Compact steady-state tokamak performance dependence on magnet and core physics limits

J. E. Menard

Princeton Plasma Physics Laboratory, Princeton, NJ, USA

Compact tokamak fusion reactors using advanced high-temperature superconducting magnets for the toroidal field coils have received considerable recent attention due to the promise of more compact devices and more economical fusion energy development. Facilities with combined fusion nuclear science and Pilot Plant missions to provide both the nuclear environment needed to develop fusion materials and components while also potentially achieving sufficient fusion performance to generate modest net electrical power are considered. The performance of the tokamak fusion system is assessed using a range of core physics and toroidal field magnet performance constraints to better understand which parameters most strongly influence the achievable fusion performance.

This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.

1. Introduction

A fusion nuclear science facility (FNSF) is viewed as a potentially important element of the U.S. fusion development roadmap that would be complementary to the DEMO-based approach pursued by the majority of the world fusion program. In particular, a FNSF/component test facility (CTF) [1–7] could make significant contributions to the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The FNSF nuclear environment includes fusion-relevant neutron wall loading $W_n \geq 1 \text{ MW m}^{-2}$, neutron fluence greater than or
equal to 6 MW yr m^{-2}, component testing area of $5 \text{--} 10 \text{ m}^2$ and continuous on-time (i.e. steady-state operation) for durations in the range of $10^6 \text{ s} \ [8]$. Materials testing, blanket testing, and demonstrating predictable tritium breeding and T self-sufficiency commonly define critical elements of the FNSF mission [9]. A Pilot Plant [10–12] would be a device capable of performing the FNSF/CTF mission while also incorporating features including actuators with high wall-plug efficiency and low power consumption and breeding blankets with high thermal conversion efficiency, all to support the production of modest net electricity (50–300 MWe). Maintenance schemes applicable to a power plant including methods for rapid replacement of in-vessel components would also be a key feature of a Pilot Plant.

The required lifetime of fusion facility components and infrastructure is directly linked to the mission(s) of the facility. The ‘FNSF-Pilot’ facility approach described here aims to be directly scalable to a power plant in a device as small as possible to reduce device cost and risk. Such an approach may result in reduced shielding and breeding blanket thickness relative to larger DEMO devices [13–15] which aim to operate at higher fusion power and neutron fluence. Thus, one challenge of the FNSF-Pilot approach may be reduced magnet and/or facility lifetime, and this must be balanced against the potential benefits of reduced device size and cost. Previous studies have explored the impact of varied aspect ratio on compact tokamak devices with a combined FNSF and Pilot Plant mission. In particular, high-temperature superconducting (HTS) toroidal field (TF) coils offer the potential to enable the achievement of high fusion gain and power in smaller major radius devices [16–19]. The work described here further explores the role of magnet engineering limits and plasma core confinement and stability limits on fusion performance with varied aspect ratio. The configurations studied are direct extensions of the HTS-TF FNSF-Pilot Plants studied in [17] with $R = 3 \text{ m}$, 50 MW of 0.5 MeV Negative Neutral Beam Injection (NNBI) heating and current drive, Greenwald density fraction of 0.8 and sufficient shielding to protect the HTS magnet for several full-power years (baseline scenario) and sufficient breeding for tritium self-sufficiency. The remainder of this paper is outlined as follows: Section 2 describes compact tokamak fusion performance scalings versus normalized beta, elongation, magnet parameters and confinement assumptions, Section 3 summarizes with conclusions and appendix A provides more detail on the scaling of the fusion gain with dimensional and dimensionless parameters relevant to steady-state tokamak configuration optimization.

2. Compact tokamak fusion performance scalings

The results described here are a direct extension of the 0D systems-code methodology used in §5 of [17]. The assumed normalized beta β_N, elongation κ and vacuum toroidal magnetic field at the plasma geometric centre B_T dependence on aspect ratio plays a very strong (approx. quartic) role in the projected fusion performance of high-bootstrap-fraction tokamak scenarios since $P_{\text{fusion}} \propto \epsilon (\beta_N \kappa B_T)^4 \ [17]$. This scaling shows that the achievable β_N, κ and B_T influence the fusion power on a similar footing for steady-state tokamak scenarios. Furthermore, the inboard blanket and shield thickness assumptions play an important role in determining the space available for the inboard toroidal field magnet and associated support structure as described in the following subsection. In subsequent subsections, the plasma stability, elongation, magnet parameters and confinement scalings are varied to develop an understanding of which parameters most strongly influence fusion performance for $R=3\text{ m}$ pilot plants with 50 MW of 0.5 MeV deuterium NNBI auxiliary heating and current drive. Compact tokamak devices in this size and power range are projected to be capable of achieving net electricity production in steady-state if the toroidal magnetic field, energy confinement and MHD stability limits are sufficiently high.

(a) Model for shielding and tritium breeding blanket thickness

Figure 1a shows the inboard breeding blanket and shield thickness and outboard breeding blanket thickness versus aspect ratio A used in this study and previous HTS-TF pilot-plant study [17]. Both inboard and outboard breeding blankets are assumed to be dual-cooled lead
First, for sufficiently low \(A (A = 1.7–1.8) \) and sufficiently large major radius \((R \geq 1.7 \text{ m}) \) detailed neutronics analysis indicates no inboard breeding blanket is required to achieve TBR \(\approx 1 \) [17,21] as long as breeding is provided at the top and bottom of the device, NBI heating aperture areas are sufficiently small and NBI ducts are tangential to the plasma. For HTS TF magnets, sufficient shielding is required to protect against both nuclear heating and/or neutron damage. Detailed calculations including ferritic steel structure (which has lower neutron attenuation) to support and contain a WC shield and water coolant indicate shield-averaged attenuation decay lengths of 15–16 cm per decade, and this results in a requirement for approximately 60 cm of cooled WC shield (or equivalent shielding) to protect the HTS TF magnet in a device that can achieve a peak outboard neutron fluence of \(7 \text{ MW yr m}^{-2} \) [22,23]. These results motivate the inboard WC shielding thickness of 60 cm at \(A = 1.8 \) as shown in figure 1a. Furthermore, at \(A = 2 \), there is insufficient outboard surface area to achieve TBR greater than or equal to 1 without inboard breeding. However, a 10 cm thick DCLL inboard breeding blanket can provide sufficient inboard breeding to achieve TBR greater than or equal to 1. This blanket is approximately half as effective for shielding as 10 cm of WC, so the inner WC shield can be reduced to 55 cm thickness for a total shield plus breeding blanket thickness of 65 cm at \(A = 2 \).

