Explaining the CMS excesses, baryogenesis and neutrino masses in E_6 motivated $U(1)_N$ model

Mansi Dhuria, Chandan Hati, and Utpal Sarkar

1Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
2Indian Institute of Technology Gandhinagar, Chandkheda, Ahmedabad 382 434, India.

We study the superstring inspired E_6 model motivated $U(1)_N$ extension of the supersymmetric standard model to explore the possibility of explaining the recent excess CMS events and the baryon asymmetry of the universe in eight possible variants of the model. In light of the hints from short-baseline neutrino experiments at the existence of one or more light sterile neutrinos, we also study the neutrino mass matrices dictated by the field assignments and the discrete symmetries in these variants. We find that all the variants can explain the excess CMS events via the exotic slepton decay, while for a standard choice of the discrete symmetry four of the variants have the feature of allowing high scale baryogenesis (leptogenesis). For one other variant three body decay induced soft baryogenesis mechanism is possible which can induce baryon number violating neutron-antineutron oscillation. We also point out a new discrete symmetry which has the feature of ensuring proton stability and forbidding tree level flavor changing neutral current processes while allowing for the possibility of high scale leptogenesis for two of the variants. On the other hand, neutrino mass matrix of the $U(1)_N$ model variants naturally accommodates three active and two sterile neutrinos which acquire masses through their mixing with extra neutral fermions giving rise to interesting textures for neutrino masses.

PACS numbers: 98.80.Cq, 12.60.-i, 11.30.Fs, 14.60.St

I. INTRODUCTION

One of the simplest and well motivated extensions of the Standard Model (SM) gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ is the $U(1)_N$ extension of the supersymmetric SM motivated by the superstring theory inspired E_6 model. This model, realizing the implementation of supersymmetry and the extension of the SM gauge group to a larger symmetry group, offers an attractive possibility of TeV-scale physics beyond the SM, testable at the LHC. On the other hand, small neutrino masses explaining the solar and atmospheric neutrino oscillations data and a mechanism for generating the observed baryon asymmetry of the universe can be naturally accommodated in this model.

The presence of new exotic fields in addition to the SM fields and new interactions involving the new gauge boson Z' provides a framework to explore the associated rich phenomenology which can be tested at the LHC. To this end, we must mention that recently the CMS Collaboration at the LHC have reported excesses in the searches for the right-handed gauge boson W_R at a center of mass energy of $\sqrt{s} = 8$ TeV and 19.7fb^{-1} of integrated luminosity \cite{1} and di-leptoquark production at a center of mass energy of $\sqrt{s} = 8$ TeV and 19.6fb^{-1} of integrated luminosity \cite{2}. In the former the final state $eejj$ was used to probe $pp \to W_R \to eN_R \to eejj$ and in the energy bin $1.8 \text{ TeV} < m_{eejj} < 2.2 \text{ TeV}$ a 2.8σ local excess have been reported accounting for 14 observed events with 4 expected background events from the SM. In the search for di-leptoquark production, 2.4σ and 2.6σ local excesses in $eejj$ and $g\phi_{R}jj$ channels respectively have been reported corresponding to 36 observed events with $20.49 \pm 2.4 \pm 2.45(\text{syst})$ expected SM background events and 18 observed events with $7.54 \pm 1.20 \pm 1.07(\text{syst})$ expected SM background events respectively \cite{3}.

Attempts have been made to explain the above CMS excesses in the context of Left-Right Symmetric Model (LRSM). The $eejj$ excess have been explained from W_R decay for LRSM with $g_L = g_R$ by taking into account the CP phases and non-degenerate masses of heavy neutrinos in Ref. \cite{4}, and also by embedding the conventional LRSM with $g_L \neq g_R$ in the SO(10) gauge group in Refs. \cite{5}. In these models, the lepton asymmetry can get generated either through the lepton number violating decay of right-handed Majorana neutrinos \cite{6} or heavy Higgs triplet scalars \cite{7}. However, the conventional LRSM models (even after embedding it in higher gauge groups) are not consistent with the canonical mechanism of leptogenesis in the range of the mass of $W_R (\sim 2 \text{ TeV})$ corresponding to the $eejj$ excess at the LHC reported by the CMS \cite{7,9}.

The $eejj$ excess has also been discussed in the context of W_R and Z' production and decay in Ref. \cite{10} and in the context of pair production of vector-like leptons in Refs. \cite{11}. In Ref. \cite{12}, a scenario connecting leptoquarks to dark matter was proposed accounting for the recent excess seen by CMS. In Refs. \cite{13,14}, the excess events have been shown to occur in R-parity violating processes via the resonant production of a slepton. In Ref. \cite{15}, the three effective low-energy subgroups of the superstring inspired E_6 model with a low energy
$SU(2)_{(R)}$ were studied and a R-parity conserving scenario was proposed in which both the $eejj$ and $e_{p}pp jj$ signals can be produced from the decay of an exotic slepton in two of the effective low-energy subgroups of the superstring inspired E_{6} model, out of which one subgroup (known as the Alternative Left-Right Symmetric Model [10]) allows for the possibility of having successful high-scale leptogenesis.

In this article, we systematically study the E_{6} motivated $U(1)_{N}$ extension of the supersymmetric SM gauge group to explain the excess CMS events and simultaneously explain the baryon asymmetry of the universe via baryogenesis (leptogenesis). To this end, we impose discrete symmetries to the above gauge group which ensures proton stability, forbids the tree level flavor changing neutral current (FCNC) processes and dictates the form of the neutrino mass matrix in the variants of the $U(1)_{N}$ model. We find that all the variants can explain the excess CMS events via the exotic slepton decay, while for a standard choice of the discrete symmetry some of them have the feature of allowing high scale baryogenesis (leptogenesis) via the decay of a heavy Majorana baryon (lepton) and some are not consistent with such mechanisms. We have pointed out the possibility of the three body decay induced soft baryogenesis mechanism which can induce baryon number violating neutron-antineutron ($n-n$) oscillation [17] in one such variant, on the other hand, we have also explored a new discrete symmetry for these variants which has the feature of ensuring proton stability and forbidding tree level FCNC processes while allowing for the possibilities of high scale leptogenesis through the decay of a heavy Majorana lepton. In light of the hints from short-baseline neutrino experiments [18] at the existence of one or more light sterile neutrinos which can interact only via mixing with the active neutrinos, we have also explored the neutrino mass matrix of the $U(1)_{N}$ model variants which naturally contains three active and two sterile neutrinos [19]. These neutrinos acquire masses through their mixing with extra neutral fermions giving rise to interesting textures for neutrino masses governed by the field assignments and the imposed discrete symmetries.

