Cover Page

Universiteit Leiden

Leiden University Repository

The handle http://hdl.handle.net/1887/38594 holds various files of this Leiden University dissertation

Author: Haan, Melina C. den
Title: Cell therapy in ischemic heart disease models: role of inflammation, paracrine factors and hypercholesterolemia
Issue Date: 2016-03-23
Cardiomyogenic differentiation-independent improvement of cardiac function by human cardiomyocyte progenitor cell injection in ischemic mouse hearts

Melina C. den Haan, MD;1,*, Robert W. Grauss, MD, PhD;1,*, Anke M. Smits, PhD;2, Elizabeth M. Winter, MD, PhD;3, John van Tuyn, PhD;1,2, Daniël A. Pijnappels, PhD;1, Paul Steendijk, PhD;1, Adriana C. Gittenberger-De Groot, PhD;3, Arnoud van der Laarse, PhD;1, Willem E. Fibbe, MD, PhD;4, Antoine A.F. de Vries, PhD;1, Martin J. Schalij, MD, PhD;1, Pieter A. Doevendans, MD, PhD;2, Marie-José Goumans, PhD;2, Douwe E. Atsma, MD, PhD;1

1Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands 2Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands 3Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands 4Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands 5Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands

*Both authors contributed equally to this study

Journal of Cellular and Molecular Medicine 2012 Jul; 16(7): 1508-21
Abstract

Introduction: We previously showed that human cardiomyocyte progenitor cells (hCMPCs) injected after myocardial infarction (MI) had differentiated into cardiomyocytes in vivo 3 months post-MI. Here, we investigated the short-term (2 weeks) effects of hCMPCs on the infarcted mouse myocardium.

Methods: MI was induced in immunocompromised (NOD/Scid) mice, immediately followed by intramyocardial injection of hCMPCs labeled with enhanced green fluorescent protein (hCMPC group) or vehicle only (control group). Sham-operated mice served as reference. Cardiac performance was measured 2 and 14 days after MI by magnetic resonance imaging at 9.4T. Left ventricular (LV) pressure-volume measurements were performed at day 15 followed by extensive immunohistological analysis.

Results: Animals injected with hCMPCs demonstrated a higher LV ejection fraction, lower LV end-systolic volume and smaller relaxation time constant than control animals 14 days post MI. hCMPCs engrafted in the infarcted myocardium, did not differentiate into cardiomyocytes, but increased vascular density and proliferation rate in the infarcted and border zone area of the hCMPC group.

Conclusions: Injected hCMPCs engraft into murine infarcted myocardium where they improve LV systolic function and attenuate the ventricular remodeling process 2 weeks post-MI. Since no cardiac differentiation of hCMPCs was evident after 2 weeks, the observed beneficial effects were most likely mediated by paracrine factors, targeting amongst others vascular homeostasis. These results demonstrate that hCMPCs can be applied to repair infarcted myocardium without the need to undergo differentiation into cardiomyocytes.
Introduction

In recent years, it has been demonstrated that cell therapy can improve left ventricular (LV) function in animal models for myocardial infarction (MI) and in patients with acute MI. Several cell types have been studied to date, with bone marrow (BM)-derived mononuclear cells including hematopoietic stem cells (1) and mesenchymal stem cells (MSCs) (2) as the most extensively investigated cell populations. However, also embryonic stem cells (3), skeletal myoblasts (4) and endothelial progenitor cells (5) have shown cardiac regeneration potential in animal MI models.

Although most of the clinical studies applying BM-derived cells revealed no significant side effects, stem cell-induced improvements in cardiac function remained modest (6), comparable to currently used treatment modalities for post-MI patients (7). The improvement of LV function appears to result from neovascularisation (8, 9), reduction of apoptosis (10) and improvement of scar compliance (11), probably through paracrine effects. Cardiomyogenic differentiation of engrafted BM-derived stem cells is uncertain (12), and at best seems to be a very rare event (13).

The recent identification of populations of cardiac stem or progenitor cells (CPCs) that reside in the heart itself, has generated new opportunities for cell-based therapy, since these cells are capable of cardiac regeneration (14). We recently isolated human cardiomyocyte progenitor cells (hCMPCs) from fetal hearts (15). These cells express the stem cell markers stem cell antigen-1 (Sca-1)-like protein and islet-1 (Isl-1), and the early cardiac transcription factors GATA-4 and Nkx2.5. hCMPCs are able to differentiate into spontaneously beating cells, when stimulated with the DNA methyltransferase inhibitor 5-azacytidine. Further maturation is achieved by adding transforming growth factor-β (TGF-β) to the culture medium. Differentiated hCMPCs are able to form highly conductive gap junctions and generate ventricular cardiomyocyte-like action potentials (15). Previously we showed that hCMPCs transplanted into infarcted mouse myocardium differentiated into both cardiomyocytes and vascular cells and that hCMPC-treated animals displayed less deterioration of cardiac function in the long-term (3 months) compared to control mice (16).

To learn more about the mechanism and the time course of these beneficial effects, we now analysed the effects of hCMPC injection into the infarcted mouse heart after a short-term (2 weeks).

To this end, we investigated the in vivo behaviour of undifferentiated hCMPCs in an immunocompromised mouse model 2 weeks after acute MI and assessed 1) the engraftment and differentiation state of the intramyocardially injected hCMPCs and 2) the effects of intramyocardial hCMPC injection on LV function by small animal magnetic resonance imaging (MRI) and pressure-volume (PV) analysis.
Materials and Methods

Details about the materials and methods are described in the Supplemental Materials and Methods at the end of this chapter.

Animals. All experiments were approved by the Committee on Animal Welfare of the Leiden University Medical Center, Leiden, the Netherlands. To avoid rejection of injected human cells, experiments were performed in 8- to 10-weeks-old male non-obese diabetic/severe combined immunodeficient (NOD/Scid) mice (Charles River Laboratories, Maastricht, the Netherlands). The animals were housed in filtertop cages and were given standard diet and water with antibiotics and antifungics ad libitum. The experiments conformed to the principles of Laboratory Animal Care formulated by the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996).

Isolation and expansion of hCMPCs. For human fetal tissue collection, individual permission using standard informed consent procedures and prior approval of the Medical Ethics Committee of the University Medical Center Utrecht, Utrecht, the Netherlands, were obtained. hCMPCs were isolated by magnetic cell sorting (MACS; Miltenyi Biotec, Sunnyvale, CA) using Sca-1-conjugated beads, as described previously (15). To facilitate their identification in vivo, hCMPCs were transduced with a human adenovirus vector encoding the enhanced green fluorescent protein (eGFP) as previously described (17).

