Minireview

Congenital anomalies of kidney and hand: a review

Gopalakrishnan Natarajan, Dhanapriya Jeyachandran, Bala Subramaniyan, Dineshkumar Thanigachalam and Arul Rajagopalan

Department of Nephrology, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai 600003, India

Correspondence and offprint requests to: Dhanapriya Jeyachandran; E-mail: priyamdhana@yahoo.co.in

Abstract

‘Acro-renal syndrome’ refers to co-occurrence of congenital renal and limb anomalies. The term acro-renal syndrome was coined by Curran et al. in 1972 though Dieker and Opitz were the first to report this phenomenon in three male patients in 1969. The common limb defects include oligodactyly, ectrodactyly, syndactyly or brachydactyly anomalies of the carpal and tarsal bones and the common renal anomalies observed are unilateral renal agenesis (URA), bilateral renal hypoplasia, ureteric hypoplasia, hydroureteronephrosis and duplication abnormalities. The acro-renal syndrome as originally described is rare, reported only in ~20 patients in the international literature. We report a 23-year-old male patient with renal anomalies in the form of absent right kidney, left-sided vesicoureteric reflux (VUR) and skeletal anomalies viz short radius, absent first metacarpal ray in left hand and left undescended testis, consistent with Dieker's type acro-renal syndrome. Apart from the classical acro-renal syndrome, several anomalies of acro-renal patterns and the abnormal gene loci involved are described in the literature. This article is a comprehensive review of the development of kidneys, types of acro-renal syndromes, congenital anomalies of the kidney and urinary tract (CAKUT), syndromes associated with combined limb and renal anomalies, and anomalies associated with URA.

Keywords: acro-renal syndrome; CAKUT; URA; vesicoureteric reflux

Introduction

Limb and urinary tract anomalies have frequently been reported to occur together as components of a single acro-renal defect or multiple malformation syndromes [1]. The incidence of associated limb and renal anomalies is about 1 in 20 000 births. The acro-renal syndrome has a restrictive definition with limb defects usually bilateral, like cleft hands or feet and longitudinal defects involving radius or ulna, tibia or fibula [2]. Renal anomalies include agenesis (unilateral or bilateral), hypoplasia and rarely polycystic kidneys. Additional malformations may involve the oromandibular region, the trachea and lungs, skin derivatives including sweat glands, mammary glands, the uterus, vas deferens, the nasal placodes and the eyes. Our patient had left upper limb anomalies viz shortened radius, absent first metacarpal ray (thumb and first metacarpal bone) and absent trapezium and scaphoid carpal bones (Figures 1 and 2), axial skeletal anomalies like scoliosis and sacral hypoplasia (Figures 3 and 4) and renal anomalies (left solitary kidney with grade 5 VUR).

Embryology of renal tract

The development of the kidney proceeds through a series of successive phases, which include pronephros, mesonephros, and metanephros that develop in a cranio-caudal fashion [3, 4]. During embryonic development, the pronephros appears in pair towards the cranial end of the intermediate mesoderm. The epithelial cells in this region arrange themselves in a series of tubules and join laterally with the pronephric duct. The pronephric duct induces nearby intermediate mesoderm in the thoracolumbar area to form epithelial tubules called mesonephric tubules which are drained into the continuation of the pronephric duct, now called the mesonephric duct or wolffian duct. During the fifth week of gestation, the mesonephric duct develops an outpouching, the so-called ureteric bud [3]. The elongated stalk of the ureteric bud called the metanephric duct later forms the ureter. The cranial end of the ureteric bud extends into the intermediate mesoderm and undergoes a series of branching to form the collecting duct system. It also forms the major and minor calyces and the renal pelvis. The essential step in the process of kidney development is the mutual induction between the metanephric mesenchyme and the ureteric bud [5]. As the foetus develops, the torso elongates and the kidneys rotate and migrate upward towards the lumbar region.

