Technogenic reasons for degradation of planet biota and health risk

A A Stekhin¹, V V Tatarinov² and G V Yakovleva¹

¹Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119121 Moscow, Russia
²Bauman Moscow State Technical University, 105005 Moscow, Russia

tatavictor@bmstu.ru

Abstract. The influence of active effects on electrophysical processes in the atmosphere using monopolar charge generating units was studied. It is shown that the uncontrolled use of such installations and other means of technogenic impact on the electrophysical state of the planet lithosphere and the atmosphere gave rise to electron-deficient environmental conditions, which are the root causes of changes in weather-forming processes and climatic trends. In this regard, the observed trends in the growth of non-infectious morbidity of population both in Russia and other countries are also associated with electron-deficient environmental conditions that affect the body systemic homeostasis, supported by electronic exchange interactions of the associated body water phase with the environment.

1. Introduction

The crisis of the modern medical and demographic situation dictates the need to reorient government policy towards the prevention of chronic non-communicable diseases (NCD) [1, 2]. However, chronic NCD do not yet have a clear cause-and-effect relationship (risk) with environmental parameters [3]. At the same time, the concept of risk, which reflects the quality of the physical, mental, and social health of modern mankind, is determined by many factors, among which the most significant is the global environmental disadvantage [4, 5]. In turn, the latter is coupled in the aspects of causality with climate change [6]. The paradox of this connection is noted: the further a person is removed away from nature, the more sharply he depends on changes in it.

In modern conditions, overcoming the ecological ill-health of mankind is determined by the need to create a comprehensive system of health improvement, where the restoration of the natural environment becomes a priority [7]. Obviously, the methodological basis of health risk assessment and the creation of a health improvement system do not consider the hidden physical phenomena generated by man-made human activities, which are responsible for both climate change and the pandemic of NCD [8].

The understanding of the relationship between the state of human health and the environment came in the course of studying the bioenergetic activity of drinking water as one of the leading factors in maintaining systemic homeostasis of the body. This is due to the fact that the biological significance of the influence of the natural environment on a person is determined by the phase state of the associated water of the body, which is constantly maintained at a certain level due to the influx of electrons from the environment in the processes of adaptation and maladjustment [9, 10].

The process of electronic interaction of an organism with the environment is due to the quantum behaviour of the phase of associated water containing in its composition delocalized electrons which...
possess superconductivity of the type of granulated superconductors of the second kind [11]. Electron delocalization properties determine the temporal and spatial nonlocality of interacting systems [8].

Thus, the reasons for the growth of NCD and the degradation of the planet's biota should be found in changes in the electrophysical properties of the environment, which affect both biota and human health and determine climatic changes.

2. Methods
Classic ideas about climate change are associated with an increase in the concentration of greenhouse gases [5, 7]. There is a well-established scientific consensus that abnormal atmospheric phenomena with devastating consequences [12] are due to greenhouse gases [13]. However, there is no evidence of the relationship between the concentration of greenhouse gases and any changes in the radiation balance of the planet's atmosphere [14].

Moreover, in some publications, hypotheses are expressed about the lithospheric origin of excess heat in the atmosphere, which allows us to consider technogenic mechanisms of climatic changes [15], implemented through the effect of technical systems on the electrophysical state of the planet's lithosphere, which serves as the main reservoir of electrons in a delocalized state [8].

One of the technogenic factors influencing the climate is modern technologies for controlling weather-forming processes, which are based on the effects of excitation of the electronic component of the Earth's lithosphere [16], manifested in the self-amplifying transfer of superfluid electrons and deep heat into the atmosphere [17-19]. The most important adjustable indicators of active influences, which determine the nature of meteorological processes, are associated with: changes in atmospheric pressure, the formation of the vortex component of the surface wind velocity and jet streams, excitation of atmospheric dynamic centres (cyclogenesis), and changes in cloudiness and atmospheric precipitation. The mechanism of influence of monopolar generators on the weather and climate is associated with the excitation of atmospheric gravitational waves and jet streams arising from the current-induced process of the installation of the regional transfer of charge and heat from the lithosphere to the atmospheric layers with critical temperatures [18-20].

