Ooguri-Vafa Invariants and Off-shell Superpotentials of Type II/F-theory compactification

Feng-Jun Xu, Fu-Zhong Yang*

College of Physical Sciences, Graduate University of Chinese Academy of Sciences
YuQuan Road 19A, Beijing 100049, China

Abstract

In this paper, we make a further step of [1] and calculate off-shell superpotential of two Calabi-Yau manifold with three parameters by integrating the period of subsystem. We also obtain the Ooguri-Vafa invariants with open mirror symmetry.

February 7, 2022

*Corresponding author E-mail: fzyang@gucas.ac.cn
1 Introduction

When Type II string theory compactifying on Calabi-Yau threefold with D-brane and background flux, the superpotential will be generated which in general can divided two parts—one originated from D-brane and the other from flux. The superpotential also plays an important role in mathematics which generates the Ooguri-Vafa invariants and counting the number of disks and sphere instantons.

For D5-brane wrapped the whole Calabi-Yau threefold, the holomorphic Chern-Simons theory

\[W = \int_X \Omega^{3,0} \wedge \text{Tr}[A \wedge \bar{\partial}A + \frac{2}{3}A \wedge A \wedge A] \]

(1.1)
gives the brane superpotential \(W_{\text{brane}} \), where \(A \) is the gauge field with gauge group \(U(N) \) for \(N \) D5-branes. When reduced dimensionally, the low-dimensional brane superpotentials can be obtained as [3,4]

\[W_{\text{brane}} = N_\nu \int_{\Gamma_\nu} \Omega^{3,0}(z, \hat{z}) = \sum_\nu N_\nu \Pi^\nu \]

(1.2)

where \(\Gamma^\nu \) is a special Lagrangian 3-chain and \((z, \hat{z})\) are closed-string complex structure moduli and D-brane moduli from open-string sector, respectively.

The background fluxes \(H^{(3)} = H^{(3)}_{\text{RR}} + \tau H^{(3)}_{\text{NS}} \), which take values in the integer cohomology group \(H^3(X, \mathbb{Z}) \), also break the supersymmetry \(N = 2 \) to \(N = 1 \). The \(\tau = C^{(0)} + i e^{-\phi} \) is the complexified Type IIB coupling field. Its contribution to superpotentials is [5,6]

\[W_{\text{flux}}(z) = \int_X H^{(3)}_{\text{RR}} \wedge \Omega^{3,0} = \sum_\alpha N_\alpha \cdot \Pi^\alpha(z) \ , \ N_\alpha \in \mathbb{Z}. \]

(1.3)

The contributions of D-brane and background flux (here the NS-flux ignored) give together the general form of superpotential as follow [7,8]

\[W(z, \hat{z}) = W_{\text{brane}}(z, \hat{z}) + W_{\text{flux}}(z) = \sum_{\gamma_i \in H^3(\mathbb{Z}^*; \mathcal{H})} N_i \Pi_i(z, \hat{z}) \]

(1.4)

where \(N_i = n_i + \tau m_\sigma \), \(\tau \) is the dilaton of type II string and \(\Pi_i \) is a relative periods defined in a relative cycle \(\Gamma \in H^3(X, D) \) whose boundary is wrapped by D-branes and \(D \) is a holomorphic divisor of the Calabi-Yau space. In fact, the two-cycles wrapped by the D-branes are holomorphic cycles only if the moduli are at the critical points of
the superpotentials. Thus, the two-cycles are generically not holomorphic. However, according to the arguments of [7–9], the non-holomorphic two-cycles can be replaced by a holomorphic divisor D of the ambient Calabi-Yau space with the divisor D encompassing the two-cycles.

Geometrically speaking, when varying the complex structure of Calabi-Yau space, a generic holomorphic curve will not be holomorphic with the respect to the new complex structure, and becomes obstructed to the deformation of the bulk moduli. The requirement for the holomorphy gives rise to a relation between the closed and open string moduli. Physically speaking, it turns out that the obstruction generates a superpotential for the effective theory depending on the closed and open string moduli.

