BV instability for the Lax-Friedrichs scheme

Paolo Baiti * Alberto Bressan† Helge Kristian Jenssen‡

Abstract

It is proved that discrete shock profiles (DSPs) for the Lax-Friedrichs scheme for a system of conservation laws do not necessarily depend continuously in BV on their speed. We construct examples of 2×2-systems for which there are sequences of DSPs with speeds converging to a rational number. Due to a resonance phenomenon, the difference between the limiting DSP and any DSP in the sequence will contain an order-one amount of variation.

1 Introduction

Consider a strictly hyperbolic $n \times n$ system of conservation laws in one space dimension:

$$u_t + f(u)_x = 0. \quad (1)$$

For initial data with small total variation, the existence of a unique entropy weak solution is well known [9], [5], [3]. A closely related question is the stability and convergence of various types of approximate solutions. For vanishing viscosity approximations

$$u_t + f(u)_x = \varepsilon u_{xx}, \quad (2)$$

uniform BV bounds, stability and convergence as $\varepsilon \to 0$ were recently established in [2]. Assuming that all the eigenvalues of the Jacobian matrix $Df(u)$ are strictly positive, similar results are also proved in [1] for solutions constructed by the semidiscrete (upwind) Godunov scheme

$$\frac{d}{dt} u_j(t) + \frac{1}{\Delta x} \left[f(u_j(t)) - f(u_{j-1}(t)) \right] = 0, \quad u_j(t) = u(t, j \Delta x).$$

* Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, Udine 33100, Italy; E-mail: baiti@dimi.uniud.it

† Department of Mathematics, Penn State University, UP, PA 16802, U.S.A.; E-mail: bressan@math.psu.edu

‡ Department of Mathematics, North Carolina State University, Raleigh, NC 27695, U.S.A.; E-mail: hkjensse@math.ncsu.edu. Research supported in part by the NSF under grant DMS-0206631
In the present paper we study the case of fully discrete schemes, where the derivatives w.r.t. both time and space are replaced by finite differences.

We recall that, for the 2×2 system of isentropic gas dynamics, the convergence of Lax-Friedrichs and Godunov approximations was proved in [7], within the framework of compensated compactness. Further results have been obtained for straight line systems, where all the Rankine-Hugoniot curves are straight lines. For straight line systems of two equations LeVeque and Temple [11] utilized the existence of Riemann invariants to prove stability and convergence of the Godunov scheme. For $n \times n$-systems in the same class, uniform BV bounds, stability and convergence of a relaxation scheme, Godunov and Lax-Friedrichs approximations were established in [6], [4], [14], respectively. The analysis relies on the fact that, due to the very particular geometry, the interaction of waves of the same family does not generate additional oscillations.

A key ingredient in the arguments in [2] and [1] is the local decomposition of the approximate solutions in terms of travelling waves. To achieve a good control on the new waves produced by interactions of waves of a same family, it is essential that the center manifold of traveling profiles has a certain degree of smoothness. We show in this paper that this smoothness is lacking in the case of fully discrete schemes. As remarked by Serre [13], for general hyperbolic systems the discrete shock profiles cannot depend continuously on the speed σ, in the BV norm. In the present paper we construct an explicit example showing how this happens.

Our basic example is provided by a 2×2 system in triangular form

\begin{align}
 u_t + f(u)_x &= 0, \quad (3) \\
 v_t + g(u)_x &= 0. \quad (4)
\end{align}

The characteristic speeds are 0 and $f'(u)$ and the system is strictly hyperbolic provided $f'(u) > 0$. The Lax-Friedrichs scheme for (3)-(4) with $\Delta x = \Delta t$ takes the form

\begin{align}
 u_{n+1,j} &= \frac{1}{2} (u_{n,j+1} + u_{n,j-1}) - \frac{1}{2} (f(u_{n,j+1}) - f(u_{n,j-1})), \quad (5) \\
 v_{n+1,j} &= \frac{1}{2} (v_{n,j+1} + v_{n,j-1}) - \frac{1}{2} (g(u_{n,j+1}) - g(u_{n,j-1})). \quad (6)
\end{align}

For the rest of the paper we fix a flux function $f(u)$ which satisfies $f'(u) > 1/4$, say, and also the CFL condition $|f'(u)| < 1$, for all $u \in \mathbb{R}$. We also take the other flux function g constant outside a bounded interval.

A discrete shock profile (DSP) with speed λ for (3)-(4) is a pair of functions

\[(U(x), V(x)) = (U^{(\lambda)}(x), V^{(\lambda)}(x))\]
satisfying
\[
U(x - \lambda) = \frac{U(x + 1) + U(x - 1)}{2} - \frac{f(U(x + 1)) - f(U(x - 1))}{2}, \tag{7}
\]
\[
V(x - \lambda) = \frac{V(x + 1) + V(x - 1)}{2} - \frac{g(U(x + 1)) - g(U(x - 1))}{2}. \tag{8}
\]

We will give a rational speed \(\lambda = p/q\) and a sequence of rational perturbations \(\varepsilon_n\) for which the difference \(V^{(\lambda)} - V^{(\lambda + \varepsilon_n)}\) contains an \(O(1)\) amount of variation, uniformly with respect to \(n\). The variation occurs far downstream in an interval of the form \([-C\varepsilon_n^{-2}, -c\varepsilon_n^{-2}]\).

2 Outline of construction

As a motivation for the later computations we consider the easier case of the heat equation with a point-source. If the source acts continuously in time and concentrated along the line \(x = \sigma t\), then
\[
v_t - v_{xx} = \delta_{t, \sigma t}, \tag{9}
\]
with \(\sigma > 0\). In this case one finds the travelling wave solution
\[
v(t, x) = \phi(x - \sigma t) \tag{10}
\]
with
\[
\phi(y) = \int_0^\infty G(t, y + \sigma t) \, dt = \begin{cases}
\sigma^{-1} e^{-\sigma y} & \text{if } y \geq 0, \\
\sigma^{-1} & \text{if } y \leq 0.
\end{cases} \tag{11}
\]
Here \(G(t, x) := e^{-x^2/4t}/2\sqrt{\pi t}\) is the standard heat kernel. Notice that the travelling profile can also be obtained as the value at time \(t = 0\) of a solution of (9) defined for \(t \in] - \infty, 0\]. We also have
\[
\phi'(y) = \int_0^\infty G_x(t, y + \sigma t) \, dt = \begin{cases}
-e^{-\sigma y} & \text{if } y > 0, \\
0 & \text{if } y < 0.
\end{cases} \tag{12}
\]

Next, we consider the case where the sources are located on a discrete set of points \(P_n = (n, \sigma n)\), with \(n\) integer (the white circles in Figure 1)
\[
v_t - v_{xx} = \delta_{n, \sigma n}. \tag{13}
\]
We again assume that \(\sigma > 0\) and consider a solution of (9) defined for \(t \in] - \infty, 0\]. Its value at time \(t = 0\) is now computed as
\[
v(0, y) = \Phi(y) = \sum_{n \geq 1} G(n, y + \sigma n). \tag{14}
\]
For $y \to \infty$, it is clear that $\Phi(y)$ tends to zero exponentially fast, together with all derivatives. We wish to understand how the oscillations decay for $y \to -\infty$, i.e. far downstream from the shock. For $y < 0$, the sum (14) can be expressed as an integral

$$\Phi(y) = \sum_{n \geq 1} G(n, y + \sigma n) = \int_0^\infty G(t, y + \sigma t) \left(1 + h_1'(t)\right) dt,$$

where

$$h_1(t) \triangleq [t] - t + 1/2.$$

By induction, we can find a sequence of periodic functions h_m such that (Figure 2)

$$h_m(t) = h_m(t + 1), \quad \int_0^1 h_m(t) \, dt = 0, \quad \frac{d}{dt} h_m(t) = h_{m-1}(t).$$

