The genetics of aniridia — simple things become complicated

Anna Wawrocka 1 · Maciej R. Krawczynski 1,2

Received: 22 September 2017 / Revised: 21 November 2017 / Accepted: 21 December 2017 / Published online: 19 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
Aniridia is a rare, panocular disorder characterized by a variable degree of hypoplasia or the absence of iris tissue associated with additional ocular abnormalities. It is inherited in an autosomal dominant manner, with high penetrance and variable expression even within the same family. In most cases the disease is caused by haploinsufficiency truncating mutations in the PAX6 gene; however, in up to 30% of aniridia patients, disease results from chromosomal rearrangements at the 11p13 region. The aim of this review is to present the clinical and genetic aspects of the disease. Furthermore, we present a molecular diagnostic strategy in the aniridia patients. Recent improvement in the genetic diagnostic approach will precisely diagnosis aniridia patients, which is essential especially for children with aniridia in order to determine the risk of developing a Wilms tumor or neurodevelopmental disorder. Finally, based on the previous studies we describe the current knowledge and latest research findings in the topic of pathogenesis of aniridia and possible future treatment.

Keywords Aniridia · PAX6 · 11p13 microdeletions · MLPA · High-resolution array-CGH

Introduction
Aniridia (OMIM 106210) is a congenital panocular disorder characterized by complete or partial iris hypoplasia presenting in early infancy. Clinical expression is highly variable between families and even in the same family. Foveal hypoplasia resulting in reduced visual acuity, as well as cataract, keratopathy, and glaucoma that sometimes develop in the second or third decade, contribute to visual morbidity (Fig. 1). Visual acuity is variable, it is usually 20/100-20/200, but in some affected individuals it can be better than 20/60 especially when nystagmus is not present (Hingorani et al. 2012). Refractive errors, strabismus and ptosis may also be present in the affected eye (Kokotas and Petersen 2010).

Some aniridia patients have been reported to present with non-ocular, sensory, and neurological abnormalities. Reduced olfaction seems to be the most common functional deficit (Sisodiya et al. 2001; Hingorani et al. 2012). Neurological abnormalities such as autism and intellectual disability have been described by several authors (Davis et al. 2008; Hu et al. 2015). MRI studies showed irregularities of the anterior commissure, anterior cingulate cortex, cerebellum, temporal and occipital lobes, corpus callosum, pineal gland and olfactory bulb (Sisodiya et al. 2001; Mitchell et al. 2003; Bamiou et al. 2007). Abnormal interhemispheric transfer results in central auditory processing deficits, what can cause hearing difficulties (Bamiou et al. 2007).

Aniridia is an autosomal dominant condition with an incidence of approximately one in 40,000-100,000 live births worldwide (Kokotas and Petersen 2010; Hingorani et al. 2012). About two-thirds of aniridia cases are familial with nearly complete penetrance, the remaining one-third are sporadic and result from de novo mutations (Hingorani et al. 2012). Aniridia can occur either as an isolated malformation or as a part of a syndrome. The best known syndromic form is WAGR syndrome (OMIM 194072) — a contiguous genes deletion syndrome of the 11p13 region (encompassing the PAX6 and WT1 genes). It is characterized by Wilms tumor, aniridia, genitourinary anomalies, and intellectual disability. Patients have 50-70% risk to develop Wilms tumor, which is the most common form of kidney cancer in children. Approximately 30% of patients with the sporadic form of aniridia suffer from this syndrome (Fischbach et al. 2005).
Another known form of aniridia is Gillespie syndrome (OMIM 206700) — a rare disorder characterized by non-progressive cerebellar ataxia, intellectual disability, and iris hypoplasia. Gillespie syndrome is estimated to account for about 2% of aniridia-like cases (Gillespie 1965; Ansari et al. 2016). The PAX6 gene mutations were identified in only two individuals described as Gillespie syndrome but with atypical features like corectopia and ptosis (Ticho et al. 2006). In 2016, Gerber et al. identified mutations in the ITPR1 gene in patients affected with Gillespie syndrome (Gerber et al. 2016); however, in most cases the genetic cause of the disease remains unclear.

