Supplemental Materials
Molecular Biology of the Cell
Lövenich et al.
Supplementary Information

Supplementary Figure S5: Estimation of confidence intervals. Angles for actin reorientation for all indicated conditions and cell types shown in Figure 3, 4, 5, 6, 7 and Supplementary Figure S1, S2 and S3 were statistically analyzed by using the method for bias-corrected and accelerated bootstrap intervals. Bootstrap sample size was set to 5000 based on the investigated high number of cells which is indicated by n for each sample. Estimated upper and lower 95% confidence intervals and cumulated frequencies are given for classes of 5° each from 5° to 90°.
Table S1. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. 3

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.027	0.051	0.079
10	0.062	0.092	0.13
15	0.100	0.13	0.17
20	0.150	0.20	0.24
25	0.200	0.25	0.30
30	0.240	0.29	0.35
35	0.340	0.40	0.46
40	0.380	0.44	0.49
45	0.420	0.49	0.54
50	0.490	0.55	0.60
55	0.540	0.60	0.65
60	0.590	0.64	0.70
65	0.650	0.70	0.75
70	0.730	0.78	0.82
75	0.780	0.83	0.87
80	0.880	0.92	0.95
85	0.910	0.94	0.97
90	0.990	1.00	1.00

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0.0039	0.016
10	0	0.0039	0.016
15	0	0.0039	0.016
20	0	0.0039	0.016
25	0	0.0039	0.024
30	0	0.0039	0.024
35	0.0039	0.016	0.035
40	0.0039	0.020	0.039
45	0.012	0.031	0.055
50	0.035	0.063	0.094
55	0.083	0.12	0.16
60	0.15	0.19	0.24
65	0.31	0.37	0.43
70	0.51	0.57	0.63
75	0.67	0.72	0.78
80	0.77	0.81	0.86
85	0.85	0.89	0.93
90	0.99	1.00	1.00

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0.0039	0.016
10	0	0.0039	0.016
15	0	0.0039	0.016
20	0	0.0039	0.016
25	0	0.0039	0.024
30	0	0.0039	0.024
35	0.0039	0.016	0.035
40	0.0039	0.020	0.039
45	0.012	0.031	0.055
50	0.035	0.063	0.094
55	0.083	0.12	0.16
60	0.15	0.19	0.24
65	0.31	0.37	0.43
70	0.51	0.57	0.63
75	0.67	0.72	0.78
80	0.77	0.81	0.86
85	0.85	0.89	0.93
90	0.99	1.00	1.00

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0.0039	0.015	0.015
55	0.012	0.031	0.035
60	0.050	0.081	0.12
65	0.16	0.21	0.26
70	0.31	0.36	0.42
75	0.53	0.59	0.65
80	0.70	0.76	0.80
85	0.84	0.89	0.92
90	0.99	1.00	1.00

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0	0	0
55	0	0	0
60	0	0	0
65	0.0041	0.016	0.037
70	0.049	0.078	0.11
75	0.015	0.020	0.25
80	0.14	0.41	0.47
85	0.64	0.70	0.76
90	0.99	1.00	1.00

Supplementary information Lövenich et al. MBoC
A7r5 6 h stretched untreated (n=203)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0	0	0
55	0	0	0
60	0	0	0
65	0	0	0
70	0,0049	0,025	0,049
75	0,11	0,15	0,21
80	0,29	0,35	0,42
85	0,56	0,62	0,88
90	1	1	1

A7r5 30 min stretched +CQ (n=249)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0,0080	0,020
10	0,0040	0,016	0,036
15	0,0040	0,020	0,040
20	0,0080	0,024	0,048
25	0,020	0,036	0,064
30	0,036	0,060	0,10
35	0,040	0,068	0,10
40	0,060	0,092	0,13
45	0,084	0,12	0,17
50	0,16	0,21	0,27
55	0,28	0,34	0,40
60	0,38	0,44	0,50
65	0,52	0,58	0,64
70	0,65	0,70	0,76
75	0,73	0,78	0,84
80	0,80	0,85	0,89
85	0,88	0,92	0,95
90	1	1	1

A7r5 1 h stretched +CQ (n=255)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0,012	0,027
35	0,0039	0,020	0,039
40	0,027	0,051	0,082
45	0,043	0,075	0,11
50	0,11	0,15	0,20
55	0,21	0,26	0,32
60	0,35	0,41	0,47
65	0,51	0,57	0,64
70	0,62	0,68	0,74
75	0,69	0,75	0,80
80	0,80	0,85	0,89
85	0,86	0,90	0,93
90	1	1	1

A7r5 6 h stretched +CQ (n=199)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0,012	0,027
35	0,0039	0,020	0,039
40	0,027	0,051	0,082
45	0,043	0,075	0,11
50	0,11	0,15	0,20
55	0,21	0,26	0,32
60	0,35	0,41	0,47
65	0,51	0,57	0,64
70	0,62	0,68	0,74
75	0,69	0,75	0,80
80	0,80	0,85	0,89
85	0,86	0,90	0,93
90	1	1	1
Supplementary information

