Supporting Information for

A Bicyclo[4.2.0]octene-Derived Monomer Provides Completely Linear Alternating Copolymers via Alternating Ring-Opening Metathesis Polymerization (AROMP)

Li Tan, Kathlyn A. Parker,* and Nicole S. Sampson*

Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400,

United States
Table of Contents
Table S1. Molecular weight and D_M determined by GPC using polystyrene standards. 4
Scheme S1. $t_{1/2}$ for each AROM-2 reaction step. ... 5
Figure S1. GPC traces of alternating copolymer poly(4-alt-6)$_{50}$ and the corresponding traces of poly(1-alt-6)$_{50}$. .. 6
Figure S2. 1H NMR spectrum of 2 in CD$_2$Cl$_2$. .. 7
Figure S3. 13C NMR spectrum of 2 in CDCl$_3$. ... 8
Figure S4. 1H NMR spectrum of 3 in acetone-d_6. ... 9
Figure S5. 13C NMR spectrum of 3 in CDCl$_3$. ... 10
Figure S6. 1H NMR spectrum of 4 in acetone-d_6. ... 11
Figure S7. 13C NMR spectrum of 4 in CDCl$_3$. ... 12
Figure S8. 1H NMR spectrum of 5 in CDCl$_3$. ... 13
Figure S9. 13C NMR spectrum of 5 in CDCl$_3$. ... 14
Figure S10. 1H NMR spectrum of poly(3-alt-6)$_{13}$ in CD$_2$Cl$_2$. .. 15
Figure S11. 1H NMR spectrum of poly(3-alt-6$_{10}$)$_{6}$ in CD$_2$Cl$_2$. .. 16
Figure S12. 1H NMR spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$. 17
Figure S13. 13C NMR spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$. 18
Figure S14. HSQC spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$. 19
Figure S15. Alkene region of HSQC spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$. 20
Figure S16. 1H NMR spectrum of poly(4-alt-6)$_{16}$ obtained at 35 °C in CDCl$_3$. 21
Figure S17. 1H NMR spectrum of poly(4-alt-6$_{15}$)$_{15}$ in CD$_2$Cl$_2$. ... 22
Figure S18. 1H NMR spectrum of crude poly(4-alt-6)$_{34}$ obtained at 35 °C in CD$_2$Cl$_2$. 23
Figure S19. 1H NMR spectrum of poly(4-alt-6)$_{36}$ obtained at 60 °C in CD$_2$Cl$_2$. 24
Figure S20. 1H NMR spectrum of poly(5-alt-6)$_{10}$ in CD$_2$Cl$_2$. .. 25
Figure S21. 1H NMR spectrum of E-stilbene in CD$_2$Cl$_2$. ... 26
Figure S22. 13C NMR spectrum of E-stilbene in CD$_2$Cl$_2$ (fraction I). .. 27
Figure S23. HSQC spectrum of E-stilbene in CD$_2$Cl$_2$ (fraction I). ... 28
Figure S24. 1H NMR spectrum of partially purified Ph-(3-alt-6)-Ph in CD$_2$Cl$_2$ (fraction II). 29
Figure S25. 13C NMR spectrum of partially purified Ph-(3-alt-6)-Ph in CD$_2$Cl$_2$ (fraction II). 30
Figure S26. 1H NMR spectrum of partially purified Ph-(3-alt-6)-Ph in CD$_2$Cl$_2$ (fraction II). 31
Figure S27. 1H NMR spectrum of partially purified cyc-(3-alt-6)$_{3}$ in CD$_2$Cl$_2$ (fraction III). 32
Figure S28. ROM of monomer 1 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time. 33
Figure S29. ROM of monomer 3 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time. 34
Figure S30. ROM of monomer 4 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time. 35
Figure S31. ROM of monomer 5 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time. 36
Figure S32. AROMP of monomer 3 and cyclohexene 6 ([Ru]:3:6=1:25:50) in CD2Cl2 monitored by 1H NMR spectroscopy as a function of time. ... 37

Figure S33. AROMP of monomer 4 and cyclohexene 6 ([Ru]:4:6=1:20:40) in CD2Cl2 monitored by 1H NMR spectroscopy as a function of time. ... 38

Figure S34. AROMP of monomer 5 and cyclohexene 6 ([Ru]:5:6=1:50:100) in CD2Cl2 monitored by 1H NMR spectroscopy as a function of time. ... 39

Figure S35. The AROM conversion of [Ru]-4 enoic carbene to [Ru]-6-4 alkylidene with excess cyclohexene 6 in CD2Cl2.. 40

Figure S36. The AROM conversion of [Ru]-3 enoic carbene to [Ru]-6-3 alkylidene with excess cyclohexene 6 in CD2Cl2.. 41

