A sialic acid-binding lectin with bactericidal and opsonic activities from Ruditapes philippinarum

Jianning Zhanga, Yifei Zhanga, Linbao Zhanga, Qianyu Weia, Xiaoli Liua,b,**, Dinglong Yangd,e,*

a School of Life Sciences, Ludong University, Yantai, 264025, PR China
b The Coastal Resources and Environment Team for Blue Yellow Area, Ludong University, Yantai, 264025, PR China
c Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, PR China
d Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
e Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China

**Corresponding author. Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
*** Corresponding author. School of Life Sciences, Ludong University, Yantai, 264025, PR China.
E-mail addresses: lxlshz2006@163.com (X. Liu), dlyang@yic.ac.cn (D. Yang).

ARTICLE INFO

Keywords: Ruditapes philippinarum Sialic acid-binding lectin Pattern recognition receptor Immune recognition

1. Introduction

Complement system is a highly sophisticated and powerful defense mechanism composed of more than 30 soluble serum and cell-surface proteins in both innate and adaptive immunity [1]. Usually, the complement system can be activated through three pathways: the antibody-dependent classical pathway, the antibody-independent alternative pathway and the lectin pathway. C1q is a subcomponent of the complement C1 complex, which contributes to the recognition of pathogen surface structures and antibody–antigen complexes [2]. The C1q family comprises not only C1q subunits but also a diverse array of non-complement proteins. Its members include collagen, precerebellin, elastin microfibril interface-located protein (EMILIN), multimerin, and adiponectin [3]. All of them possess a globular C1q (gC1q) domain in the C-terminal region, but vary in their N-terminal region [4]. Acting as a versatile pattern recognition protein (PRP), C1q could bind directly to a broad range of PAMPs of bacteria, viruses, and parasites, and thus enhance the phagocytosis of pathogens [5,6].

The C1q-domain-containing (C1q-DC) proteins are a family of proteins characterized by a globular domain of around 140 residues in the C-terminus with eight highly conserved residues, followed in most of them by a collagen-like region and a short amino-terminal region [7]. In vertebrates, C1q-DC proteins could act as mediators of immunological responses as well as homeostasis [3]. Presently, C1q-DC proteins have been found involved in the maintenance of immune tolerance via clearance of apoptotic cells, phagocytosis of bacteria, neutralization of retroviruses, cell adhesion, and modulation of dendritic cells (DCs), B cells and fibroblasts [8]. In marine invertebrates, several
Sabs (containing C1q domains) and their functions have been reported in Venerupis philippinarum [9], Limulus polyphemus [10], Crassostrea hongkongensis [9], Modiolus modiolus [11] and Solen grandis [12]. For example, SgSABLS in S. grandis could agglutinate microbes, and mediate phagocytosis and encapsulation of hemocytes [13].

Ruditapes philippinarum is an economic species widely spread over many countries. The recent mass mortality of Manila clams has been attributed to pathogen invasion and environmental deterioration [14]. Therefore, it is urgently necessary to characterize immune-related molecules for disease control and the healthy management of clam aquaculture. Recently, a Sabl has been identified in Manila clam, but its immune functions still remain unclear [15]. In the present study, another sialic acid-binding lectin was identified from the clam _R. philippinarum_ (designated as RpSabl), and the tissue-specific distribution, PAMPs recognition and opsonic activities were also investigated.

2. Materials and methods

2.1. Clams and bacterial challenge

Healthy Manila clams (shell length of 3.0–4.0 cm) were purchased from a local culture farm, and acclimatized in the aerated seawater at 20–22 °C for 10 days before processing. The clams were fed with an algae mixture of _Isochrysis galbana_ and _Phaeodactylum tricornutum_, and the seawater was totally renewed daily.

Bacterial challenge experiment was performed according to our previous description [16]. Briefly, 300 clams were randomly divided into two groups and kept in six aerated tanks (50 L). Three tanks served as the control, while the other three tanks were immersed with _Vibrio anguillarum_ at a final concentration of 1 × 10^7 CFU/mL, and the mortality of Manila clams were recorded daily. At 72 h after bacterial infection, hemocytes were collected from six individuals of each treatment for total RNA extraction and reverse transcription. Then the cDNA templates were diluted 20-fold and used for subsequent qRT-PCR analysis. The mRNA expression of RpSabl and antibacterial effectors (P11, P12 for c-type lysozyme, P13, P14 for p-type lysozyme, P15, P16 for big defensin, P17, P18 for defensin, Table S1) was analyzed as described above.

