Coronary Embolism and Myocardial Infarction: A Scoping Study

Pramod Theetha Kariyanna1,2, Benjamin Ramalanjaona1,2, Mohammed Al-Sadawi1,2, Apoorva Jayarangaiah3, Sudhanva Hegde1,2, Isabel M. McFarlane1,2,*

1Department of Internal Medicine, Division of Cardiology, SUNY, Downstate Health Sciences University, Brooklyn, N.Y., U.S.A-11203
2Division of Cardiovascular Disease, Department of Internal Medicine, State University of New York, Downstate Health Sciences University, NYC Health + Hospitals/Kings County, Brooklyn, N.Y., U.S
3Department of Internal Medicine, NYC Health + Hospitals/Jacobi Medical Center, Bronx, N.Y., U.S.A-10461

Abstract

Coronary embolism is a cause of acute myocardial infarction (AMI) in which obstructive foci enter the coronary circulation, block normal blood flow and precipitate ischemia. Precise studies focusing on patient population affected, pathophysiological mechanisms, and treatment strategies are scanty, in spite of a reported prevalence estimated at 2.9%. As the understanding of myocardial infarction without evidence of coronary artery disease continues to grow, an in-depth review of this previously seldomly reported subtype of coronary ischemia was in order. Patients suffering coronary embolism are 15 to 20 years younger than traditional AMI patients with a slight predominance towards male sex, which resembles the gender data of the populations affected by non-traditional myocardial infarction in published reports. While the expected prevalence rate of cardiovascular disease risk factors such as hypertension and hyperlipidemia are present, this population also has a relatively high prevalence of atrial fibrillation and valve pathology, especially endocarditis. Initial presentation is indistinguishable from other causes of myocardial infarction however fever is commonly present, when endocarditis with valvular involvement is the primary cause of the coronary embolism. Mechanical thrombectomy is the mainstay of treatment, followed by percutaneous coronary intervention. Mortality is the highest in patients who do not receive targeted treatment for the coronary embolism, particularly if only antimicrobial agents or anticoagulation without thrombolytic agents are employed. The unique features of coronary embolism highlighted in this historical study justify further examination in contemporary patient populations.

Keywords

coronary embolism; acute myocardial infarction; non-traditional myocardial infarction; paradoxical coronary embolism; infectious endocarditis; valvular vegetations; atrial fibrillation;
1. **Introduction**

Heart disease is the leading cause of morbidity and mortality worldwide [1]. In the United States, heart attack or acute myocardial infarction (AMI) has an annual incidence of about 805,000 cases with a death rate of 96.8 per 100,000 [2]. Though coronary artery disease (CAD) is the most common cause of AMI [3], infarction can happen without significant coronary artery stenosis. Myocardial infarction with nonobstructive coronary arteries (MINOCA) includes syndromes of the epicardium, microvasculature, and emerging concepts like myocardial necrosis due to oxygen supply-demand mismatch [4]. A systematic review of 27 clinical trials/AMI registries reports MINOCA prevalence of 6% of AMI cases [5].

Coronary embolism (CE) is a heterogenous cause of MINOCA that can be divided into direct, paradoxical, and iatrogenic [6]. Direct CE is when an embolism enters the coronary circulation, originating from systemic circulation or an intracardiac focus on the left side of the heart. Paradoxical CE enters coronary circulation after passing from venous circulation via a septal defect or patent foramen oval. Iatrogenic encompasses any emboli associated with a procedure, usually cardiothoracic surgery or percutaneous coronary intervention (PCI). There is overlap between the different categories and other organization schema have also been proposed.

In spite of early autopsy series identifying CE [7] and advancements in cardiovascular imaging, prevalence of CE has not yet been evaluated across multiple trials/registries. A single center, retrospective study of 1776 de novo AMI patients reports CE prevalence of 2.9% of AMI cases [8]. As it could represent almost half of MINOCA cases, CE should not be considered a rare entity. We here undertake the first scoping study of CE to understand risk factors, diagnosis, sources of emboli, management, and mortality.

2. **Methods**

On July 23rd, 2019, a systematic search was conducted using Pubmed, Google Scholar, CINAHL, Cochrane CENTRAL and Web of Science databases. Studies listing the keywords “embolism, myocardial infarction” were used to identify cases of myocardial arrhythmias associated with marijuana use. The reference list of each report was reviewed for potential additional cases. All cases were reviewed in detail. Data reviewed included demographic data, cardiovascular (CV) risk factors, electrocardiography (EKG) findings, troponin levels, transthoracic echocardiography, electrophysiology study, urine drug screen findings, coronary angiogram and management when available.
3. Results

3.1. Demographics

A total of 232 unique cases were identified in 190 publications (Table 1). Males comprised 55.2% of the cases reported and females comprised 44.8%. Overall age range was 4 months to 87 years with mean 50.2 ± 17.9 years and median 51 years; 57.3% of cases were younger than 55 years and 42.7% of cases were 55 years or older. Male age range was 4 months to 87 years with mean 49.6 ± 18.1 years and median 51 years. Female age was 12 to 87 years with mean 51.0 ± 17.9 years and median 51 years (Table 2).

3.2. Cardiovascular Risk Factors

The most prevalent cardiovascular risk factors and comorbidities in the population were as follows: atrial fibrillation 17.2%, hypertension 16.8%, hyperlipidemia 15.9%, prosthetic heart valves 15.9%, chronic valvular disease not treated with valve replacement 15.9%, rheumatic heart disease 12.5%, diabetes 9.91%, obesity 9.05%, history of CAD 9.05%, cerebrovascular disease 9.05%, and smoking 8.62%. Comprehensive risk factors and comorbidities are listed in Table 3.

3.3. Presentation

Patients presented with chest pain 66.8%, fever 19.0%, sudden death 6.03%, hypotension 3.35%, shortness of breath 3.35%, stroke 0.862%, and without symptoms 0.431% (Table 4).

3.4. ECG Findings

In the 219 cases reporting ECG findings (Table 5), ST elevation was found in 43.8%, ST depression in 11.4%, unspecified “infarct changes” in 26.5%, atrial fibrillation in 14.2%, T wave changes in 10.5%, and Q waves 3.65%.

3.5. Angiographic Findings

A total of 173 cases included angiographic findings (Table 6). Occluded arteries were found in 95.4% of cases. Lesions were found in the left anterior descending artery 52.0%, left circumflex artery 17.3%, right main coronary artery 17.3%, left main coronary artery 9.83%, obtuse marginal artery 2.89%, posterolateral artery 2.31%, diagonal artery 1.73%, and intermediate artery 0.578%.

3.6. Trans-thoracic Echocardiography

Of the 94 cases reporting TTE, the most common findings were wall motion abnormalities in 47.9% of cases, valvular dysfunction in 29.8%, systolic dysfunction in 25.5%, valve masses or vegetations in 22.3%, intracardiac masses in 18.1%, and chamber enlargement in 11.7%. Normal studies were reported in 9.57% of cases; additional findings are listed in Table 7.
3.7. Trans-esophageal Echocardiography

Transesophageal echocardiograms were reported in 63 cases. The most common findings were valves masses or vegetations in 39.7% of cases, intracardiac masses in 33.3%, and valvular dysfunction in 25.4%. Other findings are listed in Table 8.

3.8. Causes of Coronary Embolism

The reason for CE, as per the case authors, were endocarditis 22.8%, prosthetic heart valve complications 15.1%, thromboembolism 13.4%, atrial fibrillation 12.5%, iatrogenic 12.5%, non-thrombotic embolic sources (including solid tumors, bone marrow, and septic emboli) 9.91%, chronic valvular disease 8.62%, and rheumatic heart disease 6.47%. A comprehensive list of CE causes is listed in Table 9.

3.9. Management

The most common interventions performed were thrombectomy 31.0%, PCI 22.0% (stent placed in 31.4% of these cases), anticoagulation 14.7%, thrombolytic therapy 9.48%, and antibiotics/antifungals 8.19%. A comprehensive list of interventions is listed in Table 10.

3.10. Mortality

Death was reported in 35.7% of cases (Table 11), of which 34.9% occurred after no intervention was performed, 15.7% after anticoagulation, 12.0% after antibiotic/antifungal therapy alone were given, 6.02% after surgical intervention, 4.82% after aspiration thrombectomy, 3.61% after valve repair/replacement, and 2.41% after thrombolytic therapy. Recurrence of coronary embolism was reported in 7 cases, 3 of which resulted in death.

4. Discussion

The average age in the study population was approximately 15 years younger for males and 20 years younger for females than expected for all causes of MI, with females also representing a smaller percentage in all age groups relative to men than expected for all causes of MI [9]. While younger age and skew towards male sex may be due to small sample size and known underdiagnosis of MI in females [10], these demographic data correlate with findings in larger reviews of MINOCA [5]. Whether there is a unique patient population for CE should be confirmed in future studies.

Risk factors for CE overlapped with those for MI due to CAD (MI-CAD), specifically hypertension, hyperlipidemia, diabetes, CAD, CVD, and smoking. History of atrial fibrillation (AF), which is more commonly associated with cerebrovascular disease (CVD), was present in 17.2% of patients. Given the risk of thrombus formation in the left atrium in AF and its proximity to the coronary aortic cusps, thromboembolic events can occur in a similar fashion in the coronary circulation as they do in CVD. CE may occur less frequently than CVD in this setting due to the fast rate of flow of blood across the coronary ostia, high resistance to flow of the smaller caliber coronary vessels as dictated by Poiseuille’s Law, and the acute angle of the origin of the coronary arteries [11]. Interestingly, demand ischemia from AF with rapid ventricular response has also been proposed as a mechanism for MINOCA due to AF [12].
Additional risk factors in CE patients are chronic valvular disease with or without a history of rheumatic heart disease and prosthetic heart valves. Complications of chronic valvular disease and malfunctioning prosthetic valves usually include heart failure and/or pulmonary hypertension, rather than MI [13,14,15]. Abnormal blood flow and changes in left atrial volume caused by mitral valve disease, especially in AF, may cause thrombus formation [16,17] thereby contributing to thromboembolic CE. Thrombosed prosthetic valves have the potential to cause thromboembolic events [18] and may cause CE this way.

Chest pain was the presenting complaint in 66.8% of CE cases, but it is not specific for ischemia and does not distinguish MI due to CE from MI-CAD [19]. Shortness of breath, found in 3.35% of patients, is also a classic symptom for MI-CAD. Fever, found in 19.0% of cases, is an unusual symptom of an underlying cardiac issue except in infective endocarditis (IE) and pericarditis [20]. In cases where CE was later determined to have been caused by IE, fever was the initial complaint 69.8% of the time. Stroke was the initial reason for hospitalization in 2 cases, reinforcing that CE can be caused by a similar mechanism as embolic CVD.

