A Hardware Co-design Workflow for Scientific Instruments at the Edge

Kazutomo Yoshii,1 Rajesh Sankaran,1 Sebastian Strempfer,1 Maksim Levental,2 Mike Hammer,1 Antonino Miceli1

1 Argonne National Laboratory, Lemont, IL
2 University of Chicago, Chicago, IL

1 Abstract

As spatial and temporal resolutions of scientific instruments improve, the explosion in the volume of data produced is becoming a key challenge. It can be a critical bottleneck for integration between scientific instruments at the edge and high-performance computers/emerging accelerators. Placing data compression or reduction logic close to the data source is a possible approach to solve the bottleneck. However, the realization of such a solution requires the development of custom ASIC designs, which is still challenging in practice and tends to produce one-off implementations unusable beyond the initial intended scope. Therefore, as a feasibility study, we have been investigating a design workflow that allows us to explore algorithmically complex hardware designs and develop reusable hardware libraries for the needs of scientific instruments at the edge. Our vision is to cultivate our hardware development capability for streaming/dataflow hardware components that can be placed close to the data source to enable extreme data-intensive scientific experiments or environmental sensing. Furthermore, reducing data movement is essential to improving computing performance in general. Therefore, our co-design efforts on streaming hardware components can benefit computing applications other than scientific instruments. This vision paper discusses hardware specialization needs in scientific instruments and briefly reviews our progress leveraging the Chisel hardware description language and emerging open-source hardware ecosystems, including a few design examples.

Keywords: Scientific instruments, edge computing, streaming/dataflow computing, compression, Chisel hardware construction language, ASIC

2 Introduction

As CMOS scaling is coming to an end, specialization and heterogeneity are becoming crucial factors for sustaining performance growth, increasing energy efficiency, and improving resource utilization of computing hardware. Until recently, the shrinking of CMOS transistors has masked the performance overheads associated with general-purpose architectures. Additionally, a perpetually evolving rich software ecosystem has accelerated software development on general-purpose
architectures. Together, these trends have delayed the need for custom hardware solutions, which tend to be relatively expensive. However, with the end of the era of exponential performance growth and with the inefficiency associated with general-purpose architecture becoming increasingly made manifest [1], more specialized hardware, particularly AI accelerators, are emerging to fill the gap in computing environments [2].

Most AI success stories thus far have been associated with high-volume, mission-critical applications or high-profile projects in “hyperscale” companies such as Google, Microsoft, and Amazon. On the other hand, in the U.S. Department of Energy (DOE) scientific space, hardware customization needs are highly domain-specific (e.g., X-ray detectors) and thus relatively low volume (e.g., single unit to hundreds of units manufactured). Unfortunately, such low-volume use cases are not commercially lucrative for hardware vendors. Moreover, in many cases, such domain-specific hardware development tends to produce one-off implementations that are unusable beyond the initial intended scope. What is needed is to identify common hardware building blocks (e.g., compressor, encryption blocks) that can broadly cover our scientific edge-compute needs. We envision the co-design of hardware and software algorithms that can efficiently generate such modular and reusable components, and we develop a rich set of highly parameterized open-source hardware libraries. While our idea bears some resemblance to “intellectual property” (IP) cores provided by ASIC and FPGA vendors in terms of reusability, our goal is to develop hardware libraries of algorithmically complex blocks that, by virtue of their parameterization, are vendor and architecture agnostic. To this end, it is paramount to investigate (1) a hardware design environment that can capture practical high-level hardware design patterns (i.e., hardware algorithms) and can flexibly express them, (2) a lightweight, open (no commercial license) environment, including fast simulation and verification, for hardware libraries (to accelerate the design loop and maximize distributed development), and (3) a lightweight resource estimation tool. While the end-to-end chip development cycle is important eventually, we focus primarily on the development cycle of front-end ASIC designs including digital circuit implementation, functional verification, and simulation. At the feasibility study phase, the crucial first step is to investigate the implementability of hardware algorithms for our hardware specialization needs (e.g., on-chip streaming processing logics). Additionally, many ongoing research efforts are working to reduce the complexity of ASIC back-end design cycles using AI techniques such as floor planning [3].

This manuscript is organized as follows. In Section 3 we first discuss our motivation for edge hardware specialization. We then discuss the current status, challenges, and opportunities for hardware specialization; and we describe the challenges and opportunities in hardware specialization for the edge in the realm of scientific instruments. In Section 4 we discuss hardware abstraction and programming languages. In Section 5 we illustrate our proposed workflow for our hardware library approach with our X-ray pixel detector’s data compressor block as an example. In Section 6 we discuss our research directions and future needs.
3 Background

In a wide range of scientific applications, a data acquisition system (possibly CPU or FPGA) collects values from sensor systems through a low-level communication protocol (e.g., I2C, SPI, parallel and serial buses) and transmits them to high-performance computing (HPC) systems over traditional high-speed networks. The sensor systems can range from simple individual sensors to more complex sensors paired with some intelligence extended by microprocessors, for example, FPGAs and ASICs. In general, this dataflow is predominantly unidirectional, as illustrated in Figure 1.

