We introduce a new convolutional layer named the Temporal Gaussian Mixture (TGM) layer and present how it can be used to efficiently capture longer-term temporal information in continuous activity videos. The TGM layer is a temporal convolutional layer governed by a much smaller set of parameters (e.g., location/variance of Gaussians) that are fully differentiable. We present our fully convolutional video models with multiple TGM layers for activity detection. The experiments on multiple datasets including Charades and MultiTHUMOS confirm the effectiveness of TGM layers, outperforming the state-of-the-arts.

1 Introduction

Activity videos are spatio-temporal data: they are image frames with a specific width/height (XY) concatenated along time axis (T). Recognition from such videos requires capturing both spatial and temporal information in the videos, desirably using learned convolutional kernels. Temporal convolution is particularly beneficial in activity ‘detection’ tasks, which require making activity decisions at every frame given a continuous video (Sigurdsson et al., 2016b; Yeung et al., 2015). Previous methods investigated using 3-D XYT convolutional filters (Tran et al., 2014; Carreira & Zisserman, 2017) as well as the models with 2-D XY conv. layers followed by 1-D temporal conv. (Tran et al., 2018), pooling or attention layers (Piergiovanni et al., 2017).

Understanding complex multi-activity videos requires capturing information in long-term time intervals. Different frames contain different information, and the model needs to learn to take advantage of as many frames as possible, while abstracting them efficiently. Previous attempts of simply pooling representations over time or learning temporal conv. filters with a small number of frames (e.g., 16 or 99) was thus often insufficient to fully consider rich long-term temporal context. Simultaneously, bruteforcefully increasing the temporal filter length (to look at more frames) results more learnable parameters, requiring more training data, which can be expensive when activities are rare.

In this paper, we introduce a new convolutional layer named the Temporal Gaussian Mixture (TGM) layer, and present how it can be used to efficiently capture longer-term temporal information in activity videos. Our temporal Gaussian mixture layer is a temporal convolutional layer, whose filters/kernels are controlled by a set of (temporal) Gaussian distribution parameters. Each of our temporal Gaussian distributions specify (temporally) ‘where’ the model should look, and our Gaussian mixture layer combines them as multiple convolutional filters to be applied on top of temporally-continuous representations. This layer allows the video representation at each time step to be constructed while focusing on different neighboring temporal regions, instead of only focusing on its local segment. It is a convolutional layer governed by a much smaller set of parameters (i.e., locations/variances of the Gaussians as well as their mixture weights) that are fully differentiable.

The motivation behind our temporal Gaussian mixture layer is to learn the temporal structure of an activity as a composition of temporal Gaussian regions/attentions. Such structure allows the model to obtain a compact spatio-temporal representation abstracting each (long-term) time interval, using multiple temporal conv. layers with far fewer parameters. It is also related to the previous temporal attention works (Piergiovanni et al., 2017), but our model is designed to be fully convolutional to handle continuous data and it learns more compositional structures with multiple layers.

We present video-CNN models using our TGM layers for activity detection in continuous videos. Our model stacks TGM layers on top of several state-of-the-art CNNs such as I3D (Carreira & Zisserman, 2017). This enables our model to capture longer-term temporal information than what we use as base CNNs, compositionally modeling temporal structure with multiple TGM layers. Our
model was evaluated on multiple public datasets including MultiTHUMOS and Charades, and was able to outperform the best previous activity detection CNNs by a meaningful margin.

2 RELATED WORKS

Learning video representations for human activity recognition has been successful. CNN methods allow end-to-end learning of video features and representations optimized for the training data, performing superior to traditional works (Aggarwal & Ryoo, 2011) for video understanding.

Two-stream CNN models take a single RGB frame and a small number of optical flow frames as inputs to capture both motion and appearance information in videos (Simonyan & Zisserman, 2014; Feichtenhofer et al., 2016). Models learning 3-D spatio-temporal (XYT) convolutional filters were designed and applied to many activity recognition tasks as well (Tran et al., 2014; Carreira & Zisserman, 2017; Tran et al., 2017; Hara et al., 2017). Large scale datasets for activity detection, such as THUMOS (Jiang et al., 2014), ActivityNet (Heilbron et al., 2015), Kinetics (Kay et al., 2017), and Charades (Sigurdsson et al., 2016b) provided these approaches the necessary training data to learn the models. Such 3-D XYT CNNs were also used to capture spatio-temporal information for activity detection (Xu et al., 2017; Shou et al., 2016; 2017; Zhao et al., 2017). However, all these CNNs were limited to the consideration of a fixed local video segment (e.g., 16 frames in (Tran et al., 2014) and 99 frames in (Carreira & Zisserman, 2017)) when making activity decisions.

