Infinite-dimensional manifolds related to C-spaces

Oryslava Polivoda, Mykhailo Zarichnyi

Abstract. Haver’s property C turns out to be related to Borst’s transfinite extension of the covering dimension. We prove that, for a uncountably many countable ordinals β there exists a strongly universal k_ω-space for the class of spaces of transfinite covering dimension $< \beta$. In some sense, our result is a k_ω-counterpart of Radul’s theorem on existence of absorbing sets of given transfinite covering dimension.

1. Introduction

The notion of metric C-space was introduced by W. Haver [9]. He applied these spaces to the theory of retracts. In [1] the property C was defined for all topological spaces. The C-spaces play an important role in the dimension theory.

P. Borst [7] introduced a transfinite extension of the covering dimension \dim which characterizes property C.

T. Radul [13] proved that there exists an uncountable set of countable ordinals β such that there exist noncountable-dimensional pre-Hilbert spaces.
D_β which are absorbing spaces (in the sense of Bestvina and Mogilski [6]) for the class of compacta with $\dim C$ less than β.

In some sense, our main result is a counterpart of Radul’s theorem in the category of k_ω-spaces. We prove that, for an uncountable set of countable ordinals β, there exists a k_ω-space which is strongly universal for the class of compacta with $\dim C$ less than β.

2. Preliminaries

A family \mathcal{V} of subsets of a space X is said to refine a family \mathcal{U} of subsets of X if for each element $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ for which $V \subset U$. A family \mathcal{V} is said to star-refine a family \mathcal{U} if for every $U \in \mathcal{U}$ there exists $V \in \mathcal{V}$ such that $U' \subset V$ for any $U' \in \mathcal{U}$ such that $U \cap U' \neq \emptyset$.

A family \mathcal{V} of subsets of X is called disjoint if every two elements of \mathcal{V} are disjoint and is open if each element of \mathcal{V} is open. The family of all open coverings of a space X is denoted by $\text{cov}(X)$.

If \mathcal{U} is a family of subsets in a metric space, then we define

$$\text{mesh}(\mathcal{U}) = \sup\{\text{diam}(U) \mid U \in \mathcal{U}\}$$

(as usual, $\text{diam}(U)$ is the diameter of U).

Definition 2.1. A space X has property C (briefly is a C-space) if for each sequence $\{\alpha_n \mid n \in \mathbb{N}\}$ of open coverings of X there exists a sequence $\{\beta_n \mid n \in \mathbb{N}\}$ of open disjoint families such that each family β_n refines α_n and $\bigcup_{n=1}^{\infty} \beta_n \in \text{cov}(X)$.

We will need the following properties of compact metrizable C-spaces (see [1]), where they are proved for more general class of spaces).

Proposition 2.2. Every closed subspace of a C-space is a C-space.

Proposition 2.3. If $X = \bigcup_{n=1}^{\infty} X_n$, where X_n is a C space for any $n \in \mathbb{N}$, then X is a C-space.

Corollary 2.4. Let A be a closed subset of a compact metrizable C-space X. Then the quotient space X/A is a C-space.

Proof. Let $\{U_n \mid n \in \mathbb{N}\}$ be a countable family of neighborhoods of A such that $A \cap \bigcap_{n=1}^{\infty} U_n$. Then X/A is the sum of the sets homeomorphic to $X\setminus U_n$ and a singleton.

The following statement is proved in [8] for the paracompact spaces.
Proposition 2.5. Let \(f \) be a closed map from a compact metrizable space \(X \) onto a \(C \)-space \(Y \). If \(f^{-1}(y) \) has property \(C \) for each \(y \in Y \), then \(X \) is a \(C \)-space.

We will need the following result by T. Radul [13].

Theorem 2.6. For each \(\alpha < \omega_1 \) there exists a compact metrizable \(C \)-space \(L_\alpha \) which contains topologically each compact metrizable space \(K \) with \(\dim C K \leq \alpha \).

2.7. Dimension \(\dim C \). P. Borst [7] introduced the transfinite extension \(\dim C \) of the covering dimension. We recall some necessary definition. Let us start with the ordinal number \(\text{Ord} \).

