Optimal Observing Strategies for Velocity-Suppressed Dark Matter Annihilation

Nolan Smyth
University of California, Santa Cruz

PHENO
May 24, 2021
Road Map: The whole talk in 20 seconds

Indirect Detection is a powerful probe of DM

Velocity-dependent DM annihilation requires different theoretical tools

Outcome: Optimizing the signal-to-noise ratio implies non-trivial observation strategies
Dark Matter Exists!
Indirect Detection

Looking for Standard Model particles produced from the annihilation or decay of dark matter.
Where should we point our telescopes?

Common sense: Look at where the DM density is highest!

M31, M87, dSphs

Galactic Center
Annihilation Flux – Quantifying the Signal

Typically, the photon flux for DM annihilation is decomposed as

$$\Phi = \frac{<\sigma v> dN_\gamma}{8\pi m_\chi^2 \frac{dE}{dl}} \int dl \, \rho[r(l, b)]^2$$

Particle Physics

J-Factor
Annihilation Flux – Quantifying the Signal

Typically, the photon flux for DM annihilation is decomposed as

$$\Phi = \frac{\langle \sigma v \rangle dN_{\gamma}}{8\pi m_{\chi}^2} \int dl \frac{dE}{dE} \rho [r(l, b)]^2$$

Particle Physics \hspace{2cm} J-Factor

Relies on the assumption that the cross section is velocity-independent!
Velocity-Dependent J-factor

\[\langle \sigma v \rangle = \langle \sigma v \rangle_0 S(v/c) \]

\[S(v/c) \overset{\text{def}}{=} (v/c)^n \]

\[J(b) = \int dl \int d\nu^3 f(\nu) (v/c)^n \rho[r(l, b)]^2 \]

e.g. Board et al. 2101.06284
Velocity-Dependent J-factor

\[\langle \sigma v \rangle = \langle \sigma v \rangle_0 S(v/c) \]

\[S(v/c) \overset{\text{def}}{=} (v/c)^n \]

\[J(b) = \int dl \int d\mathbf{v}^3 f(v) (v/c)^n \rho[r(l, b)]^2 \]

- n = 0: s-wave
- n = 2: p-wave
- n = 4: d-wave

e.g. Board et al. 2101.06284
Velocity-Dependent J-factor

Think simple! Assume Maxwell-Boltzmann distribution

\[f(v) \propto (\sigma_v^2)^{-3/2} e^{-v^2/\sigma_v^2} \]

From equipartition theorem:

\[\sigma_v^2 = \frac{\langle v^2 \rangle}{3} \]

Where (virialized)

\[<v^2>^{1/2} \propto v_c(r) = \sqrt{\frac{2GM(<r)}{r}} \]
Velocity-Dependent J-factor

Average relative velocity

\[
\langle v_{\text{rel}}^2 \rangle = \langle (v - v')^2 \rangle = \int d^3v \int d^3v' (v - v')^2 f(v) f(v') = 2\langle v^2 \rangle = 2v_c^2
\]

So in this case,

\[
J_n(b) \propto \int dl \ (v_c/c)^n \rho \left[r(l, b) \right]^2
\]
Velocity-Dependent J-factor

\[J_n(b) \propto \int dl \left(\frac{v_c}{c} \right)^n \rho[r(l,b)]^2 \]
Velocity-Dependent J-factor - Calculation

\[r = \sqrt{r_d^2 - 2lr_d \cos(b) + l^2} \]

\[\rho(r) = \frac{\rho_0}{\left(\frac{r}{r_s} \right)^2 (1 + \frac{r}{r_s})^2} \]

\[M(< r) = 4\pi \rho_0 r_s^3 \left(\frac{r_s}{r_s + r} - 1 + \log \left(1 + \frac{r}{r_s} \right) \right) \]

\[v_c(r) = \sqrt{\frac{2GM(< r)}{r}}. \]

\[J_n(b) \propto \int dl (v_c/c)^n \rho [r(l, b)]^2 \]

Everything is known once density profile is defined!
Velocity-Dependent J-factor

Velocity-dependent channels are less sharply peaked at the center!
Signal to noise ratio

Photon counts: independent, random events at a constant rate. Well described by a Poisson distribution!

\[\sigma = N^{1/2} \]

