Hyperrigid generators in C^*-algebras

P. Shankar

Received: 29 March 2019 / Accepted: 7 September 2019 / Published online: 13 September 2019
© Forum D’Analystes, Chennai 2019

Abstract
In this article, we show that, if $S \in B(H)$ is irreducible and essential unitary, then \(\{S, SS^*\}\) is a hyperrigid generator for the unital C^*-algebra T generated by S. We prove that, if T is an operator in $B(H)$ that generates a unital C^*-algebra A then \(\{T, TT^*\}\) is a hyperrigid generator for A. As a corollary it follows that, if $T \in B(H)$ is normal then \(\{T, TT^*\}\) is hyperrigid generator for the unital C^*-algebra generated by T and if $T \in B(H)$ is unitary then \(\{T\}\) is hyperrigid generator for the C^*-algebra generated by T. We show that if $V \in B(H)$ is an isometry (not unitary) that generates the C^*-algebra A then the minimal generating set \(\{V\}\) is not hyperrigid for A.

Keywords Hyperrigidity · Essential unitary operator · Unital completely positive map · Unique extension property

Mathematics Subject Classification 46L07 · 46L52 · 47A13 · 47L80

1 Introduction and preliminaries

Korovkin [13] made an assertion that, if a sequence of positive linear maps $\phi_n : C[0, 1] \to C[0, 1], n = 1, 2, 3, \ldots,$ has the property

$$\lim_{n \to \infty} ||\phi_n(f_k) - f_k|| = 0, \quad k = 0, 1, 2,$$

for the three functions $f_0(x) = 1, f_1(x) = x, f_2(x) = x^2$ then

P. Shankar
shankarsupy@gmail.com

1 Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560059, India
\[
\lim_{n \to \infty} \| \phi_n(f) - f \| = 0, \quad \forall \ f \in C[0, 1].
\]

The set \(\{1, x, x^2\}\) is called a Korovkin set or test set. Korovkin [13] showed that, the set \(\{1, x\}\) is not a Korovkin set. Therefore, the set \(\{1, x, x^2\}\) is a minimal set to satisfy the above assertion.

Arveson [4] initiated the study of noncommutative approximation theory focusing on the question: How does one determine whether a set of generators of a \(C^*\)-algebra is hyperrigid? Arveson [4] introduced a noncommutative counterpart of Korovkin set as follows:

Definition 1 A finite or countably infinite set \(\mathcal{G}\) of generators of a \(C^*\)-algebra \(\mathcal{A}\) is said to be hyperrigid if for every faithful representation \(\mathcal{A} \subseteq \mathcal{B}(H)\) of \(\mathcal{A}\) on a Hilbert space \(H\) and every sequence of unital completely positive (UCP) maps \(\phi_n : \mathcal{B}(H) \to \mathcal{B}(H)\), \(n = 1, 2, \ldots\),

\[
\lim_{n \to \infty} \| \phi_n(g) - g \| = 0, \quad \forall \ g \in \mathcal{G} \quad \implies \quad \lim_{n \to \infty} \| \phi_n(a) - a \| = 0, \quad \forall \ a \in \mathcal{A}.
\]

Note that, a set \(\mathcal{G}\) is hyperrigid if and only if \(\mathcal{G} \cup \mathcal{G}^*\) is hyperrigid if and only if the linear span of \(\mathcal{G}\) is hyperrigid. If \(\mathcal{A}\) is unital, then \(\mathcal{G}\) is hyperrigid if and only if \(\mathcal{G} \cup \{1\}\) is hyperrigid.

The following characterization of hyperrigid operator systems due to Arveson [4] is more of a workable definition of hyperrigidity of operator systems.

Theorem 1 [4, Theorem 2.1] Let \(\mathcal{S}\) be a separable operator system generating the \(C^*\)-algebra \(\mathcal{A} = C^*(\mathcal{S})\) then \(\mathcal{S}\) is hyperrigid if and only if every nondegenerate representation \(\pi : \mathcal{A} \to \mathcal{B}(H)\) on a separable Hilbert space, \(\pi|_{\mathcal{S}}\) has the unique extension property in the sense that the only unital completely positive (UCP) map \(\phi : \mathcal{A} \to \mathcal{B}(H)\) that satisfies \(\phi|_{\mathcal{S}} = \pi|_{\mathcal{S}}\) is \(\phi = \pi\) itself.

The interesting results of hyperrigid generators are obtained by a direct application of the above criterion.

