Predictive factors for hyperglycaemic progression in patients with schizophrenia or bipolar disorder

Ichiro Kusumi, Yuki Arai, Ryo Okubo, Minoru Honda, Yasuhiro Matsuda, Yukihiko Matsuda, Akihiko Tochigi, Yoshiteru Takekita, Hiroyoshi Yamanaka, Keiichi Uemura, Koichi Ito, Kiyoshi Tsuchiya, Jun Yamada, Bunta Yoshimura, Nobuyuki Mitsui, Sigehiro Matsubara, Takayuki Segawa, Nobuyuki Nishi, Yasufumi Sugawara, Yuki Kako, Ikuta Shinkawa, Kaoru Shinohara, Akiko Konishi, Junichi Iga, Naoki Hashimoto, Shinsaku Inomata, Noriko Tsukamoto, Hiroti Ito, Yoichi M. Ito and Norihiro Sato

Background
Patients with schizophrenia or bipolar disorder have a high risk of developing type 2 diabetes.

Aims
To identify predictive factors for hyperglycaemic progression in individuals with schizophrenia or bipolar disorder and to determine whether hyperglycaemic progression rates differ among antipsychotics in regular clinical practice.

Method
We recruited 1166 patients who initially had normal or prediabetic glucose levels for a nationwide, multisite, 1-year prospective cohort study to determine predictive factors for hyperglycaemic progression. We also examined whether hyperglycaemic progression varied among patients receiving monotherapy with the six most frequently used antipsychotics.

Results
High baseline serum triglycerides and coexisting hypertension significantly predicted hyperglycaemic progression. The six most frequently used antipsychotics did not significantly differ in their associated hyperglycaemic progression rates over the 1-year observation period.

Conclusions
Clinicians should carefully evaluate baseline serum triglycerides and coexisting hypertension and perform strict longitudinal monitoring irrespective of the antipsychotic used.

Declaration of interest
The authors report no financial or other relationship that is relevant to the subject of this article. Relevant financial activities outside the submitted work are as follows. I.K. has received honoraria from Astellas, Chugai Pharmaceutical, Daiichi Sankyo, Dainippon Sumitomo Pharma, Eisai, Eli Lilly, GlaxoSmithKline, Kyowa Hakko Kirin, Meiji Seika Pharma, MSD, Novartis Pharma, Ono Pharmaceutical, Otsuka Pharmaceutical, Pfizer, Takeda Pharmaceutical, Tanabe Mitsubishi Pharma, Shionogi and Yoshitomiya-kunih; and is a member of the advisory boards of Dainippon Sumitomo Pharma and Tanabe Mitsubishi Pharma. Y. T. has received speaker’s honoraria from Dainippon-Sumitomo Pharma, Otsuka, Meiji-Seika Pharma, Janssen Pharmaceutical, Daiichi-Sankyo Company, UCB Japan and Ono Pharmaceutical. K. U. has received honoraria from Dainippon Sumitomo Pharma, Eisai, Eli Lilly, Janssen Pharmaceutical, Kyowa Hakko Kirin, Meiji Seika Pharma, MSD, Takeda Pharmaceutical, Hisamitsu Pharmaceutical, Otsuka Pharmaceutical, Pfizer, Tanabe Mitsubishi Pharma, Shionogi and Yoshitomiya-kunih. B.Y. has received speaker’s honoraria from Otsuka Pharmaceutical and Janssen Pharmaceutical. J. I. has received honoraria from Dainippon Sumitomo Pharma, Eli Lilly, Janssen Pharmaceutical, Meiji Seika Pharma, MSD, Novartis Pharma, Otsuka Pharmaceutical and Mochida Pharma.

Keywords
Schizophrenia; bipolar disorder; diabetes; monitoring.

Copyright and usage
© The Royal College of Psychiatrists 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Individuals with schizophrenia or bipolar disorder have life expectancies that are 15–20 years shorter than average.1 Autopsies indicate that the most common cause of sudden death in patients with schizophrenia is cardiovascular disease, especially myocardial infarction.2,3 Compared with age- and gender-matched controls, patients with schizophrenia or bipolar disorder are at least twice as likely to develop type 2 diabetes,4,5 which is a risk factor for cardiovascular disease.6 Some antipsychotic medications including second-generation antipsychotics can lead to substantial weight gain,7 which increases the risk of dyslipidaemia and diabetes.8,9 Thus, patients with schizophrenia or bipolar disorder who are receiving antipsychotics should be appropriately monitored for the development of cardiovascular risk factors such as obesity and diabetes.

