Familial cases of a submicroscopic Xp22.2 deletion: genotype-phenotype correlation in microphthalmia with linear skin defects syndrome

Sarah Vergult,1 Bart Leroy,1,2 Ilse Claerhout,2 Björn Menten1

(The first two authors contributed equally to this paper.)

1Center for Medical Genetics, Ghent University Hospital & Ghent University, Ghent, Belgium; 2Department of Ophthalmology, Ghent University Hospital & Ghent University, Ghent, Belgium

Purpose: Microphthalmia with linear skin defects syndrome (MLS or MIDAS, OMIM #309801) is a rare X-linked male-lethal disorder characterized by microphthalmia or other ocular anomalies and skin lesions limited to the face and neck. However, inter- and intrafamilial variability is high. Here we report a familial case of MLS.

Methods: A mother and daughter with MLS underwent a complete ophthalmological examination, and extensive imaging, including anterior segment pictures, corneal topography and keratometry, autofluorescence, infrared reflectance and red free images, as well as spectral-domain optical coherence tomography. The mother also underwent full-field flash electroretinography. In addition, high-resolution array comparative genomic hybridization analysis was performed in both as well as in the maternal grandparents of the proband.

Results: Microphthalmia and retinal abnormalities were noted in the proband and the mother, whereas only the mother presented with scars of the typical neonatal linear skin defects. Array comparative genomic hybridization analysis revealed a 185–220 kb deletion on chromosome band Xp22.2 including the entire HCCS gene.

Conclusions: The identification of a deletion including HCCS led to the diagnosis of MLS in these patients. Retinal abnormalities can be part of the ocular manifestations of MLS.

Microphthalmia with linear skin defects syndrome or MLS (OMIM #309801) is an embryonically male-lethal X-linked condition characterized by microphthalmia and linear, erythematous dermatological lesions. There is, however, high inter- and intrafamilial variability. Until now, 61 patients have been described of whom 11 cases were familial (Appendix 1) [1-41]. Of these 61 patients, ten were reported to have eye anomalies without skin lesions, and four presented with skin defects without eye anomalies. In most of the cases, the syndrome is caused by deletion of a region on chromosome band Xq22.2 containing three genes MID1, HCCS, and ARHGAP6 of which HCCS is the only gene entirely contained within this interval [42,43]. At first, ARHGAP6, which encodes a rho GTPase activating protein (GAP), was considered the most likely candidate gene [16]. However, Wimmlinger et al. recently reported three patients with MLS with a de novo mutation in the HCCS gene, indicating that HCCS is the causal gene for MLS [29,31]. This gene encodes a mitochondrial enzyme, the holocytochrome c synthase, which covalently links a heme group to the apoprotein of cytochrome c and c1, resulting in the formation of holocytochrome c and c1. Holocytochrome c plays an essential role in oxidative phosphorylation in the mitochondrial respiratory chain [44,45]. Here we report the first familial cases in which unilateral microphthalmia with linear skin defects in the mother and isolated microphthalmia in the daughter are caused by a microdeletion spanning the entire HCCS gene and part of ARHGAP6.

METHODS

Clinical examination: Informed consent was obtained from all subjects, including the grandparents following the Tenets of Helsinki. This study was approved by the ethics committee of Ghent University Hospital. The proband is a 12-year-old girl, while her mother is 45 (Figure 1). Both patients are affected with MLS and underwent a complete ophthalmological examination, and extensive imaging, with anterior segment pictures, corneal topography and keratometry, autofluorescence, infrared reflectance and red free images, as well as spectral-domain optical coherence tomography (HRA2 and Spectralis, Heidelberg Engineering, Heidelberg, Germany) and electroretinography (Retipport, Roland Consult, Brandenburg an der Havel, Germany)
Appendix 2

Conventional karyotyping revealed a normal female karyotype, 46,XX, in the proband and her mother. Neither the maternal grandmother nor the maternal grandfather of the proband carried the deletion of 185–220 kb on chromosome band Xp22.2 in the female karyotype, 46,XX, in the proband and her mother. Subsequent array CGH analysis revealed submicroscopic deletions temporal from the macula and into the whole periphery (Figure 3). Whereas the mother had scars in the neck area consequent upon neonatal skin lesions typical of MLS (Figure 3), the skin of the proband was entirely normal.

