Influence of surface treatment on bonding of resin luting cement to CAD/CAM composite blocks

Nao TAKAHASHI, Chiaki YABUKI, Hiroyasu KUROKAWA, Toshiki TAKAMIZAWA, Yuta KASAHARA, Makoto SAEGUSA, Miho SUZUKI and Masashi MIYAZAKI

Department of Operative Dentistry, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
Corresponding author, Hiroyasu KUROKAWA; E-mail: kurokawa.hiroyasu@nihon-u.ac.jp

The aim of this study was to determine the influence of different surface treatments of CAD/CAM composite blocks on bonding effectiveness of resin cements, based on the shear bond strength test and the surface science examination. Specimens were fabricated from two types of CAD/CAM composite blocks (Ceramart and VITA Enamic), and the specimen surfaces were alumina sandblasted. Specimen surfaces were treated with i) silane, ii) primer, and iii) silane+primer, then two types of cements (Block HC Cem and Super Bond) were bonded. After 24 h storage, bond strengths were measured. Surface free energy measurements were performed of the treated CAD/CAM composite blocks surfaces. The groups ii) and iii) showed significantly higher bond strengths than the group i), apart from VITA Enamic with Block HC Cem. Although the total surface free energy showed different trends in different surface treatments, a similar trend was found in both CAD/CAM composite blocks.

Keywords: CAD/CAM composite block, Resin cement, Surface treatment, Bond strength

INTRODUCTION

As digital impression and in-office machining increase in prevalence, materials such as laboratory-processed resin composite have been developed to optimize single-visit crown delivery. Computer-aided design/computer aided manufacturing (CAD/CAM) composite blocks polymerized in the laboratory can be converted into restorations more efficiently as they can be fabricated faster and eliminate the need for light polymerization and heat treatment after milling the restorations1). The standardized polymerization of CAD/CAM composite blocks under high pressure and temperature yields significantly better mechanical properties and color stability2). Although it is true that the reported flexural strength of a representative CAD/CAM composite blocks was just under half of that of more commonly utilized CAD/CAM ceramic materials3), the former have shown a higher resistance to fatigue loading than the latter4). In addition, CAD/CAM composite blocks show lower wear than the other ceramic materials5), and are thought to be a suitable materials even for full coverage posterior restorations.

However, it can be difficult to achieve a strong bond between CAD/CAM composite blocks and resin luting cements due to the high degree of conversion of resin monomers in the CAD/CAM composite blocks6). A reliable bond between the prepared tooth and the internal part of the restoration is important to the long-term success of the restorations. There are two different interfaces in the adhesive luting of restorations: (i) the interface between the tooth structure and the resin luting cements; and (ii) the interface between the resin luting cement and the surface of CAD/CAM composite blocks. The bond to tooth structure with resin luting cements has been extensively researched7,8), whereas much less is known about the other interface, specifically the interface between the resin luting cements and the CAD/CAM composite blocks. Therefore, it is crucial to establish the treatment methods appropriate to each surface to yield optimal bonding outcomes, and to establish adequate and durable bonding for the restorations.

Durable bonding between different substrates takes place on the basis of chemical and mechanical adhesion properties. Various surface treatment techniques are used to mechanically roughen the surface to achieve better bond strength9). It has been reported that the bond strength between CAD/CAM composite blocks and resin luting cements can be significantly improved by aluminum-particle abrasion and silanization10). In addition to mechanical retention, a strong chemical bond is required to obtain long-term clinical results. A reliable chemical bond to ceramic-based materials can be obtained with silanization11), and it is reasonable to assume that silane has the ability to bond to fillers in CAD/CAM composite blocks. In some commercial adhesive primers, a mixture of silane and phosphoric acid/ester primers is used to improve the bonding performance of resin luting cement12). Some studies have determined that the use of a silane or adhesive primer or both can improve the bond to CAD/CAM composite blocks7,13).

