Boundary effects in super-Yang–Mills theory

Mushtaq B. Shah¹, Mir Faizal²,³,⁴, Prince A. Ganai¹, Zaid Zaz⁴, Anha Bhat⁵, Syed Masood⁶

¹ Department of Physics, National Institute of Technology, Srinagar, Kashmir 190006, India
² Irving K. Barber School of Arts and Sciences, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
³ Department of Physics and Astronomy, University of Lethbridge, Alberta T1K 3M4, Canada
⁴ Department of Electronics and Communication Engineering, University of Kashmir, Srinagar, Kashmir 190006, India
⁵ Department of Metallurgical and Materials Engineering, National Institute of Technology, Srinagar, Kashmir 190006, India
⁶ Department of Physics, International Islamic University, H-10 Sector, Islamabad, Pakistan

Received: 9 September 2016 / Accepted: 27 April 2017 / Published online: 13 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we shall analyze a three-dimensional supersymmetry theory with \(\mathcal{N} = 2 \) supersymmetry. We will analyze the quantization of this theory, in the presence of a boundary. The effective Lagrangian used in the path integral quantization of this theory, will be given by the sum of the gauge fixing term and the ghost term with the original classical Lagrangian. Even though the supersymmetry of this effective Lagrangian will also be broken due to the presence of a boundary, it will be demonstrated that half of the supersymmetry of this theory can be preserved by adding a boundary Lagrangian to the effective bulk Lagrangian. The supersymmetric transformation of this new boundary Lagrangian will exactly cancel the boundary term generated from the supersymmetric transformation of the effective bulk Lagrangian. We will analyze the Slavnov–Taylor identity for this \(\mathcal{N} = 2 \) Yang–Mills theory with a boundary.

1 Introduction

As any gauge theory contains unphysical gauge degrees of freedom, and it is not possible quantize this theory without removing these unphysical degrees of freedom. This is achieved by fixing a gauge, and the gauge fixing is incorporated at a quantum level by adding a gauge fixing term to the original Lagrangian. We also need to add a ghost term corresponding to this gauge fixing term to the original Lagrangian. This new effective Lagrangian obtained from a sum of the original classical Lagrangian with the gauge fixing and the ghost terms is invariant under the BRST transformations [1, 2]. The BRST symmetry has been studied for various different gauges [3–7], and it has been applied for analyzing various aspects of different supersymmetric theories [8–12]. The BRST symmetry has also been used in analyzing ghost–anti-ghost condensation [13–17]. Furthermore, such ghost–anti-ghost condensation has been proposed as the mass providing mechanism of the off-diagonal gluons and off-diagonal ghosts in the Yang–Mills theory [18, 19]. This analysis has been performed using the maximal Abelian gauge. Evidence for infrared Abelian dominance has also been provided by this mechanism [20], thereby justifying the dual superconductor picture [21–23] of the QCD vacuum. This has been used in explaining quark confinement [19–26]. It may be noted that interesting consequences of the breaking of BRST symmetry have also been discussed [13–30].

The action for most renormalizable quantum field theories, including supersymmetric theories, is at most quadratic in the derivatives. So, the supersymmetric variation of such an action produces a total derivative term. In the absence of a boundary this total derivative term vanishes. However, in the presence of a boundary, boundary contributions arise due to such a total derivative term. This breaks the supersymmetry of a supersymmetric theory in the presence of a boundary. It may be noted that the translational invariance of any theory is broken by the presence of a boundary. The breaking of the translational invariance in a supersymmetric theory also breaks the supersymmetry of that theory. However, it is possible to retain some on-shell supersymmetry by imposing suitable boundary conditions [31, 32]. The supersymmetry of a theory generates various constraints on the possible boundary conditions [33–37].

Even though some on-shell supersymmetry can be retained by imposing boundary conditions, the off-shell supersymmetry is still broken. This is because these boundary conditions are only imposed on the on-shell field. It is important to preserve the off-shell supersymmetry of a theory. This is because the path integral formalism uses off-shell fields, and most supersymmetric theories are quantized using a path inte-
have \((\gamma^\mu)_{ab} = (\gamma^\mu)^a_c C_{cb} = (\gamma^\mu)_{ba}\). A \(\mathcal{N} = 2\) supersymmetric theory in three dimensions can be parameterized by two supercharges,

\[
Q_{1a} = \partial_{1a} - (\gamma^\mu \theta_1)_a \partial_\mu, \quad Q_{2a} = \partial_{2a} - (\gamma^\mu \theta_2)_a \partial_\mu.
\] (1)

These supercharges satisfy,

\[
\{Q_{1a}, Q_{1b}\} = 2\eta^{ab\mu} \partial_\mu, \quad \{Q_{2a}, Q_{2b}\} = 2\eta^{ab\mu} \partial_\mu.
\] (2)

Now we define superderivatives by

\[
D_{1a} = \partial_{1a} + (\gamma^\mu \theta_1)_a \partial_\mu, \quad D_{2a} = \partial_{2a} + (\gamma^\mu \theta_2)_a \partial_\mu.
\] (3)

These superderivatives commute with the generators of \(\mathcal{N} = 2\) supersymmetry, \(\{Q_{1a}, D_{1b}\} = \{Q_{1a}, D_{2b}\} = 0\) and \(\{Q_{2a}, D_{1b}\} = \{Q_{2a}, D_{2b}\} = 0\). These superderivatives also satisfy

\[
\{D_{1a}, D_{1b}\} = -2\eta^{ab\mu} \partial_\mu, \quad \{D_{2a}, D_{2b}\} = -2\eta^{ab\mu} \partial_\mu.
\] (4)

