Abstract: This study aims to develop a regional freight-shipment model to forecast freight movement within freight-delivery regions and examine the relationship between regional freight-shipment activities and the related environmental problems such as greenhouse gas emissions. A methodology for freight distribution and collection within geographical regions is proposed, in which a significantly large number of freight demand or supply points needs to be served. This problem can be considered as a large-scale vehicle routing problem and solved by an asymptotic approximation method. A set of closed-form formulas is constructed to obtain a near-optimal total travel distance of a fleet of trucks from multiple distribution centers. A case study is conducted to forecast regional freight-delivery cost in the selected metropolitan areas in the United States. Numerical results under three urban development scenarios show that the proposed methodology can be used to estimate the total cost and related vehicle CO$_2$ emissions effectively.

Keywords: urban freight delivery; vehicle CO$_2$ emission; sustainable urban development; large-scale vehicle routing problem; asymptotic approximation method
presented in this study can be used to infer CO\textsubscript{2} emission distributions and eventually estimate human exposures to the various emissions from the freight-delivery activities in large urban areas.

The exposition of this paper is as follows. Section 2 reviews the related literature. The proposed methodology including brief review of the ring-sweep algorithm is presented in Section 3. Section 4 conducts a case study where detailed data preparation and assumptions made in this study are provided. Finally, Section 5 concludes the study and discusses related future work.

2. Literature Review

The VRP is one of the combinatorial optimization problems closely related to our logistics system model where a fleet of vehicles that start and end their delivery service at a central terminal need to serve spatially distributed customers. Since Dantzig and Ramser [6] introduced the VRP, numerous studies have been presented to solve the problem. For example, Solomon [7] and Potvin and Rousseau [8] proposed constructive heuristics, and Thompson and Psaraftis [9], Potvin and Rousseau [10], and Taillard et al. [11] studied local search algorithms to solve the VRP. The VRP with time windows is an extension of the traditional VRP in which each customer needs to be visited within a certain time interval that is called as a time-window constraint [7,12,13]. Another variation of the VRP is a VRP with pickup and delivery in which each customer has two types of demand including a pickup and delivery service [14–16]. Although extensive studies have been conducted on the VRP and its variations and numerous solution algorithms have been proposed by many researchers, they are practically hard to implement in our problem which is based on a large-scale demand distribution logistics system.

Various heuristics and meta-heuristics approaches have been developed and implemented to solve the large-scale VRP [17]. Among them, a cluster-first route-second algorithm is one of the comprehensible methods, in which the total delivery region is partitioned into many vehicle-routing zones (VRZs) such that each zone contains a given number of delivery demand points and the VRP is conducted within each zone. Daganzo [18,19] presented an easy manual recipe to construct the tour zones and a near-optimal travel cost was obtained from simple formulae provided in the literature. Newell and Daganzo [5,20] developed guidelines for constructing the VRZ in a large-scale network assuming stochastic delivery points can be represented by a continuous customer demand density function. Since it is an asymptotic approximation method for large-scale problems, better results can be obtained as more delivery points are included in the delivery area. Recently, Ouyang [21] suggested methodologies to automatically design the VRZ and obtain near-optimal solutions for the large-scale problems. A set of zoning techniques including a disk model from Ouyang and Daganzo [22] was used.

A comprehensive overview of various urban freight tour models has been provided in Holguín-Veras et al. [23] and a system of models able to simulate urban freight-shipment tours to estimate freight vehicle origin–destination flows is presented in Nuzzolo and Comi [24]. Among those previous studies, a ring-sweep algorithm [3] is adopted in this research to estimate the total freight-delivery cost within various freight regions in the U.S. since we consider a large number of supply or demand points in delivery regions. Then, the amount of CO\textsubscript{2} emission production in the study regions caused by freight-delivery activities can be computed by applying appropriate emission factor [25]. Since the ring-sweep algorithm assumes freight demand points are homogeneous, the same amount of identical freight is required to be delivered from a single terminal in a freight region. However, this assumption might not be true in real-world situations, since customers in different industries comprise each freight demand point. Besides, multiple distribution centers can be observed in most real-world freight regions. Thus, in this study, the ring-sweep algorithm is modified to address these issues. We consider employees in wholesale trade, retail trade, and manufacturing industries to represent each freight demand point. Also, large numbers of truck and railroad terminals are included in the proposed model. To obtain the total cost for collecting the freight, we can assume the large number of supply points at an origin region (instead of demand points at a destination region) need to be served and the same approach can be applied.
3. Model Formulation

The ring-sweep algorithm is briefly introduced to explain the basic concept of the methodology in this study. Then, the original ring-sweep algorithm is modified to be applied to the regional freight-delivery problem.

