CHAOTIC-BASED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR OPTIMAL PID TUNING IN AUTOMATIC VOLTAGE REGULATOR SYSTEMS

Introduction. In an electrical power system, the output of the synchronous generators varies due to disturbances or sudden load changes. These variations in output severely affect power system stability and power quality. The synchronous generator is equipped with an automatic voltage regulator to maintain its terminal voltage at rated voltage. Several control techniques utilized to improve the response of the automatic voltage regulator system, however, proportional integral derivative (PID) controller is the most frequently used controller but its parameters require optimization. Novelty. In this paper, the chaotic sequence based on the logistic map is hybridized with particle swarm optimization to find the optimal parameters of the PID for the automatic voltage regulator system. The logistic map chaotic sequence-based initialization and global best selection enable the algorithm to escape from local minima stagnation and improve its convergence rate resulting in best optimal parameters. The improvement in transient response further improves the automatic voltage regulator system stability for electrical power systems. Purpose. The main objective of the proposed approach is to improve the transient response of the automatic voltage regulator system by minimizing the maximum overshoot, settling time, rise time, and peak time values of the terminal voltage, and eliminating the steady-state error. Methods. In the process of parameter tuning, the Chaotic particle swarm optimization technique was run several times through the proposed hybrid objective function, which accommodates the advantages of the two most commonly used objective functions with a minimum number of iterations, and an optimal PID gain value was found. The proposed algorithm is compared with current metaheuristic algorithms including conventional particle swarm optimization, improved kidney algorithm, and others. Results. For performance evaluation, the characteristics of the integral of time multiplied squared error and Zve-Lee Gaing objective functions are combined. Furthermore, the time-domain analysis, frequency-domain analysis, and robustness analysis are carried out to show the better performance of the proposed algorithm. The result shows that automatic voltage regulator tuned with the chaotic particle swarm optimization based PID yield improvement in overshoot, settling time, and function value of 14.41 %, 37.91 %, 1.73 % over recently proposed IKA, and 43.55 %, 44.5 %, 16.67 % over conventional particle swarm optimization algorithms. The improvement in transient response further improves the automatic voltage regulator system stability for electrical power systems. References 44, tables 4, figures 6.

Key words: proportional integral derivative (PID) tuning, chaotic particle swarm optimization (CPSO), robustness analysis, automatic voltage regulator (AVR), transient response.

© N. Anwar, A. Hanif, M.U. Ali, A. Zafar

ISSN 2074-272X. Electrical Engineering & Electromechanics, 2021, no. 1

Electronic copy available at: https://ssrn.com/abstract=3824711
main element of industrial controller systems and can be used in the form of embedded controller, distributed control system and programmable logic controller [3]. Overschee and Demoor stated 80 % of PID controllers are not tuned to optimal level in the industries. Furthermore, they reported that 30 % of the PID controllers operates in manual settings, whereas twenty 5 % work in the default settings [4]. Over the years, numerous techniques for tuning of PID parameters were proposed like traditional techniques including Ziegler/Nicolette, Cohen/Kun, pole position and latest techniques (i.e., gains scheduling, minimum fluctuations and prediction) [5]. Some drawbacks of traditional control technique for PID controllers tuning are:

- inadequate dynamics of closed loop response;
- excessive rules for setting gains;
- mathematical complexity control design;
- difficulty in dealing with nonlinearities [6].

Therefore, in academia and industry, the tuning a PID controller is an interesting research topic.

Numerous techniques like artificial neural networks (ANN) and neural fuzzy systems were used for the tuning of PID-AVR parameters. However, these techniques require a quite large amount of data for training process [7]. On the other hand, metaheuristic optimization based tuning algorithms such as improve kidney-inspired algorithm (IKA) [8], particle swarm optimization (PSO) [9], biogeography-based optimization (BBO), local unimodal sampling algorithm (LUS) [10], artificial bee colony (ABC) algorithm [11], slap swarm algorithm (SSA) [12], artificial electric filed (AEF) [13], Harris hawks optimization (HHO) [14], sine cosine algorithm (SCA) [15], whale optimization algorithm (WOA) [16], etc., are applied for PID tuning in AVR system.

Many objective functions were proposed in literature as performance criteria for optimization of PID-AVR. The integral error is extensively used as an objective function, which is based on difference between reference and the system output. The frequently used integral functions include:

- integral absolute error (IAE);
- integral time absolute error (ITAE);
- integral squared error (ISE);
- integral time squared error (ITSE).

Minimizing the ISE and IAE provide relatively small overshoots with longer stabilization time. Alternatively, the ITSE and ITAE can overcome the limitations of the ISE and IAE, but they cannot guarantee the required stability [17]. In addition, Zwe-Lee Gaing (ZLG) defines the time step performance criterion by using a weighted factor with the parameters of time response [7].

A brief literature review of the tuning techniques applied on AVR systems over the past years is shown in Table 1, which encapsulates the performance indexes and analysis approaches used in the literature.

