Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC) of Honey and Bee Propolis against Multi-Drug Resistant (MDR) Staphylococcus sp. Isolated from Bovine Clinical Mastitis

Aamer AA*, Abdul-Hafeez MM and Sayed SM

*Corresponding author: Aamer AA, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt

Material and Methods

Bacterial isolation

Out of 101 milk samples from clinical mastitic cows through a previous work for the same author [18], 64 Staph. sp. strains were recovered and be the baseline of the present study where the most MDR strains (no 19) as Staph aureus (6), Staph intermedius (3), Staph saprophyticus and Staph epidermedis (5 for each) were tested against all honey patches.

Antimicrobial sensitivity testing

All these 64 isolated Staph. sp. strains were tested against 11 antimicrobial agents [Oxacillin (OX) 1 µg, Ampicillin (AM) 10 µg, Cefotaxime (CTX) 30 µg, Doxycycline (DO) 30 µg, Enrofloxacine (ENR) 5 µg, Gentamicin (CN) 10 µg, Lincomycin (L) 2 µg, Oxytetracycline (T) 30 µg, Penicillin (P) 10 µ, Trimethoprim – Sulfamethaxzole (SXT) 25 µg and Cloxacillin (CX) 10 µg] to determine the MDR strains using disc diffusion sensitivity method according to Kirby-Bauer as described in the guidelines of the National Committee for Laboratory Standards (NCCLS) [19]. For Oxacillin inhibition zones around the disc were measured after 24 and 48 h using the following breakpoints: susceptible (S) ≥ 18 mm; resistance (R) ≤ 17 mm [20].

Honey batches

Six row full strength different unprocessed honey batches were used in the study; A (marjoram), B (cotton), C (fennel-1)**, D (fennel-2)**, E (trefoil-1)** and F (trefoil-2)** as well as G (10% propolis- Fennel honey mixture) as 10% w/v bee propolis powder (the added amount in propolis honey mixture) was tested plain for its MIC and MBC against all tested strains.

**Calculation of MIC and MBC

The study revealed that among the different Staph. sp., S. aureus was the most sensitive one, while adding 10% propolis powder would maximize its antimicrobial activity significantly.

Keywords: MIC; MBC; Apitherapy; Antimicrobial; Staphylococcus; Mastitis

Introduction

As the traditional knowledge about the use of natural products or substances should be scientifically investigated [1] and the antimicrobial application requires safe preparations, knowledge of the composition of antibacterial factors and standardized antibacterial activity [2], the in vitro study of honey therapeutic action is of great necessity for its applicability. Honey possesses therapeutic potential and its antimicrobial activity is widely documented as a large number of in vitro studies ofMIC and MBC confirmed its broad-pectrum antimicrobial properties either in solo use [3-6] or in combination with other agents as royal jelly [7], bee propolis [8], ginger starch [9], garlic extract [1] or rifampicin [10] even on MDR such as S. aureus methicillin resistant (MRSA) [11] or vancomycin-resistant enterococci (VRE) [12]. Propolis extract also proved to possess antimicrobial activity [13-17] Moreover, subinhibitory concentration of honey in combination with oxacillin restored oxacillin susceptibility to MRSA [11]. The present work aimed to investigate the in vitro MICs and MBCs of different honey batches and propolis powder against different MDR Staph. sp. isolated from bovine clinical mastitis.

Abstract

With the emergence of antibiotic-resistant Staph. sp., search for antimicrobial agents other than antibiotic is of great concern. The study aimed to determine both MIC and MBC of different honey samples against these strains. The study was conducted with 64 different Staph. sp. isolated from bovine mastitis and tested in vitro against 11 antimicrobial agents. The most MDR strains (19) were tested in vitro against six honey batches; marjoram, cotton, two fennel samples and two different trefoil samples as well as against 10% propolis-fennel honey mixture. Both MIC and MBC of the tested honey samples against every tested strain were determined. Propolis-fennel honey mixture showed the lowest both MIC AND MBC values against all Staph sp. all over the study with highly significant differences, while against different Staph sp., also it had the lowest MIC and MBC values against S. intermedius followed by S. aureus. The study revealed that among the different Staph. sp., S. aureus was the most sensitive species to the honey antimicrobial action with highly significant differences. The study concluded that all tested Staph. sp. –despite of being MDR- were sensitive to the antimicrobial activity of all tested honeys where S. aureus was the most sensitive one, while adding 10% propolis powder would maximize its antimicrobial activity significantly.
Determination of MIC