2.2. Gene cloning and sequence analysis of RpSabl

A Sabl EST was identified through large-scale EST sequencing of the constructed cDNA library. Forward primers P1, P2 were used to clone the full-length cDNA of RpSabl with primer oligo (d6) as the reverse primer, respectively (Table S1). The nucleotide sequence and deduced amino acid analysis were performed using the BLAST algorithm and the Expert Protein Analysis System. The protein domains were predicted with the simple modular architecture research tool version 4.0 [17]. Multiple alignments were performed with the ClustalW Multiple Alignment program and Multiple Alignment Show program.

2.3. Quantification analysis of RpSabl mRNA expression

The tissue distribution of RpSabl transcripts was analyzed in an Applied Biosystem 7500 Real-time PCR System. The RNA extraction, cDNA synthesis and quantitative PCR analysis were performed according to previously described [16]. Briefly, total RNAs from hemocytes, mantle, gills, hepatopancreas and adductor muscle were extracted from six individuals using Trizol reagent (Invitrogen, USA). After reverse transcription, a pair of gene-specific primers (P3 and P4, Table S1) were used to amplify a 121 bp fragment as an internal control.

In addition, the mRNA expression of RpSabl in hemocytes and hepatopancreas after _V. anguillarum_ challenge were also determined. At the end of each PCR, dissociation curve analysis of amplification products was performed to confirm the purity of PCR products. The 2^ΔΔCt_ method [18] was used to analyze the expression levels of RpSabl transcripts. All data were given in terms of relative mRNA expressed as mean ± S.D. (N = 6). Statistical analysis was performed by one-way analysis of variance (one-way ANOVA) with a Duncan test using SPSS 16.0 software, and _P_ values less than 0.05 were considered statistically significant.

2.4. Synthesis and microinjection of dsRNA

Primers P7, P8 and P9, P10 (Table S1) were used to amplify the fragments of RpSabl and GFP (as control), respectively. The products with the T7 promoter were confirmed by sequencing and used as templates to produce the sense and anti-sense RNA strands for transcription _in vitro_. The products were purified using the Ribo-MAXTM Large-scale RNA production System-T7 (Promega, USA) according to the manufacturer’s protocol. These dsRNAs were separately dissolved in DEPC-treated water to a final concentration of 1 mg/mL for subsequent experiments.

Natural healthy clams were collected and maintained in the aerated seawater for a week before processing. For the experiment, 300 clams were randomly selected, divided into 3 groups of 100 clams. About 60 µg dsRNA was injected into the adductor muscle of each animal. Clams in blank and control treatments were injected with either PBS or dsRNA of GFP. After injection for 24 h, these tanks were immersed with _V. anguillarum_ at a final concentration of 1 × 10^7 CFU/mL, and the mortality of Manila clams were recorded daily. After washed three times with PBS containing 0.05% Tween-20 (PBST), the membrane was blocked in complete Freund’s adjuvant (Sigma, USA) by hypodermic injection. The next two injections were immunized at tail at one-week interval. The mice were sacrificed to collect immunized serum 7 days after the last immunization [11].

Samples of the recombinant protein were separated by SDS-PAGE. After electrophoresis, proteins were transferred onto a 0.45 mm nitrocellulose membrane at 300 mA for 1.5 h. The membrane was blocked with PBS containing 3% bovine serum albumin (BSA) at 37 °C for 1 h. After washed three times with PBS containing 0.05% Tween-20 (PBST), the membrane was incubated with anti-rRpSabl serum (1:1000 diluted in PBS). Then the membrane was washed with PBST for three times and incubated with goat-anti-mouse IgG alkaline phosphatase conjugate (Southern Biotech, 1:5000 diluted in PBS) at 37 °C for 1 h. After washed for three times, the protein bands were stained with freshly prepared substrate solution containing nitroblue tetra-zolium (NBT, Sigma, USA) and 5-bromo-4-chloro-3-indolylphosphate (BCIP, Sigma, USA) for 5 min.
and stopped by washing the membrane with distilled water. Pre-immune serum was used as negative control.

2.7. PAMPs binding assay

The pathogen-associated molecular pattern (PAMP) binding activities of rRpSabl were performed by ELISA assay [16]. The microtiter plates were coated with 20 μg LPS, PGN, glucan or chitin (Sigma, USA) at 4 °C, respectively. After blocked with 3% BSA in PBS (200 μL/well) and washed three times with PBST, the plates were incubated with various concentrations of rRpSabl at 37 °C for 1 h, respectively. The plates were washed three times and incubated with 100 μL of rabbit anti-mouse serum dilution (1:1000 diluted in PBS) at 37 °C for 1 h, respectively. Then the plates were washed again and incubated with 100 μL goat-anti-mouse Ig-alkaline phosphatase conjugate (1:5000 diluted in PBS, Southern Biotech, USA) at 37 °C for 1 h. The wells were washed three times, and then incubated at room temperature in dark for 30 min. The reaction was stopped by 2 M NaOH and the absorbance was measured at OD405. The PBS buffer was used as blank with pre-immune as negative control. Each experiment was carried out in triplicate. Samples with P (sample)−B (blank)/N (negative)−B (blank) > 2.1 were considered positive.