Some works studied combining representations over longer-term temporal intervals (Karpathy et al., 2014; Ng et al., 2015; Varol et al., 2017), but it was generally done with a temporal pooling of local representations or (spatio-)temporal convolutions with a bit larger fixed intervals. Recurrent neural networks (RNNs) have also been used to model activity transitions between frames (Yeung et al., 2015; 2016; Escorcia et al., 2016), but they were strictly sequential and had limitations in maintaining temporal information over a longer temporal duration, particularly for videos with multiple complex activities. Recently, CNN models using temporal attention for activity videos (Piergiovanni et al., 2017; Piergiovanni & Ryoo, 2018) were studied as well. However, a fully convolutional model to analyze continuous videos while efficiently representing information in long term intervals has been lacking.

Our layer is different from the previous standard (spatio-)temporal convolutional layers in that it relies on significantly fewer parameters by forcing filter shapes to be Gaussian compositions. Our temporal layer is also different from previous Gaussian Mixture Model layers (Variani et al., 2015) in that our layer is convolutional while they are not.

3 APPROACH

In this section, we introduce a new convolutional layer named the Temporal Gaussian Mixture (TGM) layer, and present how it can be used for activity recognition. Our Temporal Gaussian Mixture layer is a temporal convolutional layer to be applied on top of a sequence of representations (usually from frame-level or segment-level CNNs), whose filters/kernels are controlled by a set of (temporal) Gaussian distribution parameters. The motivation is to make each temporal Gaussian distribution specify (temporally) ‘where to look’ with respect to the activity center, and represent the activity as a collection/mixture of such temporal Gaussians convolved with video features. Our layer is fully differentiable and trainable using standard backpropagation.

Our TGM layer differs from the standard temporal convolutional layers of learning 1-D (time) or 2-D (channel-by-time) filters in the following aspects:

1. Our temporal Gaussian mixture layer handles multiple 3-D tensors internally to preserve channels from the frame-level CNN. Its input is 3-D (channel-by-channel-by-time), where one channel dimension is inherited from the frame-level CNN.

2. Instead of learning temporal convolution filters of any arbitrary values, our filter is forced to have the form of a temporal Gaussian mixture shared across all frame-level channels. This allows the layer to rely on significantly fewer number of (fully differentiable) parameters, while capturing the concept of temporal structure/attention.
3.1 Temporal Gaussian Mixture Layer

Our temporal Gaussian mixture layer takes a 3-D input with the dimensionality of $C_{in} \times D \times T$, where C_{in} is the number of input channels, D is the dimensionality of the representations from frame-level (or segment-level) CNNs, and T is the time. Given such input, the TGM layer convolves it with C_{out} number of filters/kernels, generating a $C_{out} \times D \times T$-dim representation as an output. D is usually 1K or 4K and T is the number of time steps (frames) in each video (i.e., it varies per video).

Our layer is composed of a set of M Gaussians. Each Gaussian has 2 parameters: a center $\hat{\mu}$ and a width $\hat{\sigma}$. Each layer has additional hyper-parameters: L, the temporal duration and M, the number of Gaussians to learn. We force the learned center to be between $-\frac{L}{2}$ and $\frac{L}{2}$ and σ to be positive:

$$\mu = (L - 1) \cdot \frac{\tanh(\hat{\mu} + 1)}{2}, \quad \sigma^2 = \exp(\hat{\sigma}).$$ \hspace{1cm} (1)

We use the above μ and σ to construct the temporal Gaussian kernels. This acts as a strong sparsity constraint on the convolutional kernel as well as a drastic reduction of the number of learnable parameters. We construct a temporal Gaussian mixture convolutional kernel as:

$$\hat{K}_{m,l} = \frac{1}{Z} \exp\left(-\frac{(l - \mu_m)^2}{2\sigma_m^2}\right)$$ \hspace{1cm} (2)

where Z is a normalization constant such that $\sum_l \hat{K}_{m,l} = 1$, resulting in \hat{K} being an $M \times L$ matrix.

