Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential

Shivankar Agrawal1,2, Debabrata Acharya1, Alok Adholeya1, Colin J. Barrow2 and Sunil K. Deshmukh1*

1 Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India, 2 Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia

Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.

Keywords: microbe derived-compounds, marine natural products, nonribosomal peptides, antimicrobial, anticancer

MARINE ECOSYSTEM RESOURCES FOR NEW DRUG DISCOVERY

The marine ecosystem is most complex and largest aquatic systems on earth. It includes oceans, intertidal ecology, salt marsh, lagoons, estuaries, coral reefs, mangroves, deep sea, sea floor etc. Marine ecosystem has a enormous variety of organisms that are different in their physiology and adaptations and most of the marine life is found in coastal habitats (Hedgepeth, 1957). According to the Global Biodiversity Assessment by the United Nations Environment Program, oceans consist of 178,000 marine species in 34 phyla. It is estimated that 10^2 fungi, 10^3 bacteria and 10^7 viruses are likely to exist in one milliliter of seawater (Kubanek et al., 2003). Marine organisms comprise around 50% of the total biodiversity on earth. These organisms have shown remarkable contribution in the discovery and production of novel biomolecules (Jimeno et al., 2004; Vignesh et al., 2011). During 1981–2002 50% of US- FDA approved drugs are reported from either marine bioactive compounds or their synthetics analogs (Vinothkumar and Parameswaran, 2013). Marine organisms comprise around 50% of the total biodiversity on earth. These organisms have shown remarkable contribution in the discovery and production of novel biomolecules (Jimeno et al., 2004; Vignesh et al., 2011). During 1981–2002 50% of US- FDA approved drugs are reported from either marine bioactive compounds or their synthetics analogs (Vinothkumar and Parameswaran, 2013). Cytosine arabinoside, Ara-C (anticancer) and adenine arabinoside, Ara-A (antiviral) were first discovered in the early 1950s and approved by Food and Drug Administration (US-FDA). These drugs were isolated from Caribbean sponge (Cryptotheca crypta), as spongouridine and spongothymidine. Blunt et al. (2015) reported more than 20,000 natural bioactive compounds have been...
NONRIBOSOMAL Peptide and their Bio Combinatorial Synthesis

An extensive literature on biosynthesis of non-ribosomal peptides is available in previous reviews (Sieber and Marahiel, 2003; Finking and Marahiel, 2004; Caboche et al., 2009; Strieker et al., 2010; Pfennig and Stubbs, 2012). Here we just summarized how NPRs are synthesized biologically, biomolecular structural architecture and enzymatic machinery of non-ribosomal peptide synthetases (NRPSs). NRPS are peptide secondary bioactive metabolites synthesized by a multi-modular enzyme complex called nonribosomal peptide synthetases (NRPSs) found only in bacteria, cyanobacteria and fungi (Matsunaga and Fusetani, 2003; Nikolouli and Mossialos, 2012). NRPS are formed from a series of enzymatic transformations employing a much more diverse set of precursors and biosynthetic reactions. NRPSs utilize both proteinogenic and nonproteinogenic amino acids (not encoded by DNA) as building blocks for the growing peptide chain (Finking and Marahiel, 2004; Felnagle et al., 2008). Moreover, these secondary bioactive metabolite peptides contain unique structural features, such as D-amino acids, N-terminally attached fatty acid chains, N- and C-methylated residues, N- formylated residues, heterocyclic elements, and glycosylated amino acids, as well as phosphorylated residues etc.; (Sieber and Marahiel, 2003). As a result, NRPSs exhibit a broad spectrum of biological activities, ranging from antimicrobial to anticancer (Hur et al., 2012). The macrocyclic structure is a common feature of nonribosomally synthesized bioactive peptides, which is responsible for reduction in structural flexibility and may, therefore, constrain them into the biologically active conformation (Sieber and Marahiel, 2003; Grünewald and Marahiel, 2006).

The discovery of NRPs began when Tatum and colleagues (Mach et al., 1963) provided first evidence that tyrocidine, a cyclic decapeptide produced by *Bacillus brevis*, was biosynthesized by a mechanism independent of the ribosome (Mankelow and Neilan, 2000). They found that protein synthesis in *B. brevis* was inhibited by using ribosome targeting antibiotics like chloramphenicol and chlorotetracycline, however, the biosynthesis of tyrocidine was not obstructed by the same. Additional biochemical analyses demonstrated that gramicidin S, a cyclic decapeptide produced by *B. brevis*, did not include tRNA molecules or aminoacyl-tRNA-synthetases (Nikolouli and Mossialos, 2012; Figure 2). Further work by Lipmann established that the production of cyclic decapeptide, gramicidin is an ATP-dependent reaction, catalyzed by these enzymes incorporating amino acids in a two-step process by their modules and their respective domains. The first step involves release of pyrophosphate (PPi) and the second step releases adenosine monophosphate (AMP), with the end result being an amino acid covalently linked to the enzyme (Wu et al., 2003). These finding suggested that tyrocidine and gramicidin S peptide synthesis did not involve ribosomal machinery for their synthesis, which leads to discovery of the NRPs and NRPSs. These data also gave the first indication of an amino acid as a “carrier” being involved in NRPS enzymology (Felnagle et al., 2008; Condro and Bruner, 2012; Figure 3).

The biosynthetic study of NRP compounds is challenging if we consider their complexity and biological activities. Each nonribosomal peptide synthetase is composed of an array of distinct modular sections, each of which is responsible for the incorporation of one defined monomer into the final peptide product. Biosynthesis of a nonribosomal peptide by NRPSs involves a series of repeating reactions that are catalyzed by the coordinated actions of modules and their core catalytic domains. Each enzyme module contains three catalytic domains: adenylation domain (A), peptidyl-carrier (PCP) domain and condensation domain (C). A final peptide product released from the enzyme through cyclization or hydrolysis that takes place by thioesterase domain (TE) which is located in the final NRPSs module (Figures 4A,B; Mankelow and Neilan, 2000; Finking and Marahiel, 2004). For recent example, Thiocoraline, an anticancer nonribosomal peptide (NRP) synthesis by marine bacteria *Cromonospora marina* contains peptidic backbone of two S-methylated Lysteine residues. S-Methylation occurs very rarely in nature, and is observed extremely rarely in nonribosomal peptide scaffold. The four modules TioJ, TioO, TioR, and TioS of thiocoraline NRPSs are responsible for the thiocoraline-backbone biosynthesis. TioR and TioS would most probably constitute the NRPSs involved in the biosynthesis of the thiocoraline, according to the colinearity of the respective modules (Figure 5; Lombö et al., 2006; Al-Mestarihi et al., 2014). The potentials of marine microbes to produce NRP’s with antimicrobial and anticancer activity are reported in this review. The data referring to these activities are depicted in Tables 2–4 and the structures are given in Supplementary Materials (Figures S1–S17).

NRPSs with Antimicrobial Potential

Antibiotic resistance in bacteria, parasites, viruses and fungi necessitates the continuous discovery of new drugs for the
effective prevention and treatment of an ever-increasing range of infections caused by them (Organization, 2014). Natural products are the principal source for primary health care. Natural products are observed as a diverse group of molecules which have evolved to interact with a wide variety of protein targets for specific purposes. Also the same protein structure with little or no variation serves different purposes in different organisms. As a result, it is believed that the search for novel antimicrobial entity from natural sources will yield better results than from combinatorial chemistry and other synthetic procedures (Ngwoke et al., 2011). Here we described NRPs from marine microbial sources with antimicrobial potential.

Bacteria

A cationic antibiotic Bogorol A (1) (Figure S1), displaying potent activity against both methicillin-resistant *Staphylococcus aureus* (MRSA, MIC 2 µg/mL) and vancomycin-resistant enterococcal strains (VRE, MIC 10 µg/mL) of bacteria, has been isolated from cultures of a marine *Bacillus laterosporus* collected in Papua New Guinea (Barsby et al., 2001). A new broad spectrum thiazolyl peptide antibiotic, Nocathiacins I–III (2–4) (Figure S1), was isolated from the cultured broth of *Nocardioides sp.*. They share structural similarities to glycothiohexide-alpha (Li et al., 2003). All compounds exhibit potent *in vitro* activity against several multiple-drug resistant pathogens with MIC of 0.001–0.015, 0.005–0.25, 0.002–0.06 µg/mL, respectively. They demonstrate excellent *in vivo* efficacy in a systemic *S. aureus* infection mouse model at PD₉₀ 0.8, 0.6, 0.6 mg/kg/day respectively (Leet et al., 2003). The marine sponge *Halichondria japonica* was the source of *Bacillus cereus* which gave two cyclic thiopeptide antibiotics, YM-266183 (5) and YM-266184 (6) (Figure S1). They exhibited potent antibacterial activity against *Staphylococci* (MIC 0.05–0.2 µg/mL, 0.013–0.025 µg/mL and Enterococci including multiple drug resistant strains (MIC 0.02–0.05 µg/mL, 0.006–0.01 µg/mL), whereas, they were inactive against gram-negative bacteria (Nagai et al., 2003). These structures contain thiazole and pyridine moieties and several unusual amino acids (Suzumura et al., 2003). A bacterial *Ruegeria* species isolated from a sponge *Suberites domuncula* (Gulf of Naples, Italy), gave two new cyclic peptides, cyclo-(glycyl-l-seryl-l-prolyl-l-glutamyl) (7) and cyclo-(glycyl-l-prolyl-l-glutamyl) (8) (Figure S1) with moderate antimicrobial activity against *Bacillus subtilis* at MIC of 25 and 50 µg/mL, respectively (Mitova et al., 2004). *B. laterosporus* PNG276 obtained from Papua New Guinea was the source of a new lipopeptide antibiotic, Tauramamide (9) (Figure S1). Anti-pathogenic activity against *Enterococcus* sp. were reported for tauramamide and its ethyl ester at MIC 0.1 µg/mL (Desjardine et al., 2007). *Pseudomonas* sp. separated out from the seaweed *Digeina* sp. (Ishigaki Is., Okinawa, Japan) were the source of cyclic tetrapeptides cyclo-[phenylalanyl-prolyl-leucyl-prolyl] (10) and cyclo-[isoleucyl-prolyl-leucyl-alanyl] (11) (Figure S1). The crude extract of this bacterial culture was found to inhibit the growth of other marine bacterial strains (Rungprom et al., 2008).

Unnarmicin A (12) and C (13) (Figure S2) are two depsipeptides isolated from a culture of a marine bacterium, *Photobacterium* sp. strain MBIC06485 having selective inhibitory effect on *Pseudovibrio* bacterial strains (Oka et al., 2008b). A strong antibacterial thiopetide antibiotic TP-1161 (14) (Figure S2) with a rare aminoacetone moiety, have been isolated from *Nocardiosis* sp. MICs value of TP-1161, ranging from 0.25 to 4 µg/mL for most gram-positive strain. The gene cluster for the biosynthesis of (14) was identified by PCR screening using degenerate primers (Engelhardt et al., 2010). Marine *Photobacterium halotolerant* yielded two novel cyclodepsipeptides Solonamide A (15) and B (16) (Figure S2) with inhibitory effect on virulence gene expression in *S. aureus* (Mansson et al., 2011). The fermentation broth of *Streptomyces* strain isolated from a marine sediment sample collected off Nassei, Fiji were the source of three new depsipeptides, Fijimycins A–C (17–19) (Figure S2). Fijimycins A–C were shown significant activity against three MRSA strains with MIC₁₀₀ values between 4 and 16 µg/mL (Sun et al., 2011). Peptidolipins B–F (20–24) (Figure S2), antibacterial lipopeptides were obtained from an ascidian-derived *Nocardia* sp. Peptide (20) and (23) were moderately antibacterial against MRSA and methicillin-sensitive *S. aureus* (MSSA) (Wyche et al., 2012). A marine-derived bacterium *Kocuria palustris* was the source of a new thiazolyl peptide, Kocurin (25) (Figure S2). Kocurin strongly inhibits MRSA MB5393

TABLE 1 | List of some marine derived NRPs and their present status (Newman and Cragg, 2004; Fenical, 2006; Jimenez et al., 2009; Petit and Biard, 2013).

