ERAAP modulation
A possible novel strategy for cancer immunotherapy?

Doriana Fruci,1,* Franco Locatelli2,3 and Loredana Cifaldi1

1Oncohaematology Department; Laboratory of Oncoimmunology; IRCCS; Ospedale Pediatrico “Bambino Gesù”; Rome, Italy; 2University of Pavia; Pavia, Italy

Recent findings demonstrate that loss of ERAAP, an endoplasmic reticulum aminopeptidase involved in antigen processing, plays a key role in stimulating anti-tumor innate and adaptive immune responses. We show that MHC class I molecules produced in the absence of ERAAP retain their capability of presenting antigens to CD8+ T cells, but not of inhibiting NK cells.

The major histocompatibility complex class I (MHC I) antigen-processing pathway produces peptides from intracellular proteins and present them at the cell surface for recognition by Natural Killer (NK) cells and CD8+ T cells.1 Precursor peptides are generated in the cytoplasm and translocated to the endoplasmic reticulum (ER) where they are further processed by ER aminopeptidases, i.e., ERAAP in mice2 and ERAP1 and ERAP2 in humans,3,4 before being assembled with MHC I molecules.

MHC I molecules ‘preferentially’ bind peptides of 8–10 amino acids. The length restriction is imposed by a conserved network of hydrogen bonds on MHC I residues. Thus, binding of longer peptides compromises the stability of peptide-MHC I (pMHC I) complexes.

ERAAP is critical in presentation of antigen to CD8+ T cells, since many peptides delivered by the transporter associated with antigen processing (TAP) exceed the optimal length for binding to MHC I molecules. Immunization of ERAAP-deficient mice with cells from wild-type mice, or vice versa, resulted in potent CD8+ T-cell responses,5,7 suggesting that loss of ERAAP alters the composition of pMHC I repertoire. Consistent with these findings, mass spectrometry analysis revealed a marked increase in the length of endogenous peptides presented by MHC I molecules in mice lacking ERAAP.8 However, whether ERAAP-dependent pMHC I alterations affect host immune responses against tumors is still unknown.

To address this question, we stably suppressed ERAAP expression in the murine T-cell lymphoma RMA by siRNA and evaluated the relevance of the loss of ER peptide trimming on tumorigenicity. We demonstrated that ERAAP silencing results in tumor rejection in syngeneic mice by triggering NK cell, and subsequently T cell (CD4+ and CD8+) anti-tumor responses.9 This rejection was mainly due to an immediate NK cell response and depends on the MHC I peptide presented by ERAAP-silenced RMA cells, because replacement of the endogenous peptides with a high-affinity peptide with optimal length was sufficient to restore an NK-protective effect of MHC I through the NK inhibitory receptor Ly49C/I.7

NK cells were clearly the major players in the control of tumor growth, not only because in vivo depletion of host NK cells restored the growth of ERAAP-silenced RMA cells, but also because the immediate burst of NK-mediated apoptotic death leading to tumor clearance in vivo began just 4 hours following tumor inoculation, a delay that is not consistent with any adaptive host response. On the other hand, in vivo depletion of host CD4+ or CD8+ T cells results in delayed tumor growth and death of 40–20% of mice, respectively.9 These results fit well with the hypothesis that CD4+ and CD8+ effector

References
1. Shastri N, Schwab S, Serwold T. Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 2002; 20:463-93.
2. Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 2002; 419:480-3.
3. Saric T, Chung SC, Hartori A, York IA, Markant S, Rock KL, et al. An IFNgamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 2002; 3:1169-76.
OncoImmunology Volume 1 Issue 1

7. Hammer GE, Gonzalez F, James E, Nolla H, Shastri N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat Immunol 2007; 8:101-8.

8. Blanchard N, Kanaseki T, Escobar H, Delebecque F, Nagarajan NA, Reyes-Vargas E, et al. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J Immunol 2010; 184:3033-42.

4. York IA, Chang SC, Saric T, Keys JA, Favreau JM, Goldberg AL, et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat Immunol 2002; 3:1177-84.

5. Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 2005; 6:689-97.

6. Hammer GE, Gonzalez F, Champaur M, Cado D, Shastri N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol 2006; 7:103-12.

The figure illustrates the activation of NK cells by ERAAP-silenced cells. Proteins are synthesized in the cytoplasm (1) and polyubiquitinated (2). Proteasomes degrade proteins (2). Peptides produced are either of the ideal length for binding to MHC class I molecules or are amino-terminally extended precursors. TAP transports peptides into the endoplasmic reticulum (ER) (3) for further trimming at the N-terminus by ER aminopeptidases (4), i.e., ERAAP in mice and ERAP1 and ERAP2 in human. Peptides with the appropriate length are loaded onto MHC class I molecules (5a). The binding of peptides with high affinity to the MHC-I-β2 microglobulin (β2m) complex induces a final folding allowing the peptide-MHC-I complexes (pMHC-I) to exit from the ER to the plasma membrane (6a) where they are recognized by T cell antigen receptors (TCR) on CD8+ T cells and inhibitory receptors on NK cells. In the absence of ERAAP, a distinct repertoire of pMHC-I complexes is produced and exported to the cell membrane (5b and 6b). These unstable complexes are sufficiently conformed to present antigens to CD8+ T cells but not enough to inhibit NK cells. Thus, inhibition of ERAAP shifts the balance of activating and inhibitory signals towards NK cell activation and induction of cytolytic effector functions resulting in target-cell killing.

9. Cifaldi L, Lo Monaco E, Forloni M, Giorda E, Lorenzi S, Perrini S, et al. Natural killer cells efficiently reject lymphoma silenced for the endoplasmic reticulum aminopeptidase associated with antigen processing. Cancer Res 2011; 71:1597-606.