Instead of making the model learn a separate set of Gaussian distributions per activity class, we take the approach of maintaining multiple Gaussian distributions shared across classes and obtain a Gaussian ‘mixture’ filter by learning soft-attention weights. We learn a set of soft-attention weights per output channel i, $\omega \in \mathbb{R}^{C_{out} \times M}$. We create the soft-attention weights by applying the softmax function over the M Gaussians, enforcing each input channel weights sum to 1.

$$a_{i,m} = \frac{\exp(\omega_{i,m})}{\sum_j \exp(\omega_{i,j})}$$ \hspace{1cm} (3)

Based on temporal Gaussian distributions \hat{K}_i and attention weights $a_{i,m}$, the temporal convolution filters our TGM layer is computed as:

$$K_i = \sum_m a_{i,m} \hat{K}_i.$$ \hspace{1cm} (4)

This provides us convolutional filters having the form of a mixture of temporal Gaussians, controlled based on $2 \cdot M + C_{in} \cdot C_{out} \cdot M$ parameters (instead of learning $D^2 \cdot L$ parameters without any constraint, as in standard temporal convolution where $C << D$). An overview of this process is shown in Fig. 1.

3.1.1 Single TGM Layer - Direct Per-Class Activity Modeling

The representation we obtain by applying our base CNNs to each frame (or local segment) has the dimensionality of D, and stacking them along time axis provides us the representation with
Figure 2: Illustration of a TGM layer with grouped convolution. This layer learns a set of C Gaussian mixtures that are convolved with the input channels.

1 \times D \times T-dim. That is, in the case of using only one TGM layer to capture activity representations, our C_{in} is fixed to 1 and C_{out} is fixed to be the number of activity classes. This is the simplest case of our model, attaching one TGM layer on top of the 1 \times D \times T representation.

Our convolutional kernel, K_i, has a learned Gaussian mixture for each activity class. Let the video features v be a D \times T matrix. Each K_i is a 2-D convolutional filter with a size of 1 \times L, and convolving this with v provides us a representation S with C_{out} number of D \times T responses since C_{in} is 1 in this case. This per-class representation can then be used as input to a fully-connected layer for activity classification. For $i \in \{1, 2, \ldots, C_{out}\}$:

$$s_i = v * K_i, \ S = [s_1, s_2, \ldots, s_{C_{out}}]$$

(5)

3.1.2 Multiple TGM Layers - Grouped Convolution

We generalize the above formulation to allow the TGM layers to be sequentially applied. The idea is to enable our model to capture more complex, nonlinear temporal structure by having multiple levels of temporal layers. In this case, the input for each layer is $C_{in} \times D \times T$ dimensional (instead of 1 \times D \times T), where the input channels are the number of output channels from the previous layer. Our kernels at each layer, K_i, are parameterized and learned as before.

By using grouped convolution with the number of groups set to C_{in}, we can efficiently separate the input into per-channel values and convolve each of them with the designated K_i kernel, as shown in Fig. 2. That is, we learn a filter K_i per channel by setting $C_{in} = C_{out}$. For $i \in [1, C_{out}]$:

$$s_i = f_i * K_i, \ S = [s_1, s_2, \ldots, s_{C_{out}}]$$

(6)

Here, f is a $C_{in} \times D \times T$ tensor, where D is the dimensionality of the feature and T is the number of frames. The result of the per-channel convolution, s_i, is a $D \times T$ representation. We concatenate these representations along the channel axis, resulting in S, a $C_{out} \times D \times T$ representation. As this convolution results in the same output shape, we can stack these layers. Each layer is able to capture increasing temporal resolution, allowing the model to capture levels of abstractions.

3.1.3 Multiple TGM Layers - Channel Combination

In the above subsection, we introduced an approach of stacking multiple TGM layers to model a hierarchical composition of temporal representations. However, in the grouped convolution case,

Figure 3: Illustration of a TGM layer with channel combination. The kernels are applied to each input channel, C_{in}, and a 1x1 convolution is applied to combine the C_{in} input channels for each output channel, C_{out}.
Figure 4: An overview of an example video CNN model with two TGM layers. It is able to handle videos with any length, because of its fully convolutional design.

Each output channel of the layer is solely dependent on its corresponding input channel. That is, each kernel only considers information from a single output channel of the previous layer.

Therefore, we further generalize our TGM layer so that the layer combines representations from multiple input channels for each output channel using the learned temporal kernels. We learn a set of convolutional kernels \(K \in \mathcal{R}^{C_{\text{out}} \times C_{\text{in}} \times L} \) (i.e., we learn \(C_{\text{out}} \cdot C_{\text{in}} \) Gaussian mixtures). Given \(f \) which is the \(C_{\text{in}} \times D \times T \) representation, for each output channel \(i \in [1, C_{\text{out}}] \) and each input channel \(j \in [1, C_{\text{in}}] \) pair, we convolve the associated filters with the input.

\[
G_{i,j} = (f_j * K_{i,j})
\]

where each \(G_{i,j} \) is a \(D \times T \)-dim representation.

