Appendix / Supplementary material

When using the material in this appendix, please cite Lundengård et al. "Mechanistic mathematical modeling tests hypotheses of the neurovascular coupling in fMRI", PLOS Computational, 2016. DOI: 10.1371/journal.pcbi.1004971.

All models have been uploaded to the model archive biomodels.net, where the model and simulation files can be downloaded.

All models and parameter sets have the same name in the appendix as they have in the article. All steady state values were calculated by simulating the model until steady state has been reached (1000s).

1 The metabolic model M_m

1.1 M_{m1}
The metabolic model M_{m1} assumes that the only mechanism that controls the shape of the BOLD response is that the blood vessels increase the blood flow in response to a lack of oxygen during the stimulus.

1.1.1 States and reactions

State	Interpretation
$d(stimulus)\, dt = 0$	Stimulus input signal
$d(oHb)\, dt = v_{1b} - v_{1f} + v_{inO\text{H}b} - v_{outO\text{H}b}$	Change in oxyhemoglobin level
$d(dHb)\, dt = v_{1f} - v_{1b} + v_{indO\text{H}b} - v_{outdO\text{H}b}$	Change in deoxyhemoglobin level
$d(O_2)\, dt = v_{1f} - v_{1b} - v_{basal} \times \text{proportion}_1 - v_{stim} \times \text{proportion}_2$	Change in oxygen level
$d(glucose)\, dt = v_{inG} - v_{outG} - v_{basal} - v_{stim}$	Change in glucose level
$d(inputDelay)\, dt = input_1 - v_{ID}$	Delay state
$d(oxygenFbDelay)\, dt = v_{tOOFBD} - v_{OOFBD}$	Delay state
$d(oxygenFbDelay_2)\, dt = v_{OOFBD} - v_{OOFBD_2}$	Delay state
$d(oxygenFbDelay_3)\, dt = v_{tOOFBD_2} - v_{OOFBD_3}$	Delay state
$d(oxygen\, feedback)\, dt = v_{OOFBD_3} - v_{OFBR}$	Oxygen feedback to the blood flow
Reaction

Reaction	Interpretation
\(v_1_f = k_1 f \times oHb \)	Rate of releasing oxyhemoglobin into oxygen and deoxyhemoglobin
\(v_1_d = k_1 d \times dHb \times O_2 \)	Rate of binding oxygen and deoxyhemoglobin into oxyhemoglobin
\(v_{inOHb} = \text{oHb}_{body} \times k_{flow} \)	Oxyhemoglobin influx
\(v_{outOHb} = \text{oHb} \times k_{flow} \)	Oxyhemoglobin outflux
\(v_{inOHb} = \text{dHb}_{body} \times k_{flow} \)	Deoxyhemoglobin influx
\(v_{outOHb} = \text{dHb} \times k_{flow} \)	Deoxyhemoglobin outflux
\(v_{inO_2} = O_2_{body} \times k_{flow} \)	Glucose influx
\(v_{outO_2} = O_2 \times k_{flow} \)	Glucose outflux
\(v_{basal} = k_{basal} \times O_2^{\text{proportion1}} \times \text{glucose} \)	Basal metabolism
\(v_{stim} = \text{inputDelay}_5 \times O_2^{\text{proportion2}} \times \text{glucose} \)	Metabolism during stimulation
\(v_{inFB} = k_{\text{metabolic}} \times \text{stimulus} \)	Delay state reactions
\(v_{ID} = k_{ID} \times \text{inputDelay} \)	Delay state reactions
\(v_{O2FB} = O_2_{body} \times \text{glucose} \)	Delay state reactions
\(v_{OFBD} = \text{oxygen}_{FBdelay} \times k_{OFBD} \)	Delay state reactions
\(v_{OFBD2} = \text{oxygen}_{FBdelay2} \times k_{OFBD2} \)	Delay state reactions
\(v_{OFBD3} = \text{oxygen}_{FBdelay3} \times k_{OFBD3} \)	Delay state reactions
\(v_{OFB} = \text{oxygenfeedback} \times k_{OFB} \)	Delay state reactions

1.1.2 Variables

Variable name	Variable unit	Variable value	Interpretation
\(k_{flow} \)	1/s	\(k_{flow} \times O_2 \) \(\text{km} + \text{oxygen feedback} \)	Blood flow
\(G_{body} \)	amount	100	Glucose in arterial blood
\(O_2_{body} \)	amount	100	Oxygen in arterial blood
\(oHb_{body} \)	amount	100	Oxygenated hemoglobin in arterial blood
\(dHb_{body} \)	amount	100	Deoxygenated hemoglobin in arterial blood
\(\hat{y} \)	unitless	\(k_y \times oHb \) \(dHb \)	Output signal
1.1.3 Parameters and parameter values
Parameters and parameter values for the metabolic feedback model M_{m1} used in Fig. A.

Parameter name	Parameter unit	Parameter value
k_{1f}	1/s	14049.3847
k_{1b}	1/(amount×s)	18645.2545
k_{basal}	1/(amount×s)	0.5064
$k_{flow_{O2}}$	amount/s	3.0207
k_y	unitless	12514.7912
$k_{metabolic}$	1/s	1907.5170
k_m	amount	604.8624
proportion1	oxygen/glucose metabolised	0.9222
proportion2	oxygen/glucose metabolised	0.1632
k_{ID}	1/s	6250.7308
O_{2Dbody}	1/s	29.8642
$k_{O_{FBD}}$	1/s	5.5231
$k_{O_{FBD2}}$	1/s	16208.1574
$k_{O_{FBD3}}$	1/s	16.3427
$k_{O_{FB}}$	1/s	3189.4025

Fig A: Oxygen controls the feedback in the metabolic model M_{m1}. Red dots = data mean and SE, blue line = model simulation.
1.2 \(M_{m2} \)

The metabolic model \(M_{m2} \) assumes that the only mechanism that controls the shape of the BOLD response is that the blood vessels increase the blood flow in response to a lack of glucose during the stimulus.

