CONNECTION APPROACHES BETWEEN TRADITIONAL AND MODERN PHARMACOLOGICAL PROFILE OF SHOREA ROBUSTA GAERTN. F.: A REVIEW

MANISH PAL SINGH1*, RAVI KUMAR1
1Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura – 281 001, Uttar Pradesh, India. Email: manish_bn@yahoo.co.in

Received: 30 April 2018, Revised and Accepted: 25 May 2018

ABSTRACT

Shorea robusta is regarded as an important medicine in Ayurveda. S. robusta Gaertn. f. belongs to family Dipterocarpaceae, and traditionally, it is used to treat wounds, ulcers, leprosy, cough, gonorrhea, earache, and headache and many more. The use of different parts of this plant such as leaves, resin, and bark as a medicament for the treatment of various conditions is well documented in literature. It is the rich source of flavonoids, saponins, steroids, tannins, phenols, etc. mainly triterpenoids, which play the prominent role for their therapeutic potential in the drug. These compounds are believed to be responsible for the pharmacological activities of plant extract. The present review clarified the main active ingredients and pharmacological effects of S. robusta as a promising plant as a result of effectiveness and safety. Further studies should be carried out this plant to discover the unrevealed part of it which may serve for the welfare of humankind.

Keywords: Shorea robusta, Tannins, Phenols, Wound healing, Antidiabetic.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26978

INTRODUCTION

Plants have been an important source of medicine with qualities for thousands of years. Plants are used medicinally in different countries, and they are the source of many potent and powerful drugs. Mainly on traditional remedies such as herbs for their history, they have been used popular folk medicine [1,2]. Shorea robusta is regarded as an important medicine in Ayurveda. S. robusta Gaertn. f. belongs to family Dipterocarpaceae, and traditionally, it is used to treat wounds, ulcers, leprosy, cough, gonorrhoea, earache, and headache and many more. Different parts of the plant are traditionally used for the treatment of diverse purpose [3,4]. In Ayurveda, the leaves are used as anthelmintic, anti-inflammatory, antinociceptive, hyperlipidemic, antioxidant, and antileukocytic. The leaves are used to treat wounds, ulcers, itching, leprosy, gonorrhoea, cough, earache, and headache. The powdered stem bark or bark paste is applied to stop bleeding and promote healing of cuts [5,6]. In the Unani system of medicine, the resin is used to treat menorrhagia, enlargement of spleen, relieving eye irritations. The resin is used as antimicrobial, analgesic, and antiseptic. Its resin with honey or sugar is given in dysentery and also given in gonorrhoea and for weak digestion. The oleoresin exuded from the cut bark has astringent and detergent properties [7,8]. The bark is used to treat diabetes, diarrhoea, dysentery, wounds, and ulcers. Its bark decoction is used as drops in ear problems. Besides, its fruits are used to treat diarrhoea [9-12]. This review was mainly cited the information to highlight the modern and traditional therapeutically pharmacological profile of S. robusta plant belonging to family Dipterocarpaceae, which may serve as a source for further studies.

PLANT PROFILE [13-17]

- **Botanical name:** Shorea robusta.
- **Family:** Dipterocarpaceae.
- ** Vernacular names:** Gugglam, Ashvakarna, Chiraparna, Sal, Sala, Sarja, Sal tree, Common Sal, Indian Dammer, Dhuna, Damar, Jall, Sal, Salwa, and Shal.
- **Parts used:** Resin, leaves, bark, and fruit (Fig. 1).
- **Chemical constituents:** Phytochemical screening reveals the presence of flavonoids, saponins, steroids, tannins, phenols, etc., mainly triterpenoids which plays the prominent role for their therapeutic potential in the drug.