We then learn a 1x1 convolution followed by a ReLU activation function for each \(i \in [1, C_{\text{out}}] \), which we call \(w_i \), that maps from \(C_{\text{in}} \) channels to 1 channel. The 1x1 convolution learns to combine the channels from the previous layer and adds non-linearity to our layer.

\[
s_i = G_i * w_i = (f_j * K_{i,j}) * w_i, \quad S = [s_1, s_2, \ldots, s_{C_{\text{out}}}]\]

We then stack the \(s_i \) representations along the channel axis to produce \(S \), the \(C_{\text{out}} \times D \times T \)-dim representation. This process is illustrated in Fig. 3. This method generalizes our approach to allow the layer to take input of \(C_{\text{in}} \times D \times T \) and produce output of \(C_{\text{out}} \times D \times T \). These layers can easily be stacked to learn a hierarchical representation.

3.2 Video CNN Models with TGM Layers

Our goal is to do activity detection which we define as making a per-frame (or per-segment) classification. Given a video, at each time step \(t \), we want to make the model decide which activity the frame corresponds to (including no-activity). As a baseline, we train a fully-connected layer that classifies each per-frame \(D \)-dimensional vector, \(v_t \). As multiple activities can occur at the same time, or no activities at all, we treat this as a multi-label classification task. We minimize binary cross entropy:

\[
L(v) = \sum_{t,c} z_{t,c} \log(p(c|v_t)) + (1 - z_{t,c}) \log(1 - p(c|v_t))
\]

where \(z_{t,c} \) is the ground truth label, 1 if activity \(c \) is occurring at time \(t \) and \(p(c|v_t) \) is the output of our model for class \(c \) at time \(t \).
4 Experiments

4.1 Implementation and Baselines

Implementation We used I3D (Carreira & Zisserman, 2017) and the two-stream version of InceptionV3 (Szegedy et al., 2016) pretrained on Imagenet and Kinetics as our base per-frame CNNs. Our TGM layers had a temporal length (i.e., L) of 30 in our 1-layer model and 10 for each in the 3-layer model, so that the stacking captures a similar amount of temporal information. These layers were attached on top of the base CNN, as described in Subsection 3.2. Please check the Appendix for implementation and training details and results on other datasets.

Baselines In order to confirm the advantages of our TGM layers, particularly against previous temporal models, we implemented several baselines. The first is (i) a standard per-frame classifier in which the prediction at each time-step only depends on a single feature vector with no contextual temporal information. We also used (ii) LSTMs on top of per-frame representations, which were popularly used to capture temporal information (Donahue et al., 2015). We train a bi-directional LSTM with 512 hidden units to make per-frame predictions. We also tried (iii) the fixed pyramid temporal max-pooling of level 3 (Ryoo et al., 2015). The pooling window length was set to 5 segment features or 10 frame features. Finally, we compare our model against (iv) the model with standard temporal convolutional layers (i.e., 1-D convolution with a $D \times L$ kernel) on top of per-frame representations. This is similar to the temporal conv. used in (Tran et al., 2018). In all our experiments, we follow the standard evaluation setting of computing per-frame mean average precision (mAP) and report those values. We also compare to different versions of the TGM layer, (v) with a learned mixture of random temporal filters and (vi) with a learned mixture of fixed Gaussians.

In addition, we also tried the approach of combining our TGM layers with the recent super-event representations (Piergiovanni & Ryoo, 2018b). We concatenated the learned super-event representation with our representations from TGM layers.

4.2 MultiTHUMOS

Dataset MultiTHUMOS (Yeung et al., 2015) is an extended version of the THUMOS (Jiang et al., 2014) dataset that densely annotates the continuous videos. The dataset consists of 65 different classes, compared to 20 in THUMOS, and contains on average 10.5 activities per video and 1.5 labels per frame and up to 25 activity instances in each video. This is in contrast to many other activity detection dataset such as ActivityNet (Heilbron et al., 2015), which only has on average \sim1 activity per video. MultiTHUMOS consists of YouTube videos of various sport activities such as basketball games, volleyball games, weight lifting, and track and field.

We followed the standard MultiTHUMOS evaluation setting of measuring mAP based on per-frame annotations. There are 1010 validation videos and 1574 test videos. We used these continuous validation videos for the training of our models. We did not need to take advantage of the separate training set with segmented videos; even without them, we outperformed the state-of-the-arts.

