A Note on Quantum States and Observables in Psychological Measurements

Ehtibar N. Dzhafarov

Purdue University, USA (ehtibar@purdue.edu)

Abstract

The problem considered is how to map the concepts of Quantum Theory (QT) to elements of a psychological experiment. The QT concepts are “measurement,” “state,” and “observable”. The elements of a psychological experiment are trial, stimulus, instructions, questions, and responses.

Keywords: decision making, opinion polling, psychophysics, quantum cognition, quantum mechanics, question order effect, response replicability, sequential effects.

1 Introduction

This note can be viewed as an extensive commentary to [KBDB].

Quantum Theory (QT) operates with observables and states. The problem we consider here is how to map these concepts to those describing a psychological experiment.

On a very general level, QM accounts for the probability distributions of measurement results using two kinds of entities, called observables A and states ψ (of the system on which the measurements are made). We assume that measurements are performed in a series of consecutive trials numbered $1, 2, \ldots$. In each trial t the experimenter decides what measurement to make (e.g., what question to ask), and this amounts to choosing an observable A. The formulas are

$$\Pr[v(A) = v \text{ in trial } t \mid \text{measurements in trials } 1, \ldots, t - 1] = F(\psi(t), A, v). \quad (1)$$

$$\psi(t+1) = G(\psi(t), A, v). \quad (2)$$

$$\psi(t) \Delta = H(\psi(t+1), \Delta). \quad (3)$$

In a psychological experiment we basic constituents of trials are instructions/questions q (specifying, among other things, the allowable responses), and stimuli s.

2 [KBDB] Approach

In the approach adopted in [KBDB] stimuli and questions together, (q, s), determine observables. The state before the experiment is generally undetermined, although influenced by the general instructions. The state before every other trial is determined by (2) and (3). The pair (q, s) constitutes an input to the system.

For instance, a detection experiment in psychophysics is traditionally considered as involving a single question $(q = \text{"does the stimulus have the target property, yes or no?"})$ and two stimuli, the “empty” one $s = a$ and the target one $s = b$. We assume in [KBDB] that the input (q, s) in each trial uniquely determines the observable S. Since only s varies, we can denote the observables by A (corresponding to a) and B (corresponding to b), with two values each. But, of course, if the question were different (e.g., $q = \text{"does the stimulus have the target property, yes or no or uncertain?"}$), the observables would be different (although there will still be two of them). The psychophysical analysis of such an experiment consists in identifying the hit-rate and false-alarm-rate functions (conditioned on the previous stimuli and responses)

$$\Pr[v(A) = 1 \text{ in trial } t \mid \text{measurements in trials } 1, \ldots, t - 1] = F(\psi(t), A, 1),$$

$$\Pr[v(B) = 1 \text{ in trial } t \mid \text{measurements in trials } 1, \ldots, t - 1] = F(\psi(t), B, 1). \quad (4)$$
The learning (or sequential-effect) aspect of such analysis consists in identifying the function

\[\psi^{(t+1)} = G \left(\psi^{(t)}, S, v \right), \quad S \in \{A, B\}, \quad v \in \{0, 1\}, \]

combined with the “pure” inter-trial dynamics \[\text{(3)}. \]

By contrast, an opinion-polling experiment is usually considered as involving several questions \(q \) and no sensory stimuli. Thus, in one of Moore’s polls we have \(q = a = “Is \text{ Bill Clinton} \text{ honest} \), yes or no?”, and \(q = b = “Is \text{ Al Gore} \text{ honest} \), yes or no?”\). The inputs therefore are \(a \) and \(b \), and the corresponding observables are \(A, B \), with two values each. The analysis, formally, is precisely the same as above:

\[
\begin{align*}
\Pr [v(A) = 1 \text{ in trial } t | \text{ measurements in trials } 1, \ldots, t - 1] &= F(\psi^{(t)}, A, 1), \\
\Pr [v(B) = 1 \text{ in trial } t | \text{ measurements in trials } 1, \ldots, t - 1] &= F(\psi^{(t)}, B, 1).
\end{align*}
\]

3 [BB] Approach

In this approach one strictly distinguishes questions from stimuli and assume that questions are mapped into observables while stimuli are mapped into states. So, in the detection experiment (with a single question \(q \) and two stimuli \(a, b \)) there is a single observable \(Q \) and two states \(\psi_a \) and \(\psi_b \):

\[
\begin{align*}
\Pr[v(Q) = 1 \text{ in trial } t \text{ with } a | \text{ measurements in trials } 1, \ldots, t - 1] &= F(\psi_a, Q, 1), \\
\Pr[v(Q) = 1 \text{ in trial } t \text{ with } b | \text{ measurements in trials } 1, \ldots, t - 1] &= F(\psi_b, Q, 1).
\end{align*}
\]

The dynamics of the states here, \(\text{(2)-(3)} \), are irrelevant, because whatever the transformation \(\psi'_s = G(\psi_s, Q, 1) \), the next state will be reset by the next stimulus into \(\psi_a \) or \(\psi_b \).

