ORIGINAL STUDY

Reproductive period and preclinical cerebrospinal fluid markers for Alzheimer disease: a 25-year study

Jenna Najar, MD, Tore Hallström, MD, PhD, Anna Zettergren, PhD, Lena Johansson, PhD, Erik Joas, PhD, Madeleine Mellqvist Fässberg, PhD, Henrik Zetterberg, MD, PhD, Silke Kern, MD, PhD, and Ingmar Skoog, MD, PhD

Abstract

Objective: The aim of the study was to examine the association between reproductive period, as an indicator of endogenous estrogen, and levels of cerebrospinal fluid (CSF) biomarkers for Alzheimer disease (AD).

Methods: A population-based sample of women from Gothenburg, Sweden, was followed from 1968 to 1994 (N = 75). All women had natural menopause and were free from dementia. Information on reproductive period (age at menarche to age at menopause) was obtained from interviews from 1968 to 1980. Lumbar puncture was performed from 1992 to 1994 and CSF levels of Aβ42, Aβ40, P-tau, and T-tau were measured with immunochemical methods. Linear regression models adjusted for potential confounders were used to analyze the relationship between reproductive period and CSF biomarkers for AD.

Results: Longer reproductive period was associated with lower levels of Aβ42 (β = −19.2, P = 0.01), higher levels of P-tau (β = 0.03, P = 0.01), and lower ratio of Aβ42/Aβ40 (β = −0.02, P = 0.01), while no association was observed for T-tau (β = 0.01, P = 0.46). In separate analyses, examining the different components of reproductive period, earlier age at menarche was associated higher levels of P-tau (β = −0.07, P = 0.031) and lower ratio of Aβ42/Aβ40 (β = 0.05, P = 0.021), whereas no association was observed with Aβ42 (β = 31.1, P = 0.11) and T-tau (β = −0.001, P = 0.98). Furthermore, no association was observed between age at menopause and CSF biomarkers for AD.
Conclusions: Our findings suggest that longer exposure to endogenous estrogen may be associated with increased levels of AD biomarkers in the preclinical phase of AD. These findings, however, need to be confirmed in larger samples.

Key Words: Alzheimer disease – Cerebrospinal fluid markers – Menopause – Reproductive period – Risk factors in epidemiology.

Video Summary: http://links.lww.com/MENO/A804.

RESULTS

The lifetime risk of Alzheimer disease (AD) is greater in women compared to men, especially after the age of 80 years.1,2 Estrogen is suggested as a possible explanation.3 In basic science studies, estrogen exposure is reported to be neuroprotective.4-7 The effect of hormone therapy (HT) on dementia risk in epidemiological studies and randomized controlled trials is, however, less conclusive; HT has been associated with both increased8,9 and reduced10-12 risk of dementia, whereas some studies found no association.13,14

Results from studies examining endogenous estrogens on dementia risk are also conflicting. Previous studies have reported an association between both higher15,16 and lower17 levels of estradiol in serum and risk of cognitive decline and dementia, whereas other studies report no associations.18-20 Furthermore, studies examining the reproductive period as an indicator of endogenous estrogen report that both longer21,22 and shorter12,23,24 reproductive periods have been associated with cognitive decline, dementia, and AD risk, whereas another study found no association between reproductive period and risk of dementia.25

Moreover, several neuroimaging studies have reported conflicting results on the effect of estrogen exposure (measured as HT,26-29 indicators of endogenous estrogen,30 menopausal transition,31 or levels of estradiol in serum)16 on biomarkers for dementia (particularly AD). Thus far, studies examining the association between estrogens and biomarkers for AD in cerebrospinal fluid (CSF) are, however, lacking. In CSF, brain pathology of AD is reflected by lower levels of amyloid-β 1-42 (Aβ42), lower ratio of Aβ42 and amyloid-β 1-40 (Aβ40), and higher levels of hyperphosphorylated tau (P-tau), whereas greater intensity of neurodegeneration correlate with higher CSF levels of total tau (T-tau).32

We aimed to examine the long-term associations between reproductive period, as an indicator of endogenous estrogen, and levels of biomarkers for AD in CSF (Aβ42, P-tau, T-tau, and ratio Aβ42/Aβ40) in a population-based sample of women free from dementia and with natural menopause, followed over 25 years.

