Abstract: The BRCA2 N372H is the only common polymorphism that leads to the amino acid change based on the reports up to date. Previous studies explored the relationship between the single nucleotide polymorphism and ovarian cancer risk, but the results were inconsistent or inconclusive.

To investigate the association between N372H in BRCA2 gene and ovarian cancer susceptibility, a systematic literature search was performed for related publications in the databases of PubMed, Gene, and Google Scholar.

Totalling 2344 cases and 9672 controls in eligible studies were included in this meta-analysis. χ²-based Q test and an I² index were used to identify the heterogeneous records. Potential publication biases were assessed by Begg and Egger tests.

In the overall analysis, the results showed a significant association between BRCA2 codon 372 polymorphism and increased risk of ovarian cancer (HH versus NN: odds ratio (OR) = 1.22, 95% confidence interval (CI) 1.01–1.48, P = 0.037). In the Australia subgroup analysis, significant association was also detected (HH versus NN: OR = 1.40, 95% CI 1.04–1.87, P = 0.026). The subgroup analysis for serous cancer subgroup showed that the significant association could be detected under recessive model (OR = 1.38, 95% CI, 1.01–1.89, P = 0.04) and under homozygote comparison (OR = 1.46, 95% CI, 1.06–2.01, P = 0.022).

Our meta-analysis suggests that the N372H polymorphism is associated with susceptibility of ovarian cancer. The allele H might increase the risk of ovarian cancer, especially, for ovarian cancers of the serous subtype.

INTRODUCTION

Ovarian cancer is the most lethal gynecologic malignancies worldwide. The vast majority of malignant ovarian cancers is of epithelial origin and can be classified into 4 major subtypes: serous, mucinous, endometrioid, and clear cell. Among them, serous epithelial ovarian cancer is the most common subtype, accounts for about 70% of all ovarian cancer cases diagnosed. Despite the intensive studies in this field, which profoundly advanced our understanding of ovarian cancer, the exact molecular pathogenesis of epithelial ovarian cancer is still remains elusive. And the traditional screening strategies, such as ultrasound and CA-125 level detection have not yet been shown to improve overall survival.

BRCA2 involves in DNA double-strand break repair pathway. The mutations on this gene confer high susceptibility to ovarian cancer. Although recent studies already identified several high-risk ovarian cancer genes, common low-penetrance susceptibility alleles might still exist, which leads to moderate increase in ovarian cancer risk. Among the single nucleotide polymorphisms, the rs144848 in exon 10 is the only polymorphism that change the amino acid (from asparagine to histidine), with an exceptional high-allele frequency. The transition is located at the region (residues 290–453), which has been identified to interact with the histone acetyltransferase P/CAF.

Compared with the many published studies on this polymorphism for breast cancer susceptibility, only a few studies focused on this single nucleotide polymorphism for ovarian cancer risk, and the conclusions are inconsistent. We thus, performed this meta-analysis to derive a more precise and up-to-date estimation of the association between BRCA2 N372 and ovarian cancer risk.

MATERIAL AND METHODS

Data Collection

Literature search was performed from the NCBI Global Cross-database, including PubMed, Gene, as well as Google Scholar with the following keywords: “BRCA2 N372H polymorphism,” “rs144848,” “BRCA2 Asn372His polymorphism,” and “ovarian cancer.”

To obtain the qualified data for this analysis, we set up the following inclusion criteria: the data should come from case-control studies; the articles should aim at investigating the association between BRCA2 N372H polymorphisms and ovarian cancer risk; the raw data should have sample size, odds ratio (OR) with 95% confidence interval (CI), or the relevant information should be able to be retrieved; if the studies from different articles overlap, we only keep the ones showing the most extensive results.
After a thorough review of all articles from the literature search, total 6 case-control studies from 4 articles were included in our final meta-analysis for association between N372H polymorphisms and ovarian cancer risk. Based on the Newcastle–Ottawa Scale evaluation, all studies were evaluated as well-defined and eligible to be referred to in a meta-analysis (adequately defined case/control group, good representativeness of case/control group, good comparability between case, and control group). The data collection flow chart is shown in Figure 1.

Our analyses were based on previous published studies, thus, no ethical approval and patient consent are included.

Data Extraction

We extracted the following information from all qualified studies: first author, publication date, countries, ovarian cancer subtypes, number of cases, and controls and the frequencies of BRCA2 codon 372 polymorphisms in both cases and controls. Characteristics of individual studies were summarized in Table 1.

Statistical Analysis

The genotype data were subjected to asymptotic Pearson χ^2 test for the goodness of fit of Hardy–Weinberg Equilibrium.
in controls. A P-value <0.05 was considered as significant
disequilibrium. The results were shown in Table 1. The OR and
corresponding 95% CI for alleles and genotypes were used to
calculate the association between \(BRCA2 \) gene polymorphism
and ovarian cancer susceptibility from the extracted dataset.
The heterogeneity between studies was examined by \(\chi^2 \)-based Q
test and I-squared index. When there was no significant hetero-
genesis (P-value >0.1 and I\(^2\) < 50%), the pooled OR was
estimated by Mantel–Haenszel fixed-effect model.\(^{16}\) Otherwise
the D-L random-effect model \(^{17}\) was applied. The risk of
dominant model (NH + HH versus NN), recessive model (HH versus NH + NN),
and homozygote model (HH versus NN) of \(BRCA2 \) gene polymorphism for the entire dataset were
evaluated, respectively with ORs and 95% CIs. Subgroup
analysis based on ethnic (covering 3 studies from Australia)
or different cancer subtypes (serous ovarian cancer versus
nonserous ovarian cancer) were carried out similarly. Meta-
analysis was performed by STATA (version 12.0). Publication
bias was assessed by Begg funnel plot and Egger linear
regression test. The asymmetric funnel plot is an indication
of possible publication bias.

RESULTS

Subject Characteristics

A total of 4 articles (including 6 studies) from 248 pub-
lications were included in present meta-analysis.\(^{18–21}\) Detailed
exclusion criteria were shown in Figure 1 for unqualified
publications. All the data in these included studies were related
to the association between \(BRCA2 \) N372H polymorphism and
human ovarian cancer risk. The Hardy–Weinberg Equilibrium
for all 4 publications was calculated. One of the 2 datasets
from Beesley study (b) was excluded from the final analysis
because of the statistically significant deviation from HWE
(P value = 0.04). No significant violation of HWE (all P values
greater than 0.05) was detected for other 5 studies including
Auranen (a), Auranen (b), Beesley (a), Wenham and Domber-
nowdky. The characteristics of all studies with 2344 cases and
9672 controls were summarized in Table 1.

Meta-Analysis

In the overall analysis, we found a significant strong associ-
bation between \(BRCA2 \) N372H polymorphism and increased risk
of ovarian cancer in the homozygote model (HH versus NN) with
OR 1.40 (95% CI, 1.04–1.87, \(P = 0.026 \)) (Table 3, Fig. 3C) and recessive model (HH versus
NN + NH) with OR 1.67 (95% CI, 1.03–1.82, \(P = 0.032 \))
(Figure 3B). For dominant model, the overall OR was 1.10
(95% CI, 0.94–1.28, \(P = 0.235 \)) (Table 3, Fig. 3A).
The subgroup analysis for serous cancer subgroup showed
that the \(BRCA2 \) N372H polymorphism has marginally elevated

\begin{table}
\caption{Meta-Analysis for Entire Database With Dominant Model (NH + HH Versus NN), Recessive Model (HH Versus NH + NN), and Homozygote Model (HH Versus NN)}
\label{table2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Analysis} & \textbf{Model} & \textbf{Analysis} & \textbf{Method} & \textbf{Heterogeneity} & \textbf{OR} & \textbf{Publication Bias} \\
\hline
\textbf{Model} & \textbf{Method} & \textbf{I\(^2\)} & \textbf{P Value} & \textbf{Overall} & \textbf{Lower} & \textbf{Upper} & \textbf{P Value} & \textbf{Begg} & \textbf{Egger} \\
\hline
Dominant & Fixed & 0.0 & 0.986 & 1.077 & 0.977 & 1.187 & 0.134 & 0.086 & 0.156 \\
Recessive & Fixed & 0.0 & 0.506 & 1.195 & 0.996 & 1.434 & 0.056 & 0.462 & 0.329 \\
Homozygote & Fixed & 0.0 & 0.619 & 1.222 & 1.012 & 1.475 & 0.037 & 0.806 & 0.360 \\
\hline
\end{tabular}
\end{table}

\textit{OR} = odds ratio.
TABLE 3. Subgroup Meta-Analysis With Dominant Model (NH + HH Versus NN), Recessive Model (HH Versus NH + NN), and Homozygote Model (HH Versus NN) for Australia, Serous Ovarian Cancer, and Nonserous Ovarian Cancer

Subgroup	Analysis Model	Analysis Method	Heterogeneity	OR			P Value	
			I² (%)	P Value	Overall	Lower	Upper	
Australia	Dominant	Fixed	0.0	0.999	1.099	0.941	1.283	0.235
	Recessive	Fixed	0.0	0.528	1.366	1.028	1.816	0.032
	Homozygote	Fixed	0.0	0.577	1.395	1.040	1.871	0.026
Serous ovarian cancer	Dominant	Fixed	0.00	0.867	1.18	0.99	1.40	0.060
	Recessive	Fixed	29.4	0.242	1.38	1.01	1.89	0.040
	Homozygote	Fixed	23.9	0.267	1.46	1.06	2.01	0.022
Nonserous ovarian cancer	Dominant	Fixed	0.0	0.727	0.98	0.84	1.16	0.848
	Recessive	Fixed	0.0	0.589	1.11	0.81	1.52	0.519
	Homozygote	Fixed	0.0	0.739	1.09	0.79	1.5	0.601

OR = odds ratio.

FIGURE 3. Risk evaluation of BRCA2 codon 372 polymorphism under the (A, D, and G) dominant model (NH + HH versus NN) (B, E, and H), recessive model (HH versus NH + NN), and (C, F, and I) homozygote model (HH versus NN) for Australia subgroup, serous cancer subgroup, and nonserous cancer subgroup.
risk in the dominant model with the overall OR 1.18 (95% CI, 0.99–1.40, \(P = 0.06 \)). Statically significant association could be detected under recessive model (OR was 1.38, 95% CI, 1.01–1.89, \(P = 0.04 \)) and under homozygote comparison (OR was 1.46, 95% CI, 1.06–2.01, \(P = 0.022 \)) (Table 3. Figures 3D–F). On the contrary, no difference was observed between case and control group in nonserous subtype subgroup. For dominant model, the overall OR was 0.98 (95% CI, 0.84–1.16, \(P = 0.848 \)). For recessive model, the overall OR was 1.11 (95% CI, 0.81–1.52, \(P = 0.519 \)) and for homozygote comparison, the overall OR was 1.09 (95% CI, 0.79–1.50, \(P = 0.601 \)) (Table 3; Figures 3G–I).

FIGURE 3. (Continued).
Evaluation of Heterogeneity

When we examined the heterogeneity for the entire dataset under all 3 allele comparison models, the P-values by \(\chi^2 \)-based Q test were all greater than 0.1 and I^2 indexes were all smaller than 50% (Table 2), indicating no statistically significant heterogeneity between studies. Similarly no significant heterogeneity was observed under all 3 models when we performed subgroup analysis for Austria dataset and different cancer subtype dataset (Table 3).

Potential Publication Bias

We examined the potential publication bias for the overall datasets by Begg funnel plots and Egger linear regression analysis. All the funnel plots under all 3 models were symmetrical (Figure 4) and the P-values from Egger test were all great than 0.05 (Table 2). Meanwhile, funnel plot and Egger test were not available for all subgroup datasets because of small sample size.

DISCUSSION

Several genes polymorphisms in ovarian cancer risk have been explored, such as Vitamin D receptor FokI,\(^2\) human epididymis protein 4 (HE4),\(^3\) the progesterone receptor,\(^4\) p53 \(^5\)–\(^7\), and RAD52.\(^8\) In our study, we investigated the association of BRCA2 gene N372H polymorphism with ovarian cancer risk in the context of a case-control study. The majority of ovarian cancers are sporadic; only approximately 10% cases are hereditary. Although mutations on BRCA2 is one of the major cause of hereditary ovarian cancers, the expression profiles are also altered in sporadic ovarian cancers, which are known as the “BRCAness” of sporadic cancers. Therefore, it is logical to seek low-penetrance susceptibility alleles in this gene. Among all the BRCA2 gene SNPs reported up-to-date, N372H (rs144848) is the most common polymorphism that leads to an amino acid change, where the basic N residue is substituted by the structurally smaller neutral residue H. Although the exact function of this nonconservative substitution is still unknown, it might alter the protein structure and function, as it is located at the N-terminal region where BRCA2 interacts with P/CAF to activate other gene transcription.

Previous studies related to N372H polymorphism and ovarian cancer risk were either based on relative smaller sample size, different ethnic group, or different methodologies. The conclusions were somehow inconsistent or inconclusive. For
example, Auranen et al (2003) found that the HH genotype was associated with an increased risk of ovarian cancer with OR 1.36 (95% CI 1.04–1.77, \(P = 0.03 \)) based on 1121 ovarian cancer cases and 2643 controls from British, and Australian studies. Although Wenham et al (2003) concluded that no such association could be detected in their study from 312 cases and 401 controls in North Carolina. In the present meta-analysis, we did not find a statistically significant association under the homozgyous model (HH versus NN) for either overall or Australia subgroup data from pooled 3147 cases and 10,497 controls. From the combined analysis of all 5 studies, the genotypes (NH + HH), however, were determined to have a 1.12× increased risk (95% CI, 1.03–1.22, \(P = 0.01 \)) for ovarian cancer compared with 372NN genotype. For the overall subgroup analysis, we also detected a significant association between N372H polymorphism and ovarian cancer risk under the dominant model (NH + HH versus NN) with OR = 1.17 (95% CI, 1.04–1.32, and \(P \)-value = 0.009). These results suggested that the allele H at BRCA2 codon 372 has a moderate yet definite genetic effect. The genotypes NH and HH carriers have an increased risk of ovarian cancer.

The present meta-analysis also indicated that there exists a much stronger association between BRCA2 N372H polymorphism with ovarian cancers of the serous subtype compared with other ovarian cancer subtypes. As in the subgroup analysis for serous ovarian cancer, our study showed that the risk was even higher for the HH homozygotes (1.38× to 1.42× increased risk). This is in agreement with other previous studies, as they also suggested the HH homozygotes may be at greater risk in serous ovarian cancers.18

Meanwhile, some limitations might be present in our analysis: The heterogeneity between studies—we examined the heterogeneity in present analysis by \(\chi^2 \)-based Q test and I squared test. The \(P \)-values were >0.1 and \(I^2 \) were <50% for all the analysis performed in our study, indicating that no significant heterogeneity was detected; Publication bias—in our study, potential publication bias was visualized by the funnel plot and was further evaluated by Egger test. The \(P \)-values of Egger test are greater than 0.5 under all models for overall datasets, which provided evidence for the symmetry of funnel plots in our meta-analysis. We cannot, however, exclude the possibility of publication bias for Australia subgroup dataset, as only 3 publications were included in this subgroup. More data are required to generalize our results in other ethnicities. HWE test in the control group showed that the distribution of genotypes in 1 of the 2 datasets from Beesley study is not in HWE, possibly because of systematic errors in genotyping or others. As for the retrospective study, meta-analysis is subject to methodological limitations, which emphasizes the need to interpret our results with caution.

In conclusion, our meta-analysis suggests that the N372H polymorphism is associated with susceptibility of ovarian cancer. The allele H has a moderate yet definite genetic effect. The risk may be even greater for ovarian cancers of the serous subtype.

REFERENCES

1. Slotman BJ, Rao BR. Ovarian cancer (review). Etiology, diagnosis, prognosis, surgery, radiotherapy, chemotherapy and endocrine therapy. Anticancer Res. 1988;8:417–434.

2. Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24:x16–x21.

3. Jelovac D, Armstrong DK. Recent progress in the diagnosis and treatment of ovarian cancer. CA: Cancer J Clin. 2011;61:183–203.

4. King MC, Marks JH, Mandell JB, et al. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302:643–646.

5. Hughes DJ, Ginolhac SM, Coupier I, et al. Common BRCA2 variants and modification of breast and ovarian cancer risk in BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev. 2005;14:265–267.

6. Fuku F, Milner J, Kouzarides T. BRCA2 associates with acetyltrans-ferase activity when bound to P-CAF. Oncogene. 1998;17:2531–2534.

7. Healey CS, Dunning AM, Teare MD, et al. A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability. Nat Genet. 2000;26:362–364.

8. Spurdle AB, Hopper JL, Chen X, et al. The BRCA2 372 HH genotype is associated with risk of breast cancer in Australian women under age 60 years. Cancer Epidemiol Biomarkers Prev. 2002;11:413–416.

9. Hasan TN, Shafi G, Syed NA, et al. Lack of association of BRCA1 and BRCA2 variants with breast cancer in an ethnic population of Saudi Arabia, an emerging high-risk area. Asian Pac J Cancer Prev. 2013;14:5671–5674.

10. Ramos SJ, Vierkant RA, Johnatty SE, et al. Consortium analysis of 7 candidate SNPs for ovarian cancer. Int J Cancer. 2008;123:380–388.

11. Qiu LX, Yao L, Xue K, et al. BRCA2 N372H polymorphism and breast cancer susceptibility: a meta-analysis involving 44,903 subjects. Breast Cancer Res Treat. 2010;123:487–490.

12. Seymour IJ, Casadei S, Zampiga V, et al. Disease family history and modification of breast cancer risk in common BRCA2 variants. Oncol Rep. 2008;19:783–786.

13. Palli D, Falchetto M, Masala G, et al. Association between the BRCA2 N372H variant and male breast cancer risk: a population-based case-control study in Tuscany, Central Italy. BMC Cancer. 2007;7:170.

14. Garcia-Closas M, Egan KM, Newcomb PA, et al. Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses. Hum Genet. 2006;119:376–388.

15. Wells GA, Shea B, O’Connell D, et al. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Interdiscip Perspect Infect Dis. 2014;2014:625670. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm.

16. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–748.

17. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–114.

18. Auranen A, Spurdle AB, Chen X, et al. BRCA2 Arg372Hispolymorphism and epithelial ovarian cancer risk. Int J Cancer. 2003;103:427–430.

19. Beesley J, Jordan SJ, Spurdle AB, et al. Association between single-nucleotide polymorphisms in hormone metabolism and DNA repair genes and epithelial ovarian cancer: results from two Australian studies and an additional validation set. Cancer Epidemiol Biomarkers Prev. 2007;16:2557–2565.

20. Dombernowsky SL, Weischer M, Freiberg JJ, et al. Missense polymorphisms in BRCA1 and BRCA2 and risk of breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:2339–2342.
21. Wenham RM, Schildkraut JM, McLean K, et al. Polymorphisms in BRCA1 and BRCA2 and risk of epithelial ovarian cancer. *Clin Cancer Res*. 2003;9:4396–4403.

22. Gnagnarella P, Pasquali E, Serrano D, et al. Vitamin D receptor polymorphism FokI and cancer risk: a comprehensive meta-analysis. *Carcinogenesis*. 2014;35:1913–1919.

23. Zhen S, Bian LH, Chang LL, et al. Comparison of serum human epididymis protein 4 and carbohydrate antigen 125 as markers in ovarian cancer: a meta-analysis. *Mol Clin Oncol*. 2014;2:559–566.

24. Liu T, Chen L, Sun X, et al. Progesterone receptor PROGINS and +331G/A polymorphisms confer susceptibility to ovarian cancer: a meta-analysis based on 17 studies. *Tumour Biol*. 2014;35:2427–2436.

25. de Graeff P, Crijns AP, de Jong S, et al. Modest effect of p53, EGFR and HER-2/neu on prognosis in epithelial ovarian cancer: a meta-analysis. *Br J Cancer*. 2009;101:149–159.

26. Bauerschlag DO, Schem C, Weigel MT, et al. The role of p53 as a surrogate marker for chemotherapeutical responsiveness in ovarian cancer. *J Cancer Res Clin Oncol*. 2010;136:79–88.

27. Hauptmann S, Denkert C, Koch I, et al. Genetic alterations in epithelial ovarian tumors analyzed by comparative genomic hybridization. *Hum Pathol*. 2002;33:632–641.

28. Kelemen L, Spurdle AB, Purdie DM, et al. RAD52 Y415X truncation polymorphism and epithelial ovarian cancer risk in Australian women. *Cancer Lett*. 2005;218:191–197.