Intraparenchymal schwannomas are extremely rare intracranial tumors. Although their occurrence has been reported in various age groups, they are most frequently seen in individuals under 30 years of age. A 65-year-old woman was brought to the emergency department with impaired consciousness due to spontaneous intracerebral hemorrhage in the right basal ganglia (BG). Approximately 3 months later, the patient was taken to another hospital due to decreased consciousness, and a subsequent brain computed tomography scan showed a mass-like lesion in the right BG. The tumor was removed, and the biopsy result revealed an intraparenchymal schwannoma with no involvement of the ventricular ependymal lining. An immunohistochemical analysis revealed a high Ki-67 labeling index, indicating rapid growth without malignancy.

Keywords: Intraparenchymal schwannoma; Ki-67 labeling index; Intratumoral hemorrhage

A rapidly growing intraparenchymal schwannoma in a geriatric patient: a case report and literature review

Myung-Han Ryu, Jeong-Ho Lee, Min-Seok Lee, Sang-Jun Suh, Yoon-Soo Lee, Soo-Ho Cho
Department of Neurosurgery, Daegu Fatima Hospital, Daegu, Korea

Introduction

Intracranial schwannomas account for approximately 5% to 8% of primary intracranial tumors and most commonly originates from the 8th cranial nerve [1]. In fact, intracranial intraparenchymal schwannoma (IS) that are not derived from CN VIII have rarely been reported. Since the initial report by Gibson et al. in 1966, only approximately 150 cases have been reported [2]. This type of schwannoma is slow growing and typically observed in young people under the age of 30; however, symptoms can manifest quickly in old age [3].

Case Report

A 65-year-old woman presented to the emergency department with impaired consciousness and underwent an emergency burr hole procedure for management of spontaneous intracerebral hemorrhage (ICH) with intraventricular hemorrhage in the right basal ganglia (BG) (Fig. 1). The ICH biopsy revealed a hematoma, not specific. The patient received treatment for hypertensive ICH and was transferred to another hospital. Approximately 3 months later, she was brought to another hospital due to decreased consciousness, and a subsequent brain computed tomography scan showed a mass-like lesion in the right BG. The tumor was removed, and the biopsy result revealed an intraparenchymal schwannoma with no involvement of the ventricular ependymal lining. An immunohistochemical analysis revealed a high Ki-67 labeling index, indicating rapid growth without malignancy.

Copyright © 2022 by The Korean Society of Geriatric Neurosurgery
This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
ed, marginated mass (4.5 × 5 × 4 cm) was accessed using the transcortical approach (Fig. 3). It was then removed using a cavitron ultrasonic surgical aspirator since there was no involvement of the ependymal lining of the ventricles. Further, no sign of necrosis along with vascular proliferation was observed by analysis of the frozen biopsy sample, leading to a suspicion of glioma.

Upon histopathological examination, the cellular lesions consisted of a bundle of spindle cells arranged in a storiform pattern with palisading arrangement; however, no nuclear pleomorphism was seen. In addition, mild infiltration was of the mass into the brain parenchyma surrounding the tumor cells was observed, indicating the presence of a neurogenic tumor due to ovoid to spindle and partially wavy or buckled shaped cells. Immunohistochemical staining showed strong expression of both S-100 and glial fibrillary acidic protein (GFAP), while Ki-67 labeling index was 39.9% and the mitotic count was 3–4/10 high-power field (Fig. 4).

Fig. 1. (A) Initial computed tomography (CT) scan showed intracerebral hematoma in the right basal ganglia. (B) The brain CT after 3 weeks revealed hematoma resolution and no mass like lesion. (C, D) Three months later brain CT revealed a large mass at right basal ganglia with rim enhancement. Written informed consent was obtained for publication of this case report and accompanying images.

Fig. 2. Brain magnetic resonance imaging revealed peritumoral edema and a heterogeneously hyperintense lesion on T2-weighted image (A) and slight hypointense to grey matter on T1-weighted image (T1WI) (B). On the contrast-enhanced T1WI showed ring enhancement of the mass (C). Written informed consent was obtained for publication of this case report and accompanying images.