2.8. Microbe agglutination

The microbial agglutination assay was determined against Gram-positive bacterium (Staphylococcus aureus) and Gram-negative bacteria (Vibrio harveyi, Vibrio splendidus, V. anguillarum, Enterobacter cloacae and Aeromonas hydrophila) according to the previous report [13]. Briefly, the exponential bacteria were harvested and stained by crystal violet. The labeled microbes were then suspended in TBS-Ca²⁺ buffer (50 mM Tris- HCl, 100 mM NaCl, 10 mM CaCl₂, pH 7.5). Then 10 μL of microbe suspension was incubated with 25 μL of rRpSabl solution (final concentration of 1 μg/mL) at room temperature for 1 h, respectively. Microbes dissolved in TBS buffer were selected as the control. Thereafter, 10 μL of the mixture was mounted onto a glass slide and observed by a light microscope (BX51, Olympus, Japan).

2.9. Swimming motility assay

Cell motility was examined on low-salt, soft-agar plates (1% tryptone, 0.25% NaCl and 0.3% agar) as described elsewhere [20,21]. Briefly, the Gram-positive bacterium (S. aureus) or Gram-negative bacteria (V. harveyi, V. splendidus, V. anguillarum, E. coli and A. hydrophila) were mixed with rRpSabl (final concentration of 1 μg/mL) and located on the soft-agar plates by puncturing inoculates halfway through the depth of the agar. Plates were incubated at room temperature for 8 h and monitored for the generation of bacterial halos as an indication of swimming motility. Plates were subsequently photographed with a digital camera to allow comparison of the relative swimming motilities of the different groups.

2.10. Antimicrobial activity

Bactericidal activity of rRpSabl against E. coli was evaluated by a liquid microdilution assay. Briefly, E. coli was incubated in liquid Luria-Bertani broth, and 100 μL of cell suspension (OD₆₀₀ = 0.01) was added to equal volume of rRpSabl (final concentration of 1 μg/mL). PBS alone was used as a negative control. Each sample was incubated at 37 °C and the OD₆₀₀ was measured at hourly intervals.

Attached biofilm formation was assayed in 96-well polystyrene plates (Corning Costar, USA) with crystal violet staining. Briefly, E. coli MG1655 was incubated with rRpSabl at concentrations of 0.1 and 1 μg/mL for 8 h. To remove growth effects, we normalized biofilm formation by dividing the total biofilm by the maximal bacterial growth as measured by turbidity at 620 nm. Then the supernatant was poured out, and the plates were washed three times with room temperature water. After the plates were dried, 300 μL 0.1% crystal violet (completely dissolved in water solution) was added in each well for 20 min at room temperature. Then the staining solution was poured out, and the plates were washed three times. 300 μL 95% ethanol was added to each well and soaked for 5 min. The total biofilm was measured by turbidity at 540 nm. Ten replicate wells were repeated from two cultures independently.

2.11. Phagocytosis assay

Hemocytes from Manila clams were collected with equal volume of pre-chilled anticoagulant (Tris-HCl 50 mM; glucose 2%, NaCl 2%; EDTA 20 mM; pH 7.4). After harvested by centrifugation, hemocytes were re-suspended in TBS buffer (Tris-HCl 50 mM; CaCl₂ 5 mM) and incubated with 0.1 μg/mL or 1 μg/mL rRpSabl at room temperature for 30 min. Then 5 μL 3% fluorescent microsphere was added into each hemocytes suspension. The mixture was incubated for 1 h at room temperature, and phagocytosis was then analyzed using an Accuri C6 flow cytometer (BD).

2.12. Chemotaxis assay

Chemotactic properties of the rRpSabl were determined using PET cell culture inserts of 8.0 mm pore size (Becton & Dickinson, Franklin Lakes, NJ, USA) in 24-well plates [22]. Shortly, 250 μL of hemolymph from individual clams was added to the upper compartment, and 500 μL of rRpSabl (final concentration of 0.1 μg/mL or 1 μg/mL) or Tris-HCl (pH 8.0) were located in the lower compartment, respectively. After 4 h of incubation in the dark at room temperature, cells in the lower compartment were recovered, centrifuged, and then counted using an Accuri C6 flow cytometer (BD).