Three to six strains of the most MDR strains from each species were chosen for the in vitro MIC and MBC study. Honey batches were investigated for their MIC and MBC against the chosen isolated Staph. sp. strains where 1 ml of the tested honey was used in bifold dilution method [21] with series of 6 tubes containing 1 ml of Mueller Hinton broth (Accumix – Verna, India) to achieve final dilutions of 50, 25, 12.5, 6.25, 3.12 and 1.62% v/v. Standard bacterial inoculums (5×10^5) of the chosen isolated Staph. spp. were inoculated into all 6 dilutions post thorough honey mix. The inoculated tubes were overnight incubated at 37°C. The highest dilution of the tested honey to inhibit growth (no turbidity in the tube) was considered as the MIC value of this honey batch against the tested bacterial species.

Determination of MBC

From all tubes showed no visible signs of growth/turbidity (MIC and higher dilutions), loopfuls were inoculated onto sterile Mueller Hinton agar (Accumix – Verna, India) plates by streak plate method. The plates were then overnight incubated at 37°C. The least concentration that did not show any growth of tested organisms was considered as the MBC value of the tested honey against the tested bacterial species.

Statistical analysis

Mean values, standard deviation (SD) and ANOVA analysis were adopted by means of PASW V.18 (2010, spss Inc, Chicago, Illinois, USA). Results were considered statistically significant when P>0.05 and highly significant when P>0.01.

Antibiotic sensitivity discs were purchased from Bioanalyse - Turkey.

Fennel or Trefoil 1 and 2: honey batches were collected from two different pasture locations.

Chinese bee propolis provided kindly from Plant Protection Research Institute (PPRI)- Assiut unit.

Results

The present study was conducted with 64 Staph. sp. strains isolated from bovine mastitis, where the most MDR strains which showed MDR pattern > 6 antimicrobials were chosen and be prepared for MIC and MBC study as shown in Table 1. Against Staph. sp., all tested strains - which showed at least 6 MDR pattern - were sensitive to all tested honey batches with MICs ranged from 20.83% (trefoil-2) up to 33.33% (fennel-2) (Figure 1) and MBCs from 37.92% (cotton) up to 45.83 % v/v (for both fennel-1 and trefoil-1) (Figure 2). However, 10% propolis fennel honey mixture showed the most favorable results as the lowest both MIC and MBC (13.96% and 28.26 % v/v respectively) with highly significant differences P>0.01 (Figures 1 and 2).

Propolis powder alone gave no any bacterial inhibition. S. aureus showed the lowest MIC (13.3%) and MBC (27.1%) v/v with highly significant differences P>0.01 (Figures 3 and 4) among all tested Staph. sp. By the statistical analysis for the antibacterial activity of different honey batches against different Staph. sp., it was found that propolis honey mixture had the lowest MIC value against both coagulase positive Staph. sp. (S. intermedius and S. aureus) all over the present study as 6.2% and 7.25% v/v respectively with highly significant differences P>0.01 (Figure 5), while MBC values were 12.5 and 14.58% respectively (Figure 6).

Isolates	Antimicrobial testing	Honey tested strains		
	MDR			
	No. ≥5 antimicrobials	No. MDR pattern		
S. aureus	35	30	6	9 antimicrobials
S. intermedius	9	5	3	(6-7) antimicrobials
S. saprophyticus	11	8	5	(7-9) antimicrobials
S. epidermidis	9	8	5	8 antimicrobials
Total	64	51	19	

Table 1: Staph. sp. isolated from bovine clinical mastitis and MDR pattern of the honey tested strains.