Structure and function of the PAX6 gene and its protein

The PAX6 gene (OMIM 607108) was the first homeobox gene discovered to play a crucial role in eye development (Glaser et al. 1992). In 1991 it was identified by positional cloning as a causative gene for congenital aniridia (Ton et al. 1991; Glaser et al. 1992).

The PAX6 gene is located on chromosome 11p13, contains 14 exons including an alternatively spliced exon 5a. It is abundantly expressed in the forebrain, early eye structures, ventral spinal cord, and endocrine pancreas (Lauderdale et al. 2000). The PAX6 protein as a transcriptional factor plays a crucial role in embryonic development and organogenesis, including neuro- and oculogenesis (Lang et al. 2007; Kokotas and Petersen 2010). The protein contains two functional domains: paired domain (PD) and homeodomain (HD), separated by the proline/serine/threonine-rich transactivation domain (PST). The paired domain comprises two structurally distinct DNA-binding subdomains: the N-terminal subdomain (NTS) and the C-terminal subdomain (CTS) (Kokotas and Petersen 2010) (Fig. 2). The PAX6 gene produces two alternatively spliced isoforms, with a distinct structure of the PD domain: a 422 amino acid and an alternatively spliced 436 amino acid PAX6 protein (including exon 5a). The insertion, into the NTS subdomain, of 14 additional amino acids encoded by exon 5a abolishes the DNA-binding activity of the NTS and unmasks the DNA-binding ability of the CTS. Thus, exon 5a appears to function as a molecular switch that specifies target genes (Azuma et al. 1999).

![Fig. 1](image1.png) A typical phenotype of a complete aniridia with polar posterior cataract (white arrow) and peripheral iris remnants (black arrow)

![Fig. 2](image2.png) The PAX6 cDNA, horizontal rectangles represent PAX6 protein domains including: PD-paired domain, LNK-linker region, HD-homeodomain, PST-proline/serine/threonine rich region. Exon 5a is an alternatively spliced exon in the PD domain. The most frequent mutations in the PAX6 gene described in LOVD database are presented above the diagram.
Heterozygous PAX6 gene point mutations

To date, more than 400 heterozygous variants of the PAX6 gene have been identified and recorded in the Human PAX6 Allelic Variant Database (Leiden Open Variation Database, LOVD). Of all intragenic point mutations in the PAX6 gene, 94% result in premature termination codon (PTC), C-terminal extensions (CTE) or amino-acid substitutions (missense mutations) (Hingorani et al. 2012). Most of the reported PAX6 gene heterozygous mutations including nonsense and splicing mutations, insertions, and deletions, introduce premature termination codons into the PAX6 open reading frame, resulting in haploinsufficiency. The level of the protein expression from a single functional allele is not sufficient to produce biologically active PAX6 protein (50% reduction in overall activity) (Kokotas and Petersen 2010). The dosage-dependence of the PAX6 gene was supported by studies in naturally occurring rodent models with heterozygous PAX6 mutations (Matsuo et al. 1993; Kokotas and Petersen 2010; Cvekl and Callaerts 2017). Heterozygous mutations in the PAX6 gene cause mouse smalleye (Sey) phenotype demonstrating dosage sensitivity (Hill et al. 1991).

Truncating mutations activate the nonsense-mediated decay (NMD) process, by which mRNA containing premature termination codons are degraded before they produce truncated proteins (Baker and Parker 2004).

C-terminal extension mutations (dominant negative mutations) in the PAX6 gene result from frameshift or point mutations that change the stop codon of the C-terminus to cause run-on translation into 3’UTR. Nonsense-mediated decay is not predicted for CTE transcripts and an extended abnormal protein is produced (Tzoulaki et al. 2005). This type of mutation is usually associated with severe phenotype with pronounced iris hypoplasia and profound visual impairment (Aggarwal et al. 2011).

Single amino acid substitutions (missense mutations) produce a full-length protein that may fold and function abnormally, causing phenotypes ranging from mild iris defects to more severe including optic nerve malformations, Peters anomaly and microphthalmia (Hanson et al. 1994; Grønskov et al. 2001; Azuma et al. 2003).

Heterozygous PAX6 gene mutations account for approximately two-thirds of all aniridia cases (Robinson et al. 2008). The most frequent mutations in the PAX6 gene are present in Fig. 2.

