The Simple and Natural Interpretations of the DAMPE Cosmic Ray Electron/Positron Spectrum within Two Sigma Deviations

Jia-Shu Niu, Tianjun Li, and Fang-Zhou Xu

1 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
3 Institute of Modern Physics and Center for High Energy Physics, Tsinghua University, Beijing 100084, China

(Dated: January 9, 2018)

The DArk Matter Particle Explorer (DAMPE) experiment has recently announced the first results for the measurement of total electron plus positron fluxes between 25 GeV and 4.6 TeV. A spectral break at about 0.9 TeV and a tentative peak excess around 1.4 TeV have been found. However, it is very difficult to reproduce both the peak signal and the smooth background including spectral break simultaneously. We point out that the numbers of events in the two energy ranges (bins) close to the 1.4 TeV excess have 1σ deficits. With the basic physics principles such as simplicity and naturalness, we consider the $-2\sigma, +2\sigma, \text{ and } -1\sigma$ deviations due to statistical fluctuations for the 1229.3 GeV bin, 1411.4 GeV bin, and 1620.5 GeV bin. Interestingly, we show that all the DAMPE data can be explained consistently via both the continuous distributed pulsar and dark matter interpretations, which have $\chi^2 \simeq 17.2$ and $\chi^2 \simeq 13.9$, respectively. These results are different from the previous analyses by neglecting the 1.4 TeV excess. Moreover, we present a $U(1)_D$ dark matter model with Breit-Wigner mechanism, which can provide the proper dark matter annihilation cross section and escape the CMB constraint. Furthermore, we suggest a few ways to test our proposal.

Introduction—Because of the strong radiative cooling via synchrotron and inverse Compton scattering (ICS) processes, the TeV electrons can only travel a short distance of about a few kpc in the Milky Way. Therefore, the nearby Cosmic Ray (CR) sources such as pulsars [1–5] and dark matter (DM) [6–8] can be probed via the high energy electrons and positrons. The spectra of the cosmic ray electrons and positrons (CREs) have been measured up to TeV energy scales by the ground-based and space-borne experiments, for example, HESS [9, 10], VERITAS [11], FermiLAT [12], AMS-02 [13], and CALET [14]. In particular, the excesses of the electrons [9, 15–17] and positrons [18–21] have been discovered as well.

Recently, the DArk Matter Particle Explorer (DAMPE), which is a new generation space-borne experiment to measure CRs and was launched in December 2015, has announced the first results of high energy CR electron plus positron ($e^- + e^+$) flux from 25 GeV to 4.6 TeV with unprecedentedly high quality [22]. The energy resolution of the DAMPE is better than 1.5% at TeV energies, and the hadron rejection power is about 10^5. Thus, DAMPE is able to reveal (fine) structures of the electron and positron fluxes. The main DAMPE spectrum can be fitted by a smoothly broken power-law model with a spectral break around 0.9 TeV, which confirms the previous results by HESS experiment [9, 10]. And there exists a tentative peak-like flux excess around 1.4 TeV. Thus, the DAMPE results have stimulated the extensive studies [22–55]. The spectral break can be explained by the broad distributed pulsars, pulsar wind nebulae (PWNe), supernova remnants (SNRs) [24, 26], and by the dark matter annihilation and decay in the galaxy halo [26, 34, 37, 38]. Also, the tentative peak is always interpreted by local pulsars, PWNe, and SNRs [24, 26, 54], and by the DM sub-halos, clumps, and mini-spikes [23, 27, 32, 34, 38, 39, 47, 49].

However, one can easily show that it is impossible to explain both the spectral break and the tentative peak simultaneously [24, 26, 38, 39, 54]. In addition, we have 74, 93, and 33 events for three continuous bins or energy ranges [1148.2, 1318.3] GeV, [1318.3, 1513.6] GeV, and [1513.6, 1737.8] GeV, respectively, for which for simplicity we shall call 1229.3 GeV bin, 1411.4 GeV bin, and 1620.5 GeV bin [22]. The number of events and fluxes for these bins are given in Table I. From Figure 2 of the DAMPE’s paper [22], it is obvious that the 1411.4 GeV bin has a little bit more than 3σ excess, while the 1229.3 GeV bin and 1620.5 GeV bin have about 1σ deficits. Therefore, it is very difficult to explain the events in these three bins, especially the first two, no matter by the pulsar or dark matter interpretations.

