A nanoscale transistor based on gate-induced stochastic transitions

J. Bürki, C. A. Stafford, and D. L. Stein

1) Department of Physics and Astronomy, Sacramento State University, 6000 J Street, Sacramento, CA 95814
2) Department of Physics, University of Arizona, 1118 E. Fourth Street, Tucson, AZ 85721
3) Department of Physics and Courant Institute of Mathematical Sciences, New York University, New York, NY 10003

(Dated: September 2010)

A nanoscale device consisting of a metal nanowire, a dielectric, and a gate is proposed. A combination of quantum and thermal stochastic effects enable the device to have multiple functionalities, serving alternately as a transistor, a variable resistor, or a simple resistive element with $I - V$ characteristics that can switch between ohmic and non-ohmic. By manipulating the gate voltage, stochastic transitions between different conducting states of the nanowire can be induced, with a switching time as short as picoseconds. With an appropriate choice of dielectric, the transconductance of the device can significantly exceed the conductance quantum $G_0 = 2e^2/h$, a remarkable figure of merit for a device at this lengthscale.

PACS numbers: 85.35.-p, 62.25.-g, 64.70.Nd, 73.63.-b

I. INTRODUCTION

Variable resistors are commonly used circuit elements in many electronic applications. However, their large size and slow response time have heretofore limited their use primarily to the human-circuit interface. In this article, we describe how the exploitation of quantum and stochastic effects at the nanoscale allows one to combine what would ordinarily be distinct macroscale circuit elements into a single nanoscale device with multiple functionalities, and to achieve response times on the order of picoseconds.

The device architecture we propose is illustrated in Fig. 1. The physics behind its operation is the following: A metal nanowire is the active circuit element, and is embedded in a dielectric sheath, surrounded by an outer conductor of comparable dimensions, referred to as the gate. A positive/negative voltage applied to the gate enhances/depletes the density of carriers in the nanowire. This results in a shift of the electronic Fermi energy E_F, which alters the electron-shell structure of the nanowire. This in turn changes the energy barriers that determine the rates of stochastic transitions between different conducting states of the nanowire. The idea is that a sufficient voltage applied at the gate will make the energy barrier small enough to be comparable to the thermal energy kT, thus making a stochastic transition all but certain.

Such a device would require as active element a nanowire where electron-shell effects dominate over atomic-shell effects. This has been shown to be the case for wires of conductance between a few and about a hundred conductance quanta $G_0 = 2e^2/h$. Such nanowires with lengths below or around a few nanome-

![FIG. 1. Diagram of the proposed device](image-url)
change in radius of the order one atomic diameter) forms at one end of the wire and subsequently propagates along the wire.

A nanoelectromechanical switch similar to the device we are proposing has recently been built by Martin et al.21 on a somewhat larger scale. However, the larger scale of their device results in a different physical process responsible for the switching. Martin et al.21 argue that the switching in their device is the result of a bending of the wire due to an electrostatic attraction between the wire and the gate. Such bending would be negligible in the device we envision, which would be much shorter (few nm as opposed to close to a \(\mu\)m in Ref. 21), and the switching would be instead driven by stochastic events as described above. The different scales, configurations, and physics underlying the operation of the two leads to different device characteristics and functionalities; these will be reviewed at the end of this article.

II. BACKGROUND

Metal nanowires have attracted considerable interest in the past decade due to their remarkable transport and structural properties.22 Long gold and silver nanowires were observed to form spontaneously under electron irradiation,13,20,23 and appear to be surprisingly stable. Even the thinnest gold wires, essentially chains of atoms, have lifetimes of the order of seconds at room temperature.24 Metal nanowires exhibit striking correlations between their stability and electrical conductance.8,25 That these filamentary structures are stable at all is rather counterintuitive,26,27 but can be explained by electron-shell effects.12,26,29

Because most of their atoms are at the surface, with low coordination numbers, metal nanowires behave essentially like fluids.27 Classically, the Rayleigh instability would break up any wire whose length exceeds its circumference.24 Nevertheless, nanowires clearly violating the Rayleigh criterion have been observed repeatedly.13,20,2327 The instability is suppressed through quantum effects, with stabilization occurring through the nanowire’s electronic shell structure. A quantum linear stability analysis24,26 showed the existence of “islands of stability” for discrete intervals of the radius \(R\). These correspond to conductance “magic numbers” that agree with those observed in experiments. For low enough temperatures, there remain finite regions of \(R\) stable against long-wavelength perturbations. Therefore, stable wires exist only in the vicinity of certain “magic radii” and consequently at quantized conductance values \(G\) that are integer multiples of the conductance quantum \(G_0 = 2e^2/h\).

