Two-dimensional SCFTs from matter-coupled 7D $N = 2$ gauged supergravity

Parinya Karndumri, Patharadanai Nuchino

String Theory and Supergravity Group, Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand

Received: 11 June 2019 / Accepted: 23 July 2019 / Published online: 7 August 2019
© The Author(s) 2019

Abstract We study supersymmetric $AdS_3 \times M^4$ solutions of $N = 2$ gauged supergravity in seven dimensions coupled to three vector multiplets with $SO(4) \sim SO(3) \times SO(3)$ gauge group and M^4 being a four-manifold with constant curvature. The gauged supergravity admits two supersymmetric AdS_7 critical points with $SO(4)$ and $SO(3)$ symmetries corresponding to $N = (1, 0)$ superconformal field theories (SCFTs) in six dimensions. For $M^4 = \Sigma^2 \times \Sigma^2$ with Σ^2 being a Riemann surface, we obtain a large class of supersymmetric $AdS_3 \times \Sigma^2 \times \Sigma^2$ solutions preserving four supercharges and $SO(2) \times SO(2)$ symmetry for one of the Σ^2 being a hyperbolic space H^2, and the solutions are dual to $N = (2, 0)$ SCFTs in two dimensions. For a smaller symmetry $SO(2)$, only $AdS_3 \times H^2 \times H^2$ solutions exist. Some of these are also solutions of pure $N = 2$ gauged supergravity with $SU(2) \sim SO(3)$ gauge group. We numerically study domain walls interpolating between the two supersymmetric AdS_7 vacua and these geometries. The solutions describe holographic RG flows across dimensions from $N = (1, 0)$ SCFTs in six dimensions to $N = (2, 0)$ two-dimensional SCFTs in the IR. Similar solutions for M^4 being a Kahler four-cycle with negative curvature are also given. In addition, unlike $M^4 = \Sigma^2 \times \Sigma^2$ case, it is possible to twist by $SO(3)_{\text{diag}}$ gauge fields resulting in two-dimensional $N = (1, 0)$ SCFTs. Some of the solutions can be uplifted to eleven dimensions and provide a new class of $AdS_3 \times M^4 \times S^4$ solutions in M-theory.

1 Introduction

One of the most interesting implications of the AdS/CFT correspondence [1] is the study of holographic RG flows. These solutions take the form of a domain wall interpolating between AdS vacua and holographically describe deformations of a conformal field theory (CFT) in the UV to another CFT in the IR or in some cases to a non-conformal field theory dual to a singular geometry, see [2–4] for example. Of particular interest are RG flows across dimensions in which a higher dimensional CFT flows to a lower dimensional CFT. This type of RG flows allows us to investigate the structure and dynamics of less known CFTs in higher, especially five and six, dimensions using the well-understood lower dimensional CFTs. In this paper, we will consider this type of RG flows in six-dimensional CFTs to two dimensions. Furthermore, the study along this direction is much more fruitful and controllable in the presence of supersymmetry. We are then mainly interested in RG flows within superconformal field theories (SCFTs).

Supersymmetric solutions of gauged supergravities play an important role in studying the aforementioned RG flows. In general, RG flows across dimensions from a d-dimensional SCFT to a $(d - n)$-dimensional SCFT are obtained by twisted compactification of the former on an n-dimensional manifold M^n. The twist is needed for the compactification to preserve some amount of supersymmetry. This is achieved by turning on some gauge fields to cancel the spin connection on M^n. In the supergravity dual, these RG flows are described by domain walls interpolating between an AdS_{d+1} vacuum to an $AdS_{d+1-n} \times M^n$ geometry. Solutions of this type have been studied in various dimensions, see [5–26] for an incomplete list.

In this paper, we are interested in supersymmetric $AdS_3 \times M^4$ solutions of $N = 2$ gauged supergravity in seven dimensions with $SO(4) \sim SO(3) \times SO(3)$ gauge group. This gauged supergravity is obtained by coupling three vector multiplets to pure $N = 2$ gauged supergravity with $SU(2)$
gauge group constructed in [27,28]. The matter-coupled
gauged supergravity has been constructed in [29–31] with
an extension to include a topological mass term for the
three-form field, dual to the two-form in the \(N = 2 \) super-
gravity multiplet, given in [32]. This massive gauged super-
gravity admits supersymmetric \(AdS_7 \) vacua which has been
extensively studied in [33–35]. These vacua are dual to
\(N = (1, 0) \) SCFTs in six dimensions, and a number of RG
flows of various types have already been studied [18,33,36].
However, holographic RG flows from \(N = (1, 0) \) six-
dimensional SCFTs to two-dimensional SCFTs in the frame-
work of matter-coupled \(N = 2 \) gauged supergravity have
not appeared so far. To fill this gap, we will give a large
class of \(AdS_3 \times M^4 \) fixed points and the corresponding RG
flows across dimensions within six-dimensional \(N = (1, 0) \)
SCFTs.

We will consider a four-manifold \(M^4 \) with constant cur-
vature of two types, a product of two Riemann surfaces
\(\Sigma^2 \times \Sigma^2 \) and a Kahler four-cycle \(M^4_k \). In the first case, the
twists can be performed by using \(SO(2)_R \subset SO(3)_R \) with
\(SO(3)_R \) being the R-symmetry. We will look for solutions
with \(SO(2) \times SO(2), SO(2)_{\text{diag}} \) and \(SO(2)_R \) symmetries.
In the second case, \(M^4_k \) has a \(U(2) \sim SU(2) \times U(1) \) spin
connection. Therefore, we can perform the twists by turn-
ing on either \(SO(2)_R \subset SO(3)_R \) or the full \(SO(3)_R \) to
cancel the \(U(1) \) or the \(SU(2) \) parts of the spin connection,
respectively. It should also be noted that a twist by can-
celling the full \(U(2) \) spin connection is not possible since
the R-symmetry of \(N = 2 \) gauged supergravity is not large
enough.

In general, the two \(SO(3) \sim SU(2) \) factors in the \(SO(4) \)
gauge group can have different coupling constants. However,
for a particular case of equal \(SU(2) \) coupling constants, the
resulting gauged supergravity can be embedded in eleven-
dimensional supergravity via a truncation on \(S^4 \) [37].
The seven-dimensional solutions can accordingly be uplifted to
eleven dimensions giving rise to new \(AdS_3 \times M^4 \times S^4 \) solutions
of eleven-dimensional supergravity. Therefore, these
solutions provide a number of new two-dimensional SCFTs
with known M-theory dual. We also consider the uplifted
solutions in this case.

The paper is organized as follow. In Sect. 2, we give a
short review of the matter coupled \(N = 2 \) seven-dimensional
gauged supergravity and supersymmetric \(AdS_7 \) vacua. In Sects. 3 and 4, we look for supersymmetric \(AdS_3 \times \Sigma^2 \times \Sigma^2 \)
and \(AdS_3 \times M^4_k \) solutions and numerically study interpolating
solutions between these geometries and the \(AdS_7 \) fixed
points. We finally give some conclusions and comments in
Sect. 5. Relevant formulae for the truncation of eleven-
dimensional supergravity on \(S^4 \) giving rise to \(N = 2 \) gauged supergravity with \(SO(4) \) gauge group are reviewed in the
appendix.

\section{Seven-dimensional \(N = 2, SO(4) \) gauged
supergravity and supersymmetric \(AdS_7 \) vacua}

We firstly review \(N = 2 \) gauged supergravity in seven dimen-
sions coupled to three vector multiplets with \(SO(4) \) gauge
group. Only relevant formulae involving bosonic Lagrangian
and supersymmetry transformations of fermions will be pre-
sented. The detailed construction of general \(N = 2 \) seven-
dimensional gauged supergravity can be found in [32], see
also [38] for gaugings in the embedding tensor formalism.

\subsection{Seven-dimensional \(N = 2, SO(4) \) gauged
supergravity}

The seven-dimensional \(N = 2, SO(4) \) gauged supergravity
is obtained by coupling the minimal \(N = 2 \) supergravity to
three vector multiplets. The supergravity multiplet consists
of the graviton \(e_\mu^a \), two gravitini \(\psi_\mu^a \), three vectors \(A_\mu^a \), two
spin-\(\frac{1}{2} \) fields \(\chi^a \), a two-form field \(B_{\mu\nu} \) and the dilaton \(\sigma \). Each
vector multiplet contains a vector field \(A_\mu \), two gaugeini \(\lambda^\mu \),
and three scalars \(\phi^i \). We will use the convention that curved
and flat space-time indices are denoted by \(\mu, v \) and \(\hat{\mu}, \hat{v} \)
respectively. Indices \(i, j = 1, 2, 3 \) and \(a, b = 1, 2 \) label
triplet and doublet of \(SO(3)_R \sim SU(2)_R \) R-symmetry with
the latter being suppressed throughout this work. The three
vector multiplets will be labeled by indices \(r, s = 1, 2, 3 \)
which in turn describe the triplet of the matter symmetry
\(SO(3) \) under which the three vector multiplets transform.

From both supergravity and vector multiplets, there are in
total six vector fields denoted collectively by \(A^i = (A^i, A^i) \).
Indices \(I, J, \ldots = 1, 2, \ldots, 6 \) describe fundamental rep-
resentation of the global symmetry \(SO(3, 3) \) and are low-
ered and raised by the \(\eta_{IJ} = \text{diag}(-1, -1, -1, 1, 1, 1) \) and its inverse \(\eta^{IJ} \). The two-form
field will be dualized to a three-form \(C_{\mu
u\rho} \), which admits
a topological mass term required by the existence of \(AdS_7 \)
vacua.

The nine scalar fields \(\phi^{ir} \) parametrize \(SO(3, 3)/SO(3) \times
SO(3) \) coset manifold. They can be described by the coset
representative

\[L_I^A = (L_I^I, L_I^r) \]

with an index \(A = (i, r) \) corresponding to representations of
the compact \(SO(3) \times SO(3) \) local symmetry. The inverse of
\(L_I^A \) will be denoted by

\[L_A^I = (L_I^I, L_I^r) \]

with the relation

\[L_I^J L_J^I = \delta^I_J, \quad L_A^I L_I^r = \delta^I_r. \]
Being an element of $SO(3, 3)$, the coset representative also satisfies the relation

$$\eta_{IJ} = -L_i^i L_j^j + L_i^r L_j^r. \tag{4}$$

The bosonic Lagrangian of the $N = 2$, $SO(4)$ gauged supergravity in form language can be written as

$$\mathcal{L} = \frac{1}{2} R * \mathbf{1} - \frac{1}{2} e^{\sigma} a_{IJ} * F_{(2)}^I \wedge F_{(2)}^J$$

$$- \frac{1}{2} e^{-2\sigma} H(4) \wedge H(4) - \frac{5}{8} * d\sigma \wedge d\sigma$$

$$- \frac{1}{2} \ast P^{ir} \wedge P^{ir} + \frac{1}{\sqrt{2}} H(4) \wedge \omega_3$$

$$- 4 h H(4) \wedge C(3) - \mathbf{V} \ast \mathbf{1}. \tag{5}$$

The constant h describes the topological mass term for the three-form $C(3)$ with the field strength $H(4) = dC(3)$. The gauge field strength is defined by

$$F_{(2)}^I = dA_{(1)}^I + \frac{1}{2} f_{JK}^I A_{(1)}^J \wedge A_{(1)}^K. \tag{6}$$

The definition of the $SO(4)$ structure constants f_{IJK} includes the gauge coupling constants

$$f_{IKJ} = (g_1 \varepsilon_{ijk}, -g_2 \varepsilon_{rst}) \tag{7}$$

where g_1 and g_2 are coupling constants of $SO(3)_{R}$ and $SO(3)$, respectively.