A7r5 30 min stretched +MG132 (n=256)	A7r5 1 h stretched +MG132 (n=256)						
Class	Lower CI95	Cum. Frequency	Upper CI95	Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0	5	0	0	0
10	0	0	0	10	0	0	0
15	0	0,0039	0,016	15	0	0	0
20	0	0,0039	0,016	20	0	0	0
25	0,0039	0,016	0,031	25	0,0039	0,020	0,039
30	0,012	0,027	0,051	30	0,0039	0,020	0,039
35	0,020	0,039	0,066	35	0,020	0,039	0,066
40	0,039	0,066	0,10	40	0,039	0,066	0,10
45	0,070	0,11	0,14	45	0,070	0,11	0,14
50	0,12	0,16	0,21	50	0,12	0,16	0,21
55	0,23	0,28	0,34	55	0,23	0,28	0,34
60	0,45	0,51	0,57	60	0,45	0,51	0,57
65	0,60	0,66	0,72	65	0,60	0,66	0,72
70	0,70	0,75	0,80	70	0,70	0,75	0,80
75	0,78	0,82	0,87	75	0,78	0,82	0,87
80	0,85	0,89	0,92	80	0,85	0,89	0,92
85	1	1	1	85	1	1	1
90	1	1	1	90	1	1	1

A7r5 6 h stretched +MG132 (n=219)	A7r5 30 min stretched +CQ +MG132 (n=257)						
Class	Lower CI95	Cum. Frequency	Upper CI95	Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0	5	0	0	0
10	0	0	0	10	0	0,0078	0,019
15	0	0	0	15	0,016	0,035	0,058
20	0	0	0	20	0,023	0,047	0,074
25	0	0	0	25	0,039	0,066	0,10
30	0	0	0	30	0,054	0,086	0,12
35	0	0	0	35	0,078	0,12	0,16
40	0	0	0	40	0,11	0,15	0,19
45	0	0	0	45	0,17	0,21	0,27
50	0	0	0	50	0,25	0,30	0,37
55	0	0	0	55	0,37	0,43	0,49
60	0	0	0	60	0,53	0,58	0,64
65	0	0,0046	0,018	65	0,53	0,58	0,64
70	0	0,014	0,032	70	0,66	0,72	0,77
75	0,078	0,12	0,16	75	0,76	0,81	0,85
80	0,28	0,34	0,41	80	0,83	0,87	0,91
85	0,53	0,60	0,66	85	0,86	0,90	0,94
90	1	1	1	90	0,90	0,93	0,96
A7r5 1 h stretched +CQ +MG132 (n=252)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0.0079	0.020
35	0.012	0.012	0.028
40	0.028	0.052	0.083
45	0.052	0.083	0.12
50	0.11	0.15	0.19
55	0.19	0.25	0.30
60	0.35	0.41	0.47
65	0.52	0.58	0.64
70	0.64	0.70	0.75
75	0.73	0.78	0.83
80	0.82	0.87	0.91
85	0.87	0.91	0.94
90	1	1	1

A7r5 6 h stretched +CQ +MG132 (n=187)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0.0079	0.020
35	0.012	0.012	0.028
40	0.028	0.052	0.083
45	0.052	0.083	0.12
50	0.11	0.15	0.19
55	0.19	0.25	0.30
60	0.35	0.41	0.47
65	0.52	0.58	0.64
70	0.64	0.70	0.75
75	0.73	0.78	0.83
80	0.82	0.87	0.91
85	0.87	0.91	0.94
90	1	1	1

The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Table S2. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. 4

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.036	0.060	0.086
10	0.065	0.10	0.13
15	0.10	0.14	0.17
20	0.13	0.17	0.21
25	0.17	0.21	0.26
30	0.21	0.26	0.30
35	0.25	0.30	0.35
40	0.29	0.34	0.39
45	0.34	0.39	0.44
50	0.39	0.44	0.49
55	0.42	0.47	0.52
60	0.48	0.54	0.59
65	0.53	0.59	0.64
70	0.60	0.65	0.70
75	0.68	0.72	0.77
80	0.74	0.78	0.82
85	0.84	0.87	0.91
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0.011	0.025
10	0.014	0.032	0.054
15	0.021	0.046	0.071
20	0.032	0.061	0.089
25	0.043	0.071	0.10
30	0.057	0.089	0.12
35	0.075	0.11	0.15
40	0.10	0.14	0.18
45	0.13	0.18	0.22
50	0.18	0.23	0.28
55	0.22	0.27	0.32
60	0.28	0.33	0.39
65	0.44	0.50	0.55
70	0.57	0.63	0.68
75	0.66	0.71	0.77
80	0.75	0.80	0.85
85	0.85	0.89	0.92
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.0051	0.015	0.028
10	0.0076	0.018	0.033
15	0.0076	0.020	0.033
20	0.013	0.028	0.043
25	0.023	0.040	0.061
30	0.030	0.051	0.073
35	0.038	0.061	0.086
40	0.043	0.066	0.091
45	0.063	0.086	0.12
50	0.091	0.12	0.15
55	0.11	0.14	0.18
60	0.13	0.16	0.20
65	0.18	0.21	0.26
70	0.27	0.32	0.36
75	0.37	0.42	0.47
80	0.53	0.58	0.63
85	0.70	0.75	0.79
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0.0069	0.016
15	0.009	0.021	0.037
20	0.011	0.023	0.039
25	0.014	0.027	0.043
30	0.027	0.046	0.066
35	0.032	0.053	0.076
40	0.046	0.069	0.094
45	0.057	0.082	0.11
50	0.076	0.10	0.13
55	0.092	0.12	0.15
60	0.14	0.18	0.21
65	0.20	0.24	0.28
70	0.31	0.35	0.40
75	0.47	0.52	0.57
80	0.61	0.66	0.70
85	0.75	0.79	0.83
90	1	1	1
MEF 10 min stretched +CQ (n=304)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,0033	0,013	0,030
10	0,013	0,030	0,053
15	0,063	0,056	0,082
20	0,033	0,059	0,086
25	0,056	0,089	0,12
30	0,076	0,11	0,14
35	0,12	0,16	0,20
40	0,15	0,19	0,24
45	0,18	0,22	0,27
50	0,21	0,26	0,31
55	0,26	0,31	0,37
60	0,34	0,39	0,45
65	0,46	0,51	0,57
70	0,57	0,62	0,67
75	0,69	0,74	0,79
80	0,77	0,82	0,86
85	0,85	0,89	0,92
90	1	1	1

