Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies

Juliana S. Capitano and Richard W. Wozniak
Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta

Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influenza infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper.

Background

Influenza virus

Viruses are the simplest life form on earth. They parasite host organisms and subvert the host cellular machinery for different steps of their life cycle. One such example is the Influenza A virus, belonging to the Orthomyxoviridae family. It has a negative-sense, single-stranded, and segmented RNA genome stored in a ribonucleoprotein complex within the viral core. This complex contains the viral polymerases PB1, PB2

and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase (NA), and M2 proteins are inserted into the envelope, facing the viral exterior.

A diagram of the Influenza A virus life cycle from the Reactome database (1) can be seen in figure 1. To initiate infection and replication the Influenza virus binds to molecules of sialic acids on the surface of a host cell. Binding at the cell surface, the virus is internalized by receptor-mediated

Figure 1: Influenza virus life cycle. Illustration of the influenza virus replication cycle from the Reactome database (1).
endocytosis, most commonly clathrin mediated endocytosis. The low pH in the endosome promotes the fusion of the viral and endosomal membranes, releasing the viral ribonucleoprotein complexes (vRNPs) into the cytoplasm. The vRNPs, containing the viral genome coated by NPs and associated to the viral polymerases must be imported into the nucleus for transcription and replication. Nucleoprotein has been shown to possess a nuclear localization signal that is sufficient to activate the nuclear import of the vRNPs. Once in the nucleus the viral RNA will be replicated into new vRNA through a positive-sense intermediate (cRNA) and transcribed into viral messenger RNAs. The viral mRNAs can be spliced into different transcripts and they are exported from the nucleus and translated into viral proteins in the cytoplasm. Some of the viral proteins re-enter the nucleus to assemble vRNPs. Others are directed to the cell membrane through the Golgi apparatus where they form lipid rafts. The vRNPs are then also directed to the same region of the cell membrane where the budding of new viral particles occurs.

All the steps described above significantly depend on the host cell machinery, therefore characterizing the involvement of host factors in infections is of great scientific interest. It can better clarify the viral life cycle and allow the identification of important drug targets to treat the diseases caused by these infections.

Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV (2).

Genome-wide Influenza dependency host factor screens

In order to gain new insight into the life cycle of Influenza viruses and to identify potential therapeutic targets for infection, several laboratories have focused in genome-wide screen strategies. Screens based on different strategies were compiled for this meta-analysis (table I).

Genome-wide RNAi screening

Most of the data collected was based on genome-wide RNAi experiments, this type of screen employs systematic knock-down of known genes and evaluates the effect depletion of that given target has in infection.

The first Influenza infection RNAi screen was reported by Hao, et al in 2008 (3). This study was based on infection of Drosophila cells: it used a modified A/WSN/33 influenza strain capable of infecting Drosophila cells and producing a fluorescent reporter in infected cells (table I). Out of the 13,071 genes targeted 175 were identified as affecting reporter expression and therefore Influenza infection. A list of 130 human homologues to the 175 genes identified was used in this meta-analysis (table SI). Among these are ATP6V0D1, COX6A1 and NFX1, genes whose importance in Influenza infection was confirmed in mammalian cell systems (3).

Using genome wide RNAi screens targeting over 17,000 genes in mammalian cells other groups also investigated the importance of host factors for Influenza infection. Konig, et al (4) and Karlas, et al (5) both used the human A/549 lung cell line infected with A/WSN/33 Influenza strain for their screens. Brass, et al (6) made use of an osteosarcoma cell line infected with A/PR8/34 strain of Influenza (table I). As seen in the experiments performed by Hao, et al (3) the assay readout for two of these screens was quantification of a virally encoded reporter protein (4) or a viral protein (6). The three screens described above (Hao, et al (3); Konig, et al (4) and Brass, et al (6)) can evaluate only part of the viral life cycle, up to the point of viral protein translation. They do not assess factors needed for viral budding or the infectivity of the produced viruses. Circumventing this problem Karlas, et al (5) evaluated the entire viral life cycle by quantifying the infectivity of viruses produced by the RNAi containing cells.

One last genome-wide RNAi screen used in this meta-analysis came from the work of Shapira, et al (7). In a different approach, this group started out by using a combination of yeast two hybrid, to detect host-viral protein interactions, and microarray, to evaluate how infection altered the expression of host genes. These identified host genes affected by Influenza viruses were then targeted by RNAi to determine their importance in infection. This screen also assessed the infectivity of viruses produced by RNAi treated cells, making it possible to evaluate the entire viral life cycle.

These screens identified hundreds of novel host factors required for Influenza infection, they are summarized in table I and table SI. Only the final results presented in each paper, after application of all statistical tests, were used in this meta-analysis (table SI).

Random homozygous gene perturbation (RHGP)

In a different perspective on the issue, Sui, et al (8) looked to identify host genes that contributed to resistance to Influenza infection. They used RHGP to generate a library of randomly silenced or overexpressed genes in MDCK cells. This library was infected with a high dose of Influenza virus (A/UDorn/72 strain) that would lead to cell death. Surviving cells presented altered expression of a gene that rendered them resistant to Influenza infection, allowing the identification of 110 such host cell factors (table I and table SI).

Viral particles proteomics

All the proteins controlling viral exit, entrance and initial replication in the host cell are thought to be contained within the viral particle. Two reports by Shaw, et al (9) and Song, et al (10) demonstrate that these viral particles contain not only viral proteins, but also several host proteins. In order to identify these host proteins packaged within the Influenza virion these two groups purified Influenza virus particles (9) or recombinant Influenza virus-like particles (10) and used mass spectrometry to identify all proteins present. Over 30 host proteins were identified in each screen, with the presence of cytoskeletal proteins been a common theme on both (table I and table SI). Identification of host proteins specifically incorporated into virions can indicate their requirement for infection, making them good targets for antiviral drugs.

Host-pathogen protein-protein interaction database (HPIDB)

Host-pathogen protein interactions have a very important role in infection. From infection initiation to the budding of new viral particles the virally encoded proteins interact with several host factors. These interactions have been described extensively in the literature and in numerous databases. The HPIDB integrates these experimental results into a single, non-redundant resource (11). It collects data on several pathogens, for this analysis all information available for Influenza virus (A/PR8/34) was downloaded from their server (12) and identified genes can be seen in table SI.
Authors	Cell line	Viral Strain	Identified host factors	Screen type	Main affected proteins / pathways
Brass et al, 2009	U2OS	A/PR/8/34 (PR8)	120	genome-wide RNAi	endosomal acidification, vesicular trafficking, mitochondrial metabolism and RNA splicing
Konig et al, 2010	A549	A/WSN/33 with HA sequence substituted by Renilla.	295	genome-wide RNAi	kinase regulated signaling, ubiquitination and phosphatase activity
Karlas et al, 2010	A549	A/WSN/33	287	genome-wide RNAi	spliceosome, ribosome, nuclear pore complex, ATPase complex, COPI and EIF3.
Hao et al, 2008	D-Mel2	A/WSN/33 with HA substituted by VSV-G and NA by Renilla.	104	genome-wide RNAi	ATP6V0D1, COX6A1 and NXF1
Shapira et al, 2009	HBEC	A/PR/8/34 (PR8)	616	genome-wide RNAi	RNA binding proteins, apoptosis, MAPK pathway, WNT and NF-κB signaling
Song et al, 2011	SF9	A/PR/8/34 (H1N1) containing A/Indonesia/5/2005 (H5N1) HA	37	virus-like particles proteome	cytoskeleton, translation, chaperone and metabolism
Shaw et al, 2008	Vero	A/WSN/33	36	viral particle proteome	cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins
Sui et al, 2009	MDCK	A/Udorn/72	110	Random Homozygous Gene Perturbation	nucleic acid and protein metabolism and intracellular protein trafficking
HPIDB (Kumar et al, 2010)	not specified	A/PR/8/34 (H1N1)	421	database retrieval	translation, RNA processing, chromatin organization, glycolysis
Results

Overview of Influenza infection host dependency factors detected by all genome-wide screens.

In the nine (3-11) genome-wide screens used in this meta-analysis a total of 1574 human genes (table SI) were identified for their importance in Influenza infection, representing over 4.6% of human protein-coding genes (33,868 protein-coding genes from human genome assembly GRCh37.p10).

Analyzing the overlap among genes called by different screens we observe great disparity. No gene was identified by all screens and most genes were identified only in a single list (1436), as seen on figure 2. The seven highest confidence genes (ARCN1, ATP6AP1, COPG, NXF1, RPS10, RPS16 and TUBB) were identified by 4 screens simultaneously. Followed by 20 genes identified by 3 screens (ATP6V0C, ATP6V0D1, CD81, COPA, COPB2, EIF3G, FAU, GAPDH, HSP90AA1, KPNB1, NUP98, PGD, PTBP1, RPS20, RPS24, RPS27A, RPS3, RPS4X, RPS5, WDR18) and 120 genes present in at least 2 screens (figure 3).

The possibility of false positives in these high-throughput screens should always be considered. However, it’s also possible that the differences in experimental designs may account for the inconsistencies obtained. This hypothesis might be substantiated by the pairwise analysis of the gene lists (figure 2). The most similarity is observed between the results obtained by Konig, et al (4) and Karlas, et al (5), these two studies used genome-wide RNAi in A549 cells infected with the same Influenza strain (A/WSN/33) as seen in table I. Another interesting aspect revealed by pairwise analysis of the gene lists is that among the ten most similar pairs of lists six of them refer to HPIDB containing comparison pairs, indicating that most screens recapture several previously known Influenza - host interactions already present in available literature curated databases.

Analysis of high confidence Influenza dependency host factors.

Genes identified in 2 or more screens were considered high confidence influenza dependency host factors, resulting in a total of 147 genes (figure 3). A protein-protein interaction (PPI) network containing these 147 genes was constructed based on known PPIs from curated databases (13, 14). Graph theoretic clustering analysis of the above described network with the MCODE algorithm (15) identified seven highly interconnected protein complexes. Genes present in each of these complexes displayed statistically significant overrepresentation of specific gene ontology (GO) categories, as seen in figure 4.

Figure 2: Overlap of genes detected in different genome-wide screens. Comparisons of common genes among all gene lists are summarized in the diagram above. Gene lists been compared are indicated by black squares, the number of genes common to all compared lists is indicated in the right-most column. Values in grey indicate genes present only in a single list, marked by a grey square. Different types of experiments are color coded (pink – siRNA screen; blue – RHGP; orange – database; green – virion proteomics).
In order to expand our analysis to all genes identified in all different screens a new PPI network was created. Nodes in this network represented all genes present in all gene lists used in this meta-analysis. Interaction information was obtained from curated databases (13, 14) in conjunction with the interactions described at HPIDB (11). Clustering and GO annotation enrichment analysis of this network identified the same clusters found in the high confidence network from figure 4, however expanding the identified complexes to incorporate novel nodes identified in only one screen (figures 5 and 6). Several new complexes with different biological functions were also identified in the analysis of the complete network, bringing the total of biological complexes important for Influenza infection to 17, as seen in figure 5.

Host cell protein complexes and biological processes involved in the Influenza virus life cycle.

The host-pathogen interaction network displayed in figure 5 was constructed using all genes present in this meta-analysis (table SI) and curated databases of PPIs (11, 13, 14). The resulting network contained 1,295 nodes connected by 18,452 edges. Clustering analysis identified 17 protein complexes in this network, comprised of 369 nodes highly interconnected by 9,893 edges (926 nodes remained unclustered). These protein complexes are enriched for specific GO categories, indicating their function in the cell (figure 6).

Insights into the role these protein complexes might play during infection can be obtained by correlating them to the influenza virus life cycle. This life cycle can be summarized into the following: viral entry into the host cell, import of vRNPs into the host nucleus, transcription and replication of the viral genome, export of vRNPs from the host nucleus, and assembly and budding at the host cell plasma membrane.

Viral entry into the host cell and uncoating

Viral entry into the cell is mediated by the interaction of the viral membrane protein HA with sialic acid on the host cell’s surface. This binding leads to receptor mediated endocytosis and the viral entry into the host cell in an endosome. Several of the protein complexes identified as host dependency factors for Influenza infection likely play a role in this stage of the viral life cycle. For example, a transient PI3K activation (fig. 6, cluster 5) due to virion attachment promotes its internalization (16), while at the same time inhibiting apoptosis in the early stages of viral infection (17). Regulation of apoptosis (detected in cluster 10, fig. 6) is a common theme during the Influenza virus life cycle, with viral proteins promoting its inhibition in the initial stages of infection and its induction in later stages (18).

Endocytosis of Influenza virus also utilizes pathways used by growth factor receptors (fig. 6, cluster 12), and viral particles are sorted into the same endosomal populations as GFRs. Activation of signaling by these receptors also enhances viral uptake by the cell and later viral replication (19). Protein ubiquitination (fig. 6, cluster 2) is also required for proper sorting of GFRs into the vacuolar pathway, and it is possible this pathway also has an effect in proper sorting of Influenza virus containing vacuoles (19). Inhibition of the ubiquitin-proteasome system has been shown to impair viral entry into the cell by sequestering viruses into endocytic compartments (20).

Once the virus enters the cell through endocytosis, most of its initial trafficking within the host cell is mediated by vesicle transport. The coatomer 1 vesicle transport complex was identified as a host dependency factor in several screens (fig. 6, cluster 9) and it mediates vesicle transport from the early to the late endosome (17). Other vesicle transport factors have also been identified in cluster 15 (fig. 6).

The endocytic compartment is also where viral uncoating happens, the endosomal membrane fuses with the viral membrane while the vRNPs are released into the cytoplasm...
of the host cell. This membrane fusion event requires a low pH environment; this is achieved in the endosome by proton transporting V-type ATPases (clusters 10 and 17, fig. 6). The acidity found in the endosome, created by these vATPases, is also responsible for opening the viral M2 ion transport- ing channel, thus acidifying the viral core and releasing the vRNPs from M1 so they are free to enter the cytoplasm (21). As described above, 7 out of 17 protein complexes identified as host dependency factors in this meta-analysis are import-
genome. Nuclear replication is very beneficial to the virus, as it gains access to the host splicing machinery, facilitates cap-snatching and increases opportunities for evasion of antiviral host responses (22).

Large structures, such as the vRNPs can only enter the cellular nucleus through translocation across nuclear pore complexes. NPC transport is mediated by the interaction of the target proteins with transport factors known as karyopherins, entrance into the nucleus is mediated by importins while nuclear export is done by exportins. The interaction between target proteins and karyopherins is mediated by short amino acid motifs present in the target proteins; nuclear localization signals (NLSs) mediate interaction with importins while nuclear export signals promote interactions with exportins. Viral proteins present in the vRNP (NP, PA, PB1 and PB2) contain nuclear localization signals (NLS) (21), these NLSs become apparent after the vRNP is released from the M1 viral protein, enabling them to enter the nucleus through nuclear pore complex transport pathways (cluster 4, fig 6). Newly synthesized viral proteins that are part of the vRNPs (PA, PB1, PB2 and NP) also have to be imported into the nucleus after cytoplasmic translation to assemble novel vRNP particles. These proteins interact with a range of importins for nuclear entrance and it has been shown that these importins function as chaperones for these subunits as well as chaperoning the formation of the vRNP complex itself (22).

Figure 5: Influenza dependency host factors interaction network. Genes identified in all screens were used to build the interaction network displayed. MCODE analysis (degree cutoff = 2) identified 17 clusters present, these are described in more detail on figure 6.
Phosphoinositide 3-kinase complex
Signal transmission

RNA processing
Translation

Negative regulation of ubiquitination
Translation initiation

Nuclear Pore Complex
RNA transport

Translation initiation

Phosphoinositide 3-kinase complex
Signal transmission
6 to 9 - MCODE network cluster
Node label - gene symbol

Edge color - database
- geneMANIA
- STRIN
- HPIDB

Node size - number of lists present

Node color - gene list
- 2 or more lists
- Shapira, et al
- HPIDB
- Karlas, et al
- Song, et al
- Konig, et al
- Shaw, et al
- Brass, et al
- Sui, et al
- Hao, et al

Glycerolipid metabolism - signaling

DNA-directed RNA polymerase II holoenzyme

Respiratory chain

Cytoskeleton

Arp 2/3 protein complex

Gogi transport vesicle coating
Figure 6: Gene clusters identified in the PPI network of Influenza host dependency factors. Gene clusters identified in figure 5 are shown here in more detail. The main statistically significant GO annotation enrichment in each cluster is also indicated.

Transcription and replication of the viral genome
Once inside the nucleus the vRNPs get transcribed into mRNAs and replicated via positive sense RNAs. While the viral polymerase complex catalyzes transcription and genome replication, several host proteins play a role in these processes and can affect their efficiency.

Host RNA polymerase II (RNAPII) for example (identified in fig. 6, cluster 8), when in its active state (phosphorylated Ser5 on the CTD) can bind the viral polymerase complex (21). RNAPII has also been shown to be required for transcription of viral mRNAs (17).

As mentioned previously, nuclear transcription of viral mRNAs gives it access to the host splicing machinery. The Influenza virus genome has two segments that encode two different proteins due to alternative splicing, segment 7 encodes M1 and M2 while segment 8 encodes NS1 and NS2 (or NEP). The Influenza virus uses the host cell splicing machinery to express these two proteins (cluster 1, fig. 6). At the same time viral proteins prevent the host cell from using its own splicing machinery hampering the processing of host mRNAs (21).
Nuclear export of vRNPs and viral mRNAs and translation of viral proteins.

The viral mRNAs encoding viral proteins must be exported from the nucleus for translation. Viral genomes, packaged into vRNPs also have to be exported from the nucleus for assembly of novel viral particles in the cytoplasm of the host cell. This nucleo-cytoplasmic trafficking occurs through transport across nuclear pore complexes, using different transport factors (cluster 4, fig. 6). The export of viral mRNAs is dependent on NFX1, a known host mRNA export pathway that gets hijacked by the Influenza virus. Not only does the virus hijack this pathway for export of its own mRNAs, it also blocks its usage for export of host mRNAs, which are then retained in the nucleus (23). The nuclear retention of host mRNAs increases viral “cap-snatching” and inhibits the host immune response (17). Another important modulator of immune response is WNT signaling (cluster 14, fig. 6), this pathway not only affects the host immune response but also significantly impacts Influenza replication of the viral genome (7). The nuclear export of negative sense vRNPs containing the viral genome is mediated by CRM1. In order for vRNP export to occur M1 and NS2 are required. M1 can interact with the vRNA and with NS2, while NS2 then interacts with CRM1 for nuclear export (21). Interestingly, PI3K signaling (cluster 5, fig. 6) has also been shown to affect vRNP nuclear export, as well as viral mRNA transcription and translation (16).

When the viral mRNAs reach the cytoplasm they require the cellular machinery for translation (cluster 1, fig. 6). Viral infection shuts-off translation of host-proteins and enhances translation of viral proteins. This meta-analysis identified not only several genes involved in mRNA translation (cluster 1, fig. 6), but also a large cluster of translation initiation factors (cluster 3, fig. 6). It’s possible that these translation initiation factors play an important role in the selectivity of virus specific translation initiation or on the inhibition of host translation initiation.

Assembly and budding of viral particles

During the last stages of the Influenza virus life cycle all viral components are transported to the host cell plasma membrane for assembly. Transport of viral proteins to these sites is dependent on several host factors. Several viral proteins get to the plasma membrane through vesicle transport pathways (cluster 15, fig. 6). The COPI complex has an important role in the transport of viral glicoproteins (cluster 9, fig. 6). The transport of vRNPs to the budding site may be mediated by its interaction with host cytoskeletal components (clusters 7 and 10, fig. 6), facilitated by the interaction of NP and M1 with actin. The last step in Influenza infection, viral budding from the host cell membrane is also dependent on the host cell cytoskeleton (17).

Other identified functions

Several other new protein complexes have been identified in this meta-analysis, whose function in the Influenza life cycle is still unknown, such as: cluster 6, glicerolipid metabolism; cluster 7, Arp 2/3 protein complex and respiratory chain; cluster 11, phosphorylation signaling; cluster 13, G protein coupled receptor signaling; cluster 16, Glutathione transferase and glycolysis. Further studies are required to determine the relevance of these results and to better define the importance of these host factors in Influenza infection.

Concluding remarks

As seen in several viruses, Influenza A takes advantage of several components of the host cell machinery for its replication. Recent advances in science have now allowed the development of genome-wide screens that can be used to investigate the importance of nearly all host genes in the viral life cycle.

Taking advantage of such technique, several screens in the past few years have evaluated genome-wide host factors dependencies for Influenza infection. This meta-analysis evaluates nine such screens to identify commonalities that point towards protein complexes that can be identified with high confidence as host dependency factors for Influenza infection. These high confidence host dependency factors identified could be important drug targets to treat Influenza infection, aiming to alleviate the large burden brought upon global health by this virus.

Methods

This meta-analysis used results for published genome-wide screens for Influenza virus host dependency factors. The list of dependency factors collected from each screen was based on the reporting paper’s final results, after results had been filtered into high confidence gene lists. Gene lists from screens performed in other species were matched to their annotated human orthologs. Screens used are detailed in table I and complete gene list can be found in table SI.

Comparison of gene list was performed using the statistical language R (24) in RStudio (25). Network analysis were done in Cytoscape (26), using the plugins geneMANIA (14), MCODE (15) and BINGO (27). Interaction network data imported into Cytoscape was also imported from the STRING database (13).

References

1. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011 Jan;39(Database issue):D691-7. PubMed PMID: 21067998. Pubmed Central PMCID: PMC3013646. eng.
2. Organization WH. The influenza enigma. Bulletin of the World Health Organization. 2012 2012-04-30 17:02:26;90(4):245-320.
3. Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom C, Newton M, et al. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature. 2008 Aug;454(7206):890-3. PubMed PMID: 18615016. Pubmed Central PMCID: PMC2574945. eng.
4. König R, Stertz S, Zhou Y, Inoue A, Hoffmann H, Bhattacharyya S, et al. Human host factors crucial for influenza virus replication. Nature. 2010 Feb;463(7282):813-7. PubMed PMID: 20027183. eng.
5. Karlas A, Machuy N, Shin Y, Pleissner K, Artarini A, Heuer D, et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010 Feb;463(7282):813-7. PubMed PMID: 20027183. eng.
6. Brass A, Huang I, Benita Y, John S, Krishnan M, Feeley E, et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and den-
gue virus. Cell. 2009 Dec;139(7):1243-54. PubMed PMID: 20064371. Pubmed Central PMCID: PMC2824905. eng.
7. Shapira S, Gat-Viks I, Shum B, Dricot A, de Grace M, Wu L, et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell. 2009 Dec;139(7):1255-67. PubMed PMID: 20064372. eng.
8. Sui B, Bamba D, Weng K, Ung H, Chang S, Van Dyke J, et al. The use of Random Homozygous Gene Perturbation to identify novel host-oriented targets for influenza. Virology. 2009 May;387(2):473-81. PubMed PMID: 19327807. Pubmed Central PMCID: PMC2674145. eng.
9. Shaw ML, Stone KL, Colangelo CM, Gulicek EE, Palese P. Cellular proteins in influenza virus particles. PLoS Pathog. 2008 Jun;4(6):e1000085. PubMed PMID: 18535660. Pubmed Central PMCID: PMC2390764. eng.
10. Song JM, Choi CW, Kwon SO, Compans RW, Kang SM, Kim SI. Proteomic characterization of influenza H5N1 virus-like particles and their protective immunogenicity. J Proteome Res. 2011 Aug;10(8):3450-9. PubMed PMID: 21688770. Pubmed Central PMCID: PMC3151535. eng.
11. Kumar R, Nanduri B. HPIDB--a unified resource for host-pathogen interactions. BMC Bioinformatics. 2010;11 Suppl 6:S16. PubMed PMID: 20946599. Pubmed Central PMCID: PMC3026363. eng.
12. Host Pathogen Interaction database 2012. Available from: http://agbase.msstate.edu/hpi/main.html.
13. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8. PubMed PMID: 21045058. Pubmed Central PMCID: PMC3013807. eng.
14. Montejo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010 Nov;26(22):2927-8. PubMed PMID: 20926419. Pubmed Central PMCID: PMC2971582. eng.
15. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003 Jan;4:2. PubMed PMID: 12525261. Pubmed Central PMCID: PMC149346. eng.
16. Aylton J, Garcia-Sastre A, Hale BG. Influenza A viruses and PI3K: are there time, place and manner restrictions? Virulence. 2012 Jul;3(4):411-4. PubMed PMID: 22722241. Pubmed Central PMCID: PMC3478246. eng.
17. Watanabe T, Watanabe S, Kawaoaka Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe. 2010 Jun;7(6):427-39. PubMed PMID: 20542247. Pubmed Central PMCID: PMC3167038. eng.
18. Herold S, Ludwig S, Pleschka S, Wolff T. Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury. J Leukoc Biol. 2012 Jul;92(1):75-82. PubMed PMID: 22345705. eng.
19. Meliopoulos VA, Andersen LE, Birrer KF, Simpson KJ, Lowenthal JW, Bean AG, et al. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. FASEB J. 2012 Apr;26(4):1372-86. PubMed PMID: 22247330. Pubmed Central PMCID: PMC3316894. eng.
20. Khor R, McElroy LJ, Whittaker GR. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic. 2003 Dec;4(12):857-68. PubMed PMID: 14617349. eng.
21. Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009 Dec;82(4):153-9. PubMed PMID: 20027280. Pubmed Central PMCID: PMC2794490. eng.
22. Hutchinson EC, Fodor E. Nuclear import of the influenza A virus transcriptional machinery. Vaccine. 2012 May. PubMed PMID: 22652398. ENG.
23. Satterly N, Tsai PL, van Deursen J, Nussenzweig DR, Wang Y, Faria PA, et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci U S A. 2007 Feb;104(6):1853-8. PubMed PMID: 17267598. Pubmed Central PMCID: PMC1794296. eng.
24. Team RC. A Language and Environment for Statistical Computing. 2012.
25. RStudio. RStudio: Integrated development environment for R (Version 0.96.331). 0.96.331 ed2012.
26. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011 Feb;27(3):431-2. PubMed PMID: 21149340. Pubmed Central PMCID: PMC3031041. eng.
27. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005 Aug;21(16):3448-9. PubMed PMID: 15972284. eng.
Table S1: Gene lists used in this meta-analysis. Complete list of host factors necessary for Influenza infection identified in each different genome-wide screens.