MI model and cell implantation. MI was induced as described previously (18). Briefly, animals were anesthetized and intubated. After left thoracotomy, the left anterior descending (LAD) coronary artery was ligated using a 7-0-prolene suture (Johnson and Johnson, New Brunswick, NJ). Twenty minutes after MI, animals received 20 μL culture medium (M199, Invitrogen) containing 2×10⁵ hCMPCs (MI+hCMPC group) or 20 μL culture medium containing no cells (MI+vehicle group) by intramyocardial injections at 5 sites in the infarcted area. Sham-operated animals were used to determine baseline characteristics (Sham group). In the MI+hCMPC group 25 animals were included, 11 animals reached the end-point. In the MI+vehicle group 26 animals were included, 12 animals reached the end-point. In the Sham group 16 animals were include, 10 animals reached the end-point. Only measurements of the animals that reached the 15 day end-point were taken into account in the analysis of the performed experiments.

Cardiac MRI. LV volumes and function were serially assessed at day 2 and 14 after surgery by high-field (9.4T) MRI as described previously (19). All data were analysed by manual tracing of endocardial and epicardial borders with the MR Analytical Software System (MASS) for Mice (MEDIS, Leiden, the Netherlands). End-diastolic and end-systolic phases were identified automatically, after which LV end diastolic-volume (LVEDV), LV end-systolic volume (LVESV) and LV ejection fraction (LVEF) were computed.
Pressure-volume (PV) loop analysis to assess LV function. At day 15 a 1.4-F pressure-conductance catheter (SPR-719; Millar Instruments, Houston, TX) was introduced via the right carotid artery, positioned in the left ventricle, and connected to a Sigma-SA signal processor (CD Leycom, Zoetermeer, the Netherlands) for online display and recording of LV pressure and volume signals. Parallel conductance and LV pressure-volume signals were measured as described previously (20-22). All data were acquired using Conduct-NT software (CD Leycom) at a sample rate of 2,000 Hz and analyzed off-line with custom-made software.

Histological examination. At day 15 after MI, the mice were sacrificed, weighed and their hearts and lungs were excised. Lung weight was measured immediately after excision and following freeze-drying for 24 h. The wet weight/dry weight ratio was used as a measure of pulmonary congestion. The hearts were fixed by immersion in buffered 4% paraformaldehyde and embedded in paraffin. Serial transverse sections of 5 μm were cut for (immuno)histological analyses.

Assessment of hCMPC engraftment and differentiation. hCMPC engraftment was assessed by immunostaining using an anti-GFP antibody. Double immunostainings were performed to investigate differentiation of eGFP-labelled hCMPCs. Serial sections were immunostained using antibodies against human CD31 (also known as platelet endothelial cell adhesion molecule-1 (PECAM-1)), α-smooth muscle actin (ASMA), α-sarcomeric actin (αSA), cardiac troponin I (cTnI), cardiac troponin T (cTnT), and atrial natriuretic factor (ANF). Primary antibodies were visualized with appropriate secondary biotinylated IgG and Qdot-655-streptavidin conjugates. GFP-specific labeling was visualized using Alexa Fluor 488-conjugated IgGs.

Morphometric analyses. To determine the angiogenic effects of hCMPC transplantation, vascular density was assessed by quantifying the number of murine CD31 positive vessel per mm². The effect of hCMPC transplantation on cell proliferation and reparative nuclear DNA synthesis in donor and recipient cells was evaluated by nuclear staining with an anti-proliferating cell nuclear antigen (PCNA) antibody. Double immunostainings were performed to identify PCNA-positive cell types. Serial sections were immunostained using antibodies against CD31, ASMA, and cTnI. The effect of hCMPCs transplantation on scar composition was assessed by staining for collagen type III. LV collagen type III density was expressed as the ratio of the percentage of collagen type III-positive tissue in the left ventricle to that in the right ventricle of the same section. To analyze the extent of the total collagen deposition after hCMPC transplantation, sections were stained with picro-sirius red. Total collagen deposition was determined by the area stained tissue within the left ventricle as a percentage of the whole left ventricle.

The effect of hCMPCs engraftment on LV wall thickness was quantified at 2 separate border zone areas, at the midpoint of the infarct region and averaged for all 3 measurements.
Statistical analysis. Numerical values were expressed as mean ± standard deviation (SD). Comparisons of parameters between the Sham, MI+vehicle, and MI+hCMPC groups were performed using one-way analysis of variance, with Bonferroni correction. P-values less than 0.05 were considered statistically significant.

Results

hCMPCs preserve systolic heart function. Cardiac volumes and ejection fractions were evaluated 2 and 14 days after MI by small animal MRI. Representative images of systolic and diastolic 3D reconstructions of MRI short axis views for all three experimental groups at day 14 are shown in Figure 1A. Already 2 days after MI, both the MI+vehicle group and the MI+hCMPC group had undergone cardiac remodelling as shown by an increase in LVEDV (61±2 µL and 56±3 µL respectively) and LVESV (42±2 µL and 37±3 µL respectively), as well as a considerable decrease in LVEF (30±2% and 35±2%; respectively), compared to Sham (LVEDV: 48±2 µL, LVESV: 24±1 µL and LVEF: 51±1%) (Figure 1B). Two weeks after MI, the MI+vehicle group showed substantial ongoing LV remodelling and a further decrease in LVEF. However, this decrease in LVEF was significantly less in the MI+hCMPC group than in the MI+vehicle group (24±2% versus 15±1%; p<0.05). Likewise, the increase in LVESV in the MI+hCMPC group was significantly less than in the MI+vehicle group (89±8 µL versus 114±9 µL; p<0.05) (Figure 1B).

hCMPCs improve mechanical performance. PV loop data confirmed the extensive LV remodelling post-MI. This effect was attenuated by injection of hCMPCs, as demonstrated by significant differences in LVESV, LVEDV, LVEF and relaxation time constant (Tau) between animals that received cells and those that were injected with vehicle only (Table 1). In addition, the intercept of the end-systolic PV relationship (ESPVR) as well as the slope and intercept of the preload recruitable stroke-work relation (PRSW) significantly improved in the MI+hCMPC group compared to the MI+vehicle group, indicating improvement of LV systolic function by injected hCMPCs (Table 1).

