Abstract. Small-cell lung cancer, a neuro-endocrine type of lung cancer, responds very well to chemotherapy-based agents. However, a high frequency of relapse due to adaptive resistance is observed. Immunotherapy-based treatments with checkpoint inhibitors has resulted in improvement of treatment but the responses are not as impressive as in other types of tumor. Therefore, identification of new targets and treatment modalities is an important issue. After searching the literature, we identified eight down-regulated microRNAs involved in radiation- and chemotherapy-induced resistance, as well as three up-regulated and four down-regulated miRNAs with impacts on proliferation, invasion and apoptosis of small-cell lung cancer cells in vitro. Furthermore, one up-regulated and four down-regulated microRNAs with in vivo activity in SCLC cell xenografts were identified. The identified microRNAs are candidates for inhibition or reconstitution therapy. The corresponding targets are candidates for inhibition or functional reconstitution with antibody-based moieties or small molecules.

Small-cell lung cancer (SCLC) is an exceptionally lethal malignancy comprising 13-15% of all lung cancer (1), with 250,000 cases diagnosed annually worldwide (1). SCLC is highly sensitive to platinum-based chemotherapy, topoisomerase inhibitor etoposide, and to lurbinectidin, a recently approved DNA binder (2, 3). However, disease recurrence and metastasis to the brain, adrenal glands, bone and liver after treatment remains an issue (2). Inactivating mutations in retinoblastoma (RB) or TP53 are most commonly observed, however, these alterations are not druggable and, in contrast to non-small-cell lung cancer no tractable drivers or fusion proteins have been observed (4). Monoclonal antibodies nivolumab and pembrolizumab, directed against checkpoint inhibitors, have been approved as first-line treatment of SCLC together with chemotherapy and for treatment of relapsed disease (5). However, the therapeutic benefit is not as pronounced as observed with other types of tumor (5). Furthermore, SCLC subtypes have been identified based on differential expression of transcription factors achaete-scute homolog (ASCL1), neurogenic differentiation factor (NeuroD1), yes-associated protein (YAP1) and POU class 2 homeobox 3 (POU2F3) (6). These subtypes might respond to drugs with different vulnerability (6). Several agents targeting T-cell immunoreceptor with Ig and ITIM domains (TIGIT), cytotoxic T-lymphocyte antigen 4 (CTLA4), or cyclin-dependent kinases 4 and 6 are in phase III clinical studies or under Food and Drug Administration review (7). Nevertheless, there is an urgent need to identify new targets and treatment modalities for SCLC. Here, we focus on microRNAs (miRs) as therapeutic agents and as tools for identification of SCLC-related targets for therapeutic intervention.

MicroRNAs – Role in Oncology

miRs are synthesized by RNA polymerase II in the nucleus as precursor RNAs, processed and exported into the cytoplasm (8-10). One strand of a 22 nucleotides (nts) complex is maintained (guide strand), the other strand (passenger strand) is discarded (8-10). The guide strand binds to the 3′-untranslated region of corresponding miRNAs and induces their degradation or inhibits their translation (8-10). A single miR can interact with several different miRNAs and therefore can interfere with several pathways and has the potential to rewire oncogenic pathways (11). miRs can exert an oncogenic or tumor-suppressive role, depending on the context (12). A
tumor-suppressive role is mediated by miR-16-1 and miR-15a by targeting anti-apoptotic protein BCL2 apoptosis regulator (BCL2). Their deletion in mice causes B-cell chronic lymphocytic leukemia corresponding to the disease in humans and its cytogenetic characteristics (13, 14). The oncogenic role of miRs was demonstrated by induction of hepatocellular carcinoma through liver-specific expression of miR-221 in transgenic mice (15). miRs can have an impact on all stages of carcinogenesis, including metastasis and anti-tumoral immune response (16). We recently summarized the impact of miRs on growth and metastasis of hepatocellular carcinoma (17), pancreatic cancer (18), non-small-cell lung carcinoma (19), breast cancer (20) and prostate cancer (21). In this review, we focus on the role of miRs with respect to chemoresistance, tumor growth and metastasis of SCLC.

miRs Involving in Chemoresistance and Radioresistance of SCLC

All of the miRs discussed are down-regulated in SCLC-cancer related cell lines or clinical specimen in comparison to corresponding controls.

miR-7. miR-7 (Figure 1) affects the multidrug-resistance protein ATP-binding cassette subfamily C member 1 (ABCC1) (22), inward-rectifier potassium ion channel 2.1 (KIR2.1) (23) and poly (ADP-ribose) polymerase 1 (PARP1) (24). ABCC1 expression is inversely correlated with miR-7 (22). ABCC1 is a transmembrane drug transporter containing three membrane-spanning domains and two cytosolic nucleotide-binding domains (25) and is expressed in many types of multidrug-resistant cancer (26). Overexpression of ABCC1 is predictive for resistance to chemotherapy in SCLC (27, 28). A low-level expression of miR-7 correlated with shorter overall survival in patients with SCLC (22). In the SCLC cell line H69AR, miR-7 down-regulation was shown to be responsible for resistance to adriamycin and etoposide (22, 29).

miR-7 also targets KIR2.1, a member of the classical inward rectifying potassium channel family (23, 30-32). KIR2.1 was up-regulated five-fold in H69AR cells in comparison to H69 SCLC cells (23). KIR2.1 induced resistance to apoptosis following exposure to chemotherapeutic drugs (23). Overexpression of KIR2.1 in H69 and H466 SCLC cells enhanced their growth in immuno-deficient mice (23). Up-regulation of miR-7 sensitized H69AR cells to adriamycin, cisplatin and etoposide (23). RAS-protein kinase C-mitogen-activated protein kinase (MEK) signaling was identified as an important inducer of KIR2.1, which was down-regulated by RAS-protein kinase C inhibitor staurosporine and MEK inhibitor U0126 (23).

PARP1 was identified as a target in doxorubicin-resistant SCLC cell line H69AR in comparison to H69 parental cells (24). PARP1 was resolved as a target of miR-7 (24, 34). Inhibition of miR-7 resulted in increased homologous repair in doxorubicin-resistant SCLC cells (24). miR-7 reduced expression of breast cancer susceptibility protein 1 (BRCA1) and repair protein RAD51 homolog1 (RAD51), and disrupted homologous recombination-based repair, leading to doxorubicin resistance by targeting PARP1 (24). PARP1 has a multi-faceted role in DNA repair and chromatin remodeling (35). PARP1 inhibitors are approved anticancer agents based on a synthetic-lethality based mode of action (36-38).

miR-22. miR-22 (Figure 1) was down-regulated in NCI-466 SCLC cells and inhibited radiosensitivity by targeting Werner helicase-interacting protein-1 (WRNIP1) (39). WRNIP1 is an ATPase which can protect replication forks and co-operates with RAD51 to safeguard the integrity and maintenance of the genome (40-42). Overexpression of miR-22 promoted apoptosis and inhibited migration of NCI-466 cells (39).

miR-24-3p. Autophagy is a strategy by which resistance to chemotherapy is conferred (43, 44). Etoposide- and cisplatin-resistant SCLC cells exhibited increased autophagy (45). miR-24-3p (Figure 1) was down-regulated in SCLC cells and expression of autophagy-related 4A cysteine peptidase (ATG4A) was blocked (45). Expression of miR-24-3p can suppress autophagy of SCLC cells by directly targeting ATG4A (45). It has been shown that inhibitors of autophagy can sensitize chemoresistant cells to anticancer therapy in clinical trials (45, 46).