1.2.1 States and reactions

State	Interpretation	Steady State value \(p_1 \)	Steady State value \(p_2 \)	Steady State value \(p_3 \)
\(d(\text{stimulus}) \) \(\frac{dt}{dt} = 0 \)	Stimulus input signal	0	0	0
\(d(oHb) \) \(\frac{dt}{dt} = v_1b - v_1f + v_{inoHb} - v_{outoHb} \)	Change in oxyhemoglobin level	107.10	107.10	107.1
\(d(dHb) \) \(\frac{dt}{dt} = v_1f - v_1b + v_{indHb} - v_{outdHb} \)	Change in deoxyhemoglobin level	92.90	92.90	92.9
\(d(O_2) \) \(\frac{dt}{dt} = v_1f - v_1b - v_{basal} \times \text{proportion}_1 - v_{stim} \times \text{proportion}_2 + v_{ino2} - v_{outo2} \)	Change in oxygen level	0.52	0.52	0.52
\(d(\text{glucose}) \) \(\frac{dt}{dt} = v_{ing} - v_{outg} - v_{basal} - v_{stim} \)	Change in glucose level	29.80	29.80	29.8
\(d(\text{inputDelay}) \) \(\frac{dt}{dt} = \text{input}_1 - v_{ID} \)	Delay state	4.65 \times 10^{-20}	-1.52 \times 10^{-17}	-2.08 \times 10^{-18}
\(d(\text{inputDelay}_2) \) \(\frac{dt}{dt} = v_{ID} - v_{ID2} \)	Delay state	4.63 \times 10^{-20}	-1.51 \times 10^{-17}	-2.07 \times 10^{-18}
\(d(\text{inputDelay}_3) \) \(\frac{dt}{dt} = v_{ID2} - v_{ID3} \)	Delay state	4.70 \times 10^{-20}	-1.54 \times 10^{-17}	-2.1 \times 10^{-18}
\(d(\text{inputDelay}_4) \) \(\frac{dt}{dt} = v_{ID3} - v_{ID4} \)	Delay state	4.59 \times 10^{-20}	-1.50 \times 10^{-17}	-2.05 \times 10^{-18}
\(d(\text{inputDelay}_5) \) \(\frac{dt}{dt} = v_{ID4} - v_{ID5} \)	Delay state	1.66 \times 10^{-23}	-5.41 \times 10^{-21}	-7.4 \times 10^{-22}
\(d(\text{glucoseFeedback}) \) \(\frac{dt}{dt} = v_{tOGFB} - v_{GFB} \)	Glucose feedback to the blood flow	0.16	0.16	0.16
\(d(\text{glucoseFeedback}) \) \(\frac{dt}{dt} = v_{GFB} - v_{GFB} \)	Glucose feedback to the blood flow	0.25	0.25	0.25
1.2.2 Variables

Variable name	Variable unit	Variable value	Interpretation
k_{flow}	1/s	$k_{flow}t_{glucose}$	Blood flow
G_{body}	amount	100	Glucose in arterial blood
GD_{body}	amount	100	Glucose feedback delay
O_{2body}	amount	100	Oxygen in arterial blood
oHb_{body}	amount	100	Oxygenated hemoglobin in arterial blood
dHb_{body}	amount	100	Deoxygenated hemoglobin in arterial blood
\dot{y}	unitless	$k_{y}\times oHb$	Output signal

Reaction

Reaction	Interpretation
$v_{inO2} = oHb_{body} \times k_{flow}$	Oxyhemoglobin influx
$v_{outO2} = oHb_{body} \times k_{flow}$	Oxyhemoglobin outflux
$v_{inDh} = dHb_{body} \times k_{flow}$	Deoxyhemoglobin influx
$v_{outDh} = dHb_{body} \times k_{flow}$	Deoxyhemoglobin outflux
$v_{inG} = G_{body} \times k_{flow}$	Glucose influx
$v_{outG} = G_{body} \times k_{flow}$	Glucose outflux
$v_{inO2} = O_{2body} \times k_{flow}$	Oxygen influx
$v_{outO2} = O_{2} \times k_{flow}$	Oxygen outflux
$v_{basal} = k_{basal} \times O_{2}^{proportion} \times glucose$	Basal metabolism
$v_{stim} = inputDelay_5 \times O_{2}^{proportion} \times glucose \times k_{j2}$	Metabolism during stimulation
$v_{ID} = k_{ID} \times inputDelay$	Delay state reactions
$v_{GFB} = GD_{body} \times glucose$	Delay state reactions
$v_{GFB} = glucose_{FB delay} \times k_{GFB}$	Delay state reactions
$v_{ID2} = inputDelay_2 \times k_{ID2}$	Delay state reactions
$v_{ID3} = inputDelay_3 \times k_{ID3}$	Delay state reactions
$v_{ID4} = inputDelay_4 \times k_{ID4}$	Delay state reactions
$v_{ID5} = inputDelay_5 \times k_{ID5}$	Delay state reactions
Parameters and parameter values

Parameter sets for model M_{m2} used in Fig. 5 B-D. Proportion1 and proportion2 (marked in bold) control the proportion of aerobic and anaerobic metabolism during basal conditions vs. during stimulation.

Parameter names	Parameter unit	p_1	p_2	p_3
	$(\frac{CMR_{O2}}{CMR_{glu}})_b$	$(\frac{CMR_{O2}}{CMR_{glu}})_s$	$(\frac{CMR_{O2}}{CMR_{glu}})_{stim}$	$(\frac{CMR_{O2}}{CMR_{glu}})_{stim}$
k_{1f}	1/s	627.1792	627.1792	627.1792
k_{1b}	1/(amount\timess)	1381.9932	1381.9932	1381.9932
k_{basal}	1/(amount\timess)	5.0587	5.0587	5.0587
$k_{flow_{glucose}}$	amount/s	102.6292	102.6292	102.6292
k_{Y}	unitless/s	2905.5532	2905.5532	2905.5532
$k_{metabolic}$	1/s	189.3795	189.3795	189.3795
k_{m}	amount	111.8459	111.8459	111.8459
k_{2}	1/(amount$^2\times$s)	11.67404	11.67404	11.67404
proportion1	oxygen/glucose metabolised	**1.3159**	**1.3159**	**1.3159**
proportion2	oxygen/glucose metabolised	**1.3159**	0	**0.6304**
k_{ID}	1/s	0.9575	0.9575	0.9575
k_{GFBD}	1/s	18641.1377	18641.1377	18641.1377
k_{GFB}	1/s	11921.2175	11921.2175	11921.2175
k_{ID2}	1/s	0.9613	0.9613	0.9613
k_{ID3}	1/s	0.9484	0.9484	0.9484
k_{ID4}	1/s	0.9703	0.9703	0.9703
k_{ID5}	1/s	2687.7052	2687.7052	2687.7052
1.3 M_{m3}

The metabolic model M_{m3} assumes that the only mechanism that controls the shape of the BOLD response is that the blood vessels increase the blood flow in response to a lack of glucose during the stimulus. The delay states are placed in the glucose feedback, not between stimulus and metabolism.

1.3.1 Interaction graph

![Interaction graph](image)

Fig. B: Interaction graph of the metabolic feedback model M_{m3}.
Interaction graphs of the metabolic feedback model and the neurotransmitter feed-forward model.

