Does tuberculosis screening improve individual outcomes? A systematic review

L Telisinghe, M Ruperez, M Amofa-Sekyi, L Mwenge, T Mainga, R Kumar, M Hassan, L.H Chaissone, F Naufal, A.E Shapiro, J.E Golub, C Miller, E.L Corbetta, P MacPherson, R.J Hayes, V Bond, C Daneshvar, E Klinkenberg, H.M Ayles

ARTICLE INFO

Article History:
Received 26 March 2021
Revised 19 August 2021
Accepted 20 August 2021
Available online xxx

ABSTRACT

Background: To determine if tuberculosis (TB) screening improves patient outcomes, we conducted two systematic reviews to investigate the effect of TB screening on diagnosis, treatment outcomes, deaths (clinical review assessing 23 outcome indicators); and patient costs (economic review).

Methods: Pubmed, EMBASE, Scopus and the Cochrane Library were searched between 1/1/1980-13/4/2020 (clinical review) and 1/1/2010-14/8/2020 (economic review). As studies were heterogeneous, data synthesis was narrative.

Findings: Clinical review: of 27,270 articles, 18 (n=3 trials) were eligible. Nine involved general populations. Compared to passive case finding (PCF), studies showed lower smear grade (n=2/3) and time to diagnosis (n=2/3); higher pre-treatment losses to follow-up (screened 23% and 29% vs PCF 15% and 14%; n=2/2); and similar treatment success (range 68-81%; n=4) and case fatality (range 3-11%; n=5) in the screened group.

Nine reported on risk groups. Compared to PCF, studies showed lower smear positivity among those culture-confirmed (n=3/4) and time to diagnosis (n=2/2); higher pre-treatment losses to follow-up (screened 23% and 29% vs PCF 15% and 14%; n=2/2); and similar treatment success (range 80-90%; n=2/2) in the screened group. Case fatality was lower in n=2/3 observational studies; both reported on established screening programmes. A neonatal trial and post-hoc analysis of a household contacts trial found screening was associated with lower all-cause mortality. Economic review: From 2841 articles, six observational studies were eligible. Total costs (n=6) and catastrophic cost prevalence (n=4; range screened 9-45% vs PCF 12-61%) was lower among those screened.

Interpretation: We found very limited patient outcome data. Collecting and reporting this data must be prioritized to inform policy and practice.

Funding: WHO and EDCTP.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

1. Introduction

Despite effective, curative treatment, tuberculosis (TB) is a leading infectious cause of death worldwide [1]. In most TB-endemic settings, standard case-detection through routine services (passive case-finding [PCF]), is the mainstay of access to TB diagnosis and treatment [2,3]. This may be augmented by facility-
Evidence before this study

Tuberculosis (TB) remains a leading infectious cause of death worldwide, and therefore improving access to diagnosis and treatment, closing the case-detection gap and improving patient outcomes is a priority. In 2019, a MEDLINE and EMBASE search for English language articles on TB screening identified a systematic review. Synthesising data published between 1/1/1980-13/10/2010, it found little evidence that TB screening benefited individuals screened; patient costs were not assessed.

Added value of this study

Synthesising evidence between 1980-2020, our systematic review investigating the effects of TB screening on patient outcomes, found 24 articles (including three trials) from 12 countries. The limited available data suggests that compared to passive case finding, TB screening may be associated with less severe disease; decreased time to diagnosis/first contact with health services; decreased deaths (among risk groups alone); decreased patient costs; and higher pre-treatment losses to follow-up. There was no difference in treatment success between screened and passive case finding groups.

Implications of all the available evidence

With World Health Organization targets to END-TB calling for decreases in TB deaths, incidence and catastrophic costs, countries have renewed their interest in TB screening, to efficiently reach the poor and vulnerable who face barriers to the substantial burden of undiagnosed TB in these settings, or either not diagnosed or not notified [1]. If untreated, TB is associated with high mortality and morbidity [6]. Therefore, closing the case-detection gap by improving access to TB diagnosis and treatment is a priority.

One strategy to address this is TB screening, which encompasses a wide range of activities aimed at detecting and treating TB patients earlier in their clinical course [4,5]. This should improve the individual's clinical outcomes, a requirement for traditional screening programmes [7]. While infectious diseases screening can have both individual and population effects, understanding whether screening improves the individual is critical when considering if to screen. The costs borne by people seeking TB services and their households (patient costs) can be high, hindering diagnosis and treatment [5]. Such costs can exacerbate poverty, increasing the vulnerability of individuals, with further social and health consequences [5,10]. TB screening, by helping individuals navigate the TB care pathway, may also potentially decrease patient costs.

But evidence that TB screening improves clinical outcomes and reduces patient costs is lacking [4,11]. Therefore, we undertook two systematic reviews to determine if TB screening 1) identifies TB patients earlier in their clinical course; improves linkage-to-care; improves treatment outcomes; and decreases deaths (clinical review) and 2) decreases patient costs (economic review).

2. Methods

We undertook two systematic reviews to identify studies reporting the effect of TB screening on clinical outcomes and patient costs. These were conducted to inform World Health Organization (WHO) TB screening guideline development. The Population, Intervention, Comparison(s) and Outcomes were determined in collaboration with the guideline development group (GDG), consisting of a panel of experts in the field of TB. The methods followed standard procedures for undertaking systematic reviews [12] and grading evidence quality [13].

2.1. Study populations, interventions, outcomes and definitions

Studies conducted in any population group were considered. Screening was defined as any provider-initiated intervention including 1) using health information/education to encourage appropriate health-seeking behaviours, with or without increasing access to diagnostic services (enhanced case-finding [ECF]); and 2) systematic screening using any test/procedure (active case-finding in communities [ACF] and case-finding in health facilities). PCF, the comparator, was defined as the routine diagnosis of symptomatic TB patients self-presenting to health services.

We included 23 clinical outcome indicators (Table 1) for earlier diagnosis (e.g. smear grade, body mass index), linkage-to-care (e.g. pre-treatment loss to follow-up [LTFU]), treatment outcome (e.g. success) and death (e.g. case fatality, mortality). These outcomes were all rated as critical or very important by the GDG. Clinical outcomes were assessed among bacteriologically-confirmed TB patients (culture, Xpert MTB/RIF or smear positive). Treatment success was defined as cured and treatment completed (without microbiological evidence of cure) [14]. Pre-treatment LTFU was defined as LTFU between diagnosis and treatment start. Patient cost input data (Table 1) were broadly categorised as direct medical (e.g. hospitalisation costs), direct non-medical (e.g. transportation) and indirect (e.g. lost productivity). Patient costs were assessed among all TB patients (bacteriologically-confirmed and clinically diagnosed). Catastrophic cost was defined as total costs for seeking TB care >20% of the annual household income [1].

2.2. Search strategy

Clinical review: we updated the systematic review conducted by Kranzer 2013, [11] which covered the period 1/1/1980-13/10/2010 (Figure 1). Articles addressing the research questions from the Kranzer 2013 review were also included in our review. Our update used the same methods as Kranzer 2013; the search was nested within a systematic review to determine the number needed to screen to detect a TB patient in any population [15]. For the number needed to screen review, Pubmed, EMBASE, Scopus and the Cochrane Library were searched from 1/11/2010-13/4/2020. Subject headings and key words covered the concepts of TB and screening (Appendix 1). The title and abstract screens were broad; articles needed to be original research on TB screening. Full text screens determined eligibility. Articles from the number needed to screen review reporting on screening for all forms of TB were assessed for eligibility for our review.

