Rational homology spheres and four-ball genus

Brendan Owens and Sašo Strle

Abstract

Using the Heegaard Floer homology of Ozsváth and Szabó we investigate obstructions to definite intersection pairings bounded by rational homology spheres. As an application we obtain new lower bounds for the four-ball genus of Montesinos links.

1 Introduction

Let Y be a rational homology three-sphere and X a smooth negative-definite four-manifold bounded by Y. For any Spinc structure t on Y let $d(Y, t)$ denote the correction term invariant of Ozsváth and Szabó (see [13] for the definition; this invariant is the Heegaard Floer homology analogue of the Frøyshov invariant in Seiberg-Witten theory). It is shown in [13, Theorem 9.6] that for each Spinc structure $s \in \text{Spin}^c(X)$,

$$c_1(s)^2 + \text{rk}(H^2(X; \mathbb{Z})) \leq 4d(Y, s|_Y).$$

(1)

In order to use this inequality one must study the restriction map $s \mapsto s|_Y$ from Spin$^c(X)$ to Spin$^c(Y)$; this map commutes with the conjugation of Spinc structures. Moreover, since Spin$^c(\cdot)$ is an affine $H^2(\cdot; \mathbb{Z})$ space, the restriction map is equivariant with respect to the action of $H^2(X; \mathbb{Z})$, where this group acts on Spin$^c(Y)$ through the natural group homomorphism $H^3(X; \mathbb{Z}) \to H^2(Y; \mathbb{Z})$. In this paper we describe an algorithm that for a given second Betti number tests each possible four-manifold X (i.e., each possible intersection form) to see if it can give rise to an equivariant map for which (1) holds for each $s \in \text{Spin}^c(X)$.

The algorithm in principle applies to any rational homology sphere for which the invariants $d(Y, t)$ are known; this is the case for all Seifert fibered ones ([14]; see also [13] for lens spaces). We describe the situation in detail for four-manifolds X with $b_2(X) \leq 2$. Note that computations are the simplest for homology lens spaces, since in this case the number of possible equivariant maps as above is greatly reduced.

We use this algorithm to find obstructions to four-ball genus of a link being as small as the signature allows it to be. To this end we encode the information about
the link and its slice surface in a manifold pair \((X, Y)\) as above. Specifically, for a link \(L\) in the three-sphere and its slice surface \(F\) in the four-ball, we let \(Y\) be the two-fold cover of \(S^3\) branched along \(L\), and \(X\) be the two-fold cover of \(B^4\) branched along \(F\); this is analogous to the slice obstruction of Casson-Gordon \([4]\) and Fintushel-Stern \([5]\). Applying this to Montesinos links, we get some new bounds on four-ball genus.

Alternatively, one could try to obtain a lower bound on the four-ball genus of a knot \(K\) by attaching a two-handle to \(B^4\) along \(K\). If \(K\) is alternating, this approach reproduces the classical bound given by the signature of \(K\); this is reminiscent of the behaviour of the invariant \(\tau(K)\) of Ozsváth and Szabó \([15]\). This is a purely 3-dimensional invariant defined using knot Floer homology; it gives the optimal lower bound for torus knots but agrees with the signature bound for alternating knots. By contrast our methods yield new bounds for some alternating knots.

Acknowledgements. Part of this work was completed while the first author was supported as an EDGE postdoc at Imperial College, London. We are grateful to Peter Ozsváth for a helpful remark.

2 Four-manifolds bounded by rational homology spheres

In this section we study the relationship between a smooth four-manifold \(X\) and its boundary \(Y\). We will assume throughout that \(X\) is negative definite. The following is an extension of \([3\text{, Lemma 3}]\).

Lemma 2.1 Let \(Y\) be a rational homology sphere; denote by \(h\) the order of \(H_1(Y; \mathbb{Z})\). Suppose that \(Y\) bounds \(X\) and denote by \(s\) the absolute value of the determinant of the intersection pairing on \(H_2(X, \mathbb{Z})/\text{Tors}\). Then \(h = st^2\), where \(st\) is the order of the image of \(H^2(X; \mathbb{Z})\) in \(H^2(Y; \mathbb{Z})\), and \(t\) is the order of the image of the torsion subgroup of \(H^2(X; \mathbb{Z})\).

Proof. Note that for \(b_2(X) > 0\), \(X\) has a non-degenerate integer intersection form

\[
Q_X: H_2(X; \mathbb{Z})/\text{Tors} \otimes H_2(X; \mathbb{Z})/\text{Tors} \rightarrow \mathbb{Z};
\]

we denote the absolute value of the determinant of this pairing by \(s\). If \(b_2(X) = 0\), then set \(s = 1\). The long exact sequence of the pair \((X, Y)\) yields the following (with integer coefficients):

\[
0 \rightarrow H^2(X, Y) \xrightarrow{j^*} H^2(X) \rightarrow H^2(Y) \rightarrow H^3(X, Y) \rightarrow H^3(X) \rightarrow 0,
\]

where \(j : Y \rightarrow X\) is the inclusion map, and \(Z^b \oplus T_2 \rightarrow Z^b \oplus T_1 \rightarrow T_1 \rightarrow T_2\).
where T_1, T_2 are torsion groups, and $b = b_2(X)$ (we may assume that $b_1(X) = 0$; if not one may surger out b_1 without changing the conclusion of the lemma). With respect to appropriate bases for (a compatible choice of) free parts of $H^2(X, Y)$ and $H^2(X)$, we have

$$j^* = \begin{bmatrix} Q & 0 \\ * & \tau \end{bmatrix},$$

where Q is the matrix representation of the intersection pairing on $H_2(X; \mathbb{Z})/\text{Tors}$. Note that $\tau: T_2 \to T_1$ is a monomorphism; let $t = |T_1|/|T_2|$. It follows that $h = st^2$, as Q can be thought of as a presentation matrix for a group of order s.