Compound heterozygous PAX6 gene mutations

Families of aniridic parents with heterozygous PAX6 gene mutations were reported in the literature. Affected parents have a 25% risk that they would give birth to a child with both alleles having PAX6 gene mutations. Compound heterozygosity in the PAX6 gene was thought to be lethal, resulting in severe malformations of the fetus. However, in 1994, Glaser et al. reported the first patient with compound heterozygous PAX6 gene mutations. Two nonsense mutations inherited from the aniridic parents were identified in a newborn with anophthalmia, severe craniofacial, and central nervous system defects. The pattern of malformations was similar to that observed in homozygous Sey mouse (Glaser et al. 1994). Compound heterozygosity was also reported in two fetuses whose parents were affected with aniridia. Both fetuses showed severe brain malformations with increased germinal proliferation, gross disturbances of migration, and organization of the central nervous system (Schmidt-Sidor et al. 2009).

Finally, Solomon et al. reported a patient, who suffered from trisomy 21 and additionally was a compound heterozygote for one missense and one nonsense mutations in the PAX6 gene, inherited from the parents. The presence of both mutations resulted in severe ophthalmological, neurological, and endocrinological disturbances. This four year old patient suffers from microphthalmia, neonatal diabetes mellitus, hypopituitarism, and a complex structural brain anomaly. This was the first reported patient who survived the neonatal period (Solomon et al. 2009).

11p13 microdeletions

In 30% or even in higher proportion of aniridia patients (Wawrocka et al. 2013), the disease results from genomic rearrangements at the 11p13 region including PAX6 whole-gene deletions, microdeletions affecting only the 3’ regulatory enhancers (excluding the PAX6 gene) or contiguous genes deletions of the PAX6 and other neighboring genes, especially WT1 (WAGR syndrome) (Crolla and van Heyningen 2002; Robinson et al. 2008).

Microdeletions comprising the PAX6 gene and the adjacent genes

Microdeletions encompassing the PAX6 and the neighboring genes have been described by several authors (Fantes et al. 1992; Crolla and van Heyningen 2002; Hu et al. 2015). Identified deletions were noted even though the PAX6 gene usually harbors doublecortin domain-containing protein 1 (DCDC1), elongation factor protein (ELP4), brain-derived neurotrophic factor (BDNF), beta polypeptide of follicle-stimulating hormone (FSHB), reticulocalbin 1 (RCN1), partial IMP1 inner-mitochondrial membrane (IMMP1L) (Wawrocka et al. 2013; Hu et al. 2015) and WT1 gene (Crolla and van Heyningen 2002). Sporadic aniridia cases with a deletion of
both *PAX6* and *WT1* genes have been determined in a number of studies (Gromskov et al. 2001; Muto et al. 2002). Deletions including the *PAX6* gene and other neighboring genes do not change the clinical expression of the disease in relation to mutation limited only to *PAX6*. However, for larger deletions encompassing *PAX6* and *WT1* genes, separated by 700 kb, patients with aniridia represent a more severe phenotype — WAGR syndrome with intellectual disability and high risk of Wilms’s tumor development.

Microdeletions excluding the PAX6 gene — position effect

In 1995, Fantes et al. described two aniridia families with genomic rearrangements at the 11p13 region, that did not include the *PAX6* gene sequence and proposed that the causative mechanism of the disease in these families is a “position effect” (Fantes et al. 1995). Thereafter, submicroscopic rearrangements that do not disrupt the *PAX6* gene sequence in the aniridia patients were described by several authors. Lauderdale et al. presented two de novo deletions of 11p13, located more than 11 kb downstream of the *PAX6* gene. Using human–mouse cell hybrids they showed that the *PAX6* gene expression is restricted to normal allele, unambiguously indicating that 3′ regulatory elements are essential for the *PAX6* gene expression (Lauderdale et al. 2000). Davis et al. identified in a patient with aniridia, autism and intellectual disability a 1.3 Mb deletion, situated approximately 35 kb downstream of the *PAX6* gene, comprising the *ELP4*, *DPH4*, *DCDC1*, *DCDC5*, *MPPED2*, and *IMMP1L* genes (Davis et al. 2008). Genomic rearrangements downstream of the *PAX6* gene identified so far in aniridia patients are summarized in Table 1.