Symbol	ID								
AHCY	191	ACP2	53	ACACA	31	ACT1C	70	ARCN1	372
ABCD1	215	ACTN2	92	ACVR2A	368	ATP5B	506	ADAM20	7848
XIAP	331	ARCN1	101	ADRB2K	157	ATP6V0C	527	ANK51A	23294
ARCN1	372	ASPA	443	DUSP3	1845	RPL5	8125	IOGAP1	8826
ARCN1	372	ASAH1	427	GNRH2	2972	MARK2	2011	KIAA1033	23235
ATF1	466	ATF4	486	CTSG	1629	PSM1D1	571	GNL3L	54552
ATP1A3	478	Caca1a	773	DAPK1	1566	PSM1D2	578	GOA4	2983
ATP5F1	515	CAMK2G	891	DUSP2	1845	PSM1D3	579	GOA4	2983
ATP5I	521	CAM8	843	DUSP3	1845	PSM1E1	580	HEATR7A	727957
ATP6V0A1	537	glutA1	1280	DRD5	1560	PSM2	572	HEATR7B	727957
BUB1B	701	COLA1A	1277	DPRK1	1564	PSM2D1	573	HEATR7C	727957
CACNB4	785	copA1	1314	DUSP2	1845	PSM2D2	574	HEATR7D	727957
RUNX1	861	hif6	1310	DUSP2	1845	PSM2D3	575	HEATR7E	727957
CEACAM7	1087	If2	1386	DUSP2	1845	PSM2D4	576	HEATR7F	727957
CLK3	1198	IGF1	1381	DUSP2	1845	PSM2D5	577	HEATR7G	727957
CLN5	1203	IGF2	1382	DUSP2	1845	PSM2E1	581	HEATR7H	727957
COPA	1314	IGF2R2	2263	DUSP2	1845	PSM2E2	582	HEATR7I	727957
COPB1	1315	IRF1	4068	DUSP2	1845	PSM2E3	583	HEATR7J	727957
CPH2	1370	IRF2	3660	DUSP2	1845	PSM2E4	584	HEATR7K	727957
DHCP5	1659	IRF3	3661	DUSP2	1845	PSM2E5	585	HEATR7L	727957
DMD	1756	IRF4	3662	DUSP2	1845	PSM2E6	586	HEATR7M	727957
DYSDC1	1780	IRF5	3663	DUSP2	1845	PSM2E7	587	HEATR7N	727957
DSC3	1825	IRF6	3664	DUSP2	1845	PSM2E8	588	HEATR7O	727957
EIF2S2	1965	IRF7	3665	DUSP2	1845	PSM2F1	589	HEATR7P	727957
ELF1	1974	IRF8	3666	DUSP2	1845	PSM2F2	590	HEATR7Q	727957
EIF2A2	1974	ITGAM	3085	DUSP2	1845	PSM2F3	591	HEATR7R	727957
EPRS	2058	JAK1	3086	DUSP2	1845	PSM2F4	592	HEATR7S	727957
ERCC4	2072	JAK2	3087	DUSP2	1845	PSM2F5	593	HEATR7T	727957
FCOQR2A	2212	JAK3	3088	DUSP2	1845	PSM2F6	594	HEATR7U	727957
FOXE1	2304	JAK4	3089	DUSP2	1845	PSM2F7	595	HEATR7V	727957
FLNC	2369	JAK5	3090	DUSP2	1845	PSM2F8	596	HEATR7W	727957
FUS	2521	JAK6	3091	DUSP2	1845	PSM2F9	597	HEATR7X	727957
GJA3	2700	JAK7	3092	DUSP2	1845	PSM2F10	598	HEATR7Y	727957
GSK3A	2921	JAK8	3093	DUSP2	1845	PSM2F11	599	HEATR7Z	727957
HIST1H1T	3510	JAK9	3094	DUSP2	1845	PSM2F12	600	HEATR8A	727957
HNRPJ	3592	JAK10	3095	DUSP2	1845	PSM2F13	601	HEATR8B	727957
LINC5	3955	JAK11	3096	DUSP2	1845	PSM2F14	602	HEATR8C	727957
LNFN	3955	JAK12	3097	DUSP2	1845	PSM2F15	603	HEATR8D	727957
LRPPAP1	4043	JAK13	3098	DUSP2	1845	PSM2F16	604	HEATR8E	727957
SH2D1A	4068	JAK14	3099	DUSP2	1845	PSM2F17	605	HEATR8F	727957
MFAP1	4236	JAK15	3100	DUSP2	1845	PSM2F18	606	HEATR8G	727957
MPG	4350	JAK16	3101	DUSP2	1845	PSM2F19	607	HEATR8H	727957
ATP5	4509	JAK17	3102	DUSP2	1845	PSM2F20	608	HEATR8I	727957
MYBL2	4605	JAK18	3103	DUSP2	1845	PSM2F21	609	HEATR8J	727957
TUBB2B	347733								
Gene	Chromosome	Symbol	Description	Start	End	Length			
--------	------------	--------	-------------	-------	-----	--------			
MYO1E	4643	irf6	Intercellular receptor	3664					
NAGA	4668	iptkb	NAGA	3707					
NDUF1B	4707	junb	NADH dehydrogenase	3726					
NDUFB8	4714	Kras	NADH dehydrogenase	3845					
NHP2L1	4809	LGAL3BP	NADH dehydrogenase	3959					
NOS3	4846	Igalit9	Nitric oxide synthase	3965					
NUP88	4927	Immna	Nucleoporin	4000					
NUP98	4928	Smad5	Nucleoporin	4090					
PCSK5	5125	SMA3L4	Proprotein convertase	4682					
PDCD5	5226	Magea11	Death effector	4110					
PIGH	5283	Mfap1	Pigment epithelioid	4236					
PIP	5304	Cxcl9	Protein phosphatase	4328					
PLP1	5354	MYC	Nucleoporin	4609					
PPARA	5465	Kif11	Peroxisome PPARA	4711					
PRCC	5546	Neu1	Proline-rich	4758					
PRSS8	5651	Nfkb1	Phospholipid	4808					
PTBP1	5725	Nfe2l1	Phosphatidylinositol	4779					
PTBS1	5725	Nfil3	Phosphatidylserine	4780					
PTPRA	5786	Nfkb2	Proteins in	4938					
PTS	5805	Nfkb1a	Phosphatidylinositol	4972					
PVALB	5816	Nkbil	Phosphatidylserine	4974					
PAB5A	5866	Oas1	Phosphatidic acid	4938					
R2H1	6050	Pk2	Protein phosphatase	6150					
RPS4X	6191	Pdgfa	Ribosylation	5154					
RPS16	6192	Pcd2	Ribosylation	5226					
RPS4X	6192	Psap	Ribosylation	5288					
RAI1	6489	Pkc3a2a	Ribosylation	5286					
SLCA1	6507	Pkd3	Ribosylation	5293					
SLCA2	6514	Pkd3r2	Ribosylation	5296					
SNRPB	6628	Prkga	Ribosylation	5757					
SNRPD2	6633	Mapk11	Ribosylation	5800					
