Chondral injuries in patients with recurrent patellar dislocation: a systematic review

Filippo Migliorini1*, Emanuela Marsilio2, Francesco Oliva3, Jörg Eschweiler1, Frank Hildebrand1 and Nicola Maffulli2,3,4

Abstract

Background: Patellar dislocations in patients presenting with recurrent patellofemoral instability can damage the surrounding structures, limiting patient’s participation to recreational activities and quality of life. This study evaluated frequency, location, and extent of associated injuries in patients with recurrent patellar dislocation.

Methods: This systematic review was conducted according to the PRISMA checklist. PubMed, Google scholar, Embase, and Web of Science databases were accessed in July 2021. All the published clinical studies reporting frequency, location, and extent of soft tissue lesions in patients with recurrent patellar dislocations were accessed.

Results: Data from 9 articles (232 patients) were retrieved. The mean age of the included patients was 21.2 ± 5.6 years. 84.8% of patients suffering from recurrent patellar dislocations demonstrated patellar chondral defects: medial facet (34.9%), while patellar crest (34.8%) and lateral facet (17%). 27.8% of patients demonstrated trochlear chondral injuries.

Conclusion: Chondral defects of the medial facet and the crest of the patella are the most common in patients with recurrent patellofemoral instability.

Keywords: Patellar dislocation, Chondral damage, Soft tissues

Introduction

Recurrent patellofemoral instability is common, especially among the active and young population [1, 2]. Its aetiogenesis is multifactorial [3, 4]. Several pathoanatomical factors which predispose to instability have been described, such as patella alta, dysplasia, mal-alignment syndromes, and leg axis deformities [5–9]. Irrespective of the aetiopathogenesis, most of patients experience recurrent episodes of patellar dislocation [10, 11]. Recurrent patellar dislocations may damage the articular surface, generating chondral or osteochondral defects [12]. Chondral injuries may cause persistent pain, limiting knee function and impairing the patients’ quality of life [13–15]. Controversies regarding the frequency, extent, and location of chondral lesions exist [16–18]. Previous studies reported that many patients with recurrent patellofemoral instability evidenced chondral defects and osteochondral fractures on the medial facet of the patella and on the lateral trochlea [19–21]. However, the evidence with regard of frequency, location, and extent chondral damages in patients with recurrent patellofemoral instability are limited and no previous systematic review has been published [22–30]. This systematic review evaluated the frequency, location, and extent chondral damages in patients with recurrent patellofemoral instability.

Material and methods

Search strategy

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses: the PRISMA guidelines [31]. The literature search was guided by the following points:

- Problem: recurrent patellar dislocation;
- Outcome: soft tissue injuries.

Literature search
Two independent authors (**;**) performed the literature search in July 2021. PubMed, Google Scholar, Embase, and Web of Science were accessed to identify suitable articles. The database search was performed without filters and time constraints, using the Boolean operators AND/OR. The following keywords were used in combination: patella, dislocation, recurrent, instability, soft tissue, chondral, articular, cartilage, lesion, osteochondral, injury, arthroscopy, medial patellofemoral ligament, MPFL, damage, insertion, rupture, Osteoarthritis and Related Research, International Cartilage Repair Society, ICRS. The same authors performed the initial screening of the resulting titles from the search in a separate fashion and accessed the full text of the articles of interest. The bibliographies of the full-text articles were screened by hand for identifying further eligible articles. Any disagreements were discussed and settled by consensus.

Eligibility criteria
All the published clinical studies which reported quantitative data on frequency, location, and extent of chondral injuries in patients with recurrent patellar dislocations were considered. Given the authors language capabilities, articles in English, German, Italian, French, and Spanish were eligible. Level 1–IV of evidence, according to Oxford Centre of Evidence-Based Medicine [32], was considered. Reviews, technical notes, comments, letters, editorials, protocols, and guidelines were not eligible, nor were biomechanical, animal, and cadaveric studies. Studies reporting data on habitual, congenital, and/or acute patellofemoral instability were excluded. Studies involving patients who underwent previous patellofemoral surgical procedures were also not eligible. Missing information on the endpoints of interest warranted the exclusion from this study.

Outcomes of interest
Data extraction was performed by two authors (**;**). Studies generalities were collected: author, year, journal, study design, number of patients, and mean age. Arthroscopy findings were also collected: type, location, and extent of trochlear and patellar chondral injuries. The International Cartilage Repair Society (ICRS) [33] was used to classify the arthroscopic findings.

