著者	林 昂臣 二関 啓明 定津 正利
著者別表示	長崎大工学会会員 長崎大学工学部 教授 長崎大学大学院 工学研究科 長崎大学工学部
雑誌名	精密工学会学術講演会講演論文集
巻	付近
号	付近
ページ	付近
番号	付近

doi: 10.11522/pscjspe.2016S.0_855
ロボットによる未知の紐の動的マニピュレーション

金沢大学 林 昂臣, 関 啓明, 疋津 正利

Dynamic Manipulation of Unknown String by Robot Arm
Kanazawa University Takaomi HAYASHI, Hiroaki SEKI, Masatoshi HIKIZU

It is difficult for a robot to manipulate flexible objects because the deformations of their shapes make motion planning difficult. In this paper, we propose a concept of manipulating unknown string dexterously by robot arm. A string is described as the three-dimensional model that is composed a number of masses, springs, dampers, hinge springs, and hinge dampers. After parameters of this model are estimated by the comparison between actual string motion and motion simulation using the model with various parameters, robot motion to manipulate the string for realizing task is planned using the model with estimated parameters.

1. 諸言
近年, ロボットは工場だけでなく, 家庭にも進出している. 家庭では, 布団を敷く, 衣服をたたむなど, 柔軟物を扱うことが多く, 柔軟物は様々な特性を有しており, さらに動きの中で形状が変化してしまうため, 操作が困難である. また, ロボットを用いて系を結ぶなどの柔軟物を静的に操る研究はされているが, 動的に操る研究は少ない. そこで本研究では, 柔軟物の一つである紐を対象として, 動きの予測が困難な未知の紐の動的マニピュレーションを実現するための方法を提案する.

2. 未知の紐のマニピュレーションの構想
まず, コンピュータ上で紐のモデルを表現する. その紐のモデルに対して初期パラメータおよび動作目的を与える. そして, 動作目的に合うロボットアームの動きを生成し, 実際に紐を動かしてみる. そのときの運動と紐のモデルを用いてシミュレーションした運動を比較し, 実際の紐と同じ動きをするような紐のモデルのパラメータを推定する. 推定後のパラメータを用いて再び動作を生成を行い, 実際の紐が動作目的を達成するまで繰り返す.

3. 紐のモデル
紐のモデルは, 伸びや曲げの特性を表せるように, 質点, パネ, ダンパ, ヒンジパネ, ヒンジダンパで構成されたものを使用する (Fig.2). ロボットアームで掴まれた部分は, そこに生じる紐の抵抗力を表すためヒンジパネを一つ追加する. 外力は, 重力と空気抵抗に相当する粘性抵抗力を考慮する. 紐の運動は運動方程式をオイラー法で解いて質点の位置ベクトルを求める. この際, 各力ベクトルを質量で割って各パラメータを単位質量化して計算を行う. つまり, 質点自体は考える必要がなく, 未知のパラメータをk_s: パネ定数, C_s: 減衰係数, k_h: ヒンジパネ定数, C_h: ヒンジ減衰係数, C_c: 粘性抵抗係数, k_{pg}: 採点部のヒンジパネ定数の7つである. また, 紐は均一と仮定し, 各質点間のパラメータは全て同じ値とした.

4. ロボットアームの動作生成
紐の動作目的を満たすラボットアームの手先の経路を関節角速度ベースで決定する. 関節角の速度曲線をFig.3のようにベジエ曲線で表現する. 曲線を変形するための制御点の数を6点とする. 制御点を与える方法は横軸を時間, 縦軸を角速度としてまず動作時間（点f）をランダムに選ぶ. そして, 点fを基準に他の点（点b〜e）を時間軸について均等に配置し, それぞれ角速度の値をランダムに選ぶ. これを用いて, アームを動かしたときの紐の動きを繰り返しシミュレーションして, 動作目的を満たした場合, そのときの速度曲線を出力する.

