Characterization and analysis of the molecular weight of corn corbs microcrystalline cellulose (MCC) fiber using mass-spectrometry methods

W R Kunusa, H Iyabu , M Taufik and D N Botutihe
Universitas Negeri Gorontalo, Indonesia

E-mail: rewinkunusa2014@gmail.com

Abstract. Microcrystalline cellulose (MCC) was isolated from corncobs waste. It was activated by NaOH solution with varied concentration in range from 4%, 6%, 8%, 10%, 12%, 14% and 17%. Characterization of physicochemical properties of microcrystalline cellulose (MCC) molecular weight was conducted by using Mass Spectrofotometer (MS).Preconditioning of MS used 20 μl injection volume, 10 μl concentration, acethonitrile : ultra water (50:50) as eluent.

The result showed that NaOH concentration affect to the type of oligosaccharides fragmentation with an increased abundance. MS spectra for NaOH 4% showed four major peaks at 834 m/z, 623 m/z, 425 m/z, 383 m/z that indicated 2-5 glucose polymers respectively, with an increased abundance with additional Na+ and K+ ions.NaOH 8%, 12%, 14%, 17% indicated the type of oligosaccharide fragmentation with equal three major peaks at 827 m/z, 623 m/z, 425 m/z. The fragmentation type of NaOH 10% and avicel standard pH 102, indicated 2-5 glucose polymers respectively, with an increased abundance with additional Na+ and K+ ions, there are peak at 827 m/z and 425 m/z, and there is no peak at 623 m/z because there are no Na+ and K+ ions.

1. Introduction
Cellulose is an interesting and sought of material due to current demands for green chemistry, more environmentally friendly resources and renewable raw material. The use of cellulose is therefore highly attractive because of it being renewable, biodegradable and non-toxic. Cellulose is a homopoly saccharide consisting of unbranched units of D-glucose (anhydroglucose) connected to 1 and 4 C atoms with β-glycosidic binding (β-1,4 glycosidic bond) [1]. Microcrystalline Cellulose (MCC) one of the cellulose derivative that can be obtained by enzimatik hydrolysis [2] extracted by acid hydrolysis with H2SO4, hydrochlorid acid [3] [4]. MCC is a purified, partially-polimeryzed form of cellulose occurring as a fine, freeflowing crystalline powder. MCC has been used for many years in different industries like pharmaceuticals, cosmetics, plastic, food etc [4]. Cellulose has four different crystalline forms named cellulose I-IV. The crystal structure of cellulose I in native cellulose can be converted to cellulose II by dissolution and regeneration or merserization [5].

Polymer characterization is generally performed to evaluate the quality of the synthesis or substitute product one of which is the determination of molecular weight. Molecule weight affects the cellulose dissolution process in the IONCELL-P process using 1-etil-3-methylimidazolium asetat ([emim] OAc) and water solvent. Degree of the crystalanillity, accessibility and reactivity of the cellulose chains are important properties of the cellulose [6]. Determination of molecular weight (BM), average molecular weight (Mw) and polydispersity index (D) depending on biomass source,
solvent usage pretreatment conditions and isolation methods. Cellulose has a high molecular weight (MW), with polymerization (DP) levels up to 20,000. The molecular mass value describes the polymeric molecular size distribution, an important variable determining the polymer's chemical properties. High molecular weight polymers have stronger properties. In other polymerizations, polymers with very low molecular weight distributions can be obtained [7].

The properties of polymers, such as viscosity depend on molecular weight and molecular weight distribution. Therefore, it is important to determine the average molecular weight associated with the distribution of specific molecular weights. The polymerization reaction produces a weight distribution and a molecular shape. The molecular weight of the polymer can be expressed as the average molecular weight, and polydispersity/Molecular Weight Distribution (MWD). The polydispersity index represents the quality of degradation. Molecular weight is highly influential on the physicochemical properties of cellulosic material [8] [9]. Some methods for determining these parameters are Gel Permeation Chromatography (GPC) and Mass Spectrometry (MALDI TOF-MS) and Size-Exclusion Chromatography, SEC is a technique of determining the molecular weight of polymers with a short time. The molecular weight can be expressed by the average molecular weight (Mn), average molecular weight (Mw), average molecular weight (Mz), average molecular weight of viscosity (Mv) [10] [11] [12]. Application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) for the determination of accurate molecular weight distribution corrected for chromatography brand broadening [13].

LC-MS-technique is used to determine the molecular weight of microcrystalline cellulose (MCC). Liquid chromatography (LC) is eminently suitable for separating soluble polymers. In Mass-Spectrometry (MS) the molecules in a sample are firstly ionized, than separated according to their mass to charge ratio (m/z) and finally detected. MS provides accurate information on the molecular weight of the separated and detected ions [10].

2. Research Method

2.1. Material, Chemicals and Tools
Corn cob from Milango Village, Pohuwato District, Gorontalo Province, Indonesia. Corn cob waste was cut into small pieces ± 2cm, washed with aquadest and in oven temperature 60°C-70°C for 24 hours. The dried sample is blended and in the shaked to obtain corn cob powder particles 180 micron by size [4]. The reagents were of analytical grades, NaOH (reagent grade, 98%), HCl (ACS reagent, 37%), H₂O₂ (technical grade) were supplied by Sigma-Aldrich, K₂Cr₂O₇, H₂SO₄, Avicel 102 (technical grade) a commercial brand of MCC, Ethanol (95% pa), Tholuene (95% pa) and distilled water used as solvent. Instruments using Shaker Digital ASTM E11 180 micron, pH meter (Thermo SCIENFIC ORION), LC-MS waters UPLC MS G-2 QTQF. System : ESI (Electrospray Ionization). Instrument condition of volume injection 20 µl, concentration 10 µl, acetonitrile:ultra water (50:50) as eluent.

2.2. Method
Cellulose isolation, purification of α-cellulose and the preparation of microcrystalline cellulose (MCC) is a modified procedure [4] that is : dewatering stage: 50 gr of 180micron corn cob powder was soxhleted in ethanol :tholuene (2:1) for 4 hours. Sample was filtered and washed until neutral pH, then it was oven-dried at 60°C for 8 hours. De-hemicellulose stage: 10 gr of 180 micron corn cob powder was dissolved into 200 mL of 4%, 6%, 8%, 10%, 12%, 14% and 17% NaOH solution. The mixture was heated on hot plate at 100°C for ± 2 hours. Then it was filtered and washed until neutral pH, oven-dried at 60°C. De-lignification and bleaching stage using H₂O₂ 4% for ± 1 hour at room temperature. Then sample was filtered and washed until neutral pH. It was oven-dried at 60°C for 8 hours. Further purification of α-cellulose was done by 5 gr of cellulose dissolved in 500 ml of 17.5% NaOH at 80°C for 30 min. Furthermore the precipitate was filtered and washed until neutral pH, and oven-dried at 60°C for 8 hours. The preparation of microcrystalline cellulose (MCC) that is: α-cellulose product was
hydrolysed with 0.1N HCl ratio 1:2 and refluxed at 80°C for ±2 hours. The precipitate was filtered and washed with aquadest until neutral pH and oven-dried at 60°C for 8 hours.

Microcrystalline Cellulose (MCC) product characterized by molecular weight using MS Analysis was performed using waters MS G-2 QTQF. Full scan mode from m/z 100 to 1200 was performed with a source temperature at 140°C. Solvent was Acetonitrile 50%.

3. Result and Discussion

3.1. Effect of NaOH concentration on α-cellulose acquisition

Degradation of the cellulose under alkalline condition starts from the reducing and group of the cellulose at moderate temperature 80-100°C [6]. Pretreatment process with NaOH was to lysis and reduce lignin and hemicellulose, to break the crystal structure of cellulose and to improve the porosity of sample [17]. The result showed that conversion ratio of cellulose is higher than enzymatic hydrolysis [19]. Produce isolation of cellulose with heating NaOH 4%, 6%, 8%, 10%, 12%, 14%, 17% and preparation of microcrystalline cellulose (MCC) at Figure 1.

![Figure 1](image1.jpg)

Figure 1. (a) produce of cellulose, (b) purification of α-cellulose, (c-d) preparation MCC

Here is the curve of purified α-cellulose content in variations of NaOH concentration of 4%, 6%, 8%, 10%, 12%, 14% and 17%.

![Figure 2](image2.jpg)

Figure 2. Effect of NaOH concentration on α-cellulose acquisition

NaOH 4% gave the highest α-cellulose content i.e. 60% (figure 2). When NaOH concentration was higher, the α-cellulose content decreased. It is because the bonds of cellulose chain are not tightly, therefore cellulose molecules had dispersed freely in NaOH solutions. This allows cellulose to pass when filtering and washing.[15] The addition of NaOH 5% (w/w) on Chlorella vulgaris at 50°C for 24 hour gave 9.8% of carbohydrate solubility compared with no NaOH added. When NaOH concentration
that add to Scenedesmus sp is higher, the solubility of carbohydrate increased. In addition, NaOH cause autohydrolysis reaction that make microorganism release hydrolize enzyme. Cellulose content of biomass was expected to increase in pretreatment process [18].

3.2. Effect of NaOH Concentration on Fragmentation Type of Oligosaccharida

Polymers are materials with chains of varying length, and each chain consists of monomer residues that affect its properties and thus require the characterization of several parameters [2]. There is influence of NaOH concentration to fragmentation type. If NaOH concentration increased, the spectra showed an increased abundance. The cellulose II crystallites in regenerated celluloses increase in size to the longitudinal direction by the alkaline treatment and acid hydrolysis. There are increase crystallinity size with alkaline treatment in 20% NaOH and acid hydrolysis at 105 °C[12]. Breakdown of cellulose structure will make cellulose lysis more easier. Simply sugar was the product of lysis, then will be fermented by certain microorganisms [16]. The following is a type of oligosaccharide fragment in several variations of NaOH concentration. The following types of oligosaccharide fragmentation in 4% NaOH,

![Figure 3. Fragmentation type of oligosaccharida with NaOH 4%](image)

Based on MS spectra of NaOH 4%showed that corncob samples were oligohosaccharide. Oligosaccharides consist of short chains of monosaccharide units combined by covalent bonds, including disaccharides having two monosaccharide units, eg sucrose or sugar cane consisting of 6-carbon D-glucose sugar and D-fructose. Most oligosaccharides have three or more non-free units but are combined as polypeptide side chains in glycoproteins and proteoglycans [14]. The ES-MS spectra of 4%NaOH show peak of ion [M]+ at 827,4257 m/z, andappropiate with molecular mass (Mr) of oligosaccharide (C30H50O26) 827,2669 g/mol. NaOH 4% gave higher α-selulosa content i.e 60% (Fig.2)This indicated the presence 5 polimer of glucose. The determination of the molecular weight of
the lignocellulose in the original biomass depends on the source of the bioresources used and the procedure and purification used. The average weight (Mn), average molecular weight (Mw) and polydispersity index (D) all vary greatly depending on biomass sources, pre-treatments and methods [6][7]. Here is (Figure. 4) the fragmentation of oligosaccharide:

Figure 4. Oligosaccharide fragmentation

Figure5. Fragmentation type of oligosaccharida with NaOH 8%
Figure 6. Fragmentation type of oligosakarida with NaOH 10%

Figure 7. Fragmentation type of oligosakarida with NaOH 12%

Figure 8. Fragmentation type of oligosakarida with NaOH 14%
Based on MS spectra of NaOH 8%,10%,12%,14%,17%showed that corncob samples were olishosacaride. Oligosaccharides consist of short chains of monosaccharide units combined by covalent bonds, including disaccharides having two monosaccharide units, eg sucrose or sugar cane consisting of 6-carbon D-glucose sugar and D-fructose. Most oligosaccharides have three or more non-free units but are combined as polypeptide side chains in glycoproteins and proteoglycans [14]. The ES-MS spectra of 8%,10%,12%,14%,17%NaOH show peak of ion [M]+ at 827,4257 m/z, and appropriate with molecule mass (Mr) of oligosaccharide (C₃₀H₅₁O₂₆•) 827,2669 g/mol. This indicated the presence 5 polimer of glucose. High radiation on celluose biomssa will increase surface area, reduce polymerization degree and celullose crystallinity, hydrolize hemicellulose and cause lignin de polimerizaati. When surface area is high, the glucose from celullose increased [20].

Spectra of ion [M]+ at 623,3440 m/z indicated the presence 3 glucose with additional ion 2Na and 2K ion, with molecular mass (Mr) 623,0363 g/mol. There are 3 possibilities i.e Na+ and 2K+ ions from ultra water still have mineral contaminant, Na+ and K+ ions as intraseluler ions in plant that carried away during extraction of cellulose with NaOH and K₂Cr₂O₇ as activator. Spectra peak [M+H]+ ion at 441,2422 m/z show 2 glucose with additional 2K+ and Na+ ions, that appropriate with molecular formula Mr440,0099 g/mol and molecular formula i.eC₁₂H₁₆K₂NaO₁₁. Spectra peak [M+H]+ ion at 425,2708 m/z show 2 glucose with additional K+ dan 2Na ions, that appropriate with molecular formula Mr424,0360 g/mol and molecular formula i.eC₁₂H₁₆KNa₂O₁₁.
Based on the result, compound inside concorbi.eccellobio oligosaccharide. Cellobiose is non reducing glucose that composite matrix of cellulose [14].There is elimination reaction at β-alkoxy group, if NaOH concentration increases 8%, 10%, 12%, 14%, 17%. This is causing the dissolved monosaccharide units and shortening the polysaccharide chain [1].The MS spectra of Avicel standard pH 102 indicate the type of oligosaccharide fragmentation with same two main peaks i.e at 827 m/z, that indicated the presence of 5 glucose polymers. The absence of spectra at 623 m/z peak showed that there is no additional Na+ and K+ in 3 glucose polymer.

Table 1. Interpretation oligosaccharide fragmentation with NaOH

No	m/z	Structure
1	827,4257	[G5]
2	827,3727	
3	827,3668	
4	827,3786	
5	827,3845	
6	827,3845	
7	827,3668	
8	827,3786	
9	827,3727	
10	827,4257	

4. Conclusions
If NaOH concentration increased, this is affect the type of fragmentation with increasing abundance. NaOH 4% shows the four main peaks of 834 m/z, 623 m/z, 425 m/z, 383 m/z respectively indicating the presence of 2 - 5 glucose polymers with an increased abundance i.e the addition of 2Na+ and 2K+. The concentration of NaOH 8%, 12%, 17% showed the type of oligosaccharide fragmentation with the same three main peak at 827 m/z, 623 m/z, 425 m/z. For NaOH 10%, the oligosaccharide fragmentation type indicated the presence of 2 - 5 Glucose polymers with an increased abundance of the addition of 2Na+ and K+ ions, with absence peak at 623 m/z.

Acknowledgements
Based on the research and the desired results for subsequent researchers to perform the measurement and analysis.

References
[1] Linnea N 2015 Preparation Methods for Nanocristalline Cellulose: Acid hidrolysis and various cellulose sources (Gothenburg-Sweden: Chalmers University of Tecnology.)
[2] Hermin S, Sutriyo, Hasty RS and Dianah R 2017 Preparation of Microcrystalline Cellulose from Water Hyacinth Powder by Enzymatic Hydrolysis Using Cellulose of Local Isolate Journal Young Parm (Jakarta : Universitas Indonesia) 99(1)
[3] Kunal D, Dipa R, N. R. Bandyopadhyay and Suparna S 2010 Journal of Polymers and the Environment 18(3) pp 355–363
[4] Lallduhsanga P, David C V, Shri K T, H. Lahlhenmawia 2014 Journal of App. Pharm. Sci.4(11) pp. 087-094
[5] Morgado DL, Frollini E, Possidonio S, El Seoul OA Ciacco GT 2010 Journal Brazil Chem. Soc. pp. 71-77
[6] Alireza M 2015 Influence of the molecular weight of cellulose on the solubility in ionic liquid-water mixtures Master’s thesis (Espoo-Finland : Faculty of Chemistry and Materials Sciences Department of Forest Product Technology)
[7] Allison T, Hannah A, Ratayakorn K, Amit K N, Arthur J R 2014 Characterization and analysis of the molecular weight of lignin for biorefining studies Journal Biofuels, Bioprod. Bioref. (Atlanta,GA, USA : Georgia Institute of Technology) DOI: 10.1002/bbb.150
[8] Kari V, Tom L, Asko K, Marcus L, Olli D 2016 Journal of Mat. Sci.51(12) pp 6019–6034
[9] Zoia L, King AW, Argyropoulos DS 2011 Journal Agric. Food Chem. 59(3) pp 829-38
[10] Peter J S and Chris G de K 2002 LC–MS of Synthetic Polymers: The Parable of the Lame and the Blind (Amsterdam : Swammerdam Institute for Life Sciences,University of Amsterdam)
[11] Oluwasina O, Lajide L and Owolabi B 2014 Microcrystalline Cellulose from Plant Wastes
through Sodium Hydroxide-Antraquinone-Ethanol Pulping Journal Bioresource (Akure,Nigeria : Federal University Of Technology, Department of Chemistry 9(4) pp 6166-6192

[12] Takuya I, Masahiro Y, Akira I 2008 Degrees of polymerization (DP) and DP distribution of dilute acid-hydrolyzed products of alkali-treated native and regenerated cellulosics Journal Cellulose (Tokyo Japan: The University of Tokyo Agricultural and Life Sciences) Volume 15, Issue 6, pp 815–823

[13] Satish N. Patkar and Prasad D. Panzade 2016 Fast and efficient method for molecular weight analysis of cellulose pulp, in-process and finished product Journal Analytical Method (Mumbai India : Aditya Birla Science and Technology Company) 8(15) Page 2981 to 3272

[14] Isaksen T, Westereng BJ 2014 Journal of Biological of Chem(JBC) (Europe PMC) 289(5)pp 2632-2642

[15] Mahdy A, Lara M, Mercedes B, Cristina GF 2014 Journal Energy 78 pp 48-52

[16] Mosier NS, Wyman C, Dale B,RichardE, Y Y Lee, MarkH, MichaelL 2005 Bioresource Tech.96(6) pp 673-686

[17] Sun Y and Cheng J 2002 Journal Bioresource Tech 83(11) pp 1–11

[18] Moh. Risal S, Yusuf H, and Wahyunanto A N 2014 Jurnal Teknologi Pertanian (Universitas Brawijaya : Indonesia 15 (2)

[19] Zhao X, Zhang L, and Liu D 2007 Journal Bioresource Tech. 99(9) pp 3729-3736

[20] Zheng Y, Pan Z, and Zhang R 2009 nt. Journal Agric & Biol Eng 2(3) pp 51 – 68