Cis-regulatory elements (CREs) such as promoters, enhancers, insulators, and boundary elements play an important role in the regulation of gene expression, they determine the time, place, and the level of the expression of their target genes. Cis-regulatory elements can spread hundreds of kilobases upstream or downstream from the transcription start site of the genes. Human genetic studies using YAC transgenic mouse, DNaseI hypersensitivity mapping and reporter transgenic assays revealed a presence of SIMO enhancer located in the 3′-distal region, 124 kb from the *PAX6* polyadenylation site, a retina-specific enhancer located within a fragment containing HS2 and HS3 elements and a lens-specific enhancer. These sequences located within introns of the adjacent *ELP4* gene are *PAX6*-specific long range control elements (DRR – downstream regulatory region) (Kleinjan et al. 2001, 2002). DNaseI hypersensitivity and ultraconservation analysis carried out by McBride et al. allowed identification of new long range enhancers HS5 and HS6 at the *Pax6* cis-regulatory region. HS5 plays a role in maintaining the *PAX6* gene expression in the optic cup and diencephalon, while HS6 drives the *PAX6* gene expression in the developing eye and the precerebellar neuron-epithelium of the hindbrain in a time specific manner during development (McBride et al. 2011). Deletion of the DRR region (including the retina enhancer in the HS2 and HS3 fragment) in mouse abolished Pax6 expression in the retina, iris, and ciliary body indicating that the presence of the DRR region is indispensable in this structure (Kleinjan et al. 2006). Additional cis-regulatory elements may be present in the DRR region, but have not been discovered yet.

Deletion of the SIMO enhancer in mouse did not completely abolish the *Pax6* gene expression in the lens due to the presence of additional enhancers regulating its expression in this tissue (Kleinjan et al. 2006). However, Bhatia et al. demonstrated using the BAC-transgenic approach in zebrafish and mouse reporter that continued tissue-specific expression from the *Pax6* promoters is critically dependent on the presence of the SIMO enhancer. The point mutation that disrupts the autoregulatory *PAX6* binding site within SIMO causes loss of enhancer activity and abolishes lens and late retinal expression in transgenic mouse. The identified mutation of an autoregulatory binding site revealed a distinct regulatory mechanism by disruption of a positive feedback loop critical for gene expression during development (Bhatia et al. 2013).

The previous studies showed that genomic sequences located in a region of approximately 120 kb 3′ to the transcription start site are important for transcriptional activation of the *PAX6* gene. Recent studies performed by Ansari et al. in a cohort of aniridia and Gillespie syndrome patients negative for the *PAX6* gene mutations suggest a new “critical region” of 244 kb that includes cis-regulatory elements, essential for *PAX6* transcriptional activation. This region spans a fragment of the *DNAJC24*, *IMMP1L* genes, and introns 1–7 of the *ELP4* gene (chr11:131,379,000 (hg18) and 31,622,916 (hg18)) (Ansari et al. 2016).

Microdeletions including or disrupting the *ELP4* gene were also shown in patients with neurodevelopmental disorders including autism spectrum, speech/language disorders, epilepsy, and developmental delay. Microdeletions identified by Addis et al. do not involve the entire critical region. Only in two patients with aniridia, deletions downstream of the *PAX6* gene including the *ELP4* gene affecting the entire critical region were identified (Fig. 3). Therefore, deletions including the critical region cause aniridia or other ocular malformation and may also predispose to neurodevelopmental disorders (Addis et al. 2015).

