Sex-related differences in contemporary biomarkers for heart failure: a review

Navin Suthahar¹, Laura M.G. Meems¹, Jennifer E. Ho², and Rudolf A. de Boer¹*

¹University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands; and ²Division of Cardiology, Department of Medicine, and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Received 19 August 2019; revised 28 January 2020; accepted 28 January 2020; online publish-ahead-of-print 27 March 2020

The use of circulating biomarkers for heart failure (HF) is engrained in contemporary cardiovascular practice and provides objective information about various pathophysiological pathways associated with HF syndrome. However, biomarker profiles differ considerably among women and men. For instance, in the general population, markers of cardiac stretch (natriuretic peptides) and fibrosis (galectin-3) are higher in women, whereas markers of cardiac injury (cardiac troponins) and inflammation (sST2) are higher in men. Such differences may reflect sex-specific pathogenic processes associated with HF risk, but may also arise as a result of differences in sex hormone profiles and fat distribution. From a clinical perspective, sex-related differences in biomarker levels may affect the objectivity of biomarkers in HF management because what is considered to be ‘normal’ in one sex may not be so in the other. The objectives of this review are, therefore: (i) to examine the sex-specific dynamics of clinically relevant HF biomarkers in the general population, as well as in HF patients; (ii) to discuss the overlap between sex-related and obesity-related effects, and (iii) to identify knowledge gaps to stimulate research on sex-related differences in HF.

Keywords Heart failure • Biomarkers • Sex • Obesity • Prognostic value

Introduction

Heart failure (HF) is a multifactorial disorder characterized by impaired cardiac function, systemic inflammation and neurohormonal activation.¹ ² The most recent trends according to data from 4 million individuals indicate that the absolute number of incident HF cases was 9% higher in men than in women, but among older individuals (>80 years), the absolute number of HF cases was higher in women (Figure 1).³ Whereas macrovascular coronary artery disease and myocardial infarction are leading causes of HF in men,⁴ ⁵ coronary microvascular dysfunction, hypertension and immuno-inflammatory mechanisms are thought to play a greater role in the development of HF in women.⁶ ⁷ Response of the myocardium to ischaemic injury and cardiovascular stress also differ between men and women. For instance, after an ischaemic insult to the heart, a ∼10-fold higher apoptotic rate in the peri-infarct region has been observed in men compared with women.⁸ When subjected to pressure overload, female hearts tend to remodel in a concentric pattern, whereas male hearts more often progress to an eccentric remodelling pattern.⁹ ¹² However, the exact pathophysiological mechanisms that lead to these sex-related differences are yet to be elucidated.

Circulating HF biomarkers encompass a wide range of molecules (e.g. proteins, enzymes, hormones and gene products) present in blood and other body fluids, and furnish objective information about various biological or pathological processes associated with this syndrome.¹³ ¹⁴ Some are routinely used in clinical practice [e.g. natriuretic peptides (NP)] to diagnose and estimate HF severity, and also to provide prognostic information beyond traditional cardiovascular risk factors. In addition to pre-analytical factors such as sample collection, storage and choice of assay, sex is a major factor influencing biomarker levels.¹⁵ Biological sex-related differences in HF biomarkers may result from differences in genetic makeup, the direct effects of sex hormones, and also indirectly from differences in fat distribution among men and women.¹⁶ ¹⁷ However, information regarding the pathobiology of sex differences in HF biomarker concentrations is limited. The extent to which sex-related differences affect the utility of biomarkers in
Sex differences in heart failure biomarkers

In the following sections we will focus on the HF biomarkers with the greatest potential clinical relevance, based on the availability of robust biochemical assays and multiple publications demonstrating clinical utility beyond traditional HF risk factors. These include NPs, as well as the more novel HF biomarkers, which include cardiac troponins (cTns), galectin-3 and soluble interleukin-1 receptor-like 1 (sST2). We will also briefly discuss two potential HF biomarker candidates related to inflammation: growth differentiation factor-15 (GDF-15) and osteopontin. Table 1 and Table 2 summarize sex-specific data on the value of these biomarkers in HF prediction and prognosis.

Natriuretic peptides

Natriuretic peptides are a group of polypeptides secreted primarily by the heart, kidneys and the vascular endothelium. They regulate intravascular volume and arterial pressure, thereby maintaining fluid and cardiovascular homeostasis. They are known to exert antifibrotic effects and may also have a role in metabolic homeostasis. The biological effects of NPs are usually mediated...
Sex-related differences in HF biomarkers

Table 1 Heart failure biomarkers: major sources, impact of sex hormones and effects of obesity

Biomarkers (domains)	Major sources	Sex differences	Direct effect of sex hormones	Effects of adipose tissue
NPs^a (myocardial stretch)	Heart (cardiomyocytes)¹⁹	Present	• Testosterone suppresses NP levels^{20–24}	Unlikely
			• Oestrogens may increase NP levels²⁵ but more data needed	Present
Cardiac troponins^b (myocardial injury)	Heart (cardiomyocytes)²⁹	Unlikely	• Obesity is associated with lower levels of cardiac NPs^{26–28}	Present
Galectin-3 (tissue fibrosis)	Adipose tissue³¹, lungs³¹, haematopoietic system	Unlikely	• In healthy individuals, male sex-related lowering of NPs is stronger than obesity-related effects^{26,27} which may explain lower NP levels in men despite lower fat mass	Present
sST2 (inflammation)	Lungs^{17,38}	Unclear	• Weak correlation between sST2 and total testosterone/oestradiol in males⁴⁰	Strong
	Lesser extent: vascular endothelium, heart (cardiac endothelial cells, fibroblasts)^{18,39}		• Controversial evidence in women^{40,41}	

NP, natriuretic peptide; sST2, soluble interleukin-1 receptor-like 1.
^aNPs include N-terminal pro-B-type NP and B-type NP.
^bCardiac troponins include troponin T and I.

by binding to NP receptors (NPR-A and NPR-B), which are expressed in various tissues including the heart, vasculature, adipose tissue and kidneys. Active clearance of NPs is facilitated via a third NP receptor (NPR-C), which is also widely distributed in many tissues including the adipose tissue and kidneys. More general clearance mechanisms also exist, for instance, degradation of NPs by the enzyme neprilysin. Atrial NP (ANP) and B-type NP (BNP) are thought to be the most important NPs with regard to fluid regulation and blood pressure homeostasis, and are chiefly secreted by cardiomyocytes. They bind to NPR-A, and elicit cardioprotective and antihypertensive effects by counter-regulating overactivity of the renin–angiotensin system, and also through natriuretic as well as vasodilatory effects. They have an important role in contemporary HF management, with BNP and its amino-terminal-peptide fragment (NT-proBNP) being the most important molecules used to diagnose (or exclude) HF in patients presenting with acute dyspnoea (Class I, Level A evidence).^{1,13,86,101}