miR-100. miR-100 (Figure 1) was shown to target homeobox transcription factor HOXA1, which was associated with poor prognosis in patients with SCLC, and its down-regulation mediated chemoresistance (47). HOXA1 was found to be expressed in 46% (29/63) of tumors from patients with SCLC. Expression of miR-100 in multidrug-resistant SCLC cell line H69AR reversed resistance to cisplatin and etoposide (47). HOXA1 is involved in progression and prognosis of several types of tumor. It mediates tumor proliferation and poor prognosis in gastric cancer via cyclin D1 (48); enhances proliferation, invasion and metastasis of prostate cancer cells (49); and correlates with poor prognosis in patients with hepatocellular carcinoma (50).

miR-138. miR-138 (Figure 1) was down-regulated in SCLC tissues and three corresponding cell lines (51). In NCI-H2081 SCLC cells, miR-138 reduced cell growth and inhibited cell-cycle progression (51). Histone H2A variant X (H2AX) was identified as a target of miR-138 (51). H2AX knockdown achieved a similar effect as observed for miR-138 overexpression, whilst its induction abolished miR-138-mediated SCLC cell growth and inhibition of cell-cycle progression (51). Expression of miR-138 was shown to confer SCLC cells with greater DNA-repair capacity and reduced
their resistance to chemotherapeutic agents (51). H2AX is involved in double-stranded DNA repair, chromatin remodeling and contributes to nucleosome formation (52-55).

miR-200b. **miR-200b** (Figure 1) targets zinc finger E-box homeobox2 (ZEB2), which correlated with poor pathologic stage and shorter survival (35). ZEB2 was found to be expressed in 23.5% (16/68) of cases of SCLC (56). Inhibition of ZEB2 expression making use of small-interfering RNA (siRNA), sensitized SCLC-related cells to chemotherapeutic drugs by enhancing drug-induced apoptosis accompanied by S-phase arrest (56). ZEB2 is a transcription factor with eight zinc fingers and a homeodomain (57). ZEB2 has been identified as a regulator of nervous system development (58, 59). In cancer, ZEB2 plays an instrumental role in epithelial mesenchymal transition (EMT), cancer-stem cell traits, apoptosis, survival, tumor recurrence and metastasis (60).

miR-335. **miR-335** (Figure 1) was found to target WW domain-binding protein 5 (WBP5), expression of which was 10-fold increased in H69AR compared to H69 SCLC cells. WBP5 induced multidrug resistance by promoting cell proliferation and inhibiting apoptosis in H69AR cells (61). Expression of WBP5 was associated with shorter survival in patients with SCLC (61). WW binding domains are typically 35-40 amino acids in length and can interact with a variety of different peptide ligands, including motifs with core proline-rich sequences (62). WBP5 was shown to be involved in multidrug resistance of SCLC through the Hippo pathway [WBP5-tyrosine kinase ABL-mammalian Ste-20-like kinase (MST2)-yes-associated protein1 (YAP1)] pathway (61). WBP5 can induce nuclear accumulation of YAP1, a transcription factor which induces genes involved in development and survival (63). Inhibition of YAP1 by verteporfin was shown to blunt multidrug resistance in H69AR cells (61). WBP5 can bind to ABL, an upstream activator of ser-thr kinase MST2 of the Hippo pathway (64,65). It was shown that WBP5 promotes tumor growth and resistance of H69 cells to adriamycin and cisplatin in nude mice (61).

Figure 1. miRs involved in chemo- and radio-resistance of small-cell lung cancer (SCLC) cells. Downward arrows indicate down-regulation of miRs in SCLC in comparison to controls. ABCC1: ABT binding cassette subfamily C member; ADM: Adriamycin; ATG4A: autophagy-related protein 4; BMX: cytoplasmic tyrosine kinase BMX; CDDP: cisplatin; ETK: non-receptor tyrosine kinase Etk; H2AX: histone H2AX; HOXA1: homebox protein HOXA1; KIR2.1: inward rectifier ion channel 2.1; PARP1: poly (ADP ribose)-polymerase 1; TSPAN 12: tetraspanin 12; VP16: etoposide; WBP5: ww domain-binding protein 1; WRNIP1: ATPase WRNIP1; ZEB2: zinc finger E-box-binding homeobox 2.
miR-335 was also down-regulated in SCLC cell lines H69AR and H446DDP (66). Overexpression of miR-335 inhibited migration of H69AR and H446DDP cells in vitro and their tumor growth in vivo, whereas its inhibition resulted in opposite effects (66). PARP1 was identified as a direct target of miR-335 (66). Chemoradiosensitivity of SCLC cells was increased by down-regulation of PARP1 and nuclear factor κB (66). Down-regulation of miR-335 resulted in resistance to adriamycin, cisplatin and etoposide in SCLC cell lines H69AR and H446DDP (66). PARP1 detects single-strand DNA breaks and recruits other enzymes involved in DNA repair (67, 68).

miR-495. miR-495 (Figure 1) was down-regulated in SCLC and inhibited chemoresistance by targeting endothelial tyrosine kinase/bone marrow X kinase (ETK/BMX) (69) and tetraspanin 12 (TSPAN12) (70). Functional assays were performed in SCLC cell lines NCI-H446, NCI-H69 and their multidrug-resistant derivatives H446AR and H69AR (69, 70). miR-495 was expressed at a lower level in SCLC compared to normal lung tissues (69, 70).

miR-495 inhibited apoptosis induced by chemotherapeutic agents such as adriamycin, cisplatin and etoposide by targeting ETK/BMX (69). In nude mice, antagonirs directed against miR-495 induced rapid growth of xenografts derived from H69 and H446 cells (69). Down-regulation of miR-495 promoted proliferation, migration invasion and tumor growth of H446 and H69 SCLC in vitro and in vivo (69). ETK/BMX has been shown to mediate drug resistance in SCLC (71), to regulate the cytoskeleton and migration (72), and to up-regulate vascular endothelial growth factor (73). ETK/BMX has also been identified as a mediator of resistance in acute myeloid leukemia (74) and as a regulator of multiple tyrosine kinases in hormone-refractory prostate cancer (75).

miR-495 was also found to target TSPAN12, which is related to resistance to cisplatin and etoposide (60). TSPAN12 promotes proliferation, migration and tumor growth in drug-resistant SCLC cells H446AR and H69AR (60). TSPAN12 belongs to the tetraspanin family of transmembrane receptors characterized by four transmembrane domains and two extracellular loops (76). Tetraspanins are involved in signaling platforms by forming tetraspanin-enriched microdomains (77). Tetraspanins can mediate tumor-promoting but also metastasis-inhibitory processes (78-80).
miRs Up-regulated in SCLC With Activity in Preclinical In Vitro Systems

miR-25. miR-25 (Figure 2) was up-regulated in SCLC cell lines and tissues (81). Down-regulation of miR-25 induced cell-cycle arrest and inhibited invasive capability of H510 SCLC cells (81). Overexpression of miR-25 reversed the effect of miR-25 down-regulation in H510 cells (81). miR-25 acted as an oncogene in SCLC cell lines (81). Cyclin E2 has been identified as a direct target of miR-25. These findings seem to be counterintuitive since cyclin E has been identified as a regulator of S-phase activity by binding to and activating cyclin-dependent kinase 2 and by phosphorylation of pocket proteins initiating a cascade of events that leads to the expression of S-phase-specific genes (82, 83). A role of cyclin E in DNA replication, control of genomic stability and regulation of the centrosome cycle has also been reported (82, 83). Cyclin E2 is aberrantly expressed in many types of tumors and is increased in cancer-derived cell lines (84). Overexpression of cyclin E in transgenic mice was shown to induce cancer by acting as a dominant oncogene (85). Due to its role in proliferation and apoptosis, cyclin E2 may be an important target for cancer therapy (86). However, it was shown that cyclin E is dispensable for the development of higher eukaryotes and for the division of eukaryotic cells (85). In any case, down-regulation of cyclin E2 in SCLC as reported in (81) might activate a novel tumor-promoting pathway which has to be resolved in further detail.

