Effect of nitric oxide on gene transcription – S-nitrosylation of nuclear proteins

Alexander Mengel, Mounira Chaki, Azam Shekariesfahlan and Christian Lindermayr*

Institute of Biochemical Plant Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany

*Correspondence: Christian Lindermayr, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. email: lindermayr@helmholtz-muenchen.de

INTRODUCTION

Nitric oxide (NO) plays an important role in many different physiological processes in plants. It is a small, highly reactive gaseous radical. Although it is cytotoxic in high concentrations, NO plays a key role as a biological messenger in all kingdoms. In plants, it is implicated in various physiological processes such as flowering, stomatal closure, germination, root development, greening, and responses to abiotic and biotic stresses (Delledonne et al., 1998; Garcia-Mata and Lamattina, 2002; Pagnussat et al., 2013). This as redox-signaling molecules in the cell by binding covalently to target proteins and this in turn leads to the production of cyclic GMP (Russwurm and Koesling, 2004).

There are three important NO-dependent modifications: metal nitrosylation, tyrosine nitration, and cysteine S-nitrosylation. In a direct reaction termed metal nitrosylation, NO (Lewis base) binds to the transition metal (Lewis acid) of metalloproteins yielding a metal–nitrosyl complex. One example from mammals is the binding of NO to the heme center of soluble guanylate cyclase which activates this enzyme by inducing conformational changes and this in turn leads to the production of cyclic GMP (Russwurm and Koesling, 2004).

S-nitrosylation of protein cysteine residues is believed to be the most important mechanism for transduction of bioactivity of NO in plants. The formation of nitrosothiols is still debated. The nitrosative stress but evidence accumulates that this modification also has a signaling function in plant cells (Cezzoni et al., 2009; Gaspard et al., 2011). There is a need to improve our understanding of the mechanisms involved to allow NO to be used as a tool to explore gene regulation and plant development.

S-nitrosylation is believed to be the most important mechanism for transduction of bioactivity of NO in plants. The formation of nitrosothiols is still debated. The nitrosative stress but evidence accumulates that this modification also has a signaling function in plant cells (Cezzoni et al., 2009; Gaspard et al., 2011). There is a need to improve our understanding of the mechanisms involved to allow NO to be used as a tool to explore gene regulation and plant development.
Mengel et al.

S-nitrosylation of nuclear proteins

(e.g., S-nitroslated glutathione GSNO) in animals; in plants, however, evidence for this mechanism is lacking (Hogg, 2002; Nakamura and Lipton, 2013). Enzymatic denitrosylation is mediated by GSNO reductase (GSNOR) and thioredoxins (Trx), both proteins are crucial for maintaining SNO-homeostasis (Sakamoto et al., 2002; Frechel et al., 2005; Singoppa and Holmgren, 2013).

Initial proteomic screens for S-nitrosylated proteins in A. thaliana revealed 53 mainly cytoplasmic proteins but this number increased drastically over the last years (Lindermayr et al., 2005). Up to date several screens targeting the proteomes of different organelles like mitochondria and peroxisomes identified more than 250 candidate proteins to be S-nitrosylated involved in a wide range of physiological processes ranging from stress response to metabolism (Kovacs and Lindermayr, 2013; Lounifi et al., 2013). Interestingly, microarray analysis and amplified fragment-length polymorphism (AFLP) transcript profiling of plants treated with gaseous NO and sodium nitroprusside, respectively, showed that NO leads to changes in the transcriptome of Arabidopsis (Huang et al., 2002; Pulverari et al., 2003). Promoter analysis of the genes co-expressed after NO treatment revealed the accumulation of certain transcription factor binding sites, like octopine synthase gene (ocs) elements and WRKY-sites (Palmieri et al., 2008). This raised the question whether NO affects transcription directly by nitrosylating transcription factors or other transcriptional regulators. In some bacteria, for instance, redox-sensitive cysteine residues of the transcriptional activator OxyR can undergo redox-dependent post-translational modifications like oxidation to sulfinic acid, S-glutathionylation, or S-nitrosylation. Each of these modifications affects binding affinity and specificity of OxyR to DNA thus resulting in distinct transcriptional responses (Marshall et al., 2000). Besides regulation of DNA-binding, S-nitrosylation of nuclear proteins could also affect their subcellular localization or regulate the association with binding partners thereby modulating transcription and/or general nuclear metabolism. In animals, for instance, S-nitrosylation of the nuclear export receptor CRM1 (karyopherin chromosomal region maintenance 1) leads to a decrease in the export rate and a subsequent nuclear accumulation of its target protein Nrf2, an antioxidant transcription factor (Wang et al., 2009). The possible modes of action of NO on gene transcription are shown in Figure 1.

