Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases

Federica Rey1,2 | Valentina Urrata1,2 | Luisa Gilardini3 | Simona Bertoli3,4 | Valeria Calcaterra5,6 | Gian Vincenzo Zuccotti1,2,6 | Raffaella Cancelli3 | Stephana Carelli1,2

1Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
2Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
3Obesity Unit—Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
4International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
5Pediatrics and Adolescology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
6Department of Pediatrics, Children’s Hospital “V. Buzzi”, Milan, Italy

Correspondence
Stephana Carelli, Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
Email: stephana.carelli@unimi.it

Summary
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.

KEYWORDS
adipogenesis, lncRNAs, metabolic diseases, obesity

Abbreviations: ADINR, adipogenic differentiation-induced ncRNA; AdipoQ AS, adiponectin antisense RNA; ADNCR, adipocyte differentiation-associated lncRNA; AF, atrial fibrillation; AngII, angiotensin II; ANRIL, antisense ncRNA in the INK4 Locus; APF, autophagy promoting factor; ASMER-1 and ASMER-2, adipocyte-specific metabolic-related lncRNAs; BMI, body mass index; CAFF, cardiac autophagy inhibitory factor; CARL, cardiac apoptosis-related IncRNA; CDKN2B-AS1, cyclin-dependent kinase inhibitor 2B antisense RNA 1; Chaer, cardiac-hypertrophy-associated enhancer-associated RNA; CHD, coronary heart diseases; CHRF, cardiac hypertrophy-related factor; CIDEC, cell death-inducing DFF45-like effector; CVD, cardiovascular diseases; DGAT, diacylglycerolacyltransferase; DN, diabetic nephropathy; DNMT1, DNA methyl transferase 1; Giver, Growth factor- and pro-Inflammatory cytokine-induced Vascular cell-Expressed IncRNA; hADSCs, human adipose-derived stem cells; HFD, high-fat diet; hLMR, human lncRNA metabolic regulators; HOTAIR, HOX transcript antisense RNA; HRCR, heart-related circRNA; IFNCR, intramuscular fat-associated lncRNA; IR, insulin resistance; LIPCAR, long intergenic non-coding RNA predicting cardiac remodeling; Inc-ORA, obesity-related IncRNA; IncRNA, long non-coding RNAs; MALATI, metastasis-associated lung adenocarcinoma transcript 1; MCE, mitotic clonal expansion phase; MDRL, mitochondrial dynamic-related IncRNA; Meg3, maternally expressed gene 3; MIR21HG, miR-21 host gene; MIR31HG, miR-31 host gene; MIRT1, myocardial infarction-associated transcript 1; NAFLD, nonalcoholic fatty liver disease; OA, osteoarthritis; PRC2, Polycomb Repressor Complex 2; SD, standard deviations; SRA, steroid receptor RNA activator; T2D, type 2 diabetes; TINCR, tissue differentiation-inducing non-protein coding RNA; VSMCs, vascular smooth muscle cells; WHO, World Health Organization; Wisp2 super-enhancer-associated RNA; linc1, J-cell long intergenic noncoding RNA.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
1 | INTRODUCTION TO OBESITY: CAUSES AND CONSEQUENCES

Obesity is defined by the World Health Organization (WHO) as a condition of abnormal or excessive accumulation of body fat that presents a health risk, increasing both morbidity (for many chronic diseases such as type 2 diabetes [T2D], hypertension, coronary artery disease, dyslipidemia, stroke, osteoarthritis (OA), and even certain forms of cancer)\(^1\)\(^-\)\(^5\) and mortality.\(^3\) The most recent report of the WHO shows how the worldwide prevalence of obesity nearly tripled between 1975 and 2016, as over 650 million adults clinically were affected by obesity and 41 million children below the age of 5 and over 340 million children and adolescents between 5 and 19 years of age were either overweight or affected by obesity.\(^3\)\(^,\)\(^6\)\(^-\)\(^9\) Specifically, an adult is affected by obesity when his/her body mass index (BMI) is greater than or equal to 30.\(^3\) In the pediatric age, according to the WHO, obesity in children under 5 years of age is defined as weight-for-height 3 standard deviations (SD) above the WHO Growth Standards reference median. For children aged 5–19 years, obesity is defined as BMI-for-age 2 SD above the WHO Growth Standards reference median.\(^6\)

Conventional therapies for patients with obesity, such as lifestyle modifications (diet and exercise) and also pharmacotherapy in adults, remain important but are limited by their results in terms of weight loss and weight loss maintenance at long term, and in the next future the development of new combinatory clinical approaches is needed.\(^10\)\(^-\)\(^13\) From a cellular perspective, obesity is caused by the excessive accumulation of adipose cells in different anatomical parts of the body. This is due to an increase in adipocytes’ size (hypertrophy), number (hyperplasia) both and even in an imbalance of the adipogenesis process.\(^14\)\(^,\)\(^15\) At present, it remains thus necessary to continue research on the biological basis of this complex pathology starting from genetic, epigenetic, and molecular pathways as it is not possible to conclude what the relative contribution of genetics and environment are in obesity onset. Indeed, behavior and genes are different levels of the same causal framework, and epigenetics through RNA biology might play a central role in elucidating new targetable pathways. “Classic” epigenetic mechanisms and epigenetic mosaicism, a widespread phenomenon documented in many organisms, that may account for differences in body weight and fat accumulation among people remain to be better investigated.\(^16\)\(^-\)\(^18\) Taking into account of the role of non-coding RNAs as possible epigenetic modulator of obesity and secondary co-morbidities onset. In this review, we aim to discuss the functional roles of long non-coding RNAs (lncRNAs), focusing on the state of the art and the future clinical implications of lncRNAs in adipogenesis, obesity, and obesity complications onset.

2 | LNCRNAS: DEFINITION AND PRINCIPAL FUNCTIONS

In recent years, the role of RNA is changed, and indeed it is now established knowledge that only 1–2% of the human genome codes for protein.\(^19\)\(^-\)\(^21\) For this reason, RNAs can be classified for their coding potential in coding RNAs (transcripts that will subsequently be translated into proteins) and non-coding RNAs that do not code for a polypeptide and whose function is still to be fully understood especially in modulating gene expression.\(^19\)\(^-\)\(^21\) Among the non-coding RNAs, it is possible to distinguish two subclasses: small non-coding RNAs, molecules smaller than 200 bp, and IncRNAs, defined as non-coding RNA molecules longer than 200 bp.\(^22\) LncRNAs are poorly conserved, frequently unstable, and/or sometimes present in few copies, and new biological roles have emerged for some IncRNAs.\(^23\)\(^-\)\(^25\) In order to facilitate the reader through this mounting evidence in different models, the IncRNAs reported in this work are listed for their homology as summarized in Table S1.

Interestingly, IncRNAs can mediate transcriptional regulation in different ways. Indeed, these molecules can modulate gene expression at multiple levels, ranging from chromatin re-arrangements to transcriptional regulation or even translational modulation.\(^26\)\(^-\)\(^28\) Multiple pieces of evidence suggest that they can operate through distinct modes, including working as signals, scaffolds for protein–protein interactions, molecular decoys, and guides to target elements in the genome or transcriptome.\(^29\) This high degree of complexity in gene expression regulation, and the number of still unknown mechanisms through which IncRNAs could act, indicates a clear need to further investigate these molecules, both in health and disease, as they could provide crucial new insights in cell biology representing promising targets for the development of innovative therapeutic strategies for multiple diseases, with a specific relevance for their epigenetic regulation of metabolic diseases. Indeed, the non-coding transcriptome is becoming more and more relevant also in the field of adipogenesis, fat mass expansion, and obesity, and in this context IncRNAs represent new potential candidate targets for the development of therapies.\(^23\)\(^-\)\(^25\)

3 | LNCRNAS IN ADIPOGENESIS AND OBESITY

Noncoding RNAs are known to play a regulatory role in many developmental contexts, including adipogenesis. Indeed, IncRNAs have been demonstrated to be involved in adipogenesis with subsequent implications for obesity and obesity-related complications in adults and children.\(^30\)\(^-\)\(^32\) As more and more studies in this field arise every year, there is a need to distinguish between the multiple functions that the IncRNAs could have. Indeed, results are variable, and a full characterization of the role that IncRNAs play in obesity is far from being present. Numerous IncRNAs have been correlated with adipogenesis, and the aim of this section is thus to classify them
accordingly to their role in different stages of adipocytes differentiation, subsequently focusing on their role in obesity.

3.1 | Role of lncRNAs in the regulation of early adipogenesis master regulators

Adipogenesis is the process of adipocytes formation into fat-containing cells from stem cells or adipocyte precursors. It involves two phases: determination (considered an early stage) and terminal differentiation (late adipogenesis).

Early stages of adipogenesis are represented by a mitotic clonal expansion phase (MCE) and by the expression of early regulators such as C/EBPβ and C/EBPδ.34–36 Among the lncRNAs able to influence this stage of adipogenesis, the IncRNA steroid receptor RNA activator (SRA) was one of the first to be described.37 Its expression resulted twofolds higher in differentiated murine 3T3-L1 adipocytes than pre-adipocytes, but the IncRNA seems to also act in early phases of adipogenesis.38 Indeed, it can promote S-phase entry during the MCE of adipogenesis controlling cell cycle genes’ expression.39 Moreover, in the mouse ST2 mesenchymal cell line, SRA is implicated in the regulation of p38/JNK’ phosphorylation inhibition, a crucial step in the early stages of adipogenesis, as well as in stimulating insulin receptor gene expression and downstream signaling.39,40 The obesity-related IncRNA (Inc-ORA), whose expression increases during adipogenesis in obese mice, also regulates the cell cycle through induction of expression of crucial marker genes such as PCNA, cyclin B, cyclin D1, and cyclin E.41 Modulation of the cell cycle and thus early stages of adipogenesis can also occur through epigenetic modulation, and indeed the IncRNA slncRAD was found to interact with the DNA methyl transferase 1 (DNMT1) in the S phase of the cell cycle in mouse, facilitating the cell’s entry into the MCE phase.42 Through microarray study a novel IncRNA, the IncRNA-Adi, has been identified and found to be highly expressed in the MCE phase in rat adipocytes. It exerts its effect through the interaction with miR-449a, enhancing the expression of the miRNA’s target CDK6, a cyclin-dependent kinase sensitive to high-fat diet (HFD) and involved in the regulation of cell beige tissue formation.43,44

The genetic location of IncRNAs could be of crucial relevance in identifying their target genes. Three recently discovered IncRNAs, Gm15051, Tmem189, and Cebpδ genomically, locate respectively identifying their target genes. Three recently discovered lncRNAs, as C/EBPβ, the tissue differentiation-inducing non-protein coding RNA (TINCR), which has been found to promote intramuscular adipocyte differentiation in chicken sponging mir-128-3p and mir-27b-3p, which directly target PPARγ.46 There can also be an indirect IncRNA-miRNA modulation of PPARγ, through other epigenetic regulators. The adipocyte differentiation-associated IncRNA (ADNCR) can sponge miR-204, whose target gene, SIRT1, is known to form a complex with modulators such as NCoR and SMART to repress PPARγ activity in bovine adipocytes.47 An epigenetic modulation can happen at PPARγ’s promoter, in sites known as CpG islands that when methylated decrease the expression of the respective downstream genes. Indeed, the IncRNA Pnc1, transcribed 25,000 bp upstream of PPARγ2, can attenuate the methylation status of its promoter increasing subsequent transcription in mouse.48 PPARγ can also be targeted at the end of specific signal transduction pathways, as demonstrated for STAT3 gene expression regulation.49 Specifically, adipogenesis is induced by the activation of STAT3, acting as a molecular switch. This effect was counteracted by PPARγ’s activation with the agonist troglitazone, suggesting that STAT3 can modulated adipogenic differentiation through a PPARγ upstream regulation.49 The nuclear IncRNA PVT1 has been found to associate with STAT3 in 3T3-L1 pre-adipocytes, and indeed PVT1 has been found to correlate with increased expression of PPARγ, but also C/EBPα, FABP4, and genes related to fatty acid synthesis.50 Well-renowned IncRNAs, such as NEAT1, widely implicated in numerous cancers, can also have a function in adipogenesis, and indeed NEAT1 has been found to modulate the splicing of PPARγ, increasing the expression of the isoform 2 through SRp40 association in 3T3-L1 pre-adipocyte.51 PPARγ can itself regulate IncRNA’s expression, such as AK079912, which presents three conserved PPARγ binding sites in its promoter region32 or Inc-BATE in mouse.52