Genetic algorithm (GA), ABC, and PSO algorithms have tendency to solve numerous optimization problems, but affects with issues like memory capabilities, etc. Improved results might be obtained through other optimization methods, but they might have drawbacks such as initial convergence, local minimum congestion, difficulty in selecting control parameter, and increased computation time dependent on size of the studied system [18]. Also, there is no exact technique for finest parameters tuning of PID controller for AVR system. Therefore, studying novel heuristic optimization algorithms is an imperative and observable issue for researchers. Since metaheuristic algorithms have establish their place in efficiently solving numerous global optimization problem that can be applied to various scenarios, however the major problem faced by them is the premature convergence leads trapping in local optima [19]. Chaotic features diversify solution space, creating space to exploit and explore more space. Chaos phenomena can take place in a deterministic nonlinear dynamic system and is sensitive to initial conditions. Thus, chaotic movements within a certain range can travel all states without repetition. The easy implementation and its capability to escape from getting stuck in the local optima evolved in chaos based search algorithms [20]. Experimental studies argue for the benefit of using chaotic instead of random signals [21].

In this study, optimization of PID controller for AVR applications using the hybridization of chaotic initialization in particle swarm optimization (CPSO) is proposed. The combined ITSE and ZLG performance criterion is used. The ITSE-ZLG not only minimize the steps response characteristic that are settling time (t_s), peak time (t_p), rise time (t_r), overshoot (%MP), and steady state errors (e_{ss}), but also the average of time weighted absolute errors between the measured and rated voltage. The results obtained on the basis of the proposed technique are then compared with existing techniques algorithm in the literature. To show the supremacy of the proposed CPSEO-PID approach, transient response analysis, frequency response analysis and pole-zero map under AVR system parameters changes are performed. At the end, the robustness analysis is performed.

Mathematical model of AVR. To maximize the power quality of system, AVR is crucial in maintaining the terminal output voltage of synchronous generator to predefined level through generator exciter control. Operation of AVR is dependent upon the difference between pre-defined voltage levels to variable terminal voltage level, which may arise due to disturbance in power network. Excitation mechanism serves the purpose to maintain the generator terminal voltages in case of system interruptions. Potential transformer measure’s the voltage magnitude, afterwards rectified and compared with the reference. Error signal generated through this mechanism is amplified to control the field excitation, hence maintain the synchronous generator terminal voltage. Generation of reactive power increases/decreases to new stable equilibrium, maintaining the output voltage to defined rated value. Modelling of various parts of AVR system is given in the following equations:

$$G_{Amplifier}(s) = \frac{K_A}{1 + s \cdot T_A}; \quad (1)$$

$$0.02 \leq T_A \leq 0.1, \quad 10 \leq K_A \leq 40;$$

$$G_{Exciter}(s) = \frac{K_E}{1 + s \cdot T_E}; \quad (2)$$

$$0.4 \leq T_E \leq 1, \quad 1 \leq K_E \leq 10;$$

Table 1

Technique	Performance Indexes
ITSE-ZLG	ISE, ITAE, IAE
CPSEO-PID	Improved convergence

To maximize the power quality of system, AVR is crucial in maintaining the terminal output voltage of synchronous generator to predefined level through generator exciter control. Operation of AVR is dependent upon the difference between pre-defined voltage levels to variable terminal voltage level, which may arise due to disturbance in power network. Excitation mechanism serves the purpose to maintain the generator terminal voltages in case of system interruptions. Potential transformer measure’s the voltage magnitude, afterwards rectified and compared with the reference. Error signal generated through this mechanism is amplified to control the field excitation, hence maintain the synchronous generator terminal voltage. Generation of reactive power increases/decreases to new stable equilibrium, maintaining the output voltage to defined rated value. Modelling of various parts of AVR system is given in the following equations:
Table 1

Reference	Proposed algorithm	Comparison	Performance indices	Analysis methods								
			IAE	ISE	ITAE	ITSE	ZLG	Other	Transient response	Pole Zero Map	Frequency response	Robustness
Ekinci et al. [8]	IKA	PSO, DE, ABC, LUS, PSA, BBO, GOA	+	+	+	+	+					
Ekinci et al. [14]	HHO	BBO	+	+	+	+	+					
Demirören et al. [13]	AEF	PSO, BBO	+	+	+	+	+					
Mosaad et al. [16]	WOA	BA, CSA, FPA, PSA, SCW, WWO	+	+	+	+	+					
Çelik et al. [22]	SOS	ABC, MOL, BBO	+	+	+	+	+					
George et al. [23]	WCA	WOA, GA	+	+	+	+	+					
Çelik et al. [24]	SFS	ABC, MOL, LUS, WCO, GSA, BBO	+	+	+	+	+					
Ekinci et al. [12]	SSA	ABC, ZN	+	+	+	+	+					
Odili et al. [25]	ABO	PSO, GA, ACO, BFOA	+	+	+	+	+					
Bingül et al. [26]	CS	PSO, MOL, ABC, BF-GA, LUS	+	+	+	+	+					
Hekimoglu et al. [15]	SCA	ZN, DE, ABC, BBO	+	+	+	+	+					
Kansit et al. [27]	PSOGSA	ZN, PSO, MOL	+	+	+	+	+					
Chatterjee et al. [28]	TLBO	GA, PSO, LUS, PSO, ABC	+	+	+	+	+					
Guvenc et al. [29]	BBO	ABC, DEA, PSO	+	+	+	+	+					
Sahib et al. [9]	PSO	ABC, DE, GA, MOL, LUS	+	+	+	+	+					
Mohantya et al. [10]	LUS	ABC, PSO, DE	+	+	+	+	+					
Tang et al. [30]	CAS	PSO	+	+	+	+	+					
Gozde et al. [31]	ABC	PSO, DEA	+	+	+	+	+					