Methodology quality assessment
Two authors (**;**) independently assessed the methodological quality using the Newcastle–Ottawa Scale (NOS) [34]. NOS was used to assess methodological quality of the included studies. A ‘star system’ was applied, in which a study is judged on three broad perspectives: the selection of the study groups; the comparability of the groups; and the observation of either the exposure or outcome of interest for case–control or cohort studies respectively. Mean values of 2 stars in selection, 1 or 2 stars in comparability, and 2 or 3 stars in outcomes were considered satisfactory.

Results

Search result
The literature search resulted in 915 articles. Of these, 310 were excluded being duplicates. Another 380 were not eligible: not matching the topic (N=220), study design (N=90), acute patellofemoral instability (N=45), language limitation (N=10), and uncertain results (N=15). This left 225 articles for inclusion. A further 216 articles were excluded because lack of data under the outcomes of interest. Finally, 9 articles were considered for the analysis (Fig. 1).

Methodological quality assessment
The satisfactory size of the included studies, their baseline comparability, and adequate length of the follow-up are the most important strengths of this analysis. The most important limitations evidenced by the NOS are the lack of randomization and blinding, along with high the high risk of bias during allocation concealment. Concluding, the NOS resulted in 3 or 4 stars in selection, 1 or 2 stars in comparability, and 2 or 3 stars in outcomes in all of the selected articles, attesting to this study good quality of the methodological assessment (Table 1).

Patient demographics
A total of 232 patients were identified, with a mean age of 21.2 ± 5.6. Study generalities and patient demographics of the included studies are shown in Table 2.

Main findings
84.8% of patients demonstrated patellar chondral defects: 34.9% in the medial facet, 17.0% in the lateral facet, and 34.8% in the patellar crest. Concerning the medial facet, defects were ICRS grade I in 11.1%, grade II in 14.8%, grade III in 9.3%, and grade IV in 9.3%. Concerning the lateral facet, defects were ICRS grade I in 9.3%, grade II in 11.1%, grade III in 3.7%, and grade IV in 4.3%. Concerning the patellar crest, defects were ICRS grade I in 9.7%, grade II in 25.8%, grade III in 6.5%, and grade IV in 19.0%. 27.8%
of patients demonstrated trochlear chondral defects. These defects were ICRS grade I in 19.2%, grade II in 16.7%, grade III in 5.1%, and grade IV in 7.0%. Table 3 resumes the main findings of the included studies.

Discussion

According to the main findings of the present systematic review, 84.8% of patients suffering from recurrent patellar dislocation demonstrated chondral defects of the patella. Defects are more frequently located on the medial facet (34.9%), while patellar crest (34.8%) and lateral facet...
(17%) are less injured. Trochlear chondral injuries were evidenced in 27.8% of patients.

In patients with recurrent patellar instability, arthroscopy may be performed as diagnostic and therapeutic tool [35]. Franzone et al. [24] investigated the association between recurrent patellar instability and the location, frequency, and grade of chondral lesions. 57.9% (22/38) of the patients suffering from recurrent dislocations presented advanced chondral lesions in the patella, mostly located on the medial patellar facet [24]. Boddula et al. [22] reported that 45% (9/20) of patients with recurrent patellar instability had chondral lesions. Moreover, concomitant chondral lesions were also associated with lower values in patients reported outcome measures (PROMs) and early onset osteoarthritis [22].

Several surgical strategies are available to manage chondral defects. Microfractures (Mxs) are indicated for smaller defects [36, 37]. Autologous chondrocyte implantation (ACI) has been also widely used for larger chondral defects [38, 39]. However, ACI requires a chondrocyte harvest site, two surgical sessions, and cells expansion in a dedicated laboratory [40, 41]. These features lead to longer recovery, increasing morbidity and the health care burden [42, 43]. To overcome these limitations, autologous matrix-induced chondrogenesis (AMIC) has been introduced [44, 45]. AMIC exploits the regenerative potential of autologous bone marrow derived

Table 1 Methodological quality assessment

References	Selection	Comparability	Outcome
Boddula et al. [22]	****	**	***
Chan et al. [23]	****	*	**
Franzone et al. [24]	****	**	**
Gaweda et al. [25]	****	**	***
Kita et al. [26]	****	**	***
Lee et al. [27]	****	**	***
Luhmann et al. [28]	****	*	**
Maffulli et al. [29]	****	**	***
Nha et al. [30]	****	**	***

