What do we know, what do we think we know and what do we not know about Gamma-Ray Bursts

Ehud Nakar

Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

ABSTRACT

Decades of improving data and extensive theoretical research have led to a popular model of gamma-ray bursts. According to this model, a catastrophic event in a stellar system results in the formation of a compact central engine, which releases a fraction of a solar rest-mass energy within seconds in the form of ultra-relativistic jets. Dissipation of the jets energy leads first to prompt gamma-ray emission and later to a long lasting afterglow. Here I summarize the introduction that I gave to the debate “where do we stand?” in the conference “The Shocking Universe” held in Venice. This is a very brief summary of my view of the facts that we are (almost) certain about, models that are popular but may need rethinking, and main open questions.

1. introduction

Gamma-Ray Burst (GRB) observations during the 1990's lead to the impression that a GRB starts complex and becomes simpler to model with time. The popular view was that a progenitor stellar system goes through some catastrophic event, whose nature is unknown, leading to the formation of a compact central engine. Somehow this central engine deposits a fraction of a percent of the gravitational energy of the system in the form of kinetic energy of a minute fraction of its mass, thereby launching a collimated ultra-relativistic outflow. Internal shocks (or another form of internal interaction) within the outflow convert some of the outflow energy into accelerated electrons and magnetic fields, which produce the prompt emission that we observe, most likely via synchrotron radiation. Later, an interaction of the outflow with the surrounding medium drives a self-similar decelerating blast wave that accelerates electrons and amplifies the ambient magnetic field to produce the afterglow. The afterglow was considered relatively simple to model and understand, since all the complex initial conditions are washed out and only the initial energy and geometry of the outflow determine the blast wave evolution.
Observations during the last decade have led on one hand to a remarkable breakthrough in the identification of the progenitor system, and on the other hand to the realization that even the afterglow physics is much more complex than suspected. Theoretical modeling of the different physical processes improved and became more detailed and accurate, but also more complicated. Additionally, new ingredients were invoked to explain various specific observations of specific bursts, significantly increasing the model’s degrees of freedom, sometimes to the point where the models do not provide useful predictions anymore.

The purpose of the open discussion that I led in the conference was to take a step back and evaluate where do we stand in the grand picture. I presented to the audience three questions:

- What do you know with a very high confidence (almost as facts) about the physics of GRBs? What observations are the base for your confidence?

- Which of the models (for progenitors, prompt emission, afterglow, etc.), if any, you think that are probably correct?

- About which elements of GRB physics you think that we have almost no clue? What do we need in order to learn about these?

Unfortunately no detailed notes were taken during the discussion so here I will summarize only the introduction that I gave, which includes my short answers to these questions. I divide my discussion into five different stages of the explosion: progenitor, central engine, outflow properties, prompt emission and afterglow. For each, I give (a very partial) answer to the three questions. I touch only the physics of the explosions themselves without considering the study of the large scale environment (e.g., host galaxies). I discuss long and short GRBs separately only in the “progenitor” section. The reason is that as far as we know the rest of the stages may be (and possibly are) rather similar. Finally, one of the comments during the discussion (by Chris Fryer) was that we are much better at ruling out models than at proposing viable ones. Nevertheless, I discuss here only models which may describe the physics properly, without mentioning those that were ruled out.

Given the very broad scope of the discussion and the limited space of this proceeding, I regretfully cannot give the appropriate credit to the large number of observational and theoretical works on which my views are based. Note that some of the ideas that are discussed
here were also presented by Maxim Lyutikov in his presentation, which he summarizes in this proceeding.

2. Progenitor

What do we confidently know?
First, we know that there are at least two types of progenitors, those of (the majority of) long GRBs and those of (the majority of) short GRBs. This is based on three major observed differences between the two GRB types. The host galaxies are very different. The intrinsic redshift distribution is very different. An association with a supernova (SN) was established for almost any nearby long GRB, while a SN association was ruled out to any nearby short GRB.

