Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia

Francesco Salton MD1*, Paola Confalonieri MD1*, G. Umberto Meduri MD2*, Pierachille Santus MD3, Sergio Harari MD4, Raffaele Scala MD5, Simone Lanini MD6, Valentina Vertui MD7, Tiberio Oggionni MD7, Antonella Caminati MD8, Vincenzo Patruno MD9, Mario Tamburrini MD10, Alessandro Scartabellati MD11, Mara Parati MD11, Massimiliano Villani MD11, Dejan Radovanovic MD5, Sara Tomassetti MD12, Claudia Ravaglia MD13, Venerino Poletti MD13, Andrea Vianello MD14, Anna Talia Gaccione MD15, Luca Guidelli MD5, Rita Raccanelli MD8, Paolo Lucernoni MD15, Donato Lacedonia MD16, Maria Pia Foschino Barbaro MD16, Stefano Centanni MD17, Michele Mondoni MD17, Matteo Davi MD17, Alberto Fantin MD9, Xueyuan Cao PhD18, Lucio Torelli DSc19, Antonella Zucchetto PhD20, Marcella Montico MSc20, Annalisa Casarin MD21, Micaela Romagnoli MD22, Stefano Gasparini MD23, Martina Bonifazi MD23, Pierlanfranco D’Agaro MD24, Alessandro Marcello PhD25, Danilo Licastro PhD26, Barbara Ruaro MD1, Maria Concetta Volpe PhD27, Reba Umberger PhD18, and Marco Confalonieri MD1,27*

1. Department of Pulmonology, University Hospital of Cattinara, Trieste, Italy.
2. Pulmonary, Critical Care, and Sleep Medicine Service and Research Service, Memphis VA Medical Center and Department of Medicine, University of Tennessee Health Science Center, Memphis, TN (US).
3. Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, “L. Sacco” University Hospital, ASST-Fatebenefratelli-Sacco, Milano, Italy.
4. Dept. of Medical Sciences San Giuseppe Hospital MultiMedica IRCCS and Dept of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
5. Pulmonology and Respiratory Intensive Care Unit, S. Donato Hospital, Arezzo, Italy.
6. National Institute for the Infectious Diseases “L. Spallanzani”, Rome, Italy.
7. Pulmonology Unit, Policlinico San Matteo IRCCS, Pavia, Italy.
8. Division of Pulmonary and Critical Care Medicine San Giuseppe Hospital MultiMedica IRCCS Milan, Italy
9. Pulmonology Department, S. Maria della Misericordia University Hospital, Udine, Italy.
10. S.C. Pneumologia, Azienda Ospedaliera Friuli Occidentale, Pordenone, Italy.

11. Department of Pulmonology and Respiratory High-Dependency Unit, Ospedale Maggiore, Crema, Italy.

12. Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy.

13. Department of Respiratory and Thorax Diseases, GB Morgagni Hospital, Forlì, Italy.

14. Division of Respiratory Pathophysiology and Intensive Care, University-City Hospital, Padova, Italy.

15. Pulmonology Department, Vittorio Veneto Hospital, Italy.

16. Department of Medical and Surgical Science - University of Foggia, Policlinico Riuniti.

17. Pulmonology Department, S. Paolo Hospital, Milan, Italy.

18. Department of Acute and Tertiary Care, College of Nursing, University of Tennessee Health Science Center, Memphis, TN (US).

19. Department of Clinical, Surgery and Health Sciences, University of Trieste, Italy.

20. Scientific Directorate, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.

21. Centre for Health Services and Clinical Research, University of Hertfordshire, Hatfield UK.

22. Pulmonary Unit, Treviso Hospital, Italy.

23. Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Region - Azienda Ospedali Riuniti, Ancona, Italy.

24. Laboratorio di riferimento per SARS-CoV-2, Regione Friuli-Venezia Giulia, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), University of Trieste, Italy.

25. Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.

26. ARGO Open Lab Platform for Genome Sequencing, Area Science Park, Trieste, Italy.

27. University of Trieste, Trieste, Italy.

*These authors contributed equally to this study.
For correspondence:
Marco Confalonieri, MD
Struttura complessa Pneumologia, ASUGI
Ospedale di Cattinara, strada di Fiume 447, 34149 Trieste.
E-mail: mconfalonieri@units.it
Alternate corresponding author: Francesco Salton, MD (francesco.salton@gmail.com)

Take home point
In patients with severe COVID-19 pneumonia, per-protocol administration of prolonged low-dose methylprednisolone treatment is associated with a significantly lower hazard of death, reduced ICU burden and decreased ventilator dependence.
Abstract

Background
In hospitalized patients with COVID-19 pneumonia, progression to acute respiratory failure requiring invasive mechanical ventilation (MV) is associated with significant morbidity and mortality. Severe dysregulated systemic inflammation is the putative mechanism. We hypothesize that early prolonged methylprednisolone (MP) treatment could accelerate disease resolution, decreasing the need for ICU and mortality.

