The Future of Particle Physics as a Natural Science*

Frank Wilczek†

School of Natural Sciences
Institute for Advanced Study
Princeton, NJ 08540

March 26, 2022

Abstract

In the first part of the talk, I give a low-resolution overview of the current state of particle physics – the triumph of the Standard Model and its discontents. I review and re-endorse the remarkably direct and (to me) compelling argument that existing data, properly interpreted, point toward a unified theory of fundamental particle interactions and toward low-energy supersymmetry as the near-term future of high energy physics as a natural science. I then attempt, as requested, some more ‘visionary’ – *i.e.* even lower resolution – comments about the farther future. In that spirit, I emphasize the continuing importance of condensed matter physics as a source of inspiration and potential application, in particular for expansion of symmetry concepts, and of cosmology as a source of problems, applications, and perhaps ultimately limitations.

*Invited talk at the ‘Critical Problems in Physics’ conference celebrating the 250th anniversary of Princeton University, November 1996. Part of this talk is an updated version of “Particle Physics for Cosmology”, IAS-HEP 96/79, hep-ph/9608283, to be published in “Critical Dialogues in Cosmology” by World Scientific (Singapore).

†Research supported in part by DOE grant DE-FG02-90ER40542. E-mail: wilczek@sns.ias.edu
1 Triumph of the Standard Model

The core of the Standard Model \[1, 2, 3\] of particle physics is easily displayed in a single Figure, here Figure 1. There are gauge groups \(SU(3) \times SU(2) \times U(1)\) for the strong, weak, and electromagnetic interactions. The gauge bosons associated with these groups are minimally coupled to quarks and leptons according to the scheme depicted in the Figure. The non-abelian gauge bosons within each of the \(SU(3)\) and \(SU(2)\) factors also couple, in a canonical minimal form, to one another. The \(SU(2) \times U(1)\) group is spontaneously broken to the \(U(1)\) of electromagnetism. This breaking is parameterized in a simple and (so far) phenomenologically adequate way by including an \(SU(3) \times SU(2) \times U(1)\) \((1, 2, -\frac{1}{2})\) scalar ‘Higgs’ field which condenses, that is, has a non-vanishing expectation value in the ground state. Condensation occurs at weak coupling if the bare (mass)\(^2\) associated with the Higgs doublet is negative.

The fermions fall into five separate multiplets under \(SU(3) \times SU(2) \times U(1)\), as depicted in the Figure. The color \(SU(3)\) group acts horizontally; the weak \(SU(2)\) vertically, and the hypercharges (equal to the average electric charge) are as indicated. Note that left- and right-handed fermions of a single type generally transform differently. This reflects parity violation. It also implies that fermion masses, which of course connect the left- and right-handed components, only arise upon spontaneous \(SU(2) \times U(1)\) breaking.

Only one fermion family has been depicted in Figure 1; of course in reality there are three repetitions of this scheme. Also not represented are all the complications associated with the masses and Cabibbo-like mixing angles among the fermions. These masses and mixing angles are naturally accommodated as parameters within the Standard Model, but I think it is fair to say that they are not much related to its core ideas – more on this below.

With all these implicit understandings and discrete choices, the core of the Standard Model is specified by three numbers – the universal strengths of the strong, weak, and electromagnetic interactions. The electromagnetic sector, QED, has been established as an extraordinarily accurate and fruitful theory for several decades now. Let me now briefly describe the current status of the remainder of the Standard Model.

Some recent stringent tests of the electroweak sector of the Standard Model are summarized in Figure 2. In general each entry represents a very different experimental arrangement, and is meant to test a different fundamental aspect of the theory, as described in the caption. There is precisely one parameter (the mixing angle) available within the theory, to describe all these measurements. As you can see, the comparisons are generally at the level of a per cent accuracy or so. Overall, the agreement appears remarkably good, especially to anyone familiar with the history of weak interactions.

Some recent stringent tests of the strong sector of the Standard Model are summarized in Figure 3 \[5\]. Again a wide variety of very different measurements are
Figure 1: The core of the Standard Model: the gauge groups and the quantum numbers of quarks and leptons. There are three gauge groups, and five separate fermion multiplets (one of which, e_R, is a singlet). Implicit in this Figure are the universal gauge couplings – exchanges of vector bosons – responsible for the classic phenomenology of the strong, weak, and electromagnetic interactions. The triadic replication of quark and leptons, and the Higgs field whose couplings and condensation phenomena of the strong, weak, and electromagnetic interactions. The triadic replication of quark and leptons, and the Higgs field whose couplings and condensation

Figure 2: A recent compilation of precision tests of electroweak theory, from [4], to which you are referred for details. Despite some ‘interesting’ details, clearly the evidence for electroweak $SU(2) \times U(1)$ breaking and for fermion masses and mixings, are not indicated.

Measurement	Total Error	Systematic	Standard Model	Pull
m_t	179.18 ± 0.19	0.05	178.06 ± 0.19	0.19
m_b	4.18 ± 0.06	0.09	4.15 ± 0.06	0.24
m_s	0.16 ± 0.03	0.04	0.15 ± 0.03	0.34
m_c	1.26 ± 0.05	0.07	1.23 ± 0.05	0.42
m_d	0.05 ± 0.01	0.01	0.05 ± 0.01	0.02
m_u	0.03 ± 0.01	0.01	0.03 ± 0.01	0.03

Table 1:

Figure 2: A recent compilation of precision tests of electroweak theory, from [4], to which you are referred for details. Despite some ‘interesting’ details, clearly the evidence for electroweak $SU(2) \times U(1)$ breaking and for fermion masses and mixings, are not indicated.
Figure 3: A recent compilation of tests of QCD and asymptotic freedom, from [5], to which you are referred for details. Results are presented in the form of determinations of the effective coupling $\alpha_s(Q)$ as a function of the characteristic typical energy-momentum scale involved in the process being measured. Clearly the evidence for QCD in general, and for the decrease of effective coupling with increasing energy-momentum scale (asymptotic freedom) in particular, is overwhelming.

represented, as indicated in the caption. A central feature of the theory (QCD) is that the value of the coupling, as measured in different physical processes, will depend in a calculable way upon the characteristic energy scale of the process. The coupling was predicted – and evidently is now convincingly measured – to decrease as the inverse logarithm of the energy scale: asymptotic freedom. Again, all the experimental results must be fit with just one parameter – the coupling at any single scale, usually chosen as M_Z. As you can see, the agreement between theory and experiment is remarkably good. The accuracy of the comparisons is at the 1-2% level.

Let me emphasize that these Figures barely begin to do justice to the evidence for the Standard Model. Several of the results in them summarize quite a large number of independent measurements, any one of which might have falsified the theory. For example, the single point labeled ‘DIS’ in Figure 3 describes literally hundreds of measurements in deep inelastic scattering with different projectiles and targets and at various energies and angles, which must – if the theory is correct – all fit into a tightly constrained pattern.

