Ultrastructure of Euspermatozoa of Cerithiacean Gastropods (Prosobranchia: Mesogastropoda)

JOHN M. HEALY
Department of Zoology, University of Queensland, St. Lucia, 4067, Brisbane, Queensland, Australia

ABSTRACT Euspermatozoa of selected cerithiacean gastropods have been studied using transmission electron microscopy and the results compared (primarily) with previous studies of mesogastropod and neogastropod euspermatozoa. Cerithiacean euspermatozoa each possess a well-defined acrosome (extremely varied in shape), a short (2.25–3 \(\mu \)m), very electron-dense nucleus, an elongate midpiece, and an elongate glycogen piece. A dense ring structure associated with the plasma membrane occurs at the junction of the midpiece and glycogen piece. While features such as the dense ring structure and the systematic periaxonemal arrangement of "glycogen" granules can be understood from a purely functional standpoint, it is suggested that euspermatozoon features also provide information of taxonomic and phylogenetic relevance. On the basis of euspermatozoon midpiece structure, true cerithiaceans can be easily distinguished from other mesogastropods and from neogastropods and are divided tentatively into two groups: Group 1 (Turritellidae, Cerithiididae, Australaba (family uncertain), Planaxidae, Potamididae (subfamily Batillariniae)), and Group 2 (Potamididae (subfamily Potamidinae), Modulidae, Obtortio (family uncertain)). Using midpiece and acrosomal features, group 1 can be further subdivided into two subgroups: Subgroup 1(i) (Turritellidae, Cerithiididae, Australaba) and Subgroup 1(ii) (Planaxidae, Potamididae (subfamily Batillariniae)). It is suggested that the pronounced differences existing between the two subfamilies of the Potamididae may indicate the necessity for a separate family for the Batillariniae.

Franzén ('56) recognized two basic types of sperm common within the Invertebrata: "primitive sperm" (occurring in species which exhibit external fertilization) and "modified sperm" (occurring in species with internal fertilization). Modified sperm are usually recognized by the presence of an elongate, postnuclear midpiece and rod-shaped (often elongate) nucleus. Within the Mollusca, primitive sperm occur in the Bivalvia (see Popham, '79 for references), Polyplacophora (Retzius, '04; Franzén, '55a, Pearce and Woollacott, '79) and Scaphopoda (Retzius '05; Franzén, '55a), while both primitive and modified sperm occur in the Aplacophora (Franzén, '55b) and Gastropoda (Retzius, '06; Franzén, '55a; see Healy, 82a,b for electron microscopic references). Spermatozoa of all cephalopods could be described as modified, although the morphological differences between spermatozoa of the major groups (decapods, octopods, Nautilus) are very pronounced (Franzén, '67, '70; Longo and Anderson, '70; Maxwell, 1974; Fields and Thompson, '76; Arnold and Williams-Arnold, '78).

In many mesogastropod and neogastropod species, two distinct types of sperm are produced simultaneously within the gonad. These two types are commonly referred to as "typical spermatozoa" (sperm of the modified shape, presumably the true genetic sperm) and "atypical spermatozoa" (usually multiaxonemal sperm, commonly mobile, and probably of variable function). In order to remove any suggestion of aberrancy, Healy and Jamieson ('81) replaced the terms "typical spermatozoa" and "atypical spermatozoa" with "euspermatozoa" and "paraspermatozoa" (respectively). Melone et al. ('80) retained the terms "typical spermatozoa" and "atypical spermatozoa" but used the lat-
ter in connection with cells "which in their organization and morphological characters are close to typical spermatozoa" (p. 199). Melone et al. ('80) introduced the term "paraspermatic cell" to describe "cells that manifest very different morphology but derive from the same germinal line as typical spermatozoa" (p. 199)—essentially the "atypical spermatozoa" of mesogastropods and neogastropods. Healy and Jamieson ('81) suggested that the term "paraspermatic cell" could be used in a wider sense to include both paraspermatozoa and nurse cells (for example the nurse cells of Littorina—see Reinke, '12; Buckland-Nicks and Chia, '77). Buckland-Nicks et al. ('82) recognized the unsuitability of the terms "atypical spermatozoa" and "typical spermatozoa," but rejected the "euspermatozoon/paraspermatozoon/paraspermatic cell" system in favour of Meves' ('03) sperm classification based on the occurrence and relative size of the nucleus (that is: eupryne oligopyrene and apyrene spermatozoa). It would, however, be equally valid to establish a morphological classification on the basis of other important spermatozoal features such as the occurrence and number of axonemes present (uniaxonemal, multiaxonemal, anaxonemal), the presence or absence of the acrosome, or the overall spermatozoa shape. The euspermatozoon/paraspermatozoon/paraspermatic cell system: (1) does not, as assumed by Buckland-Nicks et al. ('82), conflict with the continued usage of Meves' terminology in an accessory, descriptive capacity (as already practiced by some authors who additionally use the term "atypical spermatozoa"—including Zyliberg, '63; Fain-Maurel, '66; Friedlander and Miesel, '77; Giusti and Selmi, '82); (2) avoids the implication of aberrancy inherent in the "typical/atypical spermatozoa" system; and (3) is defined on lineal, functional, and morphological bases (see Healy and Jamieson, '81).

