The evolution of the metazoan Toll receptor family and its expression during protostome development

Andrea Orús-Alcalde
University of Bergen

Tsai-Ming Lu
University of Bergen

Andreas Hejnol (✉ andreas.hejnol@uib.no)
University of Bergen

Research Article

Keywords: Toll receptor, Toll-like receptor, innate immunity, development, metazoan evolution, gene
duplication

DOI: https://doi.org/10.21203/rs.3.rs-199283/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Toll-like receptors (TLRs) play a crucial role in immunity and development. They contain leucine-rich repeat domains, one transmembrane domain, and one Toll/IL-1 receptor domain. TLRs have been classified into V-type/scc and P-type/mcc TLRs, based on differences in the leucine-rich repeat domain region. Although TLRs are widespread in animals, detailed phylogenetic studies of this gene family are lacking. Here we aim to uncover TLR evolution by conducting a survey and a phylogenetic analysis in species across Bilateria. To discriminate between their role in development and immunity we furthermore analyzed stage-specific transcriptomes of the ecdysozoans *Priapulus caudatus* and *Hypsibius exemplaris*, and the spiralians *Crassostrea gigas* and *Terebratalia transversa*.

Results: We detected a low number of TLRs in ecdysozoan species, and multiple independent radiations within the Spiralia. V-type/scc and P-type/mcc type-receptors are present in cnidarians, protostomes and deuterostomes, and therefore they emerged early in TLR evolution, followed by a loss in xenacoelomorphs. Our phylogenetic analysis shows that TLRs cluster into three major clades: clade α is present in cnidarians, ecdysozoans, and spiralians; clade β in deuterostomes, ecdysozoans, and spiralians; and clade γ is only found in spiralians. Our stage-specific transcriptome and *in situ* hybridization analyses show that TLRs are expressed during development in all species analyzed, which indicates a broad role of TLRs during animal development.

Conclusions: Our findings suggest that the bilaterian TLRs likely emerged by duplication from a single TLR encoding gene (*proto-TLR*) present in the last common cnidarian-bilaterian ancestor. This *proto-TLR* gene duplicated before the split of protostomes and deuterostomes; a second duplication occurred in the lineage to the Trochozoa. While all three clades further radiated in several spiralian lineages, specific TLRs clades have been presumably lost in others. Furthermore, the expression of the majority of these genes during protostome ontogeny suggests their involvement in immunity and development.

Background

Toll-like receptors (TLRs) are involved in immunity and development in metazoans [1–7]. The first described Tlr was the *Drosophila* gene *Toll*, which plays a role during early embryonic development [8, 9] and in immunity [10]. The human toll receptor TLR4 was the first TLR discovered in mammals [11]. Since then, TLRs have been found in most planulozoans (Cnidaria + Bilateria) [12–14]. Both in vertebrates and invertebrates, these receptors recognize pathogens and activate the Toll pathway, which induces the expression of downstream immune genes [15–17]. In *Drosophila*, TLRs are mainly activated by gram-positive bacteria, fungi, and viruses, promoting the synthesis of antimicrobial peptides (AMPs) [4, 10, 17–21]. In vertebrates, TLRs are involved in innate immunity and in the activation and regulation of adaptive immunity [11, 22–26]. TLRs are also involved in the immunity of other animals such as cnidarians [27], mollusks [28–31], annelids [32, 33], crustaceans [34] and echinoderms [35]. The developmental roles of TLRs in *Drosophila* [reviewed in 2] comprise the establishment of the dorso-ventral axis [8, 9], segmentation [36], muscle and neuronal development [37, 38], wing formation [39, 40] and heart
formation [41]. TLRs also play a role in cnidarian development [27]. Moreover, in spiralians, TLRs are expressed during the development of mollusks [31] and annelids [32], but no further analyses have been conducted. TLRs are also involved in nervous system development in mice [42–45], although the ligands that activate them during this process remain unknown [2].

TLRs are proteins characterized by an extracellular region containing one or more leucine-rich repeat (LRR) domains, one type-I transmembrane domain and one intracellular Toll/IL-1 receptor (TIR) domain (Figure 1) [46, 47]. The extracellular LRR domains are the regions that recognize the ligand [48, 49]. Each LRR domain is constituted by 22-26 amino acids, in which multiple leucine residues are present [46]. Some LRR domains contain cysteine residues in the N-terminal (LRRNT) or the C-terminal (LRRCT) part of the LRR domain [6, 47, 50]. However, LRR domains are also found in a large number of other proteins [51], for example in the immune NOD receptors [52] and in proteins involved in developmental processes (e.g. Slit, Capricious, Tartan) [53, 54]. The TIR domain is involved in signal transduction [47] and is also present in other proteins, e.g. in immune proteins in plants [55, 56], in members of the interleukin-I receptor family (IL-1) [47, 57] and in adaptors of the Toll pathway (e.g. MyD88) [58–60]. Although the TIR domain is the most characteristic domain of the TLRs, at least one LRR domain must be present to categorize a receptor as TLR (Figure 1) [13].

Based on the structure of the LRR domains, TLRs have been previously classified as vertebrate-type or single cysteine cluster (V-type/scc), and protostome-type or multiple cysteine cluster (P-type/mcc) (Figure 1) [7, 13, 61, 62]. V-type/scc TLRs are characterized by having only one LRRCT domain, which is located next to the cellular membrane. P-type/mcc TLRs contain at least two LRRCT domains and, commonly, an LRRNT [7, 13]. Traditionally, it has been assumed that all deuterostome TLRs belong to the V-type/scc [62], and because Drosophila melanogaster TLRs (except for Toll9) and the Caenorhabditis elegans TLR belong to the P-type/mcc, they have been suggested to be protostome specific [62]. However, P-type TLR are also present in invertebrate deuterostomes and V-type TLRs in protostomes [13, 14, 63, 64]. Therefore, in agreement with Davidson et al., 2008 [63]; and Halanych and Kocot, 2014 [64], we affirm that the V- P-type nomenclature is problematic and should be avoided in favor of the mcc/scc nomenclature.

Several authors consider that TLRs originated in the lineage to the Planulzoa by the fusion of a gene with a TIR domain and a gene containing only LRR domains [7, 14, 65]. Such proteins, named TLR-like proteins (Figure 1), are involved in immunity [7, 12–14, 66–71] – e.g. in Hydra, association of LRR-only and TIR-only proteins activates the Toll pathway [72, 73].

The TLR complement has been previously surveyed in vertebrates [11, 50, 74–76] and in a few invertebrates, especially in arthropods [8, 14, 18, 77, 78]. Humans have 10 TLRs [11, 50], D. melanogaster has 9 [8, 18] and the nematode C. elegans has only one [79]. Recent genome and transcriptome sequencing of more organisms has revealed that TLRs are widespread across the metazoan tree (summary in Figure 2). Outside bilaterians, TLRs are present in anthozoan cnidarians (e.g. Nematostella [27], Acropora [69], Orbicella [80]), but not in hydrozoans (e.g. Hydra [72], Clytia [81]). Furthermore, TLRs
have not been found in ctenophores [82, 83], placozoans [70] and poriferans [66, 71]. Within bilaterians, previous studies have shown that the number of TLRs in spiralian is highly variable between species [63, 64, 84–87], suggesting that TLR genes underwent several independent radiations [13, 63, 86, 88]. However, the surveyed platyhelminth and rotifer species lack TLRs [67, 68, 89]. In ecdysozoans, besides arthropods and nematodes, TLRs are also present in onychophorans, tardigrades, nematomorphs and priapulids [90]. In invertebrate deuterostomes, the number of TLRs in echinoderms and amphioxus is expanded [62, 91, 92], which is in contrast to the limited number of TLRs in tunicates [93, 94]. Although the TLR sequences of many metazoans have been explored [7, 12–14], more protostome species must be surveyed to gain a better picture of the TLR evolution (Figure 2).

Although the phylogenetic relationships of TLRs have been previously analyzed, these were mainly focused on vertebrate TLR evolution [65, 96] or including only few protostome species [13, 63, 86]. So far, the results are contradictory and are not sufficient to comprehend the detailed evolution of TLRs. For instance, Davidson et al., 2008 [63] suggested that TLRs are divided into three major clades, although the relationships between them remained unresolved. Brennan and Gilmore, 2018 [13] suggested that TLRs cluster according to the TLR-type (P-type/mcc or V-type/scc) and Liu et al., 2020 [65] suggested that both TLR types would be widespread in invertebrates. Furthermore, Luo et al., 2018 [86] showed lineage-specific expansions of TLRs in some trochozoan groups (phoronids, nemerteans and brachiopods). Thus, phylogenetic analyses including TLRs of species representing the broad metazoan diversity are lacking. In this study, we aim to reconstruct the TLR evolution by searching for TLRs in under-represented metazoan clades and performing a phylogenetic analysis including TLRs of species from the four main metazoan clades (cnidarians, spiralian, ecdysozoans and deuterostomes). Moreover, we aim to reconstruct the early TLR function by analyzing their expression during the course of development in four protostome species.

