Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis (CF) airway and is a leading cause of death in persons with CF. Oral streptococcal colonization has been associated with stable CF lung function. However, no studies have demonstrated how Streptococcus salivarius, the most abundant streptococcal species found in individuals with stable CF lung disease, potentially improves lung function or becomes incorporated into the CF airway biofilm. By utilizing a two-species biofilm model to probe interactions between *S. salivarius* and *P. aeruginosa*, we discovered that the *P. aeruginosa* exopolysaccharide Psl promoted *S. salivarius* biofilm formation. Further, we identified a *S. salivarius* maltose-binding protein (MalE) that is required for promotion of biofilm formation both in vitro and in a *Drosophila melanogaster* co-infection model. Finally, we demonstrate that promotion of dual biofilm formation with *S. salivarius* is common among environmental and clinical *P. aeruginosa* isolates. Overall, our data supports a model in which *S. salivarius* uses a sugar-binding protein to interact with *P. aeruginosa* exopolysaccharide, which may be a strategy by which *S. salivarius* establishes itself within the CF airway microbial community.

INTRODUCTION

Cystic fibrosis (CF) is the most common lethal genetic disorder in Caucasian populations [1]. Individuals with this disorder accumulate thick mucus in the lungs, and the inability to clear this mucus from the airways facilitates the colonization of microbes [1]. The bacterial species *Pseudomonas aeruginosa* is the leading cause of death for individuals with CF [2]. The prevalence of *P. aeruginosa* colonization in the CF population increases with age, with up to 60% of CF adults being colonized in their lifetime [3]. *P. aeruginosa* uses various strategies to cause persistent infections in the lung, including evasion of the host immune system, conversion to a mucoid phenotype, and biofilm formation [2]. These adaptation mechanisms, particularly the ability to form recalcitrant biofilms, render *P. aeruginosa* difficult to treat with antibiotics and permit the development of lifelong chronic infections that lead to rapid lung deterioration and mortality [4].

Biofilms are defined as a community of microbes that are attached to a surface and embedded in a protective extracellular matrix [5]. *P. aeruginosa* produces multiple exopolysaccharides that comprise its biofilm matrix. Non-mucoid strains of *P. aeruginosa*, which typically colonize the CF lung initially, produce the exopolysaccharides Pel and Psl [6]. Over the course of infection, non-mucoid strains will accumulate mutations and convert to a mucoid phenotype by switching to production of the exopolysaccharide alginate [7]. Pel, Psl, and alginate play an important role in antimicrobial resistance by preventing penetration of antibiotics into the *P. aeruginosa* biofilm [8, 9]. Additionally, Psl is important for *P. aeruginosa* integration into polymicrobial biofilms [10].

Only in recent years have researchers begun to study how cross-species interactions in biofilms influence the composition of polymicrobial communities [10]. The importance of studying *P. aeruginosa* interactions with other microbes in the CF airway polymicrobial community is becoming increasingly recognized [11, 12]. For instance, *P. aeruginosa* has been found to synthesize glutamate from precursor molecules secreted by *Rotthia mucilaginosa*, another common microbe found in the CF lung [13]. Additionally, Psl produced by *P. aeruginosa* has been shown to interact with the staphylococcal protein A of *Staphylococcus aureus* to increase *P. aeruginosa* resistance to antibiotics [14]. Lastly, colonization of *Stenotrophomonas maltophilia*, an emerging CF pathogen, is promoted in murine lungs through integration into *P. aeruginosa* biofilms [15]. Relevant to our study, oral streptococci are increasingly recognized as core residents of the CF lung microbiota. Historically, these bacterial taxa have been thought to reside solely in the oral cavity and any detection of these microbes outside of this environment, particularly in the CF lung, was thought to be transient or attributed to oral contamination during sample collection. Multiple independent microbiome studies using sputum and bronchoalveolar lavage fluid have confirmed the presence of mitis and salivarius group oral streptococci in the CF airway [16-19]. Oral commensal streptococci have been shown to be associated with lung stability and increased microbial diversity in CF individuals. *Streptococcus salivarius* is the most prevalent streptococcal species found in the lungs of individuals with stable CF lung disease [16]. We previously reported that the second most abundant oral commensal found in the CF airway, *Streptococcus parasanguinis*, adheres to the mucoid *P. aeruginosa* exopolysaccharide alginate, resulting in the promotion of *S. parasanguinis* biofilm formation [20]. Therefore, it is important to understand how these commensals are incorporated...
into the CF polymicrobial community and potentially impact lung function in the CF population.

S. salivarius has been shown to commonly colonize the upper respiratory tract of infant children [21, 22]. Because many individuals with CF become colonized with *P. aeruginosa* during adulthood, it is likely that *S. salivarius* is present in the lungs during the early stages of infection with non-mucoid *P. aeruginosa* [3]. In an effort to better understand how *S. salivarius* incorporates into biofilms with the major CF pathogen *P. aeruginosa*, we utilized two species in vitro and in vivo biofilm models to identify mechanisms that facilitate *S. salivarius* colonization. Here, we report that *S. salivarius* exploits the non-mucoid *P. aeruginosa* exopolysaccharide Psl to promote streptococcal biofilm formation. This enhanced biofilm phenotype was consistent when *P. aeruginosa* environmental and clinical isolates were grown with *S. salivarius*. Moreover, we found that the presence of a streptococcal maltose-binding surface protein, MalE, potentially facilitates the interaction between *S. salivarius* and *P. aeruginosa* Psl. Finally, we show that *P. aeruginosa* promotes *S. salivarius* colonization in a *Drosophila melanogaster* in vivo model of co-infection. Taken together, our study highlights a unique mechanism by which *S. salivarius* utilizes *P. aeruginosa* extracellular components to influence the CF airway microbial community by initiating and sustaining streptococcal colonization within the CF lung.

