A imunologia do exercício é uma ciência forte e misteriosa na medicina esportiva, entretanto, estudos foram originados há mais de 100 anos, quando Schulte já havia descrito uma leucocitose induzida pelo exercício desde 1893 [1]. Desde então, os estudos transversais e longitudinais em humanos demonstraram o profundo impacto que o exercício pode ter no sistema imunológico. É exatamente por isso que é fundamental neste período de pandemia elucidar perguntas e direcionar os atletas e não atletas para o devido cuidado.

A situação atual começou com um grupo de pacientes com pneumonía por causa não identificada com origem em Wuhan, província de Hubei, China, em dezembro de 2019 [2]. Aproximadamente 2 meses depois, a Organização Mundial da Saúde (OMS) anunciou um formato padrão de Doença de Coronavírus-2019 (COVID-19) [3] no mesmo dia nomeado como SARS-CoV-2 [4].

Após a análise das sequências e das árvores evolutivas, o SARS-CoV-2 foi considerado um membro de β-CoVs [5,6], como o coronavírus SARS (SARS-CoV) e o coronavirus MERS (MERS-CoV) [7].

Goticulas respiratórias e transmissão de contato são as principais vias de transmissão, mas o SARS-CoV-2 pode ser detectado na urina e nas fezes, o que pode causar um risco possível de transmissão fecal-oral [8]. No entanto, ainda não há evidências que corroborarem essa rota, mas todas as rotas de transmissão possíveis precisam de vigilância durante o exercício físico. O COVID-19 tem um provável período de incubação assintomática (2 a 14 dias), que o vírus pode ser transmitido [9]. O SARS-CoV-2 tem um R0 de 2,2-2,6, cada indivíduo tem o potencial de espalhar a infecção para outras 2,2 pessoas [10].

COVID-19 e atividade física: qual a relação entre a imunologia do exercício e a atual pandemia?

Guilherme Gomes Azizi1,6, Marco Orsini2,3,4, Sérgio Duarte Dortas Júnior1,5, Paulo César Vieira2,6, Ricardo Steiner de Carvalho6, Cláudio Sérgio da Rocha Pires2,6, Sebastião Carlos Ferreira da Silva6, Bruno Mendes de Sá Pinto5,7, Carlos Eduardo Cardoso4, Adalgiza Mafra Moreno2, Marco Antonio Alves Azizi2,6

1. Serviço de Imunologia, Hospital Universitário Clementino Fraga Filho (HUCFF-UFRJ), Rio de Janeiro, RJ, Brasil.
2. Universidade Iguacu – UNIG, Nova Iguacu, RJ, Brasil.
3. Serviço de Neurologia/Neurocirurgia Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil.
4. Universidade de Vassouras - USS, Vassouras, RJ, Brasil.
5. Departamento de Clínica Médica - Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brasil.
6. Fluminense Football Club, Rio de Janeiro, RJ, Brasil.
7. Hospital Casa de Portugal, Rio de Janeiro, RJ, Brasil.

Como citar: Azizi GG, Orsini M, Dortas Júnior SD, Vieira PC, Carvalho RS, Pires CSR, et al. COVID-19 e atividade física: qual a relação entre a imunologia do exercício e a atual pandemia? Rev Bras Fisiol Exerc 2020;19(2supl):S20-S29. DOI: https://doi.org/10.33233/rbfe.v19i2.4115
Inicialmente, os sintomas mais comuns foram relatados em 41 pacientes com febre (98%), tosse (76%) e mialgia ou fadiga (44%) produção de escarro (28%), dor de cabeça (8%), hemoptise (5%) e diarreia (3%). Mais da metade dos pacientes desenvolveu dispneia. O exame de sangue mostrou contagem normal ou reduzida de leucócitos (25%) e linfopenia (65%) [11].

Outro estudo mostrou 140 pacientes diagnosticados como COVID-19, onde os sintomas mais comuns foram febre (91,7%), tosse (75%), fadiga (75%) e aperto no peito ou dispnéia (36,7%). 39,6% deles apresentaram queixa de sintomas gastrointestinais. 90 (64,3%) pacientes apresentavam comorbididades, sendo as mais comuns doenças crônicas, como hipertensão (30%) e diabetes (12,1%). Apenas dois pacientes com DPOC foram identificados e dois pacientes relataram urticária crônica. Outras doenças alérgicas como asma, rinite alérgica, alergia alimentar, dermatite atópica não foram autorreferidas [12].