To state the basic relation between X and Y more explicitly, we need to understand the restriction map from Spinc structures on X to those on Y. Let \mathcal{T} be the image of the torsion subgroup of $H^2(X; \mathbb{Z})$ in $\mathcal{H} := H^2(Y; \mathbb{Z})$, and let \mathcal{S} be the quotient of $H^2(X; \mathbb{Z})$ by the sum of its torsion subgroup and the image of $H^2(X, Y; \mathbb{Z})$. After fixing affine identifications of Spin$^c(\cdot)$ with $H^2(\cdot; \mathbb{Z})$, the restriction map from Spin$^c(X)$ to Spin$^c(Y)$ induces an affine monomorphism

$$\rho: \mathcal{S} \to \mathcal{H}/\mathcal{T}.$$

For appropriate choices of origins in the spaces of Spinc structures, ρ becomes a group homomorphism and the conjugation of Spinc structures, denoted by j, corresponds to multiplication by -1. Choose an identification Spin$^c(Y) \cong \mathcal{H}$ so that a spin structure corresponds to $0 \in \mathcal{H}$, and let $0 \in \mathcal{S}$ correspond to the class of a Spinc structure on X whose Chern class belongs to the sum of the torsion subgroup of $H^2(X; \mathbb{Z})$ and the image of $H^2(X, Y; \mathbb{Z})$. If the order of \mathcal{H} is odd then there is a unique j-fixed element in each of \mathcal{S} and \mathcal{H}/\mathcal{T} and ρ is a group homomorphism. In general, any j-fixed element (i.e., any element of order 2) can be used as origin; to make ρ a group homomorphism one needs to choose the right spin structure on Y.

We define two (rational-valued) functions on \mathcal{S}; one induced by the intersection pairing on X and the other coming from the correction term on Y. For each $\alpha \in \mathcal{S}$ let $sq(\alpha)$ be the largest square of the Chern class of any Spinc structure on X in the equivalence class α, and let $d_\rho(\alpha)$ be the minimal value of the correction term for Y on the coset $\rho(\alpha)$.

Theorem 2.2 Suppose that a rational homology sphere Y bounds a negative definite manifold X. Then, with above notation,

$$sq(\alpha) + b_2(X) \leq 4d_\rho(\alpha)$$

for all $\alpha \in \mathcal{S}$.
Remark 2.3 Since both sides in the above inequality are \(j \)-invariant, one may work over \(S/j \).

Proof. This follows from [13, Theorem 9.6] and the fact that changing a Spin\(^c\) structure on \(X \) by a torsion line bundle does not change its square.

We note that if \(Y \) is a homology lens space, we can choose a labelling \(\{ t_j : j = 0, \ldots, h - 1 \} \) of Spin\(^c\) structures on \(Y \) corresponding to an isomorphism \(\mathcal{H} \cong \mathbb{Z}/h \). Similarly, we label a set of Spin\(^c\) structures \(\{ s_i : i = 0, \ldots, s - 1 \} \) on \(X \), where \(s_i \) has maximal square in its equivalence class \(i \in \mathbb{Z}/r \cong S \; \text{mod} \; r \); here \(s \) denotes the absolute value of the determinant of the intersection pairing on \(H_2(X; \mathbb{Z}) \). We call such a collection of Spin\(^c\) structures on \(X \) an *optimal set of Spin\(^c\) structures*. The condition of Theorem 2.2 can then be expressed as follows: for any \(i = 0, \ldots, s - 1 \)

\[
 c_1(s_i)^2 + b_2(X) \leq 4d(Y, t_{p(i)+kst}) \quad \text{for all} \quad k = 0, \ldots, t - 1.
\]

3 Application to links

Let \(L \) be an oriented link with \(\mu \) components in the three-sphere; denote its signature by \(\sigma(L) \). The unlinking number (or unknotting number) \(u(L) \) is the minimal number of crossing changes in any diagram of \(L \) which yield the trivial \(\mu \)-component link.

The four-ball genus \(g^*(L) \) of \(L \) is defined to be the minimal genus of a (connected) oriented surface \(F \) admitting a smooth embedding into \(B^4 \) which maps \(\partial F \) to \(L \). An easy argument shows that \(g^*(L) \leq u(L) \). A classical result due to Murasugi [10] states that

\[
 g^*(L) \geq \frac{|\sigma(L)| - \mu + 1}{2}.
\]

Suppose that this bound is attained and fix such a connected minimal surface \(F \). Let \(X \) be the branched double cover of \(B^4 \) along \(F \). Then \(b_1(X) = 0 \), \(b_2(X) = 2g^*(L) + \mu - 1 \), and the signature of \(X \) is given by \(\sigma(L) \) ([9]). After possibly changing its orientation, we may assume that \(X \) is negative-definite.

Note that \(Y = \partial X \) is the double cover of \(S^3 \) branched along \(L \). If \(Y \) is a rational homology sphere (which is the case if the determinant \(h = |\Delta_L(-1)| \) of \(L \) is non-zero; in this case \(h \) is the order of \(H_1(Y; \mathbb{Z}) \)), we may apply Theorem 2.2. We will spell this out in more detail in Section 4.

In Section 5 we list some resulting bounds on the four-ball genus of Montesinos links. In the rest of this section we discuss other classical bounds on the four-ball genus; we describe Montesinos links, their double branched covers, and a spanning surface; and we recall the formulas from [13, 14] for the correction term of Seifert fibered rational homology spheres.
3.1 Bounds on four-ball genus from Seifert matrices

In the case of a knot K, the signature in (2) may be replaced by any Tristram-Levine signature $\sigma_\omega(K)$, where $\omega \in S^1 - 1$, yielding potentially stronger bounds. These signatures may be computed from any Seifert matrix associated to K. A stronger bound is given by Taylor [17], which we now describe.

