Characterization and genome sequence of the genetically unique
Escherichia bacteriophage vB_EcoM_IME392

Yunjia Hu1 · Shanwei Tong3 · Ping Li4 · Xiaoping An1 · Lihua Song1,2 · Huahao Fan1,2 · Yigang Tong1,2

Received: 25 August 2020 / Accepted: 17 May 2021 / Published online: 8 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract
In this study, a novel Escherichia coli-specific bacteriophage, vB_EcoM_IME392, was isolated from chicken farm sewage in Qingdao, China. The genome of IME392 was found by next-generation sequencing to be 116,460 base pairs in length with a G+C content of 45.4% (GenBank accession number MH719082). BLASTn results revealed that only 2% of the genome sequence of IME392 shows sequence similarity to known phage sequences in the GenBank database, which indicates that IME392 is a novel bacteriophage. Transmission electron microscopy showed that IME392 belongs to the family Myoviridae. The host range, the multiplicity of infection, and a one-step growth curve were also determined.

Introduction
Since the German paediatrician Theodor Escherich isolated Escherichia coli from healthy human faeces in 1885, this bacterium has been extensively and thoroughly studied [7, 8, 21, 22, 24]. E. coli, as a model organism, currently plays a vital role in life science research and in biotechnology industries such as pharmaceuticals and industrial chemicals [5, 13, 18]. E. coli is an important microorganism that is ubiquitous in the natural environment and the mammalian gastrointestinal tract, and it is part of the normal intestinal flora. E. coli and other facultative anaerobes constitute approximately 0.1% of the gut microbiota [9]. Most E. coli strains are harmless, but certain serotypes can cause severe food poisoning, septic shock, meningitis, and/or urinary tract infections [16, 29], which seriously threaten human life and property safety. The discovery and use of antibiotics alleviated these dangers, but at the same time, antibiotic abuse has brought a new challenge to the clinical treatment of antibiotic resistance. There have been reports of E. coli strains resistant to all major antibiotic types, including extended-spectrum beta-lactams, carbapenems, fluoroquinolones, aminoglycosides, and trimethoprim-sulfamethoxazole [28]. Recently, even plasmid-mediated colistin resistance has emerged [23]. Bacteriophages that can lyse bacteria [14] seem to be a promising solution to the prevalence of multidrug-resistant bacteria. After their discovery by Twort and D’Hérelle, phages were soon used to treat bacterial infections. Phage therapy has certain advantages over antibiotic therapy, including low cost, easy availability, specificity, and few side effects.

Bacteriophages are the most widespread biological entities in nature, and their number is 10 times greater than that of bacteria. In co-evolution with their hosts, bacteriophages have developed tremendous diversity. The genome of E. coli phage MS2, with 3,569 nucleotides of positive-sense single-stranded RNA, was the first genome to be completely sequenced [10]. The following year, Sanger et al. completed the sequencing of bacteriophage Φ-X174, which was the first DNA genome to be sequenced [30]. M13 is a filamentous
bacteriophage composed of circular single-stranded DNA (ssDNA) that is 6,407 nucleotides long, encapsulated in approximately 2,700 copies of the major coat protein P8, and capped with five copies of two different minor coat proteins (P9, P6, P3) on the ends [26]. In 1951, Esther Lederberg serendipitously discovered that, after ultraviolet irradiation, the laboratory E. coli K12 strain released a bacteriophage, which was later named lambda. Subsequently, the entire life cycle, including lytic and lysogenic phases, has been deeply studied. In addition, bacteriophages with large genomes, such as T2, T4, T5, and T6 have also been studied in many aspects. Of these, T4-like phages are the most representative and widely studied phages with large genomes. The genomes of these phages are more than 100 kb in length and encode 100-300 – or even more – proteins and a variety of tRNAs. Most of these large-genome phages share well-organized and highly conserved core genes, especially those encoding DNA replication and virion structural proteins [6, 27]. Research on these known phages will help us understand and discover the mysteries of life and provide guidance for future research.

Thanks to the rapid development of high-throughput sequencing technology, the number of phage sequences in the GenBank database has grown geometrically. However, most of these phage sequences have a high degree of similarity to previously known sequences from bacteria or phages. In this study, we isolated and identified a genetically unique E. coli phage whose genome sequence is only 2% identical to those of the most similar sequences in GenBank, indicating that it may have completely different characteristics and functions from existing phages.

Materials and methods

Sampling, isolation, and purification of Escherichia phage IME392

Phage IME392 and its host strain, E. coli E2, were isolated from sewage samples from a chicken farm in Qingdao, China. For the purification of phage particles, the sewage samples were first centrifuged at 12,000 × g for 5 min and then filtered through a 0.22-μm filter to remove host cells. The filtrate was serially diluted tenfold in sterile PBS, and 100 μL of each dilution was mixed with 200 μL of the log-phase host bacterial culture, followed by incubation at room temperature for 5 minutes. The mixture was added to 5 mL of preheated 0.75% LB soft agar and poured onto the surface of 1.5% hard agar plates. After solidification, the plates were incubated overnight at 37 °C. Single plaques were isolated from the plates and again incubated overnight with a liquid culture of E2 with shaking at 37 °C. Cultures were re-centrifuged and sterile filtered, and the filtrates were subjected to another round of plaque assays. This process was repeated three times to obtain pure phage stocks.

Multilocus sequence typing (MLST)

Based on previous reports [15], primer pairs for eight house-keeping genes, dinB, icdA, pabB, polB, putP, trpA, trpB, and uidA, were designed for PCR amplification. All PCR products were purified by gel extraction and then sequenced by Beijing Ruiboxingke Biotechnology Co., Ltd., using the universal sequencing primers OF and/or OR. Further details about the MLST procedure can be found at http://www.pasteur.fr/mlst.