From the theoretical physics point of view, we would like to explain nature with basic principles such as simplicity and naturalness, or say truth and beauty! In the words of Sir Isaac Newton, “Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things.” Therefore, to explain all the DAMPE data via a simple and natural way, we propose that the excess in the 1411.4 GeV bin and the deficits in the 1229.3 GeV bin and 1620.5 GeV bin arise from the $+2\sigma, -2\sigma$, and -1σ deviations due to statistical fluctuations, which happened frequently in collider experiments. Remarkably, we can indeed explain all the DAMPE data consistently via the pulsar and dark matter interpretations, which have $\chi^2 \simeq 17.2$ and $\chi^2 \simeq 13.9$, respectively. Our results are different from the previous analyses by neglecting the
1.4 TeV excess [37]. In addition, we present a $U(1)_P$ dark matter model with Breit-Wigner mechanism, which can provide the proper dark matter annihilation cross section and escape the CMB constraint. Furthermore, we suggest a few ways to test our proposal as well as the 1.4 TeV excess.

Statistical Fluctuations—In the DAMPE’s paper [22], the numbers of events and the CRE fluxes with 1 σ statistical and systematic errors have been given in its Table 1. To evaluate the uncertainties for numbers of the events, we need to understand their relations. The relation between the number of events and fluxes in each energy bin is [13, 22]

$$\Phi(e^- + e^+) = \frac{N(E) \cdot (1 - \varepsilon_{bg}(E))}{A_{\text{eff}}(E) \cdot T \cdot \Delta E} \cdot \varepsilon_{\text{other}}(E),$$

(1)

where N is the number of $(e^- + e^+)$ events, A_{eff} is the effective detector acceptance, T is the operating time, ΔE is the energy range of the bin, ε_{bg} is the background fraction of the events, and $\varepsilon_{\text{other}}$ represents the effects caused by other mechanisms which were not given in the Table 1 of Ref. [22].

Taking $T = 530$ days and $\varepsilon_{\text{other}} = 1.3$, we can reproduce the corresponding results in the 1229.3 GeV bin, 1411.4 GeV bin, and 1620.5 GeV bin within the uncertainty < 0.1%. Consequently, we use the formula

$$\Phi(e^- + e^+) = \frac{N(E) \cdot (1 - \varepsilon_{bg}(E))}{A_{\text{eff}}(E) \cdot T \cdot \Delta E} \cdot 1.3$$

(2)

in this letter to calculate the fluxes in these bins.

We calculate the 2σ deviations for the number of events ($\Delta N_{2\sigma}$) from the flux statistical fluctuations as follows

$$\Delta N_{2\sigma} = \frac{\Delta \Phi(e^- + e^+)}{\Phi(e^- + e^+)} \cdot 2\sigma_{\text{stat}} \cdot N.$$

(3)

Thus, for the 1229.3 GeV bin, 1411.4 GeV bin, and 1620.5 GeV bin, we obtain $\Delta N_{2\sigma} = \pm 18, \pm 20, \pm 12$, respectively. Assume $\pm 2\sigma, \pm 3\sigma,$ and $\pm 1\sigma$ deviations for these bins from statistical fluctuations, we have $\Delta N = \pm 18, \pm 20, \pm 6$, respectively. Therefore, the revised numbers of events for the 1229.3 GeV bin, 1411.4 GeV bin, and 1620.5 GeV bin are 92, 73, and 39, respectively.

Furthermore, we reestimate the statistical uncertainties in these bins based on the revised numbers of events via the formula

$$\Delta N_{1\sigma} \approx \frac{1}{\sqrt{N}},$$

(4)

and then calculate the corresponding fluxes and their statistical uncertainties. The systematical uncertainties are assumed to be invariant. All the detailed information for these three bins are given in Table I. By the way, as a cross check, with Eq. (3), we have reproduced similar 1σ statistical uncertainties of the original fluxes in the DAMPE’s paper [22].

Fitting Procedure—As in Ref. [37], we perform a global fitting on the data set including the proton fluxes from AMS-02 and CREAM [56, 57] helium flux from AMS-02 and CREAM [51, 58], p/p ratio from AMS-02 [52], positrons flux from AMS-02 [13], and CRE flux from DAMPE [22], which could account for the primary electrons, the secondary leptons, and the extra leptons in a self-consistent way. Moreover, the employed AMS-02 positron flux is used to calibrate the positron contribution in the DAMPE CRE flux in energy region $\lesssim 300$ GeV. The framework of the fitting procedure is the same as our previous work [37], where the details can be found.

