HUMAN MALIGNANT AND MITOGEN-TRANSFORMED
CELLS CONTAIN RETROVIRAL P15E-RELATED ANTIGEN

BY GEORGE J. CIANCIOLO, DONNA PHIPPS, AND RALPH SNYDERMAN

From the Laboratory of Immune Effector Function, Howard Hughes Medical Institute, and
Departments of Medicine and Microbiology and Immunology, Duke University Medical Center,
Durham, North Carolina 27710

Murine tumor cells (1–3) and certain murine retroviruses (4) contain factors
that inhibit macrophage (MØ) accumulation at inflammatory foci. The retroviral
activity is contained in the envelope protein P15E (4). P15E also inhibits lymphoproliferative responses of cats and man (5, 6). We recently showed that
spontaneous and carcinogen-induced murine malignant cells synthesize a protein
that is physicochemically and antigenically similar to P15E. The inhibitory activity
for MØ accumulation in the tumors was removed by monoclonal anti-P15E (7).
Human cancerous effusions also contain proteins that inhibit human monocyte
responses to chemoattractants and the inhibitory activity was absorbed by mono-
clonal anti-P15E (8). We now sought to determine whether P15E-related antigens
are indeed present in human malignant cells.

Materials and Methods

Cells. The cell lines studied, U937, K562, SB, MOLT-4, HL60, HL60-BII, HSB-2,
and CEM, were all derived from humans with lymphoid neoplasms and obtained from
the American Type Culture Collection, Rockville, MD. The U937 line was from a
histiocytic lymphoma. The HL60 and the HL60 BII subclone were from an acute
promyelocytic leukemia. The T lymphoblastoid HSB-2 and the B lymphoblastoid SB cell
lines were from a patient with acute lymphoblastic leukemia. The T lymphoblastoid CEM
and MOLT-4 lines were derived from acute lymphoblastic leukemias. The K562 line was
from a chronic myelogenous leukemia effusion. All cell lines tested (HL60, HSB, CEM,
MOLT-4, K562) grew as tumors in animal models. Control mononuclear cells were
isolated from normal human blood with Lymphocyte Separation Media (8). Cell lines
were grown in RPMI 1640 with 10% heated fetal bovine serum and antibiotics (Gibco
Laboratories, Grand Island, NY).

Antibodies. Monoclonal antibodies 19F8 (IgG1) and 4F5(IgG2a), which react with
different epitopes on murine retroviral P15E, were contained in ascites fluid or Protein
A purified from ascites or hybridoma culture supernatants (7, 9). Control antibodies were
pooled normal mouse serum (NMS) or Protein A–purified IgG2a or IgG2b from culture
supernatants of the MPC11 OUA or RPC 5.4 cell lines (American Type Culture Collection,
Rockville, MD).

Indirect Immunofluorescence. Cells were fixed on ice using phosphate-buffered (pH 7.2)
saline (PBS) containing 45% acetone, and 9.25% formaldehyde, washed, and incubated with antibody (final concentration = 1:40–1:100 ascites or NMS; 50.0–125.0 μg/ml

This work was supported by National Cancer Institute grant #P01-CA-29589-02. Reprint requests
should be addressed to G. J. Cianciolo, Box 3892, Duke University Medical Center, Durham, NC
27710.

J. Exp. Med. © The Rockefeller University Press - 0022-1007/84/05/0964/06 $1.00
Volume 159 March 1984 964-969
CIANCIOLO ET AL. BRIEF DEFINITIVE REPORT

FIGURE 1. Anti-P15E reactivity of human malignant and normal mononuclear cells. Cells were fixed, incubated with 12.5 μg of anti-P15E 19F8 or IgG_{2b}, stained, and analyzed by FACS. For each cell type the less fluorescent histogram represents cells incubated with control IgG_{2b}.

