A quantitative version of the Blow-up Lemma

Gábor N. Sárközy*
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, P.O. Box 127
Budapest, Hungary, H-1364
and
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu

Abstract
In this paper we give a quantitative version of the Blow-up Lemma.

1 Introduction

1.1 Notations and definitions
All graphs are simple, that is, they have no loops or multiple edges. \(v(G) \) is the number of vertices in \(G \) (order), \(e(G) \) is the number of edges in \(G \) (size). \(\deg(v) \) (or \(\deg_G(v) \)) is the degree of vertex \(v \) (within the graph \(G \)), and \(\deg(v,Y) \) (or \(\deg_G(v,Y) \)) is the number of neighbors of \(v \) in \(Y \). \(\delta(G) \) and \(\Delta(G) \) are the minimum degree and the maximum degree of \(G \). \(N(x) \) (or \(N_G(x) \)) is the set of neighbors of the vertex \(x \), and \(e(X,Y) \) is the number of edges between \(X \) and \(Y \). A bipartite graph \(G \) with color-classes \(A \) and \(B \) and edges \(E \) will sometimes be written as \(G = (A,B,E) \). For disjoint \(X,Y \), we define the density

\[
d(X,Y) = \frac{e(X,Y)}{|X| \cdot |Y|}.
\]

*Research supported in part by OTKA Grant No. K104343.
The density of a bipartite graph $G = (A, B, E)$ is the number

$$d(G) = d(A, B) = \frac{|E|}{|A| \cdot |B|}.$$

For two disjoint subsets A, B of $V(G)$, the bipartite graph with vertex set $A \cup B$ which has all the edges of G with one endpoint in A and the other in B is called the pair (A, B).

A pair (A, B) is ε-regular if for every $X \subset A$ and $Y \subset B$ satisfying

$$|X| > \varepsilon|A| \quad \text{and} \quad |Y| > \varepsilon|B|$$

we have

$$|d(X, Y) - d(A, B)| < \varepsilon.$$

A pair (A, B) is (ε, d, δ)-super-regular if it is ε-regular with density at least d and furthermore,

$$\deg(a) \geq \delta|B| \quad \text{for all} \quad a \in A,$$

and

$$\deg(b) \geq \delta|A| \quad \text{for all} \quad b \in B.$$

H is embeddable into G if G has a subgraph isomorphic to H, that is, if there is a one-to-one map (injection) $\varphi : V(H) \to V(G)$ such that $\{x, y\} \in E(H)$ implies $\{\varphi(x), \varphi(y)\} \in E(G)$.

1.2 A quantitative version of the Blow-up Lemma

The Blow-up Lemma \cite{8, 9} has been a successful tool in extremal graph theory. There are now at least four new proofs for the Blow-up Lemma since the original appeared; an algorithmic proof \cite{9}, a hypergraph-packing approach \cite{17}, a proof based on counting perfect matchings in (Szemerédi-) regular graphs \cite{16}, and its constructive version in \cite{18}. Very recently the Blow-up Lemma has been generalized to hypergraphs by Keevash \cite{6} and to d-arrangeable graphs by Böttcher, Kohayakawa, Taraz, and Würfl \cite{3}. The Blow-up Lemma has been applied in numerous papers (see e.g. \cite{1, 4, 7, 10, 11, 12, 13, 15, 16, 17, 18}). See also the discussion on the Regularity Lemma and the Blow-up Lemma on pages 803-804 in the Handbook of Graph Theory \cite{2} or the survey paper \cite{14}.

In either of our proofs \cite{8, 9}, the dependence of the parameters was not computed explicitly. In this paper we give a quantitative version, i.e. we compute explicitly the parameters.

Theorem 1 (A quantitative version of the Blow-up Lemma). There exists an absolute constant C such that, given a graph R of order $r \geq 2$ and positive parameters
For any $0 < \varepsilon < \left(\frac{d\Delta}{r\Delta} \right)^C$ the following holds. Let N be an arbitrary positive integer, and let us replace the vertices of R with pairwise disjoint N-sets V_1, V_2, \ldots, V_r (blowing up). We construct two graphs on the same vertex-set $V = \bigcup V_i$. The graph $R(N)$ is obtained by replacing all edges of R with copies of the complete bipartite graph $K_{N,N}$, and a sparser graph G is constructed by replacing the edges of R with some (ε, d, δ)-super-regular pairs. If a graph H with $\Delta(H) \leq \Delta$ is embeddable into $R(N)$ then it is already embeddable into G.

Our proof is almost identical to the proof in [9]. Of course one difference is that we have to compute explicitly the dependence between the parameters. Furthermore, this is also a slight strengthening of the original statement as there can be a small number of exceptional vertices which may have smaller degrees (δ may be much smaller than d). We note that the recent “arrangeable” Blow-up Lemma [3] is also quantitative, but first of all the bound on ε is somewhat weaker and second it does not allow for the strengthening mentioned above. However, in a recent application [5] we needed precisely this strengthening. We believe that this quantitative version of the Blow-up Lemma will find other applications as well.