Integrating by parts and recalling (11), from (15) we obtain

$$\Phi(y) = \int_0^\infty G(t, y + \sigma t) \left(1 + \frac{d^m}{dt^m} h_m(t)\right) dt = \frac{1}{\sigma} + (-1)^m \int_0^\infty \frac{d^m}{dt^m} G(t, y + \sigma t) h_m(t) \, dt.$$

Since

$$h_m(t) = \int_{\xi_m}^{t} h_{m-1}(s) \, ds, \quad t \in [0, 1],$$
for some point $\xi_m \in [0,1]$, by induction we find
$$|h_m(t)| \leq 1 \quad \forall m \geq 1, \forall t \in \mathbb{R}.$$

The identities
$$G(t,x) = t^{-1/2}G(1, x/\sqrt{t}) , \quad G_t = G_{xx},$$

imply
$$\frac{\partial^m}{\partial x^m}G(t,x) = t^{-(m+1)/2} \cdot \frac{\partial^m}{\partial x^m}G(1, x/\sqrt{t}) , \quad (18)$$
$$\frac{\partial^m}{\partial t^m}G(t,x) = t^{-(2m+1)/2} \cdot \frac{\partial^m}{\partial t^m}G(1, x/\sqrt{t}) . \quad (19)$$

We recall here some basic estimates for the heat kernel and its derivatives, which we will use throughout the paper. For $k = 0, 1, \ldots$ we have

$$\left\| \frac{\partial^k}{\partial x^k}G(t,\cdot) \right\|_{L^\infty} = O(1) \cdot \frac{1}{t^{(k+1)/2}}, \quad (20)$$
$$\left\| \frac{\partial^k}{\partial t^k}G(t,\cdot) \right\|_{L^\infty} = O(1) \cdot \frac{1}{t^{(2k+1)/2}} \cdot (21)$$

In addition we observe that, as $y \to -\infty$, the function $t \mapsto G(t, y+\sigma t)$ becomes exponentially small together with all its derivatives, outside the interval centered at $|y|/\sigma$ with width $|y|^{\delta+1/2}$, for any $\delta > 0$. More precisely

$$\sup_{|t+y/\sigma|<|y|^{\delta+1/2}} \left| \frac{d^m}{dt^m}G(t, y+\sigma t) \right| = O(1) \cdot e^{c_\delta y} \quad \text{as } y \to -\infty , \quad (22)$$

for some constant $c_\delta > 0$.

Figure 2
Letting $y \to -\infty$, for every $m \geq 1$ the above estimates imply
\[
\left| \Phi(y) - \frac{1}{\sigma} \right| \leq \int_0^\infty \left| \frac{d^m}{dt^m} G(t, y + \sigma t) \right| dt = O(1) \cdot y^{-m/2}.
\] (23)

Similarly,
\[
\left| \Phi'(y) \right| \leq \int_0^\infty \left| \frac{d^{m+1}}{dt^{m+1}} G(t, y + \sigma t) \right| dt = O(1) \cdot y^{-(m+1)/2}.
\] (24)

Since $m \geq 1$ is arbitrary, this shows that the function Φ' is rapidly decreasing as $y \to -\infty$. In particular, taking $m = 2$ in (24) we obtain the integrability of Φ', hence a bound on the total variation of Φ.

Finally, assume that the impulses are located not at the points $P_n = (n, \sigma n)$ but at the points with integer coordinates $Q_n \doteq (n, \lfloor \sigma n \rfloor)$ (the black circles in Figure 1)
\[
v_t - v_{xx} = \delta_{n, \lfloor \sigma n \rfloor},
\] (25)
where $\lfloor a \rfloor$ denotes the integer part of a real number a.

Again we consider a solution defined for $t \in]-\infty, 0]$ and study its profile at the terminal time $t = 0$. Assuming $\sigma > 0$, a direct computation yields
\[
v(0, y - 1) = \Psi(y) := \sum_{n \geq 1} G(n, y + \lfloor \sigma n \rfloor).
\]
Because of (24), to determine the asymptotic behavior as $y \to -\infty$, it suffices to estimate the difference
\[
K(y) \doteq \Psi(y) - \Phi(y) = - \sum_{n \geq 1} \left[G(n, y + \sigma n) - G(n, y + \lfloor \sigma n \rfloor) \right].
\]

It is here that, if the speed σ is close to a rational, a resonance is observed. To see a simple case, let $\sigma = 1 + \varepsilon$, with $\varepsilon > 0$ small. Then we can approximate
\[
K(y) \approx - \sum_{n \geq 1} G_x(n, y + \sigma n) (\sigma n - \lfloor \sigma n \rfloor)
\approx - \int_0^\infty G_x(t, y + \sigma t) (\varepsilon t - \lfloor \varepsilon t \rfloor) dt.
\] (26)

The functions appearing in the above integration are shown in Figure 3. We recall that
\[
\int_0^\infty G_x(t, y + \sigma t) dt = - \int_0^\infty \frac{y + \sigma t}{4t \sqrt{\pi t}} \exp \left\{ -\frac{(y + \sigma t)^2}{4t} \right\} dt = 0
\]
for every $y < 0$. Set $y_\varepsilon = -\varepsilon^{-2}$. When y ranges within the interval

$$I_\varepsilon = [y_\varepsilon, y_\varepsilon/2] = [-\varepsilon^{-2}, -\varepsilon^{-2}/2],$$

the integral in (26) can be of the same order of magnitude as

$$\int_0^\infty |G_x(t, y_\varepsilon + \sigma t)| \, dt \geq c_0 y_\varepsilon^{-1/2} = c_0 \varepsilon.$$

Moreover, each time that y increases by an amount $\Delta y = \varepsilon^{-1},$ the phase of the fractional part $[[\varepsilon y]] - \varepsilon y$ goes through a full cycle, hence the map

$$y \mapsto \int_0^\infty G_x(t, y + \sigma t) \left(\varepsilon t - [[\varepsilon t]] \right) \, dt$$

oscillates by an amount $\geq c_1 \varepsilon$. In all, we have approximately $1/\varepsilon$ cycles within the interval I_ε. Hence the total variation of the discrete profile $\Psi^{(1+\varepsilon)}$ on I_ε can be estimated as

$$T.V.\{\Psi^{(1+\varepsilon)} ; I_\varepsilon\} \geq c_2$$

for some constant $c_2 > 0$ independent of ε. We write here $\Psi = \Psi^{(1+\varepsilon)}$ to emphasize that the profile depends on the speed $\sigma = 1 + \varepsilon$. By (27) it is clear that, as $\varepsilon \to 0^+$, the functions $\Psi^{(1+\varepsilon)}$ do not form a Cauchy sequence and cannot converge in the space BV.

3 Discrete shock profiles for the system

Since (3) is a decoupled scalar equation, the Lax-Friedrichs scheme (5) for this component admits discrete shock profiles connecting any two states, see Jennings [10]. For given left and right states u_-, u_+ we denote by $U^\lambda(x)$ the DSP connecting u_- to u_+ and moving with speed

$$\lambda = \frac{[f(u)]}{[u]}.$$
We proceed to construct the second component of a DSP with speed λ by using the discrete Green kernel for (6) and the Duhamel principle. Consider the Lax-Friedrichs scheme for the equation $z_t = 0$,

$$z_{n+1,j} = \frac{z_{n,j+1} + z_{n,j-1}}{2}. \quad (28)$$

We observe that the discrete Green’s function $K_{n,k}$ for (28) is given by

$$K_{n,k} = \begin{cases} \left(\frac{1}{2}\right)^n \binom{n}{(n-k)/2} & \text{for } k = -n, -n+2, \ldots, n-2, n, \\ 0 & \text{otherwise}. \end{cases} \quad (29)$$

Given any DSP for the first equation, a DSP for (6) is obtained by prescribing vanishing v-data at time $n = -\infty$, and then letting the u-terms act as a source in (6) from $n = -\infty$ to $n = 0$. Consider first the difference equation

$$v_{n+1,j} = \frac{1}{2} (v_{n,j+1} + v_{n,j-1}) + \psi_{n,j}, \quad (30)$$

where the sources $\psi_{n,j}$ are assumed given. By Duhamel’s principle we have that if vanishing data are given at time step $-N$, then the solution of (30) at time step $n \geq -N$ is

$$v_{n,j} = \sum_{m=-N-1}^{n-1} \sum_{k \in \mathbb{Z}} \psi_{m,j-k} K_{n-1-m,k}. \quad (31)$$

To apply this in our situation we introduce the functions ψ, $H : \mathbb{R} \to \mathbb{R}$ by

$$\psi(s) := \frac{d}{ds} g(U(s)),$$

and

$$H(x) := -\frac{1}{2} [g(U(x+1)) - g(U(x-1))] = -\frac{1}{2} \int_{x-1}^{x+1} \psi(s) ds,$$

where $U = U^{(\lambda)}$ is a scalar DSP for the first equation. In this case (30) may be written in the form (31) with the sources $\psi_{n,j}$ given by

$$\psi_{n,j} = H(j - \lambda n).$$

From now on we make the assumption that $g(u)$ is such that ψ and hence also H have compact support.