2.13. In vitro encapsulation assay

In vitro encapsulation assay was performed according to the previous study [11]. Shortly, Ni-NTA agarose beads (Qiagen, Germany) were equilibrated in TBS buffer containing 10 mM CaCl₂, and then incubated with rRpSabl (the final concentration of 1 μg/mL) shaking at 4 °C overnight. Protein-coated beads were washed with TBS for three times, and then suspended in TBS. The hemolymph was withdrawn and diluted in anticoagulant, and the hemocytes were settled down into a 48-well cell culture plate, 1 μL of the protein-coated agarose beads (120–150 beads) was added and incubated at room temperature. Encapsulation of the beads was observed and counted after 6 and 24 h by a light microscopy (BX51, Olympus, Japan).

3. Results

3.1. Homologous analysis of RpSabl

The full-length cDNA of RpSabl was deposited in GenBank database under the accession no. AZS54114. RpSabl exhibited high identities with Sabls (or C1q domain-containing protein) from other mollusks. For example, RpSabl shared 63% similarity with sialic acid-binding lectin from Crassostrea gigas (XP_011442511). The eight invariant amino acid residues (positions F²₃⁴, F²₅₂, N⁴₄₆, F⁶₀₂, G⁶₅⁷, Y⁶ₙ₉, F¹₄₇ and G¹₄₉) were totally conserved in RpSabl (Fig. 1).

3.2. Tissue distribution and temporal expression profiles after V. anguillarum challenge

The distribution of RpSabl transcripts in various tissues of unchallenged clams was analyzed by qRT-PCR. RpSabl mRNA transcripts
were predominantly expressed in hepatopancreas, moderately in hemocytes and gills, and marginally expressed in mantle and muscle (Fig. 2). The temporal expression profiles of RpSabl transcripts in hepatopancreas and hemocytes after bacterial challenge were shown in Fig. 3. After *V. anguillarum* stimulation, the mRNA expression of RpSabl in hepatopancreas was significantly up-regulated at 3 h (3.8-fold, \(P < 0.05 \)), 6 h (4.9-fold, \(P < 0.05 \)) and reached to the maximum value at 12 h (12.3-fold, \(P < 0.01 \)). After that, the expression level of RpSabl transcripts decreased at 24 h (9.7-fold, \(P < 0.05 \)) and 48 h (1.2-fold, \(P > 0.05 \)) post challenge (Fig. 3A). However, the mRNA expression of RpSabl in hemocytes was up-regulated and reached the highest level at 6 h (8.5-fold of the control group, \(P < 0.05 \)), then the expression level was down-regulated at 12, 24 and 48 h post stimulation (Fig. 3B).

3.3. Expression analysis and cumulative mortality after dsRNA injection

To assess the effect of silencing RpSabl on immune responses, 60 μg of dsRpSabl was injected into the adductor muscle of each animal. The mRNA expression of RpSabl and several immune effectors (c-type lysozyme, p-type lysozyme, big defensin and defensin) were recorded at 72 h post *V. anguillarum* challenge. As revealed in Fig. 4A, *V. anguillarum* infection resulted in higher cumulative mortality in RpSabl-silenced clams than that of dsGFP- and PBS-injected groups. Silencing of RpSabl resulted in 30% mortality within a few days, whereas the dsGFP- and PBS-injected groups suffered little mortality. Meanwhile, the RpSabl transcripts in hemocytes were knocked down by 38% in clams after *V. anguillarum* challenge (Fig. 4B). During the period, the mRNA expressions of c-type lysozyme, p-type lysozyme, big defensin and defensin in RpSabl-silenced clams were significantly down-regulated to 0.48-fold (\(P < 0.05 \)), 0.43-fold (\(P < 0.05 \)), 0.58-fold (\(P < 0.05 \)) and 0.36-fold (\(P < 0.05 \)) of the control group (Fig. 4C), respectively.

3.4. Purification, refolding the recombinant protein and western blotting analysis

The purified protein of rRpSabl was analyzed on 15% SDS-PAGE with an apparent 18 kDa band visualized (Fig. S1, line 3), which was in accordance with the predicted molecular weight 17.6 kDa. The concentration of rRpSabl was determined to be 358.6 μg/mL. Western blotting analysis was carried out to identify the specificity of antibodies. A clear reaction band was observed, supporting that the antibody could react with rRpSabl specifically (Fig. S1, line 4). Negative bands were not observed in the study (data not shown).
3.5. PAMPs binding assay

PAMPs binding assays of rRpSabl were studied with some ligands. The binding activity was recorded as P/N value at 405 nm, and the samples with P/N > 2.1 were considered as positive. As revealed in Fig. 5, rRpSabl possessed obvious binding activities towards LPS, PGN and glucan in a dose-dependent manner. However, no binding activities towards chitin was observed in rRpSabl. The control groups could not bind any ligands.