Whole squares = states, dashed squares = variables (summed from states), whole arrows = transformations, dashed arrows = interactions, green area = astrocyte, blue area = neuron, grey area = blood. All states starting with S and a number are delay states. Stimulus is the input to the model. Gbody, O2body, oHbbody, dHbbody, and PL are variables. Stimulus = input signal. oHb and dHb are oxyhemoglobin and deoxyhemoglobin, respectively.
1.3.2 States and reactions

State	Interpretation	Steady State value	Steady State value
\(\frac{d(\text{stimulus})}{dt} = 0 \)	Stimulus input signal	0	0
\(\frac{d(oHb)}{dt} = v_1b - v_f + v_{inoHb} - v_{outHb} \)	Change in oxyhemoglobin level	1.84	16.15
\(\frac{d(dHb)}{dt} = v_1f - v_1b + v_{indHb} - v_{outdHb} \)	Change in deoxyhemoglobin level	18.16	3.85
\(\frac{d(O_2)}{dt} = v_f - v_1b - v_{basal} \times \text{proportion}_1 - v_{stim} \times \text{proportion}_2 + v_{ino2} - v_{outo2} \)	Change in oxygen level	0.12	0.0018
\(\frac{d(\text{glucose})}{dt} = v_{ing} - v_{outG} - v_{basal} - v_{stim} \)	Change in glucose level	1.41	5.60
\(\frac{d(\text{inputDelay})}{dt} = \text{input}_1 - v_{ID} \)	Delay state	\(-2.11 \times 10^{-14}\)	\(-8.12 \times 10^{-15}\)
\(\frac{d(\text{glucoseFbDelay})}{dt} = v_{togoFBD} - v_{GFBD} \)	Delay states	0.18	3897.12
\(\frac{d(\text{glucoseFbDelay}_2)}{dt} = v_{GFBD} - v_{GFBD2} \)			
\(\frac{d(\text{glucoseFbDelay}_3)}{dt} = v_{GFBD2} - v_{GFBD3} \)			
\(\frac{d(\text{glucosefeedback})}{dt} = v_{GFBD3} - v_{GFBD} \)			
Reaction	Interpretation		
----------	----------------		
$v_1_f = k_1 f \times oHb$	Rate of releasing oxyhemoglobin into oxygen and deoxyhemoglobin		
$v_1_b = k_1 b \times dHb \times O_2$	Rate of binding oxygen and deoxyhemoglobin into oxyhemoglobin		
$v_{inOHb} = oHb_{body} \times k_{flow}$	Oxyhemoglobin influx		
$v_{outOHb} = oHb \times k_{flow}$	Oxyhemoglobin outflux		
$v_{inDHB} = dHb_{body} \times k_{flow}$	Deoxyhemoglobin influx		
$v_{outDHB} = dHb \times k_{flow}$	Deoxyhemoglobin outflux		
$v_{inG} = G_{body} \times k_{flow}$	Glucose influx		
$v_{outG} = glucose \times k_{flow}$	Glucose outflux		
$v_{inO2} = O2_{body} \times k_{flow}$	Oxygen influx		
$v_{outO2} = O2 \times k_{flow}$	Oxygen outflux		
$v_{basal} = k_{basal} \times O2_{proportion 1} \times glucose$	Basal metabolism		
$v_{stim} = inputDelay \times O2_{proportion 2} \times glucose$	Metabolism during stimulation		
$input_1 = k_{metabolic} \times stimulus$	Delay state reactions		
$v_{ID} = k_{delay} \times input_{delay}$	Delay state reactions		
$v_{logFB} = G_{body} \times glucose$	Delay state reactions		
$v_{GFB} = glucose_{FBdelay} \times k_{GFB}$	Delay state reactions		
$v_{GFB2} = glucose_{FBdelay2} \times k_{GFB2}$	Delay state reactions		
$v_{GFB3} = glucose_{FBdelay3} \times k_{GFB3}$	Delay state reactions		
$v_{GFB} = glucosefeedback \times k_{GFB}$	Delay state reactions		

1.3.3 Variables

Variable name	Variable unit	Variable value	Interpretation
k_{flow}	1/s	$k_{flowglucose}$ over $km + glucosefeedback$	Blood flow
G_{body}	amount	100	Glucose in arterial blood
$O2_{body}$	amount	100	Oxygen in arterial blood
oHb_{body}	amount	100	Oxygenated hemoglobin in arterial blood
dHb_{body}	amount	100	Deoxygenated hemoglobin in arterial blood
\hat{y}	unitless	$k_y \times oHb$ over dHb	Output signal
1.3.4 Parameters and parameter values

Parameter sets for model M_{m3} used in Fig. 5 G-J.

Parameter names	Parameter unit	p_4 Only undershoot	p_5 Only initial dip
k_{1f}	1/s	1.3952	8.8366
k_{1b}	1/(amount×s)	0.0011	19957.2824
k_{basal}	1/(amount×s)	174.5880	41.8601
k_{flow_glu}	amount/s	2438.7260	818.7605
k_y	unitless	297.9752	2.7266
k_{metabolic}	1/s	19943.3114	19852.9448
k_m	amount	3.3201	0.1918
proportion1	oxygen/glucose metabolised	2.1006	0.8738
proportion2	oxygen/glucose metabolised	0.0011	0.1102
k_{ID}	1/s	7.0830	1.4594
GD_{body}	1/s	2603.4638	545.2871
k_{GFBD}	1/s	19932.2693	0.7838
k_{GFBD2}	1/s	0.6959	0.8452
k_{GFBD3}	1/s	0.6676	4916.7131
k_{GFBD}	1/s	0.4752	0.8249

Cost: p_4 = 18.02, p_5 = 60.84.
2 The Neurotransmitter model M_n

2.1 M_{n1}
The neurotransmitter model M_{n1} assumes that the mechanism that controls the shape of the BOLD response is the vessel response to signaling substances released by neurons and astrocytes in response to a stimulus.

