Resumen

El síndrome X frágil es la condición monogenética que produce más casos de autismo y de discapacidad intelectual. La repetición de tripletes CGG (> 200) y su metilación conllevan el silenciamiento del gen FMR1. La proteína FMRP (producto del gen FMR1) interacciona con los ribosomas, controlando la traducción de mensajeros específicos y su pérdida produce alteraciones de la conectividad sináptica. El tamizaje de síndrome X frágil se realiza por reacción en cadena de la polimerasa. La recomendación actual de la Academia Americana de Pediatría es realizar pruebas a quienes presenten discapacidad intelectual, retraso global del desarrollo o antecedentes familiares de afectación por la mutación o premutación. Países hispanos como Colombia, Chile y España reportan altas prevalencias de síndrome X frágil y han creado asociaciones o corporaciones nacionales de X frágil que buscan acercar a los pacientes a redes disponibles de diagnóstico y tratamiento.

PALABRAS CLAVE: Síndrome X frágil. Gen FMR1. Proteína FMRP.

Fragile X syndrome: clinical presentation, pathology and treatment

Abstract

Fragile X syndrome is the monogenetic condition that produces more cases of autism and intellectual disability. The repetition of CGG triplets (> 200) and their methylation entail the silencing of the FMR1 gene. The FMRP protein (product of the FMR1 gene) interacts with ribosomes by controlling the translation of specific messengers, and its loss causes alterations in synaptic connectivity. Screening for fragile X syndrome is performed by polymerase chain reaction. Current recommendation of the American Academy of Pediatrics is to test individuals with intellectual disability, global developmental retardation or with a family history of presence of the mutation or premutation. Hispanic countries such as Colombia, Chile and Spain report high prevalence of fragile X syndrome and have created fragile X national associations or corporations that seek to bring patients closer to available diagnostic and treatment networks.

KEY WORDS: Fragile X syndrome. FMR1 gene. FMRP protein.
completa presentan discapacidad intelectual y 60 % de los niños son diagnosticados con trastornos del espectro autista (TEA). Los trastornos de ansiedad ocurren entre 70 y 80 % de las personas con SXF. La prevalencia más aceptada del SXF es de aproximadamente uno en 5000 hombres y una en 4000 a 8000 mujeres. Sin embargo, aún no hay un consenso global debido a la complejidad del diagnóstico molecular y la variedad en la presentación clínica de quienes no están severamente afectados. Se han reportado prevalencias mucho más altas en España y Colombia, donde recientemente se reportó un conglomerado genético con la prevalencia más alta del síndrome hasta la fecha; así como una casi inexistente en China, donde se especula que la falta de investigación y especialización clínica en áreas del neurodesarrollo es la causa principal de la escasez diagnóstica del síndrome.

Bases biológicas del síndrome X frágil

El mecanismo biológico exacto responsable de la presentación del SXF no se conoce, sin embargo, se sabe que reside en la capacidad de la proteína FMRP de unión a ARN y a proteínas. Específicamente, FMRP se une a ribosomas y está presente en los compartimentos sinápticos, donde controla la traducción de mensajeros específicos. La pérdida de FMRP produce alteraciones de la conectividad sináptica en las neuronas, que se traducen en los síntomas específicos del SXF. Estas alteraciones de la conectividad sináptica se ponen de manifiesto en el cerebro con la disminución de la cantidad de dendritas y espinas en las neuronas de pacientes con SXF.

La falta de FMRP en neuronas conlleva una expresión exacerbada de receptores de glutamato, tanto metabotrópicos (mGluR) como ioniotrópicos (AMPA y NMDA). Las proteínas de síntesis, degradación y transporte del ácido γ-aminobutírico (GABA) y los receptores de glutamato, tanto metabotrópicos (mGluR5 en astrocitos) y la producción de mielina en oligodendrocitos. Durante el desarrollo prenatal, las células de la glía radial contienen FMRP, que interviene en el transporte activo de ARN mensajero a lo largo de la fibra glial. Un cambio en cualquiera de estos mecanismos puede colaborar al desarrollo de las alteraciones cognitivas en los pacientes con SXF.