Given a set \(L \), we denote by \(\text{Fin} L \) the collection of all finite, nonempty subsets of \(L \). Let \(M \) be a subset of \(\text{Fin} L \). For \(\sigma \in \{ \emptyset \} \cup \text{Fin} L \), put

\[
M^\sigma = \{ \tau \in \text{Fin} L \mid \sigma \cup \tau \in M \text{ and } \sigma \cap \tau = \emptyset \}.
\]

We write \(M^a \) instead of \(M^{(a)} \).

Define the ordinal number \(\text{Ord} M \) inductively as follows:

1. \(\text{Ord} M = 0 \) if and only if \(M = \emptyset \),
2. \(\text{Ord} M \leq \alpha \) if and only if for every \(a \in L \), \(\text{Ord} M^a < \alpha \),
3. \(\text{Ord} M = \alpha \) if and only if \(\text{Ord} M \leq \alpha \) and \(\text{Ord} M < \alpha \) is not true,
4. \(\text{Ord} M = \infty \) if and only if \(\text{Ord} M > \alpha \) for every ordinal number \(\alpha \).

Let \(X \) be a topological space and \(K(X) \) denote the set of the all locally finite coverings of \(X \). Put

\[
M_{K(X)} = \left\{ \{ \alpha_i \}_{i=1}^n \in \text{Fin} K(X) \mid \text{there are no open disjoint families } \beta_i, i = 1, \ldots, n, \text{ such that } \beta_i \text{ refines } \alpha_i \text{ and } \bigcup_{i=1}^n \beta_i \text{ covers } X, n \in \mathbb{N} \right\}.
\]

Definition 2.8. For any topological space \(X \) we set

\[
\dim C X = \text{Ord} M_{K(X)}.
\]

Remark that the dimension \(\dim C \) coincides with classical covering dimension \(\dim \) for finite-dimensional spaces [7] and for any compact metric space \(K \) \(\dim C K \) exists if and only if \(K \) has property \(C \).

Also, it is an easy consequence of the definition that if \(A \) is a closed subset of \(X \), then \(\dim C A \leq \dim C X \).

Let us denote by \(\mathcal{D}(\beta) \) the class of compact metric spaces with \(\dim C \) less than \(\beta \). We say that a topological space \(Y \) is \(\mathcal{D}(\beta) \)-universal if \(Y \) contains topologically all compacta from \(\mathcal{D}(\beta) \).
Theorem 3 proved that for each ordinal $\alpha < \omega_1$ there exists an ordinal β, $\alpha \leq \beta < \omega_1$, and a C-compact metric space X such that $\dim_C X = \beta$ and X is $D(\beta)$-universal.

Lemma 2.9. There exists a function $h: \omega_1 \to \omega_1$ such that, for any compact metric C-space X and any closed subset A of X, $\dim_C(X/A) \leq h(\dim_C X)$.

Proof. Let K be a universal space for compact metric spaces X with $\dim_C X \leq \alpha$. Let $\exp K$ denote the hyperspace of K, i.e., the space of all nonempty closed subsets of X endowed with the Vietoris topology (see, e.g., [11]). There exists a continuous map of the Cantor discontinuum C onto $\exp X$.

Let $Z = C \times K$ and $B = \{(c, x) | x \in f(c)\} \subset C \times K$. Clearly, B is a closed subset of Z. Since C is zero-dimensional, Z is a C-space. We let $h(\alpha) = \dim_C(Z/B)$.

Now, suppose that Y is a compact metrizable space and $\dim_C Y \leq \alpha$. We may assume that $Y \subset K$. If F is a nonempty closed subset of Y, then $F \in \exp Y \subset \exp K$ and there exists $c \in C$ such that $f(c) = F$. Then Y/F is, clearly, homeomorphic to $(\{c\} \times Y)/(\{c\} \times F)$, and therefore is homeomorphic to a subset of Z/B. We conclude that $\dim_C(Y/F) \leq \dim_C(Z/B) \leq h(\alpha)$. \qed

Remark 2.10. Actually, no example is known witnessing that h is not the identity map.

3. Results

Recall that an absolute retract (AR-space) is a space X which is a retract of every metric space containing X as a closed subset.

Proposition 3.1. Let X be a compact metrizable C-space. Then there exists a compact metrizable C-space \hat{X} that contains a topological copy of X and is an AR-space.