Congenital anomalies of kidney and urinary tract

Kidney malformations occur during organogenesis between 4 and 12 weeks of foetal life leading to congenital

© The Author 2013. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
For permissions, please email journals.permissions@oup.com.
anomalies of the kidney and urinary tract (CAKUT) [6]. The incidence as detected in antenatal ultrasound examinations is 1:500 [7]. The urinary tract anomalies account for ~20–30% of total congenital anomalies diagnosed during pregnancy [3]. CAKUT is phenotypically variable and results in significant renal problems in adulthood ranging from hypertension, proteinuria to end-stage renal disease [8]. The spectrum of CAKUT includes kidney hypoplasia/dysplasia, renal agenesis, multicystic, horseshoe or duplex kidneys, VUR, hydroureret, hydronephrosis and obstruction at the vesicoureteric or uretero-pelvic junction [5, 8].

Congenital renal anomalies can be sporadic or familial, syndromic (also affecting non-renal tissues) or non-
syndromic. The primary insults believed to be associated with the development of CAKUT are environmental factors and genetic mechanisms [9, 10]. Animal studies have shown that any perturbations to the foetal environment that include maternal food restriction, low-protein...
diet, placental insufficiency, maternal vitamin A deficiency, use of alcohol and drugs like angiotensin-converting enzyme inhibitors and sodium valproate can result in reduced nephron endowment and renal anomalies. Various genetic loci associated with syndromic \textsc{cakut} are identified. In animal models, deletion of several of these genes results in low nephron endowment including \textsc{pax2}, \textsc{p53}, \textsc{gl13r}, \textsc{gdnf}, \textsc{fgf} 7, \textsc{frs2} and \textsc{six} 2 [11, 12]. The UK Renal Registry data show that dysplastic/hypoplastic kidneys together account for \textasciitilde{}40% of all children on renal replacement therapy and are six times more common than nephronphthisis, congenital nephrotic syndromes or metabolic diseases [13].

\textbf{Acro-renal syndrome}

The acro-renal syndrome of Dieker's type is sporadic in nature as in our patient. The anomalies include unilateral renal agenesis (\textsc{ura}), ectopic kidneys, urethral diverticulum, hydronephrosis, hydrocolpos, and limb anomalies. Such acro-renal syndromes are clearly heterogeneous in terms of cause and specific morphological defects, but rarely observed without malformations in other systems. The phases of development in a synchronized manner during the initial 3–8 weeks of gestation. There are a number of syndromes with combined anomalies of the renal system and limbs other than the classical acro-renal syndrome. Such acro-renal defects are clearly heterogeneous in terms of cause and specific morphological defects, but rarely observed without malformations in other systems [19]. Few such conditions are summarized below.

\textbf{Syndromes with acro-renal anomalies}

\textbf{(i) Autosomal dominant inheritance}

(a) \textbf{Acro-renal-ocular syndrome} (\textsc{aros}) is characterized by ocular anomalies (optic nerve coloboma), radial ray abnormalities of the hand from mild thanar hypoplasia to hypoplastic thumbs or prominent upper limb abnormalities and urinary tract anomalies including \textsc{ura}, renal ectopia, malrotation, bilateral renal hypoplasia, horse-shoe kidney, \textsc{vur} and bladder diverticulum [20, 21]. In addition, sensorineural deafness, cardiac anomalies and anal stenosis are noted. Duane-Radial Ray syndrome allelic to \textsc{aros} is characterized by Duane eye anomaly, radial ray malformations like tripahlangal thumb, preaxial polydactyly, hypoplasia/aplasia of the thumb and radii, shortening and radial deviation of the forearm. This is due to mutations in the \textsc{sall} 4 gene in chromosome (chr) 20 q [22].

(b) \textbf{Townes–Brocks syndrome} is caused by mutation in the putative zinc finger transcription factor gene \textsc{sall} 1 in chr 16q and the features include thumb malformations [23, 24], dysplastic ear, \textsc{ura}, conductive deafness and imperforate anus. The incidence is 1:250 000 live births [25, 26].