Let $M \in \mathbb{Z}^{a \times a}$ be any Seifert matrix for K. Then M defines a pairing λ on \mathbb{Z}^a by $\lambda(x, y) = xMy^T$. Denote by $z(M)$ the maximal rank of a nullspace of λ, that is a sublattice N such that $\lambda(x, y) = 0$ for all $x, y \in N$. Taylor defines an invariant $m(K) = a/2 - z(M)$, and he proves the following inequalities for any ω:

$$g^*(K) \geq m(K) \geq \frac{1}{2}|\sigma_\omega(K)|. \quad (3)$$

In Section 5 we will provide examples of knots K with $m(K) = 1$ but for which it follows from Theorem 2.2 that $g^*(K) > 1$.

3.2 Montesinos links and Seifert fibered spaces

For more details on Montesinos links and their classification see [2]. In Definitions 3.1 and 3.2, e is any integer and $(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_r, \beta_r)$ are coprime pairs of integers, with $\alpha_i > 1$.

Definition 3.1 A Montesinos link $M(e; (\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_r, \beta_r))$ is a link which has a projection as shown in Figure 1(a). There are e half-twists on the left side. A box α/β represents a rational tangle of slope α/β: given a continued fraction expansion

$$\frac{\alpha}{\beta} = [a_1, a_2, \ldots, a_m] := a_1 - \frac{1}{a_2 - \cdots - \frac{1}{a_m}},$$

the rational tangle of slope α/β consists of the four string braid $\sigma_2 a_1 \sigma_1 a_2 \sigma_2 a_3 \sigma_1 a_4 \cdots \sigma_1 a_m$, which is then closed on the right as in Figure 1(b) if m is odd or (c) if m is even.

A two-bridge link $S(p, q)$ (or rational link, or 4-plat) is the reflection of the link formed by closing the rational tangle $[p, q]$ with two trivial bridges. This is equal to the Montesinos link $M(e; (q, eq + p))$ for any e.

Definition 3.2 The Seifert fibered space $Y(e; (\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_r, \beta_r))$ is the oriented boundary of the four-manifold obtained by plumbing disk bundles over the two-sphere according to the weighted graph shown in Figure 2. To each vertex v with
Figure 1: **Montesinos links and rational tangles.** Note that $e = 3$ in (a). Also (b) and (c) are both representations of the rational tangle of slope $10/3$:

$$10/3 = [3, -2, 1] = [3, -3]$$

(and one can switch between (b) and (c) by simply moving the last crossing).

A lens space $L(p, q)$ is a special case of the above; it is the boundary of the plumbed four-manifold associated to a linear graph with weights $-a_1, -a_2, \ldots, -a_m$, where $\frac{p}{q} = [a_1, a_2, \ldots, a_m]$. This is equal to the Seifert fibered space $Y(-e; (q, eq + p))$ for any e.

A Seifert fibered space $Y(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$ is a rational homology sphere if and only if $e + \sum_{i=1}^{r} \frac{\beta_i}{\alpha_i} \neq 0$.

Proposition 3.3 The branched double cover of S^3 along the Montesinos link $M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$ is the Seifert fibered space $Y(-e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$.

Note: The diagram in the figure represents Montesinos links and rational tangles.
Note it follows from Proposition 3.3 that the branched double cover of $S(p,q)$ is $L(p,q)$.

Proof. The original proof is in [11]. The result is also proved in [2] but note that on p. 197 an e-twist should correspond to $\alpha_0 = 1, \beta_0 = -e$ (rather than $\beta_0 = e$). Since it is particularly important that we correctly identify the branched cover as an oriented manifold we will sketch a proof here.

We start with an alternative description of the Montesinos link $M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$. For each i, let

$$\frac{\alpha_i}{\beta_i} = [a^i_1, a^i_2, \ldots, a^i_{m_i}].$$

Then $M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$ is obtained by plumbing twisted bands according to the graph in Figure 3 and then taking the boundary. Here each vertex represents a twisted band, that is a D^1-bundle over S^1, embedded in S^3, with the number of half-twists given by the multiplicity of the vertex. For example, Figure 3(a) is (the boundary of) a band with 3 half-twists, if $r = 0$. Bands are plumbed together precisely when the corresponding vertices are adjacent.
We now want to describe the double branched cover of such a plumbed link. Start with the case of a single vertex, with weight a. This gives the two-bridge link $L = S(a, 1)$ formed by closing the four-string braid σ_2^a. Split S^3 along a 2-sphere which separates the link into 4 arcs, so that the braid is contained in one component of $S^3 - S^2$. (If L is pictured as in Figure 1(b), the 2-sphere may be drawn as a vertical line through L on one side of the twists.) This gives (S^3, L) as a union of two balls, each containing two arcs. The branched double covers of these are solid tori, which inherit an orientation from S^3. Choose a meridian and longitude pair with intersection number +1 on the boundary of each torus. With respect to these ordered bases, the map induced on homology by the gluing map on the boundary of the solid tori is represented by a 2×2 matrix.

The braid operation σ_2 lifts to a right-handed Dehn twist about the longitude of either torus (choose one). This has matrix $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ in the chosen basis for that torus. Composing the Dehn twists and changing basis to that of the other torus yields

Figure 3: Plumbing description of Montesinos link.
the matrix product
\[
\begin{pmatrix}
-1 & 0 \\
0 & 1 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-1 & 1
\end{pmatrix}
= \begin{pmatrix}
-1 & 0 \\
-1 & 1
\end{pmatrix}.
\]
This is precisely the gluing map for the circle bundle over \(S^2\) with Euler number \(a\).