Figure 1: MIC values of different honey batches against Staph. Sp.

Figure 2: MBC values of different honey batches against Staph. Sp.
Discussion

Veterinary apitherapy nowadays is documented either in dairy [22,23] or broiler [24] farms rather than in immunomodulation performance [25]. Concerning to apitherapeutic antimicrobial activity, it is widely documented as mentioned in the above premise. MRSA contribute the most predominant isolated species from bovine mastitis milk [18] and is widespread pathogen. It is of great concern for human public health hazard threatens transmission among dairy farm workers or their environments [26]. The emergence of antibiotic-resistant bacteria leads to the re-examination of earlier remedies such as honey [7] or propolis [27]. The antibacterial potency differences among different studied honey samples could be attributed to the natural variations in floral sources of nectar and the different geographical locations since honey micro components possess physicochemical and phytochemical characteristics resulting in its potency that differs associated with botanical and geographical origins [28].

Different honey samples of different botanical or geographical origins; Egyptian honey had MIC and MBC values as 12.5 and 50% v/v [29], Malayisan honey as 5% and 6.25% w/v [6], UK Manuka honey had MIC as 6% w/v [11] and Ethiopian honey as 6.25% w/v [3]. Honey antimicrobial action involves several mechanisms but mainly the presence of bacteriostatic and bactericidal action is due to production of hydrogen peroxide [30]. H2O2 alone may not be sufficient to the full activity [31], since it is in conjunction with other unknown honey components produce bacterial cytotoxic effects and DNA degradation. The concentration of polyphenols and H2O2 in different honeys may be of critical importance for bacterial cell survival [32]. Another mechanism of honey antimicrobial activity may be due to its lysosomal contents [33] or micro components as polyphenols, phenolic acids and flavonoids [34] or due to increase in cytokine release [35]. On the other hand, the mechanism of propolis antimicrobial activity is more complex and might be attributed to the synergistic activity between its various potent biological ingredients [8] that more than 300 compounds mainly phenolics and flavonoids [36]. It was found that propolis affects bacterial cytoplasmic membrane, and it inhibits motility, enzyme activity, cell division, and protein synthesis through inhibition of RNA-polymerase which can explain partially the synergism of propolis with drugs [37]. Moreover, galagin and caffeic acid derived[38]. Since the synergistic action might be detected when the MIC of the combination of both studied antimicrobial agents is lower than the MIC of each alone [8], the present study was designed to test the added propolis powder (50 mg) alone where did not inhibit the tested Staph. sp. The present study chose Egyptian fennel honey for propolis mixture as our previous studies [25,29] recommendations. Although fennel showed low results for both MIC and MBC through the present study, its antimicrobial action was maximized giving highly significant difference (P>0.01) when propolis be added 10% w/v. The synergy of honey antimicrobial action when be added to another antimicrobial was fully studied [1,7-10] and for propolis, the added flavonoids and phenolic acids - have antibacterial, antifungal and antiviral properties [39] might maximize the action of these micro components present in honey resulting in synergy of its antimicrobial action. Fortunately, S. aureus (either MRSA or methicillin sensitive) which is the most predominant and virulent pathogen was the most sensitive Staph. sp. to honey antimicrobial action with highly significant. It is documented and proved that S.
 aureus was the most sensitive species to the antimicrobial activity of honey among all tested bacterial species studied [1,2,40].

Conclusion

It was concluded that all tested MDR Staph. sp. were sensitive to the antimicrobial activity all tested honey samples, where S. aureus was the most sensitive one among the four tested Staph. sp. It was concluded that adding 10% w/v propolis powder to the chosen honey patch would maximize its antimicrobial activity with highly significant difference. The promising results encourage the utilization of propolis extract in combination with the chosen honey patch for treatment of subclinical bovine mastitis to achieve the synergistic antimicrobial action.

