REVIEW

Is mucinous carcinoma of the colorectum a distinct genetic entity?

C Hanski

Universitätsklinikum Benjamin Franklin, Department of Gastroenterology, Freie Universität Berlin, 12200 Berlin, Hindenburgdamm 30, Germany

Summary Mucinous carcinomas are defined on the basis of the amount of the mucus component in the tumour mass. Apart from this quantitative criterion, a number of clinicopathological parameters (such as localisation, prevalence in different countries and age groups, association with HNPCC and inflammatory processes) and genetic alterations (e.g. frequency of mutation in Ki-ras and p53 genes, level of MUC2 expression) differentiate these tumours from the non-mucinous ones. Since a different set of genetic lesions implies different inducing agents, these observations suggest that there may be a 'mucinous pathway of carcinogenesis'. Further identification of genetic changes characteristic of the mucinous phenotype will help to understand the aetiology of these tumours and possibly establish markers for detection of the high-risk group.

Keywords: mucinous carcinoma; p53; MUC2; aetiology

The designation mucinous carcinomas is applied to colorectal tumours in which mucus secretion largely contributes to the tumour growth. Different authors classified colonic tumours as mucinous when the mucin lakes represented 50% (Pihl et al., 1980) to 80% (Umpleby et al., 1985) of the tissue; the definition set by World Health Organization and applied in the more recent reports and in the present minireview requires the mucinous component to represent more than 50% of the tumour (Jass and Sobin, 1990).

Whether the mucinous phenotype is associated with relatively poor prognosis is a matter of controversy; more recent multivariate analyses of the course of the disease in a large number of patients indicate that the mucinous carcinomas of the colorectum do not differ in their clinical behaviour from non-mucinous (Sasaki et al., 1987; Halvorsen and Seim, 1988; Hermanek et al., 1989) or signet ring cell carcinomas (Sasaki et al., 1987). The pattern of the genetic lesions in mucinous carcinomas is, however, different from that in non-mucinous ones. Some of these differences are obviously related to the mucinous phenotype (like the level of MUC2 expression) and may be epiphenomenal, while others (such as activation of proto-oncogenes and inactivation of suppressor genes) belong to the group of lesions assumed to be fundamental in carcinogenesis. The present analysis of the recently defined genetic differences as well as indicators of inherent genetic differences between the mucinous and non-mucinous phenotype suggests that distinct molecular lesions occur during the development of these two types of colorectal carcinoma.

Clinicopathological parameters

Similar prevalence in the left and the right colon

Several studies indicate that 19–40% of non-mucinous sporadic carcinomas are located in the right colon while the majority is found in the left colon (Symonds and Vickery, 1976; Umpleby et al., 1985; Milne, 1994). By contrast, the prevalence of mucinous carcinomas is approximately equal in both segments (Symonds and Vickery, 1976; Sundblad and Paz, 1982; Umpleby et al., 1985). For example, in a recent study of 80 mucinous carcinomas 46% were localised in the right (including ascending and transverse colon) and 54% in the left colon segment (including descending, sigmoid colon and rectum). Among patients with non-mucinous carcinomas this distribution was 19% and 81% respectively (Hanski et al., 1995). Thus in the right colon about every fifth, while in the left colon every tenth, tumour exhibits a mucinous phenotype.

This difference in preferential localisation suggests that the development of mucinous tumours, in contrast to non-mucinous ones, is less dependent on endogenous factors that show a proximal-to-distal gradient.

Different prevalence in different countries

There are no separate data on the incidence of colorectal mucinous carcinomas in different countries. They can, however, be estimated from the available prevalence of mucinous carcinomas and the incidence of sporadic colon carcinomas. Since the available data do not take into account potential variations in the prevalence of inherited cancer syndromes, they can be compared only if the assumption is made that inherited cancers represented a minor fraction of the investigated tumours.

For example, the prevalence of mucinous carcinomas among all sporadic colorectal carcinomas ranges from 6% in Japan (Okuno et al., 1988; Yamamoto et al., 1993) to 15% in the USA (Symonds and Vickery, 1976). Since large patient groups have been evaluated according to similar criteria, these variations are unlikely to be due to a sampling error. While the incidence of sporadic colon carcinomas is less than 3-fold higher in the USA than in Japan, the resulting annual incidence of mucinous cancers is about 7-fold higher in the USA. Thus the incidence pattern of mucinous carcinomas appears to show a different dependence from the life and dietary conditions than that of non-mucinous adenocarcinomas of the colon.

Different prevalence in young and elderly age groups

The non-mucinous carcinoma is most frequent in 60–69-year-old patients (Umpleby et al., 1985; Hanski et al., 1995) while the mucinous carcinoma is most frequent at the age 70–79 years. In patients younger than 20 years colon carcinoma is extremely rare (incidence 1 in 10 million) but when observed it is in 80–90% of the mucinous phenotype (Ferguson and Obi, 1971; Koh et al., 1980; Odone et al., 1982;
Pratt et al., 1987; Angel et al., 1992). The age distribution appears to vary widely between different communities: patients under 35 years account for 34% of mucinous carcinomas in Jordanians but only for 3.5% in Nova Scotians (Dajani et al., 1980). The occurrence of mucinous colorectal carcinomas in children and very young patients suggests a hereditary nature for at least some of these tumours.

Frequent occurrence as hereditary non-polyposis colon cancer

Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominantly inherited susceptibility to early-onset colorectal cancer in the absence of diffuse polyposis (average age 44 years), a predominance of cancer proximal to the splenic flexure (approximately 70%) and an excess of synchronous and metachronous colorectal cancers (> 40% at 10 years after initial colonic cancer) (Jass, 1993; Lynch et al., 1993). HNPCC accounts for about 3–30% of all colorectal cancers (Lynch and Lynch, 1994).