Traditional uses of plant

The resin obtained from the plant is considered as an astringent and a detergent and is used with honey or sugar in dysentery and bleeding piles and also for fumigating the rooms of ill people. It is also given in gonorrhoea and for weak digestion. Its bark decoction is used as drops for ear problems and the fruits for diarrhoea. India dammar resin Shorea robusta. It exudes from the fissure made in the bark of the tree in the form of a gum resin. It is a useful drug in European pharmacopoeia. It consists of two kinds, namely white and red, and it is used for fumigating like frankincense and is soluble in alcohol. Mixed with sulphur, it is used as an ointment for wound source etc. And mixed with wax it, is used as plasters for wounds. It is bitter, pungent and nauseating. Traditional physicians prescribe it for venereal complaints as gonorrhea, gout, etc. Mixed with boiled milk it is a useful remedy in cough, piles, bronchitis, and leucorrhoea. It is capable of absorbing all morbid fluid from the system. The resin is also used on increase in several Hindu households, temples, and sick rooms. The powdered stem bark or bark paste is applied to stop bleeding and promote healing of cuts among the tribal inhabitants of southern Bihar and the Kondhs of southwestern Orissa [18,19].

PHARMACOLOGICAL ACTIVITY

Wound healing activity

Khan et al. investigated the wound healing activity of S. robusta resin extracts and essential oil in rats. In this study, various extracts of plant resin were incorporated in soft yellow paraffin (10% w/w) and applied once daily on incision and excision wounds of Wistar rats. framycetin ointment (1.0% w/w) was also applied to the standard group. Authors have been revealed into this study that the extract treatment group wound was 53% higher than that of control animals. Protein and hydroxyproline contents were higher extract groups (28% and 35.5% w/w) as compared to control group [20], and other investigator also reported wound healing activity of some herbal plants containing flavonoid and phenol phytoconstituents [21-23]. Sahasrabudhe et al. reported the healing of second-degree burns by resin extract of S. robusta (SRE) using first-degree, third-degree burns and electrical burn models. Raul ointment found to be a suitable alternative to silver sulfadiazine cream for the treatment of second-degree burns [24]. Mukherjee et al. have been reported that the topical application of the extract of young leaves of S. robusta and its isolated compounds such as...
et al. reported the antimicrobial activity of aqueous parts of the stems. Investigators have been reported that the methanol extract has shown more significant activity [40]. Dudduki et al. reported the antifungal activity of aqueous parts of the stems against the Gram-positive bacteria, namely S. aureus and B. subtilis, and Gram-negative bacteria, namely Klebsiella pneumoniae and Serratia marcescens by well diffusion method. Aqueous extract of the plant has shown a significant inhibitory activity against different bacterial species tested against penicillin as standard antibacterial agent [41]. Gaurea et al. investigated the antimicrobial effect of resin of some herbal plants. They have been reported the extracts of Boswellia serrata, C. mukul, and Gardenia resinifera exhibiting activity against Gram-positive bacteria, comparable to standard antibiotic amoxillin, but they did not have the activity against Gram-negative bacteria. In this investigation, the maximum ZOI was found against B. cereus by B. serrata resin sample prepared in ethanol [42]. Some other investigation have been also confirmed the antimicrobial activity of resin containing of plant constituents [43-46].

Antimicrobial activity

Vimala et al. reported the antifungal activity of S. robusta. The extracts of S. robusta was administered at the doses of 150 and 300 mg/kg orally in rats against ethanalysis and pylorus-induced gastric ulcer. The extract significantly increases the gastroprotective activity as compared to control [47]. Santosh Kumar et al. investigated the antifungal activity of S. robusta Gaertn. Investigators have concluded that the treatment group has more antifungal effects when compared to the reference drug omeprazole. The study results have been suggested that S. robusta resin possesses significant gastroprotective activity [48]. Other scientific investigations have been proved that the plant contains polyphenols and flavonoids which revealed possesses the protective effect as gastric ulcer treatment [49-53].

Antioxidant activity

Mathavi et al. reported that the ethanolic SRE leaves have shown in vitro antioxidant activity. The ethanolic extract was screened for in vitro antioxidant activity by oxygen radical scavenging such as DPPH, total antioxidant assay, superoxide metal chelation and iron reducing power activity at different concentration throughout the studies leaves extract showed marked antioxidant activity. The antioxidant activity was found to be concentration dependent and may be attributed to the presence of bioflavonoids content in the leaves of S. robusta [54]. Ramasamy et al. evaluated the antioxidant activity of the acetone and methanol extracts of the stem bark of the plant, Shorea roxburghii. In this study, the total phenolic content and antioxidant activity of the extracts were determined by DPPH, radical scavenging, ferric ion reducing power, hydroxy radical, and ABTS. Both acetone and methanol extracts of S. roxburghii stem bark were found to be a potent antioxidant. The current study provides a scientific support for the high antioxidant activity of this plant, and thus, it may find potential applications in the treatment of the diseases caused by free radical [55]. Several studies confirmed that the plant containing flavonoids, phenol, and polyphenols are responsible for free radical scavenging activity of herbal drugs and it is may be responsible for antioxidant activity of this plant resin [56-60].