The off-shell tension of D-branes, $\mathcal{T}(z, \hat{z})$, is equal to the relative period $[7, 8, 10]$

$$\Pi_\Sigma = \int_{\Gamma_\Sigma} \Omega(z, \hat{z})$$

which measures the difference between the value of on-shell superpotentials for the two D-brane configurations

$$\mathcal{T}(z, \hat{z}) = \mathcal{W}(C^+) - \mathcal{W}(C^-)$$

with $\partial \Gamma_\Sigma = C^+ - C^-$. The domain wall tension is $[11]$

$$T(z) = \mathcal{T}(z, \hat{z}) \mid _{\hat{z}=\text{critic points}}$$

where the critic points correspond to $\frac{dW}{dz} = 0$ [10] and the C^{\pm} is the holomorphic curves at those critical points. The critical points are alternatively defined as the Noether-Lefshetz locus $[12]$

$$\mathcal{N} = \{(z, \hat{z}) \mid \pi(z, \hat{z}; \partial \Gamma(z, \hat{z})) \equiv 0\}$$

where

$$\pi(z, \hat{z}; \partial \Gamma(z, \hat{z})) = \int_{\partial \Gamma} \omega^{(2,0)}_a(z, \hat{z}), \quad \hat{a} = 1, \ldots, \dim(H^{2,0}(D))$$

and $\omega^{(2,0)}_a$ is an element of the cohomology group $H^{(2,0)}(D)$. At those critical points, the domain wall tensions are also known as normal function giving the Abel-Jacobi invariants $[11–15]$

The Superpotential can be calculated by study the Hodge variation on the cohomology group $\Gamma \in H_3(X, D)$. The flat Gauss-Manin connection on this cohomology
group can determine the mirror map between A-model and B-model. By the mirror symmetry, we can also obtain the Ooguri-Vafa invariants.

The purpose of this note is to calculate the off-shell superpotential which at the critical point equal to the domain wall tensions (on-shell superpotential) that have been obtained in the previous work \cite{1}.

2 Generalized GKZ system and Differential Operators

The period integrals can be written as

$$\Pi_i = \int_{\gamma_i} \frac{1}{P(a,X)} \prod_{j=1}^{n} \frac{dX_j}{X_j}. \quad (2.1)$$

where P is the hypersurface equation and a_i is the moduli determining the complex structure in B-model. See more in \cite{1}. According to the refs. \cite{16,17}, the period integrals can be annihilated by differential operators

$$\mathcal{L}(l) = \prod_{l_i>0} (\partial_{a_i})^{l_i} - \prod_{l_i<0} (\partial_{a_i})^{l_i}$$

$$Z_k = \sum_{i=0}^{p-1} \nu_{i,k} \vartheta_i, \quad Z_0 = \sum_{i=0}^{p-1} \vartheta_i - 1 \quad (2.2)$$

where $\vartheta_i = a_i \partial_{a_i}$. As noted in refs. \cite{18} \cite{21}, the equations $Z_k \Pi(a_i) = 0$ reflex the invariance under the torus action, defining torus invariant algebraic coordinates z_a on the moduli space of complex structure of X \cite{11}:

$$z_a = (-1)^{l_0} \prod_i a_i^{l_i} \quad (2.3)$$

where $l_a, \quad a = 1, \ldots, h^{2,1}(X)$ is generators of the Mori cone, one can rewrite the differential operators $\mathcal{L}(l)$ as \cite{11,17,18}

$$\mathcal{L}(l) = \prod_{k=1}^{l_0} (\vartheta_0 - k) \prod_{l_i>0}^{l_i-1} (\vartheta_i - k) - (-1)^{l_0} \prod_{k=1}^{l_0} (\vartheta_0 - k) \prod_{l_i<0}^{l_i-1} \prod_{k=0}^{l_i} (\vartheta_i - k). \quad (2.4)$$

The solution to the GKZ system can be written as \cite{11,17,18}

$$B_{l^a}(z^a; \rho) = \sum_{n_1, \ldots, n_N \in \mathbb{Z}_0^+} \frac{\Gamma(1 - \sum_a l_0^a (n_a + \rho_a))}{\Gamma(1 + \sum_a l_i^a (n_a + \rho_a))} \prod_a z_a^{n_a + \rho_a}. \quad (2.5)$$
In this paper we consider the family of divisors D with a single open deformation moduli \hat{z}

$$x_1^{b_1} + \hat{z}x_2^{b_2} = 0 \quad (2.6)$$

where b_1, b_2 are some appropriate integers. The relative 3-form $\Omega := (\Omega_X^{3,0}, 0)$ and the relative periods satisfy a set of differential equations $[7-9,11,21]$