Economic review: Medline, EMBASE, Scopus and the Cochrane Library were searched from 1/1/2010-14/8/2020. Subject headings and key words covered the concepts of 1) TB; 2) screening; and 3) economic evaluations or economic/financial analysis (Appendix 1). The Global Health Cost Consortium Unit Cost Study Repository was also searched for additional articles [16].

For both reviews, bibliographies of identified studies were searched, and authors contacted for additional data if needed.
2.4. Study selection, data extraction and risk of bias assessment

Study selection, data extraction and risk of bias assessments were undertaken by two independent reviewers (LT, MR, MAS, MH and CD conducted the clinical review and LM, and EK conducted the economic review). Disagreements were resolved through discussion or, if required, consultation with a third reviewer.

2.5. Data synthesis and analysis

Due to the heterogeneity of included studies (populations, screening tools, effect estimates, etc.), data synthesis for both reviews was narrative. For treatment success and on-treatment case fatality calculations, we only included cured, treatment completed, death, treatment failure, LTU, and not evaluated (including transferred out) in the denominator; other outcomes reported, such as still on
denominator; other outcomes reported, such as still on...
Figure 1. Study selection process - flow diagram of number of original research articles considered for the clinical review.

The clinical review was nested within a systematic review to determine the number needed to screen to detect a TB patient in any population. *represents the study selection process for the number needed to screen review.

The starting point of the clinical review, which is reported in this manuscript.

1 Previous systematic review by Kranzer et al 2013, authors and bibliography searches.

Articles identified through database searches
N=27973

Articles after duplicates removed*
n=27221

Full texts screened*
n=1146

Articles on screening for all forms of TB†
n=919

Articles from other sources‡
n=49

Articles after duplicates removed
n=966

Abstracts screened
n=966

791 articles excluded

Full texts screened
n=175

157 articles excluded

84 no control group
23 no information on outcome variables of interest
22 clinical diagnosis only/clinical and microbiological diagnoses cannot be disaggregated
9 no full text articles
5 no screening for active TB
5 outcome data not disaggregated by screened and passive case finding group
3 outcome data for one study group only
3 no original data
2 language not in English, French or Spanish
1 duplicate data

Studies included
n=18
15 observational studies
3 cluster randomised trials
Table 2
Characteristics of studies included in the clinical review (N=18) and economic review (N=6)

First author and Location	Population	Study years	Screening: strategy and tools	TB case definition	Sample/cohorts	Outcomes OR Details of costing studies and costs collected
Clinical review – general population observational studies						
Abdurrahman2016 Abuja, Nigeria	Urban including slums	2010-2014	ACF: one-off community health worker house-to-house symptom screen. Sputum collected for smear if symptoms.	Smear or culture + adult ≥ 18 years	485	Smear grade
						Symptom duration at diagnosis
den Boon 2008 Cape Town, South Africa	2 suburbs	2002-2005	Prevalence survey: sputum smear and culture for all collected at health centres.	Smear or culture + adult ≥ 15 years	27	Smear grade
						Treatment outcomes
Sharige 2006 Hadiya zone, Southern Ethiopia	Rural 1 district	2003	Prevalence survey: symptoms and/or on TB treatment. Sputum collected for smear if symptoms.	Smear or culture + adult ≥ 15 years	13	Symptom duration at treatment start
Gopi 2005 Tiiruvallur South India	Rural and urban 1 sub-district	2001-2003	Prevalence survey: CXR and symptoms. Sputum collected for smear and culture if symptoms or abnormal CXR.	Smear or culture + adult ≥ 15 years	243	Pre-treatment loss to follow-up
Balasubramanian2004; Tiiruvallur South India	Rural and urban 1 sub-district	1998-2001	Prevalence survey: CXR and symptoms. Sputum collected for smear and culture if symptoms or abnormal CXR.	Smear or culture + adult ≥ 15 years	231	Pre-treatment loss to follow-up
Santha 2003 Tiiruvallur South India	Rural and urban 1 sub-district	1999-2000	Prevalence survey: CXR and symptoms. Sputum collected for smear and culture if symptoms or abnormal CXR.	Smear or culture + adult ≥ 15 years	96	Smear grade
Harper 1996 East Nepal	Rural 8 districts	1990-1993	Likely ECF (unclear): outreach TB camps (diagnostic services) lasting 2-4 days with pre-camp publicity in areas away from health posts, with high TB burden or where community requested services. If symptomatic sputum collected at camps. 45 camps over 3 years.	Smear or new TB	68	Symptom duration at first contact with health services; Treatment outcomes
Cassels 1982 East Nepal	Rural 1 district	1978-1980	ACF: one-off house-to-house symptom screen by vaccinators. Pots left for sputum collection if symptoms, with drop-off at designated centres within 20 minutes walking distance.	Smear +	111	Treatment outcomes
Clinical review – general population cluster randomised trials						
Shargie 2006 Hadiya Zone Southern Ethiopia	Rural 2 districts	2003-2004	ECF: x1/month for 12 months IEC activities by community promoters encouraging those with symptoms to attend monthly diagnostic outreach clinics where sputum collected for smear.	Smear +	159	Treatment outcomes
Clinical review – risk groups observational studies						
Showade 2016 Mato Grosso do Sul state, Brazil	Marginalised/vulnerable populations	2016-2017	ACF: one-off community volunteer house-to-house symptom screen. Referral for sputum smear if symptoms.	Smear or culture + adult ≥ 15 years	275	Smear grade
						Treatment outcomes
Showade 2019 18 districts in 7 states across India	Marginalised/vulnerable populations	2016-2017	ACF: one-off community volunteer house-to-house symptom screen. Referral for sputum smear if symptoms.	Smear or culture + adult ≥ 15 years	234	Duration of symptoms to 1) first contact with health services; 2) diagnosis
Story 2012 London, UK	Prisoners in 12 prisons	2013-2014	ACF: 2 symptom screen (at baseline and 1 year later). Sputum collected if symptoms.	Culture + age ≥ 15 years	40	Time between diagnosis and treatment start
	Homeless people, drug users, asylum seekers, prisoners	2005-2010	ACF: mobile CXR screening programme. Screening in community settings where hard to reach people can be accessed (e.g. hostels, day centres, drug treatment services, prisons).	Culture + age ≥ 15 years	23	Time between symptoms and treatment start
Verver 2001 Netherlands	Migrants	1993-1998	ACF: entry and every 6 months for 2 years CXR screening programme. Sputum for smear and culture if abnormal CXR.	Smear or culture + stay < 30 months	454	Smear positivity of culture confirmed TB patients
						Symptom duration at diagnosis
						Treatment outcomes
						(continued on next page)
First author and location	Population	Study years	Screening: strategy and tools	TB case definition	Sample/cohorts	Outcomes or Details of costing studies and costs collected
---------------------------	------------	-------------	-------------------------------	-------------------	---------------	---
Churchyard 2000	Miners in 1 company	1993-1997	ACF: Annual miniature CXR screening programme. Standard CXR and sputum for smear and culture if abnormal.	Culture - Known HIV status and treatment outcome	1225 1011	Treatment outcomes
Free State, South Africa						
Capewell 1986	Hostel dwellers	1976-1982	ACF: X2/year miniature CXR screening programme, with monetary incentive. Referred if clinical abnormal CXR.	Culture +	42 26	Smear positivity of culture confirmed TB patients
Edinburgh, UK						
Clinical review - risk groups cluster randomised trials	Neonautes receiving BCG by 72 hours of birth	2006-2010	ACF: X2/month for 2 years, home visits with screens for symptoms, TB exposure and failure to thrive. Referral with reminders to study medical office for work up if -	Culture+	n/a 2215 2167	Mortality - all cause
Jenum 2018						
Palamaner in Andhra Pradesh, South India	Household contacts in rural and urban areas	2010-2015	ACF: CXR and symptom screen at 0, 6, 12 and 24 months by National TB Programme staff at district clinics. Sputum for smear and culture if symptoms or abnormal CXR	Culture+	n/a 10069 15638	Mortality - all cause
Fox 2018						
70 districts in 8 provinces of Vietnam						
Economic review Muniyandi 2020	General population (rural)	2016-2018	Prevalence survey: house-to-house screening with symptoms and CXR. Sputum for smear and culture if symptoms or abnormal CXR.	Adult ≥15 years with TB	110 226	Empirical; CA from patient perspective; Primary costing data, 2018 cost reference year
India						Diagnosis costs: Direct (medical and non-medical); Indirect - no input information
						Treatment costs: Direct (medical and non-medical); Indirect - no input information
Gurung 2019	OPD attendees; social contacts of TB patients; general population (rural);	2018	ACF: Symptom screen in OPD; symptom screen social contacts; general population TB camp with community health worker house-to-house symptom screen 1-2 days before. Sputum for Xpert if symptoms.	Adult ≥15 years with PTB between 2-12 weeks of treatment	50 49	Empirical; CA from patient perspective; Primary costing data, 2018 cost reference year
Nepal						Pre-treatment costs: Direct medical - consultation, x-ray, tests, drugs. Direct non-medical - transport, food. Indirect - time loss, income loss. Intensive phase treatment costs: Direct medical - consultation, x-ray, tests, drugs. Direct non-medical - transport, food. Indirect - time loss, income loss.
Hussain 2019	Private clinic attendees; general population (urban)	2011-2012	ACF: HCW incentives; symptom screen clinic attendees; ECF: TBIE to general population. Sputum for smear using Xpert and CXR if symptoms.	TB patients on treatment for at least 2 months	84 45	Decision modelling; CA from provider and patient perspective; Primary and secondary costing data; 2012 cost reference year
Pakistan						Diagnosis costs: Direct medical - consultation, x-ray, tests, drugs. Direct non-medical - food and transport. Indirect costs - lost earnings.
Shewade 2018	Marginalised and vulnerable populations1	2016-2017	ACF: one-off community volunteer house-to-house symptom screen. Referred for sputum smear if symptoms.	Smear + Adult ≥15 years newly registered for treatment	234 231	Empirical; CA from patient perspective; Primary costing data, 2018 cost reference year
India						Diagnosis costs: Direct medical - consultation, x-ray, tests, drugs. Direct non-medical - food and transport. Indirect costs - lost earnings.