When considering the composition of CAD/CAM composite blocks, the exposure of filler particles on the surface is material dependent, because filler contents, particle sizes, shapes, and distributions are different in different types of CAD/CAM composite blocks. Therefore, it is probable that the effectiveness of silanization...
is not sufficient in some materials. In order to obtain durable bonds to CAD/CAM composite blocks, different approaches are necessary involving surface modification of the resin matrix of CAD/CAM composite blocks. Methyl methacrylate (MMA) has high wetting properties due to its lower molecular weight, and it is assumed that a low molecular weight primer may improve surface properties and achieve durable bond to CAD/CAM composite blocks. However, limited information is available about the effectiveness of such treatment methods in improving the bonding performance of resin luting cements to CAD/CAM composite blocks.

In the present study, we evaluated the influence of the surface treatment of CAD/CAM composite blocks on the bonding performance of resin luting cements in terms of the bond strengths and surface free energies of CAD/CAM composite blocks. Specifically, we assessed differences in bond strength and surface-free energy with different surface treatments. The null hypotheses in this study are that differences in the surface treatment of CAD/CAM composite blocks do not affect (1) bonding performance of resin luting cements, or (2) the surface free energy.

Materials and Methods

Study materials

The materials used in this study are listed in Table 1. The resin luting cement used were dual-cured resin luting cement Block HC Cem (Shofu, Kyoto, Japan), and 4-META/MMA-TBB resin cement Super-Bond. The two CAD/CAM composite blocks evaluated were Cerasmart (GC, Tokyo, Japan) and VITA Enamic (VITA Zahnfabrik, Bad Säckingen, Germany). The silane coupling agent (Porcelain Primer, Shofu) and a primer (HC Primer, Shofu) were used.

Specimen preparation

CAD/CAM composite blocks were obtained perpendicularly to the longitudinal axis of the blocks using a low-speed saw (Isomet 1000, Buehler, Lake Bluff, IL, USA) to cut the block into four 2-mm-thick sections. Each sectioned CAD/CAM composite blocks was then mounted in self-curing acrylic resin (Tray Resin II, Shofu) and placed under water to limit the temperature rise caused by the exothermic polymerization of the acrylic resin. The cementation surfaces of CAD/CAM composite blocks were ground flat for surface standardization.

Table 1 Materials in this study used and their main components

Resin cement	Main component	Manufacturer	Lot No.
Block HC Cem	A: UDMA, fluoroalumosilicate glass, glass powder, initiator, others	Shofu, Kyoto, Japan	011601
	B: UDMA, 2-HEMA, carboxylic acid monomer, zirconium silicate, initiator, others		
Super-Bond C&B	Poly (MMA)	Sun Medical, Moriyama, Japan	RG1
Super-Bond L-Type Clear			
Super-Bond Quick Monomer	MMA, 4-META	Sun Medical	MV2
Super-Bond Catalyst V	TBB, TBB-O, hydrocarbon	Sun Medical	MT21F

CAD/CAM composite block	Main component	Manufacturer	Lot No.
Cerasmart	Bis-MEPP, UDMA, DMA, silica, barium glass	GC, Tokyo, Japan	1702211
VITA Enamic	UDMA, TEGDMA, feldspar ceramic enriched with aluminum oxide	VITA Zahnfabrik, Germany	65360

Silane coupling agent/ Primer	Main component	Manufacturer	Lot No.
Porcelain Primer	anhydrous ethanol, silane coupling agent, anhydrous maleic acid, others	Shofu	071528
PZ Primer	A: MMA, phosphoric acid monomer, others	Sun Medical	A: RG1
	B: MMA, silane coupling agent		B: RF1
HC Primer	UDMA, MMA, acetone, initiator, others	Shofu	031603
Super-Bond activated liquid	Quick monomer liquid mixed with Catalyst V	Sun Medical	—

UDMA: urethane dimethacrylate, HEMA: 2-hydroxyethyl methacrylate, MMA: methyl methacrylate, 4-META: 4-methacryloyloxyethyl trimellitate anhydride, TBB: tri-n-butyl borane, Bis-MEPP: 2,2-bis[4-(2methacryloyloxyethoxyphenyl)]propane, DMA: dimethacrylate, TEGDMA: triethyleneglycol dimethacrylate.
with P120 and P400 silicon-carbide papers (Struers, Cleveland, OH, USA) under continuous water cooling using a grinder/polisher (EcoMet 4, Buehler). These surfaces were then washed with an air-water spray and air dried using a dental three-way syringe 5 cm above the surface and with an air pressure of 0.3 MPa. Then, the surfaces were aluminum particle abraded with 50-µm Al₂O₃ particles for 10 s with an air pressure of 0.3 MPa, and then air dried with three-way syringe.