$$\mathcal{L}_a(\theta, \hat{\theta}) \Omega = \frac{d\omega^{(2,0)}}{2} \Rightarrow \mathcal{L}_a(\theta, \hat{\theta}) \mathcal{T}(z, \hat{z}) = 0. \quad (2.7)$$

with some corresponding two-form $\omega^{(2,0)}$. The differential operators $\mathcal{L}_a(\theta, \hat{\theta})$ can be expressed as $[11]$

$$\mathcal{L}_a(\theta, \hat{\theta}) := \mathcal{L}_a^b - \mathcal{L}_a^{bd} \hat{\theta} \quad (2.8)$$

for \mathcal{L}_a^b acting only on bulk part from closed sector, \mathcal{L}_a^{bd} on boundary part from open-closed sector and $\hat{\theta} = \hat{z} \partial \hat{z}$. The explicit form of these operators will be given in following model. From the (1.9) one can obtain

$$2\pi i \hat{\theta} \mathcal{T}(z, \hat{z}) = \pi(z, \hat{z}) \quad (2.9)$$

for only the family of divisors D depending on the \hat{z}. Hence the off-shell superpotential can be obtained by integrating the period on subsystem $\pi(z, \hat{z})$.

3 Superpotentials of Hypersurface $X_{24}(1, 1, 2, 8, 12)$

The $X_{24}(1, 1, 2, 8, 12)$ is defined as the zero locus of polynomial P

$$P = x_1^{24} + x_2^{24} + x_3^{12} + x_4^{3} + x_5^{2} + \psi x_1 x_2 x_3 x_4 x_5 + \phi x_1^6 x_2^6 x_3^6 + \chi x_1^{12} x_2^{12} \quad (3.1)$$

The GLSM charge vectors l_a are the generators of the Mori cone as follows $[18]$

	0	1	2	3	4	5	6	7
l_1	-6	0	0	0	2	3	0	1
l_2	0	1	1	0	0	0	-2	0
l_3	0	0	0	1	0	0	1	-2

(3.2)

The mirror manifolds can be constructed as an orbifold by the Greene-Plesser orbifold group acting as $x_i \to \chi_k^{gk,i} x_i$ with weights

$$\mathbb{Z}_6 : g_1 = (1, -1, 0, 0, 0), \quad \mathbb{Z}_6 : g_2 = (1, 0, -1, 0, 0), \quad \mathbb{Z}_3 : g_3 = (1, 0, 0, -1, 0) \quad (3.3)$$
where we denote $\lambda_{1,2}^6 = 1$ and $\lambda_3^3 = 1$.

By the generalized GKZ system, the period on the K3 surface has the form
\[
\pi = \frac{c}{2} B \{ i_1, i_2, i_3 \} (u_1, u_2, u_3; 1, 1, 1; 0, 0) = -\frac{4c}{\pi i} \sqrt{u_1 u_2 u_3 + \mathcal{O}((u_1 u_2)^{3/2})}
\] (3.4)
which vanishes at the critical locus $u_2 = 0$. According to (2.9), the off-shell superpotentials can be obtained by integrating the π:
\[
\mathcal{T}_a^\pm (z_1, z_2, z_3) = \frac{1}{2\pi i} \int \pi(\zeta) \frac{d\zeta}{\zeta},
\] (3.5)
with the appropriate integral constants [11], the superpotentials can be chosen as $\mathcal{W}^+ = -\mathcal{W}^-$. In this convention, the off-shell superpotentials can be obtained as
\[
2\mathcal{W}^+ = \frac{1}{2\pi i} \int_{-\hat{z}}^{\hat{z}} \pi(\zeta) \frac{d\zeta}{\zeta}, \quad \mathcal{W}^\pm(z_1, z_2, z_3) = \mathcal{W}^\pm(z_1, z_2, z_3)|_{\hat{z}=1}
\] (3.6)
Eventually, The superpotential are
\[
\mathcal{W}^\pm(z_1, z_2, z_3, \hat{z}) = \sum_{n_1,n_2,n_3} \frac{-cz^{1+n_1}_1 z^{1+n_2}_2 z^{n_3}_3 \hat{z}^{1-2n_3}}{(2+n_2)(2+n_1)(\frac{3}{2}+3n_1)(1+n_3)(n_3-2n_2)(n_1-2n_3+\frac{3}{2})} \Gamma(6n_1+4) \Gamma(6n_2+4) \Gamma(6n_3+4) \Gamma(6n_1+6) \Gamma(6n_2+6) \Gamma(6n_3+6)
\] (3.7)
\[
\left\{ (1-2n_2) F_1(-\frac{1}{2}-n_2, -2n_2, \frac{3}{2}-n_2; \hat{z}) + \hat{z}(1+2n_2) F_1((\frac{1}{2}+n_2, -2n_2, \frac{3}{2}-n_2; \hat{z}))) \right\}
\]
\[
\frac{4\pi(-1+4n_2^2)}{\left(1-2n_2\right) F_1(-\frac{1}{2}-n_2, -2n_2, \frac{3}{2}-n_2; \hat{z}) + \hat{z}(1+2n_2) F_1((\frac{1}{2}+n_2, -2n_2, \frac{3}{2}-n_2; \hat{z})))}
\]