2.1.1 Interaction graph

Fig. C: Interaction graph of the neurotransmitter feed-forward model. The neurotransmitter feed-forward hypothesis is described in more detail in Attwell 2010. Whole squares = states, dashed squares = variables (summed from states), whole arrows = transformations, dashed arrows = interactions, green area = astrocyte, blue area = neuron. All states starting with S and a number are delay states. Stimulus is the input to the model. Calcium neuron and calcium Astrocyte = calcium ion (Ca^{2+}) level in the cell, NO = nitric oxide, cGMP = cyclic guanosine monophosphate, AA = arachidonic acid, EET = epoxyeicosatrienoic acids, PG = prostaglandins and HETE = hydroxyeicosatetraeonic acid (20-HETE).
2.1.2 States and reactions

State	Interpretation	Steady State value
$d(\text{Stimulus})/dt$	Stimulus input signal	0
$d(\text{glu})/dt$	Glutamate release in the synaptic cleft	0
$d(\text{Ca}_{\text{Astro}})/dt$	Calcium influx in the astrocyte	1.45
$d(\text{AA})/dt$	Change in AA level	768.92
$d(\text{Ca}_{\text{Neuro}})/dt$	Calcium influx in the neuron	0.78
$d(\text{NO})/dt$	Change in NO level	0.72
$d(\text{HETE})/dt$	HETE effecting the blood vessels	736.81
$d(\text{PG})/dt$	PG effecting the blood vessels	740.05
$d(\text{EET})/dt$	EET effecting the blood vessels	722.52
$d(\text{cGMP})/dt$	cGMP effecting the blood vessels	0.78
Reactions

\[\text{in} = k_1 \times \text{Stimulus} \]
\[\text{glu}_{\text{Sink}} = \text{glu} \times \text{sink}_{\text{Glu}} \]

Interpretation

Stimulus input
Glucose breakdown and reuptake

\[\text{Glutamate}_A = k_2 \times \text{glu} \]
\[\text{calcium}_{\text{Astro}1} = C_{\text{a Astro}} \times \text{sink}_A \]
\[\text{calcium}_{\text{Astro}2} = P L \times C_{\text{a Astro}} \times k_A \]

Calcium influx in the astrocyte
Calcium outflux in the astrocyte
Calcium induced AA

\[AA_{HETE} = k_5 \times \frac{AA}{(k_m + k_a \times \text{NO})} \]

AA turning into HETE

\[AA_{PG} = k_6 \times AA \]

AA turning into PG

\[AA_{EET} = k_7 \times \frac{AA}{(k_m + k_a \times \text{NO})} \]

AA turning into EET

\[\text{Glutamate}_N = k_3 \times \text{glu} \]
\[\text{calcium}_{\text{Neuro}1} = C_{\text{a Neuro}} \times \text{sink}_N \]
\[\text{calcium}_{\text{Neuro}2} = k_10 \times C_{\text{a Neuro}} \]

Calcium influx in the neuron
Calcium outflux in the neuron
Calcium induced NO

\[NO_{cGMP} = k_{11} \times NO \]
\[\text{sink}_{\text{NO}} = NO_{\text{sink}} \times NO \]

NO induced cGMP
NO breakdown

\[v_{1HETE} = k_{12} \times S_{1HETE} \]
\[v_{2HETE} = k_{13} \times S_{2HETE} \]
\[v_{3HETE} = k_{14} \times S_{3HETE} \]
\[HETE_{\text{sink}} = HETE \times \text{sink}_H \]

Delay state reactions
HETE breakdown

\[v_{1PG} = k_{15} \times S_{1PG} \]
\[v_{2PG} = k_{16} \times S_{2PG} \]
\[v_{3PG} = k_{17} \times S_{3PG} \]
\[PG_{\text{sink}} = PG \times \text{sink}_P \]

Delay state reactions
PG breakdown

\[v_{1EET} = k_{18} \times S_{1EET} \]
\[v_{2EET} = k_{19} \times S_{2EET} \]
\[v_{3EET} = k_{20} \times S_{3EET} \]
\[EET_{\text{sink}} = EET \times \text{sink}_E \]

Delay state reactions
EET breakdown

\[v_{1cGMP} = k_{21} \times S_{1cGMP} \]
\[v_{2cGMP} = k_{22} \times S_{2cGMP} \]
\[v_{3cGMP} = k_{23} \times S_{3cGMP} \]
\[cGMP_{\text{sink}} = cGMP \times \text{sink}_c \]

Delay state reactions
cGMP breakdown

2.1.3 Variables

Variable name	Variable unit	Variable value
Stimulating	unitless	\(b_1 \times cGMP + b_2 \times PG + b_3 \times EET \)
Inhibiting	unitless	\(b_4 \times HETE \)
\(\bar{y} \)	unitless	\(b_1 \times cGMP + b_2 \times PG + b_3 \times EET - b_4 \times HETE \)
2.1.4 Parameters and parameter values
Parameter sets for model M_{\text{n1}} used in Fig. 6A.

Parameter name	Parameter unit	Parameter Value
k_1	1/s	0.5589
k_2	1/s	0.053036
k_3	1/s	3.3634
k_4	1/(amount\times s)	1.6775
k_5	amount/s	0.43467
k_6	1/s	5.892\times 10^7
k_7	amount/s	1.7891
k_8	unitless	1.0276
k_9	unitless	2.8976
k_{10}	1/s	1.0993
k_{11}	1/s	4.8221\times 10^5
k_{12}	1/s	6.3353\times 10^8
k_{13}	1/s	0.87781
k_{14}	1/s	1.0343
k_{15}	1/s	2.1986
k_{16}	1/s	0.8836
k_{17}	1/s	1.2209
k_{18}	1/s	0.6518
k_{19}	1/s	0.9190
k_{20}	1/s	7.5887 \times 10^7
k_{21}	1/s	2.5067
k_{22}	1/s	1.7921
k_{23}	1/s	1.5562\times 10^5
k_{m1}	amount	5.5066\times 10^6
k_{m2}	amount	0.0433
b_1	1/amount	2.7762
b_2	1/amount	1.299
b_3	1/amount	0.8634
b_4	1/amount	1.0201\times 10^7
Ca_{\text{Abas}}	amount/s	3.3823\times 10^7
Ca_{\text{Nbas}}	amount/s	1.4943
sink_{\text{Glu}}	1/s	0.5318
sink_{\text{A}}	1/s	1.3426
sink_{\text{N}}	1/s	0.9493
sink_{\text{H}}	1/s	5.7961\times 10^7
sink_{\text{P}}	1/s	0.9134
-----	-----	------------
sink_E	1/s	0.7554
sink_c	1/s	6.7692×10^5
NO_{sink}	1/s	1.0735
PL	amount/s	945.52

Cost: 5.76.

2.2 \(M_{n2} \)

Minimized version of the neurotransmitter model \(M_{n1} \). The main mechanism is the balance between the vasoconstricting and the vasodilating arm of the model structure.

The states, variables and parameters of this model do not have a biological interpretation.

2.2.1 Interaction graph

Fig. D. Interaction graph of the minimized neurotransmitter feed-forward model. Filled grey squares = vasodilation states, checkered grey squares = vasoconstriction states.
2.2.2 Fit to data

Fig E: Fit of the minimal model M_{n2} to data. Red dots = data mean and SE, blue line = model simulation.