Shear bond strength (SBS) testing

A flow chart of the pretreatment of CAD/CAM composite blocks surface is presented in Fig 1. All sections were randomly divided into three groups according to surface treatment: 1) silane coupling agent application (SC) group, 2) primer application (PR) group, and 3) SC+PR group. After surface treatment, resin luting cement was condensed into a metal mold (2.38 mm in diameter, 3.0 mm in height) on the treated CAD/CAM composite block surface. Then, the placed cement was light polymerized for 30 s parallel to the cement interface with a quartz-tungsten-halogen (QTH) curing unit (Optilux 501, Kerr, Orange, CA, USA). The light intensity (>800 mW/cm²) of the QTH curing unit was monitored using a curing radiometer (model 100, Kerr). After 10 min, the specimens were stored in a dark room in 37°C distilled water for 24 h.

After the storage periods, specimens were loaded to failure at 1.0 mm per min with a universal testing machine (Type 5500R, Instron, Canton, MA, USA). The bond strength values were calculated from the peak load at failure divided by the bonded surface area. After testing, the bonding sites of metal mold and CAD/CAM composite blocks were observed under an optical microscope (SZH-131, Olympus, Tokyo, Japan) at a magnification of ×20 to determine the bond failure mode. Based on the percentage of substrate area (resin luting cement–CAD/CAM composite blocks), the types of bond failure were recorded as adhesive, mixed, cohesive failure in resin cement, and cohesive failure in CAD/CAM composite block.

![Flow chart of the pretreatment of CAD/CAM composite blocks surface](image)

Block HC Cem group:
- SC group: Porcelain primer was applied for 10 s followed by natural drying
- PR group: HC primer was applied, followed by drying with compressed air
- SC+PR group: HC primer was applied to porcelain primer treated surface, followed by drying with compressed air

Super bond group:
- SC group: PZ Primer was applied for 3 sec, followed by thorough drying with medium pressure air
- PR group: Activated liquid (monomer and catalyst V mixture; mixing ratio=4 drops: 1 drop) was applied, followed by thorough drying with mild air
- SC+PR group: Activated liquid was applied to PZ primer treated surface, followed by thorough drying with with medium pressure air

SBS: Shear bond strength test, SFE: Surface free energy measurement

Fig. 1 Experimental protocol in this study.
Surface free energy (SFE) measurements
The specimens for measurement of SFE were prepared in the same way as described in the bond strength test section. Contact angles of specimens were measured to analyze the surface characteristics of each treated CAD/CAM composite block surface. The SFE was determined by measuring the contact angles on the surface of the three test liquids, 1-bromonaphthalene, diiodomethane, and distilled water, each had known SFE parameters. A contact angle meter (Drop Master DM 500, Kyowa Interface Science, Saitama, Japan) was connected to a charge-coupled device camera to allow automatic measurement of the contact angles.

For each test liquid, the equilibrium contact angle (θ) was measured in ten enamel specimens for each condition. Sessile drops of each liquid measuring 1.0 μL in volume were dispensed at 23±1°C using a micro-pipette. The SFE parameters of the solids were then calculated based on the fundamental concepts of wetting. The Young-Dupré equation describes the adhesion between a solid (S) and liquid (L) that are in contact (W_{SL}), the interfacial free energy between the solid and the liquid (γ_{SL}), and the SFE of the liquid and solid (γ_L and γ_S, respectively), as follows:

$$W_{SL}=\gamma_L+\gamma_S-\gamma_{SL}=(1+\cos\theta)(\gamma_S-\gamma_{SL}).$$

The Fowkes equation can be extended using the Kitazaki-Hata approach, as follows:

$$\gamma_{SL}=\gamma_L+\gamma_S-2(\gamma_L^d+\gamma_S^d)^{1/2}+2(\gamma_L^p+\gamma_S^p)^{1/2}-2(\gamma_L^h+\gamma_S^h)^{1/2},$$

where γ_1^p, γ_2^p, and γ^h are dispersion force, polar (permanent and induced) force, and hydrogen-bonding force, respectively, and they are components of the SFE (γ). θ values were determined for all three test liquids, and the surface-energy parameters of treated surfaces were calculated according to the equations using add-on software and the interface measurement and analysis system (FAMAS; Kyowa Interface Science). A statistical power analysis indicated that at least eight samples were necessary for effective measurement of SFE. Therefore, this experiment was initially performed with sample sizes of ten. After gathering the data, post hoc power tests were performed, and these tests indicated that the sample size was adequate.