We know much more about the progenitors of long GRBs. First, the progenitor system includes a very massive star. This knowledge is based on the association of specific nearby GRBs with SNe, on the high specific star formation rate of the host galaxies and on the location of the bursts within the most star forming regions of their hosts. Second, at least some progenitors produce broad line Ic SN (or SN like emission) within about ±1 day of the GRB. The evidence for this is not as straightforward as commonly assumed, and although the evidence are quite convincing (see below), future may hold surprises. Most of the nearby GRB-SNe events are not necessarily genuine GRBs (and maybe not even genuine SNe, in the sense that the driver of the explosion may be different than that of typical core-collapse SNe). For example GRBs 980425 (SN 1998bw), 031203 (SN 2003lw), 060218 (SN 2006aj) and the very recent GRB 100316D (SN2010bh) all show a single pulse of soft gamma-rays which contains about 10^{48} erg. These low luminosity bursts are very different than typical cosmological GRBs and their γ-ray emission is almost certainly produced by different physical mechanism. GRB 030329/SN 2003dh was the first example where a SN was directly associated with a GRB that is more similar to cosmological ones. At z=0.16, GRB 030329 released an isotropic equivalent energy of $\sim 10^{52}$ erg in two pulses of γ-rays. Until recently this event was the only direct link between cosmological GRBs and Ib/c SNe. Recently, Massimo Della Valle reported in an Astronomical Telegram (No. 1602) of the detection of SN 2008hw associated with GRB 081007 at z=0.53 (isotropic equivalent energy of $\sim 10^{51}$ erg in γ-rays), fortifying this connection. Apart for these direct SN/GRB associations, there are also about a dozen cases where a “red bump”, which is presumably contributed by the SN light, is evident in the late time afterglow of cosmological GRBs, further supporting the connection.

We do not know much about short GRB progenitors. All we know at a high level of
confidence is that they are different than long GRBs and that at least some of the progenitor systems do not include massive stars.

Popular models that need confirmation

The most natural picture that explains why long GRB progenitors are associated with massive stars and why they explode within ± 1 day of a SN is that the GRB and the SN are produced simultaneously following the collapse of a massive stellar core. While this is probably true, there is no direct evidence that this is indeed the case. Moreover, SNe modelers typically ignore the simultaneous launch of GRB relativistic jets, while GRB central engine modelers typically ignore the production of a SN. There is currently no model that incorporates in detail the basic ingredients of both and the interplay between them.

The most popular model for short GRB progenitors is neutron star-neutron star or neutron star-black hole merger. But, while being a very attractive model (especially for those interested in gravitational wave signals), which gets a passing grade in the comparison with all currently available observations, there is still no conclusive (or even strong) evidence that this is indeed the correct progenitor model.

Some of the main open questions and how can we answer them

Three important open questions about long GRB progenitors are: What is the role (if any) of various progenitor system properties (metallicity, binarity, mass, etc.)? Are all long GRBs associated with Ib/c SN? and is there a continuous transition from regular SNe through low-luminosity GRB/SNe to cosmological GRBs? The answer to all these questions needs mostly an accumulation of more observations, where I want to stress the importance of searching for SNe signal in an intermediate redshift ($z \sim 0.5 - 1$) GRBs. In addition to improved observations, the key to third question is theoretical modeling of the link between GRBs and SNe.

The main question about short GRB progenitors is simply what are they. Obviously, the ultimate compact binary merger model test will be via the detection or non-detection of gravitational waves from nearby short GRBs. But before we get to this stage, there is still much that can be done. Here the focus should be to constrain the environment and redshift distribution of the bursts. For this we need a controlled large sample of bursts with redshift, host type and location within the host. Additionally, deep limits on dark X-ray afterglows can constrain the circum-burst density. Finally, we are in a great need of a reliable classification scheme that can tell the difference between (physically) short and long GRBs.
3. Central engine

What do we confidently know?
There is not much that we know with high confidence about the central engine. We basically know that it is a compact ($<10^7$ cm) object that converts a fraction of the system's gravitational energy into collimated relativistic jets continuously over a duration that is much longer than its dynamical time.

