The Prevalence of Vitiligo: A Meta-Analysis

Yuhui Zhang¹, Yunfei Cai¹, Meihui Shi¹, Shibin Jiang¹, Shaoshan Cui²*, Yan Wu¹*, Xing-Hua Gao¹, Hong-Duo Chen¹

¹ Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, 110001, China, 2 Department of Dermatology, No. 1 Hospital of Dalian Medical University, DaLian, 116011, China

* jlwuyan@126.com (YW); cuishaoshan1225@126.com (SC)

Abstract

Objective
To conduct a meta-analysis assessing the prevalence of vitiligo.

Methods
Literals that reported prevalence rates of vitiligo were identified using EMBASE, PubMed, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang database and Weipu database for the period from inception to May 2016. We performed stratified analyses on possible sources of bias, including areas difference, years of publication, gender and age. Publication bias was assessed with Egger’s test method.

Results
A total of 103 studies were eligible for inclusion. The pooled prevalence of vitiligo from 82 population- or community-based studies was 0.2% (95%CI: 0.1%–0.2%) and from 22 hospital-based studies was 1.8% (95%CI: 1.4%–2.1%). A relatively high prevalence of vitiligo was found in Africa area and in female patients. For population- or community-based studies, the prevalence has maintained at a low level in recent 20 years and it has increased with age gradually. For hospital-based studies, the prevalence has showed a decreased trend from 60s till now or from young to old. No significant publication bias existed in hospital-based studies (t = 0.47, P = 0.643), while a significant publication bias existed in population- or community-based studies (t = 2.31, P = 0.026).

Conclusion
A relatively high prevalence of vitiligo was found in Africa area and in female patients. The prevalence has maintained at a low level in recent years. It showed an inverse trend with age increment in population- or community-based studies and hospital-based studies.
Introduction

Vitiligo refers to an acquired, idiopathic, and common de-pigmentation disorder of the skin [1]. The clinically characteristic symptoms of the vitiligo are pale or milk-white macules or patches due to the selective destruction of melanocytes. They occur on the skin in different parts of the body and sometimes also on the mucous membranes. The exact pathogenesis of vitiligo is still to be elucidated. Multiple mechanisms, including metabolic abnormalities, oxidative stress, generation of inflammatory mediators, cell detachment and autoimmune responses, might contribute to the pathogenesis. In particular, the autoimmune mechanism is now clearly established. Vitiligo may appear at any age and affect both sexes. It tends to occur or recur in spring and/or summer [2, 3].

Some previous reports on vitiligo epidemiology were based on population surveys, while others were performed in patients of dermatology clinics. However, the prevalence of vitiligo varies in different geographic regions and different sample size, and the data have limitations and localizations. Besides, the disorder afflicts various ethnic populations with varying prevalence estimates ranging from 0.1% to 2.0% based on the general populations in previous studies [4, 5]. But recently, some papers suggested that previous epidemiological data were exaggerated. To date, no meta-analysis on the prevalence of vitiligo has been conducted. Accordingly, it seems that an international and pooled estimate based on the various populations is necessary.

The main objective of this meta-analysis is to summarize all available data to give a description of a worldwide picture on the prevalence of vitiligo. The information was collected from both population- or community studies and hospital-based studies. Various epidemiological characteristics of vitiligo were studied in order to understand this disease more clearly.

Materials and Methods

Search Strategy

We conducted a systematic search of scientific databases, including EMBASE, PubMed, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang database and Weipu database to find relevant papers published from inception to May 2016. The search medical subject heading (MeSH) terms and keywords were "vitiligo" OR "leucoderma" AND "prevalence" OR "epidemiology". In addition, a manual search was supplemented by verifying a secondary review of the reference lists of key publications to confirm additional relevant citations.

Inclusion and Exclusion Criteria

The criteria of included studies were as follows: (1) had sufficient information to estimate the pooled prevalence of vitiligo; (2) population-based, community-based or hospital-based; (3) published in either English or Chinese language.

The exclusion criteria of studies were: (1) irrelevant to vitiligo; (2) irrelevant to our topic; (3) review; (4) duplicate data.

Data Extraction

The whole potentially relevant information from the included studies was independently reviewed by two investigators (Yuhui Zhang, Meihui Shi) using a standardized form which was designed in advance. When there was a disagreement about whether selecting articles should be resolved for analysis or not, a third investigator (Yunfei Cai) made the final decision. The following information was extracted from each suitable study: first author’s name, years of
publication, country, survey age, gender of the participants, survey year, total sample size, numbers of vitiligo and prevalence rate.

Data Analysis

All statistical analyses were made using Stata software (version 12.0; Stata Corporation, College Station, Texas, USA) and the meta package was used to produce the pooled estimates, forest plots and publication bias assessment. Initially, the pooled prevalence estimates of vitiligo and 95% confidence intervals (CIs) were calculated assuming a fixed-effect model when significant heterogeneity was absent ($P > 0.1$, $I^2 < 50\%$). If significant heterogeneity was present ($P < 0.1$, $I^2 > 50\%$), a random-effect model was selected. To determine possible causes of heterogeneity, subgroup analyses were conducted by areas, years of publication, gender, and age. The areas covered Asia (India, China, Saudi Arabia, Sri Lanka, Turkey, Nepal, Iran, Korea, Kuwait, Thailand, Japan, Jordan), Africa (Tanzania, Egypt, Mali, Mozambique, Nigeria, Congo), America (USA, Brazil, Mexico, West Indies), Europe (Denmark, Sweden, Italy, Germany, Romania, France), Oceania (Australia) and Atlantic (Faroe Islands). For publication years, studies were grouped into eight periods, including 1 period before 80s and 7 periods after 80s with an interval of 5 years. For subgroup analysis according to age, it was grouped into four sections with an interval of 20 years. Publication bias was assessed by visually inspecting funnel plots and applying Egger’s tests to evaluate sources of variability. For all tests, $P$ value < 0.1 was considered to be statistically significant.

Results

Literature search

A total of 1731 titles and/or abstracts of relevant studies were retrieved, and 1586 papers were removed due to irrelevance or review. The full-texts of remaining 145 papers were further reviewed, and 42 papers were excluded because of duplication and not providing sufficient information. Finally, 103 studies met the inclusion criteria and were included in this meta-analysis [6–108]. The flow chart of study selection process was shown in Fig 1.

Study characteristics

Of the 103 studies, 82 were population- or community-based studies and 22 were hospital-based studies. The countries were Faroe Islands, India, Denmark, USA, Australia, Sweden, Brazil, China, Italy, Germany, Tanzania, Saudi Arabia, Romania, Sri Lanka, Egypt, France, Turkey, Mali, Mozambique, Nepal, Iran, Korea, Mexico, Kuwait, West Indies, Thailand, Nigeria, Japan, Congo, Jordan and the areas covered Asia, Africa, America, Europe, Oceania and Atlantic. The years of publication ranged from 1964 to 2015. The sample size of included studies ranged from 102 to 50593516. The prevalence of vitiligo ranged from 0.004% to 9.98%. The characteristics of included studies were summarized in Table 1.

