the mean temperature was 36.9°C prior to initiation of CRRT, 36.6°C while on CRRT, and 37.0°C following discontinuation of CRRT. During each of the periods before, during, and after CRRT, patients who received antibiotics had significantly higher temperatures than those who did not (P < 0.001). Patients receiving antibiotics were generally younger (mean 60 years vs. 64 years, P < 0.001), had longer ICU stays (mean 29 days vs. 12 days, P < 0.001) and were more likely to be ventilated (mean 23 days vs. 7 days, P < 0.001). The mean SOFA score on day one was similar (mean 11.1 in the antibiotic group and 10.5 in the other group).

Conclusion. This investigation suggests that patients have slightly lower temperatures while on CRRT, by an average less than half a degree. A similar effect is seen in both patients with infections as well as those without. Further work will be needed to determine what constitutes a true febrile response in this population.

Disclosures. All authors: No reported disclosures.

1341. Development of a Series of High-Throughput Screens to Identify Leads for Nontuberculous Mycobacteria Drug Design
Sarah McGuffin, MD; Steven Mullen, BS; Julie Early, PhD; Tanya Parish, PhD, Senior Scien2; University of Washington, Seattle, Washington; Infectious Disease Research Institute, Seattle, Washington

Session: 153. Mycobacteria
Friday, October 4, 2019: 12-15 PM

Background. Nontuberculous mycobacteria (NTM), particularly Mycobacterium avium complex and Mycobacterium abscessus complex, cause significant morbidity and mortality in patients with impaired host immunity or pre-existing structural lung conditions. NTM infections are increasing at an alarming rate worldwide and there is a dearth of progress in regard to the development of efficacious and tolerable drugs to treat such infections. Traditional drug discovery screens do not account for the diverse physiological conditions, microenvironments, and compartmentalization that the bacilli encounter during human infection. In order to help populate the NTM drug pipeline, and explore the disconnect between in vitro activity, in vivo activity; and clinical outcomes, we are developing a high throughput in vitro assay platform that will more closely model the unique infection-related conditions encountered by NTM.

Methods. We are developing and validating a suite of in vitro assays that screen compounds for activity against extracellular planktonic bacteria, extracellular bacteria within biofilms, intracellular bacteria, and nutrient-starved non-replicating bacteria. We are using both the smooth and rough morphotypes of M. avium and M. abscessus. We have validated high throughput assays to pharmaceutical standards for replicating and non-replicating M. abscessus. We have also tested a panel of 18 known anti-mycobacterial compounds. Assay development is currently underway to test compounds for activity against NTM in biofilm and inside macrophages as well.

Conclusion. To enhance our ability to identify novel compounds targeting NTM drug development, focused libraries of compounds that have undergone significant preclinical profiling and/or compounds with known activity against M. tuberculosis (TB) will be screened. Such a "piggyback" approach usurs advances made in TB drug development and leverages them for NTM drug discovery. This will help expedite novel drug development, reduce attrition rate, and offer a shorter route to clinical use as it exploits the prior investment in medicinal chemistry, pharmacology, and toxicology.

Disclosures. All authors: No reported disclosures.

1342. Impact of HIV Infection on Treatment Outcome of New Tuberculosis Patients Attending Tuberculosis and Antiretroviral Treatment Services in the Community-Based Hospital, Thailand: A Retrospective Cohort Study
Subench Putnins, MD; Chao Phraya Abhaibhubhej Hospital, Muang, Prachin Buri, Thailand

Session: 153. Mycobacteria
Friday, October 4, 2019: 12-15 PM

Background. Tuberculosis (TB) and HIV are one of the significant public health problems in Thailand, and an estimated 15,000 individuals have a dual infection. Both HIV and TB each disease speeds up the progression of each other. TB is the leading cause of death in HIV-infected individuals, and HIV coinfected TB patients have disease-specific, and treatment affected their treatment outcomes. There is insufficient evidence on issues of TB and HIV coinfected patients and the NTM drug discovery study aimed to assess the impact of HIV status on treatment outcome of TB patients.

Methods. We conducted a retrospective cohort study among TB patients who registered to service at Chao Phraya Abhaibhubhej Hospital, Prachin Buri, Thailand from October 1, 2017 to October 31, 2018. All patients' demographic data, diagnosis, and treatment were retrieved. Clinical characteristics, treatment outcome, and factors associated with treatment outcome were analyzed.

Results. There were 49 (10.65%) HIV among 460 TB patients with a median age of 44 (32-61) years old and 65.2% were males. Disseminated TB and extrapulmonary TB were higher in HIV coinfected group (62.50 vs. 37.50, P = 0.001). All pulmonary TB patients' lower lobe involvement was higher in HIV coinfected group (29.37 vs. 11.63, P = 0.001). In HIV coinfected group median CD4 was 134 cell/mm3 (IQR 89–180) vs. 263 cell/mm3 (IQR 134–475) in non-HIV infected patients (P = 0.01). By using both the smooth and rough morphotypes of M. avium and M. abscessus. We have validated high throughput assays to pharmaceutical standards for replicating and non-replicating M. abscessus. We have also tested a panel of 18 known anti-mycobacterial compounds. Assay development is currently underway to test compounds for activity against NTM in biofilm and inside macrophages as well.

Conclusion. To enhance our ability to identify novel compounds targeting NTM drug development, focused libraries of compounds that have undergone significant preclinical profiling and/or compounds with known activity against M. tuberculosis (TB) will be screened. Such a “piggyback” approach usurs advances made in TB drug development and leverages them for NTM drug discovery. This will help expedite novel drug development, reduce attrition rate, and offer a shorter route to clinical use as it exploits the prior investment in medicinal chemistry, pharmacology, and toxicology.

Disclosures. All authors: No reported disclosures.