In Section 2 we give the embedding algorithm. In Section 3 we show that the algorithm is correct.

2 The algorithm

The main idea of the algorithm is the following. We embed the vertices of H one-by-one by following a greedy algorithm, which works smoothly until there is only a small proportion of H left, and then it may get stuck hopelessly. To avoid that, we will set aside a positive proportion of the vertices of H as buffer vertices. Most of these buffer vertices will be embedded only at the very end by using a König-Hall argument.

2.1 Preprocessing

We will assume that $|V(H)| = |V(G)| = |\bigcup_i V_i| = n = rN$. We will assume for simplicity, that the density of every super-regular pair in G is exactly d. This is not a significant restriction, otherwise we just have to put everywhere the actual density instead of d.

We will use the following parameters:

$$\varepsilon \ll \varepsilon' \ll \varepsilon'' \ll \varepsilon''' \ll d'' \ll d' \ll d,$$

where $a \ll b$ means that a is small enough compared to b. For example we can select
the parameters in the following explicit way:

\[d' = \frac{\delta d \Delta}{8r \Delta}, d'' = (d')^3, d''' = (d'')^2, \epsilon'' = (d''')^2, \epsilon''' = (d''')^3, \]

\[\epsilon' = \left(\frac{\delta d \Delta}{8r \Delta} \right)^2 (d'')^2 (\epsilon'')^3 = \left(\frac{\delta d \Delta}{8r \Delta} \right)^6 (d''')^2 (\epsilon''')^3 = \left(\frac{\delta d \Delta}{8r \Delta} \right)^{12}, \]

\[\epsilon = (\epsilon')^2 = \left(\frac{\delta d \Delta}{8r \Delta} \right)^{328}. \]

For easier reading, we will mostly use the letter \(x \) for vertices of \(H \), and the letter \(v \) for vertices of the host graph \(G \).

Given an embedding of \(H \) into \(R(N) \), it defines an assignment

\[\psi : V(H) \to \{ V_1, V_2, \ldots, V_r \}, \]

and we want to find an embedding

\[\varphi : V(H) \to V(G), \quad \varphi \text{ is one-to-one} \]

such that \(\varphi(x) \in \psi(x) \) for all \(x \in V(H) \). We will write \(X_i = \psi^{-1}(V_i) \) for \(i = 1, 2, \ldots, r \).

Before we start the algorithm, we order the vertices of \(H \) into a sequence \(S = (x_1, x_2, \ldots, x_n) \) which is more or less, but not exactly, the order in which the vertices will be embedded (certain exceptional vertices will be brought forward). Let \(m = rd' N \). For each \(i \), choose a set \(B_i \) of \(dN \) vertices in \(X_i \) such that any two of these vertices are at a distance at least 3 in \(H \). (This is possible, for \(H \) is a bounded degree graph.) These vertices \(b_1, \ldots, b_m \) will be called the buffer vertices and they will be the last vertices in \(S \).

The order \(S \) starts with the neighborhoods \(N_H(b_1), N_H(b_2), \ldots, N_H(b_m) \). The length of this initial segment of \(S \) will be denoted by \(T_0 \). Thus \(T_0 = \sum_{i=1}^{m} |N_H(b_i)| \leq \Delta m \).

The rest of \(S \) is an arbitrary ordering of the leftover vertices of \(H \).

2.2 Sketch of the algorithm

In Phase 1 of the algorithm we will embed the vertices in \(S \) one-by-one into \(G \) until all non-buffer vertices are embedded. For each \(x_j \) not embedded yet (including the buffer vertices) we keep track of an ever shrinking host set \(H_{t,x_j} \) that \(x_j \) is confined to at time \(t \), and we only make a final choice for the location of \(x_j \) from \(H_{t,x_j} \) at time \(j \). At time 0, \(H_{0,x} \) is the cluster that \(x_j \) is assigned to. For technical reasons we will also maintain another similar set, \(C_{t,x_j} \), where we will ignore the possibility that some
vertices are occupied already. \(Z_t \) will denote the set of occupied vertices. Finally we will maintain a set \(\text{Bad}_t \) of exceptional pairs of vertices.

In Phase 2, we embed the leftover vertices by using a König-Hall type argument.

2.3 Embedding Algorithm

At time 0, set \(C_{0,x} = H_{0,x} = \psi(x) \) for all \(x \in V(H) \). Put \(T_1 = d''n \).

Phase 1.

For \(t \geq 1 \), repeat the following steps.