The results of pooled meta-analysis

Based on the results of random-effects method, the prevalence of vitiligo from population- or community-based studies was 0.2% (95%CI: 0.1%–0.2%) and from hospital-based studies was 1.8% (95%CI: 1.4%–2.1%). The forest plots of vitiligo prevalence were shown in Figs 2 and 3.
The subgroup analyses of population- or community-based studies (Table 2)

The vitiligo prevalence of different areas were 0.1% (0.1%, 0.2%) in Asia, 0.4% (0.1%, 0.7%) in Africa, 0.2% (0.1%, 0.4%) in America, 0.4% (0.2%, 0.5%) in Europe, 1.2% (0.5%, 1.8%) in Oceania (only one study) and 0.1% (0%, 0.1%) in Atlantic, respectively.

When stratified by publication years, the prevalence of vitiligo was 0.6% (0.4%, 0.9%) before the 80s. It decreased to 0.2%~0.3% in the 80s. The prevalence rebounded to 0.6% (-0.1%, 1.3%) in the first half of 90s. After that, the prevalence drastically decreased and maintained at a low level of 0.1%~0.2%.

The subgroup analysis stratified by gender showed that vitiligo attacked 0.2% (0.2%, 0.3%) males in contrast to 0.5% (0.4%, 0.6%) females.

Pooled prevalence of age-groups in 0~19 years, 20~39 years, 40~59 years and ≥60 years were 0.2% (0.2%, 0.3%), 0.2% (0.1%, 0.3%), 0.4% (0.3%, 0.6%) and 0.7% (0.3%, 1.0%), respectively. The prevalence in the ≥60 years age-group was the highest of the four age categories, and the prevalence of vitiligo increased with age gradually.
Table 1. Characteristics of studies on the prevalence of vitiligo.

| First Author | Publication Year | Country | Survey Age (years) | Survey Year | Sample (N) | Vitiligo (n) | Prevalence |
|--------------|------------------|---------|--------------------|-------------|------------|-------------|------------|
| Lomholt G [6]| 1964             | Faroe Islands | all                | -           | 10984      | 7           | 0.06%      |
| Mehta NR [7] | 1973             | India    | all                | 1971–1972   | 9065       | 138         | 1.52%      |
| Howitz J [8] | 1977             | Denmark  | all                | 1971–1972   | 47033      | 179         | 0.38%      |
| Johnson MT [9]| 1978            | USA      | 1–74               | 1971–1974   | 20749      | 102         | 0.49%      |
| Quirck CJ [10]| 1979            | Australia | adults            | -           | 1037       | 12          | 1.16%      |
| Larsson PA [11]| 1980           | Sweden   | 12–17              | -           | 8298       | 33          | 0.40%      |
| Weismann K [12]| 1980           | Denmark  | 55–106             | -           | 584        | 7           | 1.20%      |
| Bechelli LM [13]| 1981         | Brazil   | 6–16               | 1974–1975   | 9955       | 4           | 0.04%      |
| Zhou YH [14]  | 1985             | China    | all                | 1985        | 13390      | 1           | 0.01%      |
| Das SK [15]   | 1985             | India    | 3                   | 1978–1982   | 15685      | 72          | 0.46%      |
| Montagnani A [16]| 1985        | Italy    | 1 month–12 years   | 1979–1982   | 1273       | 12          | 0.94%      |
| Nanda A [17]  | 1989             | India    | ≤6 weeks           | 1986        | 310        | 1           | 0.32%      |
| Schallreuter KU [18]| 1991   | Germany  | 14–86              | 1989        | 350        | 2           | 0.57%      |
| Xue SQ [19]   | 1994             | China    | 42–60              | 1992        | 5683       | 72          | 1.27%      |
| Cellini A [20]| 1994             | Italy    | 23–79              | 1990–1992   | 526        | 2           | 0.38%      |
| Wang WX [21]  | 1994             | China    | all                | 1984–1985   | 316379     | 294         | 0.09%      |
| Gibbs S [22]  | 1996             | Tanzania | all                | -           | 1114       | 3           | 0.27%      |
| Guan JC [23]  | 1997             | China    | 15–20              | 1997        | 2206       | 1           | 0.05%      |
| Bhatia V [24]| 1997             | India    | 0–14               | 1988–1989   | 666        | 4           | 0.60%      |
| Kubeyinje EP [25]| 1997     | Saudi Arabia | 18–45              | 1991–1995   | 1520       | 5           | 0.33%      |
| Ren XL [26]   | 1998             | China    | -                  | -           | 155000     | 15          | 0.01%      |
| Sun TQ [27]   | 1999             | China    | 1–79               | 1996        | 78021      | 93          | 0.12%      |
| Liao WQ [28]  | 1999             | China    | -                  | 1997        | 3560       | 4           | 0.11%      |
| Popescu R [29]| 1999             | Romania  | 6–12               | 1995        | 1114       | 3           | 0.27%      |
| Perera A [30] | 2000             | Sri Lanka | all                | 1997        | 1806       | 22          | 1.22%      |
| Ling WJ [31]  | 2001             | China    | -                  | 1999–2000   | 102        | 1           | 0.98%      |
| Xie PL [32]   | 2001             | China    | 0–7                | -           | 23052      | 1           | 0.004%     |
| Che DF [33]   | 2001             | China    | -                  | 1998–1999   | 3160       | 2           | 0.06%      |
| Sun ZX [34]   | 2001             | China    | 0–7                | 1999–2000   | 10804      | 2           | 0.02%      |
| Zhang JC [35] | 2002             | China    | 21–51              | 1999        | 641        | 3           | 0.47%      |
| Zhang BX [36] | 2002             | China    | 17–31              | 1998–2000   | 3761       | 7           | 0.19%      |
| Chen XQ [37]  | 2002             | China    | -                  | 2001        | 11389      | 5           | 0.04%      |
| Prahalad S [38]| 2002           | USA      | -                  | -           | 496        | 2           | 0.40%      |
| Yang XQ [39]  | 2002             | China    | 16–24              | 2001–2002   | 2188       | 20          | 0.91%      |
| El-Serag HB [40]| 2002         | USA      | 59.8113.41         | 1992–1999   | 136816     | 130         | 0.10%      |
| Dogra S [41]  | 2003             | India    | 6–14               | 2001        | 12586      | 272         | 2.16%      |
| Abdel-Hafez K [42]| 2003     | Egypt    | all                | 1994–1996   | 8008       | 98          | 1.22%      |
| Xu YY [43]    | 2003             | China    | all                | -           | 156461     | 279         | 0.18%      |
| Li PH [44]    | 2003             | China    | all                | 2002        | 13953      | 3           | 0.02%      |
| Wolkenstein P [45]| 2003    | France   | all                | 2002        | 18137      | 51          | 0.28%      |
| Zeng YH [46]  | 2004             | China    | 6–12               | 2002        | 17542      | 6           | 0.03%      |
| Feng D [47]   | 2004             | China    | 17–58              | 2000        | 853        | 4           | 0.47%      |
| Xu HZ [48]    | 2004             | China    | 20–97              | -           | 2195       | 1           | 0.05%      |
| Zhao Y [49]   | 2004             | China    | 18–24              | 2002        | 2116       | 1           | 0.05%      |
| Naldi L [50]  | 2004             | Italy    | ≥45                | 2003        | 3660       | 26          | 0.71%      |
| Tuncel AA [51]| 2005             | Turkey   | 14–25              | -           | 682        | 2           | 0.29%      |

