ORIGINAL RESEARCH

Improving sleep after open heart surgery–Effectiveness of nursing interventions

Helle Greve *1, Preben Ulrich Pedersen2

1 The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Denmark
2 Department of Health Science Technology, Aalborg University, Aalborg, Denmark

Received: August 2, 2015 Accepted: October 8, 2015 Online Published: November 16, 2015
DOI: 10.5430/jnep.v6n3p15 URL: http://dx.doi.org/10.5430/jnep.v6n3p15

ABSTRACT

Background and Objective: Cardiac surgical patients experience sleep problems in the early post-operative period and after hospital discharged. Restorative sleep is important to be able to handle the challenges of rehabilitation, but often remains untreated. Pharmacological treatment has been preferred, but studies conclude a longer lasting effect of cognitive behavioural therapy (CBT). Few clinical trials have been conducted on nurse led sleep promoting interventions during hospitalization. The hypothesis of this study is that systematic training and education in sleep, sleep anamneses and sleep hygiene enhances nurses’ awareness on sleep problems, and as a result makes nurses able to propose appropriate interventions to improve patients’ sleep during hospitalization, and after discharged. The aim is to examine the effect on patients’ self-reported sleep quality.

Methods: The study design is a controlled intervention study. Patients in the control group received usual care. Patients in the intervention group received nursing focused on improving sleep by use of sleep-anamneses and sleep hygienic principles.

Results: There was no significant effect of the intervention, though there were several signs that had some effect after two months in terms of global PSQI, total sleep time, sleep efficiency, sleep medication and sleep quality.

Conclusions: Systematic education and training of nurses in sleep, sleep anamneses and sleep hygienic principles has some effect on patients self-reported sleep quality two months after heart surgery.

Key Words: Sleep problems, Heart surgery, Nursing intervention, PSQI-questionnaire, Sleep hygiene, Sleep anamneses

1. INTRODUCTION

Patients with cardiovascular disease report an especially high frequency of sleep disturbances, and there seems to be some association between sleep problems and coronary events.[1, 2]

In a Swedish study, 38.6% of the male patients who were about to undergo coronary artery bypass surgery reported insufficient sleep. Sleep disturbances are common after cardiac surgery.[3-7] They are reported to occur in 60%-80% of patients in the immediate post-operative period,[6] and alterations in sleep pattern seem to continue to occur in 39% to 69% of cardiac surgery patients during the first month after hospital discharge.[3,5] A lack of sleep can have negative consequences on health, such as immunosuppression, prolonged wound-healing, increased risk of infection, arrhythmias, increased blood pressure, depression and anxiety[8-10] and thus affect quality of life, physical functioning, morbidi-
Major surgery is known to cause severe changes in sleep patterns with a reduction of deep sleep and a reduction or total lack of REM sleep, but with rebound of REM sleep the following nights and days. A lack of REM sleep and deep sleep is associated with poor physical functioning, affecting the rehabilitation with decreased cognitive capability and bad remembrance, which is of great importance due to the amount of information given during hospitalization. Sleep problems are subjective complaints encompassing reduced sleep quality, duration or efficiency of sleep. Sleep problems may involve problems with falling asleep, staying asleep, nocturnal awakenings, which subsequently can result in non-restorative sleep, feeling unrefreshed, increased daytime sleep and lack of energy the following day.

1.1 Background

Insomnia is common in elderly patients and somatic problems often emerge in parallel with increasing age. An increasing number of elderly patients undergo heart surgery, hence age can be considered as a cause of sleep problems. Coherence between emotional stress and quality of sleep is well known in other populations as well as in persons who undergo heart surgery. Environmental conditions like noise, light, temperature or disturbances from a roommate, staff or nurses’ monitoring of vital values are thought to be of some importance. In relation to heart surgery, postoperative discomfort, such as incisional pain, positioning, and nocturia are reported to cause disturbances in the early postoperative period. Restorative sleep is of vital importance for heart surgery patients, as it helps them to handle the demands of rehabilitation, i.e., physical training or nutrition. However, insomnia often remains untreated. In hospital settings, pharmacological treatment with sleep-inducing medicine, especially Benzodiazepines, has until now been the preferred treatment, but their effect diminish over time and have some undesirable side-effects like development of tolerance and drug dependency.

The last 10-20 years has put focus on psychological and behavioural approaches that can be effective alternatives to sleep medicine. Several reviews and studies conclude that there is a documented effect on primary insomnia, on insomnia in connection with medical illness and a longer lasting effect on sleep latency and sleep quality. Cognitive behavioural therapy (CBT) consists of several individual components and permutations: relaxation therapy, sleep restriction therapy, stimulus-control therapy and sleep hygiene instructions, etc. Research has been conducted particularly on acutely ill cardiac surgery patients, but only a few clinical trials have been designed to study the efficacy of sleep promoting interventions and on nurse led interventions during hospitalization. It is argued that nurses play an important role in enhancing quality of sleep. However, this requires that nurses have knowledge about sleep, sleep problems and relevant nursing assessments in order to tailor individual interventions to promote sleep hygiene and sleep anamneses. This may affect patients’ perceived sleep quality positively and diminish the consequences of bad sleep. No studies on the effect of this were found.

1.2 Hypothesis

The hypothesis of this study is that if nurses in a hospital setting have improved knowledge, receive systematic training and education on sleep, sleep anamneses and sleep hygiene, nurses’ awareness on sleep problems would similarly be enhanced. As a result, nurses would be able to propose appropriate solutions (interventions) for the benefit of patients’ sleep during their hospitalization as well as one and two months after discharged from hospital.

The aim of the study is to examine the effect of a nursing intervention based on sleep anamneses and sleep hygienic principles on patients’ self-reported sleep quality, measured by changes in sleep duration, sleep efficiency and sleep onset latency as well as the use of sleep medicine.

2. Method

The study includes heart surgery patients from the cardiothoracic centre at Copenhagen University Hospital in Denmark. Patients aged 18 years or older, admitted electively for all kinds of open cardiac surgery and able to read and understand written information and questionnaires were included. Patients who were admitted acutely or who suffered from primary insomnia, psychiatric or dementia diagnosis were excluded. Patients, who did not read or understand Danish, who spent more than two nights in the intensive care unit or were readmitted in the intensive care unit were excluded.

2.1 Design

The study was conducted as a controlled intervention study. First, the control group was included, hereafter the nurses were trained to carry out the intervention, then the inclusion to the intervention group began. Patients in the control group received usual care. As for the patients in the intervention group, sleep anamnesis were obtained. Based on the sleep anamnesis information, advice and guidance was given in relation to sleep hygiene. Patients who fulfilled the inclusion criteria were enrolled consecutively. Due to the nature of the intervention, the participants were not blinded.
2.2 Measuring instruments
To gain knowledge about the patients’ sleep-pattern during hospitalization and at home, all patients in both the control- and intervention group completed the following two questionnaires.

2.2.1 Pittsburgh sleep quality index
PSQI is a self-rated questionnaire, developed and validated by Dr. Buysse et al.\[45\] It assesses participants’ perception of global habitual sleep quality and disturbances retrospectively over a one-month interval. The 19 items in the questionnaire are summed up in seven components: subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime dys-function. The global score from these components range from 0-21 points. PSQI is tested for intern reliability (Cronbach’s alpha 0.83) and validity, finding that a global score over 5 has diagnostic sensitivity on 89.6% and specificity of 86.5%, thus suitable for identifying patients with sleep disturbances. A global PSQI score > 5 indicates that a person can have severe sleep problems within at least two components or moderate within three.\[45\]

The PSQI questionnaire is considered the most suitable instrument as it contains valuable information that helps to compare certain aspects of sleep quality before and after an intervention. Furthermore, it is one of the most used instruments in sleep research for evaluating the severity of insomnia.\[46\] It is a well-validated questionnaire, which is also available in Danish. Dr. Buysse kindly gave his permission to use the questionnaire. The Danish version was face-validated on five patients.

2.2.2 Sleep diaries
A sleep diary or sleep log provides knowledge about sleep habits during a shorter period and is a useful tool for identifying circadian sleep disturbances or bad sleep hygiene.\[8, 46\]

In this study, it was used to identify bad sleep hygiene and provide a more detailed day-to-day overview of sleep problems contrary to the questionnaire. Comments from a sleep diary help to identify the sleep problems emerged postoperatively and may contribute to patients becoming more aware of their improvements.\[10\] Knowledge from sleep diaries gives nurses the opportunity to target and individualize care to each patient.

There is modest to poor correlation between subjective self-reporting and objective findings, as there is a tendency to underestimate total sleep time and exaggerate sleep latency in objective findings. Subjective self-reporting therefore seems to be a better indicator of a patient’s experience of sleep disturbances than quantitative instruments.\[10\] Hence, a number of studies on sleep include both self-reported questionnaires and diaries to measure the results from the following criteria: time going to sleep, sleep latency, numbers and duration of awakenings, wake-up time and assessment of sleep quality. In this diary, the patients were additionally asked to record situations, which influenced their sleep and their use of sleep medication and to write comments on their sleep, which they found could be of interest.\[22, 32, 42, 43\]

2.3 Data collection
Participants on the waiting list for heart surgery received the PSQI questionnaire before hospital admission together with the admission letter and written information. One and two months after discharged from hospital, the PSQI questionnaires were mailed to the participants again.

The principal author met each patient in the cardiac surgery ward on the first day of their admission prior to enrolment to obtain written informed consent, include patients consecutively and collect the completed questionnaire. The patients were instructed to use the sleep diary in order to catch sleep problems encountered during and after their hospitalization and to record information about their subjective sleep patterns.\[8, 38\] The diaries were completed each morning from the second postoperative (PO) night until discharge from hospital. The principal author visited each participant every morning except for the weekends to ensure that they answered the questions in the diary or to help them complete it. After being discharged from hospital, the patients were asked to continue their diary on a certain week day (weekends excepted) each week, for example each Thursday during a two month period.

2.4 Ethical considerations
Patients were informed that they at any time could withdraw their consent to participate. The questionnaires and diaries were coded with a number in order to ensure anonymity. The protocol was approved by the Science Committee in the Capital Region of Denmark, jn.2007-58-0015.

2.5 Sampling size
In 2010, approximately 1,200 patients underwent heart surgery at the department. The primary outcome was changes in overall sleep quality, measured with PSQI. Power calculation showed that a sample size of 69 patients in each group would have 90% power to show a 0.5 SD difference between treatment and control group. With an expected drop-out rate at 20%, at least 83 patients should be included in the control and in the intervention-group, respectively.

2.6 Intervention
The nursing interventions in this study are based on literature describing sleep patterns and non-pharmacologic treatment
of sleep problems, which are essential knowledge for nurses, as well as suggestions on how to obtain sleep anamneses, how to improve sleep hygiene and how to assess a patient's sleep quality.[3, 8, 14, 21, 30, 32, 39, 42, 43, 46]

The training of nurses consisted of the following theoretical and practical education on sleep:
- Educate the nurses in smaller groups on sleep, sleep problems, sleep anamneses and sleep hygienic factors in order to increase their awareness on the problems and enable them to improve nursing practice.
- Train the nurses in making sleep anamneses and to identify patients’ sleep habits, sleep patterns and problems.
- Share viewpoints on present practice and quality of care.

The content of the intervention was as follows:
- To help patients into a comfortable position;
- To relieve pain sufficiently;
- To decrease routine controls during the night;
- Not to disturb patients’ sleep by placing a newly operated patient next to them;
- To help patients out of bed if they cannot sleep and to set aside time for a conversation to be able to put concerns into words or perhaps offer something to drink like hot milk;
- To consider the possibility of offering sleep medicine in a small dose and only for a short period to patients who were unable to fall asleep;
- To avoid noise from the staff (small talk, routine tasks that are usually made at night like emptying the dishwasher, cleaning up, putting items in their right places, etc.).

Each session ended up with discussions and viewpoints on present practice and agreements on how to qualify it, based on assessment of the sleep anamneses and sleep hygiene and the patient’s information thereon.

2.6.1 Educational content
(1) Theoretical content about sleep General knowledge about normal sleep and sleep patterns, characteristics in Non-REM sleep and REM-sleep, sleep and heart-disease, sleep and surgery, and consequences of a lack of sleep.

(2) Sleep anamneses For evaluation to be effective, it is important to obtain a patient’s personal assessment of his sleep. This can be achieved by asking open-ended questions about his sleep, i.e., when he usually goes to bed, how long time it takes from the time he turns off the light until he actually sleeps, when he usually gets up in the morning, and if he usually takes a nap during daytime. If these questions reveal that a patient has major sleep problems, one may question the patient in depth. In such case, it is interesting to assess how the every-day life is affected, and how the patient usually handles these problems.[31, 42, 43]

(3) Sleep hygiene Sleep hygiene includes a loosely defined set of recommendations, targeting lifestyle changes and environmental factors. Nurses teach patients about healthy sleep behaviours and sleep-conducive environmental conditions, for example not to go to bed if not sleepy, not to stay in bed if unable to sleep or do not want to sleep, not to drink coffee before bed time, to sleep in a dark and quiet room with no light, no noise, and the right temperature—not too hot nor too cold.[8, 14, 32]

2.6.2 Implementation of the intervention
The education and training of the 42 nurses employed in the ward, all of whom had changing shifts, lasted almost half a year. As soon as the nurses were educated, they started to practise their knowledge. In a hospital, sleep hygiene can be challenging, but nurses asked patients politely to turn off the TV or radio and not to disturb their fellow patient. They tried to assess their patients’ need for monitoring blood-pressure and other observations when they started their night shift, and they tried to match patients with the same needs. The nursing interventions were planned according to the patients’ individual needs. This could for example be to assist the patients in getting out of bed or to a better positioning in bed, to offer warm drinks like milk or cocoa, to provide personal support through talks or to relieve pain if patients had difficulties in falling asleep or frequently woke up during the night. The ward used to be rather restrictive in terms of distributing sleeping pills. After several discussions about sleep interventions and sleep medicine during the implementation of the intervention, the nurses were aware that sleeping pills in some cases could be a solution to avoid permanent sleep problems. The medicine was only used in a smaller dose and for a short period of time. The discussions among the nurses about interventions and new habits worked as feed-back and were discussed further as possible interactions in the ward and during the educational sessions.

2.7 Intervention fidelity
The principal author followed each nurse once and/or checked the patient-record to ensure that patients were interviewed about sleep anamneses, were guided according to the intervention, and that the interventions for improving sleep or solving sleep problems were planned and effectuated. When comparing the comments on sleep disturbances from the sleep diaries of the participants in the control- and intervention-group during hospitalization, it became clear
that the intervention led to some changes in the nurses’ normal night procedures. Thus, observational disturbances on the first night in the ward after operation due to vital monitoring changed from 12 times in the control group to 6 in the intervention group, and decreased even further later into the hospital stay. On day 4, a small change in positioning in bed due to the intervention procedure occurred (7 resp. 2), and disturbances caused by the fellow-patient decreased from 9 in the control group to 3 in the intervention group.

2.8 Data analysis
This study presents data and results from the PSQI-questionnaires. Data from the sleep diaries is in this article only used to assess intervention fidelity.

Quantitative data
Quantitative data from the questionnaire and the sleep diaries were analysed by means of the statistics programme Statistical Package for Social Sciences SPSS version 19. The results are given as means ± SD. Data from both groups were tested by f-test for normal distribution. Normally distributed data is compared by using parametric methods, students independent samples t-test, otherwise Mann-Whitney was used. P-value was set to be below .05.

2.9 Qualitative data
Qualitative data from the sleep diaries are the patients’ comments on their inability to sleep. The amount of comments were written literally and counted. Each comment could contain several statements, and each statement was counted. Thereafter, the author read the comments thoroughly several times to find categories or headings. The statements were then categorized under these headings.

3. RESULTS
3.1 Quantitative data
This article describes the results gained from the PSQI-questionnaire preoperatively (preop), one month after discharge and two months postoperatively (PO) after cardiac surgery.

A total of 90 patients were included in the control group (CG), and 87 in the intervention group (IG). After discharge from the hospital, there were still 90 patients in the CG, but a drop out of 12 during the whole study, whereas there was a reduction of 18 in the IG during hospitalization, and after discharge a further reduction of 5, ending up with 69. The groups were equivalent concerning gender, age (p = .11) and operation (p = .71). Total drop out analysis showed no difference between the drop out patients and the patients in the study related to demographic data and type of operation. 6 males and 6 females in the control group dropped out after discharge from hospital, 4 males and 1 female in the intervention group. The mean age among the drop outs was 62.53 years.

Table 1 presents demographic data and surgical procedures. The mean age of the patients in the IG were 67.3 (SD 24-81) which is 5 years older than the mean age of the patients in the CG. There were no differences in age between men and female in the CG, yet a difference of 4 years in favour of the women in the IG. Age and the distribution on sex, where approximately one quarter was female, represent the general population regarding cardiac surgery.

Table 1. Demographic data and surgical procedures
Control
N
Demographic Characteristics
Male
Female
Total
Age all
Surgical procedures
Valve
Aorta aneurysm
CABG*
Double procedure*
GUCH*
Missing
Total

*CABG: Coronary artery bypass graft, Double procedure: Both valve- and coronary artery bypass graft procedure, GUCH: grown up congenitive heart disease.
Table 2 shows a mean global sleep-quality score preoperatively higher than 5 in both groups, where the highest is in the IG (6.23). In both groups the score is higher 1 month PO than preop., and once again it is highest in the IG (7.37). After two months, however, the score in the IG group is lower (5.10) compared to the CG (5.59). The difference between preop and 2 months PO is 1.13 in the IG group and 0.44 in the CG, respectively. No significant difference between the control- and intervention-group was found in terms of global PSQI score. Two months after surgery the PSQI score is lower in both groups than preop, yet the fall in the IG group is higher than in the CG, and the mean difference is also higher between 1 and 2 months PO in the IG.

Table 2 also presents the SD differences in the mean global score in the control- and intervention-group before and after surgery, showing the same tendency as mentioned before. Again, the score between 1 and 2 month PO is higher in the IG (2.15), \(p = .075 \) than in the CG (1.18). It is lower between preop. and 2 months PO in the IG than the CG, thus showing a greater mean difference \((p = .546) \) between pre-op and 2 months PO.

Table 2. Mean global PSQI-score and differences in mean global PSQI-score

	Control		Intervention		\(P \)-value		
	N	PSQI	SD	N	PSQI	SD	\(P \)-value
Mean Global PSQI score							
Preop	90	6.03	3.7	67	6.23	4.09	.75
1 mth PO	80	6.8	3.63	64	7.37	3.99	.378
2 mth PO	78	5.59	3.64	64	5.10	3.27	.4
Differences in Mean Global PSQI score	Control		Intervention		\(P \)-value		
	PSQI-diff	SD		PSQI-diff	SD		
Preop - 1 mth PO	-1.00	3.7		1.39	3.8		.546
1 mth PO - 2 mth PO	1.18	2.8		2.15	3.36		.075
Preop - 2 mth PO	0.33	3.5		.66	2.82		.546

Looking at the distribution on global PSQI score on groups of good sleepers, middle sleepers and bad sleepers (see Table 3), the percentage of good sleepers (0-5 pts) in the IG has developed from 53% to 65.7% after two months, but from 54.5% to 61.6% in the CG. In the group of really bad sleepers (14-21 pts), the percentage is 7.5% in the CG and 3.2% in the IG. The distribution has changed so that the group of good sleepers is larger by 12.7% after two months in the IG but larger by 7.1% in the CG.

Table 3. Groups of good sleepers, middle sleepers and bad sleepers related to PSQI-scores

Allocation to groups in relation to PSQI scores	Preop.	Intervention	2 month PO	Intervention						
PSQI score	Control	N	%	N	%	Control	N	%	N	%
0-5 pts	49	54.5	35	53	48	61.6	42	65.7		
6-13 pts	37	41.2	25	39.3	25	32.1	18	28.9		
14-21 pts	4	4.4	6	7.5	5	6.4	2	3.2		
Total	90	100	66	99.8	78	100.1	62	97.8		

Note. Preop = preoperative, PO = Postoperative

In Table 4, assessment points from the questionnaire are presented for both groups before, 1 mth and 2 mths after discharged from hospital. In the IG, sleep onset latency (SOL) (minutes) is more than 6 min’s higher 1 month PO than before surgery, and then decreases with 5.26 min’s in the IG to 20.08 after 2 months compared to the CG. In the CG the difference between 1 and 2 month is 0.75 min’s. In terms of patients’ own assessment of their sleep quality, the score in the IG 2 months after surgery is .70 compared to .85 in the CG. The difference between first and second PO month is 0.33 in the IG compared to 0.01 in the CG. In both groups, this is a better score than before operation with a smaller dif-
ference between the groups of 0.10 in favour of the IG. Total nocturnal sleep duration is increasing in both groups after one month and is after 2 months almost equalized (6.88 resp. 6.81). The same trend is found regarding sleep efficiency, where the IG showed improvement in sleep after two months compared to the CG. Sleep efficiency is a bit higher in the IG than in the CG 2 months PO, and better than before hospitalization. Regarding the use of sleeping medicine, there is a nearly significant difference between 1st and 2nd PO month with a lower score in the IG (.34) before operation, then a higher score than in the CG on .73 after 1 month, and then again a lower score of .28 and .53, respectively, in the CG 2 months after surgery.

Table 4. Important PSQI assessment points

Important assessment points	Control	Intervention	P-value		
	N	Value	N	Value	
Sleep onset latency min					
Baseline	90	20.06 ± 20.13	67	19.28 ± 20.9	.815
1 mth	80	20.81 ± 17.55	64	25.34 ± 28.84	.247
2 mths	78	19.59 ± 16.82	64	20.08 ± 16.49	.862
General assessment of sleep quality (0 is better, 3 worse)					
Baseline	90	1.04 ± .847	67	.99 ± .826	.661
1 mth	80	.86 ± .611	64	1.03 ± .712	.128
2 mths	78	.85 ± .753	64	.70 ± .609	.215
Nocturnal sleep duration, hs					
Baseline	90	6.67 ± 1.188	67	6.54 ± 1.32	.526
1 mth	80	6.83 ± 1.250	64	6.62 ± 1.485	.376
2 mths	78	6.88 ± 1.155	64	6.81 ± 1.384	.736
Sleep efficiency, % of time in bed					
Baseline	90	84.49 ± 14.63	67	82.17 ± 14.26	.323
1 mth	80	79.79 ± 13.38	64	77.29 ± 15.61	.301
2 mths	78	83.12 ± 12.75	64	82.29 ± 14.27	.689
Wake after sleep onset (0-27)					
Baseline	90	8.27 ± 4.2	67	7.85 ± 4.36	.547
1 mth	80	8.91 ± 4.14	64	9.16 ± 4.30	.731
2 mths	78	6.89 ± 3.54	64	6.95 ± 3.84	.914
Use of sleeping medicine (0 is better, 3 worse)					
Baseline	90	.37 ± .87	67	.34 ± .90	.869
1 mth	80	.69 ± 1.13	64	.73 ± 1.10	.803
2 mths	78	.53 ± 1.02	64	.28 ± .70	.098
Problems staying awake in social contexts (0 is better, 3 worse)					
Baseline	90	.26 ± .65	67	.34 ± .79	.459
1 mth	80	.20 ± .46	64	.38 ± .77	.117
2 mths	78	.16 ± .47	64	.13 ± .42	.593

3.2 Qualitative data

In the CG, 75 patients had commented on their sleep during their hospitalization compared to the 58 patients in the IG. During the first 4 nights in the ward, there were 206 comments in the CG and 117 in the IG. The comments turned out to be very brief statements on reasons for patients’ inability to sleep, often just two or three words, such as back-pain, toilet or coughing. Some comments on sleep were more detailed like: “woke up in the middle of the night and scarcely slept afterwards” or “I usually sleep lightly”.

After having written all the statements accurately down, they were read carefully several times and the following headings were formed: Nurses’ observations, physiological problems, pain, neighbour-patient, positioning in bed, and environment-
with changes in sleep patterns, frequency of awakenings and the amount of time spent awake. Environmental conditions played a role in sleep disturbances, as 3.4% in the CG and 2.6% in the IG experienced poor sleep during the first night, which increased to 4.9% in the CG and 2.6% in the IG on the fourth night. On the fifth night, however, it increased to 7.3% in the CG and 5.0% in the IG. The same tendencies are seen in the rest of the themes. Qualitative data is only used for assessing intervention fidelity.

4. DISCUSSION

The aim of the study was to examine the effect of a nursing intervention based on sleep anamneses and sleep hygienic principles on patients’ self-reported sleep quality, measured by changes in sleep duration, sleep efficiency and sleep onset latency as well as the use of sleep medicine. Even though none of the results in this study are significant, the nursing interventions seem to have had a positive effect on patients’ global PSQI-score, sleep efficiency and use of sleep medicine, especially after two months, as the results from the IG show a generally better sleep among participants than in the CG. A greater population in the intervention group could, however, have made some changes to the outcome.

The groups included were comparable concerning gender, age (p = 0.11) and operation (p = 0.71). The results showed that participants who completed the study were older in the intervention group than in the control group. Generally, the older aged in the IG can be viewed as confounder. This difference in age can be due to administrative changes in the Heart Centre just before the intervention took place, which led to an opening of a fast track ward. The fast track ward normally operates patients with a “calculated normal trajectory”. Patients from fast-track unit were not included in the study. Several patients in the IG, who in the first place agreed to contribute, withdrew their confirmation after some days, possibly because it was a more vulnerable group with a more complex trajectory than the control group. A consequence of this can be that the patients in the ward, where the intervention was carried out, are more affected by their heart disease than the patients in the control group. Redeker, Ruggiero and Hedges found that cardiac surgery patients did suffer from sleep problems (PSQI > 5) and that aging and severity of cardiac disease influenced sleep patterns, like less nocturnal sleep time. They presented a global PSQI score pre-op of 6.99, which is higher than in this study (IG: 6.03, CG: 6.23). They found that patients’ self-reported sleep quality continued to improve from 4 weeks to 8 weeks PO, where they found a global score of 6.82 and 5.59/5.1, respectively, in this study. The results in other studies concerning reacquisition of normal sleep patterns vary from weeks to months and even up to one year after discharge from hospital.

Preoperative PSQI-score suggests that all patients have a poor sleep quality (> 5). Two months after surgery both groups show improved results, yet the IG comes out with better results (5.10) than the CG (5.59), and the mean difference over time is higher in the intervention group. This is further confirmed by the distribution on groups (see Table 3), which shows that patients in the IG group have moved up on the scale and become generally better sleepers. Redeker, Ruggiero and Hedges found that cardiac surgery patients did suffer from sleep problems (PSQI > 5) and that aging and severity of cardiac disease influenced sleep patterns, like less nocturnal sleep time. They presented a global PSQI score pre-op of 6.99, which is higher than in this study (IG: 6.03, CG: 6.23). They found that patients’ self-reported sleep quality continued to improve from 4 weeks to 8 weeks PO, where they found a global score of 6.82 and 5.59/5.1, respectively, in this study. The results in other studies concerning reacquisition of normal sleep patterns vary from weeks to months and even up to one year after discharge from hospital.

In contrast to their findings, the results in this study indicate an improvement in sleep pattern variables, especially in the IG after two months PO. This positive progress may continue, since the review study by Liao et al. conclude...
that sleep disturbances persist over the course of recovery and it takes about two months for sleep to recover to pre-
operational levels. More than 57% of the patients in their
study reported sleep disturbances during the first 6 months
after surgery. In this study, 65.7% in the IG had a PSQI
score between 0-5 after two months, which is associated
with good sleep quality. Since the participants in the IG are
older and more ill than in the CG, one could expect worse
results in this group. However, this is not the case, as the
participants’ global PSQI score is better in the IG than in the
CG. This could indicate that the intervention to some extent
can prevent sleep problems or at least prevent sleep problems
from escalating further. It looks as if patients achieve a better
sleep after two months, and therefore it could be interesting
to study sleep and sleep habits over a longer period to see
if the effect of the intervention would be longer lasting or if
their sleep quality were to keep on improving.

Strength and limitations of the study
Even though the randomized clinical trial is the strongest
design when testing interventions, we chose a controlled
intervention study design due to the nature of the study. It
was not possible to randomize patients to a control group
and a treatment group because the nurses take care of all the
patients during nighttime, and it would therefore be impos-
sible to ask them to do one intervention to a patient in one
bed, but not offer the same to the patient in the neighbor bed.
Furthermore, there would be the risk of intervention patients
sharing information with control patients, and since most
patients share rooms, control patients would then be able to
listen to the instructions given to the intervention patients.
Consequently, the patients were included consecutively, first
in the control-group, and when the intervention was imple-
mented, the inclusion in intervention group then took place
to ensure that there were no interactions between the groups,
which could contaminate the results. Thus, the nurses had no
special attention on sleep in the control group. The teaching
and training of nurses ran over half a year, and they were en-
couraged to use their knowledge at once to make it possible
to remember the intervention and to practice their intentions
of changing habits. Nurses were taught and trained by the
same person who also collected data and during the data col-
lecting period, daily interviewed the participants regarding
their sleep. This made it possible to detect whether or not a
nurse followed the decisions of the intervention and to clarify
the reasons hereof. There were no observations or follow up
on the study during nighttime.

The method used in the study is the PSQI questionnaire,
which is a well-validated and precise instrument. Several
studies use polysomnography, which is considered the “gold
standard” as it objectively measures the quality and quantity
of sleep. Subjective methods like nurses or patients’ assess-
ment have been used, and each of these instruments has their
own advantages and disadvantages.[47] In this study, patients’
self-reported data was preferred, as it displays the patients’
own experience and produces a varied picture of the patients’
sleep patterns, how the sleep is assessed and whether the
sleep was regarded restorative. A disadvantage by using
self-reported data is that patients may evaluate their sleep
worse than a polysomnograph, but since sleep quality has to
do with the subjective feeling of restoration and well-being,
this method allows giving a better subjective aspect of sleep.

The data collection in this study ended two months after the
operation. Since the positive tendencies only emerge more
than one month after the operation it could be interesting
to follow the patient for a longer period to see if their sleep
quality is still improving. This could be done either by use
of the PSQI questionnaire or by making a telephone call to
the patients after a four month and half a year. Such a call
would have at least two aims: to gain knowledge about the
sleep quality and to reinforce the strategies that seemed to
work for the patients.

Only a few clinical trials on sleep promoting interventions[2]
and on nurse led interventions during hospitalization has
been carried out. A study like this has not been made pre-
viously in clinical nursing practice. Wang et al.[26] queries
that there has not been described which elements are the
most effective in cognitive therapy and sleep hygiene, which
could be a point of criticism in this study. As the intervention
intends to be based on principles of sleep hygiene, reflective
discussions and decisions about sleep and the patients’ sub-
jective experience of their sleep and sleep habits, it is not
possible to point out the exact elements in the intervention
that has had an effect. Yet, some elements were pointed out
in the education: maintain a normal sleep pattern and com-
fortable positioning in bed, release pain sufficiently, decrease
routine controls, consider the arrangements of patients and
the use of sleep medicine, and avoid noise and disturbances
from staff. The patients’ sleep diaries give some indication
on the actions that have been performed by nurses. This
could be e.g., moving a neighbour patient out of a room, as-
sessing patients’ physical condition and comparing it to the
need of sleep before the night shift, only monitoring when
necessary, assisting patients to a better positioning in bed by
use of pillows, handing out pain killer morning dose earlier
in the morning (or night), having conversations with patients
about their concerns, helping patients who are unable to fall
asleep out of bed so they can be active until they feel sleepy,
or distributing sleep medicine if patients are unable to sleep,
which was previously quite unusual. As sleep problems are
being taken more and more seriously, patients may similarly be more positive in their evaluation of their sleep quality.

5. CONCLUSION

Conclusively, it seems as if the systematic effort that included teaching in sleep, training in sleep anamneses and focused nursing based on sleep hygienic principles has affected nurses’ understanding of what good sleep means for the individual patient, and to some extent, made nurses change habits and propose individual nursing actions, targeted to patients’ needs and wishes. The effect is seen particularly on patients’ sleep two months PO in terms of global PSQI, total sleep time, SE, sleep medication, sleep quality and WASO, although no results are significant. However, this could be due to a higher mean age in the intervention group. It seems as if the more subjective feelings about sleep quality has improved, which may be of some importance since sleep quality is characterized as a subjective experience. The difference in age between the groups should be considered when assessing the results.

REFERENCES

[1] Hedner J, Caidahl K, Sjöland H, et al. Sleep habits and their association with mortality during 5-year follow-up after coronary artery bypass surgery. Acta cardio. 2002; 57(5): 341-348. PMid:12405571 http://dx.doi.org/10.1016/S0897-1898(02)00151-0

[2] Redeker NS. Why is sleep relevant to cardiovascular disease? Journal of Cardiovascular Nursing. 2002; 17(1): Foreword v-x.

[3] Redeker NS, Hedges C. Sleep During Hospitalization and Recovery after Cardiac Surgery. Journal of Cardiovascular Nursing. 2002; 17(1): 56-68. PMid:12358093 http://dx.doi.org/10.1097/00050822-200201000-00006

[4] Redeker NS, Ruggiero J, Hedges C. Patterns and Predictors of Sleep Pattern Disturbance after Cardiac Surgery. Research in Nursing & Health. 2004; 27: 217-224. PMid:15264261 http://dx.doi.org/10.1002/nur.20023

[5] Redeker NS, Ruggiero J, Hedges C. Sleep Is Related to Physical Functioning and Emotional Well-Being After Cardiac Surgery. Nursing Research. 2004; 53(3): 154-162. http://dx.doi.org/10.1097/00006199-200405000-00002

[6] Edell-Gustafsson UM, Jerker EH, Arén CB. Sleep and quality of life assessment in patients undergoing coronary artery bypass grafting. Journal of Advanced Nursing. 1999; 29 (5): 1213-1220. PMid:10320506 http://dx.doi.org/10.1046/j.1365-2648.1999.01006.x

[7] Redeker NS, Mason DJ, Wykpisz E, et al. Sleep Patterns in Women After Coronary Artery Bypass Surgery. Applied Nursing Research. 1996; 9(3): 115-22. http://dx.doi.org/10.1016/S0897-1897(96)80206-0

[8] Cook NF. A fine balance: the physiology of sleep. Practice Nursing. 2008; 19(2): 73-76. http://dx.doi.org/10.12968/pnur.2008.19.2.28169

[9] Lei Z, Giongjing Y, Qiuli W, et al. Sleep quality and sleep disturbing factors of inpatients in a Chinese general hospital. Journal of Clinical Nursing. 2009; 18: 2521-2529. PMid:19694879 http://dx.doi.org/10.1111/j.1365-2702.2009.02846.x

[10] Sateia MJ, Nowell PD. Insomnia. Lancet. 2004; 364 No 27: 1959-73.

[11] Redeker NS. Sleep Disturbance in People with Heart Failure. Journal of Cardiovascular Nursing. 2008; 23(3): 231-238. PMid:18437065 http://dx.doi.org/10.1097/01.JCN.00005094.20012.76

[12] Zimmermann L, Barnason S, Schulz P, et al. The Effects of a Symptom Management Intervention on Symptom Evaluation, Physical Functioning, and Physical Activity for Women After Coronary Artery Bypass Surgery. 2007; 22(6): 493-500.

[13] Njave P. Sleep and rest in patients undergoing cardiac surgery. Nursing Standard. 2003 Dec; 18(12): 33-37. PMid:14705387 http://dx.doi.org/10.7748/nurs_std.2003.18.12.33.c3513

[14] Broström A, Johansson P. Sleep disturbances in patients with chronic heart failure and their holistic consequences - what different care actions can be implemented? European Journal of Cardiovascular Nursing. 2005; 4: 183-197. PMid:15935732 http://dx.doi.org/10.1016/j.ejcnurse.2005.04.005

[15] Gögenur I, Wildschiotz G, Rosenberg J. Circadian distribution of sleep phases after major abdominal surgery. British Journal of Anaesthesia. 2008; 100(1): 45-49. PMid:18037670 http://dx.doi.org/10.1093/bja/aem360

Implications for practice

Sleep problems is a huge problem in the general population as well as in heart surgery patients. Treatment of insomnia should be individualized as this intervention has been. Nevertheless, studies that clarify the most effective elements in sleep hygiene are needed. Cognitive behavioural therapy addressing dysfunctional beliefs and that are combined to other strategies has shown promising results.[32,33] This study supports the argument that nurses’ increased knowledge about sleep and sleep hygienic principles and the use of sleep anamneses has an effect on patients’ perceived sleep quality or may diminish the consequences of bad sleep. The nurses were not educated in cognitive therapy, but in normal sleep and sleep hygienic principles, and even though they were able to advice the patients about sleep, they were not able to change the patients’ sleeping habits during a short hospitalization. Other methods could have been chosen and a recent study on CAB surgery patients is exploring the effect of mindfulness.

CONFLICTS OF INTEREST DISCLOSURE

The authors declare that there is no conflict of interest.
[16] Redeker NS, Hedges C. Sleep and the Cardiac Surgery Patient. In: Lee-Chiong T (ed): Sleep: A Comprehensive Handbook. Hoboken, New Jersey. Wiley-Liss. John Wiley & Sons, Inc. 2006; Chapter 119: 909-912.

[17] Gögenur I et al. Disturbances in the circadian pattern of activity and sleep after laparoscopic versus open abdominal surgery. Surg Endosc. 2009; 23: 1026-1031. PMid:18830755 http://dx.doi.org/10.1007/s00464-008-0112-9

[18] Morin CM, Hauri PJ, Espie CA, et al. Nonpharmacologic Treatment of Chronic Insomnia. Sleep. 1999; 22(8): 1134-56. PMid:10617176

[19] Lashley FR. Measuring Sleep. In: Frank-Stromborg M, Olsen SJ (Eds): Instruments for Clinical Health-Care Research. Massachusetts. Jones and Bartlett Publishers Sudbury, Third Edition. 2014 Chapter 19: 293-314.

[20] Montgomery P, Dennis JA. Cognitive behavioural interventions for sleep problems in adults aged 60+ (review). The Cochrane Library. 2009. Available from: http://www.thecochranelibrary.com

[21] Baran AS, Chervin RD. Approach to the Patient with Sleep Complaints. Seminars in Neurology. 2009; 29: 297-304. PMid:19742407 http://dx.doi.org/10.1055/s-0029-1237116

[22] Lashley FR. Measuring Sleep. In: Frank-Stromborg M, Olsen SJ (Eds): Instruments for Clinical Health-Care Research. Massachusetts. Jones and Bartlett Publishers Sudbury, Third Edition. 2014 Chapter 19: 293-314.

[23] Edinger JD, Wohlgemut WK, Radtke RA, et al. Cognitive Behavioural Therapy for Treatment of Chronic Primary Insomnia. A Randomized Controlled Trial. JAMA. 2001 April; 285(14): 1856-1864. PMid:11308399 http://dx.doi.org/10.1001/jama.285.14.1856

[24] Edinger JD, Olsen MK, Steuchach MS, et al. Cognitive Behavioral Therapy for Patients with Primary Insomnia or Insomnia Associated Predominantly with Mixed Psychiatric Disorders: a Randomized Clinical Trial. Sleep. 2009; 32(4): 499-510. PMid:1941314

[25] Morin CM, Vallières A, Guay B, et al. Cognitive Behavioral Therapy, Singly and Combined With Medication, for Persistent Insomnia: A Randomized Controlled Trial. JAMA. 2009; 301(19): 2005-2015. Available from: http://jama.ama-assn.org/cgi/content/full/301/19/2005

[26] Connor MK, Jacobson NP. The Sleep Diary: a useful tool for insomnia assessment. J Gen Intern Med. 2005; 20(5): 432-435. PMid:15965602 http://dx.doi.org/10.1007/s11079-005-9010-7

[27] Morin CM. Cognitive-behavioural approaches to the treatment of insomnia. J Clin Psychiatry. 2004; 65(Suppl 16): 33-40.

[28] Benca R. Diagnosis and Treatment of Chronic Insomnia: A review. Psychiatric Services. 2005 March; 56(3): 332-343. PMid:15746509 http://dx.doi.org/10.1176/appi.ps.56.3.332

[29] Petit L, Azad N, Byszewski A, et al. Non-pharmacological management of primary and secondary insomnia among older people: review of assessment tools and treatments. Age and Ageing. 2003; 32: 19-25. http://dx.doi.org/10.1093/ageing/32.1.19

[30] Edinger JD, Means MK. Cognitive-behavioral therapy for primary insomnia. Clinical Psychology Review. 2005; 25: 539-558. PMid:15951083 http://dx.doi.org/10.1016/j.cpr.2005.04.003

[31] Richardson S. Effects of Relaxation and Imagery on the Sleep of Critically Ill Adults. Dimensions of Critical Care Nursing. 2003; 22(4): 182-190. http://dx.doi.org/10.1097/00003465-200307000-00009

[32] Ringdahl EN, Pereira SL, Delzell JE. Review Article. Treatment of Primary Insomnia. J Am Board Fam Pract. 2004 May-June; 17(3): 212-219. PMid:15226287 http://dx.doi.org/10.3122/jabfm.17.3.212

[33] Edinger JD, Wohlgemut WK, Radtke RA, et al. Cognitive Behavioural Therapy for Treatment of Chronic Primary Insomnia. A Randomized Controlled Trial. JAMA. 2001 April; 285(14): 1856-1864. PMid:11308399 http://dx.doi.org/10.1001/jama.285.14.1856

[34] Edinger JD, Olsen MK, Steuchach MS, et al. Cognitive Behavioral Therapy for Patients with Primary Insomnia or Insomnia Associated Predominantly with Mixed Psychiatric Disorders: a Randomized Clinical Trial. Sleep. 2009; 32(4): 499-510. PMid:1941314

[35] Morin CM, Vallières A, Guay B, et al. Cognitive Behavioral Therapy, Singly and Combined With Medication, for Persistent Insomnia: A Randomized Controlled Trial. JAMA. 2009; 301(19): 2005-2015. Available from: http://jama.ama-assn.org/cgi/content/full/301/19/2005

[36] Siebert AT, Manber R. Insomnia and Its Effective Non-pharmacologic Treatment. Med Clin N Am. 2010; 94: 581-591. PMid:20451034 http://dx.doi.org/10.1016/j.mcna.2010.02.005

[37] Roth T, Drake C. Evolution of insomnia: current status and future direction. Sleep Medicine. 2004; 5(suppl. 1): 23-S30. http://dx.doi.org/10.1016/S1538-9465(04)00004-4

[38] Mogan K, Dixon S, Mathers N, et al. Psychological treatment for insomnia in the regulation of long-term hypnotic drug use. Health Technology Assessment. 2004 Feb; 8. http://dx.doi.org/10.3310/hta8080

[39] Joshi S. Nonpharmacologic Therapy for Insomnia in the Elderly. Clinics in Geriatric Medicine. 2008; 24: 107-119. PMid:18035235 http://dx.doi.org/10.1016/j.jger.2007.08.005

[40] Passarella S, Duong MT. Diagnosis and treatment of insomnia. Am J Health-Syst Pharm. 2008 May; 65: 927-34. PMid:18463341 http://dx.doi.org/10.2146/ajhp060640

[41] Johansson P, Broström A. Sleep disturbances – A significant problem for cardiovascular nurses in practice and/or research? Editorial. European Journal of Cardiovascular Nursing. 2010; 9: 75-76. PMid:20071237 http://dx.doi.org/10.1016/j.ejcnurse.2009.12.007

[42] Bae CJ, Golish JA. The Sleep Interview and Sleep Questionnaires. In: Lee-Chiong T (ed): Sleep: A Comprehensive Handbook. New Jersey. Wiley-Liss. John Wiley & Sons, Inc, Hoboken. 2006 Chapter 127: 967-71.

[43] Vallido T, Peters K, O’Brien L, et al. Sleep disturbances – A significant problem for cardiovascular nurses in practice and/or research? Editorial. European Journal of Cardiovascular Nursing. 2010; 9: 75-76. PMid:20071237 http://dx.doi.org/10.1016/j.ejcnurse.2009.12.007