The outline of the article is as follows. In Sec. II we discuss the imposition of discrete symmetries and give the variants of the $U(1)_{N}$ model and the corresponding superpotentials. In Sec. III we discuss the possibility of producing $eejj$ and $e_{p}pp jj$ events from the decay of an exotic slepton. In Sec. IV we explore the possible mechanisms of baryogenesis (leptogenesis) for the different variants of the $U(1)_{N}$ model. In Sec. V we study the neutral fermionic mass matrices and the resultant structure of the neutrino mass matrices. In Sec. VI we conclude with our results.

II. $U(1)_{N}$ EXTENSION OF SUPERSYMMETRIC STANDARD MODEL

In the heterotic superstring theory with $E_{8} \times E_{8}'$ gauge group the compactification on a Calabi-Yau manifold leads to the breaking of E_{6} to $SU(3) \times E_{6}$ [20, 21]. The flux breaking of E_{6} can result in different low-energy effective subgroups of rank-5 and rank-6. One such possibility is realized in the $U(1)_{N}$ model. The rank - 6 group E_{6} can be broken down to low-energy gauge groups of rank - 5 or rank - 6 with one or two additional $U(1)$ in addition to the SM gauge group. For example E_{6} contains the subgroup $SO(10) \times U(1)_{\psi}$ while $SO(10)$ contains the subgroup $SU(5) \times U(1)_{\chi}$. In fact some mechanisms can break the E_{6} group directly into the rank -6 gauge scheme

$$E_{6} \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{\psi} \times U(1)_{\chi}.$$ \hspace{1cm} (1)

These rank - 6 schemes can further be reduced to rank - 5 gauge group with only one additional $U(1)$ which is a linear combination of $U(1)_{\psi}$ and $U(1)_{\chi}$

$$Q_{\alpha} = Q_{\psi} \cos \alpha + Q_{\chi} \sin \alpha,$$ \hspace{1cm} (2)

where

$$Q_{\psi} = \sqrt{\frac{3}{2}}(Y_{L} - Y_{R}), \hspace{0.5cm} Q_{\chi} = \sqrt{\frac{1}{10}}(5T_{3R} - 3Y).$$ \hspace{1cm} (3)

For a particular choice of $\tan \alpha = \sqrt{n}$ the right-handed counter part of neutrino superfield (N^{c}) can transform trivially under the gauge group and the corresponding $U(1)$ gauge extension to the SM is denoted as $U(1)_{N}$. The trivial transformation of N^{c} can allow a large Majorana mass of N^{c} in the $U(1)_{N}$ model thus providing attractive possibility of baryogenesis (leptogenesis).

Let us consider one of the maximal subgroups of E_{6} given by $SU(3)_{C} \times SU(3)_{L} \times SU(3)_{R}$. The fundamental 27 representation of E_{6} under this subgroup is given by

$$27 = (3, 3, 1) + (3^{*}, 1, 3^{*}) + (1, 3^{*}, 3)$$ \hspace{1cm} (4)

The matter superfields of the first family are assigned as:

$$\begin{pmatrix}
 u \\
 d \\
 h
\end{pmatrix} + \begin{pmatrix}
 e^{c} \\
 \nu
\end{pmatrix} + \begin{pmatrix}
 E^{c} \\
 \nu_{E} \\
 N_{E}^{c} \\
 e^{c} \\
 N^{c} \\
 n
\end{pmatrix},$$ \hspace{1cm} (5)

where $SU(3)_{L}$ operates vertically and $SU(3)_{R}$ operates horizontally. Now if the $SU(3)_{L}$ gets broken to $SU(2)_{L} \times U(1)_{Y_{L}}$ and the $SU(3)_{R}$ gets broken to $U(1)_{T_{3R}} \times U(1)_{Y_{R}}$ via the flux mechanism then the resulting gauge symmetry is given by $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{N}$, where the $U(1)_{N}$ charge assignment is given by

$$Q_{N} = \sqrt{\frac{1}{40}}(6Y_{L} + T_{3R} - 9Y_{R}),$$ \hspace{1cm} (6)
and the electric charge is given by

$$Q = T_{3L} + Y, \quad Y = Y_L + T_{3R} + Y_R.$$ \hfill (7)

The transformations of the various superfields of the fundamental 27 representation of E_6 under $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_N$ and the corresponding assignments of Y_L, T_{3R} and Y_R are listed in Table I where $Q = (u, d)$, $L = (\nu_e, e)$, $X = (\nu_E, E)$ and $X^c = (E^c, N^c_E)$.

III. DISCRETE SYMMETRIES AND VARIANTS OF $U(1)_N$ MODEL

The presence of the extra particles in this model can have interesting phenomenological consequences, however, they can also cause serious problems regarding fast proton decay, tree level flavor changing neutral current (FCNC) and neutrino masses. Considering the decomposition of $27 \times 27 \times 27$ there are eleven possible superpotential terms. The most general superpotential can be written as

$$W = W_0 + W_1 + W_2,$$

$$W_0 = \lambda_1 Q u^c X^c + \lambda_2 Q d^c X + \lambda_3 L e^c X + \lambda_4 S h h^c + \lambda_5 S X X^c + \lambda_6 L N^c X^c + \lambda_7 d^c N^c h,$$

$$W_1 = \lambda_8 Q Q h + \lambda_9 u^c d^c h,$$

$$W_2 = \lambda_{10} Q L h^c + \lambda_{11} u^c e^c h.$$ \hfill (8)

The first five terms of W_0 give masses to the usual SM particles and the new heavy particles h, h^c, X and X^c. The last term of W_0 i.e. $L N^c X^c$ can generate a non zero Dirac neutrino mass and in some scenarios it is desirable to have the coupling λ_6 very small or vanishing, so that the three neutrinos pick up small masses. Now the rest five terms corresponding to W_1 and W_2 cannot all be there together as it would induce rapid proton decay. Imposition of a discrete symmetry can forbid such terms and give a sufficiently longlived proton [22]. We will impose a $Z^B_2 \times Z^H_2$ discrete symmetry, where the first $Z^B_2 = (-1)^{3B}$ prevents rapid proton decay and the second discrete symmetry Z^H distinguishes between the Higgs and matter supermultiplets and suppress the tree level FCNC processes.

Under $Z^B_2 = (-1)^{3B}$ we have

$$Q, u^c, d^c : -1,$$

$$L, e^c, X, X^c, S : +1,$$ \hfill (9)

now depending on the assignments of h, h^c and N^c one can have different variants of the model. Such different possibilities are listed in Table II.