Diagnostic investigations included ECG in 94.4% of cases, angiography in 74.6%, TTE in 40.5%, and TEE in 27.2%. The most common ECG finding was ST-elevation, followed by “infarct changes” and AF. These reports did not provide enough data to draw conclusions about how CE presents on ECG versus MI-CAD. Vessel distribution, determined angiographically, followed a similar pattern to MI-CAD [21]. However, micro-emboli and advancement of CE into small caliber vessels may lead to infarction in territories of angiographically normal vessels, contributing to underdiagnosis [22,23]. TTE identified the probable embolic source in 40.4% of cases when performed and TEE identified the probable source in 76.2%. TEE is 92% sensitive and 98% for detecting thrombi in the left atrial appendage, which is the most common area for thrombus formation [24,25,26]. TEE is 90% sensitive for native valve endocarditis and 85% sensitive for prosthetic and device-related endocarditis [27].

Causes of CE were varied, but primarily involved pathology of the aortic and mitral valves. Prevalence of endocarditis (22.8%) was high in this population despite less than 4% of patients having a known history of endocarditis, valve vegetations, and intravenous drug use. 44.4% of patients had conditions predisposing to IE, including chronic valvular disease, prosthetic valves, and rheumatic heart disease [28]. This association of CE and IE may be a useful step towards creating a predictive tool for CE, especially because the Duke criteria for predicting IE is well-validated [29]. Additionally, since the incidence of IE has increased over a 10-year period in the United States [30], it may become easier to assess prevalence of CE and the need for specific management strategies in IE patients.

Iatrogenic CE occurred most commonly in valve repair, valve replacement, and PCI at an overall rate equal to AF. Coronary catheterization is the best studied in this context, having been reported to cause CE with subtherapeutic heparinization or insufficient flushing of coagulated blood in the catheter, as well as incomplete aspiration of air [31,32]. These procedures likely have unique risks for CE, warranting further investigation.
Nearly every case reviewed initially treated the patient for presumptive MI-CAD, with antiplatelet therapy, symptomatic treatment, and angiography playing a central role. Thrombectomy, particularly aspiration thrombectomy was the most frequently chosen intervention, followed by PCI with or without stent placement. Reason for using aspiration thrombectomy versus PCI were not explicitly states in these cases, though previous international guidelines recommend routine use of aspiration thrombectomy with primary PCI and in cases of increased risk factors or high thrombus burden [17]. There was no difference in mortality at 180-days and a slightly higher incidence of stroke for patients who underwent aspiration [33]. In the present study, all patients who underwent PCI survived, while 4 deaths occurred after aspiration thrombectomy. The ability to pathological examine relatively intact aspiration specimens has enhanced current understanding of the causes of CE, in spite of its questionable survival benefits.

Anticoagulation was the most common medical therapy given, with 14.7% of patients receiving it in the hospital and 43.1% receiving it upon discharge. Thrombolytic therapy was also given, most often as the primary therapy [34], though its use is not well-studied and may even result in distalization of the thromboembolism to a smaller branch [35]. In the absence of clear guidelines, therapeutic approach to CE in patients of clinical presentation varies greatly. Reasons for not including other therapies including risk of stent infection in endocarditis [36], lack of evidence for thrombolytic therapy [37], and “free floating” emboli determined unlikely to respond to angioplasty [38].

Death occurred at a higher rate in cases where CE was not explicitly treated. Mortality was 93.5% in patients receiving no intervention or symptomatic treatment, 58.8% in patients treated with antibiotics or antifungals alone, and 48.0% in patients treated with anticoagulation alone. One study [8] showed CE MI patients had a significantly higher mortality rate (hazard ratio 3.82) and cardiac death rate (HR, 5.39; 95% CI, 2.38–10.6) than MI-CAD patients, which underscores the need for better understanding of CE.

5. Conclusion

CE is an understudied cause of MI. The at-risk populations appear to be younger and more male than the general MI-CAD population and have unique risk factors in addition to those typically associated MI-CAD, including AF and valvular heart disease. While clinical presentation and ECG was indistinct from MI-CAD, TTE and TEE often demonstrated an embolic focus. When the clinical picture is considered alongside imaging, the most likely causes of CE were determined to be endocarditis with valvular involvement, malfunctioning or thrombosed prosthetic heart valves, intracardiac thrombi, and atrial fibrillation. There are no validated diagnostic algorithms for CE and as such it should be considered a possibility alongside the more traditional causes of MI, especially when the patient has known valve pathology or hemodynamically compromised valves on echocardiography. Definitive management strategies are challenging, in part due to the heterogeneity of causes of CE. The study shows that, in cases where the embolism itself was not directly addressed by thrombectomy, PCI, or thrombolysis, CE mortality was high.
Acknowledgements

This work is supported, in part, by the efforts of Dr. Moro O. Salifu M.D., M.P.H., M.B.A., M.A.C.P., Professor and Chairman of Medicine through NIH Grant number S21MD012474.

References

[1]. Xu J, Murphy SL, Kochanek KD, Bastian B, Arias E. Deaths: final data for 2016. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System. 2018 7; 67(5): 1–76.

[2]. Benjamin EJ, Muntner P, Bittencourt MS. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019; 139(10): e56–28. [PubMed: 30700139]

[3]. Ambrose JA, Singh M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000prime reports. 2015; 7.

[4]. Scalone G, Niccoli G, Crea F. Editor’s choice-Pathophysiology, diagnosis and management of MINOCA: an update. European Heart Journal: Acute Cardiovascular Care. 2019 2; 8(1): 54–62. [PubMed: 29952633]

[5]. Pasupathy S, Air T, Dreyer RP, Tavella R, Beltrame JF. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation. 2015 3 10; 131(10): 861–70. [PubMed: 25587100]

[6]. Raphael CE, Heit JA, Reeder GS, Bois MC, Maleszewski JJ, Tilbury RT, Holmes DR Jr. Coronary embolus: an underappreciated cause of acute coronary syndromes. JACC: Cardiovascular Interventions. 2018 1 22; 11(2): 172–80. [PubMed: 29348012]

[7]. PRIZEL KR, HUTCHEINS GM, BULKLEY BH. Coronary artery embolism and myocardial infarction: a clinicopathologic study of 55 patients. Annals of internal medicine. 1978 2 1; 88(2): 155–61. [PubMed: 626443]

[8]. Shibata T, Kawakami S, Noguchi T, Tanaka T, Asaumi Y, Kanaya T, Nagai T, Nakao K, Fujino M, Nagatsuoka K, Ishibashi-Ueda H. Prevalence, clinical features, and prognosis of acute myocardial infarction attributable to coronary artery embolism. Circulation. 2015 7 28; 132(4): 241–50. [PubMed: 26216084]

[9]. NHANES Questionnaires, Datasets, and Related Documentation https://wwwn.cdc.gov/nchs/continuousnhanes/default.aspx?BeginYear=2015.

[10]. Mehta LS, Beckie TM, DeVon HA, Grines CL, Krumholz HM, Johnson MN, Lindley KJ, Vaccarino V, Wang TY, Watson KE, Wenger NK. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation. 2016 3 1; 133(9): 916–47. [PubMed: 26811316]

[11]. Cheng JT, Cahill WJ, Foley EF. Coronary embolism. Journal of the American Medical Association. 1953 9 19; 153(3): 211–3. [PubMed: 13069294]

[12]. Soliman EZ, Safford MM, Muntner P, Khodneva Y, Dawood FZ, Zakai NA, Thacker EL, Judd S, Howard VJ, Howard G, Herrington DM. Atrial fibrillation and the risk of myocardial infarction. JAMA internal medicine. 2014 1 1; 174(1): 107–14. [PubMed: 24190540]

[13]. Maganti K, Rigolin VH, Sarano ME, Bonow RO. Valvular heart disease: diagnosis and management InMayo Clinic Proceedings 2010 5 (Vol. 85, No. 5, pp. 483–500). Elsevier. [PubMed: 20435842]

[14]. Okello E, Wanzhu Z, Musoke C, Kakande B, Mondo CK, Freers J, Twalib A, Lwabi P, Wilson NB, Odoi-Adome R. Cardiovascular complications in newly diagnosed rheumatic heart disease patients at Mulago Hospital, Uganda. Cardiovascular journal of Africa. 2013 4; 24(3): 82.

[15]. Roudaut R, Serri K, Lafitte S. Thrombosis of prosthetic heart valves: diagnosis and therapeutic considerations. Heart. 2007 1 1; 93(1):137–42. [PubMed: 17103555]

[16]. Iscan S, Dönmez K, Çakir H, Kestelli M. LA thrombus formation in mitral valve disease. Anadolu Kardiyoloji Dergisi: AKD. 2016 12 1; 16(12):992.

[17]. Watson T, Shantsila E, Lip GY. Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. The Lancet. 2009 1 10; 373(9658):155–66.
[18]. Biteker M, Altun I, Basaran O, Dogan V, Yildirim B, Ergun G. Treatment of prosthetic valve thrombosis: current evidence and future directions. Journal of clinical medicine research. 2015 12; 7(12):932. [PubMed: 26566406]

[19]. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Mickley H, Crea F, Van de Werf F, Bucciarelli-Ducci C. Fourth universal definition of myocardial infarction (2018). European heart journal. 2019 1 1; 40(3):237–69.

[20]. Smid J, Scherner M, Wolfram O, Groscheck T, Wippermann J, Braun-Dullaeus RC. Cardiogenic Causes of Fever. Deutsches Ärzteblatt International. 2018 3; 115(12):193. [PubMed: 29642989]

[21]. Wasilewski J, Niedziela J, Osadnik T, Duszanka S, Sraga W, Desperak P, Myga-Porosilo J, Jackowska Z, Nowakowski A, Glowaki J. Predominant location of coronary artery atherosclerosis in the left anterior descending artery. The impact of septal perforators and the myocardial bridging effect. Kardiochirurgia i torakochirurgia polska= Polish journal of cardiothoracic surgery. 2015 12; 12(4): 379.

[22]. Kolodgie FD, Virmani R, Finn AV, Romero ME. Embolic myocardial infarction as a consequence of atrial fibrillation: a prevailing disease of the future.

[23]. Henriques JP, Zijlstra F, Ottervanger JP, De Boer MJ, Van’T Hof AW, Hoorn J, Suryapranata H. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. European heart journal. 2002 7 1; 23(14): 1112–7. [PubMed: 12090749]

[24]. Beigel R, Wunderlich NC, Ho SY, Arsanjani R, Siegel RJ. The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC: Cardiovascular imaging. 2014 12 1; 7(12): 1251–65. [PubMed: 25496544]

[25]. Acar J, Cormier B, Grimberg D, Kawthekar G, Jung B, Scheuer B, Farah E. Diagnosis of left atrial thrombi in mitral stenosis—usefulness of ultrasound techniques compared with other methods. European heart journal. 1991 7 1; 12(suppl_B): 70–6.