Mucinous phenotype appears to occur more frequently among HNPCCs than among sporadic cancers. Mecklin et al. (1986) found in 100 Finnish HNPCC patients 26% carcinomas with more than 60% mucin content and only 15% in patients with sporadic colorectal tumors. Among the 77 American patients with HNPCC investigated by Lynch et al. (1994) 20% were diagnosed as mucinous as compared with 8% in the control group. Jass et al. (1994) observed 19% of mucinous carcinomas among 140 HNPCCs vs 10% expected among sporadic colon cancers. A high percentage of mucinous carcinomas was observed in several small groups of HNPCC patients (Budd and Fink, 1981; Abusamra et al., 1987; Purtilo et al., 1987; Calmes et al., 1992).

The recent findings on the genetic basis of HNPCC suggest that inherited mutations in hMSH2 and hMLH1 genes account for the majority of the HNPCC cases (Leach et al., 1993; Parsons et al., 1993; Aaltonen and Peltomäki, 1994; Loeb, 1994; Peltomäki, 1994, Smith, 1994). These genes encode the human homologues of bacterial proteins MutS and MutL, which are part of the base mismatch repair system. Loss of their function may explain the erroneous replication of microsatellites in hereditary colon cancers (Umar et al., 1994). Since the frequency of replication error-positive (RER+) colon cancers is higher than that of HNPCCs, the defective mismatch repair may contribute to the development of both hereditary and sporadic colonic tumours (Kim et al., 1994). The mutations at codons 12 or 13 in Ki-ras gene were found in 61% of HNPCC patients, a percentage higher than found in the group of sporadic cases (40%) (Aaltonen et al., 1993). These morphological and genetic observations support the notion that a considerable percentage of the HNPCCs exhibit mucinous phenotype characterised by a high frequency of Ki-ras mutations.

Association with Crohn's disease and ulcerative processes

Patients with Crohn's disease have several-fold increased risk of colorectal carcinoma as compared with the general population. In two studies 50% (Hamilton, 1985) or 29% (Choi and Zelig, 1994) of these carcinomas were identified as mucinous or mucinous and signet ring cell carcinomas respectively. Other groups did not report more frequent occurrence of mucinous tumours in patients with Crohn's disease (Lightdale et al., 1975; Gyde et al., 1980; Ekbom et al., 1990). Conversely, the analysis of 120 mucinous carcinomas showed that only 15 tumours were associated with colitis or ulcerative colitis (Symonds and Vickery, 1976). These data indicate that the inflammatory process is not necessary but it may facilitate the preferential development of the mucinous phenotype.

High incidence after ionising irradiation

Patients treated by radiotherapy of cancers localised in the abdomen (usually a total local dose in the range of 60 Gy fractionated over about 30 weeks), have an increased risk of developing colonic cancers. Mucinous carcinomas represent 26–58% of these tumours (Castro et al., 1973; Kato et al., 1981; Jao et al., 1987). The development of mucinous carcinomas was also observed in 47% of rats after local irradiation of the colon with a single dose of 45 Gy (Demman et al., 1978). Among the atomic bomb survivors who suffered a total dose below 1 Gy, the risk of colon cancer was increased but there was no frequency increase of mucinous phenotype (Nakatsuka et al., 1991). It is possible that radiation enteritis rather than radiation mutagenesis is the factor facilitating the development of the mucinous phenotype.

Genetic alterations

Low frequency of p53 mutation and LOH

The nuclear phosphoprotein p53 appears to function as a ‘guardian of the genome’ (Lane, 1992; Levine, 1993), arresting cells in G1, phase in response to DNA damage and in some cases triggering cell death by apoptosis (Lane, 1993; Lee et al., 1994). Further, recent data indicate that p53 may directly and indirectly stimulate DNA repair (Smith et al., 1994). Mutation of the p53 gene is one of the most frequent genetic lesions associated with cancer (Greenblatt et al., 1994). Mutations occur most commonly in regions of the p53 gene (‘hotspots’), highly conserved among species. The p53 gene mutation is frequently but not systematically (with concordancy of about 70%); Cripps et al., 1994) related to accumulation of p53 protein. While the physiological concentrations of the wild-type p53 protein are immunohistochemically undetectable, the overexpression of the p53 molecule can usually be visualised. It is rare in adenomas but occurs in 50–73% of sporadic colon cancers (Van den Berg et al., 1989; Purdie et al., 1991; Scott et al., 1991; Hanski et al., 1992), indicating that it is a late event of colon carcinogenesis. The overexpression of p53 was detected with the monoclonal antibody P Ab 1901 in 73% of non-mucinous colorectal adenocarcinomas but only in 25% of the mucinous carcinomas (Campos et al., 1991). Similar results have been obtained with the polyclonal antibody CM-1 (72% and 36% respectively) (Hanski et al., 1992), indicating that the difference was not due to a lost epitope. The frequency of mutations in non-selected colonic carcinomas detected by PCR-based techniques is 50–63% (Greenblatt et al., 1994; Hamelin et al., 1994a; Costa et al., 1995). By contrast, the sequencing of relevant exons of p53 gene in the DNA isolated and amplified from mucinous carcinomas of the colon revealed mutations in only 25–31% of cases (Costa et al., 1995; Chomacki et al., unpublished), thus indicating that not only the overexpression but also the mutation of the p53 gene occurs less frequently in mucinous than in the non-mucinous tumours. The predominant type of mutation was GC→AT transitions, the most frequent type of p53 mutations in sporadic carcinomas. These results suggest that the alterations of the p53 gene in mucinous colorectal carcinomas are qualitatively similar, although less frequent than in non-mucinous cancer. These lesions seem therefore to be not essential for the development of the majority of mucinous colorectal tumours.