In Table 1 the following abbreviation is used: IKA – improved kidney-inspired algorithm, SSA – slap swarm algorithm, SOS – symbiotic organisms search, SFS – stochastic fractal search, CAS – Chaotic ant swarm, ABO – African buffalo optimization, WWO – water wave optimization, TLBO – teaching learning based optimization, CS – cuckoo search, water wave optimization, PSO – particle swarm optimization, DE – differential evolution, ABC – ant bee colony, LUS – local unimodal sampling, PSA – pattern search algorithm, BBO – bio-geography-based optimization, GOA – grasshopper optimization algorithm, GA – genetic algorithm, MOL – many optimizing liaisons, ZN – ziegler-nichols, WCO – world cup optimization, GSA – gravitational search algorithm, WCA – water cycle algorithm, WOA – whale optimization algorithm, ACO – ant colony optimization, BFOA – bacterial foraging optimization Algorithm, CSA – crow search algorithm, BA – bat algorithm, FPA – flower pollination algorithm, SCA – sine cosine algorithm, BF-GA – hybrid genetic algorithm and bacterial foraging.

\[
G_{\text{Generator}}(s) = \frac{K_G}{1 + s \cdot T_G}; \quad \text{for } 1 \leq T_G \leq 2, \quad 0.7 \leq K_G \leq 1; \tag{3}
\]

\[
G_{\text{Sensor}}(s) = \frac{K_S}{1 + s \cdot T_S}; \quad \text{for } 0.001 \leq T_S \leq 0.06, \quad 1 \leq K_S \leq 2; \tag{4}
\]

where \(K_a\), \(K_b\), \(K_g\) and \(K_s\) are the amplifier, exciter, generator and sensor gains respectively, \(T_a\), \(T_b\), \(T_g\) and \(T_s\) are the amplifier, exciter, generator and sensor time constant respectively.

The linearized AVR transfer function system without PID is given as follows:

\[
\frac{\Delta U(s)}{\Delta U_{\text{ref}}(s)} = \frac{K_a \cdot K_b \cdot K_g}{(1+s \cdot T_a)(1+s \cdot T_b)(1+s \cdot T_g)(1+s \cdot T_s) + K_a \cdot K_b \cdot K_g \cdot K_s} \tag{5}
\]

AVR system with PID controller. The PID controller consists of 3 main control actions/gains with respect to the error signal:
1) proportional (K_p) control;
2) integral (K_i) control;
3) derivative (K_d) control.

In industrial control processes, a constant gain PID controller has been extensively used. PID controller transfer function is given as

$$U_c(t) = K_p \Delta U_r(t) + K_i \int_0^t \Delta U_r(\tau) d\tau + K_d \left(d\Delta U_r(t) \right) / dt,$$ \hspace{1cm} (6)

where U_r is the control signal; $\Delta U_c(s)$ is the error signal among reference $\Delta U_{ref}(s)$ and measured signal $\Delta U(s)$, and K_p, K_d, K_i are the control gains of proportional, derivative and integral term, respectively.

The closed loop AVR transfer function with PID is derived as

$$\frac{\Delta U(s)}{\Delta U_{ref}(s)} = \frac{K_A \cdot K_E \cdot K_G \cdot (1 + s \cdot T_S) \left(s^2 \cdot K_d + s \cdot K_p + K_i \right)}{A},$$ \hspace{1cm} (7)

where $A = s \cdot (1 + s \cdot T_d) \cdot (1 + s \cdot T_E) \cdot (1 + s \cdot T_G) \cdot (1 + s \cdot T_S) + K_d \cdot K_E \cdot K_G \cdot K_S \cdot (s^2 \cdot K_d + s \cdot K_p + K_i)$.

The challenge in PID tuning is to reduce the time domain characteristics like t_r, t_s, t_p and $\%M_p$. Therefore, optimization of PID tuning parameters is required using optimization methods.

PID parameters optimization for AVR system.

Particle Swarm Optimization (PSO) is a population based optimization algorithm inspired from social behaviors of bird flocking [9]. In this algorithm, population (known as particle) is initialized. In n-dimensional given problem, N particles are travelling in the solution space. The $X_j(t) = (X_{j1}, X_{j2}, ..., X_{jm})$ denotes the location of the j-th particle at the t-th iteration and $X_{jm} \in [L_{jm}, U_{jm}]$, $1 \leq m \leq N$, where L_{jm} and U_{jm} represents the lower and upper bound having values $[0.2 - 2]$ respectively. The $P_j = (P_{j1}, P_{j2}, ..., P_{jm})$ denotes the best position searched by the j-th particle known as P_{best}. Finally, the global best position achieved by the swarm is identified as global best G_{best} and represented as $P_g = (P_{g1}, P_{g2}, ..., P_{gm})$. The velocity vector at the t-th iteration is $v_{ji}(t) = (v_{j1}, v_{j2}, ..., v_{jm})$. Finally, the updated velocity and position variables of the particle for succeeding iteration are obtained as

$$V_{ji}(t+1) = W \cdot V_{ji}(t) + r_1 \cdot C_1 \cdot (P_{best j}(t) - x_{ji}(t)) + r_2 \cdot C_2 \cdot (G_{best j}(t) - x_{ji}(t)),$$

where the parameter C_1 and C_2 are acceleration coefficients, W is called inertia weight (i.e., set to 1 in the conventional PSO), r_1 and r_2 represents random number between [0, 1].