Metabolite	Source	Pharmacological activity	R&D stage
Ecteinascidin 743 (Yondell™)	Ecteinascidia turbinata (Sea squirt)	Anticancer	Market
Cephalosporine	Cephalosporium acremonium (Fungi)	Antibiotic	Market
Bengamide derivative (LAF389)	Jaspsis sp. (Sponge)	Anticancer	Phase I
Hemiamsterlin derivative (HTI-286)	Cymbastella sp. (Sponge)	Anticancer	Phase I
Dehydrodidemminine B (Apilide™)	Aplidium albicans (Tunicate)	Anticancer	Phase II
Dolastatin 10	Dolabella auricularia (Mollusc and Cyanobacteria)	Anticancer	Phase II
Kahalalide F	Elysia rufescens (Sea slug)	Antitumor	Phase II
Bryostatin 1	Bugula neritina (Bryozoan)	Anticancer	Phase III
Diazonamide	Diazona angulata (Tunicate)	Anticancer	Preclinical
Thiocoraline	Mi Cronomonospora marina (Bacteria)	Anticancer	Preclinical
Vitelleumamide	Didemnium cucumerum and Polysyncraton lithrostrum (Tunicates)	Anticancer	Preclinical
with a MIC value of 0.25 µg/mL (Martin et al., 2013). An octapeptide, Champacyclin (26) (Figure S2) was isolated from three strains of *Streptomyces champavatii* (sediment, Gotland Deep and Kiel Bight, Baltic Sea and Urania Basin, Eastern Mediterranean) as an inhibitor of blight disease causing bacterium *Erwinia amylovora* (Pesic et al., 2013). Cyclodepsipeptides Ngercheumicin F–I (27–30) (Figure S2) isolated from *P. halotolerans*, inhibited quorum sensing in *S. aureus* (Kjaerulff et al., 2013).

Cyanobacteria

Lobocyclamide B (31) (Figure S3) a cyclododecapeptide containing five beta-hydroxy-alpha-amino acid residues, was discovered from *Lyngbya confervoides* which was active against fluconazole-resistant *C. albicans*. The absolute stereochemistry was determined by chiral chromatography of Marfey’s reaction (MacMillan and Molinski, 2002). Brunsvicamides A–C (32–34) (Figure S3), three new cyclic hexapeptides have been isolated from cyanobacterium *Tychonema* sp. Brunsvicamide C contains...
an N-methylated N'-formylkynurenine moiety. Brunsvicamide B selectively inhibits the *Mycobacterium tuberculosis* protein tyrosine phosphatase B (MptpB, IC_{50} 7.3 µM) (Müller et al., 2006).

Fungi

An extraction of a saltwater culture of an unidentifiable sponge-derived fungus leads to discovering two novel cyclic depsipeptides, Guangomides A (35) and B (36) (Figure S4). Both compounds had weak antibacterial activity against *Staphylococcus epidermis* (MIC = 100 µg/mL, each) and *Enterococcus durans* (MIC = 100 µg/mL, each) (Amagata et al., 2006). A marine-derived *Aspergillus fumigatus* yielded to 11-O-methylpseurotin A (37) (Figure S4) (PKS/NRPS), which selectively inhibited a Hof1 deletion strain of the yeast *Saccharomyces cerevisiae* (Boot et al., 2007). Marine-derived...
Agrawal et al. Nonribosomal Peptides from Marine Microbes

FIGURE 4 | (A) Organization of modules and their domains in nonribosomal peptide synthetase enzyme. Each module contains their catalytic domains that catalyze activities, substrate activation (A-domain), covalent loading (CP-domain), and peptide bond formation (C-domain). The first modules always lacks a C domain and is used to initiate nonribosomal peptide synthesis, while those harboring a C-domain qualify for elongation and modules with thioesterase domains (TE) usually in the last domain, for termination of peptide product from enzyme through cyclization or hydrolysis (Pietro et al., 2012). (B) Mechanism of nonribosomal peptide (NRP) synthesis: Adenylation domain (A) activates amino acid as aminoacyl-AMP and transfer to PCP domain which condenses coming amino acids by forming peptide bonds. Structural modifications mostly operate by epimerization domains which converts L-amino acid to D-amino acid and vice versa. Peptide chain thus transfers to TE domain by transesterification reaction by PCP. Finally, TE domain catalyzed product release (NRPs) by either hydrolysis or macrocyclization (Condurso and Bruner, 2012).

fungus *Emericella* sp., and marine actinomycete *Salinispora arenicola* were co-cultured to induce production of Emericellamides A (38) and B (39) (Figure S4) by fungi. Emericellamides A and B displayed modest antibacterial activities against MRSA with MIC values of 3.8 and 6.0 µM, respectively (Oh et al., 2007).

The fungus *Scopulariopsis brevicaulis*, isolated from marine sponge *Tethya aurantium* was the source of two novel cyclodepsipeptides, Scopularides A (40) and B (41) (Figure S4), which were weak inhibitors of gram-positive bacteria (Yu et al., 2008). Alternaramide (42) (Figure S4), a cyclic Penta depsipeptide, was produced by culture of *Alternaria* sp. which was isolated from sediment, Masan Bay, S. Korea. It’s showed weak antimicrobial activity against *B. subtilis* (ZOI 8 mm) and *S. aureus* (ZOI 13 mm) (Kim et al., 2009). Trichoderins A (43), A1 (44), and B (45) (Figure S4) are three new amino lipopeptides reported from marine sponge-derived fungus of *Trichoderma* sp. All trichoderins have shown potent anti-mycobacterial activity against *Mycobacterium smegmatis, Mycobacterium bovis* BCG, and *M. tuberculosis* H37Rv under aerobic and dormancy-inducing hypoxic growth conditions with MIC values in the range of 0.02–2.01 g/mL (Pruksakorn et al., 2010).

Aspergillus sp. AF119 was the source of γ-aminobutyric acid containing cyclic heptapeptide Unguisin E (46) (Figure S4) (Liu and Shen, 2011). Marine-derived halotolerant *Aspergillus sclerotiorum* PT06-1 gave to two novel cyclic hexapeptides...
Sclerotides A (47) and B (48) (Figure S4) in a nutrient-limited hypersaline medium. Both of these peptides were photo inter convertible, containing anthranilic acid, dehydroamino acid units and showed moderate antifungal activity against C. albicans. Compound (47) also inhibited P. aeruginosa growth (Zheng et al., 2009). A halotolerant A. sclerotiorum PT06-1 isolated from salt sediments from the Putian Sea Salt Field, Fujian, China was the source of 11 new aspochracin-type cyclic tripeptides, Sclerotiotides A–K (49–59) (Figure S4). Only sclerotiotides A, B, F and I showed selective antifungal activity against C. albicans with MIC values of 7.5, 3.8, 30, and 6.7 µM, respectively (Zheng et al., 2010).

NRPS WITH ANTICANCER POTENTIAL

Cancer is the second leading cause of death worldwide. Present therapies cause serious side effects. Therefore there is need to employ alternative concepts including natural products therapy, complementary or alternative medicine, surgery, radiation therapy used alone or in combination to the prevention of cancer (Reddy et al., 2003). Here we focus on the marine natural products specially NRPs that have been evaluated for cancer prevention.

Bacteria

Three new cytotoxic cyclopeptides, Mixirins A–C (60–62) (Figure S5) belonging to iturin class have been isolated from marine bacterium Bacillus sp. obtained from the mud near the Arctic pole. All compounds inhibited the growth of human colon tumor cells (HCT-116) with IC₅₀ of 0.68, 1.6, 1.3 µg/ml (Zhang et al., 2004). A Thermoactinomyces specie YM3-251 have been isolated from mud (Mecherchar, Republic of Palau), which was the source of a cyclic peptide Mechercharmycin A (63) as well as the linear congener Mechercharmycin B (64) (Figure S5). Mechercharmycin A exhibited relatively strong antitumor activity against A549 cells (human lung cancer) and Jurkat cells (human leukemia) with IC₅₀ value of 4.0 × 10⁻⁸ M and 4.6 × 10⁻⁸ M respectively, whereas mechercharmycin B exhibited no activity (Kanoh et al., 2005). Bromoalterochromides A and A’ (65–66) (Figure S5), an unprecedented chromo peptide was produced by a marine Pseudoalteromonas maricaloris strain KMM 636 which was isolated from sponge Fascaplysinopsis reticulata. Chemically both of these compounds are brominated yellow colored Thr-Val-Asn-Asn-X pentapeptide lactones, where the amino group of Thr is acylated with 9-(3-bromo-4-hydroxyphenyl)-nona-2, 4,6,8-tetraenoic acid, and X is alle and Leu, respectively. They showed moderate cytotoxic effects on developing eggs of the sea urchin Strongylocentrotus intermedius (Speitling et al., 2007). New 3-methyl-4-ethylideneproline-containing cytotoxic peptides, Lucentamycins A–D (67–70) (Figures S5, S6) have been isolated from the broth of a marine-derived actinomycete Nocardiosis lucentensis (strain CNR-712). Only lucentamycins A and B showed significant in vitro cytotoxicity against HCT-116 human colon carcinoma with IC₅₀ values of 0.20 and 11 µM, respectively (Cho et al., 2007).

Three cyclic hexadepsipeptides Piperazimycins A–C (71–73) (Figure S6) have been isolated from the fermentation broth of a Streptomyces sp. (sediment, Guam). The structures of these cyclic hexadepsipeptides have shown presence of rare amino acids, including hydroxyacetic acid, α-methylserine, γ-hydroxypiperaic acid, γ-chloropiperazic acid 2-amino-8-methyl-4, 6-nonadienoic acid, and 2-amino-8-methyl-4,6-decadienoic acid and were all significantly cytotoxic against multiple tumor cell lines with an average GI₅₀ values of 76 ng/mL for each (Miller et al., 2007). The cultured mycelia of marine
TABLE 2 | Antimicrobial NRPs from marine microbes.

