Spectral Parameter Power Series Analysis of Supersymmetric Schrödinger Equations with Balanced Gain and Loss Potentials

S A C Loredo-Ramírez¹, V Barrera-Figueroa¹ and V S Rabinovich²

¹ Instituto Politécnico Nacional, SEPI-UPITA, Av. IPN 2580, Col. Barrio la Laguna Ticomán CP. 07340, Ciudad de México, Mexico.
² Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, Av. Luis Enrique Erro S/N, Col. Lindavista CP. 07738, Ciudad de México, Mexico

E-mail: vbarreraf@ipn.mx

Abstract. In this work the Zakharov-Shabat system is addressed to obtain a pair of supersymmetric Schrödinger equations. The scattering and resonance states of these equations are investigated. Explicit solutions for the equations are obtained in the form of power series of the spectral parameter. In the case of the scattering states, we obtain expressions for the transmission and reflection coefficients. In the case of the resonance states we obtain the characteristic equation that defines their complex energies. We show that finding approximate complex energies of the resonance states reduces to calculating polynomial roots from certain characteristic polynomial. Some cases of interest are numerically implemented.

1. Introduction

The Zakharov-Shabat system arises in the inverse scattering transform when investigating the time evolution of the nonlinear Schrödinger equation [1,2]. This system also arises in the linear applications of quantum mechanics [3–6]. By performing a decoupling process, the Zakharov-Shabat system leads to a pair of Darboux-associated Schrödinger equations [7,8]. The Zakharov-Shabat system has also wide applications in the scattering of waves, for describing the interaction of solitons in stable media, in one-dimensional problems involving self-modulation of dispersive waves, among others (see, e.g., [1,2,6,9–11]).

In the present work we analyze the scattering and resonance states of a pair of supersymmetric Schrödinger equations resulting from the Zakharov-Shabat system. Scattering states are analyzed from the general solutions of supersymmetric equations. The analysis leads to explicit expressions for the transmission and reflection coefficients. From the transmission coefficients we determine the transparency energies of the potentials. On the other hand, those solutions of the Schrödinger equations associated to complex energies \(\epsilon = E_0 - i\Gamma/2 \) (\(\Gamma > 0 \)) and satisfying the outgoing wave conditions describe resonance states, also called Gamow-Siegert states [12–14]. Resonance states of quantum systems having \(\mathcal{P}\mathcal{T} \)-symmetry have also been considered in the literature [15–20].
In this work we use the spectral parameter power series (SPPS) method [21] for obtaining exact solutions of the supersymmetric equations. These solutions are given by uniformly convergent power series of the spectral parameter. From these solutions we obtain a SPPS representation of the characteristic equation of the resonance states, which takes the form of a polynomial equation in its numerical implementation. Hence, calculating approximate complex energies of resonance states reduces to determining complex roots of a polynomial equation.

The outline of this work is the following. In Section 2 we present the Zakharov-Shabat system and its relation with supersymmetric partners. In Section 3 we construct a general solution of Schrödinger equation in a SPPS form. In Sections 4 and 5 we analyse the scattering and resonance states resulting of considering real- and complex-valued potentials. Finally, some concluding remarks are presented in Section 6.

2. The Zakharov-Shabat system

Supersymmetry in quantum mechanics leads to finding new solvable potentials from the factorization of Hamiltonians. Given a potential its supersymmetric partner can be obtained from the solution of a Ricatti equation that follows from the original potential. In this paper, however, we obtain a pair of supersymmetric partners not by invoking Ricatti equations, but the Zakharov-Shabat system. The obtained superpotentials have the property of possessing balanced gains and losses [15, 20, 22, 23]. The so-called Zakharov-Shabat system is a pair of first-order differential equations of the form [24,26]

\[n'_1(x) - \kappa n_2(x) = U(x) n_1(x), \]
\[n'_2(x) + \kappa n_1(x) = -U(x) n_2(x), \]

where the vector-valued function \((n_1, n_2)^\top\) denotes its solution, \(\kappa\) is a complex parameter, and \(U: \mathbb{R} \to \mathbb{C}\) is a function (also called potential) satisfying \(U \in L^1(\mathbb{R})\). The link between the Zakharov-Shabat system and a pair of supersymmetric Schrödinger equations is deduced by introducing the following functions

\[u := n_1 + in_2, \quad v := n_1 - in_2, \quad \eta := iU. \]

From these functions system (1) can be written in the form

\[(\partial + \eta) u = \kappa v, \quad (2a) \]
\[(\partial - \eta) v = \kappa u, \quad (2b) \]

where \((u, v)^\top\) is the solution in the new variables, and \(\partial\) represents the derivative with respect to the real variable \(x \in \mathbb{R}\). The application to the left of operator \((\partial - \eta)\) on equation (2a) and the operator \((\partial + \eta)\) on equation (2b) give a pair of decoupled Schrödinger equations

\[S_V u := (-\partial^2 + V) u = \kappa^2 u, \]
\[S_W v := (-\partial^2 + W) v = \kappa^2 v, \]

being \(V := \eta^2 - \partial \eta\) and \(W := \eta^2 + \partial \eta\) the corresponding complex-valued superpotentials [25], which exhibit balanced gain and loss properties [27,28]. These potentials are analogous to those complex refractive indexes found in optics [29,30]. Schrödinger equations (3) are also known as Darboux associated partners [7,31].