However, the linear stability analysis ignores large thermal fluctuations that can lead to breakup of the wire. Nanowire lifetimes are inferred from conductance histograms, compiled by cycling a MCBJ thousands of times.12,28,30 These studies indicate that conductance peaks disappear above fairly well-defined temperatures, suggesting a lifetime at that temperature that is comparable to a typical wire-elongation time in the experiment. Bärkki, Stafford, and Stein26 studied the lifetimes of these nanowires using techniques developed in Ref. 5. By modeling thermal fluctuations through stochastic Ginzburg-Landau classical field theories, they constructed a self-consistent approach to the fluctuation-induced “necking” of nanowires that is in good agreement with experiment.21 Their theory indicates that passivated noble metal nanowires are sufficiently stable at room temperature to serve as interconnects between nanoscale circuit elements.

Of particular interest for the applications considered in this proposal is the nature of the barriers separating wires of different magic radii (and hence quantized conductances). These barriers can be surmounted in several ways: among them are raising the temperature, applying strain, shortening the wire, or changing the Fermi energy. The first three are discussed in Refs. 6 and 31, but the last is new to this paper. For the purposes of a new nanoscale device, the first two may be unsatisfactory for various reasons having to do either with nonoptimal operating conditions (temperature), or probable inability to implement these controls on the nanoscale (strain).

III. THEORETICAL MODEL

The magic radii are the minima of the electron-shell potential (see Fig. 2 and e.g. Ref. 29), which depends on the dimensionless parameter \(k_F R\), with \(k_F\) the Fermi wavevector and \(R\) the wire radius. A shift in \(k_F\) is thus analogous to applying strain, and can be used to induce rapid (i.e., on the scale of the Debye frequency) transitions between neighboring magic radii. These have conductances differing by \(nG_0\), where \(n \geq 2\) is an integer (see Fig. 2). (As a rule of thumb, the jumps scale as \(n \sim (\pi/4)k_F R\) for a wire with initial radius \(R\).) The
FIG. 3. Escape barrier as a function of wire radius \(k_F R \), or equivalently applied stress \(F \). Results correspond to a gold wire with a conductance \(G = 17 G_0 \), following the calculations of Ref. 6.

The switching time between two adjacent magic radii was shown\(^6\) to be given by the Kramers formula

\[
\tau \sim \Gamma_0^{-1} \exp(\Delta E/k_B T),
\]

where \(\Delta E \) is the energy barrier, \(k_B \) is Boltzmann’s constant, and \(T \) is the temperature. The rate prefactor \(\Gamma_0 \), of order the Debye frequency, was calculated explicitly in Ref. 6. The dependence of \(\Delta E \) on the parameter \(k_F R \) is illustrated in Fig. 3.

The possibility of shifting \(E_F \) electrostatically, as described above, depends in an essential way on the crucial feature that the nanowire has a radius of order nanometers, and thus has a very low density of states at \(E_F \). As a function of the applied gate voltage \(V_g \), the shift in \(E_F \) is given by\(^32\)

\[
\delta E_F = \frac{e V_g}{1 + (e^2/C_g) dN/dE},
\]

where \(C_g \) is the mutual capacitance between gate and nanowire, and \(dN/dE \) is the density of states of the nanowire at \(E_F \). As discussed in Ref. 32 the denominator in Eq. 2 can be well approximated in terms of material and geometrical parameters, yielding a convenient rule-of-thumb estimate

\[
\delta E_F \approx \frac{e V_g}{1 + \alpha r_s \epsilon^{-1} G/G_0},
\]

where \(r_s \) is the Fermi gas parameter for the nanowire material (essentially the mean inter-electron separation in the bulk metal), \(\epsilon \) is the mean dielectric constant of the dielectric sheath, and \(\alpha \) is a dimensionless parameter of order unity, which depends logarithmically on the device dimensions.

In order to achieve the maximum switching speed, it is necessary to achieve a shift \(\delta(k_F R) \sim 1 \) in the shell-potential parameter. From Eq. 3 this implies a preferred operating gate voltage

\[
eV_g \sim \frac{\alpha r_s k_F R}{6 \epsilon}.
\]

For typical metals, \(r_s \sim 2–3 \), while \(k_F R \sim 10 \) in the domain of validity of the nanoscale free electron model\(^1,33\). It is therefore desirable to use a dielectric with \(\epsilon \geq 10 \) to minimize the necessary gate voltages.

