Pancreatic Exocrine Tissue Architecture and Integrity are Maintained by E-cadherin During Postnatal Development
Jeffrey D. Serrill, Maike Sander, Hung Ping Shih

Supplementary Information

1. Supplementary Table 1

Antigen	Species	Source	Dilution
Active β-catenin	Mouse	Millipore	1:200
Amylase	Mouse	Santa Cruz	1:500
β-catenin	Rabbit	Cell Signaling	1:300
Chromogranin A	Goat	Santa Cruz	1:500
Cdhl	Rat	Cell Signaling	1:500
Cdh1	Goat	R&D	1:500
Cpa1	Goat	R&D	1:500
CD133	Rabbit	Abcam	1:200
YAP	Rabbit	Cell Signaling	1:300
Epcam	Rat	DSHB	1:100
Glucagon	Rabbit	Invitrogen	1:500
Insulin	Guinea Pig	Dako	1:500
Laminin 1	Rabbit	Sigma	1:1000
Mucin 1	Rabbit	Abcam	1:500
Nr5a2	Mouse	R&D	1:300
Pancreatic Polypeptide	Goat	Novus	1:500
Somatostatin	Goat	Santa Cruz	1:200
Sox9	Rabbit	Millipore	1:200
Trypsin	Sheep	R&D	1:300
Bio-DBA		Vector Laboratories	1:500
2. Supplementary Figure Legends

Supp. Figure 1. Cdh1ΔPan/ΔPan mice exhibit normal endocrine development. Immunofluorescence analysis of Cdh1 (white) in the control (A) and Cdh1ΔPan/ΔPan (B) pancreas at E11.5. Immunofluorescence analysis of acinar (amylase, green), ductal (DBA, white), and endocrine (chromogranin A, red) compartments of control (C) and Cdh1ΔPan/ΔPan (D) pancreata at E15.5. Quantification of acinar (E) and endocrine (F) areas in control and Cdh1ΔPan/ΔPan mice at E15.5. (G) Relative pancreas size in control and Cdh1ΔPan/ΔPan mice at E15.5. (H-K) Immunofluorescence analysis of the endocrine markers insulin, glucagon, somatostatin, and pancreatic polypeptide (green) and Chromogranin A (red) in control (H,J) and Cdh1ΔPan/ΔPan (I,K) pancreata at P0 and P4. Histograms represent mean ± SEM of at least three independent determinations. For 2-tailed t-tests, * = p<0.05, ** = p<0.01, *** = p<0.001 compared to control. White scale bars = 100 μm.

Supp. Figure 2. Cdh1ΔPan/ΔPan mice exhibit normal expression patterns of acinar markers at P0. (A-F) Immunofluorescence analysis of the acinar markers Cpa1, Trypsin, and Nr5a2 (green), the epithelia cell marker Epcam (red) and nuclei (white, DAPI) in control (A,C,E) and Cdh1ΔPan/ΔPan (B,D,F) mice at P0. (G,H) Whole-mount immunofluorescence images showing the distribution of ductal (Muc1, red) and exocrine (Epcam, green) compartments in the control (G) or Cdh1ΔPan/ΔPan (H) pancreas at P0. White scale bars = 100 μm.

Supp. Figure 3. Exocrine tissues in Cdh1ΔPan/ΔPan pancreata exhibit ultrastructural impairments at P0. Transmission electron micrographs of acinar (A), ductal (B), and endocrine (C) tissue in the P0 Cdh1ΔPan/ΔPan pancreas. Higher magnification views of red and yellow inset boxes are shown to the right in (A’-C’) and (A”-C”), respectively. Red scale bars = 2 μm.

Supp. Figure 4. E-cadherin deletion leads to acinar-to-ductal metaplasia (ADM) in the P4 pancreas. Transmission electron micrographs of representative
ductal structures in control (A) and $Cdh1^{ΔPan}\DeltaPan$ (B) pancreata at P4. Dashed red boxes are projected in panels to the right (A',B'). Red scale bars = 2 μm.
3. Supplementary Figures

Suppl. Figure 1

[Images of figures A through K, showing gene expression and protein localization in different conditions.]

Chromogranin A (ChgA)	Insulin	Glucagon	Somatostatin	Polypeptide
Control	H	H’	H”	H”’
Cdhl¹ Pan¹/Pan¹	I	I’	I”	I”’
P0	J	J’	J”	J”’
Cdhl¹ Pan¹/Pan¹	K	K’	K”	K”’

[Graphs showing quantification of E-cadherin, amylose, ChgA, and pancreas size.]

E11.5
Control	Cdh1-/-Pam/Prn
![Image A]	![Image A']
![Image B]	![Image B']