What is the number of decompositions of torus into given number of regions by unions of geodesics?

I. Shnurnikov*

Abstract

We prove some preliminary results concerning two questions of O. Karpenkov:

1. What is the number of decompositions (up to $SL(2,\mathbb{Z})$) of two-dimensional torus into given number f of regions by unions of n geodesics?

2. On the plane there are n circles not in general position, every pair of circles has at least one common point. What is the set of all possible numbers of regions?

Introduction

Let us consider a flat two-dimensional torus T (quotient space of real euclidean plane for an action of lattice — abelian group with two generators). In a fixed homology basis on torus T a closed oriented geodesic is defined (up to parallel shifting) by a pair of coprime integers. The matrix of changing from a homology basis to any other is an integer 2×2 matrix with determinant ± 1. We shall consider arrangements of nonoriented geodesics up to changing homology basis. Let f be the number of connected components of the complement in two-dimensional torus T to the union of n geodesics. The set $F(n)$ of all possible numbers f for given $n > 1$ is the following (see [1])

$$F(n) = \{n - 1, n\} \cup \{m \in \mathbb{N} \mid m \geq 2n - 4\}.$$

Let t_i be the number of intersection points, which are incident to i geodesics of the arrangement. If not all geodesics of the arrangement are parallel, then $f = \sum (i - 1) t_i$. For example, geodesics of types $(1, 0), (0, 1), (k, 1)$ form k or $k + 1$ regions if they intersect in one point or not. If in arrangement of geodesics $\gamma_1, \ldots, \gamma_n$ are at least two non-parallel, then

$$f \leq \sum_{i<j} |\gamma_i \cap \gamma_j|$$

where $|\gamma_i \cap \gamma_j|$ is the number of intersection points of non-parallel geodesics. For arrangements of general position the inequality turns to equality.

Question for torus

In connection with the theory of high-dimensional chain fractions O. Karpenkov asked:

What is the number of decompositions of two-dimensional torus into given number f of regions by unions of n geodesics?

Lemma 1. If two geodesics intersect in k points in the two-dimensional flat torus, then we may change bases so that geodesics will be of type $(1, 0)$ and (x, k), where integer $1 \leq x \leq k - 1$ is such that $\gcd(x, k) = 1$ and is defined uniquely up to change $x \leftrightarrow k - x$.

*NRU HSE
Lemma 2. For $f = n$ and $f = n - 1$ there is a unique arrangement of n geodesics in the two-dimensional torus which divides torus into f regions. The number $f = 2n - 4$ is realised as the number of regions by $n - 1$ arrangements for $n \geq 7$ (and at least by 8 arrangements for $n = 6$).

Proof. Let us take $n - 2$ geodesics of type $(1,0)$ a geodesic of type $(a,1)$ and a geodesic of type $(0,1)$, where $0 \leq a \leq n - 2$, and all intersection points of the last two geodesics are incident to some of the first $n - 2$ geodesics. Let m be the maximal number of parallel (homologically equal) geodesics in an arrangement.

Lemma 3. If $f \leq cn^{6/5}$, then $m \geq n - f + O(1)$, for suitable positive constant c.

Corollary 1. For $f \leq cn^{6/5}$ in arrangement of geodesics almost all geodesics are homologically equal and so the number of arrangements which realize f as the number of regions may be counted explicitly.

Question for circles in the plane

O.Karpenkov asked the following “On the plane there are n circles not in general position, every pair of circles has at least one common point. What is the set of all possible numbers of regions for given n?”

For complete solution of this problem one need to determine the possible number of tangent points of a circle and special arrangements of $n - a$ lines for $n > ca^2$.

Let us denote by C_n the set of numbers f which are formed by n circles in the plane not in general position such that every two circles have at least one common point. Let us denote by L_n the set of numbers of regions in the plane, formed by n distinct lines not in general position (without any requirements on intersection points). Let m be the maximal number of circles, incident to one point.

Lemma 4. We have $C_n \supseteq L_n$.

Proof. Let us take any arrangement of lines in the plane with $f \in L_n$, make an inversion and get the suitable arrangement of n circles with f regions.

If $m = n$, i.e. all circles have one common point, then the number of regions $f \in L_n$.

Lemma 5. If $m = n - 1$, then f may be any number of the sets $L_{n-1} + 2n - 2$, $L_{n-1} + 2n - 3$, $L_{n-1} + 2n - 4$, and this list of possibilities is uncomplete (here we sum a number to every element of L_{n-1}).

The numbers $3n - 4, 4n - 4 \in C_n$ and $3n - 4, 4n - 4 \notin L_n$. We have

$$L_n = \{n + 1, 2n, 3n - 3, 3n - 2, 4n - 8, 4n - 7, 4n - 6, 4n - 5, 5n - 15, \ldots \}$$

Conjecture 1. The set C_n contains all integers between $\frac{n(n-1)}{2} + 1$ and $n(n - 1) + 2$, which are the maximal elements of L_n and C_n correspondingly.

References

[1] I.N. Shmurnikov, On the number of regions formed by arrangements of closed geodesics on flat surfaces, *Math. Notes* 90, N 3 – 4 (2011), 619 – 622.