Methods
We conducted a multicenter, observational study to explore the association between exposure to prolonged, low-dose, MP treatment and need for ICU referral, intubation or death within 28 days (composite primary endpoint) in patients with severe COVID-19 pneumonia admitted to Italian respiratory high-dependency units. Secondary outcomes were invasive MV-free days and changes in C-reactive protein (CRP) levels.

Results
Findings are reported as MP (n=83) vs. control (n=90). The composite primary endpoint was met by 19 vs. 40 [adjusted hazard ratio (HR) 0.41; 95% confidence interval (CI): 0.24-0.72]. Transfer to ICU and need for invasive MV was necessary in 15 vs. 27 (p=0.07) and 14 vs. 26 (p=0.10), respectively. By day 28, the MP group had fewer deaths (6 vs. 21, adjusted HR=0.29; 95% CI: 0.12-0.73) and more days off invasive MV (24.0 ± 9.0 vs. 17.5 ± 12.8; p=0.001). Study treatment was associated with rapid improvement in PaO₂:FiO₂ and CRP levels. The complication rate was similar for the two groups (p=0.84).

Conclusion
In patients with severe COVID-19 pneumonia, early administration of prolonged MP treatment was associated with a significantly lower hazard of death (71%) and decreased ventilator dependence. Treatment was safe and did not impact viral clearance. A large RCT (RECOVERY trial) has been performed that validates these findings.

Clinical trial registration
ClinicalTrials.gov NCT04323592

Keywords
SARS-CoV-2, COVID-19, Pneumonia, Methylprednisolone, ARDS
Introduction

Italy was the first European Country overwhelmed by the SARS-CoV-2 pandemic, experiencing an unsustainable burden on the healthcare system. The greatest impact was on intensive care units (ICUs) because 16% of hospitalized cases developed acute respiratory failure (ARF) requiring ICU admission.\[1\] COVID-19 patients with ARF necessitate weeks of mechanical ventilation (MV) and have an unacceptably high mortality rate.\[2\] This is an unprecedented global emergency where even countries with advanced health care systems rapidly reach ICU saturation, and intensivists are forced to make difficult ethical decisions that are uncommon outside war zones. Any intervention directed at decreasing dependence on ventilators and mortality in COVID-19 patients is an ethical imperative and would have a significant global impact on public health.

Over the last few decades, Italy has built-up a diffuse network of respiratory high dependency units (RHDUs) which also treat patients with severe pneumonia-related ARF requiring continuous monitoring and noninvasive positive pressure ventilation (NPPV).\[3\] Patients with disease progression who require endotracheal intubation are transferred to the ICU. During the pandemic, RHDUs were pivotal in reducing ICU referral.\[4\]

Indeed, patients with severe COVID-19 have exhausted antiviral defenses and massive tissue and systemic inflammatory response. Corticosteroids are powerful anti-inflammatory drugs that could have a role in promoting the resolution of ARF in patients with severe COVID-19 infection.\[5\] The rationale for prolonged, low-dose, corticosteroid treatment in severe COVID-19 was recently reviewed.\[6\]

We hypothesized that early MP treatment in hypoxemic patients with severe SARS-CoV-2 pneumonia at higher risk for ARF progression requiring invasive MV, may quicken disease resolution, reducing the need for ICU support and mortality. We investigated the association between early intervention with prolonged MP treatment in this high-risk group and the risk for ICU admission, the need for invasive MV or all-cause death by day 28.

Methods

Study design, setting and participants

We conducted a multicenter, observational, longitudinal study to evaluate the association between MP treatment and outcome in consecutive patients with severe COVID-19 pneumonia admitted to fourteen Italian RHDUs between February 27th and April 24th, 2020. Follow-up continued through May 21st, 2020. The composite primary endpoint included admission to ICU, need for invasive MV, or all-cause death by day 28, while secondary endpoints were MV C-reactive protein (CRP) levels. The study was carried out in accordance with the Declaration of Helsinki. It was registered on
Clinicaltrials.gov (NCT043235929) after approval by the referral Ethics Committee for the Coordinating Centre (University Hospital of Trieste, #CEUR-2020-Os-052).

Study baseline was defined as the time of inclusion criteria fulfillment after admission to RHDU. Inclusion criteria were the followings: 1) SARS-CoV-2 positive (on swab or bronchial wash); 2) age >18 years and <80 years; 3) PaO2:FiO2 <250 mmHg; 4) bilateral infiltrates; 5) CRP >100 mg/L; and/or 6) diagnosis of acute respiratory distress syndrome (ARDS) according to the Berlin definition[8] as an alternative to criteria 4) and 5). Exclusion criteria were: heart failure as main cause of ARF, decompensated liver cirrhosis, immunosuppression (i.e. cancer on treatment, post-organ transplantation, HIV-positive, on immunosuppressant therapy), dialysis-dependence, on long-term oxygen or home mechanical ventilation, idiopathic pulmonary fibrosis, neuromuscular disorders, dementia or a decompensated psychiatric disorder, severe neurodegenerative conditions, on chronic steroid therapy, pregnancy, a do-not-resuscitate order, and use of Tocilizumab or other experimental treatment. Patients in both study groups received standard of care, comprising noninvasive respiratory support, antibiotics, antivirals, vasopressors, and renal replacement therapy as deemed suitable by the healthcare team.