A general medical and cardiological examination was performed on the proband and her mother. Paternity testing confirmed that both grandparents are the biologic parents of the mother and that the mother is the biologic mother of the proband.

In keeping with the male lethality of the MLS, the mother of the proband had three additional healthy daughters, and suffered three spontaneous abortions in the first trimester of pregnancy (Figure 1). Although never proven, these might have been male fetuses or severely affected female fetuses.

Genotype: Conventional karyotyping revealed a normal female karyotype, 46,XX, in the proband and her mother. Subsequent array CGH analysis revealed submicroscopic deletion of 185–220 kb on chromosome band Xp22.2 in the proband and the mother. Neither the maternal grandmother nor the maternal grandfather of the proband carried the Xp22.2 deletion, indicating that the deletion arose de novo in the mother. Paternity testing confirmed that both grandparents are the biologic parents of the mother and that the mother is indeed the biologic mother of the proband.

The data of the mother (Patient 255,415) of the proband (Patient 255,416) have been male fetuses or severely affected female fetuses.

Genotype: Conventional karyotyping revealed a normal female karyotype, 46,XX, in the proband and her mother. Subsequent array CGH analysis revealed submicroscopic deletion of 185–220 kb on chromosome band Xp22.2 in the proband and the mother. Neither the maternal grandmother nor the maternal grandfather of the proband carried the Xp22.2 deletion, indicating that the deletion arose de novo in the mother. Paternity testing confirmed that both grandparents are the biologic parents of the mother and that the mother is indeed the biologic mother of the proband.

The deleted region contains the entire HCCS gene and partially spans ARHGAP6 (Figure 4). The telomeric breakpoint lies in the intergenic region between MIDI and HCCS. The centromeric breakpoint lies in ARHGAP6. This deletion has not yet been reported by the Toronto Database of Genomic Variants. The data of the mother (Patient 255,415)
and the proband (Patient 255,414) were submitted to the DECIPHER database (Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources).

X-inactivation testing revealed complete skewing in the mother and the proband. The chromosome containing the deletion is likely the inactive one in the mother and the proband.

DISCUSSION

Most of the previously reported MLS cases are sporadic although a few families with multiple affected individuals have been reported [2,18,20,29,30]. Here we report on the first familial cases in which the deleted region spans the entire \textit{HCCS} gene and part of the \textit{ARHGAP6} gene.

The proband reported here presents with unilateral microphthalmia without skin lesions, whereas the mother had scars from neonatal linear skin defects in the neck region. The pattern of ocular abnormalities seen in the microphthalmic right eye of the proband suggests the microphthalmia is due to the predominant involvement of the anterior segment of the eye (anterior microphthalmia). In addition, the central and inferotemporal opacities of the right cornea in the proband represent the mild end of the spectrum of corneal opacification, of which classic sclerocornea is the extreme end. Corneal opacification has been described in 15 patients, and sclerocornea in 17 patients reported with ocular involvement [3,6,11,15,19,24,29,30].
Only four reports mention retinal abnormalities in MLS patients, varying from chorioretinopathy over abnormalities of the retinal pigment epithelium (RPE) and foveal hypoplasia in eyes that also show microphthalmia [7,19,21], as well as multiple patches of hypopigmentation of the RPE in an otherwise normal eye [24]. Fundoscopy and fluorescein angiography of the right eye of the mother of the proband, showed white, drusenoid deposits and reticular RPE abnormalities with hyper- and hypopigmentation in the peripheral macula and midperipheral retina (Figure 3). These findings, combined with the reduced overall retinal function as measured with electroretinography (Figure 3), suggest that retinal abnormalities may be the only ocular manifestation of MLS in an otherwise normal eye.

