Sex-biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome

Brian Noh, Louise D. McCullough, Jose F. Moruno-Manchon*

https://doi.org/10.4103/1673-5374.340406

Date of submission: November 17, 2021
Date of decision: December 25, 2021
Date of acceptance: January 18, 2022
Date of web publication: April 25, 2022

From the Contents

Introduction 31
Search Strategy 32
Autophagy Overview 32
Sex-Biased Regulation of Autophagy in the Brain 33
Autophagy in Ischemic Stroke 34
Sex Differences in Autophagy in Stroke 35
Conclusions 35

Introduction
Growing evidence supports the idea that the onset, progression, prevention, and treatment of diseases are influenced by sex and gender (Mauvais-Jarvis et al., 2020). Considering these factors, gender medicine, as a part of precision medicine, aims to design therapies that include the use of a specific drug, in a specific dose, for each individual (Shang et al., 2021).

Biologic and epidemiologic differences importantly contribute to sex differences in stroke incidence, prevalence, severity, and case fatality (Zhang et al., 2021b). Identifying risk factors that lead to sex differences in stroke is challenging, as these factors may be dependent on other variables, such as age. Exploring different biological factors that affect the incidence, severity, and recovery from ischemic stroke may help elucidate the mechanisms that determine sex differences in ischemic stroke. One of the most studied factors is gonadal hormones, but genetic factors including the sex chromosome complement (XX vs. XY) may also play an important role in mediating sex differences in stroke.

Ischemic stroke triggers multiple pathological events, including oxidative stress, adenosine triphosphate (ATP) deprivation, mitochondrial dysfunction, cellular ion overload, and cystotoxic edema, all of which contribute to neuronal death. Ischemic stroke also activates autophagy, which influences ischemic stroke outcomes (Wang et al., 2021). Autophagy is a self-degrading cellular process that is tightly regulated by multiple signaling pathways regulated by internal and external stimuli. Macrophagy, the best-studied autophagy mechanism, is orchestrated by numerous core proteins to engulf cytoplasmic material and degrade cargo after autophagy vesicles eventually fuse with lysosomes (Klionsky et al., 2021; Figure 1). The levels and the activity of these signaling pathways and of autophagy-related proteins are altered during ischemic insults (Wang et al., 2021). Gonadal hormones (estrogen) regulate several signaling pathways associated with autophagy and several autophagy-related genes (ATGs) are located on the X-chromosome (Congdon, 2018; Azcoitia et al., 2019), suggesting that autophagy may be regulated by sex-related factors.

Recent reviews have comprehensively summarized clinical and pre-clinical studies on the role of brain autophagy in stroke (Ajoolabady et al., 2021; Wang et al., 2021). However, none have specifically addressed sex-biased autophagy as a contributor to differences in stroke outcome between the sexes. Most preclinical studies in the stroke field still do not include both sexes in their in vitro and in vivo analyses. Identifying the cellular mechanisms that govern these differences is required to reach the ultimate goal of providing precision medicine for patients. In this review, we highlight the evidence for sex differences in stroke in human and animal models, and how these differences can be explained by gonadal hormones and the sex chromosome content.
Sex Differences in Stroke

Stroke is a leading cause of mortality in the United States, and sex is a determining factor in the incidence and pathology of stroke (Bushnell et al., 2018). Age-specific incidence rates are substantially lower in females than males in younger and middle-aged groups (Bushnell et al., 2018). However, age reverses the “female protected” phenotype. Incidence rates in females are similar or even higher than those in males in the oldest age groups (Howard et al., 2019; Madsen et al., 2020). Currently, more women (4.1 million) live with stroke-related disability than men (3.1 million), and women are more likely to die from men (6.2% vs. 4.3%) after a stroke (Benjamin et al., 2017).

In pre-clinical studies, young female mice and rats subjected to transient ischemia induced by middle cerebral artery occlusion (MCAO) have reduced brain injury compared to young males (Acaz-Fonseca et al., 2020; Patrizi et al., 2021). Similarly, in spontaneously hypertensive stroke-prone rats (a model resembling human hypertension and stroke), a comparison of ischemic stroke outcomes showed that male rats had their first stroke 3 weeks after a high-salt diet while females were event-free for 6 weeks. Further, females had significantly longer survival time, and brain damage progressed at a slower rate (detectable with magnetic resonance imaging) compared with males (Ballerio et al., 2009). This protection was lost after ovariotomy in MCAO models and restored with estrogen supplementation (Acaz-Fonseca et al., 2020; Patrizi et al., 2021). As observed in human data, the resemblance in the response to experimental stroke.

