Evidence-based Risk Stratification for Sport Medicine Procedures During the COVID-19 Pandemic

Abstract

Orthopaedic practices have been markedly affected by the emergence of the COVID-19 pandemic. Despite the ban on elective procedures, it is impossible to define the medical urgency of a case solely on whether a case is on an elective surgery schedule. Orthopaedic surgical procedures should consider COVID-19-associated risks and an assimilation of all available disease dependent, disease independent, and logistical information that is tailored to each patient, institution, and region. Using an evidence-based risk stratification of clinical urgency, we provide a framework for prioritization of orthopaedic sport medicine procedures that encompasses such factors. This can be used to facilitate the risk-benefit assessment of the timing and setting of a procedure during the COVID-19 pandemic.

Globally, as of May 2, 2020, there were 3,233,191 confirmed cases of COVID-19 with 227,489 associated deaths.1 In the United States alone, there were 1,067,127 confirmed cases of Coronavirus disease 2019 (COVID-19) with 57,406 deaths.1

Few states have published guidelines specific to orthopaedic surgery during the COVID-19 outbreak, leaving hospital systems and surgeons with the responsibility of balancing the benefits of surgery with the risks to public health.2 Before March 24, 30 states published guidance regarding the discontinuation of elective procedures and 16 states provided a definition of “elective” procedures or specific guidance for determining which procedures should continue to be performed. Only five states provided guidelines specifically mentioning orthopaedic surgery; of those, four states explicitly allowed for trauma-related procedures and four states provided guidance against performing arthroplasty.2

On April 16, 2020, The White House released a three-phased guideline, called Opening Up America Again, for state and local authorities to follow when reopening their economies. In phase 1, for states and regions that satisfy the gating criteria, “elective surgeries” can resume when appropriate and on an outpatient basis.3

Mi et al4 showed that clinical characteristics and early prognosis of COVID-19 in patients with fractures were more severe than those reported for adult patients with COVID-19 without fractures, suggesting that fractures can worsen the course of the infection. Catellani et al5 concluded that surgical treatment of femoral fragility fractures in COVID-19-positive patients not only contributed to the overall...
patients’ mobility but also improved the physiologic ventilation, O\(^2\) saturation, and assisted respiration, indicating that appropriate treatment improves the patients’ overall clinical status. De-phillipo et al\(^6\) reported on acute orthopaedic injuries they recommend as “surgically necessary” for elective-urgent procedures at Ambulatory Surgical Centers (ASCs); however, they did not provide literature support to these recommendations, nor did they identify the timeframe in which surgeries should be performed. Therefore, an evidence-based risk stratification for orthopaedic pathologies has yet to be established. In addition, in the context of a pandemic, it is important to integrate the disease-intrinsic factors to external factors (eg, epidemic situation, healthcare system situation, and patient characteristics) to decide whether time-sensitive surgeries should be performed in a specific patient in a particular scenario.

The purpose of this manuscript is to provide a clear framework for the prioritization of orthopaedic sport medicine procedures. This evidence-based risk stratification based on clinical urgency facilitates the risk-benefit assessment of whether, when, and in what setting, surgery should be performed during the COVID-19 pandemic. The authors discuss all phases of the pandemic, the initiation, and acceleration intervals, as well as the deceleration intervals, when elective surgeries are gradually allowed back. A framework for prioritization, such as the one presented in this study, is recommended by the American College of Surgeons, and it will continue to serve as an important guide, both during and after the pandemic.

Risk Stratification

We synthesized the current knowledge of common orthopaedic sport medicine ailments from published literature and expert opinion to develop consensus statements and tables for each topic. For each condition, the assessment tables contain coded cells, with green boxes representing favorable situations to perform surgery, yellow moderate, and red unfavorable.

Disease Independent or External Factors Risk Assessment

Ultimately, disease independent or “external” factors must determine the safe resumption of nonemergent orthopaedic surgery. The changes in risk are a continuum, and we must

None of the following authors or any immediate family member has received anything of value from or has stock or stock options held in a commercial company or institution related directly or indirectly to the subject of this article: Dr. Hinckel, Mr. Baumann, Dr. Ejnisman, Dr. Cavinatto, Dr. Martusiewicz, Dr. Tanaka, Dr. Tompkins, Dr. Sherman, Dr. Chahla, Dr. Frank, Dr. Yamamoto, Dr. Bicos, Dr. Arendt, Dr. Fithian, and Dr. Farr.

Table 1

SITUATION OF THE EPIDEMIC (7)	HOSPITAL CAPACITY	ASC AVAILABILITY	PATIENT RISK FOR COVID-19 COMPLICATIONS (8-10)	ASA\(^a\)	TRANSMISSION RISK OF COVID-19 ASSESSMENT DUE TO PATIENT STATUS (15, 16)
Vigilance: Pandemic is contained, in preparation interval; there is a low incidence of new cases, vaccine is not available, high efficiency measures in place.	Adequate: Resources (equipment and staff) are available and the risk of reaching a critical level is low.	Adequate: Resources (equipment and staff) are available and the risk of reaching a critical level is low.	Very low: < 60 years old without comorbidities. Low risk: < 60 years old without comorbidities. Recovered patients.	ASA I: Healthy patient. ASA II: Mild systemic disease.	Minimal: Negative RNA PCR and asymptomatic in the last 24 hours. Unknown RNA PCR, asymptomatic and negative contact, in a community with a low incidence. Recovered patients.
Early start: Pandemic is in an initiation or deceleration phase; there is a risk of rapid surge or resurgence.	Concerning: Resources are in adequate level, however there is a significant risk of reaching a critical level.	Concerning: Resources are in adequate level, however there is a significant risk of reaching a critical level.	Moderate risk: < 60 years old with comorbidities.	ASA III: Severe systemic disease.	Moderate: Unknown RNA PCR, symptomatic and with positive alternative respiratory diagnosis (eg, Influenza). Unknown RNA PCR, asymptomatic in a community with a low incidence. Unknown RNA PCR, asymptomatic and with positive contact or in a community with a high incidence.
Emergency state: Pandemic is acceleration phase, spreading widely and not contained.	Critical: Resources are not available or in short supply.	Critical: All measures are being directed towards the pandemic task force efforts.	High risk: > 60 years old without comorbidities. Very high risk: > 60 years old with comorbidities or < 60 years old with or without comorbidities.	ASA IV: Severe systemic disease with constant threat to life. ASA V: Declining patient not expected to survive without operation. ASA VI: Brain-dead patient.	High: Positive RNA PCR and symptomatic. Positive RNA PCR in the last 24 days, regardless of symptoms. Unknown RNA PCR and asymptomatic with positive contact or in a community with a high incidence.

ASC = ambulatory surgical center, ASA = American Society of Anesthesiologists, IgG = immunoglobulin G, PCR = polymerase chain reaction.