Now consider a graph with two vertices labeled \(a_1, a_2\) which are joined by an edge. The resulting plumbed link is equivalent to the two-bridge link \(L\) formed by closing the four string braid \(\sigma_2^a_1 \sigma_2^a_1 \sigma_2^a_1 \sigma_2^a_1\). As above split \(S^3\) along a 2-sphere to one side of the braid. The braid \(\sigma_1\) lifts to a right-handed Dehn twist about the meridian, with matrix \(\begin{pmatrix}1 & 1 \\
0 & 1
\end{pmatrix}\). Thus the double branched cover of \(L\) is the union of two solid tori with the gluing map given by the product
\[
\begin{pmatrix}
-1 & 0 \\
0 & 1 \\
-1 & 0 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-1 & 1 \\
0 & 1 \\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
-1 & 0 \\
-1 & 1
\end{pmatrix}
= \begin{pmatrix}
-1 & 0 \\
0 & 1 \\
-1 & 0 \\
-1 & 1
\end{pmatrix}.
\]
which is the gluing map for the boundary of the manifold formed by plumbing together disk bundles over \(S^2\) with Euler numbers \(a_1, a_2\).

It is now not hard to see that in general if \(L\) is the plumbed link associated to a weighted tree \(T\) then the double branched cover of \(L\) is the Seifert fibered space associated to \(T\). According to Definition 3.2, the Seifert fibered space obtained from the graph in Figure 3 is \(Y(-e - r; (\alpha_1, \alpha_1 + \beta_1), \ldots, (\alpha_r, \alpha_r + \beta_r))\). Note that this is orientation-preserving diffeomorphic to \(Y(-e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))\) as claimed. □

Remark 3.4 We have used the same orientation convention as Orlik [12] and Hirzebruch-Neumann-Koh [7] for lens spaces and Seifert fibered spaces. However the opposite convention for lens spaces is used in [13].

3.3 A spanning surface for Montesinos links

We describe an orientable spanning surface \(\Sigma\) in \(S^3\) for the Montesinos link \(L = M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))\) which is a generalisation of that shown in [2, 12.26] for 2-bridge links (see also [1]). For knots this will enable us to compute the signature, and also in some cases the Taylor invariant \(m(K)\). For links with more than one component both the signature and the four-ball genus depend on a choice of orientation; we will choose the orientation given by \(L = \partial \Sigma\) (for either orientation of \(\Sigma\)).
Note the following equivalence of unoriented links

\[M(e; \ldots, (\alpha_i, \beta_i), \ldots) = M(e + 1; \ldots, (\alpha_i, \alpha_i + \beta_i), \ldots), \quad (4) \]

which follows from Proposition 3.3 and the fact that Montesinos links are classified, up to orientation, by their branched double covers. Fixing the surface \(\Sigma \) will require fixing a choice of invariants \((e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))\).

Recall from [2, 12.16] that if \(\alpha, \beta \) are coprime with \(\beta \) odd then we may choose a continued fraction expansion

\[\frac{\alpha}{\beta} = [a_1, a_2, \ldots, a_m] \]

with \(m \) odd and \(a_2, a_4, \ldots \) even. Similarly if \(\alpha \) is odd one may choose an expansion with \(m, a_1, a_3, \ldots \) even.

Colour black or white, in chessboard fashion, the regions of \(S^2 \) that form the complement of the projection in Figure 1(a). Start by colouring black the twisted band on the left. There are then two cases to consider.

Case 1: \(\alpha_i \) is odd for \(i = 1, \ldots, r \). Assume, using (4) if necessary, that

\[1 \leq \beta_i < \alpha_i \quad \text{for all} \quad i = 1, \ldots, r. \]

Then for each \(i \), choose a continued fraction expansion

\[\frac{\alpha_i}{\beta_i} = [a_1^i, a_2^i, \ldots, a_{m_i}^i] \]

with \(m_i, a_1^i, a_3^i, \ldots, a_{m_i-1}^i \) even. The white surface is orientable in the resulting diagram.

Case 2: \(\{\alpha_i\} \) are not all odd. Using (4) we may assume each \(\beta_i \) is the smallest positive odd integer in its congruence class mod \(\alpha_i \). We also require that \(e \equiv r \pmod{2} \). If this does not hold, choose \((\alpha_j, \beta_j) \) such that \(\alpha_j \) is even and \(\frac{\beta_j}{\alpha_j} = \min \left\{ \frac{\beta_i}{\alpha_i} : \alpha_i \text{ is even} \right\} \).

Then replace \(e \) with \(e + 1 \) and \(\beta_j \) with \(\alpha_j + \beta_j \).

Choose continued fraction expansions with odd length \(m_i \) and with \(a_2^i, a_4^i, \ldots, a_{m_i-1}^i \) even. The black surface is orientable in the resulting diagram.

3.4 The correction term for Seifert fibered spaces

When \(Y \) is the lens space \(L(p, q) \) a labelling of \(\text{Spin}^c(Y) \) by \(\mathbb{Z}/p = \{0, 1, \ldots, p-1\} \) is chosen in [13 §4], and the following recursive formula is given:

\[d(L(p, q), i) = \left(\frac{pq - (2i + 1 - p - q)^2}{4pq} \right) - d(L(q, r), j), \]
where \(i \in \mathbb{Z}/p \) and \(r \) and \(j \) are the reductions modulo \(q \) of \(p \) and \(i \) respectively. (Note Remark 3.4 above concerning orientation conventions.)

The conjugation action on Spin\(^c\) structures is given by

\[
j(i) = q - i - 1 \pmod{p},
\]

so that the \(j \)-fixed-point-set is \(\mathbb{Z} \cap \left\{ \frac{q - 1}{2}, \frac{p + q - 1}{2} \right\} \).

Remark 3.5 It is shown in [16] that the Frøyshov invariant defined using Seiberg-Witten theory satisfies the same recursive formula. Therefore a gauge theoretic version of Theorem 2.2 based on [10] gives the same results for lens spaces.

More generally, if \(Y \) is a Seifert fibered rational homology sphere \(Y(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r)) \), the following formula is given in [11, Corollary 1.5]:

\[
d(Y, \mathbf{t}) = \max \left\{ \frac{c_1(s)^2 + |G|}{4} : s \in \text{Spin}^c(X_G), s|_Y = \mathbf{t} \right\}.
\]

Here \(G \) is a graph as in Definition 3.2 for which the plumbed manifold \(X_G \) is negative definite with \(\partial X_G = Y \), and \(|G| \) is the number of vertices of \(G \). This formula may be interpreted as saying that equality is obtained in \([11]\) for some \(s \in \text{Spin}^c(X_G) \). Thus computing the correction terms for \(Y \) is equivalent to computing the \(sq \) function on \(S(X_G) \); in Section 4 we indicate how to do this for any negative definite four-manifold.