METHODS

Study population

As part of the Gothenburg H70 Birth Cohort Studies, we examined levels of CSF biomarkers for AD in the Prospective Population Study of Women from Gothenburg, Sweden. From 1968 to 1969, 1,462 women (participation rate 90%) born in 1908, 1914, 1918, 1922, and 1930 (mean age 46 years) participated in a health examination.33 The women were systematically selected from the Swedish Population Registry based on specific birth dates to yield a representative sample at the ages studied.33 Re-examinations occurred from 1974 to 1975, 1980 to 1981, and 1992 to 1994, as described in more detail previously.22,34

In the follow-up from 1992 to 1994, women aged 70 years or older (ie, born 1908, 1914, 1918, and 1922) were invited to an extensive neuropsychiatric examination (n = 590 women, participation rate 68%), and 88 consented to a lumbar puncture (LP). Participants and nonparticipants in the LP were similar regarding baseline blood pressure, body mass index, smoking status, cardiovascular disease, depressive symptoms, report of longstanding stress, and Mini-Mental State Examination score at the 1992 to 1994 examination as reported previously.34 In addition, there were no differences between those who participated and those who did not participate in the LP examination regarding length of reproductive period (P = 0.4), age at menarche (P = 0.3) and menopause (P = 0.7), number of pregnancies (P = 0.3), months of breastfeeding (P = 0.2), miscarriages (none vs one or more; P = 0.6), HT (previous vs never user; P = 0.6), and APOE ε4 status (P = 0.6). LP participants were, however, younger, had higher education, developed dementia less often after follow-up examinations, and had a lower 5-year mortality rate compared to nonparticipants, as previously described.34 Furthermore, a higher proportion of LP participants compared to nonparticipants had used oral contraceptives (P = 0.04).

Seven women were excluded due to lack of data on reproductive period, four due to dementia, and two due to surgical menopause, leaving 75 dementia-free women with natural menopause (born 1908 [n = 2], 1914 [n = 6], 1918 [n = 32], and 1922 [n = 35]).

The Ethics Committee for Medical Research at the University of Gothenburg approved the study and all participants gave informed consent to participate according to the Declaration of Helsinki.

Assessment of CSF biomarkers

LPs were conducted between January 1992 and March 1994. LPs were performed through the L3/L4 interspace and CSF samples of 12 mL were collected and gently mixed to avoid gradient effects.35 To eliminate cells and other insoluble materials, the samples were centrifuged at 2,000 g for 10 minutes and stored at −80°C in 1-mL polystyrene vials until analyses.36,37 Sandwich enzyme-linked immunosorbent assays were used to determine levels of Aβ42, Aβ40, P-tau, and T-tau.36-38
Reproductive period

Information on age at menarche and menopause, and type of menopause (natural, premature, or surgical) were obtained from semistructured interviews during 1968 to 1969, 1974 to 1975, and 1980 to 1981, ensuring coverage of the entire reproductive period of all included birth cohorts. Age at menarche was defined as first menstruation, and menopause as last menstruation after 1 year without menstruation. Age at menarche and menopause were used as continuous variables in all analyses. Length of reproductive period was defined as the time from age at menarche to age at menopause.

Diagnosis of dementia

The diagnosis of dementia was based on the Diagnostic and Statistical Manual of Mental Disorders, Third Edition—Revised (DSM-III-R), using information from semistructured neuropsychiatric examinations and close informant interviews. Dementia was only used for exclusion in the study (n = 4).

Potential confounders

Information on covariates were obtained at baseline examination (defined as first examination after menopause) from 1968 to 1969 (mean age 53 years), 1974 to 1975 (mean age 54 years), or 1980 to 1981 (mean age 58 years), either through semi-structured interviews (education, number of pregnancies, months of breastfeeding, number of miscarriages, use of HT and oral contraceptives, angina pectoris, stress, physical activity, and smoking) or through health examinations (hypertension, waist-hip ratio, electrocardiography [ECG]) or by a combination of these (hypertension, myocardial infarction). Education level was categorized into four groups based on years of education (group 1 had <6 years, group 2 had 7-9 years, group 3 had 10-12 years, and group 4 had >12 years of education). The last given information on number of pregnancies (defined as the sum of children and miscarriages in 1968-1969, and number of pregnancies in 1974-1975 and 1980-1981) and months of breastfeeding was used to ensure coverage of all events. Number of pregnancies and months of breastfeeding were used as continuous variables in all analyses. Number of miscarriages was used as a dichotomous variable (none vs one or more). The women reported duration of oral contraceptives use. Oral contraceptives was used as a continuous variable and as a dichotomous variable (previous vs never user) to deal with the high proportion of zeros (ie, women who never used HT).

