Exploring the potentials of Ti$_3$N$_2$ and Ti$_3$N$_2$X$_2$ ($X = O, F, OH$) monolayers as anodes for Li or non-Li ion batteries from first-principles calculations†

Hongli Yu, a Wei Lin, a Yongfan Zhang, b,c Yi Li, d Kaining Ding, d Shuping Huang e, f,a and Wenkai Chen d

The electronic properties and different metal ion (Li, Na, Mg) storage capabilities of the two-dimensional (2D) Ti$_3$N$_2$ monolayer and its Ti$_3$N$_2$X$_2$ derivatives ($X = O, F,\text{ and } OH$) as anode materials in rechargeable batteries have been systematically investigated by density functional theory (DFT) computations. Results show that the bare Ti$_3$N$_2$ and terminated monolayers in their most stable configurations are all metallic before and after metal ion adsorption. The relatively low diffusion barriers on the bare Ti$_3$N$_2$ monolayer were also confirmed, which implies faster charge and discharge rates. With respect to storage capacity, a high theoretical capacity of 1874 mA h g$^{-1}$ can be provided by the Ti$_3$N$_2$ monolayer for Mg due to its multilayer adsorption and two-electron reaction. The existence of functional groups is proven to be unfavorable to metal ion migration and will decrease the corresponding storage capacities, which should be avoided in experiments as much as possible. These excellent performances suggest that the bare Ti$_3$N$_2$ is a promising anode material for Li-ion or non-Li-ion batteries.

1. Introduction

Energy storage has attracted extensive attention of researchers in recent years due to its widespread and varied applications, including portable electronic devices and electric vehicles.1,2 Among different energy storage systems, lithium-ion batteries (LIBs) as the most prominent representative of secondary batteries, have been widely commercialized due to their significant advantages of large energy density, long cycle-life and high performance.$^{3-5}$ However, the further development of LIBs is impeded by cost and safety issues, and limited natural reserves and geometric consumption will result in lithium resources being in short supply. Therefore, non-Li ion batteries in which other metal ions replace the Li ions are receiving great attention. Compared to lithium, sodium has rich reserves and low-cost, which can cover the shortcomings of lithium so that Na-ion batteries (NIBs) can become a promising candidate for next-generation rechargeable batteries.$^{6-8}$ Except for monovalent elements, multivalent metal ions (Mg$^{2+}, Ca^{2+}$ and Al$^{3+}$) have also been investigated. The emphasis for developing all these various secondary batteries focuses on appropriate electrode materials that can provide satisfactory battery performance.

Two-dimensional (2D) materials have become a hot spot due to its excellent mechanical and electrical properties. One representative among them is graphene,11,14 it has been successfully applied as electrode materials for LIBs owing to its ultrahigh surface area and high cycle performance. Except for graphene, phosphorene15 and transition metal dichalcogenides$^{16-18}$ are sequentially explored by researchers. Recently, a new class of two-dimensional early transition metal carbides and carbonitrides (MXenes) materials have attracted tremendous attention in many materials research fields (such as energy, optics, catalysis, etc.) due to its unique properties.19,20 The general formula of 2D transition-metal carbides and nitrides are M$_{n-1}$AX$_n$ ($n = 1, 2, 3$), where “M” represents an early transition metal, A represents the mostly IIIA or IVA elements. X represents C or N. M$_{n-1}$X$_n$ was synthesized by selective etching of the A atomic layer in the three-dimensional layered compound M$_{n+1}$AX$_n$ by HF acid to obtain a two-dimensional atomic crystalline compound which have a graphene-like structure. Usually, the functional groups (−O, −F, −OH, etc) generated during the etching process give MXene good hydrophilicity, but it does not significantly affect its conductivity.$^{21-23}$ Many MXenes have been successfully synthesized in the experiment, such as Ti$_3$C$_2$T$_x$, Ti$_3$CN, Ti$_3$C, Ta$_4$C$_3$ (ref. 25) and Nb$_2$C.26 It has been demonstrated that MXenes have great potential for energy storage due to its excellent rate characteristics and cycle stability.27,28 Compared with M$_{n-1}$C$_m$, M$_{n-1}$N$_n$ is relatively difficult to synthesize experimentally due to lower cohesive energy, which signifies that A layer in M$_{n-1}$AN$_n$...
Ti₃N₂ monolayer has favorable performance as anode material, driven by the process of adsorbing different metal ions and the corresponding diffusion barrier. Energy calculations show that the bare Ti₃N₂ monolayer has favorable performance as anode material, which has metallic character with relatively low band gap, low barrier energy indicating fast ion diffusion, high theoretical capacity for Mg (~1874 mAh g⁻¹). It’s also worth mentioning that the existence of functional groups tends to hinder ions diffusion and greatly reduce the Li or non-Li storage capacities, which ought to be experimentally avoided as possible.

