Reversed Dickson Polynomials of the Third Kind

Neranga Fernando

Department of Mathematics
Northeastern University

47th Southeastern International Conference on Combinatorics, Graph Theory & Computing
Florida Atlantic University
Boca Raton

March 7 - 11, 2016
Motivation

(1) X. Hou, G. L. Mullen, J. A. Sellers, J. L. Yucas, *Reversed Dickson polynomials over finite fields*, Finite Fields Appl. 15 (2009), 748 – 773.

(2) X. Hou, T. Ly, *Necessary conditions for reversed Dickson polynomials to be permutational*, Finite Fields Appl. 16 (2010), 436 – 448.

(3) S. Hong, X. Qin, W. Zhao, *Necessary conditions for reversed Dickson polynomials of the second kind to be permutational*, Finite Fields Appl. 37 (2016), 54 – 71.
Outline

- Introduction
- Properties of the reversed Dickson polynomials of the third kind $F_n(a, x)$
- Necessary conditions for the reversed Dickson polynomials of the third kind to be a permutation of \mathbb{F}_q
- The sum $\sum_{a \in \mathbb{F}_q} F_n(1, a)$
Let p be a prime and q a power of p.

The n-th reversed Dickson polynomial of the first kind $D_n(a, x)$ is defined by

$$D_n(a, x) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-x)^i a^{n-2i},$$

where $a \in \mathbb{F}_q$ is a parameter.

• X. Hou, G. L. Mullen, J. A. Sellers, J. L. Yucas, *Reversed Dickson polynomials over finite fields*, Finite Fields Appl. **15** (2009), 748 – 773.
The n-th reversed Dickson polynomial of the second kind $E_n(a, x)$ is defined by

$$E_n(a, x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n - i}{i} (-x)^i a^{n-2i},$$

where $a \in \mathbb{F}_q$ is a parameter.
For $a \in \mathbb{F}_q$, the n-th reversed Dickson polynomial of the $(k + 1)$-th kind $D_{n,k}(a, x)$ is defined by

$$D_{n,k}(a, x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n - ki}{n - i} \binom{n - i}{i} (-x)^i a^{n-2i}.$$

- Q. Wang, J. L. Yucas, *Dickson polynomials over finite fields*, Finite Fields Appl. **18** (2012), 814 – 831.
The n-th reversed Dickson polynomial of the third kind $D_{n,2}(a, x)$ is given by

$$D_{n,2}(a, x) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n - 2i}{n - i} \binom{n - i}{i} (-x)^i a^{n-2i}.$$

We denote the n-th reversed Dickson polynomial of the third kind $D_{n,2}(a, x)$ by $F_n(a, x)$.
The Case $a = 0$

When $a = 0$, the reversed Dickson polynomials of the first kind satisfy

$$D_n(0, x) = \begin{cases}
0 & \text{if } n \text{ is odd}, \\
2 (-x)^k & \text{if } n = 2k,
\end{cases}$$

and the reversed Dickson polynomials of the second kind satisfy

$$E_n(0, x) = \begin{cases}
0 & \text{if } n \text{ is odd}, \\
(-x)^k & \text{if } n = 2k.
\end{cases}$$

$$D_{n,k}(a, x) = kE_n(a, x) - (k - 1)D_n(a, x)$$

$$F_n(0, x) = 2E_n(0, x) - D_n(0, x) \Rightarrow F_n(0, x) = 0 \text{ for all } n.$$

Hence $F_n(a, x)$ is not a PP when $a = 0$.
Let $a \in \mathbb{F}_q^*$. Then

$$F_n(a, x) = a^n F_n(1, \frac{x}{a^2}).$$

Hence $F_n(a, x)$ is a PP on \mathbb{F}_q if and only if $F_n(1, x)$ is a PP on \mathbb{F}_q.

The functional equation

For $a \neq 0$, let $x = y + ay^{-1}$ for some $y \in \mathbb{F}_q^2$ with $y \neq 0$ and $y^2 \neq a$. Then the functional equation of $F_n(a, x)$ is given by

$$F_n(a, x) = \frac{a}{2y - a}(y^n - (a - y)^n), \text{ where } y \neq \frac{a}{2}.$$
If \(\text{char}(\mathbb{F}_q) = 2 \), then \(F_n(1, x) \) is the \(n \)-th reversed Dickson polynomial of the first kind \(D_n(1, x) \).

\[
F_n(1, x(1-x)) = x^n + (1-x)^n = D_n(1, x(1-x)).
\]

Recurrence

Let \(p \) be an odd prime and \(n \) be a non-negative integer. Then

\[
F_0(1, x) = 0, \quad F_1(1, x) = 1, \quad \text{and}
\]

\[
F_n(1, x) = F_{n-1}(1, x) - x F_{n-2}(1, x), \quad \text{for} \ n \geq 2.
\]
let \(p \) be an odd prime, \(n \) and \(k \) be positive integers. Then we have the following.

(1) If \(y \neq \frac{1}{2} \), then \(F_n(1, y(1 - y)) = \frac{y^n - (1 - y)^n}{2y - 1} \).