miR-134. In H69 SCLC cells, miR-134 (Figure 2) promoted growth, inhibited apoptosis and activated the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway (87). WW domain-containing oxidoreductase (WWOX) has been identified as a direct target of miR-134 (87). WWOX has two WW domains responsible for protein–protein interactions and a short dehydrogenase/reductase domain which catalyzes conversion of low-molecular-weight ligands, most likely steroids (88). Ectopic expression of WWOX inhibited anchorage-dependent growth of MDA-MB-435 and T47D breast cancer cells and attenuates tumorigenicity of MDA-MB-435 cells in vivo (89). In lung cancer, WWOX gene restoration prevented tumor growth in vivo and in vitro (89). WWOX localizes to the Golgi apparatus and behaves as a tumor suppressor (90). WWOX is frequently down-regulated in human tumors (91, 92).

miR-375. miR-375 (Figure 2) was found to be up-regulated in lung adenocarcinoma and SCLC, and down-regulated in lung squamous cell carcinoma (93). miR-375 promoted proliferation of NCI-H82 SCLC cells (93). Inositol-triphosphate-3 kinase B (ITPKB) was identified as a target of miR-375 (93). ITPKB regulates inositol phosphate metabolism by phosphorylation of second messenger inositol-1,4,5 triphosphate (94, 95). ITPKB is associated with the Ca signaling pathway and is enriched at actin filaments and invaginations of the nuclear envelope (96). ITPKB also regulates immune functions and is required for B- and T-cell development (96). The role of miR-375 and down-regulation of ITPKB in SCLC remains to be investigated in further detail.

miRs Down-regulated in SCLC With Activity in Preclinical In Vitro Systems

miR-26a. Low level expression of miR-26a (Figure 2) was detected in SCLC cell lines NCI-H196, NCI-H466 and NCI-H1688 in comparison to MRC5 non-transformed control cells (97). Transfection of these cell lines with a miR-26a mimic suppressed proliferation, migration and colony formation (97). Myeloid cell leukemia protein 1 (MCL1) has been identified as a target of miR-26a (97). MCL1 is a member of the BCL2 family and plays a role in inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (98, 99). Inhibition of MCL1 with small molecules has been pursued in several types of cancer, such as myeloma, follicular lymphoma and advanced SCLC in advanced clinical studies (100-102). MCL1 inhibition has been shown to be effective against a subset of SCLCs with high MCL1 and low B-cell lymphoma-extra large (BCL-XL) expression (101).

miR-126. miR-126 (Figure 2) inhibited proliferation of H69 SCLC cells by causing delay in the G1 phase of the cell-cycle (102). miR-126 has been identified as a direct target of solute carrier family 7, member 5 (SLC7A5) (102). Suppression of SLC7A5 by RNAi delayed SCLC cells in the G1 phase (103). SLC7A5 is part of cluster of differentiation 98 (CD98), and also referred to as large neutral amino acid transporter 1. The other component of CD98 is the CD98 heavy subunit protein encoded by the SCL3A2 gene. CD98 preferentially transports branched chain and aromatic amino acids and is overexpressed in several types of cancer (103-105). SLC7A5 can activate mechanistic target of rapamycin (mTOR), which phosphorylates p70S6 kinase and eukaryotic translation factor 4E-binding protein 1 (4EBP1), resulting in production of growth-promoting proteins (106). mTOR is activated in a large percentage of SCLCs and genetic alterations in the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT serine/threonine kinase 1/mTOR pathway have been identified in 36% of patients with SCLC (107).

miR-342. Protein tyrosine phosphatase receptor type N (PTPRN), also known as islet antigen 2 (IA-2), was identified as a target of miR-342 (Figure 2) in SCLC cell lines NCI-H82 and NCI-345 (108). Down-regulation of PTPRN by siRNA suppressed SCLC growth as well as cell acetyl choline (ACh)
content and secretion (109). ACh rescued the inhibitory effects of PTPRN siRNA and of miR-342 mimic on SCLC proliferation (109). ACh is an autocrine growth factor which facilitates SCLC growth (109). PTPRN is a transmembrane tyrosine receptor phosphatase and has an important role in secretion of hormones and neurotransmitters in SCLC cell lines, such as follicle-stimulating hormone, insulin, luteinizing hormone, dopamine, renin and norepinephrine (110, 111). PTPRN is highly expressed in tumors and cell lines of neuro-endocrine origin (112). It also has been identified as an auto-antigen that is reactive with sera of patients with insulin-dependent diabetes mellitus (112).

miR-485-5p. miR-485-5p (Figure 2) was reduced in SCLC tissues compared to adjacent normal tissues (113). miR-485-5p inhibited proliferation, migration and invasion of NCI-H466 and NCI-485-5p SCLC cell lines (113). Flotillin 2 (FIOT2) has been identified as a target of miR-485-5p (113). FLOT2 was found to be up-regulated in SCLC tissues and correlated with worse prognosis (113). FLOT1 and -2 are lipid-raft marker proteins which assemble into heterotetramers, forming molecular scaffolds to regulate clustering at the plasma membrane (114, 115). Up-regulation of FLOT2 is related to lymph node metastasis and poor prognosis in patients with solid tumors (116).

Dysregulated miRs With Activity in Preclinical In Vivo Models of SCLC

Up-regulated miRs

miR-665. Inhibition of miR-665 (Figure 3) attenuated proliferation, invasion and migration of NCI-H446 SCLC cells (117). In vivo, inhibition of miR-665 led to attenuation of tumor growth (117). Lethal giant larvae protein homolog-1 (LLGL1) was identified as a target of miR-665 (117). LLGL1 is part of the cytoskeletal network and is associated with non-muscle myosin II heavy chain (117). Overexpression of LLGL1 inhibited proliferation and migration, and increased cellular adhesion and apoptosis (118, 119). Loss of LLGL1 reduced cellular adhesion and dissemination in colorectal cancer, melanoma and gastric cancer; its reduced expression has been noted in lung squamous cell carcinoma (120-123).

Down-regulated miRs

miR-216a-5p. miR-216a-5p (Figure 3) reduced proliferation and migration of H69 SCLC cells (124). miR-216a-5p targeted BCL2 and modulated BCL2-like protein (BAX) and BCL2 antagonist of cell death (BAD) (124). In vivo inhibition of miR-216a-5p promoted tumor growth of H69-derived xenografts in mice, whereas a miR-216 mimic inhibited it (124). BCL2 is an anti-apoptotic protein which is expressed in SCLC (125, 126). BCL2 inhibitor venetoclax was shown to be active in preclinical SCLC-related in vitro and in vivo systems with high BCL2 expression (127).

miR-355. Investigations into the role of miR-355 (Figure 3) were performed with SCLC cells lines SBC-3 and SBC-5. The latter gives rise to bone metastasis in immuno-deficient mouse models, SBC-3 does not. Reduced expression of miR-355 in SBC-5 in comparison to SBC-3 cells was observed (129). Overexpression of miR-355 in transfected SBC-5 cells reduced proliferation, migration and colony formation. Skeletal lesions from miR-355-transfected SBC-5 cells were not observed in immunodeficient mice (129). Insulin-like growth factor receptor 1 (IGF-1R) and osteoblast receptor activator of nuclear κB ligand (RANKL) were identified as targets for miR-355 (129). IGF-1R promotes proliferation, invasion, migration and inhibits apoptosis of tumor cells (130). IGF-1R knock-out mice exhibit reduced bone metastasis of breast cancer xenografts (131). Prerequisite for osteolytic metastases is the activation of osteoclasts. Osteoblasts secrete RANKL which interacts with osteoclast precursors displaying RANK receptor on their surface, resulting in their maturation into functional osteoclasts. Osteoblasts also produce osteoprotegerin, a soluble decoy receptor which can block RANK/RANKL signaling (132-134).

