Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3–96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.

Psychiatric disorders and other brain disorders are among the main contributors to morbidity and disability around the world. The disease mechanisms are complex, spanning a wide range of contributing genetic and environmental factors. The inter-individual variability is large, but on a group level, patients with common brain disorders perform worse on cognitive tests, are less likely to excel professionally, and engage in adverse health behaviors more frequently than healthy individuals. It is unclear to what extent these characteristics are a cause, consequence or confounder of disease.

Dynamic processes that influence the rate of brain maturation and change throughout the lifespan have a critical role, as reflected in the wide range of times of disease onset from early childhood to old age. This suggests that the age at which individual trajectories diverge from the norm reflects key characteristics of the underlying pathophysiology. Although autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) emerge in childhood, schizophrenia and bipolar spectrum disorders are likely to develop during late childhood and adolescence, before the characteristic outbreak of severe symptoms in early adulthood. Likewise, multiple sclerosis most often manifests in early adulthood, but the disease process probably starts much earlier. First episodes in major depressive disorder (MDD) can appear at any stage from adolescence to old age, whereas mild cognitive impairment (MCI) and dementia primarily emerge during senescence. Beyond such differential temporal evolution across the lifespan, age-related deviations from the norm may also differ between disorders in terms of anatomical location, direction, change rate and magnitude, all of which add complexity to the interpretation of observed effects.

Machine learning techniques enable robust estimation of the biological age of the brain using information provided by MRI, assessing the similarity of a given brain scan with scans of a range of individuals to estimate the age of the tissue from a normative
lifespan trajectory. Initial evidence suggested that the deviation between brain age and chronological age—termed the brain age gap—is a promising marker of brain health, but several issues remain to be addressed. First, although advantageous for narrowing the complexity, reducing a rich set of brain imaging features into a single estimate of brain age inevitably compromises spatial specificity, thereby neglecting disorder-specific patterns. Second, most studies so far have been small-scale, were performed within a limited age range and have focused on a single disorder, which rendered them unable to uncover clinical specificity and lifespan dynamics. Third, the genetic underpinnings of brain age gap are not understood, and it is unknown to what extent they overlap with the genetic architecture of major clinical traits. To address these critical knowledge gaps, large imaging genetics samples covering a range of prevalent brain disorders are necessary.

Here, we used a centralized and harmonized processing protocol including automated surface-based morphometry and parcellation segmentation using Freesurfer on raw structural MRI data from 45,615 individuals aged 3–96 years that passed quality control (Supplementary Fig. 1). The sample included data from healthy controls (n = 39,827, aged 3–95 years) and 5,788 individuals with various brain disorders. We included data from individuals with ASD (n = 925, 5–64 years), ADHD (n = 725, 7–62 years), prodromal schizophrenia or at-risk mental state (SZRISK, n = 94, 16–42 years), schizophrenia (n = 1110, 18–66 years), a heterogeneous group with mixed diagnoses in the psychosis spectrum (PSYMIX, n = 300, 18–69 years), bipolar spectrum disorder (n = 459, 18–66 years), multiple sclerosis (n = 254, 19–68 years), MDD (n = 208, 18–71 years), MCI (n = 974, 38–91 years) and dementia (including Alzheimer’s disease, n = 739, 53–96 years). Supplementary Tables 1–3 provide details on sample characteristics and imaging protocols.

We used machine learning to estimate individual brain age on the basis of structural brain imaging features. First, we grouped all subjects into different samples. For each of the ten clinical groups, we identified a group of healthy individuals of equal size, matched by age, sex and scanning site from a pool of 4,353 healthy controls. All remaining individuals were combined into one independent sample comprising only healthy individuals. This independent sample constituted a training sample, used to train and tune the machine learning models for age prediction (n = 35,474, aged 3–89 years, 18,990 female participants), whereas the ten clinical samples were used as independent test samples. Figure 1a illustrates the respective age distributions per sex and diagnosis.

The large sample size and wide age-span of the training sample allowed the male and female brain age to be modeled separately, whereas the ten clinical samples were used as independent test samples. Figure 1a illustrates the respective age distributions per sex and diagnosis. To further minimize confounding effects of data quality, we repeated the main analyses using a more stringent quality control and exclusion procedure.

Figure 2a illustrates that the estimated brain age gap was increased in several brain disorders. The strongest effects were observed in schizophrenia (Cohen’s d = 0.51), multiple sclerosis (d = 0.74), MCI (d = 0.41) and dementia (d = 1.03). PSYMIX (d = 0.21) and bipolar spectrum disorder (d = 0.29) showed small effects of increased brain age gap, whereas other groups showed negligible effects (d < 0.2). The meta-analysis converged on the same findings (Supplementary Fig. 7) and the results were replicated regardless of the quality control exclusion criterion applied (Supplementary Fig. 8). The brain age gap in all clinical groups was positive on average and there were no signs of a negative brain age gap (developmental delay) in children with ASD or ADHD; there was also no significant group-by-age interaction effect (Supplementary Table 5).