In the models where h, h^c are even under Z^B_2 the superfields $h(B = -2/3)$ and $h^c(B = 2/3)$ are diquarks while for the rest $h(B = 1/3, L = 1)$ and $h^c(B = -1/3, L = -1)$ are leptoquarks. N^c with the assignment $Z^B_2 = -1$ are baryons and the assignment $Z^H_2 = +1$ are leptons. In addition to the trilinear terms listed in Table II there can be bilinear terms such as $L X^c$ and $N^c N^c$. The former can give rise to nonzero neutrino mass and the latter can give heavy Majorana baryon (lepton) N^c mass. Model 1 is similar to model 5 of Ref. [23] and model A of Ref. [24]. Model 2 is same as model B of Ref. [24]. Model 8 is quiter different from the ones that have been discussed in connection with leptonogenesis in the literature (e.g. [25]). Here the matter superfields X, X^c carry non zero $B - L$ quantum numbers and the tree level FCNC processes are forbidden.

Table I: Transformations of the various superfields of the 27 representation under $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_N$.

$SU(3)_C$	$SU(2)_L$	Y_L	T_{3R}	Y_R	$U(1)_Y$	$U(1)_N$	
Q	3	2	$\frac{1}{6}$	0	0	$\frac{1}{6}$	
u^c	3*	1	0	$-\frac{1}{2}$	$-\frac{1}{6}$	$-\frac{2}{3}$	
d^c	3*	1	0	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{2}{3}$	
L	1	2	$-\frac{1}{6}$	0	$-\frac{1}{3}$	$\frac{1}{3}$	
e^c	1	1	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{3}$	1	
h	3	1	$-\frac{1}{6}$	0	$-\frac{1}{3}$	$-\sqrt{3}$	
h^c	3*	1	0	$\frac{1}{3}$	$\frac{1}{6}$	$\sqrt{3}$	
X	1	2	$-\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{6}$	$-\sqrt{3}$	
X^c	1	2	$-\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{6}$	$\sqrt{3}$	
n	1	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	
N^c	1	1	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{6}$	0	0

Table II: Possible transformations of h, h^c and N^c under Z^B_2 and the allowed trilinear terms.

Model	h, h^c	N^c	Allowed trilinear terms
1	+1	-1	W_0 ($\lambda_6 = 0$), W_1
2	+1	-1 for $N^c_{1,2}$, +1 for N^c_3	$\lambda_7 = 0$ for N^c_1), W_1
3	-1	+1	W_0, W_2
4	-1	+1 for $N^c_{1,2}$, -1 for N^c_3	$\lambda_7 = 0$ for N^c_1), W_1
5	+1	-1 for $N^c_{1,2}$, -1 for N^c_3	$\lambda_7 = 0$ for N^c_1), W_1
6	+1	+1	W_0 ($\lambda_7 = 0$), W_1
7	-1	-1	W_0 ($\lambda_6 = \lambda_7 = 0$), W_2
8	-1	+1 for $N^c_{1,2}$, -1 for N^c_3	W_0 ($\lambda_6 = \lambda_7 = 0$), W_2

Under $Z^B_2 = (-1)^{3B}$ we have
A. Model 1

In this model we take the second discrete symmetry Z_2^H to be $Z_2^H = (-1)^L$ following Ref. [24] and it is imposed as follows

\[L, e^c, X_{1,2}, X_{1,2}^c, S_{1,2} : -1 \]
\[Q, u^c, d^c, N^c, h, h^c, S_3, X_3, X_3^c : +1. \]

The neutral Higgs superfields S_3, X_3 and X_3^c have zero lepton numbers and can pick up vacuum expectation values (VEVs) while the presence of the bilinear terms $LX_3^c,_{ij}$ imply that $X_{1,2}^c$ have $L = -1$ and $X_{1,2}$ have $L = 1$. In this model N^c is a baryon with $B = 1$ and it acquires a Majorana mass from the bilinear term mN^cN^c. The complete superpotential of model 1 is given by

\[
W = \lambda_{ij}^3 Q_j u_i^c X_3^c + \lambda_{ij}^2 Q_j d_i^c X_3 + \lambda_{ij}^3 S_3 h_j h_j^c + \lambda_{ijk}^3 S_3 X_a X_b + \lambda_{ijk}^2 S_a X_b X_c^c + \lambda_{ijk}^2 S_3 X_a X_b X_c^c + \lambda_{ijk}^2 d_i^c h_j N^c + \mu^a L_i X_a^c + m_N^c N_i^c N_j^c + W_1,
\]

where i, j, k are flavor indices which run over all 3 flavors and $a, b = 1, 2, 3$. The form of the superpotential clearly shows that the up-type quarks couple to X_3^c only while the down-type quarks and the charged leptons couple to X_3 only, resulting in the suppression of the FCNC processes at the tree level.

B. Model 2

Here the second discrete symmetry Z_2^L is imposed as follows

\[L, e^c, X_{1,2}, X_{1,2}^c, S_{1,2}, N_3^c : -1 \]
\[Q, u^c, d^c, N_1^c, h, h^c, S_3, X_3, X_3^c : +1. \]

In this model $N^c_{1,2}$ are baryons with $B = 1$ but N_3^c is a lepton and can give mass to one of the neutrinos via the term $LN_3^cX_3^c$. The complete superpotential of model 2 is given by

\[
W = \lambda_{ij}^L Q_j u_i^c X_3^c + \lambda_{ij}^L Q_j d_i^c X_3 + \lambda_{ij}^L S_3 h_j h_j^c + \lambda_{ijk}^L S_3 X_a X_b + \lambda_{ijk}^L S_a X_b X_c^c + \lambda_{ijk}^2 S_3 X_a X_b X_c^c + \lambda_{ijk}^L d_i^c h_j N^c + \mu^a L_i X_a^c + m_N^c N_i^c N_j^c + W_1.
\]

C. Model 3

Under the second discrete symmetry $Z_2^H = Z_2^L = (-1)^L$ the superfields transform as follows

\[L, e^c, X_{1,2}, X_{1,2}^c, S_{1,2}, N^c, h, h^c : -1 \]
\[Q, u^c, d^c, S_3, X_3, X_3^c : +1. \]

In this model all the N^cs are leptons. The complete superpotential of model 4 is given by

\[
W = \lambda_{ij}^L Q_j u_i^c X_3^c + \lambda_{ij}^L Q_j d_i^c X_3 + \lambda_{ij}^L S_3 h_j h_j^c + \lambda_{ijk}^L S_3 X_a X_b + \lambda_{ijk}^L S_a X_b X_c^c + \lambda_{ijk}^L S_3 X_a X_b X_c^c + \lambda_{ijk}^L d_i^c h_j N^c + \mu^a L_i X_a^c + m_N^c N_i^c N_j^c + W_2.
\]

D. Model 4

Here the second discrete symmetry Z_2^H is again chosen to be $(-1)^L$ giving the transformations of the superfields as follows

\[L, e^c, X_{1,2}, X_{1,2}^c, S_{1,2}, N_1^c, h, h^c : -1 \]
\[Q, u^c, d^c, N_1^c, h, h^c, S_3, X_3, X_3^c : +1. \]

