Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances

Orla G. Bath Enright1,2✉, Nicholas J. Minter1✉, Esther J. Sumner3, M. Gabriela Mángano4 & Luis A. Buatois4

The exceptionally preserved fossils entombed in the deposits of sediment-gravity flows in the Cambrian Burgess Shale of British Columbia have been fundamental for understanding the origin of major animal groups during the Cambrian explosion. More recently, they have been used to investigate the evolution of community structure; however, this assumes that the fossil assemblage represents an in-life community. Here we test this assumption for the first time based on experimental and field approaches. We use flume experiments to create analog flows and show that transport of the polychaete Alitta virens over tens of kilometers does not induce significantly more damage beyond that already experienced due to normal decay processes. Integration of experimental results with taphonomic assessment of fossils and sedimentological analysis suggests that the organisms of the Burgess Shale in the classic Walcott Quarry locality could have undergone substantial transport and may represent a conflation of more than one community.
The fossil record provides an archive of the diversity of life through time and has been used to identify major developments of diversification and extinction. Whilst it is known that this archive is incomplete at the global scale, methods may be applied to global diversity curves to correct for variation in sampling intensity with geological age. At the community level, most individual fossil assemblages comprise organisms with biomineralized hard-parts; the exception being fossil Konservat Lagerstätten that, in addition, preserve soft-tissues and soft-bodied organisms. It is predicted that 30% of modern marine megafauna and 80% of macrofauna genera would leave no fossil record, whilst 86% of genera from the Burgess Shale would not have been preserved under normal circumstances. This has led to Burgess Shale-type lagerstätten being viewed as near-faithful representations of in-life communities and, as such, they have been used to reconstruct Cambrian marine community structure and food-webs. Determining whether these lagerstätten record community structure with high fidelity or if they are biased representations is critical to our ability to describe palaeocommunities, compare ecosystem complexity through time, and study evolutionary patterns to understand how life has evolved to its present diversity.

Fossilization of soft tissue is rare. Decay experiments with analog organisms have yielded a wealth of information in this area, revealing the significant effects of decay processes of mineralization of soft tissues and how it results in the systematic alteration and loss of phylogenetically informative features. However, studies concerning the effect of transport on the preservation of organisms are surprisingly limited and have tended not to consider analog sediment transport mechanisms that may be used to test and constrain the effects of sedimentary processes on the fossil record.

The Burgess Shale Lagerstätte is one of the most important paleontological discoveries of the last century. Soft-tissue preservation of these animals offers insights into the biodiversity of the Cambrian marine realm and, together with over 40 localities worldwide that exhibit “Burgess Shale-type preservation” reveals a marked phase of diversification of body plans in the aftermath of the Cambrian explosion. There is debate regarding the extent of transport that the organisms of the Burgess Shale experienced in its type locality. This has hinged on consideration of either the types of deposits and flows responsible or the quality of preservation, but we advocate that these must be considered together. Originally, the deposits were argued to be

![Fig. 1 Increasing states of polychaete degradation. Alitta virens (right) and comparable states in the fossil, Burgessochaeta (left).](image)
the product of dilute turbidity currents and thus the organisms were transported and experienced rapid burial. Following this, taphonomic studies used the high level of articulation of some fossil groups to suggest that minimal or no transport of the organisms took place. However, more recently, the deposits were re-interpreted to be mud-rich slurry flows. There are potentially profound implications of such a slurry-type flow regime on the durability of soft-bodied organisms. We investigated this by integrating the study of Burgess Shale deposits with analog sedimentary process and taphonomic decay experiments to test the hypotheses that (i) the degradation of Alitta virens would increase with increasing flow duration and (ii) increasing the duration of pre-transport decay would also increase degradation. This is the first study that uses flume experiments calibrated with outcrop data to expand our understanding of the role of transport in the preservation of Burgess Shale organisms.

