Outcome of COVID-19 in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitors

Semih Başcı¹, Naim Ata², Fevzi Altuntas¹, Tugçe Nur Yğenoglu¹, Mehmet Sinan Dal¹, Serdal Korkmaz³, Sinem Namdaroglu⁴, Abdülkadir Baştürk⁵, Tuba Hacibekiroğlu⁶, Mehmet Hilmi Doğu⁷, İlhami Berber⁸, Kürşat Dal⁹, Mehmet Ali Erkurt⁸, Burhan Turgut¹⁰, Murat Çağlayan¹¹, Mustafa Okan Ayvalı¹², Osman Çelik¹³, Mustafa Mahir Ulgü¹²,Şuayip Birinci¹⁴ and on behalf of the Turkish Ministry of Health, Hematology Scientific Working Group

Abstract
Introduction: In this study, we aim to report the outcome of COVID-19 in chronic myeloid leukemia (CML) patients receiving tyrosine kinase inhibitor (TKI).

Method: The data of 16 laboratory-confirmed COVID-19 patients with CML receiving TKI and age, gender, and comorbid disease matched COVID-19 patients without cancer at a 3/1 ratio (n = 48), diagnosed between March 11, 2020 and May 22, 2020 and included in the Republic of Turkey, Ministry of Health database, were analyzed retrospectively.

Results: The rates of intensive care unit (ICU) admission, and mechanical ventilation (MV) support were lower in CML patients compared to the control group, however, these differences did not achieve statistical significance (p = 0.1, and p = 0.2, respectively). The length of hospital stay was shorter in CML patients compared with the control group; however, it was not statistically significant (p = 0.8). The case fatality rate (CFR) in COVID-19 patients with CML was 6.3%, and it was 12.8% in the control group. Although the CFR in CML patients with COVID-19 was lower compared to the control group, this difference did not achieve statistical significance (p = 0.5). When CML patients were divided into 3 groups according to the TKI, no significant difference was observed regarding the rate of ICU admission, MV support, CFR, the length of stay in both hospital and ICU (all p > 0.05).

Conclusion: This study highlights that large scale prospective and randomized studies should be conducted in order to investigate the role of TKIs in the treatment of COVID-19.
Introduction

At the end of 2019, a group of pneumonia cases of unknown origin started to be observed in China. After the genetic analysis of the virus, it was understood that these pneumonia cases were caused by the 2019 Novel Coronavirus (2019-nCoV). The phylogenetic analysis also revealed that the Severe Acute Respiratory Syndrome (SARS) Cov (SARS-CoV) and the Middle East Respiratory Syndrome (MERS) CoV (MERS-CoV) were close to 2019-nCoV about 79% and 50%, respectively. The disease caused by 2019-nCoV was named as COVID-19, by the World Health Organization (WHO). On the same day, 2019-nCoV was named as SARS-CoV-2. As of 18 May 2020, in the worldwide, there have been 4.619.477 COVID-19 cases, including 311.847 deaths, as reported to WHO. COVID-19 currently does not have licensed vaccines or therapeutics. Given the large number of untreated patients, seeking a remedy in a short period is essential. In this regard, it is important to note that tyrosine kinase inhibitors (TKIs) have previously been shown to be effective against other CoVs. In a previous study, imatinib mesylate and dasatinib were found to be active against both MERS-CoV and SARS-CoV, and nilotinib was found to be active against SARS-CoV. In recent studies, it was shown that on the surface of the CoVs, there are spike proteins that binds to angiotensin-converting enzyme-2 (ACE-2) receptor of the host cells. ACE-2 receptors are found in many tissues such as lower respiratory tract, heart, lungs, kidneys, and gastrointestinal tract. The complex of virus spike protein and host’s ACE-2 receptor is proteolytically processed leading to proteolysis of ACE-2 and activation of the spike protein, which provides the entry of virus into the host cell. The entry of the virus into the host initiates the host’s immune response. Imatinib inhibits the activity of some tyrosine kinases, such as the BCR-ABL1 fusion oncoprotein, c-kit, platelet derived growth factor receptor (PDGFR), and the native ABL1 kinase. In vitro activity of tyrosine kinase inhibitors (TKIs) against RNA viruses such as coxsackie virus, hepatitis C virus, or Ebola virus were demonstrated. In addition, studies in murine models, revealed that imatinib may inhibit IL-6 and other pro-inflammatory cytokines. Imatinib has also been shown to improve pulmonary endothelial barrier dysfunction and edema observed in acute lung injury and sepsis. In most patients with chronic myeloid leukemia (CML), TKIs can achieve long-term control of the disease; thus, they are the initial treatment of choice for almost all newly diagnosed patients with CML. In this study, we aim to report the outcome of COVID-19 in CML patients who were receiving TKI treatment at the time of COVID-19 diagnosis in Turkey.

