A Randomized Controlled Pilot Study Testing Three Types of Health Coaches for Obesity Treatment: Professional, Peer, and Mentor

Tricia M. Leahey and Rena R. Wing

Despite their popularity, empirical support for health coaches is limited. **Objective:** This study examined the feasibility and preliminary efficacy of three types of coaching models for obesity treatment. **Design and Methods:** Participants \((N = 44)\) were randomized to 6 months of reduced intensity group behavioral weight loss (rBWL) plus one of three types of health coaches: (i) Professional (rBWL interventionist), (ii) Peer (group members randomly paired and coached one another), or (iii) Mentor (successful weight loser). Groups met weekly for the first 6 weeks, biweekly for the next 6 weeks, and monthly thereafter, for a total of 12 meetings. During weeks that group did not meet, participants emailed their weight loss information to their coach and received feedback. Coaches were trained on appropriate coaching strategies and feedback delivery. **Results:** Retention was 95%. Participants emailed their progress to their coach 10.8 ± 1.9 of the 12 weeks that there were no group meetings. Coaches responded with feedback 94% of the time. Percent weight losses at 6 months were 9.6 ± 8.1, 9.1 ± 5.0, and 5.7 ± 5.6 for the Professional, Peer, and Mentor conditions, respectively. More participants in the Professional and Peer conditions lost 10% of their initial body weight (Professional: 56% Peer: 50% and Mentor: 17%), with a statistically significant difference between the Professional and Mentor conditions \((P = 0.03)\). **Conclusion:** These preliminary data suggest that combining a rBWL program with health coaching may hold significant promise as a cost-effective obesity treatment paradigm. Larger trials are needed to conclusively determine whether adding coaches improves weight loss outcomes in reduced intensity treatments and to examine which type of coach is most effective.

Obesity (2013) 21, 928-934. doi:10.1038/oby.2012.179

Introduction

Over the past few decades, researchers have compared the efficacy of lay vs. professional interventionists for behavioral weight loss. Studies have shown that lay group leaders may be as effective as professionals (1,2). Thus, lay individuals are currently being used as a cost-effective method for the dissemination of behavioral weight loss interventions (3).

Unlike these earlier paradigms where lay or professional individuals are the sole provider of treatment, more recent models are testing lay and professional individuals as health coaches (4,5). In the health coach treatment model, health care professionals deliver treatment and health coaches are used to supplement treatment; between treatment visits, coaches provide ongoing support, accountability, and information to promote behavior change. Health coaching typically occurs via the Internet or over the phone. There are three main types of health coaches: Professionals, Peers, and Mentors. Professional health coaches are health care providers that offer pertinent health care information and support. For example, a diabetes educator may coach diabetic patients with goals of increasing self-management behaviors and improving glycemic control. Peer health coaches are individuals currently facing the health problem who coach one another to promote health behavior change. For example,
two patients newly diagnosed with diabetes may coach each other in lifestyle modification. Mentors, or master coaches, have previously faced the health situation and have demonstrated that they are capable of successfully coping with the situation (e.g., diabetics with hemoglobin A1c levels ≤7% coach newly diagnosed patients). Given their experience with the health problem, Peer health coaches and Mentors are thought to provide unique support, something not duplicated by professionals or family members (6).

Despite their increase in popularity, empirical support for health coaches is limited. The vast majority of the literature on health coaches is from nonrandomized trials, studies with high levels of attrition, or studies with limited objective health-related outcome data (e.g., refs. (7-10)). However, a few rigorous trials have been conducted and results suggest that adding coaches to treatment may enhance health outcomes. In a 6-month trial, Vale et al. (11) found that compared with usual care alone, cardiac patients who received usual care plus Professional coaching had significantly greater decreases in cardiometabolic risk factors, including total cholesterol and low-density lipoprotein cholesterol. To our knowledge, only two studies have evaluated the efficacy of different types of health coaches (e.g., Professional vs. Mentor or Professional vs. Peer) on health outcomes, one in the area of physical activity and the other for diabetes. In the physical activity trial (4), participants were randomized to one of the following: one physical activity session + Professional coach, one physical activity session + Mentor, or control condition; participants in the Professional coach and Mentor conditions had significantly greater increases in moderate or vigorous physical activity compared with the control condition, but there was no difference between the two coach conditions (Professional: +178 moderate-to-vigorous physical activity min/week, Mentor: +216 moderate-to-vigorous physical activity min/week). Heisler et al. (5) randomized patients with diabetes to a diabetes care group that involved either a Peer coach or nurse coach manager and found that participants in the Peer condition had superior changes in hemoglobin A1c at 6 months follow-up (−0.3% vs. +0.3%). Taken together, these results suggest that health coaches may be an effective approach for health behavior change; however, these results are inconclusive regarding which type of health coach is most effective for health promotion.