Statistical analysis

All analyses were conducted in R (version 4.0.0) using the R stats and ggplot2 packages. T-tau and P-tau were natural log transformed to improve symmetry of the distributions. Demographic and health characteristics are presented as numbers, mean and median values, standard deviations (SDs), interquartile ranges, minimum (min) and maximum (max) values, and percentages. Linear regression models were used to analyze the relation between length of reproductive period and levels of CSF biomarkers for AD (Aβ42, P-tau, T-tau, and ratio Aβ42/Aβ40), presented as β-coefficients, P values (two-sided), standard error, and R² in two different models. Model 1 included reproductive period and birth year as a covariate. The selection of covariates for Model 2 was done in three steps. First, we chose covariates of importance for AD based on the literature. Second, all covariates (education, number of pregnancies, months of breastfeeding, number of miscarriages, oral contraceptives, HT, stress, physical activity, smoking, waist-hip ratio, hypertension, angina pectoris, and myocardial infarction) were analyzed in relation to the outcomes (Aβ42, ratio Aβ42/Aβ40, P-tau, and T-tau), respectively in a model including the covariate of interest, reproductive period, and birth year. Third, the covariates that were associated with the outcome at a P value threshold less than 0.3 were included in Model 2. Covariates selected for Model 2 of Aβ42 were birth year, oral contraceptives, waist-hip ratio, and education; for Model 2 of P-tau were birth year, psychological stress, smoking status, and education; for Model 2 of T-tau were birth year and psychological stress; and for Model 2 of Aβ42/Aβ40 were birth year, waist-hip ratio, and psychological stress.

A sensitivity analysis was performed excluding major outliers (ie, 3 × interquartile range) from P-tau (n = 1), to eliminate the possibility that the association was driven by extreme values.

We also analyzed the two components of reproductive period (age at menarche and menopause) separately in

Menopause, Vol. 28, No. 10, 2021
relation to CSF biomarkers of AD in crude linear regression models adjusted for birth year.

Finally, we tested the correlation between birth year and age at LP from 1992 to 1994, to examine whether the adjustment for birth year in our models (Model 1 and Model 2) was sufficient to minimize the risk that the observed associations were driven by age at LP from 1992 to 1994.

RESULTS

Table 1 shows demographic factors and health characteristics in women with a natural menopause and with data on CSF biomarkers for AD (n = 75). The median age at baseline was 52 years (min, max, 46, 60 years). The mean time from baseline to LP was 20.2 years (SD 3.4) vs 61.5 (SD 9.5) years; P < 0.001, whereas no differences were observed regarding educational level, smoking status, physical activity, waist-hip ratio, hypertension, ischemic heart disease, psychological stress, or APOE ɛ4 carriership.

In Model 1, longer reproductive period was associated with lower levels of Aβ42 (β = −14.5, R² = 0.04, and P = 0.048) and lower ratio of Aβ42/Aβ40 (β = −0.02, R² = 0.1, and P = 0.0084) (Table 2, Fig. 1). In Model 2, longer reproductive period was associated with lower levels of Aβ42 (β = −19.2, R² = 0.1, and P = 0.011), lower ratio of Aβ42/Aβ40 (β = −0.02, R² = 0.1, and P = 0.011), and higher levels of P-tau (β = 0.03, R² = 0.1, and P = 0.011). No association was observed between length of reproductive period and levels of T-tau (Table 2). Scatter plots of the relationship between length of reproductive period and CSF biomarkers for AD are shown in Figure 1.

![Graph showing the relationship between reproductive period and levels of CSF biomarkers for AD](image)