MEF 30 min stretched +CQ (n=287)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0,0067	0,016
10	0,03	0,018	0,031
15	0,013	0,029	0,044
20	0,024	0,042	0,062
25	0,038	0,058	0,080
30	0,044	0,067	0,091
35	0,060	0,084	0,11
40	0,080	0,11	0,14
45	0,10	0,13	0,16
50	0,12	0,16	0,19
55	0,16	0,20	0,24
60	0,21	0,25	0,29
65	0,31	0,36	0,40
70	0,43	0,47	0,52
75	0,57	0,62	0,67
80	0,69	0,73	0,77
85	0,82	0,86	0,89
90	1	1	1

MEF 1 h stretched +CQ (n=270)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0,0044	0,011
10	0	0,0066	0,015
15	0,0022	0,011	0,022
20	0,013	0,026	0,042
25	0,026	0,042	0,064
30	0,037	0,057	0,081
35	0,048	0,070	0,095
40	0,059	0,081	0,11
45	0,075	0,10	0,13
50	0,090	0,12	0,15
55	0,13	0,16	0,19
60	0,16	0,19	0,23
65	0,22	0,26	0,30
70	0,29	0,34	0,38
75	0,42	0,46	0,51
80	0,56	0,60	0,65
85	0,73	0,77	0,80
90	1	1	1

MEF 10 min stretched +MG132 (n=451)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,0070	0,021	0,042
10	0,010	0,024	0,045
15	0,017	0,035	0,059
20	0,028	0,049	0,077
25	0,038	0,066	0,10
30	0,049	0,080	0,11
35	0,080	0,11	0,16
40	0,11	0,15	0,20
45	0,15	0,19	0,24
50	0,21	0,26	0,31
55	0,28	0,34	0,39
60	0,34	0,40	0,46
65	0,46	0,52	0,57
70	0,55	0,61	0,67
75	0,65	0,70	0,75
80	0,74	0,79	0,83
85	0,83	0,87	0,91
90	1	1	1
MEF 30 min stretched +MG132 (n=428)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,0023	0,012	0,023
10	0,016	0,033	0,051
15	0,028	0,047	0,070
20	0,037	0,056	0,082
25	0,049	0,072	0,10
30	0,054	0,079	0,11
35	0,068	0,10	0,13
40	0,086	0,12	0,15
45	0,12	0,15	0,19
50	0,14	0,18	0,21
55	0,19	0,23	0,27
60	0,23	0,27	0,31
65	0,32	0,37	0,42
70	0,43	0,48	0,53
75	0,58	0,62	0,67
80	0,70	0,75	0,78
85	0,84	0,87	0,90
90	1	1	1

MEF 1 h stretched +MG132 (n=438)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,0047	0,014	0,028
10	0,0093	0,023	0,040
15	0,016	0,030	0,049
20	0,019	0,035	0,054
25	0,033	0,054	0,075
30	0,044	0,068	0,093
35	0,068	0,093	0,12
40	0,075	0,10	0,13
45	0,093	0,12	0,15
50	0,11	0,14	0,18
55	0,14	0,17	0,21
60	0,17	0,21	0,25
65	0,23	0,27	0,31
70	0,30	0,34	0,39
75	0,39	0,44	0,48
80	0,52	0,57	0,62
85	0,70	0,75	0,79
90	1	1	1

MEF 10 min stretched +CQ +MG132 (n=455)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,0074	0,022	0,044
10	0,015	0,033	0,056
15	0,026	0,048	0,078
20	0,041	0,067	0,10
25	0,063	0,10	0,13
30	0,089	0,13	0,17
35	0,11	0,16	0,20
40	0,14	0,18	0,23
45	0,17	0,21	0,27
50	0,20	0,24	0,30
55	0,26	0,31	0,37
60	0,36	0,41	0,47
65	0,48	0,54	0,59
70	0,54	0,60	0,66
75	0,64	0,70	0,75
80	0,76	0,80	0,85
85	0,86	0,90	0,93
90	1	1	1

MEF 30 min stretched +CQ +MG132 (n=428)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,0046	0,014	0,025
10	0,014	0,027	0,043
15	0,018	0,034	0,053
20	0,023	0,039	0,059
25	0,041	0,062	0,087
30	0,057	0,080	0,11
35	0,071	0,10	0,13
40	0,087	0,11	0,14
45	0,10	0,13	0,16
50	0,14	0,17	0,21
55	0,17	0,21	0,25
60	0,22	0,26	0,30
65	0,29	0,33	0,38
70	0,39	0,44	0,49
75	0,52	0,56	0,61
80	0,66	0,70	0,74
85	0,82	0,85	0,88
90	1	1	1
Class	Lower CI95	Cum. Frequency	Upper CI95
-------	------------	----------------	------------
5	0.0023	0.0093	0.021
10	0.0023	0.012	0.023
15	0.0093	0.021	0.037
20	0.016	0.030	0.049
25	0.023	0.040	0.061
30	0.028	0.047	0.070
35	0.044	0.065	0.091
40	0.063	0.086	0.12
45	0.084	0.11	0.14
50	0.093	0.12	0.15
55	0.12	0.15	0.19
60	0.15	0.19	0.22
65	0.21	0.24	0.29
70	0.31	0.36	0.40
75	0.44	0.48	0.53
80	0.58	0.63	0.67
85	0.76	0.80	0.84
90	1	1	1