Statistical analysis
Before analysis of variance (ANOVA), homogeneity of variance (Bartlett’s test) and normal distribution (Kolmogorov-Smirnov test) were confirmed for the data for each group. One-way ANOVA followed by Tukey’s honestly significant difference (HSD) test (α=0.05) was used for analysis of the bond strength and SFE data. The statistical analysis was done with statistical analysis software system (Sigma Plot, ver. 11.0, SPSS, Chicago, IL, USA).

Scanning electron microscopy (SEM) observation
Ultrastructural observations of resin cement/bock material interfaces were conducted after embedding bonded specimens in epoxy resin (Epon812, Nisshin EM, Tokyo, Japan), and incubating them at 37°C for an additional 12 h. Embedded specimens were sectioned, and surfaces of cut halves were polished using a grinder-polisher (Ecomet 4/Automat 2, Buehler) with #600, #1200, and then #4000 grid silicon carbide papers. Surfaces were finally polished on a special soft cloth using diamond paste down to 0.25 nm particle size (DP-Paste, Struers, Ballerup, Denmark). These surfaces were then subjected to argon-ion beam etching (Type EIS-200ER, Elionix, Tokyo, Japan) for 30 s with the ion beam (accelerating voltage, 1.0 kV; ion current density, 0.4 mA/cm²) directed perpendicular to the polished surface. Surfaces were finally coated in a vacuum evaporator (Quick Coater Type SC-701, Sanyu Electron, Tokyo, Japan) with a thin film of gold and were observed using a SEM instrument (ERA-8800FE, Elionix) at an accelerating voltage of 10 kV.

RESULTS
The mean SBS of Block HC Cem to CAD/CAM composite blocks with different surface treatments ranged from 3.2±2.1 to 17.6±1.5 MPa for Cerasmart, while the corresponding values for VITA Enamic ranged from 15.9±1.2 to 18.5±1.6 MPa (Table 2). For Cerasmart, Primer and Silane+Primer groups showed significantly higher SBS compared to Silane group. For Silane group,

| Table 2 Influence of surface treatment of CAD/CAM composite block on bond strength of Block HC Cem |
|---------------------------------|-----------------|-----------------|------|
| Treatment | Cerasmart (MPa) | VITA Enamic (MPa) | p-value |
| SC group | 3.2±2.1^a [10/0/0] | 18.5±1.6^a [10/0/0] | <0.001 |
| PR group | 14.8±2.5^b [00/10] | 16.5±2.1^b [00/10] | 0.347 NS |
| SC+PR group| 17.6±1.5^b [00/10] | 15.9±1.2^b [00/10] | 0.347 NS |

Unit: MPa, n=10, values in parenthesis indicate standard deviations.
Within CAD/CAM resin composite, means with the same lower-case letter are not significantly different ($p>0.05$). p-Value indicates the comparison between different CAD/CAM composite block. NS=no significant difference.

[Fracture model]: interface failure/cohesive failure in resin cement/cohesive failure in CAD/CAM composite block]
a significant higher bond strength was obtained to VITA Enamic (18.5 MPa) compared to that to Cerasmart (3.2 MPa). For both CAD/CAM composite blocks, the predominant mode of failure was adhesive failure for Silane groups, and cohesive failure of resin blocks for Primer and Silane+Primer groups.