Manwani et al. (2013) found that infant size was affected by aging in mice subjected to experimental MCAO. Mice were subjected to focal transient cerebral ischemia for 60 minutes followed by reperfusion. Young (5–6 months old) female mice had larger infarcts compared with young females, however, in middle-aged (14–15 months old) male mice, the infarct volume was smaller compared with young males, but middle-aged females had larger infarcts than young females. The infarct volume did not differ between sexes in aged (20–22 months) group. These results support the hypothesis that aging worsens stroke outcomes disproportionally in women compared to men.

After menopause, the decline in gonadal hormones is associated with an increased risk of stroke, suggesting that women lose the protection that estradiol confers, which may explain the shift in the stroke incidence in women with aging. Differences in life expectancy between sexes and other factors also contribute to the reversal of the trend (Bushnell et al., 2018).

Considerable research has confirmed the beneficial effects of estrogen in stroke in preclinical models (Sohrabi et al., 2019). Importantl, the timing in the initiation of hormone therapy appears to be critical for determining its therapeutic effects. Oral administration of estradiol within 6 years after menopause mitigated the increase in carotid-artery intima-media thickness seen with aging, a measure of atherosclerotic burden. However, the beneficial effect of estradiol was absent when the hormone was administered more than 10 years after menopause (Bujalski et al., 2013). Thus, these results support the hypothesis that aging worsens stroke outcomes disproportionally in women compared to men.

Autophagy Overview

Autophagy is a self-degrading mechanism that mediates the degradation of intracellular material, such as protein aggregates, damaged organelles, and microorganisms. Basically, autophagy (1) recycles molecules to rebuild new structures; (2) recovers energy by breaking intramolecular bonds; (3) allows cells to adapt to altered environmental conditions; and (4) protects cells by eliminating pathogens and toxic aggregates (Klionsky et al., 2021). Three types of autophagy are classified by the manner in which the cargo is delivered into the lysosomes: macroautophagy, microautophagy, and chaperone-mediated autophagy. Chaperone-mediated autophagy specifically degrades proteins containing a KFERQ-like motif. Microautophagy non-specifically degrades cytoplasmic material by lysosome-mediated phagocytosis. Macropautophagy is the most well-studied autophagy type and is characterized by using double-membrane structures (phagophores) isolated from different intracellular lipid membrane sources (endoplasmic reticulum, Golgi apparatus, mitochondria, and plasma membrane) (Pavel and Rubinstein, 2017). During macroautophagy (hereafter called autophagy), a phagophore elongates while engulfing cytoplasmic material, and intermediate filaments and microfilaments mediate phagophore closure to form a double-membrane vesicle (autophagosome) that later fuses with lysosomes (autolysosomes). The hydrolytic content of lysosomes/endosomes releases into the double-membrane vesicle and degrades the cargo (Loeffler, 2019, Figure 1).

Many neurodegenerative disorders exhibit autophagy impairment, which may interfere with the degradation of protein aggregates, toxic compounds, and damaged organelles. Differentiated neurons are especially vulnerable to protein aggregate accumulation as they cannot dilute harmful cellular material by cell division, and neurons importantly depend on autophagy for clearing protein aggregate accumulation as they cannot dilute harmful cellular material by cell division, and neurons importantly depend on autophagy for clearing protein aggregate accumulation as they cannot dilute harmful cellular material by cell division, and neurons importantly depend on autophagy for clearing protein aggregate accumulation as they cannot dilute harmful cellular material by cell division, and neurons importantly depend on autophagy for clearing.
Table 1 Different protein complexes in each autophagy stage contribute to the progression of autophagy

Autophagy stage	Protein complex/system	Core autophagy proteins
Initiation complex	ULK1 complex	Atg1, Atg12, Atg5, Atg10, FIP200
Phagophore formation	Class III PI3K complex	Atg3, Atg9, Atg16L1, Beclin1, Atg4, AMPK
Autophagosome formation and maturation	ATG12 conjugation system	Atg12, Atg5, Atg16L1, Atg10
LC3 conjugation system	LC3, ATG4B, ATG7	

Summary of autophagy-related signaling pathways

Multiple signaling pathways that respond to extracellular and intracellular stimuli are coordinated to regulate autophagy. There have been several recent reviews on the mechanisms that govern brain autophagy during the ischemic stroke (Ajoobady et al., 2021; Wang et al., 2021). Here, we briefly introduce the pathways that might have specific relevance for understanding potential sex differences in autophagy in stroke.

mTOR is a serine/threonine kinase that inhibits autophagy initiation by phosphorylating ULK1. mTOR plays a central role not only in autophagy but also in cell growth, protein synthesis, cell cycle, and apoptosis (Kim and Guan, 2015). The activity of mTOR is regulated by the PI3K family, PI3Ks can be divided into three classes (class I, II, and III). While class I PI3Ks are positive regulators of mTOR, class II PI3Ks promote autophagy progression by producing the phospholipid phosphatidylinositol 3-phosphate (Yu et al., 2015).

