LETTER

Photonic Floquet topological insulators

Mikael C. Rechtsman1*, Julia M. Zeuner2*, Yonatan Plotnik1*, Yaakov Lumer1, Daniel Podolsky1, Felix Dreisow2, Stefan Nolte3, Mordechai Segev3 & Alexander Szameit2

Topological insulators are a new phase of matter1, with the striking property that conduction of electrons occurs only on their surfaces1–3. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves4–11. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties12,13,14. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect5, by placing a gyromagnetic photonic crystal in an external magnetic field6. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism—one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently6–10. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states10. This is in the spirit of the proposed Floquet topological insulators16–19, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport—a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides20 arranged in a graphene-like honeycomb lattice21–26. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as ‘time’27. Thus the helicity of the waveguides breaks z-reversal symmetry as proposed for Floquet topological insulators. This structure results in one-way edge states that are topologically protected from scattering.

Paraxial propagation of light in photonic lattices is described by the Schrödinger-type equation:

$$i\frac{\partial}{\partial z}\psi(x,y,z) = -\frac{1}{2k_0} \nabla^2 \psi(x,y,z) - \frac{k_0 n_0}{n} \Delta n(x,y,z) \psi(x,y,z)$$ \hspace{1cm} (1)

where $\psi(x,y,z)$ is the electric field envelope function defined by $E(x,y,z) = \psi(x,y,z) \exp(ik_0 z - i\omega t)$; E is the electric field, x is a unit vector and t is time; the Laplacian, ∇^2, is restricted to the transverse (x–y) plane; $k_0 = 2\pi n_0 / \lambda$ is the wavenumber in the ambient medium; $\omega = 2\pi c \lambda$ is the optical frequency; and c and λ are respectively the velocity and wavelength of light. Our ambient medium is fused silica with refractive index $n_0 = 1.45$, and $\Delta n(x,y,z)$ is the ‘effective potential’, that is, the deviation from the ambient refractive index. The array is fabricated using the femtosecond laser writing method; each elliptical waveguide has a cross-section with major and minor axis diameters of 11 μm and 4 μm, respectively. The photonic lattice is an array of evanescently-coupled waveguides arranged in a honeycomb structure with nearest-neighbour spacing of 15 μm. The total propagation length (in the z direction) is 10 cm, which corresponds to the wavefunction ψ of a single waveguide mode completing ~20 cycles in phase while propagating from $z = 0$ to $z = 10$ cm. The increase in refractive index associated with the waveguides is $\Delta n = 7 \times 10^{-4}$. The quantum mechanical analogue of equation (1) describes the propagation of a quantum particle that evolves in time—for example, an electron in a solid. The waveguides act like potential wells, similarly to nuclei of atoms in solids. Thus, the propagation of light in the array of helical waveguides as it propagates in the z direction is equivalent to the temporal evolution of an electron as it moves through a two-dimensional lattice with atoms that are rotating in time.

A microscope image of the input facet of the photonic lattice is shown in Fig. 1a, and a diagram of the helical waveguides arranged in a honeycomb lattice is shown in Fig. 1b. The period (or pitch) of the helical waveguides is sufficiently small that a guided mode is adiabatically drawn along with a waveguide as it curves. We therefore transform the coordinates into a reference frame where the waveguides are invariant in the z direction (i.e., straight), namely: $x' = x + R \cos(\Omega z), y' = y + R \sin(\Omega z)$ and $z' = z$, where R is the helix radius and $\Omega = 2\pi / L = 2\pi / 1$ cm is the frequency of rotation ($Z = 1$ cm being the period). In the transformed coordinates, the light evolution is described by:

$$i\frac{\partial}{\partial z'}\psi' = -\frac{1}{2k_0} (V' + iA(z'))^2 \psi' - \frac{k_0 R^2 \Omega^2}{2} \psi' - \frac{k_0 \Delta n(x',y')}{n_0} \psi'$$ \hspace{1cm} (2)

where $\psi' = \psi(x',y',z')$, and $A(z') = k_0 R \Omega [\sin(\Omega z'), -\cos(\Omega z'), 0]$ is equivalent to a vector potential associated with a spatially homogeneous electric field of circular polarization. The adiabaticity of the guided modes and the presence of the vector potential yield a coupled mode (tight-binding) equation, via the Peierls substitution28:

$$i\frac{\partial}{\partial z'}\psi_n(z') = \sum_{m} c_{n,m} \exp(iBz') \psi_m(z')$$ \hspace{1cm} (3)