(Continued)
Table 1. (Continued)

| First Author | Publication Year | Country | Survey Age (years) | Survey Year | Sample (N) | Vitiligo (n) | Prevalence |
|--------------|------------------|---------|--------------------|-------------|------------|-------------|------------|
| Lin T        | 2005             | China   | 18–46              | 2004        | 385        | 1           | 0.26%      |
| Faye O       | 2005             | Mali    | <15                | 2001        | 1729       | 4           | 0.23%      |
| Wang TL      | 2006             | China   | 17.4–23.8          | 2004        | 34166      | 35          | 0.10%      |
| Song WF      | 2006             | China   | -                  | 2005        | 3920       | 2           | 0.05%      |
| Ai JZ        | 2006             | China   | 7–16               | -           | 21794      | 3           | 0.01%      |
| Al-Saeed WY  | 2006             | Saudi Arabia | 6–17             | 2003        | 2239       | 8           | 0.36%      |
| Lu T         | 2007             | China   | all                | 2002–2003   | 42833      | 40          | 0.09%      |
| Zhao G       | 2007             | China   | 18–44              | 2006        | 324        | 3           | 0.93%      |
| Xu CY        | 2007             | China   | -                  | 2007        | 4725       | 3           | 0.06%      |
| Chhaganlal K | 2007             | Mozambique | 0–82              | 3-month period | 780 | 1 | 0.13% |
| El-Essawi D  | 2007             | USA     | 20–80              | -           | 194        | 3           | 1.55%      |
| Chen GY      | 2008             | China   | 6–11               | 2005        | 3273       | 3           | 0.09%      |
| Bilea SA     | 2008             | Romania | all                | 2001–2006   | 2021       | 3           | 0.15%      |
| Walker SL    | 2008             | Nepal   | 12 days–80 years   | -           | 878        | 8           | 0.91%      |
| Zhao G       | 2009             | China   | 22–57              | 2007–2008   | 255        | 1           | 0.39%      |
| Zhu LB       | 2009             | China   | all                | 2007–2008   | 6593       | 2           | 0.03%      |
| Komba EV     | 2010             | Tanzania | 6–19              | -           | 420        | 3           | 0.71%      |
| Liu XH       | 2010             | China   | -                  | 2007        | 1670       | 1           | 0.06%      |
| Li YF        | 2010             | China   | 18–53              | 2008        | 1078       | 3           | 0.28%      |
| Ingordo V    | 2011             | Italy   | 18                 | 2001–2004   | 34740      | 60          | 0.17%      |
| Pei GD       | 2011             | China   | 18–94              | -           | 2341       | 22          | 0.94%      |
| Wang RL      | 2012             | China   | 12–20              | 2008–2009   | 7747       | 37          | 0.48%      |
| Yamamah GA   | 2012             | Egypt   | ≤18                | 2008–2009   | 2194       | 4           | 0.18%      |
| Liu Q        | 2013             | China   | 12–80              | -           | 2719       | 21          | 0.77%      |
| Wang XY      | 2013             | China   | all                | -           | 17345      | 122         | 0.70%      |
| Yang YS      | 2013             | China   | 17–21              | -           | 1525       | 2           | 0.13%      |
| Pang XW      | 2013             | China   | 18–39              | 2011        | 473        | 3           | 0.63%      |
| Chen JZ      | 2013             | China   | 17–21              | -           | 2957       | 2           | 0.07%      |
| Zhu XW       | 2014             | China   | 18–93              | 2012        | 3993       | 2           | 0.05%      |
| Shao ZQ      | 2014             | China   | -                  | 2011        | 986        | 1           | 0.10%      |
| El-Khateeb EA| 2014             | Egypt   | 6–12               | 2011–2012   | 6162       | 4           | 0.06%      |
| Reddy J      | 2014             | India   | -                  | -           | 22037      | 160         | 0.73%      |
| Afkhami-Andekani M | 2014 | Iran | 10–98 | 2011 | 1100 | 20 | 1.82% |
| Lee H        | 2015             | Korea   | all                | 2009–2011   | 50593516   | 63467       | 0.13%      |
| Chen YT      | 2015             | China   | all                | 1997–2011   | 23254688   | 14883       | 0.06%      |
| Liu TH       | 2015             | China   | 17–43              | 2014        | 1347       | 2           | 0.15%      |

Hospital-based studies

| First Author | Publication Year | Country | Survey Age (years) | Survey Year | Sample (N) | Vitiligo (n) | Prevalence |
|--------------|------------------|---------|--------------------|-------------|------------|-------------|------------|
| Ruiz-Maldonado R | 1977 | Mexico | 0–18 | 1971–1975 | 10000 | 260 | 2.60% |
| Anand IS     | 1998             | India   | 0–12               | 1994        | 400        | 8           | 2.00%      |
| Nanda A      | 1999             | Kuwait  | 0–12               | 1992–1996   | 10000      | 149         | 1.49%      |
| Boisseau-Garsaud AM | 2000 | West Indies | 1–96 | 1995–1996 | 2077 | 7 | 0.34% |
| Wisuthsarewong W | 2000 | Thailand | 0–12 | - | 2361 | 97 | 4.11% |
| Yang XO      | 2001             | China   | 15–78              | 1990–2000   | 735        | 6           | 0.82%      |
| Li GP        | 2003             | China   | -                  | 2001–2002   | 7796       | 72          | 0.92%      |
| Ogumniyi AO  | 2004             | Nigeria | -                  | 1994–1998   | 1091       | 51          | 4.67%      |
| Onyemel O   | 2005             | Nigeria | all                | 1999–2001   | 2611       | 25          | 0.96%      |
| Nnoruka EN   | 2005             | Nigeria | 0–73               | 1999–2001   | 2871       | 91          | 3.17%      |

(Continued)

PLOS ONE | DOI:10.1371/journal.pone.0163806 September 27, 2016 6 / 17
The subgroup analyses of hospital-based studies (Table 2)

With regard to hospital-based studies, the prevalence of vitiligo was as high as 2.5% (1.6%, 3.4%) of Africa, compared with 1.6% (1.1%, 2.0%) of Asia and 1.5% (-0.1%, 3.1%) of America.

Before the 80s, the prevalence of vitiligo was 2.6% (2.3%, 2.9%). The data of the 80s and the first half of 90s were not available. The prevalence of the latter half of 90s and the first 5 years of 21st century were 1.9% (0.7%, 3.1%) and 2.0% (1.0%, 2.9%), respectively. In recent 10 years, the prevalence has decreased to 1.5%~1.6%. It has showed a decreased trend from 60s till now.