Many studies now exist dealing with the ultrastructure of mesogastropod and neogastropod euspermatozoa (including Kaye, '58; Yasuzumi, '62; Walker and MacGregor, '68; Giusti, '69, '71; Anderson and Personne, '70; Hachiri and Higashi, '71; Buckland-Nicks, '73; Giusti and Mazzini, '73; West, '78; Griffond, '80; Kohnert, '80; Healy, '82a) or euspermatozoa and paraspermatozoa (Ishizaki and Kato, '58; Tanaka, '58; Yasuzumi and Tanaka, '58; Gall, '61; Buhlheim, '62; Hachiri and Higashi, '72, '74; Koike and Nishiwaki, '80; Selmi and Giusti, '80; Healy and Jamieson, '81; Buckland-Nicks et al., '82; Healy, '82c). No study has, however, dealt with more than two or three species in any one superfamly and consequently little is known concerning the morphological diversity of euspermatozoa within genera, families, and superfamilies. The present study examines such diversity in structure of euspermatozoa within genera of three cerithiacean families—Potamididae (Telescopioid, Terebralia, Cerithidea, Pyrazus, Velacumannus), Cerithiidae (Rhinclovus, Clypeomorbus), Planaxidae (Planaxis), and one species of Australaba (the relationship of this genus to other cerithiaceans being uncertain). Recent (unpublished) work by the author on some features of euspermatozoa of Modulus tectum (Modulidae: Cerithiacea) is also referred to. Both euspermatozoa and paraspermatozoa were examined in all species but only euspermatozoa are described in the present paper. A comparative account of cerithiacean paraspermatozoa is currently in preparation.

MATERIALS AND METHODS

Live, reproductively mature specimens of each species were collected (and processed) between 1979 and 1981 from the following localities: Lota, Moreton Bay, southern Queensland (Cerithidea largillerti Philippi, Cerithidea obtusa (Lamarck), Australaba sp.¹; Sandgate, Moreton Bay, southern Queensland (Clypeomorus moniliferus (Kiefer), Velacumannus australis (Quoy and Gaimard); Low Isles, northern Queensland (Rhinclovus vertagus (Linnaeus)); Cairns, northern Queensland (Telescopium telescopium (Linnaeus)); Yule Point, northern

Abbreviations: a, acrosome; ac, acrosomal cone; ar, axonal rod material; bp, basal plate; m, midpiece; n, nucleus; ps, plate substructure within wall of acrosomal cone.

1Species name not determined.
Queensland (Terebralia palustris (Linnaeus), Cerithidea cingulata (Gmelin), Planaxis sulcatus (Born)); Pebbley Beach, northern Queensland (Clypeomorus breviculus (Sowerby)). Sperm ducts and gonadal tissue from Terebralia palustris, Clypeomorus moniliferus, Clypeomorus breviculus, Cerithidea largilliertii, Cerithidea obtusa, Velacumantus australis, and Planaxis sulcatus were fixed in 2.5% 0.1 M phosphate-buffered glutaraldehyde for two hours, rinsed in phosphate buffer, post-fixed in 1% phosphate-buffered osmium tetroxide for 80 minutes, again rinsed in buffer, dehydrated in a graded ethanol series (20, 40, 60, 70, 90, 100%), and infiltrated and embedded in Spurr’s medium. Sperm ducts and gonadial tissues of Telescopium telescopium, Rhinoclavis vertagus, and Australaba sp. were processed in the same manner but with sucrose added to fixatives and buffer to give a 5% solution in each case. All stages up to and including 70% ethanol were maintained at approximately 0–4°C. Ultrathin sections were cut using either an LKB 3 or LKB 4 Ultratome, collected on coated or uncoated 200 mesh copper grids, stained with uranyl acetate and lead citrate, and examined with both Siemens Elmskop I and AEI 500 Corinth transmission electron microscopes.

RESULTS

On the basis of euspermatozoan midpiece structure, it is possible to divide the species studied into two major groups. Euspermatozoa of Group 1 species all possess a midpiece composed of two large and two small midpiece elements—all four elements arranged nonhelically around the axoneme. Euspermatozoa of Group 2 species are characterized by a midpiece composed of four equal-sized midpiece elements, (nonhelically arranged around the axoneme) and prominent flange structures which occur at the initial (and apparently the terminal) portions of the midpiece. The structure of the paraspermatozoa lends support to this two group scheme (Healy and Jamieson, ’81; Healy, ’82c; personal observations). Group 1 has been divided into two subgroups using midpiece and acrosome features, which will be referred to as Subgroup 1(i) and Subgroup 1(ii).