Results

Our genome and transcriptomic surveys revealed a total of 198 TLRs in 25 species (Table 1, Figure 3). No TLRs were found in 20 species. Additionally, our analysis also revealed a large number of TLR-like proteins (TIR-only or LRR-only). However, only sequences containing a TIR domain, a transmembrane domain and, at least, one LRR domain were considered as criteria for TLRs.

TLRs are absent in the genomes and transcriptomes of xenacoelomorphs and in some spiralian

Our surveys revealed that TLRs are absent in the genomes and transcriptomes of all Xenacoelomorpha, Platyhelminthes, Cycliophora, Micrognathozoa and Gastrotricha species analyzed (Table 1). Furthermore, TLRs are also absent in the transcriptomes of all the rotifer species investigated, except for *E. senta* (Table 1, Figure 3). Moreover, although TLRs were present in the bryozoan *M. membranacea*, they were
not found in the transcriptome of the bryozoan *B. neritina*. However, although TLRs were not detected, TLR-like proteins were present in all these animal groups (data not shown).

Table 1. TLR genome/transcriptome survey results and classification of TLRs included in the phylogenetic analysis.
Species	TLRs	V-type / scc	P-type / mcc	NC	Reference	
Cnidaria						
Nematostella vectensis	1	0	1	0	L: [27]	
Acropora digitifera	4	1	3	0	L: [69]	
Acropora millepora	1	0	1	0	L: [69]	
Orcibella faveolata	1	0	1	0	L: [80]	
Xenacoelomorpha						
Xenoturbella profunda	0	0	0	0	G: Unpublished	
Hofstenia miamia	0	0	0	0	G: GCA004352715	
Praesagittifera naikaiensis	0	0	0	0	G: PRJDB7329	
Isodiametra pulchra	0	0	0	0	G: Unpublished	
Meara stichopi	0	0	0	0	G: Unpublished	
Convolutriloba macropyga	0	0	0	0	T: [97]	
Bryozoa						
SPIRALIA						
Membranipora membranacea	6	4	1	1	T: SRX1121923	
Bugula neritina	0	0	0	0	T: [98]	
Cycliophora						
Symbion pandora	0	0	0	0	T: [99]	
Annelida						
Galathowenia oculata	39	18	12	9	T: Unpublished	
Eisenia fetida	11	0	1	10	T: SRX3108745	
Helobdella robusta	4	1	3	0	G: [100]	
Phyllochaetopterus prolifica	3	1	0	2	L: [64]	
Mollusca						
Crassostrea gigas	12	10	2	0	G: [101]	
Octopus bimaculoides	9	1	6	2	G: [102]	
Animal Group	Species	Count	Abundance	Intact	Genus	Ref.
------------------------	--------------------------	-------	-----------	--------	-------	----------
Brachiopoda	Cyclina sinensis	2	1	1	0	L: [85]
	Leptochiton rugatus	1	0	0	1	L: [64]
	Biomphalaria glabrata	27	16	10	1	G: [84]/NCBI
Micrognathozoa						
	Limnogathia maerski	0	0	0	0	T: SRX1121929
Gastrotricha	Lepidodermella squamata	0	0	0	0	T: [104]
	Macrodasys sp	0	0	0	0	T: [105]
	Megadasys sp	0	0	0	0	T: [105]
	Diuronotus aspetos	0	0	0	0	T: SRX1121926
	Mesodasys laticaudatus	0	0	0	0	T: SRX872416
Nemertea						
	Lineus longissimus	10	7	2	1	T: [97]
	Lineus ruber	6	2	3	1	T: Unpublished
	Notospermus geniculatus	7	5	1	1	G: [86]
	Paranemertes peregrina	2	1	0	1	L: [64]
Phoronida						
	Phoronopsis harmeri	2	0	1	1	T: SRX1121914
	Phoronis australis	24	14	8	2	G: [86]
	Phoronis psammophila	3	1	1	1	L: [64]
	Phoronis vancouverensis	6	5	0	1	L: [64]
Platyhelminthes						
	Macrostomum lignano	0	0	0	0	G: [106]
	Echinococcus	0	0	0	0	G: [107]
multilocularis	0	0	0	0	G: [107]	
-------------------	---	---	---	---	-----------	
Hymenolepis microstoma	0	0	0	0	G: [107]	

Rotifera

Epiphanes senta	1	1	0	0	T: Unpublished
Rotaria tardigrada	0	0	0	0	T: [108]
Echinorhynchus gadi	0	0	0	0	T: SRX1121912
Macracanthorhynchus hirudinaceus	0	0	0	0	T: [105]

Priapulida

Ecdysozoa					
Priapulus caudatus	3	0	3	0	T: [97]
Halicryptus spinulosus	4	1	3	0	T: [97]

Tardigrada

Hypsibius exemplaris	1	0	1	0	G: [109]
Ramazzottius varieomatus	1	0	1	0	G: [110]

Onychophora

| **Peripatopsis capensis** | 1 | 0 | 0 | 1 | T: [111] |

Nematoda

Loa loa	1	0	1	0	G: [112]
Onchocerca volvulus	1	0	1	0	G: [113]
Caenorhabditis elegans	1	0	1	0 L: NCBI	

Loricifera

| **Armorloricus elegans** | 2 | 1 | 1 | 0 | T: SRX1120677 |

Arthropoda

Daphnia pulex	5	2	3	0	G: [114]
Drosophila melanogaster	9	1	8	0	L: NCBI
Ixodes scapularis	5	1	3	1	L: [115]

Deuterostomia

Tunicata					
Ciona intestinalis	2	1	1	0	L: [94]
The number of TLRs detected in members of Ecdysozoa is low when compared to Spiralia and Deuterostomia

The TLR survey of the ecdysozoan genomes and transcriptomes revealed only one TLR for the tardigrade, nematode, and onychophoran species analyzed (Table 1, Figure 3). Furthermore, we detected up to 4 different TLRs in priapulids, 2 in loriciferans, and 5 in arthropods.

Multiple TLRs are detected in trochozoan species

TLRs were found in the genomes/transcriptomes of all trochozoan species analyzed (Table 1, Figure 3). Our results reveal that, in general, multiple TLRs are present in highly variable numbers in trochozoan species. The number of TLRs is not reflected by the phylogeny, meaning that species belonging to a same clade do not have a more similar number of TLRs than species belonging to another clade. For instance, the annelids *G. oculata* and *H. robusta* have 39 and 4 TLRs, respectively, while the Phoronid *P. harmeri* has 2. Thus, in this case, the number of TLRs is more similar between an annelid and a phoronid than between two annelids. This is explained by the multiple duplications and losses that have independently occurred in the Toll receptor family during trochozoan evolution.

P-type/mcc and V-type/scc are not specific for any planulozoan clade
Previous studies suggest that V(ertebrate)-type/scc and P(rotostome)-type/mcc TLRs are restricted to vertebrates and protostomes, respectively [62]. However, our results show that both, P-type/mcc and V-type/scc type TLRs, are present in cnidarians, spiralians, ecdysozoans, and deuterostomes (Table 1; Supplementary Table 2). V-type/scc TLRs are the most abundant TLR type in the spiralian species analyzed. However, many spiralians also have several P-type/mcc TLRs. P-type/mcc TLRs are the predominant TLR type in the ecdysozoan species included in this analysis. For nematodes, tardigrades and onychophorans, which only have one TLR, this TLR was always classified as P-type/mcc.

Ecdysozoan species analyzed with more than one TLR have one or more P-type/mcc TLRs and only one V-type/scc. Although the vertebrate TLR complement seems to only contain V-type/scc TLRs [14, 65, 116, 117], P-type/mcc TLRs are also present in other deuterostomes, such as the tunicate C. intestinalis [94] and the echinoderm S. purpuratus [62] (Table 1, Supplementary Table 2). This suggests that P-type/mcc TLRs were lost in the lineage to the Craniata.

TLRs form three well-supported clades

Our phylogenetic analysis showed that TLRs group into three clades (Figure 4A), which we named clade α (89 TLRs), clade β (102 TLRs) and clade γ (79 TLRs). Although these three clades are well supported (>60), some of the internal nodes have low support values (<60). The phylogenetic analysis showed that clades β and γ are sister clades and together form the sister group to clade α. All three clades contain both P-type/mcc and V-type/scc TLRs, which makes it difficult to reconstruct whether P-type/mcc or V-type/scc show the ancestral state of TLRs. Furthermore, 2 deuterostome TLRs (from H. sapiens and C. intestinalis) and 11 spiralian TLRs (2 from species of mollusks and 9 from brachiopods) could not be assigned to any of the above clades. The 9 brachiopod TLRs form a clade with a high support value (>60), but do not group with either the mollusk or the deuterostome sequences. This TLR brachiopod clade is the sister clade to the three main clades (α, β and γ). For these sequences, the alignment showed brachiopod-specific deletions in the amino acid positions 150-220 that are not present in the TLRs belonging to the three main clades (Supplementary Figure 1). To investigate whether this insertion is causing the clustering of the TLRs into three clades, we performed a second phylogenetic analysis (Supplementary Figure 2) with the same parameters of the main analysis (Figure 4A) but excluding the 150-200 amino acid region. The second analysis (Supplementary Figure 2) is able to reconstruct clade α with high support value (>60). However, clade γ is nested within clade β and both of them have low support values (<60). In the second analysis (Supplementary Figure 2), as in the main analysis (Figure 4), the 9 brachiopod sequences cluster together and form the sister clade to the three main clades. However, in the analysis shown in Supplementary Figure 2, the mollusk and deuterostome sequences are included in the clade γ. In the main analysis (Figure 4A), no distinctive motifs were observed in the alignment that justify the exclusion of these sequences from the main clades.

