ULRICH BUNDLES ON NON–SPECIAL SURFACES
WITH $p_g = 0$ AND $q = 1$

GIANFRANCO CASNATI

Abstract. Let S be a surface with $p_g(S) = 0$, $q(S) = 1$ and endowed with a very ample line bundle $\mathcal{O}_S(h)$ such that $h^1(S, \mathcal{O}_S(h)) = 0$. We show that such an S supports families of dimension p of pairwise non–isomorphic, indecomposable, Ulrich bundles for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank 2 if the genus of the general element in $|h|$ is at least 2.

1. Introduction and Notation

Throughout the whole paper we will work on an uncountable algebraically closed field k of characteristic 0 and \mathbb{P}^N will denote the projective space over k of dimension N. The word surface will always denote a projective smooth connected surface.

If X is a smooth variety, then the study of vector bundles supported on X is an important tool for understanding its geometric properties. If $X \subseteq \mathbb{P}^N$, then X is naturally polarised by the very ample line bundle $\mathcal{O}_X(h) := \mathcal{O}_{\mathbb{P}^N}(1) \otimes \mathcal{O}_X$: in this case, at least from a cohomological point of view, the simplest bundles \mathcal{F} on X are the ones which are Ulrich with respect to $\mathcal{O}_X(h)$, i.e. such that

$$h^i(X, \mathcal{F}(-ih)) = h^j(X, \mathcal{F}(-(j+1)h)) = 0$$

for each $i > 0$ and $j < \dim(X)$.

The existence of Ulrich bundles on each variety is a problem raised by D. Eisenbud and F.O. Schreyer in [19] (see [10] for a survey on Ulrich bundles). There are many partial results (e.g. see [2], [3], [7], [8], [9], [11], [12], [13], [15], [17], [18], [26], [27], [28], [31]). Nevertheless, all such results and those ones proved in [20] seem to suggest that Ulrich bundles exist at least when X satisfies an extra technical condition, namely that X is arithmetically Cohen–Macaulay, i.e. projectively normal and such that

$$h^i(X, \mathcal{O}_S(th)) = 0$$

for each $i = 1, \ldots, \dim(X) − 1$ and $t \in \mathbb{Z}$. When X is not arithmetically Cohen–Macaulay, the literature is very limited (e.g. see [9] and [14]).

Now let $S \subseteq \mathbb{P}^N$ be a surface and set $p_g(S) := h^2(S, \mathcal{O}_S)$, $q(S) := h^1(S, \mathcal{O}_S)$, whence $\chi(\mathcal{O}_S) := 1 − q(S) + p_g(S) = 0$. Thanks to the Enriques–Kodaira classification of surfaces, we know that $\kappa(S) \leq 1$ and $K^2 \leq 0$ (see [3], Theorem X.4 and Lemma VI.1). In what follows we will denote by $\text{Pic}(S)$ the Picard group of S: it

2010 Mathematics Subject Classification. Primary 14J60; Secondary 14J26, 14J27, 14J28.

Key words and phrases. Vector bundle, Ulrich bundle.

The author is a member of GNSAGA group of INdAM and is supported by the framework of PRIN 2015 ‘Geometry of Algebraic Varieties’, cofinanced by MIUR.
is a group scheme and the connected component \(\text{Pic}^0(S) \subseteq \text{Pic}(S) \) of the identity is an abelian variety of dimension \(q(S) \) parameterizing the line bundles algebraically equivalent to \(O_S \).

In this paper we first rewrite the proof of Proposition 6 of [10], in order to be able to extend its statement to a slightly wider class of surfaces.

Our modified statement (which holds also without the hypothesis that \(k \) is uncountable) is as follows: recall that \(O_S(h) \) is called special if \(h^1(S, O_S(h)) \neq 0 \), non–special otherwise.

Theorem 1.1. Let \(S \) be a surface with \(p_g(S) = 0 \), \(q(S) = 1 \) and endowed with a very ample non–special line bundle \(O_S(h) \).

