Coronavirus disease 2019 (COVID-19) is an ongoing pandemic, reported to cause asymptomatic to severe disease and eventually death. Multi-organ failure and death in patients with severe COVID-19 is associated with increased release of pro-inflammatory cytokines into the bloodstream. Renal impairment is reported in a significant proportion of COVID-19 patients and is associated with high mortality. Acute kidney injury (AKI) is multifactorial and involving overlapping pathogenic mechanisms. This review updates the reader of recent publications dealing with the mechanisms underlying AKI in patients with COVID-19. A full understanding of all the possible ways in which the system plays its role in AKI is still a matter of research. Further studies are warranted to better understand the causes of AKI in COVID-19 patients.

Implication for health policy/practice/research/medical education:
Acute kidney injury (AKI) is more common in severely ill patients with COVID-19. AKI is strongly correlated with the occurrence of respiratory failure disease severity. Acute kidney injury in COVID-19 patients conferred a poor prognosis and outcomes. Please cite this paper as: Chegini R, Mojtahedi Z, Lakkakula BVKS, Pezeshgi A, Niazi S, Nasri H. COVID-19 and the kidney; mechanisms of tubular injury by SARS-CoV-2. J Renal Inj Prev. 2021; 10(1): e08. doi: 10.34172/jrip.2021.08.

Introduction
The disease caused by a SARS-CoV-2 infection, which is called coronavirus disease 2019 (COVID-19), is an ongoing pandemic. Although the catastrophic pulmonary effects of COVID-19 have been well documented, damage to other organ systems, such as the heart, kidneys, and liver, has also been reported (1). The predominant clinical symptoms of COVID-19 are similar to those of common cold and flu, including dry cough, dyspnea, myalgia pneumonia, fatigue and fever (2). Clinical manifestation of COVID-19 has been reported to range from asymptomatic to severe (hyperinflammatory shock) and eventually death (3). Numerous studies have shown that increased pro-inflammatory cytokines could release into the bloodstream and cause a “cytokine storm” leading to multi-organ failure and death in patients with severe COVID-19. Further, acute respiratory distress syndrome (ARDS) is the most significant pulmonary complication severely infected patients (1-3).

Renal impairment is also reported in a significant
proportion of COVID-19 patients and is associated with high mortality (2). Although the occurrence of acute kidney injury (AKI) and its effect on COVID-19 are not fully understood, the assessment of renal function during SARS-CoV-2 infection is of particular interest (4). AKI is more common in people with more severe disease, principally critically ill patients in intensive care units. Hence, AKI is considered as a marker of disease severity and a negative prognostic factor for survival (5).

A recent study from the United States, which included the majority of African American patients, reported an overall frequency of AKI of 28%, of which more than 50% of the cases required emergency dialysis (6). Another study from the USA found that the overall AKI frequency in hospitalized patients ranged from 28% to 46%, while initial reports from China showed that the overall AKI frequency increased from 0.5% to 29% (7). It is generally accepted that the mortality rate of SARS-CoV-2 cases with AKI is thought to be significant, ranging from 8% to 23%. As development of AKI in SARS-CoV-2 individuals is a major predictive factor for poor survival (8), the physicians should pay specific attention to SARS-CoV-2-infected patients manifesting AKI. As AKI is multifactorial involving with overlapping pathogenic mechanisms, this review updates the reader of recent publications dealing with the mechanisms underlying AKI in patients with COVID-19 (8).

Methods

Data were collected in Scopus, EBSCO, Google Scholar, Web of Science and PubMed databases. The keywords used include SARS-CoV-2, COVID-19, chronic kidney disease, acute respiratory distress syndrome, angiotensin-converting enzyme II, hemodialysis, acute renal failure, remdesivir, end-stage renal disease, acute kidney injury, cellular transmembrane serine protease 2 and renal injury. In addition to search terms, we limit data collection to research and review articles written in English only.