Also, \(F_n(1, \frac{1}{4}) = \frac{n}{2^{n-1}} \).

(2) If \(\gcd(n, k) = 1 \), then \(F_{np^k}(1, x) = (F_n(1, x))^{p^k}(1 - 4x)^{p^k-1} \).

(3) If \(n_1 \equiv n_2 \pmod{q^2 - 1} \), then \(F_{n_1}(1, x_0) = F_{n_2}(1, x_0) \) for any \(x_0 \in \mathbb{F}_q \setminus \{\frac{1}{4}\} \).
Two Theorems

Theorem
Let p be an odd prime. $q = p^e$, $e, k \in \mathbb{Z}^+$, $1 \leq k \leq e$. Then $F_{p^k}(1, x)$ is a PP of \mathbb{F}_q if and only if $\left(\frac{p^k-1}{2}, q - 1\right) = 1$.

Theorem
Let p be an odd prime. $q = p^e$, $e, k \in \mathbb{Z}^+$, $1 \leq k \leq e$. Then $F_{2p^k}(1, x)$ is a PP of \mathbb{F}_q if and only if $\left(\frac{p^k-1}{2}, q - 1\right) = 1$.
Let p be an odd prime. Then

$F_n(1, x)$ is a PP of \mathbb{F}_q if and only if the function

$y \mapsto \frac{y^n - (1 - y)^n}{2y - 1}$

is a 2-to-1 mapping on $(\mathbb{F}_q \cup V) \setminus \frac{1}{2}$ and

$\frac{y^n - (1 - y)^n}{2y - 1} \neq \frac{n}{2^{n-1}}$ for any $y \in (\mathbb{F}_q \cup V) \setminus \frac{1}{2}$.

Neranga Fernando

Reversed Dickson Polynomials of the Third Kind
Necessary Conditions

\[F_n(1, 1) = \begin{cases}
0, & n \equiv 0, 3 \pmod{6}, \\
1, & n \equiv 1, 2 \pmod{6}, \\
-1, & n \equiv 4, 5 \pmod{6}.
\end{cases} \]

Note that \(F_n(1, 0) = 1 \).

Theorem

Assume that \(F_n(1, \alpha) \) is a PP of \(\mathbb{F}_q \). If \(p = 2 \), then \(3 \mid n \). If \(p \) is an odd prime, then \(n \not\equiv 1, 2 \pmod{6} \).
Define

\[f_n(x) = \sum_{j \geq 0} \binom{n}{2j + 1} x^j. \]

Proposition

Let \(p \) be an odd prime. Then in \(\mathbb{F}_q[x] \),

\[F_n(1, x) = \left(\frac{1}{2} \right)^{n-1} f_n(1 - 4x). \]

In particular, \(F_n(1, x) \) is a PP of \(\mathbb{F}_q \) if and only if \(f_n(x) \) is a PP of \(\mathbb{F}_q \).
More Necessary Conditions

Theorem
Let p be an odd prime, q a power of p, and n be a nonnegative integer with $p \nmid n$. If $F_n(1, x)$ is a PP of \mathbb{F}_q, then $n \equiv 0 \pmod{4}$ and $(\lfloor \frac{n-1}{2} \rfloor, q - 1) = 1$.

Theorem
Let $p > 3$ be an odd prime and $n \geq 0$ be an integer with $3 | n$. If $F_n(1, x)$ is a PP of \mathbb{F}_q, then $(n, q^2 - 1) = 3$.
Generating Function of $F_n(1, x)$

$$\sum_{n=0}^{\infty} F_n(1, x) z^n = \frac{z}{1 - z + xz^2}.$$

Neranga Fernando
Reversed Dickson Polynomials of the Third Kind
Computation of $\sum_{a \in \mathbb{F}_q} F_n(1, a)$

$$
\sum_{n=0}^{\infty} F_n(1, x) z^n = \frac{z}{1-z} \left[1 + \sum_{k=1}^{q-1} \frac{(z-1)^{q-1-k} z^{2k}}{(z-1)^{q-1} - z^{2(q-1)}} x^k \right] \quad (1)
$$

Also, since $F_{n_1}(1, x) = F_{n_2}(1, x)$ for any $x \in \mathbb{F}_q \setminus \left\{ \frac{1}{4} \right\}$ when $n_1, n_2 > 0$ and $n_1 \equiv n_2 \pmod{q^2 - 1}$, we have

$$
\sum_{n \geq 0} F_n z^n \equiv \frac{1}{1 - z^{q^2-1}} \sum_{n=1}^{q^2-1} F_n z^n \pmod{x^q - x} \quad (2)
$$

Combining (1) and (2) gives

$$
\frac{1}{1 - z^{q^2-1}} \sum_{n=1}^{q^2-1} F_n z^n \equiv \frac{z}{1-z} \left[1 + \sum_{k=1}^{q-1} \frac{(z-1)^{q-1-k} z^{2k}}{(z-1)^{q-1} - z^{2(q-1)}} x^k \right] \pmod{x^q - x}
$$
Computation of $\sum_{a \in \mathbb{F}_q} F_n(1, a)$

$$\sum_{n=1}^{q^2-1} F_n z^n \equiv \frac{z(z^{q^2-1} - 1)}{z - 1} + h(z) \sum_{k=1}^{q-1} (z - 1)^{q-1-k} z^{2k} x^k \pmod{x^q - x},$$

where

$$h(z) = \frac{z(-1 - (z - z^q)^{q-1})}{z^q - z^{q-1} - 1}.$$

Let $\sum_{k=1}^{q^2-q+1} b_k z^k = z(-1 - (z - z^q)^{q-1})$. Write $k = \alpha + \beta q$ where $0 \leq \alpha, \beta \leq q - 1$. Then we have

$$b_k = \begin{cases} (-1)^{\beta+1} \binom{q-1}{\beta} & \text{if } \alpha + \beta = q, \\ -1 & \text{if } \alpha + \beta = 1, \\ 0 & \text{otherwise}. \end{cases}$$
Computation of $\sum_{a \in \mathbb{F}_q} F_n(1, a)$

$$
\sum_{n=1}^{q^2-1} \left(\sum_{a \in \mathbb{F}_q} F_n(1, a) \right) z^n
= \sum_{n=1}^{q^2-1} \frac{n}{2^{n-1}} z^n - \frac{z(1 - z^{q^2-1})}{1 - z} - h(z) z^{2(q-1)} - h(z) \sum_{j=1}^{q-1} (z - 1)^{q-1-j} z^{2j} \left(\frac{1}{4}\right)^j,
$$

(3)

From (3), we have

$$(z^q - z^{q-1} - 1) \sum_{n=1}^{q^2-1} \left(\sum_{a \in \mathbb{F}_q} F_n(1, a) - \frac{n}{2^{n-1}} \right) z^n
= (1 + z^{q-1} - z^q) \sum_{k=1}^{q^2-1} z^k - \left(z^{2(q-1)} + \sum_{j=1}^{q-1} (z - 1)^{q-1-j} z^{2j} \left(\frac{1}{4}\right)^j \right) \left(\sum_{k=1}^{q^2-q+1} b_k z^k \right).
$$

(4)
Computation of $\sum_{a \in \mathbb{F}_q} F_n(1, a)$

Let $d_n = \sum_{a \in \mathbb{F}_q} F_n(1, a) - \frac{n}{2^{n-1}}$ and the right hand side of (4) be $q^2 + q - 1 \sum_{k=1}^{q^2 + q - 1} c_k z^k$.

Then we have

$$(z^q - z^{q-1} - 1) \sum_{n=1}^{q^2 - 1} d_n z^n = \sum_{k=1}^{q^2 + q - 1} c_k z^k. \quad (5)$$
Computation of $\sum_{a \in \mathbb{F}_q} F_n(1, a)$

Theorem

Let c_k be defined as in (5) for $1 \leq k \leq q^2 + q - 1$. Then we have the following.

\[\sum_{a \in \mathbb{F}_q} F_j(1, a) = -c_j + \frac{j}{2^{j-1}} \text{ if } 1 \leq j \leq q - 1; \]

\[\sum_{a \in \mathbb{F}_q} F_q(1, a) = c_1 - c_q; \]

\[\sum_{a \in \mathbb{F}_q} F_{lq+j} = \sum_{a \in \mathbb{F}_q} F_{(l-1)q+j} - \sum_{a \in \mathbb{F}_q} F_{(l-1)q+j+1} - c_{lq+j} + \frac{2^q(1 - j) + 2j}{2^{lq+j}} \text{ if } 1 \leq l \leq q - 2 \text{ and } 1 \leq j \leq q - 1; \]

\[\sum_{a \in \mathbb{F}_q} F_{lq} = \sum_{a \in \mathbb{F}_q} F_{(l-1)q} - \sum_{a \in \mathbb{F}_q} F_{(l-1)q+1} - c_{lq} + \frac{1}{2^{(l-1)q}} \text{ if } 2 \leq l \leq q - 2; \]

\[\sum_{a \in \mathbb{F}_q} F_{q^2-q+j} = \sum_{i=j}^{q-1} c_{q^2+i} + \frac{j}{2^{q^2-q+j-1}} \text{ if } 0 \leq j \leq q - 1. \]
N. Fernando, *Reversed Dickson polynomials of the third kind*, arXiv:1602.04545.
(1) S. D. Cohen, *Dickson polynomials of the second kind that are permutations*, Can. J. Math. 16 (1994), 225 – 238.

(2) X. Hou, *On the asymptotic number of inequivalent binary self-dual codes*, J. Combin. Theory Ser. A 114 (2007), 522 – 544.

(3) R. Lidl and H. Niederreiter, *Finite Fields*, 2nd ed., Cambridge Univ. Press, Cambridge, 1997.

(4) R. Lidl, G. L. Mullen, G. Turnwald, *Dickson polynomials*, Longman Scientific and Technical, Essex, United Kingdom, 1993.
Thank You!