While various phases of sensor data analysis can be lossy, it is crucial to transfer data from sensors to cloud or HPC systems without any reduction in data quality. This seemingly straightforward constraint is becoming a stiff challenge for many scientific instruments because of the explosion in the volume of data produced by scientific instruments as their spatial and temporal resolutions have continued to increase. For example, the highest frame rate of X-ray pixel detectors will soon approach a megahertz, necessitating an interconnect capable of transferring a terabit of raw data off the chip. Such an interconnect is cost-prohibitive. Other scientific disciplines, such as high-energy physics, cosmology, and environmental remote sensing, are also facing the same data bottleneck challenge. General-purpose processors at or near sensor nodes are no longer able to keep up with this increase in data rate since they are burdened with unnecessary inefficiency due to the nature of load-store architectures, highly complicated memory subsystems, and lack of directional I/O connectivity. Note that novel accelerators, such as neuromorphic architectures, will not solve such problems for similar reasons. Adding larger on-chip memories that store captured data temporarily can be an intermediate solution; however, memory capacity is finite, which limits the time of experiments, and ultimately the solution is cost-ineffective. Thus, we need streaming (ideally stall-free) data-processing hardware designs that rely less so on temporary storage.

We believe a higher degree of hardware specialization (e.g., dataflow architecture) will be required to enable and support future scientific instrument needs.
For example, for X-ray pixel detectors, the goal is to develop on-chip data compression algorithms that compress data and can be placed directly adjacent to the internal sensors in the detector ASIC [4]. Since our hardware development resources are currently limited, we focus on co-designing a simple, yet effective, lossless compressor that leverages application-specific characteristics and hardware specialization. This reduces the complexity of implementation. Moreover, to minimize the hardware development efforts (particularly hardware verification), we employ stateless dataflow architecture techniques wherever possible. In addition to being ideal with respect to both throughput and energy efficiency, such architectures are a natural fit in the case of scientific instruments at the edge. We are also conducting a feasibility study on embedding AI classification components directly in the detector chip, which can be seen as a form of maximally efficient data compression. This work has led to several interesting and critical research questions. These include the following: Which hardware architectures or platforms (FPGA, ASIC, structured ASIC, coarse-grained reconfigurable architecture, etc.) are suitable for our future needs? Which hardware programming languages or models improve our productivity and support our innovations? Which architectural techniques and design patterns are effective? How many components can be expressed as stateless dataflow designs? Considerable research and development are required to answer the questions.

Historically, hardware design ecosystems for ASICs have been dominated by a few companies, and the licensing fees for their commercial tools can often be a significant barrier to entry for many organizations. Additionally, the DOE scientific community is bifurcated: either projects have little experience in hardware design, or they may have internal hardware designers as part of their larger team who focus on single-purpose and project-/scope-optimized designs. As we are entering the post-Moore era, we believe hardware specialization is the only practicable approach to dealing with scaling problems, irrespective of the challenges awaiting us. We stress, however, that the number of hardware designers, developers, and architects is considerably low—orders of magnitude smaller than that of software developers. We believe that a lightweight and ergonomic development environment may help attract more developers and students and enable cross-training of current software developers as hardware practitioners.

The exploration of hardware programming ecosystems (e.g., programming models, tools) has been gaining significant attention in the field of computer architecture [5,6] recently. This trend has also been the catalyst for an open-source hardware ecosystem boom, including instruction sets such as RISC-V [7], hardware implementations [8,9], and hardware tools [10,11,12,13]. Indeed, Google recently announced an open-source foundry PDK for SkyWater’s 130 nm node [14]. Furthermore, with the advent of innovative companies such as efabless, even a small R&D unit can now tape-out a chip with significantly lower cost, benefiting from a fully open-source and end-to-end ASIC design flow [15]. Additionally, we have been observing an interesting connection between software and hardware in

3 An open community for analog and mixed-signal IC and IP development and commercialization https://efabless.com/
terms of abstraction. Although no single abstraction can capture all features of a solution, multiple abstraction layers, with each layer bridging adjacent layers, are needed for developing a complex system efficiently. While abstraction is, in general, well studied in the software world, such has not been the case in the hardware world—but we observe that this now changing. Indeed, the hardware community is learning and incorporating ideas from software. Thus, we believe that now is the best and most exciting time to participate in and contribute to the open-source hardware ecosystem.