The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Table S3. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. 5

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.021	0.056	0.10
10	0.069	0.12	0.17
15	0.11	0.17	0.23
20	0.16	0.22	0.29
25	0.17	0.24	0.31
30	0.22	0.29	0.37
35	0.31	0.39	0.47
40	0.38	0.46	0.55
45	0.42	0.50	0.58
50	0.44	0.53	0.61
55	0.51	0.59	0.67
60	0.61	0.69	0.76
65	0.68	0.76	0.82
70	0.72	0.80	0.85
75	0.79	0.85	0.90
80	0.84	0.90	0.94
85	0.91	0.95	0.98
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.005	0.025	0.050
10	0.040	0.070	0.11
15	0.070	0.11	0.16
20	0.10	0.15	0.20
25	0.14	0.20	0.25
30	0.16	0.22	0.28
35	0.18	0.25	0.31
40	0.21	0.28	0.33
45	0.26	0.33	0.39
50	0.32	0.39	0.45
55	0.35	0.43	0.49
60	0.40	0.48	0.54
65	0.47	0.55	0.61
70	0.59	0.66	0.72
75	0.72	0.78	0.83
80	0.82	0.87	0.91
85	0.88	0.93	0.96
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.015	0.039	0.069
10	0.079	0.12	0.16
15	0.10	0.15	0.20
20	0.14	0.19	0.25
25	0.19	0.25	0.31
30	0.24	0.31	0.37
35	0.31	0.37	0.44
40	0.37	0.44	0.51
45	0.42	0.49	0.57
50	0.52	0.59	0.66
55	0.59	0.65	0.71
60	0.67	0.73	0.79
65	0.75	0.80	0.86
70	0.79	0.84	0.89
75	0.85	0.90	0.94
80	0.89	0.93	0.96
85	0.93	0.96	0.98
90	1	1	1
MEF 30 min stretched untreated (n=198)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.005	0.020	0.045
10	0.020	0.045	0.076
15	0.020	0.045	0.076
20	0.045	0.081	0.12
25	0.051	0.091	0.13
30	0.076	0.12	0.17
35	0.10	0.15	0.20
40	0.11	0.15	0.20
45	0.13	0.18	0.23
50	0.15	0.20	0.26
55	0.21	0.26	0.32
60	0.31	0.37	0.44
65	0.39	0.46	0.53
70	0.52	0.59	0.66
75	0.65	0.72	0.77
80	0.73	0.79	0.85
85	0.82	0.87	0.91
90	1	1	1

MEF 30 min stretched +LPA (n=197)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0.010	0.025
25	0	0.015	0.036
30	0.0051	0.020	0.046
35	0.010	0.030	0.056
40	0.030	0.056	0.091
45	0.046	0.081	0.12
50	0.071	0.12	0.16
55	0.10	0.15	0.20
60	0.16	0.21	0.27
65	0.24	0.31	0.37
70	0.36	0.43	0.50
75	0.54	0.61	0.68
80	0.72	0.78	0.83
85	0.80	0.85	0.90
90	1	1	1

MEF 1 h stretched untreated (n=206)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.0049	0.024	0.049
10	0.015	0.034	0.063
15	0.015	0.039	0.068
20	0.039	0.068	0.11
25	0.053	0.087	0.13
30	0.078	0.12	0.17
35	0.10	0.15	0.20
40	0.16	0.21	0.27
45	0.17	0.22	0.28
50	0.20	0.26	0.32
55	0.26	0.32	0.38
60	0.32	0.38	0.45
65	0.42	0.49	0.56
70	0.54	0.61	0.67
75	0.66	0.72	0.78
80	0.76	0.82	0.87
85	0.88	0.92	0.96
90	1	1	1

MEF 1 h stretched +LPA (n=212)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0.0047	0.019
10	0	0.0047	0.019
15	0	0.0094	0.024
20	0	0.0094	0.024
25	0.0047	0.019	0.042
30	0.0047	0.024	0.047
35	0.0047	0.028	0.052
40	0.019	0.042	0.071
45	0.024	0.052	0.080
50	0.038	0.071	0.11
55	0.047	0.085	0.12
60	0.094	0.14	0.18
65	0.12	0.17	0.23
70	0.23	0.29	0.35
75	0.35	0.42	0.49
80	0.50	0.57	0.63
85	0.70	0.76	0.82
90	1	1	1
The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Table S4. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. 6