DNA extraction, gene sequencing, and bioinformatic analysis

Phage DNA was extracted using a modified standard phenol-chloroform extraction protocol [34]. First, DNase I and RNase A (Thermo Scientific, USA) were added to the purified phage IME392 preparation to a final concentration of 1 μg/mL and incubated overnight at 37 °C. After incubation at 80 °C for 15 minutes to inactivate DNase I and cooling to room temperature, lysis buffer with a final concentration of 0.5% SDS, 50 μg of protease K per ml, and 20 mM EDTA was added. The solution was incubated for 1 hour at 56 °C, and an equal volume of Tris-saturated phenol was added. The mixture was vortexed to form a uniform emulsion. After centrifugation at 10,000 × g at 4 °C for 5 minutes, the upper aqueous phase was collected and transferred to a new tube, and an equal volume of extraction agent (phenol:chloroform:isoamyl alcohol, 25:24:1) was added. The mixture was centrifuged again (10,000 × g, 5 min), and the aqueous phase was collected and added to an equal volume of isopropanol. The mixture was centrifuged again (10,000 × g, 4 °C, 5 min), and the aqueous phase was collected and added to an equal volume of isopropanol. The mixture was incubated at -20 °C for more than 1 hour, followed by centrifugation at 10,000 × g at 4 °C for 20 minutes, which precipitated the phage DNA. The pellet was washed twice with 1 mL of 75% cold ethanol, resuspended in 30 μL of deionized water, and stored at -20 °C.

A 2×300-nt paired-end DNA library was prepared using an NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® according to the manufacturer’s instructions. A Bioruptor UCD-200TS ultrasonic system was used to fragment 50 μL of DNA (approximately 100 ng) into 300- to 600-bp fragments. The resulting fragmented DNA was end-repaired and ligated to the NEBNext adaptor. Cleanup
of adaptor-ligated DNA was performed using AMPure XP beads. Finally, the cleaned DNA was amplified by PCR for 4 to 5 cycles, and the PCR product was purified again using AMPure XP Beads. An Agilent 2100 Bioanalyzer system was used to measure the size distribution of the constructed library fragments, and the library was quantified using a KAPA Library Quantification Kit. Whole-genome sequencing was performed on an Illumina MiSeq sequencing platform (San Diego, CA, United States) with a 600-cycle MiSeq v3 Reagent kit to generate 2×300-bp paired-end reads. In total, 555,564 raw reads were generated.

The raw sequencing data quality was analysed using the quality control software FastQC v0.11.5 and filtered for low-quality reads and adaptor regions using Trimmomatic 0.36 with default parameters [4]. The high-quality reads were assembled using SPAdes v3.13.0 with default parameters, and approximately 4,872 contigs were generated [3]. For the assembled contigs, Bandage v0.8.1 [31], which is a tool for visualizing assembly graphs with connections, was used to display the connections between those contigs. Only three of the contigs were circular, with lengths of 116,460, 39,440 and 4,888 bp and coverage of 352×, 7×, and 18×, respectively. BLASTn analysis confirmed that the two shorter contigs were lysogenic phages and plasmids. Mapping was carried out using CLC Genomics Workbench 12.0.2 (length fraction = 0.95; similarity fraction = 0.95), which was also used to adjust the sequences and for result checking. A consensus genome sequence was generated that spanned 100% of the reference genome, and the 425,959 mapped reads had an 884.1 mean read coverage. A nucleic acid sequence similarity search was performed using BLASTn (https://blast.ncbi.nlm.nih.gov/blast.cgi). Gene annotation was first run on RAST [2] (http://rast.nmpdr.org/) and then refined by amino acid sequence comparisons in BLASTp. A genome function map was generated using the laboratory’s self-built script and optimized using Inkscape 0.92.1.

The amino acid sequences of the major capsid protein and the terminase large subunit of the bacteriophage IME392 were used to construct a neighbor-joining phylogenetic tree via MEGA 7.0 with 1000 bootstrap replicates, which was optimized using the online website tool EvolView (https://www.evolgenius.info/evolview/).

Transmission electron microscopy

After centrifugation of the coculture of the phage and its host at 12,000 × g and passage through a 0.22-μm filter, the phage particles were purified by sucrose density gradient centrifugation [33]. Approximately 20 μL of purified, enriched phage samples were deposited on carbon-coated copper grids, allowed to absorb for 15 minutes, and then dried using filter paper. The phage particles were negatively stained with 2% (w/v) phosphotungstic acid (pH 7.0) for 2 min and examined using a JEM-1200EX transmission electron microscope (Jeol Ltd., Tokyo, Japan) at an acceleration voltage of 80 kV.

Host range determination

The host range of phage IME392 was determined by spot assay and confirmed by plaque assay. Suspected hosts were cultured at 37 °C to reach an optical density of 1.0. Three hundred milliliters of bacterial culture was added to 5 mL of preheated 0.7% LB agar and poured onto 1.5% agar plates.

After solidification, each plate was tested by pipetting 5 μL of phage suspension onto the bacterial lawn. Possible hosts were identified by plaque formation after overnight incubation at 37 °C. The plaque assay procedure is as described in the phage purification section.

Determination of the optimal multiplicity of infection

The multiplicity of infection (MOI), or the ratio of phage particles to bacterial cells prior to culture, affects the final level of bacteriophage produced. At the optimal MOI, a cultured product contains the most phage particles after reaching stationary phase. To determine the optimal MOI, first, the number of colony-forming units of the log-phase (OD600 = 0.6) host bacterial E2 culture and the number of plaque-forming units of the bacteriophage IME392 stock solution were calculated separately. A bacteria-phrase mixture was added to 5 mL of LB medium at different ratios to achieve MOIs of 10, 1, 0.1, 0.01, 0.001, and 0.0001 and was subsequently incubated at 37 °C with shaking at 220 rpm for 4 hours. After centrifugation at 12,000 × g for 1 min and passing the culture through a 0.22-μm filter, the phage titer was calculated using the double-layer plate method after serial dilution. Three replicates were performed, and the MOI that produced the highest phage titer was considered the best MOI for this phage.

One-step growth curve

A one-step growth curve was generated by the following method. A mixture of phage and bacteria at the optimal MOI (0.1) was incubated at 37 °C for 10 minutes for absorption. After centrifugation at 12,000 × g for 1 min, the supernatant containing unabsorbed phage particles was discarded, and the pellet was then washed twice with LB medium and resuspended in 20 mL of LB medium. The moment when the precipitation was resuspended in medium was defined as time zero. The suspension was then cultured at 37 °C with shaking at 220 rpm for 140 min. Samples (200 μL) were collected every 10 minutes (every 5 minutes in the
first 30 minutes) and then centrifuged and plated on double agar plates to determine the phage titer. Each sample was plated on three separate plates. Finally, the resulting one-step growth curve was plotted by GraphPad Prism 8.0.