5′-AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is activated when the ATP/AMP ratio decreases, which occurs after ischemic stroke. AMPK inhibits mTOR and consequentially activates autophagy (Zhang and Miu, 2018). In addition, physiological autophagy is regulated by AMPK activity in the brain. AMPK developmentally activates autophagy by regulating the expression of multiple PI3Ks and Beclin1 (involved in phagophore formation). AMPK activation enhances the expression of the transcription factor NF-kB in the brain (Cook et al., 2018; Yun et al., 2018). Enhanced activity of the transcription factor NF-kB is associated with reduced autophagy during neurodegenerative disorders and ischemic stroke (Bandyopadhyay et al., 2018). Thus, AMPK can provide neuroprotection in stroke models (Li et al., 2013). This data suggests that estradiol activates autophagy via inhibiting NF-kB. However, the activation of NF-kB exacerbates autophagy in a traumatic brain injury rat model (Li et al., 2020). The signaling pathways linked to brain autophagy positively regulated by estradiol are summarized in Figure 3.

Estradiol inhibits autophagy in the brain

In ischemic stroke mouse models, estradiol supplementation may also have an inhibitory effect on autophagy in the brain by downregulating hypoxia inducible factor 1α (HIF-1α), which is a transcription factor that induces autophagy (Hsieh et al., 2015). Estradiol can also inhibit autophagy by increasing levels of p62 and by reducing levels of LC3-II. ATG5 (a component of the ATG12 conjugation system), and Beclin1 (involved in phagophore formation), in the hippocampus after stroke (Li et al., 2017). Thus, estradiol can act as an autophagy inhibitor in stroke models and need to be identified for the proper application of therapeutic strategies.

Effects of other gonadal hormones in autophagy in the brain

Progesterone first appeared as a potential neuroprotective steroid by upregulating autophagy in an amyotrophic lateral sclerosis mouse model (Kim et al., 2013). In cultured astrocytes, progesterone activates autophagy and prevents the accumulation of neurotoxic aggregates (Kim et al., 2012). In ischemic brains of male rats and in ex vivo microglia derived from adult male rats treated with the toxic lipopolysaccharide, progesterone administration enhanced autophagy and reduced inflammation activation (Espinoza-Garcia et al., 2020). These studies highlight the beneficial effects of progesterone in the brain.

Few studies have investigated the effects of testosterone on autophagy in the brain, and existing data from rat cardiac tissue indicate that testosterone supplementation improved heart function by upregulating the expression of Bcl-2, which binds to Beclin1 and interrupts autophagy initiation (Fu et al., 2017). However, testosterone can be aromatized into estradiol by aromatase. In the brain, testosterone supplementation could turn to autophagy stimulation induced by aromatization-derived estradiol. Androstenedione is another androgen that can upregulate autophagy via reactive oxidative species in osteosarcoma (Liu et al., 2014). However, there is not much data about the role of androstenedione in autophagy in the brain.

In conclusion, estradiol is a master regulator of autophagy in the brain by altering the expression of multiple ATG's and by modulating different signaling pathways. Overall, estrogen is an activator of autophagy; however, under certain circumstances, estrogen can inhibit autophagy (Hsieh et al., 2015; Li et al., 2017). It is necessary to determine the sex-specific effects of the different gonadal hormones in autophagy in ischemic stroke. Potential sex-specific signaling pathways seen in both health and disease need to be elucidated.
Review

Figure 2 | The Four Core Genotype mouse model. Creating a wild-type mouse female, XX(A), with a mouse male, XY(1A)yy(2A), in which the gene that determines testes (Sry) was deleted from the Y-chromosome and inserted on an autosomal chromosome (A), produces litters with four genotypes, characterized by the number of X-chromosomes and the presence of the Sry gene. Thus, we have wild-type females, XX(A), phenotypically normally females, XX(1A)yy(2A), and phenotypically males with two X-chromosomes with an autosomal chromosome with Sry, XX(AAyy).