We consider both pulsar and DM scenarios to generate the CRE excesses in the observed spectrum by the DAMPE experiment. For the pulsar scenario, a continuous distributed pulsar background was used [37, 60]. The injection spectrum of such sources is assumed to be a power law with an exponential cutoff

$$q_{\text{psr}}(p) = N_{\text{psr}}(R/10\text{ GeV})^{-\nu_{\text{psr}}} \exp(-R/R_c),$$

(5)

where N_{psr} is the normalization factor, ν_{psr} is the spectral index, and R_c is the cutoff rigidity. For the DM scenario, we employ the Einasto profile [61–64]. The injection spectrum of such sources is assumed to be a power law with an exponential cutoff

$$q_{\text{dm}}(p) = \rho_0 \exp \left[-\left(\frac{2}{\alpha} \left(\frac{p^\alpha - r_s^\alpha}{r_s^\alpha} \right) \right) \right],$$

(6)

with $\alpha \approx 0.17, r_s \approx 20$ kpc, and $\rho_0 \approx 0.39$ GeV cm$^{-3}$ is the local DM relic density [65, 66]. And the source term, which we use to add the CRE particles from the annihilations of the Majorana DM particles, is

$$Q(r,p) = \frac{\rho(r)^2}{2m^2} \langle \sigma v \rangle \sum_f \eta_f \frac{dN(f)}{dp},$$

(7)
where \(\langle \sigma v \rangle \) is the velocity-averaged DM annihilation cross section multiplied by DM relative velocity (referred as cross section), \(\rho(r) \) is the DM density distribution, and \(dN(f)/dp \) is the injection energy spectrum of CREs from DM annihilating into the Standard Model (SM) final states via leptonic channels \(f \bar{f} (e^e^\pm, \mu\bar{\mu}, \tau\bar{\tau}) \) with \(\eta_f (\eta_e, \eta_\mu, \eta_\tau) \) the corresponding branching fractions. Here, we normalized \(\eta_f \) as \(\eta_e + \eta_\mu + \eta_\tau = 1 \).

The parameters related to the extra source of the leptons for pulsar scenario is \((N_{psr}, \nu_{psr}, R_c) \), and for DM scenario is \((m_\chi, \langle \sigma v \rangle, \eta_e, \eta_\mu, \eta_\tau) \).

Results The fitting results of the pulsar and DM scenario on the DAMPE CRE spectrum are given in Figs. 1 and 2 respectively. From these figures, we can conclude that both scenarios could provide the excellent fittings to the DAMPE CRE spectrum within 3\(\sigma \) fitting deviation, which do not need to employ extra local sources. For the best fit result on the DAMPE CRE spectrum, we have \(\chi^2 \approx 17.2 \) and \(\chi^2 \approx 13.9 \) for pulsar and DM scenarios, respectively.

![Image](Image 1)

FIG. 1: The global fitting results and the corresponding residuals to the DAMPE lepton flux for pulsar scenario.

For the pulsar scenario, the fitting results give \(\nu_{psr} \approx 0.62 \), which is obviously different from the fitting results in previous works (see for e.g., [20]). In standard pulsar models, the injection spectrum indices of CREs from pulsars are always in the range \(\nu_{psr} \in [1.0, 2.4] \) [71, 72]. As a result, more attention should be paid in future researches. This may indicate: (i) there is something wrong or inaccuracy with the classical pulsar CRE injection model; (ii) the CRE excess is not contributed primarily by pulsars. Moreover, the cut-off is \(R_c \approx 692 \) GV. In the previous work [37] where the 1.4 TeV peak excess was neglected, we obtained that the spectral index of the injection is \(\nu_{psr} \approx 0.65 \) and the cut-off is \(R_c \approx 650 \) GV. Thus, there exist about +5% and −5% deviations for \(\nu_{psr} \) and \(R_c \), respectively.

For the DM scenario, we obtain \(\langle \sigma v \rangle \approx 4.07 \times 10^{-23} \text{cm}^2 \text{s}^{-1} \) and \(m_\chi \approx 1884 \) GeV. The value of \(\langle \sigma v \rangle \) is about 3 orders larger than that of thermal DM [74]. To explain this discrepancy, we will present a concrete model where the SM fermions and Higgs fields are neutral under it. We introduce one SM singlet Higgs field \(S \), one chiral fermionic dark matter particle \(\chi \), and three pairs of the vector-like particles \(\{\tilde{X}E_i, \tilde{X}E_i^c\} \), whose quantum numbers under the \(SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_D \) are

\[
S : (1, 1, 0, 2), \quad \chi : (1, 1, 0, -1)
\]
\[
\tilde{X}E_i : (1, 1, -1, -2), \quad \tilde{X}E_i^c : (1, 1, 1, 2).
\] (8)
The relevant Lagrangian is

$$\mathcal{L} = -m_\xi^2 |S|^2 + \frac{\lambda}{2} |S|^4 + \left(M_{ij}^Y \bar{X}_i \vec{E}_j + y_{ij} S \bar{E}_i \vec{E}_j + y S \chi \chi + H.C. \right), \quad (9)$$