Mechanisms of acute renal injury in SARS-CoV-2

Since AKI is associated with ARDS during SARS-CoV-2 infection, AKI can be attributed to a variety of factors, including hemodynamic changes, such as fluid overload and systemic congestion, harmful mechanical ventilation strategies and the development of sepsis. Further, several studies have highlighted the importance of an inflammatory/immune-mediated response with the release of high levels of harmful circulating mediators that can interact with kidney-inhabiting cells, leading to endothelial dysfunction and tubular injury. Given the frequency of their occurrence and the fact that these etiologies associated with acute kidney injury will be discussed briefly (2-8).

Kidney is a specific target for SARS-CoV-2 infection

Since SARS-CoV-2 RNA was detected in the blood and
normal kidney function. After the onset of cytokine storm syndrome and/or inflammation, compensatory repair processes occur to restore the affected tissues and organ function. Severe inflammation and injury are followed by healing with fibrosis and tissue destruction and finally by permanent organ dysfunction (17). In this regard, it was initially believed that patients with chronic renal failure could be protected from cytokine storm syndrome, but it has recently been found that the SARS-CoV-2 infected patients, and in particular patients with end-stage renal disease, have higher morbidity and mortality (19).

Hypoxia causes kidney malfunction during SARS-CoV-2 infection
Tissue hypoxia has been proposed as an important factor in the pathophysiology of AKI. Limited the oxygen supply to the kidney tissue makes the kidney susceptible to hypoxia and accelerates the deterioration of renal function. The coexistence of hypoxia and inflammation may further direct the inflammatory response toward worse outcome in infection rather than tissue recovery (20). Considering that severe hypoxia is a classic feature of severe SARS-CoV-2 infection, it is very likely that a system that induces hypoxia (HIF) will be involved, which may affect the inflammatory response and the outcome of the kidneys (21). In support of this, involvement of the HIF pathway during AKI has been shown in various kidney disease models (22).

Hypercoagulability and thrombosis in COVID-19
Patients with COVID-19 ARDS exhibited an abnormal coagulation parameter and poor prognosis (23). Laboratory results show that the elevated D-dimer on admission or marked increase in D-dimer levels during the illness is associated with high mortality (24). In addition, anti-phospholipid antibodies and infarcts in vascular regions have been reported in patients with COVID-19 (25). Retention of metabolic toxins due to renal dysfunction leads to a state of hypercoagulation during infections. However, whether AKI affects hypercoagulability and thromboembolism in COVID19 patients is unclear (23-25).

Aggravating factors of acute kidney injury
Acute renal injury is more common in severely ill patients with COVID-19 (9). Various factors such as nephrotoxic agents, hypotension, sepsis, dehydration and hypoxemia play a role in the development of acute kidney injury (13). In addition, medications, including antiviral substances, antibiotics and NSAIDs are contributing factors for worsening of acute renal injury (13). Patients with severe COVID-19 often exhibit electrolyte and acid-base imbalance, diarrhea, disseminated intravascular coagulation, and heart failure. Acute kidney injury and concomitant endothelial damage, glomerular hypertension, interstitial infiltration, and fibrosis are major factors leading to chronic renal failure after an episode of acute kidney injury (26). The chronic conditions that affect the immune system include heart disease; asthma, lupus, and diabetes increase the burden of morbidity and mortality associated with COVID-19 (27). Further, acute kidney injury (AKI) in COVID-19 patients is associated with elevated creatine phosphokinase (CPK) and rhabdomyolysis (28). In the process of rhabdomyolysis, muscle damage causes a massive release of myoglobin in the kidneys, a direct toxic substance for renal tubular cells. Consequently, tubular obstruction and vasoconstriction increase renal impairment by myoglobin. In addition, myoglobin stimulates hyperactivation of the renin-angiotensin-aldosterone system and reduces nitric oxide (NO) levels, causing renal hypoperfusion and acute tubular injury (29).