Fig.1 Concept of string manipulation

Fig.2 Model of string and definition of force vector

Fig.3 Joint angular velocity made by bezier curve
5. 紐のモデルのパラメータ推定
実際の紐と紐のモデルの動きを比較することで、紐のモデルのパラメータを推定する。カメラを用いて実際の紐の動きの画像を取得し、2価化処理、収縮膨張処理をして紐の動きを検出する。そして、紐のモデルのパラメータをランダムに変化させながら、実際のロボットアームの動きを用いて紐のモデルの動きをシミュレーションして、画像と比較する。パラメータを変化させる方法は、パラメータの最小値、最大値を予め設定し、対数的に10等分してその組合せをランダムに選んだ。比較では、紐のモデルの7つの質点のうち、カメラ画像において検出した紐の領域内に含まれる割合を評価関数とした。紐の領域は、評価をやすくするために、膨張させている。評価関数が最大の時の紐のモデルのパラメータを採用する。

6. 未知の紐の動的マニュピュレーション
6.1 実験装置 紐を動的に操作するためには手先を高速に操作できるロボットアームが必要である。そこで、Fig.4のようなワイド駆動ロボットアームを開発した。モータを各節点に配置しないことで軽量化を図り、高速駆動を実現した。機構としては平面3自由度と回転の計4自由度とした。

Fig.4 Wire driven robot arm

6.2 実験結果 ロボットアームに長さ30cmの紐の一端を持たせ、振り上げて、水平状態を作り、モータの駆動器を用いてロボットアームを高速駆動させた。モータのパラメータを変化させ、ニュートラル位置で固定した。結果はTable.1に示す通りである。今回、簡単のためパラメータ推定の結果、評価関数は、0.04秒おきに撮影した20枚の画像と、対応する紐の動きのシミュレーションをそれぞれ比較し、その平均をとった。

Table.1 Parameter range and estimation result
	Range	Initial	Estimated
k_r [N/m/kg]	1.0×10^4	1.0×10^4	1.0×10^4
C_r [Ns/m/kg]	0.10	0.10	0.10
k_s [Nm/рад/kg]	1.0×10^{-4}	0.01	8.4×10^{-4}
C_s [Nms/₀rad/kg]	1.0×10^{-3}	0.1	2.7×10^{-3}
C_{r_s} [Nm/s/kg]	1.0×10^{-3}	0.01	5.8×10^{-3}
C_{s_s} [Nms/s/kg]	1.0×10^{-3}	0.01	0.11
β [Nm/₀rad/kg]	1.0×10^{-4}	0.05	0.20
Evaluation function [%]	55.7	79.3	

Fig.5 Simulation result using initial and estimated parameter

Fig.5から、実際の紐と同じ動きをするような紐のモデルのパラメータを推定することができることがわかる。常に一致しているのは、紐の方向からの方向性や、ニュートラル位置が領域外になっている場合がある。ロボットアームの手先位置の計測誤差は最大である。

続いて、推定により得られたパラメータを用いて作動させ、ロボットアームによる紐のマニュピュレーションを行った(Fig.6). その結果、ニュートラル位置を変えてロボットアームを駆動させることができ、動作目標の達成できていることがわかる。このときの紐の動きのシミュレーションと実際の紐の動きを比較して算出した評価関数は73.7%だった。初期パラメータを用いた紐のマニュピュレーションでは55.7%だったことから、パラメータ推定による効果が確認できる。

Table.2 Comparison of simulated and actual motion after estimation
	Initial	Estimated
précis	0.72<s>	0.60<s>
précis	0.20<s>	0.40<s>

Fig.6 Comparison of simulated and actual motion after estimation

7. 結言
未知の紐の動的マニュピュレーションを実現するために、紐のモデル、動作生成、パラメータ推定を提案した。シミュレーションとカメラで捉えた紐の動きをもとに、紐のモデルのパラメータを推定することができた。そして、推定したパラメータを用いることで、シミュレーションに近い紐の動きが得ることができた。今後、このシステムを性質の異なる紐や色々な動作目的のマニュピュレーションに応用していく。