The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development

Robert S. Illingworth,1 Michael Moffat,1 Abigail R. Mann, David Read, Chris J. Hunter, Madapura M. Pradeepa, Ian R. Adams, and Wendy A. Bickmore

Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom

Polycomb-repressive complex 1 [PRC1] and PRC2 maintain repression at many developmental genes in mouse embryonic stem cells and are required for early development. However, it is still unclear how they are targeted and how they function. We show that the ability of RING1B, a core component of PRC1, to ubiquitinate histone H2A is dispensable for early mouse embryonic development and much of the gene repression activity of PRC1. Our data support a model in which PRC1 and PRC2 reinforce each other’s binding but suggest that the key functions of PRC1 lie beyond the enzymatic capabilities of RING1B.

Supplemental material is available for this article.

Received June 30, 2015; revised version accepted August 20, 2015.

There are two principal types of Polycomb group [PcG] complexes. Polycomb-repressive complex 2 [PRC2] is responsible for trimethylation of Lys3 on histone H3 [H3K27me3] via the EZH2 or EZH1 protein subunit [Di Croce and Helin 2013]. Canonical PRC1 contains CBX subunits [the vertebrate homologs of Drosophila Polycomb] whose chromodomains are able to bind H3K27me3 [Kausott et al. 2011]. PRC1 also contains the heterodimeric E3 ligase RING1B/PCGF1–6, which can catalyze the ubiquitination of Lys119 on histone H2A [H2AK119ub]. The canonical form of PRC1 contains PCGF2 or PCGF4 [ME18 or BMI1]. More recently, other RING1B-containing complexes have been identified that lack CBX subunits and instead contain RYBP or its homolog, YAF2 [Gao et al. 2012; Tavares et al. 2012; Morey et al. 2013]. These noncanonical PRC1 complexes can contain a variety of PCGF subunits.

While a role for H3K27me3 in the recruitment of PRC1 to chromatin is well established, more recently it has also been suggested that PRC1-mediated H2AK119ub is sufficient to recruit PRC2 in at least some contexts [Blackledge et al. 2014; Cooper et al. 2014; Kalb et al. 2014], thereby providing a mechanism by which PRC1 and PRC2 may cooperatively reinforce each other’s respective binding. On the other hand, rescue of Hox gene repression by ectopic expression of a catalytically inactive RING1B in Ring1B-null mouse embryonic stem cells (mESCs) suggested that the repressive (and chromatin compaction) activities of canonical PRC1 may be largely independent of RING1B-mediated H2A ubiquitination [Eskeland et al. 2010], at least for classical polycomb targets such as Hox loci. However, in the absence of the RING1B paralog RING1A, expression of catalytically inactive RING1B in mESCs was reported to only partially rescue polycomb target gene repression [Endoh et al. 2012].

There is therefore considerable uncertainty about the role of RING1B catalytic function in polycomb-mediated repression and about the interrelationship between H3K27me3 and H2AK119ub. The in vivo role of RING1B’s catalytic function has not been assessed.

By generating a mouse model that expresses endogenous RING1B with no H2A ubiquitination activity, we show that, in addition to rescuing the majority of gene misregulation exhibited by Ring1B knockout [Ring1B−/−] mESCs, catalytically inactive RING1B also permits development to progress much further than in Ring1B-null mice [Voncken et al. 2003]. We conclude that although RING1B is essential for early murine embryonic development, its catalytic activity is not.

Results and Discussion

RING1B catalytic activity is dispensable for repression at most PRC1 target loci in mESCs

To determine the role of endogenous RING1B’s E3 ligase activity, we generated a knock-in allele that expresses a mutant form of RING1B protein with an alanine at position 53 in place of isoleucine [RING1B53A]. This amino acid change has been shown to disrupt the interaction of RING1B with the E2 UBCH5C and ablates the ability of RING1B to act as an E3 ligase in vitro [Buchwald et al. 2006]. However, I53A does not perturb the incorporation of RING1B into canonical and variant PRC1 complexes [Illingworth et al. 2012].