Productivity, which may include debugability, maintainability, and reusability, is of the utmost concern for the DOE scientific community. Therefore, investigation and development of efficient hardware abstractions and productive hardware languages are of utmost importance to the community [5]. Many research groups in DOE have explored high-level synthesis (HLS), which translates software codes into hardware description language (HDL) codes, such as OpenCL [16], in order to run high-performance computing kernels on FPGAs. This approach does attract software developers and has shown promising results on particular kernels or parameters. The downside of HLS is that optimization still requires hardware knowledge and offers no control over the generated HDL codes. Small changes in the HLS source code will often lead to large changes in the generated HDL codes, making debugging almost impossible. It also incurs tighter dependencies on the underlying platforms and tool versions, which negatively affect maintainability and reusability. HDL, particularly Verilog, is still the main workhorse for I/O designs and other low-level hardware designs. A possible practical compromise may be to develop a domain-specific hardware language for scientific instruments at the edge, stitching HDL, HCL, and HSL together and providing a higher-level domain-specific abstraction. While we primarily discuss Chisel in this paper, several other modern HDLs do exist and merit further investigation: MyHDL [17] and Migen [18] for Python, and CλasH [19] for Haskell. Even in the Scala language, there are other HDLs: SpinalHDL [20], which is essentially a “fork” of Chisel, and Spatial [21], whose chief improvement over Chisel is its incorporation of polyhedral compilation functionality.

4 Hardware Programming Ecosystem

Hardware description languages [22], such as Verilog and VHDL, are used to describe digital circuits. Both Verilog and VHDL were initially developed (in the early 1980s) for digital circuit simulation. These languages eventually incorporated synthesis functionality and are currently ubiquitous in both industry and academia. Although HDLs still play a primary role in digital circuit designs, as the complexity of hardware algorithms increases, the productivity of these traditional HDLs is becoming a matter of huge concern because of their lack of expressive language features, such as those found in modern general-purpose programming languages.

One of the biggest problems with HDLs is that their mechanisms for generating recursive (or tile) structures are weak. Thus, designers have to manually
“unroll” modules with manual labeling and thereby reduce the codes’ conciseness, maintainability, and reusability. Examples of this kind of rolling can be seen in any standard Verilog or VHDL implementation of a large barrel shifter (i.e., a 2D array of multiplexers), systolic array [23], network-on-chip architecture [24], or variable-size and fixed-size data converter [25], the latter being critical for data compression. To compensate for the weakness in recursive generating capability, designers tend to use a general-purpose programming language, such as Python, C++, or TCL, to build generators that themselves generate HDL codes. Unsurprisingly, these kinds of toolchains are quite rigid (i.e., single-purpose), often brittle, and not scalable. Furthermore, since HDL design predates modern software paradigms such as functional programming and test-driven development, as the complexity of software references or models increases, so do the challenges associated with developing “testbenches” that precisely exercise designs implemented as HDL codes. Thus we seek a hardware description language that enables a highly productive development process such that we can use it to describe a circuit concisely, express recursive structure, and describe testbenches more flexibly, among other features.

Chisel hardware construction language

Inspired by the RISC-V agile development approach [26], we chose an emerging hardware “construction” language named Chisel [11,27,28] for implementing our hardware libraries, performing functional simulations, and designing extensions of our data compression block. Chisel, which stands for Constructing Hardware in a Scala Embedded Language, is designed to accelerate the digital circuit design process. As the name implies, Chisel is an embedded domain-specific language implemented as a class library in Scala [29]. Chisel offers a zero-cost abstraction of digital circuits, which means the overhead in performance and resource usage induced by the abstraction is nearly zero compared with that of a native HDL. Several studies have confirmed that Chisel significantly reduces the code size, improves code reusability, and incurs little performance penalty compared with native Verilog implementations (i.e., for most cases, Chisel-generated register-transfer level and equivalent native Verilog implementation run at the same frequency [30,31,24]). We note that these results are in stark contrast to HLS tools that let developers specify design behavior in higher-level languages and then infer lower-level implementations. Such synthesis tools incur the cost of higher performance overheads, particularly in resource usage.

Leveraging the power of Scala’s modern programming language features, Chisel offers higher expressivity, which dramatically improves the productivity and flexibility for constructing synthesizable digital circuits. It also integrates cycle-accurate simulators seamlessly, aiming for lightweight test-driven development, which significantly reduces the barrier to entry for hardware development. In essence, Chisel has brought modern software paradigms to hardware develop-

4 The performance offered by a carefully optimized HLS implementation is comparable to that of an HDL implementation; however, resource usage is still in question.
ment, which should attract more software developers to hardware development, thereby growing the community and ecosystem. Indeed, since Chisel’s original release in 2012 [11], the Chisel community has grown steadily, with the number of Chisel-based open-source projects increasing every year. Chisel is being used for many real-world tape-out designs [32,33,34] such as SiFive’s RISC-V cores and Google’s TPU [35]. Chisel has also become popular in academia for architecture research [36,37,38,39]. Additionally, it has a rich ecosystem. For example, Chipyard [40], a framework for developing systems-on-chip (SoCs), encompasses an in-order core generator called Rocket Chip [41], an out-of-order core generator named BOOM [42], hardware accelerators such as Gemmini [43], and a systolic array generator [43]. Additionally, ChiselDSP [44], a library for generating more traditional signal-processing designs such as fast Fourier transforms, is also available. Furthermore, ChiselVerify [45] is a verification tool that employs industry-standard Universal Verification Methodology to verify Chisel designs formally.