Proof. We assume that X is a metric space. Define inductively a sequence (U_i) of open covers of X as follows. Let $U_1 = \{X\}$. If U_j is already defined for $j < i$, let U_i be a cover of X which star-refines U_{i-1} and such that $\text{mesh}(U_{i-1}) \leq 2^{-i}$.

Assume that X is isometrically embedded into a Banach space L which, in turn, is identified with the subset $L \times \{0\}$ of $L \times [0, 1]$. Let $N(U_i)$ be the nerve of the cover U_i. Assume also that $N(U_i)$ is a subpolyhedron of $L \times \{2^{1-i}\}$ with the following property: for any $U \in U_i$, the vertex of $N(U_i)$
Let there be an uncountable set \(\mathbb{R} \) and is a compact metrizable AR-space. The projection of \(\hat{L} \) map such that every its preimage is a countable union of the singleton \(P \). Then, clearly, the map is the diagonal \(\tilde{t} \). We assume as well that the mapping cylinder consists of all linear segments in \(L \times [2^i, 2^{i-1}] \).

Finally, let \(\hat{L} = L \cup \bigcup_{i=1}^{\infty} K_i \). Using standard arguments we show that \(\hat{L} \) is a compact metrizable AR-space. The projection of \(\hat{L} \) onto \([0, 1]\) is a closed map such that every its preimage is a C-space (either \(L \) or a polyhedron). Therefore, \(\hat{L} \) is a C-space. \(\square \)

Proposition 3.2. For any \(\alpha < \omega_1 \) there exists a pointed compact metrizable C-space \((\hat{L}, \ast) \) that contains a topological copy of each pointed compact metrizable C-space \((K, \ast) \) with \(\dim C K \leq \alpha \).

Proof. Let \(L_\alpha \) be a universal space for compact metrizable C-spaces \(K \) with \(\dim C K \leq \alpha \). Denote by \(\hat{L} \) the quotient space \((L_\alpha \times L_\alpha)/\Delta \), where \(\Delta \) is the diagonal \(\{(x, x) \mid x \in L_\alpha \} \subset L_\alpha \times L_\alpha \). The set \(\Delta \) is regarded as the base point of \(\hat{L} \). Denote by \(q : L_\alpha \times L_\alpha \rightarrow \hat{L} \) the quotient map.

Suppose that \((K, x_0) \) is a compact metrizable C-space with \(\dim C K \leq \alpha \). Then, clearly, the map \(f : K \rightarrow \hat{L} \) defined by the formula \(f(x) = q(x, x_0), \) \(x \in K \), is a pointed embedding.

Finally, remark that \(\hat{L} \) is a C-space. Indeed, one can represent \(\hat{L} \) as the countable union of the singleton \(\{q(\Delta)\} \) and the spaces \(q((L \times L) \setminus U_i) \), where \(\{U_i \mid i \in \mathbb{N}\} \) is a countable base neighborhoods of \(\Delta \) in the product \(L \times L \), and then apply Propositions 2.2 and 2.3. \(\square \)

Recall that a topological space \(X \) is said to be a \(k_\omega \)-space if \(X = \lim_{\to} X_i \), where \((X_i) \) is an increasing sequence of its compact subspaces.

We say that a space \(X \) is strongly \(D(\beta) \)-universal (resp. locally strongly \(D(\beta) \)-universal) if for every compact metric space \(A \) with \(\dim C (A) < \beta \) and every embedding \(f : B \rightarrow X \) of its closed subset \(B \) into \(X \) there exists an embedding \(\tilde{f} : A \rightarrow X \) (resp. an embedding \(\tilde{f} : U \rightarrow X \), where \(U \) is a neighborhood of \(B \) in \(A \)) that extends \(f \).

Theorem 3.3. There is an uncountable set \(\Phi \subset \omega_1 \) such that, for every \(\beta \in \Phi \) there exists a strongly \(D(\beta) \)-universal \(k_\omega \)-space \(K_\beta \) which is the countable direct limit of an increasing sequence of compact spaces from the class \(D(\beta) \).