3.6. Microbe agglutination assay

Several Gram-positive and Gram-negative bacteria were selected to test the microbial agglutination activity of rRpSabl. As revealed in Fig. 6A, rRpSabl showed obvious agglutinating activities towards V. harveyi, V. splendidus, V. anguillarum, E. cloacae and A. hydrophila, but not S. aureus (Fig. 6A). Meanwhile, swimming motility assay was examined on low-salt, soft-agar plates (1% tryptone, 0.25% NaCl and 0.3% agar), where the motility of Gram-positive bacterium (S. aureus) and Gram-negative bacteria (V. harveyi, V. splendidus, V. anguillarum, E. cloacae and A. hydrophila) was limited after incubated with rRpSabl (Fig. 6B).

3.7. Antibacterial activities

As revealed in Fig. 7, rRpSabl showed obvious inhibitory effect on the growth of E. coli. rRpSabl strongly suppressed the growth of E. coli during the exponential phase (2–6 h) and the stationary phase (6–8 h). Meanwhile, the incubation of RpSabl resulted in less biofilm dispersal of E. coli MG1655 on polystyrene surfaces, suggesting that RpSabl could dramatically reduce the biofilm formation in a concentration-dependent manner (Fig. S2).

3.8. Phagocytosis and chemotaxis assay

The phagocytosis assay was performed to test whether rRpSabl could enhance the phagocytosis ability of clam hemocytes. As revealed
in hepatopancreas, hemocytes and gills. How-
ubiquitously expressed in all tested tissues of healthy manila with
mainly expressed in host immune-related tissues, such as hepatopan-
hepatopancreas and gills [24,25]. Some Sabls transcripts were found
distributed in all tested tissues including hemolymph, mantle,

P
in Fig. 8A, the phagocytic ability of hemocytes was 25.4% (1 μg/mL,
Samples with (sample – blank)/(negative – blank) > 2.1 were considered po-
tected with goat-anti-mouse Ig-alkaline phosphatase conjugate at 405 nm.
glucan and chitin, and incubated with several concentrations of rRpSabl. After

hydrated by sialic acid containing protein fetuin, and significantly inhibit the growth of
C. hongkongensis could bind to the sialic acid containing protein fetuin, and significantly inhibit the growth of

C. hongkongensis could bind to the sialic acid containing protein fetuin, and significantly inhibit the growth of

V. anguillarum post
clearance ability of MjFREP2 was impaired by knocking down of
V. anguillarum
infection.

In invertebrates, many lectins serve as PRRs that are involved in
carbohydrate-mediated pathogen recognition, self/non-self
discrimination, and regulation of the immune responses [9,30,31]. Re-
combiant Ch-salectin from C. hongkongensis could bind to the sialic acid containing protein fetuin, and significantly inhibit the growth of

V. anguillarum
[binding affinity towards V. splendidus and V. anguillarum] [32]. Recently, Sabs were known not only for their specific

binding ability to sialic acid, but also for other non-self ligands [33]. For example, recombinant SgSABL-1 identified from the razor clam
could recognize various ligands including LPS, PGN and β-glucan, and

possess strong antibacterial activities against both Gram-positive and
Gram-negative bacteria [13]. In the present study, rRpSabl showed

obvious binding activities towards all the tested Gram-negative bacteria
and several ligands, such as LPS and PGN, indicating that it might have
have broad PAMPS recognition spectrum. However, although rRpSabl pos-

sessed obvious binding activity towards PGN, no agglutinating abilities
against S. aureus was observed. The reason may lie in the secretion of
amingolglycosides modifying enzyme or repressor protein by S. aureus
[34,35].