2.2.3 States and reactions

State equation	Steady State values
$\frac{d(l)}{dt}$ = 0	3.86×10^{-21}
$\frac{d(S1)}{dt}$ = $I\times k_0 - S1\times k_1$	-1.88×10^{-14}
$\frac{d(S2)}{dt}$ = $S1\times k_1 - S2\times k_2$	-3.71×10^{-14}
$\frac{d(S3)}{dt}$ = $S2\times k_2 - S3\times (k_{3s} + k_{3i})$	-2.30×10^{-14}
$\frac{d(S4)}{dt}$ = $S3\times k_{3s} - S4\times k_{4s}$	-2.54×10^{-13}
$\frac{d(S5)}{dt}$ = $S4\times k_{4s} - S5\times k_{5s}$	-3.75×10^{-13}
$\frac{d(S6)}{dt}$ = $S5\times k_{5s} - S6\times k_{6s}$	-2.10×10^{-16}
$\frac{d(S7)}{dt}$ = $S6\times k_{6s} - S7\times k_{7s}$	-1.42×10^{-12}
$\frac{d(S8)}{dt}$ = $S7\times k_{7s}$	0.57
$\frac{d(S1)}{dt}$ = $S3\times k_{3i} - S4\times k_{4i}$	-4.93×10^{-14}
$\frac{d(S5)}{dt}$ = $S4\times k_{4i} - S5\times k_{5i}$	2.46×10^{-12}
$\frac{d(S6)}{dt}$ = $S5\times k_{5i} - S6\times k_{6i}$	5.29×10^{-13}
$\frac{d(S7)}{dt}$ = $S6\times k_{6i} - S7\times k_{7i}$	6.25×10^{-18}
$\frac{d(S8)}{dt}$ = $S7\times k_{7i}$	0.43
2.2.4 Variables

Variable name	Variable unit	Variable value
Stimulating	unitless	$S_{5s} + S_{6s} + S_{7s}$
Inhibitory	unitless	$S_{5i} + S_{6i} + S_{7i}$
\hat{y}	unitless	$k_y (S_{5s} - S_{5i} + S_{6s} - S_{6i} + S_{7s} - S_{7i})$

2.2.5 Parameters and parameter values

Parameter sets for model M_{h2} used in Fig. D.

Parameter names	Parameter unit	Parameter values best fit intensity experiment
k_y	unitless	13467
k_0	1/s	0.1034
k_1	1/s	0.6245
k_2	1/s	0.9430
k_{3s}	1/s	1.2261
k_{4s}	1/s	0.7059
k_{5s}	1/s	1.0579
k_{6s}	1/s	1889.7
k_{7s}	1/s	0.7730
k_{3i}	1/s	0.9163
k_{4i}	1/s	1.0627
k_{5i}	1/s	0.4454
k_{6i}	1/s	2.5427
k_{7i}	1/s	0.000021531

Cost: 29.2.
3 The feed-forward with metabolism model M_{nm}

3.1 M_{nm1} Model structure

The combined model M_{nm1} is a merge between the metabolic model M_{m3} and the neurotransmitter model M_{n1}. It assumes that the vessel response to signaling substances released by neurons and astrocytes in response to a stimulus controls the blood flow. The metabolism controls the balance of dHb and oHb. Therefore, both the metabolism and the intracellular signaling controls the shape of the BOLD response. The metabolism of O_2 is the main mechanism behind the intial dip while the blood flow controls the peak and the post-peak undershoot.

3.1.1 Interaction graph

Fig. F: Interaction graph of the combined model M_{nm1}. All abbreviations and names as declared above.
3.1.2 States and reactions

State	Interpretation	Steady State value p7	Steady State value p9
\(\frac{d(\text{stimulus})}{dt}\) = 0	Stimulus input signal	0	0
\(\frac{d(\text{oHb})}{dt} = v_1 - v_{\text{f}} + v_{\text{inO}Hb} - v_{\text{outO}Hb}\)	Change in oxyhemoglobin level	5.54	7.21
\(\frac{d(Hb)}{dt} = v_{\text{f}} - v_1 + v_{\text{indHb}} - v_{\text{outdHb}}\)	Change in deoxyhemoglobin level	14.45	12.79
\(\frac{d(O_2)}{dt} = v_{\text{f}} - v_1 - v_{\text{basal}} \times \text{proportion}_1 - v_{\text{stim}} \times \text{proportion}_2 + v_{\text{inO}2} - v_{\text{outO}2}\)	Change in oxygen level	0.8	1.26
\(\frac{d(\text{glucose})}{dt} = v_{\text{inG}} - v_{\text{outG}} - v_{\text{basal}} - v_{\text{stim}}\)	Change in glucose level	6.85	8.66
\(\frac{d(\text{inputDelay})}{dt} = \text{input}_1 - v_{\text{ID}}\)	Delay state	5.54\times10^{-17}	7.85\times10^{-18}
\(\frac{d(\text{glu})}{dt} = \text{input}_2 - \text{glu}_{\text{sink}}\)	Glutamate release in the synaptic cleft	1.54\times10^{-17}	6.08\times10^{-19}
\(\frac{d(Ca_{\text{Astro}})}{dt} = \text{Glutamate}_{A} - \text{calcium}_{\text{Astro}1} + Ca_{\text{bas}}\)	Calcium influx in the astrocyte	8.67	2.15
\(\frac{d(AA)}{dt} = \text{calcium}_{\text{Astro}2} - (AA_{\text{HETE}} + AA_{\text{PG}} + AA_{\text{EET}})\)	Change in AA level	1433.15	36.56
\(\frac{d(Ca_{\text{Neuro}})}{dt} = \text{Glutamate}_{N} - \text{calcium}_{\text{Neuro1}} + Ca_{\text{bas}}\)	Calcium influx in the neuron	2885.39	2.52
\(\frac{d(NO)}{dt} = \text{calcium}_{\text{Neuro2}} - \text{sink}_{\text{NO}}\)	Change in NO level	127.69	0.09
\(\frac{d(HETE)}{dt} = v_{\text{HETE}} - HETE_{\text{sink}}\)	HETE effecting the blood vessels	81.99	38.65
\(\frac{d(S_{1\text{HETE}})}{dt} = AA_{\text{HETE}} - v_{\text{HETE}}\)	Delay states	1.084	25.23
\(\frac{d(S_{2\text{HETE}})}{dt} = v_{\text{HETE}} - v_{\text{HETE}}\)		95.37	41.52
\(\frac{d(S_{3\text{HETE}})}{dt} = v_{\text{HETE}} - v_{\text{HETE}}\)		58.49	32.79
\(\frac{d(\text{PG})}{dt} = v_{\text{PG}} - PG_{\text{sink}}\)	PG effecting the blood vessels	0.06	0.33
\(\frac{d(S_{1\text{PG}})}{dt} = AA_{\text{PG}} - v_{\text{PG}}\)	Delay states	2.62	1.77
\(\frac{d(S_{2\text{PG}})}{dt} = v_{\text{PG}} - v_{\text{PG}}\)		0.37	0.39
\(\frac{d(S_{3\text{PG}})}{dt} = v_{\text{PG}} - v_{\text{PG}}\)		0.084	1.49
\[
\begin{align*}
\frac{d(EET)}{dt} &= v^3_{EET} - EET_{sink} \\
\frac{d(S1_{EET})}{dt} &= AA_{EET} - v^1_{EET} \\
\frac{d(S2_{EET})}{dt} &= v^1_{EET} - v^2_{EET} \\
\frac{d(S3_{EET})}{dt} &= v^2_{EET} - v^3_{EET} \\
\end{align*}
\]

