Observation of inverse Compton emission from a long γ-ray burst

Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the giga electronvolt bands. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5×10^{-6} to 10^{12} electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.

On 14 January 2019, following an alert from the Neil Gehrels Swift Observatory (hereafter Swift) and the Fermi satellite, the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes observed and detected radiation up to at least 1 TeV from GRB 190114C. Before the MAGIC detection, GRB emission had only been reported at much lower energies, below 100 GeV, first by CGRO-EGRET and more recently by AGILE-GRID and Fermi-LAT (see ref. 12 for a recent review).

Detection of teraelectronvolt radiation opens a new window in the electromagnetic spectrum for the study of GRBs. Its announcement triggered an extensive campaign of follow-up observations. Owing to the relatively low redshift of $z = 0.4245 \pm 0.0005$ (Methods) of the GRB, GRB emission had only been reported at much lower energies, below 100 GeV, first by CGRO-EGRET and more recently by AGILE-GRID and Fermi-LAT (see ref. 12 for a recent review).

The prompt emission of GRB 190114C was simultaneously observed by several space missions covering the spectral range from 8 keV to about 100 GeV (Methods). The prompt light curve shows a complex temporal structure with several emission peaks (Methods, Extended Data Fig. 1), with a total duration of about 25 s (see dashed line in Fig. 1) and total radiated energy of $E_{\gamma,iso} = (2.5 \pm 0.1) \times 10^{53}$ erg (isotropic equivalent; 1 erg = 10^{-7} J) in the energy range 1–10 keV (ref. 14). During the time of inter-burst quiescence, the afterglow begins, at $t = 5 \pm 15$ s, and after the end of the last prompt pulse, at $t = 25$ s, the flux decays smoothly, following a power law with $F \propto t^{-\alpha}$ as a function of time t with $\alpha_{90-1,000\text{keV}} = -1.10 \pm 0.01$ (ref. 14). The temporal and spectral characteristics of this smoothly varying component support an interpretation in terms of afterglow synchrotron radiation, making this one of the few clear cases of afterglow emission detected in the band 10–10^4 keV during the prompt-emission phase. The onset of the afterglow component is then estimated to occur around $t = 5 \pm 10$ s (refs. 14,15), implying an initial bulk Lorentz factor between 300 and 700 (Methods).

After about one minute from the start of the prompt emission, two additional high-energy telescopes began observations: MAGIC and Swift-XRT. The XRT (1–10 keV; blue data points in Fig. 1) and MAGIC (0.3–1 TeV; green data points in Fig. 1) light curves decay with time as a power law with decay indices of $\alpha_{92} = -1.36 \pm 0.02$ and $\alpha_{94} = -1.51 \pm 0.04$, respectively. The 0.3–1 TeV light curve shown in Fig. 1 was obtained after correcting for attenuation by the extragalactic background light (EBL). The teraelectronvolt-band emission is observable until about 40 min—much longer than the nominal duration of the prompt-emission phase. The NIR–optical light curves (square symbols) show a more complex behaviour. Initially, a fast decay is seen, where the emission is probably dominated by the reverse-shock component. This is followed by a shallower decay, and subsequently a faster decay at $t > 10^5$ s. The latter may indicate that the characteristic synchrotron frequency ν_m crosses the optical band (Extended Data Fig. 6), which is not atypical,
but usually occurs at earlier times. The relatively late time at which the break appears in GRB 190114C would then imply a very large value of \(v_{\text{esc}}\), placing it in the X-ray band at about 10^7 s. The millimetre light curves (orange symbols) also show an initial fast decay in which the emission is dominated by the reverse shock, followed by emission at late times with nearly constant flux (Extended Data Fig. 3).

The spectral energy distributions (SEDs) of the radiation detected by MAGIC are shown in Fig. 2, where the whole duration of the emission detected by MAGIC is divided into five time intervals. For the first two time intervals, observations in the gigaelectronvolt and X-ray bands are also available. During the first time interval (68–110 s; blue data points and blue confidence regions), Swift-XRT, Swift-BAT and Fermi-GBM data show that the afterglow synchrotron component peaks in the X-ray band. At higher energies, up to 1 GeV, the SED is a decreasing function of energy, as supported by the Fermi-LAT flux between 0.1 and 0.4 GeV (Methods). On the other hand, at even higher energies, the MAGIC flux above 0.2 TeV implies a spectral hardening. This evidence is independent of the EBL model adopted to correct for the attenuation (Methods). This demonstrates that the newly discovered teraelectronvolt radiation is not a simple extension of the known afterglow synchrotron emission, but a separate spectral component.

The extended duration and the smooth, power-law temporal decay of the radiation detected by MAGIC (see green data points in Fig. 1) suggest an intimate connection between the teraelectronvolt emission and the broadband afterglow emission. The most natural candidate is synchrotron self-Compton (SSC) radiation in the external forward shock: the same population of relativistic electrons responsible for the afterglow synchrotron emission Compton up-scatters the synchrotron photons, leading to a second spectral component that peaks at higher energies. Teraelectronvolt afterglow emission can also be produced by hadronic processes, such as synchrotron radiation by protons accelerated to ultrahigh energies in the forward shock\(^{27–29}\). However, owing to their typically low radiation efficiency\(^8\), reproducing the luminous teraelectronvolt emission observed here by such processes would imply unrealistically large power of accelerated protons\(^9\). Teraelectronvolt photons can also be produced via the SSC mechanism in internal shock synchrotron models of the prompt emission. However, numerical modelling (Methods) shows that prompt SSC radiation can account at most for a limited fraction (≤20%) of the observed teraelectronvolt flux, and only at early times (t ≤ 100 s). Henceforth, we focus on the SSC process in the afterglow.

SSC emission has been predicted for GRB afterglows\(^{2,22,23,27–27}\). However, its quantitative significance has been uncertain because the SSC luminosity and spectral properties depend strongly on the poorly constrained physical conditions in the emission region (for example, the magnetic field strength). The detection of the teraelectronvolt component in GRB 190114C and the availability of multi-band observations offer the opportunity to investigate the relevant physics at a deeper level. SSC radiation may have been already detected in very bright GRBs, such as GRB 130427A, in which photons with energies of 10–100 GeV are challenging to explain by synchrotron processes, suggesting a different origin\(^{16–30}\).

We model the full dataset (from the radio band to teraelectronvolt energies, for the first week after the explosion) as synchrotron plus SSC radiation, within the framework of the theory of afterglow emission from external forward shocks. The detailed modelling of the broadband emission and its evolution with time is presented in Methods. We discuss here the implications for the emission at t < 2,400 s and energies above >1 keV.

The soft spectra in the 0.2–1 TeV energy range (photon index \(\Gamma_{\text{SSC}} < -2\); see Extended Data Table 1) constrain the peak of the SSC component to below this energy range. The relatively small ratio between the spectral peak energies of the SSC (\(E_{\text{p,SSC}} < 200\) GeV) and synchrotron (\(E_{\text{p,syn}} = 10\) keV) components implies a relatively low value for the electron Lorentz factor (\(\gamma = 2 \times 10^5\)). This value is hard to reconcile with the
The blast-wave energy inferred from the modelling is comparable to the amount of energy released in the form of radiation during the prompt phase. The prompt-emission mechanism must then have dissipated and radiated no more than half of the initial jet energy, leaving the rest for the afterglow phase. The modelling of the multi-band data also allows us to infer how the total energy is shared between the synchrotron and SSC components. The resultant powers of the two components are comparable. We estimate that the energy in the synchrotron and SSC component are about 1.5×10^{52} erg and around 6.0×10^{51} erg, respectively, in the time interval 68–110 s, and about 1.3×10^{52} erg and around 5.4×10^{51} erg, respectively, in the time interval 110–180 s. Thus, previous studies of GRBs may have been missing a substantial fraction of the energy emitted during the afterglow phase that is essential to its understanding.

Finally, we note that the values of the afterglow parameters inferred from the modelling fall within the range of values typically inferred from broadband (radio to giga-electronvolt) studies of GRB afterglow emission. This points to the possibility that SSC emission in GRBs may be a relatively common process that does not require special conditions to be produced, and its power is similar to that of synchrotron radiation.

The SSC component may then be detectable at tera-electronvolt energies in other relatively energetic GRBs, as long as the redshift is low enough to avoid severe attenuation by the EBL. This also provides support to earlier indications for SSC emission at giga-electronvolt energies\cite{Meszaro18, Zhang20}.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1754-6.