FMRP ha sido relacionada con la regulación de canales iónicos. FMRP se une al C-terminal de los canales Slack, activados por potasio. La activación de los canales Slack contribuye a la patrón de actividad en canales de potasio de larga conducción activados por calcio (canales BK).

La presencia de una pequeña fracción de FMRP en el núcleo celular indica que dicha proteína puede tener funciones previamente no reconocidas. De hecho, varios estudios han desvelado funciones relacionadas con la expresión del ADN y la función genómica, como en la estabilización del ADN, la regulación epigenética del ADN, la regulación del ARN nuclear y la respuesta al daño del ADN. La proteína precursora del β amiloide (APP) también ha sido relacionada con el SXF, a través de un mecanismo dependiente del receptor mGluR5, APP es procesada por secretasas que producen β amiloide (Aβ), péptido predominante en las placas seniles en la enfermedad de Alzheimer.

Presentación clínica

Los afectados con la mutación completa del gen FMR1 presentan características fenotípicas específicas que incluyen cara alargada, orejas grandes y prominentes, hipermovilidad articular y macroorquidismo. Más de 90 % de los niños afectados presentan retraso del desarrollo y aproximadamente el 50-60 % son diagnosticados con TEA. Durante el transcurso de su vida, tanto hombres como mujeres presentan alteraciones del comportamiento comúnmente asociadas con el síndrome, usualmente de inicio durante la infancia: la ansiedad y el trastorno de atención e hiperactividad (TDHA) son las más prevalentes; aunque los desórdenes compulsivos como la hiperfagia y la agresividad también son comunes (Tabla 1). Además, de las alteraciones comportamentales y los problemas de aprendizaje y adaptación social, de 15 a 20 % de los pacientes con SXF presentan convulsiones, más prevalentes en aquellos con autismo; más de 30 % tiene problemas de obesidad, alteraciones del sueño y alguna disfunción gastrointestinal, incluyendo refluo gastroesofágico.
estrabismo y la otitis media recurrente son problemas comunes durante la primera infancia.

El fenotipo tiene algunas variantes. Los más afectados con la mutación son los hombres; las mujeres presentan un fenotipo atenuado por el índice de activación del segundo cromosoma X no afectado. Más de 70 % de las mujeres tienen un coeficiente intelectual bajo, si bien considerado promedio comparado con la población general y en menor proporción comparado con los hombres que presentan problemas de lenguaje.13 La segunda variante son los mosaicos, que presentan algunas líneas celulares con la mutación completa y otras en el rango de premutación, lo que los expone al riesgo de padecer los problemas propios de la premutación como el síndrome de temblor/ataxia (FXTAS);15,16 o algunas líneas celulares con metilación y, por ende, el gen silenciado y otras sin metilación, en este caso los afectados también presentan menor grado de afectación cognitiva.17

Además de las características fenotípicas comúnmente reconocidas, los afectados presentan anormalías del tejido conectivo, atribuidas a que FMRP regula componentes esenciales de la matriz extracelular. Además de las alteraciones musculoesqueléticas más comunes, como la hiperextensión de las articulaciones metacarpofalángicas, los pies planos y escoliosis, se han descrito alteraciones en los sistemas cardiovascular y genitourinario.18

Imágenes de resonancia magnética del cerebro de los pacientes con SXF demuestran que por lo general el cerebro es más grande de lo normal y con incremento en el tamaño de los ventrículos laterales. El vermis cerebelar presenta hipoplasia, una de las características más representativa, que puede ir acompañada de la reducción del cerebelo entero y alteraciones de los pedúnculos cerebelosos. Además, el núcleo caudado, sobre todo la cabeza, es más grande, principalmente en hombres. El hipocampo también está agrandado en pacientes jóvenes. Por el contrario, la insula y la amigdala son más pequeñas. Asimismo, el fascículo uncinado también presenta alteraciones de la materia blanca.13

Interacción entre SXF, autismo y trastorno de déficit de atención e hiperactividad