2. Computational details

All our calculations were based on density functional theory (DFT) by an all-electron method in the DMol3 code that a generalized gradient approximation (GGA) for the exchange–correlation term with Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional was carried out. The basis set adopted was the double numerical plus d functions (DND) and for accurately measured electrostatic interactions we used the DFT + D2 method with the Grimme vDw correction. The energy convergence criterion of the self-consistent field (SCF) was set to 1 × 10⁻⁶ au to ensure sufficient accuracy. The maximal force convergence criterion was set 0.002 Ha Å⁻¹ guarantee that the forces on each atom converge. We build a vacuum space exceed 20 Å in order to eliminate the interaction between adjacent layer caused by periodic boundaries. For structure geometry optimization, the Brillouin zone was implemented by Monkhorst–Pack special k-point mesh of 4 × 4 × 1 meanwhile 12 × 12 × 1 mesh for the electronic structure calculations.

We built a 3 × 3 × 1 supercell to systematic investigated the process of one metal atom (Li, Na, Mg) adsorption on the bare Ti₃N₂ and Ti₃N₂X₂ (X = F, OH, O) monolayer. Searching for the exact transition states (energy saddle points) by computing the minimum-energy path (MEP) accomplished through using the LST/QST function in the DMol3. The energy of the barrier was defined as the energy difference between the reactant state and transition state. Phonon modes are calculated in the Phonopy with the atomic displacements of 0.01 Å.

3. Result and discussion

3.1. Structural and electronic properties of Ti₃N₂, Ti₃N₂X₂ (X = O, F, OH) monolayers

Firstly, the monolayer Ti₃N₂ configuration is constructed like their carbide counterparts with quintuple layers stacked in a sequence of Ti(1)–N–Ti(2)–N–Ti(1), where Ti(1) represents Ti atoms that protrude from the surface of the sheet and Ti(2) represents the atomic layer which is sandwiched by two N-atomic layers (Fig. 1a). The optimized lattice constant of Ti₃N₂ is 3.098 Å and the distance between the Ti(1)–N bonds is 2.048 Å in good agreement with the previous reports. The structures of Ti₃N₂X₂ (X = O, F, OH) sheets are achieved by saturating the Ti atoms on the surface with the functional groups. There are three possible configurations for Ti₃N₂X₂ (Fig. S1†): type I, the X groups are above the vertical sites of Ti(2) atoms on both sides of Ti₃N₂ layer; type II, the X groups are oriented above the topmost sites of N atoms on both sides of Ti₃N₂ layer; type III, an asymmetrical structure that can be considered as a compound of the above two types, in which X groups are above the topmost sites of Ti(2) atoms on one side and above the topmost sites of N atoms on the other side. We confirmed the most stable configuration (Fig. 1c–e) by comparing their total energies. The conclusion is that type I has the lowest energy regardless of the specific adsorption groups. The energy of type I is lower than type II and type III by about 0.22 and 0.40 eV (Ti₃N₂F₂), 0.71 and 1.44 eV (Ti₃N₂O₂), 0.05 and 0.11 eV [Ti₃N(OH)₂] per unit cell, respectively. The results distinctly show that the functional groups are more inclined to point directly toward the Ti(2) atoms. The occurrence of this phenomenon may be attributed to spatial electronic exclusion between the surface terminations with the saturated N atoms. Hence, we only consider the most stable configuration for its derivatives in the following investigations. After X groups saturation, the Ti(1)–N bond length is elongated to different degrees for various terminations: 2.059 Å (Ti₃N₂F₂), 2.182 Å (Ti₃N₂O₂), and 2.084 Å [Ti₃N(OH)₂], respectively. Phonon dispersion calculation of Ti₃N₂ was carried out to verify its stability and the corresponding result is shown in the Fig. 2. There is no imaginary phonon frequency which means the Ti₃N₂ monolayer is dynamically stable.