We can also define a gauge valued spinor superfields \(\Gamma_{1a} = \Gamma_{1a}^A (\theta_1) T_A\) and \(\Gamma_{2a} = \Gamma_{2a}^A (\theta_2) T_A\), where \([T_A, T_B] = if_{ABC} T_C\). Now we can define covariant derivatives with these fields by

\[
\nabla_{1a} = D_a - i\Gamma_{1a}, \quad \nabla_{2a} = D_a - i\Gamma_{2a}.
\] (5)

These fields transform under the gauge transformation as \(\Gamma_{1a} \rightarrow i u \nabla_{1a} u^{-1}\), and \(\Gamma_{2a} \rightarrow i u \nabla_{2a} u^{-1}\) [44]. We can also construct the field strengths as follows:

\[
W_{1a} = \frac{1}{2} D^b_1 D_{1a} \Gamma_{1b} - i \frac{1}{2} \{\Gamma_1^b, D_{1b} \Gamma_{1a}\} - \frac{1}{6} \{\Gamma_1^b, \{\Gamma_{1b}, \Gamma_{1a}\}\}.
\]

\[
W_{2a} = \frac{1}{2} D^b_2 D_{2a} \Gamma_{2b} - i \frac{1}{2} \{\Gamma_2^b, D_{2b} \Gamma_{2a}\} - \frac{1}{6} \{\Gamma_2^b, \{\Gamma_{2b}, \Gamma_{2a}\}\}.
\] (6)

These field strengths transform as \(W_{1a} \rightarrow u W_{1a} u^{-1}\), and \(W_{2a} \rightarrow u W_{2a} u^{-1}\). We can write the action for super-Yang–Mills theory as

\[
\mathcal{L} = D_1^2 W_{1a}^b W_{1a}^b \theta_{1a} = 0 + D_2^2 W_{2a}^b W_{2a}^b \theta_{2a} = 0.
\] (7)

In the presence of a boundary the supersymmetry is broken. However, half of the supersymmetry of the original theory can be preserved by either adding or subtracting a boundary term to the original Lagrangian [38]. We now define a boundary along \(x_3\) direction. Thus, we can define the boundary fields as fields restricted to the boundary, and we can also construct boundary Lagrangian from such fields. We can define \(\mathcal{L}_{1b}\) and \(\mathcal{L}_{2b}\) to be such boundary Lagrangian constructed from the boundary fields. Now this boundary Lagrangian can be added or subtracted from the bulk Lagrangian with \(\mathcal{N} = 2\) supersymmetry. It is possible to choose this boundary Lagrangian such that \(\mathcal{L} \pm \mathcal{L}_{1b}\) preserves the supersymmetry generated by \(\epsilon_{\pm} Q_{1\pm}\), and

\[\text{Springer}\]
\(\mathcal{L} \pm \mathcal{L}_{2b} \) preserves the supersymmetry generated by \(\epsilon^{2\pm} Q_{2\pm} \) [42]. Here the projection operators \(P_{\pm} = (1 \pm \gamma^3) / 2 \) have been used to obtain these projections of the supercharges. Now as the original Lagrangian \(\mathcal{L} = D^2 \Omega_1(\theta_1) \) \(\theta_{1b} = 0 \) and \(\mathcal{L} = D^2(\Omega_2(\theta_2)) \theta_{2b} = 0 \), the boundary terms can be written as \(\mathcal{L}_{1b} = \theta_1 \Omega_1(\theta_1) \theta_{1b} = 0 \) and \(\mathcal{L}_{2b} = \theta_2 \Omega_2(\theta_2) \theta_{2b} = 0 \) [39]. It is not possible to simultaneously preserve both the supersymmetry generated by \(\epsilon^{1+} Q_{1+} \) and \(\epsilon^{1+} Q_{1-} \), or \(\epsilon^{2-} Q_{2+} \) and \(\epsilon^{2\pm} Q_{2\pm} \). We can write the Lagrangian for super-Yang–Mills theory which preserves various supersymmetries as [42],

\[
\begin{align*}
\mathcal{L}^{0-1+} &= (D^2_1 - \partial_3)[W^a_1 D_1^a \theta_1]_{\theta_1} = 0 + (D^2_2 - \partial_3)[W^a_2 D_2^a \theta_2]_{\theta_2} = 0, \\
\mathcal{L}^{1-2+} &= (D^2_1 - \partial_3)[W^a_1 D_1^a \theta_1]_{\theta_1} = 0 + (D^2_2 - \partial_3)[W^a_2 D_2^a \theta_2]_{\theta_2} = 0,
\end{align*}
\]

\(\mathcal{L}^{1+2-} = (D^2_1 + \partial_3)[W^a_1 D_1^a \theta_1]_{\theta_1} = 0 + (D^2_2 + \partial_3)[W^a_2 D_2^a \theta_2]_{\theta_2} = 0, \)

\(\mathcal{L}^{1+2+} = (D^2_1 + \partial_3)[W^a_1 D_1^a \theta_1]_{\theta_1} = 0 + (D^2_2 + \partial_3)[W^a_2 D_2^a \theta_2]_{\theta_2} = 0. \) (8)