I last reviewed this situation on a related occasion several months ago. At that time, there were reported discrepancies between experimental observations and the Standard Model prediction of the branching ratio R_b of the Z into b quarks, and also with the Standard Model (QCD) prediction of inclusive jet production at high transverse energy. In the meantime these discrepancies have come to seem much
less significant: for R_b, mostly because of the inclusion of new data; for the jet production, because of a better appreciation of the uncertainties in existing structure function parametrizations. Thus once (or rather twice) again, the Standard Model has survived the challenges that inevitably accompany stiff scrutiny. Another small but long-standing and annoying anomaly, the slightly high value of the strong coupling $\alpha_s(M_Z)$ inferred from the width of the Z has also disappeared – largely, I am told, because the effect of passing trains perturbing the beam energy and thus causing a spurious ‘widening’ has now been accounted for!

The central theoretical principles of the Standard Model have been in place for nearly twenty-five years. Over this interval the quality of the relevant experimental data has become incomparably better, yet no essential modifications of these venerable principles has been required. Let us now praise the Standard Model:

- The Standard Model is here to stay, and describes a lot.
 Since there is quite direct evidence for each of its fundamental ingredients (i.e. its interaction vertices), and since the Standard Model provides an extremely economical packaging of these ingredients, I think it is a safe conjecture that it will be used, for the foreseeable future, as the working description of the phenomena within its domain. And this domain includes a very wide range of phenomena – indeed not only what Dirac called “all of chemistry and most of physics”1, but also the original problems of radioactivity and nuclear interactions which inspired the birth of particle physics in the 1930s, and much that was unanticipated.

- The Standard Model is a principled theory.
 Indeed, its structure embodies a few basic principles: special relativity, locality, and quantum mechanics, which lead one to quantum field theories, local symmetry (and, for the electroweak sector, its spontaneous breakdown), and renormalizability (minimal coupling). The last of these principles, renormalizability, may appear rather technical and perhaps less compelling than the others; we shall shortly have occasion to re-examine it in a larger perspective. In any case, the fact that the Standard Model is principled in this sense is profoundly significant: it means that its predictions are precise and unambiguous, and generally cannot be modified ‘a little bit’ except in very limited, specific ways. This feature makes the experimental success especially meaningful, since it becomes hard to imagine that the theory could be approximately right without in some sense being exactly right.

- The Standard Model can be extrapolated.
 Specifically because of the asymptotic freedom property, one can extrapolate using the Standard Model from the observed domain of experience to much larger energies and shorter distances. Indeed, the theory becomes simpler – the fundamental interactions are all effectively weak – in these limits. The whole field of very early Universe

1Dirac was referring, here, to quantum electrodynamics.
cosmology depends on this fact, as do the impressive semi-quantitative indications for unification and supersymmetry I shall be emphasizing momentarily.

2 Deficiencies of the Standard Model

Just because it is so comprehensive and successful, we should judge the Standard Model by demanding criteria. It is clearly an important part of the Truth; the interesting question becomes: How big a part? Critical scrutiny reveals several important shortcomings of the Standard Model:

• The Standard Model contains scattered multiplets with peculiar hypercharge assignments.
 While little doubt can remain that the Standard Model is essentially correct, a glance at Figure 1 is enough to reveal that it is not a complete or final theory. The fermions fall apart into five lopsided pieces with peculiar hypercharge assignments; this pattern needs to be explained. Also the separate gauge theories, which are quite mathematically and conceptually similar, are fairly begging to be unified.

• The Standard Model supports the possibility of strong P and T violation [6].
 There is a near-perfect match between the necessary ‘accidental’ symmetries of the Standard Model, dictated by its basic principles as enumerated above, and the observed symmetries of the world. The glaring exception is that there is an allowed – gauge invariant, renormalizable – interaction which, if present, would induce significant violation of the discrete symmetries P and T in the strong interaction. This is the notorious θ term. θ is an angle which a priori one might expect to be of order unity, but in fact is constrained by experimental limits on the neutron electric dipole moment to be θ \lesssim 10^{-8}. This problem can be addressed by postulating a sort of quasi-symmetry (Peccei-Quinn [7] symmetry), which roughly speaking corresponds to promoting θ to a dynamical variable – a quantum field. The quanta of this field [8], axions, provide an interesting dark matter candidate [9]. Other possibilities for explaining the absence of strong P and T violation have been proposed, but they require towers of hypotheses which seem to me quite fragile.
 In no way, of course, should the absence of strong P and T violation be taken as evidence against QCD itself. For practical purposes, one can simply take θ as a parameter to be fixed experimentally. One finds it to be very small – and is done with it!

• The Standard Model does not address family problems.
 There are several distinct ‘family problems’, ranging from the extremely qualitative (digital – why three families?) to the semi-qualitative (some distinctive patterns – why does like couple to like, with small mixing angles?) to the straightforward but most challenging goal of doing full justice to experience by computing (analog) experimental numbers with controlled, small fractional errors:
Why are there three repeat families? Rabi’s famous question regarding the muon – “Who ordered that?” – still has no convincing answer.

How does one explain the very small electron mass? The dimensionless coupling associated with the electron mass, that is its strength of Yukawa coupling to the Higgs field, is about \(g_e \approx 2 \times 10^{-6} \). It is almost as small as the limits on the \(\theta \) angle (suggesting, perhaps, that strong P and T violation is just around the corner?). This question can of course be generalized – all the fermion masses, with one exception, are sufficiently small to beg qualitative explanation. The exception, of course, is the \(t \) quark. It is a fascinating and important possibility that roughly the observed value of \(t \) quark mass at low energies might result after running from a wide range of fundamental couplings at a high scale \([10]\). If so, one would have a satisfactory qualitative explanation of the value of this parameter.

Why do the weak currents couple approximately in the order of masses? That is, light with light, heavy with heavy, and intermediate with intermediate. Why are the mixings what they are – small, but not miniscule? The same, for the CP violating phase in the weak currents (parameterized invariantly by Jarlskog’s \(J \)) \([11]\)? – and, by the way, are we sure that \(\theta \ll J \)? And so on ...

• The Standard Model does not allow non-vanishing neutrino masses.

This is the only entry on my list that has a primarily experimental motivation. At present there are three quite different experimental hints for non-vanishing neutrino masses: the solar neutrino problem \([12]\), the atmospheric neutrino problem \([13]\), and the Los Alamos oscillation experiment \([14]\). The Standard Model in its conventional form does not allow non-zero neutrino masses. However I would like to mention that only a very minimal extension of the theory is necessary to accommodate such masses. One can add a complete \(SU(3) \times SU(2) \times U(1) \) singlet fermion \(N_R \) to the model. \(N_R \) can be given, consistent with all symmetries and with the requirement of renormalizability, a Majorana mass \(M \). Note especially that such a mass does not violate \(SU(2) \times U(1) \). Likewise, \(N_R \) can have a Yukawa coupling to the ordinary lepton doublets through the Higgs field. Then condensation of the Higgs field activates the “see-saw” mechanism \([15]\) to give a small mass for the observed neutrinos; with \(M \lesssim 10^{15}\text{Gev} \) a range of experimentally and perhaps cosmologically interesting neutrino masses can be accommodated.