The mean SBS of Super-Bond to CAD/CAM composite blocks with different surface treatments ranged from 11.6±0.9 to 15.6±1.5 MPa for Cerasmart, while the corresponding values for VITA Enamic ranged from 11.3±1.0 to 16.0±1.1 MPa (Table 3). When compared within the same treatment groups, there was no significant difference between different CAD/CAM composite blocks. Regarding the influence of different

Table 3 Influence of surface treatment of CAD/CAM composite block on bond strength of Super-Bond

Treatment	Cerasmart	VITA Enamic	p-value
SC group	11.6 (0.9)*	11.3 (1.0)*	0.996 NS
PR group	14.1 (1.3)*	14.8 (2.0)*	0.854 NS
SC+PR group	15.6 (1.5)*	16.0 (1.1)*	0.985 NS

Unit: MPa, n=10, values in parenthesis indicate standard deviations. Within CAD/CAM composite block, means with the same lower-case letter are not significantly different (p>0.05). p-Value indicates the comparison between different CAD/CAM composite block. NS=no significant difference. [Fracture mode]: [interface failure/cohesive failure in resin cement/cohesive failure in CAD/CAM composite block]
surface treatments on SBS, higher values were obtained for Silane+Primer groups for both composite blocks. For both composite blocks, the predominant mode of failure for debonded specimens was adhesive failure for Primer groups, while cohesive failure in composite blocks increased in Silane and Silane+Primer groups.

Representative SEM images of the cement bonded interfaces are shown in Figs. 2 and 3. For the Block HC Cem, tight interfaces of the resin cements to CAD/CAM composite blocks were observed except for Cerasmart with the Silane group (Fig. 2). In particular, Silane group of Cerasmart, several gaps could be observed along the cement-block interfaces (arrows in Fig. 2). Further, the cement could not infiltrate into the cracks that had propagated sub-surface along the filler particles (arrows in Fig. 2). For the Primer and Silane+Primer groups, the primer layers of their thickness around 1–3 μm could be identified on roughened sandblasted surface of the composite blocks. For the Super-Bond, tight interfaces of the resin cements to CAD/CAM composite blocks were observed for Cerasmart and Enamic with the Silane+Primer group (Fig. 3). For Silane group and Primer group Cerasmart and Enamic, several gaps could be observed along the cement-block interfaces (arrows in Fig. 3).

The SFE and their components resulting from the different surface treatments are shown in Figs. 4 and 5. Dispersion force (γ_{Sd}) showed a similar SFE of approximately 40 (mN•m$^{-1}$) for all the tested groups. For the Block HC Cem, the total free energy (γ_S) of the initial group in baseline for Cerasmart was 51.3 (mN•m$^{-1}$), and for Enamic was 58.4 (mN•m$^{-1}$). For both composite blocks, the silane group showed significantly higher γ_S values than the other groups. In particular, the polar force (γ_{Sp}) and the hydrogen-bonding forces (γ_{Sh}) in the silane groups showed significantly higher values than the baseline groups.

The γ_S value in Super-Bond ranged from 51.3 to 70.6 (mN•m$^{-1}$) for Cerasmart, and 54.2 to 69.9 (mN•m$^{-1}$) for Enamic. When the primer was applied to both resin blocks, significantly higher γ_S values (from 68.8 to 70.6 mN•m$^{-1}$) obtained for both resin blocks comparing to

![Fig. 3 Representative SEM images of the cement (Super-Bond) bonded interfaces with different surface treatments.](image)

A: Cerasmart with silane coupling agent (×10,000), B: Enamic with silane coupling agent (×10,000), C: Cerasmart with primer (×10,000), D: Enamic with primer (×10,000), E: Cerasmart with silane coupling agent+primer (×10,000), F: Enamic with silane coupling agent+primer (×10,000). Arrows indicate gaps between cement and CAD/CAM composite block.
DISCUSSION

In the present study, the bonding performance of resin luting cements to CAD/CAM composite blocks was evaluated. The different surface treatments of CAD/CAM composite blocks affected the bonding performance of resin luting cements and the SFE. Therefore, the null hypotheses that surface treatments do not affect (1) the bonding performance of resin luting cements, or (2) the SFE were both rejected.