Few cross-sectional studies have examined the prevalence of glucose abnormalities in patients with schizophrenia.10–12 Cross-sectional studies are relatively easy to perform and permit the recruitment of many participants, but they do not clearly establish causality. Ideally, longitudinal pharmacogenetic studies of metabolic effects should recruit hundreds or thousands of patients and follow them for years, but doing so is difficult and expensive.13 Prospective data from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial indicated that the second-generation antipsychotics, olanzapine causes the most metabolic side-effects and is not currently used.14 These results confirmed that second-generation antipsychotics differ in their metabolic impacts. We previously conducted a longitudinal study of glucose abnormalities in patients with...
schizophrenia treated with second-generation antipsychotics, but that study had several limitations, including a retrospective design, the inclusion of patients who were not starting a new antipsychotic at the beginning of the study, a lack of medication history or monitoring of co-administered drugs during the pre-entry and study periods, the exclusion of patients receiving first-generation antipsychotics and recruitment from a small geographic area. We thus sought to conduct a more sophisticated study to overcome these limitations. Several countries have recently developed guidelines for the routine monitoring of body weight, serum lipids and blood glucose in patients with schizophrenia. These guidelines are expected to improve the detection and prevention of diabetes and other glucose abnormalities. We similarly proposed a method for monitoring blood glucose in patients with schizophrenia receiving second-generation antipsychotics in Japan. However, few guidelines have been proposed to prevent glucose-related abnormalities in patients with bipolar disorder. Accordingly, we conducted a nationwide, multisite, 1-year prospective cohort study using the Japanese blood glucose monitoring guidelines in order to identify predictive factors for hyperglycaemia in patients treated with antipsychotics who have schizophrenia, schizoaffective disorder or bipolar disorder. We also examined the effects of antipsychotics on hyperglycaemic progression to test our hypothesis that regular monitoring is necessary even in patients taking low-risk antipsychotics.

Method

Study population

Individuals were diagnosed with schizophrenia, schizoaffective disorder or bipolar disorder based on the criteria in ICD-10. The inclusion criteria were initiation of a first- or second-generation antipsychotic medication (either by changing medications or adding a new medication), a 1-year medication history prior to enrolment, no diagnosis of diabetes prior to baseline screening and not being classified as probable diabetes at baseline monitoring. Participant selection was consecutive at each site. All participants provided written informed consent after receiving a full explanation of the study procedures.

Study design

Participants were enrolled between April 2013 and March 2015 and followed-up for 1 year based on the Japanese blood glucose monitoring guidelines for patients with schizophrenia. The study was conducted at 44 sites (24 general hospitals, 17 psychiatric hospitals and 3 psychiatric clinics) throughout Japan, was approved by each site’s institutional review board and conformed to the principles of the Declaration of Helsinki. Data were collected through an electronic database system (CapTool Prime; Mebix, Tokyo, Japan) and managed at the Hokkaido University Hospital Clinical Research and Medical Innovation Center. For thorough follow-up data collection, researchers received notices about missing data from the data management centre when the monitoring period was over.

To identify predictive factors for hyperglycaemic progression in patients with normal or prediabetic baseline glucose levels, we first examined the number of patients who progressed from normal glucose levels to prediabetes or probable diabetes, and the number who progressed from prediabetes to probable diabetes during the 1-year follow-up period. We then conducted a Cox regression analysis using demographic data and monitoring measurements. Moreover, to examine the effects of antipsychotics on hyperglycaemic progression during the follow-up period, we compared how frequently classifications became at least one step worse (i.e. from normal glucose levels to prediabetes or probable diabetes, or from prediabetes to probable diabetes) among patients receiving monotherapy with any of the six antipsychotics most frequently used in our study.

Assessments

In the initial screenings, we obtained participant demographic characteristics including age, gender, illness duration, out-patient versus in-patient status, smoking status, drinking status, familial disease histories (including schizophrenia, bipolar disorder, major depressive disorder, diabetes mellitus and dyslipidaemia), coexisting medical diagnoses (including hypertension, heart disease and dyslipidaemia), and 1-year medication histories prior to enrolment and during the study period. Before the initiation of a new antipsychotic, we obtained baseline measurements of blood glucose (fasting or postprandial) or glycated haemoglobin (HbA1c), serum lipids (total cholesterol, high-density lipoprotein (HDL)-cholesterol and triglycerides), weight, body mass index (BMI) and clinical diabetic symptoms such as dry mouth, excessive fluids consumption, cravings for sugary drinks, polyuria and frequent urination.

According to the Japanese guidelines for blood glucose monitoring in patients with schizophrenia, patients’ blood glucose measurements were classified as normal, prediabetic or probably diabetic. Normal was defined as fasting blood glucose <110 mg/dL, postprandial blood glucose <140 mg/dL or HbA1c <6.0%; prediabetes was defined as fasting blood glucose of 110–125 mg/dL, postprandial blood glucose of 140–179 mg/dL or HbA1c of 6.0–6.4%; and probable diabetes was defined as fasting blood glucose >125 mg/dL, postprandial blood glucose >179 mg/dL or HbA1c >6.4%. Because these classifications permit the early detection of possible diabetes, declassification is never allowed even if normal measurement values are recovered. The follow-up measurements were also scheduled according to the Japanese monitoring guidelines and were conducted at months 3, 6 and 12 in patients with normal glucose levels; months 1, 3, 6, 9 and 12 in patients with prediabetes; and every month in patients with probable diabetes.

Statistical analysis

We used a Cox proportional-hazards regression model to identify predictive factors for hyperglycaemic progression. It accounted for demographic variables including gender; age; diagnosis (schizophrenia/schizoaffective disorder versus bipolar disorder); duration of illness; treatment status (out-patient versus in-patient); smoker status; drinker status; familial histories of schizophrenia, bipolar disorder, major depression, diabetes and heart disease; coexisting diagnoses of dyslipidaemia, hypertension and heart disease; baseline measurements including weight, BMI (< 25 v. ≥ 25), total cholesterol (< 220 v. ≥ 220 mg/dL), HDL-cholesterol (< 40 v. ≥ 40 mg/dL) and triglycerides (< 150 v. ≥ 150 mg/dL); clinical diabetes symptoms such as dry mouth, excessive fluids consumption, craving for sugary drinks, polyuria and frequent urination; and medications at baseline (second- or first-generation antipsychotics pre-administered with a newly initiated antipsychotic drug). Statistical significance was evaluated with likelihood ratio and hazard ratio (HR) tests with 95% profile likelihood confidence interval.