Popular models that need confirmation
There are two popular models, with no conclusive evidence that points to one of them (or that rules them out). The first, much more popular model, is an accretion near the neutrino Eddington limit on a stellar black hole. The main advantages of this model are that similar accretion (although at much lower rates) is the known engine of active galactic nuclei (AGNs) and μ-quasars, and that it can, in principle, release 10^{53} erg in the form of a relativistic outflow. The main shortcoming of the model is that there are many unknowns on the way that this engine works and there is no clear idea why the specific properties of GRB outflows are generated. Second, especially in short bursts, it is hard to explain late engine activity.

The second model is a milli-sec proto-magnetar. Here, in the typical version of the model, the gravitational energy is first converted into rotational energy of the newly born magnetar and then released in the form of a relativistic outflow. The main advantages of this model are that, once the engine is formed, the physics of the outflow launching is better understood and that it can explain late engine activity rather naturally. A severe disadvantage of this model is that it has a limited energy of $\approx 5 \cdot 10^{52}$ erg.

Some of the main open questions and how can we answer them
As one can understand from the discussion above, there are many open questions, including the most basic ones, such as what is the physical outline of the engine. However proceeding in the quest to understand the engine is very difficult, mostly because it is completely hidden from us today. The reason is that the observed electromagnetic radiation is produce above or near the photosphere which is larger than the engine by many orders of magnitude. An observable test that can be carried out today, as pointed out in the discussion by Dale Frail, is the search for ultra-energetic bursts ($\sim 10^{53}$ erg), which if found will be hard to explain by the proto-magnetar model.

A breakthrough in the understanding of the engine is expected if we will be able to probe the engine directly, e.g., via gravitational waves. Without such ground breaking observations it seems that the major effort should be invested in theoretical and numerical modeling, in order to better understand the models and to come up with testable predictions.
A breakthrough in the understanding of AGN and/or μ-quasar engines may help here as well.

4. Outflow properties

What do we confidently know?

We know that the outflow is ultra-relativistic. The main evidence for relativistic motion comes from the requirement for low $\gamma \gamma \rightarrow e^-e^+$ optical depth. In most bursts, where photons above \simMeV are not observed (most likely due to insensitivity of the detectors), the outflow Lorentz factor, Γ, must be larger than about 30. Although extrapolation of the observed spectrum to high (\ggMeV) frequencies suggest that the true opacity limit is a few hundreds. There are also about half a dozen bursts where observations of GeV photons set the lower limit at about 1000 (note that opacity limits may vary if the high energy emission is not produced at the same place as the low energy emission, e.g. prompt vs afterglow). There is no robust upper limit to the outflow Lorentz factor (although afterglow theory suggests that it cannot be much larger than ≈ 1000). The most robust confirmation that the outflow is indeed relativistic (although the lower limit is $\Gamma > 5$), is the measurement of the size of the radio afterglow of GRB 030329. The rather low lower limit is expected since the measurement takes place at a time that, according to afterglow theory, the outflow was significantly decelerated.

We are also quite certain that at least some long GRB outflows are narrowly beamed (we do not know much about the collimation of short GRBs). The list of arguments for collimation are composed of several independent, strong, yet not conclusive, evidence. These are energy requirements (without beaming some GRBs would release more than 10^{55} erg), afterglow jet breaks and radio calorimetry.

Based on the constraints on the beaming we can deduce that the total energy (corrected for beaming) carried by the outflow of long GRBs is about $10^{50} - 10^{52}$ erg and that the luminosity is $\sim 10^{49} - 10^{51}$ erg/s. In the few cases where radio calorimetry can be done, an energy $10^{51} - 10^{52}$ erg is measured. In the case of short GRBs we know only that the *isotropic equivalent* energy emitted in γ-rays is about $10^{49} - 10^{52}$ erg and the *isotropic equivalent luminosity* is about $10^{50} - 10^{52}$ erg/s.

