Synthesis and Pyrolysis of Soluble Cyclic Hf-Schiff Base Polymers

Yu-Huan Wua, Li Yea, Ya-Nan Suna,b, Wei-Jian Hana, and Tong Zhaoa,b,*

a Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b University of Chinese Academy of Sciences, Beijing 100049, China

Abstract Soluble Hf-containing polymers are significant processable precursors for the fabrication of ultra-high temperature ceramics. In this work, cyclic Hf-Schiff base polymers were synthesized via direct polymerization of hafnium alkoxide and bis-salen monomers. The defined structure and molecular weight of the polymers were characterized by NMR spectroscopy, gel permeation chromatography and MALDI-TOF mass spectroscopy. The feed ratio of monomers regulated the molecular weight and solubility of the polymers. This synthetic strategy features simple operation under ambient conditions, efficient reaction with high yield and cyclic polymers as the main products. The Hf-Schiff base polymers were converted to HfC materials after pyrolysis under argon at 1600 °C, which was identified by XRD measurements, elemental analyses and Raman spectroscopy. This work will inspire more precise and efficient synthesis and applications of metallocopolymers.

Keywords Hf-containing polymer; Schiff base; Cyclic polymer; Preceramic polymer; Hafnium carbide

Citation: Wu, Y. H.; Ye, L.; Sun, Y. N.; Han, W. J.; Zhao, T. Synthesis and pyrolysis of soluble cyclic Hf-schiff base polymers. \textit{Chinese J. Polym. Sci.} \textbf{2021}, \textit{39}, 659–664.

INTRODUCTION

Synthetic methodologies and potential applications of metallocopolymers have attracted increasing attention during the past two decades.[1−3] Because of the unique physical and chemical properties brought from various metals, metallocopolymers have a wide application in the fields of catalysis,[4] healthcare[5] and ceramic materials.[6] As an outstanding example, polyferrocenylenesilanes showed typical properties of main-chain metallopolymers and were used to fabricate versatile functional materials.[7−9] Among a great variety of metals in metallocopolymers, most efforts have focused on late transition metals and their simple and stable complexes, while the research on the group 4 metals is very limited.[10] However, soluble polymers containing group 4 metals like Zr and Hf are significant processable precursors to fabricate ultra-high temperature ceramics after pyrolysis.[11] Hafnium carbide (HfC) with high melting point (>3900 °C), low vapor pressure and high chemical stability has become a promising material for applications in extreme environments.[12,13]

Only a few attempts on the synthesis of Hf-containing polymers have been reported so far, probably due to the high coordination number (up to eight) and complex reactivity of Hf. Initially, diols or diacids were used to polymerize with some Hf compounds like \(\text{Cp}_2\text{HfCl}_2 \) and \(\text{HfCl}_4 \) forming polymers through Hf-O bonds.[14−17] These solid products were insoluble in common solvents, so the characterizations were ambiguous. Alternatively, polymers containing Hf-C bonds were constructed through radical polymerization of alkynyl substituted hafnocene derivatives, or through nucleophilic reaction of \(\text{Cp}_2\text{HfCl}_2 \) with dilithioalkynyl compounds or Grignard reagents under strict anhydrous conditions.[17−19] Only a small fraction of the product was soluble and characterized, while the structure of the polymers and the side reactions remained unclear. We hypothesize that the difficulty in the synthesis of Hf-containing polymers mainly comes from the high coordination number and crosslinking tendency of the Hf center, which inspires us to utilize stabilization of multidentate ligands derived from coordination chemistry to construct stable and soluble polymers.