Using homologous recombination, we generated heterozygous [RING1B+/53A] and homozygous [RING1B53A/53A] knock-in alleles at the endogenous Ring1B locus in E14TG2a mESCs (Fig. 1A,B). The resulting cells are distinct from those generated previously [Eskeland et al. 2010] in that the mutation is introduced within the Ring1B coding sequence rather than as a transgene and therefore better preserves endogenous Ring1B expression levels. For direct comparison, we also derived Ring1B−/− mESCs from the same parental E14TG2a mESCs [Fig. 1A,B]. Immunoblotting showed a major loss of H2AK119ub in Ring1B53A/53A and Ring1B−/− mESCs, confirming the ablation of RING1B catalytic activity and a minor role for other E3 ligases, including RING1A, in maintaining H2AK119ub levels in these cells (Fig. 1C; van der Stoop et al. 2008; Zhou et al. 2008; Luijsterburg 2008).
et al. 2012; Bhatnagar et al. 2014). Ring1B^{I53A}/I53A mESCs express RING1B protein at levels similar to wild-type (Fig. 1D) and appear to maintain levels of the canonical PRC1 component MEL18. Quantitative immunoblotting confirmed this while also showing a moderate reduction in the level of the noncanonical subunit RYBP (Supplemental Fig. 1). Conversely, Ring1B^{−/−} cells show a marked reduction in MEL18 levels, compatible with the destabilization of core PRC1 components in cells lacking RING1B (van der Stoop et al. 2008; Eskeland et al. 2010).

Despite the proposed mechanism by which H2AK119ub facilitates the deposition of H3K27me3 (Blackledge et al. 2014; Cooper et al. 2014; Kalb et al. 2014), we found that loss of H2AK119ub in Ring1B^{−/−} or Ring1B^{I53A/I53A} cells did not result in global reduction in H3K27me3 levels (Fig. 1D, Supplemental Fig. 1). Moreover, we did not detect an increase in H3K36me3 despite the proposed antagonistic relationship between H2AK119ub and H3K36me3 deposition (Fig. 1D, Yuan et al. 2013).

Using microarrays, we compared the expression profiles of Ring1B^{−/−} and Ring1B^{I53A/I53A} mESCs with wild type (Fig. 2A, B, Supplemental Table 1). Loss of Ring1B results in hundreds of genes showing both significant up-regulation (721) and down-regulation (285) relative to wild type. Most of these changes are likely indirect, since, for those genes that are directly bound by RING1B in wild type, only 98 are up-regulated and 18 are down-regulated in knockout cells (Supplemental Fig. 2A, B). These changes were largely rescued in Ring1B^{I53A/I53A} cells where only 55 and 25 genes (12 and two RING1B-bound genes) showed up-regulation and down-regulation, respectively. Differentially expressed genes in Ring1B^{I53A/I53A} overlap well (41 of 55 up-regulated and 19 of 25 down-regulated) with those also showing differential expression in Ring1B^{−/−} mESCs. Even for this small number of “rescued” genes, the fold change in up-regulation relative to wild type is lower in Ring1B^{I53A/I53A} than in Ring1B^{−/−} (Fig. 2C, Supplemental Fig. 2C). Nonrescued genes were generally those with the highest level of up-regulation in Ring1B^{−/−} cells. Gene expression changes were confirmed by real-time RT–PCR (Fig. 2D). These data suggest that many of the “rescued” genes are still misregulated in Ring1B^{I53A/I53A} cells, but to a much lower extent, and hints that RING1B-mediated gene regulation is enhanced by, but not primarily dependent on, its catalytic activity.