Theorem 2 [4, Theorem 3.3] Let \(V \in \mathcal{B}(H)\) be an isometry that generates a \(C^*\)-algebra \(\mathcal{A}\). Then \(\mathcal{G} = \{V, VV^*\}\) is hyperrigid generator for \(\mathcal{A}\).

Let \(S = (S_1, \ldots, S_d)\) denote the compression of the \(d\)-shift to the complement of a homogeneous ideal \(I\) of \(C[z_1, \ldots, z_d]\). Following the remark above, Kennedy and Shalit [11, Theorem 4.12] proved that, if homogeneous ideals are sufficiently non-trivial then \(S\) is essentially normal if and only if it is hyperrigid as the generating set of a \(C^*\)-algebra.

The main purpose of this paper is to find the minimal hyperrigid generators for certain class of \(C^*\)-algebras.

Here, we recall the necessary definitions, conventions and notations. Let \(H\) be a separable complex Hilbert space and let \(\mathcal{B}(H)\) be the set of all bounded linear operators on \(H\). An operator system \(\mathcal{S}\) in a \(C^*\)-algebra \(\mathcal{A}\) is a self-adjoint linear subspace of \(\mathcal{A}\) containing the identity of \(\mathcal{A}\). An operator algebra \(\mathcal{A}_0\) in a \(C^*\)-algebra \(\mathcal{A}\) is a unital subalgebra of \(\mathcal{A}\). Given a linear map \(\phi\) from a \(C^*\)-algebra \(\mathcal{A}\) into a \(C^*\)-
algebra B we can define a family of maps $\phi_n : M_n(A) \to M_n(B)$ given by $\phi_n([a_{ij}]) = [\phi(a_{ij})]$, $n \in \mathbb{N}$. We say that ϕ is completely positive (CP) if ϕ_n is positive for all $n \geq 1$, and that ϕ is unital completely positive (UCP) if in addition $\phi(1) = 1$.

Definition 2 Let S be an operator system that generates a C^*-algebra A. A unital completely positive map $\phi : S \to B(H)$ is said to have the unique extension property if it has a unique extension to a UCP map $\bar{\phi} : A \to B(H)$.

The boundary representations of A for S, which were introduced by Arveson [2], are precisely the irreducible representations $\pi : A \to B(H)$ with the property that the restriction $\pi|_S$ has the unique extension property.

Arveson [4] attempted to prove the non-commutative analogue of Saskin’s theorem [16] using theory of noncommutative Choquet boundary for unital completely positive maps on C^*-algebras and noncommutative counterpart of the Korovkin’s set which is the hyperrigid set. Arveson [4] proved that if the separable operator system is hyperrigid in the C^*-algebra then every irreducible representation of C^*-algebra is a boundary representation for the operator system. The converse to this result is called hyperrigidity conjecture: that is, if every irreducible representation of a C^*-algebra is a boundary representation for a separable operator system then the operator system is hyperrigid.

Arveson [4] showed that the hyperrigidity conjecture is true for C^*-algebras with countable spectrum. Kleski [12] established the hyperrigidity conjecture for all type-I C^*-algebras with additional assumptions on the co-domain. Davidson and Kennedy [8] proved the conjecture for function systems. The hyperrigidity conjecture is still open for general C^*-algebras.

Namboodiri, Pramod, Shankar and Vijayarajan [14] approached the hyperrigidity conjecture with weaker notions. They got the partial answers. Shankar and Vijayarajan [18] examined the tensor product of hyperrigid operator systems. Clouatre [6] studied the hyperrigidity conjecture using states and the notion of unperforated pairs. Clouatre and Hartz [7] determined hyperrigidity for certain analogues of the disc algebra. Dor-on and Salomon [9] and Salomon [17] examined the hyperrigid generators of the graph C^*-algebras. Katsoulis and Ramsey [10] gave sufficient and necessary conditions for tensor algebra to be hyperrigid.

2 Essential unitary and hyperrigidity

Let $B(H)$ be the algebra of bounded linear operators on a separable complex Hilbert space H and $\mathcal{K}(H)$ ideal of compact operators on H. Let $\pi : B(H) \to B(H)/\mathcal{K}(H)$ be the natural surjection onto the Calkin algebra $B(H)/\mathcal{K}(H)$. The operator $T \in B(H)$ is called essentially normal if $\pi(T)$ is normal in the Calkin algebra, or equivalently, $T^*T - TT^*$ is compact. The operator $S \in B(H)$ is called essentially unitary if $\pi(S)$ is unitary in the Calkin algebra, or equivalently, $I - S^*S$ and $I - SS^*$ are compact. The above definitions can be found in Ref. [5].