Existe una relación estrecha entre la presencia de SXF, TEA y TDAH. Aproximadamente 2 % de todos los casos diagnosticados de trastornos del espectro autista (TEA) son atribuibles al SXF; mientras que más de 60 % de los niños con SXF son diagnosticados con TDAH, TEA o los dos. El SXF es la principal causa genética conocida de los TEA, sin embargo, solo 20 % de los casos de autismo son reconocidos como el resultado de mutaciones monogénicas y solo 2 a 6 % se debe a la mutación del gen FMR1. Los afectados por las dos morbilidades, como sucede en 50 a 60 % de los niños y 20 % de las niñas con SXF, presentan un compromiso más severo tanto del déficit cognitivo y del lenguaje como en los problemas del comportamiento.19 Los ensayos clínicos controlados han demostrado que a pesar de que SXF y TEA comparten

Características clínicas	Prevalencia
Físicas	
Cara alargada	83 % más común en adultos 50-81 %
Macrocefalia	75 %
Orejas prominentes	80 % en adultos 29-69 %
Mandíbula prominente	95 % desde la adolescencia 50-70 % más común en niños
Pies planos	
Macroorquidismo	
Hipermovilidad articular	
Psicológicas/psiquiátricas	
TDAH	80 % niños y 40 % niñas 50-60 % niños y 20 % niñas 58-86 %
TEA	40 % niños y 10-15 % niñas
Ansiedad	
Agresividad	
Desarrollo	
Discapacidad intelectual	85 % niños y 25-30 % niñas
Déficit del lenguaje	100 % niños y 60-75 % niñas
Otros	
Estrabismo	8-30 %
Otitis recurrente	50-75 % en la infancia 30 %
Problemas gastrointestinales	30 %
Obesidad	30-60 %
Convulsiones	15-20 %

Adaptado de referencia 14. TDAH = trastorno de atención e hiperactividad, TEA = trastornos del espectro autista.
sintomatología psiquiátrica, los afectados no respon-
den con la misma eficacia a tratamientos específi-
cos, por lo cual se sugiere que los mismos síntomas
emergen de distintos mecanismos.

Diagnóstico

La edad aproximada del diagnóstico del SXF es de 36 meses, a pesar de que la mayoría de los padres reporta reconocer algún tipo de retraso en el neurodesarrollo durante el primer año de vida. El tamizaje de poblaciones de alto riesgo puede realizarse por prueba de reacción en cadena de la polimerasa (PCR), de relativo bajo costo que requiere una sola gota sanguínea. El método utiliza un cebador químico que apunta aleatoriamente dentro de la región ampliada de CGG en el gen FMR1. Este método se ha utilizado exitosamente en varios estudios poblacionales. La prueba confirmatoria del diagnóstico es Southern Blot. Tejada hizo la evaluación completa de las ventajas y controversias de la prevención del SXF haciendo uso del diagnóstico prenatal. En 2017, Riley y Wheeler describieron la problemática del establecimiento del tamizaje posnatal en Estados Unidos. La recomendación actual de la Academia Americana de Pediatría es realizar pruebas genéticas a los niños con discapacidad intelectual o retraso global del desarrollo. De encontrarse un caso nuevo de SXF debe realizarse diagnóstico en cascada a todos los miembros de la familia inmediata, con el fin de identificar a los portadores de la mutación que tienen el potencial de expandir la mutación completa a sus descendientes (Figura 1). Recientemente Lubala et al. realizaron un metaanálisis en el que se incluyeron 10 estudios de tamizaje y se propuso una puntuación clínica para las siete características más específicas del SXF; esta lista toma en consideración las diferencias, sobre todo faciales, que pueden encontrarse en diferentes grupos étnicos. Esta herramienta clínica es de suma importancia en áreas donde no todos los afectados con discapacidad intelectual o TEA pueden someterse a pruebas genéticas debido a limitación de los recursos (Tabla 2).