In the general population, circulating levels of cardiac NPs are approximately two-fold higher in women than in men (Figure 3B), although such differences are not observed before puberty.¹⁰² Currently, there is strong clinical evidence demonstrating that testosterone lowers cardiac NP levels,^{20–24,103,104} which may partly explain the relative cardiac NP deficiency in men. The exact mechanism through which testosterone reduces cardiac NP levels remains poorly understood, although up-regulation of neprilysin activity by testosterone may be one possible explanation.^{105,106}

The role of female sex hormones in modulating plasma concentrations of cardiac NPs appears to be complicated: although oestrogen may increase cardiac NP levels by directly increasing cardiac NP gene expression and release,^{107,108} or by increasing the NPR-A to NPR-C ratio,^{109–111} there are also reports suggesting that oestrogen increases neprilysin activity.^{112,113} In the clinical setting, evidence regarding the association of endogenous female sex hormones with higher cardiac NP levels is limited; some studies, however, indicate that exogenous female hormone therapy may contribute to higher cardiac NP levels.^{25,114}

In HF patients, sex differences in cardiac NP levels are inconsistent,^{46–49} and on an average, their levels appear to be slightly higher in men (Figure 3B). This suggests that in diseased states associated with massive cardiac NP production, such as HF, more ‘subtle’ effects of sex hormones are overridden, and plasma levels may no longer reflect sex-specific changes. Nevertheless, HF is a complex phenotype, and differences in NP levels between men and women with HF should be interpreted with caution because
Heart failure biomarkers include cardiac-specific as well as non-cardiac biomarkers. This figure highlights the impact of sex hormones and adiposity on plasma concentrations of heart failure biomarkers. eGFR, estimated glomerular filtration rate; GDF-15, growth differentiation factor-15; NPR, natriuretic peptide receptor; sST2, soluble interleukin-like receptor-like 1.

Lower cardiac natriuretic peptide levels in heavier individuals: is this sex-related or obesity-related?

Obesity is known to promote a state of relative cardiac NP deficiency. We recently showed that, in the general population, lower NT-proBNP levels in heavier individuals are better explained by sex than by obesity. In other words, (male) sex-related lowering of NT-proBNP was more prominent than obesity-associated reduction in NT-proBNP levels (Figure 4). These observations may have clinical consequences with regard to the choice of optimal cut-off value to rule out HF. For instance, current guidelines recommend a universal NT-proBNP cut-off (125 ng/L in the non-acute setting) to exclude HF with confidence, and a reduced cut-off (~50% lower) in obese individuals. However, median NT-proBNP levels are usually in the range of 45–70 ng/L in women, and 25–40 ng/L in men. Given that, in the general population, sex strongly impacts cardiac NP levels (more so than even obesity), we argue that sex-specific cutpoints to rule out HF (e.g. lower NT-proBNP cutpoints in men) should be embraced.

By contrast, in HF patients, sex-related effects appear to be subtle (Figure 3B), and obesity may play a greater role. In fact, NT-proBNP levels are up to 60% lower in obese HF patients compared with their lean counterparts. This suggests that in HF patients, a lower cutpoint should potentially be considered in obese individuals to estimate disease severity, and sex-specific cutpoints may be redundant. Future studies should examine this hypothesis in HF patients and also among individual HF subtypes.

Heart failure prediction and prognosis

In addition to their utility in HF diagnosis, NPs serve as valuable tools in preventive cardiovascular medicine, and strongly predict incident HF in the general population. In a meta-analysis...
Sex-related differences in HF biomarkers

Figure 3 (A) An overview of relative proportions (i.e. fold change) of biomarker levels in heart failure (HF) patients (black) compared with community-dwelling individuals (grey) using pooled data from multiple studies.24–27,30,33,40–44,45–48 On average, N-terminal pro-B-type natriuretic peptide (NT-proBNP) is ~45-fold higher in HF patients compared with healthy individuals, followed by troponins (~6-fold), soluble interleukin-1 receptor-like 1 (sST2, ~2.5-fold), and galectin-3 (~1.5-fold). (B) Impact of sex on circulating biomarker levels in the general population and in HF patients. The x-axis represents percentage increase in biomarker concentrations in women compared with men (red), and in men compared with women (blue). In community-dwelling individuals, NT-proBNP levels are ~90% higher in women compared with men. Galectin-3 is also slightly higher in women, whereas cardiac troponins and sST2 are higher in men. In HF patients, sex-related differences in biomarker levels are attenuated, and on an average, all biomarkers are higher in men. The reader is advised to consider assay-related differences for more exact representation. Troponins include cardiac troponins T and I.

Cardiac troponins

The troponin complex consists of three subunits regulating actin–myosin interaction: troponin C (TnC; the calcium-binding subunit), troponin T (TnT; the tropomyosin-binding subunit), and troponin I (Tnl; the inhibitory subunit).124 Troponins relevant to cardiology practice include cardiac-specific isoforms of TnT and Tnl (i.e. cTns).125 Even minor elevations in circulating cTns raise the suspicion of ongoing cardiac damage29,30,126 although such findings do not provide any information about the cause of myocardial injury.

In healthy individuals, circulating cTn levels are higher in men than women.127,128 For instance, median values were ~53% higher in men using the Roche Diagnostics cTnT assay [pooled median values ± standard deviation (SD): 5.5 ± 2.2 ng/L in men vs. 3.6 ± 1.3 ng/L in women].60–64 and ~44% higher in men with the Abbott cTnI assay (2.6 ± 1.1 ng/L in men vs. 1.8 ± 1.0 ng/L in women).60,62,65 An illustrative overview of sex-related differences in the 99th percentile values for cTnT assay (Roche Diagnostics) and cTnl assays (Abbott Diagnostics, Beckman Coulter, Singulex and Siemens) using data from over 30 population-based studies was recently provided by Romiti and colleagues.128

In HF patients, plasma cTn levels rise several fold (Figure 3A).66,129,130 and on average, men have higher cTn levels compared with women (Figure 3B).67–69 For example, in a study...
including stable HF patients, median cTnT levels were 23 ng/L in men and 18 ng/L in women.67 Several mechanisms have been proposed to explain raised cTns in HF but the exact pathophysiology of sex-related differences remains to be elucidated. We postulate that a greater prevalence of cardiac comorbidities (e.g. atrial fibrillation, ventricular arrhythmias, coronary artery disease, cardiomyopathies, myocarditis) and male-specific hormonal mechanisms (e.g. testosterone-induced hypertrophy and apoptosis of cardiomyocytes) contribute to higher cTn levels in men with HF. By contrast, more subtle mechanisms of myocardial injury (e.g. coronary microvascular disease), along with the cardioprotective effects of oestrogen (e.g. suppression of cardiomyocyte apoptosis), may translate into relatively lower cTn levels in women presenting with HF.