No studies have compared the three primary types of health coaches (Professional, Peer, and Mentor) in a randomized trial. Moreover, no one has examined health coaches for obesity treatment. Given the nature of the relationships created between coaches and patients, the three types of health coaches may be effective for different reasons: Professional coaches provide expert advice and information; Peers provide a nonhierarchical, reciprocal, supportive relationship for the facilitation of health behavior change; and Mentors offer patients hope and inspiration and effective modeling of optimal health behaviors. Thus, in the present study, obese individuals received a reduced intensity behavioral weight loss (rBWL) treatment and were randomized to one of three types of health coaches: Professional, Peer, or Mentor. Given that the literature on health coaching is in its infancy, with some studies showing that lay coaching may be as effective as professional support, combined with the fact that no one has tested the three types of health coaches for behavior change in general or for obesity treatment, no specific a priori hypothesis was made regarding the efficacy of the three types of coaches for weight loss. Instead, the primary aim of this trial was to determine the feasibility, acceptability, and preliminary efficacy of the three types of health coaches for obesity treatment.

Methods and Procedures

Participants

A total of 44 obese individuals were recruited through advertisements placed in local newspapers or online. Given that similarity between health coaches and the individuals they coach has been shown to be important (12), we sought to maximize the similarity between participants and coaches by limiting the age and BMI range of individuals enrolled. The majority of participants who enter our trials are between 40 and 60 years of age, thus, we recruited individuals within this age range and limited our BMI range from 30 to 40 kg/m².

Individuals were excluded for current participation in a weight loss program; recent weight loss, defined as a 5% weight loss within the 6 months before screening; pregnancy; serious medical conditions; serious psychological disorders; or planned relocation. Participants who reported medical conditions that may interfere with their ability to safely complete the intervention or engage in regular physical activity were required to obtain written permission from their physician to participate in the study.

Study design

Forty-four participants received a rBWL, and were randomly assigned to one of the three coach conditions stratified within gender: Professional coach (n = 16), Peer coach (n = 16), or Mentor (n = 12) (see Figure 1 for participant flow). In the Mentor condition, six Mentors were in attendance at each group session, thus, to maintain consistency in treatment group size, we limited the number of participants assigned to the Mentor condition to 12, for a total of 18 individuals at weekly group meetings. All individuals provided written informed consent to participate, and all study procedures were approved by an Institutional Review Board.

Interventions

Components common to all three conditions. All three treatment arms received 6 months of a rBWL program (13). Unlike typical BWL programs where participants meet weekly for 6 months, a tapered group meeting schedule was used; participants met weekly for the first 6 weeks, biweekly for the next 6 weeks, and monthly thereafter, for a total of 12, 1-h group sessions. Per definitions provided by the US Preventive Services Task Force, this intervention is considered high intensity for the first 3 months and then medium intensity for the next 3 months (14). During the 12 weeks the group did not meet, participants emailed their weight, calorie, fat gram, and physical activity information to their Professional coach, Peer coach, or Mentor, depending on condition assignment, and received feedback. During weeks 6-24, when group met, participants completed goal contracts with their coaches, setting weight loss, calorie, and activity goals to be obtained between treatment sessions.

All participants were given calorie goals of 1,200 or 1,500 kcal per day and 33 or 42 g of fat (i.e., 25% kcal from fat) depending on initial body weight. Using a calorie and fat gram reference book, participants recorded their calorie and fat intake throughout the program. Participants were instructed to increase their minutes of activity gradually throughout the program until they reached 40 min on 5 days per week. All participants were given a weight loss
goal of 1- to 2-lb per week. Standard behavioral strategies were taught to promote the modification of diet and exercise habits including self-monitoring, stimulus control, problem solving, goal setting, assertiveness training, and relapse prevention. All intervention components were delivered by a clinical psychologist and a master’s level interventionist with experience in behavioral weight loss.