The total density of states (TDOS) of Ti₃N₂ and Ti₃N₂X₂ are shown in Fig. 3. For bare Ti₃N₂ (Fig. 3a), the calculation result indicates that it is characterized as a metallic configuration with substantial electron states crossing the Fermi level, which is in agreement with previous work. With regard to surface passivated by X groups, the results demonstrate that the Ti₃N₂X₂ monolayers still maintain metallic properties regardless of the specific adsorption configurations. The metallic character of Ti₃N₂ and Ti₃N₂X₂ monolayers can guarantee their good electrical conductivity as anode materials in rechargeable batteries.

3.2. Metal atom adsorption and diffusion on Ti₃N₂ and Ti₃N₂X₂ (X = F, O, OH) monolayers

We have known that the bare Ti₃N₂ and Ti₃N₂X₂ monolayers possess metal electronic properties. Next we make a thorough research about the behavior of different metal species A (A = Li, Na, Mg) adsorption and diffusion on Ti₃N₂ and Ti₃N₂X₂ (X = F, O, OH) monolayers. The first step is to confirm the most favorable adsorption site. We only discuss the adsorption position on the surface due to the adatoms are embedded in the...
inner layer and cause significant volume expansion of the system. Hence, a $3 \times 3 \times 1$ supercell, which corresponds to a chemical stoichiometry of Ti$_{27}$N$_{18}$X$_{18}$A ($X = F, O, OH$), has been adopted to systematically investigate one atom adsorbed on surface sites in order to avoid interaction between atoms. Three existing adsorption sites are considered in our calculations: (a) the site on top of the Ti(1) atom, (b) the site on top of the N atom, (c) the site on top of the Ti(2) atom (which is top site of F atom for I-Ti$_3$N$_2$F$_2$, top site of O atom for I-Ti$_3$N$_2$O$_2$, top site of OH group for I-Ti$_3$N$_2$(OH)$_2$). The adsorption energy (E_{ad}) of guest adatoms on the monolayer is defined as

$$E_{\text{ad}} = E_{\text{Ti}_{27}\text{N}_{18}\text{X}_{18}\text{A}(F,O,OH)} - E_{\text{Ti}_{27}\text{N}_{18}\text{X}_{18}(F,O,OH)} - E_A$$ (1)

where E_{ad} represents that adsorption energy, $E_{\text{Ti}_{27}\text{N}_{18}\text{X}_{18}\text{A}(F,O,OH)}$ and $E_{\text{Ti}_{27}\text{N}_{18}\text{X}_{18}(F,O,OH)}$ are the total energies of Ti$_{27}$N$_{18}$ or Ti$_{27}$N$_{18}$X$_{18}$ monolayers with and without atoms adsorption, and E_A is the energy per atom in the bulk metal for Li, Na, and the primitive hexagonal Bravais lattice for Mg.