According to data from the study conducted by Ndumele and colleagues (n = 9507), obesity was strongly associated with elevated cTns.30 It is hypothesized that adipokines released from the fat tissue may potentiate cardio-deleterious signals or even directly damage the cardiac tissue,113–115 leading to higher cTn levels in women.116 Economic burden of cardiovascular disease is the main significant challenge in population health.33–35 A previous study showed that multiple comorbidities contribute to the increased risk of death in women with HF.117,118 There are only a few studies available that have specifically looked at the prevalence of comorbidities in women with HF.119,120

Table 2 Sex-specific predictive and prognostic value of heart failure biomarkers

Biomarkers	Predicting incident heart failure	Predicting outcomes in heart failure		
	Total population	Sex-specific data	Total population	Sex-specific data
Natriuretic peptidesa	Strong evidence50,51,53	• RR in men > women: 4.25 vs. 2.44 (P<0.001). Type of study: meta-analysis of prospective cohort studies; n = 95 61060	Strong evidence18,87,88	• HR for composite events in men > women: 1.74 (95% CI 1.25–2.43) vs. 1.17 (95% CI 0.84–1.56). Type of study: prospective cohort study enrolling patients with acute HF; n = 228049
Cardiac troponinsb	Strong evidence53,60,70,89	• HR comparable in men and women: 2.29 (95% CI 1.64–3.21) vs. 2.18 (95% CI 1.68–2.81). Type of study: meta-analysis of prospective cohort studies; n = 67 07370	Strong emerging evidence71,73	• HR for all-cause mortality comparable in men and women using a universal cTnT cutpoint of 18 ng/L [1.48 (95% CI 1.41–1.57)] vs. 1.48 (95% CI 1.34–1.62)]. Type of study: meta-analysis of cohort studies enrolling patients with chronic HF; n = 9289.73
Galectin-3	May predict incident HF80	Limited	Moderate evidence14,80	Limited
sST2	May predict incident HF53,82	Limited	Strong emerging evidence83–85	Limited

CI, confidence interval; cTnl, cardiac troponin I; cTnT, cardiac troponin-T; RR, risk ratio; HR, hazard ratio; HF, heart failure; sST2, soluble interleukin-1 receptor-like 1.
aNatriuretic peptides include N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide.
bCardiac troponins include cTnT and cTnl.
Community-dwelling individuals without baseline cardiovascular disease were included for analyses. Sex-specific secondary analysis was performed in a subset.
Community-dwelling individuals without baseline HF were included for analyses. N-terminal pro-B-type natriuretic peptide was measured in 30 443 individuals.
Community-dwelling individuals without baseline HF were included for analyses. Sex-specific secondary analysis was performed in a subset.

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
Sex-related differences in HF biomarkers

Figure 4 Impact of sex and obesity on N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels in the general population. In the general population, lower NT-proBNP levels in heavier individuals can be better explained by (male) sex than by obesity. (A) Black lines represent median NT-proBNP levels in the overall population; grey bands represent prediction intervals of median NT-proBNP; histograms represent distribution of bodyweight in men (blue) and women (red). (B) Sex-specific associations of body weight and NT-proBNP Blue lines represent median NT-proBNP levels in men; red lines represent median NT-proBNP levels in women; grey bands represent prediction intervals of median NT-proBNP. Reproduced with permission from Suthahar et al. 26

Figure 3

Galectin-3

Galectin-3 is a pro-fibrotic protein secreted by several cell types including macrophages, and is involved in pathways leading to fibrosis of various organs including the heart, lungs, liver and kidneys. Unlike NPs and cTns, plasma levels of galectin-3 are chiefly maintained by contributions from non-cardiac sources (e.g. adipose tissue, lungs, haematopoietic tissue, liver). 31,32 According to data from four large population-based studies (using BG Medicine, 33,75 Alere, 76 or ARCHITECHT77 assays), women consistently exhibited slightly higher levels of galectin-3 than men (pooled median value ± SD: 13.2 ± 1.2 μg/L in women and 12.3 ± 1.4 μg/L in men) (Figure 3B). The reason for this sex-specific effect is unknown although differences in fat mass may be a likely explanation. Indeed, strong associations between adiposity and galectin-3 levels have been observed in both population-based studies33–35 and animal studies.32,149 Recently, a comprehensive analysis was performed in children (n = 170) using more accurate estimates of body fat mass and distribution [i.e. with dual energy X-ray absorptiometry (DEXA)]. 34 A strong association between total body fat and galectin-3 levels was observed, indicating that adipose tissue mass, and not the direct effect of sex hormones, would better explain the galectin-3 ‘excess’ in women. Galectin-3 levels are generally higher in HF patients than in healthy individuals 78 (Figure 3A). For instance, the pooled median galectin-3 value ± SD in HF patients from multiple studies78 (using BG Medicine, Alere or ARCHITECHT assays) was 18.8 ± 2.8 μg/L. Interestingly, in HF patients, sex differences in plasma concentrations of galectin-3 are inconsistent, and on an average, men tend to have slightly higher galectin-3 levels than women52,79 (Figure 3B). This suggests that in HF, the production and clearance of galectin-3 change so that the dynamics in fat distribution among men and women,147 and the higher global prevalence of obesity in women,148 examining sex differences in obesity cardiomyopathy may potentially be an exciting avenue of research.