Components that differed between the three conditions. In the Professional coach condition, participants were coached by one of the rBWL interventionists. Given that the interventionist had experience conducting BWL treatment, significant training in content and feedback delivery was not necessary. However, she was provided the rationale for health coaching and trained in the coach protocol. During weeks that group did not meet, participants in the Professional coach condition emailed their weight, calorie, and activity information to the Professional coach and received semi-automated feedback. Weekly feedback was dependent on whether participants met their 1-lb weight loss goal; participants in each category (met goal vs. did not meet goal) received similar feedback.

In the Peer condition, participants were randomly paired (16 participants; 8 pairs) to coach and be coached by another member of their weight loss group prior to treatment. Peer coach pairings were announced at the first treatment session. During the first six sessions, in addition to learning BWL strategies, peer coach dyads engaged in brief relationship building activities shown to promote cohesive relationships among group members in BWL programs (15). Moreover, during sessions 1 and 2, which lasted for 1.5 h, participants received peer coach manuals and training in how to be an effective health coach. Peers were taught to (i) provide support and encouragement and (ii) promote key behavioral weight loss strategies to help their partner meet their weight loss goals via weekly feedback. Feedback examples were given and role plays were conducted. Peer coach dyads were instructed to contact an interventionist if there were issues. To track program adherence and ensure appropriate email communication, peer coaches “cc’d” (i.e., carbon copied) an interventionist on all email correspondence.

In the Mentor condition, successful weight losers (i.e., mentors) were recruited to coach incoming participants assigned to the
Mentor condition. Six participants from one of our recent BWL programs who (i) agreed to be contacted for future studies, (ii) had demographic characteristics (sex, age) similar to participants randomized to the Mentor condition, and (iii) lost at least 10% of their initial body weight and maintained a 10% weight loss were invited to coach incoming participants. All mentors had completed 12 months of a BWL program and a total of 12 months had passed between their completion of the program and baseline assessments for the coach pilot. During their baseline assessment mentors had their weight verified.

Before the first treatment session, mentors were given coaching manuals and completed a 1-h training session. Given their success at weight loss and weight loss maintenance, their role as a positive, inspirational role model was stressed. Mentors were instructed to emphasize core BWL strategies and draw on their weight control experience when providing advice and encouragement to their mentees. Given that it is important for mentees to perceive their mentors as similar and their success as attainable, mentors were instructed to identify things they had in common with their mentees and share how they successfully managed weight loss hurdles. Primary mentorship roles were similar to those of peer coaches, including providing support and encouragement and promoting key BWL strategies via weekly feedback. Mentors were given examples of appropriate feedback. Mentors were instructed to contact study staff if issues arose.

After their training, each of the six mentors was randomly assigned to coach 2 participants assigned to the Mentor condition. Similar to the Peer coach condition, during weeks 1-6, in addition to standard weight loss treatment, mentors and mentees engaged in relationship building activities. During weeks that group did not meet, mentees reported their progress to their mentors via email and received feedback. Mentors were given examples of appropriate feedback. Mentors were instructed to contact study staff if issues arose.

After their training, each of the six mentors was randomly assigned to coach 2 participants assigned to the Mentor condition. Similar to the Peer coach condition, during weeks 1-6, in addition to standard weight loss treatment, mentors and mentees engaged in relationship building activities. During weeks that group did not meet, mentees reported their progress to their mentors via email and received feedback. Mentors were given examples of appropriate feedback. Mentors were instructed to contact study staff if issues arose.

Dependent measures

Demographics. Before treatment, participants reported basic demographic information.

Weight, height, BMI. Weight was measured to the nearest 0.1 kg using a digital scale; height was measured to the nearest millimeter using a stadiometer. BMI was calculated with the formula weight in kg/height in meter square. Percent weight loss was calculated as follows: \((\text{baseline weight} - \text{posttreatment weight})/\text{baseline weight}) \times 100.