Fig. 3 | Modelling of the broadband spectra in the time intervals 68–110 s and 110–180 s. Thin blue curve, modelling of the multi-band data in the synchrotron and SSC afterglow scenario. Thin solid lines, synchrotron and SSC (observed spectrum) components. Dashed lines, SSC when internal γ–γ opacity is neglected. The adopted parameters are: $s = 0$, $\varepsilon_{\gamma} = 0.07$, $\varepsilon_e = 8 \times 10^{-5}$, $p = 2.6$, $\eta_{\gamma} = 0.5$ and $E_\gamma = 8 \times 10^{52}$ erg; see Methods. Empty circles show the observed MAGIC spectrum, that is, uncorrected for attenuation caused by the EBL. Contour regions and data points are as in Fig. 2.

observation of the synchrotron peak at energies higher than kiloelectronvolt. To explain the soft spectrum detected by MAGIC, it is necessary to invoke scattering in the Klein–Nishina regime for the electrons radiating at the spectral peak, as well as internal γ–γ absorption\cite{Zhang18}. Although both of these effects tend to become less important with time, the spectral index in the 0.2–1 TeV band remains constant in time (or possibly evolves to softer values; Extended Data Table 1). This implies that the SSC peak energy moves to lower energies and crosses (or possibly evolves to softer values; Extended Data Table 1). This points to the possibility that SSC emission in GRBs may be a relatively common process that does not require special conditions to be produced, and its power is similar to that of synchrotron radiation.

The SSC component may then be detectable at tera-electronvolt energies in other relatively energetic GRBs, as long as the redshift is low enough to avoid severe attenuation by the EBL. This also provides support to earlier indications for SSC emission at giga-electronvolt energies\cite{Meszaro18, Zhang20}.

1. Mészáros, P. Theories of gamma-ray bursts. Annu. Rev. Astron. Astrophys. 40, 137–169 (2002).
2. Piran, T. The physics of gamma-ray burst. Rev. Mod. Phys. 76, 1143–1200 (2005).
3. van Paradijs, J., Kouveliotou, C. & Wijers, R. A. M. J. Gamma-ray burst afterglows. Annu. Rev. Astron. Astrophys. 38, 379–425 (2000).
4. Gehrels, N., Ramírez-Ruiz, E. & Fox, D. B. Gamma-ray bursts in the Swift era. Annu. Rev. Astron. Astrophys. 47, 567–617 (2009).
5. Gehrels, N. & Mészáros, P. Gamma-ray bursts. Science 337, 932–936 (2012).
6. Kumar, P. & Zhang, B. The physics of gamma-ray burst & relativistic jets. Phys. Rep. 561, 1–109 (2015).
7. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, 17–20 (1998).
8. Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. Astrophys. J. 568, 820–829 (2002).
9. Mészáros, P. & Rees, M. J. Delayed GeV emission from cosmological gamma-ray bursts – impact of a relativistic wind on external matter. Mon. Not. R. Astron. Soc. 269, L41–L43 (1994).
10. MAGIC Collaboration. Tera-electronvolt emission from the γ-ray burst GRB 190114C. Nature https://doi.org/10.1038/s41586-019-1754-x (2019).
11. Mirzoyan, R. et al. MAGIC detects the GRB 190114C in the TeV energy domain. GCN Circulare 23701 https://gcn.gsfc.nasa.gov/gcn3/23701.gcn3 (2019).
12. Nava, L. High-energy emission from gamma-ray bursts. Int. J. Mod. Phys. D 27, 1842003 (2018).
13. Mirzoyan, R. et al. MAGIC detects the GRB 190114C. The Astronomer's Telegram 12390 http://www.astronomerstelegram.org/?read=12390 (2019).
14. Ajello, M. et al. Fermi and Swift observations of GRB 190114C: tracing the evolution of high-energy emission from prompt to afterglow. Preprint at https://arxiv.org/abs/1909.10605 (2019).
15. Ravasio, M. E. et al. GRB 190114C: from prompt to afterglow? Astron. Astrophys. 626, A12 (2019).
16. Laskar, T. et al. ALMA detection of a linearly polarized reverse shock in GRB 190114C. Astrophys. J. Lett. 878, L26 (2019).
17. Vietri, M. GeV photons from ultrahigh energy cosmic rays accelerated in gamma-ray bursts. Phys. Rev. Lett. 78, 4328–4331 (1997).
18. Zhang, B. & Mészáros, P. High-energy spectral components in gamma-ray burst afterglows. Astrophys. J. 559, 112–120 (2001).
19. Razzaque, S. A leptonic–hadronic model for the afterglow of gamma-ray burst 090510. Mon. Not. R. Astron. Soc. 397, 567–617 (2009).
20. Sari, R. & E In A. On the synchrotron self-Compton emission from relativistic shocks and its implications for gamma-ray burst afterglows. Astrophys. J. 548, 787–799 (2001).
27. Piran, T. & Nakar, E. On the external shock synchrotron model for gamma-ray bursts' GeV
29. Liu, R.-Y., Wang, X.-Y. & Wu, X.-F. Interpretation of the unprecedentedly long-lived high-

MAGIC Collaboration*

© The Author(s), under exclusive licence to Springer Nature Limited 2019 published maps and institutional affiliations.

Springer Nature remains neutral with regard to jurisdictional claims in

30. Ackermann, M. et al. Fermi-LAT observations of the gamma-ray burst GRB 130427A.

23. Fan, Y.-Z. & Piran, T. High-energy γ-ray emission from gamma-ray bursts – before GLAST.

24. Galli, A. & Piro, L. Prospects for detection of very high-energy emission from GRB in the

462

Article

21. Mésáros, P., Razzaque, S. & Zhang, B. GeV–TeV emission from gamma-ray bursts. New Astron. Rev. 48, 445–451 (2004).

22. Lemoine, M. The synchrotron self-compton spectrum of relativistic blast waves at large Y. Mon. Not. R. Astron. Soc. 453, 3772–3784 (2015).

23. Pan, Y.-F. & Piran, T. High-energy synchrotron emission from gamma-ray bursts – before GLAST. Front. Phys. China 3, 306–330 (2008).

24. Galli, A. & Piro, L. Prospects for detection of very high-energy emission from GRB in the context of the external shock model. Astron. Astrophys. 489, 1073–1077 (2008).

25. Nakar, E., Ando, Y. & Nakano, Y. Inclined optical thin synchrotron and synchrotron-self-Compton spectrum. Astrophys. J. 703, 675–691 (2009).

26. Xue, R. et al. Very high energy afterglow emission of nearby gamma-ray bursts. Astrophys. J. 703, 60–67 (2009).

27. Pan, T. & Nakar, E. On the external shock synchrotron model for gamma-ray bursts' GeV emission. Astrophys. J. Lett. 716, 63–67 (2010).

28. Tam, P.-H. T., Tang, Q.-W., Hou, S.-J., Liu, R.-Y. & Wang, X.-Y. Discovery of an extra high spectral region in the high-energy afterglow of GRB 130424A. Astrophys. J. Lett. 817, L13 (2013).

29. Liu, R.-Y., Wang, X.-Y. & Xu, W.-F. Interpretation of the unprecedentedly long-lived high-energy emission of GRB 190427A. Astrophys. J. Lett. 773, 20 (2019).

30. Ackermann, M. et al. Fermi-LAT observations of the gamma-ray burst GRB 130427A. Science 343, 42–47 (2014).

31. Wang, X.-Y., Liu, R.-Y., Zhang, H.-M., Xi, S.-Q. & Zhang, B. Synchrotron self-compton emission from afterglow shocks as the origin of the sub-TeV emission in GRB 180702B and GRB 190114C. Astrophys. J. 884, 117–121 (2019)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

