Supporting Information for:

Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes

Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-García, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso and Eugenio Coronado.

Table of Contents

1 Synthesis 2
2 IR spectra 17
3 Mass Spectrometry 18
4 Radial Effective Charge (REC) model 20
5 AC Measurements 25
6 Film Characterization 32
7 References 34
1. Synthesis

Figure SI1: Scheme of the ligand 5,7-dichloro-8-hydroxyquinoline (5,7Cl₂q).
Table SI1: Crystallographic data for the compounds.

Identification code	NaLnClq (3)	NEtDyClq (4)	KNEtDyClq (5)
Empirical formula	C_{39}H_{23}Cl_8DyN_5NaO_5	C_{44}H_{36}Cl_8DyN_5O_4	C_{84}H_{58}Cl_{16}Dy_2KN_{11}O_8
Formula weight	1110.71	1144.88	2280.71
Temperature/K	120(2)	120(2)	120(2)
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P2_1/c	C2/c	P-1
a/Å	9.9819(2)	36.1061(11)	15.8989(16)
b/Å	19.8256(4)	11.5705(3)	16.0286(16)
c/Å	20.6783(4)	22.7831(6)	19.542(2)
α/°	90	90	98.384(9)
β/°	91.212(2)	109.429(3)	91.201(9)
γ/°	90	90	118.115(10)
Volume/Å³	4091.26(14)	8976.0(4)	4322.4(8)
Z	4	8	2
ρ_calc/g/cm³	1.803	1.694	1.752
μ/mm\(^1\)	2.411	2.191	2.322
F(000)	2180	4552	2252
Crystal size/mm³	0.23 × 0.20 × 0.17	0.31 × 0.23 × 0.16	0.10 × 0.07 × 0.05
Radiation	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)	MoKα (λ = 0.71073)
2θ range for data collection/°	5.8 to 50.1	6.46 to 50.08	5.76 to 50.12
Index ranges	-11 ≤ h ≤ 11, -23 ≤ k ≤ 23, -24 ≤ l ≤ 24	-41 ≤ h ≤ 42, -13 ≤ k ≤ 13, -27 ≤ l ≤ 26	-18 ≤ h ≤ 18, -19 ≤ k ≤ 19, -23 ≤ l ≤ 23
Reflections collected	53081	32816	34536
Independent reflections	7217 [R_int = 0.0745]	7932 [R_int = 0.0414]	15245 [R_int = 0.1551]
Data/restraints/parameters	7217/0/534	7932/0/563	15245/0/583
Goodness-of-fit on F\(^2\)	1.158	1.101	0.965
Final R indexes [I≥2σ (I)]	R\(_1\) = 0.0582, wR\(_2\) = 0.1068	R\(_1\) = 0.0276, wR\(_2\) = 0.0527	R\(_1\) = 0.0963, wR\(_2\) = 0.1632
Final R indexes [all data]	R\(_1\) = 0.0924, wR\(_2\) = 0.1283	R\(_1\) = 0.0364, wR\(_2\) = 0.0580	R\(_1\) = 0.2156, wR\(_2\) = 0.2540
Largest diff. peak/hole / e Å\(^3\)	2.83/-1.47	0.72/-0.66	3.56/-1.46
Table SI2: Bond Lengths for (3).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Dy1	Na1\(^1\)	3.324(3)	C26	C27	1.345(12)
Dy1	N11	2.531(7)	C27	C28	1.388(12)
Dy1	O12	2.318(6)	Cl28	C28	1.388(12)
Dy1	O19	2.323(5)	C28	C29	1.388(12)
Dy1	N21	2.591(6)	O29	C29	1.452(11)
Dy1	O29	2.319(6)	C29	C30	1.329(10)
Dy1	N31	2.547(7)	N31	C32	1.329(10)
Dy1	O39	2.282(5)	N31	C40	1.435(11)
Na1	O12\(^1\)	2.308(7)	C32	C33	1.420(12)
Na1	O19\(^1\)	2.375(6)	C33	C34	1.366(12)
Na1	Cl28\(^1\)	3.018(4)	C34	C35	1.406(12)
Na1	O29\(^1\)	2.307(6)	C35	C36	1.420(12)
Na1	O100	2.175(8)	C36	C37	1.754(8)
N11	C12	1.322(10)	C36	C37	1.365(12)
N11	C20	1.380(10)	C37	C38	1.402(12)
O12	C49	1.288(10)	Cl38	C38	1.738(8)
Cl12	C13	1.423(12)	C38	C39	1.396(11)
C13	C14	1.380(12)	O39	C39	1.292(9)
C14	C15	1.404(12)	C39	C40	1.422(12)
C15	C16	1.421(12)	N41	C42	1.323(11)
C15	C20	1.424(11)	N41	C50	1.398(10)
Cl16	C16	1.753(9)	C42	C43	1.394(12)
C16	C17	1.367(13)	C43	C44	1.420(13)
C17	C18	1.392(12)	C44	C45	1.397(12)
Cl18	C18	1.743(9)	C45	C46	1.426(11)
C18	C19	1.403(11)	C45	C50	1.413(11)
O19	C19	1.303(9)	Cl46	C46	1.734(8)
C19	C20	1.442(12)	C46	C47	1.393(12)
N21	C22	1.340(10)	C47	C48	1.392(12)
N21	C30	1.375(10)	Cl48	C48	1.741(9)
C22	C23	1.405(12)	C48	C49	1.399(11)
C23	C24	1.360(12)	C49	C50	1.426(12)
C24	C25	1.422(12)	O100	C103	1.251(13)
C25	C26	1.396(12)	N100	C101	1.462(13)
C25	C30	1.409(11)	N100	C102	1.436(14)
Cl26	C26	1.754(9)	N100	C103	1.321(13)