If \(O_S(\eta) \in \text{Pic}^0(S) \backslash \{ O_S \} \) is such that \(h^0(S, O_S(K_S + \eta)) = h^1(S, O_S(h + \eta)) = 0 \), then for each general \(C \in |O_S(h)| \) and each general set \(Z \subseteq C \) of \(h^0(S, O_S(h)) \) points, there is a rank 2 Ulrich bundle \(E \) with respect to \(O_S(h) \) fitting into the exact sequence

\[
0 \longrightarrow O_S(h + K_S + \eta) \longrightarrow E \longrightarrow I_{Z|S}(2h + \eta) \longrightarrow 0.
\]

As pointed out in [10], Proposition 6, when \(S \) is a bielliptic surface then each very ample line bundle \(O_S(h) \) is automatically non–special and there always exists a non–trivial \(O_S(\eta) \in \text{Pic}^0(S) \) of order 2 satisfying the above vanishings: thus the bundle \(E \) defined in Theorem 1.1 is actually special, i.e. \(c_1(E) = 3h + K_S \). We can argue similarly if \(S \) is either anticanonical, i.e. \(|− K_S| \neq \emptyset \), or geometrically ruled.

A condition forcing the indecomposability of a coherent sheaf \(F \) on an \(n \)–dimensional variety \(X \) is its stability. Recall that the slope \(\mu(F) \) and the reduced Hilbert polynomial \(p_F(t) \) of \(F \) with respect to the very ample polarisation \(O_X(h) \) are

\[
\mu(F) = c_1(F) h^{n−1} / \text{rk}(F), \quad p_F(t) = \chi(F(th)) / \text{rk}(F).
\]

The coherent sheaf \(F \) is called \(\mu \)–semistable (resp. \(\mu \)–stable) if for all subsheaves \(G \) with \(0 < \text{rk}(G) < \text{rk}(F) \) we have \(\mu(G) \leq \mu(F) \) (resp. \(\mu(G) < \mu(F) \)).

The coherent sheaf \(F \) is called semistable (resp. stable) if for all \(G \) as above \(p_G(t) \leq p_F(t) \) (resp. \(p_G(t) < p_F(t) \)) for \(t \gg 0 \).

On an arbitrary variety we have the following chain of implications

\(F \) is \(\mu \)–stable \(\Rightarrow \) \(F \) is stable \(\Rightarrow \) \(F \) is semistable \(\Rightarrow \) \(F \) is \(\mu \)–semistable.

Nevertheless, when we restrict our attention to Ulrich bundles, the two notions of (semi)stability and \(\mu \)–(semi)stability actually coincide.

A priori, it is not clear whether the bundles constructed in Theorem 1.1 are stable. In Section 4 we deal with their stability as follows. The sectional genus of \(S \) with respect to \(O_S(h) \) is defined as the genus of a general element of \(|h| \). By the adjunction formula

\[
\pi(O_S(h)) := \frac{h^2 + hK_S}{2} + 1.
\]

Notice that the equality \(\pi(O_S(h)) = 0 \) would imply the rationality of \(S \) (e.g. see [11] and the references therein), contradicting \(q(S) = 1 \). Thus \(\pi(O_S(h)) \geq 1 \) in our setup.
Theorem 1.2. Let S be a surface with $p_g(S) = 0$, $q(S) = 1$ and endowed with a very ample non–special line bundle $O_S(h)$. If $\pi(O_S(h)) \geq 2$, then the bundle \mathcal{E} constructed in Theorem 1.1 from a very general set $Z \subseteq C \subseteq S$ of $h^0(S, O_S(h))$ points is stable.

Once that the existence of Ulrich bundles of low rank is proved, one could be interested in understanding how large a family of Ulrich bundles supported on S can actually be. In particular we say that a smooth variety $X \subseteq \mathbb{P}^N$ is Ulrich–wild if it supports families of dimension p of pairwise non–isomorphic, indecomposable, Ulrich bundles for arbitrary large p.

The last result proved in this paper concerns the Ulrich–wildness of the surfaces we are dealing with.

Theorem 1.3. Let S be a surface with $p_g(S) = 0$, $q(S) = 1$ and endowed with a very ample non–special line bundle $O_S(h)$. Then S is Ulrich–wild.

In Section 2 we list some general results on Ulrich bundles on polarised surfaces. In Section 3 we prove Theorem 1.1. In Section 4 we first recall some easy facts about the stability of Ulrich bundles, giving finally the proof of Theorem 1.2. In Section 5 we prove Theorem 1.3.

Finally, the author would like to thank the referee for her/his comments which have allowed us to improve the whole exposition.

2. General results

In general, an Ulrich bundle \mathcal{F} on $X \subseteq \mathbb{P}^N$ collects many interesting properties (see Section 2 of [19]). The following ones are particularly important.