Let \(\lambda := \kappa^2\) be the spectral parameter of equations (3), which in general is a complex number having the polar representation \(\lambda = |\lambda| e^{i\phi}\) for \(\lambda \neq 0\), where \(0 \leq \phi < 2\pi\). A branch of \(\sqrt{\lambda} =: \kappa\) is defined as

\[\kappa = |\lambda|^{1/2} e^{i\theta}, \quad 0 \leq \theta < \pi. \]

Hence, the analysis of the solutions of equations (3) will be carried out in the upper half of the complex \(\kappa\)-plane thus defined.
3. SPPS analysis of Schrödinger equations with complex potentials

Let us focus on Schrödinger equation (3a) involving the potential \(V = \eta^2 - \partial \eta \), where \(\eta = iU \), and \(\lambda = \kappa^2 \) takes the role of an energy parameter. Let us assume that \(V \) vanishes as \(|x| \to \infty \). Hence, \(V \) can be suitably approximated by the function

\[
\tilde{V}(x) = \begin{cases}
V_0(x), & a < x < b, \\
0, & \text{elsewhere,}
\end{cases}
\]

where \(V_0 = V|_{(a,b)} \) is the restriction of \(V \) in \((a,b)\). The numbers \(a < b \) can be chosen so that \(|V(x)| < \delta \), where \(\delta > 0 \) is an arbitrary given small number. The definition of this short-range potential leads to the boundary conditions

\[
[u(x)]_a = 0, \quad [u'(x)]_a = 0; \quad [u(x)]_b = 0, \quad [u'(x)]_b = 0, \quad \text{(5)}
\]

which define the continuity of the function \(u \) and its derivative \(u' \) at the points of discontinuity \(x = \{a,b\} \). In conditions (5) the notation \([f(x)]_{x_0} := f(x_0 + 0) - f(x_0 - 0)\) specifies the magnitude of the (finite) jump of function \(f \) at the point \(x = x_0 \) provided that one-sided limits \(f(x_0 \pm 0) \) exist.

A general solution of the equation \(\mathcal{S}_{\tilde{V}} u = \kappa^2 u \) can be sought in the form

\[
\psi(x;\kappa) = \begin{cases}
C_1 e^{i\kappa(x-a)} + C_2 e^{-i\kappa(x-a)}, & -\infty < x < a, \\
\psi(x;\kappa), & a < x < b, \\
C_3 e^{i\kappa(x-b)} + C_4 e^{-i\kappa(x-b)}, & b < x < \infty,
\end{cases}
\]

where \(\kappa = \sqrt{\lambda} \) is the branch defined in (4), \(C_m \) \((m = 1, \ldots, 4)\) are arbitrary coefficients, and \(\psi \) is a solution of the Schrödinger equation

\[
(-\partial^2 + V_0) \psi = \kappa^2 \psi, \quad a < x < b \quad \text{(7)}
\]

corresponding to the interaction region \((a,b)\). This solution is defined by

\[
\psi(x) = B_1 \psi_1(x) + B_2 \psi_2(x),
\]

where \(\psi_1, \psi_2 \) are two linearly independent solutions, and \(B_1, B_2 \) are arbitrary coefficients. Continuity conditions (5) give the following expressions

\[
B_1 = \frac{1}{w[\psi_1,\psi_2](b)} (C_3 \mu_{22} + C_4 \mu_{12}), \quad B_2 = \frac{-1}{w[\psi_1,\psi_2](b)} (C_3 \mu_{21} + C_4 \mu_{11}). \quad \text{(8)}
\]

\[
C_1 = \frac{1}{2i\kappa} (B_1 \gamma_{11} + B_2 \gamma_{12}), \quad C_2 = \frac{-1}{2i\kappa} (B_1 \gamma_{21} + B_2 \gamma_{22}),
\]

where \(w[\psi_1,\psi_2](x) \) is the Wronskian of solutions \(\psi_1 \) and \(\psi_2 \)

\[
w[\psi_1,\psi_2](x) = \begin{vmatrix}
\psi_1(x) & \psi_2(x) \\
\psi_1'(x) & \psi_2'(x)
\end{vmatrix},
\]

and \(\gamma_{pq} \) and \(\mu_{pq} \) \((p, q = 1, 2)\) are coefficients defined by

\[
\gamma_{pq}(\kappa) := i\kappa \psi_q(a;\kappa) + (-1)^{p+1} \psi_p(a;\kappa), \quad \mu_{pq}(\kappa) := (-1)^{p+q+1} i\kappa \psi_q(b;\kappa) + (-1)^q \psi_p(b;\kappa).
\]
3.1. On the construction of the particular solutions ψ_1 and ψ_2