\(^1\)1-X,1-Y,2-Z
\textit{Table SI3: Bond Angles for (3).}

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N11	Dy1	Na11	94.15(16)	C15	C20	C19	122.5(7)
N11	Dy1	N21	156.1(2)	C22	N21	Dy1	129.2(6)
N11	Dy1	N31	93.7(2)	C22	N21	C30	117.6(7)
N11	Dy1	N41	79.6(2)	C30	N21	Dy1	112.0(5)
O12	Dy1	Na11	43.95(16)	N21	C22	C23	122.6(8)
O12	Dy1	N11	80.7(2)	C24	C23	C22	120.2(8)
O12	Dy1	O19	77.0(2)	C23	C24	C25	119.3(8)
O12	Dy1	N21	107.5(2)	C26	C25	C24	125.0(8)
O12	Dy1	O29	72.5(2)	C26	C25	C30	117.7(8)
O12	Dy1	N31	150.5(2)	C30	C25	C24	117.2(8)
O12	Dy1	N41	66.5(2)	C25	C26	Cl26	119.7(7)
O19	Dy1	Na11	45.61(15)	C27	C26	C25	120.2(8)
O19	Dy1	N11	67.3(2)	C27	C26	Cl26	120.1(7)
O19	Dy1	N21	135.8(2)	C26	C27	C28	122.6(9)
O19	Dy1	N31	74.2(2)	C28	Cl28	Na11	94.9(3)
O19	Dy1	N41	134.0(2)	C27	C28	Cl28	120.2(7)
N21	Dy1	Na11	107.31(16)	C29	C28	C27	121.7(8)
O29	Dy1	Na11	43.93(15)	C29	C28	Cl28	118.0(7)
O29	Dy1	N11	137.4(2)	Na11	O29	Dy1	91.9(2)
O29	Dy1	O19	74.61(19)	C29	O29	Dy1	120.3(5)
O29	Dy1	N21	65.8(2)	C29	O29	Na11	126.6(5)
O29	Dy1	N31	93.8(2)	C28	C29	C30	114.6(7)
O29	Dy1	N41	117.0(2)	O29	C29	C28	125.3(8)
N31	Dy1	Na11	108.52(16)	O29	C29	C30	120.0(8)
N31	Dy1	N21	89.3(2)	N21	C30	C25	122.9(7)
N31	Dy1	N41	141.2(2)	N21	C30	C29	114.6(7)
O39	Dy1	Na11	174.80(15)	C25	C30	C29	122.5(8)
O39	Dy1	N11	84.0(2)	C32	N31	Dy1	128.5(5)
O39	Dy1	O12	140.0(2)	C32	N31	C40	118.4(7)
O39	Dy1	O19	129.40(19)	C40	N31	Dy1	112.3(5)
O39	Dy1	N21	75.5(2)	N31	C32	C33	123.8(8)
O39	Dy1	O29	136.9(2)	C34	C33	C32	117.8(8)
O39	Dy1	N31	66.8(2)	C33	C34	C35	120.9(8)
O39	Dy1	N41	74.5(2)	C34	C35	C36	126.6(8)
N41	Dy1	Na11	110.02(17)	C34	C35	C40	117.7(8)
N41	Dy1	N21	83.3(2)	C36	C35	C40	115.7(8)
O121	Na1	Dy11	44.20(15)	C35	C36	Cl36	118.5(7)
O121	Na1	O191	76.2(2)	C37	C36	C35	122.5(8)
O121	Na1	Cl281	107.2(2)	C37	C36	Cl36	119.0(6)
O191	Na1	Dy11	44.34(14)	C36	C37	C38	119.7(8)
O191	Na1	Cl281	137.1(2)	C37	C38	Cl38	118.6(6)
Table SI4: Bond Lengths for (4).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Dy1	N11	2.577(3)	N31	C32	1.325(4)
Dy1	O19	2.295(2)	N31	C40	1.364(4)
Dy1	N21	2.634(2)	C32	C33	1.403(4)
Dy1	O29	2.269(2)	C33	C34	1.364(5)
Dy1	N31	2.672(3)	C34	C35	1.417(4)
Dy1	O39	2.287(2)	C35	C36	1.420(5)
Dy1	N41	2.519(2)	C35	C40	1.425(4)
Dy1	O49	2.292(2)	C36	Cl36	1.751(3)
N11	C12	1.326(4)	C36	C37	1.355(4)
N11	C20	1.375(4)	C37	C38	1.410(4)
C12	C13	1.427(4)	C38	Cl38	1.742(3)
C13	C14	1.359(4)	C38	C39	1.390(4)
C14	C15	1.416(4)	O39	C39	1.299(3)
C15	C16	1.420(4)	C39	C40	1.446(4)
C15	C20	1.421(4)	N41	C42	1.331(4)
C16	Cl16	1.748(3)	N41	C50	1.365(4)
C16	C17	1.360(4)	C42	C43	1.394(4)
C17	C18	1.400(4)	C43	C44	1.370(4)
C18	Cl18	1.746(3)	C44	C45	1.405(4)
C18	C19	1.397(4)	C45	C46	1.413(4)
O19	C19	1.297(4)	C45	C50	1.414(4)
C19	C20	1.444(4)	C46	Cl46	1.743(3)
N21	C22	1.325(4)	C46	C47	1.365(4)