The PSO algorithm has several advantages including fast convergence, less complex computations unlike GA (e.g. coding/decoding, mutation and crossover), easy to compute and simple to implement [32]. But, PSO has drawbacks, such as easily stuck in local optima and decrease in the convergence rate in the later period of evolution [33].

Chaotic Particle Swarm Optimization (CPSO).

Generating random sequences with good uniformly is very important in the field of sampling, numerical analysis and metaheuristic optimization. The concept of using chaotic sequence instead of random sequence have been emerged in research fields using chaotic neural network (CNN) [34] and chaos optimization [35], etc. Chaos is a random movement of particles having characteristics of pseudo-randomness, ergodicity, and regularity determined through a deterministic equation [36]. A chaotic signal can cross every state in a certain search region in such a way that every state is visited only once. The diversity of random numbers generated by chaotic motion is better than the randomly generated values. Chaos search has a very special ability to improve the diversity of particle in search space that helps the optimization algorithm to escape from stucking in local optima [37]. Therefore, using chaotic sequences in evolutionary algorithms is a promising approach to obtain high quality solutions. Different kinds of chaos maps have been used in literature [38].

In this paper, to improve the searching performance and to escape from trapping into local minima, chaos dynamics is integrated into the PSO. The conventional PSO algorithm faces up to premature convergence because information can be exchanged between particles quickly and the particles are getting near to each other rapidly, especially in case of problems with multiple local optima. Thus, the dispersion of particles decreases in the search space and it is difficult to escape from local optima [39]. In order to increase a population’s diversity in conventional PSO, chaos sequences were used to initialize the particles’ population and velocity. In this paper, chaotic sequence is generated using the logistic equation [40]. The process of initializing using logistic chaotic map is defined through the subsequent equation [41]:

$$C_{ji}^{(i+1)} = 4 \cdot C_{ji}^{(i)} \left(1 - C_{ji}^{(i)} \right)$$

$$j = 1, 2, ..., m,$$

where C_{ji} is the j-th chaotic variable and i denotes the number of iteration.

The procedure of chaotic search using logistic map is as follows [42].

Step 1: Setting $i = 0$ and maps the decision variables x_{ji} to chaotic variable $C_{ji}^{(i)}$ positioned in the interval (0, 1) using below equation

$$C_{ji}^{(i)} = \frac{x_{ji}^{(i)} - x_{min, j}}{x_{max, j} - x_{min, j}},$$

$$j = 1, 2, 3, ..., n.$$

Step 2: Calculating the chaotic variable $C_{ji}^{(i+1)}$ for the succeeding iteration using logistic map equation according to $C_{ji}^{(i)}$.

ISSN 2074-272X. Electrical Engineering & Electromecanics, 2021, no. 1 53
Step 3: Adapting the chaotic variable $C_x^{(j+1)}$ to decision variable $x^{(j+1)}$ using below equation

$$x^{(j+1)} = x_{\text{min},j} + C_x^{(j+1)}(x_{\text{max},j} - x_{\text{min},j}),$$

where $j = 1, 2, 3, \ldots, n$.

Step 4: Calculating the new solution with decision variable $x^{(j+1)}$.

Step 5: If the new solution is superior to the previous decision variable or predefined maximum number of iterations is reached, take the new solution as the new result of chaos search else, let W_{new}.

Another improvement in conventional PSO lies in using the adaptive parameters (W, C_i, C_f) instead of constant values using the following equations

$$W = W_i - \frac{W_i - W_f}{\text{Gen}}, \quad (W_i > W_f);$$

$$C_1 = C_{1i} - \frac{C_{1f} - C_{1i}}{\text{Gen}}, \quad (C_{1i} > C_{1f});$$

$$C_2 = C_{2i} - \frac{C_{2f} - C_{2i}}{\text{Gen}}, \quad (C_{2i} > C_{2f});$$

where Gen is the current generation of the swarm, W_{new} is the maximum evolutionary generation, the indexes i and f denotes initial and final, respectively.

Fig. 1 shows the flow chart of CPSO.

Performance evaluation criterion. Several performance criterions were proposed in the literature to examine the performance of the AVR system [43]. The most of the criterions were associated with improvement in time domain parameters such as M_p, e_{SS}, t_r and t_s of the step response [44]. The frequently used criterions for the performance evaluation of AVR system are

1. Integral absolute error (IAE):

$$IAE = \int_0^t |\Delta U_i(t)| \, dt;$$

2. Integral squared error (ISE):

$$ISE = \int_0^t |\Delta U_i(t)|^2 \, dt;$$

3. Integral time weighted absolute error (ITAE):

$$ITAE = \int_0^t (t - t_r) |\Delta U_i(t)| \, dt;$$

4. Integral time weighted squared error (ITSE)

$$ITSE = \int_0^t (t - t_r) |\Delta U_i(t)|^2 \, dt;$$

5. Zwe-Lee Gaing (ZLG):

$$ZLG = \left[1 - e^{-\beta}\right] \left(M_p - e_{\text{SS}}\right) + e^{-\beta} - (t_s - t_r),$$

where $\Delta U_i(t)$ is the difference between steady state value and its present terminal voltage; t_{sim} is the simulation time duration; β is the weighted factor and its values ranges between $[0.5 - 1.5]$.