Diagnóstico en países hispanos

A pesar de la recomendación de realizar pruebas genéticas en niños con discapacidad intelectual o retraso global del desarrollo y en aquellos cuyas familias están afectadas, estas pruebas no se realizan en numerosos países hispanos. Las pruebas genéticas diagnósticas están disponibles y varios países en Latinoamérica han reportado estudios de prevalencia del SXF, sin embargo, determinar la prevalencia real de los desórdenes genéticos es difícil debido a que en numerosas naciones hispanas no existe un registro oficial nacional. Países como Chile, Brasil, Colombia, Argentina, Perú y España han hecho visible la...
La necesidad de implementar mejores procesos de tami-
zaje y diagnóstico de enfermedades genéticas preva-
lentes, incluyendo del SXF. Además, hay barreras
económicas, políticas y sociales que enfrenta el
campo neurogenético, principalmente en los países en
desarrollo.2,3 Hasta la actualidad, el diagnóstico del
SXF se basa principalmente en los hallazgos fenotípi-
cos, con la posibilidad de realizar pruebas genéticas
por recomendación del especialista. En muchos casos
no se realizan debido a su alto costo, a que no están
cubiertas por los seguros de salud y, en otros casos,
a la poca disponibilidad de laboratorios certificados
para realizar el análisis de ADN en muestras
sanguíneas.

Tratamiento

No hay cura para el SXF, por lo que el tratamiento
se limita al control de los síntomas asociados. Actualmente las líneas de investigación se centran en
desarrollar tratamientos eficaces para los distintos
problemas psiquiátricos y cognitivos que padecen los
afectados (Tabla 3). En 2017, Gantois et al. investiga-
ron la eficacia de metformina como modulador de la
cascada de mGluR/mTORC1-ERK en modelos anima-
les de SXF; reportaron mejoría en el comportamiento
social y cognitivo, así como en las anormalidades
morfológicas (disgenesia de las espinas dendríticas en
el hipocampo) y electrofisiológicas (depresión a largo
plazo).28 Estos hallazgos motivaron el inicio de la
investigación del tratamiento con metformina en la
práctica clínica. El primer reporte demostró beneficio
principalmente en comportamientos problemáticos
como irritabilidad, agresividad y evasión social en
pacientes adultos con SXF, además de beneficiar el
control del apetito y el peso en quienes presentaban
el fenotipo de Prader-Willi.29 Por esta razón, en la
actualidad estudios controlados tanto en Estados
Unidos como en Canadá buscan determinar la eficacia
de metformina como tratamiento de este síndrome.

La sertralina es un medicamento de primera línea
para el manejo de la depresión y la ansiedad. Fue
estudiado por su potencial beneficio en el lenguaje,
sin embargo, demostró mejores resultados en habilida-
dades perceptuales motoras y visuales y participación
social en SXF.21

La minociclina también se considera un tratamiento
beneficioso en SXF. Se conoce que reduce los niveles
de la matriz metalopeptidasa 9 (MMP-9),30 endopepti-
dada dependiente de cinc encargada de regular la acti-
vidad sináptica crítica para el desarrollo y la plasticidad
del sistema nervioso central.31 Su inhibición se produce
por la unión con FMRP, proteína que se encuentra
ausente en el SXF. Los problemas de regulación de
MMP-9 se consideran parte de la fisiopatología no solo
de los problemas de aprendizaje, sino también de las
anomalías encontradas en el tejido conectivo.18

El acamprosato, un antagonista del receptor
mGluR5, modificó el comportamiento ansioso y las
pruebas locomotoras en el modelo animal de SXF32 y
demostró mejoría en áreas de comportamiento social
e hiperactividad en pacientes pediátricos con TEA y
SXF.33 Debe considerarse un medicamento benefi-
cioso para el manejo de los pacientes con SXF y
problemas de adicción al alcohol.34

Los estudios de tratamiento con lovastatina en
modelos animales de SXF postulan este medica-
mento como un tratamiento profiláctico para la epilep-
togénesis y sugieren que podría mejorar las funciones
sensoriales y cognitivas.35 Los ensayos clínicos no
controlados demostraron buena tolerancia en el tra-
tamiento con pocos efectos adversos y reportaron
beneficios tanto en el comportamiento como en las
habilidades adaptativas.36 A nivel molecular se demos-
tró que los cambios en la fosforilación de la cinasa
regulada por señal extracelular (ERK) se relacionan
con la respuesta clínica a lovastatina.37

Existen otros medicamentos que pueden mejorar los
sistemas neurobiológicos en SXF que no se conside-
ran tratamientos específicos para el síndrome, sino
que ayudan a controlar las características psiquiátri-
cas más comunes. Estos incluyen los estimulantes
(metilfenidato y anfetaminas) y atomoxetina, que