Clade α includes TLRs from all cnidarian, spiralian and ecdysozoan species analyzed, except for the onychophoran TLR (Figure 4). Because all cnidarian TLRs cluster together, it is likely that only one TLR
was present in the last common ancestor of Cnidaria. Clade β is formed by TLRs belonging to deuterostomes, spiralians and three ecdysozoans (two arthropods and the onychophoran TLR) (Figure 4). This suggests that at least the ancestral TLR of Clade β/γ was already present in the last common ancestor of Nephrozoa (Protostomia + Deuterostomia). Furthermore, lineage-specific expansions of clade β TLRs are detected in spiralians and deuterostomes. Clade γ TLRs are present in all trochozoan groups except for the nemertean species analyzed (Figure 4). Clade γ contains TLRs that radiated independently in several lineages. Our alignment shows that 159/181 TLRs belonging to the clades β and γ contain an insertion of 6 amino acids in the positions 349-354 (Supplementary Figure 1). In Clade α, this insertion is only present in Pcau-TLRα1, the sister TLR to all the remaining TLRs belonging to this clade. To exclude that this insertion causes the clustering in three distinct clades, we performed a third phylogenetic analysis (Supplementary Figure 3), in which we applied the same parameters as in the main analysis shown in Figure 4A but eliminated the 6 amino acid insertion regions. In the third analysis (Supplementary Figure 3), the three clades could be reconstructed with good support values (>60). However, due to low support values (<60), the relationship between the clades could not be resolved. Moreover, the clustering of the TLRs into the three clades (α, β, γ) was maintained with respect to the main analysis (Supplementary Figure 3, Figure 4A), except for eight phoronid and one human sequences. In the main analysis (Figure 4A), the phoronid sequences cluster together within clade γ, with high support values (>60). This clade of phoronid TLRs is the sister clade to all remaining TLRs in clade γ. Nevertheless, in the third analysis (Supplementary Figure 3), these phoronid TLR sequences constitute a well-supported (>60) clade within clade β, but it is not the sister clade to the remaining TLRs in this clade. In the main analysis (Figure 4A), the human sequence is not included in any of the three main clades, but in the third analysis (Supplementary Figure 3) it does cluster in clade α.

TLRs are expressed during development in the ecdysozoans *P. caudatus* and *H. exemplaris* and in the spiralians *C. gigas* and *T. transversa*

In order to study the temporal expression of TLRs during ontogeny, we analyzed stage-specific transcriptomes of the priapulid *P. caudatus* [118], the tardigrade *H. exemplaris* [119], the mollusk *C. gigas* [101] and the brachiopod *T. transversa* [120]. All the analyses were performed using both RSEM [121] and kallisto [122] methods.

The expression of the only TLR present in *H. exemplaris* was analyzed in stage-specific transcriptomes of 19 stages (one biological replicate) (Figure 5A; Supplementary Table 3) [119]. Expression of TLRα was detected (TMM ≥ 0.15) in time windows during development (zygote, morula, gastrula, elongation, segmentation and differentiation).

Three TLRs were identified in *P. caudatus* transcriptomic survey (Table 1). The expression of these TLRs was analyzed in five embryonic stages (two biological replicates) (Supplementary Table 4) [118]. Our results indicate that all three TLRs found in the transcriptomic survey are expressed during embryonic development (TMM ≥ 0.15). Pca-TLRα1 and Pca-TLRα2 are expressed in all developmental stages.
analyzed, whereas \textit{Pca-TLRα3} is expressed only in the later embryonic stages (Figure 5B; Supplementary Table 4).

The expression of the 12 \textit{C. gigas} TLRs (Table 1) was analyzed in stage-specific transcriptomes of 19 stages (one biological replicate) (Supplementary Table 5) [101]. Our results show that at 11 of the 12 TLRs are expressed during development (Figure 5C; Supplementary Table 5). Some TLRs are expressed throughout development (\textit{Cgi-TLRα1, Cgi-TLRα4, Cgi-TLRβ4, Cgi-TLRδ1, Cgi-TLRδ2}), while others (\textit{Cgi-TLRα2, Cgi-TLRα3, Cgi-TLRβ1, Cgi-TLRβ2, Cgi-TLRγ1, Cgi-TLRγ2}) are only expressed at certain developmental stages. \textit{Cgi-TLRβ3} expression was not detected at any of the stages analyzed.

15 TLRs were found in our transcriptome survey of \textit{T. transversa} (Table 1). Expression of these TLRs was analyzed in stage-specific transcriptomes of 12 developmental stages (with two biological replicates) [120]. Our results suggest that at least 12 of the 15 TLRs are expressed at certain stages during \textit{T. transversa} development (Figure 5D; Supplementary Table 6). \textit{Ttr-TLRα2, Ttr-TLRα5, Ttr-TLRβ1, Ttr-TLRβ4, Ttr-TLRβ5, and Ttr-TLRδ} expression is detected in time windows during embryonic and larval stages. All these genes, except \textit{Ttr-TLRβ5}, are expressed in juveniles. For some genes (\textit{Ttr-TLRα4, Ttr-TLRβ2, Ttr-TLRβ3, and Ttr-TLRγ4}), expression was detected throughout development. Moreover, expression was not detected at the embryonic and larval stages analyzed for \textit{Ttr-TLRα1, Ttr-TLRγ1, Ttr-TLRγ2} and \textit{Ttr-TLRγ3}. Similarly, \textit{Ttr-TLRα3} expression was only detected in the competent larvae and in the juveniles.

Our analyses show that TLRs are expressed during the development of the spiralians \textit{T. transversa} and \textit{C. gigas} and the ecdysozoans \textit{P. caudatus} and \textit{H. exemplaris}, which suggests that these genes could be involved both in development and immunity during ontogeny. Furthermore, these analyses show that the TLRs expressed during development are not restricted to one TLR clade in the tree shown above, but they are found in all three main clades (e.g. \textit{Ttr-TLRα4, Ttr-TLRβ3, Cgi-TLRγ1}).

Furthermore, in order to validate our stage specific transcriptome results, we performed whole mount \textit{in situ} hybridization (WMISH) for the \textit{T. transversa} mRNAs of \textit{TLRα2, TLRα3, TLRα4, TLRα5, TLRβ3, TLRγ4} and \textit{TLRδ} (Figure 6). Consistently with our stage specific transcriptomic analysis, our WMISH results show that \textit{Ttr-TLRα2} is not expressed at the late gastrula stage (Figure 6A), but the expression is present in the mesoderm and in two pairs of lateral domains in early larvae (Figure 6B). This gene is not expressed in late larvae (Figure 6C). In agreement with our stage specific transcriptomic analysis, we did not detect \textit{Ttr-TLRα3} either in late gastrulae or in the two larval stages analyzed (Figure 6D-F). \textit{Ttr-TLRα4} has a dynamic expression pattern during \textit{T. transversa} development. This gene is expressed in the mesoderm at the early gastrula stage, but, consistent with the stage specific transcriptome analysis, it is not detected in late gastrulae (Figure 6G-H). In early larvae, \textit{Ttr-TLRα4} is expressed in the inner lobe epithelium and in a medial V-shaped mesodermal domain (Figure 6I). In late larvae, this gene is expressed in the brain and in the pedicle (Figure 6J). Consistently with the stage specific transcriptomic analyses, mRNA of \textit{Ttr-TLRα5} is detected in a uniform salt and pepper distribution at the late gastrula stage and the two larval stages for which WMISH was performed (Figure 6K-M). Congruently with the
stage specific transcriptomic analyses, \(Ttr-TLR\beta3 \) is expressed in the anterior region of the animal in late gastrulae (Figure 6N). However, although \(Ttr-TLR\beta3 \) expression was detected in early larvae in the stage specific transcriptome analysis, expression was not detected by WMISH (Figure 6M). Furthermore, \(Ttr-TLR\beta3 \) is not expressed in the late larvae (Figure 6P). The expression of \(Ttr-TLR\gamma4 \) and \(Ttr-TLR\delta \) have a uniformly salt and pepper distribution at the late gastrula and early larvae stages (Figure 6 Q-R and T-U). This salt and pepper transcript distribution is similar in late larvae, although it is absent from the pedicle lobes (Figure 6 S and V). These results conflict with the stage specific transcriptome analyses, as, in this analysis, neither \(Ttr-TLR\gamma4 \) expression was detected in the early larvae nor \(Ttr-TLR\delta \) in any of the two larval stages tested. Differences between the results of both analyses could be explained by differences and variation of the developmental stages of the specimens used for the stage-specific transcriptome and the WMISH.

