calculated from both lignin experiments and used to perform the same CIM calculation. The results obtained with the BLUPs were very similar to those seen with individual experiments (Fig. 5). A multiple QTL model was again used to determine the contribution of the significant QTL to the observed variance (Table 4), and this revealed that between 24.80 and 26.51% of the measured variance in lignin content was...
attributable to LQ2 in the two independent experiments. Sorting the individual lines based on a single marker (C2_067) showed that individuals carrying the Ler allele of this marker had, on average, less lignin (16.50–17.47%) than individuals carrying the Col allele (17.92–19.00%) (Fig. 6), a fact also confirmed by ANOVA (Supplementary Table 1B). The marker C2_067 was selected as a proxy for the QTL LQ2, as it belonged to the interval defined in both Lignin experiments.

Annotated genes within the QTL intervals

As all the SFP markers used in the construction of the Singer et al. (2006) genetic map correspond to positions in the fully sequenced genome of *Arabidopsis*, all annotated genes within the QTL intervals identified by CIM could readily be identified. The QTL FQ2 was flanked by the markers C2_079 and C2_089, which corresponded to the genes At2g28060 and At2g37050 according to the AGI version 10 of the *Arabidopsis* genome. This interval is 3.6 Mb long and contains 1005 loci encoding proteins. The second significant fibre length QTL FQ5, flanked by C5_002 and C5_008, was located in a 2.7 Mb interval between At5g01150 and At5g08580, which contains 789 protein-encoding genes. Finally, LQ2, the QTL controlling lignin content, was located between the markers C2_056 and C2_077, corresponding to At2g23900 and At2g30240, a 1.12 Mb interval that contains 672 protein-encoding loci.

Although our genetic approach could link entirely uncharacterized genes to fibre development, it is be worthwhile mining the identified intervals for plausible candidate genes, as the use of increasing genomic resources could further narrow down the selection and accelerate the cloning of the respective QTLs. On the basis of currently available resources, we selected candidate genes in the following way. First, genes with an association with fibre and cell-wall development were compiled. This list was amended for genes involved in auxin or gibberellin metabolism and signalling, two hormones with roles in fibre development (Zhong and Ye, 2001; Dayan et al., 2010; Ragni et al., 2011). At the same time, the Bio-Array Resources for Plant Biology’s expression browser (Toufighi et al., 2005) was used to identify genes whose expression was enriched in the stem second-internode dataset. Finally, all the selected genes were screened for predicted amino acid polymorphisms between the Columbia and Landsberg erecta alleles. This selection resulted

Table 3. Summary of the QTLs identified by composite interval mapping. The positions and marker intervals are based on the map of Singer et al. (2006).

QTL	Experiment	Chromosome	Marker interval	Position (cM)	LOD
Fibre length	FQ2 Fibre1	2	C2_079-C2_089	53.4	8.63
	FQ2 Fibre2	2	C2_075-C2_091	52.4	9.09
	FQ2 Fibre3	2	C2_071-C2_088	49.1	5.67
	FQ5 Fibre1	5	C5_002-C5_008	3.5	10.07
	FQ5 Fibre2	5	C5_002-C5_008	3.0	8.85
	FQ5 Fibre3	5	C5_008-C5_018	8.0	7.27
Lignin content	LQ2 Lignin1	2	C2_067-C2_077	45.9	5.37
	LQ2 Lignin2	2	C2_066-C2_072	40.8	5.84
QTLs controlling fibre length and lignin content in *Arabidopsis* | 191

in 51 genes for FQ2 and 27 for FQ5. A complete list is provided in Supplementary Table 2 (at JXB online).