• Gravity is not included in the Standard Model.

This really represents (at least) two logically separate problems.

First there is the ultraviolet problem, the notorious non-renormalizability of quantum gravity. This provides an appropriate context, in which to introduce the modern perspective toward the whole concept of renormalizability.

Suppose that one were to be naive, and simply add the Einstein Lagrangian for general relativity to the Standard Model, of course coupling the matter fields appropriately (minimally). Following Feynman and many others, one could then derive, formally, the perturbation series for any physical process. One would find, however,
that, the integrals over closed loops generally diverges at the high-energy (ultraviolet) end. Indeed the graviton coupling has, in units where $\hbar = c = 1$, dimensions of M_{Planck}^{-1}. Here $M_{\text{Planck}} \approx 10^{19}$ GeV is a measure of the stiffness of space-time. Thus higher and higher order terms will, on dimensional grounds, introduce higher and higher factors of the ultraviolet cutoff to compensate. However if we determine (by notional experiments) the couplings at a given scale $\Lambda << M_{\text{Planck}}$ and calculate corrections by only including energy-momenta between the scale $P < \Lambda$ of interest and Λ, the successive terms in perturbation theory will be accompanied by positive powers of $\frac{\Lambda}{M_{\text{Planck}}}$ and will be small. Thus we can, for example, consistently set all non-minimal couplings to zero at any chosen energy-momentum scale well below the Planck scale. They will then be negligibly small for all practically accessible scales. For different choices of the scale they will be different, but since they are negligible in any case that hardly matters. This procedure is, in practice, the one we always adopt – and the Standard Model peacefully coexists with gravity, so long as we refuse to consider $P \gtrsim M_{\text{Planck}}$.

However from this perspective a second problem looms larger than ever. The energy (and negative pressure) density of matter-free space, the notorious cosmological term, occurs as the coefficient λ of the identity term in the action: $\delta \mathcal{L} = \lambda \int \sqrt{g}$. It has dimensions of (mass)4, and on phenomenological grounds we must suppose $\lambda \lesssim (10^{-12}$ GeV $)^4$. The question is: where does such a tiny scale come from? What is so special about the present state of the Universe, that the value of the effective λ for it, which one might naively expect to reflect contributions from much higher scales, is so effectively zeroed?

There may also be problems with forming a fully consistent quantum theory even of low-energy processes involving black holes [16].

Finally I will mention a question that I think has a rather different status from the foregoing, although many of my colleagues would put it on the same list, and maybe near the top:

The Standard Model begs the question “Why does $SU(2) \times U(1)$ symmetry break?”.

To me, this is an example of the sort of metaphysical question that could easily fail to have a meaningful answer. There is absolutely nothing wrong, logically, with the classic implementation of the Higgs sector as described earlier. Nevertheless, one might well hunger for a wider context in which to view the existence of the Higgs doublet and its negative (mass)2 – or a suitable alternative.

This occurs because the kinetic energy for the graviton arises from the Einstein action $\propto M_{\text{Planck}}^2 \int \sqrt{g} R$ so that in expanding about flat space one must take $g_{\mu \nu} = \eta_{\mu \nu} + \frac{1}{M_{\text{Planck}}} h_{\mu \nu}$ in order to obtain a properly normalized quadratic kinetic term for h.
SU(5): 5 colors RWBGP
SU(10): 2 different color labels (antisymmetric tensor)

\[
\begin{align*}
\text{u}_L & : \text{RP}, \text{WP}, \text{BP} \\
\text{d}_L & : \text{RG}, \text{WG}, \text{BG} \\
\text{u}_c & : \text{RW}, \text{WB}, \text{BR} \\
\text{e}_c & : \text{GP} \\
\bar{5}: & \text{1 anticolor label} \\
\bar{\text{d}}_c & : \bar{\text{R}}, \bar{\text{W}}, \bar{\text{B}} \\
\text{e}_L & : \bar{\text{P}} \\
\nu_L & : \bar{\text{G}} \\
Y &= -\frac{1}{3} (\text{R}+\text{W}+\text{B}) + \frac{1}{5} (\text{G}+\text{P})
\end{align*}
\]

Figure 4: Organization of the fermions in one family in SU(5) multiplets. Only two multiplets are required. In passing from this form of displaying the gauge quantum numbers to the form familiar in the Standard Model, one uses the bleaching rules R+W+B = 0 and G+P = 0 for SU(3) and SU(2) color charges (in antisymmetric combinations). Hypercharge quantum numbers are identified using the formula in the box, which reflects that within the larger structure SU(5) one only has the combined bleaching rule R+W+B+G+P = 0. The economy of this Figure, compared to Figure 1, is evident.

3 Unification: Symmetry

Each of the deficiencies of the Standard Model mentioned in the previous section has provoked an enormous literature, literally hundreds or thousands of papers. Obviously I cannot begin to do justice to all this work. Here I shall concentrate on the first question, that of deciphering the message of the scattered multiplets and peculiar hypercharges. Among our questions, this one has so far inspired the most concrete and compelling response – a story whose implications range far beyond the question which inspired it.

Given that the strong interactions are governed by transformations among three color charges – say RWB for red, white, and blue – while the weak interactions are governed by transformations between two others – say GP for green and purple – what could be more natural than to embed both theories into a larger theory of transformations among all five colors? This idea has the additional attraction that an extra U(1) symmetry commuting with the strong SU(3) and weak SU(2) symmetries automatically appears, which we can attempt to identify with the remaining gauge symmetry of the Standard Model, that is hypercharge. For while in the separate SU(3)
and SU(2) theories we must throw out the two gauge bosons which couple respectively to the color combinations R+W+B and G+P, in the SU(5) theory we only project out R+W+B+G+P, while the orthogonal combination \((R+W+B) - \frac{3}{2}(G+P)\) remains.

Georgi and Glashow [17] originated this line of thought, and showed how it could be used to bring some order to the quark and lepton sector, and in particular to supply a satisfying explanation of the weird hypercharge assignments in the Standard Model. As shown in Figure 4, the five scattered \(SU(3) \times SU(2) \times U(1)\) multiplets get organized into just two representations of \(SU(5)\). It is an extremely non-trivial fact that the known fermions fit so smoothly into \(SU(5)\) multiplets.

In all the most promising unification schemes, what we ordinarily think of as matter and anti-matter appear on a common footing. Since the fundamental gauge transformations do not alter the chirality of fermions, in order to represent the most general transformation possibilities one should use fields of one chirality, say left, to represent the fermion degrees of freedom. To do this, for a given fermion, may require a charge conjugation operation. Also, of course, once we contemplate changing strong into weak colors it will be difficult to prevent quarks and leptons from appearing together in the same multiplets. Generically, then, one expects that in unified theories it will not be possible to make a global distinction between matter and anti-matter and that both baryon number \(B\) and lepton number \(L\) will be violated, as they definitely are in \(SU(5)\) and its extensions.

