The Rhizobium meliloti P_Π protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development

Tania Arcondéguy, Isabelle Huez, Pascal Tillard, Catherine Gangneux, Françoise de Billy, Alain Gojon, Georges Truchet, and Daniel Kahn

1Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Unité Mixte de Recherches (UMR) 215 Institut National de la Recherche Agronomique (INRA)/Centre National de la Recherche Scientifique (CNRS), 31326 Castanet-Tolosan CEDEX, France; 2Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, École Nationale Supérieure d’Agronomie de Montpellier (ENSA-M)/INRA/Université de Montpellier 2 (UM2)/CNRS Unité de Recherches Associée (URA) 2133, 34060 Montpellier CEDEX, France

Symbiotic nitrogen fixation involves the development of specialized organs called nodules within which plant photosynthates are exchanged for combined nitrogen of bacterial origin. To determine the importance of bacterial nitrogen metabolism in symbiosis, we have characterized a key regulator of this metabolism in Rhizobium meliloti, the uridylylatable P_Π protein encoded by $glnB$. We have constructed both a $glnB$ null mutant and a point mutant making nonuridylylatable P_Π. In free-living conditions, P_Π is required for expression of the ntrC-dependent gene $glnII$ and for adenylylation of glutamine synthetase I. P_Π is also required for efficient infection of alfalfa but not for expression of nitrogenase. However alfalfa plants inoculated with either $glnB$ mutant are nitrogen-starved in the absence of added combined nitrogen. We hypothesize that P_Π controls expression or activity of a bacteroid ammonium transporter required for a functional nitrogen-fixing symbiosis. Therefore, the P_Π protein affects both Rhizobium nitrogen metabolism and alfalfa nodule development.

[Key Words: Symbiotic nitrogen fixation; Rhizobium meliloti; $glnB$ gene]

Received February 21, 1997; revised version accepted March 19, 1997.

The soil bacterium Rhizobium meliloti establishes a specific symbiotic interaction with alfalfa. The symbiotic process begins by a molecular exchange (Peters et al. 1986) resulting in the synthesis of Rhizobium lipochitooligosaccharide Nod factors, which are highly potent and specific organogenetic factors responsible for the formation of root nodules (for review, see Carlson et al. 1995; Dénatre et al. 1996). During this organogenesis, Rhizobium infects the emerging nodule structure via root hairs and a network of infection threads that traverse cortical cells. Ultimately bacteria are released from infection threads into the cytoplasm of host cells, where they differentiate into nitrogen-fixing bacteroids (Vasse et al. 1990). This differentiation is accompanied by a rapid cessation of bacterial division, so that bacteroids appear functionally as nitrogen-fixing organelles exchanging ammonium for photosynthates. This implies a shift of bacterial nitrogen metabolism from ammonium assimilation to ammonium export. In this paper we study the coupling between Rhizobium nitrogen metabolism and nodule development.

Assimilation of ammonium proceeds principally through a cycle involving glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) in Rhizobium. R. meliloti contains three GS genes, $glnA$, $glnII$, and $glnT$, encoding GSI, GSII, and GSIII, respectively (De Bruijn et al. 1989). GSI is homologous to enteric GS and its activity is regulated by enzyme adenylylation like in enteric bacteria. Expression of GSI is regulated by combined nitrogen partly in an ntrC-dependent manner (Arcondéguy et al. 1996), whereas expression of GSII is strictly ntrC-dependent (De Bruijn et al. 1989). The GSIII gene $glnT$ is cryptic and normally is not expressed in the presence of GSI or GSII (Shatters et al. 1993).

In many bacterial species regulation of GS involves a central regulatory protein called P_Π [for review, see Merrick and Edwards 1995]. It was therefore of interest to characterize the R. meliloti P_Π gene $glnB$ and to determine its involvement in nitrogen-fixing symbiosis. In enteric bacteria, P_Π is a trimeric protein involved in two
These results indicate that bacterial nitrogen metabolism in R. meliloti is coupled with alfalfa nodule infection and development and that this coupling involves the PIIL protein of R. meliloti.

Figure 1. Western blot analysis of R. meliloti PIIL. Fifteen percent SDS-PAGE gel probed with anti-PIIL antibody. Five micrograms of protein extract was loaded in each lane. [Lanes 1,2] R. meliloti GMI708; [lanes 3,4] GMI3143 (glnlI::Tn5); [lanes 5,6] GMI5995 (ntrC::Tn5); [lanes 7,8] GMI3107 (AglnBlO); [lanes 9,10] GMI3109 (glnBP5). R. meliloti was grown on minimal medium with 75 mM ammonium (lanes 1,3,5,7,9) or 6 mM glutamate (lanes 2,4,6,8,10) as a nitrogen source.

Results

Regulation of nitrogen metabolism by the PIIL protein in R. meliloti

The glnB gene encoding PIIL is linked tightly with the glnA gene encoding GSI in R. meliloti (Arcondégy et al. 1996). To investigate the function of the PIIL regulatory protein we constructed a null mutation by in-frame deletion within the glnB-coding sequence, therefore minimizing polar effects on the downstream glnA gene. This deletion was generated by PCR, subcloned into pLABF3 to generate pTA26, then recombined into the R. meliloti genome using a sucrose counterselection procedure (see Materials and Methods). The resulting AglnBlO strain GMI3107 did not express the PIIL protein as verified by Western blot analysis (Fig. 1). However it expressed another strongly reacting 13.5-kD protein that might correspond to a second PIIL protein as has been found in other organisms (De Zamaroczy et al. 1996, Van Heeswijk et al. 1996). The AglnBlO mutant grew prototrophically slightly more slowly than the wild-type strain GMI708 on either rich or synthetic media (μ=0.22/hr vs. μ=0.26/hr, respectively, on minimal medium with ammonium as a nitrogen source).

To test the involvement of the PIIL protein in nitrogen metabolism in Rhizobium, we first investigated expression of the gSSI gene glnII using a glnII-lacZ reporter plasmid [pFB691::MudlPR48]. The results showed that glnII expression is strictly glnB-dependent (Table 1). We further studied the role of PIIL on expression and adenyllylation of GSI. Strains were made glnII::Tn5 by N3 transduction so as to express GSI as the sole GS. Although PIIL was not required for the basal expression of glnA in rich medium, it was required for glnA induction in nitrogen poor media (Table 2). Because both glnII and glnA induction are ntrC-dependent (De Bruijn et al. 1989; Arcondégy et al. 1996), these results suggest that the PIIL protein is involved in activation of NtrC in R. meliloti.