Here, we will have the following assumptions to proceed. Let S be an irreducible and essential unitary but not unitary operator in $B(H)$ and let $\mathcal{G} = \{S, SS^*\}$. Let S be
an operator system generated by \(\mathcal{G} \). Let \(\mathcal{T} = \mathcal{C}^*(\mathcal{G}) \) be the unital \(\mathcal{C}^* \)-algebra generated by \(\mathcal{G} \). The unital \(\mathcal{C}^* \)-algebra \(\mathcal{T} \) contains the compact operators \(\mathcal{K}(\mathcal{H}) \).

A representation \(\rho : \mathcal{T} \to \mathcal{B}(\mathcal{H}) \) is said to be singular representation if it annihilates the compact operators \(\mathcal{K}(\mathcal{H}) \).

Proposition 1 Suppose that \(S \) is irreducible and essential unitary (not unitary) and \(\mathcal{G} = \{ S, SS^* \} \). Let \(\mathcal{S} \) be a operator system generated by \(\mathcal{G} \) and \(\mathcal{T} = \mathcal{C}^*(\mathcal{G}) \). Then the identity representation of \(\mathcal{T} \) is a boundary representation for \(\mathcal{S} \).

Proof Since \(S \) is irreducible and essential unitary, then unital \(\mathcal{C}^* \)-algebra generated by \(\mathcal{G} \) contains the compact operators, that is, \(\mathcal{K}(\mathcal{H}) \subseteq \mathcal{T} = \mathcal{C}^*(\mathcal{G}) \). The operator system \(\mathcal{S} \subset \mathcal{T} \) is irreducible and contains the identity operator. By our assumption, \(0 \neq K = I - SS^* \in \mathcal{S} \) is a compact operator, we have \(||K - K|| < ||K|| \). Therefore, the quotient map \(q : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H}) \) is not completely isometric on \(\mathcal{S} \). Hence by boundary theorem of Arveson [3, Theorem 2.1.1], identity representation of \(\mathcal{T} \) is a boundary representation for \(\mathcal{S} \).

Theorem 3 Let \(S \) be an irreducible and essential unitary (not unitary) and \(\mathcal{G} = \{ S, SS^* \} \). Let \(\mathcal{T} = \mathcal{C}^*(\mathcal{G}) \) be the unital \(\mathcal{C}^* \)-algebra generated by \(\mathcal{G} \). Then \(\mathcal{G} \) is a hyperrigid generator for \(\mathcal{T} \).

Proof Let \(\mathcal{S} \) be the operator system generated by \(\mathcal{G} \). Note that \(\mathcal{G} \) is hyperrigid if and only if \(\mathcal{S} \) is hyperrigid. By Theorem 1, it suffices to show that for every nondegenerate representation of \(\mathcal{T} \) restricted to \(\mathcal{S} \) has the unique extension property.

Let \(\rho : \mathcal{T} \to \mathcal{B}(\mathcal{H}) \) be a singular representation. Let \(\phi : \mathcal{T} \to \mathcal{B}(\mathcal{K}) \) be a unital completely positive extension of \(\rho|_\mathcal{S} \) and let \(\pi : \mathcal{T} \to \mathcal{B}(\mathcal{K}) \) be a Stinespring dilation of \(\phi \). Since \(\phi(SS^*) = \rho(SS^*) \) implies \(\phi(SS^*) = \phi(S)\phi(S^*) \). By [1, Theorem 1.5] (see also [7, Lemma 3.2]), we have \(\mathcal{H} \) is coinvariant for \(\pi(S) \). Since \(S \) is essential unitary, it follows from [15, Theorem 2.2] that \(\mathcal{H} \) is also invariant for \(\pi(S) \). Therefore, \(\mathcal{H} \) reduces \(\pi(S) \), and thus reduces \(\pi(\mathcal{T}) \). Hence \(\rho|_\mathcal{S} \) has the unique extension property.

By Proposition 1, the restriction of the identity representation of \(\mathcal{T} \) to \(\mathcal{S} \) has the unique extension property. Using [7, Lemma 3.3] every nondegenerate representation of \(\mathcal{T} \) splits as the direct sum of a multiple of the identity representation and a singular nondegenerate representation and by [4, Proposition 4.4] the unique extension property passes to direct sums. Hence every nondegenerate representation of \(\mathcal{T} \) restricted to \(\mathcal{S} \) has the unique extension property.