Summarized schematic PV loops (based on mean LVESV, mean LV end-systolic pressure (LVESP), mean LVEDV and mean LV end-diastolic pressures (LVEDP), mean LV end-systolic PV relationships (slope: Ees) and mean LV end-diastolic PV relationships (slope: Eed) are presented in Figure 2.

hCMPCs engrafted in the infarcted murine myocardium do not undergo cardiomyogenic differentiation within the first 15 days after transplantation. hCMPCs were labeled with GFP to assess engraftment. Fifteen days after cell transplantation, injected hCMPCs were predominantly observed in the infarcted anterolateral wall and border zone of the infarcted area. An engraftment rate of 3.6±1.0 % of the total number
of injected cells was identified in the hearts of animals treated with hCMPCs (Figure 3). hCMPCs were absent in the non-infarcted posterior and septal walls. Serial sections were examined at day 15 to identify GFP-positive cells co-expressing differentiation markers (Figure 4). None of the injected hCMPCs stained positive for the human endothelial cell-specific marker CD31. The cardiomyocyte-specific markers cTnI, cTnT
and ANF were present in the heart. However, none of the injected hCMPCs expressed these markers. The injected cells did express ASMA and αSA, but the staining pattern of the latter protein was diffuse, and without cross-striations at this moment in time (Figure 4).

hCMPCs alter vascular density. LV functional improvements after hCMPC transplantation in the ischemic heart may occur through paracrine effects. Therefore, we studied the effects of hCMPCs on neovascularization, cellular proliferation and scar composition in the anterolateral wall (infarct zone) and lateral wall (border zone) of the heart (Figures 5-8). The presence of MI promoted neovascularization in the border zone, but not in the infarcted area (Figure 5A-5D). In hCMPC-transplanted mice, the number of vessels was significantly higher in both the infarct and border zone (Figure 5A) than in mice treated with vehicle (Figure 5B), which demonstrates a positive effect of hCMPCs on neovascularization (Figure 5D). None of the hCMPCs expressed hCD31, indicating all vessels were derived from host tissue (Figure 4).

hCMPCs are capable of self-renewal and increase cellular proliferation of host tissue. PCNA was upregulated in both the infarct and border zone of hCMPC-treated mice (Figure 6A) when compared to mice treated with vehicle only (Figure 6B), demonstrating

![Figure 2](image_url)

Figure 2. Pressure-volume loops at day 15 post-MI. PV loops in the Sham, MI+vehicle and MI+hCMPC groups of mice at day 15 post-MI (based on mean LV end-diastolic and LV end-systolic pressures and volumes). The oblique lines represent the end-systolic (Ees) and end-diastolic (Eed) pressure-volume relations.
a stimulatory effect of transplanted hCMPCs on cell proliferation (Figure 6D). This increase in cell proliferation involved both hCMPCs and host tissue (data not shown). The presence of MI altered proliferation rate only in the border zone (Figure 6A-6D). PCNA expression was present predominantly in cells that were also positive for the smooth muscle cell marker ASMA, with a significant upregulation of PCNA in animals with a myocardial infarction. CD31 positive nuclei showed a comparable PCNA expression between all groups. cTnI positive nuclei had the lowest expression of PCNA, when compared to ASMA and CD31 staining, but were also comparable between all groups (Figure 6E).

hCMPCs only suppress collagen type III density but do not decrease total collagen deposition after MI. MI was associated with increased total collagen density in the left ventricle, which treatment with hCMPCs could not prevent. (Figure 7A-7D). Injection of hCMPCs only resulted in a significantly lower collagen type III deposition in the border zone and infarct region (Figure 8A), when compared to mice treated with vehicle only (Figure 8B-D) (23). Quantification of LV wall thickness showed a significant thinning of the infarcted wall, when compared to sham-operated animals. A non-significant trend towards an attenuated process of wall thinning was observed in animals treated with hCMPCs, when compared to mice treated with vehicle (p=0.056) (Figure 7E).

Figure 3. Histological engraftment of hCMPCs. Immunohistological staining of engrafted GFP-labeled cells (brown) 15 days after MI and intramyocardial hCMPC transplantation.
Figure 4. Double immunofluorescent stainings for GFP and cardiac markers to assess the differentiation capacity of hCMPCs. The left column shows engrafted hCMPCs in green (Alexa 488) and nuclei in blue (Hoechst 33342), the middle column shows staining for the indicated cardiac marker (Qdot 655) and the right column is a merge of both images. hCMPCs show a diffuse staining for α-smooth muscle actin (ASMA) and α-sarcomeric (α-SA) actin 15 days after injection. Control immunostainings of human tissue sections for the human endothelial cell-specific marker CD31 were performed in parallel (data not shown).
Assessment of pulmonary congestion. Pulmonary water accumulation (wet weight – dry weight ratio) at day 15 was assessed for all experimental groups. In the MI+vehicle group there was a significant increase in lung fluid compared to the Sham group (0.19±0.02 g versus 0.14±0.01 g; p<0.05). In contrast, in the MI+hCMPC group pulmonary water accumulation was not significantly different from the Sham group (0.15±0.01 g versus 0.14±0.01 g; p=ns).

Figure 5. Photomicrographs of representative sections of the LV wall 15 days after MI showing CD31-positive murine (i.e. host) vessels (brown). The vascularity in hearts that received hCMPCs (A), was higher than in hearts of vehicle-treated (B) and sham-operated mice (C). Quantification of CD31 staining (D). *: p<0.05 versus MI mice that received vehicle only. #: p<0.05 versus sham-operated animals.
Figure 6. Photomicrographs of representative sections of the LV wall 15 days post MI after immunostaining for the cellular proliferation marker PCNA (brown, marked with triangle). The number of PCNA-positive nuclei is augmented in hearts treated with hCMPCs (A), when compared to those of animals that received vehicle only (B) or were sham-operated (C). Quantification of PCNA staining (D). Quantification of double immunostainings for PCNA and ASMA, CD31 and cTnI (E).*: p<0.05 versus MI mice that received vehicle only. #: p<0.05 versus sham-operated animals.
Figure 7. Photomicrographs of representative sections of the heart 15 days post-MI showing total collagen (red) by Sirius red staining. MI increased the total collagen deposition in the left ventricle in both animals treated with hCMPCs (A) and animals treated with vehicle only (B), when compared to sham-operated mice (C). Quantification of Sirius red staining (D). Quantification of LV wall thickness 15 days post MI shows a non-significant trend towards an attenuated wall thinning in animals treated with hCMPCs, when compared to animals treated with vehicle only (p=0.056) (E). #: p<0.05 versus sham-operated animals.
Figure 8. Photomicrographs of representative sections of the LV wall 15 days post-MI after immunostaining for the extracellular matrix component collagen type III. Collagen type III was less prominent in animals treated with hCMPCs (A), than in those that received vehicle only (B) while the hearts of sham-operated mice contained the lowest amount of collagen type III (C). Quantification of collagen type III staining (D). LV Collagen type III intensity is expressed as ratio of the percentage of collagen type III-positive tissue in the left ventricle to that in the right ventricle of the same section. *: p<0.05 versus MI mice that received vehicle only. #: p<0.05 versus sham-operated animals.