Sr. No.	NRPs	Chemical architecture	Source	Biological target	Biological active value (MIC/IC₅₀/GI₅₀/ID₅₀/ED₅₀)	References
BACTERIA						
1.	Bogorol A (1)	Linear peptide	Bacillus laterosporus	MRSA, VRE	2 µg/mL, 10 µg/mL	Barsby et al., 2001
2.	Nocathiacins I–III (2–4)	Cyclic peptide	Nocardia sp.	multiple-drug resistant pathogens	0.001–0.015, 0.0005–0.25, 0.002–0.06 µg/mL	Leet et al., 2003; Li et al., 2003
3.	YM-266183 and YM-266184 (5–6)	Cyclic peptide	Bacillus cereus	Staphylococci, Enterococci	0.05–0.2 µg/mL, 0.013–0.025 µg/mL, 0.02–0.05 µg/mL, 0.006–0.01 µg/mL	Nagai et al., 2003; Suzumura et al., 2003
4.	cyclo-(glycyl-l-seryl-l-prolyl-l-glutamyl) (7) and cyclo-(glycyl-l-prolyl-l-glutamyl) (8)	Cyclic peptide	Ruegeria sp.	Bacillus subtilis	25 and 50 µg/mL	Mitova et al., 2004
5.	Tauramamide (9)	Lipopeptide	B. laterosporus	Enterococcus sp.	0.1 µg/mL	Desjardine et al., 2007
6.	Tetrapeptide cyclo-isoleucyl-prolyl-leucyl-alanyl (10) and cyclo-phenylalanyl-prolyl-leucyl prolyl (11)	Cyclic tetrapeptide	Pseudomonas sp.	Marine bacterial	–	Rungprom et al., 2008
7.	Unnarmicin A and C (12–13)	depsipeptide	Photobacterium sp.	Pseudovibrio	7–8 µg/mL	Oku et al., 2008b
8.	Thiopamide TP-1161 (14)	Cyclic peptide	Nocardopsis sp.	Gram-positive bacteria	0.25–4 µg/mL	Engelhardt et al., 2010
9.	Solonamide A–B (15–16)	Cyclic depsipeptide	Photobacterium halotolerans	S. aureus	–	Mansson et al., 2011
10.	Fijimycin A–C (17–19)	depsipeptide	Streptomyces sp.	MRSA	4–16 µg/mL	Sun et al., 2011
11.	Peptidolipins B–F (20–24)	Lipopeptide	Nocardia sp.	MRSA, MSSA	64 µg/mL	Wyche et al., 2012
12.	Kocurin (25)	Cyclic peptide	Kocuria palustris	MRSA	0.25 µg/mL	Martin et al., 2013
13.	Champacyclin (26)	Octapeptide	Streptomyces champavati	Enwinia amylovora	25 µM	Pesic et al., 2013
14.	Ngercheumicin F–I (27–30)	depsipeptide	P. halotolerans	S. aureus	5 µg/mL	Kjaerulf et al., 2013
CYANOBACTERIA						
15.	Lobocyclamide B (31)	Cyclododecapeptide	Lyngbya confervoides	Fluconazole-resistant C. albicans	–	MacMillan and Molinski, 2002
16.	Brunsvicamide A–C (32–34)	Cyclic hexapeptide	Tychonema sp.	Mycobacterium tuberculosis (MptPB)	7.3 µM	Müller et al., 2006
FUNGI						
17.	Guangomides A–B (35–36)	Cyclic depsipeptide	Unidentified fungus	S. epidermis, E. durans	100 µg/mL 100 µg/mL	Amagata et al., 2006
18.	11-O-methylpsurotin A (37)	Linear peptide	Aspergillus fumigatus	Saccharomyces cerevisiae	–	Boot et al., 2007
19.	Emercellamides A–B (38–39)	Cyclic depsipeptides	Emercella sp.	MRSA	3.8 and 6.0 µM	Oh et al., 2007
20.	Scopularides A–B (40–41)	Cyclododecapeptide	Scopulariopsis brevicaulis	Gram-positive bacteria	–	Yu et al., 2008
21.	Alternaramide (42)	Cyclic Pentadepsipeptide	Alternaria sp.	B. subtilis and S. aureus (ZOI 8 mm), (ZOI 13 mm)	Kim et al., 2009	
22.	Trichoderins A, A’, B2 (43–45)	Lipopeptide	Trichoderma sp.	Mycobacterium tuberculosis	0.02–2.01 g/mL	Pruksakorn et al., 2010

(Continued)
TABLE 2 | Continued

Sr. No.	NRPs	Chemical architecture	Source	Biological target	Biological active value (MIC/IC50/GI50/ID50/ED50)	References	
23.	Unguis E (46)	Cyclic heptapeptide	Aspergillus sp.	Antibacterial	–	Liu and Shen, 2011	
24.	Sclerotides A–B (47–48)	Cyclic hexapeptide	Aspergillus sclerotiorum		C. albicans,	7.0 and 3.5 M. nil and, Pseudomonas aeruginosa 35.3 M	Zheng et al., 2009
25.	Sclerotides A–K (49–59)	Cyclic tripeptide	A. sclerotiorum PT06-1		C. albicans	7.5, 3.8, 30, 6.7 M	Zheng et al., 2010

bacterium Mechercharmyces asporophorigenes (marine lake sediment, Urukthapel Island, Palau) was the source of Urukthapelstatin A (74) (Figure S6), a cyclic thiopeptide that displayed potentiating activity against human cancer cell line panel. Urukthapelstatin A has also shown growth inhibition of human lung cancer A549 cells in dose-dependent manner with an IC50 value of 12 nM (Matsuo et al., 2007). The culture of Salinispora arenicola isolated from sea sediment (Great Astrolabe Reef, Fiji) yielded three new cyclohexadepsipeptides, Arenamides A–C (75–77) (Figure S6). The absolute structures and configuration of these compounds were established by the spectroscopic technique. Arenamides A (75) and B (76) blocked tumor necrosis factor (TNF)-induced activation with IC50 values of 3.7 and 1.7 M respectively. In addition, they also inhibited nitric oxide and prostaglandin E2 production and were moderately cytotoxic to HCT-116 cells (Asolkar et al., 2008). Bacillus silvestris that was isolated from a Pacific Ocean (southern Chile) crab yields two new cyclodepsipeptides, Bacillistatins 1-2 (78–79) (Figure S6) with strong anti-cancer (GI50 of 10–4–10–3 µg/mL) activity (Pettit et al., 2009). The epimeric cyclic peptides Turnagainolides A (80) and B (81) (Figure S6), isolated from marine Bacillus sp. (sediment, Turnagain Is., British Columbia, Canada), had indirect inhibitory effect on phosphatidylinositol-3-kinase (PI3K) pathway (Li et al., 2011). A Streptomyces sp. obtained from marine sediment produced two highly modified linear tetrapeptides, Padanamides A (82), and B (83) (Figure S6). They inhibit cysteine and methionine biosynthesis and are cytotoxic to Jurkat cells (IC50 of 20 µg/mL) respectively (Williams et al., 2011). Chemical genomics was performed to discover the mode of action of compounds, which suggested that padanamide A inhibits cysteine and methionine biosynthesis.

Streptomyces sp. isolated from volcanic island produced new cyclic peptides Omhyungsamycin A (84) and B (85) (Figure S7). The presence of unusual amino acid units, including N-methyl-4-methoxytryptophan, β-hydroxyphenylalanine, and N,N-dimethylvaline in compound (84–85) have been determined by interpretation of the NMR, UV, and IR spectroscopic and MS data. Both exhibited inhibitory activities against diverse cancer cells with IC50 values ranging from 359 to 816 nM and 12.4 to 16.8 M respectively. However, compound (84) was more active in this regard interestingly; these compounds exhibit relatively selective anti-proliferative activity against cancer cells compared to normal cells. This may be due to the consequence of genetic background or of the biologically various characteristics between cancer and normal cells. However, the exact molecular mechanism behind the selectivity should be further investigated (Um et al., 2013). Proximicins A–C (86–88) (Figure S7) are novel aminofuran antibiotics with anticancer activity, isolated from marine strains of verrucosispora sp. Compounds (86–88) showed inhibitory activity against gastric adenocarcinoma (AGS, IC50 = 0.6, 1.5, 0.25 µg/mL respectively), hepatocellular carcinoma (HepG2, IC50 = 0.8, 9.5, 0.7 µg/mL respectively) and breast carcinoma cells (MCF 7, IC50 = 7.2, 5.0, 9.0 µg/mL respectively). A cell-cycle analysis in AGS cells revealed that Proximicin C produced cell arrest in the G0/G1 phase after incubation for 24 h. After 40 h, there was an increase in the number of cells in the sub-G1 phase, that is, apoptotic cells (+2.9%). It was also found that proximicin C induce upregulation of p53 and of the cyclin kinase inhibitor p21 in AGS cells (Fiedler et al., 2008).

Cyanobacteria
An assemblage of Lyngbya majuscula and Phormidium gracile collected in Papua New Guinea produced a cyclic depsipeptide Hoiamide A (89) (Figure S8). The highly unusual structure of hoiamide A synthesized by mixed peptide–polyketide biosynthetic pathway showed moderate cytotoxicity to cancer cells and partial agonist of site 2 on the voltage-gated sodium channel as it produced a rapid and concentration-dependent elevation of neuronal [Na+] in neocortical neurons (IC50 = 92.8 nM) (Pereira et al., 2009). An assemblage of the marine cyanobacteria L. majuscula and Schizothrix species collected from Fiji was the source of cyclic depsipeptides Yanucamides A (90) and B (91) (Figure S8), which contain a 2, 2-dimethyl-3-hydroxyoct-7-ynoic acid moiety. Both compounds exhibited strong brine shrimp toxicity (LD50, 5 ppm) (Sitachitta et al., 2000). The cyclic depsipeptides named Lyngbyabellins A (92) (Figure S8), contain a 7,7-dichloro-2,2-dimethyl-3-hydroxyoctanoic acid moiety have been isolated from the cytotoxic fraction of L. majuscula collected from Guam and the Dry Tortugas National Park, Florida. Compound (92) have moderate cytotoxicity against human nasopharyngeal carcinoma cell line (KB cells) and human colon adenocarcinoma cell line (LoVo cells), with IC50 values of 0.03 and 0.50 µg/mL, respectively and also showed cellular microfilament network in A-10 cells at 0.01–5.0 µg/mL concentrations (Luesch et al., 2000). Another collection from Tortugas National Park, Florida was the source of cytotoxic and
TABLE 3 | Anticancer NRPs from marine microbes.

Sr. No.	NRP	Chemical architecture	Source	Biological target	Biological active value (MIC/IC_{50}/GI_{50}/ED_{50})	References
BACTERIA						
1.	Mixirins A–C (60–62)	Cyclopeptide	Bacillus sp.	HCT-116 cells (colon)	0.68, 1.6, 1.3 µg/ml	Zhang et al., 2004
2.	Mechercharmycin A (63)	Cyclic peptide	Thermoactinomyces sp.	A549 cells (lung), Jurkat cells	4.0 × 10^{-8} M, 4.6 × 10^{-8} M	Kanoh et al., 2005
	Mechercharmycin B (64)					
3.	Bromoalterochromide A (65) and A’ (66)	Cyclic peptide	Pseudoalteromonas maricaloris	Stronglylocentrotus intermedius eggs	–	Speitling et al., 2007
4.	Lucentamycins A–D (67–70)	Cyclic hexadepsipeptide	Nocardiopsis luteosulfurida	HCT-116 cells (colon)	0.20 and 11 µM	Cho et al., 2007
5.	Piperazimycins A–C (71–73)	Cyclic hexadepsipeptide	Streptomyces sp.	HCT-116 cells (colon)	0.20 and 11 µM	Miller et al., 2007
6.	Urukthapelstatin A (74)	Cyclic thiopptide	Mechercharimyces asporophogenens	A549 cells (lung)	12 nM	Matsuo et al., 2007
7.	Arenamides A–C (75–77)	Cyclic hexadepsipeptide	Salinispora arenicola	Tumor necrosis factor	3.7 and 1.7 µM	Asolkar et al., 2008
8.	Bacillistatins 1-2 (78–79)	Cyclic thiopptide	Bacillus silvestris	P388 (murine lymphocytic leukemia); BXPC-3 (pancreas); MCF-7 (breast); SF-268 (CNS); NCI-H460 (lung); KM20L2 (colon); DU-145 (prostate)	10^{-4} – 10^{-5} µg/mL	Pettit et al., 2009
9.	Turnagainolides A–B (80–81)	Cyclic depsipeptide	Bacillus sp.	P388 pathway	–	Li et al., 2011
10.	Padamanides A–B (82–83)	Linear tetrapeptide	Streptomyces sp.	Jurkat cells	20 µg/mL	Williams et al., 2011
11.	Ohmyungsamycins A–B (84–85)	Cyclic peptide	Streptomyces sp.	Cytotoxic	359-816 nM and 12.4–16.8 µM	Um et al., 2013
12.	Proximicin A–C (86–88)	Cyclic hexadepsipeptide	Verrucosporum strain MG-37	A549 and LoVo cancer cells	0.6, 1.5, 0.25 µg/mL, 0.8, 9.5, 0.7 µg/mL, 7.2, 5.0, 9.0 µg/mL	Fiedler et al., 2008
CYANOBACTERIA						
13.	Hoiamide A (89)	Cyclic depsipeptide	An assemblage of L. majuscula and Phormidium gracile	Voltage-gated sodium channel	92.8 nM	Pereira et al., 2009
14.	Yanucamides A–B (90–91)	Cyclic depsipeptide	Lyngbya majuscula and Schizothrix sp.	Brine shrimp toxicity	5 ppm	Sitachitta et al., 2000
15.	Lyngbyabellins A (92)	Cyclic depsipeptide	L. majuscula	KB cells LoVo cells	0.03 and 0.50 µg/mL	Luesch et al., 2000
16.	Lyngbyabellin B (93)	Cyclic depsipeptide	L. majuscula	Brine shrimp (Artemia salina)	3.0 ppm	Milligan et al., 2000
17.	Microcyclamide (94)	Cyclic hexadepsipeptide	Microcystis aeruginosa	P388 murine leukemia cells	24–30 µg/mL	Ishida et al., 2000
18.	Apratoxin A (95)	Cyclic depsipeptide	L. majuscula	KB cells LoVo cancer cells	0.52 nM, 0.36 nM	Luesch et al., 2001b
19.	Pitpeptolides A–B (96–97)	Cyclic depsipeptide	L. majuscula	LoVo cells	2.25 and 1.95 µg/mL	Luesch et al., 2001a
20.	Ulongamides A–F (98–103)	Cyclic depsipeptide	Lyngbya sp.	KB cells and LoVo cancer cells	2.25 and 1.95 µg/mL	Luesch et al., 2002
21.	Obyanamide (104)	Cyclic depsipeptide	Lyngbya sp.	KB cells	0.58 µg/mL	Williams et al., 2002a
TABLE 3 | Continued