\(^{a}\) Patients already infected with COVID-19 have a higher risk when compared with noninfected peers.

\(^{b}\) Decreases when the situation of the epidemic and the hospital capacity improve to green.

\(^{c}\) Previously positive RNA PCR, currently symptomatic, 14 days after IgG positive, or those with resolved symptoms that started >21 days ago.
take that into consideration when stratifying those parameters and adapting them to categorical variables. Therefore, they should be evaluated on a case-by-case basis and seen as relative considerations and not absolute, especially when it comes to patient risk and transmission risk because that are rapidly evolving areas of knowledge. Table 1 presents a suggested guideline for risk stratification based on external factors. Factors included in disease-independent factors are as follows:

1. Status of the epidemic. This depends on the local infection rate and containment. This is determined by federal and local authorities as well as the Centers for Disease Control and Prevention (CDC).

2. Hospital capacity. This relates to the hospital availability of resources (eg, equipment and personal) to care for patients with COVID-19 and other patients during the current time point and future projections, the expected progression of pandemic. This is determined by the local health systems and authorities that collect and provide resources as well as facilitate integration between different systems to distribute patient load.

3. ASCs availability. Theoretically, ASC settings not associated with active care of sick patients are a safer setting for patients. It is important to remember that personal protective equipment are a common good shared across the whole healthcare system (including hospitals and urgent cares); therefore, the availability of those personal protective equipment depends on the demands of centers taking care of patients with COVID-19.

4. Patient risk for COVID-19 complications. Older patients and patients with comorbidities are at higher risk for developing acute respiratory distress syndrome, need for intensive care unit (ICU) admission, and death. Therefore, they are at increased risk when entering healthcare facilities, more so in hospitals than ASCs, and during emergency states of the epidemic. In addition, if they develop complications, they further overload hospital resources. Also, patients who are already infected have increased risk of complications compared with noninfected peers.

5. ASA physical status classification system. Patients with comorbidities are at higher risk for developing acute respiratory distress syndrome, need for ICU admission, and death. In addition, they might need longer hospital stay (which further increases the risk of COVID-19 and non-COVID-19 complications) and uses more hospital resources that might be in a nonideal situation.

6. Transmission risk of COVID-19 assessment because of patient status. Patients who are known to be infected with COVID-19 are more likely to transmit the disease to healthcare providers (HCPs) and other patients, especially if they are symptomatic, and more so in severe forms of disease. For patients with unknown status because of lack of testing, the risk is influenced by the situation of the epidemic and close contacts. Surgeons can consider testing to better evaluate the risk, understanding that false positive and false negative exists.

Disease-Specific Risk Assessment

Tables 2 contains the disease-specific risk-benefit assessment. For each pathology/procedure, the authors provide the following regarding the frequency and utilization of resources for each case: the incidence, number of surgeons/assistants, anesthesia methods, surgical time, cost, short- and long-term disability, cost-effectiveness, risk for COVID-19 complications, risk for surgical complications, postsurgical needs for social/home support. Appendix 1, contains a detailed review regarding disease-specific risk assessment.

In addition, the ideal timing for surgery depends on short-term and long-term outcomes, as well as time sensitivity. Of note, limb-threatening (eg, vascular compromise and compartment syndrome) and life-threatening (eg, open fractures and polytrauma) conditions are emergencies and are not included here. The nonemergent surgeries can be classified as the following:

1. Urgent surgery (green boxes): Strong evidence that any delay will result in inferior outcomes, or strong consensus that surgery within weeks is necessary for acceptable outcomes. Should be performed as soon as possible (a few days to a few weeks).

2. Time-sensitive surgery (yellow boxes): Moderate to strong evidence that delayed surgery contributes to inferior surgical outcomes (should be performed in a few weeks to a few months).

3. Not time-sensitive/elective surgery (red boxes): Absence of moderate to strong evidence of a notable relationship between surgical timing and outcomes, and the absence of consensus on delayed surgery on outcomes. They can be postponed a few months without major ramifications to the patient other than a lengthier time dealing with pain and life limitations/restrictions; however, it is important to highlight that they are necessary to improve patients’ symptoms and quality of life and should not be postponed indefinitely.
| DISEASE ACUITY | DISEASE SPECIFIC RISK-BENEFIT ASSESSMENT | OTHER FACTORS | FINAL RECOMMENDATIONS |
|----------------|---|--------------|------------------------|
| Muscle injury (high energy injuries) | Hospital resources | Complications | Individualized risk assessment |
| Ankle sprain | Hospital resources | Complications | Individualized risk assessment |
| ACL tear | Hospital resources | Complications | Individualized risk assessment |
| Shoulder fracture (non-displaced) | Physical therapy | Complications | Individualized risk assessment |
| Distal radius fracture | Physical therapy | Complications | Individualized risk assessment |
| Hip fracture | Physical therapy | Complications | Individualized risk assessment |
| Proximal humerus fracture | Physical therapy | Complications | Individualized risk assessment |
| Lower extremity fractures | Physical therapy | Complications | Individualized risk assessment |
| Scaphoid fracture | Physical therapy | Complications | Individualized risk assessment |
| Patellar tendinitis | Physical therapy | Complications | Individualized risk assessment |
| Osteochondritis dissecans | Physical therapy | Complications | Individualized risk assessment |

POST-OPERATIVE ARTHRITIS/JOINT INFLAMMATION

- Rheumatoid arthritis
- Osteoarthritis

MALIGNEANT INJURIES

- Head injury
- Spinal cord injury

SHOULDER INJURY

- Rotator cuff tear
- Shoulder dislocation

DISTAL BICEPS TENDON TEAR

- Distal biceps tendon tear
- Biceps tendon rupture

PECTORALIS MAJOR TEAR

- Pectoralis major tear
- Pectoralis minor tear

PROXIMAL HAMSTRING AVulsion

- Proximal hamstring avulsion
- Middle hamstring avulsion
- Distal hamstring avulsion

Hip Abductor Tear

- Hip abductor tear
- Hip adductor tear

ACHILLES TENDON TEAR

- Achilles tendon tear
- Achilles surgery

AC = acromioclavicular, ACL = anterior cruciate ligament, ASAP = as soon as possible, PPE = personal protective equipment, PROs = patient-reported outcomes, PT = physical therapy, ROM = range of motion
Hospital resource use, procedure complications risk, and transmission of COVID-19 risk because the procedure for each procedure were summarized in Table 2.

In combining Tables 1 and 2, one can have a comprehensive understanding of the risks and benefits of proceeding with surgery. In addition, there are many important considerations orthopaedic surgeons must consider during the COVID-19 pandemic. We urge that those “low-risk geographic areas” to exercise caution because some states have reported few cases, but this may be because of slow pace of testing, where many more people are believed to be infected. There is a higher patient risk and associated liability in performing surgery in an “emergency state” area. In these areas, particularly if the hospital capacity is critical, only perform surgeries that are urgent (green boxed) and have other favorable green boxes.