MAGIC Collaboration*, P. Veres*, P. N. Bhat*, M. S. Briggs*, W. H. Cleveland*, R. Hargumber*, C. M. Hui*, B. Malyani*, R. D. Preece*, O. J. Roberts*, A. van Klierin*, C. A. Wilson-Hodge*, D. Koczek*, M. Arimoto*, A. G. S. Guberman*, D. Hadasch*, A. Hahn*, J. Herrera*, J. Hoang*, D. Hrupec*, M. Hütten*, T. Kushida*, A. Lamastra*, D. Lelas*, F. Leone*, E. Lindfors*, S. Lombardi*, F. M. A. Pérez-Torres*, D. A. Perley*, L. Piro*, F. Ragosta*, L. Resmi*, R. Ricci*, A. Sokolov*, J. Stevens*, N. R. Tanvir*, C. C. Thöne*, A. Tiengo*, E. Tremou*, E. Troja*, D. A. Perley*, L. Piro*, F. Ragosta*, C. Casentini*, G. Piano*, Y. Evangelista*, F. Verrecchia*, C. Pittero*, F. Lucarelli*, A. Bulgarelli*, N. Parmigiani*, G. E. Anderson*, J. P. Anderson*, G. Bernardini*, J. Bolmer*, M. D. Caballero-García*, I. M. Carrasco*, A. Castellón*, N. Castro Segura*, A. J. Castro-Tirado*, S. V. Cherukuri*, A. M. Cockram*, P. D'Avanzo*, A. Di Dato*, R. Dietz*, R. F. Fender*, E. Fernández-García*, J. P. J. Fynbo*, A. S. Fruchter*, J. Grieves*, G. Mordaci*, K. E. Heintz*, I. Heywood*, A. J. van der Horst*, Y. Du-Hu*, C. Inserna*, L. Izzo*, P. Jakobsen*, J. Japelj*, E. Kanka*, D. Kann*, C. Kouveliotou*, S. Klose*, A. J. Levan*, X. L. Li*, T. K. Maguire*, D. B. Malesani*, I. Manulis*, M. Maronigiu*, S. Martin*, A. Melandri*, M. J. Michalowski*, J. C. A. Miller-Jones*, K. Missa*, K. M. Pooley*, S. Nasi*, M. Nicholls*, A. Noschese*, G. Novara*, S. B. Pandey*, E. Perriett*, C. J. Pérez del Pulgar*, M. A. Pierro*, D. S. Price*, D. S. Price*, F. Ragosta*, L. Resmi*, R. Ricci*, A. Rossi*, R. Sánchez-Ramírez*, J. Selsing*, S. Schwartz*, S. J. Smartt*, I. A. Smith*, V. V. Sokoloski*, J. Stevens*, R. N. Tanvir*, C. C. Thöne*, A. Tiengo*, E. Tremou*, E. Troja*, A. de Ugarte Postigo*, A. F. Valea*, S. D. Vergani*, M. Wieringa*, P. A. Woudt*, D. Xu*, O. Yaron* & D. R. Young*
Prompt-emission observations

On 14 January 2019, the prompt emission from GRB 190114C triggered several space instruments, including Fermi-GBM\(^{32}\), Fermi-LAT\(^{33}\), Swift-BAT\(^{34}\), Super-AGILE\(^{35}\), AGILE-MCAL\(^{36}\), KONUS-Wind\(^{37}\), INTEGRAL-SPI-ACS\(^{38}\) and Insight-HXMT\(^{39}\). The prompt-emission light curves from AGILE, Fermi and Swift are shown in Fig. 1 and in Extended Data Fig. 1, where the trigger time \(T_0\) refers to the BAT trigger time (20:57:03.19 UT). The prompt emission lasts for approximately 25 s, when the last flaring-emission episode ends. Namely, \(T_{0,90}\) (that is, the time interval during which a fraction between 5% and 95% of the total emission is observed) is much longer (>100 s, depending on the instrument)\(^{40}\), but it is clearly contaminated by the afterglow component (Fig. 1) and does not provide a good measure of the actual duration of the prompt emission. A more detailed study of the prompt emission phase is reported in ref. 41.

AGILE

AGILE (Astrorivelatore Gamma ad Immagini Leggere)\(^{36}\) could observe GRB 190114C until \(T_0 + 330\) s, before it became occulted by the Earth. GRB 190114C triggered the MAGIC (Mini-CALorimeter) from \(T_0 - 0.95\) s to \(T_0 + 10.95\) s. The MAGIC light-flux curve in Fig. 1 was produced using two different spectral models. From \(T_0 - 0.95\) s to \(T_0 + 1.8\) s, the spectrum is fitted by a power law with photon index \(\Gamma_{\text{ph}} = -1.97_{-0.27}^{+0.47}\) (DN/dE \(\propto E^{-\Gamma}\)). From \(T_0 + 1.8\) s to \(T_0 + 5.5\) s the best-fit model is a broken power law with \(\Gamma_{\text{ph},1} = -1.87_{-0.35}^{+0.47}\), \(\Gamma_{\text{ph},2} = -2.63_{-0.07}^{+0.10}\) and break energy \(E_b = 626_{-112}^{+47}\) keV. The total fluence in the 0.4–100 MeV energy range is \(F = 1.75 \times 10^{-4}\) erg cm\(^{-2}\). The Super-AGILE detector also detected the burst, but the large off-axis angle prevented any X-ray imaging of the burst and any spectral analysis. Extended Data Fig. 1a, d, e shows the GRB 190114C light curves acquired by the Super-AGILE detector (20–60 keV) and by the MCAL detector in the low- (0.4–1.4 MeV) and high-energy (1.4–100 MeV) bands.

Fermi-GBM

There are indications that at the time of the MAGIC observations some of the detectors were partially shadowed by the structural elements of the Fermi spacecraft that were not modelled in the response of the GBM (Gamma-ray Burst Monitor) detectors. This affects the low-energy part of the spectrum\(^{41}\). For this reason, out of caution we elected to exclude the energy channels below 50 keV. The spectra detected by Fermi-GBM\(^{32}\) during the intervals \(T_0 + 68\) s to \(T_0 + 110\) s and \(T_0 + 110\) s to \(T_0 + 180\) s are best described by a power-law model with photon index \(\Gamma_{\text{ph}} = -2.10_{-0.08}^{+0.08}\) and normalizations of \(N_{0,68–110} = (2.02 \pm 1.31) \times 10^{-7}\) MeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\) and \(N_{0,110–180} = (4.48 \pm 2.10) \times 10^{-8}\) MeV\(^{-1}\) cm\(^{-2}\) s\(^{-1}\). In each time interval, the analysis was limited to the energy range in which photons were detected. The LAT light curve integrated in the energy range 0.1–1 GeV is shown in Fig. 1.

MAGIC

To analyse the data we used the standard MAGIC software\(^{44}\) and followed the steps optimized for data taking under moderate moon illumination\(^{45}\). The spectral fitting was performed by a forward-folding method, assuming a simple power law for the intrinsic spectrum and taking into account the EBL effect, using the model of Domínguez et al.\(^{46}\). Extended Data Table 1 shows the fitting results for various time bins (the pivot energy is chosen to minimize the correlation between the normalization and photon index parameters). The data points shown in Figs. 2, 3 were obtained from the observed excess rates in estimated energy, the fluxes of which were evaluated in true energy (photon corrected energy by Monte Carlo simulation, after reconstruction and unfolding) using the effective time and a spill-over-corrected effective area obtained from the best fit.

The time-resolved analysis hints to a possible spectral evolution to softer values, although we cannot exclude that the photon indices are compatible with a constant value of about 2.5 up to 2,400 s. The signal and background in the considered time bins are both in the low-count Poisson regime. Therefore, the correct treatment of the MAGIC data provided here includes the use of Poisson statistics, as well as systematic errors. To estimate the main source of systematic errors—our imperfect knowledge of the absolute instrument calibration and the total atmospheric transmission—we vary the light scale in our Monte Carlo simulation, as suggested in previous studies\(^{14}\). The result is reported in the last two lines of Extended Data Table 1 and in Extended Data Fig. 2.

The systematic effects deriving from the choice of one particular EBL model were also studied. The analysis performed to obtain the time-integrated spectrum was repeated, employing three other models\(^{47–49}\). The contribution to the systematic error on the photon index caused by the uncertainty on the EBL model is \(\Delta \Gamma_{\text{ph}} \approx 0.13\), which is smaller than the statistical error only (one standard deviation), as already seen in a previous work\(^{10}\). On the other hand, the contribution of the choice of the EBL model to the systematic error on the normalization factor is only partially at the same level of the statistical error (one standard deviation), \(\Delta N_{\text{int}} \approx 0.30\). The chosen EBL model returns a normalization factor that is lower than two of the other models and very close to the third one\(^{10}\).

The MAGIC energy-flux light curve that is presented in Fig. 1 was obtained by integrating the best-fit spectral model of each time bin from 0.3 to 1 TeV, in the same manner as in a previous study\(^{32}\). The value of the fitted time constant reported here differs less than two standard deviations from the one previously reported\(^{46}\). The difference is due to the poor constraints on the spectral-fit parameters of the last time bin, which influences the light-curve fit.

X-ray afterglow observations

Swift/XRT. Swift/XRT (X-Ray Telescope) started observing 68 s after \(T_0\). The source light curve\(^{46}\) was taken from the Swift/XRT light-curve repository\(^{50}\) and was converted into 1–10 keV flux (Fig. 1) through dedicated spectral fits. The combined XRT + BAT spectral fit in Figs. 2, 3 is described above.