Results We compared baselines as well as multiple different versions of our architectures, shown in Table 1. The model with our TGM layers consistently outperformed baseline I3D (or InceptionV3) while using the same per-segment representations. Learning 3 TGM layers further improved the performances. On the other hand, we found that stacking multiple standard temporal convolutional layers does not improve performance, often performing worse than the baseline. While a single standard temporal conv. layer improves over the baseline, having multiple of them significantly increases the number of parameters to learn (Table 2) and we suspect that this was causing the overfitting with the limited amount of samples in the dataset. In Table 3 we compare the results of using a LSTM or temporal conv. with a similar number of parameters. This was done by making their temporal conv. filters to share values across multiple channels. These models result in nearly random performance, as they were not designed to cope with a small number of parameters. We also show results with a mixture of random (fixed) temporal filters and with a mixture of fixed Gaussians. These results confirm that (i) modeling the temporal structure as a learned Gaussian mixture is beneficial and that (ii) further learning the Gaussian distribution parameters is important.

Learning multiple TGM layers with channel combination outperforms the grouped convolution version of TGM and all the baselines. We also experimented with a version using soft-attention weights to combine the TGM layer channels, in addition to our method (Fig. 3) of using 1x1 convolution
Table 1: Comparison of various architectures on MultiTHUMOS using both I3D per-segment and InceptionV3 per-frame features. We found that TGM layers with 1x1 convolution channel combination performed the best. Results are in mAP %.

Model	Spatial	Temporal	Two-Stream	Spatial	Temporal	Two-Stream
Baseline	22.3	25.0	29.7	13.6	14.1	15.2
Temporal Conv	32.5	35.5	38.4	15.2	15.5	15.8
3 Temporal Conv	20.4	23.4	24.4	5.3	6.1	6.5

TGM layers with grouped convolution

Model	Spatial	Temporal	Two-Stream	Spatial	Temporal	Two-Stream
1 TGM	35.1	37.8	40.5	16.3	17.5	18.0
3 TGM	36.4	42.3	43.5	17.5	18.3	19.2

TGM layers with channel combination

Model	Spatial	Temporal	Two-Stream	Spatial	Temporal	Two-Stream
1 TGM (soft)	35.2	37.9	40.2	17.2	17.6	18.4
1 TGM (1x1)	36.1	38.2	40.8	17.2	17.7	18.4
3 TGM (soft)	36.2	40.1	42.3	17.5	19.1	21.2
3 TGM (1x1)	37.2	42.1	44.3	17.9	19.3	22.2

Table 2: Additional number of parameters for models when added to the base architecture (e.g., I3D or Inception V3).

Model	# of parameters
LSTM	10.5M
1 Temporal Conv	10.5M
3 Temporal Conv	31.5M
1 TGM Layer	10K
3 TGM Layers	100K

Table 3: Comparison of previous methods with comparable number of parameters and random forms of our TGM layer.

Model	mAP
LSTM with 100k parameters	6.5
Temporal Conv. with 100k parameters	7.3
TGM with random temporal filters	34.5
TGM with fixed Gaussians	38.5
Full TGM	44.3

followed by a ReLU (to gain non-linearity). We found that the 1x1 convolution performed better. We tested various number of Gaussian mixtures (i.e., output channels) and found that using 80 for the first and second layer and using 65 (i.e., number of classes) for the final layer performs best.

Table 4 compares our model using TGM layers with multiple previous state-of-the-art approaches and baselines such as LSTM. Our approach meaningfully outperforms all previous approaches. Importantly, we are comparing our approach with different methods of capturing temporal information such as LSTMs and fixed temporal pyramid pooling while making them use the exactly same per-frame representations. We found that while all these methods can capture some temporal information, the TGM layers provide the best performance. Further, combining the super-event representation [Piergiovanni & Ryoo 2018] with our TGM feature also benefited detection, confirming that our TGMs and super-events capture different aspects of the activity videos. In Fig. 5, we show an example of the various models predictions on a basketball video. We outperform the previous state-of-the-art performance (mAP) by 10% (36.4 vs. 46.4).

Figure 5: Illustration of the temporal regions classified as various basketball activities from a basketball game video in MultiTHUMOS. Our TGM layers greatly improve performance.
Table 4: Performances of the state-of-the-art methods and our approach on MultiTHUMOS. Our approach meaningfully outperforms all previous results.