3.1. Ring-Sweep Algorithm Review

The ring-sweep algorithm proposed by Newell and Daganzo [5] is based on an asymptotic approximation method, which assumes customer demand follows a continuous density function that may vary slowly over space. This algorithm is suitable for problems that involve a significantly large number of demand or supply points in the VRP. The fundamental idea of the algorithm is demonstrated in Figure 1, adapted from Ouyang [21].

![Figure 1. Delivery zone construction and shipment activity example.](image)

In Figure 1, a freight-delivery region is described by a square with solid lines, and a grey circle at the right-hand corner represents a distribution center. A large number of freight demands (i.e., customers) are assumed to be randomly distributed within the solid-line square. Trucks from the distribution center need to deliver the products to the customers, some of which are represented by small black squares in this figure. The objective of this problem is to minimize the total cost, the total truck-shipment distance, in order to satisfy the freight demand of the large number of customers. The ring-sweep algorithm assumes identical customers comprise each freight demand point, and the same products are distributed from a single distribution center to each demand point. The freight-delivery region represented by a square with solid lines splits into many delivery zones such as small trapezoids with broken lines. Freight demand in one trapezoid need to be satisfied by one freight truck, i.e., the total demand in one delivery zone is the same as the capacity of one freight truck. Then, a set of trucks needs to travel back and forth between the distribution center and the border of their assigned delivery zones, which is generally described as the line-haul movement. Also, each truck has to visit every demand point within a zone to serve the customer, which is generally described as the local travel. A near-optimal solution to this problem can be computed by summing the line-haul movement distance and the local travel distance across all the divided freight zones in a given region without actual vehicle movement tracking. A set of equations to obtain the near-optimal total vehicle-distance with proof are provided in Newell and Daganzo [5]. To compute the total cost for collecting the freight, the same methodology can be applied assuming that significantly large number of supply points (i.e., producers), instead of demand points, need to be served in a freight region, i.e., an origin of the freight shipment. Note that this study can be considered as the routing problem at the second level in a two-echelon distribution system [26,27] since the distribution centers in this study correspond to the intermediate depots in two-echelon VRP and the location of each distribution center is assumed to be given.
3.2. Regional Freight Distribution and Collection Modeling

In an arbitrary freight-delivery region, let \(J \) be the total number of randomly distributed freight demand points. Define \(o_j \) as distance from a distribution center to the demand point \(j \). Also, let \(Q \) be a capacity of the delivery truck and \(\lambda \) be the demand point density in a given region. Then, the total line-haul movement distance (\(L_1 \)) and the total local travel distance (\(L_2 \)) are proposed as follows in Newell and Daganzo [5], and the near-optimal total vehicle travel distance in a region is sum of Equations (1) and (2):

\[
L_1 = \frac{2\sum_{j=1}^{J} o_j}{Q} \\
L_2 = \sqrt{\frac{2}{3\lambda}}
\]

The ring-sweep algorithm assumes the demand points in a freight region are homogeneous, which means that the amount of freight required for each demand point is identical. This assumption might not be true in practice since customers in different industries comprise freight demand points. Besides, multiple distribution centers can be observed in most freight-delivery regions. In this study, the original ring-sweep algorithm is modified to resolve these issues and to be applied to real-world freight distribution and collection modeling, in which numbers of truck and railroad terminals are included. Employees in wholesale and retail trade industry as well as manufacturing industry are considered separately, which cover most of the employees across all business sectors in the U.S. For conciseness of presentation, procedures only related to freight distribution from truck terminals are explained.

To construct the regional freight-delivery model from truck terminals, we assume a set of truck terminals \(K \) is given, which is composed of arbitrary located multiple terminals in the given freight region. Then, each freight demand point is assigned to the closest terminal. We let \(I_k \) be the total number of demand points assigned to the truck terminal \(k \in K \), \(d_{ki} \) be the distance (miles) from the terminal \(k \in K \) to the demand point \(i \). Also, the number of employees in a wholesale and retail trade industry and a manufacturing industry in the demand point \(i \) are respectively denoted by \(E_{1i} \) and \(E_{2i} \). The truck capacity is represented by \(C \) (tons). Additionally, the total daily freight demand of wholesale and retail trade industry and manufacturing industry in the freight-delivery region are denoted by \(D_1 \) and \(D_2 \) (tons per day). Parameters \(a_1 \) and \(a_2 \) represent percentage of employees in wholesale and retail trade industry and manufacturing industry that are served from the truck terminals, respectively. The average number of employees per firm in the wholesale and retail trade industry is represented by \(a_1 \) and that in the manufacturing industry is denoted by \(a_2 \) to show how many employees are served on average by one delivery across different industries. The sum of the total area assigned to the terminal \(k \) is represented by \(A_k \) (square miles).