Discussion

The main findings of the present study are that 2 weeks after hCMPC injection in the infarcted heart of an immunocompromised mouse model we observe (i) significant preservation of LV systolic function, (ii) hCMPCs engraftment in the ischemic area, without cardiomyogenic differentiation, and (iii) attenuation of the adverse ventricular remodelling process, probably by paracrine factors. The present study therefore demonstrates the ability of hCMPCs to alleviate the deleterious effects of MI prior to their cardiomyogenic differentiation (16).
Since Beltrami *et al.* proposed that cardiomyocytes may re-enter the cell cycle and undergo mitotic division, there has been discussion about the regenerative capacities of the heart (24). Recent studies have confirmed this finding (25, 26), but it remains controversial whether the number of newly formed cardiomyocytes is actually sufficient to contribute to the injured myocardium (27). Hsieh *et al.* suggested that progenitor cells might play a role in this process as they provided evidence that these cells may contribute to the process of cardiomyocyte renewal after injury of the heart (28). However, the contribution of progenitor cells appears to be limited during normal ageing, as main cardiac regeneration then occurs through pre-existing cardiomyocytes (28).

In contrast to the small amount of regeneration that occurs in mammalian hearts, zebrafish are able of cardiac regeneration (29). Recent studies showed an indisputable role for pre-existing cardiomyocytes as cardiac renewal source, while the contribution of progenitor cells was minimal at best (30, 31).

Zuo *et al.* recently provided evidence for another important role for stem or progenitor cells in a rat MI model. Injected MSCs released paracrine factors which acted on the native cardiomyocytes and resulted in less vulnerability to apoptosis (32). This observed phenomenon of stem cell-mediated cardioprotection, has been reported earlier (33, 34).

Beltrami *et al.* demonstrated that the heart contains a pool of CPCs displaying endogenous regenerative potential (35). So far CPC populations residing in postnatal hearts have been reported in rats (35), mice (36) dogs (34) and humans (37). These populations were identified by expression of several marker proteins, including c-kit (34, 36, 37), Isl-1 (38) and Sca-1 (39).

Few studies have described CPC isolation from human tissue. Messina *et al.* isolated clusters of fibroblast-like cells, termed cardiospheres, from human heart biopsies that expressed the endothelial markers kinase insert domain receptor and CD31, as well as the stem cell markers CD34, Sca-1 and c-kit (37). In co-culture with adult rat cardiomyocytes these cells differentiated into cardiomyocyte-like cells that displayed spontaneous beating (37). Furthermore, intramyocardial injection of these cells in NOD/Scid mice following induction of acute MI resulted in expression of endothelial, smooth muscle and cardiomyocyte markers with preservation of cardiac function (37, 40). The observed improvement of cardiac function appears to be cell-type specific, as recent studies show that fibroblast were not able to improve cardiac function, in contrast to CPCs (40, 41).

Earlier and in the current study we were able to isolate hCMPCs from the human fetal heart. These cells are able to grow in culture for at least 25 passages (42). We have previously reported that when hCMPCs are stimulated with 5-azacytidine and TGF-β, spontaneously beating cardiomyocytes can be identified within the culture after approximately 3 weeks (15). Both undifferentiated hCMPCs and beating hCMPC-derived cardiomyocytes were intramyocardially transplanted in an animal model with long-term...
follow-up. Both cell types preserved cardiac function and underwent phenotypic changes in vivo, including expression of sarcomeric proteins. Twelve weeks after injection, intramyocardial human grafts expressed cTnI and myosin light chain 2a (16).

Having established that intramyocardially injected undifferentiated hCMPCs spontaneously differentiated into cardiomyocytes in vivo after twelve weeks and prevented deterioration of cardiac function, we now studied the short-term effects of the intramyocardial administration of undifferentiated hCMPCs in a mouse MI model.

LV function of the heart was assessed by MRI and PV measurements (20). hCMPC transplantation significantly preserved the systolic function of the LV, as the increase in LVESV and the deterioration of LVEF after MI were attenuated in the MI+hCMPC group in comparison to the MI+vehicle group. PV relationships showed a significantly lower LVEDV in the MI+hCMPC group than in the MI+vehicle group. Injection of hCMPCs also resulted in a significant decrease in the relaxation time constant, indicating a faster isovolumic relaxation (i.e. improved diastolic function). These findings support the concept that transplantation of hCMPCs causes attenuation of the pathological remodelling process that normally occurs after MI. The preservation of cardiac function that was observed in the present short-term study was previously found to be sustained at 4 and 12 weeks post MI (16).

A significant accumulation of lung fluid, indicative of pulmonary congestion, occurred in the MI+vehicle group only, suggesting that symptoms of overt LV failure remained absent in the MI+hCMPC group.

Although we hypothesized that hCMPCs may differentiate into functional cardiomyocytes in vivo after 2 weeks, we only detected a diffuse staining pattern of α-SA and expression of ASMA in injected hCMPCs. As no fully developed cardiomyocytes with sarcomeric cross striation were observed, an active contractile contribution of the hCMPCs is unlikely. Instead, the observed beneficial effect of hCMPCs transplantation on cardiac function and structure are considered to result from paracrine pathways.

Nagaya et al. have demonstrated that intramyocardial transplantation of rat MSCs improved cardiac function in a rat model of dilated cardiomyopathy, which was associated with increased capillary density and secretion of angiogenic factors, including vascular endothelial growth factor A (VEGF-A), hepatocyte growth factor and adrenomedullin (8). In the present study, we also observed increased vascular density in both the infarct and the border area of the hCMPC-injected hearts when compared to mice treated with vehicle only (16). Chimenti et al. injected human cardiosphere-derived cells intramyocardially after MI and observed an increase in vascular density, that was mainly due to paracrine effects as only a small number of vessels was derived from human donor tissue (41).

Since in the present study no hCMPCs were observed in the vascular linings, we conclude that injected hCMPCs have stimulated neovascularization in the
infarcted heart in a paracrine fashion. This coincides with the previous finding that undifferentiated hCMPCs excrete VEGF-A, a potent stimulator of angiogenesis (43, 44).

PCNA acts as a processivity factor for DNA polymerase δ by encircling the template DNA and is involved in nuclear DNA synthesis and repair. As the PCNA content of cells changes during the cell cycle, reaching a peak at the G1 to S phase transition, it can be used as a marker for cell proliferation (45). In the present study PCNA upregulation most likely reflects increased cellular proliferation rather than DNA repair, since the conditions affecting DNA damage do not differ between treatment arms. PCNA was upregulated in cells of donor and recipient origin in the infarct and border zone of the heart, indicating increased cellular proliferation in these regions. Double immunostainings revealed that PCNA expression was equally present in endothelial cells and cardiomyocytes in all groups. However, ASMA expressing cells showed a significantly higher PCNA expression in the MI groups, which is in line with previous studies (46, 47). After MI scars were shown to undergo rapid changes in their content of myofibroblasts, where during the proliferative phase fibroblasts undergo phenotypic changes leading to expression of contractile proteins such as ASMA (47). Hatzistergos et al. have demonstrated that injection of MSCs in the infarcted heart increased the number of mitotic endogenous cardiomyocytes. This significantly higher level of host cardiomyocyte turnover reached its maximum at 2 weeks and decreased to normal levels by 2 months (48). Following intracoronary administration of CPCs in a MI/reperfusion model, Tang et al. also demonstrated increased proliferation of especially the transplanted cells. Moreover, the injection of CPCs induced division of endogenous CPCs in both infarcted and non-infarcted areas (49).