Dedicated neutronics calculations have not been carried out for higher \(A \) for an HTS-TF-based R=3m FNSF-Pilot. However, one can refer to the previous calculations finding that \(A = 4 \) advanced Tokamak (AT) pilot plants [12] with 40 cm of inboard breeding blanket (and 80 cm of outboard breeding blanket) can achieve TBR \(\geq 1 \). These results correspond to the inboard shielding and breeding curves in figure 1a at \(A = 4 \) chosen to provide shielding equivalent to 60 cm of WC shielding. The inboard breeding blanket thickness for other aspect ratios is determined via interpolation while matching the aforementioned thickness values at \(A = 1.8, 2.0 \) and 4. Then, the WC shielding thickness is chosen so that all aspect ratios have an equivalent

![Figure 1. (a) Inboard breeding blanket and shield thickness and outboard breeding blanket thickness versus aspect ratio \(A \), (b) normalized beta \(\beta_N(A) \) and double-null plasma boundary elongation \(\kappa(A) \). (Online version in colour.)](image-url)
WC shielding thickness of 60 cm again assuming a DCLL blanket of a given thickness provides the same shielding as a WC shield half as thick. Clearly, the model curves in figure 1a are approximations and additional three-dimensional neutronics calculations are required to provide a more accurate dependence on A. As a cross-check, it is noted that the $R = 2.7, A = 3.5$ fusion development facility (FDF) [24,25] with copper magnets requires a 25 cm thick inboard DCLL blanket to achieve TBR ≥ 1. This implies a 73 cm inboard WC shield plus blanket total thickness is required to achieve a 60 cm WC-only shield equivalent, whereas figure 1a indicates 78 cm at $A = 3.5$. This indicates that figure 1a captures the leading order trends for required inboard shielding and breeding blanket thickness for TBR ≥ 1 for the range of aspect ratios considered here. Lastly, it is noted that small changes in inboard shielding thickness can have major impacts on device performance and lifetime. For example, an increase in effective inboard shielding thickness from 60 cm to 70 cm reduces the fusion and engineering gain by 25–35% for $A = 2$–3 but increases the peak outboard neutron fluence by a factor of 4 and increases HTS magnet lifetime by a factor of 5 in full-power-years [17].

(b) Aspect ratio dependence of normalized beta and elongation

Figure 1b shows the assumed maximum $\beta_N(A)$ ($n = 1$ no-wall kink stability limit), $\kappa(A)$, and shielding and blanket thickness for required inboard and breeding blanket thickness as was done in [17]. The simplifying assumption is made that the $\beta_N(A)$ and $\kappa(A)$ scalings are independent of absolute parameters such as device size, field or current and plasma parameters such as collisionality, toroidal rotation speed, poloidal beta or internal inductance. Holding the HTS winding pack thickness fixed at 0.24 m and varying the inboard toroidal field coil structure thickness versus A (increasing from 0.2 m to 0.45 m between $A = 2$ and 4) as was also done in [17], figure 2a shows the fusion gain Q_{DT}, figure 2b the fusion power and figure 2c the net electric power versus A for an assumed effective inboard WC shielding thickness of 0.6 m and varied assumptions of $\beta_N(A)$ and $\kappa(A)$. As is evident from figure 2, fixing either β_N or κ constant (at values of 3.5 and 2.0, respectively) significantly reduces the achievable fusion gain and power at lower aspect ratios and indicates an optimal aspect ratio near $A = 2.5$. Furthermore, holding both $\beta_N = 3.5$ and $\kappa = 2.0$ fixed further reduces the fusion gain and power at low-A and makes the fusion gain and power nearly independent of aspect ratio for $A \geq 2.5$. Given the importance of $\beta_N(A)$ and $\kappa(A)$ on fusion performance evident in figure 2, determining whether the projected β_N and κ values are sustainable in fully non-inductive low-aspect-ratio scenarios is a major research goal for the future NSTX-U operation [26].

(c) Fusion performance versus toroidal field magnet parameters

The results of figure 2 are representative of expected fusion performance for a particular choice of toroidal field coil winding pack thickness (0.24 m) and structural support width variation with aspect ratio that provides for sufficient space for at least a small central solenoid for $A \geq 2$ and results in maximum magnetic field values ranging from 17 T to 19 T at the TF magnet. The results in figure 2 assume a maximum allowable TF structural support stress of 0.66 GPa typical of stainless steel, winding pack current density 70 MAm$^{-2}$, and winding pack stress limited to 0.4 GPa to ensure strains less than or equal to 0.3% to avoid any stress-related degradation in critical current [17]. To better understand the role of advanced superconductors on the achievable fusion performance versus aspect ratio, different combinations of maximum magnetic field at the magnet B_{max} and winding pack current density are considered as shown in figure 3. An important reference case is the ITER toroidal field coil set [27–29] with $B_{max} \approx 12$ T and $J_{WP} = 20$ MAm$^{-2}$. Figure 3a shows that for these magnet parameters the maximum allowable magnetic field cannot be reached for $A \leq 2.5$ due to space constraints on the inboard TF magnet. Furthermore, as B_{max} is increased to 19 T [30], higher $J_{WP} \approx 30$ MAm$^{-2}$ is required to access this higher maximum magnetic field for $A \geq 3.5$. Progressively higher J_{WP} up to 160 MAm$^{-2}$ [31,32] is required to reach $B_{max} = 19$ T for nearly all aspect ratios, i.e. for $A \geq 1.8$. There is only a small or no increase in
Figure 2. (a) Fusion gain \(Q_{DT} \), (b) fusion power \(P_{fusion} \) and (c) net electrical power for \(R_0 = 3 \) m HTS ST/AT pilot plants with effective inboard shielding thickness = 0.6 m versus aspect ratio \(A \) for different assumptions for \(\beta_N(A) \) and \(\kappa(A) \). (Online version in colour.)

the accessible magnetic field (assuming \(B_{max} = 19 \) T) for \(A \geq 2 \) for \(J_{WP} \geq 70 \) MAm\(^{-2}\). Figure 3b shows the impact of using ITER LTS magnet assumptions versus advanced high \(J_{WP} \) REBCO HTS magnet assumptions. In particular, the accessible vacuum toroidal field in the plasma increases by approximately a factor of 3 at \(A = 1.6 \), a factor of 2 at \(A = 2 \), a factor of 1.6 for \(A \geq 2.5 \).

Figure 4 shows that the maximum fusion and electricity gains are sensitive functions of both magnet parameters and aspect ratio. For ITER-like magnet parameters of \(B_{max} \approx 12 \) T and \(J_{WP} = 20 \) MAm\(^{-2}\), the fusion gain is constrained to be less than 3 while \(Q_{eng} \leq 0.5 \). Increasing the maximum field constraint from 12 T to 19 T increases \(Q_{DT} \) to above 4 but \(Q_{eng} \) remains less than unity. However, for \(B_{max} \approx 19 \) T and \(J_{WP} = 30 \) MAm\(^{-2}\), the fusion gain increases by a factor of 2 and \(Q_{eng} \geq 1 \) between \(A = 2.2 \) and 3.5. As shown in figure 5, as the winding pack current density is further increased the aspect ratio that produces the highest fusion power and net electric power approaches \(A \approx 2 \) with \(P_{fusion} \) up to 600 MW and net electric power greater than 100 MWe. These results highlight the importance of the simultaneous high winding pack current density and high...
Figure 3. (a) Maximum toroidal magnetic field at magnet, (b) vacuum toroidal magnetic field at plasma geometric centre versus aspect ratio for various toroidal field coil maximum field and winding pack current density assumptions. (Online version in colour.)

Figure 4. (a) Fusion gain, (b) engineering gain versus aspect ratio for various toroidal field coil maximum field and winding pack current density assumptions. (Online version in colour.)
maximum field of HTS to leverage increased normalized plasma stability at reduced aspect ratio for maximizing fusion power and net electric power in a compact tokamak.

Figure 6a shows that for \(J_{\text{WP}} \geq 30 \text{ MAm}^{-2} \) nearly all aspect ratios have bootstrap fractions between 70% and 85% with average values near 80% for higher \(A \). Figure 6b shows that the toroidal beta increases nearly inverse-quadratically with reduced aspect ratio (\(\beta_T(\%) \approx 36A^{-1.8} \)) and increases by roughly a factor of 5 between \(A = 4 \) and \(A = 1.6 \). Figure 6c shows that the kink safety factor \(q^* \) is above 3 for all aspect ratios analysed and increases to up to 4.5 near \(A \approx 2 \) for the highest winding pack current densities.