Cementation technique is important to ensure clinical success and longevity of a restoration. In order to establish a strong and durable bond, which is necessary for the biomechanical aspect of the restoration system, appropriate treatment of the respective bonding surfaces is crucial. Various surface treatments with mechanical and chemical methods have been investigated to improve the bonding of CAD/CAM composite block. Alteration of surface texture of CAD/CAM composite block for higher bonding performance can be created through physically airborne particle abrasion with alumina and chemically etching with hydrofluoric acid\(^{13}\). Alumina airborne particle abrasion creates a rough pitted surface, whereas, hydrofluoric acid etching dissolves filler particles leaving behind a honeycomb-like appearance\(^{16}\). Some studies reported superior bond strength to CAD/CAM composite block following airborne particle abrasion\(^{6}\), others reported the use of a silane or adhesive primer or both can improve the bond to CAD/CAM composite block\(^{17,18}\). In this study, the influence of chemically alterations of adherent surfaces of CAD/CAM composite block was investigated.

Theoretically, chemical bonding between methacrylate monomers is a possible bonding mechanism between resin cement and resin based restorative material. Methacrylate monomers from the resin cement...
may copolymerize with unreacted C=C double bonds of the polymeric material when there exist\(^\text{[a]}\). However, if there is a high degree of conversion of C=C double bonds in the resin material, bonding can mainly be attributed to mechanical roughening of the adherent surface or chemical alternation of the materials. The results of the present study showed that the effect of silane and primer treatments were resin cement and CAD/CAM composite block dependent. The bonding mechanism of Block HC Cem using HC Primer, which contains UDMA, MMA, acetone and others, was considered the scenario described below. Methacrylate polymers can be caused to swell by applying acetone, and MMA to establish an interpenetrating network with CAD/CAM composite blocks. Wetting the polymeric resin surface with adhesive resin or monomer liquid leads to swelling of the polymer network, which is reported to enhance adhesive bonding\(^\text{(19)}\). And also, acetone was regarded as appropriate solvent to swell the polymer surface and in turn to increase its permeability for the penetration of the UDMA/MMA mixture as a prerequisite to build up an interpenetrating network.

A conventional 4-META/MMA-TBB resin cement (Super-Bond C&B) is composed of a liquid, including a functional monomer (4-META) in MMA with a chemical-cure initiator (TBB) and a polymethyl methacrylate (PMMA) powder. The molecular weight of MMA (mw=100) is the smallest among the dental polymerizable methacrylates, leading to more easily penetration into the CAD/CAM composite blocks. It is generally accepted that, for MMA/PMMA denture base materials, grinding the surface of the denture tooth and wetting it with monomer is a pre-requisite to obtain clinically reliable bond strength\(^\text{(20)}\). So the bonding mechanism of resin cement to CAD/CAM composite block is thought to be based on an interpenetrating network or a covalent bond\(^\text{(21)}\).

From SEM images of the cement bonded interfaces of the Block HC Cem, several gaps could be observed along the cement-block interfaces Silane group of Cerasmart.
Further, the cement could not infiltrate into the cracks that had propagated sub-surface along the filler particles (arrows in Fig. 2). For the Primer and Silane+Primer groups, the primer layers of their thickness around 1–3 μm could be identified on roughened sandblasted surface of the blocks. For the Super-Bond, tight interfaces of the resin cements to CAD/CAM composite blocks were observed for Cerasmart and Enamic with the Silane+Primer group (Fig. 3). For Silane group and Primer group of Cerasmart and Enamic, several gaps could be observed along the cement-block interfaces (arrows in Fig. 3).

Measurement of contact angles with different liquid droplets is a common method to determine the SFE of a material22). In the present study, three different liquids with different γL were used for the calculation of the SFE of the CAD/CAM composite block surfaces. Diiodomethane shows lower surface tension and higher viscosity than water. Contrary to the inner body of a material, the atomic surface characteristics are not in equilibrium, as there are different interatomic interactions on the outer atomic layer23). To determine the contact angle of the tested liquids, the present study worked on the sessile drop technique with static drops. However, the contact angle can be influenced by several factors24) and does not remain constant over a long time period, as interactions at the boundary surface result in continuous increase or decrease with time. Possible interactions could be chemical reaction between the material surface and the liquid, swelling or dissolving of the specimen by the liquid or for example evaporation of the liquid25). Therefore, all measurements were performed soon after application of the liquid drop.