4 Obstruction algorithm

Given a rational homology sphere \(Y \) with the order of \(\mathcal{H} := H^2(Y; \mathbb{Z}) \) equal to \(h \), and an integer \(b \geq 0 \) we want to know if \(Y \) can bound a negative definite four-manifold \(X \) with \(b_2(X) = b \). In view of results of Section 2 this can be checked in the following sequence of steps:

1. consider all factorizations \(h = st^2 \) with \(s, t \geq 1 \);
2. for a fixed factorization, consider all order \(t \) subgroups \(T \) of \(\mathcal{H} \), and for a fixed \(T \) consider all order \(s \) subgroups \(S \) of \(\mathcal{H}/T \);
3. for a fixed \(S \), consider all negative definite symmetric matrices \(Q \) of rank \(b \) that present \(S \);
4. for a fixed \(Q \), determine the function \(sq : S \rightarrow \mathbb{Q} \) (see discussion preceding Theorem 2.2).
(5) for all choices of origin in \mathcal{H} consider all group monomorphisms $\rho: S \to \mathcal{H}/\mathcal{T}$, and for a fixed ρ determine the function $d_\rho: S \to \mathbb{Q}$;

(6) if for a particular set of choices above the conclusion of Theorem 2.2 holds, then there is no obstruction to Y bounding a negative definite four-manifold X with $b_2(X) = b$.

Note that when $b = 0$ the above procedure simplifies significantly (see below for details). Also, for $b > 0$ there is only a finite number of possible choices in steps (3) and (5); in particular, a complete (but not minimal) set of forms due to Hermite is described in [8, Theorem 23]. Similarly, when determining the function sq in step (4) one can restrict to Spinc structures whose Chern classes c (modulo torsion) are characteristic vectors in the hypercube

$$x_i^2 \leq c(x_i) < |x_i^2|, \quad i = 1, \ldots, b,$$

where $\{x_i, i = 1, \ldots, b\}$ is a basis for $H^2(X; \mathbb{Z})/\text{Tors}$. To see this note that if the inequality is violated for some i, changing c by an even multiple of the Poincaré dual of x_i to make this particular inequality hold, will result in a vector with no smaller square; moreover, the square only stays the same if $c(x_i) = |x_i^2|$ (see [14] for details).

A characteristic vector is the Chern class of a j-fixed element if and only if it is in the image of $Q: \mathbb{Z}^b \to \mathbb{Z}^b$. In the rest of this section we describe in detail the cases $b = 0, 1$ and 2 with emphasis on applications to knots and links.

4.1 $b = 0$

A necessary condition for a rational homology sphere Y to bound a rational homology ball X is that the order of the first homology of Y is a square (Lemma 2.1). The algorithm described above yields the following.

Proposition 4.1 Let X be a smooth four-manifold with boundary Y, and suppose that $H_*(X; \mathbb{Q}) \cong H_*(B^4; \mathbb{Q})$ and the order of $H_1(Y; \mathbb{Z})$ is h; write $h = t^2$ for some $t \in \mathbb{N}$. Then there is a spin structure t_0 on Y so that

$$d(Y, t_0 + \beta) = 0 \quad \text{for all} \quad \beta \in \mathcal{T},$$

where \mathcal{T} denotes the image of $H^2(X; \mathbb{Z})$ in $H^2(Y; \mathbb{Z})$.

In particular, if Y is a homology lens space, then given a labelling $\{t_0, \ldots, t_{h-1}\}$ of Spinc structures on Y, there is a j_0 corresponding to a spin structure t_{j_0} so that

$$d(Y, t_{j_0 + kt}) = 0 \quad \text{for all} \quad k = 0, \ldots, t - 1.$$
Proof. Denote by t_0 a Spinc structure on Y that extends to X. Then the set of Spinc structures on Y that extend to X is $t_0 + \mathcal{T}$. Given that all Spinc structures on the rational homology ball X are torsion, Theorem 2.2 implies that $d(Y, t_0 + \beta) \geq 0$ for all β. Finally, changing the orientation of X and using the fact that the correction term changes its sign under this operation, gives the other inequality.

Let K be a knot in S^3 with branched double cover Y. From the discussion in Section 3 we see that if K is slice, then Y bounds a rational homology ball, and therefore satisfies the conclusion of Proposition 4.1.

4.2 $b = 1$

When $b_2(X) = 1$, the intersection form Q_X of a negative definite manifold X is represented by $[-s]$, where $h = st^2$ is the order of the first homology of $Y = \partial X$. Note that in this case $\mathcal{S} \cong \mathbb{Z}/s$ is cyclic, and so Y can only bound such an X if \mathcal{H}/\mathcal{T} contains a cyclic subgroup of order s (see discussion preceding Theorem 2.2 for notation).

Characteristic vectors in $H^2(X; \mathbb{Z})/\text{Tors}$ are given by numbers $x \in \mathbb{Z}$ with the same parity as s. A set of Spinc structures on X with maximal square in their equivalence class in \mathcal{S} is given by s_i, $i = 0, \ldots, s - 1$, where the image of s_i modulo torsion is $x_i = 2i - s$, and its square is

$$sq(i) = c_1(s_i)^2 = -\frac{(2i - s)^2}{s}.$$

Note that $x_0 = -s$ corresponds to a j-fixed element in \mathcal{S}; in case s is even, $x_{s/2} = 0$ also gives a j-fixed element.

Let L be a two component link in S^3 with branched double cover Y. If the signature $\sigma(L) = -1$, then according to Murasugi’s result L may bound a cylinder in the four-ball. If this is the case, then Y bounds a negative definite four-manifold X with $b_2(X) = 1$ (see Section 3). We may use the above algorithm to check if this is possible.