Multidentate ligands such as terpyridine, porphyrin and hydroxyquinoline have been introduced into polymer science for the synthesis of polymers with diverse functions,[20−22] demonstrating the strength of nitrogen-containing ligands. Salen-type Schiff bases represent one of the most widely utilized ligands to synthesize metal complexes and metallocopolymers.[23−25] The salen complexes of Zr and Hf are potent catalysts for ring-opening polymerization of lactones and copolymerization of epoxy with carbon dioxide.[26−28] The linear eight-coordinate Zr-Schiff base polymers have been synthesized by imidization of tetra(salicylaldehydato)zirconium and tetraamine monomers under harsh conditions.[29,30] In the present work, we synthesized soluble Hf-Schiff base polymers through direct polycondensation of hafnium alkoxide and bis-salen monomers (Scheme 1). To the best of our knowledge, this is the first example of soluble Hf-containing poly-
mers with defined coordinate structure and cyclic topology. This synthetic strategy features simple operation under mild conditions and high yields. The obtained polymers possess high thermal stability and could be converted to HfC/C materials after pyrolysis at 1600 °C.

EXPERIMENTAL

Materials

Salicylaldehyde (99%, J&K Scientific), o-phenylenediamine (99%, J&K Scientific), 3,3'-diaminobenzidine (98%, Energy Chemical), HfCl$_4$ (98%, Alfa Aesar), Hf(acac)$_4$ (97%, Alfa Aesar), and all the solvents (>99%) were used as received without further purification. Hf(OnPr)$_4$ in n-propanol was synthesized from HfCl$_4$, n-propanol, and triethylamine according to the literature.[31] The content of Hf was 31.64% determined gravimetrically as the oxides after calcination at 1000 °C.

Characterization

1H-NMR (400 MHz) and 13C-NMR (100 MHz) spectra were collected on a Bruker Avance-400 spectrometer. Gel permeation chromatography (GPC) was performed on a Waters system equipped with a HPLC pump, a refractive index detector and three columns thermostated at 40 °C. N-methyl pyrrolidone (NMP) added LiBr (0.02 mol/L) was used as eluent at a flow rate of 0.8 mL/min. The calibration was made against linear polystyrene standards in the molecular weight range of 580–591000. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were collected on a Bruker Autoflex III mass spectrometer equipped with a 353 nm laser. α-Cyano-4-hydroxycinnamic acid was used as the matrix and the spectra were acquired in linear mode. Thermogravimetric analysis (TGA) was performed on a NETZSCH STA 409 analyzer under nitrogen atmosphere (50 mL/min) at a heating rate of 10 °C/min. X-ray diffraction (XRD) measurements were performed on a Rigaku D/MAX 2500 diffractometer with Cu Kα radiation and a scan speed of 5°/min. The carbon, oxygen, and nitrogen content of the pyrolyzed ceramics were determined by a LECO CS844 carbon/sulfur analyzer and a LECO ON836 oxygen/nitrogen analyzer. The hafnium content of the pyrolyzed ceramics was determined by a Thermal IRIS Intrepid inductively coupled plasma (ICP) optical emission spectrometer. Raman spectra were recorded on a HORIBA LabRAM HR Evolution Raman spectrometer using a 532 nm laser as the excitation source.

Synthesis of Ligand 1

Salicylaldehyde (26.88 g, 0.22 mol) and o-phenylenediamine (10.81 g, 0.10 mol) were added into 100 mL of ethanol. The mixture was refluxed for 2 h and cooled to room temperature. The produced solid was collected by filtration and washed thoroughly with ethanol. The ligand 1 (30.58 g) was obtained as orange solid in 97% yield.

1H-NMR (400 MHz, DMSO-d$_6$, δ, ppm) 12.93 (s, 2H), 8.94 (s, 2H), 7.67 (dd, J=7.6, 1.7 Hz, 2H), 7.50–7.45 (m, 2H), 7.45–7.39 (m, 4H), 7.03–6.92 (m, 4H).

13C-NMR (100 MHz, DMSO-d$_6$, δ, ppm) 164.47, 160.85, 142.72, 133.87, 132.90, 128.23, 120.20, 119.96, 119.52, 117.13.