Table 2 Study generalities and patient demographics of the included studies

References	Journal name	Design	Knees	Mean age
Boddula et al. [22]	Am J Sports Med	Retrospective	20	28.0
Chan et al. [23]	Knee Surg Sports Traumatol	Retrospective	1	12.0
Franzone et al. [24]	J Knee Surg	Retrospective	38	21.0
Gaweda et al. [25]	Int Orthop	Prospective	19	25.5
Kita et al. [26]	J Orthop Sci	Retrospective	31	20.0
Lee et al. [27]	Knee Surg Sports Traumatol	Retrospective	28	20.0
Luhmann et al. [28]	J Pediatr Orthop	Retrospective	38	14.9
Maffulli et al. [29]	Injury	Prospective	34	25.6
Nha et al. [30]	Am J Sports Med	Retrospective	23	26.0

Table 3 Main findings of the included studies

References	Main findings
Boddula et al. [22]	Seven patients showed chondral lesions, located at medial and lateral patellar facet, while one patient reported an associated lateral trochlea chondral lesion
Chan et al. [23]	Chondral fracture and a lateral trochlea chondral lesion were found in one patient
Franzone et al. [24]	Twenty patients had patellar chondral lesions, while five patients reported lateral trochlea defects
Gaweda et al. [25]	Nineteen patients had severe and extensive patellar chondral defects
Kita et al. [26]	Twenty-seven patients reported patellar lesions, while eight showed lateral trochlea chondral defects, after MPFL rupture
Lee et al. [27]	After MPFL reconstruction, 26 patients presented patellar chondral lesions, while 16 patients had lateral trochlea lesions
Luhmann et al. [28]	Patellar osteochondral lesions were present in 30 knees, femoral lesions were documented in 11 knees, and loose bodies were present in 6 knees
Maffulli et al. [29]	At arthroscopy, there was an osteochondral lesion less than 15 mm in diameter in 13 of 34 patients. The osteochondral defects were in the medial patellar facet (n = 6), on the lateral femoral trochlea (n = 4), and on both the medial patellar facet and the lateral femoral trochlea in 3 patients
Nha et al. [30]	All patients reported patellar lesions, while 14 showed lateral trochlea chondral defects, after MPFL rupture
Chondral defects of the medial facet and the crest of the patella are the most common in patients with recurrent patellofemoral instability.

Conclusion

Chondral defects of the medial facet and the crest of the patella are the most common in patients with recurrent patellofemoral instability.

References

1. Nomura E, Inoue M. Second-look arthroscopy of cartilage changes of the patellofemoral joint, especially the patella, following acute and recurrent patellar dislocation. Osteoarthritides Cartilage. 2005;13:1029–36.

2. Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res. 1972;88:67–9.

3. Migliorini F, Rath B, Tingart M, et al. Surgical management for recurrent patellar dislocations in skeletally immature patients. Eur J Orthop Surg Traumatol. 2019;29:1815–22.
4. Arnbjornsson A, Egund N, Rydling O, et al. The natural history of recurrent dislocation of the patella. Long-term results of conservative and operative treatment. J Bone Joint Surg Br. 1992;74:140–2.

5. Atkin DM, Fithian DC, Marangi KS, et al. Characteristics of patients with primary acute lateral patellar dislocation and their recovery within the first 6 months of injury. Am J Sports Med. 2000;28:472–9.

6. Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.

7. Runow A. The dislocating patella. Etiology and prognosis in relation to generalized joint laxity and anatomy of the patellar articular cartilage. Acta Orthop Scand Suppl. 1983;201:1–53.

8. Cooke TD, Price N, Fisher B, et al. The inwardly pointing knee: an unrecognized problem of external rotational malalignment. Clin Orthop Relat Res. 1990;260:56–60.

9. Huberti HH, Hayes WC. Patellofemoral contact pressures: The influence of quadriceps and tibiofemoral contact. J Bone Joint Surg Am. 1984;66:715–24.

10. Cash JD, Hughston JC. Treatment of acute patellar dislocation. Am J Sports Med. 1988;16:244–9.

11. Hawkins RJ, Bell RH, Ansett G. Acute patellar dislocations: The natural history. Am J Sports Med. 1986;14:117–20.

12. Vollberg B, Koelztz T, Jung T, et al. Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol. 2012;22:2347–56.

13. Migliorini F, Bertori A, Salvaro G, et al. Autologous chondrocyte implantation and mesenchymal stem cells for the treatments of chondral defects of the knee—a systematic review. Curr Stem Cell Res Ther. 2020;15:547–56.

14. Migliorini F, Eschweiler J, Maffulli N, et al. Management of patellar chondral defects with autologous matrix induced chondrogenesis (AMIC) compared to microfractures: a four years follow-up clinical trial. Life (Basel). 2021;11:141.