Some of the main open questions and how can we answer them

What is the actual Lorentz factor of the outflow? We have only robust lower limits but the true value of the Lorentz factor is unknown yet. It may be found if $\gamma \gamma$ attenuation will be identified in the spectra, hopefully by Fermi.

What is the detailed outflow geometry? Is it a top hat or does the energy falls gradually
with the angle from the axis? Is it patchy or not? These questions are typically attacked using afterglow observations, since during the prompt emission we observe only a tiny patch of the outflow. I think that the progress here will come from the observational side. The effort to resolve these questions by modeling of afterglow jet-breaks requires many more simultaneous radio-optical-X-ray afterglow observations while radio calorimetry will hopefully improve significantly by the EVLA. Additional observational tools that may be available in the future are a statistically large sample of orphan afterglows and detailed polarization measurements.

A long standing open question, which is crucial for the understanding of both the central engine and the prompt emission, is what component of the outflow is dominant energetically. Is it baryonic, Poynting-flux or maybe pairs? A prediction of the baryonic outflow model was that Swift will observe many bursts with bright optical flashes during the early afterglow. Swift detected only a few optical flashes, thereby supporting a non-Baryonic outflow. But, as it is often the case, non-detection does not provide conclusive evidence. Currently, I do not have an idea of future observations that may bring us closer to identify the outflow composition. Part of the reason is that only the poorly understood prompt emission and early afterglow are likely to be affected by the outflow composition. Additionally, no specific model of the process that converts Poynting-flux into the observed emission is available for comparison to observations. Thus, a theoretical progress on this front will be helpful.

5. Prompt emission

What do we confidently know?
We know almost nothing for certain. The most robust statements, which may prove to be wrong in the future, are as follows. Based on opacity arguments, the emission originates at radius $> 10^{11-12}$ cm while interaction with the external medium dictates that it takes place at a radius $< 10^{16-17}$ cm. Energy requirements and afterglow modeling implies that the prompt emission is very efficient, $\gtrsim 10\%$, in converting the outflow energy into sub-MeV γ-rays. Finally, high variability points strongly towards a dissipation mechanism that is internal to the flow, although there are suggested models of pointing flux dominated outflows, where the internal dissipation is triggered by interaction with the external medium.

Popular models that need confirmation
The most popular model is the internal shock model, where the outflow dissipation is done by hydrodynamical shocks between different portions of the flow. The main advantage of the model is that it naturally explains the high variability. But the disadvantages of the model made it less popular in the last several years. The main one is the limited efficiency. Despite of a large theoretical effort, there is no consensus on a natural way to
bypass this problem. Additionally, there are many properties of the prompt emission that are not explained naturally in the internal shock model.

Some of the main open questions and how can we answer them

Despite of the impressive set of prompt emission observations, the entire topic is one big question mark. With thousands of superb light curves and spectra we cannot confidently identify even the dominant radiation process, not to speak on nailing down the dissipation process or clearly find out the origin of a large number of unexplained detailed properties of the emission (e.g., energy dependent pulse shapes, \(E_p\) distribution, various correlations etc.).

The main reason for the difficulty is that the high energy power-law spectrum suggests that the emission is generated above the photosphere, where the main candidate is synchrotron radiation by ultra-relativistic electrons. However, the steep low energy spectrum is very difficult to explain with synchrotron and it suggests a thermal component at the base, which is modified above or near the photosphere by inverse Compton. However the smooth transition from the low to high energy spectrum implies that for this model to work the electrons must be at most mildly relativistic and that they should carry a comparable energy to the radiation. This suggests that a very efficient dissipation of the outflow energy takes place just below the photosphere. Otherwise, if the energy is dissipated too deep it is lost to adiabatic expansion, while if it is dissipated high above the photosphere the thermal component (if it exists) does not interact strongly with the electrons. So far there is no consensus on a mechanism that naturally provides these requirements (although lately some interesting new candidates where suggested), and that can naturally explain a large fraction of the observed features.