IRF2 in H510A cells abrogated the inhibitory effects of miR-450 (136, 137). IRF2 acts as an oncogene and is involved in regulation of histone 4 gene transcription (138, 139). Overexpression of IRF2 in H510A cells abrogated the inhibitory effects of miR-450 (136). IRF2 is a member of IRF protein family which possess an N-terminal DNA binding domain characterized by five well-conserved tryptophan-rich repeats recognizing IFN-stimulated response elements and a C-terminal region which mediates interactions with family members, transcription factors and co-factors conferring specific activities on each IRF (136, 137). IRF2 acts as an oncogene and is involved in regulation of histone 4 gene transcription (138, 139). Overexpression of IRF2 promotes the growth of pancreatic cancer cells (140). In colorectal cancer, IRF2 has been identified as a driver of immune suppression and immune therapy resistance (141).
We identified miRs which affect chemoresistance and radioresistance, as well as in vitro and in vivo properties of SCLC cell lines. Up-regulated miRs are candidates for inhibition or reconstitution of the corresponding targets. Down-regulated miRs are candidates for reconstitution therapy or inhibition of the corresponding targets with small molecules or antibody-related entities.

Up-regulated miRs can be inhibited with miR antagonists, which are single-stranded RNAs composed of 12-25 nucleotides complementary to the corresponding mRNA or with RNA sponges (145, 146). The latter are composed of multiple miR-binding sites competing with binding of miRs to corresponding mRNA (145, 146). In the case of down-regulated miRs, reconstitution therapy is the indicated therapeutic intervention (147, 148) or re-expression of the corresponding targets, an approach which faces druggability issues due to nonspecific interactions.

Eight down-regulated miRs were found to mediate chemo/radioresistance (Figure 1). They are candidates for reconstitution therapy. PARP1 (miR-335) can be inhibited by several approved small molecules and is a validated target (35, 36). ETK (BMX) (miR-495), TSPAN12 (miR-495) and KIR2.1 (miR-7) are druggable with small molecules or antibody-derived entities. However, the role of the identified miRs in resistance of relapsed SCLC needs to be validated in more detail.

Three up-regulated and four down-regulated miRs affecting proliferation, invasion and apoptosis of SCLC cell lines in vitro were identified (Figure 2). MCL1, which is targeted by miR-26a, seems to be a promising target. MCL1 inhibition has been shown to be effective in a subset of preclinical SCLC-related in vitro models with high MCL1 and low BCL-xL expression (101). PTPRN (miR-342) and SCL7A5 (miR-126) are druggable targets and the corresponding miRs are candidates for miR-inhibitory agents. However, more target validation experiments are necessary to resolve the relevance of the latter targets.

Furthermore, one up-regulated and four down-regulated miRs with efficacy in preclinical SCLC-related in vivo models were identified (Figure 3). The down-regulated miRs are candidates for substitution therapy. BCL2 (miR-216-5p) is inhibited by venetoclax and it has been shown that venetoclax is effective in preclinical in vivo models with high BCL2 expression (127). miR-335 targets IGF-1R and RANKL, which mediate proliferation, invasion and bone metastasis of SCLC and both represent druggable targets (130, 132). miR-886-3p inhibits TGFβ1, a possible target for interfering with EMT (143, 144). For these miRs and corresponding targets, more target validation experiments in non-small-cell lung carcinoma-related systems are necessary in order to substantiate their role in SCLC.

Conclusion

We identified miRs which affect chemoresistance and radioresistance, as well as in vitro and in vivo properties of SCLC cell lines. Up-regulated miRs are candidates for inhibition or reconstitution of the corresponding targets. Down-regulated miRs are candidates for reconstitution therapy or inhibition of the corresponding targets with small molecules or antibody-related entities.

Up-regulated miRs can be inhibited with miR antagonists, which are single-stranded RNAs composed of 12-25 nucleotides complementary to the corresponding mRNA or with RNA sponges (145, 146). The latter are composed of multiple miR-binding sites competing with binding of miRs to corresponding mRNA (145, 146). In the case of down-regulated miRs, reconstitution therapy is the indicated therapeutic intervention (147, 148) or re-expression of the corresponding targets, an approach which faces druggability issues due to nonspecific interactions.

Eight down-regulated miRs were found to mediate chemo/radioresistance (Figure 1). They are candidates for reconstitution therapy. PARP1 (miR-335) can be inhibited by several approved small molecules and is a validated target (35, 36). ETK (BMX) (miR-495), TSPAN12 (miR-495) and KIR2.1 (miR-7) are druggable with small molecules or antibody-derived entities. However, the role of the identified miRs in resistance of relapsed SCLC needs to be validated in more detail.

Three up-regulated and four down-regulated miRs affecting proliferation, invasion and apoptosis of SCLC cell lines in vitro were identified (Figure 2). MCL1, which is targeted by miR-26a, seems to be a promising target. MCL1 inhibition has been shown to be effective in a subset of preclinical SCLC-related in vitro models with high MCL1 and low BCL-xL expression (101). PTPRN (miR-342) and SCL7A5 (miR-126) are druggable targets and the corresponding miRs are candidates for miR-inhibitory agents. However, more target validation experiments are necessary to resolve the relevance of the latter targets.

Furthermore, one up-regulated and four down-regulated miRs with efficacy in preclinical SCLC-related in vivo models were identified (Figure 3). The down-regulated miRs are candidates for substitution therapy. BCL2 (miR-216-5p) is inhibited by venetoclax and it has been shown that venetoclax is effective in preclinical in vivo models with high BCL2 expression (127). miR-335 targets IGF-1R and RANKL, which mediate proliferation, invasion and bone metastasis of SCLC and both represent druggable targets (130, 132). miR-886-3p inhibits TGFβ1, a possible target for interfering with EMT (143, 144). For these miRs and corresponding targets, more target validation experiments in non-small-cell lung carcinoma-related systems are necessary in order to substantiate their role in SCLC.
Regarding miR-based therapy, many technical hurdles which are not discussed in detail here have been identified. Issues are targeting of miRs to tumor cells, efficacy of intracellular escape, removal by the reticulo-endothelial system, excretion by the kidneys, pharmaco-kinetic and pharmaco-dynamic issues, immunogenicity, toxicity and cytokine-release syndrome (149-154). Recently, the field has experienced several set-backs, mainly due to toxicity issues (155). It remains to be seen whether miRs are tools for further target identification and whether miR-based therapy is a viable strategy for treatment of SCLC.

Conflicts of Interest

AN is and UHW was an employee of Roche.

Authors’ Contributions

AN and UHW jointly designed and prepared the article.