References

1. Anduela B (2013) Combined antibacterial activity of stingless bee (Apis melliferae) honey and garlic (Allium sativum) extracts against standard and clinical pathogenic bacteria. Asian Pac J Trop Biomed 3: 725-731.
2. Kwakman PH, Te Velde AA, de Boer L, Vandenbroucke-Grauls CM, Zaat SA (2011) Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One 6: e17709.
3. Ewetu Y, Lemma W1, Birhane N (2013) Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC Complement Altern Med 13: 269.
4. Hammond EN, Donkor ES (2013) Antibacterial effect of Manuka honey on Clostridium difficile. BMC Res Notes 6: 188.
5. Kradna JM1, Cooper RA, Maddocks SE (2013) Manuka honey inhibits siderophore production in Pseudomonas aeruginosa. J Appl Microbiol 115: 86-90.
6. Zainol MI1, Mohd Yusoff K, Mohd Yusof MY (2013) Antibacterial activity of selected Malaysian honey. BMC Complement Altern Med 13: 129.
7. Boukraa L1, Benbarek H, Moussa A (2008) Synergistic action of starch and honey against Candida albicans in correlation with diastase number. Braz J Microbiol 39: 40-43.
8. Al-Waili N, Al-Ghamdi A, Ansari M, Salom YK (2012) Synergistic action of geopropolis produced by the stingless bee Melipona fasciculata Smith. BMC Complement Altern Med 11: 108.
9. Alzahrani HA1, Alsabehi R, Boukraa L, Abdellah F, Bellik Y, et al. (2012) Additive potential of ginger starch on antifungal potency of honey and honey against Candida albicans in correlation with diastase number. Braz J Microbiol 39: 40-43.
10. Jenkins RI, Cooper R (2012) Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS One 7: e45600.
11. Davirac EL, Wittmann S, Barth G, Henle T (2008) Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52: 483-489.
12. Monzote L1, Cuesta-Rubio O, Camelo Fernandez M, Marquez Hernandez I, Fraga J, et al. (2012) In vitro antimicrobial assessment of Cuban propolis extracts. Mem Inst Oswaldo Cruz 107: 978-984.
13. Libério SA1, Pereira AL, Dutra RP, Reis AS, Araújo MJ, et al. (2011) Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith. BMC Complement Altern Med 11: 108.
14. Possamai MM1, Honorio-França AC, Reinaque AP, França EL, Souto PC (2013) Brazilian propolis: a natural product that improved the fungicidal activity by blood phagocytes. Biomed Res Int 2013: 541018.
15. Skaba D1, Morawiec T, Tanasiewicz M, Mertas A, Bobela E, et al. (2013) Influence of the toothpaste with brazilian ethanol extract propolis on the oral cavity health. Evid Based Complement Alternat Med 2013: 215391.
16. Wojtyczka RD1, Dziedzic A, Idzik D, KÂ’pa M, Kubina R, et al. (2013) Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules 18: 9623-9640.
17. Sayed SM (2014) Bacteriological study on staphyloccocal bovine clinical mastitis with reference to methylillin-resistant Staph. aureus (MRSA). Assiut Vet Med J 60: 38-46.
18. NCCLS (2000) Performance Standards for Antimicrobial Disk Susceptibility Test. Approved Standard M2 – A7, M100 – S10. PA: National Committee for Laboratory Standards.
19. Bogado I, Sutich E, Krapp A, Marchiario P, Marzi M (2001) Methillin resistance study in clinical isolates of coagulase-negative staphyloccoci and determination of their susceptibility to alternative antimicrobial agents. J. of applied Microbiology 91: 344-350.
20. Quinn PJ, Carter ME, Markey B, Carter GR (2004) Bacteriology: Clinical veterinary microbiology. (6th edn) Mosby. Edinburgh London New York Oxford Philadelphia St Louis Sydney Toronto.
21. Abdul Hafeez MM, Ali MM, Abdal-Rahman MF, Nahed–Walhba M (2005) Antibacterial activity of honey for treatment of subclinical mastitis: 2- Intramammary infusion as a tool to manage non responding antibiotic cases. 8th Scientific Congress of Cattle disease Egypt 146-149.