Patient-Related Factors

If a patient has COVID-19, consider postponing surgery, decreasing the patient’s risk of complications (surgery suppresses the immune system) and transmission to healthcare providers (HCPs) and other patients. Procedures and operations should be performed if delaying the procedure or operation is likely to prolong the patient’s hospital stay while waiting for the surgery, increasing the likelihood of later hospital admission or causing harm, all increasing the risk of the patient acquiring COVID-19. In patients who are suspected to be infected with COVID-19 (eg, have typical symptoms, have close contact with infected persons, or live in a community with high incidence), consider testing RNA polymerase chain reaction (PCR) testing. This not only benefits the patient but also improves the hospital management/operations. For “gray area cases” (mostly yellow boxes), do no harm by assessing the patient’s risk with your own judgement.

No substitute exists for sound surgical judgement. For elective surgery (red-boxed diseases), surgery should wait until most other categories have normalized (green boxes). In addition, consideration should be given to the fact that there may be a large need for physical therapy postoperatively for an optimal result, which may not be available during certain phases of the pandemic.

Hospital Setting

If the patient needs to stay in the hospital, especially for many days, hospital capacity is more relevant than it is for outpatient surgery, for which the status of ASCs is more important. Inpatient procedures not only take on a bed that may be a scarce resource but it also places the patient at a higher risk for acquiring COVID-19. ASCs should have arrangements with a hospital if overnight stay for outpatient surgery becomes necessary because surgeons try to bring more patients to ASCs. In addition, it needs to be taken into consideration if it is anticipated that after surgery, the patient will need other resources, such as intensive care unit (ICU) bed and blood products.

Proceeding With Surgeries

Once the surgeon decides to proceed with surgery, all appropriate precautions should be taken. The CDC infection control guidelines can be found at https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control.html. The American College of Surgeons offers guidance on considerations for optimal surgical protection before, during, and after operations. For full guidelines, go to https://www.facs.org/media/files/covid19/considerations_optimum_surgeon_protection.ashx.

The evidence-based risk stratification presented in this study has the limitation of not being clinically validated, similar to the guidelines from the World Health Organization, CDC, or other institutions. However, we think we provide a comprehensive review of the literature that is optimal and the best available, considering the urgency and complexity of these times and the limited literature regarding this topic.

Conclusion

The medical urgency of a case cannot be defined solely on whether a case is on an elective surgery schedule. Plans for orthopaedic case triage should avoid blanket policies and instead depend on disease-specific data and expert opinion from qualified orthopaedic surgeons. Although COVID-19 is a risk to all, it is one of several competing risks for patients with functional limitations necessitating orthopaedic surgical care. Therefore, we provide guidelines based on an assimilation of all available disease-dependent, disease-independent, and logistical information to help guide surgeons and institutions in the decision-making process.

References

1. World Health Organization (WHO): Coronavirus disease 2019 (COVID-19) Situation Report 2020. 2020. https://covid19.who.int/. Accessed May 2, 2020.

2. Sarac NJ, Sarac BA, Schoenbrunner AR, et al: A review of state guidelines for elective orthopaedic procedures during the COVID-19 outbreak. J Bone Joint Surg Am 2020;102:942-945.

3. White House: Opening Up America Again: Guidelines 2020. 2020. https://www.whitehouse.gov/openingamerica/. Accessed May 2, 2020.

4. Mi B, Chen L, Xiong Y, Xue H, Zhou W, Liu G: Characteristics and early prognosis of COVID-19 infection in fracture patients. J Bone Joint Surg Am 2020;102:750-758.

5. Catellani F, Coscione A, D’Ambrosi R, Usai L, Roscitano C, Fiorentino G: Treatment of proximal femoral fragility fractures in patients with COVID-19 during the SARS-CoV-2 outbreak in Northern Italy. J Bone Joint Surg 2020;102:e58.
6. DePhillipo NN, Larson CM, O’Neill OR, LaPrade RF: Guidelines for ambulatory surgery centers for the care of surgically necessary/time-sensitive orthopaedic cases during the COVID-19 pandemic. *J Bone Joint Surg Am* 2020;102:933-936.

7. Centers for Disease Control and Prevention: Pandemic Intervals Framework 2020. https://www.cdc.gov/humantmisresources/national-strategy/intervals-framework.html. Accessed May 2, 2020.

8. World Health Organization: Coronavirus disease 2019 (COVID-19) Situation Report – 81. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200410-sitrep-81-covid-19.pdf?sfvrsn=ca96eb84_2. Accessed May 2, 2020.

9. Verity R, Okell L, Dorigatti I, et al: Estimates of the severity of coronavirus disease 2019: A model-based analysis. *Lancet Infect Dis* 2020;20:669-677.

10. Centers for Disease Control and Prevention: Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb Mortal Wkly Rep 2020;69:4.

11. Grassell G, Zangrillo A, Zanella A, et al: Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. *JAMA* 2020;323:1574-1581.

12. Guan WJ, Ni ZY, Hu Y, et al: Clinical characteristics of coronavirus disease 2019 in China. *N Engl J Med* 2020;382:1708-1720.

13. Zhou F, Yu T, Du R, et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. *Lancet* 2020;395:1054-1062.

14. Daabiss M: American Society of Anesthesiologists physical status classification. *Indian J Anaesth* 2011;55:111-115.

15. Lu Y, Yan LM, Wan L, et al: Viral dynamics in mild and severe cases of COVID-19. *Lancet Infect Dis* 2020;20:656-657.

16. Tan W, Lu Y, Zhang J, et al: Viral kinetics and antibody responses in patients with COVID-19. *medRxiv* 2020.03.24.20042382; doi: https://doi.org/10.1101/2020.03.24.20042382.

17. Maffulli N, Binfield PM, King JB, Good CJ: Acute haemarthrosis of the knee in athletes. A prospective study of 106 cases. *J Bone Joint Surg Br* 1993;75:945-949.

18. Askenberger M, Ekstrom W, Finnbogason T, Janarv PM: Occult intra-articular knee injuries in children with haemarthrosis. *Am J Sports Med* 2014;42:1600-1606.

19. Fithian DC, Paxton EW, Stone ML, et al: Epidemiology and natural history of acute patellar dislocation. *Am J Sports Med* 2004;32:1114-1121.

20. Nitosoara Y, Aalto K, Kallio PE: Acute patellar dislocation in children: Incidence and associated osteochondral fractures. *J Pediatr Orthop* 1994;14:513-515.

21. Lubowitz JH, Appleby D: Cost-effectiveness analysis of the most common orthopaedic surgery procedures: Knee arthroscopy and knee anterior cruciate ligament reconstruction. *Arthroscopy* 2011;27:1317-1322.

