Abstract: Herbicides made from natural molecules may be a good environmentally friendly alternative to synthetic chemical herbicides for weed control. As a result, this investigation was carried out to ascertain the phytotoxicity of *Parthenium hysterophorus* L. as well as to identify its phenolic components. Germination of seeds and development of seedlings of *Vigna subterranea* (L.) Verdc., *Digitaria horizontalis* (L.) Scop and *Eleusine indica* (L.) Gaertn were investigated using *P. hysterophorus* leaf, stem, and flower methanol extracts. Six concentrations (25, 50, 75, 100, and 150 g L\(^{-1}\)) were compared to the control (distilled water). The concentration of extracts increased, the rate of the seed sprouting and seedling growth decreased. EC\(_{50}\) values showed that the extraction of leaf of *P. hysterophorus* (811) was phytotoxic in comparison to the stem (1554) and flower (1109) extract. According to PCA analysis, *Raphanus sativus*, *Solanum lycopersicum*, *Capsicum frutescens*, *Abelmoschus esculentus*, *Daucus carota*, *Digitaria sanguinalis*, and *Eleusine indica* were all very susceptible to allelochemicals. A LC-MS analysis revealed that the *P. hysterophorus* leaf extract contained 7 phenolic compounds that were responsible for inhibition. These studies also revealed that the leaf of *P. hysterophorus* is a major source of phytotoxicity, which could be valuable in the future for developing a natural herbicide.

Keywords: Parthenium, Phytotoxicity, Weed management, Germination, seedling growth

1. Introduction

Parthenium (Parthenium hysterophorus L.) is a noxious herb that has now invaded 46 countries and extended its spread from a few islands to around the world, there have been eleven minor and eight major introductions [1]. Its high invasiveness is associated with several factors, including a higher number of seeds production, highly competitive and rapidly expanding, biological plasticity of the life cycle, allelopathic ability and high survival ability against biotic and abiotic stresses [2–5].

Allelopathy is described as chemical’s positive or negative impacts substances formed primarily by plant, microbe, and fungal secondary metabolism on the growth and establishment of neighbouring plants or microorganisms, as well as the dynamical processes of agricultural and natural eco-systems [6]. It’s a complicated phenomenon that’s influenced by a variety of internal and external circumstances. Due to its intricacy, the explanation is a difficult endeavour that necessitates knowledge from a variety of professions [7]. Allelochemicals are plants that release secondary metabolites into the environment. They are anti-inflammatory substances that belong to a variety of chemical classes, primarily phenolic
compounds and terpenoids [8]. Bhadoria [9] provided a more comprehensive summary of allelochemicals that affects plant growth and development. All plant organs (stems, leaves, rhizomes, roots, flowers, pollen, fruits, seeds) contain allelochemicals, which are released through volatilization, leaf leaching, plant material breakdown, and root exudation. In some way, membrane stability, cell division, elongation, shape and permeability, enzyme activity, and respiration of plants are all influenced. Photosynthesis, protein synthesis, nucleic acid metabolism, and other direct and indirect ways of action cause seed sprouting suppression and limited seedling development [8]. In addition, the microbial breakdown of soil allelochemicals has an impact on the effective dose of allelochemicals that can inhibit plants [10,11].

Herbicides have been the least expensive and principal method of weed control in developing countries for about 50 years [12]. Herbicides, on the other hand, pose significant risks to agriculture, human health, and the environment. However, increasing crop production without using chemical herbicide is an urgent challenge in crop production. Manual weed management is the most effective and long-term solution for weed management. So, accurate weed control is necessary for food security throughout the world. Therefore, researchers are motivated to seek alternatives because of the labour movement from agriculture to others, and weed biotypes resistant to traditional synthetic pesticides [13]. This strategy will aid in reducing reliance on chemical herbicides, reducing the likelihood of weed resistance to herbicides, reducing health risks and environmental damage, and strengthening the national economy. In the meantime, there are a variety of possible allelochemicals in aerial sections (e.g., leaves) of Parthenium weed have been confirmed by several earlier studies; among them p-anisic acid (C₆H₅O₂), p-coumaric acid (C₆H₅COOH), caffeic acid (C₆H₅O₄), ferulic acid (C₆H₅O₄), fumaric acid (C₄H₄O₄), p-hydroxybenzoic acid (C₆H₅COOH), neochlorogenic acid (C₆H₅O₄), protocatechuic acid (C₆H₅O₄), aeric acid, chlorogenic acid (C₆H₅O₄) and vanillic acid (C₆H₅OH) are the most important [14,15] sprouting and development of a plant species in abundance, natural plants are included and different crops and pasture species can be inhibited by these chemicals [16]. Wheat, maize, and horse gram [5], lentil [17,18] and other field crops. Hassan et al., [19] showed an inhibitory impact when exposed to parthenium extract. Dhawan and Gupta [15] reported that the extraction of diverse active phytochemicals with flavonoid concentrations works best using methanol as an extraction solvent.

However, there is insufficient evidence on the influence of Parthenium methanolic extracts on the sprouting and seedlings development of several crops especially Bambara groundnut weeds. The Bambara groundnut is a new crop for Malaysia, but there is information lacking on the suppression of allelopathy on Bambara groundnut weeds by different parts of P. hysterophorus. The current study aimed to find out the allelopathic capacity of Parthenium in a laboratory experiment to evaluate the allelopathic suppression of weeds by P. hysterophorus in Bambara groundnut weeds. The research was directed with the following objectives (1) to evaluate the phytotoxicity of methanol extracts made from the aerial portions of P. hysterophorus on target species in order to develop biobioherbicides based on natural products (2) LC-MS was used to identify its phenolic derivatives.

2. Materials and Methods

2.1. Experimental location

Growth chamber research was carried out at Weed Science Lab in the Crop Science Department, Faculty of Agriculture, Universiti Putra Malaysia (3°02' N, 101°42' E, elevation 31 m), Malaysia. Temperature in the growth chamber was maintained at 25°C in throughout the experimental period.

2.2. Experimental Treatments and Design

Leaf, stem, and floral parts of parthenium was applied at different concentration viz., 0, 25, 50, 75, 100, and 150 g L⁻¹ [42]. All treatments arranged in a completely randomized design (CRD) and repeated four times.

2.3. Plant Materials and Preparation of Seeds

For extraction of the leaf of P. hysterophorus plants, plant materials were taken from Ladang Inforenak farm in Sungai Siput, Perak, Malaysia, and also grown in the net house of field 15 at University of Putra Malaysia, Selangor, Malaysia. The above-ground part of the plants was collected just before maturity, rinsed several times using tap water to eliminate dust elements, then air-dried at ambient
temperature (24-26°C) for three weeks. The leaves, stems, and flowers were divided and bulked up into three main parts. In a laboratory blender, both bulked plant components were ground into fine dust and sieved through a 40-mesh sieve.

The inhibitory action of *P. hysterophorus* was investigated on nine plant species. Bambara groundnut (*Vigna subterranea* L. Verdc), radish (*Raphanus sativus* L. Domini), sweet gourd (*Cucurbita maxima* Duchesne), tomato (*Solanum lycopersicum* L.), cucumber (*Cucumis sativus* L.), chili (*Capsicum frutescens* L.), corn (*Zea mays* L.), carrot (*Daucus carota* L.) and okra (*Abelmoschus esculentus* L. Moench) and two weed species goosegrass (*Eleusine indica* L. Gaertn) and [crab grass (*Digitaria sanguinalis* L. Scop). Crop seeds were attained from Sin Seng Huat Seeds Sdn Bhd company in Malaysia, while seeds of grasses were personally picked from the Universiti Putra Malaysia’s agricultural field. The seeds were cleaned, air-dried, and stored in airtight containers maintain at −18°C. The vegetable crops are chosen for the determination of ecological effects of allelopathic substances as they represented commonly used species in the field that’s are recommended by US EPA [54]. They belong to different plant families and can provide great genetic diversity. The seeds germinated 86-95% of the time, according to a random test.