Figure S37. Conversion of [Ru]-6-4 alkylidene (1 eq) to [Ru]-6-4-6-4 alkylidene in double AROM (AROM-2) with monomer 4 (1 eq) in the presence of excess cyclohexene 6 in CD2Cl2... 42

Figure S38. Conversion of monomer 4 (1 eq) in double AROM (AROM-2) with [Ru]-6-4 (1 eq) and excess cyclohexene 6 in CD2Cl2.. 43

Figure S39. Conversion of [Ru]-6-3 alkylidene (1 eq) to [Ru]-6-3-6-3 alkylidene in double AROM (AROM-2) with monomer 3 (1 eq) in the presence of excess cyclohexene 6 in CD2Cl2. ... 44

Figure S40. Conversion of monomer 3 (1 eq) in double AROM (AROM-2) with [Ru]-6-3 (1 eq) and excess cyclohexene 6 in CD2Cl2.. 45

Figure S41. Conversion of [Ru]-6-4 alkylidene (1 eq) to [Ru]-6-3-6-4 alkylidene in double AROM (AROM-2) with monomer 3 (1 eq) in the presence of excess cyclohexene 6 in CD2Cl2... 46

Figure S42. Conversion of monomer 3 (1 eq) in double AROM (AROM-2) with [Ru]-6-4 (1 eq) and excess cyclohexene 6 in CD2Cl2.. 47

Figure S43. Conversion of [Ru]-6-3 alkylidene (1 eq) to [Ru]-6-4-6-3 alkylidene in double AROM (AROM-2) with monomer 4 (1 eq) in the presence of excess cyclohexene 6 in CD2Cl2... 48

Figure S44. Conversion of monomer 4 (1 eq) in double AROM (AROM-2) with [Ru]-6-3 (1 eq) and excess cyclohexene 6 in CD2Cl2.. 49

References.. 50
Table S1. Molecular weight and D_m determined by GPC using polystyrene standards.

Polymer	Temp	Cald. M_n	M_n	M_w	D_m
poly(4-alt-6)$_{16}$	25 °C	5064	10005	22682	2.0
poly(4-alt-6)$_{16}$	35 °C	5064	10005	18855	1.8
poly(4-alt-6-d$_{10}$)$_{15}$	35 °C	5064	12716	21298	1.7
poly(4-alt-6)$_{34}$	35 °C	12504	14552	26512	1.8
poly(4-alt-6)$_{36}$	60 °C	12504	11420	24936	2.1
poly(3-alt-6-d$_{10}$)$_{6}$	25 °C	1556	2046	7677	3.75

GPC determined M_n is larger than calculated M_n due to the Benoit effect.1
Scheme S1. $t_{1/2}$ for each AROM-2 reaction step.

$[\text{Ru}]_{\text{Ph}}^\circ + A \rightarrow [\text{Ru}]-A \xrightarrow{\text{excess}} [\text{Ru}]-6-A \rightarrow [\text{Ru}]-A'-6-A$

3: $t_{1/2} = 40 \text{ min}$ \hspace{1cm} $t_{1/2} = 28 \text{ min}$
4: $t_{1/2} = 100 \text{ min}$ \hspace{1cm} $t_{1/2} = 43 \text{ min}$