In the opinion-polling experiment the two approaches coincide, because the input there consists of a question only.

4 Comparison

Consider the situation when, in the detection paradigm, a stimulus \(a \) is repeated in trials 1 and 2. In the [KBDB] approach we have

\[
\Pr [v(A) = 1 \text{ in trial } 1 | v(A) = 1] = F(\psi^{(1)}, A, 1),
\]

where \(\psi^{(1)} \) is the initial state in which the participant is at the start of trial 1 (due to her “preparation” by the pre-experiment experience and by general instructions). The state then is transformed into

\[
\psi^{(2)} = G(\psi^{(1)}, A, 1),
\]

and then into

\[
\psi^{(2)}_\Delta = H(\psi^{(2)}, \Delta)
\]

in the interval \(\Delta \) between the two trials. The next (conditional) probability of responding 1 is

\[
\Pr [v(A) = 1 \text{ in trial } 2 | v(A) = 1 \text{ in trial } 1] = F(\psi^{(2)}_\Delta, A, 1).
\]

Clearly, the relationship between \(F(\psi^{(1)}, A, 1) \) and \(F(\psi^{(2)}_\Delta, A, 1) \) is complex. In particular, they need not coincide.

In the [BB] approach, however, the situation is much simpler. We have in the first trial

\[
\Pr [v(Q) = 1 \text{ in trial } 1 \text{ with } a] = F(\psi_A, Q, 1),
\]

and then, irrespective of how \(\psi_A^{(1)} \) transforms as a result of this measurement and between the two trials, in the next trial we have

\[
\Pr [v(Q) = 1 \text{ in trial } 2 \text{ with } a | v(Q) = 1 \text{ in trial } 1 \text{ with } a] = F(\psi_A, Q, 1).
\]

We see that the two probabilities must coincide. This is definitely not what happens empirically (see [ACK]).

The [BB] approach therefore has to be modified. Thus, one might assume that stimulus \(s \) determines the state \(\psi_s \) not uniquely, but depending on the previous state too:

\[
\psi'_s = K(s, \psi).
\]

This could save the approach, but would introduce a mechanism other than described by the QT generalizations \(\text{(1)-(2)-(3)}. \)
5 Logical Problems With the [BB] Approach

Even if by means of some extraneous to QT considerations one could make the [BB] approach work, it would still encounter the logical difficulty: it is not clear how to distinguish stimuli from questions.

Thus, in the opinion polling (say, in the Moore’s Clinton-Gore one [M]), suppose that the respondents are first instructed “We will show you a picture of a well known politician: tell us whether you trust him/her, yes or no.” This would amount to a single question Q. Then the pictures of Clinton and of Gore would amount to two stimuli a, b. Intuitively, the results of this procedural modification need not dramatically change the outcomes.

And in the [KBDB] approach it does not: the input is still essentially the same, consisting of a question specifying allowable responses and of the variable identifier of the question’s target (the spoken or written word “Clinton” is not much different from Clinton’s photograph).

In the [BB] approach, however, the procedural modification in question would amount to change from dealing with two observables and with states varying according to projection-evolution rules to dealing with a single observable and with states forced by the photographs.

6 Conclusion

Our analysis shows that [BB] is more problematic than [KBDB]. No doubt, [BB] can be modified in many ways, but it seems that [KBDB] is a more straightforward and general application of QT, unifying psychophysical, opinion polling, and quantum physical considerations.

Acknowledgments This work was supported by NSF grant SES-1155956. I am grateful to Harald Atmanspacher for discussing with me the issues related to this note.

References

[1] [BB] Busemeyer, J. R. and Bruza, P. D. (2012). *Quantum models of cognition and decision*. Cambridge Press.

[2] [KBDB] Khrennikov, A., Basieva, I., Dzhafarov, E.N., Busemeyer, J.R. (2014). arXiv:1403.3654

[3] [ACK] Atkinson, R., Carterette, E., Kinchla, R. 1962 Sequential phenomena in psychophysical judgments: A theoretical analysis. *IRE Transactions on Information Theory, 8*, 155-162.

[4] [M] Moore, D. W. (2002). Measuring new types of question-order effects. *Public Opinion Quarterly, 66*, 80-91.

1 The argument presented in this section was suggested to me by Harald Atmanspacher in a conversation we had in April 2014.