[26]. Manning WJ, Weintrub RM, Waksmonski CA, Haering JM, Maslow AD, Johnson RG, Douglas PS. Accuracy of transthoracic echocardiography for identifying left atrial thrombi: a prospective, intraoperative study. Annals of Internal Medicine. 1995 12 1; 123(11): 817–22. [PubMed: 7486462]

[27]. Harding D, Prendergast B. Advanced imaging improves the diagnosis of infective endocarditis. F1000Research. 2018; 7. [PubMed: 29527296]

[28]. Ambrosioni J, Hernandez-Meneses M, Teille A, Pericàs J, Falces C, Tolosana JM, Vidal B, Almela M, Quintana E, Llopic J, Moreno A. The changing epidemiology of infective endocarditis in the twenty-first century. Current infectious disease reports. 2017 5 1; 19(5): 21. [PubMed: 28401448]

[29]. Topan A, Carstina D, Slavcovici A, Rancea R, Capalneanu R, Lupse M. Assessment of the Duke criteria for the diagnosis of infective endocarditis after twenty-years. An analysis of 241 cases. Clujul Medical. 2015; 88(3): 321. [PubMed: 26609264]

[30]. Pant S, Patel NJ, Deshmukh A, Golwala H, Patel N, Badheka A, Hirsch GA, Mehta J. Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011. Journal of the American College of Cardiology. 2015 5 19; 65(19): 2070–6. [PubMed: 25975469]

[31]. Park CB, Hwang HJ, Cho JM, Jo BH, Kim CJ. Massive right coronary air embolism in the right coronary artery during left coronary angiography: A case report. Experimental and therapeutic medicine. 2013 4 1; 5(4): 1073–4. [PubMed: 23596473]

[32]. Tavakol M, Ashraf SJ, Brener SJ. Risks and complications of coronary angiography: a comprehensive review. Global journal of health science. 2012 1; 4(1): 65. [PubMed: 22980117]

[33]. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bititl JA, Cerbek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. Journal of the American College of Cardiology. 2016 3 15; 67(10): 1235–50. [PubMed: 26498666]
[34]. Aykan AC, Ozkan M, Duran NE, Yildiz M. Acute ST-elevation inferior myocardial infarction in a patient with a non-obstructive mechanical mitral valve thrombosis: case report-online article. Cardiovascular journal of Africa. 2012 10 1; 23(9): 7–8.

[35]. Aslam MS, Sanghi V, Hersh S, Lakier JB. Coronary artery saddle embolus and myocardial infarction in a patient with prosthetic mitral valve. Catheterization and cardiovascular interventions. 2002 11; 57(3): 367–70. [PubMed: 12410516]

[36]. Winkler J, Chaudhry SP, Stockwell PH. Gemella endocarditis presenting as an ST-segment-elevation myocardial infarction. Texas Heart Institute Journal. 2016 6; 43(3): 258–60. [PubMed: 27303246]

[37]. Nakazone MA, Tavares BG, Machado MN, Maia LN. Acute myocardial infarction due to coronary artery embolism in a patient with mechanical aortic valve prosthesis. Case reports in medicine. 2010; 2010.

[38]. Steinwender C, Hofmann R, Hartenthaler B, Leisch F. Resolution of a coronary embolus by intravenous application of bivalirudin. International journal of cardiology. 2009 3 6; 132(3): e115–6. [PubMed: 18036681]

[39]. MORAGUES V, BAWELL MB, SHRADER EL. Coronary embolism: review of the literature and report of a unique case. Circulation. 1950 9; 2(3): 434–7. [PubMed: 15434948]

[40]. Walker B Coronary embolism and coronary occlusion in bacterial endocarditis. British heart journal. 1952 1; 14(1): 144. [PubMed: 14904826]

[41]. GLUSHIEN AS, REITER MD, FISCHER H. Coronary embolism (intra vitam diagnosis) and necrotizing renal papillitis: case report. Annals of internal medicine. 1952 2 1; 36(2_Part_2): 679–85. [PubMed: 14895060]

[42]. Segall HN, Harris M. Coronary embolism with unusual features. Canadian Medical Association journal. 1954 4; 70(4): 416. [PubMed: 13150276]

[43]. Gill TJ III, McBride RA, Dammin GJ. Coronary embolism: Report of three cases. American Heart Journal. 1958 12 1; 56(6):878–89. [PubMed: 13594832]

[44]. HOFFMAN MS, FORREST J, GARLETT EL. Coronary Embolism and Acute Myocardial Infarction Secondary to Rheumatic Heart Disease. CHEST. 1958 5 1; 33(5):546–50.

[45]. Lillington GA, Connolly DC, Kavanaugh GJ. Coronary embolism secondary to subacute bacterial endocarditis in a case of calcific aortic stenosis. Proceedings of the staff meetings. Mayo Clinic 1958 4 30 (Vol. 33, No. 9, p. 216).

[46]. Kavanaugh GJ, Pruitt RD, Edwards JE. Coronary embolism and cystic medial necrosis of ascending aorta associated with calcific aortic stenosis. Proceedings of the staff meetings. Mayo Clinic 1958 4 (Vol. 33, No. 9, pp. 222–228).

[47]. Boas NF, Barnett RN. Coronary Embolism With Myocardial Infarction—Complication of Verrucous Endocarditis. Journal of the American Medical Association. 1959 8 8; 170(15): 1804–8. [PubMed: 13672776]

[48]. GELPI AP, Enade N. Coronary embolus with myocardial infarction and rupture. Annals of internal medicine. 1959 5 2 1; 50(2): 511–9. [PubMed: 13627709]

[49]. Wenger NK, Bauer S. Coronary embolism: review of the literature and presentation of fifteen cases. The American journal of medicine. 1958 10 1; 25(4): 549–57. [PubMed: 13582963]

[50]. Marietta JS. Acute bacterial endocarditis and coronary embolism. Texas state journal of medicine. 1960 6; 56: 426–8. [PubMed: 14421092]

[51]. Winters WL Jr, LAUTSCH EV, SOLOFF LA. Coronary Embolism following repair of a ventricular septal defect. Circulation. 1960 1; 21(1): 77–9. [PubMed: 13845346]

[52]. Menezes CJ. Coronary embolism with infarction in bacterial endocarditis. British heart journal. 1961 7; 23(4): 464. [PubMed: 13769521]

[53]. Oakley C, Yusuf R, Hollman A. Coronary embolism and angina in mitral stenosis. British heart journal. 1961 7; 23(4): 357. [PubMed: 13730132]

[54]. MIYAHARA M, NAGASAKI Y, HIGASHI H, TSUKAD H. A Case of Intravitam Diagnosis of Coronary Embolism. Japanese circulation journal. 1961 10 15; 25(10): 1014–8. [PubMed: 14474779]

[55]. Jerie P, Poddany V. Coronary embolism in mitral stenosis. Cardiologia. 1962; 40: 281–9. [PubMed: 14451701]
[56]. Shanoff HM, Balshin B. Coronary embolism in rheumatic heart disease. Canadian Medical Association journal. 1962 7 7; 87(1): 5. [PubMed: 13911255]
[57]. Rivera R, Tallon R. CORONARY EMBOLISM IN MITRAL STENOSIS. The Journal of cardiovascular surgery. 1964; 5: 382. [PubMed: 14209980]
[58]. Liban E CORONARY EMBOLISM IN A YOUNG WOMAN WITH RHEUMATIC HEART DISEASE. Israel journal of medical sciences. 1965 3; 1: 307–11. [PubMed: 14279087]
[59]. Harris LS, Adelson L. Fatal coronary embolism from a myxomatous polyp of the aortic valve: an unusual cause of sudden death. American journal of clinical pathology. 1965 1 1; 43(1): 61–4. [PubMed: 14259128]
[60]. Watt DA. Paradoxical coronary embolism. British heart journal. 1966 7; 28(4): 570. [PubMed: 5942476]
[61]. Ritch DL, Drew DW. Coronary embolism with myocardial infarction and septic meningitis in a young female with subacute bacterial endocarditis. Virginia medical monthly. 1967 4; 94(4): 224–8. [PubMed: 6041749]
[62]. Woo-Ming MO, Summerell J. Dissociated ventricular rhythm. A case observed following a coronary embolus during closed initial commissurotomy. The Journal of cardiovascular surgery. 1968; 9(3): 288. [PubMed: 5659522]
[63]. Tsuchiya G, KAWAMORI K, MORIMOTO M, INOH T, TOMOMATSU T, MORI Y. A Case of Coronary Embolism in Mitral Steno-insufficiency: Clinical and Pathological Survey. Japanese circulation journal. 1969 4 20; 33(2): 139–44. [PubMed: 5819030]
[64]. Parameswaran R, Meadows WR, Sharp JT. Coronary embolism in primary myocardial disease. American heart journal. 1969 11 1; 78(5): 682–7. [PubMed: 5348750]
[65]. Reddy CR, Ramakrishna MR, Krishnaiah LG, Damodar VR. Coronary embolism in mitral stenosis. Indian heart journal. 1969 4; 21(2): 233–40. [PubMed: 5770825]
[66]. Hall WT, Mac JG. Coronary embolism with survival. Case report. Delaware medical journal. 1967 5; 39(5): 125–7. [PubMed: 6041180]
[67]. Benchimol A, Sandoval J. Coronary embolism in patients with mitral valve prosthesis. Chest. 1971 11 1; 60(5):431–6. [PubMed: 5198880]
[68]. Richardson PM, Gotsman MS. Angiographic evidence of coronary embolism and resolution. South African Medical Journal. 1971; 45(7):805–9. [PubMed: 4255357]
[69]. Hartveit F, Andersen KS, Maehle BO, Kalager T. Fatal coronary embolism due to thrombus detached from a coronary catheter. A case report. Acta pathologica et microbiologica Scandinavica. Supplement. 1974:95–9.
[70]. Schatz JW, Fischer JA. Paradoxic coronary embolism in a patient with mid-systolic click syndrome. Chest. 1974 11 1; 66(5):587–90. [PubMed: 4430213]
[71]. Attai LA, Delman AJ, Robinson G. Coronary Embolism Following Mitral Valve Replacement: Intraoperative Diagnosis and Successful Embolectomy. The Annals of thoracic surgery. 1974 8 1; 18(2):191–4. [PubMed: 4621034]
[72]. Pfeifer JF, Lipton MJ, Oury JH, Angell WW, Hultgren RN. Acute coronary embolism complicating bacterial endocarditis: operative treatment. The American journal of cardiology. 1976 5 1; 37(6):920–2. [PubMed: 1266757]
[73]. Olusegun Fayemi A, Deppisch LM. Coronary embolism and myocardial infarction associated with nonbacterial thrombotic endocarditis. American journal of clinical pathology. 1977 9 1; 68(3):393–6. [PubMed: 900073]
[74]. Bedetti CD, Siewers RD, Dunsford HA. Teflon felt embolism of coronary arteries after cardiac surgery: a case report. American heart journal. 1978 12 1; 96(6):802–5. [PubMed: 717243]
[75]. Saenz CB, Harrell RR, Sawyer Lii JA, Hood WP Jr. Acute percutaneous transluminal coronary angioplasty complicated by embolism to a coronary artery remote from the site of infarction. Catheterization and cardiovascular diagnosis. 1987 7; 13(4): 266–8. [PubMed: 2957058]
[76]. Sridhar K, Chandra KS, Dikshit V. Coronary embolism in a patient with mitral prosthesis treated by coronary angioplasty--a case report. Indian heart journal. 1997; 49(2):181. [PubMed: 9231552]
[77]. McHenry MM, Lee JQ. Skeletal muscle coronary embolism: a complication of coronary angiography. Circulation. 1979 1; 59(1):189–91. [PubMed: 758113]
[78]. Lin CS, Zak FG. Paradoxic bone marrow coronary embolism following cardiopulmonary resuscitation. Jama. 1982 7 2; 248(1):33–.