Adherence measures. Session attendance (mean and percentage), frequency of email communication between participants and coaches, dietary intake, and physical activity data were collected. Dietary intake was obtained from participants’ self-monitoring records. The Paffenbarger Physical Activity Questionnaire was used to assess minutes of physical activity per week (16).

Autonomous support. Autonomous support (AS; affirming relationships that allow choice) from health care providers has been shown to promote behavior change (17,18). The Climate Questionnaire, a widely accepted measure of AS (19), was modified for the present study. The original measure assesses AS received from physicians; thus, we replaced “physician” with “weight loss coach” in the instructions and in each item. Item scores range from 1 to 7. This questionnaire yields a mean score for all items; higher scores indicate greater AS. The original measure has excellent psychometric properties (19). The adapted version also demonstrated excellent internal consistency and test–retest reliability \((z = 0.95; r = 0.91)\).

Program satisfaction. Participants reported overall program satisfaction and whether they would recommend the program to a friend. Each item was rated on a 7-point scale. Higher scores indicate greater program favorability.

Statistical analyses

Group differences in baseline characteristics and all dependent variables were examined using ANOVA or \(\chi^2\) tests for continuous or categorical variables, respectively. An intent-to-treat approach was used to compare the three conditions on percent weight loss where non-completers were assumed to have remained at their baseline weight. A priori contrasts were conducted to compare the three coach conditions on weight loss. Hierarchical linear modeling was used to examine the similarity in weight loss among peer coach dyads and among participants with the same mentor; an unconditional model was specified and an intraclass correlation coefficient (ICC) was computed using between and within group variance components \((ICC = U_0/U_0 + R)\). In addition, in order to provide a context for the ICCs produced in the Peer and Mentor conditions, we randomly paired participants in the Professional coach condition and examined the resulting ICC for weight loss. Correlations were conducted to examine the relationship between participant weight change and coach support.

Results

Participant characteristics and feasibility of weight loss coaches

There were no significant differences between Professional, Peer, and Mentor participants on baseline characteristics (Table 1). Participants in all three conditions were highly adherent to the treatment protocol. Number of group meetings attended (out of a possible 12) did not differ between the three arms (Professional: 10.1 ± 3.0, or 84%; Peer: 9.9 ± 1.3, or 83%; Mentor: 10.3 ± 2.8, or 86%; \(P = 0.92\)). Participants emailed their progress to their coach 10.8 ± 1.7 of the 12 weeks that there were no group meetings, with no difference between conditions (Professional: 11.0 ± 1.9; Peer: 10.7 ± 2.1; Mentor: 10.7 ± 1.7; \(P = 0.89\)). Coaches responded with feedback 94% of the time (Professional: 100%; Peer: 90%; Mentor: 92%). Completion of posttreatment assessments was excellent (95%) and did not vary by condition (Professional: 88%; Peer: 100%; Mentor: 100%; \(P = 0.16\)).

Preliminary efficacy of weight loss coaches

There were differences in weight losses produced by the three coach conditions (Figure 2). Participants in the Professional and Peer Coach conditions lost 9.6 ± 8.1 and 9.1 ± 5.0% of initial body weight, respectively. In contrast, the Mentor condition produced a weight loss of only 5.7 ± 5.6%. However, given the pilot nature of this study and associated small sample size, these effects were not statistically significant \((F(2,41) = 1.4, P = 0.26)\). Completer analyses revealed a significant difference in percent weight loss between Professional coaches and Mentors \((10.9 ± 1.8\% \text{ vs. } 5.7 ± 5.6\%; F(1,24) = 3.8, P = 0.04)\). Finally, whereas only 17% of Mentor participants lost 10% of their initial body weight, 56% of participants...
in the Professional coach condition \((P = 0.03)\) and 50% of participants in the Peer coach condition \((P = 0.08)\) lost at least 10% of initial body weight.

Weight losses were similar among Peer coach dyads and among participants with the same mentor. The ICC for weight change among Peer coaches was 0.21. Likewise, participants coached by the same mentor had similar weight losses \((ICC = 0.26)\). In contrast, to provide a context for these effects, we randomly paired participants in the Professional coach condition and conducted ICC analyses and found no intraclass correlation \((ICC = 0.00)\). ICCs greater than 0.15 are considered large \((20)\); therefore, the ICCs produced suggest that Peer coaches influenced each other’s weight loss during the intervention and that Mentors tended to produce similar weight loss results in their mentees.