Tabla 2. Lista de verificación clínica para el síndrome X frágil

Característica	Puntuación
Piel suave y aterciopelada en las palmas de las manos con exceso de piel en el dorso de la mano	X
Pies planos	X
Orejas grandes y prominentes	X
Pliegue plantar	X
Macrorroquidismo*	X
Historia familiar de discapacidad intelectual	X
Comportamiento autista	X
Total	4

Varones después de la pubertad. La puntuación máxima es de 10 puntos para varones después de la pubertad y de nueve para varones antes de la pubertad o mujeres. En pacientes con puntuación superior a 5 debe considerarse el diagnóstico molecular de SXF. Adaptado de referencia 27.
pueden mejorar los síntomas del trastorno de atención e hiperactividad, por lo general, en niños mayores de cinco años; también se pueden usar los agonistas alfa adrenérgicos (guanfacina o clonidina) antes de los cinco años para calmar la hiperactividad. La clonidina es especialmente eficaz para mejorar los trastornos del sueño, de no tener una buena respuesta al tratamiento con melatonina. Para el manejo de la agresividad o los desórdenes del estado de ánimo, los antipsicóticos (risperidona o aripiprazol) son adecuados, pero pueden causar aumento de peso.

Conclusión

Los individuos afectados con el SXF presentan discapacidad intelectual, TEA y TDAH. Aunque existen muchos medicamentos para el manejo de las comorbilidades comunes, no hay tratamientos específicos. El objetivo del tratamiento temprano es mejorar la discapacidad intelectual, las dificultades de la comunicación y la interacción social característicos del SXF. Además, a pesar de la recomendación de realizar pruebas genéticas en niños con discapacidad intelectual o retraso global del desarrollo, estas no se realizan en muchos de los países latinoamericanos. Es de mayor importancia implementar el análisis SXF en todos los países hispanos.

Financiamiento

Esta investigación fue apoyada por el Instituto Nacional de Desórdenes Neurológicos y Accidentes Cerebrovasculares, con el financiamiento 1NS107131; por el Instituto Nacional de Salud Mental, subvención MH094681; el Instituto Nacional de Salud Infantil y Desarrollo Humano, financiamientos R01 HD036071 y U54 HD079125, para el Centro de Investigación de Discapacidad Intelectual y del Desarrollo del Instituto Médico de Investigación del Neurodesarrollo, Universidad de California en Davis y el Hospital Infantil Shriners. El contenido de este trabajo es responsabilidad exclusiva de los autores y no representa necesariamente las opiniones oficiales de las instituciones financiadoras. Además, dichas agencias no respaldan la compra de ningún producto o servicio comercial mencionado en la publicación.

Conflictos de interés

Randi J. Hagerman ha recibido fondos de Roche, Novartis, Neuren y Alcobra para llevar a cabo estudios de tratamiento en pacientes con SXF. También ha consultado con Fulcrum y Zynerba sobre estudios de tratamiento en individuos con SXF. Los demás autores declaran no tener conflictos de interés.

Referencias

1. Hagerman PJ. The fragile X prevalence paradox. J Med Genet. 2008;45:468-469.
2. Fernández-Carvajal I, Walichiewicz P, Xiaosen X, Pan R, Hagerman PJ, Tassone F. Screening for expanded alleles of the FMR1 gene in blood spots from newborn males in a Spanish population. J Mol Diagn. 2009;11:324-329.
3. Salamiriaga W, Forero-Forero JV, González-Teshima LY, Fandiño-Losada A, Isaza C, Tovar-Cuevas JR, et al. Genetic cluster of fragile X syndrome in a Colombian district. J Hum Genet. 2018;63:509-516.
4. Danesi C, Achuta VS, Corcoran P, Peteri UK, Turconi G, Matsui N, et al. Increased calcium influx through L-type calcium channels in human and mouse neural progenitors lacking fragile X mental retardation protein. Stem Cell Reports. 2018;11:1449-1461.
5. Gatto CL, Pereira D, Broadie K. GABAergic circuit dysfunction in the Dro sophila fragile X syndrome model. Neurobiol Dis. 2014;65:142-159.
6. Higashimori H, Morel L, Huth J Lindemann L, Dulla C, Taylor A, et al. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum Mol Genet. 2013;22:2041-2054.
Gaceta Médica de México. 2020;156

7. Wang H, Lu K, Osterhout DJ, Li W, Ahmadian A, Liang Z, et al. Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum Mol Genet. 2004;13:79-89.