Heart failure prediction and prognosis

The value of cTns in HF diagnosis is limited. However, cTns strongly predict incident HF in the general population53,60,89,126, and in a meta-analysis of 16 studies (67,063 individuals and 4165 HF events), the predictive value of cTns for incident HF was comparable in men and women (Table 2).70 cTns can also potentially be used to risk-stratify HF patients, although the level of evidence for this is currently lower than for NPs.2,13,101 Nevertheless, evidence offered by the current body of literature is gaining momentum, emphasizing the strong and independent performance of cTns in prognosticating outcomes in both acute71,72 and chronic73 HF patients. In a meta-analysis of 11 cohort studies including chronic HF patients (n = 9289), cTnT was a robust predictor of outcomes, and the prognostic value of cTnT for all-cause death was similar in men and women73 (Table 2). Recently Gohar and colleagues reported that both cTnT and cTnI strongly predicted outcome (all-cause mortality or HF rehospitalization) in patients with HFpEF. Interestingly, cTnT was similarly associated with adverse events in both sexes, whereas cTnl (measured using a more sensitive assay) was more strongly associated with adverse events in men with HFpEF (HR 3.33, P < 0.001) than in women with HFpEF (HR 1.35, P = 0.100).74 Nevertheless, limited data on sex-related differences in the prognostic value of cTns in HF patients preclude the drawing of any definitive conclusions.

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
and biology governing homeostasis under normal circumstances no longer operate in disease.

Heart failure prediction and prognosis

Galectin-3 was significantly associated with incident HF in community-dwelling individuals from the FHS (n = 3353) and FINRISK (n = 8444) studies, but not in the PREVEND cohort (n = 8569). In a recent meta-analysis of 18 studies (n = 32 350), as well as in a pooled analysis of four community-based cohorts (n = 22 756), galectin-3 remained associated with incident HF. However, none of these studies evaluated sex-specific associations of galectin-3 with incident HF as the primary outcome. In the FINRISK cohort, sex-stratified subanalyses were conducted and galectin-3 levels appeared to be similarly associated with HF in both sexes.

As galectin-3 is a relatively stable biomarker, serial measurements would provide more precise information about an ongoing disease process (e.g. cardiac fibrosis) compared with a random one-time measurement. Indeed, longitudinal changes in galectin-3 levels predicted incident HF in both the FHS (n = 2477) and PREVEND (n = 5958) cohorts, also after extensive adjustment for cardiovascular risk factors. To date, no study has examined whether longitudinal changes in galectin-3 predict new-onset HF differentially in men and women.

Galectin-3 measurements can be used for risk stratification and prognostication in acute and chronic HF patients ([Class IIb recommendation; American College of Cardiology (ACC)/American Heart Association (AHA) HF guidelines], and a universal prognostic cutoff of 35 μg/L has been proposed. However, current data indicate that sST2 measurements predict outcomes in both acute and chronic HF patients. Recently, Emdin and colleagues demonstrated that in chronic HF patients (n = 4268), sST2 was significantly associated with HF hospitalization and mortality and also provided prognostic information beyond NT-proBNP and cTnT. Whether sST2 measurements predict HF outcomes differentially in men and women, and whether choosing sex-specific cutoffs would further refine risk prediction in HF patients is not currently known, and should be investigated in future studies.

Potential heart failure biomarkers: growth differentiation factor-15 and osteopontin

Growth differentiation factor-15 is a member of the transforming growth factor-β (TGF-β) cytokine superfamily with anti-apoptotic, anti-hypertrophic and anti-inflammatory properties. It is abundantly expressed in extracardiac tissues (e.g. lungs, liver and kidneys), whereas the heart has only moderate GDF-15 expression. Sex differences in plasma levels are not clearly observed, although women may have slightly lower GDF-15 levels than men. GDF-15 is strongly associated with incident HF and can potentially be used in conjunction with other HF biomarkers to optimize HF prediction. GDF-15 also strongly predicts outcomes in HF patients. However, sex-specific data are lacking.

Osteopontin is a secreted matricellular glycoprotein expressed primarily in extracardiac tissues (e.g. the kidneys and luminal epithelial surfaces of various organs). Osteopontin expression is up-regulated in HF, hypertension and various inflammatory conditions including obesity. High cardiac osteopontin expression promotes myocardial fibrosis and increases left ventricular stiffness by facilitating the formation of insoluble collagen. Interestingly, osteopontin deficiency ameliorates myocardial fibrosis and improves cardiac function, indicating that osteopontin may emerge as an attractive biotarget in the treatment of cardiovascular disease. In humans, plasma osteopontin levels appear to be lower in women, and it is suggested that oestrogen suppresses osteopontin expression in the vascular...
Sex-related differences in HF biomarkers

Currently, there is strong evidence highlighting the prognostic value of osteopontin in HF patients, although sex-specific data are lacking.

State-of-the-art: the relevance of sex-specific dynamics in heart failure biomarkers

Heart failure biomarkers are indispensable tools in contemporary cardiovascular medicine, and may play an even greater role in the future. Overall, it appears that sex-specific dynamics in biomarker levels operate primarily in healthy individuals and to a lesser extent in HF patients. Interestingly, biomarkers displaying lower levels in healthy women (cTns and sST2) also display lower levels in women with HF. By contrast, biomarkers displaying higher levels in healthy women (NPs and galectin-3) do not consistently exhibit higher levels in women with HF. Although these observations may be intriguing from a biological point of view, their clinical relevance is likely to be limited.

Two potential exceptions could be NPs and cTns, in which sex-specific differences have been repeatedly observed, but these

Table 3 Future directions: potential research questions
HF biomarkers
Natriuretic peptides (NPs)
Cardiac troponins (cTns)
Galectin-3
sST2

HF, heart failure; sST2, soluble interleukin-1 receptor-like 1.

Table 4 Reporting template for sex-specific biomarker analysis
Recommendations
1. Sex-specific plasma concentrations
2. Sex-specific cutpoints
3. Sex-specific risk ratios
4. Sex-specific prediction models using biomarkers

© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
differences have not (yet) been used in sex-specific diagnostic or prediction models. In this context, we would like to reiterate that in the general population, male sex explains lower cardiac NP levels to a greater extent than obesity. Therefore, using sex-specific cutpoints (i.e. lower cutpoints in men) may (theoretically) rule out HF more accurately in men and this deserves further study. In contrast to NPs, circulating cTn levels are lower in women than in men. Although the clinical relevance of sex-specific cTn cutpoints in HF prevention is currently under-recognized, the development of ultra-sensitive cTn assays may unmask subtle sex-related differences. This, together with the generation of high-quality data, could potentially lead to the clinical application of sex-specific cutpoints (i.e. lower cutpoints in women), which may help to identify future HF risk, as well as risk associated with HF more effectively in women.