Effects of coaching on adherence to diet and physical activity prescriptions

The three conditions did not differ in kcal or percent of calories from fat \((\text{kcal: Professional: } 1,416.1 \pm 214.7, \text{ Peer: } 1,299.8 \pm 120.3, \text{ Mentor: } 1,318.1 \pm 132.7, P = 0.23; \% \text{ fat: Professional: } 23.8 \pm 6.5, \text{ Peer: } 23.2 \pm 4.2, \text{ Mentor: } 24.6 \pm 5.1, P = 0.82)\), nor did they differ in change in physical activity minutes per week \((\text{Professional: } +179.6 \pm 198.4, \text{ Peer: } +100.0 \pm 93.7, \text{ Mentor: } +46.9 \pm 123.2, P = 0.16)\). Similarly, there were no significant differences in percentage of participants meeting the physical activity goal (i.e., 200 min/week) in the three conditions \((\text{Professional: } 38\%, \text{ Peer: } 44\%, \text{ Mentor: } 17\%, P = 0.34)\).

Effects of coaching on process variables

There was a significant difference between conditions in AS \((F (2.39) = 3.9, P = 0.03)\). Participants in the Professional coach condition reported receiving significantly more AS from their coach compared with participants in the Mentor condition \((6.6 \pm 0.4\text{ vs. } 5.4 \pm 1.6; P = 0.008)\), with the Peer coach condition in the middle and not significantly different from the other two \((6.0 \pm 1.0; P's \geq 0.15)\). There was an overall positive association between AS and weight loss \((r = 0.38, P = 0.015)\); this association was also found in all three coach conditions \((\text{Professional: } r = 0.38; \text{ Peer: } r = 0.42; \text{ Mentor: } r = 0.41)\).
The three conditions did not differ on any program satisfaction items. Ratings of overall satisfaction and willingness to recommend the program to a friend both approached the maximum level of 7.0 in all treatment arms (Satisfaction: Professional: 6.2 ± 1.5, Peer: 6.5 ± 1.1, Mentor: 6.4 ± 0.7, \(P = 0.84 \); Recommend: Professional: 7.0 ± 0.0, Peer: 6.8 ± 0.4, Mentor: 6.8 ± 0.6, \(P = 0.27 \)).

Effects of coaching on Mentors

Six successful weight losers (i.e., Mentors) coached participants in the Mentor condition. Mentors were predominantly female (83%), white (100%), college-educated (67%), and had a mean age and BMI of 53.8 ± 6.4 years and 28.9 ± 3.3 kg/m² at program entry. Mentors attended 10.5 ± 1.2, or 88%, of the 12 treatment sessions and 100% completed the study.

Before beginning this study, Mentors had achieved an impressive weight loss of 19.9 ± 5.5% in a 12-month behavioral weight loss program. However, they had experienced weight regain between their participation in the initial weight loss program and the beginning of the coach pilot (+4.4% ± 2.0), which continued during the coach pilot intervention (+3.1% ± 3.6). Despite this regain, Mentors managed to maintain a clinically significant weight loss of 12.3 ± 6.2% of initial body weight at the end of their participation in the present study. We conducted exploratory analyses to determine whether mentors’ weight change during the intervention was associated with their mentees’ weight change and there was a negative association (\(r = -0.27 \)), suggesting that mentors who regained the most weight actually had the most successful participants.

Discussion

The purpose of this randomized controlled pilot study was to test the feasibility and preliminary efficacy of three types of health coaches for obesity treatment. All participants received a rBLW program that met 12 times over the course of 24 weeks and one of three types of health coaches: Professional, Peer, or Mentor. Participants reported their weekly weight, calorie, and activity information to their coach during weeks that group did not meet and received feedback. Results suggest that health coaches for obesity treatment are feasible and that incorporating coaches into a reduced intensity treatment may yield weight losses comparable with more intensive programs that involve weekly group sessions.