To compare and contrast Chisel and Verilog, we first consider a simple counter circuit written in Verilog and Chisel. Listing 1.1 is a Verilog implementation of a counter that increments every cycle, counting from 0 to 9. Listing 1.2 is the same circuit written in Chisel. This example highlights some fundamental feature differences between Chisel and Verilog. First, the Chisel version has no clock, reset signals, or always blocks; it automatically incorporates clock and reset signals when generating Verilog codes. RegInit creates a register that is initialized on reset with a specified value (in this example, 0 as an nbits-wide unsigned integer); and thus, implicitly, a reset signal is generated. Assigning to the register value cntReg is translated to a nonblocking assignment via an always block in Verilog. Since the default policy of the state element provided by Chisel is a positive-edge register that supports synchronous reset, no always blocks are needed. Such a default policy in the state element enforces a design guideline transparently and makes Chisel syntax more concise, at the cost of flexibility. Chisel provides frequently used data types such as Int, UInt, and SInt, instead of a range of bits as in Verilog, which also improves readability. This Chisel code snippet also includes an example of parameterization; the Counter class accepts the maximum value of the counter when instantiating and calculates the required bit length for the counter using log2Ceil.

```verilog
module Counter # (parameter MAXCNT=9) (  
  input clock,  
  input reset,  
  input enable,  
  output [clog2(MAXCNT+1)-1:0] out  
);  
reg [clog2(MAXCNT)-1:0] cntReg;  
assign out = cntReg;  
always @(posedge clock) begin  
  if (reset) begin
```

Listing 1.1. A simple counter in Verilog. Note that \$clog2 is supported by SystemVerilog or Verilog-2005

```verilog
cntReg <= 0;
end else if (enable) begin
  if (cntReg == MAXCNT) begin
    cntReg <= 0;
  end else begin
    cntReg <= cntReg + 1;
  end
end
endmodule
```

Listing 1.2. A simple counter in Chisel

```scala
class Counter(val max:Int = 10) extends Module {
  val nbits = log2Ceil(max+1)
  val io = IO(new Bundle {
    val enable = Input(Bool())
    val out = Output(UInt(nbits.W))
  })
  val cntReg = RegInit(0.U(nbits.W))
  cntReg := Mux(io.enable,
               Mux(cntReg === max.U, 0.U, cntReg + 1.U), cntReg)
  io.out := cntReg
}
```

Listing 1.3. A simple testbench for the counter circuit (Listing 1.2). Since the language for testbenches is Scala, we can leverage its general-purpose programming features. Chisel’s peek-poke-expect-step test harness is powerful and intuitive to use. For example, testbenches for our data compression components directly read and analyze massive X-ray datasets and feed selected regions to our compressor designs running in a circuit simulator to verify expected functionality. Such ergonomic testing enables effective software/hardware co-design. Chisel simulates the behavior of generated circuits using either an internal Scala-based simulator or Verilator\[13\], which translates Verilog codes into cycle-accurate models (specified as C++ codes) for faster simulation. In our experience, Chisel’s integrated test accelerates iteration of the design loop (coding, compiling, evaluating), which greatly aids our design exploration, even when I/O layout and parameters frequently change during the exploration.

```scala
class CounterUnitTester(c: Counter) extends PeekPokeTester(c) {
  val max = c.max
```
A notably powerful feature of Chisel is its ability to construct recursive hardware in a traditional software-like manner, such as divide-and-conquer. As mentioned, many hardware algorithms are hierarchical and recursive. For example, leading zero counting can be implemented in a divide-and-conquer manner (Figure 2). If we recursively split a binary input stream into two-bit words, we can easily form the leading zero count with a look-up table (e.g., the leading zero count of 00 is 2). When two “conquered” blocks are merged, the leading zero counts of the merged block can be calculated from the leading zero counts of the conquered blocks, again with a simple bitwise XOR. One can implement the leading zero count in SystemVerilog using its “generated” primitive; however, conciseness and readability may be a concern. On the other hand, Chisel enables specifying such a divide-and-conquer algorithm directly and parameterizes the implementation. Listing 1.4 is a Chisel implementation example of leading zero counting.

```scala
class Clz(nb: Int = 64) extends Module {

  var ref = 0 // software reference count
  def test(e : Int) {
    poke(c.io.enable, e)
    for (i <- 0 until max+2) {
      // comparing hardware with software reference
      expect(c.io.out, ref)
      step(1) // forward a single cycle
      if (e==1) if(ref < max) ref += 1 else ref = 0
    }
  }
  test(1) // enable counting
  test(0) // disable counting
}
```

Fig. 2. Leading-zero counts divide-and-conquer algorithm.
val lognb = log2Floor(nb)
val io = IO(new Bundle {
 val in = Input(UInt(nb.W))
 val out = Output(UInt((lognb + 1).W))
})
if (nb == 1) io.out := !io.in
else if (nb == 2) io.out := MuxLookup(io.in, 0.U, Array(0.U -> 2.U, 1.U -> 1.U))
else {
 val largestPow2 = 1 << log2Ceil(nb) - 1
 val c0 = Module(new Clz(largestPow2))
 val c1 = Module(new Clz(nb - largestPow2))
 c0.io.in := io.in(nb - 1, nb - largestPow2)
 c1.io.in := io.in(nb - largestPow2 - 1, 0)
 io.out := Mux(c0.io.out(c0.lognb), largestPow2.U +& c1.io.out, c0.io.out)
}

