Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv. oryzae, the pathogen of Rice bacterial blight disease

Jinhua Cheng1,2 · Kumar Sagar Jaiswal3 · Seung Hwan Yang2,3 · Joo-Won Suh1,2

Received: 15 February 2016 / Accepted: 1 April 2016 / Published Online: 30 June 2016
© The Korean Society for Applied Biological Chemistry 2016

Abstract An endophytic bacterial strain was isolated from kimchi, a Korean traditional fermented Brassica campestris and identified as Bacillus subtilis MJMP2 based on the 16S rRNA sequence. This strain showed strong antagonistic activity against Xanthomonas oryzae pv. oryzae (Xoo) KACC10331, the pathogen of bacterial rice blight disease, as well as activity against some other rice phytopathogenic fungi. The active compound was purified through size-exclusion chromatography and preparative High-performance liquid chromatography. The molecular weight was determined as m/z 1043 by mass spectroscopy, which is identical to that of iturin A. Furthermore, a crude extract from the culture supernatant of Bacillus subtilis MJMP2 showed inhibitory activity against rice blight disease in both a rice leaf explant assay and a pot assay. The crude extract also enhanced the length of roots of Arabidopsis thaliana. These results suggest that the strain Bacillus subtilis MJMP2 could be used as a biological agent to control rice blight disease.

Keywords Bacillus subtilis · Bacterial blight disease · Biocontrol · Iturin A · Xanthomonas oryzae

Introduction

Bacterial rice blight is an endemic disease that affects rice cultivars in most tropical Asian countries. This disease is characterized by greyish-white lesions on leaf veins, indicating that it is a vascular disease. A severely affected field usually loses about 50 % of its total rice yield. Xanthomonas oryzae pv. oryzae (Xoo) has been identified as a major causative agent of bacterial blight on rice (Oryza sativa L.) (Ezuka and Kaku 2000). Since the revolution in agriculture, to achieve better productivity and quality of agricultural products, farmers have been relying ever more heavily on chemical fertilizers and pesticides. Excessive use and misuse of such compounds has led to adverse effects including a reduction in the growth potential of fields, loss of essential microbiota in the soil, and environmental pollution. Thus, there is a need to develop novel methods or compounds to replace chemically synthesized products (Paul et al. 2012). Several microorganisms, known as biological control agents, have been used to control pests and diseases. The U.S. National Research Council defines biological control as “Use of natural or modified organisms, genes or gene products to reduce the effects of undesirable organisms and support the growth of desirable organisms which includes crops, beneficial insects and essential microbes.”

Interactions between plants and microorganisms affect plant health in several ways; such interactions include mutualism, proto-cooperation, commensalism, neutralism, competition, amensalism, parasitism, and predation. Microorganisms that affect plant health by controlling diseases are categorized as competitive saprophytes, facultative plant symbionts, or facultative hyperparasites. Previous reports have shown that compounds including antibiotics, enzymes, and various metabolites produced from microbes are the key to their protective effects (Whipps 1997; Weller et al. 2002).

Many species from the Bacillus genus have been identified as successful candidates for biocontrol because they have features like excellent colonization ability (Kloepper et al. 2004) and sporulation ability (Schallmey et al. 2004). Previous findings suggest that Bacillus strains have a great capacity to synthesize compounds...
such as lipopeptide surfactants by employing large multi-enzyme complexes in a non-ribosomal pathway (Asaka and Shoda 1996). These natural surfactants are endowed with broad-spectrum antimicrobial activities (Emmert and Handelsman 1999) and are involved in plant disease control (Maget-Dana and Peyrous 1994). Lipopeptides have cyclic structures in which a peptide moiety has been conjugated with a β-amino or β-hydroxy fatty acid, making them amphiphilic. One widely-studied Bacillus lipopeptide is iturin. Lipopeptides in the iturin family include iturin A, mycosubtilin, and bacillomycin. These molecules have strong antifungal activities (Thimon et al. 1995; Duitman et al. 1999; Moyne et al. 2004).

In this study, an endophytic Bacillus strain with strong inhibitory activity against Xoo was isolated from kimchi, and tested for their efficacy against bacterial blight disease in rice. Furthermore, the active compound was isolated and characterized.