4.3 $b = 2$

We now suppose a rational homology sphere Y bounds a negative definite four-manifold X with $b_2(X) = 2$. We denote the order of the first homology of Y by h, and fix a factorization $h = st^2$, where s is the determinant of the intersection pairing Q_X of X. Note that in this case $\mathcal{S} \cong \mathbb{Z}^2/Q\mathbb{Z}^2$ has at most two exponents, which puts a homological restriction on Y bounding such a manifold.

The following classification theorem for rank two quadratic forms is a modified version of [8, Theorem 76].
Theorem 4.2 Any negative definite form with integer coefficients of rank two and determinant $r > 0$ is equivalent to a reduced form

$$
\begin{bmatrix}
a & b \\
b & c
\end{bmatrix},
$$

with $0 \geq 2b \geq a \geq c$. (It follows that $|a| \leq 2\sqrt{r/3}$.)

Let Q be a reduced form as above with coefficients a, b, c. Note that this form presents $\mathbb{Z}/e_1 \oplus \mathbb{Z}/e_2$, where $e_2|e_1$ and $e_1e_2 = r$, if and only if gcd$(a, b, c) = e_2$. Denote by Ω_Q the set of points (x, y) in the plane satisfying the following conditions:

$$
a \leq x < |a|,
$$

$$
c \leq y < |c|,
$$

$$
a - 2b + c \leq x - y < |a - 2b + c|.
$$

Call a lattice point $(x, y) \in \mathbb{Z}^2$ characteristic if $x \equiv a, y \equiv c \pmod{2}$.

Proposition 4.3 Fix a basis for $H_2(X; \mathbb{Z})/\text{Tors}$ so that the matrix representative Q of the intersection pairing Q_X is reduced. Then the characteristic lattice points in Ω_Q are the (images of the) first Chern classes of a set of Spinc structures on X that have maximal square in their class in S. Moreover, any characteristic vector among

$$
(0, 0), \quad (a, b), \quad (b, c), \quad (a - b, b - c)
$$

gives rise to a j-fixed element of S.

Proof. Note that two characteristic points correspond to Spinc structures with isomorphic restrictions to Y if and only if they differ by $2m(a, b) + 2n(b, c)$, for some integers m, n. A complete set of characteristic representatives is given by the parallelogram with vertices $\pm(a + b, b + c), \pm(a - b, b - c)$ (taking all characteristic points in the interior and those in one component of the boundary minus $\pm(a - b, b - c)$). Observe that each of these points is equivalent to exactly one characteristic point in Ω_Q. It therefore remains to show that the corresponding Spinc structures have maximal square in their equivalence class. Recall that the cup product pairing on $H^2(X; \mathbb{Z})/\text{Tors}$ is well defined over \mathbb{Q}, and its matrix with respect to the Hom-dual basis is Q^{-1}.

As observed after the description of the algorithm, we need only consider points in the rectangle $\{(x, y)|a \leq x < |a|, c \leq y < |c|\}$. Thus it only remains to choose the point with larger square from any equivalence class having more than one characteristic point in the rectangle. This is done by eliminating points inside the triangles cut out of the rectangle by the lines $x - y = \pm|a - 2b + c|$.

\[\square\]
It follows from Proposition 4.3 that the numbers $sq(\alpha)$ (for $\alpha \in S$) from Theorem 2.2 are given, as an unordered set, by the squares with respect to Q^{-1} of characteristic points $(x, y) \in \Omega_Q$. It remains to order these points with respect to the group structure on $S \cong \mathbb{Z}^2/Q\mathbb{Z}^2 \cong \mathbb{Z}/e_1 \oplus \mathbb{Z}/e_2$. The point $(x_0, 0, y_0, 0)$ may be chosen arbitrarily; for convenience we choose it to be j-fixed. Then choose $(x_1, 0, y_1, 0)$ so that $\delta_1 = \frac{1}{2}(x_1 - x_0, y_1 - y_0)$ has order e_1. Finally choose $(x_0, 1, y_0, 0)$ so that $\delta_2 = \frac{1}{2}(x_0 - x_0, y_1 - y_0)$ has order e_2 and the subgroups of S generated by δ_1 and δ_2 have trivial intersection. These choices determine the ordering of the remaining points: $(x_{i,j}, y_{i,j})$ is the unique characteristic point in Ω_Q with

$$\frac{1}{2}(x_{i,j} - x_0, y_{i,j} - y_0) = i\delta_1 + j\delta_2 + m(a, b) + n(b, c), \ m, n \in \mathbb{Z},$$

and

$$sq(i, j) = (x_{i,j}, y_{i,j})Q^{-1}(x_{i,j}, y_{i,j})^T,$$

for $i = 0, \ldots, e_1 - 1$ and $j = 0, \ldots, e_2 - 1$.

Suppose that K is a knot in S^3 with signature -2 and branched double cover Y. From Section 3 we know that if $g^*(K) = 1$, then Y bounds a four-manifold with $b_2 = 2$ as above, and we may use the algorithm described at the beginning of this section to seek a contradiction. We may similarly get an obstruction to a three component link with signature -2 bounding a genus zero slice surface.

5 Examples

In this section we list examples of knots and links for which our obstruction shows that inequality (2) is strict. We begin with a proof that the unknotting number of the knot 10_{145} is 2. We list two-bridge examples in 5.3 and Montesinos examples in 5.4.

5.1 Unknotting number of 10_{145}

The knot 10_{145} in the Rolfsen table is the Montesinos knot $M(1; (3, 1), (3, 1), (5, 2))$. From Figure 4 we see that the unknotting number is at most 2. This knot has signature 2 and determinant 3. Its branched double cover is the Seifert fibered space $Y(-1; (3, 1), (3, 1), (5, 2))$. We will show that $-Y$ cannot bound a negative definite 4-manifold with $b_2 = 2$. The correction terms are

$$d(-Y) = \left\{ \frac{-3}{2}, \frac{-1}{6}, \frac{-1}{6} \right\}. $$
Figure 4: The Montesinos knot $M(1;(3,1),(3,1),(5,2))$, or 10_{145}. Note that changing the circled crossings will give the unknot.

