Regulation of the IgE response
Daniel H Conrad*, David R Gibb and Jamie Sturgill

Address: Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298, USA
* Corresponding author: Daniel H Conrad (dconrad@vcu.edu)

F1000 Biology Reports 2010, 2:14 (doi:10.3410/B2-14)
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/3.0/legalcode), which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes provided the original work is properly cited. You may not use this work for commercial purposes.

The electronic version of this article is the complete one and can be found at: http://f1000.com/reports/biology/content/2/14

Abstract
IgE was the last of the five immunoglobulin classes to be discovered and is the antibody that is responsible for much of human type I allergic disease. This review summarizes recent developments with respect to control of IgE synthesis with an emphasis on Th2 (T helper 2) control and regulation using IgE Fc receptors.

Introduction and context
The primary biological function of IgE is to provide immunity against multicellular parasitic pathogens such as helminths. Large IgE responses are seen in both humans and other mammals as a result of such infections. In developed countries, where such diseases are rare, IgE responses directed against innocuous allergens result in type I allergic disease. Since IgE is the only immunoglobulin class thought to be involved in human type I allergy, methods to control IgE synthesis represent a significant challenge. Indeed, the closest approach is immunotherapy, which was initiated in the early 1900s. Immunotherapy involves administering increasing doses of allergen to achieve desensitization and/or tolerance. Significant improvements in allergen purity have greatly enhanced its effectiveness, especially when treating patients with responses to only those well-characterized allergens [1]. While the mechanism remains controversial, neutralizing antibodies (IgG in nature) to the allergen as well as tolerance induction are potentially both involved.

Major recent advances
The development of therapies that would specifically inhibit class switching to IgE would have a dramatic impact on allergic disease. However, mechanisms for isotype switching are usually common to other Ig classes (see [2,3] for review). The discovery of the role of activation-induced deaminase (AID) by the Honjo laboratory [4] was a key event. Additionally, T-cell help, long known to be critical for isotype switching, comes from CD40-CD40L (CD40-CD40 ligand) interaction and specific cytokines. Patients who lack either AID or CD40L are limited primarily to an IgM response [5,6]. While other cytokines such as BAFF (B-cell activating factor belonging to the tumor necrosis factor family) and APRIL (a proliferation-inducing ligand) can induce both T cell-independent and T cell-dependent class switching to IgE (at least in vitro), current thought is that CD40-CD40L and AID are required for significant in vivo IgE production. B-cell activation via Toll-like receptor 4 (TLR4) also effectively induces IgE class switching. However, at least in mice [7], TLR4 stimulation attenuates the mouse asthma model. One unique feature of IgE class switching is the general necessity for T helper 2 (Th2) differentiation. Since interleukin-4 (IL-4) production is important not only for Th2 development but also for isotype switching, blocking its activity represents a clear strategy for IgE control. Clinical trials were performed using a soluble form of the IL-4 receptor; however, modest efficacy was achieved in asthma treatment (discussed in [8]). Potential new directions in cytokine therapy for allergic disease come from recent studies with IL-21, IL-25, and IL-33 and thymic stromal lymphopoietin (TSLP). Over 10 years ago, the Hodgkin laboratory reported that isotype switching to IgG and IgE required multiple cell divisions [9]. Up to five divisions were required for IgG, and eight were required for optimal IgE production. While the IgG data from this
mouse study were later replicated in humans [10], human IgE production required additional signals. Adding IL-21 to the culture allowed our group to extend the multiple division requirement for IgE production to humans [11]. IL-21 is known to signal through STAT3 (signal transducer and activator of transcription 3), and Avery et al. [12] demonstrated that B cells from patients with loss-of-function mutations in STAT3 did not respond to IL-21. Interestingly, mutations in STAT3 are also associated with the autosomal dominant form of HIES (hyper IgE syndrome) [13], a condition in which patients have extremely elevated serum IgE levels, recurrent eczema, and an increased risk for skin and lung infections. IL-25 (also called IL-17E) has emerged as another key regulator of the Th2 response. Overexpression of IL-25 results in enhanced IgE responses [14]. Recent evidence suggests that IL-33, a member of the IL-1 family, has a role in Th2-mediated disease (reviewed in [15]). Blockade of the mouse IL-33 receptor results in inhibition of antigen-specific IgE production, at least in response to low antigen doses [16]. TSLP has been shown to upregulate OX40L on dendritic cells. Blocking the interaction with OX40 by neutralizing antibodies resulted in decreased Th2 development and IgE production [17]. Finally, γδ T cells can have both IgE-enhancing and IgE-suppressing properties and recent evidence indicates that the suppressing γδ T cells are important in controlling the airway allergen response [18]. Because these later studies were completed in rodent models, current studies are needed to determine whether human IgE production is regulated by similar mechanisms. Data suggesting some involvement of IL-25 and IL-33 with human Th2 development have already been reported [19,20].