In this review, we will summarize the current knowledge about S-nitrosylated nuclear plant proteins. What is the impact and function of this post translational modification? Comparisons to the animal system will be drawn in which much more is known about the effect of S-nitrosylation on transcription.

S-nitrosylated nuclear proteins

Glyceraldehyde 3-phosphate dehydrogenase and cytosolic aldolase

It is well-known that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) not only plays an important role in glycolysis but also participates in nuclear events like regulation of gene transcription.
RNA transport and DNA replication. In animal cells, the link between NO signaling and nuclear action of GAPDH is well established. GAPDH lacks a nuclear localization signal and the homotetramer is too large (150 kDa) to pass passively through nuclear pores. Upon stress GAPDH is specifically nitrosylated at Cys155 by inducible NO-synthase (iNOS) leading to complex formation with seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase. Siah1 has a very rapid turnover in HEK293 cells but binding to GAPDH markedly increases its stability. The nuclear import signal of Siah1 enables the translocation of the GAPDH/Siah1 complex into the nucleus (Hara et al., 2005). Interestingly, it was shown that nitrosylated GAPDH can transnitrosylate nuclear proteins including deacetylating enzyme sirtuin 1 (SIRT1), histone deacetylase 2 (HDAC2), and DNA-activated protein kinase (DNA-PK) thereby affecting gene transcription (Kornberg et al., 2010). This mechanism can elegantly explain specificity of S-nitrosylation in the nucleus in the absence of a nuclear NO-synthesis (Stamler and Hess, 2010).

In Arabidopsis, both GAPDH isoforms GapC1 and GapC2 were shown to be nitrosylated and glutathionylated on Cys155 and Cys159 (Holmgrefe et al., 2008). These cysteine modifications inhibit GAPDH in vitro, but activity could be restored upon addition of dithiothreitol (DTT) demonstrating the reversibility of these modifications. A GFP-GAPDH fusion protein was localized in both the cytosol and nucleus in A. thaliana protoplasts indicating partial nuclear localization of GAPDH (Holmgrefe et al., 2008). Moreover, a complex of a GAPDH isoform and NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase) partially localized to the nucleus in BY2 cells after salt stress. Both proteins of this complex seem to be regulated by NO: GAPDH is directly S-nitrosylated, whereas the regulation of NtOSAK is rather indirect, involving the NO-dependent phosphorylation of a serine residue in the activation loop of the kinase (Wawer et al., 2010). In addition, cadmium stress induced a strong nuclear accumulation of GapC1 in Arabidopsis root tips, which was—in sharp contrast to animal cells—dependent on S-nitrosylation of the catalytic Cys-residue (Vescovi et al., 2013). Interestingly, GAPDH was found to bind to the malate dehydrogenase promoter by using electrophoretic mobility shift assays pointing toward a possible role as transcriptional activator/pressor (Holmgrefe et al., 2008). In conclusion, in contrast to animal cells, the molecular function of GAPDH in plants is rather unclear, and further work is needed to decipher the role of GAPDH in NO-mediated signaling.

Aldolases catalyze the reversible condensation of D-glyceraldehyde-3-phosphate and dihydroxyacetone phosphate and are involved in glycolysis, gluconeogenesis, and the Calvin cycle. Higher plants possess different isoforms of aldolases localized to either the cytosol or plastids. It was shown that the enzymatic activity of one isoform of cytosolic aldolase from A. thaliana is inhibited by different redox modifications. Cys68 and Cys173 were both glutathionylated, while nitrosylation was only detected at Cys173 (van der Linde et al., 2011). Several studies support the idea that cytosolic aldolase might take over functions in the nucleus. First, this enzyme was found to be localized in the pea leaf nucleus (Anderson et al., 2005). Second, cytosolic aldolase was identified as an interaction partner of the MADS-box transcription factor Nlh7 in Medicago sativa (Parz-Valencia et al., 2008). Third, a GFP-fusion construct partially localized to the nucleus in A. thaliana protoplasts (van der Linde et al., 2011). Fourth, this enzyme was shown to be associated with the NADPH-malate dehydrogenase promoter (Hameister et al., 2007). However, nothing is known about the impact of redox modifications on nuclear activity of cytosolic aldolase.

