Binding affinity of metal ions to the CD11b A-domain is regulated by integrin activation and ligand

Kaouther Ajroud1, Takashi Sugimori1, Wolfgang H. Goldmann1, Dahmani Fathallah‡, Jian-Ping Xiong, and M. Amin Arnaout*

Leukocyte Biology and Inflammation Program, Renal Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129; ‡The Molecular Biotechnology Group, Institute Pasteur, Tunisia.

*Correspondence: M. Amin Arnaout, M.D.
Renal Unit
Massachusetts General Hospital
149 13th Street, Charlestown, Massachusetts, 02129
Tel: 617-726-5663
Fax: 617-726-5671
Email: arnaout@receptor.mgh.harvard.edu

1 Equal contributors

Running title: Affinity of metal ions to αA-integrins is regulated
Summary

The divalent cations Mg$^{2+}$ and Ca$^{2+}$ regulate the interaction of integrins with their cognate ligands, with Mg$^{2+}$ uniformly facilitating and Ca$^{2+}$ generally inhibiting such interactions in vitro. Since both cations are present in mM concentrations in vivo, the physiologic relevance of the in vitro observations is unclear. We measured the affinity of both cations to the inactive and active states of the ligand- and cation-binding A-domain (CD11bA) from integrin CD11b/CD18, in the absence and presence of the single-chain 107 antibody (scFv107), an activation-insensitive ligand-mimetic. Using titration calorimetry, we found that Mg$^{2+}$ and Ca$^{2+}$ display equivalent (mM) affinities to inactive CD11bA. Activation induced a ~10-fold increase in binding affinity of Mg$^{2+}$ to CD11bA with no change in that of Ca$^{2+}$ (106µM±16 and 2.1mM±0.19, respectively, n=4). This increase is largely driven by favorable enthalpy. scFv107 induced a 50-80-fold increase in binding affinity of Ca$^{2+}$ (but not Mg$^{2+}$ or Mn$^{2+}$) to either form of CD11bA. Thus the affinity of metal ions to integrins is itself regulated by the activation state of these receptors and by certain ligands. These findings, which we expect will be applicable in vivo, elucidate a new level of regulation of the integrin-metal-ligand ternary complex and help explain some of the discrepant effects of Ca$^{2+}$ on integrin-ligand interactions.
Introduction

Heterodimeric αβ integrins are a large family of cell surface receptors that mediate cell-cell and cell-matrix adhesion, thus regulating most functions of living cells (1,2). The divalent cation-dependent binding of physiologic ligands to integrins is triggered allosterically by “inside-out” activation signals that are propagated across the plasma membrane to induce ligand-competency of the ectodomain. Liganded integrins in turn initiate signals that travel from “outside-in” to modify cell behavior. This bidirectional signaling is tightly regulated to ensure the proper titration of cell adhesion to physiologic needs.

Structural studies of integrins have elucidated the basis of metal-dependent ligand binding (3-6). Integrins contain a ligand-binding von Willebrand Factor A-domain (vWFA) in the α- and/or β-subunits (αA and βA, respectively). αA (or I-domain) assumes a nucleotide-binding (Rossmann) fold, with a mostly parallel β-sheet surrounded by α-helices (Figure 1). Ligand binding is mediated by a divalent cation at the apex of the β-sheet, which coordinates side chains from three non-contiguous surface loops. A glutamate residue from the ligand completes an octahedral coordination sphere around the metal (Figure 1), with ligand binding specificity arising from additional contacts made with the surrounding surface of the integrin. The ligand-binding site in αA is named MIDAS (for metal ion-dependent adhesion site). Structural, mutagenesis and biophysical studies revealed an “open” and “closed” states of αA corresponding to active, and inactive states, respectively (7-9). The open and closed states in the native integrin are in a dynamic equilibrium that normally favors the closed state in quiescent cells (10). The open state (vs. closed) is characterized by a changed position and packing of the F-α7 loop (between the F strand and the c-terminal α7 helix), an inward movement of the α1 helix, and a 10Å downward slide of the α7 helix (11) (Figure 1). These tertiary changes alter metal ion coordination at MIDAS and the shape and charge of the MIDAS face, enabling it to bind physiologic ligands (5,6). The active state is favored/stabilized by bound ligand (7). It can also be induced allosterically by destabilizing the hydrophobic contact of α7 with the central β-sheet (8,10). This allosteric upregulation can be produced *in vitro* by a Gly substitution of the invariant α7 residue Ile316 which...
resides into the hydrophobic SILEN (site-for-isoleucine) pocket in inactive CD11bA (8,9)(Figure 1), or by engineered disulphides resulting in an open but unliganded conformation (12). In integrins with both αA and βA domains, a conserved C-terminal glutamate from open αA acts as an endogenous ligand, by contacting the MIDAS cation in βA (13,14). This allows the propagation of conformational changes from one domain to the other in the whole integrin, providing a basis for bidirectional signaling. The MIDAS face of liganded βA is decorated by two additional metal ions at ADMIDAS (adjacent to MIDAS) and at LIMBS (ligand-associated metal binding site), on either side of MIDAS (6). In unliganded βA, only ADMIDAS is occupied by a metal that links the α1 helix to the F-α7 loop, maintaining the integrin in a low affinity state. In the liganded state, a metal ion is bound at MIDAS with a ligand Asp completing its coordination sphere, in a manner strikingly similar to that in αA. In the liganded-state, the ADMIDAS metal ion shifts inwards towards MIDAS, helping to stabilize the MIDAS cation, with the α1 helix moving in unison. The F-α7 loop undergoes a major conformational change and its link with ADMIDAS is severed. A third metal ion occupies LIMBS, serving to also stabilize the MIDAS ion and therefore the stable binding of ligand (6). As in the case of αA, the changes in βA can be ligand-induced or may be triggered allosterically through a conformational switch of the F-α7 loop driven directly by an inside-out signal as proposed in the deadbolt model (2).