where \vec{E}_i are the right-handed charged leptons. For simplicity, we choose $M_{ij}^Y = M^Y_{ij}$ and $y_{ij} = y \delta_{ij}$. After S acquires a Vacuum Expectation Value (VEV), the $U(1)_Y$ gauge symmetry is broken down to a Z_2 symmetry under which χ is odd. Thus, χ is a DM candidate. For simplicity, we assume that the mass of the Higgs field S and vector-like particles are heavier than M_χ. Moreover, \vec{E}_i and $\bar{X}_i \vec{E}_i$ will be mixed due to the $M_{ij}^Y \bar{X}_i \vec{E}_j$ and $y S \bar{E}_i \vec{E}_i$ terms, and we obtain the mass eigenstates E_i^c and $X E_i^c$ by neglecting the tiny charged lepton masses

$$\begin{pmatrix} E_i^c \\ X E_i^c \end{pmatrix} = \begin{pmatrix} \cos \theta_i & \sin \theta_i \\ -\sin \theta_i & \cos \theta_i \end{pmatrix} \begin{pmatrix} \hat{E}_i^c \\ \hat{X} E_i^c \end{pmatrix}, \quad (10)$$

where $\tan \theta_i = -y(S)/M^Y_{ij}$.

Neglecting the charged lepton masses again, we obtain

$$\sigma v = \frac{3}{6\pi} g' s \sin^2 \theta_i \left(\sum_{i=1}^3 \frac{s - m_\chi^2}{(s - m_\chi^2)^2 + (m_{Z'} \Gamma_{Z'})^2} \right), \quad (11)$$

where $m_\chi = y \langle S \rangle$, and g' and $M_{Z'}$ are the gauge coupling and gauge boson mass for $U(1)_Y$ gauge symmetry.

For $m_{Z'} \simeq 2 m_\chi$, Z' decays dominantly into leptons, and the decay width is

$$\Gamma_{Z'} = \frac{3}{6\pi} g'^2 \sin^2 \theta_i m_{Z'} \quad (12)$$

To explain the DM best fit results, we choose

$$g' \simeq 0.028, \quad m_\chi \simeq 1884 \text{ GeV}, \quad \frac{m_{Z'} - 2 m_\chi}{m_{Z'}} \simeq 3.0 \times 10^{-6}, \quad \sin \theta_e \simeq 0.21, \quad \sin \theta_\mu \simeq 0.22, \quad \sin \theta_\tau \simeq 0.05. \quad (13)$$

And then we obtain $\langle \sigma v \rangle \simeq 4.07 \times 10^{-23} \text{ cm}^3\text{s}^{-1}$, and $\eta_c : \eta_\mu : \eta_\tau \simeq 0.465 : 0.510 : 0.025$. Of course, there exists fine-tuning between $m_{Z'}$ and m_χ, which deserves further study. For some solutions, see Ref. [88].

Discussions and Conclusion—First, we would like to point out that if the numbers of events in the 1229.3 GeV bin and 1411.4 GeV bin are exchanged, we can also explain the DAMPE's data similarly. Of course, the most important question is how to test our proposal that there exists statistical fluctuations in the 1229.3 GeV bin, 1411.4 GeV bin, and 1620.5 GeV bin. For the data analyses, we suggest that one chooses different energy ranges to study the data again. For example, we can shift the energy ranges by $\pm 50 \text{ GeV}$ and $\pm 100 \text{ GeV}$ for the high energy bins, and then study the corresponding events and fluxes. In the future, DAMPE will provide us more accurate spectrum data reaching up to ~10 TeV, which can give us an unprecedented opportunity to study the origin and propagation of CREs. We predict that the CRE spectrum would be more continuous. In particular, the peak excess in the 1411.4 GeV bin as well as the deficits in the 1229.3 GeV bin and 1620.5 GeV bin will all decrease! Moreover, if the 1.4 TeV peak signal was proved to be correct, we do need a local source of high energy CREs. Other experiment is needed as a cross check if such signal arises from DM annihilation, for example, our recent work [90] proposed a novel scenario to probe the interaction between DM particles and electrons for the DM mass range $5 \text{ GeV} \lesssim m_\chi \lesssim 10 \text{ TeV}$.

In summary, with the simplicity and naturalness physics principle, we proposed that there exists the -2σ, $+2\sigma$, and -1σ deviations due to statistical fluctuations for the 1229.3 GeV bin, 1411.4 GeV bin, and 1620.5 GeV bin of the DAMPE data. Interestingly, we showed that all the DAMPE data can be explained consistently via both the pulsar and dark matter interpretations, which have $\chi^2 \simeq 17.2$ and $\chi^2 \simeq 13.9$, respectively. These results are different from the previous analyses by neglecting the 1.4 TeV excess. Moreover, we presented a $U(1)_D$ dark matter model with Breit-Wigner mechanism, which can provide the proper dark matter annihilation cross section and escape the CMB constraint. Furthermore, we suggested a few ways to test our proposal. The details for global fittings will be given elsewhere [91].