(c) \textbf{Pallister–Hall syndrome} includes imperforate anus, renal anomalies (renal hypoplasia or agenesis), limb anomalies (polydactyly, short limbs, syndactyly and nail dysplasia) and genital anomalies (microphallus/cryptorchidism) [27, 28]. This is due to heterozygous mutations in \textsc{gl13} (Gli-Kruppel family member 3) in chr 7p [29, 30].

(d) \textbf{Hadju–Cheney syndrome} is characterized by acro-osteolysis, short neck, short stature, coarse face, dental anomalies, renal abnormalities (cystic kidney disease and hypoplastic kidneys), cardiac anomalies, hepatosplenomegaly, hydrocephalus and cleft palate [31, 32].

\textbf{(ii) Autosomal recessive inheritance}

(a) \textbf{Acro-renal–mandibular syndrome} is characterized by \textsc{ura}, ectrodactyly and hypoplastic mandible. The pathogenesis is linked to an abnormal epithelial–mesenchymal interaction during embryonic development [33–35].

(b) \textbf{Fraser syndrome}: the incidence is 1:200 000 live births and is due to mutations in \textsc{fras1} and \textsc{frem2} [36], associated with \textsc{ura}, cryptophthalmos, genitourinary abnormalities and syndactyly [37].

(c) \textbf{Short-rib polydactyly syndrome} types I and II: cystic dysplasia, hypoplasia of ureters, dwarfish, thoracic dystrophy, polydactyly, syndactyly and short limbs. Molecular basis is yet to be identified [38].

\textbf{(iii) Miscellaneous}

(a) \textbf{\textsc{vacterl} association} is typically defined by the presence of at least three of the following congenital malformations: vertebral defects, anal atresia, cardiac defects, \textsc{tracheo-oesophageal} fistula, renal anomalies and limb abnormalities [39]. This is one of the close differential diagnoses of acro-renal syndrome. The incidence is 1 in 10 000–40 000 live births. Vertebral anomalies typically include segmentation defects, such as hemivertebrae, butterfly vertebrae and vertebral fusions, supernumerary or absent vertebrae. Cardiac malformations are seen in 40–80% [40, 41]. Renal anomalies, which may include \textsc{ura} (or bilateral in severe cases), horseshoe kidney, and cystic and/or dysplastic kidneys, and ureteral anomalies are reported in 50–80%. Limb malformations are seen in 40–50% which include radial anomalies, including thumb aplasia/hypoplasia, polydactyly and lower limb anomalies. Approximately 90% of cases appear to be sporadic. The presumed gene involvement is \textsc{shh}, \textsc{gli}, \textsc{hoxd13} and \textsc{zic} 3 [40–43].

(b) \textbf{Atrio-acro-renal syndrome} [44] of partial trisomy 4q is characterized by mental retardation,
Renal agenesis

Renal agenesis is the most profound renal tract malformation characterized by complete absence of kidney development and is often accompanied by an absent ureter [55]. Four theories have been proposed as the cause: (i) failure of the metanephric bud to appear in spite of a normally preceding mesonephros, (ii) early regression of the metanephros, (iii) imperfect development of the metanephros, and (iv) non-development of the pro-nephros leading to non-growth of mesonephros [56].

Renal agenesis is usually unilateral with the prevalence of 1 in 1500–3200 live births and more common in males [57]. Bilateral renal agenesis is invariably fatal. URA is often asymptomatic and is incidentally diagnosed by radiology [58, 59]. The mean age at diagnosis for renal agenesis is 2.8 years [60]. This anomaly is more common on the left side [61]. An exception to this left-sided predominance is noted in females with combined genital anomalies and URA that commonly presents on the right side [62]. The mechanisms leading to this lateralization are not clear because of a general concern about the appropriateness and limitations of genetic testing in patients and their relatives [63].

A review of 30 cases with a congenital solitary functioning kidney revealed an absent left kidney (67%), associated anomalies that include the ear, nose and throat (30%), the musculoskeletal system (27%), urological tract (47%), gastrointestinal tract (23%), cardiovascular (13%), dermatological and gynaecological (3%) anomalies. Proteinuria was observed in 20% and hypertension in 7% of patients. Chronic kidney disease was documented in 20% [64].

Syndromes with renal agenesis

1. Branchio-oto-renal syndrome (Melnick–Fraser syndrome): this autosomal dominant disease is characterized by coexistence of deafness, branchial fistulae, pre-auricular pits and renal anomalies, unilateral agenesis being more common. Most common mutation is present on EYA (Eyes-absent homologue 1) gene in chr 8q but also involves SIX1 and SIX6 genes [65–67]. The prevalence is 1: 40 000–70 000 [68].

2. Renal coloboma syndrome (papillorenal syndrome): it is characterized by renal hypoplasia and agenesis, vesicoureteral reflux and optic nerve coloboma [22] and is due to mutations in nuclear transcription factor PAired-box gene 2 (PAX2) in chr 10q. Almost all patients develop end-stage kidney disease [69, 70].

3. Alagille syndrome (arteriohepatic dysplasia): marked arterionephrosclerosis with diffuse calcinosis, URA, vertebral anomalies (butterfly vertebrae), peripheral pulmonary stenosis, mental and growth retardation and neonatal cholestasis. This occurs due to mutations in NOTCH2 in chr 1p and JAG1 (Jagged 1) in chr 20p [71–74].

4. Winter syndrome: renal agenesis (unilateral/bilateral), middle-ear anomalies and internal genital malformations are noted in these patients. The mutation of the PAX-8 gene in chr 2q has been postulated [75].

5. Kallmann syndrome: URA, congenital anosmia, hypogonadism and cryptorchidism due to mutations in KAL1 in chr Xp [76].

6. CHARGE association: URA, duplicated upper pole of one kidney, coloboma, choanal atresia, cardiac, genital and ear defects are due to mutations in CHD7 (chromodomain helicase DNA-binding protein 7) in chr 8q [77].

Genetic testing

The benefit of genetic testing of patients and their relatives is not clear because of a general concern about the appropriateness and limitations of genetic testing in CAKUT. According to the standard guidelines, an appropriate genetic test should be accurate to identify a particular disease, which in most cases of CAKUT is not possible. This is due to uncertain phenotypical presentation and penetrance [3]. Thus, CAKUT is diagnosed through studying the foetal and postnatal imaging. Our knowledge of the genetic basis is mainly based on syndromic cases of CAKUT and animal models [78–80]. Genetic analyses are available only on a research basis [81].

Conclusions

The presence of one congenital anomaly is an indirect indicator of abnormalities in the other systems. Early diagnosis and treatment of urological anomalies are important to improve the long-term renal prognosis. Evaluation is advocated to patients with congenital
skeletal deformities of the extremities for co-existing renal anomalies. Parental counselling is necessary in case of genetically determined syndromes. Specialized outpatient clinics for rare diseases are increasingly common and patients should seek out these institutions.

Conflict of interest statement. None declared.