In summary, we have reviewed sex-specific aspects of key HF biomarkers, and highlighted the fact that our current understanding of factors contributing to sex-related differences in HF biomarkers, and the clinical relevance of these findings, is insufficient. We have identified several knowledge gaps that could potentially serve as “focus points” for future research on sex-related differences in HF biomarkers (Table 3). We also provide key recommendations for sex-specific biomarker analyses in Table 4,185–188 and strongly advocate that future studies should examine the clinical value of HF biomarkers in men and women separately. Such an approach may uncover important sex-related differences,185 and may ultimately improve HF management and patient care.

Funding
This work was supported by the Netherlands Heart Foundation (CVON SHE-PREDICTS-HF, grant no. 2017–21). The authors acknowledge further support from the Netherlands Heart Foundation (CVON DOSIS, grant no. 2014–40, and CVON RED-CVD, grant no. 2017–11), the Innovational Research Incentives Scheme of the Netherlands Organization for Scientific Research (NWO VIDI, grant no. 917.13.350) and the European Research Council (ERC CoG 818715, SECRETE-HF).

Conflict of interest: The University Medical Centre Groningen, which employs N.S., L.M.G.M. and R.A.d.B., has received research grants and/or fees from AstraZeneca, Abbott, Bristol-Myers Squibb, Novartis, Novo Nordisk and Roche. R.A.d.B. has received personal fees from Abbott, AstraZeneca, Novartis and Roche. J.E.H. has received research supplies from EcoNugenics. The other authors have nothing to disclose.

References
1. Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, Collins SP, Doehner W, Filipatos GS, Flammer AJ, Fuhrmann V, Lainscak M, Lassus J, Lemos JA, Laven JSE, Muka T, Franco OH. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the Dallas Heart Study. J Am Coll Cardiol 2009;53:E596–600.
2. Lin E, McCabe E, Newton-Cheh C, Bloch K, Buys E, Wang T, Miller KK. Effect of transdermal testosterone on natriuretic peptide levels in women: a randomized placebo-controlled pilot study. Fertil Steril 2012;97:489–493.
3. Glisic M, Rojas LZ, Asllanaj E, Vargas KG, Kavousi M, Ikram MA, Erkmen BCJM, Laven JSE, Muka T, Franco OH. Sex steroids, sex hormone-binding globulin and levels of N-terminal pro-b-natriuretic peptide in postmenopausal women. Int J Cardiol 2018;261:189–195.
Sex-related differences in HF biomarkers

24. Ying W, Zhao D, Ouyang P, Subramanyam V, Vaidya D, Ndumele CE, Sharma K, Shah SJ, Heckbert SR, Lima JA, DeFilippi CR, Budoff MJ, Post WS, Michos ED. Sex hormones and change in N-terminal pro-B-type natriuretic peptide levels: the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab 2018;103:4304–4314.

25. Lam CSP, Cheng S, Choong K, Larson MG, Murabito JM, Newton-Cheh C, Bhasin S, McCabe EL, Miller KK, Redfield MM, Vasan RS, Covello AD, Wang TJ. Influence of sex and hormone status on circulating natriuretic peptides. Am J Cardiol 2011;58:618–626.

26. Suthahar N, Meijers WC, Ho JE, Gansevoort RT, Voors AA, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 2018;8:593–609.

27. Pang J, Nguyen VT, Rhodes DH, Fantuzzi G. Gender and change in N-terminal pro-B-type natriuretic peptide in healthy individuals (from the Framingham Heart Study). Am J Cardiol 2011;108:1341–1345.

28. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic heart failure. JACC Heart Fail 2011;3:673–683.

29. Jaffe AS, Wu AHB. Troponin release – reversible or irreversible injury? Should we care? Clin Chem 2012;58:148–150.

30. Ndumele CE, Corsh J, Lazo M, Hoogeveen RC, Blumenthal RS, Folsom AR, Selvin E, Ballanytny CM, Suh JM, Vasi NB, Vasi N. Obesity, subclinical myocardial injury, and incident heart failure. JACC Heart Fail 2014;2:600–607.

31. Suthahar N, Meijers WC, Silljé HHW, Ho JE, Liu FT, de Boer RA. Galectin-3 and clinical correlates of the interleukin receptor family member ST2 in the Framingham Heart Study. Theranostics 2016;6:4304–4318.

32. Du W, Piek A, Schouten EM, de van der Kolk CWA, Mueller C, Mebazaa A, Voors AA, de Boer RA, Silljé HHW. Plasma levels of heart failure biomarkers are primarily a reflection of extracardiac production. Thromostics 2018;8:4155–4169.

33. de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, Balk Jv, van der Harst P. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med 2012;272:55–64.

34. Nayor M, Wang N, Larson MG, Vasan RS, Levy D, Ho JE. Circulating galectin-3 is associated with cardiometabolic disease in the community. J Am Heart Assoc 2015;5:e002347.

35. Pang J, Nguyen VT, Rhodes DH, Sullivan ME, Braunsweg C, Fantuzzi G. Relationship of galectin-3 with obesity, IL-6, and CRP in women. J Endocrinol Invest 2016;39:1343–1443.

36. Dencker M, Arvidsson D, Karlsson MK, Wollmer P, Andersen LB, Thorsson O. The interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol 2013;60:16–26.

37. Dieplinger B, Egger M, Poelz W, Gabriel C, Halmeyer M, Mueller T. Soluble ST2 is not independently associated with androgen and estrogen status in healthy males and females. Clin Chem Lab Med 2011;49:1515–1518.

38. Giugliano RR, Larson MG, Vasan RS, Ho JE, Gharibah AM, Cheng S, McCabe EL, Ling CH, Fradley MG, Kostis JB, Gao P, Persson H, McClellan RJ, Zile MR, Komajda M, Massie BM, Carson PE. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and reduced ejection fraction: findings from the I-PRESERVE trial. Circ Fail Heart 2011;4:569–577.

39. Dieplinger B, Januzzi JL, Steinmair M, Gabriel C, Poelz W, Halmeyer M, Mueller T. Analytical and clinical validation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma – the Pressage ST2 assay. Clin Chim Acta 2009;409:33–40.

40. Fradley MG, Larson MG, Cheng S, McCabe E, Cognesane E, Shah RV, Levy D, Vasan RS, Wang TJ. Reference limits for N-terminal-pro-B-type natriuretic peptide in healthy individuals (from the Framingham Heart Study). Am J Cardiol 2011;108:1341–1345.