Class	Lower CI95	Cum. Frequency	Upper CI95	Class	Lower CI95	Cum. Frequency	Upper CI95
	MEF unstretched +LPA (n=303)		MEF unstretched +LPA +CQ (n=292)				
5	0.056	0.086	0.12	5	0.021	0.041	0.065
10	0.13	0.17	0.21	10	0.055	0.082	0.12
15	0.19	0.23	0.28	15	0.10	0.14	0.18
20	0.24	0.28	0.34	20	0.17	0.22	0.27
25	0.29	0.35	0.40	25	0.23	0.28	0.33
30	0.35	0.41	0.46	30	0.28	0.34	0.39
35	0.41	0.47	0.52	35	0.35	0.40	0.46
40	0.48	0.53	0.59	40	0.40	0.46	0.51
45	0.50	0.56	0.61	45	0.47	0.53	0.59
50	0.55	0.61	0.66	50	0.54	0.60	0.66
55	0.61	0.66	0.71	55	0.62	0.67	0.73
60	0.64	0.70	0.75	60	0.66	0.72	0.77
65	0.74	0.78	0.83	65	0.71	0.76	0.80
70	0.80	0.84	0.88	70	0.76	0.80	0.85
75	0.86	0.89	0.93	75	0.79	0.84	0.88
80	0.90	0.93	0.96	80	0.87	0.90	0.94
85	0.96	0.98	1	85	0.91	0.94	0.97
90	1	1	1	90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95	Class	Lower CI95	Cum. Frequency	Upper CI95
	MEF 10 min stretched +LPA (n=301)		MEF 10 min stretched +LPA +CQ (n=315)				
5	0.013	0.030	0.050	5	0.035	0.060	0.089
10	0.023	0.047	0.073	10	0.054	0.083	0.11
15	0.030	0.056	0.083	15	0.076	0.11	0.15
20	0.050	0.076	0.11	20	0.089	0.12	0.17
25	0.073	0.10	0.14	25	0.12	0.16	0.20
30	0.10	0.13	0.17	30	0.17	0.22	0.26
35	0.12	0.16	0.21	35	0.21	0.25	0.30
40	0.15	0.20	0.24	40	0.24	0.29	0.34
45	0.21	0.26	0.31	45	0.32	0.37	0.43
50	0.26	0.31	0.37	50	0.38	0.44	0.49
55	0.34	0.39	0.45	55	0.43	0.49	0.54
60	0.41	0.47	0.52	60	0.50	0.55	0.60
65	0.49	0.54	0.59	65	0.60	0.65	0.70
70	0.59	0.65	0.70	70	0.70	0.75	0.79
75	0.72	0.77	0.82	75	0.78	0.82	0.86
80	0.81	0.85	0.89	80	0.84	0.88	0.91
85	0.89	0.92	0.95	85	0.92	0.95	0.97
90	1	1	1	90	1	1	1
MEF 30 min stretched +LPA (n=286)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0.010	0.024
15	0.0070	0.021	0.038
20	0.010	0.024	0.045
25	0.021	0.042	0.066
30	0.035	0.059	0.087
35	0.038	0.066	0.094
40	0.045	0.073	0.10
45	0.056	0.087	0.12
50	0.066	0.10	0.14
55	0.11	0.15	0.19
60	0.17	0.22	0.27
65	0.24	0.29	0.34
70	0.37	0.43	0.49
75	0.50	0.55	0.61
80	0.65	0.70	0.76
85	0.80	0.84	0.88
90	1	1	1

MEF 30 min stretched +LPA +CQ (n=313)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.013	0.029	0.051
10	0.042	0.067	0.10
15	0.077	0.11	0.14
20	0.089	0.12	0.16
25	0.12	0.16	0.20
30	0.14	0.19	0.23
35	0.15	0.19	0.24
40	0.17	0.21	0.26
45	0.19	0.24	0.29
50	0.25	0.30	0.35
55	0.29	0.34	0.39
60	0.36	0.41	0.47
65	0.44	0.50	0.56
70	0.58	0.64	0.69
75	0.68	0.73	0.78
80	0.77	0.82	0.86
85	0.86	0.90	0.93
90	1	1	1

MEF 1 h stretched +LPA (n=290)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.0034	0.014	0.028
10	0.017	0.034	0.059
15	0.017	0.034	0.059
20	0.021	0.041	0.066
25	0.028	0.052	0.079
30	0.041	0.066	0.10
35	0.055	0.086	0.12
40	0.069	0.10	0.13
45	0.079	0.11	0.15
50	0.10	0.14	0.18
55	0.14	0.19	0.23
60	0.20	0.24	0.30
65	0.36	0.41	0.47
70	0.49	0.54	0.60
75	0.62	0.68	0.73
80	0.80	0.85	0.89
85	1	1	1
90	1	1	1

MEF 1 h stretched +LPA +CQ (n=321)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.006	0.019	0.037
10	0.025	0.044	0.069
15	0.053	0.081	0.11
20	0.081	0.12	0.15
25	0.11	0.15	0.19
30	0.14	0.18	0.22
35	0.16	0.20	0.24
40	0.18	0.23	0.27
45	0.21	0.26	0.30
50	0.24	0.29	0.34
55	0.30	0.35	0.40
60	0.36	0.41	0.47
65	0.42	0.47	0.52
70	0.51	0.57	0.62
75	0.62	0.68	0.73
80	0.74	0.79	0.83
85	0.85	0.89	0.92
90	1	1	1
The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Table S5. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. 7

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.037	0.064	0.091
10	0.074	0.10	0.14
15	0.11	0.15	0.19
20	0.15	0.19	0.24
25	0.17	0.21	0.27
30	0.21	0.26	0.32
35	0.26	0.30	0.36
40	0.30	0.35	0.41
45	0.36	0.41	0.47
50	0.42	0.47	0.53
55	0.48	0.53	0.59
60	0.56	0.61	0.67
65	0.62	0.67	0.73
70	0.68	0.73	0.78
75	0.77	0.81	0.86
80	0.86	0.89	0.93
85	0.93	0.95	0.98
90	1	1	1

A7r5 BAG3-WT unstretched (n=298)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.045	0.079	0.12
10	0.09	0.13	0.17
15	0.14	0.18	0.23
20	0.18	0.23	0.29
25	0.23	0.28	0.34
30	0.26	0.31	0.38
35	0.33	0.39	0.45
40	0.34	0.40	0.47
45	0.42	0.48	0.55
50	0.49	0.55	0.61
55	0.56	0.62	0.68
60	0.63	0.69	0.74
65	0.67	0.73	0.79
70	0.74	0.79	0.84
75	0.79	0.83	0.88
80	0.86	0.90	0.93
85	0.93	0.95	0.98
90	1	1	1