A. Transconductance

Because the mechanical switching time of the nanoscale variable resistor can be as short as picoseconds, it may also be thought of as an electromechanical transistor. It is thus useful to compute its transconductance, a figure of merit used to characterize transistors. The transconductance \(g_T \) can be estimated as

\[
g_T = \frac{dI_1}{dV_g} \sim \frac{n G_0 V_{12}}{V_g},
\]

where \(V_{12} \) is the device bias voltage. Using Eq. 4 and \(n \sim (\pi/4)k_F R \), one finds

\[
\frac{g_T}{G_0} \sim \frac{3\pi \epsilon e V_{12}}{2\alpha r_s \epsilon E_F}.
\]

For large dielectric constants \(\epsilon \geq 10 \), and bias voltages \(V_{12} \sim 1\)V, one can thus achieve \(g_T \gg G_0 \), an exceptional figure of merit for a nanoscale device\(^34\), thereby enabling its advantageous use as an effective transistor. In addition to the structural switching time of order picoseconds, the electrical \(RC \) rise time \(\tau = C_g/G \) can be estimated to be of order 1 femtosecond for typical device dimensions/materials, and so is not a limiting factor in device performance.

For some wires, the transition is first-order (inset).
FIG. 5. Conductance of a short (solid line) and long (dashed line) wire under compression. The initial and final shapes of the long (a) and short (b) wires are shown in the inset. From Ref. 31.

B. Ohmic↔non-Ohmic transition

The device discussed above is one where barriers are controlled by shifting the Fermi energy of the nanowire through electrostatic means. Another possibility is to change the wire length. In Ref. 6 it was predicted that a transition in activation behavior occurs as a function of wire length: below a critical length L_c, the barrier decreases rapidly with length, while above it is roughly constant. The transition can be continuous (second-order) or discontinuous (first-order) (see Fig. 4). This effect may have already been observed: a recent study reported a transition from linear to nonlinear $I - V$ behavior in gold nanowires, as distance between electrodes shortened due to an applied bias (presumably because of thermal expansion of the electrodes). In a Comment, we were able to explain this change in $I - V$ behavior as a consequence of the transition in radius stability as a function of wire length (cf. Fig. 4).

This suggests another device possibility, namely one where the wire length can be shortened below its critical value directly by increasing the applied voltage. This would convert a wire with linear $I - V$ characteristics to one with nonlinear ones (see Fig. 5). At the present time, it remains unclear how easily controllable such a transition might be and whether it would be reversible.

IV. DEVICE REALIZATIONS

Construction of a nanoscale variable resistor/electromechanical transistor in the laboratory will require combining the three components of the device—metal nanowire, dielectric, and gate—in a single nanostructure. To achieve optimal device characteristics, the space between the active segment of the nanowire and the gate(s) should be filled with a dielectric with $\epsilon \geq 10$. If a solid dielectric (only) is used, a small gap around the active segment of the nanowire must be provided (see Fig. 6(b)) to permit the nanowire surface to fluctuate freely. In that case, the mean dielectric constant of the region between the nanowire and the gate(s) (including the gap) should exceed ten. Many intrinsic semiconductors could serve as suitable solid dielectrics with $\epsilon \geq 10$ (e.g., Si, Ge, InSb, InAs, InP, GaSb, or GaAs). The material should be chosen so that the semiconducting energy gap exceeds the maximum desired voltage difference between the gate and nanowire.

A liquid dielectric or combination of solid and liquid dielectrics could also be utilized. This would allow for optimal filling of the dielectric region, while still permitting free motion of the nanowire surface. Liquid dielectrics have been used in conjunction with some of the previous techniques, in the context of single molecule measurements, as well as for STM measurements of metal contact transport. In the latter context, they have been shown to have little influence on the stability and transport properties of the nanocontact.

Below we propose two architectures to realize the device described above.

Realization 1

In a first possible architecture for the proposed device (see Fig. 6), a layer of solid dielectric is deposited on a substrate prepatterned (using standard vapor deposition techniques) with a metallic gate to address the nanowire device. A metal nanowire several tens of nanometers in diameter with a “notch” or constriction at the desired location is then deposited on the surface of the dielectric, in alignment with the submerged gate electrode. The nanowire at the notch can then be thinned down to the specified operating diameter by electromigration, scanning-electron microscopy (SEM), or chemical etching. A nanodroplet of liquid dielectric is then deposited on the surface of the wafer, immersing the nanowire de-
FIG. 7. (a) Cross-section and (b) longitudinal cross-section diagrams of a device with a solid dielectric, discussed in Example 2. The gap shown around the nanowire may be filled with a liquid or gel dielectric to improve performance. Additionally, the cavity may be hermetically sealed, and a top gate can be added.