As shown in Figure 4, there is one group of ten left-handed fermions that have all possible combinations of one unit of each of two different colors, and another group of five left-handed fermions that each carry just one negative unit of some color. (These are the ten-dimensional antisymmetric tensor and the complex conjugate of the five-dimensional vector representation, commonly referred to as the “five-bar”.) What is important for you to take away from this discussion is not so much the precise details of the scheme, but the idea that the structure of the Standard Model, with the particle assignments gleaned from decades of experimental effort and theoretical interpretation, is perfectly reproduced by a simple abstract set of rules for manipulating symmetrical symbols. Thus, for example, the object RB in this Figure has just the strong, electromagnetic, and weak interactions we expect of the complex conjugate of the right-handed up-quark, without our having to instruct the theory further. If you’ve never done it I heartily recommend to you the simple exercise of working out the hypercharges of the objects in Figure 4 and checking against what you need in the Standard Model – – after doing it, you’ll find it’s impossible ever to look at the standard model in quite the same way again.

Although it would be inappropriate to elaborate the necessary group theory here, I’ll mention that there is a beautiful extension of \(SU(5)\) to the slightly larger group \(SO(10)\), which permits one to unite all the fermions of a family into a single multiplet [18]. In fact the relevant representation for the fermions is a 16-dimensional spinor representation. Some of its features are depicted in Figure 5. The 16th member of a family in \(SO(10)\), beyond the 15 familiar degrees of freedom with a Standard Model
SO(10): 5 bit register

\[(± ± ± ± ±) : \text{even} \# \text{of} - \]

\[(+ + | - -) \quad 6 \quad (u_L, d_L) \]

\[10 : (+ - | + +) \quad 3 \quad u^c_L \]

\[(+ + | - -) \quad 1 \quad e^c_L \]

\[5 : (+ - | - -) \quad 3 \quad d^c_L \]

\[(- - | + -) \quad 2 \quad (e_L, \nu_L) \]

\[1 : (+ + | + +) \quad 1 \quad N_R \]

Figure 5: Organization of the fermions in one family, together with a right-handed neutrino degree of freedom, into a single multiplet under \(SO(10)\). The components of the irreducible spinor representation, which is used here, can be specified in a very attractive way by using the charges under the \(SO(2) \otimes SO(2) \otimes SO(2) \otimes SO(2) \otimes SO(2)\) subgroup as labels. They then appear as arrays of \(\pm\) signs, resembling binary registers. There is the rule that one must have an even number of \(-\) signs. Strong \(SU(3)\) acts on the first three components, weak \(SU(2)\) on the final two. The \(SU(5)\) quantum numbers are displayed in the left-hand column, the number of entries with each sign-pattern just to the right, and finally the usual Standard Model designations on the far right.

family, has the quantum numbers of the right-handed neutrino \(N_R\) as mentioned above. This emphasizes again how easy and natural is the extension of the Standard Model to include neutrino masses using the see-saw mechanism.

4 Unification: Dynamics, and a Big Hint of Supersymmetry[19]

4.1 The Central Result

We have seen that simple unification schemes are successful at the level of classification; but new questions arise when we consider the dynamics which underlies them. Part of the power of gauge symmetry is that it fully dictates the interactions of the gauge bosons, once an overall coupling constant is specified. Thus if \(SU(5)\) or some higher symmetry were exact, then the fundamental strengths of the different color-changing interactions would have to be equal, as would the (properly normalized) hypercharge coupling strength. In reality the coupling strengths of the gauge bosons in \(SU(3) \times SU(2) \times U(1)\) are observed not to be equal, but rather to follow the pattern \(g_3 \gg g_2 > g_1\).

Fortunately, experience with QCD emphasizes that couplings “run”. The phys-
ical mechanism of this effect is that in quantum field theory the vacuum must be regarded as a polarizable medium, since virtual particle-anti-particle pairs can screen charge. Thus one might expect that effective charges measured at shorter distances, or equivalently at larger energy-momentum or mass scales, could be different from what they appear at longer distances. If one had only screening then the effective couplings would grow at shorter distances, as one penetrates deeper inside the screening cloud. However it is a famous fact \[3\] that due to paramagnetic spin-spin attraction of like charge vector gluons \[20\], these particles tend to antiscreen color charge, thus giving rise to the opposite effect – asymptotic freedom – that the effective coupling tends to shrink at short distances. This effect is the basis of all perturbative QCD phenomenology, which is a vast and vastly successful enterprise, as we saw in Figure 3.

For our present purpose of understanding the disparity of the observed couplings, it is just what the doctor ordered. As was first pointed out by Georgi, Quinn, and Weinberg \[21\], if a gauge symmetry such as SU(5) is spontaneously broken at some very short distance then we should not expect that the effective couplings probed at much larger distances, such as are actually measured at practical accelerators, will be equal. Rather they will all have been affected to a greater or lesser extent by vacuum screening and anti-screening, starting from a common value at the unification scale but then diverging from one another at accessible accelerator scales. The pattern \(g_3 > g_2 > g_1\) is just what one should expect, since the antiscreening or asymptotic freedom effect is more pronounced for larger gauge groups, which have more types of virtual gluons.

The marvelous thing is that the running of the couplings gives us a truly quantitative handle on the ideas of unification, for the following reason. To fix the relevant aspects of unification, one basically needs only to fix two parameters: the scale at which the couplings unite, which is essentially the scale at which the unified symmetry breaks; and their value when they unite. Given these, one calculates three outputs: the three \(a\text{ priori}\) independent couplings for the gauge groups SU(3)×SU(2)×U(1) of the Standard Model. Thus the framework is eminently falsifiable. The miraculous thing is, how close it comes to working (Figure 6).

The unification of couplings occurs at a very large mass scale, \(M_{\text{un}} \sim 10^{15}\) Gev. In the simplest version, this is the magnitude of the scalar field vacuum expectation value that spontaneously breaks SU(5) down to the standard model symmetry SU(3)×SU(2)×U(1), and is analogous to the scale \(v \approx 250\) Gev for electroweak symmetry breaking. The largeness of this large scale mass scale is important in several ways:

- It explains why the exchange of gauge bosons that are in SU(5) but not in SU(3)×SU(2)×U(1), which re-shuffles strong into weak colors and generically violates the conservation of baryon number, does not lead to a catastrophically quick decay of nucleons. The rate of decay goes as the inverse fourth power of the mass of the exchanged gauge particle, so the baryon-number violating processes are predicted to
Figure 6: Evolution of Standard Model effective (inverse) couplings toward small space-time distances, or large energy-momentum scales. Notice that the physical behavior assumed for this Figure is the direct continuation of Figure 3, and has the same conceptual basis. The error bars on the experimental values at low energies are reflected in the thickness of the lines. Note the logarithmic scale. The qualitative aspect of these results is extremely encouraging for unification and for extrapolation of the principles of quantum field theory, but there is a definite small discrepancy with recent precision experiments.
be far slower than ordinary weak processes, as they had better be.