Acknowledgement—We would like to thank Xiao-Jun Bi and Yi-Zhong Fan for helpful discussions, and thank Maurin et al. [92] for collecting the database and associated online tools for charged cosmic-ray measurements. This research was supported in part by the Projects 11475238 and 11647601 supported by National Science Foundation of China, and by Key Research Program of Frontier Sciences, CAS. The calculation in this paper are supported by HPC Cluster of SKLTP/ITP-CAS.

[1] C. S. Shen, “Pulsars and Very High-Energy Cosmic-Ray Electrons,” Astrophys. J. Lett. 162, L181 (1970).
[2] A. K. Harding and R. Ramaty, “The Pulsar Contribution to Galactic Cosmic Ray Positrons,” International Cosmic Ray Conference 2, 92 (1987).
[3] F. A. Aharonian, A. M. Atoyan, and H. J. Voelk, “High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic tevatron,” Astron. Astrophys. 294, L41–L44 (1995).
[4] X. Chi, K. S. Cheng, and E. C. M. Young, “Pulsar Wind Origin of Cosmic Ray Positrons,” Astrophys. J. Lett. 459, L83 (1996).
[5] L. Zhang and K. S. Cheng, “Cosmic-ray
positrons from mature gamma-ray pulsars,” Astron. Astrophys. 368, 1063–1070 (2001)
[6] L. Bergstrom, “Non-baryonic dark matter: observational evidence and detection methods,” Reports on Progress in Physics 63, 793–841 (2000)
[7] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: evidence, candidates and constraints,” Phys. Rept. 405, 279–390 (2005)
[8] L. Bergström, J. Edsjö, and G. Zaharijas, “Dark Matter Interpretation of Recent Electron and Positron Data,” Physical Review Letters 103, 031103 (2009)
[9] F. Aharonian, A. G. Akhperjanian, U. Barres de Almeida, A. R. Bazer-Bachi, Y. Becherini, B. Behera, W. Benbow, K. Bernlörh, C. Boisson, A. Bochow, and et al., “Energy Spectrum of Cosmic-Ray Electrons at TeV Energies,” Physical Review Letters 101, 261104 (2008)
[10] HESS collaboration, “Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S.,” Astron. Astrophys. 508, 561–564 (2009)
[11] D. Staszak and for the VERITAS Collaboration, “A Cosmic-ray Electron Spectrum with VERITAS,” ArXiv e-prints (2015), arXiv:1508.06597 [astro-ph.HE]
[12] S. Abdollahi et al. (Fermi-LAT), “Cosmic-ray electron spectrum from 20GeV to 1TeV with the Fermi Large Area Telescope,” Physical Review Letters 108, 011103 (2012)
[13] D. Staszak and for the VERITAS Collaboration, “2 TeV Cosmic-ray Electron Spectrum Measured with VERITAS,” ArXiv e-prints (2015), arXiv:1508.06597 [astro-ph.HE]
[14] O. Adriani et al. (CALET), “Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station,” Phys. Rev. Lett. 119, 181101 (2017)
[15] J. Chang, J. H. Adams, H. S. Ahn, G. L. Bashindzhagyan, M. Christl, O. Ganel, T. G. Guzik, J. Isbert, K. C. Kim, E. N. Kuznetsov, M. I. Panasyuk, A. D. Panov, W. K. H. Schmidt, E. S. Seo, N. V. Sokol-skaya, J. W. Watts, J. P. Wefel, J. Wu, and V. I. Zatsepin, “An excess of cosmic ray electrons at energies of 300-800GeV,” Nature 456, 362–365 (2008)
[16] Fermi-LAT collaboration, “Measurement of the Cosmic Ray e+e− Spectrum from 20GeV to 1TeV with the Fermi Large Area Telescope,” Physical Review Letters 102, 181101 (2009)
[17] M. Aguilar et al. (AMS), “Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 113, 121102 (2014)
[18] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M.邦吉, V. Bonvicini, S. Bottai, and et al., “An anomalous positron abundance in cosmic rays with energies 1.5-100GeV,” Nature 458, 607–609 (2009)
[19] Fermi-LAT collaboration, “Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope,” Physical Review Letters 108, 011103 (2012)
[20] M. Aguilar et al. (AMS), “First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV,” Phys. Rev. Lett. 110, 141102 (2013)
[21] L. Accardo et al. (AMS), “High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5500 GeV with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 113, 121101 (2014)
[22] G. Ambrosio et al. (DAMPE collaboration), “Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons,” Nature (2017), 10.1038/nature24475, arXiv:1711.10989 [astro-ph.HE]
[23] P.-H. Gu and X.-G. He, “Electrophilic dark matter with dark photon: from DAMPE to direct detection,” ArXiv e-prints (2017), arXiv:1711.11000 [hep-ph]
[24] K. Fang, X.-J. Bi, and P.-F. Yin, “Explanation of the knee-like feature in the DAMPE cosmic e−+e+ energy spectrum,” ArXiv e-prints (2017), arXiv:1711.10996 [astro-ph.HE]
[25] Y.-Z. Fan, W.-C. Huang, M. Spinrath, Y.-L. Sming Tsai, and Q. Yuan, “A model explaining neutrino masses and the DAMPE cosmic ray electron excess,” ArXiv e-prints (2017), arXiv:1711.10995 [hep-ph]
[26] Q. Yuan, L. Feng, P.-F. Yin, Y.-Z. Fan, X.-J. Bi, M.-Y. Cui, T.-K. Dong, Y.-Q. Guo, K. Fang, H.-B. Hu, X. Huang, S.-J. Lei, X. Li, S.-J. Lin, H. Liu, P.-X. Ma, W.-X. Peng, R. Qiao, Z.-Q. Shen, M. Su, Y.-F. Wei, Z.-L. Xu, C. Yue, J.-J. Zang, C. Zhang, X. Zhang, Y.-P. Zhang, Y.-J. Zhang, and Y.-L. Zhang, “Interpretations of the DAMPE electron data,” ArXiv e-prints (2017), arXiv:1711.10989 [astro-ph.HE]
[27] G. H. Duan, L. Feng, F. Wang, L. Wu, J. M. Yang, and R. Zheng, “Simplified TeV leptophilic dark matter in light of DAMPE data,” ArXiv e-prints (2017), arXiv:1711.11012 [hep-ph]
[28] Pei-Hong Gu, “Radiative Dirac neutrino mass, DAMPE dark matter and leptogenesis,” ArXiv e-prints (2017), arXiv:1711.11333 [hep-ph]
Wei Chao and Qiang Yuan, “The electron-flavored Z′ portal dark matter and the DAMPE cosmic ray excess,” ArXiv e-prints (2017), arXiv:1711.11182 [hep-ph].