RESULTS

Non-mucoid *Pseudomonas aeruginosa* promotes *Streptococcus salivarius* biofilm formation

To characterize interactions between the oral commensal *S. salivarius* and the CF lung pathogen *P. aeruginosa*, we co-cultured *S. salivarius* with an acute wound isolate (PA01) and chronic CF isolate (FRD1). *S. salivarius* and the acute isolate PA01 formed significantly more biofilm biomass when co-cultured compared to single species controls (Fig. 1). When we co-cultured *S. salivarius* with the mucoid isolate FRD1, biofilm formation did not increase compared to the single species controls (Fig. 1). To examine the relative species contribution in dual species biofilms with *S. salivarius* and PA01, both planktonic and biofilm colony forming units (CFUs) were enumerated (Fig. 2A). When co-cultured in TSBYE, both *S. salivarius* and *P. aeruginosa* biofilm CFUs increased significantly compared to single species controls. In contrast, no change in planktonic cell number was observed for either *S. salivarius* or *P. aeruginosa* in the presence of the other species (Fig S1A). We also co-cultured *S. salivarius* and *P. aeruginosa* in a synthetic cystic fibrosis sputum medium known as SCFM2, which mimics the nutrient profile found in the sputum of persons with CF [23]. When cultured in SCFM2, we observed an even greater increase in *S. salivarius* biofilm CFUs in the presence of *P. aeruginosa* (Fig. 2B). However, *P. aeruginosa* planktonic and biofilm cell number did not increase in the presence of *S. salivarius* in SCFM2, suggesting that this interspecies interaction exclusively enhances *S. salivarius* biofilm growth in synthetic CF sputum (Fig. 2 (Fig S1B)), which better recapitulates the nutritional environment in the CF airway [23]. We confirmed these observations via confocal laser microscopy and observed an increase in *S. salivarius* and *P. aeruginosa* biofilm formation in TSBYE when co-cultured, and an increase only in *S. salivarius* biofilm formation in SCFM2 (Fig. 2C). Additionally, propidium iodide staining, which stains dead cells or nucleic acids [24, 25] was prominent in our dual biofilm TSBYE group (Fig S2). We did not observe a reduction in planktonic cells for either species in the dual biofilm group, suggesting that this staining is likely due to extracellular DNA, an important component of the biofilm matrix [24, 26]. Enhanced *S. salivarius* biofilm formation in the presence of *P. aeruginosa* strain PA01, but not FRD1 suggests that PA01 possesses a distinct feature that promotes *S. salivarius* biofilm formation.

P. aeruginosa exopolysaccharide Psl enhances *S. salivarius* biofilm formation

One major difference between the two strains is the exopolysaccharides produced within their respective biofilm matrices. Initial CF infecting *P. aeruginosa* strains that are acquired from the environment resemble PA01 and produce Pel and Psl, whereas CF adapted strains like FRD1 overproduce alginate, largely due to accumulation of mutations in the mucA gene [6, 7]. To investigate whether production of the exopolysaccharide Psl, the most prominent exopolysaccharide made by PA01, promotes *S. salivarius* biofilm formation, we co-cultured *S. salivarius* biofilms with a PA01 mutant deficient in Psl (PA01ΔpslA), and PA01ΔpslA complemented with a wild-type copy of pslA (PA01ΔpslA+). When *S. salivarius* was co-cultured with PA01ΔpslA, we observed significantly less dual biofilm formation compared to wild-type PA01 co-cultures with *S. salivarius*. Re-examining the biofilm CFUs of *S. salivarius* with PA01ΔpslA+ restored the dual species biofilm to levels similar to the wild-type PA01 dual biofilm (Fig. 3A). When quantifying *S. salivarius* biofilm CFUs in both TSBYE and SCFM2, we found that co-culture of *S. salivarius* with PA01ΔpslA resulted in a significantly decreased *S. salivarius* biofilm cell number compared to *S. salivarius* co-cultured with wild-type PA01 (Fig. 3B). When co-cultured with PA01ΔpslA+, *S. salivarius* biofilm was restored to levels similar to wild-type PA01 in SCFM2 and partially restored in TSBYE, further confirming that Psl enhances *S. salivarius* biofilm formation. We quantified and compared planktonic CFUs of PA01ΔpslA and PA01ΔpslA+ to wildtype PA01 planktonic CFUs to confirm the lack of *S. salivarius* biofilm formation in the presence of PA01ΔpslA was not caused by growth defects and lower cell density in the mutant strain co-culture (Figs. S3, S4). Additionally, we saw no growth advantage over time when we performed 16-h growth curves of wild-type PA01 cultured with and without *S. salivarius*, further confirming that *S. salivarius* biofilm promotion is not due to increased growth of *P. aeruginosa* (Fig. S5). To further confirm that *P. aeruginosa* Psl does indeed contribute to
enhanced biofilm formation by *S. salivarius*, we co-cultured *S. salivarius* with two *P. aeruginosa* isolates known to produce little to no Psl and measured changes in biofilm biomass [28, 29]. *P. aeruginosa* exopolysaccharide biosynthetic genes compete for the same precursor sugars, therefore, induction of one polysaccharide decreases the production of alternative exopolysaccharides [30]. Hence, overproduction of alginate in the *mucA* deficient strain of PAO1 results in a reduction in Psl production [29, 30]. Significantly less dual biofilm formation was observed with the PAO1Δ*mucA*-alginate overproducing strain in comparison to wild-type PAO1 (Fig. S6A). We observed a similar result when co-culturing *S. salivarius* with the *P. aeruginosa* strain PA14, which lacks essential Psl biosynthetic genes and solely produces the exopolysaccharide Pel (Fig. S6B) [31]. Additionally, purified Psl significantly increased the single species *S. salivarius* biofilm, further confirming the role of Psl in promoting *S. salivarius* (Fig. 3C). Lastly, *pslA*, a gene required for Psl production, was shown to be significantly upregulated in the presence of *S. salivarius* (Fig. 3D).