In the present study, we observed that total collagen deposition in the LV increased substantially after MI. Treatment with hCMPCs could not inhibit overall myocardial fibrosis, but attenuated the collagen type III density in the infarcted heart. Collagen type III is a constituent of the extracellular matrix and, together with collagen type I, an important contributor to the pathological ventricular remodelling process that occurs after MI and the consequential loss of cardiac function (23). As both the LVESV and LVEDV were better preserved in mice treated with hCMPCs, this may be partly explained by this observed phenomenon.

Berry et al. demonstrated earlier the potential of stem cell therapy in the prevention of cardiac remodelling in a MI model. Intramyocardially injected MSCs preserved cardiac function after MI by inhibiting fibrosis and LV dilatation, thereby conserving myocardial thickness 8 weeks post MI (11). MSCs did not differentiate into cardiomyocytes, but attenuated the remodelling process conceivably through paracrine effects (11).

Ever since stem cell therapy has emerged as a putative treatment for ischemic heart disease, low engraftment rates of the delivered cells have remained an issue. A limitation of this study is the low observed engraftment rate of the cells 15 days after injection. Direct intramyocardial injection ensures targeted delivery of the cells into
the ventricular wall. However, a significant portion of the injected cells wash away by blood flow or are lost by leakage from the injection site (50-52). But when comparing the intramyocardial injection method with intracoronary or intravenous delivery methods, intramyocardial injection has a preference in case of higher engraftment (53, 54), reduction of infarct size (55) and repairing injured myocardium (54). Future studies are necessary to further improve acute cell retention and engraftment, thereby increasing the beneficial effects of injected cells.

An alternative to the cell injection approach is mobilization of stem cells to the site of injury (56). The importance of the presence of injected cells at the site of injury is clearly demonstrated by a recent study from Huber et al. Intraperitoneal administration of parathyroid hormone (PTH) increased the mobilization of BM-cells and homing of these cells towards the ischemic myocardium, when compared to control animals. Altogether this attenuated the cardiac remodelling process and enhanced cardiac function in animals which received PTH (57).

Furthermore, a recent study from Theiss et al. provided evidence that mobilization and homing of BM-cells can be improved by granulocyte-colony stimulating factor (G-CSF) application and dipeptidylpeptidase IV (DPP-IV) inhibition. Homing cells were able to improve myocardial perfusion and attenuated the process of cardiac remodelling. The combination of G-CSF treatment and DPP-IV inhibition, a dual stem cell based therapy, also increased the pool of resident cardiac stem cells (58), which may contribute to the process of cardiomyocyte renewal after injury of the heart (28), an important mechanism which may also play a role in the current study.

So far many small and large animal studies have been performed, generating excitement and prompting investigators to translation of these results into the clinic. The results from placebo controlled trials show that the use of autologous and allogenic BM-derived cells is safe, and overall stem cell therapy positively affects cardiac function, suggesting that improvement over existing pharmaceutical therapy can be achieved (59). A more recent meta-analysis by Wen et al. already suggests that direct injection of BM-derived cells has beneficial effects on cardiac function over regular therapy alone (60). Cardiac stem cell therapy with hCMPC transplantation most likely requires autologous stem cells, since the immune status of CPCs has not been thoroughly investigated yet. Whether injection of hCMPCs has extra beneficial effects in comparison to conventional pharmaceutical treatment in patients with ischemic heart disease is a question that remains unanswered so far.

In conclusion, transplantation of hCMPCs into the infarcted heart limits deterioration of cardiac function and attenuates the cardiac remodelling process already 2 weeks after injection. Since the hCMPCs had not differentiated into cardiomyocytes at this time point, paracrine stimulation of neoangiogenesis and cell proliferation, are considered key factors in preserving short-term cardiac function. These results demonstrate the potential of hCMPCs to treat the infarcted heart.
Acknowledgements. This work was supported by a SmartCare project of the research program of the BioMedical Materials institute, co-funded by the Dutch Ministry of Economic Affairs.

The authors gratefully acknowledge the support of the TeRM Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science.

Disclosure of conflicts of interest. The authors confirm that there are no conflicts of interest.
Reference List

1. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-5.
2. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95:9-20.
3. Hodgson DM, Behfar A, Zingman LV, Kane GC, Perez-Terzic C, Alekseev AE, et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol 2004;287:H471-H479.
4. Murtuza B, Suzuki K, Bou-Gharios G, Beauchamp JR, Smolenski RT, Partridge TA, et al. Transplantation of skeletal myoblasts secreting an IL-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proc Natl Acad Sci U S A 2004;101:4216-21.
5. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024-32.
6. Rosenzweig A. Cardiac cell therapy--mixed results from mixed cells. N Engl J Med 2006;355:1274-7.
7. Reffelmann T, Konemann S, Klomer RA. Promise of blood- and bone marrow-derived stem cell transplantation for functional cardiac repair: putting it in perspective with existing therapy. J Am Coll Cardiol 2009;53:305-8.
8. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005;112:1128-35.
9. Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 2005;80:229-36.
10. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004;109:1543-9.
11. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 2006;290:H2196-H2203.
12. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Hematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664-8.
13. Nakamura Y, Wang X, Xu C, Asakura A, Yoshiyama M, From AH, et al. Xenotransplantation of long-term-cultured swine bone marrow-derived mesenchymal stem cells. Stem Cells 2007;25:612-20.
14. Smits AM, Ramkisoensing AA, Atsma DE, Goumans MJ. Young at heart. An update on cardiac regeneration. Minerva Med 2010;101:255-70.
15. Goumans MJ, de Boer TP, Smits AM, van Laake LW, van VP, Metz CH, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 2007;1:138-49.
16. Smits AM, van Laake LW, den OK, Schreurs C, Szhai K, van Echteld CJ, et al. Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res 2009;83:527-35.
17. van TJ, Knaan-Shanzer S, van de Watering MJ, de GM, van de Watering MJ, de GM, van der Laarse A, Schalij MJ, et al. Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin. Cardiovasc Res 2005;67:245-55.
18. Grauss RW, van TJ, Steendijk P, Winter EM, Pijnappels DA, Hogers B, et al. Forced myocardin expression enhances the
therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells 2008;26:1083-93.

