Genome Reduction and Microbe-Host Interactions Drive Adaptation of a Sulfur-Oxidizing Bacterium Associated with a Cold Seep Sponge

Ren-Mao Tian, Weipeng Zhang, Lin Cai, Yue-Him Wong, Wei Ding, Pei-Yuan Qian
Division of Life Science, Hong Kong University of Science and Technology, Hong Kong

ABSTRACT As the most ancient metazoan, sponges have established close relationships with particular microbial symbionts. However, the characteristics and physiology of thioautotrophic symbionts in deep-sea sponges are largely unknown. Using a tailored “differential coverage binning” method on 22-Gb metagenomic sequences, we recovered the nearly complete genome of a sulfur-oxidizing bacterium (SOB) that dominates the microbiota of the cold seep sponge Suberites sp. Phylogenetic analyses suggested that this bacterium (an unclassified gammaproteobacterium termed “Gsub”) may represent a new deep-sea SOB group. Microscopic observations suggest that Gsub is probably an extracellular symbiont. Gsub has complete sulfide oxidation and carbon fixation pathways, suggesting a chemoautotrophic lifestyle. Comparative genomics with other sponge-associated SOB and free-living SOB revealed significant genome reduction in Gsub, characterized by the loss of genes for carbohydrate metabolism, motility, DNA repair, and osmotic stress response. Intriguingly, this scenario of genome reduction is highly similar to those of the endosymbionts in deep-sea clams. However, Gsub has retained genes for phage defense and protein secretion, with the latter potentially playing a role in interactions with the sponge host. In addition, we recovered the genome of an ammonia-oxidizing archaeon (AOA), which may carry out ammonia oxidation and carbon fixation within the sponge body.

IMPORTANCE Sponges and their symbionts are important players in the biogeochemical cycles of marine environments. As a unique habitat within marine ecosystems, cold seeps have received considerable interest in recent years. This study explores the lifestyle of a new symbiotic SOB in a cold seep sponge. The results demonstrate that both this sponge symbiont and endosymbionts in deep-sea clams employ similar strategies of genome reduction. However, this bacterium has retained unique functions for immunity and defense. Thus, the functional features are determined by both the symbiotic relationship and host type. Moreover, analyses of the genome of an AOA suggest that microbes play different roles in biochemical cycles in the sponge body. Our findings provide new insights into invertebrate-associated bacteria in cold seep environments.

KEYWORDS cold seep, genome analysis, sponge, symbiont

A rising 600 million years ago, sponges are probably the most ancient living metazoan (1), and they play important roles in the biogeochemical cycle in the benthic zone (2). Sponges can be found in a variety of habitats such as deep-sea cold seeps. The deep-sea seeps studied so far include the Shaban Deep (3), the Discovery Deep (4), the Atlantis II Deep (5), and the Kebrat Deep (6). The seeps are diverse, with varied fluid flow regimes that support ecosystems with different structures (7). Our recent work (8–10) has investigated microbial communities in Thuwal cold seeps II, a new cold seep system.
found in 2012 (11). The Thuwal cold seeps are located in the central Red Sea at a depth of 850 m. The seep water is enriched with metals at 10 times the concentration of normal deep-sea water, including aluminum (0.24 ppm), arsenic (0.34 ppm), copper (0.20 ppm), and iron (0.10 ppm) (11). The collected water had a characteristic foul odor, indicating a high hydrogen sulfide content, and the concentration of sulfate is 2.7 g/liter (12).

Sponges maintain a close relationship with many microbes (13, 14). The microorganisms in the sponge body can reach up to 40% of the sponge weight and are mainly distributed in the mesophyll layer (15). A variety of microorganisms inhabit sponges, including Proteobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Chloroflexi, and Actinobacteria, as revealed by 16S rRNA sequence data (16). Comparisons with microbial communities in the surrounding water have revealed the unique composition and phylogeny of sponge-associated microorganisms (17, 18). Microbial communities in symbiosis with six sponge species show functional equivalence and evolutionary convergence, suggesting the existence of core functions for sponge-associated microorganisms (19). Moreover, a metagenomic investigation by Thomas et al. (18) revealed potential metabolic interactions between bacteria and the sponge host, including vitamin production, nutrient transport, as well as redox sensing and response. These findings all point to interactions between microbes and the host sponge, contributing to the widely observed host specificity of these microbial groups. More-recent studies have employed genomics to explore the functional features of single microbes associated with sponges. Examples include a first-draft genome of “Candidatus Synechococcus spongiorum,” which inhabits the Red Sea sponge Carteriospongia foliacea (19); single-cell genomes of members of Entotheonella, which are widely distributed in sponges (12), and three additional draft genomes of “Ca. Synechococcus spongiorum,” each from a different clade (20). According to these genomic studies, sponge-associated microbes show functional dissimilarities to closely related free-living strains, for example, the unique chemical compounds produced by Entotheonella and gene deletion in “Ca. Synechococcus spongiorum.”

As potential autotrophic and carbon-providing symbionts, thioautotrophic microbes have attracted a large amount of research interest since the 1970s (21). Symbiotic bacteria in tube worms (22, 23), clams (24, 25), mussels (26), snails (27), and sponges (28) have been found to interact with their host intensively. These symbionts are mostly sulfur-oxidizing bacteria (SOB) that scavenge reduced sulfur from the hosts and provide vitamins required by the hosts (25, 26). In addition, the hosts acquire food from the bacterial symbionts and provide them with shelter. Genomic studies have investigated several sulfur-oxidizing symbionts from deep-sea invertebrates, including “Candidatus Ruthia magnifica” strain Cm in the clam Calyptogena magnifica (25), “Candidatus Vesicomyosocius okutanii” strain HA in the clam Calyptogena okutanii (26), a symbiont of the oligochaete Olavius algarvensis (29), a gammaproteobacterium in the snail Crysomallon squamiferum (27), and a gammaproteobacterium in the deep-sea glass sponge Lophophysema eversa (30). In Lophophysema eversa, the microbial community was dominated by an ammonia-oxidizing archaeon (AOA), a nitrite-oxidizing bacterium (NOB), and a SOB, all of which were autotrophs. In addition, an experimental study has demonstrated that the high demand for oxygen by chemoautotrophic symbionts could be a major factor precluding their endosymbiosis with cnidarians (31).