Listing 1.4. Recursive structure: counting leading zeros

5 Co-design Workflow for Hardware Libraries

In this section we first describe our current design workflow for developing hardware libraries. Next we explain how we are applying the workflow to our scientific instrument edge-computing using a data reduction stage for an X-ray pixel array detector ASIC chip. One of our requirements is that the workflow be easy to deploy to a typical development environment, such as a Linux server or laptop, without requiring special software licensing. In fact, ideally, the workflow consists of open-source tools. Other than for philosophical reasons, the additional motivation for the easy-to-install and open-source workflow is to attract more hardware developers and students and to enable the training of software developers in hardware design. This is due to the fact that conventionally trained hardware developers remain scarce and there is no guarantee that this situation will improve in the near to medium term.

As we described, Chisel is fully open-source software that offers sufficient features for efficiently describing algorithmically complex hardware designs and provides a flexible testbench framework that is seamlessly integrated with a typical workflow. At this point, however, Chisel lacks lightweight resource estimation functionality (e.g., counting the number of logic gates, wires). Since both ASIC and FPGA are spatially constrained, the resource usage of a hardware design must be bounded by available resources. Unlike software platforms, hardware in general offers no dynamic memory allocation, time sharing or context switching,
or virtualization of hardware logic. Thus, estimating resource usage for the target range of hardware parameters is crucial for hardware libraries and is one of the most important steps of co-design.

Accurate estimation of hardware resource usage can be complicated, however, requiring domain expertise; moreover, depending on the platforms or technology, it may require prohibitively expensive commercial tools. For our purposes of estimating realistic resource usage for ASICs, we need only count the number of basic components such as wires, flip-flops, logic gates, and multiplexers efficiently. Several open-source digital circuit simulators or synthesis tools can give us such a resource estimate. We found that Yosys, an open-source synthesis tool for ASICs and FPGAs, provides a statistical report on resource usage for both ASIC and FPGA. Since Yosys is a full-featured RTL synthesis tool, it can also perform synthesis-level optimizations, such as removing redundant multiplexers, which can give us a more realistic resource usage estimation (since, in fact, all synthesis tools perform optimizations).

Compressor/Reduction Logics

To illustrate our co-design workflow, we present a conceptual overview of our data compressor hardware designs for X-ray detectors, which will be placed in our X-ray detector chip that we are currently developing. To simplify and focus on the main points, we exclude the details of our hardware design that are specific to our X-ray array detector and its I/O characteristics.

The pixel array generates data every cycle, where the total number of pixels generated per cycle depends on the hardware design parameters (e.g., 1,024 pixels or 8 columns × 128 rows of pixels). Data from an X-ray pixel array is generally sparse and contains few nonzero pixels. Our previous analysis of real datasets showed that a large percentage (e.g., 80% or greater) of X-ray pixel data

5 Currently, only a select few technology nodes can be targeted with open-source EDA tools.
have zeros (or even lower values) that occupy only the lower few bits. Hence, the purpose of our compressor block is to compress sparsely populated input data into a densely packed stream that includes a header and compressed data without stalling, in order to reduce the total amount of data that needs to be sent to the I/O block (Figure 3). For our detector chip, we must minimize the size of the internal buffer to temporarily store pixel data because of two factors: (1) the size of temporary memory limits the duration of experiments, and (2) memory is scarce on the detector ASIC chip. Additionally, since the cost of validation is large, dataflow designs with minimum state elements are preferable. For this reason, any compression approach based on an entropy algorithm such as Huffman coding [46] may be unsuitable for our on-chip compressor.

Our data compression dataflow architecture consists of an encoding stage and reduction stages (Figure 4). Since zero (or lower) values dominate the majority of the input data, we employ a bit-shuffling scheme in the encoding stage, which resembles a matrix transpose operation and increases the co-occurrence of zero pixels, to filter out unused higher bits. The bit-shuffling operation can be expressed simply as a set of wires between the input bits and the output bits in the correct order and requires no logic circuit in ASIC; hence it is inexpensive to implement and verify [4]. The output from the encoding stage is variable in size, and multiple encoding blocks generate variable-sized data simultaneously, so no I/O can handle such inputs directly. We employ a reduction stage to concatenate variable-sized data into a single continuous block in a hierarchical manner.

Figure 5 illustrates a baseline implementation, which uses multiple-input multiplexers to select input pixels. The input consists of two fixed data arrays, where the size is N and the length of the content is L_a and L_b, respectively. The size of the output array is $2N$, and the length of the concatenated content is L. This implementation approach requires $(N^2 + N) / 2$ multiplexers. The baseline approach is straightforward to implement and can be implemented only
with combinational logic for ASICs but the resource consumption could be prohibitive for larger inputs. Figure 6 shows an optimized implementation that shifts the second input using a series of shifting stages, where each stage shifts only a specific power of 2. The required number of shifting stages is $\log(N)$, where N is the size of each input array. If the size of each input array is 4, for example, three shifting stages are needed (shifting 4 pixels, 2 pixels, and 1 pixel). The expected number of multiplexers in this implementation is $N \log(N)$. Both hardware algorithms can be easily implemented in Chisel and fully parameterized, including the testbenches, thanks to the power of modern language features such as functional programming.

The concision of the Chisel implementation improves the maintainability and helps other developers understand the fundamentals of the design, a crucial concern for hardware libraries. Table 1 includes the number of lines of code (LOC) for each algorithm in Chisel and the LOC of a generated Verilog code with a specific target size. Since the Chisel implementation is fully parameterized, including testbenches, the number of the LOC is the same for any input size.

	Chisel	Verilog (N=8)	Verilog (N=32)	Verilog (N=128)
Baseline	54	432	3864	52152
Optimized	97	432	2250	11628

One important co-design criterion is resource usage. With a resource estimate, we can discuss the feasibility of an RTL code generated from a hardware library generator or the number of copies we can fit on a target hardware platform. For the above example designs, the resource usage can be easily computed analytically, although in general this may not be possible or may require extra effort. As a demonstration, Figure 7 and Figure 8 include a comparison of analytically predicted resources and a statistical report from Yosys. They compare the number of ASIC multiplexers and the number of FPGA lookup tables (LUTs) for the two designs. The analytical method reasonably captures the trendline of the resource usage for both ASIC and FPGA. Depending on the algorithms or underlying architecture, however, the room for optimizations varies. For the baseline algorithm, the gap between the analytical prediction and the Yosys report is large. The reason is that synthesis tools, including Yosys, optimize multiplexer usage by removing unnecessary multiplexers and the redundancy of multiplexers in the baseline implementation artificially inflates multiplexer usage. FPGA-configurable logic blocks are also primitive building blocks and generally contain flip-flops, multiplexers, and LUTs with multibit inputs, which

6 FPGA deployments may require pipelining for the sake of achieving low latency.
7 significant lines of code, i.e., excluding comments
are much more complex than in the case of simple multiplexers (e.g., 1-bit, 2-input). In terms of estimation time, Yosys takes only up to a couple of seconds to report the resource usage for fairly large implementations. Since Yosys is a command-line tool, it is straightforward to integrate into our workflow.

5.1 Lightweight AI Capability for Future Detector Systems

While a full-fledged AI capability is impractical to implement on-chip, specialized, lightweight AI capabilities are worth consideration as a possible replacement for conventional methods such as data reduction by feature detection. Implementation of AI algorithms as hardware algorithms is a novel area of research, enabled by this growth in access to EDA tools. Work in this area can be partitioned into two subareas, roughly along the dimension of generality. The first, and more general, involves the design and testing of domain-specific accelerators (e.g., GEMM accelerators such as Gemmini [43] and NVDLA [47]) as custom instruction set architectures (ISAs). These ISAs are conceptually not so different from general-purpose compute architectures (in that they are programmable) except insofar as they prioritize a limited number of operations, particularly those pertinent to AI workloads (such as matrix multiplication). Their value proposition to users is that very prioritization, leading to outsized efficiency and increased performance (on AI workloads). This work in the research community is mirrored in industry, where recently there has been a renewed “Cambrian explosion” in architecture companies (such as SiFive, Cerebras, Habana, and Samba Nova) that aim to support the same such AI workflows. The second subarea involves the design and testing of particular use-case-specific circuits, wherein a circuit is in one-to-one correspondence with, for example, a particular neural network. These implementations differ from those of the former in that they are not reconfigurable and represent, essentially, in silico instantiations of neural networks. The purported advantage of this approach is the hyper-refinement possible due to the specificity of the datapath and compute workload. Research in this area traditionally has employed HLS tools as “compiler” intermediaries between high-level implementations and the actual hardware design [48], which...
suffer from unpredictable resource usage. Recently exploratory work has been done using Chisel as the high-level implementation language and the low-level description language [49]. While this still is in its initial stages, we have begun to explore and develop such a solution for the purposes of Bragg peak detection [50].

6 Conclusion

Hardware specialization is poised to play a critical role in the post-Moore era, in improving both the performance and energy efficiency of computing in general. In scientific edge computing in particular, since the volume of data generated by sensors is expected to increase exponentially, placing computing power as close as possible to the data sources—where general-purpose processors or accelerators fail to meet our requirements—is becoming a crucial enabling factor for future scientific experiments. Custom hardware development needs tend to be confined to low-volume applications, with designs having low reusability. To address these issues, we employed the Chisel hardware construction language and other open-source design tools to create a co-design workflow for exploring hardware algorithms and developing reusable hardware libraries that can capture the design patterns of common hardware components. In particular, dataflow components can accelerate our specialized hardware development for future scientific edge-computing applications. We described our open-source-tools-based co-design workflow and delineated the development of our data compression block for our X-ray detector ASIC chip. Productive hardware ecosystems could shape future hardware innovation, and we believe that we are entering the golden age of hardware programming. We continue to investigate cutting-edge hardware ecosystems to improve the productivity of hardware algorithms and libraries development on data compression, encryption, and AI classification, for scientific instrument edge-computing.

Acknowledgments

We thank Ian Foster and Kyle Chard for supporting this exciting collaboration between Argonne National Laboratory and the University of Chicago Department of Computer Science. We thank Pete Beckman and Alec Sandy for encouraging this multidisciplinary collaboration between the X-ray Science Division (XSD) and the Mathematics and Computer Science (MCS) Division at Argonne National Laboratory. We also thank two anonymous referees for their useful comments. We thank Gail Pieper for editing this manuscript. The material is based upon work supported by Laboratory Directed Research and Development (LDRD 2021-0072) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357.
References

1. R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources of inefficiency in general-purpose chips,” in *Proceedings of the 37th annual international symposium on Computer architecture*, pp. 37–47, 2010.
2. K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung, “Accelerating deep convolutional neural networks using specialized hardware,” *Microsoft Research Whitepaper*, vol. 2, no. 11, pp. 1–4, 2015.
3. A. B. Kahng, “AI system outperforms humans in designing floorplans for microchips,” 2021.
4. M. Hammer, K. Yoshii, and A. Miceli, “Strategies for on-chip digital data compression for X-ray pixel detectors,” *Journal of Instrumentation*, vol. 16, pp. P01025–P01025, Jan 2021.
5. L. Truong and P. Hanrahan, “A golden age of hardware description languages: applying programming language techniques to improve design productivity,” in *3rd Summit on Advances in Programming Languages (SNAPL 2019)*, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
6. J. Hennessy and D. Patterson, “A new golden age for computer architecture: Domain-specific hardware/software co-design, enhanced,” *ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA)*, 2018.
7. K. Asanović and D. A. Patterson, “Instruction sets should be free: The case for RISC-V,” * EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146*, 2014.
8. C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, and K. Asanovic, “BOOMv2: an open-source out-of-order RISC-V core,” in *First Workshop on Computer Architecture Research with RISC-V (CARRV)*, 2017.
9. F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis, and J. Shalf, “OpenSoC fabric: On-chip network generator: Using Chisel to generate a parameterizable on-chip interconnect fabric,” in *Proceedings of the 2014 International Workshop on Network on Chip Architectures*, pp. 45–50, 2014.
10. C. Wolf, J. Glaser, and J. Kepler, “Yosys – a free Verilog synthesis suite,” in *Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip)*, 2013.
11. J. Bachrach, H. Vo, B. Richards, and Y. L. D. a. d. . Design, “Chisel: constructing hardware in a Scala embedded language,” *DAC Design Automation Conference*, pp. 1212–1221, 2012.
12. A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt, C. Markley, J. Lawson, et al., “Reusability is FIRRTL ground: Hardware construction languages, compiler frameworks, and transformations,” in *2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, pp. 209–216, IEEE, 2017.
13. W. Snyder, “Verilator: Open simulation-growing up,” *DVClub Bristol*, 2013.
14. T. Ansell and M. Saligane, “The missing pieces of open design enablement: A recent history of Google efforts (invited paper),” in *2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD)*, pp. 1–8, IEEE, 2020.
15. R. T. Edwards, M. Shalan, and M. Kassem, “Real silicon using open-source EDA,” *IEEE Design & Test*, 2021.
16. T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh, “From OpenCL to high-performance hardware on FPGAs,” in *22nd international conference on field programmable logic and applications (FPL)*, pp. 531–534, IEEE, 2012.
17. J. Decaluwe, “MyHDL: a Python-based hardware description language.,” Linux Journal, no. 127, pp. 84–87, 2004.
18. “Migen, a Python toolbox for building complex digital hardware.” https://github.com/m-labs/migen.
19. C. Baaij, “Càlpha : from haskell to hardware,” December 2009.
20. P. Charles, “Spinalhdl.” https://github.com/SpinalHDL/SpinalHDL, 2016.
21. D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis, et al., “Spatial: A language and compiler for application accelerators,” in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 296–311, 2018.
22. “language wars in the 21st century: Verilog versus VHDL–revisited,”
23. H. T. Kung and C. E. Leiserson, “Systolic arrays for (vlsi),” tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE, 1978.
24. H. Kwon and T. Krishna, “OpenSMART: Single-cycle multi-hop NoC generator in BSV and Chisel,” in 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 195–204, IEEE, 2017.
25. T. Ueno, K. Sano, and S. Yamamoto, “Bandwidth compression of floating-point numerical data streams for FPGA-based high-performance computing,” ACM Transactions on Reconfigurable Technology and Systems, vol. 10, pp. 1–22, July 2017.
26. Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli, J. Kwak, R. Jevtic, S. Bailey, M. Blagojevic, et al., “An agile approach to building RISC-V microprocessors,” IEEE Micro, vol. 36, no. 2, pp. 8–20, 2016.
27. J. J. Bachrach and K. Asanović, “Chisel 3.0 tutorial,” EECS Department, UC Berkeley, Tech. Rep., 2017.
28. M. Schoeberl, “Digital design in Chisel,” 2020.
29. M. Odersky, L. Spoon, and B. Venners, Programming in Scala. Artima Inc, 2008.
30. O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach, J. Navaridas, W. Song, J. Mawer, A. Cristal, and M. Luján, “An empirical evaluation of high-level synthesis languages and tools for database acceleration,” in 2014 24th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–8, IEEE, 2014.
31. S. Mosanu, X. Guo, M. El-Hadedy, L. Anghel, and M. Stan, “Flexi-AES: A highly-parameterizable cipher for a wide range of design constraints,” in 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 338–338, IEEE, 2019.
32. K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celiò, H. Cook, D. Dabbelt, J. Hauser, A. Izrailevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The Rocket chip generator,” Tech. Rep. UCB/EECS-2016-17, EECS Department, University of California, Berkeley, Apr 2016.
33. S. Bailey, J. Wright, N. Mehta, R. Hochman, R. Jarnot, V. Milovanovic, D. Werhimer, and B. Nikolic, “A 28nm FDSOI 8192-point digital ASIC spectrometer from a Chisel generator,” in 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4, IEEE, 2018.
34. S. Cass, “Taking AI to the edge: Google’s TPU now comes in a maker-friendly package.” IEEE Spectrum, vol. 56, no. 5, pp. 16–17, 2019.
35. D. Lockhart, S. Twigg, R. Narayanaswami, J. Coriell, U. Dasari, R. Ho, D. Hogberg, G. Huang, A. Kane, C. Kaur, T. Liu, A. Maggiore, K. Townsend, and
E. Tuncer, “Experiences building edge TPU with Chisel.” 2018 Chisel Community Conference, 2018.