Realization 2

In another realization of the proposed device (see Fig. 7), a layer of solid dielectric is deposited on a substrate prepatterned with a metallic gate to address the nanowire device, as in the first realization. A metal nanowire of uniform diameter several tens of nanometers is then deposited on the surface of the dielectric, in alignment with the submerged gate electrode. This fabrication step can be carried out within standard semiconductor patterning techniques, such as for example E-beam direct write or alternatively in the long term masked ion beam lithography. A further layer of solid dielectric is then deposited, fully encasing the nanowire. A nanoscale pit or cavity is then etched in the dielectric layer, exposing the active segment of the nanowire. The exposed segment of the nanowire is then thinned down to the specified diameter (of order one nanometer) via e.g., focused SEM, chemical etching, or electromigration, or a combination of these techniques.

A hermetic seal can be applied to increase the durability of the nanowire device. For example, an epoxy bubble seal may be used to enclose an inert atmosphere (e.g., nitrogen or argon) about the exposed segment of the nanowire. Alternatively, a passivation layer over the nanowire device is used to scavenge any small amounts of oxidant from the sealed environment.

The pit containing the nanowire (see Fig. 7(b)) can also be filled with a liquid or gel dielectric before the seal is applied, to enhance device performance.

For some applications, both a top gate (not shown) and a bottom gate are included, above and below the nanowire device, respectively. Multiple gates may be desirable e.g. to address individual devices in a large array. For example, if the gate voltage is chosen appropriately, the device will switch conducting states rapidly only if the voltage is applied to both gates.

Because the three terminals of the nanoscale variable resistor consist of metal which can be patterned by standard semiconductor fabrication techniques, such devices can be readily integrated with conventional circuitry on a chip. Because the throughput impedance of such a device is on the scale of several hundred to several thousand Ohms, appropriate amplification may be required to interface with standard CMOS circuitry.

V. DISCUSSION

We have proposed a nanoscale device that exploits the new physics that emerges at the boundary between classical and quantum physics. A monovalent metallic nanowire is stable at certain “magic radii” corresponding to a subset of integer multiples of the quantum conductance $G_0 = 2e^2/h$. The nanometer lengthscale of these systems leads to low energy barriers between different conductances that are surmountable through classical thermal fluctuations on short timescales. The barriers themselves are functions of both the wire’s material parameters — for example, electron density of states — and wire geometry, and as such are controllable through external manipulation. This leads to a novel situation where a basic wire configuration can perform multiple functions that on the macroscopic scale require different specially designed electronic components.

The configuration of the device — a metal nanowire embedded in a dielectric sheath surrounded by an outer conductor, which serves as the gate — is simple. Changing the gate voltage alters the density of carriers, which in turn allows sensitive control of the energy barriers that determine the rates of stochastic transitions between different conducting states of the nanowire. The device can alternatively serve as a simple resistive element, as a variable resistor, or as an electromechanical transistor, given a switching time that can be of the order of picoseconds. A further possibility, though one that may be more difficult to control, is using external voltage to change between linear and nonlinear $I − V$ response, through a transition in activation behaviors as noted in Ref. 31.

The device has some similarities with one built by Martin et al., but there are important differences. The
latter, which is realized on the μm rather than the nm lengthscale, depends on a mechanical process (wire bending) for its operation, leading to a slower response which effectively reduces the array of functionalities of the device. On the other hand, the device of Ref. [21] can serve as an on-off switch, whereas the device discussed here can change only between different nonzero conductances. The two devices are therefore best viewed as complementary, with each specialized to different but useful functions.

ACKNOWLEDGMENTS

This work was supported by NSF Grant Nos. 0312028 (CAS), and PHY-0651077 and PHY-0965015 (DLS). Part of this work was done when CAS and DLS were at the Aspen Center for Physics, and JB was at the University of Arizona. The authors acknowledge the hospitality of the Santa Fe Institute where the last stages of this work were completed.