19. Grauss RW, Winter EM, van TJ, Pijnappels DA, Steijn RV, Hogers B, et al. Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am J Physiol Heart Circ Physiol 2007;293:H2438-H2447.

20. Winter EM, Grauss RW, Atsma DE, Hogers B, Poelmann RE, van der Geest RJ, et al. Left ventricular function in the post-infarct failing mouse heart by magnetic resonance imaging and conductance catheter: a comparative analysis. Acta Physiol (Oxf) 2008;194:111-22.

21. Steendijk P, Baan J. Comparison of intravenous and pulmonary artery injections of hypertonic saline for the assessment of conductance catheter parallel conductance. Cardiovasc Res 2000;46:82-9.

22. Lips DJ, van der Nagel T, Steendijk P, Palmen M, Janssen BJ, van Dantzig JM, et al. Left ventricular pressure-volume measurements in mice: comparison of closed-chest versus open-chest approach. Basic Res Cardiol 2004;99:351-9.

23. Wei S, Chow LT, Shum IO, Qin L, Sanderson JE. Left and right ventricular collagen type I/III ratios and remodeling post-myocardial infarction. J Card Fail 1999;5:117-26.

24. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-7.

25. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009;324:98-102.

26. Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogorek B, et al. Cardiomyogenesis in the adult human heart. Circ Res 2010;107:305-15.

27. Parmacek MS, Epstein JA. Cardiomyocyte renewal. N Engl J Med 2009;361:86-8.

28. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 2007;13:970-4.

29. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 2002;298:2188-90.

30. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnczcyk GF, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010;464:601-5.

31. Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010;464:606-9.

32. Zuo S, Jones WK, Li H, He Z, Pasha Z, Yang Y, et al. Paracrine Effect of Wnt11-Overexpressing Mesenchymal Stem Cells on Ischemic Injury. Stem Cells Dev 2011.

33. Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006;291:R880-R884.

34. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 2005;102:8966-71.

35. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763-76.

36. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, et al. Circ Res 2005;97:52-61.

37. Messina E, De AL, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004;95:911-21.

38. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated
cardiomyocyte lineages. Nature 2005;433:647-53.

39. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gausin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 2003;100:12313-8.

40. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiospheres derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007;115:896-908.

41. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, et al. Relative roles of direct regeneration versus paracrine effects of human cardiospheres-derived cells transplanted into infarcted mice. Circ Res 2010;106:971-80.

42. Smits AM, van VP, Metz CH, Korfage T, Sluijter JP, Doevendans PA, et al. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 2009;4:232-43.

43. Winter EM, van Oorschot AA, Hogers B, van der Graaf LM, Doevendans PA, Poelmann RE, et al. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail 2009;2:432-53.

44. van Oorschot AA, Smits AM, Pardali E, Doevendans PA, Goumans MJ. Low oxygen tension positively influences cardiomyocyte progenitor cell function. J Cell Mol Med 2011.

45. Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsuller AB, Kanaar R, et al. Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 2005;25:9350-9.

46. Frangogiannis NG, Perrard JL, Mendoza LH, Burns AR, Lindsey ML, Ballantyne CM, et al. Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 1998;98:687-98.

47. Frangogiannis NG, Michael LH, Entman ML. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res 2000;48:89-100.

48. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, et al. Bone Marrow Mesenchymal Stem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation. Circ Res 2010.

49. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 2010;121:293-305.

50. Dow J, Simkhovich BZ, Kedes L, Kloner RA. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc Res 2005;67:301-7.

51. Teng CJ, Luo J, Chiu RC, Shum-Tim D. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg 2006;132:628-32.

52. Hudson W, Collins MC, deFreitas D, Sun YS, Muller-Borer B, Kypson AP. Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J Surg Res 2007;142:263-7.

53. Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005;112:1150-1156.

54. Hayashi M, Li TS, Ito H, Mikamo A, Hamano K. Comparison of intramyocardial and intravenous routes of delivering bone marrow cells for the treatment of ischemic heart disease: an experimental study. Cell Transplant 2004;13:639-47.
55. Henning RJ, Burgos JD, Vasko M, Alvarado F, Sanberg CD, Sanberg PR, et al. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant 2007;16:907-17.

56. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 2001;98:10344-9.

57. Huber BC, Brunner S, Segeth A, Nathan P, Fischer R, Zaruba MM, et al. Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1-driven homing of CXCR4(+) stem cells into the ischaemic heart. Cardiovasc Res 2011;90:529-37.

58. Theiss HD, Vallaster M, Rischpler C, Krieg L, Zaruba MM, Brunner S, et al. Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res 2011.

59. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 2008;29:1807-18.

60. Wen Y, Meng L, Xie J, Ouyang J. Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis. Expert Opin Biol Ther 2011;11:559-67.
Supplemental Materials and Methods

Animals. All experiments were approved by the Committee on Animal Welfare of the Leiden University Medical Center, Leiden, the Netherlands. To avoid rejection of injected human cells, experiments were performed in 8- to 10-weeks-old male non-obese diabetic/severe combined immunodeficient (NOD/Scid) mice (Charles River Laboratories, Maastricht, the Netherlands). All animals were housed in filtertop cages and were given standard diet and water with antibiotics and antimycotics ad libitum. The experiments conformed to the principles of Laboratory Animal Care formulated by the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996).

Isolation and expansion of human cardiomyocyte progenitor cells (hCMPCs). For human fetal tissue collection, individual permission using standard informed consent procedures and prior approval of the Medical Ethics Committee of the University Medical Center Utrecht, Utrecht, the Netherlands, were obtained. Fetal hearts were collected after elective abortion. hCMPCs were isolated by magnetic cell sorting (MACS) using stem cell antigen-1 (Sca-1)-conjugated beads, according to the manufacturers’ protocol (Miltenyi Biotec, cat. No. 130-091-176, Sunnyvale, CA). Sca-1⁺ cells were eluted from the column by washing with phosphate buffered saline supplemented with 2% fetal bovine serum (FBS, Invitrogen, Carlsbad, CA) and cultured in 0.1% gelatin (Type A, Sigma, cat. No. G6144, St. Louis, MO) coated dishes in a 3:1 mixture of medium 199 (Invitrogen) and endothelial growth medium-2 supplemented with 10% FBS, 10 ng/ml basic fibroblast growth factor, 5 ng/ml epithelial growth factor, 5 ng/ml insulin-like growth factor and 5 ng/ml hepatocyte growth factor. Mice were transplanted with hCMPCs of passage 7.

To facilitate their identification in vivo, hCMPCs were transduced with 100 infectious units per cell of a fiber-modified first-generation human adenovirus serotype 5 vector (hAd5/F50.CMV.eGFP) encoding the enhanced green fluorescent protein (eGFP) (1) in the presence of 5 mmol/L sodium butyrate to enhance transgene expression.