Materials and Methods

Isolation of microorganisms from kimchi
Microbes were isolated from kimchi, a Korean traditional fermented Brassica, by serial dilution. Kimchi fermented for 1 month was purchased from a local market and homogenized using a stainless steel blender. One g of homogenized kimchi was suspended in 10 mL 0.8 % saline and serially diluted. One hundred μL of appropriately diluted suspension was plated on a Luria-Bertani agar plate (Difco, Detroit, MI, USA), and the plates were incubated at 37°C. Single colonies were picked and cultured by streaking on LB agar plates. The bacteria were preserved at −80°C in 20 % glycerol stocks. Xanthomonas oryzae pv. oryzae KACC10331 and other phytopathogenic fungi, Fusarium oxysporum KACC 40037 and Rhizoctonia solani AG-2-2 (IIIB) KACC 40151, were obtained from the Korean Agriculture Culture Collection (KACC), Jeonju, Korea, and grown on potato dextrose agar (PDA) (Acumedia, Lansing, MI, USA) at 25–28°C.

Screening of antimicrobial bacteria
The antagonistic activities of bacterial isolates were assayed using Xoo as an indicator strain. Briefly, bacterial isolates were grown on LB agar at 37°C for 24 hours, and then grown in LB broth one day prior to the test. After complete incubation, the culture broth was loaded onto paper disks and placed on PDA plates inoculated with fungal pathogens. Mycelial growth inhibitory activities of the isolates were evaluated after 3 days of incubation. The isolate with the strongest inhibitory activity was selected for further study.

Identification of antimicrobial bacteria
Identification of microorganisms was done by 16S rRNA sequences. Extraction of bacterial genomic DNA was accomplished using phenol (Maniatis et al. 1982). Two universal primers, fD1 and rP2, were used to amplify 16S rRNA by polymerase chain reaction (PCR). The sequences of fD1 and rP2 were 5′-AGAGTTTGAT CCTCCTCCTAG-3′ and 5′-ACGCTACCTTGTTACGACTT-3′, respectively (Weisburg et al. 1991). The amplification protocol was as follows: one cycle of denaturation for 3 min at 94°C, 35 cycles at 94°C for 1 min, 59°C for 1 min, and 72°C for 2 min, and then one cycle at 72°C for 7 min. After completion of the gene amplification process, the product was purified with the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, USA) and sequencing was accomplished with an ABI PRISM 310 Genetic Analyzer (Perkin Elmer, Wellesley, MA, USA).

Lipopeptide extraction and purification
The selected strain was cultivated in M9 broth at 30°C and the lipopeptide-containing fraction was collected after removal of bacterial cells by centrifugation at 6,000 x g for 20 min followed by aseptic filtration (0.45 μm). The supernatant was extracted with same volume of butanol, and the butanol extract was dried by vacuum evaporation. The dried extract was dissolved in butanol, and filtered with a 0.2-μm nonpyrogenic hydrophilic membrane (Sartorius AG, Goettingen, Germany). These filtrates were fractionated by size exclusion chromatography using a Sephadex LH-20 column (16 mm ID × 70 cm L; Amersham Biosciences, Uppsala, Sweden) with butanol as an elution solvent and analysed by measuring absorbance at 215 nm. Fractions were collected and concentrated with a vacuum evaporator and their antimicrobial activity was assessed against the fungal pathogens. The fraction with antimicrobial activity was then loaded on a Zorbax SB-C18 column (9.4 mm ID × 25 cm L, 5 μm particle diameter; Agilent Technologies Co.) and separated by reverse phase High-performance liquid chromatography (HPLC) (Waters, USA). The mobile phase components were (A) 0.1 % trifluoroacetic acid (TFA) in 10 % acetonitrile and (B) 0.1 % TFA in 100 % acetonitrile. The flow rate was set at 4 mL/min with a linear gradient of solvent B. The elution profile was analysed by measuring absorbance at 215 nm. The collected fractions were prepared for further ESI-MS.