In the abovementioned criterions, ITSE and ZLG are frequently reported and resulted in improved results. ITSE resulted in high overshoot, whereas ZLG increase the rise and peak time. In this study, combined ITSE and ZLG are used [19]

$$J = ITSE + \alpha ZLG,$$

where α is the weighting factor to balance the ITSE and ZLG performance criterions and its values ranges between $[30 - 50]$.

The above criterion can be changed in to optimization problem with constrained as

$$\min J[ITSE, \%M_p, e_{\text{SS}}, t_s, t_r]$$

subject to

$$0.2 \leq K_p \leq 2;$$

$$0.2 \leq K_i \leq 2;$$

$$0.2 \leq K_d \leq 2.$$

The optimal values of free parameters ($ITSE^*, \%M_p^*, e_{\text{SS}}$, t_s, and t_r) are estimated using CPSO. Fig. 2 shows the complete implementation of CPSO for AVR.

Simulation result and discussion. The different analyses were performed including convergence, pole zero map, robustness etc. to show the improved performance of CPSO-AVR. Furthermore, the voltage response analysis is also carried out by considering different cases. All the analysis were done using MATLAB/Simulink (2018 Version) on an Intel i3 processor 1.90 GHz with a RAM 4.00 GB. The population size and maximum iteration for the analysis were chosen as 30. Subsequent sections show the important results after analysis.
Convergence profile. The convergence curve of PSO and CPSO is shown in Fig. 3. The CPSO algorithm converges to optimized values only in 5 iterations as compared to PSO. Optimized value of PID gains obtained using CPSO were

\[K_p = 1.0535, \quad K_i = 1.0112 \quad \text{and} \quad K_d = 0.3752. \]

Equation (23) shows the overall transfer function of AVR system obtained with these optimized values

\[
PID_{\text{optim}} = \frac{\Delta U_f(s)}{\Delta U_{\text{ref}}(s)} = \frac{0.0599s^3 + 6.103s^2 + 10.53s + 10.09}{0.0045s^5 + 0.0454s^4 + 0.55s^3 + 7.509s^2 + 11.43s + 10.09}
\]

Comparative analysis with different algorithms. Comparison of obtained results using CPSO with other optimization algorithms were done to show the effectiveness and supremacy of the CPSO technique. The other algorithms used to optimize the PID parameter for AVR system include IKA, PSO, BBO, LUS, ABC, SSA, AEF and HHO. In order to evaluate the performance, the time domain characteristics \(\%M_p, \, e_{ss}, \, t_e \) and \(t_s\) of the transient response as well as value of the criterion were compared. The comparative analysis of CPSO-PID with other meta-heuristic techniques is tabulated in Table 2. The percentage improvement of CPSO over other optimization algorithms is also reported in Table 2. It is important to note here that PID controller tuned with CPSO algorithm using the cost function given in Eq. (21) for AVR system will result in less oscillatory and stable response. Fig. 4 shows the simulation result of step response of AVR terminal voltage obtained from different algorithms. It is noted that the CPSO yields better results as compared to other algorithm.

Pole-Zero and frequency response Analysis. The pole-zero map helps to determine the system stability and provide the information about the position of closed-loop zeros, poles and their resultant damping ratio (DR). To check the stability of AVR, the analysis of pole-zeros and bode-plot were done with tuned controller parameters obtained using CPSO. From pole/zero analysis for CPSO-AVR, the closed loop poles are

\[s_1 = -101, \quad s_{2,3} = -4.94 \pm j8.65, \quad s_{4,5} = -1.3 \pm j0.91 \]

as shown in Fig. 5 and the corresponding DR values are 1.00, 0.49 and 0.81, respectively.
Comparative analysis of chaotic particle swarm optimization-PID with other meta-heuristic algorithms

Controller type	PID parameters	Transient response parameters	Objective function	Improvement contributed by CPSO-PID									
	K_p	K_i	K_d	$%M_p$	t_r	t_o	t_{sp}	$ITSE$	ZLG	$ITSE+ZLG$	$%M_p$	t_r	$ITSE+ZLG$
CPSO-PID (Proposed)	1.0535	0.1112	0.3752	13.11	0.564	0.1743	0.3732	0.0078	0.2299	0.6214	–	–	–
IKA-PID	1.0426	1.0993	0.599	15.00	0.753	0.128	0.328	0.0662	0.3246	0.6322	14.41	37.91	1.73
PSO-PID	1.5341	0.9266	0.4378	18.82	0.815	0.149	0.328	0.0072	0.3668	0.7250	43.55	44.50	16.67
BOB-PID	1.2464	0.5893	0.4596	15.52	1.446	0.149	0.317	0.0078	0.5774	0.9656	18.38	156.38	55.39
LUS-PID	1.2012	0.9069	0.4593	15.56	0.800	0.149	0.322	0.0664	0.3378	0.6577	18.68	41.84	5.84
ABC-PID	1.6524	0.4083	0.4365	25.01	3.094	0.156	0.360	0.0177	1.2430	2.1295	90.77	448.58	242.69
SSA-PID	1.3381	1.1204	0.6361	20.30	0.690	0.119	0.263	0.0056	0.3407	0.6203	54.84	22.34	0.25
AEF-PID	1.1062	0.5943	0.5178	14.30	0.7760	0.140	0.291	0.0060	0.3300	0.6302	9.07	37.58	1.41
HHO-PID	1.0887	0.9882	0.5361	14.42	0.7657	0.137	0.290	0.0060	0.3223	0.6227	9.99	35.76	0.20