3 BRST symmetry

In this section, we will study the effective Lagrangian obtained by the sum of the gauge fixing term and the ghost term with the modified super-Yang–Mills Lagrangian in the Lorenz gauge. The Lorenz gauge fixing can be incorporated in the modified super-Yang–Mills Lagrangian at a quantum level by adding the following gauge fixing term:

\[
\begin{align*}
\mathcal{L}^{1+2+}_g &= (D^2_1 + \partial_3) \left[\bar{b}_1 (D^2_1 \Gamma_{1a}) + \frac{\alpha}{2} b^2_1 \right]_{\theta_1} = 0 \\
&\quad + (D^2_2 + \partial_3) \left[b_2 (D^2_2 \Gamma_{2a}) + \frac{\alpha}{2} b^2_2 \right]_{\theta_2} = 0, \\
\mathcal{L}^{1-2-}_g &= (D^2_1 - \partial_3) \left[b_1 (D^2_1 \Gamma_{1a}) + \frac{\alpha}{2} b^2_1 \right]_{\theta_1} = 0 \\
&\quad + (D^2_2 - \partial_3) \left[b_2 (D^2_2 \Gamma_{2a}) + \frac{\alpha}{2} b^2_2 \right]_{\theta_2} = 0, \\
\mathcal{L}^{1+2-}_g &= (D^2_1 + \partial_3) \left[b_1 (D^2_1 \Gamma_{1a}) + \frac{\alpha}{2} b^2_1 \right]_{\theta_1} = 0 \\
&\quad + (D^2_2 + \partial_3) \left[b_2 (D^2_2 \Gamma_{2a}) + \frac{\alpha}{2} b^2_2 \right]_{\theta_2} = 0, \\
\mathcal{L}^{1-2+}_g &= (D^2_1 - \partial_3) \left[b_1 (D^2_1 \Gamma_{1a}) + \frac{\alpha}{2} b^2_1 \right]_{\theta_1} = 0 \\
&\quad + (D^2_2 - \partial_3) \left[b_2 (D^2_2 \Gamma_{2a}) + \frac{\alpha}{2} b^2_2 \right]_{\theta_2} = 0.
\end{align*}
\] (9)

where \(b_1 \) and \(b_2 \) are Nakanishi–Lautrup type auxiliary fields. The ghost term corresponding to this gauge fixing term can be written as

\[
\mathcal{L}^{1+2+}_gh = (D^2_1 + \partial_3)[\tilde{c}_1 D^1_1 \Gamma_{1a} \theta_1]_{\theta_1} = 0 \\
+ (D^2_2 + \partial_3)[\tilde{c}_2 D^2_2 \Gamma_{2a} \theta_2]_{\theta_2} = 0.
\]

\[
\mathcal{L}^{1-2-}_gh = (D^2_1 - \partial_3)[\tilde{c}_1 D^1_1 \Gamma_{1a} \theta_1]_{\theta_1} = 0 \\
+ (D^2_2 - \partial_3)[\tilde{c}_2 D^2_2 \Gamma_{2a} \theta_2]_{\theta_2} = 0.
\]

\[
\mathcal{L}^{1+2-}_gh = (D^2_1 + \partial_3)[\tilde{c}_1 D^1_1 \Gamma_{1a} \theta_1]_{\theta_1} = 0 \\
+ (D^2_2 + \partial_3)[\tilde{c}_2 D^2_2 \Gamma_{2a} \theta_2]_{\theta_2} = 0.
\]

\[
\mathcal{L}^{1-2+}_gh = (D^2_1 - \partial_3)[\tilde{c}_1 D^1_1 \Gamma_{1a} \theta_1]_{\theta_1} = 0 \\
+ (D^2_2 - \partial_3)[\tilde{c}_2 D^2_2 \Gamma_{2a} \theta_2]_{\theta_2} = 0.
\]

where \(\tilde{c}_1 \) and \(\tilde{c}_2 \) are the ghost fields and \(\tilde{c}_1 \), \(\tilde{c}_2 \) are the anti-ghost fields. Now we can define \(\mathcal{L}^{1+2\pm}_g \) as

\[
\mathcal{L}^{1+2\pm}_g = \mathcal{L}^{1\pm2\pm}_g + \mathcal{L}^{1\pm2\pm}_gh.
\] (11)

The effective Lagrangian \(\mathcal{L}^{1\pm2\pm} = \mathcal{L}^{1\pm2\pm} + \mathcal{L}^{1\pm2\pm}_gh \), which is given by the sum of the ghost and the gauge fixing terms with modified super-Yang–Mills Lagrangian, is invariant under the following BRST transformations:

\[
\begin{align*}
s_{sb} \Gamma_{1a} &= \nabla_{1a} c_1, \\
s_{sb} c_1 &= -\frac{1}{2} [c_1, c_1], \\
s_{sb} c_2 &= -\frac{1}{2} [c_2, c_2], \\
s_{sb} \tilde{c}_1 &= b_1, \\
s_{sb} \tilde{c}_2 &= b_2, \\
s_{sb} b_1 &= 0, \\
s_{sb} b_2 &= 0.
\end{align*}
\] (12)