The prevalence of males was 1.1% (0.5%, 1.7%) in contrast to 1.3% (0.7%, 2.0%) of females.

The prevalence of age-groups in 0~19 years, 20~39 years, 40~59 years and ≥60 years were 2.4% (1.8%, 2.9%), 1.4% (1.2%, 1.6%), 1.5% (1.3%, 1.7%) and 0.8% (-0.5%, 2.0%), respectively. The highest prevalence was observed in 0~19 years and the overall prevalence showed a gradually decreased trend with age increment.

Publication Bias

There was significant publication bias in population- or community-based studies (t = 2.31, P = 0.026), while no significant publication bias existed in hospital-based studies (t = 0.47, P = 0.643). The funnel plot of publication bias was shown in Fig 4.

Discussion

To our knowledge, this is the first meta-analysis examining the prevalence of vitiligo. The results of this study showed that the pooled prevalence of 82 population- or community-based studies was 0.2% and of 22 hospital-based studies was 1.8%. The latter data derived from hospital-based surveys was obviously high.

Although vitiligo occurs worldwide, it is known that the reported prevalence of vitiligo is various. Prevalence distributions might differ in areas. In the included population- or community-based studies, the lowest prevalence was in Asia and Atlantic, the second-highest in Africa and in Europe, and the highest in Oceania. But only 1 study was included, the result of Oceania was not definite. In hospital-based studies, prevalence was the lowest in America and the highest in Africa. So we could draw a common conclusion from the two types of studies that Africa had a high prevalence of vitiligo. These results were in accordance with previous studies that vitiligo frequently occurred in darker-skinned individuals [109]. However, differences did exist.

Table 1. (Continued)

| First Author | Publication Year | Country | Survey Age (years) | Survey Year | Sample (N) | Vitiligo (n) | Prevalence |
|--------------|------------------|---------|--------------------|-------------|------------|-------------|------------|
| Yang QY [98] | 2007             | China   | 60–93              | 2005–2006   | 599        | 2           | 0.33%      |
| El-Essawi D [62] | 2007            | USA     | 20–80              | -           | 207        | 5           | 2.42%      |
| Tamer E [99] | 2008             | Turkey  | 0–16               | 2004–2006   | 6300       | 91          | 1.44%      |
| Taylor A [100] | 2008              | USA     | ≥12                | -           | 140        | 1           | 0.71%      |
| Ayanlowo O [101] | 2009            | Nigeria | -                  | 2003–2006   | 6645       | 186         | 2.80%      |
| Poojary SA [102] | 2011            | India   | -                  | 2002–2008   | 33252      | 204         | 0.61%      |
| Furue M [103] | 2011             | Japan   | all                | 2007–2008   | 67448      | 1134        | 1.68%      |
| Muteba Baseke C [104] | 2011      | Congo  | all                | 2000–2010   | 14195      | 204         | 1.44%      |
| Zhang LJ [105] | 2012             | China   | 8–76               | 2009–2011   | 1439       | 13          | 0.90%      |
| Al-Refu K [106] | 2012           | Jordan  | 0–12               | 2-year period | 2000    | 71          | 3.55%      |
| Kumar S [107] | 2014             | India   | all                | 2012        | 443        | 44          | 9.98%      |
| Su WL [108] | 2014             | China   | ≥60                | 2011–2013   | 1094       | 2           | 0.18%      |

doi:10.1371/journal.pone.0163806.t001
Fig 2. Forest plot of prevalence from population- or community-based studies. Forest plot of prevalence of vitiligo from population- or community-based studies from 1964 to 2015.
doi:10.1371/journal.pone.0163806.g002
in various reports. We suspect the differences that vitiligo is more prevalent in some geographic areas may result from the following factors. Firstly, different skin types and ethnic groups may play important roles in the discrepancy of the prevalence among different areas. Environmental conditions as well as genetic factors may solely or synergistically contribute to the various prevalence distribution in different geographic areas [7]. Secondly, the populations in many surveys were ethnically and culturally diverse such as the survey in USA. Several generations of immigrants or various population’s lifestyles in this region might contribute to these differences. Thirdly, unbalanced number of included studies in geographic regions might compromise accurate and sufficient information for heterogeneity. Studies were extremely more conducted in Asia, while only 1 study was conducted in Oceania or Atlantic. Lastly, small amounts of participants in some included studies may contribute to imprecise estimates.

In general, the prevalence of vitiligo showed a relatively decreased trend with increase in the times. Especially, it has remained at a low level in recent two decades in both population- or community-based studies and hospital-based studies. The association between vitiligo and its autoimmune diseases, such as autoimmune thyroid diseases, psoriasis, pernicious anemia,
Table 2. Prevalence of vitiligo stratified by different factors.

| Stratified factors | No. of Studies | Prevalence rate | Lower limit | Upper limit | Heterogeneity I^2 (%) | P from test of heterogeneity | Model |
|--------------------|----------------|-----------------|-------------|-------------|-----------------------|-------------------------------|--------|
| **Population or community-based studies** | | | | | | | |
| **Area** | | | | | | | |
| Asia | 57 | 0.001 | 0.001 | 0.002 | 99.50% | 0 | Random |
| Africa | 7 | 0.004 | 0.001 | 0.007 | 93.10% | 0 | Random |
| America | 5 | 0.002 | 0.001 | 0.004 | 94.80% | 0 | Random |
| Europe | 11 | 0.004 | 0.002 | 0.005 | 83.90% | 0 | Random |
| Oceania | 1 | 0.012 | 0.005 | 0.018 | - | - | Random |
| Atlantic | 1 | 0.001 | 0 | 0.001 | - | - | Random |
| **Years** | | | | | | | |
| 1964–1980 | 7 | 0.006 | 0.004 | 0.009 | 97.30% | 0 | Random |
| 1981–1985 | 4 | 0.002 | 0.001 | 0.003 | 96.20% | 0 | Random |
| 1986–1990 | 1 | 0.003 | -0.003 | 0.009 | - | - | Random |
| 1991–1995 | 4 | 0.006 | -0.001 | 0.013 | 95.40% | 0 | Random |
| 1996–2000 | 9 | 0.001 | 0.001 | 0.002 | 93.00% | 0 | Random |
| 2001–2005 | 23 | 0.002 | 0.002 | 0.003 | 97.10% | 0 | Random |
| 2006–2010 | 17 | 0.001 | 0 | 0.001 | 77.90% | 0 | Random |
| 2011–2015 | 17 | 0.002 | 0.002 | 0.002 | 99.80% | 0 | Random |
| **Gender** | | | | | | | |
| male | 30 | 0.002 | 0.002 | 0.003 | 94.10% | 0 | Random |
| female | 18 | 0.005 | 0.004 | 0.006 | 95.00% | 0 | Random |
| **Age** | | | | | | | |
| 0–19 | 26 | 0.002 | 0.002 | 0.003 | 95.80% | 0 | Random |
| 20–39 | 8 | 0.002 | 0.001 | 0.003 | 83.30% | 0 | Random |
| 40–59 | 7 | 0.004 | 0.003 | 0.006 | 90.20% | 0 | Random |
| ≥60 | 7 | 0.007 | 0.003 | 0.01 | 95.30% | 0 | Random |
| **Hospital-based studies** | | | | | | | |
| **Area** | | | | | | | |
| Asia | 13 | 0.016 | 0.011 | 0.02 | 97.50% | 0 | Random |
| Africa | 5 | 0.025 | 0.016 | 0.034 | 95.70% | 0 | Random |
| America | 4 | 0.015 | -0.001 | 0.031 | 97.60% | 0 | Random |
| **Years** | | | | | | | |
| 1964–1980 | 1 | 0.026 | 0.023 | 0.029 | - | - | Random |
| 1996–2000 | 4 | 0.019 | 0.007 | 0.031 | 97.10% | 0 | Random |
| 2001–2005 | 5 | 0.02 | 0.01 | 0.029 | 94.70% | 0 | Random |
| 2006–2010 | 5 | 0.015 | 0.005 | 0.025 | 94.10% | 0 | Random |
| 2011–2015 | 7 | 0.016 | 0.01 | 0.022 | 98.50% | 0 | Random |
| **Gender** | | | | | | | |
| male | 4 | 0.011 | 0.005 | 0.017 | 94.20% | 0 | Random |
| female | 4 | 0.013 | 0.007 | 0.02 | 94.60% | 0 | Random |
| **Age** | | | | | | | |
| 0–19 | 7 | 0.024 | 0.018 | 0.029 | 93.00% | 0 | Random |
| 20–39 | 1 | 0.014 | 0.012 | 0.016 | - | - | Random |
| 40–59 | 1 | 0.015 | 0.013 | 0.017 | - | - | Random |
| ≥60 | 3 | 0.008 | -0.005 | 0.02 | 98.50% | 0 | Random |