Table 1. Demographic and health characteristics of participants

Characteristics	All participants (n = 75)
Age at baseline (yr), median (min, max)	52 (46, 60)
Age at LP (yr), median (min, max)	74 (70, 85)
Reproductive period (yr), mean (SD)	35 (3.8)
Age at menarche (yr), mean (SD)	14 (1.5)
Age at menopause (yr), mean (SD)	49 (3.5)
Pregnancies, number, median (min, max)	2 (0, 7)
Miscarriages, number, median (min, max)	0 (0, 4)
Breastfeeding (mo), median (min, max)	9 (0, 56)
Oral contraceptives, previous user % (cases/total number)	12 (9/75)
Hormone treatment, previous user % (cases/total number)	6 (4/71)
Education, >6 yr, % (cases/total number)	37 (28/75)
Smoking, current or previous % (cases/total number)	40 (30/75)
Physical activity, active % (cases/total number)	81 (61/75)
Waist-hip ratio, mean (SD)	0.7 (0.1)
Hypertension, % (cases/total number)	19 (14/75)
Ischemic heart disease, % (cases/total number)	27 (20/75)
Psychological stress, frequent or constant stress % (cases/total number)	39 (29/75)
APOE ɛ4 carriership, % (cases/total number)	31 (16/52)
Breastfeeding, % (cases/total number)	39 (16/52)
Oral contraceptives, previous user % (cases/total number)	12 (9/75)
Age at menarche (yr), mean (SD)	14 (1.5)
Reproductive period (yr), mean (SD)	35 (3.8)
Age at LP (yr), median (min, max)	74 (70, 85)
Age at menopause (yr), mean (SD)	49 (3.5)
Pregnancies, number, median (min, max)	2 (0, 7)
Miscarriages, number, median (min, max)	0 (0, 4)
Breastfeeding (mo), median (min, max)	9 (0, 56)
Oral contraceptives, previous user % (cases/total number)	12 (9/75)
Hormone treatment, previous user % (cases/total number)	6 (4/71)
Education, >6 yr, % (cases/total number)	37 (28/75)
Smoking, current or previous % (cases/total number)	40 (30/75)
Physical activity, active % (cases/total number)	81 (61/75)
Waist-hip ratio, mean (SD)	0.7 (0.1)
Hypertension, % (cases/total number)	19 (14/75)
Ischemic heart disease, % (cases/total number)	27 (20/75)
Psychological stress, frequent or constant stress % (cases/total number)	39 (29/75)
APOE ɛ4 carriership, % (cases/total number)	31 (16/52)
Breastfeeding, % (cases/total number)	39 (16/52)
Oral contraceptives, previous user % (cases/total number)	12 (9/75)

Table 2. Association between reproductive period and levels of cerebrospinal fluid biomarkers for Alzheimer disease (N = 75) in two different models

	Model 1	Model 2				
	SE	β-Coefficient	P	SE	β-Coefficient	P
Aβ42	7.2	−14.5	0.048	7.5	−19.2	0.01
P-Tau	0.01	0.02	0.060	0.01	0.03	0.011
T-Tau	0.01	0.01	0.52	0.01	0.01	0.46
Aβ42/Aβ40	0.008	−0.02	0.0084	0.008	−0.02	0.011

Length of reproductive period is reported as per 1 year. Aβ42, P-Tau, and T-Tau are reported as pg/mL. Model 1: Included reproductive period and birth year. Model 2: Reproductive period in relation to Aβ42: birth year, oral contraceptives, waist-hip ratio, and education; P-tau: birth year, psychological stress, smoking status, and education; T-tau: birth year and psychological stress; Aβ42/Aβ40: birth year, waist-hip ratio, and psychological stress. Aβ42, free 42 amino acid Aβ peptides; Aβ42/Aβ40, ratio of free 42 amino acid Aβ peptides and free 40 amino acid Aβ peptides; P-tau, phosphorylated tau; SE, standard error; T-tau, total tau.
In sensitivity analyses, where we removed one major outlier from P-tau, length of reproductive period remained associated with levels of CSF P-tau in Model 2 ($\beta = 0.03$, $R^2 = 0.07$, and $P = 0.011$).

In separate analyses, examining the different components of reproductive period in crude models adjusted for birth year, earlier age at menarche was associated with higher levels of P-tau ($\beta = -0.07$, and $P = 0.031$) and lower ratio of Aβ42/Aβ40 ($\beta = 0.05$, and $P = 0.021$), whereas no association was observed with Aβ42 ($\beta = 31.1$, and $P = 0.11$) and T-tau ($\beta = -0.001$, and $P = 0.98$). Furthermore, no association was observed between age at menopause and CSF biomarkers for AD (Aβ42: $\beta = -12.0$, and $P = 0.13$, P-tau: $\beta = 0.01$, and $P = 0.25$, T-tau: $\beta = 0.01$, and $P = 0.49$, Aβ42/Aβ40: $\beta = -0.02$, and $P = 0.058$). Scatter plots of the relationship between age at menarche and menopause and CSF biomarkers for AD, respectively are shown in Figure 2.