Results

Flow characteristics of the Burgess Shale Deposits at the Walcott Quarry. Our field observations indicate that individual beds typically comprise silt and clay with ‘floating’ quartz grains in places (100–500 µm but could reach up to 1000 µm). Deposits locally have erosive, scoured bases and contain sedimentary structures, such as parallel lamination, that are indicative of tractional sediment transport (Supplementary Figs. 2–5). The above sedimentary features indicate transitional cohesives flows; specifically, quasi-laminar to upper transitional plug flows that exhibit both turbulent and laminar characteristics and are capable of producing all of the features observed in the Burgess Shale deposits at the Walcott Quarry.

Effects of decay and transport on states of degradation. To quantify the combined effects of both pre-transport decay and flow duration on the carcasses of A. virens, we derived an index of degradation for this taxon (Fig. 1). In the experiments, specimens were decayed for 0, 24, or 48 h and then subjected to quasi-laminar to upper-transitional plug flows within an anular flume tank of durations of 25, 225, or 900 min. Untransported controls involved individuals that underwent static decay for the same total duration of pre-transport decay and transport as the relevant experimental treatment combination. Specimens of A. virens that experienced decay prior to transport ranged between whole and shrivelled to an unsupported gut with fluid escape and a general flattening of the body. Decay damage tended to occur towards the posterior and mid-section of the polychaete. After transport, individuals were observed with their whole bodies still intact or with damage towards their posterior (state 1 and 2, Fig. 1a–b). Pre-transport decay has a significant effect on the state of degradation (ordinal logistic regression, $p < 0.001$). However, transport duration within a quasi-laminar to upper-transitional plug flow regime did not affect overall degradation (ordinal logistic regression, $p = 0.065$). Post-hoc Kruskal Wallis tests show that, for each combination of transported/non-transported and duration, the amount of pre-transport decay has a significant effect on the final state of degradation (Fig. 2 and Supplementary Table 1). For each amount of pre-transport decay, Mann-Whitney comparisons between transported treatments and non-transported controls reveal no significant difference in degradation (Supplementary Table 1).

Comparison with Burgess Shale Polychaete fossils. Examination of Burgessochaeta (n = 154) and Canadia (n = 43) from the Walcott Quarry of the Burgess Shale reveals that they are preserved as mostly pristine and undamaged with an average state of degradation of state 1 (Fig. 1a, Supplementary Data 1, Supplementary Fig. 8), and only limited specimens showed states 2 (20% of Burgessochaeta and 7% of Canadia) or 3 (4% of Burgessochaeta and 5% for Canadia) (Fig. 1b, c).

Discussion

The implications of the sedimentological transport processes that led to the preservation of the Burgess Shale biota in the Greater Phyllopod Bed are here analyzed for the first time through the integration of detailed sedimentological field observations, specimen analysis, and taphonomic flume experiments. Our results demonstrate that polychaetes of the Burgess Shale biota could potentially have been transported over substantial distances of at least 20 km. We interpret that the individual beds of the Greater Phyllopod Bed at the Walcott Quarry were deposited from quasi-laminar to upper-transitional plug flows and our results show that increasing transport duration in such flows does not cause significantly more damage to carcasses of A. virens beyond that already caused by decay. This is in contrast to turbulent flows that cause increasing damage with increasing transport duration. Intuitively, longer exposure times to pre-transport decay significantly affect the overall state of degradation, and this is consistent with other decay studies.
Comparison of our experimental results with observations of the states of degradation of fossil polychaete specimens from the Burgess Shale indicates that they were unlikely to have experienced significant decay before entainment and entombment of their carcasses by sediment-gravity flows. The polychaete fossils are typically found compressed at different heights and orientations within the beds\(^1\)\(^2\)\(^3\) rather than occurring towards the base or top. This suggests they were transported and buried within a flow rather than being just buried by one. Reconstruction of the palaeo-oxygenation state at the Walcott Quarry is complicated\(^4\), with geochemical data suggesting an oxic-anoxic boundary may have existed at the sediment-water interface\(^5\). However, the paucity of bioturbation, including surficial trails and trackways, suggests predominant anoxic conditions and further argues against this being the original habitat of the organisms. Once the flow has ceased in our experiments, the sediment-water mixture remains as a soupy suspension, and we have observed that living \(A. \text{virens}\) can survive and escape in a functional state from these mixtures. This indicates that other polychaetes could potentially have also survived and escaped flows and their suspensions and therefore that similar organisms of the Burgess Shale were most likely dead at the time of burial and probably upon incorporation into a flow. Together, the experiments and fossil analysis support a model for the deposits of the Greater Phyllopod Bed interval of the Burgess Shale where recently deceased animals could have been picked up and carried tens of kilometers by flows before being deposited and entombed\(^1\)\(^2\)\(^3\)\(^4\) (Fig. 3).