[79]. Przybojewski JZ. Acute transmural myocardial infarction-coronary vasospasm, thrombosis or coronary embolus? A case report.

[80]. Przybojewski JZ, Tredoux JG, Van Der Walt JJ, Tiedt FA. Mitral valve prolapse complicated by acute cerebral embolism, arrhythmias and painless myocardial infarction. A case presentation and overview.

[81]. Marx JD, Kleyhans PH, Otto AC. Lysis of a coronary embolus by intracoronary streptokinase. A case report. South African medical journal= Suid-Afrikaanse tydskrif vir geneeskunde. 1985 8; 68(3):346–9. [PubMed: 4035503]

[82]. Ueda M, Becker AE, Fujimoto T, Tamai H. Bacterial endocarditis of the aortic valve with septic coronary embolism and myocardial infarction in a 4-month old baby. European heart journal. 1986 5 1; 7(5):449–51. [PubMed: 3732295]

[83]. Presant S, Vandormael M, Kern MJ. Paradox of acute myocardial ischemia and successful PTCA: A case report of subtle coronary embolus. American heart journal. 1986 12 1; 112(6):1317–9. [PubMed: 2947448]

[84]. Culver RA, Bampton PA, Bignold LP. Aortic and coronary embolism of anaplastic small-cell carcinoma of the lung. Medical journal of Australia. 1987 11; 147(9):455–6. [PubMed: 3670199]

[85]. Maddoux GL, Goss JE, Ramo BW, Raff GL, Heuser RR, Shadoff N, Wilson JN, Deane WM, Hoyt TW, Fowler BN, Gerety RL. Left main coronary artery embolism: a case report. Catheterization and cardiovascular diagnosis. 1987 11; 13(6):394–7. [PubMed: 2961452]

[86]. Ackermann DM, Hyma BA, Edwards WD. Malignant neoplastic emboli to the coronary arteries: Report of two cases and review of the literature. Human pathology. 1987 9 1; 18(9):955–9. [PubMed: 3623554]

[87]. Mercereau D, Klinke WP. Paradoxical coronary embolism associated with an unusual interatrial flap valve. The Canadian journal of cardiology. 1988 4; 4(3):140–3. [PubMed: 3378197]

[88]. Backer CL, Hartz RS, Meyers SN, Davis G. Coronary embolism following atrial septal defect repair. The Annals of thoracic surgery. 1988 5 1; 45(5):561–3. [PubMed: 3365048]

[89]. Jungbluth A, Erbel R, Darius H, Rumpelt HJ, Meyer J. Paradoxical coronary embolism: case report and review of the literature. American heart journal. 1988 9 1; 116(3):879–85. [PubMed: 3046280]

[90]. Vasiljevic JD, Abdulla AK. Coronary embolism by metastatic choriocarcinoma of the uterus: an unusual cause of ischemic heart disease. Gynecologic oncology. 1990 8 1; 38(2):289–92. [PubMed: 2387544]

[91]. Herzog CA, Henry TD, Zimmer SD. Bacterial endocarditis presenting as acute myocardial infarction: a cautionary note for the era of reperfusion. The American journal of medicine. 1991 3 1; 90(3):392–7. [PubMed: 2003522]

[92]. Valente M, Basso C, Thiene G, Bressan M, Stritoni P, Cocco P, Fasoli G. Fibroelastic papilloma: a not-so-benign cardiac tumor. Cardiovascular Pathology. 1992 4 1; 1(2):161–6. [PubMed: 25990128]

[93]. Bell C, Kern MJ, Aguirre F, Miller L, Bach R, Donohue T, Dressler F. Coronary atherectomy complicated by coronary embolus in a cardiac transplant recipient. American heart journal. 1993 4 1; 125(4):1172–5. [PubMed: 8465750]

[94]. Eckstein FS, Schäfers HJ, Grote J, Mügge A, Borst HG. Papillary fibroelastoma of the aortic valve presenting with myocardial infarction. The Annals of thoracic surgery. 1995 7 1; 60(1):206–8. [PubMed: 7598600]

[95]. Haynes PA. Fatal paradoxical coronary embolism. JOURNAL-ROYAL ARMY MEDICAL CORPS. 1996 6 1; 142:82–3.

[96]. Abascal VM, Kasznica J, Aldea G, Davidoff R. Left atrial myxoma and acute myocardial infarction: a dangerous duo in the thrombolytic agent era. Chest. 1996 4 1; 109(4):1106–8. [PubMed: 8635340]

[97]. IWAMAT, Asami K, Kubo I, KITAZUME H. Hypertrophic cardiomyopathy complicated with acute myocardial infarction due to coronary embolism. Internal medicine. 1997; 36(9):613–7. [PubMed: 9313103]
[98]. Quinn EG, Fergusson DJ. Coronary embolism following aortic and mitral valve replacement: successful management with abciximab and urokinase. Catheterization and cardiovascular diagnosis. 1998; 4; 43(4):457–9. [PubMed: 9554780]

[99]. Matsumoto M, Konishi Y, Miwa S, Minakata K. Mycotic aneurysm of the left coronary artery. The Annals of thoracic surgery. 1998; 3; 65(3):841–2. [PubMed: 9527231]

[100]. Lanza GM, Berman BJ, Taniuchi M. Multifocal coronary thromboembolism from a left ventricular thrombus. New England Journal of Medicine. 1999; 9; 341(14): 1083–4. [PubMed: 10507931]

[101]. Perera R, Noack S, Dong W. Acute myocardial infarction due to septic coronary embolism. New England Journal of Medicine. 2000; 3; 342(13): 977–8. [PubMed: 1074494]

[102]. Takada A, Saito K, Ro A, Tokudome S, Murai T. Papillary fibroelastoma of the aortic valve: a sudden death case of coronary embolism with myocardial infarction. Forensic science international. 2000; 9; 113(1–3): 209–14. [PubMed: 10978627]

[103]. Tun A, Khan IA. Acute myocardial infarction with angiographically normal coronary arteries. Heart & lung. 2000; 9; 29(5): 348–50. [PubMed: 10986529]

[104]. Chan S, Silver MD. Fatal myocardial embolus after myectomy. The Canadian journal of cardiology. 2000; 2; 16(2): 207–11. [PubMed: 10694591]

[105]. Mentzelopoulos SD, Kokotsakis JN, Romana CN, Karamichali EA. Intracoronary thrombolysis and intracoarct balloon counterpulsation for the emergency treatment of probable coronary embolism after repair of an acute ascending aortic dissection. Anesthesia & Analgesia. 2001; 1; 71: 56–9. [PubMed: 11429339]

[106]. Aslam MS, Sanghi V, Hersh S, Lakier JB. Coronary artery saddle embolus and myocardial infarction in a patient with prosthetic mitral valve. Catheterization and cardiovascular interventions. 2002; 11; 57(3): 367–70. [PubMed: 12410516]

[107]. Beldner S, Bajwa A, Kaplan R, Rosen S, Steinberg B, Cacciabaudo J. Septic Coronary Embolism 1. Journal of interventional cardiology. 2002; 8; 15(4): 301–4. [PubMed: 12238427]

[108]. Hernández F, Pombo M, Dalmau R, Andreu J, Alonso M, Albarrán A, Velázquez MT, Tascón JC. Acute coronary embolism: angiographic diagnosis and treatment with primary angioplasty. Catheterization and cardiovascular interventions. 2002; 4; 55(4): 491–4. [PubMed: 11948897]

[109]. Tobar R, Kriwisky M, Rozenman Y, Harpaz D. Acute myocardial infarction caused by coronary embolism complicated by left ventricular free wall rupture. Journal of the American Society of Echocardiography. 2001; 7; 14(7): 754–6. [PubMed: 11447426]

[110]. Hung WC, Wu CJ, Chen WJ, Yang CH, Chang JP. Transradial Intracoronary Catheterization. Embolectomy for Acute Coronary Embolism after Mitral Valve Replacement. Texas Heart Institute Journal. 2003; 30(4): 316. [PubMed: 14677745]

[111]. Ramos AD, Medeiros AR, Paulista PP, Abboud CS, Meneghello ZM. Aspergillus infection in the ascending aorta of a patient with aortic and mitral valve prostheses. Arquivos brasileiros de cardiologia. 2003; 10; 81(4): 419–20. [PubMed: 14666284]

[112]. Meier-Ewert HK, Labib SB, Schick EC, Gossman DE, Stix MS, Williamson CA. Paradoxical embolism in the left main coronary artery: diagnosis by transesophageal echocardiography. InMayo Clinic Proceedings 2003; 11 (Vol. 78, No. 1, pp. 103–106). Elsevier. [PubMed: 12528885]

[113]. Katoooka N, Otsuka Y, Yasuda S, Morii I, Kawamura A, Miyazaki S. Three cases of acute myocardial infarction due to coronary embolism. Japanese heart journal. 2004; 45; 5(5): 861–6. [PubMed: 15557727]

[114]. Mahmood Z, Cook DS, Luckraz H, O’Keefe P. Fatal right ventricular infarction caused by Biogluue coronary embolism. The Journal of thoracic and cardiovascular surgery. 2004; 11; 128(5): 770–1. [PubMed: 15514612]

[115]. Haghi D, Sueselbeck T, Papavassiliu T, Haase KK, Borggreve M. Paradoxical coronary embolism causing non-ST segment elevation myocardial infarction in a case of pulmonary embolism. Zeitschrift für Kardiologie. 2004; 10; 93(10): 824–8. [PubMed: 15492899]

[116]. Eguchi K, Ohtaki E, Misu K, Aikawa M, Sumiyoshi T, Hosoda S, Koyanagi T. Acute myocardial infarction caused by embolism of thrombus in the right coronary sinus of Valsalva: a

Am J Med Case Rep. Author manuscript; available in PMC 2020 August 06.
case report and review of the literature. Journal of the American Society of Echocardiography. 2004 2 1; 17(2):173–7. [PubMed: 14752493]

[117]. Orban M, Tousek P, Becker I, Augustin N, Firschke C. Cardiac malignant tumor as a rare cause of acute myocardial infarction. The international journal of cardiovascular imaging. 2004 2 1; 20(1):47–51. [PubMed: 15055820]

[118]. Petinaux B, Shesser R, Rah B, Reiner J. Coronary embolus secondary to a prosthetic mitral valve and subtherapeutic anticoagulation. The American journal of emergency medicine. 2004 7 1; 22(4):318–20. [PubMed: 15258880]

[119]. Ozaydın M, Dogan A, Altinbas A. Left atrial myxoma presenting with acute myocardial infarction: a case report. Angiology. 2005 11; 56(6):767–9. [PubMed: 16327954]

