World's largest Science, Technology & Medicine Open Access book publisher

3,100+ OPEN ACCESS BOOKS
103,000+ INTERNATIONAL AUTHORS AND EDITORS
106+ MILLION DOWNLOADS
BOOKS DELIVERED TO 151 COUNTRIES
AUTHORS AMONG TOP 1% MOST CITED SCIENTIST
12.2% AUTHORS AND EDITORS FROM TOP 500 UNIVERSITIES

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

WEB OF SCIENCE™

Chapter from the book *Recent Advances in Carbon Capture and Storage*
Downloaded from: http://www.intechopen.com/books/recent-advances-in-carbon-capture-and-storage

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com
Synergistic Effect on CO$_2$ Capture by Binary Solvent System

Quan Zhuang and Bruce Clements

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65763

Abstract

CO$_2$ absorption into a binary solvent system was studied using a batch-mode gas/liquid absorption apparatus. The binary system composed of potassium carbonate (K$_2$CO$_3$) and piperazine (PZ) showed a strong synergistic effect, whereby the binary solvent performed better than either of the individual solvents for CO$_2$ absorption. The other pairs of solvents tested (K$_2$CO$_3$/monoethanolamine (MEA) and K$_2$CO$_3$/NaOH) showed no synergistic effects. The results indicate that this synergistic effect only occurs with specific pairs of solvents. The mechanism for the synergistic effect is postulated that the activated CO$_2$ on PZ migrates to K$_2$CO$_3$, or a more reactive intermediate complex between K$_2$CO$_3$ and PZ is formed.

Keywords: post-combustion, carbon capture, binary solvent, synergy effect, piperazine, potassium carbonate, CO$_2$ absorption

1. Introduction

There has been a growing concern over greenhouse gas emissions as they are considered to be the direct cause of global warming [1, 2]. Postcombustion capture technology is widely being studied for capturing CO$_2$ produced in power generation plants [3–5]. Compared with other CO$_2$ capture technologies such as oxy-fuel combustion and integrated gasification combined cycle (IGCC), postcombustion capture is regarded as the most probable technology to be first employed when carbon capture becomes a reality in the near future in terms of technology.
readiness level, flexibility, and economics [6]. Postcombustion capture technology uses liquid solvents to make efficient contact with CO$_2$-containing flue gas, during which CO$_2$ interacts and reacts with the solvent and is removed from the flue gas stream. After absorption, the CO$_2$-laden solvent undergoes a regeneration operation, releasing pure CO$_2$ which is then compressed, transported, and sequestered. The regenerated solvent, now at lean state, is returned to start the next cycle of CO$_2$ capture. The whole operation is a continuous process. The same or similar technologies have been applied for decades for natural gas purification and syngas CO$_2$ separation [7–9]. For greenhouse gas CO$_2$ mitigation applications, commercial solvents such as amine, potassium carbonate, and methanol are currently being tested, however, improved solvents are required to reduce the cost and increase the efficiency of postcombustion capture systems. At the moment, solvents that are being developed for CO$_2$ capture include nonconventional amines, aqueous ammonia, amino acids, ionic liquids, and mixtures of two or more solvents, i.e., hybrid systems [10, 11].

Potassium carbonate is known to be used in industrial CO$_2$ separation processes, such as Benfield and Catcarb [12], as the main solvent with or without proprietary additives. It has advantages over amines: lower cost, lower heat of absorption, thermal stability, nonvolatile, less corrosiveness, low toxicity, and environmentally friendly. A major downside for using K$_2$CO$_3$, however, is its slow absorption rate and low CO$_2$ absorption capacity, resulting in poor CO$_2$ mass transfer rate relative to amines. The way to overcome the aforementioned shortcomings of K$_2$CO$_3$ is to add promoter, i.e., a hybrid solvent. Hybrid solvent systems have the potential to perform better than the individual components alone. Physicochemical properties of different solvents can supplement each other. Synergistic effect or cooperative effect of hybrid solvents has been found in applications in other areas such as extraction and coal swelling [13, 14]. The mechanisms of the synergistic effects are suggested to be engendered by thermodynamics and hydrogen bonding.