Pessoas com mais de 60 anos de idade com hipertensão, diabetes, DPOC, doenças cardiovascular, cerebrovasculares, hepáticas, renais e gastrointestinais são mais suscetíveis à infecção pela SARS-CoV-2 e experimentam maior mortalidade quando desenvolvem COVID-19 [13-15].

Essas características clínicas sugeriram a possibilidade de envolvimento de uma condição altamente pró-inflamatória na progressão e gravidade da doença. Esse alto aumento precoce dos níveis séricos de citocinas pró-inflamatórias também foi observado na infecção por SARS-CoV e MERS-CoV, sugerindo uma potencial gravidade semelhante da doença mediada por tempestades de citocinas [16,17].

Em casos graves de infecção por SARS-CoV ou MERS-CoV, há um influxo aumentado de neutrófilos e monócitos-macrófagos [18,19]. Assim, com todo o conhecimento acumulado sobre infecções anteriores por coronavírus, a resposta imune inata desempenha um papel crucial nos antivirais e contra o coronavírus respostas.

Assim, precisamos entender as condições imunológicas e inflamatórias que envolvem o COVID-19. Um estudo recente de 41 pacientes hospitalizados com altos níveis de citocinas pró-inflamatórias, incluindo IL-2, IL-7, IL-10, G-CSF, IP-10, MCP-1, MIP-1A e TNF-α, foram observados em casos graves de COVID-19 [11].

Outro relatório demonstrou que níveis aumentados de citocinas (IL-6, IL-10 e TNF-α), linfopenia (nas células T CD4+ e CD8+) e diminuição da expressão de IFN-γ nas células T CD4+ estão associados a COVID-19 grave [20].

Nomeada “tempestade de citocinas”, pode ter um papel importante na patogênese do COVID-19 e pode estar relacionada a uma cascata de citocinas a jusante envolvendo IL-1, IL-6, IL-12 e TNF-α [21], seguida pelo desenvolvimento de dano tecidual no pulmão, resultando em SRAG, sepse e falência de órgãos. O risco de insuficiência respiratória em pacientes com IL-6 circulante > 80 pg/ml foi 22 vezes maior com um tempo médio para ventilação mecânica de 1,5 dias [22].

Recentemente, um estudo histopatológico com 4 pacientes em pós-morte apresentou um exame minucioso dos pulmões, mostrando um dano alveolar difuso bilateral com um infiltrado linfocítico comparativamente leve a moderado, composto por uma mistura de linfócitos CD4+ e CD8+. O processo dominante em todos os casos foi consistente com dano alveolar difuso, com resposta mononuclear leve a moderada, consistindo em agregados notáveis de CD4+ ao redor de pequenos vasos trombosados e hemorragia associada significativa.
Uma resposta imune inata rápida e bem coordenada é a primeira linha de defesa contra infecções virais, mas respostas imunes desreguladas podem causar imunopatologia [24-26]. O sistema imune inato utiliza padrões moleculares associados a patógenos (PAMPs) para reconhecer a invasão do vírus. Após uma longa cascata de sinalização intracelular, os fatores de transcrição induzem a expressão do IFN tipo I e outras citocinas pró-inflamatórias e respondem à defesa de primeira linha [27]. O interferon (IFN) tipo I é essencial para a resposta imune inata contra a infecção viral em associação com controle da replicação viral e resposta imune adaptativa eficaz. No entanto, o SARS-CoV e o MERS-CoV, um vírus semelhante ao SARS-CoV-2, empregam várias estratégias para interferir na sinalização que leva à produção, função ou associada à cascata de IFN tipo I [27-29].

Ao se falar em isolamento social e pandemia, é necessário entender aspectos comportamentais que podem influenciar a saúde da população, exercendo um fator de interesse, que pode ter efeitos positivos e negativos na função imune e possível susceptibilidade a doenças e doenças respiratórias superiores.

Um único exercício tem um efeito profundo no número total e na composição dos leucócitos circulantes. Após um exercício dinâmico (minutos), a contagem total de leucócitos aumenta duas a três vezes, enquanto o exercício prolongado de resistência (30 min a 3h) conta com um incremento de cinco vezes. A leucocitose induzida pelo exercício, principalmente neutrófilos e linfócitos com menor contribuição dos monócitos, é um fenômeno transitório, com contagens normais retornando aos níveis de pré-exercício (6 a 24 h) após a interrupção do exercício. 30–60 minutos após a interrupção do exercício, uma linfocitopenia rápida [30-32] ocorre concomitantemente com uma neutrofilia sustentada [30,33].