PAX6 gene mutations and 11p13 microdeletions in non aniridia patients

Although most mutations in the *PAX6* gene are responsible for aniridia, some mutations can be connected to some other
Deleted genes (whole or partially)	Distance from the 3’ of PAX6	Genomic coordinates (hg19)	Size of deletion	Phenotype	References
Aniridia or aniridia and other malformations					
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	22.1 kb	ND	975 kb	aniridia	(Lauderdale et al. 2000)
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	11.6 kb	ND	1105 kb	aniridia	
ELP4	5 kb	ND	ND	aniridia, cataracts, glaucoma	(D’Elia et al. 2007)
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5, MPPED2	35 kb chr11:30,448,178-31,802,357	1.3 Mb	aniridia, autism, mental retardation	(Davis et al. 2008)	
ELP4, IMPPL1, DNAJC24, DCDC1	140 kb chr11:31,260,340-31,666,340	406 kb	aniridia	(Baynakli et al. 2009)	
ELP4, IMPPL1, DNAJC24, DCDC1	123 kb chr11:31,117,827-31,683,687	566 kb	aniridia	(Cheng et al. 2011)	
ELP4, IMPPL1, DNAJC24, DCDC1	1 kb chr11:31,280,628-31,805,329	525 kb	aniridia	(Zhang et al. 2011)	
ELP4, IMPPL1, DNAJC24, DCDC1	85 kb chr11:31,122,161-31,721,030	599-652 kb	partial aniridia	(Wawrocka et al. 2012)	
ELP4	8 kb chr11:31,706,160-31,755,245 bp	49 kb	aniridia, developmental delay, a submucous cleft palate, ventriculoseptal defect	Simoni et al. 2012	
ELP4, IMPPL1, DNAJC24, DCDC1	96 kb chr11:31,118,027-31,710,576	593 kb	Rieger anomaly, aniridia	(Addis et al. 2015)	
ELP4, IMPPL1, DNAJC24, DCDC1	31 kb chr11:31,172,410-31,775,457	603 kb	aniridia		
ELP4	23 kb chr11:31,605,859-31,783,590	178 kb	partial aniridia		
ELP4, IMPPL1, DNAJC24, DCDC1	108 kb chr11:30,918,066-31,698,257	780 kb	aniridia	(Ansari et al. 2016)	
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	59 kb chr11:31,010,424-31,747,424	737 kb	aniridia		
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	113 kb chr11:31,152,003-31,693,266	541 kb	aniridia		
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	54 kb chr11:31,422,424-31,751,424	329 kb	aniridia		
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	11 kb chr11:31,277,819-31,795,239	517 kb	partial aniridia, ataxia, developmental delay		
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	91 kb chr11:31,147,306-31,714,853	567 kb	aniridia	(Blanco-Kelly et al. 2017)	
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	108 kb chr11:31,186,493-31,698,208	512 kb	aniridia		
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	101 kb chr11:31,083,877-31,704,548	620 kb	aniridia		
Ocular malformations and/or neurodevelopmental disorders without aniridia					
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	114 kb chr11:31,010,914-31,692,238	681 kb	ocular coloboma	(Guo et al. 2013)	
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	191 kb chr11:31,452,082-31,615,319	163 kb	intellectual disability, speech abnormalities, autistic behaviors	(Balay et al. 2016)	
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	242 kb chr11:30,991,456-31,564,708	573 kb	focal epilepsy with cortical dysplasia, mild developmental delay, ADHD, neurinomas, squint, ptosis, fine motor dyspraxia		
ELP4, IMPPL1, DNAJC24, DCDC1, DCDC5	260 kb chr11:31,495,260-31,546,276	51 kb			
ocular disorders including: microphthalmia, microcornea, foveal hypoplasia, ocular coloboma, keratitis, congenital cataract, Gillespie syndrome, Peters anomaly, and morning glory disc anomaly (Mirzayans et al. 1995; van Heyningen and Williamson 2002; Azuma et al. 2003; Tsoulaki et al. 2005; Wang et al. 2012). Aniridia is predominantly associated with truncating mutations in the \textit{PAX6} gene, while missense mutations usually lead to non-aniridia phenotypes (Tsoulaki et al. 2005).

Genomic rearrangements at 11p13 region, have also been reported in non aniridia patients, suggesting that clinical manifestation may vary depending on the location of the breakpoints and genes involved. The 681 kb deletion downstream of the \textit{PAX6} gene including the \textit{DCDC5}, \textit{DCDC1}, \textit{DNAJC24}, \textit{IMMP1L} genes and a part of the \textit{ELP4} gene has been discovered in a patient with ocular coloboma (Guo et al. 2013). A familial pericentric inversion of chromosome 11 associated with submicroscopic interstitial deletion of 11p13 and duplication of 11q22.3 was presented by Balay et al. The 11p13 deletion of 163 kb included the \textit{IMMP1L} gene and part of the \textit{DNAJC24} and \textit{ELP4} genes. The patient’s phenotype was characterized by intellectual disability, speech abnormalities, and autistic behaviors; however, nobody in this family presented aniridia or other eye anomalies (Balay et al. 2016).