ESI-MS analysis of active fraction
Mass spectral data were obtained with an LC-MS-8030 system (Shimadzu, Kyoto, Japan) enabled with a triple quadrupole mass analyser coupled with an ESI source set at positive full scan mode. The interface voltage was kept at 4.5 kV (ESI+) and the detector voltage was set to 1.2 kV. The desolvation gas temperature and heat block temperature were kept at 250 and 400 °C, respectively. Nitrogen gas was used as the nebulizer at a flow rate of 3.0 L/min and dry gas was set to flow at 15 L/min. Argon gas was used as the collision gas at a pressure of 230 kPa for CID and the collision energy was optimized for each precursor ion, i.e., −40 ev for iturin.

Assessment of inhibitory activity of crude extract from Bacillus subtilis MJMP2 against bacterial blight disease
Inhibition of bacterial blight disease was assessed as follows.

X.
oryzae KACC 10331 was pre-cultured and diluted in sterilized MES buffer (3 mM, pH 6.0) to OD$_{600}$ = 0.5. Then, 200 µL of Xoo suspension was pipetted into each well of a 96-well plate. Whole rice leaves were cut into 15 cm lengths, their surfaces were sterilized with a diluted antiseptic solution, and the leaves were rinsed in distilled water three times. After preparation of rice leaf explants (4×4 mm2), they were placed into the 96-well plates. Crude extract from Bacillus subtilis MJMP2 was prepared by extracted with buthanol, and dried completely under vacuum condition. Dried extract was dissolved in 50 % DMSO, and added to the 96 well plate in concentrations of 10, 50, or 100 µg/mL immediately after infection with Xoo. The plates were incubated at 28 °C for 5 days. The absence of white lesions on the leaf explants was taken as a sign of antimicrobial activity.

Inhibitory activity of Bacillus subtilis MJMP2 against Xoo in a pot assay

A susceptible rice cultivar Milliang, were planted and allowed to grow for 6 weeks in 40×40 cm pots, six plants in each pot; each treatment was replicated three times. The crude extract from Bacillus subtilis MJMP2 (50 µg/mL) was sprayed onto the leaves. On the 2nd day after treatment, the leaves of plants in the treated pots were inoculated with Xoo suspension (OD$_{600}$ = 0.5) by daubing with a brush. Treated pots were placed in a randomized block design and kept in the greenhouse for 7 days before being harvested. Leaves with white lesions were identified as infected.

Growth-promoting activity of crude extract from Bacillus subtilis MJMP2

Arabidopsis thaliana ecotype Col-0 was used for the in vitro growth promotion experiments. Surface-sterilized Arabidopsis seeds were placed in half-strength Murashige & Skoog (MS) agar medium without or with 50 µg/mL Bacillus subtilis MJMP2 crude extract, and incubated vertically in a growth chamber at 22°C for 4 days. The agar plates were sealed with parafilm and incubated in the growth chamber in the aforementioned conditions. After 7 days, root lengths were measured.

Antimicrobial spectrum of crude extract from Bacillus subtilis MJMP2

Bacillus subtilis MJMP2 was tested for its antimicrobial activities against R. solani and F. oxysporum on agar medium containing PDA. Bacillus subtilis MJMP2 was inoculated on the surface of an agar plate 2 cm away from a fungal disc. Antagonist activity was observed after incubation at 25°C for up to 3−7 days. Inhibition was quantified by measuring the diameter of the inhibited zone.

Results

Screening and identification of antimicrobial bacteria

Over 200 bacterial strains isolated from Kimchi were screened to test their antagonistic activity against X. oryzae. Among these...
isolates, the MJMP2 strain showed the strongest activity. This strain showed the typical morphology of a Bacillus species. The colony on nutrient agar is round to irregular with an entire margin, and its colour is white to creamy. Single cells appear rod-shaped under a microscope (data not shown). Phylogenetic analysis based on the 16S rRNA sequence showed that this strain is closely related to Bacillus subtilis subsp. subtilis, with the similarity of more than 99 %. The phylogenetic tree based on the neighbour joining method is shown in Fig. 1.

Purification and characterization of lipopeptides

Among the fractions collected by Sephadex LH-20 chromatography, fractions 5–8 showed strong activity against Xoo. These fractions were combined and further purified by Prep-HPLC. Fractions were collected every 2 min and lyophilized under reduced pressure conditions. The fraction that showed the strongest activity was selected for analysis through ESI-MS direct injection in negative and positive full scan mode. ESI-MS analysis revealed four main signals at m/z 1042.6, 1056.6, 1072.7 and 1083.8. The molecular weights corresponded to iturin A containing an acyl chain with C14, C15, C16, and C17, respectively. In positive mode, three main signals at m/z 1066, 1080.6, and 1160.8 were observed, which correspond to C14, C15, and C17 fatty acyl chains in iturin A variants (Fig. 2).