- \mathcal{F} is globally generated and its direct summands are Ulrich as well.
- \mathcal{F} is initialized, i.e. $h^0(X, \mathcal{F}(-h)) = 0$ and $h^0(X, \mathcal{F}) \neq 0$.
- \mathcal{F} is aCM, i.e. $h^i(X, \mathcal{F}(th)) = 0$ for each $i = 1, \ldots, \dim(X) - 1$ and $t \in \mathbb{Z}$.

Let S be a surface. The Serre duality for \mathcal{F} is

$$h^i(S, \mathcal{F}) = h^{2-i}(S, \mathcal{F}^\vee(K_S)), \quad i = 0, 1, 2,$$

and the Riemann–Roch theorem is

$$h^0(S, \mathcal{F}) + h^2(S, \mathcal{F}) = h^1(S, \mathcal{F}) + \text{rk}(\mathcal{F})\chi(O_S) + \frac{c_1(\mathcal{F})c_1(\mathcal{F}) - K_S}{2} - c_2(\mathcal{F}).$$

Proposition 2.1. Let S be a surface endowed with a very ample line bundle $O_S(h)$. If \mathcal{E} is a vector bundle on S, then the following assertions are equivalent:

1. \mathcal{E} is an Ulrich bundle with respect to $O_S(h)$;
2. $\mathcal{E}^\vee(3h + K_S)$ is an Ulrich bundle with respect to $O_S(h)$;
3. \mathcal{E} is an aCM bundle and
 $$c_1(\mathcal{E})h = \text{rk}(\mathcal{E}) \frac{3h^2 + hK_S}{2},$$
 $$c_2(\mathcal{E}) = \frac{c_1(\mathcal{E})^2 - c_1(\mathcal{E})K_S}{2} - \text{rk}(\mathcal{E})(h^2 - \chi(O_S));$$
(4) $h^0(S, \mathcal{E}(-h)) = h^0(S, \mathcal{E}'(2h + K_S)) = 0$ and Equalities (3) hold.

Proof. See [14], Proposition 2.1.

The following corollaries are immediate consequences of the above characterization.

Corollary 2.2. Let S be a surface endowed with a very ample line bundle $\mathcal{O}_S(h)$. If $\mathcal{O}_S(D)$ is a line bundle on S, then the following assertions are equivalent:

1. $\mathcal{O}_S(D)$ is an Ulrich bundle with respect to $\mathcal{O}_S(h)$;
2. $\mathcal{O}_S(3h + K_S - D)$ is an Ulrich bundle with respect to $\mathcal{O}_S(h)$;
3. $\mathcal{O}_S(D)$ is an aCM bundle and

$$D^2 = 2(h^2 - \chi(\mathcal{O}_S)) + DK_S, \quad Dh = \frac{1}{2}(3h^2 + hK_S);$$

$$h^0(S, \mathcal{O}_S(D - h)) = h^0(S, \mathcal{O}_S(2h + K_S - D)) = 0$$ and Equalities (4) hold.

Proof. See [14], Corollary 2.2.

3. Existence of rank 2 Ulrich bundles

We start this section by recalling that if S is any surface, then the connected component $\text{Pic}^0(S)$ of the identity inside $\text{Pic}(S)$ is an abelian variety of dimension $q(S)$ called Picard variety of S. The quotient is a finitely generated abelian group called Néron–Severi group of S.

Now, let S be a surface with $p_g(S) = 0$ and $q(S) = 1$. Then $\text{Pic}^0(S)$ is an elliptic curve: in particular $\text{Pic}^0(S)$ contains three pairwise distinct non–trivial divisors of order 2.

In order to prove Theorem 1.1 we will make use of the Hartshorne–Serre correspondence on surfaces. We recall that a locally complete intersection subscheme Z of dimension zero on a surface S is Cayley–Bacharach (CB for short) with respect to a line bundle $\mathcal{O}_S(A)$ if, for each $Z' \subseteq Z$ of degree $\deg(Z) - 1$, the natural morphism $H^0(S, \mathcal{I}_{Z'|S}(A)) \rightarrow H^0(S, \mathcal{I}_{Z'|S}(A))$ is an isomorphism.

Theorem 3.1. Let S be a surface and $Z \subseteq S$ a locally complete intersection subscheme of dimension 0.