This is because modified super-Yang–Mills Lagrangian is BRST invariant, and the sum of the gauge fixing and ghost terms can be expressed as

\[
\begin{align*}
\mathcal{L}^{1+2+} &= s_{sb}(D^2_1 + \partial_3) \left[\tilde{c}_1 D^1_1 \Gamma_{1a} + \alpha b_1 \right]_{\theta_1} = 0 \\
&\quad + s_{sb}(D^2_2 + \partial_3) \left[\tilde{c}_2 D^2_2 \Gamma_{2a} + \alpha b_2 \right]_{\theta_2} = 0, \\
\mathcal{L}^{1-2-} &= s_{sb}(D^2_1 - \partial_3) \left[\tilde{c}_1 D^1_1 \Gamma_{1a} + \alpha b_1 \right]_{\theta_1} = 0 \\
&\quad + s_{sb}(D^2_2 - \partial_3) \left[\tilde{c}_2 D^2_2 \Gamma_{2a} + \alpha b_2 \right]_{\theta_2} = 0, \\
\mathcal{L}^{1+2-} &= s_{sb}(D^2_1 + \partial_3) \left[\tilde{c}_1 D^1_1 \Gamma_{1a} + \alpha b_1 \right]_{\theta_1} = 0 \\
&\quad + s_{sb}(D^2_2 + \partial_3) \left[\tilde{c}_2 D^2_2 \Gamma_{2a} + \alpha b_2 \right]_{\theta_2} = 0, \\
\mathcal{L}^{1-2+} &= s_{sb}(D^2_1 - \partial_3) \left[\tilde{c}_1 D^1_1 \Gamma_{1a} + \alpha b_1 \right]_{\theta_1} = 0 \\
&\quad + s_{sb}(D^2_2 - \partial_3) \left[\tilde{c}_2 D^2_2 \Gamma_{2a} + \alpha b_2 \right]_{\theta_2} = 0.
\end{align*}
\] (13)
It is possible to analyze this theory with fixed background fields, and quantum fluctuations around these fields. We can obtain the BRST symmetry of such a theory. The Lagrangian is expressed in terms of classical background fields and quantum fluctuations around these fields,

\[\mathcal{L}^{1\pm2\pm}(\Gamma_1, \Gamma_2) + \mathcal{L}_g^{1\pm2\pm}(\Gamma_1, \Gamma_2, c_1, c_2, \bar{c}_1, \bar{c}_2, b_1, b_2) \]

\[\rightarrow \mathcal{L}_g^{1\pm2\pm}(\Gamma_1 - \bar{\Gamma}_1, \Gamma_2 - \bar{\Gamma}_2, c_1 - \bar{c}_1, c_2 - \bar{c}_2, \bar{c}_1 - \bar{\bar{c}}_1, \]

\[c_2 - \bar{\bar{c}}_2, b_1 - \bar{b}_1, b_2 - \bar{b}_2) + \mathcal{L}^{1\pm2\pm}(\Gamma_1 - \bar{\Gamma}_1, \Gamma_2 - \bar{\Gamma}_2). \]

Finally, the BRST transformation of these auxiliary fields vanish, \(sbu_{m1} = sbu_{m2} = 0 \) and \(sbv_1 = sbv_2 = sb\bar{v}_1 = sb\bar{v}_2 = 0 \).

Now we can add the following term to the sum of the gauge fixing term and ghost term:

\[L_f^{1\pm2\pm} = (D_1^2 + \partial_3) \left[\Gamma^{1\pm2\pm}_a sb_{1a} - c_1^* sb_{c1} \right] \partial_3 = 0, \]

\[+ (D_2^2 + \partial_3) \left[\Gamma^{2\pm2\pm}_a sb_{2a} - c_2^* sb_{c2} \right] \partial_3 = 0, \]

\[L_f^{1\pm2\pm} = (D_1^2 + \partial_3) \left[\Gamma^{1\pm2\pm}_a sb_{1a} - c_1^* sb_{c1} \right] \partial_3 = 0, \]

\[+ (D_2^2 + \partial_3) \left[\Gamma^{2\pm2\pm}_a sb_{2a} - c_2^* sb_{c2} \right] \partial_3 = 0, \]

\[L_f^{1\pm2\pm} = (D_1^2 + \partial_3) \left[\Gamma^{1\pm2\pm}_a sb_{1a} - c_1^* sb_{c1} \right] \partial_3 = 0, \]

\[+ (D_2^2 + \partial_3) \left[\Gamma^{2\pm2\pm}_a sb_{2a} - c_2^* sb_{c2} \right] \partial_3 = 0. \]

Now we can write the total action for this theory as

\[\Gamma^{1\pm2\pm} = \int d^3x \left[L^{1\pm2\pm} + L_g^{1\pm2\pm} + L_f^{1\pm2\pm} \right]. \]

