Lipid Droplets in Health and Disease

Gizem Onal¹, Ozlem Kutlu², Devrim Gozuacik³ and Serap Dokmeci Emre¹*

Abstract

Lipids are essential building blocks synthesized by complex molecular pathways and deposited as lipid droplets (LDs) in cells. LDs are evolutionary conserved organelles found in almost all organisms, from bacteria to mammals. They are composed of a hydrophobic neutral lipid core surrounded by a phospholipid monolayer membrane with various decorating proteins. Degradation of LDs provide metabolic energy for divergent cellular processes such as membrane synthesis and molecular signaling. Lipolysis and autophagy are two main catabolic pathways of LDs, which regulate lipid metabolism and, thereby, closely engaged in many pathological conditions. In this review, we first provide an overview of the current knowledge on the structural properties and the biogenesis of LDs. We further focus on the recent findings of their catabolic mechanism by lipolysis and autophagy as well as their connection regarding the regulation and function. Moreover, we discuss the relevance of LDs and their catabolism-dependent pathophysiological conditions.

Keywords: Lipid droplets, lipolysis, lipophagy, chaperone-mediated autophagy

Background

Many living organisms store lipids in their cells to produce metabolic energy, in case of insufficient energy sources. Cells preserve lipids by converting them into neutral lipids, such as triacylglycerides (TAG) and sterol esters (SE). These type of lipids are deposited in lipid droplets (LDs) which are also termed as adiposomes, lipid bodies or oil bodies [1]. For a long time, LDs were accepted as inert intracellular vesicles storing neutral lipids in all living organisms. However, recent advances in functional analysis techniques, imaging methods, lipidomics and proteomics technology offer scientists a better understanding of biological properties and functions of LDs. In the last couple of years, many structural and functional proteins were identified and characterized on the surface of LDs, and they were named as perilipins (PLINs) [2]. In addition to their role in energy metabolism, LDs play a role in various cellular events, ranging from protein degradation, sequestration of transcription factors and chromatin components to generation of lipid ligands for certain nuclear receptors, and they serve as fatty acid trafficking nodes [3–5]. Moreover, LDs might be hijacked by various pathogens. Due to these diverse functions, abnormalities of LDs were associated with many pathological conditions [6–8].

The catabolism of LDs into free fatty acids (FAs) is a crucial cellular pathway that is required to generate energy in the form of ATP, and to provide building blocks for biological membrane and hormone synthesis. Lipolysis is a biochemical catabolic pathway that relies on the direct activation of LD-associated lipases, such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL) [9, 10]. Together with regulatory protein factors ATGL activator (comperative gene identification-58, CGI-58) and ATGL inhibitor (G0/G1 switch protein 2, G0S2), these lipases constitute the basis for the lipolytic machinery in cells.

Autophagy is one of the two major degradation pathways in cells supporting cell survival by recycling metabolic components under stress conditions (Ubiquitin-proteasome system being the other pathway). It is initiated by sequestering cytosolic organelles or macromolecules in double-membrane vesicles and delivering them to lysosomes for degradation by the lytic enzymes therein. Cellular building blocks are then released back to cytosol and recycled to ensure cellular homeostasis [11, 12]. Basic mechanism of autophagy is classified into three different types: Macroautophagy, chaperone-mediated autophagy (CMA) and microautophagy. Macroautophagy is a well-studied pathway, targeting large substrates such as toxic aggregates and degenerated organelles in a selective or non-selective manner [13]. Chaperone-mediated autophagy (CMA) is a selective form of autophagy, targeting specific
proteins through the recognition activity of chaperone protein heat shock cognate 70 (Hsc70). Hsc70 delivers the substrates to the lysosomal lumen via lysosomal-associated protein 2a (LAMP2a) [14, 15]. Microautophagy degrades cytoplasmic cargos through a organized invagination of lysosomal membranes and direct engulfment [16]. Recent investigations defined another selective form of macroautophagy termed “lipophagy”. In this autophagy form, LD degradation is controlled by the association of membrane GTPase Rab7 with LDs [17, 18]. Moreover, a significant role of CMA was recently identified in selective degradation of a unique LD-coat protein family called PLINs [19, 20]. Therefore, autophagy pathways play a crucial role in lipid metabolism and the number of publications in this relatively new field is growing exponentially.

In contrast with the traditional view that LDs are simple lipid storage vesicles, because of their dynamic nature and multifunctionality they are today accepted as a distinct intracellular organelles. Recent studies underline physiological importance of these multifunctional organelles, particularly in the context of lipolysis and selective autophagy mechanisms of lipophagy and CMA. Here, we will first summarize biological properties of LDs and then focus on recent findings on molecular regulation of lipolytic and autophagic mechanism. Furthermore, we will discuss the relevance of LDs and related catabolic mechanisms for pathophysiology.

**Structure of the lipid droplets**

**Phospholipid composition**

Being different from other membrane-enclosed organelles, LDs have a unique structure with a hydrophobic core of neutral lipids surrounded by a monolayer phospholipid membrane, separating hydrophobic neutral lipids from the aqueous cytoplasmic environment [21]. In the hydrophobic core of LDs, neutral lipids, predominantly TG and SE, are stored at various ratios (Fig. 1). In white adipocytes, TG are primarily stored in LDs as lipid esters, whereas in steroidogenic cells, SE are the main components [22]. Also, depending on the cell type, many other endogenous neutral lipids such as retinyl esters, ether lipids, and free cholesterol are stored in LD cores [23–25]. Interestingly in some cell types, electron microscopy data revealed that membrane-like structures containing ribosomal units were also extending within the core of LDs [26, 27].

In mammalian cells, the main constituent (up to 60%) of LD monolayer membranes is phosphatidylcholine (PC) that is followed in abundance by phosphatidyethanolamine (PE), phosphatidylserine (PS), sphingomyelin (SM) and lyso forms of PC and PE [28–30]. Phosphatidic acid and free cholesterol are also present in LD surfaces in minor amounts [21, 31].

Although LD formation was believed to take place between the leaflets of endoplasmic reticulum (ER), phospholipid composition of LD membrane differs from that of ER and other organelles [21]. The unique phospholipid membrane composition primarily affects LD synthesis [32], maturation (size) [33, 34] and degradation via lipophagy mechanisms [35, 36]. Changes in LD membrane phospholipid ratios under physiological conditions in various cell types indicate that regulation of phospholipid composition is crucial for homeostasis of this organelle.