Proof. Let \(\alpha < \omega_1 \). Let \(X_1 = \{\ast\} \) be any compact metrizable C-space with \(\dim C X_1 = \alpha \). Suppose that compact metrizable C-spaces \(X_i \) are already constructed for all \(i < n \).
By Proposition 3.1, there exists a compact metric C-space \hat{X}_{n-1} which contains X_{n-1} and is an absolute retract.

By Proposition 3.2, there exists a pointed compact C-space (Y_{n-1}, \ast) which is universal for pointed compact metric spaces of dim C not exceeding $h(\alpha)$. Take $X_n = \hat{X}_{n-1} \times Y_{n-1}$.

Let $X = \lim X_n$ and let $\beta = \sup\{\dim (X_n) + 1 \mid n \in \mathbb{N}\}$. Then clearly $\beta \geq \alpha$.

We are going to show that X is strongly $\mathcal{D}(\beta)$-universal. Suppose that (A, B) is a pair of compact metric spaces and dim $C A < \beta$. Suppose also that $f : B \rightarrow X$ is an embedding. Since X is a k_ω-space, there exists $n \in \mathbb{N}$ such that $f(B) \subset X_n$. Since \hat{X}_n is an AR-space, there is a continuous extension $f' : A \rightarrow \hat{X}_n$.

Let $q : A \rightarrow A/B$ be the quotient map. By Proposition 3.2, there exists an embedding $g : A/B \rightarrow Y_n$ such that $q(B) = \ast$.

Finally, define $\tilde{f} : A \rightarrow X_{n+1}$ by the formula $\tilde{f}(x) = (f'(x), gq(x))$. It is easy to see that \tilde{f} is an embedding that extends f.

The following is a characterization theorem for the spaces K_β.

Theorem 3.4. Let X be a k_ω-space and X is countable direct limit of compact metric spaces from the class $\mathcal{D}(\beta)$. Then the following properties are equivalent:

1. X is strongly $\mathcal{D}(\beta)$-universal;
2. X is homeomorphic to K_β.

Proof. We apply the back and forth argument used in [14] as well as in another publications. For the sake of reader’s convenience, we provide some details.

Let $Y = \lim Y_n$, where $Y_1 \subset Y_2 \subset \ldots$ is a sequence of compact spaces such that $Y_n \in \mathcal{D}(\beta)$ for every $n \in \mathbb{N}$.

Let $m_1 = 1$. There exists an embedding $f_1 : Y_{m_1} \rightarrow K_\beta$. Since Y_{m_1} is compact, there is $n_1 \in \mathbb{N}$ such that $f_1(Y_{m_1}) \subset X_{n_1}$. Moreover, since Y is strongly $\mathcal{D}(\beta)$-universal, there exists an embedding $g_1 : X_{n_1} \rightarrow Y$ such that $g_1|f_1(Y_{m_1}) = f_1^{-1}$. Then by compactness of X_{n_1}, there exists $m_2 > m_1$ such that $g_1(X_{n_1}) \subset Y_{m_2}$.

Continuing in this way we obtain a commutative diagram

$$
\begin{array}{cccccccc}
Y_{m_1} & \rightarrow & Y_{m_2} & \rightarrow & Y_{m_3} & \rightarrow & \ldots \\
\downarrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow g_3 \\
X_{n_1} & \leftarrow & X_{n_2} & \leftarrow & X_{n_3} & \leftarrow & \ldots,
\end{array}
$$

in which $m_1 < m_2 < \ldots$, $n_1 < n_2 < \ldots$, f_j, g_j are embeddings, $j \in \mathbb{N}$.

O. Polivoda, M. Zarichnyi
Infinite-dimensional manifolds related to C-spaces

Then
\[Y \simeq \varinjlim_{m} Y_{m} = \varinjlim_{j} Y_{m_{j}} = \varinjlim_{n} \{ Y_{m_{1}} \xrightarrow{f_{1}} X_{n_{1}} \xrightarrow{g_{1}} Y_{m_{2}} \xrightarrow{f_{2}} X_{n_{2}} \xrightarrow{g_{2}} \ldots \} \]

\[= \varinjlim_{j} X_{n_{j}} = \varinjlim_{n} X_{n} = K(\beta). \]

A K_{β}-manifold is a Hausdorff space which is locally homeomorphic to open subsets in K_{β}. We will assume that the K_{β}-manifolds are k_{ω}-spaces.