2.4. Extract Preparation

The extracts were made according to the procedure published by [55] and [42]. Accurately 100 g powder from leaves, stems, and flowers of paythenium were placed in a conical flask and allowed to soak in 1L of 80% (v/v) methanol separately. After that, the conical flask was wrapped in paraffin and shaken for 48 hours at 24-26°C room temperatures in an Orbital shaker at 150 rpm agitation speed. To remove debris, cheesecloth in four layers were used to filter the mixtures and centrifuged for one hour at 3000 rpm in a centrifuge (5804/5804 R, Eppendorf, Germany). A single layer of Whatman No. 42 filter paper was used to filter the supernatant. A 0.2 mm Nalgene filter was used to filter the solutions once more to avoid microbial development (Lincoln Park, NJ-based Becton Dickinson percent Labware). Using a rotary evaporator (R 124, Buchi Rotary Evaporator, Germany), the solvents were evaporated from the extract to dryness (a thick mass of coagulated liquid) under vacuum at 40° C and the samples were then collected. From a 100 g sample of *P. hysterophorus* powder, the average extracted sample was 17.56 g.

\[
\text{[Extract weight (g)/powder weight (g)]} \times 100 = \text{Extraction percentage}
\]

For the bioassay, each stock extract from *P. hysterophorus* leaves, stems, and flowers were diluted in sterile distilled water to provide extract concentrations of 25, 50, 75, 100, and 150 g L⁻¹, while purified water was served as control. All extracts were stored at 4°C in the dark until use.

For LC-MS analysis, 100% HPLC GRADE methanol (20 mL) was diluted with the crude sample (20 mg) and filtered through 15-mm, 0.2-µm syringe filters (Phenex, Non-sterile, Luer/Slip, LT Resources Malaysia).

2.5. Germination and growth bioassays

Healthy, uniform seeds were gathered and treated with 0.2% potassium nitrate for 24 hours (KNO₃) before being rinsed with distilled water. Twenty Bambara groundnut and sweet gourd seeds and thirty seeds of radish, cucumber, tomato, chili, corn, okra, carrot, crabgrass, and goosegrass were set up in a sterilized Petri dish with Whatman No. 1 filter paper (90 x 15 mm). 10 mL of extract of each concentration (25, 50, 75, 100, and 150 g L⁻¹) was delivered in Petri dishes, distilled water serving as a control. In a growth chamber, all Petri dishes were inserted and incubated at 30°C/20°C (day/night) temperature under fluorescent light (8500 lux) on photoperiod 12 h day/12 h night maintained 30-50% relative humidity. To facilitate gas exchange, the petri dish lids were not sealed.

2.6. Identification of phenolic derivatives in *P. hysterophorus* leaves, stems, and flowers extracted in methanol

The LC-MS was used to identify the chemical contents of the extracts. The phytochemical compounds of the methanol extracts were performed using LC-MS followed by [56]. LC-MS analysis was performed using Agilent spectrometry equipped with a binary pump. The LC-MS was interfaced Agilent 1290 Infinity LC system coupled to Agilent 6520 accurate-mass Q-TOF mass spectrometer with a dual ESI source. Full-scan mode from m/z 50 to 500 was performed with a source temperature of 125°C. The column of Agilent zorbax eclipse XDB-C18, narrow-bore 2.1x150 mm, 3.5 microns (P/N: 930990-
902) was used with the temperature 30°C for the analysis. A 0.1% formic acid in water and B 0.1% formic acid in methanol were used as solvents. Isocratic elution was used to supply solvents at a total flow rate of 0.1 mL minutes⁻¹. MS spectra were collected in both positive and negative ion modes. The drying gas was 300°C, with a 10L min⁻¹ gas flow rate and a 45-psi nebulizing pressure. Before analysis, 1 ml of concentration. sample extracts were diluted with methanol and filtered through a 0.22 m nylon filter. The extracts were injected into the analytical column in 1 µl volume for analysis. The mass fragmentations were discovered using an Agilent mass hunter qualitative analysis B.07.00 (Metabolom-ics-2019.m) tool and a spectrum database for organic chemicals.

2.7. Data collection

The germination percentage, radicle, and hypocotyl length were measured with a ruler at seven days after seeding. The radicle and hypocotyl length was assessed by software Image J while the inhibition (%) of P. hysterophorus extracts on a radicle, and hypocotyl length was computed following the formula used by Kordali [58]:

\[100 \left(\frac{C-A}{C} \right) = I \] \hspace{1cm} (2)

Here, “I” is the percentage of inhibition, “C” control’s mean growth and development and “A” is the aqueous extracts’ mean growth and development.

2.8. Statistical Analysis

On pooled (two seasons) data, a one-way analysis of variance (ANOVA) was used to regulate any significant variances among concentrations and control. To calculate the difference between the concentration means, the Tukey test (SAS 9.4) with a 0.05 probability level was utilised. EC₅₀, EC₅₀, and EC₅₀ were used to compute real dosages accomplished of suppressing 50% of germination, radicle development, and hypocotyl growth. Based on the suppression of germination (percentage), radicle, and hypocotyl development, Probit analysis was used to compute the EC₅₀, EC₅₀, and EC₅₀ values. From each tested plant, a rank was determined by using the following equation to calculate an index (Rₑ) for each of the most active extracts and plants that are the most susceptible:

\[EC_{50n} \text{(germination)} + EC_{50n} \text{(hypocotyl)} + EC_{50n} \text{(radicle)} = \text{Rank (Rₑ)} \] \hspace{1cm} (3)

Where Re is the plant's rank n, EC₅₀, EC₅₀, and EC₅₀ are the amounts of plant extract n that inhibit 50% germination, radicle, and hypocotyl length, respectively. The lowest Re value had the maximum active tissue extracts and the utmost sensitive plants, while the highest Re value had the least allelopathic effect of the extract.

The most common application of NTSYSpc 2.02e (Numerical Taxonomy and Multivariate Analysis System) is to do various types of agglomerative cluster analysis of some type of similarity or dissimilarity matrix and the quantity of extract sensitivity among the plants under investigation [59,60]. The principal component analysis (PCA) was used to re-validate Johnson's cluster analysis [20].

3. Results

3.1. Inhibitory influence of P. hysterophorus on crop species

Different concentrations of methanolic extracts to the control, Parthenium leaf, stem, and flower concentrations and different crops had a significant influence on germination of seed, radicle, and hypocotyl length of the examined plants, as well as a rise in extract concentration. Parthenium extracts had a bit stimulatory impact on seed germination at 25 g L⁻¹, but an inhibitory effect was observed at higher dosages (Figure 1).
194 Figure 1. Showing the effect on germination% from different concentration levels of Parthenium aerial plant parts on crops (Bambara groundnut, raddish, sweet gourd, cucumber, tomato and chilli). Note: LE – Leaf extract, SE – Stem extract, FE – Flower extract.

Methanolic extract of leaf at 25 g L\(^{-1}\) significantly decreased the sprouting of all plants except sweet gourd, cucumber, and maize (p≤0.05), while, seed germination failure was seen in tomato, carrot, and goosegrass if the concentration level further increased. The maximum concentration resulted in 100% germination failure in all crops except cucumber (76%) and corn (65%) (Figure 1 & 2).

Figure 2. Showing the effect on germination% from different concentration levels of Parthenium aerial plant parts on crops (corn, okra and carrot) and weeds species (crab grass and goose grass). Note: LE – Leaf extract, SE – Stem extract, FE – Flower extract.

When the *P. hysterophorus* stem and flower extract were applied at lower doses (25, 50, and 75 g L\(^{-1}\)), there was no significant reduction in germination (%). When the concentration was raised from 100
to 150 g L$^{-1}$, the sprouting was substantially decreased between 1-100 percent in the stem and 48-100 percent in the flower extract among the indicator plants, while it was 61-100 percent in the leaf extract (Figure 1& 2). Among them, leaf extract was affected in many crops than stem and flower extract. On the other hand, germination (%), radicle, and hypocotyl length were significantly decreased at 50 to 100 g L$^{-1}$ leaf extracts (Table 1). Increasing the concentration level eventually reduced the germination percentage over time. Both extracts of Parthenium inhibit the germination percentage of examined indicator both weed species (Figure 2).