EET effecting the blood vessels
Delay states
31.99
39.64
34.05
31.84

\[
\begin{align*}
\frac{d(cGMP)}{dt} &= v^3_{cGMP} - cGMP_{sink} \\
\frac{d(S1_{cGMP})}{dt} &= AA_{cGMP} - v^1_{cGMP} \\
\frac{d(S2_{cGMP})}{dt} &= v^1_{cGMP} - v^2_{cGMP} \\
\frac{d(S3_{cGMP})}{dt} &= v^2_{cGMP} - v^3_{cGMP} \\
\end{align*}
\]

cGMP effecting the blood vessels
Delay states
15.28
2.14
0.47
1.39
0.001
0.01
0.07
0.02
Reactions	Interpretation
\(v_1_f \) = \(k_1 \times oHb \)	Rate of releasing oxyhemoglobin into oxygen and deoxyhemoglobin
\(v_1_b \) = \(k_1 \times dHb \times O_2 \)	Rate of binding oxygen and deoxyhemoglobin into oxyhemoglobin
\(v_{inoHb} \) = \(oHb_{body} \times k_{flow} \)	Oxyhemoglobin influx
\(v_{outHb} \) = \(oHb \times k_{flow} \)	Oxyhemoglobin outflux
\(v_{indHb} \) = \(dHb_{body} \times k_{flow} \)	Deoxyhemoglobin influx
\(v_{outHb} \) = \(dHb \times k_{flow} \)	Deoxyhemoglobin outflux
\(v_{inG} \) = \(G_{body} \times k_{flow} \)	Glucose influx
\(v_{outG} \) = \(glucose \times k_{flow} \)	Glucose outflux
\(v_{inO_2} \) = \(O_2_{body} \times k_{flow} \)	Oxygen influx
\(v_{outO_2} \) = \(O_2 \times k_{flow} \)	Oxygen outflux
\(v_{basal} \) = \(k_{basal} \times O_2^{\text{propportion1} \times \text{glucose}} \)	Basal metabolism
\(v_{stim} \) = \(\text{inputDelay} \times O_2^{\text{propportion2} \times \text{glucose}} \)	Metabolism during stimulation
\(input_1 \) = \(k_{\text{metabolic}} \times \text{stimulus} \)	Stimulus input to the metabolic module
\(input_2 \) = \(k_{\text{neurotrans}} \times \text{stimulus} \)	Delay state reaction
\(glu_{\text{Sink}} \) = \(\text{sink}_{\text{Glu}} \times \text{glu} \)	Stimulus input to the neurotransmitter module
\(Glutamate_A \) = \(k_2 \times \text{glu} \)	Glucose breakdown and reuptake
\(calcium_{Astro1} \) = \(Ca_{Astro} \times sink_A \)	Calcium influx in the astrocyte
\(calcium_{Astro2} \) = \(PL \times Ca_{Astro} \times k_4 \)	Calcium outflux in the astrocyte
\(AA_{HETE} \) = \(k_5 \times \frac{AA}{(km_1 + k_8 \times NO)} \)	AA turning into HETE
\(AA_{PG} \) = \(k_6 \times AA \)	AA turning into PG
\(AA_{EET} \) = \(k_7 \times \frac{AA}{(km_2 + k_9 \times NO)} \)	AA turning into EET
\(Glutamate_N \) = \(k_3 \times \text{glu} \)	Calcium influx in the neuron
\(calcium_{Neuro1} \) = \(Ca_{Neuro} \times sink_N \)	Calcium outflux in the neuron
\(calcium_{Neuro2} \) = \(k_{10} \times Ca_{Neuro} \)	Calcium induced NO
\(NO_{cGMP} \) = \(k_{11} \times NO \)	NO induced cGMP
\(sink_{NO} \) = \(NO_{sink} \times NO \)	NO breakdown
\(v_{1_{HETE}} \) = \(k_{12} \times S1_{HETE} \)	Delay state reactions
\(v_{2_{HETE}} \) = \(k_{13} \times S2_{HETE} \)	HETE breakdown
\(v_{3_{HETE}} \) = \(k_{14} \times S3_{HETE} \)	Delay state reactions
\(HETE_{sink} \) = \(HETE \times sink_H \)	HETE breakdown
\(v_{1_{PG}} \) = \(k_{15} \times S1_{PG} \)	Delay state reactions
\(v_{2_{PG}} \) = \(k_{16} \times S2_{PG} \)	PG breakdown
\(v_{3_{PG}} \) = \(k_{17} \times S3_{PG} \)	Delay state reactions
\(PG_{sink} \) = \(PG \times sink_p \)	Delay state reactions
\(v_{1_{EET}} \) = \(k_{18} \times S1_{EET} \)	Delay state reactions
\(v_{2_{EET}} \) = \(k_{19} \times S2_{EET} \)	Delay state reactions
\[v_3^{EET} = k_{20} \times S_3^{EET} \]
\[EET_{sink} = EET \times \text{sink}_E \]

\[v_1^{cGMP} = k_{21} \times S_1^{cGMP} \]
\[v_2^{cGMP} = k_{22} \times S_2^{cGMP} \]
\[v_3^{cGMP} = k_{23} \times S_3^{cGMP} \]
\[cGMP_{sink} = cGMP \times \text{sink}_c \]

3.1.3 Variables

Variable name	Variable unit	Variable value	Interpretation
\(k_{flow}\)	1/s	\(k_{flow_{\text{glucose}}} + \text{stimulating} - \text{inhibiting}\)	Blood flow
\(G_{body}\)	amount	10	Glucose in arterial blood
\(O_{2body}\)	amount	10	Oxygen in arterial blood
\(oHb_{body}\)	amount	10	Oxygenated hemoglobin in arterial blood
\(dHb_{body}\)	amount	10	Deoxygenated hemoglobin in arterial blood
Stimulating	1/s	\(b_1 \times cGMP + b_2 \times PG + b_3 \times \text{EET}\)	Vasodilation
Inhibiting	1/s	\(b_4 \times \text{HETE}\)	Vasoconstriction
\(Act\)	1/s	\(b_1 \times cGMP + b_2 \times PG + b_3 \times \text{EET} - b_4 \times \text{HETE}\)	Signal substance effect on blood flow
\(\hat{y}\)	unitless	\(\frac{k_y \times oHb}{dHb}\)	Output signal
3.1.4 Parameters and parameter values

Parameter sets for model M_{nm1} used in Fig. 8, Fig. 9 and Fig. 10.