Table 3 shows the values of peak-gain, phase margin, delay margin, and bandwidth for different algorithms using Bode analysis. The peak gain for CPSO-AVR is found as 0.79 dB (7.11 rad/s), whereas phase margin and delay margin are 95.8 and 0.178 s (9.38 rad/s), respectively. Finally, the bandwidth is 12.267 as shown in Table 3. From the aforementioned analysis, the CPSO-AVR yielded stable and good frequency response as all closed loop poles were in the left half s-plane.

Robustness analysis

To evaluate the robustness of CPSO-AVR, time constant of exciter, amplifier, sensor and generator were varied between –50 % to +50 % as shown in Fig. 6. The results of transient response after the variations in AVR parameters are listed in Table 4. It is observed in Table 4 that the total deviation range for different values of parameters of AVR time constants are in acceptable range showing the robustness of AVR system with CPSO algorithm.

Table 4

Controller type	Performance parameter	Rate of change (%)	Range of total deviation				
CPSO-PID (Proposed)	T_d	Peak value (p.u.)	1.168	1.799	1.172	1.206	0.066
	t_r, s	0.2402	0.4793	1.3530	1.4793	1.620	
	t_o, s	0.1601	0.1652	0.1846	0.1943	0.114	
	t_{sp}, s	0.3157	0.3445	0.4104	0.4285	0.148	
	T_e	Peak value (p.u.)	1.135	1.130	1.13	1.143	0.010
	t_r, s	0.6548	0.7419	1.5231	1.6749	1.969	
	t_o, s	0.1155	0.1465	0.2006	0.2257	0.294	
	t_{sp}, s	0.2421	0.3011	0.4444	0.5156	0.381	
	T_g	Peak value (p.u.)	1.230	1.168	1.107	1.943	0.717
	t_r, s	1.0112	0.7536	1.8619	2.1511	2.814	
	t_o, s	0.1059	0.1409	0.2076	0.2414	0.384	
	t_{sp}, s	0.2356	0.3002	0.4451	0.5341	0.431	
	T_s	Peak value (p.u.)	1.112	1.121	1.140	1.151	0.017
	t_r, s	0.5660	0.5652	1.1758	1.1977	1.123	
	t_o, s	0.1791	0.1769	0.1724	0.1702	0.027	
	t_{sp}, s	0.3717	0.3813	0.3649	0.3760	0.021	
initialization and global best selection enables the algorithm to escape from local minima stagnation and improve its convergence rate and resulting precision. In the process of parameter tuning, the chaotic particle swarm optimization technique was run several times through the proposed objective function, which accommodates the advantages of the two most commonly used objective functions with a minimum number of iterations, and an optimal PID gain value was found. Automatic voltage regulator system with chaotic particle swarm optimization based PID controller minimizes the performance criterion value to obtained optimized parameters of PID. Performance comparisons were performed with 8 optimization algorithms (improved kidney algorithm, particle swarm optimization, bio-geography based optimization, local unimodal sampling, artificial bee colony, slap swarm algorithm, artificial electric filed, and Harris hawks optimization) to demonstrate the usefulness of the chaotic particle swarm optimization based PID for automatic voltage regulator system.

The comparative analysis of results revealed that the proposed chaotic particle swarm optimization based PID controller based system showed an excellent transient response in terms of t_s, $\%M_p$, and performance criterion value. In addition, bode analysis, pole-zero and robustness analysis were done to show the system stability optimized by the chaotic particle swarm optimization algorithm. The analyses depict that the stability of automatic voltage regulator system is good and the proposed controller is less affected the possible variations in the parameters of the system. The proposed chaotic particle swarm optimization technique can be implemented to tune the controllers for the swing-up and stabilization for a pendulum-cart system.

Conflict of interests. The authors declare no conflicts of interest.

REFERENCES

1. Tu G., Li Y., Xiang J. Analysis, Control and Optimal Placement of Static Synchronous Compensator with/without Battery Energy Storage. Energies, 2019, vol. 12, no. 24, pp. 4715. doi: https://doi.org/10.3390/en12244715.

2. Tang Y., Cui M., Hua C., Li L., Yang Y. Optimum design of fractional order PI\textsubscript{D\mu} controller for AVR system using chaotic ant swarm. Expert Systems with Applications, 2012, vol. 39, no. 8, pp. 6887-6896. doi: https://doi.org/10.1016/j.eswa.2012.01.007.

3. Kumar M.S., Mahadevan K. Removal of Moisture Content in Paper Machine Using Soft Computing Techniques. Circuits and Systems, 2016, vol. 07, no. 09, pp. 2542-2550. doi: https://doi.org/10.4236/cs.2016.79220.