Then we can calculate the effective action, and to the first order term that corresponds to this classical action. We can write the Slavnov–Taylor identity for this theory as

\[\int d^3x (D_1^2 + \partial_3) \]

\[\times \left[\frac{\delta \Gamma^{1\pm2\pm}_a}{\delta \Gamma^{1\pm2\pm}_a} + \frac{\delta \Gamma^{1\pm2\pm}_a}{\delta c_1} \frac{\delta c_1}{\delta \Gamma^{1\pm2\pm}_a} + b_1 \frac{\delta \Gamma^{1\pm2\pm}_a}{\delta c_1} \right] \]

\[+ \int d^3x (D_2^2 + \partial_3) \]

\[\times \left[\frac{\delta \Gamma^{2\pm2\pm}_a}{\delta \Gamma^{2\pm2\pm}_a} + \frac{\delta \Gamma^{2\pm2\pm}_a}{\delta c_2} \frac{\delta c_2}{\delta \Gamma^{2\pm2\pm}_a} + b_2 \frac{\delta \Gamma^{2\pm2\pm}_a}{\delta c_2} \right] \]

\[= 0. \]

\[\int d^3x (D_1^2 - \partial_3) \]

\[\times \left[\frac{\delta \Gamma^{1\pm2\pm}_a}{\delta \Gamma^{1\pm2\pm}_a} + \frac{\delta \Gamma^{1\pm2\pm}_a}{\delta c_1} \frac{\delta c_1}{\delta \Gamma^{1\pm2\pm}_a} + b_1 \frac{\delta \Gamma^{1\pm2\pm}_a}{\delta c_1} \right] \]

\[+ \int d^3x (D_2^2 - \partial_3) \]

\[\times \left[\frac{\delta \Gamma^{2\pm2\pm}_a}{\delta \Gamma^{2\pm2\pm}_a} + \frac{\delta \Gamma^{2\pm2\pm}_a}{\delta c_2} \frac{\delta c_2}{\delta \Gamma^{2\pm2\pm}_a} + b_2 \frac{\delta \Gamma^{2\pm2\pm}_a}{\delta c_2} \right] \]

\[= 0. \]

\[\int d^3x (D_1^2 - \partial_3) \]

\[\times \left[\frac{\delta \Gamma^{1\pm2\pm}_a}{\delta \Gamma^{1\pm2\pm}_a} + \frac{\delta \Gamma^{1\pm2\pm}_a}{\delta c_1} \frac{\delta c_1}{\delta \Gamma^{1\pm2\pm}_a} + b_1 \frac{\delta \Gamma^{1\pm2\pm}_a}{\delta c_1} \right] \]

\[\int d^3x (D_2^2 - \partial_3) \]

\[\times \left[\frac{\delta \Gamma^{2\pm2\pm}_a}{\delta \Gamma^{2\pm2\pm}_a} + \frac{\delta \Gamma^{2\pm2\pm}_a}{\delta c_2} \frac{\delta c_2}{\delta \Gamma^{2\pm2\pm}_a} + b_2 \frac{\delta \Gamma^{2\pm2\pm}_a}{\delta c_2} \right] \]

\[= 0. \]
These bulk supercharges can also be projected as $P \partial a Q |\partial_3\rangle$ in the presence of a boundary. It will be possible to relate relating the two, three and four point functions. This has been used for analyzing the consistency of occurring at one loop in noncommutative gauge theories [45]. It will be possible to use a similar analysis here and analyze the divergences occurring in the supersymmetric Yang–Mills theory. However, the most important observation of this analysis is that the standard form of the Slavnov–Taylor identity does not get deformed, and it is only the measure that is deformed for such theories. This Slavnov–Taylor identity depend on the gauge symmetry of the theory, and the gauge symmetry of the theory is not broken in Yang–Mills theory by the presence of a boundary.

4 Boundary action

In this section, we will analyze the boundary action by using the projection operators, $P_{\pm} = (1 \pm \gamma^3)/2$. We can project the superderivatives using these projection operators as, $D_1 \pm = (P_{\pm}) a D_b$ and $D_2 \pm = (P_{\pm}) b D_a$. The supercharges can also be projected as $Q_{1,2a} = (P_{\pm}) a Q_{1b}$ and $Q_{2,2a} = (P_{\pm}) b Q_{2b}$ [38]. The bulk supercharges Q_{1a} and Q_{2a} can now be expressed as [39]

$$e^{1a} Q_{1a} = e^{1a} (P_+ + P_+) Q_{1a} = e^{1+} Q_{1+} + e^{-1} Q_{1-},$$

$$e^{2a} Q_{2a} = e^{2a} (P_+ + P_+) Q_{2a} = e^{2+} Q_{2+} + e^{-2} Q_{2-}. \quad (22)$$

These bulk supercharges $Q_{1,2,2}$, are related to the boundary supercharges $Q_{1,2,3}$ as

$$Q_{1-} = Q_{1-} + \theta_1 - \theta_3, \quad Q_{1+} = Q_{1+} - \theta_1 + \theta_3,$$

$$Q_{2-} = Q_{2-} + \theta_2 - \theta_3, \quad Q_{2+} = Q_{2+} - \theta_2 + \theta_3. \quad (23)$$

Here the boundary supercharges are defined as

$$Q_{1+} = \partial_1 + \gamma^3 \theta_1 \partial_3, \quad Q_{1-} = \partial_1 - \gamma^3 \theta_1 \partial_3,$$

$$Q_{2+} = \partial_2 + \gamma^3 \theta_2 \partial_3, \quad Q_{2-} = \partial_2 - \gamma^3 \theta_2 \partial_3. \quad (24)$$

where s is the index for the coordinates along the boundary, i.e., the case $\mu = 3$ has been excluded for a boundary fixed at x_3. The supercharges $Q_{1,2}$ and $Q_{2,3}$ are the standard generators of the supersymmetry for the boundary fields. Furthermore, $Q_{1,3}$ and $Q_{2,3}$ are the standard generators of the supersymmetry for the boundary fields. It is possible to express the boundary supercharges as [42]

$$Q_{1+} = \exp(\theta_1 + \theta_1 - \theta_3) Q_{1-} \exp(-\theta_1 + \theta_1 - \theta_3),$$

$$Q_{2+} = \exp(-\theta_2 + \theta_2 - \theta_3) Q_{2-} \exp(-\theta_2 + \theta_2 - \theta_3). \quad (25)$$