Synthesis of Complex 2

Ligand 1 (3.48 g, 11.0 mmol) and Hf(OnPr)$_4$ (2.82 g, 5.0 mmol) were added into 100 mL of ethanol. The mixture was refluxed for 2 h and cooled to room temperature. The produced solid was collected by filtration and washed thoroughly with ethanol. The complex 2 (6.70 g) was obtained as orange solid in 91% yield.
Wu, Y. H. et al. Chinese J. Polym. Sci. 2021, 39, 659–664

filtration and washed with 10 mL of toluene. The complex 2 (3.30 g) was obtained as yellow solid in 82% yield. 1H-NMR (400 MHz, DMSO-d₆, δ, ppm) 8.75 (s, 4H), 7.64–7.56 (m, 4H), 7.53–7.46 (m, 4H), 7.33 (d, J=7.7 Hz, 4H), 7.00 (t, J=8.4 Hz, 4H), 6.43 (t, J=7.3 Hz, 4H), 5.77 (dd, J=8.3 Hz, 2H). 13C-NMR (100 MHz, DMSO-d₆, δ, ppm): 154.24, 151.19, 145.96, 140.51, 135.16, 133.35, 133.19, 131.92, 128.47, 126.27, 120.60, 120.04, 119.97, 119.58, 119.55, 118.48, 117.17.

Synthesis of Monomer 3

According to the literature, salicylaldehyde (29.31 g, 0.24 mol) and 3,3’-diaminobenzidine (6.42 g, 0.033 mol) were added in 100 mL of methanol and 100 mL of dichloromethane. The mixture was stirred at room temperature for 24 h. The produced solid was collected by filtration and washed thoroughly with methanol. The monomer 3 (18.39 g) was obtained as orange solid in 97% yield. 1H-NMR (400 MHz, DMSO-d₆, δ, ppm): 12.99 (s, 4H), 9.10 (s, 2H), 9.04 (s, 2H), 7.93 (d, J=1.8 Hz, 2H), 7.90 (dd, J=8.3, 1.9 Hz, 2H), 7.71 (dd, J=7.7, 1.3 Hz, 4H), 7.63 (d, J=8.3 Hz, 2H), 7.48–7.40 (m, 4H), 7.04–6.95 (m, 8H). 13C-NMR (100 MHz, DMSO-d₆, δ, ppm): 165.27, 164.19, 160.94, 143.53, 141.97, 138.95, 133.99, 133.95, 133.05, 132.92, 126.27, 120.60, 120.04, 119.97, 119.58, 119.55, 118.48, 117.17.

General Procedure for the Synthesis of Hf-Schiff Base Polymers

Solution of monomer 3 (1.26 g, 2.0 mmol) in 10 mL of NMP was added in solution of Hf(O(CH₂)₄Pr)₄ (1.13 g, 2.0 mmol) in 10 mL of tetrahydrofuran (THF) under stirring. The mixture was stirred at 50 °C for 6 h, while capping agents were added after different time if necessary. Then the mixture was concentrated under reduced pressure to remove THF and added in methanol. The precipitation was collected by filtration and washed thoroughly with methanol. The polymer was obtained as yellow solid.

Pyrolysis of the Hf-Schiff Base Polymers

The polymers were pyrolyzed in a graphite furnace under argon atmosphere. The temperature was increased from room temperature to 1500 or 1600 °C at a rate of 5 °C/min and held at this temperature for 2 h. The polymers were pyrolyzed in a graphite furnace under argon atmosphere. The temperature was increased from room temperature to 1500 or 1600 °C at a rate of 5 °C/min and held at this temperature for 2 h.

RESULTS AND DISCUSSION

At the outset of the investigation, three compounds were chosen as Hf sources to prepare model complexes with ligand 1. As a result, HfCl₄ and Hf(acac)₄ produced incompletely substituted and complicated products, while only Hf(O(CH₂)₄Pr)₄ gave desired product in 4 h, referred to as model complex 2. NMR spectra proved that the two ligands in complex 2 had the same chemical environment (Fig. S2 in the electronic supplementary information, ESI), so the eight-coordinate Hf was in a dodecahedral coordination sphere, similar to the Zr analogue.[33] In this context, we proceeded to the polymerization of Hf(O(CH₂)₄Pr)₄ with compound 3. Bis-salen compound 3 was synthesized from 3,3’-diaminobenzidine with salicylaldehyde, which was then used as a polymerizable monomer with two coordination sites.