doi:10.1371/journal.pone.0163806.t002
Addison's disease et al has been frequently described in the literatures. As vitiligo may accompany with other diseases or disorders, we assume that the decreasing prevalence may be beneficial from development of diagnostic tools or improvement of screening programs or therapeutic methods of vitiligo-related diseases or disorders. The prevalence went up to 0.6% in the first half of 90s in population- or community-based studies. We found there was a literature written by Xue SQ about skin diseases of workers and technical personnel in Taigang company. The prevalence of vitiligo of this community population reached 1.27%, higher than other papers in this period. Chemical elements or decolorization may result in the increase of patients with vitiligo. The exact etiology and pathogenesis of vitiligo have not been completely unraveled. It involves a series of known and unknown environmental factors or immunological factors acting over time.

Our results also demonstrated that the pooled prevalence of vitiligo was slightly higher in females than in males, both for the population- or community-based studies (0.5% compared with 0.2%) and the hospital-based studies (1.3% compared with 1.1%). This result was different from previous literatures, which revealed that male and female patients were affected equally by vitiligo [4, 58, 110] or men were more affected than women [111]. Women usually incline to concern about pigmentation changes of their skin and the impact on their social life, and women may be more diligent in seeking treatment. This could be a possible reason for the greater number of female patients in this study [112].

Besides, this study revealed that the prevalence of vitiligo increased with age in population- or community-based studies, increasing gradually from 0.2% in the 0~19 years age-group to 0.7% in the ≥ 60 years age-group. Similar results have been found in some previous studies [8, 58]. The increase possibly correlates to a cumulative effect, because vitiligo is a long-lasting disease and is life-long in most patients. However, in hospital-based studies, the prevalence in the 0~19 years age-group was higher than that in the ≥ 60 years age-group. Youngers may occupy more important position in the family and parents will take them to see a doctor as soon as
they find the children’s conditions. In contrast, some elderly patients do not pay greater awareness of their appearance and will not see doctors unless necessary.

Despite we have conducted a comprehensive searching of the epidemiology of vitiligo, several limitations should be considered in this meta-analysis. The available publications/studies were from 31 countries. The data of unavailable countries are required to reflect the wide variation. Some characteristics of the patients, such as clinical types, site or age of onset, risk factors, etc., were not included in the subgroup analyses. These might exert an important influence on the prevalence of vitiligo. Another possible limitation of this study was related to publication bias. The result from Egger’s test showed an evidence of publication bias in population- or community-based studies. It may result from unbalanced number of studies and year of publications. For example, the number of included studies of 2001~2005 was 23, in contrast, the number of 1986~1990 was only 1. Finally, some included studies had noted methodological flaws, especially related to selection and recruitment of samples. Special subjects, such as soldiers, teachers, miners and other professional workers, participating in the investigations could not be representative of other samples. Control group with other diseases such as diabetes was also selected in some studies. As a result, the estimates of prevalence may have been influenced in unpredictable ways and need continuous perfectibility for verifying our conclusion.

In conclusion, we investigated a worldwide prevalence of vitiligo with population- or community-based and hospital-based data. A relatively high prevalence of vitiligo was found in Africa area and in female patients. The prevalence has maintained at a low level in recent years. It showed an inverse trend with age increment in the two types of studies. The current study provided a basic result for further studies. Future researches should be done to find key factors that contribute to the prevalence.

Supporting Information

S1 File. Figure legends.
(DOCX)

S1 Table. PRISMA 2009 checklist.
(DOC)

Author Contributions

Conceptualization: YW SC.
Data curation: YW.
Formal analysis: YZ YC MS SJ.
Funding acquisition: YW.
Investigation: YZ.
Methodology: YZ YC MS SJ.
Project administration: SC.
Resources: YZ.
Software: YC.
Supervision: YW.
Validation: X-HG H-DC.
Visualization: SC.
Writing – original draft: YZ.
Writing – review & editing: YW SC.