Step 1 (Extending the embedding). We embed \(x_t \). Consider the vertices in \(H_{t-1,x_t} \). We will pick one of these vertices as the image \(\varphi(x_t) \) by using the Selection Algorithm (described below in Section 2.4).

Step 2 (Updating). We set

\[
Z_t = Z_{t-1} \cup \{ \varphi(x_t) \},
\]

and for each unembedded vertex \(y \) (i.e. the set of vertices \(x_j, t < j \leq n \)), set

\[
C_{t,y} = \begin{cases}
C_{t-1,y} \cap N_G(\varphi(x_t)) & \text{if } \{x_t, y\} \in E(H) \\
C_{t-1,y} & \text{otherwise,}
\end{cases}
\]

and

\[
H_{t,y} = C_{t,y} \setminus Z_t.
\]

We do not change the ordering at this step.

Step 3 (Exceptional vertices in \(G \)).

1. If \(t \notin \{1, T_0\} \), then go to Step 4.
2. If \(t = 1 \), then we do the following (this is the part that is new compared to the proof in [9]). We find the 1st exceptional set (denoted by \(E_1^1 \)) consisting of those exceptional vertices \(v \in V_i, 1 \leq i \leq r \) for which there exists a \(j \neq i \) such that \((V_i, V_j)\) is \((\varepsilon, d, \delta)\)-super-regular, yet

\[
\deg_G(v, V_j) < (d - \varepsilon)|V_j|.
\]

(Note that \(\deg_G(v, V_j) \geq \delta|V_j| \) always holds by super-regularity.) \(\varepsilon \)-regularity implies that \(|E_1^1| \leq r\varepsilon N\). We are going to change slightly the order of the vertices in \(S \). We choose a set \(E_H^1 \) of nonbuffer vertices \(x \in H \) of size \(\sum_{i=1}^r |E_i^1| \) (more precisely \(|E_i^1| \) vertices from \(X_i \) for all \(1 \leq i \leq r \)) such that they are at a distance at
least 3 from each other. This is possible since H is a bounded degree graph and $\sum_{i=1}^r |E^1_i|$ is very small. We bring the vertices in E^1_H forward, followed by the remaining vertices in the same relative order as before. For simplicity we keep the notation (x_1, x_2, \ldots, x_n) for the resulting order. Furthermore, we slightly change the value of T_0 to $T_0 = |E^1_H| + \sum_{i=1}^m |N_H(b_i)|$.

3. If $t = T_0$, then we do the following. We find the 2nd exceptional set (denoted by E^2_2) consisting of those exceptional vertices $v \in V_i$, $1 \leq i \leq r$ for which v is not covered yet in the embedding and

$$|\{b : b \in B_i, v \in C_{t,b}\}| < d''|B_i|.$$

Once again we are going to change slightly the order of the remaining unembedded vertices in S. We choose a set E^2_H of unembedded nonbuffer vertices $x \in H$ of size $\sum_{i=1}^r |E^2_i|$ (more precisely $|E^2_i|$ vertices from X_i for all $1 \leq i \leq r$) with

$$H_{t,x} = H_{0,x} \setminus \{\varphi(x_j) : j \leq t\} = \psi(x) \setminus \{\varphi(x_j) : j \leq t\}.$$

Thus in particular, if $x \in X_i$, then $E^2_i \subset H_{t,x}$. Again we may choose the vertices in E_H as vertices in H that are at a distance at least 3 from each other and any of the vertices embedded so far. We are going to show later in the proof of correctness that this is possible since H is a bounded degree graph and $\sum_{i=1}^r |E^2_i|$ is very small as well. We bring the vertices in E^2_H forward, followed by the non-exceptional vertices in the same relative order as before. Again, for simplicity we keep the notation (x_1, x_2, \ldots, x_n) for the resulting order.

Step 4 (Exceptional vertices in H).
1. If T_1 does not divide t, then go to Step 5.
2. If T_1 divides t, then we do the following. We find all exceptional unembedded vertices $y \in H$ such that $|H_{t,y}| \leq (d')^2n$. Once again we slightly change the order of the remaining unembedded vertices in S. We bring these exceptional vertices forward (even if they are buffer vertices), followed by the non-exceptional vertices in the same relative order as before. Again for simplicity we still use the notation (x_1, x_2, \ldots, x_n) for the new order. Note that it will follow from the proof, that if $t \leq 2T_0$, then we do not find any exceptional vertices in H, so we do not change the ordering at this step.

Step 5 - If there are no more unembedded non-buffer vertices left, then set $T = t$ and go to Phase 2, otherwise set $t \leftarrow t + 1$ and go back to Step 1.

Phase 2
Find a system of distinct representatives of the sets $H_{T,y}$ for all unembedded y (i.e. the set of vertices x_j, $T < j \leq n$).
2.4 Selection Algorithm

We distinguish two cases. Let $E_H = E_H^1 \cup E_H^2$.