Although the characteristics of MLS are microphthalmia and linear skin lesions, there is inter- and intrafamilial phenotypic variability. Ocular and skin anomalies are present in
most of the reported patients (47/61). A small number do not present with ocular manifestations (4/61; Appendix 1). It has been proposed that X-inactivation may play a role in the phenotypic variability in affected female patients. In 16/21 of the analyzed female individuals with MLS, skewed X-inactivation of the abnormal X chromosome was detected (Appendix 1). As it is suggested that X-inactivation ratios may vary between different tissues within an individual [48,49], the inter- and intrafamilial phenotypic variability is probably caused by differing degrees of skewing. Morleo et al. hypothesized that a milder phenotype or the total absence of MLS clinical manifestations may be due to a totally skewed X-inactivation that forces preferential activation of the unaffected X [50]. Here complete skewing was noted in the mother and daughter on blood leukocytes for which the X chromosome containing the deletion is likely the inactive one [29,30,50,51]. The clinical manifestations in the daughter are less severe than in the mother. It is indeed likely that the severity of the phenotype is more related to the tissue-specific degree of X-inactivation of the X-chromosome with either a mutation in, or a deletion of HCCS, than the effect of the mutation on the protein product itself. Since the proband does not have skin lesions, and the scars resulting from the neonatal skin defects in the mother are minimal, the two were not diagnosed with MLS at first.

Interestingly, Wimplerger et al. reported a de novo loss-of-function mutation in HCCS in a female with bilateral microphthalmia and severe sclerocornea, suggesting that HCCS is a candidate gene for severe eye malformations [31].

To further unravel the role of HCCS in the development of the eye, more patients with severe eye malformations need to be screened, and functional studies are required. It will also be interesting to see whether the microphthalmia is more commonly of an anterior type in MLS.

The use of array CGH in our patients has proven to be useful as the 185–220 kb deletion in these patients would have never been detected with conventional karyotyping. Most of the previous cases had larger cytogenetically visible deletions or translocations. Recently, Balikova et al. highlighted the importance of array CGH in diagnostics for patients with congenital eye malformations [52]. Using this technique, the phenotypic spectrum associated with the deletion of HCCS can be further broadened. In conclusion, we report on a family with two cases of unilateral microphthalmia of whom only one showed scars of neonatal linear skin lesions with a 185–220 kb microdeletion containing HCCS and ARHGAP6, supporting the hypothesis that HCCS is a candidate gene for severe eye malformations.

APPENDIX 1.

Overview of all patients reported with MLS. Familial cases are highlighted in bold. Patients reported in abstracts or patients for whom no aberration on the X-chromosome was detected were left out of this table. NA=not applicable, ND=not determined. To access the data, click or select the words “Appendix 1.” This will initiate the download of a pdf file.

APPENDIX 2.

Ocular measurements of proband and her mother and normal values for comparison. To access the data, click or select the words “Appendix 2.” This will initiate the download of a pdf file.

ACKNOWLEDGMENTS

The authors are indebted to the patients. We thank W. Lissens for the X-inactivation assays. Sarah Vergult is supported by a Ph.D. fellowship of the Research Foundation - Flanders (FWO). Bart P. Leroy is a Senior Clinical Investigator of
REFERENCES

1. al-Gazali LI, Mueller RF, Caine A, Antoniou A, McCartney A, Fitchett M, Dennis NR. Two 46,XX,t(X;Y) females with linear skin defects and congenital microphthalmia: a new syndrome at Xp22.3. J Med Genet 1990; 27:59-63. [PMID: 2308157].

2. Allanson J, Richter S. Linear skin defects and congenital microphthalmia: a new syndrome at Xp22.2. J Med Genet 1991; 28:143-4. [PMID: 2002490].

3. Anguiano A, Yang X, Felix JK, Hoo JJ. Twin brothers with MIDAS syndrome and XX karyotype. Am J Med Genet A 2003; 119A:47-9. [PMID: 12709758].

4. Bird LM, Krous HF, Eichenfield LF, Swalwell CI, Jones MC. Female infant with oncocytic cardiomyopathy and microphthalmia with linear skin defects (MLS): a clue to the pathogenesis of oncocytic cardiomyopathy? Am J Med Genet 1994; 53:141-8. [PMID: 7856638].

5. Cain CC, Saul D, Attanasio L, Oehler E, Hamosh A, Blake-more K, Stetten G. Microphthalmia with linear skin defects (MLS) syndrome evaluated by prenatal karyotyping, FISH and array comparative genomic hybridization. Prenat Diagn 2007; 27:373-9. [PMID: 17286317].

6. Cape CJ, Zaidman GW, Beck AD, Kaufman AH. Phenotypic variation in ophthalmic manifestations of MIDAS syndrome (microphthalmia, dermal aplasia, and sclerocornea). Arch Ophthalmol 2004; 122:1070-4. [PMID: 15249380].