To test whether PIIL is involved in the regulation of GSI adenyllylation, we measured GSI adenyllylation both before and after a nitrogen upshift (Table 3). Whereas in wild-type R. meliloti, GSI is adenyllylated rapidly follow-

Table 1. Effect of glnB mutations on expression of a glnII-lacZ fusion

R. meliloti background	Relevant genotype	glnA induction [Miller units]	glnB induction [Miller units]
GMI708	wild type	4000	340
GMI3107	AglnBlO	10	12
GMI3109	glnBP5	17	14

R. meliloti strains contained the glnII-lacZ reporter plasmid pFB691::MudlPR48 [De Bruijn et al. 1989]. Cultures were grown in minimal medium with 6 mM KNO₃ or 15 mM (NH₄)₂SO₄ as a nitrogen source.

*Strain background β-galactosidase activity was <10 Miller units in the absence of a reporter plasmid.

Symbiotic role of Rhizobium PIIL protein

Different responses to a change in nitrogen status. The first response is a genetic response, by which PIIL inhibits expression of the ntr regulon by stimulating NtrC-P dephosphorylation (Keener and Kustu 1988; Atkinson et al. 1994). The second is a metabolic response, by which PIIL regulates modulates adenyllylation of GS (Stadtman et al. 1975). The degree of PIIL uridylylation is low in nitrogen excess and high under nitrogen deficiency, therefore reflecting the nitrogen status of the cell. In nitrogen-excess conditions, native unmodified PIIL stimulates dephosphorylation of NtrC-P and adenyllylation of GS. This results in inhibited expression and activity of GS, respectively. Conversely under nitrogen-limiting conditions the modified form PIIL-UMP stimulates deadenylylation of GS without affecting NtrC phosphorylation, which allows maximal expression and full activity of GS (Ginsburg and Stadtman 1973; Atkinson et al. 1994).

Here we investigate the role of the PIIL protein in the regulation of nitrogen metabolism in R. meliloti and show its involvement in GSI adenyllylation and GS expression. Therefore, like in enteric bacteria, PIIL appears as an integrator of nitrogen metabolism that controls both metabolic and genetic responses to changes in the nitrogen status of R. meliloti. Moreover, the PIIL protein was essential for an effective nitrogen-fixing symbiosis on alfalfa. Plant infection by glnB mutants was significantly impaired, and although the resulting nodules expressed high levels of nitrogenase, alfalfa plants inoculated with glnB mutants suffered nitrogen starvation and chlorosis in the absence of added combined nitrogen. These results indicate that bacterial nitrogen metabolism is coupled with alfalfa nodule infection and development and that this coupling involves the PIIL protein of R. meliloti.
uniformly low regardless of combined nitrogen. Therefore, in R. meliloti, P

Strain	Relevant genotype	GSI total activity (nmol/min per mg)
GMI3143	glnH::Tn5	150 1200 540
GMI3146	ΔglnB10 glnH::Tn5	160 290 200
GMI3147	glnBP5 glnH::Tn5	150 140 180

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source.

Strain Relevant genotype LB glutamate ammonium
GMI3143 glnH::Tn5 150 1200 540
GMI3146 ΔglnB10 glnH::Tn5 160 290 200
GMI3147 glnBP5 glnH::Tn5 150 140 180

Expression of GSI activity in glnB mutants of R. meliloti

Strain	Relevant genotype	GSI adenylylation state (B)
		glutamate
		LB (−N) (−N) ammonium
GMI3143	glnH::Tn5	11 2 10 7
GMI3146	ΔglnB10 glnH::Tn5	2 2 3 3
GMI3147	glnBP5 glnH::Tn5	10 8 8 7

Table 2. Expression of GSI activity in glnB mutants of R. meliloti

Table 3. Adenylylation of GSI in glnB mutants

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.

γGT activity reflects both native and adenylylated forms of GSI. Cultures were grown on rich medium (LB) or on minimal medium with 6 mM glutamate or 75 mM NH₄Cl as a nitrogen source. Where indicated (−N) glutamate-grown cultures were exposed to 15 mM ammonium sulfate for 30 min before measuring GSI adenylylation.
Symbiotic role of Rhizobium \(P_{\mu} \) protein

days after inoculation, the \(glnB \) mutants induced various root hair deformations such as a tight curling at the tip of root hairs (Hac\(^+\) phenotype, Fig. 4A), a characteristic deformation observed on plants inoculated with wild-type \(R. \) meliloti, but also exhaustive deformations of long root hairs (Fig. 4B), a phenotype that was never observed on control plants. At this stage, starch accumulated either throughout the entire root (Fig. 4C) or in large nodule primordia (Fig. 4D). Such a starch accumulation was not observed on plants inoculated with wild-type \(Rhizobium \).

A time-course analysis of the infection process showed obvious differences between plants inoculated with \(glnB \) mutants and wild-type \(R. \) meliloti. On control plants inoculated with wild-type \(R. \) meliloti, infection threads initiated in a curled root hair progressed rapidly toward the inner plant cortex, where the first divisions characteristic of the formation of a nodule primordium were
often seen [Fig. 4E]. On plants inoculated with glnB mutants, the development of infection threads was impaired significantly. Infection threads were frequently observed as abortive twisted structures remaining within the root hair [Fig. 4F] or in the epidermal cell [Fig. 4G]. As a result of this incapacity of infection threads to progress normally into plant tissues, and contrary to control plants where the central part of growing nodules was occupied by an important network of infection [Fig. 4H], no noticeable infection was seen in the central part of many of the nodules elicited by glnB mutants [Fig. 4I]. This infection was delayed and, when it occurred, it was significantly reduced when compared with control plants [Fig. 4, cf. J and K]. Finally, it was noticed that many nodule primordia elicited by the glnB mutant strains appeared abnormally dense to photons, suggesting cell wall thickening [Fig. 4I]. Another difference in the infection properties of glnB mutants versus the parental strain also appeared from quantitative data. Roots were stained with X-Gal 5 days after inoculation and infection threads were counted on 10 plants. The glnB mutants were found to infect alfalfa considerably less efficiently than the wild type. Whereas wild-type R. meliloti generated an average of 52 infection threads per plant, the △glnB10 and glnBP5 mutants averaged 12 and 8 infection threads per plant, respectively. These results indicate that the PIII protein, in its uridylylated form, is required for efficient infection of alfalfa by R. meliloti.

The defective infection phenotype described above prompted us to consider the possibility that glnB might regulate expression of nod genes, which are known to have a major role during infection [Debelle et al. 1986; Ardourel et al. 1994, 1995]. To test this possibility, we introduced plasmids containing lacZ fusions in the structural gene nodC [pRmM57], or in the regulatory genes nodD1 [pGMI930], nodD2 [pGMI1003], nodD3 [pGMI1004], or syrM [pGMI1005], into wild-type and glnB mutant backgrounds. The glnB mutations consistently caused a threefold decrease of nodC-lacZ expression from pRmM57 (Table 4). No effect was observed on expression of the regulatory genes nodD1, nodD2, nodD3, and syrM [data not shown]. Therefore, the PIII protein is not stringently required for expression of nod genes, but it does affect induction of the nodABC operon by luteolin.