41. Willett P, Kapooge S, Welsh P, Butterworth A, Chowdhury R, Spackman S, Pennells L, Gao P, Burgess S, Frettag D, Sweeting M, Wood A, Cook N, Judd S, West J, van Gilst WH, Mehta SR, Kostis JB, Levy D, Kavanagh J, Januzzi JL, Ketai P, Leka E. Galectin-3 and natriuretic peptide in healthy individuals: analysis of a community-based cohort. Lancet Diabetes Endocrinol 2016;4:840–849.

42. Meyer S, van der Meeren P, van Deursen VM, Jaarsma T, van Veldhuisen DJ, van der Harst P, van der Meeren HE. Sex hormones and change in N-terminal pro-B-type natriuretic peptide in patients with heart failure – a report from the Korean Heart Failure Registry (KoHFR). Circ J 2017;81:1293–1306.

43. Søderberg S, Kiuulasmaa K, Zeller T, Iacoviello L, Salomaa V, Schnabel RB; Ischemic Heart Disease in Europe. Heart 2009;95:1114–1120.

44. Fradley MG, Larson MG, Cheng S, McCabe E, Cognesane E, Shah RV, Levy D, Vasan RS, Wang TJ. Reference limits for N-terminal-pro-B-type natriuretic peptide in healthy individuals (from the Framingham Heart Study). Am J Cardiol 2011;108:1341–1345.

45. Loke I, Squire IB, Davies JE, Ng LL. Reference ranges for natriuretic peptides are dependent on age, gender and heart rate. Eur J Heart Fail 2003;5:399–406.

46. Fradley MG, Larson MG, Cheng S, McCabe E, Cognesane E, Shah RV, Levy D, Vasan RS, Wang TJ. Influence of sex and hormone status on circulating natriuretic peptides. Am J Cardiol 2011;58:618–626.

47. Suthahar N, Meijers WC, Ho JE, Gansevoort RT, Voors AA, van der Meer P, Bakker SJL, Heymans S, van Empel V, Schröon B, van der Harst P, van Veldhuisen DJ, de Boer RA. Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population. Eur J Heart Fail 2018;20:1205–1214.

48. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic heart failure. JACC Heart Fail 2011;3:673–683.

49. Suthahar N, Meijers WC, Silljé HHW, Ho JE, Liu FT, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 2018;8:593–609.

50. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic heart failure. JACC Heart Fail 2011;3:673–683.

51. Dencker M, Arvidsson D, Karlsson MK, Wollmer P, Andersen LB, Thorsson O. The interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol 2013;60:16–26.

52. Dieplinger B, Egger M, Poelz W, Gabriel C, Halmeyer M, Mueller T. Soluble ST2 is not independently associated with androgen and estrogen status in healthy males and females. Clin Chem Lab Med 2011;49:1515–1518.

53. Giugliano RR, Larson MG, Vasan RS, Ho JE, Gharibah AM, Cheng S, McCabe EL, Ling CH, Fradley MG, Kostis JB, Gao P, Persson H, McClellan RJ, Zile MR, Komajda M, Massie BM, Carson PE. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and reduced ejection fraction: findings from the I-PRESERVE trial. Circ Fail Heart 2011;4:569–577.

54. Dieplinger B, Januzzi JL, Steinmair M, Gabriel C, Poelz W, Halmeyer M, Mueller T. Analytical and clinical validation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma – the Pressage ST2 assay. Clin Chim Acta 2009;409:33–40.

55. Fradley MG, Larson MG, Cheng S, McCabe E, Cognesane E, Shah RV, Levy D, Vasan RS, Wang TJ. Reference limits for N-terminal-pro-B-type natriuretic peptide in healthy individuals (from the Framingham Heart Study). Am J Cardiol 2011;108:1341–1345.
analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 2006;27:330–337.

60. Jia X, Sun W, Hoogvene RC, Nambi V, Matsushita K, Folsom AR, Heiss G, Couper DJ, Solomon SD, Boerwinkle E, Shah A, Selvin E, de Lemos JA, Ballantyne CM. High-sensitivity troponin I and incident coronary events, stroke, heart failure hospitalization, and mortality in the ARIC study. Circulation 2019;139:2642–2653.

61. Osibogun O, Ogumoror O, Tibiaukau M, Benson EM, Michos ED. Sex differences in the association between ideal cardiovascular health and biomarkers of cardiovascular disease among adults in the United States: a cross-sectional analysis of the multiethnic study of atherosclerosis. BMJ Open 2019;9:e031414.

62. Aw TC, Huang WT, Le TT, Pua CJ, Ang B, Phua SK, Yeo KK, Cook SA, Chin CWL. High-sensitivity cardiac troponin in cardio-healthy subjects: a cardiovascular magnetic resonance imaging study. Sci Rep 2018;8:15409.

63. Liu JY, Jia QW, Zang XL, Wang RH, Lu CJ, Wang LS, Ma WZ, Yang ZJ, Jia EZ. Age-sex distribution of patients with high-sensitivity troponin T levels below the 99th percentile. Oncotarget 2017;8:75638–75645.

64. Scheven L, de Jong PE, Hillege HL, Lambers Heerspink HJ, van Pelt LJ, Grodin JL, Neale S, Wu Y, Hazen SL, Tak WHW. Prognostic comparison of high-sensitive troponin T assessment in elderly patients with chronic heart failure: the Nord-Trøndelag Health Study (HUNT). Age between sex distribution of patients with high-sensitivity troponin T levels below the 99 percentile. Circulation 2019;139:2642–2653.

65. Pascual-Figal DA, Manzano-Fernández S, Boronat M, Casas T, Garrido IP, Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E. Galectin-3 is independently associated with cardiovascular mortality in community-dwelling older adults without known cardiovascular disease: the Rancho Bernardo Study. Am J Cardiol 2014;114:674–682.e1.

66. Jagodziński A, Havulina AS, Appelbaum S, Zeller T, Jousilahti P, Skyyte-Johannsen S, Hughes MF, Blankenberg S, Salomaa V. Predictive value of galectin-3 for incident cardiovascular disease and heart failure in the population-based FINRISK 1997 cohort. Int J Cardiol 2015;192:33–39.

78. Gehlen C, Suthahar N, Meijers WC, de Boer RA. Galectin-3 in heart failure: an update of the last 3 years. Heart Fail Clin 2018;14:75–92.