References
1. Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. Vitiligo. Lancet. 2015 Jul 4; 386(9988):74–84. doi: 10.1016/S0140-6736(14)60763-7 PMID: 25596811
2. Picardo M, Dell’Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad D et al. Vitiligo. Nat Rev Dis Primers. 2015 Jun 4; 1:15011. doi: 10.1038/nrdp.2015.11 PMID: 27189851
3. Alkhateeb A, Falstein LM, Daly M, Petronic-Rosic. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. VJ Arm Acad Dermatol. 2011 Sep; 65(3):473–91.
4. Majumder PP. Genetics and prevalence of vitiligo vulgaris. In:Hann SK, Nordlund JJ, editors. Vitiligo. Oxford: Blackwell Science. 2000.p.18–20.
5. Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003; 16:208–14. PMID: 12753387
6. Lomholt G. Prevalence of skin diseases in a population; a census study from the faroe islands. Dan Med Bull. 1964 Feb; 11:1–7. PMID: 14120983
7. Mehta NR, Shah KC, Theodore C, Vyas VP, Patel AB. Epidemiological study of vitiligo in Surat area, South Gujarat. Indian J Med Res. 1973 Jan; 61(1):145–54. PMID: 4756867
8. Howlitz J, Brodthagen H, Schwartz M, Thomsen K. Prevalence of vitiligo. Epidemiological survey on the Isle of Bornholm, Denmark. Arch Dermatol. 1977 Jan; 113(1):47–52. PMID: 831622
9. Johnson MT, Roberts J. Skin conditions and related need for medical care among persons 1–74 years. United States, 1971–1974. Vital Health Stat 11 1978; i–iv: 1–72.
10. Quirk CJ. Skin disease in the Busselton population survey. Med J Aust. 1979; 1:569–70. PMID: 470736
11. Larsson PA, Lidén S. Prevalence of skin diseases among adolescents 12–16 years of age. Acta Derm Venereol. 1980; 60(5):415–23. PMID: 6162313
12. Weismann K, Krakauer R, Wanscher B. Prevalence of skin diseases in old age. Acta Derm Venereol. 1980; 60(4):352–3. PMID: 6163285
13. Bechelli LM, Haddad N, Pimenta WP, Pagnano PM, Melchior E Jr, Fregnan RC et al. Epidemiological survey of skin diseases in schoolchildren living in the Purus Valley (Acre State, Amazonia, Brazil). Dermatologica. 1981; 163(1):78–93. PMID: 7274519
14. Zhou YH. Investigation of dermatoses among 13390 persons in Yongchuan county of Sichuan province. Med J Chongqi. 1985; 10(4):283–5. Chinese.
15. Das SK, Majumder PP, Chakraborty R, Majumdar TK, Haldar B. Studies on vitiligo. I. Epidemiological profile in Calcutta, India. Genet Epidemiol. 1985; 2(1):71–8. PMID: 405493
16. Montagnani A, Tosti A, Patrizi A, Salardi S, Cacciari E. Diabetes mellitus and skin diseases in childhood. Dermatologica. 1985; 170(2):65–8. PMID: 3979631
17. Nanda A, Kaur S, Bhakoo ON, Dhali K. Survey of cutaneous lesions in Indian newborns. Pediatr Dermatol. 1989 Mar; 6(1):39–42. PMID: 2704661
18. Schallreuter KU, Levenig C, Berger J. Vitiligo and cutaneous melanoma. A case study. Dermatologica. 1991; 183(4):239–45. PMID: 1809584
19. Xue SQ, Li HY. Investigation of dermatoses among 5683 workers and technical personnel in Tai-gang. Med J Shansi. 1994; 25(3):284–6. Chinese.
20. Cellini A, Offidani A. An epidemiological study on cutaneous diseases of agricultural workers authorized to use pesticides. Dermatologica. 1994; 189(2):129–32. PMID: 8075438
21. Wang WX. Investigation of dermatoses among rural population of Wulian county. J Dermatology and Venereology. 1994; 16(2):51–2. Chinese.
22. Gibbs S. Skin disease and socioeconomic conditions in rural Africa: Tanzania. Int J Dermatol. 1996 Sep; 35(9):633–9. PMID: 8876289
23. Guan JC, Li ZW. Investigation of dermatoses among 2206 middle school students. Chin J Derm Venereol. 1997 Nov; 11(6):365. Chinese.
24. Bhatia V. Extent and pattern of paediatric dermatoses in rural areas of central India. Ind J Dermatol Venereol Leprol. 1997; 63: 22–5.
25. Kubeyinje EP, Belagavi CS. Skin and treponemal diseases among Asian domestic house-helpers in northern Saudi Arabia. Int J Dermatol. 1997 Sep; 36(9):650–2. PMID: 9352403
26. Ren XL, Zhao MY, Lu LY, Zhang FM, Zhao LP. The epidemiology survey of inheritance disease of 155000 persons in Handan district. HEREDITAS. 1998; 20(3):11–2. Chinese.
27. Sun TO, Niu LJ, Liu T. Epidemiological investigation on vitiligo in Tai’an district of Shandong province. J Dermatology and Venereology. 1999; 21(2): 25–6. Chinese.
28. Liao WQ, Li ZG, Pan WH, Liang XB, Xu H, Shao YF et al. Investigation and prophylaxis of the high-morbidity dermatoses in a certain warship troop on the Nanhai sea. J Prev Med Chin PLA. 1999 Feb; 17(1):30–3. Chinese.
29. Popescu R, Popescu CM, Williams HC, Forsea D. The prevalence of skin conditions in Romanian school children. Br J Dermatol. 1999 May; 140(5):891–6. PMID: 10354028
30. Perera A, Atukorale DN, Sivayogan S, Ariyaratne VS, Karunaratne LA. Prevalence of skin diseases in suburban Sri Lanka. Ceylon Med J. 2000 Sep; 45(3):123–8. PMID: 11192992
31. Ling WJ, Liu ZX, Lin ZG, Liu B. Investigation of dermatoses in a certain reef of Nansha. Journal of Navy Medicine. 2001 Sep; 22(3):288. Chinese.
32. Xie PL, Yan Z, Li GX, Liu FF, Xu DX, Li YJ. Epidemiological investigation analysis on genetic disease and congenital malformation of 0~7 years old children in Qingzhou area. Chinese Journal of Birth Health and Heredity. 2001; 9(1):98–9. Chinese.
33. Che DF, Ni RZ, Cao Y, Dai FC, Liang XB, Ni T et al. Investigation and prophylaxis of the high-morbidity dermatoses in a certain special army unit in the southeast of China. Journal of Medical Postgraduates. 2001 Oct; 14(5):382–4. Chinese.
34. Sun ZX, Wang WN, Wang SY, Zhang ML, Liu SF. Epidemiological investigation analysis on genetic disease and congenital malformation of 0–7 years old children in Zhaoyuan city. Chinese Journal of Birth Health and Heredity. 2001; 9(4):89–91. Chinese.
35. Zhang JQ, Lu H, Xiao P, Guo YL, Zhang ZM, Wu RL. Investigation of dermatoses on 641 cases of mine workers. Southern China Journal of Dermato-Venereology. 2002 Dec; 9(4):282. Chinese.
36. Zhang BX, Wang JC, Wang QC. Investigation of dermatoses of garrisons in cold city. People’s Military Surgeon. 2002; 45(3):178–9. Chinese.
37. Chen XQ, Liu XN, Niu GX, Li YQ, Yuan GJ, Lu ZC et al. Investigation of the high-morbidity dermatoses in a sea-training troop on the south-east China. Clinical Journal of Medical Officer. 2002 Jun; 30 (3):77–9. Chinese.
38. Prahalad S, Shear ES, Thompson SD, Giannini EH, Glass DN. Increased prevalence of familial autoimmunity in simplex and multiplex families with juvenile rheumatoidarthritis. Arthritis Rheum. 2002 Jul; 46(7):1851–6. PMID: 12124869
39. Yang XQ, Zhang H, Tang CF, Liu DH, Song SJ. Investigation of dermatoses in airborne troops. People’s Military Surgeon. 2002; 45(10):567–9. Chinese.
40. Abdel-Hafez K, Abdel-Aty MA, Hofny ER. Prevalence of skin diseases in rural areas of Assiut Governorate, Upper Egypt. Int J Dermatol. 2003 Nov; 42(11):887–92. PMID: 14636205
41. Xu YY. An epidemiological study on four kinds of common dermatogic diseases in part area of Anhui Province. Anhui Medical University. 2003. Chinese.
42. Li PH, Wang JZ. Epidemiological investigation on dermatosis among rural population in Shantou suburb. Southern China Journal of Dermato-Venereology. 2003 Mar; 10(1):49–50. Chinese.
43. Wolkenstein P, Grob JJ, Bastuji-Garin S, Ruszczynski S, Roujeau JC, Revuz J et al. French people and skin diseases: results of a survey using a representative sample. Arch Dermatol. 2003 Dec; 139 (12):1614–9. PMID: 14676080
44. Zeng YH, Tang JP, Wei Z, Zhou B. An investigation to skin diseases of pupils in Yuhua district Changsha. Practical Preventive Medicine. 2004 Oct; 11(5):937–9. Chinese.
45. Feng D, Zhang JF. Investigation of dermatoses on workers contacted with coal tar in a gas company of Datong city. Shanxi Med J. 2004 Dec; 33(12):1039. Chinese.
48. Xu HZ, Chen WY, Zhang Y, Yin XY, Sun GJ. Investigation of health conditions of teachers in Nanjing. JPMT. 2004 Jul; 11(7A):1216–8. Chinese.