Exposure to methylprednisolone (non-patented drug, ATC code H02AB04) complied with the following protocol: a loading dose of 80 mg iv at study entry (baseline), followed by an infusion of 80 mg/day in 240 mL normal saline at 10 mL/h for at least 8 days, until achieving either a PaO2:FiO2 > 350 mmHg or a CRP < 20 mg/L. After which, oral administration at 16 mg or 20 mg iv twice daily until CRP reached < 20% of normal range or a PaO2:FiO2 > 400 (alternative SatHbO2 ≥ 95% on room air). The MP protocol was developed by the coordinating Center in accordance with the “recommendation for COVID-19 clinical management” by the National Institute for the Infectious Diseases “L. Spallanzani”, Rome.[9] The decision to apply the protocol to COVID-19 was left to the discretion of the treating team for each individual patient. Unexposed patients (controls) were selected from concurrent consecutive COVID-19 patients with the same inclusion and exclusion criteria.

Data sources and variables
Demographic details, laboratory, clinical and outcome variables were manually extracted from electronic medical records or charts and anonymously coded onto in a standardized data collection form. Three independent physicians checked the data and two researchers adjudicated any difference in interpretation between the primary reviewers.

Serial measurements included: arterial blood gas, CRP, D-dimer, white cell count with differential, hemoglobin, variables for the calculation of the SOFA score,[10] days free from invasive or noninvasive MV until study day 28. Laboratory methodologies, including SARS-CoV-2 detection by reverse-transcriptase polymerase chain reaction (RT-PCR) and reference values were comparable.
between centers. Other collected data included: date of death, admission to ICU, dates of discharge from hospital and ICU, in-hospital adverse events and comorbidities. Samples from seriated nasopharyngeal swabs were collected in each group to evaluate viral shedding.

Statistical methods

Considering a study power (1-beta) of 80% and a probability of type 1 error (alpha) of 0.05, assuming that the proportion of treated patients having the primary endpoint was 0.7 under the null hypothesis (according to available information from Fang et al. 2020[11]) and 0.42 under the alternative hypothesis, and considering a 5% dropout rate, a minimum study sample of 104 patients was established. Data were described using absolute and relative frequencies (percentage) or position indices (mean or median) and relative dispersion indices (standard deviation or interquartile range), as appropriate according to the type and distribution of the variable analyzed. The differences between study groups (MP-treated and control) in the proportion of patients reaching the primary endpoint was evaluated by a two-sided Chi-square test. The difference in numerical variables between groups was calculated using Student’s T-test or Wilcoxon rank-sum test, depending on the distribution of the variables.

Differences between study groups concerning categorical or dichotomous variables were evaluated by means of the Chi-square test or Fisher’s exact test, as appropriate. Time-to-event analyses were performed for both the composite primary endpoint and death alone. Time at risk for all-cause death was computed from the date of study enrollment up to the date of death, hospital discharge, or 28 days, whichever came first. Event-free probabilities were estimated by the Kaplan-Meier method and differences between groups were assessed by the log-rank test. Multivariable Cox proportional-hazard models estimated the hazard ratio (HR) of both the primary composite endpoint and all-cause death, with the corresponding 95% confidence intervals (95% CI), taking into account the confounding factors (i.e., sex, age, and baseline values of SOFA score, PaO$_2$:FiO$_2$, CRP levels) potentially associated with the outcome. These variables and others with baseline differences (e.g. smoke) were tested in univariate survival models and variables significant at p=0.1 were tested in the multivariable models. Proportional hazards assumption was assessed by visual inspection of the log(-log(survival)) plot. There were no missing data with regard neither to the composite primary endpoint and the adjustment factors included in the final Cox models, nor to MV-free days. Available case analysis was performed for time variation of C-reactive protein (CRP) and PaO$_2$:FiO$_2$ levels. All tests were two-sided and a p-value of <0.05 was considered as statistically significant.

Sensitivity analyses were completed as recommended by STROBE guidelines for reporting observational studies.[12] Although a protocol was used to standardize study measures, we conducted a sensitivity analysis to account for potential variance in medical decision making that
could potentially impact the primary composite outcome. We examined hypothetical scenarios against the hypothesis by varying the number of subjects meeting the primary composite outcome by 3 and 5 subjects to account for potential bias in both groups.

Results

Between February 27\(^{th}\) and April 24\(^{th}\), 2020, 322 consecutive SARS-CoV-2-positive patients who were admitted to one of 14 RHDUs with severe pneumonia, were assessed for study eligibility. A total of 173 patients (83 MP-treated exposed and 90 untreated controls) were enrolled, while 149 were excluded as detailed in Figure 1.