We have been studying CO$_2$ absorption using an aqueous potassium carbonate solvent solution with the addition of other solvents in an attempt to improve CO$_2$ absorption performance. In this chapter, we report results of a synergistic effect that became apparent during these studies. When small amount of piperazine (PZ) is added to the potassium carbonate solution, both CO$_2$ absorption rate and capacity are significantly enhanced, exceeding the mathematical sum of the CO$_2$ absorption rate and the capacity of the individual solvents.

Piperazine itself is an active absorbent for CO$_2$ [15]. For some engineering reasons, it has only been used as an additive or a promoter to other common CO$_2$ capture amines [16]. With amine solvents, piperazine has shown promotional effect. For instance, the CESAR-1 solvent is an aqueous blend of AMP (2-amino-2-methyl-1-propanol) and PZ which showed a reduction of about 20% in the regeneration energy and 45% in the solvent circulation rate compared to those of MEA-based CO$_2$ capture process under similar process condition [17].

There have been some reports on the promotional/synergistic effect on CO$_2$ capture by K$_2$CO$_3$ and PZ [18]. This study builds upon previous achievements and provides convincing experimental evidence of the synergistic effect.
2. Experimental

A batch-mode liquid-gas absorption apparatus was constructed in CanmetENERGY, Ottawa. A schematic and a photo of the apparatus are shown in **Figure 1**. All of the connections within the system are vacuum-proof. The volume of the four-neck flask is 690 ml. The solute gas used in the experiment is a mixture of CO$_2$ and air (49 v% of CO$_2$). CO$_2$ absorption tests were carried out at 21°C (room temperature). The flask was placed in a water bath to maintain a constant temperature (CO$_2$ absorption is exothermic). First, the flask was purged by the solute gas for 10 min. Then all of the valves of the flask were closed, leaving the gas in the flask at ambient pressure. After this, 10 ml of solvent was introduced into the flask by opening the two valves of the funnel, and then closing them quickly so that the flask becomes a closed system with gaseous solute in contact with liquid solvent. The liquid was agitated by a magnetic stirrer at 350 rpm (there was no difference on the CO$_2$ absorption results with rpm in the range of 300–400). When the CO$_2$ was absorbed, the pressure in the flask decreased. This pressure was monitored with a solid state pressure sensor/transducer (PX209-30V15GI) from Omega. A monotonous pressure declining curve was obtained, revealing the CO$_2$ absorption kinetics (rate of decline) as well as capacity (the final level-off of the decline).

![Figure 1. Batch mode gas-liquid absorption apparatus.](image)

The solvents used and their concentrations in aqueous solution are shown in **Table 1**. In the test, the primary solvent was aqueous potassium carbonate, K$_2$CO$_3$. Other solvents were used as secondary promoters to see if there was a synergistic effect between the primary and secondary solvents. The hybrid solvents were obtained by mixing the individual solvents (shown in **Table 1**) with certain ratio (quantity in ml). Water was added to adjust the effective concentration and the final volume in a test.

Three test series were completed, one for each of the secondary solvents. These included:
Test Series 1—K$_2$CO$_3$ (primary solvent) with PZ (secondary solvent)
- 7 ml K$_2$CO$_3$/3 ml H$_2$O (K$_2$CO$_3$ represents its solution in Table 1)
- 3 ml PZ/7 ml H$_2$O (PZ represents its solution in Table 1)
- 7 ml K$_2$CO$_3$/3 ml PZ

Test Series 2—K$_2$CO$_3$ (primary solvent) with MEA (secondary solvent)
- 7 ml K$_2$CO$_3$/3 ml H$_2$O
- 3 ml MEA/7 ml H$_2$O (MEA represents its solution in Table 1)
- 7 ml K$_2$CO$_3$/3 ml MEA