7. Donnenfeld AE, Graham JM Jr, Packer RJ, Aquino R, Berg SZ, Emanuel BS. Microphthalmia and chorioretinal lesions in a girl with an Xp22.2-pter deletion and partial 3p trisomy: clinical observations relevant to Aicardi syndrome gene localization. Am J Med Genet 1990; 37:182-6. [PMID: 2248284].

8. Eng A, Lebel RR, Elejalde BR, Anderson C, Bennett L. Linear facial skin defects associated with microphthalmia and other malformations, with chromosome deletion Xp22.1. J Am Acad Dermatol 1994; 31:680-2. [PMID: 8089303].

9. Enright F, Campbell P, Stallings RL, Hall K, Green AJ, Sweeney E, Barnes L, Watson R. Xp22.3 microdeletion in a 19-year-old girl with clinical features of MLS syndrome. Pediatr Dermatol 2003; 20:153-7. [PMID: 12657015].

10. Happle R, Daniels O, Koopman RJ. MIDAS syndrome (microphthalmia, dermal aplasia, and sclerocornea): an X-linked phenotype distinct from Goltz syndrome. Am J Med Genet 1993; 47:710-3. [PMID: 8267001].

11. Kapur R, Tu EY, Toyran S, Shah P, Vangveeravong S, Lloyd WC 3rd, Edward DP. Corneal pathology in microphthalmia with linear skin defects syndrome. Cornea 2008; 27:734-8. [PMID: 18580270].

12. Kayerili H, Cox TC, Cox LL, Basaran S, Kilic G, Ballabio A, Yüksel-Apak M. Molecular characterisation of a new case of microphthalmia with linear skin defects (MLS). J Med Genet 2001; 38:411-7. [PMID: 11424926].

13. Kherbaoui-Redouani L, Eschard C, Bednarek N, Morville P. Cutaneous aplasia, non compaction of the left ventricle and severe cardiac arrhythmia: a new case of MLS syndrome (microphthalmia with linear skin defects). Arch Pediatr 2003; 10:224-6. [PMID: 12829336].

14. Kobayashi M, Kiyosawa M, Toyoura T, Tokoro T. An XX male with microphthalmos and sclerocornea. J Pediatr Ophthalmol Strabismus 1998; 35:122-4. [PMID: 9559515].

15. Kono T, Migita T, Koyama S, Seki I. Another observation of microphthalmia in an XX male: microphthalmia with linear skin defects syndrome without linear skin lesions. J Hum Genet 1999; 44:63-8. [PMID: 9929982].

16. Kutsche K, Werner W, Bartsch O, von der Wense A, Meinecke P, Gal A. Microphthalmia with linear skin defects syndrome (MLS): a male with a mosaic paracentric inversion of Xp. Cytogenet Genome Res 2002; 99:297-302. [PMID: 12900578].

17. Lindor NM, Michels VV, Hoppe DA, Driscoll DJ, Leavitt JA, Dewald GW. Xp22.3 microdeletion syndrome with microphthalmia, sclerocornea, linear skin defects, and congenital heart defects. Am J Med Genet 1992; 44:61-5. [PMID: 1519653].

18. Lindsay EA, Grillo A, Ferrero GB, Roth EJ, Magenis E, Grompe M, Hulten M, Gould C, Baldini A, Zoghbi HY, Ballabio A. Microphthalmia with linear skin defects (MLS) syndrome: clinical, cytogenetic, and molecular characterization. Am J Med Genet 1994; 49:229-34. [PMID: 8116674].

19. Morleo M, Pamparo T, Perone L, Gregato G, Le Caignec C, Mueller RF, Ogata T, Raas-Rothschild A, de Blois MC, Wilson LC, Zaidman G, Zuffardi O, Ballabio A, Franco B. Microphthalmia with linear skin defects (MLS) syndrome: clinical, cytogenetic, and molecular characterization of 11 cases. Am J Med Genet A 2005; 137:190-8. [PMID: 16059943].

20. Mucke J, Happle R, Theile H. MIDAS syndrome respectively MLS syndrome: a separate entity rather than a particular lyonization pattern of the gene causing Goltz syndrome. Am J Med Genet 1995; 57:117-8. [PMID: 7645589].

