Scalable Community Extraction of Text Networks for Automated Grouping in Medical Databases

Tomilayo Komolafe1, Allan Fong2, and Srijan Sengupta*3

1Qlik, 211 S Gulph Rd, King of Prussia, PA 19406
2MedStar Health Research Institute, Hyattsville, Maryland 20782
3Department of Statistics, North Carolina State University, Raleigh, NC, 27695

Abstract

Networks are ubiquitous in today’s world. Community structure is a well-known feature of many empirical networks, and a lot of statistical methods have been developed for community detection. In this paper, we consider the problem of community structure in text networks, which is greatly relevant in medical errors and patient safety databases. We adapt a well-known community extraction method to develop a scalable algorithm for community extraction in large text databases. The application of our method on a real-world patient safety report database demonstrates that the groups generated from community extraction are much more accurate than manual tagging by frontline workers.

Keywords Community detection; Natural Language Processing; Patient Safety.

1 Introduction

Many complex systems in today’s world consist, at an abstract level, of agents who interact with one another. This general agent-interaction framework arises in a range of disciplines, such as biological sciences (Lynall et al., 2010), physical sciences (Huberman and Adamic, 1999; Pagani and Aiello, 2013), and social sciences (Milgram, 1967), to name a few. By denoting agents as nodes and their interactions as edges, any such system can be represented as a network. Such network data provide a versatile framework for analyzing a broad spectrum of complex systems.

Community structure is a well-known feature of many empirical networks. Nodes in a network are often found to belong to groups or communities that exhibit similar behavior. The identification of this network structure, called community detection, is an important problem in network analysis. Community detection has important scientific implications; these communities often turn out to be groups of agents which share common properties and/or play similar roles within the network. For example, in Jonsson et al. (2006), the communities in a protein interaction network turned out to be functional groups (proteins having the same or similar function) - this conclusion has important implications for cancer research. Fortunato (2010) provides a multidisciplinary exposition on community detection in networks. Fittingly, several useful tools for community detection have been developed and studied in the statistics literature. These include spectral methods (Rohe et al., 2011; Jin, 2015; Sengupta and Chen, 2015), modularity based methods (Newman and Girvan, 2004; Bickel and Chen, 2009; Sengupta and Chen, 2018), likelihood based methods (Amini et al., 2013), to name a few. Most of these methods are known to have theoretical guarantees for accuracy of community detection.

In this paper, we study text networks, where vertices represent documents and edges represent similarity between document pairs. Similarity between text documents can be measured in

*Corresponding author. Email: ssengup2@ncsu.edu
a number of ways based on representational learning (Mikolov et al., 2013, 2017; Hofmann, 1999; Landauer et al., 1998; Papadimitriou et al., 2000; Dumais, 2004). We provide more details on document representation in Section 3. Text networks provide a useful framework for representing large databases of documents, and statistical network analysis techniques can be applied for the analysis of such databases. In particular, community detection techniques can be used for grouping text databases into homogeneous clusters, which enables downstream analysis of the clusters thus formed. However, there has not been much work on community detection of text networks, with some very recent exceptions such as Yan et al. (2021) and Dong et al. (2020).

Our main contributions in this paper are as follows. We develop a method for clustering text networks based on representational learning combined with a well-known community extraction method proposed by Zhao et al. (2011). Most real-world text databases are large, which can lead to high computational expense when applying community extraction. We propose a novel divide and conquer strategy to address this issue. We demonstrate our method by applying it to a large patient safety event database, where it generates much better groups than manual tagging, as measured by document similarity.

The rest of the paper is structured as follows. In Section 2, we describe the scientific application area of medical errors and patient safety events which motivated this work, and we also introduce the patient safety error database on which our method is applied. In Section 3, we describe the proposed methodology. In Section 4, we report the results of our analysis, and we conclude the paper with a short discussion in Section 5.

2 Medical Errors and Patient Safety Event Reports

The Institute of Medicine (IOM), an authority at the intersection of medicine and society, released a report titled “To Err is Human: Building a Safer Health System” in November 1999 (Donaldson et al., 2000). Its goal was to break the cycle of inaction regarding medical errors by advocating a comprehensive approach to improving patient safety. Based on two studies conducted in 1984 and 1992, the IOM concluded that between 44,000 and 98,000 patients die every year in United States (U.S.) hospitals due to medical errors. Costs alone from medical errors were approximated to be $37.6 billion per year. About $17 billion were associated with preventable errors (Donaldson et al., 2000). Given the intense level of public and scientific reaction to the report, various stakeholders responded swiftly to take action. In February 2000, President Clinton announced a national action plan to reduce preventable medical errors by fifty percent within five years (HOUSE, 2020). Congress mandated the monitoring of progress in preventing patient harm. In July 2004, a Healthgrades Quality Study asserted that IOM had in fact vastly underestimated the number of deaths due to medical errors, citing 195,000 deaths per year (Harrington, 2005).