- M_{un} is significantly smaller than the Planck scale $M_{\text{Planck}} \sim 10^{19}$ Gev at which exchange of gravitons competes quantitatively with the other interactions, but not ridiculously so. This indicates that while the unification of couplings calculation itself is probably safe from gravitational corrections, the unavoidable logical next step in unification must be to bring gravity into the mix.

- Finally one must ask how the tiny ratio of symmetry-breaking mass scales $v/M_{\text{un}} \sim 10^{-13}$ required arises dynamically, and whether it is stable. This is the so-called gauge hierarchy problem, which I shall discuss in a more concrete form momentarily.

The success of the GQW calculation in explaining the observed hierarchy $g_3 \gg g_2 > g_1$ of couplings and the approximate stability of the proton is quite striking. In performing it, we assumed that the known and confidently expected particles of the Standard Model exhaust the spectrum up to the unification scale, and that the rules of quantum field theory could be extrapolated without alteration up to this mass scale – thirteen orders of magnitude beyond the domain they were designed to describe. It is a triumph for minimalism, both existential and conceptual.

However, on further examination it is not quite good enough. Accurate modern measurements of the couplings show a small but definite discrepancy between the couplings, as appears in Figure 6. And heroic dedicated experiments to search for proton decay did not find it \[22\]; they currently exclude the minimal SU(5) prediction $\tau_p \sim 10^{31}$ yrs. by about two orders of magnitude.

Given the scope of the extrapolation involved, perhaps we should not have hoped for more. There are several perfectly plausible bits of physics that could upset the calculation, such as the existence of particles with masses much higher than the electroweak but much smaller than the unification scale. As virtual particles these would affect the running of the couplings, and yet one certainly cannot exclude their existence on direct experimental grounds. If we just add particles in some haphazard way things will only get worse: minimal SU(5) nearly works, so the generic perturbation from it will be deleterious. This is a major difficulty for so-called technicolor models, which postulate many new particles in complicated patterns. Even if some ad hoc prescription could be made to work, that would be a disappointing outcome from what appeared to be one of our most precious, elegantly straightforward clues regarding physics well beyond the Standard Model.

Fortunately, there is a theoretical idea which is attractive in many other ways, and seems to point a way out from this impasse. That is the idea of supersymmetry \[23\]. Supersymmetry is a symmetry that extends the Poincare symmetry of special relativity (there is also a general relativistic version). In a supersymmetric theory one has not only transformations among particle states with different energy-momentum but also between particle states of different spin. Thus spin 0 particles can be put in multiplets together with spin $\frac{1}{2}$ particles, or spin $\frac{1}{2}$ with spin 1, and so forth.

Supersymmetry is certainly not a symmetry in nature: for example, there is cer-
tainly no bosonic particle with the mass and charge of the electron. More generally if one defines the R-parity quantum number

$$ R \equiv (-)^{3B+L+2S}, $$

which should be accurate to the extent that baryon and lepton number are conserved, then one finds that all currently known particles are R even whereas their supersymmetric partners would be R odd. Nevertheless there are many reasons to be interested in supersymmetry, and especially in the hypothesis that supersymmetry is effectively broken at a relatively low scale, say ≈ 1 Tev. Anticipating this for the moment, let us consider the consequences for running of the couplings.

The effect of low-energy supersymmetry on the running of the couplings was first considered long ago [24], well before the discrepancy described above was evident experimentally. One might have feared that such a huge expansion of the theory, which essentially doubles the spectrum, would utterly destroy the approximate success of the minimal SU(5) calculation. This is not true, however. To a first approximation, roughly speaking because it is a space-time as opposed to an internal symmetry, supersymmetry does not affect the group-theoretic structure of the unification of couplings calculation. The absolute rate at which the couplings run with momentum is affected, but not the relative rates. The main effect is that the supersymmetric partners of the color gluons, the gluinos, weaken the asymptotic freedom of the strong interaction. Thus they tend to make its effective coupling decrease and approach the others more slowly. Thus their merger requires a longer lever arm, and the scale at which the couplings meet increases by an order of magnitude or so, to about 10^{16} Gev. Also the common value of the effective couplings at unification is slightly larger than in conventional unification ($\frac{g_{\text{un}}}{4\pi} \approx \frac{1}{25}$ versus $\frac{1}{40}$). This increase in unification scale significantly reduces the predicted rate for proton decay through exchange of the dangerous color-changing gauge bosons, so that it no longer conflicts with existing experimental limits.

Upon more careful examination there is another effect of low-energy supersymmetry on the running of the couplings, which although quantitatively small has become of prime interest. There is an important exception to the general rule that adding supersymmetric partners does not immediately (at the one loop level) affect the relative rates at which the couplings run. This rule works for particles that come in complete SU(5) multiplets, such as the quarks and leptons (which, since they don’t upset the full SU(5) symmetry, have basically no effect) or for the supersymmetric partners of the gauge bosons, because they just renormalize the existing, dominant effect of the gauge bosons themselves. However there is one peculiar additional contribution, from the supersymmetric partner of the Higgs doublet. It affects only the weak SU(2) and hypercharge U(1) couplings. (On phenomenological grounds the SU(5) color triplet partner of the Higgs doublet must be extremely massive, so its virtual exchange is not important below the unification scale. Why that should be so, is another aspect of the hierarchy problem.) Moreover, for slightly technical reasons even in the
Figure 7: Evolution of the effective (inverse) couplings in the minimal extension of the Standard Model, to include supersymmetry. The concepts and qualitative behaviors are only slightly modified from Figure 6 (a highly non-trivial fact!) but the quantitative result is changed, and comes into adequate agreement with experiment. I would like to emphasize that results along these lines were published well before the difference between Figure 6 and Figure 7 could be resolved experimentally, and in that sense one has already derived a successful prediction from supersymmetry.

In the minimal supersymmetric model it is necessary to have two different Higgs doublets with opposite hypercharges\[3\]. The main effect of doubling the number of Higgs fields and including their supersymmetric partners is a sixfold enhancement of the asymmetric Higgs field contribution to the running of weak and hypercharge couplings. This causes a small, accurately calculable change in the calculation. From Figure 7 you see that it is a most welcome one. Indeed, in the minimal implementation of supersymmetric unification, it puts the running of couplings calculation right back on the money [25].