Then there exists a vector bundle \mathcal{F} of rank 2 on S fitting into an exact sequence of the form

$$0 \rightarrow \mathcal{O}_S \rightarrow \mathcal{F} \rightarrow \mathcal{I}_{Z'|S}(A) \rightarrow 0,$$

if and only if Z is CB with respect to $\mathcal{O}_S(A + K_S)$.

Proof. See Theorem 5.1.1 in [23].

We now prove Theorem 1.1 stated in the introduction. As we already noticed therein, its proof for $hK_S = 0$ coincides with the one of Proposition 6 in [10] because in this case the vanishing $h^1(S, \mathcal{O}_S(h \pm \eta)) = 0$ follows immediately from the Kodaira vanishing theorem as we will show below in Corollary 3.3.
Proof of Theorem 3.1. Recall that by hypothesis \(p_g(S) = h^1(S, \mathcal{O}_S(h)) = 0 \) and \(q(S) = 1 \). It follows that \(\chi(\mathcal{O}_S) = 0 \) and
\[
h^2(S, \mathcal{O}_S(h)) = h^0(S, \mathcal{O}_S(K_S - h)) \leq h^0(S, \mathcal{O}_S(K_S)) = 0,
\]
thus \(S \subseteq \mathbb{P}^N \), where
\[
N := h^0(S, \mathcal{O}_S(h)) - 1 = \frac{h^2 - hK_S}{2} - 1 \geq 4,
\]
because \(q(S) = 0 \) for each surface \(S \subseteq \mathbb{P}^3 \).

Let \(C := S \cap H \mid h \) be a general hyperplane section and let \(i : C \to S \) be the inclusion morphism. The curve \(C \) is non-degenerate in \(\mathbb{P}^{N-1} \cong H \subseteq \mathbb{P}^N \). Indeed the exact sequence
\[
0 \to \mathcal{I}_S|_{\mathbb{P}^N}(1) \to \mathcal{O}_{\mathbb{P}^N}(1) \to \mathcal{O}_S(h) \to 0
\]
implies \(h^0(\mathbb{P}^N, \mathcal{I}_S|_{\mathbb{P}^N}(1)) = h^1(\mathbb{P}^N, \mathcal{I}_S|_{\mathbb{P}^N}(1)) = 0 \). Thus, the exact sequence
\[
0 \to \mathcal{I}_S|_{\mathbb{P}^N}(1) \to \mathcal{I}_C|_{\mathbb{P}^N}(1) \to \mathcal{I}_C(h) \to 0
\]
implies \(h^0(\mathbb{P}^N, \mathcal{I}_C|_{\mathbb{P}^N}(1)) = 1 \), because \(\mathcal{I}_C(h) \cong \mathcal{O}_S \). Finally the exact sequence
\[
0 \to \mathcal{I}_{H|\mathbb{P}^N}(1) \to \mathcal{I}_C|_{\mathbb{P}^N}(1) \to \mathcal{I}_{C|H}(1) \to 0
\]
and the isomorphism \(\mathcal{I}_{H|\mathbb{P}^N}(1) \cong \mathcal{O}_{\mathbb{P}^N} \) yields \(h^0(C, \mathcal{I}_{C|H}(1)) = 0 \).

It follows the existence of a reduced subscheme \(Z \subseteq C \subseteq S \) of degree \(N + 1 \) whose points are in general position inside \(H \cong \mathbb{P}^{N-1} \). Thus \(Z \) is CB with respect to \(\mathcal{O}_S(h) \), hence there exists Sequence (3) with \(\mathcal{O}_S(A) \cong \mathcal{O}_S(h - K_S) \), thanks to Theorem 3.1.

Let \(\mathcal{O}_S(\eta) \in \text{Pic}^0(S) \setminus \{ \mathcal{O}_S \} \) be such that \(h^0(S, \mathcal{O}_S(K_S \pm \eta)) = h^1(S, \mathcal{O}_S(h \pm \eta)) = 0 \) and set \(\mathcal{E} := \mathcal{F}(h + K_S + \eta) \). The bundle \(\mathcal{E} \) fits into Sequence (1) and satisfies Equalities (3). If we show that \(h^0(S, \mathcal{E}(-h)) = h^0(S, \mathcal{E}^\vee(2h + K_S)) = 0 \), then we conclude that \(\mathcal{E} \) is Ulrich thanks to Proposition 2.1 above. Notice that the second vanishing is equivalent to \(h^0(S, \mathcal{E}(-h - 2\eta)) = 0 \) because \(c_1(\mathcal{E}) = 3h + K_S + 2\eta \).

The vanishing \(h^0(S, \mathcal{O}_S(K_S \pm \eta)) = 0 \) implies
\[
h^0(S, \mathcal{E}(-h)) \leq h^0(S, \mathcal{I}_Z|\mathcal{S}(h + \eta)), \quad h^0(S, \mathcal{E}(-h - 2\eta)) \leq h^0(S, \mathcal{I}_Z|\mathcal{S}(h - \eta)).
\]
The exact sequence
\[
0 \to \mathcal{I}_C|\mathcal{S} \to \mathcal{I}_Z|\mathcal{S} \to \mathcal{I}_Z|\mathcal{S} \to 0
\]
and the isomorphisms \(\mathcal{I}_C|\mathcal{S} \cong \mathcal{O}_S(-h) \) and \(\mathcal{I}_Z|\mathcal{S} \cong \mathcal{O}_C(-Z) \) imply
\[
h^0(S, \mathcal{I}_Z|\mathcal{S}(h \pm \eta)) \leq h^0(C, \mathcal{O}_C(-Z) \otimes \mathcal{O}_S(h \pm \eta))
\]
because \(h^0(S, \mathcal{O}_S(\pm\eta)) = 0 \). Thanks to the general choice of the points in \(Z \), the Riemann–Roch theorem on \(C \) and the adjunction formula \(\mathcal{O}_C(K_C) \cong i^*\mathcal{O}_S(h + K_S) \) on \(S \) give
\[
h^0(C, \mathcal{O}_C(-Z) \otimes \mathcal{O}_S(h \pm \eta)) = h^0(C, i^*\mathcal{O}_S(h \pm \eta)) - \deg(Z) = h^2 + 1 - \pi(\mathcal{O}_S(h)) - \deg(Z) + h^1(C, i^*\mathcal{O}_S(h \pm \eta)) = h^0(C, i^*\mathcal{O}_S(K_S \mp \eta)) = 0.
\]
The exact sequence
\[0 \rightarrow \mathcal{O}_S(-h) \rightarrow \mathcal{O}_S \rightarrow \mathcal{O}_C \rightarrow 0 \]
implies the existence of the exact sequence
\[H^0(S, \mathcal{O}_S(K_S \mp \eta)) \rightarrow H^0(C, i^* \mathcal{O}_S(K_S \mp \eta)) \rightarrow H^1(S, \mathcal{O}_S(h \mp h \mp \eta)) \cong H^1(S, \mathcal{O}_S(h \pm \eta)). \]
Thus the hypothesis on $\mathcal{O}_S(K_S \pm \eta)$ and $\mathcal{O}_S(h \pm \eta)$ forces $h^0(S, i^* \mathcal{O}_S(K_S \mp \eta)) = 0$.

It is natural to ask when the vanishings $h^1(S, \mathcal{O}_S(K_S \pm \eta)) = h^1(S, \mathcal{O}_S(h \pm \eta)) = 0$ actually occur. We list below some related result.

Corollary 3.2. Let S be a surface with $p_g(S) = 0$, $q(S) = 1$ and endowed with a very ample non–special line bundle $\mathcal{O}_S(h)$.

Then S supports Ulrich bundles of rank $r \leq 2$.

Proof. Since each direct summand of an Ulrich bundle is Ulrich as well, it follows from Theorem [1.1] that it suffices to prove the existence of $\mathcal{O}_S(\eta) \in \text{Pic}^0(S) \setminus \{ \mathcal{O}_S \}$ such that $h^0(S, \mathcal{O}_S(K_S \pm \eta)) = h^1(S, \mathcal{O}_S(h \pm \eta)) = 0$.

Let \mathcal{P} be the Poincaré line bundle on $S \times \text{Pic}(S)$. Recall that (e.g. see [29], Lecture 19), if $p: S \times \text{Pic}(S) \rightarrow \text{Pic}(S)$ is the projection on the second factor and $\mathcal{L} \in \text{Pic}(S)$, then the restriction of \mathcal{P} to the fibre $p^{-1}(\mathcal{L}) \cong S$ is isomorphic to the line bundle \mathcal{L}. The line bundle \mathcal{P} is thus flat on $\text{Pic}(S)$.