Determination of pH and temperature tolerance

To determine the tolerance of phage particles to different pH values, LB medium was adjusted to a variety of pH values ranging from 2 to 13 with 5 M HCl or NaOH solution and then passed through a 0.22-μm filter. Then, 100 μL of purified phage suspension was added to 900 μL of LB medium with different pH values and incubated at 37 °C for 1 hour. To investigate the thermal stability of the phage, 100 μL of purified phage suspension was added to 900 μL of LB medium and incubated at 30 °C, 37 °C, 40 °C, 50 °C, 60 °C, 70 °C, or 80 °C for 1 hour. The titer of the remaining viable phage particles was determined using the double-layer agar method. All assays were performed in triplicate.

Proteomic analysis

The phage particles were concentrated using polyethylene glycol (PEG) and then purified by sucrose density gradient centrifugation [33]. Purified phages were mixed with 6x protein loading buffer (TransGen Biotech Co., LTD) and then boiled for 10 minutes, followed by concentration at 12,000 x g and 4 °C for 3 min. The proteins were separated by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the bands were visualized by staining the gels with Coomassie brilliant blue. Gel slices were then excised and trypsinized. Briefly, 2.5 μg of trypsin was added to 100 μg of protein solution at a protein:trypsin ratio of 40:1 and incubated at 37 °C for 4 hours. Trypsin was added one more time at the above ratio, and enzymatic digestion was continued at 37 °C for 8 hours. The enzymatically digested peptides were desalted using a Strata X column and vacuum dried. The dried peptide sample was analyzed by liquid chromatography mass spectrometry (LC-MS). The full spectrum identification of proteins was mainly based on experimental tandem mass spectrometry data matched with theoretical mass spectrometry data obtained by database simulation. First, the original mass spectrum data were converted to a mass spectrum peak file. Then, the sequence in the database was searched and matched using Mascot v2.3.02 (parameters: enzyme, trypsin; fragment mass tolerance, 0.05 Da; fixed modifications, carboxamidomethyl (C), variable modifications oxidation (M), Gln->pyro-Glu (N-term Q), and deamidated (NQ); max missed cleavages, 1; instrument type, ESI-FTICR; database, bacteriophage_392_nr.fasta), and filtering and quality control (Mascot evaluation ≤ 0.05) were performed on the search results to give reliable protein identification results.

Results

Morphological features of phage IME392

After 10 hours of culture on double agar plates, the bacteriophage IME392 formed visible but small plaques reaching approximately 0.3-0.5 millimeters in diameter. Transmission electron microscopy results suggested that bacteriophage IME392 should be classified morphologically as a member of the family Myoviridae, possessing an icosahedral head approximately 83.93 ± 0.55 nm in diameter (n = 10) and a contractile tail 122.23 ± 3.55 nm in length (n = 10) (Fig. 1).

![Fig. 1](image)

Fig. 1 Morphological features of bacteriophage vB_EcoM_IME392. IME392 possesses an icosahedral head approximately 83.93 ± 0.55 nm in diameter and a contractile tail 122.23 ± 3.55 nm in length (n = 10).
Host range

In this study, the ability of bacteriophage IME392 to lyse strains was determined by spot assay and plaque assay. A host range test was conducted on 33 clinically isolated pathogenic strains or environmentally isolated strains, including 28 *E. coli* strains and other bacteria (*Salmonella*). As shown in Table 1, among 28 strains of *E. coli*, only five strains produced bright and clear plaques, and the plaques formed on the lawns of eight strains was slightly turbid. The phage could not infect the other 15 *E. coli* strains or strains of other species. This indicates that the bacteriophage IME392 has a relatively narrow and specific host range.

Physiological features of phage IME392

The optimal MOI was determined to be 0.1, and this was used to generate the one-step growth curve for IME392 shown in Figure 2. The latent period and burst period were both approximately 15 minutes. In comparison to other known phages [11, 12, 19, 35], IME392 has a lower titer when reaching the stationary phase, at approximately 10^8 plaque-forming units per milliliter (PFU/mL), which is consistent with the small plaque size of IME392.

Bacterium	Strain	Relevant characteristic(s) or source	ST	Spot assay
Escherichia coli				
94	Laboratory strain collection	1	+++	
108	Clinical isolates	43	+	
109	Clinical isolates	477	-	
156	Laboratory strain collection	169	+	
161	ATCC25922	52	-	
196	Isolated from a dairy farm	Non-typeable	-	
239	DH5α	262	+	
611	Laboratory strain collection	19	+++	
1186	Clinical isolates	8	+	
1196	Clinical isolates	44	-	
1644	Isolated from chicken manure	357	+	
1645	Isolated from chicken manure	Non-typeable	+	
1646	Isolated from milk	357	+++	
1647	Isolated from milk	466	-	
1648	Isolated from milk	533	-	
2042	BL21	83	-	
2621	MG1655	Non-typeable	+++	
2724	BL21(DE3)	83	-	
2726	Laboratory strain collection	945	+	
2727	Nissle1917	4	-	
2734	Laboratory strain collection	Non-typeable	-	
2735	Laboratory strain collection	Non-typeable	-	
2736	Laboratory strain collection	88	+	
2738	Laboratory strain collection	132	-	
2739	Laboratory strain collection	303	-	
2740	Laboratory strain collection	466	-	
2741	Laboratory strain collection	24	-	
2743	Ocean University of China	Non-typeable	+++	
Salmonella				
2693	CMCC50001	/	-	
2694	ATCC13311	/	-	
2695	ATCC14028	/	-	
2696	CMCC50115	/	-	
2697	CMCC50094	/	-	

+++ , clear plaques; +, plaques with slight turbidity; -, no plaques formed
The temperature and pH stability data for IME392 phage particles are shown in Figure 3A and B, respectively. IME392 is extremely sensitive to heat treatment. Incubation at 60 °C for 1 hour reduced the phage titer by 99.94%, while no phage activity remained if the incubation temperature reached 70 °C or higher. IME392 was also sensitive to both low- and high-pH environments. No live phage was detected when the phage particles were incubated at pH 2.0 or 13.0 at 37 °C for 1 hour.

Genome sequencing and analysis

The complete genome sequence of phage IME392 was 116,460 base pairs in length, with a GC content of 45.4%. A total of 160 potential open reading frames (ORFs) that could encode proteins were predicted by RAST. The genome sequence was submitted to GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and is available under the sequence ID MH719082.1.