It is established that the nature of the metal ion plays a critical role in regulating ligand binding affinity to αA (reviewed in (15)). In many αA-integrins, μM Mg\(^{2+}\) or Mn\(^{2+}\) (but not μM Ca\(^{2+}\)) supports ligand binding and mM Ca\(^{2+}\) blocks Mg\(^{2+}\)-mediated adhesion (16-21). On the other hand, μM Ca\(^{2+}\) was found to support ligand binding to some αA domains (21) and to the respective native integrins (22-24), an effect that can be mediated through a direct coordination of Ca\(^{2+}\) at MIDAS (21,25). The reason(s) for the opposing effects of Ca\(^{2+}\) on ligand binding in αA integrins is not well understood. Further, since human plasma contains mM concentrations of Mg\(^{2+}\) and Ca\(^{2+}\), the physiologic relevance of the above observations is currently unclear.

Despite extensive studies of the role of metal ions in integrin function, the possibility
that metal ion binding to integrins is itself regulated by the activation state of the integrin has not been explored. One reason is that integrins contain multiple metal binding sites, making such a determination in the native integrin difficult (6). Second, some physiologic ligands contain metal-binding sites of their own, complicating such an analysis (26,27). Third, physiologic ligands bind integrins in an activation-dependent manner (1) making it difficult to evaluate an independent role of integrin activation on metal ion binding affinity per se. Forth, physiologic ligands form multivalent interactions with integrins, sometimes with distinct metal ion requirements; for example, binding of integrin CD11a/CD18 to CD54 is Mg\(^{2+}\)-dependent, yet clustering of this integrin is Ca\(^{2+}\)-dependent (28). The feasibility of producing functionally- and structurally-defined water-soluble forms of \(\alpha A\) (8,9) and the availability of an activation-independent ligand-mimetic mAb 107 (29) allowed us to explore if metal ion affinity is regulated by the activation state of \(\alpha A\) and/or by ligand. We found that while both Mg\(^{2+}\) and Ca\(^{2+}\) display low (mM) affinity to MIDAS in inactive \(\alpha A\) from integrin CD11b/CD18 (CD11bA), Mg\(^{2+}\) selectively binds to MIDAS with \(\mu\)M affinity in the active state. The single-chain mAb 107 (scFv107) induced a dramatic increase in affinity of MIDAS to Ca\(^{2+}\), favoring it over Mg\(^{2+}\). The significance of these findings is discussed.

Experimental Procedures

Protein Purification

The inactive form of CD11bA was generated by expressing a protein fragment spanning residues Gly\(^{123}\)-Gly\(^{321}\) (CD11bA\(^{123-321}\)) of human CD11b (8). The active form of CD11bA was made by replacing Ile\(^{316}\) with Gly (CD11bA\(^{1316G}\)) (8). The MIDAS-defective mutant CD11bA\(^{D242A}\) was described (3). All proteins were expressed as GST-fusion proteins in *Escherichia coli*, purified by affinity chromatography, cleaved with thrombin to release recombinant CD11bA, and further purified by ion exchange chromatography on a HiTrap SP Sepharose HP column (Pharmacia, Uppsala, Sweden) using FPLC (Pharmacia). Purified preparations of CD11bA were dialyzed against 20mM Tris-HCl, pH 7.5, 150mM NaCl (TBS).
Expression and purification of single chain 107