Methanol extracts had a significant phytotoxic influence on all the crops on radicle and hypocotyl length studied at varied doses except sweet gourd, cucumber, and corn. Extraction of the leaf at doses more than or equal to 50 g L$^{-1}$ substantially decreased the radicle length of target plants (p≤0.05) (Table 1). With 100 to 150 g L$^{-1}$ stem and flower extract, root development of certain plants was decreased by more than half, whereas the uppermost concentration of the leaf extract (100 to 150 g L$^{-1}$) resulted in no root development such as Bambara groundnut, radish, chili, okra, etc (Table 1). From the concentration level of 100 to 150 g L$^{-1}$ Parthenium extract radicle length showed the inhibition level 53-100%, 36-100%, and 10-100% were from leaf, stem, and flower, respectively (Table 1, 2 & 3). As a result, the leaf extract had a higher concentration than the others (Table 1).

Furthermore, we observed that the weed crabgrass and goosegrass were severely affected by leaf and flower methanol extract in the doses of 50 to 150 g L$^{-1}$, but stem extract was affected by doses of 100 to 150 g L$^{-1}$. So, it was observed that severely affected weed by leaf than flower and stem plant parts. The amount of inhibition rose when the concentration level was raised. Different components of Parthenium reduced the shoot length of all examined plants by 27-100%, 61-100%, and 38-100%, respectively, at the doses of 100 to 150 g L$^{-1}$.

Table 1. Effect of leaves extracts of Parthenium hysterophorus with Methanol on germination, radicle and hypocotyl length, and percent (%) inhibition of different crops.

Crops	Dose (g L$^{-1}$)	Inhibition of germination (%)	Length of radicle (cm)	Length of hypocotyl (cm)	
Bambara groundnut	0	0	1.35±0.05a (0)	0.82±0.01a (0)	
	25	65.1	0.72±0.02b (46.7)	0b (100)	
	50	100	0c (100)	0b (100)	
	75	100	0c (100)	0b (100)	
	100	100	0c (100)	0b (100)	
	150	100	0c (100)	0b (100)	
Radish	0	0	1.23±0.02a (0)	2.30±0.05a (0)	
	25	97.7	0.47±0.03b (60.5)	1.20±0.2b (24.5)	
	50	100	0c (100)	0c (100)	
	75	100	0c (100)	0c (100)	
	100	100	0c (100)	0c (100)	
	150	100	0c (100)	0c (100)	
Sweet gourd	0	0	1.58±0.04a (0)	2.32±0.03a (0)	
	25	74.1	0.61±0.02b (61.4)	1.73±0.05b (25.4)	
	50	87.9	0.57±0.03b (63.9)	1.64±0.05b (29.3)	
	75	93.1	0.37±0.02c (76.6)	1.40±0.08c (39.7)	
	100	96.6	0.31±0.03c (80.4)	1.36±0.12c (41.4)	
	150	100	0d (100)	0d (100)	
Cucumber	0	0	0.91±0.03a (0)	1.80±0.04a (0)	
	25	36.4	0.36±0.03b (46.3)	1.35±0.07b (16.7)	
	50	51.1	0.31±0.01bc (53.7)	0.89±0.06c (45.1)	
	75	53.4	0.28±0.01c (58.2)	0.55±0.03d (66.0)	
	100	68.2	0.16±0.01d (76.1)	0.51±0.03de (68.5)	
	150	76.1	0.16±0.01d (76.1)	0.40±0.01e (75.3)	
Tomato	0	0	0.34±0.01a (0)	0.41±0.01a (0)	
	25	100	0b (100)	0b (100)	
	50	100		0b (100)	0b (100)
-------	-----	-----	-------	----------	----------
75	100	0b (100)	0b (100)		
100	100	0b (100)	0b (100)		
150	100	0b (100)	0b (100)		

Chili

	0	0		0.41±0.02a (0)	-
25	60.0	0	0.20±0b (47.4)	-	
50	62.4	0d (100)	0.12±0c (68.4)	-	
75	100	0d (100)	0d (100)	-	
100	100	0d (100)	0d (100)	-	
150	100	0d (100)	0d (100)	-	

Corn

	0	0		1.98±0.01a (0)	2.73±0.07a (0)
25	31.7	0	0.94±0.07b (18.97)	0.85±0.03b (15.84)	
50	41.5	0b (100)	0.68±0.03c (41.38)	0.78±0.03bc (22.77)	
75	58.5	0d (100)	0.64±0.04cd (44.83)	0.77±0.03bc (23.76)	
100	61.0	0d (100)	0.54±0.04de (53.45)	0.73±0.04c (27.72)	
150	65.9	0d (100)	0.42±0.03e (63.79)	0.58±0.02d (42.57)	

Okra

	0	0		0.70±0.02a (0)	1.36±0.03a (0)
25	81.4	0	0.34±0.02b (51.43)	1.08±0.05b (20.59)	
50	94.19	0c (100)	0.25±0.01c (64.29)	0c (100)	
75	100	0d (100)	0d (100)	0c (100)	
100	100	0d (100)	0d (100)	0c (100)	
150	100	0d (100)	0d (100)	0c (100)	

Carrot

	0	0		0.39±0.01a (0)	0.51±0.01a (0)
25	100	0b (100)	0b (100)	0b (100)	
50	100	0b (100)	0b (100)	0b (100)	
75	100	0b (100)	0b (100)	0b (100)	
100	100	0b (100)	0b (100)	0b (100)	
150	100	0b (100)	0b (100)	0b (100)	

Crabgrass

	0	0		0.23±0.02a (0)	0.85±0.03a (0)
25	62.5	0c (100)	0.10±0b (56.52)	0.22±0.01b (74.12)	
50	100	0c (100)	0c (100)	0c (100)	
75	100	0c (100)	0c (100)	0c (100)	
100	100	0c (100)	0c (100)	0c (100)	
150	100	0c (100)	0c (100)	0c (100)	

Goose grass

	0	0		0.20±0.02a (0)	0.80±0.01a (0)
25	100	0b (100)	0b (100)	0b (100)	
50	100	0b (100)	0b (100)	0b (100)	
75	100	0b (100)	0b (100)	0b (100)	
100	100	0b (100)	0b (100)	0b (100)	
150	100	0b (100)	0b (100)	0b (100)	
Table 2. Effect of stem extracts of *Parthenium hysterophorus* with Methanol on germination, radicle and hypocotyl length, and percent (%) inhibition of different crops.