The genome sequence of IME392 was analyzed using BLASTn. The results revealed that only 2% of the genome sequence (nt 91,907-94,497) was significantly similar to known nucleotide sequences in public databases. Homologous sequences included both phage and bacterial sequences. Eighty-nine potential CDSs were further analyzed using BLASTp, among which 34 were identified as functional proteins, including 15 morphogenesis-related proteins, 16 replication-related proteins, and five lysis-related proteins. Two tailspikes were classified as both morphogenesis- and lysis-related proteins. Twenty-three ORFs encoding proteins were highly homologous to phage proteins of unknown function, and two others were homologous to only hypothetical bacterial proteins. The products of the remaining 30 ORFs had no significant sequence similarity to proteins from the public database. The annotated genes are shown on the genome function map (Fig. 4) and in Table 2.

The replication-related modules of IME392 are mainly distributed between nt 7,051 and 54,779 of the genome, with a total length of approximately 47 kb, which is approximately one-third of the length of the entire genome. This is a relatively rare observation. A total of 60 open reading frames were predicted in this region, of which 16 ORF-encoded proteins have known functions, nine are hypothetical proteins, and the remaining 35 did not show homology to currently known proteins. The particularly large size of the replication-related region may be related to a large number of genes...
Escherichia bacteriophage vB_EcoM_IME392

for non-homologous proteins interspersed between genes encoding replication-related enzymes such as ligase, DNA polymerase, RNA polymerase, helicase, and topoisomerase. The next two genes encode two tRNAs, specifically for Met (CAT) and Arg (TCT). Packaging-related virion structure and lysis proteins are closely linked in the genome, covering the range of 61-104 kb, and they are all located in the positive strand of the IME392 genome.

The major capsid protein and terminase large subunit were chosen for phylogenetic tree construction (Fig. 5). In all cases, vB_EcoM_IME392 clustered with Vibrio phage Va2 and Vibrio phage 1.031.O._10N.261.46.F8 but belonged to different branches, indicating that they might have a common ancestor. Vibrio phage Va2 was isolated from aquaculture waters in Qingdao, Shandong, China, and IME392 was also isolated from Qingdao. This geographical similarity reveals that they may have an evolutionary connection. The Va2 genome is 128,360 bp in length and contains 134 open reading frames, similar to IME392. The 152,942-bp Vibrio phage 1.031.O._10N.261.46.F8 partial genome is larger than the others. Like IME392, 1.031.O._10N.261.46.F8 also has two tRNA genes [17]. However, the phylogenetic relationship to other phages was clearly distant, indicating that IME392 is a novel phage. Moreover, bacteriophage IME392
ORF	Start	End	Strand	Length	Top BLASTp hit	Family	Accession no.	E-value	MW (kDa)	pI
1	240	61	-	180	Hypothetical protein [Pectobacterium brasiliense]	WP_172644783.1	6.00E-16	6.70	4.17	
2	467	249	-	219	No hit			7.53		
3	962	630	-	333	No hit			12.63		
4	1270	1025	-	246	Hypothetical protein	WP_063439228.1	1.00E-18	9.22	4.87	
5	1460	1272	-	189	DUF1653 domain-containing protein [Enterobacter asburiae]	NQW57987.1	1.00E-07	7.43	6.27	
6	1645	1460	-	186	No hit			6.83		5.08
7	1899	1642	-	258	No hit			9.61		6.27
8	2062	1886	-	177	No hit			7.02		10.69
9	2746	2117	-	630	Hypothetical protein [Raoultella planticola]	WP_032697006.1	5.00E-46	24.17		5.49
10	3642	2737	-	906	Glycosyltransferase family 4 protein [Escherichia coli]	WP_137536985.1	1.00E-98	34.86		5.66
11	4306	3671	-	636	Morphogenic protein [Enterobacter cancerogenus]	WP_137271981.1	9.00E-63	23.57		5.67
12	4791	4270	-	522	Hypothetical protein [Enterobacter rogenkampii]	WP_095429045.1	2.00E-33	19.64		4.87
13	5510	4803	-	708	Putative membrane protein [Escherichia phage adrianh]	WP_032697006.1	4.00E-27	24.89		4.31
14	5740	5510	-	231	Hypothetical protein [Salmonella phage barely]	YP_009885781.1	1.00E-17	8.50		7.62
15	6106	5789	-	318	Hypothetical protein [Erwinia phage vB_EamM-Bue1]	YP_009837251.1	3.00E-46	12.35		7.63
16	6522	6103	-	420	Inhibitor of host Lon protease [Escherichia phage EcS1]	BBC78124.1	2.00E-08	15.65		4.72
17	6742	6509	-	234	Hypothetical protein [Enterobacter phage Arya]	YP_095429045.1	2.00E-33	19.64		4.87
18	7051	6797	-	255	Acyl carrier protein [Candidatus Acetothermum autotrophicum]	BAL59693.1	6.00E-06	9.31		3.60
19	8994	7051	-	1944	NAD-dependent DNA ligase LigA [Ralstonia phage RP13]	BCG50031.1	7.00E-75	72.06		5.16
20	9817	9059	-	759	DNA polymerase/3'-5' exonuclease PolX [Thermobispora bispora]	WP_013132370.1	6.00E-26	28.56		5.86
21	9981	9814	-	168	No hit			6.45		11.07
22	10354	9983	-	372	No hit			13.82		5.32
23	10473	10366	-	108	No hit			4.08		9.98
24	10831	10589	-	243	No hit			9.29		8.85
25	11208	10831	-	378	No hit			14.32		8.52
26	11359	11198	-	162	No hit			6.21		6.53
27	11565	11359	-	207	No hit			7.81		9.66
28	11869	11573	-	297	Hypothetical protein [Vibrio phage 1.031.O._10N.261.46.F8]	AUR83081.1	4.00E-04	11.10		8.06
29	12252	11872	-	381	No hit			13.92		4.82
30	12573	12262	-	312	No hit			11.59		9.43
31	13018	12605	-	414	No hit			14.49		5.11
32	13249	13031	-	219	No hit			8.49		9.15
33	13634	13260	-	375	No hit			14.01		5.51
34	13978	13694	-	285	No hit			10.11		3.95
35	14442	14092	-	351	No hit			13.85		5.76
36	14728	14423	-	306	No hit			11.20		9.65
37	15148	14804	-	345	No hit			12.43		5.62
Table 2 (continued)