4. Bahgaat N.K., Moustafa Hassan M.A. Swarm Intelligence PID Controller Tuning for AVR System. Studies in Fuzziness and Soft Computing, 2016, pp. 791-804. doi: https://doi.org/10.1007/978-3-319-30340-6_33.

5. Åström K.J., Hägglund T. Revisiting the Ziegler–Nichols step response method for PID control. Journal of Process Control, 2004, vol. 14, no. 6, pp. 635-650. doi: https://doi.org/10.1016/j.jprocont.2004.01.002.

6. Wojsznis W.K., Blevins T.L. Evaluating PID adaptive techniques for industrial implementation. In Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), 2002, p. 1151. doi: https://doi.org/10.1109/acc.2002.1023174.

7. Gaing Z.-L. A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE
Transactions on Energy Conversion, 2004, vol. 19, no. 2, pp. 384-391. doi: https://doi.org/10.1109/tec.2003.821821.

8. Ekinci S., Hekimoglu B. Improved Kidney-Inspired Algorithm Approach for Tuning of PID Controller in AVR System. IEEE Access, 2019, vol. 7, pp. 39935-39947. doi: https://doi.org/10.1109/access.2019.2906980.

9. Sabih M.A. A novel optimal PID plus second order derivative controller for AVR system. Engineering Science and Technology, an International Journal, 2015, vol. 18, no. 2, pp. 194-206. doi: https://doi.org/10.1016/j.jestch.2014.11.006.

10. Mohanty P.K., Sahu B.K., Panda S. Tuning and Assessment of Proportional–Integral–Derivative Controller for an Automatic Voltage Regulator System Employing Local Unimodal Sampling Algorithm. Electric Power Components and Systems, 2014, vol. 42, no. 9, pp. 959-969. doi: https://doi.org/10.1080/15325008.2014.903546.

11. Gozde H., Taplamacioglu M.C. Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 2011, vol. 348, no. 8, pp. 1927-1946. doi: https://doi.org/10.1016/j.jfranklin.2011.05.012.

12. Ekinci S., Hekimoglu B., Kaya S. Tuning of PID Controller for AVR System Using Salp Swarm Algorithm. 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Sep. 2018. doi: https://doi.org/10.1109/idap.2018.8620809.

13. Demioren A., Hekimoglu B., Ekinci S., Kaya S. Artificial Electric Field Algorithm for Determining Controller Parameters in AVR system. 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Sep. 2019. doi: https://doi.org/10.1109/idap.2019.8875972.

14. Ekinci S., Hekimoglu B., Eker E. Optimum Design of PID Controller in AVR System Using Harris Hawks Optimization. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Oct. 2019. doi: https://doi.org/10.1109/ismsit.2019.8932941.

15. Hekimoglu B. Sine-cosine algorithm-based optimization for automatic voltage regulator system. Transactions of the Institute of Measurement and Control, 2018, vol. 41, no. 6, pp. 1761-1771. doi: https://doi.org/10.1177/01423312187811453.

16. Mosaad A.M., Atta M.A., Abdelaziz A.Y. Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Engineering Journal, 2019, vol. 10, no. 4, pp. 755-767. doi: https://doi.org/10.1016/j.asej.2019.07.004.

17. Tavazoei M.S. Notes on integral performance indices in fractional-order control systems. Journal of Process Control, 2010, vol. 20, no. 3, pp. 285-291. doi: https://doi.org/10.1016/j.jprocont.2009.09.005.

18. Gozde H., Taplamacioglu M.C. Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 2011, vol. 348, no. 8, pp. 1927-1946. doi: https://doi.org/10.1016/j.jfranklin.2011.05.012.

19. Aydiner E. Chaotic universe model. Scientific Reports, 2018, vol. 8, no. 1, p. 721. doi: https://doi.org/10.1038/s41598-017-18681-4.

20. Dos Santos Coelho L. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos, Solitons & Fractals, 2009, vol. 39, no. 4, pp. 1504-1514. doi: https://doi.org/10.1016/j.chaos.2007.06.018.

21. Abdullah A.H., Enayatifar R., Lee M. A Hybrid Genetic Algorithm and chaotic function model for image encryption. Journal of Electronics and Communication, 2012, vol. 66, pp. 806-816. doi: https://doi.org/10.1109/jaec.2012.01.015.

22. Çelik E., Rafet D. Performance enhancement of automatic voltage regulator by modified cost function and symbiotic organisms search algorithm. Engineering Science and Technology, an International Journal, 2018, vol. 21 no. 5, pp. 1104-1111. doi: https://doi.org/10.1016/j.jestch.2018.08.006.

23. George R.G., Hasanien H.M., Badr M.A., Elgendy M.A. A Comparative Study among Different Algorithms Investigating Optimum Design of PID Controller in Automatic Voltage Regulator. 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, 2018, pp. 1-6. doi: https://doi.org/10.1109/upec.2018.8619713.

24. Çelik E. Incorporation of stochastic fractal search algorithm into efficient design of PID controller for an automatic voltage regulator system. Neural Computing and Applications, 2018, vol. 30, no. 6, pp. 1991-2002. doi: https://doi.org/10.1007/s00521-017-3335-7.