Immunomodulatory activity

Adlakha et al. have been reported the antinociceptive, antiinflammatory, and immunomodulatory activity of S. robusta bark using formalin-induced paw licking model. The bark extract administered rat models at 300 mg/kg/day intraperitoneal route. The study results have been shown a significant effect in stimulating the immunomodulatory response and significant antinociceptive response [39]. Kalaielvan et al. reported the immunomodulatory activities of S. robusta. Sheep red blood cells (5×109 cells/ml) were used for immunizing the animals that belong to immunized groups. This study was performed with a set of immunomodulation such as the humoral antibody response (hemagglutination antibody titters and immunoglobulins), cell-mediated immune response (delayed type hypersensitivity and phagocytosis).
nitroblue tetrazolium reduction test, total lymphocyte count, and DC. Investigators have been concluded that the *Shorea robusta* bark extract administrated rat models at 300 mg/kg per day, l.p should significant important in stimulating immunomodulatory response, thus *Shorea robusta* bark is an effective natural health product for in modulating immune system [61]. Several scientific studies have well documented for immunomodulatory activity of polyphenols and flavonoids containing plant [62-66].

Anti-inflammatory and analgesic activity

Nainwal et al. investigated the *in vitro* anti-inflammatory activity of leaf SRE using heat-induced hemolytic method. The SRE contains good amount of tannins, flavonoids, and saponins; these possess good activity against inflammation [67]. Debprasad et al. have been reported the anti-inflammatory and analgesic activities and the possible mechanism of action of tender leaf extracts of *S. robusta*. Analgesic was induced by the writhing and tail flick methods, while the anti-inflammatory activity was evaluated in carrageenan- and dextran-induced paw edema and cotton pellet-induced granuloma model. The authors promoted have results revealed that both aqueous and methanol extract (400 mg/kg) caused significant reduction of writhing and tail flick, paw edema, granuloma tissue formation (*p < 0.01*), vascular permeability, and membrane stabilization. Thus, the present study validated the scientific rationale of ethno medicinal use of *S. robusta* and unfolded its mechanism of action [68]. Jyothi et al. have been reported the anti-inflammatory and anti-inflammatory activity of methanolic extract of leaves of *S. robusta*. The extract produced a dose-dependent inhibition of carrageenan-induced paw edema in rats. At the same doses, antinociceptive effect was also observed with hot plate devemaintain that 550C, acetic acid induced writhing, formaline induced paw-licking, tail clip and tail flick models in mice the result of the present study confirm the use of *Shorea robusta* traditionally for the treatment of pain full inflammatory conditions [59,70].

Wani et al. investigated the ethanolic SRE resin for analgesic activity by making use of different central and peripheral pain models. The extract produced significant central and peripheral analgesic effects as is evident from decrease in reaction time in hot plate and tail flick tests, inhibition in writhing counts in acetic acid-induced writhing test, inhibition of licking time in formalin-induced hind paw licking, increased pain threshold in paw withdrawal latency in carrageenan-induced hyperalgesia, and increased paw withdrawal threshold in post-surgical pain [71]. Wani et al. also evaluated the antipyretic activity of *S. robusta* leaves using breyer’s yeast-induced pyrexia in rats. Significant reduction in pyrexia was observed at all dose levels of *S. robusta* extract [72].

Anti-obesity activity

Supriya et al. have been reported the anti-obesity activity of *S. robusta* leaves extract using high-fat diet-induced obesity in albino rat’s model. The leaves extract showed the significant effect in reduction of fat [73].

Antihyperlipidemic and antidiabetic activity

Sudha et al. investigated the anti-hyperlipidemic and antidiabetic activity of *S. robusta* leaves using alloxan-induced rat models. The result indicated that the significant reduction reduction in fat [74]. Rashchandiran et al. observed the biochemical parameters of *S. robusta* leaves in streptozotocin-induced diabetic rats. The ethanolic SRE leaves significantly prevented loss of body weight and reduce urine sugar. The results indicated that the ethanolic extract produced significant (*p<0.001*) in biochemical parameter [75] Kalaiselv et al. have been reported the preventive effect of *S. robusta* bark using diethyl nitrosamine-induced hepato cellular carcinoma in rats. The bark extract administered to rat models showed preventive effect [76].