The following is a characterization theorem for the K_{β}-manifolds.

Theorem 3.5. Let X be a k_{ω}-space and X is countable direct limit of compact metric spaces from the class $D(\beta)$. Then the following properties are equivalent:

1. X is locally strongly $D(\beta)$-universal;
2. X is a K_{β}-manifold.

Actually, the proof of this result can be performed along the line of the proof of [14, Theorem 1.3]. And, similarly as in [14], we obtain the following Open Embedding Theorem (see also [10]).

Theorem 3.6. Any K_{β}-manifold can be embedded into the space K_{β} as an open set.

4. UNIVERSAL MAPS

The following notion is introduced in [15]. Let \mathcal{K}_{fd} denote the class of metrizable finite-dimensional compacta. A map $f : X \to Y$ is called strongly \mathcal{K}_{fd}-universal if, for any if for every embedding $\alpha : B \to X$ of a closed subset B of a space $A \in \mathcal{K}_{fd}$ and any map $\gamma : A \to Y$ with $f\alpha = \gamma|B$ there is an embedding $\bar{\alpha} : A \to X$ such that $f\bar{\alpha} = \gamma$ and $\bar{\alpha}|B = \alpha$.

Let \mathbb{R}^{∞} be the direct limit of the sequence
\[\mathbb{R} \to \mathbb{R} \times \{0\} \subset \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \times \{0\} \subset \cdots \]

Let Q denote the Hilbert cube $[-1, 1]^{\omega}$. By Q^{∞} we denote the direct limit of the sequence
\[Q \to Q \times \{0\} \subset Q \times Q \to Q \times Q \times \{0\} \subset \cdots \]

A strongly \mathcal{K}_{fd}-universal map $f : \mathbb{R}^{\infty} \to Q^{\infty}$ is constructed in [15].

Theorem 4.1. There is a strongly \mathcal{K}_{fd}-universal map from \mathbb{R}^{∞} to K_{β}.

Proof. Without loss of generality we may assume that K_{β} is embedded in Q^{∞} as a closed subset. Let $f : \mathbb{R}^{\infty} \to Q^{\infty}$ be an \mathcal{K}_{fd}-universal map. Define $X = f^{-1}(K_{\beta})$ and let f' denote the restriction $f' = f|X : X \to K_{\beta}$. Since
\(K_\beta\) is closed in \(Q^\infty\), we see that \(X\) is a \(k_\omega\)-space. Clearly, \(X = \lim X_i\), where \(X_i \in K_{fd}\) for all \(i\). Since \(K_\beta\) is an absolute extensor, the space \(X\) satisfies the conditions of the characterization theorem for \(\mathbb{R}^\infty\) (see [14]).

Also, this implies the strong \(K_{fd}\)-universality of \(f'\). □

Remark also that a strongly \(K_{fd}\)-universal map from Theorem 4.1 is unique up to homeomorphism.

5. Remarks

In connection with Radul’s results on existence of \(D(\beta)\)-absorbing sets in the sense of Bestvina and Mogilski [6] the following question arises.

Question 5.1. Are there ordinals \(\beta < \omega_1\) for which both \(D_\beta\) and \(K_\beta\) exist? Is there a bitopological characterization of this pair in the spirit of Banakh and Sakai [4]?

Recall that in [4] a characterization of the bitopological space \((\mathbb{R}^\infty, \ell^2_f)\) is given.

We expect the negative answer to the following question related to Theorem 4.1.

Question 5.2. Is there a strongly \(D(\beta)\)-universal map \(K(\beta) \to Q^\infty\)?

Also, we conjecture that the universal map from Theorem 4.1 is not locally self-similar. (Here, a map \(\pi: X \to Y\) is said to be *locally self-similar* if for every point \(x \in X\) and every neighborhood \(U \subset X\) of \(x\) there is a neighborhood \(V \subset U\) of \(x\) such that the map \(\pi|V: V \to \pi(V)\) is homeomorphic to \(\pi\). It is proved in [3] that the universal map \(\mathbb{R}^\infty \to Q^\infty\) is not locally self-similar.)