O exercício agudo causa aumentos substanciais na hemodinâmica, que colocam maiores forças mecânicas no endotélio, fazendo com que os leucócitos se desmarquem e entrem na circulação livre; em associação, há mais níveis de tensão de cisalhamento nas estruturas capilares, levando mais leucócitos para o periférico circulação [4].

A atividade física resulta na secreção de catecolaminas e hormônio liberador de corticotropina e cortisol, que são importantes responsáveis pela mobilização de monócitos durante o exercício, linfócitos poucos minutos após o exercício dinâmico e neutrófilos que continuam seu aumento, atingindo valores máximos em poucas horas após a cessação do exercício [34,35].

Muitos estudos demonstraram uma importante resposta das células inatas ao exercício agudo de intensidade moderada, por exemplo, melhora a qui-miotaxia dos neutrófilos [36], pois a fagocitose é aumentada imediatamente após um único exercício [37], mas a degranulação de neutrófilos em resposta à estimulação bacteriana parece estar comprometida [38]. Após exercício de intensidade moderada, a explosão oxidativa de neutrófilos continua aprimorada; no entanto, isso não ocorre após exercícios exaustivos ou prolongados [38,39]; outros achados estão relacionados a atletas bem treinados, sensíveis ao aumento da carga de treinamento, o que apresenta alterações prejudiciais na explosão oxidativa de neutrófilos-monócitos, taxas de CD4/CD8, proliferação de linfócitos e síntese de anticorpos e atividade citotóxica das células NK [41-45]. O que pode ocorrer durante 1 a 3 semanas de treinamento intensificado, gerando re-
duções nas função neutrófila, proliferação linfocitária e IgA mucosa [42,43,46].

A imunoglobulina A (IgA) é uma parte importante do sistema imunológico da mucosa. Não há consenso sobre o impacto do exercício agudo na IgA salivar (sIgA), porque muitos fatores podem influenciar a resposta, como o status de treinamento, intensidade e duração da sessão de exercício, coleta de saliva, nutrição [30].

A relação inversa entre as concentrações de sIgA e o risco de infecções das vias aéreas em populações em exercício e em não exercício demonstrou diferenças entre essas duas populações [46-48]. O impacto da intensidade do exercício nas concentrações de sIgA e nas taxas de secreção demonstrou maiores reduções nas sIgA associadas ao prolongamento do exercício de alta intensidade, enquanto aumentos moderados na sIgA ocorrem em resposta a exercícios de intensidade moderada de curta duração [48-51].

Um estudo monitorou a alteração induzida pelo estresse nas concentrações de sIgA e cortisol e a incidência de infeções do trato respiratório superior ao longo de uma temporada de 9 semanas em uma faculdade. 14 estudantes-atletas e 14 estudantes universitários, todas jovens e mulheres, demonstram níveis reduzidos de sIgA e aumento nos índices de treinamento (carga e tensão) foram associados a um aumento na incidência de doenças durante as 9 semanas da temporada competitiva de futebol [52].

A hipótese da “janela aberta” é uma ideia importante que explica quando um atleta de resistência repete os exercícios intensos agudos sem recuperação adequada por que infecções oportunistas podem surgir até 72h após o exercício [53]. Embora os pesquisadores de imunologia do exercício discutam a “janela aberta” e se é a única associação real entre infeções ou sintomas respiratórios superiores e o exercício extenuante, um grande conjunto de evidências apoia a proposição de que atletas de elite que realizam exercícios intensos e prolongados podem exibir alterações imunológicas, em associação com estressores fisiológicos, metabólicos e psicológicos e exposição a patógenos/alérgenos, que aumentam o risco de infecção e/ou inflamação das vias aéreas [54].

O exercício regular de intensidade moderada tem sido associado a melhores respostas às vacinas [55,56], menor número de células T esgotadas [58], aumento da proliferação de células T [59], níveis mais baixos de citocinas inflamatórias circulantes [59], maior atividade fagocitária dos neutrófilos [60], maior citotoxicidade das células NK [61], indicando que o exercício regular de intensidade moderada é capaz de melhorar ou manter a imunidade ao longo da vida [62]. Além disso, pode ajudar a prolongar ou revigorar a atividade tímica, o que podemos observar com o aumento dos níveis plasmáticos de IL-7 [63].