To examine the effects of antipsychotic monotherapy on hyperglycaemic progression, we estimated the hyperglycaemic progression rate as 15% based on our previous study. For a two-sided confidence interval of a binomial proportion whose true value was 0.15, a sample size of 196 yielded a maximal half-width of 0.05. We estimated that 40% of patients used one of the six most commonly used second-generation antipsychotics and that 50% of patients continued monotherapy for more than 10 months. Since
Characteristics	Value	Total	Schizophrenia/Schizoaffective disorder	Bipolar disorder	Total (n = 1166)a	Schizophrenia/Schizoaffective disorder (n = 982)a	Bipolar disorder (n = 184)a
Man/Woman, n (%)	512 (43.9)/654 (56.1)	436 (44.4)/546 (55.6)	76 (41.3)/108 (58.7)	1166	982	184	
Age, years: mean (s.d.)	48.4 (16.7)	47.9 (16.8)	51.1 (15.7)	1166	982	184	
Duration of illness, years: mean (s.d.)	16.6 (14.5)	17.3 (15.0)	13.0 (11.1)	1052	881	171	
Out-patient/in-patient, n (%)	558 (47.9)/608 (52.1)	431 (43.9)/551 (56.1)	127 (69.0)/57 (31.0)	1166	982	184	
Smoking, n (%)	334 (29.2)	275 (28.5)	59 (32.8)	1145	965	180	
Drinking, n (%)	184 (16.1)	141 (14.7)	43 (23.8)	1141	960	180	
Familial history, n (%)	512 (43.9)/654 (56.1)	436 (44.4)/546 (55.6)	76 (41.3)/108 (58.7)	1166	982	184	
Schizophrenia	147 (14.1)	135 (15.4)	12 (7.2)	1043	876	167	
Bipolar disorder	32 (3.1)	17 (2.0)	15 (9.0)	1027	861	166	
Major depression	101 (9.9)	66 (7.7)	35 (21.3)	1022	858	164	
Diabetes	197 (20.3)	159 (19.5)	38 (24.7)	971	817	154	
Dyslipidaemia	89 (9.7)	76 (9.8)	13 (9.4)	914	775	139	
Coexisting medical diagnoses, n (%)	163 (14.0)	130 (13.3)	33 (18.0)	1161	978	183	
Dyslipidaemia	58 (5.0)	42 (4.3)	16 (9.8)	1160	978	182	
Hypertension	139 (12.0)	106 (10.9)	33 (18.1)	1159	977	182	
Heart disease	334 (29.2)	275 (28.5)	59 (32.8)	1145	965	180	
Monitoring at baseline	381 (32.9)	318 (32.6)	63 (34.6)	1145	965	180	
Body weight, kg: mean (s.d.)	61.6 (15.0)	61.6 (15.2)	61.6 (14.2)	1160	978	182	
Body mass index, kg/m²: mean (s.d.)	23.6 (4.8)	23.6 (4.8)	23.7 (4.6)	1157	975	182	
Body mass index ≥ 25, n (%)	124 (10.6)	107 (10.9)	17 (9.2)	1156	972	184	
Fasting blood glucose, mg/dL: mean (s.d.)	87.9 (10.2)	87.7 (10.2)	89.2 (10.2)	323	279	44	
Postprandial blood glucose, mg/dL: mean (s.d.)	102.8 (20.4)	103.4 (20.6)	99.7 (19.2)	835	696	139	
HbA1c, %: mean (s.d.)	5.35 (0.38)	5.36 (0.38)	5.28 (0.38)	1130	990	180	
Total cholesterol, mg/dL: mean (s.d.)	188 (39)	187 (38)	196 (40)	1133	955	178	
Total cholesterol ≥ 220, n (%)	234 (20.7)	194 (20.3)	40 (22.4)	1133	955	178	
HDL-cholesterol, mg/dL: mean (s.d.)	57.8 (17.3)	57.6 (17.2)	59.0 (17.6)	1109	930	179	
HDL-cholesterol <40, n (%)	128 (11.5)	111 (11.9)	17 (9.5)	1109	930	179	
Triglyceride, mg/dL: mean (s.d.)	120 (83)	119 (86)	128 (69)	1142	959	183	
Clinical diabetic symptoms, n (%)	260 (22.8)	203 (21.2)	57 (31.1)	1166	982	184	
Dry mouth	209 (18.1)	178 (18.3)	31 (16.8)	1166	972	184	
Excessive fluids consumption	155 (13.4)	130 (13.3)	25 (13.6)	1159	974	184	
Cravings for sugar drinks	128 (11.0)	116 (11.9)	12 (6.5)	1159	974	184	
Polyuria	78 (6.8)	63 (6.5)	15 (8.2)	1155	971	184	
Frequent urination	120 (10.4)	96 (9.9)	24 (13.0)	1156	972	184	
Classified type, n (%)	1042 (89.4)	875 (89.1)	167 (90.8)	1166	982	184	
Prediabetes	124 (10.6)	107 (10.9)	17 (9.2)	1166	982	184	
Medication at baseline	1166	982	184				
Newly initiated antipsychotics, n (%)	298 (25.6)	207 (21.1)	91 (49.5)	1166	982	184	
Olanzapine	193 (16.6)	123 (12.5)	70 (38.0)	1012	881	171	
Quetiapine	129 (11.1)	129 (13.1)	129 (13.1)	1012	881	171	
Paliperidone	98 (8.4)	98 (10.0)	98 (10.0)	1012	881	171	
Aripiprazole	86 (7.5)	87 (8.9)	87 (8.9)	1012	881	171	
Levomepromazine	60 (5.2)	61 (5.7)	14 (7.6)	1012	881	171	
Lithium	26 (2.2)	23 (2.3)	3 (1.6)	1012	881	171	
Other first-generations	35 (3.0)	33 (3.4)	2 (1.1)	1012	881	171	