XMM-Newton and NuSTAR. The XMM-Newton X-ray observatory and the Nuclear Spectroscopic Telescope Array (NuSTAR) started observing GRB 190114C under Director’s Discretionary Time (DDT) Target of Opportunities 7.5 h and 22.5 h, respectively, after the burst. The XMM-Newton and NuSTAR absorption-corrected fluxes (Fig. 1) were derived by fitting the spectrum with XSPEC and with the same
power-law model, considering absorption in our Galaxy and at the redshift of the burst.

NIR, optical and UV afterglow observations

Light curves from the different instruments presented in this section are shown in Extended Data Fig. 3.

GROND. The Gamma-Ray burst Optical/Near-infrared Detector (GROND)\(^{[62]}\) started observations 3.8 h after the GRB trigger, and the follow-up continued until 29 January 2019. Image reduction and photometry were carried out with standard IRAF tasks\(^{[53]}\), as described in refs. \(^{[44,45]}\). JHK photometry was converted to AB magnitudes to provide a common flux system. The final photometry is given in Extended Data Table 2.

BOOTES and GTC. The CASANDRA-1 ultra-wide-field camera\(^{[59]}\) at the BOOTES-1 station in EAS/INTA-CEDEA (Huelva, Spain) took an image of the GRB 190114C on 43 and 45 GHz). The ATCA data (see Extended Data Table 5) were obtained with the Large Magellanic Cloud recipe and the fairly bright host galaxy contribution is properly subtracted, a good fit to the data is obtained with the Large Magellanic Cloud recipe and the fairly bright host galaxy contribution is properly subtracted, a good fit to the derived rest-frame equivalent widths with ref. \(^{[59]}\). By comparing the derived rest-frame equivalent widths with ref. \(^{[59]}\), GRB 190114C clearly shows higher than average, but not unprecedented, values.

HST. The Hubble Space Telescope (HST) imaged the afterglow and host galaxy of GRB 190114C on 11 February and 12 March 2019. HST observations clearly reveal that the host galaxy is spiral (Extended Data Fig. 4). A direct subtraction of the epochs of observations with the F850LP filter yields a faint residual close to the nucleus of the host (Extended Data Fig. 4). From the position of the residual we estimate that the burst originated within 250 pc of the host galaxy nucleus.

LT. The robotic 2-m Liverpool Telescope (LT)\(^{[60]}\) slewed to the afterglow location at coordinated universal time (UTC) 2019-01-14 23:22:34 and on the second night from UTC 2019-01-15 19:32:10 and acquired images in the B, g, V, r, i, and z bands (45 s exposure each on the first night and 60 s on the second; see Extended Data Table 3). Aperture photometry of the afterglow was performed using a custom IDL script with a fixed aperture radius of 1.5″. Photometric calibration was performed relative to stars from the Pan-STARRS1 catalogue\(^{[61]}\).

NTT. The European Southern Observatory’s (ESO) New Technology Telescope (NTT) observed the optical counterpart of GRB 190114C under the extended Public ESO Spectroscopic Survey for Transient Objects (ePESSTO) using the NTT/EFOSC2 instrument in imaging mode\(^{[62]}\). Observations started at 04:36:53 UT on 16 January 2019 with gr, r, i, and z Gunn filters. Image reduction was carried out by following the standard procedures\(^{[63]}\).

OASDG. The 0.5-m remote telescope of the Osservatorio Astronomico ‘S. Di Giacomo’ (OASDG), located in Agerola (Italy), started observations in the optical RC band 0.5h after the burst. The afterglow of GRB 190114C was clearly detected in all the images.

NOT. The Nordic Optical Telescope (NOT) observed the optical afterglow of GRB190114C with the Alhambra Faint Object Spectrograph and Camera (ALFOSC) instrument. Imaging was obtained in the griz filters with 300-s exposures, starting at 14 January 2019 21:20:56 UT, 24 min after the BAT trigger. The normalized spectrum (Extended Data Fig. 5) reveals strong host interstellar absorption lines of Ca H and K and of Na I D, which provided a redshift of \(z = 0.425\).

REM. The 60-cm robotic Rapid Eye Mount telescope (REM) performed optical and NIR observations with the ROS2 optical imager and the REMIR NIR camera\(^{[64]}\). Observations were performed starting about 3.8 h after the burst in the r and J bands and lasted about one hour.

Swift/UVOT. The Swift UltraViolet and Optical Telescope (UVOT)\(^{[65]}\) began observations at \(T_0 + 54\) s in the UVOT v-band. The first observation after settling was in the UVOT white band\(^{[66]}\), started 74 s after the trigger and lasted for 150 s. A 50-s exposure with the UVG filter was taken next, followed by multiple exposures rotating through all seven broad- and intermediate-band filters, until switching to only the UVOT clear white filter on 20 January 2019. Standard photometric calibration and methods were used to derive the aperture photometry\(^{[67,68]}\). The grism zeroth-order data were reduced manually\(^{[69]}\) to derive the B-magnitude and error.

VLT. The STARGATE collaboration used the Very Large Telescope (VLT) and observed GRB 190114C using the X-shooter spectrograph. Detailed analysis will be presented in forthcoming papers. A portion of the second spectrum is shown in Extended Data Fig. 5, illustrating the strong emission lines that are characteristic of a strongly star-forming galaxy, whose light is largely dominating over the afterglow at this epoch.

Magnitudes of the underlying galaxies

The HST images show a spiral or tidally disrupted galaxy whose bulge is coincident with the coordinates of GRB 190114C. A second galaxy is detected at an angular distance of 1.3″ towards the northeast. The SED analysis was performed with LePhare\(^{[70]}\) using an iterative method that combined both the resolved photometry of the two galaxies found in the HST and VLT/HAWK-I data and the blended photometry from GALEX and WISE, in which the spatial resolution was much lower. Further details will be given in a separate paper (A.d.U.P. et al., manuscript in preparation). The estimated photometry for each object and their combination is given in Extended Data Table 4.

Optical extinction

The optical extinction towards the line of sight of a GRB is derived assuming a power law as the intrinsic spectral shape\(^{[72]}\). Once the Galactic extinction \(E(B-V) = 0.10 \pm 0.12\) to \(β_o = -0.10 \pm 0.12\) to \(β_o = -0.48 \pm 0.15\).

Radio and submillimetre afterglow observations

The light curves obtained by the different instruments are shown in the HST and VL蒂/HAWK-I data and the blended photometry from GALEX and WISE, in which the spatial resolution was much lower. Further details will be given in a separate paper (A.d.U.P. et al., manuscript in preparation). The estimated photometry for each object and their combination is given in Extended Data Table 4.

ALMA. Observations with the Atacama Large Millimetre–Submillimetre Array (ALMA) are reported in Band 3 (central observed frequency of 97.500 GHz) and Band 6 (235.0487 GHz) between 15 January and 19 January 2019. The data were calibrated within CASA (Common Astronomy Software Applications; version 5.4.0)\(^{[71]}\) using the pipeline calibration. Photometric measurements were also performed within CASA. Early ALMA observations at 97.5 GHz are taken from ref. \(^{[72]}\).

ATCA. The Australia Telescope Compact Array (ATCA) observations were made with the ATCA 4-cm receivers (band centres of 5.5 and 9 GHz), 15-mm receivers (band centres of 17 and 19 GHz) and 7-mm receivers (band centres of 43 and 45 GHz). The ATCA data (see Extended Data Table 5) were obtained using the CABB continuum mode\(^{[73]}\) and were reduced with the software packages MIRiad\(^{[74]}\) and CASA\(^{[75]}\) using standard techniques. The quoted errors are 1σ, which include the root-mean-square (r.m.s.) and Gaussian 1σ errors.
The results of the modelling are overlaid with the data in Fig. 3 and the X-ray light curve is predicted to decay as $t^{-2.36/4}$, which implies $p = 2.5$. Another possibility is to assume $\nu_m < \nu_c$, which implies $p = 2.1 – 2.2$ for $s = 2$ and $p = 2.8$ for $s = 0$. A broken power law provides a better fit (5.3 × 10^10% probability of chance improvement), with a break occurring around 4×10^4 s and decay indices of $\alpha_{X,1} = -1.32 \pm 0.03$ and $\alpha_{X,2} = 1.55 \pm 0.04$. This behaviour can be explained by the passage of v_c in the XRT band and assuming again $p = 2.4 – 2.5$ for $s = 2$ and $p = 2.8$ for $s = 0$.