Parameter names	Parameter unit	p7 best opt intensity data	p7 best opt frequency data	p9 best opt intensity data	p9 best opt frequency data
k_y	amount/s	1223.4987	508.4496		
$k_{metabolic}$	1/s	114.7037	1153.8404		
$k_{neurotrans}$	1/s	1104.2209	116.0994		
k_1f	1/s	177.3318	1174.2658		
k_{1b}	1/(amount×s)	1122.5565	194.4418		
k_{basal}	1/(amount×s)	91.3332	1381.4508		
$k_{flow_{glucose}}$	1/s	4.3346	117.9462		
proportion1	oxygen/glucose metabolised	2.4188	5.6257		
proportion2	oxygen/glucose metabolised	4.5876	2.6729		
sinkinput	1/s	1.1802	4.6492		
k_{2}	1/s	7.3947	1.1401		
k_{3}	1/s	4.1432	3.7141		
k_{4}	1/(amount×s)	2.0084	4.0534		
k_{5}	amount/s	0.8885	2.1437		
k_{6}	1/s	3.5817	0.9628		
k_{7}	amount/s	0.3491	3.7232		
k_{8}	unitless	1.0228	0.3676		
k_{9}	unitless	0.1718	1.0583		
k_{10}	1/s	5.8839	0.1795		
k_{11}	1/s	49.7049	6.1628		
k_{12}	1/s	0.5647	118.5220		
k_{13}	1/s	0.9208	0.6189		
k_{14}	1/s	485.3883	1.0366		
k_{15}	1/s	3481.4269	583.7653		
k_{16}	1/s	15170.2739	1937.3654		
k_{17}	1/s	0.9036	10982.2259		
k_{18}	1/s	1.0520	0.9339		
k_{19}	1/s	1.1249	1.1366		
k_{20}	1/s	350.7833	1.1654		
k_{21}	1/s	1609.9603	592.9449		
k_{22}	1/s	538.4678	1805.0249		
k_{23}	1/s	8.8579	555.2464		
k_{m1}	amount	12.7144	9.2642		
k_{m2}	amount	7.8886	14.4421		
Ca_{Abas}	amount/s	9279.9419	8.2545		
Ca_{Nbas}	amount/s	1.5455	9828.1976		
sinkGlu	1/s	0.9103	1.6419		
--------	--------	--------	--------		
sink\(A\)	1/s	3.2162	0.8607		
sink\(N\)	1/s	0.6568	3.4898		
sink\(H\)	1/s	19985.5644	0.6677		
sink\(P\)	1/s	1.1195	19830.1832		
sink\(E\)	1/s	49.1725	1.1691		
sink\(c\)	1/s	3.8819	54.3174		
NO\(\text{sink}\)	1/s	37.9614	4.0331		
PL	amount	40.8202	38.1518		
\(b_1\)	1/(amount\(\times\)s)	16.5399	40.5355		
\(b_2\)	1/(amount\(\times\)s)	18.6399	20.9122		
\(b_3\)	1/(amount\(\times\)s)	4.8399	19.3131		
\(b_4\)	1/(amount\(\times\)s)	1223.4987	5.0147		

Cost: \(p7 = 7.17, p9 = 11.24\).

3.1.5 Glucose metabolism in the model \(M\)_{nm1}

![Figure G](image.png)

Figure G: Simulated glucose metabolism in the model \(M\)_{nm1}.

24
3.2 M_{nm2} Model structure

M_{nm1} is a minimized version of the model structure M_{nm1}.

3.2.1 Interaction graph

Fig. H: Interaction graph of the final model structure M_{nm2}. The model structure has two modules: the neurotransmitter module, which controls the blood flow, and the metabolic module, which controls the oxygen and glucose metabolism. Whole squares = states, dashed squares = variables (dependent on states), whole arrows = transformations, dashed arrows = interactions, green area = astrocyte, blue area = neuron, grey area = blood. All states starting with "delay" and a number (e.g. delay2) are delay states. Stimulus is the input to the model. Stimulus = input signal. OHb and $d\text{Hb}$ are oxyhemoglobin and deoxyhemoglobin, respectively. Glu = glucose, Calcium neuron and calcium astrocyte = calcium ion (Ca^{2+}) level in the cell, AA = arachidonic acid. All terms starting with k (e.g. k1) are parameters and in most cases represent rate constants. PL is a parameter representing phospholipase A2, which is present in abundance. Gbody, O2body, OHbbody and $d\text{Hbbody}$, are variables representing the glucose, oxygen and hemoglobin delivered into the area. "Constrict" and "dilate" are states representing the vasoactive substances which control the blood flow.
3.2.2 States and reactions