CONCLUSION

Medicinal plants have been used for centuries as remedies for human diseases because they contain component of therapeutic value [77]. The use of botanical drugs as well as other alternative forms of medical treatment is enjoying great popularity in the late 1990’s; most of botanicals are secondary metabolites, of which at least 12,000 have been isolated. In many cases, these substances served as plant defense mechanism against predation by microorganisms, insects, and herbivores [78-80]. *S. robusta* is an important Ayurvedic drug which has also been studied extensively by different investigators. *Shorea robusta* not only destroys pathogenic bacteria but also is used in wound healing, anti-inflammatory, analgesic, and antioxidant [81,82]. Different parts of *S. robusta* such as leaves, stem bark, and floral parts were used for the various pharmacological activities. It stimulates the antioxidant, antibacterial, and wound healing and anti-inflammatory activity due to the presence of polyphenols, flavonoids, and triterpenoids [83,84]. These compounds are believed to be responsible for the pharmacological activities of plant extract. The present review clarified the main active ingredients and pharmacological effects of *S. robusta* as a promising plant as a result of effectiveness and safety. Further studies should be carried out to discover the unrevealed part of it which may serve for the welfare of humankind.

AUTHOR’S CONTRIBUTIONS

All three authors have equal contribution of read, manuscript compilation, and editing of this review manuscript.

CONFLICTS OF INTEREST

There are no conflicts of interest among authors of this publication.

REFERENCES

1. The Wealth of India. Raw Materials. Vol. X. New Delhi: CSIR. 1976. p. 175.
2. Croom EM. Documenting and evaluating herbal remedies. Econ Bot 1983;37:13-27.
3. The Ayurvedic Pharmacopoeia of India. Ministry of Health, Government of India. New Delhi: The Ayurvedic Pharmacopoeia of India; 2001.
4. Sharma PC, Yelne MB, Dennis TJ. Database on Medicinal Plants Used in Ayurveda. 3rd ed. New Delhi. India: Central Council for Research in Ayurveda and Siddha; 2005. p. 282-4.
5. Chandel KP, Shukla G, Sharma N. Biodiversity in Medicinal and Aromatic Plants in India: Conservation and Utilization. New Delhi, India: National Bureau of Plant Genetic Resources; 1996.
6. Chitale VS, Behra MD. Can the distribution of Sal (Shorea robusta Gaertn.) shift in the northeastern direction in India due to changing climate? Curr Sci India 2012;102:1126-35.
7. Patwardhan B, Wanude D, Puspanathan P, Bhatt N. Ayurveda and traditional Chinese medicine: A comparative overview. Evid Based Complement Altern Med 2005;2:465-73.
8. Misra B, Vaisya R. Tailavarga in Bhavaprakasha nighantu. Part I, B. The Kashi Sanskrit Series. Varanasi, India: Chaukhamba Bharati Academy; 1963. p. 779.
9. Patwardhan B, Chopra A, Vaidya AD. Herbal remedies and the bias against Ayurveda. Curr Sci 2003;84:1165-6.
10. Vaidya RA, Vaidya AD, Patwardhan B, Tillu G, Rao Y. Ayurvedic pharmacopoeiology: A proposed new discipline. J Assoc Physicians India 2003;51:528.
11. Bursal E, Gulcin I. Polyphenol contents and *in vitro* antioxidant activities of lyophilized aqueous extract of kiwifruit (*Actinidia delicosa*). Food Res Int 2011;44:1482-9.
12. Morikawa T, Chaipech S, Matsuda H, Hamao M, Umada Y, Sato H, et al. Antidiabetic effect of oligostilbenoids and 3-ethyl-4-phenyl-3,4 dihydrosocoumarins from the bark of *Shorea roxburghii*. Bioorg Med Chem 2012;20:832-40.
13. Evans WC. Trease and Evans Pharmacognosy. London: Harcourt Publisher Ltd.; 2002. p. 472-4.
14. Kokate CK, Purohit AP. Pharmacognosy. 39th ed. New Delhi. India: Central Council for Research in Ayurveda and Siddha; 2005. p. 175.
15. Tondon N, Sharma GM. Quality Standards of Indian Medicinal Plants. New Delhi: Indian Council of Medical Research; 2003. p. 207-9.
16. Kar A. Pharmacognosy and Biotechnology. 2nd ed. New Delhi. India: New Age International Private Limited; 2007.
17. Khare CP. Indian Medicinal Plants. An Illustrated Dictionary. New York: Springer International ed. 1989. p. 29.
18. Chunekar KC, Pandey GS. Bhavaprakasha Nighantu. Varanasi: Chaukhamba Bharati Academy; 2010. p. 508-9.
19. Sastri JL. Dravyaguna Vijnana. Varanasi: Chaukhamba Orientalia;
In vitro, Tamra bhasna, on (Arn.) Bhandari. Gum using different agar diffusion method. Res J assessments of Hippophae rhamnoides. Int J Immunopharmacol antibacterial