Case 1. $x_t \notin E_H$.

We choose a vertex $v \in H_{t-1,x_t}$ as the image $\varphi(x_t)$ for which the following hold for all unembedded y with $\{x_t, y\} \in E(H)$,

\[
(d - \varepsilon)|H_{t-1,y}| \leq \deg_G(v, H_{t-1,y}) \leq (d + \varepsilon)|H_{t-1,y}|,
\]

(1)

\[
(d - \varepsilon)|C_{t-1,y} \leq \deg_G(v, C_{t-1,y}) \leq (d + \varepsilon)|C_{t-1,y}|\]

(2)

and

\[
(d - \varepsilon)|C_{t-1,y} \cap C_{t-1,y'} \leq \deg_G(v, C_{t-1,y} \cap C_{t-1,y'}) \leq (d + \varepsilon)|C_{t-1,y} \cap C_{t-1,y'}|,
\]

(3)

for at least a $(1 - \varepsilon')$ proportion of the unembedded vertices y' with $\psi(y') = \psi(y)$ and $\{y, y'\} \notin \text{Bad}_{t-1}$. Then we get Bad_t by taking the union of Bad_{t-1} and the set of all of those pairs $\{y, y'\}$ for which (3) does not hold for $v = \varphi(x_t)$, $C_{t-1,y}$ and $C_{t-1,y'}$. Thus note that we add at most $\Delta \varepsilon'N$ new pairs to Bad_t.

Case 2. $x_t \in E_H$.

If $x_t \in X_i \cap E_H^l$, $l = 1, 2$, then we choose an arbitrary vertex of E_l^i as $\varphi(x_t)$. Note that for all $y \in N_H(x_t)$, we have $C_{t-1,y} = \psi(y)$,

\[
\deg_G(\varphi(x_t), C_{t-1,y}) = \deg_G(\varphi(x_t)) \geq \delta N = \delta |C_{t-1,y}|,
\]

(4)

and

\[
\deg_G(\varphi(x_t), H_{t-1,y}) \geq \deg_G(\varphi(x_t)) - T_0 - |E_H| \geq \delta N - 2\Delta rd'N \geq \frac{\delta}{2} N
\]

(5)

(using our choice of parameters). Here we used super-regularity and the fact that $|E_H| \ll \Delta m$ which will be shown later (Lemma 3).

3 Proof of correctness

The following claims state that our algorithm finds a good embedding of H into G.

Claim 1. Phase 1 always succeeds.

Claim 2. Phase 2 always succeeds.

If at time t, S is a set of unembedded vertices $x \in H$ with $\psi(x) = V_i$ (here and throughout the proof when we talk about time t, we mean after Phase 1 is executed
for time t, so for example x_t is considered embedded at time t), then we define the

bipartite graph U_t as follows. One color class is S, the other is V_i, and we have an

e edge between an $x \in S$ and a $v \in V_i$ whenever $v \in C_{t,x}$.

In the proofs of the above claims the following lemma will play a major role. First we

prove the lemma for $t \leq T_0$, from this we deduce that $|E_H|$ is small, then we prove

the lemma for $T_0 < t \leq T$.

Lemma 2. We are given integers $1 \leq i \leq r$, $1 \leq t \leq T_0$ and a set $S \subset X_i$ of

unembedded vertices at time t with $|S| \geq (d''')^2 |X_i| = (d'')^2 N$. If we assume that

Phase 1 succeeded for all time t' with $t' \leq t$, then apart from an exceptional set F of

size at most $\varepsilon'' N$, for every vertex $v \in V_i$ we have the following

\[
\deg_{U_t}(v) = |\{ x : x \in S, v \in C_{t,x} \}| \geq (1 - \varepsilon'')d(U_t)|S| \left(\geq \frac{d \Delta}{2} |S| \right).
\]

Proof. In the proof of this lemma we will use the “defect form” of the Cauchy-

Schwarz inequality (just as in the original proof of the Regularity Lemma [19]): if

\[
\sum_{k=1}^{m} X_k = \frac{m}{n} \sum_{k=1}^{n} X_k + D \quad (m \leq n)
\]

then

\[
\sum_{k=1}^{n} X_k^2 \geq \frac{1}{n} \left(\sum_{k=1}^{n} X_k \right)^2 + \frac{D^2 n}{m(n-m)}.
\]

Assume indirectly that the statement in Lemma 2 is not true, that is, $|F| > \varepsilon'' N$. We
take an $F_0 \subset F$ with $|F_0| = \varepsilon'' N$. Let us write $\nu(t, x)$ for the number of neighbors (in

H) of x embedded by time t. Then in U_t using the left side of (2) we get

\[
e(U_t) = d(U_t)|S||V_i| = \sum_{v \in V_i} \deg_{U_t}(v) = \sum_{x \in S} \deg_{U_t}(x)
\]

\[
= \sum_{x \in S} |C_{t,x}| \geq \sum_{x \in S} (d - \varepsilon)\nu(t,x)N - \Delta r^2 \varepsilon N^2 \geq (d - \varepsilon)\Delta |S|N - \Delta r^2 \varepsilon N^2 \geq \frac{d \Delta}{2} |S|N,
\]

where the error term comes from the neighbors of elements of E_H^1 (we are yet to start

the embedding of the vertices in E_H^2), since for them we cannot guarantee the same

lower bound.