where the summation is taken over neighbouring waveguides; $\psi_n(z')$ is the amplitude in the nth waveguide, c is the coupling constant between waveguides and R_{mn} is the displacement between waveguides m and n. Because the right-hand side of equation (3) is z'-dependent, there are no static eigenmodes. Rather, the solutions are described using Floquet modes, of the form $\psi_n(z') = \exp(iBz') \phi_n(z')$, where the function $\phi_n(z')$ is Z-periodic28. This yields the spectrum of B (the Floquet eigenvalues or ‘quasi-energies’) as a function of the Bloch wavevector, (k_x, k_z), as well as their associated Floquet eigenmodes. Floquet eigenmodes in the z direction are equivalent to Bloch modes in the x–y plane. Therefore, our input beam (initial wavefunction) excites a superposition of Floquet modes whose population does not change over the course of propagation17,18. The band structure for the case of non-helical waveguides ($R = 0$) is shown in Fig. 1c. The conical intersections between the first and second bands are the ’Dirac points’29, a feature of graphene that makes it semi-metallic. When the waveguides are made helical ($R > 0$), a bandgap in the Floquet spectrum opens, as shown in Fig. 1d, and the photonic lattice becomes analogous to an insulator—indeed, to a Floquet topological insulator. As we show below, this structure possesses topologically protected edge states.

1Department of Physics and the Solid State Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel. 2Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany. *These authors contributed equally to this work.
Waveguides. Their rotation axis is in the position and shape of the input beam to this lattice. We calculate the edge band structure by using a unit cell that is periodic in the x direction but finite in the y direction, ending with two ‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of three typical edge terminations of the honeycomb lattice; the other two are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence of chiral edge states can be derived using the bulk–edge correspondence principle by calculating the Chern number. In our sample (see Fig. 1a), the top and bottom edges are zig-zag edges and the right and left edges are armchair edges. The band structure of the zig-zag edge is presented in Fig. 2a for the case where the waveguides are not helical ($R = 0$). There are two sets of states, one per edge. Their dispersion curves are flat and completely coincide (that is, they are degenerate) at zero group velocity. The bands of the bulk honeycomb lattice are drawn in black. a. Band structure of the edge states on the top and bottom of the array when the waveguides are straight ($R = 0$). The dispersion of both top and bottom edge states (red and green curves) is flat, therefore they have zero group velocity. The bands of the bulk honeycomb lattice are drawn in black. b. Dispersion curves of the edge states in the Floquet topological insulator: helical waveguides with $R = 8 \mu m$ arranged in a honeycomb lattice. c. Band structure (β versus (k_x, k_y)) for the case of non-helical waveguides, comprising a honeycomb lattice ($R = 0$). Note the band crossings at the Dirac point. d. Bulk band structure for the photonic topological insulator: helical waveguides with $R = 8 \mu m$ arranged in a honeycomb lattice. Note the bandgap opening up at the Dirac points (labelled with the red, double-ended arrow), which corresponds to the bandgap in a Floquet topological insulator.

We calculate the edge band structure by using a unit cell that is periodic in the x direction but finite in the y direction, ending with two ‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of three typical edge terminations of the honeycomb lattice; the other two are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence of chiral edge states can be derived using the bulk–edge correspondence principle by calculating the Chern number. In our sample (see Fig. 1a), the top and bottom edges are zig-zag edges and the right and left edges are armchair edges. The band structure of the zig-zag edge is presented in Fig. 2a for the case where the waveguides are not helical ($R = 0$). There are two sets of states, one per edge. Their dispersion curves are flat and completely coincide (that is, they are degenerate) at zero group velocity. The bands of the bulk honeycomb lattice are drawn in black. a. Band structure of the edge states on the top and bottom of the array when the waveguides are straight ($R = 0$). The dispersion of both top and bottom edge states (red and green curves) is flat, therefore they have zero group velocity. The bands of the bulk honeycomb lattice are drawn in black. b. Dispersion curves of the edge states in the Floquet topological insulator: helical waveguides with $R = 8 \mu m$ arranged in a honeycomb lattice. c. Band structure (β versus (k_x, k_y)) for the case of non-helical waveguides, comprising a honeycomb lattice ($R = 0$). Note the band crossings at the Dirac point. d. Bulk band structure for the photonic topological insulator: helical waveguides with $R = 8 \mu m$ arranged in a honeycomb lattice. Note the bandgap opening up at the Dirac points (labelled with the red, double-ended arrow), which corresponds to the bandgap in a Floquet topological insulator.