N21	C30	1.379(4)	C47	C48	1.408(4)
C22	C23	1.410(4)	C48	Cl48	1.745(3)
C23	C24	1.366(4)	C48	C49	1.390(4)
C24	C25	1.410(4)	O49	C49	1.302(3)
C25	C26	1.417(4)	C49	C50	1.457(4)
C25	C30	1.427(4)	N100	C101	1.522(4)
C26	Cl26	1.750(3)	N100	C111	1.519(4)
C26	C27	1.365(4)	N100	C121	1.520(4)
C27	C28	1.403(4)	N100	C131	1.514(4)
C28	Cl28	1.742(3)	C101	C102	1.511(4)
C28	C29	1.387(4)	C111	C112	1.510(5)
O29	C29	1.298(3)	C121	C122	1.519(4)
C29	C30	1.434(4)	C131	C132	1.516(5)
Table S15: Bond Angles for (4).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N11	Dy1	N21	138.40(8)	C29	C28	C27	123.1(3)
N11	Dy1	N31	73.50(8)	C29	C28	Cl28	117.1(2)
O19	Dy1	N11	66.17(8)	C29	O29	Dy1	125.75(19)
O19	Dy1	N21	153.88(8)	C28	C29	C30	115.4(3)
O19	Dy1	N31	87.46(7)	O29	C29	C28	124.0(3)
O19	Dy1	N41	79.46(8)	O29	C29	C30	120.5(3)
N21	Dy1	N31	106.58(7)	N21	C30	C25	122.0(3)
O29	Dy1	N11	74.10(8)	N21	C30	C29	115.3(3)
O29	Dy1	O19	139.94(7)	C25	C30	C29	122.8(3)
O29	Dy1	N21	65.95(7)	C30	C31	N31	129.4(2)
O29	Dy1	O39	114.53(7)	C40	N31	Dy1	112.8(2)
O29	Dy1	N41	136.18(7)	N31	C32	C33	123.9(3)
O29	Dy1	O49	85.37(7)	C32	N31	C40	118.8(3)
O39	Dy1	N11	132.19(8)	C33	C34	C35	120.2(3)
O39	Dy1	O19	89.64(7)	C34	C35	C36	125.9(3)
O39	Dy1	N21	77.44(7)	C34	C35	C40	116.5(3)
O39	Dy1	N31	64.42(8)	C34	C35	C40	117.6(3)
O39	Dy1	N41	73.80(8)	C34	C35	Cl36	119.6(3)
O39	Dy1	O49	138.48(7)	C37	C36	C35	121.4(3)
N41	Dy1	N11	134.15(8)	C37	C36	Cl36	119.0(3)
N41	Dy1	N21	75.18(8)	C36	C37	C38	120.2(3)
N41	Dy1	N31	136.19(8)	C37	C38	Cl38	119.0(3)
O49	Dy1	N11	87.12(7)	C39	C38	C37	123.1(3)
O49	Dy1	O19	97.27(7)	C39	C38	Cl38	117.9(3)
O49	Dy1	N21	78.82(7)	C39	O39	Dy1	126.72(19)
O49	Dy1	N31	156.28(7)	C38	C39	C40	115.7(3)
O49	Dy1	N41	67.44(7)	O39	C39	C38	125.0(3)
C12	N11	Dy1	127.8(2)	O39	C39	C40	119.3(3)
C12	N11	C20	117.7(3)	N31	C40	C35	122.8(3)
C20	N11	Dy1	112.94(19)	N31	C40	C39	115.1(3)
N11	C12	C13	124.1(3)	C35	C40	C39	122.0(3)
C14	C13	C12	117.7(3)	C42	N41	Dy1	127.4(2)
C13	C14	C15	121.1(3)	C42	N41	C50	117.8(3)
C14	C15	C16	125.9(3)	C50	N41	Dy1	114.77(19)
C14	C15	C20	117.0(3)	N41	C42	C43	123.8(3)
C16	C15	C20	117.1(3)	C44	C43	C42	118.6(3)
C15	C16	C16	118.8(3)	C43	C44	C45	120.2(3)
C17	C16	C15	121.3(3)	C44	C45	C46	125.1(3)
C17	C16	Cl16	119.9(3)	C44	C45	C50	117.3(3)
C16	C17	C18	120.4(3)	C46	C45	C50	117.6(3)
Atom	Atom	Length/Å	Atom	Length/Å			
--------	--------	------------	--------	------------			
Dy1	N11	2.525(10)	O49	1.300(15)			
Dy1	O19	2.305(9)	O49	3.048(11)			
Dy1	N21	2.559(12)	C49	1.451(19)			
Dy1	O29	2.318(11)	N51	1.321(19)			
Dy1	N31	2.537(11)	N51	1.389(16)			
Dy1	O39	2.314(9)	C52	1.39(2)			
Dy1	N41	2.601(12)	C53	1.376(19)			
Dy1	O49	2.275(9)	C54	1.39(2)			
Dy1	K1¹	3.9634(9)	C55	1.413(18)			
Dy2	N51	2.532(13)	C55	1.427(19)			
Dy2	O59	2.325(9)	C56	1.748(16)			
Dy2	N61	2.550(11)	C56	1.37(2)			