Test Series 3—K$_2$CO$_3$ (primary solvent) with NaOH (secondary solvent)
- 7 ml K$_2$CO$_3$/3 ml H$_2$O
- 3 ml NaOH/7 ml H$_2$O (NaOH represents its solution in Table 1)
- 7 ml K$_2$CO$_3$/3 ml NaOH

| Solvent                        | Molecular formula | Density (g/cm$^3$) | Molar mass (g/mol) | Concentration used (% wt) | Structure |
|--------------------------------|-------------------|-------------------|--------------------|---------------------------|-----------|
| Potassium carbonate            | K$_2$CO$_3$       | 2.43              | 138.21             | 33                        |           |
| Piperazine (PZ)                | C$_4$H$_{10}$N$_2$| 1.98              | 86.14              | 16                        |           |
| Ethanolamine (MEA)             | C$_2$H$_7$NO      | 1.01              | 61.08              | 15                        |           |
| Sodium hydroxide               | NaOH              | 2.13              | 40.00              | 15                        |           |

Table 1. Properties of chemicals and solvents used in the experiment.

3. Results and discussion

The CO$_2$ absorption results for test series 1 are shown in Figure 2. After the solvent was introduced into the flask filled with CO$_2$/air, the chemisorption occurred as demonstrated by the pressure decrease. From the results in Figure 2, it can be seen that K$_2$CO$_3$ showed a slow absorption rate and low absorption capacity. Piperazine's CO$_2$ absorption rate was faster and
had higher capacity. When the two solvents were mixed, the binary solvent system absorbed more CO$_2$ at an even faster rate. The mathematical sum of the individual CO$_2$ absorption curves of the K$_2$CO$_3$ and piperazine (the sum of the green curve and the light blue curve) is shown in Figure 2 as well (dark blue line). It is clear that the binary solvent system performed much better for CO$_2$ absorption than the mathematical sum of the individual solvents. The two curves (orange and purple in Figure 2) showing the CO$_2$ absorption results of the binary solvent system from two different tests under the same conditions indicate that the apparatus worked very well with a high degree of repeatability.

![Figure 2](image-url)

**Figure 2.** Test series 1—CO$_2$ absorption with binary solvent system of K$_2$CO$_3$ and piperazine.

The test results of the binary solvent system of K$_2$CO$_3$ and MEA are shown in Figure 3. The component solvents of K$_2$CO$_3$ and MEA were of similar effectiveness for CO$_2$ absorption. The binary solvent system showed only a slight synergistic effect.

![Figure 3](image-url)

**Figure 3.** Test series 2—CO$_2$ absorption with binary solvent system of K$_2$CO$_3$ and MEA.
In order to investigate the necessary and/or sufficient conditions for the synergistic effect of a stronger CO$_2$ solvent with a milder solvent (e.g., PZ with K$_2$CO$_3$), the binary solvent system of K$_2$CO$_3$ with NaOH was tested (Figure 4). It can be seen from Figure 4 that, although NaOH is a much stronger CO$_2$ solvent than K$_2$CO$_3$, the binary solvent system of K$_2$CO$_3$ and NaOH does not show any synergistic effect.

![Figure 4](image1.png)

**Figure 4.** Test series 3—CO$_2$ absorption with binary solvent system of K$_2$CO$_3$ and NaOH.

![Figure 5](image2.png)

**Figure 5.** The CO$_2$ absorption by binary solvent versus the ratio of K$_2$CO$_3$:PZ.
Therefore, it is a necessary but not a sufficient condition for a binary solvent system with different CO₂ absorption capacities and kinetics to generate synergistic effect. Among the three pairs, only the binary solvent of K₂CO₃ and PZ showed a positive synergistic effect on CO₂ absorption.

As shown by our experiment (Figure 2) and others [19], PZ is a stronger and faster CO₂ solvent than K₂CO₃. When the ratio of K₂CO₃ and PZ was varied, the CO₂ absorption curves shifted from the curve of K₂CO₃ to the curve of PZ, as shown in Figure 5. The binary solvent systems between the two pure solvents exhibit synergistic effect. Illustrated in Figure 6 is the synergistic performance of the binary solvent as well as the relationships with the two pure solvents (this is only a general illustration).