RING1B and H3K27me3 deposition is impaired in I53A cells

In mammalian genomes, the placement of PRC2 has been suggested to occur primarily at CpG islands (Deaton and Bird 2011; Klose et al. 2013). The conventional model for PcG targeting to chromatin is then the hierarchical recruitment of PRC1 by the prior binding and activity of PRC2. However, it has been suggested that a reciprocal situation may occur, with PRC1-mediated H2AK119ub
RING1B catalytic activity is largely dispensable for early mouse development

Whereas RING1A is dispensable for embryonic development (del Mar Lorente et al. 2000), RING1B is essential for gastrulation (Voncken et al. 2003). To determine the in vivo role for the catalytic function of RING1B, we generated Ring1B^{I53A/I53A} mice from heterozygous knock-in mESCs. Correct targeting was validated in embryonic day 12.5 (E12.5) embryos using the PCR strategy illustrated in Figure 1A. Immunoblotting showed a major reduction in H2A.K119ub levels in placenta of E12.5 Ring1B^{I53A/I53A} embryos when compared with wild type [Fig. 4A,B]. Successful heterozygous matings did not yield live-born homozygous pups [98 Ring1B^{+/−}, 147 Ring1B^{+/+/}, and 0 Ring1B^{−/−}; \(\chi^2 = 88.2, P < 0.0001\)], suggesting that the E3 ligase activity of RING1B is required for full murine embryonic development. However, in contrast to the reported embryonic lethality of Ring1B^{−/−} by E10.5, we found that Ring1B^{I53A/I53A} embryos could complete gastrulation and develop to E15.5, albeit at sub-Mendelian frequencies \(\chi^2 = 3.2, P = 0.20\) at E15.5; \(\chi^2 = 19.6, P < 0.0001\) at E12.5; \(\chi^2 = 5.6, P = 0.06\) at
No gross morphological abnormalities or anterior–posterior patterning defects were seen at E9.5 or E12.5. At E15.5, two of the five Ring1BI53A/I53A embryos that we recovered were developmentally retarded, but the morphology of the remaining three Ring1BI53A/I53A embryos was largely normal [exemplified in Fig. 4E]. All three of these E15.5 Ring1BI53A/I53A embryos exhibited edema [Fig. 4E, arrows], which was never seen in any of the 27 control littermate embryos at this stage [Fisher's test, \(P < 0.01 \)], suggesting some defects in development of the cardiovascular system. One of these three E15.5 Ring1BI53A/I53A embryos exhibited exencephaly [Fig. 4E, asterisk]. Interestingly, the co-occurrence of these two phenotypes is also seen in embryos deficient for the H3K27me3 demethylase KDM6A [Shapargel et al. 2012]. It has been reported that the gastrulation stage lethality of Ring1B–/ mice can be overcome by simultaneous loss of CDKN2A [Voncken et al. 2003]. However, Cdkn2a expression remains up-regulated in Ring1BI53A/I53A ESCs [Fig. 2D], and so the developmental rescue of gastrulation in Ring1BI53A/I53A embryos may occur through a CDKN2A-independent mechanism.

We showed that catalytically inactive RING1B disrupts H3K27me3 deposition at target loci in ESCs, consistent with a model in which PRC1 and PRC2 cooperate to maintain H3K27me3 chromatin compaction at polycomb target loci [EsKeland et al. 2010]. Together with the importance of other PRC1 subunits in modulating higher-order chromatin structure...
The E3 ubiquitin ligase activity of RING1B is not essential for early mouse embryo development. (A) Genotyping PCR performed on DNA prepared from E12.5 livers for exon 3-spanning (top panel) and exon 3 internal (bottom panel) primer sets [locations illustrated in Fig. 1A] showed the expected undigested [−] and XbaI-digested [x] product sizes for both the wild-type [WT] and I53A alleles in E12.5 embryos. (B) Immunoblotting of acid-extracted histones from E12.5 wild type and I53A E12.5 placenta for H2A and H2A.K119ub. (C–E) Photographs of embryos from a cross between Ring1B+/I53A heterozygotes at E9.5 (C), E12.5 (D), and E15.5 (E). The Ring1B genotype is indicated above each panel, and the total number of embryos for all litters is tabulated below. Bars: E9.5 and E12.5, 0.5 mm; E15.5, 2 mm. (C) For E15.5 Ring1B+/I53A, swelling characteristic of edema and exencephaly are indicated (white arrows and asterisk, respectively).