Proposition 3.1. The pair of functions $(U^{(\lambda)}, V^{(\lambda)})$ where $U^{(\lambda)}$ is a DSP for (6) and $V^{(\lambda)}$ is defined by

$$V^{(\lambda)}(x) := \sum_{n=1}^{\infty} \sum_{k \in \mathbb{Z}} H(x - k + \lambda n) K_{n-1,k},$$

is a DSP for the system (6)-(7).
\[\text{Remark 3.1:} \] The proof of this proposition is immediate once it is verified that the double sum converges. Since \(H \) has compact support the convergence follows.

We next give a useful integral representation of \(V^{(\lambda)}(x) \). For a fixed \(\xi \) we define the function \(v^{(\lambda)}(\cdot; \xi) : \mathbb{R} \to \mathbb{R} \) by

\[
v^{(\lambda)}(x; \xi) := \sum_{n=1}^{\infty} \left(K_{n-1, [x+\lambda n-\xi]} + K_{n-1, [x+\lambda n-\xi]+1} \right).
\]

Proposition 3.2. The function \(V^{(\lambda)}(x) \) is given by

\[
V^{(\lambda)}(x) = -\frac{1}{2} \int_{-\infty}^{\infty} \psi(\xi) v^{(\lambda)}(x; \xi) \, d\xi.
\]

Proof.

\[
V^{(\lambda)}(x) = \sum_{n=1}^{\infty} \sum_{k \in \mathbb{Z}} H(x - k + \lambda n) K_{n-1,k}
\]

\[
= -\frac{1}{2} \sum_{n=1}^{\infty} \sum_{k \in \mathbb{Z}} \left[\int_{x-k+\lambda n}^{x-k+\lambda n+1} \psi(\xi) \, d\xi K_{n-1,k} + \int_{x-k+\lambda n-1}^{x-k+\lambda n} \psi(\xi) \, d\xi K_{n-1,k} \right]
\]

\[
= -\frac{1}{2} \sum_{n=1}^{\infty} \sum_{k \in \mathbb{Z}} \left[\int_{x-k+\lambda n}^{x-k+\lambda n+1} \psi(\xi) K_{n-1,[x+\lambda n-\xi]} \, d\xi \right.
\]

\[
+ \int_{x-k+\lambda n-1}^{x-k+\lambda n} \psi(\xi) K_{n-1,[x+\lambda n-\xi]-1} \, d\xi \left. \right]
\]

\[
= -\frac{1}{2} \sum_{n=1}^{\infty} \left[\int_{-\infty}^{\infty} \psi(\xi) K_{n-1,[x+\lambda n-\xi]} \, d\xi + \int_{-\infty}^{\infty} \psi(\xi) K_{n-1,[x+\lambda n-\xi]-1} \, d\xi \right]
\]

\[
= -\frac{1}{2} \int_{-\infty}^{\infty} \psi(\xi) \sum_{n=1}^{\infty} \left(K_{n-1,[x+\lambda n-\xi]} + K_{n-1,[x+\lambda n-\xi]-1} \right) \, d\xi
\]

\[
= -\frac{1}{2} \int_{-\infty}^{\infty} \psi(\xi) v^{(\lambda)}(x; \xi) \, d\xi.
\]

\[\square \]

4 Approximation of the DSP in terms of the heat kernel

We will compare solutions of the Lax-Friedrichs scheme with certain solutions of the heat equation. As a first step we approximate the discrete Green’s function \(K_{n,k} \) using the heat kernel

\[
G(t, x) = \frac{1}{2\sqrt{\pi t}} e^{-\frac{x^2}{4t}}.
\]
We use the following notation (see [8]):

\[a_k(\nu) := \left(\frac{1}{2} \right)^{2\nu} \binom{2\nu}{\nu + k}. \]

By Stirling’s formula we have

\[a_k(\nu) = h\mathcal{N}(hk) \cdot \exp(\varepsilon_1 - \varepsilon_2), \]

where

\[h = \sqrt{\frac{2}{\nu}}, \quad \mathcal{N}(x) = \frac{1}{\sqrt{2\pi e}} \left(\frac{x}{2} \right)^x \]

and the errors \(\varepsilon_1, \varepsilon_2 \) satisfy

\[-\frac{3k^2}{4\nu^2} < \varepsilon_1 < \frac{k^4}{4\nu^3}, \quad \text{provided} \ |k| < \nu/3, \text{and} \ \varepsilon_2 = O(1/\nu). \]

There are two cases to consider depending on whether both \(n \) and \(k \) are even or both are odd.

- **Case 1**: \(n = 2m, k = 2l \). In this case we have,

\[K_{n,k} = a_l(m) = 2G\left(\frac{n}{2}, k \right) \cdot e^{\varepsilon_1 - \varepsilon_2}. \]

- **Case 2**: \(n = 2m + 1, k = 2l + 1 \). In this case we have,

\[K_{n,k} = \frac{n}{n + k} a_l(m) \]

\[= \frac{n}{n + k} \cdot 2G\left(\frac{n - 1}{2}, k \right) \cdot e^{\varepsilon_1 - \varepsilon_2} \]

\[= 2G\left(\frac{n}{2}, k \right) \cdot e^{\varepsilon_1 - \varepsilon_2} \frac{n}{n + k} \sqrt{\frac{n}{n - 1}} e^{-k^2/\left(2(n - 1)\right)}. \]

We will use this approximation only in the case when \(|k| \leq O(1)n^{1/2 + \delta} \) where \(0 < \delta \ll 1 \). It follows that in either case we have

\[e^{\varepsilon_1 - \varepsilon_2} = 1 + O(1)n^{-1 + 4\delta}. \]

An easy calculation shows that under the same condition on \(k \),

\[\frac{n}{n + k} \sqrt{\frac{n}{n - 1}} e^{k^2/\left(2(n - 1)\right)} = 1 + O(1)n^{-1 + \delta}. \]

Recalling (20), summing up we have the following.

Proposition 4.1. For \(n \geq 1 \) and for \(|k| \leq O(1)n^{1/2 + \delta} \), with \(0 < \delta \ll 1 \), we have

\[K_{n,k} = 2G\left(\frac{n}{2}, k \right) + O(1)n^{-3/2 + \delta}. \quad (33) \]
For a given speed $\lambda > 0$ and for $\delta \in]0, 1/2[$ we define the time interval

$$I(y; \lambda, \delta) = \left[\frac{y}{\lambda} - y^{1/2+\delta}, \frac{y}{\lambda} + y^{1/2+\delta} \right].$$

(34)

We will make repeated use of the fact that, for $y < 0$, the indices outside $I(|y|; \lambda, \delta)$ contribute exponentially little to the sum

$$S(y) := \sum_{n=1}^{\infty} K_{n,[y+\lambda n]}.$$

Proposition 4.2. For $y < 0$, $\lambda > 0$ and $\delta \in]0, 1/2[$ we have

$$\sum_{n \notin I(|y|; \lambda, \delta)} K_{n,[y+\lambda n]} \leq O(1)e^{-C(\delta, \lambda)|y|^{c(\lambda, \delta)}},$$

(35)

for some positive constants $C(\delta, \lambda)$ and $c(\lambda, \delta)$.