Three-week-old alfalfa plants inoculated with either glnB mutant were stunted and chlorotic to various extents (Fig. 5). Dry weight measurements and nitrogen quantitation showed that these plants were nitrogen-starved (Table 5). Nodules appeared somewhat heterogeneous ranging from whitish and small to pink and normally sized. Because such a heterogeneity was observed among nodules on individual plants, it was not related to the genetic heterogeneity of alfalfa. The reinoculation on alfalfa of bacteria reisolated to single colonies from different types of nodules resulted in the same phenotype, that is, chlorotic plants bearing heterogeneous nodules. This result demonstrates that the normal-looking nodules were not attributable to suppressive mutations. Moreover, complementation of the glnB mutations with the glnB-containing plasmid pTACG32 restored the wild-type symbiotic phenotype, showing that the glnB mutations are responsible for plant nitrogen starvation and nodule heterogeneity. Unexpectedly, plants inoculated with glnB mutants did reduce acetylene to appreciable levels, with an average of 40% and 56% of the wild-type level for glnBP5 and △glnB10 mutant strains, respectively. This acetylene reduction activity (ARA) was quite variable, consistent with the nodule heterogeneity noted above. No strict correlation was observed between plant growth and ARA. For instance, the stunted plants shown in Figure 5, lane 3, exhibited 79% of wild-type ARA, whereas other better looking plants showed lower ARA. No correlation was either observed between plant growth and nodule aspect: We routinely observed stunted plants carrying normal-sized, pink nodules that, when excised, reduced acetylene at similar levels as wild-type excised nodules.

Table 4. Effect of glnB mutations on expression of nodC

R. meliloti background	Relevant genotype	β-Galactosidase activity* (Miller units)	
		-luteolin	+ luteolin
GMI708	wild type	29	290
GMI3107	△glnB10	17	88
GMI3109	glnBP5	20	87

R. meliloti strains contained the nodC-lacZ reporter plasmid pRmM57 [Mulligan and Long 1985]. Cultures were grown in minimal medium containing 14 mM succinate and 6 mM glutamate with or without 10 μM luteolin.

*Strain background β-galactosidase activity was <10 Miller units in the absence of a reporter plasmid.
were calculated on five batches of four plants. The same alfalfa plants as in Table 5 were exposed for 2 hr to 15N2-labeled air and assayed for 15N incorporation. Standard deviations were calculated on five batches of four plants.

Table 5. Nitrogen deficiency of glnB mutant-inoculated alfalfa

Relevant genotype	Dry weight per plant (mg)	Total nitrogen content per plant (µg)	Nitrogen content (%)
Wild type			
ΔglnB10	5.70 ± 0.48	263 ± 26	4.6 ± 0.2
glnBP5	3.50 ± 0.50	132 ± 39	3.8 ± 0.8
Wild type			
ΔglnB10	0.81 ± 0.07	22 ± 1	2.7 ± 0.2
glnBP5	1.05 ± 0.09	26 ± 2	2.5 ± 0.2
Wild type			
ΔglnB10	0.40 ± 0.06	23 ± 2	5.7 ± 0.5
glnBP5	0.37 ± 0.02	19 ± 2	5.1 ± 0.6
Wild type			
ΔglnB10	6.91 ± 0.51	308 ± 28	4.4 ± 0.2
glnBP5	5.04 ± 0.85	161 ± 41	3.2 ± 0.5

R. meliloti strains GMI708, GMI3107 (ΔglnB10), and GMI3109 (glnBP5) were inoculated on alfalfa, and nitrogen content was assayed 3 weeks later. Standard deviations were calculated on five batches of four plants.

The high nitrogen fixation activity of glnB mutants was directly confirmed by 15N-labeling experiments, which showed 66% and 64% of the wild-type level for glnBP5 and ΔglnB10 mutant strains, respectively (Table 6). Nodule nitrogenase specific activities were 71% and 69% of wild-type, respectively, showing that R. meliloti glnB mutants are Nif+. Consistent with the presence of an active nitrogenase, the glnB gene was found not to be required for expression of nifA, fixK, and fixN as monitored with the lacZ fusion reporter plasmids pCHK57, pl5, and pGM931, respectively (data not shown). However, and consistent with the nitrogen-starved phenotype noted above, the flux of combined nitrogen from nodules toward the aerial parts of the plants was markedly reduced in glnB mutant inoculated plants (Table 6).

Table 6. Partitioning of fixed nitrogen in glnB mutant inoculated alfalfa

Relevant genotype	Nitrogen fixed per plant (nmoles of N2)	Nodule nitrogenase sp. ac. (nmoles of N2/hr per mg of dry nodule weight)
Wild type		
ΔglnB10	30.8 ± 4.7	
glnBP5	11.0 ± 4.7	
ΔglnB10	3.9 ± 0.5	
glnBP5	5.6 ± 0.8	
ΔglnB10	33.9 ± 6.1	
glnBP5	5.6 ± 0.8	
ΔglnB10	28.5 ± 7.3	
glnBP5	45.1 ± 11.4	

The same alfalfa plants as in Table 5 were exposed for 2 hr to 15N2-labeled air and assayed for 15N incorporation. Standard deviations were calculated on five batches of four plants.
Arcondéguy et al.

Figure 6. Histology of glnB mutant induced nodules. [A, B] Histological localization of starch (brown color) in whole nodules elicited by wild-type R. meliloti [A] or the glnBP5 mutant [B]. The arrowhead in A shows the starch deposit in the few cell layers of interzone II-III in control nodules. Dark-field microscopy. Bar, 200 μm. [C-F] Various nodules elicited by glnB mutants. Similar pictures were obtained with either the glnB10 or the glnBP5 mutant. Note the differences between individual nodules in terms of cell occupancy by rhizobia (blue color) and starch deposit (arrowheads). Arrows in D and E point to methylene blue/toluidine blue counter-stained cells. Eighty-micrometer-thick sections viewed by bright-field microscopy. Bar, 100 μm.

Discussion

Functionality of a nitrogen-fixing nodule requires that both plant and rhizobial symbiotic partners mutually adapt to meet the physiological requirements of nitrogen fixation and to allow for assimilation of fixed nitrogen. On the plant side, this implies a need to provide bacteroids with the low oxygen tension necessary for nitrogenase expression and activity and to fuel nitrogen-fixing bacteroids with appropriate photosynthates for their energy metabolism. On the bacterial side, this implies the routing of fixed nitrogen into plant amino acid metabolism. It has therefore been long expected that the development of a functional symbiosis should be coupled with an appropriate regulation of bacterial nitrogen metabolism. For instance, expression of E. coli glutamate dehydrogenase in Rhizobium etli interferes with nodulation (Mendoza et al. 1995) and nitrogen fixation (Bravo et al. 1988). On the other hand R. meliloti mutants defective for GSI or GSII (De Bruijn et al. 1989), or for the

Figure 7. Ultrastructure of glnB mutant bacteroids. Distal part of the nitrogen fixing zone III of nodules induced by wild-type R. meliloti [A] or the glnBP5 mutant [B]. Note the nitrogen-fixing type IV bacteroids (white stars). Features of premature nodule degenerescence in B are electron-dense bacteroids (white asterisks) and senescent rhizobia enclosed within a single peribacteroid membrane (black star). Electron microscopy. Bar, 1 μm.
global nitrogen regulator NtrC [Szeto et al. 1987], develop normal nitrogen-fixing nodules on alfalfa. In the present work we identify the PII protein of R. meliloti as a key regulatory component involved in both bacterial nitrogen regulation and nodule development. Not only is the PII protein required for proper plant assimilation of nitrogen fixed by Rhizobium bacteroids. It is also involved in plant infection. Therefore, the PII protein integrates the regulation of a wide array of functions related to bacterial nitrogen metabolism, nodule development, and symbiotic nitrogen fixation.