Finally, we found a strong correlation between age at LP and birth year ($R = -0.99$, $P = 4 \times 10^{-110}$). Thus, the inclusion of birth year in our models (Model 1 and Model 2) reduces the possibility that the observed associations were driven by different ages at LP from 1992 to 1994.

DISCUSSION

In a population-based sample of women with natural menopause and free from dementia followed over 25 years, we found that longer reproductive period was associated with preclinical CSF markers of AD (lower levels of Aβ42, lower ratio of Aβ42/Aβ40, and higher levels of P-tau). We, however, found no associations between length of reproductive period and levels of CSF T-tau.

Our finding that longer reproductive period was associated with preclinical biomarkers for AD is in line with results from the same study reporting that longer reproductive period was
FIG. 2. Age at menarche and menopause in relation to cerebrospinal fluid (CSF) biomarkers for Alzheimer disease. Scatterplots of age at menarche and menopause in relation to cerebrospinal fluid (CSF) levels of Aβ42 (A, B), P-tau (C, D), and ratio of Aβ42/Aβ40 (E, F). Age at menarche and menopause are shown in years. Levels of CSF Aβ42 and P-tau are shown in pico gram (pg)/milliliter (mL). P-tau was natural log transformed (Ln) to improve symmetry of the distributions. Pearson correlation coefficient is reported as R and P values. Aβ42, free 42 amino acid Aβ peptides; Aβ42/Aβ40, ratio of free 42 amino acid Aβ peptides and free 40 amino acid Aβ peptides; P-tau, phosphorylated tau; T-tau, total tau.
associated with increased risk for dementia and a clinical diagnosis of AD, in women followed over 44 years, from 1968 to 2012. Further support comes from the Rotterdam Study reporting an increased risk of dementia in women with higher serum estradiol levels and longer reproductive period. Moreover, our findings are also consistent with results from neuroimaging studies. The UK Biobank reported that women with longer reproductive period had reduced total brain volume on MRI, compared to women with shorter period. In addition, the Rotterdam Study reported that higher total estradiol levels were associated with smaller hippocampal volumes in women. To the best of our knowledge, this is the first study to examine the association between reproductive period, as an indicator of endogenous estrogen, and CSF biomarkers of AD.

It needs to be emphasized that all women in this study were free from dementia. The process of AD is suggested to start 20 to 30 years before the clinical symptoms appear, with lowering levels of CSF Aβ42 as the first manifestation, whereas increased levels of tau occur later. Our findings suggest a negative effect of longer exposure to endogenous estrogen on CSF biomarkers for AD in the preclinical phase of AD. Thus, our results do not support the estrogen hypothesis, proposing a neuroprotective effect of estrogen. It should, however, be noted that the estrogen hypothesis is based mainly on studies performing LP constituted only 10% of the eligible sample. Some analyses may, therefore, be underpowered to detect small differences between groups. Second, cumulative attrition is a problem in long-term follow-up studies and those performing LP constituted only 10% of the eligible sample. Third, concerning the relationship between reproductive period and levels of T-tau.

Strengths of the study are the population-based sample, the long observation period, and the possibility to assess menopausal age close to the actual event. Several limitations should also be addressed. First, the sample size was relatively small. Some analyses may, therefore, be underpowered to detect small differences between groups. Second, cumulative attrition is a problem in long-term follow-up studies and those performing LP constituted only 10% of the eligible sample. Fourth, we cannot exclude that there might be some recall biases. Although age at menopause was assessed close to the actual event, age at menarche was assessed several decades after it occurred. Fifth, even though we adjusted for number of pregnancies, months of breastfeeding, and number of miscarriages that contribute to fluctuations in levels of endogenous estrogen during the reproductive period, other factors affecting levels of endogenous estrogen, such as length and regularity of the menstrual cycle, were not considered. This could affect the validity of the reproductive period as an indicator of endogenous estrogens. Sixth, we previously reported that longer reproductive period and later age at menopause were related to increased mortality rate, which could affect the associations. Seventh, the study comprises Caucasian women from Gothenburg, Sweden, thus limiting the possibility to generalize our results to other populations. It is possible that differences in genetic composition and living conditions between populations in different geographical and cultural contexts may influence the association between reproductive period and CSF biomarkers of AD.