Some of the selected genes were highly conspicuous. For example, a gene involved in the metabolism or deposition of cell-wall polymers other than cellulose, *FRAGILE FIBER 8/IRREGULAR XYLEM 7* (*FRA8/IRX7*) encoding a glycosyltransferase involved in the synthesis of xylan, could affect fibre length (Brown et al., 2007). Remarkably, the fra8 mutant also displays thinner secondary cell walls in fibres (Zhong et al., 2005). Among the genes found in the FQ2 interval, there were several members of the *CELLULOSE SYNTHASE-LIKE* (*CSL*) family: *CSLA7, CSLB1, -B2, -B3*, and *-B4, and CSLD1*. *CSLD1* is a gene whose activity is important for pollen-tube cell-wall development and growth (Bernal et al., 2008). While *CSLA7* encodes a protein reportedly involved in the production β-mannans (Liepman et al., 2005), the function of β-mannans within the cell wall remains unknown, but *CSLA7* activity is crucial for proper embryo development. A *csla7* null allele causes arrest during embryogenesis, disrupting normal cell division and patterning of the embryo, precluding further analysis of the protein function at later stages (Goubet et al., 2003). However, the precise functions of the *CSLB* genes have not been investigated. Also, genes involved directly in cellulose synthesis deposition or related processes, whose knockout mutant phenotypes may affect many tissues, may quantitatively influence fibre properties in their allelic variation, as found in FQ2 and FQ5. The *TRICHOME BIREFRINGENCE* (*TBR*) gene is located inside FQ5. *TBR* is involved in synthesis of the secondary cell wall, as is its homolog *TBR-LIKE 3* (*TBL3*), which is also present in FQ5. Mutant *tbr* and *tbl3* plants display reductions in crystalline cellulose levels but not in total cellulose content (Bischoff et al., 2010). Furthermore, more members of the *TBL* gene family were found in FQ5 (*TBL35*) and FQ2 (*TBL43, 45*). In addition, lignins play major roles in determining the mechanical properties of the cell wall, and mutants affected in lignin biosynthesis or deposition may display fibre abnormalities. Among the candidate genes identified were four laccase-encoding genes: one in FQ2, *LAC2*, and three on FQ5, *LAC10*.
controls the endoreduplication in trichomes and other organs (Walker et al., 2000).

Eighteen genes from the LQ2 interval were selected as candidate genes because of suspected or demonstrated impact on lignin biosynthesis or by their enriched expression in the stem second- internode in association with predicted amino acid polymorphisms between Columbia and Landsberg erecta. Among these, the CCR6 gene, At2g23910, encodes a putative cinnamoyl CoA reductase, a member of a family of oxidoreductases that includes enzymes responsible for the final step in monolignol biosynthesis (for review, see Boerjan et al., 2003). Studies in tobacco and eucalyptus have linked CCRs and lignin biosynthesis (Lacombe et al., 1997; Ralph et al., 1998). Although the precise function of CCR6 is unknown, it is most strongly expressed in immature seeds, and microarray surveys have shown it to be co-expressed with flavonol biosynthesis genes (Yonekura-Sakakibara et al., 2008). Among the 11 CCR genes annotated in Arabidopsis, only CCR1 (At1g15950) has been characterized extensively. A ccr1 mutant seems to suffer from reduced lignin content in the stem (Jones et al., 2001), although more recent work suggests that this phenotype may be the result of delays in lignin deposition rather than an inability to execute the reaction (Patten et al., 2005; Laskar et al., 2006).

Discussion

Whilst QTLs affecting fibre properties have been mapped in several plant species, including maize (Cardinal et al., 2003; Krakowsky et al., 2006, 2005), sorghum (Shirinani and Friedt, 2011), and, most notably, cotton (Mei et al., 2004; Chee et al., 2005a,b; Draye et al., 2005; Ulloa et al., 2005; Qin et al., 2008; Chen et al., 2009; Paterson et al., 2011; Zhang et al., 2011), application of similar approaches to trees has been hindered by the length of time required for the tree to mature, combined with the difficulty in predicting final wood properties in mature trees based on the properties of juvenile wood.