Co-administered antipsychotics, n (%)	Total (n = 1166)a	Schizophrenia/Schizoaffective disorder (n = 982)a	Bipolar disorder (n = 184)a
0	540 (46.3)	414 (42.2)	126 (68.5)
1	409 (35.1)	362 (36.9)	47 (25.5)
≥2	217 (18.6)	206 (21.0)	11 (6.0)

(Continued)
10% of participants were on a first-generation antipsychotic, the minimum necessary sample size was estimated at 1089.

To examine the effects of antipsychotics on hyperglycaemic progression, we selected patients with normal or prediabetic baseline glucose levels who received antipsychotic monotherapy for more than 10 months. We used the two-sided Fisher’s exact test to determine whether the baseline frequencies of prediabetes and hyperglycaemic progression rates during the 1-year period depended on the antipsychotic used among patients receiving monotherapy with any of the six most frequently used antipsychotics in this study. Statistical significance was defined as $P < 0.05$.

Analyses were conducted using JMP Pro 13.1.0 (SAS Institute, Cary, NC).

Results

Participants

We performed inclusion screenings on 1323 patients with schizophrenia, schizoaffective disorder or bipolar disorder who had started treatment with a first- or second-generation antipsychotic. Of them, 77 declined to participate, 41 failed to meet the inclusion criteria, and 3 were rejected as duplicate enrolments. Because 36 patients who were classified as probably diabetic at baseline monitoring were removed from analysis, the final sample included 1089 participants (94.3% normal, 10.6% prediabetic (Table 1). In total, 1018 participants (87.3%) completed the 1-year follow-up period, and their glucose level classification changes are shown in Table 2. Of the 1042 patients whose results were initially normal, 116 became prediabetic (12.6%) and 20 became probably diabetic (2.2%). Of the 124 patients who were initially prediabetic, 18 became probably diabetic (18.8%).

Blood glucose classifications

At baseline, 1042 patients (89.4%) were normal and 124 (10.6%) were prediabetic (Table 1). In total, 1018 participants (87.3%) completed the 1-year follow-up period, and their glucose level classification changes are shown in Table 2. Of the 1042 patients whose results were initially normal, 116 became prediabetic (12.6%) and 20 became probably diabetic (2.2%). Of the 124 patients who were initially prediabetic, 18 became probably diabetic (18.8%).

Predictive factors for hyperglycaemic progression

The simple Cox regression analysis identified significant predictive factors including age (HR = 1.02, 95% CI 1.01–1.02, $P = 0.001$); familial histories of schizophrenia (HR = 0.65, 95% CI 0.38–1.04, $P = 0.007$); coexisting dyslipidaemia (HR = 1.69, 95% CI 1.15–2.42, $P = 0.008$); hypertension (HR = 1.93, 95% CI 1.30–2.78, $P = 0.002$) and heart disease (HR = 2.09, 95% CI 1.15–3.47, $P = 0.017$); and baseline BMI (HR = 1.39, 95% CI 1.02–1.87, $P = 0.037$) and serum triglycerides (HR = 1.62, 95% CI 1.16–2.23, $P = 0.005$) (Table 3). The multivariate Cox regression analysis indicated that coexisting hypertension (HR = 1.80, 95% CI 1.01–3.13, $P = 0.048$) and baseline serum triglycerides (HR = 1.94, 95% CI 1.22–3.03, $P = 0.006$) were significant predictors of hyperglycaemic progression during the study period (Table 3).

Effects of antipsychotics on hyperglycaemic progression

Among the patients who were taking any of the six most frequently used antipsychotics, there were no significant between-antipsychotic differences in the frequencies of baseline prediabetes (aripiprazole, 10%; olanzapine, 11%; quetiapine, 9%; risperidone, 23%; perospirone, 13%; blonanserin, 11%; $P = 0.67$) or the hyperglycaemic progression rates over the study period (aripiprazole, 15%; olanzapine, 20%; quetiapine, 26%; risperidone, 5%; perospirone, 13%; blonanserin, 22%; $P = 0.42$) (Table 4).

Discussion

Principal findings

We aimed to identify clinical predictors for hyperglycaemic progression in patients treated with antipsychotics who had...
Of the patients with normal baseline glucose levels, 12.6 and 2.2% were reclassified as having prediabetes and probable diabetes, respectively, over the 1-year follow-up period (Table 2). These results indicated that type 2 diabetes was significantly predicted by prehypertension (i.e. systolic blood pressure of 120–139 mmHg or diastolic blood pressure of 80–89 mmHg) in women (relative risk 2.06) but not in men.23 A prospective cohort study of representative individuals aged 45–64 years suggested that type 2 diabetes was almost 2.5-fold more likely to develop in individuals with hypertension than in individuals with normal blood pressure.24 Hypertension and diabetes share many aetiologic pathways with conditions such as obesity, inflammation, oxidative stress and insulin resistance.25 This study is the first to indicate that coexisting hypertension predicts diabetic progression in patients treated with antipsychotics who have schizophrenia or bipolar disorder.