One important feature for a variety of endosymbionts is genome reduction. These microorganisms in hosts lack genes that are essential in other bacteria and retain only the most essential functions, such as sets of genes that serve the hosts (32). Genome reduction is a hallmark of the genomes of symbionts and is considered a strategy to reduce the cost of genome replication (33). It is also considered to result from coevolution between the endosymbiont and host (34), and it can be neutral or adaptive (35).

Although thioautotrophic symbionts of advanced marine animals, such as clams, have been studied widely (reviewed in reference 21), there is limited knowledge of the symbionts of sponges in deep-sea environments, especially in cold seeps. Given that
sponges have no differentiated tissue (36) and that the microenvironment in sponge bodies is unlike other invertebrates (e.g., oxygen levels vary spatially) (37), it is interesting to explore the adaptation of symbionts in sponge bodies. Here, we have successfully recovered the nearly complete genome of a sponge-associated SOB from the sponge *Suberites* sp. (classified to the genus level based on its 18S rRNA gene, which shows 99% identity over 1,727 bp to the 18S rRNA gene of *Suberites* sp. strain 0M9H2772-G) collected at the Thuwal cold seeps II. Using comparative genomics, we have demonstrated unique ecological functions and adaptive mechanisms in this bacterium.

RESULTS AND DISCUSSION

Metagenome information and genome binning. Two metagenome pairs (external/internal tissues and sponge cell-enriched/prokaryote cell-enriched samples; see Materials and Methods for the details) were sequenced using different platforms (HiSeq and MiSeq), to improve DNA assembly and microbial genome binning from the mixed eukaryotic and prokaryotic DNA sequences. In total, 4.7 and 4.4 Gbp of HiSeq2000 reads of the external and internal tissue metagenome, respectively, were obtained. After quality control and assembly, 27,109 contigs larger than 500 bp (total length, 102 Mbp) were generated. In parallel, 6.2 and 6.4 Gbp of the MiSeq (2 × 300-bp) reads of the sponge cell- and prokaryote cell-enriched samples, respectively, were obtained. After quality control, 5.6 and 5.3 Gbp of high-quality reads were retained and assembled with the contigs from the external and internal tissue metagenomes. The final assembly resulted in 41,405 contigs (a total length of 132 Mbp). The improved assembly was used in the subsequent genome binning process. The qualified HiSeq and MiSeq sequences and the final assembly are summarized in Table S1 in the supplemental material.

Analysis of the prokaryotic community composition of the sponge samples (Fig. 1) indicated that there were four dominant species, namely, an archaeon from the genus *Nitrosopumilus* and three gammaproteobacteria, one from the order *Thiohalorhabdales*, one from the order *Chromatiales*, and one from an unclassified order. *Thiohalorhabdales* were previously isolated from hypersaline lakes and considered to be SOB (38); in a recent study, the abundance of *Thiohalorhabdales* was correlated with the nitrite concentration, suggesting a potential role in nitrogen cycling (39). Members of the archaeal genus *Nitrosopumilus* are distributed in global oceans and perform the functions of nitrification and autotrophy (40). Members of *Chromatiales* are often obligately...
aerobic chemoheterotrophs, which can also oxidize sulfur (41). The unclassified gamma-proteobacterium was a SOB, based on our subsequent phylogenetic and genomic analyses. Thus, the cold seep sponge-associated microbiome is dominated by autotrophic microbes, which may play important roles in the carbon, nitrogen, and sulfur cycles. Metagenomics of the water sample collected during the same cruise were also analyzed (details for the metagenome information are summarized in Table S1), revealing that the sponge-associated microbial community is less diverse than that of the water (Fig. S1).

In the present study, we focus on the unclassified gammaproteobacterium and we will refer to it as “Gsub” hereafter. Recovery of the Gsub genome was conducted by comparing the sequencing coverage of the contigs in the external and internal tissue samples, as well as in the sponge and prokaryote cell-enriched samples. In addition to the sequencing coverage grouping, tetranucleotide frequency clustering was also applied to collect a purer genome (Fig. S2). Intriguingly, the two approaches recovered exactly the same contigs for the Gsub genome, indicating the accuracy of the binning method used in the present study. In addition, the similar relative abundance of Gsub in the external and internal samples suggested a strong association of this bacterium with the sponge. The bin of the Gsub genome contained 14 contigs (total length of 1,371,853 bp; total sequencing coverage of 745×) with a maximum length of 212 kbp and a mean length of 98 kbp. The genome completeness and potential contamination of the Gsub genome were estimated to be 98% and 0%, respectively, based on the identification of 243 Proteobacteria-specific single-copy marker genes using CheckM (42). The Pfam-based 139 conserved single-copy genes were also identified, showing that the Gsub genome contains no duplicated genes (Table S2). The high completeness and purity of the genome allow us to investigate the phylogeny and potential lifestyle of Gsub.

Phylogeny of Gsub. Gsub shares the highest 16S rRNA gene identity (94.5%) with “Candidatus Ruthia magnifica” strain Cm, an intracellular SOB found in the deep-sea clam *Calyptogena magnifica* (25). The phylogenetic tree (Fig. 2A) shows that Gsub is close to a group of thioautotrophic endosymbionts of the deep-sea Bivalvia represented by “Candidatus Ruthia magnifica” Cm (25) and “Candidatus Vesicomysosocius okutanii” HA (24). Two free-living SOB and two sponge-associated SOB were also included in the phylogenetic tree as outgroups, and they showed an 84.8 to 87.0% 16S rRNA gene identity to Gsub. In addition to the 16S rRNA gene tree, 31 single-copy genes were used to determine the phylogenetic position of Gsub, and the result revealed a similar relationship between Gsub and the reference bacteria (Fig. 2B). The soxB genes are largely unique to SOB and have been targeted as a means of examining the diversity of marine SOB (43). Therefore, a tree based on the soxB gene sequences was constructed, demonstrating that soxB from Gsub has an 83.0 to 87.5% match with the closest sequences and forms an independent branch (Fig. S3). The phylogenetic analyses indicate that Gsub may represent a novel SOB group.

Microscopic observations. To further investigate the association between Gsub and the sponge, fluorescence in situ hybridization (FISH) experiments were performed using sponge sections with a Gsub-specific probe for the 16S rRNA gene, and the results found Gsub in extracellular positions in the sponge (Fig. S4). The Gsub bacteria are cocci with a diameter of ~1 μm, and they stained red with the specific probe. The negative control showed no signal with the negative probe.