Subgroup 1

Subgroup 1(i): Clypeomorus moniliferus, Clypeomorus breviculus, Rhinoclavis vertagus (all Cerithiidae); Australaba sp. (family uncertain)

(a) Acrosome. All species of Subgroup 1(i) possess euspermatozoa with acrosomes com-
posed of a flat acrosomal cone and (sometimes diffuse) axial rod material within the cone invagination. In Clypeomorus moniliferus (Figs. 1–5; see also Figs. 85–88) and Clypeomorus breviculus (unfigured), the acrosomal cone is 1.8 μm in length and almost totally invaginated. The invagination is constricted basally by bulges in the cone wall (Figs. 2, 5, 85, 88). The axial rod material is most apparent in the central region of the cone invagination and in transverse sections taken at this level (Figs. 4, 87) fine parallel plate-like substructure is visible within the acrosomal cone wall. In Rhinoclavis vertagus, the cone invagination only penetrates three quarters of the 1.1 μm long acrosomal cone and the cone base is seated on a thin basal plate covering a wedge-like protrusion of the nuclear apex (Figs. 7, 11; see also Figs. 78–81). Transverse sections sometimes show evidence of plate substructure within the acrosomal cone wall but these are not clearly apparent in the material studied (Figs. 6–11). Although both Australaba and Clypeomorus possess deeply invaginated acrosomal cones, the longitudinal profiles differ markedly. The axial rod material of Australaba is organized into a series of inclined rods within the cone invagination (Figs. 12–15; see also Figs. 82–84).

(b) Nucleus. Euspermatozoan nuclei of all species of this subgroup are similar in shape to all species of Subgroup l(ii) and Group 2—being laterally compressed, 2.5–3 μm in length and posteriorly invaginated (Figs. 1, 6, 16–22). Inside the nuclear invagination, the proximal portion of the axoneme is embedded in dense granular material which probably attaches the axoneme to the nucleus. The central pair of axonemal microtubules persists into the attachment material (Figs. 16–19, 21).

(c) Midpiece. The euspermatozoan midpieces of all Subgroup 1(ii) species are long (45–60 μm—phase-contrast observations) and in transverse section (Figs. 24, 26, 28; see also Fig. 71) are each constituted of two large elements (showing multiple cristal plates) and two very small elements (showing at most one cristal invagination). These small elements are consistently aligned with the central pair of axonemal microtubules. In Australaba, electron-dense bodies (possibly a continuous collar) are incorporated into the initial portion of the midpiece (Figs. 22, 23 inset; see also Fig. 75) and are not observed in Clypeomorus (Fig. 20) or Rhinoclavis (Fig. 21; see also Fig. 74).

(d) Dense ring structure, glycogen piece. Posterior to the midpiece the axoneme becomes ensheathed by electron-dense granules which have been shown in other mesogastropod euspermatozoa to be glycogen (Anderson and Personne, ’70, ’76; Hachiri and Higashi, ’72; Giusti and Mazzini, ’73). A dense ring structure applied to the inside surface of the plasma membrane occurs at the junction of midpiece and glycogen piece in all Subgroup 1(ii) species (Figs. 23, 25, 27), Subgroup 1(ii) species and Group 2 species.

Subgroup 1(ii): Planaxis sulcatus (Planaxidae); Velacumantus australis (Potamididae)

(a) Acrosome. The acrosomes of Planaxis and Velacumantus are very similar to that demonstrated by Healy and Jamieson (‘81) and Healy (‘82a) for Pyrazus ebeninus (Potamididae) and consist of a conical acrosomal cone invaginated in the basal half (Figs. 29–31, 35–37; see also Figs. 89–91). Axial rod material is found within the cone invagination and a thin basal plate caps the apex of the nucleus and probably aids in connecting the acrosomal cone and axial rod material to the nucleus.

(b) Nucleus. As described for Subgroup 1(i) species (Velacumantus, Fig. 29; Planaxis, Figs. 35, 38; see also Fig. 76).

(c) Midpiece. The midpieces of Subgroup 1(ii) species are considerably shorter (12–18

Fig. 23. Australaba sp. Junction of midpiece and glycogen piece showing dense ring structure (×43,000). Inset: Dense structures at initial region of midpiece (×27,000).

Fig. 24. Australaba sp. Transverse section through midpieces showing cristal plate structure and large and small midpiece elements (×50,000).

Fig. 25. Rhinoclavis vertagus. Midpiece–glycogen piece junction and dense ring structure (×45,000).

Fig. 26. Rhinoclavis vertagus. Transverse sections through glycogen pieces and midpieces (×25,000).