Factors influencing the bonding of resin cement to CAD/CAM composite block include the wettability and roughness of the adherent surface, ingredients of the resin cements, and sensitivity of the material handling technique. The use of silane or primer not only provides chemical coupling between the resin cement and CAD/CAM composite block but it also affects the SFE of the CAD/CAM composite block surface. A crown with a higher SFE will be more wettable by a resin cement. A previous study has shown that the combined application of a silane primer and adhesive increased the free surface energy of an air abraded CAD/CAM composite block26). As a result, the coefficient of spreading between the CAD/CAM composite blocks and various resin cements was improved, and the SBS between the CAD/CAM composite blocks and resin cements was correlated with their coefficient of spreading.

In the present study, though silane agent application improved SFE, it did not improve the SBS of HC Block Cem. It was speculated that grinding the CAD/CAM composite block specimens using SiC paper could not expose the filler on the surface to a sufficient degree, so the use of silane coupling agent on the surface was ineffective in improving SBS27). On the other hand, the SBS for Super-Bond was improved after pretreatment with PZ primer, but the SFE decreased to compare of baseline (no treatment). The silane agent PZ primer contains γ-MPTS, and also phosphoric acidic functional monomer, which might contribute degreased SFE values of the CAD/CAM composite block surface28). Though relatively lower SFE values, the molecular weight of MMA might be small enough to penetrate into the CAD/CAM composite blocks, creating appropriate bonding interface for Super-Bond.

When pretreatments with primers were performed, they were more effective than silane alone. Silane coupling agents promote the penetration of the luting agent into the surfaces of CAD/CAM composite blocks to enhance micromechanical interlocking, and ultimately increase bond strength. When the surfaces of the CAD/CAM composite blocks were pretreated with primer, both the resin cements showed relatively higher SBS than those when they were pretreated with silane. Increasing wetting helps the luting cement effectively infiltrate the pores of the composite surface, thereby enhancing the SBS. After being subjected to pretreatment with the combination of silane and primer, the surface morphologies of the CAD/CAM composite blocks exhibited greater degree of wettability for bonding to both resin cements, making them more suitable for the penetration of resin cements.

The clinical relevance of the present study is that the surface treatment effectiveness may depend on the type of CAD/CAM composite block and resin cement used. Therefore, it is important to understand the components of the CAD/CAM composite block and to consider the combination of surface treatment and resin cement when performing cementation of CAD/CAM composite block restorations. In this study, we focused on evaluating effective surface treatment methods based on the early bond strength (after 24 h water storage) between CAD/CAM composite blocks and resin luting cement. However, in order to understand the bond durability of resin luting cement to CAD/CAM composite blocks, further research is needed under simulated degradation conditions.

CONCLUSION

Within the limitations of the present study, it may be concluded that not only silane application but also primer application might be more effective in increasing bonding performance of resin cements to the CAD/CAM composite block. Future studies should examine the effect of pretreatment with the combination of silane and primer on the bonding durability of resin luting cement to CAD/CAM composite blocks.

CONFLICT OF INTEREST

The authors of this manuscript certify that having no proprietary, financial, or other personal interest of any nature or kind in any product, service, and/or company that is presented in this article.

ACKNOWLEDGMENTS

This work was supported in part by Grants-in-Aid for
Scientific Research, No. 17K11716, 19K10158 and 19K10159 from the Japan Society for the Promotion of Science. This project was also supported in part by the Sato Fund and by a grant from the Dental Research Center of the Nihon University School of Dentistry, Japan.

