Paired soil and rice arsenic and cadmium from northeastern U.S. rice farms

Ruifang Hu | William A. Teasley | Angelia L. Seyfferth

Abstract
Arsenic (As) and cadmium (Cd) are two toxic elements found in rice (Oryza sativa L.) grain that pose threats to human health. While attention has focused on major rice-growing regions, rice has been grown on small-scale farms in the northeastern United States since approximately 2005, but the grain As and Cd levels were not previously reported. Unpolished grain from these farms have mean As of 0.12 mg kg\(^{-1}\) and mean Cd of 0.007 mg kg\(^{-1}\), more than 40% lower than previously reported in U.S. rice. Therefore, rice from these farms poses low risk for consumers.

1 | INTRODUCTION

Arsenic (As) and cadmium (Cd) are trace elements of concern in rice (Oryza sativa L.). Both are toxic to humans (ATSDR, 2002a, 2002b; Nordberg, 2009) and can decrease rice yield (Abedin, Cresser, Meharg, Feldmann, & Cotter-Howells, 2002; Clemens, Aarts, Thomine, & Verbruggen, 2013; Williams et al., 2007b). The availabilities of As and Cd in soil are affected differently by water management (Arao, Kawasaki, Baba, Mori, & Matsumoto, 2009), and the uptake of As can be decreased by increasing soil silicon (Si) (Fleck, Mattusch, & Schenk, 2013; Seyfferth & Fendorf, 2012). To protect human health, it is imperative to evaluate As and Cd levels in rice grown under different soil conditions. Moreover, grain As speciation is critical to assess food-chain risk, as inorganic As (iAs) species are more toxic than some organic As species (Hughes, 2002) and only iAs is used in rice regulations.

While grain As levels from major U.S. farming regions in the Mid-South and California have been reported, little is known about levels in rice from other areas. A network of small-scale rice farms was established in the northeastern United States that uses organic and/or low-input practices, some used for specialized rice products and others for personal use, but there have been no published reports of grain elemental analysis from these farms. Surveys in the United States (Heitkemper, Kubachka, Halpin, Allen, & Shockey, 2009; Williams et al., 2007; Wolnik et al., 1985; Zavala & Duxbury, 2008) took place before most of the northeastern rice farms were established, and these surveys do not typically link grain concentrations with soil-chemical parameters.

We collected paired rice and soil samples from small-scale rice farms in the northeastern United States and evaluated the plant elemental concentrations and correlations with soil-chemical parameters. We hypothesized that this grain would have lower As and Cd concentrations than grain produced in the major rice-growing regions of the United States due to holistic crop residue management and cooler soil temperatures. We found that grain As and Cd from northeastern farms are among the lowest reported in the United States.
2 | MATERIALS AND METHODS

2.1 | Sample preparation

We obtained nine rice grain samples from six small-scale rice farms in the northeastern United States (Table 1). Grain samples were paired with husk, straw, and soil samples from the respective farm for all but one sample. During soil sampling, three to five locations across each field were sampled to a depth of approximately 25 cm and composited into one per farm. Soils were air-dried and sieved (<2-mm). Shoots of three to five plants per cultivar were randomly collected and straw was cut at least 5 cm above the soil surface. For NE3, no straw was obtained. Rice straw was oven-dried at 65 °C. Air-dried rough rice was dehusked to separate unpolished rice from husk. Each plant fraction was ground with stainless-steel grinders.

2.2 | Plant analysis

Established protocols were used for digestion and analysis of As and Cd (Seyfferth et al., 2016; Teasley, Limmer, & Seyfferth, 2017). Samples were digested in concentrated HNO₃ using closed-vessel microwave digestion (MARS 6, CEM Corp.). Undissolved Si-gel residue in husk and straw was separated via centrifugation, digested in 2 M NaOH, and analyzed colorimetrically for Si (Derry, Kurtz, Ziegler, & Chadwick, 2005; Kraska & Breitenbeck, 2010). The acid fraction was diluted to achieve 4% (v/v) acid and analyzed for total As and Cd concentrations with inductively coupled plasma mass spectrometry (ICP–MS; Thermo iCap-TQ). Standard checks, blanks, and duplicates, NIST1568a rice flour, and WEPAL IPE 188 oil palm reference materials were used for quality control (Seyfferth & Fendorf, 2012; Seyfferth, McCurdy, Schaefer, & Fendorf, 2014). Duplicate As concentration results for all plant samples had 11.0 ± 5.0% error, NIST1568a analyses had 107 and 91% recovery for As and Cd respectively, and WEPAL IPE 188 oil palm had 81.0 ± 5.8% of the reported “indicative” Si value.