MYB TRANSCRIPTION FACTORS

In plants, MYB factors are one of the largest families of transcription factors (Stracke et al., 2001). In the genome of A. thaliana, approximately 9% of the estimated number of transcription factors belongs to the MYB family (Reichmann et al., 2009). MYB transcription factors are involved in the regulation of a wide range of physiological processes including metabolic pathways, cell fate and identity, developmental processes and responses to biotic and abiotic stresses (Dubos et al., 2010). They are characterized by a highly conserved DNA-binding domain (MYB DBD). The MYB DBD consists of up to four sequence repeats of about 52 amino acids, each forming three α-helices (Dubos et al., 2010). The third helix of each repeat is the “recognition helix” that makes direct contact with the major groove of DNA (Dubos et al., 2010). The repeated domains increase specificity of DNA-binding and depending on their number, MYB proteins can be divided into different classes. R2-R3 MYB factors constitute an expanded family of MYB proteins in plants that contain a N-terminal DNA-binding domain formed by two adjacent MYB repeats (R2 and R3) and an activation or repression domain usually located in the C-terminus (Dubos et al., 2000). In contrast to the highly conserved MYB domain, the other regions of R2R3-MYB proteins are highly variable which can explain the wide range of regulatory roles of members of this family in plant-specific processes (Wilkins et al., 2009). R2R3-MYB factors contain a highly conserved Cys at position 55 (Cys55) which is also present in MYB proteins from animals and fungi (Serpa et al., 2007). The presence of this surface exposed Cys-residue within the DNA-binding domain raises the question whether DNA-binding activity is regulated by oxidative modifications of this amino acid. Indeed, the DNA-binding of M2D (a fully active DNA-binding domain of AtMYB2) is inhibited by S-nitrosylation of Cys53 (Serpa et al., 2007). This mechanism might be conserved throughout different kingdoms as it was demonstrated that NO-donors (SNP and SNOG) severely inhibited DNA-binding of the chicken c-Myc minimal DNA-binding domain (R2D) and that Cys130 (equivalent to Cys53 in plants) is essential for this inhibitory effect (Brendeford et al., 1998).

NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 AND TGA1

In mammalian immunity, the cofactor inhibitor of kappab (IκB), which shares structural features with plant non-expressor of pathogenesis-related genes 1 (NPRI; Cao et al., 1997; Ryals et al., 1997), functions to sequester the transcription factor nuclear factor kappab (NF-kB) in the cytoplasm and prevents it from activating gene expression. In response to pathogen attack, IκB is rapidly phosphorylated and targeted for ubiquitin-mediated proteolysis, allowing NF-kB to localize to the nucleus and activate target genes (Hayden and Ghosh, 2004).
NF-κB itself is a redox-regulated transcription factor in mammals. Within the DNA-binding domain, Cys62 of the p50 subunit is critical for ROS-regulated DNA-binding (Matthews et al., 1992) and is modified by S-nitrosylation (Matthews et al., 1996).

The transcription cofactor NPR1, a key regulator of systemic acquired resistance (SAR), is essential for salicylic acid (SA)-mediated signal transduction (Rockel et al., 2002). Recently, it has been shown that NPR1 binds SA and works as a SA receptor (Wu et al., 2012). In unchallenged plants, Cys residues in NPR1 form intermolecular disulfide bonds, driving the formation of NPR1 oligomers (Mou et al., 2003). These NPR1-oligomers are retained in the cytosol. Upon pathogen challenge, the level of SA increases followed by changes in the cellular redox state, resulting in reduction of disulfide bonds in NPR1. Reduction of the NPR1 oligomers releases monomers that translocate to the nucleus where they interact with TGA transcription factors and subsequently activate the expression of pathogen-related (PR) genes (Kinkema et al., 2000). Moreover, NPR1 regulates the transcript accumulation of callose synthase genes during defense response (Dong et al., 2000). In plants, TGA transcription factors interact with TGA transcription factors and subsequently act on the expression of pathogen-related (PR) genes (Kinkema et al., 2000). Moreover, NPR1 regulates the transcript accumulation of callose synthase genes during defense response (Dong et al., 2000).