A7r5 BAG3-WA WA unstretched (n=242)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.037	0.064	0.091
10	0.074	0.10	0.14
15	0.11	0.15	0.19
20	0.15	0.19	0.24
25	0.17	0.21	0.27
30	0.21	0.26	0.32
35	0.26	0.30	0.36
40	0.30	0.35	0.41
45	0.36	0.41	0.47
50	0.42	0.47	0.53
55	0.48	0.53	0.59
60	0.56	0.61	0.67
65	0.62	0.67	0.73
70	0.68	0.73	0.78
75	0.77	0.81	0.86
80	0.86	0.89	0.93
85	0.93	0.95	0.98
90	1	1	1

A7r5 BAG3-WT 30 min stretched (n=206)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0.010	0.029
10	0	0.015	0.034
15	0.0049	0.024	0.044
20	0.0049	0.024	0.044
25	0.015	0.034	0.063
30	0.034	0.058	0.10
35	0.034	0.063	0.10
40	0.073	0.11	0.16
45	0.11	0.16	0.21
50	0.18	0.24	0.30
55	0.30	0.36	0.43
60	0.46	0.53	0.60
65	0.54	0.61	0.67
70	0.63	0.69	0.75
75	0.75	0.80	0.85
80	0.82	0.87	0.92
85	0.91	0.95	0.98
90	1	1	1

A7r5 BAG3-WA WA 30 min stretched (n=192)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.0052	0.026	0.052
10	0.021	0.047	0.078
15	0.042	0.078	0.12
20	0.078	0.11	0.17
25	0.13	0.17	0.23
30	0.19	0.24	0.31
35	0.24	0.30	0.38
40	0.28	0.34	0.41
45	0.33	0.40	0.47
50	0.42	0.49	0.56
55	0.54	0.61	0.68
60	0.65	0.71	0.77
65	0.71	0.78	0.83
70	0.79	0.84	0.89
75	0.82	0.87	0.91
80	0.86	0.91	0.94
85	0.91	0.94	0.97
90	1	1	1
Supplementary information

 Lövenich et al. MBoC

A7r5 BAG3-WT 1 h stretched (n=183)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0,0055	0,022
20	0	0,0055	0,022
25	0	0,0055	0,022
30	0	0,0055	0,022
35	0	0,0055	0,022
40	0	0,011	0,027
45	0	0,016	0,038
50	0,033	0,066	0,10
55	0,11	0,16	0,22
60	0,19	0,25	0,31
65	0,38	0,46	0,53
70	0,54	0,61	0,68
75	0,66	0,73	0,79
80	0,75	0,81	0,87
85	0,84	0,89	0,93
90	1	1	1

A7r5 BAG3-WAWA 1 h stretched (n=195)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0,0051	0,021
10	0	0,010	0,031
15	0	0,015	0,041
20	0	0,026	0,051
25	0	0,036	0,067
30	0	0,046	0,082
35	0	0,10	0,14
40	0	0,17	0,22
45	0	0,34	0,41
50	0	0,52	0,66
55	0	0,69	0,75
60	0	0,76	0,82
65	0	0,84	0,93
70	0	0,89	0,96
75	0	0,92	0,98
80	0	1	1

A7r5 BAG3-WT 4 h stretched (n=275)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0	0,0036	0,015
55	0,0073	0,022	0,040
60	0,015	0,033	0,055
65	0,076	0,11	0,15
70	0,21	0,27	0,32
75	0,40	0,46	0,52
80	0,58	0,64	0,69
85	0,76	0,81	0,85
90	1	1	1

A7r5 BAG3-WAWA 4 h stretched (n=223)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0,013	0,031
20	0	0,013	0,031
25	0	0,013	0,031
30	0	0,013	0,031
35	0	0,013	0,031
40	0	0,0090	0,027
45	0	0,013	0,031
50	0	0,022	0,049
55	0	0,040	0,072
60	0	0,090	0,13
65	0	0,17	0,23
70	0	0,29	0,41
75	0	0,47	0,61
80	0	0,62	0,74
85	0	0,78	0,87
90	0	1	1
The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Table S6. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. S1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.0063	0.031	0.063
10	0.025	0.056	0.10
15	0.063	0.11	0.16
20	0.088	0.14	0.19
25	0.16	0.21	0.28
30	0.21	0.28	0.35
35	0.30	0.38	0.45
40	0.35	0.43	0.50
45	0.41	0.49	0.56
50	0.49	0.56	0.64
55	0.52	0.59	0.67
60	0.64	0.71	0.78
65	0.66	0.73	0.80
70	0.69	0.76	0.82
75	0.75	0.81	0.87
80	0.86	0.90	0.94
85	0.90	0.94	0.98
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.014	0.043	0.080
10	0.058	0.10	0.16
15	0.094	0.15	0.22
20	0.14	0.20	0.28
25	0.17	0.24	0.32
30	0.23	0.30	0.38
35	0.30	0.37	0.46
40	0.34	0.41	0.50
45	0.37	0.44	0.54
50	0.43	0.51	0.59
55	0.49	0.57	0.65
60	0.54	0.62	0.71
65	0.62	0.69	0.77
70	0.69	0.76	0.83
75	0.74	0.80	0.87
80	0.82	0.88	0.93
85	0.89	0.93	0.97
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0.0068	0.027	0.054
35	0.020	0.054	0.095
40	0.027	0.061	0.10
45	0.061	0.11	0.16
50	0.11	0.16	0.22
55	0.14	0.20	0.27
60	0.19	0.26	0.33
65	0.42	0.49	0.57
70	0.55	0.62	0.70
75	0.65	0.72	0.79
80	0.74	0.80	0.87
85	0.88	0.93	0.97
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0.0068	0.027	0.054
35	0.020	0.054	0.095
40	0.027	0.061	0.10
45	0.061	0.11	0.16
50	0.11	0.16	0.22
55	0.14	0.20	0.27
60	0.19	0.26	0.33
65	0.42	0.49	0.57
70	0.55	0.62	0.70
75	0.65	0.72	0.79
80	0.74	0.80	0.87
85	0.88	0.93	0.97
90	1	1	1
A7r5 1 h stretched untreated (n=142)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0.021	0.049
50	0.0070	0.035	0.070
55	0.035	0.070	0.12
60	0.056	0.10	0.15
65	0.15	0.21	0.28
70	0.34	0.42	0.49
75	0.51	0.58	0.66
80	0.69	0.76	0.82
85	0.80	0.86	0.91
90	1	1	1