The scalar matrix a_{IJ} appearing in the kinetic term of vector fields is given in term of the coset representative as follows

$$a_{IJ} = L_i^i L_j^j + L_i^r L_j^r. \tag{8}$$

The Chern-Simons three-form satisfying $d\omega_3 = F_{(2)}^I \wedge F_{(2)}^I$ is defined by

$$\omega_3 = F_{(2)}^I \wedge A_{(1)}^I - \frac{1}{6} f_{IJK}^I A_{(1)}^J \wedge A_{(1)}^J \wedge A_{(1)K}. \tag{9}$$

The scalar potential is given by

$$\mathbf{V} = \frac{1}{4} e^{-\sigma} \left(C^{ij} C_{ij} - \frac{1}{9} C^2 \right) + 16 h^2 e^{2\sigma}$$

$$- \frac{4\sqrt{2}}{3} h e^{2\sigma} C, \tag{10}$$

where C-functions, or fermion-shift matrices, are defined as

$$C = - \frac{1}{\sqrt{2}} f_{IJK}^I L_i^i L_j^j L_{Kk}^j \varepsilon^{ijk}, \tag{11}$$

$$C^{ir} = \frac{1}{\sqrt{2}} f_{IJK}^I L_i^j L_{Kk}^j \varepsilon^{ijk}, \tag{12}$$

$$C_{rsi} = f_{IJK}^I L_i^i L_j^j L_{Kk}^j \varepsilon^{ijk}. \tag{13}$$

It should also be noted that indices i, j and r, s are raised and lowered by δ_{ij} and δ_{rs}, respectively. Finally, the scalar kinetic term is defined in term of the vielbein on the $SO(3, 3)/SO(3) \times SO(3)$ coset as

$$P_{\mu}^{ir} = L_r^i \left(\delta^K \delta_{\mu} + f_{IJK} A^K_{\mu} \right) L_K^j. \tag{14}$$

To find supersymmetric solutions, we need supersymmetry transformations of fermionic fields ψ_μ, χ and λ^r. With all fermionic fields vanishing, these transformations read

$$\delta \psi_\mu = 2 \sqrt{\frac{2}{3}} \, \varepsilon^{\frac{3}{2}} e^{-2\sigma} C \gamma_\mu \psi_\mu - \frac{4}{5} \, \frac{\sqrt{2}}{3} e^{2\sigma} \gamma_\mu \psi_\mu$$

$$- \frac{i}{20} e^{\frac{3}{2}} f_{IJK} \gamma_i \bar{\gamma}^j \gamma^k \psi_\mu,$$

$$\delta \chi = - \frac{1}{2} \gamma_\mu \partial_\mu \psi_\mu + e^{\frac{3}{2}} \bar{\psi} \gamma_\mu \gamma_\nu \gamma_\rho \partial_\sigma \psi_\mu - \frac{1}{16} \, \frac{\sqrt{2}}{3} e^{\sigma} \bar{\psi} \gamma_\mu \gamma_\nu \gamma_\rho \partial_\sigma \psi_\mu,$$

$$\delta \lambda^r = i \gamma_\mu \frac{1}{2} \gamma^{ir} \gamma^j \gamma^k \psi_\mu - \frac{1}{16} \, \frac{\sqrt{2}}{3} e^{\sigma} \bar{\psi} \gamma_\mu \gamma_\nu \gamma_\rho \partial_\sigma \psi_\mu,$$

where γ_i are the usual Pauli matrices.

The dressed field strengths F^I and F^r are defined by the relations

$$F^I_{(2)} = L_i^i F^I_{(2)} \quad \text{and} \quad F^r_{(2)} = L_i^r F^r_{(2)}. \tag{18}$$

The covariant derivative of the supersymmetry parameter ϵ is given by

$$D_\mu \epsilon = \partial_\mu \epsilon + \frac{1}{4} \omega_\mu \dot{\psi} \gamma_\nu \dot{\psi} \epsilon + \frac{1}{\sqrt{2}} Q^\mu_\epsilon \sigma^i \epsilon \tag{19}$$

where Q^μ_ϵ is defined in term of the composite connection Q^μ_ϵ as

$$Q^\mu_\epsilon = \frac{i}{\sqrt{2}} \dot{\psi} \gamma^j \sigma^i Q^\mu_\epsilon \tag{20}$$

with

$$Q^\mu_\epsilon = \epsilon L^j \left(\delta^K \delta_\mu + f_{IJK} A^j_{\mu} \right) L_K^j. \tag{21}$$

For convenience, we also give the full bosonic field equations derived from the Lagrangian given in (5)

$$d(e^{-2\sigma} H(4)) + 8 h H(4) - \frac{1}{\sqrt{2}} F^I_{(2)} \wedge F^I_{(2)} = 0, \tag{22}$$

$$D(e^{\sigma} a_{IJ} F^I_{(2)}) - \sqrt{2} H(4) \wedge F^I_{(2)}$$

$$+ * P_{\mu}^{ir} f_{IJK} L_r^i L_K^j = 0. \tag{23}$$
\[D(*P^I) - 2e^\theta L_J^I L_J^* F_{(2)}^I \wedge F_{(2)}^J \]
\[- \left(\frac{1}{\sqrt{2}} e^{-\sigma} C^{ij} C_{rkl} e^{ijk} + 4\sqrt{2} h e^{\frac{3}{2}} C^{\mu\nu} \right) e(\gamma) = 0, \]
\[\frac{5}{4} d(*d\sigma) - \frac{1}{2} e^\sigma a_{IJ} F_{(2)}^I \wedge F_{(2)}^J + e^{-2\sigma} \ast H(4) \wedge H(4) \]
\[+ \left[\frac{1}{4} e^{-\sigma} \left(C^{\mu\nu} C_{\mu\nu} - \frac{1}{9} C^2 \right) + 2\sqrt{2} h e^{\frac{3}{2}} C \right] e(\gamma) = 0, \]
\[R_{\mu\nu} - \frac{5}{4} \partial_\mu \sigma \partial_\nu \sigma - a_{IJ} e^\sigma \]
\[\times \left(F_{\mu\rho} F_{\nu\sigma} - \frac{1}{10} g_{\mu\nu} F_{\rho\sigma} F_{\rho\sigma} \right) \]
\[- p_{\mu\nu} p_{\rho\sigma} - \frac{2}{5} g_{\mu\nu} V - \frac{1}{2} e^{-2\sigma} \]
\[\times \left(H_{\rho\sigma\lambda} H_{\nu\rho\lambda} - \frac{3}{20} g_{\mu\nu} H_{\rho\sigma\lambda} H_{\rho\sigma\lambda} \right) = 0. \]

(24)

(25)

2.2 Supersymmetric \(AdS_7 \) critical points

We now give a brief review of supersymmetric \(AdS_7 \) vacua found in [33]. There are two supersymmetric \(N = 2 \) \(AdS_7 \) critical points with \(SO(4) \sim SO(3) \times SO(3) \) and \(SO(3)_{\text{diag}} \subset SO(3) \times SO(3) \) symmetries. To compute the scalar potential, we need an explicit parametrization of \(SO(3, 3)/SO(3) \times SO(3) \) coset. By defining the following \(GL(6, \mathbb{R}) \) matrices

\[(e_{IJ})_{KL} = \delta_{IK} \delta_{JL}, \]

we can write non-compact generators of \(SO(3, 3) \) as

\[Y_{\mu} = e_{1\mu+3} + e_{r+3,i}. \]

(27)

(28)

Among the nine scalars from \(SO(3, 3)/SO(3) \times SO(3) \), there is one \(SO(3)_{\text{diag}} \) singlet corresponding to the non-compact generator

\[Y_5 = Y_{11} + Y_{22} + Y_{33}. \]

(29)

The coset representative is then given by

\[L = e^{\phi} Y_5. \]

(30)

The scalar potential for the dilaton \(\sigma \) and the \(SO(3)_{\text{diag}} \) singlet scalar \(\phi \) is readily computed to be

\[V = \frac{1}{32} e^{-\sigma} \left[(g_2^2 + g_1^2) (\cosh(6\phi) - 9 \cosh(2\phi)) + 8 g_1 g_2 \sinh^3(2\phi) + 8 (g_2^2 - g_1^2) + 64 h^2 e^{3\sigma} - 32 e^{\frac{3}{2}} h (g_1 \cosh^3 \phi + g_2 \sinh^3 \phi) \right]. \]

(31)

This potential admits two supersymmetric \(AdS_7 \) critical points

\[\text{I: } \sigma = \phi = 0, \quad V_0 = -240h^2, \]
\[\text{II: } \sigma = \frac{1}{5} \ln \left[\frac{g_2^2}{g_2^2 - 256h^2} \right], \quad \phi = \frac{1}{2} \ln \left[\frac{g_2^2 - 16h}{g_2^2 + 16h} \right]. \]

(32)

(33)

Critical points I and II have \(SO(4) \) and \(SO(3)_{\text{diag}} \) symmetries, respectively. We have also chosen \(g_1 = 16h \) to bring the \(SO(4) \) critical point to the value \(\sigma = 0 \). The cosmological constant is denoted by \(V_0 \). According to the AdS/CFT correspondence, these critical points correspond to \(N = (1, 0) \) SCFTs in six dimensions with \(SO(4) \) and \(SO(3) \) symmetries, respectively. A holographic RG flow interpolating between these two critical points has already been studied in [33], see also [39] for more general solutions. In subsequent sections, we will find supersymmetric \(AdS_3 \times M^4 \) solutions to this \(N = 2 \) \(SO(4) \) gauged supergravity and RG flow solutions from the above \(AdS_7 \) vacua to these geometries in the IR.

3 Supersymmetric \(AdS_3 \times \Sigma^2 \times \Sigma^2 \) solutions and RG flows

In this section, we look for supersymmetric solutions of the form \(AdS_3 \times \Sigma_{k_i}^2 \times \Sigma_{k_i}^2 \) with \(\Sigma_{k_i}^2 \) for \(i = 1, 2 \) being two-dimensional Riemann surfaces. Constants \(k_i \) describe the curvature of \(\Sigma_{k_i}^2 \) with values \(k_i = 1, 0, -1 \) corresponding to a two-dimensional sphere \(S^2 \), a flat space \(\mathbb{R}^2 \) or a hyperbolic space \(H^2 \), respectively.

We will choose the ansatz for the seven-dimensional metric of the form

\[ds_7^2 = e^{2U} dx_{1,1}^2 + dr^2 + e^{2V} ds_{\Sigma_{k_1}^2}^2 + e^{2W} ds_{\Sigma_{k_2}^2}^2, \]

(34)

in which \(dx_{1,1}^2 = \eta_{\alpha\beta} dx^\alpha dx^\beta, \alpha, \beta = 0, 1 \) is the flat metric on the two-dimensional spacetime. The explicit form of the metric on \(\Sigma_{k_i}^2 \) can be written as

\[ds_{\Sigma_{k_i}^2}^2 = d\theta_i^2 + f_{k_i}(\theta_i) d\varphi_i^2. \]

(35)

The functions \(f_{k_i}(\theta_i) \) are defined as

\[f_{k_i}(\theta_i) = \begin{cases} \sin \theta_i, & k_i = 1 \\ \theta_i, & k_i = 0 \\ \sinh \theta_i, & k_i = -1 \end{cases}. \]

(36)
By using an obvious choice of vielbein
\[e^\hat{\alpha} = e^U dx^\alpha, \quad e^\hat{\varphi} = dr, \quad e^\hat{\delta}_1 = e^V d\theta_1, \]
\[e^\hat{\phi}_1 = e^V f_k_1(\theta_1) d\theta_1, \quad e^\hat{\delta}_2 = e^W d\theta_2, \]
\[e^\hat{\phi}_2 = e^W f_k_2(\theta_2) d\phi_2, \]
we can compute the following non-vanishing components of the spin connection
\[\omega^\hat{\alpha}_\hat{\varphi} = U e^\hat{\varphi}, \quad \omega^\hat{\phi}_1 = V e^\hat{\phi}_1, \quad \omega^\hat{\phi}_2 = W e^\hat{\phi}_2, \]
\[\omega^\hat{\delta}_1 = W' e^\hat{\delta}_1, \quad \omega^\hat{\delta}_2 = W' e^\hat{\delta}_2, \]
\[\omega^\hat{\delta}_1 = e^{-V f_k_1(\theta_1)} f_k_1(\theta_1) e^\hat{\phi}_1, \]
\[\omega^\hat{\delta}_2 = e^{-W f_k_2(\theta_2)} f_k_2(\theta_2) e^\hat{\phi}_2. \]

Throughout the paper, we will use primes to denote derivatives of a function with respect to its argument for example \(U' = dU/dr \) and \(f_k_1'(\theta_1) = d f_k_1(\theta_1)/d\theta_1 \).

To find supersymmetric \(AdS_3 \times \Sigma_k \times \Sigma_{k_2} \) solutions which admit non-vanishing Killing spinors, we perform a twist by turning on gauge fields along \(\Sigma_k \times \Sigma_{k_2} \). In the following discussions, we will consider various possible twists with different unbroken symmetries.