N_1^cs are leptons while N_3^cs are a baryon. The complete superpotential of model 2 is given by

\[
W = \lambda_{ij}^L Q_j u_i^c X_3^c + \lambda_{ij}^L Q_j d_i^c X_3 + \lambda_{ij}^L S_3 h_j h_j^c + \lambda_{ijk}^L S_3 X_a X_b + \lambda_{ijk}^L S_a X_b X_c^c + \lambda_{ijk}^L S_3 X_a X_b X_c^c + \lambda_{ijk}^L d_i^c h_j N^c + \mu^a L_i X_a^c + m_N^c N_i^c N_j^c + m_N^c N_i^c N_j^c + W_2.
\]

E. Model 5 and 6

In model 5 if we choose the second discrete symmetry Z_2^L to be $Z_2^L = (-1)^L$ then the superfields transform as follows

\[L, e^c, X_{1,2}, X_{1,2}^c, S_{1,2}, N_{1,2} : -1 \]
\[Q, u^c, d^c, N_3^c, h, h^c, S_3, X_3, X_3^c : +1. \]

which forbids the terms $\lambda_0 L_i N_3^c X_3^c$ (λ_7 is already vanishing for $N_{1,2}$ from the imposition of the first discrete symmetry Z_2^H) and thus the possibility of high scale baryogenesis (via leptogenesis) through the decay of Majorana N^c gets ruled out. However there can be soft baryogenesis through three body decays which can induce $n - \bar{n}$ oscillation. We will elaborate on this in Section [6]. With the above choice of second discrete symmetry given in Eq. [18] the complete superpotential for model 5 is given by

\[
W = \lambda_{ij}^L Q_j u_i^c X_3^c + \lambda_{ij}^L Q_j d_i^c X_3 + \lambda_{ij}^L S_3 h_j h_j^c + \lambda_{ijk}^L S_3 X_a X_b + \lambda_{ijk}^L S_a X_b X_c^c + \lambda_{ijk}^L S_3 X_a X_b X_c^c + \lambda_{ijk}^L d_i^c h_j N^c + \mu^a L_i X_a^c + m_N^c N_i^c N_j^c + m_N^c N_i^c N_j^c + W_1.
\]

Footnote 1: We will use this notation hereafter in this article. The indices i, j, k run over 1,2,3, while the indices a, b run over 1,2.
We find that in this model it is possible to allow high scale leptogenesis through the decay of Majorana N^c by a clever choice of the second discrete symmetry such that it can distinguish between the matter and Higgs superfields and also suppress the unwanted FCNC processes at the tree level. One such choice can be Z_2^E which is associated with most of the exotic states. We define the transformation properties of the various superfields under $Z_2^H = Z_2^E$ as

$$X_{1,2}, X^c_{1,2}, S_{1,2}, N^c : -1$$

$$L, e^c, Q, u^c, d^c, h, h^c, S_3, X_3, X^c_3 : +1.$$ \(20\)

Thus for this choice also X_3, X^c_3 and S_3 are the Higgs superfields that acquire VEVs. Since up-type quarks couple to X_3 only and down-type quarks and charged SM leptons couple to only X_3 the FCNC processes at the tree level are suppressed. The complete superpotential of model 5 with the assignments in Eq. 20 reduces to

$$W' = \lambda^{ij}_1 Q_j u^c_i X^c_3 + \lambda^{ij}_2 Q_j d^c_i X_3 + \lambda_3 L_j e^c_i X_3 + \lambda^{ij}_4 S_3 h_i h^c_j$$

$$+ \lambda_5^{ab} S_3 X_a X^c_b + \lambda_6^{ab} S_a X_3 X^c_b + \lambda_7^{ab} S_a X_3 X^c_b$$

$$+ \lambda_8^{ab} S_3 X_3 X^c_3 + \lambda_9^{ab} L_i N^c_a X^c_b$$

$$+ m_3^{ab} N^c_a N^c_b + m_4^{ia} N^c_i N^c_3 + W_1.$$ \(21\)

In model 6 also, the similar assignments for the superfields as given in Eq. 20 holds good and the complete superpotential is similar to Eq. 21 except the λ_6 term which now reads $\lambda_6^{ij} L_i N^c_j X^c_a$.

F. Model 7 and 8

Taking second discrete symmetry to be $Z_2^H = (-1)^L$ the superfields transform as follows

$$L, e^c, X_{1,2}, X^c_{1,2}, S_{1,2}, h, h^c : -1$$

$$Q, u^c, d^c, N^c, S_3, X_3, X^c_3 : +1.$$ \(22\)

In this model all the N^c s are baryons. The complete superpotential of model 7 is given by

$$W = \lambda^{ij}_1 Q_j u^c_i X^c_3 + \lambda^{ij}_2 Q_j d^c_i X_3 + \lambda_3 L_j e^c_i X_3 + \lambda^{ij}_4 S_3 h_i h^c_j$$

$$+ \lambda_5^{ab} S_3 X_a X^c_b + \lambda_6^{ab} S_a X_3 X^c_b + \lambda_7^{ab} S_a X_3 X^c_b$$

$$+ \lambda_8^{ab} S_3 X_3 X^c_3 + \lambda_9^{ab} L_i X^c_a + m_3^{ia} N^c_i N^c_3 + W_2.$$ \(23\)

Note that the λ_6 and λ_7 terms which are essential for baryogenesis through N^c decay (as discussed in Section 4) are forbidden by the Z_2^B symmetry irrespective of what Z_2^H one chooses. For model 8 also one can write down the superfield transformations and the superpotential. In this case the mass term for N^c is given by $m_3^{ab} N^c_a N^c_b + m_4^{ia} N^c_i N^c_3$ and the terms $\lambda_6^{ab} L_i N^c_3 X^c_3$ and $\lambda_7^{ij} d^c_i h, h^c_j$ are present in addition to the terms given in Eq. 23.