Perspectives of the gene therapy

Identification of the \textit{PAX6} gene transcription network, that means genes directly regulated by the \textit{PAX6} gene, is essential in explaining tissue sensitivity to \textit{PAX6} dosage. Xia Wang et al., using laser capture microdissection in mouse, chromatin immunoprecipitation, promoter-reporter assays, and immunohistochemistry methods, demonstrated for the first time that the \textit{Bmp4}, \textit{Tgfβ2}, and \textit{Foxc1} genes are direct downstream targets of Pax6 in developing iris and ciliary body (Wang et al. 2017b). In some patients with either no \textit{PAX6} gene intragenic mutations nor 11p13 genomic rearrangements, mutations in the \textit{Pax6} downstream targets are the cause of aniridia. Furthermore, the previous study performed by Gregory-Evans et al. demonstrated that by after birth manipulation of \textit{Pax6} dosage using nonsense suppression, it is possible to

Table 1 (continued)

Deleted genes (whole or partially)	Distance from the 3' of \textit{PAX6} Genomic coordinates (hg19)	Size of deletion	Phenotype	References
\textit{ELP4}	181 kb chr11:31,561,220-31,625,448	64 kb	cognitive delay, speech and language disorder, reading and spelling disorder, ASD, epilepsy	
\textit{ELP4}	132 kb chr11:31,573,422-31,674,789	101 kb	developmental delay, microophaly	
\textit{ELP4}	164 kb chr11:31,584,329-31,642,325	58 kb	language disorder, behavioral problems	
\textit{ELP4}	174 kb chr11:31,601,768-31,632,347	31 kb	developmental delay, hypotonia, ventriculomegaly	
\textit{ELP4}	84 kb chr11:31,691,270-31,722,740	31 kb	developmental delay, speech and language disorder, microophaly, mild cognitive delay, motor skills development disorder	
\textit{ELP4}	59 kb chr11:31,705,076-31,747,631	43 kb	autism, learning difficulties	
\textit{ELP4}	20 kb chr11:31,760,904-31,786,914	26 kb	moderate developmental delay, autism	
\textit{ELP4}	4 kb chr11:31,597,322-31,802,120	205 kb	severe intellectual disability, muscle hypotrophy, severe dysphagia, craniofacial abnormalities	
\textit{ELP4}	31 kb chr11:31,605,859-31,775,457	170 kb	developmental delay, behavioral problems, pervasive developmental disorder	
\textit{ELP4}	31 kb chr11:31,625,389-31,775,457	150 kb	behavioral and speech problems, mild mental retardation	
\textit{ELP4, IMMP1L}	151 kb chr11:31,460,506-31,655,108	195 kb	autism	
\textit{ELP4, IMMP1L}	199 kb chr11:31,488,890-31,607,986	119 kb	autism	
\textit{ELP4, IMMP1L}	157 kb chr11:31,518,924-31,649,475	131 kb	autism, language delay	
\textit{ELP4}	76 kb chr11:31,576,768-31,653,568	77 kb	autism, coordination problems	
\textit{ELP4}	112 kb chr11:31,652,219-31,764,393	112 kb	autism, language delay, mild developmental delay, motor delay	

ND – no data, ASD – autism spectrum disorder, ADHD – attention deficit hyperactivity disorder
prevent the development of aniridic phenotype in mouse. It suggests that downstream targets are also active after birth. These studies give an opportunity for future treatment of aniridia using Pax6 targets (Gregory-Evans et al. 2014).