Fig. 27. Clypeomorus moniliferus. Oblique longitudinal section through midpiece–glycogen piece junction. Note cristal plates and longitudinal tracts of glycogen granules (×50,000).

Fig. 28. Clypeomorus moniliferus. Transverse sections through midpieces (×50,000). Inset: Transverse section of glycogen piece (×34,000).

Abbreviations: drs, dense ring structure; gp, glycogen piece; l, large midpiece element; M, midpiece; n, nucleus; s, small midpiece element.
µm) than midpieces of Subgroup 1(i) species. In Velacumantus, the midpiece is composed of two large and two small elements (Fig. 33; see also Fig. 72). The small elements are larger than those of Subgroup 1(i) species and usually exhibit four or five cristal plates. In Planaxis, the size difference between large and small midpiece elements is less pronounced (Fig. 39) than Velacumantus (or Pyrazus) and in this respect to some extent approaches the condition seen in Group 2 euspermatozoa. However, the structure of Planaxis paraspermatozoa is as observed in Pyrazus (see Healy and Jamieson, '81), Velacumantus, and other Group 1 species (i.e. Subgroup 1(i)), and Planaxis euspermatozoa do not possess the midpiece flanges of Group 2 species euspermatozoa.

(d) Dense ring structure, glycogen piece. As observed in Subgroup 1(i) species, the glycogen pieces of Velacumantus (Figs. 32, 34) and Planaxis (Fig. 40) consist of the axoneme surrounded by nine tracts of glycogen granules (one tract associated with each of the axonemal doubletets). The dense ring structure is as observed in Subgroup 1(i) and Group 2 species.

Group 2

Cerithidea cingulata, Cerithidea largillierti, Cerithidea obtusa, Terebralia palustris, Telescopium telescopium (all Potamididae)

(a) Acrosome. The acrosomal cones of Group 2 species are all elongate (as observed in Group 1 species) and varied in shape (Figs. 41–54; see also Figs. 92–103). In Cerithidea cingulata and Terebralia palustris, the acrosomal cones are invaginated basally. In transverse section the acrosomal cones of both species are oval in the basal region and become flattened further anteriorly (C. cingulata, Figs. 41–45; Terebralia palustris, Figs. 46–49; see also Figs. 99–103). A very diffuse deposit of axial rod material is usually present inside the cone invagination, whereas the cone is composed of a dense outer region and less dense inner region (C. cingulata, Figs. 41, 43; Terebralia, Figs. 46, 48; see also Figs. 99–103). The acrosomal cones of Cerithidea largillierti (Figs. 50–53; see also Figs. 95–98), and Cerithidea obtusa (not figured) differ from the acrosomal cones of Cerithidea cingulata and Terebralia in being distinctly less flattened anteriorly and relatively more deeply invaginated. Figure 52 suggests that plate-like substructure may exist within the wall of the acrosomal cone of Cerithidea largillierti (see also Fig. 49 Terebralia). The acrosomal cone of Telescopium telescopium differs from all other Group 2 species in being conical throughout its entire length. Axial rod material is possibly present but was not detected in the material studied (Figs. 54, 92–94).

(b) Nucleus. Although nuclear length is similar in most species of this group (2.5–3 µm), the nuclei of Terebralia are relatively shorter (2.25 µm) (Figs. 55–57). As observed in Group 1 species, the axonemal microtubules become obscured within the basal invagination of the nucleus (Figs. 60, 61).

(c) Midpiece. The initial region of the midpiece of all Group 2 euspermatozoa exhibit flange structures (Figs. 55–58, 62, 65, 77). No cristal plates are visible in these structures (or immediately below them) in longitudinal section (Figs. 58, 59). Oblique transverse sections taken through this region indicate that probably four flanges (one per midpiece element) are present (Fig. 65). In transverse section, the four midpiece elements are of equal size (Figs. 63–65, 73) with each midpiece element showing seven to eight cristal plates (probably owing to the inclined orientation of these plates (see Fig. 62), they are often obscured in transverse section). Flange structures similar to those observed at the initial region of the midpiece also occur at the terminal region of the midpiece in Telescopium (Fig. 66) but are relatively small. Presumably these additional flanges are present in euspermatozoa of all Group 2 species.

(d) Dense ring structure, glycogen piece. As observed for Group 1 species (Figs. 65–67, 69). Figure 70 shows the transition between the glycogen piece and end piece of a Tere-
brialia euspermatozoon. It is likely that this junction is similar in all Group 1 and Group 2 species.