Crops	Dose (g L⁻¹)	Inhibition of germination (%)	Length of radicle (cm)	Length of hypocotyl (cm)				
Bambara groundnut	0	0	1.35±0.05a (0)	0.82±0.01a (0)				
	25	48.88	1.66±0.03a (1.78)	0b (100)				
	50	60.47	1.13±0.02b (33.1)	0b (100)				
	75	83.73	0.88±0.04c (47.9)	0b (100)				
	100	100	0d (100)	0b (100)				
	150	100	0d (100)	0b (100)				
Radish	0	0	1.23±0.02a (0)	2.30±0.05a (0)				
Sweet gourd	Cucumber	Tomato	Chilli	Corn	Okra	Carrot	Crabgrass	Goose grass
-------------	----------	--------	--------	------	------	--------	-----------	-------------
25	0	0	0	0	0	0	0	0
18.89	0	0	0	0	0	0	0	0
1.12±0.02b	0.91±0.03a	0.41±0.02a	0.24±0.06b	0.70±0.02a	0.39±0.01a	0.23±0.02a	0.20±0.02a	0.20±0.02a
(8.94)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
50	25	50	50	25	50	50	50	50
32.23	62.1	1.12	0.78±0.05bc	45.0	38.66	78.1	40.48	83.34
1.05±0.02c	1.53±0.03b	0.78±0.05bc	0.29±0.01b	0.70±0.02a	0.19±0.01a	0.24±0.06b	0.23±0.02a	0.20±0.02a
(14.6)	(17.3)	(14.29)	(26.37)	(29.27)	(28.48)	(5.56)	(21.52)	(8.94)
0.48±0.02d	0.67±0.04c	1.13±0.02c	0.27±0.0bc	1.11±0.01c	1.14±0.06a	1.90±0.01a	0.24±0.06b	0.14±0.01b
(61.0)	(26.37)	(28.48)	(34.15)	(29.75)	(9.52)	(15.63)	(21.52)	(22.22)
75	25	75	100	100	100	100	75	100
77.78	89.7	89.7	100	100	100	100	100	100
0.30±0.01e	1.60±0.07b	1.60±0.07b	0.24±0.04d	0.12±0.01d	0.25±0.01c	0.61±0.03d	0.61±0.03d	0.20±0.02a
(75.6)	(13.51)	(13.51)	(73.63)	(86.81)	(39.02)	(61.39)	(61.39)	(61.39)
150	100	150	100	100	100	100	100	100
93.34	93.34	93.34	100	100	100	100	100	100
0.10±0.01f	0.10±0.01f	0.10±0.01f	0.24±0.04d	0.12±0.01d	0.25±0.01c	0.61±0.03d	0.61±0.03d	0.20±0.02a
(91.9)	(91.9)	(91.9)	(73.63)	(86.81)	(39.02)	(61.39)	(61.39)	(61.39)
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
100	100	100	100	100	100	100	100	100
Crops	Dose (g L⁻¹)	Flower extract	Length of hypocotyl (cm)	Inhibition of germination (%)	Length of radicle (cm)	Length of hypocotyl (cm)		
---------------	-------------	----------------	--------------------------	-------------------------------	------------------------	--------------------------		
Bambara groundnut	0	0.82±0.01a (0)	0	1.35±0.05a (0)	0.82±0.01a (0)	264		
	25	0b (100)	48.8	0.93±0.01b (7.0)	0.90±0.09b (29.1)	265		
	50	0b (100)	67.5	0.93±0.03b (7.0)	0.84±0.08b (33.9)	266		
	75	0b (100)	74.3	0.91±0.01b (9.0)	0.80±0.21b (37.0)	267		
	100	0b (100)	76.7	0.90±0.02b (10.0)	0.21±0.1c (83.5)	268		
	150	0b (100)	100	0c (100)	0d (100)			
Radish	0	2.30±0.05a (0)	0	1.23±0.02a (0)	2.30±0.05a (0)			
	25	2.25±0.05a (2.17)	51.12	0.56±0.08b (58.8)	1.62±0.03b (42.76)			
	50	2.19±0.06ab (4.78)	76.67	0.37±0.02c (72.8)	1.50±0.03c (47.0)			
	75	2.07±0.09b (10.0)	88.89	0.30±0.01c (77.9)	0.42±0.02d (85.16)			
	100	0.86±0.05c (62.61)	100	0d (100)	0e (100)			
	150	0.11±0.01d (95.22)	100	0d (100)	0e (100)			
Sweet gourd	0	2.32±0.03a (0)	0	1.58±0.04a (0)	2.32±0.03a (0)			
	25	2.16±0.18a (4.42)	49.13	0.67±0.07b (31.63)	1.99±0.07a (3.4)			
	50	2.09±0.24a (7.52)	73.68	0.65±0.08bc (33.67)	1.99±0.07a (3.4)			
	75	1.99±0.15a (11.9)	91.23	0.51±0.02c (47.96)	1.98±0.1a (3.88)			
	100	0b (100)	100	0d (100)	0b (100)			
	150	0b (100)	100	0d (100)	0b (100)			
Cucumber	0	1.80±0.04a (0)	0	0.91±0.05a (0)	1.80±0.04a (0)			
	25	1.67±0.01b (7.22)	0	0.43±0.08b (37.68)	1.95±0.08a (7.58)			
	50	1.66±0.02b (7.78)	0	0.26±0.01c (62.32)	1.23±0.06b (41.7)			
	75	1.53±0.03c (15.0)	0	0.24±0.02c (65.22)	1.09±0.05b (48.3)			
	100	0d (100)	0	0.24±0.02c (65.22)	1.06±0.06b (49.8)			
	150	0d (100)	58.9	0.22±0.01c (68.12)	0.61±0.01c (71.1)			
Tomato	0	0.41±0.01a (0)	0	0.34±0.01a (0)	0.41±0.01a (0)			
	25	0b (100)	100	0b (100)	0a (100)			
	50	0b (100)	100	0b (100)	0a (100)			
	75	0b (100)	100	0b (100)	0a (100)			
	100	0b (100)	100	0b (100)	0a (100)			
	150	0b (100)	100	0b (100)	0a (100)			
Chilli	0	-	0	0.41±0.02a (0)	-			
	25	-	89.5	0.28±0.04b (37.78)	-			
	50	-	94.2	0.23±0.02bc (48.89)	-			
	75	-	97.7	0.18±0.0c (60.0)	-			
	100	-	100	0d (100)	-			
	150	-	100	0d (100)	-			
Corn	0	2.73±0.07a (0)	0	1.98±0.01a (0)	2.73±0.07a (0)			
	25	1.43±0.08a (10.63)	52.44	1.41±0.06b (28.79)	2.60±0.08a (4.76)			
	50	0.94±0.16b (41.25)	57.32	1.23±0.02c (37.88)	2.30±0.16b (15.75)			
	75	0.71±0.02c (55.63)	69.52	1.21±0.01cd (38.89)	1.78±0.02c (34.8)			
	100	0.54±0.02c (66.25)	70.74	1.13±0.02d (42.93)	1.69±0.02c (38.1)			

The mean and standard error are used to express the data. The means for each extract with the same letters in the column are not substantially different at p > 0.05. Inhibition percentages relative to the control are shown inside the parenthesis.

Table 3. Effect of flower extracts of *Parthenium hysterophorus* with Methanol on germination, radicle and hypocotyl length, and percent (%) inhibition of different crops.
Overall, the methanol leaf extract of *P. hysterophorus* was very hazardous to all plants examined, particularly to germination, which was hindered at the lowest dosage. The half inhibitory effect of *P. hysterophorus* methanol extracts on seed germination showed some differences in sensitivity between the tested plant's response to the inhibitory influence of *P. hysterophorus* (Table 4). In case of leaf methanol extract corn, cucumber, and sweet gourd were only impacted at higher concentrations. The rank value of these crops is 463, 144, and 108 respectively, it means that these crops are more tolerant, which shows that more doses need to destroy these plants. On the other hand, Bambara groundnut, radish, tomato, carrot, crabgrass, and goosegrass are more sensitive to leaf methanol extract next to chili (53) and okra (41).

Again, in case of stem methanol extract cucumber (277), corn (244), radish (227), okra (211), sweet gourd (165), and chili (112) are more tolerant and other crops are more sensitive. It was inhibited by the extract. On the contrary, in case of flower extract cucumber (264), corn (258), Bambara groundnut (200), sweet gourd (151) is more tolerant but tomato, crabgrass, and goosegrass with other crops are more sensitive. These findings revealed that *P. hysterophorus* leaf extract had a greater effect on plant development than flower and stem extract at all dosages.

Again, germination was seriously affected (163, 449, and 282) among the leaf, stem, and flower extracts indices, while radicle length (199, 667, and 449) and hypocotyl length (448, 437, and 377) were less affected to both plant sections. Overall, the methanol leaf extract of *P. hysterophorus* was very hazardous to all plants examined, particularly to germination, which was hindered at the lowest dosage.

Table 4. For the examined species, the rank value (Re) of *P. hysterophorus* methanol extract

Target plants	Leaf extract
Okra	
Carrot	
Crabgrass	
Goose grass	

The mean and standard error are used to express the data. The means for each extract with the same letters in the column are not substantially different at p≤0.05. Inhibition percentages relative to the control are shown inside the parenthesis.

3.2. The half inhibitory effect of *Parthenium* methanol extracts

Table 4 showed the half inhibitory (EC₅₀) impact of *Parthenium* plant parts with methanol extracts, as well as the sensitivity of the evaluated starting growth parameters and plants. The efficacy of stem extract (1554) was lower than that of leaf extract (811), and it was followed by flower extract (1109) in all tested crops. The EC₅₀ value showed some differences in sensitivity between the tested plant's responses to the inhibitory influence of *P. hysterophorus* (Table 4). In case of leaf methanol extract corn, cucumber, and sweet gourd were only impacted at higher concentrations. The rank value of these crops is 463, 144, and 108 respectively, it means that these crops are more tolerant, which shows that more doses need to destroy these plants. On the other hand, Bambara groundnut, radish, tomato, carrot, crabgrass, and goosegrass are more sensitive to leaf methanol extract next to chili (53) and okra (41).
Plant	EC\text{g}_{50}	EC\text{r}_{50}	EC\text{h}_{50}	Rank
Bambara groundnut	0	0	0	0
Radish	0	0	0	0
Sweet gourd	12.98	22.35	73.26	108.59
Cucumber	48.97	35.11	60.07	144.15
Tomato	0	0	0	0
Chilli	25.17	28.76	0	53.93
Corn	62.33	85.60	315.38	463.31
Okra	13.76	28.01	0	41.77
Carrot	0	0	0	0
Crabgrass	0	0	0	0
Goosegrass	0	0	0	0
Rank	163.21	199.83	448.71	811.75

Values in g L-1

Plant	EC\text{g}_{50}	EC\text{r}_{50}	EC\text{h}_{50}	Rank
Bambara groundnut	30.48	62.42	0	92.9
Radish	64.67	68.91	93.78	227.36
Sweet gourd	19.78	68.16	77.20	165.14
Cucumber	119.62	83.05	74.86	277.53
Tomato	7.09	61.23	0	68.32
Chilli	39.82	72.20	0	112.02
Corn	71.28	100.97	72.39	244.64
Okra	38.10	99.18	74.53	211.81
Carrot	26.59	31.04	0	57.63
Crabgrass	31.62	20.79	44.41	96.82
Goosegrass	0	0	0	0
Rank	449.05	667.95	437.17	1554.17

Stem extract

Plant	EC\text{g}_{50}	EC\text{r}_{50}	EC\text{h}_{50}	Rank
Bambara groundnut	29.20	114.79	56.50	200.49
Radish	26.33	23.86	35.43	85.62
Sweet gourd	27.54	49.26	75.02	151.82
Cucumber	143.50	37.19	83.40	264.09
Tomato	0	0	0	0
Chilli	6.46	40.59	0	47.05
Corn	23.31	108.16	126.93	258.4
Okra	10.14	34.24	0	44.38
Carrot	16.04 (0)	41.69	0	57.73
Crabgrass	0	0	0	0
Goosegrass	0	0	0	0
Rank	282.52	449.78	377.28	1109.58

Flower extract

The quantities of extracts that inhibit 50% of germination, root, and hypocotyl, respectively, are designated as EC\text{g}_{50}, EC\text{r}_{50}, and EC\text{h}_{50}.

3.3. Cluster and Principal Component Analysis (PCA)

Cluster analysis was also used to categorize distinct groups of plants with comparable responses to the inhibition of leaf, stem, and flower extracts by combining all three characteristics examined. Cluster analysis produced a dendrogram that revealed variation in sensitivity among the plants (Figure 3).
Figure 3: All indicator plants’ mean EC₅₀ values for seed germination, radicle, and hypocotyl length are represented in a dendrogram (C₁- Bambara groundnut, C₂- Radish, C₃- Sweet gourd, C₄- Cucumber, C₅- Tomato, C₆- Chili, C₇- Corn, C₈- Okra, C₉- Carrot, C₁₀- Crabgrass, C₁₁- Goosegrass) treated with the leaf, stem and flower extracts of *P. hysterophorus* with methanol revealed by non-overlapping (SAHN) UPGMA Method.

Table 5. Showing the similarity among the indicator plants.

Clustering	Code	Name of the crop
Group I	C₁	Bambara groundnut
Group II	C₂, C₃, C₉	Sweet gourd, Cucumber, Carrot
Group III	C₂, C₅, C₁₀, C₁₁, C₈, C₆	Radish, Tomato, Crabgrass, Goosegrass, Okra, Chili
Group IV	C₇	Corn

Plants may be divided into four classes based on how they react to leaf, stem, and flower extracts (Table 5). According to Table 5, group IV comprises tolerant monocot plants, whereas the dicot plants examined referred to the sensitive groups. Corn was recorded tolerant, whereas the moderately sweet gourd, cucumber, and carrot had an intermediate reaction to the phytotoxicity. The most vulnerable plants, on the other side, were Bambara groundnut, radish, tomato, crabgrass, goose grass, okra, and chili. Overall, the dicot plants were shown to be more active against the Parthenium extract than the monocots.

The principal component analysis (PCA), on the other hand, is a re-validation tool for cluster analysis. Johnson uses PCA to estimate the total variation that exists in a set of characters [20]. As shown by the eigenvector in the two-dimensional (Figure 4) and three-dimensional (Figure 5) graphical elucidations, the majority of the indicator plants were spread at short distances, while just two were dispersed at long distances. Bambara groundnut and Corn were the accessions that were farthest from the centroid, whilst other accessions were close to it.
3.4 Identified phenolic derivatives from LC-MS analysis

The identified phenolic derivatives of *P. hysterophorus* plant parts with methanolic extracts through LC-MS analysis are listed in Table 6. The leaf, stem, and flower extracts of *P. hysterophorus* have diverse chemical compositions. A total of 7 Phenolic derivatives were detected from methanol extract of *P. hysterophorus* different parts through LC-MS analysis (Table 6) (Figure 6). These phenolic derivatives are responsible for inhibition to other plants, autotoxic, and dermatitis. Parthenin and other phenolic acids found in the leaf and flower extracts include vanillic acid, caffeic acid, quinic acid, anisic acid, chlorogenic acid, and ferulic acid, contrary Parthenin, vanillic acid found in the stem extract. The amount and kind of chemicals discovered in each plant were found to be proportional to herbicidal action. As a consequence, the compound of the various plant parts inhibited indicator plant germination and seedling growth, with the extraction of leaf having a greater inhibitory influence than the other.
Table 6: Phenolic derivatives found from methanol extract of *Parthenium hysterophorus* different parts through LC-MS analysis

SI No.	Compound Name	Synonyms	Chemical Formula	Biological activity	Plant part	References
1.	Caffeic acid	3-4-Dihydroxy cinnamic acid, 3-(3,4-dihydroxy phenyl) acrylic acid	C_{9}H_{8}O_{4}	+ - +	Leaf, Stem, Flower	[21], [22], [23], [24]
2.	Ferulic acid	Trans-ferulic acid, 4-hydroxy-3-methoxy cinnamic acid, Coniferic acid, 2 Propenoic acid, 3-(4-hydroxy-3-methoxy phenyl)	C_{10}H_{10}O_{4}	+ - +	Leaf, Stem, Flower	
3.	Vanillic acid	4-hydroxy-3-methoxybenzoic acid, Benzoic acid, 4-hydroxy-3-methoxy	C_{8}H_{8}O_{4}	+ + +	Leaf, Stem, Flower	
4.	Quinic acid	D(-)-Quinic acid, Chinic acid, Quinate, 1,3,4,5-tetrahydroxy cyclohexanecarboxylic acid	C_{7}H_{12}O_{6}	+ - +	Leaf, Stem, Flower	[21], [22], [23], [24]
5.	Parthenin	10-alpha-H-Ambrosa-2,11(13)-1,6-beta di-hydroxy-4-oxo-gamma –lactone	C_{15}H_{18}O_{4}	+ + +	Leaf, Stem, Flower	
6.	Chlorogenic acid	3,0-cafeoylquinic acid, 3-(3,4-dihydroxy cinnamoyl) quinic acid, 3-cafeoylquinic acid, 1,3,4,5-tetrahydroxy cyclohexanecarboxylic acid	C_{16}H_{18}O_{9}	+ +	Leaf, Stem, Flower	
7.	Anisic acid	4-methoxy benzoic acid, p-anisic acid, p-methoxybenzoic acid	C_{8}H_{8}O_{3}	+ +	Leaf, Stem, Flower	