[120]. Adachi I, Kobayashi J, Nakajima H, Niwaya K, Ishibashi-Ueda H, Bando K, Tagusari O. Coronary embolism and subsequent myocardial abscess complicating ventricular aneurysm and tachycardia. The Annals of thoracic surgery. 2005 12 1; 80(6):2366–8. [PubMed: 16305915]

[121]. Tukaye DN, Cavallazzi RS. Paradoxical thromboembolism/ST-elevation myocardial infarction via a patent foramen ovale in sub-massive pulmonary embolism following an upper extremity deep venous thrombosis: is it time for a change in the standard of care?. Cardiology research. 2014 8; 5(3–4):112. [PubMed: 28348707]

[122]. Braun S, Schröttner H, Reynen K, Schwencke C, Strasser RH. Myocardial infarction as complication of left atrial myxoma. International journal of cardiology. 2005 5 11; 101(1):115–21. [PubMed: 15860393]

[123]. Taniike M, Nishino M, Egami Y, Kondo I, Shutta R, Tanaka K, Adachi T, Tanouchi J, Yamada Y, Kawano K. Acute myocardial infarction caused by a septic coronary embolism diagnosed and treated with a thrombectomy catheter. Heart. 2005 5 1; 91(5):e34-. [PubMed: 15831619]

[124]. Pingado J, Marcos-Alberca P, Rey M, Rábago R, de Diego C, Ibáñez B, Córdoba M, Farré J. Incomplete myocardial rupture after coronary embolism of an isolated single coronary artery. European Journal of Echocardiography. 2005 11; 6(1):72–4. [PubMed: 15664557]

[125]. Kirkpatrick EC, Hurwitz R. Myocardial infarction late after Mustard procedure. Pediatric cardiology. 2005 Feb 1; 26(1):97–100.

[126]. Vanoverbeke H. Coronary embolism from mitral fibro-elastoma. European journal of cardio-thoracic surgery. 2006 8 1; 30(2):383-. [PubMed: 16829113]

[127]. Kiernan TJ, Flynn AM, Kearney P. Coronary embolism causing myocardial infarction in a patient with mechanical aortic valve prosthesis. International journal of cardiology. 2006 9 20; 112(2):E14–6. [PubMed: 16814882]

[128]. Mejia VM, Woo YJ, Herrmann HC. Left main coronary embolism. The Journal of invasive cardiology. 2006 6; 18(6):296-. [PubMed: 16775900]

[129]. Çay S, Topaloğlu S, Korkmaz S. Acute coronary embolism after mitral valve replacement in a patient presenting with non-ST-segment elevation myocardial infarction. Anadolu kardioloji dergisi: AKD= the Anatolian journal of cardiology. 2006 6; 6(2):210-. [PubMed: 16766302]

[130]. Bodor E, Jánoši A, Sziidor D, Balogh O. Surgically treated intraoperative coronary embolism. The Thoracic and cardiovascular surgeon. 2006 3; 54(2):142–4. [PubMed: 16541360]

[131]. Bracco D, Noiseux N, Duong P, Prieto I, Basile F. Aortic vegetation and acute coronary embolism. The Canadian journal of cardiology. 2006 2; 22(2):113. [PubMed: 16485044]

[132]. Breithardt OA, Papavassiliu T, Borrgreve M. A coronary embolus originating from the interatrial septum. European heart journal. 2006 5 25; 27(23):2745-. [PubMed: 16728421]

[133]. Wilson AM, Ardehali R, Brinton TJ, Yeung AC, Vagelos R. Successful removal of a paradoxical coronary embolus using an aspiration catheter. Nature Reviews Cardiology. 2006 11; 3(11):633.

[134]. Yazıcı M, Kayrak M, Turan Y, Koc F, Ulgen MS. Acute coronary embolism without valve thrombosis in a patient with a prosthetic mitral valve--successful percutaneous coronary intervention: a case report. InThe heart surgery forum 2007 (V ol. 10, No. 3, pp. E228–30). [PubMed: 17599897]

[135]. Sakai K, Inoue K, Nobuyoshi M. Aspiration thrombectomy of a massive thrombotic embolus in acute myocardial infarction caused by coronary embolism. International heart journal. 2007; 48(3):387–92. [PubMed: 17592203]
[136]. Van de Walle S, Dujardin K. A case of coronary embolism in a patient with paroxysmal atrial fibrillation receiving tamoxifen. International journal of cardiology. 2007 12 15; 123(1):66–8. [PubMed: 17291610]

[137]. Ural E, Bildirici U, Kahraman G, Komsoğlu B. Coronary embolism complicating aortic valve endocarditis: treatment with successful coronary angioplasty. International journal of cardiology. 2007 7 31; 119(3):377–9. [PubMed: 17070609]

[138]. Greig LD, Leslie SJ, Denvir MA. Paradoxical coronary embolism in a young woman. International journal of cardiology. 2007 1 31; 115(1):E17–9. [PubMed: 17049397]

[139]. Yavari A, Paul G, Jackson G. Aborted sudden cardiac death–a rare presentation of septic coronary embolism. European journal of internal medicine. 2008 11 1; 19(7):559.

[140]. Cacioli S, Rostagno C, Fradelia G, Margheri M, Stefano P. Coronary embolism following valve surgery. Journal of Cardiovascular Medicine. 2008 4 1; 9(4):406–7. [PubMed: 18334897]

[141]. Baek MJ, Kim HK, Yu CW, Na CY. Mitral valve surgery with surgical embolectomy for mitral valve endocarditis complicated by septic coronary embolism. European Journal of Cardio-Thoracic Surgery. 2008 1 1; 33(1):116–8. [PubMed: 17977004]

[142]. Kessavane A, Marticho P, Zogheib E, Lorne E, Dupont H, Tribouilloy C, Remadi JP. Septic coronary embolism in aortic valvular endocarditis. J Heart Valve Dis. 2009 9 1; 18(5):572–4. [PubMed: 20099700]

[143]. Nanjappa MC, Shankarappa RK, Chandrasekaran D, Moorothy N. Fatal coronary embolism in infective endocarditis associated with chronic rheumatic heart disease: an unexpected transesophageal echocardiographic documentation. Echocardiography. 2009 8; 26(7):870–2. [PubMed: 20003025]

[144]. Murthy A, Shea M, Karnati PK, El-Hajjar M. A rare case of paradoxical embolism causing myocardial infarction: Successfully aborted by aspiration alone. Journal of cardiology. 2009 12 1; 54(3): 503–6. [PubMed: 19944331]

[145]. Martín E, Vázquez A, Hornero F. Incidental Finding of Coronary Embolism During Valve Surgery. Revista española de cardiología. 2009 11 1; 62(11):1337–8. [PubMed: 19889349]

[146]. Vearievaens WR. Acute myocardial infarction due to coronary artery embolism in a patient with atrial fibrillation. Netherlands Heart Journal. 2009 8 1; 17(8):297–9. [PubMed: 19789700]

[147]. Lacunza-Ruiz FJ, Gimeno-Blanes JR, Pinar-Bermúdez E, Valdés-Chávarri M. Coronary embolism after percutaneous implantation of an aortic valve prosthesis. Revista española de cardiología. 2009 9 1; 62(9):1074–5. [PubMed: 19712634]

[148]. Sial JA, Ferman MT, Saghir T, Rasool SI. Coronary embolism causing acute myocardial infarction in a patient with mitral valve prosthesis: successful management with angioplasty. JPMA. The Journal of the Pakistan Medical Association. 2009 6; 59(6):409. [PubMed: 19534381]

[149]. Budavari AI, Glenn TJ, Will KK, Askew JW, Fortuin FD. A case of simultaneous pulmonary embolism and acute myocardial infarction secondary to a previously undiagnosed patent foramen ovale. Journal of Hospital Medicine: An Official Publication of the Society of Hospital Medicine. 2009 5; 4(5):E5–9.

[150]. Teixeira R, Lourenco C, Coelho L, Vieira H, Ramos D, Castro G, Monteiro P, Donato P, Ferreira MJ, Providência LA. Carney complex: a case report. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia= Portuguese journal of cardiology: an official journal of the Portuguese Society of Cardiology. 2009 2; 28(2):211–22.

[151]. Lin TC, Hsieh YC, Lee WL, Lin YK, Ting CT, Wu TJ. Acute embolic myocardial infarction in a patient with paroxysmal atrial fibrillation receiving direct-current cardioversion. Journal of the Chinese Medical Association. 2009 3 1; 72(3):146–9. [PubMed: 19299222]

[152]. Dogan M, Acikel S, Aksoy MM, Cagirci G, Kilic H, Yesilay A, Akdemir R. Coronary saddle embolism causing myocardial infarction in a patient with mechanical mitral valve prosthesis: treatment with thrombolytic therapy. International Journal of Cardiology. 2009 6 26; 135(2):e47–8. [PubMed: 18614249]
[153]. Steinwender C, Hofmann R, Hartenthaler B, Leisch F. Resolution of a coronary embolus by intravenous application of bivalirudin. International journal of cardiology. 2009 3 6; 132(3):e115–6. [PubMed: 18036681]

[154]. Shim JK, Choi YS, Yoo KJ, Kwak YL. Carbon dioxide embolism induced right coronary artery ischaemia during off-pump obtuse marginalis artery grafting. European Journal of Cardio-Thoracic Surgery. 2009 9 1; 36(3):598–9. [PubMed: 19586779]

[155]. Ferlan G, Fiorella A, De Pasquale C, Tunzi F. Primary coronary embolism as an unusual manifestation of nonbacterial thrombotic endocarditis in a patient with gastric cancer. Cardiology research and practice. 2010; 2010.

[156]. Nakazone MA, Tavares BG, Machado MN, Maia LN. Acute myocardial infarction due to coronary artery embolism in a patient with mechanical aortic valve prosthesis. Case reports in medicine. 2010; 2010.

[157]. Pawlaczyk R, Lango R, Klapkowski A, Rogowski J. Low cardiac output due to left main coronary artery embolism during mitral valve replacement. Journal of cardiac surgery. 2010 11; 25(6):658–60. [PubMed: 20459451]

[158]. Motreff P, Roux A, Souteyrand G. Aspiration therapy in septic coronary embolism complicating infective endocarditis. Heart. 2010 5 1; 96(10):809–. [PubMed: 20448135]

[159]. Bae KR, Lee YS, Kim BK, Ha GJ, Kim SY, Choi JY, Kim KS. A case of acute myocardial infarction caused by distal embolization of a left main coronary artery thrombus. Korean circulation journal. 2010 1 1; 40(1):46–9. [PubMed: 20111653]

[160]. Yuce M, Yavuz F, Cakici M, Sari I, Davutoglu V. A rare cause of myocardial infarction: coronary embolism in a patient with prosthetic mitral valve thrombosis.

[161]. Levis JT, Schultz G, Lee PC. Acute myocardial infarction due to coronary artery embolism in a patient with a tissue aortic valve replacement. The Permanente Journal. 2011; 15(3):82.