cDNAs encoding the variable heavy (VH) and kappa light chains (VL) of monoclonal antibody 107 were isolated by reverse transcription of mRNA derived from the 107 hybridoma cell line (29), using standard primers (30). A 93-bp DNA fragment encoding the flexible linker peptide (Gly4Ser)3 (Pharmacia Biotech) was used to join the VH and VL cDNAs, generating the cDNA encoding scFv107. The latter was cloned into pPICZαB (Invitrogen) with a thrombin cleavage site and a polyhistidine tag introduced C-terminally. The construct was then fully sequenced. The Bstx I-linearized vector was electroporated into yeast Pichia Pastoris KM71H strain (Invitrogen) and zeocin-resistant clones were selected. Detection of secreted scFv107 was done by western blotting using anti-mouse Fab (Sigma). Large-scale protein expression was done as follows: Yeast was grown at 30°C in buffered glycerol complex medium (BMGY) with maximum aeration (250rpm) until the culture reached an A₆₀₀ between 2-6. To induce protein expression, cells were centrifuged (1,500-3,000g) for 10 min at room temperature and resuspended at 1/10th of the original culture volume in buffered methanol complex medium (BMMY) containing 5% casamino acids. To maintain induction, methanol was added to a final concentration of 1% every 24hrs. The time course of protein expression was followed until 120 hours. The culture was then centrifuged and the supernatant concentrated using Amicon concentrator (Millipore) and dialyzed against 50mM sodium acetate, pH=5. Dialyzed scFv107 (lacking the His tag) was passed through a cation-exchange SP column using FPLC (Pharmacia) and eluted with 160-300mM sodium chloride, fractions were pooled, immediately dialyzed against 20mM Tris-HCl, pH=8.2 and concentrated using Centricon (Millipore) to a final concentration of 1 mg/ml. A ligand-defective scFv107 mutant was generated by replacing the putative Asp107 ligand in the heavy chain complementarity-determining region 3 (H-CDR3) with Gly (scFv107D¹⁰⁷G).

Surface Plasmon Spectroscopy (SPR)

SPR (BIACore AB, Uppsala, Sweden) was used to measure the kinetic parameters (apparent association and dissociation rate constants, Kₐ and Kₖ, respectively) and the apparent equilibrium constants (Kₐ) of binding of inactive and active CD11bA to the physiologic ligand iC3b or to scFv107. iC3b, purified as described
(31) or scFv107 was covalently coupled via primary amine groups to the dextran matrix of a CM5 sensor chip (BIAcore). Chips treated in the same way using bovine serum albumin or no protein were used as a negative controls. CD11bA (0.5μM) was flowed over the iC3b-, scFv-, BSA-coupled or bare CM5 sensor chips at 5 μl/min in TBS running buffer, containing 0.005% P20, MgCl₂+CaCl₂ (at 1 mM each) or various concentrations of CaCl₂ (0-1mM). 1M NaCl in 20 mM Tris-HCl, pH 8.0 or 10 mM HCl followed by 10mM EDTA was used to remove the bound proteins on the chip and regenerate the surface. The binding data (after subtracting the background binding to BSA-coupled surface) were analyzed by the linear transformation method to obtain the kinetic constants (32).

Titration Calorimetry

The heat flow resulting from the binding of metal ions to CD11bA, with or without ligand, was measured with high-sensitivity isothermal titration calorimetry using a Microcal VP-ITC microcalorimeter (Microcal, Northampton, MA) with a reaction cell volume of \(V_{\text{cell}} = 1.4037 \) ml. CD11bA and scFV107 proteins were extensively dialyzed overnight at 4°C in TBS. In a typical binding experiment, the calorimeter cell contained 0.1 mM CD11bA or scFv107 alone or a premixture of both (each at 0.1mM), stirred at 260 rpm at 298K (25°C). In each case, the protein(s) was titrated with \(V_{\text{inj}}=5-10 \) μl of a concentrated metal ion solution, injected 30 times at 2.5-5 minute intervals. Each injection increased the total metal ion concentration in the calorimeter cell stepwise by \(\delta_c = 6.2 \) μM. At the same time, the reaction volume was also increased and a correction factor was applied for both reactant concentrations. For each titration, the corresponding control titrations were performed, i.e., the metal ion solution was injected into pure buffer or pure buffer injected into the protein solution and the corresponding heats of dilution subtracted from the heats measured for the binding reaction. All solutions were degassed immediately before use. The heats of protein dilutions were insignificant, so only the metal ion dilutions were used to correct total heats of binding prior to data analysis. The integrated heat effects were analyzed by nonlinear regression methods using the standard Microcal ORIGIN software package #5. The experimental data were fitted to a model for simple binding to a single class of sites (n) on the protein. The enthalpy of binding,
\(\Delta H\) (kcal/degree/mol), was directly determined from the heat release, which is independent of the binding model. The association binding constant, \(K\) (M\(^{-1}\)) and the entropy, \(\Delta S\) (cal-degree/mol), associated with each binding reaction were calculated from the standard expression: \(\Delta G = -RT\ln K = \Delta H - T\Delta S\). Values and uncertainties for \(K\), \(\Delta H\), and \(\Delta S\) are weighted averages and weighted standard deviations from three or four titration runs, using the \(\chi^2\) values and errors recovered from the fits. Values and uncertainties for the rest of the parameters were determined from these weighted average values and the propagation of their errors.