IV. EXPLAINING THE CMS $eejj$ (AND $\ell\ell jj$) EXCESS

An inspection of Table II and the corresponding allowed superpotential terms reveals that all the models listed there contain the terms $\lambda_3 Q_3 d^c_3 X_3$ and $\lambda_3 L_i e^c_3 X_3$ in the superpotential (\tilde{N}_E and $\tilde{\nu}_E$ acquires VEVs and $SU(2) \times U(1)_Y$ gets broken to $U(1)_{EM}$) and can give rise to $eejj$ signal from the exotic slepton \tilde{E} decay. \tilde{E} can be resonantly produced in pp collisions, which then subsequently decays to a charged lepton and neutrino, followed by interactions of the neutrino producing an $eejj$ signal. The process leading to $eejj$ signal is given in Fig. 1

![FIG. 1: Feynman diagram for a single exotic particle \tilde{E} production leading to $eejj$ signal.](image)

The models where h and h^c are leptoquarks (Models 3, 4, 7 and 8 in Table II) can produce both $eejj$ and $\ell\ell jj$ signals from the decay of scalar superpartner(s) of the exotic particle(s). Both events can be produced in the above scenarios via (i) resonant production of the exotic slepton \tilde{E} (ii) and pair production of scalar leptoquarks \tilde{h}. The processes involving exotic slepton decay leading to both $eejj$ and $\ell\ell jj$ signals are given in Fig. 2. The superpotential terms involved in these processes are $\lambda_{10} QL h^c$ and $\lambda_{11} u^c e^c h$ in addition the two terms responsible for the first signal. The partonic cross section of slepton production is given by

$$\hat{s} = \frac{\pi}{128} |\lambda_2|^2 \delta(1 - \frac{m^2_{\tilde{E}}}{s}),$$ \(24\)

where \hat{s} is the partonic center of mass energy, and $m_{\tilde{E}}$ is the mass of the resonant slepton. The total cross section
is approximated to be \[\sigma(pp \to eejj) \propto \frac{|\lambda_2|^2}{m_E^2} \times \beta_1 \] (25)

and

\[\sigma(pp \to e\bar{\nu} jj') \propto \frac{|\lambda_2|^2}{m_E^2} \times \beta_2, \] (26)

where \(\beta_1 \) is the branching fraction for the decay of \(\tilde{E} \) to \(eejj \) and \(\beta_2 \) is the branching fraction for the decay to \(e\bar{\nu} jj' \). \(\beta_{1,2} \) and the coupling \(\lambda_2 \) are the free parameters. The cross section for the processes can be calculated as a function of the exotic slepton mass and bounds for the value of the mass of the exotic slepton can be obtained by matching the theoretically calculated excess events with the ones observed at the LHC at a center of mass energy \(\sqrt{s} = 8 \text{ TeV} \). Thus, the \(U(1)_N \) models can explain the excess \(eejj \) (and \(e\bar{\nu} jj' \)) signal(s) at the LHC via resonant exotic slepton decay.

V. BARYOGENESIS (LEPTOGENESIS) IN \(U(1)_N \) MODELS

Some of the variants of low-energy \(U(1)_N \) subgroup of \(E_6 \) model allows for the possibility of explaining baryogenesis (leptogenesis) from the decay of heavy Majorana particle \(N^c \). In order to generate the baryon asymmetry of the Universe from \(N^c \) decay the conditions that must be satisfied are (i) violation of \(B-L \) from Majorana mass of \(N^c \), (ii) complex couplings must give rise to sufficient \(CP \) violation and (iii) the out-of-equilibrium condition given by

\[\Gamma_N < H(T = m_N) = \frac{4\pi^3 g_s T^2}{45 M_{Pl}^2} \] (27)

must be satisfied, where \(\Gamma_N \) is the decay width of Majorana \(N^c \), \(H(T) \) is the Hubble rate, \(g_s \) is the effective number of relativistic degrees of freedom at temperature \(T \) and \(M_{Pl} \) is the Planck mass. This implies that \(N^c \) cannot transform nontrivially under the low-energy subgroup \(G = SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_N \), which is readily satisfied in some variants of \(U(1)_N \) model (see Table 3). Thus the out-of-equilibrium decay of heavy \(N^c \) can give rise to high-scale baryogenesis (leptogenesis).

Models 1 and 2 have distinctive features of allowing direct baryogenesis via decay of heavy Majorana baryon \(N^c \) [24]. In both schemes, \(N_{k(a)}^c \) decays to \(B-L = B = -1 \) final states \(\tilde{d} \tilde{h}_j, \tilde{d} \tilde{h}_j \) and to their conjugate states with \(B-L = B = 1 \), via the interaction term \(\lambda_{ij}^{jk} (\lambda_{ij}^{ja}) \) in Eq. (11) (13). In both cases, the \(CP \) violation comes from the complex Yukawa coupling \(\lambda_{ij}^{jk} (\lambda_{ij}^{ja}) \) given in eqs. (11) and (13). The asymmetry is generated from interference between tree level decays and one-loop vertex and self-energy diagrams. The one-loop vertex and self-energy diagrams are shown in Fig. 3.

The asymmetry is given by

\[e^k = \frac{1}{24\pi} \frac{\sum_{i,j,l,m,n} \text{Im} \left[\lambda_{ij}^{jk} \lambda_{jl}^{i*} \lambda_{mj}^{*} \lambda_{mk}^{a*} \right]}{\sum_{i,j} \lambda_{ij}^{jk} \lambda_{ij}^{jk}^*} \times \left[F_V \left(\frac{M_{N_k}^2}{M_{N_{k(a)}}^2} \right) + 3 F_S \left(\frac{M_{N_k}^2}{M_{N_{k(a)}}^2} \right) \right] , \] (28)

where

\[F_V = \frac{2\sqrt{x}}{x-1}, F_S = \sqrt{x} \ln \left(1 + \frac{1}{x} \right) . \] (29)

\(F_V \) corresponds to one-loop function for vertex diagram and \(F_S \) corresponds to one-loop function for self-energy diagram. The baryon to entropy ratio generated by decays of \(N_k \) is given by \(n_B/s \sim \epsilon n_{\gamma}/s \sim (\epsilon/g_s)(45/\pi^4) \), where \(g_s \) is number density of photons per comoving volume and \(g_s \) corresponds to the number of relativistic degrees of freedom. By considering \(\lambda_{ij}^{a} \sim 10^{-3} \) in model 1, one can generate \(n_B/s \sim 10^{-10} \) for maximal \(CP \) violation. Similarly, one needs \(\lambda_{ij}^{a} \sim 10^{-3} \) to satisfy required bound on \(n_B/s \) in model 2.

In models 3 and 4, \(N_{k(a)}^c \) are Majorana leptons and hence a \(B-L \) asymmetry is created via the decay of heavy \(N^c \) which then gets converted to the baryon asymmetry of the Universe in the presence of the \(B+L \) violating anomalous processes before the electroweak phase transition. In these two cases, \(N_{k(a)}^c \) decays to the final states \(d_i \tilde{h}_j, d_i \tilde{h}_j \) with \(B-L = -1 \) and to their conjugate states with \(B-L = B = 1 \), via the interaction term \(\lambda_{ij}^{jk} (\lambda_{ij}^{ja}) \) in Eq. (17) (15). The one-loop diagrams that can interfere with the tree level \(N_k (N_a) \) decays to provide the required \(CP \) violation are again the diagrams given in Fig. 3. However in these scenarios a \(B-L \) asymmetry is created from the decay of Majorana \(N^c \) in contrast to the \(B \) asymmetry created in models 1 and 2. Again utilizing the general expression for calculating asymmetry parameter as given in [28], one needs \(\lambda_{ij}^{ja} (\lambda_{ij}^{ja}) \sim 10^{-3} \) in order to satisfy \(n_B/s \sim 10^{-10} \) bound in both models 3 and 4.