We assessed the specificity of the spatial brain age gap patterns across clinical groups. We trained age prediction models using only occipital, frontal, temporal, parietal, cingulate, insula, or cerebellar–subcortical features (Fig. 1b). Cross-validation confirmed the predictive performance of all regional models (Supplementary Fig. 2), which were used to predict regional brain age in the ten independent test sets. Regional brain age gaps largely corresponded to the full brain level, with some notable differential spatial patterns (Fig. 2b). For example, increased cerebellar–subcortical age gap was most prominent in dementia (d = 0.99) and multiple sclerosis (d = 0.81) but was not present in schizophrenia (d = 0.16). The largest effect in schizophrenia was observed in the frontal lobe (d = 0.70). A brain age gap in the temporal lobe was observed in MDD (d = 0.24), whereas there was no evidence (d < 0.2) for a brain age gap in ASD, ADHD or SZRISK in any of the regions. To explore regional differences in brain age patterns, we tested for group–by–region interactions on each pairwise combination of clinical groups and pairwise combination of regional brain age gaps (1,260 tests). Figure 2c illustrates the significant effect sizes, indicating that the rate at which different regions age in relation to each other often showed opposite patterns in disorders typically considered neurodevelopmental (for example, schizophrenia) and neurodegenerative (for example, multiple sclerosis or dementia).

With converging evidence demonstrating the largest brain age gaps in schizophrenia, multiple sclerosis, MCI and dementia, we explored the functional relevance of the regional brain age gaps for these groups by testing for associations with clinical and cognitive data. Clinical data available from individuals with schizophrenia included symptom (n = 389) and function (n = 269) scores of the Global Assessment of Functioning scale (GAF) as well as positive (n = 646) and negative (n = 626) scores of the Positive and Negative Syndrome Scale (PANSS). For multiple sclerosis, we assessed associations with scores from the Expanded Disability Status Scale (EDSS, n = 195). In the dementia spectrum, we assessed associations with Mini Mental State Examination scores (MMSE, n = 907 MCI, n = 686 dementia). Figure 2d depicts association strengths accounting for age, age2, sex, scanning site and Euler number and Supplementary Fig. 11 provides corresponding scatter plots. In schizophrenia, larger brain age gaps were associated with lower functioning (for example, full brain age gap with GAF symptom (r = −0.15, P = .003) and insula brain age gap with GAF function (r = −0.22, P = 5 × 10−4)) and with more negative symptoms (for example, temporal brain age gap with PANSS negative (r = 0.13, P = .001)). In multiple sclerosis, larger full brain age gap was associated with a higher degree of disability (r = 0.23, P = .001). Finally, lower cognitive functioning was associated with larger brain age gaps in MCI or dementia, with strongest effects for full brain (r = −0.30, P = 7 × 10−3) and cerebellar–subcortical (r = −0.29, P = 2 × 10−3) brain age gaps.

Given the substantial genetic contributions to most brain disorders, our results incite the question to what degree brain age
patterns are genetically influenced and whether the implicated polymorphisms overlap with the polygenic architectures of the disorders. We used single nucleotide polymorphism (SNP) data from the 20,170 adult healthy individuals with European ancestry available in the UK Biobank. We estimated full and regional brain age for these individuals using fivefold cross-validation in models trained on all healthy controls \(n = 39,827 \) aged 3–95 years; 20,868 female participants, models trained per sex.

First, we performed one genome-wide association study (GWAS) per brain age gap using PLINK, including the first ten population components from multidimensional scaling, age, age\(^2\), sex, scanning site and Euler number as covariates. Next, we assessed heritability using linkage disequilibrium (LD) score regression on the resulting summary statistics. In line with earlier results from twin studies\(^{13}\), our SNP-based analysis revealed significant heritability (Fig. 3a), with common SNPs explaining 24% of the variance in brain age gaps (all s.e. = 9 × 10\(^{-4}\)).

Next, we assessed the overlap between the genetic underpinnings of brain age gap and common brain disorders. We gathered GWAS summary statistics for ASD, ADHD, schizophrenia, bipolar spectrum disorder, multiple sclerosis, MDD and Alzheimer’s disease (see Methods). First, using LD score regression, we assessed the genetic correlation between these summary statistics and those from brain age gaps. Correlations were overall weak (Supplementary Fig. 12), with only one surviving false-discovery rate (FDR) correction for the number of tests (cingulate brain age gap with ADHD). Lack of genetic correlation does not preclude genetic dependence because traits may have mixed effect directions across shared genetic variants\(^{14}\). Therefore, we next used conjunctional FDR analyses to identify SNPs that are significantly associated with both brain age gap and disorders. We found significant independent loci showing pleiotropy between brain age gaps and all included disorders (Fig. 3b). Most loci were identified for schizophrenia (two occipital, four frontal, three temporal, six parietal, five cingulate, five insula and two cerebellar–subcortical; 161 SNPs in total). Further, five independent loci for ASD (76 SNPs), six for ADHD (80 SNPs), ten for bipolar spectrum disorder (94 SNPs), five for multiple sclerosis (22 SNPs), one for MDD (14 SNPs) and six for Alzheimer’s disease (15 SNPs) (Fig. 3c). Supplementary Table 6 provides details. An intronic variant in protein coding gene SATB2 at chromosome 2q33.1 was most frequently associated with brain age gaps and schizophrenia. A missense variant in protein coding gene SLC39A8 was associated with cerebellar–subcortical brain age gap and schizophrenia and showed the strongest effect in all tested associations (\(P = 9 \times 10^{-4}\)).

Taken together, our results provide strong evidence that several common brain disorders are associated with an apparent aging of the brain, with effects observed at the full brain or regional level in schizophrenia, PSYMIX, bipolar spectrum disorder, multiple sclerosis, MDD, MCI and dementia; but not in ASD, ADHD or SZRISK. Importantly, our approach revealed differential neuroanatomical distribution of brain age gaps between several disorders. Associations with clinical and cognitive patient data supported the functional relevance of the brain age gaps and genetic analyses in healthy individuals provided evidence that the brain age gaps are heritable, with overlapping genes between brain age gaps in healthy adults and common brain disorders.