Two decades later, medical errors continue to be a leading cause of death in the United States (Makary and Daniel, 2016). The Institute of Medicine and several state legislatures have recommended the use of patient safety event reporting systems (PSRS) to better understand and improve safety hazards (Aspden et al. (2004); Rosenthal and Booth (2005)). Numerous healthcare providers have adopted these systems which provide a framework for healthcare provider staff, including frontline clinicians, nurses, and technicians to report patient safety events, ranging from 'near misses', where no patient harm occurs, to serious safety events that result in patient harm (Clarke, 2006). However the potential of these reports to systematically identify hazards and reduce harm has been lacking, in part because of the limited techniques used to analyze these data. If the reported data can be analyzed effectively, reporting systems have the
potential to dramatically improve the safety and quality of care by exposing possible weaknesses in the care process (Pronovost et al., 2008).

Patient safety event (PSE) reports are free-text narratives written by the front-line staff. These narratives describe incidents whereby a healthcare service delivery did not go as expected. During these instances, the front-line staff witnessing the incident can document his/her perspective of the events that occurred. Therefore, aggregating similar PSEs has the potential to give insights into trends of the different types of medical errors healthcare organizations encounter. There is a significant amount of variation between documents because these narratives do not have to follow any specified format. For example, documents describing similar events can vary drastically in their word usage, vocabulary, document length, and prevalence of grammatical errors. Therefore, the notion of similarity has to be based on semantic representation rather than simple features defined on the documents.

In this work, we consider a PSE database from MedStar Health consisting of 2,072 documents. Our goal is to develop a clustering algorithm to find homogeneous groups of documents. We now propose a method to accomplish this by using community extraction.

3 Methodology

In this section, we describe the process of community extraction to find homogeneous clusters in a text database. Figure 1 provides a schematic representation of the different steps involved. The subsequent subsections provide details on each step. Note that while this work is motivated by patient safety event reports, this general methodology can be applied on any text database. The first two steps (pre-processing and term-document matrix construction) are well-known strategies from natural language processing, while the last step (community extraction) is a well-known method from the statistical network analysis literature. We integrate these well-known approaches in our work.

![Figure 1: Framework for community extraction of PSE corpus](image-url)
3.1 Text pre-processing

A pre-processing step is critical to the performance of any natural language processing (NLP) model to reduce errors (Vijayarani et al., 2015). Pre-processing of text can be compared to exploratory data analysis in traditional statistical analysis.

In our work, we first create a manually curated dictionary of commonly misspelled words in our corpus and replace them with their proper spelling. To do this, we extracted terms that appeared in 2 or more documents and correct any misspelled terms. As PSEs typically contain information such as the date an event occurred, the time it occurred, or dosage of a particular medication, any permutation of a date, dosage, or time is replaced with the words “date”, “dose”, and “time” respectively. This is because the exact time an event occurred or the exact dosage of a medication is irrelevant for our analysis. However, we should not remove the word because then the sentence will lose its syntactic coherence. Therefore, we simply replace specific times by the general concept word time. In addition, special characters are removed, except for periods and all other numbers are removed from the text.

For example, this sentence: “On Dec. 13 at 5PM resident was prescribed 2mc/mg of oxytocin” is converted to “On date at time resident was prescribed dose of oxycotine”.

Furthermore, to ensure that words with similar morphology are presented as the same, we carried out stemming of the words, which is the process of reducing inflected (or sometimes derived) words to their word stem, base or root form—generally a written word form. The goal of stemming is to reduce inflectional forms and sometimes derivationally related forms of a word to a common base form, and this is a common pre-processing step in text analytics (Vijayarani et al., 2015).

3.2 Construction of Term Document Matrix

The next step is to represent the text database as a numeric matrix. This is a common approach in natural language processing, where the entire corpus is converted to a term-document matrix where rows represent terms and columns represent documents. The weighting of the terms in our term document matrix is critical to any future analysis. We use the common methodology Term Document - Inverse Document Frequency methodology referred to as “tf-idf” in the literature (Aizawa, 2003; Ramos et al., 2003). Here, term frequency is an adjusted version of the number of times a term appears in the document. Let \(t \) be a term and \(d \) be a document in the corpus. Then, term frequency is defined as

\[
 tf(t, d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}},
\]

where \(f_{t,d} \) is the raw count of a term in a document, i.e., the number of times that term \(t \) occurs in document \(d \). Note that the denominator is the total frequency of all terms in the document, i.e., the total length of the document, which scales the raw count and allows for comparison between documents of differing length. The inverse document frequency is a measure of how much information the word provides, i.e., how common or rare the term \(t \) is across all documents in the corpus. Let \(D \) denote the set of all documents in the corpus and let \(N = |D| \) be the total number of documents. Then, inverse document frequency is defined as

\[
 idf(t, D) = \log \left(\frac{N}{|\{d \in D : t \in d\}|} \right),
\]
where the denominator is the number of documents which contain the term \(t \). Finally, the tf-idf score is calculated as

\[
\text{tf-idf}(t, d) = \text{tf}(t, d) \times \text{idf}(t, D).
\]