Simultaneamente, elevações sutis nos hormônios do estresse liberados pelo músculo esquelético, notadamente a interleucina-6 (IL-6), são observadas durante sessões agudas de exercícios de intensidade moderada; no entanto, a natureza pleiotrópica da IL-6 parece fornecer proteção (contra danos) à imunidade através da supressão direta de citocinas inflamatórias potenciais [por exemplo, fator de necrose tumoral alfa (TNF-a)] nos pulmões, criando um ambiente anti-inflamatório por várias horas após o exercício [64].

A literatura apresenta muitos estudos sobre competições que demonstram o perfil entre o momento de alto nível do atleta e a doença. Nos Jogos Olímpicos do Rio, no total, 11 274 atletas (5089 mulheres, 45%; 6185 homens, 55%) foram notificados para a equipe médica do Rio 2016 651 doenças durante o período de 17 dias (47% afetaram as vias respiratórias e 21% os sistemas gas-
trointestinais) [65].

Na Copa do Mundo da FIFA de 2010, 99 doenças foram relatadas em 89 jogadores (12,1% de todos os jogadores). A maioria das doenças afetou o sistema respiratório (40; 40,4%) ou o sistema digestivo (26; 26,3%). Os diagnósticos mais frequentes foram infecção aguda do trato respiratório superior (31; 31,3%) e gastroenterite (21; 21,2%) [66].

Outro fator é a disponibilidade de carboidratos, que é um componente essencial para o desempenho imunológico, pois, em um estado de depleção de glicogênio, há um aumento de catecolamina e glicocorticóide, criando um maior declínio das células T, células NK e neutrófilos, and função imune depri-mida em comparação com o exercício em uma dieta normal ou rica em carboi-dratos [67,68].

Portanto, o amplo conhecimento prévio em medicina e imunologia nos fornece o entendimento de que o aumento da incidência de infecção em atletas é multifatorial, talvez físico, psicológico, ambiental ou nutricional, o que supri-me o sistema imunológico [69]. Além disso, uma variedade de causas pode ser uma associação com sintomas das vias aéreas e pode incluir danos físicos, como secagem das vias aéreas [70], asma e inflamação alérgica das vias aéreas [71] e impactos psicológicos do exercício na integridade da membrana [72].

Considerações especiais sobre exercícios e a saúde imunológica devem ser abordadas para os idosos que representam uma crescente população globalmente e, aliás, são os mais sensíveis ao desenvolvimento de doenças infecciosas. Acredita-se que a imunossenescência descrita como o fenômeno responsável pela deterioração indeterminada da competência imune que ocorre com o aumento da idade seja o principal fator que explica a menor vigilância imunológica, respostas mais baixas às vacinas e maior risco e morbididade associados a doenças infecciosas, incluindo COVID-19. Devido aos efeitos benéficos já descritos do exercício habitual de intensidade moderada sobre aspectos da imunidade em populações mais jovens, sugere-se que a atividade física seja uma estratégia terapêutica lógica para diminuir os efeitos no sistema imunológico. É bem suportado por um crescente corpo de evidências de estudos epidemiológicos e experimentais em adultos mais velhos, indicando que a participação regular em exercícios de intensidade moderada atenua o estresse oxidativo relacionado à idade e reduz a frequência de vários biomarcadores imunológicos associados à imunidade comprometida, sugerindo que o exercício pode atrasar o início da imunosenescência e atenuar o risco de infecção [73].

Sugestões

Considerando o conhecimento anteriormente explicado e a possível associação ao momento de dúvida e ao contágio pelo risco de SARS-CoV-2, nosso grupo de pesquisadores propôs algumas sugestões aos atletas e não-atletas durante a pandemia do COVID-19, buscando uma manutenção de saúde e boas condições para um futuro retorno às competições, evitando assim a infecção por SARS-CoV-2 e/ou complicações graves.

1. Consideramos que esse momento não é adequado para um alto nível de treinamento ou esforço físico extremo. Preserve sua atividade física regular e em intensidade moderada, evitando maiores riscos de contaminação e destreinamento. Todo indivíduo deve saber que, a cada sema-
na de inatividade total, é possível perder até 10% do condicionamento físico [64].