The PII protein as an integrator of nitrogen metabolism in Rhizobium

In enteric bacteria the PII protein has a central role in nitrogen regulation because it is involved in both genetic regulation of the ntr regulon and in metabolic regulation of GS activity. It is an integrator of the cellular nitrogen status, responding to \(\alpha \)-ketoglutarate and glutamine pools via reversible uridylylation [Atkinson et al. 1994]. Native trimeric PII binds \(\alpha \)-ketoglutarate and stimulates NtrB-catalyzed dephosphorylation of NtrC–P [Kamberov et al. 1995], thereby affecting expression of GS and of other ntrC-dependent genes. Fully uridylylated PII on the other hand, does not affect phosphorylation of NtrC in E. coli [Atkinson et al. 1994].

In R. meliloti, PII also affects the ntr regulon, albeit somewhat differently [Fig. 8]. As in enteric bacteria, nonuridylylated PII (expressed in the glbBP5 mutant) prevents expression of ntrC-dependent genes such as glnII, presumably by stimulating the dephosphorylation of NtrC–P. Unlike in enteric bacteria however, the R. meliloti \(\Delta glnB \) null mutant is ntr-deficient as judged from the absence of glnII expression and glnA induction. We therefore suggest that in R. meliloti, the PII protein, in its uridylylated form, is required for NtrB-dependent activation of NtrC by phosphorylation, or possibly for expression of the ntrC gene itself. Thus, absence of PII–UMP signals nitrogen excess for the ntr regulon in R. meliloti.

The other characterized function of PII in enteric bacteria is the modulation of GS activity by reversible coregulated enzyme adenylylation. In R. meliloti GSI is regulated similarly by reversible adenylylation in response to the cellular nitrogen status [Arcondéguy et al. 1996]. Like in enteric bacteria, GS is adenylated by the native PII protein whereas PII–UMP promotes GSI deadenylation [Table 3]. Therefore, absence of PII signals nitrogen deficiency for the regulation of GS activity by adenylylation, whereas nonuridylylated PII signals nitrogen excess for both genetic ntr regulation and metabolic regulation of GS activity [Fig. 8].

Expression of the PII protein appeared to be partly nitrogen-regulated in R. meliloti (Fig. 1). PII was expressed at a low level in nitrogen-rich conditions and was induced on nitrogen limitation in an ntrC-dependent manner. Consistent with this regulation, a characteristic \(\sigma^{34} \)-dependent promoter sequence is conserved upstream of glb in R. meliloti and Rhizobium leguminosarum bv. viciae [Chiurazzi and Iaccarino 1990], and the downstream gene glnA is also partly inducible under the control of ntrC [Arcondéguy et al. 1996]. In addition, the glnB gene appears to be autoregulated as it was not induced in the glbBP5 background [Fig. 1]. This autoregulation of glnB, together with its ntrC-dependence, is consistent with the role of PII–UMP in ntr regulation as noted above: Uridylation of PII is required for activation of NtrC, hence for induction of glnB [Fig. 8].

Coupling between Rhizobium nitrogen metabolism and plant infection

A striking and unexpected finding is that the PII protein of R. meliloti strongly interferes with the plant infection process. glb mutants are unable to infect the plant normally. Although they elicit proper root hair curling, they form a reduced number of infection threads which often abort [Fig. 4]. Therefore, the glnB mutant developmental bottleneck appears to lie after infection thread initiation, at the level of infection thread progression. The lowered infectivity of glnB mutants is accompanied by strong root hair deformations and unusual starch deposition in
the root. These symbiotic defects are observed with either the ΔglnB10 null mutant or the glnBP5 mutant unable to uridylylate Pn. This indicates that the uridylylated form Pn-UMP is required for a normal establishment of the symbiotic relationship, including the infection step, in alfalfa. In some respects the early plant responses to glnB mutants resemble those that are elicited on alfalfa by various nod mutants such as nodF, nodE, nodL, noeA, and noeB mutants [Debelle et al. 1986; Ardourel et al. 1994, 1995], and by exopolysaccharide deficient mutants [exo mutants; Hirsch et al. 1984; Niehaus et al. 1993]. All these mutants impaired in plant effective infection phenotype of Rhizobium. These symbiotic defects are observed with either the ΔglnB10 null mutant or the glnBP5 mutant [this study]. Therefore, the Pn protein couples plant infection with the regulation of nitrogen metabolism in R. meliloti.

One distinct possibility that could account for the defective infection phenotype of glnB mutants is the regulation of nod gene expression by the Pn protein. Although not essential, the glnB gene is required for full induction of the nodABC operon by the specific flavonoid inducer luteolin (Table 4). In this respect, it is worth recalling that the nodABC operon is also nitrogen-regulated [Dusha et al. 1989, 1993]. It is not unprecedented that altered regulation of nod gene expression may alter infection and nodulation properties of Rhizobium. For instance, overexpression of the regulatory gene nodD3 is known to perturb the spectrum of Nod factors synthesized and their symbiotic properties [Demont et al. 1994]. glnB mutations might act in a similar way, by changing the balance of nod gene expression and Nod factor synthesis, resulting in defective infection. However, it should be noted that infection by glnB mutants was not stimulated by exogenous addition of purified Nod factors [10⁻⁷ M, data not shown]. An alternative possibility that cannot be ruled out presently would be a reduced development of bacteria within infection threads due to an altered utilization of plant nitrogenous compounds, therefore impairing the development of infection threads.