Considering previous Equations (1) and (2), the total line-haul movement distance and the total local travel distance can be constructed for a specific truck terminal \(k \) in the form of (3) and (4) for commodities related to the wholesale and retail trade industry, and (5) and (6) for commodities related to the manufacturing industry; Equations (3) and (5) are related to the line-haul movement and Equations (4) and (6) are for the local travel distance:

\[
L_{k1}^{f1} = \frac{2\alpha_1 D_1 \sum_{i=1}^{I_k} E_{1i} d_{ki}}{C \sum_{i=1}^{I_k} E_{1i}} \tag{3}
\]

\[
L_{k2}^{f2} = \frac{0.57 N_k^f}{\sqrt{\delta_k^f}}, \text{ where } N_k^f = \frac{\alpha_1}{a_1} \sum_{i=1}^{I_k} E_{1i} \text{ and } \delta_k^f = \frac{N_k^f}{A_k} \tag{4}
\]

\[
L_{p1}^{k} = \frac{2\alpha_2 D_2 \sum_{i=1}^{I_k} E_{2i} d_{ki}}{C \sum_{i=1}^{I_k} E_{2i}} \tag{5}
\]
Finally, summing Equations (3)–(6) across all terminals, \(k \in K \) yields the total freight-delivery cost \((G_T) \) from truck terminals in the given freight-delivery region as follows:

\[
G_T = \sum_{k=1}^{K} \left(L_{f1}^k + L_{f2}^k + L_{p1}^k + L_{p2}^k \right)
\]

(7)

Note that above procedures are only for the total cost of the truck terminals. A significant share of regional freight demand is also distributed from railroad terminals. Delivery trucks start their travel from several railroad terminals in a region, and each demand point is assigned to the closest railroad terminal. The total freight demand will be combined into two industry groups as well (i.e., wholesale and retail trade industry and manufacturing industry). A set of equations similar to (3)–(7) can be formulated to compute the total freight-delivery cost from railroad terminals in the freight-delivery region. Finally, the atmospheric impact levels caused by freight movement from both truck and railroad terminals can be estimated for each study region using appropriate emission factor.

In this study, other transportation modes such as an intermodal system [28], waterway, coastal shipping, or pipeline are excluded due to the lack of freight-flow data [29]. This paper assumes the haulage networks are operated based on the form of common ownership. When the freight transportation networks are dominated by single private company or shared by multiple operators, the freight demand zones need to be categorized considering which haulage networks they are mostly assigned on. Then, the proposed modeling framework can be applied to each group of freight zones to obtain the freight-delivery cost.

4. Case Study

A case study is conducted to estimate regional freight-delivery activities under different urban development scenarios and the related vehicle CO\(_2\) emissions from 2010 to 2050 in 30 freight-delivery regions in the U.S. which cover 22 major metropolitan areas.

4.1. Data Preparation and Assumptions

The concept of the freight analysis zone (FAZ), originally defined in Freight Analysis Framework version 3 (FAF3) [27], is adopted to represent geographical regions with regard to freight activities (i.e., origins and destinations of freight shipment). Figure 2, adapted from FAF3 [29], shows a map of the 123 domestic FAZs. Note that the regions in grey represent the study sites investigated in this paper. Also, the East Coast areas are magnified to improve recognition accuracy.

Total freight-shipment distance in a delivery region will be significantly affected by different patterns of urban spatial structure, which will eventually determine the total vehicle-emission estimation in freight regions. In this regard, the urban spatial structure model [30] provided three urban development scenarios as follows: (1) “business as usual” in which the urban sprawl and the following employment decentralization in 1990s and 2000s continues in most U.S. metropolitan areas; (2) “polycentric development” in which the development of a central business district (CBD) follows the current decentralization trend, but sub-centers experience high-growth which induces population and employment concentration; and (3) “compact development” in which both CBD and sub-centers follow high growth. The urban spatial structure model is based on the employment density gradient model combined with a dynamic spatial method [31], which considers the locations of the CBD and sub-centers as independent variables to estimate the spatial autocorrelation and examine the durability of the built environment (i.e., time-series effect).
Figure 2. Domestic freight analysis zones (FAZs) in the U.S.