2. Medidas para reduzir ou parar de fumar são de suma importância. Aproximadamente, seis milhões de pessoas no mundo morrem devido ao tabaco cada ano [74]. O cigarro contribui para a patogênese e é um fator de risco reconhecido de doença pulmonar obstrutiva crônica (DPOC), hipertensão, doença cardiovascular, câncer, doenças sistêmicas crônicas com componentes inflamatórios como aterosclerose e diabetes mellitus de tipo 2 [75,76]. Os fumantes são vulneráveis aos vírus respiratórios e o tabaco regula positivamente o receptor da enzima conversora de angiotensina-2 (ECA2) em comparação com os não fumantes, independentemente do subconjunto de tecidos ou do estado da DPOC, aumentando a expressão pulmonar de ECA2 em 25%, o qual é o receptor tanto do SARS-CoV quanto do SARS-CoV-2. Assim, os fumantes podem ser mais suscetíveis ao desenvolvimento do COVID-19 [77,78].

3. Evite mudanças no seu tratamento para doenças crônicas (pulmonares ou não) sem o conselho do seu médico.

4. Evite medicamentos e fórmulas sem base científica para prevenção e tratamento da infecção por COVID-19.

5. Evite a ingestão de álcool e mantenha a qualidade do sono.

6. Atividades aeróbicas ou de resistência em ambientes seguros e respeitando a distância social adequada. De preferência, em locais cobertos e fechados que possam ser completamente limpos após a atividade e seguindo as recomendações das autoridades locais competentes. É tão necessário porque as gotículas percorrem uma distância de 1,8 metros no ar e a vida média do COVID-19 é de 2,7 horas no ar e 13 horas no aço [77].

7. Mantenha a higiene do seu equipamento esportivo.

8. Faça uma ingestão adequada de proteínas e carboidratos, sempre consultando seu profissional de suporte, priorizando um trabalho multidisciplinar entre nutricionistas, médicos, educadores físicos, além de sua saúde mental e os que estão ao seu redor, procure assistência de seu psicólogo esportivo e de outras profissionais competentes para sua saúde.

9. Não recomendamos treinamento em caso de febre em uma infecção por COVID ou outros sintomas sugestivos.

10. O exercício em casa através de exercícios seguros, simples e de fácil implementação são bem adequados para evitar a contaminação aérea e manter os níveis de condicionamento físico. Exemplos de exercícios em casa incluem caminhar em casa, levantar e carregar sacolas de alimentos, alternar pernas, subir escadas, sentar-se e sentar-se usando uma cadeira e do chão e abdominais e flexões [78-80].
Conclusão

Em conclusão, acredita-se que o treinamento físico regular de intensidade moderada exerça efeitos benéficos na função imunológica e deve estar associado às sugestões feitas pelos pesquisadores deste estudo.

Procuramos esclarecer a importância do exercício regular de intensidade moderada e os prováveis riscos de um exercício equivocado associado a dieta e hábitos inadequados. Dessa forma, aconselhamos moderação, tranquilidade e paciência neste período de pandemia.

Referências

1. Shephard RJ. The history of exercise immunology. In: Tipton C, ed. The history of exercise physiology. Champaign, IL: Human Kinetics; 2010
2. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung EHY, Wong JY et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020;382(13):1199-207 https://doi.org/10.1056/nejmoa2001316
3. World Health Organization Press Conference. The World Health Organization (WHO) has officially named the disease caused by the novel coronavirus as COVID-19. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
4. Gorbunova AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. Nature Microbiology https://doi.org/10.1038/s41564-020-0695-z
5. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382(8):727-33. https://doi.org/10.1056/nejmoa2001017
6. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579(7798):270-3. https://doi.org/10.1038/s41586-020-2012-7
7. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Advance in virus research; 2011. p.85-164. https://doi.org/10.1016/b978-0-12-385885-6.00009-2
8. General Office of National Health Commission; General Office of National Administration of Traditional Chinese Medicine. Diagnostic and treatment protocol for Novel Coronavirus Pneumonia. https://www.chinadaily.com.cn/pdf/2020/1.Clinical.Protocols.for.the.Diagnosis.and.Treatment.of.COVID-19.V7.pdf
9. Center for Disease Control and Prevention. Atlanta: CDC. Symptoms of Novel Coronavirus (2019-nCoV). 2020 https://www.cdc.gov/coronavirus/2019-ncov/
10. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;580(7803):E7. https://doi.org/10.1038/s41586-020-2202-3
11. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
12. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 27/02/2020. https://doi.org/10.1111/all.14238
13. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020;323(16):1612. https://doi.org/10.1001/jama.2020.4326.
14. Team TNCPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020. China CDC Weekly 2020;2:113-22.
15. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054-62. https://
16. Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018;104:8-13. https://doi.org/10.1016/j.cyt.2018.01.025

17. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004;136(1):95-103. doi.org/10.1111/j.1365-2249.2004.02415.x

18. Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005;5(12):917-27. https://doi.org/10.1038/nri1732

19. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015;386(9997):995-1007. https://doi.org/10.1016/s0140-6736(15)60454-8

20. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest 2020;130(5):2202-5. https://doi.org/10.1172/jci137647

21. Mehta P, McAuley DF, Brown M, Sanchez T, Tattersall RS, Manson JJ et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395(10229):1033-4.. https://doi.org/10.1016/s0140-6736(20)30628-0

22. Herold TV, Arnreich C, Hellmuth JC, von Bergwelt-Baildon M, Klein M, Weinberger T. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRxiv 2020 https://doi.org/10.1101/2020.04.01.20047381

23. Fox SE, Akmatbekov A, JHarbert JL, Li G, 3Brown JQ, Vander Heide RS. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. medRxiv 2020. https://doi.org/10.1101/2020.04.06.2005057

24. Channappanavar R et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016;19(2):181-93. https://doi.org/10.1016/j.chom.2016.01.007

25. Davidson S et al. Disease-promoting effects of type I interferons in viral, bacterial and coinfections. J Interf Cytokine Res 2015;35(4):252-64. https://doi.org/10.1089/jir.2014.0227

26. Shaw AC et al. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013;13(12):875-87. https://doi.org/10.1038/nri3547

27. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14(8):523-34. https://doi.org/10.1038/nrmicro.2016.81

28. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39(5):529-39. https://doi.org/10.1007/s00281-017-0629-x

29. Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Coronaviruses 2016. p.219-43. https://doi.org/10.1016/bs.aivir.2016.08.006

30. Walsh NP, Gleeson M, Shephard RJ et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev 2011;17:6-63. https://www.ncbi.nlm.nih.gov/pubmed/21446352

31. Campbell JP, Riddell NE, Burns VE et al. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav Immun 2009;23(6):767-75. https://doi.org/10.1016/j.bbi.2009.02.011

32. Simpson RJ, Florida-James GD, Whyte GP, Black JR, Ross JA, Guy K. Apoptosis does not contribute to the blood lymphocytopenia observed after intensive and downhill treadmill running in humans. Res Sports Med 2007;15(3):157-74. https://doi.org/10.1080/15438620701405339

33. Simpson RJ. The effects of exercise on blood leukocyte numbers. In: Gleeson M, Bishop NC, Walsh NP, eds. Exercise Immunology. Oxford, UK, New York, USA: Routledge; 2013. p.64-105. https://doi.org/10.4324/9780203126417

34. Okutsu M, Suzuki K, Ishijima T, Peake J, Higuchi M. The effects of acute exerciseinduced cortisol on CCR2 expression on human monocytes. Brain Behav Immun 2008;22(7):1066-71. https://doi.org/10.1016/j.bbi.2008.03.006

35. Okutsu M, Ishii K, Niu KJ, Nagatomi R. Cortisol-induced CXCR4 augmentation mobilizes T lymphocytes after acute physical stress. Am J Physiol Regul Integr Comp Physiol 2005;288(3):R591–R599. https://doi.org/10.1152/ajpregu.00438.2004

36. Ortega E, Collazos ME, Maynar M, Barriga C, De la Fuente M. Stimulation of the phagocytic function of neutrophils in sedentary men after acute moderate exercise. Eur J Appl Physiol Occup Physiol 1993;66(1):60-4. https://doi.org/10.1007/bf00863401
37. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR et al. Effects of mode and carbohydrate on the granulocyte and monocyte response to intensive, prolonged exercise. J Appl Physiol 1998;84(4):1252-9. https://doi.org/10.1152/jappl.1998.84.4.1252