We calculate the edge band structure by using a unit cell that is periodic in the x direction but finite in the y direction, ending with two ‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of three typical edge terminations of the honeycomb lattice; the other two are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence of chiral edge states can be derived using the bulk–edge correspondence principle by calculating the Chern number. In our sample (see Fig. 1a), the top and bottom edges are zig-zag edges and the right and left edges are armchair edges. The band structure of the zig-zag edge is presented in Fig. 2a for the case where the waveguides are not helical ($R = 0$). There are two sets of states, one per edge. Their dispersion curves are flat and completely coincide (that is, they are degenerate) at zero group velocity. The bands of the bulk honeycomb lattice are drawn in black. a. Band structure of the edge states on the top and bottom of the array when the waveguides are straight ($R = 0$). The dispersion of both top and bottom edge states (red and green curves) is flat, therefore they have zero group velocity. The bands of the bulk honeycomb lattice are drawn in black. b. Dispersion curves of the edge states in the Floquet topological insulator: helical waveguides with $R = 8 \mu m$ arranged in a honeycomb lattice. c. Band structure (β versus (k_x, k_y)) for the case of non-helical waveguides, comprising a honeycomb lattice ($R = 0$). Note the band crossings at the Dirac point. d. Bulk band structure for the photonic topological insulator: helical waveguides with $R = 8 \mu m$ arranged in a honeycomb lattice. Note the bandgap opening up at the Dirac points (labelled with the red, double-ended arrow), which corresponds to the bandgap in a Floquet topological insulator.

Figure 1 | Geometry and band structure of honeycomb photonic Floquet topological insulator lattice. a, Microscope image of the input facet of the photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge terminations on the top and bottom, and ‘armchair’ terminations on the left and right sides. Scale bar at top right, 15 μm. The yellow ellipse indicates the position and shape of the input beam to this lattice. b, Sketch of the helical photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge terminations on the top and bottom, and ‘armchair’ terminations on the left and right sides. Scale bar at top right, 15 μm. c, Band structure (β versus (k_x, k_y)) for the case of non-helical waveguides, comprising a honeycomb lattice ($R = 0$). Note the band crossings at the Dirac point. d, Bulk band structure for the photonic topological insulator: helical waveguides with $R = 8 \mu m$ arranged in a honeycomb lattice. Note the bandgap opening up at the Dirac points (labelled with the red, double-ended arrow), which corresponds to the bandgap in a Floquet topological insulator.

Figure 2 | Dispersion curves of the edge states, highlighting the unique dispersion properties of the topologically protected edge states for helical waveguides in the honeycomb lattice. a, Band structure of the edge states on the top and bottom of the array when the waveguides are straight ($R = 0$). The dispersion of both top and bottom edge states (red and green curves) is flat, therefore they have zero group velocity. The bands of the bulk honeycomb lattice are drawn in black. b, Dispersion curves of the edge states in the Floquet topological insulator: helical waveguides with $R = 8 \mu m$ the band gap is open and the edge states acquire non-zero group velocity. These edge states reside strictly within the bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green and red curves) versus helix radius, R, of the helical waveguides comprising the honeycomb lattice. The maximum occurs at $R = 10.3 \mu m$.

©2013 Macmillan Publishers Limited. All rights reserved
Further evidence follows from the fact that light stays confined to the side edge of the array as it propagates downwards. This edge is in the armchair geometry, which, for straight waveguides ($R = 0$) does not allow edge confinement at all (that is, no edge states). However, when $R > 0$, edge state dispersion calculations reveal that a confined edge state emerges. This is essential for the topological protection because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological edge states as the helix radius, R, is varied. We find that the group velocity reaches a maximum and then returns to zero as R is increased, in accordance with Fig. 2c. To investigate this, we fabricate a series of honeycomb lattices of helical waveguides with increasing values of R, cut in a triangular shape (Fig. 4a). We first examine light propagation in the lattice with non-helical waveguides (that is, $R = 0$; Fig. 4b).

Launching a beam into the waveguide at the upper-left corner of the triangle (circled) excites two types of eigenstates: (1) bulk states extending to the corner, and (2) edge states that meet at the corner. As the light propagates in the array, the excited bulk states lead to some degree of spreading into the bulk (the excitation of these bulk modes can be eliminated by engineering the beam to only overlap with eigenstates confined to the edge). In contrast, the edge states do not spread into the bulk, and, because the edge states are all degenerate (Fig. 2a), they do not cause spreading along the edges either (that is, zero group velocity).