Here we employ the SPPS method [21] for determining the linearly independent solutions ψ_1 and ψ_2 of Schrödinger equation (7) as power series of the spectral parameter κ^2. Let us assume that the homogeneous equation

$$(-\partial^2 + V_0) \psi_0 = 0, \quad a < x < b,$$

(9)

possesses a particular solution ψ_0 satisfying the conditions $\psi_0^2, \psi_0^{-2} \in C([a, b])$. Then the series

$$\psi_1 (x) = \psi_0 (x) \sum_{k=0}^{\infty} \kappa^{2k} \tilde{X}^{(2k)} (x), \quad \psi_2 (x) = \psi_0 (x) \sum_{k=0}^{\infty} \kappa^{2k} X^{(2k+1)} (x)$$

with the functions $\tilde{X}^{(n)}$, $X^{(n)}$ defined by

$$\tilde{X}^{(0)} (x) = 1, \quad \tilde{X}^{(n)} := \begin{cases} \int_{0}^{x} \tilde{X}^{(n-1)} (s) \psi_0^2 (s) \, ds, & n \text{ odd}, \\ -\int_{x}^{0} \tilde{X}^{(n-1)} (s) \psi_0^{-2} (s) \, ds, & n \text{ even}, \end{cases}$$

$$X^{(0)} (x) = 1, \quad X^{(n)} := \begin{cases} -\int_{x}^{0} X^{(n-1)} (s) \psi_0^{-2} (s) \, ds, & n \text{ odd}, \\ \int_{0}^{x} X^{(n-1)} (s) \psi_0^2 (s) \, ds, & n \text{ even}. \end{cases}$$

are linearly independent solutions of equation (7), being x_0 an arbitrary point of $[a, b]$. Series ψ_1, ψ_2 with the functions $\tilde{X}^{(n)}$, $X^{(n)}$ thus defined converge uniformly on $[a, b]$. Furthermore these solutions satisfy the Cauchy conditions

$$\psi_1 (x_0) = \psi_0 (x_0), \quad \psi_1' (x_0) = \psi_0' (x_0), \quad \psi_2 (x_0) = 0, \quad \psi_2' (x_0) = -\frac{1}{\psi_0 (x_0)}.$$

Liouville-Ostrogradskii identity [32] establishes that

$$w [\psi_1, \psi_2] (a) = w [\psi_1, \psi_2] (x), \quad \forall \quad x \in [a, b],$$

hence by setting $x_0 = a$ we have that $w (a) = 1$, thereby $w [\psi_1, \psi_2] (x) \equiv 1$ for each $x \in [a, b]$. Note that the particular solution ψ_0 of equation (9) carries the information of the potential V_0 in the interaction region. This solution, for instance, can be determined by means of numerical methods, though the SPPS method can also be used for its construction [21,33].

Coefficients γ_{pq} ($p, q = 1, 2$) can be written in a SPPS form as follows

$$\gamma_{11} (\kappa) = (i\kappa \psi_0 (a) + \psi_0' (a)) \sum_{k=0}^{\infty} \kappa^{2k} \rho_k (a) + \frac{1}{\psi_0 (a)} \sum_{k=1}^{\infty} \kappa^{2k} \varrho_k (a),$$

$$\gamma_{12} (\kappa) = (i\kappa \psi_0 (a) + \psi_0' (a)) \sum_{k=0}^{\infty} \kappa^{2k} \sigma_k (a) + \frac{1}{\psi_0 (a)} \sum_{k=0}^{\infty} \kappa^{2k} \tau_k (a),$$

$$\gamma_{21} (\kappa) = (i\kappa \psi_0 (a) - \psi_0' (a)) \sum_{k=0}^{\infty} \kappa^{2k} \rho_k (a) - \frac{1}{\psi_0 (a)} \sum_{k=0}^{\infty} \kappa^{2k} \varrho_k (a),$$