Chemoautotrophic metabolism. The Gsub genome contains a complete set of genes involved in the reverse dissimilatory sulfate reduction pathway (*dsrA*, *dsrB*, *aprA*, *aprB*, and *sat*) and the sulfur oxidation (SOX) system (*soxABXYZ*), indicating that this bacterium is able to use both sulfide and thiosulfate as electron donors (Fig. S5A). The Gsub genome also contains a complete set of genes involved in the Calvin-Benson cycle for carbon fixation, including the *rbcS* and *rbcL* genes coding for ribulose-bisphosphate carboxylases (RubisCO) (Fig. S5B). The presence of pathways for sulfur oxidation and carbon fixation indicates a genetic capability for chemoautotrophic
metabolism. In addition, different types of transporters were identified from the Gsub genome, including those for iron, zinc, and L-amino acid transport, suggesting that the symbiont may receive nutrients from the sponge host.

Genome reduction of Gsub. To gain better understanding of the functional profile of Gsub, we compared its genome to two of its nearest neighbor genomes: two endosymbiont SOB (“Candidatus Ruthia magnifica” strain Cm [Rmag] and “Candidatus
Vesicomyosocius okutanii" strain HA (Voku) from vent clams (24, 25); the comparison also included two potential sponge symbiont SOB (the SOB in the deep-sea glass sponge Lophophysema (Glop) and in the shallow water sponge Haliclona (Ghal)) (30, 44) and two free-living relative SOB, Thioalkalivibrio sulfidophilus HL-EbGr7 (Tsul) from shallow water and Thiomicrospira crunogena XCL-2 (Tcru) from the deep sea.

Table 1: Comparison of the genome features among the sulfur-oxidizing bacterium (SOB) in the cold seep sponge (Gsub) and reference genomes

Genome feature	Gsub	Rmag	Voku	Glop	Ghal	Tsul	Tcru
Habitat	Deep-sea sponge	Deep-sea clam	Deep-sea clam	Deep-sea sponge	Shallow-water sponge	Shallow water free-living	Deep-sea free-living
Accession no.	JYIN01000000	CP000488	AP009247	LFLB01000000	JFBG01000000	CP001339	CP000109
Completeness (%)	98.00	94.16	94.19	94.51	99.56	99.89	99.39
Potential contamination (%)	0	0	0	2.44	1.01	0.34	0
Total length (Mb)	1.4	1.2	1.0	2.7	3.5	3.5	2.4
No. of protein-coding genes	1,370	1,076	939	2,506	2,741	3,319	2,201
No. of tRNA genes	36	36	36	43	44	48	44

Reduced features

No. of genes involved in:	Monosaccharide metabolism	Sugar alcohol metabolism	Oligosaccharide metabolism	Motility and chemotaxis	Resistance to toxic compounds and heavy metals	Oxidative stress	Osmotic stress	DNA repair
Gsub	4	2	0	4	14	14	0	31
Rmag	4	2	0	3	14	11	0	21
Voku	3	0	0	2	11	11	0	21
Glop	2	0	0	1	14	13	0	16
Ghal	2	0	0	1	14	12	0	21
Tsul	1	0	0	1	14	11	0	16
Tcru	0	0	0	0	14	13	0	16

Retained features

No. of type II secretion system genes	11	0	0	0	8	12	12
No. of CRISPR sites	3	0	0	0	6	0	2
No. of CRISPR spacers	16	0	0	0	191	0	71
No. of CRISPR protein	2	0	0	0	14	4	5

The reference genomes include two endosymbionts from vent clams, “Candidatus Ruthia magnifica” strain Cm (Rmag) and “Candidatus Vesicomyosocius okutanii” strain (Voku), two extracellular SOB in sponges, the SOB in the deep-sea glass sponge Lophophysema (Glop) and in the shallow water sponge Haliclona (Ghal), and two free-living relative SOB, Thioalkalivibrio sulfidophilus HL-EbGr7 (Tsul) from shallow water and Thiomicrospira crunogena XCL-2 (Tcru) from the deep sea.
The roles of glycine, betaine, and choline in osmoprotection have been demonstrated in a variety of microbes, such as members of *Rhizobium*, *Sinorhizobium*, *Mesorhizobium*, and *Agrobacterium* (46). In the cold seep environment, high osmolarity is probably an external stress for free-living microbes, because of the high concentration of metals. However, the loss of genes related to osmotic stress resistance in Gsub suggests that the microenvironments of host bodies is likely a stable environment for bacteria. This concept is consistent with previous findings for sponge symbionts: in the studies by Gao et al. (19) and Burgsdorf et al. (20), oxidative stress resistance genes were reduced in symbiotic members of the “*Candidatus Synechococcus spongiarum*” group, and the authors proposed that the barrier of the sponge body prevents sunlight from arriving at the cyanobacterial symbiont, avoiding oxidative damage.

In the DNA repair category, the MutL-MutS system was absent in Gsub, Rmag, and Voku, while present in Glop, Gh, Tcru, and Tsul (Tables 1 and 2). The difference between the gene numbers in these two groups of microbes was significant ($P < 0.05$). The *mutL*, *mutS*, and *dcm* genes in bacteria participate in the repair of mismatches at 5-methylcytosine sites (47). In addition, genes encoding components of the RecFOR pathway, which is involved in DNA double-strand break repair (48), also had lower numbers in Gsub, Rmag, and Voku. Elimination of some of the genes encoding components of the DNA recombination and repair pathways has been observed for nearly every small genome (49). In the study of the sponge symbiont “*Candidatus*
Synechococcus spongiarum" by Gao et al. (19), DNA repair enzymes, including the exonuclease Exo VII complex in the mismatch repair pathway, the exonuclease V complex (RecBCD) in the homologous recombination pathway, and ATP-dependent DNA ligase were missing. However, it is not clear how these microbes benefit by retaining fewer DNA repair genes.

With respect to carbohydrate metabolism, the Gsub genome has reduced genes for the metabolism of monosaccharides, oligosaccharides, sugar alcohols, and other carbohydrates compared to free-living relatives. Enzymes involved in polysaccharide synthesis, including starch synthase and UDP-glucose-6-dehydrogenase, were not detected in the Gsub genome. The sponge body is a microenvironment providing rich organic and inorganic nutrients (50, 51). The loss of some genes for carbohydrate biosynthesis implies that Gsub may be able to access these nutrients from the host, consistent with the above-mentioned analyses on transporters.