Diabetic progression during the follow-up period

Of the patients with normal baseline glucose levels, 12.6 and 2.2% were reclassified as having prediabetes and probable diabetes, respectively, over the 1-year follow-up period (Table 2). These

Table 3 Cox regression analysis for predictive factors of hyperglycaemic progression in patients with normal or prediabetic baseline glucose levels

Variable	Simple analysis	Multivariate analysis (n = 726)		
	Hazard ratio (95% CI)	P	Hazard ratio (95% CI)	P
Baseline factors				
Men/women	1.13 (0.84–1.52)	0.427	0.89 (0.57–1.38)	0.595
Age	1.02 (1.01–1.03)	0.001	1.01 (1.00–1.03)	0.086
Diagnosis (schizophrenia and schizoaffective disorder/bipolar disorder)	1.07 (0.72–1.68)	0.741	1.21 (0.71–2.17)	0.504
Duration of illness, years	1.00 (0.99–1.01)	0.975	0.99 (0.97–1.01)	0.268
Out-patient/in-patient	1.23 (0.91–1.65)	0.180	0.86 (0.57–1.31)	0.490
Smoking	0.93 (0.66–1.29)	0.672	1.10 (0.72–1.67)	0.649
Drinking	1.00 (0.65–1.49)	0.983	0.92 (0.54–1.51)	0.753
Familial history				
Schizophrenia	0.65 (0.38–1.04)	0.007	0.69 (0.34–1.35)	0.230
Bipolar disorder	0.40 (0.07–1.27)	0.137	0.35 (0.02–1.64)	0.224
Major depression	0.88 (0.50–1.43)	0.616	0.88 (0.45–1.57)	0.688
Diabetes	1.07 (0.71–1.56)	0.739	1.15 (0.69–1.85)	0.577
Dyslipidaemia	0.91 (0.50–1.52)	0.724	1.01 (0.52–1.80)	0.986
Coexisting diagnoses				
Dyslipidaemia	1.69 (1.15–2.42)	0.008	1.04 (0.59–1.76)	0.900
Hypertension	1.93 (1.30–2.78)	0.002	1.80 (1.01–3.13)	0.048
Heart disease	2.09 (1.19–3.47)	0.017	0.83 (0.28–2.97)	0.693
Baseline measurements				
Body weight, kg	1.01 (1.00–1.02)	0.063	1.00 (0.98–1.02)	0.992
Body mass index, ≥25/<25 kg/m²	1.39 (1.02–1.87)	0.037	1.35 (0.77–2.34)	0.294
Total cholesterol, ≥220/<220 mg/dL	0.87 (0.58–1.26)	0.474	0.70 (0.41–1.13)	0.147
HDL-cholesterol, <40/<40 mg/dL	0.97 (0.63–1.58)	0.911	1.51 (0.83–2.97)	0.188
Triglyceride, >150/<150 mg/dL	1.62 (1.16–2.23)	0.005	1.94 (1.22–3.03)	0.006
Clinical diabetic symptoms				
Dry mouth	0.87 (0.57–1.27)	0.482	0.60 (0.31–1.12)	0.110
Excessive fluids consumption	0.79 (0.48–1.23)	0.315	1.44 (0.69–2.87)	0.324
Cravings for sugar drinks	0.98 (0.59–1.52)	0.918	1.13 (0.60–2.00)	0.693
Polyuria	0.65 (0.29–1.24)	0.212	0.53 (0.19–1.48)	0.238
Frequent urination	0.98 (0.55–1.55)	0.864	1.68 (0.78–3.23)	0.178
Baseline medication				
Co-administered with second-generation antipsychotics	0.84 (0.62–1.20)	0.244	0.95 (0.64–1.43)	0.820
Co-administered with first-generation antipsychotics	1.11 (0.75–1.60)	0.575	1.37 (0.81–2.24)	0.222

HDL, high-density lipoprotein.

Hypertension and diabetes

Some cross-sectional studies have suggested a relationship between hypertension and diabetes in the general population,20,21 but prospective cohort studies have reported conflicting findings about whether individuals with hypertension are at an elevated risk for developing type 2 diabetes.22,23 In non-diabetic first-degree relatives of patients with type 2 diabetes, individuals with hypertension were no more likely to progress to type 2 diabetes than individuals without hypertension were.24 A prospective large-cohort Turkish study indicated that type 2 diabetes was significantly predicted by prehypertension (i.e. systolic blood pressure of 120–139 mmHg or diastolic blood pressure of 80–89 mmHg) in women (relative risk 2.06) but not in men.23 A prospective cohort study of representative individuals aged 45–64 years suggested that type 2 diabetes was almost 2.5-fold more likely to develop in individuals with hypertension than in individuals with normal blood pressure.24 Hypertension and diabetes share many aetiologic pathways with conditions such as obesity, inflammation, oxidative stress and insulin resistance.25 This study is the first to indicate that coexisting hypertension predicts diabetic progression in patients treated with antipsychotics who have schizophrenia or bipolar disorder.