Although QTL mapping in crop plants and trees directly benefits breeding efforts, molecular access to relevant genes can be achieved much faster in genetic model plants, such as Arabidopsis, where biological properties and genomic resources enable unmatched genetic resolution and molecular access to underlying genes, although it can suffer from its strength, as its simplicity might mask complex epistatic interactions found in larger crop genomes. Furthermore, Arabidopsis has also demonstrated its suitability for providing molecular access to conserved plant biological mechanisms (Lipman et al., 2010; Wienkoop et al., 2010; Zhang et al., 2011), and, as an arboreal growth habit is not a monophyletic trait but has arisen independently many times in both angiosperm and gymnosperm lineages (Bowe et al., 2000; Chaw et al., 2000; Soltis et al., 2002), our understanding of the molecular mechanisms operating in the cells of trees is expected to benefit from genetic discoveries in Arabidopsis as much as in other plants.

In this study, we explored the possibility of identifying QTLs relevant for important wood traits in an established RIL population of Arabidopsis as a first step towards a molecular understanding of the underlying cellular mechanisms. Our reproducible
mapping of two QTLs controlling fibre length in *Arabidopsis* accessions have demonstrated the feasibility of the approach, as well as of the high-throughput phenotyping technology that was employed in the study. Rapidly developing mass-sequencing and positional cloning technologies are well suited to move on towards the identification of the molecular alleles underlying these two QTLs in the future. At the same time, *Arabidopsis* QTL analysis can be expanded towards accessions with more strongly divergent fibre traits.

Our results for genetic control of lignin content seemed to indicate a limited genetic influence, but it was still sufficient to successfully perform QTL mapping. The results of CIM analysis were similar in the Lignin1 and Lignin2 experiments (Figs 4 and 6), which together identified the first QTL affecting lignin content in the *Arabidopsis* stem. As with fibre properties, studies on genetic control of lignin content have been conducted in other species, such as pine (Sewell et al., 2002), maize (Cardinal et al., 2003; Krakowsky et al., 2006, 2005), barley (Grando et al., 2005) and rice (Xie et al., 2011), research that might be complemented with molecular access to the relevant genes in *Arabidopsis*. As part of our mapping efforts, we have incorporated a novel, micro-scale, acetyl bromide-based method for determination of lignin content (Chang et al., 2008) developed for assaying large numbers of *Arabidopsis* plants. The results reported here encourage its application for screening a wider range of *Arabidopsis* accessions to identify extreme divergences of lignin content in this species. Genetic analysis of such genotypes may in turn lead to the identification of more numerous and stronger QTLs for this trait.

Previous studies have identified a number of factors influencing fibre properties, including hormonal regulation (Zhong and Ye, 2001; Dayan et al., 2010; Ragni et al., 2011), activation of a number of key transcription factors (Ko et al., 2007; Yamaguchi et al., 2011) and cytoskeletal functions (Burk and Ye, 2002). Although mutations in any of these pathways could affect fibre length, and thus generate the spurious impression that in the absence of any recognizable correlation between fibre length and any other trait in the segregating population underscores the need to find relevant genes underlying the QTLs FQ2 and FQ5 to gain a more comprehensive understanding of fibre length regulation.

It is noteworthy that, for both the fibre length and lignin content traits, the variation within the population vastly exceeded the variation between the parental genotypes, a phenomenon that has been observed in other similar studies involving RIL populations (Reymond et al., 2006; Coluccio et al., 2011; Sanyal and Randal Linder, 2011). Multiple QTLs may mask each other’s effects within the genome of a parental line but then become fully recognizable in a segregating population. Thus, it is worthwhile searching for QTLs in established RILs first, which provides the advantages of a high density of DNA markers and thorough characterization of the parental genotypes. In the case of Col and Ler, the two most widely used *Arabidopsis* accessions, their fully sequenced genomes and the availability of bacterial artificial chromosome (BAC) libraries are invaluable aids for identifying the molecular basis of each QTL. The ability of one of these BACs (or an overlap of several BACs) to confer altered fibre length properties to another accession would be the entry point for the molecular genetic dissection of fibre length control.