Findings are reported as MP group vs. control group. RHDU admission days to study enrollment were comparable (0.83 ± 2.02 vs. 0.56 ± 1.50, p=0.32). Table 1 shows how the patients’ baseline characteristics did not differ between groups. The mean duration of iv MP treatment was 9.11 ± 2.4 days, while the total duration of MP treatment was 13.7 ± 3.6 days. Table 2 reports the main study outcomes. The composite primary endpoint was reached by 19 vs. 40 (22.9% vs 44.4%, p=0.003) \([\text{adjusted hazard ratio (HR)} 0.41; 95\% \text{ confidence interval (CI)}: 0.24-0.72]\) indicating a reduction of 59% in the risk of ICU referral, invasive MV, or death within 28 days. In particular, ICU transfer was necessary in 15 vs. 27 (18.1% vs 30.0%, p=0.07) and for invasive MV in 14 vs. 26 (16.9% vs. 28.9%, p = 0.10).

MP-treated patients had a 28 day lower risk of all-cause death than untreated ones (6 deaths, 7.2% vs. 21 deaths, 23.3%; p=0.005), with a corresponding adjusted HR equal to 0.29 (95% CI: 0.12-0.73), indicating a 71% reduction in the risk of death in MP patients compared to controls. The Kaplan-Meier survival curves (Figure 2) showed statistically significant difference between groups (log-rank test p=0.003), with survival probabilities at 28 days of 91.6\% (95\% CI 82.2 - 96.2) for MP treated and 68.2\% (95\% CI 53.8 – 78.9) for control patients. The HRs did not substantially change when other variables were included in the adjusted Cox-models (e.g. other allowed treatments, BMI, smoking, NPPV, and high-flow nasal cannula, data not shown). The Kaplan-Meier curves shown in Figure S1 illustrate timing to removal of mechanical ventilation in both groups.

For the secondary endpoints (Table 2), we observed a significant increment in both MV-free days by day 28 outcomes, combined invasive MV and NPPV (19.1 ± 8.7 vs. 14.3 ± 11.7, p=0.003), and invasive-MV-free days alone (24 ± 9 vs. 17.5 ± 12.8, p=0.001). MP exposure was associated with a significant intra-patient median variation in a PaO\(_2\)/FiO\(_2\) at day 3 compared to baseline [54.0 (7.0 to 155.0) vs. 6.9 (-41.5 to 77.0); p<0.001], but not at days 7, 14 and 28 (Figure 3). Median variation in CRP levels was also prominent in the MP group at day 3 [-85.0 (-133.0 to -42.5) vs. -22.0 (-65.0 to 21.3); p<0.001] and at day 7 [-99.4 (-162.0 to -62.3) vs. -66.1 (-116.0 to -0.7); p<0.001] compared to baseline, but not at days 14 and 28 (Figure 3). No differences were noted between groups in intra-
patient median lymphocytes variation at days 3, 7 and 14 compared to baseline, as detailed in Table 2 and shown in Figure 3. The hospital length of stay did not differ between the groups (p-value=0.38). No tracheostomy was necessary in MP patients vs. 12 controls (OR 0.04, 95% CI 0.002 to 0.64, p-value <0.001). Concerning intra-hospital adverse events of any type (Table S1) only the occurrence of hyperglycemia in non-diabetic patients, or severe glycemic decompensation in diabetic patients, and agitation was significantly higher in the MP group compared to control (8 vs. 0, p=0.002 and 9 vs. 2, p=0.03 respectively). No adverse event led to MP discontinuation. Concomitant in-hospital treatments are summarized in Table S2.

There were no relevant differences in viral genome sequencing in the two first recruited patients compared to the average sequences reported in open-source repositories (Figure S2). Nor was any observed in viral shedding, determined as time lapse (days) between hospital admission and the first negative RT-PCR for SARS-CoV-2 nasopharyngeal swabs, in a sample of 41 MP-treated patients compared to 28 untreated ones (19.05 ± 6.11 vs. 20.68 ± 7.05, p-value=0.31).

Sensitivity analysis (Table S3) show that the primary composite outcome still significantly differs between the MP and control group in scenarios biased against the original hypothesis.

Discussion

In our multicenter study, patients exposed to MP encountered the primary composite endpoint of ICU referral, need for invasive MV or in-hospital all-cause death significantly less compared to the control group (adjusted HR 0.41). By day 28, MP treatment was associated with a significant reduction in mortality (adjusted HR 0.29) and an increase in MV-free days. Among patients transferred to the ICU, MP treated patients had a 7.5 days median reduction (p=0.03) in the duration of invasive MV. In line with this data, fewer MP-treated patients required tracheotomy than controls (0 vs. 12, p <0.001). MP-treated patients had a higher reduction in CRP levels than controls. This was statistically significant on days 3 and 7 from baseline and there was a quicker improvement in PaO₂:FiO₂ ratio on day 3 for MP-treated patients. There was no overall increase in adverse events between groups, except for an increase in hyperglycemia and mild agitation in the MP-treated patients; no adverse event necessitated MP discontinuation. No difference was observed in viral shedding, determined as the number of days between hospital referral and the first negative nasopharyngeal swab.