All of the results shown in figures 4 through 6 assume the energy confinement is sufficient to operate at the \(\beta_N \) limit shown in figure 1b. To better understand the potential challenge in accessing these \(\beta_N \) values in a high-field compact device, the required confinement is compared to several common confinement scalings. The most commonly used scaling is the ITER 98Y2 H-mode confinement scaling \([33,34]\) given by the following expression:

\[
\tau_E \text{98y2}[s] = 0.0562 \times I_P[MA]^{0.93}B_T[T]^{0.15}P[MW]^{-0.69}n_e[10^{19} \text{ m}^{-3}]^{0.41}M[\text{m}]^{0.19}R[m]^{1.97}\epsilon^{0.58}\kappa^{0.78}.
\]

In contrast to the ITER scaling which varies as \(\beta^{-0.9} \) \([34]\) when expressed in dimensionless parameters, several device-specific confinement scaling studies from JET, DIII-D and NSTX \([35]\) have shown that the confinement scales weakly with \(\beta \). Such weak \(\beta \) dependence is consistent with electrostatic turbulence with gyro-Bohm scaling represented in the ‘Petty08’ scaling expressed as:

\[
\tau_{E-Petty08}[s] = 0.052 \times I_P[MA]^{0.75}B_T[T]^{0.30}P[MW]^{-0.47}n_e[10^{19} \text{ m}^{-3}]^{0.32}M[\text{m}]^{0.3}R[m]^{2.09}\epsilon^{0.84}\kappa^{0.88}.
\]

There are several ST confinement scalings in the literature \([36–39]\) with variations depending on the parameters included in the fit, the fitting method used, and the machine considered (NSTX}
Figure 6. (a) Bootstrap current fraction, (b) toroidal beta and (c) kink safety factor versus aspect ratio for various winding pack current density assumptions at fixed toroidal field coil maximum magnetic field of 19 T. (Online version in colour.)

versus MAST). The ST confinement scaling assumed here uses the Case 1 ordinary least-squares regression (OLSR) exponents for current, field, density and power from NSTX [36] and assumes ITER 98y2 exponents are applicable where the ST exponents are not yet determined, i.e. for the species mass, major radius, inverse aspect ratio and elongation. As discussed in [36], the OLSR analysis assumes perfect knowledge of both the independent (predictor) variables and the dependent (response) variable with no uncertainties in either the independent or dependent values. The OLSR analysis used here has somewhat lower root mean square error (RMSE) compared to the principal component error-in-variable (PCEIV) technique for fitting to the NSTX data. An ‘NSTX’ ST confinement scaling is then given by the following expression: $\tau_{E-NSTX}[s] = 0.095I_P[MA]^{0.57}B_T[T]^{1.08}P[MW]^{-0.73}n_e[10^{19} \text{ m}^{-3}]^{0.44}M^{0.19}R[m]^{1.97}\epsilon^{0.58}\kappa^{0.78}$. The leading NSTX confinement scaling coefficient is chosen such that the ITER and ST energy confinement times are
Figure 7. Normalized confinement enhancement factors for (a) ITER 98y2, (b) Petty08, (c) NSTX and (d) hybrid NSTX-Petty08 energy confinement scalings versus aspect ratio for various winding pack current density assumptions at fixed toroidal field coil maximum magnetic field of 19 T. (Online version in colour.)

identical for a reference NSTX scenario defined by \(A = 1.5, R_0 = 0.86 \text{ m}, I_p = 0.75 \text{ MA}, B_T = 0.5T, P_{NBI} = 4 \text{ MW} \) and \(f_{GW} = 1.0 \) consistent with a total \(\beta_N = 4.4 \) using the 0D scaling methodology outlined in [26]. Other similar ST scaling expressions are of course possible, and obtaining a more definitive ST confinement scaling at reduced collisionality and higher magnetic field and current is a major research goal for both NSTX Upgrade [26,40–43] and MAST Upgrade [44–46].
In addition to the uncertainty in confinement scaling at low aspect ratio there is also uncertainty in how any scaling differences at low aspect ratio transition or connect to higher aspect ratio. Any such transitions/connections between low and higher aspect ratio confinement could have important implications for the ultimate choice of aspect ratio for compact pilot plants. To assess this in a highly approximate way, a hybrid ‘NSTX-Petty08’ scaling is used. This ad hoc hybrid scaling accounts for the fact that the NSTX ST scaling has thus far been developed for plasmas with $A \leq 1.7$ ($\epsilon \geq 0.6$). Similarly, the Petty08 scaling has been developed using data primarily from conventional aspect ratio plasmas with $A \geq 2.5$ ($\epsilon \leq 0.4$). Assuming a linear interpolation in ϵ between the two scalings is justified, a combined/hybrid scaling can be defined as the weighted sum of the NSTX and Petty08 scalings according to:

$$
\tau_E = \begin{cases}
\tau_{E-NSTX} & \text{for } \epsilon \geq \epsilon_1 = 0.6, \\
\tau_{E-Petty08} & \text{for } \epsilon \leq \epsilon_2 = 0.4 \text{ and } \tau_{E} = (\epsilon - \epsilon_2)/(\epsilon_1 - \epsilon_2)\tau_{E-NSTX} + (\epsilon_1 - \epsilon)/(\epsilon_1 - \epsilon_2)\tau_{E-Petty08} & \text{for } \epsilon_2 < \epsilon < \epsilon_1.
\end{cases}
$$

Figure 7a shows that in order to reach the β_T values shown in figure 6b elevated normalized confinement is required for all aspect ratios. In particular, the required H-factor relative to the ITER 98y2 scaling is as high as 1.7–1.8 at lower A and is 1.5–1.6 for high $A = 3-4$. Similarly, figure 7b shows that even for the Petty08 confinement scaling with weak β dependence, the H-factor relative to the scaling is between 1.2 and 1.4 for nearly all aspect ratios and is nearly independent of A with $H_{Petty08} \approx 1.25$ for $A \geq 2$ for the highest winding pack current densities. Figure 7c shows the NSTX ST confinement scaling H-factor needed to achieve the assumed β_T is a rapidly decreasing function of increasing aspect ratio. Again, this ST scaling has not yet been extended to higher field, current or plasma temperature (i.e. reduced collisionality) and is obviously not applicable to higher aspect ratios $A > 2.5$. Figure 7d shows the NSTX-Petty08 confinement scaling H-factor needed to achieve the assumed β_T is near or below 1 for A in the
range of 1.8 to 2.3 for the higher winding-pack current density cases with $J_{WP} \geq 40 \text{ MAm}^{-2}$. This result opens up the interesting (albeit speculative) possibility of the optimal aspect ratio from an integrated magnet, shielding, confinement, stability and non-inductive sustainment standpoint being between $A = 1.8$ and 2.3—a range of aspect ratios not previously studied experimentally.