To understand the spatial relationship between *S. salivarius* and Psl within a dual biofilm, we performed confocal laser scanning microscopy on single and dual biofilms of *S. salivarius* and *P. aeruginosa* strains PA01, PA01Δ*pslA*, and PA01*pslA*+ stained with a FITC-conjugated α-Psl antibody to further characterize the role of Psl in promotion of *S. salivarius* biofilm formation (Fig. 3E, F).

Consistent with our biofilm CFU quantifications, we observed a significant increase in *S. salivarius* biofilm in the presence of wild-type PAO1 as well as PAO1*pslA*+. When co-cultured with PAO1Δ*pslA*, no increase in *S. salivarius* biofilm formation was observed. Both *S. salivarius* and Psl were dispersed throughout the wild-type PAO1 and PAO1*pslA*+ dual biofilms. Additionally, changes in *S. salivarius* biofilm architecture were observed in the presence of Psl (Fig. 3F). Overall, our findings show that Psl not only promotes *S. salivarius* biofilm development, but also modifies *S. salivarius* biofilm structure in dual species biofilms with *P. aeruginosa*.

To determine whether *S. salivarius* utilizes Psl only as a biofilm matrix scaffold or also metabolizes Psl, we tested whether *S. salivarius* could utilize purified Psl as a carbon source by monitoring planktonic growth in full-strength and 1:1 diluted THB media that was supplemented with Psl or glucose (Fig. S7). *S. salivarius* grew similarly in the presence of Psl compared to the no-sugar control in full strength THB. Conversely, *S. salivarius* growth was enhanced in the presence of purified Psl in diluted THB media compared to the no-sugar control. This finding suggests that *S. salivarius* metabolizes Psl under conditions in which preferred carbon sources are limited. Our results demonstrate that Psl promotes *S. salivarius* biofilm formation, as well as *S. salivarius* planktonic growth via metabolism of Psl under specific nutrient-limited conditions.

Fig. 2 Non-mucoid *P. aeruginosa* strain PAO1 promotes *S. salivarius* biofilm formation. A Quantification of Ss and PAO1 biofilm CFUs was performed in a 6-h, 6-well mono- and dual-species biofilm model. Samples were cultured in TSBYE medium and B synthetic CF sputum (SCFM2), serially diluted and plated on THB agar. Data represent three biological replicates performed in triplicate. Student’s t test. Error bars indicate mean ± SD. C Confocal microscopy was performed on Ss and PAO1-GFP single and dual species biofilms in both TSBYE and SCFM2. Ss was stained with hexidium iodide. **p < 0.01, ***p < 0.001.
Fig. 3 *P. aeruginosa* exopolysaccharide Psl promotes *S. salivarius* biofilm formation. Ss was co-cultured with *P. aeruginosa* PAO1 strains (A) PAO1ΔpslA and PAO1 pslA+ in TSBYE medium with 1% sucrose in a 96-well plate for 16 h at 37 °C with 5% CO2 (*n* = 3 biological replicates, 3 technical). Biofilm biomass was then measured using crystal violet staining. One-way ANOVA with Dunnett’s multiple comparisons test. B Quantification of Ss biofilm-forming cells after co-culturing with PAO1, PAO1ΔpslA, and PAO1 pslA+ in TSBYE (left) and SCFM2 [50] in a 6-h, 6-well model at 37 °C with 5% CO2 (*n* = 3 biological replicates, each with 3 technical replicates). One-way ANOVA with Šidák’s multiple comparisons test. C 0.5 mg/mL purified Psl was added to Ss single cultures in TSBYE with 1% sucrose in a 96-well 16-h biofilm. Crystal violet staining was used to quantify biofilm biomass. D qPCR quantification of *P. aeruginosa* pslA expression compared to 16S rRNA control. Student’s t test. Fluorescence microscopy images at 60× magnification of 16-h single (E) and dual species (F) biofilms of Ss and PAO1, PAO1ΔpslA, and PAO1pslA+ cultured in TSBYE supplemented with 1% sucrose. Ss was stained with hexidium iodide, and Psl was stained with a FITC-conjugated α-Psl monoclonal antibody. Scale bar: 20 μm. *p < 0.05, **p < 0.01, ****p < 0.0001.
S. salivarius maltose-binding protein MalE plays a role in promotion of S. salivarius biofilm formation both in vitro and in vivo