3: $t_{1/2} = 33 \text{ min}$
4: $t_{1/2} = 48 \text{ min}$

3: $t_{1/2} = 26 \text{ min}$
4: $t_{1/2} = 41 \text{ min}$
Figure S1. GPC traces of alternating copolymer poly(4-alt-6)$_{50}$ and the corresponding traces of poly(1-alt-6)$_{50}$.
Figure S2. 1H NMR spectrum of 2 in CD$_2$Cl$_2$.
Figure S3. 13C NMR spectrum of 2 in CDCl$_3$.
Figure S4. 1H NMR spectrum of 3 in acetone-d_6.
Figure S5. 13C NMR spectrum of 3 in CDCl$_3$.
Figure S6. 1H NMR spectrum of 4 in acetone-d$_6$.
Figure S7. 13C NMR spectrum of 4 in CDCl$_3$.
Figure S8. 1H NMR spectrum of 5 in CDCl$_3$.
Figure S9. 13C NMR spectrum of 5 in CDCl$_3$.
Figure S10. 1H NMR spectrum of poly(3-alt-6)$_{13}$ in CD$_2$Cl$_2$.
Figure S11. 1H NMR spectrum of poly(3-alt-6-d$_{10}$)$_6$ in CD$_2$Cl$_2$.
Figure S12. 1H NMR spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$.
Figure S13. 13C NMR spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$.
Figure S14. HSQC spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$.
Figure S15. Alkene region of HSQC spectrum of poly(4-alt-6)$_{16}$ obtained at 25 °C in CD$_2$Cl$_2$.
Figure S16. 1H NMR spectrum of poly(4-alt-6)$_{16}$ obtained at 35 °C in CDCl$_3$.
Figure S17. 1H NMR spectrum of poly(4-alt-6-d$_{10}$)$_{15}$ in CD$_2$Cl$_2$.
Figure S18. 1H NMR spectrum of crude poly(4-alt-6)$_{34}$ obtained at 35 °C in CD$_2$Cl$_2$.
Figure S19. 1H NMR spectrum of poly(4-alt-6)$_{36}$ obtained at 60 °C in CD$_2$Cl$_2$.
Figure S20. 1H NMR spectrum of poly(5-alt-6)$_{10}$ in CD$_2$Cl$_2$.
Figure S21. 1H NMR spectrum of E-stilbene in CD$_2$Cl$_2$.
Figure S22. 13C NMR spectrum of E-stilbene in CD$_2$Cl$_2$ (fraction I).
Figure S23. HSQC spectrum of E-stilbene in CD$_2$Cl$_2$ (fraction I).
Figure S24. 1H NMR spectrum of partially purified Ph-(3-alt-6)-Ph in CD$_2$Cl$_2$ (fraction II).
Figure S25. 13C NMR spectrum of partially purified Ph-(3-alt-6)-Ph in CD$_2$Cl$_2$ (fraction II).
Figure S26. 1H NMR spectrum of partially purified Ph-(3-alt-6)-Ph in CD$_2$Cl$_2$ (fraction II).
Figure S27. 1H NMR spectrum of partially purified cyc-(3-alt-6)$_1$ in CD$_2$Cl$_2$ (fraction III).
Figure S28. ROM of monomer 1 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time.
Figure S29. ROM of monomer 3 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time.
Figure S30. ROM of monomer 4 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time.
Figure S31. ROM of monomer 5 in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time.
Figure S32. AROMP of monomer 3 and cyclohexene 6 ([Ru]:3:6=1:25:50) in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time.
Figure S33. AROMP of monomer 4 and cyclohexene 6 ([Ru]:4:6=1:20:40) in CD₂Cl₂ monitored by ¹H NMR spectroscopy as a function of time.
Figure S34. AROMP of monomer 5 and cyclohexene 6 ([Ru]:5:6=1:50:100) in CD$_2$Cl$_2$ monitored by 1H NMR spectroscopy as a function of time.
Figure S35. The AROM conversion of [Ru]-4 enoic carbene to [Ru]-6-4 alkylidene with excess cyclohexene 6 in CD$_2$Cl$_2$.
Figure S36. The AROM conversion of [Ru]-3 enoic carbene to [Ru]-6-3 alkyldene with excess cyclohexene 6 in CD₂Cl₂.
Figure S37. Conversion of [Ru]-6-4 alkylidene (1 eq) to [Ru]-6-4-6-4 alkylidene in double AROM (AROM-2) with monomer 4 (1 eq) in the presence of excess cyclohexene 6 in CD₂Cl₂.
Figure S38. Conversion of monomer 4 (1 eq) in double AROM (AROM-2) with [Ru]-6-4 (1 eq) and excess cyclohexene 6 in CD$_2$Cl$_2$.
Figure S39. Conversion of [Ru]-6-3 alkylidene (1 eq) to [Ru]-6-3-6-3 alkylidene in double AROM (AROM-2) with monomer 3 (1eq) in the presence of excess cyclohexene 6 in CD₂Cl₂.
Figure S40. Conversion of monomer 3 (1 eq) in double AROM (AROM-2) with [Ru]-6-3 (1 eq) and excess cyclohexene 6 in CD$_2$Cl$_2$.
Figure S41. Conversion of [Ru]-6-4 alkylidene (1 eq) to [Ru]-6-3-6-4 alkylidene in double AROM (AROM-2) with monomer 3 (1 eq) in the presence of excess cyclohexene 6 in CD$_2$Cl$_2$.
Figure S42. Conversion of monomer 3 (1 eq) in double AROM (AROM-2) with [Ru]-6-4 (1 eq) and excess cyclohexene 6 in CD$_2$Cl$_2$.
Figure S43. Conversion of [Ru]-6-3 alkyldiene (1 eq) to [Ru]-6-4-6-3 alkyldene in double AROM (AROM-2) with monomer 4 (1 eq) in the presence of excess cyclohexene 6 in CD$_2$Cl$_2$.
Figure S44. Conversion of monomer 4 (1 eq) in double AROM (AROM-2) with [Ru]-6-3 (1 eq) and excess cyclohexene 6 in CD$_2$Cl$_2$.
References
(1) Lapinte, V.; de Frémont, P.; Montembault, V.; Fontaine, L. Macromol. Chem. Phys. 2004, "Ring opening metathesis polymerization (ROMP) of cis- and trans-3,4-bis(acetyloxymethyl)cyclobut-1-enes and synthesis of block copolymers," 205, 1238-1245. 10.1002/macp.200300224: 10.1002/macp.200300224.