**Surface protein structure**

Besides membrane phospholipid compositions, LD surface proteins are other factors regulating homeostasis and intracellular interactions of LDs. Membrane surface of LD is decorated with several structural and functional proteins [37]. Proteomics studies on LDs in a variety of organisms including bacteria [38–40], plants [41, 42], yeasts [43, 44], insects [45, 46] and mammals [47–49] revealed that over two hundred different proteins are localized to the surface of LDs. Even though LD proteomics studies that were performed in various cell types and organisms resulted in the discovery of different profiles, identified proteins seem to function in common pathways. These proteins were categorized into several distinct functional classes (Table 1).

In mammalian LDs, predominant proteins are the members of the PAT protein family, an acronym representing perilipin (PLIN), adipocyte differentiation-related protein (ADRP; also called as adipophilin), and TIP47 (tail-interacting protein of 47 kDa) proteins. Members of the PAT family share sequence similarity and the ability to bind intracellular LDs, suggesting that they derived from a common ancestral gene [50]. The most studied member of the PAT family is PLIN, a protein that regulates the access of lipases to neutral lipids in the core of
| Protein Group                  | Short Name | Long Name                                      | References                              |
|-------------------------------|------------|------------------------------------------------|-----------------------------------------|
| PAT Family                    | PLIN       | Perilipin                                       | [49, 160]                               |
| ADRP                          | Adipose differentiation-related protein | [24, 27, 48, 161–163]                      |
| TIP47                         | Tail-interacting protein of 47 kD     | [48, 160, 163–165]                          |
| Lipid & Energy Metabolism     | HSL        | Hormone sensitive lipase                        | [49, 160]                               |
| ATGL (PNPLA2)                 | Adipose triglyceride lipase           | [24, 162, 166]                            |
| CGI-49                        | CGI-49 protein                           | [24, 27, 48, 49, 165]                     |
| CGI-58                        | CGI-58 protein                           | [24, 27, 49, 160, 162]                    |
| Mgll                          | Monoglyceride lipase                    | [97, 163]                                |
| Tgh                           | Triacylglycerol hydrolase               | [167]                                    |
| LACS3–4                      | Long-chain-fatty–CoA ligase 3–4         | [24, 48, 162, 165]                        |
| H10Se3                       | Sterol-4-carboxylate 3-dehydrogenase    | [48, 163–165]                            |
| SE                            | Squalene monoxygenase                   | [27, 162, 168]                           |
| Lss                           | Lanosterol synthase                     | [49, 160, 169]                           |
| Cplm2                         | Cytosolic phospholipase A2              | [24, 169, 170]                           |
| Pcyt1a                        | Phosphocholine cytidylyltransfer A      | [169, 171, 172]                          |
| Md2                           | Malate dehydrogenase                    | [97, 173, 174]                           |
| Cyb5r3                        | NADH-cytochrome b5 reductase            | [24, 49, 162, 173]                       |
| Dhhs1                         | Dehydrogenase/reductase SDR member 1    | [24, 49, 162, 173]                       |
| Dhhs3                         | Short-chain dehydrogenase/reductase 3   | [92, 169, 173]                           |
| Nsdhl                         | NAD(P)H steroid dehydrogenase-like      | [163, 169, 173]                          |
| Acs1L–3                      | Long-chain acyl-CoA synthetase 1–3      | [24, 49, 175]                            |
| Ldhah                         | LD-associated hydrolase                 | [173, 176, 177]                          |
| Signalling                    | CHP       | Calcium-binding protein p22                    | [24, 164, 165, 178]                     |
| Cav1                          | Caveolin1                                     | [24, 49, 162]                            |
| METTL7A                       | Methyltransferase-like protein 7A        | [92, 174, 178]                           |
| Membrane trafficking proteins | VIM       | Vimentin                                        | [24, 49, 160, 162, 171]                 |
| ACTB                          | Actin, cytoplasmic 1/ α-Actin            | [24, 27, 163, 165]                       |
| Rab10                         | Ras-related protein Rab-10              | [24, 27, 48, 162, 165]                    |
| Rab11A                        | Ras-related protein Rab-11A             | [24, 162, 164]                           |
| Rab 1a                        | Ras-related protein Rab-1a              | [24, 162, 164, 165]                      |
| Rab 1b                        | Ras-related protein Rab-1b              | [48, 164, 165]                           |
| Rab 14                        | Ras-related protein Rab-14              | [24, 49, 160, 162, 164]                  |
| Rab 18                        | Ras-related protein Rab-18              | [24, 49, 162, 164, 165]                  |
| Rab 5b                        | Ras-related protein Rab-5b              | [24, 162, 165, 166]                      |
| Tubulin                       | Tubulin                                      | [24, 49, 163, 178]                       |
| Miscellaneous                 | Stomatin                         | Stomatin                                      | [162, 165]                            |
| HSPA5                         | 78 kDa glucose- regulated protein       | [24, 49, 160, 162–165]                   |
| Hspa1a                        | Heat shock 70 kDa protein 1A             | [24, 49, 161]                            |
| FAF2                          | FAS-associated factor 2                 | [24, 48, 162, 166]                       |
| Ancient ubiquitous protein BIP| Ancient ubiquitous protein BiP          | [24, 49, 160, 162, 165, 166]             |
| CANX                          | Calnexin                                     | [49]                                    |
| HSP 70                        | Heat shock protein 70                   | [49, 161, 165]                           |
| Ribophorin I                  | Ribophorin I                              | [49, 160]                                |
| ApoB                          | Apolipoprotein B                           | [174]                                    |
LDs, hence controlling lipid homeostasis. Consistently, elevated basal lipolysis levels were observed in adipocytes obtained from PLIN knockout mice models [51].

LDs also host many other proteins-related to lipid homeostasis. These proteins can be classified according to their functions, including lipid biogenesis (long chain fatty acid CoA ligases, lanosterol synthase, squalene epoxidase), maintenance of intracellular lipid metabolism (long chain fatty acid CoA ligases) and lipid degradation (patatin-like phospholipase domain containing protein 2 (PNPLA2), CGI-58) [52].