¹At the single-crystal X-ray measurement.

Table SI6: Bond Lengths for (5).
Table SI7: Bond Angles for (5).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N11	Dy1	N21	93.8(3)	C67	C68	C168	118.9(13)
N11	Dy1	N31	95.9(3)	C67	C68	C69	122.1(14)
N11	Dy1	N41	142.7(4)	C69	C68	C168	118.9(11)
N11	Dy1	K11	100.5(3)	C68	C168	K2	95.6(5)
O19	Dy1	N11	67.2(4)	Dy2	O69	K2	98.9(3)
O19	Dy1	N21	74.1(4)	C69	O69	Dy2	122.8(9)
O19	Dy1	O29	125.2(3)	C69	O69	K2	125.8(8)
O19	Dy1	N31	81.8(4)	C68	C69	C70	116.2(12)
O19	Dy1	O39	128.7(3)	O69	C69	C68	123.2(13)
O19	Dy1	N41	75.5(4)	O69	C69	C70	120.6(13)
O19	Dy1	K11	166.8(3)	N61	C70	C65	125.6(14)
N21	Dy1	N41	76.2(4)	N61	C70	C69	113.1(12)
N21	Dy1	K11	103.0(3)	C65	C70	C69	121.2(14)

1+X,-1+Y,+Z
O29	Dy1	N11	79.5(3)	C72	N71	Dy2	127.7(11)
O29	Dy1	N21	65.9(4)	C72	N71	C80	120.4(14)
O29	Dy1	N31	145.9(4)	C80	N71	Dy2	111.8(9)
O29	Dy1	N41	125.4(3)	N71	C72	C73	122.4(15)
O29	Dy1	K1₁	44.4(2)	C74	C73	C72	118.5(15)
N31	Dy1	N21	148.1(4)	C73	C74	C75	119.2(17)
N31	Dy1	N41	77.7(4)	C74	C75	C76	122.7(16)
N31	Dy1	K1₁	105.0(3)	C80	C75	C74	119.7(15)
O39	Dy1	N11	76.1(3)	C80	C75	C76	117.4(14)
O39	Dy1	N21	144.7(4)	C75	C76	C76	120.7(13)
O39	Dy1	O29	79.0(3)	C77	C76	C75	118.1(17)
O39	Dy1	N31	67.3(4)	C77	C76	C76	121.0(13)
O39	Dy1	N41	130.9(4)	C76	C77	C78	122.0(16)
O39	Dy1	K1₁	48.0(2)	C77	C78	C78	117.6(13)
N41	Dy1	K1₁	116.7(3)	C79	C78	C77	121.5(16)
O49	Dy1	N11	150.4(4)	C79	C78	C78	120.7(14)
O49	Dy1	O19	142.3(4)	Dy2	O79	K2	90.2(3)
O49	Dy1	N21	94.5(3)	C79	O79	Dy2	122.2(9)
O49	Dy1	O29	78.3(3)	C79	O79	K2	147.3(9)
O49	Dy1	N31	91.8(3)	C78	C79	C80	116.4(16)
O49	Dy1	O39	80.7(3)	O79	C79	C78	120.9(15)
O49	Dy1	N41	66.8(4)	O79	C79	C80	122.6(14)
O49	Dy1	K1₁	50.0(3)	N71	C80	C75	119.5(14)
N51	Dy2	N61	99.6(4)	N71	C80	C79	116.0(15)
N51	Dy2	N71	142.7(4)	C79	C80	C75	124.4(15)
N51	Dy2	N81	89.5(4)	C82	N81	Dy2	127.5(9)
N51	Dy2	K2	95.6(3)	C82	N81	C90	118.2(12)
O59	Dy2	N51	67.1(4)	C90	N81	Dy2	114.2(9)
O59	Dy2	N61	84.0(3)	N81	C82	C83	125.7(13)
O59	Dy2	N71	75.6(4)	C82	C83	C84	119.2(15)
O59	Dy2	N81	72.0(3)	C83	C84	C85	117.1(14)
O59	Dy2	O89	125.7(3)	C84	C85	C86	124.0(14)
O59	Dy2	K2	162.3(2)	C84	C85	C90	120.3(13)
N61	Dy2	N71	76.2(4)	C90	C85	C86	115.7(14)
N61	Dy2	N81	148.6(4)	C85	C86	C86	117.7(11)
N61	Dy2	K2	102.9(3)	C87	C86	C85	120.0(13)
O69	Dy2	N51	74.7(4)	C87	C86	C86	122.2(10)
O69	Dy2	O59	126.4(3)	C86	C87	C88	121.7(13)
O69	Dy2	N61	66.6(4)	C87	C88	C88	119.3(11)
O69	Dy2	N71	132.2(4)	C89	C88	C87	122.1(14)
O69	Dy2	N81	144.5(3)	C89	C88	C88	118.3(11)
O69	Dy2	O89	79.9(3)	C88	C88	K2	100.2(5)
O69	Dy2	K2	46.3(2)	Dy2	O89	K2	101.5(3)
N71 Dy2 K2 121.7(3) C89 O89 Dy2 123.7(9)							
O79 Dy2 N51 149.9(4) C89 O89 K2 132.1(8)							
O79 Dy2 O59 142.9(4) C88 C89 C90 115.6(13)							
O79 Dy2 N61 84.7(3) O89 C89 C88 124.4(13)							
O79 Dy2 O69 79.9(4) O89 C89 C90 119.6(12)							
O79 Dy2 N71 67.3(4) N81 C90 C85 119.2(14)							
O79 Dy2 N81 102.3(3) N81 C90 C89 115.9(13)							
O79 Dy2 O89 80.2(3) C89 C90 C85 124.4(13)							
O79 Dy2 K2 54.7(3) Dy1² K1 Dy1³ 180.0							
N81 Dy2 N71 78.4(4) Cl28² K1 Dy1² 91.40(7)							
O89 Dy2 K2 106.1(2) Cl28³ K1 Dy1² 88.60(7)							
O89 Dy2 N51 79.7(4) Cl28³ K1 Dy1³ 91.40(7)							
O89 Dy2 N61 145.2(4) Cl28² K1 Dy1³ 88.60(7)							
O89 Dy2 N71 124.6(3) Cl28³ K1 Cl28² 180.0							
O89 Dy2 N81 65.9(3) Cl28³ K1 Cl48² 60.55(9)							
O89 Dy2 K2 43.4(2) Cl28² K1 Cl48² 119.45(9)							
C12 N11 Dy1 127.5(10) Cl28³ K1 Cl48³ 119.45(9)							
C12 N11 C20 119.3(13) Cl28² K1 Cl48³ 60.55(9)							
C20 N11 Dy1 112.7(9) O29³ K1 Dy1² 144.9(2)							
N11 C12 C13 122.2(15) O29³ K1 Dy1³ 35.1(2)							
C14 C13 C12 120.6(16) O29² K1 Dy1³ 144.9(2)							
C13 C14 C15 120.2(15) O29² K1 Dy1² 35.1(2)							
C14 C15 C16 126.3(14) O29³ K1 Cl28³ 56.3(2)							
C14 C15 C20 117.7(15) O29² K1 Cl28² 56.3(2)							
C20 C15 C16 116.0(15) O29² K1 Cl28³ 123.7(2)							
C15 C16 C16 120.4(12) O29³ K1 Cl28² 123.7(2)							
C17 C16 C15 119.7(14) O29² K1 O29³ 180.0							
C17 C16 C16 119.9(12) O29² K1 O39² 61.1(3)							
C16 C17 C18 122.5(15) O29³ K1 O39² 118.9(3)							
C17 C18 C18 120.2(12) O29³ K1 O39³ 61.1(3)							
C17 C18 C19 123.5(15) O29² K1 O39³ 118.9(3)							
C19 C18 C18 116.3(11) O29² K1 Cl48² 101.9(2)							
C19 O19 Dy1 121.2(10) O29² K1 Cl48³ 78.1(2)							
C18 C19 C20 112.7(14) O29³ K1 Cl48² 78.1(2)							
O19 C19 C18 126.8(15) O29³ K1 Cl48³ 101.9(2)							
O19 C19 C20 120.5(14) O29³ K1 O49² 121.0(3)							