It is also possible to write the super-algebra of the bulk supercharges in the presence of a boundary as

$$\{Q_{1a}, Q_{1b}\} = 2(\gamma_{ab} P_a) \partial_3, \quad \{D_{1a}, D_{1b}\} = -2(\gamma_{ab} P_a) \partial_3,$$

$$\{Q_{1a}, Q_{1b}\} = 2(\gamma_{ab} P_a) \partial_3, \quad \{D_{1a}, D_{1b}\} = -2(\gamma_{ab} P_a) \partial_3,$$

$$\{Q_{1a}, Q_{1b}\} = -2(\gamma_{ab} P_a) \partial_3, \quad \{D_{1a}, D_{1b}\} = 2(\gamma_{ab} P_a) \partial_3,$$

$$\{Q_{2a}, Q_{2b}\} = 2(\gamma_{ab} P_a) \partial_3, \quad \{D_{2a}, D_{2b}\} = -2(\gamma_{ab} P_a) \partial_3,$$

$$\{Q_{2a}, Q_{2b}\} = -2(\gamma_{ab} P_a) \partial_3, \quad \{D_{2a}, D_{2b}\} = 2(\gamma_{ab} P_a) \partial_3. \quad (26)$$

It may be noted that $\{Q_{1,2}, Q_{2,3}\} = \{D_{1,2}, D_{2,3}\} = 0$, and $\{Q_{1,2}, D_{2,3}\} = \{Q_{1,2}, D_{1,3}\} = \{Q_{2,3}, D_{1,3}\} = 0$. Thus, we can write

$$D_{1a} D_{1b} = (P_3) a \partial_3 - D_1^a, \quad D_{1a} D_{1b} = -(P_3) a \partial_3 + D_1^a,$$

$$D_{2a} D_{2b} = -(P_3) a \partial_3 - D_2^a, \quad D_{2a} D_{2b} = (P_3) a \partial_3 + D_2^a. \quad (27)$$

Contracting these equation and using $(P_3)^a = 1$, we obtained [42]

$$D_{1}^2 + \theta_3 = D_{1} D_{13}, \quad D_{2}^2 + \theta_3 = D_{2} D_{23}, \quad (28)$$

$$D_{3}^2 - \theta_3 = D_{3} D_{31}, \quad D_{3}^2 - \theta_3 = D_{3} D_{32}. \quad (29)$$

We can write the Lagrangian for the super–Yang–Mills theory in presence of a boundary as

$$L_{1+2} = D_{1+} D_{1-} - [W_1^a W_1] b_{1} = 0 + D_{2+} D_{2-} - [W_2^a W_2] b_{2} = 0,$$

$$L_{1-2} = D_{1-} D_{1+} - [W_1^a W_1] b_{1} = 0 + D_{2-} D_{2+} - [W_2^a W_2] b_{2} = 0.$$
\[\mathcal{L}^{1+2-} = D_1 - D_1 + [W^a_1 W_{1a}] \delta_{l_1} = 0 + D_2 - D_2 - [W^a_2 W_{2a}] \delta_{l_2} = 0, \]
\[\mathcal{L}^{1-2+} = D_1 + D_1 - [W^a_1 W_{1a}] \delta_{l_1} = 0 + D_2 - D_2 - [W^a_2 W_{2a}] \delta_{l_2} = 0. \]

We can now write the gauge fixing terms in the Lorentz gauge as
\[\mathcal{L}^{1+2+}_{gf} = D_1 + D_1 - \left[b_1 (D^a_1 \Gamma_{1a}) + \frac{b_1^2}{2} \right] \delta_{l_1} = 0 \]
\[+ D_2 + D_2 - \left[b_2 (D^a_2 \Gamma_{2a}) + \frac{b_2^2}{2} \right] \delta_{l_2} = 0, \]
\[\mathcal{L}^{1-2-}_{gf} = D_1 - D_1 + \left[b_1 (D^a_1 \Gamma_{1a}) + \frac{b_1^2}{2} \right] \delta_{l_1} = 0 \]
\[+ D_2 - D_2 - \left[b_2 (D^a_2 \Gamma_{2a}) + \frac{b_2^2}{2} \right] \delta_{l_2} = 0, \]
\[\mathcal{L}^{1+2-}_{gf} = D_1 + D_1 + \left[b_1 (D^a_1 \Gamma_{1a}) + \frac{b_1^2}{2} \right] \delta_{l_1} = 0 \]
\[+ D_2 + D_2 + \left[b_2 (D^a_2 \Gamma_{2a}) + \frac{b_2^2}{2} \right] \delta_{l_2} = 0. \]