REFERENCES

1) Blatz MB, Conejo J. The current state of chairside digital dentistry and materials. Dent Clin North Am 2019; 63: 175-197.
2) Okada R, Asakura M, Ando A, Kumano H, Ban S, Kawai T, et al. Fracture strength testing of crowns made of CAD/CAM composite resins. J Prosthodont Res 2018; 62: 287-292.
3) Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, et al. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater 2017; 33: 99-109.
4) Shembish FA, Tong H, Kaizer M, Janal MN, Thompson VP, Opdam NJ, et al. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater 2016; 32: 499-509.
5) Lowson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater 2016; 32: e275-e283.
6) Stawarczyk B, Basler T, Ender A, Roos M, Ozcan M, Hammerle C. Effect of surface conditioning with airborne-particle abrasion on the tensile strength of polymeric CAD/CAM crowns luted with self-adhesive and conventional resin cements. J Prostheth Dent 2012; 107: 94-101.
7) Lührs AK, Pongprueksa P, De Munck J, Geurtsen W, Van Meerbeek B. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin. Dent Mater 2014; 30: 281-291.
8) Ishii N, Maseki T, Nara Y. Bonding state of metal-free CAD/CAM onlay restoration after cyclic loading with and without immediate dentin sealing. Dent Mater J 2017; 36: 357-367.
9) Gilbert S, Keul C, Roos M, Edelhoff D, Stawarczyk B. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: three different in vitro test methods. Clin Oral Investig 2016; 20: 227-236.
10) Higashi M, Matsumoto M, Kawaguchi A, Miura J, Minamino T, Kabetani T, et al. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization. Dent Mater J 2016; 35: 21-28.
11) Matinlinna JP, Lung CYK, Tsai JKH. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent Mater 2016; 34: 18-28.
12) Chuang SF, Kang LL, Liu YC, Lin JC, Wang CC, Chen HM, et al. Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study. Dent Mater 2017; 33: 923-933.
13) Peumans M, Valjakova EB, De Munck J, Mishevska CB, Van Meerbeek B. Bonding effectiveness of luting composites to different CAD/CAM materials. J Adhes Dent 2016; 18: 289-302.
14) Tsujiimoto A, Iwasa M, Shimamura Y, Otsuka E, Endo H, Takamizawa T, et al. Enamel bonding of single-step self-etch adhesives: influence of surface energy characteristics. J Dent 2010; 38: 123-130.
15) Hata T, Kitazato Y, Saito T. Estimation of the surface energy of polymer solids. J Adhes 1987; 21: 177-194.
16) Park JH, Choi YS. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics. J Adv Prosthodont 2016; 8: 275-284.
17) El-Damanhoury HM, Gaintantzopoulou MD. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J Prosthodont Res 2018; 62: 75-83.
18) Shinohara A, Taira Y, Sawase T. Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite. Odontology 2017; 105: 437-442.
19) Stawarczyk B, Trottmann A, Hammerle CH, Ozcan M. Adhesion of veneering resins to polymethylmethacrylate-based CAD/CAM polymers after various surface conditioning methods. Acta Odontol Scand 2013; 71: 1142-1148.
20) Palitsch A, Hannig M, Ferger P, Balkenhol M. Bonding of acrylic denture teeth to MMA/PDMA and light-curing denture base materials: the role of conditioning liquids. J Dent 2012; 40: 210-221.
21) Vallittu PK, Ruyter IE, Nat R. The swelling phenomenon of acrylic resin polymer teeth at the interface with denture base polymers. J Prosthodont Dent 1997; 78: 194-199.
22) Tamura Y, Takamizawa T, Shimamura Y, Akiba S, Yabuki C, Imai A, et al. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems. Dent Mater J 2017; 36: 762-769.
23) Marshall SJ, Bayne SC, Baier R, Tomsia AP, Marshall GW. A review of adhesion science. Dent Mater 2010; 26: e11-e16.
24) Grundke K, Poschel K, Synytska A, Frenzel R, Drechsler A, Nitschke M, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces—Towards the understanding and control of wettability for different applications. Adv Colloid Interface Sci 2015; 222: 350-376.
25) Sedev RV, Petrov JG, Neumann AW. Effect of swelling of a polymer surface on advancing and receding contact angles. J Colloid Interface Sci 1996; 180: 36-42.
26) Keul C, Müller-Hahl M, Eichberger M, Liebermann A, Roos M, Edelhoff D, et al. Impact of different adhesives on work of adhesion between CAD/CAM polymers and resin composite cements. J Dent 2014; 42: 1105-1114.
27) Shinagawa J, Inoue G, Nikaido T, Ikeda M, Burrow MF. The swelling phenomenon of dental materials. Part 1: Effects of sandblasting and silanization. J Dent 2012; 40: 210-221.
28) Tsujiimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M. Influence of the Oxygen-inhibited layer on bonding performance of dental adhesive systems: surface free energy perspectives. J Adhes Dent 2016; 18: 51-58.