N11 C20 C15 119.6(15) O29³ K1 O49³ 121.0(3)							
N11 C20 C19 114.8(13) O29² K1 O49² 59.0(3)							
C15 C20 C19 125.6(15) O29³ K1 O49³ 59.0(3)							
C22 N21 Dy1 125.8(11) O39² K1 Dy1² 35.46(18)							
C22 N21 C30 119.8(13) O39³ K1 Dy1³ 35.46(18)							
C30 N21 Dy1 114.2(10) O39³ K1 Dy1² 144.54(18)							
N21 C22 C23 125.4(15) O39² K1 Dy1³ 144.54(18)							
C24	C23	C22	112.8(16)	O39	K1	Cl28	108.7(2)
------	------	------	-----------	-----	------	------	----------
C25	C24	C23	123.2(15)	O39	K1	Cl28	71.3(2)
C24	C25	C26	124.5(15)	O39	K1	Cl28	108.7(2)
C24	C25	C30	118.1(16)	O39	K1	Cl28	71.3(2)
C26	C25	C30	117.3(16)	O39	K1	O39	180.0
C25	C26	Cl26	119.4(13)	O39	K1	Cl48	103.1(2)
C27	C26	C25	120.9(15)	O39	K1	Cl48	76.9(2)
C27	C26	Cl26	119.6(13)	O39	K1	Cl48	76.9(2)
C26	C27	C28	121.0(17)	O39	K1	Cl48	103.1(2)
C27	C28	Cl28	120.7(13)	O39	K1	O49	59.2(2)
C27	C28	C29	121.5(16)	O39	K1	O49	120.8(2)
C29	C28	Cl28	117.7(11)	O39	K1	O49	120.8(2)
C28	Cl28	K1	95.9(5)	O39	K1	O49	59.2(2)
Dy1	O29	K1	100.5(3)	Cl48	K1	Dy1	93.99(7)
C29	O29	Dy1	122.3(10)	Cl48	K1	Dy1	86.01(7)
C29	O29	K1	120.4(8)	Cl48	K1	Dy1	93.99(7)
O29	C29	C28	123.5(15)	Cl48	K1	Dy1	86.01(7)
O29	C29	C30	120.8(15)	Cl48	K1	Cl48	180.0
C30	C29	C28	115.7(13)	O49	K1	Dy1	145.14(16)
N21	C30	C25	120.6(16)	O49	K1	Dy1	34.86(16)
N21	C30	C29	115.9(14)	O49	K1	Dy1	34.86(16)
C29	C30	C25	123.5(16)	O49	K1	Dy1	145.14(16)
C32	N31	Dy1	128.9(10)	O49	K1	Cl28	108.14(19)
C32	N31	C40	116.8(13)	O49	K1	Cl28	108.14(19)
C40	N31	Dy1	114.2(9)	O49	K1	Cl28	71.86(19)
N31	C32	C33	126.6(15)	O49	K1	Cl28	71.86(19)
C34	C33	C32	115.8(16)	O49	K1	Cl48	51.16(17)
C33	C34	C35	120.9(16)	O49	K1	Cl48	51.16(17)
C34	C35	C36	123.7(15)	O49	K1	Cl48	128.84(17)
C34	C35	C40	118.1(15)	O49	K1	Cl48	128.84(17)
C40	C35	C36	118.1(16)	O49	K1	O49	180.0
C35	C36	Cl36	119.4(13)	Dy2	K2	Dy2	180.0
C37	C36	C35	119.7(15)	Cl68	K2	Dy2	86.73(6)
C37	C36	Cl36	120.9(12)	Cl68	K2	Dy2	93.27(6)
C36	C37	C38	119.5(15)	Cl68	K2	Dy2	93.27(6)
C37	C38	Cl38	117.3(12)	Cl68	K2	Dy2	86.73(6)
C39	C38	C37	125.4(16)	Cl68	K2	Cl68	180.00(10)
C39	C38	Cl38	117.1(12)	O69	K2	Dy2	145.17(19)
C38	C39	C40	113.9(13)	O69	K2	Dy2	34.83(19)
O39	C39	C38	125.3(15)	O69	K2	Dy2	145.17(19)
O39	C39	C40	120.7(14)	O69	K2	Dy2	34.83(19)
Dy1	O39	K1	96.5(3)	O69	K2	Cl68	127.8(2)
C39	O39	Dy1	122.5(10)	O69	K2	Cl68	127.8(2)
C39 O39 K1 123.8(8) O69 K2 Cl68 52.2(2)
N31 C40 C35 121.7(14) O69 K2 Cl68 K1 52.2(2)
N31 C40 C39 115.2(13) O69 K2 O69 180.0
C35 C40 C39 123.1(14) O69 K2 O79 56.8(3)
C42 N41 Dy1 128.6(9) O69 K2 O79 56.8(3)
C42 N41 C50 117.8(13) O69 K2 O79 123.2(3)
C50 N41 Dy1 113.4(10) O69 K2 O79 123.2(3)
N41 C42 C43 125.6(14) O69 K2 Cl88 108.97(19)
C44 C43 C42 117.2(15) O69 K2 Cl88 71.03(19)
C45 C44 C43 120.8(14) O69 K2 Cl88 71.03(19)
C44 C45 C46 127.8(14) O69 K2 Cl88 108.97(19)
C44 C45 C50 117.9(13) O79 K2 Dy2 144.93(17)
C46 C45 C50 114.3(14) O79 K2 Dy2 35.07(17)
C45 C46 Cl46 118.3(13) O79 K2 Dy2 35.07(17)
C47 C46 C45 123.3(15) O79 K2 Dy2 144.93(17)
C47 C46 Cl46 118.4(11) O79 K2 Cl68 76.66(17)
C48 C47 C46 119.0(13) O79 K2 Cl68 103.34(17)
C47 C48 Cl48 118.2(10) O79 K2 Cl68 76.66(17)
C47 C48 C49 125.1(14) O79 K2 Cl68 103.34(17)
C49 C48 Cl48 116.6(11) O79 K2 O79 180.0(4)
C48 Cl48 K1 106.0(4) O79 K2 Cl88 70.95(18)
Dy1 O49 K1 95.2(3) O79 K2 Cl88 109.05(18)
C49 O49 Dy1 123.8(9) O79 K2 Cl88 109.05(18)
C49 O49 K1 140.3(8) O79 K2 Cl88 70.95(18)
C48 C49 C50 113.0(13) Cl88 K2 Dy2 90.49(6)
O49 C49 C48 125.3(14) Cl88 K2 Dy2 90.49(6)
O49 C49 C50 121.6(12) Cl88 K2 Dy2 89.51(6)
N41 C50 C45 120.6(14) Cl88 K2 Dy2 89.51(6)
N41 C50 C49 114.2(13) Cl88 K2 Cl68 62.72(10)
C45 C50 C49 125.2(12) Cl88 K2 Cl68 62.72(10)
C52 N51 Dy2 127.9(11) Cl88 K2 Cl68 117.28(10)
C52 N51 C60 117.5(14) Cl88 K2 Cl68 117.28(10)
C60 N51 Dy2 114.2(10) Cl88 K2 Cl68 180.0
N51 C52 C53 122.4(16) O89 K2 Dy2 144.93(18)
C54 C53 C52 120.2(18) O89 K2 Dy2 144.93(18)
C53 C54 C55 120.6(17) O89 K2 Dy2 35.07(18)
C54 C55 C56 126.5(15) O89 K2 Dy2 35.07(18)
C54 C55 C60 115.4(14) O89 K2 Cl68 73.8(2)
C56 C55 C60 118.0(14) O89 K2 Cl68 73.8(2)
C55 C56 Cl56 119.3(12) O89 K2 Cl68 106.2(2)
C57 C56 C55 120.1(15) O89 K2 Cl68 106.2(2)
C57 C56 Cl56 120.6(12) O89 K2 O69 117.1(3)
C56 C57 C58 121.8(15) O89 K2 O69 62.9(3)
Interestingly, NaDyClq (3) and K0.5(NEt4)0.5DyClq (5) have a similar coordination sphere, but NEtDyClq (4) is different since the ligands have a different arrangement around the lanthanide center.
2. IR spectra