79. Schindler E, Smyzynski JJ, Hock KG, Geltman EM, Scott MG. Short- and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable heart failure and healthy adults. Clin Chem 2016;62:360–366.

80. Iuga TF, Shin HJ, Mathenge N, Wang F, Kim B, Joseph J, Gaziano JM, Dujose L. Meta-analysis of the usefulness of plasma galectin-3 to predict the risk of mortality in patients with heart failure and in the general population. Am J Cardiol 2017;119:57–64.

81. Anand IS, Rector TS, Kuskowski M, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial. Circ Heart Fail 2014;7:418–426.

82. Pascual-Figal DA, Selger SL, Christensen R, Gottvander J, Pozy BM, DeFilippi CR. Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. J Am Heart Assoc 2016;5:e001388.

83. Aimo A, Vergaro G, Ripoli A, Bayes-Genis A, Pascual Figal DA, de Boer RA, Lasus J, Meibaza A, Gayet E, Breidtard T, Sabi Z, Mueller C, Brunner-La Rocca H-P, Tang WHW, Grodin JL, Zhang Y, Bettencourt P, Maisel AS, Passino C, Januzzi JL, Emdin M. Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. JACC Heart Fail 2017;5:287–296.

84. Aimo A, Vergaro G, Passino C, Ky B, Miller WL, Bayes-Genis A, Anand I, Januzzi JL, Emdin M. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: a meta-analysis. JACC Heart Fail 2017;5:280–286.

85. Emdin M, Aimo A, Vergaro G, Bayes-Genis A, Lujan J, Latini R, Meessen J, Anand IS, Cohn JN, Gravning J, Gullestad L, Broch K, Ueland T, Nymo NH, Brunner-La Rocca H-P, de Boer RA, Gaggin HK, Ripoli A, Passino C, Januzzi JL. sST2 predicts outcome in chronic heart failure beyond NT-proBNP and high-sensitivity troponin T. J Am Coll Cardiol 2017;70:2309–2320.

86. McCullough PA, Kluger AT. Interpreting the wide range of NT-proBNP concentrations in clinical decision making. J Am Coll Cardiol 2017;71:1201–1203.

87. Yancy CW, Lopatin M, Stevenson UW, de Marco T, Fonarow GC. ADHERE Scientific Advisory Committee and Investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) database. J Am Coll Cardiol 2006;47:76–84.

88. Mueller C, McDonald K, de Boer RA, Masel J, Cleland JGF, Kostuhrarov N, Costa AJS, Metra M, Meibaza A, Ruschitzka F, Lainscak M, Filipatios G, Seferovic PM, Meijers WC, Bayes-Genis A, Mueller T, Richards M, Januzzi JL. Heart Failure Association of the European Society of Cardiology. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail 2019;21:715–731.

89. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, Hoogvene RC, Liu X, Astor BC, Mosley TH, Folsom AR, Heiss G, Coresh J, Ballantyne CM. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 2011;123:1367–1376.

90. van der Velde AR, Meijers WC, Bayes-Genis A, Muller T, Rienstra M, Bakker SJL, Muller Kobold AC, van Veldhuisen DJ, van Gilst WH, van der Hartx P, de Boer RA. Serial Galectin-3 and risk of cardiac events in patients with heart failure and preserved ejection fraction. Circ Heart Fail 2018;11:e005312.

91. Evans JDW, Dobbin SJH, Pettis SJ, de Angelantolin E, Willeit P. High-sensitivity cardiac troponin and new-onset heart failure: a systematic review and meta-analysis of 67,063 patients with 4,165 incident heart failure events. JACC Heart Fail 2018;6:187–197.

92. Yousufuddin M, Abdaliboglu AH, Wang Z, Murad MH. Cardiac troponin in patient hospitalized with acute decompensated heart failure: a systematic review and meta-analysis. J Hosp Med 2016;11:446–454.

93. Xue Y, Clapton P, Peacock WF, Maisel AS. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail 2011;13:37–42.

94. Aimo A, Januzzi JL, Vergaro G, Ripoli A, Latini R, Masson S, Magnoli M, Anand IS, Cohn JN, Tavazzi L, Tognoni G, Gravning J, Ueland T, Nymo NH, Brunner-La Rocca H-P, Bayes-Genis A, Lupin I, de Boer RA, Yoshishita A, Takeshi Y, Esgutrum I, Gustafsson I, Gaggin HK, Eggers KM, Huber K, Tntenzeris I, Tang WHW, Grodin J, Passino C, Emdin M. Predictive value of high-sensitivity troponin T in chronic heart failure: an individual patient data meta-analysis. Circulation 2018;137:286–297.

95. Gohar A, Chong JPC, Liew OW, den Ruijter H, de Kleijn DPV, Sim D, Yeo DPS, Ong HW, Auerbach RJ, Leong KGT, Ling LH, Lam CSP, Richards AM. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. Eur J Heart Fail 2019;21:1638–1647.

96. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, Larson MG, Levy D. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 2012;60:2429–2436.

97. Daniels LB, Clapton P, Laughlin GA, Maisel AS, Barrett-Connor E. Galectin-3 is independently associated with cardiovascular mortality in community-dwelling older adults without known cardiovascular disease: the Rancho Bernardo Study. Am J Cardiol 2014;114:674–682.e1.

98. Chorpka S, Cherian D, Vergheese P, Jacob J. Physiology and clinical significance of natriuretic hormones. Indian J Endocrinol Metab 2013;17:83–90.

99. Jhund PS, McMurtry JF. The nephrilisin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart 2016;102:1342–1347.
101. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, Dzau V, Filipatos GS, Fonarow GC, Givertz MM, Hellenkamp SM, Lindenfeld J, Massoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017;136:e137–e161.

102. Koch A, Singer H. Normal values of B type natriuretic peptide in infants, children, and adolescents. Heart. 2003;89:875–878.

103. Bachmann KN, Huang S, Lee H, Dichtel LE, Gupta DK, Burnett JC, Miller KK, Wijffels TJ, Finkielstein JS. Effect of testosterone on natriuretic peptide levels. J Am Coll Cardiol 2013;61:288–296.

104. de Lemos JA, Das SR. Closing the book on androgens and natriuretic peptides. J Am Coll Cardiol 2019;73:1297–1299.