Figure 3 | Estrogen induces autophagy through several signaling pathways. Estrogen inhibits NF-κB, GSK3β, and mTOR that are direct autophagy inhibitors as occurs for NF-κB, or by mediating different kinases. Estrogen activates different kinases, the PI3K/Akt signaling pathway that ultimately phosphorylates and inhibits GSK3β and mTOR. Estrogen also activates AMPK that phosphorylates and inhibits mTOR. Thus, inhibiting NF-κB, GSK3β, and mTOR promotes autophagy. Red symbolizes negative effect on autophagy, while green symbolizes positive effect on autophagy. Akt: Protein kinase B; AMPK: AMP-activated protein kinase; GSK3β: glycogen synthase kinase-3β; mTOR: mammalian target of rapamycin; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; PI3K: phosphoinositide 3-kinases.

Role of the X-chromosome in autophagy in the brain

Several genes involved in the machinery and signaling pathways that regulate autophagy in the brain localize to the X-chromosome. So far, no ATG’s linked to the Y-chromosome have been found, suggesting that the sex differences in autophagy mediated by the sex chromosomes are likely due to the X-chromosome. Known genes associated with autophagy in the brain and localize to the X-chromosome are listed (Table 2). Abnormalities in these genes have deleterious consequences for brain function. Given that males only have one copy of the X-chromosome, alterations in X-linked genes are associated with worse symptoms in males compared to females. Generally, in neuropathology associated with X-linked genes, heterozygous females have less severe phenotypes, or no clinical phenotype, compared with hemizygous males.

The X-chromosome plays an important role in autophagy in the brain as it has genes that encode proteins that regulate: the formation and maturation of autophagosomes (Wdr45, Rab39b); vesicle trafficking (Rab39b); autophagy cargo recruitment (Hdcac6), and the maintenance of lysosomal integrity (Atg6ap2 and Lamp2) (Figure 3). Deficiency in any of these genes negatively affects the progression of autophagy in the brain and leads to neurodegeneration and brain dysfunction.

No sex differences have been reported yet in the expression of the X-linked genes associated with autophagy in the brain, except for Wdr45, as WDR45 deficiency is lethal only for males (Carvill et al., 2018). This is likely due to the X-chromosome inactivation (XCI) that occurs in females to compensate for the double X-chromosome dosage (Marks et al., 2015). Thus, males and females may have equivalent expression levels of X-linked genes. However, the XCI mechanism becomes less effective with aging, and some X-linked genes may escape from XCI (skewing) (Shvetsova et al., 2019). Reduced XCI also occurs more frequently in the brain compared to other tissues (Nguyen and Dieste, 2006), which could lead to altered expression of key autophagy genes located on the X-chromosome during reproductive senescence. Changes in gene expression could alter the autophagic response to ischemia. Thus, identifying escapee genes associated with autophagy in the brain could lead to novel treatment strategies.

In conclusion, differential expression of X-linked genes associated with autophagy may occur during aging and contribute to sex differences in brain autophagy. Future research may focus on identifying these autophagy-related X-linked genes that escape from XCI.

Autophagy in Ischemic Stroke

The clinical research in autophagy in stroke faces a challenging methodological situation: currently, there is a lack of methods that can measure the dynamic cellular flux of autophagy in the most relevant human tissue, the brain, which is often inaccessible. Thus, blood samples are often used as a surrogate to determine changes that occur with stroke in the brain. Autophagy-associated circular RNAs, which are noncoding RNA isoforms with a potential to regulate neurological diseases, are differentially expressed in the plasma of large-artery ischemic stroke patients. Levels of these are positively correlated with neurological deficits and infarct volumes (Li et al., 2021). Gene microarray analyses on post-stroke clinical stroke patients revealed that several autophagy-associated genes (AKT, ATG4B, HDAC6, and Lamp1) are upregulated in stroke patients compared with controls (Guo et al., 2017b). Patients with a variant in the promoter of the autophagy-inducing IncRNA MALAT1 have a higher risk of ischemic stroke (Wang et al., 2020c). Thus, clinical data suggest that autophagy is altered in stroke patients.

There is a general assumption that autophagy is beneficial under basal conditions, and that upregulating autophagy improves brain function in neurodegenerative disorders and in the aged brains, which shows reduced autophagy (Loeffler, 2019). For example, rapamycin, an inhibitor of mTOR that plays a central role in energy homeostasis and autophagy inhibition, has protection to the brain after ischemic stroke in clinical and pre-clinical studies (reviewed in (Hadley et al., 2019). More specifically, restoring autophagy by enhancing NAD’/NADH levels or upregulating Beclin1 improved mitochondrial function and reduced stroke development in stroke-prone spontaneously hypertensive rats (Forte et al., 2020). However, enhanced autophagy can be deleterious under stressful conditions such as stroke, which may lead to consider autophagy inhibitors as a strategy to reduce infarct volume. Recent reviews have highlighted the evidence on the role of autophagy in ischemic stroke (Aijolabady et al., 2021; Wang et al., 2021). During an ischemic insult, a plethora of intertwined pathways is coordinated to activate autophagy (Wang et al., 2020a). For example, there is a positive correlation between LC3-II levels (enhanced number of autophagosomes) and cortical infarct volume after stroke in MCAO rat models (Acaz-Fonseca et al., 2020). However, as we discuss below, the activation of autophagy by ischemia may occur in a sex-dependent manner. Autophagy can lead to cytoprotective (adaptive autophagy) or detrimental (maladaptive autophagy) consequences depending