A further consideration in the aspect ratio optimization of compact tokamaks is the impact of the maximum magnetic field achievable or allowed at the magnet. To gain further insight into this dependence, a set of three maximum fields is considered (17, 19 and 23T) in combination with a set of two winding pack current densities (70 and 160 MAm$^{-2}$) consistent with conductor on round core (CORC) magnet cables under development [30–32]. Figure 8 shows the achievable fields for this combination of magnet parameters. Figure 8a shows the maximum achievable toroidal magnetic field for these parameters and indicates that nearly all aspect ratios ($A = 1.6$ is the exception) can achieve 17T at the magnet for both J_{WP} assumptions. Figure 8a also shows that $A \geq 2.2$ is required to achieve 19T at the magnet for both J_{WP} assumptions and that $A \geq 1.8$ can achieve 19T for $J_{WP} = 160 \text{ MAm}^{-2}$. None of the aspect ratios considered here can achieve 23T at the magnet due to inboard structural space limitations, but $A = 4$ and $J_{WP} = 160 \text{ MAm}^{-2}$ does exceed 22T. Figure 8b shows the achievable toroidal magnetic field at the plasma geometric centre and shows that in comparison to the results of figure 3b, the field at the geometric centre at lower aspect ratios is more strongly influenced by the ability of the TF magnets to access $J_{WP} \geq 40 \text{ MAm}^{-2}$ than by the ability to access $B_{\text{max}} \geq 19 \text{T}$.

Figure 9. (a) Fusion gain, (b) engineering gain versus aspect ratio for various toroidal field coil maximum field and winding pack current density assumptions. (Online version in colour.)
Figure 10. (a) Flat-top plasma current, (b) ramp-up plasma current for double-swing ohmic heating (OH) solenoid and (c) ramp-up plasma current fraction (relative to flat-top plasma current) for double-swing OH solenoid versus aspect ratio for various toroidal field coil maximum field and winding pack current density assumptions. (Online version in colour.)

For the same magnet parameters as figure 8, figure 9 shows that for $B_{\text{max}} = 19\, \text{T}$ the highest fusion and engineering gains occur near $A = 2$. However, as the maximum field is relaxed to the highest achievable (i.e. constrained by space for inboard TF coil structural support), there is a broad range of aspect ratio $A = 2$ to 3 with similar gains. Figure 10a shows that the plasma current versus aspect ratio depends relatively weakly on J_{WP} and B_{max} for the cases considered. However, figure 10b shows that the achievable ramp-up plasma current depends more strongly on the combination of J_{WP} and B_{max} with the lowest B_{max} and highest J_{WP} combination providing the most space for a central solenoid and highest inductive ramp-up plasma current. These calculations assume a double-swing OH solenoid is located inside the bore of the inner toroidal field coil support structure using a solenoid with $20\, \text{T}$ maximum field and $J_{WP} = 70\, \text{MAm}^{-2}$ [17]. Figure 10c shows the ratio of ramp-up plasma current to steady-state flat-top current is small or
zero for $A = 1.6$ and can reach 1 for A as low as 2.1 for $j_{WP} = 160 \text{MA m}^{-2}$ and $B_{max} = 17 \text{T}$. As B_{max} is increased to 19 T, ramp-up current fractions above 1 are only possible for $A = 2.4$ to 2.7 depending on j_{WP}. For $B_{max} = 23 \text{T}$ all the inboard space is used for TF structural support and there is no space for a solenoid and the OH ramp-up current fraction is zero for all aspect ratios considered. Figure 11 shows the normalized confinement multiplier requirement trends versus
Figure 12. (a) Fusion gain, (b) engineering gain versus aspect ratio and total β_N scaled relative to the no-wall limit $\beta_N(A)$ from figure 1b for $B_{\text{max}} = 19$ T and $J_{\text{WP}} = 70$ MA m$^{-2}$. (Online version in colour.)

Figure 13. (a) Fusion power, (b) net electric power versus aspect ratio and total β_N scaled relative to the no-wall limit $\beta_N(A)$ from figure 1b for $B_{\text{max}} = 19$ T and $J_{\text{WP}} = 70$ MA m$^{-2}$. (Online version in colour.)
Figure 14. (a) Surface-average power exhaust flux, (b) surface-average neutron wall loading and (c) peak outboard neutron wall loading (all measured at the plasma surface) versus aspect ratio and total β_N scaled relative to the no-wall limit $\beta_N(A)$ from figure 1b for $B_{\text{max}} = 19$ T and $J_{\text{WP}} = 70$ MA m$^{-2}$. (Online version in colour.)

As discussed in the introduction to §2, the strong dependence of the fusion power on β_N where $P_{\text{fusion}} \propto \beta_N^4$ is a strong motivation for accessing improved stability to pressure-driven modes for all aspect ratios. Figure 12 shows the fusion and engineering gains versus aspect ratio for a scan of total (thermal + fast-particle) β_N scaled by factors ranging from 0.7 to $1.2 \times$ the $\beta_N(A)$...
Figure 15. (a) Plasma current, (b) total normalized beta and (c) toroidal beta versus aspect ratio and total β_N scaled relative to the no-wall limit $\beta_N(A)$ from figure 1b for $B_{\text{max}} = 19 \text{T}$ and $J_{WP} = 70 \text{MAm}^{-2}$. (Online version in colour.)

scaling of figure 1b assuming $B_{\text{max}} = 19 \text{T}$ and $J_{WP} = 70 \text{MAm}^{-2}$. As is evident from figure 12, both gains increase by approximately a factor of 8 as the no-wall limit β_N is scaled from 0.7 to 1.2 consistent with the β_N^4 scaling. Strictly speaking, the thermal β_N and bootstrap fraction should be considered in these scaling comparisons, but similar scaling trends are also observed when these parameters are considered. Figure 13 shows fusion power and net electric power for the same scan. Figure 13a shows that fusion powers exceeding 1 GW are projected for β_N values 20% above the assumed no-wall limit. Furthermore, figure 13b shows that net-electric powers above 200 MWe are projected for the same elevated β_N assumption. Thus, accessing plasma pressures
above the no-wall stability limit relying on either passive/kinetic stabilization [47–58] and/or active RWM feedback control [59–62] can have a substantial impact on fusion performance and is potentially a requirement for modular approaches to steady-state power generation utilizing compact tokamaks [18].

Figure 14 shows that the power densities can be very high for these compact configurations operating at elevated β_N. Figure 14a shows that the surface-average heat flux exceeds 1 MW m$^{-2}$ for aspect ratios $A \geq 2.5$. Figure 14b shows that the surface-average neutron wall loading exceeds 3 MW m$^{-2}$ for aspect ratios $A \geq 2.2$. Assuming an outboard mid-plane neutron wall loading peaking factor of 1.5 [23], figure 14c shows that the peak outboard neutron wall loading exceeds 5 MW m$^{-2}$ for aspect ratios $A \geq 2.5$. Reducing the power exhaust and neutron wall loading parameters tends to favour lower aspect ratio due to larger plasma boundary (and first-wall) surface area when the plasma major radius is fixed.

Figure 15 shows trends for the plasma current and beta parameters for this normalized beta scan. Figure 15a shows that the plasma current scales approximately linearly with the scaled β_N, and figure 15b shows the scaled β_N itself for reference. Since the toroidal beta is proportional to the normalized beta and plasma current, figure 15c shows the expected result that the toroidal beta β_T scales approximately quadratically with the scaled β_N. Figure 16a shows that the bootstrap current fraction is highest at the highest β_N and is between 80 and 85% for nearly all aspect ratios considered. As the β_N is lowered, the bootstrap current (which is proportional to the thermal plasma pressure) also decreases and the non-inductive current drive from the 50 MW of 0.5 MeV NNBI contributes an increasingly larger fraction of the total current. Figure 16b shows that the
Figure 17. Normalized confinement enhancement factors for (a) ITER98y2, (b) Petty08 and (c) hybrid NSTX-Petty08 energy confinement scalings versus aspect ratio and total β_N scaled relative to the no-wall limit $\beta_N(A)$ from figure 1b for $B_{\text{max}} = 19$ T and $J_{\text{WP}} = 70$ MA m$^{-2}$. (Online version in colour.)

highest β_N cases have the lowest kink safety factor q^* consistent with these cases also having the highest plasma current. $A \approx 2$ has the highest q^* and nearly all cases have $q^* \geq 3$ as a metric for stability against the external current-driven kink mode [63].