References

1 Gazdar AF, Bunn PA and Minna JD: Small cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 17(12): 725-737, 2017. PMID: 29077690. DOI: 10.1038/nrc.2017.87
2 Pietanza MC, Byers LA, Minna JD and Rudin CM: Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res 21(10): 2244-2255, 2015. PMID: 25979931. DOI: 10.1158/1078-0432.CCR-14-2958
3 Farago AF, Drapkin BJ, Lopez-Vilarino de Ramos JA, Galmarini CM, Núñez R, Kahatt C and Paz-Ares L: ATLANTIS: a Phase III study of lurbinectedin/doxorubicin vincristine in patients with small-cell lung cancer who have failed one prior platinum-containing line. Future Oncol 15(3): 231-239, 2019. PMID: 30362375. DOI: 10.2217/fon-2018-0597
4 Gazdar AF and Minna JD: Small cell lung cancers made from scratch. J Exp Med 216(3): 476-478, 2019. PMID: 30760489. DOI: 10.1084/jem.20182216
5 Iams WT, Porter J and Horn L: Immunotherapeutic approaches for small-cell lung cancer. Nat Rev Clin Oncol 17(5): 300-312, 2020. PMID: 32055013. DOI: 10.1038/s41571-019-0316-z
6 Rudin CM, Poirier JT, Byers LA, Dive C, Dowlatabadi A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D, Massion PP, Minna JD, Oliver TG, Quaranta V, Sage J, Thomas RK, Vakoc CR, Weidle UH, Birzele F and Nopora A: MicroRNAs as potential targets of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19(5): 289-297, 2019. PMID: 30926931. DOI: 10.1038/s41568-019-0133-9
7 Dawkins JBN and Webster RM: The small-cell lung cancer drug market. Nat Rev Drug Discov 19(8): 507-508, 2020. PMID: 32258782. DOI: 10.1038/d41573-020-00057-5
8 Bartel DP: Metazoan MicroRNAs. Cell 173(1): 20-51, 2018. PMID: 29570994. DOI: 10.1016/j.cell.2018.03.006
9 Li Z and Rana TM: Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8): 622-638, 2014. PMID: 25011539. DOI: 10.1038/nrd4359
10 Rupaimoole R and Slack FJ: MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3): 203-222, 2017. PMID: 28209991. DOI: 10.1038/nrd.2016.246
11 Peter ME: Targeting of mRNAs by multiple microRNAs: the next step. Oncogene 29(15): 2161-2164, 2010. PMID: 20190803. DOI: 10.1038/onc.2010.59
12 Garzon R, Calin GA and Croce CM: MicroRNAs in Cancer. Annu Rev Med 60: 167-179, 2009. PMID: 19630570. DOI: 10.1146/annurev.med.59.053006.104707
13 Calin GA, Cimmino A, Fabbri M, Ferracini M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aguéli RL, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M and Croce CM: MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105(13): 5166-5171, 2008. PMID: 18362358. DOI: 10.1073/pnas.0800121105
14 Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Alder H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F and Croce CM: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24): 15524-15529, 2002. PMID: 12434020. DOI: 10.1073/pnas.242606799
15 Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fontanari F, Giacomelli L, D’Abundo L, Ferracin M, Bassi C, Zaggini B, Corra F, Miotti E, Lupini L, Bolondi L, Gramantieri L, Croce CM, Sabbioni S and Negrini M: Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology 56(3): 1025-1033, 2012. PMID: 22473819. DOI: 10.1002/hep.25747
16 Ali Syeda Z, Langden SSS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci 21(5): 1723, 2020. PMID: 32138313. DOI: 10.3390/ijms.21051723
17 Weidle UH, Schmid D, Birzele F and Brinkmann U: MicroRNAs involved in metastasis of hepatocellular carcinoma: Target candidates, functionality and efficacy in animal models and prognostic relevance. Cancer Genomics Proteomics 17(1): 1-21, 2020. PMID: 31882547. DOI: 10.21873/cgp.20163
18 Weidle UH, Birzele F and Nopora A: Pancreatic ductal adenocarcinoma: MicroRNAs affecting tumor growth and metastasis in preclinical in vivo models. Cancer Genomics Proteomics 16(6): 451-464, 2019. PMID: 31659100. DOI: 10.21873/cgp.20149
19 Weidle UH, Birzele F and Nopora A: MicroRNAs as potential targets for therapeutic intervention with metastasis of non-small cell lung cancer. Cancer Genomics Proteomics 16(2): 99-119, 2019. PMID: 30850362. DOI: 10.21873/cgp.20116
20 Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F and Brinkmann U: The role of micro RNAs in breast cancer metastasis: Preclinical validation and potential therapeutic targets. Cancer Genomics Proteomics 15(1): 17-39, 2018. PMID: 29275360. DOI: 10.21873/cgp.20062
21 Weidle UH, Epp A, Birzele F and Brinkmann U: The functional role of prostate cancer metastasis-related Micro-RNAs. Cancer Genomics Proteomics 16(1): 1-19, 2019. PMID: 30587496. DOI: 10.21873/cgp.20108
22 Liu H, Wu X, Huang J, Peng J and Guo L: miR-7 modulates chemoresistance of small cell lung cancer by repressing MRPL/ABCC1. Int J Exp Pathol 96(4): 240-247, 2015. PMID: 26108539. DOI: 10.1111/ijep.12131
23 Liu H, Huang J, Peng J, Wu X, Zhang Y, Zhu W and Guo L: U-pregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer 14: 59, 2015. PMID: 25880778. DOI: 10.1186/s12943-015-0298-0

24 Lai J, Yang H, Zhu Y, Ruan M, Huang Y and Zhang Q: MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell lung cancer. BMC Cancer 19(1): 602, 2019. PMID: 31215481. DOI: 10.1186/s12885-019-5798-7

25 Zaman GJ, Versantvoort CH, Smit JJ, de Haas M, Smith AJ, Broxterman HJ, Mulder NH, de Vries EG and Baas F: Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res 53(8): 1747-1750, 1993. PMID: 8467491.

26 Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE and Gottesman MM: Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 18(7): 452-464, 2018. PMID: 29644373. DOI: 10.1038/s41561-018-0005-8

27 Hsia TC, Lin CC, Wang JJ, Ho ST and Kao A: Relationship between chemotherapy response of small cell lung cancer and P-glycoprotein or multidrug resistance-related protein expression. Lung 180(3): 173-179, 2002. PMID: 12177731. DOI: 10.1007/s004080000091

28 Kuo TH, Liu FY, Chuang CY, Wu HS, Wang JJ and Kao A: To predict response chemotherapy using technetium-99m tetrofosmin chest images in patients with untreated small cell lung cancer and compare with p-glycoprotein, multidrug resistance related protein-1, and lung resistance-related protein expression. Nucl Med Biol 36(6): 627-632, 2003. PMID: 12900288. DOI: 10.1016/s0969-8051(03)00058-1

29 Mirski SE, Gerlach JH and Cole SP: Multidrug resistance in a human small cell lung cancer cell line selected in Adriamycin. Cancer Res 47(10): 2594-2598, 1987. PMID: 2436751.

30 Raab-Graham KE, Radeke CM and Vanden Berg CA: Molecular cloning and expression of a human heart inward rectifier potassium channel. Neuroreport 5(18): 2501-2505, 1994. PMID: 7696590. DOI: 10.1097/00001203-199412000-00024

31 Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I and Kurachi Y: Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1): 291-366, 2010. PMID: 20086079. DOI: 10.1152/physrev.00021.2009

32 Pancrazio JJ, Viglione MP, Tabbbara IA and Kim YI: Voltage-dependent ion channels in small-cell lung cancer cells. Cancer Res 49(21): 5901-5906, 1989. PMID: 2477149.