The polymerization of Hf(O(CH₂)₄Pr)₄ with monomer 3 was investigated in detail. Solubility in DMSO, isolated yield, Mₙ and PDI of the polymers under different reaction conditions are shown in Table 1. THF/NMP was found to be the optimal solvent (entries P3–P8), where homogenous solution was formed during the entire polymerization process. When THF was used as solvent (entry P1), the product precipitated quickly, which was insoluble in DMSO and partially soluble in NMP. When the reaction was carried out in NMP (entry P2), some gel appeared immediately after the addition of Hf(O(CH₂)₄Pr)₄, while the polymer product in the NMP solution was obtained after filtration. Based on these observations, a mixture of equal volume of THF and NMP was chosen as solvent for entry P3. Homogeneous solution was successfully obtained throughout the polymerization, and the reaction process of equivalent Hf(O(CH₂)₄Pr)₄ and monomer 3 (entry P3) was monitored by GPC at different time (Fig. S4 in ESI). Mₙ increased from 2900 at 0.5 h to 3800 at 6 h, and the polymerization was almost completed after 4 h.

The poor DMSO solubility of the polymers synthesized from equivalent monomers (Table 1, entries P1–P3) probably came from the residual Hf end groups, which is difficult to characterize directly. Increasing the reaction temperature improved the solubility of the polymer and reduced its PDI value (entry P4). To eliminate the possible Hf end groups, we used an excess amount of monomer 3 (entry P5), and introduced capping agents (entry P6–P8). When 2.0 equiv. of monomer 3 was used to react with Hf(O(CH₂)₄Pr)₄ (entry P5), soluble oligomer with lower Mₙ and phenolic hydroxyl end group was obtained at lower yield. When the amount of monomer 3 was obviously insufficient (entry P6), solids appeared in less than 1 h, which dissolved after adding ligand 1 as capping agent, indicating that it was the Hf end groups that reduced the solubility of the polymers. The polymerization of equivalent monomers with end capping of ligand 1 also produced soluble polymers with higher Mₙ (entry P7). In this context, addi-

Table 1 Optimization of polymerization conditions.

Entry	solvent	T (°C)	Ratio a	Capping agents	Soluble in DMSO	Isolated yield	Mₙ (×10⁴)	PDI
P1	THF	25	1:1:1.0	None	No	90	2990	3.93
P2	NMP	25	1:1:1.0	None	No	91	3280	2.92
P3	THF/NMP	25	1:1:1.0	None	No	93	3750	3.33
P4	THF/NMP	50	1:1:1.0	None	Yes	92	3600	2.84
P5	THF/NMP	50	1:1:1.0	None	Yes	77	1960	1.64
P6	THF/NMP	50	1:0:0.8	1 f	Yes	90	2460	2.64
P7	THF/NMP	50	1:0:1.0	1 f	Yes	92	3310	3.28
P8	THF/NMP	50	1:0:1.0	3 g	Yes h	95	4150	4.22

a General reaction conditions: Hf(O(CH₂)₄Pr)₄ (2.0 mmol), monomer 3 (2.0 mmol), solvent (20 mL), 6 h; b The molar ratio of Hf(O(CH₂)₄Pr)₄ to monomer 3. c Determined by GPC with NMP/LiBr (0.02 mol/L) as eluent. d Only the soluble part in NMP was determined. e Ligand 1 (0.8 equiv.) was added after 1 h; f Monomer 3 (0.1 equiv.) was added after 4 h; h The solubility of P8 was 0.02 g/g DMSO and 0.10 g/g NMP.

https://doi.org/10.1007/s10118-021-2566-3
tional 0.1 equiv. of monomer 3, used as capping and coupling agent, was added at the late stage of polymerization (entry P8), and the obtained polymer has the higher M_n value as expected. GPC traces of these polymers with complex 2 as reference (Fig. 1) demonstrate that the molecular weight could be adjusted by the ratio of monomers and adding capping agents. The high PDI values were due to the large polymeric unit with relatively low degree of polymerization, which will be discussed in detail below.