State	Interpretation	Steady state value: p8 best opt intensity	Steady state value: p10 best opt frequency
$\frac{d(stimulus)}{dt}$ = 0	Stimulus input signal	1	1
$\frac{d(oHb)}{dt}$ = $v_1b - v_1f + v_{inOHB} - v_{outOHB}$	Change in oxyhemoglobin level	3.76	3.28
$\frac{d(dHb)}{dt}$ = $v_1f - v_1b + v_{indHb} - v_{outHb}$	Change in deoxyhemoglobin level	16.24	16.72
$\frac{d(O2)}{dt}$ = $v_1f - v_1b - v_{basal} \times proportion_1 - v_{stim} \times proportion_2 + v_{inO} - v_{outO}$	Change in oxygen level	0.77	0.71
$\frac{d(glucose)}{dt}$ = $v_{inG} - v_{outG} - v_{basal} - v_{stim}$	Change in glucose level	8.19	8.14
$\frac{d(inputDelay)}{dt}$ = $input_1 - sink_{input}$	Delay state	-4.86×10^{-15}	-1.00×10^{-16}
$\frac{d(glu)}{dt}$ = $input_2 - glu_{sink}$	Glutamate release in the synaptic cleft	-2.53×10^{-17}	-6.09×10^{-19}
$\frac{d(Ca_{Astro})}{dt}$ = Glutamate_{Astro} - calcium_{Astro1} + Ca_{bas}	Calcium influx in the astrocyte	27.71	10.09
$\frac{d(AA)}{dt}$ = calcium_{Astro2} - (AA_{i} + AA_{r})	Change in AA level	386.51	124.27
$\frac{d(constrict)}{dt}$ = delay_{3c} - sink_{c}	Delay states	472.80	91.66
$\frac{d(delay1c)}{dt}$ = AA_{i} - delay_{1c}		50.49	10.79
$\frac{d(delay2c)}{dt}$ = delay_{1c} - delay_{2c}		540.77	150.93
$\frac{d(delay3c)}{dt}$ = delay_{2c} - delay_{3c}		814.2	179.00
$\frac{d(dilate)}{dt}$ = delay_{3d} - sink_{d}	Delay states	210.92	96.019
$\frac{d(delay1d)}{dt}$ = AA_{r} - delay_{1d}		455.61	143.60
$\frac{d(delay2d)}{dt}$ = delay_{1d} - delay_{2d}		280.27	135.65
$\frac{d(delay3d)}{dt}$ = delay_{2d} - delay_{3d}		216.58	57.206
Reactions	Interpretation		
-----------	----------------		
$v_1 = k_1 \times oHb$	Rate of releasing oxyhemoglobin into oxygen and deoxyhemoglobin		
$v_1 = k_1 \times dHb \times O_2$	Rate of binding oxygen and deoxyhemoglobin into oxyhemoglobin		
$v_{inOHb} = oHb_{body} \times k_{flow}$	Oxyhemoglobin influx		
$v_{outOHb} = oHb \times k_{flow}$	Oxyhemoglobin outflux		
$v_{inDHB} = dHb_{body} \times k_{flow}$	Deoxyhemoglobin influx		
$v_{outDHB} = dHb \times k_{flow}$	Deoxyhemoglobin outflux		
$v_{inG} = G_{body} \times k_{flow}$	Glucose influx		
$v_{outG} = g_{glucose} \times k_{flow}$	Glucose outflux		
$v_{inO_2} = O_2_{body} \times k_{flow}$	Oxygen influx		
$v_{outO_2} = O_2 \times k_{flow}$	Oxygen outflux		
$v_{basal} = k_{basal} \times O_2^{proportion_{1}} \times g_{glucose}$	Basal metabolism		
$v_{stim} = inputDelay \times O_2^{proportion_{2}} \times g_{glucose}$	Metabolism during stimulation		
input$_1 = k_{metabolic} \times stimulus$	Stimulus input to the metabolic module		
input$_2 = k_{neurotransmitter} \times stimulus$	Stimulus input to the neurotransmitter module		
glu$_{sink} = glu \times sink_{glu}$	Glutamate breakdown		
Glutamate$_A = k_2 \times glu$	Calcium influx into the cells		
calcium$_{Astro1} = C_Astrotro \times sink_A$	Calcium outflux from the cells		
calcium$_{Astro2} = P_L \times C_Astrotro \times k_4$	Calcium inducing AA		
sink$_c = constriict \times sink_{con}$	Breakdown of vasoconstricting substances		
sink$_d = dilate \times sink_{Dil}$	Breakdown of vasodilating substances		
AA$_1 = k_5 \times AA$	AA triggering vasoconstricting substances		
AA$_s = k_7 \times AA$	AA triggering vasodilating substances		
delay$_1 = k_{delay1} \times delay1_s$	Delay states		
delay$_2 = k_{delay2} \times delay2_s$	Delay states		
delay$_3 = k_{delay3} \times delay3_s$	Delay states		
delay$_1 = k_{delay1} \times delay1_i$	Delay states		
delay$_2 = k_{delay2} \times delay2_i$	Delay states		
delay$_3 = k_{delay3} \times delay3_i$	Delay states		
3.2.3 Variables

Variable name	Variable unit	Variable value	Interpretation
k_{flow}	1/s	$k_{flow02} + \text{stimulating} - \text{inhibiting}$	Blood flow
G_{body}	amount	10	Glucose in arterial blood
O_{2body}	amount	10	Oxygen in arterial blood
oHb_{body}	amount	10	Oxygenated hemoglobin in arterial blood
dHb_{body}	amount	10	Deoxygenated hemoglobin in arterial blood
Stimulating	1/s	$b_1 \times \text{dilate}$	Vasodilation
Inhibiting	1/s	$b_2 \times \text{constrict}$	Vasoconstriction
\hat{y}	unitless	$\frac{k_y \times oHb}{dHb}$	Output signal
3.2.4 Parameters and parameter values
Parameter sets for model M_{nm1} used in Fig. 9 and Fig. 10.

Parameter names	Parameter unit	$p8$ best opt intensity data	$p10$ best opt frequency data
k_y	unitless	3327.7279	3177.2096
$k_{metabolic}$	1/s	2425.3854	13592.202
$k_{neurotrans}$	1/s	140.35	195.9126
k_{f}	1/s	2289.8029	6996.381
k_{b}	1/(amount×s)	38.0878	72.7303
k_{basal}	1/(amount×s)	4751.4719	8097.4782
$k_{flow_{glucose}}$	amount/s	524.89	1275.8673
proportion1	oxygen/gluco	8.6087	8.5580
proportion2	oxygen/gluco	3.8694	3.8495
sink_{input}	1/s	0.6735	4.5253
k_{2}	1/s	0.4703	0.7295
k_{4}	1/(amount×s)	0.9977	1.2737
k_{5}	1/s	0.5446	0.7809
k_{7}	1/s	0.6699	0.5886
$C_{A_{bas}}$	1/s	14.8381	20.5285
sink_{glu}	1/s	6.4284	12.5502
sink_{A}	1/s	1.4713	0.7409
sink_{Con}	1/s	0.7384	0.6384
sink_{Dil}	1/s	1.4552	1.0505
k_{delay1s}	1/s	0.867	1.0787
k_{delay2s}	1/s	0.5797	0.4994
k_{delay3s}	1/s	0.6137	0.81178
k_{delay1i}	1/s	6.2735	5.9784
k_{delay2i}	1/s	0.4484	0.5582
k_{delay3i}	1/s	0.3781	0.3707
PL	amount	15	15
b_{1}	1/(amount×s)	30.379	41.1749
b_{2}	1/(amount×s)	13.2335	12.9425

Cost: $p8 = 27.5$ and $p10 = 18.8$