33 Giovannardi S, Forlani G, Balerstri M, Bossi E, Tonini R, Sturani E, Peres A and Zippel R: Modulation of the inward rectifier potassium channel IRK1 by the Ras signaling pathway. J Biol Chem 277(14): 12158-12163, 2002. PMID: 11809752. DOI: 10.1074/jbc.M1046620

34 Tsoukalas N, Aravantinos-Fatorou E, Baxevanos P, Tolia M, Tsapakis K, Galanopoulos M, Lintos M and Kyrigias G: Advanced small cell lung cancer (SCLC): new challenges and new expectations. Ann Trans Med 6(8): 145, 2018. PMID: 29862234. DOI: 10.21037/atm.2018.03.31

35 Ray Chaudhuri A and Nussenweg A: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18(10): 610-621, 2017. PMID: 28676700. DOI: 10.1038/nrm.2017.53

36 Lord CJ, Tutt AN and Ashworth A: Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med 66: 455-470, 2015. PMID: 25341009. DOI: 10.1146/annurev-med-050913-022545

37 Lord CJ and Ashworth A: PARP inhibitors: Synthetic lethality in the clinic. Science 355(6330): 1152-1158, 2017. PMID: 28302823. DOI: 10.1126/science.aam7344

38 Slade D: PARP and PARG inhibitors in cancer treatment. Genes Dev 34(5-6): 360-394, 2020. PMID: 32029455. DOI: 10.1101/gad.334516.119

39 Jiang W, Han X, Wang J, Wang L, Xu Z, Wei Q, Zhang W and Wang H: miR-22 enhances the radiosensitivity of small-cell lung cancer by targeting the WRNIP1. J Cell Biochem 120(10): 17650-17661, 2019. PMID: 31190355. DOI: 10.1002/jcb.29032

40 Kawabe Yi, Branzei D, Hayashi T, Suzuki H, Masuko T, Onoda F, Heo SJ, Ikeda H, Shimamoto A, Furuchi Y, Seki M and Enomoto T: A novel protein interacts with the Werner’s syndrome gene product physically and functionally. J Biol Chem 276(23): 20364-20369, 2001. PMID: 11301316. DOI: 10.1074/jbc.C100035200

41 Kawabe Y, Seki M, Yoshimura A, Nishino K, Hayashi T, Takeuchi T, Iguchi S, Kusa Y, Ohtsuki M, Tsuyama T, Imamura O, Matsumoto T, Furuchi Y, Tada S and Enomoto T: Analyses of the interaction of WRNIP1 with Werner syndrome protein (WRN) in vitro and in the cell. DNA Repair (Amst) 7(5): 816-828, 2006. PMID: 16769258. DOI: 10.1016/j.dnarep.2006.04.006

42 Leuzzi G, Marabitti V, Pichierri P and Franchitto A: WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress. EMBO J 35(13): 1437-1451, 2016. PMID: 27242363. DOI: 10.15252/embj.201593265

43 Levy JMM, Towers CG and Thorburn A: Targeting autophagy in cancer. Nat Rev Cancer 17(9): 528-542, 2017. PMID: 28751651. DOI: 10.1038/nrc.2017.53

44 Yang ZJ, Chee CE, Huang S and Sinicrope FA: The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9): 1533-1541, 2011. PMID: 21878654. DOI: 10.1158/1535-7163.MCT-11-0047

45 Pan B, Chen Y, Song H, Xu Y, Wang R and Chen L: Mir-24-3p downregulation contributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A. Oncotarget 6(1): 317-331, 2015. PMID: 25426560. DOI: 10.18632/oncotarget.2787

46 Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT and White E: Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17(4): 654-666, 2011. PMID: 21325294. DOI: 10.1158/1078-0432.CCR-10-2634

47 Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, Yang J, Liao H and Guo L: Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer 50(8): 1541-1554, 2014. PMID: 24559685. DOI: 10.1016/j.ejca.2014.01.024

48 Yuan C, Zhu X, Han Y, Song C, Liu C, Lu S, Zhang M, Yu F, Peng Z and Zhou C: Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1. J Exp Clin Cancer Res 35: 15, 2016. PMID: 26791264. DOI: 10.1186/s13046-016-0294-2

49 Wang H, Liu G, Shen D, Ye H, Huang J, Jiao L and Sun Y: HOXA1 enhances the cell proliferation, invasion and metastasis.
Zöller M: Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9(1): 40-55, 2009. PMID: 19078974. DOI: 10.1038/nrc2543

Salà-Valdés M, Ailane N, Greco C, Rubinstein E and Boucheix C: Targeting tetraspanins in cancer. Expert Opin Ther Targets 16(10): 985-997, 2012. PMID: 22880813. DOI: 10.1517/14728222.2012.712688

Zhao Z, Liu J, Wang C, Wang Y, Jiang Y and Guo M: MicroRNA-25 regulates small cell lung cancer cell development and cell cycle through cyclin E2. Int J Clin Exp Pathol 7(11): 7726-7734, 2014. PMID: 25550809.

Hwang HC and Clurman BE: Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17): 2776-2786, 2005. PMID: 15838518. DOI: 10.1086/sj.2005.1208613

Santamaria D and Ortega S: Cyclins and CDKs in development and cancer: lessons from genetically modified mice. Front Biosci 11: 1164-1188, 2006. PMID: 16146805. DOI: 10.2741/1871

Gudas JM, Payton M, Thukral S, Chen E, Bass M, Robinson MO and Coats S: Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol 19(1): 612-622, 1999. PMID: 9985855. DOI: 10.1128/MCB.19.1.612

Möröy T and Geisen C: Cyclin E. Int J Biochem Cell Biol 36(8): 1424-1439, 2004. PMID: 15147722. DOI: 10.1016/j.biocel.2003.12.005

Mazumder S, DuPree EL and Almasan A: A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets 4(1): 65-75, 2004. PMID: 14965268. DOI: 10.2174/1568009043481669

Chen T, Gao F, Feng S, Yang T and Chen M: MicroRNA-134 regulates lung cancer cell HIF9 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway. Biochem Biophys Res Commun 464(3): 748-754, 2015. PMID: 26166814. DOI: 10.1016/j.bbrc.2015.07.021

Pospiech K, Pluciennik E and Bednarek AK: WWOX Tumor suppressor gene in breast cancer, a historical perspective and future directions. Front Oncol 8: 345, 2018. PMID: 30211123. DOI: 10.3389/fonc.2018.00345

Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ and Aldaz CM: WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61(22): 8237-8244, 2001. PMID: 11719429.

Fabbri M, Ilipopoulos D, Trapasso F, Aqeilan RI, Cimmino A, Santamaria D and Ortega S: Cyclins and CDKS in development and cell cycle through cyclin E2. Int J Clin Exp Pathol 7(11): 7726-7734, 2014. PMID: 25550809.

Chen T, Gao F, Feng S, Yang T and Chen M: MicroRNA-134 regulates lung cancer cell HIF9 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway. Biochem Biophys Res Commun 464(3): 748-754, 2015. PMID: 26166814. DOI: 10.1016/j.bbrc.2015.07.021

Pospiech K, Pluciennik E and Bednarek AK: WWOX Tumor suppressor gene in breast cancer, a historical perspective and future directions. Front Oncol 8: 345, 2018. PMID: 30211123. DOI: 10.3389/fonc.2018.00345

Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ and Aldaz CM: WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61(22): 8237-8244, 2001. PMID: 11719429.