Mollusks were continuously exposed to a variety of pathogenic microorganisms in their surrounding environment, rending the hosts
possessed diverse lectins to protect themselves from the microbial in-
vaders. Besides bacterial binding and agglutination activity, some
mollusk lectins also showed inhibitory effect against the growth of

V. alginolyticus and Vibrio alginolyticus, E. coli and
Gram-positive bacteria S. aureus, Bacillus thuringiensis [9]. In the present
study, rRpSabl displayed obvious antibacterial activities towards E. coli,
and such antibacterial abilities probably also caused the depression of
E. coli biofilm formation even at low concentration. Likewise, the bio-
film formation was limited by antibacterial peptide LL-37 at the very
low and physiologically meaningful concentrations far below those
required to kill or inhibit bacterial growth [36]. The reason might lie in
the reduction of bacterial attachment or affection of their quorum-
dominantly expressed in mantle [15]. The different distribution of Sabls
from Manila clam might serve for their various roles in immune func-

invertebrates Sabls exhibit a wide range of tissue ex-
pression distribution. For example, Sc-ghC1q from razor clam

and AiC1qDC-1 from bay scallop Argopesten ir-
radians distributed in all tested tissues including hemolymph, mantle,
hepatopancreas and gills [24,25]. Some Sabs transcripts were found
mainly expressed in host immune-related tissues, such as hepatopan-
creas and hemocytes [25]. In the present study, RpSabl transcripts were
ubiquitously expressed in all tested tissues of healthy manila with
higher expression level in hepatopancreas, hemocytes and gills. How-
ever, the transcripts of VpSABL previously detected in Manila clam was

4. Discussion

Sialic acid-binding lectins served as important pattern-recognition
receptors (PRRs), which could specifically bind the terminal sugars,
such as N-acetyl or N-glycolyl carbohydrates, glycoproteins and gly-
colipids [23]. To date, several Sabls have been reported in mollusks.
However, the knowledge on their immune functions is still very limited
in mollusks [9,15]. In the present study, a Sabl was identified from
Manila clams, and the PAMPs recognition and binding activities, anti-
bacterial activities, and opsonic activities were also investigated.

Generally, invertebrate Sabls exhibit a wide range of tissue ex-
pression distribution. For example, Sc-ghClq from razor clam

S. aureus

sults suggested that RpSabl was an inducible acute-phase protein involved in immune
responses of Manila clams. Moreover, knockdown of RpSabl transcripts
causd significant increase in the cumulative mortality of manila clams
post V. anguillarum challenge. In Marupeneaus japonicus, the bacterial
clearence ability of MjFREP2 was impaired by knocking down of
MjFREP2. The cumulative mortality of MjFREP2-silenced shrimp was
rather higher than that of the control group [27]. In Hyrtios cumingii,
knockdown of HcClqDC6 inhibited the expression of tumor necrosis factor and whey acidic protein [28,29]. In the present study, reduced
expression of RpSabl transcripts down-regulated the expression of
several immune effectors in the hemolymph, indicating that clam
mortality was attributable to the down-regulation of these immune
effectors. The above results suggested that RpSabl protein was essential
for the host survival from V. anguillarum infection.

In invertebrates, many lectins serve as PRRs that are involved in
carbohydrate-mediated pathogen recognition, self/non-self
discrimination, and regulation of the immune responses [9,30,31]. Re-
combiant Ch-salectin from C. hongkongensis could bind to the sialic acid containing protein fetuin, and significantly inhibit the growth of

V. anguillarum
[9] and

V. anguillarum
[26]. The results suggested that
RpSabl transcripts in hemocytes and hepatopancreas were significantly upregulated
after bacterial challenge. The enhanced expression of Sabls upon in-
duction was also detected in other species, such as Crassostrea hon-
gkongensis [9] and Mytilus galloprovincialis [26]. The results suggested that
RpSabl could significantly enhance the phagocytic activity of clam
hemocytes. However, rRpSabl elicited no remarkable chemotactic re-
response from hemocytes, compared with the migration in control group (Fig. 8B).

3.9. In vitro encapsulation assay

rRpSabl-coated agarose beads were used to investigate the en-
capsulation ability of hemocytes towards non-self. After incubated with
rRpSabl for 6 and 24 h, 45.0% and 89.0% beads were encapsulated by
hemocytes from Manila clams compared with 6.0% in control group, respectively. After blocked by antibodies, only 10.0% protein-coated
beads were encapsulated (Fig. S3), suggesting that rRpSabl could
mediate the encapsulation ability of hemocytes.

Fig. 5. PAMPS binding ability of rRpSabl. Plates were coated with LPS, PGN,
glucan and chitin, and incubated with several concentrations of rRpSabl. After
incubated with polyclonal antiserum against rRpSabl, the interaction was de-
tected with goat-anti-mouse Ig-alkaline phosphatase conjugate at 405 nm.
Samples with (sample – blank)/(negative – blank) > 2.1 were considered po-
itive. Results were representative of average of three independent experiments.