Our approach of estimating regional brain age was useful to reveal differential spatial patterns between disorders. Although the implicated regions in the spatial brain age profiles of the disorders
Apparent brain aging is common in several brain disorders and is sensitive to clinical and cognitive measures. A. The gap between chronological age and brain age was increased in several disorders. The gray shading behind each clinical group reflects its age- and sex- and site-matched controls. The test samples comprised n = 925 ASD, n = 925 healthy controls; n = 725 ADHD, n = 725 healthy controls; n = 94 SZRISK, n = 94 healthy controls; n = 1,110 schizophrenia, n = 1,110 healthy controls; n = 300 PSYMIX, n = 300 healthy controls; n = 459 bipolar spectrum disorder, n = 459 healthy controls; n = 254 multiple sclerosis, n = 254 healthy controls; n = 208 MDD, n = 208 healthy controls; n = 974 MCI, n = 974 healthy controls; n = 739 dementia, n = 739 healthy controls (in total, n = 10,141 independent subjects). Cohen's d effect sizes (pooled s.d. units) and two-sided P values are provided. B. Several disorders showed specific patterns in regional brain age gaps. Colors indicate Cohen's d effect sizes for group comparisons. Sample size as specified in A. C. A corresponding correlation matrix of the effect sizes is depicted in Supplementary Fig. 9. E. Effect sizes of significant region-by-group interactions from repeated-measures ANOVA for each combination of regions and groups (1,260 tests in total). Sample size as specified in A but excluding healthy controls (n = 5,788 independent subjects). Only significant (P < FDR, Benjamini–Hochberg) effects are shown. Supplementary Fig. 10 depicts effect sizes for all 1,260 tests. D. Correlation coefficients for linear associations between brain age gaps and cognitive and clinical scores. Sample size comprised n = 389 schizophrenia for GAFsymptom, n = 269 schizophrenia for GAFfunction, n = 646 schizophrenia for PANSSnegative, n = 195 multiple sclerosis for EDSS, n = 907 MCI and n = 686 dementia for MMSE. Associations were computed using linear models accounting for age, age², sex, scanning site and Euler number, and the resulting t-statistics were transformed to r. Significant (P < FDR, Benjamini–Hochberg, two-sided) associations are marked with a black box. Corresponding scatter plots are depicted in Supplementary Fig. 11. BD, bipolar spectrum disorder; DEM, dementia; MS, multiple sclerosis; SZ, schizophrenia; HC, healthy controls; resid., residualized.

Fig. 2 | Apparent brain aging is common in several brain disorders and is sensitive to clinical and cognitive measures. A. The gap between chronological age and brain age was increased in several disorders. The gray shading behind each clinical group reflect its age-, sex- and site-matched controls. The test samples comprised n = 925 ASD, n = 925 healthy controls; n = 725 ADHD, n = 725 healthy controls; n = 94 SZRISK, n = 94 healthy controls; n = 1,110 schizophrenia, n = 1,110 healthy controls; n = 300 PSYMIX, n = 300 healthy controls; n = 459 bipolar spectrum disorder, n = 459 healthy controls; n = 254 multiple sclerosis, n = 254 healthy controls; n = 208 MDD, n = 208 healthy controls; n = 974 MCI, n = 974 healthy controls; n = 739 dementia, n = 739 healthy controls (in total, n = 10,141 independent subjects). Cohen's d effect sizes (pooled s.d. units) and two-sided P values are provided. B. Several disorders showed specific patterns in regional brain age gaps. Colors indicate Cohen's d effect sizes for group comparisons. Sample size as specified in A. C. A corresponding correlation matrix of the effect sizes is depicted in Supplementary Fig. 9. E. Effect sizes of significant region-by-group interactions from repeated-measures ANOVA for each combination of regions and groups (1,260 tests in total). Sample size as specified in A but excluding healthy controls (n = 5,788 independent subjects). Only significant (P < FDR, Benjamini–Hochberg) effects are shown. Supplementary Fig. 10 depicts effect sizes for all 1,260 tests. D. Correlation coefficients for linear associations between brain age gaps and cognitive and clinical scores. Sample size comprised n = 389 schizophrenia for GAFsymptom, n = 269 schizophrenia for GAFfunction, n = 646 schizophrenia for PANSSnegative, n = 195 multiple sclerosis for EDSS, n = 907 MCI and n = 686 dementia for MMSE. Associations were computed using linear models accounting for age, age², sex, scanning site and Euler number, and the resulting t-statistics were transformed to r. Significant (P < FDR, Benjamini–Hochberg, two-sided) associations are marked with a black box. Corresponding scatter plots are depicted in Supplementary Fig. 11. BD, bipolar spectrum disorder; DEM, dementia; MS, multiple sclerosis; SZ, schizophrenia; HC, healthy controls; resid., residualized.
sensitivity. As such, the analysis revealed substantial differences in spatial aging profiles between disorders typically regarded as neurodegenerative (multiple sclerosis, MCI and dementia) and neurodevelopmental (in particular, schizophrenia and PSTMIX). For example, although these disorders were all associated with an increased brain age gap on the full brain level, regional analysis revealed interactions between the frontal brain age patterns observed in schizophrenia and the cerebellar–subcortical patterns observed in multiple sclerosis and dementia, supporting spatial differences in apparent brain age. Moreover, significant associations with clinical and cognitive data, in particular with scores of the GAF and PANSS in schizophrenia, with the EDSS in multiple sclerosis and with MMSE in the dementia spectrum, demonstrated the functional relevance of the brain age gap beyond group differences. By gauging the dynamic associations between changes in brain age and clinical and cognitive function, future longitudinal studies may prove instrumental to dissect the large individual differences among patients with common brain disorders, even within the same diagnostic category. Furthermore, incorporating additional imaging modalities, voxel-level data or different segmentations at various levels of resolution will allow for estimation of tissue-imaging modalities, voxel-level data or different segmentations.