Unpolished grain samples were extracted in 2% (v/v) HNO₃ at 100 °C, diluted to 1% HNO₃ and filtered (0.22 μm) for As speciation analysis (Maher, Foster, Krikowa, Donner, & Lombi, 2013). Separation was achieved using a Hamilton PRP-x100 column with gradient elution using 50 mM ammonium carbonate and 3% (v/v) methanol (Jackson, 2015), and quantification with ICP–MS (Thermo, iCap-TQ). Blanks and a duplicate certified rice NIST1568b analyses were included for quality control. Recovery in NIST1568b was iAs = 118.0(± 2.5)%; dimethylarsinic acid (DMA) = 105.7(± 0.4)%; and monomethylarsonic acid = 142.9(± 2.3)%.

2.3 | Soil analysis

The <2-mm soils were subjected to 1 h of 0.5 M acetic acid extraction (Korndörfer, Coelho, Snyder, & Mizutani, 1999), soil pH (1:10), HNO₃-digestible As and Cd (EPA 3051A) and soil organic matter (SOM) by loss on ignition. Further sieving to 150-μm was used for acid ammonium oxalate, citrate bicarbonate dithionite, and diethylene-triaminepentaacetic acid (DTPA) extractions to estimate As associated with poorly crystalline iron (Fe) oxides, total free Fe oxides, and plant-available Cd, respectively (Amacher, 1996; Loeppert & Inskeep, 1996). The DTPA extractions and total soil digestions were analyzed with ICP–MS (Agilent 7500); NIST2711 soil had 82% Cd and 82% As recovery. Other extractions were analyzed with inductively coupled plasma optical emission (Thermo DuoView).

3 | RESULTS

3.1 | Plant As, Cd, and Si

Plant As concentrations increased in the order unpolished grain < husk < straw. Grain total As ranged from 0.06 to 0.23 mg kg⁻¹ with a median of 0.11 mg kg⁻¹ (Table 1). The farms reported as flooded for most of the production period (Table 2) tended to have the highest grain As. Grain As was composed of mostly iAs, but grain DMA increased as grain total As increased (Figure 1a). Husk As ranged from 0.08 to 0.38 mg kg⁻¹, and straw As ranged from 0.34 to 1.48 mg kg⁻¹ with one outlier of 11 mg kg⁻¹, which may have been due to soil As contamination of this sample. Straw Si concentrations were low and ranged from 0.7 to 4.1% with median concentration of 2.1%. Husk Si concentrations were higher and ranged from 2.0 to 6.7% with a median concentration of 3.9% (Table 1).

Plant Cd concentrations also increased in the order grain < husk < straw. Grain Cd ranged from
 FIG URE 1 Relations between (a) grain dimethylarsinic acid (DMA) and grain total As, (b) total grain As and soil As, (c) total grain As and the ratio of soil As to acetic acid–extractable Si, and (d) total grain As and ratio of soil As to citrate bicarbonate dithionite (CBD)–extractable Fe. All analyzed with Robust Linear Regression in JMP Pro.

0.001 to 0.032 mg kg\(^{-1}\) with a median of 0.002 mg kg\(^{-1}\), and the highest concentration was found in fields reported as grown under dryland conditions (Table 2). Husk Cd ranged from 0.005 to 0.095 mg kg\(^{-1}\), and straw Cd ranged from 0.009 to 0.367 mg kg\(^{-1}\) (Table 1).

3.2 | Soil chemical parameters

Soil total As and Cd concentrations were relatively low and ranged from 0.91 to 6.34 mg kg\(^{-1}\) and 0.083 to 0.417 mg kg\(^{-1}\), respectively. Soil organic matter contents were relatively high and ranged from 6 to 35%; higher SOM usually correlated with higher cation exchange capacity (CEC) (Table 2).

3.3 | Plant–soil relationships

Positive linear relationships were found between grain As and soil As (Figure 1b), the ratio of soil As and plant-available Si (Figure 1c), and the ratio of soil As and citrate bicarbonate dithionite–extractable Fe (Figure 1d). No significant relationships were found between plant Cd and any tested soil parameter.