Results

Characterization of CD11bA and scFv107 recombinant proteins

Gel electrophoresis of the purified inactive and active CD11bA, CD11bA\(^{D242A}\), and scFv107 on SDS-containing reducing 12% polyacrylamide gels revealed single Coomassie Blue-stained bands of the expected molecular mass (Figure 2A). Active but not inactive CD11bA bound to the physiologic ligand iC3b in Ca\(^{2+}\)-Mg\(^{2+}\)-containing buffer, as previously shown (8). As in the case of the native 107 mAb (29), Ca\(^{2+}\) alone mediated optimal binding of the activation-insensitive ligand-mimetic scFv107 to CD11bA (Figure 2C). This binding required an intact MIDAS, as the CD11bA\(^{D242A}\) mutant, known to prevent metal ion coordination at MIDAS (3), abolished CD11bA-scFv107 interactions. Binding of scFV-107 to inactive CD11bA required Asp107 in H-CDR3 loop, as replacement of this residue with a glycine (D107G) markedly reduced the interaction (Figure 1C).

Interaction of Mn\(^{2+}\) with active and inactive CD11bA

Use of titration calorimetry to measure affinity of metal ions to CD11bA was first established using Mn\(^{2+}\), a metal ion that binds to the integrin with high affinity (3). A solution of inactive CD11bA (0.1mM) in the calorimeter cell was titrated with a 0.65 mM solution of MnCl\(_2\) at 25°C. As the metal ion is added, heat is released and as titration continued, the free protein concentration in the cell decreased. The heats of the reaction after integration of the titration peaks are shown in Figure 3A; injection of the same metal ion solution into pure buffer had negligible heats of reaction. The ion-into-protein titration led to complete binding of CD11bA, with half maximal
heat amplitude obtained at Mn$^{2+}$/inactive CD11bA of ~1.0 (Figure 3A), consistent with the presence of CD11bA in a monodisperse form and in agreement with the existing crystallographic data (11). The binding isotherm for the Mn$^{2+}$-inactive CD11bA interaction is characteristic of an exothermic single binding site interaction with µM binding affinity (37±6, n=4, Table 1) and an observed enthalpy change (ΔH^o) of -5.87±0.20 kcal/mol of Mn$^{2+}$ (mean±SD, n=4)(Table 1). The standard free energy, ΔG^o = -6.04±0.10 is primarily enthalpy driven, accounted for by formation of new metal-protein bonds, with negligible contribution by a favorable temperature-dependent entropy ($T\Delta S^o$=0.17±0.01), resulting from the restricted movement of Mn$^{2+}$ and CD11bA as they are joined together. The binding affinity of Mn$^{2+}$ to active CD11bA proceeded with similar kinetics, with a ΔG^o = -6.37±0.21, again driven primarily by favorable enthalpy (ΔH^o=-9.84±0.86) (Figure 3A and Table 1).

Interaction of Mg$^{2+}$ with inactive and active CD11bA

In contrast to Mn$^{2+}$, the binding affinity of Mg$^{2+}$ to the inactive and active forms of CD11bA were dramatically different. Binding to the former was of low affinity (0.937±0.088mM)(Figure 3B and Table 1), driven largely by favorable entropy ($T\Delta S^o$=3.48±0.14), with minimal contribution from enthalpy (ΔH^o =-0.65±0.23). With activation, the binding affinity of Mg$^{2+}$ increased by ~ 10 fold (Kd=106±16µM), largely driven by favorable enthalpy (ΔH^o =-6.34±0.38), as with Mn$^{2+}$ binding to active CD11bA. Half-maximal heat amplitude was obtained at a Mg$^{2+}$/active CD11bA of ~1.0, consistent with the presence of a single metal ion at MIDAS (4).

Interaction of Ca$^{2+}$ with active and inactive CD11bA

We next assessed the binding affinity of Ca$^{2+}$ to the two conformations of CD11bA. In both cases the binding affinity was very low (~2mM) (Figure 3C, and Table 1), largely driven by favorable entropy (Table 1), as seen above with Mg$^{2+}$ binding to inactive CD11bA.