Our interpretation of the deposits from the Walcott Quarry combined with the recreation of flow conditions and taphonomic experiments with analog organisms sheds new light on the nature of the Burgess Shale and has implications for similar fossil assemblages. Burgess Shale-type lagerstätten are traditionally viewed as ‘windows’ into the biology and ecology of past life and are used to reconstruct in-life communities. This is based on the assumption that they have greater fidelity to a community than the normal fossil record due to the preservation of soft-bodied organisms. Our results show that the traditional interpretation of the Greater Phyllopod Bed assemblages as in-life communities may not be a faithful depiction, and this has potential implications for many Burgess Shale-type lagerstätten worldwide. Such

Fig. 3 Schematic flow reconstruction for the Walcott Quarry in the Burgess Shale. **A** Schematic Representation in which the laminar plug extends towards the base of the flow and changes to a transitional plug regime. A turbulent cloud of sediment is suspended in the water column above the plug flow. The soft-bodied organisms (labeled 1, 2, and 3) have been picked up along the flow path, potentially kilometers apart from one another. **B** Bed A from the Greater Phyllopod Bed of the Walcott Quarry. **C** Graphic log showing Bed A; soft-bodied organisms (1, 2, and 3) from the flow type above (**A**) will become mixed in the deposit. **D** Thin-section scan from Bed A showing parallel laminae, erosive, scoured bases, and “floating” quartz grains (Q). White arrows indicate transitional cohesive flow deposits.
fossil assemblages have been used to decipher Cambrian marine ecology and, in particular, community structure.[4,6,20,21]. The Cambrian Chengjiang and Qiangtian biota of China, and Upper Ordovician Beecher’s Trilobite Bed of the USA are widely interpreted to have been emplaced by flows[10,30,31] and transport of some organisms in the Cretaceous Jehol biota has been reported.[12]. The degree to which taxa are retained, modified, or lost to the fossil record is critical to the key issue of what exceptionally preserved fossil deposits actually reveal about the biodiversity and evolution of ancient life. Little is known about how transport has biased the records and fidelity with which they reflect in-life palaeocommunities. Many of these assemblages may potentially record a seemingly complex palimpsest of several communities if preserved within the deposits of sediment-laden flows.

Konservat Lagerstätten capture decay-prone organic tissues and completely soft-bodied organisms alongside more routine fossils that comprise mineralized hard parts of animals and provide us with the most complete depiction of past life. The preservation of soft-tissued organisms in Lagerstätten is important because such sites offer valuable information on the retention of morphological, ecological, and evolutionary aspects of biodiversity that are rarely preserved. However, what may be less certain is the true nature and palaeoecological information locked up in such fossil assemblages. Robust palaeoecological interpretations of Lagerstätten are important because many have been used to provide evidence of nature and tempo for significant events in the history of life on Earth. In order to test whether a fossil assemblage within a flow deposit does indeed represent an in-life community, it will be necessary to assess the relative durabilities of different benthic and nektobenthic taxa that are preserved together. By using such a multidisciplinary approach we can gain a more holistic understanding of the sedimentary environment and establish criteria for determining whether transport-induced compositional biases occur and to what extent. Our results offer new views into this ‘window’ into the past and impact our understanding of the environmental framework of Burgess Shale-type deposits and the palaeoecology of these extraordinary biotas.

Methods

Fieldwork and rock sample analysis. The primary objective of our fieldwork was to collect sedimentological data that would allow us to interpret the processes responsible for the deposition of the beds of the Greater Phyllopod Bed. These parameters could then be incorporated into our experimental design and recreation of Burgess Shale-type flows. To understand the complex sedimentary deposits of the Burgess Shale Formation, we targeted individual beds (Fig.3, Supplementary Figs. 2–5) that were logged at outcrop for informative mm-scale and cm-scale sedimentary structures. Grain size analysis was conducted in the field using a grain-size comparator and hand-lens and during petrographic analysis. The Greater Phyllopod Bed has been logged in considerable detail in the field[20,33], and so logs produced from our work can be used to compare to previous studies. Detailed descriptions of the intervals sampled included color, bounding surfaces, microsedimentary structures, grain size, and textures. Larger-scale field mapping and analysis of sedimentary architecture were not undertaken and so we were not attempting to answer questions on the relationship of the Cathedral Escarpment to the fossil-bearing deposits or the precise provenance of the organisms.

We collected whole-rock samples from the Greater Phyllopod Bed of the Walcott Quarry at stratigraphic heights of 111.6, 136, 149.95, 184.83, and 226.68 cm (labeled Bed A to E, respectively) above the top of the Wash Limestone Member. All sedimentological samples for this study were collected in situ under the following protocols: 2015-19297. The permit for our fieldwork allowed us to collect and sample sedimentological material exclusively. These were subsequently sampled for laboratory analysis and thin-section preparation.

Petrographic analysis was performed on all samples using a Leica DM2750P microscope. Each thin section was scanned with an Epson scanner to observe details of the millimeter-scale structures and textures (Fig. 3, Supplementary Figs. 2–5). Plain and cross-polarized light micrographs were taken of areas of particular sedimentological interest from each thin section and documented along with the petrological analysis. These samples were processed for further geochemical and elemental analysis.

Sample analysis. X-Ray Diffraction (XRD) was used to characterize the mineralogical content of the matrix of Bed A (111.6 cm above the top of the Watershed Member) from the Walcott Quarry. For petrographic analysis, the sample was ground into a powder, and XRD was conducted using a PANalytical XPert3 diffractometer. For clay analysis, we applied the fractions to orientated glass slides. Organsics were removed from each sample by H₂O₂ treatment before disaggregating the material using ultrasonic vibration. The suspended materials were transferred to ultrasonic bath in centrifuge bottles that were topped up with deionized water so that each bottle weighed within the same gram. The bottles were placed in the centrifuge for two treatments, first at 1000 rpm for 4 min, and then again at 4000 rpm for 20 min. After the first treatment, the supernatant was removed. The suspensions were then transferred to new centrifuge bottles. The three liquid phases were topped up with deionized water in order to reach the weight of the heaviest. The resultant concentrated sample yield (<2 µm clay) was used to conduct the clay analysis. Each sample slide was analyzed on the XRD in three states: after air-drying, glycol solvation, and heating to 550 °C. The clay minerals were identified from their characteristic basal reflections (001) in each state shown on the combined X-ray clay-fraction diagram (Supplementary Note 1, Supplementary Fig. 7).

Energy-dispersive X-Ray spectroscopy (EDS-elemental mapping) was used to conduct an elemental analysis with a scanning electron microscope (SEM). We randomly selected and determined the relative abundance and distribution of elements in the matrix of Bed A (111.6 cm above the top of the Wash Limestone Member) (Supplementary Fig. 6). The thin-section sample was carbon-coated using an AGAR auto carbon coater before being placed into the SEM. The data was processed using Aztec Energy software and X-Ray maps were produced for Bed A.

Collection and Euthanization of animals. We used the polychaete A. virens for this study as it is readily available, decays rapidly, and has been previously to the flow of the Burgess Shale[21,25,26] to gain insights into static decay and preservation. These studies allowed us to rank the level of static decay[35] the polychaete had experienced before entering the treatments in this study. Degradation features of A. virens like posterior damage, disassociated setae, and how intact the overall organic remains were, could be also compared to the extent polychaetes Burgessoscolex and Canadusia from the Walcott Quarry.

Specimens of A. virens were bought live from a local bait shop in Southampton which sources their bait along the south-east coast of the UK. All were euthanized by exposure to anoxia for 60 min. Anoxic conditions were created by dissolving a SERA CO₂ tablet in 200 ml of artificial seawater[34]. Pre-transport decay proceeded under anoxic conditions to simulate an anoxic habitat that would exist before being buried. Organisms were then fixed in a polychaete specific 2.5% glutaraldehyde and polyethylene glycol solution[19] and put into polyester containers with 200 ml of fresh artificial seawater. Containers were partially sealed to allow for slow oxygen diffusion[35]. The polychaetes were kept in the cold at room temperature (~2°C) for 0, 24, and 48 h. We assessed the level of decay[35] before the polychaete entered the annular flume for transport.

Flow Generation. The flume channel (160 l) was filled with a mixture of 11% kaolinite clay (Imerys Polwhite-E china clay, density: 360 kg/m³) and artificial seawater (6.67 kg of salt mixture that is mixed with 160 l tap water, Seamix, Peacock Ltd)[34,72]. Characteristics of the deposits from the Burgess Shale suggest clay-rich flows transitional between turbulent and laminar that are consistent with the Upper Transitional Plunging Flow (UTPF) and Quasi Laminar Plung Flow (QLPF) regimes of Basa et al. (2009) The requisite concentration of kaolinite and velocity needed to reproduce these flows were calculated from Sumner et al. (2009). An ultrasonic doppler velocity profiler (UDVP) was used to determine the time-averaged velocity depth profile (MetFlow software and Microsoft Excel) and confirm the flow velocity (0.4 m/s) for our experiment (Supplementary Fig. 1).

Experimental protocol. Our experiments were designed to test the hypotheses that increasing pre-transport decay and transport duration (continuous predictor variables) under this flow regime would affect the state of degradation (Fig. 1; ordinal response variable) of the polychaete A. virens. Three conditions of flow duration were selected: 25, 45, and 90 min (continuous independent variable 1) were used to test the effect of transport on the states of degradation. At the extreme, our flow durations corresponded to transport distances of 21.6 km. We hypothesized that the degradation to A. virens would increase over greater flow durations.

Three conditions of pre-transport decay, 0, 24, and 48 h (continuous independent variable 2) were used to test the effect of increasing levels of decay on the states of degradation. We hypothesized that the longer exposure times to decay would result in greater degradation of the polychaete. For each treatment combination of pre-transport decay and transport, a set of controls was devised in which another polychaete was decayed for the same time but then placed in a polystyrene container filled with 11% kaolinite mixed in artificial seawater to mimic the conditions of the annular flume. The polychaete remained static in the container for the equivalent flow duration as in the experimental treatment. All experimental and control treatments were repeated five times.

In order to address the degradation of soft-bodied organisms from the combined effects of decay and transport, other integral factors were considered but could not be generated in the laboratory conditions used for this study. Primarily,
the water temperature was contemplated during the design phases of this research. The counter-rotating annular flume tank is specifically designed to observe sediment-laden flows continuously along with the production of deposit type. It was not built with the capabilities to control water temperature, and as such, experiments were conducted at room temperature. All experiments were conducted under the same conditions and so any error will be systematic.

States of degradation. To quantify damage to *A. virens* from pre-transport decay combined with transport, we established an index of states of degradation (Fig. 1). The index provides an ordinal dependent variable for measuring damage after the combined effects of pre-transport decay and transport.

State 1 is a complete polychaete in which the entire body segment is intact. State 2 is damage towards the mid-section and the posterior transforms into tangled remains marked by the combination of transport and decay. The body remains intact as one segment. State 3 is the remains of the trunk and setae. The body structure has deteriorated significantly. State 4 is the remains of loose setae are attached to minute segments of cuticle and jaw elements only are recovered.