DISCUSSION

Nucleus and acrosome

Euspermatozoa of cerithiacean species (Healy, '82a,c; this study) and many other mesogastropods that have been studied ultrastructurally (including Bulnheim, '62; Giusti, '69, '71; Giusti and Mazzini, '73; Grif

fond, '80; Kohnert, '80; Koike and Nishiwaki, '80) have nuclei which are shallowly invaginated in the basal region. Euspermatozoan nuclei of all neogastropods that have to date been studied (Walker and MacGregor, '68; Feral, '77; West, '78; personal observations) are almost completely invaginated (the axoneme commencing immediately below the nuclear apex). It appears likely that the extent of the nuclear invagination is the product of both environmental and phylogenetic influences.

The extreme structural diversity of the acrosomal cone and axial rod material of cerithiacean euspermatozoa is remarkable—the acrosomal cone varying from truly conical to flat while the axial rod material may be represented by a single rod, multiple rods or diffuse deposits (Hachiri and Higashi, '71; Healy and Jamieson, '81; Healy, '82a,c; this study). Although flat acrosomes have been observed in euspermatozoa of some risso-cean mesogastropods (Giusti, '71; Kohnert, '80; personal observations) most mesogastropod and neogastropod euspermatozoa have acrosomes which consist of a single axial rod and truly conical acrosomal cone (see Bulnheim, '62; Walker and MacGregor, '68; Buckland-Nicks, '73; Giusti and Mazzini, '73; Feral, '77; Koike and Nishiwaki, '80). In opisthobranch and pulmonate gastropods (Euthyneura), the acrosome consists of an apical vesicle (usually rounded) resting on a (usually columnar) acrosomal pedastal attached to the nuclear apex (Takaichi and Sawada, '73; Takaichi, '75; Atkinson, '82; Healy '82b, '83).

Nothing is as yet known concerning the ultrastructure of the acrosome reaction or events of fertilization in mesogastropod or neogastropod prosobranchs or euthyneuran gastropods. Lewis et al. ('80) presented details of the acrosome reaction in the archaeogastropod prosobranch *Haliotis rufescens* (a primitive sperm producer) and observed elongation of the actin-cored acrosome process (= axial rod material) and the dissolution of the acrosome granule (= acrosomal cone). An examination of the acrosome reaction within mesogastropods, neogastropods, and euthyneuran gastropods would be of great value in establishing both the function and homology of acrosome components within the Gastropoda.

Midpiece

Midpieces of cerithiacean euspermatozoa are each composed of four distinct elements (exhibiting parallel cristal plate structure) arranged nonhelically around the axoneme (Healy, '82a,c; this study). In most other mesogastropod euspermatozoa and in neogastropod euspermatozoa, the midpiece elements (usually seven to nine) are helically arranged around the axoneme and do not exhibit parallel cristal plates (see Bulnheim, '62; Giusti, '69, '71; Giusti and Mazzini, '73; West, '78; Kohnert, '80). Koike and Nishiwaki ('80) have reported parallel cristae in the midpieces of strombid euspermatozoa, but this configuration does not appear to be similar to that occurring in cerithiaceans. However, in euspermatozoa of viviparaceans, the midpiece elements (although helically arranged around the axoneme) exhibit cristal plate fine structure very similar to that observed in cerithiaceans (see Kaye, '58; Yasuzumi and Tanaka, '58; Anderson, '70; Personne and Anderson, '70; Hachiri and Higashi, '74).
Studies conducted by some workers (Ishizaki and Kato, '58; Gall, '61; Griffond, '80) indicate that four midpiece elements are present in euspermatozoa of viviparaceans (as occurs in cerithiaceans). These results, together with the general similarity of viviparacean and cerithiacean paraspermatozoa (Ishizaki and Kato, '58; Yasuzumi and Tanaka, '58; Gall, '61; Griffond, '80; Healy and Jamieson, '81) would suggest that a close relationship may exist between these two mesogastropod superfamilies. It should be pointed out that the work of Kaye ('58) suggests that four or five midpiece elements may be present in euspermatozoa of viviparaceans while other workers (Tanaka, '58; Yasuzumi and Tanaka, '58; Yasuzumi, '62) conclude that as few as two midpiece elements are present. Recently, Selmi and Giusti ('80) have demonstrated cristal plate organization in midpieces of the mesogastropod Cochlostoma montanum (Cyclophoracea). In this species crystalline deposits were shown to be associated with the cristal plates.