SNRPD3	6633	Mapk13	Ribosylation	5800					
SRPS4	6729	Mapk2k3	Ribosylation	5800					
THRSP	7069	Prkyc	Ribosylation	5961					
TPSAB1	7177	Pamb9	Ribosylation	5968					
TST1A	7264	Ptpn1	Ribosylation	5781					
TUF1	7286	Rpbbp6	Ribosylation	5930					
UBE2A	7319	Trim27	Ribosylation	5987					
UBE2A1	7324	Rnase6	Ribosylation	6038					
ZNF16	7564	Rnasel	Ribosylation	6041					
ZNF12	7691	Rxrg	Ribosylation	6283					
ZNF154	7710	Ccl3	Ribosylation	6348					
ZNF224	7767	Sdc4	Ribosylation	6385					
ZFDB6	8325	Slc7a1	Ribosylation	6541					
Gene									
--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
PIP4K2B	SORL1	PTRN	PKD3	NUP205	SUZ12	GBNA4	5394	TCAP	SPT6H
Gene Symbol	Description	Chromosome	Gene Symbol	Description	Chromosome				
---	---	---	---	---	---	---	---	---	---
TMEM167B	56900	PION	54103	SF3B1	23451				
C11orf60	56912	Fam35a	54537	ABCB10	23456				
NUP107	57122	Ing3	54556	TRAM1	23471				
SCY3L	57147	zcchc8	55596	SRRM2	23524				
WDR18	57418	Polr3b	55703	PIK3R5	23533				
ZNF492	57615	KBTBD4	55709	CHST5	23563				
CWC22	57703	LIN37	55967	IL17RA	23765				
LSM2	57819	ccnl1	57018	FKBP8	23770				
C19orf29	58509	PEL1	57162	PART1	25859				
UBL5	59296	Zmi31	57178	CNRIP1	25927				
ZNF350	59348	ZNF512B	57473	CLIC4	25932				
DCLRE1B	64858	KIAA1609	57707	HERC4	26091				
FAM173A	65990	Scpep1	59342	FBXW2	26190				
FN3KRP	79672	Sav1	60485	CNNM1	26507				
TBL1XR1	79718	rbp4	64108	ATP2C1	27032				
ZNF552	79818	PLA2G2F	64600	TRIB2	28951				
TMEM62	80021	USP46	64854	FHOD1	29109				
FHOD3	80206	ARMCX5	64860	RACGAP1	29127				
LYG66C	80740	RSRC2	65117	TBX21	30009				
STARD5	80765	CHAC1	79094	KCNIP3	30681				
PRKRT1	80863	hectd3	79654	AIG1	51390				
GDPD5	81544	ZMAT4	79698	SNX9	51429				
Cbof6t2	81688	TNIP3	79931	KAB6	51560				
RPS6KL1	83694	ULBP1	80329	SFB314	51639				
FRMD8	83786	STARD5	80765	LRP1B	53535				
PCGF6	84108	TLR1R	81793	NLE1	54475				
ZNF414	84330	lcl771	83439	FJLT1235	54508				
ALG10	84920	Iztl2	84445	PCDH18	54510				
SELI	85465	IL1F10	90057	ABCC10	59845				
CCDC74A	90557	APBB1IP	90737	IL33	90865				
PAG5	90737	SMU1	90865	SMU1	55234				
ESAM	90952	PLCD3	110329	ITLN1	55600				
CCDC74B	91409	AHNAK2	110346	TRERF1	55609				
YTHDC1	91746	Apox6	116519	PSENEN	55851				
MYOCD	93649	Il31ra	133396	DRAP1	55929				
TS1	96764	LOC285830	285830	SULF2	55959				
BIRC6	11240	NLRP10D	338322	NFX3	56000				
C1orf82	114036	NLRP14	338323	RETN	56729				
CARD16	114769	INCA1	388324	C2orf7	56917				
STK11P	114790	XAB2	56949	PANK4	55229				
NOSTRIN	115677	RNFL150	57469	NAGK	55777				
ZNF653	115850	HEG	57493	SLC4A8A1	55652				
SFXN2	118980	FAM135A	57579	USE1	55850				
CCDC78	124093	CRAMP1L	57585	PSENEN	55851				
RAVER1	125950	ZBTB2	57621	PBK	55872				
EVC2	132884	SNX8	58533	STK31	56164				
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
SAMD8	142891	BACH2	60468	IL1F9	56300	PABPC1	26986		
C2orf15	150248	AKTIP	64400	ANKRD7	56311	PABPC4	8761		
NFXL1	152518	ENGASE	64772	KCNK12	56660	PABPN1	8106		
SLC36A2	153201	P2RY12	64805	UBQLN4	56893	PAF1	54623		
AMOTL1	154810	RBM42	79171	CABC1	56997	PAICS	10606		
ATP6V0E2	155066	LASS4	79603	AGTRAP	57085	PARP1	142		
ZNF567	163081	CCDC51	79714	GOPC	57120	PCBP1	5093		
C1orf55	163859	FLJ23554	79864	WDR18	57418	PCBP2	5094		
SLU7	193116	C10orf57	80195	NLGN4X	57502	PCBP3	54039		
MLKL	197259	LY6G6C	80740	MIB1	57534	PCID2	55798		
SPAG7	200162	AMN	81693	TAOK1	57551	PFN1	5216		
KRTCAP2	200185	FERMT3	83706	FAM135A	57579	PGAM1	5223		
C2orf89	205327	PRSS27	83866	MID1P1	58526	PGAM2	5224		
C11orf82	220042	TSSK6	83983	RAB17	64284	PGAM4	441531		
CADM2	239857	USP42	84132	VPS16	64601	PGK1	5230		
STAC3	246239	MORG1	84292	NADK	65220	PIK3CA	5290		
TCTEX1D2	255758	ZNF512	84450	EPS8L3	79574	PIK3CB	5291		
TPRX1	284355	USMG5	84833	ROGDI	79641	PIK3R1	5295		
C1orf59	286464	LINGO1	84894	LRKK1	79705	PIK3R2	5296		
CALCOCO2	303479	LRP11	84918	CBLL1	79872	PIK3R3	8503		
C1orf22	339457	ATCAY	85300	C2orf73	80231	PLAC8	51316		
LOC339524	339554	PAQR8	85315	ZNF346	80818	PNM1A	9240		
FREM2	341640	CCNB3	85417	SGK196	84197	POLR2A	5430		
KCNN17	89822	WDR34	89891	PPIA	5478				
NYD-SP25	89882	FAM104B	90736	PPP1CA	5499				