$$\gamma_{22} (\kappa) = (i\kappa \psi_0 (a) - \psi_0' (a)) \sum_{k=0}^{\infty} \kappa^{2k} \sigma_k (a) - \frac{1}{\psi_0 (a)} \sum_{k=0}^{\infty} \kappa^{2k} \tau_k (a),$$
also the coefficients μ_{pq} ($p, q = 1, 2$) admit a SPPS representation

$$
\mu_{11}(\kappa) = - (i\kappa \psi_0(b) + \psi'_0(b)) \sum_{k=0}^{\infty} \kappa^{2k} \rho_k(b) - \frac{1}{\psi_0(b)} \sum_{k=0}^{\infty} \kappa^{2k} \sigma_k(b),
$$

$$
\mu_{12}(\kappa) = (i\kappa \psi_0(b) + \psi'_0(b)) \sum_{k=0}^{\infty} \kappa^{2k} \sigma_k(b) + \frac{1}{\psi_0(b)} \sum_{k=0}^{\infty} \kappa^{2k} \tau_k(b),
$$

$$
\mu_{21}(\kappa) = (i\kappa \psi_0(b) - \psi'_0(b)) \sum_{k=0}^{\infty} \kappa^{2k} \rho_k(b) - \frac{1}{\psi_0(b)} \sum_{k=0}^{\infty} \kappa^{2k} \sigma_k(b),
$$

$$
\mu_{22}(\kappa) = (-i\kappa \psi_0(b) + \psi'_0(b)) \sum_{k=0}^{\infty} \kappa^{2k} \sigma_k(b) + \frac{1}{\psi_0(b)} \sum_{k=0}^{\infty} \kappa^{2k} \tau_k(b),
$$

where $\rho_k(x) := \tilde{X}^{(2k)}(x)$, $\sigma_k(x) := \tilde{X}^{(2k-1)}(x)$, $\tau_k(x) := X^{(2k+1)}(x)$, and κ are the amplitudes of the reflected and transmitted waves, respectively, which are denoted by R_t and T_t. For an incident wave with unit amplitude this process is described by

$$
u_l(x; \kappa) = \begin{cases} e^{i\kappa(x-a)} + R_l e^{-i\kappa(x-a)}, & -\infty < x < a, \\
B_1 \psi_1(x; \kappa) + B_2 \psi_2(x; \kappa), & a < x < b, \\
T_l e^{i\kappa(x-b)}, & b < x < \infty, \end{cases}
$$

where

$$
R_l = \frac{\mu_{22} \gamma_{21} + \mu_{21} \gamma_{22}}{\mu_{22} \gamma_{11} + \mu_{21} \gamma_{12}}, \quad T_l = \frac{2i\kappa}{\mu_{22} \gamma_{11} + \mu_{21} \gamma_{12}},
$$

are functions of κ. Coefficients $B_{1,l}$ and $B_{2,l}$ are calculated from expressions (8). We identify $|T_l(\kappa)|^2$ and $|R_l(\kappa)|^2$ as the transmission and reflection coefficients, respectively. If V_0 were real-valued these coefficients would satisfy the conservation of probability $|R_l(\kappa)|^2 + |T_l(\kappa)|^2 = 1$, [34, 35]. However, in the present case $V_0 = (-U^2 - i\partial U)\big|_{(a,b)}$ is a complex-valued function, hence the conservation is observed globally [15].

Similarly, in the propagation from right to left, the waves generated by a source of particles located at $x \rightarrow \infty$ are described by the undulatory process

$$
u_r(x; \kappa) = \begin{cases} T_r e^{-i\kappa(x-a)}, & -\infty < x < a, \\
B_1 \psi_1(x; \kappa) + B_2 \psi_2(x; \kappa), & a < x < b, \\
R_r e^{i\kappa(x-b)} + e^{-i\kappa(x-b)}, & b < x < \infty, \end{cases}
$$

where coefficients $B_{1,r}$ and $B_{2,r}$ are calculated from expressions (8). By R_r and T_r we denote the amplitudes of the reflected and transmitted waves, respectively. These amplitudes are given as functions of the parameter κ by

$$
R_r = \frac{\gamma_{12} \mu_{11} + \gamma_{11} \mu_{12}}{\gamma_{11} \mu_{22} + \gamma_{12} \mu_{21}}, \quad T_r = \mu_{11} \mu_{22} - \mu_{12} \mu_{21},
$$

3.2. A SPPS analysis of the scattering states

Scattering states are described by solutions of Schrödinger equation $S_{\psi}u = \kappa^2 u$ associated with the spectral parameter $\lambda = \kappa^2 > 0$, that is $\kappa > 0$. Since it is a linear differential equation, the scattering of quantum waves propagating from left to right, and those from right to left can be treated as independent processes.