(continued on next page)
First author and Location	Population	Study years	Screening; strategy and tools	TB case definition	Sample/cohorts	Outcomes Of Details of costing studies and costs collected
Morishita 2016 Cambodia	Household and neighbourhood contacts of smear + TB patients	2014	ACF: all household and symptomatic neighbourhood contacts invited for CXR screening on a specific date. Sputum for Xpert if abnormal CXR or symptoms. New PTB with cured or completed treatment outcome	108	100	Empirical; CA from patient perspective; Primary costing data; 2014 cost reference year Pre-treatment costs: Direct medical – administration, web, x-ray, drugs, hospitalisation; Direct non-medical – transport, food, guardian, insurance reimbursement; Indirect – lost income from health seeking and sick leave Treatment costs: Direct medical – hospitalisation; Direct non-medical – transport (DOTS, drug pick-up, follow-up visits), supplemental food, guardian/care giver, interest for borrowed money, insurance reimbursement; Indirect – lost income (patient, guardian/care giver); reduced household activity, value lost from sold property
Sekandi 2015 Uganda	General population (urban)	2012	Prevalence survey: house-to-house symptom screen. Sputum collection if symptoms for smear/culture. Adult ≥15 years on at least 2 weeks of TB treatment	103	Decision modelling; CEA from societal perspective; Primary and secondary costing data; 2013 cost reference year Diagnosis costs: Direct non-medical – transportation, food, care giver, child care/hired help; Indirect – patient and care giver time lost	

* number of people with TB unless otherwise indicated; PCF=passive case-finding; ACF=active case-finding; + = positive; CXR=chest radiograph; ECF=enhanced case finding; IEC=information, education and communication
† community-promoters – individuals with previous experience in community outreach activities who are provided training about TB.
‡ includes slums, tribal areas, scheduled caste communities, areas where occupational lung diseases is high, areas where individuals with high risk of acquiring TB reside including stone crushing/mining/weaving industry/ unorganized labour (construction workers etc)/homeless, high HIV/AIDS burden areas, areas or communities with high TB incidence (including prisons) and among household contacts of sputum smear positive TB patients.
§ Papers report different outcomes on the same study participants; BCG=Bacillus Calmette-Guérin; n/a=not applicable.
¶ total number in screened and passive case-finding group; CA=cost analysis; OPD=outpatient department; PTB=pulmonary TB; x-ray=radiotherapy; HCW=health care worker; CEA=cost effectiveness analysis; DOTS=Directly Observed Treatment, Short-course.
treatment, were excluded. Smear grade was recategorized, with grades scanty/1+ to 2+ combined to reflect lower grades (and less extensive disease) and 3+ reflecting higher grades (and more extensive disease). A sensitivity analysis was conducted, recategorizing smear grades scanty/1+ as lower grade and 2+ to 3+ as higher grade. Where proportions were reported, 95% confidence intervals (95%CI) were calculated using Stata version 15 (StataCorp).

2.6. Role of the funding source

The WHO commissioned this work to inform TB screening guidance development. The WHO had no role in the conduct of the study or writing the report. The corresponding and last author had access to all data and final responsibility for the decision to submit for publication.

3. Results

3.1. Clinical review

From 27,270 articles, 18 were eligible [20-37] (Figure 1 and Table 2); seven were not reported in the previous review [20,29-32,36,37]. We only identified n=12/23 (52%) of the outcome indicators sought (Table 1); no studies reported on the remainder. All studies reported on smear and/or culture positive TB (Table 2); no studies reported on Xpert MTB/RIF positive TB.

Fifteen were observational studies. The characteristics of TB patients identified through screening and PCF varied across these studies (Tables 3-5). All had a high risk of bias for the outcomes identified (Appendix 2); most (n=11/15) did not adjust for potential confounders.

3.2. General populations

Eight observational studies were conducted in rural and/or urban populations; all were from South Asia and sub-Saharan Africa [20-27]. Most (n=7/8) involved one-off house-to-house ACF strategies (n=5/7 were prevalence surveys) [20-25,27]. Four (50%) used symptom screening, [20,22,26,27] three (38%) chest radiographs (CXRs) and symptoms, [23-25] and one (12%) prevalence survey conducted sputum smear and culture on all individuals [21].

Three studies [20,21,25] reported on smear grade (Table 3 showing proportions and prevalence ratios and Appendix 3). All showed screened TB patients were less likely to have higher smear grades, but the small sample size of the screened group gave wide CIs in one study [21]. Two studies conducted in the same south Indian population over consecutive calendar periods reported on pre-treatment LTFU (Table 4) [23,24]. In both, the proportion LTFU among those screened was lower (screened 23% and 29% versus PCF 15% and 14%). Among individuals LTFU, none died in the screened group, while nearly 20% had died in the PCF group for whom outcomes were available [23]. Symptom duration was longer in the PCF group in one study (cough >3 weeks 13% in PCF versus 28% in screened group) [25] but shorter in another (mean cough duration 6.8 weeks in PCF versus 10.3 weeks in screened group) [20]. One study found no difference in time to treatment start between screened and PCF groups [22].