The ghost terms corresponding to this gauge fixing term can be written as
\[\mathcal{L}^{1+2+}_{gh} = D_1 + D_1 - \left[\tilde{c}_1 D^a_1 \Gamma_{1a} c_1 \right] \delta_{l_1} = 0 \]
\[+ D_2 + D_2 - \left[\tilde{c}_2 D^a_2 \Gamma_{2a} c_2 \right] \delta_{l_2} = 0, \]
\[\mathcal{L}^{1-2-}_{gh} = D_1 - D_1 + \left[\tilde{c}_1 D^a_1 \Gamma_{1a} c_1 \right] \delta_{l_1} = 0 \]
\[+ D_2 - D_2 + \left[\tilde{c}_2 D^a_2 \Gamma_{2a} c_2 \right] \delta_{l_2} = 0, \]
\[\mathcal{L}^{1+2-}_{gh} = D_1 + D_1 + \left[\tilde{c}_1 D^a_1 \Gamma_{1a} c_1 \right] \delta_{l_1} = 0 \]
\[+ D_2 + D_2 + \left[\tilde{c}_2 D^a_2 \Gamma_{2a} c_2 \right] \delta_{l_2} = 0. \]

The total effective Lagrangian which is given by a sum of the gauge fixing term and the ghost term with the original Lagrangian can be written as
\[\mathcal{L}^{1+2+} + \mathcal{L}^{1+2+}_{g} = s_b D_1 + D_1 - \left[\tilde{c}_1 D^a_1 \Gamma_{1a} + \frac{\alpha}{2} \tilde{c}_1 b_1 \right] \delta_{l_1} = 0 \]
\[+ s_b D_2 + D_2 - \left[\tilde{c}_2 D^a_2 \Gamma_{2a} + \frac{\alpha}{2} \tilde{c}_2 b_2 \right] \delta_{l_2} = 0, \]
\[\mathcal{L}^{1-2-} + \mathcal{L}^{1-2-}_{g} = s_b D_1 - D_1 + \left[\tilde{c}_1 D^a_1 \Gamma_{1a} + \frac{\alpha}{2} \tilde{c}_1 b_1 \right] \delta_{l_1} = 0 \]
\[+ s_b D_2 - D_2 + \left[\tilde{c}_2 D^a_2 \Gamma_{2a} + \frac{\alpha}{2} \tilde{c}_2 b_2 \right] \delta_{l_2} = 0. \]

\[\mathcal{L}^{1+2-} + \mathcal{L}^{1+2-}_{g} = s_b D_1 + D_1 + \left[\tilde{c}_1 D^a_1 \Gamma_{1a} + \frac{\alpha}{2} \tilde{c}_1 b_1 \right] \delta_{l_1} = 0 \]
\[+ s_b D_2 + D_2 + \left[\tilde{c}_2 D^a_2 \Gamma_{2a} + \frac{\alpha}{2} \tilde{c}_2 b_2 \right] \delta_{l_2} = 0. \]
It may be noted that it is possible to obtain higher order Slavnov–Taylor identity for such theories. In fact, this procedure can be used to obtain a Slavnov–Taylor identity for any gauge theory in the presence of a boundary. This identity can be used to relate different correlation functions to each other. Thus, they can be used to analyze scattering processes in this theory. It is important to note that this identity preserves only half of the supersymmetry of the original theory.

5 Conclusion

In this paper, we analyzed a three dimensional supersymmetric theory with $N = 2$ supersymmetry. Even though the BRST symmetry has been analyzed for a Yang–Mills theory with a boundary in $N = 1$ superspace [43], in this paper, we analyze the BRST symmetry for a Yang–Mills theory with a boundary in $N = 2$ superspace. The effective Lagrangian was obtained by the sum of the gauge fixing term and the ghost term with the original classical Lagrangian. It was demonstrated that even though the supersymmetry of the effective Lagrangian was broken by the presence of the boundaries, it was possible to preserve half the supersymmetry of this effective Lagrangian. This was done by adding new boundary terms to the original bulk effective Lagrangian. The supersymmetric variation of the original bulk effective Lagrangian was exactly canceled by the supersymmetric variation of this new boundary term. Thus, it was possible to retain half of the supersymmetry of this original theory in the presence of a boundary. We also obtain the Slavnov–Taylor identity for this theory.