We also have

\[
\sum_{x \in S} \sum_{x' \in S} |N_{U_t}(x) \cap N_{U_t}(x')| = \sum_{x \in S} \sum_{x' \in S} |C_{t,x} \cap C_{t,x'}|
\]

\[
\leq \sum_{x \in S} \sum_{x' \in S} (d + \varepsilon)\nu(t,x)\nu(t,x')N + |S|N + \Delta^2 |S|N + 2\Delta r^2 \varepsilon |S|N^2 + 2 \Delta \varepsilon' N^3
\]
Lemma 3. An easy consequence of Lemma 2 is the following lemma.

The error terms come from the following \((x, x')\) pairs. For each such pair we estimate \(|C_{t, x} \cap C_{t, x'}| \leq N\). The first error term comes from the pairs where \(x = x'\). The second error term comes from those pairs \((x, x')\) for which \(N_H(x) \cap N_H(x') = \emptyset\). The number of these pairs is at most \(|S|\Delta(\Delta - 1) \leq \Delta^2|S|\). The third error term comes from those pairs \((x, x')\) for which \(x\) or \(x'\) is a neighbor of an element of \(E_H^1\). Finally we have the pairs for which \(\{x, x'\} \in \text{Bad}_i\). The number of these pairs is at most \(2t\Delta \varepsilon'N \leq 2\Delta \varepsilon'N^2\).

Next we will use the Cauchy-Schwarz inequality with \(m = \varepsilon''N\) and the variables \(X_k, k = 1, \ldots, N\) are going to correspond to \(\text{deg}_{U_i}(v), v \in V_i\) (and the first \(m\) variables to degrees in \(F_0\)). Then we have

\[
|D| = \varepsilon'' \sum_{v \in V_i} \text{deg}_{U_i}(v) - \sum_{v \in F_0} \text{deg}_{U_i}(v)
\geq \varepsilon'' \sum_{v \in V_i} \text{deg}_{U_i}(v) - \varepsilon''(1 - \varepsilon')d(U_i)|S|N = (\varepsilon'')^2d(U_i)|S|N.
\]

Then using (6), (8) and the Cauchy-Schwarz inequality we get

\[
\sum_{x \in S} \sum_{x' \in S} |N_{U_i}(x) \cap N_{U_i}(x')| = \sum_{v \in V_i} (\text{deg}_{U_i}(v))^2
\geq \frac{N}{N} \left(\sum_{v \in V_i} \text{deg}_{U_i}(v) \right)^2 + (\varepsilon'')^3d(U_i)^2N|S|^2
\geq \frac{N}{N} \left(\sum_{x \in S} (d - \varepsilon)^{\nu(t, x)} N - \Delta r^2 \varepsilon N^2 \right)^2 + (\varepsilon'')^3d(U_i)^2N|S|^2
\geq \sum_{x \in S} \sum_{x' \in S} (d - \varepsilon)^{\nu(t, x) + \nu(t, x')} N - 2\Delta \varepsilon'N^3 + (\varepsilon'')^3(d - \varepsilon)^{2\Delta} N|S|^2,
\]

which is a contradiction with (7), since \(|S| \geq (d''')^2N\),

\[
(d + \varepsilon)^{\nu(t, x) + \nu(t, x')} - (d - \varepsilon)^{\nu(t, x) + \nu(t, x')} \ll \Delta \varepsilon,
\]

and

\[
(\varepsilon'')^3(d - \varepsilon)^{2\Delta}(d''')^2 \geq \frac{d^2\Delta}{2}(d''')^2(\varepsilon'')^3 \geq \Delta \varepsilon' \gg \Delta \varepsilon,
\]

by the choice of the parameters. \(\Box\)

An easy consequence of Lemma 2 is the following lemma.

Lemma 3. In Step 3 we have \(|E_i^2| \leq \varepsilon''N\) for every \(1 \leq i \leq r\).
Proof. Indeed applying Lemma 2 with \(t = T_0 \) and \(S = B_i \) (so we have \(|S| = |B_i| = d^\prime N > (d^\prime\prime\prime)^2 N\)) we get

\[
(1 - \varepsilon^\prime\prime) d(U_t)|S| \geq \frac{d^\Delta}{2} |S| > d^\prime |S|,
\]

and \(E^2_i \subset F \). \(\square \)

From this we can prove Lemma 2 for \(t > T_0 \) with \(\varepsilon^\prime\prime\prime \) instead of \(\varepsilon^\prime\prime \).