3.1 \(AdS_3 \) vacua with \(SO(2) \times SO(2) \) symmetry

We first consider solutions with \(SO(2) \times SO(2) \) symmetry. To perform the twist, we turn on the following \(SO(2) \times SO(2) \) gauge fields on \(\Sigma_k \times \Sigma_{k_2} \)
\[A^3_{(1)} = -\frac{p_{11}}{k_1} e^{-V f_k_1(\theta_1)} e^\hat{\phi}_1 - \frac{p_{12}}{k_2} e^{-W f_k_2(\theta_2)} e^\hat{\phi}_2, \]
\[A^6_{(1)} = -\frac{p_{21}}{k_1} e^{-V f_k_1(\theta_1)} e^\hat{\phi}_1 - \frac{p_{22}}{k_2} e^{-W f_k_2(\theta_2)} e^\hat{\phi}_2, \]
where \(p_{ij} \) are constants magnetic charges.

There is one \(SO(2) \times SO(2) \) singlet scalar from \(SO(3, 3) / SO(3) \times SO(3) \) coset corresponding to the non-compact generator \(Y_{33} \). We then parametrize the coset representative by
\[L = e^{\phi Y_{33}} \]
with \(\phi \) depending only on the radial coordinate \(r \). By computing the composite connection \(Q^\mu_\mu \) along \(\Sigma_k \times \Sigma_{k_2} \), we can cancel the spin connections by imposing the following twist conditions
\[g_1 p_{11} = k_1 \quad \text{and} \quad g_1 p_{12} = k_2 \]
(42)

Together with the projection conditions
\[\gamma_{\hat{\phi}_1} \epsilon = \gamma_{\hat{\phi}_2} \epsilon = i \sigma^3 \epsilon. \]
(43)

Note that only the gauge field \(A^3_{(1)} \) enters the twist procedure since \(A^3_{(1)} \) is the gauge field of \(SO(2)_R \subset SO(3)_R \) under which the gravitini and supersymmetry parameters are charged.

From the gauge fields given in (39) and (40), we can straightforwardly compute the corresponding two-form field strengths
\[F^{(2)}_2 = e^{-2V} p_{11} e^\hat{\phi}_1 \wedge e^\hat{\phi}_1 + e^{-W} p_{12} e^\hat{\phi}_2 \wedge e^\hat{\phi}_2, \]
\[F^{(2)}_6 = e^{-2V} p_{21} e^\hat{\phi}_1 \wedge e^\hat{\phi}_1 + e^{-W} p_{22} e^\hat{\phi}_2 \wedge e^\hat{\phi}_2. \]

It should also be noted that these field strengths give non-vanishing \(F^{(2)}_2 \wedge F^{(2)}_2 \) term. This term is present in the field equation of the three-form field \(C^{(3)} \) as can be seen from Eq. (22). Therefore, we need to turn on the three-form field with the corresponding four-form field strength given by
\[H^{(4)} = \frac{1}{8\sqrt{2}h} e^{-2(V+W)} (p_{21} P_{22} - p_{11} P_{12}) \]
\[e^\hat{\phi}_1 \wedge e^\hat{\phi}_1 \wedge e^\hat{\phi}_2 \wedge e^\hat{\phi}_2. \]
(46)

This is very similar to the solutions of maximal \(SO(5) \) gauged supergravity considered in [8].

By imposing an additional projector
\[\gamma_r \epsilon = \epsilon \]
(47)
required by \(\delta \chi = 0 \) and \(\delta \lambda' = 0 \) conditions, we find the following BPS equations
\[U' = \frac{1}{5} e^{\frac{2}{5}} \left((g_1 e^{-\sigma} \cos \phi + 4 h e^{\frac{2V}{5}}) \right. \]
\[+ \frac{3}{8h} e^{-\frac{2V}{5}} - 2(V+W) (p_{11} P_{12} - p_{21} P_{22}) \]
\[- e^{-2V} (p_{11} \cos \phi + p_{21} \sinh \phi) \]
\[- e^{-2W} (p_{12} \cos \phi + p_{22} \sinh \phi) \],
(48)

\[V' = \frac{1}{5} e^{\frac{2}{5}} \left((g_1 e^{-\sigma} \cos \phi + 4 h e^{\frac{2V}{5}}) \right. \]
\[- \frac{1}{4h} e^{-\frac{2V}{5}} - 2(V+W) (p_{11} P_{12} - p_{21} P_{22}) \]
\[+ 4 e^{-2V} (p_{11} \cos \phi + p_{21} \sinh \phi) \]
\[- e^{-2W} (p_{12} \cos \phi + p_{22} \sinh \phi) \],
(49)

\[W' = \frac{1}{5} e^{\frac{2}{5}} \left((g_1 e^{-\sigma} \cos \phi + 4 h e^{\frac{2V}{5}}) \right. \]
\[- \frac{1}{4h} e^{-\frac{2V}{5}} - 2(V+W) (p_{11} P_{12} - p_{21} P_{22}) \]
\[- e^{-2V} (p_{11} \cos \phi + p_{21} \sinh \phi) \]
\[+ 4 e^{-2W} (p_{12} \cos \phi + p_{22} \sinh \phi) \],
(50)

\[\sigma' = \frac{2}{5} e^{\frac{2}{5}} \left((g_1 e^{-\sigma} \cos \phi - 16 h e^{\frac{2V}{5}}) \right. \]
\[- \frac{1}{4h} e^{-\frac{2V}{5}} - 2(V+W) (p_{11} P_{12} - p_{21} P_{22}) \]
(51)
\[-e^{-2V}(p_{11} \cosh \phi + p_{21} \sinh \phi)\]
\[+e^{-2W}(p_{12} \cosh \phi + p_{22} \sinh \phi),\tag{51}\]
\[\phi' = \frac{\sqrt{g_{1}}}{\sqrt{2}} \left[e^{-2V}(p_{11} \sinh \phi + p_{21} \cosh \phi) \right.\]
\[\left. +e^{-2W}(p_{12} \sinh \phi + p_{22} \cosh \phi) \right],\tag{52}\]

It can be verified that these BPS equations satisfy all the field equations. At large \(r \), we have \(U \sim V \sim W \sim r \) and \(\phi \sim \sigma \sim e^{-\frac{r}{2}} \) with the \(AdS_{7} \) radius given by \(L = \frac{1}{\sqrt{m}} \), and the terms involving gauge fields and the three-form field are highly suppressed. We find the \(SO(4) \) \(AdS_{7} \) fixed point from these BPS equations in this limit. The solutions are then asymptotically locally \(AdS_{7} \) as \(r \to \infty \).

We now look for supersymmetric \(AdS_{3} \) solutions satisfying \(V' = W' = \sigma' = \phi' = 0 \) and \(U' = \frac{1}{L_{AdS_{3}}} \) in the limit \(r \to -\infty \). We find a class of \(AdS_{3} \) fixed point solutions

\[e^{\frac{2}{3}} = \frac{g_{1}Z e^{\phi}}{4h(p_{21}(p_{12} - 3p_{22}) + p_{11}(p_{12} + p_{22}))},\tag{53}\]
\[e^{\phi} = \sqrt{\frac{p_{21}(p_{12} - 3p_{22}) + p_{11}(p_{12} + p_{22})}{p_{21}(p_{12} - 3p_{22}) - p_{11}(p_{12} + 3p_{22})}},\tag{54}\]
\[e^{2V} = \frac{p_{21} - p_{11} - (p_{11} + p_{21})e^{2\phi}}{8he^{\phi+\frac{1}{2}\sigma}},\tag{55}\]
\[e^{2W} = \frac{p_{22} - p_{12} - (p_{12} + p_{22})e^{2\phi}}{8he^{\phi+\frac{1}{2}\sigma}},\tag{56}\]
\[L_{AdS_{3}} = \frac{p_{11}p_{12} - p_{21}p_{22} + 32h^{2}e^{2V+2W+3\sigma}}{p_{21}(p_{12} - 3p_{22}) - p_{11}(p_{12} + 3p_{22})},\tag{57}\]
\[\text{where}\]
\[Z = \frac{(p_{11}(p_{12}^{2} + p_{22}^{2}) - 2p_{11}p_{21}p_{22})(-2p_{12}p_{21}p_{22} + p_{11}(p_{12}^{2} + p_{22}^{2}))}{(p_{11}(3p_{12}^{2} + p_{22}^{2}) + p_{12}^{2}(p_{12}^{2} + 3p_{22}^{2}) - 8p_{11}p_{12}p_{21}p_{22})}.\tag{58}\]

Note that the coupling constant \(g_{2} \) does not appear in the above equations, so the solutions can be uplifted to eleven dimensions by setting \(g_{2} = g_{1} \).

To obtain real solutions, we require that \(e^{2V} > 0, e^{2W} > 0, e^{\sigma} > 0, \) and \(e^{\phi} > 0 \). It turns out the \(AdS_{3} \) solutions are possible only for one of the two \(k_{i} \) is equal to \(-1 \) with the seven-dimensional spacetime given by \(AdS_{3} \times H^{2} \times H^{2}, AdS_{3} \times H^{2} \times \mathbb{R}^{2} \) and \(AdS_{3} \times H^{2} \times S^{2} \). Since the charges \(p_{11} \) and \(p_{12} \) are fixed by the twist conditions (42), there are only two parameters \(p_{21} \) and \(p_{22} \) characterizing the solutions. For \(g_{1} = 16h \) and \(h = 1 \), regions in the parameter space (\(p_{21}, p_{22} \)) for good \(AdS_{3} \) vacua to exist are shown in Fig. 1. Note that these regions are precisely the same as supersymmetric \(AdS_{3} \times \Sigma^{2} \times \Sigma^{2} \) solutions of maximal seven-dimensional \(SO(5) \) gauged supergravity in [8].

These \(AdS_{3} \) fixed points preserve four supercharges due to the two projectors in (43) and correspond to \(N = (2, 0) \) SCFTs in two dimensions with \(SO(2) \times SO(2) \) symmetry. On the other hand, the entire RG flow solutions interpolating between the \(AdS_{7} \) fixed point and these \(AdS_{3} \) geometries preserve only two supercharges due to an extra projector in (47). Examples of these RG flows from the \(AdS_{7} \) fixed point to \(AdS_{3} \times H^{2} \times H^{2}, AdS_{3} \times H^{2} \times \mathbb{R}^{2} \) and \(AdS_{3} \times H^{2} \times S^{2} \) with \(h = 1 \) and different values of \(p_{21} \) and \(p_{22} \) are shown in Figs. 2, 3 and 4, respectively.

These solutions can be uplifted to eleven dimensions using the truncation ansatz given in [37]. By using the formulae reviewed in the appendix together with the \(S^{3} \) coordinates

\[\mu^{a} = (cos \psi \cos \alpha, cos \psi \sin \alpha, sin \psi \cos \beta, sin \psi \sin \beta),\tag{59}\]

and the \(SL(4, \mathbb{R})/SO(4) \) matrix

\[\tilde{T}_{a\bar{b}}^{-1} = diag(e^{\phi}, e^{\phi}, e^{-\phi}, e^{-\phi}),\tag{60}\]

we find the eleven-dimensional metric

\[d\hat{s}_{11}^{2} = \Delta^{1/2} \left[e^{2U}ds_{1,1}^{2} + dr^{2} + e^{2V}ds_{2}^{2} + e^{2W}ds_{2}^{2} + e^{2V}ds_{2}^{2} \right.\]
\[-\frac{2}{g^{2}} \Delta^{-\frac{3}{2}}\times \left[e^{-2\sigma} \cos^{2} \xi + e^{2\phi} \sin^{2} \xi (e^{\phi} \cos^{2} \psi + e^{-\phi} \sin^{2} \psi) \right] d\xi^{2}\]
\[+ \left[e^{2\phi} \sin^{2} \psi + e^{-\phi} \cos^{2} \psi \right] d\psi^{2}\]
\[+ e^{\phi} \cos^{2} \psi (d\alpha - g A^{12})^{2}\]
\[+ e^{-\phi} \sin^{2} \psi (d\beta - g A^{34})^{2}\]
\[\Delta = e^{2\sigma} \sin^{2} \xi + e^{-2\phi} \cos^{2} \xi \left(e^{-\phi} \cos^{2} \psi + e^{\phi} \sin^{2} \psi \right).\tag{61}\]

From the metric, we see that the \(SO(2) \times SO(2) \) symmetry corresponds to the isometry along the \(\alpha \) and \(\beta \) directions.