Example 1 Let \(\mathcal{H} \) be a Hilbert space having an orthonormal basis \(\{ e_n : n \geq 0 \} \). The unilateral shift \(S \) is defined by \(Se_n = e_{n+1} \). The \(\mathcal{C}^* \)-algebra \(\mathcal{T} \) generated by \(S \) is called the Toeplitz \(\mathcal{C}^* \)-algebra. Observe that \(I - SS^* \) and \(I - SS^* \) are compact, therefore \(S \) is essential unitary. Also, \(S \) is irreducible. The Toeplitz \(\mathcal{C}^* \)-algebra \(\mathcal{T} \) contains the compact operators \(\mathcal{K}(\mathcal{H}) \). We know that the set \(\{ S, SS^* \} \) also generates the Toeplitz \(\mathcal{C}^* \)-algebra \(\mathcal{T} \). Hence, by Theorem 3, the set \(\{ S, SS^* \} \) is hyperrigid generator for Toeplitz \(\mathcal{C}^* \)-algebra \(\mathcal{T} \).
The main purpose of this section is to find the hyperrigid generators for the C^*-algebras generated by a single operator.

Theorem 4 Let T be an operator in $B(H)$ that generate a unital C^*-algebra A and let $\mathcal{G} = \{T, T^*T, TT^*\}$. Then \mathcal{G} is a hyperrigid generators for unital C^*-algebra A.

Proof Let \mathcal{S} be the operator system generated by \mathcal{G}. By Theorem 1, it suffices to show that for every nondegenerate representation π of A, $\pi|_{\mathcal{S}}$ has the unique extension property.

Let $\pi : A \rightarrow B(H)$ be a nondegenerate representation. Let $\phi : A \rightarrow B(H)$ be a UCP map satisfying $\phi(T) = \pi(T), \phi(T^*T) = \pi(T^*T)$ and $\phi(TT^*) = \pi(TT^*)$. We have to show that $\phi = \pi$ on A.

Using Stinespring theorem, we can express ϕ in the form

$$\phi(S) = V^*\sigma(S)V, \quad \forall \quad S \in A.$$

Where σ is a representation of A on a Hilbert space K, $V : H \rightarrow K$ is an isometry, and which is minimal in the sense that $\overline{\sigma(A)VH} = K$.

Since $\phi(T) = \pi(T)$ and $\phi(T^*T) = \pi(T^*T)$, by [1, Theorem 1.5] we have VH is invariant for $\sigma(T)$.

$$VV^*\sigma(T)(1 - VV^*)\sigma(T)^*VV^* = VV^*\sigma(T)\sigma(T)^*VV^* - VV^*\sigma(T)VV^*\sigma(T)^*VV^* = VV^*\sigma(TT^*)VV^* - V\pi(T)\pi(T)^*V^* = V\pi(TT^*)V^* - V\pi(TT^*)V^* = 0.$$

Hence $(1 - VV^*)\sigma(T)^*VV^* = 0$, we conclude that VH is invariant for $\sigma(T)^*$. Since A is generated by T it follows that $\sigma(A)VH \subseteq VH$. By minimality we must have $VH = K$, which implies that V is unitary and therefore $\phi(S) = V^{-1}\sigma(S)V$ is a representation. Since ϕ agrees with π on a generating set, therefore $\phi = \pi$ on A.

Corollary 1 Let T be a normal operator in $B(H)$ that generate a unital C^*-algebra A and let $\mathcal{G} = \{T, TT^*\}$. Then \mathcal{G} is hyperrigid generator for unital C^*-algebra A.

Corollary 2 Let T be an unitary operator in $B(H)$ that generate a C^*-algebra A and let $\mathcal{G} = \{T\}$. Then \mathcal{G} is hyperrigid generator for C^*-algebra A.

Proposition 2 Let $V \in B(H)$ be an isometry (not unitary) that generates a C^*-algebra A. Then

(i) $\mathcal{G} = \{V, VV^*\}$ is hyperrigid generator for A.

(ii) The smaller generating set $\mathcal{G}_0 = \{V\}$ is not hyperrigid.