CONCLUSIONS

In a population-based sample of women free from dementia and with natural menopause followed over 25 years, we found by age at menopause, and that the estimates were similar for reproductive period and age at menopause, lack of significant associations between age at menopause and levels of CSF biomarkers for AD in the present study may be due to low statistical power. Moreover, our finding that reproductive period was associated with levels of P-tau, but not to T-tau, suggests that the effects observed probably occurred at a preclinical stage of AD, before general neurodegeneration. P-tau is generally believed to be a more specific marker for AD pathology than T-tau, which is more related to unspecific neurodegeneration. Our findings therefore suggest that reproductive period is more related to AD pathology than to general neurodegeneration. Considering our relatively small sample size, it is, however, possible that low statistical power may also explain the lack of association between reproductive period and levels of T-tau.
that longer reproductive period was associated with CSF biomarkers for AD, which may suggest that longer exposure to endogenous estrogen is associated with increased levels of AD biomarkers in the preclinical phase of AD. These results add to the understanding of the association between indicators of endogenous estrogen and AD. This may be one explanation for the higher life-time risk of AD in women compared to men. The findings, however, need to be confirmed in larger samples.

REFERENCES

1. Nebel RA, Aggarwal NT, Barnes LL, et al. Understanding the impact of sex and gender in Alzheimer’s disease: a call to action. *Alzheimers Dement* 2018;14:1171-1183.

2. Beam CR, Kaneshiro C, Jang JY, Reynolds CA, Pedersen NL, Gatz M. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. *J Alzheimers Dis* 2018;64:1077-1083.

3. Borenstein AR, Mortimer JA. Alzheimer’s disease: life course perspectives on risk reduction. *American Academy: Academic Press; 2016; 83-83.

4. Aenlle KK, Kumar A, Cui L, Jackson TC, Foster TC. Estrogen effects on cognition and hippocampal transcription in middle-aged mice. *Neurobiol Aging* 2009;30:932-945.

5. Murphy DD, Segal M. Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. *J Neurosci* 1996;16:4059-4068.

6. Wang Q, Santizo R, Baughman VL, Pelligrino DA, Iadecola C. Estrogen provides neuroprotection in transient forebrain ischemia through perfusion-independent mechanisms in rats. *Stroke* 1999;30:630-637.

7. Nilsen J, Chen S, Irwin RW, Iwamoto S, Brinton RD. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. *BMC Neurosci* 2006;7:74.

8. Whitmer RA, Quesenberry CP, Zhou J, Yaffe K. Timing of hormone therapy and dementia: the critical window theory revisited. *Ann Neurol* 2011;69:191-200.

9. Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progesterin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. *Jama* 2003;289:2651-2662.

10. Kawas C, Resnick S, Morrison A, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. *Neurology* 1997;48:1517-1521.

11. Baldereschi M, Di Carlo A, Lepore V, et al. Estrogen-replacement therapy and Alzheimer’s disease in the Italian Longitudinal Study on Aging. *Neurology* 1998;50:996-1002.

12. Yoo JE, Shin DW, Han K, et al. Female reproductive factors and the risk of dementia: a nationwide cohort study. *Eur J Neurolog* 2020;27:1448-1458.

13. Hanson RW, Paganini-Hill A, Miller BL, et al. Reproductive period and risk of dementia in a diverse cohort of health care members. *Neurology* 2019;92:e2005-e2014.

14. Song X, Wu J, Zhou Y, et al. Reproductive and hormonal factors and risk of cognitive impairment among Singapore Chinese women. *Am J Obstet Gynecol* 2020;223:410.e1-410.e23.

15. Prince MJ, Acosta D, Guerra M, et al. Reproductive period, endogenous estrogen exposure and dementia incidence among women in Latin America and China: a 10/66 population-based cohort study. *PloS One* 2018;13:e0192889.

16. Kantarcı K, Lowe VJ, Lesnick TG, et al. Early postmenopausal transdermal 17β-estradiol therapy and amyloid-β deposition. *J Alzheimers Dis* 2016;53:547-556.

17. Kantarcı K, Tosakulwong N, Lesnick TG, et al. Effects of hormone therapy on brain structure: a randomized controlled trial. *Neurology* 2016;87:887-896.

18. Mosconi L, Berti V, Quinn C, et al. Sex differences in Alzheimer risk: brain imaging of endocrine vs chronicologic aging. *Neurology* 2017;89:1382-1390.