In conclusion, we have established that the brain age gap is increased in several common brain disorders, is sensitive to clinical and cognitive phenotypes and is genetically influenced. Our results emphasize the potential of advanced lifespan modeling in the clinical neurosciences, highlighting the benefit of big data resources that cover a wide age-span and conditions. Delineating dynamic lifespan trajectories within and across individuals will be essential to disentangle the pathophysiological complexity of brain disorders.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, statements of code and data availability and associated accession codes are available at https://doi.org/10.1038/s41593-019-0471-7.
Received: 28 August 2018; Accepted: 22 July 2019;
Published online: 24 September 2019

References
1. WHO. World Health Statistics 2016: monitoring health for the SDGs. https://www.who.int/gho/publications/world_health_statistics/2016/en/ (2016).
2. Insel, T. R. & Cuthbert, B. N. Brain disorders? Precisely. Science 348, 499–500 (2015).
3. Prince, M. et al. No health without mental health. Lancet 370, 859–877 (2007).
4. Parikshak, N. N., Gandal, M. J. & Geschwind, D. H. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16, 441–458 (2015).
5. Marín, O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat. Med. 22, 1229–1238 (2016).
6. Insel, T. R. Rethinking schizophrenia. Nature 468, 187–193 (2010).
7. Auwert-Broche, B. et al. Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth. Neurology 83, 2140–2146 (2014).
8. Masters, C. L. et al. Alzheimer's disease. Nat. Rev. Dis. Primers 1, 15056 (2015).
9. Dosenbach, N. U. et al. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010).
10. Franke, K., Ziegler, G., Klöppel, S. & Gaser, C. & Alzheimer's Disease Neuroimaging Initiative. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50, 883–892 (2010).
11. Cole, J. H. & Franke, K. Predicting age using neuroimaging: innovative brain age biomarkers. Trends Neurosci. 40, 681–690 (2017).
12. Ritchie, S. J. et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb. Cortex 28, 2959–2975 (2018).
13. Cole, J. H. et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163, 115–124 (2017).
14. Bansal, V. et al. Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia. Nat. Commun. 9, 3078 (2018).
15. Ellison-Wright, I. & Bullmore, E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr. Res. 117, 1–10 (2010).
16. Jernigan, T. L., Salamon, D. P., Butters, N. & Hesselink, J. R. Cerebral structure on MRI, part II: specific changes in Alzheimer’s and Huntington’s diseases. Biol. psychiatry 29, 68–81 (1991).
17. Wolfers, T. et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry 75, 1146–1155 (2018).
18. Ecker, C., Bookheimer, S. Y. & Murphy, D. G. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 14, 1121–1134 (2015).
19. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Biomed. Res. Int. 2015, 792586 (2015).
20. Andreassen, O. A. et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol. psychiatry 20, 207 (2015).

Acknowledgements
The author list between I.A. and M.Z. is in alphabetic order. The authors were funded by the Research Council of Norway (276082 LifespanHealth (T.K.), 213837 (O.A.A)), and institutions such as the Alzheimer’s Disease Neuroimaging Initiative. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50, 883–892 (2010).

Author contributions
T.K. and L.T.W. conceived the study. T.K., M.Z. and T.L.W. pre-processed all data in Freesurfer, N.T.D., M.I.L., C.L.B., L.B.N., L.T.W. and T.K. performed quality control of the data. T.K. performed the analysis with contributions from T.L.W. and T.E., D.v.d.M., T.K. and L.T.W. wrote the first draft of the paper and all authors contributed to and approved the final manuscript.

Competing interests
Some authors received educational speaker’s honoraria from Lundbeck (O.A.A., A.B., T.E., M.Z., N.I.L.), Sunovion (O.A.A.), Shire (B.E.), Medice (B.E.), Otsuka (A.B., M.Z.), Janssen (A.B.), Roche (M.Z.), Ferrer (M.Z.), Tronellas (M.Z.) and Servier (M.Z.), all unrelated to this work. A.B. is a stockholder of Hoffmann-La Roche and has received consultant fees from Biogen Idec; S.J. is currently an employee of Janssen-Cilag, but contribution to this work was completed prior to this employment. E.A.H., E.G.C., M.K.B., R.S. and H.F.H. have received travel support, honoraria for advice and/or lecturing from Almirall (E.G.C.), Biogen Idec (E.G.C., H.F.H., M.K.B.), Sanofi-Genzyme (E.G.C., H.F.H., E.A.H., M.K.B.), Neurotherapeutics (E.G.C., H.F.H., M.K.B.), Roche (E.G.C., H.F.H.), Sanofi-Aventis (E.G.C., H.F.H., E.A.H., M.K.B.) and Teva (E.G.C., H.F.H.). E.G.C. and H.F.H. have received unrestricted research grants from Novartis (E.G.C., H.F.H., M.K.B.), Biogen Idec (E.G.C.) and Sanofi-Genzyme (E.G.C.). G.P. has been the academic supervisor of a Roche collaboration grant (years 2015–2016) that funds his salary. None of the mentioned external parties had any role in the analysis, writing or decision to publish this work. All other authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41593-019-0471-7.