The reduction of the NPR1 oligomers during defense response drives the intracellular redox state to a more reduced state. This leads to the activation of the NPR1-oligomerization (Tada et al., 2008). Trx catalyze the monomerization of NPR1 and allow the translocation into the nucleus. Surprisingly, the nuclear translocation of NPR1 is also induced by GSNO (Lindermayr et al., 2010). However, the S-nitrosylation effect of NPR1 signaling but rather as a step prior to monomer accumulation.

The TGA motif binding transcription factors (TGA) belong to the group of basic leucine zipper (bZIP) proteins and the DNA-binding sites for several bZIP factors were enriched in promoter regions of NO-regulated genes (Palmieri et al., 2008). In the nucleus, NPR1 interacts with TGA that binds to cis-elements of the PR1 promoter, promoting PR1 gene expression and defense (Zhao et al., 2000; Despres, 2003). Redox-dependent interaction with NPR1 is only described for TGA1 and TGA4 which comprise group I and possess four cysteine residues. TGA2, TGA3, TGA5, TGA6, and TGA7 interact with NPR1 independently of the cellular redox status (Zhang et al., 1999; Zhou et al., 2000; Despres, 2003). The Cys residues C260 and C266 of TGA1 form a disulfide bond under oxidizing conditions precluding its interaction with NPR1. These Cys residues are conserved in TGA4 but not in other TGA isoforms.

Redox regulation of TGA and NPR1 has been proposed to involve S-nitrosylation in vitro after S-nitrosoglutathione (GSNO) treatment (Tada et al., 2008; Lindermayr et al., 2010), resulting in enhanced DNA-binding activity of TGA1 toward its cognate target in the presence of NPR1 (Lindermayr et al., 2010). The GSNO-dependent modifications probably result in conformational changes of TGA1 and/or NPR1, which allow a more effective TGA1–NPR1 interaction and enhanced DNA-binding of TGA1 (Lindermayr et al., 2010). The redox status of C172/C287 of TGA1 seems to be important for its DNA-binding activity. Reducing this disulfide bridge and subsequent GSNO-dependent modification of the corresponding cysteine residues positively affects DNA-binding of this transcription factor (Lindermayr et al., 2010).

HISTONE DEACETYLASES

Acetylation of histone lysine residues is a very important epigenetic regulatory mechanism. Histone acetyltransferases (HATs) catalyze the transfer of acetyl groups from acetyl-coenzyme A on lysine residues of histone tails thereby neutralizing the positive charge of the lysine residue. This reduces the affinity of histones for negatively charged DNA resulting in a looser chromatin structure that is easily accessible for the transcriptional machinery. In contrast, histone deacetylases (HDACs) remove the acetyl group of histone tails and condense the chromatin, thereby resulting in reduced gene expression (Lau et al., 2012). Histones are not the only substrates of HATs and HDACs, acetylation and deacetylation of a wide variety of proteins is catalyzed by these enzymes (Wu et al., 2000). In animals, members of both enzyme groups are known to be regulated by S-nitrosylation. Here, we will focus on HDACs because so far there is nothing known about S-nitrosylation of HATs in plants.

Brain-derived neurotrophic factor (BDNF) and other neurotrophins play a crucial role in the development of the rat and mouse nervous system by influencing the expression of many specific genes that promote differentiation, cell survival, etc. (Nott et al., 2008). Since studies on the effect of NO on chromatin remodeling in neurons showed that NO alters the acetylation state of chromatin associated with the promoter of neurotrophin-regulated genes, one function of NO in the nucleus might be to regulate gene expression by influencing the interaction of transcription factors with chromatin (Nott et al., 2008). BDNF-dependent neurotrophic activity and found that NO is a key regulator of human histone deacetylase 2 (HDAC2). It was shown that BDNF triggers NO synthesis and also a rapid and sustained S-nitrosylation of HDAC2 in neurons. HDAC2 contains three cysteine residues and only double mutation of Cys262 and Cys274 completely abolished its S-nitrosylation (Nott et al., 2008). S-nitrosylation of HDAC2 did not affect its deacetylase activity. In contrast, it induced its release from chromatin, which lead to an increase of histone acetylation at specific promoter regions and transcription of genes associated with neuronal development including c-fos, egr1, VGE, and nNOS (Riccio et al., 2006; Nott et al., 2008). NO-dependent inhibition of HDAC2 function has also been reported in muscle cells (Colussi et al., 2008). Interestingly, S-nitrosylation decreases HDAC2 deacetylase activity (Colussi et al., 2008) whereas in neurons HDAC2 enzymatic activity remains unchanged (Nott et al., 2008). This divergence could be due to different S-nitrosylated cysteine residues of HDAC2 in muscle cells and neurons (Nott and Riccio, 2009).