Fig. 4 exhibits the adsorption energy values of different metal atoms adsorbed at different adsorption sites. The blue portion represents negative adsorption energy, it indicates that adatoms are more willing to adsorb on the surface of the monolayer rather than clustering by itself. We observe that all the investigated adatoms can be adsorbed on the surface with little difference in adsorption energy for bare Ti$_3$N$_2$ monolayer. Interestingly, the adsorption energy turns more negative when the surface terminated by O group, which means the interaction between adatoms and Ti$_3$N$_2$O$_2$ monolayer is strengthened. The Mg atom cannot be adsorbed on Ti$_3$N$_2$F$_2$ monolayer, and only Na atom can be adsorbed on Ti$_3$N$_2$(OH)$_2$ monolayer which have a relatively small adsorption energy value. Our calculations showed that the existence of terminal groups conspicuously descend the storage capacity of Ti$_3$N$_2$ except for O group. This is
For bare Ti\(_3\)N\(_2\), the most favorable adsorption position for Li, Na, and Mg are the “c”, “c” and “b” site, respectively. The optimal distances along the \(c\)-axis between Ti(2) and Li/Na are 4.594/4.893 Å, with respect to the distance of N–Mg is 3.264 Å as shown in Fig. 5. For the case of Li adsorption, the average distances of Li–N (the most favorable adsorption position) are 3.357 (for Ti\(_3\)N\(_2\)F\(_2\)) and 3.271 Å (for Ti\(_3\)N\(_2\)O\(_2\)), respectively. We do not consider Ti\(_3\)N\(_2\)(OH)\(_2\) due to Li can’t be adsorbed.

Fig. 4 Adsorption energies of metal atom species A (A = Li, Na, Mg) on (a) Ti\(_3\)N\(_2\), (b) Ti\(_3\)N\(_2\)F\(_2\), (c) Ti\(_3\)N\(_2\)O\(_2\), (d) Ti\(_3\)N\(_2\)(OH)\(_2\) at different surface sites.

Fig. 5 Side views of the optimized structures of (a) Li, (b) Na, (c) Mg adsorbed on Ti\(_3\)N\(_2\) monolayers.

similar to the case of Ti\(_3\)C\(_2\).\(^{34}\) For bare Ti\(_3\)N\(_2\), the most favorable adsorption position for Li, Na, and Mg are the “c”, “c” and “b” site, respectively. The optimal distances along the \(c\)-axis between Ti(2) and Li/Na are 4.594/4.893 Å, with respect to the distance of N–Mg is 3.264 Å as shown in Fig. 5. For the case of Li adsorption, the average distances of Li–N (the most favorable adsorption position) are 3.357 (for Ti\(_3\)N\(_2\)F\(_2\)) and 3.271 Å (for Ti\(_3\)N\(_2\)O\(_2\)), respectively. We do not consider Ti\(_3\)N\(_2\)(OH)\(_2\) due to Li can’t be adsorbed.

Whether the monolayer could continue to acquire a metallic character after adatoms adsorption is a key for its electrode performance. So we further calculated the corresponding DOS (Fig. S2†) to answer this question. In the case of the different metal ions adsorbed Ti\(_3\)N\(_2\) monolayer, the results show that the monolayer remains metallic rather than becoming an insulator. Furthermore, the difference in PDOS exhibited by the same monolayer adsorbing different metal atoms (Li, Na, Mg) is very small (Fig. 6).