49. Zhao Y, Liu CD, He N, Yang WB. Investigation of dermatoses in southern troops. Guangxi Prev Med. 2004 Jun; 10(3):190. Chinese.

50. Naldi L, Colombo P, Placchesi EB, Piccitto R, Chatenoud L, La Vecchia C et al. Study design and preliminary results from the pilot phase of the PraKtis study: self-reported diagnoses of selected skin diseases in a representative sample of the Italian population. Dermatology. 2004; 208(1):38–42. PMID: 14730235

51. Tuncel AA, Erbagci Z. Prevalence of skin diseases among male adolescent and post-adolescent boarding school students in Turkey. J Dermatol. 2005 Jul; 32(7):557–64. PMID: 16335871

52. Zhao G, Li F, Na AH. Investigation on dermatoses affecting officers and soldiers garrisoned southeast China. Med J Chin PLA. 2009 Nov; 34(11):1376–8. Chinese.

53. Zhu LB, Huang JP, Kong HQ, Pu ZH. Epidemiological investigation on dermatoses among primary school children in Magong, Penghu, Taiwan: a community-based clinical survey. J Formos Med Assoc. 2008 Nov; 107(11):1376–8. Chinese.

54. Liu XH, Song LT, Yang H, Jiao J, Li HJ. Investigation of dermatoses in a certain troop in Jinan military region. Prac J Med and Pharm. 2010 Jan; 27(1):72–3. Chinese.

55. Li YF, Zhao EG. Investigation of dermatoses of miners in one certain state owned large coal mine enterprise. Chinese Community Doctors. 2010; 12(5):162. Chinese.

56. Ingoordo V, Gentile C, Iannazzone SS, Cusano F, Naldi L. Vitiligo and autoimmunity: an epidemiological study in a representative sample of young Italian males. J Eur Acad Dermatol Venereol. 2011 Jan; 25(1):105–9. doi: 10.1111/j.1468-3083.2010.03696.x PMID: 21162714

57. Liu JX, Song LT, Yang H, Jiao J, Li HJ. Investigation of dermatoses in a certain troop of Jinan military region. Prac J Med and Pharm. 2010 Jan; 27(1):72–3. Chinese.

58. Li YF, Zhao EG. Investigation of dermatoses of miners in one certain state owned large coal mine enterprise. Chinese Community Doctors. 2010; 12(5):162. Chinese.

59. Ingoordo V, Gentile C, Iannazzone SS, Cusano F, Naldi L. Vitiligo and autoimmunity: an epidemiological study in a representative sample of young Italian males. J Eur Acad Dermatol Venereol. 2011 Jan; 25(1):105–9. doi: 10.1111/j.1468-3083.2010.03696.x PMID: 21162714

60. Liu XH, Song LT, Yang H, Jiao J, Li HJ. Investigation of dermatoses in a certain troop in Jinan military region. Prac J Med and Pharm. 2010 Jan; 27(1):72–3. Chinese.
73. Wang RL, Cao LS, Zhou C, Zhang JZ. Prevalence of 15 skin diseases in adolescents from Liangshan prefecture in Sichuan province. Chin J Dermatol. 2012 Apr; 45(4):270–2. Chinese.

74. Yamaamah GA, Emam HM, Abdelhamid MF, Elsaie ML, Shehata H, Farid T et al. Epidemiologic study of dermatologic disorders among children in South Sinai, Egypt. Int J Dermatol. 2012 Oct; 51(10):1180–5. doi: 10.1111/j.1365-4632.2012.05475.x PMID: 22834561

75. Liu Q, Liu XH, Wang ML, Li WH, Zhang JZ. Epidemiological survey on vitiligo in Zibo district. China journal of Leprosy and Skin Diseases. 2013 Oct; 29(10):673–4. Chinese.

76. Wang XY, Du J, Wang TL, Zhou C, Shen YW, Ding XL, et al. Prevalence and clinical profile of vitiligo in China: a community-based study in six cities. Acta Derm Venereol. 2013 Jan; 93(1):62–5. PMID: 22859054

77. Yang YS, Zheng MG, Li YY, Yao XA. Analysis of examination results of high school graduates for the military academy in Guizhou province in 2012. Chin J School Doctor. 2013 Nov; 27(11):803–4. Chinese.

78. Pang XW, Huang ML, Lei Z, Xian GF. Surveys of incidence of dermatoses in the southern radar troops of air force. Medical Journal of Air Force. 2013 Dec; 29(4):193–200. Chinese.

79. Chen JZ, Yao XA, Yang YS, Li YY, Zhao L. Analysis of army colleges and universities enrollment examination in Guizhou province in the past two years. Medical Journal of National Defending Forces in Southwest China. 2013 Jan; 23(1):68–70. Chinese.

80. Zhu XW, Yao HW, Zheng FX. Prevalence and related factors analysis of common skin diseases among rural population. Zhejiang Prev Med. 2013 Feb; 26(1):95–6. Chinese.

81. Shao ZQ. An area soldier skin diseases investigation and prevention. Guide of China Medicine. 2014Feb; 12(4):14–5. Chinese.

82. El-Khateeb EA, Lotfi RA, Abd Elaziz KM, El-Shiekh SE. Prevalences of skin diseases among primary schoolchildren in Damietta, Egypt. Int J Dermatol. 2014 May; 53(5):609–16. doi: 10.1111/ijd.12335 PMID: 24758232

83. Reddy J. A survey on the prevalence of vitiligo in Bangalore city, India. International Journal of Pharma Medicine and Biological Sciences. 2014; 3(1):34–45.