Glycogen piece

The periaxonemal arrangement of (presumed) glycogen granules of the glycogen piece in cerithiacean euspermatozoa (Giusti, '71; Hachiri and Higashi, '71; Healy, '82a,c; this study) is common in euspermatozoa of other mesogastropods and of neogastropods that have been studied (Giusti, '71; Kohnert, '80; Koike and Nishiwaki, '80; Selmi and Giusti, '80; Buckland-Nicks et al., '82; personal observations). The same arrangement has also been observed in sperm of cephalopods (Anderson and Personne, '70; Longo and Anderson, '70; Baccetti et al., '76) where nine tracts of granules are associated with the periaxonemal coarse fibres. Sperm of oligochaetes also show an ordered arrangement of glycogen granules around the axonemal doublets (Henley, '73a; Jamieson, '78). Buckland-Nicks et al. ('82) recently have shown that nine radial links connect the axonemal doublets to the plasma membrane in immature "eupyrene" sperm (immature euspermatozoa) and that at maturity, these radial links become obscured by the nine tracts of glycogen granules. It therefore seems most likely that the ordered arrangement of glycogen granules is linked with motility in those species in which it occurs. It is interesting to observe that in opisthobranch and pulmonate sperm which possess a glycogen piece, glycogen granules are randomly packed around the axoneme and (presumably) such sperm lack radial links (Ohsako, '71; Anderson and Personne, '70, '76; Thompson, '73; Kitajima and Paraense, '76; Maxwell, '80; Healy, '82b, '83).

Dense ring structure

A dense ring structure or "annulus" such as that demonstrated in cerithiaceans (Healy, '82a,c; this study) is also found in other mesogastropods (Buckland-Nicks, '73; Kohnert, '80; Koike and Nishiwaki, '80; personal observations), neogastropods (Buckland-Nicks et al., '82; personal observations), the architectoricid gastropod Philippia (Healy, '82d), and some opisthobranchs and pulmonates (Ohsako, '71; Thompson, '73; Ackerson and Koehler, '77; Healy '82b, '83). A similar structure occurs posterior to the midpiece in sperm of certain polychaete species (see Franzén, '82). The annulus of vertebrate sperm (occurring at the junction of the midpiece and fibrous principal piece) is well documented (see Fawcett, '70). The annulus of certain cephalopod spermatozoa (junction of midpiece and glycogen piece) resembles more closely that occurring in vertebrate spermatozoa and not the dense ring structures of mesogastropod or neogastropod euspermatozoa (see Longo and Anderson, '70). Functions
that have been suggested for the dense ring structure (or annulus) include: (1) the prevention of axonemal constriction during movement (Buckland-Nicks, '73); (2) the prevention of "caudal displacement of the mitochondria during tail movements" (Fawcett, '70, p. 112); (3) as an additional kinetic centre (Buckland-Nicks and Chia, '81). Possibly the dense ring structure/annulus performs all three suggested functions.

Taxonomic implications of euspermatozoon structure

Using results presented in this study in addition to previous ultrastructural work (Giusti, '71; Melone et al., '80; Healy and Jamieson, '81; Healy, '82a,c) it is possible to establish two major groups of cerithiaceans using euspermatozoon structure. Figures 71 to 103 summarize the characteristic features of euspermatozoa of Group 1 and Group 2 species. It has been demonstrated that euspermatozoa of Group 1 species have midpieces composed of the axoneme surrounded by two large and two small midpiece elements (Figs. 71, 72) and that euspermatozoa of Group 2 species possess four equal-sized midpiece elements and midpiece flange structures (Figs. 73, 77). Group 1 is subdivided on the shape of the small midpiece elements (in transverse section) and the shape of the acrosome. From the midpieces shown in the micrograph of Giusti ('71), Cerithium vulgatum, like other cerithids, can be be placed within Subgroup 1(i). The acrosomal cone of Cerithium vulgatum, like other cerithids, can be

Abbreviations:

drs, dense ring structure; f, flange structures of midpiece; gp, glycogen piece; M, midpiece; n, nucleus.

Cerithiacean Gastropod Euspermatozoa

71
mieson, ’81; personal observations) clearly linking the species of this subgroup with Subgroup 1(i) (that is, Cerithiidae, Turritellidae and Australaba). According to the classification scheme of Thiele (’31), the Potamididae can be divided into two subfamilies: Potamidinae (including, among other genera, Cerithidea, Terebralia, Telescopium, Pyrazus) and Batillarinae (including, among other genera, Batillaria, Zeacumansus). Primarily on the basis of radular features, Bishop (’79) maintains this two subfamily system but transfers Pyrazus from the Batillariidae to the Batillarinae. The two subfamilies (as modified by Bishop) correspond to Group 2 (Potamidinae) and Group 1 (Subgroup 1(ii)) (Batillarinae) of the present study.

Although some differences in acrosome shape and nuclear length exist between Group 2 genera, the distinctive midpiece structure clearly separates these genera from the Batillarinae (Subgroup 1(ii)). Recent work by the author has revealed that the euspermatozoan of Obortio (family uncertain, see Healy, ’82c) and Modulus (Modulidae, unfigured) also have Group 2 midpiece structure. This may also be true for the Pleuroceridae since Henley (’73b) describes four “paracrystalline” mitochondrial derivatives without any mention of size disparity. Given that the same midpiece element arrangement exists in different cerithiacean families (for example Turritellidae and Cerithiidae share Subgroup 1(i) pattern; Potamididae (subfamily Potamidinae), Modulidae, and Obortio share Group 2 pattern, it would seem that the pronounced differences in euspermatozoon midpiece structure between the potamidid subfamilies Potamidinae and Batillarinae may indicate the necessity to separate the latter subfamily as a distinct family (tentatively the Batillariae). On the basis of euspermatozoon (and paraspermatozoon) features the “Batillariidae” would be most closely allied to the Planaxidae and (to a lesser degree) the Turritellidae and Cerithiidae.