3.2 \(AdS_{3} \) vacua with \(SO(2)_{\text{diag}} \) symmetry

We now consider \(AdS_{3} \) solutions with \(SO(2)_{\text{diag}} \subset SO(2) \times SO(2) \subset SO(3) \times SO(3) \) symmetry. In this case, there are three \(SO(2)_{\text{diag}} \) singlets from the nine scalars in \(SO(3, 3)/ SO(3) \times SO(3) \) coset. These correspond to non-compact generators

\[\hat{Y}_{1} = Y_{11} + Y_{22}, \quad \hat{Y}_{2} = Y_{33}, \quad \hat{Y}_{3} = Y_{12} - Y_{21}.\tag{63}\]

The coset representative takes the form of

\[L = e^{\phi_{1}}\hat{Y}_{1}e^{\phi_{2}}\hat{Y}_{2}e^{\phi_{3}}\hat{Y}_{3}.\tag{64}\]
Fig. 1 Regions (blue) in the parameter space \((p_{21}, p_{22})\) where good \(AdS_3\) vacua exist. From left to right, these are the cases of \((k_1 = k_2 = -1)\), \((k_1 = -1, k_2 = 0)\) and \((k_1 = -k_2 = -1)\), respectively. The orange regions correspond to interchanging \(k_1\) and \(k_2\).

Fig. 2 RG flows from \(SO(4)\) \(N = (1, 0)\) SCFT in six dimensions to two-dimensional \(N = (2, 0)\) SCFTs with \(SO(2) \times SO(2)\) symmetry dual to \(AdS_3 \times H^2 \times H^2\) solutions for \((p_{21}, p_{22}) = (\frac{1}{12}, -\frac{1}{2}), (\frac{1}{12}, -\frac{1}{2}), (\frac{1}{2}, -\frac{1}{2}), (-\frac{1}{2}, \frac{1}{2})\) (blue, yellow, green, red).
The ansatz for $SO(2)_{\text{diag}}$ gauge fields is obtained from that of $SO(2) \times SO(2)$ given in (39) and (40) by setting $g_2 A_6 = g_1 A_3$ or, equivalently, $g_2 p_{21} = g_1 p_{11}$ and $g_2 p_{22} = g_1 p_{12}$.

We will also simplify the notation by redefining the charges $p_1 = p_{11}$ and $p_2 = p_{12}$. In this case, the four-form field strength is given by

$$H(4) = \frac{p_1 p_2}{8\sqrt{2h g_2^2}} e^{-2(V+W)} (g_1^2 - g_2^2) \times e^{\hat{\theta}_1} \wedge e^{\hat{\phi}_1} \wedge e^{\hat{\theta}_2} \wedge e^{\hat{\phi}_2},$$

and the twist conditions read

$$g_1 p_1 = k_1 \quad \text{and} \quad g_1 p_2 = k_2.$$ \hspace{1cm} (66)

Using the projection conditions (43) and (47), we obtain the corresponding BPS equations. It turns out that compatibility between these BPS equations and field equations requires either $\phi_1 = 0$ or $\phi_3 = 0$. Furthermore, setting $\phi_3 = 0$ gives the same BPS equations as setting $\phi_1 = 0$ with ϕ_3 and ϕ_1 interchanged. We will then consider only the $\phi_3 = 0$ case with the following BPS equations

$$U' = \frac{1}{10} e^\frac{2}{10} e^{-2(V+W) (g_1^2 - g_2^2)} \left[\cosh 2\phi_1 (g_1 e^{-\sigma} \cosh \phi_2 + g_2 e^{-\sigma} \sinh \phi_2) + g_2 e^{-\sigma} \sinh \phi_2 + 8h^\frac{3}{2} \right]$$

$$-2p_1 e^{-2V} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right)$$

$$-2p_2 e^{-2W} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right)$$

$$+ g_1 e^{-\sigma} \cosh \phi_2 - g_2 e^{-\sigma} \sinh \phi_2$$

$$- \frac{3}{4h g_2^2} e^{-\frac{3}{2} - 2(V+W)} (g_1^2 - g_2^2) p_1 p_2],$$ \hspace{1cm} (68)

$$V' = \frac{1}{10} e^\frac{2}{10} e^{-2(V+W) (g_1^2 - g_2^2)} \left[\cosh 2\phi_1 (g_1 e^{-\sigma} \cosh \phi_2 + g_2 e^{-\sigma} \sinh \phi_2) + g_2 e^{-\sigma} \sinh \phi_2 + 8h^\frac{3}{2} \right]$$

$$-2p_1 e^{-2V} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right)$$

$$-2p_2 e^{-2W} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right)$$

$$+ g_1 e^{-\sigma} \cosh \phi_2 - g_2 e^{-\sigma} \sinh \phi_2$$

$$- \frac{3}{4h g_2^2} e^{-\frac{3}{2} - 2(V+W)} (g_1^2 - g_2^2) p_1 p_2].$$ \hspace{1cm} (68)
Fig. 4 RG flows from $SO(4)$ $N = (1, 0)$ SCFT in six dimensions to two-dimensional $N = (2, 0)$ SCFTs with $SO(2) \times SO(2)$ symmetry dual to $AdS_3 \times H^2 \times S^2$ solutions for $(p_{21}, p_{22}) = (\frac{1}{17}, -2), (\frac{5}{17}, -5), (\frac{1}{4}, -2), (-\frac{1}{4}, 9)$ (blue, yellow, green, red)

\[
\begin{align*}
\sigma' &= \frac{1}{5} \sigma' \left[\cosh 2\phi_1 (g_1 e^{-\sigma} \cosh \phi_2 + g_2 e^{-\sigma} \sinh \phi_2) \\
&\quad - 32 \sigma' \frac{3\sigma}{2} - 2 p_1 e^{-2\sigma} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right) \\
&\quad - 2 p_2 e^{-2\sigma} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right) \\
&\quad + \frac{1}{2h g_2^2} e^{-\frac{3\sigma}{2}-2(V+W)} \left(g_1^2 - g_2^2 \right) \right], \\
W' &= \frac{1}{10} e^\sigma \left[\cosh 2\phi_1 (g_1 e^{-\sigma} \cosh \phi_2 + g_2 e^{-\sigma} \sinh \phi_2) \\
&\quad + 8 \sigma' \frac{3\sigma}{2} - 2 p_1 e^{-2\sigma} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right) \\
&\quad + 8 p_2 e^{-2\sigma} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right) \\
&\quad + g_1 e^{-\sigma} \cosh \phi_2 - g_2 e^{-\sigma} \sinh \phi_2 \\
&\quad + \frac{1}{2h g_2^2} e^{-\frac{3\sigma}{2}-2(V+W)} \left(g_1^2 - g_2^2 \right) \right].
\end{align*}
\]
In this case, solutions to the BPS equations are asymptotic to the two supersymmetric AdS$_7$ vacua with SO(4) and SO(3)$_{\text{diag}}$ symmetries at large r. Furthermore, unlike the previous case, all charge parameters are fixed by the twist conditions, and there exist only AdS$_3 \times H^2 \times H^2$ solutions.

We now look for AdS$_3$ fixed points. The solutions also preserve four supercharges and correspond to $N = (2,0)$ SCFTs in two dimensions as in the previous case. We begin with a class of AdS$_3$ fixed points for $\phi_1 = 0$

$$
\begin{align*}
\sigma &= \frac{2}{5} \phi_2 + \frac{2}{5} \ln \left[\frac{g_1 g_2^2}{12h(g_2^2 + 2g_1g_2 - 3g_1^2)} \right], \\
\phi_2 &= \frac{1}{2} \ln \left[\frac{3g_1^2 - 2g_1g_2 - g_2^2}{3g_1^2 + 2g_1g_2 - g_2^2} \right], \\
V &= W = \frac{1}{10} \ln \left[\frac{27g_1 - 2g_2 - 3g_1^2}{16h^2 g_1^2 g_3^2 (g_2 - g_1)^2} \right], \\
L_{\text{AdS}_3} &= \left[\frac{8(9g_1^4 g_2^2 - 10g_1^2 g_2^3 + g_2^3)^2}{3h g_1^2 (g_2 - g_1)^3} \right]^{\frac{1}{2}}
\end{align*}
$$

with $g_2 > 3g_1$ or $g_2 < -3g_1$ for AdS$_3$ vacua to exist. An example of RG flows from the SO(4) AdS$_7$ critical point to this AdS$_3 \times H^2 \times H^2$ fixed point for $g_2 = 4g_1$ and $h = 1$ is shown in Fig. 5 with ϕ_1 set to zero along the flow.

Another class of AdS$_3$ solutions with $\phi_1 \neq 0$ is given by

$$
\begin{align*}
\sigma &= \frac{2}{5} \ln \left[\frac{g_1 g_2}{12h(g_2 + g_1)(g_2 - g_1)} \right], \\
\phi_1 = \phi_2 &= \frac{1}{2} \ln \left[\frac{g_2 - g_1}{g_2 + g_1} \right], \\
V &= W = \frac{1}{10} \ln \left[\frac{27(g_1 - g_2)^2}{16h^2 g_1^2 g_3^2 (g_2 - g_1)^2} \right], \\
L_{\text{AdS}_3} &= \left[\frac{8(9g_1^4 - g_2^3)^2}{3h g_1^2 g_3^2} \right]^{\frac{1}{2}}
\end{align*}
$$

with the condition $g_2 > g_1$. Examples of RG flow solutions from the SO(4) and SO(3) AdS$_7$ vacua to these AdS$_3 \times H^2 \times H^2$ fixed points are respectively shown in Figs. 6 and 7 for $g_2 = 4g_1$ and $h = 1$. Note that ϕ_1 and ϕ_2 have the same value at both the SO(3) AdS$_3$ and AdS$_3$ fixed points.

Moreover, with a suitable set of boundary conditions, there exists an RG flow from SO(4) AdS$_7$ to SO(3) AdS$_3$ fixed points and then to AdS$_3 \times H^2 \times H^2$ critical point as shown in Fig. 8. All AdS$_3$ vacua and RG flows in this case cannot be uplifted to eleven dimensions since the existence of these solutions requires $g_1 \neq g_2$. Therefore, the corresponding holographic interpretation is rather limited.

3.3 AdS$_3$ vacua with SO(2)$_R$ symmetry

We now move on to AdS$_3$ solutions with SO(2)$_R \subset SO(3)_R$ symmetry. There are three SO(2)$_R$ singlet scalars from SO(3, 3)/SO(3) \times SO(3) coset. These correspond to non-compact generators Y_{31}, Y_{32} and Y_{33}. Therefore, the coset representative can be written as

$$
L = e^{\phi_1} Y_{31} e^{\phi_2} Y_{32} e^{\phi_3} Y_{33}.
$$

To perform the twist, we take the following ansatz for the SO(2)$_R$ gauge field

$$
A_{(1)}^3 = -\frac{p_1}{k_1} e^{-W} f_{k_1}(\theta_1) e^{\tilde{\phi}_1} + \frac{p_2}{k_2} e^{-W} f_{k_2}(\theta_2) e^{\tilde{\phi}_2}.
$$

The four-form field strength in this case is given by

$$
H_{(4)} = -\frac{1}{8\sqrt{2}h} e^{-(V + W)} p_1 p_2 e^{\tilde{\phi}_1} \wedge e^{\tilde{\phi}_2} \wedge e^{\tilde{\phi}_2}.
$$