ORF	Start	End	Strand	Length	Top BLASTp hit	Family	Accession no.	E-value	MW (kDa)	pI
38	15659	15141	-	519	No hit				18.97	4.33
39	15952	15653	-	300	No hit				11.09	4.32
40	16457	15927	-	531	Hypothetical protein [Halomonas sp. S2151]				24.96	6.44
41	18025	16457	-	1569	DNA-directed RNA polymerase beta subunit [Ralstonia phage RP13]	Myoviridae	BCG50162.1	7.00E-85	58.73	8.79
42	18697	18041	-	657	No hit				26.59	8.72
43	19095	18757	-	339	No hit				12.77	4.26
44	19889	19203	-	687	No hit				26.59	8.72
45	21418	19904	-	1515	DNA-directed RNA polymerase beta' subunit [Leptospira santarosai]				12.30	9.47
46	21752	21438	-	315	No hit				12.61	4.42
47	22083	21739	-	345	No hit				17.66	6.51
48	22547	22080	-	468	No hit				12.61	9.47
49	23118	22679	-	240	No hit				8.63	4.28
50	24533	23073	-	1461	No hit				54.16	6.89
51	24941	24672	-	270	No hit				9.66	10.91
52	28209	24922	-	3288	DNA polymerase I [Ralstonia phage RP13]	Myoviridae	BCG50106.1	4.00E-13	125.53	5.03
53	29916	28279	-	1638	DEAD/DEAH box helicase family protein [Ralstonia phage RP13]	Myoviridae	BCG50107.1	4.00E-12	62.13	5.23
54	30872	29880	-	993	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50109.1	3.00E-35	38.40	6.28
55	31185	30862	-	324	No hit				11.60	6.82
56	31774	31175	-	600	HD domain-containing protein [Ralstonia phage RP13]	Myoviridae	BCG50111.1	1.00E-24	22.53	4.98
57	32931	31858	-	1074	Thymidylate synthase [Salmonella phage SeSz-1]	Ackermannviridae	YP_009881884.1	2.00E-51	40.37	5.38
58	33650	32928	-	723	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50110.1	6.00E-25	27.11	5.66
59	34711	33740	-	972	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50138.1	2.00E-47	38.60	6.03
60	35790	34711	-	1080	No hit				41.14	5.42
61	36872	35838	-	1035	No hit				40.12	5.04
62	37490	36879	-	612	PIG-L family deacetylase [Kocuria rhizophila]		WP_144801709.1	5.00E-23	23.21	5.25
63	38959	37577	-	1383	BCCT family transporter [Halomonas sp. Y2R2]		WP_149284844.1	1.00E-107	50.70	9.21
64	39871	39863	-	909	No hit				33.51	4.83
65	40713	39973	-	741	Hypothetical protein [Candidatus Woesearchaeota archaeon]					
66	42065	40818	-	1248	DNA topoisomerase, type IIA subunit A [Vibrio phage]	Myoviridae	AUR82996.1	9.00E-51	46.87	8.17
67	44053	42068	-	1986	DNA topoisomerase (ATP-hydrolyzing) subunit B [Thermosiphon atlanticus]		WP_073073159.1	8.00E-54	75.27	5.14
68	44527	44090	-	438	No hit				16.56	8.66
69	44990	44736	-	255	No hit				9.71	4.81
70	45226	44987	-	240	No hit				8.83	5.79
71	48139	45374	-	2766	SMC family ATPase [Ralstonia phage RP13]	Myoviridae	BCG50154.1	0.0	104.00	5.17
72	48993	48136	-	858	DNA polymerase [Bacillus phage SP-10]	Herelleviridae	YP_007003453.1	3.00E-12	32.56	5.24
73	50056	49046	-	1011	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50116.1	4.00E-39	37.52	4.77
ORF	Start	End	Strand	Length	Top BLASTp hit	Family	Accession no.	E-value	MW (kDa)	pI
-----	-------	-------	--------	--------	--	-------------	---------------	---------	----------	-----
74	51193	50153	-	1041	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50123.1	4.00E-07	39.79	5.90
75	51417	51190	-	228	No hit			8.18	4.55	
76	51870	51421	-	450	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50121.1	6.00E-29	17.21	5.05
77	53129	51870	-	1260	Replicative helicase [Ralstonia phage RP13]	Myoviridae	BCG50120.1	2.00E-110	46.60	5.30
78	54779	53139	-	1260	DEAD/DEAH box helicase family protein [Ralstonia phage RP13]	Myoviridae	BCG50119.1	6.00E-87	60.65	6.14
79	55300	54782	-	519	No hit			19.63	5.32	
80	55657	55346	-	312	No hit			11.82	6.13	
81	55947	55702	-	246	No hit			9.16	9.45	
82	56254	55937	-	318	No hit			12.11	6.72	
83	57140	56349	-	792	No hit			31.38	6.15	
84	57285	57163	-	123	No hit			4.62	9.78	
85	58180	58108	-	73	tRNA-Met-CAT					
86	58725	58653	-	73	tRNA-Arg-TCT					
87	60064	59522	-	543	Hypothetical protein [Vibrio phage PWH3a-P1]	Myoviridae	YP_007675922.1	8.00E-41	20.84	7.07
88	60343	60182	-	162	No hit			5.83	3.96	
89	60812	60330	-	483	Putative ssDNA binding protein [Pectobacterium phage PP99]	Autographiviridae	YP_009788767.1	7.00E-41	18.26	7.63
90	61153	60812	-	342	No hit			12.31	9.26	
91	61350	61823	+	474	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50099.1	3.00E-20	16.87	5.34
92	61827	63653	+	1827	Terminase large subunit [Vibrio phage 1.031.O_10N.261.46.F8]	Myoviridae	AUR83174.1	7.00E-86	68.52	5.40
93	63654	65231	+	1578	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50094.1	4.00E-112	58.86	4.58
94	65224	65478	+	255	No hit			9.16	4.37	
95	65491	66927	+	1437	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50091.1	1.00E-73	52.33	4.70
96	66983	68410	+	1428	Major capsid protein [Vibrio phage 1.031.O_10N.261.46.F8]	Myoviridae	AUR83170.1	4.00E-71	50.73	4.74
97	68560	69276	+	717	No hit			25.01	4.40	
98	69310	69846	+	537	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50086.1	3.00E-39	20.16	9.87
99	69846	70133	+	288	No hit			10.89	11.65	
100	70130	70759	+	630	Hypothetical protein [Ralstonia phage RP13]	Myoviridae	BCG50082.1	6.00E-29	23.90	4.78
101	70769	71332	+	564	No hit			20.53	4.84	
102	71334	71999	+	666	Hypothetical protein [Chloroflexi bacterium]	RLC62271.1	6.00E-04	24.65	4.71	