References

1. Evans JA, Vitez M, Czeizel A. Patterns of acrorenal malformation associations. Am J Med Genet 1992; 44: 413–419
2. Zeier M, Tariverdian G, Waldherr R et al. Acroneal syndrome in an adult—presentation with proteinuria, hypertension and glomerular lesions. Am J Kidney Dis 1989; 14: 221–224
3. Hakan RT, Okan T, Ali H et al. Congenital Anomalies of Kidney and Urinary Tract. Semin Nephrol 2010; 30: 374–386
4. Guillaume R, Bressan M, Herzlinger D. Paraxial mesoderm contributes stromal cells to the developing kidney. Dev Biol 2009; 329: 169–175
5. Piscione TD, Rosenblum N. The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation 2002; 70: 227–246
6. Kzemien G, Blaim MR, Kostro I et al. Urological anomalies in children with renal agenesis or multicystic dysplastic kidney. J Appl Genet 2006; 47: 171–176
7. Elias HAM, Stoutenbeek PH, Visser GHA et al. Concomitant anomalies in 100 children with unilateral multicystic kidney. Ultrasound Obstet Gynecol 2005; 25: 384–388
8. Zaffanello M, Brugnara M, Zuffante M et al. Are children with congenital solitary kidney at risk for lifelong complications? A lack of prediction demands caution. Int Urol Nephrol 2009; 41: 127–135
9. Weber S, Moriniere V, Knuppel T et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 2006; 17: 2864–2870
10. Nielsen GL, Norgard B, Puro E et al. Risk of specific congenital abnormalities in offspring of women with diabetes. Diabet Med 2005; 22: 693–696
11. Adolat S, Bockenhauer D, Sarah E et al. Renal malformations associated with mutations of developmental genes: messages from the clinic. Pediatr Nephrol 2010; 25: 2247–2255
12. Weber S, Taylor JC, Winyard P et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 2008; 19: 891–803
13. Lewis MA, Shaw J, Sinha M et al. UK Renal Registry 11th Annual Report (December 2008): chapter 13 demography of the UK paediatric renal replacement therapy population. Nephron Clin Pract 2009; 111: 257–267
14. Zeier M, Ritz E. No stinkfinger and renal failure—do you see a link? Nephrol Dial Transplant 1999; 14: 2763–2765
15. Curran AS, Curran JP. Associated acral and renal malformations: a new syndrome? Pediatrics 1972; 49: 716–725
16. Cascio S, paran S, Puri P. Associated urological anomalies in children with unilateral renal agenesis. J Urol 1999; 162: 1081–1083
17. Krones HY, Olney RS, Rosano A et al. Renal defects and limb deficiencies in 197 infants: is it possible to define the “acrorenal syndrome”? Am J Med Genet 2004; 129: 149–155
18. Aki K. Acroneal Syndrome in a Child With Renal Failure. Am J Med Genet 1994; 49: 447
19. Rosano A, Botto LD, Olney RS et al. Limb defects associated with major congenital anomalies: clinical and epidemiological study from the International Clearinghouse for birth defects monitoring systems. Am J Med Genet 2000; 93: 110–116
20. Naito T, Kido H, Yokoyama H et al. Nature of renal involvement in the acro-renoc-ocular syndrome. Nephron 1989; 51: 115
21. Halal F, Hosmy M, Perreault G. Acro-renoc-ocular syndrome: autosomal dominant thumb hypoplasia, renal ectopia, and eye defect. Am J Med Genet 1984; 17: 753
22. Weaver RG, Cashwell LF, Lorentz W et al. Optic nerve coloboma associated with renal disease. Am J Med Genet 1988; 29: 597–602
23. Albrecht B, Liebers M, Kohlhase J. Atypical phenotype and intra-familial variability associated with a novel SALL1 mutation. Am J Med Genet A 2004; 125: 102–104
24. Buck A, Archangelo L, Dickens C et al. Molecular cloning, chromosomal localization, and expression of the murine SALL1 ortholog Sall1. Cytogenet Cell Genet 2000; 89: 150–153
25. Devriendt K, Frys JP, Lemmens F et al. Somatic mosaicism and variable expression of Townes–Brocks syndrome. Am J Med Genet 2002; 111: 220–231