Lemma 4. We are given integers \(1 \leq i \leq r \), \(T_0 < t \leq T \) and a set \(S \subset X_i \) of unembedded vertices at time \(t \) with \(|S| \geq (d^\prime\prime\prime)^2 |X_i| = (d^\prime\prime\prime)^2 N\). If we assume that Phase 1 succeeded for all time \(t' \) with \(t' \leq t \), then apart from an exceptional set \(F \) of size at most \(\varepsilon^\prime\prime\prime \), for every vertex \(v \in V_i \) we have the following

\[
\deg_{U_t}(v) = |\{ x : x \in S, v \in C_{t,x} \}| \geq (1 - \varepsilon^\prime\prime\prime) d(U_t)|S| \left(\geq \frac{d^\Delta}{2} |S| \right).
\]

Proof. We only have to pay attention to the neighbors of the elements of \(E^2_H \), otherwise the proof is the same as the proof of Lemma 2 with \(\varepsilon^\prime\prime\prime \) instead of \(\varepsilon^\prime\prime \). In (6) the error term becomes \(\Delta r \varepsilon^\prime\prime N^2 \), coming from the neighbors of elements of \(E^2_H \). In (7) we have more bad pairs, namely all pairs \((x, x')\) where \(x \) or \(x' \) is a neighbor of an element of \(E^2_H \). These give an additional error term of \(2\Delta r \varepsilon^\prime\prime |S| N^2 \). However, the contradiction still holds, since

\[
(\varepsilon^\prime\prime\prime)^3 (d - \varepsilon)^{2\Delta} (d^\prime\prime\prime)^2 \geq \frac{d^\Delta}{2} (d^\prime\prime\prime)^2 (\varepsilon^\prime\prime\prime)^3 \geq \Delta \varepsilon^\prime\prime,
\]

by the choice of the parameters. \(\square \)

An easy consequence of Lemmas 2 and 4 is the following lemma.

Lemma 5. We are given integers \(1 \leq i \leq r \), \(1 \leq t \leq T \), a set \(S \subset X_i \) of unembedded vertices at time \(t \) with \(|S| \geq d^\prime\prime\prime |X_i| = d^\prime\prime\prime N\) and a set \(A \subset V_i \) with \(|A| \geq d^\prime\prime\prime |V_i| = d^\prime\prime\prime N\). If we assume that Phase 1 succeeded for all time \(t' \) with \(t' \leq t \), then apart from an exceptional set \(S' \) of size at most \((d^\prime\prime\prime)^2 N\), for every vertex \(x \in S \) we have the following

\[
|A \cap C_{t,x}| \geq \frac{|A|}{2N} |C_{t,x}|.
\]

Proof. Assume indirectly that the statement is not true, i.e. there exists a set \(S' \subset S \) with \(|S'| > (d^\prime\prime\prime)^2 N\) such that for every \(x \in S' \) (9) does not hold. Once again we consider the bipartite graph \(U_t = U_t(S', V_i) \). We have

\[
\sum_{v \in A} \deg_{U_t}(v) = \sum_{x \in S'} |A \cap C_{t,x}| < \frac{|A|}{2N} \sum_{x \in S'} |C_{t,x}| = \frac{|A|}{2N} d(U_t)|S'| N.
\]
On the other hand, applying Lemmas 2 or 4 for S' we get

$$\sum_{v \in A} \deg_{U_t}(v) \geq (1 - \varepsilon'')d(U_t)|S'|(|A| - \varepsilon''N)$$

contradicting the previous inequality. □

Finally we have

Lemma 6. For every $1 \leq t \leq T$ and for every vertex y that is unembedded at time t, if we assume that Phase 1 succeeded for all time t' with $t' \leq t$, then we have the following at time t

$$|H_{t,y}| > d''N. \quad (10)$$

Proof. We apply Lemma 5 with S_t the set of all unembedded vertices in X_i at time t, and $A_t = V_i \setminus Z_t$ (all uncovered vertices). Then for all but at most $(d'''2)^N$ vertices $x \in S_t$ using (2) and (4) we get

$$|H_{t,x}| = |A_t \cap C_{t,x}| \geq \frac{|A_t|}{2N}|C_{t,x}| \geq \frac{d'}{4}(d - \varepsilon)\Delta N \geq (d')^2N, \quad (11)$$

if $|A_t| \geq (d'/2)N$. We will show next that in fact for $1 \leq t \leq T$, we have

$$|A_t| \geq |A_T| \geq (d' - d'')N \left(\geq \frac{d'}{2}N \right),$$

so (11) always holds. Assume indirectly that this is not the case, i.e. there exists a $1 \leq T' < T$ for which,