A nonsense suppression therapy is a promising therapeutic approach that has been introduced and successfully used in an animal model. In recent studies, Xia Wang et al. used a nonsense suppression to manipulate Pax6 dosage at different stages during eye development of the small eye mouse model of aniridia. They performed in vivo tests to study effects in the developing retina, cornea, and lens, using Ataluren—a compound with nonsense suppression activity, which suppresses the abnormal nonsense codon in the mRNA template. Eye malformations responded to delivered after birth nonsense suppression in a manner dependent on the Pax6 dose and specific time. The obtained results seem to be very promising and give hope for aniridia patients with nonsense mutations. Nonsense mutation suppression strategy could be significant for the patients if the drug could be targeted to the affected tissue at the appropriate time (Wang et al. 2017a).

This findings seems to be very important regarding the possible therapeutic strategies for patients with aniridia.

Summary

In many studies it was proven that aniridia is a typical autosomal dominant disorder resulting from inactivation of one allele of the *PAX6* gene, predominantly through intragenic mutations leading to premature termination of the protein. Due to the fast development of the molecular diagnostic methods the genetic background of aniridia became much more complex. Chromosomal abnormalities at chromosome 11p13, including the *PAX6* gene deletions, contiguous genes deletions of the *PAX6* and other neighboring genes, as well as microdeletions affecting only the 3′ regulatory enhancers, have also been reported in association with both sporadic and familial cases of aniridia. The unusual and wide spectrum of molecular defects observed in the aniridia patients makes this disease a model monogenic disorder in terms of its molecular background.

Due to clinical and allelic heterogeneity, as well as the great variability of the genetic mechanisms involved in aniridia, molecular analysis of the patients is performed by combining different molecular approaches including Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA),

Fig. 3 Schematic diagram of the previously reported microdeletions in the 11p13 region, downstream of the *PAX6* gene in the aniridia patients. Horizontal blue blocks represent deletions that have been identified in the aniridia patients. The vertical blue dashed lines indicate the “critical region” required for the *PAX6* gene transcription suggested by Ansari et al. 2016.
and an array-based comparative genomic hybridization (aCGH). Although the intragenic PAX6 gene mutations are more common than microdeletions, in newborns affected with aniridia the analysis toward deletions is recommended first, due to the clinical importance of early WAGR syndrome identification. At the same time this strategy gives an opportunity to detect genomic rearrangements at 11p13 in approximately 30% of aniridia patients. High resolution aCGH, and to some degree also commercially available MLPA set, allow for detection of small intragenic copy number variations (CNVs) at the resolution of single exons (Morice-Picard et al. 2014). Recently, Blanco-Kelly et al. developed a customized single locus aCGH for aniridia called WAGR-array with a high resolution CNV detection and precision of identified breakpoints (Blanco-Kelly et al. 2017). Precise mapping of the breakpoints is very important in accurate molecular diagnosis of children with aniridia in order to determine not only the risk of developing Wilms tumor but also neurodevelopmental disorder (deletion of the ELP4 gene). In situations when MLPA, aCGH, and the PAX6 gene sequencing do not identify any cause of the disease, a whole exome (WES) or whole genome sequencing (WGS) could be used for identification of novel (e.g., deep intrinsic) mutations in the PAX6 gene or novel genes involved in pathogenesis of aniridia.

In our studies, despite using all the above-mentioned techniques, there is still a proportion of aniridia patients that remain unsolved. Our patients do not have the PAX6 gene mutations, nor genomic rearrangements that involve the PAX6 gene or its regulatory elements. It suggests that mutations in the other genes, yet undiscovered genetic loci or unknown mechanisms disrupting the PAX6 gene function could be the cause of aniridia. We await descriptions of both genocopies and possible recessive mechanisms of aniridia that are already suggested by the pedigree analysis.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Addis L, Ahn JW, Dobson R et al (2015) Microdeletions of ELP4 are associated with language impairment, autism spectrum disorder, and mental retardation. Hum Mutat 36:842–850. https://doi.org/10.1002/humu.22816

Aggarwal S, Jinda W, Limwongse C et al (2011) Run-on mutation in the PAX6 gene and chorioretinal degeneration in autosomal dominant aniridia. Mol Vis 17:1305–1309

Ansari M, Rainier J, Hanson IM et al (2016) Genetic analysis of “PAX6-negative” individuals with Aniridia or Gillespie syndrome. PLoS One 11:e0153757. https://doi.org/10.1371/journal.pone.0153757