Table 4 Hyperglycaemic progression in patients treated with antipsychotic monotherapy

Antipsychotic monotherapy at baseline, n	Total
Aripiprazole	166
Olanzapine	95
Quetiapine	54
Risperidone	54
Perosprone	37
Blonanserin	27
Total	433

Administration for more than 10 months, n

Administration for more than 10 months, n	Total
71	9
54	194

Change in diabetic state at final classification

Change in diabetic state at final classification	Total
No change	161
Hyperglycaemic progression, n	33

a. Fisher’s exact test (2-sided): P = 0.42.

https://doi.org/10.1192/bjp.2018.56 Published online by Cambridge University Press
rates are consistent with those of our previous study,15 but the rate of progression from prediabetes to probable diabetes was much lower in the present study (18.8\%) than in our previous study (42.4\%).15 This may be because a greater proportion of participants completed the 1-year follow-up period in this study (1018 out of 1166, 87.3\%) than in our previous study (374 out of 537, 69.6\%). Our previous study’s results might have been more subject to bias because of missing data. The current study had fewer missing data, probably because of the systematic feedback system for physicians that included reminders from the data management centre to report complete 1-year follow-up data. Because the physicians were thus prompted to monitor their patients more thoroughly, they were probably more likely to discover prediabetic states and encourage healthy diets and exercise as necessary. This could have prevented progression from prediabetes to probable diabetes. These results suggest that strict longitudinal monitoring is important for predicting and identifying the progression of diabetes and other glucose abnormalities in patients treated with antipsychotics who have schizophrenia or bipolar disorder.

Effect of antipsychotics on diabetic progression

In this study, hyperglycaemic progression rates over the 1-year observation period did not significantly differ among the six most frequently used antipsychotics. This finding can be explained by noting that this is an observational study, not a randomised controlled study, and that clinicians usually prescribe low-risk drugs to patients at high risk for diabetic progression. In contrast to the results of the CATIE study,14 these prescription biases might have reduced our ability to identify diabetic progression induced by high-risk antipsychotics such as clozapine and olanzapine and increased the apparent risk associated with low-risk antipsychotics such as aripiprazole.17 Thus, irrespective of the antipsychotic used, comprehensive longitudinal monitoring is essential in regular clinical practice.

Strengths and limitations of the study

Important strengths of this study were its nationwide, relatively comprehensive longitudinal monitoring is essential in regular clinical practice.

Implications for clinical practice and research

High baseline serum triglycerides and coexisting hypertension are important predictors of diabetic progression in patients treated with antipsychotics who have schizophrenia or bipolar disorder. Irreversible of the antipsychotic used, comprehensive longitudinal monitoring is essential in regular clinical practice.

Acknowledgements

We thank the following people for substantial contributions to data acquisition: Drs H. Narita, Y. Nakato, S. Nakagawa, Y. Shimizu, T. Inoue, T. Saito, K. Kitagawa, Y. Fuji, S. Asakura, K. Togoshima, R. Kameyama, Y. Wakatsuki, Y. Mizukami, Y. Hayashida, and T. Tanaka of the Hokkaido University Graduate School of Medicine; Drs S. Itakawa, T. Kohno, K. Takahashi, and J. Ishigooka of the Tokyo Women’s Medical University Department of Psychiatry; Drs Y. Niwa, and T. Suzuki of the Sapporo Suzuki Hospital (Sapporo, Japan); Dr K. Nakajima of the Kei-ai Hospital (Noboribetsu, Japan); Dr T. Takeuchi of the Tomakomai Kutchan-Kosei General Hospital Department of Psychiatry (Kutchan, Japan); Drs Y. Yada, K. Bessho, T. Horikoshi, Y. Mitsui, H. Itakura, H. Kubo, N. Nomura, T. Kohno, K. Takahashi, and J. Ishigooka of the Tokushima University Department of Psychiatry (Tokushima, Japan); Drs K. Kawabe, N. Sanohe, Y. Miyama, H. Shimizu and S. Uno of the Ehime University Department of Psychiatry (Matsuyama, Japan); Drs T. Kikuchi and K. Watanabe of the Kyorin University Department of Psychiatry (Matsuyama, Japan); Drs K. Nakajima of the Kei-ai Hospital (Noboribetsu, Japan); Drs S. Watabe, M. Okumura of the Toshima Hospital Department of Psychiatry (Tokyo, Japan); Drs T. Kohno, K. Takahashi, and J. Ishigooka of the Tokyo Women’s Medical University Department of Psychiatry; Drs K. Kawabe, N. Sanohe, Y. Miyama, H. Shimizu and S. Uno of the Ehime University Department of Psychiatry (Matsuyama, Japan); Drs A. Kozuki, R. Yoshishima, A. Sugita and H. Hori of the University of Occupational and Environmental Health Department of Psychiatry (Kikukyoju, Japan); Dr T. Ueno of the Hizen Psychiatric Center (Kanazaki, Japan); Drs Y. Yada, K. Bessho, T. Horikoshi, Y. Mitsu, H. Ikura, Y. Kokorishi, K. Saito, M. Fujimura, M. Chida, R. Sou, M. Takase, K. Makino, Y. Kishi, T. Takahashi, M. Iida, T. Kohno, K. Kondo, and K. Miyake of the Okayama Psychiatric Medical Center (Okayama, Japan); Dr K. Suzuki of the Aomori Prefectural Central Hospital Department of Psychiatry (Aomori, Japan); Drs H. Tani and M. Okuda of the Mie University Department of Psychiatry (Tsu, Japan); Drs T. Hirata and H. Motokawa of the Kita-ku, Sapporo 060-8638, Japan. The funding sources had no role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Funding