In addition to PAT proteins and lipid homeostasis-related proteins in LDs, there are several groups of proteins that are called ‘refugee proteins’ which seem not to be relevant to the known functions of LDs [53]. These proteins are categorized as signaling proteins, membrane trafficking proteins, chaperons and proteins-associated with cellular organelles (Table 1). Signaling-related proteins are classes of proteins that accumulate on the surface of LDs. Major signalling proteins such as, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and Lyn have been shown to localize on LD surfaces [54, 55]. Moreover, caveolins are another group of LD proteins that specifically form a coat by making invaginations and surrounding cellular membranes called caveolae. Caveolae function in endocytosis, signal transduction, cholesterol transport and growth control [33, 56, 57]. Caveolin-1 and caveolin-2 proteins were shown to reside on the surface of LDs. They generate membrane domains where they function as regulators of signaling proteins [58, 59]. Discovery of membrane trafficking proteins on the surface of LDs and the fact that interact with other cellular compartments through intacellular motility, suggest that LDs are distinct organelles. Membrane trafficking-related proteins consist of five subgroup proteins: Small GTPases governing vesicle formation and motility; motor proteins such as kinesin and myosin that carry LDs on the cytoskeleton; soluble NSF attachment receptor (SNARE) proteins mediate membrane docking and fusion on LDs; vesicular traffic proteins (such as ARFs and COPs) that regulate cargo sorting and vesicle budding; and other membrane trafficking proteins of miscellaneous functions [4].

### LD Biogenesis

LD biogenesis is stimulated upon an increase in intracellular free FA levels. In order to prevent lipotoxicity, excessive free fatty acids are converted into neutral lipids and stored in cytosolic LDs. However, recent studies suggested that LDs are not only cytoplasmic but also can be found in the nuclei [60, 61]. Although the morphology of these ‘nuclear LDs’ is similar to their cytoplasmic counterparts, their biogenesis mechanisms remain unexplained. Nuclear LDs are thought to regulate nuclear lipid homeostasis and modulate signaling through lipid molecules [3].

Due to the unique hydrophobic/hydrophilic (amphipathic) structure of LDs, mechanisms of biogenesis of this organelle in the cell attracted much attention and several hypotheses were proposed [62–64]. Being different from most self-replicating organelles, LDs are mainly formed de novo. In addition, LDs could be derived via fission of pre-existing LDs [65]. In prokaryotes, neutral lipid accumulation seems to be initiated at specific lipid domains of plasma membrane and ends in the formation of cytoplasmic LDs [62]. On the other hand, as a eukaryotic LD biogenesis mechanism, there is evidence that LD formation occurs within the leaflets of ER phospholipid bilayer in discrete steps involving neutral lipid synthesis, progressive neutral lipid accumulation in the ER and cytosolic droplet formation. Increased volume of accumulated neutral lipid between the ER bilayer exceeds the solubility limits and LDs are thought to be ‘oiled out’ from the ER bilayer [66]. Consistent with the hypothesis, many electron microscopy studies in various cell types showed that cytosolic LDs are tightly associated with ER [67, 68] (Fig. 2).

#### Neutral lipid synthesis

Neutral lipid synthesis is regulated by complex pathways involving lipid metabolism enzymes and structural proteins that are permanently or transiently located to the ER and LDs. The first step of neutral lipid synthesis requires free FA activation. As free FA are chemically inert, their activation step is critical for LD biogenesis pathway. In mammalian cells, acyl-coA synthetase (ACS) enzymes activate long chain FAs to acyl-coA by esterifying with coenzyme A (CoA) (Fig. 2a) [69]. De novo TAG synthesis occurs in a four-step pathway involving glycerol-3-phosphate O-acyltransferase (GPAT), 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT), phosphatidic acid phosphatase (PAP) (or lipin), and diacylglycerol acyltransferase (DGAT) enzymes. At the last step of the pathway,
FAs, firstly activated to acyl-CoA, are converted to TAGs through DGAT1 and DGAT2 enzymes in mammalian cells. In addition, some LDs store mainly sterol esters (SE) specifically in macrophages, adrenocortical cells, ovarian and testicular interstitial cells. The synthesis of SE is conducted by acyl-CoA cholesterol O-acyltransferases (ACAT1 and ACAT2). The neutral lipid biosynthesis enzymes DGAT1, ACAT1, and ACAT2 were shown to localize on ER domains in mammalian cells [70–72].

**LD Formation from ER**

As intracellular FA promote LD formation, synthesized neutral lipids form a 'lens' between the leaflets of ER bilayer. Biophysical and in silico predictions suggest that, when TG holding limit of bilayer membranes is reached [23], the lens between ER bilayers is 'oiled out' and leads to the formation of nascent LDs. However, it is still an open question how phospholipid monolayer membrane of LDs is derived from ER bilayer membranes. Walther et al. claimed two models about LDs leaving ER membranes (Fig. 2b) [10]. The most widely accepted model states that neutral lipid lens buds out from the ER together with the outer leaflet of the bilayer membrane. This process is thought to be driven by structural LD associated proteins such as PAT proteins in a way that PAT proteins could mediate budding at specific domains of ER bilayer membrane [10]. Their suggested second model states that LDs are excised from both leaflets of the ER membrane bilayer as a bicelle (a lipid monolayer vesicle formed by the fusion of the tips of the outer and inner membranes of the ER with accumulated lipid lens within) [10]. In addition to these models, Fujimoto et al. suggested that LDs are excised from ‘both leaflets of the ER membrane bilayer as a bicelle’ by hatching mechanism (bilayer budding and monolayer membrane formation because of micelle-like isolation of the inner membrane leaflet in the LD lumen) (Fig. 2b) [22]. Although neither of these models rely on solid data, they could hypothetically explain how hydrophobic cores of LDs are surrounded by phospholipid monolayer membranes that are derived from ER membranes and how some ER membrane proteins are targeted to newly formed LDs.

---

**Fig. 2** Neutral Lipid Synthesis, Lipid Droplet (LD) Formation and Growth. **a** Metabolic pathway of triglyceride (TG) and sterol ester (SE) synthesis, **b** LD Formation from Endoplasmic Retikulum (ER) by Neutral Lipid Synthesis Enzymes (NLSE). Left panel shows budding model of LDs from ER; middle panel shows bicelle formation model of LDs originating from ER; right panel shows hatching model of LDs from ER.
Growth of lipid droplets: the size matters

Once LDs are synthesized, they typically keep growing because of the excessive amount of intracellular FA in cells and reach a final size. The size of LDs varies within a wide range (0.4–100 μm) in different cell types [73]. Even in the same cell, the size of LDs may dramatically differ under changing pathophysiological conditions. Recent studies have shown that subpopulations of LDs may differ in terms of size, morphology, and function within the same cell [74, 75]. Many proteins (e.g. Fsp27, seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

One possible mechanism is growth of LDs through fusion of highly mobile smaller LDs [76, 77]. Although there is conspicuous skepticism in the literature, LD fusion rates are high enough to allow LD growth [78], RNAi knockdown of fusion mediator SNARE proteins prominently decreased fusion rates and size of LDs [76]. In addition, mutant form of the yeast homologue of seipin, FITM2 and perilipin1) and lipid factors (e.g. phosphatidylycerol and phosphatidic acid) have been shown to be involved in LD growth mechanisms [73].