Figure 4b shows the intensity at the output facet highlighting this effect: while some light has diffracted into the bulk, the majority remains at the corner waveguide. This is also shown in simulations (where the animation evolves by sweeping through the z coordinate from $z = 0$ cm to $z = 10$ cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge states are no longer degenerate. In fact, the lattice now has a set of edge states that propagate only clockwise on the circumference of the triangle. Light at the corner no longer remains there, and moves along the edge. Figure 4b–j shows the output facet of the lattice for increasing radius R. For $R = 8 \mu m$, the wave packet wraps around the corner of the triangle and moves along the opposite edge (Fig. 4f) (the corresponding simulation is shown in Supplementary Video 3; the loss of intensity over the course of propagation is due to bending/radiation losses). Importantly, the light is not backscattered even when it hits the acute corner, owing to the lack of a counter-propagating edge state. This is a key example of topological protection against scattering. For $R = 12 \mu m$, the wavepacket moves along the edge, but with a slower group velocity. This is consistent with the prediction that the group velocity of the edge state reaches a maximum at $R = 10.3 \mu m$ and thereafter decreases with increasing radius. The experiments suggest that the maximal group velocity is achieved between 6 μm and 10 μm, while the theoretical result ($10.3 \mu m$) is well within experimental error, given that this is a prediction from coupled-mode theory. Exact simulations confirm the experimental result.

By $R = 16 \mu m$, bending losses are large, leading to leakage of optical power into scattering modes (accounting for the large background signal). The bending losses for $R = 4 \mu m$, $8 \mu m$, $12 \mu m$ and $16 \mu m$ were found to be, respectively, 0.03 dB cm$^{-1}$, 0.5 dB cm$^{-1}$, 1.7 dB cm$^{-1}$ and 3 dB cm$^{-1}$. Recall that each lattice has propagation length $L = 10$ cm. The large background signal prevents us from experimenting with larger R, where we would expect two anti-clockwise-propagating edge states, as discussed earlier. As shown in Fig. 4j, the group velocity of the wavepacket approaches zero and therefore the optical power remains at the corner waveguide. These observations clearly demonstrate the presence of one-way edge states on the boundary of the photonic lattice that behave according to theory. Note that for different initial beams—the elliptical beam of Fig. 3, and the single-waveguide excitation of Fig. 4—the topological edge state behaves exactly as the model predicts, providing experimental proof of the existence of the topological edge state.

To demonstrate the z dependence of the wavepacket as it propagates along the edge, we turn to a combination of experimental results and
Figure 4 | Experiments highlighting light circulation along the edges of a triangular-shaped lattice of helical waveguides arranged in a honeycomb geometry. a, Microscope image of the honeycomb lattice in the triangular configuration. b–j, Light emerging from the output facet of the photonic lattice (after 10 cm of propagation) for increasing helix radius, R (given at bottom right of each panel), at wavelength 633 nm. The light is initially launched into the waveguide at the upper-left corner (on the input facet of the array, indicated by a yellow circle). At $R = 0$ (b), the initial beam excites a confined defect mode at the corner. As the radius is increased (c–j), light is moving along the edge by virtue of a topological edge mode. It reaches its maximum displacement near $R = 8 \mu m$ (f). The light wraps around the corner of the triangle and is not backscattered at all: this is a clear example of topological protection against scattering. As R is increased further, the light exhibits a decreasing group velocity as a function of R, and finally stops near $R = 16 \mu m$. The large degree of background noise in i and j is due to high bending losses of the waveguides as a result of coupling to free-space scattering modes.

Figure 5 | Experiments and simulations showing topological protection in the presence of a defect. The lattice is triangular-shaped, and the waveguides are helical with $R = 8 \mu m$. a, Microscope image of photonic lattice with a missing waveguide (acting as a defect, arrowed) on the rightmost zig-zag edge. A light beam of $\lambda = 633$ nm is launched into the single waveguide at the upper-right corner (on the far side of the array, surrounded by a yellow circle). b, Experimental image of light emerging from the output facet after $z = 10$ cm of propagation, showing no backscattering despite the presence of the defect (a signature of topological protection). c–h, Numerical simulations of light propagation through the lattice at various propagation distances (respectively $z = 0$ cm, 2 cm, 4 cm, 6 cm, 8 cm and 10 cm). After minimal bulk scattering, the light propagates along the edge, encounters the defect, propagates around it, and continues past it without scattering, in agreement with b.