The charge and discharge rate of rechargeable batteries is determined by metal ions mobility. Therefore, we continue to study the different metal ions (Li, Na, Mg) diffusion on the surface of Ti\(_3\)N\(_2\) and Ti\(_3\)N\(_2\)X\(_2\) monolayers. We adopted the most stable adsorption configuration as the initial state, and the configuration with adatoms adsorption at the most favorable neighboring adsorption site as the final states. The diffusion energy profiles and the corresponding pathways are shown in Fig. 7, we found that the energy of barriers for bare Ti\(_3\)N\(_2\) are 0.069 eV (Li), 0.041 eV (Na), 0.103 eV (Mg), respectively. The diffusion of Na is faster than that of Li, similar to the result of MnSb\(_2\)S\(_4\).\(^{44}\) For Li and Na, their migration paths are from the “a” site to the nearest neighboring “a” site (Fig. 6a) with one saddle point. The vertical distances between the Ti\(_3\)N\(_2\) monolayer and Li/Na are 2.956 Å/3.348 Å, respectively. The longer distance Na’
means weaker interplay and lower migration energy barrier. For Mg, the migration path is from the “b” site to the nearest neighboring “b’” site passing through the “a” site which can be described as b → a → b’, so we can clearly observed two saddle points. For Ti₃N₂F₂ and Ti₃N₂O₂ monolayers, their migration paths are both b → c → b’ with two saddle points. The diffusion barrier for Ti₃N₂F₂ are 0.298 eV (for Li), 0.180 eV (for Na), and for Ti₃N₂O₂ are 0.198 eV (for Li), 0.181 eV (for Na), 0.578 eV (for Mg), respectively. By comparing the migration energy barriers of different atoms adsorbed on the surface of Ti₃N₂F₂ and Ti₃N₂O₂ monolayers, we summarize the following order from lowest to highest: Na < Li < Mg, the Mg migrates relatively difficult due to its high valence state. Higher migration energy barriers than bare Ti₃N₂ indicate that adatoms must overcome greater resistance on the surface of Ti₃N₂X₂, this can be interpreted as the existence of the surface terminating O or F atoms creates the strong Coulomb resistance. Compared to some traditional anode materials in the case of Ti₃C₂ (0.068 eV for Li, 0.096 eV for Na, 0.118 eV for Ca), Mo₂S (0.21 eV for Li, 0.25 eV for Na, 0.48 eV for Mg), the commercialized graphene (0.32 eV for Li), the values of Ti₃N₂ are relatively low. These low migration energy barrier values suggest that Ti₃N₂ monolayer is a potential candidate as electrode materials.

3.3. Average open circuit voltage and storage capacity of Ti₃N₂ and Ti₃N₂X₂ monolayers

In addition to the intrinsic metallic conductivity and the low diffusion barrier, the average open circuit voltage and storage capacity are also two important characteristics which determine the performance of electrode materials. To estimate the maximum capacity of A atoms adsorption, we still adopt a 3 × 3 supercell with gradually increase the concentration of absorbed adatoms on both sides of the Ti₃N₂ and Ti₃N₂X₂ monolayers. The following half-cell reaction vs. A/A⁺ are assumed during the anode charge/discharge processes:

![Graphical representation of the half-cell reaction](image-url)
The average open circuit voltage (OCV) is directly determined by the difference in total energies before and after adsatoms intercalation, while the influence of volume (ΔV) and entropy (ΔS) are neglected. The change in Gibbs free energy is approximately equal to the change in internal energy at 0 K. Hence, the average open circuit voltage (OCV) is described as the following equation:

$$V_{ave} = \left[E_{Ti_N_2} - E_{Ti_N_2X} \right] + x E_A - E_{Ti_N_2X} \left(X = F, O \right) / \chi(3)$$

where $E_{Ti_N_2}$ and $E_{Ti_N_2X}$ are the total energies of bare Ti$_3$N$_2$, Ti$_3$N$_2X$ without and with cations intercalation, respectively. E_A is the energy of bulk metal and χ stands for the valence number (y = 1 for Li, Na; y = 2 for Mg).