The inactivation of p53 function can occur not only through somatic mutation of the p53 gene but also by complex formation with viral oncogene products, cellular proteins or by alteration in subcellular localisation (Chang et al., 1993; Zambetti and Levine, 1993). The normal protein binds to SV40 large T antigen, to the adenovirus protein E1B, the papilloma virus protein E7, to tumour suppressor protein MDM2 (Chang et al., 1993). Binding of p53 to SV40 large T antigen or E1B protein leads to an increased half-life of p53 while E6 proteins facilitate the degradation of p53 (Scheffner et al., 1990; Werness et al., 1990). Tumours resulting from this pathway may contain only wild-type p53 allele. Indeed, in both cervical carcinomas associated with papilloma virus and in sarcomas and MDM2 amplification, p53 mutations appear to be rare, whereas they are common in anogenital
malignancies not associated with virus and in sarcomas without MDM2 amplification (Chang et al., 1993).

The mechanism underlying the formation of mucinous carcinoma in the presence of intact p53 is not known. The data obtained on human colorectal carcinomas are supported by observations made in vitro. Progression of the adenoma-derived cell line PC/AA to the mucinous malignant phenotype did not involve p53 protein overexpression, while progression to the adenocarcinoma phenotype was associated with the increase of cellular p53 protein expression (Williams et al., 1993). Similarly, a spontaneous progression of a colonic adenoma cell line VACO-253 to mucinous carcinoma occurred without mutations in the p53 gene (Markowitz et al., 1994).

It is of particular interest that, similarly to colorectal tumours, the mucinous carcinomas of the pancreas (Hoshi et al., 1994; Zhang et al., 1994), breast (Domagala et al., 1993; Marchetti et al., 1993) and ovary (Milner et al., 1993; Rennison et al., 1994) show either no alterations in the p53 gene nor in its expression, or the alterations are significantly less frequent than in the non-mucinous tumours of the same organs.

While the p53 gene, which is located on chromosome 17p, appears to be less frequently mutated in mucinous tumours, the less frequent loss of heterozygosity in mucinous than in non-mucinous tumours was observed not only on chromosome 17p (44% vs 88%) but also on chromosome 18q (47% vs 85%) (Kern et al., 1989). Since the loss of heterozygosity on chromosome 17p or 18q, however, is generally less frequent in proximal than in the distal colon (Thibodeau et al., 1993), the correlation of this property with the mucinous phenotype must be verified on selected tumours of either type from the proximal colon.

In tumours with non-mutated p53 the DNA index (which is the ratio of DNA content of malignant cells to that of normal cells) was reported to be lower than in those with mutated p53 (Hamelin et al., 1994a), which would imply that mucinous tumours may have a lower DNA index than non-mucinous ones. Indeed, in mucinous tumours a higher incidence of diploid pattern (Kanagawa et al., 1992) and a lower DNA index than in the non-mucinous tumours (Lanza et al., 1994) were observed, the latter apparently being independent from tumour location (Lanza et al., 1994).

High frequency of mutations in Ki-ras proto-oncogene

Ki-ras protein p21 belongs to the family of GTP/GDP binding proteins with GTPase activity, which participate in transduction of mitogenic signals from the membrane to the cell nucleus (Lowy and Willumsen, 1993). Mutated ras proteins have a reduced GTPase activity and/or an increased dissociation rate of ras-GDP, leading to a prolonged mitogenic signal (Egan and Weinberg, 1993).

Single-point mutations in the Ki-ras proto-oncogene leading to substitution of critical amino acid residues in the p21 protein are sufficient to confer transforming properties to this gene (Reddy et al., 1982). In human colorectal carcinogenesis the alterations of the Ki-ras gene appear to occur during the early steps of tumour formation, particularly during the development of adenomatous polyps (Farr et al., 1988; Vogelstein et al., 1988). The prevalence of Ki-ras mutations increases in adenomas at a more advanced stage of progression (Forrester et al., 1987; Fearon and Vogelstein, 1990) and reaches 50% in non-selected carcinomas (Fearon and Vogelstein, 1990). In mucinous adenocarcinomas the codons 12 and 13 are affected in 65% of cases, while in non-mucinous ones the mutations occur in only 33% of these loci (Laurent Puig et al., 1991). Of interest, in mucinous ovarian tumours the prevalence of Ki-ras mutations is higher than in the non-mucinous ones (Enomoto et al., 1991; Ichikawa et al., 1994), indicating that also in ovarian tumours the high frequency of Ki-ras mutation is preferentially associated with the mucinous phenotype.

Amplification of c-myc proto-oncogene

The c-myc-coded dimeric nuclear phosphoprotein binds to DNA and regulates gene transcription; therefore it has potential importance as a determinant of the proliferation state of the cell (Kretzner et al., 1985; Dang, 1991; Marcu et al., 1992). It has been proposed that abnormal myc expression would alter the regulation of cellular genes, rendering cells more susceptible to malignant transformation. The dominant action of another oncogene or the loss of a tumour-suppressor gene would then accelerate or promote tumorigenesis (Hunter, 1991). The myc gene co-operates with ras to transform rat fibroblasts, rat embryo cells and human epithelial cells (Marcu et al., 1992), but deregulated myc expression alone is not sufficient to elicit malignant phenotype in the absence of secondary events. Organ culture experiments have shown further that activated ras and myc genes together can induce malignant tumours without p53 mutation (Lu et al., 1992). The activation of the c-myc gene may be of relevance for progression of colonic tumours since the increase in expression of c-myc mRNA and its protein product correlates with dysplasia grade in adenomas and with the progression from adenoma to colon carcinoma (Erisman et al., 1985; Rothenberg et al., 1985; Sikora et al., 1987; Finley et al., 1989; Agnantis et al., 1991; Pavelic et al., 1992; Tulchin et al., 1992; Hanksi et al., 1994; Sato et al., 1994).