PPARγ is not the only player in late adipogenesis, and indeed, IncRNAs can modulate other key targets. Specifically, knockdown of the IncRNA HOXA11-AS1 can result in the inhibition of adipocyte differentiation through a decrease of C/EBPα, diacylglycerolacyltransferase (DGAT) 2, cell death-inducing DFF45-like effector (CIDEC), and perilipin.54 On the other hand, the tissue differentiation-inducing non-protein coding RNA (TINCR) can form a feedback loop with mir-31 and C/EBPα, promoting adipogenesis in human adipose-derived stem cells (hADSCs).55 The adipogenic differentiation-induced ncRNA (ADINR) can activate ML3/4, epigenetically modulating transcription of C/EBPα in hADSCs.56,57 LncRNAs can also bind epigenetic regulators and upregulate expression of late-adipogenesis genes, as does miR-31.
host gene (MIR31HG), which is able to promote the binding of H3K4me3 to FABP4's promoter, increasing its expression in hADSCs.56 The Wnt/\(\beta\)-catenin signaling is also influenced by a novel nuclear lncRNA, AC092834.1 in hADSCs. This lncRNA directly promoted an increase in the expression of DKK1, which competitively binds to LRP5 to degrade cytosolic \(\beta\)-catenin, ultimately leading to upregulation of adipogenic transcripts such as PPAR\(\gamma\), FABP4, and C/EBP\(\alpha\).57

A specific subclass of lncRNAs, defined as "antisense RNAs," can modulate the expression of their respective sense gene altering processes in which they are involved. For example, PU.1AS can form a RNA-duplex with PU1, a molecule that inhibits adipogenesis, hindering its expression and subsequent protein expression with a decreased expression of PPAR\(\gamma\), fatty acid synthase, and adiponectin in mouse.58,59 Similarly, adiponectin antisense RNA (AdipoQ AS) can modulate adiponectin expression and inhibit murine adipogenesis.60 Although not its antisense, Inc-leptin is directly correlated with leptin, as it is transcribed from an enhancer region upstream of leptin and their expression directly correlates.61

The lncRNA's correlation with adipogenesis can also be negative, as some lncRNAs have been found to be decreased in adipogenesis, such as Inc-U90926 in murine 3T3-L1 pre-adipocytes,62 miR-221 host gene (MIR221HG) in bovine adipocytes, and IncRNA H19 in human bone marrow mesenchymal stem cells.63,64 Further studies might be needed to clarify specific lncRNA's functions in this process, as controversial evidences are also present. This is the case of maternally expressed gene 3 (Meg3), a novel lncRNA which has been defined as both able to inhibit and promote adipogenesis.65,66 Indeed, a first study reported that silencing of Meg3 promoted adipogenesis through the overexpression of the adipogenesis-related miR-140-5p, PPAR\(\gamma\), and C/EBP\(\alpha\), suggesting that when Meg3 is absent, adipogenesis is induced.65 On the contrary, another work described Meg3's role in upregulating Dickkpof-3 through interaction with miR-217, ultimately leading to an upregulation of adipogenesis via the induction of expression of adipogenesis-related genes such as FABP4.66 This might be due to a time-specific effect of the lncRNA's action, or the different cellular context as the first study was performed in human cells whereas the second in murine 3T3-L1 pre-adipocytes.
3.3 Identification of lncRNAs specifically associated with obesity

Specific studies correlate lncRNAs with the obese phenotype and obesogenic models. Among them, SRA has been demonstrated to be strictly associated with obesity, as it has been shown that SRA−/− mice have a phenotype of resistance to HFD-induced obesity with decreased fat mass, reduced fatty liver, and improved glucose tolerance. High-throughput techniques such as RNA sequencing allowed the screening of the whole transcriptome in adipose tissue of patients with obesity versus lean individuals, leading to the identification of novel lncRNAs involved in the disease. In one study, two lncRNAs termed adipocyte-specific metabolic-related lncRNAs (ASMER-1 and ASMER-2) were identified and found to regulate adipogenesis, lipid mobilization, and adiponectin secretion. Screenings were also performed in gluteal subcutaneous adipose tissue on healthy subjects, in which 120 adipose-derived lncRNAs were identified and in children with obesity, with the identification of 1268 lncRNAs, and a specific relevance for RP11-20G13.3 has been found. The same has been done in mice, where brown and white adipocytes, pre-adipocytes, and cultured adipocytes were screened leading to the identification of 175 different lncRNAs that are specifically regulated during adipogenesis in one study and 753 upregulated and 877 downregulated lncRNAs in murine brown versus white adipocytes. Similarly, inguinal white adipose tissue has been screened in obese mice compared to wild type ones, identifying 46 differentially expressed lncRNAs. Moreover, lncRNAs such as PVT1 and Plnc1 were found to be upregulated in obese mice.

From an anatomical point of view, lncRNAs expression can differ in different fat depots, as it is for HOX transcript antisense RNA (HOTAIR) which has been demonstrated to be highly expressed in gluteal-femoral fat, and mechanical stimulation of this area in human subjects induces exosomal secretion of HOTAIR, which then circulates in the bloodstream resulting in higher serum expression in subcutaneous fat, and mechanical stimulation of this area in human subjects induces exosomal secretion of HOTAIR, which then circulates in the bloodstream resulting in higher serum expression in subcutaneous fat.

4 LncRNAs in Obesity-associated Diseases

Given the strong implications of lncRNAs in adipogenesis and adipocytes differentiation, it was a natural evolution to study the role of these molecular modulators in obesity and in the related most common complications. The obesity-associated diseases are numerous, and the initiating events start early in childhood. Indeed, very recently numerous lncRNAs have been found to correlate with obesity-associated inflammatory diseases. The following sections summarize recent advances in identifying lncRNAs implicated in cardiovascular complications (such as myocardial infarction, coronary heart diseases (CHD), cardiac hypertrophy, heart failure, atrial fibrillation (AF), and atherosclerotic thrombosis), endocrine/metabolic complications (such as T2D and nephropathy), and even immune-related complications (such as OA) which are obesity-associated and/or regulated.

4.1 Cardiovascular diseases

Cardiovascular diseases (CVD) include myocardial infarction, CHD, cardiac hypertrophy, heart failure, AF, and atherosclerotic thrombosis. Childhood and adolescent obesity plays a crucial role in developing CVD risk factors and are linked to higher risk of cardiovascular morbidity and mortality in adulthood. Numerous lncRNAs are implicated in CVD, and among them cardiac autophagy inhibitory factor (CAIF) is downregulated in end-stage cardiomyopathy and usually could represent a good biomarker of a disease state in humans. CAIF seems to have a protective role through suppression of cardiac autophagy while directly blocking p53. P53 is known to target and upregulate myocardin in myocardial ischemia and reperfusion, and CAIF thus indirectly inhibited myocardin's expression. It has been reported that antisense ncRNA in the INK4 Locus (ANRIL) can sponge mir-99a and mir-449 during autophagy processes, subsequently upregulating thrombomodulin and promoting angiogenesis in human umbilical vein endothelial cells. The lncRNA autophagy promoting factor (APF) can also influence autophagic cell death in murine myocardial infarction targeting mir-188-3p and autophagy-related protein 7. A third lncRNA which can modulate murine autophagy through miRNA sponging is AK088388, regulating Beclin-1 and LC3-II's expression through mir-30a.

LncRNAs can also target the apoptotic process in cardiomyocytes, which can lead to myocardial infarction. P53 is also implicated in apoptosis modulation, and the lncRNA Meg3 can target p53 and subsequently modulate NF-κB and ERS-associated apoptosis in murine ventricular myocytes. Cardiac apoptosis-related lncRNA (CARL) is able to sponge miR-539 in mice and thus indirectly upregulate its target PHB2, which modulates apoptosis and mitochondrial fission. Mitochondrial fission and fusion are indeed strictly associated with cardiomyocyte apoptosis. The lncRNA AK009271, named mitochondrial dynamic-related lncRNA (MDRL), has been proved to be involved in mitochondrial fission and fusion under stress conditions. MDRL can interact with miR-361 and suppress it, thus reducing mitochondrial fission and apoptosis upon anoxia/reoxygenation treatment in murine cardiomyocytes. A specific analysis of lncRNAs involved in myocardial infarction has been performed by Chen and colleagues, which reports numerous studies aimed at performing high-throughput screening of lncRNAs which are differentially expressed in various heart diseases. They also report an implication for the lncRNAs ZFAS1, HOTAIR, MALAT1, GAS5, FAF, TTTY15, ECRAR, AK080084, NR_045363, YUG1, and Meg3. Myocardial infarction can indeed influence a differential lncRNAs expression. Specifically, acute myocardial infarction in mice was associated with the upregulation of two lncRNAs named myocardial infarction-associated transcript 1 (MIRT1) and 2 (MIRT2), which negatively correlated with infarct size and positively correlated with ejection fraction. MIRT1 and MIRT2 modulate the expression of multiple...
genes known to be involved in processes affecting left ventricular remodeling, such as extracellular matrix turnover, inflammation, fibrosis, and apoptosis. The IncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been seen expressed in cardiomyocytes subjected to hypoxia, high glucose, cytokine, and oxidative stress which are all risk factors of CVD in human and murine models, and thus has been suggested to represent a new possible therapeutic target in the disease. The IncRNA myosin heavy chain associated RNA transcripts (MHRT) was upregulated in blood of patients with myocardial infarction and seems to be upregulated in cardiac myocytes in the presence of high levels of reactive oxygen species to exert protective effect on these cells. The IncRNA Wisp2 super-enhancer-associated RNA (Wisper) was induced in cardiac fibrosis in both human patients and murine models, where it could be protective through regulation of cardiac fibroblast proliferation, migration, and survival. MIAT has been found to be upregulated in serum of patients with coronary atherosclerotic heart disease. MIAT can also sponge and thus inhibit miR-133a-3p, protective in multiple heart diseases for its role in improving cardiac function and decreasing fibrosis in rat models.