The optical light curve starts displaying a shallow decay with time (with temporal index poorly constrained, between -0.5 and -0.25) starting from -2×10^4 s, followed by a steepening around 8×10^4 s, when the temporal decay becomes similar to the decay in the X-ray band, which suggests that after this time the X-ray and optical bands lie in the same part of the synchrotron spectrum. If the break is interpreted as the synchrotron characteristic frequency ν_m, the peak photon density profile of the external medium and of the cooling regime of the electrons, $\nu_m = \nu^X(1)$, which implies that ν_m is in the soft X-ray band at 10^5 s. The SED at 100 s is indeed characterized by a peak between $5 – 30$ keV (Fig. 3). Information on the location of the self-absorption frequency is provided by observations at 1 GHz, showing that $\nu_m = 1$ GHz at 10^5 s (Extended Data Fig. 6).

To summarize, in a wind-like scenario, X-ray and optical emission and their evolution in time can be explained if $p = 2.4 – 2.5$ and the emission is initially in the fast-cooling regime transitions to a slow-cooling regime around 3×10^5 s. The optical spectral index at late times is predicted to be $(1 – p)/2 = -0.72$, in agreement with observations. ν_m crosses the optical band at $t = 8 \times 10^4$ s, explaining the steepening of the optical light curve and the flattening of the optical spectrum. The X-ray band initially lies above (or close to) ν_m, and the break frequency ν_c starts crossing the X-ray band around $(2 – 4) \times 10^4$ s, producing the steepening in the decay rate (the cooling frequency increases with time for $s = 2$). In this case, before the temporal break, the decay rate is related to the spectral index of the electron energy distribution by $\alpha_{X,1} = (2 – 3p)/4 = -1.3$ for $p = 2.4 – 2.5$. Well after the break, this value of p predicts a decay rate of $\alpha_{X,2} = (1 – 3p)/4$ between $\alpha_{X,1} = -1.55$ and $\alpha_{X,2} = -1.62$. Overall, this interpretation is also consistent with the fact that the late-time ($t > 10^5$ s) X-ray and optical light curves display similar temporal decays (Fig. 1), as they lie in the same part of the synchrotron spectrum ($\nu_m < \nu_{opt} < \nu_c < \nu_b$). A similar picture can be invoked to explain the emission when assuming a homogeneous density medium, but a steeper value of p is required. In this case, however, no break is predicted in the X-ray light curve.

We now add to the picture the information brought by the teraelectronvolt detection. The model is built with reference to the MAGIC flux and spectral indices derived considering statistical errors only (see Extended Data Table 1 and green data points in Extended Data Fig. 2). The light curve decays in time as $t^{-1.5}$ and the photon index is consistent within 1σ with $\alpha_{\text{ph,T eV}} = -2.5$ for the entire duration of the emission, although there is evidence for an evolution from stronger (about -2) to weaker (about -2.8) values. In the first broadband SED (Fig. 3, 68–110 s), LAT observations provide strong evidence for the presence of two separated spectral peaks.

Assuming Thomson scattering, the SSC peak is given by:

$$\nu_{SSC \, \text{peak}} = 2 \nu^X \nu_m$$

(1)
whereas in the Klein–Nishina regime, the SSC peak should be located at:

\[\nu_{\text{SSC peak}} = \frac{2\gamma_e m_e c^2}{1 + \frac{\nu}{\nu_{\text{peak}}}} \]

(2)

where \(\gamma_e = \min(\gamma_e^1, \gamma_e^2) \). The synchrotron peak is located at \(E_{\text{peak}}^{\text{syn}} = 10 \text{ keV} \) and the peak of the SSC component must be \(E_{\text{peak}}^{\text{SSC}} \approx 100 \text{ GeV} \) to explain the MAGIC photon index. Both the Klein–Nishina and Thomson scattering regimes imply that \(\gamma_e \lesssim 10^3 \). This small value presents two problems: (i) if the bulk Lorentz factor \(\Gamma \) is larger than 150 (which is a necessary condition to avoid strong \(\gamma-\gamma \) opacity; see below), a small \(\gamma_e \) translates into a small efficiency of the electron acceleration, with \(\epsilon_e < 0.05 \); (ii) the synchrotron peak energy can be located at \(E_{\text{peak}}^{\text{SSC}} = 10^4 \text{ keV} \) only for \(B^2 \gamma^2 > 10^9 \text{ G}^2 \). A large \(B \) and small \(\epsilon_e \) would make it difficult to explain the presence of a strong SSC emission. These calculations show that \(\gamma-\gamma \) opacity probably plays a role in shaping and softening the observed SSC spectrum.

For a \(\gamma \)-ray photon with energy \(E_\gamma \), the \(\tau_\gamma \) opacity is:

\[\tau_\gamma(E_\gamma) = \sigma_\gamma(R/\Gamma) n_t(E_\gamma) \]

(3)

where \(n_t = N_t/(4\pi R^2 c T) \) is the density of target photons in the comoving frame, \(L_\gamma \) is the luminosity and \(E_{\text{SSC}} - (m_e c^2)^2/T_\gamma (1 + z)^2 \) is the energy of target photons in the observer frame (\(c \) speed of light in vacuum). Target photons for photons of energy \(E_\gamma = 0.2 \text{–} 1 \text{ TeV} \) and for \(\Gamma = 120 \text{–} 150 \) have energies in the range \(4 \text{–} 30 \text{ keV} \). When \(\gamma-\gamma \) absorption is relevant, the emission from pairs can give a non-negligible contribution to the radiative output.

To properly model all the physical processes that shape the broadband radiation, we use a numerical code that solves the evolution of the electron distributions and derives the radiative output, taking into account the following processes: synchrotron and SSC losses, adiabatic losses, \(\gamma-\gamma \) absorption, emission from pairs and synchrotron self-absorption. We find that for the parameters assumed in the proposed model (see below), the contribution from pairs to the emission is negligible.

The MAGIC photon index (Extended Data Table 1) and its evolution with time constrain the SSC peak energy to \(\lesssim 1 \text{ TeV} \) at the beginning of the observations (Extended Data Table 1). In general, the internal opacity decreases with time and Klein–Nishina effects become less relevant. A possible softening of the spectrum with time, as the one suggested by the observations, requires that the spectral peak decreases with time and moves below the MAGIC energy range. In the slow-cooling regime, the SSC peak evolves to higher frequencies for a wind-like medium and decreases very slowly (\(\nu_{\text{SSC peak}} \sim t^{-1/5} \)) for a constant-density medium (both in the Klein–Nishina and Thomson regimes). In the fast-cooling regime the evolution is faster (\(\nu_{\text{SSC peak}} \sim t^{-3/4} \)) depending on the medium and regime.

We model the multi-band observations considering both \(s = 0 \) and \(s = 2 \). The results are shown in Fig. 3, Extended Data Figs. 6, 7, where model curves are overlaid with observations. The model curves shown in these figures are derived using the following parameters. For the model in Fig. 3 and in Extended Data Figs. 7 (solid and dashed curves): \(s = 0 \), \(\nu_0 = 0.07, \nu_0 = 8 \times 10^3, p = 2.6, n_0 = 0.5 \) and \(\epsilon_e = 8 \times 10^{10} \) erg. For the dotted curves in Extended Data Fig. 7 and the SEDs in Extended Data Fig. 6: \(s = 2, \epsilon_e = 0.6, \epsilon_e = 10^4, p = 2.4, A = 0.1 \) and \(E_\gamma = 4 \times 10^{10} \) erg.

Using the constraints on the afterglow onset time (\(\tau_\text{on} = 5 \text{–} 10 \text{ s} \), from the smooth component detected during the prompt emission) the initial bulk Lorentz factor is constrained to values \(\Gamma_0 = 300 \) and \(\Gamma_0 = 700 \) for \(s = 2 \) and \(s = 0 \), respectively.

Consistently with the qualitative description above, we find that late-time optical observations can indeed be explained with \(\nu_e \) crossing the band (see the SED modelling in Extended Data Fig. 6 and the dotted curves in Extended Data Fig. 7). However, a large \(\nu_e \) is required in this case and consequently the peak of the SSC component would also be large and lie above the MAGIC energy range. The resulting MAGIC light curve (green dotted curve in Extended Data Fig. 7) does not agree with observations. By relaxing the requirement on \(\nu_e \) the teraelectronvolt spectra (Fig. 3) and light curve (green solid curve in Extended Data Fig. 7) can be explained. As noted, a wind-like medium can explain the steepening of the X-ray light curve at \(8 \times 10^4 \text{ s} \), whereas no steepening is expected in a homogeneous medium (blue dotted and solid lines in Extended Data Fig. 7). We find that the gigaelectronvolt flux detected by LAT at a late time (\(t < 10^4 \text{ s} \)) is dominated by the SSC component (dashed line in Extended Data Fig. 7).