For the bare Ti$_3$N$_2$, we use Li atom adsorption as a typical case to investigate the maximum storage capacity which determines the value of x. The positions of the first Li layer situate at the most stable sites for Li adsorption that is the top sites of Ti(2) atoms, and the corresponding Li layer could form on both sides of Ti$_3$N$_2$ monolayer with symmetry. The second Li layer are at the top sites of N atoms on both sides after the first layer adsorption. The same to Na case, but for Mg case, the first, second and third layer are located at the top sites of N, Ti(2), Ti(1) atoms, respectively. As for Ti$_3$N$_2X$, the order in which all the cations layers are located at the top sites of N, Ti(1), X atoms, respectively. To further investigate the interaction between the host material and the adsorbed cation layer, we define and compute the average layer-by-layer adsorption energy as the following equation:

$$E^\text{layer}_{ad} = \left[E_{Ti_N_2} - E_{Ti_N_2X} \right] / 18 \left(X = F, O \right) / \chi$$

where $E_{Ti_N_2}$ and $E_{Ti_N_2X}$ are the total energies of the supercell Ti$_3$N$_2$/Ti$_3$N$_2X$ with and without n layers, respectively. E_A is the energy per atom in bulk metal and the number ‘18’ represents the totally 18 adsorbed atoms on both sides of each monolayer. The corresponding E^layer_{ad} values are calculated and exhibited in Fig. 7. For Ti$_3$N$_2$F$_2$, the calculations showed that no atoms can completely cover the first layer so we don’t consider showing the results in Fig. 8. The calculated E^layer_{ad} for the first and second layers on bare Ti$_3$N$_2$ are −0.581, 0.102 eV for Li$^+$ and −0.506, 0.055 eV for Na$^+$, respectively. The positive E^layer_{ad} of the second layer indicates that the adsorbed atoms attain saturation and begin to occur cluster formation rather than regularly adsorb on the surface of Ti$_3$N$_2$ monolayer. Therefore, the $3 \times 3 \times 1$ supercell could accommodate up to 18 Li atoms and 18 Na atoms, which the corresponding chemical stoichiometry are Ti$_3$N$_2$Li$_3$ and Ti$_3$N$_2$Na$_3$, respectively. The evaluated average OCVs and theoretical specific capacities are 0.58 V, 312 mA h g$^{-1}$ for Ti$_3$N$_2$Li$_2$ and 0.51 V, 312 mA h g$^{-1}$ for Ti$_3$N$_2$Na$_2$. Compared with the case of Ti$_3$C$_2$Li$_2$ (0.62 V, 320 mA h g$^{-1}$), the average intercalation potentials for Ti$_3$N$_2$Li$_2$ are essentially lower and the corresponding theoretical specific capacity almost the same. But for Mg, further calculations showed that there is a slightly negative $E^\text{layer}_{ad} (−0.085$ eV) up to entirely cover the third layer, which the chemical stoichiometry is Ti$_3$N$_2$Mg$_6$ and the corresponding capacity is 1874 mA h g$^{-1}$. It suggests that the strong interaction between the Ti$_3$N$_2$ monolayer and Mg layers.

For the functionalized Ti$_3$N$_2$ monolayers, we found that the Ti$_3$N$_2$F$_2$ monolayer was severely deformed when the supercell extremely accommodate up to 12 Li atoms on both sides, and a positive adsorption energy value would occur when it accumulates 18 Na atoms, so the corresponding chemical stoichiometry are Ti$_3$N$_2$F$_2$Li$_{23}$ and Ti$_3$N$_2$F$_2$Na$_{23}$ at the maximum capacity. The average OCVs and theoretical specific capacities are 0.60 V, 85 mA h g$^{-1}$ for Ti$_3$N$_2$F$_2$Li$_{23}$ and 0.06 V, 85 mA h g$^{-1}$ for Ti$_3$N$_2$F$_2$Na$_{23}$. For Ti$_3$N$_2$O$_2$, all the metal ions are demonstrated can completely cover the first layer, but can’t achieve the second layer adsorption except for Mg case. The computed OCVs are 1.100 V (Ti$_3$N$_2$O$_2$Li$_{18}$) and 0.721 V (Ti$_3$N$_2$O$_2$Na$_{18}$), and the corresponding theoretical capacities are both 258 mA h g$^{-1}$. Mg atom can achieve multilayer adsorption that it can entirely cover the third layer, the OCVs and theoretical specific capacities are 0.20 V, 1714 mA h g$^{-1}$ for Ti$_3$N$_2$O$_2$Mg$_{23}$. The capacities of Mg adsorbed on Ti$_3$N$_2$F$_2$ monolayer are slightly decline.

