On the direct decomposition of nilpotent expanded groups

Erhard Aichinger

Department of Algebra
Johannes Kepler University Linz, Austria

AAA83 & CYA27, Novi Sad, March 2012
Supported by the Austrian Science Fund (FWF):P24077
Nilpotent groups

Theorem (classical result from group theory)

Let \(G \) be a finite nilpotent group. Then \(G \) is isomorphic to a direct product of groups of prime power order.

Sketch of the proof

Let \(S_p \) be a \(p \)-Sylow subgroup of \(G \). Since \(G \) is nilpotent, \(N_G(H) > H \) for all \(H < G \). By Sylow, \(N_G(N_G(S_p)) \leq N_G(S_p) \), hence \(N_G(S_p) = G \), and thus \(S_p \trianglelefteq G \).
Theorem (Characterisations of nilpotent groups)

Let G be a finite group, $k \in \mathbb{N}$. TFAE

1. G is nilpotent of class k
 :\iff \text{the lower central series } \gamma_1(G) := G, \gamma_n(G) := [G, \gamma_{n-1}(G)]
 \text{satisfies } |\gamma_k(G)| > 1, |\gamma_{k+1}(G)| = 1;

2. k is minimal in \mathbb{N} with
 \[\exists p \in \mathbb{R}[x] : \deg(p) = k \text{ and } \forall n : |F_{V(G)}(n)| \leq 2^{p(n)};\]

3. the supremum of “the rank of commutator terms of G” is k
 (see \cite{Kearnes, 1999});

4. $|[\mathbf{G}, \mathbf{G}, \ldots, \mathbf{G}]_k| > 1 \text{ and } |[\mathbf{G}, \mathbf{G}, \ldots, \mathbf{G}]_{k+1}| = 1$ (see \cite{Mudrinski, 2009}).
Nilpotence for expanded groups

Definition (Nilpotent expanded groups)

Let $V = \langle V, +, -, 0, f_1, f_2, \ldots \rangle$ be an expanded group, $A, B \subseteq V$.

$$[A, B] := \{ p(a, b) \mid p \in \text{Pol}_2(V), \quad a \in A, b \in B, p(0, 0) = p(a, 0) = p(0, b) = 0 \}. $$

V is *nilpotent of class k* if for $\gamma_1(V) := V, \gamma_n(V) := [V, \gamma_{n-1}(V)]$ we have $|\gamma_k(V)| > 1, |\gamma_{k+1}(V)| = 1$.

Remarks on $[\bullet, \bullet]$

- In expanded groups, we consider *ideals = 0-classes of congruences* instead of congruences.
- $[A, B]$ then corresponds to the *term-condition commutator* introduced in [Freese and McKenzie, 1987, McKenzie et al., 1987].
A nilpotent expansion of $\langle \mathbb{Z}_6, + \rangle$

Let $f : \mathbb{Z}_6 \to \mathbb{Z}_6$ be defined by

x	$f(x)$
0	3
1	0
2	0
3	3
4	0
5	0

Then $V_6 := \langle \mathbb{Z}_6, +, -, 0, f \rangle$ is nilpotent of class 2, and its congruence lattice is a three element chain.
Facts on V_6

Lemma

V_6 is directly indecomposable, and $|F_{\mathcal{V}(V_6)}(n)| \geq 2^{2^n}$ for all $n \in \mathbb{N}$.
Kearnes’s decomposition theorem

As a corollary of [Kearnes, 1999, Theorem 3.14] and [Hobby and McKenzie, 1988, Lemma 12.4], one obtains:

Theorem ([Kearnes, 1999])

Let A be a finite Mal’cev algebra such that $\exists p \in \mathbb{R}[x]$ with

$$|F_\nu(A)(n)| \leq 2^{p(n)} \text{ for all } n \in \mathbb{N}.$$

Then A is nilpotent and isomorphic to a direct product of algebras of prime power order.

Theorem ([Berman and Blok, 1987, Theorem 2])

Let A be finite, in a congruence modular variety, of finite type, nilpotent, direct product of algebras of prime power order. Then

$$\exists p \in \mathbb{R}[x] : |F_\nu(A)(n)| = 2^{p(n)} \text{ for all } n \in \mathbb{N}.$$
Absorbing polynomials and supernilpotence

Definition

\[V = \langle V, +, -, 0, f_1, f_2, \ldots \rangle \] expanded group, \(p \in \text{Pol}_n V \). \(p \) is absorbing \(\iff \forall x : 0 \in \{ x_1, \ldots, x_n \} \Rightarrow p(x_1, \ldots, x_n) = 0. \)

Definition (supernilpotent)

\(V \) expanded group, \(k \in \mathbb{N} \). \(V \) is supernilpotent of class \(k \) : \(\iff \)

1. there is a nonconstant absorbing \(p \in \text{Pol}_k(V) \), and
2. \(\forall n > k \) all \(n \)-ary absorbing polynomials are constant.
Lemma (Description of finite snp expanded groups)

Let W be a finite expanded group, $k \in \mathbb{N}$. TFAE

1. W is supernilpotent of class $k \in \mathbb{N}$;
2. k is minimal in \mathbb{N} with

 \[\exists p \in \mathbb{R}[x] : \deg(p) = k \text{ and } \forall n : |F_{\mathcal{V}(W)}(n)| \leq 2^{p(n)}; \]

3. the supremum of “the rank of commutator terms of W” is k (see [Kearnes, 1999]);

4. $|[\underbrace{W, W, \ldots, W}_k]| > 1$ and $|[\underbrace{W, W, \ldots, W}_{k+1}]| = 1$ (see [Mudrinski, 2009]).
Connections between nilpotent and supernilpotent

Lemma (Groups)

Let G be group. Then G is nilpotent of class $k \iff G$ is supernilpotent of class k.