The c-myc proto-oncogene is present as a single copy gene in the normal human genome. In 54% of mucinous colorectal carcinomas in a group of 13 American patients a modest amplification of the c-myc gene was found, as compared with 7% (2/29) in moderately well-differentiated non-mucinous carcinomas (Heerdt et al., 1991). These authors associated c-myc amplification with the more aggressive, malignant

Colon carcinoma incidence per 10^10 persons	Prevalence of Muc-CA (%)	Muc-CA incidence per 10^10 persons	No. of colon CA cases evaluated	Reference
29.2	6.4	19 Japan	540	Okuno et al. (1988)*
29.2	6.6	19 Japan	662	Yamamoto et al. (1993) (>50%)
53	9	48 Nova Scotia	417	Dajani et al. (1980) (>50%)
56.3	11	62 England	669	Uempley et al. (1985) (>60%)
48.3	10	49 Norway	534	Halvorsen and Seim (1989)
60.7	14	85 Australia	519	Pihl et al. (1980) (>50%)
33	15	50 Finland	75	Mecklin et al. (1986) (>60%)
79.2	15	119 USA	893	Symonds and Vickery (1976) (>60%)
14.6	19	28 India	118	Suma and Nishida (1992) (>50%)
13	22	29 Jordan	141	Dajani et al. (1980) (>50%)

Incidence of all cancers is an estimate derived from the IARC statistics on cancer incidence in different countries (Waterhouse et al., 1982). The incidence of mucinous carcinomas is calculated from the prevalence data in individual reports. The percentage of mucin in the sections used by each author to define the mucinous phenotype is given in brackets. In tumours defined as mucinous the mucinous component was predominant.
phenotype (Heerdt et al., 1991), a finding corroborated by other workers (Kozma et al., 1994). In a study of 100 Asian patients with colorectal cancer, however, no c-myc gene amplification was detected (Smith et al., 1993). Further, the tumours located distal to the transverse colon (the majority of which are non-mucinous) overexpress c-myc more frequently than the proximal tumours (Rothberg, 1987). The slight increase in gene copy number detected in the American patients (Heerdt et al., 1991) may have little effect on the conclusion, however, it indicates a different frequency of proto-oncogene lesion in mucinous and non-mucinous tumours in this group of patients.

Frequent overexpression of mucin MUC2

MUC2 is a well-characterised intestinal mucin, present predominantly in the small intestine and in the colon (Ho et al., 1993). Strong expression is observed in 72% of the mucinous but only in 21% of non-mucinous colonic carcinomas. Also 40–48% of colonic adenomas show strong MUC2 expression. The comparison of expression in the premalignant and malignant colonic tissues of the same specimens indicated that MUC2 overexpression occurring in the adenoma tissue is maintained or increased if the adenoma progresses to mucinous carcinoma. If, however, the adenoma develops into a non-mucinous adenocarcinoma, the expression frequently decreases below the normal level (Blank et al., 1994). Thus the overexpression of MUC2 is occurring already in the premalignant stage of the adenoma–carcinoma sequence and remains a characteristic property of the mucinous phenotype of colorectal tumours (Ho et al., 1993; Blank et al., 1994).

The mechanisms responsible for MUC2 overexpression in mucinous carcinomas is not known. The overexpression of MUC2 in colon adenocarcinoma cells in vitro can be induced by 12-O-tetradecanoyl phorbol acetate (TPA) or forskolin. Both inducers have been shown to operate by triggering their respective signal transduction pathways, via protein kinase C-(TPA) or protein kinase A-(forskolin) (Velich and Augenlicht, 1993). Whether these transduction pathways are involved in the MUC2 overexpression in vivo, has not been investigated.

More frequent loss or low expression of major histocompatibility complex (MHC) class I molecules

The products of the MHC play an important role in the regulation of several immune functions: MHC class I molecules serve as restriction elements for T-cell-mediated cytotoxicity, whereas MHC class II molecules are required for the presentation of antigens to helper T cells. MHC class I molecules are strongly expressed on morphologically normal colonic epithelial cells and in colonic adenomas (Van den Ingh et al., 1987; Garrido et al., 1993). The investigation of 152 patients indicated that about 44% of non-selected carcinomas exhibit a reduction or loss of MHC class I molecules (Möller et al., 1991). The same study indicated that the low expression or loss of MHC class I antigens is more frequent in mucinous than in non-mucinous tumours, a finding corroborating previous data from a smaller group of patients (Van den Ingh et al., 1987).

The mechanism of MHC class I loss in carcinomas is not known. Only two cumulative mutations in β2-microglobulin (β2-M) genes would be sufficient to induce complete loss of MHC class I antigens. MHC class I-negative colon carcinomas lack also β2-M expression which was interpreted as an indication that this may be the mechanism of MHC class I loss in these tumours (Mombour and Koch, 1989; Cabrera et al., 1991).

Less frequent loss of MHC class II molecules

Most normal epithelia, including colon, are MHC class II negative (McDonald and Jewell, 1987). In colonic tissue the majority of premalignant lesions acquire de novo MHC class II expression, and severely dysplastic colonic adenomas are positive in 100% of cases. The expression of non-mucinous adenocarcinoma is associated with a loss of expression of MHC class II molecules in 68% of cases while in mucinous carcinomas this loss is observed in only 37%. Thus the mucinous carcinomas express MHC class II molecules about twice as frequently as the non-mucinous ones (Garrido et al., 1993).

Microsatellite instability

A subset of sporadic colorectal cancers and most of the hereditary non-polyposis colorectal cancers (HNPPC) exhibit widespread alterations of short, repeated sequences (microsatellites) distributed throughout the genome (Ionov et al., 1993). The alteration of microsatellite length (or sequence) that occurs during colon carcinogenesis is associated with mutations in mismatch repair genes hMSH2, hMLH1, hPMS1 and hPMS2, which yield defective repair proteins unable to correct replication errors (Bronner et al., 1994; Loeb, 1994; Papadopoulos et al., 1994; Peltomäki, 1994; Eshleman and Markowitz, 1995). Sporadic colorectal cancers show replication errors in di- tri- or tetranucleotide loci in 13–16.5% of tumours (Aaltonen et al., 1993; Lothe et al., 1993; Hamelin et al., 1994b; Kim et al., 1994). Among the parameters that correlate with microsatellite instability in these tumours is the proximal location, extracellular mucin production and a trend towards less frequent p53 gene product overexpression, as detected by immunohistochemistry (Hamelin et al., 1994b; Kim et al., 1994). While among non-mucinous tumours the frequency of replication error-positive (RER+) phenotype was 9% (12/128), 66% of mucinous tumors (6/9) were RER+ (Kim et al., 1994). There is no relationship between p53 point mutations and microsatellite instability (Hamelin et al., 1994b). The question whether the lesions in mismatch repair system substitute the p53 mutations and represent an independent carcinogenesis pathway associated with the mucinous phenotype warrants further investigation. Further, the analysis of a large number of tumours from both the distal and proximal colon is necessary to establish how far the relative preponderance of mucinous tumours in the proximal colon contributes to the observed correlation.

Conclusions and aetiological implications

The recent genetic evidence in combination with the previous data pose the question if the mucinous colorectal carcinoma is a distinct genetic entity, different from the non-mucinous carcinoma. Both types of colon cancer differ not only in their morphology but also in their localisation, incidence and the pattern of genetic lesions. An intriguing observation is that mucinous carcinomas not only of the colon but also of other organs (breast, pancreas, ovary) appear to share certain genetic properties. In these tumours the frequency of p53 mutations is lower and the frequency of Ki-ras mutations is higher than in the corresponding non-mucinous tumours of the same organs, suggesting a "mucinous phenotype-related" pathway of carcinogenesis. Since the definition of mucinous tumours is based on quantitative rather than qualitative criterion, this remains a hypothesis until the lesion(s) common to all mucinous carcinomas, responsible for the overexpression of mucin genes and possibly related to the "mucinous pathway of carcinogenesis" are identified.

Different lesions may be due to a distinct aetiology of the mucinous tumours. The mechanism of aberrantly expressed mucin genes in this process is not clear since different mucins, coded by genes localised on separate chromosomes, predominate in different organs. One parameter emerging from experimental studies as well as from retrospective analysis of patient history is intestinal inflammation as a factor facilitating the preferential development of the mucinous phenotype in the colon. A comparative analysis of
the genetic lesions of mucinous and non-mucinous tumours would further our understanding of factors affecting differentiation in colorectal cancer. Identification of the genetic changes characteristic of the mucinous phenotype may help not only to better understand its aetiology but possibly establish markers for detection and surveillance of the high-risk population.

References

AALTONEN LA AND PELTMÄKI P. (1994). Genes involved in hereditary nonpolyposis colorectal carcinoma. *Anticancer Res.*, 14, 1657–1660.

AALTONEN LA, A. PELTMÄKI P, LEACH FS, SISTONEN P, PYLKKÄNEN L, MECKLIN JP, JÄRVINEN H, POWELL SM, JEN J, HAMILTON SR, PETERSEN GM, KINZLER KW, VOGELSTEIN B AND DE LA CHAPELLE A. (1993). Clues to the pathogenesis of familial colorectal cancer. *Science*, 260, 812–816.

ABUSAMRA H, MAXIMOVA S, BAR-MEIR S, KRIPIN M AND ROTMENSCHEH HH. (1987). Cancer family syndrome of Lynch. *Am. J. Med.*, 83, 981–983.

AGNANTIS NJ, APOSTOLIKAS N, SPICAS C, ZOLOTA V AND SPANDIDOS DA. (1991). Immunohistochemical detection of ras p21 and c-myc proteins in colorectal adenomas and carcinomas. *Hepato-Gastroenterology*, 38, 239–242.

ANGEL C, PRATT C, RAO B, SCHELL M, PARHAM D, LOBE T AND FLEMING I. (1992). Carcinoembryonic antigen and carbohydrate 19-9 antigen as markers for colorectal carcinoma in children and adolescents. *Cancer*, 69, 1487–1491.

BLANK M, KLUSSMAN E, KÜRGER-KRASAGAKIS S, SCHMITZ-GRÄFF A, STOLTE M, BORNHOEF G, STEIN H, XING PX, MCKENZIE JFC, VERSTIJNEN CPHJ, RIECKE EO AND HANSIKI C. (1991). Expression of MUC2-mucin in colorectal adenomas and carcinomas of different histological types. *Int. J. Cancer*, 59, 301–306.

BRONNER CE, BAKER SM, MORRISON PT, WARREN G, SMITH LG, LESCOE MK, KANE M, EARABINO C, LIPFORD J, LINDBLOM A, TANNER M, BOLLAG RJ, GODWIN AR, WARD DC, NORDENSKJOVL M, FISHEL R, KOLODNER R AND LISKAY M. (1994). Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. *Nature*, 368, 258–259.

BUDDE DC AND FINK NOVA S. (1981). Mucoed colon carcinoma as an autosomal-dominant inherited syndrome. *Arch. Surg.*, 116, 901–905.

CABRERA T, CONCHA A, RUIZ-CABELLO F AND GARIDO F. (1991). Loss of HLA heavy chain and β2-microglobulin in HLA negative cancer. *Scand. J. Immunol.*, 34, 147–152.

CALMES JM, RUTZ HP, SUARDET L AND GIELJC. (1992). Hereditary colorectal cancer: observations of a family study. *Helv. Chirurg.*, Acta, 59, 349–354.

CAMELO E, LA CALLE-MARTIN C, MIGUEL R, PALACIN A, ROMERO M, FABREGAT V, VIVES J, CARDESA A AND YAGUE J. (1991). Loss of heterozygosity of p53 gene and p53 proteinexpression in human colorectal cancers. *Cancer Res.*, 51, 4436–4442.

CASTRO E, ROSEN P AND QUAN S. (1973). Carcinoma of large intestine in patients irradiated for carcinoma of cervix and uterus. *Cancer*, 31, 45–52.

CHANG F, SYRJÄNEN S, TERYHAUTA A AND SYRJÄNEN K. (1993). Tumorigenesis associated with the p53 tumor suppressor gene. *Br. J. Cancer*, 68, 653–661.

CHOI PM AND ZELIG MP. (1994). Similarities of colorectal cancer in Crohn's disease and ulcerative colitis: implications for carcinogenesis and prevention. *Gut*, 35, 930–934.

COSTA A, MARASCA R, VALENTINIS B, SAVARINO M, FARANDA A, SILVESTRINI G AND TORELLI G. (1995). p53 gene point mutations in relation to p53 nuclear protein accumulation in colorectal cancers. *J. Pathol.*, 176, 45–53.

CRIPPS KJ, PURDIE CA, CARDER PJ, WHITE S, KOMINE K, BIRD CC AND WYLIE A-H. (1994). A study of stabilisation of p53 protein versus point mutation in colorectal carcinoma. *Oncogene*, 9, 27739–27743.

DAJANI YF, ZAYID I, MALATIALIAN DA AND KAMAL MF. (1980). Colorectal cancer in Jordan and Nova Scotia. A comparative epidemiologic and histopathologic study. *Cancer*, 46, 420–426.

DANG CV. (1991). c-myc oncprotein function. *Biochim. Biophys. Acta*, 1072, 103–113.

DENMAN DL, KIRCHNER FR AND OSBORNE JW. (1978). Induction of colonic adenocarcinoma in the rat by X-irradiation. *Cancer Res.*, 38, 1899–1905.

DOMAGALA W, HAREZGA B, SZADOWSKA A, MARKIEWSKI M, WEBER K AND OSBORN M. (1993). Nuclear p53 protein accumulates preferentially in medullary and high-grade ductal but rarely in lobular breast carcinomas. *Am. J. Pathol.*, 142, 669–674.

EGAN SE AND WEINBERG RA. (1993). The pathway to signal achievement. *Nature*, 365, 781–782.

EKBOM A, HELMICK C, ZACK M AND ADAMI HO. (1990). Increased risk of large-bowel cancer in Crohn's disease with colonic involvement. *Lancet*, 336, 357–359.

ENOMOTO T, WEHGORST CM, INOUE M, TANIZAWA O AND RICE JM. (1991). K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary. *Am. J. Pathol.*, 139, 777–785.

ERISMAN MD, ROTHBERG PG, DIEHL RE, MORSE CC, SPANDORF JM AND ASTRIN SM. (1985). Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. *Mol. Cell. Biol.*, 5, 1999–1976.

ESHELEMAN JR AND MARKOWITZ SD. (1995). Microsatellite instability in inherited and sporadic neoplasms. *Curr. Opinion Oncol.*, 7, 83–89.

FR CR, MARSHALL CJ, EASTY DJ, WRIGHT NA, POWELL SC AND PARASKEVA C. (1988). A study of ras gene mutations in colorectal adenomas from familial polyposis coli patients. *Oncogene*, 3, 673–678.

FEARON ER AND VOGELSTEIN B. (1990). A genetic model for colorectal carcinogenesis. *Cell*, 64, 759–767.

FERGUSON EJ AND OBI L. (1971). Carcinoma of the colon and rectum in patients up to 25 years of age. *Am. Surg.*, 37, 181–189.

FINLEY GG, SCHULZ NT, HILL SA, GEISER JR, PIPAS JM AND MEISLER AI. (1989). Expression of the myc gene family in different stages of human colorectal cancer. *Oncogene*, 4, 963–971.

FORRESTER K, ALMOGUERA C, HAN K, GRIZZLE WE AND PERUCCHO M. (1987). Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. *Nature*, 327, 298–303.

GARRIDO F, CABRERA T, CONCHA A, GLEW S, RUIZ-CABELLO F AND STERN PL. (1993). Natural history of HLA expression during tumor development. *Immunol. Today*, 14, 491–499.

GREENBLATT MS, BENNETT WP, HOLLSTEIN M AND HARRIS CC. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. *Cancer Res.*, 54, 4855–4878.

GYLE SN, PRIOR P, MACARTNEY JC, THOMPSON H, WATERHOUSE JAH AND ALLAN RN. (1980). Malignancy in Crohn's disease. *Gut*, 21, 1024–1029.

HALVORSEN TB AND SEIM E. (1988). Influence of mucinous components on survival in colorectal carcinomas: a multivariate analysis. *J. Clin. Pathol.*, 41, 1068–1072.

HAMILTON R, LAURENT-PUIG P, OSLWANG S, JEGO N, ASSELAINE B, REMVIKOS T, GIRODET J, SALMON J AND THOMAS G. (1994a). Association of p53 mutations with short survival in colorectal cancer. *Gastroenterology*, 106, 42–48.

HAMELIN R, LAURENT-PUIG P, OSLWANG S, SALMON J AND THOMAS G. (1994b). Genetic instability of microsatellites in human colon cancer. *Gastroenterology*, 106 (4 suppl), A390.

HAMILTON SR. (1985). Colorectal carcinoma in patients with Crohn's disease. *Gastroenterology*, 89, 396–407.

HANSKI C, BORHNOEFT G, SHIMODA T, HANSKI ML, LANE D, STEIN H AND RIECKEN EO. (1992). Expression of p53 protein in invasive colorectal carcinomas of different histological type. *Cancer*, 70, 2772–2777.

HANSKI C, ODEFUEY U, GOOREK D, WANG J, BORHNHOEFT G AND RIECKEN EO. (1994). The overexpression of the sialyl-Lewis* moiety is an independent and a more consistent marker of colon carcinogenesis than the overexpression of c-myc and Ki-ras oncogenes. *Int. J. Oncol.*, 4, 993–1000.
LANZA G, MAESTRI I, BALLOTA MR, DUBINI A, AND CAVAZZINI L. (1994). Relationship of nuclear DNA content to clinicopathological features in colorectal cancer. Modern Pathol., 7, 161–165.

LAURENT-PUIJ P, OLSCWANG S, DELATTRE O, VALIDIRE P, MELOT T, MOSSERI V, SALMON MJ, AND THOMAS G. (1991). Association of Ki-ras mutation with differentiation and tumor formation pathways in colorectal carcinoma. Int. J. Cancer, 49, 220–223.

LEACH FS, NICOLAIDES NC, PAPADOPOULOS N, LIU B, JEN J, PARSONS R, PELTMÔK P, SISTONEN P, AALTONEN LA, NYSTRÖM-LAHTI M, GUAN X-Y, ZHANG J, MELTZER PS, YU J-W, KAO F-T, CHEN DJ, CEROSALLETI KM, FOURNIER REK, TODD S, LEWIS T, LEACH RJ, NAYLOR SW, WEISSENBACH J, MEKLINN J-P, JÄRKVINN H, PETERSEN GM, HAMILTON SR, GREEN J, JASS J, WATSON P, LYNCH HT, TURENT JM, DE LA CHAPELLE A, KINZLER K, AND VOGELSTEIN B. (1993). Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 75, 1215–1225.

LEE JM, ABRAMSON JLA AND BEINSTEIN A. (1994). DNA damage, oncogenesis and the p53 tumour-suppressor gene. Mut. Res., 307, 573–581.

LEVINE AJ. (1993). The tumour suppressor genes. Annu. Rev. Biochem., 62, 623–651.

LIGHTDALE CJ, STERNBERG SS, POSNER G AND SHERLOCK P. (1975). Carcinoma complicating Crohn’s disease. Report of seven cases and review of the literature. Am. J. Med., 59, 262–268.

LOEB LA. (1994). Microsatellite instability: Marker of a mutant phenotype. Cancer Res., 54, 5059–5063.

LÖTH P, RA, PELTMÔK P, MELING GI, AALTONEN LA, NYSTROM-LAHTI M, PYLKKANEN L, HEIMDAL K, ANDERSEN TI, MOLLER P, RGNOM TO, FOSSA SD, HALDMANSEN T, LAM- MARK F, BROGGER A, DE LA CHAPELLE A AND BORRESEN A. (1993). Genomic instability in colorectal cancer: Relationship to clinicopathological variables and family history. Cancer Res., 53, 5849–5852.

LOWY DR AND WILLUMSEN BM. (1993). Function and regulation of ras. Annu. Rev. Biochem., 62, 851–891.

LU X, PARK SH, THOMPSON TC AND LANE DP. (1992). ras-induced hyperplasia occurs with mutation of p53, but activated ras and myc together can induce carcinoma without p53 mutation. Cell, 70, 153–161.

LYNCH HT, LANS PA, SMYRK T, BOMAN B, WATSON P AND LYM C. (1991). Hereditary nonpolyposis colorectal cancer (Lynch syndromes I & II). Genetics, pathology, natural history, and cancer control, part I. Cancer Genet. Cytogenet., 53, 143–160.

LYNCH HT, SMYRK TC, WATSON P, LANS PA, LYNCH JF, LYNCH PM, CAVALIERE RJ AND BOLAND CR. (1993). Genes, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: An updated review. Gastroenterology, 104, 1535–1549.

LYNCH HT AND LYNCH JF. (1994). 25 years of HNPPC. Anticancer Res., 14, 11617–11624.

MCDONALD GB AND JEWELL DP. (1987). Class II antigen (HLA-DR) expression by intestinal epithelial cells in inflammatory diseases of colon. J. Clin. Pathol., 40, 312–317.

MARCHETTI A, BUTTITTA F, PELLEGRINI S, CAMPILLO D, DIELLA F, CECCHETTI D, CALLAHAN R AND BISTOCCHI M. (1993). p53 mutations and histological type of invasive breast cancer. Cancer Res., 53, 4665–4669.

MARKOWITZ S, MYEROFF L, COOPER M, TRAICOFF J, KOCHERA M, LUTTERBAUGH J, SWIRIDUK M AND WILSON J. (1994). A benign cultured colon adenoma bears three genetically altered colon cancer oncogenes, but progresses to tumorigenicity and transforming growth factor-beta independence without inactivating the p53 tumor suppressor gene. J. Clin. Invest., 93, 1605–1613.

MARCU KB, BOSSONE SA AND PATEL AJ. (1992). myc function and regulation. Annu. Rev. Biochem., 61, 809–860.

MECKLIN JP, SIPPONEN P AND JARVENIN HJ. (1986). Histopathological of colorectal carcinomas and adenomas in cancer family syndrome. Dis. Colon Rectum, 29, 849–853.

MILNE D. (1994). Right or left, right or wrong? Debate whirs over colorectal cancer direction. J. Natl Cancer Inst., 86, 1442–1443.

MILLER BI, ALLAN LA, ECCLES DM, KITCHENER HC, LEONARD RC, KELLY KF, PARKIN DE AND HAITE NE. (1993). p53 mutation is a common genetic event in ovarian carcinoma. Cancer Res., 53, 2128–2132.
SCOTT N, SAGAR P, STEWART J, BLAIR G, DIXON M AND QUIRKE P (1991). p53 in colorectal cancer: clinicopathological correlation and prognostic significance. Br. J. Cancer, 63, 317–319.

SIKORA K, CHAN S, EVAN G, GABRA H, MARKHAM N, STEWART J AND WATSON J (1987). c-myc oncogene expression in colorectal cancer. Cancer, 59, 1208–1212.

SMITH DR, MYINT T AND GOH HS (1993). Over-expression of the c-myc proto-oncogene in colorectal cancer. Br. J. Cancer, 68, 407–413.

SMITH ML, CHEN IT, ZHAN Q, BAE I, CHEN CY, GILMER TM, KASTAN MB, O’CONNOR PM AND FORNACE JR, AJ (1994). Interaction of the p53-regulated protein Gadd 45 with proliferating cell nuclear antigen. Science, 266, 1376–1380.

SMITH RG (1994). Hereditary predisposition to colorectal cancer: New insights. Am. J. Med. Sci., 308, 295–308.

SUMA KS AND NISHIMURA T. A genetic component in colorectal-carcinoma-prognostic significance: a study in a South Indian population. J. Surg. Oncol., 51, 60–64.

SUNBLAD AS AND PAZ RA (1982). Mucinous carcinomas of the colon and rectum and their relation to polyps. Cancer, 50, 2504–2509.

SYMONDS DA AND VICKERY JL (1976). Mucinous carcinoma of the colon and rectum. Cancer, 37, 1891–1900.

THIBODEAU SN, BREN G AND SCIAID D (1993). Microsatellite instability in cancer of the proximal colon. Science, 260, 816–819.

TULCHIN N, ORNSTEIN L, HARPAN N, GUILLE J, BORNER C AND O’TOOLE K. (1992). c-myc protein distribution. Neonaplastic tissues of the human colon. Am. J. Pathol., 140, 719–729.

UMAG A, BOYER IC AND KUNITI TA (1994). DNA loop repair by human cell extracts. Science, 266, 814–816.

UMPLEBY HC, RANSON DL AND WILLIAMSON RCN (1985). Peculiarities of mucinous colorectal carcinoma. Br. J. Surg., 73, 715–718.

VAN DEN BERG F, TIGGES A, SCHIPPER M, DEN HARTOG-JAGER F, KROES W AND WALBOOMERS J (1989). Expression of the nuclear oncogene p53 in colon tumours. J. Pathol., 157, 193–199.

VAN DEN INGH HF, RUITER DJ, GRIFIOEN G, VAN MUIJEN ENP AND FERRONE S (1987). HLA antigens in colorectal tumours, low expression of HLA class I. In a mucinous colorectal carcinomas. Br. J. Cancer, 55, 125–130.

VELCIAH A AND AUGENLICHT L (1993). Regulated expression of an intestinal mucin gene in HT29 colonic carcinoma cells. J. Biol. Chem., 268, 13956–13961.

VOGELSTEIN B, FEARNOR ER, HAMILTON SR, KERN SE, PREISINGER AC, LEPPERT M, NAKAMURA Y, WHITE R, SMITTS AM AND BOS JL (1988). Genetic alterations during colorectal tumor development. N. Engl. J. Med., 319, 525–532.

WATERHOUSE J, MUIR C, SHANMUGARATHAN K AND POWELL J (1982). Cancer Incidence in Five Continents. IARC publication No. 42. IARC: Lyon.

WEYNS BA, LEVINE AJ AND HOWLEY PM. (1990). The E6 proteins encoded by human papillomavirus types 16 and 18 can complex p53 in vitro. Science, 248, 76–79.

WILLIAMS A, BROWNE S, YEUDAL W, PATIERSON I, MARSHALL C, AND D AND PARASKKEVAC (1993). Molecular events including p53 and k-ras alterations in the in vitro progression of a human colorectal adenoma cell line to an adenocarcinoma. Oncogene, 8, 3063–3072.

YAMAMOTO S, MOCHIZUKI H, HASE K, YAMAMOTO T, OHHUSA Y, YOKOYAMA S, USHITANI Y AND TAMAKUMA S. (1993). Assessment of clinicopathologic features of colorectal mucinous adenocarcinoma. Am. J. Surg., 166, 257–261.

ZAMMETTI GP AND LEVINE AJ. (1993). A comparison of the biological activities of wild-type and mutant p53. FASEB J., 7, 855–865.

ZHANG SY, RUGGERI B, AGARWAL P, SORLING AP, OBARA T, URA H, NAMIKI M AND KLEIN-SZANTO AJ. (1994). Immuno-histochemical analysis of p53 expression in human pancreatic carcinomas. Arch. Pathol. Lab. Med., 118, 150–154.