Given that no studies to date have tested health coaches for obesity treatment and that no one has examined which type of health coach, Professional, Peer, or Mentor, would be most appropriate for weight loss, we first sought to determine the feasibility and acceptability of each approach. Participants in all three conditions were highly adherent to the coaching protocol. Moreover, participants reported being quite satisfied with the programs. Thus, Professional, Peer, and Mentor health coaches are all feasible and acceptable approaches to weight loss treatment.

Traditional BWL programs involve weekly face-to-face treatment for 24 weeks and yield weight losses of 8-10% (21). We showed that combining a reduced intensity BWL program that involved half the sessions of traditional treatment with Professional, Peer, or Mentor health coaches yields clinically significant weight losses (9.6%, 9.1%, and 5.7%, respectively), with the Professional and Peer conditions achieving weight losses comparable with those of traditional treatment. These preliminary results suggest that Professional and Peer coaches may be superior to Mentors. However, previous research has shown that successful weight losers (e.g., Mentors) as group leaders produce weight losses comparable with Professionals (1). Moreover, community-based programs, such as Trevose and Weight Watchers, use successful weight losers to deliver treatment and yield impressive results (22,23). While not the same paradigm (Mentors as interventionists vs. Mentors as coaches), these prior findings combined with the pilot nature of this study indicate that additional research is needed to draw definitive conclusions regarding the efficacy of Mentor health coaches for obesity treatment. Future research may also consider manipulating the Mentor–Mentee ratio to determine which ratio yields the best treatment outcomes.

Similar weight losses were achieved among peer dyads and among mentees randomized to the same mentor. These results are consistent with Heisler et al.’s (5) findings in patients with diabetes; peer coach dyads achieved similar changes in hemoglobin A1c. Similar findings have also been shown in BWL studies that involved friends or family in treatment. Wing and Jeffery (24) enrolled individuals and their friends in a BWL intervention that included social support components and found a weight loss ICC of 0.35 among friendship clusters. Thus, consistent with previous findings, our results suggest that social influence occurs among peer coaches and among mentors and mentees. Understanding exactly how peer coaches influence one another and how mentors influence their mentees, whether through social support or some other social influence factor, may be important to maximize the effects of lay health coaches for obesity treatment.

Our findings for AS paralleled our weight loss results; participants in the Professional condition reported the highest level of AS, Mentor participants reported the lowest, and Peers were in the middle. AS is a measure of health care providers’ ability to provide emotional support and offer health care choices (17,18,19). Thus, the high levels of AS achieved by the Professional coach condition may result from the fact that Professional coaches, as BWL interventionists, were trained in both the provision of emotional support and in empirically supported options for weight loss (i.e., offering viable choices). Consistent with other studies demonstrating that AS from health care providers is associated with health outcomes (25), AS in this study was associated with weight loss. Thus, future research may consider explicitly targeting AS when training health coaches.

Study limitations include a predominantly female and white sample and a small sample size of just one cohort of participants; it is possible that the Mentor condition was merely a “difficult cohort” and that their results may not be consistent with those obtained from a larger study with multiple cohorts. In addition, diaries were used to calculate dietary data and physical activity data were self-report. Finally, there was no control group; a treatment arm that received rBWL alone would have allowed us to examine the incremental benefit of health coaches. Strengths of this study are its randomized design and high adherence and completion rates. Moreover, this is the only study to compare the three primary types of health coaches and the only study to test health coaches for obesity treatment. This study provides preliminary evidence that reduced intensity BWL treatment plus health coaches may be feasible, effective, and possibly cost-effective for obesity treatment. Larger trials are needed to conclusively determine whether supplementing reduced intensity
BWL treatment with health coaches improves outcomes and to examine which type of coach is most effective.

Acknowledgments
This project was supported in part by grant F32-DK082128 (T.M.L., PI). We would like to thank Pamela Coward, Carrie Wunsch, and Jennifer Trautvetter for their work on this project.