A second area of investigation regarding IgE control involves the interaction of IgE with its two Fc receptors. Studies focusing on high-affinity IgE receptor (FcεRI) are directed primarily toward blocking the FcεRI/IgE interaction. The crystal structure of the FcεRI/IgE complex is known [21] and may ultimately lead to the development of compounds that can block this interaction. At present, such agents are not available, but a current treatment approved by the US Food and Drug Administration for severe asthma involves injecting a monoclonal anti-IgE antibody (Xolair®, or omalizumab) that binds the identical or closely associated region of IgE that interacts with the FcεRI [22,23]. This monoclonal antibody effectively blocks IgE binding to the FcεRI. Additionally, extended therapy (due to the protection from degradation that IgE binding gives the FcεRI) results in low FcεRI expression levels [24]. This treatment has shown good efficacy. However, the primary disadvantages are the expense and the form of administration. Since IgE synthesis is not inhibited, the antibody injections need to be repeated approximately every three weeks.

The second IgE receptor (FcεRII or CD23) is expressed primarily on B lymphocytes in mice and, since its discovery, has been proposed to be a natural regulator of IgE synthesis [25]. CD23 is upregulated by IL-4 and stabilized on the cell surface by IgE binding. This stabilization prevents cleavage from the cell surface by the CD23 sheddase(s) [25]. Indeed, mice that lack CD23 exhibit some augmentation in their IgE response to allergens but not helminth infection [26]. CD23 transgenic mice that overexpress the receptor on lymphocytes have greatly reduced IgE responses [27]. A clinical trial using anti-CD23 (lumiliximab) directed against the lectin part of the molecule resulted in a reduction in serum IgE levels by approximately two-thirds, but this was not sufficient to significantly influence disease symptomology [28]. This anti-CD23 is thought to mimic IgE binding and stabilize CD23, resulting in less cleavage by ADAM10 (a disintegrin and metaloprotease 10). Use of this anti-CD23 in conjunction with the anti-IgE mentioned above remains to be tested. Antibodies directed against the stalk region of the molecule result in CD23 instability, significantly enhanced CD23 cleavage, and enhanced IgE production [29]. In addition, soluble CD23 trimer has been shown to increase IgE production in the human in vitro culture model [30]. These studies stimulated interest in identifying the CD23 sheddase. In collaboration with the Blobel laboratory, we recently identified the primary sheddase as the metalloprotease ADAM10 [31]. This result was confirmed by Lemieux et al. [32]. Recently, Jackson et al. [33] reported that matrix metaloprotease 9 (MMP9) can also act as a CD23 sheddase following TLR4 activation with lipopolysaccharide. However, MMP9 deficiency is associated with high IgE levels in mice [34], potentially due to excess IL-4 production. We are currently investigating whether ADAM10 may be a potential target for controlling IgE production.

Future directions

New therapies that harness the natural regulator capacity of CD23 (discussed above) or T-regulatory cells (reviewed in [35]) are promising areas for future investigation. Agents that influence the nervous system have recently been shown to influence the mouse IgE response [36,37], so this is also an area of future investigation. Finally, the investigation of the innate and adaptive immunity-associated cytokines discussed above (IL-25, IL-33, and TSLP) for control of human IgE responses will certainly be of interest. The goal of IgE synthesis inhibition should give broad-spectrum type I allergy control and thus remains a very worthy objective.
Abbreviations
ADAM10, a disintegrin and metalloproteinase 10; AID, activation-induced deaminase; CD40L, CD40 ligand; FcεRI, high-affinity IgE receptor; IL, interleukin; MMP9, matrix metalloproteinase 9; STAT3, signal transducer and activator of transcription 3; Th2, T helper 2; TLR4, Toll-like receptor 4; TSLP, thymic stromal lymphopoietin.

Competing interests
The authors declare that they have no competing interests.

Acknowledgments
Work performed in the senior author’s laboratory was supported by National Institutes of Health grants R01AI18697 and U19AI077435, project 2.

References
1. Barnes J, Robinson DS: New strategies for allergen immunotherapy. Recent Pat Inflamm Allergy Drug Discov 2008, 2:92-101.
2. Muramatsu M, Nagaoka H, Shinkura R, Begum NA, Honjo T: Discovery of activation-induced cytokine deaminase, the engraver of antibody memory. Adv Immunol 2007, 94:1-36.
3. Stavnezer J, Guikema JE, Schrader CE: Mechanism and regulation of class switch recombination. Annu Rev Immunol 2008, 26:261-92.
4. Muramatsu M, Kinoshita K, Fagaras S, Yamada S, Shinkai Y, Honjo T: Class switch recombination and hypermutation require activation-induced cytokine deaminase (AID), a potential RNA editing enzyme. Cell 2000, 102:553-63.
5. Xu Z, Pone EJ, Al-Qatani A, Park SR, Zan H, Casali P: Regulation of aida expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit Rev Immunol 2007, 27:367-97.
6. Lougaris V, Badalato R, Ferrari S, Plebani A: Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol Rev 2003, 203:48-66.
7. Hollingsworth JW, Whitehead GS, Lin KL, Nakano H, Gunn MD, Schwartz DA, Cook DN: TLR4 signaling attenuates ongoing allergic inflammation. J Immunol 2006, 176:8586-62.
8. Holgate ST, Davies DE: Rethinking the pathogenesis of asthma. Immunity 2009, 31:362-7.
9. Hashold J, Lyons AB, Kehry MR, Hodgkin PD: Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur J Immunol 1998, 28:1040-51.
10. Tangye SG, Ferguson A, Avery DT, Ma CS, Hodgkin PD: Isotype switching by human B cells is division-associated and regulated by cytokines. J Immunol 2002, 169:4298-306.
11. Caven TH, Shelburne A, Sato J, Chan-Li Y, Becker S, Conrad DH: IL-21 dependent IgE production in human and mouse in vitro culture systems is cell density and cell division dependent and is augmented by IL-10. Cell Immunol 2005, 238:123-34.
12. Avery DT, Ma CS, Bryant VL, Santner-Nanan B, Nanan R, Wong M, Fulcher DA, Cook MC, Tangye SG: STAT3 is required for IL-21-induced secretion of IgE from human naive B cells. Blood 2008, 112:7849-93.
13. Paulson ML, Freeman AF, Holland SM: Hyper IgE syndrome: an update on clinical aspects and the role of signal transducer and activator of transcription 3. Curr Opin Allergy Clin Immunol 2008, 8:527-33.
14. Pan G, French D, Mao W, Maruoka M, Risser P, Lee J, Foster J, Aggarwal S, Nicholes K, Guiller S, Schow P, Gurney AL: Forced expression of murine IL-17E induces growth retardation, jaundice, a TH2-biased response, and multiorgan inflammation in mice. J Immunol 2001, 167:6559-67.
15. Barrett NA, Auten KE: Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 2009, 31:425-37.
16. Coyle AJ, Lloyd C, Tian J, Nguyen T, Eriksson C, Wang L, Ottsson P, Persson P, Delaney T, Lehar S, Lin S, Poisson L, Meisel C, Kamradt T, Bjerke T, Levinson D, Gutierrez-Ramos JC: Crucial role of the interleukin 1 receptor family member TR1/ST2 in Th1 helper cell type 2-mediated lung mucosal immune responses. J Exp Med 1999, 190:895-902.
17. Seshasayee D, Lee WP, Zhou M, Shu J, Soto E, Zhang J, Diehl L, Austin CD, Meng YG, Tan M, Bullens SL, Seeger S, Fuentes ME, Labriji AF, Graus YM, Miller LA, Scheglele ES, Hyde DM, Wu LC, Hymowitz SG, Martin F: In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest 2007, 117:3868-78.
18. Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O’Brien RL, Born WK: The influence of IgE-enhancing and IgE-suppressive gammaldefa T cells changes with exposure to inhaled ovalbumin. J Immunol 2009, 183:849-55.
19. Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan C, Dong C, Homey B, Yao Z, Ying S, Husdon DP, Liu YJ: IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007, 204:1837-47.
20. Kurowska-Stolarska M, Kewin P, Murphy G, Russo RC, Stolarski B, Garcia GC, Komai-Koma M, Pitman N, Li Y, Niedbala W, McKenzie AN, Teixeira MM, Liew FY, Xu D: IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. J Immunol 2008, 180:4780-90.
21. Garman SC, Wurzburg BA, Tarchevskaya SS, Kinet JP, Jardetzky TS: Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature 2007, 446:259-66.
22. Prener BM: Asthma 2008: targeting immunoglobulin E to achieve disease control. J Asthma 2008, 45:429-36.
23. Plosker GL, Keam SJ: Omalizumab: a review of its use in the treatment of allergic asthma. BioDrugs 2008, 22:189-204.
24. MacGlashan DW Jr: Endocytosis, recycling, and degradation of unconquered FcepsilonRI in human basophils. J Leukoc Biol 2007, 82:1003-10.
25. Conrad DH, Ford JW, Sturgill JL, Gibb DR: CD23: an overlooked regulator of allergic disease. Curr Allergy Asthma Rep 2007, 7:331-7.
26. Yu P, Kosco-Vilbois M, Richards M, Kohler G, Lamers MC, Kohler G: Negative feedback regulation of IgE synthesis by murine CD23. Nature 1994, 369:753-6.
27. Payet ME, Woodward EC, Conrad DH: Humoral response suppression observed with CD23 transgenics. J Immunol 1999, 163:217-23.
28. Poole JA, Meng J, Reff M, Spellman MC, Rosennervser LJ: Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. J Allergy Clin Immunol 2005, 116:780-8.
29. Ford JW, Kilmon MA, Haas KM, Shelburne AE, Chan-Li Y, Conrad DH: In vivo murine CD23 destabilization enhances CD23 shedding and IgE synthesis. Cell Immunol 2006, 243:107-17.
30. McCloskey N, Hunt J, Beavil RL, Jutton MR, Grundy Gj, Girardi E, Fabiene SM, Fear DJ, Conrad DH, Sutton BJ, Gould Hj: Soluble CD23 monomers inhibit and upregulate IgE synthesis in human B cells. J Biol Chem 2007, 282:24083-91.
31. Weskamp G, Ford JW, Sturgill J, Martin S, Docherty AJ, Swendeman S, Broadway N, Hartmann D, Saftig P, Umland S, Sehara-Fujisawa A, Black RA, Ludwig A, Becherer JD, Conrad DH, Blobel CP: ADAM10 is a principal 'shedase' of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 2006, 7:1293-8.

32. Lemieux GA, Blumenkron F, Yeung N, Zhou P, Williams J, Grammer AC, Petrovich R, Lipsky PE, Moss ML, Werb Z: The low affinity IgE receptor (CD23) is cleaved by the metalloprotease ADAM10. J Biol Chem 2007, 282:14836-44.

33. Jackson L, Cady CT, Cambier JC: TLR4-mediated signaling induces MMP9-dependent cleavage of B cell surface CD23. J Immunol 2009, 183:2585-92.

34. McMillan SJ, Kearley J, Campbell JD, Zhu XW, Larbi KY, Shipley JM, Senior RM, Nourshargh S, Lloyd CM: Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol 2004, 172:2586-94.

35. Robinson DS: Regulatory T cells and asthma. Clin Exp Allergy 2009, 39:1314-23.

36. Pongratz G, McAlees JW, Conrad DH, Erbe RS, Haas KM, Sanders VM: The level of IgE produced by a B cell is regulated by norepinephrine in a p38. J Immunol 2006, 177:2926-38.

37. McAlees JW, Sanders VM: Hematopoietic protein tyrosine phosphatase mediates beta2-adrenergic receptor-induced regulation of p38 mitogen-activated protein kinase in B lymphocytes. Mol Cell Biol 2009, 29:675-86.