The catabolic pathways of LDs

As the LDs reside at the center of cellular lipid and energy homeostasis, their catabolism is strictly under the control of hormones and activation of enzymes. So far, LDs are known to break down mostly by lipolysis, however, recent discoveries that showed a molecular connection between lipolysis and autophagy mechanisms led to the identification of the involvement of selective autophagic forms, lipophagy and CMA, in LD catabolism.

Lipolytic hydrolysis

Under fed conditions, LDs store TAGs mainly in adipose tissues and hydrolysis of ester bonds between long chain FAs and glycerol backbone in TAGs is called “lipolysis”. During the first step of lipolysis, protein kinase A (PKA) phosphorylates one of the PAT protein family member, PLIN1, and leads to its proteasomal degradation [94]. This, results in the release of ATGL activator protein CGI-58, which then initiates TAG breakdown via activated ATGL [95, 96]. ATGL selectively catalyzes the first step of TAG hydrolysis to generate diacylglycerols (DAGs) and free FAs [97]. The second step of lipolysis is depend on the activation of hormone sensitive lipase (HSL) which is a multifunctional enzyme that is capable of hydrolyzing both the first and the second step of lipolysis. HSL hydrolyzes DAGs and produce monoacylglycerol
(MAG) and FAs [98]. Within the lipolysis cascade, HSL functions as a rate-limiting enzyme for DAG catabolism [99, 100]. In the last step of lipolysis, MAGs are released into the cytosol and eventually cleaved by MGL to generate glycerol and FA [101] (Fig. 3).

Under nutrient deprivation, products of lipolysis are secreted from the adipose tissue to the periphery via bloodstream, which are then used for β-oxidation and ATP production. In contrast, in non-adipose tissues, mitochondria or peroxisomes can directly oxidize products of lipolysis through β-oxidation and release acetyl-CoA [102].

**Lipophagy**

Lipophagy was first described in mouse hepatocytes under starvation [103]. It was shown that LDs were mobilized in order to generate free FAs. Pharmacological or genetic inhibition of lipophagy resulted in elevated TAG concentrations, increasing concomitantly LD numbers and size. Electron microscopy data confirmed sequestration of LDs by double-membraned autophagosomes that labeled positive with the autophagy marker LC3 (Microtubule-Associated Proteins 1A and 1B, Light Chain 3). Intriguingly, LC3 as well as PLIN1 and PLIN2 proteins were found in LDs and lysosomes that were isolated from starved livers. In addition, LDs were shown to colocalize with lysosomes, indicating a role for lysosomes in lipid turnover via LDs break down [103]. LDs were shown to be selectively engulfed by autophagosomes that was followed by the fusion of autophagosomes with lysosomes (autolysosomes) for degradation. Therefore, lipophagy is an LD-selective type of macroautophagy. In line with that, inhibition of the small GTPase dynamin-2 caused the accumulation of LDs in autolysosomes [104] (Fig. 4a).

Substrate labeling is a general mechanism used by cellular degradation machineries. So, how does lipophagic machinery preferentially recognize LDs as substrates? Proteomic analyses of LDs from different organisms showed that membrane GTPase Rab7 is associated with LDs and suggested a universal role of Rab7 in the regulation of LD docking and degradation [105]. Involvement of GTPases in endosome-autophagosome interactions [106] is made Rab7 a strong candidate for selection of LDs as lipophagic substrate. Activation of lipophagy in starved hepatocellular cells lead to significant increase in Rab7-LD association while Rab7 mutants, defective in binding to Rab7-interacting lysosomal protein (RILP) failed to promote lipophagy [18]. Furthermore, starvation-activated Rab7 was shown to lead to the recruitment of multivesicular bodies to the LD-autophagosome complex and induced the formation of amphisomes through fusion of autophagosomes and endosomes [18]. In this study, microscopy data revealed an interaction between LDs, autophagosomes and lysosomes, which is consistent with the concept that LDs do not fuse directly with lysosomes [103]. In addition to hepatocytes, the essential role of Rab7 for autolysosome-mediated LD degradation during hormone-stimulated lipophagy was also shown in adipocyte cells. In these cells, LD-associated PLIN1 protein inhibited lipophagy by blocking Rab7 binding to the LD surface [18]. Consequently, Rab7 was identified as a protein regulating LD docking via its effector protein RILP and FYVE and coiled-coil domains containing protein 1 (FYCO1) that directly connects the cargo to LC3 proteins on autophagosome membranes [18].

In adipocytes, the membrane curvature protein Bif-1 was found as a novel regulator protein for lipophagy [107]. Induction of lipophagy has been shown to promote Bif-1-dependent degradation of LD-associated PLIN1, and deficiency of this protein led to decreased TAG hydrolysis, indicating that Bif-1 is essential for lipophagy-dependent PLIN1 degradation, and thereby LD break down [107]. Note that, membrane curvature varies according to LD size, however, whether Bif-1 affects LD targeting by lipophagy through its effects on LD size, is still unknown.

Although the role of lipophagy in LD degradation was first described in hepatocytes [103, 108], several recent studies shown activation of this mechanism in various cell types, such as neurons [109, 110], glial cells [109], foam cells [111], enterocytes [112], T cells [113], fibroblasts, adipocytes [114] and prostate carcinoma cells [115]. Moreover, lipophagy was demonstrated in yeast [116], C. elegans [117] and some fungus species [118]. Indeed, mechanisms that trigger lipophagy may vary in each cell type, and it could be context-dependent. It is likely that cells adapted lipophagy mechanisms in order to better deal with extreme conditions, such as
lipotoxicity, nutrient deprivation etc. However, the core components that are essential for lipophagy seem to be conserved in most cell types.