Effect of ligand on the thermodynamics of metal ion-CD11bA interactions

The binding affinity of the three metal ions to the inactive and active forms of CD11bA was next measured in the presence of scFv107. None of these metal ions bound to scFv107 directly in the absence of CD11bA (Figure 4A-C). Whereas the
binding affinity of Mn$^{2+}$ or Mg$^{2+}$ to CD11bA did not change significantly, a 50- and 80-fold increase in Ca$^{2+}$ binding to inactive and active CD11bA, respectively were observed (Figure 4C and Table 1). The binding energy for the Ca$^{2+}$-inactive CD11bA interaction is driven largely by favorable enthalpy; both favorable enthalpy and entropy contributed to Ca$^{2+}$ binding to active CD11bA (Table 1). In both cases, half-maximal heat amplitude is obtained at a Ca$^{2+}$:CD11bA molar ratio of ~1.0, consistent with the presence of a single Ca$^{2+}$ binding site in CD11bA. This is most likely at MIDAS, as no binding of scFV107 to the MIDAS-defective mutant CD11bAD242A occurs (Figure 2C).

Discussion
The major finding in this report is that the activation state as well as ligand regulate metal ion binding affinity to CD11bA. Activation induced a 10-fold increase in the binding affinity of Mg$^{2+}$ but not Ca$^{2+}$ to CD11bA. On the other hand, the ligand-mimetic scFV107 induced a dramatic increase in the binding affinity of Ca$^{2+}$ but not Mg$^{2+}$ to CD11bA.

As previously shown, Mn$^{2+}$ binds to inactive or active CD11bA with high (μM) affinity (3) and both Mn$^{2+}$-CD11bA interactions are dominated by favorable enthalpy. This high affinity is most likely accounted for by the known high electronegativity of this metal ion. The low binding affinity of Mg$^{2+}$ to the inactive state and of Ca$^{2+}$ to both inactive and active states are largely driven by favorable entropy with little or negligible contribution from enthalpy, consistent with their lower electronegativity. In this case, the favorable entropy could arise from electrostatic steering which maximizes the frequency of productive encounters (33), from an increase in configurational entropy as a result of increased protein backbone or side chain mobility (34), or from release of solvent water from the metal:CD11bA binding interface (35), since the entropy of water increases as it leaves the protein surface to buffer. The single water molecule lost from MIDAS when CD11bA is liganded only contributes ~0.69±0.48 kcal/mol (36) to the favorable ΔG of the interaction (~-4 kcal/mol), suggesting more important contributions from configurational entropy and electrostatic steering.
Whereas Mg\(^{2+}\) showed little binding to inactive CD11bA, it displayed a much higher affinity to the active state. The observed ~10-fold increase in affinity of Mg\(^{2+}\) to active CD11bA was driven largely by a favorable change in enthalpy and did not require binding of ligand (binding of scFv107 to CD11bA did not change Mg\(^{2+}\) affinity). These data indicate that integrin activation per se accounts for the dramatic increase in Mg\(^{2+}\) affinity to CD11bA. Coordination of the MIDAS metal ion is octahedral in both the closed and open states of CD11bA (4,11). In the closed state, the bound metal ion is directly coordinated by the invariant hydroxyl oxygens of Ser142 and Ser144 from the conserved AspxSerxSer motif (loop 1), the invariant carboxylate of Asp242 (loop 3) and indirectly by the invariant Thr209 (loop2) and Asp140 (loop1) through two water molecules (Figure 1). A third water molecule completes the metal coordination sphere. In the open “liganded” state, the hydroxyl oxygen of the Thr209 (loop 2) replaces Asp242 in directly coordinating the MIDAS metal ion, reducing its electrophilicity and facilitating a direct coordination of this metal by a glutamate from an exogenous ligand (Figure 1). The present findings indicate that MIDAS displays a much higher affinity to Mg\(^{2+}\) in its open vs. closed configuration. This appears to be largely due to formation of a metal:protein bond (via the hydroxyl oxygen of Thr209) which may account for the fact that the observed increase in affinity is largely enthalpy-driven (Table 1).