Figure 17 shows that for the set of confinement scalings treated here (ITER 98y2, Petty08, NSTX-Petty08) there is a non-monotic dependence on β_N values used. In particular, for the lowest values of $\beta_N(A)$ scaling factor considered (0.7 and 0.8), increasing H is required for increasing $\beta_N(A)$ scaling factor. However, as the scaling factor is further increased above values in the range of 0.9 to 1, the required H progressively decreases. This nonlinear result arises because the increased fusion power and alpha-driven plasma heating at higher assumed β_N scaling reduces the required confinement multiplier. Such results may point to the complexity of controlling potentially highly nonlinear plasma states in which increasing fusion gain increases the plasma pressure, bootstrap and total current, and thus the confinement time (through the increased plasma current) thereby further increasing the fusion gain until other effects intervene to saturate or limit the fusion gain. Such saturating effects include reduced fusion reactivity.
and/or increased plasma radiation power loss at very high plasma temperature, and limiting effects include pressure-driven disruptions.

(e) Fusion performance sensitivity to confinement and stability limits

The parametric scans addressed in previous sections dealt primarily with constraints on the maximum β_N and/or magnetic field or magnet current density while leaving the confinement unconstrained. To investigate the impact of constrained confinement using the NSTX-Petty08 model, figure 18 shows the confinement multiplier, achievable β_N and fusion gain assuming $H_{\text{NSTX-Petty08}} \leq 1$ as shown in figure 18a (with the exception of a reference unconstrained case indicated by the blue diamond symbols). Figure 18b shows that the assumed β_N constraint is only
accessible for narrow range of aspect ratios determined by the value of ϵ_2 from the ad hoc NSTX-Petty08 confinement scaling model. In particular, as the aspect ratio for which ST confinement transitions to Petty08 confinement is reduced (i.e. ϵ_2 is increased), an increasingly narrow window of sufficient confinement is accessible to reach the β_N constraint. If the transition aspect ratio is as low as $A = 2$ (i.e. ϵ_2 is as large as 0.5) then no aspect ratio can reach the β_N constraint for $H_{NSTX-Petty08} \leq 1$. It is also evident that for $H_{NSTX-Pett08} \leq 1$ many aspect ratios have lower $\beta_N \approx 2$ and much lower fusion gain $Q_{DT} \approx 1$ than the β_N constraint would allow. This is due to the strong dependence of the gain on H as described in more detail in appendix A. These results also indicate that if ST scaling does in fact extend to lower collisionality and higher field and current in NSTX-U and MAST-U, important questions may still remain on how rapidly the transition from ST to conventional-A confinement occurs for intermediate $A = 1.8$ to 2.5.

Finally, figure 19 shows that for $B_{\text{max}} = 19 \, \text{T}$ and $J_{\text{WP}} = 70 \, \text{MA} \, \text{m}^{-2}$, the assumed aspect ratio dependence of β_N and κ has a significant impact on the achievable fusion gain and net electrical power. In particular, the fusion gain decreases by nearly a factor of 2 and net electrical power becomes negative if the β_N and κ are held constant at the values applicable to $A = 4$ ($\beta_N = 3.45$ and $\kappa = 2.06$). These results are similar to those shown in figure 2 indicating that the aspect ratio dependence of β_N and κ is important for a range of magnet parameters.

3. Conclusion

For tokamaks with plasma major radius as small as $R = 3 \, \text{m}$, net electric power production becomes accessible from a plasma stability standpoint if the toroidal field coil winding pack...
current density and maximum field at the coil are sufficiently high (17–20 T). As the maximum magnetic field at the TF coil is increased above approximately 19–20 T, magnet structural support requirements leave progressively less space available in the central bore until only small or no space remains for a central solenoid. In the limit of small or no central solenoid for plasma current formation, aspect ratios near 2 become increasingly attractive for maximizing fusion power and electrical power production. For such lower-A solutions to be viable, high toroidal field magnet current density is required and appears feasible if (for example) CORC HTS cables can be developed into large-bore TF magnets. Furthermore, the aspect ratio dependence of β_N and κ is important to include since such dependence can potentially increase the fusion gain by up to a factor of 2 relative to fixed β_N and κ. Lower-A configurations would require some fraction of the current ramp-up to be provided through non-inductive current overdrive or via other methods of current formation [64]. All of the compact tokamak scenarios studied here require elevated confinement relative to conventional aspect ratio scalings in order to access $n = 1$ no-wall beta values. Interestingly, for an ad hoc confinement scaling connecting the NSTX and Petty08 scalings, $A = 2 - 2.3$ (a range of aspect ratios not previously studied experimentally) lowers the required confinement multiplier to $H \approx 1$. Operation near and above the $n = 1$ no-wall limit could be particularly advantageous since $P_{\text{fusion}} \propto \beta_N^{3-4}$ for high bootstrap current fraction scenarios for which kink safety factor $q^+ \geq 3$ is intrinsically met and is not a stability constraint. Net electric powers of 200–300 MWe are projected at elevated β_N values $\approx 1.2 \times$ the no-wall limit in a compact device with $R = 3$ m, but such configurations would have challenging exhaust heat fluxes and high neutron wall loading. These high power fluxes would lead to central HTS toroidal field magnet lifetimes of 1–2 full-power years from neutron irradiation damage potentially requiring blanket and central TF magnet change-out every 1–2 years if very high duty factor was ultimately achieved. HTS TF magnet lifetime could be increased by up to a factor of 5 by increasing the effective inboard shielding thickness from 60 cm to 70 cm [17]. Increased inboard shielding at fixed plasma major radius does however result in decreased plasma and engineering gains.

Data accessibility. The digital data for this paper can be found at: https://dataspace.princeton.edu/jspui/handle/88435/dsp010v838334m.

Competing interests. I declare I have no competing interests.

Funding. This work supported by U.S. Department of Energy Contract Number DE-AC02-09CH11466.

Acknowledgements. The author thanks T. Brown, W. Guttenfelder, S. Sabbagh, S. Prager and M. Gryaznevich for helpful discussions.