Yi-Lei Tang, Lei Wu, Mengchao Zhang, and Rui Zheng, “Lepton-portal Dark Matter in Hidden Valley model and the DAMPE recent results,” ArXiv e-prints (2017), arXiv:1711.11058 [hep-ph].

Lei Zu, Cun Zhang, Lei Feng, Qiang Yuan, and Yi-Zhong Fan, “Constraints on box-shaped cosmic ray electron feature from dark matter annihilation with the AMS-02 and DAMPE data,” ArXiv e-prints (2017), arXiv:1711.11052 [hep-ph].

X. Liu and Z. Liu, “TeV dark matter and the DAMPE electron excess,” ArXiv e-prints (2017), arXiv:1711.11579 [hep-ph].

J. Cao, L. Feng, X. Guo, L. Shang, F. Wang, and P. Wu, “Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions,” ArXiv e-prints (2017), arXiv:1711.11452 [hep-ph].

F. Atkin, C. Balazs, A. Fowlie, and Y. Zhang, “Model-independent analysis of the DAMPE excess,” ArXiv e-prints (2017), arXiv:1711.11376 [hep-ph].

Wei Chao, Huai-Ke Guo, Hao-Lin Li, and Jing Shu, “Electron Flavored Dark Matter,” ArXiv e-prints (2017), arXiv:1712.00037 [hep-ph].

Yu Gao and Yin-Zhe Ma, “Implications of dark matter cascade decay from DAMPE, HESS, Fermi-LAT and AMS02 data,” ArXiv e-prints (2017), arXiv:1712.00370 [astro-ph.HE].

J.-S. Niu, T. Li, R. Ding, B. Zhu, H.-F. Xue, and Y. Wang, “Bayesian Analysis of the DAMPE Lepton Spectra and Two Simple Model Interpretations,” ArXiv e-prints (2017), arXiv:1712.00372 [astro-ph.HE].

H.-B. Jin, B. Yue, X. Zhang, and X. Chen, “Cosmic ray e+e− spectrum excess and peak feature observed by the DAMPE experiment from dark matter,” ArXiv e-prints (2017), arXiv:1712.00362 [astro-ph.HE].

X.-J. Huang, Y.-L. Wu, W.-H. Zhang, and Y.-F. Zhou, “Origins of sharp cosmic-ray electron structures and the DAMPE excess,” ArXiv e-prints (2017), arXiv:1712.00005 [astro-ph.HE].

Guang Hua Duan, Lei Feng, Fei Wang, Lei Wu, Jin Min Yang, and Rui Zheng, “Simplified TeV leptophilic dark matter in light of DAMPE data,” ArXiv e-prints (2017), arXiv:1711.11102 [hep-ph].

Junjie Cao, Lei Feng, Xiaofei Guo, Liangliang Shang, Fei Wang, Peiwen Wu, and Lei Zu, “Explaining the DAMPE data with scalar dark matter and gauged U(1)_{L−μ−τ} interaction,” ArXiv e-prints (2017), arXiv:1712.01244 [hep-ph].