The IR spectra of the powdered compounds are compared with the films finding an excellent agreement. The characteristic vibration modes of the molecules place in the range \([1700 - 500]\) \(\text{cm}^{-1}\). The bands in the range \([1600 - 1300]\) \(\text{cm}^{-1}\) are mainly attributed to \(\text{C} = \text{N}\) and \(\text{C} = \text{C}\) vibration frequencies (ring stretching) while the band at \(1100\) \(\text{cm}^{-1}\) is related to the \(\text{CO}\) stretching. The \(\text{C} - \text{Cl}\) vibration locates in the range \([958 - 954]\) \(\text{cm}^{-1}\).

Fig. SI3: IR transmission spectra for the bulk compounds, \(\text{NaYClq}\) (1), \(\text{NaTbClq}\) (2), \(\text{NaDyClq}\) (3), \(\text{NEtDyClq}\) (4) and \(\text{KNEtDyClq}\) (5), compared with the deposited films where the ligand vibrations can be detected.
3. Mass Spectrometry

Electrospray ionization mass spectrometry (ESI-MS) has been performed for all bulk compounds. For the five cases the main signal corresponds to the relation mass/charge (m/z) of the ionized molecule: \([\text{Dy}[(5,7\text{Cl}_2\text{q}_4)]^-\). On the right hand side of the figure the pattern of the main signal is compared to the theoretical pattern, matching in all cases. The secondary signals are attributed to fragmentations of the molecules caused by the technique itself.
Fig. SI4: Electrospray ionization mass spectrometry (ESI-MS) for the bulk compounds, a-b (1), c-d (2), e-f (3), g-h (4) and i-j (5), in negative mode.
4. Radial Effective Charge (REC) model

Let us start with a caveat: it has been recently pointed out, both experimentally and via theoretical calculations, that spin-vibration coupling are critical for relaxation processes3–5, meaning the nature of the ground state and the apparent energy barrier are not sufficient conditions to predict SMM behaviour. Despite early successes, currently the necessary theory to fully understand these spin-vibrational-governed relaxation processes is still being developed.

Moreover, even state-of-the-art models for determining the energy level scheme of the magnetic levels, which are much more mature, have important limitations. This has been recently studied with a benchmark study6 With that being said, one of said state-of-the-art models is the Radial Effective Charge (REC) model, so we apply it here to verify a high-spin ground state, separated by a non-negligible energy from the first excited states as indications for a potential SMM behaviour.

Our calculations start with the crystallographic/non-idealized atomic coordinates of the first coordination sphere. These are introduced as an input for the portable fortran77 software code SIMPRE7. This code parameterizes the electric field effect produced by the surrounding ligands, acting over the central ion, by using the following Crystal Field (CF) Hamiltonian expressed in terms of the Extended Stevens Operators (ESOs)8,9:

\[H_{cf}(J) = \sum_{k=2,4,6} \sum_{q=-k}^{k} B_{k}^{q} O_{k}^{q} = \sum_{k=2,4,6} \sum_{q=-k}^{k} a_k (1 - \sigma_k) A_k^q \left\langle r^k \right\rangle O_k^q \tag{S1} \]

where \(k \) is the order (also called rank or degree) and \(q \) is the operator range, that varies between \(k \) and \(-k\), of the Stevens operator equivalents \(O_k^q \) as defined by Ryabov in terms of the angular momentum operators \(J_z \) and \(J_{\nu} \)10 where the components \(O_k^q(c) \) and \(O_k^q(s) \) correspond to the ESOs with \(q \geq 0 \) and \(q < 0 \) respectively10. Note that all the Stevens CF parameters \(B_k^q \) are real, whereas the matrix elements of \(O_k^q(q < 0) \) are imaginary. \(a_k \) are the \(\alpha \), \(\beta \) and \(\gamma \) Stevens coefficients11 for \(k = 2, 4, 6 \), respectively, which are tabulated and depend on the number of \(f \) electrons. \(\sigma_k \) are the Sternheimer shielding parameters12 of the \(4f \) electronic shell, and \(<r^k> \) are the expectation values of the radius12.
In SIMPRE, the A^q_i CF parameters are determined by the following relations:

\[
A^0_k = \frac{4\pi}{2k+1} \sum_{i=1}^{N} \frac{Z_i e^2}{R_i^{k+1}} Z_{k0}(\theta_i, \varphi_i) p_{kq}
\] (S2.a)

\[
A^q_k = \frac{4\pi}{2k+1} \sum_{i=1}^{N} \frac{Z_i e^2}{R_i^{k+1}} Z_{kq}^i(\theta_i, \varphi_i) p_{kq}
\] (S2.b)

\[
A^q_k = \frac{4\pi}{2k+1} \sum_{i=1}^{N} \frac{Z_i e^2}{R_i^{k+1}} Z_{kq}^i(\theta_i, \varphi_i) p_{kq}
\] (S2.c)

In the REC model13 the ligand is modeled through an effective point charge situated between the lanthanoid and the coordinated atom at a distance R_i from the magnetic center, which is smaller than the real metal-ligand distance (r_i). To account for the effect of covalent electron sharing, a radial displacement vector (D_r) is defined, in which the polar coordinate r of each coordinated atom is varied, $R_i = r_i - D_r$. The usual procedure is to obtain the D_r parameter of each kind of donor atom from a collective fit of an observable (e.g. energy levels or magnetic properties) for a family of isostructural lanthanide complexes. At the same time, the charge value (Z_i) is scanned in order to achieve the minimum deviation between calculated and experimental data, whereas θ_i and φ_i remain constant. We calculate the effective distances of the coordinated atoms using the following formula for D_r:

\[
D_r \approx \left(\frac{N_L}{V_M} \right) \cdot \frac{1}{E_M(E_L - E_M)}
\] (S3)

where N_L is the coordination number of the complex ($N_L = 8$), V_M is the valence of the metal ($V_M = 3$), and E_M and E_L are the Pauling electronegativities of the metal ($E_M \approx 1.2$) and the donor atom ($E_L = 3.44$ for oxygen and 3.04 for nitrogen) respectively.