103	72001	72192	+	192	No hit			7.02	6.18	
104	72203	74002	+	1800	Phage tail sheath domain-containing protein [Pseudoalteromonas citrea]	WP_138594708.1	9.00E-122	64.39	4.80	
105	74013	74537	+	525	Hypothetical protein [Pseudoalteromonas citrea]	WP_138594710.1	2.00E-37	19.20	4.98	
106	74552	75028	+	477	Hypothetical protein [Pseudoalteromonas]	WP_125251889.1	2.00E-20	18.43	4.90	
107	75038	75865	+	828	Hypothetical protein [Pseudoalteromonas sp. McH1-7]	WP_176033179.1	2.00E-28	31.11	5.11	
108	75944	78802	+	2859	Glycoside hydrolase [Acinetobacter radioresistens]	WP_138009711.1	1.00E-39	102.37	5.75	
109	78802	79437	+	636	Hypothetical protein [Vibrio phage 1.031.O_10N.261.46.F8]	Myoviridae	AUR83149.1	3.00E-09	23.26	8.86
ORF Start	ORF End	Strand	Length	Top BLASTp hit	Family	Accession no.	E-value	MW (kDa)	pI	
-----------	---------	--------	--------	----------------	--------	---------------	---------	----------	----	
108 7945	7982	+	37	Hypothetical protein [Pseudomonas aeruginosa PSL121770]	Myoviridae	WP_007860038.1	1.00E-34	26.40	7.53	
109 7981	8046	+	66	Hypothetical protein [Pseudomonas aeruginosa PSL121770]	Myoviridae	WP_007860039.1	1.00E-34	26.40	7.53	
110 8046	8101	+	66	Hypothetical protein [Pseudomonas aeruginosa PSL121770]	Myoviridae	WP_007860040.1	1.00E-34	26.40	7.53	
111 8101	8156	+	56	No hit						
112 8156	8211	+	56	No hit						
113 8211	8266	+	56	No hit						
114 8266	8321	+	56	No hit						
115 8321	8376	+	56	No hit						
116 8376	8431	+	56	No hit						
117 8431	8486	+	56	No hit						
118 8486	8541	+	56	No hit						
119 8541	8596	+	56	No hit						
120 8596	8651	+	56	No hit						
121 8651	8706	+	56	No hit						
122 8706	8761	+	56	No hit						
123 8761	8816	+	56	No hit						
124 8816	8871	+	56	No hit						
125 8871	8926	+	56	No hit						
126 8926	8981	+	56	No hit						
127 8981	9036	+	56	No hit						
128 9036	9091	+	56	No hit						
129 9091	9146	+	56	No hit						
130 9146	9201	+	56	No hit						
131 9201	9256	+	56	No hit						
132 9256	9311	+	56	No hit						
133 9311	9366	+	56	No hit						
134 9366	9421	+	56	No hit						
135 9421	9476	+	56	No hit						
136 9476	9531	+	56	No hit						
137 9531	9586	+	56	No hit						
138 9586	9641	+	56	No hit						
139 9641	9696	+	56	No hit						
140 9696	9751	+	56	No hit						
141 9751	9806	+	56	No hit						
142 9806	9861	+	56	No hit						
143 9861	9916	+	56	No hit						
144 9916	9971	+	56	No hit						
145 9971	10026	+	56	No hit						
146 10026	10081	+	56	No hit						
147 10081	10136	+	56	No hit						
148 10136	10191	+	56	No hit						
149 10191	10246	+	56	No hit						
150 10246	10301	+	56	No hit						
151 10301	10356	+	56	No hit						
152 10356	10411	+	56	No hit						
153 10411	10466	+	56	No hit						
154 10466	10521	+	56	No hit						
155 10521	10576	+	56	No hit						
156 10576	10631	+	56	No hit						
157 10631	10686	+	56	No hit						
158 10686	10741	+	56	No hit						
159 10741	10796	+	56	No hit						
160 10796	10851	+	56	No hit						
161 10851	10906	+	56	No hit						
162 10906	10961	+	56	No hit						
163 10961	11016	+	56	No hit						
164 11016	11071	+	56	No hit						
165 11071	11126	+	56	No hit						
166 11126	11181	+	56	No hit						
167 11181	11236	+	56	No hit						
168 11236	11291	+	56	No hit						
ORF	Start	End	Strand	Length	Top BLASTp hit	Family	Accession no.	E-value	MW (kDa)	pI
-----	-------	-------	--------	--------	---	-----------------------	---------------	----------	----------	------
144	109838	109599	240	-	Hypothetical protein	WP_157760109.1	6.00E-08	8.90	10.49	
145	110066	109893	174	-	Hypothetical protein	WP_001563024.1	1.00E-17	6.60	4.34	
146	110549	110085	465	-	NADAR family protein [Delftia acidovorans]	NIT77307.1	8.00E-31	17.84	8.78	
147	111118	110549	570	-	Hypothetical protein [Klebsiella phage ZCKP1]	Myoviridae	YP_009803533.1	2.00E-21	22.48	5.48
148	111362	111108	255	-	No hit			9.35	9.21	
149	111536	111372	165	-	No hit			6.24	9.39	
150	111729	111577	153	-	No hit			5.66	3.85	
151	111910	111716	195	-	Hypothetical protein [Vibrio phage vB_VchM_Kuja]	Ackermannviridae	YP_009854103.1	6.00E-08	7.66	4.44
152	112204	111971	234	-	No hit			8.61	7.96	
153	112904	112734	171	-	Hypothetical protein [Citrobacter phage Merlin]	Myoviridae	YP_009203833.1	2.00E-04	6.31	6.53
154	113256	112897	360	-	No hit			13.74	5.67	
155	113600	113367	234	-	Hypothetical protein [Klebsiella phage vB_KpnM_KpS110]	Ackermannviridae	YP_009798919.1	4.00E-08	8.38	4.57
156	114141	113611	531	-	LysM peptidoglycan-binding domain-containing protein		WP_094245731.1	6.00E-04	20.10	6.82
157	114497	114159	339	-	No hit			13.19	4.56	
158	114724	114497	228	-	No hit			8.39	6.11	
159	115275	114721	555	-	Hypothetical protein [Klebsiella oxytoca 10-5244]	KMV90563.1	5.00E-26	20.62	5.86	
160	115696	115286	411	-	Hypothetical protein [Cronobacter phage CR9]	Myoviridae	YP_009015051.1	3.00E-13	15.52	6.04
161	115874	115686	189	-	No hit			6.89	4.04	
162	116130	115933	198	-	No hit			7.21	4.44	
forms an independent branch in the phylogenetic tree, has low similarity to known phages in the family Myoviridae, and can be classified as a member of a new genus.