22. Nahed M Walha, Niveen A El Nisr, Sayed MS, Abdallah MR, et al (2011) Intramammary honey infusion: A new trend in the management of bovine subclinical mastitis. J of Anim and Vet Advances 10: 2740–2744.
23. Attia YA, Abd Al-Hamid AE, Ibrahim MS, Al-Harthi M A, Bovera F, et al. (2014) Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livestock science journal.
24. Sayed SM1, Abou El-Ella GA, Wahba NM, El Nisr NA, Raddad K, et al. (2009) Immune defense of rats immunized with fennel honey, propolis, and bee venom against induced staphylococcal infection. J Med Food 12: 569-575.
25. Lim SK1, Nam HM, Jang GC, Lee HS, Jung SC, et al. (2013) Transmission and persistence of methillin-resistant Staphylococcus aureus in milk, environment, and workers in dairy cattle farms. Foodborne Pathog Dis 10: 731-736.
26. da Cunha MG1, Franchin M, de Carvalho Galvão LC, de Ruíz AL, de Carvalho JR, et al. (2013) Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complement Altern Med 13: 23.
27. Alzahrani HA1, Alsabeibi R, Boukraa L, Abdellah F, Bellik Y, et al. (2012) Antibacterial and antioxidant potency of floral honeys from different botanical and geographical origins. Molecules 17: 10540-10549.
28. Ali MW1, Abdel-Rahman M, Abdel-Hafeez MM (2005) Antibacterial activity of honey for treatment of subclinical bovine Mastitis: 1- In vitro study of bacterial inhibits and chemical bioassay of some different honeys. 8th Sci cong Egyptian society for cattle diseases Assiut Egypt 139-146.
29. Feá X1, Iglesias A, Rodrigues S, Estevinho LM (2013) Effect of Erica sp. honey against microorganisms of clinical importance: study of the factors underlying this biological activity. Molecules 18: 4233-4246.
30. Chen C1, Campbell LT, Blair SE, Carter DA (2012) The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey. Front Microbiol 3: 265.
31. Brudzynski K1, Lannigan R (2012) Mechanism of Honey Bacteriostatic Action Against MRSA and VRE Involves Hydroxyl Radicals Generated from Honey’s Hydrogen Peroxide. Front Microbiol 3: 36.
32. León-Ruiz V1, González-Porto AV, Al-Habi N, Vera S, San Andrés MP, et al. (2013) Antioxidant, antibacterial and ACE-inhibitory activity of four monofloral honeys in relation to their chemical composition. Food Funct 4: 1617-1624.
34. Al-Hindi RR1, Bin-Masalam MS, El-Shahawi MS (2011) Antioxidant and antibacterial characteristics of phenolic extracts of locally produced honey in Saudi Arabia. Int J Food Sci Nutr 62: 513-517.

35. Aparna S1, Srirangarajan S, Malgi V, Setlur KP, Shashidhar R, et al. (2012) A comparative evaluation of the antibacterial efficacy of honey in vitro and antiplaque efficacy in a 4-day plaque regrowth model in vivo: preliminary results. J Periodontol 83: 1116-1121.

36. Khalil ML (2006) Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev 7: 22-31.

37. Mirzoeva OK1, Grishanin RN, Calder PC (1997) Antimicrobial action of propolis and some of its components on growth, membrane potential and motility of bacteria. Microbiol Res 152: 239-246.

38. Koo H1, Rosalen PL, Cury JA, Park YK, Bowen WH (2002) Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob Agents Chemother 46: 1302-1309.

39. Medić-Sarić M1, Rastija V, Bojić M, Males Z (2009) From functional food to medicinal product: systematic approach in analysis of polyphenolics from propolis and wine. Nutr J 8: 33.

40. Sherlock O, Dolan A, Athman R, Power A, Gethin G et al (2010) Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine 10:47