$$|A_{T'}| \geq (d' - d'')N \text{ but } |A_{T'+1}| < (d' - d'')N.$$

From the above at any given time t for which $T_1 > t$ and $1 \leq t \leq T'$, in Step 4 we find at most $(d''')^2N$ exceptional vertices in X_i. Hence, altogether we find at most

$$\frac{1}{d''}(d''')^2N \ll d''N$$

exceptional vertices in X_i up to time T'. However, this implies that at time T' we still have many more than $(d' - d'')N$ unembedded buffer vertices in X_i, which in turn implies that $|A_{T'+1}| \gg (d' - d'')N$, a contradiction. Thus we have

$$|A_T| \geq (d' - d'')N, \quad T \leq rN - rd''N + rd''N,$$

at time T (or in Phase 2) we have at least $(d' - d'')N$ unembedded buffer vertices in each X_i, and furthermore, for every $1 \leq t \leq T$ for all but at most $(d''')^2N$ vertices $x \in S_t$ we have

$$|H_{t,x}| > (d')^2N.$$
Let us pick an arbitrary $1 \leq t \leq T$ and an unembedded y at time t (with $\psi(y) = V_i$). We have to show that (10) holds. Let $kd''n = kT_1 \leq t < (k+1)T_1$ for some $0 \leq k \leq T/T_1$. We distinguish two cases:

Case 1. y was not among the at most $(d'''^2)N$ exceptional vertices of X_i found in Step 4 at time kT_1. Then

$$|H_{t,y}| \geq \left(\frac{\delta}{2}(d - \varepsilon)\Delta(d''')^2 - rd''\right)N.$$

Indeed, at time kT_1 we had $|H_{kT_1,y}| \geq (d'')^2N$. Until time t, $H_{t,y}$ could have been cut at most once to a $\geq (\delta/2)$-fraction (if y is a neighbor of an element of E_H, there can be at most one such E_H-neighbor) and at most Δ times to a $\geq (d - \varepsilon)$-fraction (using (1) and (5)), and precisely $t - kT_1 \leq T_1 = rd''N$ new vertices were covered.

Case 2. y was among the at most $(d'''^2)N$ exceptional vertices of X_i found in Step 4 at time kT_1. Then

$$|H_{t,y}| \geq \left(\frac{\delta}{2}(d - \varepsilon)\Delta(d'')^2 - r(d''')^2 - r(d'')\right)N,$$

since at time $(k - 1)T_1$ (we certainly must have $k \geq 2$), y was not exceptional, and because the exceptional vertices were brought forward we have $t \leq kT_1 + r(d''')^2N$. Thus in both cases we have $|H_{t,y}| > d''N$, as desired.

Finally we show that the selection algorithm always succeeds in selecting an image $\varphi(x_t)$.

Lemma 7. For every $1 \leq t \leq T$, if we assume that Phase 1 succeeded for all time t' with $t' \leq t$, then Phase 1 succeeds for time t.

Proof. We only have to consider Case 1 in the selection algorithm. We choose a vertex $v \in H_{t-1,x_t}$ as the image $\varphi(x_t)$ which satisfies (1), (2) and (3). We have by Lemma 6,

$$|H_{t-1,x_t}| \geq d''N.$$

By ε-regularity we have at most $2\varepsilon N$ vertices in H_{t-1,x_t} which do not satisfy (1) and similarly for (2). For (3) we define an auxiliary bipartite graph B as follows. One color class W_1 is the vertices in H_{t-1,x_t} and the other class W_2 is the sets $C_{t-1,y} \cap C_{t-1,y'}$ for all pairs $\{y, y'\}$ where $\{x_t, y\} \in E(H)$, $\psi(y) = \psi(y')$, and $\{y, y'\} \not\in \text{Bad}_{t-1}$. We put an edge between a $v \in W_1$ and an $S \in W_2$ if inequality (3) is not satisfied for v and S. Let us assume indirectly that we have more than $\varepsilon'N$ vertices $v \in W_1$ with $\deg_B(v) > \varepsilon'|W_2|$. Then there must exist a $S \in W_2$ with

$$\deg_B(S) > \varepsilon'|W_1| \gg \varepsilon N.$$
However, this is a contradiction with ε-regularity since

$$|S| \geq (d - \varepsilon)^{2\Delta}N \gg \varepsilon N.$$

Here we used the fact that the pair corresponding to S is not in Bad_{t-1}. Thus altogether we have at most $4\varepsilon N + \varepsilon'N \ll d''N$ vertices in $H_{t-1,x}$ that we cannot choose and thus the selection algorithm always succeeds in selecting an image $\varphi(x_t)$, proving Claim 1. \hfill \Box

Proof of Claim 2. We want to show that we can find a system of distinct representatives of the sets $H_{T,x_j}, T < j \leq n$, where the sets H_{T,x_j} belong to a given cluster V_i.