Early interventions aimed at down regulating the SARS-CoV-2- associated hyper-immune response in severe COVID-19 patients may well avoid disease progression and enhance pneumonia resolution. The cytokine profile reported for these patients[13] is within the broad range of regulation provided by corticosteroids[14], particularly MP that is associated with an optimal lung penetration.[15] Our study protocol involved an initial iv bolus to achieve rapid, almost complete
glucocorticoid receptor saturation, followed by an infusion to reach a total 160-milligram dose over the first 24 hours and to maintain high levels of response throughout the treatment period. After day 7, treatment duration was guided by monitoring the anti-inflammatory response and oxygenation parameters. Our study investigated a dose more than double the one investigated in the RECOVERY RCT and included tapering to minimize the risk of rebound inflammation.

This might explain the rapid reduction observed in inflammatory markers. Treatment duration was guided by monitoring the anti-inflammatory response and oxygenation after at least 8 days. Our MP treatment response is similar to that of randomized controlled studies (RCTs) in COVID-19[16], non-viral ARDS[17] and severe pneumonia[18], as well as of large-scale observational studies in severe pneumonia caused by SARS-CoV (n=7008)[19–21] and H1N1 influenza (n=2141).[22] Additional support for the use of methylprednisolone in COVID-19 originates from transcriptomics data. After matching the expression changes induced by SARS-CoV2 in human lung tissue tissues and A549 lung cell line against the expression changes triggered by 5,694 FDA-approved drugs, methylprednisolone was found to be the drug with the greatest potential to revert the changes induced by COVID-19.[23]

This study has been carried out before the results of the RECOVERY RCT became available, as visible by clinicaltrials.gov posting records (results first posted June 4, 2020). In the RECOVERY trial, patients were randomized to receive dexamethasone at a dose of 6 mg/day or standard of care alone, providing evidence of a lower 28-day mortality in the dexamethasone group compared to the usual care group only among those who were receiving either invasive mechanical ventilation (29.3% vs. 41.4%) or oxygen alone (23.3% vs. 26.2%) at randomization, but not among those receiving no respiratory support. In our study, both mortality and mortality reduction in the MP group were better than reported in the RECOVERY trial. Apart from the different study design and setting, we speculate this difference is possibly due several reasons: first, the RECOVERY trial uses a different drug (dexamethasone) at a lower dose, equivalent to approximately 32 mg of methylprednisolone.[24] Second, it is likely that MP has pharmacokinetic and pharmacodynamic advantages over dexamethasone, despite lung penetration needs further comparison.[24] Third, in the RECOVERY trial, the impact of the study treatment on survival seems to correlate with the need for respiratory support and therefore with illness severity. In this support, it was already noticed that glucocorticoids are not effective in patients without ARDS and/or sepsis.[18] While permissive inclusion criteria are needed to recruit large populations in RCTs, we have designed strict criteria that allowed us to include in the analyses only patients affected by severe pneumonia/ARDS with high levels of systemic inflammation and need for respiratory support. It is worth stressing that inflammatory organ injury with subsequent dysregulated host response is thought to be the main
mechanism of damage in COVID-19; as a consequence, the subgroup of patients having markedly elevated levels of inflammatory markers is the one supposed to benefit most from therapeutic interventions aimed at reducing inflammatory organ injury, including corticosteroids.

The safety profile reported in our study is consistent with the findings of multiple RCTs investigating prolonged corticosteroid treatment in thousands of patients with severe sepsis, septic shock and ARDS.[17] In these RCTs, hyperglycemia was transient in response to the initial loading bolus and did not impact negatively on outcome.[17] Viral shedding in both groups of our study was in agreement with international literature.[25,26] The WHO quotes a Middle East Respiratory Syndrome Coronavirus study to warn about the risk for reduction in viral clearance with corticosteroid treatment. In the Arabi et al. study[27], however, those that received corticosteroid treatment for greater than seven days (similar to our study) had a fifty percent reduction in mortality \[\text{aOR: 0.51, 95\% confidence interval (CI) 0.26–1.00; } p= 0.05\] and no impact on viral clearance (aHR: 0.94, 95\% CI 0.36–2.47; \(p= 0.90\)). Moreover, there is no evidence linking delayed viral clearance to worsened outcome in critically ill COVID-19 patients, and it is unlikely that it would have a greater negative impact than the host’s own cytokine storm.[28]

The observational design of our study implies some obvious limitations, namely a possible restricted control over data collection and potential inclusion biases. However, internal validity was achieved by (1) the comparability of concurrent groups at baseline, (2) accounting for potential confounders into the multivariable Cox regression analyses, and (3) conducting sensitivity analysis to assess for potential bias in outcome ascertainment potentially influenced by medical decision making. Our study’s strengths include a prospective evaluation of a pre-designed intervention protocol based on established pharmacological principles in patients at high risk of progression to ARF and death. Limitations of the study is that we did not control for center effects and site investigators were not blinded to treatment as with any observational study. Despite these limitations, we believe that our findings represent valid and generalizable conclusions, that have been further strengthened by the recently published RECOVERY RCT.