For calculation of instanton corrections, one need to know mirror map. The fundamental period ω_0 is solution of the Picard-Fuchs equation which we listed in [1]. The flat coordinates in A-model at large radius regime are related to the flat coordinates of B-model at large complex structure regime by mirror map $t_i = \frac{\omega_i}{\omega_0}$, $\omega_i := D_i^{(1)} \omega_0(z, \rho)|_{\rho=0}$.

The open-string mirror map are
\[
q_1 = z_1 + 312 z_1^2 + 107604 z_1^3 - 192 z_1^2 z_3 - 192 z_1 z_3^2 + \mathcal{O}(z^4)
\]
\[
q_2 = z_2 + 2 z_2^2 + 5 z_2^3 + z_2 z_4 + 3 z_2^2 z_4 + z_2 z_4^2 + \mathcal{O}(z^4)
\]
\[
q_3 = z_3 + 2 z_3^2 + 3 z_3^3 + 120 z_3 z_4 + 4580 z_3^2 z_4 + \mathcal{O}(z^4)
\]
\[
q_4 = z_4 + z_4^2 + z_4^3 + \mathcal{O}(z^4)
\] (3.8)
here $q_i = e^{2\pi i t_i}$ and we can obtain the inverse mirror map
\[
z_1 = q_1 - 312 q_1^2 + 87084 q_1^3 + q_1 q_3 - 864 q_1^2 q_3 + q_1 q_2 q_3 + \mathcal{O}(q^4)
\]
\[
z_2 = q_2 - 2 q_2^2 + 3 q_2^3 + \mathcal{O}(q^4)
\]
\[
z_3 = q_3 - 2 q_3^2 + 3 q_3^3 - 120 q_1 q_3 + 10260 q_1^2 q_3 + q_2 q_3 - 120 q_1 q_2 q_3 + 600 q_1 q_3^2 - 4 q_2 q_3^2 + \mathcal{O}(q^4)
\]
\[
z_4 = q_4 + q_4^2 + q_4^3 + \mathcal{O}(q^4)
\] (3.9)
\[
\begin{align*}
\text{Table 1: Disc invariants } n_{d_1,d_2,d_3,d_4} \text{ for the off-shell superpotential } W_1 \text{ of the 3-fold } \mathbb{P}_{1,1,2,8,12}^{[24]}.
\end{align*}
\]

Using the modified multi-cover formula [3] for this case

\[
W^\pm(z(q)) = \frac{1}{w_0(z(q))} \left(\frac{2i\pi}{2} \right)^2 \sum_{k \text{ odd}} \sum_{d_3,d_4,d_1,2\text{odd}} n_{d_1,d_2,d_3,d_4}^{\pm} \frac{q_1^{kd_1/2} q_2^{kd_2/2} q_3^{kd_3} q_4^{kd_4}}{k^2},
\]

the superpotentials \(W^+ \) give Ooguri-Vafa invariants \(n_{d_1,d_2,d_3,d_4} \) for the normalization constants \(c = 1 \), which are listed in Table.1.
4 Superpotential of Hypersurface $X_{12}(1, 1, 1, 3, 6)$

The $X_{12}(1, 1, 1, 3, 6)$ is defined as zero locus of P:

$$P = x_1^{12} + x_2^{12} + x_3^{12} + x_4^4 + x_5^2 + \psi x_1 x_2 x_3 x_4 x_5 + \phi x_1^4 x_2^4 x_3^4$$

(4.1)

The GLSM charge vectors in this case are

	0	1	2	3	4	5	6
l_1	-4	0	0	0	1	2	1
l_2	0	1	1	1	0	0	-3

(4.2)

On the mirror manifolds, the Greene-Plesser orbifold group acts as $x_i \rightarrow \lambda^g_k x_i$ with weights Z^6_G: $g_1 = (1, -1, 0, 0, 0)$, Z^4_G: $g_2 = (0, 1, 2, 1, 0)$

(4.3)

where we denotes $\lambda^6_1 = 1$, $\lambda^4_2 = 1$.