GGTLC2	91227	G6PC3	92579	PPP1CB	5500				
DERL3	91319	FBXO44	93611	PPP1CC	5501				
NEK9	91754	ACRC	93953	PPP2R5C	5527				
C19orf20	91978	FOXQ1	94234	PRDX6	9588				
DUSP27	92235	LIMS3	96626	PRKRA	8575				
MEX3A	92312	DTX2	113878	PRPF6	24148				
B3GNT3	93010	PALM2	114299	PTBP1	5725				
CYP2U1	113612	CSMD3	114788	PTMA	5757				
GPR148	115330	OSPBL6	114860	QTRT1	81890				
FCHO2	115548	PTPMT1	114971	RABGEF1	27342				
C14orf77	115708	ALPK2	115701	RALY	22913				
RFL	117584	TOP1MT	116447	RAN	5901				
AGAP4	119016	GPR52	118442	RARA	5914				
SPATA2L	124044	C14orf28	122526	RBMX	27316				
ACVR1C	130399	CANT1	124583	RBPMS	11030				
C3orf31	132001	OR10H4	126541	RNF5	6048				
PASD1	139135	UBXN10	127733	RP11-78J21.1	144983				
C21orf121	150142	C5orf58	153571	RPA1	6117				
DCLK2	166614	DCLK2	166614	RPL11	6135				
TRIM60	166655	PRSS35	167681	RPL12	6136				
DTX3	196403	TUBB	203068	RPL14	9045				
#	Name	Gene ID	Start	End	Description				
----	-------	-----------	---------	-------	-------------				
1	PAOX	196743	35045	58045	RPL15				
2	STXBP4	252963	254065		RPL17				
3	ANKK1	255239	256126		RPL18				
4	SPRYD4	283377	283455		RPL19				
5	KIAA1267	284058	RPL36AP49	284230	RPL21				
6	NEK8	284086	284366		RPL22				
7	UBAC2	337867	338599		RPL23				
8	MGC48998	339512	SLC6A19	340024	RPL23A				
9	BARHL2	343472	340260		RPL24				
10	CA13	377677	377841		RPL26				
11	LOC401431	401431	SUMO4	387082	RPL26L1				
12	FLJ25758	497049	RP11-45B20.2	387911	RPL27A				
13	ZNF37B	100129482	NF1L2	401007	RPL28				
14	VTRNA3P	100144435	OR51T1	401665	RPL3				
15	LOC440396	440396			RPL30				
16	MAP1LC3C	440738			RPL31				
17	LOC441239	441239			RPL32				
18	OR4M1	441670			RPL34				
19	ZNF862	643641			RPL35				
20	LOC653712	653712			RPL36A				
21	LOC728683	728683			RPL36AL				
22	LOC730974	730974			RPL37A				
23	LOC440396	440396			RPL38				
24	LOC441239	441239			RPL4				
25	OR4M1	441670			RPL6				
26	ZNF862	643641			RPL7				
27	LOC653712	653712			RPL7A				
28	LOC728683	728683			RPL8				
29	LOC730974	730974			RPL9				
30	LOC440396	440396			RPLP0				
31	MAP1LC3C	440738			RPLP0-like				
32	LOC441239	441239			RPS10				
33	OR4M1	441670			RPS11				
34	ZNF862	643641			RPS12				
35	LOC653712	653712			RPS16				
36	LOC728683	728683			RPS18				
37	LOC730974	730974			RPS19				
38	LOC440396	440396			RPS2				
39	MAP1LC3C	440738			RPS20				
40	LOC441239	441239			RPS21				
41	OR4M1	441670			RPS24				
42	ZNF862	643641			RPS26				
43	LOC653712	653712			RPS27A				
44	LOC728683	728683			RPS3				
45	LOC730974	730974			RPS4X				
46	LOC440396	440396			RPS5				
47	MAP1LC3C	440738							
Gene	ID								
------------	------								
RPSA	3921								
RTF1	23168								
RUVBL1	8607								
RUVBL2	10856								
SDCBP2	27111								
SECISBP2	79048								
SERBP1	26135								
SETBP1	26040								
SIAH1	6477								
SLC25A31	83447								
SLC25A4	291								
SLC25A5	292								
SLC25A6	293								
SMARCA1	50485								
SNRPD3	6634								
SNRPF	6636								
SP100	6672								
SSBP2	23635								
SXX2IP	117178								
STAU1	6780								
STX5	6811								
SYNRIP	10492								
TACC1	6867								
TAF15	8146								
TARBP2	6895								
TCF12	6938								
TFCP2	7024								
TGF81	7040								
THOC4	10189								
TIMM50	92609								
TEMG66B	255043								
TP1	7167								
TRAF1	7186								
TRAF2	7186								
TRIM13	10206								
TRIM25	7706								
TRIM27	5087								
TRIP6	7206								
TTC12	54970								
TUBA1A	7846								
TUBA1B	10376								
TUBA4A	7277								
TUBB	203068								
TUBB2C	10383								
UBA52	7311								
UBB	7314								
Protein	Identifier	Value							
---------	------------	-------							
UBC	7316								
UBE2I	7329								
UBE2L6	9246								
UPF1	5976								
UROS	7390								
USHBP1	83876								
USP10	9100								
USP11	8237								
WDR16	57418								
WDR6	11180								
XPO1	7514								
XRN2	22803								
YBX1	4904								
YIPF6	286451								
YWHAB	7529								
YWHAE	7531								
YWHAG	7532								
YWHAG	10971								
YWHAZ	7534								
ZBTB25	7597								
ZMAT3	64393								
ZMAT4	79696								
ZNF346	23567								