Kidney damage from SARS-CoV-2 infection is not only a result of the direct effects of the virus, but also of the treatment modalities. Binois et al, showed that the patients treated with lopinavir/ritonavir developed acute renal failure (30). Lopinavir/ritonavir combination use has been associated with acute interstitial nephritis symptoms in COVID 19 patients. However continuing this drug combination is also associated with renal proximal tubular damage (30). Remdesivir is a broad-spectrum anti-viral agent that is administered using a vehicle called cyclohextrin. As cyclohextrin causes nephrotoxicity and impairment of renal function, there are concerns regarding the use of the drug in patients with pre-existing kidney disease (31). Severe Covid-19 patients treated with compassionate-use remdesivir showed acute renal failure only in patients requiring mechanical ventilation (32). Hence, monitoring of renal function should be considered during remdesivir therapy.

SARS-CoV-2–associated renal tubulopathy
The presence of hematuria and albuminuria in cases of SARS-CoV-2, together with viral RNA in urine samples, also shows the intense tropism of the SARS-CoV-2 for renal tissues (33). Histopathological studies in COVID-19 patients with renal dysfunction, showed proximal acute tubule injury (ATI), the occlusion of microvascular lumens, endothelial damage, as well as glomerular and vascular changes (34). In addition, intermittent hemosiderin granules and pigmented casts were identified (34). Further, co-occurrence of lymphocytes infiltration with acute renal tubular necrosis in the interstitial area was noted (35). In some cases, renal proximal tubule dysfunctions with proteinuria and aminoaciduria have been found (36). In this study, renal proximal tubule dysfunctions were found to be independent of treatamental modality and glomerular proteinuria. Laboratory findings of SARS-CoV-2 individuals without history of renal disease, showed a condition equaling to Fanconi syndrome before presenting with acute renal failure (37).
Impact of acute kidney injury on survival of COVID-19

Initial studies from China reported a raised occurrence of AKI in below 7% of inpatient admissions and around 23% in adult cases who admitted to ICUs (38). The subsequent studies revealed that AKI increases the mortality of adult patients with SARS-CoV-2 (39,40). Higher incidence of AKI was documented in severely ill COVID-19 patients (41). A recent study from Pakistan indicated that the renal function impairment at all levels of disease severity which well correlated with plasma creatinine, urea and potassium (42). Analysis of data from the international HOPE-Registry, indicated that the kidney insufficiency at the time of admission is related to a larger amount of morbidity and mortality (19). A systematic review and meta-analysis suggested that the kidney dysfunction is common among patients with COVID-19, and patients who develop AKI have severe disease and inferior outcomes and increased mortality (4). Further, it is also reported that the AKI occurs frequently in Covid-19 patients and AKI in temporal association with respiratory failure is associated with a poor prognosis (43).

Conclusion

In conclusion, AKI is more common in severely ill patients with COVID-19. AKI is strongly correlated with the occurrence of respiratory failure disease severity. AKI in COVID-19 patients conferred a poor prognosis and outcomes. A full understanding of all the possible ways in which the system plays its role in AKI is still a matter of research. Further studies are warranted to better understand the causes of AKI in COVID-19 patients.

Authors’ contribution

Primary draft by RG, HN and LBVKS, ZM, AP and SN edited the paper. RG, HN and AP finalized the manuscript. All authors read and signed the final paper.

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical considerations

Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the authors.

Funding/Support

None.