[162]. Saraiva F, Matos V, Gonçalves L, Providência LA. Acute coronary embolism in a patient with a mechanical aortic prosthesis: case report. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologias-Portuguese journal of cardiology: an official journal of the Portuguese Society of Cardiology. 2011 5; 30(5):543–9.

[163]. Gavrielatos G, Buttnner HJ, Lehane C, Neumann FJ. Complex interventional procedures for the management of early postoperative left main coronary artery embolism after bioprosthetic aortic valve insertion. Cardiovascular Revascularization Medicine. 2011 1 1; 12(1):68–e1.

[164]. George JC, Buchanan D, Mazzoni J. Thrombectomy and fibrinolytic therapy of prosthetic valve thrombosis complicated by coronary embolism. The Journal of invasive cardiology. 2011 1; 23(1): E243–5. [PubMed: 21183774]

[165]. Najib MQ, Lee HR, DeValeria PA, Vinales KL, Surapaneni P, Chalki HP. Anterolateral papillary muscle rupture: an unusual complication of septic coronary embolism. European Journal of Echocardiography. 2010 9 28; 12(2):E10–. [PubMed: 20876696]

[166]. Acikel S, Dogan M, Aksoy MM, Akdemir R. Coronary embolism causing non-ST elevation myocardial infarction in a patient with paroxysmal atrial fibrillation: treatment with thrombus aspiration catheter. International journal of cardiology. 2011 5 19; 149(1):e33–5. [PubMed: 19375181]

[167]. Roxas CJ, Weekes AJ. Acute myocardial infarction caused by coronary embolism from infective endocarditis. The Journal of emergency medicine. 2011 5 1; 40(5):509–14. [PubMed: 18947962]

[168]. Rifai L, Trabolsi M, Dia M. Coronary embolus complicating peripartum cardiomyopathy. The Journal of invasive cardiology. 2011 10; 23(10):E237–40. [PubMed: 21972169]

[169]. Vasconcellos AP, Korr KS. Spontaneous calcific coronary embolus from a degenerative calcific aortic valve-a rare cause of acute ST segment elevation myocardial infarction. The American heart hospital journal. 2011 9; 11(1):E55–9. [PubMed: 21823080]

[170]. Aykan AC, Ozkan M, Duran NE, Yildiz M. Acute ST-elevation inferior myocardial infarction in a patient with a non-obstructive mechanical mitral valve thrombosis: case report-online article. Cardiovascular journal of Africa. 2012 10 1; 23(9):7–8.

[171]. Martin SS. Bialtrial thrombus across a patent foramen ovale with fatal pulmonary and coronary embolism. Journal of echocardiography. 2012 6 1; 10(2):77–8. [PubMed: 27278051]
Marella PC, Murarka S, Talluri SK, Bashir F. “Snake” Shaped Vegetation in Right Coronary Artery. North American journal of medical sciences. 2012 8; 4(8):373. [PubMed: 22912950]

Bennett J, Ong L, Hanratty C. Paradoxical coronary embolism, a rare cause of acute myocardial infarction on positive pressure ventilation. Acta cardiologica. 2012 8 1; 67(4):477–9. [PubMed: 22998006]

Staico R, Armaganijan L, Lopes RD. Coronary embolism and calcified aortic valve: is there a correlation?. Journal of thrombosis and thrombolysis. 2012 10 1; 34(3):425–7. [PubMed: 22488471]

Brito JD, Almeida MS, Ribeiras R, Melo JQ, Almeida RH, Silva JA. Recurrent myocardial infarction in a patient with papillary fibroelastoma. Arquivos brasileiros de cardiology. 2012 1; 98(1):e7–10. [PubMed: 22323330]

Kaya H, Ertas F, Tekbas E, Elbey MA. Resolution of obstructive prosthetic valve thrombosis after coronary embolism/Koroner emboli sonrası düzelen tikayici protez kapak trombüsü. Anadolu Kardiyojoloji Dergisi: AKD. 2012 2 1; 12(1):E3.

Kim HL, Seo JB, Chung WY, Zo JH, Kim MA, Kim SH. Simultaneously presented acute ischemic stroke and non-ST elevation myocardial infarction in a patient with paroxysmal atrial fibrillation. Korean circulation journal. 2013 11 1; 43(11):766–9. [PubMed: 24363753]

Zasada W, Bartuś S, Królikowski T, Dudek D. Patient with atrial fibrillation and myocardial infarction due to coronary artery embolism treated with thrombus aspiration. Kardiologia polska. 2013; 71(1):99–101. [PubMed: 23348546]

Abecasis J, Ribeiras R, Gabriel HM, Andrade MJ. Thrombus entrapment: the clue for coronary embolism. European heart journal. 2014 6 6; 35(42):2971–. [PubMed: 24906617]

Gagliardi L, Guerbaai RA, Marlière S, Bouvaist H, Ennezat PV. Coronary embolization following electrical cardioversion in a patient treated with dabigatran. International journal of cardiology. 2014 8 20; 175(3):571–2. [PubMed: 24861253]
[190]. Seo GW, Seol SH, No TH, Jeong HJ, Kim TJ, Kim JK, Song PS, Kim DK, Kim KH, Kim DI. Acute myocardial infarction caused by coronary embolism from Aspergillus endocarditis. Internal Medicine. 2014; 53(7):713–6. [PubMed: 24694482]

[191]. Kitkungvan D, Denktas AE. Cardiac arrest and ventricular tachycardia from coronary embolism: an unusual presentation of infective endocarditis. Anadolu Kardiyojoloji Dergisi: AKD. 2014 3 1; 14(2):204.

[192]. Dauvergne C, Araya M, Valenzuela J, Meneses M, Selman R, Maluenda G. Acute myocardial infarction after left-heart catheterization in a patient with severe calcified bicuspid aortic stenosis. JACC: Cardiovascular Interventions. 2014 2 1; 7(2):e5–6. [PubMed: 24440021]

[193]. Šteiner I, Vojáček J. Carcinoma embolization in coronary artery causing myocardial infarction: diagnosis from coronary thromboaspirate. Pathology-Research and Practice. 2014 3 1; 210(3):198–200.

[194]. Heseltine TD, Karthikeyan VJ, Morris J. Takotsubo cardiomyopathy with secondary coronary embolus. Case Reports. 2014 4 23; 2014:bcr2013203145.

[195]. Wee CK, Gosavi TD, Huang W. The Clot Strikes Thrice: Case Report of a Patient with 3 Concurrent Embolic events. Acta Neurologica Taiwanica. 2015 9; 24(3):92–6. [PubMed: 27333833]

[196]. Senguttuvan NB, Ramakrishnan S, Singh S, Mishra S. Percutaneous management of coronary embolism with prosthetic heart valve thrombosis after Bentall’s procedure. Indian heart journal. 2015 11 1; 67(6):589–91. [PubMed: 26702693]

[197]. Plymen C, Pettit SJ, Tsui S, Lewis C. Right ventricular failure due to late embolic RV infarction during continuous flow LVAD support. BMJ case reports. 2015 12 16; 2015:bcr2015212174.

[198]. Iannaccone M, Montefusco A, D’ascenzo F, Moretti C. All that glitters ain’t gold! A case of embolic STEMI demonstrated by OCT. International journal of cardiology. 2015 10 1; 196:14–5. [PubMed: 26066636]

[199]. Medda M, Casili F, Ghommidh EM, Bande M, Inglese L. Aortic valve cusps decalcification complicated by an embolic myocardial infarction treated by transradial intracoronary embolectomy. JACC: Cardiovascular Interventions. 2015 6 1; 8(7):e121–3. [PubMed: 26003027]

[200]. Wongrakpanich S, Thamcharoen N, Chongsathidkiet P, Siwamogsatham S. Dual prosthetic heart valve presented with chest pain: a case report of coronary thromboembolism. Case reports in cardiology. 2015; 2015.

[201]. Mallouppas M, Christopoulos C, Watson W, Cader R, Cooper J. An uncommon complication of atrial fibrillation. Oxford medical case reports. 2015 3 1; 2015(3):232–4. [PubMed: 27559478]

[202]. Nakamura D, Makino N, Egami Y, Shutta R, Tanouchi J, Nishino M. Successful thrombectomy for coronary embolism likely due to floating aortic plaque in ascending aorta. Cardiovascular intervention and therapeutics. 2015 7 1; 30(3):299–302. [PubMed: 25179773]

[203]. Mallouppas M, Vassiliou V, Goddard M, Rana B, Braganza D. An unusual complication of hip surgery: paradoxical coronary embolism of foreign material as a cause of acute MI. EuroIntervention. 2014.

[204]. Hartung B, Gahr B, Ritz-Timme S. Pulmonary and coronary foreign particle embolism after central venous injection of liquid nutrition. Forensic science international. 2015 2 1; 247:e18–20. [PubMed: 25563518]

[205]. Sultan A, Goela A, Tweedie E, Awan K, Lavi S. Multimodality Imaging for Assessment of Coronary Embolus. Canadian Journal of Cardiology. 2015 3 1; 31(3):364–e5.

[206]. Koutsampasopoulos K, Datsios A, Grigoriadis S, Vogiatzis I. Atrial fibrillation causing ST elevation myocardial infarction due to coronary embolism: case report and review of the literature. Hippokratia. 2016 4; 20(2):160. [PubMed: 28416914]

[207]. Castelli JB, Almeida G, Siciliano RF. Sudden death in infective endocarditis. Autopsy & case reports 2016 7; 6(3):17. [PubMed: 27818954]

[208]. Winkler J, Chaudhry SP, Stockwell PH. Gemella endocarditis presenting as an ST-segment-elevation myocardial infarction. Texas Heart Institute Journal. 2016 6; 43(3):258–60. [PubMed: 27303246]

[209]. Zachura M, Sadowski M, Janion-Sadowska A, Kurzawski J, Janion M. Acute myocardial infarction due to coronary embolism originating from left ventricle thrombus in a patient with
dilated cardiomyopathy and sinus rhythm. Postepy w Kardiologii Interwencyjnej. 2016; 12(1):73. [PubMed: 26966456]

[210]. Ito S, Endo A, Okada T, Nakamura T, Adachi T, Nakashima R, Sugamori T, Takahashi N, Yoshitomi H, Tanabe K. Acute myocardial infarction due to left atrial myxoma. Internal Medicine. 2016; 55(1):49–54. [PubMed: 26726085]

[211]. Sousa C, Almeida J, Dias P, Almeida P, Rangel I, Araújo V, Macedo F, Maciel MJ. Conservative Management of a Prosthetic Valve Thrombosis–Report of a Successful Case. Heart, Lung and Circulation. 2014 10 1; 23(10):e207–9.