Proteomic analysis

To identify the predicted proteins by our genomic analysis, the phage was concentrated and analysed using mass spectrometry. Sixty proteins were identified, and 28 out of these were identified as having homologues of known function (Table 3). Nine of the identified proteins can be categorized as structural proteins or proteins involved in the morphogenesis of the phage (CDS1, CDS3, CDS48, CDS53, CDS65, CDS66, CDS68, CDS69, CDS72). In addition to the terminase large subunit, all replication-related proteins were identified. However, only two lysis-related proteins were identified. Mass spectrometry-based proteomics identified 28 of the 34 proteins predicted in our genomic analysis (Table 2) with a known function. In total, 60 out of 89 (67.4%) predicted proteins were identified by mass spectrometry proteomics, most of which were encoded by identified structural genes.

Discussion

The invention of antibiotics has greatly improved the living conditions of humans and saved tens of thousands of lives. However, at the same time, the problems of drug resistance and even multidrug resistance caused by antibiotic abuse have posed new challenges. It has been estimated that 700,000 people die from drug-resistant infections each year, and this number may rise to 10 million by 2050. The speed of development of new antibiotics cannot match the speed of antibiotic resistance development [20, 25]. Phage therapy has gradually become a research hotspot due to its high efficiency, excellent specificity, and easy availability. A variety of phage preparations have been successfully developed and used in clinical treatments. In this study, we isolated and identified a new bacteriophage, IME392, that can infect E. coli. The phage infected only some of the E. coli strains tested, and none of the strains from other species. In addition, no toxin genes, antibiotic resistance genes, phage lysogenic factors, or other pathogen-related genes were found among the genes with known functions in the phage genome. However, the functions of many genes are still unknown, so it is important to identify the functions of these genes. The use of this phage to treat infections caused by resistant E. coli still has a long way to go.

Genomic analysis shows that bacteriophage IME392 has low similarity to existing biological entities (only 2%) and might have numerous novel features. The genome annotation of IME392 revealed only 13 predicted phage structural proteins, while the genes encoding other phage structural proteins are still unknown. In addition, the genome of phage IME392 also encodes a variety of replication-related proteins, including DNA polymerase, DNA ligase, DNA helicase, topoisomerase, 5’-3’ DNA exonuclease, and other replication-related proteins. Therefore, it can rely on its own encoded enzymes to replicate, and we speculate that it may have its own replication mechanism. It is worth noting that we also found two genes encoding a DNA-directed RNA polymerase in the genome of the bacteriophage IME392, which is not common in bacteriophages.

Glycosyltransferase is an enzyme that can catalyze the transfer of the glycosyl moiety from an activated nucleotide sugar to a nucleophosphilic glycosyl acceptor molecule [32]. Some bacteriophages modify the glycome by influencing the expression of host glycosyltransferases, while other phages are unique in that they can express their own glycosyltransferases. These bacteriophages glucosylate their DNA...
Furthermore, glycosyltransferase may function in the puncturing or lysis of the cell wall peptidoglycan. We were surprised to find that the genome of bacteriophage IME392 also contains a gene encoding glycosyltransferase, which may prevent its removal by the host, but its exact function in the life cycle of the bacteriophage still needs experimental study. The IME392 genome also encodes two distinct tailspike proteins. The tailspike protein of enterobacteria phage P22 mediates the recognition and adhesion between the bacteriophage and the surface of *Salmonella enterica* cells [1].

It is speculated that the tailspike protein of bacteriophage IME392 has a similar function. We believe that the presence of the glycosyltransferase and tailspike protein helps phage IME392 infect and adsorb to the host more easily.

CDS no.	Molecular mass (kDa)	No. of unique peptides	No. of unique spectra	Coverage (%)	Predicted function	Abundance	iBAQ
48	50.699	11	180	33.05%	Putative major capsid protein	54692.29223	2878.541696
3	23.553	4	8	28.44%	Putative morphogenic protein	6750.338238	843.7922797
22	40.343	6	18	25.49%	Putative thymidylate synthase	51649.30422	2347.695646
53	64.349	10	88	24.21%	Putative tail sheath protein	25463.46055	943.0911316
76	24.319	5	8	22.79%	Putative lysis protein	21046.06895	1315.379309
65	33.880	4	19	22.62%	Putative tail fiber protein	23590.13879	1387.655223
31	46.839	7	19	22.17%	Putative DNA topoisomerase subunit A	32046.70718	1144.525257
81	16.686	2	5	20.00%	Putative dUTP diphosphatase	3151.507709	315.1507709
32	75.226	7	19	19.06%	Putative DNA topoisomerase subunit B	18602.95892	489.5515504
8	28.546	3	7	18.25%	Putative DNA-directed DNA polymerase family X	5244.725872	374.6232766
68	52.295	5	14	17.60%	Putative collagen fiber protein	18607.30015	744.292006
19	62.092	6	15	16.70%	Putative DNA helicase	19464.30079	648.8100263
1	24.150	2	5	16.27%	Putative morphogenic protein	6115.22847	436.8020336
66	47.984	4	17	12.95%	Putative tail fiber protein	6728.588573	373.8104763
71	111.264	10	35	12.76%	Putative endosialidase tailspike	41860.88542	872.1017796
39	46.568	4	7	12.41%	Putative DNA helicase	32529.96823	1355.415343
69	22.999	1	16	11.39%	Putative tail fiber assembly protein	2197.969707	199.8154279
18	125.445	10	25	10.59%	Putative DNA polymerase I	56612.4992	870.9615262
80	23.642	2	9	10.14%	Putative dCTP deaminase	1812.964954	129.4974967
70	23.087	2	3	9.66%	Putative tail fiber protein	6499.410564	464.2436117
72	94.901	7	12	8.71%	Putative colonidase tailspike	19163.57878	491.373815
7	72.014	4	8	6.65%	Putative DNA ligase	17073.1183	474.2532861
12	58.693	3	7	5.56%	Putative DNA-directed RNA polymerase beta’ subunit	10412.92608	359.0664165
15	54.876	2	3	5.56%	Putative DNA-directed RNA polymerase beta’ subunit	4614.473378	128.1798161
57	102.312	4	4	5.36%	Putative glycoside hydrolase	21515.99538	352.7212358
2	32.959	1	2	4.56%	Putative glycosyltransferase	5288.362023	278.3348433
35	32.535	1	1	4.56%	Putative 5’-3’ DNA exonuclease	2315.063498	136.1802058
40	60.611	1	1	1.65%	Putative DNA helicase	8802.824665	352.1129866

