Hadronic Light-by-Light Contribution to Muon g-2

Joaquim Prades

CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva, E-18002 Granada, Spain.

Abstract

I present the main results obtained in a recent work together with Eduardo de Rafael and Arkady Vainshtein on the hadronic light-by-light contribution to muon g-2. We came to the estimate \(a_{\mu}^{HLbL} = (10.5 \pm 2.6) \times 10^{-10} \). Here, some emphasis is put in pointing out where the future KLOE2 two-photon experimental program can help to reduce the present model dependence of \(a_{\mu}^{HLbL} \).

May 2009

\(^1\)Contributed to “KLOE2 Physics Workshop”, April 9-10 2007, Frascati, Italy.
1 Introduction

One of the six possible photon momenta configuration to the hadronic light-by-light (HLbL) contribution to the muon anomalous magnetic moment $a = (g_\mu - 2)/2$ is shown in Fig. 1 and described by the vertex function

$$\Gamma^\mu(p_2, p_1) = -e^6 \int \frac{d^4k_1}{(2\pi)^4} \int \frac{d^4k_2}{(2\pi)^4} \frac{\Pi^{\mu\nu\rho\sigma}(q, k_1, k_3, k_2)}{k_1^2 k_2^2 k_3^2} \times \gamma_\nu(p_2 + k_2 - m)^{-1} \gamma_\rho(p_1 - k_1 - m)^{-1} \gamma_\sigma$$

where $q \to 0$ is the momentum of the photon that couples to the external magnetic source, $q = p_2 - p_1 = -k_1 - k_2 - k_3$ and m is the muon mass.

![Figure 1: Hadronic light-by-light scattering contribution.](image)

The dominant contribution to the hadronic four-point function

$$\Pi^{\mu\nu\alpha\beta}(q, k_1, k_2, k_3) = i^3 \int d^4x \int d^4y \int d^4z e^{i(-k_1 \cdot x + k_2 \cdot y + k_3 \cdot z)} \langle 0 | T [V^\mu(0)V^\nu(x)V^\rho(y)V^\sigma(z)] | 0 \rangle$$

comes from the three light quark ($q = u, d, s$) components in the electromagnetic current $V^\mu(x) = [\bar{q}\hat{Q}\gamma^\mu q](x)$ where \hat{Q} denotes the quark electric charge matrix. We are interested in the limit $q \to 0$ where current conservation implies

$$\Gamma^\mu(p_2, p_1) = -\frac{a_{\text{HLbL}}^{\text{HLbL}}}{4m} [\gamma^\mu, \gamma^\nu] q_\nu.$$

Here I would like to describe the main results of [1]. For recent reviews of previous work [2–8], see [9–11].
2 Numerical Conclusions and Prospects

The discussion in [1] lead the authors to give the following numerical conclusions according to an $1/N_c$ expansion [12] –such expansion works reasonably well:

- **Contribution from π^0, η and η' exchanges**: Implementing a new OPE constraint into a neutral pion exchange model [8], the authors of Ref. [8] obtained $(11.4 \pm 1.0) \times 10^{-10}$ for this contribution. Within the ENJL model the momenta higher than a certain cutoff is accounted separately via quark loops [4, 5] while in the OPE based model these momenta are already included into the result. Assuming that the bulk of high energy quark loops are associated with pseudo-scalar exchange Ref. [4, 5] obtains $(10.7 \pm 1.3) \times 10^{-10}$ after adding these to the neutral pion exchange within the ENJL model. Taking into account this discussion, the authors of [1] quote as central value the one in [8] with the largest error quoted in [4, 5]:

$$a_{\text{HLbL}}^{\text{π, η, η'}} = (11.4 \pm 1.3) \times 10^{-10}. \quad (4)$$

- **Contribution from pseudo-vector exchanges**: The analysis done in [1] suggests that the errors quoted within the large N_c ENJL model are underestimated. Taking the average within both estimates and raising the present uncertainty to cover both, Ref. [1] quote

$$a_{\text{HLbL}}^{\text{pseudo-vectors}} = (1.5 \pm 1.0) \times 10^{-10}. \quad (5)$$

- **Contribution from scalar exchanges**: The ENJL model should give a good estimate of these large N_c contributions, the authors of [1] therefore keep the result from [4] but with a larger conservative error to cover for other unaccounted higher resonances that give negative contributions:

$$a_{\text{HLbL}}^{\text{scalars}} = -(0.7 \pm 0.7) \times 10^{-10}. \quad (6)$$

- **Contribution from dressed pion and kaon loops**: The next-to-leading in $1/N_c$ contributions are the most complicated to calculate at present. In particular, the charged pion loop shows a large instability due to model dependence. This and the contribution of higher resonances loops was taken into account in [1] by taking the central value as the full VMD result quoted [4] with again a large conservative error:

$$a_{\text{HLbL}}^{\text{π+, dressed loop}} = -(1.9 \pm 1.9) \times 10^{-10}. \quad (7)$$

Adding the contributions above and errors in quadrature, as well as the small charm quark contribution $a_{\text{HLbL}}^{\text{charm}} = 0.23 \times 10^{-10}$, one gets our best estimate [1]

$$a_{\text{HLbL}} = (10.5 \pm 2.6) \times 10^{-10}. \quad (8)$$
The proposed new $g_\mu - 2$ experiment accuracy goal of 1.4×10^{-10} calls for a considerable improvement in the present calculations. The use of further theoretical and experimental constraints could result in reaching such accuracy soon enough. In particular, imposing as many as possible short-distance QCD constraints [2–6,8] has result in a better understanding of the numerically dominant π^0 exchange. At present, none of the light-by-light hadronic parametrization satisfy fully all short distance QCD constraints. In particular, this requires the inclusion of infinite number of narrow states for other than two-point functions and two-point functions with soft insertions [13]. A numerical dominance of certain momenta configuration can help to minimize the effects of short distance QCD constraints not satisfied, as in the model in [8].