LncRNAs can also influence cardiac hypertrophy and thus aggravate CVD, as cardiac hypertrophy is a crucial hallmark of heart failure. Indeed, the heart-enriched IncRNA cardiac-hypertrophy-associated epigenetic regulator (Chaer), can epigenetically interact with the Polycromul Repressor Complex 2 (PRC2) and inhibit histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy, thus inducing the expression of genes involved in cardiac hypertrophy, with studies performed in rat, murine, and cardiac fibroblasts. Cardiac hypertrophy can also be induced by the IncRNA cardiac hypertrophy-related factor (CHRF) in mouse, although in this case the underlying mechanisms involve sponging of miR-489 and subsequent upregulation of the miRNA’s target Myd88, a regulator of cardiomyocyte hypertrophy. The IncR-UCA1 is upregulated in mice hypertrophic cardiomyocytes, and it can sponge miR-184, enhancing the expression of HOX-A9. A detailed report on IncRNAs in cardiac hypertrophy is reported in the work by Liu and colleagues, which also implicates the IncRNAs MHRT, Meg3, DACH1, H19, Plscr4, SNHG1, TINCR, Uc.323, and Ahit. Other IncRNAs have also been implicated in heart failure, as does the heart-related circRNA (HRCR), which in mice was found to act as endogenous sponge to mir-223, protecting them from hypertrophic stimuli. Moreover, the IncRNA HypERlin was significantly reduced in human cardiac tissue from patients with heart failure compared with controls. Moreover, the IncRNAs profile was analyzed in plasma of patients with ischemic cardiomyopathy and dilated cardiomyopathy, two major problems which lead to heart failure. This microarray analysis identified 3222 differentially expressed IncRNAs, highlighting also a co-expression between IncRNAs and mRNAs. Other high-throughput screening for IncRNAs in heart failure were performed in rat models of ischemic heart failure, in murine models of post-myocardial infarction, in explanted human heart failure hearts versus control donated ones, and in left ventricle biopsies of patients affected by non-end-stage dilated ischemic cardiomyopathy and matched controls highlighting a substantial number of IncRNAs implicated in the pathophysiology of this process.

Another form of CVD is AF, which is the most common type of arrhythmia. Numerous studies were performed on the role of IncRNAs in this disease, and also in this case high-throughput screening has allowed the identification of mounting evidences on IncRNAs in this disease. Specifically, a study conducted in right atrium tissue of patients with rheumatic heart diseases and AF or normal sinus rhythm highlighted 182 differentially expressed IncRNAs. Another work identified the transcriptome profile of left and right atrial appendages of patients with AF versus controls and identified NPPA and its antisense as potential regulators of muscle contraction in AF and moreover RP11-99E15.2 and RP3-523K23.2 which could modulate extracellular matrix binding and transcription of HSF2 targets, respectively. The atrial tissue was also examined in another study considering three AF patients, highlighting 219 differentially expressed IncRNAs. RNA-seq performed in lymphocytes of patients with permanent AF versus controls highlighted the differential expression profiles of IncRNAs, ultimately implicating two IncRNAs, ETF1P2 and AP001053.11, in AF pathogenesis. Also focusing on the relevance of IncRNAs as peripheral biomarkers, another study performed a microarray study on blood from patients with AF and matched controls, highlighting 177 deregulated IncRNAs, with the two most deregulated being NONHSAT040387 and NON-HSAT098586. Lastly, a study in atria from AF rabbit highlighted 99,843 putative new IncRNAs, of which TCONS_00075467 was selected to be important for electrical remodeling, possibly through sponging of miR-328 and subsequent regulation of CACNA1C. Other IncRNAs implicated in AF include TCONS_00202959, AK055347, MIAT, KCNQ1OT1, and others extensively reviewed in previous publications. When focusing on the adipose tissue implication in AF, the number of studies is more restricted, but a very recent work performed a RNA-sequencing analysis in epicardial adipose tissue samples of patients with persistent non-valvular AF and sinus rhythm, highlighting 57 differentially expressed IncRNAs.

Numerous IncRNAs have also been found deregulated in CHD, with one recent work highlighting a network of 62 IncRNAs, 332 mRNAs, and 366 mRNA differentially expressed in peripheral blood mononuclear cells (PBMCs) of patients with CHD versus controls. The screening led to the identification of two IncRNAs, CTA-384D8.35 and CTTB-114C7.4, as main players in the disease. Also in this case, an in-depth classification of both miRNA and lncRNAs involved in CHD was performed by Zhang and colleagues, which specifically report the implicated IncRNAs to be ANRIL, H19, HIF1A-AS1, linc-p21, RNCR3, TGFBI2-OT1, Ang362, HAS2-AS1, SMILR, SENCIR, Meg3, and Inc-MK671P-3. Lastly, IncRNAs are also being investigated for their role in atherosclerotic thrombosis, with multiple recent works focusing especially on this topic. These include ANRIL, LeXis, RPS-833A20.1, MeXis, and several more, able to act through numerous processes such as vascular remodeling, endothelial...
dysfunction, leukocyte recruitment, macrophage apoptosis, and cholesterol metabolism.165

In conclusion, recent evidence indicates the important roles of IncRNAs in the complex regulatory network of CVD, and many of them could be used as novel therapeutic targets and/or biomarkers for early diagnosis or prognosis for CVD. Indeed, current therapies for CVD such as cardiac hypertrophy currently alleviates symptoms, but new genetic analyses could provide new therapeutic targets.115 Modulation of IncRNAs such as Meg3, Plscr4, H19, SNHG1, uc.323, or Ahi1 could attenuate the increasing size of cardiomyocytes.117,119–121,123,124 Moreover, a specific class of anti-sense oligonucleotides, GapmeRs, shows great promise in pharmacological silencing of IncRNAs in vivo,170 and even if no clinical trial has been performed, therapeutic GapmeR injections have been found to modulate IncRNAs such as Chast171 and Meg3172 in animal models of pressure overload or Wisper in myocardial infarction.108,173 Moreover, as IncRNAs have been detected in extracellular body fluids, they could be used as biomarkers, and example of this is long intergenic non-coding RNA predicting cardiac remodeling (LIPCAR), whose plasma levels in humans are associated with left ventricular remodeling after myocardial infarction and with an increased risk of developing heart failure.174 Other identified predictors are MIAT,174 SENCR,174 H19,174 NFAT,175 MHRT,175 ANRIL,176 IncPPAR\textsubscript{6},177 and CoRomoMarker.178 Remarkably, four clinical trials are investigating the role of IncRNAs as biomarkers in patients with CVD,132 suggesting a strong potentiality for these molecules as disease indicators.

4.2 Hypertension

Multiple IncRNAs have been found to be upregulated in the plasma of patients with hypertension, such as AK125261, AK098656, and TUG1.74 AK098656, upregulated in hypertensive patients, acts through an increase in proliferation and migration of vascular smooth muscle cells (VSMCs), as it has been shown that it can directly bind to the VSMCs-specific contractile protein, myosin heavy chain-11, and an essential component of extracellular matrix, fibronectin-1, promoting their degradation.179 Moreover, AK098656-overexpressing transgenic rats spontaneously progress to hypertension, presenting increased media thickness and reduced arterial lumen.180 The IncRNA TUG1 can also modulate proliferation and migration of rat VSMCs acting as a sponge for miR-145-5p and thus inducing the miRNA's target FGF10 and subsequently activating the Wnt/β-catenin pathway.181 Proliferation and migration of VSMCs can also be increased in rats by the IncRNAs XR-007793 and MRK048635 P1.182,183 Downregulation of MRAK048635 P1 seems to induce VSMCs phenotypic switching from a contractile to a secretory phenotype, representing a potential therapeutic target in the disease.182 The IncRNA GAS5 can also modulate PDGF-induced proliferation and migration of human VSMCs through the sponging of miR-21, which is indeed able to target platelet-derived growth factor (PDGF).184

A second process that can be modulated by IncRNAs in hypertension is indeed muscular remodeling. Vascular remodeling is an active process that involves changes in cellular growth, apoptosis, migration, inflammation, and production of extracellular matrix proteins. The IncRNA GAS5 can also regulate this process as it can remodel arteries such as the caudal, carotid, renal, and thoracic ones. Indeed, GAS5’s knockdown regulate the function of endothelial cells and VSMCs through β-catenin signaling.185 Another previously mentioned IncRNA involved in this process is MALAT1, highly expressed in myocardial and thoracic aortic vascular tissues of hypertensive rats, where it promotes cardiac remodeling through transcriptional repression of MyoD.186 The inflammatory process can also be of crucial relevance in the hypertension process. TUG1 also act at this level, as it positively correlates with the expression of inflammatory factors such as PAF, ET-1, TNF-α, and hsCRP in the blood serum of hypertensive patients.187 Moreover, a novel IncRNA has been named Giver (Growth factor- and pro-Inflammatory cytokine-induced Vascular cell-Expressed IncRNA), for its action in modulation of inflammation.188 Giver is induced by angiotensin II (AngII) through the recruitment of NR4a3 to Giver's promoter, and both Giver and NR4a3 were found increased in AngII-treated human VSMC and in arteries from hypertensive subjects but attenuated in hypertensive patients treated with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. It has been hypothesized that Nox1, a gene involved in oxidative stress, may be one of the key effectors through which Giver may promote cell proliferation and inflammation in VSMCs.189

Polymorphisms in specific IncRNAs can also induce disease pathology. This is the case of cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), also termed ANRIL and previously mentioned for its implication in CVD, where polymorphisms in its sequence may contribute to higher systolic blood pressure in hypertensive patients.189,190 Specifically, it has been found that the SNPs rs10757274, rs2383207, rs10757278, and rs1333049, particularly those within the CDKN2B-AS1 gene and related haplotypes, particularly among youth is also reported, with obesity and family history of T2D generally present.191 Also, in this case, IncRNAs could be crucial players in disease onset and its progression and as this review focuses specifically on obesity-related metabolic diseases, the next paragraph will highlight potential implications of IncRNAs in T2D.

4.3 Type 2 Diabetes

At all ages, the risk of T2D rises with increasing body fat. The prevalence of T2D is 3 to 7 times higher in those who are affected by obesity than in normal-weight adults. Specifically, T2D is an adult-onset, non-insulin-dependent type of diabetes and is strictly linked to obesity.75 In recent years, an increased incidence of T2D among youth is also reported, with obesity and family history of T2D generally present.191 Also, in this case, IncRNAs could be crucial players in disease onset and its progression and as this review focuses specifically on obesity-related metabolic diseases, the next paragraph will highlight potential implications of IncRNAs in T2D.

Indeed, IncRNAs can be both upregulated and downregulated during disease progression in different cell types (Figure 2). Expression profiles of IncRNAs in PBMCs from patients with T2D highlighted how several IncRNAs were significantly increased compared to controls, and these included HOTAIR, Meg3, LET, MALAT1, MIAT, CDKN2BAS1/ANRIL, XIST, PANDA, GAS5, Linc-p21,
ENST00000550337.1, PLUTO, and NBR2.192 The lncRNAs ANRIL and MALAT1 were found increased in the serum of patients with T2D,193,194 and the same was true for NONRATT021972, which also correlated with increased blood glucose and neuropathic pain.195 Interestingly, LncRNA-p3134 is highly expressed in serum’s exosomes of patients with T2D as studies found that it is secreted by islet β-cell.196 Moreover, the lncRNA H19 was found upregulated in plasma of patients with T2D,197 and the lncRNA KCNQ1OT1 was upregulated in T2D islets.198 Evidences can also be obtained from murine models of the disease, as is the case of E330013P06, which was found upregulated firstly in macrophages of diet-induced insulin-resistant T2D mice and subsequently also found upregulated in monocytes from patients with T2D.199

Interestingly, many lncRNAs have also been reported to be downregulated in patients with T2D. When considering PBMCs screening studies, results showed that multiple lncRNAs were found downregulated. These include LINCO0523, LINCO0994,200 LY86-AS1, HCG27_201, and SALRNA1.192 Moreover, studies showed that levels of GAS5 lncRNA were decreased both in serum and in plasma of patients with T2D.197,202 Lastly, the lncRNA HI-LNC45 was found downregulated in human T2D islets.198

Indeed, lncRNAs can modulate the cellular activity of pancreatic β cells. IncRNA-p3134, found deregulated in human patients and diabetic mice, seems to act as a new signaling molecule that maintains β-cell mass and enhances insulin synthesis and secretion, and indeed it has been seen that IncRNA-p3134 can contribute to reverse the insufficient insulin secretion in T2D.205 Moreover, the IncRNA β-cell long intergenic noncoding RNA (βlinc1) can coordinate the regulation of neighboring islet-specific transcription factors, and in fact it is necessary for the specification and function of insulin-producing β cells. In particular, in adult mice it has been shown that deletion of βlinc1 leads to a defective islet development and disruption of glucose homeostasis.203 In pediatric age, Liu et al. reported that several lncRNAs involved in regulation of glucose metabolic process and insulin resistance (IR), such as RP11-559N14.5, RP11-363E7.4, and RP11-707P17.1, were significantly upregulated or downregulated in children with obesity compared to controls, even in the absence of diabetes.21 Considering that hyperglycemia and T2D develop when the pancreas cannot match the increased insulin demands resulting from IR, the lncRNAs could play a crucial role in the onset of the disease.