We can now repeat the same procedure as in the previous two cases to find the corresponding BPS equations. In this case, it turns out that compatibility between the BPS equations and second-order field equations allows only one of the ϕ_i, $i = 1, 2, 3$, to be non-vanishing. We have verified that any of the ϕ_i leads to the same set of BPS equations. We will choose $\phi_1 = \phi_2 = 0$ and $\phi_3 \neq 0$ for definiteness. With this choice, the BPS equations are given by

$$
\begin{align*}
U' &= \frac{1}{5e^2} \left[g_1 e^{-\sigma} + 4h e^{\frac{3\sigma}{2}} - e^{-2V} p_1 - e^{-2W} p_2 \\
&+ \frac{3}{8h} e^{-(V + W)p_1 p_2} \right], \\
V' &= \frac{1}{5e^2} \left[g_1 e^{-\sigma} + 4h e^{\frac{3\sigma}{2}} \\
&+ 4e^{-2V} p_1 - e^{-2W} p_2 - \frac{1}{4h} e^{-(V + W)p_1 p_2} \right], \\
W' &= \frac{1}{5e^2} \left[g_1 e^{-\sigma} + 4h e^{\frac{3\sigma}{2}} - e^{-2V} p_1 \\
&+ 4e^{-2W} p_2 - \frac{1}{4h} e^{-(V + W)p_1 p_2} \right], \\
\sigma' &= \frac{2}{5} e^\sigma \left[g_1 e^{-\sigma} - 16h e^{\frac{3\sigma}{2}} - e^{-2V} p_1 - e^{-2W} p_2 \\
&- \frac{1}{4h} e^{-(V + W)p_1 p_2} \right], \\
\phi_3 &= -e^{-\frac{\sigma}{2}} \left[g_1 + e^{\sigma} (e^{-2V} p_1 + e^{-2W} p_2) \right] \sinh \phi_3.
\end{align*}
$$

For these equations, there exist AdS$_3$ fixed points only for $k_1 = k_2 = -1$. The resulting AdS$_3 \times H^2 \times H^2$ solution is given by

$$
\phi_3 = 0, \quad \sigma = \frac{2}{5} \ln \left[\frac{g_1}{12h} \right],
$$
Fig. 5 An RG flow from $SO(4) \ N = (1, 0)$ SCFT in six dimensions to two-dimensional $N = (2, 0)$ SCFT with $SO(2)_{\text{diag}}$ symmetry dual to $AdS_3 \times H^2 \times H^2$ solution

\[V = W = \frac{1}{10} \ln \frac{27}{16h^2 g_1^2}, \]

\[L_{AdS_3} = \left[\frac{8}{3h g_4^2} \right]^\frac{1}{2}. \]

This solution again preserves four supercharges and corresponds to $N = (2, 0)$ SCFT in two dimensions. An example of RG flow solutions from $N = (1, 0)$ six-dimensional SCFT to this fixed point for $h = 1$ and $\phi_3 = 0$ is shown in Fig. 9. Note that the AdS_3 fixed point and the RG flow are also solutions of pure $N = 2$ gauged supergravity with $SU(2)$ gauge group.

As in the case of AdS_3 solutions with $SO(2) \times SO(2)$ symmetry, the above solutions can be uplifted to eleven dimensions by setting $g_2 = g_1$. The eleven-dimensional metric can be obtained from (61) by setting $\phi = 0$ and $A^3 = 0$, or equivalently $A^{12} = A^{34} \equiv A^3$. The result is given by

\[d\hat{s}^2_{11} = \Delta^2 \left[e^{2U} dx_{1,1}^2 + dr^2 + e^{2V} \, ds_{\Sigma_1}^2 + e^{2W} \, ds_{\Sigma_2}^2 \right] \]

\[+ \frac{2}{g^2} \Delta^{-\frac{1}{2}} \left(e^{-2\sigma} \cos^2 \xi + e^\sigma \sin^2 \xi \right) \, d\xi^2 \]

\[+ \frac{1}{2g^2} \Delta^{-\frac{1}{2}} e^{\sigma} \cos^2 \xi \left[d\psi^2 + \cos^2 \psi (d\alpha - g A^3)^2 \right] \]

\[+ \sin^2 \psi (d\beta - g A^3)^2 \]

\[\Delta = e^{2\sigma} \sin^2 \xi + e^{-\sigma} \cos^2 \xi. \]

It should also be pointed out that the seven-dimensional solution in this case has recently been discussed in the context of massive type IIA theory in [40].

4 Supersymmetric $AdS_3 \times M^4_k$ solutions and RG flows

In this section, we repeat the same analysis for M^4 being a Kahler four-cycle and look for solutions of the form $AdS_3 \times M^4_k$. For the constant $k = 1, 0, -1$, the Kahler four-cycle is given by a two-dimensional complex space CP^2, a four-
dimensional flat space \mathbb{R}^4, or a two-dimensional complex hyperbolic space CH^2, respectively. The Kahler four-cycle has $U(2) \sim SU(2) \times U(1)$ spin connection. We can perform a twist by using either $SO(2)_R \sim U(1)_R$ or $SO(3)_R \sim SU(2)_R$ gauge fields to cancel the $U(1)$ or $SU(2)$ parts of the spin connection.

4.1 AdS_3 vacua with $SO(2) \times SO(2)$ symmetry

We begin with AdS_3 vacua with $SO(2) \times SO(2)$ symmetry and take the following ansatz for the seven-dimensional metric

![Graphs](Fig. 6) An RG flow from $SO(4) \ N = (1, 0)$ SCFT in six dimensions to two-dimensional $\ N = (2, 0)$ SCFT with $SO(2)_{\text{diag}}$ symmetry dual to $AdS_3 \times H^2 \times H^2$ solution

![Graphs](Fig. 7) An RG flow from $SO(3) \ N = (1, 0)$ SCFT in six dimensions to two-dimensional $\ N = (2, 0)$ SCFT with $SO(2)_{\text{diag}}$ symmetry dual to $AdS_3 \times H^2 \times H^2$ solution
The metric on the Kahler four-cycle M_4 is given by

$$ds^2_{M_4} = \frac{d\varphi^2}{f_k^2(\varphi)} + \frac{\varphi^2}{f_k(\varphi)} (\tau_1^2 + \tau_2^2) + \frac{\varphi^2}{f_k^2(\varphi)} \tau_3^2$$

(91)

with $\varphi \in [0, \frac{\pi}{2}]$ and the function $f_k(\varphi)$ defined by

$$f_k(\varphi) = 1 + k\varphi^2.$$

τ_i, $i = 1, 2, 3$, are $SU(2)$ left-invariant one-forms satisfying $d\tau_i = \frac{1}{2} e_{ijk} \tau_j \wedge \tau_k$. Their explicit form is given by

$$\tau_1 = -\sin \chi \, d\theta + \cos \chi \, \sin \theta d\psi,$$

$$\tau_2 = \cos \chi \, d\theta + \sin \chi \, \sin \theta d\psi,$$

$$\tau_3 = d\chi + \cos \theta d\psi.$$

(93)

The ranges of the coordinates are $\theta \in [0, \pi]$, $\psi \in [0, 2\pi]$, and $\chi \in [0, 4\pi]$.

By choosing the following choice of vielbein

$$\hat{e}_a = e^U dx^a,$$ $$\hat{e}_1 = e^V \frac{\varphi}{\sqrt{f_k(\varphi)}} \tau_1,$$

$$\hat{e}_2 = e^V \frac{\varphi}{\sqrt{f_k(\varphi)}} \tau_2,$$

$$\hat{e}_3 = e^V \frac{\varphi}{f_k(\varphi)} \tau_3,$$

$$\hat{e}_4 = e^V \frac{1}{f_k(\varphi)} d\varphi,$$

(94)
The associated two-form field strengths are given by
\[
\omega = \frac{1}{\sqrt{f_k(\phi)}} \tau_1,
\]
\[
\omega = \frac{2k\phi^2 + 1}{f_k(\phi)} \tau_3,
\]
\[
\omega = \frac{(k\phi^2 - 1)}{f_k(\phi)} \tau_3.
\] (95)

We can now perform the twist by turning on \(SO(2)\times SO(2)\) gauge fields with the following ansatz
\[
A^3_{(1)} = \frac{3\phi^2}{f_k(\phi)} \tau_3 \quad \text{and} \quad A^6_{(1)} = \frac{3\phi^2}{f_k(\phi)} \tau_3.
\] (96)

The associated two-form field strengths are given by
\[
F^3_{(2)} = 3e^{-2V} p_1 J_{(2)} \quad \text{and} \quad F^6_{(2)} = 3e^{-2V} p_2 J_{(2)}
\] (97)
where \(J_{(2)}\) is the Kähler structure defined by
\[
J_{(2)} = e^1 \wedge e^2 - e^3 \wedge e^4.
\] (98)

To implement the twist, we impose the following projectors on the Killing spinors
\[
\gamma_{12} = -\gamma_{34} = i\sigma^3 \epsilon
\] (99)

Together with the twist condition
\[
g_1 p_1 = k.
\] (100)

As in the previous cases, we need to turn on the three-form field with the field strength
\[
H_{(4)} = \frac{9}{8\sqrt{2}h} e^{-4V} (p_1 - p_2) e^1 \wedge e^2 \wedge e^3 \wedge e^4.
\] (101)

With all these and the \(\gamma_r\) projector (47), we can derive the following BPS equations
\[
U' = \frac{1}{5} e^2 \left((g_1 e^{-\sigma} \cos \phi + 4he^{-\frac{5\phi}{2}})
-6e^{-2V} (p_1 \cos \phi + p_2 \sinh \phi)
+\frac{27}{8h} e^{-\frac{5\phi}{2}} -4V (p_1^2 - p_2^2) \right),
\] (102)
\[
V' = \frac{1}{5} e^2 \left((g_1 e^{-\sigma} \cos \phi + 4he^{-\frac{5\phi}{2}})
+9e^{-2V} (p_1 \cos \phi + p_2 \sinh \phi)
-\frac{9}{4h} e^{-\frac{5\phi}{2}} -4V (p_1^2 - p_2^2) \right),
\] (103)
\[
\sigma' = \frac{2}{5} e^2 \left((g_1 e^{-\sigma} \cos \phi - 16he^{-\frac{5\phi}{2}})
-6e^{-2V} (p_1 \cosh \phi + p_2 \sinh \phi)
- \frac{9}{4h} e^{-\frac{5\phi}{2}} -4V (p_1^2 - p_2^2) \right),
\] (104)

with \(\phi\) being the \(SO(2)\times SO(2)\) singlet scalar in (41).

The BPS equations admit an \(AdS_3 \times CH^2\) fixed point given by
\[
\sigma = \frac{2}{5} \ln \left[\frac{81p_1^2}{12h\sqrt{p_1^4 - 10p_1^3 p_2^2 + 9p_2^4}} \right],
\]
\[
\phi = \frac{1}{2} \ln \left[\frac{p_1^3 + 2p_1 p_2 - 3p_2^2}{p_1^3 - 2p_1 p_2 - 3p_2^2} \right],
\]
\[
V = \frac{1}{10} \ln \left[\frac{3^5 (p_1^2 - p_2^2)^4}{16h^2 g_1^2 (9p_1 p_2^2 - p_1^3)} \right],
\] (106)

The \(AdS_3\) solution preserves four supercharges and exists for
\[
-\frac{1}{48h} < p_2 < \frac{1}{48h},
\] (107)

with \(g_1 = 16h, k = -1, \phi > 0\). The \(AdS_3 \times CH^2\) fixed point is dual to an \(N = (2, 0)\) two-dimensional SCFT.

Examples of RG flows interpolating between this \(AdS_3\) fixed point and the \(SO(4) AdS_3\) critical point for \(h = 1\) and different values of \(p_2\) are shown in Fig. 10.

As in the \(\Sigma^2 \times \Sigma^2\) case, the \(AdS_3 \times CH^2\) fixed point and the associated RG flows can be uplifted to eleven dimensions by setting \(g_2 = g_1\). The eleven-dimensional metric can be obtained from (61) by replacing \(e^{2V} ds_{\Sigma^2}^2 + e^{2W} ds_{\Sigma^2}^2\) by \(e^{2V} ds_{M^2}^2\) and using the gauge fields in (96). We will not repeat it here.