22. Beamer BS, Walley KC, Okajima S, et al: Changes in contact area in meniscal horizontal cleavage tears subjected to repair and resection. *Arthroscopy* 2017;33:617-624.

23. Lee SJ, Aadalen KJ, Malaviya P, et al: Tibiofemoral contact mechanics after serial meniscectomies in the human cadaveric knee. *Am J Sports Med* 2006;34:1334-1344.

24. LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF: Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. *J Bone Joint Surg Am* 2014;96:471-479.

25. Greeson AG, Civitarese D, Turnbull TL, Dornan GJ, Fuso FA, LaPrade RF: Influence of lateral meniscal posterior root avulsions and the meniscocromal ligaments on tibiofemoral contact mechanics. *Knee Surg Sports Traumatol Arthrosc* 2016;24:1469-1477.

26. Clark CR, Ogden JA: Development of the menisci of the human knee joint: Morphological changes and their potential role in childhood meniscal injury. *J Bone Joint Surg Am* 1983;65:538-547.

27. Kazemi M, Li LP, Savard P, Buschmann MD: CReep behavior of the intact and meniscectomy knee joints. *J Mech Behav Biomed Mater* 2011;4:1351-1358.

28. Krych AJ, McIntosh AL, Voll AE, Stuart MJ, Dahm DL: Arthroscopic repair of bucket-handle meniscal tears: Clinical and economic effectiveness. *Arthroscopy* 2014;30:1513-1519.

29. Cannon WD Jr, Vittori JM: The incidence of lateral meniscal posterior root tears. *Am J Sports Med* 2011;39:277-282.

30. Krych AJ, McIntosh AL, Voll AE, Stuart MJ, Dahm DL: Arthroscopic repair of bucket-handle meniscal tears: Outcomes of an anatomic transtibial pull-out technique. *Am J Sports Med* 2018;46:2253-2259.

31. Ardizzone CA, Houck DA, McCartney DW, Vidal AF, Frank RM: All-In-one repair of bucket-handle meniscal tears: Clinical outcomes and prognostic factors. *Am J Sports Med* 2020;2 Mar 20 [Epub ahead of print].

32. LaPrade RF, Matheny LM, Moulton SG, James EW, Dean CS: Posterior meniscal root tears: Outcomes of an anatomic transtibial pull-out technique. *Am J Sports Med* 2017;45:884-891.
43. Thoreux P, Rety F, Nourissat G, et al: Bucket-handle meniscal lesions: Magnetic resonance imaging criteria for reparable. *Arthroscopy* 2006;22: 934-961.

44. Felsiai PF, Alessandrino F, Perelli S, et al: Role of MRI in predicting meniscal tear reparable. *Skeletal Radiol* 2017;46: 1343-1351.

45. Cinque ME, DePhillipo NN, Moatshe G, et al: Clinical outcomes of inside-out meniscal repair according to anatomical zone of the meniscal tear. *Orthop J Sports Med* 2019;7:232596719860806.

46. van der Wal RJ, Thomassen BJ, Swen JW, van Arkel ER: Time interval between trauma and arthroscopic meniscal repair has No influence on clinical survival. *J Knee Surg* 2016;29:436-442.

47. Grant JA, Wilde J, Miller BS, Bedi A. Comparison of inside-out and all-inside techniques for the repair of isolated meniscal tears: A systematic review. *Am J Sports Med* 2012;40:459-468.

48. Hupperich A, Salzmann GM, Niemeyer P, et al: What are the factors to affect outcome and healing of meniscus bucket handle tears? *Arch Orthop Trauma Surg* 2018;138:1365-1373.

49. Feeley BT, Liu S, Garner AM, Zhang AL, Pietzsch JB: The cost-effectiveness of meniscal repair versus partial meniscectomy in the setting of anterior cruciate ligament reconstruction. *Arthroscopy* 2018;34:2614-2620.

50. Farnworth LR, Lemay DE, Woudridge T, et al: A comparison of operative times in arthroscopic ACL reconstruction between orthopaedic faculty and residents: The financial impact of orthopaedic surgical training in the operating room. *Iowa Orthop J* 2001;21:31-35.

51. Wyatt RW, Inacio MC, Liddle KD, Maletis GB: Prevalence and incidence of cartilage injuries and meniscus tears in patients who underwent both primary and revision anterior cruciate ligament reconstructions. *Am J Sports Med* 2014; 42:1841-1846.

52. Chhadia AM, Inacio MC, Maletis GB, Csintalan RP, Davis BR, Funahashi TT. Are meniscus and cartilage injuries related to time to anterior cruciate ligament reconstruction? *Am J Sports Med* 2011; 39:1894-1899.

53. Orthoguidelines. When ACL reconstruction is indicated, moderate evidence supports reconstruction within five months of injury to protect the articular cartilage and meniscus. http://www.orthoguidelines.org/go/cpg/detail. id=1251. Accessed May 2, 2020.

54. Jarvela T, Moisala AS, Siivonen R, Jarvinen M: Double-bundle anterior cruciate ligament reconstruction using hamstring autografts and bioabsorbable interference screw fixation: Prospective, randomized, clinical study with 2-year results. *Am J Sports Med* 2008;36:290-297.

55. Stone JA, Perrone GS, Nezwek TA, et al: Delayed ACL reconstruction in patients >/=40 years of age is associated with increased risk of medial meniscal injury at 1 year. *Am J Sports Med* 2019; 47:584-589.

56. Stewart BA, Momaya AM, Silverstein MD, Lintner D: The cost-effectiveness of anterior cruciate ligament reconstruction in competitive athletes. *Am J Sports Med* 2017;45:23-33.

57. Abram SGF, Judge A, Beard DJ, Price AJ: Rates of adverse outcomes and revision surgery after anterior cruciate ligament reconstruction: A study of 104,255 procedures using the National Hospital Episode Statistics Database for England, UK. *Am J Sports Med* 2019;47: 2533-2542.

58. Clayton RA, Court-Brown CM: The epidemiology of musculoskeletal tendinous and ligamentous injuries. *Injury* 2008;39:1338-1344.

59. Saragaglia D, Pison A, Rubens-Duval B: Acute and old ruptures of the extensor apparatus of the knee in adults (excluding knee replacement). *Orthop Traumatol Surg Res* 2013;99(suppl 1):S67-576.

60. Ilan DI, Tejwani N, Keshner M, Leibman M: Quadriceps tendon rupture. *J Am Acad Orthop Surg* 2003;11:192-200.

61. Boudissa M, Roudet A, Rubens-Duval B, Chaussard C, Saragaglia D: Acute quadriceps tendon ruptures: A series of 35 knees with an average follow-up of more than 6 years. *Orthopaedics Traumatol Surg Res* 2014;100:213-216.

62. Serino J, Mohamadi A, Orman S, et al: Comparison of adverse events and postoperative mobilization following knee extensor mechanism rupture repair: A systematic review and network meta-analysis. *Injury* 2017;48:2793-2799.

63. Gilmore JH, Clayton-Smith ZJ, Aguilar M, Pneumaticos SG, Giannoudis PV: Reconstruction techniques and clinical results of patellar tendon ruptures: Evidence today. *Knee* 2015;22:148-155.

64. Greis PE, Lahav A, Holmstrom MC: Surgical treatment options for patella tendon rupture, part II: Chronic. *Orthopedics* 2005;28:765-769; quiz 70-1.

65. Scuderi C: Ruptures of the extensor mechanism of the knee: A comparison of operative times in arthroscopic ACL reconstruction between orthopaedic faculty and residents: The financial impact of orthopaedic surgical training in the operating room. *Iowa Orthop J* 2001;21:31-35.

66. Ilan DI, Tejwani N, Keshner M, Leibman M: Quadriceps tendon rupture. *J Am Acad Orthop Surg* 2003;11:192-200.

67. Maffulli N, Del Buono A, Loppini M, Wiegand N, Naumov I, Vamhidy L, Scuderi C: Ruptures of the quadriceps tendon: A comparison of adverse events and postoperative mobilization following knee extensor mechanism rupture repair: A systematic review and network meta-analysis. *Injury* 2017;48:2793-2799.

68. Gilmore JH, Clayton-Smith ZJ, Aguilar M, Pneumaticos SG, Giannoudis PV: Reconstruction techniques and clinical results of patellar tendon ruptures: Evidence today. *Knee* 2015;22:148-155.

69. Greis PE, Lahav A, Holmstrom MC: Surgical treatment options for patella tendon rupture, part II: Chronic. *Orthopedics* 2005;28:765-769; quiz 70-1.

70. Guido W, Christian H, Elmar H, Elisabeth A, Christian F: Treatment of patella baja by a modified Z-plasty. *Knee Surg Sports Traumatol Arthrosc* 2016;24:2943-2947.

71. Serino J, Mohamadi A, Orman S, et al: Comparison of adverse events and postoperative mobilization following knee extensor mechanism rupture repair: A systematic review and network meta-analysis. *Injury* 2017;48:2793-2799.

72. Gilmore JH, Clayton-Smith ZJ, Aguilar M, Pneumaticos SG, Giannoudis PV: Reconstruction techniques and clinical results of patellar tendon ruptures: Evidence today. *Knee* 2015;22:148-155.

73. Gilmore JH, Clayton-Smith ZJ, Aguilar M, Pneumaticos SG, Giannoudis PV: Reconstruction techniques and clinical results of patellar tendon ruptures: Evidence today. *Knee* 2015;22:148-155.

74. Greis PE, Lahav A, Holmstrom MC: Surgical treatment options for patella tendon rupture, part II: Chronic. *Orthopedics* 2005;28:765-769; quiz 70-1.

75. Guido W, Christian H, Elmar H, Elisabeth A, Christian F: Treatment of patella baja by a modified Z-plasty. *Knee Surg Sports Traumatol Arthrosc* 2016;24:2943-2947.

76. Harato K, Kobayashi S, Udagawa K, et al: Surgical technique to bring down the patellar height and to reconstruct the tendon for chronic patellar tendon rupture. *Arthrosc Tech* 2017;6: e1897-e901.

77. Nguene-Nyemb AG, Huten D, Ropars M: Chronic patellar tendon rupture reconstruction with a semitendinosus autograft. *Orthopaedics Traumatol Surg Res* 2011;97:447-450.

78. Scuderi C: Ruptures of the quadriceps tendon: A comparison of operative times in arthroscopic ACL reconstruction between orthopaedic faculty and residents: The financial impact of orthopaedic surgical training in the operating room. *Iowa Orthop J* 2001;21:31-35.

79. Maffulli N, Del Buono A, Loppini M, Wiegand N, Naumov I, Vamhidy L, Scuderi C: Ruptures of the quadriceps tendon: A comparison of adverse events and postoperative mobilization following knee extensor mechanism rupture repair: A systematic review and network meta-analysis. *Injury* 2017;48:2793-2799.

80. Wiegand N, Naumov I, Vamhidy L, Warta V, Than P: Reconstruction of the patellar tendon using a Y-shaped flap
folded back from the vastus lateralis fascia. *Knee* 2013;20:139-143.

81. Konrath GA, Chen D, Lock T, et al: Outcomes following repair of quadriceps tendon ruptures. *J Orthop Trauma* 1998; 12:273-279.

82. Miskew DB, Pearson RL, Pankovich AM: Mesilene strip suture in repair of disruptions of the quadriceps and patellar tendons. *J Trauma* 1980;20:867-872.

83. Rougaff BT, Reecck CC, Essennacher J: Complete quadriceps tendon ruptures. *Orthopedics* 1996;19:509-514.

84. Belhaj K, El Hyaoui H, Tahir A, et al: Long-term functional outcomes after primary surgical repair of acute and chronic patellar tendon rupture: Series of 23 patients. *Ann Phys Rehabil Med* 2017; 60:244-248.

85. Kelly DW, Carter VS, Joe F, Kerlan RK: Patellar and quadriceps tendon ruptures—Jumper’s knee. *Am J Sports Med* 1994;12:375-380.

86. Bushnell BD, Whitener GB, Rubright JH, Creighton RA, Logel KJ, Wood ML: The use of suture anchors to repair the ruptured quadriceps tendon. *J Orthop Trauma* 2007;21:407-413.

87. Sanders TL, Pareek A, Hidewett T, Stuart MJ, Dahm DL, Krych AJ: Incidence of first-time lateral patellar dislocation: A 21-year population-based study. *Sports Health* 2018;10:146-151.

88. Gravesen KS, Kallmose T, Blond L, Troelseng A, Barfod KW: High incidence of acute and recurrent patellar dislocations: A retrospective nationwide epidemiological study involving 24,154 primary dislocations. *Knee Surg Sports Traumatol Arthrosc* 2018;26:1204-1209.

89. Zhang GY, Ding HY, Li EM, et al: Incidence of second-time lateral patellar dislocation is associated with anatomic factors, age and injury patterns of medial patellofemoral ligament in first-time lateral patellar dislocation: A prospective magnetic resonance imaging study with 5-year follow-up. *Knee Surg Sports Traumatol Arthrosc* 2019;27:197-205.

90. Christensen TC, Sanders TL, Pareek A, Mohan R, Dahm DL, Krych AJ: Risk factors and time to recurrent ipsilateral and contralateral patellar dislocations. *Am J Sports Med* 2017;45:2105-2110.

91. Xi H, Peng G, Chou SH: Finite-volume lattice Boltzmann schemes in two and three dimensions. *Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics* 1999;60:3380-3388.