The tf-idf term-document matrix is constructed as follows. First, we consider the set of all unique terms that appear in the corpus. Then, for each term \(t \) and each document \(d \), we compute the tf-idf score and populate the entries of the matrix. For a toy illustration, consider the following short patient safety event reports.

- "The patient schedule did not match the script."
- "Script and schedule mismatch. Script stated vasculab and schedule xray"
- "Xray monitor will not transmit images"

The resulting term-document matrix is displayed in Table 1.

Terms	Doc1	Doc2	Doc3
did	0.264	0.000	0.000
image	0.000	0.000	0.264
match	0.264	0.000	0.000
mismatch	0.000	0.176	0.000
monitor	0.000	0.000	0.264
not	0.097	0.000	0.097
patient	0.097	0.065	0.000
schedule	0.097	0.130	0.000
script	0.097	0.130	0.000
state	0.000	0.176	0.000
schedule	0.000	0.000	0.000
transit	0.000	0.000	0.264
vasculab	0.000	0.176	0.000
will	0.000	0.065	0.264
xray	0.000	0.065	0.097

3.3 Text Network Construction via Latent Semantic Analysis

Once we have a weighted term document matrix, we apply the well-known technique of Latent Semantic Analysis (LSA) for dimension reduction (Turney, 2001; Dumais, 2004). LSA has the ability to handle obstacles prevalent in natural language processing and analysis such as presence of synonyms and polysemy. In what follows, we provide only a brief description of LSA. For a more detailed description of the approach, see Landauer et al. (1998).

For a term-document matrix \(X \) of \(m \) terms and \(n \) documents with rank \(r \), its singular value decomposition (SVD) can be written as

\[
X = T\Sigma D^T,
\]

where \(X \) is the \(m \times n \) term-document matrix, \(T \) is a \(m \times m \) matrix whose columns are the orthogonal eigenvectors of \(XX^T \) where we denote \(X^T \) as the transpose of the matrix \(X \). The matrix \(D \) is a \(n \times n \) matrix whose columns are the orthogonal eigenvectors of \(X^TX \) and \(\Sigma \) is a
A diagonal matrix whose diagonals are $$\lambda_i$$ where $$\lambda$$ corresponds to the eigenvalues of $$XX^T$$ and $$1 \leq i \leq r$$ and 0 everywhere else. The eigenvalues of $$XX^T$$ are the same as the eigenvalues of $$X^TX$$. The values $$\sqrt{\lambda_i}$$ are called the singular values of $$X$$.

The implementation of LSA used in this work is a low rank approximation of the SVD. For this, we find a positive integer, $$k \leq r$$ such that it closely approximates the term document matrix. The value $$k$$ is selected such that it minimizes the error between the original matrix $$X$$ and its low rank approximation $$X_k$$. This is achieved through the following steps: Since $$\lambda_i \geq \lambda_{i+1}$$, setting $$\lambda_{i+1} = 0$$ if it is close to zero will not significantly affect the original matrix $$X$$. We therefore find a $$k$$ where $$1 \leq k \leq r$$ such that it minimizes the difference in the Frobenius norm between $$X$$ and $$X_k$$. If $$k = r$$, then the difference in the Frobenius norm is 0 but if $$k \ll r$$, we have a low rank approximation of our matrix that is also easy to manipulate. By keeping only the $$k$$ columns or entries for each of our matrices, we obtain $$X_k$$ and furthermore a low rank approximation of both terms and documents. Therefore, we have

$$X_k = T_k \Sigma_k D_k^T$$ \hspace{1cm} (5)

Where we only keep the $$k$$ columns of matrix $$T$$ so $$T_k$$ is a $$m \times k$$ matrix, $$D$$ so $$D_k^T$$ is a $$k \times n$$ matrix and $$\Sigma$$ is a diagonal $$k \times k$$ matrix. Then, the rows of the matrix $$D_k$$ are the LSA-based vector representations of the documents in the corpus.