Cells	Antibodies used	Antibodies used
	Anti-P15E, 19F8	Anti-P15E, 4F5
	% ± SD	% ± SD
U937	74.9 ± 9.8	5.5 ± 3.8
HL60	56.3 ± 9.0	5.2 ± 3.5
HL60 BII	64.2 ± 19.1	6.8 ± 4.6
CEM	40.4 ± 28.4	7.6 ± 8.6
K562	79.5 ± 16.3	20.2 ± 9.4
HSB-2	54.6 ± 21.2	7.7 ± 7.8
SB	65.2 ± 14.9	18.0 ± 8.1
MOLT-4	76.0 ± 6.8	14.4 ± 1.6
PBMC	7.2 ± 4.3	1.4 ± 1.2

* Fluorescence was measured on 10,000 fixed cells as described in Materials and Methods. The photomultiplier tube setting was adjusted so that ~5% of the PBMC were fluorescent with anti-P15E. Anti-P15E (19F8) was used at a 1:40-1:100 dilution of ascites fluid or as 62.5-125.0 μg/ml of antibody isolated from ascites fluid or culture supernatants by Protein A Sepharose. Anti-P15E (4F5) was used as 50.0 μg/ml of antibody isolated from culture supernatants by Protein A Sepharose.

** Cells were obtained as described in Materials and Methods.

* Cells were examined at least three times.

Fluorescence was measured on 10,000 fixed cells as described in Materials and Methods. The photomultiplier tube setting was adjusted so that ~5% of the PBMC were fluorescent with anti-P15E. Anti-P15E (19F8) was used at a 1:40-1:100 dilution of ascites fluid or as 62.5-125.0 μg/ml of antibody isolated from ascites fluid or culture supernatants by Protein A Sepharose. Anti-P15E (4F5) was used as 50.0 μg/ml of antibody isolated from culture supernatants by Protein A Sepharose.

Mitogen Stimulation. Isolated normal mononuclear cells were resuspended to 2 × 10⁶ lymphocytes/ml in supplemented RPMI. Cells (1 ml) were cultured with media alone or with PHA (0.5 μg/ml), Con A (5.0 μg/ml), or PWM (1:250 dilution of stock) at 37°C in a humidified, 5% CO₂ atmosphere, and prepared for immunofluorescence as above.

Reagents. Bovine serum albumin Fraction V (BSA) and dibutyryl cyclic AMP (dbcAMP) were from Sigma Chemical Co. St. Louis, MO. Phytohemagglutinin (PHA) was from...
Reactivity of Human Tumor Cell Lines with Anti-P15E. Cell lines were examined for anti-P15E reactivity by indirect immunofluorescence and FACS analysis. The photomultiplier tube setting was adjusted so that ~5% of freshly isolated mononuclear cells were reactive with anti-P15E. All cell lines reacted with the purified anti-P15E (Fig. 1 and Table I). For each tumor cell line there was a significant difference between the fluorescence of cells incubated with either of the monoclonal anti-P15E antibodies compared with those incubated with control antibodies. The difference in anti-P15E reactivity between normal mononuclear cells and malignant cells was not due to cell size (data not shown).

Effect of Cellular Differentiation on Anti-P15E Reactivity. The effects of differentiation on the ability of U937, HL60, and HL60 BII cells to bind anti-P15E was examined. Cell lines were grown in 0.5 mM dbcAMP for 48 h, conditions which induce differentiation and enhance mature leukocyte functions in the U937 and HL60 but not in the HL60 BII cell line (10–12). Treatment of U937 and HL60 with dbcAMP caused a decrease in the anti-P15E reactivity of the cells (Fig. 2A). In four experiments the average decreases in reactivity of the
dbcAMP-treated U937 and HL60 cells were 53.8 (37.1–85.3) and 35.8 (10.5–60.6) percent, respectively. Treatment of HL60 BII cells with dbcAMP had no effect on the anti-P15E reactivity. In five experiments the average decrease in reactivity was 3.4%. The decrease in fluorescence in differentiated cells was not due to a change in cell size, but to both decreased numbers of fluorescent cells and decreased intensity of fluorescence (data not shown).