Association genomics studies are presently underway in woody species such as *Populus* and *Eucalyptus*, whose genomes have been fully sequenced. These analyses seek to correlate single-nucleotide polymorphism allele patterns with variance in a wide range of wood properties, including fibre length and lignin content (reviewed by Nieminen et al., 2012; Mizrachi et al., 2012). As gene sequence and overall synteny are largely conserved between *Arabidopsis* and *Populus* (Tuskan et al., 2006), for example, it will be interesting to compare the results of such genome-wide analyses with the gene content of the *Arabidopsis* QTL intervals detected here.

Supplementary data

Supplementary data are available at *JXB* online.

Supplementary Table S1. ANOVA testing for correlation between traits and selected markers.

Supplemental Table 2: List of candidate genes for the three mapped QTLs.

Acknowledgements

We would like to acknowledge project support from a Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Grant to T.B., R.B. and B.E., NSERC Discovery Grants to T.B. and B.E., and support from the FPhinnovation (Montreal) fibre analysis facility at the University of British Columbia and from the Centre for Analysis of Genome Evolution and Function (CAGEF) at the University of Toronto. We also thank Claire Li, Magdalena Skoczenska, Freeman Lan, Mandy Tse, Jae Kang, Hae Won Kwon, Minwoo Kim, and Andrew Kuan for their technical assistance.
References

Alcazar R, Garcia AV, Parker JE, Reymond M. 2009. Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proceedings of the National Academy of Sciences, USA 106, 334–339.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.

Bentsink L, Jowett J, Hanhart CJ, Koornneef M. 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103, 17042–17047.

Bentsink L, Yuan K, Koornneef M, Vreugdenhil D. 2003. The genetics of phytoate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theoretical and Applied Genetics 106, 1234–1243.

Bernal AJ, Yoo CM, Mutwil M, Jensen JK, Hou G, Blaukopf C, Sorensen I, Blanchar EB, Scheller HV, Willats WG. 2008. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiology 148, 1283–1253.

Berthet S, Demont-Caulet N, Pollet B, et al. 2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. The Plant Cell 23, 1124–1137.

Biermann CJ. 1996. Handbook of Pulping and Papermaking. San Diego: Academic Press.

Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR. 2010. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiology 153, 590–602.

Bjurhager I, Olsson AM, Zhang B, Gerber L, Salmen L. 2010. Ultrastructure and biomechanics of Populus wood with reduced lignin content and its homolog AT5G01360 and its homolog BIREFRINGENCE in tip-growing Arabidopsis cells. Plant Physiology 148, 1283–1253.

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54, 519–546.

Bowe LM, Coat G, de Pamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences, USA 97, 4092–4097.

Broman KW, Wu H, Sen S, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890.

Brown DM, Goubet F, Song Q, Li B, Deng F, Dong C, Zhang T. 2009. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Theoretical and Applied Genetics 119, 605–612.

Chen H, Qian N, Guo W, Song Q, Li B, Deng F, Dong C, Zhang T. 2009. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Theoretical and Applied Genetics 119, 605–612.

Coluccio MP, Sanchez SE, Kasulin L, Yanovsky MJ, Botto JF. 2011. Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation. Journal of Experimental Botany 62, 167–176.

Dayan J, Schwarzkopf M, Arni A, Aloni R. 2010. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnology Journal 8, 425–435.

Dinwoodie JM. 1965. The relationship between fiber morphology and paper properties: a review of literature. TAPPI 48, 440–447.

Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. 2005a. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theoretical and Applied Genetics 111, 757–763.

Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. 2005b. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: II. Fiber length. Theoretical and Applied Genetics 111, 772–781.

Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. 2005b. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theoretical and Applied Genetics 111, 772–781.

Esheda R, Persson S, Delmer D, Scheible WR. 2010. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiology 153, 590–602.

Bjurhager I, Olsson AM, Zhang B, Gerber L, Salmen L. 2010. Ultrastructure and biomechanics of Populus wood with reduced lignin content and its homolog AT5G01360 and its homolog BIREFRINGENCE in tip-growing Arabidopsis cells. Plant Physiology 153, 590–602.

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54, 519–546.