![Fig. 1] GPC traces of polymers P5–P8 with complex 2 as reference.

The structures of the obtained Hf-Schiff base polymers were characterized by 1H- and 13C-NMR spectroscopy as shown in Fig. 2. All signals can be well assigned according to the NMR spectra of monomer 3 and Hf complex 2 (Figs. S2 and S3 in ESI), confirming the expected structural unit of the polymers. According to these spectra, the eight-coordinate Hf center in the polymers had the same coordinate structure as complex 2, so the polymers should have linear topology. However, the signals of phenolic or other end groups in these polymers (except P5 and P6) are very small which cannot be integrated accurately, even in the case of P8 obtained from excess monomer 3 (Fig. 2). The molecular weight estimated from the signals of end groups in the NMR results was much higher than that obtained from GPC measurements. Hence, we proposed that most of the polymers have cyclic structures.

MALDI-TOF-MS results provide another evidence of the cyclic structures. Fig. 3 shows the MALDI-TOF mass spectrum of P8 that identifies the polymer structure and end groups. A set of main peaks corresponded to cyclic polymers without end groups. In addition, there were some weak peaks assigned to linear oligomers and products derived from the elimination of salicyl group. The difference in molecular weight between adjacent peaks was consistent with the molecular weight of the structural unit of the polymers. Other polymers like P7 showed similar cyclic signals with little linear products containing ligand 1 as the end group (Fig. S5 in ESI). Combining the terminal analyses in NMR spectra and the MALDI-TOF-MS results, we conclude that most of these Hf-Schiff base polymers had cyclic topology, which is probably due to the angle between the two coordinate sites in monomer 3. The molecular model of the dimer showed cyclic structure without much steric distortion (Fig. S6 in ESI). The easy cyclization of the polymers also explained their relatively low degrees of polymerization and the fact that polymerization conditions had limited influence on their molecular weights, even in the case of capping or coupling.

The Hf-Schiff base polymers had high thermal stability with 95% weight retention over 500 °C under nitrogen. The polymer P8 and the complex 2 gave 68.6% and 67.3% of the residual weight respectively at 1000 °C according to the TGA results (Fig. S7 in ESI). Their thermal stability, owing to the introduction of Hf, was much higher than that of the pure monomer 3. Pyrolysis of the polymer P8 with complex 2 was conducted under argon atmosphere, producing black ceramic powders. Fig. 4 shows the XRD patterns of the ceramic products. The ceramics obtained from the complex 2 at 1600 °C and the polymer P8 at 1500 °C contained HfO$_2$ and...
CONCLUSIONS

In conclusion, we have constructed cyclic Hf-Schiff base polymers from hafnium alkoxide and bis-salen monomer. This facile and efficient approach produced soluble metallopolymers with defined coordinate structures in high yield. Molecular weight and solubility of the polymers could be adjusted through the feed ratio and end capping. The Hf-Schiff base polymers had high thermal stability and could be converted to HfC/C materials after pyrolysis at 1600 °C. The synthetic strategy described here innovates the toolbox toward preceramic polymers for the fabrications and applications of ultra-high temperature materials.

Electronic Supplementary Information

Electronic supplementary information (ESI) is available free of charge in the online version of this article at http://dx.doi.org/10.1007/s10118-021-2566-3.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (No. 21604090). The authors are grateful for helpful advices from Lianjun Zheng and Pingxia Zhang on the manuscript.