Mahadlek J, Phachamud T, Wessapun C. Antimicrobial studies of resins. J Pharm Pharm Sci 2016;8:29-31.

Smita HG, Chintamani UB. Study of antibacterial activity of resins. J Exp Boil 2012;50:277-81.

Duddukuri GR, Rao DE, Kaladhar DS, Sastry N, Rao KK, Prasad R. Wound healing effect of resin from Shorea robusta gaertn. F. On experimentally induced ulcer models. J Pharm Pharm Sci 2013;5:269-72.

Goel RK, Sairam K. Anticancer drugs from indigenous sources with emphasis on Musa sapientum, Tamarindus indica, Asparagus racemosus and Zingiber officinale. Indian J Pharmacol 2002;34:100-10.

Hiruma-Lima CA, Gracioso JS, Bighetti EJ, Grassi-Kassisse DM, Nunes DS, Brito AR, et al. Effect of essential oil obtained from croton cajucara benth. On gastric ulcer healing and protective factors of the gastric mucosa. Phytomedicine 2002;9:523-9.

Kabra P, Sharma S, Suman, Kumar S. Anticancer effect of the methanol extract of Tamarindus indica seeds in different experimental models. J Pharm Bioall Sci 2011;3:236-41.

Andrikopoulos NK, Kaliora AC, Assimopoulou NA, Papageorgiou VP. Biological activity of some naturally occurring resins, gums and pigments in vitro. L Dal oxidation. Phytother Res 2003;7:501-7.

Suzuki Y, Ishihara M, Segami T, Ito M. Anti-ulcer effects of antioxidant Quercetin alpha-tocopherol nifedipine and tetracycline in rats. Jpn J Pharmacol 1998;78:435-41.

Mathew P, Nethaji S. In vitro antioxidant activity of Shorea robusta leaf extract. Int J Biochem Biophys 2010;34:1-6.

Subramanian R, Subramaniyan P, Raj V. Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power. Springerplus 2013;2:28.

Amarowicz R, Pegg A, Moghaddam PR, Bal B, Weil JA. Free radical-scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 2004;84:551-62.

Nikfarjam DS, Gy L, Dietrich H. Resveratrol-dereatives and antioxidant activity in wines made from botrytized grapes. Food Chem 2004;86:967-74.

Rice-Evans CA, Miller N. Antioxidant property of phenolic compounds. Trends Plant Sci 1997;2:152-9.

Soares JR, Dinis TC, Cunha AP, Almeida LM. Antioxidant activities of some extracts of Thymus zygis. Free Rad Res 1997;26:469-78.

Solothewar S, Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry 1993;32:1083-92.

Gokulakrishnan K. Bark extract of Shorea robusta on modulation of immune response in rats. Int J Recent Res Sci 2012;3:693-7.

Kanjwani DG, Marathe TP, Chiplunkar SV, Sathaye SS. Evaluation of wound healing properties of Indian traditional medicines. J Current Research in Pharmacy 2011;3:63-7.

Anjum K, Prasad V, Moghaddam PR, Bal B, Weil JA. Free radical-scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 2004;84:551-62.

Sotheeswaran S, Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry 1993;32:1083-92.