Myocardial infarction (MI) model and cell implantation. Animals were pre-anesthetized with 5% isoflurane in a gas mixture of oxygen and nitrogen, followed by endotracheal intubation. The animals were subsequently ventilated using a rodent ventilator (model 845, Harvard Apparatus, Holliston, MA) with 200 breaths per min and a stroke volume of 200 μL, and were kept anesthetized with 0.5-1.5% isoflurane for the remainder of the surgical procedure. After a left thoracotomy, the left anterior descending (LAD) coronary artery was ligated using a 7-0-prolene suture (Johnson and Johnson, New Brunswick, NJ). Twenty minutes after MI, animals were grouped to receive 20 μL culture medium (M199, Invitrogen) containing 2×10⁵ hCMPCs or 20 μL culture medium containing no cells. Intramyocardial injections were performed at 5 sites in the infarcted area using a 20-μL syringe with a 33G needle (Hamilton Company, Reno, NV). The chest was then closed in layers and animals were allowed...
to recover. Sham-operated animals were used to determine baseline characteristics. In the MI+hCMPC group 25 animals were included, 11 animals reached the end-point.
In the MI+vehicle group 26 animals were included, 12 animals reached the end-point.
In the Sham group 16 animals were included, 10 animals reached the end-point. Only measurements of the animals that reached the 15 day end-point were taken into account in the analysis of the performed experiments.

Cardiac magnetic resonance imaging (MRI). Left ventricular (LV) volumes and function were serially assessed at day 2 and 14 after surgery by high-field MRI. Mice were anesthetized as described above and maintained at 1-2% isoflurane during the procedure. All measurements were performed with a vertical animal MRI (Biospin, Bruker, Rheinstetten, Germany). The MRI setup consisted of a vertical 9.4-T (400 MHz), 89-mm bore nuclear magnetic resonance spectrometer equipped with a shielded gradient set (1 T/m) and a 30-mm birdcage resonator. Biotrig software (Bruker) was used to acquire electrocardiographs (ECGs) and to measure respiratory rates, and image reconstructions were performed using Bruker ParaVision 3.02 software.

A high-resolution ECG- and respiration-triggered 2D fast-gradient echo (i.e. FLASH) sequence was used to acquire a set of contiguous 1-mm slices in short axis orientation covering the entire long axis of the heart. Imaging parameters were: echo time of 1.9 ms, repetition time of 7 ms, field of view (25.6 mm)2, matrix size 256x256 and a flip angle of 15°.

All MRI data were analyzed with the MR Analytical Software System (MASS) for Mice (MEDIS, Leiden, the Netherlands). Endocardial and epicardial borders were then traced manually by two independent investigators who were blinded to the treatment groups. End-diastolic and end-systolic phases were identified automatically, after which LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV) and LV ejection fraction (LVEF) were computed.

Pressure-volume (PV) loop analysis to assess LV function. At day 15 mice were again anesthetized as described above and kept anesthetized with 0.5-1.5% isoflurane for the remainder of the surgical procedure. A 1.4-F pressure-conductance catheter (SPR-719; Millar Instruments, Houston, TX) was introduced via the right carotid artery, positioned in the left ventricle, and connected to a Sigma-SA signal processor (CD Leycom, Zoetermeer, the Netherlands) for online display and recording of LV pressure and volume signals. Parallel conductance was assessed by the hypertonic saline method using intravenous bolus injections of ~5 µL.(2). The abdomen was opened to enable temporary preload reductions by directly compressing the inferior vena cava. All data were acquired using Conduct-NT software (CD Leycom) at a sample rate of 2,000 Hz and analyzed offline with custom-made software.

LV PV signals were acquired in steady-state to quantify general hemodynamic conditions, including heart rate (HR), stroke volume (SV), cardiac output (CO), LVEDV,
LVESV, LVEF, LV end diastolic pressure (LVEDP), LV end systolic pressure (LVESP), stroke work (SW), dP/dt_{max} and dP/dt_{min} and the isovolumic relaxation time constant (Tau). To quantify systolic function, we used the end-systolic PV relationship (ESPVR), the relationship between dP/dt_{max} and LVEDV, and the preload recruitable stroke-work relationship (PRSWR; SW versus LVEDV). The slopes of these relationships, end-systolic elastance (EES), slope of dP/dt_{max}-LVEDV relationship and slope of the SW-LVEDV relationship (PRSWR), respectively, are sensitive measures of intrinsic systolic LV function. For diastolic function, the end-diastolic stiffness (Eed) was determined by linear fitting the end-diastolic PV points.

Histological examination. At day 15 after MI, the mice were sacrificed, weighed and their hearts and lungs were excised. Lung weight was measured immediately after excision and following freeze-drying for 24 h. The wet weight/dry weight ratio was used as a measure of pulmonary congestion. The hearts were fixed by immersion in buffered 4% paraformaldehyde and embedded in paraffin. Serial transverse sections of 5 μm were cut for (immuno)histological analyses.

Assessment of hCMPC engraftment. hCMPC engraftment was assessed by immunostaining with a rabbit anti-GFP antibody (A11122, Invitrogen) followed by a biotinylated goat anti-rabbit IgG (BA-1000, Vector Labs, Burlingame, CA). The GFP-specific signal was amplified with the ABC staining kit (PK-6100, Vector Labs). 3,3’-diaminobenzidine tetrahydrochloride hydrate (DAB, D5637, Sigma-Aldrich, St. Louis, MO) was used as substrate for horseradish peroxidase. Sections were counterstained with Mayer’s hematoxylin. The number of engrafted hCMPCs was determined by counting the DAB-positive cells at a 20x magnification in every 10th serial section along the long axis of the heart. The number of counted cells was multiplied by 10 to obtain an estimate of the total number of engrafted cells in the heart. The hCMPC engraftment rate was subsequently calculated by dividing this number by the total number of injected hCMPCs (2×10⁵) and multiplying the result by 100%.

