PROPERTY T OF REDUCED C^*-CROSSED PRODUCTS
BY DISCRETE GROUPS

BAOJIE JIANG AND CHI-KEUNG NG

ABSTRACT. We generalize the main result of [6] and show that if G is an amenable discrete group with an action α on a finite nuclear unital C^*-algebra A such that the reduced crossed product $A\rtimes_{\alpha,r}G$ has property T, then G is finite and A is finite dimensional. As an application, an infinite discrete group H is non-amenable if and only if the uniform Roe algebra $C^*_u(H)$ has property T.

1. Introduction

Property T for unital C^*-algebras was introduced by Bekka in [1] and was studied by different people (see e.g. [2, 6, 8, 9]). In particular, it was shown by Kamalov in [6] that

if G is a discrete amenable group acting on a commutative unital C^*-algebra A such that the crossed product has property T, then G is finite and A is finite dimensional.

The aims of this paper is to extend this result to the case of finite nuclear unital C^*-algebras, and to give an application of this result. As expected, a result of Brown in [2] is one of our main tools.

2. The main results

Throughout this article, G is a discrete group acting on a unital C^*-algebra A through an action α (by automorphisms).

Let $T(A)$ be the set of all tracial states on A. For any $\tau \in T(A)$, we denote by $\pi_\tau : A \rightarrow B(\mathcal{H}_\tau)$ the GNS representation corresponding to τ and by ξ_τ a norm one cyclic vector in \mathcal{H}_τ with

$$\tau(a) = \langle \pi_\tau(a)\xi_\tau, \xi_\tau \rangle \quad (a \in A).$$

Recall that A is said to be finite if $T(A)$ separates points of A_+ ([4, Theorem 3.4]). We also recall from [1, Remark 2] that if $T(A) = \emptyset$, then A has property T.

2010 Mathematics Subject Classification. Primary: 46L05, 46L55.

Key words and phrases. discrete groups, reduced C^*-crossed products, property T, amenability.

The second named author is supported by the National Natural Science Foundation of China (11471168).
We use $T_\alpha(A)$ to denote the set of all α-invariant tracial states on A, and recall that A is said to be α-finite if $T_\alpha(A)$ separates points of A_+ (see [3, Theorem 8.1]). We also denote by $A \rtimes_{\alpha,r} G$ the reduced crossed product of α, and identify $A \subseteq A \rtimes_{\alpha,r} G$ as well as $G \subseteq A \rtimes_{\alpha,r} G$ through their canonical embeddings.

Let us first give the following well-known facts. Since we cannot find precise references for them, we present their simple arguments here.

Lemma 1. (a) $T(A \rtimes_{\alpha,r} G) \neq \emptyset$ if and only if $T_\alpha(A) \neq \emptyset$.

(b) If A is α-finite, then $A \rtimes_{\alpha,r} G$ is finite.

(c) If G is amenable and $T(A) \neq \emptyset$, then $T_\alpha(A) \neq \emptyset$.

Proof: Let us denote $B := A \rtimes_{\alpha,r} G$, and consider $E : B \to A$ to be the canonical conditional expectation (see e.g. [3, Proposition 4.1.9]).

(a) If $\sigma \in T(B)$, then $\sigma(\alpha_t(a)) = \sigma(tat^{-1}) = \sigma(a)$ ($a \in A; t \in G$), which means that $\sigma|_A \in T_\alpha(A)$. Conversely, for any $\tau \in T_\alpha(A)$ and any $x = \sum_{s \in G} a_s s$ with $a_s = 0$ except for a finite number of s, one has

$$\tau(E(x^*x)) = \tau\left(\sum_{r \in G} \alpha_{r^{-1}}(a_r^*a_r)\right) = \tau\left(\sum_{r \in G} a_r a_r^*\right) = \tau(E(xx^*)).$$

Hence, $\tau \circ E$ belongs to $T(B)$, because it is continuous.

(b) As E is faithful, we know that B is a Hilbert A-module under the A-valued inner product

$$\langle x, y \rangle_A := E(x^*y) \quad (x, y \in B).$$

Moreover, for any $\tau \in T_\alpha(A)$, if π^B_τ is the cocvainal isotype of B on the Hilbert space $B \otimes_{\pi_\tau} \mathcal{H}_\tau$ (see e.g. [7, Proposition 4.5] for its definition; note that we identify a Hilbert C-module with a Hilbert space by considering the conjugation of the inner product), then $(B \otimes_{\pi_\tau} \mathcal{H}_\tau, \pi^B_\tau)$ coincides with $(\mathcal{H}_\tau \otimes E, \pi_\tau \circ E)$ (observe that $1 \otimes \xi_\tau$ is a cyclic vector for π^B_τ with the state defined by $1 \otimes \xi_\tau$ being $\tau \circ E$).