References

1. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and multiorgan response. Curr Probl Cardiol. 2020;45(8):100618. doi:10.1016/j.cpcardiol.2020.100618
2. Ren X, Wei X, Li G, Ren S, Chen X, Zhang T, et al. Multiple expression assessments of ACE2 and TMPRSS2 SARS-CoV-2 entry molecules in the urinary tract and their associations with clinical manifestations of COVID-19. bioRxiv. 2020:2020.05.08.083618. doi:10.1101/2020.05.08.083618
3. Baiwa H, Riaz Y, Ammar M, Faresq S, Yousaf A. The Dilemma of Renal Involvement in COVID-19: A Systematic Review. Cureus. 2020;12:e8632. doi:10.7759/cureus.8632
4. Robbins-Juarez SY, Qian L, King KL, Stevens JS, Husain SA, Radhakrishnan J, et al. Outcomes for patients with COVID-19 and acute kidney injury: a systematic review and meta-analysis. Kidney Int Rep. 2020;5:1149-60. doi:10.1016/j.ekir.2020.06.013
5. Durvasula R, Wellington T, McNamara E, Watnick S. COVID-19 and kidney failure in the acute care setting: our experience from Seattle. Am J Kidney Dis. 2020;76:4-6. doi:10.1053/j.ajkd.2020.04.001
6. Chan L, Coca SG. Acute kidney injury in the time of COVID-19. Kidney360. 2020;1:588-90. doi:10.34067/kid.0003722020
7. Sharma P, Uppal NN, Wanchoo R, Shah HH, Yang Y, Parikh R, et al. COVID-19-associated kidney injury: a case series of kidney biopsy findings. I Am Soc Nephrol. 2020;31(9):1948-58. doi:10.1681/asn.2020050699
8. Shao M, Li X, Liu F, Tian T, Luo J, Yang Y. Acute kidney injury is associated with severe infection and fatality in patients with COVID-19: a systematic review and meta-analysis of 40 studies and 24,527 patients. Pharmacol Res. 2020;161:105107. doi:10.1016/j.phrs.2020.105107
9. Martinez-Rojas MA, Vega-Vega O, Bobadilla NA. Is the kidney a target of SARS-CoV-2? Am J Physiol Renal Physiol. 2020;318:F1454-62. doi:10.1152/ajprenal.00160.2020
10. Chen QL, Li JQ, Xiang ZD, Lang Y, Guo GJ, Liu ZH. Localization of cell receptor-related genes of SARS-CoV-2 in the kidney through single-cell transcriptome analysis. Kidney Dis (Basel). 2020;6:258-70. doi:10.1159/000508162
11. Ransick A, Lindstrøm NO, Liu J, Zhu Q, Guo JJ, Alvarado GF, et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell. 2019;51:399-413.e7. doi:10.1016/j.devcel.2019.10.005
12. Asgharpour M, Zare E, Mobarak M, Alirezaei A. COVID-19 and kidney disease: update on epidemiology, clinical manifestations, pathophysiology and management. J Coll Physicians Surg Pak. 2020;30:19-25. doi:10.29271/jcpsp.2020.Suppl.1.S19
13. Qian JY, Wang B, Liu BC. Acute kidney injury in the 2019 novel coronavirus disease. Kidney Dis. 2020;6:318-23. doi:10.1159/000509086
14. Meena P, Bhargava V, Rana DS, Bhalia AK, Gupta A. COVID-19 and the kidney: a matter of concern. Curr Med Res Pract. 2020;10:165-8. doi:10.1016/j.cmrpr.2020.07.003
15. Batlle D, Soler MJ, Sparks MA, Hiremath S, South AM, Welling PA, et al. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 2020;31:1380-3. doi:10.1681/asn.2020040419
16. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62-75. doi:10.1016/j.cytogfr.2020.06.001
17. Gagliardi I, Patella G, Michael A, Serra R, Provenzano M, Andreucci M. COVID-19 and the kidney: from epidemiology to clinical practice. J Clin Med. 2020;9:2506.
31. Adamsick ML, Gandhi RG, Bidell MR, Elshaboury RH, Bhattacharyya RP, Kim AY, et al. Remdesivir in patients with acute or chronic kidney disease and COVID-19. J Am Soc Nephrol. 2020;31:1384-6. doi:10.1681/asn.2020050589
32. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020;382:2327-36. doi:10.1056/NEJMoa2007016
33. Puelles VG, Lütjehohmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweis L, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383:590-2. doi:10.1056/NEJMmc2114400
34. Su H, Yang M, Wan G, Yi L-X, Tang F, Zhu H-Y, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219-27. doi:10.1016/j.kint.2020.04.003
35. Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv. 2020;2020.03.04.20031120. doi:10.1101/2020.03.04.20031120
36. Werion A, Belkhir I, Perrot M, Schmit G, Aydin S, Chen Z, et al. SARS-CoV-2 Causes a Specific Dysfunction of the Kidney Proximal Tubule. Kidney Int. 2020;98(5):590-5. doi:10.1016/j.kint.2020.07.019
37. Kormann R, Jacquot A, Alla A, Corbel A, Koszutski M, Voisin P, et al. Coronavirus disease 2019: acute Fanconi syndrome precedes acute kidney injury. Clin Kidney J. 2020;13:362-70. doi:10.1093/ckj/sfaa149
38. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97:829-38. doi:10.1016/j.kint.2020.05.005
39. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-13. doi:10.1016/S0140-6736(20)30566-3
40. Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int Rep. 2020;70:S354-57. doi:10.1016/j.ekir.2020.03.005
41. Mukherjee A, Ghosh R, Aftab G. Rhabdomyolysis in Covid-19. Cells. 2019;8:207. doi:10.3390/cells8030207
42. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844-7. doi:10.1111/jth.14768
43. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-62. doi:10.1016/S0140-6736(20)30566-3
44. Rahman MH, Zahan MS, Al Hasib T, Ahmed KA, Khanam M, Omit MS, et al. Current knowledge on mechanisms involved in SARS-CoV-2 infection and kidney diseases. J Adv Biotechnol Exp Ther. 2020;3:30-5
45. Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev. 2020;19:102523. doi:10.1016/j.autrev.2020.102523
46. Petjeova N, Martinac E. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit Care. 2014;18:224. doi:10.1186/cc13897
47. Binois Y, Hachad H, Salem J-E, Charpentier J, Lebrun-Vignes B, Pène F, et al. Acute kidney injury associated with lopinavir/ritonavir combined therapy in patients with COVID-19. Kidney Int Rep. 2020;10:1016/j.ekir.2020.07.035.
48. Adamsick ML, Gandhi RG, Bidell MR, Elshaboury RH, Bhattacharyya RP, Kim AY, et al. Remdesivir in patients with acute or chronic kidney disease and COVID-19. J Am Soc Nephrol. 2020;31:1384-6. doi:10.1681/asn.2020050589
49. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020;382:2327-36. doi:10.1056/NEJMoa2007016
50. Puelles VG, Lütjehohmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweis L, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383:590-2. doi:10.1056/NEJMmc2114400
51. Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv. 2020;2020.03.04.20031120. doi:10.1101/2020.03.04.20031120
52. Werion A, Belkhir I, Perrot M, Schmit G, Aydin S, Chen Z, et al. SARS-CoV-2 Causes a Specific Dysfunction of the Kidney Proximal Tubule. Kidney Int. 2020;98(5):590-5. doi:10.1016/j.kint.2020.07.019
53. Kormann R, Jacquot A, Alla A, Corbel A, Koszutski M, Voisin P, et al. Coronavirus disease 2019: acute Fanconi syndrome precedes acute kidney injury. Clin Kidney J. 2020;13:362-70. doi:10.1093/ckj/sfaa149
54. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97:829-38. doi:10.1016/j.kint.2020.03.005
55. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-13. doi:10.1016/S0140-6736(20)30566-3
56. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical, epidemiological and statistical characteristics of 10922 Coronavirus Disease 2019 cases from Wuhan: a descriptive study. Lancet. 2020;395:1313-22. doi:10.1016/S0140-6736(20)30211-7
57. Grun W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20. doi:10.1056/NEJMoa2002032
58. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475-81. doi:10.1016/S2213-2600(20)30079-5
59. Hayat A, Majeed N, Abbas S, Akhtar F, Tashfeen S, Siddique A. Renal impairment: is there a need for monitoring renal functions in COVID-19 infection. Pak Armed Forces Med J. 2020;6736(20)30566-3
60. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98:209-218. doi:10.1016/j.kint.2020.05.006