Let \mathcal{P}_0 be the restriction of \mathcal{P} to $S \times \text{Pic}^0(S)$, $A \subseteq S$ a divisor, $s: S \times \text{Pic}(S) \rightarrow S$ the projection on the first factor. The line bundle $\mathcal{P}_0 \otimes s^* \mathcal{O}_S(A)$ is flat over $\text{Pic}^0(S)$ and parameterizes the line bundles on S algebraically equivalent to $\mathcal{O}_S(A)$. Thus the semicontinuity theorem (e.g. see Theorem III.12.8 of [22]) applied to the sheaf $\mathcal{P}_0 \otimes s^* \mathcal{O}_S(A)$ and the map $p_0: S \times \text{Pic}^0(S) \rightarrow \text{Pic}^0(S)$ imply that for each $i = 0, 1, 2$ and $c \in \mathbb{Z}$ the sets
\[V^i_A(c) := \{ \eta \in \text{Pic}^0(S) \mid h^i(S, \mathcal{O}_S(A \pm \eta)) > c \}, \]
are closed inside $\text{Pic}^0(S)$. In particular $V := V^0_\emptyset(0) \cup V^0_{K_S}(0)$ is closed.

By definition $\mathcal{O}_S \in \text{Pic}^0(S) \setminus V \neq \emptyset$. Thus for each general $\mathcal{O}_S(\eta) \in \text{Pic}^0(S)$, the hypothesis $h^0(S, \mathcal{O}_S(K_S \pm \eta)) = h^1(S, \mathcal{O}_S(h \pm \eta)) = 0$ is satisfied and the statement is then completely proved. \[\square \]

Notice that the above result guarantees the existence of an Ulrich bundle \mathcal{E} with $c_1(\mathcal{E}) = 3h + K_S + 2\eta$ fitting into Sequence [11]. Such bundle is special if and only if $\mathcal{O}_S(\eta)$ has order 2. It is not clear if such a choice can be done in general. Anyhow in some particular cases we can easily prove an existence result also for special Ulrich bundles: we start from Beauville’s result for bielliptic surfaces, i.e. minimal surfaces S with $p_g(S) = 0$, $q(S) = 1$ and $\kappa(S) = 0$ (see Proposition 6 of [10]).

Corollary 3.3. Let S be a bielliptic surface endowed with a very ample line bundle $\mathcal{O}_S(h)$.

Then $\mathcal{O}_S(h)$ is non–special and S supports special Ulrich bundles of rank 2.
Proof. If \(\kappa(S) = 0 \), then \(K_S \) is numerically trivial, hence \(h - K_S \) is ample for each choice of \(\mathcal{O}_S(\eta) \in \text{Pic}^0(S) \), thanks to the Nakai criterion. Thus the vanishing \(h^1(S, \mathcal{O}_S(h \pm \eta)) = 0 \) follows from the Kodaira vanishing theorem: in particular \(\mathcal{O}_S(h) \) is non-special.

We can find \(\mathcal{O}_S(\eta) \in \text{Pic}^0(S) \setminus \{ \mathcal{O}_S, \mathcal{O}_S(\pm K_S) \} \) of order 2, because there are three non-trivial and pairwise non-isomorphic elements of order 2 in \(\text{Pic}^0(S) \). Thus \(h^0(S, \mathcal{O}_S(K_S \pm \eta)) = 0 \) because \(K_S \pm \eta \) is not trivial by construction, hence the statement follows from Theorem 1.1. \(\square \)

The surface \(S \) is anticanonical if \(|-K_S| \neq 0 \); in particular \(p_g(S) = 0 \). The ampleness of \(\mathcal{O}_S(h) \) implies \(hK_S < 0 \) in this case.

Corollary 3.4. Let \(S \) be an anticanonical surface with \(q(S) = 1 \) and endowed with a very ample line bundle \(\mathcal{O}_S(h) \).

Then \(\mathcal{O}_S(h) \) is non-special and \(S \) supports special Ulrich bundles of rank 2.

Proof. If \(A \in |-K_S| \), then \(\omega_A \cong \mathcal{O}_A \) by the adjunction formula. We have \(h^1(A, \mathcal{O}_S(h \pm \eta) \otimes \mathcal{O}_A) = h^0(A, \mathcal{O}_S(-h \mp \eta) \otimes \mathcal{O}_A) \), for each \(\mathcal{O}_S(\eta) \in \text{Pic}^0(S) \).