In mammals, class I HDACs are ubiquitously expressed and are located predominantly in the nucleus. In contrast, class II and IV HDACs are expressed tissue-specific and they are regulated by controlling their subcellular localization (Watson and Riccio, 2009). In unstimulated cells, class II HDACs (e.g., HDAC4/5) are retained in the cytoplasm due to phosphorylation by calcium-calmodulin-dependent kinases (CaMKs) and subsequent association with the cytoplasmic chaperone 14-3-3 (McKinsey et al., 2001). Upon stimulation, dephosphorylation leads to the dissociation of the complex allowing class II HDACs to shuttle into the nucleus. Class II HDACs are indirectly regulated by NO.
S-nitrosylation of PP2A enforces its binding to HDAC4/1/3-3 leading to dephosphorylation and subsequent nuclear localization of HDAC4 (Ell et al., 2008).

In plants, three families of HDACs can be distinguished based on sequence similarity. The largest family in Arabidopsis consists of 12 members – characterized by a highly conserved HDAC domain – and shares homology with yeast RPD3 (reduced potassium dependence protein 3) or HDAl (histone deacetylase 1). Sirtuins (two members in Arabidopsis) are homologous to yeast SIR2 (silent information regulator 2) and have a different catalytic mechanism as they need NADH as a cofactor. The HD2-like family seems to be plant-specific, no homologs have been identified in other organisms so far (Luo et al., 2012). HD2-like proteins play an important role during the hypersensitive response in tobacco: Bourque et al. (2011) showed that NHD2dz acts as negative regulators of cryptogein induced cell death by using HDAC inhibitors, RNAi, and overexpression approaches. Alignment of Arabidopsis RPD3-like HDACs presented the presence of some highly conserved cysteine residues. Interestingly, Cys262 or Cys274 of human HDAC2 (which were shown to be nitrosylated; Nott et al., 2008) are also preserved in many Arabidopsis HDACs (for instance Cys209 and Cys221 of HDAC19), making these proteins interesting candidates for further studies. Data from our lab support the idea that histone deacetylases might also be redox regulated in plants (Horyszaak-Wiezorek et al., 2012).

CONCLUSION

S-nitrosylation is emerging as one of the most important redox-dependent modifications in plants but only very few detailed studies are available about the impact of this modification on nuclear plant proteins. Important knowledge about S-nitrosylation in general in the nucleus is still lacking. Specifically, the presence of NO or nitrosylation in this compartment has not been proven so far. It is also known that GSH – the main reductant of the cell – accumulates to very high concentrations in the nucleus at certain cell cycle stages, probably to protect the DNA from oxidative damage (Garcia-Gamiz et al., 2013). This raises the question how S-nitrosylation in the nucleus is maintained and temporally/spatially controlled. Nevertheless, evidence accumulates that S-nitrosylation of nuclear plant proteins (for instance transcription factors) probably participates in regulation of transcription. In animals, several transcription factors are known to be regulated by this post-translational modification: results from studies in neuronal physiology have demonstrated that NO modulates gene expression through the formation of SNO-bonds in multiple transcriptional activators (Nott and Rico, 2009). For instance, S-nitrosylation mediates NO-dependent regulation of various zinc-finger-containing transcription factors, including egr-1 and NFκB. As zinc-finger motifs are very sensitive to S-nitrosylation this class of TFs might also be interesting to study in plants. Besides acting on transcription factors, NO also seems to be involved in epigenetic regulation of plant chromatin by modifying key remodeler enzymes like HDACs, which is a new and fascinating aspect of NO-mediated redox signaling in plants. However, important questions are remaining. Work so far has mostly been carried out in vitro, the in vivo relevance as well as the exact molecular mechanism still needs to be determined leaving much space for future investigations.

ACKNOWLEDGMENTS

This work was supported by the Bundesministerium für Bildung und Forschung and by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (FP7-PEOPLE-2011-IIF) under grant agreement n°300176.