Uncoupling between nitrogen fixation and nitrogen assimilation

Remarkably, plants inoculated with glnB mutants present strong nitrogen starvation symptoms despite a high nitrogenase content as assayed by acetylene reduction activity [ARA] and ¹⁵N incorporation (Fig. 5; Table 6). The glnBP5 mutant induces slightly more severe plant symptoms than the ΔglnB10 null mutant. This can be interpreted in terms of the model shown on Figure 8: The glnBP5 mutant makes a Pn protein that cannot be uridylylated, therefore locking nitrogen regulation in the OFF mode, whereas the ΔglnB10 mutant makes no Pn protein at all, therefore letting Pn-regulated systems reach intermediate steady-states. Consistent with the high ARA, glnB mutants are not affected in expression of nif and fix genes that are required for nitrogenase expression or activity. glnB mutants also develop into mature nitrogen-fixing type IV bacteroids (Fig. 7), which are not found with nif or fix mutants of R. meliloti [Vasse et al. 1990]. In addition, nodules induced by glnB mutants accumulate large amounts of starch (Fig. 6B), which indicates an imbalance of carbon over nitrogen metabolites consistent with the overall nitrogen starvation symptoms noted above.

We have considered several possibilities to explain this paradoxical Nif⁺ Fix⁻ phenotype. First, it might have resulted from defective expression of the ntr regulon. However, because ntrC mutants of R. meliloti are Fix⁺ [Szeto et al. 1987], expression of the ntr regulon is clearly not essential for symbiosis. The second possibility we have considered is altered regulation of GS expression. However, R. meliloti bacteroids contain no GSII and only low levels of GSI [de Bruijn et al. 1989; Arcondeguy et al. 1996]. Moreover, glnA, glnI, and glnAglnI double mutants of R. meliloti are Fix⁺, which shows that GSI and GSII are dispensible for symbiosis [de Bruijn et al. 1989]. The third possibility concerns GSI adenylylation, which is affected by Pn (Table 3). However, a glnA mutant making an adenylylation-defective GSI is Fix⁺, which shows that GSI adenylylation is not required for symbiosis [Arcondeguy et al. 1996]. Moreover, although the ΔglnB10 and glnBP5 mutations lock GSI in opposite adenylylation modes (Table 3), they cause very similar symbiotic phenotypes. Therefore, GSI adenylylation is not involved. The fourth possibility is that the conjuction of delayed infection and slightly reduced nitrogenase activity causes the seedling to be nitrogen starved at a critical stage. Root growth is stimulated in response to this starvation (Table 5), which is a well-known response to nutrient limitation [Clarkson 1985]. The resulting increased demand for nitrogen in roots (Table 6) would in turn further aggravate nitrogen starvation of the aerial parts. Although we are not aware of precedents for such a nutritional dead-lock, we cannot rule it out presently. The fifth possibility is that glnB mutants could be affected in expression or activity of a bacteroid ammonium transporter. It has long been thought that the intensive flux of ammonium between bacteroids and the host cell cytoplasm could be achieved by passive diffusion of uncharged ammonia across both bacteroid and peribacteroid membranes. However, recently, Tyerman et al. [1995] used patch-clamp techniques to demonstrate the existence of a specific ammonium transporter in the peribacteroid membrane, therefore questioning the role of passive ammonium diffusion in symbiosis. In addition, a number of ammonium transporters have now been identified in plants [Ninneman et al. 1994], yeast [Marini et al. 1994], and bacteria [Wray et al. 1994]. The existence of an ammonium transporter in the peribacteroid membrane hints toward the existence of a matching transporter in the bacteroid membrane, which would allow for high ammonium efflux at physiological pH. Therefore, we hypothesize that the R. meliloti Pn protein is involved in the regulation of a bacteroid ammonium transporter important for a functional nitrogen-fixing symbiosis.
Symbiotic role of *Rhizobium* P1 protein

Materials and methods

Bacterial strains, media and microbiological techniques

Strains and plasmids used are listed in Table 7. *R. meliloti* was grown at 30°C in Luria broth in the presence of appropriate antibiotics or in minimal V medium (Arcondégy et al. 1996) with 0.4% glucose and nitrogen sources as indicated. Plasmids were introduced into *R. meliloti* strains by conjugation. To make *R. meliloti* strains deficient for GSII, the *glnB*-i5 mutation from strain 2-37 was transduced using phage N3 (Martin and Long 1984).

glnB mutant construction

The point mutation replacing Tyr-51 with Phe was constructed by PCR with pTA2 as a template, the M13-20 primer and the mutagenic oligonucleotide 5'-CGGAGCTCTACCGCGGCG-CAGAAATTGTTCGTCG containing a naturally occurring SacI site (italicized) just upstream of the mutated codon [bold]. In-frame deletion of *glnB* was constructed by PCR with pTA2 as a template, the M13-20 primer and the mutagenic oligonucleotide 5'-CGGAGCTCTACCGCGGCG-CAGAAATTGTTCGTCG containing a naturally occurring SacI site (italicized) just upstream of the mutated codon [bold]. In-frame deletion of *glnB* was constructed by PCR with pTA2 as a template, the M13-20 primer and the mutagenic oligonucleotide 5'-CGGAGCTCTACCGCGGCG-CAGAAATTGTTCGTCG containing a naturally occurring SacI site (italicized) just upstream of the mutated codon [bold].