To identify candidate S. salivarius proteins that could be involved in P. aeruginosa-dependent biofilm promotion, we examined the protein profile of whole-cell lysates of S. salivarius and P. aeruginosa single and dual cultures (Fig. 4A). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed the overexpression of one ~50 kDa protein that was identified as the S. salivarius maltose-binding protein MalE. MalE was overexpressed in dual cultures with P. aeruginosa, but not in single S. salivarius cultures. To examine whether MalE is involved in P. aeruginosa-dependent promotion of S. salivarius biofilm formation, we added anti-MalE antibodies to single and dual cultures of S. salivarius and P. aeruginosa. We found that anti-MalE antibodies significantly inhibited dual biofilm formation in a dose-dependent manner, while growth of single species biofilms was unaffected (Fig. 4B). These findings suggest that MalE is involved in promotion of S. salivarius biofilm formation in the presence of P. aeruginosa. To determine whether P. aeruginosa promotes S. salivarius colonization in an in vivo model of co-infection, Drosophila melanogaster were co-infected with subcultures of S. salivarius and P. aeruginosa, and bacterial CFUs were enumerated after 24 h. Colonization was performed with and without 10 µg/mL of α-MalE antibodies to test whether colonization of S. salivarius is MalE-dependent. S. salivarius colonization significantly increased in the presence of P. aeruginosa, while no change in P. aeruginosa colonization between groups was observed (Fig. 5A). Consistent with our in vitro data, the addition of 10 µg/mL α-MalE antibodies caused a significant decrease in S. salivarius colonization in the dual infection group but had no effect on colonization during single species infections (Fig. 5A). These findings suggest that MalE is required for increased colonization by S. salivarius in the presence of P. aeruginosa.

To examine whether the promotion of S. salivarius colonization is also Psl-dependent in an in vivo model of infection, we infected flies with subcultures of PAO1 and PAO1ΔpslA with and without S. salivarius, then quantified CFUs per fly after 24 h. The presence of wild-type PAO1 significantly promoted S. salivarius colonization, while the presence of PAO1ΔpslA marginally, but not significantly, promoted S. salivarius colonization (Fig. 5B). Additionally, S. salivarius did not promote P. aeruginosa colonization. Our results demonstrate that in vivo colonization of S. salivarius is both MalE-dependent and Psl-dependent.
DISCUSSION

Research in recent years has emphasized that a large percentage of bacteria present within any given environment exists in biofilms, rather than as mono-species infections [32]. However, few studies have examined the role of polysaccharides in the development of polymicrobial biofilms [9, 33, 34]. Our findings demonstrate that S. salivarius may incorporate itself into polymicrobial biofilms by using a streptococcal sugar-binding protein, MalE, to interact with the P. aeruginosa exopolysaccharide Psl in both in vitro and in vivo fly models of co-infection.

Our findings are significant because interactions between S. salivarius and P. aeruginosa may have an impact on P. aeruginosa virulence and pathogenesis. Although P. aeruginosa viability was not reduced in our in vitro and in vivo models of co-infection, S. salivarius may potentially interfere with P. aeruginosa pathogenesis and impact CF lung function by disrupting Psl availability to P. aeruginosa. Psl is a polysaccharide known for its role in resistance against antibiotic treatment and persistence of lung infections [9, 33, 34]. Our findings demonstrate that S. salivarius not only uses Psl as a biofilm scaffold, but can also metabolize Psl. This sequestering of Psl by S. salivarius could interfere with the ability of P. aeruginosa to use Psl as a mechanism for persistence.

We have previously shown that oral commensal streptococci can use cell surface adhesins to bind to the P. aeruginosa exopolysaccharide alginate to promote its own biofilm formation [20]. MalE has been shown to be anchored to the cell surface of Gram-positive bacteria, therefore allowing it to interact with extracellular molecules [35]. MalE in Group A Streptococcus has a wide range of sugar substrates, which has been implicated in helping Streptococcus species adapt to different host environments and support colonization [36]. Additionally, the maltose-binding protein of Streptococcus mutans along with many other bacterial species has been shown to also bind and transport sucrose in addition to maltose [37]. The Psl structure contains multiple sugars, including galactose, mannose, rhamnose, and...
glucose [38], which *S. salivarius* MalE may be utilizing to promote biofilm formation. Our previous findings and current results suggest MalE as a possible candidate protein that facilitates oral commensal biofilm promotion by binding to exopolysaccharides produced by *P. aeruginosa*.