Four studies involving different screening strategies (symptom; CXR; and smear/culture screening) reported on treatment outcomes (Table 5 showing proportions and prevalence ratios). In three the proportions with treatment success among screened and PCF groups was similar, ranging from 80-90% in two [29,33]. In one Indian study reporting on one-off symptom screening, there was no difference in case fatality among screened and PCF groups [29]. Two studies reporting on ~4-5 years of data from established CXR screening programmes among migrants to the Netherlands and South African miners showed higher case fatality among the PCF group (PCF versus screened odds ratio [OR] 15.3; 95%CI 2.0-118.0; adjusted OR 5.6; 95%CI 2.6-12.2 respectively) [33,34]. There was no difference in the proportion LTFU during TB treatment between screened (range 6-20%) and PCF (range 8-19%) groups [25,26].

One CRT, conducted in 32 contiguous rural Ethiopian communities with difficult access to health care, used monthly ECF with outreach clinics to initiate diagnosis (continued at health facilities through routine services) over 1 year in 12 intervention communities (Table 2, Table 5 and Appendix 2) [28]. There was no difference in TB patient characteristics, treatment success, on-treatment case fatality or on-treatment LTFU by study arm. Data on pre-treatment LTFU was not provided. But pre-treatment symptom duration was significantly lower in the intervention group (median difference between intervention and control group -47 days; 95%CI -76 to -19; 55-60% reduction in duration in the last three quarters compared to the first quarter in intervention communities, with corresponding 3-20% fall in control communities). Because of insufficient information to assess one bias domain, the risk of bias assessment raised some concerns.

3.3. Risk groups

Seven observational studies reported on risk groups, including prisoners [29-32] migrants, [33] miners, [34] and homeless people. [32,35] Four involved established European and South African CXR screening programmes [32-35]. Three studies from India and Brazil reported on one-off/limited ACF using symptoms [29-31].

One Indian study found no difference in smear grade among screened and PCF groups (Table 3 showing proportions and prevalence ratios) [29]. Three European and one Brazilian study reported on smear positivity among culture-confirmed TB patients [31-33,35]. The proportion with positive smears was lower in those screened in three [31-33]. One study showed no association but small sample sizes gave wide CIs in both study groups [35]. No studies reported on pre-treatment LTFU (Table 4). Symptom duration was shorter in the screened group in two studies (prevalence of diagnosis delay >50 days was 23% lower in the screened group in an Indian study) [30] and the median symptom duration was 7.5 weeks in the PCF versus 0.0 weeks in the screened group in a study from the Netherlands [33]. Time to treatment start in one Indian study [30] found no difference between the screened and PCF groups.

Three studies (including two established CXR screening programmes) reported on treatment outcomes (Table 5 showing proportions and prevalence ratios). The proportions with treatment success among screened and PCF groups was similar, ranging from 80-90% in two [29,33]. In one Indian study reporting on one-off symptom screening, there was no difference in case fatality among screened and PCF groups [29]. Two studies reporting on ~4-5 years of data from established CXR screening programmes among migrants to the Netherlands and South African miners showed higher case fatality among the PCF group (PCF versus screened odds ratio [OR] 15.3; 95%CI 2.0-118.0; adjusted OR 5.6; 95%CI 2.6-12.2 respectively) [33,34]. There was no difference in the proportion LTFU during TB treatment between screened (range 6-10%) and PCF (range 7-10%) groups [29,33].

Two CRTs were identified (Table 2, Table 5 and Appendix 2) [36,37]. One among Indian neonates compared fortnightly ACF over 2 years, in 297 intervention communities to PCF in 295 control communities [36]. Screening was associated with lower all-cause mortality compared to PCF (adjusted OR 0.68 [95%CI 0.47-0.98]), which was attributed to decreases in pneumonia/respiratory infections. The risk of bias was high which could work to underestimate the effect of screening on mortality. A CRT among Vietnamese household contacts of TB patients, compared CXR and symptom screening at 0, 6, 12 and 24 months in 36 intervention communities to PCF in 34 control communities [37]. Screening was associated with lower all-cause mortality compared to PCF (risk ratio 0.60 [95%CI 0.50-0.80]). The risk of bias assessment raised some concerns as the data represented a post-hoc analysis.
Table 3
Smear grade 3+ and smear positivity among culture confirmed TB patients reported in n=8 observational studies

First author, country and population, screening tool	Group	Smear grade 3+/all smear positives n/N (%)	Smear +/culture confirmed n/N (%)	Prevalence ratio (screen/PCF)	Comments
General population					
Abdurrahman 2016 Nigeria Symptoms	Screen	101/480 21% (17-25%)	-	0.46	Diagnosed TB patients
	PCRF	96/208 46% (39-53%)	-	0.63	Denominator for smear grade - screened group more likely to be older, married and less likely to be HIV infected.
den Boon 2008 South Africa Smear & culture					
	PCF	234/446 52% (48-57%)	-	0.07	Denominator for smear grade - screened group includes those lost to follow-up pre-treatment; PCF those starting treatment only Diagnosed in screened and on treatment in PCF groups - no difference in age and gender.
Santha 2003 India CXR and symptoms					
Risk groups					
Shewade 2019 India Marginalised/vulnerable Symptoms					
	PCF	139/330 42% (37-48%)	-	0.84	On treatment TB patients
Paiao 2016 Brazil Prisoners Symptoms					
	PCF	53/265 20% (15-25%)	-	0.20	Diagnosed TB patients
Story 2012 UK Homeless people, drug users, prisoners, asylum seekers CXR					
	PCF	104/146 71% (63-78%)	-	0.68	On treatment TB patients
Verver 2001 Netherlands: Migrants CXR					
	PCF	59/107 55% (45-65%)	-	0.87	On treatment TB patients
Capewell 1986 UK Hostel dwellers CXR					
	PCF	15/19 79% (54-94%)	-		

* n/N-number with smear grade 3+ total number with smear grade scanty, 1+, 2+ and 3+.
* n/N-number smear positive/total number culture positive; 95%CI=95% confidence interval; PCF=passive case-finding.
† included slums, tribal areas, scheduled caste communities, areas where occupational lung diseases is high, areas where individuals with high risk of acquiring TB reside including stone crushing/mining/weaving/industry/unorganised labour (construction workers etc)/homeless, high HIV/AIDS burden areas, areas or communities with high TB incidence (including prisons) and among household contacts of sputum smear positive TB patients; CXR—chest radiograph.

3.4. Economic review

From 2841 articles, six observational studies were eligible [38-43] (Figure 2 and Table 2); none were included in the previous review. Most were from South Asia (n=4; 67%), [38-41] with one from South East Asia, [42] and one from sub-Saharan Africa [43]. Most studies included general populations (n=4; 67%); [38-40,43] three involved house-to-house screening [38,39,43]. Risk groups were those with structural risk factors (n=1), [41] household and neighbourhood contacts (n=1), [42] and social contacts (n=1) [39] of TB patients, and health facility attendees (n=2) [39,40]. Four studies (67%) used symptom screening alone, [39-41,43] whereas two (33%) used CXR and symptoms. [38,42]. The analyses undertaken varied; four performed cost analysis [38,39,41,42] and two conducted cost-effectiveness analysis [40,43]. All studies reported findings transparently; three [38-40] met all CHERS checklist criteria (Appendix 4).