It is of interest that the acrosome of Cerithidea cingulata resembles that of Terebralia palustris and not other species of Cerithidea studied (C. obtusa, C. laggillierti). These results could be interpreted equally well as support for the inclusion of “Cerithidea cingulata” in a separate genus Cerithideopsilla (Allan, ’59; Bishop, ’79) or as support for Thiele’s (’31) subgeneric division of Cerithidea.

ACKNOWLEDGMENTS

Dr. Barrie Jamieson (Dept. Zoology, Univ. QLD) is thanked for helpful discussions and for access to photographic facilities. Dr. Richard Willan (Dept. Zoology, Univ. QLD) is thanked for his reading and criticism of the original manuscript. Dr. Winston Ponder (Australian Museum, Sydney) identified specimens of Australaba. Mrs. Lina Daddow and Mr. Tom Gorrine (both Dept. Zoology, Univ. QLD) are thanked for their technical assistance as are the staff of the University of Queensland Electron Microscope Centre. Mr. and Mrs. T. Stewart (Cairns), Mr. and Mrs. H. Collins (Cairns) and Ms. Anne Bothwell (Dept. Zoology, Univ. QLD) are thanked for collecting or helping to collect specimens of some of the species used in this study. This study was supported by a UC grant.

LITERATURE CITED

Ackerson, A., and L. Koehler (1977) Vesiculation and the loss of the plasma membrane along the midpieces of Physia sp. spermatozoon. In G. W. Bailey (ed): 35th Ann. Proc. Electron Microscopy Soc. Amer. Boston, Mass.

Allan, J. (1959) Australian Shells. Melbourne: Georgian House (2nd ed).

Anderson, W.A. (1970) The localization of cytochrome c oxidase activity during mitochondrial specialization in spermiogenesis of prosobranch snails. J. Histochem. Cytochem. 18:201-210.

Anderson, W.A., and P. Personne (1970) The localization of glycogen in the spermatozoon of various invertebrate and vertebrate species. J. Cell Biol. 44:29-51.

Anderson, W.A., and P. Personne (1976) The molluscan spermatozoon: Dynamic aspects of its structure and function. Am. Zool. 16:283-313.
Arnold, J.M., and L.D. Williams-Arnold (1978) Spermiogenesis of Nautilus pompilius 1. General survey. J. Exp. Zool. 205:13–26.

Atkinson, J.W. (1982) An ultrastructural analysis of the mature spermatoozoa of Anguilla anguilla (Sau) (Pulmonata, Stylommatophora). J. Morphol. 175:249–259.

Baccetti, B., V. Pallini, and A.G. Burrini (1976) The accessory fibres of the spermatophore II. Their role in the development of spermatophore in mammals and cephalopods. J. Ultrastruct. Res. 54:261–275.

Bishop, L. (1979) Anatomical and electrophoretic differences between species of Australian Potamididae (Mollusca: Gastropoda). Macquarie University unpublished M.Sc. Thesis.

Buckland-Nicks, J.A., and F.-S. Chia (1981) Locomotion of gastropods. J. Exp. Zool. 205:13–26.

Buckland-Nicks, J.A., and F.-S. Chia (1977) On the nurse cell and the spermatozeugma in Littorina nithana. Cell. Tissue Res. 179:347–356.

Buckland-Nicks, J.A., D. Williams, F.-S. Chia and C. Feral (1977) Etude de la spermatogenese typique chez Brassia (Gastropoda, Prosobranchia). Z. Zellforsch. 56:371–386.

Cernohorsky, W.O. (1972) Marine Shells of the Pacific Ocean. Vol. 11. Sydney: Pacific Publications.

Chia, F.-S., and S. Miesel (1977) Spermatid anuclea
tion during the normal atypical spermiogenesis of the warehouse moth Ephestia cautella. J. Submicrosc. Cytol. 9:173–185.

Eisen, H. (1977) L'ultrastructure della spermatoozoa nella filogeneesi e nella sistematica dei molluschi gastropodi. Atti. Soc. Ital. Sci. Nat. 112:381–402.

Fontaine, J.M. (1982) Etude ultrastructurale de la spermatogenese typique de Viuiparus viuiparus L., mollusque gastéropode. Arch. Biol. (Bruxelles) 91:445–462.

Franzen, A. (1955a) Comparative morphological investigations into the spermiogenesis among Mollusca. Zool. Bidrag Uppsala 30:399–456.

Franzen, A. (1955b) On the spermiogenesis in Solenogastres. Zool. Bidrag Uppsala 30:485–491.

Franzen, A. (1956) On spermiogenesis, morphology of the spermatozoa and the biology of fertilization among invertebrates. Zool. Bidrag Uppsala 31:356–482.

Franzen, A. (1967) Spermiogenesis and spermatozoa of the Cephalopoda. Arch. Zool. 19:332–334.

Franzen, A. (1970) Phylogenetic aspects of the morphology of spermatids and spermiogenesis. In B. Baccetti (ed): Comparative Spermatology. Proceedings of the International Symposium held in Rome and Siena, 1–5 July 1969. New York: Academic Press, pp. 3–46.

Franzen, A. (1982) Ultrastructure of spermatids and spermatozoa in three polychaetes with modified biology of reproduction: Astylus sytus, Chitonopoma ser
rula and Capitella capitata. Int. J. Invert. Reprod. 5:155–200.

Hinton, A.G. (1977) Guide to Australian Shells. Port Moresby: Robert Brown and Assoc.

Ishizaki, T., and K. Kato (1958) The fine structure of atypical spermatoozoa of the pond snail Viuiparus mal
rus. Zool. Mag. (Tokyo) 67:293–294.

Jamieson, B. G. M. (1978) A comparison of spermiogenesis of gastropods and spermatozoal ultrastructure in megascolicid and lambricid earthworms (Oligochaeta: Annelida). Aust. J. Zool. 26:225–240.

Kihara, J. S. (1958) Changes in the fine structure of mitochondria during spermiogenesis. J. Morphol. 102:347–369.

Kitajima, E.W., and W.L. Paraense (1976) The ultrastructure of mature sperms of the fresh-water snail Biomphalaria glabrata (Mollusca, Gastropoda). Trans. Am. Microsc. Soc. 95:1–10.

Kohnert, R. (1980) Zum Spermiendimensionalischem der Prosobranchier: Spermiogenese und ultrastrukturneller Aufbau der Spermen von Bithynia tentaculata (L.). Zool. Anz. 205:145–161.

Koske, K., and S. Nishiwaki (1980) The ultrastructure of
dimorphic spermatozoa in two species of the Strombi-
da (Gastropoda: Prosobranchia). Venus 38:259-274.
Lewis, C.A., D.L. Leighton, and V.D. Vacquier (1980)
Morphology of abalone spermatozoa before and after
the acrosome reaction. J. Ultrastruct. Res. 72:39-46.
Longo, F.J., and E. Anderson (1970) Structural and cyto-
chemical features of the sperm of the cephalopod Octo-
pus bimaculatus. J. Ultrastruct. Res. 32:94-106.
Maxwell, W.L. (1974) Spermiogenesis of Eleodone cir-
rhosa Lamarck (Cephalopoda, Octopoda). Proc. Soc.
London Ser. B 186:181-190.
Maxwell, W.L. (1980) Distribution of glycogen deposits
in two euthyneuran sperm tails. Int. J. Invert. Reprod.
2:245-249.
Melone, G., C. Lora Lamia Donin, and F. Cotelli (1980)
The paraspermatid cell (atypical spermatozoon) of Pro-
sobranchia: A comparative ultrastructural study. Acta
Zool. (Stockholm) 61:191-201.
Meves, F. (1903) Uber oligopyrene und apyrene Sper-
mien und iiber ihre Entstehung, nach Beobachtungen
an Paludina und Pygaea. Arch Mikr. Anat. 61:1-84.
Nishiwaki, S. (1964) Phylogenetical study on the type of
the dimorphic spermatozoon in Prosobranchia. Sci. Rep.
Tokyo Kyoiu Daig. 2:237-275.
Ohsako, N (1971) Electron microscopic studies on the
sperm of the freshwater snail, Radix japonica (Jay.).
1. Structural characterization. Rep. Fac. Sci. Kagoshima
Univ. (Earth Sci. Biol.) 4:63-70.
Pearse, J.S. and R.M. Woollacott (1979) Chiton sperm:
No acrosome? Am. Zool. 19:356 (Abstract).
Personne, P., and W.A. Anderson (1970) Etude comparee
des evolutions mitochondriales au cours de la sperma-
togenese chez quelques gastéropodes. In B. Bacetti
(ed): Comparative Spermatology. Proceedings of the
International Symposium held in Rome and Siena, 1-
5 July 1969. New York: Academic Press. pp 383-400.
Popham, J.D. (1979) Comparative spermatozoon mor-
phology and bivalve phylogeny. Malacological Rev.
12:1-20.
Reinke, E.E. (1912) A preliminary account of the develop-
ment of the appenine spermatozoon in Strumus and
of the nurse cells in Litorina. Biol. Bull. Mar. Biol.
Lab. Woods Hole 22:319-327.