Note: + = present, - = Absent
Figure 6. Chromatograms of standard compounds from leaf extract of *P. hysterophorus* (1. Parthenin, 2. Quinic acid, 3. Chlorogenic acid, 4. Vanillic acid, 5. Caffeic acid, 6. Ferulic acid, and 7. Anisic acid)

4. Discussion

P. hysterophorus with methanol extract influenced germination (%) and growth of seedling of nine different crops (*V. subterranean*, *R. sativus*, *C. maxima*, *C. sativus*, *S. lycopersicum*, *C. annum*, *Z. mays*, *A. esculentus*, *D. carota*) and two weed species (*D. sanguinalis* and *E. indica*). In a dose-dependent way, all portions of Parthenium extracts affected germination, radicle length, and hypocotyl length in the tested species. Because of its exceptional strength, efficacy, and consistency in preventing germination and seedling development, extracts of Parthenium leaf were the most promising. Plant extracts are hypothesized to decrease germination through having osmotic potential on the rate of absorption, which in turn affects germination and, in particular, cell elongation [25].

Wheat, maize, and horse gram seedling growth is inhibited by extracts of *P. hysterophorus* methanol extract. Its demonstrated greater inhibitory power, in comparison to the aqueous extract [26]. Dhaawan & Gupta [15] reported that the extraction of different active phytochemicals with flavonoid concentration works best using methanol as an extraction solvent. The germination of *V. radiata* seeds were tested for up to 120 hours using methanol crude Parthenium extracts and it was discovered that there is a considerable difference in germination kinetics between the treatments of methanol crude. [27].

Tef germination was significantly reduced at intermediate to higher concentrations when Parthenium flower and leaf extracts were used. This suggests that inhibitory compounds are present in larger concentrations in flower and leaf than in stem and root sections [28,29]. The fact that roots came into direct touch with the extract and then with inhibitory compounds, as reported in previous research with a variety of crops and weeds [30,31].

The aerial parts extract of *P. hysterophorus* had a substantial influence on germination of seed, radicle and hypocotyl length reduction in this investigation. These effects grew stronger as the concentration level increased. These discoveries are consistent with those of Mulatu *et al.* [32] and Mersie and Singh [33] who discovered a robust link between greater *P. hysterophorus* aqueous extract concentrations and increased poisonousness to agronomic crops and weeds. The effects of secondary metabolites generated by *P. hysterophorus* aerial parts on growth and development in Bambara groundnut weeds and chosen species. Phytochemicals isolated from *P. hysterophorus* stems, leaves, and flowers methanol
extracts were competent to alter crops and weed seedling sprouting and development. Similarly, Motmainna et al. [34] discovered that *P. hysterophorus* extract had a considerable impact on the germination and development of the weed species. The degree of inhibition raised when the concentration of the extract was increased. Radicle growth is more vulnerable to allelopathic plant extracts than other organs due to radicles is the first tissue to be shown to phytotoxic chemicals and have a more absorbent tissue than other parts [35,36], and/or the root apical meristem has a low mitotic division rate [37]. Furthermore, allelopathic elements can suppress the production of radicle and epidermis by altering genes involved in cellular characterization [38]. Parthenium extract was more effective than the *B. alata* and *C. rudidosperma* extract [34]. This is in consistent with [39], who discovered that extracts of allelopathic plant have a stronger effect on radicle length than hypocotyl development. This could be due to the roots are the initial to attract allelochemicals substances, from the atmosphere.

The survivability rate of the target plants was inhibited by varying doses of *P. hysterophorus* leaf, stem, and flower methanol extracts. Maximum doses of methanol extracts included more inhibitory chemicals, resulting in more inhibition. In the same way, Han et al. [40] had reported that the phytotoxicity of *P. hysterophorus* extracts was concentration-dependent, and phytotoxicity rose as extract concentration was raised. It was also claimed that the leaf extract had a more inhibitory allelopathic activity than other vegetative portions, and phytochemical research had already revealed a larger accumulation of growth inhibitors in *P. hysterophorus* leaves [41]. At all doses examined, the extracts inhibited *P. minor* germination, and when extract concentrations increased then inhibition increased [25]. However, extracts from the leaves had a higher level of toxicity than extracts from the stem [42].

Different plant species’ susceptibility to inhibitory chemicals has been documented for a variety of causes. Msafiri et al. [43] observed that both tested species showed substantial allelopathic effects of *P. hysterophorus* seed and leaf aqueous extract on seed sprouting, root, and hypocotyl length, fresh and dry mass. According to Kobayasi [44] because of each species’ have biological characteristics. The seed structure and seed coat penetrability can also play a role in different reactions to similar allelopathic extract [45]. Higher concentration reduced the seedling length of all the test crops but, sweet gourd, corn, and cucumber were less sensitive than other crops. This may be due to genotypic variation in response to the higher concentration of extracts. Similar results of inhibitory effect were observed by Aslani et al. [42]. These findings agreed with Aslani et al. [46], phytotoxic compounds are more vulnerable to smaller plants, he said. These findings matched those of numerous prior research that found that phytotoxin reactions differed by species.

The phytochemical screening revealed a huge number of compounds in the *P. hysterophorus* extracts, some of which have previously been identified as poisons in several investigations [23,47,48]. Furthermore, various plant sections of *P. hysterophorus* contained a different number of compounds. The quantity of toxic compounds was more in the leaf than the other plant parts; as a result, the leaves have a stronger inhibitory effect. *P. hysterophorus* leaves released allelochemicals into the soil by leaching or decomposition, and have the potential to impair the development of other plants by altering the physicochemical properties of soil, according to Dogra & Sood, [49]. Arowosegbe & Afolayan [50] also found that beetroot (*Beta vulgaris* L.), Turnip (*Brassica rapa* L.), and carrot (*D. carota* L.) were all inhibited more by *Aloe ferox* Mill. leaf than by the root extract. The suppressive influence of extracts, according to Verdeguer et al. [51] is determined by the extract’s chemical makeup as well as the plant sections to which it is applied. These findings are consistent with those of Javaid and Anjum [52] and Verma et al. [53] who discovered that parthenin and other phenolic acids such as caffeic acid, vanillic acid, anisic acid, chlorogenic acid, and para hydroxy benzoic acid are the most responsible for plant growth inhibition.

5. Conclusions

The study demonstrated that methanol extracts of *P. hysterophorus* had phytotoxicity on the germination, growth, and development of tested plants. When the concentration of extracts was raised, the rate of germination and seedling growth reduced in comparison to the control, indicating that *P. hysterophorus* was phytotoxic. Moreover, the extracts’ phytotoxic effects were reliant on the target species, concentration of extracts, and plant types. Fifty percent inhibitory concentrations (EC50) value of *P. hysterophorus* leaf extract showed more phytotoxic than the stem and flower extract. According to the
findings, it was clear that the highly susceptible plants were *Raphanus sativus*, *Solanum lycopersicum*, *Capsicum frutescens*, *Abelmoschus esculentus*, *Daucus carota*, *Digitaria sanguinalis*, and *Eleusine indica*. On the other hand, 7 known phenolic derivatives were identified from the *P. hysterophorus* extract which was responsible for inhibition. Given the hopeful results of *P. hysterophorus* extract, this plant could possibly be studied next in the hopes of developing a herbicide based on natural products for green agriculture that is sustainable. However, in order to offer farmers with useful suggestions, *P. hysterophorus* impacts in actual crop field settings must be validated after bioassay trials. To see if it may be used to develop future alleloherbicides as structural leads, more research on isolation, characterization, and determination of the herbicidal activity of the chemical components in *P. hysterophorus* extract, particularly from the leaf extract, is needed.

