RETHINKING HIERARCHIES IN PRE-TRAINED PLAIN VISION TRANSFORMER

Yufei Xu1, Jing Zhang1, Qiming Zhang1, Dacheng Tao2,1

1School of Computer Science, The University of Sydney, Australia
2JD Explore Academy, China

ABSTRACT

Self-supervised pre-training vision transformer (ViT) via masked image modeling (MIM) has been proven very effective. However, customized algorithms should be carefully designed for the hierarchical ViTs, e.g., GreenMIM, instead of using the vanilla and simple MAE for the plain ViT. More importantly, since these hierarchical ViTs cannot reuse the off-the-shelf pre-trained weights of the plain ViTs, the requirement of pre-training them leads to a massive amount of computational cost, thereby incurring both algorithmic and computational complexity. In this paper, we address this problem by proposing a novel idea of disentangling the hierarchical architecture design from the self-supervised pre-training. We transform the plain ViT into a hierarchical one with minimal changes. Technically, we change the stride of linear embedding layer from 16 to 4 and add convolution (or simple average) pooling layers between the transformer blocks, thereby reducing the feature size from 1/4 to 1/32 sequentially. Despite its simplicity, it outperforms the plain ViT baseline in classification, detection, and segmentation tasks on ImageNet, MS COCO, Cityscapes, and ADE20K benchmarks, respectively. We hope this preliminary study could draw more attention from the community on developing effective (hierarchical) ViTs while avoiding the pre-training cost by leveraging the off-the-shelf checkpoints. The code and models will be released at https://github.com/ViTAE-Transformer/HPViT.

1 INTRODUCTION

By training the networks to reconstruct the masked input, masked image modeling (MIM) Bao et al. (2022), He et al. (2022), Xie et al. (2022) has proven to be very effective for pre-training vision transformers Dosovitskiy et al. (2020). The representative method, e.g., MAE He et al. (2022), improves the efficiency of the pre-training process by only operating on the visible tokens. However, such a design breaks the 2D relationship between tokens, making it nontrivial to directly pre-training hierarchical vision transformers.

To leverage MIM for pre-training hierarchical vision transformers, recent studies propose customized algorithms like token grouping Huang et al. (2022), uniform masking strategy Li et al. (2022), and mixed masking strategy with masked attention Liu et al. (2022). Some works also introduce specific layers Zhang et al. (2022) to facilitate the learning of hierarchical vision transformers in MIM pre-training. Although these methods achieve excellent performance, they need elaborate designs compared to MAE and inevitably require training the networks from scratch rather than making good use of off-the-shelf plain vision transformer checkpoints, due to the discrepancy between the hierarchical and plain architectures, e.g., spatial down-sampling. Consequently, the pre-training process introduces a massive amount of computational cost and incurs both algorithmic and computational complexity. Such a difficulty hinders the extensive study of the more effective and efficient designs of hierarchical vision transformers, especially the design of larger models.

To address this problem, we propose a novel idea of disentangling the hierarchical architecture design from the MIM pre-training process. Specifically, we directly transform the MIM pre-trained plain vision transformers into hierarchical ones with minimal changes, thereby alleviating the algorithmic and computational complexity of pre-training the hierarchical vision transformers from
Figure 1: Illustration of the proposed method given pre-trained ViT-B. The dashed boxes indicate the operations are only used in the corresponding stage. The black boxes represents the blocks whose parameters are reused during fine-tuning. We use green to mark the changes that we introduce to make the plain vision transformers hierarchical.

2 METHODS

In this paper, we focus on disentangling the structures between pre-training and fine-tuning and designing hierarchical vision transformers given pre-trained plain vision transformers. As demonstrated in Figure 1, we only transform the structure of the vision transformer in the fine-tuning stages through some simple yet flexible designs. All parts of the encoder in the pre-trained plain vision transformers are reused in the transformed hierarchical architectures and only minimal changes are introduced (marked by green). We will give these changes in detail in the following parts.

Patch Embedding Layer To embed the input images, plain vision transformers partition the inputs into non-overlapping patches first and then project them to tokens. The typical size of each patch is 16, i.e., the feature map is spatially down-sampled by $16 \times$. In this case, some high-frequency information is discarded. To recover the high-resolution features and reuse the parameters, we partition the input image into overlapped patches while retaining the size of each patch, i.e., we partition the image into 16×16 patches and allow adjacent patches to have an overlap of size 12, resulting in $4 \times$ down-sampling in the patch embedding layer. The overlapped patches are then projected to tokens using the weights from the pre-trained embedding layer directly.

Window-based Attention Directly increasing the size of the feature map from $1/16$ to $1/4$ will introduce extremely heavy computational burden due to the quadratic computational complexity of self-attention. To address this issue, we change the attention calculation from the vanilla (global) self-attention to the (local) window-based one while making no changes to the projection weights of query, key, and value. Specifically, we follow the common practice in recent studies.
to adopt window-based attention with relative position embedding. It should be noted that we only adopt the original window-based attention as a proof of concept while there are also several advanced attention manners that could be used to further improve the performance, e.g., VSA (Zhang et al., 2022) and grid attention (Tu et al., 2022). We leave it as future work.