Finally, we generate a network of documents by creating a similarity matrix from the matrix $$D_k$$. We define the similarity between two documents $$d_i$$ and $$d_j$$ as the correlation between the corresponding rows of $$D_k$$, resulting in a $$n \times n$$ correlation matrix. The correlation matrix serves as our adjacency matrix for the next step of community extraction. Note that this is a weighted adjacency matrix.

3.4 Clustering of text network via community extraction

Most community detection methods aim to partition a network into communities with the goal of maximizing the number of edges within communities and minimizing edges between communities. This framework assumes that all nodes belong to some community. However, there could be scenarios where some nodes do not belong to any particular community and forcing these nodes into a community will distort the community detection results. For example, let’s assume we have a network of high school students where links between students signifies that these students participate in similar extra-curricular activities. Applying some of the traditional community detection algorithms to this network will result in unsatisfactory results. This is because some students naturally do not participate in any extra-curricular activity and therefore do not belong to a community. However, these community detection algorithms will force these nodes to one of the formed communities.

The text networks from PSE databases also have this property. We expect that the majority of PSE reports will fall into groups, but there could be some "miscellaneous" documents that do not belong to any group. Community detection methods that partition all nodes into communities are going to enforce such "miscellaneous" reports into groups, which is unwarranted. Therefore, we use the community extraction method, proposed by Zhao et al. (2011), which can handle these types of networks.

We describe a network graph $$G$$ as composed of vertices $$V$$ and edges $$E$$, and $$G = (V, E)$$. The total number of vertices in a network graph $$G$$ gives us the network size $$N$$. That is, $$N = |V|$$. Also the number of edges in a network graph is $$M$$, where $$M = |E|$$. We consider only non-overlapping communities in this paper, therefore once community extraction is applied to a
network G, the partition results in two distinct sets, V_1 and V_2 where $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$. A network can also be represented as an $N \times N$ adjacency matrix referred to as A, where its elements are A_{ij} and $i, j = 1, 2, ..., N$, $A_{ij} = (-1, 1)$ making it a weighted network. For text networks, the adjacency matrix A is equal to the correlation matrix of $D_k T$ from the preceding subsection. Communities are extracted one at a time with the criterion of extracting a set of nodes with the sum of its weights largest within that set and smallest between the set and its complement (Zhao et al., 2011). We will call this set of extracted nodes S, and its complement, S^c. The objective function we are therefore maximizing in each iteration step is given by

$$\tilde{W}(S) = |S||S^c| \left[\frac{O(S)}{|S|^2} - \frac{B(S)}{|S||S^c|} \right],$$

(6)

where $O(S) = \sum_{i,j \in S} A_{ij}$ and $B(S) = \sum_{i \in S,j \in S^c} A_{ij}$. The term $O(S)$ is twice the weight of the edges within S and $B(S)$ represents the weights from the set S to the rest of the remaining network. In large sparse networks, particularly as in our application, a small community S could result in a large $\tilde{W}(S)$ value, the term $|S||S^c|$ serves to ensure that sufficiently sized communities are extracted at each step as very large communities or very small communities will be penalized. This is because the term, $|S||S^c|$ is maximized at $|S| = \frac{N}{2}$.

To maximize the objective function, we implement the tabu search maximization technique which is a local optimization technique based on label switching (Beasley, 1998; Glover and Laguna, 1998). In this optimization technique, a string of binary values representing nodes in either community S or S^c is passed to the tabu search function (Zhao et al., 2011; Beasley, 1998; Glover and Laguna, 1998). The function tracks which nodes have been switched, ensuring that they are not switched again until a certain number of iterations have passed, making these nodes, “tabu”. To guard against being trapped at a local maxima, the algorithm is run with random label assignments each time.

In our implementation, the community extraction algorithm is repeated till only a small subset of nodes, 30 nodes or less, are left in the network and this was sufficient for our application. Zhao et al. (2011) proposed a stopping criteria only for a network that can be represented by the block model. Future works will investigate a more appropriate stopping criteria.

3.4.1 Scalability via Divide and Conquer Approach

In practice, we observed run times of the order $O(n^2)$ where n is the size of the corpus. Our original PSE corpus is 2,072 documents, and running one iteration of the tabu search algorithm on the entire corpus takes over 120 hours. One alternative is to use the divide and conquer strategy by splitting the entire corpus of 2,072 documents into chunks of 200 documents or chunks of 400 documents. We observed run times of about 22 hours and 44 hours when partitioned into sizes of 200 and 400 respectively.

However, it is crucial to knit similar communities in each partition of 200 or 400 back together. Partitioning the entire document will also result in some communities being arbitrarily split up. We also developed a methodology for combining similar communities from different partitions. Our methodology relies on the correlation matrix of the entire 2,072 corpus. We compare pairs of communities across the different partitions and combine communities that have a combined density greater than some threshold.