This study was supported by Early-Phase/Exploratory or International-Standard Clinical Research grants from the Japan Agency for Medical Research and Development (16H00933). The funding sources had no role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

References

1. Ichiro Kusumi, MD, PhD, Professor, Department of Psychiatry, Hokkaido University Graduate School of Medicine, Japan; Yuki Araki, MD, Doctor, Department of Psychiatry, Wakkanai City Hospital, Japan; Ryo Okubo, MD, PhD, Doctor, Department of Psychiatry, Hokkaido University Graduate School of Medicine and Hospital; Kiyoshi Tsuchiya, MD, PhD, Director, Tomakomai Midorigaoka Hospital, Japan; Taisuke Iwamoto, MD, PhD, Associate Professor, Department of Psychiatry, Nara Medical University, Japan; Hirojüshi Yamanaka, MD, PhD, Vice Director, Hiyoshi-Union Hospital, Japan; Akiko Tochigi, MD, Doctor, Tomakomai Midorigaoka Hospital, Japan; Yoshiteru Taketaka, MD, PhD, Lecturer, Department of Neuropsychiatry, Hokkaido University Graduate School of Medicine, Japan; Masamichi Yonehara, MD, PhD, Director, Tomakomai Midorigaoka Hospital, Japan; Keiichi Uemura, MD, Doctor, Department of Psychiatry, Sapporo City General Hospital, Japan; Koshibe Ito, MD, PhD, Vice Director, Tomakomai Midorigaoka Hospital, Japan; Nobuyuki Mishii, MD, PhD, Professor, Department of Psychiatry, Sapporo City Hospital, Japan; Yuko Kako, MD, PhD, Lecturer, Department of Psychiatry, Hokkaido University Graduate School of Medicine, Japan; Ikuta Shinkawa, MD, Doctor, Okayama Psychiatric Medical Center, Japan; Koaru Shinozaka, MD, PhD, Director, Sapporo Suzuki Hospital, Japan; Akiko Konishi, MD, Doctor, Okayama Psychiatric Medical Center, Japan; Junichi Iga, MD, PhD, Associate Professor, Department of Psychiatry, Toyokawa University and Department of Psychiatry, Okayama University, Japan; Naoki Hashimoto, MD, PhD, Associate Professor, Department of Psychiatry, Hokkaido University Graduate School of Medicine, Japan; Shinshaku Inomata, MD, Manager, Hizen Psychiatric Center, Japan; Noriko Tsukamoto, MD, Doctor, Hokkaido Watanabe Hospital, Japan; Hiroto Ito, MD, PhD, Director, National Institute of Occupational Safety and Health, National Center of Neurology and Psychiatry, Japan; Yoichi M. Ito, PhD, Associate Professor, Department of Biostatistics, Hokkaido University Graduate School of Medicine, Japan; Norihito Sato, MD, PhD, Professor, Hokkaido University Hospital Clinical Research and Medical Innovation Center, Japan; Correspondence: Ichiro Kusumi, MD, PhD, North 15, West 7, Kitaku, Sapporo 060-8638, Japan. email: kusumi@med.hokudai.ac.jp

Abstract

This study, a 1-year follow-up period might have been insufficient for observing diabetic progression. Furthermore, our analyses of the effects of specific antipsychotics on hyperglycaemic progression relied on data from only a subset of the patient sample because most patients took more than one antipsychotic for at least a short period during this study. Relatively few Japanese people are severely obese,26 but even mild obesity may lead to hyperglycaemia in Japanese individuals.27 Therefore, our results may not be generalisable to Western populations, but our study’s focus on a non-Western population is also a strength because few studies have been conducted outside the USA and Europe. Future studies should use longer follow-up periods and larger samples.

Conflict of interest

The authors declare no conflicts of interest.

Correspondence

Ichiro Kusumi, MD, PhD, Professor, Department of Psychiatry, Hokkaido University Graduate School of Medicine and Hospital; Sapporo 060-8638, Japan.

Supporting information

1. Hyperglycaemic progression in schizophrenia or bipolar disorder for medical research. Access for free at: [Ichiro Kusumi](https://doi.org/10.1192/bjp.2018.56)
H. Sawayama of the Teine Hospital (Sapporo, Japan); Dr T. Ishikane, M. Kuhisa, and H. Mieda of the Ishikane Hospital (Sapporo, Japan); Dr T. Hayashishita of the Hayashishita Hospital (Sapporo, Japan); Dr T. Komiyama of the Iida Hospital (Iida, Japan); Dr Y. Oyanagi, H. Horima, M. Okumura, Y. Hozokawa, Y. Umeroto, and T. Horinouchi of the Obihiro National Hospital Department of Neuropsychiatry (Obihiro, Japan); Dr J. Suzuki of the Sapporo Kokononomori Clinic (Sapporo, Japan); Dr T. Matsuyama of the Okamoto Hospital (Sapporo, Japan); Dr Y. Maki of the Maki Hospital (Kawamata, Japan); and Drs T. Tao and J. Watanabe of the Oyachi Hospital (Sapporo, Japan). The following project staff from the Hokkaido University Clinical Research and Medical Innovation Center provided outstanding support for this project: T. Miyakoshi, A. Hirai, S. Tanno, C. Nishimura, and C. Asano, who assisted with database management, and T. Amano and K. Ono, who assisted with statistical analysis.