Recently, an off-shell form factor for the π^0 neutral exchange has been discussed in [14] to get a^{HLbL}_μ – the numerical values for the π^0 exchange obtained are very similar to the ones quoted above. How to take off-shellness effects consistently in the full four-point function (2) remains however an open question [14].

More experimental information on the decays $\pi^0 \to \gamma\gamma^*$, $\pi^0 \to \gamma^+\gamma^*$ and $\pi^0 \to e^+e^-$ (with radiative corrections included [15–17]) can also help to confirm some of the neutral pion exchange results.

A better understanding of other smaller contributions but with comparable uncertainties needs both more theoretical work and experimental information. This refers in particular to pseudo-vector exchanges. Experimental data on radiative decays and two-photon production of these and other C-even resonances can be useful in that respect. Experimental information on processes $\pi^0\pi^0 \to \gamma\gamma^*$ and $\pi^+\pi^- \to \gamma^+\gamma^*$ would be very welcome for that. For instance, these processes are related to the two-photon coupling of the lightest QCD resonance –the σ [18–21].

New approaches to the pion dressed loop contribution, together with experimental information on the vertex $\pi^+\pi^-\gamma^+\gamma^*$ would also be very welcome. Measurements of two-photon processes like $e^+e^- \to e^+e^-\pi^+\pi^-$ can be useful to give information on that vertex and again could reduce the model dependence.

The two-gamma physics program at KLOE2 will be very useful and well suited in the processes mentioned above which information can help to decrease the present model dependence of a^{HLbL}_μ.

Acknowledgements

It is a pleasure to thank very enjoyable collaborations with Hans Bijnens, Elisabetta Pallante, Eduardo de Rafael and Arkady Vainshtein. Work supported in part by MICINN, Spain and FEDER, European Commission (EC) Grant No. FPA2006-05294, by the Spanish Consolider-Ingenio 2010 Programme CPAN Grant No. CSD2007-00042, by Junta de Andalucía Grants No. P05-FQM 347 and P07-FQM 03048 and by the EC RTN FLAVIAnet Contract No. MRTN-CT-
2006-035482.

References

[1] J. Prades, E. de Rafael and A. Vainshtein in *Lepton Dipole Moments*, B.L. Roberts and W.J. Marciano, (eds) (World Scientific, Singapore, 2009) 309-324, arXiv:0901.0306.

[2] M. Hayakawa, T. Kinoshita and A.I. Sanda, Phys. Rev. Lett. 75 (1995) 790; Phys. Rev. D 54 (1996) 3137.

[3] M. Hayakawa and T. Kinoshita, Phys. Rev. D 57 (1998)465; Erratum-ibid. 66 (2002) 073034.

[4] J. Bijnens, E. Pallante and J. Prades, Nucl. Phys. B 474 (1996) 379; Phys. Rev. Lett. 75 (1995) 1447; Erratum-ibid. 75 (1995) 3781.

[5] J. Bijnens, E. Pallante and J. Prades, Nucl. Phys. B 626 (2002) 410.

[6] M. Knecht and A. Nyffeler, Phys. Rev. D 65 (2002) 073034.

[7] M. Knecht, A. Nyffeler, M. Perrottet and E. de Rafael, Phys. Rev. Lett. 88 (2002) 071802.

[8] K. Melnikov and A. Vainshtein, Phys. Rev. D 70 (2004) 113006.

[9] J. Prades, Nucl. Phys. B (Proc. Suppl.) 181-182 (2008) 15; J. Bijnens and J. Prades, Mod. Phys. Lett. A 22 (2007) 767; Acta Phys. Polon. B 38 (2007) 2819.

[10] E. de Rafael, Nucl. Phys. B (Proc. Suppl.) 186 (2009) 211; D.W. Hertzog et al., arXiv:0705.4617; J.P. Miller, E. de Rafael and B.L. Roberts, Rept. Prog. Phys. 70 (2007) 795.

[11] F. Jegerlehner and A. Nyffeler, arXiv:0902.3360; F. Jegerlehner, Lect. Notes Phys. 745 (2008) 9; Acta Phys. Polon. B 38 (2007) 3021.

[12] E. de Rafael, Phys. Lett. B 322 (1994) 239.

[13] J. Bijnens et al. JHEP 04 (2003) 055.

[14] A. Nyffeler, arXiv:0901.1172.

[15] M. Ramsey-Musolf and M.B. Wise, Phys. Rev. Lett. 89 (2002) 041601.

[16] K. Kampf, M. Knecht and J. Novotny, Eur. Phys. J. C 46 (2006) 191.
[17] K. Kampf and B. Moussallam, Phys. Rev. D 79 (2009) 076005; K. Kampf, arXiv:0905.0585.

[18] M.R. Pennington, Phys. Rev. Lett. 97 (2007) 011601.

[19] J.A. Oller and L. Roca, Eur. Phys. J. A 37 (2008) 15; J.A. Oller, L. Roca and C. Schat, Phys. Lett. B 659 (2008) 201.

[20] J. Bernabéu and J. Prades, Phys. Rev. Lett. 100 (2008) 241804.

[21] G. Mennessier, S. Narison and W. Ochs, Phys. Lett. B 665 (2008) 205.