Discussion

The evolution of the TLR family is characterized by losses, expansion and conservation

As shown in previous studies, TLRs are absent in the Platyhelminthes \(S. mediterranea \) and \(S. mansoni \) [89]. Here, we show that this receptor family is also absent from the genomes of three other platyhelminth species (\(M. lignano \), \(E. multilocularis \) and \(H. microstoma \)). Thus, TLRs are absent in species belonging to four different platyhelminth lineages (Macrostomorpha – \(M. lignano \); Cestoda – \(E. multilocularis \) and \(H. microstoma \); Tricladida – \(S. mediterranea \); and Digenea – \(S. mansoni \)) suggesting that TLRs could have been lost during early platyhelminth evolution. This hypothesis is reinforced by the lack of TLRs in \(M. lignano \), member of Macrostomorpha, an early-diverging platyhelminth lineage [104]. In rotifers, even though TLRs could not be detected in \(A. vaga \) [67], \(E. gadi \), \(R. tardigrada \) and \(M. hirudinaceus \), our transcriptome survey revealed one TLR in the monogonont rotifer \(E. senta \). This suggests that TLRs would have been independently lost in some rotifer lineages. So far, we did not detect TLRs in the genomes and transcriptomes of the species belonging to Xenacoelomorpha, Cycliophora, Micrognathozoa, and Gastrotricha, suggesting that TLRs were lost in these lineages. How the immune response is achieved in animals that lack TLRs is unknown, but it could be triggered by other components of the Toll pathway e.g. TLR-like molecules [14, 67–69], similar to what has been shown for LRR-only TLR-like and TIR-only TLR-like in \(Hydra \) [72, 73].

Another outcome of this study is the remarkable expansion that the TLRs family exhibits in trochozoans. Evolution of this gene family in trochozoans is characterized by multiple duplications and losses, having as a consequence a very variable number of the TLRs complement in trochozoans. Moreover, in our phylogenetic analysis, TLRs of the same species and clades mostly group togetherFigure 4A). The same has been shown also in previous phylogenetic analyses of TLRs (Figure 6) [13, 63, 86].

In contrast to trochozoans, our results show that the number of TLR in ecdysozoans has been relatively conserved during evolution. At least, few TLR gene duplications have occurred in this lineage, including recent independent duplications in arthropods, priapulids or loriciferans.
The evolution of the three clades (α, β, γ) of TLRs

There are very few studies assessing the phylogenetic relationships of TLRs within the main metazoan clades (Figure 7) [63, 86]. The study of Davidson et al., 2008 [63] recovered three clades of TLRs. However, the relationships between the clades remain unclear. Furthermore, the composition of the clades slightly differs in both analyses (e.g. while our study shows that deuterostome TLRs belong to one clade – clade β – their results suggest that deuterostome TLRs are present in two clades – clades A and B) [63]. However, their phylogenetic study is limited by the number of sequences and species included. Similar to Luo and Zheng, 2000 [124]; and Luna et al., 2002 [125], our results suggest that ecdysozoan and deuterostome TLRs evolved independently from a common TLR precursor.

Previous studies suggest that TLRs originated likely by the fusion of an LRR-only and a TIR-only TLR genes in the lineage to Planulozoa (Cnidaria + Bilateria) [7, 14, 65]. Here, we hypothesize that the planulozoan stem species had only one TLR (Figure 8), the proto-TLR. This is supported by the fact that all cnidarian TLRs included in our analysis cluster in a monophyletic group within clade α, which is consistent with the results of Brennan and Gilmore, 2018 [13]. During cnidarian evolution, this gene was lost in some lineages, e.g. Hydra [72], Clytia [81], and multiplied in others, e.g. A. digitifera [69].

After the split into the cnidarian and bilaterian lineages, the proto-TLR was duplicated in the lineage to the Bilateria, giving rise to a clade α type TLR gene (TLR-Cα) and the proto-TLR gene of clades β and γ (TLR-Cβ/γ) (Figure 8). However, our results indicate that TLR-Cα was lost during early deuterostome evolution. Later, expansions of TLR-Cβ/γ generated the TLR diversity found in deuterostomes. Furthermore, as vertebrate TLRs diversified within the vertebrate lineage, it is impossible to make one-to-one orthology gene assignments between the vertebrate TLRs and the invertebrate TLRs [65].

The protostome stem species and the spiralian stem species had likely two TLRs: TLR-Cα and TLR-Cβ/γ (Figure 8). During early trochozoan evolution, the spiralian TLR-Cβ/γ gene was duplicated, giving raise to the ancestral TLR from clade β in trochozoans (TLR-Cβ) and the ancestral TLRs from clade γ (TLR-Cγ). This is supported by the fact that clade β and clade γ are sister clades and clade γ is only present in trochozoans. Later, episodes of gene duplication generated the larger diversity of TLRs from clade β and clade γ in trochozoans. These expansions could have occurred due to the necessity to adapt to microbe rich environments [126, 127]. Losses of both TLRs seem to have occurred in non-trochozoan lineages, e.g. in platyhelminths and rotifers.

Our results show that the ecdysozoan stem species had two TLRs (Figure 8) belonging to clade α and clade β/γ. Although, in general, the number of TLRs is low, few duplications of TLR-Cα occurred in some lineages (e.g. arthropods, priapulids, loriciferans). Furthermore, our analysis shows that the surveyed priapulids, tardigrades, nematodes and loriciferan lack TLRs from clade β; whereas clade β TLRs are
present in the majority of the arthropods and in the onychophoran surveyed. This would imply that TLR clade \(\beta \) would have been lost independently in the early branching ecdysozoans but not in the most late-branching lineages [95, 128].

Are protostome TLRs involved in immunity and development during ontogeny?

TLRs are well known to play a key role in adult innate immunity in planulozoans [11, 22–26]. During ontogeny, this gene family has also been shown to be involved in a great number of developmental processes both in arthropods and vertebrates [2, 8, 9, 36–38, 41–44]. Here, we identify TLRs expressed during ontogeny in four protostome species (the ecdysozoans *H. exemplaris* and *P. caudatus* and the spiralians *C. gigas* and *T. transversa*) (Figures 5 and 6). Expression of TLRs was observed for some TLRs in short developmental time windows (the *H. exemplaris* Hex-TLR\(\alpha \); the *C. gigas* Cgi-TLR\(\alpha \)\(\alpha \)2, Cgi-TLR\(\alpha \)3, Cgi-TLR\(\beta \)1, Cgi-TLR\(\beta \)2, Cgi-TLR\(\gamma \)1, Cgi-TLR\(\gamma \)2; and the *T. transversa* Ttr-TLR\(\alpha \)2, Ttr-TLR\(\alpha \)5, Ttr-TLR\(\beta \)1, Ttr-TLR\(\beta \)4, Ttr-TLR\(\beta \)5), suggesting a possible role of these genes in development, as genes involved in developmental processes are usually expressed for defined periods of time in tissues in order to participate in specific developmental processes [129–131]. For instance, expression during early embryonic stages of the *T. transversa* Ttr-TLR\(\alpha \)2 (Figure 5) might suggest its involvement in dorso-ventral axis specification, as it has been shown for the *Drosophila Toll* [8, 9]. Later, in the early larvae, transcription of this gene is transiently activated in the mesoderm (Figures 5 and 6), suggesting that this gene might be also involved in mesoderm development. However, our analyses do not exclude the possibility that these genes might also be involved in immunity, as these TLRs could have a dual role, as it has been shown for the *Drosophila Toll* [10] and the only TLR in the cnidarian *N. vectensis* [27].

Discerning the role of TLRs expressed in broad time windows or during the whole development (the three *P. caudatus* TLRs; the *C. gigas* Cgi-TLR\(\alpha \)1, Cgi-TLR\(\alpha \)4, Cgi-TLR\(\beta \)4, Cgi-TLR\(\delta \)1, Cgi-TLR\(\delta \)2; and the *T. transversa* Ttr-TLR\(\alpha \)4, Ttr-TLR\(\beta \)2, Ttr-TLR\(\beta \)3, and Ttr-TLR\(\gamma \)4) is complex, as these genes could be involved either in immunity or in development, or both. However, detection of immune processes in our analyses is not possible with the data available. Therefore, further investigations are required to gain more knowledge on functions of TLRs during development. Immune roles of the TLRs during ontogeny should not be underestimated: Many marine invertebrate embryos and larvae live in environments rich in microbial pathogens [132, 133]. Pathogens cause mortality of embryos and larvae but also provoke anomalies during development [134, 135]. Therefore, these embryos and larvae need immune defenses to fight pathogens [133]. Actually, few studies have shown that the Toll pathway is involved in immunity during ontogeny in arthropods, mollusks and amphioxus [18, 135–137], and other immune-related genes have also been found to be involved in immunity during mollusk and echinoderm development [136, 138–140]. Additionally, in planulozoans it has been shown that TLRs are involved in adult immunity [11, 22–26]. Thus, TLRs are probably also involved in immunity during ontogeny across the metazoan tree.