38. Bishop NC, Gleeson M, Nicholas CW, Ali A. Influence of carbohydrate supplementation on plasma cytokine and neutrophil degranulation responses to high intensity intermittent exercise. Int J Sport Nutr Exerc Metab 2002;12(2):145-56. https://doi.org/10.1123/ijsnem.12.2.145

39. Pyne DB. Regulation of neutrophil function during exercise. Sports Med 1994;17(4):245-58. https://doi.org/10.2165/00007256-199417040-00005

40. Suzuki K, Nakaji S, Yamada M et al. Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med Sci Sports Exerc 2003;35(2):348-55. https://doi.org/10.1249/01.mss.0000048861.57899.04

41. Gleeson M, McDonald WA, Cripps AW, Pyne DB, Clancy RL, Fricker PA. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol 1995;102:210-6. https://doi.org/10.1111/j.1365-2249.1995.tb06658.x

42. Lancaster GI, Halson SL, Khan Q, Drysdale PA, Jeukendrup AE, Drayson MT, Gleeson M. Effect of acute exhaustive exercise and a 6-day period of intensified training on immune function in cyclists. J Physiol 2003;548P:O96. https://www.physoc.org/abstracts/effect-of-acute-exhaustive-exercise-and-a-6-day-period-of-intensified-training-on-immune-function-in-cyclists/

43. Lancaster GI, Halson SL, Khan Q, Drysdale PA, Jeukendrup AE, Drayson MT, Gleeson M. The effects of acute exhaustive exercise and intensified training on type 1/type 2 T cell distribution and cytokine production. Exerc Immunol Rev 2004;10:91-106. https://www.ncbi.nlm.nih.gov/pubmed/15633589

44. Robson PJ, Blannin AK, Walsh NP, Bishop NC, Gleeson M. The effect of an acute period of intense interval training on human neutrophil function and plasma glutamine in endurance-trained male runners. J Physiol 1999;515:84-5.

45. Verde TJ, Thomas SG, Moore RW, Shek P, Shephard RJ. Immune responses and increased training of the elite athlete. J Appl Physiol 1992;73:1494-9. https://doi.org/10.1152/jappl.1992.73.4.1494

46. Gleeson M. Mucosal immune responses and risk of respiratory illness in elite athletes. Exerc Immunol Rev 2000;6:5-42.

47. Francis JL, Gleeson M, Pyne DB, Callister R and Clancy RL. Variation of salivary immunoglobulins in exercising and sedentary populations. Med Sci Sports Exerc 2005;37:571-8. https://doi.org/10.1249/01.mss.0000158191.08331.04

48. Gleeson M, Pyne DB and Callister R. The missing links in exercise effects on mucosal immunity. Exerc Immunol Rev 2004;10:107-28.

49. Allgrove JE, Gomes E, Hough J and Gleeson M. Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci 2008;26:653-61. https://doi.org/10.1080/02640410701716790

50. Bishop NC and Gleeson M. Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci 2009;14:4444-56.

51. Klintzou P, Gieslak T, MacNeil M, Vintinner A and Pyley M. Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans. Eur J Appl Physiol 2002;87:153-8. https://doi.org/10.1007/s00421-002-0609-1

52. Putlur P, Foster C, Miskowski JA, Kane MK, SBurton SE, Scheett TP, McGuiigan MR. Alteration of immune function in women collegiate soccer players and college students. J Sports Sci Med 2004;3:234-43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938062/

53. Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 1994;26(2):140-6. https://doi.org/10.1249/00005768-199402000-00003

54. Simpson RJ, Campbell JP, Gleeson M et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev 2020;26:8–22. http://eir-isei.de/2020/eir-2020-008-article.pdf

55. Kohut ML, Arntson BA, Lee W et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine 2004;22(17/18):2298-306. https://doi.org/10.1016/j.vaccine.2003.11.023

56. Woods JA, Keylock KT, Lowder T et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc 2009;57(12):2183-91. https://doi.org/10.1111/j.1532-5415.2009.02563.x

57. Spielmann G, McFarlin BK, O’Connor DP, Smith PJ, Pircher H, Simpson RJ. Aerobic fitness is asso-
Azizi et al.
Imunologia do exercício e a atual pandemia

... simultaneously decreasing senescent blood T-cells in man. Brain Behav Immun 2011;25(8):1521-9. https://doi.org/10.1016/j.bbi.2011.07.226