For models 5 and 6, we have discussed two possible choices for the second discrete symmetries in section III.
In model 5, $N_{1,2}^c$ are leptons and N_3^c is a baryon while in model 6 all the N^c’s are leptons. For the first choice of second discrete symmetry $Z_2^H = Z_2^L$ the form of the superpotential (Eq. 19 for model 5) clearly shows that one cannot generate the baryon asymmetry of the Universe from high scale leptogenesis via the decay of heavy Majorana N^c in these models. However, the term $\lambda_7^{ij3} d_i^c h_j N_3^c$ can give rise to baryogenesis at TeV scale or below if one consider soft supersymmetry (SUSY) breaking terms in model 5. The relevant soft SUSY terms in the Lagrangian is given by

\[\mathcal{L} \sim m_{h_i}^2 \bar{h}_i h_i + m_{Q_l}^2 \bar{Q}_l Q_l + A_{\bar{h}_i Q_l} h_i Q_l + \cdots \]

where i corresponds to the different generations of lepto-quarks and $Q_{l(m)} = (u_i, d_i)$, l, $m = 1, 2, 3$, corresponds to three generations of superpartners of the Standard Model quarks. The Feynman diagrams for the tree level process and the one-loop process interfering with it to provide the CP violation are shown in Fig. 4. The asymmetry parameter in this case is given by [27]

\[\epsilon = A_3 \sum_{i,j,k} \text{Im} \left[\lambda_7^{ij3} \lambda_7^{k3} A^{ij3} A^{k33} \right] \left(\frac{|\lambda_8^{j11}|^2}{m_{h_j}^2} - \frac{|\lambda_8^{k11}|^2}{m_{h_k}^2} \right) + \text{Im} \left[\lambda_7^{ij3} \lambda_7^{k3} \lambda_8^{j11} \lambda_8^{k11} \right] \left(\frac{|A^{j33}|^2}{m_{h_j}^2} - \frac{|A^{k33}|^2}{m_{h_k}^2} \right) + \text{Im} \left[\lambda_7^{j33} A^{k33} \lambda_8^{j11} \lambda_8^{k11} \right] \left(\frac{|A^{j33}|^2}{m_{h_j}^2} - \frac{|A^{k33}|^2}{m_{h_k}^2} \right) \]

where $A_3 = \frac{1}{\Gamma_{N_3}} \sum_{i,j,k} \frac{1}{12} \sum_{m=1,2} \frac{M_{N_3}}{m_{h_j}^2 m_{h_k}^2}$ and Γ_{N_3} is the total decay width of N_3. Thus, by considering the soft SUSY breaking terms (given in Eq. (30) of TeV scale, one can generate required amount of baryon asymmetry for particular values of Yukawa couplings.

This can also induce neutron-antineutron ($n-\bar{n}$) oscillation violating baryon number by two units ($\Delta B = 2$) [17]. The effective six-quark interaction inducing $n-\bar{n}$ oscillation is shown in Fig. 5. In fact, models 1 and 2 can also induce $n-\bar{n}$ oscillation in a similar fashion. However in model 6 all the N^c’s are leptons and hence in this model a scheme for baryogenesis similar to above is not possible.

Now if we choose the second discrete symmetry to be $Z_2^H = Z_2^L$ in models 5 and 6 (see Eq. (20)) then it is possible to allow high scale leptogenesis via the decay of heavy Majorana N^c. In these two models $N^c_{a(j)}$ decays to the final states $\nu_e, \tilde{\nu}_e, \tilde{\nu}_c, N_{Ea}, e_i \tilde{E}_j, \tilde{\nu}_E$ with $B - L = -1$ and to their conjugate states with $B - L = 1$, via the interaction term $\lambda_{ab}^{ij} (\lambda_{7ab}^{ij})$ in Eq. (21). Here we take advantage of the fact that Z_2^H symmetry forbids bilinear term like LX^c and consequently X^c need not to carry any lepton number, it can simply have the assignment $B = L = 0$. The one-loop diagrams for $N_a(N_j)$ decays that can interfere with the tree level decay diagrams to provide the required CP violation are given in Fig. 6.

VI. NEUTRINO MASSES

In all the variants of $U(1)_X$ model that we have considered in Section III the scalar component of S_3 acquires a VEV to break the $U(1)_X$. The fermionic component of S_3 pairs up with the gauge fermion to form a massive Dirac particle. However the fields S_1, S_2 still remains massless and can give rise to an interesting neutrino mass matrix structure.
In model 1, the field \(N_{1,2,3} \) are baryons and hence they do not present the possibility of canonical seesaw mechanism of generating mass for neutrinos. However, the bilinear terms \(\mu^a L_i X_3^a \) can give rise to four nonzero masses for \(\nu_e, \nu_\mu, \nu_\tau \) and \(S_{1,2} \) as noted in Ref. \(^21\). The \(9 \times 9 \) mass matrix for the neutral fermionic fields of this model \(\nu_{e,\mu,\tau}, S_{1,2}, \nu_{E_1,2} \) and \(N_{E_1,2}^c \) is given by

\[
M_1 = \begin{pmatrix}
0 & 0 & 0 & \mu^{ia} & 0 \\
0 & 0 & \lambda_5^{ab} v_2 & 0 & \lambda_5^{ac} v_2 \\
0 & \lambda_5^{ba} v_2 & 0 & M_5 \delta_{ab} & 0 \\
(\mu^T)^{ai} & (\mu^T)^{aj} & (\mu^T)^{ak} & (\mu^T)^{al} & (\mu^T)^{am} \\
\end{pmatrix},
\]

(32)

Then we readily obtain the \(5 \times 5 \) reduced mass matrix for the three neutrinos and \(S_{1,2} \) given by

\[
M_1^* = \begin{pmatrix}
0 & 0 \\
(\lambda_5^{ab} v_2 + \lambda_5^{ac} v_2) M_5^{-1} & \mu^{ia} \lambda_5^{ac} \lambda_5^{ab} v_2 M_5^{-1} \\
(\mu^T)^{ai} & (\mu^T)^{aj} \\
\end{pmatrix},
\]