Azuma N, Yamaguchi Y, Handa H et al (1999) Missense mutation in the alternative splice region of the PAX6 gene in eye anomalies. Am J Hum Genet 65:656–663. https://doi.org/10.1086/302529

Azuma N, Yamaguchi Y, Handa H et al (2003) Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Am J Hum Genet 72:1565–1570. https://doi.org/10.1086/375555

Baker KE, Parker R (2004) Nonsense-mediated mRNA decay: terminating errorogenous expression. Curr Opin Cell Biol 16:293–299. https://doi.org/10.1016/jceb.2004.03.003

Balay L, Totten E, Okada L et al (2016) A familial pericentric inversion of chromosome 11 associated with a microdeletion of 163 kb and microduplication of 288 kb at 11p13 and 11q22.3 without aniridia or eye anomalies. Am J Med Genet A 170A:202–209. https://doi.org/10.1002/ajmg.a.37388

Barniou D-E, Free SL, Sisodiya SM et al (2007) Auditory interhemispheric transfer deficits, hearing difficulties, and brain magnetic resonance imaging abnormalities in children with congenital Aniridia due to PAX6 mutations. Arch Pediatr Adolesc Med 161:463. https://doi.org/10.1001/archpedi.161.5.463

Bayrakli F, Guney I, Bayri Y et al (2009) A novel heterozygous deletion within the 3’ region of the PAX6 gene causing isolated aniridia in a large family group. J Clin Neurosci. 16(12):1610–4. https://doi.org/10.1101/jocn.2009.03.022

Bhatia S, Bengani H, Fish M et al (2013) Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes Aniridia. Am J Hum Genet 93:1126–1134. https://doi.org/10.1016/j.ajhg.2013.10.028

Blanco-Kelly F, Palomares M, Vallespin E et al (2017) Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH. PLoS One 12:e0172363. https://doi.org/10.1371/journal.pone.0172363

Cheng F, Song W, Kang Y et al (2011) A 556 kb deletion in the down-stream region of the PAX6 gene causing isolated aniridia in a Chinese family. Mol Vis 10(17):448

Crolla JA, van Heyningen V (2002) Frequent chromosome aberrations revealed by molecular cytogenetic studies in patients with Aniridia. Am J Hum Genet 71:1138–1149. https://doi.org/10.1086/344396

Cvekl A, Callaerts P (2017) PAX6: 25th anniversary and more to learn. Exp Eye Res 156:10–21. https://doi.org/10.1016/j.exer.2016.04.017

Davis LK, Meyer KJ, Rudd DS et al (2008) Pax6 3’ deletions at the WAGR locus, revealed by nonradioactive in situ hybridization. Am J Hum Genet 82:299–309. https://doi.org/10.1086/529921

D’Elia AV, Pellizzari L, Fabbro D et al (2007) A deletion 3’ to the PAX6 gene in eye anomalies. Am J Hum Genet 72:1565–1570. https://doi.org/10.1086/529921

Fantes JA, Redeker B, Breen M et al (1995) Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutation. Hum Genet 96:201–209. https://doi.org/10.1007/s00439-008-0484-x

De Eia PV, Pellizzari L, Fabbro D et al (2007) A deletion 3’ to the PAX6 gene in familial aniridia cases. Mol Vis 13:371–378. https://doi.org/10.1007/s00439-008-0484-x

Fantes JA, Bickenmore WA, Fletcher JM et al (1992) Submicroscopic deletions at the WAGR locus, revealed by nonradioactive in situ hybridization. Am J Hum Genet 51:1286–1294

Fantes J, Redeker B, Breen M et al (1995) Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum Mol Genet 4:415–422

Fischbach BV, Trout KL, Lewis J et al (2005) WAGR syndrome: a clinical review of 54 cases. Pediatrics 116:984–988. https://doi.org/10.1542/peds.2004-0467

Garber S, Alzayady KJ, Burglen L et al (2016) Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet 98:971–980. https://doi.org/10.1016/j.ajhg.2016.03.004

Gillespie FD (1965) ANIRIDIA, cerebellar ataxia, and OLGOPHRENIA in siblings. Arch Ophthalmol (Chicago, Ill 1960) 73:338–341
