Snail
More than EMT

Yadi Wu1,3 and Binhua P. Zhou2,3,*
Departments of 1Molecular and Biomedical Pharmacology; 2Molecular and Cellular Biochemistry; and 3Markey Cancer Center; University of Kentucky
School of Medicine; Lexington, KY USA

Snail has moved into the fast lane of development and cancer biology with the epithelial-mesenchymal transition (EMT) emerging as one of the hottest topics in medical science within the past few years. Snail not only acts primarily as a key inducer of EMT but also plays an important role in cell survival, immune regulation and stem cell biology. This review focuses on the regulation of Snail and discusses the EMT-dependent and -independent functions of Snail in development and disease. Understanding the regulation and functional roles of Snail will shed new light on the mechanism of tumor progression and the development of novel cancer therapies.

Snail is a highly unstable protein and is dually regulated by protein stability and cellular location. Expression of Snail is regulated by an integrated and complex signaling network at the transcriptional and post-transcriptional level; this network includes integrin-linked kinase (ILK), phosphatidylinositol 3-kinase (PI3-K), mitogen-activated protein kinases (MAPKs), glycogen synthase kinase 3-beta (GSK-3β) and NFκB pathways.7 Receptor tyrosine kinase signaling, such as fibroblast growth factor (FGF) or...
epidermal growth factor (EGF) induces Snail expression by suppressing the activity of GSK-3β. Interestingly, many signaling pathways involved in embryonic development can regulate the expression of Snail. For example, the TGFβ/Smad pathway, which induces EMT in hepatocytes, epithelial and mesothelial cells, transcriptionally induces Snail expression by directly binding to the Snail promoter.

In addition, Notch signaling deploys two distinct mechanisms that act in synergy to control the expression of Snail. First, Notch directly upregulates Snail expression by recruiting the Notch intracellular domain to the Snail promoter; and second, Notch potentiates hypoxia-inducible factor 1α (HIF1α) recruitment to the lysyl oxidase (LOX) promoter and elevates the hypoxia-induced upregulation of LOX, which stabilizes Snail by protecting it against protein degradation. LOXL2 also attenuates GSK-3β-dependent Snail degradation through oxidation of K98 and/or K137 of Snail to induce a conformational change that masks the GSK-3β-dependent regulatory motif. Furthermore, Wnt can suppress the activity of GSK-3β, and thus stabilize Snail and β-catenin at the protein level.

Snail expression and protein level can also be regulated by the NFκB pathway via transcriptional and post-translational mechanisms. First, Snail expression is directly activated by the NFκB homologue Dorsal in drosophila. NFκB also binds the human Snail promoter between -194 and -78 bp and increases the transcription of Snail. In addition, GSK-3β inhibition stimulates the transcription of Snail by activating the NFκB pathway. In our recent study, we found that the inflammatory cytokine TNFα is the major signal that induces Snail stabilization. TNFα/NFκB-stabilized Snail is mediated by the transcriptional induction of CSN2, which inhibits the phosphorylation and ubiquitylation of Snail by disrupting the binding of Snail with GSK-3β and β-Trcp, and results in the stabilization of Snail in a non-phosphorylated and non-ubiquitylated functional state.

Snail has to translocate to the nucleus to exert its function, and cytoplasmic Snail has a very short half-life as it is targeted for ubiquitin-mediated proteasome degradation by GSK-3β-induced phosphorylation. The subcellular localization of Snail can be modulated by phosphorylation involving the p21-activated kinase 1 (PAK1). Pak1 phosphorylates Snail at S246 and favors the nuclear localization of Snail and, thus enhances its transcription activity. The expression of the zinc transporter LIV1, downstream of signal transducer and activator of transcription factor 1, controls the nuclear import of Snail in zebrafish embryos. Export of Snail is controlled by phosphorylation of a ser-rich sequence adjacent to the nuclear export sequence (NES). GSK-3β phosphorylates the NES of Snail and induces its export to the cytoplasm. Exportins, like CRM1, are involved in exporting phosphorylated Snail from the nucleus to the cytoplasm.

Snail in Development

Snail was first described in Drosophila melanogaster, where it acts as a repressor to inhibit the expression of neurocortical genes such as single-minded and shotgun and as such it is essential for the formation of the mesoderm and neural crest. As in fly, Snail is a crucial factor in primary mesenchyme cells (PMCs) regressing. Snail inhibits E-cadherin transcription and promotes cadherin endocytosis as well as delamination of PMCs by EMT. The Snail gene is critical for gastrulation in normal development of mice. Homozygous knockout of Snail in mice is lethal as embryos fail to produce mesoderm, which results in a failure to gastrulate during development. Human Snail has been mapped to chromosome 20q13, an amplion that is commonly found in patients with breast cancer.