References

1. Laursen TM, Wahlbeck K, Haelgren J, Westman J, Oesby U, Alinaghizadeh H, et al. Life expectancy and death by diseases of the circulatory system in patients with bipolar disorder or schizophrenia in the Nordic countries. PLoS One 2013; 8: e67133.

2. Itten P, Correll CU, Burtea V, Kane JM, Manu P. Sudden unexpected death in schizophrenia: autopsy findings in psychiatric inpatients. Schizophr Res 2014; 155: 72–6.

3. Sweeting J, Dufful I, Semsarian C. Postmortem analysis of cardiovascular deaths in schizophrenia: a 10-year review. Schizophr Res 2013; 150: 398–403.

4. Stubbs B, Vancomfort D, De Hert M, Mitchell AJ. The prevalence and predictors of type two diabetes mellitus in people with schizophrenia: a systemic review and comparative meta-analysis. Acta Psychiatr Scand 2015; 132: 144–57.

5. Vancomfort D, Mitchell AJ, De Hert M, Sienaert P, Probst M, Buys R, et al. Prevalence and predictors of type 2 diabetes mellitus in people with bipolar disorder: a systematic review and meta-analysis. J Clin Psychiatry 2015; 76: 1490–6.

6. Sarwar N, Gao P, Seshasai SR, Grobini R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375: 2215–22.

7. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 2009; 373: 31–41.

8. Graham KA, Cho H, Brownley KA, Harp JB. Early treatment-related changes in diabetes and cardiovascular disease risk markers in first episode psychosis subjects. Schizophr Res 2008; 101: 287–94.

9. Newcomer JW. Abnormalities of glucose metabolism associated with atypical antipsychotic drugs. J Clin Psychiatry 2004; 65: 36–46.

10. Kusumi I, Ito K, Honda M, Hayashishita T, Uemura K, Hashimoto N, et al. Screening for diabetes using Japanese monitoring guidance in schizophrenia patients treated with second-generation antipsychotics: a cross-sectional study using baseline data. Psychiatry Clin Neurosci 2011; 65: 349–55.

11. Okumura Y, Ito H, Kobayashi M, Miyahara K, Matsutomo Y, Hirakawa J. Prevalence of diabetes and antipsychotic prescription patterns in patients with schizophrenia: a nationwide retrospective cohort study. Schizophr Res 2010; 119: 145–52.

12. Van Winkel R, De Hert M, Van Eyck D, Hanssens L, Wamplers M, Scheen A, et al. Screening for diabetes and other metabolic abnormalities in patients with schizophrenia and schizoaffective disorder: evaluation of incidence and screening method. J Clin Psychiatry 2006; 67: 1493–500.

13. de Leon J, Diaz FJ. Planning for the optimal design of studies to personalize anti-psychotic prescriptions in the post-CATIE era: the clinical and pharmacope-diological data suggest that pursuing the pharmacogenetics of metabolic syndrome complications (hypertension, diabetes mellitus and hyperlipidemia) may be a reasonable strategy. Schizophr Res 2007; 96: 185–97.

14. Meyer JM, Davis VG, Golf DC, McEvoy JP, Nasrallah HA, Davis SM, et al. Change in metabolic syndrome parameters with antipsychotic treatment in the CATIE schizophrenia trial: prospective data from phase 1. Schizophr Res 2008; 101: 273–86.

15. Kusumi I, Ito K, Uemura K, Honda M, Hayashishita T, Miyamoto K, et al. Screening for diabetes using monitoring guidance in schizophrenia patients treated with second-generation antipsychotics: a 1-year follow-up study. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 1922–6.

16. Cohn TA, Semyk MJ. Metabolic monitoring for patients treated with anti-psychotic medications. Can J Psychiatry 2006; 51: 492–501.

17. American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes. J Clin Psychiatry 2004; 65: 267–72.

18. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. WHO, 1992.

19. Cox DR. Regression models and life-tables. J R Stat Soc Series B Stat Methodol 1972; 34: 187–220.

20. Henry P, Thomas F, Benetos A, Guize L. Impaired fasting glucose, blood pressure and cardiovascular disease mortality. Hypertension 2002; 40: 458–63.

21. Imamura G. Insulin resistance and hypertension in Japanese. Hypertens Res 1996; 19: 51–58.

22. Jiangboran I, Amini M. Progression from optimal blood glucose and pre-diabetes to type-2 diabetes in a high risk population with or without hypertension in Isfahan, Iran. Diabetes Res Clin Pract 2015; 108: 414–22.

23. Onat A, Yazici M, Can G, Kaya Z, Bulur S, Hergenc G. Predictive value of prehypertension for metabolic syndrome, diabetes, and coronary heart disease among Turks. Am J Hypertens 2008; 21: 590–5.

24. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL, Hypertension and anti-hypertensive therapy as risk factors for type 2 diabetes mellitus. N Engl J Med 2000; 342: 905–12.

25. Cheung BMI, Li C. Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep 2012; 14: 160–6.

26. Japanese Ministry of Health. Labour and Welfare: The National Health and Nutrition Survey in Japan [in Japanese]. Japanese Ministry of Health, 2012 (http://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h24-houkoku.pdf).

27. Yoshikue N, Nishi H, Matsushima S, Ito C, Ikeda Y, Kashihiara H, et al. Relationship between severity of obesity based on body mass index and risk factors of diabetes, hypertension and hyperlipidemia: a multivariate, collaborative, epidemiological study [in Japanese]. Obesity Res 2000; 8: 4–17.