4.4 | Nephropathy

Obesity is a major risk factor for the development of chronic kidney disease, through the direct development of nephropathy.204–206 Indeed, obesity can cause both a specific renal nephropathy and contribute to renal complications in metabolic syndrome.206 LncRNAs have also been found to associate with this process.207–209 Specifically, the role of lncRNAs in diabetic nephropathy (DN), which accounts for approximately 40% of diagnosed end-stage kidney failure, has been extensively reviewed by Li and collaborators.207 Specifically, TUG1,210–212 MIAT,213 CASC2,214 ENSMUST00000147869,215 170002014Rik,216 CYP4B1-PS1_001,217 Gm15645,218 and LINCO1619219 were downregulated in DN, whereas PVT1, MALAT1,220 Gm4419,221 Gm15645,218 NR_033515,222 Erbb4-IR,223 ASncmtRNA-2,224 and lnc-MCG225 were upregulated in DN.207

Among the other lncRNAs implicated, Rpph1 was found upregulated in mice with DN, regulating also cell proliferation and inflammatory cytokines production in mesangial cells, through a direct interaction with galectin-3.226 LncRNAs can indeed play a role in epigenetic regulation of DN, along with canonical modulators such as histone modifiers and DNA methylation.227 Indeed, they can act synergistically with miRNAs in the disease pathology, as does RP23, which is induced by TGF-β1 in mesangial cells along with its
containing miRNAs, miR-216a, and miR-217.228 Moreover, in mouse miR-192 is also co-regulated by TGF-β1 in mesangial cells along with its host ncRNA CJ241444, through promoter Smad binding elements and epigenetic regulation via protein C-ets-1 and histone acetylation.227,229 Lastly, another study found 21 lncRNAs upregulated in two models of renal fibrosis, subsequently downregulated in Smad3-knockout mice, suggesting they were induced by this factor.230

4.5 Osteoarthritis

Obesity can impact tissue types other than the adipose tissue, and indeed it can significantly impact both the musculoskeletal and immune systems, leading to the development of OA.77,231 OA is a debilitating degenerative joint disorder which is characterized by pain, decreased mobility, and an overall negative impact on the quality of life.231 In recent years, lncRNAs have been found to also be strongly deregulated in this disease, although most studies concern OA development and do not specifically focus on the obesogenic co-morbidity.77 These lncRNAs have been extensively reviewed in other works,77,232 specifically classifying them for their role in disease progression, immune response, and even potential therapeutic targets.77,232 It is indeed clear that the main implication of lncRNAs in OA relates to the immune response, and to this end in recent years mounting studies are reporting this correlation, with the implication of, but not limited to, CASC2,233 SNHG1,234 DANC,235 HOTAIR,236 H19,237 SNHG7,238 MFI2-AS1,239 PACER,240 CILinc01,240 CILinc02,240 PVT1,241 XIST,242 and FOXD2-AS1.243 A high-throughput screening also reported 3007 upregulated lncRNAs and 1707 downregulated lncRNAs in OA human cartilage compared with normal samples, indicating their significant implication in the diseases.244 Moreover, another work investigated the role of exosomal lncRNAs from plasma and from synovial fluid in patients at different stages of OA, highlighting a role for PCGEM1 in disease progression.245

Even so, future works will need to specifically focus on the link between OA, lncRNAs, and obesity. Nanus and co-authors reported 19 differentially expressed lncRNAs in normal-weight OA versus non-OA patient fibroblasts, and these are MALAT1, MIR155HG, SMILR, LINCO1426, RP11-863P13.3, CARMN, RP11-79H23.3, RP11-362F19.1, RP11-290 M5.4, VLDLR-AS1, RP11-536 K7.3, HAGLR, LINCO1915, RP11-367F23.2, RP11-392017.1, LINCO1705, LINCO1021, DNAJC27-AS1, and AF131217.1.246 Specifically, MALAT1 was rapidly induced upon stimulation of OA synovial fibroblasts with proinflammatory cytokines, and its ablation leads to a reduced expression of IL-6 and IL-8.77,246 Moreover, the lncRNA Nespas was found upregulated in human OA chondrocytes, sponging numerous miRNAs which target Acyl-CoA synthetase 6 (ACSL6), leading to an overall increase in ACSL6.247 ACSL6 encodes a key enzyme that activates polyunsaturated long-chain fatty acids, suggesting that this process could modulate lipid metabolism in OA.247 Overall, these evidences suggest a clear implication for lncRNAs in mediating epigenetic dysregulation in OA, but the specific link with obesity will need further clarification.

4.6 Hepatic metabolic disease

Obesity is also linked with the development of hepatic metabolic disease, as nonalcoholic fatty liver disease (NAFLD) and especially its most severe form (nonalcoholic steatohepatitis) present an increased prevalence in patients with obesity (from 3% to 20–40%).246 LncRNAs also appear to intervene in this process, with a tight link with obesity development. Indeed, the lncRNA Blnc1, implicated in adipogenesis and obesity, was found upregulated in obese and NAFLD mice, activating SREBP1c and hepatic lipogenesis, thus aggravating disease progression.249 Gm15622 was also found upregulated in the liver of obese mice fed a HFD, exerting its mechanism of action sponging miR-742-3p, subsequently upregulating SREBP1c.250 Moreover, its inactivation abrogates HFD-induced hepatic steatosis, suggesting also in this case a therapeutic window.249 Conversely, lncARSR was found upregulated in high fatty acid-treated human HepG2 and NAFLD mouse models, binding YAP1 and further increasing lipid accumulation, a mechanism alleviated when lncARSR was silenced.251 The lncRNA H19 was also upregulated in NAFLD murine models, and again its silencing reduced lipid accumulation in hepatocytes.252 On the contrary, overexpression of the lncRNA FLRL2 in vivo in murine NAFLD models resolved steatosis, lipogenesis, and inflammation.253 Similarly, Meg3 was downregulated in HFD mice, and acting as ceRNA for miR-21 it could help alleviate lipid over-deposition.254

Also in this case, RNA sequencing and microarrays allowed the identification of numerous new putative candidates. Indeed, numerous high-throughput studies were performed in both murine models255–257 and human tissues,258 allowing the identification of specific new candidates such as AK012226,256 NONMMUT010685,257 and MALAT1.258 Interestingly, starting from pre-existing human transcriptome data on NAFLD and liver metabolism, it was also possible to develop a pipeline which identified human lncRNA metabolic regulators (hLMR), with a specific one being strictly involved in cholesterol metabolism.259 Their potential as biomarkers was investigated analyzing serum samples of patients with mild and severe NAFLD; through microarray analysis several ncRNAs were identified, and specifically the expression of TGFβ2/TGFβ2-OT1 allowed advanced fibrosis discrimination.260 Indeed, the amount of data concerning the role of lncRNAs is becoming increasingly overwhelming, with numerous new evidences each year, and for further reading on the topic we refer the reader to other published review reports.261–267

4.7 Dyslipidemia

Obesity is probably the main cause for the development dyslipidemia, which typically consists of increased triglycerides, free fatty acids, apolipoprotein B, and LDL-C, and decreased HDL-C.268 The role of
TABLE 1 Summary of deregulated lncRNAs in obesity and associated diseases

Disease	LncRNA
Obesity	SRA,67 ASMER-1 and ASMER-2,68 RP11-20G13.3.21 PVTV1,29 Pinc1,48 HOTAIR,72 Icn19959.2,271
Cardiovascular diseases	CAIF,83 CDK2BAS1/ANRIL,84,151,166,176 APF,85 AK088388,86 Meg3,87,161 CARI,88 MDR,89,90 ZFAS1,92,93 HOTAIR,94 MALAT1,95,96 GASS,97,98 TTTY15,99 ECAR,100 AK080084,101 NR_045363,102 TUG1,103 and Meg3,91,104,117 MIRT1 and MIRT2,105 MALAT1,106 MHRT,107,116,175 Wi prosper,108 Miat,109,110,117 Chae r,112 CHRf,113 IcnUC1A,114 DACH1,115 H19,119,152,174 Pslcr4,120 SNHG1,121 TINCR,122 Uc323,122 Ahit,124 Hrcr,125 HypeRlnc126 RP1-99E15.2 and RP3-523 K23.2,136 ETF1P2 and Ap001053.11,138,139 NONHSAT040387 and NONHSAT098586,140 TCONS_00075467,141 TCONS_00020959,142 AK055347,143 MIAT,110 Kcnq1ot1,144 CTA-384D8.35 and CTB-114C7.4,149 Hif1a-As1,153 Icn-lnc-p21,154 Rncr3,155 Tgbf2-0T1,156 Icn-Ang362,157 Has2-As1,158 SmirL,159 Sencr,160,174 Icn-Mki67-Ip-3,161 LeXis,162 RP5-833A20.1,168 MeXis,169 IcnPparG7 and CoroMarker,178 HypEr-126 RP1-99E15.2 and RP3-523 K23.2,136 ETF1P2 and Ap001053.11,138,139 NONHSAT040387 and NONHSAT098586,140 TCONS_00075467,141 TCONS_00020959,142 AK055347,143 MIAT,110 Kcnq1ot1,144 CTA-384D8.35 and CTB-114C7.4,149 Hif1a-As1,153 Icn-lnc-p21,154 Rncr3,155 Tgbf2-0T1,156 Icn-Ang362,157 Has2-As1,158 SmirL,159 Sencr,160,174 Icn-Mki67-Ip-3,161 LeXis,162 RP5-833A20.1,168 MeXis,169 IcnPparG7 and CoroMarker,178
Hypertension	AK125261,74 AK098656,74,179,180 TUG1,74,181,187 Xr-007793,183 MRAK048365 P1,184,185,186 Malat1,186 Giver,188,189 CDN2BAS1/ANRIL;189,190
Type 2 diabetes	HOTAIR,193 Meg3,193 Let192 Miat,193 Xist,199 Padda,192 Gass,192,197,202 Linc-p21,192 Enst00000550337.1,192 Pluto,192 Nbr2,192 Malat1,192,194 Icn-Mki67-Ip-3,161 LeXis,162 RP5-833A20.1,168 MeXis,169 IcnPparG7 and CoroMarker,178
Nephropathy	Tug1,210-212 Miat,213 Casc2,214 Ensmust00000147869,215 1700201014Rik,216 Cyp4b1-PS1-001,217 Gm15645,218 Linc01619,219 Pvt1,274 Malat1,220 Gm4419,221 Gm15645,218 Nr_033515,222 Erbb4-IR,223 ASncmrRNA-2,224 Icn-Mcg2,225 Rpp1,226 Rp23,228 Cj241444.227,229
Osteoarthritis	Casc2,233 Snhgi,234 Danarc3,235 Togr1,236 H19,237 Snhgeb2,238 Mf2l-As1,239 Pacer, Cilinc01, Cilinc02,240 PVT1,241 Xist,242 Foxd2-As1,243 Pcgem1,245 Lmalat1,246 Mir155h,246 SmirL,246 Lnc01426,246 Rp11-865P33,246 Car,246 Rp11-794H3.3,246 Rpl1-362F19.1,246 Rp11-290 M5.4,246 Vldlr-As1,246 Rp11-536 K7.3,246 Haglr,246 Lnc01915,246 Rp11-367F23.2,246 Rp11-392O17.1,246 Lnc01705,246 Lnc01021,246 DNAJc27-As1,246 Af131217.1,246 Nespas,247
Hepatic metabolic disease	Blnc1,249 Gm15622,250 Icnarsr,251 H19,252 Flrl2,253 Meg3,254 Ak012226,256 Nonnmuto10685,257 Malat1,258 HlMmr,259 Tgbf2-0T1,260
Dyslipidemia	Blnc1,270 Icn19959.2,271