Sr. No.	NRP	Chemical architecture	Source	Biological target	Biological active value ($\text{MIC/IC}_{50}/\text{GI}_{50}/\text{ID}_{50}/\text{ED}_{50}$)	References
22.	Malevamide D (105)	Linear peptide	Symploca hydroides	P-388, A-549, HT-29, and MEL-28	0.7 and 0.7 nM	Horgen et al., 2002
23.	Tasiamide (106)	Linear peptide	Symploca sp.	KB and LoVo cells	0.48 and 3.47 µg/mL	Williams et al., 2002b
24.	Tasiamide B (107)	Linear peptide	KB	KB cells	0.8 µM	Williams et al., 2003a
25.	Guineamides A–F (108–113)	Cyclic depsipeptide	L. majuscula	Mouse neuroblastoma cells	15 and 16 µM	Tan et al., 2003b
26.	Homodolastatin 16 (114)	Cyclic depsipeptide	L. majuscula	Oesophageal Cervical cells	4.3 µg/mL and 1 µg/mL	Davies-Coleman et al., 2003
27.	Lyngbyastatin 3 (115)	Cyclic peptide	L. majuscula	KB and LoVo cells	0.48 and 3.47 µg/mL	Williams et al., 2003b
28.	Tasipeptins A–B (117–118)	Depsipeptide	Symploca sp.	KB cells	0.93 and 0.82 µM	Williams et al., 2003d
29.	Jamaicamides A–C (119–121)	Lipopeptide	L. majuscula	H-460 (lung), Neuro-2a. Sodium channel blocking	15 µM	Williams et al., 2003d
30.	Wewakpeptins A–D (122–125)	Cyclic depsipeptide	Lyngbya semiplena	NCI-H460 neuro-2a	0.4 µM	Williams et al., 2003b
31.	Trungapeptin A–C (126–128)	Cyclic depsipeptide	L. majuscula	Ichthyotoxic Brine shrimp toxicity	6.25 ppm and 10 ppm	Bunyajetpong et al., 2006
32.	Aurilides B and C (129–130)	Cyclic peptide	L. majuscula	NCI-H460 (lung), Neuro-2a	0.01 and 0.13 µM	Han et al., 2006
33.	Belamide A (131)	Tetra peptide	Symploca sp.	MCF7 (breast), HCT-116 (colon)	0.74 µM	Simmons et al., 2006
34.	Lyngbyastatins 5–7 (132–134)	–	Lyngbya sp.	Potent Elastase Inhibitors	3–10 nM	Taori et al., 2007
35.	Mitsoamide (135)	Linear peptide	Geitlerinema sp.	NCI-H460 (lung)	460 nM	Andrianasolo et al., 2007
36.	Apratoxin D (136)	Cyclic depsipeptide	L. majuscula and Lyngbya sordida	H-460 (lung)	2.6 nM	Gutiérrez et al., 2008
37.	Apratoxin E (137)	–	Lyngbya bouillonii	HT29 (colon), HeLa (cervical),	21–72 nM	Matthew et al., 2008
38.	Dragonamide C and D (138–139)	Linear lipopeptide	Lyngbya polychroa	U2OS (osteosarcoma), HT29 (colon), IMR-32 (neuroblastoma)	56 and 59 µM and 22 and 32 µM and 49 and 51 µM	Gunasekera et al., 2008
39.	Coibamide A (140)	Cyclic depsipeptide	Leptolyngbya sp.	NCI 60 cancer cell	<23 nM	Medina et al., 2008
40.	Symplostatin 4 (141)	Linear peptide	Symploca sp.	Antimitotic to H-460 (lung) Neuro-2a	40 nM and 29 nM	Taori et al., 2009
41.	Itralamides A–B (142–143)	Depsipeptide	L. majuscula	HEK293 cells	6 ± 1 µM	Jiménez et al., 2009
42.	Desmethoxymajusculamide C (144)	Cyclic and Linear peptide	L. majuscula	HCT-116	20 nM	Simmons et al., 2009
43.	Hantupeptin A (145)	Cyclic depsipeptide	L. majuscula	MOLT-4 (leukemia), MCF-7 (breast)	32 µM and 4.0 µM	Tripathi et al., 2008
44.	Desacetyl-Microcolin B (146)	Linear peptide	Lyngbya cf. polychroa	HT-29 and IMR-32 cells	14 nM	Meickle et al., 2009

(Continued)
Sr. No.	NRP	Chemical architecture	Source	Biological target	Biological active value (MIC/IC50/GI50/ID50/ED50)	References
46.	Palmyramide A (147)	Cyclic depsipeptide	*L. majuscula*	Neuro-2a and H-460	17.2 µM, 39.1 µM	Taniguchi et al., 2009
47.	Bisebromoamide (148)	Linear peptide	*Lyngbya* sp.	Protein kinase inhibitor (HeLa S3 cells)	0.04 µg/mL	Teruya et al., 2009
48.	Lyngbyabellin J (149)	Linear peptide	*L. bouillonii*	Actin-disrupting	0.041 µM	Matthew et al., 2010
	Lyngbyapeptin D (150)	Linear peptide	*L. bouillonii*		1.22 µM, 4.97 µM, 76.7 nM	Kwan et al., 2010
	Grassypeptolides A–C (151–153)	Cyclic depsipeptide	*L. confervoides*	HT29 cells	0.41 µM, 4.97 µM, 44.6 nM	Tripathi et al., 2010
	Hantupeptin B and C (154–155)	Cyclodepsipeptide	*L. majuscula*	MOLT-4 cells	0.2 µM, 2.93 µM, 44.6 nM	Tripathi et al., 2010
	Lyngbyacyclamides A–B (156–157)	Cyclic peptide	*Lyngbya* sp.	B16 mouse melanoma	0.7 µM	Maru et al., 2010
	Grassypeptolides D–E (158–159)	Cyclic depsipeptide	*Leptolyngbya* sp.	HeLa and neuro-2a blastoma	335 nM, 192 nM	Thornburg et al., 2011
	Grassypeptolides F and G (160–161)	Cyclic depsipeptide	*L. majuscula*	Inhibit transcription (AP-1 cell)	5.2 and 6.0 µM	Popplewell et al., 2011
	Veraguamides A–H and J–L (162–172)	Cyclic depsipeptide	*Symploca* hydnoides	H-460 (lungs)	141 nM	Movers et al., 2011; Salvador et al., 2011
55.	Malyngamide 3 (173) and Cocosamide A–B (174–175)	Cyclic depsipeptide	*L. majuscula*	HT-29 cells	48 µM, 24 µM, 11 µM	Gunasekera et al., 2011
56.	Cyclodepsipeptide (176–180)	Cyclodepsipeptide	*L. majuscula*	HT-29 and MCF7	–	Montaser et al., 2010
57.	Lagunamide C (181)	Cyclodepsipeptide	*L. majuscula*	HT-29 and MCF7	2.1–24.4 nM	Tripathi et al., 2011
58.	Wewakamide A (182)	Cyclodepsipeptide	*L. semiplena* and *L. majuscula*	Neuro-2a blastoma	2.7 µM	Nan et al., 2011
	Guineamide G (183)	Cyclodepsipeptide	*L. majuscula*		25.2 ± 10 nM	Meicde et al., 2011
59.	Porpoisamide A–B (184–185)	Cyclodepsipeptide	*Lyngbya* sp.	HCT-116 (colon)	28, 22 µM	Meicde et al., 2011
60.	Lyngbyabellin K and L (186–187), 7-epi-lyngbyabellin L (188) and Lyngbyabellin M-N (189–190)	Lipopeptide	*Moorea bouillonii*	HCT116 (colon)	40.9 ± 3.3 nM	Choi et al., 2012
	Lyngbyabellin K and L (186–187), 7-epi-lyngbyabellin L (188) and Lyngbyabellin M-N (189–190)	Lipopeptide	*Moorea bouillonii*	HCT116 (colon)	40.9 ± 3.3 nM	Choi et al., 2012
61.	Viequeamides A–D (191–194)	Cyclic depsipeptide	*Rivularia* sp.	H460 (lungs)	60 ± 10 nM	Boudreau et al., 2012
62.	Symplocin A (195)	Linear peptide	*Symploca* sp.	Cathepsin E inhibitor	300 pM	Molinski et al., 2012
63.	Boullonamide (196)	Cyclodepsipeptide	*M. bouillonii*	Neuron 2a cells	6.0 µM	Tan et al., 2013
64.	Malyngamide 4 (197)	Lipopeptide	*Moorea producens*	HTCLs	–	Shaala et al., 2013
65.	Kurahyne B (198)	–	*Okeania* sp.	HeLa and HL60	8.1 and 9.0 µM	Okamoto et al., 2015

FUNGI

Sr. No.	NRP	Chemical architecture	Source	Biological target	Biological active value (MIC/IC50/GI50/ID50/ED50)	References
66.	N-Methylsansalvamide (199)	Cyclic depsipeptide	*Fusarium* strain CNL-619	Tumor cell	8.3 µM	Cueto et al., 2000
67.	Dictonamides A–B (200–201)	Linear dodecapeptide	*Fungus* K063	Kinase 4 inhibitor	16.5 µg/mL	Komatsu et al., 2001
68.	Scytalidamides A–B (202–203)	Cyclic heptapeptide	*Scytalidium* sp.	HCT-116 (colon)	7 and 11.0 µM	Tan et al., 2003a
antifungal cyclic depsipeptide Lyngbyabellin B (93) (Figure S8). Lyngbyabellin B was toxic to brine shrimp (LD50 = 3.0 ppm) (Milligan et al., 2000). A marine cyanobacterium Microcystis aeruginosa contained the cyclic hexapeptide Microcyclamide (94) (Figure S8), which showed moderate cytotoxicity against P388 murine leukemia cells at 24–30 µg/mL (Ishida et al., 2000).

The cyanobacterium L. majuscula collected from Guam was the source of Apratoxin A (95) (Figure S8). This cyclodepsipeptide of mixed peptide-polyketide biogenesis exhibited in vitro cytotoxicity against human tumor cell lines at IC50 of 0.36–0.52 nM. Apratoxin A induces G1 phase cell arrest and apoptosis, which is at least partially initiated through antagonism of FGF signaling via STAT3 (Luesch et al., 2001b). Another collection of L. majuscula from Guam gave two cyclic depsipeptides, Pitipeptolides A (96) and B (97) (Figure S8) with anti-mycobacterial and weak cytotoxicity against LoVo cells with IC50 values of 2.25 and 1.95 µg/mL, respectively. Pitipeptolides A and B also stimulated elastase activity. It is suggested that this activity is due to the presence of hydrophobic portions in the molecule (Luesch et al., 2001a).

Marine cyanobacterium Lyngbya sp. collected from Palauan...
was the source of six new β-amino acid-containing cyclic depsipeptides, the Ulongamides A–F (98–103) (Figure S8). All peptides were found to be weakly cytotoxic against KB and LoVo cells with IC₅₀ values of ca. 1 μM and ca. 5 μM respectively except compound Ulongamides F (106). Examination of a L. confervoides collection from Saipan, Commonwealth of the Northern Mariana Islands, led to the isolation of a novel cyclic depsipeptide Obyanamide (104) (Figure S8). Obyanamide was cytotoxic against KB cells with an IC₅₀ of 0.58 μg/mL. According to the results, the β-amino acid residue was found to play a critical role in the biological activities. Additionally, the ester bond along with the Ala (Thz) moiety was also essential for biological activities (Williams et al., 2002a). Malevamide D (105) (Figure S8), a highly cytotoxic peptide ester has been isolated from marine cyanobacterium Symploca hydnoides (Horgen et al., 2002). A culture Symploca sp. yielded Tasiamide (106) (Figure S8), an acyclic peptide. Tasiamide demonstrated cytotoxic activity against KB and LoVo cells with IC₅₀ values of 0.48 and 3.47 μg/mL, respectively (Williams et al., 2002b). A new cytotoxic peptide Tasiamide B (107) (Figure S9) which contain the unusual amino acid-derived residue 4-amino-3-hydroxy-5-phenylpentanoic acid (Ahppa) have been isolated from cyanobacterium Symploca sp. This peptide displayed an IC₅₀ value of 0.8 μM against KB cells (Williams et al., 2003b).

A Papua New Guinea collection of the marine cyanobacterium L. majuscule was the source of six cyclic depsipeptides, Guineamides A–F (108–113) (Figure S9). The presence of beta-amino or beta-hydroxy carboxylic acid residues in all peptides was determined using a combination of chemical manipulations as well as Marfey’s method. Guineamides B and C showed moderate cytotoxicity to a mouse neuroblastoma cell line with IC₅₀ values of 15 and 16 μM, respectively (Tan et al., 2003b). A new bioactive cyclic depsipeptide, Homodolastatin 16 (114) (Figure S9) have been isolated from L. majuscule, collected from Wasini Island off the southern Kenyan coast. Homodolastatin 16 showed moderate activity against oesophageal (IC₅₀ = 4.3 μg/mL) and cervical cancer cell lines (IC₅₀ = 1 μg/mL) (Davies-Coleman et al., 2003). An examination of an organic extract of a cyanobacterium L. majuscule, collected from Guam,

TABLE 4 | NRPs with both antimicrobial and anticancer potential from marine microbes.

Sr. No.	NRPs	Chemical architecture	Source	Biological target	Biological active value (MIC/IC₅₀/ED₅₀/ID₅₀)	References
1.	Lajollamycin (235)	Spiro-β-lactone-γ-lactam	Streptomyces nodosus	Drug resistant gram-positive bacteria/murine melanoma cell line B16-F10	2–20 μg/mL/EC₅₀ of 9.6 μM	Manam et al., 2005
2.	Ariakemicins A-B (236-237)	Linear peptide	Rapidithrix sp	S. aureus/ human lung cancer cells (A549) and baby hamster kidney cells	0.46 μg/mL/IC₅₀ values of 25 and 15 μg/mL	Oku et al., 2008a
3.	leodoglucomide A-B (238-239)	Glycolipopeptide	Bacillus licheniformis	Antibacterial/lung cancer and stomach cancer cell lines	Gl₅₀ values of 25.18 and 17.78 μg/mL	Tareq et al., 2012
4.	Halolitoralin A (240) Halolitoralins B (241) C (242)	Cyclic hexapeptide Cyclic tetrapeptide	Halobacillus litoralis	Candida albicans and Tricophyton rubrum/ human gastric tumor	20, 30, 30 μg/mL and 25, 35, 40 μg/mL	Yang et al., 2002
5.	Mojavensin A (243)	Lipopeptide	Bacillus mojavensis	Valsa mal, cucumerinum, and Fusarium verticillioides/ HL-60	2 mg/mL	Ma et al., 2012
6.	Marthiapeptide A (244)	Cyclic peptide	Marinactinospora thermotolerans	SF-268 (glioblastoma), MCF-7 (breast), NCI-H460 (lung), HepG2 (hepatocarcinoma)/ gram-positive bacteria	0.38–0.52 μM	Zhou et al., 2012
7.	Linear heptapeptide (245)	Heptapeptide	Paenibacillus profundus	SK-MEL-28 cell / S. aureus, S. epidermis, B. subtilis and Enterococcus faecium	3.07 μM/2 Ci = 24 mm, 20 mm,28 mm, 11 mm	Kalinovskaya et al., 2013
led to the isolation of the cyclic peptide Lyngbyastatin 3 (115) (Figure S9). The presence of two unusual amino acid units, 3-amino-2-methylhexanoic acid (Amha) and 4-amino-2,2-dimethyl-3-oxopentanoic acid units (Ibu) was determined by standard methods. Lyngbyastatin 3 displayed in vitro activity against KB and LoVo cell lines with IC\textsubscript{50} values of 32 and 400 nM respectively (Williams et al., 2003a).

A collection of Lyngbya sp. from Palauan was the source of cytotoxic cyclic depsipeptide Ulongapeptin (116) (Figure S9) with an IC\textsubscript{50} value of 0.63 \mu M against KB cells (Williams et al., 2003d). Two new depsipeptides Tasipeptins A (117) and B (118) (Figure S9) have been isolated from Palau collection of Symploca sp. The gross structure of all peptides (117–118) were determined by standard methods and was found to contain unusual amino acid-derived residue 4-amino-3-hydroxy-5-phenylpentanoic acid (ApHp) and 3-amino-6-hydroxy-2-piperidone (Ahp) moiety respectively. Both were cytotoxic toward KB cells with IC\textsubscript{50} values of 0.93 and 0.82 \mu M, respectively (Williams et al., 2003c). Lyngbya majuscula collected from Hector’s Bay, Jamaica was found to contain three lipopeptides, Jamaicamides A–C (119–121) (Figure S9). Further biological investigation of the Jamaicamides has revealed that they are generated by iterative hybrid PKS-NRPS assembly and exhibited cytotoxicity to both the H-460 human lung and Neuro-2a mouse neuroblastoma cell lines (IC\textsubscript{50} = 15 \mu M for all), sodium channel blocking activity at 5 \mu M and ichthyotoxic activities (Edwards et al., 2004). Four new depsipeptides, Wewakpeptins A–D (122–125) (Figures S9, S10), were found cytotoxic to brine shrimp and to the NCI-H460 and neuro-2a cell lines (IC\textsubscript{50} of approximately 0.4 \mu M). These were isolated from Lyngbya seminifera collected from Wewak Bay, Papua New Guinea (Han et al., 2005).

Trungapeptins A–C (126–128) (Figure S10), cyclodepsipeptides have been isolated from marine cyanobacterium L. majuscula. Trungapeptin A exhibited mild ichthyotoxicity (6.25 ppm) and weak toxicity to brine shrimp (10 ppm) (Bunyajetpong et al., 2006). Cytotoxic cyclic peptides, Aurilides B (129) and C (130) (Figure S10) were produced by marine cyanobacterium L. majuscula collected from Papua New Guinea. Both aurilides B and C described to induce a dysfunction in mitochondria in NCI-H460 human lung tumor and the neuro-2a mouse neuroblastoma cell lines, with IC\textsubscript{50} values between 0.01 and 0.13 \mu M (Han et al., 2006). A highly methylated tetrapeptide Belamide A (131) (Figure S10) was isolated from Symploca sp. (Salmedina Reef, Panama) which was shown antimitotic and cytotoxic to MCF-7 breast cancer and HCT-116 cell lines (IC\textsubscript{50} = 0.74 \mu M) by microtubule disruption with structural analogy to the important linear peptides dolastatins 10 and 15 (Simmons et al., 2006). Three new analogs of dolastatin 13, Lyngbyastatins S–7 (132–134) (Figure S10), have been isolated from two different collections of marine cyanobacteria, Lyngbya sp., from South Florida with previously reported cyclodepsipeptide somamide B. Compounds (132–134) were found to selectively inhibit elastase over several other serine proteases, with IC\textsubscript{50} values for porcine pancreatic elastase ranging from 3 to 10 nM (Taori et al., 2007). A new linear peptide Mitoamide (135) (Figure S10) was produced by marine cyanobacterium Geitlerinema sp. collected from Mitso-Ankara Island. Mitoamide has shown strong activity against NCI-H460 human lung tumor cells with LC\textsubscript{50} of 460 nM (Andrianasolo et al., 2007).

A Papua New Guinea collection of the marine cyanobacteria L. majuscula and Lyngbya sordida was the source of potent cytotoxic cyclodepsipeptide Apratoxin D (136) (Figure S10). Compound (136) possesses 3, 7-dihydroxy-2, 5, 8, 10, 10-pentamethyldodecanoic acid as the polyketide moiety and potent in vitro cytotoxicity against H-460 human lung cancer cells with an IC\textsubscript{50} value of 2.6 nM (Gutiérrez et al., 2008). Another collection of marine cyanobacterium Lyngbya bouillonii from a Guamanian was found to contain Apratoxin E (137) (Figure S10), which was strongly cytotoxic to several cancer cell lines at IC\textsubscript{50} 21–72 nM (Matthew et al., 2008). Dragonamides C (138) and D (139) (Figures S10, S11) are linear lipopeptides isolated from the marine cyanobacterium brown Lyngbya polyehra. Both peptides are weak cytotoxic against several cancer cell lines with GI\textsubscript{50} values of 56 and 59 \mu M against U2OS osteosarcoma cells, 22 and 32 \mu M against HT29 colon adenocarcinoma cells, and 49 and 51 \mu M against IMR-32 neuroblastoma cells, respectively (Gunasekera et al., 2008). Coibamide A (140) (Figure S11), a potent anti-proliferative highly methylated cyclic depsipeptide was isolated from a culture of Leptolyngbya sp. which was collected from the Coiba National Park, Panama. Compound (140) showed an unprecedented selectivity profile in the NCI 60 cancer cell line panel (LC\textsubscript{50} < 23 nM). It causes S phase inhibition in cell cycle (Medina et al., 2008). Symploca sp. yielded dolastatin 10/15 hybrid linear peptide Symplostatin 4 (141) (Figure S11) which was shown to be antimitotic activity via microtubule depolymerization to H-460 lung cancer cells (IC\textsubscript{50} = 40 nM) as well as neuro-2a neuroblastoma cells (IC\textsubscript{50} = 29 nM) (Taori et al., 2009).

A culture of L. majuscula obtained from True Blue Bay, eastern Caribbean yielded two new depsipeptides, Itralamides A (142) and B (143) (Figure S11). Only itralamide B was found to cytotoxic to HEK293 cells IC\textsubscript{50} 6 ± 1 \mu M (Jimenez et al., 2009). An active peptide metabolite Desmethoxyjasuclamide C (144) (Figure S11) (DMMC) have been isolated from Fijian collection of L. majuscula. Both cyclic and linear version of DMMC were found potent and showed selective anti-solid tumor activity at IC\textsubscript{50} = 20 nM against HCT-116 through disruption of cellular microfilament networks (Simmons et al., 2009). A Singapore collection of L. majuscula has been shown to produce cyclodepsipeptide, Hantupeptin A (145) (Figure S11) with cytotoxicity to MOLT-4 leukemia cells (IC\textsubscript{50} = 32 \mu M) and MCF-7 breast cancer cells (IC\textsubscript{50} = 4.0 \mu M) (Tripathi et al., 2008). Chemical investigation of Lyngbya cf. polychra resulted in isolation of a linear peptide desacetylmicrocolin B (146) (Figure S11), was a growth inhibitor of HT-29 (IC\textsubscript{50} = 14 nM) and IMR-32 cells (IC\textsubscript{50} = 14 nM) (Meickle et al., 2009).

Palmyramide A (147) (Figure S11), a cyclic depsipeptide found to block sodium channel in neuro-2a cells (IC\textsubscript{50} = 17.2 \mu M) and modest cytotoxicity to H-460 cells (IC\textsubscript{50} = 39.7 \mu M) and was isolated from from a Palmyra Atoll Collection of the marine cyanobacterium L. majuscula (Taniguchi et al., 2009). Lyngbya sp. was the source of a potent cytotoxic peptide Bisebromoaamide
Viequeamides are novel 2,2-dimethyl-3-hydroxy-8-alkylamino-6-alkylamino-hex-5-enoic acid residues and a unit which contains two unique polyketide-derived moieties, which were found to have moderate inhibitory activity against Plasmodium falciparum (IC$_{50}$ 0.29 µM) and weak anti-swarming activity against P. aeruginosa (Tripathi et al., 2011).

A collection of marine cyanobacterium _L. semiplena_ and _L. majuscula_ from Papua New Guinea led to isolation of the cyclic depsipeptides Wewakamide A (182) and Guineamide G (183) (Figure S13) respectively. Both of these peptides displayed potent toxicity against brine shrimp and only guineamide G showed cytotoxicity to a mouse neuroblastoma cell line with IC$_{50}$ values of 2.7 µM (Nan et al., 2011). A _Lyngbya_ sp. collected in Florida Keys was found to contain epimeric cyclic depsipeptides Porpoisamide A (184) and B (185) (Figure S13) which was weakly cytotoxic to HCT-116 (IC$_{50}$ = 25, 21 µM respectively) and osteosarcoma U2OS cells (IC$_{50}$ = 28, 22 µM respectively) (Meckle et al., 2011). _Moorea bouillonii_ (Strawn Is., Palmyra Atoll, Central Pacific Ocean) gave five lipopeptides Lyngbyabellin K (186) and L (187), 7-epi-lyngbyabellin L (188) and Lyngbyabellin M (189) and N (190) (Figure S13). Of note, cyclic metabolites (189) and (190) possess rare monochlorination on the 3-aclyoxy-2-methyloctanoate residue, whereas unusual N, N-dimethyvaline containing lyngbyabellin N was strongly cytotoxic to HCT116 colon cancer cell line (IC$_{50}$ = 40.9 ± 3.3 nM) (Choi et al., 2012). Viequeamides are novel 2, 2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides isolated from a shallow subtidal collection of a "button" cyanobacterium _Rivularia_ sp. (Vieques, Puerto Rico). The absolute structures and configurations of major components Viequeamide A-D (191–194) (Figures S13, S14) of the mixture were established by spectroscopic technique. However, viequeamides B–F were not separated out and only viequeamide A showed high cytotoxicity against H460 human lung cancer cells at IC$_{50}$ 60 ± 10 nM (Boudreau et al., 2012). A new N, N-dimethyl-terminated linear peptide Symlocin A (195) (Figure S14) was produced by Bahamian collection of cyanobacterium _Symloca_ sp. The absolute configuration of symlocin A was done by chiral-phase HPLC of the corresponding 2-naphthacetyl esters. Symlocin A showed potent inhibitory effect on protease enzyme cathepsin E with IC$_{50}$ 300 pM (Molinski et al., 2012). A collection of tropical marine cyanobacterium, _M. bouillonii_, from New Britain, Papua New Guinea resulted in isolation of a novel cytotoxic cyclic depsipeptide, Bouillonamide (196) (Figure S14). Compound (196) which contains two unique polyketide-derived moieties, a 2-methyl-6-methylamino-hex-5-enoic acid residue and a unit of 3-methyl-5-hydroxy-heptanolic acid have shown mild toxicity against neuron 2a mouse neuroblastoma cells with IC$_{50}$ 6.0 µM (Tan et al., 2013). A new lipopeptides, Malyngamide 4 (197) (Figure S14) as a moderate inhibitor of several HTCLs have been isolated from marine cyanobacterium _Moorea producens_ collected from the Red Sea, Saudi Arabia (Shaala et al., 2013).
The marine cyanobacterium *Okeania* sp. collected from the coast near Jahana, Okinawa, was the source of Kurahyne B (198) (Figure S14). It showed growth inhibition against HeLa and HL60 cells, with IC$_{50}$ values of 8.1 and 9.0 µM, respectively (Okamoto et al., 2015).

Fungi

A culture of marine fungus *Fusarium* CNL-619 was the source of a new cyclic depsipeptide N-Methylsansalvamide (199) (Figure S15), which showed weak in vitro cytotoxicity against NCI human tumor cell lines (GI$_{50}$ 8.3 µM) (Cueto et al., 2000). An unidentified fungus isolated from the red alga, *Ceradictyon spongiosum* (Okinawa) have been shown to produce two linear dodecapeptides, Dictyonamides A (200) and B (201) (Figure S15). Only the compound (200) showed inhibitory effect on cyclin-dependent kinase 4 with IC$_{50}$ value of 16.5 µg/mL (Komatsu et al., 2001). A culture of marine fungus, *Scytalidium* sp., collected from Bahamas was the source of two new cyclic heptapeptides Scytalidamides A (202) and B (203) (Figure S15) and both compounds displayed moderate cytotoxicity to the HCT-116 cell line in vitro with IC$_{50}$ values of 2.7 and 11.0 µM, respectively (Tan et al., 2003a). A strain of *Trichoderma virens* was isolated from ascidian *Didemnum molle* and from the surface of a green alga *Halimeda* from Papua New Guinea, which was the source of two modified dipeptides Trichodermandamides A (204) and B (205) (Figure S15). Trichodermandamides B has showed significant in vitro cytotoxicity against HCT-116 cells (colon carcinoma) with IC$_{50}$ of 0.32 µg/mL (Garo et al., 2003). A fungal strain *Exserohilum rostratum* associated with a marine cyanobacterial mat produced four moderately cytotoxic cyclic dipeptides Rostratins A–D (206–209) (Figure S15). The structures and absolute configurations of peptides were determined by two-dimensional NMR techniques and Mosher method respectively. Compounds (206–209) exhibit activity against colon carcinoma (HCT-116) with IC$_{50}$ values of 8.5, 1.9, 0.76, and 16.5 µg/mL, respectively (Tan et al., 2004).

A new cytotoxic cyclopdesipsidepeptide, IB-01212 (210) (Figure S15) was produced by filamentous fungus *Clonostachys* sp., ESNA-A009 isolated from an unidentified Japanese sponge. IB-01212 was potent cytotoxic to several human tumor cell lines which includes LN-cap (prostate), SK-BR3 (breast), HT29 (colon), and HELA (cervix) cell lines with GI$_{50}$ (growth inhibition) in order of 10$^{-8}$ M (Cruz et al., 2006). A culture of *Zygosporium masonii* isolated from a marine cyanobacterium afforded a new cyclic Penta depsipeptide, Zygosporamide (211) (Figure S15), which had significant cytotoxicity in the NCI’s 60 cell line panel, CNS cancer cell line SF-268 (GI$_{50}$ = 6.5 nM) and the renal cancer cell line RXF 393 (GI$_{50}$ ≤ 5.0 nM) (Oh et al., 2006). *Trichoderma reesei* isolated from China, Lianyungang collection of sea mud produced moderately cytotoxic Trichoderide A (212) (Figure S15) (Sun et al., 2006). Two new cyclohexadepsipeptides, Spicellamide A (213) and Spicellamide B (214) (Figure S15) obtained from fermentation of *Spicillum roseum* (Ectypalsia perox, Dominica), exhibited cytotoxicity to neuroblastoma cells with IC$_{50}$ value of 30 and 6.2 µg/mL respectively (Kralj et al., 2007). Two new cyclic depsipeptides 1962A, cyclo-(d-Leu-Gly-l-Tyr-l-Val-Gly-S-O-Leu) (215), and 1962B, cyclo-(d-Leu-Gly-l-Phe-l-Val-Gly-S-O-Leu) (216) (Figure S15) have been isolated from the fermentation broth of the mangrove endophytic fungus isolated from the leaf of *Kandelia canel* (Compound (215) only showed activity against human breast cancer MCF-7 cells with an IC$_{50}$ value of 100 µg/mL (Huang et al., 2007).

Two new cyclic tetrapeptides Microsporins A (217) and B (218) (Figure S15) with potent inhibitors of histone deacetylase (HDAC), cytotoxic to HCT-116 cells (IC$_{50}$ 0.6 and 8.5 µg/mL) was isolated from the marine-derived fungus *Microsporum gypseum* (Gu et al., 2007). A Penta decapeptide, Efrapeptin J (219) (Figure S16), a down-regulator of the molecular chaperone GRP78 have been isolated from *Tolyphodium* sp. (sea mud, Aomori Prefecture, Japan) (Hayakawa et al., 2008). An Australian marine isolate of *Aspergillus versicolor* (MST-MF495) offered two cyclo pentapeptides, Cotteslosins A (220) and B (221) (Figure S16) (Fremlin et al., 2009). Two new cyclic pentapeptides, Versicotides A (222) and B (223) (Figure S16) came from marine fungus strain ZLN-60, identified as *A. versicolor* (Zhou et al., 2011). A Cytotoxic lipopeptide Fellutamide F (224) (Figure S16) have been isolated from the sponge-derived fungus *A. versicolor* with cytotoxicity to several human tumor cells, especially SK-MEL-2 (skin, IC$_{50}$ 0.67 µM), XF498 (CNS, IC$_{50}$ 0.14 µM) and HCT15 (Colon, IC$_{50}$ 0.13 µM) (Lee et al., 2011). Fermentation extract of the marine-derived fungus *Acremonium persuicentum* SCSIO 115 resulted in the discovery of three new cyclo heptapeptides, Cordyheptapeptides C–E (225–227) (Figure S16) with cytotoxicity against SF-268, MCF-7, and NCI-H460 tumor cell line with IC$_{50}$ values ranging from 2.5 to 12.1 µM (Chen et al., 2012). Chemical investigation of endophytic fungus *Bionectria ochroleuca* isolated from the inner leaf tissues of the plant *Sonneratia caseolaris* (Sonneratiaceae) from Hainan Island (China), lead to discover two new peptides, Pullularins E and F (228–229) (Figure S16). Both compounds exhibited moderate cytotoxic activity against the mouse lymphoma cells (L5178Y) with EC$_{50}$ values ranging between 0.1 and 6.7 µg/mL (Ebrahim et al., 2012). An unusual anthranilic acid dimer and a d-phenylactic acid residue containing cyclopdesipsidepeptides Clavatustides A–C (230–232) (Figure S16) were discovered from cultured mycelia and broth of *Aspergillus clavatus* C2WU isolated from *Xenograpsus testudinatus* and suppressed proliferation of HTCLs (Jiang et al., 2013; Ye et al., 2014). *Aspergillus terreus* SCSGA0162 gave a new cytotoxic (HTCLs) and antiviral (H1N1 and H3N2) cyclic tetrapeptide, Asperterrestide A (233) (Figure S16). Which was cytotoxic toward human carcinoma U937 and MOLT4 cell lines with IC$_{50}$ values of 6.4 and 6.2 µM, respectively, and also showed inhibitory effects on the influenza virus strains A/WSN/33 (H1N1) and A/Hong Kong/8/68 (H3N2) with IC$_{50}$ values of 15 and 8.1 µM, respectively (He et al., 2013). A new cyclohexapeptide, Similaramidine (234) (Figure S16) was isolated from sponge-associated fungus *Aspergillus similansensis* KUFA 0013 with weak anticancer activity (Prompanya et al., 2015).

Marine microorganisms have been recognized as one of the most promising groups of organisms from which novel pharmacologically active molecules, with potential benefits...
against cancer, can be isolated. Recently, several compounds have been emerged as templates for the development of novel anticancer drugs. However, the mechanisms implicated in the cytotoxicity of these compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. For instance, several compounds were found to inhibit cell growth in a large variety of cancer cell lines, the pathways by which cancer cells are inhibited are still poorly elucidated. In some cases, compounds were found to induce cell death by activation of the apoptotic process; nevertheless the mechanisms underlying the apoptosis still need more investigations. Some compounds were found to create an imbalance in cellular redox potential, with mitochondria representing a central role in the process. However, more studies are needed in order to clarify it.

Cell cycle is another disturbed process, mainly due to disruption of the microtubules and actin filaments; however there are only a few studies connecting marine NRPs with alterations in cell cycle and more studies are needed in order to clarify the involvement of these compounds in the process. Even membrane sodium channels can establish interactions with the compounds, revealing its potentially important role in the observed effects. In summary, more investigations are needed in order to clarify the specific targets and the mechanisms that are behind cancer cell cytotoxicity, namely the involvement of the apoptotic process by the implication of functional genomics.

NRPS WITH BOTH ANTIMICROBIAL AND ANTICANCER POTENTIAL

Lajollamycin, (235) (Figure S17) a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic have been isolated from marine actinomycete Streptomyces nodosus. In vitro lajollamycin inhibited the growth of the murine melanoma cell line B16-F10 with an EC50 of 9.6 μM and also displayed antimicrobial activity against both drug resistant and sensitive gram-positive bacteria with MIC 2–20 μg/mL. (Manam et al., 2005). Two unusual linear hybrid polyketide-nonribosomal peptide antibiotics, Ariakemincins A-B (236–237) (Figure S17) have been isolated from the fermentation broth of the marine gliding bacterium Rapidithrix sp., (Ariake Inland Sea, Japan). These antibiotics contain threonine, two omega-amino-(omega-3)-methyl carboxylic acids with diene or triene units, and delta-isovanilloylbutyric acid and selectively inhibited Gram-positive bacteria among which S. aureus was the most affected (MIC 0.46 μg/mL) and were slightly cytotoxic to human lung cancer cells (A549) and baby hamster kidney cells with IC50 values of 25 and 15 μg/mL respectively. (Oku et al., 2008a). Glycolipopeptides Iodeoglucamide A (238) and B (239) (Figure S17) have been isolated from marine-derived bacterium Bacillus licheniformis (sediment, Ieodo Reef, S. Korea). Compounds (238) and (239) displayed moderately in vitro antimicrobial activity. However, iodeoglucamide B also displayed cytotoxicity against lung cancer and stomach cancer cell lines with GI50 values of 25.18 and 17.78 μg/mL, respectively. (Tareq et al., 2012).

Halolitoralin A (a cyclic hexapeptide) (240) (Figure S17), Halolitoralin B and C, two cyclic tetrapeptides (241–242) (Figure S17) were isolated from the marine sediment-derived Halobacillus litoralis YS3106. All three cyclopeptides show surprisingly simple architectures with highly repeated residue units. Compounds (241–242) have shown antifungal activity against two human fungi Candida albicans and Tricophyton rubrum with MIC of 20, 30, 30 μg/mL and 25, 35, 40 μg/mL respectively. In addition, these three cyclopeptides showed moderate anti-human gastric tumor activities in vitro (with a cell line of BGC) (Yang et al., 2002). Bioactivity-guided fractionation from the fermentation broth of Bacillus mjovasons B0621A (Pearl oyster Pinctada martensii, Weizhou Is., South China Sea) was the source of antifungal iturinic lipopeptide Mjovansins (Figure S17). The Marfey’s analysis of mojavensis A provides the novel peptide backbone of L-Asn1, D-Tyr2, D-Asn3, L-Gln4, L-Pro5, D-Asn6, L-Asn7 and an antioype of the saturated β-fatty acid side chain. Compound 243 also inhibited the growth of HL-60 with IC50 of 100 (Ma et al., 2012). A new sequential tristhiazole-thiazoline-containing cyclic peptide, Marthiapeptide A (244) (Figure S17), have been isolated from a culture of the deep South China Sea-derived strain Marinactinospora thermotolerans SCSIO 00652. Marthiapeptide A exhibited inhibition against a panel of gram-positive bacteria, with MIC values ranging from 2.0 to 8.0 μg/mL, and displayed strong cytotoxic activity against a panel of human cancer cell lines with IC50 values ranging from 0.38 to 0.52 μM (Zhou et al., 2012). A new linear glyceryl acid derived heptapeptide (Glyceryl-D-leucyl-D-alanyl-D-leucyl-D-leucyl-L-valyl-D-leucyl-D-alanine, (245) (Figure S17), were produced by the culture of marine deep sediment strain Paenibacillus profundus SI 79. The compound (245) was cytotoxic to SK-MEL-28 cell line (IC50 = 3.07 μM after 72 h) and also inhibited the growth of S. aureus (ZOI 24 mm), S. epidermis (ZOI 20 mm), B. subtilis (ZOI 28 mm), and Enterococcus faecium (ZOI 11 mm) (Kalinovskaya et al., 2013).

ROLE OF GENOMICS, PROTEOMICS AND BIOINFORMATICS IN DISCOVERY AND DEVELOPMENT OF NONRIBOSOMAL PEPTIDES DRUGS

The non-ribosomal peptides (NRPs) are an essential source of chemical diversity for drug discovery and development. At present, there are more than 1,164 different non-ribosomal peptides known in public database (NCBI) which consists of over 500 unique monomers, including both proteinogenic and non-proteinogenic L- and D-amino acids as well as carboxylic acids and amines (Caboche et al., 2010). Due to great structural diversity (linear, cyclic and branched or other complex primary structures) these complex secondary metabolites had impact on all therapeutic area, as making them suitable to be used as clinical agents. However, such potential NRPs often need to be modified to improve their clinical properties and/or bypass resistance mechanisms (Bush, 2012). For instance, FDA approved Oritavancin has been developed by using semi-synthesis strategy from Vancomycin for treatment of drug resistant skin infections (Markham, 2014). Indeed, modification in the nucleotide sequence of a natural NRPS gene or combining...
modules of different NRPSs may potentially lead them to be more effective with unique pharmacological activity. However, this requires in-depth understanding of both the assembly line and the resulting products. Over the last few decades several bioengineering approaches have been developed to increase the yields of NRPs and generating modified peptides with altered bioactivity or improved physicochemical properties (Winn et al., 2016). Earlier, biosynthetic generation of novel NRPs analogs focused on precursor directed biosynthesis (PDB) or mutasynthesis. In PDB, a wild-type organism is provided with modified or synthetic amino acids with the prospect that the substrate specificity of the relevant NRPS shall be flexible enough to allow addition of the modified precursors into the final peptide. However, mutasynthesis is the exact opposite. The modified substrates are fed to an engineered organism which lacks the enzyme(s) required for the biosynthesis of a specific natural precursor, so that a modified substrate or precursor analog may be effectively incorporated (Weist et al., 2004). These methods are important because they generate natural product analogs rapidly.

In earlier reviews many examples of precursor directed biosynthesis of NRPs are available (Thiericke and Rohr, 1993). Other methods being adopted for the production of new nonribosomal peptides is engineering of precursor supply in vitro or introducing tailoring enzymes from other pathways with new glycosylation, halogenation and sulfation enzymes being applied outside of their native clusters to create structural diversity. Although it’s similar to precursor directed biosynthesis, it focuses mainly on endogenous biosynthesis rather than exogenous feeding. The introduction of halogen unit into NRP scaffolds has been a common target. For example, when the enzyme PrnA (a favin-dependent tryptophan-7-halogenase) from Pseudomonas fluorescens Pf-5 was expressed alongside the NRPS genes for the uridyl peptide antibiotic pacidamycin, produced by Streptomyces coeruleorubidus, a new halogenated analog was generated (Roy et al., 2010). Using such a technique enduracidin analogs have been produced by altering halogenase in wild-type Streptomyces fungicidicus (Yin et al., 2010). An alternative but complicated strategy has also been developed to generate novel NRPs. It exchanges NRPS subunit, module, and domain of the core peptide itself. Initially, this method was applied by Cubist Pharmaceuticals for the development and marketing of nonribosomal peptide antibiotic daptomycin, first natural product antibiotic that gained approval for clinical use in over 30 years (Baltz et al., 2006). Unfortunately, Cubist Pharmaceuticals failed to identify any daptomycin variants with better antibacterial property than parent daptomycin. Another route that has also been explored which involves modifying the length of the peptide chain by deletion or insertion of one or more modules (Mootz et al., 2002; Butz et al., 2008). A recent study indicates that the introduction of individual or combined point mutations in the binding pocket of an NRPS adenylation domain generates new diversity of NRPs (Han et al., 2012). A latest technique called heterologous expression offer considerable promise especially for natural hosts which are slow growing, genetically difficult to handle, unculturable, or even unknown. The transfer of biosynthetic genes from the original microbial organisms to more amenable heterologous host bacteria is more amenable to large-scale fermentation production would overcome the limitation of procurement of the drug from the ocean (which is currently limited to expensive aquaculture or field harvesting) and ensure supply (Ongley et al., 2013). The gene cluster responsible for polyketide epothilone (a potential anticancer agent) biosynthesis in the myxobacterium Sorangium cellulosum was cloned and completely sequenced by Tang et al. (2000). Concomitant expression of these genes in the actinomycete Streptomyces coelicolor produced epothilones A and B (Tang et al., 2000). After this heterologous expression system portends a plentiful supply of this medically relevant agent. Similarly A novel gene (amyZ) encoding a cold-active and salt-tolerant α-amylase (AmyZ) was cloned from marine bacterium Zhuongwangia profunda (MCCC 1A01486) and the protein was expressed in Escherichia coli (Qin et al., 2014). The Ptchi19 gene of the marine Pseudoalteromonas tunicata CCUG 44952T was cloned and expressed in E. coli (Garcia-Fraga et al., 2015). A new k-carageenase gene from marine bacterium Zobellia sp. ZM-2 was cloned and expressed in E. coli (Liu et al., 2013). Heterologous expression of the barbamide biosynthetic gene cluster from the marine cyanobacterium Moorea producens in the terrestrial also led to the production of a new barbamide congener 4-O-demethylbarbamide (Kim et al., 2012). The biosynthetic pathway for bacitracin was successfully transferred from Bacillus licheniformis to the related species B. subtilis (Eppelmann et al., 2001). The polyketide biosynthesis pathway for the marine-derived telomerase inhibitor griseorhodin A was productively transferred to Streptomyces lividans from an environmental Streptomyces isolate (Li and Piel, 2002). Ugai et al. (2016) got success in heterologous expression of the cryptic gene cluster found in A. solani to obtain a marine-derived antifungal agent didymellamide B from the A. oryzae transformant introducing PKS–NRPS, trans-ER, and P450 genes asolSCA (Ugai et al., 2016). Likewise many other successful examples are available in literature (Fortman and Sherman, 2005; Luo et al., 2016; Winn et al., 2016).

All studies presented above for production of novel NRPs and engineering NRPS assembly lines in the native host are laborious having low throughput and low yield. Recent advances in genome sequencing, gene synthesis, metabolomics and bioinformatics revolutionized the process of NRPS engineering. In-silico based bioprospecting of available microbial genome sequences gives us a quick look at the hidden biosynthetic capacity of natural products in the microbial species. Several active as well as silent enzymes have been identified in fungal and bacterial genomes which are involved in the biosynthesis of NRPs. The corresponding secondary metabolites of these enzymes have not been identified to date (Brakhage, 2013; Doroghazi and Metcalf, 2013). Various powerful computational algorithms and tools have been developed to analyze BGC and to determine whether they are likely to encode unique compounds (Medema and Fischbach, 2015). Comprehensive ranges of software tools are available for identification of BGC in genome sequences. These tools are generally divided into two categories: high-confidence/low-novelty and low-confidence/high-novelty. High-confidence/low-novelty includes tools such as CLUSEAN13, ClustScan14,
np.searcher15, SMURF16 and antiSMASH (Medema et al., 2011). These tools analyze Hidden Markov Models (HMMs) with manually curated cutoffs to identify signature genes or domains that are highly specific for known classes of biosynthetic pathways. Such strategies give a quick and reliable interpretation of NRPs gene cluster of a single strain from its genome sequence. Low-confidence/high-novelty mainly focuses on the identification of new BGC types by applying three approaches; namely pattern-based mining, phylogenetic mining and comparative genomic mining. These further include Cluster Finder, EvoMining, and Algorithm, respectively. Tools for identification of BGCs with respect to metagenomes include PCR-based sequence-tag and the shotgun assembly approach. The sequence-tag approach identifies clones from selected harbor pathways in metagenomic libraries by amplifying known biosynthetic domains using PCR. This is particularly useful for identifying variants of known pathway types. This has been also used to identify gene clusters encoding close relatives of molecule such as rapamycin, teicoplanin, and thiocoraline (Owen et al., 2013). However, the tag-based approach can be used to find entirely new molecules that are produced by known BGC classes, especially when coupled with phylogenomic tools such as NaPDoS (Ziemert et al., 2012). These tools find application in identifying domains that represent new areas of the extant biosynthetic diversity. A range of systems have been developed to predict the substrate specificities of NRPS adenylation domains (Röttig et al., 2011; Prieto et al., 2012). Tools such as NP.searcher and antiSMASH individual monomer predictions are then combined to give a rough idea of the core scaffold of a nonribosomal peptide. Simultaneously, advancement in mass spectrometry gives efficient dereplication for analysis of small-molecule products of biosynthetic pathways (Nielsen and Larsen, 2015). NRPQuest algorithm uses molecular networking approach to identify potential gene clusters for observed tandem mass spectra of NRPs (Mohimani et al., 2014). The search database for NRPquest generates all possible orders of NRPS assembly lines within each detected NRP BGC hence, predicting the amino acids encoded by each of its module using NRPS Predictor2 (Röttig et al., 2011). A chemoinformatic based library and informatic search strategy for natural products (iSNAP) has also been developed for true nontargeted dereplication across a spectrum of nonribosomal peptides and within natural product extracts (Ibrahim et al., 2012). It is clear that the tools and techniques discussed above have accelerated the discovery and development of novel NRPs with desirable biological activities.

CONCLUSION AND FUTURE PROSPECTS OF MARINE DERIVED NONRIBOSOMAL PEPTIDES

Marine chemicals often possess quite novel structures which in turn lead to pronounced biological activity and novel pharmacology. The study of such chemicals, therefore, is a very promising endeavor. There are three parallel branches in marine natural products chemistry: marine biomedicinals, marine chemical ecology and marine toxins. Integration of these three fields of study gives marine natural products chemistry its exclusive character and vigor. The search among marine chemicals for medically useful agents involves two steps, discovering the type of biological activity and studying the pharmacological mechanism of the activity. It is now clear that efforts to date in marine natural product chemistry have largely focused on easily collected microorganisms and their major metabolites, and while there has been a recent shift to, as detailed above, minor metabolites present in very small quantities are a challenge for analytical and biological evaluations.

As has been demonstrated in this review, the potential for nonribosomal peptides from marine as sources and/or leads to drugs that have pharmacological effects (i.e., cancer and anti-infective) is only now being realized. Combining enzyme technology and solid phase peptide synthesis, it is possible to generate a vast variety of unique peptides composed of non-proteinogenic amino acids with unique pharmacological and biotherapeutic potential. It is possible that in coming years at least one or more marine derived novel nonribosomal peptide will enter into commerce as a drug. In concluding, the huge ranges of nonribosomal peptides that have so far been identified from marine resources frequently have no comparable equivalent in terrestrial organisms. The work by (predominately) young investigators on the many aspects of nonribosomal peptides (like biosynthesis) in the commensal and/or symbiotic microbes associated with these invertebrates, or in the microbes isolated from shallow and deep sediments will increase the numbers of nonribosomal peptides from marine for further work. The marine system has hardly been scratched as yet!

AUTHOR CONTRIBUTIONS

SA collected the available bibliographic information and wrote the manuscript. AA and CB conceived the study. SD and DA reviewed the collected information critically.

FUNDING

Deakin University provided a postgraduate scholarship to SA.

ACKNOWLEDGMENTS

The authors are grateful to TERI Deakin Nano biotechnology Centre, Biotechnology and Bioresources Division, The Energy and Resources Institute, India for continuous support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2017.00828/full#supplementary-material
Tan, L. T., Cheng, X. C., Jensen, P. R., and Fenical, W. (2003a). Scytalidamides A and B, new cytotoxic cyclic heptapeptides from a marine fungus of the genus Scytalidium. J. Org. Chem. 68, 8767–8773. doi: 10.1021/jo030191z

Tan, L. T., Okino, T., and Gerwick, W. H. (2013). Bouillonamide: a mixed peptidyl-peptide cytotoxin from the Marine Cyanobacterium Moorea bouillonii. Mar. Drugs 11, 3015–3024. doi: 10.3390/md11083015

Tan, L. T., Sitachitta, N., and Gerwick, W. H. (2003b). The Guineacides, Novel Cyclic Depsipeptides from a Papua New Guinea Collection of the Marine Cyanobacterium Lyngbya maja. J. Nat. Prod. 66, 764–771. doi: 10.1021/np0309490

Tan, R. X., Jensen, P. R., Williams, P. G., and Fenical, W. (2004). Isolation and Structure Assignments of Rostratins AD, Cytotoxic Disulfides Produced by the Marine-Derived Fungus Exserohilum r ostratum. J. Nat. Prod. 67, 1374–1382. doi: 10.1021/np040992b

Tang, L., Shah, S., Chung, L., Carney, J., Katz, L., Khosla, C., et al. (2000). Cloning and heterologous expression of the epothilone gene cluster. Science 287, 640–642. doi: 10.1126/science.287.5453.640

Taniguchi, M., Nunnery, J. K., Engene, N., Esquenazi, E., Byrum, T., Dorrestein, P. C., et al. (2009). Palmyramide A, a Cyclic depsipeptide from a Palmyra Atoll Collection of the Marine Cyanobacterium Lyngbya majuscula. J. Nat. Prod. 73, 393–398. doi: 10.1021/np990428h

Taori, K., Liu, Y., Paul, V. J., and Luesch, H. (2009). Combinatorial strategies for marine cyanobacteria: symplostatin 4, an antinotic natural dollastin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem 10, 1634–1639. doi: 10.1002/cbic.200900192

Taori, K., Matthew, S., Rocca, J. R., Paul, V. J., and Luesch, H. (2007). Lyngbyastatins 5–7, Potent Elastase Inhibitors from Floridian Marine Cyanobacteria, Lyngbya spp. J. Nat. Prod. 70, 1593–1600. doi: 10.1021/np0702436

Tareq, F. S., Kim, J. H., Lee, M. A., Lee, H.-S., Lee, Y.-J., Lee, J. S., et al. (2012). leodeglucosamides A and B from a marine-derived bacterium Bacillus licheniformis. Org. Lett. 14, 1464–1467. doi: 10.1021/ol30202a

Teruya, T., Sasaki, H., Fukazawa, H., and Suenaga, K. (2009). Biexhomoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org. Lett. 11, 5062–5065. doi: 10.1021/ol9020546

Thierieke, R., and Rohr, J. (1993). Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat. Prod. Rep. 10, 265–289. doi: 10.1039/np993000265

Thornburg, C. C., Thimmaiah, M., Shaala, L. A., Hau, A. M., Malmo, J. M., Ishmael, J. E., et al. (2011). Cyclic depsipeptides, grasseypolides D and E and ibu-epidemethoxylyngbyastatin 3, from a Red Sea Leptolyngbya cyanobacterium. J. Nat. Prod. 74, 1677–1685. doi: 10.1021/np200270d

Thierieke, R., and Rohr, J. (1993). Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat. Prod. Rep. 10, 265–289. doi: 10.1039/np993000265

Winn, M., Fyans, J., Zhuo, Y., and Micklefield, J. (2016). Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 33, 317–347. doi: 10.1039/C5NP00099H

Wu, X., Bu, X., Dong, Y., and Guo, Z. (2003). Biomimetic synthesis of gramicidin S and analogues by enzymatic cyclization of linear precursors on solid support. Org. Lett. 5, 1749–1752. doi: 10.1021/ol034437y

Wyche, T. P., Hou, Y., Vazquez-Rivera, E., Braun, D., and Bugni, T. S. (2012). Halobacillus litoralis cyclopeptides from Aspergillus sclerotiorum. J. Nat. Prod. 75, 65, 1336–1341. doi: 10.1021/np300184q

Ye, P., Shen, L., Jiang, W., and Zabriskie, T. M. (2010). Hantupeptin A, a cytotoxic cyclic depsipeptide from a Papua New Guinea Collection of the Marine Cyanobacterium Lyngbya sp. J. Nat. Prod. 73, 1006–1009. doi: 10.1021/np100114z

Williams, P. G., Yoshida, W. Y., Moore, R. E., and Paul, V. J. (2003c). Tasipeptins A and B: new cytotoxic depsipeptides from the marine cyanobacterium Symploca sp. J. Nat. Prod. 66, 620–624. doi: 10.1021/np020582t

Williams, P. G., Yoshida, W. Y., Quon, M. K., Moore, R. E., and Paul, V. J. (2003d). Ulongapeptin, a cytotoxic cyclic depsipeptide from a Paluan marine cyanobacterium Lyngbya sp. J. Nat. Prod. 66, 651–654. doi: 10.1021/np030050s

Xu, W., Bu, X., and Guo, Z. (2003). Biomimetic synthesis of gramicidin S and analogues by enzymatic cyclization of linear precursors on solid support. Org. Lett. 5, 1749–1752. doi: 10.1021/ol034437y

Wu, X., Bu, X., Dong, Y., and Guo, Z. (2003). Biomimetic synthesis of gramicidin S and analogues by enzymatic cyclization of linear precursors on solid support. Org. Lett. 5, 1749–1752. doi: 10.1021/ol034437y

Xin, Y., Chen, Y., Zhang, L., Wang, Y., and Zabriskie, T. M. (2010). Enduracidin analogues with altered halogenation patterns produced by genetically engineered strains of Streptomyces fungidicus. J. Nat. Prod. 73, 583–589. doi: 10.1021/np900710q

Yin, X., Chen, Y., Zhang, L., Wang, Y., and Zabriskie, T. M. (2010). Enduracidin analogues with altered halogenation patterns produced by genetically engineered strains of Streptomyces fungidicus. J. Nat. Prod. 73, 583–589. doi: 10.1021/np900710q

Zhang, H. L., Hua, H. M., Pei, Y. H., and Yao, X. S. (2004). Three new cytotoxic cyclic acylpeptides from marine Bacillus sp. Chem. Pharm. Bull. 52, 1029–1030. doi: 10.1248/cpb.52.1029

Zheng, J., Xu, Z., Wang, Y., Hong, K., Liu, P., and Zhu, W. (2010). Cyclic tripeptides from the halotolerant fungus Aspergillus sclerotiorum PT60-1. J. Nat. Prod. 73, 1133–1137. doi: 10.1021/np100198h
Zheng, J., Zhu, H., Hong, K., Wang, Y., Liu, P., Wang, X., et al. (2009). Novel cyclic hexapeptides from marine-derived fungus, *Aspergillus sclerotiorum* PT06-1. *Org. Lett.* 11, 5262–5265. doi: 10.1021/ol902197z

Zhou, L. N., Gao, H. Q., Cai, S. X., Zhu, T. J., Gu, Q. Q., and Li, D. H. (2011). Two New Cyclic Pentapeptides from the Marine-Derived Fungus *Aspergillus versicolor*. *Helv. Chim. Acta* 94, 1065–1070. doi: 10.1002/hlca.201000408

Zhou, X., Huang, H., Chen, Y., Tan, J., Song, Y., Zou, J., et al. (2012). Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60L scale fermentation of the deep sea-derived *Marinactinospora thermotolerans* SCSIO 00652. *J. Nat. Prod.* 75, 2251–2255. doi: 10.1021/np300554f

Ziemert, N., Podell, S., Penn, K., Badger, J. H., Allen, E., and Jensen, P. R. (2012). The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. *PLoS ONE* 7:e34064. doi: 10.1371/journal.pone.0034064

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.