Statistical analysis. Ordinal logistic regression was performed to determine the effect of increasing pre-transport decay and flow duration on the states of degradation of *A. virens*. A post-hoc Kruskal-Wallis *H* test was conducted to determine if there were overall effects of the amount of pre-transport decay for each transported and non-transported (control) duration. Subsequently, post-hoc, Mann-Whitney *U* tests were run to determine if there were differences between the transported and non-transported control groups at the equivalent durations of pre-transport decay and flow duration.

Museum work and comparison of experimental and fossil degradation. Comparative fossil material for this study was examined at the Royal Ontario Museum, Toronto. All specimens were collected from the Greater Phyllopod Bed of the Walcott Quarry Shale Member by the Royal Ontario Museum field expeditions between 1993 and 2000. Details on the fossiliferous beds and polychaete specimens used in this study can be seen in Supplementary Data 1.

A total of 204 slabs containing 197 polychaete fossils (*A. virens*) from beds throughout the Greater Phyllopod Bed (

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The dataset generated and analyzed during the study are available in the Dryad repository, https://doi.org/10.5061/dryad.wdbrv15k0.

Received: 27 November 2020; Accepted: 16 April 2021; Published online: 02 June 2021

References

1. Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. *Science* **321**, 97–100 (2008).
2. Schopf, T. J. M. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. *Paleobiology* **4**, 261–270 (1978).
3. Sperling, E. A. Tackling the 99%: can we begin to understand the paleoecology of the small and soft-bodied animal majority?. *Ecosyst. Paleobiol. Geobiol. Paleontol. Soc.* **19**, 77–86 (2013).
4. Conway Morris, S. The community structure of the Middle Cambrian Phyllopod bed (Burgess Shale). *Palaeogeogr. Palaeoclimatol. Palaeoecol.** **21**, 423–467 (1986).
5. Caron, J. B. & Jackson, A. D. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. *Palaeogeogr. Palaeoclimatol. Palaeoecol. **258**, 222–256 (2008).
6. Dornbos, S. Q. & Chen, J. Y. Community paleoecology of the early Cambrian Maotianshan Shale biota: Ecological dominance of priapulid worms. *Palaeogeogr. Palaeoclimatol. Palaeoecol. **258**, 200–212 (2008).
7. Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A. & Erwin, D. H. Compilations and network analyses of Cambrian food webs. *PLoS Biol. **6**, 603–708 (2008).
8. Kidwell, S. M. & Baumiller, T. Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds. *Paleobiology* **16**, 247–271 (1990).
9. Briggs, D. E. G. & McMahan, S. The role of experiments in investigating the taphonomy of exceptional preservation. *Palaeontology* **59**, 1–11 (2015).
10. Sansom, R. S., Gabbert, S. E. & Purnell, M. A. Non-random decay of chordate characters causes bias in fossil interpretation. *Nature* **463**, 797–800 (2010).
11. Allison, P. A. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. *Geology* **14**, 979–981 (1986).
12. Butterfield, N. J. Secular distribution of Burgess-Shale-type preservation. *Lethaia* **28**, 1–13 (1995).
13. Allison, P. A. & Brett, C. E. In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia. *J. Geol. Soc. London* **165**, 307–318 (2008).
14. Conway Morris, S. Burgess Shale faunas and the Cambrian explosion. *Science* **264**, 339–346 (1989).
15. Fu, D. et al. The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China. *Science* **338**, 1338–1342 (2012).
16. Dornbos, S. Q., Zalasiewicz, J. K. & Collins, D. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. *J. Geol. Soc. London* **165**, 307–318 (2008).
17. Caron, J. R. & Jackson, A. D. Taphonomy of the Greater Phyllopod Bed community, Burgess Shale. *Palaios* **21**, 451–465 (2006).
18. Bath Enright, O. G., Mintner, N. J. & Sumner, E. J. Palaeoecological implications of the preservation potential of soft-bodied organisms in sediment-density flows: testing turbulent waters. *R. Soc. Open Sci.** **4**, 170212 (2017).
19. Allison, P. A. & Briggs, D. E. G. Exceptional fossil record—Distribution of soft-tissue preservation through the Phanerozoic. *Geology* **21**, 527–530 (1993).
20. Allison, P. A. & Brett, C. E. In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada. *Geology* **23**, 1079–1082 (1995).
21. Briggs, D. E. G. & Kear, A. J. Decay and preservation of polychaetes: taphonomic thresholds in soft-bodied organisms. *Palaeobiology* **19**, 107–135 (1993).
22. Baas, J. H., Best, J. L., Peakall, J. & Wang, M. A phase diagram for turbulent, transitional, and laminar clay suspension flows. *J. Sediment. Res.** **79**, 162–183 (2009).
23. Kidwell, S. M. & Baumiller, T. Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds. *Paleobiology* **16**, 247–271 (1990).
24. Conway Morris, S. The Burgess Shale (Middle Cambrian) Fauna. *Annu. Rev. Ecol. Syst.* **10**, 327–349 (1979).
25. Allison, P. A. & Briggs, D. E. G. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. *Geology* **21**, 527–530 (1993).
26. Powell, W. G., Johnston, P. A. & Collom, C. J. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. *Palaeoecogr. Palaeoclimatol. Palaeoecol.** **201**, 249–268 (2003).
27. MacKenzie, L. A., Hofmann, M. H., Junyuan, C. & Hinnan, N. W. Stratigraphic controls of soft-bodied fossil occurrences in the Cambrian Chengjiang Biota Lagerstätte, Maotianshan Shale, Yunnan Province, China. *Palaeogeogr. Palaeoclimatol. Palaeoecol. **420**, 96–115 (2015).
28. Jiang, B., Harlow, G. E., Wohletz, K., Zhou, Z. & Meng, J. New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota. *Nat. Commun.** **5**, 3151 (2014).
29. Fletcher, T. P. & Collins, D. H. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. *Can. J. Earth Sci. **35**, 413–436 (1998).
30. Briggs, D. & Kear, A. J. Fossilization of soft tissue in the laboratory. *Science* **259**, 1439–1442 (1993).
31. Wilson, L. A. & Butterfield, N. J. Sediment effects on the preservation of Burgess Shale-type compression fossils. *Palaios* **29**, 145–154 (2014).
32. Sperling, E. A. & Talling, P. J. Deposit structure and processes of sand deposition from a decelerating sediment suspension. *J. Sediment. Res.** **78**, 529–547 (2008).
38. Sumner, E. J., Talling, P. J. & Amy, L. A. Deposits of flows transitional between turbidity current and debris flow. Geology 37, 991–994 (2009).