Proof (i) follows from the Theorem 2. Now we will prove (ii), let \mathcal{S} be the operator system generated by \mathcal{G}_0. Let Id denote the identity representation of a C^*-algebra A. Let $V^*Id(\cdot)V$ be a completely positive map on the C^*-algebra A. We have $V^*Id|_S = Id|_S$, but
This implies that \(\text{Id} \) representation restricted to \(S \) has two UCP map extensions \(V^*\text{Id}(V^*) \) and \(\text{Id} \). Therefore the nondegenerate representation \(\text{Id}|_S \) does not have unique extension property. Using the Theorem 1, \(S \) is not hyperrigid operator system in a \(C^* \)-algebra \(\mathcal{A} \). This will imply that \(G_0 \) is not hyperrigid in \(\mathcal{A} \).

Acknowledgements The author would like to thank Orr Moshe Shalit for valuable discussions and for a careful reading of this manuscript and some constructive comments. The author would like to thank Douglas Farenick and B. V. Rajarama Bhat for valuable discussions. The author would like to thank Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore, India for providing visiting scientist post doctoral fellowship. The author would like to thank Dr. Dhriti Ranjan Dolai, INSPIRE faculty, Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore for partial support of visiting scientist post doctoral fellowship from DST/INSPIRE/04/2017/000109 INSPIRE Grant. The author is very thankful to the referees for pointing out some errors and giving suggestions for improvement of the presentation of the article.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Agler, J. 1982. The Arveson extension theorem and coanalytic models. *Integral Equations Operator Theory* 5 (5): 608–631.
2. Arveson, W.B. 1969. Subalgebras of \(C^* \)-algebras. *Acta Mathematica* 123: 141–224.
3. Arveson, W.B. 1972. Subalgebras of \(C^* \)-algebras, II. *Acta Mathematica* 128 (3–4): 271–308.
4. Arveson, W.B. 2011. The noncommutative Choquet boundary II: Hyperrigidity. *Israel Journal of Mathematics* 184: 349–385.
5. Brown, L., Douglas, R., and Fillmore, P. 1973. Unitary equivalence modulo the compact operators and extensions of \(C^* \)-algebras. In *Proceedings of Conference on Operator Theory, Halifax, NS*, Lecture Notes in Mathematics, 3445. Berlin: Springer.
6. Clouatre, R. 2018. Unperforated pairs of operator spaces and hyperrigidity of operator systems. *Canadian Journal of Mathematics* 70 (6): 1236–1260.
7. Clouatre, R., and M. Hartz. 2018. Multiplier algebras of complete Nevanlinna–Pick spaces: dilations, boundary representations and hyperrigidity. *Journal of Functional Analysis* 274 (6): 1690–1738.
8. Davidson, K.R., and Kennedy, M. Choquet order and hyperrigidity for function systems. arXiv:1608.02334v1.
9. Dor-On, A., and G. Salomon. 2018. Full Cuntz–Krieger dilations via non-commutative boundaries. *Journal of the London Mathematical Society* (2) 98 (2): 416–438.
10. Katsoulis, E., and Ramsey, C. The hyperrigidity of tensor algebras of \(C^* \)-correspondences. arXiv:1905.10332v2.
11. Kennedy, M., and O.M. Shalit. 2015. Essential normality, essential norms and hyperrigidity. *Journal of Functional Analysis* 268 (10): 2990–3016.
12. Klesky, C. 2014. Korovkin-type properties for completely positive maps. *Illinois Journal of Mathematics* 58 (4): 1107–1116.
13. Korovkin, P.P. 1960. *Linear operators and approximation theory*. Delhi: Hindustan Publishing Corp.
14. Namboodiri, M.N.N., S. Pramod, P. Shankar, and A.K. Vijayarajan. 2018. Quasi hypperigidity and weak peak points for non commutative operator systems. *Proceedings of the Indian Academy of Sciences: Mathematical Sciences* 128 (5): 128:66.
15. Richter, S., and C. Sunberg. 2010. Joint extensions in families of contractive commuting operator tuples. *Journal of Functional Analysis* 258 (10): 3319–3346.
16. Saskin, Y.A. 1966. Korovkin systems in spaces of continuous functions. *American Mathematical Society Translations* 54 (2): 125–144.
17. Salomon, G. 2019. Hyperrigid subsets of graph C*-algebras and the property of rigidity at zero. *Journal of Operator Theory* 81 (1): 61–79.

18. Shankar, P., and A.K. Vijayarajan. 2018. Tensor products of hyperrigid operator systems. *Annals of Functional Analysis* 9 (3): 369–375.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.