Correspondence and requests for materials should be addressed to T.K. or L.T.W.

Peer review information Nature Neuroscience thanks Janine Bijsterbosch, Gagan Wig, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Karolinska Schizophrenia Project (KaSP)

Lars Farde5, Lena Flyckt5, Göran Engberg71, Sophie Erhardt71, Helena Fatouros-Bergman5, Simon Cervenka5, Lilly Schwieler71, Fredrik Piehl72, Ingrid Agartz14,5, Karin Collste5, Pauliina Victorsson5, Anna Malmqvist71, Mikael Hedberg71 and Funda Orhan71

1Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. 2Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Methods

Samples. We have included data collected through collaborations, data sharing platforms and consortia, as well as available in-house cohorts. No statistical methods were used to pre-determine sample sizes. We included as much data as we could gather (brain scans from 45,615 individuals) and the sample size of individual clinical groups is therefore based on data availability. Supplementary Tables 1–3 provide detailed information on the individual cohorts. All included cohorts have been reported on previously, and we refer to a list of publications that can be consulted for a more detailed overview of cohort characteristics. Data collection in each cohort was performed with participants’ written informed consent and with approval by the respective local Institutional Review Boards.

Image pre-processing and quality control. Raw T1 data for all study participants were stored and analysed locally at the University of Oslo (Norway), following a harmonized analysis protocol applied to individual subject data (Supplementary Fig. 3). The images were performed with an automated surface-based segmentation using Freesurfer 5.3. We deployed an automated quality control protocol executed within each of the contributing cohorts that excluded potential outliers based on the Euler number of the respective Freesurfer segmentations. The Euler number captures the topological complexity of the uncorrected Freesurfer surfaces and is thus a proxy of data quality. In brief, for each scanning site we regressed age, age² and sex from the Euler number of the left and right hemispheres and identified scans that exceeded 3 standard deviations on either of the residualized Euler numbers. Supplementary Fig. 13 provides a validation of the approach against manual quality control. Data from a total of 977 individuals was excluded in this step, yielding 45,615 individuals for the main analysis. To further minimize the confounding effects of data quality, we performed supplementary analyses using a subset of data, for which a more stringent threshold was used for exclusion (1 s.d. on Euler numbers). Thus, supplementary analysis provides a confirmation with those individuals excluded (n = 40,301 remaining).

Brain age prediction. We used a recent multimodal cortical parcellation scheme to extract cortical thickness, area and volume for 180 regions of interest (ROIs) per hemisphere. In addition, we extracted the classic set of cerebellar—subcortical and cortical summary statistics. This yielded a total set of 1,118 structural brain imaging features (360 cortical thickness, 360 cortical area, 360 cortical volume and 38 cerebellar—subcortical and cortical summary statistics). We used machine learning on this feature set to predict the age of each individual's brain. First, we split the available data into a training sample and ten independent test samples (Fig. 1a). The test samples in total comprised 5,788 individuals with brain disorders and 4,533 healthy controls. For each of the ten clinical groups, we selected a set of healthy controls from the pool of 4,533 individuals, matched for age, sex and scanning site using propensity score matching. Thus, data from some large clinical groups was used as control data in several test samples, yet each test sample had the same number of patients and controls and all subjects in the test samples were independent of the subjects in the training sample. The remaining datasets (45,615 — (5,788 + 4,533) = 35,474) went into the training set. For each sex, we trained machine learning models based on the candidate features using xgboost® and all other parameters were set to default for linear xgboost tree models. After determining the optimal number of training iterations by assessing the prediction error for 1,500 rounds and implementing early stopping if the performance did not improve for 20 rounds. Based on previous experience, the learning rate was pre-set to γ = 0.01 and all other parameters were set to default for linear xgboost tree models. After determining the optimal number of training iterations, the full set of training data was used to train the final models with the adjusted nrounds parameter. These models were used to predict brain age in the test samples, and the brain age gap (deviation between brain and chronological age) was computed. In line with a recent recommendation, all statistical analyses on the brain age gap accounted for age, age², sex, scanning site and Euler number. In addition, to assess overall model performance, a fivefold cross-validation was performed within the training set, with each fold implementing the above described training procedure and testing on the hold-out part of the training set. Brain age predictions on the level of individual brain regions followed the same procedures as those described for the full brain level, except that the feature set was reduced to cover only those features that overlapped more than 50% with a given region. Regions were defined following the Freesurfer surface-based segmentation and included the occipital, frontal and temporal parietal, cingulate and insula. In addition, given the limited number of cerebellar features available in the Freesurfer summary statistics, cerebellar and subcortical features were grouped into a cerebellar—subcortical region (Fig. 1b). For additional validation, we compared our xgboost approach against two other approaches (Supplementary Fig. 5). One approach implemented a different machine learning algorithm on the same set of features (data from the care package®), whereas the other approach made use of a fully independent processing pipeline, feature set and algorithm (https://github.com/ales-cole/brainageR). Furthermore, we assessed the impact of sample size on model performance by creating random subsets of data with sample sizes of 100, 500, 1,000, 2,000, 5,000, 10,000 and 20,000 individuals (40 random subsets per sample size). For each subset and sample size we assessed model performance using cross-validation (Supplementary Fig. 5).