84. Afkhami-Ardekani M, Ghadiri-Anari A, Ebrahimzadeh-Ardakani M, Zaji N. Prevalence of vitiligo among type 2 diabetic patients in an Iranian population. Int J Dermatol. 2014 Aug; 53(8):896–8. doi: 10.1111/ijd.12148 PMID: 24134629

85. Lee H, Lee MH, Lee DY, Kang HY, Kim KH, Choi GS et al. Prevalence of vitiligo and associated comorbidities in Korea. Yonsei Med J. 2015 May; 56(3):719–25. doi: 10.3349/ymj.2015.56.3.719 PMID: 25837178

86. Chen YT, Chen YJ, Hwang CY, Lin MW, Chen TJ, Chen CC et al. Comorbidity profiles in association with vitiligo: a nationwide population-based study in Taiwan. J Eur Acad Dermatol Venereol. 2015 Jul; 29(7):1362–9. doi: 10.1111/jdv.12870 PMID: 25510261

87. Liu TH. Epidemiological investigation of skin diseases of border officers and soldiers in Xigaze plateau region of Tibet in summer. Medical Journal of National Defending forces in Southwest China. 2015 Feb; 25(2):231–2. Chinese.

88. Ruiz-Maldonado R, Tamayo Sánchez L, Velázquez E. Epidemiology of skin diseases in 10,000 patients of pediatric age. Bol Med Hosp Infant Mex. 1977 Jan-Feb; 34(1):137–61. PMID: 836712

89. Anand IS, Gupta S. A profile of skin disorders in children in Saurashtra. J Indian Med Assoc. 1998 Aug; 96(8):245–6. PMID: 9830292

90. Nanda A, Al-Hasawi F, Alsaleh QA. A prospective survey of pediatric dermatology clinic patients in Kuwait: an analysis of 10,000 cases. Pediatr Dermatol. 1999 Jan-Feb; 16(1):6–11. PMID: 10027990

91. Boisseau-Garsaud AM, Garsaud P, Calèss-Quist D, Hélénond R, Quénehervé C, Claire RC. Epidemiology of vitiligo in the French West Indies (Isle of Martinique). Int J Dermatol. 2000 Jan; 39(1):18–20. PMID: 10651958

92. Wisuthsarewong W, Viravan S. Analysis of skin diseases in a referral pediatric dermatology clinic patients in Thailand: an analysis of 10,000 cases. Pediatr Dermatol. 1999 Jan-Feb; 16(1):6–11. PMID: 10027990

93. Yang XQ, Fan JY, Zhang LJ, Li Y. Analysis of the hospital situations of soldiers in air force military hospital dermatological department nearly 10 years. Journal of General Hospital of Air Force. 2001; 17(2):114–5. Chinese.

94. Li GP, Wu DL. Statistical analysis of dermatoses among outpatients in Guillin city. Guangxi Medical Journal. 2003 May; 25(5):825–9. Chinese.

95. Ogunbiyi AO, Daramola OO, Alesoe OO. Prevalence of skin diseases in Ibadan, Nigeria. Int J Dermatol. 2004 Jan; 43(1):31–6. PMID: 14693018
96. Onayemi O, Isezuo SA, Njoku CH. Prevalence of different skin conditions in an outpatients’ setting in north-western Nigeria. Int J Dermatol. 2005 Jan; 44(1):7–11. PMID: 15663650
97. Nnoruka EN. Skin diseases in south-east Nigeria: a current perspective. Int J Dermatol. 2005 Jan; 44(1):29–33. PMID: 15663655
98. Yang QY. The clinical analysis of 599 cases of elderly skin disorders. Chin J Derm Venereol. 2007 Sep; 21(9):543–4. Chinese.
99. Tamer E, Ilhan MN, Polat M, Lenk N, Alli N. Prevalence of skin diseases among pediatric patients in Turkey. J Dermatol. 2008 Jul; 35(7):413–8. doi: 10.1111/j.1466-8138.2008.00495.x PMID: 18705828
100. Taylor A, Pawaskar M, Taylor SL, Balkrishnan R, Feldman SR. Prevalence of pigmentary disorders and their impact on quality of life: a prospective cohort study. J Cosmet Dermatol. 2008 Sep; 7(3):164–8. doi: 10.1111/j.1473-2165.2008.00384.x PMID: 18789050
101. Ayanlowo O, Olumide YM, Akinkugbe A, Ahamneze N, Otiuke-Odibi BI, Ekpudu VI et al. Characteristics of vitiligo in Lagos, Nigeria. West Afr J Med. 2009 Mar; 28(2):118–21. PMID: 19761176
102. Poojary SA. Vitiligo and associated autoimmune disorders: a retrospective hospital-based study in Mumbai, India. Allergol Immunopathol (Madrid). 2011 Nov-Dec; 39(6):356–61.
103. Furue M, Yamazaki S, Jimbow K, Tsuchida T, Amagai M, Tanaka T et al. Prevalence of dermatological disorders in Japan: a nationwide, cross-sectional, seasonal, multicenter, hospital-based study. J Dermatol. 2011 Apr; 38(4):310–20. doi: 10.1111/j.1466-8138.2011.01209.x PMID: 21426384
104. Muteba Baseke C. Epidemiology of vitiligo in university of Kinshasa Hospital (C.U.K)/D.R. Congo. Pigment Cell and Melanoma Research. 2011; 24(4):829.
105. Zhang LJ, Zhang GM. Analysis on the disease proportion of 1439 patients with skin diseases during 2009–2011. Medical Recapitulate. 2012 Dec; 18(23):4100–1. Chinese.
106. Al-Refu K. Vitiligo in children: a clinical-epidemiologic study in Jordan. EPediatr Dermatol. 2012 Jan-Feb; 29(1):114–5.
107. Kumar S, Nayak CS, Padhi T, Rao G, Rao A, Sharma VK, et al. Epidemiological pattern of psoriasis, vitiligo and atopic dermatitis in India: Hospital-based point prevalence. Indian Dermatol Online J. 2014 Nov; 5(Suppl 1):S6–8. doi: 10.4103/2229-5178.144499 PMID: 25506573
108. Su WL. Clinical analysis of 1094 elderly inpatients with skin disease. Chongqing Medical University. 2014. Chinese.
109. Sheth VM, Guo Y, Qureshi AA. Comorbidities associated with vitiligo: a ten-year retrospective study. Dermatology. 2013; 227:311–5. doi: 10.1159/000354607 PMID: 24107643
110. Handa S, Kaur I. Vitiligo: clinical findings in 1436 patients. J Dermatol. 1999; 26:653–7. PMID: 10554431
111. McBurney E. Vitiligo: clinical picture and pathogenesis. Arch Intern Med. 1979; 139:1295–7. PMID: 508039
112. Haider RM, Taliaferro SJ. Vitiligo. In: Wolff K, Goldsmith L, Katz S, Gilchrest B, Paller A, Lefell D, editors. Fitzpatrick’s dermatology in general medicine. New York: McGraw-Hill. 2008; p.72.