Proof. For notational convenience assume that $\lambda = 1$, the case $\lambda < 1$ being similar. First of all we have $K_{n,[y+\lambda n]} \neq 0$ iff $n \geq \frac{|y|}{\lambda}$. We divide the above sum in four parts, where n ranges over $I_1 = \left] \frac{|y|}{\lambda}, \frac{|y|+1}{\lambda} \right]$, $I_2 = \left] \frac{|y|+1}{\lambda}, |y| - |y|^{1/2+\delta} \right]$, $I_3 = \left] |y| + |y|^{1/2+\delta}, 2|y| \right]$ and $I_4 = \left[2|y|, +\infty \right[$, respectively. If $n \in I_1$ (and there is at most one such n) then $[y+n] = -n$ and $n = O(|y|)$, so that $K_{n,[y+n]} = \frac{1}{2\lambda} = 2^{-C|y|}$ is transcendentally small. For the remaining indexes we can use the following estimate obtained by Stirling’s formula

$$\left(\begin{array}{c} n \\ k \end{array} \right) \leq \frac{Cn^{n+1/2}}{k^{k+1/2}(n-k)^{n-k+1/2}}, \quad \text{for } 0 < k < n.$$

(36)

If $n \in I_2$, from (29) and (36) it follows

$$K_{n,[y+n]} \leq C \sqrt{\frac{n^{2n}}{y^{2n}}}, \quad \text{for } y \in I_2.$$

A calculation shows that $n \mapsto F(n, y)$ is increasing on I_2 and that

$$F_1(y) := \ln \left(\max_{n \in I_2} F(n, y) \right) = \ln F(|y| - |y|^{1/2+\delta}) = -|y|^{2\delta} + O(|y|^{3\delta-1/2}).$$

The case $n \in I_3$ is treated in a similar way. It follows that

$$\sum_{n \in I_2 \cup I_3} K_{n,[y+n]} \leq O(1)|y|e^{-C(\delta)|y|^{2\delta}}.$$

Finally let $n \in I_4$. Since the map $y \mapsto F(n, y)$ is increasing when $|y| \leq n$, then $F(n, y) \leq F(n, n/2) \leq (2/3)^n/2$ for $n \in I_4$. Thus

$$\sum_{n \in I_4} K_{n,[y+n]} = O(1) \sum_{n \geq 2|y| \leq (2/3)^n/2} \left(\frac{2}{3} \right)^{n/4} = O(1) \left(\frac{2}{3} \right)^{|y|/2}.$$

This completes the proof. \qed
In the following we will also need an analogous result for the heat kernel G.

Proposition 4.3. Let $y < 0$, $\lambda > 0$ and $\delta \in [0, 1/2]$. Then, outside the interval $I(|y|; \lambda, \delta)$ the integral of G as well as any of its derivatives is transcendentally small, i.e. for any $k \geq 0$, we have

$$\int_{\mathbb{R}^+ \setminus I(|y|; \lambda, \delta)} \left| \frac{\partial^k}{\partial x^k} G(t, y + \lambda t) \right| dt \leq O(1)e^{-C(\delta, \lambda)|y|e^{c(\lambda, \delta)}},$$

(37)

for some positive constants $C(\delta, \lambda)$ and $c(\lambda, \delta)$. Moreover

$$\left| \sum_{n \notin I(|y|; \lambda, \delta)} \frac{\partial^k}{\partial x^k} G(n, n + \lambda n) \right| \leq O(1)e^{-C(\delta, \lambda)|y|e^{c(\lambda, \delta)}},$$

(38)

and

$$\left| \sum_{n \notin I(|y|; \lambda, \delta)} \frac{\partial^k}{\partial x^k} G(n, \left\lfloor n + \lambda n \right\rfloor) \right| \leq O(1)e^{-C(\delta, \lambda)|y|e^{c(\lambda, \delta)}},$$

(39)

Proof. For simplicity, assume $\lambda = 1$. Concerning the integral, we have

$$\int_0^{|y| - |y|^{1/2+\delta}} \left| \frac{\partial^k}{\partial x^k} G(t, y + t) \right| dt = O(1) \int_0^{|y| - |y|^{1/2+\delta}} e^{-|y|^{2\delta}/5} dt$$

$$= O(1) \cdot |y| e^{-|y|^{2\delta}/5},$$

$$\int_{|y| + |y|^{1/2+\delta}}^{\infty} \left| \frac{\partial^k}{\partial x^k} G(t, y + t) \right| dt = O(1) \cdot \left\{ \int_{|y|^{1/2+\delta}}^{\infty} e^{-1/8} d\tau + \int_{|y|}^{\infty} \right\} e^{-\tau / 8} d\tau$$

$$\leq C|y| e^{-|y|^{2\delta}/8} + \int_{|y|}^{\infty} e^{-\tau / 8} d\tau = O(1)e^{-C|y|^{2\delta}}.$$

Hence (37) follows. The other two estimates can be obtained from (37), (23) and (24).

As a consequence of the previous propositions, we are authorized to add or subtract the tails of the integrals/sums, introducing an error which is exponentially decreasing with y. This will be frequently and tacitly used in the following.

4.1 Estimates on the approximation

In order to estimate the variation of the second component of the DSPs we will need that $v^{(\lambda)}(x; \xi)$ is close, within acceptable errors, to the corresponding function defined in terms of the heat kernel. This function is given as

$$w^{(\lambda)}(x; \xi) := 2 \sum_{n=1}^{\infty} G \left(\frac{n}{2}, \left\lfloor \frac{x_n}{2} \right\rfloor \right),$$

12
where
\[z_n = z_n(x, \lambda) := x + \lambda(n + 1) - \xi. \quad (40) \]
We will need to carefully keep track of the dependence of \(w(\lambda) \) on \(\lambda \).

We proceed estimate \(w(\lambda) \). Using (15), (23), (20) and (21), for all \(m \geq 1, x \ll 0 \) and \(\xi \) in the support of \(\psi \), writing \(z = x - \xi + \lambda \), we have

\[
w(\lambda)(x; \xi) = 2\sum_{n=1}^{\infty} G\left(\frac{n}{2}, [z_n] \right)
= 2\sum_{n=1}^{\infty} G\left(\frac{n}{2}, z_n \right) - 2\sum_{n=1}^{\infty} \left\{ G\left(\frac{n}{2}, z_n \right) - G\left(\frac{n}{2}, [z_n] \right) \right\}
= \frac{2}{\lambda} + O(1)|x|^{-m} +
- 2\sum_{n \in I(|z|; \lambda, \delta)} \left\{ G_x\left(\frac{n}{2}, z_n \right) \cdot ([z_n]) + O(1)n^{-3/2}([z_n])^2 \right\}
= \frac{2}{\lambda} - 2\sum_{n \in I(|z|; \lambda, \delta)} G_x\left(\frac{n}{2}, z_n \right) \cdot ([z_n]) + O(1)|x|^{-1+\delta},
\]

where \(([a]) := a - [a] \) is the fractional part for any real number \(a \). In this calculation we have used that \(|I(|z|; \lambda, \delta)| = O(1)|x|^{1/2+\delta} \) and that \(n = O(1)|x| \) when \(n \in I(|z|; \lambda, \delta) \).