![Figure 6](http://dx.doi.org/10.5772/65763)

**Figure 6.** Illustration of synergistic effect by a binary solvent system, e.g., K₂CO₃/PZ.

PZ is an expensive solvent. Whether or not it is suitable, alone, as a CO₂ capture solvent is still being explored in terms of thermal stability, corrosiveness and cost, etc. [19]. As shown by this study, it is promising to apply a binary solvent of K₂CO₃ and PZ at a ratio that maximizes the synergistic effect on CO₂ capture. Savings from operating at this condition could be realized in terms of solvent cost, reduction of the absorber and regenerator sizes due to the improved CO₂ absorption rate and capacity. More effective solvents would require smaller absorbers and regenerators, leading to lower capital costs.

J. Tim Cullinane and Gary T. Rochelle have reported the promotional effect of K₂CO₃ and PZ by kinetics [18]. They concluded that the promotional effect comes from the kinetics of the two individual solvents and that the two solvents absorb CO₂ independently. These cannot explain the observations of this study. The promotional or synergistic effect of PZ to K₂CO₃ has been suggested to occur through an intermediate formed between CO₂ (aq) and PZ [20–22]. This hypothesis, however, still needs to be verified experimentally. Our results indicate that there may be a more interactive mechanism affecting the hybrid solvent performance. Having a
binary solvent system with one solvent more effective than the other is a necessary condition for the synergistic effect (the pairs of K₂CO₃ and PZ, K₂CO₃, and NaOH), but not a sufficient condition (K₂CO₃ and NaOH). There must be other reasons behind the synergistic effect. Here we postulate two mechanisms:

- CO₂ transition (or spill over or migration): CO₂ is reactivated by solvent B forming a labile state \([B \cdot [CO₂]_{aq}]\), then transfers or migrates to solvent A to finish CO₂ absorption (Figure 6). Likely hydrogen bonding is involved.

- Reactive complex intermediate structure between the two solvents: in the CO₂ absorption system, there occur some kind of interactions between the two solvents by hydrogen bonding or local ionic attraction, forming a more reactive intermediate complex \([A\cdot B]\) with improved CO₂ absorption ability.

The factors of electron donor strength, dielectric constants, solubility parameters of the individual absorbent, and hydrogen-bonding/nonhydrogen-bonding may influence the degree of synergistic effects. There needs more research work to capture and characterize the reactive intermediate complex or transition state, to prove or disprove these postulated mechanisms.

4. Conclusion

The idea of combining solvents to improve absorption is effective for piperazine and K₂CO₃. These two solvents interact together and generate a greater absorption than each of the individual solvents. The other solvents, i.e., MEA and NaOH, when mixed with K₂CO₃ did not improve CO₂ absorption, implying that the synergistic effect only occurs selectively between specific pairs of solvents. The solution of 3 ml piperazine with 7 ml potassium carbonate is the optimal ratio that increases CO₂ absorption using the least amount of piperazine. The results of these tests show the possibility of using piperazine and K₂CO₃ solution at an industrial scale. If correctly implemented, it would result in savings in capital by reducing the absorber size compared to use K₂CO₃ alone. The next step for this project is to apply these results within a larger system. The major conclusions from the tests conducted are summarized below:

- A synergistic effect between K₂CO₃ and piperazine was observed.
- This synergistic effect only happens between this specific pair of solvents and is not universal. Other than the thermodynamic reasons behind the effect, there seems to be some additional mechanism that enhances the reaction (potentially a labile \([CO₂]\) formation followed by migration or some more reactive intermediate complex structure formed between the two solvent molecules).
- 3 ml piperazine/7 ml K₂CO₃ ratio is the most effective (faster absorption rate and higher absorption capacity).
Acknowledgements

The project was financially supported by the Canadian Federal Government ecoEII Program. Thanks goes to Mr. Zlatko Lovrenovic, coop student from University of Ottawa, for his contribution to the project. An extra financial support from AirScience Technologies Inc., Montreal, Canada, is gratefully acknowledged.

Author details

Quan Zhuang* and Bruce Clements

*Address all correspondence to: quan.zhuang@canada.ca

Natural Resources Canada, CanmetENERGY, Ottawa, Ontario, Canada

References

[1] Kathryn A. Mumford, Yue Wu, Kathryn H. Smith, Geoffrey W. Stevens, “Review of solvent based carbon-dioxide capture technologies”, Front. Chem. Sci. Eng. 2015, 9(2): 125–141.