Such relation is an approximation that was obtained by fitting the experimental energy levels of the ground multiplet of the homoleptic families CsNaYCl\textsubscript{6}:Ln3+ and CsNaYF\textsubscript{6}:Ln3+, LiYF\textsubscript{4}:Ln3+ and LaCl\textsubscript{3}:Ln3+ using the crystal structures and the REC model13. The obtained values of Dr (N) and Dr (O) for the Dy compounds are thus 1.20 Å and 0.98 Å. This strategy allows us to restrict the number of free parameters to 2, i.e. the effective charges of the nitrogen and oxygen atoms, Z_i (N) = 0.160 and Z_i (O) = 0.235, which have been obtained by a two-parameter fit of the χT product of NaTbCl\textsubscript{q} and NaDyCl\textsubscript{q} measured under a magnetic field of 0.1 and 1T. In the fitting procedures, we define the relative error E as:
where χ_{exp} and χ_{theo} are experimental and theoretical magnetic susceptibility, respectively, and n is the number of points.

Subsequently, such REC parameters for both different donor atoms are validated with the correct prediction of the χT product of NEtDyClq and KNEtDyClq, with an excellent agreement with the experimental results (Fig. SI5(b) and SI5(c)). According to this description, the first excited state is found at 126 cm$^{-1}$ ($g_z = 19.5$), 49 cm$^{-1}$ ($g_z = 18.5$), 193 cm$^{-1}$ ($g_z = 19.4$) and 154 cm$^{-1}$ ($g_z = 19.2$), for NaDyClq, NEtDyClq and KNEtDyClq respectively, with a wave function with a major contribution of $M_j = \pm 15/2$ (Fig. SI6(b)) in all cases.

$$E = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\chi_{\text{theo},i} - \chi_{\text{exp},i}}{\chi_{\text{exp},i}} \right]^2$$

(S4)

Fig. SI5: χT product of a) NaTbClq (2), b) NEtDyClq (4) and c) KNEtDyClq (5) (experimental data in circles) and theoretical fit/prediction from 2 to 300 K at $H = 1$ T as a solid line.
The calculated wave functions of the ground doublets, dominated by high-M_J contributions (M_J(Tb) = ±6 or M_J(Dy) = ±15/2) are then compatible with the observed SMM behavior for the four compounds (see Fig. SI6). The different countercations present in each crystallographic structure distort the coordination environment to an extent that is comparable to the differences between two conformers within the same crystal structure. For example, the crystal field effect is slightly larger for (3) derivative (about 873 cm$^{-1}$), compared with (4) (800 cm$^{-1}$) or with the two conformers of (5) (841 and 788 for Dy1 and Dy2 respectively). There is no correlation with the averaged distances between the lanthanide and the donor atoms (2.435 Å (3), 2.443 Å (4), 2.430 Å (5) and 2.436 Å (5')), and thus such differences in the crystal field strength are attributed to the small distortions of the chemical structures due to the crystal packing. In contrast with typically negligible distortions caused by temperature14 the differences in the crystallographic sites, induced partially by these countercations, lead to different energy level schemes, as can be seen in fig. SI6(b). As these variations cannot be easily controlled, there is no immediate connection between countercation and dynamic magnetic properties. In any case, the countercation has no effect on our parameterization of the effective charges, as demonstrated by the good agreement between the predictions of the magnetic data of (4) and (5) and the experiment (fig. SI5(b) and SI5(c)).
Figure SI6: Energy level scheme and main M_J contributions to the wave functions of the ground and first excited states of (2) NaTbCl₄ (a) and (3) NaDyCl₄, (4) NEtDyCl₄, and (5) KNEtDyCl₄ (b) predicted by SIMPRE software.
5. AC Measurements

The single ion magnet behavior has been experimentally checked by applying an ac magnetic field at different frequencies. Magnetic compounds didn’t show frequency dependence at zero dc field (H_{DC}) but they did when a dc field was applied.

![Figure SI7](image)

Figure SI7: Bulk NaDyCl₃ (3) ac measurements at 150 Oe. a) Magnetic susceptibility in phase for different frequencies. b) Magnetic susceptibility out of phase. c) Cole-Cole plots at different temperatures with the corresponding α values. The lines in the Cole-Cole plots are fittings to equation SI7. d) Arrhenius fit with an effective energy barrier $U_{eff} = 63$ cm⁻¹, and a pre-exponential factor $\tau_0 = 1.8 \times 10^{-6}$ s. e) Fit to a Raman relaxation mechanism with $B_{Raman} = 1.0 \times 10^{-9}$ Hz/K².
Figure SI8: Bulk NaDyCl₃ ac measurements at 425 Oe. a) Magnetic susceptibility in phase for different frequencies. b) Magnetic susceptibility out of phase. c) Cole-Cole plot at different temperatures with the corresponding α values. The lines in the Cole-Cole plots are fittings to equation SI7. d) Arrhenius fit with an effective energy barrier $U_{\text{eff}} = 65 \text{ cm}^{-1}$, and a pre-exponential factor $\tau_0 = 2.7 \times 10^{-6} \text{ s}$. e) Fit to a Raman relaxation mechanism with $B_{\text{Raman}} = 1.2 \times 10^{-9} \text{ Hz/K}^{-9}$.
Figure S19: Bulk NaDyCl₃ (3) ac measurements at 750 Oe. a) Magnetic susceptibility in phase for different frequencies. b) Magnetic susceptibility out of phase. c) Cole-Cole plots at different temperatures with the corresponding α values. The lines in the Cole-Cole plots are fittings to equation SI7. d) Arrhenius fit with an effective energy barrier $U_{\text{eff}} = 75 \text{ cm}^{-1}$, and a pre-exponential factor $\tau_0 = 1.1 \times 10^{-6} \text{ s}$. e) Fit to a Raman relaxation mechanism with $B_{\text{Raman}} = 1.5 \times 10^{-9} \text{ Hz K}^{-9}$.
Figure SI10: Bulk NaDyCl₃ ac measurements at 1000 Oe. a) Magnetic susceptibility in phase for different frequencies. b) Magnetic susceptibility out of phase. c) Cole-Cole plot at different temperatures with the corresponding α values. The lines in the Cole-Cole plots are fittings to equation SI7. d) Arrhenius fit with an effective energy barrier $U_{\text{eff}} = 76$ cm⁻¹, and a pre-exponential factor $\tau_0 = 1.1 \times 10^{-6}$ s. e) Fit to a Raman relaxation mechanism with $B_{\text{Raman}} = 1.53 \times 10^{-9}$ Hz/K⁹.
Figure SI11: a) Extrapolation of the effective energy barrier ($U_{\text{eff}} = 60.1 \, \text{cm}^{-1}$) at zero dc magnetic field for bulk NaDyCl₆ (3). b) Extrapolation of C at zero dc field with $B_{\text{Raman}} = 9.3 \times 10^{-10} \, \text{Hz/K}^9$ for the same compound.

$$
\tau = \tau_0 e^{-\frac{U_{\text{eff}}}{k_B T}}
$$

Equation SI5: Arrhenius equation.

$$
\tau^{-1} = B_{\text{Raman}} T^n
$$

Equation SI6: Raman relaxation equation.

$$
\chi''(\chi) = \frac{-\chi_T - \chi_S}{2\tan\left(\frac{(1 - \alpha)\pi}{2}\right)} + \sqrt{\frac{(\chi_T - \chi_S)^2}{2\tan\left(\frac{(1 - \alpha)\pi}{2}\right)}}
$$

Equation SI7: Cole-Cole equation where α ($0 < \alpha < 1$) is related to the number of relaxation mechanisms, χ_T is the isothermal susceptibility and χ_S is the adiabatic susceptibility.

