Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
correlated with relevant improvements in comorbidities, metabolism, quality of life, and eating habits. In the control group, participants reached a similar 12-month weight loss after crossover (mean 44.1% [35.7]). Although these results are impressive, because obesity is chronic, relapsing, and progressive, 5-year and 10-year data are essential (allowing for periodical retightening). Characteristics such as long-term reduction in comorbidities and overall all-cause mortality, and improvement in quality of life, are crucial, being the most important justifications for adoption of bariatric surgery as the gold standard in the treatment of obesity.10

Also of interest is the durability of gastric reduction by ESG; here, Abu Dayyeh and colleagues showed its durability on the basis of weight loss outcomes. Although clinically, weight loss is certainly a relevant indicator, tissue apposition tends to stretch open over time, and long-term weight control has been shown to depend on continued restriction of stomach volume through the maintenance of gastric imbrication.11 Additionally, tissue complacency might be permanently affected by full-thickness sutures, even after they have stretched open. Histopathological findings and data from functional luminal probes or magnetic resonance imaging might help to fill those knowledge gaps.

Although the MERIT trial, as a randomised controlled trial, offers the best evidence to date and certainly shows impressive results, further studies are ultimately essential to support its findings. Above all, longer-term data are mandatory to support the sustainability of the results, and thus the viability of the procedure itself. Additionally, there is a need for well designed randomised controlled trials comparing ESG with surgical bariatric techniques such as sleeve gastrectomy to better define the spectrum of indications and patient selection criteria for endoscopic sutting procedures.

While we wait for such data, the MERIT trial provides clear evidence that ESG is safe and systematically effective in treating mild-to-moderate obesity in the short term and is a welcome addition to treatment options available for patients.

CS reports speaker and consultant roles for Johnson & Johnson, Novo Nordisk, and Apollo Endosurgery on the topics of physiology of anatomical changes after bariatric surgery and endoscopy, interventional endoscopic therapies (especially late dumping syndrome), innovations in bariatric therapy, and neo-adjuvant and adjuvant medical treatment of obesity; and she is a member of the board of the German Obesity Alliance and member of the IFSO Bariatric Endoscopy Committee, both non-profit associations. VOB declares no competing interests. We thank Janet Collins (Frankfurt, Germany) for language assistance and support in preparing this Comment.

*Vitor Ottoboni Brunaldi, Christine Stier
vobrunaldi@hcrc.usp.br

Gastrointestinal Endoscopy Unit, Gastroenterology Department, University of São Paulo Medical School, São Paulo, Brazil (VOB); Center for Digestive Endoscopy, Surgery and Anatomy Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040, Brazil (VOB); Department of Internal Medicine, Division of Endocrinology and Diabetology, and Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany (CS); Department of Surgical Endoscopy, Sana Hospital Huerth, Huerth, Germany (CS)

1 Abu Dayyeh BK, Bazerbachi F, Vargas EJ, et al. Endoscopic sleeve gastropasty for treatment of class 1 and 2 obesity (MERIT): a prospective, multicentre, randomised trial. Lancet 2022; published online July 28. https://doi.org/10.1016/S0140-6736(22)01280-6.
2 Abu Dayyeh BK, Rajan E, Gostout CJ. Endoscopic sleeve gastoplasty: a potential endoscopic alternative to surgical sleeve gastrectomy for treatment of obesity. Gastrointest Endosc 2013; 78: 330–35.
3 Kumar N, Abu Dayyeh BK, Lopez-Nava Breiviere G, et al. Endoscopic sutured gastroplasty: procedure evolution from first-in-man cases through current technique. Surg Endosc 2018; 32: 2159–64.
4 Sharaiza RZ, Kumar NA, Sae moy M, et al. Endoscopic sleeve gastroplasty significantly reduces body mass index and metabolic complications in obese patients. Clin Gastroenterol Hepatol 2012; 10: 504–10.
5 Abu Dayyeh BK, Acosta A, Camilleni M, et al. Endoscopic sleeve gastoplasty alters gastric physiology and induces loss of body weight in obese individuals. Clin Gastroenterol Hepatol 2012; 15: 37–43.e1.
6 Novikov AA, Afaneh C, Saimoy M, et al. Endoscopic sleeve gastoplasty, laparoscopic sleeve gastrectomy, and laparoscopic band for weight loss: how do they compare? Gastrointest Endosc 2013; 78: 267–73.
7 Lopez-Nava G, Sharaiza RZ, Vargas EJ, et al. Endoscopic sleeve gastroplasty for obesity: a multicentre study of 248 patients with 24 months follow-up. Obes Surg 2017; 27: 2469–55.
8 Sullivan S, Swain JM, Woodman G, et al. Randomized sham-controlled trial evaluating efficacy and safety of endoscopic gastric plication for primary obesity: the ESSENTIAL trial. Obesity 2017; 25: 294–301.
9 Lopez-Nava G, Asokkumar R, Arau RT, Neto MG, Dayyeh BA. Modified primary obesity surgery endoluminal (POSE-2) procedure for the treatment of obesity. VideoGIE 2020; 5: 91–93.
10 Sjostrom L, Nafron K, Sjostrom CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741–52.
11 Pizzicannela M, Lapergola A, Fiorillo C, et al. Does endoscopic sleeve gastroplasty stand the test of time? Objective assessment of endoscopic ESG appearance and its relation to weight loss in a large group of consecutive patients. Surg Endosc 2020; 34: 3896–705.

Long COVID: which symptoms can be attributed to SARS-CoV-2 infection?

Mortality rates following SARS-CoV-2 infection have decreased as a consequence of public health policies, vaccination, and acute antiviral and anti-inflammatory therapies.1 However, in the wake of the pandemic, post-acute sequelae of COVID-19, or long COVID, has emerged: a chronic illness in people who have ongoing...
multidimensional symptomatology and disability weeks to years after the initial infection. Early reports of long COVID prevalence, summarised in a systematic review examining the frequency and variety of persistent symptoms after COVID-19, found that the median proportion of people who had at least one persistent symptom 60 days or more after diagnosis or at least 30 days after recovery from COVID-19 infection was 73%. However, the estimated prevalence depends on the duration, population, and symptoms used to define long COVID. More recently, community-based studies have suggested a lower prevalence of persistent symptoms; whereas among people who were hospitalised following COVID-19 infection, a high proportion do not fully recover (50–70%).

The number of COVID-19 cases continues to rise and now exceeds 500 million worldwide. Consequently, the number of people with long COVID is similarly increasing. Indeed, the UK Office for National Statistics (ONS) survey up to May, 2022 estimated that 2 million people in the UK had self-reported long COVID. Of these people, 72% reported having long COVID for at least 12 weeks, 42% for at least 1 year, and 19% for at least 2 years. Consistent with other studies, fatigue was the most common symptom in the ONS survey, followed by breathlessness, cough, and muscle ache. Risk factors for long COVID are female sex, obesity, middle age (35–65 years), living in areas of greater socioeconomic deprivation, and the presence of another activity-limiting health condition. Importantly, health-care use is increased in those with long COVID, with increased general practitioner consultation rates.

How many of the symptoms currently attributed to long COVID actually represent pre-existent disease or are unrelated to COVID-19 is uncertain. Symptoms that were present before SARS-CoV-2 infection are often not recorded or assessed by recall. In The Lancet, Aranka V Ballering and colleagues report the findings of a longitudinal cohort study conducted in the north of the Netherlands between April, 2020, and August, 2021, where 23 somatic symptoms were assessed using 24 repeated measurements in digital COVID-19 questionnaires. The study was embedded within the large, population-based Lifelines COVID-19 cohort. The main strengths of this study were that participants were their own control, with the pattern and severity of symptoms assessed before and 3–5 months after SARS-CoV-2 infection, and were also compared with a matched control group of COVID-19-negative participants. Of the 76,422 participants, 4231 (5.5%) had COVID-19 and were compared with 8462 matched controls. Participants had a mean age of 53.7 years (SD 12.9), 46329 (60.8%) were female, and nearly all were of White ethnicity. The proportion of participants who had at least one core symptom of substantially increased severity to at least moderate was 21.4% (381 of 1782) in COVID-19-positive participants versus 8.7% (361 of 4130) in COVID-19-negative controls. Thus, this study found that core symptoms were attributed to COVID-19 in 12.7% of participants, or approximately one in eight. This is a major advance on previous long COVID prevalence estimates, as it includes a matched control group without SARS-CoV-2 infection and accounts for symptoms that were present before infection.

The pattern of symptomatology observed by Ballering and colleagues was similar to previous reports, with fatigue and breathlessness among the most common symptoms, but other symptoms such as chest pain were more common in people who had COVID-19 than in COVID-19-negative controls. Ballering and colleagues propose a core symptom set to be considered as part of the case definition for long COVID. Although an agreed diagnostic core symptom set would inform clinical pathways and research, the study by Ballering and colleagues did not fully consider the impact on mental health, it was conducted in one region in the
Netherlands, and it did not include an ethnically diverse population; thus the concept of a core symptom set will require further validation.

Importantly, the study by Ballering and colleagues does not provide new mechanistic insights, which are key to uncovering new therapeutic targets. In other studies, clustering of patient-reported outcomes has identified different severity groups of long COVID and identified increased systemic inflammation in people with very severe long COVID. How patient-centred outcomes, together with biomarkers, can further refine long COVID diagnosis and inform precision medicine approaches warrants further consideration.

Courageously, emerging data from other studies suggest that the proportion of newly infected people developing long COVID is reduced in people who have received vaccination before SARS-CoV-2 infection, and might be lower in people infected with the omicron variant than those infected with earlier variants. Findings from the ONS survey suggested that vaccination following infection might reduce the symptom burden of long COVID after the first dose, with sustained improvement after a second dose. Whether acute treatments for COVID-19 affect the likelihood of developing long COVID or its severity is unknown.

Current evidence supports the view that long COVID is common and can persist for at least 2 years after SARS-CoV-2 infection, although severe debilitating disease is present in a minority. The long COVID case definition needs to be further improved, potentially to describe different types of long COVID, of which better mechanistic understanding is crucial. This will lead to personalised multimodality treatments that can be implemented to manage the increasingly high number of people with long COVID.

CEB has received consultancy and or grants paid to his institution from GlaxoSmithKline, AstraZeneca, Boehringer Ingelheim, Novartis, Chiesi, Genentech, Roche, Sanofi, Regeneron, Mologic, and 4DPharma for asthma and chronic obstructive pulmonary disease research. RAE has received consultancy fees from AstraZeneca on the topic of long COVID and from GlaxoSmithKline on digital health, and speaker’s fees from Boehringer Ingelheim on long COVID. RAE holds a National Institute for Health and Care Research (NIHR) clinician scientist award CS-2016-16-020.

Christopher E Brightling, Rachael A Evans

Institute for Lung Health, NIHR Biomedical Research Centre, University of Leicester, Leicester LE3 9QP, UK

1 Johns Hopkins University & Medicine. Coronavirus Resource Centre. 2022. https://coronavirus.jhu.edu/ (accessed June 27, 2022).
2 National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. 2021. https://www.nice.org.uk/guidance/ng188 (accessed June 27, 2022).
3 Nasseirin T, Hittle M, Goodman SN. Assessment of the frequency and variety of 511 persistent symptoms among patients with COVID-19: a systematic review. JAMA Netw Open 2021; 4:e2111417.
4 Whitaker M, Elliott J, Chadeau-Hyam M, et al. Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nat Commun 2022; 13: 1957.
5 Evans RA, McAuley H, Harrison EM, et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir Med 2021; 9: 1275-87.
6 PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study. Lancet Respir Med 2022; published online April 23. https://doi.org/10.1016/S2213-2600(22)00127-8.
7 Huang L, Li X, Gu X, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med 2022; published online May 11. https://doi.org/10.1016/S2213-2600(22)00126-6.
8 Office for National Statistics. Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK. June 1, 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/3june2022 (accessed June 27, 2022).
9 Whitaker HR, Gulea C, Kotezi A, et al. GP consultation rates for sequelae after acute COVID-19 in patients managed in the community or hospital in the UK: population based study. BMJ 2021; 375: e065834.
10 Ballering AV, van Zon SKR, olde Hartman TC, Rosmalen JGM, for the Lifelines Corona Research Initiative. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet 2022; 400: 452-61.
11 Antonelli M, Penfold RS, Menino J, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Lancet Infect Dis 2022; 22: 43-55.
12 Antonelli M, Pujol JC, Spector TD, Ourselin S, Stevens C. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet 2022; 399: 2253-64.
13 Ayoubkhani D, Bermingham C, Pouwels KB, et al. Trajectory of long COVID symptoms after COVID-19 vaccination: community based cohort study. BMJ 2022; 377: e065676.

From food price crisis to an equitable food system

In 2022, the world is experiencing the greatest cost of living crisis in a generation. Crises have always highlighted inequities in our societies. With food prices at near record levels globally, rapidly rising inflation, and economic instability, many people living in situations of constraint have no choice but to skip meals, reduce the amount they eat, prepare meals with fewer nutritious foods, and buy cheaper, starchy staples and ultra-processed foods. The implications for health inequalities are dire: increased dietary disparities will worsen food insecurity, undernutrition, obesity, and diet-related disease among those who are struggling most.