Simulations of equation (1)10. We examine a lattice with a defect on the edge in the form of a ‘missing’ waveguide (Fig. 5a). Because of topological protection, the wavepacket should simply propagate around the missing waveguide (the defect) without backscattering. An experimental image of the output facet is shown in Fig. 5b (for $R = 8 \mu m$). The excited waveguide is at the top right, and the edge state propagates clockwise, avoiding the defect, and eventually hitting the next corner. In Fig. 5c–h we show simulations for the optical intensity at $z = 0, 2, 4, 6, 8, 10$ cm, respectively. The wavepacket clearly propagates around the defect, continuing forward without backscattering. Note that the simulated wavepacket has progressed slightly farther than that in the experiment. This is a result of small uncertainty in the coupling constant, c. Taken together, these data show the progression of topologically protected modes as they travel along the edge.

Photonic Floquet topological insulators have the potential to provide an entirely new platform for probing and understanding topological protection. For example, our photonic lattices have the same geometry as photonic crystal fibres, and thus these systems are likely to exhibit robust topologically protected states. Many interesting open questions are prompted, concerning (for example) the behaviour of entangled photons in a topologically protected system, the effect of interactions on the non-scattering behaviour, or the possibility of simulating photonic Majorana fermions for applications in robust quantum computing. The realization of a photonic Floquet topological insulator in our relatively simple classical system will enable these questions, as well as many others, to be addressed.

Received 17 December 2012; accepted 12 March 2013.

1. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
2. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).
3. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).
4. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
5. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
6. Koch, J., Houck, A. A., Hur, K. L. & Girvin, S. M. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).
7. Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).
8. Hafezi, M., Dernier, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with photonic Majorana fermions for applications in robust quantum computing. Nature Phys. 7, 907–912 (2011).
9. Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2013).
10. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782–787 (2012).
11. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
12. Kitagawa, T., et al. Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3, 882 (2012).
13. Lu, L., Joannopoulos, J. D. & Soljačić, M. Waveguiding at the edge of a three-dimensional photonic crystal. Phys. Rev. Lett. 108, 243901 (2012).
14. Malkova, N., Hromada, I., Wang, K., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).
15. Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

16. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

17. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

18. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Phys. 7, 490–495 (2011).

19. Gu, Z., Fertig, H. A., Arovas, D. P. & Auerbach, A. Floquet spectrum and transport through an irradiated graphene ribbon. Phys. Rev. Lett. 107, 216601 (2011).

20. Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).

21. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

22. Bahat-Treidel, O., Peleg, O. & Segev, M. Symmetry breaking in honeycomb photonic lattices. Opt. Lett. 33, 2251–2253 (2008).

23. Ablowitz, M. J., Nixon, S. D. & Zhu, Y. Conical diffraction in honeycomb lattices. Phys. Rev. A 79, 053830 (2009).

24. Fefferman, C. L. & Weinstein, M. I. Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169–1220 (2012).

25. Crespi, A., Corrielli, G., Della Valle, G., Osellame, R. & Longhi, S. Dynamic band collapse in photonic graphene. New J. Phys. 15, 013012 (2013).

26. Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008).

27. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

28. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

29. Kawano, K. & Kitoh, T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equation and the Schrödinger Equation (Wiley & Sons, 2001).

Supplementary Information is available in the online version of the paper.

Acknowledgements M.C.R. is grateful to the Azrieli Foundation for the Azrieli fellowship while at the Technion. M.S. acknowledges the support of the Israel Science Foundation, the USA-Israel Binational Science Foundation, and an Advanced Grant from the European Research Council. A.S. thanks the German Ministry of Education and Research (Center for Innovation Competence program, grant 03Z1HN31) and the Thuringian Ministry for Education, Science and Culture (Research group Spacetime, grant 11O27-514) for support. The authors thank S. Raghu and T. Pereg-Barnea for discussions.

Author Contributions The idea was conceived by Y.P. and M.C.R. The theory was investigated by M.C.R. and Y.P. The fabrication was carried out by J.M.Z. The experiments were carried out by M.C.R., Y.P. and J.M.Z. All authors contributed considerably.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to M.C.R. (mcrworld@gmail.com) and Y.P. (yonatanplotnik@gmail.com).