Materials and methods

Generation of Ring1B+/I53A and Ring1B−/− mice

The targeting vector to knock in the I53A mutation into exon 3 of Ring1B (Rn12) was generated by BAC recombineering (Liu et al. 2003). Briefly, a 129S7/AB2.2-derided BAC, bMQ291b2 (Adams et al. 2005), was modified using galK-positive/negative selection to introduce the I53A mutation and two silent restriction sites (SacI and XbaI) into exon 3 of Ring1B and a 10.1-kb region of the BAC (chromosome 1: 153,321,960–153,322,059; mm9) cloned into pLZ253 by gap repair. A floxed neomycin resistance cassette was then integrated into intron 3 (position chromosome 1: 153,323,749; mm9) in this gap-repaired plasmid using a mini targeting vector. The resulting plasmid was linearized and electroporated into E14TG2a ESCs (Joyner 2000), and G418-resistant clones were screened by PCR to identify correct targeting events. The neomycin resistance cassette was removed from correctly targeted clones by transient transfection of a Cre-expressing plasmid. Ring1B+/I53A mESCs were injected into blastocysts to generate chimeric mice and backcrossed three times to C57BL/6 (Joyner 2000), and G418-resistant clones were screened by PCR to identify correct targeting events. The neomycin resistance cassette was removed from correctly targeted clones by transient transfection of a Cre-expressing plasmid. Ring1B+/I53A mESCs were injected into blastocysts to generate chimeric mice and backcrossed three times to C57BL/6 (Joyner 2000). A second round of targeting in Ring1B+/I53A mESCs generated Ring1B+/I53A mESCs.

Generation and analysis of Ring1B mutant mice were performed under a UK Home Office project license (PPL 60/4424) with approval from an institutional ethics committee.

Expression analysis

The Amino Allyl MessageAmp II with Cy3 kit (Ambion, AM1795) was used to produce cRNA using the manufacturer’s protocol. Six-hundred nanograms of cRNA was fragmented and hybridized to a SurePrint G3 Mouse GE 8x60K microarray (Agilent, G4852A). After washing, the arrays were scanned using a NimbleGen scanner, and images were analyzed using Agilent Feature Extraction software. The resulting values were processed and analyzed using custom R scripts. Expression data were deposited in the Gene Expression Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE69978. Details of qRT–PCR for verification of expression changes are in Supplemental Table 2. A full protocol is in the Supplemental Material.

ChiP-seq

Libraries were prepared as previously described (Bowman et al. 2013) with modifications outlined in the Supplemental Material.

Sequence reads were trimmed (TrimmGalore! version 0.2.7) to remove adapters with the “-q 30” option used to remove low-quality bases with a PHRED score of <30 using Cutadapt version 1.2.1) and mapped to the mouse genome (mm10) using Bowtie 2.1.0 with the following arguments: “–local -D 20 -R 3 -N 1 -L 20 -i S,1,0.50.” SAM files were processed using HOMER version 4.3. HOMER tag directories were created using the makeTagDirectory tool with the options “–unique” and “–fragLength 150” and were used to create BedGraphs for visualization. All data output from HOMER analysis was normalized to 10 million mapped reads. BedGraphs were created using HOMER’s makeUCSCFile tool with default options. Enriched regions were identified using the findPeaks tool from HOMER with the options “–style histone” and “–minDist 500” with the input sequences as controls. High-confidence enriched regions of at least 500 base pairs enriched in both replicates were identified. The HOMER analyzeRNA tool with the “–rpmk” option was used to quantify regions of interest. To generate heat maps, HOMER’s annotatePeaks tool was used (options “–hist” and “–hist 50”) to generate a matrix of RPMK (reads per kilobase per million mapped reads) values, which was processed using custom R scripts. Illumina sequencing data were deposited in the GEO repository (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE69978.

Details of cell culture conditions, RNA extraction, cDNA synthesis, protein extractions, ChiP, and immunoblotting are provided in the Supplemental Material.
Acknowledgments

This work was supported by a UK Medical Research Council University Programme grant to W.A.B. and I.R.A., and a Medical Research Council Ph.D. studentship to M.M.