In the process of developing electrophysical methods of weather control, a new understanding of the physical mechanisms underlying the ongoing climatic and biospheric changes has emerged. Their essence is reduced to the processes of accumulation and dissipation of geomagnetic energy in the lithosphere of the planet under the influence of solar energy. It is necessary to proceed from the fact that the mechanisms of dissipation of this type of energy are associated with special electrophysical properties of water, the key importance of which lies in superconducting state of its associated phase [8]. It is due to superconductivity of water and ability of delocalized electrons to interact nonlocally that collective processes in the Earth's biosphere, such as jet streams, cyclogenesis and anticyclogenesis, seismic activity, and others, including the nature of the ongoing climatic changes, are explained.

To assess the spatio-temporal scales of the effect of monopolar charge installations on atmospheric processes, an experiment was performed on the long-term transfer of the vertical electron current into the atmospheric channel, implemented by the mechanisms of excitation of internal gravitational waves. The installation “Atlant” [17] was located in Incheon (South Korea) (Fig. 1). The mode of operation is as follows: the volume charge emission current of the negative sign is no more than 1 mA, the time interval for generating the installation current is 11.11.2002 (00:00 UTC) – 16.11.2002 (07:00 UTC).

Long-term continuous generation of convection current of the installation “Atlant” leads to the formation of a powerful pulse-based atmospheric currents extending for thousands of kilometres from the central regions of the Pacific Ocean to the northern regions of the Iranian Highlands along 31-32° north latitude. Such a macroscopic vortex, supported by non-local coupling with the convection current of the installation, produces powerful changes in the nature of atmospheric processes throughout its entire length (Fig. 1), forming vast zones of intense precipitation and exerting a non-local effect on anticyclonic activity in adjacent regions. The frontal system dissipates completely after the installation is switched off and independent damped partial cyclones form along its line.
Figure 1. Development of the atmospheric wave front on the fifth day of continuous current generation by the installation “Atlant” of a monopolar (negative) charge located in Incheon (South Korea).

The given example demonstrates a particular result of a relatively short time influence on the atmospheric circulation of just one installation. Unfortunately, since 2002, similar installations of monopolar charge have been widely used for commercial purposes, mainly in Mexico, the countries of the Arabian Peninsula, China, Austria, and Australia, which has led to adverse biosphere changes in the neighbouring regions of the Eurasian continent, North America, and Australia.

There are also scientific prerequisites for the influence of convective currents of monopolar installations not only on the excitation of atmospheric dynamic centres and jet streams, but also on the initiation of seismic activity of the planet [21]. As a result, excess charges and heat of the lithosphere are transferred to the atmosphere by non-local interaction mechanisms.

3. Results
The analysis shows that the nature of global climate changes is manifested in the vertical redistribution of heat, when the surface atmospheric layers are more heated, and in the upper troposphere ones are more cooled [22]. It is a consequence of the weakening of convective processes [23, 24] excited by electron flows, the intensity of which in relaxation periods of operation of monopolar charge installations decreases.

Another reason for climatic changes is associated with long-term blocking of latitudinal movement of jet streams (Rossby waves) by monopolar installations, which generates droughts and fires in some regions and catastrophic floods in other adjacent regions.

A decrease in the strength of the ground-level electric field due to the intensification of the electron transport from the lithosphere of the planet caused an increase in the concentration of steam in the atmosphere due to the lack of moisture condensation centres in it, a decrease in the thickness of the cloud cover and the height of cloudiness [7].

4. Conclusion
It is necessary to recognize that anthropogenic gases are not the cause of climate change [25], but the degradation of the electrophysical state of the Earth's lithosphere [8]. The ongoing accumulation of anthropogenic gases, obviously, is associated with a decrease in the bioproductivity of phytoplankton of the oceans under the conditions of an “electron deficiency”, while an increase in the concentration of carbon dioxide is a positive factor for its binding site as a result of photosynthesis with subsequent deposition in the form of carbonates on the bottom of the world ocean [7, 25].