The urban spatial structure model provided a forecast of employment distributions at the census tract level for each scenario from 2010 to 2050 in 10-year increments in 30 major FAZs. The FAZs considered in this study cover 22 selected metropolitan statistical areas (MSAs) where the number of total populations are greater than or equal to 2,000,000 in the year 2000. In most cases, one FAZ includes one MSA. However, three MSAs at Chicago, Philadelphia and St. Louis are each associated with two FAZs; New York MSA is associated with three FAZs; and Washington, D.C. MSA is associated with four FAZs. Table 1 illustrates how the total number of employers and employment density change as the distance from the CBD increases in four example MSAs. Column (a) presents the MSAs investigated in this analysis and column (b) shows the three urban development scenarios such that scenario 1 is the “business as usual”, scenario 2 is “polycentric development” and scenario 3 is “compact development”. Column (c) describes the distance from the CBD (DCBD) in miles. Columns (d) and (e) represent the total number of employers and the employment density (i.e., total number of employees per square mile), respectively. The results show that the highest employment density is observed under the compact development scenario, while the lowest employment density can be found under the business as usual scenario across all radii around the CBD for all four example MSAs.

We assume truck terminals are located on the points near major highway junctions, and railroad terminals are assumed to be located near major railway junctions. Each FAZ is made up of mutually disjointed census tracts. Freight demand in every census tract is assumed to be centered on the centroid of the census tract. Distances from truck and railroad terminals to each census tract centroid, total number of census tract in the FAZs, and the areas of census tract assigned to each truck and railroad terminal are measured using a geographic information system (GIS) database. The four-step inter-regional freight demand forecasting model [32] composed of trip generation, trip distribution, mode split and traffic assignment procedures provides truck and rail freight attraction and production data for each FAZ from 2010 to 2050 using the FAF3 [29], database which contains information on the freight movement in terms of tonnage and value between all shipment origin-destination pairs in 2007. The database contains 43 kinds of commodities such as agriculture products, fish, grain, wood products, textile, leather, coal, petroleum products and so forth. The freight demands in different commodity types are assigned to two industry groups, i.e., wholesale and retail trade industry and manufacturing industry, using data from the multi-region and multi-sector computable general equilibrium model [33]. Results from the freight demand forecasting model include amount of freight flow between all shipment origin–destination pairs (i.e., FAZs) in the U.S., which are used to estimate various parameters as well as future truck and rail freight movement in the proposed model. We assume light and medium trucks at a speed of 30 miles per hour are used for freight delivery in urban areas and their capacity is 4 tons [34,35].
Table 1. Total number of employers and employment density in four example metropolitan statistical areas (MSAs).

(a) MSA	(b) Scenario DCBD	(c) 2010	(d) 2020	(e) 2030	(f) 2040	(g) 2050	(h) Total Number of Employers	(i) Employment Density (# emp/sqmi)				
Atlanta	1	328,300	349,474	362,889	374,372	383,460	383,460	11,617	12,366	12,841	13,247	13,569
	2	367,829	444,817	496,818	542,820	580,137	580,137	15,116	15,740	16,299	16,897	20,529
	3	426,352	589,958	678,477	794,441	910,339	910,339	21,559	22,941	23,610	24,324	25,286
Boston	1	544,170	548,477	522,883	498,015	470,746	470,746	19,256	19,408	18,474	17,623	16,658
	2	572,925	599,092	571,391	555,019	536,215	536,215	20,273	20,845	20,219	19,640	18,974
	3	593,708	618,720	604,880	592,055	569,040	569,040	21,009	21,894	21,099	19,209	19,404
Cleveland	1	188,218	186,454	182,791	179,558	176,260	176,260	6660	6598	6488	6354	6237
	2	217,149	256,043	280,665	300,245	295,153	295,153	8197	8163	8080	7946	7813
	3	231,040	287,052	318,232	339,793	346,948	346,948	11,727	11,519	11,349	11,120	10,926
Dallas	1	221,022	232,142	239,793	246,398	251,647	251,647	179,727	176,260	176,260	176,260	176,260
	2	468,259	504,205	550,761	568,007	544,620	544,620	11,797	11,797	11,797	11,797	11,797
	3	740,872	810,539	901,988	936,176	913,570	913,570	1793	1793	1793	1793	1793