There are two reduced negative definite forms of rank 2 and determinant 3, namely the diagonal form $\begin{pmatrix} -1 & 0 \\ 0 & -3 \end{pmatrix}$, and $\begin{pmatrix} -2 & -1 \\ -1 & -2 \end{pmatrix}$. For the first the region Ω_Q of Proposition 4.3 yields optimal Spinc structures with squares $\{-4, -\frac{4}{3}, -\frac{4}{3}\}$, and for the second, $\{0, -\frac{8}{3}, -\frac{8}{3}\}$. In either case there is clearly no map $\rho : \mathbb{Z}/3 \to \mathbb{Z}/3$

which satisfies

$$c_1(s_i)^2 + 2 \leq 4d(-Y, t_{\rho(i)}).$$

It follows that $g^*(10_{145}) > 1$. Since the unknotting number is bounded below by the four-ball genus, we conclude that $g^* = u = 2$.

Finally we note that the spanning surface described in 3.3 yields the Seifert matrix

$$M = \begin{pmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The vector $x = (1, 1, 1, 0)$ satisfies $xMx^T = 0$. It follows that the Taylor invariant $m(10_{145})$ (which is the optimal lower bound for g^* from a Seifert matrix) is 1.
5.2 A non-cyclic example

The Montesinos knot \(M(1; (5, 2), (5, 2), (5, 2)) \) has signature 4 and determinant 25. Its branched double cover \(Y = Y(-1; (5, 2), (5, 2), (5, 2)) \) has \(H^2(Y) \cong \mathbb{Z}/5 \oplus \mathbb{Z}/5 \). The correction terms are

\[
d(-Y) = \frac{1}{5} \begin{pmatrix}
-5 & 1 & -1 & -1 & 1 \\
-7 & -3 & -7 & 1 & 1 \\
-3 & -1 & -7 & -1 & -3 \\
-3 & -3 & -1 & -7 & -1 \\
-7 & 1 & 1 & -7 & -3
\end{pmatrix},
\]

where the array structure indicates the \(\mathbb{Z}/5 \oplus \mathbb{Z}/5 \) action on \(\text{Spin}^c(-Y) \).

Suppose that \(-Y \) bounds a negative definite manifold \(X \) with \(b_2(X) = 4 \). Then by Lemma 2.1 the intersection pairing of \(X \) is either unimodular or has determinant 25. If unimodular then it is equivalent to \(-I \) (see for example [8, Corollary 23]); in this case \(S \) contains just 1 element with maximal square \(-4\). The inequality in Theorem 2.2 now simply becomes \(0 \leq d_\rho(\alpha) \); however, the correction term of the j-fixed element is \(-1\).

Now suppose that \(Q_X \) has determinant 25. Note that there are 6 nonnegative correction terms in the above array. There are 3 Hermite-reduced negative definite rank 4 forms with determinant 25 which present \(\mathbb{Z}/5 \oplus \mathbb{Z}/5 \). Each of these gives at least 10 elements \(\alpha \in S \) with \(sq(\alpha) + 4 \geq 0 \). It follows from Theorem 2.2 that \(-Y \) cannot bound these forms.

This implies \(g^*(M(1; (5, 2), (5, 2), (5, 2))) > 2 \). From the knot diagram as in Figure 1 it is easy to see that the unknotting number is at most 3; thus \(g^* = u = 3 \).

5.3 Two-bridge examples

We start with the question of slice two-bridge knots. Recall a knot \(K \) is slice if \(g^*(K) = 0 \). It is called ribbon if it bounds a smoothly immersed disk in \(S^3 \) whose singularities come from identifying spanning arcs in \(D^2 \) with interior arcs in \(D^2 \). Ribbon implies slice, however, it is unknown whether every slice knot is ribbon.

Any slice 2-bridge knot \(S(p, q) \) must have \(p = t^2 \) from Lemma 2.1. A set of values of \(t \) and \(q \) for which \(S(t^2, q) \) is ribbon is given in [3]. Using the Atiyah-Singer \(G \)-signature theorem, Casson and Gordon [3] defined an invariant which detects when a two-bridge knot is not ribbon and showed that the known ribbon two-bridge knots provide the only ribbon examples \(S(t^2, q) \) with \(t \leq 105 \).

Fintushel and Stern showed in [3] that the Casson-Gordon invariant is equal to an invariant they defined using Yang-Mills theory, and also showed the invariant detects when a knot is not slice.
The obstruction algorithm described in Subsection 4.1 seems to give the same results as Casson-Gordon and Fintushel-Stern; we have verified this for $t \leq 105$.

Table 1 lists all two-bridge knots and links $S(p, q)$ with $p \leq 120$ and $1 \leq |\sigma| \leq 4$ for which the obstruction algorithm shows that inequality (2) is strict.

Link	σ	m	g^*
$S(60, 23)$	1	0	
$S(66, 25)$	1	0	
$S(67, 39)$	2	1	1
$S(86, 33)$	1	0	
$S(91, 53)$	2	1	1
$S(92, 33)$	-1	0	
$S(92, 39)$	1	0	
$S(107, 28)$	-2	1	1
$S(107, 42)$	2	1	1
$S(112, 43)$	1	0	
$S(114, 25)$	1	0	
$S(115, 37)$	2	1	1
$S(115, 67)$	2	1	1
$S(115, 87)$	-2	1	1

Table 1: **Genus bounds for two-bridge links.** Here σ is the signature and m is Taylor’s invariant.

Finally we note that the knots $S(187, 101)$ and $S(187, 117)$ have the same Alexander polynomials and Taylor invariants. The latter has $g^* = 1$, but our algorithm can be used to show that the former has $g^* = 2$.