REFERENCES

1 Abd-El-Aziz, A. S.; Shipman, P. O.; Boden, B. N.; McNeil, W. S. Synthetic methodologies and properties of organometallic and coordination macromolecules. Prog. Polym. Sci. 2010, 35, 714–836.
2 Winter, A.; Schubert, U. S. Synthesis and characterization of metallo-supramolecular polymers. Chem. Soc. Rev. 2016, 45, 5311–5357.
3 Wang, Y.; Astruc, D.; Abd-El-Aziz, A. S. Metallopolymers for advanced sustainable applications. Chem. Soc. Rev. 2019, 48, 558–636.
4 Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Kohler, V.; Lewis, J. C.; Ward, T. R. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 2018, 118, 142–231.
5 Gu, H.; Mu, S.; Qiu, G.; Liu, X.; Zhang, L.; Yuan, Y.; Astruc, D. Redox-stimuli-responsive drug delivery systems with supramolecular ferroceny-containing polymers for controlled release. Coordin. Chem. Rev. 2018, 364, 51–85.
6 Zaheer, M.; Schmalz, T.; Motz, G.; Kempe, R. Polymer derived non-oxide ceramics modified with late transition metals. Chem. Soc. Rev. 2012, 41, 5102–5116.
7 Foucher, D. A.; Tang, B. Z.; Manners, I. Ring-opening polymerization of strained, ring-tilted ferrocenophanes: a route to high molecular weight poly(ferrocenylsilanes). J. Am. Chem. Soc. 1992, 114, 6246–6248.
8 Hailles, R. L. N.; Oliver, A. M.; Gywther, J.; Whittell, G. R.; Manners, I. Polyferrocenylsilanies: synthesis, properties, and applications. Chem. Soc. Rev. 2016, 45, 5358–5407.
9 Du, J.; Yuan, W.; Zhang, H.; Li, H.; Li, Y.; Tang, B. Z. Ferrocene-based hyperbranched poly(phenyltriazylocarboxylate): synthesis by phenylpropiolate-azide polycyclodaddition and use as precursors to nanostructured magnetoceramics. Polym. Chem. 2019, 10, 5931–5938.
10 Bouzat, F.; Darsy, G.; Foucaud, S.; Lucas, R. Group 4 metal-containing polymers: an overview. Polym. Rev. 2016, 56, 187–224.
11 Ionescu, E.; Bernard, S.; Lucas, R.; Kroll, P.; Ushakov, S.; Navrotsky, A.; Riedel, R. Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials. Adv. Eng. Mater. 2019, 21, 1900269.
properties of HfB, HfC, HfN, and aHf(N). *J. Mater. Sci.* **2004**, *39*, 5939–5949.

13. Padture, N. P. Advanced structural ceramics in aerospace propulsion. *Nat. Mater.* **2016**, *15*, 804–809.

14. Carraher, C. E. Synthesis and thermal analysis of hafnium polyesters. *Angew. Makromol. Chem.* **1973**, *28*, 145–151.

15. Carraher, C. E.; Jambaya, L. M. Initial synthesis and thermal characterization of hafnium polyethers. *Angew. Makromol. Chem.* **1976**, *52*, 111–116.

16. Matsui, H.; Okada, A.; Kuroda, T.; Seguchi, Y.; Kawahara, T.; Yoshihara, M. Syntheses and electronic behaviors of net-worked, alternating hafnium-organic moiety hybrid copolymers. *J. Mater. Sci.* **2007**, *42*, 3964–3968.

17. Pomogailo, A. D.; Rozenberg, A. S.; Dzhardimalieva, G. I.; Bochkin, A. M.; Pomogailo, S. I.; Golubeva, N. D.; Grishchenko, V. M. Hafnium-containing nanocomposites. *Inorg. Mater.* **2006**, *42*, 128–143.

18. Inzenhofer, K.; Schmalz, T.; Wrackmeyer, B.; Motz, G. The preparation of Hf/C ceramics via molecular design. *Dalton Trans.* **2011**, *40*, 4741–4745.

19. Cheng, J.; Wang, X.; Wang, H.; Shao, C.; Wang, J. Preparation and high-temperature behavior of Hf-C-SiC nanocomposites derived from a non-oxygen single-source-precursor. *J. Am. Ceram. Soc.* **2017**, *100*, 5044–5055.

20. Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Baker, G. R.; Cush, R.; Russo, P. S. Self- and directed assembly of hexahafnium macrocycles. *Angew. Chem. Int. Ed.* **1999**, *38*, 3717–3721.

21. Taylor, P. N.; Anderson, H. L. Cooperative self-assembly of double-strand conjugated porphyrin ladders. *J. Am. Chem. Soc.* **1999**, *121*, 11538–11545.

22. Jiang, P.; Huang, W.; Li, J.; Zhuang, D.; Shi, J. A soluble coordination polymer and its sol-gel-derived amorphous films: synthesis and third-order nonlinear optical properties. *J. Mater. Chem.* **2008**, *18*, 3688–3693.

23. Leung, A. C. W.; MacLachlan, M. J. Schiff base complexes in macromolecules. *J. Inorg. Organomet. Polym. Mater.* **2007**, *17*, 57–89.

24. Whiteoak, C. J.; Salassa, G.; Kleij, A. W. Recent advances with π-conjugated salen systems. *Chem. Soc. Rev.* **2012**, *41*, 622–631.

25. Liang, Y.; Duan, R. L.; Hu, C. Y.; Li, L. L.; Pang, X.; Zhang, W. X.; Chen, X. S. Salen-iron complexes: synthesis, characterization and their reactivity with lactide. *Chinese J. Polym. Sci.* **2018**, *36*, 185–189.

26. Saha, T. K.; Ramkumar, V.; Chakraborty, D. Salen complexes of zirconium and hafnium: synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides. *Inorg. Chem.* **2011**, *50*, 2720–2722.

27. Mandal, M.; Chakraborty, D. Group 4 complexes bearing bis(salphen) ligands: synthesis, characterization, and polymerization studies. *J. Polym. Sci., Part A: Polym. Chem.* **2016**, *54*, 809–824.

28. Mandal, M.; Ramkumar, V.; Chakraborty, D. Salen complexes of zirconium and hafnium: synthesis, structural characterization and polymerization studies. *Polym. Chem.* **2019**, *10*, 3444–3460.

29. Archer, R. D.; Illingsworth, M. L.; Rau, D. N.; Hardiman, C. J. A Soluble linear Schiff-base coordination polymer containing eight-coordinate zirconium(IV). *Macromolecules* **1985**, *18*, 1371–1376.

30. Archer, R. D.; Wang, B. Synthesis and characterization of the thermally stable copolymer of tetrakis(salicylaldehydato-O,O')zirconium(IV) and 3,3'-diaminobenzidine. *Inorg. Chem.* **1990**, *29*, 39–43.

31. Sun, Y.; Chen, F.; Qiu, W.; Ye, L.; Han, W.; Zhao, W.; Zhou, H.; Zhao, T. Synthesis of rare earth containing single-phase multicomponent metal carbides via liquid polymer precursor route. *J. Am. Ceram. Soc.* **2020**, *103*, 6081–6087.

32. Curreli, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Kleij, A. W. A modular approach towards nonsymmetrical bis(metallosalen) building blocks. *Eur. J. Inorg. Chem.* **2008**, *2008*, 2863–2873.

33. Solari, E.; Maltese, C.; Franceschi, F.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Geometrical isomerism and redox behaviour in zirconium-Schiff base complexes: the formation of C-C bonds functioning as two-electron reservoirs. *J. Chem. Soc., Dalton Trans.* **1997**, *2903–2910.

34. Haque, F. M.; Grayson, S. M. The synthesis, properties and potential applications of cyclic polymers. *Nat. Chem.* **2020**, *12*, 433–444.

35. Li, X.; Chan, Y. T.; Casiano-Maldonado, M.; Yu, J.; Carri, G. A.; Newkome, G. R.; Wiesmehiotis, C. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry. *Anal. Chem.* **2011**, *83*, 6667–6674.

https://doi.org/10.1007/s10118-021-2566-3