Numerous studies have demonstrated the potential health benefits of *S. salivarius*. In combination with *Streptococcus oralis*, *S. salivarius* has been shown to inhibit biofilm formation by six pathogens that commonly infect the upper respiratory tract, including *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Streptococcus pyogenes*, *Streptococcus pneumoniae*, *Propionibacterium acnes*, and *Moraxella catarrhalis* [39]. Persons with CF infected with *P. aeruginosa* experience respiratory exacerbation episodes characterized by a large inflammatory response associated with increased pro-inflammatory cytokines IL-1, IL-6, IL-8, and TNF-α [40]. *S. salivarius* downregulates the innate immune response to *P. aeruginosa* in infected human epithelial cells [41] and inhibits both the pro-inflammatory NF-κB pathway in vitro and inflammation in an in vivo colitis mouse model [42]. Additionally, *S. salivarius* has been shown to downregulate IL-8 production induced by *P. aeruginosa* in human bronchial epithelial cells [41]. These observations warrant further studying of interactions between *S. salivarius* and *P. aeruginosa* to understand how *S. salivarius* affects the inflammatory host response to *P. aeruginosa* and how, in turn, this affects CF lung tissue damage.

Because *S. salivarius* colonizes the upper respiratory tract early in life and *P. aeruginosa* colonizes individuals with CF more commonly than they age, we would expect *S. salivarius* to be present in the CF lung during the early stages of infection when non-mucoid *P. aeruginosa* is acquired from the environment. All ten of our non-mucoid environmental *P. aeruginosa* isolates were able to produce an enhanced dual biofilm when co-cultured with *S. salivarius*. The ability of *S. salivarius* to create an enhanced biofilm with environmental strains suggests that *S. salivarius* could be utilizing *P. aeruginosa* Psl from these non-mucoid strains to colonize the lungs during early *P. aeruginosa* infection. Further studies are required to understand how *S. salivarius* colonization impacts early *P. aeruginosa* infection. While only one of the three non-mucoid CF isolates produced an enhanced dual biofilm, the two other isolates displayed colony morphology differing from that of high Psl-producing strains such as PAO1, suggesting that their biofilm matrix is not primarily comprised of Psl. When *S. salivarius* was co-cultured with mucoid CF isolates of *P. aeruginosa*, one isolate produced a significantly enhanced dual biofilm. These results are consistent with previous literature that demonstrates Psl contributes to biofilm formation in some mucoid CF *P. aeruginosa* isolates [43].

In summary, we report a novel mechanism by which *S. salivarius* and *P. aeruginosa* interact within a biofilm and in our in vivo model. Furthermore, we have previously shown that the oral commensal *S. parasanguis* interacts with the *P. aeruginosa* exopolysaccharide alginate to promote streptococcal biofilm formation [20]. Collectively, these studies illustrate potential mechanisms by which oral commensal streptococci interact with *P. aeruginosa* to alter the composition of the CF airway microbiota community. In conclusion, our data suggest a model in which oral streptococci exploit *P. aeruginosa* exopolysaccharides, resulting in enhanced commensal biofilm development. The novel interactions between *S. salivarius* and *P. aeruginosa* revealed in this study could have implications for CF airway microbial community development and warrant further study.

MATERIALS AND METHODS

Bacterial strains, culture conditions, and reagents

Strains *S. salivarius* K12, *P. aeruginosa* PAO1, *P. aeruginosa* PAO1ΔpsIA, *P. aeruginosa* PAO1ΔpsIAΔpslA, *P. aeruginosa* PA14, *P. aeruginosa* FRD1, and *S. salivarius* environmental, acute clinical, and CF isolates were used in this study (Table 1). *S. salivarius* was grown on Todd-Hewitt Broth (THB) agar (Becton Dickinson) and cultivated statically at 37°C in 5% CO₂ in THB. *P. aeruginosa* was grown on Pseudomonas Isolation Agar (PIA; Becton Dickinson) and cultivated in Luria broth (LB; Fisher) and incubated while shaking (250 rpm) at 37°C. PAO1ΔpsIA and PAO1ΔpslA were selected for on PIA with 100 μg/mL carbenicillin (Sigma-Aldrich) and were cultured in LB with 100 μg/mL carbenicillin. DH10b (E. coli) was cultured while shaking in LB at 37°C. After transformation, DH10b was cultured in SOC medium (Fisher) while shaking at 37°C for an hour.

Biofilm formation assays

Overnight cultures of *S. salivarius* and *P. aeruginosa* were sub-cultured in THB and LB, respectively, and grown to exponential phase (OD₆₀₀ 0.5–0.8). Sub-cultures were then inoculated into Tryptic Soy Broth (MP Biomedicals) with 0.5% yeast extract (Fisher) (TSBYE) containing 1% sucrose at a dilution of 1:1000 for *S. salivarius* and 1:100 for *P. aeruginosa*. The two strains were inoculated either separately for the single species biofilm or together for the dual species biofilm assays. 200 μL of each sample was added to a 96-well plate (Nunc) in triplicate and incubated statically at 37°C in 5% CO₂ for 16 h. The biofilms were then stained with 0.1% crystal violet and dissolved in 30% acetic acid [44]. Absorbance was measured at 562 nm to quantify biofilm biomass using the Synergy HTX Multi-Mode Microplate Reader (Biotek).