Table 2 | Several autophagy-related genes localize in the X-chromosome

Gene symbol	Gene name	Function in autophagy	Effects caused by protein deficiency in the brain	References
Wdr45/5	WD repeat domain 45	WDR45 participates in the elongation, closure of isolation membrane, and autophagosome formation.	Lethal in males. Females have seizures and develop neurodegeneration in infancy and childhood.	Zhao et al., 2015; Carvill et al., 2018; Chowdhury et al., 2018; Stanga et al., 2019
Wip14				
Rab39b	Ras-related protein rab-39B	RAB39B regulates vesicle trafficking, and autophagosome formation and maturation.	Reduction of the growth cone, synapse and contributes to formation, and excitatory synaptic transmission.	Tang, 2021
Hdcac6	Histone deacetylase 6	HDAC6 is a microtubule-associated deacetylase that acts on different cytoplasmic proteins. Recruits autophagic cargos to aggresomes for degradation (i.e. damaged mitochondria).	Hyperphosphorylation of mTOR and consequently reduced autophagy and neuronal death. However, it is not relevant for neurodegenerative disorders, such as Huntington’s disease.	Lee et al., 2010; Bobrowska et al., 2011; Zhu et al., 2016
Atg6ap2	ATPase H-transporting accessory protein 2	ATG6A2 is a lysosomal transmembrane domain protein that maintains lysosomal pH via the V-ATPase complex.	Inefficient endosome acidification, and impaired autolysosome, vesicular trafficking, and autophagy.	Korvatska et al., 2013
Lamp2	Lysosomal associated membrane protein 2	LAMP2 is a lysosomal membrane protein that confers lysosomal integrity and contributes to the fusion between autophagosomes and lysosomes.	Deficient clearance of cellular components, leading to cognitive dysfunction and accumulation of lipofuscin, polyglucose aggregates, and intracellular inclusions in their neurons.	Nishino et al., 2000; Spinazzi et al., 2008; Maron et al., 2009; Rothaug et al., 2015

Gene symbol	Gene name	Function in autophagy	Effects caused by protein deficiency in the brain	References
Atg6ap2	ATPase H-transporting accessory protein 2	ATG6A2 is a lysosomal transmembrane domain protein that maintains lysosomal pH via the V-ATPase complex.	Inefficient endosome acidification, and impaired autolysosome, vesicular trafficking, and autophagy.	Korvatska et al., 2013
Sex Differences in Autophagy in Stroke

Autophagy is importantly regulated by sex hormones, and several ATG's locate on the X-chromosome. Thus, it is reasonable to think that sex differences exist in autophagy and that these differences contribute to sex differences in stroke outcomes.

Sex differences in autophagy in stroke animal models

Acacz-Fonseca et al. (2020) found that autophagy is upregulated by an ischemic stroke in a sex-dependent manner, as examined by the levels of two ATG's, uncoupling protein 2 (Ucp-2) and Hif-1α. Hif-1α is a transcription factor that induces autophagy (Lu et al., 2018), and UCP-2 is a mitochondrial protein involved in the regulation of autophagy (Mao et al., 2021). Authors found that these markers were upregulated in males after stroke compared with females, which showed no changes in these markers. The upregulation of Ucp-2 and Hif-1α expression was associated with enhanced levels of LC3-II after stroke only in male rats. Consistent with this work, we found that autophagy was enhanced in the brain of mouse males after stroke, compared with sham males. Beclin1 (LC3-II) were upregulated in males, but not in females. However, changes in autophagy in females after stroke were less evident; LC3-II and ATG7, which contribute to LC3 conjugation and autophagosome maturation, were upregulated, but Beclin1 was downregulated and p62 levels remained reduced. This suggests that stroke-induced autophagy may be muted in females (Patrizi et al., 2021).