Note added in proof

Pengelly et al. (2015) recently reported similar findings for a point mutation in the PRC1 subunit Sce in *Drosophila melanogaster*.

References

Adams DJ, Quail MA, Cox T, van der Weyden L, Gorick BD, Su Q, Chan WJ, Davies R, Bonfield JK, Law F, et al. 2005. A genome-wide, end-sequenced 129sv BAC library resource for targeting vector construction. *Genomics* 86: 753–758.

Bhatnagar S, Gazin C, Chamberlain L, Ou J, Zhu X, Tushir JS, Virbasius J, Illingworth RS, Botting CH, Grimes GR, Bickmore WA, Eskeland R. 2012. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. *Nat Struct Mol Biol* 21: 569–571.

Kaustov L, Ouyang H, Amaya M, Nady N, Duan S, Wasney GA, Li Z, Vedadi M, Schapira M, et al. 2011. Recognition and specificity determinants of the human cbx chromodomains. *J Biol Chem* 286: 521–529.

Pengelly AR, Kalb R, Finkl K, Müller J. 2015. Transcriptional repression by PRC1 in the absence of H2A monoubiquitination. *Genes Dev* 29: 1487–1492.

Russing EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K. 2014. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. *Mol Cell* 55: 347–360.

Shpar格尔 KB, Sengoku T, Yokoyama S, Magnuson T. 2012. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic stem cells. *Cell Rep* 3: 60–69.

Pengelly AR, Kalb R, Finkl K, Müller J. 2015. Transcriptional repression by PRC1 in the absence of H2A monoubiquitination. *Genes Dev* 29: 1487–1492.

Illingworth RS, Botting CH, Grimes GR, Bickmore WA, Eskeland R. 2012. PRC1 and PRC2 are not required for targeting of H2A.Z to developmental genes in embryonic stem cells. *PLoS One* 7: e34848.

Isono K, Endo T, Ito S, Schneider K, Koseki J, Ishikura T, Toyoda T, Bernstein BE, Koseki H. 2013. SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. *Dev Cell* 26: 565–577.

Joyner AL. 2000. *Gene targeting: a practical approach*. 2nd Edition, Oxford University Press, Oxford, UK.

Kalb R, Latwiel S, Baymaz HJ, Jansen PW, Muller CW, Vermeulen M, Muller J. 2014. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. *Nat Struct Mol Biol* 21: 569–571.

Kaustov L, Ouyang H, Amaya M, Nady N, Duan S, Wasney GA, Li Z, Vedadi M, Schapira M, et al. 2011. Recognition and specificity determinants of the human cbx chromodomains. *J Biol Chem* 286: 521–529.

Klose RJ, Cooper S, Farcas AM, Blackledge NP, Brockdorff N. 2013. Chromatin sampling–an emerging perspective on generating polycomb repressor proteins. *PLoS Genet* 9: e1003717.

Liu P, Jenkins NA, Copeland NG. 2003. A highly efficient recombinase-based method for generating conditional knockout mutations. *Genome Res* 13: 476–484.

Luijsterburg MS, Aes K, Ackermann L, Wiegant WW, Bekker-Jensen S, Larsen DH, Khanna KK, van Attekum H, Maitland N, Dantuma NP. 2012. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. *EMBO J* 31: 2511–2527.

Morey L, Aloia L, Cozzuto L, Benitah SA, Di Croce L. 2013. RYBP and CBX7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. *Cell Rep* 3: 60–69.

Pengelly AR, Kalb R, Finkl K, Müller J. 2015. Transcriptional repression by PRC1 in the absence of H2A monoubiquitination. *Genes Dev* 29: 1487–1492.

Rissing EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K. 2014. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. *Mol Cell* 55: 347–360.

Shpar格尔 KB, Sengoku T, Yokoyama S, Magnuson T. 2012. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. *PLoS Genet* 8: e1002964.

Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, et al. 2012. RYBP–PRC1 complexes mediate H2A ubiquitination at polycomb target sites independently of PRC2 and H3K27me3. *Cell* 148: 664–678.