In contrast to Mg\(^{2+}\), the low (mM) affinity of Ca\(^{2+}\) to CD11bA was dramatically increased by ligand binding, with activation adding only slightly to the binding affinity. This increase was largely driven by a favorable change in enthalpy, which results from formation of a bond between the metal ion and the ligand Asp (Table 1). mAb 107 binds to the MIDAS face of CD11bA in a metal-dependent but activation-independent manner (29), a characteristic of competitive protein antagonists of integrins such as NIF (29,37) and mAb AQC2 (38), which inhibit CD11b/CD18 and α1β1, respectively. In the case of mAb107, this interaction requires an intact MIDAS and Asp107 from the H-CDR3 loop (Figure 2C). A recently determined crystal structure of an αA from integrin α1β1 in complex with mAb AQC2 in the presence of Mn\(^{2+}\) shows that an Asp from the H-CDR3 loop of the antibody coordinates the MIDAS ion directly as in the open state, but without the
downward movement of the c-terminal α7 helix (38). Modeling of the antigen-binding site of mAb107 on that of the AQC2-integrin complex predicts that Asp107 from mAb107 may act as MIDAS-coordinating ligand (not shown). Thus Asp107 from scFv107 may create a highly favored Ca\(^{2+}\) coordination site at MIDAS, accounting for the dramatic increase in binding affinity of Ca\(^{2+}\) to closed CD11bA/scFv107 complex. It is also interesting to note that the critical influence of ligand on Ca\(^{2+}\) binding to MIDAS has also been observed in the βA domain. In protein crystals of the αA-lacking integrin αVβ3, the βA MIDAS is metal-bound in the presence but not absence of the prototypical RGD ligand (5,6). Also, in native α4β1 (39) and α9β1 (40), a rapidly exchangeable Ca\(^{2+}\)-binding site, presumably at MIDAS, and of a similar affinity to that observed here for αA, is only detected in the presence of the ligand. Taken together, these data support the existence of a coupled equilibrium between ligand binding and MIDAS ion binding that is applicable not only to βA (39) but also to αA domains in integrins.

Previous studies have shown that Mn\(^{2+}\) or Mg\(^{2+}\) but not Ca\(^{2+}\) support binding of physiologic ligands to active CD11bA. In these cases, a ligand glutamate (rather than an aspartate) engages the MIDAS ion directly (7,12). In view of the preferred Ca\(^{2+}\)-donor atom distances derived recently (41), we suggest that the longer glutamate side chain of physiologic ligands like iC3b and CD54 may prevent Ca\(^{2+}\) from forming a ternary ligand/metal/integrin complex. In the structure of CD11aA-CD54-Mg\(^{2+}\) complex for example, the extra 1.52Å methyl group of the ligand glutamate may create a steric conflict for Ca\(^{2+}\) if it were to replace the MIDAS Mg\(^{2+}\) in this structure. In other instances where Ca\(^{2+}\) has been shown to support physiologic (glutamate-based) ligand binding (21), it is conceivable that the nature of the ligand binding interface allows an optimal coordination of Ca\(^{2+}\) at MIDAS. The present findings help explain several of the apparently discrepant effects of Ca\(^{2+}\) on αA-integrins. The present studies also reveal a potential activation-driven Ca\(^{2+}\):Mg\(^{2+}\) exchange at MIDAS taking place under the physiologic mM concentrations of these cations, which may contribute to dynamic adhesion *in vivo.*
Acknowledgment

This work was supported by NIDDK grants from the National Institutes of Health.
References