Incorporating lncRNAs in adipogenesis and thus lipid metabolism has been previously discussed in Section 3, but limited evidence specifically refers to the link between lncRNAs and patients with dyslipidemia. Among all, Blnc1 activation in epididymal fat in HFD-induced obese mice seems to have a slight impact on dyslipidemia, suggesting a specific link with this pathogenesis. Moreover, a recent work screened the lncRNAs expression in rat livers with hypertriglyceridemia and identified the upregulation of a novel lncRNA: Icn19959.2. The knockdown of Icn19959.2 resulted in triglycerides lowering effects both in vitro and in vivo, and mechanistic studies revealed that Icn19959.2 upregulated ApoA4 expression via ubiquitinated transcription inhibitor factor Pbr, while its specific interaction with hnRNP2B1 was able to downregulate the expression of Cpt1a, Tm7sf2, and Gapm. Indeed, lncRNAs can deeply influence lipid homeostasis, but further studies are required in order to determine whether lncRNAs that regulate lipogenesis, lipolysis, β-oxidation, adipogenesis, and thermogenesis could also become biomarkers for therapies that target lipid dyslipidemias.

5 | CONCLUSIONS

Obesity is a complex disease representing a great burden on the health care system, commonly leading to the development of co-morbidities also in pediatrics. Epigenetics through RNA biology might play a crucial role in elucidating new targetable pathways, and in this context lncRNAs are emerging as interesting new candidate targets and players. Indeed, obesity-associated lncRNAs play a crucial role in adipose tissue modulation, but their action is not limited to this, as they have been implicated in modulating obesogenic co-morbidities influencing the cardiovascular system, the immune system, the liver, and even the musculoskeletal system. Moreover, the number of co-morbidities associated with obesity is extremely significant and includes also diseases which do not strictly correlate with disruption in metabolic pathways. Indeed, multiple numerous tumors are also obesity-induced, and although no specific correlation between lncRNAs present in patients with obesity and specific cancer has yet been made, one review report summarizes the link between numerous lncRNAs present both in obesity and cancer. Non-coding RNAs will revolutionize modern medicine making it possible to understand in detail unknown aspects of molecular biology over the coming years, and indeed a deep understanding of lncRNAs’ role in adipocytes biology will provide multiple novel therapeutic strategies to better combat obesity and prevent early obesity complications in the near future. There is a need to summarize all the recent advances made in the discovery of the role of lncRNAs in the pathogenesis and progression of this disease, and it appears evident that in future years more and more research efforts will focus on characterization of the specificity of lncRNAs’ mechanisms of action in obesity-related diseases (Table 1). Indeed, further studies will need to analyze in depth the...
transcriptional deregulation present at a tissue level in patients with obesity and co-morbidities, in order to identify further deregulated targets. A better understanding of these mechanisms, already from pediatric age, will accompany us in filling the gap from basic research to clinical care of patients with obesity. These molecules, in fact, could act as biomarkers for the early diagnosis of obesity-linked complications and possibly representing new indicators of risk assessment.

ACKNOWLEDGMENTS
FR would like to acknowledge and thank the Fondazione Fratelli Confalonieri for financial support during her PhD. This work was supported by a grant from the Pediatric Clinical Research Center Fondazione “Romeo and Enrica Invernizzi” to GVZ and SC.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

REFERENCES
1. Haslam D, Sattar N, Lean M. ABC of obesity. Obesity—time to wake up. BMJ. 2006;333(7569):640-642. https://doi.org/10.1136/bmj.333.7569.640
2. Lawrence VJ, Kopelman PG. Medical consequences of obesity. Clin Dermatol. 2004;22(4):296-302. https://doi.org/10.1016/j.clindermatol.2004.01.012
3. WHO. Obesity and overweight. 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
4. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at adipose tissue. Nutr Diabetes. 2019;9(1):531-533. https://doi.org/10.1001/nobd.2019.02.006
5. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74. https://doi.org/10.1038/nature11247
6. Stöger R. Epigenetics and obesity. Pharmacogenomics. 2008;9(12):1851-1860. https://doi.org/10.2217/14622416.9.12.1851
7. Loh M, Zhou L, Ng HK, Chambers JC. Epigenetic disturbances in obesity and diabetes: epidemiological and functional insights. Mol Metab. 2019;9/09/1. 2019;27:533-541. https://doi.org/10.1016/j.molmet.2019.06.011
8. Allum F, Grundberg E. Capturing functional epigenomes for insight into metabolic diseases. Mol Metab. 2020;38:100936. https://doi.org/10.1016/j.molmet.2019.12.016
9. Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet Apr. 2009;5(4):e1000459. https://doi.org/10.1371/journal.pgen.1000459
10. Ponting CP, Oliver PL, Reik W. Evolution and functions of long non-coding RNAs. Cell. 2009;136(4):629-641. https://doi.org/10.1016/j.cell.2009.02.006
11. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Curr Opin Endocr Metab Dis. 2016;9:37-46. https://doi.org/10.1097/01.cem.0000507353.48987.7a
12. Dalton B, Campbell IC, Schmidt U. Neuregulation and neurofeedback treatments in eating disorders and obesity. Curr Opin Psychiatry. 2017;30(6):458-473. https://doi.org/10.1097/YCO.0000000000000361
13. Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov Jun. 2010;9(6):465-482. https://doi.org/10.1038/nrd3138
14. Wei S, Du M, Jiang Z, Hausman GJ, Zhang L, Dodson MV. Long non-coding RNAs in regulating adipogenic: new RNAs shed lights on adipogenesis and lipid metabolism: emerging insights in obesity. Cell Mol Life Sci. 2020;77:1205-1218. https://doi.org/10.1007/s00018-020-0269-0
Chen Y, Li K, Zhang X, Chen J, Li M, Liu L. The novel long noncoding RNA SLINC-RAD functions in methylation regulation during the early stage of mouse adipogenesis. Nat Rev Mol Cell Biol Dec. 2006;7(12):885-896. https://doi.org/10.1038/nrm2066

Rosen E, Eguchi J, Xu Z. Transcriptional targets in adipocyte biology. Expert Opin Ther Targets Aug. 2009;13(8):975-986. https://doi.org/10.1517/1472822090309706

Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A Jan. 2003;100(1):44-49. https://doi.org/10.1073/pnas.0137044100

Xu B, Gerin I, Miao H, et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One. 2010;5(12):e14199. https://doi.org/10.1371/journal.pone.0014199

Sheng L, Ye L, Zhang D, Cawthorn WP, New Insights into the physiological functions and mechanisms of action. Front Med (Lausanne). 2018;5:244. https://doi.org/10.3389/fmed.2018.00244

Liu S, Xu R, Gerin I, et al. SRA regulates adipogenesis by modulating p38/JNK phosphorylation and stimulating insulin receptor gene expression and downstream signaling. PLoS One. 2014;9(4):e95416. https://doi.org/10.1371/journal.pone.0095416

Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie Jan. 2005;87(1):51-56. https://doi.org/10.1016/j.biochi.2004.10.018

Cai R, Tang G, Zhang Q, et al. A novel IncRNA, named Inc-ORA, is identified by RNA-Seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cell. 2019;8(5):477. https://doi.org/10.3390/cells8050477

You LH, Zhou J, Yang L, et al. Transcriptome analysis reveals the potential contribution of long noncoding RNAs to brown adipocyte differentiation. Mol Genet Genomics. 2015;394(5):1659-1671. https://doi.org/10.1007/s00438-015-1026-6

Zhang M, Li F, Sun JW, et al. LncRNA IFMCNR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p. Front Genet. 2019;10:42. https://doi.org/10.3389/fgene.2019.00042

Li M, Sun X, Cai H, et al. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochim Biophys Acta Jul. 2016;1859(7):871-882. https://doi.org/10.1016/j.bbagrm.2016.05.003

Zhu E, Zhang J, Li Y, Yuan H, Zhou J, Wang B. Long noncoding RNA PnC1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor γ. FASEB j. 2019;33(2):2396-2408. https://doi.org/10.1096/fj.201807399RR

Wang D, Zhou Y, Lei W, et al. Signal transducer and activator of transcription 3 (STAT3) regulates adipocyte differentiation via peroxisome-proliferator-activated receptor gamma (PPARgamma). Biol Cell Sep. 2009;102(1):1-12. https://doi.org/10.1042/BC20090070

Zhang L, Zhang D, Qin ZY, Li J, Shen ZY. The role and possible mechanism of long noncoding RNA PVT1 in modulating 3T3-L1 preadipocyte proliferation and differentiation. IUBMB Life. 2020;72(7):1460-1467 https://doi.org/10.1002/iub.2269

Cooper DR, Carter G, Li P, Patel R, Watson JE, Patel NA. Long non-coding RNA NEAT1 associates with SRp40 to temporally regulate PPARγ2 splicing during adipogenesis in 3T3-L1 cells. Genes (Basel) Nov. 2014;5(4):1050-1063. https://doi.org/10.3390/genes5041050

Xiong Y, Yue F, Jia Z, et al. A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids. Apr. 2018;1863(4):409-419. https://doi.org/10.1016/j.bbalip.2018.01.008

Alvarez-Dominguez JR, Bai Z, Xu D, et al. De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte development. Cell Metab. 2015;21(5):764-776. https://doi.org/10.1016/j.cmet.2015.04.003

Nueurmaini M, Liu J, Liang X, et al. Effect of IncRNA HOXA11-AS1 on adipocyte differentiation in human adipose-derived stem cells. Biochim Biophys Res Commun. 2018;495(2):1878-1884. https://doi.org/10.1016/j.bbrc.2017.12.006

Liu Y, Wang Y, He X, et al. LncRNA TINCR/miR-31-3p/C/EβP-α feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Res. 2018;32:35-42. https://doi.org/10.1016/j.scr.2018.08.016

Huang Y, Jin C, Zheng Y, et al. Knockdown of IncRNA MIR31HG inhibits adipocyte differentiation of human adipose-derived stem cells via histone modification of FABP4. Sci Rep. 2017;8:8080. https://doi.org/10.1038/s41598-017-08131-6

Fan L, Xu H, Li D, Li H, Lu D. A novel long noncoding RNA, ACOF2834.1, regulates the adipogenic differentiation of human adipose-derived mesenchymal stem cells via the DKK1/Wnt/β-catenin signaling pathway. Biochim Biophys Res Commun May. 2020;525(3):747-754. https://doi.org/10.1016/j.bbrc.2020.02.140