Fig. 8A, the phagocytic ability of hemocytes was 25.4% (1 μg/mL,
P < 0.05) and 20.2% (0.1 μg/mL, P < 0.05) in the rRpSabl treatments
compared with that of only 16.5% in the control group, indicating that
rRpSabl could significantly enhance the phagocytic activity of clam
hemocytes. However, rRpSabl elicited no remarkable chemotactic re-
response from hemocytes, compared with the migration in control group (Fig. 8B).
Fig. 6. The agglutination (A) and swimming motility (B) of Gram-positive bacterium (*Staphylococcus aureus*) and Gram-negative bacteria (*Vibrio harveyi*, *Vibrio splendidus*, *Vibrio anguillarum*, *Enterobacter cloacae* and *Aeromonas hydrophila*) induced by rRpSabl.
sensing systems by down-regulating the biofilm-development genes [34,37]. Overall, these data suggested that RpSabl had an important role in the host defense against invasive pathogens.

It is of prime importance to understand the opsonization activity of Sabls on hemocytes. In the present study, rRpSabl could enhance the phagocytic activity of hemocytes significantly. Similar results were reported in Zhikong scallop *Chlamys farreri* as well [38]. Moreover, the encapsulation ability of hemocytes could also be promoted by rRpSabl, which required the coordination from both cellular and humoral factors of the immune defense system [39,40]. For example, capsule formation involves cooperation between one or more classes of hemocytes and is likely mediated by cytokines and adhesion molecules [40]. Together,

Fig. 6. (continued)

![Fig. 6](image)

Fig. 7. Antibacterial activities of rRpSabl. Growth suppressive tests of rRpSabl against *E. coli* were measured at OD₆₀₀ every 1 h after starting the cultures. The data were the average ± S.D. of three independent cultures.

![Fig. 8](image)

Fig. 8. Phagocytosis (A) and chemotactic activity (B) of hemocytes enhanced by rRpSabl. The values were shown as mean ± S.D. (N = 6) (*: P < 0.05, **: P < 0.01).
opsonization of hemocytes mediated by RpSabl, such as phagocytosis and encapsulation, was verified in the immune defense of Manila clam.

Acknowledgments

This research was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23050303), the National Natural Science Foundation of China (No. 41806196), the Key Research Program of the Chinese Academy of Sciences (Grant No. KJF-STS-ZDTP-023), Natural Science Foundation of Shandong Province (ZR2019BD022), Guangdong Provincial Key Laboratory of Fishery Ecology and Environment (LFE-2016-6) and the Youth Innovation Promotion Association of CAS (2016196).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fsi.2019.08.074.