Data were summarised using different measures (means, medians). The illness periods for which costs were reported varied; two studies reported diagnosis costs alone, [41,43] two pre-treatment and treatment costs, [39,42] one diagnosis and treatment costs, [38] and one pre-diagnosis, diagnosis and treatment costs [40] (Table 2 and 6; Appendix 5). While cost inputs and granularity of reporting varied across studies, all calculated aggregated costs for the reported illness period (Table 6 and Appendix 5). In all studies, higher
Table 4
Pre-treatment LTFU, time from symptoms to first contact with health services, diagnosis and treatment start reported in n=7 observational studies

First author, Population	Screening tools	Outcomes	Comments					
	TB case definition	General population						
		Pre-treatment LTFU	N	n	%	95%CI		
Gopi 2005 India	CXR and symptoms Smear +ve	Screened	243	57	23	18-29	13-17	Screened group – no deaths. Reasons for defaulting included not interested in initiating treatment, symptoms too mild, too sick and work-related problems. PCF group – 19% died from among those for whom a default reason was known.
Balasubramanian 2004 India	CXR and symptoms Smear +ve	Screened	231	68	29	24-36	12-17	

Time to first contact with health services
India
Cough – 3 weeks Screened
PCF
screened group more likely to be older, married and less likely to be HIV infected.

Time to diagnosis
Symptoms or cough duration in weeks
Screened
PCF
screened group more likely to be older, from rural areas, less educated and live further from microscopy units.

Time to treatment
Symptoms or cough culture +ve
total treatment delay (days)
Screened
PCF
screened group more likely to be older, from rural areas, less educated and live further from microscopy units.

Risk groups
Symptoms or cough duration in weeks among those reporting symptoms
Screened
PCF
-0.001
Baseline characteristics of all (smear +ve and -ve) diagnosed in screened and on treatment in PCF groups - screened group more likely to be older, male, illiterate, sole earner, have poor quality house, 1 room house, lower smear grade and new smear +ve disease.

Notes

LTFU = loss to follow-up; pre-treatment LTFU = default between diagnosis and treatment start; N = total number of people with TB; n = number with outcomes; Δ proportion; 95%CI = 95% confidence interval; CXR = chest radiograph; +ve = positive; PCF = passive case-finding; -ve = negative; IQR = interquartile range; SD = standard deviation; Other symptom (fever, weight loss, chest pain and anorexia) durations to diagnosis were assessed, only weight loss was significantly higher in the screened population compared to passively found TB patients; included slums, tribal areas, scheduled caste communities, areas where occupational lung diseases is high, areas where individuals with high risk of acquiring TB reside including stone crushing/mining/weaving industry/unorganized labour (construction workers etc) homeless, high HIV/AIDS burden areas, areas or communities with high TB incidence (including prisons) and among household contacts of sputum smear positive TB patients; patient diagnosis delay = from sputum eligible (15th day of continuous cough/fever or day of the first episode of haemoptysis) to first visit to health care provider.

Health system diagnosis delay = from first visit to health care provider to date of diagnosis; total diagnosis delay = from eligible for sputum examination to diagnosis; similar difference observed when results were restricted to n=99 with smear positive disease; itotal treatment delay = from sputum eligible (15th day of continuous cough/fever or day of the first episode of haemoptysis) to treatment start.
Table 5
On-treatment outcomes (treatment success, case fatality and default on-treatment) among smear, Xpert and/or culture positive TB patients reported in n=7 observational studies and n=1 CRT, and, all-cause mortality reported in n=2 CRT

First author, country and population, screening tool	Group	Treatment success	PR	Case fatality	PR	LTFU on treatment	Pre-treatment LTFU	Comments				
	n/N	% (95%CI)	n/N	% (95%CI)	n/N	% (95%CI)	n/N (%)					
General population den Boon 2008 South Africa smear & culture	Screen	16/20	80% (56-94%)	1.00	2/27	7% (1-24%)	1.95	-	-	7/27	26%	
	PCF	379/473	80% (76-84%)	1.01	18/473	4% (2-6%)	0.88	13/65	20% (11-32%)	31/96	32%	
	PCF -	-	-	-	225/330	68% (63-73%)	1.00	23/330	7% (4-10%)	-	-	
	PCF -	997/1272	78% (76-81%)	1.00	104/1272	8% (7-10%)	0.96	96/1272	8% (6-9%)	11/111	10%	
Risk groups	Screen	247/274	90% (86-93%)	1.03	7/274	3% (1-5%)	0.69	16/274	6% (3-9%)	-	-	
	PCF	260/296	88% (83-91%)	1.06	11/296	4% (2-7%)	0.07	22/296	7% (5-11%)	-	-	
	PCF	293/368	80% (75-84%)	1.00	12/368	3% (2-6%)	0.14	36/368	10% (7-13%)	-	-	
Cluster randomised controlled trials												
First author, country and population, screening tool	Community, number and baseline data	Results										
General population Shargie 2006 Ethiopia Symptoms	87 contiguous administrative units clustered into 32 communities	Treatment success: screen vs PCF	n=128 (81%) vs n=165 (75%); difference (95%CI) 6 (-4 to 15); p<0.12									
	32 communities randomised – 12 to screening and 20 to PCF N° smear –ve TB patients - screen=159; PCF=221	Follow-up during treatment	Communities and TB patients - similar baseline characteristics between groups									
	PCF -	-	-	-	69/1011	7% (5-9%)	-	-	-	-		
Risk groups	Cluster – villages or subsection of towns	All-cause mortality: screen vs PCF	n=49 (2.2%) vs n=71 (3.3%); aOR (95%CI) 0.68 (0.47-0.98)									
Jenum 2018 India: neonates Symptoms	592 clusters randomised (8 strata) – 292 to screening and 295 to PCF N° in each group - screen=2215; PCF=2167	Follow-up 2 years										

(continued on next page)
Table 5 (Continued)

Study groups	PCF group household	CRT	Study groups	PCF group household	CRT
70 of 112 districts in 8 Vietnamese provinces selected for screening (including urban and rural locations); aOR (95% CI) = 0.34; 95% CI 0.14-0.80).					
A general challenge with interpreting the findings is the observational nature of most studies. This is compounded by differences in reported outcome measures, insufficient data on the care cascade, unadjusted analyses, small sample sizes, and length-time bias (where screening may detect individuals with less severe indolent disease who may have different characteristics, longer disease course and better outcomes including survival, than those who are identified through PCF). These limitations must be kept in mind when interpreting results. Definitive evidence for the effects of TB screening requires well-conducted RCTs. However, these require large sample sizes, long term follow-up and are resource intensive. We only identified four studies (all in risk groups) reporting on established screening programmes [32-35]. But there was general consistency in most findings, irrespective of the screening strategy used.					
We synthesised literature published between 1980–2020, to generate up-to-date evidence for the individual effects of TB screening. We found very few studies addressing the review questions. The WHO END-TB strategy sets out ambitious targets to reduce TB death, incidence and catastrophic costs by 2035 [44]. At the 2018 United Nations General Assembly high-level meeting, world leaders reaffirmed their commitment to ending TB [45,46]. At a time of unprecedented political commitment to find, test and treat TB patients, evidence for strategies such as TB screening to inform in-country decision making globally, is vital. Further, the reversal in TB control efforts and case-detection due to the COVID-19 pandemic [47,48] may going forward, make TB screening even more important.					
Four studies assessed catastrophic cost prevalence, which was higher in the PCF (range 12-61%) compared to screened (range 9-45%) group [38,39,41,42]. In two Indian studies, using house-to-house screening among general populations [38] and those with structural risk factors, [41] total costs and catastrophic costs (on multivariable analysis) were significantly lower in the screened compared to PCF groups. In two studies with small sample sizes, among Cambodian household and neighbourhood contacts of TB patients [42] and among mainly outpatient attendees and social contacts of TB patients in Nepal [39] there was no statistically significant difference in total costs and catastrophic costs on univariable analysis between screened and PCF groups. Two studies did not assess differences in mean total costs or report catastrophic costs [40,43].					
4. Discussion					
Table 6
Costs for the entirety of the illness period and the prevalence of catastrophic costs from n=6 studies reporting on patient costs*