Pooling layer One important design in hierarchical vision transformer is that we need to downsample the feature maps gradually to obtain hierarchical feature representations. We start from the parameter-free average pooling operations to down-sample the feature maps. To help broadcast the information between adjacent patches, we use slightly larger kernels in the pooling layer, i.e., using 3×3 kernel size and stride 2. A parallel convolution layer with the same kernel size is introduced to help learn better local features. The parallel convolution and pooling layers can be merged after training using the re-parameterization trick (Ding et al., 2021) for inference speedup.

Discussion This work aims to transform the structure of the plain vision transformers during the fine-tuning stage by exploring the flexibility of the transformer architecture as well as considering the properties of downstream computer vision tasks. It focuses on a different aspect compared with the efficient fine-tuning methods originally proposed in the NLP area, e.g., using adapters (Chen et al., 2022) to adapt the transformers’ outputs or prompts (Jia et al., 2022) to tune the networks’ inputs. These methods are orthogonal to ours and can be used to further improve the performance.

3 Experiments

To thoroughly validate the effectiveness of the proposed method, we evaluate the performance of the transformed hierarchical vision transformer on classification, detection, and segmentation tasks. We use the pre-trained ViT-B (Dosovitskiy et al., 2020) checkpoints from MAE (He et al., 2022) as our baseline and transform the backbone network into a hierarchical one during fine-tuning. We use window attention with a window size of 7×7 in the 1/4 and 1/8 levels, respectively.

Table 1: Classification results. † represents we use transformed hierarchical structures based on the pre-trained ViT-B. We adopt GreenMIM (Huang et al., 2022), HiViT (Zhang et al., 2022c), ViTAE (Xu et al., 2021), BEiT (Bao et al., 2022), and MAE (He et al., 2022) for comparison.

Method	GreenMIM	HiViT	ViTAE-B	BEiT	MAE	Ours
Pre-train	Swin-B	HiViT	ViTAE-B	ViT-B	ViT-B	ViT-B
Fine-tune	Swin-B	HiViT	ViTAE-B	ViT-B	ViT-B	ViT-B†
Accuracy	83.8	83.8	83.8	83.2	83.6	83.8

Classification We fine-tune the transformed model for 100 epochs on the ImageNet (Deng et al., 2009) dataset. The last pooling layer of the transformed model is modified to a simple global average pooling. The results are presented in Table 1. It can be observed that simply transforming the vision transformer from a plain structure to a hierarchical one brings about 0.2 performance gains in accuracy. Such performance is comparable with the performance using the hierarchical structure-friendly pre-training, e.g., 83.8 of Swin-B (Liu et al., 2021) pre-trained with GreenMIM (Huang et al., 2022) and HiViT (Zhang et al., 2022c). Unlike them, our method does not require the structures to be the same during pre-training and fine-tuning, thus getting rid of the pre-training cost.

Table 2: Detection results based on the Mask RCNN (He et al., 2017) $1 \times$ setting on MS COCO (Lin et al., 2014).

Method	mAPm	mAP50	mAP75	mAPm	mAP50	mAP75
ViT-B	44.0	66.2	48.2	40.7	63.4	43.8
ViT-B†	45.5	67.1	50.2	41.5	64.4	44.9

Detection We use Mask RCNN (He et al., 2017) as the detection framework. We use the plain vision transformer and the transformed one as the backbone for comparison. The experiments are conducted on the MS COCO dataset (Lin et al., 2014) and the models are trained for 12 epochs, following the default $1 \times$ setting (Liu et al., 2021). We follow the strategy in (Li et al., 2021) to generate hierarchical features from the plain vision transformer via transposed convolutions. Four
global attention layers are used evenly in the baseline model. To reduce the computational cost, we replace the first global attention layer in the transformed hierarchical backbone with window attention. The last three global attention layers are retained at the same position as the baseline model. The output features are generated from the 2nd, 4th, 10th, and 12th layers, following the common practice in hierarchical transformers [Liu et al. (2021)]. As observed from Table 2, the transformed backbone brings a gain of 1.5 box mAP and 0.8 mask mAP over the baseline model. The results demonstrate that the hierarchical structure is more suitable for dense prediction tasks compared with the plain vision transformer baseline. Besides, the proposed method can make good use of the off-the-shelf checkpoints of pre-trained plain vision transformers, avoiding bringing the extra cost of pre-training the model from scratch.

Table 3: Segmentation results based on the UperNet [Xiao et al. (2018)] on Cityscapes [Cordts et al. (2016)] (769 × 769 input size and 40K training iterations) and ADE20K [Zhou et al. (2017)] (640 × 640 input size and 80K training iterations).