4.2. Results and Discussion

Numerical results from the proposed model are described in Table 2. Columns (a) and (b) list the 22 MSAs and the three urban development scenarios considered in this study. Columns (c) and (d), respectively, describe the total regional freight-delivery cost in miles and ton-miles. Column (d) also includes percentage differences of the total freight-delivery ton-mile cost from the one associated with scenario 3 for each MSA. Note that mile and ton-mile costs in columns (c)–(d) are on a daily basis.
Scenario	2010	2020	2030	2040	2050	2010%	2020%	2030%	2040%	2050%												
Atlanta	1	181	257	341	439	548	1636	297	597	802	1054	1193	1389	1574	1782	2189	2363	2200	2799	3509	4346	
Boston	1	55	664	780	909	1053	1102	45	1328	1156	1560	1823	1913	2106	2210	2306	2382	2432	2472	2512	2591	2711
Cleveland	1	554	661	781	916	1072	1109	5.8	1323	7.6	1562	8.3	1832	6.6	2106	5.7	1944	5.6	1841			
Los Angeles	1	949	1414	1897	2462	3112	1897	2.9	2828	28.5	3793	35.5	4924	40.3	6223	43.2						
Miami	1	1707	2240	2762	3364	4042	3414	5.7	3000	7.4	3563	8.2	4169	9.0	4819	10.1						
Portland	1	880	1019	1155	1317	1518	1760	3.1	2038	16.9	2310	18.2	2634	19.4	3053	21.0						
Philadelphia	1	800	960	1082	1227	1406	1738	1.8	1919	10.1	2164	10.7	2453	11.4	2811	12.1						
San Francisco	1	516	731	934	1171	1454	1032	5.7	1462	27.3	1686	31.1	2343	34.1	2907	36.3						
Seattle	1	500	614	768	948	1161	1000	0.4	1228	6.9	1537	7.8	1985	8.5	2232	8.9						
Tampa	1	1175	1581	2043	2609	3288	2351	6.1	3162	26.5	4086	37.2	5218	49.6	6576	62.0						
Chicago	1	800	960	1147	1371	1622	1600	0.5	1919	0.8	2294	0.8	2742	0.9	3243	0.9						
New York	1	2039	2563	3108	3741	4490	4079	3.2	5127	14.1	6216	14.6	7481	15.2	8980	15.7						
Washington, D.C.	1	1626	2256	2832	3498	4256	3251	0.9	4512	24.0	5635	25.5	6996	25.5	8512	28.3						

Table 2. Total regional freight-delivery cost in 22 MSAs.
In most cases, scenario 1, business as usual, shows the largest and scenario 3, compact development, shows the least total freight-delivery cost in miles and ton-miles. Results from the paired t-test presented in Figure 3 statistically support mean differences among the three groups, each of which is composed of the total travel distances (miles) in 2050 from the given scenario. All pairs from the three groups are shown to be significantly different under the significance level of 0.01. Results from scenario 1 are significantly larger than those from scenarios 2 and 3 by 490 and 629 (10^3 m) on average, respectively. Results from scenario 2 are also significantly larger than those from scenario 3. The same trends are observed from 2010 to 2050; analysis using freight-shipment ton-mile cost generates the same trends as well. The results demonstrate significant advantage of compact as well as polycentric urban forms, which are known to lead to high-density and sustainable urban development by combining residential and commercial zones [36]. Note that the percentage differences in column (d) grow significantly faster over the years in Atlanta, Dallas, Denver, Houston, Minneapolis, Phoenix, Portland, Seattle, Tampa, and Washington. This is caused by a rapid increase in the number of employees located far from the truck or railroad terminals, which results in a prompt increase in the total long-haul movement distance. Table 3 shows the total distance from all employees to the assigned terminals in four example MSAs.

Table 3. Total distance to the assigned terminals in four example MSAs.

(a) MSA	(b)	(c) Total Distance to the Assigned Terminals (10^3 Mile)									
	Scenario	2010	2020	2030	2040	2050					
Atlanta	1	28,765	5.5	46,200	28.6	50,599	35.0	54,009	40.0	56,155	43.1
	2	27,801	2.0	40,198	11.9	43,152	15.2	45,420	17.7	46,853	19.4
	3	27,266	35,926	37,473	37,473	38,576	39,246				
Boston	1	20,670	5.1	24,131	12.8	23,929	14.1	23,660	15.5	23,127	16.8
	2	20,221	2.8	23,032	7.7	22,759	8.5	22,412	9.4	21,831	10.2
	3	19,665	21,390	20,978	20,481	19,804					
Cleveland	1	13,461	3.7	13,896	5.0	13,866	5.4	13,810	5.6	13,719	5.8
	2	13,225	1.9	13,589	2.7	13,542	3.0	13,475	3.1	13,380	3.2
	3	12,979	13,228	13,153	13,071	12,971					
Dallas	1	25,625	1.8	39,375	17.2	42,971	21.6	45,471	24.8	46,780	26.9
	2	25,266	0.4	34,892	3.9	37,265	5.5	38,910	6.8	39,734	7.8
	3	25,168	33,595	35,326	36,426	36,872					

Figure 3. Cont.
Figure 3. Paired t-test results. (a) Paired t-test results of the total travel distance in 2050 between scenario 1 and scenario 2; (b) paired t-test results of the total travel distance in 2050 between scenario 1 and scenario 3; (c) paired t-test results of the total travel distance in 2050 between scenario 2 and scenario 3.