Data availability
Data are available from the corresponding authors upon request.

Code availability
Proprietary data reconstruction codes were generated at the MAGIC telescope large-scale facility. Information supporting the findings of this study is available from the corresponding authors upon request. Source data for Figs. 2, 3 are provided with the paper.
50. de Ugarte Postigo, A. et al. The distribution of equivalent widths in long GRB afterglow spectra. Astron. Astrophys. 548, A11 (2012).
51. Steele, J. A. et al. The Liverpool Telescope: performance and first results. In Proc. SPIE Ground-based Telescopes Vol. 5489 (eds. Oschmann, J. M.) 679–692 (SPIE, 2004).
52. Chambers, S. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).
53. Tarenghi, M. & Wilson, R. N. The ESO NTT (New Technology Telescope): the first active optics telescope. In Proc. SPIE Active Telescope Systems Vol. 1114 (ed. Roddier, F.) 302–312 (SPIE, 2000).
54. Smartt, S. J. et al. PESTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).
55. Courtois, S. et al. REM: a fully robotic telescope for GRB observations. In Proc. SPIE Ground-based Instrumentation for Astronomy Vol. 5492 (eds. Moorwood, A. F. M. & Iye, M.) 1613–1622 (SPIE, 2004).
56. Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).
57. Siegel, M. H. & Dobbie, J. G. DR. GRB 190101C. Swift/UVT detection. GCN Circulars 23725 https://gcn.gsfc.nasa.gov/gcn3/23725.gcn3 (2019).
58. Pizzol, T. S. et al. Photometric calibration of the Swift ultra-violet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008).
59. Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVT. In American Institute of Physics Conference Series Vol. 1358, 373–376 (AIP, 2011).
60. Kuin, N. M. et al. Calibration of the Swift-UVOT ultraviolet and visible grisms. Mon. Not. R. Astron. Soc. 449, 2534–2538 (2015).
61. Arons, S. et al. Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North. Mon. Not. R. Astron. Soc. 310, 540–556 (1999).
62. Lillber, O. et al. Accurate photometric redshifts for the CFHT Legacy survey calibrated using the VIMOS-VLT deep survey. Astron. Astrophys. 457, 841–856 (2006).
63. Covino, S. et al. Dust extinctions for an unbiased sample of gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 432, 1231–1244 (2013).
64. Schaffner, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra: a local recipe for extinction. Astronom. J. 142, 200 (2011).
65. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XIV, Vol. 367 (eds Shaw, R. A. et al.) 127 (ASP, 2007).
66. Wilson, W. E. et al. The Australia Telescope Compact Array broad-band backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011).
67. Sault, R. J., Teuben, P. J. & Wright, M. C. H. A revisit of the MIRIA reconstruction. In Astronomical Data Analysis Software and Systems IV Vol. 77 (eds Shaw, R. A. et al.) 433 (ASP, 1995).
68. Swenson, G. et al. The Giant Metre-Wave Radio Telescope. Current Science 60, 95–105 (1991).
69. Cherubini, S. et al. GRB 190101C: GMRT detection at 1.26GHz. GCN Circulars 23762 https://gcn.gsfc.nasa.gov/gcn3/23762.gcn3 (2019).
70. Treves, L. J. et al. The MeerKAT radio observation. GCN Circulars 23760 https://gcn.gsfc.nasa.gov/gcn3/23760.gcn3 (2019).
71. Camilo, F. et al. Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. Astron. J. 156, 123–124 (2018).
72. Jonas, J. L. & The MeerKAT team. The MeerKAT Radio Telescope. In Proc. of MeerKAT Science: On the Pathway to the SKA 001 (2016).
73. Fender, R. & ThunderKAT. The MeerKAT large survey project for image-plane radio transients. Preprint at https://arxiv.org/abs/1711.04312 (2017).
74. Mohan, N. et al. Python Blob Detection and Source Finder https://www.astron.nl/citt/pybdsf/ (2015).
75. Breeveld, A. et al. GRB 190101C: The TeV observations of GRB 190114C. Astron. J. 156, 1231–1244 (2018).
76. Marchesi, P. & Wilson, R. N. The Liverpool Telescope: performance and first results. In American Astronomical Society, vol. 310, A77 (2014).
77. Vervack, J. J. et al. A.C.T.: the 4K camera on the Australian 1.2m Telescope. Mon. Not. R. Astron. Soc. 470, 2639–2650 (2017).
78. Cherukuri, S. V. et al. GRB 190114C: GMRT detection at 1.25GHz. GCN Circulars 23762 https://gcn.gsfc.nasa.gov/gcn3/23762.gcn3 (2019).
79. Tarenghi, M. & Wilson, R. N. The ESO NTT (New Technology Telescope): the first active optics telescope. Mon. Not. R. Astron. Soc. 301, 1231–1244 (2013).
80. Camilo, F. et al. Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. Astron. J. 156, 1231–1244 (2018).
81. Jonas, J. L. & The MeerKAT team. The MeerKAT Radio Telescope. In Proc. of MeerKAT Science: On the Pathway to the SKA 001 (2016).
82. Fender, R. et al. ThunderKAT. The MeerKAT large survey project for image-plane radio transients. Preprint at https://arxiv.org/abs/1711.04312 (2017).
83. Mohan, N. et al. Python Blob Detection and Source Finder https://www.astron.nl/citt/pybdsf/ (2015).
84. Breeveld, A. et al. GRB 190101C: The TeV observations of GRB 190114C. Astron. J. 156, 1231–1244 (2018).
85. Jonas, J. L. & The MeerKAT team. The MeerKAT Radio Telescope. In Proc. of MeerKAT Science: On the Pathway to the SKA 001 (2016).
86. Fender, R. et al. ThunderKAT. The MeerKAT large survey project for image-plane radio transients. Preprint at https://arxiv.org/abs/1711.04312 (2017).
87. Mohan, N. et al. Python Blob Detection and Source Finder https://www.astron.nl/citt/pybdsf/ (2015).
88. Holland, W. S. et al. SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 330, 540–556 (1999).
89. Breeveld, A. et al. GRB 190101C: The TeV observations of GRB 190114C. Astron. J. 156, 1231–1244 (2018).
90. Jonas, J. L. & The MeerKAT team. The MeerKAT Radio Telescope. In Proc. of MeerKAT Science: On the Pathway to the SKA 001 (2016).
collaboration with the Fermi team. D. Miceli, Y.S. and S.F. performed the analysis of the MAGIC data. S. Covino provided support with the analysis of the optical data and the writing of the corresponding sections. Z.B. performed calculations for the contribution of prompt emission to the teraelectronvolt radiation and wrote the corresponding section. A. Stamerra, D.P. and S.I. contributed to structuring and editing the paper. A. Berti contributed to editing and finalizing the manuscript. R.M. coordinated and supervised the writing of the paper. All MAGIC collaborators contributed to the editing of and provided comments on the final version of the manuscript. S. Campa and M.G.B. extracted the spectra and performed the spectral analysis of the Swift-BAT and Swift-XRT data. N.P.M. derived the photometry for the Swift-UVOT event mode data and the UV grism exposure. M.H.S. derived the image-mode Swift-UVOT photometry. A.d.U.P. was principal investigator of ALMA programme 2018.1A.00020.T, triggered these observations and performed photometry. S. Martin reduced the ALMA Band 6 data. C.C.T., S. Schulze, D.A.K. and M. Michalowski participated in the ALMA DDT proposal preparation, observations and scientific analysis of the data. D.A.P. was principal investigator of ALMA programme 2018.101410T and triggered these observations and was principal investigator of the LT and JCMT programmes. A.M.C. analysed the ALMA Band 3 and LT data and wrote the LT text. S. Schulze contributed to the development of the ALMA Band 3 observing programme. I.A.S. triggered the JCMT programme, analysed the data and wrote the associated text. N.R.T. contributed to the development of the JCMT programme. D.A.K. and C.C.T. triggered and coordinated the X-shooter observations. D.A.K. independently checked the optical light curve analysis. K. Misra was the principal investigator of the GMRT programme 35_018. S.V.C. and V.I. analysed the data. L.R. contributed to the observation plan and data analysis. E. Tremou, I.H. and R.D. performed the MeerKAT data analysis. G.E.A., A. Moin, S. Schulze and E. Troja were principal investigators of ATCA programme CX424. G.E.A., M. Wieringa and J. Stevens carried out the observations. G.E.A., G. Bernardi, S.K., M. Marongiu, A. Moin, R.R. and M. Wieringa analysed these data. J.C.A.M.-J. and L.P. participated in the ATCA proposal preparation and the scientific analysis of the data. The ePESSTO project was delivered by the following, who contributed to managing, executing, reducing, analysing ESO/NTT data and provided comments to the manuscript: J.P.A., N.C.S., P.D'A., M. Gromadzki, C.I., E.K., K. Maguire, M.N., F.R. and S.J.S.; A. Melandri and A. Rossi reduced and analysed REM data and provided comments to the manuscript. J. Bolmer was responsible for observing the GRB with GROND and for the data reduction and calibration. J. Bolmer and J. Greiner contributed to the analysis of the data and writing of the text. E. Troja triggered the NuSTAR TOO observations performed under the DDT programme. L.P. requested the XMM-Newton data, obtained under a DDT programme, and carried out the scientific analysis of the XMM-Newton and NuSTAR data. S. Lotti analysed the NuSTAR data and wrote the associated text. A. Tiengo and G. Novara analysed the XMM-Newton data and wrote the associated text. A.J.C.-T. led the observing BOOTES and GTC programmes. A. Castellón, C.J.Pd.P., E.F.-G., I.M.C., S.B.P. and X.Y.L. analysed the BOOTES data, and A.F.V., M.DC.-G., K.S.-R., Y.-D.H. and V.V.S. analysed the GTC data and interpreted them accordingly. N.R.T. created the X-shooter and AIFOSC figures. J.P.U.F. and I.J. performed the analysis of the X-shooter and AIFOSC spectra. D.X. and P.J. contributed to the NOT programme and_triggering. D. Malesani performed photometric analysis of NOT data. E. Peretti contributed to the development of the code for modelling afterglow radiation. L.i. triggered and analysed the OASDG data, and A.B. and A.N. performed the observations at the telescope.