Since the running of the couplings with scales depends only logarithmically on the mass scale, the unification of couplings calculation is not terribly sensitive to the precise scale at which supersymmetry is broken, say between 100 Gev and 10 Tev. (To avoid confusion later, note that here by “the scale at which supersymmetry is broken” I mean the typical mass splitting between Standard Model particles and their supersymmetric partners. The phrase is frequently used in a different sense, referring to the largest splitting between supersymmetric partners in the entire world-spectrum;\[3\]

\[3\]Perhaps the simplest, though not the most profound, way to appreciate the reason for this has to do with anomaly cancelation. The minimal spin-1/2 supersymmetric partner of the Higgs doublet is chiral and has non-vanishing hypercharge, introducing an anomaly. By including a partner for the anti-doublet, one cancels this anomaly.
this could be much larger, and indeed in popular models it almost invariably is. The ambiguous terminology is endemic in the literature; fortunately, the meaning is usually clear from the context.) There have been attempts to push the calculation further, in order to address this question of the supersymmetry breaking scale, but they are controversial. For example, comparable uncertainties arise from the splittings among the very large number of particles with masses of order the unification scale, whose theory is poorly developed and unreliable. Superstring theory suggests \cite{26} many possible ways in which the simple calculation described here might go wrong\footnote{Indeed, in the simplest superstring-inspired models it is not entirely easy to accommodate the ‘low’ value of the unification scale compared to the Planck scale.}; if we take the favorable result of this calculation at face value, we must conclude that none of them happen.

In any case, if we are not too greedy the main points still shine through:

- If supersymmetry is to fulfill its destiny of elucidating the hierarchy problem in a straightforward way, then the supersymmetric partners of the known particles cannot be much heavier than the SU(2)×U(1) electroweak breaking scale, \textit{i.e.} they should not be beyond the expected reach of LHC.
- If we assume this to be the case then the meeting of the couplings takes place in the simplest minimal models of unification, to adequate accuracy, without further assumption. This is a most remarkable and non-trivial fact.

4.2 Implications

The preceding result, taken at face value, has extremely profound implications:

- Quantum field theory, and specifically its characteristic vacuum polarization effects leading to asymptotic freedom and running of the couplings, continue to work quantitatively up to energy scales many orders of magnitude beyond where they were discovered and established.

 I would like to emphasize also some negative implications of this: there are things that might have, but do not, happen. It might have happened that the known particles are some complicated composites of more elementary objects, or that many additional strong couplings appeared at higher energies (technicolor), or that additional dimensions became dynamically active, or that particle physics simply dissolved into some amorphous mess. Unless Figure 7 is a cruel joke on the part of mother Nature, none of this happens, or at least the complications are in a strong, precise sense walled off from the Standard Model and the dynamical evolution of its couplings.

- Supersymmetry, in its virtual form, has already been discovered.

4.3 Why Supersymmetry is a Good Thing

Thus has Nature spoken, in a promissory whisper. Many of us are seduced, because She is telling us something we want to hear:
You will notice that we have made progress in uniting the gauge bosons with each other, and the various quarks and leptons with each other, but not the gauge bosons with the quarks and leptons. It takes supersymmetry – perhaps spontaneously broken – to make this feasible.

Supersymmetry was invented in the context of string theory, and seems to be necessary for constructing consistent string theories containing gravity (critical string theories) that are at all realistic.

Most important for present purposes, supersymmetry can help us to understand the vast disparity between weak and unified symmetry breaking scales mentioned above. This disparity is known as the gauge hierarchy problem. It actually raises several distinct problems, including the following. In calculating radiative corrections to the \((\text{mass})^2 \) of the Higgs particle from diagrams of the type shown in Figure 8 one finds an infinite, and also large, contribution. By this I mean that the divergence is quadratic in the ultraviolet cutoff. No ordinary symmetry will make its coefficient vanish. If we imagine that the unification scale provides the cutoff, we find that the radiative correction to the \((\text{mass})^2 \) is much larger than the final value we want. (If the Higgs field were composite, with a soft form factor, this problem might be ameliorated. Following that road leads to technicolor, which as mentioned before seems to lead us far away from our best source of inspiration.) As a formal matter, one can simply cancel the radiative correction against a large bare contribution of the opposite sign, but in the absence of some deeper motivating principle this seems to be a horribly ugly procedure. Now in a supersymmetric theory for any set of virtual particles circulating in the loop there will also be another graph with their supersymmetric partners circulating. If the partners were accurately degenerate, the contributions would cancel. Otherwise, the threatened quadratic divergence will be cut off only at virtual momenta such that the difference in \((\text{mass})^2 \) between the virtual particle and its supersymmetric partner is relatively negligible. Thus we will be assured adequate cancelation if and only if supersymmetric partners are not too far split in mass – in the present context, if the splitting is not much greater than the weak scale. This is (a crude version of) the most important quantitative argument which suggests the relevance of “low-energy” supersymmetry.

Supersymmetric field theories have many special features, which make them especially interesting, and perhaps promising, phenomenologically.

I cannot be very specific about this here, both because there are as yet no canonical models and because the subject is excessively technical, but let me just mention some appropriate concepts: radiative \(SU(2) \times U(1) \) breaking associated with the heavy top quark; doublet-triplet splitting mechanisms; approximate flat directions for generating large mass hierarchies. Supersymmetric models also have additional mechanisms for neutral flavor-changing processes and CP violation, which are dangerously large generically, but in appropriate models can be suppressed down to a level which is interesting – but not too interesting – experimentally.

All this provides, in my opinion, a very good specific brief for optimism about the
Figure 8: Contributions to the Higgs field self-energy. These graphs give contributions to the Higgs field self-energy which separately are formally quadratically divergent, but when both are included the divergence is removed. In models with broken supersymmetry a finite residual piece remains. If one is to obtain an adequately small finite contribution to the self-energy, the mass difference between Standard Model particles and their superpartners cannot be too great. This – and essentially only this – motivates the inclusion of virtual superpartner contributions in Figure 7 beginning at relatively low scales.
future of experimental particle physics exploring the high-energy frontier, and also – with somewhat less certainty – the frontier of small exotic flavor-changing and CP violating processes. We can already discern, at the limit of our vision, the shores of a strange new world not too far away, where we can realistically hope to land and explore.

5 The Farther Future: Connections

Up to this point I have discussed the near to medium future of particle physics from what might be called a traditional or internal perspective. According to that view, the field is defined as the search for the fundamental laws of Nature, in a reductionist sense: laws that cannot be be explained in terms of anything simpler, the end-answers to repeated queries ‘Why?’ (I have also foregone any substantial discussion of string theory, partly because my colleague Edward Witten will be discussing it here, but also partly to emphasize, in the spirit of scientific conservatism – *hypothesis non fingo* – how far we can get without using it. Indeed, it remains a great challenge to develop string theory to the point that it becomes a functional part of natural science, in the sense of yielding characteristic, specific insight into concrete physical phenomena.)