Gokulakrishnan K. Bark extract of Shorea robusta on modulation of immune response in rats. Int J Recent Res Sci 2012;3:693-7.

Soares JR, Dinis TC, Cunha AP, Almeida LM. Antioxidant activities of some extracts of Thymus zygis. Free Rad Res 1997;26:469-78.

Solothewar S, Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry 1993;32:1083-92.

Gokulakrishnan K. Bark extract of Shorea robusta on modulation of immune response in rats. Int J Recent Res Sci 2012;3:693-7.

Kanjwani DG, Marathe TP, Chiplunkar SV, Sathaye SS. Evaluation of wound healing properties of Indian traditional medicines. J Current Research in Pharmacy 2011;3:63-7.

Anjum K, Prasad V, Moghaddam PR, Bal B, Weil JA. Free radical-scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 2004;84:551-62.

Sotheeswaran S, Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry 1993;32:1083-92.

Gokulakrishnan K. Bark extract of Shorea robusta on modulation of immune response in rats. Int J Recent Res Sci 2012;3:693-7.

Kanjwani DG, Marathe TP, Chiplunkar SV, Sathaye SS. Evaluation of wound healing properties of Indian traditional medicines. J Current Research in Pharmacy 2011;3:63-7.

Anjum K, Prasad V, Moghaddam PR, Bal B, Weil JA. Free radical-scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 2004;84:551-62.

Sotheeswaran S, Pasupathy V. Distribution of resveratrol oligomers in plants. Phytochemistry 1993;32:1083-92.

Gokulakrishnan K. Bark extract of Shorea robusta on modulation of immune response in rats. Int J Recent Res Sci 2012;3:693-7.

Kanjwani DG, Marathe TP, Chiplunkar SV, Sathaye SS. Evaluation of wound healing properties of Indian traditional medicines. J Current Research in Pharmacy 2011;3:63-7.

Anjum K, Prasad V, Moghaddam PR, Bal B, Weil JA. Free radical-scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 2004;84:551-62.
Kumar D, et al. Anti-inflammatory and antipyretic activities of the ethanolic extract of *Shorea robusta* gaertn. F. Resin. Indian J Biochem Biophys 2012;49:463-7.

73. Supriya K. Antiobesity activity of *Shorea robusta* G. Leaves extract on high fat diet induced obesity in albino rats Res. J Pharm Biochem Sci 2012;3:542-54.

74. Sudha S, Prasanna G. Antidiabetic and antihyperlipidemic effect of ethanolic extract of *Shorea robusta* gaertn.F. In alloxan induced rats. J Med Toxicol 2013;7:67-72.

75. Ravichandiran V, Satish PV, Yadav BV. Attenuation of biochemical parameters of *Shorea robusta* leaves in streptozotocin induced diabetic rats. World J Pharm Res 2015;4:1662-72.

76. Kalaiselvan A, Gokulkrishan K. Bark extract of *Shorea robusta* on modulation of immune response in rats. Int J Recent Sci Res 2012;3:693-7.

77. Hobbs C. Valerian monograph. Herb Gram 1989;21:19-34.

78. Grieve M. In: Leyel CF, editor. A Modern Herbal. London: Tiger Books International; 1976. p. 912.

79. Benigni R, Capra C, Cattorini P. Piante Medicinali Chimica Farmacologia E Terapia. Vol. 1. Milano: Inverni & Della Beffa; 1971. p. 730.

80. Ellingswood F, Lloyd JU. A Systematic Treatise on Materia Medica and Therapeutics. Chicago: Chicago Med Press; 1900. p. 706.

81. Scudder JM. Specific Medications and Specific Medicines. 15th ed. Cincinnati: Scudder Bros; 1903. 1985. p. 432.

82. Fleming T. PDR or Herbal Medicines. Montvale, NJ: Medical Economics Company, Inc.; 1998.

83. Newall CA, Anderson LA, Phillipson JD. Herbal Medicines: A Guide for Health-Care Professionals. London: The Pharmaceutical Press; 1996.

84. Peralta CM, Henestrosa C, Gil RA, Fernández LP, Acosta G. Novel spectrofluorimetric method for boldine alkaloid determination in herbal drugs and phytopharmaceuticals. Spectrochim Acta A Mol Biomol Spectrosc 2017;184:101-8.