4.2 \(AdS_3\) vacua with \(SO(2)_{\text{diag}}\) symmetry

We next consider solutions with smaller residual symmetry \(SO(2)_{\text{diag}} \subset SO(2) \times SO(2)\) by imposing the condition \(g_2 p_2 = g_1 p_1\). There are three \(SO(2)_{\text{diag}}\) singlet scalars with the coset representative given by (64). As in the previous section, compatibility between BPS equations and field equations requires \(\phi_1 = 0\) or \(\phi_3 = 0\), and these two cases are equivalent. We will consider the case of \(\phi_3 = 0\) with the following BPS equations
\[U' = \frac{1}{5} e^\sigma \left[\left(g_1 e^{-\sigma} \cosh^2 \phi_1 \cosh \phi_2 \\ + g_2 e^{-\sigma} \sinh^2 \phi_1 \sinh \phi_2 + 4he^{3\sigma} \right) \\ -6e^{-2V} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right) p_1 \\ - \frac{27}{8h g_2^3} e^{-3\sigma} -4V (g_1^2 - g_2^2) p_1^2 \right]. \]

\[V' = \frac{1}{5} e^\sigma \left[\left(g_1 e^{-\sigma} \cosh^2 \phi_1 \cosh \phi_2 \\ + g_2 e^{-\sigma} \sinh^2 \phi_1 \sinh \phi_2 + 4he^{3\sigma} \right) \\ +9e^{-2V} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right) p_1 \\ + \frac{9}{4h g_2^3} e^{-3\sigma} -4V (g_1^2 - g_2^2) p_1^2 \right]. \]

\[\sigma' = \frac{2}{5} e^\sigma \left[\left(g_1 e^{-\sigma} \cosh^2 \phi_1 \cosh \phi_2 \\ + g_2 e^{-\sigma} \sinh^2 \phi_1 \sinh \phi_2 - 16he^{3\sigma} \right) \\ -6e^{-2V} \left(\cosh \phi_2 + \frac{g_1}{g_2} \sinh \phi_2 \right) p_1 \\ + \frac{9}{4h g_2^3} e^{-3\sigma} -4V (g_1^2 - g_2^2) p_1^2 \right]. \]

With \(k = -1 \), the first class of \(AdS_3 \times CH^2 \) fixed points is given by

\[\phi_1 = 0, \quad \sigma = \frac{2}{5} \phi_2 + \frac{2}{5} \ln \left[\frac{g_1 g_2^2}{12h(g_2^3 + 2g_1g_2 - 3g_1^2)} \right]. \]

\[\phi_2 = \frac{1}{2} \ln \left[\frac{3g_1^2 - 2g_2^2}{3g_1^2 + 2g_2^2} \right], \quad V = \frac{1}{10} \ln \left[\frac{3^4(g_1^2 - g_2^2)^4}{16h^2g_1^6g_2^6(g_1^2 - g_2^2)} \right], \]

\[L_{AdS_3} = \frac{8(4g_1^2 - 10g_2^2 + 4g_2^2)^2}{3h g_1^4 g_2^4} \]

Another class of \(AdS_3 \times CH^2 \) fixed points is given by

\[\phi_1 = \phi_2 = \frac{1}{2} \ln \left[\frac{g_2 - g_1}{g_2 + g_1} \right], \quad V = \frac{1}{5} \ln \left[\frac{3^4(g_1^2 - g_2^2)^2}{4h g_1^4 g_2^4} \right], \]

\[L_{AdS_3} = \frac{8(4g_1^2 - 10g_2^2 + 4g_2^2)^2}{3h g_1^4 g_2^4} \]

To obtain good \(AdS_3 \) vacua, we require that \(g_2 > g_1 \). Various RG flows from \(N = (1,0) \) six-dimensional SCFTs with \(SO(4) \) and \(SO(3) \) symmetries to these fixed points for \(g_2 = 4g_1 \) and \(h = 1 \) are shown in Figs. 12, 13 and 14.

As in the case of \(M^4 = \Sigma^2 \times \Sigma^2 \), all of these \(AdS_3 \) fixed points and RG flows cannot be uplifted to eleven dimensions...
An RG flow from $SO(4) \ N = (1, 0)$ SCFT in six dimensions to two-dimensional $N = (2, 0)$ SCFT with $SO(2)_{\text{diag}}$ symmetry dual to $AdS_3 \times CH^2$ solution using the truncation given in [37], so we do not have a clear holographic interpretation in this case.

4.3 AdS_3 vacua with $SO(2)_R$ symmetry

By setting $p_2 = 0$ in the $SO(2) \times SO(2)$ case, we obtain solutions with $SO(2)_R \subset SO(3)_R$ symmetry. As in the previous case, the three $SO(2)_R$ singlet scalars need to vanish in order for AdS_3 fixed points to exist. We will accordingly set all vector multiplet scalars to zero for brevity. The resulting BPS equations are given by

\begin{align}
U' &= \frac{1}{5} e^{\frac{\tau}{2}} \left[g_1 e^{-\sigma} + 4he^\frac{3\tau}{2} - 6e^{-2\nu} p_1 + \frac{27}{8h} e^{-4\nu} p_1^2 \right], \\
V' &= \frac{1}{5} e^{\frac{\tau}{2}} \left[g_1 e^{-\sigma} + 4he^\frac{3\tau}{2} + 9e^{-2\nu} p_1 - \frac{9}{4h} e^{-4\nu} p_1^2 \right].
\end{align}
Fig. 13 An RG flow from $SO(3)$ $N = (1,0)$ SCFT in six dimensions to two-dimensional $N = (2,0)$ SCFT with $SO(2)_{\text{diag}}$ symmetry dual to AdS$_3 \times CH^2$ solution

$$\sigma' = \frac{2}{5} e^2 \left[g_1 e^{-\sigma} - 14he^{-\sigma \tau - 6e^{-2\tau}p_1 - \frac{9}{4h}e^{-4\tau}p_1^2} \right].$$

After imposing the twist condition (100), we obtain an AdS$_3$ solution for $k = -1$ given by

$$\sigma = \frac{2}{5} \ln \left[\frac{g_1}{12h} \right], \quad V = \frac{1}{10} \ln \left[\frac{3^8}{16h^2 g_1^8} \right],$$

$$L_{\text{AdS}_3} = \left[\frac{8}{3h g_1^4} \right]^\frac{1}{2}.$$

An RG flow from $SO(4)$ AdS$_7$ to this fixed point for $h = 1$ is shown in Fig. 15.

4.4 AdS$_3$ vacua with $SO(3)_{\text{diag}}$ symmetry

For Kahler four-cycles with $SU(2) \times U(1)$ spin connection, we can also perform the twist by identifying $SO(3) \sim SU(2) \subset SU(2) \times U(1)$ with the gauge symmetry $SO(3)_{\text{diag}} \subset SO(3) \times SO(3)$. In this case, we will use the metric on M_k^4 in the form

$$ds^2_{M_k^4} = d\varphi^2 + f_k(\varphi)^2 (\tau_1^2 + \tau_2^2 + \tau_3^2)$$

with τ_i being the $SU(2)$ left-invariant one-forms given in (93) and $f_k(\varphi)$ defined in (36).

With the seven-dimensional vielbein

$$e^\hat{\alpha} = e^U dx^\alpha, \quad e^\hat{\varphi} = dr,$$

$$e^\hat{i} = e^V f_k(\varphi) \tau_i, \quad i = 1, 2, 3, \quad e^\hat{\varphi} = e^V d\varphi,$$

we can compute the following non-vanishing components of the spin connection

$$\omega^\hat{i}_{\hat{j}} = U' e^{\hat{\alpha}}, \quad \omega^\hat{\varphi}_{\hat{i}} = V' e^{\hat{\varphi}} \tau_i, \quad \omega^\hat{\varphi}_{\hat{\varphi}} = V' e^{\hat{\varphi}},$$

$$\omega^\hat{i}_{\hat{j}} = f_k'(\varphi) \tau_i, \quad \omega^\hat{j}_{\hat{k}} = \epsilon_{ijk} \tau_k.$$
Fig. 14 An RG flow from $SO(4) \, N = (1, 0)$ SCFT to $SO(3) \, N = (1, 0)$ SCFT in six dimensions and eventually to two-dimensional $N = (2, 0)$ SCFT with $SO(2)_{\text{diag}}$ symmetry dual to $AdS_3 \times CH^2$ solution.

Fig. 15 An RG flow from $SO(4) \, N = (1, 0)$ SCFT in six dimensions to two-dimensional $N = (2, 0)$ SCFT with $SO(2)_R$ symmetry dual to $AdS_3 \times CH^2$ solution.
with the two-form field strengths given by
\[F_{(2)}^{1} = \frac{g_{2}}{g_{1}} F_{(2)}^{A} = e^{-2V} p (e^{\frac{1}{2}} \wedge e^{4} + e^{\frac{3}{2}} \wedge e^{3}), \]
(123)
\[F_{(2)}^{2} = \frac{g_{2}}{g_{1}} F_{(2)}^{B} = e^{-2V} p (e^{\frac{1}{2}} \wedge e^{3} + e^{\frac{5}{2}} \wedge e^{4}), \]
(124)
\[F_{(2)}^{3} = \frac{g_{2}}{g_{1}} F_{(2)}^{\tilde{B}} = e^{-2V} p (e^{\frac{1}{2}} \wedge e^{3} + e^{\frac{3}{2}} \wedge e^{4}). \]
(125)
As in the previous cases, we also need a non-vanishing four-form field strength
\[H_{(4)} = \frac{3}{8 \sqrt{2} h g_{2}} e^{-4V} (g_{1}^{2} - g_{2}^{2}) p^{2} e^{\frac{1}{2}} \wedge e^{3} \wedge e^{4} \wedge e^{3}, \]
(126)
together with the twist condition
\[g_{1} p = k \]
(127)
and the following projectors
\[\gamma_{ij} = -\gamma_{i333} = e^{-\theta} \text{ and } \gamma_{ij}^{0} = \epsilon_{i} \epsilon_{j} \alpha k \epsilon. \]
(128)

It should be noted that the second condition in (128) consists of only two independent projectors since \(\gamma_{i3} \) projector can be obtained from the product of those coming from \(\gamma_{i3} \) and \(\gamma_{i3} \). Therefore, the resulting \(AdS_{3} \) fixed points preserve two supercharges corresponding to \(N = (1, 0) \) superconformal symmetry in two dimensions.

With all these and the coset representative for the \(SO(3)_{\text{diag}} \) singlet scalar in (30), we find the following BPS equations
\[U' = \frac{1}{5} e^{\theta} \left[(g_{1} e^{-\sigma} \cos^{3} \phi + g_{2} e^{-\sigma} \sinh^{3} \phi + 4 h e^{\frac{2}{3}}) - \frac{9 p^{2}}{8 h} e^{-\frac{2}{3} - 4V} (g_{1}^{2} - g_{2}^{2}) - 6 p e^{-2V} \left(\cos \phi + \frac{g_{1}}{g_{2}} \sinh \phi \right) \right], \]
(129)
\[V' = \frac{1}{5} e^{\theta} \left[(g_{1} e^{-\sigma} \cos^{3} \phi + g_{2} e^{-\sigma} \sinh^{3} \phi + 4 h e^{\frac{2}{3}}) + \frac{3 p^{2}}{4 h} e^{-\frac{2}{3} - 4V} (g_{1}^{2} - g_{2}^{2}) + 9 p e^{-2V} \left(\cos \phi + \frac{g_{1}}{g_{2}} \sinh \phi \right) \right], \]
(130)
\[\sigma' = \frac{2}{5} e^{\theta} \left[(g_{1} e^{-\sigma} \cos^{3} \phi + g_{2} e^{-\sigma} \sinh^{3} \phi - 16 h e^{\frac{2}{3}}) + \frac{3 p^{2}}{4 h} e^{-\frac{2}{3} - 4V} (g_{1}^{2} - g_{2}^{2}) - 6 p e^{-2V} \left(\cos \phi + \frac{g_{1}}{g_{2}} \sinh \phi \right) \right], \]
(131)
\[\phi' = -\frac{1}{2 g_{2}} e^{-\sigma} (g_{1} \cos \phi + g_{2} \sinh \phi) (g_{2} \sinh 2 \phi + 4 p e^{\sigma} - 2 V). \]
(132)

We now look for \(AdS_{3} \) fixed points for the case of \(g_{2} = g_{1} \) that can be embedded in eleven dimensions. Setting \(g_{2} = g_{1} \) in the above equations, we find the following \(AdS_{3} \times CH^{2} \) fixed point
\[\sigma = \frac{2}{5} \ln \left[\frac{3 \gamma_{1} g_{1}}{16 h} \right], \quad \phi = \frac{1}{4} \ln 3, \]
(133)
\[V = \frac{1}{5} \ln \left[\frac{18 g_{1}^{4}}{h^{4} g_{1}^{2}} \right], \quad L_{AdS_{3}} = \left[\frac{64}{27 h g_{1}^{4}} \right]. \]
(133)

An RG flow interpolating between the \(SO(4) \) \(AdS_{3} \) vacuum and this \(AdS_{3} \times CH^{2} \) fixed point is shown in Fig. 16.