Materials and methods

Table 7. Strains and plasmids used

Strain or plasmid	Relevant characteristics	Source or reference
Rhizobium meliloti		
GM1078	RifR derivative of strain 2011	Batut et al. [1985]
GM103065	*glnB*-sacB, RifR, GmR, NmR	this work
GM103107	ΔglnBl0, RifR, GmR	this work
GM103109	*glnBP5*, RifR, GmR	this work
GM103143	*glnII*:Tn5 SmR, NmR, RifR	Arcondégy et al. [1996]
GM103146	GM103107 transductant, ΔglnBl0 *glnII*:Tn5, SmR, NmR, RifR	this work
GM103147	GM103109 transductant, *glnBP5* *glnII*:Tn5, SmR, NmR, RifR	this work
GM105995	*intrCI2*:Tn5, SmR, NmR, RifR	Arcondégy et al. [1996]
Escherichia coli		
RB9040	*glnD99*:Tn10, TcR	Bueno et al. [1985]
RB9060	ΔglnBl206	Bueno et al. [1985]
Plasmids		
pCHK57	TcR, *nisA*-lacZ fusion	Ditta et al. [1987]
pFB682	ApR, *glnA*-containing pBR322 derivative	De Bruijn et al. [1989]
pFB691::MudIIPR48	TcR, *glnII*-lacZ fusion	F. Maillet (pers. comm.)
pGM1020	TcR, *nodD1*-lacZ fusion	F. Maillet
pGM1031	TcR, *fixN*-lacZ fusion	F. Maillet
pGM10003	TcR, NmR, *nodD2*:Tn5-B20 pMH902 derivative	Batut et al. [1989]
pGM10004	TcR, NmR, *nodD3*:Tn5-B20 pMH903 derivative	De Bruijn et al. [1988]
pGM10005	TcR, NmR, *syrM*:Tn5-B20 pMH904 derivative	Batut et al. [1989]
pFB279	ApR, NmR, sacB-neo cassette	F. Maillet
pKS4	TcR, *fixX*-lacZ fusion	F. Maillet
pMH9023	TcR, *nodD2*-containing pRK290 derivative	Batut et al. [1989]
pMH909	TcR, *nodD3*-containing pWB5A derivative	De Bruijn et al. [1988]
pMH904	TcR, *syrM*-containing pWB5A derivative	De Bruijn et al. [1988]
pPH11	SmR, GmR, MobR IncP	F. Maillet
pRK2073	SpR, TpR, TraR, MobR	F. Maillet
pRM57	TcR, *nodC*-lacZ fusion	F. Maillet
pTA2	ApR, *EcoRI*-HindIII fragment of pFB682 in pKS	Arcondégy et al. [1996]
pTA2-4F	Exo III deletion of pTA2	this work
pTA3	ApR, *PvuII*-HindIII fragment of pFB682 in pKS	Arcondégy et al. [1996]
pTA5	ApR, *EcoRI*-EcoRV fragment of pTA2 in pKS	Arcondégy et al. [1996]
pTA8	ApR, pUC18–Not deleted of SacI, KpnI, and EcoRI sites	this work
pTA9	ApR, HindIII-BamHI fragment of pTA3 in pTA8	this work
pTA13	ApR, sacB cassette inserted into SacI site of pTA9	this work
pTA14	TcR, NotI fragment of pTA13 in pLAFR3	this work
pTA20	ApR, pTA9 with *glnBP5*	this work
pTA21	ApR, pTA9 with ΔglnBl0	this work
pTA25	TcR, HindIII-BamHI fragment of pTA20 in pLAFR3	this work
pTA26	TcR, HindIII-BamHI fragment of pTA21 in pLAFR3	this work
pTA6	TcR, HindIII-BamHI fragment of pTA21 in pLAFR3	this work
pTA32	TcR, EcoRI-BamHI fragment of pTA5 in pLAFR3	this work
pTA33	TcR, EcoRI-BamHI fragment of pTA5 in pLAFR3	this work
pUC18-Not	ApR	Herrero et al. [1990]
pXLD18	TcR, *hemA*-lacZ	Leong et al. [1985]
Arcondéguy et al.

pLAFR3 vector, which generated pTA25 and pTA26, respectively.

glnB mutations were recombined into the R. meliloti genome using a sucrose-sensitive strain, GMI3063, carrying a sacB-neo cassette in the glnB gene, which was constructed as follows. The sacB-neo cassette was excised with BamHI from pPB279 (Blomfield et al. 1991), made blunt-end with T4 DNA polymerase, cloned into the unique SacI site of pTA9, generating pTA13. The 7.7-kb NotI insert from pTA13 was made blunt-end and recloned into the pLAFR3 EcoRI site. The resulting plasmid pTA14 was mobilized into R. meliloti by triparental conjugation using the helper plasmid pRK2073. Recombination of the sacB-neo cassette into the chromosomal copy of glnB was selected for by chasing pTA14 with the incompatible plasmid pH1JI in the presence of gentamycin (50 μg/ml), rifampicin (200 μg/ml), and neomycin (100 μg/ml). The resulting sucrose-sensitive strain contained the sacB-neo cassette in glnB as confirmed by Southern blot analysis.

The mutant plasmids pTA25 and pTA26 were mobilized into R. meliloti GMI3063. Recombination of the relevant mutations into the chromosomal copy of glnB was selected for by chasing with the incompatible plasmid pH1JI in the presence of gentamycin (50 μg/ml), rifampicin (200 μg/ml), and neomycin (100 μg/ml). The resulting sucrose-sensitive strain contained the sacB-neo cassette in glnB as confirmed by Southern blot analysis.

Western blot analysis

Protein extracts from R. meliloti (5 μg) were loaded onto a 15% SDS-polyacrylamide gel. After electrophoresis the gel was blotted onto HybondC extra membrane (Amersham), probed with anti-Pn antiserum (1/5000), a kind gift of Dr. M. de Zamaroczy, antiserum 1, de Zamaroczy et al. 1996), and detected using the ECL system (Amersham).

For protein quantitation, cells were harvested, resuspended in 20 mM Tris-Cl (pH 7.2), 0.1 mM DTT, and 6 μg guanidinium chloride, and lysed for 3 min at 90°C. After centrifugation for 2 min at 6000g, the supernatant was assayed for protein using the Bio-Rad assay system.

GS assays

GS activity was measured using the γ-glutamyl transferase (γGT) assay. Cell suspensions (10 ml) were brought to 0.25 mg/ml of hexadecyltrimethylammonium bromide (Fluka), chilled on ice, harvested in the cold, washed once with 0.1% KCl, and resuspended in 0.5 ml 0.1% KCl, and γGT activity was measured at isoactivity pH 7.0 as described in Arcondéguy et al. (1996). The average GSI adenylylation state was estimated as: \(\bar{n} = 12 - 12b/a \), where \(a \) is the total transferase activity in the presence of Mn\(^{2+} \) (corresponding to both unadenylylated and adenylylated forms), and \(b \) is the transferase activity in the presence of added 60 mM Mg\(^{2+} \) (reflecting unadenylylated GSI). To determine γGT-specific activity we used \(c = 0.532A_{\text{abs}}/\mu \text{mole for glutamyl-hydroxamate.} \)

\(P_{\text{H}} \) overexpression and uridylylation

The R. meliloti Pn and Pn Y51F proteins were overexpressed in E. coli containing plasmids pTA2-4F and pTAJ3, respectively, and grown in Luria broth in the presence of 400 μM IPTG. Cultures (25 ml) were harvested, resuspended in 1 ml of 50 mM 2-methylimidazole-Cl (pH 7.6), containing 200 mM KCl and 0.1 mM MnCl\(_2\). Cells were sonicated and overexpression of Pn was verified on a 15% SDS-polyacrylamide gel. Uridylylation assays were performed at 28°C with 25 μg protein in the presence of 10 mM

Figure 9. Construction of glnB mutants. (A) Map of the glnB locus indicating plasmids used. Polylinker sites are italicized. Abbreviations: (B) BamHI, (E) EcoRI, (H) HindIII, (N) NcoI, (Pv) PvuII, (S) SacI, (V) EcoRV. (B) Schematic view of the construction of the glnBP5 mutant GMI3109. (1) The glnBP5 mutant plasmid pTA25 was conjugated into the sucrose-sensitive R. meliloti strain GMI3063. 2) Double recombination events were selected for by chasing pTA25 with the incompatible plasmid pH1JI while selecting for sucrose resistance [loss of the sacB-neo cassette].

1204 GENES & DEVELOPMENT
buffer, and samples were heated for 3 min at 90°C and loaded. The reaction was stopped after 15 min by the addition of SDS sample buffer, and samples were heated for 3 min at 90°C and loaded. The gel was vacuum dried and autoradiographed.

Plant assays

Seeds of Medicago sativa cv. Europe were surface sterilized, germinated, inoculated [5 x 10^5 bacteria per tube], and grown in test tubes on nitrogen-free agar slants. Nitrogenase activity was assayed by the acetylene reduction technique (Turner and Gibson 1980) on three-week-old plants. Ethylene produced was assayed 2 hr after addition of 10% acetylene in the atmosphere. Bacteria were reisolated from crushed nodules as already described [Faucher et al. 1988].

Incorporation of 15N-enriched dinitrogen into plant tissues was measured on 3-week-old plants as follows. Plants were exposed for 2 hr to 15N2-labeled air [approximate atom % 15N: 10%]. The exact atom % 15N in the atmosphere was determined using mass spectrometry. Batches of four plants were harvested, and shoots, roots, and nodules were rapidly excised, then dried for two days at 70°C. Dry weights were measured on a Sartorius M500P microscale. Shoot fractions were milled [MM2 mixer mill, Retsch GmbH, Germany] and dried again for 24 hr at 70°C. Total N and 15N contents were measured on a Roboprep CN analyzer [Europa Scientific] followed by mass spectrometry [Tracermass, Europa Scientific], and N fluxes were calculated as described previously [Clarkson et al. 1996].

Histology

Light microscopy was performed either on whole plants or on 80 µm-thick sections. Hair deformations, infection, and early nodulation steps were studied on whole plants inoculated with wild-type or mutant strains carrying the hemA-lacZ reporter plasmid pXLDG4 [Leong et al. 1985]. β-Galactosidase was detected as described in Boivin et al. [1990] using X-Gal as a substrate. Histochemical staining of starch was performed according to Ardourel et al. [1994]. Histology of mature nodules was studied on 80-µm sections of nodules collected from plants inoculated with the reporter, grown on 3-week-old plants as follows. Plants were exposed for 2 hr to 15N2-labeled air (approximate atom % 15N: 10%). The exact atom % 15N in the atmosphere was determined using mass spectrometry. Batches of four plants were harvested, and shoots, roots, and nodules were rapidly excised, then dried for two days at 70°C. Dry weights were measured on a Sartorius M500P microscale. Shoot fractions were milled [MM2 mixer mill, Retsch GmbH, Germany] and dried again for 24 hr at 70°C. Total N and 15N contents were measured on a Roboprep CN analyzer [Europa Scientific] followed by mass spectrometry [Tracermass, Europa Scientific], and N fluxes were calculated as described previously [Clarkson et al. 1996].

Acknowledgments

We thank Marie-Christine Auriac for technical assistance with electron microscopy, Frans de Brujin and Fabienne Mailliet for plasmids and strains, Miklos de Zamaroczy for anti-P45 antibody, Julie Cullimore and Jean Dénaire for constructive criticism of the manuscript, and Roberto Drez and Wally van Heeswijk for stimulating discussions. The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Adler, S., D. Purich, and E. Stadman. 1975. Cascade control of E. coli glutamine synthetase. J. Biol. Chem. 250: 6264–6272.

Arcondégy, T., J. Huez, J. Fourment, and D. Kahn. 1996. Synthetic nitrogen fixation does not require adenylylation of glutamine synthetase I in Rhizobium meliloti. FEMS Microbiol. Lett. 145: 33–40.

Ardourel, M., N. Demont, F. Debelle, F. Mailllet, F. de Billy, J.C. Promé, J. Dénaire, and G. Truchet. 1994. Rhizobium meliloti lipo-oligosaccharide nodulation factors: Different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6: 1357–1374.

Ardourel, M., G. Lortet, F. Mailllet, P. Roche, G. Truchet, J.C. Promé, and C. Rosenberg. 1995. In Rhizobium meliloti, the operon associated with the nod box n5 comprises nodL, noeA and noeB, three host-range genes specifically required for the nodulation of particular Medicago species. Mol. Microbiol. 17: 687–699.

Atkinson, M.R., E.S. Kamberov, R.L. Weiss, and A.J. Nina. 1994. Reversible uridylylation of the E. coli P45 signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator 1 [NRI or NtrC]. J. Biol. Chem. 269: 28288–28293.

Batut, J., B. Terzaghi, M. Ghérardi, M. Huguet, E. Terzaghi, A.M. Garnerone, P. Boistard, and T. Huguet. 1985. Localization of a symbiotic fix region on Rhizobium meliloti pSym megaplasmid more than 200 kilobases from the nod-nif region. Mol. & Gen. Genet. 199: 232–239.

Batut, J., M.L. Davares-Mingot, M. David, J. Jacobs, A.M. Garnerone, and D. Kahn. 1989. fzxK, a gene homologous with far and cap from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J. 8: 1279–1286.

Blomfield, I., V. Vaughn, R.F. Rest, and B.I. Eisenstein. 1991. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol. Microbiol. 5: 1447–1457.

Boivin, C., S. Camut, C.A. Malpica, G. Truchet, and C. Rosenberg. 1990. Rhizobium meliloti N genes encoding catalolism of trigonelline are induced under symbiotic conditions. Plant Cell 2: 1157–1170.

Bravo, A., B. Becerril, and J. Mora. 1988. Introduction of the Escherichia coli glnA gene into Rhizobium phaseoli: Effect on nitrogen fixation. J. Bacteriol. 170: 985–988.

Buono, R., G. Pahel, and B. Magasanik. 1985. Role of glnB and glnD gene products in regulation of the glnAlG operon of Escherichia coli. J. Bacteriol. 164: 816–822.

Carlson, R.W., N.P. Price, and G. Stacey. 1995. The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol. Plant-Microbe Interact. 7: 684–695.

Chiurazzi, M. and M. Iaccarino. 1990. Transcriptional analysis of the glnA-glnB operon from Rhizobium leguminosarum biovar viciae. Mol. Microbiol. 4: 1727–1735.

Clarkson, D.T. 1985. Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 36: 77–115.

Clarkson, D.T., A. Gogon, L.R. Saker, P.K. Wiersma, J.V. Purves, P. Tillard, G.M. Arnold, A.J.M. Paans, W. Vaalburg, and I. Stalen. 1996. Nitrate and ammonium influxes in soybean [Glycine max] roots: Direct comparison of 15N and 15N tracer. Plant Cell Environ. 19: 859–868.

David, M., M.L. Davares, J. Batut, A. Dedieu, O. Domergue, J. Ghai, C. Hertig, P. Boistard, and D. Kahn. 1988. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54: 671–683.
Debruijn, F., C. Rosenberg, J. Vasse, F. Maillot, E. Martinez, J. Dénaire, and G. Truchet. 1986. Assignment of symbiotic developmental phenotypes to common and specific nodulation [nod] genetic loci of Rhizobium meliloti. J. Bacteriol. 168: 1075–1086.

De Bruijn, F., S. Rossbach, M. Schneider, P. Ratet, S. Messmer, W. Szeto, F. Ausubel, and J. Schell. 1989. Rhizobium meliloti has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J. Bacteriol. 171: 1673–1682.

Demont, N., M. Arslanlou, F. Maillot, D. Promé, M. Ferro, J.C. Promé, and J. Dénaire. 1994. The Rhizobium meliloti regulatory nodD3 and synM genes control the synthesis of a particular class of nodulation factors N-acylated by [ω-1]-hydroxylated fatty acids. EMBO J. 9: 2139–2149.

Dénarié, J., F. Debellé, and J.C. Promé. 1996. Rhizobium lipo-chito oligosaccharides nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65: 503–535.

De Zamaroczy, M., A. Paquelin, G. Peltre, K. Forchhammer, and Faucher, C., F. Maillet, J. Vasse, C. Rosenberg, A.A. van Brussel, Ginsburg, A. and E.R. Stadtman. 1973. Regulation of glutamine metabolism. Fed. Proc. 32: 2195–2202.

Dusha, I., A. Baškiv, A. Kondorosi, F. de Bruijn, and J. Schell. 1989. The Rhizobium meliloti early nodulation genes (nod-ABC) are nitrogen-regulated: Isolation of a strain with efficient nodulation in the presence of ammonium. Mol. Gen. Genet. 219: 89–96.

Dusha, I. and A. Kondorosi. 1993. Genes at different regulatory levels are required for the ammonia control of nodulation in Rhizobium meliloti. Mol. & Gen. Genet. 240: 435–444.

Faucher, C., F. Maillot, J. Vasse, C. Rosenberg, A.A. van Brussel, G. Truchet, and J. Dénaire. 1988. Rhizobium meliloti host range nodH1 gene determines production of an alfalfa-specific extracellular signal. J. Bacteriol. 170: 5489–5499.

Ginsburg, A. and E.R. Stadtmann. 1973. Regulation of glutamine synthetase in Escherichia coli. In The enzymes of glutamine metabolism (ed. S. Prusiner and E.R. Stadtmann), pp. 9–44. Academic Press, New York, NY.

Herrero, M., V. de Lorenzo, and K.N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172: 6557–6567.

Hirsch, A.M., K.J. Wilson, J.D.G. Jones, M. Bang, V.V. Walker, and F.M. Ausubel. 1984. Rhizobium meliloti nodulation genes allow Agrobacterium tumefaciens and Escherichia coli to form pseudonodes on alfalfa. J. Bacteriol. 158: 1133–1143.

Hirschi, P.R. and J.E. Beringer. 1984. A physical map of pPH111 and pJB4. Plasmid 12: 139–141.

Honma, M.A., M. Asomaning, and F.M. Ausubel. 1990. Rhizobium meliloti nodD genes mediate host-specific activation of nodABC. J. Bacteriol. 172: 901–911.

Kamberov, E.S., M.R. Atkinson, and A.J. Ninfa. 1995. The Escherichia coli Pf signal transduction protein is activated upon binding 2-ketoglutарат and ATP. J. Biol. Chem. 270: 17797–17807.

Keener, J. and S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NtrB and NtrC of enteric bacteria: Roles of the conserved amino-terminal domain of NtrC. Proc. Natl. Acad. Sci. 85: 4976–4980.

Leong, S.A., G.S. Ditta, and D.R. Helinski. 1982. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for 8-aminolevulinic acid synthetase from Rhizobium meliloti. J. Biol. Chem. 257: 8724–8730.

Leong, S.A., P.H. Williams, and G.S. Ditta. 1985. Analysis of the 5′ regulatory region of the gene for 8-aminolevulinic acid synthetase of Rhizobium meliloti. Nucleic Acids Res. 13: 5965–5976.

Marini, A.M., S. Vissers, A. Ureestarazu, and B. André. 1994. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13: 3456–3463.

Martin, M.O. and S.R. Long. 1984. Generalized transduction in Rhizobium meliloti. J. Bacteriol. 159: 125–129.

Mendoza, A., A. Leija, E. Martinez-Romero, G. Hernandez, and J. Mora. 1995. The enhancement of ammonium assimilation in Rhizobium etli prevents nodulation of Phaseolus vulgaris. Mol. Plant Microbe Interact. 8: 584–592.

Merrick, M.J. and R.A. Edwards. 1995. Nitrogen control in bacteria. Microbiol. Rev. 59: 604–622.

Mulligan, J.T. and S.R. Long. 1985. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc. Natl. Acad. Sci. 82: 6609–6613.

Niehaus, K., D. Kapp, and A. Pühler. 1993. Plant defense and delayed infection of alfalfa pseudonodes induced by an exopolysaccharide (EPSI) deficient Rhizobium meliloti mutant. Planta 190: 415–425.

Ninnemann, O., J.C. Jaunsiaux, and W.B. Frommer. 1994. Identification of a high affinity NH₄⁺ transporter from plants. EMBO J. 13: 3464–3471.

Peters, N.K., J.W. Frost, and S.R. Long. 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980.

Shatters, R., Y. Liu, and M.L. Kahn. 1993. Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti. J. Biol. Chem. 268: 469–475.

Stadtmann, E.R., E. Mura, P.B. Chock, and S.G. Rhee. 1980. The interconvertible enzyme cascade that regulates glutamine synthetase activity. In Glutamine: Metabolism, enzymology and regulation (ed. J. Mora and R. Palacios), pp. 41–59. Academic Press, New York, NY.

Szego, W.W., B.T. Nixon, C.W. Ronson, and F.M. Ausubel. 1987. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J. Bacteriol. 169: 1423–1432.

Turner, G.L. and A.H. Gibson. 1980. Measurement of nitrogen fixation by indirect means. In Methods for evaluating biological nitrogen fixation (ed. F.J. Bergersen), pp. 111–138. Wiley, Chichester, UK.

Tyerman, S.D., L.F. Whitehead, and D.A. Day. 1995. A channel-like transporter for NH₄⁺ on the symbiotic interface of N₂ fixing plants. Nature 378: 629–632.

Van Heeswijk, W.C., S. Hoving, D. Molenaar, B. Stegeman, D. Kapp, and A. Pfihler. 1993. Plant defense and delayed infection of alfalfa pseudonodes induced by an exopolysaccharide (EPSI) deficient Rhizobium meliloti mutant. Planta 190: 415–425.

Vasse, J., F. de Billy, S. Camut, and G. Truchet. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol. 172: 4295–4306.

Wray, L.V., M.R. Atkinson, and S.H. Fisher. 1994. The nitrogen regulated Bacillus subtilis ngrAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glaB-encoded P₈ protein. J. Bacteriol. 176: 108–114.
The Rhizobium meliloti PII protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development.

T Arcondéguy, I Huez, P Tillard, et al.

Genes Dev. 1997, 11:
Access the most recent version at doi:10.1101/gad.11.9.1194

References
This article cites 47 articles, 25 of which can be accessed free at: http://genesdev.cshlp.org/content/11/9/1194.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.