A study using a neonatal hypoxia-ischemia (HI) rat model compared the levels of Beclin1 between sham and HI in each sex and found no differences. This suggests that the early steps of autophagy were not stimulated by HI. However, they found that HI males had reduced levels of LC3-II than sham males, suggesting a reduction of autophagosomes/autolysomes after HI. Conversely, LC3-II levels were increased (increased autophagy vesicles) in HI females vs. sham females (Weis et al., 2014). Considering that LC3-I is degraded while autophagosomes fuse with lysosomes, we may hypothesize that the autophagy flux is stimulated in males after HI, but blocked in females. However, analysis of autophagosome markers, like p62, would help in the interpretation of this data. Another study found postnatal day 8 male rats eliminate damaged mitochondria (likely by mitochondrial autophagy, known as mitophagy) more efficiently than female rat pups after HI (Demarest et al., 2016). HI males showed reduced mitochondrial pool and mitochondrial size compared with HI females. Thus, the studies above suggest that the autophagy process is upregulated in males compared to females after ischemia.

Enhanced levels of LC3-II correlate with increased cortical infarct volume after stroke in MCAO rat models (Acacz-Fonseca et al., 2020), and that inhibition of autophagy may reduce brain injury (Tower et al., 2020). Given that stroke-induced autophagy appears to be more relevant in injured tissue than in healthy tissue, we may hypothesize that the inhibition of autophagy could lead to neuroprotection to a greater extent in males. In a focal model of stroke we found that inhibiting autophagy with 3-methyladenine (3-MA), which blocks the signaling pathway that induces phosphorylation of Beclin1 and autophagosomes/autolycosome nucleation (class III PI3K signaling pathway), reduced infarct volume by 6-fold in young (8–12 weeks old) male mice subjected to MCAO. In contrast, 3-MA exacerbated ischemic damage in MCAO female mice (Patrizi et al., 2021). To determine if this was secondary to gonadal hormones, female mice were ovarioctomized and treated with 3-MA or vehicle after stroke. Ovariectomized females treated with 3-MA had reduced infarct volume compared with ovarioctomized females treated with vehicle, suggesting that gonadal hormones mediate the deleterious effects of autophagy in stroke, independent of sex. 3-MA also had beneficial effects on junior female rats (19–21 days old) ovarioctomized females by preventing the increase of pro-inflammatory cytokines induced by stroke (Li et al., 2017). However, despite these studies demonstrate the inhibitory effect of 3-MA on autophagy, others found that 3-MA may stimulate autophagy in ischemic stroke samples (Zhang et al., 2021a). Thus, it is necessary to specifically target autophagy components to inhibit autophagy. In a cardiac arrest and global ischemia using 16–18-day-old postnatal rats (with equivalent estradiol levels between sexes), intracerebral administration of siRNA against ATG7 led to an improvement in motor function in female rat pups but had no beneficial effect in male pups (Au et al., 2015). Moreover, the treatment lead to a reduction of degeneration of cerebellar Purkinje neurons in females, but not in males. This seems to contradict evidence from 3-MA studies. Note that using alternative genetic tools may lead to different outcomes compared with using non-specific approaches to inhibit autophagy. In addition, ATG7-independent autophagy has been demonstrated in different cell lines, such as MEF and HEK293T cells (Nishida et al., 2009; Ra et al., 2016). Whether there are differences in ATG7-dependent autophagy pathways between sexes has not been elucidated.

Sex differences in autophagy in cultured brain cells

At the cellular level, cultured neurons from embryonic male rat pups exhibit enhanced autophagy compared with female neurons. In vitro assays, male neurons showed higher levels of LC3-II (Du et al., 2009; Patrizi et al., 2021) and reduced levels of the autophagy inhibitor p62 (Patrizi et al., 2021), compared with female neurons, suggesting that basal autophagy is enhanced in male vs. female neurons. After oxygen and glucose deprivation (OGD), male neurons showed an increase in LC3-II levels, and a more dramatic reduction in p62 levels, compared with female neurons, which supports that the activation of autophagy is greater in male neurons than in female cells after OGD (Du et al., 2009). Thus, ATG7 may act as a limiting factor in both basal autophagy and autophagy activation in female neurons.

It is evident that neurons play a major role in brain function, but they only represent approximately 50% of all cells in the human brain. The remaining cells are primarily glial cells (Wang et al., 2020b), which also regulate neuronal autophagy (Kulkarni et al., 2018). It is reasonable to think that sex-biased mechanisms could govern autophagy in the brain via non-neuronal cell types, such as microglia, astrocytes, and endothelial cells. However, no studies have explored sex differences in autophagy in these brain cell types. Sex hormones affect the fate of brain cells in ischemia models. For example, estradiol prevents microglia activation after MCAO (Perez-Alvarez et al., 2012; Zhang et al., 2018) and in cultured microglia exposed to hypoxia (Slowik et al., 2018). In co-cultures of astrocytes and neurons, activation of ERβ in astrocytes by estradiol leads to neuronal protection after OGD (Ma et al., 2016). Furthermore, estradiol plays a beneficial role in the brain by preventing BBB disruption and leakage during and after ischemic injury (Sohrabi, 2015), and prevents tight junction impairment in cultured brain-derived endothelial cells after OGD (Na et al., 2015). However, whether the effects of estradiol in glia and endothelial cells are mediated by autophagy needs to be examined. It is imperative to determine if sex hormones and X-linked autophagy genes regulate autophagy in specific cell types in the brain.

