Molecular interactions analysis of some aluminium salts in binary aqueous solutions of tetrahydrofuran (THF): Acoustic and Conductometric approach

R.C.Thakur*1, Ravi Sharma1 and Arshdeep Sharma1

1Department of Chemistry, School of Chemical Engineering & Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.

*E-mail: drthakurchem@gmail.com

Abstract: In the present investigation conductance and speed of sound of aluminium sulphate, aluminium nitrate, and aluminium chloride were experimentally determined in aqueous medium as well in binary aqueous mixtures of THF. Various conductance and acoustic parameters viz; molar conductance, limiting molar conductance, partial molar adiabatic compressibility, coefficient of adiabatic compressibility were also determined using Kohlrausch’s Law, Debye-Huckel theory and Masson’s equation at working temperatures and different compositions of THF. Analysis reveals that limiting molar conductivity (Λ_m^0) decreases with increase in composition of THF in water indicating the decrease in the ion-solvent interactions with increase in composition THF in water. Further it was found that with increase in temperature the Λ_m^0 values increase for all the three salts which support the increase in ion-solvent interactions with increase in temperature. The values of partial molar isentropic compression (ϕ_s^iso) were found negative and these values further increase with increase in composition of THF indicating that on increase in composition, attractive interactions develop between THF and water which induces dehydration of aluminium salts which make the water molecules of aluminium salts more compressible than that of lower THF concentration resulting in decrease of ion solvent interactions with increase in THF composition in water. On the other hand with increase in temperature, the values of ϕ_s^iso further increase leading to increase in ion-solvent interactions of aluminium salts in water and 5% THF+ water. Walden product and its temperature coefficient i.e.$[d(\Lambda_m^0\eta_0)/dT]$ have also been calculated which confirms that aluminium salts act as structure breaker in different compositions of THF in water.

Keywords: Partial molar compressibilities, limiting molar conductance, Walden product, structure breaker

Introduction: Physicochemical properties and conductivity measurements are used to interpret different types of interaction i.e. ion–ion, ion-solvent, proton-anion, proton-solvent interactions in aqueous solutions of aluminium salts as well in THF+H2O mixtures. These properties and measurements are very important in understanding various biochemical and physiological phenomenon in living cells [1].
In order to understand the behaviour of electrolyte solutions, studies on the thermodynamic and conductance properties of electrolytes in various solvent media are carried out which are proved very useful. For interpreting ion- ion and ion- solvent interactions, the mixed solvents [2] are taken which allows the variation of properties such as dielectric constant, conductance and viscosity. In the current study, an effort has been made to analyse the nature of ion–solvent and solvent-solvent interactions of aluminium salts viz; aluminium sulphate, aluminium nitrate, aluminium chloride in water as well as in tetrahydrofuran (THF) + water mixtures using conductometric studies as work has not been carried out on the above mentioned salts in the binary aqueous mixture of THF. Acoustic studies of electrolytic solutions is a subject of fundamental importance as these provide useful data about the nature of interactions in the solution. These studies have been carried out exclusively in aqueous solutions for the simple reason that water has favorable physical properties, such as a convenient liquid range, high dielectric constant, high dipole moment and high ionizing power for electrolytes [3-9].

MATERIALS AND METHODS:

Reagents: All the reagents viz; aluminium sulphate, aluminium nitrate, aluminium chloride and tetrahydrofuran [THF] used in the present study were of AR grade and procured from S.D Fine-Chem Limited. All the chemicals were dried over anhydrous CaCl₂ in a vacuum desiccator for more than 48 hours. Purity and method of purification of the chemicals used in the present work are given in table 1

Chemical name	Mass Fraction purity\#	Purification Method
Aluminium Sulphate	>0.99	Vacuum drying
Aluminium Nitrate	>0.99	Vacuum drying
Aluminium Chloride	>0.99	Vacuum drying
Tetrahydrofuran	>0.99	Drying

As stated by supplier

The different compositions of THF-water and solutions of the electrolytes were prepared by weight. The molality (m) of electrolyte solution was then converted into molarity (c) by using the following expression [10].

\[
c = \frac{\text{molality} \times \text{density of solution}}{\text{molecular weight of electrolyte}}
\]

where, d is the density of electrolyte solution, and \(M_2\) is molecular weight of electrolyte. In the present study the conductivity meter was used to determine the conductance of the samples whereas the ultrasonic interferometer was used to find out the ultrasonic velocity in liquids for getting a high degree of accuracy.
The relationship between molar conductance (A_m) and specific conductance (κ) is given by [11-14]:

$$A_m = \frac{\kappa \times 1000}{N}$$ \hspace{1cm} (2)

Here, N is the concentration (normality) of the solution.

The effect of temperature on conductance is given by [15]:

$$A_m = A_0 e^{-\frac{E_\lambda}{RT}}$$ \hspace{1cm} (3)

Here, E_λ is the energy of activation for conduction, R is the gas constant; T is the temperature in Kelvin. The plot of $\log A_m$ and $1/T$ gives a straight line and from the plot, E_λ can be determined by the slope of the straight line.

In case of acoustics properties [16-21], the partial molar isentropic compression (ϕ_{KS}) and the apparent molar isentropic compression (ϕ_{KS}^0) are determined by using:

$$\phi_{KS} = \frac{MK_s}{\rho} + \frac{1000(K_s \rho_0 - K_s^0 \rho)}{mp\rho_0}$$ \hspace{1cm} (4)

$$\phi_{KS}^0 = \phi_{KS} + S_K m$$ \hspace{1cm} (5)

where m is the molal concentration of the solution, M is the molar mass of the solute and ρ_0, ρ, K_s and K_s^0 are the densities and coefficients of adiabatic compressibilities of the solvent and solution respectively.

The isentropic compressibility (K_s) is linked to speed of sound by:

$$K_s = \frac{1}{u^2 \rho}$$ \hspace{1cm} (6)

where u is the speed of light and ρ is the density of the solution.

Results and Discussion:

The specific conductance, molar conductance, limiting molar conductance and Walden product of all the salts are determined at 303.15K in water and different compositions of THF in water and values for aluminium sulphate are recorded in table 2 whereas the data for aluminium nitrate and aluminium chloride are given in supplementary data (table S1).

Table 2. Conductance Parameters of Aluminium sulphate in water and different compositions of THF in water at 303.15K.

Concentration C X 10^2 (mol/L)	Specific Conductance κ (Ω^(-1) cm^-1)	Molar Conductance A_m (Ω^(-1) cm^2 mol^-1)	Limiting Molar Conductance A_m^0 (Ω^(-1) cm^2 mol^-1)	Walden product $A_m^0\eta_0$ (Ω^(-1) cm^2 mol^-1 cP)
0.298	0.0010	335.5705	375.34	300.53
0.496	0.0015	302.4194		
0.694	0.0019	273.7752		
0.990	0.0025	252.5253		
2.938	0.0051	173.5875		
-------	-------	-------	-------	
4.846	0.0073	150.6397		
5% THF+ Water				
0.298	0.0006	201.3423		
0.496	0.0008	181.4516		
0.694	0.0012	172.9107		
0.990	0.0015	151.5152		
2.938	0.0041	139.5507		
4.846	0.0060	123.8135		
		200.89	162.42	
0.298	0.0006	200.6689		
0.496	0.0008	160.9658		
0.694	0.0010	143.8849		
0.990	0.0013	131.0489		
2.938	0.0027	91.71196		
4.846	0.0038	78.25371		
		210.36	171.80	
0.298	0.0004	133.7793		
0.496	0.0006	120.7243		
0.694	0.0007	100.7149		
0.990	0.0009	90.72581		
2.938	0.0022	74.72861		
4.846	0.0033	67.95717		
		140.2	115.60	
0.298	0.0005	167.2241		
0.496	0.0006	120.7243		
0.694	0.0007	100.7194		
0.990	0.0009	90.72581		
2.938	0.0019	64.53804		
4.846	0.0027	55.60132		
FIG.1. Plot of Molar Conductance Vs square root of molar concentration for Aluminium sulphate in H2O and different compositions of THF in H2O at 303.15K

Limiting molar conductance (Λ_m^0) was obtained by plotting molar conductance (Λ_m) versus square root of concentration (\sqrt{C}) where intercept of the curve gives limiting molar conductance (Λ_m^0) and values of limiting molar conductance were found decreasing with increase in composition. This is because of the reason that the ionic mobility decrease with increase of THF composition in water. Limiting molar conductance (Λ_m^0) gives the information about ion-solvent interaction and these interactions were found decreasing with increase in composition of THF in water. Walden product ($\Lambda_m^0\eta_0$) has also been calculated and is helpful in determining the ion migration in solutions. It tells us about the contribution of the dielectric friction as well as the overall friction coefficient for moving ions. Using viscosity data from literature [9], the Walden Product values were calculated which were helpful in analysing the structure making/structure breaking capability of these salts. Temperature coefficient of Walden product can be calculated by plotting Walden Product against Temperature, and from the slope of the curve temperature coefficient of Walden product was calculated.

Table 3: Acoustic Parameters [Sound velocities (U), Coefficient of Adiabatic Compressibilities (Ks) and Apparent Molar Adiabatic Compressibilities (Φ_{KS}), Partial Molar Adiabatic Compressibilities and their corresponding experimental Slopes] of Aluminium sulphate, Aluminium nitrate, Aluminium chloride in H2O and different compositions of THF in water At 303.15K.

m (molKg⁻¹)	U (ms⁻¹)	$K_s \times 10^{10}$ (kg⁻¹ ms²)	$\Phi_{KS} \times 10^{15}$ (m³ mol⁻¹ GPa⁻¹)	Φ_{KS}^0 (m³ mol⁻¹ GPa⁻¹)	S_K^* (kg m³ mol⁻² GPa⁻¹)									
WATER														
5% THF														
10% THF														
15% THF														
20% THF														
	Aluminium Sulphate	Water	5%THF+ Water		-43.79	-5.86	-43.29	-6.57	-43.16	-6.57	-42.44	-5.93	-42.51	-5.93
--------	--------------------	-------	--------------	----	--------	-------	--------	-------	--------	-------	--------	-------	--------	-------
0.003	1510.05	4.409		-43.76										
0.005	1510.94	4.404		-43.82										
0.007	1511.23	4.398		-43.85										
0.01	1511.99	4.396		-43.88										
0.03	1513.29	4.390		-43.98										
0.05	1514.87	4.375		-44.07										
0.003	1518.12	4.374		-43.26										
0.005	1518.97	4.367		-43.33										
0.007	1519.65	4.362		-43.36										
0.01	1520.22	4.357		-43.39										
0.03	1520.95	4.353		-43.50										
0.05	1521.35	4.341		-43.61										
0.003	1507.05	4.440		-43.13										
0.005	1507.92	4.434		-43.20										
0.007	1508.81	4.428		-43.23										
0.01	1509.64	4.423		-43.26										
0.03	1510.85	4.407		-43.37										
0.05	1512.95	4.384		-43.48										
0.003	1673.99	3.607		-42.42										
0.005	1674.58	3.604		-42.47										
0.007	1675.09	3.602		-42.50										
0.01	1676.88	3.593		-42.52										
0.03	1677.33	3.585		-42.62										
0.05	1677.93	3.573		-42.73										
0.003	1720.00	3.427		-42.50										
0.005	1720.85	3.423		-42.55										
0.007	1721.45	3.420		-42.58										
0.01	1721.99	3.417		-42.60										
0.03	1722.68	3.409		-42.70										
0.05	1723.75	3.396		-42.81										
FIG. 2. Plot of Apparent Molar Isentropic Compressibility Vs Molality for Aluminium nitrate in H₂O and different compositions of THF in H₂O at 303.15K.

The sound velocity values are calculated using ultrasonic interferometer and in order to get the values of slope (S_K') and partial molar isentropic compressibility (ϕ_{KS}^0), values of apparent molar isentropic compressibility values are plotted against the molality (m). The obtained values of (ϕ_{KS}^0) were found negative and reported for aluminium sulphate in table 3 (For other salts please refer supplementary table S2). These values further become less negative with increase in composition of THF in water which indicate that on increase in composition of THF in water, attractive interactions are developed between THF and water which induces dehydration of aluminium salts which make the water molecules of aluminium salts more compressible as compared to lower THF concentrations. These results ultimately lead to decrease in ion solvent interactions with increase in THF composition in water.

The specific conductance, molar conductance, limiting molar conductance, sound velocity, partial molar adiabatic compressibility of aluminium sulphate, aluminium nitrate and aluminium chloride were also determined at different temperatures i.e. 298.15K, 303.15K, 308.15K, 313.15K in water and 5% THF+ H₂O systems respectively. Specific conductance, molar conductivity, sound velocity, adiabatic compressibility of aluminium sulphate in water and 5% THF+ Water at different temperatures are reported in the table 4 where as for other salts values are given in supplementary table S3.
Table 4: Conductance Parameters and Walden Product of Aluminium Sulphate in H$_2$O and 5% THF + H$_2$O at different temperatures

Concentration C X 102 (molL$^{-1}$)	Specific Conductance κ (Ω$^{-1}$ cm$^{-1}$)	Molar Conductance A_∞ (Ω$^{-1}$ cm2 mol$^{-1}$)	Limiting Molar Conductance A_0^0 (Ω$^{-1}$ cm2 mol$^{-1}$)	Walden product $A_\infty^0 \eta_0$ (Ω$^{-1}$ cm2 mol$^{-1}$ cP)
298.15K				
0.298	0.0009	301.0033	343.80	307.25
0.496	0.0014	281.6901		
0.694	0.0018	258.9928		
0.990	0.0023	231.8548		
2.938	0.0047	159.6467		
4.846	0.0069	142.0923		
303.15K				
0.298	0.001	335.5705	375.34	300.53
0.496	0.0015	302.4194		
0.694	0.0019	273.7752		
0.990	0.0025	252.5253		
2.938	0.0051	173.5875		
4.846	0.0073	150.6397		
308.15K				
0.298	0.0011	369.1275	411.28	297.15
0.496	0.0016	322.5806		
0.694	0.0021	303.0303		
0.990	0.0027	273.2794		
2.938	0.0055	187.5213		
4.846	0.0077	159.1238		
313.15K				
0.298	0.0012	404.0404	444.8	291.79
0.496	0.0017	343.4343		
0.694	0.0022	317.9191		
0.990	0.0029	293.8197		
2.938	0.0057	194.7386		
4.846	0.008	165.7001		
Temperature	Composition	Value 1	Value 2	
-------------	-------------	---------	---------	
298.15K	5% THF+ Water	0.298	0.0005	
		0.496	0.0008	
		0.694	0.0011	
		0.990	0.0014	
		2.938	0.0035	
		4.846	0.0055	
			167.2241	
			160.9658	
			158.2734	
			141.1290	
			118.8859	
			113.2619	
303.15K			183.11	
			165.03	
308.15K			200.89	
			162.42	
313.15K			205.52	
			149.95	
FIG. 3. Plot of Molar Conductance Vs (\sqrt{C}) for Aluminium sulphate in water at different temperatures
FIG.4. Plot of Molar Conductance vs (\sqrt{c}) for Aluminium chloride in 5% THF+ H₂O at different temperatures

Values of limiting molar conductance (A_m^0) are obtained by plotting graphs between molar conductance (A_m) versus square root of concentration (\sqrt{c}). Intercept of these curve give values of limiting molar conductance (A_m^0). The values of limiting molar conductance (A_m^0) increase with rise in temperature due to increase in ionic mobility with temperature. At infinite dilution, the motion of ions is retarded by its interaction with surrounding solvent molecules as there are no other ions within a finite distance. Values of limiting molar conductance (A_m^0) also give the information about ion-solvent interactions which are found further increasing with increase in temperature in this case.

Also, the Walden product ($A_m^0\eta_0$) data has been calculated which is helpful in determining the ion migration in solutions. When values of Walden product are plotted against the temperature, the temperature coefficient of Walden product i.e. slope was found negative. The negative values of temperature coefficient of Walden product confirms that the aluminium salts act as structure breaker in water as well as in 5% THF.

The activation energy of conductance (E_λ) are less than the activation energies obtained from the viscosity data E_η. The effect of temperature on viscosity is given by [22]:

$$\eta = Ae^{E_\eta/kT}$$ \hspace{1cm} (7)

The activation energy of conductance (E_λ) is calculated by plotting values of log(A_m) and 1/T from equation (3) whereas (E_η) is obtained from the slope of linear plots of log η versus 1/T using equation (7). The values of E_λ and E_η are given in table 5 for all the electrolytes in water:

TABLE 5: Calculation of E_λ (kJmol⁻¹) and E_η (kJmol⁻¹) at different temperatures of all Aluminium Salts in water:

Concentration	E_λ (kJ mol⁻¹)	E_η(kJ mol⁻¹)
Aluminium Sulphate		
0.003	15.20	16.85
0.005	10.23	16.80
0.007	11.12	17.03
0.01	12.26	17.23
0.03	10.47	17.72
0.05	8.01	17.63
Aluminium Chloride		
0.003	12.43	16.52
0.005	9.17	16.85
0.007	8.12	17.08
0.01	7.18	17.03
The values of activation energy \((E_a)\) obtained from conductance is less than the activation energy of viscosity \((E_\eta)\) for all aluminium salts in water. It shows that activation energy obtained from the viscous flow for aluminium sulphate, aluminium nitrate and aluminium chloride is almost constant whereas activation energies obtained from conductance also do not follow a regular trend.

TABLE 6: Acoustic Parameters of Aluminium Sulphate, Aluminium Nitrate, Aluminium Chloride in water and 5% THF at different temperatures.

\(M\) (molKg\(^{-1}\))	\(U\) (ms\(^{-1}\))	\(K_s \times 10^{10}\) (kg\(^{-1}\)ms\(^2\))	\(\Phi_{KS} \times 10^{15}\) (m\(^3\)mol\(^{-1}\) GPa\(^{-1}\))	\(\Phi_{KS}^0\) (m\(^3\)mol\(^{-1}\) GPa\(^{-1}\))	\(S_k^*\) (kg m\(^3\)mol\(^{-2}\)GPa\(^{-1}\))				
Aluminium Sulphate									
Water	298.15K								
0.003	1498.23	4.467	-44.47	-44.51	-6.60				
0.005	1499.12	4.461	-44.54						
0.007	1499.69	4.457	-44.57	-44.51	-6.60				
0.01	1500.98	4.448	-44.61	-44.51	-6.60				
0.03	1501.9	4.434	-44.72	-44.51	-6.60				
0.05	1502.89	4.419	-44.82	-44.51	-6.60				
303.15K									
0.003	1510.05	4.409	-43.76	-43.79	-5.86				
0.005	1510.94	4.404	-43.82	-43.79	-5.86				
0.007	1511.23	4.398	-43.85	-43.79	-5.86				
0.01	1511.99	4.396	-43.88	-43.79	-5.86				
0.03	1513.29	4.390	-43.98	-43.79	-5.86				
0.05	1514.87	4.375	-44.07	-43.79	-5.86				
Temperature	Doping Concentration	308.15K	313.15K	5% THF+ Water	298.15K	303.15K	308.15K	313.15K	
-------------	----------------------	---------	---------	----------------	---------	---------	---------	---------	
308.15K				0.003	1520.63	4.354	-43.14	-43.18	-5.94
308.15K				0.005	1521.82	4.350	-43.21		
308.15K				0.007	1521.97	4.342	-43.24		
308.15K				0.01	1522.55	4.341	-43.27		
308.15K				0.03	1523.66	4.336	-43.37		
308.15K				0.05	1525.73	4.323	-43.46		
313.15K				0.003	1529.27	4.312	-42.64	-42.68	-5.57
313.15K				0.005	1529.89	4.309	-42.70		
313.15K				0.007	1530.65	4.305	-42.74		
313.15K				0.01	1531.05	4.300	-42.77		
313.15K				0.03	1531.87	4.296	-42.86		
313.15K				0.05	1532.61	4.286	-42.94		
5% THF+ Water	298.15K	0.003	1511.73	4.411	-43.92				
5% THF+ Water	298.15K	0.005	1512.35	4.401	-43.99				
5% THF+ Water	298.15K	0.007	1512.99	4.397	-44.02	-43.95	-6.76		
5% THF+ Water	298.15K	0.01	1513.65	4.393	-44.05				
5% THF+ Water	298.15K	0.03	1514.06	4.388	-44.16				
5% THF+ Water	298.15K	0.05	1515	4.377	-44.28				
303.15K				0.003	1518.12	4.374	-43.26	-43.29	-6.57
303.15K				0.005	1518.97	4.367	-43.33		
303.15K				0.007	1519.65	4.362	-43.36		
303.15K				0.01	1520.22	4.357	-43.39		
303.15K				0.03	1520.95	4.353	-43.50		
303.15K				0.05	1521.35	4.341	-43.61		
308.15K				0.003	1523.03	4.347	-42.64	-42.67	-6.31
308.15K				0.005	1523.82	4.342	-42.71		
308.15K				0.007	1524.27	4.339	-42.74		
308.15K				0.01	1524.88	4.334	-42.77		
308.15K				0.03	1525.97	4.320	-42.87		
308.15K				4.829	1527.7	4.300	-42.98		
313.15K				0.003	1532.03	4.268	-42.23	-42.23	-6.23
FIG. 5. Plots of apparent molar isentropic compressibility vs molality for aluminium sulphate in water at different temperatures.
FIG. 6. Plots of apparent molar isentropic compressibility vs molality for aluminium sulphate in 5% THF+ water at different temperatures

The values of ϕ_{KS} for aluminium sulphate and other salts (Please refer Supplementary Table S4), in water and 5% THF at different temperatures were found negative (Table 6) and with increase in temperature makes the water molecules of aluminium salts more compressible. Further with rise in temperature the ϕ_{KS} values become less negative which indicate the electrostriction of water molecules and 5% THF surrounding aluminium salts is removed.

CONCLUSION

In the present study different conductance and acoustic parameters including Walden Product and its temperature coefficient i.e. $[d(\Delta m\eta_0)/dT]$ have been determined for aluminium sulphate, aluminium nitrate, aluminium chloride in water and binary aqueous mixtures of THF and it has been found that all aluminum salts act as structure breaker in water and different compositions of THF in water.

REFERENCES:

1. Gomaa A, Negm A and Tahoon M A 2017 Journal of Taibah University for Science 11 741
2. Roy MN Pradhan P and Dewan R 2009 Fluid Phase Equilibria 282 51
3. Sinha A and Roy MN 2006 Journal of Chemical & Engineering Data 51 1415.
4. Thakur Ashima Juglan KC Kumar Harsh Kaur Kirandeep 2019 Physics and chemistry of liquids, doi.org/10.1080/00319104.2019.1660980.
5. Thakur Ashima Juglan KC Kumar Harsh 2019 *Journal of Chemical Thermodynamics*, doi.org/10.1016/j.jct.2019.105916
6. Thakur Ashima, Juglan KC, Kumar Harsh, Kaur Kirandeep 2019 *Journal of Molecular Liquids* **288** 111014.
7. Kaur Kirandeep Juglan Kailash Kumar Harsh and Behal Isha 2018 *J. Chem. Eng. Data*, **63**, 3237
8. Kaur Kirandeep Juglan Kailash Kumar Harsh 2018 *Journal of Molecular Liquids* **268** 700
9. Thakur RC Sharma Ravi Kumar Ashish and Parmar ML 2015 *J. Mater. Environ. Sci* **6** 1330
10. Thakur C Sharma Ravi Kumar Ashish Kumar Sanjay Parmar ML 2014 *Oriental Journal of Chemistry* **30** 2037
11. Kant S Kumar Amit and Kumar Sunil 2009 *Journal of Molecular Liquids* **150** 39
12. Kumar B and Rodrigues SJ 2004 *Solid State Ionics* **167** 91
13. Gregorowicz Jerzy Szejgis Adam and Bald Adam 1996 *Physics and Chemistry of Liquids* **32**,133
14. Bald A Gregorowicz Jerzy and Szejgis Adam 1992 *Journal of Electroanalytical Chemistry* **340** 153
15. Bockris John Reddy AKN 1998 *Modern Electrochemistry*, Second edition Plenum Press, New York
16. Kaur Kirandeep Juglan KC and Kumar Harsh 2017 *AIP Conference Proceedings* **1860**
17. Kaur Kirandeep Behal Isha Juglan Kailash Chandra and Kumar Harsh 2018 *J. Chem. Thermodynamics* **125** 93
18. Kaur Kirandeep Juglan Kailash Kumar Harsh 2018 *J. Chem. Thermodynamics* **127** 8
19. Chakraborty Nabaparna Kumar Harsh Kaur Kirandeep Juglan KC 2018 *J. Chem. Thermodynamics* **126** 137
20. Thakur Ashima Juglan KC Kumar Harsh Kaur Kirandeep 2020 *Journal of Molecular Liquids*, **298** 112000
21. Kumar H Kaur K Kaur SP Singla M 2013 *Journal of Chemical Thermodynamics* **59** 173
22. Glasstone S Laidler K J Eyring H 1941 *The theory of rate processes*, Mc Graw-Hill, New York