The genetic analysis was performed using UK Biobank data, which was part of the training set in the main analysis. We thus trained different brain age models for the genetic analysis. We selected all healthy controls and estimated their brain age using a fivefold cross-validation approach, similar to the one performed when validating the performance of the training set. The resulting unbiased estimates of brain age gaps for all UK Biobank individuals with genetic data available went into the genome-wide association analysis, LD score regression and conjunctural FDR.

Main statistical analysis framework. We performed both mega- (across cohorts) and meta- (within cohort) analyses. To estimate group effects on a given measure in a mega-analysis framework, we computed the effect of diagnosis in relation to the healthy controls for each of the ten test samples (Fig. 1a). This yielded brain age gaps in each test sample. Next, we joined data from each pair of clinical groups and each pair of regions of for repeated measures ANOVA and estimated the effect sizes of region-by-group interactions (1,260 ANOVAs in total). The significant interaction effects were visualized in Fig. 2c using the circlize package® in R. Data distributions were assumed to be normal, but this was not formally tested. Data collection and analysis were not performed blind to the conditions of the experiments. Assessment of regional specificity. In Supplementary Fig. 9, we performed clustering using effect sizes from Fig. 2b using heatmap.2 from the gplots package® in R. A Spearman correlation matrix was computed based on the case-control effect sizes obtained from each test sample and region and hierarchical clustering was performed using the default settings. To further explore regional specificity, we performed an analysis that involved only the clinical groups. We regressed age, age², sex, scanning site and Euler number from the brain age gaps in each test sample. Next, we joined data from each pair of clinical groups and each pair of regions for repeated measures ANOVA and estimated the effect sizes of region-by-group interactions (1,260 ANOVAs in total). The significant interaction effects were visualized in Fig. 2c using the circlize package® in R. 3.6.

Genetic analyses. We restricted all genetic analyses to individuals from the UK Biobank with European ancestry, as determined by the UK Biobank study team®. We applied standard quality control procedures to the UK Biobank v3 imputed genetic data. In brief, we removed SNPs with an imputation quality score below 0.5, with a minor allele frequency less than 0.05, missing in more than 5% of individuals, and failing the Hardy Weinberg equilibrium tests at P < 1 x 10⁻⁸, yielding SNP data from 20,170 adult healthy individuals. We performed a genome-wide association analysis using PLINK v1.9 (ref. 36), accounting for the ten genetic principal components, age, age², sex, scanning site and Euler number. We used LD score regression to estimate narrow sense heritability.

Furthermore, we used cross-trait LD score regression to calculate genetic correlations, and conjunctural FDR analyses to assess genetic overlap between two complex traits. We gathered genome-wide association summary statistics for ASD®, ADHD®, schizophrenia®, bipolar spectrum disorder®, multiple sclerosis®, major depression®, and Alzheimer’s disease® and assessed genetic overlap with brain age gap genetics. The major histocompatibility complex (MHC) region was excluded from all analyses. Conjunctural FDR was run for each pair of full brain or regional brain age gap and group, using a conjunctural FDR threshold of 0.05. SNPs were annotated using the Ensemble Variant Effect Predictor®.

Cognitive and clinical associations. Cognitive and clinical associations were tested in subsets based on data availability in clinical groups only (excluding controls), as described in the main text. Using linear models accounting for age, age², sex, scanning site and Euler number we associated brain age gaps with scores of the GAF scale®, the PANSS®, the EDSS® and the MMSE scores®. The t-statistics of the linear models were transformed to r; therefore, the correlation coefficients depicted in Fig. 2d exclusively reflect a partial correlation between full brain or regional brain age gaps and clinical or cognitive scores, controlling for confounding effects of age, sex, and image quality.
Brief Communication