In [1], we have obtained the period in subsystem as follows

$$\pi(u_1, u_2) = \frac{c}{2} B_{\hat{l}_1, \hat{l}_2}(u_1, u_2; 0, \frac{1}{2})$$

(4.4)

where c are some normalization constants not determined by the differential operator. According to (2.9), the off-shell superpotentials can be obtained by integrating the π:

$$T^\pm_{\hat{l}_1} (z_1, z_2, z_3) = \frac{1}{2\pi i} \int \pi(\hat{z}) \frac{d\hat{z}}{\hat{z}},$$

(4.5)

with the appropriate integral constants [11], the superpotentials can be chosen as $W^+ = -W^-$.

Eventually, The superpotential are

$$W^\pm(z_1, \hat{z}_2, z_3, \hat{z}) = \sum_{n_1,n_2,n_3} \frac{\mp c z_1^{\frac{1}{2}+n_1} z_2^{n_2} \hat{z}^{-1-2n_1} \Gamma(4n_1 + \frac{5}{2})}{\Gamma(1+2n_2) \Gamma(1+n_2) \Gamma(\frac{3}{2}+n_1) \Gamma(2+2n_1) \Gamma(n_1 - 3n_2 + \frac{3}{2})}$$

$$\{(1-2n_1) \frac{1}{2} F_1(-\frac{1}{2} - n_1, -2n_1, \frac{1}{2} - n_1; \hat{z}) + \hat{z}(1+2n_1) \frac{1}{2} F_1((\frac{1}{2} - n_1, -2n_1, \frac{3}{2} - n_1; \hat{z}))\}$$

$$4\pi(-1+4n_1^2)$$

(4.6)

For calculation of instanton corrections, one need to know mirror map. The fundamental period ω_0 is solution of the Picard-Fuchs equation which we listed in [1]. The flat
coordinates in A-model at large radius regime are related to the flat coordinates of B-model at large complex structure regime by mirror map $t_i = \frac{\omega_i}{\omega_0}$, $\omega_i := D_i^{(1)} \omega_0(z, \rho)|_{\rho=0}$.

The open-string mirror map are

$$q_1 = z_1 + 40z_1^2 + 1876z_1^3 + 2z_1z_2 - 13z_1z_2^2 + z_1z_2z_3 + O(z^4)$$

$$q_2 = z_2 - 6z_2^2 + 63z_2^3 + z_2z_3 - 9z_2^2z_3 + O(z^4)$$

$$q_3 = z_3 - z_3^2 + z_3^3 + O(z^4)$$

(4.7)

here $q_i = e^{2\pi i t_i}$ and we can obtain the inverse mirror map as follows

$$z_1 = q_1 - 40q_1^2 + 1324q_1^3 - 2q_1q_2 + 268q_1q_2^2 + 5q_1q_2^3 + O(q^4)$$

$$z_2 = q_2 + 6q_2^2 + 9q_2^3 - 36q_1q_2 - 468q_1q_2^2 + 630q_1q_2^3 + O(q^4)$$

$$z_3 = q_3 + q_2^2 + q_3^3 + O(q^4)$$

(4.8)

Using the modified multi-cover formula

$$W_3^{+}(z(q)) = \frac{1}{(2\pi i)^2} \sum_{k \text{ odd}} \sum_{d_1, d_2, d_3 \geq 0} n_{d_1, d_2, d_3} \frac{q_1^{kd_1/2} q_2^{kd_2} q_3^{kd_3}}{k^2},$$

(4.9)

Table 2: Disc invariants n_{d_1, d_2, d_3} for the off-shell superpotential W_3^{+} of the 3-fold $\mathbb{P}_{1,1,1,3,6}[12]$.