REFERENCES

Andersen, L. E., Ringenberg, M. R., Bouzeyrac, V. R., and Carroll, A. A. (2005). Both chloroplastic and cytosolic phosphorothiolate thiols are present in the pea leaf nucleus. Protoplasma 225, 235–242. doi: 10.1007/s00709-005-0099-1

Bourque, S., Dataranta, A., Hamoudi, V., Blance, S., Dahan, J., Jomron, S., et al. (2011). Type II histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol. 192, 127–139. doi: 10.1111/j.1469-8137.2011.03708.x

Brendford, E. M., Andersen, K. R., and Gallivan, O. F. (1998). Nitrile oxide (NO) modulates specific DNA binding of the transcription factor c-Myb in vitro. Cell 92, 52–58. doi: 10.1016/S0092-8674(00)81858-9

Cacconi, D., Ormatti, S., Vandiele, E., Rinalducci, S., Zolla, L., and Lamb, C. (1998). Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis 19, 2400–2408. doi: 10.1002/elps.199801926

Doppen, C., Moretti, C., Guermet, A., Blé, B., Rozat, J., Straano, S., et al. (2008). HD2-like blockades by nitrile oxide and histone deacetylase inhibitors reveals a common target in Dicotyledonous muscular dystrophy treatment. Proc. Natl Acad. Sci. U.S.A. 105, 19183–19187. doi: 10.1073/pnas.0805141105

DelloRusso, M., Xia, X., Dixon, B. A., and Lamb, C. (1998). Nitrile oxide functions as a signal in plant disease resistance. Nature 394, 585–588. doi: 10.1038/29087

De Micheli, R., Vieru, E., Bago, C., Costa, A., Ehrli, L., De Vilmun, M., et al. (2009). Nitrile oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol. 150, 217–228. doi: 10.1104/pp.108.133397

Doppen, C. (2005). The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181–2191. doi: 10.1105/tp.151849

Dubos, C., Struck, R., Gietzold, E., Weinauer, B., Martin, C., and Leyssac, L. (2010). MBF transcription factors in Arabidopsis. Trends Plant Sci. 15, 775–781. doi: 10.1016/j.tplants.2010.06.005

Durner, J., Wendehenne, D., and Klessig, D. F. (1998). Defense gene induction is blocked by nitrile oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. U.S.A. 95, 10528–10533. doi: 10.1073/pnas.95.17.10528

Eisenbach, M., Inoue, K., Yan, B. W., Wang, Y., Pallas, J. A., and Leake, G. J. (2003). A central role for S-nitrosylation in plant disease resistance. Proc. Natl Acad. Sci. U.S.A. 100, 8792–8797. doi: 10.1073/pnas.153044-R

Ferré, S., and Doura, B. (2009). Chemical biology of peroxynitrite: review and future perspectives. ACS Chem. Biol. 4, 107–117. doi: 10.1021/cb800729a

Horyszaak-Wiezorek, J., Jaramowska-Jelenek, M., Mileczek, G., James, L., Pauk-Sprada, S., Abramowska, D., et al. (2012). Nitrile oxide-mediated stress imprint in potato as an effect of exposure to a priming agent. Mol. Plant Microbe Interact. 25, 1469–1477. doi: 10.1094/mpmi-2012-0044-r

Folkers, L. K., and Wardman, P. (2004). Kinetics of the reaction between nitrile oxide and glutathione: implications for their depletion in cells. Free Radic. Biol. Med. 37, 548–556. doi: 10.1016/j.freeradbiomed.2004.05.012

Frenz, C. H., and Nieter, G. (2013). Redox signaling in plants. Antioxid. Redox Signal. 18, 2007–2080. doi: 10.1089/ars.2013.5278
He, Y., Tang, R.H., Hao, Y., Stevens, R., Hayden, M.S., and Ghosh, S. (2004). Hara, M.R., Agrawal, N., Kim, S., Hameister, S., Becker, B., Holt-Gaupels, F., Spiazzi-Vandelle, E., Yang, G., Garcia-Mata, C., and Lamattina, L. (2004). Nitric oxide represses the DNA-binding activity of NF-kappaB by reduction of a deacetylase binding to nitric oxide. Mol. Cell. Biol. 24, 2236–2242. doi: 10.1128/mcb.24.12.2236.