Quantification of *P. aeruginosa* and *S. salivarius* in co-cultures

Cultures were grown in either TSBYE with 1% sucrose, or synthetic cystic fibrosis sputum (SCFM2). SCFM2 was made as previously described [23]. To quantify colony forming units of each species, serial dilutions in TSBYE of planktonic samples from a 6-h six-well biofilm assay were plated on THB agar square plates (Fisher) using the track dilution method [45]. Remaining planktonic cells were aspirated off, and adherent biofilm cells were then washed two times with phosphate-buffered saline (PBS), scraped and resuspended in 3 mL of TSBYE. The resulting suspension was serially diluted and plated.

Construction of the PAO1 pslA Δ complemented strain

The *pslA* gene was cloned by PCR amplifying ~500 bp upstream and downstream of the coding region from the wildtype PAO1 strain using primer sequences described (Table 2). The PCR product was cloned into the EcoRI and BamHI sites of the pBluescript K(−) shuttle vector (Addgene). The resulting plasmid, referred to as pBKSN51, was converted to a mobilizable plasmid by incorporation of a oriT into the HindIII site [46] and transformed into competent E. coli strain DH10b using a standard transformation method [47]. The pBKSN51 plasmid was introduced into PAO1ΔpslA through triparental mating [46]. Plasmid conjugation events were selected for using PIA with 100 μg/mL carbenicillin.

Psl purification

Purification was performed on PAO1ΔpslA− cultures grown overnight at 37°C in six-well plates in TSBYE supplemented with 1% sucrose and 100 μg/mL carbenicillin. Cultures were pooled together, diluted 1:1 with 0.9% NaCl, and agitated with 0.01 M EDTA by centrifuging at 200 rpm for 30 min at 4°C to detach cell-associated Psl. Cultures were then centrifuged at 10,000 g for 15 min at 4°C to remove bacterial cells. The resulting supernatant was filtered with a 0.22 μm vacuum filter to remove excess cell debris. Exopolysaccharide was then precipitated with 1.1 volume of cold 16% ethanol for 1 h at −80°C, and resulting precipitate was centrifuged at 15,000 g for 15 min at 4°C. The pellet was resuspended in PBS containing 1 mM CaCl₂ and 10 mM MgCl₂ and was subsequently treated with DNase I (100 μg/mL), RNase A (100 μg/mL), and Proteinase K (100 μg/mL) for 2 h at 37°C, then lyophilized [48].

pslA quantification

Biofilms were cultured in TSBYE supplemented with 1% sucrose in six-well plates for 6 h in 3% CO₂. Biofilms were washed with PBS, and adherent bacteria was resuspended. RNA was isolated using the Direct-zol RNA Mini Prep kit (Zymo Research). cDNA conversion was performed with the iScript cDNA Synthesis kit (Bio-Rad), on the CFX96 Real-Time PCR System (Bio-Rad). *P. aeruginosa* 16S rRNA was used to quantify total RNA present in samples. Primers specific to *P. aeruginosa* pslA and 16S rRNA are listed in Table 2. The delta-delta CT method was used to calculate fold change of gene expression.
SDS-PAGE and mass spectrometry protein analysis

S. salivarius and *P. aeruginosa* were cultured planktonically in TSBYE medium at 37 °C in single and dual cultures until OD600 ~1.8 was reached. Cultures were spun down, resuspended in tris-buffered saline, and lysed using the Bead Blaster 24 (Benchmark Scientific). Cell debris was centrifuged, and the resulting supernatant was mixed with 6× Laemmli

| Table 1. Bacterial strains and plasmids. |
|-------------------|-------------------|-------------------|
| Strain | Characteristics | Reference/source |
| K12 (*S. salivarius*) | Wildtype | [51] |
| FRD1 (*P. aeruginosa*) | CF isolate, mucoid | [52] |
| PAO1 (*P. aeruginosa*) | Wound isolate, non-mucoid | [53] |
| PAO1ΔpslA (*P. aeruginosa*) | In-frame deletion of *pslA* | [27] |
| PAO1ΔpslA* (P. aeruginosa) | Complemented PAO1ΔpslA with *pslA* gene | This study |
| PAO1ΔmucA (*P. aeruginosa*) | Deletion of *mucA* (PDO300) | [28] |
| PA14 (*P. aeruginosa*) | Wildtype | [29] |
| PAO1-GFP | PAO1 with carb^R GFP plasmid | This study |
| Environmental isolates (*P. aeruginosa*) | E1-E10 non-mucoid, water isolate | This study |
| AC1 (*P. aeruginosa*) | Non-mucoid, urine isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC2 (*P. aeruginosa*) | Non-mucoid, wound isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC3 (*P. aeruginosa*) | Non-mucoid, urine isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC4 (*P. aeruginosa*) | Non-mucoid, bronchial wash isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC5 (*P. aeruginosa*) | Non-mucoid, urine isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC6 (*P. aeruginosa*) | Non-mucoid, blood isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC7 (*P. aeruginosa*) | Non-mucoid, bronchoalveolar lavage isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC8 (*P. aeruginosa*) | Non-mucoid, urine isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC9 (*P. aeruginosa*) | Non-mucoid | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC10 (*P. aeruginosa*) | Non-mucoid, tracheal aspiration isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC11 (*P. aeruginosa*) | Non-mucoid, urine isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC12 (*P. aeruginosa*) | Non-mucoid, urine isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC13 (*P. aeruginosa*) | Non-mucoid, urine isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC14 (*P. aeruginosa*) | Non-mucoid, nasal isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| AC15 (*P. aeruginosa*) | Non-mucoid, maxillary sinus isolate | Dr. Bill Benjamin, UAB Clinical Microbiology Lab |
| CF clinical isolates (*P. aeruginosa*) | CF1-CF3 non-mucoid, CF4-CF6 mucoid | Dr. Susan Birket, UAB CF Center |
| DH10b (*E. coli*) | Host strain for cloning | Thermo Fisher |
| pBKNS51 | pBluescript K(+) ligated to *pslA* gene | This study |