Conclusions

The incidence, prevalence, and outcomes after ischemic stroke are strongly influenced by sex. Age, gonadal hormone exposure, and the sex chromosome complement are important factors in the sex differences seen in stroke. Elderly women have poorer functional outcomes, and older women live with a disability after stroke compared to men. This is in part due to the older age of women when they have their first stroke. Pre-clinical studies have found that both gonadal hormones and the X-chromosome complement play important roles in the sex-biased outcomes seen after stroke, but their contribution differs throughout the lifespan. Autophagy may be a mechanism that contributes to these differences. In the brain, autophagy is importantly regulated by estrogen. However, despite our knowledge of multiple X-linked autophagy genes, there is no evidence yet that these genes contribute to sex differences in brain autophagy after ischemic stroke.

In males, ischemic stroke activates autophagy. Given that autophagy inhibition reduces volume infarction after stroke in males, we could hypothesize that maladaptive autophagy is more importantly upregulated in male mice than in female autophagy. However, while female mice show reduced brain damage after ischemic stroke compared with males, autophagy stimulation after stroke in female brains is less evident than in males. Thus, inhibiting autophagy benefited males, but not females, an effect that is mediated by gonadal hormone exposure. This is explained if stroke induces maladaptive autophagy in males. However, in females, the stroke did not stimulate autophagy and the brain tissue from females may retain only basal autophagy levels. Using autophagy inhibitors as 3-MA in females may then block adaptive autophagy, as neuroprotection is believed to be sex-dependent. Basal autophagy in females may expose brain cells to energy deficits making them more vulnerable to ischemia (Figure 4).

Figure 4 | Stroke may upregulate autophagy more in males than in females, which may have alternative mechanisms to respond to the high cellular stress during and after ischemic stroke. Inhibition of autophagy appears to be more beneficial for males than for females, likely due to the excessive autophagy triggered by a stroke in males, which leads to cell death and an exacerbation of brain damage. However, during and after stroke, females may maintain basal autophagy that is beneficial for brain function, and hence its inhibition is detrimental for females. In addition, when females are young, they are protected from ischemia due to the neuroprotective effects of estrogen. This is lost after menopause and likely contributes to the vulnerability seen in stroke in older females.

NEURAL REGENERATION RESEARCH | Vol 18 | No. 1 | January 2023 | 35
Research in sex differences in autophagy in stroke is still in its infancy, as the mechanisms and signaling pathways that regulate the different steps of autophagy in a sex-dependent manner have not been identified. Furthermore, published studies have important limitations in using multiple autophagy markers for an accurate interpretation of data. Future studies on this topic should follow appropriate guidelines for monitoring autophagy (Klionsky et al., 2021). Using existing tools such as the FCG mouse model, transgenic mice with sex-differentiated and animal models with autophagy reporters will help to identify the mechanisms that regulate autophagy after stroke in a sex-dependent manner, but both sexes need to be evaluated. This knowledge could contribute to the development of therapeutic targets for both men and women.

Author contributions: JFMW wrote the manuscript. BD and LMD edited the manuscript and advised about the content. All authors approved the final version of the manuscript.

Conflicts of interest: The authors declare no conflicts of interest.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

Acar-Fonseca E, Castello-Ruiz M, Burguec MC, Alenova-Valero A, Salom JB, Torregrosa G, Garcia-Segura LM (2020) Insight into the molecular sex dimorphism of ischemic stroke in rat cerebral cortex: Focus on neuroglobin, sex steroids and autophagy. Eur J Neurosci 52:2756-2770.

Ajobaolday A, Wang S, Kroeger G, Penninger JM, Uversky VN, Pratico D, Henninger N, Forsyth RJ, Bruck S, Ide, K, Ashokdasapandakhomk H, Klionsky DJ, Ren J (2021) Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharmacol Ther 225:107884.

Au AK, Chen Y, Du L, Smith CM, Manole MD, Baltagi SA, Chu CT, Aneja RK, Bayir H, Kochanek PM, Clark RS (2018) Ischemia-induced autophagy contributes to neurodegeneration in cerebellar Purkinje cells in the developing rat brain and in primary cortical neurons in vitro. Biochim Biophys Acta 1852:1902-1911.

Augereau P, Miralles F, Cavailles V, Gaudelet C, Parker M, Rochefort H (1994) Characterization of the proximal estrogen-responsive element of human cation hsp D gene in Mol Endocrinol 8:723-733.

Azcoita I, Barreto GE, Garcia-Segura LM (2019) Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 55:100077.

Balder R, Gianazza E, Mussoni L, Miller I, Gelaudo C, Parker M, Rochefort H (1994) The neurosteroids, allopregnanolone and progesterone, receptor promotes prostate cancer progression. Autophagy 13:506-521.

Belcredito S, Tremoli E, Sironi L (2007) Gender differences in endothelial function and thrombogenesis in large-artery atherosclerotic stroke. DNA Cell Biol 40:457-468.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bharadwaj A, Murali S, Sundaresan K, Raizada NK, Wu JS, Shigenaga MK, Cross JO (2016) The neurosteroids, allopregnanolone and progesterone, induce autophagy in cultured astrocytes. Neurochem Int 60:125-133.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.

Bhattacharya A, Rajapakshe K, Reddy Bollu L, Shi Y, White MA, Pham AH, Lin C, Jonsson P, Blessing AM, Dustin L, Kono S, Stanczyk FZ, Selzer RH, Aziz S, Group ER (2016) Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med 374:1221-1231.
Review

Liu W, Shang G, Yang S, Huang J, Xue J, Lin Y, Zheng Y, Wang X, Wang L, Lin R, Tao J, Chen L (2016) Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1-ULK1 complex-Beclin1 pathway. Int J Mol Med 37:309-318.

Liu Y, Zhao L, Liu W, Zhang M, Jiao X, Yang S, Wang J, Zhao M, Zhang B, Zhao Y (2014) A novel androstenedione derivative induces ROS-mediated autophagy and attenuates drug resistance in osteosarcoma by inhibiting macrophage migration inhibitory factor (MIF). Cell Death Dis 5:e1361.

Loeffler DA (2019) Influence of normal aging on brain autophagy: a complex scenario. Front Aging Neurosci 11:347.

Lu N, Lu X, Tan R, An J, Cai Z, Hu X, Wu F, Wang H, Lu C, Lu H (2018) HIF-1a/mTORC1-Beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning. J Mol Neurosci 66:238-250.

Ma Y, Guo H, Zhang A, An L, Liu Y, Dong H, Xiong L, Hou W (2016) Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor beta. Sci Rep 6:21467.

Madsen TE, Khoury JC, Leppert M, Alwiel K, Moomaw CJ, Sucharew H, Woo D, Ferioli S, Martins S, Ardeian O, Patteri R, Fialho M, de Mello RS, de Sousa LM, de Jesus M, de Lima R, de Almeida EJ, de Lima R, de Almeida E (2020) Temporal trends in stroke incidence over time by sex and age in the GCNKS. Stroke 51:1070-1076.

Manwani B, Liu Y, Scroton V, Hammond MD, Saisingh LH, McCullough LD (2013) Differential effects of aging and sex on stroke induced inflammation across the lifespan. Exp Neurol 249:120-131.

Manwani B, Bertenghoven K, Benashski SE, Verna VR, Xu Y, Arnold AP, McCullough LD (2015) Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement. J Cereb Blood Flow Metab 35:221-229.

Mao Y, Lu L, Seng K, Zhang H, Xu WT, Liu DW (2021) The effects of UCPC on autophagy through the AMPK signaling pathway in septic cardiomyopathy and the underlying mechanism. Ann Transl Med 9:259.

Marks H, Kerstens HH, Barakat TS, Splinter E, van Mierlo G, Joshi O, Wang SY, Dhamija S, Jaillet P, Blanz J (2015) LAMP-2 deficiency leads to hippocampal dysfunction but normal neurons. Nat Commun 7:11726.

Lu N, Li X, Tan R, An J, Cai Z, Hu X, Wang F, Wang H, Lu C, Lu H (2018) HIF-1a/mTORC1-Beclin1 pathway regulates macrophage migration in vitro and in vivo. J Neurobio Mol Biol 183:18-26.

Sohrabji F (2015) Estrogen-IGF-1 interactions in neuroprotection: is ischemic stroke a case study? Front Neuroendocrinol 36:1-14.

Zhang A, Song Y, Zhang Z, Han F, Ding Y (2021) Efficacy of estrogen and potential therapeutic targets after ischemic stroke. J Neuroendocrinol 33:188-198.