Author Contributions: Conceptualization, A. S. J.; methodology, A. S. J., N. B. A., P. A. and M. S. A. H.; validation, A. S. J., M. K. U., N. B. A., M. S. A. H. and H. M. K. B.; formal analysis, H. M. K. B. and F. R.; investigation, H. M. K. B. and F. R.; resources, H. M. K. B. and A. S. J.; data curation, H. M. K. B.; writing—original draft preparation, H. M. K. B.; writing—review and editing, A. S. J., M. K. U., M. S. A. H., P. A., M. A. H. and A.H.; visualization, H. M. K. B. and F. R.; supervision, A. S. J., M. S. A. H., M. K. U., and N. B. A.; project administration, A. S. J. and H. M. K. B.; All authors have read and agreed to the published version of the manuscript.

Acknowledgments: Many thanks go to the Ministry of Agriculture (MoA), of the People’s Republic of Bangladesh, Bangladesh Agricultural Research Council (NATP Phase-II Project, BARC), Bangladesh Agricultural Research Institute (BARI) (research grant: vote number 6282506), for providing financial support and Universiti Putra Malaysia (UPM) for assistance. Thankfulness also goes to Mr. Mohd Yunus Abd. Wahab and Mr. Azhar for their assistance in conducting the study.

Conflicts of Interest: No Conflicts of Interest.

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

References

1. Mao, R.; Shabbir, A.; Adkins, S. *Parthenium hysterophorus*: A tale of global invasion over two centuries, spread and prevention measures. *J. Environ. Manage.* 2021, 279, 111751.

2. Adkins, S.; Shabbir, A. Biology, ecology and management of the invasive parthenium weed (*Parthenium hysterophorus* L.). *Pest Manag. Sci.* 2014, 70, 1023–1029, doi:10.1002/ps.3708.

3. Bajwa, A.A.; Chauhan, B.S.; Farooq, M.; Shabbir, A.; Adkins, S.W. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. *Planta* 2016, 244, 39–57.

4. Bajwa, A.A.; Chauhan, B.S.; Adkins, S. Morphological, physiological and biochemical responses of two Australian biotypes of *Parthenium hysterophorus* to different soil moisture regimes. *Environ. Sci. Pollut. Res.* 2017, 24, 16186–16194.

5. Nguyen, T.; Bajwa, A.A.; Navie, S.; O’donnell, C.; Adkins, S. Parthenium weed (*Parthenium hysterophorus* L.) and climate change: the effect of CO 2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. *Environ. Sci. Pollut. Res.* 2017, 24, 10727–10739.

6. Latif, S.; Chiapusio, G.; Weston, L.A. Chapter Two - Allelopathy and the Role of Allelochemicals in Plant Defence. In *How Plants Communicate with their Biotic Environment*; Becard, G.B.T.-a. in B.R., Ed.; Academic Press, 2017; Vol. 82, pp. 19–54 ISBN 0065-2296.

7. Scognamiglio, M.; Abrosca, B.D.; Esposito, A.; Fiorentino, A. Metabolomics: an unexplored tool for allelopathy studies. *J. Allelochem. Interact.* 2015, 1, 9–23.

8. Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: agronomic, nutritional and ecological relevance in
the soil system. *Plant Soil* 2019, 442, 23–48, doi:10.1007/s11104-019-04190-y.

9. Bhadoria, P.B.S. Allelopathy: a natural way towards weed management. *J. Exp. Agric. Int.* 2011, 7–20.

10. Mishra, S.; Upadhyay, R.S.; Nautiyal, C.S. Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. *Appl. Microbiol. Biotechnol.* 2013, 97, 5659–5668.

11. Li, X.; Ding, C.; Hua, K.; Zhang, T.; Zhang, Y.; Zhao, L.; Yang, Y.; Liu, J.; Wang, X. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. *Soil Biol. Biochem.* 2014, 78, 149–159.

12. Owen, M.D.K. Diverse approaches to herbicide-resistant weed management. *Weed Sci.* 2016, 64, 570–584.

13. Arafat, Y.; Khalid, S.; WenXiong, L.; ChangXun, F.; Sadia, S.; Ali, N.; Azeem, S. Allelopathic evaluation of selected plants extract against broad and narrow leaves weeds and their associated crops. *Acad. J. Agric. Res.* 2015, 3, 226–234.

14. Malarkodi, E.; Manoharan, A. Study on antibacterial activity of *Parthenium hysterophorus* *L.* *J. Chem. Pharm. Res.* 2013, 5, 134–136.

15. Dhandan, D.; Gupta, J. Research article comparison of different solvents for phytochemical extraction potential from *datura metel* plant leaves. *Int. J. Biol. Chem* 2017, 11, 17–22.

16. Singh, H.P.; Batish, D.R.; Pandher, J.K.; Kohli, R.K. Phytotoxic effects of *Parthenium hysterophorus* residues on three Brassica species. *Weed Biol. Manag.* 2005, 5, 105–109.

17. Shafiq, F.; Irfan, S.; Shakir, S.K. Comparative Allelopathic Effects of Different Parts of *Parthenium hysterophorus* L. on Seed Germination and Biomasses of *Cicer arietinum* L. *J. Stress Physiol. Biochem.* 2020, 16, 64–75.

18. Devi, C.; Khwairakpam, M. Management of invasive weed *Parthenium hysterophorus* through vermicomposting using a polyculture of *Eisenia fetida* and *Eudrilus eugeniae*. *Environ. Sci. Pollut. Res.* 2021, 1–10.

19. Hasan, M.; Uddin, M.K.; Muda Mohamed, M.T.; Kee Zuan, A.T. Nitrogen and phosphorus management for Bambara groundnut (*Vigna subterranee*) production-A review. *Legum. Res. An Int. J.* 2018, 41.

20. Johnson, D.E. Applied Multivariate Methods for Data Analysis, 26–27 1998.

21. Parsons, W.T.; Parsons, W.T.; Cuthbertson, E.G. *Noxious weeds of Australia*; CSIRO publishing, 2001; ISBN 0643065148.

22. Xie, G.; Zhou, J.; Yan, X. Encyclopedia of Traditional Chinese Medicines: Molecular Structures, Pharmacological Activities, Natural Sources and Applications; Volume 2 DG. 2011.

23. Roy, D.C.; Shaik, M. Journal of Medicinal Plants Studies Toxicology , Phytochemistry , Bioactive compounds and Pharmacology of *Parthenium hysterophorus*. *J. Med. Plants Stud.* 2013, 1, 126–141.

24. Saini, A.; Aggarwal, N.K.; Sharma, A.; Kaur, M.; Yadav, A. Utility potential of *Parthenium hysterophorus* for its strategic management. *Adv. Agric.* 2014, 2014.

25. El-Mergawi, R.A.; Al-Humaid, A.I. Searching for natural herbicides in methanol extracts of eight plant species. *Bull. Natl. Res. Cent.* 2019, 43, 1–6.

26. Oli, S.; Chopra, N.; Tewari, L.M.; Mohan, B.; Pandey, N.; Bharti, M.; Bohra, N.; Tewari, G. Phytotoxic effect of the extracts of *Parthenium hysterophorus* L. on the germination, seedling growth and biomass of some agricultural crops. *G-Journal Environ. Sci. Technol.* 2018, 5, 40–45.

27. Pati, U.K.; Chowdhury, A. Study of *Parthenium hysterophorus* L. Extracts (First Clean-Up Fractions) on Seed Germination Behaviour in Search of Bioactive Fractions for Preparation of Bioherbicide Formulations *Publ. by SciPress Ltd. Switz.* 2016, 49, 69–80, doi:10.18052/www.scipress.com/ILNS.49.69.

28. Tefera, T. Allelopathic effects of *Parthenium hysterophorus* extracts on seed germination and seedling growth of *Eragrostis tef* *J. Agron. Crop Sci.* 2002, 188, 306–310.
29. Kanchan, S.D. Allelopathic effects of *Parthenium hysterophorus* L., 1: exudation of inhibitors through roots [of beans]. *Plant Soil* 1979.

30. Dodia, D.A.; Patel, I.S.; Patel, G.M. *Botanical pesticides for pest management*; Scientific Publishers, 2010; ISBN 938786930X.