[2] IPCC Report, 2014 and the previous annual editions.

[3] Yasaman Mirfendereski, “Techno-Economic Assessment of Carbon Capture and Sequestration Technologies in the Fossil Fuel-based Power Sector of the Global Energy-Economy System”, Master Thesis, Technische Universität Berlin, May 2008.

[4] Quan Zhuan, Bruce Clements, Ying Li, “From ammonium bicarbonate fertilizer production process to power plant CO₂ capture”, Int. J. Greenhouse Gas Control, 2012, 10: 56–63.

[5] Quan Zhuang, Richard Pomalis, Ligang Zheng, Bruce Clements, “Ammonia-based carbon dioxide capture technology: issues and solutions”, Energy Procedia, 2010, 4: 1459–1470.

[6] Bruce G. Miller, Clean Coal Engineering Technology, Elsevier, Burlington, USA, 2011.

[7] Salako Abiodun Ebenezer, “Removal of carbon dioxide from natural gas for LNG production”, Institute of Petroleum Technology Norwegian University of Science and Technology, 2005.

[8] Chao Chen, “A technical and economic assessment of CO₂ capture technology for IGCC power plants”, Ph.D. Thesis, Carnegie Mellon University, 2005.
[9] Barry Burr and Lili Lyddon, “A comparison of physical solvents for acid gas removal”, GPA 2008.

[10] Young Eun Kim, Jeong Ho Choi, Sung Chan Nam, Yeo Il Yoon, “CO₂ absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine”, J. Ind. Eng. Chem., 2012, 18: 105–110.

[11] Gary T. Rochelle, Frank Seibert, “CO₂ capture by absorption with potassium carbonate”, DOE Final Report, December 2007.

[12] B. Amerijiafari, F. Grange, H. Ford, “Alternative concepts for supplying carbon dioxide for enhanced oil recovery projects”, DOE Final Report, 1980.

[13] Yongseung Yun, Eric M. Suuberg, “Cooperative effects in solvent swelling of a bituminous coal”, Energy Fuels, 1998, 12: 798–800.

[14] Izuru Matsubayashi, Yuko Hasegawa, “Thermodynamic consideration for solvent effects in the synergistic extraction of europium (III) with pivaloyl trifluoroacetone and 1,10-Phenanthroline”, Anal. Sci., 2001, 17: 221–223.

[15] Francis Bougie, Maria C. Iliuta, “CO₂ absorption in aqueous piperazine solutions: experimental study and modeling”, J. Chem. Eng. Data, 2011, 56: 1547–1554.

[16] Derks, P.W.J., “Carbon Dioxide Absorption in Piperazine Activated N-Methyldiethanolamine”, PhD thesis, University of Twente, The Netherlands, 2006.

[17] Eva Sanchez Fernandez, “Novel process designs to improve the efficiency of postcombustion carbon dioxide capture”, Ph.D. Thesis, Universidad Complutense de Madrid, 2013.

[18] J. Tim Cullinane, Gary T. Rochelle, “Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine”, Chem. Eng. Sci. 2004, 59: 3619–3630.

[19] David H. Van Wagener, Gary T. Rochelle, Eric Chen, “Modeling of pilot stripper results for CO₂ capture by aqueous piperazine”, Intl. J. Greenhouse Gas Control, 2013, 12: 280–287.

[20] R. Ramazania, S. Mazinanib, A. Jahanmiria, B. Van der Bruggen, “Experimental investigation of the effect of addition of different activators to aqueous solution of potassium carbonate: absorption rate and solubility”, Intl. J. Greenhouse Gas Control, 2016, 45: 27–33.

[21] A.L. Shrier, P.V. Danckwerts, “Carbon dioxide absorption into amine-promoted potash solutions”, Ind. Eng. Chem. Fundam. 1969, 8: 415–423.

[22] G. Astarita, D.W. Savage, J. Longo, “Promotion of CO₂ mass transfer in carbonate solutions”, Chem. Eng. Sci. 1981, 36: 581–588.