15. Migliorini F, Eschweiler J, Maffulli N, et al. Autologous matrix-induced chondrogenesis (AMIC) and microfractures for focal chondral defects of the knee: a medium-term comparative study. Life Basel. 2021;11:183.

16. Sanders TC, Paruchuri NB, Zlatkin MB. MRI of osteochondral defects of the knee. Radiology. 2012;224:547–56.

17. Runow A. The dislocating patella. Etiology and prognosis in relation to generalized joint laxity and anatomy of the patellar articular cartilage. Acta Orthop Scand Suppl. 1983;201:1–53.

18. von Engelhardt LV, Raddatz M, Bouillon B, et al. How reliable is MRI in the treatment of knee osteochondritis dissecans: results at 6 years. Knee. 2012;19:925–32.

19. Lee DK, Wang JH, Kang SH, et al. The clinical and radiological results of individualized surgical treatment depending on pathologic abnormalities in recurrent patellar dislocation: low recurrence rate, but unintended patella baja. Knee Surg Sports Traumatol Arthrosc. 2018;26:2558–67.

20. Lahmann SJ, Schoenecker PL, Dobbs MB, et al. Arthroscopic findings at the time of patellar realignment surgery in adolescents. J Pediatr Orthop. 2007;27:493–8.

21. Maffulli N, Aicale R, D’Addona A, et al. Combined medial patellofemoral and patellofemoral reconstruction with soft tissue fixation in recurrent patellar dislocation. Injury. 2020;51:1867–73.

22. Nha KW, Ha Y, Oh S, et al. Surgical treatment with closing-wedge distal femoral osteotomy for recurrent patellar dislocation with Genu Valgum. Am J Sports Med. 2018;46:1632–40.

23. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

24. Howick J, Gi, Glaziou P, Greenhalgh T, Carl Henehgan, Liberati A, Moschietti J, Phillips B, Thornton H, Goddard O, Hodgkinson M. The 2011 Oxford CEBM levels of evidence. Oxford Centre for Evidence-Based Medicine. 2011.

25. Paetela T, Vasara A, Nurm I, et al. Assessment of cartilage repair quality with the international cartilage repair society score and the Oswestry Arthroscopy Score. J Orthop Res. 2020;38:535–62.

26. Wells GA, Shea B, O’Connell DA, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Oxford. 2000.

27. Nam MK, Karzel RP. Mini-open medial reefing and arthroscopic lateral release for the treatment of recurrent patellar dislocation: a medium-term follow-up. Am J Sports Med. 2005;33:220–30.

28. Aae TF, Randsborg PH, Lucas H, et al. Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26:1044–52.

29. Basod E, Ishaque B, Bachmann G, et al. Matrix-induced autologous chondrocyte implantation versus microfracture for the treatment of cartilage defects of the knee: a 2 year randomised study. Knee Surg Sports Traumatol Arthrosc. 2012;20:519–27.

30. Filardo G, Kon E, Berruto M, et al. Arthroscopic second generation autologous chondrocytes implantation associated with bone grafting for the treatment of knee osteochondritis dissecans: results at 6 years. Knee. 2012;19:658–63.

31. Bertho P, Pauvert A, Poudouez T, et al. Treatment of large deep osteochondritis lesions of the knee by autologous matrix-induced chondrogenesis (AMIC). Preliminary results in 13 patients. Orthop Traumatol Surg Res. 2018;104:695–700.

32. Hiebord S, Suerzer F, Schmitz B, et al. Good clinical and MRI outcome after arthroscopic autologous chondrocyte implantation for cartilage repair in the knee. Knee Surg Sports Traumatol Arthrosc. 2018;26:831–9.

33. Niemeyer P, Laute V, Zinsar W, et al. A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spherocon technology versus arthroscopic microfracture for cartilage defects of the knee. Orthop J Sports Med. 2019;7:2325967119854442.

34. Van Assche D, Stae F, Van Cepal D, et al. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2010;18:486–95.

35. Saris DB, Vanlauwe J, Victor J, et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009;37(Suppl 1):105–195.

36. Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005;87:640–5.

37. Migliorini F, Bertori A, Salvaro G, et al. Autologous chondrocyte implantation and mesenchymal stem cells for the treatments of chondral defects of the knee—a systematic review. Curr Stem Cell Res Ther. 2020;15:547–56.

38. Schagemann J, Behrens P, Paech A, et al. Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee.
fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.