In the propagation from left to right a source of particles is assumed to be located at $x \rightarrow -\infty$. This implies that $C_4 \equiv 0$. In this sense C_1 represents the amplitude of an incident wave, and C_2, C_3 are the amplitudes of the reflected and transmitted waves, respectively, which are denoted by R_t and T_t. For an incident wave with unit amplitude this process is described by
and \(|T_\kappa (\kappa)|^2\), \(|R_\kappa (\kappa)|^2\) correspond to the transmission and reflection coefficients from the right, respectively.

Those values \(\kappa_T\) for which the reflection coefficient \(|R(\kappa_T)|^2\) vanishes define transparency energies \(E_T = \kappa_T^2\). At such energies the short-range potential \(\tilde{V}\) is transparent to the incident waves. A similar analysis for Schrödinger equation (3b) involving the potential \(W\) can be carried out by defining an approximate short range potential \(\tilde{W}\).

4. SPPS study of resonance states

Resonance in quantum mechanics is a physical phenomenon in which a particle is temporally captured by the interaction potential and then it is scattered. During the capture, the particle stays in a quasi-bound state [13,36]. Gamow [14] and Siegert [37] introduced complex energies and the purely outgoing wave conditions for the study of certain nuclear processes modeled as resonance states. In general, solutions of the Schrödinger equation associated to complex energies and satisfying the outgoing wave conditions describe resonance states, also known as Gamow-Siegert functions [13,14].

Let us consider the Schrödinger equation

\[
S\tilde{V} u = \left(-\partial_x^2 + \tilde{V} \right) u = \lambda u, \quad x \in \mathbb{R},
\]

where the complex energy \(\lambda\) is a parameter of the form \(\epsilon = E - i\Gamma/2\), where \(\Gamma > 0\), \(E \in \mathbb{R}\). The parameter \(\Gamma\) is related to the inverse of the lifetime of the resonance state. The solution \(u\) representing a resonance state must fulfill the outgoing wave conditions

\[
\lim_{x \to \pm \infty} \left(u' \pm i \kappa u \right) = 0. \quad (10)
\]

Let us write the complex parameter \(\kappa \neq 0\) in the rectangular form \(\kappa = \kappa' + i\kappa''\). It follows that

\[
\epsilon = \kappa'^2 = \kappa'^2 - \kappa''^2 + i2\kappa' \kappa'' = E - i\Gamma/2,
\]

where \(E = \kappa'^2 - \kappa''^2\) and \(\Gamma = -4\kappa' \kappa''\). This last equality implies that \(\kappa'\) and \(\kappa''\) must have opposite signs. In order for \(\kappa\) to lie on the upper half of the complex \(\kappa\)-plane it is necessary that \(\kappa' < 0\) and \(\kappa'' > 0\). These conditions restrict \(\kappa\) to live in the region \(\frac{\pi}{2} < \arg \kappa < \pi\) of the complex \(\kappa\)-plane for the description of resonance states.

For obtaining the Gamow-Siegert functions of operator \(S\tilde{V}\) we begin from general solution (6). Outgoing wave conditions (10) imply that \(C_2 = C_3 = 0\). Continuity at \(x = a\) and \(x = b\) leads to \(C_1 = \psi (a)\) and \(C_4 = \psi (b)\). We can choose \(\psi (a) = 1\) so that \(\psi' (a) = i\kappa\). The condition \(C_3 = 0\) gives the characteristic equation of resonance states

\[
\psi (b; \kappa) + \frac{1}{i\kappa} \psi' (b; \kappa) = 0. \quad (11)
\]

If \(\kappa_j = \kappa''_j + i\kappa''_j\) is a zero of equation (11) such that \(\kappa''_j < 0\) and \(\kappa''_j > 0\), then \(\epsilon_j = \kappa_j^2 = E_j - i\Gamma_j/2\) is the complex energy of the \(j\)-th resonance state, which is described by the piecewise continuous function

\[
u (x; \kappa_j) = \begin{cases}
 e^{i\kappa_j (x-a)}, & -\infty < x < a, \\
 \psi (x; \kappa_j), & a < x < b, \\
 \psi (b; \kappa_j) e^{-i\kappa_j (x-b)}, & b < x < \infty,
\end{cases}
\]

where the solution \(\psi\) is explicitly given by the convergent series

\[
\psi (x; \kappa) = \frac{\psi_0 (x)}{\psi_0 (a)} \sum_{k=0}^{\infty} \kappa^{2k} X^{(2k)} (x) + \psi_0 (x) \left(\psi'_0 (a) - i\kappa \psi_0 (a) \right) \sum_{k=0}^{\infty} \kappa^{2k} X^{(2k+1)} (x).
\]
From previous expression we obtain a SPPS representation of the characteristic equation for the resonance states

\[
\left(\psi_0'(b) + 2i\kappa \psi_0(b)\right) \sum_{k=0}^{\infty} \kappa^{2k} \rho_k(b) - \frac{1}{\psi_0(b)} \sum_{k=1}^{\infty} \kappa^{2k} \varrho_k(b) +
\psi_0(a) \left(\psi_0'(a) - i\kappa \psi_0(a)\right) \left(\psi_0'(b) + 2i\kappa \psi_0(b)\right) \sum_{k=0}^{\infty} \kappa^{2k} \sigma_k(b) - \frac{1}{\psi_0(b)} \sum_{k=0}^{\infty} \kappa^{2k} \tau_k(b) = 0. \tag{12}
\]