25. Odili J.B., Mohmad Kahar M.N., Noraziah A. Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization. PLoS One, 2017, vol. 12, no. 4, p. e0175901. doi: https://doi.org/10.1371/journal.pone.0175901.

26. Bingul Z., Karahan O. A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. Journal of the Franklin Institute, 2018, vol. 355, no. 13, pp. 5534-5559. doi: https://doi.org/10.1016/j.jfranklin.2018.05.056.

27. Kansit S., Assawinchaichote W. Optimization of PID controller based on PSOGSA for an automatic voltage regulator system. Procedia Computer Science, 2016, vol. 66, pp. 87-90. doi: https://doi.org/10.1016/j.procs.2016.05.022.

28. Chatterjee S., Mukherjee V. PID controller for automatic voltage regulator using teaching–learning based optimization technique. International Journal of Electrical Power & Energy Systems, 2016, vol. 77, pp. 418-429. doi: https://doi.org/10.1016/j.ijepes.2015.11.010.

29. Guvenc U., Yigit T., Isik A.H., Akkaya I. Performance analysis of biogeography-based optimization for automatic voltage regulator system. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, vol. 24, no. 3, pp. 1150-1162. doi: https://doi.org/10.3906/elk-1311-111.

30. Tang Y., Cui M., Hua C., Li L., Yang Y. Optimum design of fractional order PID controller for AVR system using chaotic ant swarm. Expert Systems with Applications, 2012, vol. 39, no. 8, pp. 6887-6896. doi: https://doi.org/10.1016/j.eswa.2012.01.007.

31. Gozde H., Taplamacioglu M.C. Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute, 2011, vol. 348, no. 8, pp. 1927-1946. doi: https://doi.org/10.1016/j.jfranklin.2011.05.012.

32. Taherkhani M., Safabakhsh R. A novel stability-based adaptive inertia weight for particle swarm optimization. Applied Soft Computing, 2016, vol. 38, pp. 281-295. doi: https://doi.org/10.1016/j.asoc.2015.10.004.

33. Cao L., Xu L., Goodman E.D. A guiding evolutionary algorithm with greedy strategy for global optimization problems. Computational Intelligence and Neuroscience, 2016. doi: https://doi.org/10.1155/2016/2565809.

34. Liu Z., Murakami T., Kawamura S., Yoshida H. Parallel Implementation of Chaos Neural Networks for an Embedded GPU. 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan, 2019, pp. 1-6. doi: https://doi.org/10.1109/icaewst.2019.8923383.

35. Huang L., Ding S., Yu S., Wang J., Lu K. Chaos-enhanced cuckoo search optimization algorithms for global optimization. Applied Mathematical Modelling, 2016, vol. 40, no. 5, pp. 3860-3875. doi: https://doi.org/10.1016/j.apm.2015.10.052.

36. Wang X., Sun H. A chaotic image encryption algorithm based on improved Joseph traversal and cyclic shift function. Optics & Laser Technology, 2020, vol. 122, p. 105854. doi: https://doi.org/10.1016/j.optlastec.2019.105854.

37. Tubishat M., Idris N., Shuib L., Abushariah M.A.M., Mirjaliili S. Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Systems with Applications, 2020, vol. 145, pp. 113122. doi: https://doi.org/10.1016/j.eswa.2019.113122.
38. Petrović M., Vuković N., Mitić M., Miljković Z. Integration of process planning and scheduling using chaotic particle swarm optimization algorithm. *Expert Systems with Applications*, 2016, vol. 64, pp. 569-588. doi: https://doi.org/10.1016/j.eswa.2016.08.019.

39. Shadravan S., Naji H.R., Bardesri V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. *Engineering Applications of Artificial Intelligence*, 2019, vol. 80, pp. 20-34. doi: https://doi.org/10.1016/j.engappai.2019.01.001.

40. Luo Y., Yu J., Lai W., Liu L. A novel chaotic image encryption algorithm based on improved baker map and logistic map. *Multimedia Tools and Applications*, 2019, vol. 78, no. 15, pp. 22023-22043. doi: https://doi.org/10.1007/s11042-019-7453-2.

41. Sato Y., Son D.T., Lamb J.S.W., Rasmussen M. Dynamical characterization of stochastic bifurcations in a random logistic map. *ArXiv*, 2018, pp. 1811-03994, Available at: https://arxiv.org/pdf/1811.03994.pdf (accessed on 11 May 2020).

42. Liu B., Wang L., Jin Y.-H., Tang F., Huang D.-X. Improved particle swarm optimization combined with chaos. *Chaos, Solitons & Fractals*, 2005, vol. 25, no. 5, pp. 1261-1271. doi: https://doi.org/10.1016/j.chaos.2004.11.095.

43. Kumar A., Kumar V. A novel interval type-2 fractional order fuzzy PID controller: design, performance evaluation, and its optimal time domain tuning. *ISA Transactions*, 2017, vol. 68, pp. 251-275. doi: https://doi.org/10.1016/j.isatra.2017.03.022.

How to cite this article:
Anwar N., Hanif A., Ali M.U., Zafar A. Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems. *Electrical Engineering & Electromechanics*, 2021, no. 1, pp. 50-59. doi: [10.20998/2074-272X.2021.1.08](https://doi.org/10.20998/2074-272X.2021.1.08).