Column (c) of Table 3 presents the total distance in thousand miles and percentage differences of the total distance from that obtained from scenario 3. Note that the total distance for all employees to reach their assigned terminals rapidly increases in Atlanta and Dallas, indicating that the number of employees far from the terminals increases fast for those two MSAs.

Vehicle CO₂ emission estimations resulting from future freight activities in 22 MSAs are presented in Table 4. Column (a) shows the 22 MSAs under investigation and the three urban form scenarios are described in column (b). Column (c) in Table 4 presents CO₂ emission estimations associated with freight-delivery activities in each urban development scenario. Emission factor for light and medium trucks is obtained from research on vehicle emissions and energy consumption [37] and a stochastic urban freight-truck routing study [25] such that each truck produces 717.10 grams of CO₂ for each mile shipment at a speed of 30 miles per hour.
Table 4. CO₂ emission estimations related to regional freight activities in 22 MSAs.

MSA	Scenario	2010	2020	2030	2040	2050
Atlanta	1	1304	1849	2450	3148	3936
	2	1235	1794	2375	2972	3774
	3	1215	1336	1666	2048	2494
Pittsburgh						
	1	395	476	559	652	755
	2	383	446	521	605	697
	3	378	428	498	575	660
Boston						
	1	398	474	560	657	768
	2	379	447	527	616	720
	3	376	440	517	605	707
Cleveland						
	1	680	1014	1360	1765	2251
	2	663	819	1055	1335	1662
	3	661	789	1004	1258	1558
Chicago						
	1	1286	1758	2200	2708	3292
	2	1274	1559	1947	2388	2883
	3	1268	1370	1711	2092	2510
Denver						
	1	321	421	578	787	975
	2	429	547	702	883	1092
	3	428	517	658	823	1013
Detroit						
	1	896	1076	1277	1494	1728
	2	857	1013	1194	1385	1585
	3	847	1001	1181	1371	1570
Houston						
	1	1224	1606	1981	2413	2899
	2	1189	1456	1781	2149	2558
	3	1178	1398	1703	2044	2422
Los Angeles						
	1	1163	1756	2381	3126	3983
	2	1159	1711	2306	3010	3819
	3	1153	1704	2300	3006	3818
Miami						
	1	1012	1344	1654	1998	2363
	2	989	1088	1311	1543	1779
	3	986	1066	1278	1501	1725
Phoenix						
	1	315	429	538	700	920
	2	315	374	466	603	789
	3	315	358	446	576	752

Since the amount of emissions generated from vehicles at a constant mild speed are proportional to the freight-delivery activities, the largest and the least amount of CO₂ emissions are observed in scenario 1 and scenario 3 in general. In terms of freight-transport operations, a compact urban form enables freight-delivery companies to consolidate their products and maximize their truck-capacity utilization. As such, operating a full truck load typically leads to reducing empty mileage, which increases energy efficiency and decreases greenhouse gas emissions as well.

5. Conclusions

Freight transportation is well known as a major cause of environmental problems. A great number of small- or medium-size trucks have been used in last-mile delivery, especially in large urban areas, and they have contributed to large share of various emissions since most of them use diesel engines as a power supply. Residents in metropolitan areas can be affected easily by the air-pollution problems, and greenhouse gas emissions are often concentrated in urban areas, which motivated us to investigate the regional freight distribution and collection modeling problem in a large urban area. This problem is addressed by the large-scale VRP since the number of randomly distributed demand points in a freight-delivery region is assumed to be extremely large. The ring-sweep algorithm [5] is adopted and modified to incorporate inhomogeneity of demand points in a real-world situation; multiple distribution centers in a delivery region are also considered in the proposed model. A set of formulas is constructed to estimate large-scale freight-delivery efficiency, in which the total travel distance of a fleet
of trucks within each FAZ is obtained as a sum of the total line-haul movement distance and the total local travel distance; the obtained freight-delivery cost for each study region is used to estimate vehicle CO₂ emissions. Since it is an asymptotic approximation method and the number of demand points in our setting is significantly large, the output is expected to be quite accurate. A case study is conducted to forecast daily regional freight-delivery cost from 2010 to 2050 using employment distribution data under three urban form scenarios in 30 FAZs, which include 22 major MSAs in the U.S. The numerical results are found to estimate future regional freight-delivery cost and the related CO₂ emissions for each urban form scenario effectively. It was also found that the spatial distribution of freight demand impacts greatly on the freight-delivery efficiency and the following vehicle emissions; compact urban development leads to low vehicle delivery cost in ton and ton-mile, which will be able to reduce CO₂ emissions in large urban areas. This reduction in emissions would affect air pollutants as well. The results in this study will be useful for transportation planners and decision makers in public or private sectors when estimating human exposure to emissions from freight delivery in metropolitan areas, thereby eventually enhancing the public benefit and social welfare.