1J. Bürki and C. A. Stafford, Applied Physics A 81, 1519 (2005).
2D. F. Urban and H. Grabert, Phys. Rev. Lett. 91, 256803 (2003).
3D. F. Urban, J. Bürki, C.-H. Zhang, C. A. Stafford, and H. Grabert, Phys. Rev. Lett. 93, 186403 (2004), cond-mat/0312517.
4D. F. Urban, J. Bürki, C. A. Stafford, and H. Grabert, Physical Review B 74, 245141 (2006).
5R. S. Maier and D. L. Stein, Phys. Rev. Lett. 87, 270601 (2001).
6J. Bürki, C. A. Stafford, and D. L. Stein, Phys. Rev. Lett. 95, 090601 (2005).
7A. I. Mares, A. F. Otte, R. H. M. Smit, and J. M. van Ruitenbeek, Phys. Rev. B 70, 073401 (2004).
8D. F. Urban, J. Bürki, A. I. Yanson, I. K. Yanson, C. A. Stafford, J. M. van Ruitenbeek, and H. Grabert, Solid St. Comm. 131, 609 (2004).
9N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 47, 12345 (1993).
10G. Rubio, N. Agraït, and S. Vieira, Phys. Rev. Lett. 76, 2302 (1996).
11A. I. Yanson, G. Rubio Bollinger, H. E. van den Brom, N. Agraït, and J. M. van Ruitenbeek, Nature 395, 783 (1998).
12A. I. Yanson, I. K. Yanson, and J. M. van Ruitenbeek, Nature 400, 144 (1999).
13Y. Kondo and K. Takayanagi, Phys. Rev. Lett. 79, 3455 (1997).
14Y. Kondo and K. Takayanagi, Science 289, 606 (2000).
15D. R. Strachan, D. E. Smith, D. E. Johnston, T.-H. Park, M. J. Therien, D. A. Bonnell, and A. T. Johnson, Appl. Phys. Lett. 86, 043109 (2005).
16H. X. He, S. Boussaad, B. q. Xu, C. Z. Li, and N. J. Tao, J. Electroanal. Chem. 522, 167 (2002).
17J. M. Kraus, J. M. van Ruitenbeek, and L. J. de Jongh, Physica B 218, 228 (1996).
18K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature 433, 47 (2005).
19J. Bürki, Physical Review B 75, 205435 (2007).
20Y. Oshima, Y. Kondo, and K. Takayanagi, J. Electron Microsc. 52, 49 (2003).
21C. A. Martin, R. H. M. Smit, H. S. J. van der Zant, and J. M. van Ruitenbeek, Nano Letters 9, 2940 (2009).
22N. Agraït, A. Levy Yeyati, and J. M. van Ruitenbeek, Phys. Rep. 377, 81 (2003).
23V. Rodrigues, J. Bettini, A. R. Rocha, L. G. C. Rega, and D. Ugarte, Phys. Rev. B 65, 153402 (2002).
24R. H. M. Smit, C. Untiedt, and J. M. van Ruitenbeek, Nanotech. 15, S472 (2004).
25A. I. Mares, D. F. Urban, J. Bürki, H. Grabert, C. A. Stafford, and J. M. van Ruitenbeek, Nanotechnology 75, 265403 (2007).
26F. Kassubek, C. A. Stafford, H. Grabert, and R. E. Goldstein, Nonlinearity 14, 167 (2001).
27C.-H. Zhang, F. Kassubek, and C. A. Stafford, Phys. Rev. B 68, 165414 (2003).
28A. I. Yanson, J. M. van Ruitenbeek, and I. K. Yanson, Low Temp. Phys. 27, 807 (2001).
29J. Bürki, R. E. Goldstein, and C. A. Stafford, Phys. Rev. Lett. 91, 254501 (2003).
30A. I. Yanson, I. K. Yanson, and J. M. van Ruitenbeek, Phys. Rev. Lett. 84, 5832 (2000).
31J. Bürki, C. A. Stafford, and D. L. Stein, Appl. Phys. Lett. 88, 166101 (2006).
32F. Kassubek, C. A. Stafford, and H. Grabert, Phys. Rev. B 59, 7560 (1999).
33C. A. Stafford, D. Baeriswyl, and J. Bürki, Phys. Rev. Lett. 79, 2863 (1997).
34D. M. Cardamone, C. A. Stafford, and S. Mazumdar, Nano Letters 6, 2422 (2006).
35M. Yoshida, Y. Oshima, and K. Takayanagi, Appl. Phys. Lett. 87, 103104 (2005).
36B. Xu, H. Huixin, and N. J. Tao, J. Am. Chem. Soc. 124, 13568 (2002).
37H. X. He, C. Shu, C. Z. Li, and N. J. Tao, J. Electroanal. Chem. 522, 26 (2002).