26. Engels S, Kohlhase J, McGaughran J. A SALL1 mutation causes a branchio-oto-renal syndrome-like phenotype. J Med Genet 2000; 37: 458–460
27. Kuo JS, Casey SO, Thompson L et al. Pallister–Hall syndrome: clinical and MR features. Am J Neuroradiol 1999; 20: 1839–1841
28. Bieseker LG, Graham JM Jr. Pallister–Hall syndrome. J Pediatr Genet 1996; 33: 585–589
29. Hall JG, Pallister PD, Claren SK et al. Congenital hypothyroidic hamartoblastoma, hypopituitarism, imperforate anus, and postaxial polydactyly—a new syndrome? Clinical, causal and pathogenetic considerations. Am J Med Genet 1980; 7: 47–74
30. Low M, Morlinglane JR, Reif J et al. Polydactyly and asymptomatic hypothyroidic hamartoma in mother and son: a variant of Pallister–Hall syndrome. Clin Genet 1995; 48: 209–212
31. Cheney WD. Acro-osteolysis. Am J Roentgenol 1965; 94: 595–560
32. Strassburg A, Sching E, Enrich JHJ. A child with polycystic kidney disease—do we care about associated malformations? Nephrol Dial Transplant 2001; 16: 1942–1944
33. Evans JA, Phillips S, Reed M et al. Severe acrorenal-uterine-mandibular syndrome. Am J Med Genet 2000; 93: 67–73
34. Tobias ES, Patrick WJA, Mackenzie JR et al. A case of Acrorenal-mandibular syndrome in an 18-week male foetus. Clin Dysmorphol 2001; 10: 61–64
35. Halal F, Desgranger MF, Ledec B et al. Acroneal mandibular syndrome. Am J Med Genet 1980; 5: 277–284
36. Slavotinek AM, Tifft CJ. Fraser syndrome and cryptophthalmos: a review of the diagnostic criteria and evidence of phenotypic modules. J Med Genet 2002; 39: 623–633
37. McGregor L, Makela V, Darling SM et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet 2003; 34: 203–208
38. Urioste M, Martinez-Frias ML, Bermejo E et al. Short rib polydactyly syndrome and pericentric inversion of chromosome. Am J Med Genet 1994; 49: 94–97
39. Quan L, Smith DW. The VATER association. Vertebral defects, anal atresia, T-E fistula with esophageal atresia, radial and renal dysplasia: a spectrum of associated defects. J Pediatr 1973; 82: 104–107
40. Opitz JM. The developmental field concept. Am J Med Genet 1985; 21: 1–11
41. Teotmarry SA, Miller JD. Extending the scope of the VATER association: definition of the VATER syndrome. J Pediatr 1974; 85: 345–349
42. Rittler M, Paz JE, Castilla EE. VACTERL association, epidemiologic definition and delineation. Am J Med Genet 1996; 63: 529–536
43. Czeizel A, Ludanyi I. An aetiological study of the VACTERL association. Eur J Pediatr 1985; 144: 331–337
44. Otsuka T, Fujinaka H, Immamura M et al. Duplication of chromosome 4q: renal pathology of two siblings. Am J Med Genet A 2005; 134: 330–333
45. Gorlin RJ, Cohen MM, Hennekam RCM (eds). Chromosomal syndromes: unusual variants. Syndromes of the head and neck. 4th edn. Oxford: Oxford University Press, 2001; 84–85
46. Duncan PA, Shapiro LR, Stangel JJ et al. The MURCS association: Müllerian duct aplasia, renal aplasia, and cervicothoracic somite dysplasia. J Pediatr 1979; 95: 399–402
47. Lira CS, Forbin K, Martinez CJC. Rokitansky syndrome and MURCS association-clinical features and basis for diagnosis. Int J Fertil Women Med 1999; 45: 250–255
48. Gorlin RJ. Risk of recurrence in usually nongenetic malformation syndromes. Birth Defects Orig Artic Ser 1979; 15: 181–188
49. Stevens DB, Fink BA, Precvil C. Poland’s syndrome in one identical twin. J Pediatr Orthop 2000; 20: 392–395
50. Hedge HR, Leung AKC. Aplasia of pectoralis major muscle and renal anomalies. Am J Med Genet 1989; 32: 109–111
51. Pranava VM, Rao PSSS, Neelachalam A et al. Poland’s syndrome with renal hypertension. JAPI 2000; 48: 452–453
52. Mace JW, Kaplan JM, Schanberger JE et al. Poland’s syndrome: report of seven cases and review of the literature. Clin Pediatr 1972; 11: 98–102
53. Iyan S, Chen YW, Chenier I et al. Maternal diabetes modulates renal morphogenesis in offspring. J Am Soc Nephrol 2008; 19: 943–952
