INTRODUCTION
Nutrient artery enters the medullary of the bone through the nutrient foramen (1). Embryologically one end of the limb grows faster than the other hence the nutrient foramen are directed towards the elbow but away from the knee (2). Nutrient foramen is a surface opening of nutrient canal passing obliquely through the compact bone of the shaft of long bone to enter the marrow cavity. It is directed away from the growing end in a typical long bone. The diaphyseal nutrient artery enters through nutrient foramen into canal. It divides into an ascending and descending branch on reaching the medullary cavity. It will supply the shaft. The nutrient artery supplying the radius arises from the anterior or posterior interosseous artery.

The precise area of nutrient foramen, nutrient canal or nutrient artery by traumatic or iatrogenic reasons may result with delayed union, non-union of the bone following fractures or bone graft, because healing of fracture, or bone graft is dependent on blood supply (3). A sound knowledge of the topography, frequency and morphometry of nutrient foramen is essential for success of bone transplantation procedures (4) along with adequate vascularization (5). Study of nutrient foramina in upper limb is very important for morphological, clinical, and pathological point of view. Fracture healing or hematogenic osteomyelitis is closely related to the vascular system of the bone (6).

When compromised especially in childhood, medullary bone ischemia occurs with less vascularization of the metaphysis and growth plate (7). Study of relative relationship between the length of bone and distance of nutrient foramen from either ends is useful in calculating the length of a long bone from a given fragment, which is important in medico-legal and anthropological work. From the length of the long bones height of an individual can be reconstructed (8).

ABSTRACT
Nutrient artery is the principal source of nutrition to the long bones and a sound knowledge of its topography will help surgeons and oncologists in certain operative procedures to preserve the circulation. The aim of our study was to determine the direction and position of nutrient foramina with help of foramen index. The study was conducted in total 114 long bones of arm and forearm and the material collected for our study was from the department of Anatomy, ELMC, Lucknow and Department of Anatomy, King George's Medical University, Lucknow. Deformed and Damaged bones or bones with callus formation were excluded from the study. Direction of nutrient foramen was observed in all humerus (38 bones) downward. In case of radius (38 bones) and ulna (38 bones) the direction was found towards the upper end. In our study 92.10% humerus bones show the location of nutrient foramen in anteromedial surface. The anatomical data collected from this study elucidates the importance of nutrient arteries in microvascular bone transfer since it has become a very popular procedure.

KEYWORDS: Nutrient artery, Nutrient foramen, Long bones, Vascularization.

MATERIAL AND METHOD
1. Study subjects: The study was conducted in total 114 long bones of arm and forearm irrespective to sex and age; the material was collected for our study from department of Anatomy, ELMC, Lucknow and Department of Anatomy, King George's Medical University, Lucknow.
2. Osteometric board.
3. Hand lens
4. Hypodermic needle (26 gauge)
5. Nutrient foramen was observed in all bones by the naked eye and then with the help of hand lens, to determine the number and location (with respect surface).
6. Distance of nutrient foramen from the proximal end of the bone and total length of bone was measured by using osteometric board.
7. The direction of nutrient foramen was observed by their elevated margin and by the presence of distinct groove of nutrient foramen and it was confirmed with the help of hypodermic needle. The total length of long bones and distance of nutrient foramen from the upper end also measured.

8. Position was determined by calculating the foramen index using HUGH’S formula (9).

RESULTS
The incidence of location of nutrient foramen with respect to different surfaces and borders was observed, and it was found that in case of humerus in (37 bones) 92.1% bones the nutrient foramen was located in the anteromedial surface and only in (1 bone) 7.9% bone nutrient foramen was found in medial border . In case of radius (38 bones) all bones show the location of nutrient foramen in anterior surface. In ulna (38 bones) all nutrient foramen was located in anterior surface (fig 1).

Direction of NF
The nutrient foramen was directed downwards in all humerus (38 bones). In case of radius (38 bones) and ulna (38 bones) the direction was found towards the upper end.

Location of NF (Surface/Border)	Count	% within type
Anterior surface		
Humerus	38	100.0%
Radius	0	.0%
Ulna	0	.0%
Total	38	33.3%
Total		

Type	Humerus	Radius	Ulna	Count
Downward				38
% within type	100.0%	.0%	.0%	33.3%
Towards the upper end				38
% within type	.0%	100.0%	100.0%	66.7%
Total				114
% within type	100.0%	100.0%	100.0%	100.0%

Table 1: Showing the Direction of Nutrient Foramen

Fig 1: Showing the Percentage of Location of Nutrient Foramen
Distance of nutrient foramen from the upper end

The mean distance of the nutrient foramen from the upper end in 38 humeri was found to be 18.47, the mean distance of the foramen in case of 38 radius bones was found to be 8.10, the mean distance of the foramen in 38 ulna bones was found to be 9.10.

Type	Total length (cm)	Distance of NF from upper end (cm)
HUMERUS	N 38	38
	Mean 31.18	18.47
	Std. Deviation 1.078	1.512
RADIUS	N 38	38
	Mean 22.67	8.10
	Std. Deviation 1.466	1.018
ULNA	N 38	38
	Mean 25.64	9.10
	Std. Deviation 1.136	.960
Total	N 114	114
	Mean 26.50	11.89
	Std. Deviation 3.750	4.838

Table 2: Showing the Mean Distance of Nutrient Foramen From the Upper End

DISCUSSION

Location of nutrient foramen

Arvind Kumar Pankaj et al. in the year 2017 observed that the maximum number of foramina were present on the antero-medial surface followed by the posterior surface. Majority of foramen were present in the middle third region of the diaphysis of humerus (10). Asharani S K et al. in August 2016, in their study observed that the direction of foramen is towards the elbow joint (11). Satish M. Patelet al. in August 2015 in their study found that all the nutrient foramen except one (in the radius) were directed towards the elbow (15). Bichitranda Roul et al. in March 2015 in their study emphasized that the direction of nutrient foramen in human long bones is directed away from growing end (13). Vijayalakshmi S. Bhojaraja et al. in Jul-Dec 2014 in their study observed that the for miniatures long bones the direction was away from the growing end without any exception (17). KS Solanke et al in 2014 and Ukoha Ukohe el al in 2013 also reported the direction of nutrient artery similar to our study where the direction of nutrient foramina was downwards in the humerus, while it was towards the upper end in radius and ulna (14, 18).

CONCLUSION

Total one hundred fourteen long bones of upper limb i.e. thirty eight each of the Humerus, Radius and ulna was taken from Department of Anatomy, Era’s Lucknow Medical College, and Department of Anatomy, King George Medical University, Lucknow, and were studied for the location, direction of nutrient foramen. It was found that most of the long bones follow the dictum “Towards the elbow I go, away from the knee I flee”. In the present study most of humerisshow the location of nutrient foramen on anteromedial surface, but in some cases bones show the location of nutrient foramen on the medial
border also. In case of radius and ulna all bones show the location of nutrient foramen on the anterior surface. The knowledge about the location of the nutrient foramina is highly important because of the increased chances of damage to the nutrient artery during open or closed surgical procedures. In bone grafts, the nutrient blood supply is crucial and it should be preserved in order to promote the fracture healing hence a sound knowledge of the topography and morphometry of nutrient foramina is of importance to orthopaedic surgeons and oncologists.

REFERENCES

1. Lewis OJ. The blood supply of developing long bones with special reference to the metaphyses. J Bone Joint Surg Br. 1956;38:928-933.
2. Mysorekar VR. Diaphysial nutrient foramen in human long bone. J Anat. 1967;101(4):813-822.
3. Gopalakrishna K, Sreekala.M.A, Rathna BS. The study on the incidence and direction of nutrient foramina in the diaphysis of radius bone of south Indian origin and their clinical importance. Int J Health Sci Res. 2014;4(3):130-135.
4. Taylor GI. Fibular transplantation. In: Serafin D, Bunke HJ (eds), Microsurgical composite tissue transplantation, C.V. Mosby Co., St. Louis, 1979.
5. Longia GS, Ajmani ML, Saxena SK, Thomas RJ. Study of diaphyseal nutrient foramina in human long bones. Acta Anat. 1980;107:399-406.
6. Skawina A., Wyczolkowski M. Nutrient foramina of humerus, radius and ulna in Human Fetuses. Folia Morphol. 1987;46:17-24.
7. Forriol Campos, F., Gomez Pellico, L., Gianonatti Alias, M., Fernandez-Valencia, R. A study of the nutrient foramina in human long bones. Surg. Radiol. Anat. 1987;9:251-255.
8. Kate B.R. Nutrient foramina in human long bones. J. Anat. Soc. of India. 1970;20, 141.
9. Standring S. Functional anatomy of the musculoskeletal system. Gray's Anatomy. The Anatomical basis of clinical practice. 40th edition.
10. Arvind Kumar Pankajl, Rakesh Kumar Verma,Archana Rani, Anita Rani, Navneet Kumar. Morphometric study of nutrient foramina of humerus in North Indian population. Indian Journal of Clinical Anatomy and Physiology. 2017;4(2):169-172.
11. Asharani S K, Ajay Ningaiah. A study on the nutrient foramen of humerus. Int J Anat Res. 2016;4(3):2706-2709.
12. Reddy GRMK, Siddaramulu C, Bilodi AKS. Morphometric study of the nutrient foramina of unknown radius and ulna and their clinical importance in the region of Kadapa Rayalaseema, Andhra Pradesh. J. Evid. Based Med. Healthc. 2016;3(27):1222-1229.
13. Roul B, Goyal M. A study of nutrient foramen in long bones of superior extremity in human being. International Journal of Current Research in Life Sciences. 2015;4(4):198-200.
14. Solanke KS, Bhatnagar R, Pokhrel R. Number and position of nutrient foramina in humerus, radius and ulna of human dry bones of Indian origin with clinical correlation. OA Anatomy. 2014;2(1):4.
15. Patel SM, Vora RK. Anatomical study of nutrient foramina in long bones of human upper limbs. IAIM, 2015; 2(8): 94-98.
16. Bhojaraja VS, Kalthur SG, Dsouza AS. Anatomical study of diaphysial nutrient foramina in human adult humerus . Arch Med Health Sci. 2014;2:165-169.
17. Malukar O, Joshi H. Diaphysial nutrient foramina in long bones and miniature long bones. NJIRM. 2011;2(2):23-26.
18. Ukoha U.U., Umeasalugo K.E., Nzeako H.C., Damian NE, Obioma C , Izuchukwu F Obazie. A study of nutrient foramina in long bones of Nigerians. National journal of medical research2013;3(4).

How to cite this article : Mishra A.K, Jaiswal S, Verma R.K, Mishra G, Kumar N. A Topographical Study Of Nutrient Foramen In Dry Human Long Bones Of The Superior Extremity. Era J. Med. Res. 2019; 6(2): 67-70.