To simplify notation, let us denote by Y the set of remaining vertices in V_i, and by X the set of remaining unembedded (buffer) vertices assigned to V_i. If $x = x_j \in X$ then write H_x for its possible location H_{T,x_j} at time T. Also write $M = |X| = |Y|$.

The König-Hall condition for the existence of a system of distinct representatives obviously follows from the following three conditions:

1. $|H_x| > d'''M$ for all $x \in X$, (12)
2. $|\bigcup_{x \in S} H_x| \geq (1 - d'''M)$ for all subsets $S \subset X, |S| \geq d'''M$, (13)
3. $|\bigcup_{x \in S} H_x| = M$ for all subsets $S \subset X, |S| \geq (1 - d'''M)$.

Equation (12) is an immediate consequence of Lemma 6, (13) is a consequence of Lemma 2. Finally to prove (14), we have to show that every vertex in $Y \subset V_i$ belongs to at least $d'''|X|$ location sets H_x. However, this is trivial from the construction of the embedding algorithm, in Step 3 of Phase 1 we took care of the small number of exceptional vertices for which this is not true. This finishes the proof of Claim 2 and the proof of correctness. \hfill \Box

References

[1] N. Alon, V. Rödl, A. Ruciński, Perfect matchings in ε-regular graphs, *Electronic Journal of Combinatorics*, 5 (1998), R13.

[2] B. Bollobás, V. Nikiforov, Extremal graph theory, in *Handbook of Graph Theory*, CRC Press, 2004, pp. 788-816.

[3] J. Böttcher, Y. Kohayakawa, A. Taraz, A. Würlfl, An extension of the Blow-up Lemma to arrangeable graphs, arXiv:1305.2059.
[4] R.L. Graham, V. Rödl, A. Ruciński, On bipartite graphs with linear Ramsey numbers, *Combinatorica*, 21 (2001), pp. 199-209.

[5] A. Grinshpun, G. N. Sárközy, Monochromatic bounded degree subgraph partitions, submitted for publication.

[6] P. Keevash, A hypergraph blow-up lemma, *Random Structures and Algorithms*, 39 (2011), pp. 275-376.

[7] Y. Kohayakawa, V. Rödl, Algorithmic aspects of regularity, *LNCS*, 1776 (2000), pp. 1-17.

[8] J. Komlós, G. N. Sárközy, E. Szemerédi, Blow-up Lemma, *Combinatorica* 17 (1997), pp. 109-123.

[9] J. Komlós, G. N. Sárközy, E. Szemerédi, An algorithmic version of the Blow-up Lemma, *Random Structures and Algorithms* 12 (1998), pp. 297-312.

[10] J. Komlós and M. Simonovits, Szemerédi’s Regularity Lemma and its applications in graph theory, in *Combinatorics, Paul Erdös is Eighty* (D. Miklós, V.T. Sós, and T. Szőnyi, Eds.), pp. 295-352, Bolyai Society Mathematical Studies, Vol. 2, János Bolyai Mathematical Society, Budapest, 1996.

[11] M. Krivelevich, B. Sudakov, T. Szabó, Triangle factors in pseudo-random graphs, *Combinatorica*, 24 (2004), pp. 403-426.

[12] D. Kühn, D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, *J. Combinatorial Theory Series B*, 96 (2006), pp. 767-821.

[13] D. Kühn, D. Osthus, Multicolored Hamilton cycles and perfect matchings in pseudo-random graphs, *SIAM Journal Discrete Mathematics*, 20 (2006), pp. 273-286.

[14] D. Kühn, D. Osthus, Embedding large subgraphs into dense graphs. *Surveys in Combinatorics* 2009 (editors S. Huczynka, J. Mitchell, C. Roney-Dougal), Cambridge University Press, 2009, pp. 137-167.

[15] T. Luczak, V. Rödl, E. Szemerédi, Partitioning two-colored complete graphs into two monochromatic cycles, *Combinatorics, Probability and Computing* 7 (1998), pp. 423-436.

[16] V. Rödl, A. Ruciński, Perfect matchings in ε-regular graphs and the Blow-up Lemma, *Combinatorica* 19 (1999), pp. 437-542.
[17] V. Rödl, A. Ruciński, A. Taraz, Hypergraph packing and graph embedding, *Combinatorics, Probability and Computing*, 8 (1999), pp. 363-376.

[18] V. Rödl, A. Ruciński, M. Wagner, Matchings meeting quotas and their impact on the Blow-up Lemma, *SIAM Journal of Computing*, 31 (2001), pp. 428-446.

[19] E. Szemerédi, *Regular partitions of graphs*, Colloques Internationaux C.N.R.S. No 260 - Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), pp. 399-401.