Let $(\mathcal{H}_0, \pi_0) := \bigoplus_{\tau \in T_\alpha(A)} (\mathcal{H}_\tau, \pi_\tau)$. Since A is α-finite, one knows that π_0 is faithful. It is easy to verify that the representation π^B_0 of B on $B \otimes_{\pi_0} \mathcal{H}_0$ induced by π_0 is also faithful, and that π^B_0 coincides with $\bigoplus_{\tau \in T_\alpha(A)} \pi^B_\tau$. Consequently, $\bigoplus_{\tau \in T_\alpha(A)} (\mathcal{H}_\tau \otimes E, \pi_\tau \circ E)$ is faithful, which means that $\{\tau \circ E : \tau \in T_\alpha(A)\}$ (which is a subset of $T(B)$ by the argument of part (a)) separates points of B_+.

(c) Note that $T(A)$ is a non-empty weak*-compact convex subset of A^* and α induces an action of G on $T(A)$ by continuous affine maps. Day’s fixed point theorem (see [3, Theorem 1]) produces a fixed point $\tau_0 \in T(A)$ for this action. Obviously, $\tau_0 \in T_\alpha(A)$. \qed

We warn the readers that part (c) of the above is not true for non-unital C^*-algebras.
Our main theorem concerns with the situation when $A \rtimes_{\alpha,r} G$ is nuclear and has property T. In this situation, [2, Theorem 5.1] tells us that $A \rtimes_{\alpha,r} G$ is a direct sum of a finite dimensional C^*-algebra and a nuclear C^*-algebra with no tracial state (note that although all C^*-algebras in [2] are assumed to be separable, [2, Theorem 5.1] is true in the non-separable case because one can use [3, Theorem 6.2.7] to replace [2, Theorem 4.2]). The following theorem implies that if G is infinite, then we arrive at one of the extreme that the whole reduced crossed product has no tracial state. This proposition, together with its proof, is a main ingredient in the argument for our main theorem.

Proposition 2. Let G be an infinite discrete group acting on a unital C^*-algebra A through an action α. If $A \rtimes_{\alpha,r} G$ is nuclear and has property T, then $T(A \rtimes_{\alpha,r} G) = \emptyset$.

Proof: Let $I_\alpha := \bigcap_{\tau \in T_\alpha(A)} \ker \pi_\tau$ and $A_\alpha := A/I_\alpha$. Suppose on contrary that $T(A \rtimes_{\alpha,r} G) \neq \emptyset$. Then $I_\alpha \neq A$ because of Lemma [1(a)].

As $\ker \pi_\tau = \{ x \in A : \tau(x^*x) = 0 \}$ ($\tau \in T(A)$), we know that I_α is α-invariant, and hence α produces an action β of G on A_α. Moreover, every element in $T_\alpha(A)$ induces an element in $T_\beta(A_\alpha)$, which gives the β-finiteness of A_α.

Since $A_\alpha \rtimes_{\beta,r} G$ is a quotient C^*-algebra of $A \rtimes_{\alpha,r} G$, the hypothesis implies $A_\alpha \rtimes_{\beta,r} G$ to be nuclear and having property T. Therefore, [2, Theorem 5.1] tells us that $A_\alpha \rtimes_{\beta,r} G = C \oplus D$, where C is finite dimensional and $T(D) = \emptyset$. However, the finiteness of $A_\alpha \rtimes_{\beta,r} G$ (which follows from Lemma [1(b)]) tells us that $D = (0)$. Consequently, $A_\alpha \rtimes_{\beta,r} G$ is a non-zero finite dimensional C^*-algebra, which contradicts the fact that G is infinite. \[\square\]

The following is our main theorem which concerns with the other extreme. More precisely, what we obtained is a situation (which include the one in [6]) under which the reduced crossed product is finite dimensional.

Notice that the finiteness assumption of A is indispensible. In fact, if A is the direct sum of \mathbb{C} with a nuclear unital C^*-algebra having no tracial state, then A has a tracial state (but is not finite), and the reduced crossed product of the trivial action of a finite group on A is nuclear and has property T. We will see at the end of this article that one cannot weaken the amenability assumption of G neither.

Theorem 3. Let G be an amenable discrete group and A be a finite nuclear unital C^*-algebra. If there is an action α of G on A such that $A \rtimes_{\alpha,r} G$ has property T, then G is finite and A is finite dimensional.

Proof: Set $I_\alpha := \bigcap_{\tau \in T_\alpha(A)} \ker \pi_\tau$ and $A_\alpha := A/I_\alpha$. Denote $B := A \rtimes_{\alpha,r} G$. The finiteness assumption of A and Lemma [1(c)] imply that $I_\alpha \neq A$ and that $T(B) \neq \emptyset$ (see also Lemma [1(a)]). Hence, G is finite (by...
Proposition 2. Moreover, the argument of Proposition 2 tells us that \(I_\alpha \) is \(\alpha \)-invariant and \(B_\alpha := A_\alpha \rtimes G \) is finite dimensional. Therefore, it suffices to show that \(I_\alpha = \{0\} \).