Conclusions

Based on our data we propose a scenario in which TLRs evolved from an ancestral *proto*-TLR that originated before the split into the cnidarian and the bilaterian lineage. Duplications and losses
characterize the evolution of TLRs in the main metazoan groups. The proto-TLR duplicated in different metazoan lineages and gave rise to three TLR clades. This TLR complement was expanded during Trochozoa evolution, while it was lost in some non-trochozoan spiralian lineages (e.g. platyhelminths, cyclophorans, micrognathozoans, gastrotrichs and some rotifers). Ecdysozoans possess a low number of Clade α and Clade β TLRs; whereas all deuterostome TLRs belong to clade β, being originated by radiations in the different lineages. Furthermore, our data shows that TLRs are expressed during ontogeny in two ecdysozoan and two spiralian species, suggesting that these genes could be involved in immunity and development.

Materials And Methods

Genomic and transcriptomic surveys

We surveyed TLRs 20 genomes and 25 transcriptomes (Supplementary Table 1). Overall, only high-quality transcriptomes (BUSCO values >70% - Supplementary Table 1) were selected, but lower quality transcriptomes were also included when they represented a species from a low investigated clade (e.g. the loriciferan A. elegans transcriptome (BUSCO value 36.2%)). In order to search for the TLR sequences, hmmer profiles for the TIR and the LRR domains were generated using HMMER software version 3.2.1 (www.hmmer.org). The hmmer profile for the TIR domain was blasted against each genome/transcriptome in order to obtain a database of proteins containing the TIR domain. Next, the LRR hmmer profile was blasted to the TIR domain-containing sequences database. These sequences were validated by BLAST [141] (www.blast.ncbi.nlm.nih.gov) and SMART [142, 143] (http://smart.embl.de/). Sequences from the same species with >90% similarity were considered to be polymorphisms and only one of them was considered for the analyses.

Phylogenetic analysis

TLR sequences obtained from the genome/transcriptome surveys and NCBI (www.ncbi.nlm.nih.gov) (Supplementary Table 2) were aligned using MAFFT software version 7 [144], applying the L-INS-I algorithm. The MyD88 protein, an adaptor of the Toll pathway, was selected as an output. The TIR domain of well annotated MyD88 proteins (Supplementary Table 2) were included in the alignment. The alignment was trimmed manually in order to obtain a fragment containing one LRR domain, the transmembrane domain, and the TIR domain. This was followed by a second trimming step performed with TrimAl software version 1.2 [145] using the gappyout trimming model. The final alignment used to perform the phylogenetic analysis contains 375 amino acids. The maximum likelihood phylogenetic analysis was performed using IQ-TREE software [146] in the CIPRES Science Gateway V.3.3 [147] (http://www.phylo.org). LG+R8 was selected as the best-fit model (according to BIC) and was applied for the phylogenetic reconstruction. Bootstrap values were calculated running 1000 replicates using ultrafast bootstrap.

TLR classification
TLR sequences from the genomic/transcriptomic surveys, as well as the ones obtained from the literature and NCBI database, were classified into P-type/mcc and V-type. In order to do so, the number of LRR domains was analyzed with LRRfinder software [148] (http://www.lrrfinder.com). Next, sequences were classified applying the same criteria followed by Brennan and Gilmore, 2018 [13]. Some TLR sequences were incomplete and they could not be classified into P-type/mcc or V-type.

Stage specific transcriptome analyses

In order to assess the expression of TLR genes, we examined publicly available stage-transcriptomic data of various developmental stages for the spiralians *C. gigas* and *T. transversa* and the ecdysozoans *P. caudatus* and *H. dujardini*. For *C. gigas*, we examined 19 developmental time-points from early morula to D-shaped larvae, being the transcriptomic data previously published in [101] (accession number: SRR334225-SRR334243). For *T. transversa*, 14 stages from oocyte to 2-day juvenile were analyzed, being this dataset available from [120]. For *P. caudatus*, only 5 embryonic stages (from zigot to late introvertula) were analyzed. The transcriptomic data was obtained from [118]. The 20 *H. exemplaris* embryonic transcriptomes analyzed (from zigot to differentiation) were obtained from [119] (accession numbers: SRR1755597, SRR1755601, SRR1755603, SRR1755606, SRR1755610, SRR1755612, SRR1755621, SRR1755623, SRR1755627, SRR1755631, SRR1755637, SRR1755644, SRR1755647, SRR1755650, SRR1755656, SRR1755662, SRR1755666, SRR1755706, SRR1755715, SRR1755719). We first performed quality-trimming on downloaded RNA-seq raw reads using Trimmomatic v.0.38 [149], removing low quality or N bases (parameter settings: LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20). To estimate the transcript abundancies, quality-trimmed reads were aligned to reference transcriptome assemblies (*C. gigas* [101], *T. transversa* and *P. caudatus* [97], *H. exemplaris* [109]). We applied two quantification methods: an alignment-based method using Bowtie2 [150] and RSEM [121], and the ultra-fast alignment-free method kallisto [122]. Both methods reported normalized expression values in transcripts per million (TPM), and we further executed cross-sample normalization among different developmental-stage samples by TMM method [151]. To define a criterion for gene expression value in this study, we performed in situ hybridization of selected TLR genes at different developmental stages in *Terebratalia*, as well as examining expression values in our analysis corresponding to in situ hybridization data of *Hox* genes in *Terebratalia* [120] and *Wnt* genes in *Priapulus* [118]. We considered expression for values ≥ 0.15.

Animal collection and embryonic cultures

Adult *T. transversa* specimens were collected in Friday Harbor, USA. The eggs were fertilized, and animals were fixed at different developmental stages with 4% paraformaldehyde for 1h at room temperature, as described elsewhere [120, 152]. Next, the samples were repeatedly washed in Ptw and stored in 100% methanol.

Gene cloning, probe synthesis, in situ hybridization and imaging.
Specific primers for *T. transversa* TLRs were designed using the MacVector 10.6.0 software. TLRs were amplified and inserted into pGEM-T Easy vectors (Promega, USA) and transformed in competent *E. coli* cells. Minipreps were prepared using NucleoSpin® Plasmid kit (Macherey-Nagel) and sequenced in the Sequencing facility of the University of Bergen. RNA probes were transcribed using digoxigenin-11-UTP (Roche, USA) with the MEGAscript™ kit (Invitrogen, Thermo Fisher). Whole mount *in situ* hybridization (WMISH) was performed as described in [120, 153]. Probes were hybridized at a concentration of 1 ng/μl at 67°C during 72h. Next, they were detected with anti-digoxigenin-AP antibody [1:5000] (Roche) and developed using NBT/BCIP (Roche). Samples were washed twice in 100% ethanol and re-hydrated in descending ethanol steps (75%, 50% and 25% ethanol in PBS). Samples were mounted in 70% glycerol. Samples were imaged using Axiocam HRc camera connected to an Axioscope Ax10 (Zeiss, Oberkochen, Germany). Images were analyzed using Fiji and Adobe Photoshop CS6.

Illustrations

Figure plates and illustrations were made with Adobe Illustrator CS6.

List Of Abbreviations

AMPs: Antimicrobial peptides; **BCIP:** 5-bromo-4-chloro-3-indolyl phosphate; **BUSCO:** Benchmarking Universal Single-Copy Orthologs; **IL-1:** Interleukin-1 receptor; **LRR:** Leucine-rich repeat; **LRRCT:** Leucine-rich repeat C-terminal domain; **LRRNT:** Leucine-rich repeat N-terminal domain; **Mcc:** multiple cysteine cluster; **NBT:** nitro blue tetrazolium; **NOD:** Nucleotide oligomerization domain; **PBS:** Phosphate-Buffered Saline; **P-type:** Protostome type; **PTw:** PBS with 0.1% Tween® 20; **RSEM:** RNA-Seq by Expectation Maximization; **Scc:** Single cysteine cluster; **TIR:** Toll/IL-1 receptor; **TLR:** Toll-like receptor; **TLR-Cα:** clade α type TLR gene; **TLR-Cβ:** clade β type TLR gene; **TLR-Cγ:** clade γ type TLR gene; **TLR-Cβ/γ:** proto-TLR gene of clades β and γ; **TLR-like:** Toll-like receptor-like; **TM:** Transmembrane; **TMM:** Trimmed mean of M values; **TPM:** Transcripts per million; **V-type:** Vertebrate type; **WMISH:** Whole mount in situ hybridization.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article and its additional files. TLR and MyD88 sequences obtained in the genomic/transcriptomic surveys and used in the
phylogenetic analysis, together with their NCBI accession numbers, are available in the Supplementary Table 2.

Competing interests

The authors declare that they have no competing interests

Funding

This study was funded by the European Research Council Community's Framework Program Horizon 2020 (2014-2020) ERC grant Agreement 648861 to AH.

Acknowledgements

We want to thank Daniel Thiel for instructing AOA in performing genome/transcriptome surveys and phylogenetic analysis and for discussions. We also thank Ferenc Kagan for providing the BUSCO values for the transcriptomes; Ludwik Gasiorowski for discussions; Carmen Andrikou for reading the manuscript and discussions; and Timothy Lynagh for critically reading the manuscript. Furthermore, we would like to thank other former and present members from the Hejnol lab for collecting and fixing the *T. transversa* specimens and Nadezhda Rimskaya-Korsakova for collecting and providing *Galathowenia*.

Bibliography

1. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406:782–7. doi:10.1038/35021228.

2. Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development. 2018;145:1–6. doi:10.1242/dev.156018.