First author, population and screening method, illness period and costs reported	Combined cost for the illness period (US$)	Catastrophic cost prevalence	Comments				
	Screen	PCF	p-value	Screen	PCF	p-value	
Munyandi (2020); India	Mean (SEM)	69 (18)	227 (20)	0.001	9%	29%	-

General population; symptoms and CXR screen
Diagnosis and treatment
Direct (medical and non-medical) and indirect costs
Gurung (2019); Nepal
OPD attendees, social contacts of people with TB, general population
TB camps; symptom screen
Pre-treatment (from symptom start) and intensive treatment phase
Direct (medical and non-medical) and indirect costs
Shewade (2018); India
Marginalised/vulnerable populations; symptom screen
From sputum eligible to diagnosis
Direct (medical and non-medical) and indirect costs
Morishita (2016); Cambodia
HH and neighbourhood contacts; CXR screen
Pre-treatment and during 6 months of treatment
Direct (medical and non-medical) and indirect costs
Hussain (2019); Pakistan
HCW - incentives; clinic attendees - symptom screen; general population – TB IEC
Pre-diagnosis, diagnosis and treatment phase
Direct (medical, non-medical) and indirect costs
Sekandi (2015); Uganda
General population; symptom screen
Diagnosis (non-medical) and indirect costs

* All values (costs and proportions) rounded to the nearest whole number; PCF-passive case-finding; CXR–chest radiograph; SEM–standard error of the mean; aOR-adjusted odds ratio; 95%CI-95% confidence interval; OPD-outpatient department; IQR-interquartile range
** included slums, tribal areas, scheduled caste communities, areas where occupational lung diseases is high, areas where individuals with high risk of acquiring TB reside including stone crushing/mining/weaving industry/unorganized labour (construction workers etc)/homeless, high HIV/AIDS burden areas, areas or communities with high TB incidence (including prisons) and among household contacts of sputum smear positive TB patients
† from 15th day of continuous cough, fever or the day of the 1st episode of haemoptysis; aPR-adjusted prevalence ratio; HH–household; HCWs–health care workers; IEC–information, education and communication
‡ no measure of spread reported; NR—not reported

LTFU, while limited and not generalisable, suggests pre-treatment LTFU is high among screened TB patients; in one study, no deaths were reported in the screened group [23]. In the PCF group, there was high pre-treatment case fatality, [23] similar to other reports [49]. Therefore, on-treatment outcomes, which ignore deaths pre-treatment, may underestimate the effects of screening.

Two studies (Churchyard 2000 and Verver 2001) found screening was associated with lower case fatality, [33,34] but due to their observational nature we cannot exclude length-time bias and uncontrolled confounders. Both report on established CXR screening programmes, with large sample sizes, access to good health systems and better reporting of deaths. While neither study report on pre-treatment LTFU, individuals treated could be more representative of those diagnosed. Churchyard 2000, among miners did not report treatment success by screened and PCF groups [34]. Verver 2001, showed no difference in treatment success, [33] but this study among migrants, had few deaths overall which may re...
are RCTs comparing different screening strategies in risk groups, showing lower mortality/case fatality among individuals, especially with severe disease, receiving more intensive screening [50,51]. As all data represent risk groups, findings cannot be extrapolated to general populations.

Pre-treatment LTFU, while likely to be setting-specific, can be frequent with interventions targeting “well” individuals. Programmes should ensure that all individuals diagnosed are linked to treatment, with context-specific barriers to engaging with care identified and mitigated. A CRT in rural Ethiopia where health care access is difficult, compared ECF to ECF plus community-based care (sputum collection, providing treatment and supporting adherence) by community health workers over one year [52]. Treatment success was significantly higher in the latter group, highlighting how combining screening with strategies that minimise pre-treatment LTFU can increase treatment success. Further, if all individuals diagnosed at an earlier stage are not started on treatment, reducing transmission, population-level benefits [4] shown in trials [53,54] may not be realised.

Due to the limitations of the identified economic studies (e.g. differences in the cost inputs and illness periods; small sample sizes; recall bias; and unadjusted analyses) we cannot directly compare findings between studies. Further, the data are mostly from South Asia, limiting generalisability. Nevertheless, all studies consistently showed lower total costs and catastrophic cost prevalence among those screened. While we did not assess screening costs/cost-effectiveness from a health system perspective, this can be high. When viewed from a societal perspective, there may be potential offsets to these costs. But, given the limitations of the included studies, only cautious conclusions can be drawn. Patient costs are often reported as barriers to accessing TB care.8,55-57 Therefore, standardising the collection and reporting of patient cost inputs as part of routine programme monitoring could help identify how interventions affect this patient important outcome, guiding policy making.

These reviews have several limitations. We only searched four databases; the grey literature was not searched. Only English, French and Spanish articles were included. The economic review only included articles from 2010. Therefore, some relevant articles may have been missed. As studies were heterogeneous, we could not meta-analyse the data. We did not assess publication bias.

An important finding was the limited data on individual outcomes, despite many publications on TB screening studies/programmes [58]. Going forward, studies/programmes must prioritise reporting this data, along with the screening cascade. Evaluations should be carefully designed, to identify appropriate control groups and adjust for potential confounders, allowing valid comparisons across diagnosed TB patients in screened and unscreened populations.

In conclusion, we found very limited data on the effect of TB screening on individual outcomes. Routine/research programmes must prioritise collecting and reporting this data.

Data sharing statement

All data are included within the article and supplementary material.

Declaration of Competing Interest

LT reports WHO consultancy work for the guideline development process and a Clinical Research Training Fellowship from the MRC (Grant Ref: MR/N020618/1).
LHC reports a contract from WHO TB Programme to Jonathan Golub for systematic review of ACF for TB and sub-contract/consulting for JHU for systematic review of ACF for TB.

JEG received a contract provided to Johns Hopkins University to conduct systematic reviews for the WHO's TB screening guidelines; received an NIH grant to conduct TB case finding in India, a second to test for and treat latent TB infection in Brazil; received UNITAID grants to conduct implementation research around latent TB infection in several African countries; and sat on the Scientific Advisory Board for the Aurum Institute in November 2019.

CM is a salaried staff of the WHO and is involved in policy development on TB. CM alone is responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of WHO.

ELC has received a Wellcome Trust Senior Research Fellowship in Clinical Science: 200901/Z/16/2 to their institution.

RMB reports salary support from my Wellcome Trust Clinical PhD fellowship, awarded through her institution, grant number 203905/Z/16/2; received payment from WHO to her institution for work on systematic review linked to this present review (but different to this review).

PM reports that he is funded by Wellcome (206575/Z/17/2).