5.4 More Montesinos examples

Table 2 contains obstructed Montesinos links $M(e; (\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3)$ with $-2 \leq e \leq 1$, $\alpha_i \leq 5$, and $|\sigma| \leq 4$. We have also restricted to links with determinant less than 150.
Remark 5.1 The reflection of $M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$ is $M(r-e; (\alpha_1, \alpha_1-\beta_1), \ldots, (\alpha_r, \alpha_r-\beta_r))$. The four-ball genus of a knot is equal to that of its reflection; however the same is not true for links, whose signature and four-ball genus depend on a choice of orientation. For example the 3-component link $M(5; (2, 1), (2, 1), (2, 1))$, oriented as in Subsection 3.3, has signature μ and is shown by our algorithm to have nonzero four-ball genus. Its reflection $M(-2; (2, 1), (2, 1), (2, 1))$ also has signature μ, but the algorithm yields no information.

References

[1] G. Burde. Über das Geschlecht und die Faserbarkeit von Montesinos-knoten, Abh. Math. Sem. Univ. Hamburg 54 1984, 199–226.

Link	μ	σ	$H_1(Y)$	m	g^*
$M(-2; (3, 1), (3, 1), (5, 3))$	1	2	$\mathbb{Z}/47$	1	1
$M(-1; (2, 1), (2, 1), (5, 2))$	2	-1	$\mathbb{Z}/147$	1	1
$M(-1; (2, 1), (5, 2), (5, 4))$	1	2	$\mathbb{Z}/135$	1	1
$M(-1; (2, 1), (5, 3), (5, 3))$	1	-2	$\mathbb{Z}/135$	1	1
$M(-1; (3, 1), (3, 1), (5, 1))$	2	3	$\mathbb{Z}/84$	1	1
$M(-1; (3, 1), (4, 1), (5, 4))$	1	2	$\mathbb{Z}/143$	1	1
$M(-1; (3, 2), (3, 2), (5, 2))$	1	2	$\mathbb{Z}/123$	1	1
$M(-1; (3, 2), (4, 1), (5, 2))$	1	-2	$\mathbb{Z}/139$	1	1
$M(0; (2, 1), (2, 1), (3, 2))$	2	-1	$\mathbb{Z}/20$	0	0
$M(0; (3, 1), (3, 1), (5, 4))$	2	1	$\mathbb{Z}/66$	0	0
$M(0; (3, 1), (5, 1), (5, 4))$	2	1	$\mathbb{Z}/100$	0	0
$M(0; (3, 1), (5, 2), (5, 3))$	2	1	$\mathbb{Z}/100$	0	0
$M(0; (3, 2), (3, 2), (5, 2))$	2	1	$\mathbb{Z}/78$	0	0
$M(0; (3, 2), (3, 2), (5, 4))$	2	-1	$\mathbb{Z}/96$	0	0
$M(0; (3, 2), (5, 1), (5, 1))$	2	-1	$\mathbb{Z}/80$	0	0
$M(1; (3, 1), (3, 1), (5, 2))$	1	2	$\mathbb{Z}/3$	1	1
$M(1; (3, 1), (5, 2), (5, 2))$	2	3	$\mathbb{Z}/10$	1	1
$M(1; (3, 1), (5, 4), (5, 4))$	2	-1	$\mathbb{Z}/70$	0	0
$M(1; (4, 1), (4, 1), (5, 4))$	2	1	$\mathbb{Z}/24$	0	0
$M(1; (5, 2), (5, 2), (5, 2))$	1	4	$\mathbb{Z}/5 \oplus \mathbb{Z}/5$	2	2

Table 2: Genus bounds for Montesinos links. Here μ is the number of components and Y is the branched double cover.
[2] G. Burde & H. Zieschang. Knots, Walter de Gruyter, 1985.

[3] A. J. Casson, C. McA. Gordon. Cobordism of classical knots, À la recherche de la topologie perdue, Progr. Math. 62 1986, 181–199.

[4] A. J. Casson, C. McA. Gordon. On slice knots in dimension three, Algebraic and geometric topology, Part 2, pp. 39–53, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978.

[5] R. Fintushel & R. J. Stern. Rational homology cobordisms of spherical space forms, Topology 26 1987, 385–393.

[6] K. A. Frøyshov. The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 1996, 373–390.

[7] F. Hirzebruch, W. D. Neumann & S. S. Koh. Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Math. 4, Marcel Dekker, 1971.

[8] B. W. Jones. The arithmetic theory of quadratic forms, Math. Assoc. of America, 1950.

[9] L. H. Kauffman & L. R. Taylor. Signature of links, Trans. Amer. Math. Soc. 216 1976, 351–365.

[10] K. Murasugi. On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 1965, 387–422.

[11] J. M. Montesinos. Seifert manifolds that are ramified two-sheeted cyclic coverings, Bol. Soc. Mat. Mexicana (2) 18 1973, 1–32.

[12] P. Orlik. Seifert manifolds, Lecture Notes in Math. 291, 1972.

[13] P. Ozsváth & Z. Szabó. Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, math.SG/0110170 2002.

[14] P. Ozsváth & Z. Szabó. On the Floer homology of plumbed three-manifolds, math.SG/0203265 2002.

[15] P. Ozsváth & Z. Szabó. Knot Floer homology and the four-ball genus, math.GT/0301149 2003.

[16] S. Strle. In preparation

[17] L. R. Taylor. On the genera of knots, Lecture Notes in Math. 722 1972, 144–154.
Brendan Owens:
Dept. of Mathematics and Statistics, McMaster University
1280 Main Street West
Hamilton, Ontario, Canada L8S 4K1
E-mail: owensb@math.mcmaster.ca

Sašo Strle:
Dept. of Mathematics and Statistics, McMaster University
1280 Main Street West
Hamilton, Ontario, Canada L8S 4K1
E-mail: strles@math.mcmaster.ca