**Chaperone-mediated autophagy (CMA)**

More recently, involvement of another selective type of autophagy, CMA, in degradation of LD-associated PLINs proteins, PLIN2 and PLIN3 was described [19]. In this context, activation of CMA was shown to induce PLIN2 and PLIN3 turnover, which caused recruitment of ATGL and lipophagic protein ATG, leading to the degradation of LDs. Consistently, inhibition of PLINs degradation in CMA-deficient model systems, resulted in both reduced ATGL recruitment, and lipophagy activation gave rise to LD accumulation. Therefore, functional CMA was shown to be essential for the removal of LD-associated proteins, which in turn led to the accumulation of lipases and lipophagy proteins on specific regions of LDs [19] (Fig. 4b).

**Cross-talk between lipolysis and lipophagy/CMA mechanisms**

Even though basic molecular mechanisms of lipolysis, lipophagy and CMA are different, recent investigations indicate that these independent pathways actually cross-talk. For example, ATG2A, an essential autophagy protein was also found on LDs, and genetic knock-down of ATG2A and ATG2B resulted in defective lipophagy as well as LD accumulation [119]. A recent study with starved mouse embryonic fibroblasts (MEF) demonstrated that FAs derived from LDs end-up in mitochondria which is required only for ATGL-dependent lipolysis activation not for lipophagy [120]. In the same study, size and number of LDs increased as result of autophagic degradation of other cellular membrane components, confirming that overall lipid content that recycled via autophagy, contributed to the growth of LDs. As mentioned before, Bif-1 regulating curvature of various membranes including autophagic membranes, was identified as a protein involved in lipophagy regulation in adipose tissues [107]. PLIN2 and PLIN3 are CMA substrates, and they contribute to the cross-talk between lipolysis and CMA. Promotion of ATGL and lipophagy proteins by CMA activation was shown to trigger not only lipophagy but also lipolysis, indicating that PLIN2 and PLIN3 undergo CMA-mediated degradation before the initiation of lipolysis [19]. Moreover, lipolysis has been shown to depend on PLIN2 phosphorylation by AMPK, which occurred after the interaction of PLIN2 with CMA chaperone protein Hsc70 [20]. A complex cross-talk between lipolysis and lipophagy has been described in brown adipose tissue, in which both central nervous system (CNS) and local cytosolic lipases were involved. Here, the autophagosome marker LC3 recruited ATGL and HSL to LDs, supporting coordinated regulation of
lipolysis by both CNS and peripheral protein-protein interactions [121].

On the other hand, the existence of a reverse relationship between lipolysis and lipophagy has also been shown in which lipolysis-dependent LDs breakdown regulated autophagosome formation. LDs was shown in close proximity of autophagosomes with transient ‘kiss and run’ interactions contributing to autophagosome biogenesis [122]. In this process, patatin-like phospholipase domain containing protein-5 (PNPLA5), a lipase localized on the surface of LDs, was shown to be needed for optimal initiation of autophagosome formation by generating DAG, a building block for phospholipid constituents of the double-membrane structure [122]. Consistent with this, additional evidence has been provided by a yeast study, demonstrating that deletion of TAG and SE synthesis enzymes resulted in the inhibition lipophagy [123]. In a very recent yeast study, absence of LDs caused morphological changes in the ER due to defective FA synthesis, compromised autophagosome biogenesis [124]. Therefore, active lipolysis on the LD surface or LD-ER contact sites is required for the de novo formation of autophagosomes [122–124].

Pathophysiological relevance of lipolysis, lipophagy and CMA

As LDs play central role in the regulation of intracellular lipid and energy metabolism, abnormalities of LD-related mechanisms, including lipolysis, lipophagy and CMA are involved in many pathological and physiological conditions. For example, neutral lipid storage disease (NLSD), atherosclerosis, obesity etc. [8, 125].

Neutral lipid storage disease (NLSD)

Neutral Lipid Storage Disease (NLSD) is a heterogenous group of rare autosomal recessive disorder characterized by abnormal accumulation of LDs in multiple tissues and lymphocytes. Mutations in one of the two genes coding for ATGL or CGI-58 (proteins located on the surface of LDs) are associated with the NLSD [126, 127]. Both ATGL and CGI-58 coordinately function in the lipolysis of LDs; however, mutations in each gene result in different symptoms. Mutations in CGI-58 (a coactivator of ATGL), are associated with NLSD with ichthyosis known as Chanarin-Dorfmann syndrome (CDS) characterized by defective permeability barrier of the skin [128–130]; whereas, ATGL mutations lead to severe NLSD with cardiac myopathy (NLDSM) [131]. These symptomatic differences may be related to the different functions of CGI-58 independent from ATGL. For example, CGI-58 was shown to have acyltransferase activity in phosphatidic acid biosynthesis and play an ATGL-independent role in the phospholipid metabolism [132]. It was suggested that, apart from its lipolytic activity, CGI-58 may facilitate the utilization of hydrolysis products of TGs as phospholipids, and maintain TG homeostasis [132].

Obesity

Obesity is a common health problem, which is characterized by excessive lipid storage in various cell types such as adipocytes, muscle cells and hepatocytes. Different types and degrees of obesity were shown to be directly related with the lipophagic activity of cells and the size of their lipid storages [133]. Additionally, lipophagic activity was found to be upregulated in the adipose tissue of obese people, and especially in those who have particularly high intra-abdominal fat accumulation. In these people, visceral lipid distribution or hypertrophic adipocytes could also be seen concomitantly with insulin resistance [134]. Under these conditions, up-regulation of lipophagy might protect cells against lipotoxicity by clearing excessive intracellular lipids, and decrease obesity-dependent mortality in patients [134]. In fact, the amplitude of lipophagic activation may depend on the metabolic properties of individuals. For example, in patients diagnosed with type-2 diabetes which is characterized by insulin resistance, inhibition of the main energy regulator pathway, mTOR, was described as the responsible mechanism for lipophagic upregulation [135]. Yet, enhanced LD formation can sometimes lead to excessive release of FAs from LDs, and lipophagy may favor intracellular lipotoxicity under these conditions [135].

Accumulation of LDs in tissues in high amounts may cause chronic inflammation which is identified as one of the hallmarks of obesity-related metabolic disorders. Indeed, enlarged LDs in the adipose tissue may lead to cellular remodeling, and finally lead to macrophage-driven chronic inflammation [136]. Activation of macrophages is a energy-dependent mechanism and relies on FA oxidation, suggesting a possible involvement of lipophagy in this mechanism. Accordingly, lipophagy was shown to increase with obesity in adipose tissue macrophages; however, their activation was not affected, suggesting that lipophagy only regulates elevated intracellular lipid level in the adipose tissue [114]. Liu et al. have shown decreased level of lipophagy with obesity in hepatic macrophages, and inhibition of lipophagy was shown to favor the immune responses by promoting proinflammatory macrophage activation [137]. Very recently, lipophagy was found as an essential catabolic mechanism in adipose tissue macrophages, and it increased with obesity. But intriguingly, genetic or pharmacological inhibition of lipophagy did not change lipid balance, indicating existence of another pathway critical to lysosome TG hydrolysis [138]. All these data indicate that the role of lipophagy in...
on the role of non-selective and/or selective autophagy in hepatitis C virus (HCV) replication was shown to be important in controlling the development of chronic liver injury and its complications, such as fibrosis and hepatocellular cancer [139, 140].