Effect of Mitogen Stimulation on Anti-P15E Reactivity of Normal Human Blood Mononuclear Cells. Fresh mononuclear cells had little reactivity with anti-P15E. To determine the effects of blast transformation, they were cultured with PHA, Con A, or PWM for 48–72 h. The mitogens all induced the cells to react with anti-P15E (Fig. 2B). In four experiments the percentages of PHA- or Con A-stimulated cells reacting with anti-P15E were 58.6 (± 10.8 SD) and 37.5 (± 12.9 SD), respectively, compared with 11.4 (± 5.6 SD) and 10.0 (± 8.5 SD) with control immunoglobulin. In a single experiment the percentages of PWM-stimulated cells reacting with anti-P15E or control antibody were 46.8 and 20.3, respectively. The increase in reactivity was not due to nonspecific sticking of the antibody to the lectins (data not shown).

Discussion

All of the malignant cell lines examined reacted with two monoclonal antibodies to independent epitopes of retroviral P15E. The internal nature of this P15E-related antigen is indicated by its being detected only in permeabilized cells. The fixation process per se was unlikely to cause anti-P15E reactivity, since different fixation processes (formalin vs. glutaraldehyde-paraformaldehyde) worked equally well (data not shown). Interestingly, two other proteins associated with malignant cells, the p60src and p21 proteins of Rous and Harvey sarcoma virus–transformed cells, have also been reported to be internally localized (13, 14).

The loss of anti-P15E reactivity with dbcAMP differentiation of malignant cells and the increase in reactivity in mitogen-transformed mononuclear cells suggest that the synthesis of the P15E-related antigen may be controlled by a gene that is either not expressed, or is expressed at very low levels in differentiated cells, but whose expression increases during rapid cell growth. Indeed, the p53 protein has been reported in elevated amounts in a wide variety of neoplastically transformed cells and to increase in mitogen-stimulated cells (15, 16). Although we have not yet isolated and characterized the P15E-related antigen from human cells the possibility that it, like its murine counterpart, has immunosuppressive properties, would have important theoretical implications. Recent reports have indicated that human DNA contains sequences that hybridize with murine leukemia virus cDNA probes (17). Furthermore, human malignant cells contain oncogenes that are capable of inducing neoplastic transformation in vitro (18). The expression by transformed cells of additional genes that code for immunosuppressive proteins such as P15E would be likely to confer a selective advantage upon such cells for sustained growth. Thus neoplastic transformation, sufficient to allow sustained tumor growth in situ, may be a multistep process involving expression of genes regulating not only cellular transformation, but immunosuppressive properties as well.
Summary

Virus-related oncogenes have been demonstrated in human tumor cells and may play a role in neoplastic transformation. Cancerous effusions contain inhibitors of monocyte function and are absorbed by monoclonal antibodies to the immunosuppressive retroviral structural protein, P15E. We therefore examined eight human malignant cell lines for P15E-related antigens, by indirect immunofluorescence. Up to 87% of fixed malignant cells were reactive with two different monoclonal anti-P15E antibodies, while under identical conditions ~7% of freshly isolated human mononuclear cells were positive. Differentiation of two tumor cell lines with dibutyryl cyclic AMP resulted in decreased anti-P15E reactivity. Blast transformation of human mononuclear cells with mitogens induced reactivity with anti-P15E. Thus human malignant and blast-transformed cells contain antigens related to P15E. Expression of this viral-related gene may occur during rapid cell division and be abnormally regulated in cancer cells, thus rendering them more resistant to immune destruction.

The authors thank Deborah Cone and Kimberly Tanner for their technical assistance and Sharon Goodwin for her secretarial expertise.

Received for publication 19 October 1983 and in revised form 8 December 1983.