Indeed, we observed benefits when MP treatment was started early and prolonged in the hospitalization of hypoxemic patients with COVID-19 pneumonia at high risk of ARF progression. MP treatment was demonstrated to be safe, and also allowed for a significant reduction in mortality and immediate improvements in systemic inflammation and oxygenation markers, as well as reducing invasive MV times. We believe our data support the evidence that early low-dose prolonged MP treatment can decrease ICU burden and mortality, therefore contributing to reduce the concern surrounding this therapeutic approach in patients admitted with ARF due to severe SARS-CoV-2 pneumonia in the current state of affairs.
Author contributions
FS, PC, PS, SH, RS, SL, VV, TO, AC, VP, MT, AS, MP, MV, DR, ST, CR, VP, AV, ATG, LG, RR, PL, DL, MPFB, SC, MM, MD, AF, AC, MR, SG, MB, BR, MCV, MC collected the clinical data and revised the manuscript. XC, LT, AZ, MM performed statistical analysis and revised the manuscript. RU provided critique, edits, and performed the sensitivity analysis. PD, AM, DL performed the experiments related to qualitative viral assessment and genome sequencing and revised the manuscript. FS, PC, MC and GUM conceptualized the study, analyzed the data and wrote the manuscript.

Funding
This material is the result of work supported with the resources and use of facilities at the University Hospital of Trieste and Memphis VA Medical Center. The contents of this commentary do not represent the views of the U.S. Department of Veterans Affairs, nor of the U.S. or Italian Government.

Acknowledgments
The authors would like to thank Barbara Wade, contract professor at the University of Torino, for her linguistic advice; Amanda Busby, University of Hertfordshire, for her statistical suggestions; Dr. Valentina Luzzi and Dr. Marco De Martino for their help in data collection.

Patient consent statement
All patients signed written consent for this study.
The design of the study has been approved by the local Ethical Committee (#CEUR-2020-Os-052) and it conforms to the standards currently applied in Italy.

Conflicts of interest
The Authors have no conflicts of interest to disclose.
References

1. Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast during an Emergency Response. JAMA - J. Am. Med. Assoc. 2020;

2. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in Critically Ill Patients in the Seattle Region — Case Series. N Engl J Med 2020;

3. Confalonieri M, Gorini M, Corrado A, Ambrosino N, Mollica C. Respiratory intensive care units in Italy: A national census and prospective cohort study. Thorax 2001; 56:373–378.

4. Vitacca M, Nava S, Santus P, Harari S. Early consensus management for non-ICU ARF SARS-CoV-2 emergency in Italy: from ward to trenches. Eur. Respir. J. 2020;

5. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020; Available at: http://www.ncbi.nlm.nih.gov/pubmed/32320677. Accessed 3 May 2020.

6. Villar J, Confalonieri M, Pastores SM, Meduri GU. Rationale for Prolonged Corticosteroid Treatment in the Acute Respiratory Distress Syndrome Caused by Coronavirus Disease 2019. Crit Care Explor 2020; 2:e0111.

7. Schoenfeld DA, Bernard GR. Statistical evaluation of ventilator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med 2002; 30:1772–1777.

8. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc 2012; 307:2526–2533.

9. Nicastri E, Petrosillo N, Ippolito G, et al. National Institute for the Infectious Diseases “L. Spallanzani” IRCCS. Recommendations for COVID-19 Clinical Management. Infect Dis Rep 2020; 12.

10. Vincent JL, de Mendonça A, Cantraine F, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on ‘sepsis-related problems’ of the European Society of Intensive Care Medicine. Crit Care Med 1998; 26:1793–800. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9824069. Accessed 3 May 2020.
11. Fang X, Mei Q, Yang T, et al. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J. Infect. 2020;

12. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007; 370:1453–1457.

13. Henry BM, De Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020;

14. Meduri GU, Chrousos GP. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front Endocrinol (Lausanne) 2020; 11:161. Available at: https://www.frontiersin.org/article/10.3389/fendo.2020.00161/full. Accessed 3 May 2020.

15. Vichyanond P, Irvin CG, Larsen GL, Szeffler SJ, Hill MR. Penetration of corticosteroids into the lung: Evidence for a difference between methylprednisolone and prednisolone. J Allergy Clin Immunol 1989; 84:867–873.

16. RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med 2020; :NEJMoa2021436. Available at: http://www.nejm.org/doi/10.1056/NEJMoa2021436. Accessed 15 August 2020.

17. Meduri GU, Bridges L, Shih MC, Marik PE, Siemieniuk RAC, Kocak M. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients' data from four randomized trials and trial-level meta-analysis of the updated literature. Intensive Care Med. 2016; 42:829–840.