21. Naritomi K, Izumikawa Y, Nakataki S, Fukushima Y, Wakisaka K, Niikawa N, Hirayama K. Combined Goltz and Aicardi syndromes in a terminal Xp deletion: are they a contiguous gene syndrome? Am J Med Genet 1991; 44:61-5. [PMID: 7856638].

22. Ogata T, Wakui K, Muroya K, Ohashi H, Matsuo N, Brown DM, Ishii T, Fukushima Y. Microphthalmia with linear skin defects syndrome in a mosaic female infant with monosomy for the Xp22 region: molecular analysis of the Xp22 breakpoint and the X-inactivation pattern. Hum Genet 1998; 103:51-6. [PMID: 9737776].
23. Paulger BR, Kraus EW, Pulitzer DR, Moore CM. Xp microdeletion syndrome characterized by pathognomonic linear skin defects on the head and neck. Pediatr Dermatol 1997; 14:26-30. [PMID: 9050760].

24. Sharma VM, Ruiz de Luzuriaga AM, Waggoner D, Greenwald M, Stein SL. Microphthalmia with linear skin defects: a case report and review. Pediatr Dermatol 2008; 25:548-52. [PMID: 18950397].

25. Steichen-Gersdorf E, Griesmaier E, Pientka FK, Kotzot D, Kutsche K. A severe form of the X-linked microphthalmia with linear skin defects syndrome in a female newborn. Clin Dysmorphol 2010; 19:82-4. [PMID: 20179582].

26. Stratton RF, Walter CA, Paulgar BR, Price ME, Moore CM. Second 46,XX male with MLS syndrome. Am J Med Genet 1998; 76:37-41. [PMID: 9508062].

27. Temple IK, Hurst JA, Hing S, Butler L, Baraitser M. De novo deletion of Xp22.2-pter in a female with linear skin lesions of the face and neck, microphthalmia, and anterior chamber eye anomalies. J Med Genet 1990; 27:56-8. [PMID: 2308156].

28. Thies U, Rao VV, Engel W, Schmidtke J. Physical mapping of two Xp markers DXS16 and DXS143. Hum Genet 1991; 86:418-20. [PMID: 1999347].

29. Wimphlinger I, Morleo M, Rosenberger G, Iaconis D, Orth U, Meinecke P, Lerer I, Ballabio A, Gal A, Franco B, Kutsche K. Mutations of the mitochondrial holocytochrome c-type synthase in X-linked dominant microphthalmia with linear skin defects syndrome. Am J Hum Genet 2006; 79:878-89. [PMID: 17039964].

30. Wimphlinger I, Rauch A, Orth U, Schwarzer U, Trautmann U, Kutsche K. Mother and daughter with a terminal Xp deletion: implication of chromosomal mosaicism and X-inactivation in the high clinical variability of the microphthalmia with linear skin defects (MLS) syndrome. Eur J Med Genet 2007; 50:421-31. [PMID: 17845869].

31. Wimphlinger I, Shaw GM, Kutsche K. HCCS loss-of-function missense mutation in a female with bilateral microphthalmia and sclerocornea: a novel gene for severe ocular malformations? Mol Vis 2007; 13:1475-82. [PMID: 17893649].

32. Zvulunov A, Kachko L, Manor E, Shinwell E, Carmi R. Reticulolinear aplasia cutis congenita of the face and neck: a distinctive cutaneous manifestation in several syndromes linked to Xp22. Br J Dermatol 1998; 138:1046-52. [PMID: 9747372].

33. Alberry MS, Juvinic G, Crolla J, Soothill P, Newbury-Ecob R. Pseudotali as a feature of microphthalmia with linear skin defects syndrome. Clin Dysmorphol 2011; 20:111-3. [PMID: 21200317].

34. Ropers HH, Zuffardi O, Bianchi E, Tieplo L. Agenesis of corpus callosum, ocular, and skeletal anomalies (X-linked dominant Aicardi’s syndrome) in a girl with balanced X/3 translocation. Hum Genet 1982; 61:364-8. [PMID: 6818132].

35. Schluth C, Cossee M, Girard-Lemaire F, Carelle N, Dollfus H, Jeandidier E, Flori E. Phenotype in X chromosome rearrangements: pitfalls of X inactivation study. Pathol Biol (Paris) 2007; 55:29-36. [PMID: 16690229].