Assessment of hCMPC differentiation. Double immunostainings were performed to investigate differentiation of GFP-labeled hCMPCs towards endothelial cells, smooth muscle cells or cardiomyocytes. Serial sections were immunostained using mouse monoclonal antibodies against human CD31 (also known as platelet endothelial cell adhesion molecule-1 (PECAM-1), M1536, Sanquin, Amsterdam, the Netherlands), α-smooth muscle-actin (ASMA; clone 1A4, A2547, Sigma-Aldrich), α-sarcomeric actin (αSA, clone 5C5, A2172, Sigma-Aldrich), cardiac troponin I (cTnI, clone 19C7, Hytest) cardiac troponin T (cTnT, ab33589, Abcam, Cambridge, UK), and atrial natriuretic factor (ANF, CBL66, Chemicon, Nottingham, UK). Primary antibodies were visualized with appropriate secondary biotinylated IgG and Qdot 655 streptavidin conjugates (Q10121MP, Invitrogen). GFP-specific signal was detected with the aforementioned rabbit anti-GFP.
antibody Alexa Fluor 488 conjugated donkey anti-rabbit IgG (H+L) (A21206, Invitrogen). Co-localization of GFP and differentiation markers was examined using a fluorescence microscope (Eclipse E800, Nikon, Badhoevedorp, the Netherlands) equipped with dedicated Qdot-compatible filter sets and a digital camera (DXM 1200, Nikon).

Morphometric analyses. To determine the angiogenic effects of hCMPCs transplantation, vascular endothelial cells were stained with a rat anti-CD31 antibody (clone MEC13.3, BD Pharmingen, Erembodegem, Belgium), followed by a biotinylated rabbit anti-rat IgG (BA-4001, Vector Labs). 3,3′-diaminobenzidine tetrahydrochloride hydrate (DAB, D5637, Sigma-Aldrich, St. Louis, MO) was used as substrate for horseradish peroxidase. Sections were counterstained with Mayer’s hematoxylin.

Vascular density was assessed by quantifying the number of murine CD31-positive vessels per mm². Morphometric measurements were performed on photomicrographs taken at a 20-fold magnification of three standardized areas of interest in the anterolateral (infarcted) wall of the LV and on three standardized areas of interest in the lateral (border zone) wall of the LV from 4 animals per group. The number of CD31 positive vessels was counted in both areas and calculated as vessels per square millimeter. All measurements were performed by an observer blinded to the experimental status of the samples, using the Image-Pro Plus software package (Media Cybernetics, Silverspring, MD).

The effect of hCMPC transplantation on cell proliferation and reparative nuclear DNA synthesis in donor and recipient cells was evaluated by nuclear staining with an anti-proliferating cell nuclear antigen (PCNA) antibody (P-8825, Sigma-Aldrich). 3,3′-diaminobenzidine tetrahydrochloride hydrate (DAB, D5637, Sigma-Aldrich, St. Louis, MO) was used as substrate for horseradish peroxidase. Sections were counterstained with Mayer’s hematoxylin. Proliferation rate was determined by the ratio of PCNA-positive stained nuclei to total nuclei. This analysis was performed on photomicrographs taken at a 20-fold magnification of three standardized areas of interest in the anterolateral (infarcted) wall of the LV and on three standardized areas of interest in the lateral (border zone) wall of the LV from 4 animals per group. The percentage of PCNA staining was measured by an observer blinded to the experimental status of the samples, using the Image-Pro Plus software package.

To evaluate nuclear DNA synthesis in hCMPCs, double immunostaining was performed. Serial sections were immunostained for PCNA using the aforementioned primary antibody and visualized with biotinylated goat anti-mouse IgG followed by Qdot 655 streptavidin conjugates. The GFP-specific immunostaining was carried out as described above. Co-localization of GFP and PCNA was examined using a Nikon Eclipse E800 fluorescence microscope equipped with dedicated Qdot-compatible filter sets.

Double immunostainings were performed to identify PCNA-positive cell types. Serial sections were immunostained using antibodies against CD31, ASMA, and cTnI.
Primary antibodies were visualized with appropriate secondary biotinylated IgG and Alexa 488 streptavidin conjugates (S-11223, Invitrogen). PCNA-specific signal was detected as described above. Co-localization of PCNA and the different cell types was examined using a Nikon Eclipse E800 fluorescence microscope equipped with dedicated Qdot-compatible filter sets. Proliferation rate in specific cell types was determined by the ratio of PCNA-positive stained nuclei to total nuclei also stained for the cell specific marker. This analysis was performed on photomicrographs taken at a 40-fold magnification of three standardized areas of interest in the anterolateral (infarcted) wall of the LV from four animals per group. The percentage of PCNA stained nuclei was measured by an observer blinded to the experimental status of the samples, using the Image-Pro Plus software package.

The effect of hCMPC transplantation on scar composition was assessed by staining for collagen type III density using a primary antibody (AB7778, Abcam) together with an appropriate secondary IgG antibody. 3,3'-diaminobenzidine tetrahydrochloride hydrate (DAB, D5637, Sigma-Aldrich, St. Louis, MO) was used as substrate for horseradish peroxidase. Sections were counterstained with Mayer's hematoxylin. The density of this extracellular matrix component in the LV was determined by the cumulative area of collagen type III stained tissue per total LV area. The value was expressed as the ratio of the percentage of collagen type III-positive tissue in the LV to that in the right ventricle (RV) of the same section. Morphometric measurements were performed on photomicrographs taken at a 20-fold magnification of three standardized areas of interest in the anterolateral (infarcted) wall of the LV and on three standardized areas of interest in the lateral (border zone) wall of the LV from 4 animals per group. In addition, we analyzed three standardized areas in the lateral wall of the RV from 4 animals per group. The density of collagen type III staining was measured by an observer blinded to the experimental status of the samples using the Image-Pro Plus software package.

To evaluate the extent of the total collagen deposition after hCMPC transplantation, sections were stained with picro-sirius red (0.5 gram Sirius red in 500 ml saturated aqueous solution of picric acid) for one hour. Slides were then washed twice with acidified water and afterwards dehydrated. Total collagen deposition was determined by the area stained tissue within the LV as a percentage of the whole LV. This analysis was performed on photomicrographs taken at a 2-fold magnification of 15 sections of the heart from 4 animals per group. The area of Sirius red staining was measured by an observer blinded to the experimental status of the samples, using the Image-Pro Plus software package.

The effect of hCMPCs engraftment on LV wall thickness was quantified by an observer blinded to treatment. This analysis was performed at 15 photomicrographs per heart (same sections as described for total collagen deposition measurements). Wall thickness was measured at 2 separate border zone areas, at the midpoint of the
infarct region and averaged for all 3 measurements. Measurements were performed perpendicular to the infarcted wall.

Statistical analysis. Numerical values were expressed as means ± SD. Comparisons of parameters between the Sham, MI+vehicle, and MI+hCMPC groups were performed using one-way analysis of variance, with Bonferroni correction. P-values less than 0.05 were considered statistically significant.

Reference List

1. van TJ, Knaan-Shanzer S, van de Watering MJ, de GM, van der Laarse A, Schalij MJ, et al. Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin. Cardiovasc Res 2005;67:245-55.

2. Steendijk P, Baan J. Comparison of intravenous and pulmonary artery injections of hypertonic saline for the assessment of conductance catheter parallel conductance. Cardiovasc Res 2000;46:82-9.