Table SI8: Coefficient of determination, R^2, of the fits to the Raman and Orbach terms showing a best fit for the Raman relaxation in all cases for the compound (3).

H(Oe)	$R^2(\tau^{-1} = CT^{1/9})$	$R^2(\tau^{-1} = \tau_0^{-1}\exp(-U_{\text{eff}}/kT))$
150	0.997	0.983
425	0.996	0.957
500	0.995	0.954
750	0.997	0.966
1000	0.996	0.985
Figure SI12: a) Comparison of the Raman mechanism values for NaDyClq (3) as bulk and sublimated material measured in a SQUID magnetometer. For the linear fit to equation SI5, only the points at high temperature (13 – 20 K) are taken into account. b) Equivalent Raman mechanism fits.

Figure SI13: Magnetic susceptibilities in phase (χ', left) and out of phase (χ'', right) at a) $H_{DC} = 500$ Oe and b) $H_{DC} = 2000$ Oe of bulk NaTbClq (2).
Figure SI14: Magnetic susceptibilities in phase (χ', left) and out of phase (χ'', right) at a) $H_{DC} = 500$ Oe and b) $H_{DC} = 2000$ Oe of bulk NEtDyClq (4).
6. Film Characterization

Figure SI15: AFM topography images of NaDyClq (3) molecular layers grown on NiFe (left) and Co (right) substrates.

Figure SI16: Negative and positive modes MALDI-TOF for films of a) NaYClq (1), b)
NaTbClq (2) and c) NaDyClq (3). A pattern was not found in films of NEtDyClq (4) and KNEtDyClq (5).

Figure SI17: a) Temperature-dependent magnetization of NiFe (10nm)/NaTbClq where a 1/T behavior is observed in the FC curve whereas a blocking (cusp) appears in the ZFC curve. b) Temperature-dependent magnetization of NiFe (10 nm). M_{FM} has been subtracted in Figures 5b-d and in some cases scaled to M_{tot} at low temperatures before subtraction, as slight variation in the thickness yield different absolute magnetization values. recalcular que el NiFe no tiene 1/T behaviour en el fc ni cusp en el zfc (blocking).
References

(1) Aly, H. F.; Abdel Kerim, F. M.; Kandil, A. T. I.R. Spectra of Lanthanide 8-Hydroxyquinoline Complexes. J. Inorg. Nucl. Chem. 1971, 33, 4340–4344.

(2) Nervik, W. E.; Magee, R. J.; Freiser, H.; Friedel, R.; Hillard, L. E.; Johnson, W. D. I.R. Spectra of Lanthanide 8-Hydroxyquinoline Complexes. 1971, 33, 4340–4344.

(3) Lunghi, A.; Totti, F.; Sessoli, R.; Sanvito, S. The Role of Anharmonic Phonons in under-Barrier Spin Relaxation of Single Molecule Magnets. Nat. Commun. 2017, 8, 14620.

(4) Escalera-Moreno, L.; Suaud, N.; Gaita-Ariño, A.; Coronado, E. Determining Key Local Vibrations in the Relaxation of Molecular Spin Qubits and Single-Molecule Magnets. J. Phys. Chem. Lett. 2017, 8, 1695–1700.

(5) Chilton, N. F.; Deacon, G. B.; Gazukin, O.; Junk, P. C.; Kersting, B.; Langley, S. K.; Moubarak, B.; Murray, K. S.; Schleife, F.; Shome, M.; et al. Structure, Magnetic Behavior, and Anisotropy of Homoleptic Trinuclear Lanthanoid 8-Quinolinolate Complexes. Inorg. Chem. 2014, 53, 2528–2534.

(6) Baldoví, J. J.; Duan, Y.; Morales, R.; Gaita-Ariño, A.; Ruiz, E.; Coronado, E. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models. Chem. - A Eur. J. 2016, 22, 13532–13539.

(7) Baldoví, J. J.; Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A.; Palii, A. SIMPRE: A Software Package to Calculate Crystal Field Parameters, Energy Levels, and Magnetic Properties on Mononuclear Lanthanoid Complexes Based on Charge Distributions. J. Comput. Chem. 2013, 34, 1961–1967.

(8) Rudowicz, C.; Chung, C. Y. The Generalization of the Extended Stevens Operators to Higher Ranks and Spins, and a Systematic Review of the Tables of the Tensor Operators and Their Matrix Elements. J. Phys. Condens. Matter 2004, 16, 5825–5847.

(9) Rudowicz, C. Transformation Relations for the Conventional Ok Q and Normalised O’k Q Stevens Operator Equivalents with k=1 to 6 and -K≤q≤k. J. Phys. C Solid State Phys 1985, 18, 1415–1430.

(10) Ryabov, I. D. On the Generation of Operator Equivalents and the Calculation of Their Matrix Elements. J. Magn. Reson. 1999, 140, 141–145.

(11) Stevens, K. W. H. Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions. Proc. Phys. Soc. Sect. A 2002, 65, 209–215.

(12) Edvardsson, S.; Klintenberg, M. Role of the Electrostatic Model in Calculating Rare-Earth Crystal-Field Parameters. J. Alloys Compd. 1998, 275–277, 230–233.

(13) Baldoví, J. J.; Borrás-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A. Modeling the Properties of Lanthanoid Single-Ion Magnets Using an Effective Point-Charge Approach. Dalton Trans. 2012, 41, 13705.

(14) Qian, K.; Baldoví, J. J.; Jiang, S.-D.; Gaita-Ariño, A.; Zhang, Y.-Q.; Overgaard, J.; Wang, B.-W.; Coronado, E.; Gao, S. Does the Thermal Evolution of Molecular Structures Critically Affect the Magnetic Anisotropy? Chem. Sci. 2015, 6, 4587–4593.