The case of rational speed The estimate (41) is valid for any speed \(\lambda \). Now suppose that \(\lambda \) is a rational speed,

\[\lambda = \frac{p}{q}, \quad p, q \in \mathbb{N}, \]

with \(p \) and \(q \) relatively prime, and consider the sum on the right-hand side of (41). By writing \(n = mq + j \) with \(m \geq 0, j \in \{0, \ldots, q-1\} \), Taylor expanding about the points \((t_m, x_m)\) where

\[t_m = mq/2, \quad x_m = x_m(x, \lambda) := x + \lambda mq - \xi, \]

and using the formula

\[
\sum_{j=1}^{q} \left(z + \frac{pj}{q} \right) = ([qz]) + \frac{q-1}{2},
\]

13
from (20) and (21), we obtain, for $z_n = z_n(x, \lambda)$ and $z = x - \xi + \lambda$,

\[
\sum_{n \in I(|z|; \lambda, \delta)} G_x \left(\frac{n}{2}, z_n \right) (z_n) = \sum_{m \geq 0} \sum_{j=0}^{q-1} G_x \left(\frac{mq + j}{2}, x + \lambda(mq + j + 1) - \xi \right) (z_{mq+j})
\]

\[
= \sum_{m \geq 0} \sum_{j=0}^{q-1} \left\{ G_x \left(\frac{mq}{2}, x_m \right) + \sup_{t,x} \left(|G_{xt}| + |G_{xx}| \right) O(q) \right\} (z_{mq+j})
\]

\[
= \sum_{m \geq 1} G_x \left(\frac{mq}{2}, x_m \right) \sum_{j=0}^{q-1} (z_{mq+j})
\]

\[
+ O(q)|x|^{1/2+\delta} (|x|^{-2} + |x|^{-3/2}) + e^{-C|x|} \quad (43)
\]

\[
= \left\{ (q(x - \xi)) + \frac{q-1}{2} \right\} \sum_{m \geq 1} G_x \left(\frac{mq}{2}, x_m \right) + O(q)|x|^{-1+\delta}.
\]

In this calculation we have used that $|I(|z|; \lambda, \delta)| = O(1)|x|^{1/2+\delta}$ and that $n = O(1)|x|$ when $n \in I(|z|; \lambda, \delta)$. Analogously to (24), one can prove that

\[
\sum_{n \in I(|z|; \lambda, \delta)} G_x \left(\frac{n}{2}, z_n \right) (z_n) = O(q^{M-1})|x|^{-\frac{M+1}{2}+\delta},
\]

for every integer M. We thus have that

\[
\sum_{n \in I(|z|; \lambda, \delta)} G_x \left(\frac{n}{2}, z_n \right) (z_n) = \left\{ (q(x - \xi)) + \frac{q-1}{2} \right\} \sum_{m \geq 1} G_x \left(\frac{mq}{2}, x_m \right) + O(q)|x|^{-1+\delta}
\]

\[
= O(q^M)|x|^{-\frac{M+1}{2}+\delta} + O(q)|x|^{-1+\delta}. \quad (44)
\]

From (44) and (44) we conclude that when the speed $\lambda = p/q$ is a rational we have

\[
w^{(\lambda)}(x; \xi) = \frac{2}{\lambda} + O(q^M)|x|^{-\frac{M+1}{2}+\delta} + O(q)|x|^{-1+\delta}. \quad (45)
\]

Due to the dependence on the denominator q, equation (44) is not useful for computing the variation of differences $w^{(\lambda)} - w^{(\tilde{\lambda})}$ as $\tilde{\lambda} \to \lambda$. Instead, (45) will be used for a fixed reference speed λ, while we need
an alternative analysis to estimate \(w(\tilde{\lambda}) \), where \(\tilde{\lambda} = \lambda + \varepsilon \) is a small perturbation of \(\lambda \).

For this we return to the right hand side of (43), with \(x_m = x_m(x, \tilde{\lambda}) \) and \(z_n = z_n(x, \tilde{\lambda}) \). We establish the following technical result.

Proposition 4.4. Let \(\lambda = p/q \) and \(\tilde{\lambda} = \lambda + \varepsilon \), with \(|\varepsilon| \ll 1 \). Then for \(z = x - \xi \), where \(\xi \) lies in the support of \(\psi \), there holds

\[
\sum_{m \geq 0} G_x \left(\frac{mq}{2}, z + \tilde{\lambda}mq \right) \cdot \sum_{j=1}^{q} ((z + mq\varepsilon + \tilde{\lambda}j)) \\
= \int_0^\infty G_x \left(\frac{sq}{2}, z + \tilde{\lambda}sq \right) \cdot ((q(z + sq\varepsilon))) \, ds + \\
O(q)|x|^{-1+\delta} + O(|\varepsilon|q^2)|x|^{-1/2+\delta} \quad (46)
\]

Proof. We compare both the sum and the integral to the same integral and show that in each case the error is \(O(q)|x|^{-1+\delta} + O(|\varepsilon|q^2)|x|^{-1/2+\delta} \).

Let \(a_j = z + \tilde{\lambda}j \) and consider the following difference

\[
\left| \sum_{m \geq 0} G_x \left(\frac{mq}{2}, z + \tilde{\lambda}mq \right) \cdot \sum_{j=1}^{q} ((z + mq\varepsilon + \tilde{\lambda}j)) - \\
- \int_0^\infty G_x \left(\frac{sq}{2}, z + \tilde{\lambda}sq \right) \cdot \sum_{j=1}^{q} ((a_j + sq\varepsilon)) \, ds \right|
\]

\[
\leq \left| \sum_{m \geq 0} \int_m^{m+1} \left\{ G_x \left(\frac{mq}{2}, z + \tilde{\lambda}mq \right) - \\
-G_x \left(\frac{sq}{2}, z + \tilde{\lambda}sq \right) \right\} \sum_{j=1}^{q} ((a_j + mq\varepsilon)) \, ds \right| + \\
+ \left| \sum_{m \geq 0} \int_m^{m+1} G_x \left(\frac{sq}{2}, z + \tilde{\lambda}sq \right) \left\{ \sum_{j=1}^{q} ((a_j + mq\varepsilon)) - ((a_j + sq\varepsilon)) \right\} \, ds \right|
\]

\[
\leq \sum_{m \geq 0} \sum_{j=1}^{q} \left\{ \sup_{t,x} (|G_{xt}| + |G_{xx}|)O(q) \right\} \left\{ (a_j + mq\varepsilon) - (a_j + sq\varepsilon) \right\} \, ds \quad (47)
\]

The first sum on the right hand side of (47) is bounded by \(O(q)|x|^{-1+\delta} \).

To estimate the second sum, we divide the interval \(I(|z|; \lambda, \delta) \) into
\[r = O(\|\varepsilon \cdot q \cdot |I(z; \tilde{\lambda}, \delta)|) = O(\|\varepsilon \cdot q \cdot |x|^{1/2 + \delta} \text{ intervals } J_1, \ldots, J_r \text{ of equal length } 1/(\|\varepsilon \cdot q\|), \text{ and re-write the sum over } m \text{ as} \]
\[
\sum_{k=1}^{r} \int_{J_k} \left| \langle a_j + [s]q\varepsilon \rangle - \langle (a_j + sq\varepsilon) \rangle \right| ds.
\]

The integrand is bounded by \(|\varepsilon \cdot q| \) except on a sub-interval of length 1 where it is \(O(1) \). Hence, for each \(k \), the integral over \(J_k \) is bounded by order one. It follows that the second sum on the right hand side of (47) is bounded by \(O(|\varepsilon \cdot q^2| |x|^{-1/2 + \delta}) \).