36. Hobson GM, Gibson CW, Aragon M, Yuan ZA, Davis-Williams A, Banser L, Kirkham J, Brook AH. A large X-chromosomal deletion is associated with microphthalmia with linear skin defects (MLS) and amelogenesis imperfecta (XAI). Am J Med Genet A 2009; 149A:1698-705. [PMID: 19610109].

37. Paul T, Laohakunakorn P, Long B, Saul JP. Complete elimination of incessant polymorphic ventricular tachycardia in an infant with MIDAS syndrome: use of endocardial mapping and radiofrequency catheter ablation. J Cardiovasc Electrophysiol 2002; 13:612-5. [PMID: 12108507].

38. Carman KB, Yakut A, Sabuncu I, Yarar C. MIDAS (microphthalmia, dermal aplasia, sclerocornea) syndrome with central nervous system abnormalities. Clin Dysmorphol 2009; 18:234-5. [PMID: 19726975].

39. Qidwai K, Pearson DM, Patel GS, Pober BR, Immken LL, Cheung SW, Scott DA. Deletions of Xp provide evidence for the role of holocytochrome C-type synthase (HCCS) in congenital diaphragmatic hernia. Am J Med Genet A 2010; 152A:1588-90. [PMID: 20503342].

40. Zumwalt J, Moorhead C, Golkar L. Fourteen-month-old girl with facial skin thinning. Pediatr Dermatol 2012; 29:217-8. [PMID: 22409474].

41. García-Rabasco A, De-Unamuno B, Martínez F, Febrer-Bosch I, Alegre-de-Miquel V. Microphthalmia with Linear Skin Defects Syndrome. Pediatr Dermatol 2012; 2012:1525-6. [PMID: 22612277].

42. Wapenaar MC, Bassi MT, Schaefer L, Grillo A, Ferrero-Bosch I, Alegre-de-Miquel V. Microphthalmia with Linear Skin Defects Syndrome. Pediatr Dermatol 2012; 2012:1525-6. [PMID: 22612277].

43. Wapenaar MC, Schiaffino MV, Bassi MT, Schaefer L, Chinault AC, Zoghbi HY, Ballabio A. The genes for X-linked ocular albinism (OAI) and microphthalmia with linear skin defects (MLS): cloning and characterization of the critical regions. Hum Mol Genet 1993; 2:947-52. [PMID: 8364577].

44. Bernard DG, Gabily ST, Dujardin G, Merchant S, Hamel PP. Overlapping specificities of the mitochondrial cytochrome c and c1 heme lyases. J Biol Chem 2003; 278:49732-42. [PMID: 14514677].

45. Moraes CT, Diaz F, Barrientos A. Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals. Biochim Biophys Acta 2004; 1659:153-9. [PMID: 15576047].

46. Buyssse K, Delle Chiaie B, Van Coster R, Loeyes B, De Paepe A, Mortier G, Speleman F, Menten B. Challenges for CNV interpretation in clinical molecular karyotyping: lessons learned from a 1001 sample experience. Eur J Med Genet 2009; 52:398-403. [PMID: 19765681].

47. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the poly (A) tract. Mol Vis 2011; 17:410-19. [PMID: 21588159].

© 2013 Molecular Vision
48. Gale RE, Linch DC. Interpretation of X-chromosome inactivation patterns. Blood 1994; 84:2376-8. [PMID: 7919357].

49. Azofeifa J, Waldherr R, Cremer M. X-chromosome methylation ratios as indicators of chromosomal activity: evidence of intraindividual divergencies among tissues of different embryonal origin. Hum Genet 1996; 97:330-3. [PMID: 8786075].

50. Morleo M, Franco B. Dosage compensation of the mammalian X chromosome influences the phenotypic variability of X-linked dominant male-lethal disorders. J Med Genet 2008; 45:401-8. [PMID: 18463129].

51. Van den Veyver IB. Skewed X inactivation in X-linked disorders. Semin Reprod Med 2001; 19:183-91. [PMID: 11480916].

52. Balikova I, de Ravel T, Ayuso C, Thienpont B, Casteels I, Villaverde C, Devriendt K, Fryns JP, Vermeesch JR. High frequency of submicroscopic chromosomal deletions in patients with idiopathic congenital eye malformations. Am J Ophthalmol 2011; 151:1087-94. [PMID: 21353197].