Bowe LM, Coat G, de Pamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences, USA 97, 4092–4097.

Broman KW, Wu H, Sen S, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890.

Brown DM, Goubet F, Song Q, Li B, Deng F, Dong C, Zhang T. 2009. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Theoretical and Applied Genetics 119, 605–612.

Coluccio MP, Sanchez SE, Kasulin L, Yanovsky MJ, Botto JF. 2011. Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation. Journal of Experimental Botany 62, 167–176.

Dayan J, Schwarzkopf M, Arni A, Aloni R. 2010. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnology Journal 8, 425–435.

Dinwoodie JM. 1965. The relationship between fiber morphology and paper properties: a review of literature. TAPPI 48, 440–447.

Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. 2005b. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theoretical and Applied Genetics 111, 757–763.

Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. 2005b. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: II. Fiber length. Theoretical and Applied Genetics 111, 772–781.

Chen H, Qian N, Guo W, Song Q, Li B, Deng F, Dong C, Zhang T. 2009. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton. Theoretical and Applied Genetics 119, 605–612.

Coluccio MP, Sanchez SE, Kasulin L, Yanovsky MJ, Botto JF. 2011. Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation. Journal of Experimental Botany 62, 167–176.

Dayan J, Schwarzkopf M, Arni A, Aloni R. 2010. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnology Journal 8, 425–435.

Dinwoodie JM. 1965. The relationship between fiber morphology and paper properties: a review of literature. TAPPI 48, 440–447.

Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH. 2005b. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theoretical and Applied Genetics 111, 764–771.

El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. 2001. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genetics 29, 435–440.

Eriksson ME, Israelsson M, Olsson O, Moritz T. 2000. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology 18, 784–788.
Gan X, Stegle O, Behr J, et al. 2011. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477, 419–423.

Ghandilyan A, Barboza L, Tisne S, Granier C, Raymond M, Koornneef M, Schat H, Aarts MG. 2009. Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. New Phytologist 184, 180–192.

Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, Dupree P. 2003. AtCSDL7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiology 131, 547–557.

Grando S, Baum M, Ceccarelli S, Goodchild A, El-Haramein FJ, Jahanzaib A, Backes G. 2005. QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment. Theoretical and Applied Genetics 111, 688–695.

Haley CS, Knott SA. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324.

Harada H, Kuromori T, Hirayama T, Shinozaki K, Leigh RA. 2004. Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. Journal of Experimental Botany 55, 2005–2014.

Harada H, Leigh RA. 2006. Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana. Journal of Experimental Botany 57, 953–960.

Jansen RC, Stam P. 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136, 1447–1455.

Jansen RC. 1993. Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211.

Jansson S, Douglas CJ. 2007. Populus: a model system for plant biology. Annual Review of Plant Biology 58, 435–458.

Jones L, Ennos AR, Turner SR. 2001. Cloning and characterization of irregular xylan 4 (irx4): a severely lignin-deficient mutant of Arabidopsis. The Plant Journal 26, 205–216.

Kasili R, Walker JD, Simmons LA, Zhou J, De Veylder L, Larkin JC. 2010. SIAMESE cooperates with the CDH1-like protein CCS52A1 to establish endoreplication in Arabidopsis thaliana. The Plant Journal 61, 551–565.

Koornneef M, Schat H, Aarts MG, Hoorn D, Leunissen JAM, Koornneef M. 1993. Recombinant inbred lines for mapping rflp markers in Arabidopsis thaliana. The Plant Journal 5, 777–788.

Laskar DD, Jourdes M, Patton AM, Helms GL, Davin LB, Lewis NG. 2006. The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. The Plant Journal 48, 674–686.

Li Q, Min D, Wang JP, Peszlen I, Horvath L, Horvath B, Nishimura Y, Jameel H, Chang HM, Chiang VL. 2011. Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiology 31, 226–236.

Liesep AH, Wightman R, Geshi N, Turner SR, Scheller HV. 2010. Arabidopsis—a powerful model system for plant cell wall research. The Plant Journal 61, 1107–1112.