A7r5 1 h stretched +LPA (n=158)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0.0063	0.025	0.057
55	0.0063	0.025	0.057
60	0.013	0.038	0.070
65	0.089	0.14	0.20
70	0.25	0.32	0.40
75	0.42	0.50	0.58
80	0.59	0.66	0.73
85	0.73	0.79	0.85
90	1	1	1

A7r5 1 h stretched +serum (n=173)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0	0.0058	0.023
55	0	0.0058	0.023
60	0.0058	0.023	0.052
65	0.023	0.052	0.092
70	0.12	0.17	0.23
75	0.41	0.48	0.55
80	0.64	0.71	0.78
85	0.79	0.84	0.90
90	1	1	1

A7r5 4 h stretched untreated (n=155)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0	0.0065	0.026
55	0	0.0065	0.026
60	0	0.0065	0.026
65	0	0.013	0.032
70	0.045	0.084	0.14
75	0.15	0.21	0.28
80	0.44	0.52	0.59
85	0.70	0.77	0.84
90	1	1	1
A7r5 4 h stretched +LPA (n=160)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0	0
10	0	0	0
15	0	0	0
20	0	0	0
25	0	0	0
30	0	0	0
35	0	0	0
40	0	0	0
45	0	0	0
50	0	0	0
55	0	0	0
60	0	0	0
65	0	0	0
70	0.031	0.069	0.11
75	0.21	0.28	0.35
80	0.46	0.54	0.62
85	0.72	0.78	0.85
90	1	1	1

The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Table S7. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. S2

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,052	0,074	0,10
10	0,11	0,14	0,17
15	0,15	0,19	0,22
20	0,19	0,22	0,26
25	0,24	0,27	0,32
30	0,31	0,35	0,39
35	0,36	0,41	0,46
40	0,42	0,47	0,51
45	0,47	0,51	0,56
50	0,54	0,59	0,63
55	0,59	0,63	0,68
60	0,64	0,68	0,73
65	0,69	0,73	0,77
70	0,73	0,77	0,81
75	0,78	0,82	0,85
80	0,85	0,88	0,91
85	0,89	0,92	0,94
90	1	1	1

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0,0075	0,019
10	0,004	0,015	0,034
15	0,011	0,026	0,049
20	0,019	0,037	0,063
25	0,037	0,063	0,093
30	0,049	0,078	0,11
35	0,060	0,093	0,13
40	0,063	0,10	0,13
45	0,086	0,12	0,17
50	0,12	0,16	0,21
55	0,15	0,19	0,24
60	0,19	0,24	0,29
65	0,26	0,31	0,37
70	0,34	0,40	0,47
75	0,51	0,57	0,63
80	0,66	0,71	0,76
85	0,78	0,82	0,87
90	1	1	1

A7r5 4 h stretched + 10 min stretched (n=180)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0	0,0075	0,019
10	0,004	0,015	0,034
15	0,011	0,026	0,049
20	0,019	0,037	0,063
25	0,037	0,063	0,093
30	0,049	0,078	0,11
35	0,060	0,093	0,13
40	0,063	0,10	0,13
45	0,086	0,12	0,17
50	0,12	0,16	0,21
55	0,15	0,19	0,24
60	0,19	0,24	0,29
65	0,26	0,31	0,37
70	0,34	0,40	0,47
75	0,51	0,57	0,63
80	0,66	0,71	0,76
85	0,78	0,82	0,87
90	1	1	1
A7r5 4 h stretched + 30 min stretched (n=157)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.025	0.057	0.10
10	0.038	0.076	0.12
15	0.045	0.089	0.13
20	0.057	0.10	0.15
25	0.076	0.13	0.18
30	0.14	0.20	0.26
35	0.24	0.30	0.38
40	0.29	0.36	0.44
45	0.47	0.55	0.62
50	0.55	0.64	0.71
55	0.66	0.73	0.80
60	0.69	0.76	0.82
65	0.78	0.84	0.90
70	0.82	0.88	0.92
75	0.86	0.91	0.95
80	0.90	0.94	0.97
85	0.94	0.97	0.99
90	1	1	1

A7r5 4 h stretched + 1 h stretched (n=175)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.040	0.080	0.13
10	0.086	0.13	0.18
15	0.20	0.26	0.33
20	0.31	0.38	0.46
25	0.55	0.62	0.69
30	0.74	0.81	0.86
35	0.90	0.95	0.97
40	0.94	0.98	0.99
45	0.96	0.99	1
50	0.96	0.99	1
55	0.97	0.99	1
60	0.97	0.99	1
65	0.97	0.99	1
70	1	1	1
75	1	1	1
80	1	1	1
85	1	1	1
90	1	1	1

A7r5 4 h stretched + 4 h stretched (n=285)