36. L. Di Tucci, D. Conficoni, A. Comodi, S. Hofmeyr, D. Donofrio, and M. D. Santambrogio, “A parallel, energy efficient hardware architecture for the merAligner on FPGA using Chisel HCL,” in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 214–217, IEEE, 2018.

37. F. Serre and M. Püschel, “A DSL-based FFT hardware generator in Scala,” in 2018 28th International Conference on Field Programmable Logic and Applications (FPL), pp. 315–3157, IEEE, 2018.

38. T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-dataflow acceleration,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), pp. 416–429, IEEE, 2017.

39. R. Prabhakar, Y. Zhang, D. Koepflinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram, C. Kozyrakis, and K. Ouakotun, “Plasticine: A reconfigurable architecture for parallel patterns,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), pp. 389–402, IEEE, 2017.

40. A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Magyar, H. Mao, A. Ou, N. Pemberton, et al., “Chipyard: Integrated design, simulation, and implementation framework for custom SoCs,” IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

41. K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The rocket chip generator,” Tech. Rep. UCB/EECS-2016-17, EECS Department, University of California, Berkeley, Apr 2016.

42. K. Asanovic, D. A. Patterson, and C. Celio, “The Berkeley Out-of-Order Machine (BOOM): An industry-competitive, synthesizable, parameterized risc-v processor,” tech. rep., University of California at Berkeley Berkeley United States, 2015.

43. H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright, C. Schmidt, J. Zhao, A. Ou, M. Bauister, Y. S. Shao, B. Nikolic, I. Stoica, and K. Asanovic, “Gemmini: An agile systolic array generator enabling systematic evaluations of deep-learning architectures,” 2019.

44. A. Wang, Agile Design of Generator-Based Signal Processing Hardware. PhD thesis, EECS Department, University of California, Berkeley, May 2019.

45. A. Dobis, T. Petersen, K. J. H. Rasmussen, E. Tolotto, H. J. Damsgaard, S. T. Andersen, R. Lin, and M. Schoeberl, “Open-source verification with Chisel and Scala,” 2021.

46. R. Hashemian, “Design and hardware construction of a high speed and memory efficient Huffman decoding,” in IEEE International Conference on Consumer Electronics, pp. 74–75, IEEE, 1994.

47. F. Farshchi, Q. Huang, and H. Yun, “Integrating NVIDIA Deep Learning Accelerator (NVDA) with RISC-V SoC on FireSim,” in 2019 2nd Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2), pp. 21–25, 2019.

48. Y. Zhang, J. Pan, X. Liu, H. Chen, D. Chen, and Z. Zhang, “FracBNN: Accurate and FPGA-efficient binary neural networks with fractional activations,” The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2021.
49. S. Eldridge, A. Waterland, M. Seltzer, J. Appavoo, and A. Joshi, “Towards general-purpose neural network computing,” in *2015 International Conference on Parallel Architecture and Compilation, PACT 2015, San Francisco, CA, USA, October 18-21, 2015*, pp. 99–112, 2015.

50. Z. Liu, H. Sharma, J.-S. Park, P. Kenesei, A. Miceli, J. Almer, R. Kettimuthu, and I. Foster, “BraggNN: Fast x-ray Bragg peak analysis using deep learning,” *arXiv preprint arXiv:2008.08198*, 2021.
Government License

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.