Banakh and Repovš [3] proved that there exists a linear realization of the universal map \(\mathbb{R}^\infty \to Q^\infty\). It looks plausible that such a realization can be found for the universal map from Theorem 4.1. This would provide another construction of the spaces \(K_\beta\), namely as a linear topological space.

Question 5.3. Are there free topological groups, semigroups, semilattices etc. homeomorphic to \(K_\beta\)?

See, e.g., [2, 5, 15] for various results concerning infinite-dimensional manifolds in topological algebra.

Finally, remark that some of the results of this note are announced in [12]; here they are given with new proofs.
REFERENCES

[1] David F. Addis, John H. Gresham. A class of infinite-dimensional spaces. I. Dimension theory and Alexandroff’s problem. Fund. Math., 101(3):195–205, 1978, doi: 10.4064/fm-101-3-195-205.

[2] Taras Banakh, Olena Hryniiv. Free topological inverse semigroups as infinite-dimensional manifolds. pages 132–139, 2002.

[3] Taras Banakh, Dušan Repovš. On linear realizations and local self-similarity of the universal Zarichnyi map. Houston J. Math., 31(4):1103–1114, 2005.

[4] Taras Banakh, Katsuro Sakai. Characterizations of $(\mathbb{R}^{\infty}, \sigma)$- or $(\mathbb{Q}^{\infty}, \Sigma)$-manifolds and their applications. Topology Appl., 106(2):115–134, 2000, doi: 10.1016/S0166-8641(99)00081-4.

[5] Taras Banakh, Katsuro Sakai. Free topological semilattices homeomorphic to \mathbb{R}^{∞} or \mathbb{Q}^{∞}. Topology Appl., 106(2):135–147, 2000, doi: 10.1016/S0166-8641(99)00082-6.

[6] Mladen Bestvina, Jerzy Mogilski. Characterizing certain incomplete infinite-dimensional absolute retracts. Michigan Math. J., 33(3):291–313, 1986, doi: 10.1307/m-mj/1029003410.

[7] Piet Borst. Some remarks concerning C-spaces. Topology Appl., 154(3):665–674, 2007, doi: 10.1016/j.topol.2006.07.015.

[8] Yasunao Hattori, Kohzo Yamada. Closed pre-images of C-spaces. Math. Japon., 34(4):555–561, 1989.

[9] William E. Haver. A covering property for metric spaces. pages 108–113. Lecture Notes in Math., Vol. 375, 1974.

[10] Richard E. Heisey. Manifolds modelled on the direct limit of lines. Pacific J. Math., 102(1):47–54, 1982, http://projecteuclid.org/euclid.pjm/1102724619.

[11] Ernest Michael. Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71:152–182, 1951, doi: 10.2307/1990864.

[12] O. Polivoda. On infinite-dimensional manifolds modeled on some k_ω-spaces. “Algebraic and Geometric Methods of Analysis”, Odesa, Ukraine, 2020, https://www.imath.kiev.ua/~topology/conf/agma2020/agma-2020-abstracts/agma2020-theses.pdf.

[13] T. Radul. Absorbing spaces for C-compacta. Topology Appl., 83(2):127–133, 1998, doi: 10.1016/S0166-8641(97)00103-X.

[14] Katsuro Sakai. On \mathbb{R}^{∞}-manifolds and \mathbb{Q}^{∞}-manifolds. Topology Appl., 18(1):69–79, 1984, doi: 10.1016/0166-8641(84)90032-4.

[15] M. Zarichnyi. Functors generated by universal mappings of injective limits of sequences of Menger compacta. In Mathematics (Russian), volume 562 of Latv. Univ. Zināt. Rakstī, pages 95–102. Latv. Univ., Riga, 1991.

Received: June 27, 2020, accepted: September 18, 2020.

Oryslava Polivoda
Ukrainian Academy of Printing, 19 Pip Holoskomy Str., 79000 Lviv, Ukraine
Email: shabor@ukr.net

Mykhailo Zarichnyi
Department of Mechanics and Mathematics, Lviv National University, Universytetska Str., 1, Lviv, 79000, Ukraine
Email: zarichnyi@yahoo.com
ORCID: orcid.org/0000-0002-6494-2289