[212]. Nogales-Romo MT, Tirado G, Freitas-Ferraz A, Martínez-Losas P, Rodrigo JL, Alswies A, Saiz-Pardo M, Ruiz-Mateos B, Viana-Tejedor A, Fernández-Ortiz A, Macaya C. Coronary embolism of left atrial myxoma coexisting with severe aortic stenosis and atherosclerotic coronary disease. International journal of cardiology. 2016 1 15; 203:315–6. [PubMed: 26523361]

[213]. Chiakabasaviah N, Rajendran R, Beeresha P, Ramesh B. Percutaneous Coronary Intervention for Coronary Thromboembolism during Balloon Mitral Valvuloplasty in a Pregnant Woman. Heart, Lung and Circulation. 2016 2 1; 25(2):e207–9.

[214]. Rozado J, Pascual I, Avanzas P, Moris C. Coronary Embolism After Iatrogenic Radial Endarterectomy. The Journal of invasive cardiology. 2016 6; 28(6):E54–5. [PubMed: 27236012]

[215]. Rotta DL, Rawluk J, Krauss I, Avanzas P, Moris C. Coronary Embolism After Iatrogenic Radial Endarterectomy. The Journal of invasive cardiology. 2016 6; 28(6):E54–5. [PubMed: 27236012]

[216]. Liu G, Yang P, He Y. Left ventricular mural thrombus and dual coronary embolization associated with hyperthyroid cardiomyopathy and atrial fibrillation: a case report. BMC Cardiovascular disorders. 2017 12; 17(1):128. [PubMed: 28525971]

[217]. Rivera-Juárez A, Sarnago-Cebada F, Díez-Delhoyo F, Cuerpo G, Hortal J, Fernandez-Avilés F. Cardiogenic shock due to septic coronary embolism: treatment options for a rare entity. Clinical Research in Cardiology. 2017 8; 106(8):660–2. [PubMed: 28396987]

[218]. Sinha SK, Jha MJ, Razi M, Chaturvedi V, Erappa YB, Singh S, Mishra V, Khanna D, Singh K. Acute Myocardial Infarction Due to Coronary Artery Embolism in a 22-Year-Old Woman with Mitral Stenosis and Atrial Fibrillation Under Warfarinization: Successful Management with Anticoagulation. The American journal of case reports. 2017; 18:361. [PubMed: 28386054]

[219]. Manchurov V, Anisimov K, Khokhlova V, Skrynnik D. The first reported stentriever-based thrombectomy in acute ST-elevation myocardial infarction due to paradoxical coronary embolism. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2017 8 4; 13(5):e602.

[220]. Pavani M, Conrotto F, D’Ascenzo F, D’Amico M, Centofanti P, Gaita F. Left main occlusion secondary to infective endocarditis vegetation: “The unusual suspect”. Cardiovascular Revascularization Medicine. 2017 7 1; 18(5):367–8. [PubMed: 28063812]

[221]. Dallaglio PD, Claver E, Di Marco A, Alió J, Hidalgo A, Cequier A. Double-chambered left ventricle: coronary embolism as the first presentation of an extremely unusual cardiac anomaly. Journal of Cardiovascular Medicine. 2017 10 1; 18(10):790–2. [PubMed: 23549276]

[222]. Martinez FE, Ryden L, Leaver R, Mendoza J, Havill K. Fungal coronary embolus while on extracorporeal membrane oxygenation. Anaesthesia and intensive care. 2017 9 1; 45(5):634A. [PubMed: 28911297]

[223]. Cvetković D, Živković V, Nikolić S. Patent foramen ovale, paradoxical embolism and fatal coronary obstruction. Forensic Science, Medicine and Pathology. 2018 6 1; 14(2):258–62.

[224]. Sakagami A, Okura H, Uemura T, Saito Y. Inter-atrial Septal Thrombus without PFO. Internal Medicine. 2018 2; 57(3):445–445. [PubMed: 29033447]

[225]. Jiao ZY, Zhang DP, Xia K, Wang LF, Yang XC. Clinical analysis of acute myocardial infarction caused by coronary embolism. Journal of thoracic disease. 2017 9; 9(9):2898. [PubMed: 29221261]

[226]. Ahmad K, Asirvatham S, Kamath S, Peck S, Liu X. Successful interventional management of catastrophic coronary arterial air embolism during atrial fibrillation ablation. HeartRhythm case reports. 2016 Mar; 2(2):153.
[227]. Cay S, Ozke O, Ozcan F, Topaloglu S, Aras D. Coronary Air Embolism during Cryoablation of Atrial Fibrillation: A Catastrophic Complication and Its Management. Journal of atrial fibrillation. 2017 10; 10(3).

[228]. Virk HU, Inayat F, Farooq S, Ghani AR, Mirrani GA, Athar MW. Prosthetic aortic valve endocarditis with left main coronary artery embolism: a case report and review of the literature. North American journal of medical sciences. 2016 6; 8(6):259. [PubMed: 27500132]
Table 1.

Cases of CE included in the study

Serial Number	Year	Author	Reference
1	1950	Moragues et al.	[39]
2	1952	Walker et al.	[40]
3	1952	Glushien et al.	[41]
4	1954	Segall et al.	[42]
5	1958	Gill et al.	[43]
6	1958	Hoffman et al.	[44]
7	1958	Lillington et al.	[45]
8	1958	Kavanaugh et al.	[46]
9	1959	Boas et al.	[47]
10	1959	Gelpi et al.	[48]
11	1958	Wegner et al.	[49]
12	1960	Marietta et al.	[50]
13	1960	Winters et al.	[51]
14	1961	Menzies et al.	[52]
15	1961	Oakley et al.	[53]
16	1961	Miyahara et al.	[54]
17	1962	Jerie et al.	[55]
18	1962	Shanoff et al.	[56]
19	1964	Rivera et al.	[57]
20	1965	Liban et al.	[58]
21	1965	Harris et al.	[59]
22	1966	Watt et al.	[60]
23	1967	Ritch et al.	[61]
24	1968	Woo-Ming et al.	[62]
25	1969	Tsuchiya et al.	[63]
26	1969	Parameswaran et al.	[64]
27	1969	Reddy et al.	[65]
28	1969	Hall et al.	[66]
29	1971	Benchimol et al.	[67]
30	1971	Richardson et al.	[68]
31	1974	Hartveit et al.	[69]
32	1974	Schatz et al.	[70]
33	1974	Attai et al.	[71]
34	1976	Pfeifer et al.	[72]
35	1977	Fayemi et al.	[73]
36	1978	Bedetti et al.	[74]
37	1978	Saenz et al.	[75]
Serial Number	Year	Author	Reference
---------------	------	-------------------------	-----------
38	1979	Sridhar et al.	[76]
39	1979	McHenry et al.	[77]
40	1982	Lin et al.	[78]
41	1984	Przybojewski et al.	[79]
42	1984	Przybojewski et al.	[80]
43	1985	Marx et al.	[81]
44	1986	Ueda et al.	[82]
45	1986	Presant et al.	[83]
46	1987	Culver et al.	[84]
47	1987	Maddoux et al.	[85]
48	1987	Ackermann et al.	[86]
49	1988	Mercereau et al.	[87]
50	1988	Backer et al.	[88]
51	1988	Jungbluth et al.	[89]
52	1990	Vasiljevic et al.	[90]
53	1991	Herzog et al.	[91]
54	1992	Valente et al.	[92]
55	1993	Bell et al.	[93]
56	1995	Eckstein et al.	[94]
57	1996	Haynes et al.	[95]
58	1996	Abascal et al.	[96]
59	1997	Iwama et al.	[97]
60	1998	Quinn et al.	[98]
61	1998	Matsumoto et al.	[99]
62	1999	Lanza et al.	[100]
63	2000	Perera et al.	[101]
64	2000	Takada et al.	[102]
65	2000	Tun et al.	[103]
66	2000	Chan et al.	[104]
67	2001	Mentzelopoulos et al.	[105]
68	2002	Aslam et al.	[106]
69	2002	Beldner et al.	[107]
70	2002	Hernández et al.	[108]
71	2002	Tobar et al.	[109]
72	2003	Hung et al.	[110]
73	2003	Ramos et al.	[111]
74	2003	Meier-Ewert et al.	[112]
75	2004	Kotooka et al.	[113]
76	2004	Mahmood et al.	[114]
Serial Number	Year	Author	Reference
---------------	------	--------	-----------
77	2004	Haghi et al.	[115]
78	2004	Eguchi et al.	[116]
79	2004	Orban et al.	[117]
80	2004	Petinaux et al.	[118]
81	2005	Ozaydin et al.	[119]
82	2005	Adachi et al.	[120]
83	2014	Deepali et al.	[121]
84	2005	Braun et al.	[122]
85	2005	Taniike et al.	[123]
86	2005	Pindado et al.	[124]
87	2005	Kirkpatrick et al.	[125]
88	2006	Vanoverbeke et al.	[126]
89	2006	Kiernan et al.	[127]
90	2006	Mejia et al.	[128]
91	2006	Cay et al.	[129]
92	2006	Bodor et al.	[130]
93	2006	Bracco et al.	[131]
94	2006	Breithardt et al.	[132]
95	2006	Wilson et al.	[133]
96	2007	Yazici et al.	[134]
97	2007	Sakai et al.	[135]
98	2007	Van de Walle et al.	[136]
99	2007	Ural et al.	[137]
100	2007	Greig et al.	[138]
101	2008	Yavari et al.	[139]
102	2008	Caciolli et al.	[140]
103	2008	Baek et al.	[141]
104	2009	Kessavane et al.	[142]
105	2009	Nanjappa et al.	[143]
106	2009	Murthy et al.	[144]
107	2009	Martín et al.	[145]
108	2009	Camaro et al.	[146]
109	2009	Lacunza-Ruiz et al.	[147]
110	2009	Sial et al.	[148]
111	2009	Budavari et al.	[149]
112	2009	Teixera et al.	[150]
113	2009	Lin et al.	[151]
114	2009	Dogan et al.	[152]
115	2009	Steinwender et al.	[153]
Serial Number	Year	Author	Reference
---------------	------	-------------------------	-----------
116	2009	Shim et al.	[154]
117	2010	Ferlan et al.	[155]
118	2010	Nakazone et al.	[156]
119	2010	Pawlaczyk et al.	[157]
120	2010	Motreff et al.	[158]
121	2010	Bae et al.	[159]
122	2011	Yuce et al.	[160]
123	2011	Levis et al.	[161]
124	2011	Saraiva et al.	[162]
125	2011	Gavrielatos et al.	[163]
126	2011	George et al.	[164]
127	2011	Najib et al.	[165]
128	2011	Acikel et al.	[166]
129	2011	Roxas et al.	[167]
130	2011	Rifai et al.	[168]
131	2011	Vasconcellos et al.	[169]
132	2012	Aykan et al.	[170]
133	2012	Martin et al.	[171]
134	2012	Marella et al.	[172]
135	2012	Bennett et al.	[173]
136	2012	Staico et al.	[174]
137	2012	Brito et al.	[175]
138	2012	Kaya et al.	[176]
139	2013	Kim et al.	[177]
140	2013	Karavelioglu et al.	[178]
141	2013	Smith et al.	[179]
142	2013	Angulo-Llanos et al.	[180]
143	2013	Zasada et al.	[181]
144	2013	Kirubakaran et al.	[182]
145	2013	Tiong et al.	[183]
146	2014	Lacunza-Ruiz et al.	[184]
147	2014	Tsang et al.	[185]
148	2014	Karaoyun et al.	[186]
149	2014	Abecasis et al.	[187]
150	2014	Giri et al.	[188]
151	2014	Gagliardi et al.	[189]
152	2014	Seo et al.	[190]
153	2014	Krikungvan et al.	[191]
154	2014	Dauvergne et al.	[192]
Serial Number	Year	Author	Reference
---------------	------	-------------------------------	-----------
155	2014	Steiner et al.	[193]
156	2014	Heseltine et al.	[194]
157	2015	Wee et al.	[195]
158	2015	Senguttuvan et al.	[196]
159	2015	Plymen et al.	[197]
160	2015	Iannaccone et al.	[198]
161	2015	Medda et al.	[199]
162	2015	Wongrakpanich et al.	[200]
163	2015	Mallouppas et al.	[201]
164	2015	Nakamura et al.	[202]
165	2015	Mallouppas et al.	[203]
166	2015	Hartung et al.	[204]
167	2015	Sultan et al.	[205]
168	2016	Koutsampasopoulos et al	[206]
169	2016	Castelli et al.	[207]
170	2016	Winkler et al.	[208]
171	2016	Zachura et al.	[209]
172	2016	Ito et al.	[210]
173	2014	Sousa et al.	[211]
174	2016	Nogales-Romo et al.	[212]
175	2016	Chikkabasavaiah et al.	[213]
176	2016	Rozado et al.	[214]
177	2017	Rotta Detto Loria et al	[215]
178	2017	Liu et al.	[216]
179	2017	Rivera-Juárez et al.	[217]
180	2017	Sinha et al.	[218]
181	2017	Manchurov et al.	[219]
182	2017	Pavani et al.	[220]
183	2017	Dallaglio et al.	[221]
184	2017	Martinez et al.	[222]
185	2018	Cvetković et al.	[223]
186	2018	Sakagami et al.	[224]
187	2017	Jiao et al.	[225]
188	2016	Ahmad et al.	[226]
189	2017	Cay et al.	[227]
190	2016	Virk et al.	[228]
Table 2.