| Table 2. Primer sequences. |
|-------------------|-------------------|-------------------|
| Gene | Forward or Reverse | Sequence (5’–3’) | Amplicon size (bp) |
| *pslA* | Forward | GGATTGGCGGCAGATTT | 2207 |
| | Reverse | TCGATATGCCGAAGCCGT | |
| *pslA* (qPCR) | Forward | CATGCACCTGCGCAGAATA | 109 |
| | Reverse | CGGCAGCGAGTTGTAGTT | |
| 16S rRNA | Forward | GCTGGACTATCGCCGCTG | 150 |
| 16S rRNA | Reverse | ATCTCGTAACCGGTAAAAGGTG | |
buffer and ran on an SDS Page gel. Overexpressed bands were excised from the gels and digested with trypsin. The digested peptide fragments were analyzed for protein identification by LC-MS/MS as described previously [49] and sent to the UAB Mass Spectrometry Core for identification. We repeated the SDS-PAGE experiment three times, the only reproducible change was this ~50 kDa band. We also excised the bands from three biologic replicates and analyzed by mass spectrometry.

Immunofluorescence and confocal laser scanning microscopy

Bacterial strains were grown in either TSBYE supplemented with 1% sucrose or in SCFM2 in a sterile eight-well treated Slide (Ibidi). Samples were incubated at 37 °C under 5% CO2 for 16 h. Biofilms were then stained for 10 min with hexidium iodide (Thermo Fisher) at a final concentration of 0.2 µg/mL. After staining, samples were washed in 70% ethanol to remove outside contaminants and then washed with sterile PBS. Samples were then fixed using 4% paraformaldehyde for 1 h and resuspended in 50 µg/mL of propidium iodide (Thermo Fisher) and incubated for 30 min. Samples were mounted on slides using Vectashield (Vector Laboratories) and sealed with nail polish. Images were acquired using a Leica SP8 confocal laser scanning microscope (Leica Microsystems) equipped with a 63x oil objective. Images were processed using Fiji software [50].

Results

Drosophila melanogaster colonization assay

Drosophila melanogaster flies were maintained on Jazz-mix Drosophila food (Fisher). Three to seven-day-old flies were treated with antibiotics for 3 days (50 µg/mL vancomycin, 50 µg/mL erythromycin, and 50 µg/mL ampicillin). Flies were separated into vials in groups of ten and subsequently starved for 3 h prior to infection. S. salivarius and P. aeruginosa cultures were grown to an A600 of 2.0. For single species infection groups, 1.5 mL of the respective culture was centrifuged for 6 min at 6000 × g and resuspended in 100 µL of 5% sucrose. For dual infection groups, 0.75 mL of each culture were mixed, centrifuged, and resuspended in 5% sucrose. Resuspended cultures were then stained for 10 min with hexidium iodide (Thermo Fisher) at a final concentration of 0.2 µg/mL. After staining, samples were washed with PBS once more and then analyzed for fluorescence using the Nikon A1R Confocal Laser Scanning Microscope (Nikon Instruments Inc.) at the University of Alabama at Birmingham High Resolution Imaging Facility.

Statistical analysis

All graphs represent sample means ± SD. The Shapiro–Wilk normality test was used to determine distribution of datasets. Statistical analysis of normally distributed data was performed using either Student's t test or one-way ANOVA with Tukey post-hoc test or Dunnett's test. Non-parametric data were analyzed using the Mann-Whitney test or the Kruskal–Wallis test. Tests were performed using Graphpad Prism version 9 for Windows, with statistical significance set at p < 0.05.

References

1. Davidson DJ, Porteous DJ. The genetics of cystic fibrosis lung disease. Thorax. 1998;53:389–97.
2. Murray TS, Egan M, Kuzmierczak BL. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr. 2007;19:83–8.
3. Cystic Fibrosis Foundation Patient Registry. Bethesda, MD: Cystic Fibrosis Foundation; 2020.
4. Sousa AM, Pereira MO. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—a review. Pathogens. 2014;3:680–703.
5. Dvorak M. Biofilm: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.
6. Franklin M, Nivens D, Weadage J, Howell P. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol. 2011;2.
7. Hentzer M, Tietzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol. 2001;183:395–401.
8. Goltermann L, Tolkker-Nielsen T. Importance of the exopolysaccharide matrix in antimicrobial tolerance of Pseudomonas aeruginosa aggregates. Antimicrob Agents Chemother. 2017;61:e02696–16.
9. Billings N, Ramirez Millian M, Caldara M, Rusconi R, Tarasova Y, Stocker R, et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2013;9:e1003526.
35. Sutcliffe IC, Harrington DJ. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology. 2002;148:2065–77.
36. Shelburne SA 3rd, Fang H, Okarofor N, Sunbmy P, Sitkiewicz I, Keith D, et al. Malle of group A Streptococcus participates in the rapid transport of maltotriose and longer maltodextrins. J Bacteriol. 2007;189:2610–7.
37. Kilic AO, Honeyman AL, Tao L. Overlapping substrate specificity for sucrose and maltose of two binding protein-dependent sugar uptake systems in Streptococcus mutans. FEMS Microbiol Lett. 2007;266:218–23.
38. Ma L, Lu H, Sprinkle A, Parsek Matthew R, Wozniak, Daniel J. Pseudomonas aeruginosa PsI is a galactose- and mannose-rich exopolysaccharide. J Bacteriol. 2007;189:8353–6.
39. Bidossi A, De Grandi R, Toscano M, Bottagisio M, De Vecchi E, Gelardi M, et al. Probiotics Streptococcus salivarius 245MB and Streptococcus oralis 89a interfere with biofilm formation of pathogens of the upper respiratory tract. BMC Infect Dis. 2018;18:653.
40. Bonfild TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB, Ghnaim H, et al. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit. 1995;152:2111–8.
41. Cosseau C, Devine DA, Dullaghan E, Gardy JL, Chikatamarla A, Gellatly S, et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun. 2008;76:4163–75.
42. Kaci G, Goudercourt D, Dennin V, Pot B, Doré J, Ehrlich SD, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol. 2014;80:928–34.
43. Ma L, Wang S, Wang D, Parsek MR, Wozniak DJ. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol. 2012;65:377–80.
44. Aas JA, Paster BJ, Stokes LN, Olsen I, Dethwir FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.
45. Jett BD, Hatter KL, Huycke MM, Gilmore MS. Simplified agar plate method for quantifying viable bacteria. BioTechniques 1997;23:648–50.
46. Suh SJ, Silo-Suh LA, Ohman DE. Development of tools for the genetic manipulation of Pseudomonas aeruginosa. J Microbiol Methods. 2004;58:203–12.
47. Seidman CE, Struhl K, Sheen J, Jessen T. Introduction of plasmid DNA into cells. Curr Protoc Mol Biol. 1997;37:1.8.1–8.10.
48. Pedersen SS, Espersen F, Halby N, Shand GH. Purification, characterization, and immunological cross-reactivity of alginates produced by mucoid Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol. 1989;27:691–9.
49. Bu S, Li Y, Zhou M, Azadin P, Zeng M, Fives-Taylor P, et al. Interaction between two putative glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin. J Bacteriol. 2008;190:1256–66.
50. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016;6:26717.
51. Tagg JR. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J Med Res. 2004;119:13–6. Suppl.
52. Ohman DE, Chakrabarty AM. Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun. 1981;33:142–8.
53. Holloway BW, Krishnapillai V, Morgan AF. Chromosomal genetics of Pseudomonas. Microbiol Rev. 1979;43:73–102.

ACKNOWLEDGEMENTS
This work was supported by grants awarded to JAS from the National Institute of Dental and Craniofacial Research (R00-DE025913), the National Institute of General Medical Sciences (R35GM142748), the UAB Microbiome Center, and start-up funds from the UAB Department of Microbiology. SNS was supported by the Alabama Louis Stokes for Minority for Participation fellowship funded by the National Science Foundation (1806130), the National Heart, Lung, and Blood Institute T32 UAB predoctoral training program in lung diseases (T32HL134640-03), and is now supported by the National Heart, Lung, and Blood Institute NIRA Fellowship (F31HL162487-01). The authors would like to thank Shawn Williams at the UAB High Resolution Imaging Facility for his assistance with the Nikon A1 Confocal microscope and imaging analysis. We thank Landon Wilson at the UAB Targeted Metabolomics and Proteomics Laboratory for his assistance in performing Mass Spectrometry and subsequent data analysis. We thank Michael Crowley at the UAB Hefflin Center for Genomic Sciences and William Van Der Pol and Elliot Lefkowitz at the UAB Center for Clinical and Translational Science for their help with RNA sequencing analysis. This publication was made possible by the UAB Center for Clinical and Translational Science Grant Number UL1TR001417 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). We also thank Dr. Bill Benjamin at the UAB Clinical Microbiology Laboratory for the acute clinical P. aeruginosa isolates and Dr. Susan Bircket at the UAB Cystic Fibrosis Center for the CF clinical P. aeruginosa isolates. Lastly, we thank Natalie Lindgren at UAB for providing the water samples from which we isolated our environmental P. aeruginosa strains.

AUTHOR CONTRIBUTIONS
SNS and JAS designed the study, SNS, JAS, and JJB performed experiments and conducted subsequent data analysis. SNS and JAS wrote the manuscript, and all authors reviewed and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41396-022-01221-y.
Correspondence and requests for materials should be addressed to Jessica A. Soffield.
Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.