Promotion of lipophagy by resveratrol treatment was shown to attenuate methionine choline-induced non-alcoholic steatohepatitis [141]. Consistently, in a recent study, lipophagy has been found to play an important protective role in methionine choline-induced non-alcoholic steatohepatitis [142]. Lipophagy also has an important protective role in acute alcohol-induced hepatic steatosis and injury [143]. Likewise, impairment of both non-selective macroautophagy and selective CMA promoted oxidant-induced liver injury, indicating that oxidative stress resistance and liver injury is connected to autophagic activity [144]. Another report also support the protective role of lipophagy against chronic alcohol-induced hepatotoxicity caused by oxidative stress [145].

Liver fibrosis may be the first step of more serious cirrhotic liver conditions. Hepatic stellate cells (HSCs) activation for the development of this condition, and lipophagy plays a role as well [146, 147]. HSCs are quiescent cells having large lipid stores that are metabolized during activation. Increased lipophagy was shown in HSCs upon fibrotic stimuli and HSC-specific inhibition of lipophagy blocked their activation, leading to improved liver fibrosis in mice and in human tissues [147]. On the other hand, controversy exist over the effect of lipophagy modulation in this disease. For example, pharmacological induction of lipophagy was shown to be promising treatment for liver fibrosis in alpha-1 antitrypsin deficiency [148]. Even though HSCs activation is a common phenomenon for fibrogenesis among tissues, whether lipophagy mediates fibrosis in other organs is still unknown.

Today, it is well known that after many years of chronic non-alcoholic or alcoholic steatotic liver diseases or hepatitis virus infection hepatocellular carcinoma (HCC) might develop. Hepatitis B virus (HBV) and hepatitis C virus (HCV) replication was shown to be induced by autophagy activation both in vitro and in vivo studies [149, 150]. A number of reviews have described the role of non-selective and/or selective autophagy in HCC, and accumulating data indicate changes of autophagic responses in this disease [133, 151]. However, there are discrepancies among studies that were published so far, and development of autophagy-based novel therapeutic strategies for HCC require further studies.

**Cholesterol ester storage disease (CESD)**

Cholesterol ester storage disease (CESD) is an autosomal recessive genetic disease caused by the mutation of the LIPA gene encoding lysosomal acid lipases (LAL). Deficient LAL activity lead to insufficient lipolysis and eventually intracellular accumulation of cholesterol ester and TGs [152]. The most severe form of CESD is identified as Wolman Disease that mostly presents in infancy and mainly result in infant mortality. Affected cells are characterized by the presence of lysosomes that are filled with excessive LDs and cholesterol clumps [153]. The involvement of lipophagy was shown in a study analyzed LD mobilization in macrophages [111]. LDs are the major organelles for cholesterol storage and the study demonstrated that cholesterol efflux from macrophage foam cells was regulated by lipophagy, which rely on LAL function. In line with these results, genetic knockdown of lipophagy in macrophages or knockout in the whole mice resulted in insufficient clearance of cholesterol in cells and tissues [111].

**Atherosclerosis**

Accumulation of cholesterol in macrophage foam cells also contribute to another common disease, atherosclerosis. The main cause of the disease is the accumulation of excessive cholesterol in arterial walls eventually leading to heart failure, stroke and cardiac dysfunction. Excessive cholesterol is esterified by ACAT enzymes and stored as cholesterol esters in LDs of macrophages. Studies revealed that LD-associated proteins ACAT1 and ABCA1 regulating cholesterol esterification play crucial roles in atherosclerosis. In hyperlipidemic mice, deletion of ACAT1 results in both impairment of ABCA1 dependent cholesterol efflux and elevated atherosclerosis [154]. Moreover, among the PAT protein family of LDs, adipose differentiation-related protein (ADFP) was strongly associated with foam cell formation and atherosclerosis [155, 156].

The importance of lipophagic activation in controlling intracellular LDs level and the recent finding that lipophagy contribute LD mobilization in macrophages provides a new point of view in the pathogenesis of atherosclerosis. In addition to the dysfunction of above mentioned LD-associated proteins, it is likely that defective lipophagy may compromise the chronic exposure to excessive circulating lipids of the artery wall macrophages and may result in their remodelling into “foam cells”. However, the significance of insufficient lipophagy underlying foam cell formation or progression is still not known. On the other hand, in a recent study on the tumor-
suppressor gene programmed cell death 4 (PDCD4), it was demonstrated that the protein inhibited autophagy in macrophages, and Pdcd4 knockout mice displayed increased atherosclerosis, indicating a link between autophagy and atherogenesis [157].

**Lipodystrophies**

Apart from excessive accumulation of lipids, deficiency of LDs in cells may lead to lipodystrophies. Particularly, defects in the synthesis of neutral lipids lead to deficiencies in LD formation and lead to the formation of non-neutral lipids. Genetic causes of lipodystrophies include various genes encoding proteins related to LD synthesis, storage and regulation such as acylglycerol-phosphate acyltransferase (AGPAT2), seipin (BCSL2) and caveolin (CAV1). In addition, lamin A/C (LMNA), peroxisome proliferator-activated receptor-γ (PPARG), Akt2/protein kinase B (AKT2), and endoprotease Face-1 (ZMPSTE24) were identified as defective genes in partial lipodystrophies [158]. Insufficient LD biosynthesis in adipose tissue often leads to massive hepatic steatosis with subsequent metabolic abnormalities, including insulin resistance, diabetes, and hypertension [159].

**Conclusion**

In recent years, except the neutral lipid storage function of LDs, understanding of their various metabolic roles and intracellular interactions with many compartments makes this field as an attractive research area. Novel findings in selective types of autophagy, lipophagy and CMA, also contributed to a better understanding of intracellular catabolic pathways regulating LDs. More importantly, signals that mediate the crosstalk between lipolysis and lipophagy lead to the consideration of these mechanisms as promising therapeutic targets. However, there are a large number of questions that still need to be answered. Particularly, the pathophysiological relevance of LDs and their catabolic mechanisms must be further examined in order to discover potential therapies for common metabolic diseases such as obesity or atherosclerosis.