5. Numerical implementation

The functions \(X^{(n)}\) and \(\tilde{X}^{(n)}\), also called formal powers, are defined by integrals that can be evaluated numerically. This is achieved by dividing the interval \((a, b)\) into \(M\) subintervals on which the integrand is approximated by interpolating functions, say of the spline type. The accuracy of integrals evaluated numerically is a standard question of numerical analysis. On the other hand, the infinite power series must be truncated for its numerical implementation. Owing to the uniform convergence of the series, the bounded error due to truncation is mainly determined by the number of terms in which the series are truncated. In addition, the numerical precision of the results should be considered since the formal powers may take very small values as their order increase so that machine-precision is not enough for correctly storing those numbers in the memory of a computer.

Next we show some numerical examples involving potentials that possess balanced properties of gain and loss. The real-valued case is also considered. We use Wolfram Mathematica 12 with the following settings:

(i) The interval \([a, b]\) is divided into \(M = 1000\) subintervals.

(ii) The formal powers are truncated in \(n = 100\) terms.

(iii) The numerical precision is set to 60 decimal places.

5.1. Scattering problems

Next, we consider real-valued bounded potentials \(q\) and calculate the dispersion parameters of the operator \(S_q\) by using the SPPS theory here developed.

Example 1. Consider a cosine potential barrier defined by

\[
q(x) = \begin{cases}
10 \cos x, & 0 < x < 0.5, \\
0, & \text{otherwise},
\end{cases}
\]

see Figure 1.a. The maxima \(\kappa_T\) of the transmission coefficient \(T_l(\kappa)\) in the segment \(\kappa \in [0, 60]\) are shown in Table 1. Figure 1.b shows the corresponding plots of the reflection and transmission coefficients.

Example 2. Consider a truncated symmetric Pöschl-Teller potential barrier defined by the function

\[
q(x) = \begin{cases}
80 \text{sech}^2 x, & -1 < x < 1, \\
0, & \text{otherwise},
\end{cases}
\]

see Figure 2.a. The maxima \(\kappa_T\) of transmission coefficient \(T_l(\kappa)\) in the segment \(\kappa \in [0, 150]\) are shown in Table 2. Figure 2.b shows the plots of the corresponding reflection and transmission coefficients.
Table 1. Some transparency energies of the potential $q(x)$ from Example 1.

j	Maxima κ_T	Transparency energies $E_T = \kappa_T^2$
1	12.77819933975655	163.28237821881586
2	19.1112357679424	365.26562280522353
3	31.44014441310595	988.4745080698187
4	48.58916496747884	2360.902219345374
5	63.52528224711569	4035.461484016157

Figure 1. (a) Cosine potential barrier from Example 1. (b) Plots of the transmission and reflection coefficients.

Table 2. Some transparency energies of the potential $q(x)$ from Example 2.

j	Maxima κ_T	Transparency energies $E_T = \kappa_T^2$
1	89.04603686608982	7929.196681557028
2	101.99817774951632	10403.628264221925
3	124.19176398456759	15423.59421598556
4	151.39297165346864	22919.8318666068026

Figure 2. (a) Truncated Pöschl-Teller potential barrier from Example 2. (b) Plots of the transmission and reflection coefficients.
Table 3. Some resonance energies corresponding to superpotentials (13) from Example 3.

j	Zeros κ_j of (12)	$\mathcal{S}_{\tilde{V}}u = \epsilon u$	Resonance energies $\epsilon_j = \kappa_j^2$
1	$-53.050497799965 + i 3.758361280790$	$2800.230037307015 - i 398.76587371604705$	
2	$-55.510683355754 + i 10.331565191028$	$2974.694727326322 - i 1147.0244877769708$	
3	$-68.068951170690 + i 8.260114318194$	$4565.152624928145 - i 1124.5146363789295$	

Solutions \tilde{W} and \tilde{V} are shown in Figure 3. Resonance energies ϵ_j of supersymmetric partners $S_{\tilde{V}}u = \epsilon u$, $S_{\tilde{W}}v = \epsilon v$ are shown in Table 3. It is expected that supersymmetric partners would have the same resonance energies. The differences between the results shown in the table are mainly due to the truncation of the series of the characteristic equation corresponding to each partner. In Figure 4 we can see the resonant states u_j and v_j ($j = 1, 2, 3$) associated with the complex energies κ_j of the Table 3.

Figure 3. $\mathcal{P}\mathcal{T}$-symmetric potentials from Example 3.

5.2. Resonance problems

Now, we consider some examples with balanced gain-loss potentials, and determine their resonance energies with the SPPS approach here developed.

Example 3. Let us consider the following $\mathcal{P}\mathcal{T}$-symmetric potentials

$$\tilde{V}(x) = \begin{cases} -A^2 \text{sech}^2 x + i A \text{sech} x \tanh x, & -1 < x < 1, \\ 0, & \text{otherwise}, \end{cases}$$

$$\tilde{W}(x) = \begin{cases} -A^2 \text{sech}^2 x - i A \text{sech} x \tanh x, & -1 < x < 1, \\ 0, & \text{otherwise}, \end{cases}$$

where $A = 2\sqrt{15}$, which are shown in Figure 3. Resonance energies ϵ_j of supersymmetric partners $S_{\tilde{V}}u = \epsilon u$, $S_{\tilde{W}}v = \epsilon v$ are shown in Table 3. It is expected that supersymmetric partners would have the same resonance energies. The differences between the results shown in the table are mainly due to the truncation of the series of the characteristic equation corresponding to each partner. In Figure 4 we can see the resonant states u_j and v_j ($j = 1, 2, 3$) associated with the complex energies κ_j of the Table 3.

Example 4. Let us consider the $\mathcal{P}\mathcal{T}$-symmetric potentials defined in (13) but with $A = 5$. These potentials are shown in Figure 5. From the SPPS approach we obtain the complex energies $\epsilon_j = \kappa_j^2$ of supersymmetric partners $S_{\tilde{V}}u = \epsilon u$ and $S_{\tilde{W}}v = \epsilon v$, from the zeros κ_j of characteristic
Figure 4. Plots of the real parts of the resonance states u_i and v_i ($i = 1, 2, 3$) corresponding to the complex energies $\epsilon_i = \kappa_i^2$ (see Table 3) from Example 3.

equation (12). The results are shown in Table 4. In Figure 6 we can see the first resonance states u_1 and v_1 associated to the complex energy $\epsilon_1 = \kappa_1^2$ of Table 4.

6. Concluding remarks

We have studied the Zakharov-Shabat system as a model that leads to supersymmetric Schrödinger equations. We identify the Darboux transformation embedded in the process of obtaining the supersymmetric partners. By means of the SPPS method we obtained an explicit representation for the characteristic equation that defines the complex energies of resonance states. Also, explicit expressions for the amplitudes of the reflected and transmitted waves in the scattering processes were obtained. The obtained results are general enough to be applied on (almost) arbitrary regular potentials.

In order for the potentials $V = -U^2 - i\partial U$ and $W = -U^2 + i\partial U$ to be \mathcal{PT}-symmetric
Table 4. Some complex energies from Example 4.

j	Zeros κ_j of (12)	$\mathcal{S}_\psi u = \epsilon u$	Resonance energies $\epsilon_j = \kappa_j^2$
1	$-24.256128876630 + i 2.391102340277$	$582.6424176780056 - i 115.99777304594103$	
2	$-28.1684556764972 + i 7.492125284893$	$737.3299538202732 - i 422.0831979955481$	
3	$-38.867354093256 + i 11.624320410283$	$1375.5463892096218 - i 903.15149598643$	
4	$-54.87892795246 + i 18.153179961069$	$2694.1304113625097 - i 1996.4202271841402$	
5	$-76.074233786694 + i 25.55528884796$	$5134.216258138287 - i 3888.1980365874533$	

\[\mathcal{S}_\psi v = \epsilon v \]

j	Zeros κ_j of (12)	$\mathcal{S}_\phi v = \epsilon v$
1	$-24.256128873032 + i 2.391102340969$	$582.6424175001493 - i 115.99777306230514$
2	$-28.168455676095 + i 7.492125280326$	$737.3299536900288 - i 422.0831977522754$
3	$-38.867354090552 + i 11.624320404896$	$1375.5463891246677 - i 903.151447824323$
4	$-54.878927938378 + i 18.153179940208$	$2694.130411915452 - i 1996.410248224415$
5	$-76.074233792578 + i 25.55528889162$	$5134.216262030347 - i 3888.1980279671147$

Figure 5. $\mathcal{P}\mathcal{T}$-symmetric potentials from Example 4 with support on $[-1,1]$.