References

1. Pike, M. C., and R. Snyderman. 1976. Depression of macrophage function by a factor produced by neoplasms: a mechanism for abrogation of immune surveillance. J. Immunol. 117:1243.
2. Snyderman, R., and M. C. Pike. 1976. An inhibitor of macrophage chemotaxis produced by neoplasms. Science (Wash. DC). 192:370–372.
3. Cianciolo, G. J., R. B. Herberman, and R. Snyderman. 1980. Depression of murine macrophage accumulation by low-molecular-weight factors derived from spontaneous mammary carcinomas. J. Natl. Cancer Inst. 65(4):829.
4. Cianciolo, G. J., T. J. Matthews, D. P. Bolognesi, and R. Snyderman. 1980. Macrophage accumulation in mice is inhibited by low molecular weight products from murine leukemia viruses. J. Immunol. 124(6):2900.
5. Hebebrand, L. C., R. G. Olsen, L. E. Mathes, and W. S. Nichols. 1979. Inhibition of human lymphocyte mitogen and antigen response by a 15,000 dalton protein from feline leukemia virus. Cancer Res. 39:443.
6. Copelan, E. A., J. J. Rinehart, M. Lewis, L. Mathes, R. Olsen, and A. Sangone. 1983. The mechanism of retrovirus suppression of human T cell proliferation in vitro. J. Immunol. 131(4):2017.
7. Cianciolo, G. J., M. E. Lostrom, M. Tam, and R. Snyderman. 1983. Murine malignant cells synthesize a 19,000-dalton protein that is physicochemically and antigenically related to the immunosuppressive retroviral protein, P15E. J. Exp. Med. 158:885.
8. Cianciolo, G. J., J. Hunter, J. Silva, J. S. Haskill, and R. Snyderman. 1981. Inhibitors of monocyte responses to chemotaxins are present in human cancerous effusions and react with monoclonal antibodies to the P15E structural protein of retroviruses. J. Clin. Invest. 68:851.
9. Lostrom, M. E., M. R. Stone, M. Tam, W. N. Burnette, A. Pinter, and R. C. Nowinski. 1979. Monoclonal antibodies against murine leukemia viruses: identification of six antigenic determinants on the P15E and gp70 envelope proteins. Virology. 98:336.
10. Kay, G. E., B. C. Lane, and R. Snyderman. 1983. Induction of selective biological responses to chemoattractants by a human monocytelike cell line. *Infect. Immun.* 41(3):1166.

11. Chaplinski, T. J., and J. Niedel. 1982. Cyclic nucleotide induced maturation of human promyelocytic leukemia cells. *J. Clin. Invest.* 70:953.

12. Major, P. O., J. D. Griffin, M. Minden, and D. W. Kufe. 1981. A blast subclone of the HL-60 human promyelocytic cell line. *Leuk. Res.* 5:429.

13. Willingham, M. C., I. Pastan, T. Y. Shih, and E. M. Scolnick. 1980. Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. *Cell.* 19:1005.

14. Furth, M. E., L. J. Davis, B. Fleurdelys, and E. M. Scolnick. 1982. Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. *J. Virol.* 43(1):294.

15. DeLeo, A. B., J. Gilbert, E. Appella, G. C. Dubois, L. W. Law, and L. J. Old. 1979. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. *Proc. Natl. Acad. Sci. USA.* 76:2420.

16. Milner, J., and S. Milner. 1981. SV40-53K antigen: a possible role for 53K in normal cells. *Virology.* 112:785–788.

17. Repaske, R., R. R. O’Neill, P. E. Steele, and M. A. Martin. 1983. Characterization and partial nucleotide sequence of endogenous type C retrovirus segments in human chromosomal DNA. *Proc. Natl. Acad. Sci. USA.* 80:678.

18. Pulci, S., E. Santos, A. V. Lauver, L. K. Long, S. A. Aaronson, and M. Barbacid. 1982. Oncogenes in solid human tumors. *Nature (Lond.)* 300:539.