References

[1] M. Nonaka, S.L. Smith, Complement system of bony and cartilaginous fish, Fish Shellfish Immunol. 10 (3) (2000) 215–228.
[2] U. Kishore, C. Gaborius, P. Waters, A.R. Shrivie, T.J. Greenough, K.B.M. Reid, R.B. Sim, G.J. Arlaud, C1q and tumor necrosis factor superfamily: modularization and versatility, Trends Immunol. 25 (10) (2004) 551–561.
[3] S.S. Bohlson, D.A. Fraser, A.J. Tenner, Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune responses, Mol. Immunol. 44 (1–3) (2007) 33–43.
[4] R. Medzhitov, C.A. Janeway, Decoding the patterns of self and nonself by the innate immune system, Science 296 (556) (2002) 298–300.
[5] H. Zhang, L.S. Song, C.H. Li, J.M. Zhao, H. Wang, U. Qi, D.J. Yi, N. Zha, A novel C1q-domain-containing protein from Zikhang scallop Chlamys farreri with lipopolysaccharide binding activity, Fish Shellfish Immunol. 25 (3) (2008) 281–289.
[6] P.R. Crocker, J.C. Paulson, A. Varik, SiglecS and their roles in the immune system, Nat. Rev. Immunol. 7 (4) (2007) 255–266.
[7] K.C. He, Y. Zhang, F. Yu, Z.N. Yu, A novel sialic acid binding lectin with antibacterial activity from the Hong Kong oyster Crassostrea hongkongensis, Fish Shellfish Immunol. 31 (6) (2011) 1247–1250.
[8] J.J. Marchalonis, G.M. Edelman, Isolation and characterization of a hemagglutinin from Limulus polyphemus, J. Mol. Biol. 32 (2) (1968) 453–456.
[9] S. Tomkinjaniuk, J.A. Olafson, Sialic acid binding lectin with antibacterial activity from the horse mussel: further characterization and immunolocalization, Dev. Comp. Immunol. 22 (2) (1998) 139–150.
[10] Y. Li, D.H. Niu, Y.Q. Bai, T.Y. Lan, M.X. Peng, Z.G. Dong, J.L. Li, Identification of a novel C1q complement component in razor clam Sinonovacula constricta and its role in antibacterial activity, Fish Shellfish Immunol. 87 (2019) 193–201.
[11] B. Novoa, A. Falco, A. Romero, S. Dios, A. Martinez-Lopez, A. Figueras, N. Petrosillo, P. Viale, Methicillin-resistant Staphylococcus aureus (MRSA) from clams, Dis. Aquat. Org. 48 (3) (2002) 221–231.
[12] V. Balsi, A. Falco, A. Romero, S. Dios, A. Martinez-Lopez, A. Figueras, N. Petrosillo, P. Viale, Methicillin-resistant Staphylococcus aureus (MRSA) from clams, Dis. Aquat. Org. 48 (3) (2002) 221–231.
[13] J. Schultz, F. Milpeltz, P. Bork, C.P. Ponting, SMART, a simple modular architecture research tool: identification of signaling domains, Proc. Natl. Acad. Sci. U. S. A 95 (11) (1998) 5857–5864.
[14] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method, Methods 25 (4) (2001) 402–408.
[15] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem. 150 (1) (1986) 76–85.
[16] T.F. Braun, S. Poulsen, J.B. Gulty, J.C. Empey, S. van Way, A. Putnam, D.F. Blair, Function of probe molecules of MDA in tumor generation by the flagellar motor of Escherichia coli, J. Bacteriol. 181 (1) (1999) 3542–3551.
[17] C.M. Tousin, M.E. Zegans, G.A. O'Tode, Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa, J. Bacteriol. 187 (2) (2005) 771–777.
[18] P. Baibele, A. Falco, A. Romero, S. Dios, A. Martinez-Lopez, A. Figueras, A. Estepe, B. Novoa, Mytilus galloprovincialis MytC1q: a chemoattractive molecule with antiviral activity and immunoregulatory properties, PLoS One 6 (8) (2011).
[19] R. Kaplan, S. Li, J.M. Kehoe, Studies of covalent structure of limulin, a sialic-acid binding lectin from horseshoe crab, Limulus polyphemus, Fed. Proc. 35 (3) (1976) 276–276.
[20] Y. Li, D.H. Niu, Y.Q. Bai, T.Y. Lan, M.X. Peng, Z.G. Dong, J.L. Li, Identification of a novel C1q complement component in razor clam Sinonovacula constricta and its role in antibacterial activity, Fish Shellfish Immunol. 87 (2019) 193–201.
[21] B. Allam, C. Paillard, S.E. Ford, Pathogenicity of Vibrio tapetis, FEMS Immunol. Med. 30 (12) (2000) 295–304.
[22] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Measurement of protein using bicinchoninic acid, Anal. Biochem. 150 (1) (1986) 76–85.
[23] T.F. Braun, S. Poulsen, J.B. Gulty, J.C. Empey, S. van Way, A. Putnam, D.F. Blair, Function of probe molecules of MDA in tumor generation by the flagellar motor of Escherichia coli, J. Bacteriol. 181 (1) (1999) 3542–3551.
[24] C.M. Tousin, M.E. Zegans, G.A. O'Tode, Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa, J. Bacteriol. 187 (2) (2005) 771–777.
[25] P. Baibele, A. Falco, A. Romero, S. Dios, A. Martinez-Lopez, A. Figueras, A. Estepe, B. Novoa, Mytilus galloprovincialis MytC1q: a chemoattractive molecule with antiviral activity and immunoregulatory properties, PLoS One 6 (8) (2011).
[26] R. Kaplan, S. Li, J.M. Kehoe, Studies of covalent structure of limulin, a sialic-acid binding lectin from horseshoe crab, Limulus polyphemus, Fed. Proc. 35 (3) (1976) 276–276.
[27] Y. Huang, L. Wu, M. Jin, K.M. Hui, Q. Ren, A C1q-domain protein (C1qDC6) with three tandem C1q domains is involved in immune response of triangle-shell pearl mussel (Hyridopsis campani), Front. Physiol. 8 (2017).
[28] S. Li, X.K. Jin, X.N. Guo, A.Q. Yu, M.H. Wu, S.J. Tan, Y.T. Zhu, W.W. Li, Q. Wang, A double WAP domain-containing protein Es-DWD1 from Broschiera sinensis exhibits antimicrobial and proteinase inhibitory activities, PLoS One 8 (8) (2013).
[29] J. Zhang, et al. Fish and Shellfish Immunology 94 (2019) 72–80