Fig. 3. Intraoperatively, a mixed friable and hard, grayish mass (star) was confirmed. Written informed consent was obtained for publication of this case report and accompanying images.
Discussion

IS is an extremely rare intracranial tumor. Despite being prevalent in various age groups, from the youngest case being of a patient aged 6 months to the oldest case one being 84 year-old, it frequently occurs in individuals under 30 years of age (58.7%). Of these, 12.0% (18) of patients were over 60 years of age, which is unexpected. The incidence was higher in men in the age group under 30 years (male:female; 1.84:1); whereas, the pattern was reversed in the group above 60 years of age (male: female; 0.46:1) (Table 1) [4–8].

IS may originate anywhere in the intracranial region; however, appears to be more frequent in the supratentorial region during young age, whereas it is commonly located in the infratentorial region in individuals > 60 years of age [4]. Although the pathophysiology of IS has not yet been clearly identified, 2 hypotheses have been proposed: (1) developmental theory, (2) non-developmental theory. The developmental theory assumes that mesenchymal pial cells in the brain parenchyma transform into Schwann cells. Alternatively, the non-developmental theory assumes that Schwann cells originate from adjacent organs, such as the meningeal branch of the perivascular nerve plexus and anterior ethmoidal and trigeminal nerves, where Schwann cells usually exist [9]. At present, it is unclear which of these 2 hypotheses prevails.

The radiologic features of IS include cyst formation, calcification, and peritumoral edema, and it is difficult to find distinct

Table 1. Radiological and immunohistochemical features of intraparenchymal schwannoma in geriatric patients above 60 years old

No.	Study	Year	Sex	Age (yr)	Location	S-100	GFAP	EMA	Malignancy	Cystic	Calcification	Hemorrhage	Ki-67 (%)
1	Ghatak et al.	1975	Female	63	Parietal	n/a	n/a	n/a	×	n/a	n/a	×	×
2	Solomon et al.	1987	Male	69	Medulla	Negative	n/a	n/a	×	○	×	×	×
3	Cervoni et al.	1988	Female	61	P-O	n/a	n/a	n/a	×	n/a	n/a	×	×
4	Wilberger	1989	Female	62	Pituitary	n/a	n/a	n/a	×	n/a	n/a	×	×
5	Tran-Dinh et al.	1991	Female	64	Cbll., brainstem	n/a	n/a	n/a	×	○	×	×	×
6	Casadei et al. [6]	1993	Female	69	Cbl.	Positive	Positive	Positive	×	○	×	×	×
7	Casadei et al. [6]	1993	Female	84	Temporal	Positive	Positive	Positive	×	○	×	×	×
8	Singh et al.	1993	Female	61	Cbl.	Positive	Negative	n/a	×	○	×	×	×
9	Weiner et al.	1993	Male	61	Brainstem	n/a	n/a	n/a	×	○	×	×	×
10	Weiner et al.	1993	Female	78	Brainstem	Positive	Negative	Negative	×	○	×	×	×
11	Ranjan et al.	1996	Female	65	Cbl.	Positive	Negative	Negative	×	×	×	×	×
12	Tanabe et al.	1996	Female	68	Pons	Positive	Negative	Negative	×	○	×	×	×
13	Muzzafar et al. [5]	2010	Male	68	Brainstem	n/a	n/a	n/a	×	○	×	×	×
14	Barnard et al. [8]	2011	Female	75	Frontal	Positive	Negative	Negative	○	○	×	×	×
15	Khoo and Taki [7]	2012	Male	60	Frontal	n/a	Negative	Negative	×	×	×	×	× <1
16	Luo et al.	2013	Male	72	P-O	Positive	Negative	n/a	×	n/a	n/a	×	×
17	Luo et al.	2013	Male	64	Cbl.	Positive	Negative	n/a	×	n/a	n/a	×	×
18	Arselmi et al.	2021	Male	74	Pons	Positive	Negative	n/a	×	○	○	×	×
19	Present case	2020	Female	65	Basal ganglia	Positive	Positive	Positive	×	×	×	○	39.9

GFAP, glial fibrillary acidic protein; EMA, epithelial membrane antigen; P-O, parieto-occipital; Cbll., cerebellum; n/a, not available.
differences from those of vestibular schwannomas \[5,10\]. However, only one similar case with intratumoral hemorrhage has reported so far, and even in vestibular schwannoma, the features shown in this case is known to be very rare, accounting for about 0.4% \[6,11\].