References

21. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
22. Rosen, A. F. G. et al. Quantitative assessment of structural image quality. Neuroimage 169, 407–418 (2018).
23. Smith, S. M. & Nichols, T. E. Statistical challenges in "Big Data" human neuroimaging. Neuron 97, 263–268 (2018).
24. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
25. Ho, D., Imai, K., King, G. & Stuart, E. A. Matchit: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).
26. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, 2016).
27. Chen, T., et al. Xgboost: extreme gradient boosting. R package v0.4-2 https://cran.r-project.org/web/packages/xgboost/ (2015).
28. Le, T. T. et al. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE. Front. Aging Neurosci. 10, 317 (2018).
29. Zuber, V. & Strimmer, K. Care. R package v 1.1.10. https://cran.r-project.org/web/packages/care/care.pdf (2017).
30. Cole, J. H. et al. Brain age predicts mortality. Mol. psychiatry 23, 1385–1392 (2018).
31. Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 82, 591–605 (2007).
32. Viechtbauer, W. Conducting meta-analysis in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
33. Warnes, G. R. et al. R Package gplots: various R programming tools for plotting data. https://cran.r-project.org/web/packages/gplots/gplots.pdf (2016).
34. Gu, Z. R. Package circlize: circular visualization. https://cran.r-project.org/web/packages/circlize/circlize.pdf (2017).
35. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
36. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
37. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
38. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
39. Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J.-B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660 (2005).
40. Andreassen, O. A. et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am. J. Hum. Genet. 92, 197–209 (2013).
41. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
42. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genet. 51, 63–75 (2018).
43. Schizophrenia Working Group of the PGC. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421 (2014).
44. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).
45. Patapolous, N. et al. The multiple sclerosis genomic map: role of peripheral immune cells and resident microglia in susceptibility. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/143933v1 (2017).
46. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
47. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452 (2013).
48. McLaren, W. et al. The ensembl variant effect predictor. Nature 536, 171–178 (2016).
49. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
50. Kay, S. R., Fiszbein, A. & Opfer, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261 (1987).
51. Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1444 (1983).
52. Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).
53. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2013).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- [] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [] The statistical test(s) used AND whether they are one- or two-sided
 - *Only common tests should be described solely by name; describe more complex techniques in the Methods section.*
- [] A description of all covariates tested
- [] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [] A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- [] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - *Give P values as exact values whenever suitable.*
- [] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [] Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection	This is an analysis of previously collected magnetic resonance imaging and genetics data. Cohort-specific details on data collection are provided in Suppl. Tables 1-3 and the references cited therein.
Data analysis	GWAS summary statistics for the brain age gaps as well as the models needed to predict brain age in independent cohorts will be made available at github.com/tobias-kaufmann upon acceptance. Software used to analyse the data:
	- Freesurfer 5.3
	- Custom scripts in R 3.6, using packages xgboost 0.82, ggplot2 3.1, metafor 2.1, care 1.1, gplots 3.0, circlize 0.4, psych 1.8, ggridges 0.5, MatchIt 3.0
	- BrainageR for model comparison (https://github.com/james-cole/brainageR)
	- PLINK 1.9
	- LD Score regression (https://github.com/bulik/lsc)
	- Ensembl Variant Effect Predictor (https://www.ensembl.org/info/docs/tools/vep/index.html)
	- Matlab 2018 with conjunctural FDR 1.4

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The data incorporated in this work were gathered from various resources (see acknowledgements). Material requests will need to be placed with individual PIs. Corresponding authors Tobias Kaufmann (tobias.kaufmann@medisin.uio.no) and Lars T. Westlye (l.t.westlye@psykologi.uio.no) will provide additional detail upon correspondence.

Accession codes are provided in Supplementary Table 1.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences

Sample size

We have included data collected through collaborations, data sharing platforms, consortia as well as available in-house cohorts. No statistical methods were used to pre-determine sample sizes. We included as much data as we could gather (brain scans from N=45,615 individuals) and sample size of individual clinical groups is thus based on data availability.

Data exclusions

Raw T1 data for all study participants were stored and analysed locally at University of Oslo, following a harmonized analysis protocol applied to each individual subject data (Suppl. Fig. 1). We performed automated surface-based morphometry and subcortical segmentation using FreeSurfer 5.3. We deployed an automated quality control protocol executed within each of the contributing cohorts that excluded potential outliers based on the Euler number of the respective FreeSurfer segmentations. Euler number captures the topological complexity of the uncorrected FreeSurfer surfaces and thus comprises a proxy of data quality. In brief, for each scanning site we regressed age, age² and sex from the Euler number of the left and right hemispheres and identified scans that exceeded 3 standard deviations (SD) on either of the residualized Euler numbers. Suppl. Fig. 13 provides a validation of the approach against manual quality control. Data from a total of 977 individuals was excluded in this step, yielding 45,615 subjects for the main analysis. To further minimize confounding effects of data quality, we performed supplementary analyses using a subset of data, where a more stringent threshold was used for exclusion (1 SD on Euler numbers). Thus, supplemental analysis provides a sanity check with those subjects excluded (sample size: n = 40,301).

Replication

We split data into a training and test set. We validated the machine learning models using 5-fold cross validation within the training set. After verification of prediction accuracy, we applied the models to the independent test sets. We provide results from mega- and meta-analysis. Furthermore, to ensure that our results would replicate after more stringent outlier exclusion, we performed additional supplemental analysis as described above under "Data exclusions" and replicated the results in the respective subset of data with highest quality.

Randomization

We grouped all subjects into different samples. For each of the ten clinical groups, we identified a group of healthy individuals of equal size, matched on age, sex and scanning site from a pool of 4353 healthy control subjects. All remaining individuals were joined into one independent sample comprising healthy individuals only. The latter constituted a training sample, used to train and tune the machine learning models for age prediction (n = 35,474 aged 3-89 years; 18,990 females), whereas the ten clinical samples were used as independent test samples.

Blinding

The brain age prediction models were tuned within the training set. Thus, the results obtained in clinical groups are drawn from predictions in independent test sets.

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

Involved in the study
Antibodies
Eukaryotic cell lines
Palaeontology
Animals and other organisms
Human research participants
Clinical data

Methods

Involved in the study
ChIP-seq
Flow cytometry
MRI-based neuroimaging

Human research participants

Policy information about [studies involving human research participants](#).

Population characteristics

This study included data from healthy controls (HC; n = 39,827; 3-95 years), as well as from 5788 individuals with diverse brain disorders with typical onset age distributed across the lifespan. We included data from individuals with ASD (n = 925; 5-64 years) and ADHD (n = 725; 7-62 years), individuals with prodromal SZ or at risk mental state (SZRISK; n = 94; 16-42 years), individuals with SZ (n = 1110; 18-66 years), a heterogeneous group with mixed diagnoses in the psychosis spectrum (PSYMIX; n = 300; 18-69 years), individuals with BD (n = 459; 18-66 years), MS (n = 254; 19-68 years), MDD (n = 208; 18-71 years), MCI (n = 974; 38-91 years), and DEM (including Alzheimer’s disease; n = 739; 53-96 years). Supplementary Tables 1-3 provide details on the samples’ characteristics and scanning protocols.