Matthews, J.R., Roe, C.H., Pan, J., Morin, H.R., and Hof, R.T. (1996). Inhibition of NF-κB/p50 DNA binding by nitric oxide. Nuclear Acid Res. 24, 2256–2262. doi: 10.1093/nar/24.12.2256.

Kornberg, J.R., Veca, N., Vine, J., L. Yoder, J., and Hof, R.T. (1992). Thioredoxin regulates the DNA binding activity of NF-kappaB by reduction of a deacetylase binding to nitric oxide. Nat. Cell Biol. 20, 3621–3630. doi: 10.1038/nrb13921.

McKinney, T.A., Zeng, C.L., and Olson, E.N. (2001). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21, 6512–6521. doi: 10.1128/mcb.21.20.6512-6521.2001.

Mengel et al. (2002). The biochemistry and comparative genetics and identification of DNA-binding proteins. J. Mol. Biol. 25, 529–535. doi: 10.1038/sj.jsb.3202839.

Hogg, N. (2002). The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Physiol. 64, 383–405. doi: 10.1146/annurev.physiol.64.040801.183635.

Hoffrogge, S., Scholb, J., Starnmann, J., Drass, S., Klicka, A., Huber, B., et al. (2005). Regulation of plant cytosolic glyceraldehyde-3-phosphate dehydrogenase isoforms by thiol modifications. Plant Physiol. 138, 1521–1528. doi: 10.1104/pp.105.064494.

Hu, X., Xu, S., Li, D., and Wu, W. (2005). Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol. 138, 1633–1640. doi: 10.1104/pp.105.064494.

Huang, X., Yan, B., and Dai, F. (2002). Nitric oxide induces transcriptional activation of the nitric-oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215, 914–923. doi: 10.1007/s00425-002-0882-9.

Hu, B., Dello Russo, A., Colucci, C., Rossito, A., Pallavicini, P., et al. (2005). Nitric oxide modulates chronic inflammation in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling. Cell 120, 57–68. doi: 10.1016/j.cell.2004.11.057.

Kemme, B., Fan, W., and Dong, X. (2005). Nuclear localization of NBL1 is required for activation of PER gene expression. Plant Cell 16, 2329–2339. doi: 10.1105/tpc.105.037072.

Kerkhoff, M.D., Dz, N., Hara, M.R., Juhn, K.R., Nguyen, J.V., Stelzer, M., et al. (2005). GAPDH initiates apoptotic cell death by nuclear translocation following GAPDH initiates apoptotic cell death. J. Exp. Bot. 56, 997–1006. doi: 10.1093/jxb/erh053.

Kovalenko, A., Lipton, S.A., and Panov, V. (2001). Induction of cell death by nitric oxide involves redox changes. Sci. 25, 289–294. doi: 10.1038/35018000.

Kushnir, L., Heid, J., Martin, G., Raiser, L., Jump, C., Kelder, L., et al. (2005). Arabidopsis transcription factors: genome-wide comparative analysis across eukaryotes. Science 295, 2101–2105. doi: 10.1126/science.295.5539.2101.

Larcher, P., Strube, F., Boedt, A., Busch, J., and Kaiser, W.M. (2002). Regulation of nitric-oxide production by plant nitrate reductase in vitro and in vitro. J. Exp. Bot. 53, 310–319. doi: 10.1093/jxb/erf073.

Lamattina, L., Grotewold, E., Cassia, R., Palmieri, M.C., Sell, S., Huang, X., et al. (2004). Thioredoxin and thioredoxin reductase. J. Biol. Chem. 280, 515–528. doi: 10.1074/jbc.R400032200.

Lindermayr, C., Sell, S., Muller, B., Leiter, D., and Durand, J. (2010). Redox regulation of the thioredoxin system in Arabidopsis thaliana. Phys. Acta 182, 954–956. doi: 10.1016/j.physa.2010.01.009.

Liu, Q., Cui, Y., et al. (2012). HD2C domain regulates gravitropic bending in soybean roots. Plant Physiol. 159, 3821–3829. doi: 10.1104/pp.112.200952.

Lo, C., Niu, C., and Chen, C. (2002). The biochemistry and physiology of S-nitrosothiols. Annu. Rev. Physiol. 64, 383–405. doi: 10.1146/annurev.physiol.64.040801.183635.