We can also uplift this solution to eleven dimensions by first choosing the \(S^{3} \) coordinates
\[\mu^{a} = (\cos \psi \hat{\mu}^{a}, \sin \psi), \quad a, b, \ldots = 1, 2, 3 \]
(134)
with \(\hat{\mu}^{a} \) being coordinates on \(S^{2} \) satisfying \(\hat{\mu}^{a} \hat{\mu}^{a} = 1 \). After using the \(SL(4, \mathbb{R})/SO(4) \) matrix
\[T_{a \beta}^{-1} = \text{diag}(e^{\phi}, e^{\phi}, e^{\phi}, e^{-3\phi}) = (\delta_{ab} e^{\phi}, e^{-3\phi}), \]
(135)
we find the eleven-dimensional metric
\[dS_{11}^{2} = \Delta^{\frac{1}{2}} \left[e^{2U} dx_{1}^{2} + dr^{2} + e^{2V} (d\varphi^{2} + f_{\chi}^{2} (\tau_{1}^{2} + \tau_{2}^{2} + \tau_{3}^{2})) \right] + \frac{2}{g} \Delta^{-\frac{1}{2}} e^{-2\sigma} \times \left[\cos^{2} \xi + e^{\frac{2}{3}} \sin^{2} \xi (e^{\phi} \cos \psi + e^{-3\phi} \sin^{2} \psi) \right] d\xi^{2} + \frac{1}{g^{4}} \Delta^{-\frac{1}{2}} e^{\frac{2}{3}} \sin \psi \cos \psi (e^{\phi} - e^{-3\phi}) d\xi d\psi + \frac{1}{2 g^{2}} \Delta^{-\frac{1}{2}} e^{2} \cos^{2} \xi \times \left[(e^{-3\phi} \cos^{2} \psi + e^{\phi} \sin^{2} \psi) d\psi^{2} + e^{\phi} \cos^{2} \psi D\hat{\mu}^{a} D\hat{\mu}^{a} \right] \]
(136)
with \(\Delta \) given by
\[\Delta = e^{-\frac{2}{3}} \cos^{2} \xi (e^{\phi} \cos \psi + e^{-3\phi} \sin^{2} \psi) + e^{2\sigma} \sin^{2} \xi \]
(137)
and \(D\hat{\mu}^{a} = d\hat{\mu}^{a} + g A^{ab} \hat{\mu}^{b} \). The gauge fields \(A^{ab} \) are given by
\[A^{12} = 2 A_{1}^{(1)}, \quad A^{13} = -2 A_{1}^{(1)}, \quad A^{23} = -2 A_{1}^{(1)}. \]
(138)

For \(g_{2} \neq g_{1} \), we find the following \(AdS_{3} \) fixed points
\[\sigma = \frac{2}{5} \ln \left[\frac{3 g_{1} g_{2}}{28 h \sqrt{(g_{2} + g_{1})(g_{2} - g_{1})}} \right], \quad \phi = \frac{1}{2} \ln \left[\frac{g_{2} - g_{1}}{g_{2} + g_{1}} \right]. \]
(139)
Fig. 16 An RG flow from $SO(4) \ N = (1,0)$ SCFT in six dimensions to two-dimensional $N = (1,0)$ SCFT with $SO(3)_{\text{diag}}$ symmetry dual to $AdS_3 \times CH^2$ solution for $g_1 = g_2$

Fig. 17 An RG flow from $SO(4) \ N = (1,0)$ SCFT in six dimensions to two-dimensional $N = (1,0)$ SCFT with $SO(3)_{\text{diag}}$ symmetry dual to $AdS_3 \times CH^2$ solution

Fig. 18 An RG flow from $SO(3) \ N = (1,0)$ SCFT in six dimensions to two-dimensional $N = (1,0)$ SCFT with $SO(3)_{\text{diag}}$ symmetry dual to $AdS_3 \times CH^2$ solution

Fig. 19 An RG flow from $SO(4) \ N = (1,0)$ SCFT to $SO(3) \ N = (1,0)$ SCFT in six dimensions and to two-dimensional $N = (1,0)$ SCFT with $SO(3)_{\text{diag}}$ symmetry dual to $AdS_3 \times CH^2$ solution
\begin{equation}
V = \frac{1}{10} \ln \left[\frac{3087 (g_1^2 - g_2^2)^4}{16h^2 g_1^3 g_2^3} \right],
\end{equation}

\begin{equation}
L_{AdS_7} = \left[\frac{24 (g_1^2 - g_2^2)^2}{7 g_1^4 g_2^4 h} \right]^{\frac{1}{4}}.
\end{equation}

These are $AdS_3 \times CH^2$ solutions with the condition $g_2 > g_1$. Finally, we can numerically find RG flow solutions connecting these fixed points to AdS_7 vacua with $SO(4)$ and $SO(3)$ symmetries. Examples of these solutions for $g_2 = 1.1g_1$ and $h = 1$ are given in Figs. 17, 18 and 19.

5 Conclusions

We have studied supersymmetric $AdS_3 \times M^4$ solutions of $N = 2$ seven-dimensional gauged supergravity with $SO(4) \sim SU(2) \times SU(2)$ gauge group. For M^4 being a product of two Riemann surfaces, we have found a large class of $AdS_3 \times H^2 \times \Sigma^2$ solutions with $SO(2) \times SO(2)$ symmetry for $\Sigma^2 = S^2, \mathbb{R}^2$, H^2 similar to the corresponding solutions in maximal $SO(5)$ gauged supergravity studied in [8]. Furthermore, there exist a number of $AdS_3 \times H^2 \times H^2$ solutions with $SO(2)_{\text{diag}}$ and $SO(2)_{\text{g}}$ symmetries. In the latter case, all scalars from vector multiplets vanish, so the $AdS_3 \times H^2 \times H^2$ solution can be interpreted as a solution of pure $N = 2$ gauged supergravity with $SU(2)$ gauge group. We have also numerically given various holographic RG flows from supersymmetric AdS_7 vacua with $SO(4)$ and $SO(3)$ symmetries to these AdS_3 fixed points. The solutions describe RG flows across dimensions from $N = (1, 0)$ SCFTs in six dimensions to two-dimensional $N = (2, 0)$ SCFTs in the IR.

For M^4 being a Kahler four-cycle, the AdS_3 solutions only exist for the Kahler four-cycles with negative curvature. In this case, the spin connection on M^4 is a $U(2) \sim SU(2) \times U(1)$ connection. There are two possibilities for performing the twists, along the $U(1)$ and $SU(2) \sim SO(3)$ parts. For a twist by $U(1) \sim SO(2)_{\text{R}} \subset SO(3)_R$, we have found $AdS_3 \times CH^2$ fixed points with $SO(2) \times SO(2), SO(2)_{\text{diag}}$ and $SO(2)_{\text{g}}$ symmetries. The solutions preserve four supercharges and correspond to $N = (2, 0)$ two-dimensional SCFTs. For a twist along the $SU(2) \sim SO(3)$ part, we have performed the twist by turning on the $SO(3)_{\text{diag}}$ gauge fields. Unlike the previous cases, the AdS_3 fixed points in this case preserve only two supercharges. The solutions are accordingly dual to $N = (1, 0)$ two-dimensional SCFTs. We have studied RG flows from supersymmetric AdS_7 vacua to these geometries as well.

All of these solutions provide a large class of $AdS_3 \times M^4$ solutions and RG flows across dimensions from six-dimensional SCFTs to two-dimensional SCFTs. The solutions might be useful in the holographic study of supersymmetric deformations of $N = (1, 0)$ SCFTs in six dimensions to two dimensions. For equal $SU(2)$ gauge coupling constants, the $SO(4)$ gauged supergravity can be embedded in eleven-dimensional supergravity. We have also given the uplifted eleven-dimensional metric. These solutions with a clear M-theory origin should be of particular interest in the study of wrapped M5-branes on four-manifolds.

For solutions with different $SU(2)$ coupling constants, there is no known embedding in string/M theory. Therefore, in this case, the holographic interpretation as RG flows in the dual $N = (1, 0)$ SCFTs should be done with some caveats. It would be interesting to look for the embedding of these solutions in ten or eleven dimensions. This could give rise to the full holographic duals of the effective theories on 5-branes wrapped on four-manifolds. Similar solutions in $N = 2$ gauged supergravity with other gauge groups also deserve further study. Finally, it should be noted that the RG flows across dimensions given here can be interpreted as supersymmetric black strings in asymptotically AdS_7 space. Our solutions should be useful in the study of black string entropy using twisted indices of $N = (1, 0)$ SCFTs along the line of [41].

Acknowledgements This work is supported by The Thailand Research Fund (TRF) under Grant RSA6280022.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

A Truncation ansatz of eleven-dimensional supergravity on S^4

In this appendix, we review relevant formulae for embedding solutions of $N = 2$ seven-dimensional gauged supergravity in eleven-dimensional supergravity. Since the $AdS_3 \times M^4$ solutions involve all types of seven-dimensional fields namely scalar, vector and three-form fields, the eleven-dimensional four-form field strength is very complicated. Accordingly, we omit an explicit form of the four-form in each case for brevity. It can however be computed by using the formula given in [37] and the mapping between seven- and eleven-dimensional fields given here.

The truncation of eleven-dimensional supergravity on S^4 leading to $N = 2$ $SO(4)$ seven-dimensional gauged supergravity is described by the metric ansatz

\[g_{\mu\nu} = g_{\mu\nu}^{(4)} + \epsilon_{\mu\alpha\beta\nu\sigma} \partial_\alpha \partial_\beta \partial_\gamma \partial_\delta \phi \]
\[d\tilde{s}_1^2 = \Delta^{1/2} d\tilde{s}^2 + \frac{2}{g^2} \Delta^{-\frac{3}{2}} X^3 \times \left[X \cos^2 \xi + X^{-4} \sin^2 \xi \tilde{T}_{\alpha\beta}^{-1} \mu^\alpha \mu^\beta \right] d\xi^2 \]
\[- \frac{1}{g^2} \Delta^{-\frac{3}{2}} X^{-1} \tilde{T}_{\alpha\beta}^{-1} \sin \mu^\alpha d\xi D\mu^\beta \]
\[+ \frac{1}{2g^2} \Delta^{-\frac{3}{2}} X^{-1} \tilde{T}_{\alpha\beta}^{-1} \cos^2 \xi D\mu^\alpha D\mu^\beta \]

(141)

with the following definitions

\[D\mu^\alpha = d\mu^\alpha + g A_{(1)}^{ab} \mu^\beta \]
\[\Delta = \cos^2 \xi X \tilde{T}_{\alpha\beta} \mu^\alpha \mu^\beta + X^{-4} \sin^2 \xi. \]

(142)

\[\mu^\alpha, \alpha = 1, 2, 3, 4, \text{ are coordinates on } S^3 \text{ satisfying } \mu^\alpha \mu^\alpha = 1. \]

Together with the four-form ansatz given in [37], the Lagrangian for the resulting \(N = 2 \) gauged supergravity, after multiplied by \(\frac{1}{2} \), reads

\[\mathcal{L}_7 = \frac{1}{2} R \ast 1 - \frac{1}{8} X^{-2} \tilde{T}_{\alpha\beta}^{-1} \tilde{T}_{\gamma\delta}^{-1} * F_{(2)}^{ab} \wedge F_{(2)}^{bd} \]
\[- \frac{1}{8} \tilde{T}_{\alpha\beta}^{-1} * D \tilde{T}_{\alpha\beta} \wedge \tilde{T}_{\gamma\delta}^{-1} D \tilde{T}_{\gamma\delta} - \frac{1}{4} X \ast F(4) \wedge F(4) \]
\[+ \frac{1}{16} \epsilon_{abcd} A(3) \ast F_{(2)}^{ab} \wedge F_{(2)}^{cd} - \frac{5}{2} X^{-2} * dX \wedge dX \]
\[- \frac{1}{4} g F(4) \ast A(3) - V \ast 1 \]

(143)

with the scalar potential given by

\[V = \frac{1}{4g^2} \left[X^{-8} - 2X^{-3} \tilde{T}_{\alpha\alpha} + 2X^2 \left(\tilde{T}_{\alpha\beta} \tilde{T}_{\alpha\beta} - \frac{1}{2} \tilde{T}_{\alpha\alpha}^2 \right) \right]. \]

(144)

A symmetric scalar matrix \(\tilde{T}_{\alpha\beta}, \alpha, \beta = 1, 2, 3, 4 \) with unit determinant describes nine scalars in \(SL(4, \mathbb{R})/SO(4) \) coset. This is equivalent to \(SO(3, 3)/SO(3) \times SO(3) \) coset due to the isomorphisms \(SO(3, 3) \sim SL(4, \mathbb{R}) \) and \(SO(4) \sim SO(3) \times SO(3) \).