58. Shinkai S, Kohno H, Kimura K et al. Physical activity and immune senescence in men. Med Sci Sports Exerc 1995;27(11):1516-26. https://doi.org/10.1249/00005768-19951100-00008

59. Pedersen BK, Bruunsgaard H. Possible beneficial role of exercise in modulating lowgrade inflammation in the elderly. Scand J Med Sci Sports 2003;13(1):56-62. https://doi.org/10.1034/j.1600-0838.2003.20218.x

60. Yan H, Kuroiwa A, Tanaka H, Shindo M, Kiyonaga A, Nagayama A. Effect of moderate exercise on immune senescence in men. Eur J Appl Physiol 2001;86(2):105-11. https://doi.org/10.1007/s004210100521

61. Woods JA, Ceddia MA, Wolters BW, Evans JK, Lu Q, McAuley E. Effects of 6 months of moderate aerobic exercise training on immune function in the elderly. Mech Ageing Dev 1999;109(1):1-19. https://doi.org/10.1016/s0047-6374(99)00014-7

62. Simpson RJ, Lowder TW, Spielmann G, Bigley AB, Lavoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev 2012;11:404-20. https://doi.org/10.1016/j.arr.2012.03.003

63. Elkassar N, Gress RE. An overview of IL-7 biology and its use in immunotherapy. J Immunother 2010;33(1):1-7. https://doi.org/10.1038/s41641-017-0037-0

64. Laddu DR, Lavie CJ, Phillips SA, Arena R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic [published ahead of print, 2020 Apr 9], Prog Cardiovasc Dis 2020. https://doi.org/10.1016/j.pcad.2020.04.006

65. Soligard T, Steffen K, Palmer D, et al. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: A prospective study of 11274 athletes from 207 countries. Br J Sports Med 2017;51(17):1265-71. https://doi.org/10.1136/bjsports-2017-097956

66. Dvorak J, Junge A, Derman W, Schwellnus M. Injuries and illnesses of football players during the 2010 FIFA World Cup. Br J Sports Med 2011;45(8):626-30. https://doi.org/10.1136/bjsm.2010.079905

67. Davison G, Simpson RJ. Immunity. In: Lanham-New SA, Stear SJ, Shirreffs SM, Collins AL, eds. Sport and exercise nutrition. Oxford, UK: Wiley-Blackwell; 2011. p.281-303.

68. Walsh NP, Gleeson M, Pyne DB et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev 2011;17:64-103.

69. Gleeson M, ed. Immune function in sport and exercise. Edinburgh: Elsevier; 2005.

70. Bermon S. Airway inflammation and upper respiratory tract infection in athletes: is there a link? Exerc Immunol Rev 2007;13:6-14.

71. Helenius I, Lumme A, Haahetla T. Asthma, airway inflammation and treatment in elite athletes. Sports Med 2005;35:565-574. https://doi.org/10.2165/00007256-200535070-00002

72. Bjermer L, Anderson SD. Bronchial hyperresponsiveness in athletes: mechanisms for development. Eur Respir Mon 2005;33:39-19. https://doi.org/10.1183/1025448X.3311005

73. Varandas F, Medina D, Gomez A, Della Villa S. Late rehabilitation on the field. In: Injury and health problem in football. Berlin Heidelberg: Springer; 2017. p.571-9.

74. World Health Organization. Global report on trends in prevalence of tobacco smoking. Geneva, Switzerland: WHO; 2015.

75. Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002;2:372-7. https://doi.org/10.1038/nri803

76. Stampfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol 2009;9:377-84. https://doi.org/10.1038/nri2530

77. Brake SJ, Barnsley K, Lu W, McAlinden KD, Eapen MS, Sohal SS. Smoking upregulates angiotensin-converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19). J Clin Med 2020;9(3):841. https://doi.org/10.3390/jcm9030841

78. Cai G, Bossé Y, Xiao F, Kheradmand F, Amos CI. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2 [published online ahead of print, 2020 Apr 24]. Am J Respir Crit Care Med 2020. https://doi.org/10.1164/rcrm.202003-0693LE

79. Kampf G, Todt D, Pflander S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020;104(3):246-51. https://doi.org/10.1016/j.jhin.2020.01.022

80. Chen P, Mao L, Nassis GP, Harmer P, Ainsworth BE, Li F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Health Sci 2020;9(2):103-4. https://doi.org/10.1016/j.jshs.2020.02.001