Acknowledgements
This work was funded by the University of Portsmouth, Faculty of Science Postgraduate Research Bursary (O.G.B.E.). We acknowledge the Steve Farrell Memorial Fund from the British Sedimentological Research Group to O.G.B.E. and Natural Sciences and Engineering Research Council (NSERC) Discovery Grant 311726-15 to M.G.M. for funding fieldwork to the Burgess Shale. M.G.M. thanks additional funding by the George J. McLeod Enhancement Chair in Geology. Fieldwork was conducted under Parks Canada collection and research permit (YNP-2105-19297). We are very thankful to J.-B. Caron, M. Akrami, and P. Fenton for hosting and providing the specimens in this study at the Royal Ontario Museum, Toronto. We thank the University of Southampton for use of the annular flume. This research was conducted in accordance with the ethical policy (approval 515B) under use of animals in experiments.

Author contributions
O.G.B.E., N.J.M., E.J.S., M.G.M., and L.A.B. conducted the fieldwork. O.G.B.E., N.J.M., and E.J.S. designed the experiments. O.G.B.E. undertook XRD and SEM-EDS analyses and interpretation. O.G.B.E. and N.J.M. imaged fossil specimens. O.G.B.E performed the experiments, analyzed the data, and drafted the manuscript. N.J.M. was involved with the analysis and revising and editing of the article. All authors gave final approval for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s43247-021-00176-w.

Correspondence and requests for materials should be addressed to O.G.B.E. or N.J.M.

Peer review information Primary handling editor: Joe Aslin

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021