4 | DISCUSSION

Results support our hypothesis that rice from small-scale rice farms in the northeastern United States contain lower grain As and Cd concentrations than rice from conventional farms in major U.S. rice-growing regions. We observed lower mean grain Cd (0.007 mg kg\(^{-1}\)) than the 0.012 mg kg\(^{-1}\) previously reported from major rice-growing regions (Wolnik et al., 1985); this may be because the high SOM and CEC (Table 2) played a role in Cd retention (Haghiri, 1974), even though no significant relationship was found between Cd and SOM or CEC across farms (Supplemental Table S1). Soil Cd fell within the northeastern soil Cd range (Page, Chang, & El-Amamy, 1987) except NE1 from Delaware and NE2.
TABLE 1 Rice As, Cd, and Si concentrations and grain As speciation from small-scale rice farms in the northeastern United States

Sample ID	State	Variety	Grain total As	Grain iAs	Grain DMA	Grain MMA	Husk As	Straw As	Grain total Si	Husk Si	Straw Si
NE1A	DE	long grain	0.107	0.114	0.025	0.009	0.138	0.86	6.7	2.8	0.006
NE1B	DE	short grain	0.135	0.112	0.025	0.004	0.157	1.48	6.3	3.7	0.007
NE2	NY	carnaroli	0.229	0.188	0.040	0.011	0.383	11.0*	5.4	4.1	0.002
NE3	VT	Hayakuki	0.157	0.077	0.051	0.006	0.218	ns	2.0	0.7	0.002
NE4A	VT	Matsumae	0.115	0.081	0.017	0.004	0.086	0.456	2.0	0.7	0.002
NE4B	VT	Tannemochi	0.057	0.078	0.015	0.006	0.080	0.341	2.4	1.5	0.002
NE5	MA	Duborskian	0.072	0.078	0.013	0.004	0.092	0.403	5.2	2.1	0.009
NE6	MA	Duborskian	0.095	0.089	0.009	0.004	0.153	0.389	3.9	2.1	0.032

Note. DMA, dimethylarsinic acid; iAs, inorganic arsenic; MMA, monomethylarsonic acid.

Outlier potentially due to soil contamination of the sample.

TABLE 2 Soil chemical properties of sampled ecological rice farms in the northeastern USA

Sample ID	State	Reported water management	pH	SOM LOI	CEC	Nitric acid digestible As	Acetic acid extractable As	Nitric acid digestible Cd	DTPA - extractable Cd	Acetic acid extractable Si	CBD extractable Fe	AAO extractable Fe
NE1	DE	Flooded	7.3	13.9	34.1	4.32	1.63	0.364	0.161	31.16	9,353	3,768
NE2	NY	Flooded	7.3	34.8	48.0	6.34	1.59	0.417	ns	18.13	7,195	5,528
NE3	VT	Wet	6.4	5.9	7.2	3.35	1.04	0.132	ns	14.81	14,492	5,312
NE4	VT	Wet	6.4	8.0	10.7	1.77	1.01	0.134	0.114	11.33	17,981	7,258
NE5	MA	Dry land	5.9	7.1	4.7	0.91	1.02	0.083	0.077	17.2	15,365	6,405
NE6	MA	Dry land	5.9	7.1	4.7	0.91	1.02	0.083	0.077	17.2	15,365	6,405

Note. AAO, acid ammonium oxalate; CBD, citrate bicarbonate dithionite; CEC, cation exchange capacity; DTPA, diethylenetriaminepentaacetic acid; LOI, loss on ignition; SOM, soil organic matter.

ns = not sampled.
from New York City, which were higher but still within the range of U.S. agriculture soil Cd (Holmgren, Meyer, Chaney, & Daniels, 1993). The highest grain As and Cd were found in flooded and dryland fields, respectively, reflecting the opposite soil redox impacts on soil As and Cd availabilities (Arao et al., 2009). The mean grain As concentration (0.12±0.03 mg kg$^{-1}$) was 43% lower than previously reported in unpolished grain from major U.S. rice-growing regions (0.21±0.19 mg kg$^{-1}$) (Heitikemper et al., 2009). Moreover, our unpolished grain As concentrations were 29 to ~60% lower than the polished grain from the U.S. market survey by Williams, Raab, Feldmann, and Meharg (2007a). The grain iAs concentration in our unpolished grain samples lies at the lower end of iAs concentrations in polished rice previously reported in the United States (0.07-0.17 mg kg$^{-1}$) (Chen et al., 2016; Jitaru et al., 2016; Liang et al., 2010; Ma, Wang, Jia, & Yang, 2016; Rahman, Rahman, Reichman, Lim, & Naidu, 2014; Zavala, Gerads, Gürleyük, & Duxbury, 2008) and other countries (0.02-0.47 mg kg$^{-1}$) (Batista, Souza, De Souza, & Barbosa, 2011). Considering that our samples were unpolished “brown” rice, the actual As risk of rice from the sampled northeastern farms is even lower because polishing removes the As-rich bran (Sun et al., 2008). The low grain As in northeastern rice may be due to relatively low (<6 mg kg$^{-1}$) soil As concentrations (Smith et al., 2005). In addition, the relatively cooler climate in the northeastern United States could contribute to less As uptake because of lower As mobility in cooler soils (Muehe, Wang, Kerl, Planer-Friedrich, & Fendorf, 2019; Neumann, Seyfferth, Teshera-Levy, & Ellingson, 2017); temperature could also have played a role in limiting Cd uptake.

The positive correlation between grain and soil As (Figure 1B) and between grain DMA and grain total As (Figure 1A) were expected at the low soil As levels in the sampled farms (Lu et al., 2009; Zavala et al., 2008). The positive linear relationship between grain As and the ratio of soil total As and plant-available Si (Figure 1C) reflects the competition between soil As and Si for uptake by rice (Ma et al., 2008), where higher soil As relative to plant-available Si results in more As uptake. The positive linear relationship between grain As and the ratio of soil total As and total free Fe (Figure 1D) reflects the As retention function of free iron oxide in soil (Takahashi et al., 2004).

5 | CONCLUSIONS

Our data show that small-scale rice farms in the northeastern United States have low iAs and Cd in grain. While the few rice farms that exist in the area limited our statistical power, our data suggest that rice produced in small-scale rice farms in the northeastern United States poses low human health risk.

ACKNOWLEDGMENTS

This research was partially supported by the National Science Foundation Grant nos. 1350580 and 1338389, and USDA NIFA 2016-67013-24846. We thank Caroline Golt, Chin Chen Kuo, and Karen Gartley for analytical assistance, and members of the Ecological Rice Farming in the Northeastern USA group for samples.

AUTHOR CONTRIBUTIONS

R. Hu: Investigation, formal analysis, writing-original draft. W.A. Teasley: Formal analysis, writing-reviewing and editing. A.L. Seyfferth: Conceptualization, project administration, supervision, writing-original draft, writing-reviewing & editing.

CONFLICT OF INTEREST

The authors report no conflicts of interest.

ORCID

Angelia L. Seyfferth https://orcid.org/0000-0003-3589-6815

REFERENCES

Abedin, J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36(5), 962–968. https://doi.org/10.1021/es0101678

Amacher, M. C. (1996). Nickel, cadmium, and lead. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3. Chemical methods (pp. 739–768). Madison, WI: SSSA.

Arao, T., Kawasaki, A., Baba, K., Mori, S., & Matsumoto, S. (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. *Environmental Science & Technology, 43*(24), 9361–9367. https://doi.org/10.1021/es9022738

ATSDR. (2002a). Toxicological profile for arsenic. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

ATSDR. (2002b). Toxicological profile for cadmium. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

Batista, B. L., Souza, J. M. O., De Souza, S. S., & Barbosa, F. (2011). Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. *Journal of Hazardous Materials, 191*(1–3), 342–348. https://doi.org/10.1016/j.jhazmat.2011.04.087

Chen, H. L., Lee, C. C., Huang, W. J., Huang, H. T., Wu, Y. C., Hsu, Y. C., & Kao, Y. T. (2016). Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. *Environmental Science and Pollution Research, 23*(5), 4481–4488. https://doi.org/10.1007/s11356-015-5623-z

Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. *Trends in Plant Science, 18*(2), 92–99. https://doi.org/10.1016/j.tplants.2012.08.003

Derry, L. A., Kurtz, A. C., Ziegler, K., & Chadwick, O. A. (2005). Biological control of terrestrial silica cycling and export fluxes to watersheds. *Nature, 433*, 728–731. https://doi.org/10.1038/nature03299
Fleck, A. T., Mattusch, J., & Schenk, M. K. (2013). Silicon decreases the arsenic level in rice grain by limiting arsenite transport. *Journal of Plant Nutrition and Soil Science*, 176, 785–794. https://doi.org/10.1002/jpln.201200440

Haghighi, F. (1974). Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. *Journal of Environmental Quality*, 3(2), 180–183. https://doi.org/10.2134/jeq1974.00472425000300020021x

Heitkemper, D. T., Kubachka, K. M., Halpin, P. R., Allen, M. N., & Shockey, N. V. (2009). Survey of total arsenic and arsenic speciation in us-produced rice as a reference point for evaluating change and future trends. *Food Additives and Contaminants: Part B*, 2(2), 112–120. https://doi.org/10.1080/20652909.2013.848298

Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. *Journal of Environmental Quality*, 22, 335–348. https://doi.org/10.2134/jeq1993.0047242500020020020015x

Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. *Toxicology Letters*, 133(1), 1–16. https://doi.org/10.1016/S0378-4274(02)00084-X

Jackson, B. P. (2015). Fast ion chromatography-ICP-QQQ for arsenic speciation. *Journal of Analytical Atomic Spectrometry*, 30(6), 1405–1407. https://doi.org/10.1039/c5ja0049a

Jitaru, P., Millour, S., Roman, M., El Kouali, K., Noël, L., & Guérin, T. (2016). Exposure assessment of arsenic speciation in different rice types depending on the cooking mode. *Journal of Food Composition and Analysis*, 54, 37–47. https://doi.org/10.1016/j.jfca.2016.09.007

Korndörfer, G. H., Coelho, N. M., Snyder, G. H., & Mizutani, C. T. (1999). Avaliação de métodos de extração de silício em solos cultivados com arroz de sequeiro. *Revista Brasileira de Ciência Do Solo*, 23. https://doi.org/10.1590/S0100-06831999000100013

Kraska, J. E., & Breitenbeck, G. A. (2010). Survey of the silicon status of flooded rice in Louisiana. *Agronomy Journal*, 102(2), 523–529. https://doi.org/10.2134/agronj2009.0146

Liang, F., Li, Y., Zhang, G., Tan, M., Lin, J., Liu, W., . . . Lu, W. (2010). Silicon decreases the arsenic level in rice grain from Hunan Province, China: Spatial distribution and Contaminants: Part B for evaluating change and future trends. *Environmental Science & Technology*, 44(1), 180–183. https://doi.org/10.1021/es9018677

Loopepert, R. H., & Inskeep, W. P. (1996). Iron. In D. L. Sparks (Ed.), *Methods of soil analysis: Part 3. Chemical methods* (pp. 639–664). Madison, WI: SSSA.

Lu, Y., Adomako, E. E., Solaiman, A. R. M., Islam, M. R., Deacon, C., Williams, P. N., . . . Meharg, A. A. (2009). Baseline soil variation is a major factor in arsenic accumulation in Bengal delta paddy rice. *Environmental Science & Technology*, 43(6), 1724–1729. https://doi.org/10.1021/es802794w

Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., & Zhao, F. J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. *Proceedings of the National Academy of Sciences of the United States of America*, 105, 9931–9935. https://doi.org/10.1073/pnas.0802361105

Ma, L., Wang, L., Jia, Y., & Yang, Z. (2016). Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution and potential health risk. *Science of the Total Environment*, 557–558, 438–444. https://doi.org/10.1016/j.scitotenv.2016.03.051

Maher, W., Foster, S., Krikowa, F., Donner, E., & Lombi, E. (2013). Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: Verification using XANES. *Environmental Science & Technology*, 47(11), 5821–5827. https://doi.org/10.1021/es304299v

Muehe, E. M., Wang, T., Kerl, C. F., Planer-Friedrich, B., & Fendorf, S. (2019). Rice production threatened by coupled stresses of climate and soil arsenic. *Nature Communications*, 10, 4985. https://doi.org/10.1038/s41467-019-12946-4

Neumann, R. B., Seyffter, A. L., Teshera-Leyve, J., & Ellingson, J. (2017). Soil warming increases arsenic availability in the rice rhizosphere. *Agricultural & Environmental Letters*, 2(1), 170006. https://doi.org/10.2134/ael2017.02.0006

Nordberg, G. F. (2009). Historical perspectives on cadmium toxicity. *Toxicology and Applied Pharmacology*, 238(3), 192–200. https://doi.org/10.1016/j.taap.2009.03.015

Page, a. L., Chang, A. C., & El-Amamy, M. (1987). Cadmium levels in soils and crops in the United States. In T. C. Hutchinson & K. M. Meena (Eds.), *Lead, mercury cadmium and arsenic in the environment* (pp. 119–146). Chichester, U.K: John Wiley & Sons.

Rahman, M. A., Rahman, M. M., Reichman, S. M., Lim, R. P., & Naidu, R. (2014). Arsenic speciation in Australian-grown and imported rice on sale in Australia: Implications for human health risk. *Journal of Agricultural and Food Chemistry*, 62(25), 6016–6024. https://doi.org/10.1021/jf501077w

Seyffter, A. L., & Fendorf, S. (2012). Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). *Environmental Science & Technology*, 46(24), 13176–13183. https://doi.org/10.1021/es3025337

Seyffter, A. L., McCurdy, S., Schaefer, M. V., & Fendorf, S. (2014). Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of cambodia. *Environmental Science & Technology*, 48(9), 4699–4706. https://doi.org/10.1021/es50106t

Seyffter, A. L., Morris, A. H., Gill, R., Kearns, K. A., Mann, J. N., Paukett, M., & Leskanic, C. (2016). Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain. *Journal of Agricultural and Food Chemistry*, 64(19), 3760–3766. https://doi.org/10.1021/acs.jafc.6b01201

Smith, D. B., Cannon, W. F., Woodruff, L. G., Garrett, R. G., Klassen, R., Kilburn, J. E. . . . Morrison, J. M. (2005). *Major- and trace-element concentrations in soils from two continental-scale transects of the United States and Canada*. Reston, VA: USGS.

Sun, G., Williams, P. N., Carey, A. M., Zhu, Y., Deacon, C., Raab, A., . . . Meharg, A. A. (2008). Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. *Environmental Science & Technology*, 42(19), 7542–7546. https://doi.org/10.1021/es801238p

Takahashi, Y., Minamikawa, R., Hattori, K. H., Kurishima, K., Kihou, N., & Yuita, K. (2004). Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. *Environmental Science & Technology*, 38(4), 1038–1044. https://doi.org/10.1021/es034383n

Teasley, W. A., Limmer, M. A., & Seyffter, A. L. (2017). How rice (Oryza sativa L.) responds to elevated As under different Si-rich soil amendments. *Environmental Science & Technology*, 51(18), 10335–10343. https://doi.org/10.1021/acs.est.7b01740

Williams, P. N., Raab, A., Feldmann, J., & Meharg, A. A. (2007a). Market basket survey shows elevated levels of as in south central U.S. processed rice compared to California: Consequences for human dietary exposure. *Environmental Science & Technology*, 41(7), 2178–2183. https://doi.org/10.1021/es061489k

Williams, P. N., Villada, A., Deacon, C., Raab, A., FIGUEROA, J., Green, A. J., . . . Meharg, A. A. (2007b). Greatly enhanced arsenic shoot
assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science & Technology, 41(19), 6854–6859. https://doi.org/10.1021/es0706271

Wolnik, K. A., Fricke, F. L., Capar, S. G., Meyer, M. W., Satzger, R. D., Bonnin, E., & Gaston, C. M. (1985). Elements in major raw agricultural crops in the United States. 3. Cadmium, lead, and eleven Other elements in carrots, field corn, onions, rice, spinach, and tomatoes. Journal of Agricultural and Food Chemistry, 33, 807–811. https://doi.org/10.1021/jf00065a010

Zavala, Y. J., & Duxbury, J. M. (2008). Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environmental Science & Technology, 42(10), 3856–3860. https://doi.org/10.1021/es702747y

Zavala, Y. J., Gerads, R., Gürleyük, H., & Duxbury, J. M. (2008). Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environmental Science & Technology, 42(10), 3861–3866. https://doi.org/10.1021/es702748q

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Hu R, Teasley WA, Seyfferth AL. Paired soil and rice arsenic and cadmium from northeastern U.S. rice farms. Agric Environ Lett. 2021;6:e20040. https://doi.org/10.1002/ael2.20040