18. Confalonieri M, Urbino R, Potena A, et al. Hydrocortisone infusion for severe community-acquired pneumonia: A preliminary randomized study. Am J Respir Crit Care Med 2005; 171:242–248.

19. Long Y, Xu Y, Wang B, et al. Clinical recommendations from an observational study on MERS: Glucocorticoids was benefit in treating SARS patients. Int J Clin Exp Med 2016; 9.

20. Chen RC, Tang XP, Tan SY, et al. Treatment of severe acute respiratory syndrome with glucocorticoids: The Guangzhou experience. Chest 2006; 129:1441–1452.

21. Yin-Chun Yam L, Chun-Wing Lau A, Yuk-Lin Lai F, Shung E, Chan J, Wong V. Corticosteroid
22. Li H, Yang SG, Gu L, et al. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia. Influenza Other Respi Viruses 2017; 11:345–354.

23. Draghici S, Nguyen TM, Sonna LA, et al. COVID-19: disease pathways and gene expression changes predict methylprednisolone can improve outcome in severe cases. Res Sq 2020;

24. Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 2005; 44:61–98. Available at: https://link.springer.com/article/10.2165/00003088-200544010-00003. Accessed 15 August 2020.

25. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;

26. Jung J, Oh DK, Ahn JH, et al. Re: Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J Infect 2020; Available at: https://linkinghub.elsevier.com/retrieve/pii/S0163445320302772. Accessed 23 May 2020.

27. Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir Crit Care Med 2018; 197:757–767.

28. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395:1033–1034.
Legends to the figures

Figure 1. Flow-chart of the study population.

Failed to meet inclusion criteria (n=72): age > 80 years old (n=9), criteria for PaO$_2$:FiO$_2$, C-reactive proteron level, or ARDS (n=63). Met exclusion criteria (n=35): heart failure as main cause of ARF (n=2), decompensated liver cirrhosis (n=3), on long-term oxygen therapy and/or home ventilation (n=2), dementia or severe neurodegenerative condition (n=14), active cancer (n=3), on chronic steroid therapy (n=4), use of Tocilizumab or other experimental treatment (n=7).

28 patients who reached the primary endpoint before admission to RHDU or within 24 hours from admission to RHDU were excluded from the analysis; 20 out of these 28 patients did not start MP treatment.

Figure 2. Kaplan-Meier estimates of survival probability. MP, Methylprednisolone; CTR, control.

Figure 3. Time-course of C-reactive protein and PaO$_2$:FiO$_2$ variation

Upper panel: time-course of C-reactive protein levels (mean ± standard error). The differences between groups were significant at days 3 and 7. Middle panel: time course of mean PaO$_2$:FiO$_2$. The differences between groups was significant at day 3. Lower panel: time course of mean lymphocyte count showing no significant differences between groups.
Table 1: Distribution of 173 study patients according to study group and baseline characteristics.

	Methylprednisolone (N=83)	Control (N=90)	p-value°
Age, mean (SD)	64.4 (10.7)	67.1 (8.2)	0.07
Male sex, no. (%)	54 (65.1)	66 (73.3)	0.25
BMI ≥30 kg/m², no. (%)¶	19 (33.3)	18 (32.7)	1.00
Ever smoker, no. (%)¶	22 (29.7)	29 (45.3)	0.05
Presence of major co-morbidities, no. (%)	63 (75.9)	74 (82.2)	0.35
Hypertension, no. (%)	36 (43.4)	51 (56.7)	0.09
Diabetes, no. (%)	19 (22.9)	25 (27.8)	0.49
Asthma/COPD, no. (%)	7 (8.4)	9 (10.0)	0.80
OSAS/OHS, no. (%)	5 (6.0)	7 (7.8)	0.77
Congestive heart failure, no. (%)	4 (4.8)	2 (2.2)	0.43
Ischemic cardiovascular disease, no. (%)	2 (2.4)	9 (10.0)	0.06
Chronic kidney disease, no. (%)	5 (6.0)	4 (4.4)	0.74
History of malignancy, no. (%)	7 (8.4)	4 (4.4)	0.36
PaO₂:FiO₂, mmHg, mean (SD)	152.0 (49.8)	151.0 (60.3)	0.90
Respiratory rate, breaths/minute, mean (SD)§	23.7 (5.9)	25.3 (6.8)	0.16
CRP, mg/L, mean (SD)	136.9 (72.6)	148.6 (75.6)	0.30
D-dimer, ug/FEU/L, median (IQR)	780 (540-1214)	871 (472-1517)	0.82
LDH, U/L, mean (SD)	370.5 (130.9)	395.3 (169.3)	0.34
Lymphocyte count, mean (SD)	916.2 (657.0)	954.5 (914.7)	0.76
SOFA score, median (IQR)	3 (2-4)	3 (2-4)	0.96

Legend: SD, standard deviation; IQR, inter-quartile range; CRP, C-reactive protein; SOFA, Sequential Organ Failure Assessment; PaO₂:FiO₂, ratio of partial pressure of arterial oxygen (PaO₂ in mmHg) to fractional inspired oxygen (FiO₂); COPD, chronic obstructive pulmonary disease; OSAS/OHS, obstructive sleep apnea syndrome/obesity-hypoventilation syndrome; LDH, lactate dehydrogenase.