1. Hynes, R. O. (2002) Cell 110, 673-687
2. Xiong, J. P., Stehle, T., Goodman, S. L., and Arnaout, M. A. (2003) Blood 102, 1155-1159
3. Michishita, M., Videm, V., and Arnaout, M. A. (1993) Cell 72, 857-867
4. Lee, J. O., Rieu, P., Arnaout, M. A., and Liddington, R. (1995) Cell 80, 631-638
5. Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Goodman, S. L., and Arnaout, M. A. (2001) Science 294, 339-345
6. Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002) Science 296, 151-155
7. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000) Cell 101, 47-56
8. Xiong, J. P., Li, R., Essafi, M., Stehle, T., and Arnaout, M. A. (2000) J Biol Chem 275, 38762-38767
9. Vorup-Jensen, T., Ostermeier, C., Shimaoka, M., Hommel, U., and Springer, T. A. (2003) Proc Natl Acad Sci U S A 100, 1873-1878
10. Li, R., Rieu, P., Griffith, D. L., Scott, D., and Arnaout, M. A. (1998) J Cell Biol 143, 1523-1534
11. Lee, J. O., Bankston, L. A., Arnaout, M. A., and Liddington, R. C. (1995) Structure 3, 1333-1340
12. Shimaoka, M., Xiao, T., Liu, J. H., Yang, Y., Dong, Y., Jun, C. D., McCormack, A., Zhang, R., Joachimiak, A., Takagi, J., Wang, J. H., and Springer, T. A. (2003) Cell 112, 99-111
13. Alonso, J. L., Essafi, M., Xiong, J. P., Stehle, T., and Arnaout, M. A. (2002) Curr Biol 12, R340-342
14. Yang, W., Shimaoka, M., Salas, A., Takagi, J., and Springer, T. A. (2004) Proc Natl Acad Sci U S A 101, 2906-2911
15. Leitinger, B., McDowall, A., Stanley, P., and Hogg, N. (2000) Biochim Biophys Acta 1498, 91-98
16. Dransfield, I., Cabanas, C., Craig, A., and Hogg, N. (1992) J Cell Biol 116, 219-226
17. Grzesiak, J. J., Davis, G. E., Kirchhofer, D., and Pierschbacher, M. D. (1992) J Cell Biol 117, 1109-1117
18. Kern, A., Eble, J., Golbik, R., and Kuhn, K. (1993) Eur J Biochem 215, 151-159
19. Luque, A., Sanchez-Madrid, F., and Cabanas, C. (1994) FEBS Lett 346, 278-284
20. Mould, A. P., Akiyama, S. K., and Humphries, M. J. (1995) J Biol Chem 270, 26270-26277
21. Calderwood, D. A., Tuckwell, D. S., Eble, J., Kuhn, K., and Humphries, M. J. (1997) J Biol Chem 272, 12311-12317
22. Masumoto, A., and Hemler, M. E. (1993) J Cell Biol 123, 245-253
23. Smith, J. W., Piotrowicz, R. S., and Mathis, D. (1994) J Biol Chem 269, 960-967
24. Onley, D. J., Knight, C. G., Tuckwell, D. S., Barnes, M. J., and Farndale, R. W. (2000) J Biol Chem 275, 24560-24564
25. Griggs, D. W., Schmidt, C. M., and Carron, C. P. (1998) J Biol Chem 273, 22113-22119
26. Doolittle, R. F., Spraggon, G., and Everse, S. J. (1998) Curr Opin Struct Biol 8, 792-798
27. Guermonprez, P., Khelef, N., Blouin, E., Rieu, P., Ricciardi-Castagnoli, P., Guiso, N., Ladant, D., and Leclerc, C. (2001) J Exp Med 193, 1035-1044
28. van Kooyk, Y., Weder, P., Heije, K., and Figdor, C. G. (1994) J Cell Biol 124, 1061-1070
29. Li, R., Haruta, I., Rieu, P., Sugimori, T., Xiong, J. P., and Arnaout, M. A. (2002) J Immunol 168, 1219-1225
30. Orlandi, R., Gussow, D. H., Jones, P. T., and Winter, G. (1989) Proc Natl Acad Sci USA 86, 3833-3837
31. Li, R., and Arnaout, M. A. (1999) Methods Mol Biol 129, 105-124
32. Karlsson, R., Fagerstam, L., Nilshans, H., and Persson, B. (1993) J Immunol Methods 166, 75-84
33. Janin, J. (1997) Proteins 28, 153-161
34. Lee, K. H., Xie, D., Freire, E., and Amzel, L. M. (1994) Proteins 20, 68-84
35. Brady, G. P., and Sharp, K. A. (1997) Curr Opin Struct Biol 7, 215-221
36. Habermann, S. M., and Murphy, K. P. (1996) Protein Sci 5, 1229-1239
37. Rieu, P., Ueda, T., Haruta, I., Sharma, C. P., and Arnaout, M. A. (1994) J Cell Biol 127, 2081-2091
38. Karpusas, M., Ferrant, J., Weinreb, P. H., Carmillo, A., Taylor, F. R., and Garber, E. A. (2003) J Mol Biol 327, 1031-1041
39. Chen, L. L., Whitty, A., Scott, D., Lee, W. C., Cornebise, M., Adams, S. P., Petter, R. C., Lobb, R. R., and Pepinsky, R. B. (2001) *J Biol Chem* **276**, 36520-36529
40. Pepinsky, R. B., Mumford, R. A., Chen, L. L., Leone, D., Amo, S. E., Riper, G. V., Whitty, A., Dolinski, B., Lobb, R. R., Dean, D. C., Chang, L. L., Raab, C. E., Si, Q., Hagmann, W. K., and Lingham, R. B. (2002) *Biochemistry* **41**, 7125-7141
41. Harding, M. M. (2001) *Acta Crystallogr D Biol Crystallogr* **57**, 401-411
Figure Legends

Figure 1: Structural comparisons of closed and open CD11bA. A) Ribbon diagrams of the superimposed structures of closed (blue) and open (red) CD11bA. The MIDAS cation for each structure is indicated in the respective color. The invariant Ile316 is in green in the closed form but invisible in the open structure. The major conformational differences are indicated (see text for details). B, C) MIDAS cation (cyan) coordination in closed (B) and open (C) CD11bA by residues from three surface loops. Selected hydrogen bonds are shown as blue dotted lines. Aminoacid sidechains are in green with oxygen atoms in red. The backbone is in grey. The ligand glutamate is in gold. Water molecules are labelled ω1-ω3.