Suppose on the contrary that \(I_\alpha \neq \{0\} \). By [2, Theorem 5.1], we know that \(B \cong B_0 \oplus B_1 \), where \(B_0 \) is finite dimensional and \(T(B_1) = \emptyset \). Thus, \(I_\alpha \rtimes r G = J_0 \oplus J_1 \), with \(J_k \) being a closed ideal of \(B_k \) for \(k \in \{0,1\} \). The short exact sequence
\[
0 \to I_\alpha \to A \to A_\alpha \to 0,
\]
induces a short exact sequence concerning their full crossed products, which coincide with the reduced crossed products because \(G \) is amenable. From this, we obtain
\[
B_\alpha = B/(I_\alpha \rtimes G) = B_0/J_0 \oplus B_1/J_1.
\]
Hence, \(B_1/J_1 \) is a quotient \(C^* \)-algebra of the finite dimensional \(C^* \)-algebra \(B_\alpha \), which implies \(J_1 = B_1 \) (otherwise, \(B_1 \) will have a tracial state). Consequently, \(B_\alpha \cong B_0/J_0 \), or equivalently, \(B_0 \cong B_\alpha \oplus J_0 \) (as \(B_0 \) is finite dimensional). This gives
\[
B \cong B_\alpha \oplus J_0 \oplus B_1 = B_\alpha \oplus (I_\alpha \rtimes r G).
\]
Thus, \(I_\alpha \rtimes r G \) is unital and so is \(I_\alpha \) (but its identity may not be the identity of \(A \)).

Now, by the finiteness assumption of \(A \), one knows that \(T(I_\alpha) \neq \emptyset \), and Lemma 1(c) produces an element \(\tau \in T_\alpha(I_\alpha) \). Let \(\Phi : A \to I_\alpha \) be the canonical \(G \)-equivariant \(* \)-epimorphism, and define
\[
\tau'(a) := \langle \pi_\tau(\Phi(a))\xi_\tau, \xi_\tau \rangle \quad (a \in A).
\]
Then \(\tau' \in T_\alpha(A) \) and \(\tau'|_{I_\alpha} = \tau \). However, the existence of \(\tau' \) contradicts the definition of \(I_\alpha \). \(\square \)

Corollary 4. Let \(G \) be an infinite discrete group and \(\alpha_G \) be the left translation action of \(G \) on \(\ell^\infty(G) \). The following are equivalent.

1. \(G \) is non-amenable.
2. \(\ell^\infty(G) \rtimes r G \) does not have a tracial state.
3. \(\ell^\infty(G) \rtimes r G \) has strong property \(T \) (see [5]).
4. \(\ell^\infty(G) \rtimes r G \) has property \(T \).
5. There is a finite nuclear unital \(C^* \)-algebra \(A \) and an action \(\alpha \) of \(G \) on \(A \) such that \(A \rtimes r G \) has property \(T \).

Proof: If \(G \) is non-amenable, then \(T_{ac}(\ell^\infty(G)) = \emptyset \) and Lemma 1(a) tells us that Statement (2) holds. On the other hand, if \(\ell^\infty(G) \rtimes r G \) does not have a tracial state, then [5] Proposition 5.2 gives Statement (3). Moreover, a strong property \(T \) \(C^* \)-algebra clearly have property \(T \). Finally, suppose that \(A \rtimes r G \) has property \(T \) but \(G \) is amenable. Then Theorem 3 produces the contradiction that \(G \) is finite. \(\square \)
The following comparison of Corollary 4 with the main result of Ozawa in [10] (see also Theorem 5.1.6 and Proposition 5.1.3 of [3]) may be worth mentioning:

a discrete G is exact if and only if $\ell^\infty(G) \rtimes_{\alpha} G$ is nuclear
(or equivalently, the action α is amenable).

This result tells us that one cannot weaken the amenability assumption of G in Theorem 3 to an amenable action α with $A \rtimes_{\alpha} G$ being nuclear, since if G is an infinite exact non-amenable group, the action of G on $\ell^\infty(G)$ is amenable, and the reduced crossed product has property T and is nuclear.

REFERENCES

[1] B. Bekka, Property (T) for C^*-algebras, Bull. London Math. Soc. 38 (2006), 857-867.
[2] N.P. Brown, Kazhdan’s property T and C^*-algebras, J. Funct. Anal., 240 (2006), 290-296.
[3] N.P. Brown and N. Ozawa, C^*-algebras and finite dimensional approximations, Grad. Stud. Math. 88, American Mathematical Society, Providence, RI, (2008).
[4] J. Cuntz and G. K. Pedersen, Equivalence and traces on C^*-algebras, J. Funct. Anal., 33 (1979), 135-164.
[5] M.M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590.
[6] F. Kamalov, Property T and Amenable Transformation Group C^*-algebras, Canad. Math. Bull. 58 (2015), 110-114.
[7] E.C. Lance, Hilbert C^*-modules, A toolkit for operator algebras, London Math. Soc. Lect. Note Ser. 210, Camb. Univ. Press (1995).
[8] C.W. Leung and C.K. Ng, Property (T) and strong property (T) for unital C^*-algebras, J. Funct. Anal. 256 (2009), 30553070.
[9] C.K. Ng, Property T for general C^*-algebras, Math. Proc. Camb. Philos. Soc. 156 (2014), 229239.
[10] N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 691695.

(Baojie Jiang) Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China.
E-mail address: jiangbaojie@gmail.com

(Chi-Keung Ng) Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China.
E-mail address: ckng@nankai.edu.cn; ckngmath@hotmail.com