Method	mAP
Two-stream [Yeung et al., 2015]	27.6
Two-stream + LSTM [Yeung et al., 2015]	28.1
Multi-LSTM [Yeung et al., 2015]	29.6
Predictive-corrective [Dave et al., 2017]	29.7
I3D baseline	29.7
I3D + LSTM	29.9
I3D + temporal pyramid	31.2
I3D + super-events [Piergiovanni & Ryoo, 2018b]	36.4
I3D + our TGMs	44.3
I3D + super-events [Piergiovanni & Ryoo, 2018b] + our TGMs	46.4

Table 5: Per-frame mAPs on Charades, evaluated with the ‘Charades_v1_localize’ setting.

Method	mAP
Predictive-corrective [Dave et al., 2017]	8.9
Two-stream [Sigurdsson et al., 2016a]	8.94
Two-stream + LSTM [Sigurdsson et al., 2016a]	9.6
R-C3D [Xu et al., 2017]	12.7
Sigurdsson et al. [Sigurdsson et al., 2016a]	12.8
I3D baseline	17.2
I3D + 3 temporal conv. layers	17.5
I3D + LSTM	18.1
I3D + fixed temporal pyramid	18.2
I3D + super-events [Piergiovanni & Ryoo, 2018b]	19.4
I3D + 3 TGMs	20.6
I3D + 3 TGMs + super-events	21.8

4.3 CHARADES

Dataset Charades [Sigurdsson et al., 2016b] is a large scale dataset with 9848 videos across 157 activity classes. These videos were recorded in home environments of the participants based on provided scripts. Each video contains on an average of 6.8 activity instances, and there are often complex activities co-occurring. The activities were mainly performed at home. For example, some activity classes are ‘preparing a meal’, ‘eating’, ‘sitting’, ‘cleaning’, etc.

In our experiments, we follow the original Charades detection setting (i.e., Charades_v1_localize evaluation), which is the setting used in many previous approaches [Sigurdsson et al., 2016a; Xu et al., 2017; Piergiovanni & Ryoo, 2018b]. This is the original setting more challenging than the Charades Challenge 2017 setting (whose evaluation server was no longer approving new account access), in the aspect that it uses less amount of training videos.

Results We compare our results with the state-of-the-arts in Table 5. To our knowledge, our method is obtaining the best known performance in the original localization setting of the Charades dataset. Notably, it is performing better than I3D that obtained the best competition performance, while using the same feature. Our method also outperforms standard temporal convolution, LSTMs, and fixed pyramid pooling, as well as the use of latent super-events.

5 CONCLUSIONS

We newly introduced the Temporal Gaussian Mixture (TGM) layer and demonstrated its effectiveness for multi-activity detection in continuous videos. Our layer is fully differentiable and trainable using standard backpropagation, designed to learn temporal structure. We were able to confirm that our layer performs superior to state-of-the-art methods on activity detection datasets including MultiTHUMOS and Charades, obtaining the best known performance. We also tested our approach with two more public video datasets, MLB-YouTube [Piergiovanni & Ryoo, 2018a] and AVA [Gu et al., 2017], and confirmed its advantage over the previous works in Appendix.
REFERENCES

J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A review. *ACM Computing Surveys*, 43: 16:1–16:43, April 2011.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

Achal Dave, Olga Russakovsky, and Deva Ramanan. Predictive-corrective networks for action detection. *arXiv preprint arXiv:1704.03615*, 2017.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual recognition and description. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2625–2634, 2015.

Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. Daps: Deep action proposals for action understanding. In *Proceedings of European Conference on Computer Vision (ECCV)*, pp. 768–784. Springer, 2016.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network fusion for video action recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1933–1941, 2016.

Chunhui Gu, Chen Sun, Sudheendra Vijayanarasimhan, Caroline Pantofaru, David A. Ross, George Toderici, Yeqing Li, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jitendra Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions. *arXiv preprint arXiv:1705.08421*, 2017.

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learning spatio-temporal features with 3d residual networks for action recognition. In *Proceedings of the ICCV Workshop on Action, Gesture, and Emotion Recognition*, volume 2, pp. 4. 2017.

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 961–970, 2015.

Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and R. Sukthankar. THUMOS challenge: Action recognition with a large number of classes. http://crcv.ucf.edu/THUMOS14/ 2014.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1725–1732, 2014.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. *arXiv preprint arXiv:1705.06950*, 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep networks for video classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4694–4702. IEEE, 2015.

AJ Piergiovanni and Michael S. Ryoo. Fine-grained activity recognition in baseball videos. In *CVPR Workshop on Computer Vision in Sports*, 2018a.

AJ Piergiovanni and Michael S. Ryoo. Learning latent super-events to detect multiple activities in videos. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018b.
AJ Piergiovanni, Chenyou Fan, and Michael S Ryoo. Learning latent sub-events in activity videos using temporal attention filters. In Proceedings of the American Association for Artificial Intelligence (AAAI), 2017.

Michael S Ryoo, Brandon Rothrock, and Larry Matthies. Pooled motion features for first-person videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 896–904, 2015.

Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action localization in untrimmed videos via multi-stage cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1049–1058, 2016.

Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-Fu Chang. Cdc: Convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos. arXiv preprint arXiv:1703.01515, 2017.

Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Abhinav Gupta. Asynchronous temporal fields for action recognition. arXiv preprint arXiv:1612.06371, 2016a.

Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In Proceedings of European Conference on Computer Vision (ECCV), 2016b.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in videos. In Advances in Neural Information Processing Systems (NIPS), pp. 568–576, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016.

Du Tran, Lubomir D Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. C3d: generic features for video analysis. CoRR, abs/1412.0767, 2(7):8, 2014.

Du Tran, Jamie Ray, Zheng Shou, Shih-Fu Chang, and Manohar Paluri. Convnet architecture search for spatiotemporal feature learning. arXiv preprint arXiv:1708.05038, 2017.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at spatiotemporal convolutions for action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6450–6459, 2018.

Ehsan Variani, Erik McDermott, and Georg Heigold. A gaussian mixture model layer jointly optimized with discriminative features within a deep neural network architecture. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pp. 4270–4274. IEEE, 2015.

Gül Varol, Ivan Laptev, and Cordelia Schmid. Long-term Temporal Convolutions for Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

Huijuan Xu, Abir Das, and Kate Saenko. R-c3d: Region convolutional 3d network for temporal activity detection. arXiv preprint arXiv:1703.07814, 2017.

Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and Li Fei-Fei. Every moment counts: Dense detailed labeling of actions in complex videos. International Journal of Computer Vision (IJCV), pp. 1–15, 2015.

Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning of action detection from frame glimpses in videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2678–2687, 2016.

Christopher Zach, Thomas Pock, and Horst Bischof. A duality based approach for realtime tv-l 1 optical flow. In Joint Pattern Recognition Symposium, pp. 214–223. Springer, 2007.

Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaou Tang, and Dahua Lin. Temporal action detection with structured segment networks. arXiv preprint arXiv:1704.06228, 2017.
Figure 6: Examples of several of the activities in the MLB-YouTube dataset: (a) Pitch, (b) Hit, (c) Bunt, (d) Hit by pitch, (e) No activity. This shows the difficulty of this dataset, as the difference between hit and bunt, swing and no swing are very small.

A IMPLEMENTATION DETAILS

As our base per-segment CNN, we use the I3D [Carreira & Zisserman, 2017] network pretrained on the ImageNet and Kinetics [Kay et al., 2017] datasets. I3D obtained state-of-the-art results on segmented video tasks, and this allows us to obtain reliable \(v_t \). We also use two-stream version of InceptionV3 [Szegedy et al., 2016] pretrained on Imagenet and Kinetics as our base per-frame CNN, and compared them. We chose InceptionV3 as it is deeper than previous two-stream CNNs such as [Simonyan & Zisserman, 2014; Feichtenhofer et al., 2016]. We extracted frames from the videos at 25 fps, computed TVL1 [Zach et al., 2007] optical flow, clipped to \([-20, 20]\). For InceptionV3, we computed features for every 3 frames (8 fps). For I3D, every frame was used as the input. I3D has a temporal stride of 8, resulting in 3 features per second (3 fps).

We implemented our TGM layers as well as other baseline layers in PyTorch. We set \(L = 10 \) for frame-based features (i.e., InceptionV3) and \(L = 5 \) for segment-based features (i.e., I3D), as each segment already contains some temporal information. We found these values to work well on a held out portion of the training set of MultiTHUMOS. In all models, we used one fully-connected layer at the end to make the per-frame or per-segment classification.

We trained our models using the Adam [Kingma & Ba, 2014] optimizer with the learning rate set to 0.01. We decayed the learning rate by a factor of 10 after every 10 training epochs. We trained our models for 50 epochs. We plan to make all our source code and trained models publicly available once the paper is published.

B EXPERIMENTS ON ADDITIONAL DATASETS

B.1 MLB-YOUTUBE DATASET

B.1.1 DATASET

The MLB-YouTube dataset [Piergiovanni & Ryoo, 2018a] consists of 20 baseball games from the 2017 MLB post-season available on YouTube. This dataset consists of over 42 hours of video. For these experiments, we used the continuous video setting which have 2,126 1-2 minute long clips. Each clip is densely annotated with the baseball activities that occur. There are 8 activity classes: pitch, strike, ball, swing, hit, foul, hit by pitch, and bunt. Examples of some of these classes are shown in Fig. 6. Each continuous clip contains on average of 7.2 activities, giving a total of over 15,000 activity instances in the dataset.

What makes this dataset challenging is that the variation between classes is very small. In ActivityNet [Heilbron et al., 2015], for example, the difference between swimming and brushing hair is drastic. The background, motion, and even size of the person in the video is different. However, in broadcast baseball videos, the difference between a ball and a strike, or a swing and a bunt, are small. All actions are recorded from the same camera angle as we can confirm from Fig. 6.

B.1.2 RESULTS

In Table 6, we compare various approaches on this dataset. Our TGM layers improve over the baseline by \(\sim 6\% \) (40.1 vs. 34.2). Additionally, we compare to methods using the super-event representation [Piergiovanni & Ryoo, 2018b], which previously achieved state-of-the-art performance on several activity detection datasets. On this dataset, our approach outperforms the super-event
Table 6: Result mAP on the MLB-YouTube dataset using InceptionV3 and I3D to obtain features. Our TGM layers significantly outperform the baseline models.

Model	Spatial	Temporal	Two-stream
Random	13.4	13.4	13.4
InceptionV3	31.2	31.8	31.9
InceptionV3 + LSTM	32.1	33.5	34.1
InceptionV3 + 1 temporal conv	32.8	34.4	35.2
InceptionV3 + 3 temporal conv	28.4	29.8	30.1
InceptionV3 + super-events	31.5	36.2	39.6
InceptionV3 + 1 TGM	32.4	36.3	37.4
InceptionV3 + 3 TGM	33.2	38.2	38.2
InceptionV3 + 3 TGM + super-events	34.6	42.4	42.9
I3D	33.8	35.1	34.2
I3D + LSTM	36.2	37.3	39.4
I3D + 1 temporal conv	37.3	38.6	39.9
I3D + 3 temporal conv	32.4	34.6	35.6
I3D + super-events	38.7	38.6	39.1
I3D + 1 TGM	35.5	37.5	38.5
I3D + 3 TGM	36.5	38.4	40.1
I3D + 3 TGM + super-events	39.4	46.0	47.1

Table 7: Results on AVA dataset with the temporal annotation-only setting (i.e., frame classification without using bounding box training labels).

Model	mAP
Random	2.65
I3D baseline	7.5
I3D + 3 temporal conv. layers	7.9
I3D + LSTM	7.8
I3D + super-events [Piergiovanni & Ryoo 2018b]	9.8
I3D + 1 TGMs	11.2
I3D + 3 TGMs	14.5
I3D + 3 TGMs + super-events	14.9

representation, and further the concatenation of our TGM representation with such super-event representation performs best by a significant margin (~13% compared to the baseline). This suggests that TGMs and super-event capture different temporal information and are both useful to the detection task.

We further find that using multiple, standard temporal convolution layers leads to worse performance, likely due to overfitting from the large number of parameters. While using multiple TGM layers improves performance, confirming that the Gaussian structure and sparsity constraint benefits model learning.

B.2 AVA

B.2.1 Dataset

AVA ([Gu et al. 2017]) is a large-scale video dataset containing of 80 atomic action classes in 57k video clips. These clips are drawn from movies. Existing datasets, such as Charades, have very specific actions that depend on objects, such as holding a cup vs. holding a picture. In AVA, the actions are intentionally generic, such as sit, stand, hold, carry, etc. Further, the AVA dataset is annotated with both spatial and temporal locations of activities. Since we are interested in temporal activity detection, we follow the setting of [Piergiovanni & Ryoo 2018b] and label each frame with the occurring activities while ignoring the spatial location. We evaluate performance following the same method as MultiTHUMOS, Charades and MLB-YouTube by measuring per-frame mAP.
B.2.2 RESULTS

In Table 7 we present the results of our model. We again find that temporal convolution and LSTMs provide some benefit over the baseline, but TGM layers further improve performance. Again, combining the TGM, which captures local temporal structure, with super-events which capture global temporal structure, provides the best performance by $\sim 7.4\%$.