(34)

where the repeated dummy indices are summed over. Note that one neutrino remains massless in this model, two of the active neutrinos acquire small masses and the remaining eigenvalues correspond to sterile neutrino states. From Eq. \(^22\) it follows that the bilinear terms \(\mu L X_c \) and the sterile neutrinos are essential for the nonzero active neutrino masses in this model. The fields \(N_{1,2,3} \), which are responsible for creating the baryon asymmetry of the Universe do not enter the neutrino mass matrix anywhere and hence the neutrino masses in this model do not have any direct connection with the baryon asymmetry. To have the active neutrino masses of the order \(10^{-4} \) eV one can choose the sterile neutrino mass of the order \(1 \) eV and the off-diagonal entries in Eq. \(^24\) to be of the order \(10^{-2} \) eV. In this model the oscillations between the three active neutrinos and two sterile neutrinos is natural, and this allows the possibility of accommodating the LSND results \(^13\). The mixing between \(S_{1,2} \) and the heavy neutral leptons \(\nu_{E_1,2} \) can give rise to the decays \(E_{1,2} \to W^- S_{1,2}, E_{1,2} \to W^+ S_{1,2}, \nu_{E_1,2} \to Z S_{1,2} \) and \(N_{1,2}^c \to Z S_{1,2} \); which will compete with the decays arising from the Yukawa couplings \(E_{1,2} \to H^- S_{1,2}, E_{1,2} \to H^+ S_{1,2}, \nu_{E_1,2} \to H^0 S_{1,2} \) and \(N_{1,2} \to H^0 S_{1,2} \), where \(H^+ (H^0) \) are physical admixture of \(E_3 (\nu_{E_3}) \) and \(E_3^* (\nu_{E_3}^*) \).

In model 2, \(N_3^c \) is a lepton and hence the term \(\lambda_6^{ij} L_i X_3^c X_3^a \) in the superpotential given in Eq. \(^13\) can give rise to a seesaw mass for one active neutrino, while the other two active neutrinos can acquire masses from Eq. \(^26\) as before. Thus in this model all three neutrinos can be massive instead of two in model 1. Note that this model can allow the neutrino mass texture where one of the active neutrinos can have mass much larger compared to the other two, which can naturally give atmospheric neutrino oscillations with a \(\Delta m^2 \) orders of magnitude higher than \(\Delta m^2 \) for solar neutrino oscillations.

In the case of model 3 all three \(N^c \) fields are leptons and the \(12 \times 12 \) mass matrix for the neutral fermions spanning \(\nu_{e,\mu,\tau}, S_{1,2}, N_{1,2,3}^c, \nu_{E_1,2} \) and \(N_{E_1,2}^c \) is given by

\[
M^3 = \begin{pmatrix}
0 & 0 & \lambda_6^{ij} v_2 & 0 & \mu^{ia} \\
0 & 0 & 0 & \lambda_6^{ac} \lambda_5^{bc} v_2 & \lambda_6^{ac} \lambda_5^{bc} v_2 M_5^{-1} \\
0 & \lambda_6^{ab} v_2 & 0 & M_5 \delta_{ij} & 0 \\
(\mu^T)^{ai} & (\mu^T)^{aj} \\
\end{pmatrix},
\]

(35)

This gives the reduced \(5 \times 5 \) matrix for three active and two sterile neutrinos as follows

\[
M^3_\nu = \begin{pmatrix}
\lambda_6^{ij} v_2 & 0 \\
\lambda_6^{ac} \lambda_5^{bc} v_2 M_5^{-1} \\
0 & \mu^{ia} \\
\lambda_6^{ac} \lambda_5^{bc} \lambda_5^{ab} v_2 M_5^{-1} \\
(\mu^T)^{ai} \\
\end{pmatrix},
\]

(36)

This clearly shows that in this model active neutrinos can acquire seesaw masses even in the absence of the bilinear term \(\mu L X_c \) and the sterile neutrinos. As we have discussed in section \(\nu_{e,\mu,\tau}, S_{1,2}, N_{1,2,3}^c, \nu_{E_1,2} \) and \(N_{E_1,2}^c \) can acquire large masses. As \(\Delta m^2 \) for solar neutrino oscillations. However one still has some room left to play with \(\lambda_5 \), \(\mu \) and \(M_5 \), which can give rise to interesting neutrino mass textures. In model 4, the fields \(N_{1,2}^c \) are leptons while \(N_3^c \) is a baryon and hence the \(11 \times 11 \) mass matrix spanning \(\nu_{e,\mu,\tau}, S_{1,2}, N_{1,2}^c, \nu_{E_1,2} \) and \(N_{E_1,2}^c \) will reduce to a \(5 \times 5 \) similar to Eq. \(^26\), except the \((1,1) \) entry which is now given by \(\lambda_6^{ic} \lambda_6^{ij} v_2 M_5^{-1} \). Thus it follows that two of the active neutrinos can acquire
masses even without the bilinear term μLX^c and the sterile neutrinos.

For models 5 and 6 we have discussed two possible choices for the second discrete symmetry Z^E_2 in section III. In the former model $N_{1,2}^c$ are leptons and N_3^c is a baryon while in the latter model all $N_{1,2,3}^c$ are leptons. In model 5, for the first choice i.e. $Z^B_2 = Z^L_2$ the 11×11 mass matrix for the neutral fermions spanning $\nu_e, \nu_\mu, \nu_\tau, S_{1,2}, N_{1,2}^c, \nu_{E_{1,2}}$ is given by

$$M^5 = \begin{pmatrix}
0 & 0 & 0 & 0 & \mu^a \\
0 & 0 & 0 & 0 & 0 \\
\lambda^{d_{13}} v_2 & 0 & M_{N_L} \delta_{dg} & 0 & 0 \\
0 & \lambda^{a_{33}} v_2 & 0 & M_a \delta_{ab} & 0 \\
(\mu^T)^a & \lambda^{b_{3a}} v_1 & 0 & M_a \delta_{ab} & 0 \\
\end{pmatrix},$$

which can be reduced to 5×5 matrix for 3 active and 2 sterile neutrinos

$$M^3_{\nu} = \begin{pmatrix}
\lambda^{c_{31}} & \lambda^{c_{32}} v_2 & M_{N_L}^{-1} \\
\lambda^{c_{32}} & \mu^c \lambda^{d_{3d}} v_2 M_{N_L}^{-1} \\
(\mu^T)^c & \lambda^{a_{3d}} v_2 & M_{N_L}^{-1} \\
\end{pmatrix},$$

which is similar to the form in model 4 and hence similar conclusions follow. Model 6 gives a reduced mass matrix similar to model 3 given in Eq. (36).

For the second choice in model 5, i.e. $Z^B_2 = Z^E_2$ the 11×11 mass matrix for the neutral fermions is given by

$$M^5 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & M_{N_L} \delta_{dg} & 0 \\
0 & \lambda^{b_{33}} v_2 & 0 & M_a \delta_{ab} & 0 \\
0 & \lambda^{b_{3a}} v_1 & 0 & M_a \delta_{ab} & 0 \\
\end{pmatrix},$$

which clearly shows that the active neutrinos are massless in this case while the sterile neutrinos acquire masses $(\lambda^{c_{31}} \lambda^{c_{3d}} + \lambda^{a_{3d}} \lambda^{a_{3d}}) v_1 v_2 M_{N_L}^{-1}$. The masslessness of the active neutrinos is a consequence of the exotic discrete Z^E_2 symmetry which forbids the mixing among the exotic and nonexotic neutral fermion fields defined in Eq. (20). The situation is similar for $Z^B_2 = Z^E_2$ in model 6 also.