We denote $S_{a,p}$ as the identity of a community extracted during the implementation of our algorithm. The integer, a, refers to the iteration number at which the community is extracted in that partition. The integer, p, refers to the partition the community belongs to. Where $1 \leq
\(a \leq x \) with \(x \) representing the number of communities extracted for that partition and \(1 \leq p \leq y \) where \(y \) is the total number of partitions for that particular implementation. Therefore, to establish if two extracted communities, \(S_{1,1} \) and \(S_{4,2} \) originally belonged to the same community, we compare each of their densities, \(D_{a,p} \) to their combined density, \(D_{(1,1),(4,2)} \). That is,

\[
D_{1,1} = \frac{1}{|S_{1,1}|^2} \sum_{i,j \in S_{1,1}} A_{ij}, \quad D_{4,2} = \frac{1}{|S_{4,2}|^2} \sum_{i,j \in S_{4,2}} A_{ij}, \quad \text{and} \quad D_{(1,1),(4,2)} = \frac{1}{|S_{1,1}| * |S_{4,2}|} \sum_{i \in S_{1,1}, j \in S_{4,2}} A_{ij}
\]

In this paper, two communities are combined together if \(D_{(1,1),(4,2)} > 0.85 * D_{1,1} \) and \(D_{(1,1),(4,2)} > 0.85 * D_{4,2} \).

4 Empirical Results

In this section, we report the results from applying the methodology proposed in Section 3 on the MedStar PSE corpus of 2,072 documents.

4.1 Benchmark Results from Manual Tagging

First, we establish a reference method for benchmarking. These PSE reports are manually tagged by the front-line staff with options available from a drop-down menu. Tags include both a general event description, and there are 20 options to select from in our report, and 187 specific event descriptions which are sub-categories of any one of the general event descriptions. If the tags are descriptive enough, then we would expect the diagonals of the correlation matrices, representing average correlation within a group, to be high, and conversely, the off diagonals to be low. This would suggest that front-line staff are tagging similar documents with similar tags. However, if the correlation matrices do not follow this pattern, then it suggests that the tags available to the front-line staff are not descriptive enough for each report type.

The benchmark results from manual tagging are displayed in Figure 2 as a heatmap. Clearly, manual tagging fails to obtain high correlation within groups and low correlation between groups.

Besides the visual illustrations, we can also look at statistics of the correlation matrices obtained by manual tagging. Specifically, are there communities or tags whereby the documents within the community are more related to another set of documents in another community or tag. We do this by looking at the percentage of off diagonal cells that have a value equal to or greater than the value of the cell in the diagonal for a given column in the correlation matrix. Some examples of manually tagged categories that are more similar to other categories than within themselves are below.

- “Medication”: more related with “Fluid-Outdated” and “Unusable Medication”
- “Equipment”: more related with “Medical Device-Sterilization” and “Cleanliness Issue”
- “Diagnostic Imaging-Test - Wrong Side (L vs. R)”: more related with “Blood Bank-Patient Testing (Blood Bank Use Only)”, “Diagnostic Imaging-Image - Misidentified”, and “Diagnostic Imaging-Test - Test Delayed”

4.2 Results from Community Extraction

Next, we applied our methodology described in Section 3 to obtain automated tags via community extraction. Recall that implementing the method on the full network of 2,072 documents is computationally very intensive, and therefore we applied the divide and conquer approach
Community Extraction of Text Networks

The results are plotted in Figure 3. Note that the community extraction method does not require pre-specification of the number of communities, rather, the number of communities is an output of the method. We obtained 113, 156, and 125 clusters, respectively, from top to bottom of Figure 3. From the correlation heatmaps, it is clear that the documents have very high within-group correlation and very low between-group correlation, which indicates that the grouping is effective. This is a substantial improvement over manual tagging (Figure 2). Note that the results from community extraction are better than manual tagging across the range of tuning parameters, i.e., subgraph size and correlation threshold.

Next, recall that we observed “heterophilic” behavior with manual tagging, where documents in some groups have higher between-group correlation than within-group correlation. To compare manual tagging vs community extraction with respect to this property, we looked at each group, and computed what fraction of other groups have higher between-group correlation than within-group correlation. The boxplots are shown in Figure 4, where we compare manual tagging to a representative community extraction. We observe that the groups from community extraction have very little “heterophilic” behavior compared to manual tagging.