54. Nora AH, Nora JJ. A syndrome of multiple congenital anomalies associated with teratogenic exposure. Arch Environ Health 1975; 30: 17–21
55. Boyd en EA. Congenital absence of the kidney: an interpretation based on a 10-mm. human embryo exhibited unilateral renal agenesis. Anat Rec 1932; 52: 325–349
56. Hirooka M, Tsukahara H, Ohshima Y et al. Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int 2002; 61: 1840–1844
57. Robson WL, Leung AK, Rogers RC. Unilateral renal agenesis. Adv Pediatr 1995; 42: 575–592
58. Mishra A. Renal agenesis: report of an interesting case. Br J Radiol 2007; 80: e167–e169
59. Woolf AS. Unilateral multicystic dysplastic kidney. Kidney Int 2006; 69: 190–193
60. de Lucas C, Nocea A, San Roman J et al. Solitary kidney. Study of renal morphology and function in 95 children. Nefrologia 2006; 26: 56–63
61. Michiel F. Schreuder. Unilateral anomalies of kidney development: why is left not right? Kidney Int 2011; 80: 740–745
62. Atiyeh B, Husmann D, Baum M. Contralateral renal abnormalities in patients with renal agenesis and noncystic renal dysplasia. Pediatrics 1993; 91: 812–815
63. Woolf AS, Hillman KA. Unilateral renal agenesis and the congenital solitary functioning kidney: developmental, genetic and clinical perspectives. BJU Int 2007; 99: 17–21
64. Akl K. The anomalies associated with congenital solitary functioning kidney in children. Saudi J Kidney Dis Transplant 2011; 22: 67–71
65. Ruf RG, Xu PX, Silvius D et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci USA 2004; 101: 8090–8095
66. Hoskins BE, Cramer CH, Silvius D et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet 2007; 80: 800–804
67. Misra M, Nolph KD. Renal failure and deafness: branchio-oto renal syndrome. Am J Kidney Dis 1998; 32: 334–337
68. Buller C, Xu X, Marquis V et al. Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum Mol Genet 2001; 10: 2775–2781
69. Sanyanusin P, Schimmenti LA, McNee LA et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies, and vesicoureteral reflux. Nat Genet 1995; 9: 358–364
70. Cunliffe HE, McNoe LA, Ward TA et al. The prevalence of PAX2 mutations in patients with isolated colobomas or colobomas associated with urogenital anomalies. J Med Genet 1998; 35: 806–812
71. Oda T, Elkahloun AG, Pike BL et al. Mutations in the human Jagged 1 gene are responsible for Alagille syndrome. Nat Genet 1997; 16: 235–242
72. Li L, Krantz ID, Deng Y et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 1997; 16: 243–251
73. Krantz ID, Piccoli DA, Spinner NB. Clinical and molecular genetics of Alagille syndrome. Curr Opin Pediatr 1999; 11: 558–564
74. McDaniell R, Warthen DM, Sanchez-Lara Pa et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006; 79: 169–173
75. Maha MAH, Makia JM, Sawsan JA. Baraitser-Winter syndrome: an additional Arab patient. Egypt J Med Hum Genet 2010; 11: 187–191
76. Hardelin JP. Kallmann syndrome towards molecular pathogenesis. Mol Cell Endocrinol 2001; 179: 75–81
77. Zentner GE, Layman WS, Martin DM et al. Molecular and phenotypic aspects of CHD7 mutation in CHAR syndrome. Am J Med Genet 2010; 152: 674–686
78. Taranta A, Palma A, De Luca V et al. Renal-coloboma syndrome: a single nucleotide deletion in the PAX2 gene at exon 8 is associated with a highly variable phenotype. Clin Nephrol 2007; 67: 1
79. Fletcher J, Hu M, Berman Y et al. Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol 2005; 16: 2754
80. Decramer S, Parant O, Beaufils S et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol 2007; 18: 923
81. Kerecuk L, Schreuder MF, Woolf AS. Renal tract malformations: perspectives for nephrologists. Nat Clin Pract Nephrol 2008; 4: 312–325

Received for publication: 28.10.11; Accepted in revised form: 18.12.12