It may be noted that in the Horava–Witten theory, one of the low energy limits of the heterotic string theory, can be obtained from the 11 dimensional supergravity in the presence of a boundary [46–49]. It has been possible, in this construction to obtain a unification of gauge and gravitational couplings. Motivated by the original Horava–Witten theory, a five dimensional globally supersymmetric Yang–Mills theory coupled to a four dimensional hypermultiplet on the boundary has already been constructed [50]. It would be interesting to use results of this paper to analyze such a system. It would also be interesting to analyze the BRST symmetry of such a system using both linear and non-linear gauges. Furthermore, the BRST symmetry and gauge fixing have been studied for perturbative quantum gravity [51–56]. It is possible to generalize this work to supergravity solutions, and analyze the supersymmetry of such supergravity solutions, when there is a boundary. In fact, the supergravity solutions with a boundary term have been studied, and this was done using a similar off-shell formalism [57]. It would be interesting to analyze the BRST symmetry for such supergravity theories with a boundary term.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. C. Becchi, A. Rouet, R. Stora, Ann. Phys. 98, 287 (1976)
2. I.V. Tyutin, Lebedev preprint fian. 39 (1975), arXiv:0812.0580
3. D. Dudal, H. Verschelde, V.E.R. Lemes, M.S. Sarandy, S.P. Sorella, M. Picariello, Ann. Phys. 308, 62 (2003)
4. R. Delbourgo, P.D. Jarvis, J. Phys. A Math. Gen. 15, 611 (1982)
5. M. Faizal, S. Upadhyay, Phys. Lett. B 736, 288 (2014)
6. L. Baulieu, J. Thierry-Mieg, Nucl. Phys. B 197, 477 (1982)
7. D. Dudal, V.E.R. Lemes, M. Picariello, M.S. Sarandy, S.P. Sorella, H. Verschelde, JHEP 0212, 008 (2002)
8. M. Faizal, D.J. Smith, Phys. Rev. D 85, 105007 (2012)
9. M. Faizal, Phys. Rev. D 84, 106011 (2011)
10. M. Faizal, Commun. Theor. Phys. 57, 637 (2012)
11. M. Faizal, Mod. Phys. Lett. A 27, 1250147 (2012)
12. S. Upadhyay, D. Das, Phys. Lett. B 733, 63 (2014)
13. K.I. Kondo, arXiv:hep-th/0103141
14. D. Dudal, H. Verschelde, V.E.R. Lemes, M.S. Sarandy, S.P. Sorella, M. Picariello, A. Vicini, J.A. Gracey, JHEP 0306, 003 (2003)
15. D. Dudal, H. Verschelde, J. Phys. A 36, 8507 (2003)
16. V.E.R. Lemes, M.S. Sarandy, S.P. Sorella, Ann. Phys. 308, 1 (2003)
17. A.R. Fazio, V.E.R. Lemes, M. Picariello, M.S. Sarandy, S.P. Sorella, Mod. Phys. Lett. A 18, 711 (2003)
18. M. Schaden, arXiv:hep-th/9900011
19. K.-I. Kondo, T. Shinohara, Phys. Lett. B 491, 263 (2000)
20. G. ’t Hooft, Nucl. Phys. B 190, 455 (1981)
21. Y. Nambu, Phys. Rev. D 10, 4262 (1974)
22. S. Mandelstam, Phys. Rep. 23, 245 (1976)
23. A.M. Polyakov, Nucl. Phys. B 120, 429 (1977)
24. K.I. Kondo, Phys. Rev. D 58, 65013 (1998)
25. K.I. Kondo, Phys. Rev. D 58, 105016 (1998)
26. K.I. Kondo, Phys. Lett. B 455, 251 (1999)
27. L. Baulieu, S.P. Sorella, Phys. Lett. B 671, 481 (2009)
28. L. Baulieu, M.A.L. Capri, A.J. Gomez, V.E.R. Lemes, R.F. Sobreiro, S.P. Sorella, Eur. Phys. J. C 66, 451 (2010)
29. D. Dudal, S.P. Sorella, N. Vandersickel, H. Verschelde, Phys. Rev. D 79, 121701 (2009)
30. P.M. Lavrov, O.V. Radchenko, A.A. Reshetnyak, Mod. Phys. Lett. A. 27, 1250067 (2012)
31. D.V. Belyaev, JHEP 0601, 046 (2006)
32. D.V. Belyaev, JHEP 0601, 047 (2006)
33. P. van Nieuwenhuizen, D.V. Vassilevich, Class. Quantum Gravity 22, 5029 (2005)
34. U. Lindstrom, M. Rocek, P. van Nieuwenhuizen, Nucl. Phys. B 662, 147 (2003)
35. P. Di Vecchia, B. Durhuus, P. Olesen, J.L. Petersen, Nucl. Phys. B 207, 77 (1982)
36. P. Di Vecchia, B. Durhuus, P. Olesen, J.L. Petersen, Nucl. Phys. B 217, 395 (1983)
37. Y. Igarashi, Phys. Rev. D 30, 1812 (1984)
38. D.V. Belyaev, P. van Nieuwenhuizen, JHEP 0804, 008 (2008)
39. D.S. Berman, D.C. Thompson, Nucl. Phys. B 820, 503 (2009)
40. M. Faizal, Mod. Phys. Lett. A 29, 1450154 (2014)
41. M. Faizal, JHEP 1204, 017 (2012)
42. M. Faizal, D.J. Smith, Phys. Rev. D 87, 025019 (2013)
43. M. Faizal, Int. J. Theor. Phys. 52, 392 (2013)
44. S.J. Gates Jr., M.T. Grisaru, M. Rocek, W. Siegel, Front. Phys. 58, 1 (1983)
45. D.N. Blaschke, H. Grosse, J.C. Wallet, JHEP 1306, 038 (2013)
46. P. Horava, E. Witten, Nucl. Phys. B 475, 94 (1996)
47. E. Witten, Nucl. Phys. B 471, 135 (1996)
48. P. Horava, Phys. Rev. D 54, 7561 (1996)
49. P. Horava, E. Witten, Nucl. Phys. B 460, 506 (1996)
50. E.A. Mirabelli, M.E. Peskin, Phys. Rev. D 58, 065002 (1998)
51. M. Faizal, Found. Phys. 41, 270 (2011)
52. G. Esposito, G. Fucci, A.Y. Kamenshchik, K. Kirsten, Class. Quantum Gravity 22, 957 (2005)
53. G. Esposito, AYu. Kamenshchik, I.V. Mishakov, G. Pollifrone, Phys. Rev. D 52, 3457 (1995)
54. M. Faizal, Class. Quantum Gravity 29, 035007 (2012)
55. M. Faizal, Mod. Phys. Lett. A 28, 1350034 (2013)
56. M. Faizal, J. Phys. A 44, 402001 (2011)
57. D.V. Belyaev, P. van Nieuwenhuizen, JHEP 0809, 069 (2008)