Study population demographics (n = 232)

	Total	Males	Females
Age (years)			
Mean (SD)	50.2 (17.9)	49.6 (18.1)	51 (17.7)
Range	0.3 to 87	0.3 to 87	12 to 87
Gender			
Male n (%)	128 (55.2)		
Female n (%)	104 (44.8)		
Table 3.

Historical cardiovascular risk factors (n = 232)

Risk Factor	N (%)
Atrial fibrillation	40 (17.2)
Hypertension	39 (16.8)
Hyperlipidemia	37 (15.9)
Chronic Valvular Disease	37 (15.9)
Mitral valve	21 (9.05)
Aortic valve	16 (6.90)
Prosthetic heart valve	37 (15.9)
Mitral valve	20 (8.62)
Aortic valve	11 (4.74)
Aortic and mitral valves	6 (2.59)
Rheumatic heart disease	29 (12.5)
Valve unspecified	18 (7.76)
Mitral	9 (3.88)
Aortic	2 (0.862)
Diabetes	23 (9.91)
Coronary artery disease	21 (9.05)
Cerebrovascular disease	21 (9.05)
Obesity	21 (9.05)
Smoking	20 (8.62)
End stage renal disease	9 (3.88)
Congestive heart failure	7 (3.02)
Deep vein thrombosis/pulmonary embolism	7 (3.02)
Valve vegetations	7 (3.02)
Cardiomyopathy	5 (2.16)
Atrial septal defect	3 (1.29)
Alcohol abuse	2 (0.862)
Drug abuse	2 (0.862)
Other arrhythmia	2 (0.862)
Aortic dissection	2 (0.862)
Obstructive sleep apnea	2 (0.862)
Anemia	2 (0.862)
Patent foramen ovale	2 (0.862)
Pregnancy	2 (0.862)
Systemic lupus erythematosus	2 (0.862)
Intracardiac thrombus	2 (0.862)
Arteritis	1 (0.431)
Aortic coarctation	1 (0.431)
Hypertrophic obstructive cardiomyopathy	1 (0.431)
Hyperthyroidism	1 (0.431)
Condition	N (%)
---------------------------	-------------
Liver disease	1 (0.431)
Ventricular septal defect	1 (0.431)
Endocarditis	1 (0.431)
Heart transplant	1 (0.431)
Tuberculosis	1 (0.431)
Table 4.

Presenting complaints (n = 232)

Complaint	n	(%)
Chest pain	157	66.8
Fever	44	19.0
Sudden death	14	6.03
Hypotension	8	3.35
Shortness of breath	8	3.35
Stroke	2	0.862
Asymptomatic	1	0.431
Table 5.

Infarct ECG findings (n = 219)

	n (%)
ST changes	114 (52.1)
ST elevation	96 (43.8)
ST depression	25 (11.4)
ST change, unspecified	3 (1.37)
Infarct changes, unspecified	58 (26.5)
Atrial fibrillation	31 (14.2)
T wave changes	23 (10.5)
T wave inversion	18 (8.22)
T wave depression	2 (0.913)
T wave change, unspecified	2 (0.913)
Peaked T wave	1 (0.457)
Q waves	8 (3.65)
Table 6.
Location of lesion on cardiac catheterization (n = 173)

Location	n	(%)
Left anterior descending artery	90	52.0
Left circumflex artery	30	17.3
Right main coronary artery	30	17.3
Left main coronary artery	17	9.83
Posterior descending artery	8	4.62
No findings	8	4.62
Obtuse marginal artery	5	2.89
Posterolateral artery	4	2.31
Diagonal artery	3	1.73
Intermediate artery	1	0.578
Table 7.

Transthoracic echocardiography findings (n = 94)

Condition	N (%)
Wall motion abnormalities	45 (47.9)
Valvular dysfunction	28 (29.8)
Mitral regurgitation	13 (13.8)
Aortic regurgitation	9 (9.57)
Tricuspid regurgitation	3 (3.19)
Prosthetic valve	2 (2.13)
Aortic stenosis	1 (1.06)
Mitral valve prolapse	1 (1.06)
Systolic dysfunction	24 (25.5)
Valve mass or vegetation	21 (22.3)
Intracardiac mass	17 (18.1)
LV	8 (8.51)
LA	7 (7.45)
RA	2 (2.13)
Chamber enlargement	11 (11.7)
RV	5 (5.32)
LV	3 (3.19)
RA	2 (2.13)
LA	1 (1.06)
Normal	9 (9.57)
Pulmonary hypertension	4 (4.26)
PFO	3 (3.19)
Cardiomyopathy	2 (2.13)
Aortic dissection	1 (1.06)
Table 8.

Traneseophageal echocardiography findings (n = 63)

Condition	N	(%)
Valve mass or vegetation	25	(39.7)
Intracardiac mass	21	(33.3)
LA	17	(27.0)
LV	2	(3.17)
RA	2	(3.17)
Valvular dysfunction	16	(25.4)
Mitral regurgitation	9	(14.3)
Prosthetic valve	3	(4.76)
Aortic regurgitation	2	(3.17)
Aortic stenosis	1	(1.59)
Mitral valve prolapse	1	(1.59)
Wall motion abnormalities	8	(12.7)
Normal	8	(12.7)
PFO	6	(9.52)
Systolic dysfunction	6	(9.52)
Aortic mass	3	(4.76)
Pulmonary embolism	1	(1.59)
Gas bubbles	1	(1.59)
Table 9.

Reason for thromboembolism (n = 232)

Reason	n (%)
Endocarditis	53 (22.8)
Valve unspecified	23 (9.91)
Aortic valve	11 (4.74)
Mitral valve	10 (4.31)
Aortic and mitral valves	5 (2.16)
Mitral and tricuspid valves	1 (0.431)
Prosthetic heart valves	35 (15.1)
Mitral valve only	19 (8.20)
Aortic valve only	10 (4.31)
Aortic and mitral valve	6 (2.59)
Thrombus	31 (13.4)
Left ventricular thrombus	9 (3.88)
DVT	9 (3.88)
Arterial thrombus	5 (2.16)
Left atrial thrombus	3 (1.29)
Right atrial thrombus	2 (0.862)
Pulmonary artery thrombus	2 (0.862)
Aortic cusp thrombus	1 (0.431)
Atrial fibrillation	29 (12.5)
Procedure/iatrogenic	29 (12.5)
Valve repair/replacement	11 (4.74)
PCI	6 (2.59)
Ablation	3 (1.29)
Coronary angiography	2 (0.862)
ASD/VSD repair	2 (0.862)
Ascending aortic dissection repair	1 (0.431)
AV cusp decalcification	1 (0.431)
Hip replacement	1 (0.431)
Central venous nutrition injection	1 (0.431)
Radial endarterectomy	1 (0.431)
Non-thrombotic embolic source	23 (9.91)
Solid tumor	20 (8.62)
Septic	2 (0.862)
Bone marrow	1 (0.431)
Chronic valvular disease	20 (8.62)
Mitral valve	14 (6.03)
Aortic valve	6 (2.59)
Rheumatic heart disease	15 (6.47)
Mitral valve	10 (4.31)
Condition	n (%)
-------------------------------	--------
Valve unspecified	4 (1.72)
Aortic valve	1 (0.431)
PFO	11 (4.74)
Hypercoagulable state	8 (3.35)
Cardiomyopathy	8 (3.35)
ASD	5 (2.16)
Unknown	5 (2.16)
MVP	2 (0.862)
Other arrhythmia	1 (0.431)
VSD	1 (0.431)
Double chamber LV	1 (0.431)
Table 10.

Interventions (n = 232)

Intervention	n (%)
Thrombectomy	72 (31.0)
Aspiration thrombectomy	53 (22.8)
Mechanical thrombectomy	11 (4.74)
Surgical thrombectomy	8 (3.45)
PCI	51 (22.0)
Without stent placement	31 (13.4)
With stent placement	16 (6.90)
Anticoagulation alone	25 (10.8)
No intervention	31 (13.4)
Thrombolytic therapy	22 (9.48)
Antibiotics/antifungal	19 (8.19)
Antibiotics/antifungal alone	17 (7.33)
Excision of embolic source	18 (7.76)
Valve surgery	18 (7.76)
Intervention not reported	18 (7.76)
CABG	8 (3.45)
Antiplatelet therapy alone	6 (2.58)
PFO closure	2 (0.862)
Unspecified surgical intervention	2 (0.862)
Heart transplant	1 (0.431)
RVAD	1 (0.431)
Femoral vein clamp	1 (0.431)
Table 11.
Mortality and intervention attempted (n = 83)

Intervention	n	(%)
No intervention	29	34.9
Anticoagulation	13	15.7
Anticoagulation alone	12	14.5
Antibiotics/antifungals alone	10	12.0
Surgical intervention	5	6.02
Aspiration thrombectomy	4	4.82
Valve surgery	3	3.61
Thrombolytic therapy	2	2.41