The analysis of mass matrix for models 7 and 8 are exactly similar to model 1 and 2 respectively with similar conclusions.

VII. CONCLUSIONS

We have studied the variants of effective low-energy $U(1)_{N}$ model motivated by the superstring inspired E_6 group in presence of discrete symmetries ensuring proton stability and forbidding tree level flavor changing neutral current processes. Our aim was to explore the eight possible variants to explain the excess $eejj$ and ϕp_jjj events that have been observed by CMS at the LHC and to simultaneously explain the baryon asymmetry of the universe via baryogenesis (leptogenesis). We have also studied the neutrino mass matrices governed by the field assignments and the discrete symmetries in these variants.

We find that all the variants can produce an $eejj$ excess signal via exotic slepton decay, while, the models where h^0 and h^c are leptoquarks (models 3, 4, 7 and 8) both $eejj$ and ϕp_jjj signals can be produced simultaneously. For the choice $Z^B_2 = Z^L_2 = (-1)^L$ as the second discrete symmetry, two of the variants (model 1 and 2) offers the possibility of direct baryogenesis at high scale via decay of heavy Majorana baryon, while two other (models 3 and 4) can accommodate high-scale leptogenesis. For the above choice of the second discrete symmetry none of the other variants are consistent with high-scale baryogenesis (leptogenesis), however, model 5 allows for the possibility of baryogenesis at TeV scale or below by considering soft supersymmetry breaking terms and this mechanism can induce baryon number violating $n - \bar{n}$ oscillation. On the other hand we have also pointed out a new choice for the second discrete symmetry which has the feature of ensuring proton stability and forbidding tree level FCNC processes, while allowing for the possibility of high scale leptonogenesis for models 5 and 6. Studying the neutrino mass matrices for the $U(1)_{N}$ model variants we find that these variants can naturally give three active and two sterile neutrinos and accommodate the LSND results. These neutrinos acquire masses through their mixing with extra neutral fermions and can give rise to interesting neutrino mass textures where the results for the atmospheric and solar neutrino oscillations can be naturally explained.

[1] V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 74, no. 11, 3149 (2014).
[2] CMS Collaboration [CMS Collaboration], CMS-PAS-EXO-12-041.
[3] J. Gluza and T. Jeleni, arXiv:1504.05568 [hep-ph].
[4] F. F. Deppisch, T. E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Phys. Rev. D 90, 053014 (2014); Phys. Rev. D 91, no. 1, 015018 (2015).
[5] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986); for recent reviews see e.g. S. Davidson, E. Nardi and Y. Nir, Phys. Rept. 466, 105 (2008); C. S. Fong, E. Nardi and A. Riotto, Adv. High Energy Phys. 2012, 158303 (2012).
[6] E. Ma and U. Sarkar, Phys. Rev. Lett. 80, 5716 (1998); G. Lazarides and Q. Shafi, Phys. Rev. D 58, 071702 (1998); T. Hambye, E. Ma and U. Sarkar, Nucl. Phys. B 602, 23 (2001).
[7] M. Dhuria, C. Hati, R. Rangarajan and U. Sarkar, arXiv:1503.07198 [hep-ph].
[8] M. Dhuria, C. Hati, R. Rangarajan and U. Sarkar, arXiv:1502.01695 [hep-ph].
[9] E. Ma, S. Sarkar and U. Sarkar, Phys. Lett. B 458, 73.
[10] J. A. Aguilar-Saavedra and F. R. Joaquim, Phys. Rev. D 90, no. 11, 115010 (2014).
[11] B. A. Dobrescu and A. Martin, arXiv:1408.1082 [hep-ph].
[12] F. S. Queiroz, K. Sinha and A. Strumia, Phys. Rev. D 91, no. 3, 035006 (2015); B. Allanach, A. Alves, F. S. Queiroz, K. Sinha and A. Strumia, arXiv:1501.03494 [hep-ph].
[13] B. Allanach, S. Biswas, S. Mondal and M. Mitra, Phys. Rev. D 91, no. 1, 011702 (2015); B. C. Allanach, S. Biswas, S. Mondal and M. Mitra, Phys. Rev. D 91, no. 1, 015011 (2015).
[14] S. Biswas, D. Chowdhury, S. Han and S. J. Lee, arXiv:1409.0882 [hep-ph].
[15] M. Dhuria, C. Hati, R. Rangarajan and U. Sarkar, Phys. Rev. D 91, 055010 (2015).
[16] E. Ma, Phys. Rev. D 36, 274 (1987).
[17] R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980) [Phys. Rev. Lett. 44, 1643 (1980)]; R. N. Mohapatra and R. E. Marshak, Phys. Lett. B 94, 183 (1980); D. G. Phillips, II et al., [arXiv:1410.1100 [hep-ex]].
[18] A. Aguilar-Arevalo et al. [LSND Collaboration], Phys. Rev. D 64, 112007 (2001); A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. Lett. 98, 231801 (2007); Phys. Rev. Lett. 102, 101802 (2009); Phys. Rev. Lett. 105, 181801 (2010); G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier and A. Letourneau, Phys. Rev. D 83, 073006 (2011); T. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot and T. Lasserre et al., Phys. Rev. C 83, 054615 (2011); P. Huber, Phys. Rev. C 84, 024617 (2011) [Phys. Rev. C 85, 029901 (2012)]; J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, JHEP 1305, 050 (2013); J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz and J. Spitz, Adv. High Energy Phys. 2013, 163897 (2013); A. de Gouvea et al. [Intensity Frontier Neutrino Working Group Collaboration], arXiv:1310.4340 [hep-ex]; M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Phys. Rev. D 87, 125034 (2013).
[19] E. Ma, Phys. Lett. B 380, 286 (1996) [hep-ph/9507348]; J. L. Rosner, Phys. Rev. D 90, no. 3, 035005 (2014) [arXiv:1404.5198 [hep-ph]].
[20] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B 258, 46 (1985).
[21] B. R. Greene, hep-th/9702155.
[22] A. S. Joshipura and U. Sarkar, Phys. Rev. Lett. 57, 33 (1986).
[23] E. Ma, Phys. Rev. Lett. 60, 1363 (1988).
[24] E. Ma and M. Raidal, J. Phys. G 28, 95 (2002).
[25] T. Hambye, E. Ma, M. Raidal and U. Sarkar, Phys. Lett. B 512, 373 (2001).
[26] B. C. Allanach, C. H. Kom and H. Pas, Phys. Rev. Lett. 103, 091801 (2009).
[27] T. Hambye, Nucl. Phys. B 633, 171 (2002) [hep-ph/011089].