On the other hand, using (42), (12) and (20), we have
\[
\left| \int_{0}^{\infty} G_x \left(\frac{sq}{2}, z + \tilde{\lambda}sq \right) \cdot \left\{ (q(z + sq\varepsilon)) - \sum_{j=1}^{q} \langle (a_j + sq\varepsilon) \rangle \right\} ds \right|
\]
\[
= \left| \int_{0}^{\infty} G_x \left(\frac{sq}{2}, z + \tilde{\lambda}sq \right) \cdot \left\{ \sum_{j=1}^{q} \left((z + \lambda_j + sq\varepsilon) - \langle (a_j + sq\varepsilon) \rangle \right) - \frac{q-1}{2} \right\} ds \right|
\]
\[
\leq O(1) \sum_{j=1}^{q} \int_{J(z; 2\tilde{\lambda}, \delta)} \left| (z + \lambda_j + 2\tilde{\lambda} \varepsilon t) - \langle (a_j + 2\tilde{\lambda} \varepsilon t) \rangle \right| dt + O(1)|x|^{-M}
\]
\[
= \frac{O(1)}{q|\varepsilon|} \sum_{j=1}^{q} \int_{J(z; j, \varepsilon, \tilde{\lambda}, \delta)} \left| (\eta) - \langle \eta + \varepsilon j \rangle \right| d\eta + O(1)|x|^{-M}, \quad (48)
\]

where \(J(|z|; j, \varepsilon, \tilde{\lambda}, \delta) = z + \lambda_j + 2\tilde{\lambda} \varepsilon I(|z|; 2\tilde{\lambda}, \delta) \). Each of the integrals in the sum is therefore of order \(O(\varepsilon^2 q^2 |z|^{1/2 + \delta}) \). Finally, using that \(z = x - \xi \) and that \(\xi \) varies in a compact interval, from (47) and (48) we thus obtain (46).
Using (43) and (41) for speed $\tilde{\lambda}$ together with Proposition 4.4 yields
\[
\begin{aligned}
 w(\tilde{\lambda})(\xi; \xi) &= \frac{2}{\lambda} - 2 \sum_{m \geq 0} G_x \left(\frac{mq}{2}, z + \tilde{\lambda}mq \right) \cdot \sum_{j=1}^{q} \left((z + mq\varepsilon + \tilde{\lambda}j) + O(q|x|^{-1+\delta}) \right) \\
 &= \frac{2}{\lambda} - 2 \int_{0}^{\infty} G_x \left(\frac{8q}{2}, z + \tilde{\lambda}sq \right) \cdot \left((q(z + sq\varepsilon)) \right) ds \\
 &= \frac{2}{\lambda} - 2 \int_{0}^{\infty} G_x \left(\frac{t}{2}, z + \tilde{\lambda}t \right) \cdot \left((qz + q\varepsilon) \right) dt + E(|x|; \varepsilon, q),
\end{aligned}
\]
where $z = x - \xi$ and
\[E(y; \varepsilon, q) = \frac{O(q)}{y^{1-\delta}} + \frac{O(|\varepsilon|q^2)}{y^{1/2-\delta}}.\] (49)

We proceed by simplifying this expression. Put $y = -x \gg 0$, such that $z + \tilde{\lambda}t = -y - \xi + \tilde{\lambda}t$, and introduce the coordinate τ by
\[\tau \sqrt{\frac{y}{\lambda}} = y - \tilde{\lambda}t.\]

Thus τ-values outside an interval $[-Cy^4, Cy^4]$ corresponds to t-values for which the contribution to the integral is exponentially small. A simple calculation now shows that
\[G_x \left(\frac{t}{2}, z + \tilde{\lambda}t \right) = \frac{1}{\sqrt{2\pi y}} \tilde{\lambda} e^{-\tau^2/2} + O(1)y^{-3/2+\delta}.\]

Substitution into the expression above yields
\[
\begin{aligned}
 w(\tilde{\lambda})(-y; \xi) &= \frac{2}{\lambda} + E(y; \varepsilon, q) - \\
 &- \frac{1}{\sqrt{2\pi y}} \int_{|\tau|<Cy^4} \tau e^{-\tau^2/2} \cdot \left(\frac{q\varepsilon}{\lambda} \left(y - \tau \sqrt{\frac{y}{\lambda}} \right) - qy - q\xi \right) d\tau.
\end{aligned}
\] (50)

Recalling (45) we get that for a rational speed $\lambda = p/q$ and a perturbation $\tilde{\lambda} = \lambda + \varepsilon$, there holds
\[
\begin{aligned}
 w(\lambda)(x; \xi) - w(\tilde{\lambda})(x; \xi) &= \frac{2}{\lambda} - 2 \lambda + E(y, \varepsilon, q) - \\
 &- \frac{C_1}{qy^{1/2}} \int_{|\tau|<Cy^4} \tau e^{-\tau^2/2} \cdot \left(q\xi + qy - \frac{q\varepsilon}{\lambda} \left(y - \tau \sqrt{\frac{y}{\lambda}} \right) \right) d\tau.
\end{aligned}
\] (51)
where C_1 is a positive constant. We will use this estimate for rational speeds λ converging to a fixed rational speed λ. The relevance of the estimate is that it does not depend explicitly on the denominator of the approximating speeds.

4.2 Estimating $v^{(\lambda)} - w^{(\lambda)}$

In this subsection we show that $w^{(\lambda)}$ is a sufficiently good approximation of $v^{(\lambda)}$. We have the following estimate which actually holds for any real speed λ.

Proposition 4.5. Provided ξ is in the compact support of ψ, the functions $v^{(\lambda)}(x; \xi)$ and $w^{(\lambda)}(x; \xi)$ satisfy

$$v^{(\lambda)}(x; \xi) - w^{(\lambda)}(x; \xi) = \sum_{n \in I(|z|; \lambda, \delta)} 2G_x \left(\frac{n}{2}, z_n \right) + O(1) |x|^{-1+2\delta}, \quad (52)$$

when $x < 0$, where $z = x - \xi + \lambda$ and $z_n = z_n(x, \lambda)$ is given by $[40]$.

Proof. Observe that

$$G \left(\frac{n}{2}, \lfloor z_n \rfloor + 1 \right) = G \left(\frac{n}{2}, \lfloor z_n \rfloor \right) + G_x \left(\frac{n}{2}, z_n \right) + O(1)n^{-3/2}. \quad (53)$$

By Proposition 4.2 only indices $n \in I(|z|; \lambda, \delta)$ in the sums defining $v^{(\lambda)}$ and $w^{(\lambda)}$ are significant. If $n \in I(|z|; \lambda, \delta)$ then $n = O(1)|x|$ while $\lfloor z_n \rfloor$ is $O(1)|x|^{1/2+\delta}$, so that we are within the validity of the approximation $[52]$. Since exactly one of $n - \lfloor z_n \rfloor$, $n - (\lfloor z_n \rfloor + 1)$ is even, we have

$$v^{(\lambda)}(x; \xi) = \sum_{n \in I(|z|; \lambda, \delta)} (K_n[z_n] + K_n[z_n+1]) + O(1)e^{-C|x|}$$

$$= \sum_{n \in I(|z|; \lambda, \delta)} 2G \left(\frac{n}{2}, \lfloor z_n \rfloor \right) + \sum_{n \in I(|z|; \lambda, \delta)} 2G_x \left(\frac{n}{2}, \lfloor z_n \rfloor + 1 \right) + \sum_{n \in I(|z|; \lambda, \delta)} O(1)n^{-3/2+\delta} + O(1)e^{-C|x|}$$

$$= \sum_{n \in I(|z|; \lambda, \delta)} 2G \left(\frac{n}{2}, \lfloor z_n \rfloor \right) + \sum_{n \in I(|z|; \lambda, \delta)} 2G_x \left(\frac{n}{2}, z_n \right) + \sum_{n \in I(|z|; \lambda, \delta)} O(1)n^{-3/2+\delta} + O(1)e^{-C|x|}$$

$$= w^{(\lambda)}(x; \xi) + \sum_{n \in I(|z|; \lambda, \delta)} 2G_x \left(\frac{n}{2}, z_n \right) + O(1)|x|^{-1+2\delta},$$

since $I(|z|; \lambda, \delta)$ has length $O(1)|x|^{1/2+\delta}$. \qed
To estimate the sum on the right-hand side of (52) we will make particular choices for the speeds λ and $\tilde{\lambda}$. In what follows we will fix

$$\lambda = \frac{1}{2}, \quad \tilde{\lambda} = \frac{k}{2k+1},$$

such that $\varepsilon = -\frac{1}{4k+2}$. In order to satisfy the non-resonance condition of Majda and Ralston [12] we will let k be an even integer. We have the following key estimates that are independent of k (and ε).