Snail and EMT

EMT is a complex stepwise phenomenon that occurs during embryonic development and tumor progression, and it also plays a crucial role in chronic inflammatory and fibrogenic disease. The loss of E-cadherin is the hallmark of EMT. Several transcription factors have been implicated in the transcriptional repression of E-cadherin, including zinc finger proteins of the Snail/Slug family, Twist, ZEB1, SIP1, and the basic helix-loop-helix factor E12/E47. Snail is the first discovered and most important transcriptional repressor of E-cadherin. It functions as a suppressor of the transcription of shotgun (an E-cadherin homologue) to control embryogenesis in Drosophila. Snail also plays a fundamental role in EMT by suppressing E-cadherin expression in mammalian cells. Overexpression of Snail was recently found in both epithelial and endothelial cells of invasive breast cancer but was undetectable in normal breast. The expression of Snail in breast carcinomas is associated with metastasis, tumor recurrence and poor prognosis. Snail also downregulates the expression of other epithelial molecules, including Claudins, Occludins and Muc1 and induces the expression of genes associated with a mesenchymal and invasive phenotype, such as fibronectin and MMP9.

Snail in Tumor Recurrence

The propensity of breast cancers to recur following treatment is the most important determinant of clinical outcome. In fact, breast cancer recurrence is typically an
Snail plays an important role in cell cycle and survival. During embryonic development, Snail represses the transcription of Cyclin D2 and increases the expression of p21Cip1/WAF1 to regulate the early to late G1 transition and the G1/S checkpoint. Snail also confers resistance to cell death induced by serum depletion or TNFα administration by activating the MAPK and PI3K survival pathways. Conversely, knockdown of Snail expression by an antisense construct increases cell death in colon cancer in a mouse model. Moreover, Snail expression enhances resistance to cell death elicited by DNA damage. The expression of Snail family members has been associated with the acquisition of resistance to several types of programmed cell death. For instance, both Snail and Slug protect hematopoietic cells from γ radiation-induced apoptosis. Snail and Slug promote cell survival after genotoxic stress through direct transcriptional repression of genes involved in programmed cell death, such as BID and caspase-6. Snail suppresses the expression of a subset of genes, which are required for p53-mediated apoptosis under stress condition, to promote cell survival. In addition, Snail binds to the PTEN promoter to repress its expression and thus results in resistance to gamma radiation-induced apoptosis. Expression of Snail also induces resistance to anoikis—the form of apoptosis provoked by a loss of anchorage to appropriate substrates.

Snail and Stem Cells

Physiologically, stem cells are the basis for tissue homeostasis in the adult organism. Recently, a number of studies have provided evidence of a role for Snail in the preservation of stem cell function. Through several elegant experiments, Snail was shown to play a fundamental role in controlling bone mass and bone homeostasis by acting as a repressor of both Runx2 and VDR transcription. The expression of Snail is tightly regulated in bone development and its activity on osteoblasts regulates the course of bone cell differentiation to ensure normal bone remodeling. In agreement with this, Snail, along with the transcription factors, Asense and Deadpan, control genes involved in neural stem cell self-renewal and multipotency. Cumulative, these studies identify that Snail is an important factor to the preservation of stem cell function.

Increasing evidence suggests that tumors are generated and maintained by a small subset of undifferentiated cells with the ability to self-renew and differentiate into the bulk tumor population. Such cells are called cancer stem cells (CSCs) and are considered to be critically important for tumor proliferation, invasion and metastasis. Many cancers, including colon, breast, brain, head and neck, pancreatic and hematopoietic malignancies contain cancer stem cells. The cancer stem cell concept also proposes the existence of two forms of CSCs in tumor progression, a stationary and an invasive CSC. Stationary CSCs remain embedded in the epithelial tissue and cannot disseminate. In contrast, invasive CSCs are located predominantly at the tumor-host interface. A similar correlation has been observed between EMT induction and the acquisition of certain stem cell-like traits in immortalized nontumorigenic mammary epithelial cells. Furthermore, EMT creates cells that act as progenitors of many different tissues during development. For example, EMT generates mesoderm, which gives rise to a wide range of cell types, including muscle, bone and connective tissues; EMT also creates neural crest which produces glial and neuronal cells, adrenal glandular tissues, pigment-containing cells of the epidermis, and skeletal and connective tissues. These findings indicate that EMT acquires traits reminiscent of those expressed by stem cells and the genetic program of EMT possesses
the ability to generate various CSCs in solid tumors. In addition, CD44+/CD24- cells, purified from normal and malignant breast cancer tissue, exhibit features of an EMT, such as reduced expression of E-cadherin, increased expression of fibronectin and vimentin, and robust features of an EMT, such as reduced expression of E-cadherin, increased expression of fibronectin and vimentin, and robust

Snail displays a broad spectrum of biological functions in the epithelial-mesenchymal transition (EMT), cell survival, immune regulation, tumor recurrence and stem cell biology. Snail displays a broad spectrum of biological functions in the epithelial-mesenchymal transition (EMT), cell survival, immune regulation, tumor recurrence and stem cell biology.

Snail displays a broad spectrum of biological functions (Fig. 1). In addition to the regulation of cell movements and adhesion, cell proliferation and survival, immune suppression and generation of stem cell properties, there are probably several more Snail-regulated processes waiting to be understood. EMT and MET (mesenchymal-epithelial transition) are dynamic and reversible processes that are influenced by microenvironmental signals and stimuli. EMT provides considerable degree of plasticity and reversibility for cells to differentiate or de-differentiate between cancer epithelial cells and mesenchymal cells (or CSCs). One major challenge is how the EMT and MET programs are epigenetically regulated by extrinsic signals. For example, it is known that Snail recruits specific chromatin-modifying complexes to the E-cadherin promoter to silence the expression of E-cadherin during tumor progression and EMT, however, how these factors cooperate and whether these factors also control the expression of other genes during EMT remains to be established. Further research will shed new insight on the regulation of Snail in development and disease and will provide us with novel therapeutic approaches for treating metastatic cancer.

**Future Prospects**

Snail displays a broad spectrum of biological functions (Fig. 1). In addition to the regulation of cell movements and adhesion, cell proliferation and survival, immune suppression and generation of stem cell properties, there are probably several more Snail-regulated processes waiting to be discovered. EMT and MET (mesenchymal-epithelial transition) are dynamic and reversible processes that are influenced by microenvironmental signals and stimuli. EMT provides considerable degree of plasticity and reversibility for cells to differentiate or de-differentiate between cancer epithelial cells and mesenchymal cells (or CSCs). One major challenge is how the EMT and MET programs are epigenetically regulated by extrinsic signals. For example, it is known that Snail recruits specific chromatin-modifying complexes to the E-cadherin promoter to silence the expression of E-cadherin during tumor progression and EMT, however, how these factors cooperate and whether these factors also control the expression of other genes during EMT remains to be established. Further research will shed new insight on the regulation of Snail in development and disease and will provide us with novel therapeutic approaches for treating metastatic cancer.

**Acknowledgements**

We thank all the investigators that contribute to the Snail field and we apologize to those whose work is important but that we are unable to cite here. Our study is supported by grants from NIH (RO1CA125454), the Susan G. Komen Foundation (KG081310) and the Mary Kay Ash Foundation (to B.P. Z.).

**References**

1. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3:155-66.
2. Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 2004; 24:306-19.
3. Peinado H, Olmeda D, Cano A, Snail, Zeb and MLLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7:415-28.
4. Rowe RG, Li XY, Hu Y, Saunders TL, Virtanen I, Garcia de Herreros A, et al. Mesenchymal cells reactive Snail1 expression to drive three-dimensional invasion programs. J Cell Biol 2009; 184:399-408.
5. Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R, et al. Expression of Snail protein in tumor-stroma interface. Oncogene 2006; 25: 5134-44.
6. Horz B, Visekruna A, Buhr HJ, Horz HG. Beyond epithelial to mesenchymal transition: A novel role for the transcription factor snail in inflammation and wound healing. J Gastrointest Surg 2010; 14: 388-97.
7. De Craene B, van Roy F, Berx G. Unveiling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17:535-47.
8. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 2008; 105:6392-7.
9. Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Ciazar K, Fong KS, Vega S, et al. A molecular role for hypoxia-inducible 2 enzyme in snail regulation and tumor progression. EMBO J 2005; 24:5446-58.
10. Yook JL, Li XY, Ota I, Feazor ER, Weiss SJ. Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 2005; 280:11740-8.
Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2009; 10:466-476.

Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Cancer Cell 2008; 13:195-206.

Alberga A, Boulay JL, Kempe E, Dennefeld C, Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Downregulation of SNAIL suppresses MIN mouse tumorigenesis: modulation of apoptosis, proliferation and fractal dimension. Mol Cell Ther 2004; 3:1159-65.

Peres-Mancera PA, Perez-Caro M, Gonzalez-Herrero I, Flores T, Orfao A, de Herreros AG, et al. Cancer development induced by graded expression of Snail in mice. Hum Mol Genet 2005; 14:3449-61.

Inoue A, Seidell MG, Wu W, Kamizono S, Fernando AA, Bonson RT, et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002; 2:279-88.

Kajita M, McClinton KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 2004; 24:7559-66.

Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanez AD, Chaskar PD, Deepthi PY, et al. Snail and slug mediate radiosensitivity and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009; 27:2059-68.

Escrevà M, Peiro S, Herranz N, Villagrasa P, Dave N, Montserrat-Sentis B, et al. Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol Cell Biol 2008; 28:1528-40.

Fuchs E, Timbar T, Guash C. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116:769-78.

de Frutos CA, Ducequin R, Vega S, Jurdic P, Machaca-Gayer I, Nieto MA. Snail controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J 2009; 28:686-96.

Southall TD, Brand AH. Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO J 2009; 28:3799-807.

Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006; 355:1253-61.

Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 2006; 66:9339-44.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou NY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133:704-15.

Mani SA, Yang J, Brooks M, Schwaninger G, Zhou Y, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 2007; 104:10069-74.