Materials and methods

Patients

The data of laboratory-confirmed COVID-19 patients diagnosed between March 11, 2020 and May 22, 2020 included in the Republic of Turkey, Ministry of Health database, were analyzed retrospectively. The research was in accordance with 1964 Helsinki declaration and ethical approval was obtained from Ministry of Health, Turkey. As of 22 May 2020, in Turkey, there have been 154,500 confirmed cases of COVID-19. There were 28 COVID-19 infected CML patients in the database. We included only 16 of them whose data were fully available in the database. An age, gender, and comorbid diseases matched laboratory-confirmed COVID-19 patients without cancer at a 3/1 ratio was also included in the study for comparison.

Laboratory analysis

Real-time reverse transcriptase-polymerase chain reaction (PCR) tests for SARS-CoV-2 RNA were performed using nasopharyngeal swabs. Total nucleic acid extraction of nasopharyngeal swabs of viral isolates was performed using a biospeedy and coyote extraction system (Bioeksen Ltd and Coyote Bioscience Ltd.). Real-time PCR (RT-PCR) assays for SARS-CoV-2 RNA detection were performed using Biospeedy COVID-19 RT-qPCR Detection Kit (Bioeksen, Istanbul, Turkey), Direct Detect SARS-CoV2 Detection Kit (Coyote Bioscience Co Ltd, China), Probe RT-PCR kit in a Light Cycler 960 real-time PCR system (Roche, Basel, Switzerland), CFX96 Touch Real-Time PCR Detection System.
(Bio-Rad, California, USA), and Rotor-Gene Q (Qiagene, Hilden, Germany).

Statistical analysis

IBM SPSS v26 software was used for data analysis. Variables assessed for normal distribution with graphics, Shapiro-Wilk and Kolmogorov-Smirnov tests. Descriptive statistics were utilized to summarize data. Categorical data were presented as a ratio, and numerical data were presented as median. Chi-square test and Fisher’s exact test were applied to investigate categorical variables between groups. Kruskal Wallis and Mann Whitney U test were applied to assess duration in hospital and duration in intensive care unit (ICU). A two-sided p-value ≤0.05 was considered statistically significant.

Results

Patients

Out of 16 CML patients with COVID-19, 10 were female and 6 were male, and median age was 51 years. The characteristics of the CML patients with COVID-19 are given in Table 1. Hypertension was the most common comorbid disease observed in both groups (43.8%). The characteristics of the CML patients with COVID-19 and the control group are given in Table 2.

Outcome

The rates of intensive care unit (ICU) admission and mechanical ventilation (MV) support were lower in CML patients compared with the control group; however, these differences did not achieve statistical significance (p = 0.1, and p = 0.2, respectively). The length of hospital stay was shorter in CML patients compared with the control group; however, this difference did not achieve statistical significance (p = 0.8). The case fatality rate (CFR) in CML patients with COVID-19 was 6.3% and it was 12.8% in the control group. Although the CFR in CML patients with COVID-19 was lower compared with the control group, this difference did not achieve statistical significance (p = 0.5) (Table 3). At the time of COVID-19 diagnosis, 9 CML patients were using imatinib whereas 4 patients were using dasatinib and 3 patients were using nilotinib. When CML patients were divided into 3 groups according to the TKI type, no significant difference was observed regarding the rates of ICU admission, MV support, CFR and length of stay in hospital and ICU (Table 4).

Discussion

Currently, there is no licensed therapeutics for COVID-19. In this context, the treatments investigated in other CoV infections and those found to be effective, should be tested in the current pandemic. TKIs were evaluated in SARS-CoV and MERS-CoV infections and imatinib and dasatinib were demonstrated to be effective both in SARS-CoV and MERS-CoV whereas nilotinib was found to be effective in SARS-CoV. Novel medical research programs should be directed towards drug development that can stop the entrance of the virus to the host cells, and the replication of the virus in the host cells, or the prevention of the oversecretion of inflammatory cytokines in order to avoid organ

Patients	Gender	Age	TKI	Comorbidity
Patient 1	Male	27	Imatinib	None
Patient 2	Female	34	Imatinib	None
Patient 3	Male	37	Imatinib	None
Patient 4	Male	44	Imatinib	COPD
Patient 5	Female	47	Nilotinib	COPD
Patient 6	Female	47	Imatinib	None
Patient 7	Male	50	Dasatinib	None
Patient 8	Female	50	Imatinib	DM, HT
Patient 9	Female	52	Dasatinib	HT
Patient 10	Female	52	Nilotinib	CAD
Patient 11	Male	53	Imatinib	CKD
Patient 12	Male	60	Imatinib	DM, HT, CAD, CKD
Patient 13	Female	62	Imatinib	HT, CAD, COPD
Patient 14	Female	66	Dasatinib	DM, HT, CAD
Patient 15	Female	80	Dasatinib	HT, CAD, CVD, COPD
Patient 16	Female	87	Nilotinib	HT

CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; CKD: chronic renal disease; CVD: cerebrovascular disease; DM: diabetes mellitus; TKI: tyrosine kinase inhibitors; HT: hypertension.
Previous studies suggested that the ABL pathway may have a role in the replication of a variety of virus families, because of this, ABL pathway inhibitors of this pathway have the potential to be antivirals. Researchers demonstrated that Abl1 tyrosine kinase has a role in budding or release of poxviruses and the Ebola virus. Researchers have also shown that c-Abl1 kinase signaling mechanisms play a crucial role in CoV replication. Previous studies showed that in the early phases of CoV infection, imatinib prevents virion fusion with the endosome and impending release into the cytoplasm, thus blocking viral entry and viral replication by Abl-mediated cytoskeletal rearrangement. In a subsequent stage of the infection, the expression of Abl2 protein, inhibited by both imatinib and dasatinib, facilitates replication of SARS-CoV and MERS-CoV.

ACE-2 has a protective role against acute lung injury. When the spike protein of SARS-CoV-2 binds, ACE-2 is downregulated, leading to an increase in angiotensin II and an increased pulmonary vascular permeability, pulmonary edema, and reduced lung function. In addition to inhibiting the BCR-Abl fusion protein, imatinib also inhibits some other kinases including c-Abl, Abl-related gene, c-kit, and platelet-derived growth factor receptor (PDGFR), involved in regulating vascular permeability. Therefore, theoretically imatinib may have a role in attenuating inflammation and restoring vascular integrity in inflammatory vascular leak syndromes. In an animal model of acute lung injury, imatinib significantly decreased bronchoalveolar lavage proteins and total cells therefore attenuated vascular leak. Previous studies revealed the role of targeting Abl kinases to regulate vascular permeability, in which imatinib therapy was associated with rapid resolution of pulmonary and systemic vascular leak. TKIs including imatinib, nintedanib, dasatinib, nilotinib, sorafenib, and sarracatinib, have been studied for their anti-inflammatory effect and potential use in pulmonary diseases. However, there is very limited data about the course of COVID-19 in CML patients receiving TKIs. In a case study, it was reported that 29 years old female CML patient who achieved major molecular response under dasatinib treatment and was continuing full-dose dasatinib therapy was diagnosed with COVID-19 and treated with antibiotics (amoxicillin and clavulanic acid). After four days, the fever cleared, and after two weeks, two separate consecutive swab tests were negative. During this time, she continued treatment with dasatinib at the same dose.

In our study, we investigated the clinical effect of TKIs on the outcome of COVID-19 patients by

Table 2. The characteristics of the CML patients with COVID-19 and control group.
Characteristics
Gender
Female, n (%)
Male, n (%)
Age (years)
Comorbidity
Hypertension
Diabetes mellitus
Cardiovascular diseases
Respiratory system diseases
Chronic renal diseases
Cerebrovascular diseases
Additional treatment, n (%)
Favipiravir
Oselimavir
Lopinavir/ritonavir
Hydroxychloroquine
High dose Vitamin C
CML: chronic myeloid leukemia.

Table 3. The outcome of CML patients with COVID-19 and control group.
CML Control Group P value
ICU admission, n (%)
MV, n (%)
Duration in hospital, days
CFR, n (%)
CFR: case fatality rate; CML: chronic myeloid leukemia; ICU: intensive care unit; MV: mechanical ventilation.

21,22 Previous studies suggested that the ABL pathway may have a role in the replication of a variety of virus families, because of this, ABL pathway inhibitors of this pathway have the potential to be antivirals. Researchers demonstrated that Abl1 tyrosine kinase has a role in budding or release of poxviruses and the Ebola virus. Researchers have also shown that c-Abl1 kinase signaling mechanisms play a crucial role in CoV replication.7 Previous studies showed that in the early phases of CoV infection, imatinib prevents virion fusion with the endosome and impending release into the cytoplasm, thus blocking viral entry and viral replication by Abl-mediated cytoskeletal rearrangement. In a subsequent stage of the infection, the expression of Abl2 protein, inhibited by both imatinib and dasatinib, facilitates replication of SARS-CoV and MERS-CoV.23
comparing to an age, gender, and comorbidity matched control group. The main findings of the current study were that: (i) compared with the control group, the rates of ICU admission and MV support were lower and length of hospital stay was shorter in patients receiving TKI, however none of them achieved statistically significance. (ii) The CFR in patients receiving TKI was 6.3% and it was 12.8% in the control group. Although the CFR in patients receiving TKI was lower than the control group, this difference did not achieve statistically significance.

There are some limitations of our study. The study has a retrospective design and has limited number of patients. The superior side of our study is that the control group was composed of age, gender and comorbidity matched patients however in most of the ongoing studies, control groups are not comorbidity matched.

Neither chronic phase CML nor BCR-ABL tyrosine kinase inhibitors cause a clinically significant immune suppression, and there is no data suggesting that chronic phase CML patients are at higher risk of infection by SARS-CoV-2 compared to the general population. Our study shows that the clinical course of COVID-19 is not worse in CML patients who are receiving TKIs than control group. Moreover, the rates of ICU admission and MV support, CFR were lower and length of hospital stay was shorter in CML patients receiving TKI compared to the age, gender and comorbidity matched control group but these differences were not statistically significant. Our study highlights that to find out whether the TKIs are associated with a better course of COVID-19 or not, large scale prospective and randomized studies should be conducted.

Abbreviations

CAD, coronary artery disease; CFR, case fatality rate; CKD, chronic renal disease; CML, chronic myeloid leukemia; COPD, chronic obstructive pulmonary disease; CVD, cerebrovascular disease; DM, diabetes mellitus; HT, hypertension; ICU, intensive care unit; MV, mechanical ventilation; TKI, Tyrosine Kinase Inhibitors.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval

This study was approved by the Ministry of Health, Turkey.

Table 4. The characteristics and outcome of the CML patients with COVID-19 patients according to the TKI they received.

Characteristics	CML-imatinib (n = 9)	CML-nilotinib (n = 3)	CML-dasatinib (n = 4)	P value
Gender				
Male	5 (55.5%)	0	1 (25%)	0.2
Female	4 (45.5%)	3 (100%)	3 (75%)	
Age (years)	46 (27–62)	52 (47–87)	53 (50–80)	0.2
Comorbidity				
Hypertension	3 (33.3%)	1 (33.3%)	3 (75%)	0.7
Diabetes mellitus	2 (22.2%)	0	1 (25%)	0.4
Cardiovascular diseases	2 (22.2%)	1 (33.3%)	2 (50%)	0.6
Respiratory system diseases	2 (22.2%)	1 (33.3%)	1 (25%)	0.9
Chronic renal diseases	2 (22.2%)	0	0	0.4
Cerebrovascular diseases	0	0	1 (25%)	0.2
Additional treatment, n (%)				
Favipiravir	3 (33.3%)	1 (33.3%)	0	0.4
Oseltamivir	5 (55.5%)	2 (66.6%)	2 (50%)	0.9
Lopinavir/ritonavir	0	1 (33.3%)	0	0.1
Hydroxychloroquine	8 (88.8%)	2 (66.6%)	3 (75%)	0.7
High dose Vitamin C	1 (11.1%)	0	0	0.7
ICU admission, n (%)	0	0	1 (25%)	0.2
MV, n (%)	0	0	1 (25%)	0.2
Duration in hospital, days	8 (6–18)	12.5 (12–3)	5.5 (2–9)	0.4
Duration in ICU, days	0	0	1 (25%)	0.2
CFR, n (%)	0	0	1 (25%)	0.2