3. Barak B, Feldman N, Okun E. Toll-like receptors as developmental tools that regulate neurogenesis during development: an update. Front Neurosci. 2014;8:1–6. doi:10.3389/fnins.2014.00272.

4. Imler J-L, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol. 2001;11:304–11. doi:10.1016/S0962-8924(01)02004-9.

5. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. doi:10.1038/ni.1863.

6. Medzhitov R. Toll like receptors and innate immunity. Nat Rev. 2001;1:135–45.

7. Leulier F, Lemaitre B. Toll-like receptors — taking an evolutionary approach. Nat Rev Genet. 2008;9:165–78. doi:10.1038/nrg2303.

8. Anderson K V., Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the *Drosophila* embryo: Genetic studies on the role of the *Toll* gene product. Cell. 1985;42:779–89. doi:10.1016/0092-8674(85)90274-0.

9. Anderson K V, Nüsslein-Volhard C. Information for the dorsal–ventral pattern of the *Drosophila* embryo is stored as maternal mRNA. Nature. 1984;311:223–7. doi:10.1038/311223a0.
10. Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA. The dorsoventral regulatory gene cassette Spätzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83. doi:10.1016/S0092-8674(00)80172-5.

11. Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7. doi:10.1038/41131.

12. Coscia M, Giacomelli S, Oreste U. Toll-like receptors: an overview from invertebrates to vertebrates. Invertebr Surviv J. 2011;8:210–26.

13. Brennan JJ, Gilmore TD. Evolutionary origins of Toll-like receptor signaling. Mol Biol Evol. 2018;35:1576–87. doi:10.1093/molbev/msy050.

14. Nie L, Cai S-Y, Shao J-Z, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol. 2018;9:1–19. doi:10.3389/fimmu.2018.01523.

15. Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem. 2007;76:141–65. doi:10.1146/annurev.biochem.76.060305.151318.

16. Barton GM. Toll-Like Receptor Signaling Pathways. Science. 2003;300:1524–5. doi:10.1126/science.1085536.

17. Valanne S, Wang J-H, Rämet M. The Drosophila Toll signaling pathway. J Immunol. 2011;186:649–56. doi:10.4049/jimmunol.1002302.

18. Tauszig S, Jouanguy E, Hoffmann JA, Imler J-L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci. 2000;97:10520–5. doi:10.1073/pnas.180130797.

19. Lemaitre B, Reichhart J-M, Hoffmann JA. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci. 1997;94:14614–9. doi:10.1073/pnas.94.26.14614.

20. Leulier F, Parquet C, Pili-Floury S, Ryu J-H, Caroff M, Lee W-J, et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol. 2003;4:478–84. doi:10.1038/ni922.

21. Chowdhury M, Li C-F, He Z, Lu Y, Liu X-S, Wang Y-F, et al. Toll family members bind multiple Spätzle proteins and activate antimicrobial peptide gene expression in Drosophila. J Biol Chem. 2019;294:10172–81. doi:10.1074/jbc.RA118.006804.

22. Pasare C, Medzhitov R. Toll-Like Receptors: linking innate and adaptive immunity. In: Gupta S, Paul WE, Steinman R, editors. Mechanisms of Lymphocyte Activation and Immune Regulation X. Boston, MA: Springer US; 2005. p. 11–8. doi:10.1007/0-387-24180-9_2.

23. Portou MJ, Baker D, Abraham D, Tsui J. The innate immune system, Toll-like receptors and dermal wound healing: A review. Vascul Pharmacol. 2015;71:31–6. doi:10.1016/j.vph.2015.02.007.

24. Lester SN, Li K. Toll-Like Receptors in Antiviral Innate Immunity. J Mol Biol. 2014;426:1246–64. doi:10.1016/j.jmb.2013.11.024.
25. Akira S, Uematsu S, Takeuchi O. Pathogen Recognition and Innate Immunity. Cell. 2006;124:783–801. doi:10.1016/j.cell.2006.02.015.

26. Manicassamy S, Pulendran B. Modulation of adaptive immunity with Toll-like receptors. Semin Immunol. 2009;21:185–93. doi:10.1016/j.smim.2009.05.005.

27. Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci. 2017;114:E10122–31. doi:10.1073/pnas.1711530114.

28. Ren Y, Ding D, Pan B, Bu W. The TLR13-MyD88-NF-κB signalling pathway of Cyclina sinensis plays vital roles in innate immune responses. Fish Shellfish Immunol. 2017;70:720–30. doi:10.1016/j.fsi.2017.09.060.

29. Wang K, del Castillo C, Corre E, Pales Espinosa E, Allam B. Clam focal and systemic immune responses to QPX infection revealed by RNA-seq technology. BMC Genomics. 2016;17:146. doi:10.1186/s12864-016-2493-9.

30. Zhang Y, He X, Yu F, Xiang Z, Li J, Thorpe KL, et al. Characteristic and functional analysis of Toll-like Receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity. PLoS One. 2013;8:e76464. doi:10.1371/journal.pone.0076464.

31. Priyathilaka TT, Bathige SDNK, Lee S, Nam B-H, Lee J. Transcriptome-wide identification, functional characterization, and expression analysis of two novel invertebrate-type Toll-like receptors from disk abalone (Haliotis discus discus). Fish Shellfish Immunol. 2019;84 September 2018:802–15. doi:10.1016/j.fsi.2018.10.062.

32. Prochazkova P, Roubalova R, Skanta F, Dvorak J, Pacheco Nin, Kolarik M, et al. Developmental and immune role of a novel multiple cysteine cluster TLR from Eisenia andrei earthworms. Front Immunol. 2019;10:1–18. doi:10.3389/fimmu.2019.01277.

33. Škanta F, Roubalová R, Dvořák J, Procházková P, Bilej M. Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol. 2013;41:694–702. doi:10.1016/j.dci.2013.08.009.

34. Li X-C, Zhu L, Li L-G, Ren Q, Huang Y-Q, Lu J-X, et al. A novel myeloid differentiation factor 88 homolog, S própMyD88, exhibiting S própToll-binding activity in the mud crab Scylla paramamosain. Dev Comp Immunol. 2013;39:313–22. doi:10.1016/j.dci.2012.11.011.

35. Russo R, Chiaramonte M, Matranga V, Arizza V. A member of the Tlr family is involved in dsRNA innate immune response in Paracentrotus lividus sea urchin. Dev Comp Immunol. 2015;51:271–7. doi:10.1016/j.dci.2015.04.007.

36. Eldon E, Kooyer S, D’Evelyn D, Duman M, Lawinger P, Botas J, et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development. 1994;120:885–99.

37. Halfon MS, Hashimoto C, Keshishian H. The Drosophila Toll gene functions zygotically and ts necessary for proper motoneuron and muscle development. Dev Biol. 1995;169:151–67. doi:10.1006/dbio.1995.1134.
38. Ward A, Hong W, Favaloro V, Luo L. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron. 2015;85:1013–28. doi:10.1016/j.neuron.2015.02.003.

39. Byun PK, Zhang C, Yao B, Wardwell-Ozgo J, Terry D, Jin P, et al. The Taiman transcriptional coactivator engages Toll signals to promote apoptosis and intertissue invasion in Drosophila. Curr Biol. 2019;29:2790–800. doi:10.1016/j.cub.2019.07.012.

40. Meyer SN, Amoyel M, Bergantiños C, de la Cova C, Schertel C, Basler K, et al. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science. 2014;346:1258236. doi:10.1126/science.1258236.

41. Wang J, Tao Y, Reim I, Gajewski K, Frasch M, Schulz RA. Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila melanogaster. Mol Cell Biol. 2005;25:4200–10. doi:10.1128/MCB.25.10.4200-4210.2005.

42. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007;9:1081–8. doi:10.1038/ncb1629.

43. Shechter R, Ronen A, Rolls A, London A, Bakalash S, Young MJ, et al. Toll-like receptor 4 restricts retinal progenitor cell proliferation. J Cell Biol. 2008;183:393–400. doi:10.1083/jcb.200804010.

44. Hung Y-F, Chen C-Y, Shih Y-C, Liu H-Y, Huang C-M, Hsueh Y-P. Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. J Cell Biol. 2018;217:2727–42. doi:10.1083/jcb.201712113.

45. Kaul D, Habbel P, Derkow K, Krüger C, Franzoni E, Wulczyn FG, et al. Expression of Toll-Like Receptors in the Developing Brain. PLoS One. 2012;7:e37767. doi:10.1371/journal.pone.0037767.

46. Hashimoto C, Hudson KL, Anderson K V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988;52:269–79. doi:10.1016/0092-8674(88)90516-8.

47. Schneider DS, Hudson KL, Lin TY, Anderson K V. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev. 1991;5:797–807. doi:10.1101/gad.5.5.797.

48. Bell JK, Mullen GED, Leifer CA, Mazzoni A, Davies DR, Segal DM. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 2003;24:528–33. doi:10.1016/S1471-4906(03)00242-4.

49. Kobe B, Kajava A V. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11:725–32. doi:10.1016/S0959-440X(01)00266-4.

50. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci. 1998;95:588–93. doi:10.1073/pnas.95.2.588.