Finally, recall that our divide and conquer strategy involves random partitioning of the large text network into a number of smaller subnetworks. A natural question is "How stable are the groupings generated due to random partitioning? To answer this question, we implemented several random iterations of the divide and conquer strategy, and computed the Normalized Mutual Information (NMI) for document groups arising in different iterations. A high value of NMI indicates high stability of document grouping across random iterations. The results are plotted in Figure 5 for several tuning parameter values. We observe that the NMI values are quite high indicating stability of clustering.
Figure 3: Heatmap of communities generated from correlation matrix of documents that fall into the respective communities after community extraction is applied. Top: Partitions of 200 documents with threshold 0.2 and 113 communities; Middle: Partitions of 400 documents with threshold 0.2 and 156 communities; Bottom: Partitions of 200 documents with threshold 0.15 and 125 communities.
Figure 4: Comparisons of communities between the predefined PSE categories/tag against community extraction by looking at the distribution of percentage of communities that are more similar, higher correlation score, than documents within that community.

Figure 5: Normal Mutual Information (NMI) statistics for comparing the relatedness of communities extracted for the different permutations of partition size and correlation matrix threshold.
5 Discussion

5.1 Emerging communities and themes

This analysis demonstrates the advantage of a network driven approach to extract communities in patient safety event free-text. The results clearly show categories with less overlapping categories compared to the categories manually selected by the front-line staff. It is likely that the analysis can identify communities of reports or themes in the reports that are not dependent on the structured categories. For example, communication and hand-off are often prevalent themes in patient safety reports that are not typically captured in structured fields. Structured fields are predefined and often difficult or time consuming to change and update. A network driven approach that leverages the free-text is more flexible and can identify more timely hazards with changing environments and care processes. Having a flexible approach is particularly important as new workflows are being introduced (e.g., COVID-19 protocols, telehealth).

5.2 Opportunities to improve reporting and analysis

A network driven approach to identify communities and themes in free-text can help reduce the burden of reporters from choosing through complex taxonomies which are both time consuming and can result in errors. In addition, these results highlight the potential to identify communities of related reports that might be missed from analyzing just the structured categories. Such categorization flexibility could greatly help safety analysts and safety leaders better identify meaningful signals and insights from all the data.

5.3 Limitations

This analysis was performed on data from one healthcare system. As a result, the comparison of extracted communities with the structured categories are specific to the structured categories implemented at the healthcare system. It is possible that other healthcare systems use different categorization taxonomies highlighting the need to understand the generalizability of this approach across taxonomies and healthcare systems. In addition, the present method does not consider temporal effects on communities. Expanding this approach to include temporally stable communities or emerging communities would be important especially as changes to policy, workflow, safety hazards can often occur.