Pang WJ, Lin LG, Xiong Y, et al. Knockdown of PU.1 AS IncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation. J Cell Biochem Nov. 2013;114(11):2500-2512. https://doi.org/10.1002/jcb.24595

Wei N, Wang Y, Xu RX, et al. PU.1 antisense IncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Anim Genet Apr. 2015;46(2):133-140. https://doi.org/10.1111/age.22725

Cai R, Sun Y, Qimuge N, et al. Adiponectin AS IncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating adiponectin mRNA translation. Biochim Biophys Acta Mol Cell Lipids. 2018;1863(4):420-432. https://doi.org/10.1016/j.bbalip.2018.01.005

Lo KA, Huang S, Walet ACE, et al. Adipocyte long-noncoding RNA transcriptome analysis of obese mice identified. Diabetes. 2018;67(6):1045-1056. https://doi.org/10.2337/db17-0526

Chen J, Liu Y, Lu S, et al. The role and possible mechanism of IncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. Int J Obes (Lond). 2017;41(2):299-308. https://doi.org/10.1038/ijo.2016.189

Li M, Gao Q, Tian Z, et al. MR221HG is a novel long noncoding RNA that inhibits bovine adipocyte differentiation. Genes (Basel). 2019;11(1). https://doi.org/10.3390/genes11010029

Huang Y, Zheng Y, Jin C, et al. H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Science Report. 2016;6:28897. https://doi.org/10.1038/srep28897

Li Z, Jin C, Chen S, et al. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived
mesenchymal stem cells via miR-140-5p. Mol Cell Biochem. Sep. 2017;433(1–2):51-60. https://doi.org/10.1007/s11010-017-3015-z

66. Huang X, Fu C, Liu W, et al. Chemerin-induced angiogenesis and adipogenesis in 3 T3-L1 preadipocytes is mediated by lncRNA Meg3 through regulating Dickkopf-3 by sponging mir-217. Toxicol Appl Pharmacol. 2019;385:114815. https://doi.org/10.1016/j.taap.2019.114815

67. Liu S, Sheng L, Miao H, et al. SRA gene knockout protects against diet-induced obesity and improves glucose tolerance. J Biol Chem. 2014;289(19):13000-13009. https://doi.org/10.1074/jbc.M114.564658

68. Gao H, Kerr A, Jiao H, et al. Long non-coding RNAs associated with metabolic traits in human white adipose tissue. EBioMedicine. Apr. 2018;30:248-260. https://doi.org/10.1016/j.ebiom.2018.03.010

69. Zhang X, Xue C, Lin J, et al. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of. Sci Transl Med. 2018;10(446):eaar5987. https://doi.org/10.1126/scitranslmed.aar5987

70. Sun L, Goff LA, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis. PNAS. 2013;110(9):3387-3392. https://doi.org/10.1073/pnas.1222643110

71. Chen J, Cui X, Shi C, et al. Differential lncRNA expression profiles in brown and white adipose tissues. Mol Genet Genomics. 2015;290(2):699-707. https://doi.org/10.1007/s00438-014-0954-x

72. Lu X, Bai D, Liu X, Zhou C, Yang G. Sedentary lifestyle related exosomal release of Hotair from gluteal-femoral fat promotes intestinal cell proliferation. Sci Rep. 2017;7:45648. https://doi.org/10.1038/srep45648

73. Yeh CF, Chang YE, Lu CY, Hsuan CF, Chang WT, Yang KC. Expediency to the missing link: long noncoding RNAs in cardiovascular diseases. J Biomed Sci. 2020;27(1):48. https://doi.org/10.1186/s12929-020-00647-w

74. Wu G, Jose PA, Zeng C. Noncoding RNAs in the regulatory network of hypertension. Hypertension. 2018;72(5):1047-1059. https://doi.org/10.1161/HYPERTENSIONAHA.118.11126

75. Raut SK, Khullar M. The big entity of new RNA world: long noncoding RNAs in microvascular complications of diabetes. Front Endocrinol (Lausanne). 2018;9:300. https://doi.org/10.3389/fendo.2018.00300

76. Singer K, Lumeng CN. The initiation of metabolic inflammation in childhood obesity. J Clin Invest. 2017;127(1):65-73. https://doi.org/10.1172/JCI88882

77. Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW. Involvements of long noncoding RNAs in obesity-associated inflammatory diseases. Obes Rev. 2020;21(1-2):e13156.

78. Yusuf S, Reddy S, Opuu S, Anand S. Global burden of cardiovascular diseases: part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation. 2001;104(23):2855-2864. https://doi.org/10.1161/01.CIR.104.23.2855

79. Luengo-Fernández R, Leal J, Gray A, Petersen S, Rayner M. Cost of cardiovascular diseases in the United Kingdom. Heart. 2006;92(10):1384-1389. https://doi.org/10.1136/hrt.2005.072173

80. Podelec P, Matusik PT. New clinical classification of rare cardiovascular diseases and disorders: relevance for cardiovascular research. Cardiovasc Res. 2019;115(8):e77-e79. https://doi.org/10.1093/cvr/cvz242

81. Joshi SM, Katre PA, Kumaran K, et al. Tracking of cardiovascular risk factors from childhood to young adulthood—the Pune Children's Study. Int J Cardiol. 2014;175(1):176-178. https://doi.org/10.1016/j.ijcard.2014.04.105

82. Wu D, Zhou Y, Fan Y, et al. LncRNA CAIF was downregulated in end-stage cardiomyopathy and is a promising diagnostic and prognostic marker for this disease. Biomarkers. 2019;24(8):735-738. https://doi.org/10.1080/1354750X.2019.1677778
injury by targeting miR-455-5p. Gene Jun. 2019;701:1-8. https://doi.org/10.1016/j.gene.2019.02.098

100. Chen Y, Li X, Li B, et al. Long non-coding RNA ECRAR triggers post-maternal myocardial regeneration by activating ERK1/2 signaling. Mol Ther. 01. 2019;27(1):29-45. https://doi.org/10.1016/j.mther.2018.10.021

101. Ponnusamy M, Liu F, Zhang YH, et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation. 2019;139(23):2668-2684. https://doi.org/10.1161/CIRCULATIONAHA.118.035832

102. Wang J, Chen X, Shen D, et al. A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair. J Mol Cell Cardiol. 2019;127:105-114. https://doi.org/10.1016/j.yjmcc.2018.12.005

103. Wu Z, Zhao S, Li C, Liu C. LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR-145-5p-Bipn3 axis. Mol Med Rep. 2018;17(2):2422-2430. https://doi.org/10.3892/mmr.2017.8116

104. Gong G, Xu H, Chang H, Tong Y, Zhang T, Guo G. Knockdown of long non-coding RNA MEG3 protects H9c2 cells from hypoxia-induced injury by targeting microRNA-183. J Cell Biochem. 2018;119(2):1429-1440. https://doi.org/10.1002/jcb.26304

105. Zangrando J, Zhang L, Vausort M, et al. Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics. 2014;15(1):1-14. https://doi.org/10.1186/1471-2164-15-460

106. Yan Y, Song D, Song X, Song C. The role of IncRNA MALAT1 in cardiovascular disease. JUBMB Life. 2020;72(3):334-342. https://doi.org/10.1002/jub.2210

107. Zhang J, Gao C, Meng M, Tang H. Long noncoding RNA MHTR protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther (Seoul). 2016;24(19):1-24. https://doi.org/10.4062/biomolther.2015.066

108. Micheletti R, Plaisance I, Abraham BJ, et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med. 2019;11(9):eaaw9118. https://doi.org/10.1126/scitranslmed.aaw9118

109. Tan J, Liu S, Jiang Q, Yu T, Huang K. LncRNA-MIAT increased in patients with coronary atherosclerotic heart disease. Cardiol Res Pract. 2019;2019:6280194. https://doi.org/10.1155/2019/6280194

110. Yao L, Zhou B, You L, Hu H, Xie R. LncRNA MALAT1/miR-133a-3p axis regulates cardiac hypertrophy by targeting miR-489. Mol Biol Rep. 2020;47(4):2605-2617. https://doi.org/10.1007/s10077-019-05347-0

111. Gomes CPC, Schroen B, Kuster GM, et al. Regulatory RNAs in heart failure patients with ischemic and nonischemic dilated cardiomyopathy. J Cardiovasc Med (Hagerstown). 2019;121(4):368-375. https://doi.org/10.1161/JCM.000182019.121998

112. Zhou G, Li C, Feng J, Zhang J, Fang Y. IncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med. 2018;6(2):130-139. https://doi.org/10.1115/000487204

113. Liu L, Zhang D, Li Y. LncRNAs in cardiac hypertrophy: from basic science to clinical application. J Cell Mol Med. 2020;24(20):11638-11645. https://doi.org/10.1111/jcmm.15819

114. Xu Y, Luo Y, Liang C, Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol. 2020;139:47-61. https://doi.org/10.1016/j.yjmcc.2019.12.013

115. Zhang J, Liang Y, Huang X, et al. STAT3-induced upregulation of IncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci Rep. 2019;9(1):1-11. https://doi.org/10.1038/s41598-018-36369-1

116. Cai B, Zhang Y, Zhao Y, et al. Long noncoding RNA-DACH1 (dachshund homolog 1) regulates cardiac function by inhibiting SERCA2a (sarco(plasmic reticulum calcium ATPase 2a). Hypertension. 2019;74(4):833-842. https://doi.org/10.1161/HYPERTENSIONAHA.119.12998

117. Liu L, An X, Li Z, Song Y, Li L, Zuo S., Liu N., Yang G., Wang H., Cheng X., Zhang Y., Yang X. Wang J. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res. 2016;111(1):56-65. https://doi.org/10.1093/cvr/cvw078

118. Lv L, Li T, Li X, et al. The IncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids. 2018;10:387-397. https://doi.org/10.1038/s41397-017-01208

119. Yan SM, Li H, Shu Q, Wu WJ, Luo XM, Lu L. LncRNA SNHG1 exerts a protective role in cardiomyocytes hypertrophy via targeting miR-15a-5p/HHMA1 axis. Cell Biol Int Apr. 2020;44(4):1009-1019. https://doi.org/10.1002/cbin.11298

120. Shao M, Chen G, Lv F, et al. LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget Jul. 2017;8(29):47565-47573. https://doi.org/10.18632/oncotarget.17735

121. Sun Y, Fan W, Yue R, et al. Transcribed ultrasound regions, Uc.323, ameliorates cardiac hypertrophy by regulating the transcription of CPT1b (carnitine palmitoyl transferase 1b). Hypertension. 2020;75(1):79-90. https://doi.org/10.1161/HYPERTENSIONAHA.119.13173

122. Yu J, Yang Y, Xu Z, et al. Long noncoding RNA Ahit protects against cardiac hypertrophy through SUZ12 (suppressor of Zeste 12 protein homolog)-mediated downregulation of MEF2A (myocyte enhancer factor 2A). J Mol Cell Cardiol. 2019;127:105-114. https://doi.org/10.1016/j.yjmcc.2018.12.013

123. Greco S, Zaccagnini G, Perfetti A, et al. Long noncoding RNA dys-regulation in ischemic heart failure. J Transl Med. 2016;14(1):1-14. https://doi.org/10.1186/s12967-016-0926-5
132. Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing heart and vasculature. *Noncoding RNA Res*. 2018;3(3):118-130. https://doi.org/10.1016/j.jncrna.2018.04.002

133. El Azzouzi H, Doevendans PA, Sluijter JP. Long non-coding RNAs in heart failure: an obvious Inc. *Ann Transl Med*. 2016;4(9):182-187. https://doi.org/10.21037/atm.2016.05.06

134. Mei B, Liu H, Yang S, et al. Long non-coding RNA expression profile in permanent atrial fibrillation patients with rheumatic heart disease. *Eur Rev Med Pharmacol Sci*. 2018;22(20):6940-6947. https://doi.org/10.26355/eurrev_201810_16165

135. Babapoor-Farrokhran S, Gill D, Raselli RT. The role of long non-coding RNAs in atrial fibrillation. *Heart Rhythm*. 2020;17(6):1043-1049. https://doi.org/10.1016/j.hrthm.2020.01.015

136. Ke ZP, Xu YJ, Wang ZS, Sun J. RNA sequencing profiling reveals key mRNAs and long noncoding RNAs in atrial fibrillation. *J Cell Biochem*. 2019;121(8-9):3752-3763. https://doi.org/10.1002/jcb.29504

137. Ruan Z, Sun X, Sheng H, Zhu L. Long non-coding RNA expression profile in atrial fibrillation. *Int J Clin Exp Pathol*. 2015;8(7):8402-8410.