Karim Ghorbani and Parsa Hossein Ghorbani, “DAMPE Excess in Leptophilic Z′ model,” ArXiv e-prints (2017), arXiv:1712.01239 [hep-ph].

Takaaki Nomura and Hiroshi Okada, “Radiative seesaw models linking to dark matter candidates inspired by the DAMPE excess,” ArXiv e-prints (2017), arXiv:1712.00941 [hep-ph].

Pei-Hong Gu, “Quasi-degenerate dark matter for DAMPE excess and 3.5 keV line,” ArXiv e-prints (2017), arXiv:1712.00922 [hep-ph].

Tong Li, Nobuchika Okada, and Qaisar Shafi, “Scalar dark matter, Type II Seesaw and the DAMPE cosmic ray e+e− excess,” ArXiv e-prints (2017), arXiv:1712.00869 [hep-ph].
[61] J. F. Navarro, E. Hayashi, C. Power, A. R. Jenkins, C. S. Frenk, S. D. M. White, V. Springel, J. Stadel, and T. R. Quinn, “The inner structure of ΛCDM haloes - III. Universality and asymptotic slopes,” Mon. Not. Roy. Astron. Soc. 349, 1039–1051 (2004) astro-ph/0311231.

[62] D. Merritt, A. W. Graham, B. Moore, J. Diemand, and B. Terzić, “Empirical Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models,” Astron. J. 132, 2685–2700 (2006) astro-ph/0509947.

[63] J. Einasto, “Dark Matter,” ArXiv e-prints (2009), arXiv:0901.0632 [astro-ph.CO].

[64] M. Weber and W. de Boer, “Determination of the local dark matter density in our Galaxy,” J. Cosmol. Astropart. Phys. 8 (2010) arXiv:0910.1522.

[65] J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, S. D. M. White, A. Jenkins, C. S. Frenk, and A. Helmi, “The diversity and similarity of simulated cold dark matter haloes,” Mon. Not. Roy. Astron. Soc. 402, 21–34 (2010) arXiv:0810.5522.

[66] R. Catena and P. Ullio, “A novel determination of the dark matter local density,” J. Cosmol. Astropart. Phys. 8, 004 (2010) arXiv:0907.0018.

[67] M. Weber and W. de Boer, “Determination of the local dark matter density in our Galaxy,” Astron. Astrophys. 509, A25 (2010) arXiv:0910.4272 [astro-ph.CO].

[68] P. Salucci, F. Nesti, G. Gentile, and C. Frigerio Martinis, “The dark matter density at the Sun’s location,” Astron. Astrophys. 523, A83 (2010) arXiv:1003.3101.

[69] M. Pato, O. Agertz, G. Bertone, B. Moore, and R. Teyssier, “Systematic uncertainties in the determination of the local dark matter density,” Phys. Rev. D 82, 023531 (2010) arXiv:1006.1322 [astro-ph.HE].

[70] F. Iocco, M. Pato, G. Bertone, and P. Jetzer, “Dark Matter distribution in the Milky Way: microlensing and dynamical constraints,” J. Cosmol. Astropart. Phys. 11, 029 (2011), arXiv:1107.5810 [astro-ph.GA].

[71] S. Profumo, “Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars,” Central European Journal of Physics 10, 1–31 (2012) arXiv:0812.4457.

[72] S. P. Reynolds, “Filamentary structure in Crab-like supernova remnants,” Astrophys. J. 327, 853–858 (1988).

[73] J. F. Navarro, Z. Arzoumanian, D. L. Bertsch, K. T. S. Brazier, J. Chiang, N. D’Amico, B. L. Dingus, J. A. Esposito, C. E. Fichtel, R. C. Hartman, S. D. Hunter, S. Johnston, G. Kanbach, V. M. Kaspi, D. A. Kniffen, Y. C. Lin, A. G. Lyne, R. N. Manchester, J. R. Mattix, H. A. Mayer-Hasselwander, P. F. Michelson, C. von Montigny, H. I. Nel, D. Nice, P. L. Nolan, E. J. Schneid, S. K. Shriver, P. Sreekumar, J. H. Taylor, D. J. Thompson, and T. D. Willis, “EGRET High-Energy gamma -Ray Pulsar Studies. II. Individual Millisecond Pulsars,” Astrophys. J. 447, 807 (1995).

[74] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267, 195–373 (1996) hep-ph/9506380.

[75] Fermi-LAT collaboration, “Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope,” Physical Review Letters 107, 241302 (2011) arXiv:1108.3546 [astro-ph.HE].

[76] A. Geringer-Sameth and S. M. Koushiappas, “Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi,” ArXiv e-prints (2011), arXiv:1108.2914 [astro-ph.CO].