I think it is vitally important, in doing justice to the significance of this reductionist activity, also to discuss its external connections – specifically, its broader role in extending our understanding and appreciation of physical phenomena, whether or not these involve clean application of the “fundamentals”. That could easily turn into a long vague discourse, but I will try to be brief and usefully specific, realizing that this involves considerable risk of touting the wrong horses. Also, in line with my title I will not discuss connections to mathematics, philosophy, theology, science fiction,

5.1 Matter

The exchange of ideas between particle and condensed matter physics has a long and glorious history. It is almost uncanny how almost every one of the basic conceptual ingredients of the Standard Model is mirrored in some facet of condensed matter theory. Soon after Einstein inferred the field-particle connection for photons, he applied it to solids, introducing the phonon concept. The band theory of metals, and specifically the hole concept, was developed in parallel with Dirac’s theory of electrons and positrons. In more recent times, the distillation of ideas about spontaneous symmetry breaking provoked by BCS theory ramified both into the effective theory of the strong interaction and the foundations of electroweak theory; and the concepts of running couplings and asymptotic scale invariance, which became prominent in the theory of second-order phase transitions, were crucial in elucidating the modern microscopic theory of the strong interaction.
There is a profound underlying reason why theoretical concepts developed for understanding physical phenomena on vastly different energy and distance scales, and separated by several layers of ‘reduction’, find dual usage. It is because in each domain the same principles of symmetry and locality are basic. Since these basic principles will, I believe, continue to guide us, there is every prospect that a fruitful exchange of ideas will continue.

More specifically, in recent years investigations stimulated by the discovery of the quantum Hall effect have uncovered an amazing wealth of structures. One has learned to use gauge theories of a highly non-trivial kind to characterize the various states, now including even nonabelian theories (which have many strange aspects); to exploit conformal field theories in analyzing the behavior at boundaries; to predict and recognize baby skyrmions both theoretically and experimentally; to predict and realize new forms of confinement. Unusual realizations of symmetry, holomorphic functions, and non-commuting spatial variables are quite prominent in the theory. It would not be appropriate to discuss any of these topics in detail now, but I would like briefly to mention the primitive observation that in many ways opens the subject – a subject that I commend to the attention of all high-energy theorists. In a strong magnetic field the particle Lagrangian naively simplifies as

$$L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) + B\dot{x}y \rightarrow B\dot{x}y.$$

This limiting Lagrangian is rather peculiar: it leads to a vanishing Hamiltonian, and identifies \(By\) as the canonical momentum conjugate to \(x\)! Thus the spatial coordinates no longer commute; also, the original rotational symmetry between \(x\) and \(y\) has become a true canonical (not point) transformation. We are, of course, just describing the rather trivial quantum mechanics of the lowest Landau level in an exotic fashion; but it is striking how easily and naturally unusual realizations of symmetry arise here. It is also intriguing to contemplate what has happened from the opposite perspective: what was a non-commuting momentum variable, viewed from within the lowest Landau level, has been promoted to a commuting, and manifestly symmetrical, variable in the overlying theory.

Another, more down-to-earth source of connections between high energy and condensed matter physics is that high energy physics is supposed, after all, to describe actual matter under extreme conditions. We should therefore address the obvious, qualitative physical questions about this matter: what is it like in bulk, and does it undergo interesting phase transitions as a function of density and/or temperature? Several fascinating possibilities for hadronic matter have been suggested: a quark-gluon plasma, with restoration of chiral symmetry at high temperature, seems a safe bet; pion or especially kaon condensation, and strange matter, are possibilities. Some of these possibilities will be probed by projected relativistic heavy-ion collision experiments. Closer to home, it is quite disappointing that there is still no convincing first-principles explanation of such basic phenomena as the existence of a hard core
and the saturation of ordinary nuclear forces. These questions provide very worthy challenges for future theory, and in my opinion are receiving too little attention. Serious attempts to address them will require new methods, probably with a significant numerical component, which (if found) would very likely have implications for many-body problems more generally. As the power of computers increases, our inability to calculate is ever more embarrassing.

Here is a specific question of a different, but related, sort: the classic Lanford-Dyson-Lieb discussion of ‘stability of matter’ breaks down for bosons. What does this mean for supersymmetric matter in bulk? What does it mean for the ground state of ordinary matter, if the world is approximately supersymmetric?

5.2 Cosmos

It is the earliest moments of the Big Bang, when extraordinary energies and densities were achieved, which provide the obvious arena for future high energy physics in the physical world. Opportunities and challenges are readily identified:

- It makes good sense to extrapolate toward the very early Universe.

As Figure 3 shows us in hard data, the strong coupling runs toward a small effective value at high energy. Figure 6, and especially Figure 7, emphasize why the seductive assumption that in crucial respects particle physics remains simple and weakly coupled up to extraordinarily high energies is very hard to resist, because it leads to a strikingly successful account of the unification of couplings. Thus fundamental particle physics becomes profoundly simpler (though superficially more complex) toward the earliest moments of the Big Bang.

The scale for the running of inverse couplings, once they are large, is logarithmic. This feature naturally connects mass scales identifiable in particle physics experiments with exponentially (in the inverse couplings) larger scales. Numerically, as we have seen, one is lead in this way close to the Planck scale. Thus there is direct, though of course extremely limited, evidence that quantum field theory at weak coupling governs the interactions of the known particles up to energies (temperatures, densities) nearly as high as one could reasonably hope.

- Cosmic phase transitions happened.

Since QCD and asymptotic freedom are firmly established, we can say with complete confidence that the effective low-energy degrees of freedom in the strong interaction - hadrons with confined color and spontaneously broken chiral symmetry - are quite different from the fundamental colored quark and gluon degrees of freedom which manifest themselves at high temperature. The transition between them must be accompanied by a rapid crossover and perhaps by a phase transition. Indeed, the existence of a phase transition can be rigorously established in models closely related to real-world QCD, such as the variant of QCD where the $m_u = m_d = 0$ or the
pure-glue theory. The nature of the transition, perhaps surprisingly, seems to depend sensitively upon the spectrum of light quarks.

The behavior of QCD at high temperatures is in principle, and to some extent in practice, calculable. The QCD crossover or transition that occurred during the Big Bang is even in some rough sense reproducible, and will be approximated in future relativistic heavy ion collisions.

Similarly, since the electroweak $SU(2) \times U(1) \rightarrow U(1)$ breaking pattern is firmly established, there is an excellent chance that another phase transition, associated with $SU(2) \times U(1)$ restoration at high temperature, occurs. It is not guaranteed that there is a strict phase transition, since there is no gauge-invariant order parameter for the Higgs phase, though at weak coupling one certainly expects a sharp transition. One of the most interesting projects for future accelerators, which has important implications for cosmology, will be to map out the relevant parameters so that we can characterize this crossover or transition.

These ‘established’ examples encourage one to speculate about the possibility of phase transitions associated with unification, or perhaps occurring in some hidden sector.

Cosmological phase transitions have many possible consequences for the history of the Universe and for observational cosmology, including:

Defects of all sorts, including textures, strings, and monopoles that could persist even to the present day. Truly stable domain walls must be avoided or inflated away, but appropriately long-lived ones could be important in the prior evolution of the Universe.

Inflation, if one gets trapped in a metastable condition by a barrier or by weakness of the relevant coupling that drives the transition.

Gravity waves, if the scale of the transition is high or if the transition is sufficiently violent.

Baryogenesis, under the same qualitative conditions.

It will be fascinating to discover which, if any, of these possibilities is realized by the electroweak transition. There is also a great opportunity, if one can establish compelling, sufficiently detailed models for unification, or a hidden sector, or any number of other possibilities, to examine their cosmological implications.

- We have specific, credible dark matter candidates, notably the lightest R-odd particle (LSP).
 - I have already discussed this.

- We have significant motivation for the possibility of additional very light fields.

 I would like to conclude this discussion of ‘applications’ by alluding to a circle of ideas which though it can be made to sound quite fantastic I think is actually deeply implicit in much current thinking about particle physics and cosmology.
The axion is perhaps the most well-motivated and studied exemplar of a family of related fields including familons, dilatons, and moduli fields that in one way or another embody the idea that what we ordinarily consider ‘constants’ might not be fundamental parameters fixed in the very formulation of the laws of Nature, but rather can be considered usefully as dynamical entities. In a theory with only one fundamental, dimensional, parameter, such as superstring theory appears to be, there is clearly a sense in which all dimensionless couplings are dynamical variables. They might nevertheless behave effectively as constants either if it costs a very large energy-density to excite them at all (\textit{e.g.} massive fields) or if ordinary matter couples very weakly to long-wavelength fluctuations of the field (\textit{e.g.} stiff light fields with derivative couplings).

In the latter case one might anticipate long-range forces mediated by the exchange of the field. I believe that experiments to look for such forces are among the most fundamental which can presently be attempted. They address in a concrete way the question: are the constants of Nature uniquely determined to be what we observe by dynamical laws, or are they ‘frozen accidents’ imprinted at the Big Bang? Or are they presently relaxing towards some more favorable value? Note that although a rapidly (on cosmological time scales) oscillating field represents non-relativistic matter, a sufficiently slowly varying field might appear as a contribution to the effective cosmological term.

If these ideas are along the right lines, it could be misguided to seek a unique Lorentz-invariant ‘vacuum’ state as a model for our present world. One might instead be required, at a fundamental level, to seek the boundary conditions for particle physics from cosmology (and \textit{vice versa}).

At this point, our discussion of applications of particle physics, as traditionally understood, has modulated into a discussion of its possible ultimate limitations. I hope I have convinced you that there is abundant fertile territory we can anticipate exploring before we arrive at these limits; as my mother might say, “Such problems you should have.”

Acknowledgments

I thank Keith Dienes for supplying Figures 6 and 7, and especially Chris Kolda for valuable assistance in the preparation of this manuscript.

References

[1] For recent reviews of the Standard Model, see References 4 and 5.

\footnotetext{The standard picture of axion production in the Big Bang is essentially an example of this: the axion field starts drops out of equilibrium as the Universe cools from \(10^{12}\) to about 1 Gev, then relaxes towards the dynamically favored, approximately P and T conserving, value.}
[2] After several partial and tentative proposals, the $SU(2) \times U(1)$ electroweak theory took on in its essentially modern form in: S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Elementary Particle Physics, ed. N. Svartholm (Almqvist and Wiksells, Stockholm, 1968), p. 367; S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).

[3] After several partial and tentative proposals, the $SU(3)$ strong interaction theory took on its essentially modern form in: D. Gross and F. Wilczek, Phys Rev. D 8, 3633 (1973); S. Weinberg, Phys. Rev. Lett. 31, 494 (1973); H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Phys. Lett. 47B, 365 (1973). Not coincidentally, the key discovery that allowed one to connect the abstract gauge theory to experiments, asymptotic freedom, was first demonstrated just prior to these papers, in: D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[4] LEP Electroweak Working Group, preprint CERN-PPE/96-183 (Dec. 1996).

[5] M. Schmelling, preprint MPI-H-V39, hep-ex/9701002. Talk given at the 28th International Conference on High-energy Physcis (ICHEP 96), Warsaw, Poland, 25-31 July 1996.

[6] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); C. Callan, R. Dashen, and D. Gross, Phys. Lett. 63B, 334 (1976); R. Jackiw, C. Rebbi, Phys. Rev. Lett. 37, 172 (1976).

[7] R. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977), Phys. Rev. D 16, 1791 (1977).

[8] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[9] J. Preskill, M. Wise, and F. Wilczek, Phys. Lett. 120B, 127 (1983); L. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983); M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).

[10] The existence of the infrared fixed point was first discussed in: C. Hill, Phys. Rev. D 24, 691 (1981). More recent examinations including supersymmetry appear in: V. Barger, M. Berger and P. Ohmann, Phys. Rev. D 47, 1093 (1993); P. Langacker and N. Polonsky, Phys. Rev. D 47, 4028 (1993); M. Carena, S. Pokorski and C. Wagner, Nuc. Phys. B 406, 59 (1993).

[11] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

[12] J. Bahcall, et al, Nature 375, 29 (1995).

[13] G. Fogli, E. Lisi, and D. Montanino, Phys. Rev. D 49, 3626 (1994).
[14] C. Athanassopoulos, et al, Phys. Rev. Lett. 75, 2650 (1995).

[15] M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, ed. P. van Neiwenhuizen and D. Freedman (North Holland, Amsterdam, 1979), p. 315; T. Yanagida, Proc. of the Workshop on Unified Theory and Baryon Number in the Universe, eds. O. Sawada and A. Sugamoto (KEK, 1979).

[16] S. Hawking, Phys. Rev. D 14, 2460 (1976).

[17] H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438 (1974).

[18] H. Georgi, in Particles and Fields – 1974, ed. C. Carlson (AIP press, New York, 1975).

[19] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Today 44, 25 (1991) and references contained therein.

[20] N. Nielsen, Am. J. Phys. 49, 1171 (1981); R. Hughes, Nucl. Phys. B 186, 376 (1981).

[21] H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).

[22] See for example G. Blewitt, et al, Phys. Rev. Lett. 55, 2114 (1985), and the latest Particle Data Group compilations.

[23] A very useful introduction and collection of basic papers on supersymmetry is S. Ferrara, Supersymmetry (2 vols.) (World Scientific, Singapore 1986). Another excellent standard reference is N.-P. Nilles, Phys. Reports 110, 1 (1984). See also [26].

[24] S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D 24, 1681 (1981).

[25] J. Ellis, S. Kelley, and D. Nanopoulos, Phys. Lett. B260, 131 (1991); U. Amaldi, W. de Boer, and H. Furstenau, Phys. Lett. B260, 447 (1991); for more recent analysis see P. Langacker and N. Polonsky, Phys. Rev. D 49, 1454 (1994).

[26] K. Dienes, IASSNS-HEP-95/97, hep-th/9602045 (Feb 1996), Phys. Reports (in press).

[27] Since in this Section many large ideas will be mentioned very briefly, I will not attempt systematic citations.

[28] S. Weinberg, Dreams of a Final Theory (Parthenon, New York 1992).

[29] L. Krauss, The Physics of Star Trek (Basic Books, New York 1995).

[30] I plan to write about this in a series of Reference Frame articles for Physics Today.