138. Yu XJ, Zou LH, Jin JH, et al. Long noncoding RNAs and novel inflammatory genes determined by RNA sequencing in human lymphocytes are up-regulated in permanent atrial fibrillation. *Am J Transl Res*. 2017;9(5):2314-2326.

139. Wu DM, Zhou ZK, Fan SH, et al. Comprehensive RNA-Seq data analysis identifies key mRNAs and IncRNAs in atrial fibrillation. *Front Genet*. 2019:10.908-918. https://doi.org/10.3389/fgen.2019.00908

140. Xu Y, Huang R, Gu J, Jiang W. Identification of long non-coding RNAs as novel biomarker and potential therapeutic target for atrial fibrillation in old adults. *OncoTargets*;2016.7(10):10803-10811. https://doi.org/10.18632/oncotarget.7514

141. Li Z, Wang X, Wang W, et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TC0NS_0075467 modulates atrial electrical remodeling by splicing miR-328 to regulate CACNA1C. *J Mol Cell Cardiol*. 2017;108:73-85. https://doi.org/10.1016/j.yjmcc.2017.05.009

142. Zhao JB, Zhu N, Lei YH, Zhang CJ, Li YH. Modulative effects of long non-coding RNA AK055347 is cardiovascular and vascular injury. *Circ Res*. 2018;120(1):134-140. https://doi.org/10.1016/j.circres.2018.09.064

143. Bektik E, Cowan DB, Wang DZ. Long non-coding RNAs in atrial fibrillation: pluripotent stem cell-derived cardiomyocytes as a model system. *Int J Mol Sci*. 2020;21(15):1-25. https://doi.org/10.3390/ijms21155424

144. Vierck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. *Circ Res*. 2017;120(2):381-399. https://doi.org/10.1161/CIRCRESAHA.116.308434

145. Franco D, Aranega A, Dominguez JN. Non-coding RNAs and atrial fibrillation. *Adv Exp Med Biol*. 2020;1229:311-325. https://doi.org/10.1007/978-981-15-1671-9_19

146. Zhao L, Ma Z, Guo Z, Zheng M, Li K, Yang X. Analysis of long non-coding RNA and mRNA profiles in epicardial adipose tissue of patients with atrial fibrillation. *Biomed Pharmacother*. 2020;121:109624. https://doi.org/10.1016/j.biopha.2019.109634

147. Zhang Y, Zhang L, Wang Y, et al. MicroRNAs or long noncoding RNAs in diagnosis and prognosis of coronary artery disease. *Aging Dis*. 2019;10(2):353-366. https://doi.org/10.14336/AD.2018.0617

148. Zhao X, Han X, Wittfeldt A, et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. *RNA Biol*. 2016;13(1):98-108. https://doi.org/10.1080/15476268.2015.1122164

149. Zhang Z, Gao W, Long QQ, et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. *Sci Rep*. 2017;7(1):7491-7500. https://doi.org/10.1038/s41598-017-07611-z

150. Zhao Y, Feng G, Wang Y, Yue Y, Zhao W. Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs: implications for TAA pathogenesis. *Int J Clin Exp Pathol*. 2014;7(11):7643-7652.

151. Wu G, Cai J, Han Y, et al. IncRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. *Circulation*. 2014;130(17):1452-1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675

152. Shan K, Jiang Q, Wang XQ, et al. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. *Cell Death Dis*. 2016;7(6):e2248-e2262. https://doi.org/10.1038/cddis.2016.145

153. Huang S, Lu W, Ge D, et al. A new microRNA signal pathway regulated by long noncoding RNA TGFβ2-OT1 in autophagy and inflammation of vascular endothelial cells. *Autophagy*. 2015;11(12): 2172-2183. https://doi.org/10.1002/aut.2015.1106663

154. Leung A, Trac C, Jin W, et al. Novel long noncoding RNAs are regulated by angiogenin II in vascular smooth muscle cells. *Circ Res*. 2013;113(3):266-278. https://doi.org/10.1161/CIRCRESAHA.112.300849

155. Vigetti D, Deleonibus S, Moretto P, et al. Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. *J Biol Chem*. 2014;289(42): 28816-28826. https://doi.org/10.1074/jbc.M114.597401

156. Ballantyne MD, Pinel K, Dakin R, et al. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. *Circulation*. 2016;133(21):2050-2065. https://doi.org/10.1161/CIRCULATIONAHA.115.021019

157. Boulberdaa M, Scott E, Ballantyne M, et al. A role for the long non-coding RNA SENCR in commitment and function of endothelial cells. *Mol Ther*. 2016;24(5):978-990. https://doi.org/10.1038/mt.2016.41

158. Wu Z, He Y, Li D, et al. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. *Am J Transl Res*. 2017;9(7):3326-3335.

159. Lin Z, Ge J, Wang Z, et al. Let-7e modulates the inflammatory response in vascular endothelial cells through cERNA crosstalk. *Sci Rep*. 2017;7: 42498. https://doi.org/10.1038/srep42498

160. Aryan B, Rotlaw N, Fernández-Hernando C. Noncoding RNAs and atherosclerosis. *Curr Atheroscler Rep*. 2014;16(5):407-418. https://doi.org/10.1007/s11883-014-0407-3

161. Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in atherosclerosis: IACC review topic of the week, *J Am Coll Cardiol*. 2018;72(19): 2380-2390. https://doi.org/10.1016/j.jacc.2018.08.2161

162. Pierce JB, Feinberg MW. Long noncoding RNAs in atherosclerosis and vascular injury: pathology, biomarkers, and targets for therapy, *Arterioscler Thromb Vasc Biol*. 2020;40(9):2002-2017. https://doi.org/10.1161/ATVBAHA.120.314222

163. Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. *PLoS One*.
167. Tontonoz P, Wu X, Jones M, Zhang Z, Salisbury D, Sallam T. Long noncoding RNA facilitated gene therapy reduces atherosclerosis in a murine model of familial hypercholesterolemia. *Circulation*. 2017;136(8):776-778. https://doi.org/10.1161/CIRCULATIONAHA.117.029002

168. Hu YW, Zhao JY, Li SF, et al. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. *Arterioscler Thromb Vasc Biol*. 2015;35(1):87-101. https://doi.org/10.1161/ATVBAHA.114.304296

169. Sallam T, Jones M, Thomas BJ, et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. *Nat Med*. 2018;24(3):304-312. https://doi.org/10.1038/nn.4479

170. Swayze EE, Siwkowski AM, Wancewicz EV, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. *Nucleic Acids Res*. 2007;35(2):687-700. https://doi.org/10.1093/nar/gkl1071

171. Viereck J, Kumarswamy R, Foinquinos A, et al. Long noncoding RNA Chast promotes cardiac remodeling. *Sci Transl Med*. 2016;8(326):326ra22-326ra35. https://doi.org/10.1126/scitranslmed.aaf1475

172. Piccoli MT, Gupta SK, Viereck J, et al. Inhibition of the cardiac fibroblast-enriched IncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. *Circ Res*. 2017;121(5):575-583. https://doi.org/10.1161/CIRCRESAHA.117.310624

173. Hobuß L, Bär C, Thum T. Long non-coding RNAs: at the heart of cardiac dysfunction? *Front Physiol*. 2019;10. doi.org/10.3389/fphys.2019.00030

174. Kumarswamy R, Bauters C, Volkmann I, et al. Circulating long non-coding RNAs in pathological cardiac remodeling: a review of the published literature. *Eur Rev Med Pharmacol Sci*. 2017;21(9):1803-1814. https://doi.org/10.1161/HJH.0000000000001304

175. Xuan L, Sun L, Zhang Y, et al. Circulating long non-coding RNAs in pathological cardiac remodeling: a review of the published literature. *Eur Rev Med Pharmacol Sci*. 2017;21(9):1803-1814. https://doi.org/10.1161/HJH.0000000000001304

176. Wang F, Su X, Liu C, Wu M, Li B. Prognostic value of plasma long non-coding RNAs. *Plos One*. 2017;12(9):e0162987. https://doi.org/10.1371/journal.pone.0162987

177. Wang Y, Cai Y, Wu G, et al. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. *Clin Sci (Lond)*. 2014;126(11):1461-1469. https://doi.org/10.1042/BSR20182229

178. Das S, Zhang E, Senapati P, et al. A novel angiotsin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. *Clin Res. 2018;123(12):1298-1312. https://doi.org/10.1161/CIRCRESAHA.117.313207

179. Huang K, Zhong J, Li Q, et al. Effects of CDKN2B-AS1 polymorphisms on the susceptibility to coronary heart disease. *Mol Genet Genomic Med*. 2019;7(11):e955-e963. https://doi.org/10.1002/mgg3.955

180. Pulgaron ER, Delamater AM. Obesity and type 2 diabetes in children: epidemiology and treatment. *Curr Diab Rep*. 2014;14(8):508-508. https://doi.org/10.1007/s11892-014-0508-y

181. Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. *Hum Genomics*. 2018;12(1):41-50. https://doi.org/10.1186/s40246-018-0173-3

182. Zhang L, Wang YM. Expression and function of IncRNA ANRIL in a mouse model of acute myocardial infarction combined with type 2 diabetes mellitus. *J Mol Cell Cardiol*. 2019;136(8):776-778. https://doi.org/10.1161/CIRCULATIONAHA.117.079651

183. Zhou H, Wang B, Yang YX, Jia QI, Zhang A, Qi ZW, Zhang JP. Long noncoding RNAs in pathological cardiac remodeling: a review of the update literature. *Biomed Res Int*. 2019;2019:7159592. https://doi.org/10.1155/2019/7159592.1, 11

184. Shi L, Tian C, Sun L, Cao F, Meng Z. The IncRNA TGUL1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. *Biochem Biophys Res Commun*. 2018;501(3):688-695. https://doi.org/10.1016/j.bbrc.2018.05.049

185. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. *Biosci Rep*. 2019;39(3):1-11. https://doi.org/10.1042/BSR20182229

186. Yao QP, Xie ZW, Wang KX, et al. Profiles of long noncoding RNAs in hypertensive rats: long noncoding RNA XR007793 regulates cyclic strain-induced proliferation and migration of vascular smooth muscle cells. *J Hypertens*. 2017;35(6):1195-1203. https://doi.org/10.1007/JH.00000000000001304

187. Liu K, Liu C, Zhang Z. IncRNA GAS5 acts as a ceRNA for miR-21 in suppressing PDGF-bb-induced proliferation and migration in vascular smooth muscle cells. *J Cell Biochem*. 2019;120(9):15233-15240. https://doi.org/10.1002/jcb.28789