51. Dolan J, Walshe K, Alsbury S, Hokamp K, O'Keeffe S, Okafuji T, et al. The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics. 2007;8:320. doi:10.1186/1471-2164-8-320.
52. Shaw MH, Reimer T, Kim Y-G, Nuñez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol. 2008;20:377–82. doi:10.1016/j.coi.2008.06.001.

53. Milán M, Weihe U, Pérez L, Cohen SM. The LRR proteins Capricious and Tartan mediate cell interactions during DV boundary formation in the Drosophila wing. Cell. 2001;106:785–94. doi:10.1016/S0092-8674(01)00489-5.

54. de Wit J, Hong W, Luo L, Ghosh A. Role of Leucine-Rich Repeat proteins in the development and function of neural circuits. Annu Rev Cell Dev Biol. 2011;27:697–729. doi:10.1146/annurev-cellbio-092910-154111.

55. Burch-Smith TM, Dinesh-Kumar SP. The functions of plant TIR domains. Sci STKE. 2007;2007:1–4. doi:10.1126/stke.4012007pe46.

56. Gao Y, Wang W, Zhang T, Gong Z, Zhao H, Han G-Z. Out of water: The origin and early diversification of plant R-Genes. Plant Physiol. 2018;177:82–9. doi:10.1104/pp.18.00185.

57. Gay N, Keith F. Drosophila Toll and IL-1 receptor. Nature. 1991;351:355–6. doi:10.1038/351355b0.

58. Bonnert TP, Garka KE, Parnet P, Sonoda G, Testa JR, Sims JE. The cloning and characterization of human MyD88: A member of an IL-1 receptor related family. FEBS Lett. 1997;402:81–4. doi:10.1016/S0014-5793(96)01506-2.

59. Horng T, Medzhitov R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci. 2001;98:12654–8. doi:10.1073/pnas.231471798.

60. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253–8. doi:10.1016/S1097-2765(00)80136-7.

61. Imler J-L, Zheng L. Biology of Toll receptors: lessons from insects and mammals. J Leukoc Biol. 2004;75:18–26. doi:10.1189/jlb.0403160.

62. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol. 2006;300:349–65. doi:10.1016/j.ydbio.2006.08.065.

63. Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC. Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol. 2008;32:608–12. doi:10.1016/j.dci.2007.11.004.

64. Halanych KM, Kocot KM. Repurposed transcriptomic data facilitate discovery of innate immunity Toll-Like Receptor (TLR) genes across Lophotrochozoa. Biol Bull. 2014;227:201–9. doi:10.1086/BBLv227n2p201.

65. Liu G, Zhang H, Zhao C, Zhang H. Evolutionary history of the Toll-Like Receptor gene family across vertebrates. Genome Biol Evol. 2020;12:3615–34. doi:10.1093/gbe/evz266.

66. Gauthier MEA, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev. 2010;12:519–33. doi:10.1111/j.1525-142X.2010.00436.x.
67. Flot J-F, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EGJ, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 2013;500:453–7. doi:10.1038/nature12326.

68. Peiris TH, Hoyer KK, Oviedo NJ. Innate immune system and tissue regeneration in planarians: An area ripe for exploration. Semin Immunol. 2014;26:295–302. doi:10.1016/j.smim.2014.06.005.

69. Poole AZ, Weis VM. TIR-domain-containing protein repertoire of nine anthozoan species reveals coral–specific expansions and uncharacterized proteins. Dev Comp Immunol. 2014;46:480–8. doi:10.1016/j.dci.2014.06.002.

70. Kamm K, Schierwater B, DeSalle R. Innate immunity in the simplest animals – placozoans. BMC Genomics. 2019;20:1–12. doi:10.1186/s12864-018-5377-3.

71. Wiens M, Korzhev M, Perovic-Ottstadt S, Luthringer B, Brandt D, Klein S, et al. Toll-like receptors are part of the innate immune defense system of sponges (Demospongiae: Porifera). Mol Biol Evol. 2006;24:792–804. doi:10.1093/molbev/msl208.

72. Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, et al. Uncovering the evolutionary history of innate immunity: The simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol. 2009;33:559–69. doi:10.1016/j.dci.2008.10.004.

73. Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TCG. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci. 2012;109:19374–9. doi:10.1073/pnas.1213110109.

74. Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol. 2004;40:759–71. doi:10.1016/j.molimm.2003.10.001.

75. Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ. Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics. 2005;56:743–53. doi:10.1007/s00251-004-0740-8.

76. Ishii A, Kawasaki M, Matsumoto M, Tochinai S, Seya T. Phylogenetic and expression analysis of amphibian Xenopus Toll-like receptors. Immunogenetics. 2007;59:281–93. doi:10.1007/s00251-007-0193-y.

77. Inamori K, Ariki S, Kawabata S. A Toll-like receptor in horseshoe crabs. Immunol Rev. 2004;198:106–15. doi:10.1111/j.0105-2896.2004.0131.x.

78. Palmer WJ, Jiggins FM. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol Biol Evol. 2015;32:2111–29. doi:10.1093/molbev/msv093.

79. Pujol N, Link EM, Liu LX, Kurz CL, Alloing G, Tan M-W, et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol. 2001;11:809–21. doi:10.1016/S0960-9822(01)00241-X.

80. Williams LM, Fuess LE, Brennan JJ, Mansfield KM, Salas-Rodriguez E, Welsh J, et al. A conserved Toll-like receptor-to-NF-κB signaling pathway in the endangered coral Orbicella faveolata. Dev Comp Immunol. 2018;79:128–36. doi:10.1016/j.dci.2017.10.016.

81. Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, et al. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol. 2019;3:801–10. doi:10.1038/s41559-019-0833-2.
82. Traylor-Knowles N, Vandepas LE, Browne WE. Still enigmatic: Innate immunity in the ctenophore *Mnemiopsis leidyi*. Integr Comp Biol. 2019;59:811–8. doi:10.1093/icb/icz116.

83. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510:109–14. doi:10.1038/nature13400.

84. Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 2017;8:15451. doi:10.1038/ncomms15451.

85. Ren Y, Pan H, Pan B, Bu W. Identification and functional characterization of three TLR signaling pathway genes in *Cyclina sinensis*. Fish Shellfish Immunol. 2016;50:150–9. doi:10.1016/j.fsi.2016.01.025.

86. Luo Y-J, Kanda M, Koyanagi R, Hisata K, Akiyama T, Sakamoto H, et al. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nat Ecol Evol. 2018;2:141–51. doi:10.1038/s41559-017-0389-y.

87. Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A. Characterization and immune function of two intracellular sensors, *Hm*TLR1 and *Hm*NLR, in the injured CNS of an invertebrate. Dev Comp Immunol. 2011;35:214–26. doi:10.1016/j.dci.2010.09.011.

88. Peng J, Li Q, Xu L, Wei P, He P, Zhang X, et al. Chromosome-level analysis of the *Crassostrea hongkongensis* genome reveals extensive duplication of immune-related genes in bivalves. Mol Ecol Resour. 2020;20:980–94. doi:10.1111/1755-0998.13157.

89. Zheng L, Zhang L, Lin H, McIntosh MT, Malacrida AR. Toll-like receptors in invertebrate innate immunity. Invertebr Surviv J. 2005;2:105–13.

90. Mapalo MA, Arakawa K, Baker CM, Persson DK, Mirano-Bascos D, Giribet G. The unique antimicrobial recognition and signaling pathways in tardigrades with a comparison across Ecdysozoa. G3 Genes Genomes Genetics. 2020;10:1137–48. doi:10.1534/g3.119.400734.

91. Ji J, Ramos-Vicente D, Navas-Pérez E, Herrera-Úbeda C, Lizcano JM, Garcia-Fernández J, et al. Characterization of the TLR family in *Branchiostoma lanceolatum* and discovery of a novel TLR22-like involved in dsRNA recognition in amphioxus. Front Immunol. 2018;9:1–15. doi:10.3389/fimmu.2018.02525.

92. Tassia MG, Whelan N V., Halanych KM. Toll-like receptor pathway evolution in deuterostomes. Proc Natl Acad Sci. 2017;114:7055–60. doi:10.1073/pnas.1617722114.

93. Denoeud F, Henriot S, Mungpakdee S, Aury J-M, Da Silva C, Brinkmann H, et al. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science. 2010;330:1381–5. doi:10.1126/science.1194167.

94. Sasaki N, Ogasawara M, Sekiguchi T, Kusumoto S, Satake H. Toll-like Receptors of the ascidian *Ciona intestinalis*. J Biol Chem. 2009;284:27336–43. doi:10.1074/jbc.M109.032433.

95. Dunn CW, Giribet G, Edgecombe GD, Hejnol A. Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst. 2014;45:371–95. doi:10.1146/annurev-ecolsys-120213-091627.
96. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, et al. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci. 2005;102:9577–82. doi:10.1073/pnas.0502272102.

97. Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa. Nature. 2016;530:89–93. doi:10.1038/nature16520.

98. Wong YH, Ryu T, Seridi L, Ghosheh Y, Bougouffa S, Qian P-Y, et al. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Sci Rep. 2015;4:6534. doi:10.1038/srep06534.