Figure 2: Analysis of recombinant proteins. Reduced SDS-PAGE (12%) analysis of purified iC3b (lane 2), wild-type scFv107 (lane 3), inactive- (lane 4), active (lane 5) and metal-defective (CD11bA D242A) (lane 6) CD11bA. Lane 1, molecular weight markers in kD (BioRad #161-0373: 250, 150, 100, 75, 50, 37, 25, 20, 15, 10). 3-5µg were applied in each lane. B) Sensorgrams recording the interaction of soluble active and inactive CD11bA and CD11bA D242A with the activation-dependent ligand iC3b (9,500RU, immobilized on the sensor chip) in the presence of 1 mM Mg2+ plus 1mM Ca2+. Background binding to the BSA-coupled chip was subtracted. C) Sensorgrams showing binding of soluble inactive CD11bA to the activation-independent ligand-mimetic scFv107 (3,743 RU immobilized on the sensor chip), in the presence of different calcium concentrations. Binding in the absence of added Ca2+ is also shown (no added Ca2+). CD11bA-scFv107 interactions in 1mM Ca2+ when CD11bA D242A or immobilized scFv107 D107G (D107G, 4,036 RU) used with the wild-type partner are indicated. Background binding to the BSA-coupled sensor chip in 1mM Ca2+ is also shown.

Figure 3: Affinity of divalent cations to inactive and active CD11bA. Isothermal titration calorimetry of divalent cation binding to inactive and active CD11bA. A-C, Heats of reaction (Kcal) derived from integration of the heat flow peaks per mole of the injected metal ion as a function of the molar ratio of the metal ion/CD11bA. The solid lines represent the least-square fit to a single binding site model after
subtracting the heat of dilution data (-x—x-). The integrated heat of binding of Mn\(^{2+}\) (A), Mg\(^{2+}\) (B) or Ca\(^{2+}\) (C) to inactive (circles) and active (rectangles) CD11bA at 298 K (25°C) are shown.

Figure 4: Role of ligand in regulating affinity of divalent cations to CD11bA.

Isothermal titration calorimetry of divalent cation binding to inactive and active CD11bA in the presence of scFv107 (A-C). Integrated heat of binding of Mn\(^{2+}\) (A), Mg\(^{2+}\) (B) or Ca\(^{2+}\) (C) to inactive (circles) and active (rectangles) CD11bA at 298 K (25°C) are shown. Data were fit to a single binding site model after subtracting the heat of dilution data as in Figure 3. No metal binding was observed to scFv107 alone in A-C (-x—x-).
Metal ion	Inactive					Active			
	K_d	TΔS o	ΔH o	ΔG o		K_d	TΔS o	ΔH o	ΔG o
A. No ligand									
Mn^{2+}	37 ± 6	0.17±0.01	-5.87±0.20	-6.04±0.10		21±7	-3.47±0.53	-9.84±0.86	-6.37±0.21
Mg^{2+}	937 ± 88	3.48±0.14	-0.65±0.23	-4.13±0.06		106±16	-0.92±0.23	-6.34±0.38	-5.42±0.09
Ca^{2+}	1900 ± 420	3.64±0.10	-0.07±0.06	-3.71±0.13		2100±190	3.62±0.04	-0.02±0.02	-3.65±0.05
B. Plus scFv107									
Mn^{2+}	32 ± 5	-3.83±0.24	-9.96±0.39	-6.13±0.06		21±2	-5.28±0.17	-11.65±0.24	-6.37±0.06
Mg^{2+}	1010 ± 101	3.48±0.16	-0.60±0.25	-4.08±0.06		102±15	1.09±0.23	-4.34±0.37	-5.44±0.09
Ca^{2+}	40 ± 4	-0.80±0.15	-6.79±0.25	-5.99±0.09		25±3	-10.36±0.19	-16.83±0.30	-6.27±0.07
A.
B.
C.

Kcal/mole of injectant vs. Molar Ratio (cation : 11bA)
Binding affinity of metal ions to the CD11b A-domain is regulated by integrin activation and ligand
Kaouther Ajroud, Takashi Sugimori, Wolfgang H. Goldmann, Dahmani F. Fathallah, Jian-Ping Xiong and M. Amin Arnaout

J. Biol. Chem. published online April 7, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M402901200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts