Tuning oxygen vacancy photoluminescence in monoclinic Y_2WO_6 by selectively occupying yttrium sites using lanthanum

Bangfu Ding1, Chao Han1, Lirong Zheng2, Junying Zhang1, Rongming Wang3 & Zilong Tang4

1Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China, 2Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China, 3School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China, 4State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China.

The effect of isovalent lanthanum (La) doping on the monoclinic Y_2WO_6 photoluminescence was studied. Introducing the non-activated La3+ into Y_2WO_6 brings new excitation bands from violet to visible regions and strong near-infrared emission, while the bands position and intensity depend on the doping concentration. It is interesting to find that doping La3+ into Y_2WO_6 promotes the oxygen vacancy formation according to the first-principle calculation, Raman spectrum, and synchrotron radiation analysis. Through the Rietveld refinement and X-ray photoelectron spectroscopy results, La3+ is found to mainly occupy the Y2 (2f) site in low-concentration doped samples. With increasing doping concentration, the La3+ occupation number at the Y3 (4g) site increases faster than those at the Y1 (2e) and Y2 (2f) sites. When La3+ occupies different Y sites, the localized energy states caused by the oxygen vacancy pair change their position in the forbidden band, inducing the variation of the excitation and emission bands. This research proposes a feasible method to tune the oxygen vacancy emission, eliminating the challenge of precisely controlling the calcination atmosphere.

Tungstates are a kind of self-activated luminescence materials. That can be divided into several categories, normal metal tungstates (MWO\textsubscript{4}), rare earth tungstates (Re\textsubscript{2}WO\textsubscript{6}) and poly-tungstates1–3. Since Kroger4 concluded that the lattice group (WO\textsubscript{4}2−/WO\textsubscript{4}6−) itself was responsible for the luminescence origin1, what influenced tungstates luminescence properties was explored extensively such as morphology, size and dimension5,6. In addition to intrinsic emission of anion-cation groups, there was also emission from defect states, inevitably incurred because of the abundant synthesis methods and flexible annealing temperatures and atmospheres5,6. For example, the photoluminescence intensity of amorphous BaWO\textsubscript{4} was higher than that of crystalline BaWO\textsubscript{4} because of different annealing temperatures10. Therefore, the tungstate hosts luminescent properties were of great interest11,12.

Though various methods have been employed to improve luminescent properties, process parameters especially annealing atmospheres, in particular oxygen partial pressure, were not controlled precisely13,14. An easy and convenient approach is to dope impurities in matrixes to enhance emission or obtain multi-color emission14–16. The impurity can be any elements for the non-isovalent doping, such as trivalent rare earth and monovalent alkaline metal ions17–18. This method has been extensively investigated in luminescent compounds, photocatalysts, and magnetic materials. For example, La3+-doped ZnO has high photocatalytic activity19, and LaCoMnO\textsubscript{6} presents the coexistence of ferromagnetic and antiferromagnetic properties with increased Ca2+ substitution amounts20. For tungstates, this approach mainly aims at enhancing luminescent intensity, changing optical activity, or broadening emission wavelength range21–23. For instance, the emission wavelength of CaW (MoO\textsubscript{4}) nanoparticles was tuned from blue-green or yellow to white by increasing the Dy3+ concentration24. In addition, there are considerable reports on the La3+ doping effect on the luminescence properties of PbWO\textsubscript{4}25,26. According to the first principles study, different electronic compensation effects lead to different defect states in the band gap for high and low doping conditions, which explains the 420 nm band origin and new red absorption band27.

Similarly, the isovalent doping can also change the luminescence properties of matrixes such as salt compounds and oxides28,29. White up-conversion luminescence and enhanced emission were obtained in Yb3+/Er3+/Tm3+ doped YAlO\textsubscript{3} and Ca2+-doped MgO nanocrystals. The isovalent doping technique is often considered in tungstates, especially rare earth tungstates. The energy transfer processes of rare earth tungstates doped with Eu3+, Sm3+, Dy3+ and co-doped with Eu3+/Tb3+ have been summarized by Kaczmarek and Deum30. However, the photoluminescence mechanism of the matrix such as lanthanum, lutetium and yttrium tungstates (La\textsubscript{2}WO\textsubscript{6}, Lu\textsubscript{2}WO\textsubscript{6}, Nd\textsubscript{2}WO\textsubscript{6} and Y\textsubscript{2}WO\textsubscript{6})31–35 after importing isovalent and non-activated ions is still open to be exploited. The luminescent properties of Bi\textsubscript{2}WO\textsubscript{6} with and without La3+ doping were compared at low temperature 4 K38, having found that La3+ doping increased the stokes shift of the matrix luminescence.

Various activators and sensitizers have been doped to improve the emission of monoclinic Y\textsubscript{2}WO\textsubscript{6}33–35,39. The main purposes of these investigations are how to obtain white-light emission or promote energy conversion efficiency. The oxygen vacancy and local crystal structural regulation of monoclinic Y\textsubscript{2}WO\textsubscript{6} by non-activated ions have not been reported until now. Recently, we40 found that the atmosphere and calcination temperature induced the changes of oxygen vacancy concentration and tungsten coordination number in monoclinic Y\textsubscript{2}WO\textsubscript{6} and thus affected the appearance of long-wave excitation and near-infrared emission bands. By calcining Y\textsubscript{2}WO\textsubscript{6} in the air at 1200 °C, the 340 nm excitation band, caused by low-concentration oxygen-vacancy, was substantially enhanced in comparison with those calcined at high temperature or in argon. Calcining in argon resulted in strong infrared emission because of the increased oxygen vacancy concentration41. But the oxygen partial pressure, which depends on the airtightness of the furnace, cannot be controlled purposefully when the sample is calcined in the air. Therefore, it is ideal to tune the oxygen vacancy by a simple and feasible method on the basis of the doping approach advantages. Moreover, the mechanism behind the impurity effect on the luminescence of the matrix needs more intensive investigation to make up for the deficiency of the previous theory.

In this paper, a series of Y\textsubscript{2}WO\textsubscript{6}:xLa3+(x = 0 and 0.01–0.05) powders are synthesized in air condition at 1250 °C through the simple solid phase reaction. These samples show strong visible emission. It is surprising to find that the 340 nm excitation intensity of the powders with dopant concentration not more than 3 at% is stronger than that of the pristine Y\textsubscript{2}WO\textsubscript{6}. The La3+ doping can also produce many new excitation bands in the ultraviolet and visible regions. These new excitation bands are ascribed to the different oxygen vacancy pair behavior induced by occupation variation of La3+ in the three Y sites. When La3+ enters into the Y2 (2f) site at low concentration, the oxygen vacancy pair energy band locates just above the valence band (VB), intensifying the 340 nm excitation band. At high doping concentration, the occupation number of La3+ in the Y3 (4g) site becomes high, bringing new localized energy states and excitation bands and weakening the 340 nm excitation intensity. The change of oxygen vacancy energy states generates different luminescence phenomenon.

Results and Discussion

Crystal structure. The crystal structure of pure Y\textsubscript{2}WO\textsubscript{6} is monoclinic phase with space group 13-P\textsubscript{1}2\textsubscript{1}/C\textsubscript{1}-C\textsubscript{2h} reported by Efremov41, whose inorganic crystal structure database (ICSD) number is 20955. In order to check the phase purity of as-prepared samples, X-ray diffraction (XRD) measurement results are plotted in Figure 1. All the XRD patterns agree well with the patterns of powder diffraction file (PDF) card 73-0118 and no peaks from other phases such as La\textsubscript{2}WO\textsubscript{6} are observed. Due to the effective ion radius difference of Y3+ (0.96 Å and 1.019 Å for VII and VIII coordination) and La3+ (1.10 Å and 1.160 Å for VII and VIII coordination)42, the diffraction peaks of the La3+-doped samples slightly deviate when La3+ substitutes for Y3+.

The structure refinement of Y\textsubscript{2}WO\textsubscript{6}:xLa3+(x = 0.03, 0.05) powders was performed through the general structure analysis system (GSAS) software package43. The calculated patterns are consistent with the experimental XRD patterns (Supporting Information, Figure S1(a) and (b)). The atomic positions, occupation numbers, crystal structure and refinement parameters are listed in Table 1. The volumes of the samples gradually become larger with increasing La3+ content, while the atomic coordination and lattice parameters change a little. From the occupation numbers, one can see that La3+ enters into three Y sites simultaneously at any concentrations, occupying mainly the Y2 (2f) and Y3 (4g) sites and minorly the Y1 (2e) site. In 3.0 at% and 5.0 at% La3+-doped samples, the occupation

Figure 1 | XRD patterns of Y\textsubscript{2}WO\textsubscript{6}:xLa3+(x = 0 and 0.01–0.05) powders calcined at 1250°C under air condition and PDF card 73-0018.
numbers of La$^{3+}$ at Y1 (2e), Y2 (2f), and Y3 (4g) sites are 0.009, 0.035, and 0.02 and 0.01, 0.052 and 0.044, respectively. Hence, the occupation numbers of La$^{3+}$ in the Y2 (2f) and Y3 (4g) sites gradually become higher with increasing La$^{3+}$ concentration, and their variation quantities are 0.017 and 0.024, whereas, La$^{3+}$ hardly enters into the Y1 (2e) site under this experimental condition.

There is a W (4g) site possessing C$_{3}$ symmetry, which is surrounded by six O atoms to form distorted octahedral coordination. The bond lengths of the six W–O are not identical each other. Three kinds of Y sites were coordinated with eight (2e, 2f) and seven (4g) oxygen atoms constructing polyhedron coordination. The Y1 (2e) and Y2 (2f) sites have C$_{3}$ symmetry, while the Y3 (4g) site takes on C$_{1}$ symmetry44. The average Y–O bonds length is 2.3 Å for three Y sites. According to Pauling’s electrostatic valence rule45, the bond strengths (S) of yttrium and tungsten are S$_{Y1-O}$ = 0.3, S$_{Y2-O}$ = 0.3, S$_{Y3-O}$ = 0.3, and S$_{W-O}$ = 0.3. Thus the sum of the ζ ($= \sum S_{i} = \frac{9}{8}$) is approximately equal to the O$^{-}$ valence, indicating that Y$_{2}$WO$_{6}$ has stable structure. Because of isoelectrons between La$^{3+}$ and Y$^{3+}$, Y$_{2}$WO$_{6}$:La$^{3+}$ also possesses a stable structure as evidenced by the invariability of the XRD patterns (Figure 1)46–49.

Photoluminescence properties. Figure 2 shows the photoluminescence (PL) emission and excitation spectra of all Y$_{2}$WO$_{6}$:xLa$^{3+}$ (x = 0 and 0.01–0.05) samples. Under 340 nm excitation, the PL emission spectra have broad band shapes covering from 365 to 650 nm with maximal value around 470 nm. This band results from charge transition emission between the local oxygen 2p states (just above the VB) and the conduction band (CB)40. The PL intensities in pure and low-concentration La$^{3+}$-doped samples (x \leq 0.03) are stronger than those of high-concentration La$^{3+}$-doped powders. From Figure 2(a), the asymmetric shapes of emission spectra do not depend on dopant concentration and remain single-peak frameworks. In addition, the total, low-energy side, high-energy side half widths and peak values show slight dependence on La$^{3+}$ concentration (Supporting Information, Table S1)50. Thus, the emission band is composed of at least two overlapping bands50.

Moreover, the powders also show the near-infrared emission in the scope of 1000–1700 nm as depicted in Figure 3(a)–(f). The pure sample displays strong luminescence in the 1300–1400 nm region and weak emission in the 1450–1650 nm region. Under the 340, 378, 489, 512, 512, and 532 nm excitations, the 1–3 at% La$^{3+}$-doped samples show strong emissions in two regions (1300–1400 nm and 1450–1650 nm). When the concentration continues to rise to 4 at% and 5 at%, the infrared luminescence is also observed in two regions (1300–1400 nm and 1450–1700 nm), besides much stronger emission from 1000 to 1150 nm. In order to exhibit the fine structure clearly, we have enlarged the emission spectra of 4 at% and 5 at% La$^{3+}$-doped samples from 1300 nm to 1700 nm (supporting information, Figure S2). Tuning the La$^{3+}$ content changes the infrared luminescence, suggesting the presence of ample local states in the band gap51.

To obtain a better understanding of photoluminescence phenomena, Figure 2(b) displays the excitation spectra of all samples by monitoring 520 nm emission. All samples show three excitation bands containing two short wavelength bands (peaking at 280 and 310 nm) and one long wavelength band (peaking at 340 nm). When La$^{3+}$ doping concentration increases from 1 at% to 3 at%, the 340 nm band gradually intensifies compared with the pristine sample. When the doping concentration exceeds 3 at%, the intensity of this band gradually weakens. A similar excitation band also appeared in other tungstates such as CaWO$_{4}$52 and ZnWO$_{4}$:Bi$^{3+}$, Eu$^{3+}$ phosphors53. Their origins were ascribed to oxygen vacancy and S$_{0}$ \rightarrow P$_{1}$ transitions of Bi$^{3+}$. For air-annealed Y$_{2}$WO$_{6}$ sample54,50, this band was originated from low-concentration oxygen vacancy. Therefore, the dramatic variation of the 340 nm excitation band intensity undoubtedly originates from the oxygen vacancy defect and La$^{3+}$ doping effect. The tunable defect emission intensity is obtained by changing the La$^{3+}$ content. When the detector wavelength extends to the near-infrared ranges, many new excitation peaks, such as 380, 491, and 523 nm, appear in 1–3 at% La$^{3+}$-doped powders. For samples doped with higher content of La$^{3+}$, a series of peaks at 380, 482, 522, 533, 577, and 591 nm are observed. These new excitation bands were ascribed to the oxygen vacancy pair in Y$_{2}$WO$_{6}$.55 In the pristine sample, only the 340 nm excitation band is observed. Hence the behavior of oxygen vacancy changes a lot due to the incorporation of La$^{3+}$ in Y$_{2}$WO$_{6}$.

Local crystal environments. In order to explore these new excitation bands origins and intensity variation of the 340 nm excitation band, we carried out Raman measurement to determine the local vibration structure of all the samples. According to group theory56,54, Y$_{2}$WO$_{6}$ crystals have 3N = 3 × 36 = 108 distinct Raman and Infrared
Figure 2 | PL emissions (a) and excitations (b) of Y$_2$WO$_6$:xLa$^{3+}$ (x = 0 and 0.01–0.05) powders calcined at 1250°C in air.

Figure 3 | (a)–(f) Emission spectra of Y$_2$WO$_6$:xLa$^{3+}$ phosphors burning in air conditions measured under different excitation wavelength. (g)–(l) Excitation spectra of Y$_2$WO$_6$:xLa$^{3+}$ powders measured by monitoring emission in the near-infrared region.
vibration modes. As we know, Raman spectra of tungstates can be identified with two types of groups as external and internal vibration modes\(^5\). The external vibration modes concerning lattice phonons correspond to the motion of polyhedral \(YO_{6/n}\) clusters. The internal vibration modes originates from the vibration of distorted octahedral \(WO_{6}\) clusters\(^{6,55}\), which are written as \(\Gamma_{\text{internal}} = A_{1g} + E_g + F_{2g} + 2F_{1u} + 2F_{2u}\).

The Raman active vibration modes of all \(Y_2WO_6:xLa^{3+}\) powders ranging from 100 to 1000 cm\(^{-1}\) are shown in the Supporting Information (Figure S3). Table 2 lists all the Raman peaks positions and the coordination numbers according to similar chemical formulas \(M_2W(Mo)O_{6n}\) (\(M = La, Nd, Sm, and Bi\))\(^5\). In the undoped sample, the strongest peak at 834 cm\(^{-1}\) is assigned to the \(W = O\) symmetrical stretching vibration \(A_{1g}\) mode and has a half width of 20 cm\(^{-1}\), which indicates that the coordination number (CN) between tungsten and oxygen is \(6^{6,55}\). The weak peaks at 707, 694, \(WO_{6}\) clusters\(^5\) which are written as

The average coordination number (CN) of tungsten and oxygen can be calculated as \(CN = \text{attenuation factor} \times 6/\lambda\), where \(\lambda\) is the value of W-O in standard sample (generally 0.7–0.9) and 6 is the theoretical coordination number. From the table S2, the average number of tungsten is reduced with the increase of \(La^{3+}\) content. Hence, it is confirmed further that oxygen vacancy concentration becomes high gradually. Though the attenuation factor of 2\% \(La^{3+}\)-doped sample is slightly larger than those of 1\% and 3\% \(La^{3+}\)-doped samples, the three values are assumed approximately equal. The tungsten CN is gradually reduced with increasing \(La^{3+}\) concentration, which hints that oxygen vacancies exist in all samples. Since the external environments are the same in the experiment, the oxygen vacancy variation is undoubtedly ascribed to the doping effect of \(La^{3+}\).

In order to shed more lights on the \(La^{3+}\) information in \(Y_2WO_6\), the XPS spectra of the La 3d core level for the \(Y_2WO_6:xLa^{3+}\) with \(x = 0.03\) and 0.05 are shown in Figure 4. The La 3d XPS in the two samples can be fitted as a superposition of four Gaussian components. The peaks at 834 and 851 eV can be attributed to two spin-orbit components. The other two peaks at 837 and 854 eV are La 3d satellite peaks. Hence, the double peak structure of each spin-orbit split agrees with the reported literatures\(^6\). As we know, the spin split orbit reflects states with configurations [3d\(^9\)]\(^{5f0}\)L and [3d\(^9\)]\(^{5f1}\)L, where L indicates the oxidant ligand. Generally, the \(f^0\) dominates the low binding energy signals, and the high binding energy is referred to the \(f^1\) peaks. Because the doping concentration has no obvious effect on the La 3d \(f^0/f^1\) intensity ratio, the \(f^0/f^1\) energy separation and peak shift are considered.

The \(f^0/f^1\) separation values are 3.628 eV and 3.404 eV in these two samples, which differ from those in ABO\(_3\) perovskites, \(La_2CuO_4\) (3.1 eV), \(LaCoO_3\) (4.3 eV) and \(La_{1.85}Ba_{0.15}CuO_4\) (5.3 eV)\(^6\). Thus, the X-ray absorption fine structure (EXAFS) measurements of W-L\(_{III}\) absorption in \(Y_2WO_6:xLa^{3+}\) (\(x = 0.01-0.05\)) samples are applied to determine the local structure around W atoms. Through Fourier transformation of the fine structure signals, Figure S4 shows the radical structure functions of W atoms. A strong peak in Figure S4 corresponds to the nearest neighbor O atoms of W ion. Furthermore, the fitting results are given in Table S2 by further Fourier fitting of this peak.

Table 2 | The Raman peaks of all the samples and the corresponding coordination numbers (CN) are shown according to a similar formula \(M_2W(Mo)O_{6n}\). The material in parentheses, such as \(La_2WO_6\), denotes that the Raman peak values equal to those in Ref. 57.

No	\(Y_2WO_6\)	\(Y_2WO_6:\text{La}^{3+}\)	\(Y_2WO_6:\text{La}^{3+}\)	\(Y_2WO_6\)	\(Y_2WO_6:\text{La}^{3+}\)	\(Y_2WO_6:\text{La}^{3+}\)	
	(x = 0.01–0.03)	(x = 0.04, 0.05)	(x = 0.01–0.03)	(x = 0.04, 0.05)	(x = 0.01–0.03)	(x = 0.04, 0.05)	
1	- 934	- 934	- 22	340	6 340	6 340	
2	834	6 834	6 23	309	6 309	6 309	
3	- 798[La\(_2\)MoO\(_6\)]	-	- 24	290	6 290	6 290	
4	- 773[La\(_2\)MoO\(_6\)]	4	4 25	282	6 282	6 282	
5	707	6 714	6 26	270	6 270	6 270	
6	694	6 694	6 27	253	6 253	6 253	
7	668	6 668	6 28	238	6 238	6 238	
8	645	6 645	6 29	225	6 225	6 225	
9	621	6 621	6 30	215	6 215	6 215	
10	596	6 596	6 31		207[Nd\(_2\)MoO\(_6\)]	4 207[Nd\(_2\)MoO\(_6\)]	
11	550	6 550	6 32	199	6 199	6 199	
12	521	6 521	6 33	192	6 189	6 189	
13	501	6 501	6 34	178	6 178	6 178	
14	471	6 466	6 35	170[Sm\(_2\)WO\(_6\)]	5	170[Sm\(_2\)WO\(_6\)]	5
15	446	6 446	6 36	155[Sm\(_2\)WO\(_6\)]	5	155[Sm\(_2\)WO\(_6\)]	5
16	426	6 426	6 37	142	6 142	6 142	
17	394	6 394	6 38	127	6 127	6 127	
18	381[Bi\(_2\)MoO\(_6\)]	4	4 39	118	6 118	6 118	
19	375	-	- 40	-	113	6 113	
20	364	6 362	6 41	104	6 104	6 104	
21	354	6 354	6		6 354	6 354	

www.nature.com/scientificreports}
the equivalent doping can change the f-f energy separation value, which is similar to that reported in the literature (3.6 eV for La3+-doped ZnO)40. Moreover, the La\textsubscript{3d\textsubscript{5/2}} and La\textsubscript{3d\textsubscript{3/2}} peaks shift to higher energy by 0.179 eV and 0.038 eV, and the satellite peaks shift to lower energy by 0.045 eV and 0.115 eV from x = 0.03 to x = 0.05 samples. These shifts really reflect the change in chemical potential. Different peak positions and f-f' energy separation values reflect different contents of La in the three Y sites61, which agrees with Retiveld refinement results. The La\textsubscript{3d\textsubscript{5/2}} and La\textsubscript{3d\textsubscript{3/2}} splitting distances for the x = 0.03 and x = 0.05 samples are estimated to be 16.81 and 16.670 eV, respectively, which further confirms that the occupancy site variation of La with its concentration induces the chemical state change.

Photoluminescence mechanism. To obtain the deep understanding of luminescence origin, the first principle method is often applied to derive electronic structures of luminescent materials62. The appearance of four- and five-coordination tungsten atom numbers from the pure to different-concentration La3+-doped samples indicates that the oxygen vacancy concentration increases gradually with incorporation of La3+ into the samples. Hence, we first establish a perfect 1 × 2 × 1 Y\textsubscript{2}WO\textsubscript{6} supercell, and then one or two oxygen atoms next to tungsten are removed to constitute single and twin oxygen vacancies together with replacing the nearest Y atom with a La atom (these models are labeled as La\textsubscript{Yk} + V\textsubscript{O(i)} and La\textsubscript{Yk} + V\textsubscript{O(ij)} with k = 1, 2, and 3 and i, j = 1, 2, 3, 4, 5, and 6, i ≠ j). Under oxygen-rich atmosphere, the defect formation energies (E\textsubscript{formation}) of various models when oxygen vacancy locates at different sites are plotted in Figure 5. As illustrated in Figure 5(a), for the models containing one oxygen vacancy, the variation rules of E\textsubscript{formation} are the same for the undoped and La3+-doped models expect for the model with V\textsubscript{O(0)}. Their average values are calculated as 2.1593, 2.2175, 2.0334, and 2.2521 eV for pure and La3+-doped models when La substitutes for Y at three sites. Comparing these two average E\textsubscript{formation} for V\textsubscript{O(i)} and La\textsubscript{Yk} + V\textsubscript{O(i)} models, it can be found that when La3+ replaces Y2, the formation energy is reduced. This indicates that La3+ enters into the Y2 site most easily, and doping La3+ into Y\textsubscript{2}WO\textsubscript{6} can really promote the formation of oxygen vacancies.

Though the average E\textsubscript{formation} for V\textsubscript{O(i)} is smaller than those of La\textsubscript{Y1} + V\textsubscript{O(i)} and La\textsubscript{Y3} + V\textsubscript{O(i)}, La3+ also can occupy Y1 and Y3 sites in the process of high-temperature calcination. Therefore, the probability of La entering into the Y2 site exceeds that of entering into Y1 and Y3 sites. The calculation results accord well with those of XRD refinement. For the La\textsubscript{Yk} + V\textsubscript{O(i)} models, the minimal E\textsubscript{formation} is located at different sites for the four configurations (V\textsubscript{O(i)} and La\textsubscript{Yk} + V\textsubscript{O(i)}). The average values of the four cases are 4.1819, 4.3838, 3.6547, and 4.4581 eV. Similarly, the E\textsubscript{formation} average value of La\textsubscript{Y2} + V\textsubscript{O(0)} is smaller than that of the V\textsubscript{O(0)}, and the difference of average E\textsubscript{formation} between V\textsubscript{O(0)} and La\textsubscript{Yk} + V\textsubscript{O(i)} (k = 1 and 3) samples is very small. Hence, the La3+ doping induces oxygen vacancy increase, which is consistent with the analysis of Raman spectra and synchrotron radiation.

For self-activated luminescent tungstates, the CB and VB are mainly composed of W 5d and O 2p states. Thus, the tungstate luminescence origin is intrinsic luminescence65. Moreover, luminescence caused by intrinsic defects such as oxygen vacancies or interstitial atoms also exists in tungstates66,67. For our samples, there exists amply oxygen vacancy luminescence information. As previously reported, the origin of the 340 nm excitation band is ascribed to low-concentration oxygen vacancy namely some five coordination tungsten atoms40. In samples containing La3+, the oxygen vacancy concentration increases in comparison with the pristine Y\textsubscript{2}WO\textsubscript{6}, resulting in some four and five-fold tungsten atoms.

Based on these results, we calculate the electronic structure of the samples containing both La3+ and an oxygen vacancy pair, to exploit the role of La doping on the behavior of the oxygen vacancy pair. As found previously40, single oxygen vacancy accounts for the excitation bands shorter than 400 nm (340 nm), while oxygen vacancy pair causes a series of excitation bands from 380 to 600 nm. We only need to find out why in the low-concentration La3+-doped sample which contains an oxygen vacancy pair like the high-concentration La3+-doped samples the 340 nm excitation band dominates. La3+ prefers to enter into the Y2 site at low concentration and then enters into the Y3 site at high concentration. Therefore, we studied the electronic structures of samples containing an oxygen vacancy pair, where La3+ occupies three Y sites, namely La\textsubscript{Y1}, La\textsubscript{Y2}, and La\textsubscript{Y3}, respectively. When the E\textsubscript{formation} of these structures are closest to the average value of E\textsubscript{formation} in La\textsubscript{Yk} + V\textsubscript{O(0)}, we calculated their electronic properties.

On the basis of the Y\textsubscript{2}WO\textsubscript{6} crystal structure68, three-type Y sites are surrounded by different kinds of oxygen atoms. The nearest
neighbors of the Y1 (2e) site are O3(2), O4(2), O5(2), and O6(2) (the numbers in parentheses represent oxygen atom numbers). Similarly, O1(2), O2(2), O4(2), and O6(2) surround the Y2 (2f) site, and O1(1), O2(1), O3(1), O4(1), O5(2) and O6(1) surround the Y3 (4g) site. When La enters the Yk site, the nearest oxygen atoms escape to form oxygen vacancy easily, and then the other oxygen atoms different from the nearest oxygen species escape. Hence, the average $E_{\text{formation}}$ can be calculated for the nearest oxygen vacancy in the LaYk + V_{O(i)} models. These average values are 4.6778, 3.7884 and 4.4581 eV for LaY1 + V_{O(36)}, LaY2 + V_{O(24)}, and LaY3 + V_{O(14)}, respectively.

Therefore, the electronic structures of LaY1 + V_{O(36)}, LaY2 + V_{O(24)}, and LaY3 + V_{O(14)} configurations are calculated, because their $E_{\text{formation}}$ are closest to the average $E_{\text{formation}}$.

Figure 6 displays the total density of states (DOS) and partial DOS of the constituted atoms. The CB and VB are mainly composed of W 5d and O 2p states with small contributions of Y 4d. The contributions of all the La electron states for VB and CB are almost zero. The W 5p, Y 4s, W 5s, La 6s, La 4d, Y 4p, O 2s, and La 5p are located below the VB from -45 eV to -10 eV. The electronic structure properties of Y2WO6 are similar to those of some tungstates and molybdates such as scheelite CaWO4 and wolframite ZnMoO4. Therefore, the luminescence origin of Y2WO6 is mainly ascribed to the charge transfer transition between W and O. Moreover, the local state positions and numbers for the LaY2 + V_{O(24)} model are similar to those of Y2WO6 with low-concentration oxygen vacancy. For LaY1 + V_{O(36)} and LaY3 + V_{O(14)} models, these states resemble those of Y2WO6 with high-concentration oxygen vacancy. Thus, these differences of local states induce different excitation and emission phenomena. In low-concentration La3+-doped samples, La mainly enters into the Y2 sites resulting in ample oxygen vacancy pair.
When these samples are radiated under ultraviolet (UV) light larger than the gap value (E_{gap}), 3.75 eV, the electrons jump from the VB to the CB then relax and finally emit photons. Thus, the 280 nm and 310 nm excitation bands can be produced. When the UV light energy is smaller than E_{gap}, the electrons in (3) states (local O 2p states) jump to the CB, generating the 340 nm excitation peak, while electrons jumping from (3) to (4) (local W 5d states) produce the 378 nm weak excitation band. Therefore, the 340 nm peak intensities gradually with increasing La$_Y$2 numbers (not more than Y2 sites numbers). When the doping concentration increases, the content variation of La$_Y$3 is larger than those of La$_Y$2. The electrons in (5) also jump to the CB corresponding to 340 nm excitation. However, the transition from (5) to (6) becomes a direct transition leading to strong 592 nm excitation, which weakens the electron transition for the contribution of 340 nm. Therefore, the 340 nm intensity becomes weak (does not disappear) in high-concentration La$^{3+}$-doped samples.

From a phenomenological viewpoint, the occupation number of Y2 site becomes higher but does not reach saturation, and La$^{3+}$ tends to occupy the Y3 sites at high doping concentrations. Thus, the 340 nm band intensity strengthens at low La content and then weakens with further increasing doping concentration. In addition, a few La$^{3+}$ ions enter into the Y1 site as shown in table 1, and the transitions between the VB and the local states (1) can produce some excitation peaks around 500 nm. When La$^{3+}$ occupations different Y sites, along with the oxygen pair, the local crystal structure shows different changes such as bond length and electronic density. The W-O bond lengths were measured as shown in Table S3. Since the six W-O bond lengths are unequal, the average values are computed. The average bond length variations in models La$_Y$1 + V$_{O(36)}$, La$_Y$2 + V$_{O(24)}$, and La$_Y$3 + V$_{O(14)}$ are 0.048, 0.026, and 0.045 Å, respectively. One can see that the bond lengths change relative to the pristine system in model La$_Y$2 + V$_{O(24)}$ is the smallest, and thus smallest distortion promotes the 340 nm excitation intensity. For models La$_Y$1 + V$_{O(36)}$ and La$_Y$2 + V$_{O(24)}$, bigger distortions lead to other forbidden transitions becoming allowed transitions, thus weakening the 340 nm intensity. Different bond length variations result in different local state distributions in the band gap.

Table 3 lists the energy level positions of VB maximum (VBM), local states, and CB minimum (CBM). From Figure 6, Figure S5 and Table 3, one can see that the 340 nm excitation band weakens or disappears when La$^{3+}$ enters into the Y3 or Y1 sites. Therefore, the first principle calculation explains the gradual death of the 340 nm excitation band and the emergence of many new peaks. Finally, the schematic oxygen vacancy forming process is plotted (Figure S6).

Conclusion. In the present paper, we study the concentration effect of isovalent La$^{3+}$ doping on the photoluminescence of monoclinic Y$_2$WO$_6$. The incorporating of La$^{3+}$ into the matrix favors the formation of single and coupled oxygen vacancies. At low doping concentration, La$^{3+}$ prefers to occupy the Y2 (2f) site, while at high concentration, it mainly occupies the Y3 (4g) site. When La occupies the Y2 (2f) site, the local states caused by the oxygen vacancy pair locate just below the CBM and connect with the VBM. When La occupies the Y3 (4g) site, new local energy bands appear. As a result, besides the emission of the W-O group in the visible region, there appear new emission and excitation bands because of the mid-gap excitation using light longer than 320 nm. At low La$^{3+}$ doping concentration, the 340 nm excitation band is substantially intensified, resulting in visible emission. A series of excitation bands in the visible region also appear, causing strong near-infrared emission. The abundant change of the excitation and emission spectra with the La doping is ascribed to the single and coupled oxygen vacancy change and the selective occupation of La to different Y sites. In our previous articles, the Y$_{Y_0}$WO$_6$0.02Sm$^{3+}$ phosphors can emit white light under 340 nm excitation. The luminescence is mainly originated from the tungstate group and Sm$^{3+}$ emission. In this paper, La doping in monoclinic Y$_2$WO$_6$ greatly improves luminescence intensity under 340 nm excitation. Therefore, the strong white-light emission can be anticipated through co-doping the non-activated La$^{3+}$ and luminescent Re$^{3+}$ (Sm$^{3+}$, Eu$^{3+}$) in self-activated Y$_2$WO$_6$ host under the near-ultraviolet irradiation.

Experiment and calculation details

Samples preparation and characterization. Y$_2$WO$_6$$_xLa^{3+}$ (x = 0 and 0.01 ± 0.05) powders were prepared through solid-state reaction. The detailed experiment steps and characterization methods were described previously. For La$^{3+}$-doped samples, the raw materials were added different amounts of La$_2$O$_3$. The chemical state of the La element was examined by x-ray photoelectric spectra (XPS) using a Thermoelectron ESCALAB 250 spectrometer equipped with monochromatic Al X-ray source (1486.6 eV).

Calculation procedures. To determine formation energy and the electronic structure, we use VASP software to simulate the doping effect in periodic supercell structures. In the following, the La$_Y$3 model was used as an example to illustrate the calculation steps. First, a unitcell was built, and then relaxed fully. Second, the relaxed unitcell was expanded to a $1 \times 2 \times 1$ supercell. For samples containing single or coupled oxygen vacancy, we constructed and fully optimized the $1 \times 2 \times 1$ supercell, where one La substituted for Y1 and O1 or O1 and O2 (six-type oxygen sites) atom(s) near the W atom neighboring La was removed. Third, the defect formation energy ($E_{\text{formation}}$) of all La$_Y$3 + V$_{O(x)}$ models were calculated. Finally, when the $E_{\text{formation}}$ of one model was closest to the average value of the fifteen models in every type of La$_Y$3, the DOS and energy band structure were computed. In order to overcome the bandgap underestimation drawback of density function theory (DFT) calculation, the generalized gradient approximation (GGA) + U method was applied in all calculations. Through a series of tests, the optimal U values for O, Y, La and W were found to be 4.5, 0.0, 0.0 and 9.9 eV.

1. Zhu, Y. J. & Chen, F. Microwave-assisted Preparation of Inorganic Nanostuctures in Liquid Phase. *Chem. Rev.* 114, 6462–6555 (2014).
33. Guzik, M. Scientific et al
2. Allix, M.
21. Morozov, V. A.
26. Nikl, M.
34. Qian, H. J., Zhang, J. Y. & Yin, L. Q. Crystal Structure and Optical Properties of
3. Bhat, S. S. M.
23. Zhou, Y, Yan, B. & He, X. H. Controlled Synthesis and Up/Down-conversion
5. Zhang, C. L.
19. Weber, A. S., Grady, A. M. & Koodali, R. T. Lanthanide Modified Semiconductor
13. Bessiere, A.
10. Santos, M. A.
30. Kaczmarek, A. M. & Deun, R. V. Rare Earth Tungstate and Molybdate
20. Li, Q. H.
24. Zhen, B. & Cui, X. Photoluminescence Properties of Eu(III) Ion-doped Lu6Mo(W)O12.
14. Yang, R. Y. & Liu, Y. T. Luminescent Metastable Y2WO6:Ln3+
9. Wang, J. L. Luminescence Properties of Nano and Bulk ZnW2O8 and Their
12. Li, H. Y. et al. Crystals Structure, Electronic Structure and Optical and
Photoluminescence Properties of Eu(III) Ion-doped LaMo(W)O12, Inorg. Chem.
35. Wang, J. et al. Luminescent Metastable Y2WO6:Ln3+(Ln = Eu, Er, Sm, and Dy) Microphases with Controllable Morphology via Self-assembly. J. Mater. Chem. B. 10, 10894–10900 (2010).
36. Wang, Q. et al. Multicolor Bright Ln3+(Ln = Eu, Dy, Sm) Activated Tungstate Phosphor for Multifunctional Applications. Opt. Mater. Express. 4, 142–154 (2014).
37. Huang, M. N., Ma, Y. Y., Xiao, F. & Zhang, Q. Y. Bi1+ Sensitive Y2WO6:Ln3+(Ln = Dy, Eu) Phosphors for Solar Spectral Conversion. Spectrochim. Acta. A. 120, 55–59 (2014).
38. Blasse, G. & Dirksen, G. The Luminescence of Bismuth Tungstates. Chem. Phys. Lett. 85, 150–152 (1982).
39. Noort, H. M. V. & Popma, T. J. A. Concentration-dependent Site Occupancy in Europium Doped Y3Al5O12 Studied by 17O Mossbauer Spectroscopy. Solid. State. Commun. 55, 77–79 (1985).
40. Ding, B. F., Qian, H. J., Han, C., Zhang, J. Y., Linquisti, S. E. & Wei, B. Oxygen Vacancy Effect on Photoluminescence Properties of Self-Activated Yttrium Tungstate. J. Phys. Chem. C. 118, 256333–25642 (2014).
41. Efremov, V. A., Tyulin, A. V., Trunov, V. K., Kudin, O. V., Yanovskii, V. K. & Voronkova, V. I. The Crystal structure of Monoclinic Y2WO4 and Yb2WO4 Kristallografiya. 29, 904–909 (1984).
42. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta. Cryst. A. 32, 751–767 (1976).
43. Larson, A. C. & Dreele, R. B. V. General Structure Analysis System [Larson, A. C., Dreele, R. B. V. (ed.)] (Los Alamos National Laboratory Report LAUR 86-748, Cambridge, 2004).
44. Vanderdoesdebye, J. A. W. et al. Luminescence of Y21-xEu3xWO4:Ln3+ Luminescence Properties of Eu(III) activated SrW2O4 Nanoparticles and Concentration and Annealing Effect. RSC. Adv. 4, 32660–32661 (2014).
45. Xia, Z. G. et al. Linear Structural Evolution Induced Tunable Photoluminescence in Clinopyroxene Solid-solution phosphors. Sci. Rep. 3, 3310–3310:6 (2013).
46. Beng, Y. P. et al. The Effect of La2O3 in Tb3+ doped Germanate-tellurite Glasses for ~2 μm Emission. Sci. Rep. 4, 5256–5256:5 (2014).
47. Lorber, C. et al. Charge Compensation in ReO3 (Re = Eu, Gd) and M3+ (M = Li, Na, K) Co-doped Alkaline Earth Nanofluorides Obtained by microwave Reaction With Reactive Ionic liquids Leading to Improved Optical Properties. J. Mater. Chem. C. 2, 9439–9405 (2014).
48. Weber, A. S., Grady, A. M. & Kooi, D. R. Lanthanide Modified Semiconductor Photocatalysts. Catal. Sci. Technol. 2, 683–693 (2012).
49. Li, Q. H. et al. The Effect of Ca-substitution in La-site on the Magnetic Properties of La2CoMnO6, J. Appl. Phys. 116, 033905–033905:4 (2014).
50. Morozov, V. A. et al. Incommensurate Modulation and Luminescence in the CaCd12-xEu2+x(MoO4)12(WO4)12 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Red Phosphors. Chem. Mater. 25, 4387–4396 (2013).
51. Arias, J. P. et al. Synthesis, Characterization and Optical activity of La-doped ZnW2O8 Nanorods by Hydrothermal Method. Superlattice & Microstruct. 67, 197–206 (2014).
52. Zhou, Y., Yan, B. & He, X. Controlled Synthesis and Up/Down-conversion Luminescence of Self-assembled Hierarchical structures of Monocline AgRe5O13. J. Solid. State. Chem. 212, 503–509 (2015).
53. Sharma, K. G. & Singh, N. R. Synthesis and Luminescence Properties of CaMo4O11 Dy3+ (M = W, Mo) Nanoparticles prepared via an Ethylene Glycol Route. New. J. Chem. 37, 2784–2791 (2013).
54. Fabeni, P. et al. Luminescence and Photo-thermally Stimulated Defects Creation Processes in PbWO4 Crystals Doped With Trivalent Rare-earth Ions. J. Lumin. 163, 42–50 (2015).
55. Niel, M. et al. Decay Kinetics and Thermoluminescence of PbWO4-La2O3. J. Appl. Phys. Lett. 71, 3575–3577 (1997).
56. Chen, J. et al. First-principles Study on the La1–xDy1–xEu2+ Doping PbWO4 Crystals for Different Doping Concentration. Phys. Lett. A. 363, 477–481 (2007).
57. Lv, W. C. et al. White Up-conversion Luminescence in Rare-earth-ion doped YAlO3 Nanocrystals. J. Phys. Chem. C. 112, 15071–15074 (2008).
58. Stankic, S. et al. Novel Optical Surface Properties of Ca4–doped MgO Nanocrystals. Nano. Lett. 5, 1889–1893 (2005).
59. Kaczmarek, A. M. & Deun, R. V. Rare Earth Tungstate and Molybdate Compounds-From 0D to 3D Architectures. Chem. Soc. Rev. 42, 8835–8848 (2013).
60. Chen, F. M. & Liu, X. H. Structure and Photoluminescence Properties of La2O3 : Eu3+ as Red Phosphors for White LED Application. Opt. Mater. 35, 2716–2720 (2013).
61. Zhang, Z. J. Structure refinement of Lu2O3: WO4 and luminescent Properties of Eu3+, Pr3+ doped Lu2O3, J. Alloy. Compd. 466, 258–263 (2008).
62. Guzik, M. et al. Structural and Spectroscopic Characterization of Two Promising Nd2-doped monolithic or Tetragonal Laser Tungstates. J. Mater. Chem. 22, 14896–14906 (2012).
63. Qian, H. J., Zhang, J. Y. & Yin, L. Q. Crystal Structure and Optical Properties of White Light Emitting Y2WO6:Sm3+ Phosphors With Excellent Color Rendering. RSC. Adv. 3, 9029–9034 (2013).
Acknowledgments

This project was financially supported by the National Science Foundation of China under Grant (No. 91222110 and 51472013), the PhD Programs Foundation of the Ministry of Education of China under Grant No. 20121102110027, State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (No. KF201414) and the high-performance computing platform of Network Information Center in Beihang University.

Author contributions

B.F.D. completed the writing of the manuscript and first-principle calculation. C.H. performed the sample preparation and all the experimental tests. L.R.Z. fitted the data of synchrotron radiation. J.Y.Z. designed the whole research and revised the articles. R.M.W. and Z.L.T. participated in the discussion of the data and proposed many good suggestions.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ding, B. et al. Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum. Sci. Rep. 5, 9443; DOI:10.1038/srep09443 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/