Lu, Q., Cui, Y., et al. (2012). HD2C domain regulates gravitropic bending in soybean roots. Plant Physiol. 159, 3821–3829. doi: 10.1104/pp.112.200952.

Lundberg, H., Xiao, Z., and Vernet, S. (2013). Positive regulation of root hair development by nuclear translocation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215, 914–923. doi: 10.1007/s00425-002-0882-9.

Mengel, E., Thelen, U., Krumm, M., Morris, H.R., and Hay, R.T. (1996). Inhibition of NF-κB DNA binding by nitric oxide. Nuclear Acid Res. 24, 2256–2262. doi: 10.1093/nar/24.12.2256.

Matthews, J.R., Roe, C.H., Pan, J., Morin, H.R., and Hof, R.T. (1996). Inhibition of NF-κB/p50 DNA binding by nitric oxide. Nuclear Acid Res. 24, 2256–2262. doi: 10.1093/nar/24.12.2256.

Matthews, J.R., Veca, N., Vine, J., L. Yoder, J., and Hof, R.T. (1992). Thioredoxin regulates the DNA binding activity of NF-kappaB by reduction of a deacetylase binding to nitric oxide. Nat. Cell Biol. 20, 3621–3630. doi: 10.1038/nrb13921.

McKinney, T.A., Zeng, C.L., and Olson, E.N. (2001). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell. Biol. 21, 6512–6521. doi: 10.1128/mcb.21.20.6512-6521.2001.

Mengel et al. (2002). The biochemistry and comparative genetics and identification of DNA-binding proteins. J. Mol. Biol. 25, 529–535. doi: 10.1038/sj.jsb.3202839.
Mengel et al.

S-nitrosylation of nuclear proteins

and Tennez, H. (2007). Inhibition of AtNTR1 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem. Biophys. Res. Commun. 356, 1048–1053. doi: 10.1016/j.bbrc.2007.07.153

Shu, Y., and Marshall, H. E. (2012). S-nitrosylation in the regulation of gene transcription. Biochem. Biophys. Acta 1820, 701–711. doi: 10.1016/j.bbabio.2011.05.008

Sirova, J., Sedlarova, M., Piterkova, J., Lahova, I., and Petritskaya, M. (2011). The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 181, 548–572. doi: 10.1016/j.plantsci.2011.03.014

Stamler, J. S., and Hox, D. T. (2010). Nascent nitrosylases. Nat. Cell Biol. 12, 1024–1026. doi: 10.1038/nccell1024

Strecker, K., Norbert, M., and Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456. doi: 10.1016/S1369-5266(00)00199-0

Tomas, G., Filipova, P., Balghiti, M., Job, D., Diamantidis, G., Fotopoulos, V., et al. (2012). Ubiquitine and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J. 72, 585–595. doi: 10.1111/j.1365-313X.2012.05191.x

van der Linde, K., Gantche, N., Lefebvre, H. M., Lindeboom, C., Muller, B., Holmgren, S., et al. (2011). Regulation of plant cysteine aldehyde functions by redox-modifications. Plant Physiol. Biochem. 49, 946–957. doi: 10.1016/j.plaphy.2011.06.009

Van der Sande, J., Reber, A., van der Kwast, C., Casademont, M., van der Klei, D., Lam, E., Shah, J., et al. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell 149, 981–993. doi: 10.1016/j.cell.2012.05.008

Wu, K., Yuan, L., Ma, K., Brown, D., and Miki, B. (2000). Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant J. 22, 19–27. doi: 10.1046/j.1365-315x.2000.01021.x

Wu, Y., Zhang, D., Cui, J. Y. Boika, P., Wang, Y., Brutnell, J. D., et al. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell 149, 981–993. doi: 10.1016/j.cell.2012.05.008

Yam, B. W., Spool, S. H., and Leake, G. J. (2012). Synthesis of salicylic acid by small, redox active molecules in the plant immune response. Biochem. Biophys. Res. Commun. 429, 73–83. doi: 10.1016/j.bbrc.2007.07.133

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

www.frontiersin.org
August 2013 | Volume 4 | Article 293 | 7

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 20 June 2013; paper pending revision: 01 July 2013; accepted: 23 July 2013; published online: 01 August 2013.

Copyright: © 2013 Mengel, Chaki, Shekaraiefand Zaffagnini. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction in any medium is permitted which does not comply with these terms.