The danger of uncontrolled use of atmospheric impact technologies has become apparent in the past decade when these technologies have become available in dozens of countries around the world. It lies in the fact that long-term and large-scale (on different continents) impacts on electrophysical processes occurring in the atmospheric-lithospheric channel lead to disasters, including the emergence of an “electron deficit” in the environment on a global scale.
Considering that “electron deficit” is a determining factor for the occurrence of chronic non-communicable diseases [8], the growth trends of which have been observed in the last 30-40 years, the use of new technologies in weather management is not the only factor of negative impact on the electrophysical state of the lithosphere and atmosphere of the planet. There is a technogenic pressure on the biosphere, mainly due to cold-plasma technologies that accumulate energy dissipated in the geosphere, especially so-called “fuel-free” generators [8].

In this regard, the scientific elite of states needs to reconsider their gnoseological positions on weather-forming processes, climate change, and degradation of the planet’s biota, including the pandemic of chronic non-communicable diseases, in their root causes and sources of occurrence. The new approach, focused on the formation of a safe environment, should be extended to technologies that somehow affect the electronic component of the planet’s biosphere.

References

[1] Veterkova Z A and Evstifeeva G Yu 2011 Intelligence. Innovation. Investment 2 240
[2] Healthcare in Russia 2019 2019 (Moscow: Rosstat)
[3] Savilov E D, Shugaeva S N, Briko N I and Kolesnikov S I 2019 Annals Russ. Acad. Med. Sci. 74 54
[4] Shishkina E A 2019 Law Global Soc. 1 83
[5] Ivanov O B 2019 ETAP: Economic Theory, Analysis, Practice 1 20
[6] Bagandov M K, Akimova I A and Bashtukaeva Z I 2015 Physiology and Ecology of Humans, Animals and Plants 7
[7] Lykov I N 2019 Bull. Kaluga Univ. 2 81
[8] Stekhin A A and Yakovleva G V 2019 Quantum Behavior of Water: Properties of the Electronic Subsystem of Water Associates. Electronic Deficiency as a Health Risk Factor (Moscow: Lenand)
[9] Farasuk N F and Rakhmanin Yu A 2004 Water – the Structural Basis of Adaptation (Moscow-Smolensk)
[10] Stekhin A A, Yakovleva T V, Marasanov A V, Karasev A K, Iksanova T I, Shovkoplyas Yu A and Gukasov V M 2019 Medicine High Technol. 1 5
[11] Stekhin A, Yakovleva G and Zemskov V 2018 Clinical Practice 15 831
[12] Liu B, Tan X, Gan T Y, Chen X, Lin K, Lu M and Liu Z 2020 Wiley Interdiscipl. Rev.: Water 7 e1412
[13] Hornsey M J and Fielding K S 2020 Soc. Iss. Pol. Rev. 14 3
[14] Franzke C L and Czupryna M 2020 Climat. Change 158 503
[15] Vinober A V 2019 Sci. Pract. J. Biosphere Economy: Theory Practice 5(14) 41
[16] Isaeva A D, Matin D S, Sinichkin A N and Frolov A S 2016 Problems Sci. 5(6) 73
[17] Atlant Technology for Initiating Jet Streams. New Methods for Managing Precipitation http://ufonews.ru/news65/167.htm
[18] Ujbo V I Method for Directed Transfer of Atmospheric Moisture for Increasing Precipitation in Predetermined Region 2004 Patent RU 2 271 097 C2
[19] Borog V V 2006 Investigation of Variations of Cosmic Rays in the Heliosphere, Magnetosphere and Atmosphere of the Earth Using a Ground-Based Wide-Aperture Muon Hodoscope Dissertation (Moscow)
[20] Jia M, Yuan J, Wang C, Xia H, Wu Y, Zhao L, Wei T, Wu J, Wang L, Gu S Y, Liu L, Lu D, Chen R, Xue X and Liu L 2019 Atmos. Chem. Phys. 19 15431
[21] Lutikov A I and Rogozhin E A 2014 Izvestiya Phys. Solid Earth 50 484
[22] Meng X, Vergados P, Komjathy A and Verkhoglyadova O 2019 Radio Sci. 54 1076
[23] Rybnov Y S and Soloviev S P 2019 Geomagnet. Aeronomy 59 234
[24] Hupe P, Ceranna L and Le Pichon A 2019 Atmosphere 10 399
[25] Pautova L A and Silkin V A 2019 Hydrosphere Ecology 1 1