Recruitment

Cohort-specific details on recruitment are provided in the referenced publications in Supplementary Table 1.

Ethics oversight

This is a re-analysis of previously published data from studies that have each received ethical approval. More information for each individual study is available in the referenced publications in Supplementary Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type

Anatomical scan

Design specifications

Information available in Suppl. Table 3 and the therein cites references.

Behavioral performance measures

No task was performed (anatomical scan)

Acquisition

Imaging type(s)

Structural, T1-weighted

Field strength

1.5T or 3T, see Suppl. Table 3

Sequence & imaging parameters

Suppl. Table 3

Area of acquisition

Whole brain

Diffusion MRI

- Used

Preprocessing

Preprocessing software

We employed a centralized and harmonized processing protocol including automated surface-based morphometry and subcortical segmentation using Freesurfer 5.3 (recon-all)

Normalization

We used standard procedures as implemented in Freesurfer recon-all.

Normalization template

Fssaverage

Noise and artifact removal

Standard pipelines for anatomical data were applied (Freesurfer recon-all). Euler number was calculated as a proxy of image quality and data from individuals with insufficient image quality were excluded.

Volume censoring

No volume censoring was performed (anatomical scan)

Statistical modeling & inference

Model type and settings

We used machine learning to predict brain age in an independent test set. Group statistics and association analyses
Model type and settings

Effect(s) tested

Specify type of analysis:

Anatomical location(s)

Statistic type for inference (See Eklund et al. 2016)

Correction

Models & analysis

n/a Involved in the study

Model type and settings were performed on the resulting brain age gaps. We controlled all associations and group differences for age, age², sex, scanning site and a proxy of image quality (Euler number).

Effect(s) tested

We used linear models to assess the effect of group on brain age gap within each test sample, accounting for age, age², sex, scanning site and Euler number. Given the relationship between P-values and sample size, we used Cohen's d effect sizes as the main statistical outcome, but also provide two-sided P-values alongside. Statistical analysis is based on Nakagawa and Cuthill (2007) and described in detail in the online methods section.

Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc 82, 591-605, doi:10.1111/j.1469-185X.2007.00027.x (2007).

Specify type of analysis:

Anatomical location(s)

Statistic type for inference (See Eklund et al. 2016)

Correction

Models & analysis

Multivariate modeling and predictive analysis

We utilized a recent cortical parcellation scheme (Glasser et al, reference above) to extract cortical thickness, area and volume for 180 regions of interest (ROI) per hemisphere. In addition, we extracted the classic set of cerebellar/subcortical and cortical summary statistics. This yielded a total set of 1118 structural brain imaging features (360/360/360/38 for cortical thickness/area/volume as well as cerebellar/subcortical and cortical summary statistics, respectively).

We used machine learning on this feature set to predict the age of each individual’s brain. First, we split the available data into a training sample and ten independent test samples (Fig. 1a). The test samples in total comprised 5788 individuals with brain disorders and 4353 healthy controls. For each of the ten clinical groups, we selected a set of healthy controls from the pool of 4353 individuals, matched for age, sex and scanning site using propensity score matching. Thus, data from some healthy individuals acted as control data in several test samples, yet each test sample had the same number of patients and controls and all subjects in the test samples were independent of the subjects in the training sample. The remaining datasets (45,615 – (5788+4353) = 35,474) went into the training set. For each sex, we trained machine learning models based on gradient tree boosting utilizing the xgboost package in R, chosen due to its resource efficiency and demonstrated superior performance in previous machine learning competitions, to predict the age of the brain using data available in the training set. First, model parameters were tuned using a 5-fold cross-validation of the training data. This step identified the optimal number of model training iterations by assessing the prediction error for 1500 rounds and implementing an early stopping if the performance did not improve for 20 rounds. Based on previous experience, the learning rate was preset to eta=0.01 and all other parameters were set to default for linear xgboost tree models. After determining the optimal number of training iterations, the full set of training data was used to train the final models with the adjusted rounds parameter. These models were used to predict brain age in the test samples, and the brain age gap (deviation between brain and chronological age) was computed. In line with a recent recommendation, all statistical analyses on the brain age gap accounted for age, age², sex and scanning site. In addition, to assess overall model performance, prediction models were cross-validated within the training set using a 5-fold cross validation, each fold implementing the above described training procedure and testing on the hold-out part of the training set. Brain age predictions on the level of individual brain regions followed the same procedures as those described for the full brain level, except that the feature set was reduced to cover only those features that overlapped more than 50% with a given lobe. Regions were defined following the Freesurfer lobesStrict segmentation as occipital, frontal, temporal, parietal, cingulate and insula. In addition, given the limited number of cerebellar features available in the Freesurfer summary statistics, cerebellar and subcortical features were grouped into a cerebellar/subcortical region (Fig. 1b). For additional validation, we compared our xgboost approach against two other approaches (Suppl. Fig. 3). One approach implemented a different machine learning algorithm on the same set of features (slm from the care package), whereas the other approach made use of a fully independent processing pipeline, feature set and algorithm (github.com/james-cole/brainageR). Furthermore, we assessed the impact of sample size on model performance by creating random subsets of data with sample sizes of 100, 500, 1000, 2000, 5000, 10,000, and 20,000 individuals (40 random subsets per sample size). For each subset and sample size we assessed model performance using cross-validation [See supplement for references to the methods described above]