In future studies, freight movement or routing modeling among different metropolitan areas can be considered in order to complete the comprehensive modeling framework. The current study only addresses freight distribution and collection problems in freight destination or origin regions. This limitation could be resolved by incorporating long-distance freight movement into the proposed model, which will be able to provide more precise freight activities as well as following emission estimations. The results can also be combined with the business models in Perboli et al. [38] to further develop regional as well as continental sustainable freight-transportation systems. Second, the extension and application of the proposed methodology to the metropolitan areas in other countries will be possible. The final results from the proposed model include useful information such as predicted freight-shipment cost in mile and ton-miles, which can be used to estimate the related vehicle emissions. Such modeling framework eventually could be applied to address many environmental problems, for instance recent severe air-pollution and human health problems in Seoul, South Korea [39].

Acknowledgments: This publication was developed under Assistance Agreement No. #R83428001 supported by the U.S. Environmental Protection Agency (EPA). It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Members of the interdisciplinary research group also include (alphabetically) Christopher P.L. Barkan, Tami C. Bond, Bumsoo Lee, Liang Liu, Yanfeng Ouyang (University of Illinois at Urbana-Champaign), and Steven J. Smith (Pacific Northwest National Laboratory). Both Bumsoo Lee and Yanfeng Ouyang provided the authors with helpful suggestions and advice in completion of this research. The original idea of this publication was developed at the University of Illinois at Urbana-Champaign under supervision of Yanfeng Ouyang. The authors thank the anonymous reviewers for their insightful comments.