Fig. 8 Adsorption energies of different adsorption layers on (a) Ti$_3$N$_2$, (b) Ti$_3$N$_2$O$_2$ monolayers.
compared to Ti$_3$N$_2$ monolayer. The presence of surface F/OH groups significantly lower the theoretical capacities as compared with the bare Ti$_3$N$_2$ monolayer and the increased Li occupancy will lead to the surface instability and thus reduce the reversibility and cyclic stability of Ti$_3$N$_2$ anodes, so should avoid it as much as possible during the experimental synthesis.

4. Conclusions

In summary, we have investigated the electronic properties of Ti$_3$N$_2$ and its F/OOH functionalized derivatives and their Li or non-Li storage capabilities based on DFT calculations. Our calculations exhibit that the bare Ti$_3$N$_2$ and Ti$_3$N$_2$X$_2$ (X = F, OH, O) monolayers possess metallic characters whether or not atoms adsorption on it. The metallic properties guarantee strong electronic conductivity when the materials are applied as the anode material. Among them, the bare Ti$_3$N$_2$ monolayer could represent excellent electrochemical properties for different metal-ion adsorption. The corresponding results are various such as the relatively lowest diffusion barrier (0.041 eV) for Na-ion batteries and the highest theoretical capacity (1874 mA h g$^{-1}$) for Mg-ion batteries. However, we also observed that the presence of functional groups significantly impedes ion migration and reduces theoretical capacity except for Ti$_3$N$_2$OH. Our calculations suggest that bare Ti$_3$N$_2$ has great potential as Li-ion and non-Li-ion batteries anode material with its metallic property, low diffusion barrier and high theoretical capacity through the modification of functional groups.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was supported by the National Natural Science Foundation of China under No. 51574090 and No. 21703036.