Liesep AH, Wilkerson CG, Keegstra K. 2005. Expression of cellulose synthase-like (Cls) genes in insect cells reveals that ClsA family members encode mannan synthases. Proceedings of the National Academy of Sciences, USA 102, 2221–2226.

Lisec J, Meyer RC, Steinfath M, et al. 2008. Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. The Plant Journal 53, 960–972.

Lisec J, Steinfath M, Meyer RC, Selbig J, Melchinger AE, Willmitzer L, Altmann T. 2009. Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations. The Plant Journal 59, 777–788.

Lister C, Dean C. 1993. Recombinant inbred lines for mapping rlfp and phenotypic markers in Arabidopsis thaliana. The Plant Journal 4, 745–750.

Mansfield SD, Kang KY, Chapple C. 2012. Designed for deconstruction—poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol 194, 91–101.

Masle J, Gilmore SR, Farquhar GD. 2005. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436, 866–870.

Mattsson J, Sung ZR, Berleth T. 1999. Responses of plant vascular systems to auxin transport inhibition. Development 126, 2979–2991.

Mayer AM, Staples RC. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565.

McKay JK, Richards JH, Nemali KS, Sen S, Mitchell-Olds T, Boles S, Stahl EA, Wayne T, Juenger TE. 2008. Genetics of drought adaptation in Arabidopsis thaliana II. QTL analysis of a new mapping population, KAS-1 × TSU-1. Evolution 62, 3014–3026.

Mehrshahi P, Gonzalez-Jorge S, Akhtar TA, et al. 2010. Functional analysis of folate polyglutamylization and its essential role in plant metabolism and development. The Plant Journal 64, 267–279.

Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ. 2004. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics 108, 280–291.
Messerschmidt A, Huber R. 1990. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. European Journal of Biochemistry 187, 341–352.

Mizrachi E, Mansfield SD, Myburg AA. 2012. Cellulose factories: advancing bioenergy production from forest trees. New Phytologist 194, 54–62.

Morrison IM. 1972. A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops. Journal of the Science of Food and Agriculture 23, 791.

Mouchel CF, Briggs GC, Hardtke CS. 2004. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes & Development 18, 700–714.

Nieminent K, Robischon M, Immanen J, Helariutta Y. 2012. Towards optimizing wood development in bioenergy trees. New Phytologist 194, 46–53.

Odendahl S. 1994. Environmental protection and consumer demands: a review of trends and impacts. Pulp and Paper Canada 95, 144–148.

Olson JA, Robertson AG, Finnigan TD, Turner RRH. 1995. An analyzer for fiber length and shape. Journal of Pulp and Paper Science 21, J376.

Page DH, Seth RS. 1980. The elastic modulus of paper III. the effect of dislocations, microcompressions, curl and kinks. TAPPI 63, 99–102.

Park S, Rancour DM, Bednarek SY. 2008. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiology 148, 246–258.

Paterson AH. 2011. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. Theoretical and Applied Genetics 123, 1075–1088.

Patten AM, Cardenas CL, Cochrane FC, Laskar DD, Bedgar DL, Davin LB, Lewis NG. 2005. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry 66, 2092–2107.

Peaucelle A, Louvet R, Johansen NJ, et al. 2011. The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in Arabidopsis. Development 138, 4733–4741.

Pfalz M, Vogel H, Mitchell-Olds T, Kroymann J. 2007. Mapping of QTL for resistance against the crucifer specialist herbivore Pleris brassicae in a new Arabidopsis inbred line population, Da(1)-12×Ei-2. PLoS One 2, e578.

Pilate G, Guiney E, Holt K, et al. 2002. Field and pulping performances of transgenic trees with altered lignification. Nature Biotechnology 20, 607–612.

Qin H, Guo W, Zhang YM, Zhang T. 2008. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theoretical and Applied Genetics 117, 883–894.

R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. Vienna, Austria.

Ragni L, Nieminent K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS. 2011. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. The Plant Cell 23, 1322–1336.

Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM. 1998. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proceedings of the National Academy of Sciences, USA 95, 12803–12808.

Rancour DM, Dickey CE, Park S, Bednarek SY. 2002. Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiology 130, 1241–1253.

Ranocha P, Chabannes M, Charmayou S, Danoun S, Jaunee A, Boudet AM, Goffner D. 2002. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiology 129, 145–155.

Ranocha P, Denance N, Vanholme R, et al. 2010. Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. The Plant Journal 63, 469–483.

Reiter RS, Williams JG, Feldmann KA, Rafalski JA, Tinge SV, Scolnick PA. 1992. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proceedings of the National Academy of Sciences, USA 89, 1477–1481.

Reymond M, Svistoonoff S, Loutet O, Nussaume L, Desnos T. 2006. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant, Cell & Environment 29, 115–125.

Roberston AG, Olson JA, Allen PA, Chan B, Seth RS. 1999. Measurement of fiber length, coarseness and shape with the fiber quality analyzer. TAPPI 82, 30–41.

Sanyal A, Randal Linder C. 2011. Quantitative trait loci involved in regulating seed oil composition in Arabidopsis thaliana and their evolutionary implications. Theoretical and Applied Genetics 124, 723–738.

Schillhammer AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C. 2009. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. The Plant Journal 60, 771–782.

Sen S, Churchill GA. 2001. A statistical framework for quantitative trait mapping. Genetics 159, 371–387.

Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Basson DL, Neale DB. 2002. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theoretical and Applied Genetics 104, 214–222.

Shirin S, Briddon W. 2011. QTL for fibre-related traits in grain x sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theoretical and Applied Genetics 123, 999–1011.

Singer T, Fan Y, Chang HS, Zhu T, Hazen SP, Briggs SP. 2006. A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization. PLoS Genetics 2, e144.

Smith HM, Hake S. 2003. The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode
immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. The Plant Cell 22, 3295–3304.

Xie JK, Kong XL, Chen J, Hu BL, Wen P, Zhuan JY, Bao JS. 2011. Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon. Journal of Zhejiang University Science B 12, 518–526.

Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. 2011. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. The Plant Journal 66, 579–590.

Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K. 2008. Comprehensive flavonoid profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. The Plant Cell 20, 2160–2176.

Yu Q, Pulkkinen P, Rautio M, Haapanen M, Alén R, Stener LG, Beuker E, Tigerstedt PM. 2001. Genetic control of wood physicochemical properties, growth, and phenology in hybrid aspen clones. Canadian Journal of Forest Research 31, 1348–1356.

Zawaski C, Kadmiel M, Ma C, Gai Y, Jiang X, Strauss SH, Busov VB. 2011. SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytologist 191, 678–691.

Zeng C, Han Y, Shi L, Peng L, Wang Y, Xu F, Meng J. 2008. Genetic analysis of the physiological responses to low boron stress in Arabidopsis thaliana. Plant, Cell & Environment 31, 112–122.

Zeng ZB. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences, USA 90, 10972–10976.

Zeng ZB. 1994. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

Zhang C, Mallery EL, Schlueuter J, Huang S, Fan Y, Brankle S, Staiger CJ, Szymanski DB. 2008. Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. The Plant Cell 20, 995–1011.

Zhang Z, Ober JA, Kliebenstein DJ. 2006. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. The Plant Cell 18, 1524–1536.

Zhang Z, Rong J, Waghmare VN, Chee PW, May OL, Wright RJ, Gannaway JR, Chew YH, Halliday KJ. 2011. A stress-free walk from Arabidopsis to crops. Current Opinion in Biotechnology 22, 281–286.

Zhong R, Pena MJ, Zhou GK, et al. 2005. Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. The Plant Cell 17, 3390–3408.

Zhong R, Taylor JJ, Ye ZH. 1997. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. The Plant Cell 9, 2159–2170.

Zhong R, Ye ZH. 2001. Alteration of auxin polar transport in the Arabidopsis ifl1 mutants. Plant Physiology 126, 549–563.