99. Neves RC, Guimaraes JC, Strempel S, Reichert H. Transcriptome profiling of Symbion pandora (phylum Cyclophora): insights from a differential gene expression analysis. Org Divers Evol. 2017;17:111–9. doi:10.1007/s13127-016-0315-1.

100. Simakov O, Marletaz F, Cho S-J, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493:526–31. doi:10.1038/nature11696.

101. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49–54. doi:10.1038/nature11413.

102. Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524:220–4. doi:10.1038/nature14668.

103. Luo Y-J, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, et al. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat Commun. 2015;6:1–10. doi:10.1038/ncomms9301.

104. Laumer CE, Hejnol A, Giribet G. Nuclear genomic signals of the ‘microturbellarian’ roots of platyhelminth evolutionary innovation. Elife. 2015;4:1–31. doi:10.7554/elife.05503.

105. Struck TH, Wey-Fabrizius AR, Golombek A, Hering L, Weigert A, Bleidorn C, et al. Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of Spiralia. Mol Biol Evol. 2014;31:1833–49. doi:10.1093/molbev/msu143.

106. Wasik K, Gurtowski J, Zhou X, Ramos OM, Delás MJ, Battistoni G, et al. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc Natl Acad Sci. 2015;112:12462–7. doi:10.1073/pnas.1516718112.

107. Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496:57–63. doi:10.1038/nature12031.

108. Eyres I, Boschetti C, Crisp A, Smith TP, Fontaneto D, Tunnacliffe A, et al. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol. 2015;13:1–17. doi:10.1186/s12915-015-0202-9.

109. Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, et al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLOS Biol. 2017;15:e2002266. doi:10.1371/journal.pbio.2002266.
110. Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun. 2016;7:1–14. doi:10.1038/ncomms12808.

111. Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, et al. Phylogenomic interrogation of arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. 2014;31:2963–84. doi:10.1093/molbev/msu235.

112. Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, et al. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nat Genet. 2013;45:495–500. doi:10.1038/ng.2585.

113. Cotton JA, Bennuru S, Grote A, Harsha B, Tracey A, Beech R, et al. The genome of Onchocerca volvulus, agent of river blindness. Nat Microbiol. 2017;2:16216. doi:10.1038/nmicrobiol.2016.216.

114. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. The Ecoreponsive Genome of Daphnia pulex. Science. 2011;331:555–61. doi:10.1126/science.1197761.

115. Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun. 2016;7:1–13. doi:10.1038/ncomms10507.

116. Kasamatsu J, Oshiumi H, Matsumoto M, Kasahara M, Seya T. Phylogenetic and expression analysis of lamprey Toll-like receptors. Dev Comp Immunol. 2010;34:855–65. doi:10.1016/j.dci.2010.03.004.

117. Ishii A, Matsuo A, Sawah H, Tsujita T, Shida K, Matsumoto M, et al. Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors. J Immunol. 2007;178:397–406. doi:10.4049/jimmunol.178.1.397.

118. Hogvall M, Vellutini BC, Martín-Durán JM, Hejnol A, Budd GE, Janssen R. Embryonic expression of priapulid Wnt genes. Dev Genes Evol. 2019;229:125–35. doi:10.1007/s00427-019-00636-6.

119. Levin M, Anavy L, Cole AG, Winter E, Mostov N, Khair S, et al. The mid-developmental transition and the evolution of animal body plans. Nature. 2016;531:637–41. doi:10.1038/nature16994.

120. Schiemann SM, Martín-Durán JM, Børve A, Vellutini BC, Passamaneck YJ, Hejnol A. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties. Proc Natl Acad Sci. 2017;114:E1913–22. doi:10.1073/pnas.1614501114.

121. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi:10.1186/1471-2105-12-323.

122. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7. doi:10.1038/nbt.3519.

123. Sinigaglia C, Thiel D, Hejnol A, Houliston E, Leclère L. A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species. Dev Biol. 2018;434:15–23. doi:10.1016/j.ydbio.2017.11.015.

124. Luo C, Zheng L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics. 2000;51:92–8. doi:10.1007/s002510050017.
125. Luna C, Wang X, Huang Y, Zhang J, Zheng L. Characterization of four Toll related genes during development and immune responses in *Anopheles gambiae*. Insect Biochem Mol Biol. 2002;32:1171–9. doi:10.1016/S0965-1748(02)00053-X.

126. Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G. Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep. 2015;5:8693. doi:10.1038/srep08693.

127. Guo X, He Y, Zhang L, Lelong C, Jouaux A. Immune and stress responses in oysters with insights on adaptation. Fish Shellfish Immunol. 2015;46:107–19. doi:10.1016/j.fsi.2015.05.018.

128. Marlétaz F, Peijnenburg KTCA, Goto T, Satoh N, Rokhsar DS. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr Biol. 2019;29:312-318.e3. doi:10.1016/j.cub.2018.11.042.

129. Slota LA, Miranda EM, McClay DR. Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin *Lytechinus variegatus*. Evodevo. 2019;10:2. doi:10.1186/s13227-019-0115-8.

130. Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, et al. Large-scale temporal gene expression mapping of central nervous system development. Proc Natl Acad Sci. 1998;95:334–9. doi:10.1073/pnas.95.1.334.

131. Sako K, Pradhan SJ, Barone V, Inglés-Prieto Á, Müller P, Ruprecht V, et al. Optogenetic control of Nodal signaling reveals a temporal pattern of Nodal signaling regulating cell fate specification during gastrulation. Cell Rep. 2016;16:866–77. doi:10.1016/j.celrep.2016.06.036.

132. Hamdoun A, Epel D. Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci U S A. 2007;104:1745–50. doi:10.1073/pnas.0610108104.

133. Benkendorff K, Davis AR, Bremner JB. Chemical defense in the egg masses of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J Invertebr Pathol. 2001;78:109–18. doi:10.1006/jipa.2001.5047.

134. Balbi T, Auguste M, Cortese K, Montagna M, Borello A, Pruzzo C, et al. Responses of *Mytilus galloprovincialis* to challenge with the emerging marine pathogen *Vibrio coralliilyticus*. Fish Shellfish Immunol. 2019;84:352–60. doi:10.1016/j.fsi.2018.10.011.

135. Deris ZM, Iehata S, Ikhwanuddin M, Sahimi MBMK, Dinh Do T, Sorgeloos P, et al. Immune and bacterial toxin genes expression in different giant tiger prawn, *Penaeus monodon* post-larvae stages following AHPND-causing strain of *Vibrio parahaemolyticus* challenge. Aquac Rep. 2020;16:100248. doi:10.1016/j.aqrep.2019.100248.

136. Tirapé A, Bacque C, Brizard R, Vandenbulcke F, Boulo V. Expression of immune-related genes in the oyster *Crassostrea gigas* during ontogenesis. Dev Comp Immunol. 2007;31:859–73. doi:10.1016/j.dci.2007.01.005.

137. Yuan S, Huang S, Zhang W, Wu T, Dong M, Yu Y, et al. An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-κB pathway via MyD88. Mol Immunol. 2009;46:2348–56. doi:10.1016/j.molimm.2009.03.022.
138. Balseiro P, Moreira R, Chamorro R, Figueras A, Novoa B. Immune responses during the larval stages of *Mytilus galloprovincialis*: Metamorphosis alters immunocompetence, body shape and behavior. Fish Shellfish Immunol. 2013;35:438–47. doi:10.1016/j.fsi.2013.04.044.

139. Shah M, Brown KM, Smith LC. The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Dev Comp Immunol. 2003;27:529–38. doi:10.1016/S0145-305X(03)00030-2.

140. Yang A, Zhou Z, Dong Y, Jiang B, Wang X, Chen Z, et al. Expression of immune-related genes in embryos and larvae of sea cucumber *Apostichopus japonicus*. Fish Shellfish Immunol. 2010;29:839–45. doi:10.1016/j.fsi.2010.07.023.

141. Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. doi:10.1093/nar/25.17.3389.

142. Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Natl Acad Sci. 1998;95:5857–64. doi:10.1073/pnas.95.11.5857.

143. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257–60. doi:10.1093/nar/gku949.

144. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30:772–80. doi:10.1093/molbev/mst010.

145. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. doi:10.1093/bioinformatics/btp348.

146. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol. 2015;32:268–74. doi:10.1093/molbev/msu300.

147. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE; 2010. p. 1–8. doi:10.1109/GCE.2010.5676129.

148. Offord V, Werling D. LRRfinder2.0: A webserver for the prediction of leucine-rich repeats. Innate Immun. 2013;19:398–402. doi:10.1177/1753425912465661.

149. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. doi:10.1093/bioinformatics/btu170.

150. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. doi:10.1038/nmeth.1923.

151. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:1–9. doi:10.1186/gb-2010-11-3-r25.

152. Vellutini BC, Hejnol A. Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians. Sci Rep. 2016;6:32387. doi:10.1038/srep32387.
153. Gasiorowski L, Hejnol A. *Hox* gene expression in postmetamorphic juveniles of the brachiopod *Terebratalia transversa*. Evodevo. 2019;10:1–19. doi:10.1186/s13227-018-0114-1.