References

Aizawa A (2003). An information-theoretic perspective of tf–idf measures. Information Processing & Management, 39(1): 45–65.
Amini AA, Chen A, Bickel PJ, Levina E (2013). Pseudo-likelihood methods for community detection in large sparse networks. Ann. Statist., 41(4): 2097–2122.
Aspden P, Corrigan JM, Wolcott J, Erickson SM, et al. (2004). Patient safety reporting systems and applications. In: Patient Safety: Achieving a New Standard for Care. National Academies Press (US).
Beasley JE (1998). Heuristic algorithms for the unconstrained binary quadratic programming problem. Technical report, Citeseer.
Bickel PJ, Chen A (2009). A nonparametric view of network models and Newman–Girvan and other modularities. Proceedings of the National Academy of Sciences, 106: 21068–21073.
Clarke JR (2006). How a system for reporting medical errors can and cannot improve patient safety. *The American Surgeon*, 72(11): 1088–1091.
Donaldson MS, Corrigan JM, Kohn LT, et al. (2000). To err is human: building a safer health system.
Dong R, Yang J, Chen Y (2020). Overlapping community detection in weighted temporal text networks. *IEEE Access*, 8: 58118–58129.
Dumais ST (2004). Latent semantic analysis. *Annual review of information science and technology*, 38(1): 188–230.
Fortunato S (2010). Community detection in graphs. *Physics Reports*, 486(3): 75–174.
Glover F, Laguna M (1998). Tabu search. In: *Handbook of combinatorial optimization*, 2093–2229. Springer.
Harrington MM (2005). Revisiting medical error: Five years after the iom report, have reporting systems made a measurable difference. *Health Matrix*, 15: 329.
Hofmann T (1999). Probabilistic latent semantic indexing. In: *Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval*, 50–57.
HOUSE TW (2020). Clinton-gore administration announces new actions to improve patient safety and assure health care quality. https://clintonwhitehouse4.archives.gov/textonly/WH/New/html/20000222_1.html.
Huberman BA, Adamic LA (1999). Internet: growth dynamics of the World-Wide Web. *Nature*, 401: 131.
Jin J (2015). Fast community detection by SCORE. *The Annals of Statistics*, 43(1): 57–89.
Jonsson PF, Cavanna T, Zicha D, Bates PA (2006). Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis. *BMC Bioinformatics*, 7(1): 2.
Landauer TK, Foltz PW, Laham D (1998). An introduction to latent semantic analysis. *Discourse processes*, 25(2-3): 259–284.
Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. (2010). Functional connectivity and brain networks in schizophrenia. *Journal of Neuroscience*, 30(28): 9477–9487.
Makary MA, Daniel M (2016). Medical error—the third leading cause of death in the us. *Bmj*, 353.
Mikolov T, Chen K, Corrado G, Dean J (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2017). Advances in pre-training distributed word representations. arXiv preprint arXiv:1712.09405.
Milgram S (1967). The small world problem. *Psychology Today*, 2: 60–67.
Newman MEJ, Girvan M (2004). Finding and evaluating community structure in networks. *Physical review E*, 69(2): 026113.
Pagani GA, Aiello M (2013). The power grid as a complex network: a survey. *Physica A: Statistical Mechanics and its Applications*, 392(11): 2688–2700.
Papadimitriou CH, Raghavan P, Tamaki H, Vempala S (2000). Latent semantic indexing: A probabilistic analysis. *Journal of Computer and System Sciences*, 61(2): 217–235.
Pronovost PJ, Morlock LL, Sexton JB, Miller MR, Holzmueller CG, Thompson DA, et al. (2008). Improving the value of patient safety reporting systems. *Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 1: Assessment).*
Ramos J, et al. (2003). Using tf-idf to determine word relevance in document queries. In: Proceedings of the first instructional conference on machine learning, volume 242, 29–48. Citeseer.
Rohe K, Chatterjee S, Yu B (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4): 1878–1915.
Rosenthal J, Booth M (2005). Maximizing the use of state adverse event data to improve patient safety. National Academy for State Health Policy Portland, ME.
Sengupta S, Chen Y (2015). Spectral clustering in heterogeneous networks. Statistica Sinica, 25: 1081–1106.
Sengupta S, Chen Y (2018). A block model for node popularity in networks with community structure. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(2): 365–386.
Turney PD (2001). Mining the web for synonyms: Pmi-ir versus lsa on toefl. In: European conference on machine learning, 491–502. Springer.
Vijayarani S, Ilamathi MJ, Nithya M, et al. (2015). Preprocessing techniques for text mining—an overview. International Journal of Computer Science & Communication Networks, 5(1): 7–16.
Yan S, Jia Y, Wang X (2021). Overlapping community detection in temporal text networks.
Zhao Y, Levina E, Zhu J (2011). Community extraction for social networks. Proceedings of the National Academy of Sciences, 108(18): 7321–7326.

6 Appendix

Table 2: List of General Event Tags from PSE

General Event Types
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Specific Event Types
--
1 Abandonment
2 Abrasion
3 Abuse/Assault (Physical)
4 Abuse/Assault (Verbal)
5 Administration Technique Incorrect
6 Adverse Drug Reaction
7 Adverse Reaction (Non Med)
8 Air Quality/Odor/Smoke/Fumes
9 Airway Mgmt Equipment Issue
10 Airway Obstructed
11 Apgar Score < 5 at 5 min
12 Armband Issue
13 Bed Malfunction
14 Birth Trauma
15 Blister
16 Break in Sterile Technique
17 Broken Item
18 Bruise
19 Burn
20 Cardiac and/or Respiratory Arrest Requiring ACLS
21 Cardiac or Circulatory Event
22 Cardiopulmonary Arrest Outside of ICU Setting
23 Circulation Impeded
24 Collection Issue
25 Combination or Interaction of Device Defect and Use
26 Communication
27 Complications of Anesthesia
28 Complications of Surgery/Procedure
29 Consent Issue
30 Contamination
31 Contrast/Radiopharmaceutical - Allergic Reaction
32 Contrast/Radiopharmaceutical - Event
33 Contrast/Radiopharmaceutical - Extravasitation
34 Count Issue
35 Date of Birth Issue
36 Delay/Difficulty With Resuscitation
37 Delivery Without Provider
38 Diagnosis - Delayed
39 Diagnosis - Missed
40 Diagnosis Issue
41 Diaper Dermatitis
42 Dietary Issue