Observationally we already have great 10 keV - 1 MeV data set and a large number of optical - X-ray observations that coincide with the end of the prompt emission of long GRBs. The only hope that I can see for observational breakthrough in the near future is by Fermi, which already provided useful information that strongly disfavor inverse Compton by ultra-relativistic electrons as the source of the prompt emission. But, so far, Fermi observations did not pointed towards the correct model, while they did raise up new open questions. If such breakthrough will not take place, then a theoretical study of the existing models that are still viable and development of new ones, are the most promising way to understand the prompt emission.
6. Afterglow

What do we confidently know?
The late afterglow is generated during (and almost certainly by) the interaction with the
circum burst medium. This statement is robustly based on the decelerated expansion of the
afterglow image of GRB 030329. It is also strongly supported by the light curve and spectral
afterglow evolution, which show a continuous power-law decay (in both the flux and peak
frequency) and variability time scales that increase with time.

Popular models that need confirmation?
By far, the most popular afterglow model is the external forward shock model, and in my
view it is very likely that the afterglow emission, at least starting a few hours after the
burst, is generated by forward external shock. The major success of this model is that
with a very simple parametrization (of only a few free parameters) it encompasses the gross
observed afterglow properties over eight orders of magnitude in frequency and four orders
of magnitude in time. However, an examination of the fine details shows that the model is
far from being complete. The simple model is not compatible with the detailed observations
of many bursts (e.g., the exact spectral and temporal power-law indices). There is a set
of observations (especially during the first $10^3 - 10^4$ s), which are difficult to explain by
forward shock emission even by significantly complicating the simple model. Some examples
are X-ray flares, X-ray plateaus and some chromatic breaks. Different extensions of the
basic model are invoked to explain the observed deviation from the model. However, often
these are tailored on a burst to burst basis, and most dangerously, in some cases modelers
provide their models with so much freedom so they lose their predictability and with it their
usefulness. Finally, the simple model simply parameterizes the unknown microphysics, which
may have a very complicated behavior, by three constants that has (almost) no theoretical
first principle predictions.

Some of the main open questions and how can we answer them
Is the external shock model correct? I expect that the strongest evidence on this point will
come from unique events, such as GRB 030329. Until these are observed, more detailed
multi-wavelength (radio - X-ray) observations will be helpful. There are many optical (and
some radio) afterglows without detailed X-ray coverage before the Swift era. Now, that
Swift-XRT provides impressive X-ray light-curves, there are too few optical light curves and
almost no radio afterglow detections.

What is the cause of the X-ray plateau and chromatic breaks? These are among the
most surprising Swift observations, which still waits for a theoretical breakthrough, whose
direction I cannot predict.
Plasma microphysics is among the toughest topics of any astrophysical environment and GRBs are not different. However, if the afterglow is generated by an external shock, then this is a relatively clean system where the initial conditions are rather simple: an ultra-relativistic collisionless shock that propagates into a very weakly magnetized electron-proton plasma. Understanding the microphysical processes that take place in such system will requires an extensive numerical work accompanied by careful theoretical analysis. This field made an impressive progress in recent years and I hope that first principle theory of GRB microphysics will be developed during the next decade. Detailed GeV observations may also prove useful to farther constrain the microphysical properties of the radiating plasma.

7. Conclusions

A quick scan of the GRB “facts” listed here shows that among the observations on which we base these facts, the role of single unique events (e.g., GRB 030329) is similar to, or maybe even larger than, that of the large burst samples. It also shows that we are still ignorant even about fundamental ingredients of the explosions. Even afterglow modeling, which before the launch of Swift was thought by many to be satisfactory, is now being reconsidered. Nevertheless, if I compare today’s knowledge to what we knew a decade ago the progress is impressive. I hope that the coming decade will be as eventful as the passing one and that ten years from now we will be able to say that our understanding has improved by at least as much.

I am in debt of all the conference participants which contributed to the debate. I am grateful to Guido Chincarini for the worm and welcoming hospitality during the conference and to Tsvi Piran and Carles Badenes for useful comments on the manuscript.