In terms of the \(SL(4, \mathbb{R})/SO(4) \) coset representative \(\nu_{a}^{R} \) with \(SO(4) \) indices \(R, S, \ldots = 1, 2, 3, 4 \), we have the relation

\[\tilde{T}_{\alpha\beta}^{-1} = \nu_{a}^{R} \nu_{b}^{S} \delta_{RS}. \]

(145)

The \(SO(3, 3)/SO(3) \times SO(3) \) coset representative \(L_{I}^{A} \) is related to that of \(SL(4, \mathbb{R})/SO(4) \) by the relation

\[L_{I}^{A} = \frac{1}{4} \Gamma_{I}^{\alpha\beta} \eta_{RS}^{A} \nu_{\alpha}^{R} \nu_{\beta}^{S} \]

(146)

in which \(\Gamma_{I}^{\alpha\beta} \) and \(\eta_{RS}^{A} \) are chirally projected gamma matrices of \(SO(3, 3) \) satisfying the relations

\[(\Gamma_{I}^{\alpha\beta})_{a \beta} (\Gamma_{I}^{a \beta})_{a \beta} = -4 \eta_{I}^{IJ} \quad \text{and} \quad (\Gamma_{I}^{\alpha\beta})_{a \beta} (\Gamma_{I}^{a \beta})_{a \beta} = -2 \epsilon_{a \beta \gamma \delta} \]

(147)

and \(\Gamma_{I}^{a \beta} = (\Gamma_{I}^{a \beta}, -\Gamma_{I}^{\gamma \beta + 3}), i = 1, 2, 3 \), see more detail in [32]. Note also that \(\eta_{RS}^{A} \) also satisfy similar relations which we will not repeat them here. We use the following choice of \(\Gamma_{I}^{a \beta} \)

\[\Gamma^{1} = -i\sigma_{2} \otimes \sigma_{1}, \quad \Gamma^{2} = -i\sigma_{2} \otimes \sigma_{3}, \quad \Gamma^{3} = i \mathbb{I}_{2} \otimes \sigma_{2}, \quad \Gamma^{4} = i\sigma_{1} \otimes \sigma_{2}, \quad \Gamma^{5} = -i\sigma_{2} \otimes \mathbb{I}_{2}, \quad \Gamma^{6} = i\sigma_{3} \otimes \sigma_{2}. \]

(148)

All these ingredients lead to the following identification of the fields and parameters in seven and eleven dimensions

\[g_2 = g_1 = 16h = 2g, \quad X = -e^{-\pi}, \]
\[C_{(3)} = \frac{1}{\sqrt{2}} A_{(3)}, \quad A_{(1)}^{a \beta} = \Gamma_{I}^{a \beta} A_{(1)}^{I}. \]

(149)

With this identification, it can also be easily verified that the scalar matrix for the gauge kinetic terms also match

\[a_{11} = \frac{1}{4} \tilde{T}_{\alpha\beta}^{-1} \tilde{T}_{\gamma\delta}^{-1} \Gamma_{I}^{a \beta} \Gamma_{J}^{\gamma \delta}. \]

(150)

For convenience, we explicitly give the \(SL(4, \mathbb{R})/SO(4) \) coset representative \(\nu_{a}^{R} \) and \(SO(4) \) gauge fields \(A_{a}^{\alpha \beta} \) as follow.

- **SO(3)_diagonal singlet scalar**:

\[\nu_{a}^{R} = \begin{pmatrix} \phi_1^0 & 0 & 0 & 0 \\ 0 & \phi_2 & 0 & 0 \\ 0 & e^{-\phi_1 - \phi_2} \cosh \phi_3 & e^{\phi_1 - \phi_2} \cosh \phi_3 \\ 0 & 0 & e^{-\phi_1 - \phi_2} \sinh \phi_3 & e^{\phi_1 - \phi_2} \sinh \phi_3 \end{pmatrix}. \]

(155)

\[A_{12} = 2A^3. \]

(156)

- **SO(2)_diagonal singlet scalars**:

\[\nu_{a}^{R} = \begin{pmatrix} \phi_3 & 0 & 0 & 0 \\ 0 & \phi_4 & 0 & 0 \\ 0 & e^{-\phi_1} \phi_2 \cosh \phi_3 & e^{\phi_1} \phi_2 \cosh \phi_3 \\ 0 & 0 & e^{-\phi_1} \phi_2 \sinh \phi_3 & e^{\phi_1} \phi_2 \sinh \phi_3 \end{pmatrix}. \]

(155)

\[A_{12} = 2A^3. \]

(156)
In all cases, it can be verified using the relation (146) that the above \mathcal{V}_i^R give precisely L_i^A in the main text.

References

1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200
2. M. Petrini, A. Zaffaroni, The holographic RG flow to conformal and non-conformal theory, arXiv:hep-th/0002172
3. S.S. Gubser, Non-conformal examples of AdS/CFT. Class. Quant. Gravit. 17, 1081–1092 (2000). arXiv:hep-th/9910117
4. E. D’Hoker, D.Z. Freedman, Supersymmetric Gauge theories and the AdS/CFT correspondence. TASI 2001 Lecture Notes. arXiv:hep-th/0201253
5. J. Maldacena, C. Nunez, Supergravity description of field theories on curved manifolds and a no go theorem. Int. J. Mod. Phys. A 16, 822 (2001). arXiv:hep-th/0007018
6. J.P. Gauntlett, N. Kim, S. Pakis, D. Waldram, M-Theory solutions and AdS factors. Class. Quant. Gravit. 19, 3927–3946 (2002). arXiv:hep-th/0202184
7. S. Cucu, H. Lu, J.F. Vazquez-Poritz, Interpolating from $AdS_{D-2} \times S^2$ to AdS_D. Nucl. Phys. B 677, 181 (2004). arXiv:hep-th/0304022
8. F. Benini, N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization. JHEP 06, 005 (2013). arXiv:1302.4451
9. P. Karndumri, E.O. Colgain, 3D Supergravity from wrapped D3-branes. JHEP 10, 094 (2013). arXiv:1307.2086
10. N. Bobev, K. Pilch, O. Vasilakis, (0, 2) SCFTs from the Leigh-Strassler fixed point. JHEP 06, 094 (2014). arXiv:1403.7131
11. N. Bobev, P.M. Crichigno, Universal RG flows across dimensions and holography. JHEP 12, 065 (2017). arXiv:1708.05052
12. F. Benini, N. Bobev, P.M. Crichigno, Two-dimensional SCFTs from D3-branes. JHEP 07, 020 (2016). arXiv:1511.09462
13. I. Bah, C. Beem, N. Bobev, B. Wecht, Four-dimensional SCFTs from M5-Branes. JHEP 06, 005 (2012). arXiv:1203.0303
14. P. Karndumri, E.O. Colgain, 3D supergravity from wrapped M5-branes. JHEP 03, 188 (2016). arXiv:1508.09963
15. P. Karndumri, Holographic renormalization group flows in $N = 3$ Chern–Simons–Matter theory from $N = 4$ 4D gauged supergravity. Phys. Rev. D 94, 045006 (2016). arXiv:1601.05703
16. A. Amariti, C. Toldo, Betti multiplets, flows across dimensions and c-extremization. JHEP 07, 040 (2017). arXiv:1610.08858
17. P. Karndumri, Supersymmetric $AdS_5 \times \Sigma_2$ solutions from tri-sasakian truncation. Eur. Phys. J. C 77, 689 (2017). arXiv:1707.09663
18. P. Karndumri, RG flows from (1, 0) 6D SCFTs to $N = 1$ SCFTs in four and three dimensions. JHEP 06, 027 (2015). arXiv:1503.04997
19. P. Karndumri, Twisted compactification of $N = 2$ 5D SCFTs to three and two dimensions from $F(4)$ gauged supergravity. JHEP 09, 034 (2015). arXiv:1507.01515
20. H.L. Dao, P. Karndumri, Holographic RG flows and AdS_5 black strings from 5D half-maximal gauged supergravity. Eur. Phys. J. C 79, 137 (2019). arXiv:1811.01608
21. H.L. Dao, P. Karndumri, Supersymmetric AdS_5 black holes and strings from 5D $N = 4$ gauged supergravity. Eur. Phys. J. C 79, 247 (2019). arXiv:1812.10122
22. M. Suh, D4-branes wrapped on supersymmetric four-cycles. JHEP 1901, 035 (2019). arXiv:1809.03517
23. M. Suh, D4-branes wrapped on supersymmetric four-cycles from matter coupled F(4) gauged supergravity. JHEP 1902, 108 (2019). arXiv:1810.00675
24. C. Nunez, I.Y. Park, M. Schvellinger, T.A. Tran, Supersymmetry duals of gauge theories from F(4) gauged supergravity in six dimensions. JHEP 04, 025 (2001). arXiv:hep-th/0103080
25. J.P. Gauntlett, N. Kim, D. Waldram, M five-branes Wrapped on Supersymmetric Cycles. Phys. Rev. D 63, 126001 (2001). arXiv:hep-th/0012195
26. J.P. Gauntlett, N. Kim, M five-branes wrapped on supersymmetric cycles 2. Phys. Rev. D 65, 086003 (2002). arXiv:hep-th/0109039
27. P.K. Townsend, P. van Nieuwenhuizen, Gauged seven-dimensional supergravity. Phys. Lett. B 125, 41–46 (1983)
28. L. Mezincescu, P.K. Townsend, P. van Nieuwenhuizen, Stability of gauged $d = 7$ supergravity and the definition of masslessness in AdS_7. Phys. Lett. B 143, 384–388 (1984)
29. E. Bergshoeff, I.G. Koh, E. Sezgin, Yang–Mills–Einstein supergravity in seven dimensions. Phys. Rev. D 32, 1353–1357 (1985)
30. Y.J. Park, Gauged Yang–Mills–Einstein supergravity with three index field in seven dimensions. Phys. Rev. D 38, 1087 (1988)
31. A. Salam, E. Sezgin, $SO(4)$ gauging of $N = 2$ supergravity in seven-dimensions. Phys. Lett. B 126, 295 (1983)
32. E. Bergshoeff, D.C. Jong, E. Sezgin, Noncompact gaugings, chiral reduction and dual sigma model in supergravity. Class. Quant. Gravit. 23, 2803–2832 (2006). arXiv:hep-th/0509203
33. P. Karndumri, RG flows in 6D $N = (1, 0)$ SCFT from $SO(4)$ half-maximal gauged supergravity. JHEP 06, 101 (2014). arXiv:1404.0183
34. P. Karndumri, Noncompact gauging of $N = 2$ 7D supergravity and AdS/CFT holography. JHEP 02, 034 (2015). arXiv:1411.4542
35. J. Louis, S. Lüst, Supersymmetric AdS_5 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs. JHEP 10, 120 (2015). arXiv:1506.08040
36. P. Karndumri, P. Nuchino, Supersymmetric solutions of matter-coupled 7D $N = 2$ gauged supergravity. Phys. Rev. D 98, 086012 (2018). arXiv:1806.04064
37. P. Karndumri, $N = 2$ $SO(4)$ 7D gauged supergravity with topological mass term from 11 dimensions. JHEP 11, 063 (2014). arXiv:1407.2762
38. G. Dibitetto, J.J. Fernández-Melgarejo, D. Marques, All gaugings and stable de Sitter in $D = 7$ half-maximal supergravity. JHEP 11, 037 (2015). arXiv:1506.01294
39. G.B. De Luca, A. Gnecci, G. Lo Monaco, A. Tomasiello, Holographic duals of 6D RG flows. JHEP 03, 035 (2019). arXiv:1810.10013
40. A. Passias, A. Rota, A. Tomasiello, Universal consistent truncation for 6d/7d gauge/gravity duals. JHEP 10, 187 (2015). arXiv:1506.05462
41. S.M. Hosseini, K. Hristov, A. Zaffaroni, A note on the entropy of rotating BPS $AdS_4 \times S^4$ black holes. JHEP 05, 121 (2018). arXiv:1803.07568