[77] Y.-L. Sming Tsai, Q. Yuan, and X. Huang, “A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids,” ArXiv e-prints (2012), arXiv:1212.3990 [astro-ph.HE].

[78] Fermi-LAT collaboration, “Searching for Dark Matter Annihilation from Milky Way Dwarf Spherical Galaxies with Six Years of Fermi-LAT Data,” ArXiv e-prints (2015), arXiv:1503.02841 [astro-ph.HE].

[79] S. Li, Y.-F. Liang, K.-K. Duan, Z.-Q. Shen, X. Huang, X. Li, Y.-Z. Fan, N.-H. Liao, L. Feng, and J. Chang, “Search for gamma-ray emission from eight dwarf spheroidal galaxy candidates discovered in Year Two of Dark Energy Survey with Fermi-LAT data,” ArXiv e-prints (2015), arXiv:1511.09252 [astro-ph.HE].

[80] S. Profumo, F. S. Queiroz, J. Silk, and C. Siqueira, “Searching for Secluded Dark Matter with H.E.S.S., Fermi-LAT, and Planck,” ArXiv e-prints (2017), arXiv:1711.03133 [hep-ph].

[81] Planck collaboration, “Planck 2015 results. XIII. Cosmological parameters,” ArXiv e-prints (2015), arXiv:1502.01589.

[82] D. Feldman, Z. Liu, and P. Nath, “PAMELA Positron Excess as a Signal from the Hidden Sector,” ArXiv e-prints (2008), arXiv:0810.5762 [hep-ph].

[83] M. Ibe, H. Murayama, and T. T. Yanagida, “Breit-Wigner Enhancement of Dark Matter Annihilation,” ArXiv e-prints (2008), arXiv:0812.0072 [hep-ph].

[84] W.-L. Guo and Y.-L. Wu, “Enhancement of Dark Matter Annihilation via Breit-Wigner Resonance,” ArXiv e-prints (2008), arXiv:0810.5762 [hep-ph].

[85] J. Hisano, M. Kawasaki, K. Kohri, T. Moroi, K. Nakayama, and T. Sekiguchi, “Cosmological constraints on dark matter models with velocity-dependent annihilation cross section,” ArXiv e-prints (2011), arXiv:1106.6027 [hep-ph].

[86] J. M. Fierro, Z. Arzoumanian, M. Bailes, J. F. Bell, D. L. Bertsch, K. T. S. Brazier, J. Chiang, N. D’Amico, B. L. Dingus, J. A. Esposito, C. E. Fichtel, R. C. Hartman, S. D. Hunter, S. Johnston, G. Kanbach, V. M. Kaspi, D. A. Kniffen, Y. C. Lin, A. G. Lyne, R. N. Manchester, J. R. Mattix, H. A. Mayer-Hasselwander, P. F. Michelson, C. von Montigny, H. I. Nel, D. Nice, P. L. Nolan, E. J. Schneid, S. K. Shriver, P. Sreekumar, and J. H. Taylor, “EGRET high-energy gamma-ray pulsar studies. I: Young spin-powered pulsars,” Astrophys. J. 436, 229–238 (1994).

[87] J. F. Navarro, Z. Arzoumanian, M. Bailes, J. F. Bell, D. L. Bertsch, K. T. S. Brazier, J. Chiang, N. D’Amico, B. L. Dingus, J. A. Esposito, C. E. Fichtel, R. C. Hartman, S. D. Hunter, S. Johnston, G. Kanbach, V. M. Kaspi, D. A. Kniffen, Y. C. Lin, A. G. Lyne, R. N. Manchester, J. R. Mattix, H. A. Mayer-Hasselwander, P. F. Michelson, C. von Montigny, H. I. Nel, D. Nice, P. L. Nolan, E. J. Schneid, S. K. Shriver, P. Sreekumar, and J. H. Taylor, “EGRET High-Energy gamma -Ray Pulsar Studies. II. Individual Millisecond Pulsars,” Astrophys. J. 447, 807 (1995).
“A dark matter model that reconciles tensions between the cosmic-ray e^\pm excess and the gamma-ray and CMB constraints,” ArXiv e-prints (2017), arXiv:1707.09313 [astro-ph.HE]

[90] J.-S. Niu, T. Li, W. Zong, H.-F. Xue, and Y. Wang, “Probing the Dark Matter-Electron Interactions via Hydrogen-Atmosphere Pulsating White Dwarfs,” ArXiv e-prints (2017), arXiv:1709.08804 [astro-ph.HE]

[91] J.-S. Niu, T. Li and F.-Z Xu, in preparation.

[92] D. Maurin, F. Melot, and R. Taillet, “A database of charged cosmic rays,” Astron. Astrophys. 569, A32 (2014), arXiv:1302.5525 [astro-ph.HE]