Competing interests The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to R.M.

Peer review information Nature thanks Xiang-Yu Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Prompt–emission light curves for different detectors.

a–f, Light curves for Super-AGILE (a; 20–60 keV), Swift-BAT (b; 15–150 keV), Fermi-GBM (c; 10–1000 keV), AGILE-MCAL (d; 0.4–1.4 MeV), AGILE-MCAL (e; 1.4–100 MeV) and Fermi-LAT (f; 0.1–10 GeV). The light curve of AGILE-MCAL is split into two bands to show the energy dependence of the first peak. Error bars show 1σ statistical errors.
Extended Data Fig. 2 | MAGIC time-integrated SEDs in the time interval 62–2,400 s after T_0. The green (yellow, blue) points and band show the results of the Monte Carlo (MC) simulations for the nominal and the varied light scale cases (+15%, −15%), which define the limits of the systematic uncertainties. The contour regions are drawn from the 1σ error of their best-fit power-law functions. The vertical bars of the data points show the 1σ errors on the flux.
Extended Data Fig. 3 | Afterglow light curves of GRB 190114C. Flux density at different frequencies as a function of the time since the initial burst, $T - T_0$.

a, Observation in the NIR, optical and UV bands. The flux has been corrected for extinction in the host and in our Galaxy. The contribution of the host galaxy and its companion has been subtracted. Fluxes have been rescaled (except for the r-band filter).

b, Radio and submillimetre observations from 1.3 GHz to 670 GHz. ‘Instr.’, instrument.
Extended Data Fig. 4 | Images of the localization region of GRB 190114C.

a, All-sky image captured with the CASANDRA-1 camera at the BOOTES-1 station. The image (30 s exposure, unfiltered) was taken at $T_0 + 14.8$ s, and was severely affected by the moon. At the GRB190114C location (red dot) no prompt optical emission is detected. Inset, magnification (inverted colours) containing a 10′-diameter circle centred on the optical position. b, Three-colour image of the host of GRB 190114C, obtained with the HST. The host galaxy is a spiral galaxy, and the green circle indicates the location of the transient close to its host nucleus. The image is 8″ across; north is up and east is to the left. c–e, Images of the GRB 190114C field taken with the HST, obtained with the F850LP filter (covering roughly the region from 800 to 1,100 nm). Two epochs, 11 February and 12 March 2019, are shown (images are 4″ across); the right-most image is the result of the difference image. A faint transient is visible close to the nucleus of the galaxy, and we identify this as the late-time afterglow of the burst.
Extended Data Fig. 5 | Optical–NIR spectra of GRB 190114C. a, NOT/AlFOSC spectrum obtained at mid-time (i.e., the epoch corresponding to a half of the exposure length) 1 h post-burst. The continuum is afterglow-dominated at this time, and shows strong absorption features of Ca II and Na I (in addition to telluric absorption). b, Normalized GTC (+OSIRIS) spectrum obtained on 14 January 2019, 23:32:03 UT with the R1000B and R2500I grisms. The emission lines of the underlying host galaxy are noticeable, besides the Ca II absorption lines in the afterglow spectrum. c, Visible-light region of the VLT–X-shooter spectrum obtained approximately 3.2 d post-burst, showing strong emission lines from the star-forming host galaxy.
Extended Data Fig. 6 | SEDs from radio frequencies to X-rays at different epochs. The synchrotron frequency ν_m crosses the optical band, moving from higher to lower frequencies. The break between 10^8 and 10^{10} Hz is caused by the self-absorption synchrotron frequency, ν_{sa}. Optical (X-ray) data have been corrected for extinction (absorption). The data points are taken from the following telescopes (from lower to higher frequencies): filled and empty triangle symbols, GMRT and MeerKAT; stars, ATCA; violet filled circle, ALMA, down arrows, JCMT 1σ upper limits; filled circles, LT (yellow) and GROND (all the other colours). Error bars for all data points define the 1σ error. Coloured stripes show the best fit of the XRT data extrapolated to the time of each SED. Their vertical width is obtained from the error (90% confidence level) on the best-fit normalization. Solid lines show the model SEDs for the case $s = 2$.
Extended Data Fig. 7 | Modelling of broadband light curves. Modelling results of forward shock emission are compared to observations at different frequencies (see key). The model shown with solid and dashed lines is optimized to describe the high-energy radiation (teraelectronvolt, gigaelectronvolt and X-ray) and has been obtained with the following parameters: $s = 0$, $\varepsilon_e = 0.07$, $\varepsilon_B = 8 \times 10^{-5}$, $p = 2.6$, $n_0 = 0.5$ and $E_k = 8 \times 10^{53}$ erg. Solid lines show the total flux (synchrotron and SSC) and the dashed line refers to the SSC contribution only. Dotted curves correspond to a better modelling of observations at lower frequencies, but fail to explain the behaviour of the teraelectronvolt light curve; they are obtained with the following model parameters: $s = 2$, $\varepsilon_e = 0.6$, $\varepsilon_B = 10^{-4}$, $p = 2.4$, $A = 0.1$ and $E_k = 4 \times 10^{53}$ erg. Vertical bars on the data points show the 1\(\sigma\) errors on the flux, and horizontal bars represent the duration of the observation.
Time bin [seconds after T_0]	Normalisation [TeV$^{-1}$ cm$^{-2}$ s$^{-1}$]	Photon index	Pivot energy [GeV]
62 – 90	$1.95^{+0.21}_{-0.20} \cdot 10^{-7}$	$-2.17^{+0.34}_{-0.36}$	395.5
68 – 180	$1.10^{+0.09}_{-0.08} \cdot 10^{-7}$	$-2.27^{+0.24}_{-0.25}$	404.7
180 – 625	$2.26^{+0.21}_{-0.20} \cdot 10^{-8}$	$-2.56^{+0.27}_{-0.29}$	395.5
68 – 110	$1.74^{+0.16}_{-0.15} \cdot 10^{-7}$	$-2.16^{+0.29}_{-0.31}$	386.5
110 – 180	$8.59^{+0.95}_{-0.91} \cdot 10^{-8}$	$-2.51^{+0.37}_{-0.41}$	395.5
180 – 360	$3.50^{+0.38}_{-0.36} \cdot 10^{-8}$	$-2.36^{+0.34}_{-0.37}$	395.5
360 – 625	$1.65^{+0.23}_{-0.23} \cdot 10^{-9}$	$-3.16^{+0.48}_{-0.54}$	369.1
625 – 2400	$3.52^{+0.47}_{-0.47} \cdot 10^{-9}$	$-2.80^{+0.48}_{-0.54}$	369.1
62 – 2400 (Nominal MC)	$1.07^{+0.08}_{-0.07} \cdot 10^{-8}$	$-2.51^{+0.20}_{-0.21}$	423.8
62 – 2400 (Light scale +15% MC)	$7.95^{+0.58}_{-0.56} \cdot 10^{-9}$	$-2.91^{+0.23}_{-0.25}$	369.1
62 – 2400 (Light scale -15% MC)	$1.34^{+0.09}_{-0.09} \cdot 10^{-8}$	$-2.07^{+0.18}_{-0.19}$	509.5

For each time bin, the table shows the start and end time of the bin, the normalization factor of the EBL-corrected differential flux at the pivot energy with statistical errors, photon indices with statistical errors, and the pivot energy of the fit (fixed).
Extended Data Table 2 | GROND photometry

T_{GROND} (s)	g'	r'	i'	z'	J	H	K_s
14029.94 ± 335.28	19.21 ± 0.03	18.46 ± 0.03	17.78 ± 0.03	17.33 ± 0.03	16.78 ± 0.05	16.30 ± 0.05	16.03 ± 0.07
24402.00 ± 345.66	19.50 ± 0.04	18.72 ± 0.03	18.05 ± 0.03	17.61 ± 0.03	17.02 ± 0.05	16.53 ± 0.05	16.26 ± 0.08
102697.17 ± 524.01	20.83 ± 0.06	20.00 ± 0.04	19.30 ± 0.04	18.87 ± 0.03	18.15 ± 0.05	17.75 ± 0.06	17.40 ± 0.09
106405.63 ± 519.87	20.86 ± 0.05	19.98 ± 0.03	19.34 ± 0.03	18.88 ± 0.03	18.17 ± 0.06	17.75 ± 0.06	17.34 ± 0.09
191466.77 ± 751.37	21.43 ± 0.07	20.61 ± 0.03	19.97 ± 0.03	19.52 ± 0.03	18.77 ± 0.06	18.28 ± 0.06	17.92 ± 0.14
275594.19 ± 747.59	21.57 ± 0.07	20.88 ± 0.04	20.31 ± 0.04	19.87 ± 0.04	19.14 ± 0.07	18.57 ± 0.06	18.26 ± 0.21
366390.74 ± 1105.79	21.87 ± 0.07	21.17 ± 0.04	20.62 ± 0.03	20.15 ± 0.03	19.43 ± 0.06	18.89 ± 0.06	18.46 ± 0.15
448791.55 ± 1201.33	21.90 ± 0.08	21.27 ± 0.04	20.79 ± 0.04	20.33 ± 0.03	19.66 ± 0.07	18.97 ± 0.07	18.55 ± 0.18
537481.41 ± 1132.16	22.02 ± 0.09	21.52 ± 0.05	21.00 ± 0.04	20.55 ± 0.03	19.87 ± 0.07	19.20 ± 0.07	18.83 ± 0.17
794992.63 ± 1200.69	22.14 ± 0.04	21.51 ± 0.03	21.05 ± 0.04	20.71 ± 0.05	20.31 ± 0.13	19.79 ± 0.14	19.59 ± 0.41
1226716.84 ± 1050.15	22.17 ± 0.04	21.59 ± 0.04	21.26 ± 0.04	20.97 ± 0.04	20.34 ± 0.12	19.95 ± 0.11	19.40 ± 0.34

Time T_{GROND} after the BAT trigger. The AB magnitudes are not corrected for Galactic foreground reddening.
Extended Data Table 3 | LT, NOT and UVOT observations

UTC	Filter	Exposure (s)	Magnitude
2019-01-14T75	g	45	19.24±0.04
2019-01-14T76	r	45	18.72±0.07
2019-01-14T77	i	45	17.49±0.02
2019-01-14T78	z	45	17.02±0.02
2019-01-14T79	B	45	19.85±0.15
2019-01-14T80	V	45	19.12±0.01
2019-01-15T14	r	60	18.01±0.05
2019-01-15T14	I	60	18.72±0.05
2019-01-15T20	g	60	19.04±0.04
2019-01-15T23	g	60	18.94±0.17

NOT/FOSSC

Date	Filter	Exposure (s)	Magnitude
2019-01-14T91	g	1 × 300	17.72±0.03
2019-01-14T92	r	1 × 300	16.43±0.07
2019-01-14T99	g	1 × 200	16.45±0.04
2019-01-14T208	g	1 × 300	16.77±0.04
2019-01-23T088	g	1 × 300	21.02±0.07

UVOT

Start Time	End Time	Filter	Magnitude
58.63	57.63	V	19.17±0.14
73.44	61.34	white	18.86 ± 0.07
83.43	90.34	white	18.78 ± 0.07
93.43	100.43	white	18.53 ± 0.07
103.43	110.43	white	18.04 ± 0.07
113.43	119.43	white	18.04 ± 0.07
123.43	129.43	white	18.16 ± 0.07
133.43	139.43	white	18.38 ± 0.07
143.43	149.43	white	18.51 ± 0.07
153.43	160.43	white	18.67 ± 0.07
163.43	170.43	white	18.82 ± 0.07
173.43	180.43	white	18.98 ± 0.07
183.43	190.43	white	19.15 ± 0.07
193.43	200.43	white	19.32 ± 0.07
203.43	210.43	white	19.50 ± 0.07
213.43	220.43	white	19.68 ± 0.07
223.43	230.43	white	20.04 ± 0.07
572.0	572.0	white	19.00 ± 0.07
545.5	545.5	B	18.69 ± 0.07
545.5	545.5	V	18.80 ± 0.07
545.5	545.5	U	18.91 ± 0.07
545.5	545.5	I	18.91 ± 0.07
545.5	545.5	Z	18.91 ± 0.07
545.5	545.5	B	18.91 ± 0.07
545.5	545.5	V	18.91 ± 0.07
545.5	545.5	U	18.91 ± 0.07
545.5	545.5	I	18.91 ± 0.07
545.5	545.5	Z	18.91 ± 0.07
545.5	545.5	B	18.91 ± 0.07
545.5	545.5	V	18.91 ± 0.07
545.5	545.5	U	18.91 ± 0.07
545.5	545.5	I	18.91 ± 0.07
545.5	545.5	Z	18.91 ± 0.07

Magnitudes are SDSS 'AB-like' for ugriz and 'Vega-like' for all the other filters, and they are not corrected for Galactic extinction. For the UVOT data, magnitudes without uncertainties are upper limits.
Extended Data Table 4 | Observations of the host galaxy

Filter	Host	Companion	Combined
Sloan u	23.54	25.74	23.40
Sloan g	22.51	23.81	22.21
Sloan r	22.13	22.81	21.66
Sloan i	21.70	22.27	21.19
Sloan z	21.51	21.74	20.87
2MASS J	20.98	21.08	20.28
2MASS H	20.68	20.82	20.00
2MASS K_s	20.45	20.61	19.77

For each filter, the estimated magnitudes are given for the host galaxy of GRB 190114C, the companion and the combination of the two objects.
Extended Data Table 5 | Observations of GRB 190114C by ATCA and JCMT SCUBA-2

ATCA

Start Date and Time	End Date and Time	Frequency GHz	Flux mJy
1/16/2019 6:47:00	1/16/2019 10:53:00	5.5	1.92±0.06
	9		1.78±0.06
	18		2.62±0.26
1/18/2019 1:45:00	1/18/2019 11:18:00	5.5	1.13±0.04
	9		1.65±0.05
	18		2.52±0.27
	44		1.52±0.15
1/20/2019 3:38	1/20/2019 10:25:00	5.5	1.78±0.06
	9		2.26±0.07
	18		2.30±0.23

JCMT SCUBA-2

UT Date	Time since trigger (days)	Time on source (hours)	Typical 225 GHz CSO Opacity	Typical elevation (degrees)	850 μm RMS density (mJy/beam)	450 μm RMS density (mJy/beam)
2019-01-15	0.338	1.03	0.026	39	1.7	9.2
2019-01-16	1.338	1.03	0.024	39	1.6	8.4
2019-01-18	3.318	0.95	0.031	37	1.7	11.4

For the ATCA data, the start and end dates and times (UTC) of the observations, the frequency and the flux (± error) are reported. For the JCMT SCUBA-2 data, the CSO 225-GHz opacity measures the zenith atmospheric attenuation.