19. Wise JK, Meeker KL, Gordon BA, et al. Sex-related differences in tau positron emission tomography (PET) and the effects of hormone therapy (HT). *Alzheimer Dis Assoc Discord* 2020;35:164-168.

20. Ambikairajah A, Tabatabaei-Jafari H, Hornberger M, Cherbuin N. Age, menstruation history, and the brain. *Menopause* 2020;28:167-174.

21. Mosconi L, Rahman A, Diaz I, et al. Increased Alzheimer’s risk during the menopause transition: a 3-year longitudinal brain imaging study. *PloS One* 2018;13:e0207885.

22. Blennow K, Hampel H, Weinier M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. *Nat Rev Neuro* 2010;6:131-144.

23. Bengtsson C, Blomme G, Hallberg L, et al. The study of women in Gothenburg 1968-1969: a population study. General design, purpose and sampling results. *Acta Med Scand* 1973;193:311-318.

24. Johansson L, Korn S, Zetterberg H, et al. Midlife stress in relation to late-life cerebrospinal fluid biomarkers of Alzheimer’s disease: a 25-year follow-up study. *Dement Geriatr Cogn Disord* 2018;46:90-99.

25. Blennow K, Fredman P, Wallin A, Gottfries CG, Langström G, Svenningsen L. Protein analyses in cerebrospinal fluid. I. Influence of concentration gradients for proteins on cerebrospinal fluid/serum albumin ratio. *Eur Neurol* 1993;33:126-128.

26. Blennow K, Wallin A, Agren H, Spences C, Siegfriend J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? *Mol Chem Neuropharmacol* 2003;59:231-245.

27. Andreasen N, Hesse C, Davidsson P, et al. Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. *Arch Neurol* 1999;56:673-680.

28. Gustafson DR, Skoog I, Rosengren A, et al. Reproductive period and risk of dementia in postmenopausal women. *JAMA* 2001;285:1475-1481.

29. Najar J, Östling S, Waern M, et al. Reproductive period and dementia: a 44-year longitudinal population study of Swedish women. *Alzheimers Dement* 2020;16:1153-1163.

30. Gilsanz P, Lee C, Corrada MM, Kawas CH, Quesenberry CP Jr, Whitmer RA. Reproductive period and risk of dementia in a diverse cohort of health care members. *Neurology* 2019;92:e2005-e2014.

31. Whitmer RA, Quesenberry CP, Zhou J, Yaffe K. Timing of hormone therapy and dementia: the critical window theory revisited. *Ann Neurol* 2011;69:191-200.

32. Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progesterin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. *Jama* 2003;289:2651-2662.

33. Kawas C, Resnick S, Morrison A, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. *Neurology* 1997;48:1517-1521.

34. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. *Alzheimer’s Disease Cooperative Study. JAMA* 2000;283:1007-1015.

35. Geerlings MI, Launer LJ, De Jong FH, et al. Endogenous oestriol and risk of dementia in women and men: the Rotterdam Study. *Ann Neurol* 2003;53:607-615.

36. Den Heijer T, Geerlings MI, Hofman A, et al. Higher estrogen levels are not associated with larger hippocampi and better memory performance. *Arch Neurol* 2003;60:213-220.

37. Yaffe K, Lui LY, Grady D, Cauley J, Kramer J, Cummings SR. Cognitive decline in women in relation to non-protein-bound oestriol concentrations. *Lancet* 2000;356:708-712.

38. Yaffe K, Grady D, Pressman A, Cummings S. Serum estrogen levels, cognitive performance, and risk of cognitive decline in older community-dwelling women. *J Am Geriatr Soc* 1998;46:816-821.

39. Barrett-Conner E, Goodman-Gruen D. Cognitive function and endogenous sex hormones in older women. *J Am Geriatr Soc* 1999;47:1289-1293.

40. Lebrun CE, Van der Schouw YT, De Jong FH, Pols HA, Grobbee DE, Lamberts SW. Endogenous oestrogens are related to cognition in healthy elderly women. *Clin Endocrinol (Oxf)* 2005;63:50-55.
45. Barrett-Connor E, Laughlin GA. Endogenous and exogenous estrogen, cognitive function, and dementia in postmenopausal women: evidence from epidemiologic studies and clinical trials. *Semin Reprod Med* 2009;27:275-282.

46. Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. *Front Neuroendocrinol* 2014;35:8-30.

47. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. *J Intern Med* 2018;284: 643-663.

48. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. *Alzheimers Dement* 2018;14:535-562.