Appendix A. Fusion gain scaling for steady-state tokamaks

In this Appendix, fusion gain scalings are derived for high-field steady-state tokamaks with high-bootstrap-fraction configurations for which limits on the external current drive are typically more constraining than kink stability limits on the minimum edge safety factor. Such scalings can be expressed as a combination of both dimensional and dimensionless parameters most relevant to reactor design to aid understanding of the trade-offs between different parameters. The deuterium-tritium (D-T) fusion power P_f in a magnetic confinement system scales as $P_f \propto n^2 \langle \sigma v \rangle_{\text{DT}} V$ [65] which for ion temperatures in the range of 8-30keV is approximately proportional to $n^2 T^2 V \propto p^2 V = \beta_T^2 B_{T0}^4 V$ where $\beta_T \equiv 2 \mu_0 \langle p \rangle / B_{T0}^2$ ($\langle p \rangle$ is the volume-averaged plasma pressure, B_{T0} is the vacuum toroidal field at the plasma geometric centre and V is the plasma volume. The maximum β_T is limited by plasma magnetohydrodynamic instabilities and the maximum toroidal magnetic field in the plasma is limited by engineering constraints including maximum field, force, current density and/or cooling of the magnet. Furthermore, $p \propto P_h \tau_E / V$ where P_h is the plasma heating (loss) power and τ_E is the energy confinement time. For the scalings here, core radiation losses and divertor power exhaust challenges are not considered and are topics for future study. The energy confinement time can be expressed as a scaling in terms of dimensional parameters as $\tau_E \propto H P_h P_f \rho c_\epsilon a^8 n_e^{-1} \alpha R_a^{-1} \epsilon^{-1} \alpha^{-1} \kappa^{-1}$ where H is the confinement multiplier, I_P is the plasma current, n_e is the plasma electron density, R is the plasma major radius, κ is the plasma boundary elongation and ϵ is the plasma inverse aspect ratio, where $\epsilon \equiv A^{-1}$ and $A \equiv R / a$ and a is the plasma minor.
radius. From these definitions is also follows that $V \propto \kappa R a^2 \propto \kappa R^3 e^{-2}$. The fusion power therefore scales as $P_f \propto H^2 I_p^2 \alpha_2 a_p B_2 a_k n_{f/p}^{2(1-\alpha_p)} R^{2 a_k - 3} 2 a_k - 1 \epsilon 2 a_k - 2.$

The plasma heating power is the sum of the auxiliary heating and current drive power P_{aux} and the self-heating power from alpha-particles $P_{\alpha} = \lambda_{DT} P_f$: $P_h = P_{aux} + \lambda_{DT} P_f = P_{aux}(1 + \lambda_{DT} Q_{DT})$ where $Q_{DT} \equiv P_f / P_{aux}$ and $\lambda_{DT} \approx 0.2$, i.e. 20% of the DT fusion power is in confined α particles that can heat the plasma. Thus, $P_f = Q_{DT} P_{aux}$ and Q_{DT} are determined from the solution of the equation $Q_{DT}/(1 + \lambda_{DT} Q_{DT})^{2(1-\alpha_p)} = Q_{DT}^*$ where $Q_{DT}^* \propto H^2 I_p^2 B_2 a_k n_{f/p}^{2(1-\alpha_p)} R^{2 a_k - 3} 2 a_k - 1 \epsilon 2 a_k - 2$. It is noted that for $\lambda_{DT} Q_{DT} \ll 1$ it follows that $Q_{DT} \approx Q_{DT}^*$. For $\lambda_{DT} Q_{DT} \gg 1$ it follows that $Q_{DT} \propto (Q_{DT}^*)^{1/2}$ which is a sensitive function of α_p and implies $\alpha_p > 0.5$ is required for physically meaningful results using this simple zero-dimensional scaling. Thus, for typical values of $\alpha_p \approx 0.7$ and all other parameters held fixed, $P_f \propto H^2$ at low fusion gain and $P_f \propto H^5$ at high fusion gain indicating the fusion power is a very strong function of the confinement multiplier as the plasma transitions from the burning plasma regime ($Q_{DT} = 5 - 10$) towards ignition.

The density and MHD pressure limits are important parameters for reactor design. The empirical density limit for tokamaks [66, 67] can be expressed as Greenwood density fraction $f_{gw} \equiv n_e/n_{gw} \leq 1$ where $n_{gw} [10^{20} \text{ m}^{-3}] \equiv I_p [\text{MA}] / \pi a^2$ and thus $n_e \propto f_{gw} I_p / a^2$. From this scaling it follows that the normalized fusion gain scales as:

$$Q_{DT}^* \propto H^2 I_p^2 (a_2 + a_3) B_2 a_k^{2(1-\alpha_p)} f_{gw}^{2(1-\alpha_p)} R^{2 a_k - 3} 2 a_k - 1 \epsilon 2 a_k - 2 [4].$$

Similarly, the plasma current I_p can be recast as $I_p = (I_p / a B_T) a B_T$ and since $I_p / a B_T \propto \beta_T / \beta_N$ then $I_p \propto (\beta_T / \beta_N) a B_T$. From this relation it follows that:

$$Q_{DT}^* \propto \left(\frac{\beta_T}{\beta_N} \right)^2 (a_2 + a_3) B_2 a_k^{2(1-\alpha_p)} R^{2 a_k + 1} 2 a_k - 1 \epsilon a_k - 1 [4].$$

Since $\beta_T = \epsilon^{1/2}(C_{BS} / f_{BS})(1 + \kappa^2) / (\beta_N / 2)^2 [63, 68, 69]$ and one can for simplicity approximate $(1 + \kappa^2) / 2 \approx 0.9 \kappa^{3/2}$ for κ values of interest ($\kappa = 1.5 - 3$), it follows that $\beta_T / \beta_N \propto (C_{BS} / f_{BS}) \beta_N \kappa^{3/2} \epsilon^{1/2}$. Combining all these scalings results in the following scaling for Q_{DT}^*:

$$Q_{DT}^* \propto H^2 \left(\frac{\beta_N C_{BS}}{f_{BS}} \right)^{c_\beta} B_2 C_8^{c_8} f_{gw}^{c_{gw}} P_{aux}^{c_{P}} R^{c_R} k^{c_k} e^{c_e}.$$

$$c_\beta = 2(a_1 + a_3) = +2.68 [98y2] = +2.14 [Petty08]$$
$$c_B = 2(a_2 + a_1 + a_3) = +2.98 [98y2] = +2.74 [Petty08]$$
$$c_{gw} = 2a_2 = +0.82 [98y2] = +0.64 [Petty08]$$
$$c_p = 1 - 2a_p = -0.38 [98y2] = +0.06 [Petty08]$$
$$c_R = 2(a_1 + a_1 - a_2) = +1.98 [98y2] = +2.04 [Petty08]$$
$$c_k = 3a_2 + 2(a_1 + a_1) - 1 = +4.02 [98y2] = +3.78 [Petty08]$$
$$c_e = 2a_2 + 3a_1 - a_2 - 2 = +1.54 [98y2] = +1.61 [Petty08].$$

Assuming the Petty08 scaling is more representative of compact steady-state tokamak pilot-plant confinement, it is evident that Q_{DT}^* scales approximately as:

$$Q_{DT}^* \propto f_{gw}^{2/3} e^{5/3} \left(\frac{HR\beta_N(\epsilon)C_{BS}}{f_{BS}} \right)^2 B_T(\epsilon)^3 k(\epsilon)^4.$$
References