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0.22	0.27	0.33
10	0.45	0.51	0.56
15	0.65	0.70	0.75
20	0.82	0.86	0.90
25	0.94	0.96	0.98
30	0.97	0.99	1
35	0.98	0.99	1
40	0.98	0.99	1
45	1	1	1
50	1	1	1
55	1	1	1
60	1	1	1
65	1	1	1
70	1	1	1
75	1	1	1
80	1	1	1
85	1	1	1
90	1	1	1

The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was
set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Table S8. Estimation of the 95% confidence intervals (CI95) for cumulative histograms in Fig. S3

Class	Lower CI95	Cum. Frequency	Upper CI95
5	0,018	0,041	0,068
10	0,045	0,077	0,12
15	0,082	0,12	0,17
20	0,14	0,18	0,24
25	0,17	0,22	0,28
30	0,21	0,26	0,33
35	0,23	0,29	0,35
40	0,29	0,35	0,41
45	0,38	0,44	0,50
50	0,47	0,54	0,60
55	0,53	0,60	0,66
60	0,61	0,68	0,74
65	0,67	0,73	0,79
70	0,71	0,76	0,82
75	0,75	0,80	0,85
80	0,77	0,83	0,87
85	0,85	0,90	0,93
90	1	1	1

The lower and upper 95% confidence intervals were analyzed using the method for bias-corrected and accelerated bootstrap intervals. The number of bootstrap intervals was set to 5000 for all histograms based on the indicated high number of cells (n). Cum. Frequency results from mean of upper and lower CI95.
Supplementary Figure S1: RhoA activation in A7r5 cells is neither enhancing actin fibers nor focal adhesions, therefore consequently not strongly amplifying actin reoration. (A) Micrographs of A7r5 cells immune stained for actin (magenta) and paxillin (green) after 30 min treatment with LPA. Scale bar is 50 µm. (B) Actin reorientation of A7r5 cells after 30 min, 1 h and 4 h of cyclic stretch after 30 min pre-treatment with LPA in serum free medium. Control cells were cultivated in serum free medium for 4.5 h. After fixation and staining the angular distributions of actin fibers were evaluated from 0° to 90° to the direction of stretch, cumulative frequency plots are given (n_a = 160, n_b = 138, n_c = 148, n_d = 147, n_e = 142, n_f = 158, n_g = 173, n_h = 155, n_i = 160).

Supplementary Figure S2: Reorientation of actin stress fibers in A7r5 cells is not stable after stretch release and can be inverted after second cyclic stretch in orthogonal direction. (A) Immunofluorescent micrographs of actin cytoskeleton after 4 h cyclic stretch (4 h str.) followed by 4 hours incubation without stretch (4 h str. + 4 h unstr.) or followed by 4 hours additional cyclic stretch in orthogonal direction (4 h str. + 4 h str.). Control cells were cultivated unstretched (unstr.). Arrowheads illustrate stretch directions. Scale bar is 50 µm. (B) After fixation and staining, actin stress fibers were evaluated as angular distribution from 0° to 90° to the direction of the first stretch for all samples and plotted as cumulative frequencies of all analyzed cells (n). (n_a = 299, n_b = 292, n_c = 268, n_d = 285).

Supplementary Figure S3: Actin reorientation and LC3B-spots in A7r5 cells can be likewise induced by uniaxial cyclic stretch on softer 5 kPa elastomer substrates. (A) Immunofluorescent micrographs of actin cytoskeleton after 1 h of cyclic stretch on 5 kPa elastomer substrates. Scale bar is 50 µm. (B) After fixation and staining, actin stress fiber orientations were evaluated as angular distribution from 0° to 90° relative to the direction of stretch and plotted as cumulative frequencies of all analyzed cells (n). (n_a = 220, n_b = 281). (C) LC3B (green) immune stainings of unstretched (unstr.) and 1 h cyclically stretched (1 h str.) A7r5 cells cultivated on 5 kPa elastomeric substrates. Scale bar is 20 µm. (D) Quantification of LC3B-spots per cell shown in (C) in percent of unstretched control. Data represent mean ± S.E.M. of all analyzed cells (n) (n_c = 58, n_d = 52).

Supplementary Figure S4: Workflow of LC3B-spots analysis.

For LC3B-spot analysis cells were immunocytochemically stained against the autophagosomal marker protein LC3B (A). Subsequently, autophagosomes were recorded by of single cells were performed using appropriate settings for excitation and emission. All cells were imaged completely from bottom to top with an optical layer thickness of 159 nm and a layer overlap of 50% based on optimal z-resolution settings in the Zen Black software (Carl Zeiss). Airyscan images were processed with the same software. For image processing, images were smoothed using a Gaussian filter (sigma size 1 pixel) and a cell mask was calculated. Therefore, images were binarized using the mean gray value of the image as a threshold. All values above the threshold were defined as cell mask. This mask
was then post processed by binary closing (disk structuring element with a radius of 10 pixels) and filling of cell mask holes with an area less than 10,000 pixels. To detect functional LC3-spots within the LC3B signal a manually selected threshold was kept constant for each single experiment to separate LC3B-spots from background signal (B). Threshold was typically at least 1.5 fold above average image gray value. All spots with an area of less than 70 pixels for A7r5 and 20 pixels for MEF cells were rejected (C). Signals outside the cell mask (shown by the red line in D) were not counted either. To separate big clusters of spots we used the watershed algorithm. For this purpose a distance transformation of the spot mask was calculated. Local maxima with a minimum distance of at least 5 pixels were detected and used as markers for the watershed algorithm to separate large clusters of spots. The number of remaining spots was then counted as LC3B-spots per cell for further analysis.