¶ Missing data: 35 (38.9) Methylprednisolone, 26 (31.3) control group;

¶ Missing data: 26 (28.9) Methylprednisolone, 9 (10.8) control group;

§ Missing data: 15 (16.7) Methylprednisolone, 17 (20.5) control group;

° P-value of the Fisher’s exact test for dichotomous variables, unpaired Student’s t-test or Wilcoxon rank-sum test for numerical variables, as appropriate.
Table 2: Distribution of 173 study patients according to study group and clinical outcomes at 28 days.

	Methylprednisolone (N=83)	Control (N=90)	Crude HR* (95% CI)	Adj. HR (95% CI)	p-value§	p-value§	
Major outcomes							
Composite primary endpoint, no. (%)	19 (22.9)	40 (44.4)	0.43 (0.25-0.74)	0.41 (0.24-0.72)	0.002		
Transfer to intensive care unit, no. (%)	15 (18.1)	27 (30.0)	0.067	
Invasive mechanical ventilation, no. (%)	14 (16.9)	26 (28.9)	0.095	
Death, no. (%)	6 (7.2)	21 (23.3)	0.005	0.28 (0.11-0.68)	0.009	0.29 (0.12-0.73)	0.009
Other outcomes							
Mechanical ventilation-free days, mean (SD)**	19.1 (8.7)	14.3 (11.7)	0.003				
Invasive mechanical ventilation-free days, mean (SD)	24.0 (9.0)	17.5 (12.8)	0.001				
Invasive mechanical ventilation, days, median (IQR)	7 (5.5 to 15.5)	14.5 (12 to 22)	0.031				
Required tracheotomy, no. (%)	0 (0.0)	12 (13.3)	<0.001				
Intra-patient difference between:							
CRP at day 3 vs baseline, median (IQR)	-85.0 (-133.0 to -42.5)	-22.0 (-65.0 to 21.3)	<0.001				
CRP at day 7 vs baseline, median (IQR)	-99.4 (-162 to -62.3)	-66.1 (-116 to -0.7)	<0.001				
PaO2:FiO2 at day 3 vs baseline, median (IQR)	54.0 (7.0 to 155.0)	6.9 (-41.5 to 77.0)	<0.001				
PaO2:FiO2 at day 7 vs baseline, median (IQR)	97.5 (42.0 to 162.0)	68.0 (-5.5 to 139.0)	0.09				
Lymphocytes at day 3 vs baseline, median (IQR)	-45 (-285 to 150)	0 (-110 to 170)	0.18				
Lymphocytes at day 7 vs baseline, median (IQR)	110 (-170 to 480)	130 (-140 to 350)	0.88				
--	-----------------	-----------------	------				
Lymphocytes at day 14 vs baseline, median (IQR)	590 (-70 to 1390)	600 (230 to 800)	0.68				

Legend: HR, hazard ratio; CI, confidence interval; SD, standard deviation; IQR, inter-quartile range; CRP, C-reactive protein; PaO₂:FiO₂, ratio of partial pressure of arterial oxygen (PaO₂ in mmHg) to fractional inspired oxygen (FiO₂).

* P-value of Chi-square or Fisher’s exact test for dichotomous variables, unpaired T-test or Wilcoxon rank-sum test for numerical variables as appropriate.

§ HR of event among methyprednisolone vs. control group, estimated using Cox-regression model. The crude odds ratio and 95% CI for the composite outcomes is 0.37 (0.19-0.71).

¶ Cox-regression model was adjusted for sex, age, baseline SOFA score, baseline PaO₂:FiO₂, and baseline CRP.

* Only ventilated patients

Both invasive and noninvasive
Figure 1

322 patients assessed for eligibility

- 107 Failed inclusion (n=72) or met exclusion criteria (n=35)
 - 4 Protocol deviation
 - 10 Intubated before study baseline
 - 28 Reached primary endpoint within 24h (dropouts)

173 included in the analysis

- 83 Exposed to Methylprednisolone
- 90 Not exposed to Methylprednisolone
Figure 2

The figure shows a Kaplan-Meier survival analysis comparing two groups: Control and Methyprednisolone. The Log rank test indicates a significant difference between the groups with a p-value of 0.003.

- **Control**: Starting with 90 at risk, the number decreases to 22 at 28 days.
- **Methyprednisolone**: Starting with 63 at risk, the number decreases to 19 at 28 days.

Days: 0, 7, 14, 21, 28

Survival rates are plotted over time.
Figure 3

No. participants
Methylprednisolone
Control

Days since admission

Gluconeogenesis

No. participants
Methylprednisolone
Control

Days since admission

Lymphocytes, %

No. participants
Methylprednisolone
Control

Days since admission