Author Contributions: Sungwon Lee and Taesung Hwang conducted the case study analyses and wrote the paper; Sungwon Lee collected and processed the data; Taesung Hwang designed the research and developed the model; both authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Organisation for Economic Co-operation and Development (OECD). Delivering the Goods: 21st Century Challenges to Urban Goods Transport; OECD: Paris, France, 2003.
2. Figliozzi, M.A. The impacts of congestion on time-definitive urban freight distribution networks CO₂ emission levels: Results from a case study in Portland, Oregon. Transp. Res. Part C 2011, 19, 766–778. [CrossRef]
3. Russo, F.; Comi, A. Urban freight transport planning towards green goals: Synthetic environmental evidence from tested results. Sustainability 2016, 8, 381. [CrossRef]
4. Bassok, A.; Johnson, C.; Kitchen, M.; Maskin, R.; Overby, K.; Carlson, D.; Goodchild, A.; McCormack, E.; Wygonik, E. NCFRP Report 24: Smart Growth and Urban Goods Movement; Transportation Research Board of the National Academies: Washington, DC, USA, 2013.
5. Newell, G.F.; Daganzo, C.F. Design of multiple-vehicle delivery tours—I a ring-radial network. *Transp. Res. Part B* 1986, 20, 345–364. [CrossRef]
6. Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. *Manag. Sci.* 1959, 6, 80–91. [CrossRef]
7. Solomon, M.M. Algorithms for the vehicle routing and scheduling problems with time window constraints. *Oper. Res.* 1987, 35, 254–265. [CrossRef]
8. Potvin, J.Y.; Rousseau, J.M. A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. *Eur. J. Oper. Res.* 1993, 66, 331–340. [CrossRef]
9. Thompson, P.M.; Psaraftis, H.N. Cyclic transfer algorithms for multivehicle routing and scheduling problems. *Oper. Res.* 1993, 41, 935–946. [CrossRef]
10. Potvin, J.Y.; Rousseau, J.M. An exchange heuristic for routing problems with time windows. *J. Oper. Res. Soc.* 1995, 46, 1433–1446. [CrossRef]
11. Taillard, E.; Badeau, P.; Gendreau, M.; Guertin, F.; Potvin, J.Y. A tabu search heuristic for the vehicle routing problem with soft time windows. *Transp. Sci.* 1997, 31, 170–186. [CrossRef]
12. Tan, K.C.; Chew, Y.H.; Lee, L.H. A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. *Comput. Optim. Appl.* 2006, 34, 115–151. [CrossRef]
13. Kallehauge, B. Formulations and exact algorithms for the vehicle routing problem with time windows. *Comput. Oper. Res.* 2008, 35, 2307–2330. [CrossRef]
14. Toth, P.; Vigo, D. *The Vehicle Routing Problem*; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002.
15. Xu, H.; Chen, Z.L.; Rajagopal, S.; Arunapuram, S. Solving a practical pickup and delivery problem. *Transp. Sci.* 2003, 37, 347–364. [CrossRef]
16. Lin, C.K.Y. A vehicle routing problem with pickup and delivery time windows, and coordination of transportable resources. *Comput. Oper. Res.* 2011, 38, 1596–1609. [CrossRef]
17. Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. *Eur. J. Oper. Res.* 2013, 231, 1–21. [CrossRef]
18. Daganzo, C.F. The length of tours in zones of different shapes. *Transp. Res. Part B* 1984, 18, 135–145. [CrossRef]
19. Daganzo, C.F. The distance traveled to visit N points with a maximum of C stops per vehicle: An analytic model and an application. *Transp. Sci.* 1984, 18, 331–350. [CrossRef]
20. Newell, G.F.; Daganzo, C.F. Design of multiple-vehicle delivery tours-II other metrics. *Transp. Res. Part B* 1986, 20, 365–376. [CrossRef]
21. Ouyang, Y. Design of vehicle routing zones for large-scale distribution systems. *Transp. Res. Part B* 2007, 41, 1079–1093. [CrossRef]
22. Ouyang, Y.; Daganzo, C.F. Discretization and validation of the continuum approximation scheme for terminal system design. *Transp. Sci.* 2006, 40, 89–98. [CrossRef]
23. Holguín-Veras, J.; Thorson, E.; Wang, Q.; Xu, N.; González-Calderón, C.; Sánchez-Díaz, I.; Mitchell, J. Urban freight tour models: State of the art and practice. In *Freight Transport Modelling*; Ben-Akiva, M., Meersman, H., van de Voorde, E., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2013; pp. 335–351. ISBN 978-1-78190-285-1.
24. Nuzzolo, A.; Comi, A. Tactical and operational city logistics: Freight vehicle flow modelling. In *Freight Transport Modelling*; Ben-Akiva, M., Meersman, H., Van de Voorde, E., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2013; pp. 433–451. ISBN 978-1-78190-285-1.
25. Hwang, T.; Ouyang, Y. Urban freight truck routing under stochastic congestion and emission considerations. *Sustainability* 2015, 7, 6610–6625. [CrossRef]
26. Crainic, T.G.; Perboli, G.; Mancini, S.; Tadei, R. Two-echelon vehicle routing problem: A satellite location analysis. *Procedia Soc. Behav. Sci.* 2010, 2, 5944–5955. [CrossRef]
27. Perboli, G.; Tadei, R.; Vigo, D. The two-echelon capacitated vehicle routing problem: Models and math-based heuristics. *Transp. Sci.* 2011, 45, 364–380. [CrossRef]
28. Crainic, T.G.; Perboli, G.; Rosano, M. Simulation of intermodal freight transportation systems: A taxonomy. *Eur. J. Oper. Res.* 2017. [CrossRef]
29. Federal Highway Administration, US Department of Transportation, Freight Analysis Framework (FAF). Available online: http://www.ops.fhwa.dot.gov/freight/freight_analysis/af/ (accessed on 19 December 2011).
30. Lee, S. The Role of Urban Spatial Structure in Reducing VMT and GHG Emissions. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2015.
31. Elhorst, J.P. Dynamic models in space and time. Geogr. Anal. 2001, 33, 119–140. [CrossRef]
32. Hwang, T. Freight Demand Modeling and Logistics Planning for Assessment of Freight Systems’ Environmental Impacts. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2014.
33. Fisher-Vanden, K.; Schu, K.; Sue Wing, I.; Calvin, K. Decomposing the impact of alternative technology sets on future carbon emissions growth. Energy Econ. 2012, 34, S359–S365. [CrossRef]
34. Alam, M.; Rajamanickam, G. Development of Truck Payload Equivalent Factor; Federal Highway Administration, US Department of Transportation: Washington, DC, USA, 2007.
35. Davis, S.C.; Diegel, S.W.; Boundy, R.G. Transportation Energy Data Book, 31 ed.; US Department of Energy: Washington, DC, USA, 2012.
36. Stone, B.; Mednick, A.C.; Holloway, T.; Spak, S.N. Is compact growth good for air quality? J. Am. Plan. Assoc. 2007, 73, 404–418. [CrossRef]
37. Transport Research Laboratory. Project Report SE/491/98: Methodology for Calculating Transport Emissions and Energy Consumption; Transport Research Laboratory: Crowthorne, UK, 1999.
38. Perboli, G.; Musso, S.; Rosano, M.; Tadei, R.; Godel, M. Synchro-modality and slow steaming: New business perspectives in freight transportation. Sustainability 2017, 9, 1843. [CrossRef]
39. Nature News: South Korea Cracks Down on Dirty Air. Available online: https://www.nature.com/news/south-korea-cracks-down-on-dirty-air-1.22448 (accessed on 29 December 2017).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).