Inhibitory activities of butanol extract from Bacillus subtilis MJMP2 against bacterial blight disease in rice leaf explant and pot assays

The inhibitory activity of butanol extracts from Bacillus subtilis MJMP2 against bacterial blight disease was assessed in both leaf explant and pot assays. In the leaf explant assay, leaf explants treated with Xoo suspension turned white, which is symptomatic of bacterial blight disease. After treatment with crude extract from Bacillus subtilis MJMP2, this symptom was alleviated (Fig. 3A). At a concentration of 10 µg/mL extract (Fig. 3B), the experimental and control plants looked the same (both turned white) (Fig. 3A). However, the whiteness was eliminated completely at concentrations of 50 and 100 µg/mL (Fig. 3C, D). In the pot assay, treatment with Xoo induced bacterial blight disease (Fig. 3f), while pretreatment with 50 µg/mL butanol extract from Bacillus subtilis MJMP2 prevented the disease (Fig. 3G).
Growth-promoting activity of crude extract from Bacillus subtilis MJMP2

The growth-promoting activity of the crude extract from *Bacillus subtilis* MJMP2 was studied in vitro using *Arabidopsis* seedlings. The root length of *A. thaliana* was enhanced after supplementation with crude extract in the agar plate. The length of roots reached 25 mm after crude extract treatment, while it was only 15 mm in the untreated group (Fig. 4).

Antimicrobial spectrum of crude extract from Bacillus subtilis MJMP2

Bacillus subtilis MJMP2 also showed strong inhibition of other rice pathogens, including *Rhizotonia solani* KACC 40151 and *Fusarium oxysporum* KACC 40037, which are the pathogens responsible for rice sheath blight disease and rice root rot disease, respectively (Table 1).

Table 1 Antagonistic activity of Bacillus subtilis MJMP2 against various rice pathogens

Strain name	Activity	Pathogen
Xanthomonas oryzae	+++	Rice blight disease
Rhizotonia solani	++	Sheath blight of rice
Fusarium oxysporum	++	Root rot

+++ , strong inhibitory activity with inhibition zone of more than 10 mm
++, moderate inhibitory activity with inhibition zone of 5–10 mm

Discussion

For a long time, chemical agents have been widely available for the control of various plant diseases; they are very popular in the agricultural sector. However, chemical products cause heavy damage to the fields, soil microbiota, and the environment. Severe negative effects on human health are also seen after such chemicals are used for a long time agriculturally. To ameliorate such problems, natural products and natural organisms such as microorganisms have become more important and earned a degree of commercial success; many studies on the use of various microorganisms as biocontrol agents are ongoing (Hoitink and Boehm 1999; Weller et al. 2002).

Previous studies reported the production of iturin by *Bacillus subtilis*, and its antagonistic activity against several phytopathogens is well documented (Ohno et al. 1993; Yu et al. 2002). *Bacillus amyloliquefaciens* has also proven its ability to produce iturin and prevent various fungal pathogens (Yoshida et al. 2001; Yu et al. 2002; Arebola et al. 2010). All these studies indicate that production of iturin A is very important in the control of fungal pathogens by *Bacillus* species. Iturin A disrupts fungal cytoplasmic membranes, leading to formation of transmembrane channels that then permit the leakage of vital ions such as K⁺ from fungal cells (Ihsieh et al. 2008).

Besides iturin, *Bacillus* species are also known to produce surfactin. Recently, a surfactin homologues lipopeptide antagonistic to *Xoo* was obtained from the culture supernatant of *Bacillus amyloliquefaciens* B014. This lipopeptide, named as AXLP14 not only inhibited the growth of *Xoo*, but also negatively affected the motility and the biofilm formation of *Xoo*. Moreover, AXLP14 also regulated the gene expression which is involved in the rice defence mechanism (Li et al. 2015). In addition, endophytic *Bacillus* strains isolated from plant sources significantly reduced the severity of bacterial leaf blight for 40 % compared with control under glasshouse conditions. Treatment of *Bacillus* species highly induced some defence related enzymes like peroxidase, polyphenol oxidase, and resulted in higher accumulation of total phenols compared with control plants (Nagendran et al. 2013). Furthermore, *Bacillus subtilis* CMB32 was reported to produce biosurfactant lipopeptides iturin A, Fengycin, and surfactin, and showed good activity against *Colletotrichum gloeosporioides* (Kim et al. 2010). However, *Bacillus* strains showing inhibitory activity against *Xoo* through iturin A production has not been reported.

In this study, several *in vitro* assays have been performed against *Xoo* and some fungal pathogens. The active compounds were purified and identified by mass spectrometry. The mass spectra data were found to be similar to the data from previous studies on lipopeptides of *Bacillus* species, which confirmed the identity of our compound as iturin A (Kovall et al. 1998; Schneider et al. 1999). Furthermore, the butanol extract of cell-free supernatant also inhibited the mycotic pathogens in several pot assays. When rice leaf explants infected with *Xoo* were treated with butanol extract of MJMP2 in a dose-dependent manner, the results clearly showed fungal growth inhibition. At a concentration of 10 µg/mL about 40 % of explants were found to be clear or uninfected. As the doses were increased to 50 and 100 µg/mL, explants were found to be protected from infection by *Xoo*. In pot assay, rice leaves were treated with butanol extract and then infected with *Xoo* and the appearance of rice leaves was similar to that of uninfected leaves, whereas there was a clear difference from untreated infected leaves (Fig. 3). Figure 4 shows the growth-promoting activity of butanol extract. Treatment of seedlings prior to infection with pathogen not only saves these seedlings from infection but also helps in complete growth of the seedlings. Hence, butanol extract of MJMP2 can be used as an antibiotic as well as a plant growth promoting agent. The lipopeptides isolated from microbes are more effective against phytopathogens and have fewer side effects than do agrochemicals. These results established *Bacillus subtilis* MJMP2 as a potent biocontrol agent, and its efficacy in elimination of phytopathogens in field conditions should be exploited.

Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01132402)" Rural Development Administration, Republic of Korea.
References

Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108: 386–395

Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62: 4081–4085

Duitman EH, Hamoen LW, Rembold R, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ulrich C, Stein T, Leenders F, Vater J (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci 96: 13294–13299

Emmett EA, Handelsman J (1999) Biocontrol of plant disease: a (Gram) positive perspective. FEMS Microbiol Lett 171: 1–9

Ezuka A, Kaku H (2000) A historical review of bacterial blight of rice. Bull Natl Inst Agrobiol Resour (Japan) 153–155.

Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37: 427–446

Hsieh FC, Lin TC, Meng M, Kao SS (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56: 1–5

Kim PI, Ryu J, Kim YH and Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20: 138–145

Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259–1266

Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204: 1–8

Li SB, Xu SR, Zhang RN, Liu Y, Zhou RC (2015) The antibiosis action and rice induced resistance, mediated by a lipopeptide from Bacillus amyloliquefaciens B014, in controlling rice disease caused by Xanthomonas oryzae pv. Oryzae. J Microbiol Biotechnol doi: 10.4014/jmb.1510.10072

Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87: 151–174

Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual vol 545. Cold Spring Harbor Laboratory. Cold Spring Harbor: NY

Moyne A-L, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234: 43–9

Nagendran K, Karthikeyan G, Peeran MF, Raveendran M, Prabakar K, Raguchander T (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl Sci J 28: 2229–2241

Ohno A, Ano T, Shoda M (1993) Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis NB22 in solid state fermentation. J Ferment Bioeng 75: 23–27

Paul NC, Deng JX, Sang HK, Choi YP, Yu SH (2012) Distribution and antifungal activity of endophytic fungi in different growth stages of chili pepper (Capsicum annuum L.) in Korea. Plant Patho J 28: 10–19

Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50: 1–17

Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch C 54: 859–866

Thimon L, Peypoux F, Wallach J, Michel G (1995) Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 128: 101–106

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703

Whipps JM (1997) Developments in the Biological Control of Soil-borne Plant Pathogens. Adv Bot Res 26: 1–134

Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40: 309–348

Yu G, Sinclair J, Hartman G, Bertagnolli B (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34: 955–963