1. Peng YKM et al. 2005 A component test facility based on the spherical tokamak. Plasma Phys. Controlled Fusion 47, B263–B283. (doi:10.1088/0741-3335/47/12B/S20)
2. Peng Y et al. 2009 Remote handling and plasma conditions to enable fusion nuclear science R&D using a component testing facility. Fusion Sci. Technol. 56, 957–964. (doi:10.13182/FST09-A9034)
3. Voss G et al. 2008 Conceptual design of a component test facility based on the spherical tokamak. Fusion Eng. Des. 83, 1648–1653. (doi:10.1016/j.fusengdes.2008.05.002)
4. Kotschenreuther M, Valanju P, Mahajan S, Schneider E. 2009 Fusion-fission transmutation scheme-efficient destruction of nuclear waste. Fusion Eng. Des. 84, 83–88. (doi:10.1016/j.fusengdes.2008.11.019)
5. Kuteev B et al. 2011 Steady-state operation in compact tokamaks with copper coils. Nucl. Fusion 51, 073013. (doi:10.1088/0029-5515/51/7/073013)
6. Chan VS et al. 2010 Physics basis of a fusion development facility utilizing the Tokamak approach. Fusion Sci. Technol. 57, 66–93. (doi:10.13182/FST10-A9269)
7. Garofalo A et al. 2014 Progress in the physics basis of a fusion nuclear science facility based on the advanced Tokamak concept. Nucl. Fusion 54, 073015. (doi:10.1088/0029-5515/54/7/073015)
8. Abdou MA et al. 1996 Results of an international study on a high-volume plasma-based neutron source for fusion blanket development. Fusion Technol. 29, 1–57. (doi:10.13182/FST96-3)
9. El-Guebaly L, Malang S, Rowcliffe A, Waganer L. 2015 Blanket/materials testing strategy for FNSF and its breeding potential. Fusion Sci. Technol. 68, 251–258. (doi:10.13182/FST15-124)
10. Dean SO, Baker CC, Cohn DR, Kinkead SD. 1991 An accelerated fusion power development plan. J. Fusion Energy 10, 197–206. (doi:10.1007/BF01050627)
11. Dean SO, Baker CC, Cohn DR, Dautovich DP, Ellis WR, Morison WG. 1992 Pilot plant: an affordable step toward fusion power. J. Fusion Energy 11, 85–97. (doi:10.1007/BF01080171)
12. Menard J et al. 2011 Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator. Nucl. Fusion 51, 103014. (doi:10.1088/0029-5515/51/10/103014)
13. Kim K et al. 2015 Design concept of K-DEMO for near-term implementation. Nucl. Fusion 55, 053027. (doi:10.1088/0029-5515/55/5/053027)
14. Federici G, Biel W, Gilbert M, Kemp R, Taylor N, Wenninger R. 2017 European DEMO design strategy and consequences for materials. Nucl. Fusion 57, 092002. (doi:10.1088/1741-4326/57/9/092002)
15. Okano K. 2018 Review of strategy toward DEMO in Japan and required innovations. J. Fusion Energy 1–9. (doi:s10894-018-0169-y)
16. Sorbom B et al. 2015 ARC: a compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng. Des. 100, 378–405. (doi:10.1016/j.fusengdes.2015.07.008)
17. Menard J et al. 2016 Fusion nuclear science facilities and pilot plants based on the spherical Tokamak. Nucl. Fusion 56, 106023. (doi:10.1088/0029-5515/56/10/106023)
18. Chuyanov V, Gryaznevich M. 2017 Modular fusion power plant. Fusion Eng. Des. 122, 238–252. (doi:10.1016/j.fusengdes.2017.07.017)
19. Sykes A et al. 2018 Compact fusion energy based on the spherical tokamak. Nucl. Fusion 58, 016039. (doi:10.1088/1741-4326/aa8c8d)
20. Malang S, Tillack M, Wong CPC, Morley N, Smolentsev S. 2011 Development of the Lead Lithium (DCLL) blanket concept. Fusion Sci. Technol. 60, 249–256. (doi:10.13182/FST10-212)
21. El-Guebaly L, Mynsberge L, Menard J, Brown T, Malang S, Waganer L. 2014 Nuclear aspects and blanket testing/development strategy for ST-FNSF. IEEE Trans. Plasma Sci. 42, 1457–1463. (doi:10.1109/TPS.2014.2311758)
22. El-Guebaly L, Rowcliffe A, Menard J, Brown T. 2016 TBM/MTM for HTS-FNSF: an innovative testing strategy to qualify/validate fusion technologies for U.S. DEMO. Energies 9, 632. (doi:10.3390/en9080632)
23. El-Guebaly L, Harb M, Davis A, Menard J, Brown T. 2017 ST-based fusion nuclear science facility: breeding issues and challenges of protecting HTS magnets. Fusion Sci. Technol. 72, 354–361. (doi:10.1080/15361055.2017.1333864)
24. Sawan ME, Ibrahim AM, Wilson PPH, Marriott EP, Stambaugh RD, Wong CPC. 2011 Neutronics analysis in support of the fusion development facility design evolution. *Fusion Sci. Technol.* 60, 671–675. (doi:10.13182/FST11-A12461)

25. Chan V et al. 2011 A fusion development facility on the critical path to fusion energy. *Nucl. Fusion* 51, 083019. (doi:10.1088/0029-5515/51/8/083019)

26. Menard J et al. 2012 Overview of the physics and engineering design of NSTX upgrade. *Nucl. Fusion* 52, 083015. (doi:10.1088/0029-5515/52/8/083015)

27. Sborchia C, Fu Y, Gallix R, Jong C, Knaster J, Mitchell N. 2008 Design and specifications of the ITER TF coils. *IEEE Trans. Appl. Supercond.* 18, 463–466. (doi:10.1109/TASC.2008.921339)

28. Mitchell N, Bessette D, Gallix R, Jong C, Knaster J, Libeyre P, Sborchia C, Simon F. 2008 The ITER magnet system. *IEEE Trans. Appl. Supercond.* 18, 435–440. (doi:10.1109/TASC.2008.921232)

29. Sborchia C et al. 2014 The ITER magnet systems: progress on construction. *Nucl. Fusion* 54, 013006. (doi:10.1088/0029-5515/54/1/013006)

30. van der Laan DC, Noyes PD, Miller GE, Weijers HW, Willering GP. 2013 Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T. *Supercond. Sci. Technol.* 26, 045005. (doi:10.1088/0953-2048/26/4/045005)

31. van der Laan DC, Goodrich LF, Noyes P, Trociewitz UP, Godeke A, Abraimov D, Larbalestier DC. 2015 Engineering current density in excess of 200 A mm$^{-2}$ at 20 T in CORC® magnet cables containing RE-Ba$_2$Cu$_3$O$_7$$-\delta$ tapes with 38 μm thick substrates. *Supercond. Sci. Technol.* 28, 124001. (doi:10.1088/0953-2048/28/12/124001)

32. VanDerLaan DC, Weiss JD, Noyes P, Trociewitz UP, Godeke A, Larbalestier DC. 2016 Record current density of 344 A mm$^{-2}$ at 4.2 K and 17 T in CORC® accelerator magnet cables. *Supercond. Sci. Technol.* 29, 055009. (doi:10.1088/0953-2048/29/5/055009)

33. ITER Physics Expert Group on Confinement and Transport and Confinement Modelling and Database, ITER Physics Basis Editors. 1999 Chapter 2: Plasma confinement and transport. *Nucl. Fusion* 39, 2175–2249. (doi:10.1088/0029-5515/39/12/302)

34. Doyle EJ. 2007 Chapter 2: plasma confinement and transport. *Nucl. Fusion* 47, S18–S127. (doi:10.1088/0029-5515/47/6/S02)

35. Petty CC. 2008 Sizing up plasmas using dimensionless parameters. *Phys. Plasmas* 15, 080501. (doi:10.1063/1.2961043)

36. Kaye S, Bell M, Bell R, Fredrickson E, LeBlanc B, Lee K, Lynch S, Sabbagh S. 2006 Energy confinement scaling in the low aspect ratio National Spherical Torus Experiment (NSTX). *Nucl. Fusion* 46, 848–857. (doi:10.1088/0029-5515/46/10/002)