Figure 6. Plots of the real parts of the first resonance states corresponding to the complex energy $\epsilon_1 = \kappa_1^2$ (see Table 4) from Example 4.
it is necessary that potential U to be a real, even function. Indeed \mathcal{PT}-symmetry implies that $V(x) = V^*(-x)$, where V^* denotes the complex conjugate of V. This equality leads to $U^2(-x) = U^2(x)$ and $-\partial U(-x) = \partial U(x)$, which are satisfied if U is even. The same conclusion holds for the equality $W(x) = W^*(-x)$. Note that \mathcal{PT}-symmetry is not a sufficient condition for obtaining a real spectrum (see [15,38]). For instance, the potentials of Examples 3 and 4 are \mathcal{PT}-symmetric but they have complex eigenvalues. The conditions for which a complex-valued potential may possess a real spectrum have been considered in the literature, see, e.g., [39,40].

Acknowledgments

VBF acknowledges CONACyT for support via grant 283133.

References

[1] Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[2] Zakharov V E and Shabat A B 1974 Funct. Anal. Appl. 8 226
[3] Desaix M 2003 Phys. Rev. Lett. 90 013901
[4] Khmelnitskaya K K, Kravchenko V V and Rosu H C 2015 Math. Methods Appl. Sci. 38 1945
[5] Klaus M and Shaw J K 2003 SIAM J. Math. Anal. 34 759
[6] Klaus M and Shaw J K 2002 Phys. Rev. E. 65 036607
[7] Darboux G 1882 Compt. Rend. Acad. Sc. 94 1456
[8] Peña J, Ovando G, Morales J, García-Ravelo J and García J 2008 Int. J. Quantum Chem. 108 1750
[9] Boutet de Monvel A and Kotlyarov V 2000 Inverse Probl. 16 1813
[10] Nimmo J J C 1992 Inverse Probl. 8 219
[11] Zakharov V E and Shabat A B 1973 Soviet Phys. JETP 37 823
[12] Breit G and Wigner E P 1936 Phys. Rev. 49 519
[13] Rosas-Ortiz O, Fernández-García N and Cruz y Cruz S G 2008 AIP Conf. Proc. 1077 31
[14] Gamow G 1928 Z. Phys. 51 204
[15] Bagarello F, Passante R and Trapani C 2016 Non-Hermitian Hamiltonians in Quantum Physics (Switzerland: Springer)
[16] Böhm A 1981 Math. Phys. 22 2813
[17] Böhm A and Gadella M 1989 Am. J. Phys. 57 1103
[18] Fernández-García N and Rosas-Ortiz O 2008 J. Phys. Conf. Ser. 128 012044
[19] Hatano N, Sasada K, Nakamura H and Petrosky T 2008 Prog. Theor. Phys. 119 187
[20] Moiseyev N 2011 Non-Hermitian Quantum Mechanics (United Kingdom: Cambridge University Press)
[21] Kravchenko V V and Porter R M 2010 Math. Method Appl. Sci. 33 459
[22] Altinisiş K, Dizdairevic D and Main J 2019 Phys. Rev. A 100 063639
[23] Cooper F, Khare A and Sukhatme U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[24] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM)
[25] Marques F, Negrini O and da Silva J 2012 J. Phys. A. Math. Theor. 45 115307
[26] Kravchenko V V and Velasco-García U 2011 J. Math. Phys. 52 063517
[27] Schomerus H 2013 Philos. Trans. R. Soc. 371 20120194
[28] Sinha A and Roychoudhury R 2013 J. Math. Phys. 54 112106
[29] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[30] Tsao E, Tadjimuratov S and Abdullaev F 2012 Optics Communication 285 3441
[31] Conteras-Astorga A and Fernández D J 2007 AIP Conf. Proc. 960 55
[32] Brenner J L 1966 Problems in Differential Equations, 2nd ed. (San Francisco: W H Freeman and Company).
[33] Barrera-Figueroa V, Kravchenko V V and Rabinovich V S 2014 Appl. Anal. 93 729
[34] Cohen-Tannoudji C, Diu B, Laloe F 1997 Quantum Mechanics, Vol I. (New York: John Wiley and Sons)
[35] Zettlǐ N 2014 Quantum Mechanics Concepts and Applications (New York: Courier Corporation)
[36] Cisneros A and McIntosh H V 1982 Rev. Mex. Fis. 28 295
[37] Siegert A J F 1939 Phys. Rev. 56 750
[38] Biondini G and Luo X 2018 Phys. Lett. A 382 2632
[39] Jaimes-Nájera A and Rosas-Ortiz O 2017 Ann. Phys. 376 126
[40] Rosas-Ortiz O and Zelaya K 2018 Ann. Phys. 388 26