Continued on next page
Table 3 – continued from previous page

Specific Event Types
43 Disconnected
44 Discontinued
45 Discontinued Incorrectly
46 Dislodgement
47 Disorderly Person
48 Disrupted Utility (Electric/Water/HVAC/Med Gas)
49 Documentation Error
50 Documentation Issue
51 Dose/Concentration Incorrect
52 Drug Incorrect
53 Drug Interaction/Incompatibility
54 Drug Preparation/Labeling Issue
55 Drug With Known Allergy
56 Duplicate Therapy
57 Elevator Malfunction
58 Elopement
59 Equipment - Faulty
60 Equipment - Not Available
61 Equipment - Wrong/Inappropriate
62 Equipment (Blood Bank Use Only)
63 Equipment/Device Function
64 Exposure - Prolonged Fluro Time
65 Extubation - Unplanned
66 Extubation Issue - Self
67 Failure to Assess Patient
68 Failure to Follow Order
69 Failure to Respond to Request for Service
70 Fetal pH <7.05 Cord Blood Gas
71 Foreign Object Retained Post Procedure
72 Friction/Shear
73 From Bed
74 From Bed - Over Rails
75 From Chair
76 From Exam Stool
77 From Exam/Operating Table
78 From Stretcher
79 From Therapy Equipment
80 From Toilet/Commode
81 From Wheelchair
82 Hand Hygiene Compliance Issue
83 Hardware Failure or Problem
84 Illegible Order
85 Image - Misidentified

Continued on next page
Specific Event Types
86 Implant Issue
87 Inadequate Supplies
88 Inappropriate Admission
89 Inappropriate Discharge
90 Inconsiderate/Rude/Hostile/Inappropriate Behaviors
91 Infiltration Event
92 Infiltration/Extravasation
93 Intimidation/Verbal Abuse
94 Intubation - Unplanned
95 Isolation - Failure to Follow Protocol
96 Labeling Issue
97 Laceration
98 Lack of Responsiveness
99 Left Against Medical Advice
100 Left Without Being Seen
101 Line Not Changed
102 Lost Specimen
103 Medication Administered Not Ordered
104 Monitoring Issue
105 MRI Safety Issue
106 Narcotic Count Incorrect
107 Network Failure or Problem
108 Non Head Injury - Restraint Related
109 Noncompliant/Uncooperative/Obstructive Behaviors
110 Not Activating the Chain of Command
111 Occlusion
112 Omission
113 Ordering Issue
114 Other (please specify)
115 Outdated/Unusable Medication
116 Patient Exposure - Blood/BODY Fluid
117 Patient Testing (Blood Bank Use Only)
118 Personal/Associate Property Lost/Theft
119 Phlebitis
120 Post-Partum Hemorrhage
121 Preparation Incorrect
122 Prescriptions Not Given at Discharge
123 Pressure Ulcer
124 Procedure Issue
125 Process Issue
126 Product Administration (Clinical Services)
127 Product Receipt/Handling (Blood Bank Use Only)
128 Product Test Request (Clinical Services)

Continued on next page
Table 3 – continued from previous page

Specific Event Types
129 Property Damage/Vandalism
130 Pump Programming Issue
131 Radiation Oncology Issues
132 Referral Issue
133 Reporting Issue
134 Requisition Incorrect
135 Respiratory Mgmt - Inappropriate
136 Restraint Improperly Applied
137 Restraints Applied - Not Ordered
138 Restraints Ordered - Not Applied
139 Results - Delay in Critical Results Communication
140 Results - Posted to Wrong Patient
141 Risky/Reckless/Dangerous Behaviors
142 Route Incorrect
143 Sample
144 Self Injury
145 Shoulder Dystocia
146 Site Infection
147 Skin Tear
148 Slip/Trip/Fall
149 Smoking
150 Specimen Acceptability Issue
151 Specimen Processing Issue
152 Sterilization/Cleanliness Issue
153 Storage Incorrect
154 Suicide/Suicide Attempt/Suspicious Package
155 Test - Incorrectly Performed
156 Test - Ordered, Not Performed
157 Test - Test Delayed
158 Test - Wrong Side (L vs. R)
159 Testing Issue
160 Time/Date Incorrect/Delayed
161 Tissue
162 Treatment - Delayed
163 Treatment - Inappropriate
164 Treatment - Incorrectly Performed
165 Treatment - No Order for
166 Unable to Access
167 Unauthorized Access/Trespassing
168 Unauthorized Drugs
169 Unauthorized Weapons on Premises
170 Unexpected Return to the OR
171 Unexpected Software Design Issue

Continued on next page
Specific Event Types
172 Unexpected Transfer to ICU/NICU
173 Unknown/Found on Floor
174 Use Error
175 Visitor Policy Issue
176 Water Leak/Flood
177 Weapons on Premises
178 While Ambulating
179 While Held by Staff
180 While Running/Playing
181 While Standing
182 While Transferring
183 Workplace Violence
184 Wound
185 Wrong Body Part (Site/Side/Level)
186 Wrong Insertion Location
187 Wrong Patient