92. Huntington LS, Webser KE, Devitt BM, Scanlon JP, Feller JA: Factors associated with an increased risk of recurrence after a first-time patellar dislocation: A systematic review and meta-analysis. *Am J Sports Med* 2020;48:2552-2562.

93. Previtali D, Roumenov SM, Pagliazi G, Filardo G, Zaffagnini S, Candrian C: Recurrent patellar dislocations without untreated predisposing factors: MPFL reconstruction vs other medial soft tissue surgical techniques—A meta-analysis. *Arthroscopy* 2020;36:1725-1734.

94. Zaffagnini S, Previtali D, Tamborini S, Pagliazi G, Filardo G, Candrian C: Recurrent patellar dislocations: Trochleoplasty improves the results of medial patellofemoral ligament surgery only in severe trochlear dysplasia. *Knee Surg Sports Traumatol Arthrosc* 2019;27:3599-3613.

95. Neri T, Parker DA, Beach A, et al: Medial patellofemoral ligament reconstruction with or without tibial tubercle transfer is an effective treatment for patellofemoral instability. *Knee Surg Sports Traumatol Arthrosc.* 2019;27:805-813.

96. Sappey-Marnier E, Sonnmer-Cotter B, O’Loughlin P, et al: Clinical outcomes and predictive factors for failure with isolated MPFL reconstruction for recurrent patellar instability: A series of 211 reconstructions with a minimum follow-up of 3 years. *Am J Sports Med.* 2019;47:1323-1330.

97. Hiemstra LA, Kerslake S, Loewen M, Lafave M: Effect of trochlear dysplasia on outcomes after isolated soft tissue stabilization for patellar instability. *Am J Sports Med.* 2016;44:1515-1523.

98. Jaquith BP, Parikh SN: Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. *J Pediatr Orthop* 2017;37:484-490.

99. Chotel F, Knorr G, Simian E, Dubrana F, Versier G, French Arthroscopy S: Knee osteochondral fractures in skeletally immature patients: French multicenter study. *Orthopaedics Traumatol Surg Res* 2011;97(suppl 8):S154-S159.

100. Kramer DE, Pace JL: Acute traumatic and sports-related osteochondral injury of the pediatric knee. *Orthop Clin North Am* 2012;43:227-236.

101. Fabricant PD, Yen YM, Kramer DE, et al: Fixation of traumatic chondral-only fragments of the knee in pediatric and adolescent athletes: A retrospective multicenter report. *Orthop J Sports Med* 2018;6:2325967117753140.

102. Howells NR, Barnett AJ, Ahearn N, Martin R, Waterman B, Dean R, et al: The influence of physeal status on rate of reoperation after arthroscopic screw fixation for symptomatic osteochondritis.
rotator cuff repair techniques at low, intermediate, and high volume centers: Mini-open versus all-arthroscopic. J Shoulder Elbow Surg 2010;19:716-721.

153. Narvy SJ, Didinger TC, Lehoang D, et al: Direct cost analysis of outpatient Arthroscopic rotator cuff repair in medicare and non-medicare populations. Orthop J Sports Med 2016;4:232596711668829.

154. Li L, Bokshan SL, Ready LV, Owens BD: The primary cost drivers of arthroscopic rotator cuff repair surgery: A cost-minimization analysis of 40,618 cases. J Shoulder Elbow Surg 2019;28:1977-1982.

155. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teeey SA: The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am 2006;88:1699-1704.

156. Spross C, Behrens G, Dietrich TJ, et al: Early arthroscopic repair of acute traumatic massive rotator cuff tears leads to reliable reversal of pseudoparesis: Clinical and radiographic outcome. Arthroscopy 2019;33:343-350.

157. Hantes MF, Karidakis GK, Vlychou M, Varitimidis S, Dailiana Z, Malizos KN: A comparison of early versus delayed repair of traumatic rotator cuff tears. Knee Surg Sports Traumatol Arthrosc 2011;19:1766-1770.

158. Haviv B, Rutenberg TF, Bronak S, Yassin M: Arthroscopic rotator cuff surgery following shoulder trauma improves outcome despite additional pathologies and slow recovery. Knee Surg Sports Traumatol Arthrosc 2018;26:3804-3809.

159. Keener JD, Galatz LM, Teeey SA, et al: A prospective evaluation of survivorship of asymptomatic degenerative rotator cuff tears. J Knee Surg 2013;26:383-388.

160. Maman E, Harris C, White L, Tomlinson G, Shashank M, Boynton E: Outcome of nonoperative treatment of asymptomatic rotator cuff tears monitored by magnetic resonance imaging. J Bone Joint Surg Am 2009;91:1896-1906.

161. Safran O, Schroeder J, Bloom R, Weil Y, Milgrom C: Natural history of nonoperatively treated asymptomatic rotator cuff tears in patients 60 years old or younger. Am J Sports Med 2011;39:710-714.

162. Moosmayer S, Tariq R, Stris M, Smith HJ: The natural history of asymptomatic rotator cuff tears: A three-year follow-up of fifty cases. J Bone Joint Surg Am 1997;344:275-283.

163. Thomazeau H, Boukobza E, Morcet N, Chaperon J, Langlass F: Prediction of rotator cuff repair results by magnetic resonance imaging. Clin Orthop Relat Res 1997;344:275-283.

164. Chalmers PN, Granger E, Nelson R, Yoo M, Tashjian RZ: Factors affecting cost, outcomes, and tendon healing after arthroscopic rotator cuff repair. Arthroscopy 2018;34:1393-1400.

165. Safran O, Derwin KA, Powell K, Iannotti JP. Changes in rotator cuff muscle volume, fat content, and passive mechanics after chronic detachment in a canine model. J Bone Joint Surg Am. 2005;87:2662-2670.

166. Heikel HV: Rupture of the rotator cuff of the shoulder. Experiences of surgical treatment. Acta Orthop Scand 1968;39:477-492.

167. Warner JJ, Higgins L, Parsons IM IV, Dowdy F: Diagnosis and treatment of anterosuperior rotator cuff tears. J Shoulder Elbow Surg 2001;10:37-46.

168. Kreuz PC, Remiger A, Erggelet C, Hinterwimmer S, Niemeyer P, Gachter A: Isolated and combined tears of the subscapularis tendon. Am J Sports Med 2005;33:1831-1837.

169. Petersen SA, Murphy TP: The timing of rotator cuff repair for the restoration of function. J Shoulder Elbow Surg 2011;20:62-68.

170. Duncan NS, Booker SJ, Gooding BW, Geoghegan J, Wallace WA, Manning PA: Surgery within 6 months of an acute rotator cuff tear significantly improves outcome. J Shoulder Elbow Surg 2015;24:1876-1880.

171. Bassett RW, Cofield RH: Acute tears of the rotator cuff. The timing of surgical repair. Clin Orthop Relat Res 1983;175:18-24.

172. Mukovozov I, Byun S, Farrokhyar F, Wong I: Time to surgery in acute rotator cuff tear: A systematic review. Bone Joint Res 2013;2:122-128.

173. Bjoransson HC, Norlin R, Johansson K, Adolfsen LE: The influence of age, delay of repair, and tendon involvement in acute rotator cuff tears: Structural and clinical outcomes after repair of 42 shoulders. Acta Orthop 2011;82:187-192.

174. Namdari S, Henn RF III, Green A: Traumatic anterosuperior rotator cuff tears: The outcome of open surgical repair. J Bone Joint Surg Am 2008;90:1906-1913.

175. Mather RC III, Koening L, Acevedo D, et al: The societal and economic value of rotator cuff repair. J Bone Joint Surg Am 2013;95:1993-2000.

176. Colvin AC, Egorova N, Harrison AK, Moskowitz A, Flatow EL: National trends in rotator cuff repair. J Bone Joint Surg Am 2012;94:227-233.

177. Traven SA, Horn RW, Reeves RA, Walton ZJ, Wooll SK, Slone HS: The 5-factor modified frailty index predicts complications, hospital admission, and mortality following arthroscopic rotator cuff repair. Arthroscopy 2020;36:383-388.

178. Kosiński LR, Gil JA, Durand WM, DeFroda SF, Owens BD, Daniels AH: 30-Day readmission following outpatient rotator cuff repair: An analysis of 18,061 cases. Phys Sportsmed 2018;46:466-470.

179. Padaki AS, Boddapati V, Mathew J, Ahnad CS, Jobin CM, Levine WN: The effect of age on short-term postoperative complications following arthroscopic rotator cuff repair. JSES Open Access 2019;3:194-198.

180. Dickinson RN, Kuhn JE, Bergner JL, Ruzzone KH: A systematic review of cost-effective treatment of postoperative rotator cuff repairs. J Shoulder Elbow Surg 2017;26:915-922.

181. Keener JD, Galatz LM, Stobs-Cucchi G, Patton R, Yamaguchi K: Rehabilitation following arthroscopic rotator cuff repair: A prospective randomized trial of immobilization compared with early motion. J Bone Joint Surg Am 2014;96:11-19.

182. Gorbaty JD, Hsu JE, Gee AO: Classifications in brief: Rockwood classification of acromioclavicular joint separations. Clin Orthop Relat Res 2017;475:283-287.

183. Smith TO, Chester R, Pearce EO, Hing CB: Operative versus non-operative management following rockwood grade III acromioclavicular separation: A meta-analysis of the current evidence base. J Orthop Traumatol 2011;12:19-27.

184. Deans CF, Gentile JM, Tao MA: Acromioclavicular joint injuries in overhead athletes: A concise review of injury mechanisms, treatment options, and outcomes. Curr Rev Musculoskeletal Med 2019;12:80-86.

185. Tauber M: Management of acute acromioclavicular joint dislocations: Current concepts. Arch Orthop Trauma Surg 2013;133:985-995.

186. Beitzel K, Cote MP, Apostolakos J, et al: Current concepts in the treatment of acromioclavicular joint dislocations. Arthroscopy 2013;29:387-397.

187. Bannister GC, Wallace WA, Stableforth PG, Hutson MA: The management of acute acromioclavicular dislocation: A randomised prospective controlled trial. J Bone Joint Surg Br 1999;71:848-850.

188. Wang YC, Yong MA, Wei-Zhong YU, Wang H: Surgical treatment of acute Rockwood III acromioclavicular dislocations-Comparative study between two flip-button techniques. Sci Rep: 2020;10:4447.
226. Balg F, Boileau P: The instability severity index score. A simple pre-operative score to select patients for arthroscopic or open shoulder stabilisation. J Bone Joint Surg Br 2007;89:1470-1477.

228. Hurley ET, Lim Fat D, Farrington SK, Mullert H: Open versus arthroscopic latarjet procedure for anterior shoulder instability: A systematic review and meta-analysis. Am J Sports Med 2019;47:1248-1253.

230. Lang NW, Bukaty A, Sturz GD, Platzer P, Kelly MP, Perkinson SG, Ablove RH, Freeman CR, McCormick KR, Mahoney Cerciello S, Visona E, Corona K, Ribeiro Frank T, Seltser A, Grewal R, King GJW, Feller R, Illing D, Allen C, Presson A, Morrey ME, Abdel MP, Sanchez-Sotelo J, Morrey BF: Primary repair of retracted distal biceps tendon ruptures in extreme flexion. J Shoulder Elbow Surg 2014;23:679-685.

232. Ford SE, Andersen JS, Macknet DM, Lang NW, Bukaty A, Sturz GD, Platzer P, Kelly MP, Perkinson SG, Ablove RH, Freeman CR, McCormick KR, Mahoney Cerciello S, Visona E, Corona K, Ribeiro Frank T, Seltser A, Grewal R, King GJW, Feller R, Illing D, Allen C, Presson A, Morrey ME, Abdel MP, Sanchez-Sotelo J, Morrey BF: Primary repair of retracted distal biceps tendon ruptures in extreme flexion. J Shoulder Elbow Surg 2014;23:679-685.

234. Frank T, Selser A, Grewal R, King GJW, Adhwal GS: Management of chronic distal biceps tendon ruptures: Primary repair vs. semitendinosus autograft reconstruction. J Shoulder Elbow Surg 2019;28:1104-1110.

236. Criscio J, Viscota E, Corona K, Ribeiro Filho PR, Carbone S: The treatment of distal biceps ruptures: An overview. Joints 2016;6:228-231.

238. Frissinias RG, Pederson WC, Morrey BF: Distal biceps tendon repair and reconstruction. J Hand Surg Am 2020;45:48-56.

240. Frank RM, Cotter EJ, Strauss EJ, Jazrawi LM, Romeo AA: Management of biceps tendon pathology. From the glenoid to the radial tuberosity. J Am Acad Orthop Surg 2018;26:e77-e89.

242. Freeman CR, McCormick KR, Mahoney D, Baratz M, Lubahn JD: Nonoperative treatment of distal biceps tendon ruptures compared with a historical control group. J Bone Joint Surg Am 2009;91:2329-2334.

244. Legg AJ, Stevens R, Oakes NO, Shahane SA: A comparison of nonoperative vs. endobutton repair of distal biceps ruptures. J Shoulder Elbow Surg 2016;25:341-348.

246. Baker BE, Bierwagen D: Rupture of the distal tendon of the biceps brachii. Operative versus non-operative treatment. J Bone Joint Surg Am 1985;67:414-417.

248. Chillemi C, Marinelli M, De Cripis V: Rupture of the distal biceps brachii tendon: Conservative treatment versus anatomical reinsertion—Clinical and radiological evaluation after 2 years. Arch Orthop Trauma Surg 2007;127:705-708.

250. Morrey BF, Askew LJ, An KN, Dobyns JH: Rupture of the distal tendon of the biceps brachii. A biomechanical study. J Bone Joint Surg Am 1985;67:418-421.

252. Morrey ME, Abdel MP, Sanchez-Sotelo J, Morrey BF: Primary repair of retracted distal biceps tendon ruptures in extreme flexion. J Shoulder Elbow Surg 2014;23:679-685.

254. Mattson JL, Graham JG, Penna S, et al: A prospective evaluation of early postoperative complications after distal biceps tendon repairs. J Hand Surg Am 2019;44:382-386.

256. Grant JA, Bissell B, Hake ME, Miller BS, Hughes RE, Carpenter JE: Relationship between implant use, operative time, and costs associated with distal biceps tendon reattachment. Orthopedics 2012;35:e1618-e1624.

258. Matzon JL, Graham JG, Penna S, et al: A prospective evaluation of early postoperative complications after distal biceps tendon repairs. J Hand Surg Am 2019;44:382-386.

260. Koulouris G, Connell D: Evaluation of the endobutton repair of distal biceps tendon reattachment. J Shoulder Elbow Surg 2012;21:538-542.

262. Belk JW, Kraeutler MJ, Mei-Dan O, Houck DA, McCarty EC, Mulcahey MK: Return to sport after proximal hamstring tendon repair: A systematic review. Orthop J Sports Med 2015;3:25196719853218.

264. Sarimo J, Lempainen L, Mattila K, Orava Helttula I, Orava S: Rupture of the pectoralis major muscle. Outcome after repair of acute and chronic pectoralis major tendon rupture: Clinical and ultrasound outcomes at a mean follow-up of 5 years. Eur J Orthop Surg Traumatol 2015;25:91-98.

266. Bak K, Cameron EA, Henderson IJ: Rupture of the pectoralis major: A meta-analysis of 112 cases. Knee Surg Sports Traumatol Arthrosc. 2000;8:113-119.

268. Koulouris G, Connell D: Evaluation of the hamstring muscle complex following acute injury. Skeletal Radiol 2003;32:582-589.

270. Bodendorfer BM, Curley AJ, Kotler JA, et al: Outcomes after operative and nonoperative treatment of proximal hamstring avulsions: A systematic review and meta-analysis. Am J Sports Med 2018;46:2798-2808.

272. Belk JW, Kraeutler MJ, Mei-Dan O, Houck DA, McCarty EC, Mulcahey MK: Return to sport after proximal hamstring tendon repair: A systematic review. Orthop J Sports Med 2019;7:2325967119853218.

274. Konan S, Haddad F: Successful return to high level sports following early surgical repair of complete tears of the proximal hamstring tendons. Int Orthop 2010;34:119-123.

276. Sarimo J, Lempainen L, Mattila K, Orava S: Complete proximal hamstring avulsions: A series of 41 patients with surgery risk stratification during COVID-19 pandemic.
operative treatment. Am J Sports Med 2008;36:1110-1115.

265. Subbu R, Benjamin-Laing H, Haddad F: Timing of surgery for complete proximal hamstring avulsion injuries: Successful clinical outcomes at 6 weeks, 6 months, and after 6 months of injury. Am J Sports Med 2015;43:385-391.

266. Birmingham P, Muller M, Wickiewicz T, Cavanaugh J, Rodeo S, Warren R: Functional outcome after repair of proximal hamstring avulsions. J Bone Joint Surg Am 2011;93:1819-1826.

267. Bunker TD, Esler CN, Leach WJ: Rotator-cuff tear of the hip. J Bone Joint Surg Br 1997;79:618-620.

268. Lindner D, Shohat N, Botser I, Agar G, Thaunat M, Clowez G, Desseaux A, et al: Preserv Surg 2015;31:1819-1826.

269. Suppauksorn S, Nwachukwu BU, Beck SP, Lodhia P, Suarez-Ahedo C, Domb BG: In “Symptomatic gluteus medius tears: results of patients with symptomatic lateral epicondylitis.” J Hip Preserv Surg 2015;2:310-315.

270. Thaunat M, Clowez G, Desseaux A, et al: Influence of muscle fatty degeneration on functional outcomes after endoscopic gluteus medius repair. Arthroscopy 2018;34:1816-1824.

271. Bunker TD, Esler CN, Leach WJ: Rotator-cuff tear of the hip. J Bone Joint Surg Br 1997;79:618-620.

272. Bogunovic L, Lee SX, Haro MS, et al: Application of the Goutallier/Fuchs rotator cuff classification to the evaluation of hip abductor tendon tears and the clinical correlation with outcome after repair. Arthroscopy 2015;31:2145-2151.

273. Agricola R, Heijboer MP, Bierma-Zeinstra SM, Verhaar JA, Wessels H, Waarsing JH: Cam impingement causes osteoarthritis of the hip: A nationwide prospective cohort study (CHECK). Ann Rheum Dis 2013;72:918-923.

274. Philippon MJ, Weiss DR, Kuppersmith DA, Briggs KK, Hay CJ: Arthroscopic labral repair and treatment of femoroacetabular impingement in professional hockey players. Am J Sports Med 2010;38:99-104.

275. Dierckman BD, Ni J, Hohn EA, Domb BG: Does duration of symptoms affect clinical outcome after hip arthroscopy for labral tears? Analysis of prospectively collected outcomes with minimum 2-year follow-up. J Hip Preserv Surg 2017;4:308-317.

276. Aprato A, Jaryasekera N, Villar R: Timing in hip arthroscopy: Does surgical timing change clinical results? Int orthopaedics 2012;36:2231-2234.

277. Kamath AF, Componovo R, Baldwin K, Israelie CL, Nelson CL: Hip arthroscopy for labral tears: Review of clinical outcomes with 4.8-year mean follow-up. Am J Sports Med 2009;37:1721-1727.

278. Lodhia P, Gui C, Chandrasekaran S, Suarez-Ahedo C, Dirschl DR, Domb BG: The economic impact of acetabular labral tears: A cost-effectiveness analysis comparing hip arthroscopic surgery and structured rehabilitation alone in patients without osteoarthritis. Am J Sports Med 2016;44:1771-1780.

279. Nakano N, Lisenda L, Jones TL, Loveday DT, Khanduja V: Complications following arthroscopic surgery of the hip: A systematic review of 36 761 cases. Bone Joint J 2017;99-B:1577-1583.

280. Kester BS, Capogna B, Mahure SA, Ryan MK, Mollon B, Youm T: Independent risk factors for revision surgery or conversion to total hip arthroplasty after hip arthroscopy: A review of a large statewide database from 2011 to 2012. Arthroscopy 2018;34(2):464-470.