Proposition 4.6. With λ and $\tilde{\lambda}$ given by (53) we have

$$\sum_{n \in I(\|z\|; \lambda, \delta)} G_x \left(\frac{n}{2}, z_n(x, \lambda) \right) = O(1) \frac{1}{|x|^{1-\delta}},$$

and

$$\sum_{n \in I(\|z\|; \tilde{\lambda}, \delta)} G_x \left(\frac{n}{2}, z_n(x, \tilde{\lambda}) \right) = O(1) \frac{1}{|x|^{1-\delta}}.$$

Proof. We give the proof for (55), the proof of (54) being similar. Given ξ and x, we set $z = x - \xi + \tilde{\lambda}$ such that $z_n(x, \tilde{\lambda}) = z + \lambda n$. We denote by \mathcal{N} the set of the integers n contributing to the sum (55). Let a k-block denote a half-open interval of length $2k+1$ consisting of k consecutive subintervals of equal length $1/\lambda = 2 + 1/k$, each on which the function $B(s) := \lfloor z + \lambda s \rfloor$ is constant. Without loss of generality we can assume that $I(\|z\|; \tilde{\lambda}, \delta)$ is exactly partitioned into finitely many k-blocks. A k-block contains $2k+1$ integers and each subinterval has length $2 + 1/k$.

It follows that in each k-block there are $k - 1$ subintervals containing exactly two integers, and one subinterval containing three integers. Since $B(s)$ is constant on each of the subintervals, the function $n \mapsto n - \lfloor z + \tilde{\lambda} n \rfloor$ takes on one even and one odd value on each subinterval that contains exactly two integers. As k is even two consecutive k-blocks will contain exactly $2k+1$ integers in \mathcal{N}. Thus, of two consecutive k-blocks, one contains k, and the other $k+1$, of integers n in \mathcal{N}. We observe that in the sequence of these indices n, the elements are at most a distance 3 apart from each other. Finally, since k is an even integer, in all subsequent unions of two consecutive k-blocks, the distribution of the indices $n \in \mathcal{N}$ is the same. We can therefore define a map μ that maps \mathcal{N} bijectively onto the regular grid of even integers in $I(\|z\|; \tilde{\lambda}, \delta)$, in such a way that $|n - \mu(n)| \leq 3$. The sum in (55) can therefore be
estimated as follows,
\[
\sum_{n \in \mathbb{N}} G_x \left(\frac{n}{2}, z_n(x, \tilde{\lambda}) \right) = \sum_{n \in \mathbb{N}} G_x \left(\frac{\mu(n)}{2}, z_{\mu(n)}(x, \tilde{\lambda}) \right) + \\
+ \sum_{n \in \mathbb{N}} \left[G_x \left(\frac{n}{2}, z_n(x, \tilde{\lambda}) \right) - G_x \left(\frac{\mu(n)}{2}, z_{\mu(n)}(x, \tilde{\lambda}) \right) \right] \\
= \sum_{n \in 2\mathbb{Z} \cap I(|z|; \tilde{\lambda}, \delta)} G_x \left(\frac{n}{2}, z_n(x, \tilde{\lambda}) \right) + \\
+ O(1) \sup(|G_x| + |G_{xx}|) \cdot |I(|z|; \tilde{\lambda}, \delta)| \\
= O(1) \frac{|x|^{1-\delta}}{1},
\]
where we have used (12), (20) and (21). \[\square\]

\[\triangleleft \text{Remark 4.1:} \quad \text{We note that the complexity of the preceding arguments is essentially due to the fact that we are working with the Lax-Friedrichs scheme. The same computations would be significantly simpler for e.g. the upwind scheme, in which case the complication of even and odd terms do not occur.} \triangleright\]

Combining Proposition 4.5 and Proposition 4.6 we conclude that, if the velocities λ and $\tilde{\lambda}$ are given by (53), then
\[
v^{(\lambda)}(x; \xi) - v^{(\tilde{\lambda})}(x; \xi) = w^{(\lambda)}(x; \xi) - w^{(\tilde{\lambda})}(x; \xi) + O(1) \frac{|x|^{1-\delta}}{1}.
\] (56)

\section{5 Variation of $V^{(\lambda)} - V^{(\tilde{\lambda})}$}

In the remaining part of the paper the velocities λ and $\tilde{\lambda} = \lambda + \varepsilon$ are given by (53). Recalling that ψ has compact support we conclude from (56), (55) and (51) that
\[
V^{(\lambda)}(x) - V^{(\tilde{\lambda})}(x) = -\frac{\varepsilon}{\lambda \lambda} \int_{-\infty}^{\infty} \psi(\xi) \, d\xi + E(y, \varepsilon) + \\
+ \frac{C_1}{y^{1/2}} \int_{-\infty}^{\infty} \int_{|\tau| < Cy^\delta} \psi(\xi) \tau e^{-\tau^2/2} \left(2\xi + 2y - \frac{2\varepsilon}{\lambda} (y - \tau \sqrt{y/\lambda}) \right) \, d\tau \, d\xi, \\
= A(\varepsilon) + E(y, \varepsilon) + \frac{C_1}{y^{1/2}} \int_{|\tau| < Cy^\delta} \tau e^{-\tau^2/2} h(\tau; y, \varepsilon) \, d\tau,
\] (57)
where \(y = -x \) and where we have introduced

\[
E(y, \varepsilon) := E(y, \varepsilon; 2) \int_{-\infty}^{\infty} \psi(\xi) \, d\xi,
\]
\[
A(\varepsilon) := -\frac{\varepsilon}{\lambda \tilde{\lambda}} \int_{-\infty}^{\infty} \psi(\xi) \, d\xi,
\]
\[
h(\tau; y, \varepsilon) := \int_{-\infty}^{\infty} \psi(\xi) \left(2\xi + 2y - \frac{2\varepsilon}{\lambda} \left(y - \tau \sqrt{\frac{y}{\lambda}} \right) \right) \, d\xi.
\]

Making the change of variables \(\eta = 2\xi \) and denoting \(\phi(\eta) = \psi(\eta/2) \), \(\beta = 2\lambda/\tilde{\lambda} \), and \(\gamma = 2/\tilde{\lambda}^{3/2} \), we have that

\[
h(\tau; y, \varepsilon) = \frac{1}{2} \int_{-\infty}^{\infty} \phi(\eta) \left(y + \beta y + \gamma \varepsilon \sqrt{\eta \tau} \right) \, d\eta. \tag{58}
\]

We proceed to use (57) to show that the function \(V(\lambda) - V(\tilde{\lambda}) \) contains an \(O(1) \) amount of variation on an interval of the form

\[
J(\varepsilon) := [-C\varepsilon^{-2/(1+2\delta)}, -c\varepsilon^{-2/(1+2\delta)}].
\]

Recalling (59) we see that \(E(y, \varepsilon) \) is of order \(O(\varepsilon^{2(1-\delta)/(1+2\delta)}) \) on \(J(\varepsilon) \).

As a first step we consider the limiting case where \(\phi(\eta)/2 \) is the Dirac delta function centered at \(\eta = 0 \). In this case

\[
h(\tau; y, \varepsilon) = h_0(\tau; y, \varepsilon) := \left((\beta y + \gamma \varepsilon \sqrt{\eta \tau}) \right),
\]

such that

\[
V(\lambda)(x) - V(\tilde{\lambda})(x) = A(\varepsilon) + E(y, \varepsilon) + \frac{C_1}{y^{1/2}} H_0(y; \varepsilon), \tag{59}
\]

where

\[
H_0(y; \varepsilon) := \int_{|\tau| < C y^\delta} \tau e^{-\tau^2/2} \left((\beta y + \gamma \varepsilon \sqrt{\eta \tau}) \right) \, d\tau. \tag{60}
\]

Lemma 5.1. There exist an \(O(\varepsilon^{-1/(1+2\delta)}) \) number of points \(y_1, \ldots, y_L \) in \(-J(\varepsilon) \) with

\[
H_0(y_n; \varepsilon) = \begin{cases}
-\text{O}(1) & \text{for } n \text{ odd}, \\
\text{O}(\varepsilon^{2\delta/(1+2\delta)}) & \text{for } n \text{ even}.
\end{cases} \tag{61}
\]

Proof. Set

\[
y_1 := \left[\varepsilon^{-2/(1+2\delta)} \right]/\beta,
\]

and let

\[
y_n := y_1 + \frac{1}{\beta} \left(n \left[\varepsilon^{-1/(1+2\delta)} \right] + \frac{n + 1}{2} \right),
\]

21
for \(n = 2, \ldots, \lceil \varepsilon^{-1/(1+2\delta)} \rceil \). These choices imply that

\[
(\beta y_n + \gamma \varepsilon \sqrt{y_n} \tau) \bigg|_{\tau=0} = \begin{cases}
0 & \text{for } n \text{ odd}, \\
1/2 & \text{for } n \text{ even}.
\end{cases}
\]

We observe that an \(O(1) \) change in the constant \(C \) in (60) induces an exponentially small error (with respect to \(y \)). In order to simplify the computations we make the following choices for the constant \(C \) in (60),

\[
C = C_n := \begin{cases}
\frac{1}{\gamma \varepsilon y_n^{1/2}} & \text{for } n \text{ odd}, \\
\frac{1}{2 \gamma \varepsilon y_n^{1/2}} & \text{for } n \text{ even}.
\end{cases}
\]

Thus, up to an exponentially small error, we have for \(n \) odd

\[
H_0(y_n; \varepsilon) = \int_{|\tau| < C_n y_n^{1/2}} \tau e^{-\tau^2/2} (\beta y_n + \gamma \varepsilon \sqrt{y_n} \tau) \, d\tau = \int_{-\infty}^0 \tau e^{-\tau^2/2} = -O(1),
\]

while for \(n \) even a similar argument yields

\[
H_0(y_n; \varepsilon) = O(1) \varepsilon^{2\delta/(1+2\delta)}.
\]

For a fixed, small \(\varepsilon \) it now follows from Lemma 5.1 and (59) that the function \(V^{(\lambda)}(x) - V^{(\tilde{\lambda})}(x) \) alternates between values

\[
A(\varepsilon) + O(1) \varepsilon^{2(1-\delta)/(1+2\delta)} - O(1) \varepsilon^{1/(1+2\delta)},
\]

for \(x = -y_n \), \(n \) odd, and

\[
A(\varepsilon) + O(1) \varepsilon^{2(1-\delta)/(1+2\delta)} + O(1) \varepsilon,
\]

for \(x = -y_n \), \(n \) even. Provided \(\varepsilon \) is small enough, this implies that in every interval \([-y_{n+1}, -y_n]\), the function \(V^{(\lambda)}(x) - V^{(\tilde{\lambda})}(x) \) contains an \(O(1) \varepsilon^{1/(1+2\delta)} \) amount of variation. Since there are an \(O(1) \varepsilon^{-1/(1+2\delta)} \) number of such intervals, this argument shows that, in the limiting case where \(\phi(\eta)/2 \) in (58) is a Dirac delta, the function \(V^{(\lambda)}(x) - V^{(\tilde{\lambda})}(x) \) contains at least an \(O(1) \) amount of variation on \(J(\varepsilon) \).

It remains to argue that the same result holds whenever \(\phi(\eta)/2 \) is close to a Dirac delta function. For this it is sufficient to show that the difference \(|H(y; \varepsilon) - H_0(y; \varepsilon)| \) can be made arbitrarily small independently of the \(O(1) \)-estimate in (62). This will be accomplished
by imposing that the support of ϕ (hence ψ) be sufficiently small. We have

$$|H(y; \varepsilon) - H_0(y; \varepsilon)| \leq \int_{-\infty}^{+\infty} \frac{\phi(\eta)}{2} \int_{|\tau| < C\sqrt{\varepsilon}} \left| K(\tau) \left\{ (F(y; \varepsilon, \tau) - \eta) - (F(y; \varepsilon, \tau)) \right\} \right| d\tau d\eta,$$

where $F(y; \varepsilon, \tau) = \beta y + \gamma \varepsilon \sqrt{y\tau}$. Since $\varepsilon \sqrt{y}$ is $O(1)$ it follows that there is a constant \bar{C} such that

$$\int_{|\tau| < C\sqrt{\varepsilon}} \left| K(\tau) \left\{ (F(y; \varepsilon, \tau) - \eta) - (F(y; \varepsilon, \tau)) \right\} \right| d\tau \leq \bar{C}\eta.$$

We thus have that

$$|H(y; \varepsilon) - H_0(y; \varepsilon)| \leq C \int_{-\infty}^{+\infty} \phi(\eta) \eta d\eta,$$

which can be made arbitrarily small, compared to the $O(1)$-estimate in (62), by choosing ϕ sufficiently close to a Dirac delta.

We have thus proved the following theorem.

Theorem 5.2. Discrete shock profiles for the Lax-Friedrichs scheme for strictly hyperbolic systems of two conservation laws of the form (3)-(4) do not depend continuously in BV on their speeds. More precisely, one can find a sequence of rational speeds λ_n converging to $\lambda \in \mathbb{Q}$, for which there are discrete shock profiles Ψ_n and Ψ of speeds λ_n and λ, respectively, and such that

$$T.V.(\Psi_n - \Psi) = O(1),$$

independently of n.

Remark 5.1: From (52), (54), (55) and (56), we observe that with our particular choices of speeds we have

$$V^{(\lambda)}(x + \Delta x) - V^{(\lambda)}(x) = O(1) |x|^{1-\delta},$$

for $x \ll 0$ and $\Delta x = O(1)$. It follows that an $O(1)$ translation of $V^{(\lambda)}$ relative to $V^{(\lambda)}$ changes the total variation of their difference only by $O(\varepsilon)$ in the region $J(\varepsilon)$.

References

[1] S. Bianchini, BV solutions of the semidiscrete upwind scheme. *Arch. Ration. Mech. Anal.* 167 (2003), 1–81.
[2] S. Bianchini, A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math., to appear.

[3] A. Bressan, “Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem”. Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000.

[4] A. Bressan, H.K. Jenssen, On the convergence of Godunov scheme for nonlinear hyperbolic systems. Chinese Ann. Math. Ser. B 21 (2000), 269–284.

[5] A. Bressan, T.P. Liu, T. Yang, L^1 stability estimates for $n \times n$ conservation laws. Arch. Ration. Mech. Anal. 149 (1999), 1–22.

[6] A. Bressan, W. Shen, BV estimates for multicomponent chromatography with relaxation. Discrete Contin. Dynam. Systems 6 (2000), 21–38.

[7] X. Ding, G.Q. Chen, P. Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Comm. Math. Phys. 121 (1989), 63–84.

[8] W. Feller, “An introduction to probability theory and its applications”, vol. 1, third edition, John Wiley & Sons, New York, 1968.

[9] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697–715.

[10] G. Jennings, Discrete shocks. Comm. Pure Appl. Math. 27 (1974), 25–37.

[11] R.J. LeVeque, B. Temple, Stability of Godunov’s method for a class of 2×2 systems of conservation laws. Trans. Amer. Math. Soc. 288 (1985), 115–123.

[12] A. Majda, J. Ralston, Discrete shock profiles for systems of conservation laws. Comm. Pure Appl. Math. 32 (1979), 445–482.

[13] D. Serre, Remarks about the discrete profiles of shock waves. Mat. Contemp. 11 (1996), 153–170.

[14] T. Yang, H. Zhao, C. Zhu, BV estimates of Lax-Friedrichs’ scheme for a class of nonlinear hyperbolic conservation laws. Proc. Amer. Math. Soc. 131 (2003), 1257–1266.