37. Kaye S et al. 2007 Confinement and local transport in the National Spherical Torus Experiment (NSTX). *Nucl. Fusion* 47, 499–509. (doi:10.1088/0029-5515/47/7/001)

38. Valovic M et al. 2009 Scaling of H-mode energy confinement with I_p and B_T in the MAST spherical Tokamak. *Nucl. Fusion* 49, 075016. (doi:10.1088/0029-5515/49/7/075016)

39. Valovic M et al. 2011 Collisionality and safety factor scalings of H-mode energy transport in the MAST spherical Tokamak. *Nucl. Fusion* 51, 073045. (doi:10.1088/0029-5515/51/7/073045)

40. Gerhardt S, Andre R, Menard J. 2012 Exploration of the equilibrium operating space for NSTX-upgrade. *Nucl. Fusion* 52, 083020. (doi:10.1088/0029-5515/52/8/083020)

41. Ono M et al. 2015 Progress toward commissioning and plasma operation in NSTX-U. *Nucl. Fusion* 55, 073007. (doi:10.1088/0029-5515/55/7/073007)

42. Menard JE et al. 2017 Overview of NSTX upgrade initial results and modelling highlights. *Nucl. Fusion* 57, 102006. (doi:10.1088/1741-4326/aa600a)

43. Battaglia D et al. 2018 Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade. *Nucl. Fusion* 58, 046010. (doi:10.1088/1741-4326/aaa600)

44. Morris AW. 2012 MAST: results and upgrade activities. *IEEE Trans. Plasma Sci.* 40, 682–691. (doi:10.1109/TPS.2011.2181540)

45. Fishpool G, Canik J, Cunningham G, Harrison J, Katramados I, Kirk A, Kovari M, Meyer H, Scannell R. 2013 MAST-upgrade divertor facility and assessing performance of long-legged divertors. *J. Nucl. Mater.* 438, S356–S359. (doi:10.1016/j.jnucmat.2013.01.067)

46. Chapman IT et al. 2015 Overview of MAST results. *Nucl. Fusion* 55, 104008. (doi:10.1088/0029-5515/55/10/104008)
47. Bondeson A, Ward DJ. 1994 Stabilization of external modes in tokamaks by resistive walls and plasma rotation. *Phys. Rev. Lett.* **72**, 2709–2712. (doi:10.1103/PhysRevLett.72.2709)

48. Betti R, Freidberg JP. 1995 Stability analysis of resistive wall kink modes in rotating plasmas. *Phys. Rev. Lett.* **74**, 2949–2952. (doi:10.1103/PhysRevLett.74.2949)

49. Boozer AH. 1995 Stabilization of resistive wall modes by slow plasma rotation. *Phys. Plasmas* **2**, 4521–4532. (doi:10.1063/1.871009)

50. Sontag AC et al. 2005 Resistive wall mode stabilization of high-β plasmas in the National Spherical Torus Experiment. *Phys. Plasmas* **12**, 056112. (doi:10.1063/1.1883668)

51. Sabbagh S et al. 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas. *Nucl. Fusion* **46**, 635–644. (doi:10.1088/0029-5515/46/5/014)

52. Sontag AC et al. 2007 Investigation of resistive wall mode stabilization physics in high-beta plasmas using applied non-axisymmetric fields in NSTX. *Nucl. Fusion* **47**, 1005–1011. (doi:10.1088/0029-5515/47/8/035)

53. Liu Y, Chu MS, Gimblett CG, Hastie RJ. 2008 Magnetic drift kinetic damping of the resistive wall mode in large aspect ratio tokamaks. *Phys. Plasmas* **15**, 092505. (doi:10.1063/1.2978091)

54. Liu Y, Chu MS, Chapman IT, Hender TC. 2008 Toroidal self-consistent modeling of drift kinetic effects on the resistive wall mode. *Phys. Plasmas* **15**, 112503. (doi:10.1063/1.3008045)

55. Berkery JW, Sabbagh Sa, Betti R, Hu B, Bell RE, Gerhardt SP, Manickam J, Tritz K. 2010 Resistive wall mode instability at intermediate plasma rotation. *Phys. Rev. Lett.* **104**, 035003. (doi:10.1103/PhysRevLett.104.035003)

56. Berkery JW, Sabbagh Sa, Reimerdes H, Betti R, Hu B, Bell RE, Gerhardt SP, Manickam J, Podestà M. 2010 The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stability. *Phys. Plasmas* **17**, 082504. (doi:10.1063/1.3474925)

57. Menard J et al. 2010 Progress in understanding error-field physics in NSTX spherical torus plasmas. *Nucl. Fusion* **50**, 045008. (doi:10.1088/0029-5515/50/4/045008)

58. Berkery J, Sabbagh S, Betti R, Bell R, Gerhardt S, LeBlanc B, Yuh H. 2011 Effect of collisionality on kinetic stability of the resistive wall mode. *Phys. Rev. Lett.* **106**, 3–6. (doi:10.1103/PhysRevLett.106.075004)

59. Bialek J, Boozer AH, Mauel ME, Navratil GA. 2001 Modeling of active control of external magnetohydrodynamic instabilities. *Phys. Plasmas* **8**, 2170–2180. (doi:10.1063/1.1362532)

60. Sabbagh S et al. 2004 The resistive wall mode and feedback control physics design in NSTX. *Nucl. Fusion* **44**, 560–570. (doi:10.1088/0029-5515/44/4/011)

61. Sabbagh S et al. 2006 Active stabilization of the resistive-wall mode in high-beta, low-rotation plasmas. *Phys. Rev. Lett.* **97**, 045004. (doi:10.1103/PhysRevLett.97.045004)

62. Sabbagh S et al. 2010 Advances in global MHD mode stabilization research on NSTX. *Nucl. Fusion* **50**, 025020. (doi:10.1088/0029-5515/50/2/025020)

63. Menard JE et al. 2004 Aspect ratio scaling of ideal no-wall stability limits in high bootstrap fraction tokamak plasmas. *Phys. Plasmas* **11**, 639–646. (doi:10.1063/1.1640623)

64. Raman R, Shevchenko VF. 2014 Solenoid-free plasma start-up in spherical tokamaks. *Plasma Phys. Controlled Fusion* **56**, 103001. (doi:10.1088/0741-3335/56/10/103001)

65. Huba J. 2016 NRL plasma formulay. Washington, DC: Naval Research Laboratory.

66. Greenwald M, Terry J, Wolfe S, Ejima S, Bell M, Kaye S, Neilon G. 1988 A new look at density limits in tokamaks. *Nucl. Fusion* **28**, 2199–2207. (doi:10.1088/0029-5515/28/12/009)

67. Greenwald M. 2002 Density limits in toroidal plasmas. *Plasma Phys. Controlled Fusion* **44**, R27–R53. (doi:10.1088/0741-3335/44/8/201)

68. Wilson H. 1992 Bootstrap current scaling in tokamaks. *Nucl. Fusion* **32**, 257–263. (doi:10.1088/0029-5515/32/2/015)

69. Menard J, Jardin S, Kaye S, Kessel C, Manickam J. 1997 Ideal MHD stability limits of low aspect ratio tokamak plasmas. *Nucl. Fusion* **37**, 595–610. (doi:10.1088/0029-5515/37/5/103)