© 2012 The Obesity Society

References
1. Brownell KD, Stunkard AJ, McKeon PE. Weight reduction at the work site: a promise partially fulfilled. Am J Psychiatry 1985;142:47-52.
2. Levitz LS, Stunkard AJ. A therapeutic coalition for obesity: behavior modification and patient self-help. Am J Psychiatry 1974;131:423-427.
3. Katula JA, Vitolins MZ, Rosenberger EL et al. One-year results of a community-based translation of the Diabetes Prevention Program: Healthy-Living Partnerships to Prevent Diabetes (HELP PD) Project. Diabetes Care 2011;34:1451-1457.
4. Castro CM, Pruitt LA, Buman MP, King AC. Physical activity program delivery by professionals versus volunteers: the TEAM randomized trial. Health Psychol 2011;30:285-294.
5. Hessler M, Vijan S, Makki F, Piette JD. Diabetes control with reciprocal peer support versus nurse care management: a randomized trial. Ann Intern Med 2010;153:507-515.
6. Helgeson VS, Cohen S. Social support and adjustment to cancer: reconciling descriptive, correlational, and intervention research. Health Psychol 1996;15:135-148.
7. Anderson RM, Funnell MM, Nwankwo R et al. Evaluating a problem-based empowerment program for African Americans with diabetes: results of a randomized controlled trial. Ethn Dis 2005;15:671-678.
8. Hibbard MR, Cantor J, Charatz H et al. Peer support in the community: initial findings of a mentoring program for individuals with traumatic brain injury and their families. J Head Trauma Rehabil 2002;17:112-131.
9. Malchodi CS, Oncken C, Dornelas EA et al. The effects of peer counseling on smoking cessation and reduction. Obstet Gynecol 2003;101:504-510.
10. McPherson SL, MacPherson SL, Joseph D, Sullivan E. The benefits of peer support with diabetes. Nurs Forum 2004;39:5-12.
11. Vale MJ, Jelinek MV, Best JD et al.; COACH Study Group. Coaching patients On Achieving Cardiovascular Health (COACH): a multicenter randomized trial in patients with coronary heart disease. Arch Intern Med 2003;163:2775-2783.
12. Dennis CL. Peer support within a health care context: a concept analysis. Int J Nurs Stud 2003;40:321-332.
13. Wadden TA, West DS, Delahanty L et al.; Look AHEAD Research Group. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity (Silver Spring) 2006;14:737-752.
14. McGtue KM, Harris R, Hemphill B et al. Screening and interventions for obesity in adults: summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2003;139:913-949.
15. Leachy TM, Thomas JG, LaRose JG, Wing RR. A randomized trial testing a contingency-based weight loss intervention involving social reinforcement. Obesity (Silver Spring) 2012;20:324-329.
16. Paffenbarger RS Jr, Wing AL, Hyde RT. Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol 1978;108:161-175.
17. Deci EL, Ryan RM. Intrinsic Motivation and Self-determination in Human Behavior. Plenum: New York, 1985.
18. Williams GC. Improving patients’ health through supporting the autonomy of patients and providers. In: Deci EL (ed). Handbook of self-determination research. University of Rochester Press: Rochester, 2002, pp 233-254.
19. Williams GC, Grow VM, Freedman ZR, Ryan RM, Deci EL. Motivational predictors of weight loss and weight-loss maintenance. J Pers Soc Psychol 1996;70:115-126.
20. Hox J. Multilevel Analysis: Techniques and Application. Lawrence Erlbaum: Mahwah, 2002.
21. Wing RR. Behavioral approaches to the treatment of obesity. In: Bray GA, Bouchard C (eds). Handbook of Obesity Treatment. Marcel Dekker: New York, 2008, pp 227-248.
22. Jolly K, Lewis A, Beach J et al. Comparison of range of commercial or primary care led weight reduction programmes with minimal intervention control for weight loss in obesity: Lighten Up randomised controlled trial. BMJ 2011;343 (doi: 10.1136/bmj.d6500).
23. Latner JD, Stunkard AJ, Wilson GT et al. Effective long-term treatment of obesity: a continuing care model. Int J Obes Relat Metab Disord 2000;24:893-898.
24. Wing RR, Jeffery RW. Benefits of recruiting participants with friends and increasing social support for weight loss and maintenance. J Consult Clin Psychol 1999;67:132-138.
25. Williams GC, McGregor HA, King D, Nelson CC, Glasgow RE. Variation in perceived competence, glycemic control, and patient satisfaction: relationship to autonomy support from physicians. Patient Educ Couns 2005;57:39-45.