188. Wang YN, Shan K, Yao MD, et al. Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. *Hypertension*. 2016;68(3):736-748. https://doi.org/10.1161/HYPERTENSIONAHA.116.07259

189. Li D, Zhang C, Li J, Che J, Yang X, Xian Y, Li X, Cao C. Long noncoding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. *Aging (Albany NY)*. 2019;11(20):8792-8809. https://doi.org/10.18632/aging.102265

190. Huang K, Zhong J, Li Q, et al. Effects of CDKN2B-AS1 polymorphisms on the susceptibility to coronary heart disease. *Mol Genet Genomic Med*. 2019;7(11):e955-e963. https://doi.org/10.1002/mgg3.955

191. Pulgaron ER, Delamater AM. Obesity and type 2 diabetes in children: epidemiology and treatment. *Curr Diab Rep*. 2014;14(8):508-508. https://doi.org/10.1007/s11892-014-0508-y
2 diabetes but not with diabetic retinopathy: a preliminary study. *Bosn J Basic Med Sci.* Jan. 2020;20(3):365–371. https://doi.org/10.17305/bjtems.2019.4533

198. Morán I, Akerman I, van de Bunt M, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. *Cell Metab.* 2012;16(4):435–448. https://doi.org/10.1016/j.cmet.2012.08.010

199. Reddy MA, Chen Z, Park JT, et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long non-coding RNA. *Diabetes.* 2014;63(12):4249–4261. https://doi.org/10.2337/db14-0298

200. Mansoori Z, Ghaedi H, Sadatamini M, et al. Downregulation of long non-coding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort. *Mol Biol Rep.* 2018;45(5):1227–1233. https://doi.org/10.1007/s10053-018-4276-7

201. Saeidi L, Ghaedi H, Sadatamini M, et al. Long non-coding RNA LYB6-AS1 and HCG27_201 expression in type 2 diabetes mellitus. *Mol Biol Rep.* 2018;45(6):2601–2608. https://doi.org/10.1007/s10053-018-4429-8

202. Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA. Circulating long non-coding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. *BBA Clin.* 2015;4:102-107. https://doi.org/10.1016/j.bjaci.2015.09.001

203. Ames L, Akerman I, Balderes DA, Ferrer J, Sussel L. lincRNA cancer susceptibility candidate 2 (CASC2) for chronic renal failure in patients with type 2 diabetes. *Med Sci Monit Sep.* 2018;24:6079–6084. https://doi.org/10.12659/MSM.909510

204. Muller DN, Schmidt C, Barbosa-Sicard E, et al. Mouse Cyp4a isofoms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. *Biochem J.* 2007;403(1):109–118. https://doi.org/10.1042/BJ20061328

205. Li A, Peng R, Sun Y, Liu H, Peng H, Zhang Z. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling. *Cell Death Dis.* 2018;9(5):461–477. https://doi.org/10.1038/s41419-018-0527-8

206. Wang M, Wang S, Yao D, Yan Q, Lu W. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy. *Mol Cell Endocrinol.* 2016;426:136-145. https://doi.org/10.1016/j.mce.2016.02.020

207. Feng Y, Chen S, Xu J, et al. Dysregulation of IncRNAs GM5524 and GM15645 involved in high-glucose-induced podocyte apoptosis and autophagy in diabetic nephropathy. *Mol Med Rep.* 2018;18(4):3657–3664. https://doi.org/10.3892/mmr.2018.9412

208. Bai X, Geng J, Li X, et al. Long noncoding RNA LINC01619 regulates microRNA-27a for forkhead box protein O1 and endoplasmic reticulum stress-mediated podocyte injury in diabetic nephropathy. *Antioxid Redox Signal.* 2018;29(4):355-376. https://doi.org/10.1089/ars.2017.7278

209. Li X, Zeng L, Cao C, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. *Exp Cell Res.* 2017;350(2):327-335. https://doi.org/10.1016/j.yexcr.2016.12.006

210. Yi H, Peng R, Zhang LY, et al. LincRNA-γ-miR4419 knockdown ameliorates α-naphthyl butanenitrile-induced nephrotoxicity in diabetic nephropathy. *J Diabetes Res.* 2019;2019:7278. https://doi.org/10.1155/2019/7278

211. Gao J, Wang W, Wang F, Guo C. LncRNA-NR_033515 promotes proliferation, fibrogenesis and epithelial-to-mesenchymal transition by targeting miR-743b-5p in diabetic nephropathy. *Biomol Pharmacother.* 2018;106:543-552. https://doi.org/10.1016/j.biopha.2018.06.104

212. Sun SF, Tang PMK, Feng M, et al. Novel IncRNA Erbb4-IR promotes diabetic nephropathy via miR-377 targeting of PPARγ in diabetic nephropathy. *Antioxid Redox Signal.* 2018;29(5):543-557. https://doi.org/10.1089/ars.2017.7278

213. Gao J, Wang W, Wang F, Guo C. LncRNA-NR_033515 promotes proliferation, fibrogenesis and epithelial-to-mesenchymal transition by targeting miR-743b-5p in diabetic nephropathy. *Biomol Pharmacother.* 2018;106:543-552. https://doi.org/10.1016/j.biopha.2018.06.104

214. Yi H, Peng R, Zhang LY, et al. LincRNA-Gm4419 knockdown ameliorates α-naphthyl butanenitrile-induced nephrotoxicity in diabetic nephropathy. *J Diabetes Res.* 2019;2019:7278. https://doi.org/10.1155/2019/7278

215. Kato M, Dang V, Wang M, et al. TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. *Sci Signal.* 2013;6(278):ra43–ra55. https://doi.org/10.1126/scisignal.2003389
230. Zhao Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY. Identification of novel long noncoding RNAs associated with TGF-
β3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol. 2014;184(4):2049-2147. https://doi.org/10.
1016/j.ajpath.2013.10.007

231. King LK, March L, Anandacoomarasamy A. Obesity & osteoarthritis. Indian J Med Res. 2013:138:185-193.

232. Jiang SD, Lu J, Deng ZH, Li YS, Lei GH. Long noncoding RNAs in osteoarthritis. Joint Bone Spine. 2017;84(5):353-356.
https://doi.org/10.1016/j.jbspin.2016.09.006

233. Huang P, Huang FZ, Liu HZ, Zhang TY, Yang MS, Sun CZ. LncRNA NONMMUT010685 play crucial role in nonalcoholic fatty liver disease cell model. Front Pharmacol. 2019;10:338. https://doi.
.org/10.3389/fphar.2019.00338

234. Zhao Y, Zhao J, Guo X, She J, Liu Y. Long non-coding RNA PVT1, a molecular sponge for miR-149, contributes aberrant metabolic dys-
function and inflammation in IL-1p-simulated osteoarthritis chondrocytes. Biosci Rep. 2018;38(5):1-11. https://doi.org/10.1042/
BSR20180576

235. Wang Y, Cao L, Wang Q, Huang J, Xu S. LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging miR-27a-3p in osteoarthritis. Artif Cells Nanomed Biotechnol Dec. 2019:47(1):1241-
1247. https://doi.org/10.1080/21691401.2019.1596940

236. Mao T, He C, Wu H, Yang B, Li X. Silencing lncRNA HOTAIR and promotes synoviocyte apoptosis in osteoarthritis
rats by inhibiting Wnt/p-catenin signaling pathways. Biosci Rep. 2019;39(9):1-10. https://doi.org/10.1042/BSR20191523

237. Hu Y, Li S, Zou Y. Knockdown of LncRNA H19 relieves LPS-induced osteoarthritis. Biochem. Biophys. Res. Commun. 2019
238. 499(5):3134-3138. https://doi.org/10.1016/j.bbrc.2019.06.091

239. Tian F, Wang J, Zhang Z, Yang J. LncRNA SNHG7/miR-34a-

240. 38(6):1-11. https://doi.org/10.1042/BSR20181228

241. Mao T, He C, Wu H, Yang B, Li X. Silencing lncRNA HOTAIR and promotes synoviocyte apoptosis in osteoarthritis
rats by inhibiting Wnt/p-catenin signaling pathway. Cell Cycle. 2019;18(22):3189-3205. https://doi.org/10.1002/cc.261716

242. Hu Y, Li S, Zou Y. Knockdown of LncRNA H19 relieves LPS-induced damage by modulating miR-130a in osteoarthritis. Yonsei Med J. 2019;60(4):381-388. https://doi.org/10.3349/yujm.2019.60.4.381

243. Tian F, Wang J, Zhang Z, Yang J. LncRNA SNHG7/miR-34a-

244. 38(6):1-11. https://doi.org/10.1042/BSR20181228

245. Zhao Y, Xu J. Synovial fluid-derived exosomal IncRNA PGCEM1 as biomarker for the different stages of osteoarthritis. Int Orthop. 2018;42(12):2865-2872. https://doi.org/10.1007/s00264-018-

246. Nanus DE, Wijesinghe SN, Pearson MJ, et al. Regulation of the inflammatory synovial fibroblast phenotype by metastasis-

262. Ji E, Kim C, Kim W, Lee EK. Role of long non-coding RNAs in metabolic control. *Biochim Biophys Acta Gene Regul Mech*. 2020;1863(4):194348–194361. https://doi.org/10.1016/j.bbagrm.2018.12.006

263. Zhao Y, Wu J, Liangpunsakul S, Wang L. Long non-coding RNA in liver metabolism and disease: current status. *Liver Res*. 2017;1(3):163-167. https://doi.org/10.1016/j.livres.2017.09.001

264. Giroud M, Scheideler M. Long non-coding RNAs in metabolic organs and energy homeostasis. *Int J Mol Sci*. 2017;18(12):2578-2595. https://doi.org/10.3390/ijms18122578

265. Sulaiman SA, Muhsin NIA, Jamal R. Regulatory non-coding RNAs network in non-alcoholic fatty liver disease. *Front Physiol*. 2019;10:279-290. https://doi.org/10.3389/fphys.2019.00279

266. Hanson A, Wilhelmsen D, DiStefano JK. The role of long non-coding RNAs (lncRNAs) in the development and progression of fibrosis associated with nonalcoholic fatty liver disease (NAFLD). *Noncoding RNA*. 2018;4(3):18-33. https://doi.org/10.3390/ncrna4030018

267. Rohilla S, Awasthi A, Kaur S, Puria R. Evolutionary conservation of long non-coding RNAs in non-alcoholic fatty liver disease. *Life Sci*. 2020;264:118560-118571. https://doi.org/10.1016/j.lfs.2020.118560

268. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. *Nutrients*. 2013;5(4):1218-1240. https://doi.org/10.3390/nu5041218

269. Chen Z. Progress and prospects of long non-coding RNAs in lipid homeostasis. *Mol Metab*. 2016;5(3):164-170. https://doi.org/10.1016/j.molmet.2015.12.003

270. Tang S, Zhu W, Zheng F, et al. The long noncoding RNA Blnc1 protects against diet-induced obesity by promoting mitochondrial function in white fat. *Diabetes Metab Syndr Obes*. 2020;13:1189-1201. https://doi.org/10.2147/DMSO.S248692

271. Wang J, Xiang D, Mei S, et al. The novel long noncoding RNA Lnc199992.2 modulates triglyceride metabolism-associated genes through the interaction with Purb and hnRNPA2B1. *Mol Metab*. 2020;37:100996-101009. https://doi.org/10.1016/j.molmet.2020.100996

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Rey F, Urrata V, Gilardini L, et al. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. *Obesity Reviews*. 2021;1-19. https://doi.org/10.1111/obr.13203