In terms of motility, Gsub lacked all the genes encoding bacterial flagellar components, including the basal body, motor, rings, hook, filament, and regulatory proteins, and the corresponding chemotaxis proteins (Table 1; Fig. SSC and SSD). In addition, no pilus genes that are involved in gliding motility could be detected in Gsub. This

TABLE 2
Comparison of detailed genomic features on the resistance to toxic compounds and heavy metals, oxidative stress, osmotic stress, and DNA repair in the bacterium Gsub genome and reference bacteria

Gene category and annotationa	No. of genes in the following bacterium with the indicated genes:						
	Gsub	Rmag	Voku	Glop	Ghal	Tsul	Tcru
Resistance to toxic compounds and heavy metals							
Copper homeostasis	2	3	3	3	4	5	7
Multidrug resistance efflux pumps	3	3	3	2	6	11	11
Cobalt-zinc-cadmium resistance	1	1	1	4	3	21	25
Resistance to fluoroquinolones	4	4	4	4	4	4	4
Copper tolerance	1	1	1	2	2	4	2
Zinc resistance	0	0	0	0	0	2	0
Multidrug resistance, tripartite systems	0	0	0	0	1	0	0
Beta-lactamase	0	0	0	1	1	2	2
Multidrug efflux pump (CmeABC operon)	0	0	0	0	0	0	2
Methicillin resistance	2	1	1	1	2	1	1
Arsenic resistance	1	1	1	0	0	7	1
Subtotal	14	14	14	17	23	57	55
Oxidative stress							
Ruberythrin	4	1	2	4	3	6	2
Glutathione: biosynthesis and gamma-glutamyl cycle	3	2	3	5	4	3	5
Redox-dependent regulation of nucleus processes	0	0	1	3	4	4	2
Glutaredoxins	3	3	3	2	1	5	2
Glutathione							
Nonredox reactions	1	2	1	5	7	3	4
Redox cycle	3	3	3	3	1	6	2
Subtotal	14	11	13	22	20	27	17
Osmotic stress							
Betaine biosynthesis from glycine	0	0	0	0	0	2	0
Ectoine biosynthesis and regulation	0	0	0	0	0	0	5
Choline and betaine uptake	0	0	0	10	14	3	4
Subtotal	0	0	0	10	14	5	9
DNA repair							
MutL-MutS system	0	0	0	2	2	3	2
Bacterial DNA repair	10	7	4	16	15	18	12
RecFOR pathway	5	1	1	6	8	7	6
Base excision	7	6	6	7	6	8	5
UvrABC system	3	3	1	3	3	4	4
UvrD and related helicases	3	1	2	2	3	2	3
DinG and relatives	1	1	1	1	0	1	1
2-Phosphoglycolate salvage	2	2	1	2	2	3	3
Subtotal	31	21	16	39	39	46	36

a Genes were annotated using the SEED database.
provides evidence for an immobile lifestyle in the sponge body. The reduced bacterial motility in Gsub implies that symbionts in the sponge body are sessile and do not need to move in response to chemical signals as either a response to stress or a strategy of nutrient acquisition.

Immunity and virulence genes in Gsub. Clustered regularly interspaced short palindromic repeats (CRISPRs) are responsible for phage-specific defense (52). Comparison of CRISPR-associated proteins and CRISPR sites differentiated Gsub from the two endosymbiotic bacteria Rmag and Voku: Gsub retained the CRISPR-associated proteins Cas1 and Cas2, which were absent in Rmag and Voku; three CRISPR sites containing 2, 4, and 10 spacers were found in the Gsub genome, but none were found in the Rmag and Voku genomes (Table 3). In the deep-sea glass sponge Lophophysema eversa, the three dominant species (three autotrophs) all were enriched in CRISPRs and associated proteins compared to their free-living relatives (53). Comparison of metagenomic data from sponge-associated microbial communities with planktonic communities in the surrounding water also showed the increased presence of functions of CRISPR in sponge-associated bacteria (17). Given the high water pumping rate of sponges, the bacteria in sponges are exposed to a high risk of phage infection, and this may explain the absence of CRISPR in the two clam symbiont genomes Rmag and Voku. Moreover, the absence of CRISPR in Rmag and Voku could also be attributed to their smaller genomes, consistent with the concept that the high genetic load of the phage resistance system could be too great for certain small genomes (20). The presence of CRISPR in the Gsub genome, combined with the results of previous studies (17, 53), implies that phage defense is of ecological significance in the adaptation of sponge-associated bacteria.

Comparison between Gsub and the two endosymbiotic bacteria Rmag and Voku revealed that Gsub contains a relatively complete set of genes encoding the type II secretion system (T2SS) (Table S4), which may mediate cellular interactions with the host. Gsub had 11 components of T2SS, which were present in Rmag and Voku; three CRISPR sites containing 2, 4, and 10 spacers were found in the Gsub genome, but none were found in the Rmag and Voku genomes (Table 3). In the deep-sea glass sponge Lophophysema eversa, the three dominant species (three autotrophs) all were enriched in CRISPRs and associated proteins compared to their free-living relatives (53). Comparison of metagenomic data from sponge-associated microbial communities with planktonic communities in the surrounding water also showed the increased presence of functions of CRISPR in sponge-associated bacteria (17). Given the high water pumping rate of sponges, the bacteria in sponges are exposed to a high risk of phage infection, and this may explain the absence of CRISPR in the two clam symbiont genomes Rmag and Voku. Moreover, the absence of CRISPR in Rmag and Voku could also be attributed to their smaller genomes, consistent with the concept that the high genetic load of the phage resistance system could be too great for certain small genomes (20). The presence of CRISPR in the Gsub genome, combined with the results of previous studies (17, 53), implies that phage defense is of ecological significance in the adaptation of sponge-associated bacteria.

Table 3

CRISPR ID	Avg length of repeats (bp)	Repeat sequence	Spacer sequence	Length of spacer (bp)
CRISPR 1	34	TGTATTGGTAAATATACCACTAAGCTTCTTGATGTT	GCTGATGTCTGAAATATATGACTTCTGGTATT	50
		TGTATTGGTAAATATACCACTAAGCTTCTTGATGTT	ACTGAGGTTTGAAGTTGATTGCTGGTGTATT	50
		TGTATTGGTAAATATACCACTAAGCTTCTTGATGTT	ATGGTTTGAACATTACC	
CRISPR 2	36	GTTAGTTTGGTTTGGTTTACCATGCAATACTGTTTACAAAT	TTTGCTATCTCCGTTTTTCTGCTATTAG	30
		GTTAGTTTGGTTTGGTTTACCATGCAATACTGTTTACAAAT	AAAATATATATCTTTAAAAAAAGCACAAAG	30
		GTTAGTTTGGTTTGGTTTACCATGCAATACTGTTTACAAAT	CACGACTTCTGCTAAATCATCACGTTAAT	30
		GTTAGTTTGGTTTGGTTTACCATGCAATACTGTTTACAAAT	TTAGTATATTCTTTACCCCGTTTAAAAA	30
CRISPR 3	36	ATTTGGACAGATCATATTGCTAAACGGCAAATACACAC	AATGGTAGCAATATATTAGTTTACACGAT	30
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	AAACTCGAAAGGTAAGATATTTCTGCTTTT	30
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	TAAACTCTCTAAAGGTGCAATATGTATAG	30
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	GCCTAATTAGCGCAGAAGGCTCTACTT	30
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	ACAAAATTAGCGCAGAAGGCTCTACTT	29
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	GACCTTAGAATGCTTGCCAAACAA	29
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	TGTACACTGCTTTTTCTGTTTCACGATTG	30
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	CAAGATTTAGTTTCTGTTTTGCTCTTTT	30
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	CGAATGATTAGTTTCTGTTTTGCTCTTTT	30
		ATTTGAAAGACATATTGCTAAACGGCAAATACACAC	TAAATATCTTTAGCTGAAATGCTGCTTTA	30

^aClustered regularly interspaced palindromic repeats (CRISPR) identification (ID).
secreted effector undermining eukaryotic trafficking and signaling pathways (55). The T2SS system is a syringe-like structure through which bacteria can secrete proteins such as enzymes into host cells (56). Although the molecules that are introduced into sponge cells by the Gsub bacterium remain unknown, the presence of T2SS suggests the potential for direct interaction between Gsub and the host sponge. This notion is consistent with the recent finding that beneficial symbionts of deep-sea hydrothermal vent mussels harbor numbers of toxin-related genes (57). However, there is evidence showing that T2SS plays a role in virulence in humans and animals, as well as in the survival of bacteria outside the host (58), consistent with the presence of T2SS in the free-living SOB.

Other microbes in the sponge body. As mentioned above, microbes in the Thiohalorhabdales, Nitrosopumilus, and Chromatiales also inhabit the sponge body, and they may play roles in carbon and sulfur cycling. During the genome binning process, we failed to extract the genomes of Thiohalorhabdales and Chromatiales, because they were not well separated from contigs belonging to other organisms. However, we were able to extract the genome of Nitrosopumilus, which is an AOA referred to below as Nsub. The Nsub genome contained 26 contigs (total length of 1,383,621 bp; total sequencing coverage of 84×) with a maximum length of 200 kbp and a mean length of 53 kbp. The genome completeness and potential contamination of the Nsub genome were estimated to be nearly 100 and 0%, respectively, based on the identification of 145 Archaea-specific single-copy marker genes using CheckM. Phylogenetic analysis using the 16S rRNA gene suggested that Nsub is closely related to other microbes from brine environments in the Red Sea (Fig. S6A). Nsub contains pmoABC genes and genes encoding copper hydroxylamine oxidoreductase and putative nitroxyl oxidoreductase, which may be responsible for the oxidation of ammonia in Nitrosopumilus (39). Moreover, the KEGG pathway annotation showed that Nsub is capable of carbon fixation through the hydroxypropionate-hydroxybutyrate cycle (Fig. S6B). The oxidation of ammonia could also serve to scavenge toxic ammonia from the host body. The nitrite generated may be oxidized by potential nitrite oxidizers and transformed to nitrate, which could be assimilated by the host and by other bacteria.

Conclusions. Here we report a potential symbiotic SOB that we term “Gsub,” living in the cold seep sponge Suberites sp. The bacterium is phylogenetically and functionally close to previously known intracellular symbiont SOB of vent clams. The bacterium contains complete pathways for carbon fixation and sulfide oxidation, suggesting a chemoaerotrophic lifestyle. Compared to free-living SOB, Gsub and other symbiotic SOB show significant genome reduction, represented by the loss of genes for carbohydrate metabolism and respiration, cell signaling and regulation, motility and chemotaxis, stress response, and membrane transport. The loss of these genes reflects the economical use of genetic material. However, Gsub has retained special functions, including CRISPRs and protein secretion, which may have unique ecological significance in adaptation to the microenvironments of the sponge body, as these functions could not be detected in the clam symbionts. Analyses of the genome of an AOA suggest that microbes play different roles in biochemical cycles in the sponge body. These findings further our understanding of the ecological function of sponge-associated symbionts in the cold seep environment.

MATERIALS AND METHODS

Sponge collection. The sponge sample was collected from Thuwal Seep II (22°16.9′N, 38°53.9′E) in the Red Sea using the remotely operated vehicle (ROV) Max Rover (Deep Sea Systems International [DSSI], USA) during cruise leg 4 organized by King Abdullah University of Science and Technology (KAUST) in May 2013. It took 3 h to recover the sample from the cold seep to the surface. Loosely attached surface bacteria were removed using 0.2-μm filtered seawater. The intact colonies were transported to the laboratory in dry ice and stored in a DNA extraction buffer (500 mM NaCl, 50 mM Tris-HCl [pH 8], 40 mM EDTA, and 0.75 M sucrose) at −80°C until further processing.

Two strategies of preparing materials prior to DNA extraction and sequencing. We followed two different approaches to prepare samples before DNA extraction and sequencing. In the first approach, the sponge tissue samples were dissected into five layers (A to E). The external layer E and internal layer A were homogenized with sterilized glass pestles in 1.5-ml centrifuge tubes for
DNA extraction and metagenomic sequencing. Then, 0.06 ml of DNA extraction buffer and 10 µl of lysozyme (100 mg/ml) were added, followed by incubation at 37°C for 30 min. After that, 80 µl of SDS (20%) and 8 µl of proteinase K (10 mg/ml) were used to disrupt the cell membrane and digest proteins at 65°C for 2 h. An equal volume of phenol-chloroform-isooamyl alcohol (25:24:1) was used to denature protein, and the mixture was shaken vigorously by hand for 10 s before centrifugation at 12,000 × g at 4°C for 10 min. This step was repeated once using chloroform-isooamyl alcohol (24:1), and then 0.6 volume of isopropanol was added to the supernatant to precipitate DNA at −20°C for 30 min. After centrifugation at 12,000 × g at 4°C for 10 min, the DNA was precipitated and washed using 75% ethanol. The DNA was then dried and dissolved in double-distilled water. The DNA samples from layers A and E were subjected to library construction and sequenced using the Illumina HiSeq2000 platform in Novogene (Beijing, China). The insert size was 500 bp, while the average read length was 101 bp.

In the second approach, sponge cells and prokaryotic cells were enriched separately to generate two samples with different eukaryotic cell/prokaryotic cell ratios. In detail, a piece of intact sponge tissue (1 g [wet weight]) was homogenized in calcium- and magnesium-free seawater (CMFSW) buffer using sterilized glass pestles and 1.5-ml centrifuge tubes. The homogenate was vibrated with a vortex at the highest speed available for 5 min. The mixture of sponge cells and prokaryotic cells was collected and filtered using a polycarbonate membrane (pore size, 5.0 µm). The flowthrough (prokaryotic cell enriched) was collected, and cells were centrifuged at 10,000 × g for 5 min. The cells were then washed with 1 ml CMFSW before DNA extraction. The membrane (enriched in sponge cells) was washed by filtering with 10 ml of CMFSW and was then collected for DNA extraction. The sponge cell- and prokaryotic cell-enriched DNA samples were subjected to library construction and sequenced using the MiSeq platform with a library size of 500 bp and an average read length of 251 bp.

Quality control, metagenome assembly, and genome binning. Quality control of the HiSeq and MiSeq data sets was conducted using the NGS QC Toolkit (version 2.3) (59). Low-quality bases (Phred score of <20) at the 3’ end of each read were trimmed. Reads with an average quality score of <20 were further filtered out.

After quality control, assembly of the merged data for the layer A and E samples was performed using SPAdes (version 3.1.0) (60). The layer A/layer E metagenomes were assembled using serial kmers with sizes from 21 to 81 (step size of 10), and the results with the best contig lengths (yielded by a kmer with 71 bases) were selected for further analysis. The assembled contigs were then set as trusted contigs using the parameter “--trusted-contigs” for the reassembly of the sponge cell-enriched/prokaryote cell-enriched data sets.

Binning of prokaryotic genomes followed the differential coverage binning pipeline (61, 62) using the two metagenomes were conducted separately. In each process, the short reads of the two metagenomes after quality control were mapped to the contigs using Bowtie 2 (version 2.2.3) (63), and the sequencing coverages of the contigs in the two metagenomes were calculated using SAMTools (version 0.1.19) (64). The sequencing coverage pattern of the contigs in the two metagenomes and the tetranucleotide frequency (TNF) were used to group the contigs. Genome completeness and potential contamination were calculated using CheckM software (32).

Community structure analysis. The 16S rRNA genes from the assembled contigs were identified using RNAmmer (65), and the taxonomy was assigned using QIIME (version 1.7.0) (66) with the Greengenes database. The sequencing coverages of the contigs were taken into consideration in the analysis of the composition of the prokaryotic community.

FISH experiments. To explore the spatial location of Gsub in the sponge body, we performed fluorescence in situ hybridization (FISH) using a specific 16S rRNA-targeting probe to label the bacterium. A 20-bp probe (5’ ATTGGTCCAAGAAGTCGCC 3’) was designed with the full-length 16S rRNA gene of the Gsub. The samples used for FISH were dehydrated by sequential washing in 70%, 80%, 95%, and 100% ethanol followed by xylene (AnalaR Normapur; VWR International). The dehydrated samples were embedded in paraffin, and 5-µm sections were cut using a microtome (Leica, Germany) and placed on 0.01% poly-l-lysine-coated coverslips. Twenty microliters of distilled water was added to stretch the section, and the coverslip was air dried at 35°C for 3 h. Xylene was used to deparaffinize the sections, and the coverslip was washed with 80% ethanol. The sections were then mounted using a 4:1 mixture of Citifluor and Vecta Shield immersion oil and observed under a fluorescence microscope (Olympus BX51; Olympus America).

Phylogenetic analysis. The ARB package (version 6.0.2) was used to locate phylogenetic positions. The SILVA database (SSURef_NR, release 119) containing 534,968 aligned 16S/18S rRNA gene sequences was used as the positional tree server. The full-length 16S rRNA gene sequence of the target Gsub was imported and aligned using the Fast aligner with the relative number of 10. The target Gsub was then added to the existing background tree to determine the phylogenetic position. The sequences of the closest relatives and representative neighboring lineages were exported as references. The sequences of the references and some BLASTn hits from the NCBI NT database, together with the target Gsub were imported into MEGA (version 6.0.6) (67). Gblocks analysis was used to eliminate less-informative sites in the alignments. The construction of maximum likelihood trees of 16S rRNA genes was conducted using MEGA version 6.0 with the Tamura-Nei model, the nearest-neighbor-interchange (NNI) method with
1,000 bootstrap replicates. The final alignment length was 1,303 bp. Similar procedures were used for phylogenetic analysis of the 16S rRNA gene of Nsub, and the final alignment was 1,502 bp.

The reference genes for the Sox8 tree were selected by BLASTp against the online NCBI NR database. The protein sequences of the Sox8 genes were aligned in MEGA version 6.0 using the Muscle algorithm with the following parameters: gap open penalty of −2.9, gap extension penalty of 0, a hydrophobicity multiplier of 1.2, UPGMB clustering method, and minimum diagonal length of 24. Alignments of the functional gene trees were subjected to Gblocks analysis to remove less-informative sites. Maximum likelihood trees were built using the Jones-Taylor-Thornton (JTT) model, NNI method with 1,000 bootstrap replicates. The model for tree building was selected based on the test of ProtTest. The final alignment length was 701 amino acids.

A phylogenetic tree based on protein sequences of the 31 conserved single-copy genes (tsf, npm8, rpsM, rpmM, rpmL, rpmK, rpmJ, rpsK, rpmA, rpmA, rpmL, rpmJ, rpmK, rplF, rplK, rpsJ, rpsI, rpsH, rpsH, rpsG, rpsG, rpmJ, rpmK, rpmK, rpmJ, rpmK, rpmK, rpmK, rpmK, rpmK) was constructed for Gsub. AMPHORA (68) was used to identify the 31 conserved single-copy genes from the genomes of Gsub and the six reference genomes. The aligned protein sequences were concatenated and imported into MEGA to construct the maximum likelihood (ML) phylogenetic tree with 1,000 bootstrap replicates. The final alignment length was 7,993 amino acids.

Functional annotation and genomic comparison. The tRNAs and transfer-messenger RNAs (tmRNAs) were predicted using ARAGORN (version 1.2) (69), while the rRNAs were identified using Barrnap (http://www.vicbioinformatics.com/software.barrnap.shtml). CRISP5s were identified using CRT (version 1.1) (70). Protein-coding sequences were identified using Prodigal in single-genome mode, and the coding sequences with overlapping RNA were excluded. The translated protein sequences were then annotated with BLASTp against the KEGG protein database (71), and with hmmsearch against the HMM model of Pfam (72).

The reference genomes of interest were annotated using the same protocol and then compared with Gsub. The protein sequences identified for all of the genomes were submitted to BLASTp against the nonredundant (NR) database, and the outputs were imported into MEGAN (73) for comparison with the SEED subsystem hierarchy.

Availability of data. All of the metagenome data have been submitted in the Sequence Read Archive (SRA) database with the accession number SRP054996. The draft genome sequences of the Gsub and Nsub bacteria have been deposited at DDBJ/EMBL/GenBank under accession numbers JYIN00000000 and LQM1W00000000, respectively; the annotated genome can also be accessed at https://figshare.com/articles/New_draft_item/4236056.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mSystems.00184-16.

FIG S1, PDF file, 0.1 MB.

FIG S2, PDF file, 0.3 MB.

FIG S3, PDF file, 0.1 MB.

FIG S4, PDF file, 0.2 MB.

FIG S5, PDF file, 0.1 MB.

FIG S6, PDF file, 0.2 MB.

TABLE S1, PDF file, 0.1 MB.

TABLE S2, PDF file, 0.2 MB.

TABLE S3, PDF file, 0.1 MB.

TABLE S4, PDF file, 0.1 MB.

ACKNOWLEDGMENTS

This study was supported by grants from the Nature Science Foundation of China (U1301232) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB06010102 and XDB06010200).

REFERENCES

1. Borchiellini C, Manuel M, Alivon E, Bours-Ensault N, Vacelet J, Le Parco Y. 2001. Sponge paralpophy and the origin of metazoa. J Evol Biol 14:171–179. https://doi.org/10.1046/j.1420-9101.2001.00244.x.

2. de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110. https://doi.org/10.1126/science.1241981.

3. Ferrer M, Werner J, Chernikova TN, Bargiela R, Fernández L, La Cono V, Waldmann J, Teeling H, Golyshina OV, Glückner FO, Yakimov MM, Golyshin PN, MAMBA Scientific Consortium. 2012. Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environ Microbiol 14:268–281. https://doi.org/10.1111/j.1462-2920.2011.02634.x.

4. Wang Y, Cao H, Zhang G, Bougouffa S, Lee OO, Al-Suwailim A, Qian PY. 2013. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools. Sci Rep 3:1748. https://doi.org/10.1038/srep01748.

5. Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R, El Dorry H, Bajic V, Stingl U. 2015. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9:396–411. https://doi.org/10.1038/ismej.2014.137.
23. Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, Allen EE, Felbeck H. 2008. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10:727–737. https://doi.org/10.1111/j.1462-2920.2007.01496.x

24. Kusuhara H, Yoshida T, Takai Y, Shimamura S, Nishi S, Harada M, Matsuoka K, Takishita K, Kawamoto M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T. 2007. Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Clavatopogona okutani. Curr Biol 17:881–886. https://doi.org/10.1016/j.cub.2007.04.039

25. Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ, Fisher MC, Fontané KM, Lau E, Stewart FJ, Richardson PM, Barry KW, Saunders E, Deeter JC, Wu D, Eisen JA, Cavanaugh CM. 2007. The Clavatopogona magnifica chemosymbiotic genome. Science 315:998–1000. https://doi.org/10.1126/science.1138438

26. Duperron S, Halary S, Lorion J, Sibuet M, Gaill F. 2008. Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Lladosia sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445. https://doi.org/10.1111/j.1462-2920.2007.01465.x

27. Nakagawa S, Takai Y, Suzuki Y, Murakami SI, Watanabe T, Fujishio S, Mino S, Sawabe T, Maeda T, Makita H, Nemoto S, Nishimura S, Watanabe H, Watsui TO, Takai K. 2014. Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont. ISME J 8:40–51. https://doi.org/10.1038/ismej.2013.131

28. Nishijima M, Lindsay DJ, Hata J, Nakamura A, Kasa H, Ise Y, Fisher CR, Fujisawa Y, Kawamoto M, Majumaya T, 2010. Association of thioautotrophic bacteria with deep-sea sponges. Mar Biotechnol 12:253–260. https://doi.org/10.1007/s12227-009-9121-2

29. Thomas T, Rusch DB, DeLong EF, Waterbury JB, Richardson PM, Barry KW, Saunders E, Deeter JC, Wu D, Eisen JA, Cavanaugh CM. 2007. The Clavatopogona magnifica chemosymbiotic genome. Science 315:998–1000. https://doi.org/10.1126/science.1138438

30. Simpson TL. 1984. The cell biology of sponges. Springer-Verlag, New York.

31. Childress JJ, Grguris PR. 2011. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J Exp Biol 214:312–325. https://doi.org/10.1242/jeb.049023

32. McCutcheon JP, Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. https://doi.org/10.1038/nrmicro2670

33. Larsson J, Nylander JA, Bergman B. 2011. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Biol 11:187. https://doi.org/10.1186/1471-2180-11-187

34. Gottlieb Y, Lalzar I, Klasson L. 2015. Distinctive genome reduction rates revealed by genomic analyses of two Coviella-like endosymbionts in ticks. Genome Biol Evol 7:1779–1796. https://doi.org/10.1093/gbe/evv108

35. Wolf YI, Koonin EV. 2013. Genome reduction as the dominant mode of evolution. Bioessays 35:829–837. https://doi.org/10.1002/bies.201300037

36. Simpson TL. 1984. The cell biology of sponges. Springer-Verlag, New York, NY.

37. Yang Z, Li Z. 2012. Spatial distribution of prokaryotic symbionts and ammoximation, denitrifier bacteria in marine sponge Astrascola willeyana. Sci Rep 2:528. https://doi.org/10.1038/srep00528

38. Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG. 2008. Thiohalobabus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897. https://doi.org/10.1099/ijsem.0.00166-0

39. Franck AH, Garcia JA, Herndel GJ, Reinhalter T. 2016. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water. Environ Microbiol 18:2052–2063. https://doi.org/10.1111/1462-2920.13327

40. Walker CB, De La Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PS, Chan PP, Gollagiri A, Hemp J, Hügler M, Karr EA, Kanneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbema WB, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA. 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A 107:8818–8823. https://doi.org/10.1073/pnas.0913533107

41. Mori K, Suzuki KI, Urabe T, Sugihara M, Tanaka K, Hamada M, Hanada S.
2011. *Thiopodunatum hispidum* sp. nov., an obligately chemolithoautotrophic sulfur-oxidizing gammaproteobacterium isolated from the hydrothermal field on Suiyo Seamount, and proposal of *Thiopodunatales* fam. nov. in the order *Chromatiales*. Int J Syst Evol Microbiol 61: 2412–2418. https://doi.org/10.1099/ijs.0.026963-0.

42. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114.

43. Krishnani KK, Gopikrishna G, Pillai SM, Gupta BP. 2010. Abundance of choline and glycine betaine uptake and metabolism in the family Rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol 65:2072–2077.

47. Lieb M. 1987. Bacterial genes mutL, mutS, and dcm participate in repair of DNA double-strand-break repair through ESDSA in *Deinococcus radiodurans*. Chemother 48:4673–4679. https://doi.org/10.1128/jb.169.11.5241-5246.1987.

48. Bentchikou E, Servant P, Coste G, Sommer S. 2010. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in *Deinococcus radiodurans*. PLoS Genet 6:e1000774. https://doi.org/10.1371/journal.pgen.1000774.

49. Moran NA. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586. https://doi.org/10.1128/cmb.48.1.1709-1712.2004.

50. Hoffmann F, Radax R, Woebken D, Hüttermann A. 2012. Type II secretion—a secretion system for pathogenicity and environmental fitness. Front Cell Infect Microbiol 2:160. https://doi.org/10.3389/fcimb.2012.00160.

51. Travis J, Potempa J. 2004. Degradation of human antimicrobial peptide-derived proteinases. Antimicrob Agents Chemother 48:4673–4679. https://doi.org/10.1128/AAC.48.12.4673-4679.2004.

52. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Hozieva K, Marquet P. 2009. CRISPR-like loci in prokaryotes and eukaryotes. Mol Cell 34:163–170. https://doi.org/10.1016/j.molcel.2009.01.015.

53. Vallender S, Bocker S, Kizo T, Tanev S, Rens W, Stoytchev L, Bakalov N. 2014. The Pfam protein families database. Nucleic Acids Res 42:D246–D252. https://doi.org/10.1093/nar/gku1016.

54. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Hoffmann F, Radax R, Woebken D, Hüttermann A. 2012. Type II secretion—a secretion system for pathogenicity and environmental fitness. Front Cell Infect Microbiol 2:160. https://doi.org/10.3389/fcimb.2012.00160.

55. Newton HJ, Ang DK, van Driel IR, Hartland EL. 2010. Molecular pathogenesis of infections caused by *Legionella pneumophila*. Clin Microbiol Rev 23:274–298. https://doi.org/10.1128/CMR.00052-09.

56. Cianciotto NP. 2005. Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:581–588. https://doi.org/10.1016/j.trendsmicrobiology.2005.09.005.

57. Sayavedra L, Hallin P, Rodland EA, Staerfeldt HH, Rogens T, Ussery DW, Zaneng L, Sanderson A, Lozupone CA, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303.

58. Sayavedra L, Hallin P, Rodland EA, Staerfeldt HH, Rogens T, Ussery DW, Zaneng L, Sanderson A, Lozupone CA, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303.

59. Maruyama K, Shimizu S, Hattori M. 2008. Molte: a fast and comprehensive software for alignment and multiple sequence analysis. Bioinformatics 24:146–152. https://doi.org/10.1093/bioinformatics/btn580.

60. von Tils D, Blädel I, Schmidt MA, Heusipp G. 2012. Type II secretion in *Yersinia* —a secretion system for pathogenicity and environmental fitness. Front Cell Infect Microbiol 2:160. https://doi.org/10.3389/fcimb.2012.00160.

61. Sangwan N, Xia F, Gilbert JA. 2016. Recovering complete and draft population genomes from metagenome datasets. Microbiome 4:8. https://doi.org/10.1186/s40168-016-0154-5.

62. Sangwan N, Xia F, Gilbert JA. 2016. Recovering complete and draft population genomes from metagenome datasets. Microbiome 4:8. https://doi.org/10.1186/s40168-016-0154-5.

63. Sangwan N, Xia F, Gilbert JA. 2016. Recovering complete and draft population genomes from metagenome datasets. Microbiome 4:8. https://doi.org/10.1186/s40168-016-0154-5.

64. Silipo A, Leone MR, Erbs G, Lanzetta R, Parrilli M, Chang WS, Newman NM, Piccirillo S. 2010. Marine and terrestrial bacterial genomes reveal diverse lifestyles and evolutionary histories. Genome Res 20:1371–1379. https://doi.org/10.1101/gr.116658.110.

65. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rogens T, Ussery DW, Zaneng L, Sanderson A, Lozupone CA, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303.

66. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Hultley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303.

67. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/msv171.

68. Wu M, Eisen JA. 2008. A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9:R51. https://doi.org/10.1186/gb-2008-9-10-r51.

69. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes in tRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152.

70. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8:209. https://doi.org/10.1186/1471-2105-8-209.

71. Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/gk152.

72. Kato J, Inoue Y, Kodama M, Tatsukawa M, Shiomi Y, Taniyama K, Asano K, Okumura K. 2013. The Pfam protein families database. Nucleic Acids Res 41:1032–1036. https://doi.org/10.1093/nar/gkt973.

73. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khana A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR. 2004. The Pfam protein families database. Nucleic Acids Res 32:191–194. https://doi.org/10.1093/nar/gkh121.

74. Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metagenomic data. Genome Res 17:377–386. https://doi.org/10.1101/gr.5969107.