105. Yao M, Nguyen TV, Rosario ER, Ramsden M, Miller KK, Wijffels TJ, Finkielstein JS. Effect of testosterone on natriuretic peptide levels. J Am Coll Cardiol 2013;61:288–296.

106. McAllister C, Long J, Bowers A, Walker A, Cao P, Honda S-I, Harada N, Staufniesb M, Shen Y, Li R. Genetic targeting aromatase in male amloid precursor protein transgenic mice down-regulates beta-secretase (BACE1) and prevents Alzheimer-like pathology and cognitive impairment. J Neurosci 2010;30:7326–7334.

107. Kuroski de Bold ML. Estrone, natriuretic peptides and the renin–angiotensin system. Cardiovasc Res 1999;41:524–531.

108. Jankowski M, Rashidi M, Donghao W, McCarrn SM, Gutkowska J. Estrone receptors activate atrial natriuretic peptide in the rat heart. Proc Natl Acad Sci U S A 2001;98:11765–11770.

109. Mulya S, Omer S, Vailancourt P, D'Sylva S, Singh A, Varma DR. Hormonal modulation of atrial natriuretic factor receptor and effects on adrenal glomerulosa cells of female rats. Life Sci 1994;55:PL169–176.

110. Chen ZJ, Yu L, Chang CH. Stimulation of membrane-bound guanylate cyclase activity by 17-beta estradiol. Biochem Biophys Res Commun 1998;252:639–642.

111. Sarzani R, Spennella F, Giuliatti F, Baitelli P, Cocci G, Bordichia M. Cardiac natriuretic peptides, hypertension and cardiovascular risk. High Blood Press Cardiovasc Prev 2017;24:115–115.

112. Huang J, Guan H, Booz A, Cao P, Honda S-I, Harada N, Staufniesb M, Shen Y, Li R. Genetic targeting aromatase in male amloid precursor protein transgenic mice down-regulates beta-secretase (BACE1) and prevents Alzheimer-like pathology and cognitive impairment. J Neurosci 2010;30:7326–7334.

113. Maffei S, Long J, Bowers A, Walker A, Cao P, Honda S-I, Harada N, Staufniesb M, Shen Y, Li R. Genetic targeting aromatase in male amloid precursor protein transgenic mice down-regulates beta-secretase (BACE1) and prevents Alzheimer-like pathology and cognitive impairment. J Neurosci 2010;30:7326–7334.

114. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, Dzau V, Filipatos GS, Fonarow GC, Givertz MM, Hellenkamp SM, Lindenfeld J, Massoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017;136.©2020TheAuthors.EuropeanJournalofHeartFailurepublishedbypartnersofEuropeansocietyofCardiology.
57. Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Sluss P, Gaggin
50. Brouwers FP, van Gilst WH, Damman K, van den Berg MP, Gansevoort RT,
65. Wang TJ, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S, Ho JE,
59. Ragusa R, Cabiati M, Guzzardi MA, D’Amico A, Giannessi D, del Rey S, Caselli C.
64. George M, Jena A, Srivatsan V, Muthukumar R, Dhandapani VE. GDF
52. Bayés-Genis A, González A, Lupón J. ST2 in heart failure.
-
51. Suthahar N, Meijers WC, Brouwers FP, Heerspink HJL, Gansevoort RT, van
Di Somma S, Voors AA, Peacock WF. Biomarkers and low risk in heart failure.
-
33. Effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver: study in the experimental model of Zucker rats.
25. Celic V, Majstrovic A, Pencic-Popovic B, Sijvíc A, López-Andres N, Roy I, Escribano E, Beunza M, Melero A, Floridi F, Magrini L, Marino R, Salerno G, Cardelli P, di Somma S. Soluble ST2 levels and left ventricular structure and function in patients with metabolic syndrome.
-
27. Coronado MJ, Bruno KA, Blauwt LA, Tschöpe C, Cunningham MW, Pankuweit S, von Linthout S, Jeon ES, McNamara DM, Krejci J, Ludvik B, Krebs M, Luger A. The relationship between insulin resistance and osteopontin levels and expression in adipose tissue are increased in obesity.
-
23. Palma MA, Sánchez-Romero M, Calviño E, Claro-Castellanos S, Zoido I, Núñez-González P, García-Peña J, Gómez-Ambrosi J, Palacios P, Torrente A, Núñez-Espinosa L, Alba T, del Río S, Suárez-Lorenzo E, Saavedra P, Alba-Abad D, García-Sánchez A, Manrique-Suárez A, Rodríguez del Moral N, Crespo J, Aragón A, García-Fernández A, Hernández-Torres A, López-Romero J, Delgado C, de la Llave P, Serra AM, Alba T. Novel role for osteopontin in cardiac fibrosis.
-
24. Behnes M, Bertsch T, Weiss C, Ahmad-Najaf P, Böggrøve M, Hoffmann U. Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure.
-
17. Behnes M, Bartsch T, Weiss C, Ahmad-Najaf P, Akin I, Fattoretti C, El-Battrawy L, Lang S, Neumair M, Böggrøve M, Hoffmann U. Triple head-to-head comparison of fibrotic biomarkers galectin-3, osteopontin and gremlin-1 for long-term prognosis in suspected and proven acute heart failure patients.
-
16. Behnes M, Bartsch T, Weiss C, Ahmad-Najaf P, Akin I, Fattoretti C, El-Battrawy L, Lang S, Neumair M, Böggrøve M, Hoffmann U. Growth differentiation factor 15 as a biomarker in cardiovascular disease.
-
15. Zeng X, Li L, Wen H, Bi Q. Growth-differentiation factor 15 as a predictor of mortality in patients with heart failure: a meta-analysis.
-
14. Chan MMH, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC, Liu OW, Ng TP, Ling LH, Sim D, Leong KTG, Yeo PSO, Ong HY, Jaufeerally F, Wong RCC, Chai P, Low AF, Richards AM. Lam CSP. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction.
-
13. Zorzi G, D’Ascenzo F, Zanetti M, Dei Cas L, Natale A, Dei Cas C, Simonetti D, Mangialardi M, Manfredi F, Aragoni F. Growth differentiation factor 15 predicts survival in chronic heart failure with preserved ejection fraction.
-
12. Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction.
-
11. Grund B, Sabin C. Analysis of biomarker data: logs, odds ratios, and receiver operating characteristic curves.
-
10. Cook NR. Quantifying the added value of new biomarkers: how and how not.
-
9. N. Suthahar et al.
© 2020 The Authors.
European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