The diagnosis of intraparenchymal schwannoma by imaging is challenging, and is dependent on histopathological analysis and immunohistochemical findings. The histopathological appearance was characterized by Antoni A and B cells, while immunohistochemical staining showed positive expression of S-100 whereas epithelial membrane antigen and GFAP were absent in most cases \[4,7\].

Since intraparenchymal schwannoma presents with slow proliferation, Ki-67 labeling index is usually observed at less than 1% [1]. In this case, high Ki-67 labeling index was observed, indicating rapid growth, similar to a malignant intracerebral nerve sheath tumors (MINST). MINST is termed malignant peripheral nerve sheath tumors (MPNST) of brain parenchyma. MINST’s characteristics is similar to MPNST’s one except not associated of neurofibromatosis type I. In histologically, MINST has pleomorphic cells with irregular nuclei. And that tumor also showed poorly differentiated malignant spindle cell. MINST is extremely rare, only one case was reported in the age group above 60 years [8]. The malignancy rate was approximately 5% in the age group above 60 years, which was slightly lower compared to other age groups [4].

IS are mostly benign tumors and show a good prognosis after total resection [1]. It is crucial to set an accurate surgical goal in the early stages of IS treatment for better clinical outcomes; however, there are certain limitations in the diagnosis of IS since it is difficult to differentiate from GBM or high-grade gliomas based on the imaging findings. Thus, hematoxylin and eosin staining is the only feasible option for examination of intraoperative frozen biopsy [7].

Conclusion

IS is a benign lesion characterized by slow growth in most cases and presents a good prognosis when treated with total resection. To the best of our knowledge, this is the first case of IS characterized by a rapid growth rate without evidence of malignancy. Since it is difficult to rule out GBM in the early stages, gross total resection and short-term follow-up will be required for management of these tumors.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

ORCID

Myung-Han Ryu, https://orcid.org/0000-0001-9275-5459
Jeong-Ho Lee, https://orcid.org/0000-0002-4765-8008
Min-Seok Lee, https://orcid.org/0000-0001-5984-6818
Sang-Jun Suh, https://orcid.org/0000-0003-2228-2793
Yoon-Soo Lee, https://orcid.org/0000-0003-2506-0168
Soo-Ho Cho, https://orcid.org/0000-0003-3894-1984

REFERENCES

1. Gao Y, Qin Z, Li D, et al. Intracerebral schwannoma: a case report and literature review. Oncol Lett 2018;16:2501–10.
2. Vaphiades MS, Hackney J. Intraparenchymal Schwannoma: a Rare Entity. Neuroophthalmology 2021;45:391–6.
3. Ambekar S, Devi BI, Maste P, Chickabasaviah YF. Frontal intraparenchymal Schwannoma—case report and review of literature. Br J Neurosurg 2009;23:86–9.
4. Kovalainen A, Haeren R, Paetau A, Lehecka M. Brainstem intraparenchymal schwannoma: a case report and literature review. Surg Neurol Int 2021;12:508.
5. Muzzafar S, Ketonen L, Weinberg JS, Schellingerhout D. Imaging and clinical features of an intra-axial brain stem schwannoma. AJNR Am J Neuroradiol 2010;31:567–9.
6. Casadei GP, Komori T, Scheithauer BW, Miller GM, Parisi JE, Kelly PJ. Intracranial parenchymal schwannoma. A clinicopathological and neuroimaging study of nine cases. J Neurosurg 1993;79:217–22.
7. Khoo HM, Taki T. Periventricular intraparenchymal schwannoma. Case report. Neurol Med Chir (Tokyo) 2012;52:603–7.
8. Barnard ZR, Agarwalla PK, Jeyaretna DS, et al. Sporadic primary malignant intracerebral nerve sheath tumors: case report and literature review. J Neurooncol 2011;104:605–10.
9. Chen F, Zhao S, Yu Y, Chen D. Intraparenchymal schwannoma with calcification of the temporal lobe: case report and literature review. Medicine (Baltimore) 2019;98:e14263.
10. Zagardo MT, Castellani RJ, Rees JH, Rothman MI, Zoarski GH. Radiologic and pathologic findings of intracerebral schwannoma. AJNR Am J Neuroradiol 1998;19:1290–3.
11. Carlson ML, Tombers NM, Driscoll CL, et al. Clinically significant intratumoral hemorrhage in patients with vestibular schwannoma. Laryngoscope 2017;127:1420–6.