	Cityscapes	ADE20K
	mIoU	mAcc
ViT-B	80.0	87.2
ViT-B†	81.2	88.3
	47.3	58.8

Segmentation To evaluate the performance of the transformed vision transformer on the segmentation task, we adopt UperNet [Xiao et al. (2018)] as the segmentation framework and conduct experiments on the Cityscapes [Cordts et al. (2016)] and ADE20K [Zhou et al. (2017)] datasets, respectively. We adopt the strategy in BEIT [Bao et al. (2022)] to extract the output features from the 4th, 6th, 8th, and 12th layers of the plain vision transformer with transposed convolutions. As in the detection tasks, the output features are generated from the 2nd, 4th, 10th, and 12th layers from the transformed hierarchical vision transformer. We employ simple max pooling layers in the last pooling layer with kernel size 2 and stride 2. As shown in Table 3, the transformed model improves the baseline model by 0.8 mIoU on the ADE20K dataset and 1.2 mIoU on the Cityscapes dataset. These results further confirm the value of the proposed simple idea, i.e., the hierarchical vision transformer transformed from the pre-trained plain vision transformer is more suitable for dense prediction tasks since the hierarchical design keeps valuable high-resolution features in early stages and explicitly produces multi-scale features for the task heads.

4 LIMITATION AND DISCUSSION

This study provides a promising direction that deserves more research efforts. More effective hierarchical structures are expected to be derived from the plain vision transformers, e.g., by trying more advanced attention or down-sampling methods, which should deliver better performance on general or specific downstream tasks. More importantly, they do not need re-training. For now, this work only focuses on transforming plain vision transformers pre-trained using self-supervised learning methods, especially based on masked image modeling. However, since there is no assumption about a specific pre-training method, it can be extended to transforming other pre-trained plain vision transformers, e.g., via cross-modal pre-training like CLIP [Radford et al. (2021)]. We leave it as future work.

5 CONCLUSION

In this paper, we rethink the masked image modeling pre-training for hierarchical vision transformers and present a novel idea of disentangling the hierarchical vision transformer design from pre-training. With simple pooling layers, the transformed hierarchical backbone outperforms the plain baseline in classification, detection, and segmentation tasks. Besides, such a method can fully utilize the progress in plain vision transformer pre-training for better hierarchical vision transformer fine-tuning with no requirements of expensive pre-training, contributing to the development of green AI and providing a new path for the vision transformer research using limited computational resources. We hope this preliminary study could draw more attention from the community on developing more effective vision transformers while avoiding the pre-training cost by exploiting the amazing flexibility of the transformer architecture.
REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers. In International Conference on Learning Representations, 2022.

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for dense predictions. 2022.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255, 2009.

Xiaohan Ding, Xiangyu Zhang, Ningming Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13733–13742, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations, 2020.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2961–2969, 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009, 2022.

Lang Huang, Shan You, Mingkai Zheng, Fei Wang, Chen Qian, and Toshihiko Yamashita. Green hierarchical vision transformer for masked image modeling. arXiv preprint arXiv:2205.13515, 2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2205.12119, 2022.

Xiang Li, Wenhai Wang, Lingfeng Yang, and Jian Yang. Uniform masking: Enabling mae pre-training for pyramid-based vision transformers with locality. arXiv preprint arXiv:2205.10063, 2022.

Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollár, Kaiming He, and Ross Girshick. Benchmarking detection transfer learning with vision transformers. arXiv preprint arXiv:2211.11429, 2021.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer backbones for object detection. In Proceedings of the European Conference on Computer Vision (ECCV), 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision (ECCV), 2014.

Jihao Liu, Xin Huang, Yu Liu, and Hongsheng Li. Mixmim: Mixed and masked image modeling for efficient visual representation learning. arXiv preprint arXiv:2205.13137, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit: Multi-axis vision transformer. 2022.

Tete Xiao, Yingchong Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for scene understanding. In Proceedings of the European conference on computer vision (ECCV), pp. 418–434, 2018.
Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple framework for masked image modeling. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9653–9663, 2022.

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vitae: Vision transformer advanced by exploring intrinsic inductive bias. *Advances in Neural Information Processing Systems*, 34, 2021.

Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision transformer baselines for human pose estimation. *Advances in neural information processing systems*, 2022.

Qiming Zhang, Yufei Xu, Jing Zhang, and Dacheng Tao. Vitaev2: Vision transformer advanced by exploring inductive bias for image recognition and beyond. *arXiv preprint arXiv:2202.10108*, 2022a.

Qiming Zhang, Yufei Xu, Jing Zhang, and Dacheng Tao. Vsa: Learning varied-size window attention in vision transformers. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2022b.

Xiaosong Zhang, Yunjie Tian, Wei Huang, Qixiang Ye, Qi Dai, Lingxi Xie, and Qi Tian. Hivit: Hierarchical vision transformer meets masked image modeling. *arXiv preprint arXiv:2205.14949*, 2022c.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 633–641, 2017.