Fabbri M, Ilipopoulos D, Trapasso F, Aqeilan RI, Cimmino A, Santamaria D and Ortega S: Cyclins and CDKS in development and cell cycle through cyclin E2. Int J Clin Exp Pathol 7(11): 7726-7734, 2014. PMID: 25550809.

Chen T, Gao F, Feng S, Yang T and Chen M: MicroRNA-134 regulates lung cancer cell HIF9 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway. Biochem Biophys Res Commun 464(3): 748-754, 2015. PMID: 26166814. DOI: 10.1016/j.bbrc.2015.07.021

Pospiech K, Pluciennik E and Bednarek AK: WWOX Tumor suppressor gene in breast cancer, a historical perspective and future directions. Front Oncol 8: 345, 2018. PMID: 30211123. DOI: 10.3389/fonc.2018.00345

Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ and Aldaz CM: WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61(22): 8237-8244, 2001. PMID: 11719429.

Fabbri M, Ilipopoulos D, Trapasso F, Aqeilan RI, Cimmino A, Santamaria D and Ortega S: Cyclins and CDKS in development and cell cycle through cyclin E2. Int J Clin Exp Pathol 7(11): 7726-7734, 2014. PMID: 25550809.

Chen T, Gao F, Feng S, Yang T and Chen M: MicroRNA-134 regulates lung cancer cell HIF9 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway. Biochem Biophys Res Commun 464(3): 748-754, 2015. PMID: 26166814. DOI: 10.1016/j.bbrc.2015.07.021

Pospiech K, Pluciennik E and Bednarek AK: WWOX Tumor suppressor gene in breast cancer, a historical perspective and future directions. Front Oncol 8: 345, 2018. PMID: 30211123. DOI: 10.3389/fonc.2018.00345

Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ and Aldaz CM: WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61(22): 8237-8244, 2001. PMID: 11719429.

Fabbri M, Ilipopoulos D, Trapasso F, Aqeilan RI, Cimmino A, Santamaria D and Ortega S: Cyclins and CDKS in development and cell cycle through cyclin E2. Int J Clin Exp Pathol 7(11): 7726-7734, 2014. PMID: 25550809.

Chen T, Gao F, Feng S, Yang T and Chen M: MicroRNA-134 regulates lung cancer cell HIF9 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway. Biochem Biophys Res Commun 464(3): 748-754, 2015. PMID: 26166814. DOI: 10.1016/j.bbrc.2015.07.021

Pospiech K, Pluciennik E and Bednarek AK: WWOX Tumor suppressor gene in breast cancer, a historical perspective and future directions. Front Oncol 8: 345, 2018. PMID: 30211123. DOI: 10.3389/fonc.2018.00345

Bednarek AK, Keck-Waggoner CL, Daniel RL, Laflin KJ, Bergsagel PL, Kiguchi K, Brenner AJ and Aldaz CM: WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61(22): 8237-8244, 2001. PMID: 11719429.

Fabbri M, Ilipopoulos D, Trapasso F, Aqeilan RI, Cimmino A, Santamaria D and Ortega S: Cyclins and CDKS in development and cell cycle through cyclin E2. Int J Clin Exp Pathol 7(11): 7726-7734, 2014. PMID: 25550809.
108 Xu H, Cai T, Carmona GN, Abuhaitira L and Notkins AL: Small cell lung cancer growth is inhibited by miR-342 through its effect of the target gene IA-2. J Transl Med 14(1): 278, 2016. PMID: 27670444. DOI: 10.1186/s12967-016-1036-0

109 Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP and Spindel ER: Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res 63(1): 214-221, 2003. PMID: 12517800.

110 Xie H, Notkins AL and Lan MS: A transmembrane protein tyrosine phosphatase, Hugl-1, from human insulinoma. DNA Cell Biol 13(5): 505-514, 1994. PMID: 8024693. DOI: 10.1089/dna.1994.13.505

111 Hu YF, Zhang HL, Cai T, Harashima S and Notkins AL: The IA-2 receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13(5): 505-514, 1994. PMID: 8024693. DOI: 10.1089/dna.1994.13.505

112 Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP and Spindel ER: Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res 63(1): 214-221, 2003. PMID: 12517800.

113 Hu YF, Zhang HL, Cai T, Harashima S and Notkins AL: The IA-2 receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13(5): 505-514, 1994. PMID: 8024693. DOI: 10.1089/dna.1994.13.505

114 Gauthier-Rouvière C, Bodin S, Comunale F and Planchon D: The IA-2, a transmembrane protein tyrosine phosphatase, is expressed in human lung cancer cell lines with neuroendocrine phenotype. Cancer Res 56(12): 2742-2744, 1996. PMID: 8665506.

115 Lan MS, Lu J, Goto Y and Notkins AL: Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13(5): 505-514, 1994. PMID: 8024693. DOI: 10.1089/dna.1994.13.505

116 Hu YF, Zhang HL, Cai T, Harashima S and Notkins AL: The IA-2 receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13(5): 505-514, 1994. PMID: 8024693. DOI: 10.1089/dna.1994.13.505

117 Hu YF, Zhang HL, Cai T, Harashima S and Notkins AL: The IA-2 receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol 13(5): 505-514, 1994. PMID: 8024693. DOI: 10.1089/dna.1994.13.505

118 Tsuruga T, Nakagawa S, Watanabe M, Takizawa S, Matsumoto Y, Minaguchi T, Oda K, Yasugi T, Yano T and Taketani Y: Loss of the target gene IA-2. J Transl Med 14(1): 278, 2016. PMID: 27670444. DOI: 10.1002/021655979.2019.1586056

119 Song J, Peng XL, Ji MY, Ai MH, Zhang JX and Dong WG: Hugl-1 induces apoptosis in esophageal carcinoma cells both in vitro and in vivo. J Gastroenterol 19(26): 4127-4136, 2013. PMID: 23864775. DOI: 10.3748/wjg.v19.i26.4127

120 Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schäfer SC, Lehr HA, Berger MR, Galle PR, Strand S and Strand D: Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene IgI, contributes to progression of colorectal cancer. Oncogene 24(19): 3100-3109, 2005. PMID: 15735678. DOI: 10.1083/sj. onc.1208520

121 Kuphal S, Wallner S, Schimanski CC, Bataille F, Hofer P, Strand S, Strand D and Bosserhoff AK: Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 25(1): 103-110, 2006. PMID: 16170365. DOI: 10.1083/sj. onc.1209008

122 Desuki A, Staib F, Gockel I, Moehler M, Lang H, Biesterfeld S, Maderer A, Galle PR, Berger MR and Schimanski CC: Loss of LLGL1 expression correlates with diffuse gastric cancer and distant peritoneal metastases. Can J Gastroenterol Hepatol 2019: 2920493, 2019. PMID: 31058107. DOI: 10.1155/2019/2920493

123 Matsuzaki T, Takekoshi S, Toriumi K, Kitakani K, Nitou M, Imamura N, Ogura G, Masuda R, Nakamura N and Iwazaki M: Reduced expression of Hugl 1 contributes to the progression of lung squamous cell carcinoma. Tokai J Exp Clin Med 40(4): 169-177, 2015. PMID: 2666269.