Table 3 Characteristics of the vB_EcoM_IME392 virion proteome identified by LC-MS/MS

In conclusion, we present here the biology and the genomic and proteomic characteristics of *E. coli* phage IME392, which was isolated from sewage samples from a chicken farm in Qingdao, China. The newly isolated phage IME392 was identified as a member of the family *Myoviridae*. The findings of this study not only provide new phage resources for the development of phage therapy against *E. coli* but also show that there are still many completely novel phages waiting to be discovered.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00705-021-05160-5.

Acknowledgements This research was supported by the Key Project of Beijing University of Chemical Technology (XK1803-06), the National Key Research and Development Program of China (2018YFA0903000, 2020YFC2005405, 2020YFA0712100, 2020YFC0840805), Funds for
First-Class Discipline Construction (XK1805), the Inner Mongolia Key Research and Development Program (2019ZD006), the National Natural Science Foundation of China (81672001, 81621005), the NSFC-MFST Project (China-Mongolia) (31961143024), and Fundamental Research Funds for Central Universities (BUCTRC201917, BUCTZY2022).

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Andres D, Baxa U, Hanke C, Seckler R, Barbiriz S (2010) Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection. Biochem Soc Trans 38:1386–1389
2. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formuska T, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75
3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pyshkin AV, Sierotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477
4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
5. Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223
6. Chibani-Chennoufi S, Canchaya C, Bruttin A, Brüssow H (2004) Comparative genomics of the T4-Like Escherichia coli phage JS98: implications for the evolution of T4 phages. J Bacteriol 186:8276–8286
7. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244
8. Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1228
9. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638
10. Fiers W, Contreras R, Duerinck F, Haegeman G, Isertant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berge A, Volckaert G, Ysebaert M (1976) Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260:500–507
11. Fu P, Zhao Q, Shi L, Xiong Q, Ren Z, Xu H, Chai S, Xu Q, Sun X, Sang M (2021) Identification and characterization of two bacteriophages with lytic activity against multidrug-resistant Escherichia coli. Virus Res 291:198696
12. Guo Z, Huang J, Yan G, Lei L, Wang S, Yu L, Zhou L, Gao A, Feng X, Han W, Gu J, Yang J (2017) Identification and characterization of Dpo42, a novel depolymerase derived from the Escherichia coli phage vB_EcoM_ECOO78. Front Microbiol 8:1460
13. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advances. J Ind Microbiol Biotechnol 39:383–399
14. Jassim SA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages “The Living Drugs.” World J Microbiol Biotechnol 30:2153–2170
15. Jauregui F, Landraud L, Passet V, Diancourt L, Frapy E, Guignon G, Carbonnelle E, Lortholary O, Clermont O, Denamur E, Picard B, Nassif X, Brisse S (2008) Phylogenetic and genomic diversity of human bacteriophage Escherichia coli strains. BMC Genom 9:560
16. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140
17. Kauffman KM, Brown JM, Sharma RS, Vaninsberghe D, Elsherbini J, Polz M, Kelly L (2018) Viruses of the Nahant Collection, characterization of 251 marine Vibrioaceae viruses. Sci Data 5:180114
18. Kim B, Park H, Na D, Lee SY (2014) Metabolic engineering of Escherichia coli for the production of phenol from glucose. BioTechnol J 9:621–629
19. Kutter EM, Skutt–Kakaria K, Blasdel B, El-Shibiny A, Castano A, Bryan D, Kropinski AM, Villegas A, Ackermann HW, Toribio AL, Pickard D, Anany H, Callaway T, Brabban AD (2011) Characterization of a VI-like phage specific to Escherichia coli O157:H7. Virol J 8:430
20. Laxminarayanan R, Amáible-Cuevas CF, Cao O, Evans T, Heymann DL, Hoffman S, Holmes A, Mendelson M, Sridhar D, Woolhouse M, Rottingen JA (2016) UN High-Level Meeting on antimicrobials—what do we need? Lancet 388:218–220
21. Linn S, Arber W (1968) Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci USA 59:1300–1306
22. Liu T, Khosla C (2010) Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet 44:53–69
23. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168
24. Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511
25. O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom
26. Opella SJ, Stewart PL, Valentine KG (1987) Protein structure by solid-state NMR spectroscopy. Q Rev Biophys 19:455–477
27. Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krish HM, Karam JD (2006) Plasticity of the gene functions for DNA replication, characterization of 251 marine Vibrionaceae viruses. Sci Commun 5:180114
28. Pechman D, Bertrand C, Levy D, Desplats C, Krish HM, Karam JD (2006) Plasticity of the gene functions for DNA replication, characterization of 251 marine Vibrionaceae viruses. Sci Commun 5:180114
29. Russo TA, Johnson JR (2003) Medical and economic impact of drug-resistant infections. J Ind Microbiol Biotechnol 30:5–16
30. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695
31. Wick RR, Schultz MB, Zobel J, Holt KE (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–3352

Escherichia bacteriophage vB_EcoM_IME392

2519
32. Williams GJ, Thorson JS (2009) Natural product glycosyltransferases: properties and applications. Adv Enzymol Relat Areas Mol Biol 76:55–119
33. Yuan W, Zhang Y, Wang G, Bai J, Wang X, Li Y, Jiang P (2016) Genomic and proteomic characterization of SE-I, a temperate bacteriophage infecting Erysipelothrix rhusiopathiae. Arch Virol 161:3137–3150
34. Zhang Q, Xing S, Sun Q, Pei G, Cheng S, Liu Y, An X, Zhang X, Qu Y, Tong Y (2017) Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China. Virus Genes 53:464–476
35. Zhou Y, Bao H, Zhang H, Wang R (2015) Isolation and Characterization of Lytic Phage vB_EcoM_JS09 against Clinically Isolated Antibiotic-Resistant Avian Pathogenic Escherichia coli and Enterotoxigenic Escherichia coli. Intervirology 58:218–231

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.