8. Pilaz LJ, Lennox AL, Rouanet JP, Silver DL. Dynamic mRNA transport and local translation in radial glial progenitors of the developing brain. Curr Biol. 2016;26:3383-3392.

9. Brown MR, Konengold J, Gazulla VR, Chen Y, Strumbos JG, Sigworth FJ, et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat Neurosci. 2010;13:819-821.

10. Deng FY, Rotman Z, Blundon JA, Cho Y, Cui J, Cavalli V et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron. 2013;77:696-711.

11. Dockendorff TC, Labrador M. The fragile X protein and genome function. Mol Neurobiol. 2018;56:711-721.

12. Westmark CJ. Fragile X and APP: a decade in review, a vision for the future. Mol Neurobiol. 2019;56:3904-3921.

13. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr, Moine H, et al. Fragile X syndrome and connective tissue dysregulation. Clin Genet. 2018;95:292-267.

14. Thurman AJ, McDuffie A, Abbeduto L. Psychiatric symptoms in boys with fragile X syndrome: a comparison with nonsyndromic autism spectrum disorder. Res Dev Disabil. 2014;35:1072-1086.

15. Berry-Kravis EM, Hessl D, Rathmell B, Zarevics P, Cherubini M, Walton-Bowen K, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med. 2012;4:152ra127.

16. Greiss-Hess L, Fitzpatrick SE, Nguyen DV, Chen Y, Gaul KN, Schneider A, et al. A randomized, double-blind, placebo-controlled trial of low-dose sertraline in young children with fragile X syndrome. J Dev Behav Pediatr. 2016;37:619-628.

17. Bailey DB Jr, Raspa M, Bishop E, Holiday D. No change in the age of diagnosis for fragile X syndrome: findings from a national parent survey. Pediatrics. 2009;124:527-533.

18. Tassone F, Pan R, Amiri K, Taylor AK, Hagerman PJ. A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J Mol Diagn. 2003;10:43-49.

19. Bailey DB Jr, Raspa M, Boi H, Cui J, Guzmán-Ordaz H, et al. Fragile X checklists: a meta-analysis and development of a simplified universal clinical checklist. Mol Genom. 2018;1:321-222.

20. Gantois I, Khoutorsky A, Popic J, Aguilar-Vallés A, Freemantle E, Cao R, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Mol Neurobiol. 2017;26:67-77.

21. Dy ABC, Tassone F, Eldeeb M, Salcedo-Arellano MJ, Tartaglia N, Hagerman R. Metformin as targeted treatment in fragile X syndrome. Curr Opin Pediatr. 2016;37:245-250.

22. Schafar SL, Davenport MH, Greuling LM, Robinson CK, Earnheart AT, Stegman MS, et al. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J Neurodev Dis. 2017;9:6.

23. Erickson CA, Wink LK, Early MC, Stiegemeyer E, Mathieu-Frasier L, Patrick V, et al. Brief report: pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder. J Autism Dev Disord. 2014;44:961-967.

24. Tassone F, Salcedo-Arellano MJ, Lozano R, Tassone F, Hagerman RJ, Saldarriaga W. Alcohol use dependence in fragile X syndrome. Intractable Rare Dis Res. 2016;5:207-213.

25. Osterweil EK, Chiang SC, Chubykina AA, Sidorov M, Bianchi R, Wong RK, et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron. 2013;77:243-250.

26. Çakü A, Pellerin D, Bouvier P, Rieu E, Corbin F. Effect of lovastatin on behavior in children and adults with fragile X syndrome: an open-label study. Am J Med Genet A. 2014;164:2834-2842.

27. Pellerin D, Çakü A, Fradet M, Bouvier P, Dubé J, Corbin F, Lovastatin corrects ERK pathway hyperactivation in fragile X syndrome: potential of platelet’s signaling cascades as new outcome measures in clinical trials. Biomarkers. 2016;21:497-508.

28. Leigh MJ, Nguyen DV, Mu Y, Winarni TI, Schneider A, Chechi T, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile x syndrome. J Dev Behav Pediatr. 2013;34:147-155.