124 Sun Y, Hu B, Wang Y, Li Z, Wu J, Yang Y, Wei Y, Peng X, Chen H, Chen R, Jiang P, Fang S, Yu Z and Guo L: miR-216a-5p inhibits malignant progression in small cell lung cancer: involvement of the Bcl-2 family proteins. Cancer Manag Res 10: 4735-4745, 2018. PMID: 30425570. DOI: 10.2147/CMAR.S178380

125 Ben-Ezra JM, Kornstein MJ, Grimes MM and Krystal G: Small cell carcinomas of the lung express the Bcl-2 protein. Am J Pathol 115(5): 1036-1040, 1994. PMID: 7977636.

126 Jiang SX, Sato Y, Kuwao S and Kameya T: Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J Pathol 177(2): 135-138, 1995. PMID: 7490679. DOI: 10.1002/path.1711770206

127 Lochmann TL, Floros KV, Naseri M, Powell KM, Cook W, March RJ, Stein GT, Greninger P, Maves YK, Saunders LR, Dylla SJ, Costa C, Boikos SA, Levenson JD, Souers AJ, Krystal GW, Harada H, Benes CH and Faber AC: Venetoclax is effective in small-cell lung cancers with high BCL-2 expression. Clin Cancer Res 24(2): 360-369, 2018. PMID: 29118061. DOI: 10.1158/1078-0432.CCR-17-1606

128 Lochmann TL, Bouck YM and Faber AC: BCL-2 inhibition is a promising therapeutic strategy for small cell lung cancer. Oncoscience 5(7-8): 218-219, 2018. PMID: 3024143. DOI: 10.18632/oncoscience.455

129 Gong M, Ma J, Guillermette R, Zhou M, Yang Y, Yang Y, Hock JM and Yu X: miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol Cancer Res 12(1): 101-110, 2014. PMID: 23966614. DOI: 10.1158/1541-7786.MCR-13-0136

130 Riedemann J and Macaulay VM: IGF1R signalling and its inhibition. Endocr Relat Cancer 19(3): 171-182, 2012. PMID: 23011801. DOI: 10.1002/erc.1.01280

131 Dougall WC: Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18(2): 326-335, 2012. PMID: 22031096. DOI: 10.1158/1078-0432.CCR-10-2507

132 Weidle UH, Birzele F, Kollmorgen G and Rüger R: Molecular mechanisms of bone metastasis. Cancer Genomics Proteomics 13(1): 1-12, 2016. PMID: 26708594.

133 Dougall WC: Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18(2): 326-335, 2012. PMID: 22031096. DOI: 10.1158/1078-0432.CCR-10-2507

134 Yin JJ, Pollock CB and Kelly K: Mechanisms of cancer metastasis to the bone. Cell Res 15(1): 57-62, 2005. PMID: 15686629. DOI: 10.1038/sj.cr.7290266

135 Liu F, Yu X, Huang H, Chen X, Wang J, Zhang X and Lin Q: Upregulation of microRNA-450 inhibits the progression of lung cancer in vitro and in vivo by targeting interferon regulatory factor
Weidle and Nopora: MicroRNAs and Corresponding Targets Involved in SCLC (Review)

2. Int J Mol Med 38(1): 283-290, 2016. PMID: 27246609. DOI: 10.3892/ijmm.2016.2612

136 Yanai H, Negishi H and Taniguchi T: The IRF family of transcription factors: Inception, impact and implications in oncogenesis. Oncoimmunology 1(8): 1376-1386, 2012. PMID: 23243601. DOI: 10.4161/onci.22475

137 Taniguchi T, Ogasawara K, Takaoka A and Tanaka N: IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19: 623-655, 2001. PMID: 11244049. DOI: 10.1146/annurev.immunol.19.1.623

138 Nguyen H, Mustafa A, Hiscott J and Lin R: Transcription factor IRF-2 exerts its oncogenic phenotype through the DNA binding/transcription repression domain. Oncogene 11(3): 537-544, 1995. PMID: 7630638.

139 Vaughan PS, van der Meijden CM, Aziz F, Harada H, Taniguchi T, van Wijnen AJ, Stein JL and Stein GS: Cell cycle regulation of histone H4 gene transcription requires the oncogenic factor IRF-2. J Biol Chem 273(1): 194-199, 1998. PMID: 9417064. DOI: 10.1074/jbc.273.1.194

140 Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, Li J, Wang G, Lan Z, Li J, Tang M, Jiang S, Ma X, Chen P, Katkhuda R, Korphaisarn K, Chakravarti D, Chang A, Spring DJ, Chang Q, Zhang J, Maru DM, Maeda DY, Zebala JA, Kopetz S, Wang YA and DePinho RA: KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35(4): 559-572.e7, 2019. PMID: 30905761. DOI: 10.1016/j.ccell.2019.02.008

141 Shen J, Zhou W, Bi N, Song YM, Zhang FQ, Zhan QM and Wang LH: MicroRNA-886-3P functions as a tumor suppressor in small cell lung cancer. Cancer Biol Ther 19(1): 307-321, 2019. PMID: 30691367. DOI: 10.1146/annurev-med-041217-010829

142 Santamaria PG, Moreno-Bueno G, Portillo F and Cano A: EMT: Present and future in clinical oncology. Mol Oncol 11(7): 718-738, 2017. PMID: 28590039. DOI: 10.1002/1878-0261.12091

143 Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 119(6): 1420-1428, 2009. PMID: 19487818. DOI: 10.1172/JCI39104

144 Liu H, Zhang X, Li J, Sun B, Qian H and Yin Z: The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells. J Cancer Res Clin Oncol 144(2): 189-201, 2015. PMID: 24965746. DOI: 10.1007/s00432-014-1752-x

145 Nguyen DD and Chang S: Development of novel therapeutic agents by inhibition of oncogenic MicroRNAs. Int J Mol Sci 19(1): 65, 2017. PMID: 29280958. DOI: 10.3390/ijms19010065

146 Ling H, Fabbri M and Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11): 847-865, 2013. PMID: 24172333. DOI: 10.1038/nrd4140

147 Gambari R, Brogna S, Spandios DA and Fabbrini E: Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 49(1): 5-32, 2016. PMID: 27175518. DOI: 10.3892/ijo.2016.3503

148 Broderick JA and Zamore PD: MicroRNA therapeutics. Gene Ther 18(12): 1104-1110, 2011. PMID: 21525952. DOI: 10.1038/gt.2011.50

149 Juliano RL, Ming X and Nakagawa O: Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug Chem 23(2): 147-157, 2012. PMID: 21992697. DOI: 10.1021/bc200377d

150 Malek A, Merkel O, Fink L, Czubayko F, Kissel T and Aigner A: In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(PEG)/siRNA complexes. Toxicol Appl Pharmacol 236(1): 97-108, 2009. PMID: 19371615. DOI: 10.1016/j.taap.2009.01.014

151 Dowdy SF: Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35(3): 222-229, 2017. PMID: 28244992. DOI: 10.1038/nbt.3802

152 Bennett CF: Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med 70: 307-321, 2019. PMID: 30691367. DOI: 10.1146/annurev-med-041217-010829

153 Saliminejad K, Khorram Khoshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5): 5451-5465, 2019. PMID: 30471116. DOI: 10.1002/jcp.27486

154 Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C and Chiono V: MicroRNA delivery through nanoparticles. J Control Release 313: 80-95, 2019. PMID: 31622695. DOI: 10.1016/j.jconrel.2019.10.007

155 Jones D: Setbacks shadow microRNA therapies in the clinic. Nat Biotechnol 36(10): 909-910, 2018. PMID: 30307922. DOI: 10.1038/nbt1018-909

Received June 16, 2021
Revised July 13, 2021
Accepted July 15, 2021