Define optimal field of view as the one that maximizes the quantity

\[\frac{\mathcal{J}}{N^{1/2}} \]
Gamma Ray Background – Diffuse, Isotropic

Bremsstrahlung

Inverse Compton

$N_{Itot} \propto \text{Field of View}$
Gamma Ray Background – Point Sources

\[N_G(b) \propto \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{b^2}{\sigma^2} \right)} \]

\(\sigma \): Width due to instrument-dependent point spread function
Field of View Geometry

$\theta_1 = 0$: Disk

$\theta_1 \neq 0$: Annulus

$\theta_2 - \theta_1$: Thickness
Extragalactic Results

\[\frac{J}{N^{1/2}} \]

EG s-wave

\[\theta_2 - \theta_1 \] [deg]

\[\theta_1 \] [deg]

[Color bar with values 0.1 to 0.9]

\[\theta_1 \]

\[\theta_2 \]
Extragalactic Results

\[
\frac{J}{N^{1/2}}
\]

EG s–wave

EG p–wave

EG d–wave

Dots: Fermi-LAT Surveys (Mauro et al.; Feng et al.; Abddo et al.)
Caveats and Future Work

No two sources are alike (e.g. dSphs). Results are dependent on background, ρ, and v.

Oman et al. MNRAS 452, 3650-3665
Caveats and Future Work

No two sources are alike (e.g. dSphs). Results are dependent on background, ρ, and v.

Need to account for DM Substructure and baryons

Andrey Kravtsov, arXiv: 0906:3295

Oman et al. MNRAS 452, 3650-3665
Thank you!

Wonderful Collaborators

Gabby Huckabee

Stefano Profumo

Our recent paper on this subject:

arXiv: 2105.03438
nwsmyth@ucsc.edu
Bonus Slides
Velocity-Suppressed Cross Sections

Example: Majorana DM annihilating to fermion/antifermion pairs

\[\mathcal{M} \propto \frac{m_f^2}{m_\chi^2} \]

Outgoing fermions must have same helicity (opposite chirality). Coupling must vanish in chiral limit. To get the correct final state spin, the s-wave cross section is chirality suppressed by

\[L, S, J = 0 \]

Kumar and Light 1612.00773
Thermal Average + Velocity Expansion

\[
\langle \sigma v \rangle = \frac{\int \sigma v \, d\bar{n}_1^{eq} \, d\bar{n}_2^{eq}}{\int d\bar{n}_1^{eq} \, d\bar{n}_2^{eq}} = \frac{\int \sigma v \, e^{-E_1/T} \, e^{-E_2/T} \, d^3p_1 \, d^3p_2}{\int e^{-E_1/T} \, e^{-E_2/T} \, d^3p_1 \, d^3p_2}.
\]

\[
\langle \sigma v \rangle = \frac{1}{8m^4TK_2^2(m/T)} \int_{4m^2}^{\infty} \sigma(\bar{s} - 4m^2) \sqrt{\bar{s}} K_1(\sqrt{\bar{s}}/T) \, ds
\]

Expand \(\langle \sigma v \rangle \) in powers of \(v \):

\[
\langle \sigma v \rangle = \langle \sigma v \rangle_0 S(v/c)
\]
Instrumental Angular Resolution

FERMI-LAT:
~0.15 degrees for >10 GeV
~1 degree for ~1 GeV

AdEPT:
<0.1 degrees for >1 GeV
Gamma Ray Background – Bulge

Hooper, Goodenough. arXiv:1010.2752
Gamma Ray Background – 2 cases

Extra-galactic
Isotropic + Point Source

Galactic Center
Bulge + Point Source
Galactic Center – Weak Point Source

\[\frac{J}{N^{1/2}} \]

GC s-wave

GC p-wave

- **Green:** Johnson et al. 1904.06261;
- **Red:** Leane and Slatyer. 1904.08430
Galactic Center – Strong Point Source

\[\frac{J}{N^{1/2}} \]

GC s-wave

GC p-wave

Green: Johnson et al. 1904.06261; Red: Leane and Slatyer. 1904.08430
Signal to Noise Ratio – Extra-galactic, Core

\[\frac{J}{N^{1/2}} \]

\[\theta_1, \theta_2 \]

EG Core s-wave

EG Core p-wave

\[\theta_1 \text{[deg]} \]

\[\theta_2 - \theta_1 \text{[deg]} \]

\[\theta_1 \text{[deg]} \]
Properties of Dark Matter

Interacts through gravity

Invisible

Stable on long timescales