**Abbreviations**

ACS: Acyl-coA synthetase; ADFP: Adipocyte differentiation-related protein; ADRP: Adipocyte differentiation-related protein; AGPAT: 1-acylglycerol-3-phosphate O-acyltransferase; AKT2: Akt2/protein kinase B; ATGL: Adipose triglyceride lipase; BCSL2: Seipin; CAV1: Caveolin; CCT: Chaperone-mediated autophagy; CMA: Chaperone-mediated autophagy; DAG: Diacylglycerols; DENV: Dengue virus; DGAT: Diacylglycerol acyltransferase; ER: Endoplasmic reticulum; Fsp27: Fat specific protein-27; FYCO1: FYVE and coiled-coil domains containing protein 1; GPAT: Glycerol-3-phosphate O-acyltransferase; HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; Hc70: Heat shock cognate 70; HSL: Hormone sensitive lipase; IAPP: Insulin-like protein; LC3: Microtubule-Associated Proteins 1A and 1B, Light Chain 3; LD: Lipid droplet; LMNA: Lamin A/C; MAG: Monoacylglycerol; MAPK: Mitogen-activated protein kinase; MEF: Mouse embryonic fibroblasts; MGL: Monoacylglyceride lipase; NLDS: Neutral lipid storage disease; NLDSM: NLSD with cardiac myopathy; PAP: Phosphatidic acid phosphatase; PC: Phosphatidylycerol; PDCD4: Programmed cell death 4; PE: Phosphatidylethanolamine; PI: Phosphatidylinositol; PI3K: Phosphatidylinositol 3-kinase; PRA: Protein kinase A; PLIN: Perilipin; PNPLA2: Patatin-like phospholipase domain containing protein 2; PPARG: Peroxisome proliferator-activated receptor-γ; PS: Phosphatidylserine; RILP: Rab7-interacting lysosomal protein; SE: Sterol ester; SM: Sphingomyelin; SNARE: Soluble NSF attachment receptor; TAG: Triacylglyceride; TIP47: Tail-interacting protein of 47 kDa; ZMPSTE24: Endoprotease Face-1

**Acknowledgements**

Not applicable.

**Funding**

This work is supported by Hacettepe University Scientific Research Projects Coordination Unit (Project number 014 D04 101,019–546). G.O is supported by The Scientific and Technological Research Council of Turkey (TUBITAK)-BIDEB 2211, as a scholarship student for her PhD study.

**Availability of data and materials**

Not applicable.

**Authors’ contributions**

All authors made contribution in writing the manuscript. All authors read and approved the final manuscript.

**Author’s information**

D.G. is a recipient of the Turkish Academy of Sciences (TUBA) GEBIP Award, EMBO Strategic Development and Installation Grant (EMBO-SDIG), IKU Prof. Dr. Onder Oztunali Science Award and TGC Sedat Simavi Award. D.G. and O.K. are recipient of 2015 Biginkan Foundation Technology Research Award.

**Competing interests**

The authors declare that they have no competing interests.

**Consent for publication**

Not applicable.

**Ethics approval and consent to participate**

Not applicable.

**Publisher’s Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Author details**

1. Department of Medical Biology, Hacettepe University, 06100 Ankara, Turkey.
2. Nanotechnology Research and Application Center (SUNUM) & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956 Istanbul, Turkey. 3. Molecular Biology, Genetics, and Bioengineering Program & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956 Istanbul, Turkey.

Received: 3 May 2017 Accepted: 16 June 2017
Published online: 29 June 2017

**References**

1. Thiele C, Spandl J. Cell biology of lipid droplets. Curr Opin Cell Biol. 2008;20:378–85.
2. Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie E, Londos C. Perilpin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem. 1991;266:11341–6.
3. Welte MA. Expanding roles for lipid droplets. Curr Opin Cell Biol. 2015;25:R470–7.
4. Selman D, O’Malley RC. Lipid droplets in inter-membrane lipid traffic. Proteomics. 2009;9:541–546.
5. BIDEB 2211, as scholarship student for her PhD study.
6. Thiele C, Spandl J. Lipid droplets: Structure and function. Curr Opin Cell Biol. 2015;25:R468–70.
7. Zehmer JK, Huang Y, Peng G, Pu J, Anderson RG, Liu P. A role for lipid droplets in inter-membrane lipid traffic. Proteomics. 2009;9:914–21.
8. Oktay O. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol Metab. 2011;22:241–81.
6. Greenberg AS, Coleman RA, Krammer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121:21202.

7. Krahmer N, Farese RV Jr, Walther TC. Balancing the fat: lipid droplets and human disease. EMBO Mol Med. 2013;5:905–15.

8. Gross DA, Silver DL. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol. 2014;49:304–26.

9. Ducharme NA, Bickel PE. Mini review: lipid droplets in lipogenesis and lipolysis. Endocrinology. 2008;149:942–9.

10. Walther TC, Farese RV Jr. The life of lipid droplets. Biochim Biophys Acta. 2009;1791:459–66.

11. Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol. 2010;21:683–90.

12. Oral O, Akkoc Y, Bayraktar O, Gozuacik D. Physiological and pathological significance of the molecular cross-talk between autophagy and apoptosis. Histoil Histopathol. 2016;31:479–98.

13. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–8.

14. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273:501.

15. Orenstein SJ, Cuervo AM. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol. 2010;21:719–26.

16. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2011;21:427–37.

17. Lissau A, Tan KT, Lee YH. β-adrenergic receptor-stimulated lipolysis requires the Rab8-mediated autophagosomal lipid degradation. Autophagy. 2013;9:128–43.

18. Schroeder B, Schulse RJ, Weller SG, Sletten AC, Casey CA, McNiven MA. The small GTPase Rab7 as a central regulator of hepatocellular lipolipophagy. Hepatology. 2015;61:1896–907.

19. Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17:759–70.

20. Kaushik S, Cuervo AM. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy. 2016;12:432–8.

21. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem. 2002;277:44507–12.

22. Fujimoto T, Ohsaki Y, Cheng I, Suzuki M, Shinchora Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol. 2008;130:263–79.

23. Wilfling F, Haas JT, Walther TC, Farese RV Jr. Lipid droplet biogenesis. Curr Opin Cell Biol. 2014;29:39–45.

24. Bartz R, Li W-H, Venables B, Zehmer JK, Roth MR, Welti R, et al. Lipidomics of lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res. 2010;51:945–56.

25. Brasaemle DL, Wolins NE. Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem. 2012;287:2273–9.

26. Liu K, Czaja MI. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013;20:3–11.

27. Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012;2012:283041.

28. Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, et al. Identification of the major functional proteins of prolylcytokin lipid droplets. J Lipid Res. 2012;53:399–411.

29. Kalscheuer R, Waltermann M, Alvarez H, Steinhäbel A. Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol. 2001;177:20–8.

30. Dang Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, et al. Identification of the major functional proteins of prolylcytokin lipid droplets. J Lipid Res. 2012;53:399–411.

31. Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R. Caveolin-2 is targeted for phosphatidic acid in the formation of lipid droplets. PLoS ONE. 2017;12:128.

32. Zanghellini J, Wodlei F, von Grünberg H. Phospholipid demixing and the birth of a lipid droplet. J Theor Biol. 2010;264:952–61.

33. Blouin CM, Le S, Eberl A, Köfeler HC, Guercia IR, Klein C, et al. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res. 2010;51:945–56.

34. Jolivet P, Boudal C, Bellamy A, Larré C, Barre M, Rougnaux H, et al. Protein composition of oil bodies from mature Brassica rapa leaves. Proteomics. 2009;9:3268–84.

35. Jolivet P, Roux d’Andrea S, Davanture M, Negroni L, Zivy M, et al. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem. 2004;42:501–9.

36. Kalscheuer R, Waltermann M, Alvarez H, Steinhäbel A. Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol. 2001;177:20–8.

37. Kalscheuer R, Waltermann M, Alvarez H, Steinhäbel A. Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol. 2001;177:20–8.

38. Kalscheuer R, Waltermann M, Alvarez H, Steinhäbel A. Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol. 2001;177:20–8.
111. Quinmet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011;13:655–67.

112. Khalidoun SA, Emond-Boxjoly MA, Chateau D, Carriere V, Lacasa M, Rousset M, et al. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol Biol Cell. 2014;25:118–32.

113. Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macan F. Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol. 2010;185:7349–57.

114. Xu X, Grijalva A, Skowronska A, van Eijk J, Seflie MJ, Ferrante AW. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 2013;18:816–30.

115. Kaini RR, Hu C-AA. Synergistic killing effect of chloroquine and androgen deprivation in LNCap cells. Biochem Biophys Res Commun. 2012;425:150–6.

116. van Zutphen T, Todde V, de Boer R, Keim M, Hofbauer HF, Wolinski H, et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell. 2011;24:290–301.

117. Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid metabolism coordinate lyse cell function in the CNS and Periphery. Coord Lipidophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metab. 2016;23:113–27.

118. Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, et al. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol. 2014;24:609–20.

119. Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, et al. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell. 2012;23:896–909.

120. Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 2015;32:678–92.

121. Martinez-Lopez N, Garcia-Macia M, Sahu S, Athanarangkul D, Liebling E, Merlo P, et al. Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metab. 2016;23:113–27.

122. Reue K. A thematic review series: lipid droplet storage and metabolism: from yeast to man. J Lipid Res. 2011;52:1865–8.

123. Fischer J, Leffèvre C, Morava E, Mussini JM, Lafont P, Negre-Salvayre A, et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet. 2007;39:28–30.

124. Leffèvre C, Jobard F, Caux F, Bouard J, Karaduman A, Heilig R, et al. Mutations in CGI-58 cause hepatic steatosis and lipase PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab. 2009;297:E289–96.

125. Lefèvre C, Jobard F, Caux F, Bouadjar B, Karaduman A, Heilig R, et al. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol. 2014;24:609–20.

126. Merlo P, et al. Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver. Cell Metab. 2016;23:113–27.

127. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

128. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

129. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

130. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

131. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

132. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

133. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

134. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

135. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

136. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

137. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

138. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

139. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

140. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

141. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

142. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

143. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

144. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.

145. Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. J Hepatol. 2015;63:1053–63.
158. Garg A, Agarwal AK. Lipodystrophies: disorders of adipose tissue biology. Biochim Biophys Acta. 2009;1791:507–13.
159. Hegele RA. Phenomics, lipodystrophy, and the metabolic syndrome. Trends Cardiovasc Med. 2004;14:133–7.
160. Cho SY, Shin ES, Park PJ, Shin DW, Chang HK, Kim D, et al. Identification of mouse Prp15p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J Biol Chem. 2007;282:2456–65.
161. III JR, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 2000;21:3470–82.
162. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem. 2004;279:3787–92.
163. Turró S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernández MA, Albor CV, et al. Identification and characterization of associated lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets. Traffic. 2006;7:1254–69.
164. Wang H-C, Melo RC, Jin Z, Dvorak AM, Weller PF. Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J. 2007;21:167–78.
165. Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R. Association of stomatin with lipid bodies. J Biol Chem. 2004;279:23699–709.
166. Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, Moti M, et al. Identification of major protein in the lipid droplet fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta Mol Cell Res. 2004;1644:47–59.
167. Wang H, Wei E, Quiroga AD, Sun X, Touret N, Lehner R. Altered lipid droplet dynamics in hepatocytes lacking triacylglycerol hydrolase expression. Mol Biol Cell. 2010;21:1991–2000.
168. Khor VK, Aheendi R, Lin Y, Shen W-J, Adams CM, Roseman AN, et al. The proteome of cholesteryl-ester-enriched versus triacylglycerol-enriched lipid droplets. PLoS One. 2014;9:e105047.
169. Thiél K, Heier C, Haberl V, Thul PJ, Oberer M, Lass A, et al. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J Cell Sci. 2013;126:2198–212.
170. Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MM. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology. 2002;292:198–210.
171. Hope RG, Murphy DJ, McLauchlan J. The domains required to direct core proteins of hepatitis C virus and GB virus-C to lipid droplets share common features with plant oleosin proteins. J Biol Chem. 2002;277:4261–70.
172. Alonzi T, Agrati C, Costabile B, Cicchini C, Amicone L, Cavallari C, et al. Steatosis and intrahepatic lymphocyte recruitment in hepatitis C virus transgenic mice. J Gen Virol. 2004;85:1509–20.
173. Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, et al. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a1. J Proteome Res. 2011;10:4757–68.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit