Bounded solutions of the finite and
infinite-dimensional dynamical systems.

Pokutnyi O.A.

Institute of mathematics of NAS of Ukraine, Kiev, Tereshchkivska 3,
E-mail: lenasas@gmail.com

Abstract

Invariant torus are constructed under assumption that the homogeneous system admits an
exponential dichotomy on the semi-axes. The main result is closely related with the well-known
Palmer’s lemma and results of Boichuk A.A., Samoilenko A.M.

Key words: exponential dichotomy, bounded solutions, invariant manifold.

Statement of the problem

Consider the linear inhomogeneous system

\[
\frac{d\phi}{dt} = a(\phi), \quad \frac{dx}{dt} = P(\phi)x + f(\phi),
\]

which defined on the direct product of \(m\)-dimensional torus \(T_m\) or infinite dimensional torus \(T_{\infty}\) and the space \(R^n\) under assumption that \(a(\phi) \in C^1(T_m); P(\phi), f(\phi) \in C(T_m); \phi = (\phi_1, \ldots, \phi_m) \in T_m; x = \text{col}(x_1, \ldots, x_n) \in R^n\). It is known, that the problem of existing and constructing of invariant torus \(x = u(\phi) \in C(T_m), \phi \in T_m\) of the system (1) for all \(f(\phi) \in C(T_m)\) can be solved with using Samoilenko-Green function [1, 2]. For uniqueness it is necessary and sufficient for all \(f(\phi) \in C(T_m)\) that homogeneous system has no degenerate torus

\[
\frac{d\phi}{dt} = a(\phi), \quad \frac{dx}{dt} = P(\phi)x.
\]

It means, that for all \(\phi \in T_m\) the system

\[
\frac{dx}{dt} = P(\phi_t(\phi))x
\]

is exponentially-dichotomous (e-dichotomous) on the whole axis \(R = (-\infty, +\infty)\), i.e. there is exists projector \(C(\phi) = C^2(\phi)\) and not dependent from \(\phi, \tau\) constants \(K \geq 1, \alpha > 0\) such that

\[
\begin{align*}
\|\Omega^t(\phi)C(\phi)\Omega^\tau_\phi(\phi)\| & \leq Ke^{-\alpha(t-\tau)}, \quad t \geq \tau, \\
\|\Omega^\tau_\phi(\phi)(I - C(\phi))\Omega^t(\phi)\| & \leq Ke^{-\alpha(\tau-t)}, \quad \tau \geq t,
\end{align*}
\]

for all \(t, \tau \in R; \Omega^t_\phi(\phi), \Omega^\tau_\phi(\phi) = I_n\) — is \((n \times n)\)-dimensional fundamental matrix of the system (2); \(\phi_t(\phi)\) is a solution of the Koschi problem \(\dot{\phi} = a(\phi), \phi_0(\phi) = \phi\).
Consider the case when the system (3) doesn’t have e-dichotomous on the semi-axes R, but e-dichotomous on the semi-axes R_+ and R_- with projectors $C_+(\phi)$ and $C_-(\phi)$ ($C_+^2(\phi) = C_+(\phi)$) respectively. It means that (3) for the system (3) the next inequalities are true:

$$
\begin{align*}
\|\Omega_0^L(\phi)C_+(\phi)\Omega_0^R(\phi)\| &\leq K_1 e^{-\alpha_1(t-\tau)}, \quad t \geq \tau, \quad t, \tau \in \mathbb{R}_+; \\
\|\Omega_0^L(\phi)(I - C_+(\phi))\Omega_0^R(\phi)\| &\leq K_1 e^{-\alpha_1(\tau-t)}, \quad \tau \geq t, \quad t, \tau \in \mathbb{R}_+; \\
\|\Omega_0^L(\phi)C_-(\phi)\Omega_0^R(\phi)\| &\leq K_2 e^{-\alpha_2(t-\tau)}, \quad t \geq \tau, \quad t, \tau \in \mathbb{R}_-; \\
\|\Omega_0^L(\phi)(I - C_-(\phi))\Omega_0^R(\phi)\| &\leq K_2 e^{-\alpha_2(\tau-t)}, \quad \tau \geq t, \quad t, \tau \in \mathbb{R}_-;
\end{align*}
$$

is the so called critical case. In this article it is necessary and sufficient conditions for the existence of invariant torus $x = u(\phi) \in C(T_m), \phi \in T_m,$ of the system (3) are obtained in that case. It is necessary and sufficient conditions for inhomogeneity $f(\phi) \in C(T_m)$, which define invariant manifold are obtained.

Bounded solutions on the whole axis

For fixed $\phi \in T_m$ general solutions of the problem

$$
\frac{dx}{dt} = P(\phi_t(\phi))x + f(\phi_t(\phi)), \quad (7)
$$

bounded on the entire semi-axes R_+ и R_-, have the next form

$$
x(t, \phi, \xi_1) = \begin{cases}
\Omega_0^L(\phi)C_+(\phi)\xi_1 + \int_0^t \Omega_0^L(\phi)C_+(\phi_t(\phi))f(\phi_t(\phi))d\tau - \\
\int \Omega_0^L(\phi)(I - C_+(\phi_t(\phi)))f(\phi_t(\phi))d\tau, \quad t \geq 0,
\end{cases} \quad (8)
$$

\begin{align*}
\Omega_0^L(\phi)(I - C_-(\phi))\xi_1 + \int_{-\infty}^t \Omega_0^L(\phi)C_-(\phi_t(\phi))f(\phi_t(\phi))d\tau - \\
- \int \Omega_0^L(\phi)(I - C_-(\phi_t(\phi)))f(\phi_t(\phi))d\tau, \quad t \leq 0,
\end{align*}
for all bounded f and

$$x(t, \phi, \xi_2) = \begin{cases} \Omega_t^0(\phi)C_+(\phi)\xi_2 + \int_0^t \Omega^t(\phi)(I - C_+(\phi t(\phi)))f(\phi_t(\phi))d\tau - \\ - \int_0^\infty \Omega^t(\phi)(C_+(\phi t(\phi)))f(\phi_t(\phi))d\tau, & t \geq 0, \\ \Omega_t^0(\phi)(I - C_-(\phi))\xi_2 + \int_{-\infty}^t \Omega^t(\phi)(I - C_- (\phi t(\phi)))f(\phi_t (\phi))d\tau - \\ - \int_{-\infty}^0 \Omega^t(\phi)(C_- (\phi t(\phi)))f(\phi_t (\phi))d\tau, & t \leq 0, \end{cases}$$

but not for all bounded f, where

$$C_+(\phi t(\phi)) = \Omega_0^0(\phi)C_+(\phi)\Omega^0_t(\phi), \quad C_-(\phi t(\phi)) = \Omega_0^0(\phi)C_-(\phi)\Omega^0_t(\phi).$$

We say about conditions on f below. Here are some well-known relations

$$\Omega_t^t(\phi s(\phi)) = \Omega_{t+s}^0(\phi), \quad \Omega^t_t(\phi)\Omega^s_s(\phi) = \Omega^0(\phi),$$

$$(\Omega^0_t(\phi))^{-1} = \Omega_t^0(\phi), \quad \phi_t(\phi) = \phi_{t+s}(\phi),$$

which valid for all $t, \tau, s \in \mathbb{R}$, $\phi \in \mathcal{T}_m$.

Solutions \[9\] and \[10\] will be bounded on the entire axis \mathbb{R}, if the constant vectors $\xi_1 = \xi_1(\phi) \in \mathbb{R}^n$ and $\xi_2 = \xi_2(\phi) \in \mathbb{R}^n$ satisfy the next algebraic systems, obtained from the \[9\] and \[10\] for $t = 0$:

$$[C_+(\phi) - (I - C_-(\phi))]\xi_1 = \int_{-\infty}^0 C_-(\phi)\Omega^0_t(\phi)f(\phi_t(\phi))d\tau +$$

$$+ \int_0^\infty (I - C_+(\phi))\Omega^0_t(\phi)f(\phi_t(\phi))d\tau.$$

$$[C_+(\phi) - (I - C_-(\phi))]\xi_2 = \int_{-\infty}^0 (I - C_-(\phi))\Omega^0_t(\phi)f(\phi_t(\phi))d\tau +$$

$$+ \int_0^\infty (C_+(\phi))\Omega^0_t(\phi)f(\phi_t(\phi))d\tau.$$

Denote by $D(\phi) = C_+(\phi) - (I - C_-(\phi))$ is $(n \times n)$-dimensional matrix, and by $D^+(\phi)$ its Moore-Penrose pseudoinvertible \[5\]; $P_{N(D)}(\phi)$ and $P_{N(D^+)}(\phi)$ are $(n \times n)$-dimensional orthoprojectors:
\[P^2_{N(D)}(\phi) = P_{N(D)}(\phi) = P^*_{N(D)}(\phi), \]
\[P^2_{N(D^*)}(\phi) = P_{N(D^*)}(\phi) = P^*_{N(D^*)}(\phi), \]

which project \(R^n \) onto kernel \(N(D) = \text{ker} D(\phi) \) and cokernel \(N(D^*) = \text{ker} D^*(\phi) \) of matrix \(D(\phi) \):

\[P_{N(D^*)}(\phi) = I - D(\phi)D^+(\phi), \quad P_{N(D)}(\phi) = I - D^+(\phi)D(\phi). \]

System (12) is solvable if and only if the right part of the system (12) belongs to the orthogonal complement of \(N^\perp(D^*(\phi)) = \text{Im} (D(\phi)) \) of the subspace \(N(D^*(\phi)) \). It means that

\[P_{N(D^*)}(\phi) \left\{ \int_{-\infty}^{0} C_{-}(\phi)\Omega^0_{\tau}(\phi)f(\phi_{\tau}(\phi))d\tau + \right. \\
+ \left. \int_{0}^{\infty} (I - C_{+}(\phi))\Omega^0_{\tau}(\phi)f(\phi_{\tau}(\phi))d\tau \right\} = 0. \tag{14} \]

In this case the general solutions of the system (12), bounded on the entire axis \(R \), have the form (8) with constant \(\xi_1 = \xi_1(\phi) \in R^n \), which defines from the equation (12) by the rule:

\[\xi_1 = D^+(\phi) \left\{ \int_{-\infty}^{0} C_{-}(\phi)\Omega^0_{\tau}(\phi)f(\phi_{\tau}(\phi))d\tau + \right. \\
+ \left. \int_{0}^{\infty} (I - C_{+}(\phi))\Omega^0_{\tau}(\phi)f(\phi_{\tau}(\phi))d\tau \right\} + P_{N(D)}(\phi)c, \quad c = c(\phi) \in R^n. \tag{15} \]

Substitute (15) in (8), we obtain that for fixed \(\phi \in T_m \) and inhomogeneity \(f(\phi_t(\phi)) \in C(T_m) \), which satisfies condition (14), solutions, bounded on \(R \) of the system (17) have the form
\[x(t, \phi, c) = \begin{cases}
C_+(\phi)P_{N(D)}(\phi)c + \int_0^t C_+(\phi)\Omega^0_{D+}(\phi)f(\phi_\tau(\phi))d\tau - \\
\quad - \int_t^\infty (I - C_+(\phi))\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau + \\
\quad + C_+(\phi)D^+(\phi)\left\{ \int_0^\infty C_-(\phi)\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau + \\
\quad + \int_0^t (I - C_+(\phi))\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau \right\}, \quad t \geq 0, \\
(I - C_-(\phi))P_{N(D)}(\phi)c + \int_0^t C_-(\phi)\Omega^0_{D+}(\phi)f(\phi_\tau(\phi))d\tau - \\
\quad - \int_t^\infty (I - C_-(\phi))\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau + \\
\quad + (I - C_-(\phi))D^+(\phi)\left\{ \int_0^\infty C_-(\phi)\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau + \\
\quad + \int_0^t (I - C_+(\phi))\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau \right\}, \quad t \leq 0.
\end{cases} \]

Since \(P_{N(D')}(\phi)D(\phi) = P_{N(D)}(\phi)\left[C_+(\phi) - (I - C_-(\phi)) \right] = 0 \), then

\[P_{N(D')}(\phi)C_+(\phi) = P_{N(D')}(\phi)\left(I - C_-(\phi) \right), \]

and condition (14) is equivalent one of the conditions

\[P_{N(D')}(\phi) \int_0^\infty C_-(\phi)\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau = 0, \quad (17) \]

\[P_{N(D')}(\phi) \int_0^\infty (I - C_+(\phi))\Omega^0_D(\phi)f(\phi_\tau(\phi))d\tau = 0. \]

Since

\[\left[C_+(\phi) - (I - C_-(\phi)) \right]D^+(\phi) = I - P_{N(D')}(\phi), \]
we obtain
\[C_+(\phi)D^+(\phi)\{\ldots\} - I\{\ldots\} = (I - C_- (\phi))D^+(\phi)\{\ldots\}, \]
from the condition (14), \{\ldots\} is the expression in (14).

Since \(D(\phi)P_{N(D)}(\phi) = [C_+(\phi) - (I - C_- (\phi))]P_{N(D)}(\phi) = 0 \), then
\[C_+(\phi)P_{N(D)}(\phi) = (I - C_- (\phi))P_{N(D)}(\phi). \]

Similarly the system (13) is solvable if and only if the right part of system (13) belongs to the orthogonal complement of \(N^\perp(D^* (\phi)) = \text{Im } (D(\phi)) \) of the subspace \(N(D^* (\phi)) \). It means that
\[
P_{N(D^*)}(\phi) \left\{ \int_{-\infty}^{0} (I - C_- (\phi))\Omega^0_\tau (\phi) f(\phi_\tau (\phi)) d\tau + \int_{0}^{\infty} (C_+(\phi))\Omega^0_\tau (\phi) f(\phi_\tau (\phi)) d\tau \right\} = 0. \quad (18)\]

In this case the general solutions of the system (13), bounded on the entire axis \(R \), have the form (9) with constant \(\xi_2 = \xi_2(\phi) \in R^n \), which defines from the equation (13) by the rule:
\[
\xi_2 = D^+(\phi) \left\{ \int_{-\infty}^{0} (I - C_- (\phi))\Omega^0_\tau (\phi) f(\phi_\tau (\phi)) d\tau + \int_{0}^{\infty} (C_+(\phi))\Omega^0_\tau (\phi) f(\phi_\tau (\phi)) d\tau \right\} + P_{N(D)}(\phi)c, \quad c = c(\phi) \in R^n. \quad (19)\]

Substitute (19) in (9), we obtain that for fixed \(\phi \in T_m \) and inhomogeneity \(f(\phi_\tau (\phi)) \in C(T_m) \), which satisfies condition (18), solutions, bounded on \(R \) of the system (7) have the form
\[x(t, \phi, c) = \begin{cases}
C_+(\phi)P_{N(D)}(\phi)c + \int_0^t (I - C_+(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau - \\
\int_t^\infty (C_+(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau + \\
+C_+(\phi)D^+(\phi) \left\{ \int_0^0 (I - C_-(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau + \\
\int_0^\infty (C_+(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau \right\}, & t \geq 0, \\
(I - C_-(\phi))P_{N(D)}(\phi)c + \int_0^- t (I - C_-(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau - \\
\int_0^\infty (C_-(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau + \\
+(I - C_-(\phi))D^+(\phi) \left\{ \int_0^0 (I - C_-(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau + \\
\int_0^\infty (C_-(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau \right\}, & t \leq 0.
\end{cases} \]

Since \(P_{N(D^+)}(\phi)D(\phi) = P_{N(D^+)}(\phi)\left[I - C_+(\phi) + C_-(\phi) \right] = 0 \), then

\[P_{N(D^+)}(\phi)(I - C_+(\phi)) = P_{N(D^+)}(\phi)(C_-(\phi)), \]

and condition (15) is equivalent one of the conditions

\[P_{N(D^+)}(\phi) \int_0^\infty (I - C_-(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau = 0, \]
\[P_{N(D^+)}(\phi) \int_0^- (-\infty) (I - C_-(\phi))\Omega^0_\tau(\phi)f(\phi_\tau(\phi))d\tau = 0. \]

Since

\[(I - C_+(\phi) + C_-(\phi))D^+(\phi) = I - P_{N(D^+)}(\phi), \]
we obtain

\[(I - C_+(\phi))D^+(\phi)\{\ldots\} - I\{\ldots\} = (C_-(\phi))D^+(\phi)\{\ldots\},\]

from the condition (18), \{\ldots\} is expression in (18).

Since \(D(\phi)P_{N(D)}(\phi) = [C_+(\phi) - (I - C_-(\phi))]P_{N(D)}(\phi) = 0,\) then

\[(I - C_+(\phi))P_{N(D)}(\phi) = (C_-)P_{N(D)}(\phi).\]

Consider the case, when homogeneous system (3) does not have bounded and unbounded solutions

\[C_+(\phi)P_{N(D)}(\phi) = (I - C_-)P_{N(D)}(\phi) = 0.\]

Then (16) and (20) we can rewrite in the form

\[x(t, \phi) = (G_t(f))(\phi), \tag{22}\]

\[
\begin{align*}
(G_t(f))(\phi) &= \Omega^t_0(\phi) \\
&= \begin{cases} \\
\int_0^t C_+(\phi)\Omega^\tau_0(\phi)f(\phi_\tau(\phi))d\tau - & t \geq 0, \\
- \int_0^\infty (I - C_+(\phi))\Omega^\tau_0(\phi)f(\phi_\tau(\phi))d\tau + \\
+ C_+(\phi)D^+(\phi) \left\{ \int_0^\tau C_-(\phi)\Omega^\rho_\tau(\phi)f(\phi_\rho(\phi))d\rho \right\} \end{cases} \\
&\quad + \int_0^\tau (I - C_+(\phi))\Omega^\rho_\tau(\phi)f(\phi_\rho(\phi))d\rho, \quad t \geq 0, \\
&\quad \int_{-\infty}^0 C_-(\phi)\Omega^\tau_0(\phi)f(\phi_\tau(\phi))d\tau - \\
&\quad - \int_0^\tau (I - C_-(\phi))\Omega^\rho_\tau(\phi)f(\phi_\rho(\phi))d\rho + \\
&\quad + [C_+(\phi)D^+(\phi) - I] \left\{ \int_{-\infty}^0 C_-(\phi)\Omega^\rho_\tau(\phi)f(\phi_\rho(\phi))d\rho \right\} \\
&\quad + \int_0^\tau (I - C_+(\phi))\Omega^\rho_\tau(\phi)f(\phi_\rho(\phi))d\rho, \quad t \leq 0,
\end{align*}\]

and in the second case
which obtained from (22) for t

Criterion of existence of invariant torus of nonhomogeneous system

As shown below, under conditions

We show, that the expression

Under conditions (15), (19) solutions, bounded on R, of the system (7) for fixed $\phi \in T_m$ have the form (22).

We show, that the expression

$$x(0, \phi) = u(\phi) = (G_t(f))(\phi),$$

which obtained from (22) for $t = 0$, define for all $\phi \in T_m$ invariant torus of the system (1).

Criterion of existence of invariant torus of nonhomogeneous system

As shown below, under conditions

$$P_{N(D^+)}(\phi) \int_{-\infty}^{+\infty} C_-(\phi)\Omega^0_t(\phi)f(\phi_\tau(\phi))d\tau = 0,$$

$$P_{N(D^+)}(\phi) \int_{-\infty}^{+\infty} (I - C_-(\phi))\Omega^0_t(\phi)f(\phi_\tau(\phi))d\tau = 0,$$
the nonhomogeneous system \([7]\) have bounded solutions on \(R\) in the form \([22]\) for fixed \(\phi \in T_m\). Conditions \([24]\) and \([26]\) on solutions \(\phi_t(\phi)\) define invariant set. Substitute \(\phi_t(\phi)\) instead of \(\phi\) and show that conditions \([24]\) and \([26]\) hold for all \(t \in R\) and \(\phi \in T_m\). From the relations for \(D(\phi) = C_+(\phi) - (I - C_-(\phi))\) we obtain the next equality

\[
D(\phi_t(\phi)) = \Omega^0_0(\phi)D(\phi)\Omega^0_t(\phi) \quad \forall t \in R, \quad \forall \phi \in T_m.
\]

(26)

Direct check shows, that for all \(t \in R\) and \(\phi \in T_m\) the matrix

\[
D^{-}(\phi_t(\phi)) = [\Omega^0_0(\phi)D(\phi)\Omega^0_t(\phi)]^{-} = \Omega^0_0(\phi)D^{-}(\phi)\Omega^0_t(\phi)
\]

(27)

is generalized-invertible to the matrix \(D(\phi_t(\phi))\) and satisfies the next relations \([5]\)

\[
D^{-}(\phi_t(\phi))D(\phi_t(\phi))D^{-}(\phi_t(\phi)) = D^{-}(\phi_t(\phi)),
\]

\[
D(\phi_t(\phi))D^{-}(\phi_t(\phi))D(\phi_t(\phi)) = D(\phi_t(\phi)).
\]

(28)

From the conditions

\[
D(\phi_t(\phi))D^{-}(\phi_t(\phi)) = I - P_{N(D)}(\phi_t(\phi)),
\]

\[
D^{-}(\phi_t(\phi))D(\phi_t(\phi)) = I - P_{N(D^*)}(\phi_t(\phi))
\]

we get expressions for projectors \(P_{N(D)}(\phi_t(\phi))\) and \(P_{N(D^*)}(\phi_t(\phi))\) onto kernel and cokernel of matrix \(D(\phi)\) on solutions \(\phi_t(\phi)\) of the respectively Koschi problem for all \(t \in R\) and \(\phi \in T_m\):

\[
P_{N(D)}(\phi_t(\phi)) = \Omega^0_0(\phi)P_{N(D)}(\phi)\Omega^0_t(\phi) = \Omega^0_0(\phi)[I - D^{-}(\phi)D(\phi)]\Omega^0_t(\phi),
\]

\[
P_{N(D^*)}(\phi_t(\phi)) = \Omega^0_0(\phi)P_{N(D^*)}(\phi)\Omega^0_t(\phi) = \Omega^0_0(\phi)[I - D(\phi)D^{-}(\phi)]\Omega^0_t(\phi).
\]

(29)

We can choose that \(D^{-}(\phi) = D^+(\phi)\). In that case projectors \(P_{N(D)}(\phi)\) and \(P_{N(D^*)}(\phi)\) will be orthoprojectors.

For all \(t \in R\) and \(\phi \in T_m\) we have

\[
P_{N(D^*)}(\phi_t(\phi)) \int_{-\infty}^{+\infty} C_-(\phi_t(\phi))\Omega^0_t(\phi_t(\phi))f(\phi_t(\phi))d\tau =
\]

\[
= \Omega^0_0(\phi)P_{N(D^*)}(\phi) \int_{-\infty}^{+\infty} C_-(\phi)\Omega^0_t(\phi)\Omega^0_t(\phi)\phi_t(\phi)d\tau = 0
\]

and

\[
\Omega^0_0(\phi)P_{N(D^*)}(\phi) \int_{-\infty}^{+\infty} (I - C_-(\phi))\Omega^0_t(\phi)\phi_t(\phi)d\tau = 0
\]
From the conditions (10), (12), (29) we have
\[u(\phi_t(\phi)) = (G_0(f))(\phi_t(\phi)) = (G_t(f))(\phi) \]
for all \(t \in R \) and \(\phi \in T_m \). It shows that \(u(\phi_t(\phi)) \in C^1(T_m) \), and the set \(u(\phi) \) defines invariant torus of the system (1).

In such a way we have the following theorem.

Theorem. Let the system (3) is e-dichotomous on both semi-axes \(R_+ \) u \(R_- \) with projectors \(C_{\pm}(\phi) \), which satisfy the next equalities for \(\phi_t(\phi) \)
\[C_{\pm}(\phi_t(\phi)) = \Omega_0^t(\phi)C_{\pm}(\phi)\Omega_0^t(\phi), \quad C_{\pm}^2(\phi) = C_{\pm}(\phi). \]
The system (1) has invariant torus if and only if nonhomogeneit \(f(\phi) \in C(T_m) \) satisfies conditions (24), (25). If the homogeneous system (3) does not have bounded and unbounded solutions, i.e. the next condition is true
\[C_{+}(\phi)P_{N(D)}(\phi) = (I - C_{-}(\phi))P_{N(D)}(\phi) = 0, \]
then expression
\[u(\phi) = (G_0(f))(\phi) \]
which obtain from (22), for \(t = 0 \), defines for all \(\phi \in T_m \) invariant torus of system (1).

Examples. Consider the problem of the existence of invariant manifold of the system
\[\dot{\varphi} = 1, \quad (30) \]
\[\dot{x}_1(t) = \text{th}(\varphi)x(t) + f_1(\varphi), \quad (31) \]
\[\dot{x}_2(t) = -\text{th}(\varphi)x_2(t) + f_2(\varphi), \quad (32) \]
\[\dot{x}_3(t) = \text{th}(\varphi)x_3(t) + f_3(\varphi). \quad (33) \]
This system has the following characteristics:
\[\Omega_0^t(\varphi) = \left(\begin{array}{cc} \frac{\text{ch}(\varphi_t(\varphi))}{\text{ch}(\varphi)} & 0 \\ 0 & \frac{\text{ch}(\varphi_t(\varphi))}{\text{ch}(\varphi)} \end{array} \right), \]
\[C_{+}(\varphi) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), C_{-}(\varphi) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \]
\[D(\varphi) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) = D^+(\varphi), \]
\[P_{N(D)}(\varphi) = P_{N(D^*)}(\varphi) = I. \]
In this case the first condition of solvability have the form
\[\int_{-\infty}^{+\infty} \frac{\text{ch}_{\varphi}}{\text{ch}(\varphi_t(\varphi))}f_1(\varphi_t(\varphi))d\tau = 0, \]
and under this condition the system has the invariant torus in the form

\[u_1(\varphi) = \left(- \int_0^{+\infty} \frac{\text{ch}(\varphi) f_1(\varphi, \varphi)}{\text{ch}(\varphi)} d\tau \right) \]

and under the second condition of solvability

\[\int_{-\infty}^{+\infty} \text{ch}(\varphi) f_2(\varphi) d\tau = 0 \]

the system has the invariant torus

\[u_2(\varphi) = \left(- \int_0^{+\infty} \frac{\text{ch}(\varphi) f_2(\varphi)}{\text{ch}(\varphi)} d\tau \right) \]

If, for example \(f_1(\varphi) = \frac{\text{sh}(\varphi)}{\text{ch}^3(\varphi)} \) and \(f_2(\varphi) = \frac{\text{sh}(\varphi)}{\text{ch}^4(\varphi)} \), then the given system has invariant torus in the glued form

\[u(\varphi) = \left(- \frac{1}{5\text{ch}^3(\varphi)} \frac{1}{2\text{ch}^4(\varphi)} \right) \]

We mention that given theory works in the case of infinite dimensional space. Here is an example. Consider the countable system of differential equations in the space \(BC(\mathbb{R}, l_2) \) or \(BC(\mathbb{R}, l_{2\text{loc}}) \) in the next form

\[\dot{\varphi}(t) = 1, \]

\[\frac{dx(t)}{dt} = P(\varphi_1(t)) x(t) + f(\varphi(t)), \]

where

\[x(t) = (x_1(t), x_2(t), ...) \in l_2 \text{ for all } t, \]

and

\[f(\varphi) = (f_1(\varphi), f_2(\varphi), ...), \]

where

\[P(\varphi) = \text{diag}\{\text{th}(\varphi), \text{th}(\varphi), -\text{th}(\varphi), -\text{th}(\varphi), ...\}. \]

\[x(t) = (x_1(t), x_2(t), ...), f(t) = (f_1(t), f_2(t), ...) \in BC(\mathbb{R}, l_2). \]

Here \(BC(\mathbb{R}, l_2) \) and \(BC(\mathbb{R}, l_{2\text{loc}}) \) are the spaces of bounded and continuous on the whole axis functions with values in \(l_2 \) or \(l_{2\text{loc}} \).

Matriciant of the system has the form

\[\Omega_0(\varphi) = \text{diag}\{ \frac{\text{ch}(\varphi)}{\text{ch}^2(\varphi)}, \frac{\text{ch}(\varphi)}{\text{ch}^3(\varphi)}, \frac{\text{ch}(\varphi)}{\text{ch}(\varphi)^2}, \frac{\text{ch}(\varphi)}{\text{ch}(\varphi)^3}, \frac{\text{ch}(\varphi)}{\text{ch}(\varphi)^4}, ... \}. \]

Projectors have the form

\[C_+(\varphi) = \text{diag}\{0, 0, 1, 1, ...\}, C_-(\varphi) = \text{diag}\{1, 1, 0, 0, ...\}. \]
Matrixes $D(\varphi) = D^+(\varphi) = 0$, and $P_{N(D)} = P_{N(D^*)} = I$, where I is the identity matrix. Condition of the solvability for the first type of torus has the form
\[
\int_{-\infty}^{+\infty} \frac{f_i(\varphi_+(\varphi))}{ch(\varphi_+(\varphi))} d\tau = 0, \quad i = 1, 2,
\]
and invariant torus has the form
\[
x = u_1(\varphi) = (-\int_{0}^{+\infty} \frac{ch(\varphi) f_1(\varphi_+(\varphi))}{ch(\varphi_+(\varphi))} d\tau, -\int_{0}^{+\infty} \frac{ch(\varphi) f_2(\varphi_+(\varphi))}{ch(\varphi_+(\varphi))} d\tau, 0, ...).
\]
Condition of the solvability for the second type has the form
\[
\int_{-\infty}^{+\infty} f_i(\varphi_+(\varphi)) ch(\varphi_+(\varphi)) d\tau = 0, \quad i \geq 3,
\]
and invariant torus has the form
\[
x = u_2(\varphi) = (0, 0, -\int_{0}^{+\infty} \frac{f_3(\varphi_+(\varphi)) ch(\varphi_+(\varphi))}{ch(\varphi)} d\tau, ..., -\int_{0}^{+\infty} \frac{f_i(\varphi_+(\varphi)) ch(\varphi_+(\varphi))}{ch(\varphi)} d\tau, ...),
\]
or in the glued form
\[
x = u(\varphi) = (-\int_{0}^{+\infty} \frac{ch(\varphi) f_1(\varphi_+(\varphi))}{ch(\varphi_+(\varphi))} d\tau, -\int_{0}^{+\infty} \frac{ch(\varphi) f_2(\varphi_+(\varphi))}{ch(\varphi_+(\varphi))} d\tau, \\
-\int_{0}^{+\infty} \frac{f_3(\varphi_+(\varphi)) ch(\varphi_+(\varphi))}{ch(\varphi)} d\tau, ..., -\int_{0}^{+\infty} \frac{f_i(\varphi_+(\varphi)) ch(\varphi_+(\varphi))}{ch(\varphi)} d\tau, ...).
\]
If, for example, $f_i(\varphi) = \frac{sh\varphi}{ch^{i-1}(\varphi)}$, $i \geq 1$, then we have
\[
x = u_1(\varphi) = \left(-\frac{1}{2ch^2(\varphi)}, -\frac{1}{3ch^3(\varphi)}, 0, ... \right),
\]
and
\[
x = u_2(\varphi) = (0, 0, -\frac{1}{3ch^4(\varphi)}, ..., -\frac{1}{ich^{i+1}(\varphi)}, ...),
\]
or in the glued form
\[
x = u(\varphi) = \left(-\frac{1}{2ch^2(\varphi)}, -\frac{1}{3ch^3(\varphi)}, -\frac{1}{3ch^4(\varphi)}, ..., -\frac{1}{ich^{i+1}(\varphi)}, ... \right).
\]
Here is denotions as in [8].
Bibliography

[1] Samoilenko A.M. Elements of mathematical theory of multifrequency oscillations. – M.: Science, 1987. – 304 p. (in russian).

[2] Mitropolsky Yu.O., Samoilenko A.M., Kulik V.L. Investigation of dichotomy of linear system of differential equations with Lyapunov functions. – Kiev, 1990. – 270 p. (in russian)

[3] Palmer K. J. Exponential dichotomies and transversal homoclinic points // J. Different. Equat. – 1984. – 55. – P. 225 – 256.

[4] Boichuk A. A. Solutions of weakly nonlinear differential equations bounded on the whole line // Nonlinear Oscillations. – 1999. – 2, No 1. – P. 3 – 10.

[5] Boichuk A. A., Samoilenko A. M. Generalized inverse operators and fredholm boundary value problems. – Utrecht; Boston: VSP, 2004. – 317 p.

[6] Boichuk A.A. Condition of existence of unique Green-Samoilenko function of the invariant torus problem // Ukrainian Math. Journ. – 2001. – 53, No4. – p. 556–559.

[7] Boichuk A. Bounded solutions of differential equations in Banach space // Colloq. Different. and Difference Equat. dedicat. Prof. Jaroslav Kurzweil 80-th Birthday: Abstrs (Brno, Czech Republic, Sept. 5 – 8, 2006). – P. 35.

[8] Boichuk A.A. Criterion of existence of unique invariant torus of linear extension dynamical systems. – Ukrainian Math. Journal, 2007, V.59, №1. – p.3 – 13.

Institute of mathematics of NAS of Ukraine, Kiev, 01601, Tereshenkiuska str. 3, lenasas@gmail.com