EK has a consultancy contract with LSHTM for other work, this work was done under that umbrella.

HMA reports WHO consultancy for the work for the guideline development process; reports that EDCTP fund the larger TREATS consortium as a grant paid to her institution that covers some of her time; reports that she is a member of the technical review panel of the Global Fund and receive honoraria for her work.

All other authors have nothing to declare.

The designations used and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area, or of its authorities, nor concerning the delimitation of its frontiers or boundaries.

Funding

This work was commissioned by the WHO to update its TB screening guidelines and made possible through a grant from the WHO Global TB Programme. LT, MR, MAS, LM, TM, RK, RJH, VB, EK, HMA are funded by part of the EDCTP2 programme supported by the European Union (grant number RIA2016S-1632-TREATS). RMB, ELC and PM are funded by the Wellcome Trust (203905/2/16/2, 200901/Z/16/2 and 206575/Z/17/2 respectively). AES is supported by an NIH grant K23AI140918. The WHO, EDCTP, Wellcome Trust and NIH had no role in the conduct of the study or writing the review.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi: 10.1016/j.eclinm.2021.101127.

References

[1] World Health Organization. Global Tuberculosis Report 2020. [Available from: https://apps.who.int/iris/bitstream/handle/10665/100659/9789241568108_eng.pdf. Accessed 12 January, 2021].

[2] Harries AD, Lin Y, Kumar AMV, Satyanarayana S, Takarinda KC, Dioldo RA, et al. What can National TB Control Programmes in low- and middle-income countries do to end tuberculosis by 2030? PloS One 2018;7.

[3] Ho J, Fox CJ, Marais BJ. Passive case finding for tuberculosis is not enough. Int J Mycobacteriol 2016;5(4):374-8.

[4] World Health Organization. Systematic screening for tuberculosis: principles and recommendations 2013 [Available from: https://apps.who.int/iris/bitstream/handle/10665/84971/9789241568106_eng.pdf?sequence=0&isAllowed=y. Accessed 1 February 2020].

[5] Lonnroth K, Corbett E, Golub J, Godfrey-Faussett P, Uplekar M, Weil D, et al. Systematic screening for active tuberculosis: rationale, definitions and key considerations. Int J Tuberc Lung Dis 2013;17(1):89-98.

[6] Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJ. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PloS one 2011;6(4):e17601.

[7] World Health Organization. Principles and practice of screening for disease. [Available from: https://apps.who.int/iris/bitstream/handle/10665/37650/WHO_PHP_34.pdf?sequence=1&isAllowed=y. Accessed: 1 October 2020].

[8] Taninurana T, Jaramillo E, Weil D, Ravignione M, Lonnroth K. Financial burden for tuberculosis patients in low- and middle-income countries: a systematic review. Eur Respir J 2014;43(6):1763-75.

[9] Mood C, Jonsson JÖ. The Social Consequences of Poverty: An Empirical Test on Longitudinal Data. Soc Indic Res 2016;127:633–52.

[10] Marmot M. The influence of income on health: views of an epidemiologist. Health Aff (Millwood) 2002;21(2):31–46.

[11] Kranzer K, Afnan-Holmes H, Tomlin K, Golub JE, Shapiro AE, Schapa A, et al. The benefits to communities and individuals of screening for active tuberculosis disease: a systematic review. Int J Tuberc Lung Dis 2013;17(4):432-46.

[12] Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. Cochrane 2021.

[13] Schünemann H, Brozek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations Updated October 2013 [Available from: https://www.gradepro.org/app/handbook/html. Accessed 1 June 2020].

[14] World Health Organization. Definitions and reporting framework for tuberculosis. 2013.

[15] Chaisson L. Overview and systematic review of the number needed to screen for active TB. 51st World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union); 21st October. The International Journal of Tuberculosis and Lung Disease 2020.

[16] Global Health Cost Consortium. The Unit Cost Study Repository [Available from: https://ghcost.org/html/data/ucr/app/. Accessed 1 June 2020].

[17] [editors]. In: Higgins JPT, Eldridge S, Li T, editors. Chapter 23: Including variants on randomized trials. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020); Cochrane 2020. [Available from: www.training.cochrane.org/handbook. Accessed: 1 November 2020].

[18] Eldridge S, Campbell M, Campbell M, Drahota A, Giraud B, Higgins J, et al. Revised Cochrane risk of bias tool for randomized trials (RoB 2.0): Additional considerations for cluster-randomized trials October 2016 [Available from: https://www.riskofbias.info/welcome/rob-2-0-tool/archive/rob-2-0-cluster-randomized-trials-2016. Accessed: 1 June 2020].

[19] Huseuva D, Drummond M, Petrovs A, Moher D, Greenberg D, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMJ 2013;346:f1049.

[20] Abdurrahman SA, Watson L, Blakiston M, Obasanjo J, Yassin MA, Anderson RM, et al. Are patients with pulmonary tuberculosis who are identified through active case finding in the community different than those identified in healthcare facilities? New microbes and new infections 2017:1535–9.

[21] den Boon S, Verver S, Lombard CJ, Bateman ED, Irusen EM, Enarson DA, et al. Comparison of symptoms and treatment outcomes between actively and passively case finding tuberculosis cases: the additional value of active case finding. Epidemiol Infect 2008;136(10):1342-9.

[22] Shargie EB, Jinna M, Lindhjem B. Prevalence of smear-positive pulmonary tuberculosis in a rural district of Ethiopia. Int J Tuberc Lung Dis 2006;10(1):87.

[23] Shargie EB, Yassin MA, Lindhjem B. Prevalence of smear-positive pulmonary tuberculosis in a rural district of Ethiopia. Int J Tuberc Lung Dis 2006;10(1):87–92.

[24] Gopi PG, Chandrasekaran V, Narayanan PR. Failure to initiate treatment for tuberculosis patients diagnosed in a community survey and at health facilities under a DOTS programme in a district of South India. Indian J Tuberc 2004:52.

[25] Balasubramanian R, Garg R, Santha T, Gopi PG, Subramani R, Chandrasekaran V, et al. Gender disparities in tuberculosis: report from a rural DOTS programme in south India. Int J Tuberc Lung Dis 2004;8(3):323–32.

[26] Santha T, Renu G, Fristedt BR, Subramani R, Gopi PG, Chandrasekaran V, et al. Are community surveys to detect tuberculosis in high prevalence areas useful? Results of a comparative study from Tiruvallur District, South India. Int J Tuberc Lung Dis 2003;7:258–65.

[27] Harper I, Fryatt R, White A. Tuberculosis case finding in remote mountainous areas–are microscopy camps of any value? Experience from Nepal. Tuber Lung Dis 1996;77(4):384–8.

[28] Cassells A, Heineman E, LeClere S, Gurung PK, Rahut CB. Tuberculosis case finding in Eastern Nepal. Tuberc Lung Dis 1992;63(3):175–85.

[29] Shargie EB, Morkve O, Lindhjem B. Tuberculosis case finding through a village outreach programme in a rural setting in southern Ethiopia: community randomised trial. Bull World Health Organ 2006;84(2):112–9.

[30] Shewade HD, Gupta V, Satyanarayana S, Kumar S, Pandey P, Bajpai UN, et al. Active versus passive case finding for tuberculosis in marginalised and vulnerable populations in India: comparison of treatment outcomes. Global health action 2019;12(1):165451.
The End TB Strategy: global strategy and targets for tuberculosis prevention, care and control after 2015

Shawke GD, Gupta V, Satyanarayana S, Pandey P, Bajpai UN, Tripathy JP, et al. Characteristic, health seeking and delays among new sputum smear positive TB patients identified through active case finding when compared to passive case finding in India. PLoS one 2019;14(3):e0213345.