Remark

\Rightarrow requires commutator calculus; calculations done in [Aichinger and Ecker, 2006].

Lemma (Expanded groups)

A supernilpotent expanded group of class k is nilpotent of class $\leq k$.

Corollary of [Berman and Blok, 1987, Theorem 2]

A finite nilpotent expanded group of finite type and prime power order is supernilpotent.
Connections between nilpotent and supernilpotent

Theorem (EA, Mudrinski, 2011)

Let $k \geq 1$, $m \geq 2$, $V = \langle V, +, -, 0, f_1, f_2, \ldots \rangle$ expanded group such that all f_i are “multilinear” and of arity $\leq m$, and V is nilpotent of class k. Then V is supernilpotent of class $\leq m^{k-1}$.

Remark (the bound can be attained)

For all $k \geq 1$, $m \geq 2$, there is a finite nilpotent V of class k with all f_i “multilinear” and of arity $\leq m$ such that V is supernilpotent of class m^{k-1}.
Definition (Characteristic of a prime section)

Let V be an expanded group, and let $A \prec B \trianglelefteq V$, $[B, B] \leq A$. Then $\text{char}(A, B)$ is the exponent of $\langle B/A, + \rangle$.

Remark

$R := \langle P_0(V)/\text{Ann}(B/A), +, \circ \rangle$ is a ring with simple module $M := B/A$. Hence $\text{char}(A, B)$ is the characteristic of the division ring $\text{End}_R(B/A)$.

Characteristic is prime or zero

Let V be an expanded group, and let $A \prec B \trianglelefteq V$, $[B, B] \leq A$. Then $\text{char}(A, B) \in \mathbb{P} \cup \{0\}$.
Monochromatic expanded groups

Definition (A generalisation of “prime power order”)

Let V be a solvable expanded group. V is *monochromatic* if all prime sections in the ideal lattice have the same colour.

Theorem (EA, 2012)

Let V be a supernilpotent expanded group whose ideal lattice is of finite height. Then V is isomorphic to a direct product of finitely many monochromatic expanded groups.
Proof of this decomposition result

Lemma

Let \mathbf{R} be a ring with unit, and let \mathbf{M} be a unitary \mathbf{R}-module such that \mathbf{M} has exactly three submodules; let Q be the submodule different from 0 and M. Then the exponents of the groups $\langle M/Q, + \rangle$ and $\langle Q, + \rangle$ are equal.

Lemma (cf. [Mayr, 2008, Lemma 3])

Let \mathbf{V} be a finite expanded group whose ideal lattice is a three element chain $\{0\} < Q < V$. We assume that the exponents of the groups $\langle Q, + \rangle$ and $\langle V/Q, + \rangle$ are different, and that $[V, V] = Q$ and $[V, Q] = 0$. Then \mathbf{V} is not supernilpotent.
Main tool in the proof

The operation of the polynomial ring

\[
M := \{ p \in \operatorname{Pol}_1 V : p(V) \subseteq Q, \\
p \text{ is constant on each } Q\text{-coset}\},
\]
\[
R := \mathbb{Z}[t], \ w \in V,
\]
\[
r \star_w m(x) := \sum_{i=0}^{\deg(r)} r_i \star m(x + i \star w) \quad \text{for } m \in M, x \in V.
\]

Use of this operation

- For all \(m \in \mathbb{N} \), there is \(w \in V, f \in M \) such that
 \[
 (t - 1)^m \star_w f \text{ is not constant}.
 \]
- From this, we will produce absorbing polynomials of arbitrary arity.
Task

Produce absorbing nonconstant polynomial of arity m.

Define a sequence

- Choose $f \in M$, $w \in W$ such that $(t - 1)^{m-1} \ast_w f$ is not constant.
- Define
 - $h^{(1)}(x_1) := f(x_1) - f(0)$.
 - $h^{(n)}(x_1, \ldots, x_n) :=$

 \begin{align*}
 h^{(n-1)}(x_1 + x_n, x_2, \ldots, x_{n-1}) & - h^{(n-1)}(x_1, x_2, \ldots, x_{n-1}) + \\
 h^{(n-1)}(0, x_2, \ldots, x_{n-1}) & - h^{(n-1)}(x_n, x_2, \ldots, x_{n-1}).
 \end{align*}

- Then $h^{(n)}(x_1, w, \ldots, w) =$

 $$((t - 1)^{n-1} \ast_w f)(x_1) - ((t - 1)^{n-1} \ast_w f)(0)$$
 for all $x_1 \in V$.

Aichinger, E. and Ecker, J. (2006).
Every \((k + 1)\)-affine complete nilpotent group of class \(k\) is affine complete.
Internat. J. Algebra Comput., 16(2):259–274.

Berman, J. and Blok, W. J. (1987).
Free spectra of nilpotent varieties.
Algebra Universalis, 24(3):279–282.

Freese, R. and McKenzie, R. N. (1987).
Commutator Theory for Congruence Modular varieties, volume 125 of *London Math. Soc. Lecture Note Ser.*
Cambridge University Press.

Hobby, D. and McKenzie, R. (1988).
The structure of finite algebras, volume 76 of *Contemporary mathematics*.
American Mathematical Society.

Kearnes, K. A. (1999).
Congruence modular varieties with small free spectra.
Mayr, P. (2008). Polynomial clones on squarefree groups. *Internat. J. Algebra Comput.*, 18(4):759–777.

McKenzie, R. N., McNulty, G. F., and Taylor, W. F. (1987). *Algebras, lattices, varieties, Volume I*. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California.

Mudrinski, N. (2009). *On Polynomials in Mal’cev Algebras*. PhD thesis, University of Novi Sad.