References

1 B. Dunn, H. Kamath and J.-M. Tarascon, Science, 2011, 334, 928.
2 H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, Prog. Nat. Sci., 2009, 19, 291–312.
3 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nature, 2000, 407, 496–499.
4 P. Simon, Y. Gogotsi and B. Dunn, Science, 2014, 343, 1210.
5 Y. Wang, Z. jiao, S. Ma and Y. Guo, J. Power Sources, 2019, 413, 117–124.
6 M. Mortazavi, C. Wang, J. Deng, V. B. Shenoy and N. V. Medhekar, J. Power Sources, 2014, 268, 279–286.
7 V. Palomares, M. Casas-Cabanias, E. Castillo-Martinez, M. H. Han and T. Rojo, Energy Environ. Sci., 2013, 6, 2312–2337.
8 M. D. Slater, D. Kim, E. Lee and C. S. Johnson, Adv. Funct. Mater., 2013, 23, 947–958.
9 T. Ichitsubo, T. Adachi, S. Yagi and T. Doi, J. Mater. Chem., 2011, 21, 11764–11772.
10 B. Liu, T. Luo, G. Mu, X. Wang, D. Chen and G. Shen, ACS Nano, 2013, 7, 8051–8058.
11 A. L. Lipson, B. Pan, S. H. Lapidus, C. Liao, J. T. Vaughg and B. J. Ingram, Chem. Mater., 2015, 27, 8442–8447.
12 Y. J. He, J. F. Peng, W. Chu, Y. Z. Li and D. G. Tong, J. Mater. Chem. A, 2014, 2, 1721–1731.
13 Y. Jing, Z. Zhou, C. R. Cabrera and Z. Chen, J. Mater. Chem. A, 2014, 2, 12104–12122.
14 K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, Nature, 2012, 490, 192.
15 Z. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li and Y. Cui, Nat. Nanotechnol., 2015, 10, 980.
16 Y. Li, D. Wu, Z. Zhou, C. R. Cabrera and Z. Chen, J. Phys. Chem. Lett., 2012, 3, 2221–2227.
17 D. B. Putungan, S.-H. Lin and J.-L. Kuo, ACS Appl. Mater. Interfaces, 2016, 8, 18754–18762.
18 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol., 2012, 7, 699.
19 J. Wang and Y. Zhou, Annu. Rev. Mater. Res., 2009, 39, 415–443.
20 E. Yang, H. Ji, J. Kim, H. Kim and Y. Jung, Phys. Chem. Chem. Phys., 2015, 17, 5000–5005.
21 J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, M. G. Schwab and K. Kim, Adv. Funct. Mater., 2014, 24, 12122.
22 M. Naguib, J. Halim, J. Lu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, Adv. Mater., 2011, 23, 4248–4253.
23 M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M. W. Barsoum, ACS Nano, 2012, 6, 1322–1331.
24 M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi and M. W. Barsoum, J. Am. Chem. Soc., 2013, 135, 15966–15969.
25 Y.-M. Li, W.-G. Chen, Y.-L. Guo and Z.-Y. Jiao, J. Alloys Compd., 2019, 778, 53–60.
26 Y. Li, Y. Guo, W. Chen, Z. Jiao and S. Ma, J. Mater. Sci., 2019, 54, 493–505.
27 P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P. L. Walsh, M. Zhao, V. B. Shenoy, M. W. Barsoum and Y. Gogotsi, Nanoscale, 2016, 8, 11385–11391.
28 B. Delley, J. Chem. Phys., 1990, 92, 508–517.
29 B. Delley, J. Chem. Phys., 2000, 113, 7756–7764.
30 K. D. Pham, N. N. Hieu, H. V. Phuc, I. A. Fedorov, C. A. Duque, B. Amin and C. V. Nguyen, Appl. Phys. Lett., 2018, 113, 171605.
31 S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
34 Q. Tang, Z. Zhou and P. Shen, *J. Am. Chem. Soc.*, 2012, **134**, 16909–16916.

35 A. Togo, F. Oba and I. Tanaka, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2008, **78**, 134106.

36 X. Chen, Z. Kong, N. Li, X. Zhao and C. Sun, *Phys. Chem. Chem. Phys.*, 2016, **18**, 32937–32943.

37 H. Pan, *J. Mater. Chem. A*, 2015, **3**, 21486–21493.

38 Y. Li, D. Wu, Z. Zhou, C. R. Cabrera and Z. Chen, *J. Phys. Chem. Lett.*, 2012, **3**, 2221–2227.

39 M. Mortazavi, C. Wang, J. Deng, V. B. Shenoy and N. V. Medhekar, *J. Power Sources*, 2014, **268**, 279–286.

40 S. Q. Yang, D. X. Li, T. R. Zhang, Z. L. Tao and J. Chen, *J. Phys. Chem. C*, 2012, **116**, 1307–1312.

41 X. Fan, W. T. Zheng and J.-L. Kuo, *ACS Appl. Mater. Interfaces*, 2012, **4**, 2432–2438.

42 M. K. Aydinol, A. F. Kohan, G. Ceder, K. Cho and J. Joannopoulos, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1997, **56**, 1354–1365.

43 Y. S. Meng and M. E. Arroyo-de Dompablo, *Energy Environ. Sci.*, 2009, **2**, 589–609.

44 Z. Zhang, Y. Zhang, Y. Li, J. Lin, D. G. Truhlar and S. Huang, *Chem. Mater.*, 2018, **30**, 3208–3214.