CFR: case fatality rate; CML: chronic myeloid leukemia; ICU: intensive care unit; MV: mechanical ventilation.
References

1. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382: 1199–1207.
2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727–733.
3. Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev 2020; 19: 102538.
4. Kanduc D and Shoenfeld Y. On the molecular determinants and the mechanism of the SARS-CoV-2 attack 2020. Clin Immunol 2020; 215: 108426.
5. World Health Organization Press Conference. The World Health Organization (WHO) has officially named the disease SARS-CoV-2 and coronavirus disease 2019 (accessed 18 May 2020).
6. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5: 536–544.
7. Dyall J, Coleman CM, Hart BJ, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother 2014; 58: 4885-4893.
8. Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 2020; 9: 231.
9. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181: e271–e280.
10. Li G, Fan Y, Lai, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92: 424–432.
11. Shaul Y. c-Abl: activation and nuclear targets. Cell Death Differ 2000; 7: 10–16.
12. Iqbal N and Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract 2014; 2014: 357027.
13. Sisk JM, Frieman MB and Machamer CE. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol 2018; 99: 619–630.
14. Coyne CB and Bergelson JM. Virus-induced ABL and FYN kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006; 124: 119–131.
15. Min S, Lim YS, Shin D, et al. ABL tyrosine kinase regulates hepatitis C virus entry. Front Microbiol 2017; 8: 1129.
16. Garcia M, Cooper A, Shi W, et al. Productive replication of ebola virus is regulated by the c-Ab1 tyrosine kinase. Sci Transl Med 2012; 4: 123ra24.
17. Akashi N, Matsumoto I, Tanaka Y, et al. Comparative suppressive effects of tyrosine kinase inhibitors imatinib and nilotinib in models of autoimmune arthritis. Mod Rheumatol 2011; 21: 267–275.
18. Pastiaguia RT, Sharpe O, Ho PP, et al. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J Clin Invest 2006; 116: 2633–2642.
19. Chislock EM and Pendergast AM. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS One 2013; 8: e8523. https://doi.org/10.1371/journal.pone.0085231.
20. Aman J, Van Bezu J, Damanafshan A, et al. Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation 2012; 126: 2728–2738.
21. Kawase M, Shirato K, van der Hoek L, et al. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol 2012; 86: 6537–6545.
22. Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 2015; 116: 76–84.
23. Coleman CM, Sisk JM, Mingo RM, et al. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J Virol 2016; 90: 8924–8933.
24. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436: 112–116.
25. Hoffmann M, Kleine-Weber H, Schroroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271.e8–280.e8.
26. Clerkin KJ, Fried JA, Raikhelkar J, et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. EPub ahead of print 21 March 2020. DOI: 10.1161/CIRCULATIONAHA.120.046941.
27. Cheng H, Wang Y and Wang QG. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol 2020; 92: 726–730.
28. Rix U, Hantschel O, Dürnberger G, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and non kinase targets. Blood 2007; 110: 4055–4063.
29. Rizzo AN, Sammani S, Esquinca AE, et al. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309: L1294–L1304.
30. Overbeek M, Van Nieuw Amerongen G, Boonstra A, et al. Possible role of imatinib in clinical pulmonary veno-occlusive disease. Eur Respir J 2008; 32: 232–235.
31. Carnevale-Schianca F, Gallo S, Rota-Scalabrini D, et al. Complete resolution of life threatening bleomycin-induced pneumonitis after treatment with imatinib mesylate in a patient with Hodgkin’s lymphoma: hope for severe chemotherapy-induced toxicity. *J Clin Oncol* 2011; 29: e691–e693.

32. Aschner Y and Downey GP. The importance of tyrosine phosphorylation control of cellular signaling pathways in respiratory disease: pY and pY not. *Am J Respir Cell Mol Biol* 2018; 59: 535–547.

33. Abruzzese E, Luciano L, D’Agostino F, et al. SARS-CoV-2 (COVID-19) and chronic myeloid leukemia (CML): a case report and review of ABL kinase involvement in viral infection. *Mediterr J Hematol Infect Dis* 2020; 12: e2020031.

34. Breccia M, Girmenia C, Latagliata R, et al. Low incidence rate of opportunistic and viral infections during imatinib treatment in chronic myeloid leukemia patients in early and late chronic phase. *Mediterr J Hematol Infect Dis* 2011; 3: e2011021.