31. Tessema, S.S.; Tura, A.M. Allelopathic property of Parthenin on seed germination and seedling growth of wheat (*Triticum aestivum*) and barley (*Hordeum vulgare*). *Int. J. Chem. Biochem. Sci. IJCBS* 2018, 14, 23–27.

32. Wakjira, M.; Berecha, G.; Bulti, B. Allelopathic effects of *Parthenium hysterophorus* extracts on seed germination and seedling growth of lettuce. *Trop. Sci.* 2005, 45, 159–162.

33. Mersie, W.; Singh, M. Allelopathic effect of parthenium (*Parthenium hysterophorus* L.) extract and residue on some agronomic crops and weeds. *J. Chem. Ecol.* 1987, 13, 1739–1747.

34. Motmaininga, M.; Juraimi, A.S.; Uddin, M.; Asib, N.B.; Islam, A.K.M.; Hasan, M. Bioherbicidal Properties of *Parthenium hysterophorus*, *Cleome rutidosperma* and *Borreria alata* Extracts on Selected Crop and Weed Species. *Agronomy* 2021, 11, 643.

35. Islam, A.; Hasan, M.M.; Yeasmin, S.; Abedin, M.A.; Kader, M.A.; Rashid, M.H.O.; Anwar, M.P. Bioassay screening of sawdust obtained from selected tropical tree species for allelopathic properties and their field performance against paddy weeds. *Fundam. Appl. Agric.* 2019, 4, 906–915.

36. Islam, A.K.M.M.; Hasan, M.; Musha, M.M.H.; Uddin, M.K.; Juraimi, A.S.; Anwar, M.P. Exploring 55 tropical medicinal plant species available in Bangladesh for their possible allelopathic potentiality. *Ann. Agric. Sci.* 2018, 63, 99–107.

37. Levizou, E.F.I.; Karageorgou, P.; Psaras, G.K.; Manetas, Y. Inhibitory effects of water soluble leaf leachates from *Dittrichia viscosa* on lettuce root growth, statocyte development and graviperception. *Flora-Morphology, Distrib. Funct. Ecol. Plants* 2002, 197, 152–157.

38. Franco, D.M.; Silva, E.M.; Saldanha, L.L.; Adachi, S.A.; Schley, T.R.; Rodrigues, T.M.; Dokkedal, A.L.; Nogueira, F.T.S.; de Almeida, L.F.R. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III. *J. Plant Physiol.* 2015, 188, 89–95.

39. Turk, M.A.; Tawaha, A.M. Allelopathic effect of black mustard (*Brassica nigra* L.) on germination and growth of wild oat (*Avena fatua* L.). *Crop Prot.* 2003, 22, 673–677.

40. Han, C.-M.; Pan, K.-W.; Wu, N.; Wang, J.-C.; Li, W. Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. *Sci. Hortic. (Amsterdam).* 2008, 116, 330–336.

41. Devi, O.I.; Dutta, B.K.; Zea, L. Allelopathic Effect of the Aqueous Extract of *Parthenium hysterophorus* and *Chromolaena Odorata* on the Seed Germination and Seedling Vigour of Zea mays L. In vitro. 2012, 5, 110–113, doi:10.5829/idosi.ajps.2012.5.4.321.

42. Aslani, F.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Omar, D.; Alam, M.A.; Hashemi, F.S.G.; Hakim, M.A.; Uddin, M.K. Allelopathic effect of methanol extracts from *Tinospora tuberculata* on selected crops and rice weeds. *Acta Agric. Scand. Sect. B Soil Plant Sci.* 2014, 64, 165–177, doi:10.1080/09064710.2014.898784.

43. Msafiri, C.J.; Tarimo, M.T.; Ndakidemi, P. a Allelopathic effects of *Parthenium hysterophorus* on seed germination, seedling growth, fresh and dry mass production of *Alysicurpus glumaceae* and *Chloris gayana*. *Am. J. Res. Commun.* 2013, 1, 190–205.

44. Kobayashi, K. Factors affecting phytotoxic activity of allelochemicals in soil. *Weed Biol. Manag.* 2004, 4, 1–7.

45. Samanta, A.; Das, G.; Das, S.K. Roles of flavonoids in plants. *Carbon N. Y.* 2011, 100, 12–35.

46. Aslani, F.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Alam, M.A.; Hashemi, F.S.G.; Omar, D.; Hakim, M.A. Phytotoxic interference of volatile organic compounds and water extracts of *Tinospora tuberculata Beunee* on growth of weeds.
in rice fields. *South African J. Bot.* **2015**, **100**, 132–140.

47. A, P.R.; R, G.A.; V, S.R.; Pallavi, B.; S, W.M.; N, P.N. Bioactive Potential of *Parthenium hysterophorus* and Cytotoxicity Assay of Parthenin. *South African J. Bot.* **2019**, **9**, 296–313.

48. Marwat, S.K.; Fazal-ur-Rehman; Khan, I.U. Ethnobotanical Importance and Phytochemical constituents of Parthenium weed (*Parthenium hysterophorus* L.) – A Review. *Plant Sci. Today* **2015**, **2**, 77–81, doi:10.14719/pst.2015.2.2.113.

49. Dogra, K.S.; Sood, S.K. Phytotoxicity of *Parthenium hysterophorus* residues towards growth of three native plant species (*Acacia catechu* willd, *Achyranthes aspera* L. and *Cassia tora* L.) in Himachal Pradesh, India. *Int. J. Plant Physiol. Biochem.* **2012**, **4**, 105–109.

50. Arowosegbe, S.; Afolayan, A.J. Assessment of allelopathic properties of *Aloe ferox* Mill. on turnip, beetroot and carrot. *Biol. Res.* **2012**, **45**, 363–368, doi:10.4067/S0716-97602012000400006.

51. Verdeguer, M.; Blázquez, M.A.; Boira, H. Phytotoxic effects of *Lantana camara*, *Eucalyptus camaldulensis* and *Eriocephalus africanus* essential oils in weeds of Mediterranean summer crops. *Biochem. Syst. Ecol.* **2009**, **37**, 362–369.

52. Javaid, A.; Anjum, T. Control of *Parthenium hysterophorus* L., by aqueous extracts of allelopathic grasses. *Pakistan J. Bot.* **2006**, **38**, 139.

53. Verma, A.K.; Maurya, S.K.; Kumar, A.; Barik, M.; Yadav, V.; Umar, B.; Lawal, M.; Usman, Z.A.; Adam, M.A.; Awal, B. Inhibition of multidrug resistance property of Candida albicans by natural compounds of *parthenium hysterophorus* L. An In-Silico approach. *J. Pharmacogn. Phytochem.* **2020**, **9**, 55–64.

54. US EPA Water Quality Standards Handbook: Second Edition, EPA-823-B-12-002; 2012; ISBN 1111111111.

55. Ahn, J.K.; Chung, I.M. Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. *Agron. J.* **2000**, **92**, 1162–1167.

56. Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. *Environ. Sci. Technol.* **2014**, **48**, 2097–2098, doi:10.1021/es5002105.

57. Mirmostafaei, S.; Azizi, M.; Fuji, Y. Study of allelopathic interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce. *Agronomy* **2020**, **10**, doi:10.3390/agronomy10020163.

58. Kordali, S.; Cakir, A.; Akcin, T.A.; Mete, E.; Akcin, A.; Aydin, T.; Kilic, H. Antifungal and herbicidal properties of essential oils and n-hexane extracts of *Achillea gypsicola* Hub-Mor. and *Achillea biebersteinii* Afan. (Asteraceae). *Ind. Crops Prod.* **2009**, **29**, 562–570, doi:10.1016/j.indcrop.2008.11.002.

59. Tarinezhad, A.; Sabouri, A.; Mohammad, S.A. Statistical software NTSYS PC application in plant breeding. In Proceedings of the The 7th Conference of Iran Statistics; 2005.

60. NTSYS-pc, N.T.; Taxonomy, N. Multivariate Analysis System, version 2.2. *Exet. Softw. Setauket, NY, USA* **2005**.