Paiao DS, Lemos EF, Carbone AD, Sgarbi RV, Junior AL, da Silva FM, et al. Impact of mass-screening on tuberculosis incidence in a prospective cohort of Brazilian prisoners. BMC Infect Dis 2016;16(1):533.

Story A, Aldridge RW, Abubakar I, Stagg HR, Lipman M, Watson JM, et al. Active case finding for pulmonary tuberculosis using mobile digital chest radiography: an observational study. Int J Tuberc Lung Dis 2012;16(11):1461–7.

Verrier S, Bwlore R, Borgodof MW. Screening for pulmonary tuberculosis among immigrants: estimated effect on severity of disease and duration of infectiousness. Int J Tuberc Lung Dis 2005;9(5):419–25.

Churchyard GJ, Kleinschmidt I, Corbett EL, Munsiff SI, Smit J, De Cock KM. Factors associated with an increased case-fatality rate in HIV-infected and non-infected South African gold miners with pulmonary tuberculosis. Int J Tuberc Lung Dis 2000;4(8):705–12.

Capewell S, France AJ, Anderson M, Leitch AG. The diagnosis and management of tuberculosis in common hospital dwellers. Tubercle 1988;69(2):125–31.

Jenum S, Selvam S, Jesuraj N, Ritz C, Hesseling AC, Cardenas V, et al. Incidence of tuberculosis and the influence of surveillance strategy on tuberculosis case-finding and all-cause mortality: a cluster randomised trial in Indian neonates vaccinated with BCG. BMJ Open Respir Res 2018;5(1):e000304.

Fox GI, Nhong NV, Sy DN, Hoa NLP, Anh LTN, Anh NT, et al. Household-Contact Investigation for Detection of Tuberculosis in Vietnam. N Engl J Med 2018;378(3):221–9.

Munynadi M, Thomas BE, Karikalul N, Kannan T, Rajendran K, Drola CK, et al. Cost-astrophic costs due to tuberculosis in South India: comparison between active and passive case finding. Trans R Soc Trop Med Hyg 2020;114(3):185–92.

Gurung SC, Diktic K, Rai B, Caves M, Paudel PR, Dhillot R, et al. The role of active case finding in reducing patient incurred catastrophic costs for tuberculosis in Nepal. Infect Dis Poverty 2019;8(1):99.

Hussain H, Mor AT, Khan AJ, Khawaja S, Creswell J, Tyleskjar T, et al. The cost-effectiveness of incentive-based active case finding for tuberculosis (TB) control in the private sector Karachi, Pakistan. BMC Health Serv Res 2019;19(1):690.

Shewade HD, Gupta V, Satyanarayana S, Kharate A, Sahai KN, Murail et al. Active case finding among marginalised and vulnerable populations reduces catastrophic costs due to tuberculosis infection. Global health action 2018;11(1):1494897.

Morishita F, Yadav RP, Eang MT, Sant S, Nishikori N. Mitigating Financial Burden of Tuberculosis through Active Case Finding Targeting Household and Neighbourhood Contacts in Cambodia. PLoS one 2016;11(9):e0162796.

Selkland JN, Dobkin K, Oloya J, Okwera A, Whalen CC, Corso PS. Cost-effectiveness analysis of community active case finding and household contact investigation for tuberculosis case detection in urban Africa. PLoS one 2015;10(2):e0117009.

World Health Organization. The End TB Strategy: global strategy and targets for tuberculosis prevention, care and control after 2015. [Available from: https://www.who.int/tb/post2015_TBstrategy.pdf?ua=1. Acessed 1 October 2020.]

United Nations. Political declaration of the UN general assembly high-level meeting on the fight against tuberculosis 2018. [Available from: https://www.who.int/tb/unhlm/TBDeclaration.pdf. Accessed: 1 October 2020.]

Nations United. World Leaders Reafirm Commitment to End Tuberculosis by 2030, as General Assembly Adopts Declaration Outlining Actions for Increased Financing. Treatment Access 2018. [Available from: https://www.un.org/press/en/2018/ga12067.doc.htm. Accessed: 1 October 2020.]

McQuaid CE, Vassall A, Cohen T, Fieket K, COVID-TB Modelling Working Group, White RG. The impact of COVID-19 on TB: a review of the data. IJTLD. 2021(In press)(pre-print available at: https://theunion.org/sites/default/files/2021-03/0148_Review%20McQuaid%20V3.pdf).

Oga-Omenka C, Tsaja-Akinrin A, Bofa J, Heikamp P, Pai M, Zarowski C. Commentary: Lessons from the COVID-19 global health response to inform TB case finding. Healthc (Amst) 2021;9(2):100487.

MacPherson P, Houben RM, Glynn Jr, Corbett EL, Kranzer K. Pre-treatment loss to follow-up in tuberculosis patients in low- and lower-middle-income countries and high-burden countries: a systematic review and meta-analysis. Bull World Health Organ 2014;92(2):126–38.

Churchyard GJ, Fielding K, Roux S, Corbett EL, Chaissen RE, De Cock KM, et al. Twelve-monthly versus six-monthly radiological screening for active case-finding of tuberculosis: a randomised controlled trial. 2011. 134-9 p.

Gupta-Wright A, Corbett EL, van Oosterhout JJ, Wilson D, Grindt D, Alulantika-Moyo M, et al. Rapid urine-based screening for tuberculosis in HIV-positive patients admitted to hospital in Africa (STAMP): a pragmatic, multicentre, parallel-group, double-blind, randomised controlled trial 2018. 292-301.

Datiké DG, Lindtjorn B. Health extension workers improve tuberculosis case detection and treatment success in southern Ethiopia: a community randomized trial. PloS one 2009;4(5):e5443.

Marks GB, Nguyen NV, Nguyen PTB, Nguyen TA, Nguyen HB, Tran KH, et al. Community-wide Screening for Tuberculosis in a High-Prevalence Setting. N Engl J Med 2019;381(14):1347, 1347a.

Corbett EL, Bandason T, Duong T, Daya E, Makamure B, Churchyard GJ, et al. Comparison of two active case-finding strategies for community-based diagnosis of symptomatic smear-positive tuberculosis and control of infectious tuberculosis in Harare, Zimbabwe (DETECTB): a cluster-randomised trial. Lancet 2020;376(9748):1244–53.

Marahatta SB, Yadav RK, Giri D, Lama S, Rijal KR, Mishra SR, et al. Barriers in the access, diagnosis and treatment completion for tuberculosis patients in central and western Nepal: A qualitative study among patients, community members and health care workers. PLoS one 2020;15(10):e0227253.

Albana O, Daura E, Kiriazova T, Makarenko O, Bachmaha M, Rybak N, et al. Patients’ perspectives of tuberculosis treatment challenges and barriers to treatment adherence in Ukraine: a qualitative study. BMJ Open 2020;10(1):e032027.

Sullivan BJ, Esmaili BE, Cunningham CK. Barriers to initiating tuberculosis treatment in sub-Saharan Africa: a systematic review focused on children and youth. Global health action 2017;10(1):1290317.

Burke RM, Nliterasa M, Feasley HRA, Chaissen LH, Golub JE, Naufal F, et al. Community-based active case-finding interventions for tuberculosis: a systematic review. Lancet Public Health 2021;6(5):e283, e99.