Using the modified multi-cover formula [3] for this case
The superpotentials W^+ give Ooguri-Vafa invariants n_{d_1,d_2,d_3} for the normalization constants $c = 1$, which are listed in Table. 2

5 Summary

In this paper, we make a further step of previous work [1] and calculate the off-shell superpotential. By open mirror symmetry, we also compute the Ooguri-Vafa invariants from A-model expansion.

The superpotential of Type II string theory are important in both physics and mathematics. It also related to F-theory by open-closed duality [19–21]. In type II/F-theory compactification, the vacuum structure is determined by the superpotentials, whose second derivative gives the chiral ring structure. The quantum cohomology ring structure comes from the world-sheet instanton corrections and space-time instanton corrections [7, 8]. In fact, the more general vacuum structure of type II/F-theory/heterotic theory compactification can be tackled in Hodge variance approach.

In next work, we will study D-brane in general case. We also try to calculate the D-brane superpotential with the method of A_∞ structure of the derived category $D_{\text{coh}}(X)$ and path algebras of quivers.

Acknowledgments

The work is supported by the NSFC (11075204) and President Fund of GUCAS (Y05101CY00).

References

[1] Feng-Jun Xu, Fu-Zhong Yang Type II/F-theory Superpotentials and Ooguri-Vafa Invariants of Compact Calabi-Yau Threefolds with Three Deformations, [hep-th/1206.0445].
[2] E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133, 637 (1995) [hep-th/9207094].
[3] M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041.
[4] W. Lerche, Special geometry and mirror symmetry for open string backgrounds with N = 1 supersymmetry, hep-th/0312326.
[5] P. Mayr, On supersymmetry breaking in string theory and its realization in brane worlds, Nucl. Phys. B 593, 99 (2001) [hep-th/0003198].

[6] T. R. Taylor and C. Vafa, RR flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett. B 474, 130 (2000) [hep-th/9912152].

[7] W. Lerche, P. Mayr and N. Warner, N=1 special geometry, mixed Hodge variations and toric geometry, hep-th/0208039.

[8] W. Lerche, P. Mayr and N. Warner, Holomorphic N=1 special geometry of open - closed type II strings, hep-th/0207259.

[9] H. Jockers and M. Soroush, Effective superpotentials for compact D5-brane Calabi-Yau geometries, Commun. Math. Phys. 290, 249 (2009) [arXiv:0808.0761 [hep-th]].

[10] E. Witten, Branes and the dynamics of QCD, Nucl. Phys. B 507, 658 (1997) [hep-th/9706109].

[11] M. Alim, M. Hecht, H. Jockers, P. Mayr, A. Mertens and M. Soroush, Type II/F-theory Superpotentials with Several Deformations and N=1 Mirror Symmetry, JHEP 1106, 103 (2011) [arXiv:1010.0977 [hep-th]].

[12] H. Clemens, Cohomology and Obstructions II: Curves on K-trivial threefolds, arXiv:math/0206219.

[13] S. Li, B. H. Lian and S. -T. Yau, Picard-Fuchs Equations for Relative Periods and Abel-Jacobi Map for Calabi-Yau Hypersurfaces, arXiv:0910.4215 [math.AG].

[14] D. R. Morrison and J. Walcher, D-branes and Normal Functions, arXiv:0709.4028 [hep-th].

[15] P. Griffiths, A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Am. J. Math. 101, 96 (1979)

[16] V. V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Commun. Math. Phys. 168, 493 (1995) [alg-geom/9307010].

[17] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3, 493 (1994) [alg-geom/9310003].

[18] S. Hosono, A. Klemm, S. Theisen and S. -T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167, 301 (1995) [hep-th/9308122].

[19] P. Mayr, N=1 mirror symmetry and open / closed string duality, Adv. Theor. Math. Phys. 5, 213 (2002) [hep-th/0108229].
[20] H. Jockers, P. Mayr and J. Walcher, On N=1 4d Effective Couplings for F-theory and Heterotic Vacua, Adv. Theor. Math. Phys. 14, 1433 (2010) [arXiv:0912.3265 [hep-th]].

[21] M. Alim, M. Hecht, H. Jockers, P. Mayr, A. Mertens and M. Soroush, Hints for Off-Shell Mirror Symmetry in type II/F-theory Compactifications, Nucl. Phys. B 841, 303 (2010) [arXiv:0909.1842 [hep-th]].