On the one hand, if \(h^1(A, \mathcal{O}_S(-h \mp \eta) \otimes \mathcal{O}_A) > 0 \), then \(-hC \geq 0 \) for some irreducible component \(C \subset A \). On the other hand \(\mathcal{O}_S(h) \) is ample, hence \(hC > 0 \).

The contradiction implies \(h^0(A, \mathcal{O}_S(-h \mp \eta) \otimes \mathcal{O}_A) = 0 \), hence the cohomology of the exact sequence

\[
0 \longrightarrow \mathcal{O}_S(h + K_S \mp \eta) \longrightarrow \mathcal{O}_S(h \mp \eta) \longrightarrow \mathcal{O}_S(h \mp \eta) \otimes \mathcal{O}_A \longrightarrow 0
\]

and the Kodaira vanishing theorem yield \(h^1(S, \mathcal{O}_S(h \mp \eta)) = 0 \). In particular \(\mathcal{O}_S(h) \) is non-special. Finally \(hK_S < 0 \), hence \(h^0(S, \mathcal{O}_S(K_S \pm \eta)) = 0 \).

The statement then follows from Theorem 1.1 by taking any non-trivial \(\mathcal{O}_S(\eta) \in \text{Pic}^0(S) \) of order 2. \(\square \)

Recall that a geometrically ruled surface is a surface \(S \) with a surjective morphism \(p: S \rightarrow E \) onto a smooth curve such that every fibre of \(p \) is isomorphic to \(\mathbb{P}^1 \). If \(S \) is geometrically ruled, then \(p_g(S) = 0 \) and \(q(S) \) is the genus of \(E \) (see [22], Chapter V.2 for further details).

Remark 3.5. Let \(S \) be a geometrically ruled surface on an elliptic curve \(E \) so that \(p_g(S) = 0 \) and \(q(S) = 1 \). Thanks to the results in [22], Chapter V.2, we know the existence of a vector bundle \(\mathcal{H} \) of rank 2 on \(E \) such that \(h^0(E, \mathcal{H}) \neq 0 \) and \(h^0(E, \mathcal{H}(-P)) = 0 \) for each \(P \in E \) and \(S \cong \mathbb{P}(\mathcal{H}) \). Then \(p \) can be identified with the natural projection map \(\mathbb{P}(\mathcal{H}) \rightarrow E \). The group \(\text{Pic}(S) \) is generated by the class \(\xi \) of \(\mathcal{O}_{\mathbb{P}(\mathcal{H})}(1) \) and by \(p^* \text{Pic}(E) \). If we set \(\mathcal{O}_E(h) := \det(\mathcal{H}) \) and \(e := -\deg(\mathcal{H}) \), then \(e \geq -1 \) (see [30]). Moreover, \(K_S = -2\xi + p^*h \).

There exists an exact sequence

\[
0 \longrightarrow \mathcal{O}_E \longrightarrow \mathcal{H} \longrightarrow \mathcal{O}_E(h) \longrightarrow 0.
\]

The symmetric product of Sequence (9) yields

\[
0 \longrightarrow \mathcal{H}(-h) \longrightarrow S^2\mathcal{H}(-h) \longrightarrow \mathcal{O}_E(h) \longrightarrow 0.
\]
Sequence (9) splits if and only if \mathcal{H} is decomposable. Thus, if this occurs, then $S^2\mathcal{H}(-h)$ contains \mathcal{O}_E as direct summand, whence

\begin{equation}
 h^0(S, \mathcal{O}_S(-K_S)) \geq h^0(E, \mathcal{O}_E) = 1.
\end{equation}

because $h^0(S, \mathcal{O}_S(-K_S)) = h^0(E, S^2\mathcal{H}(-h))$, thanks to the projection formula.

Assume that \mathcal{H} is indecomposable. Then either $\mathcal{O}_E(h) = \mathcal{O}_E$ or $\mathcal{O}_E(h) \neq \mathcal{O}_E$.

In the first case the cohomology of Sequences (9) and (10) again implies Inequality (11).

If $\mathcal{O}_E(h) \neq \mathcal{O}_E$, then Lemma 22 of [4] implies that $S^2\mathcal{H}(-h)$ is the direct sum of the three non–trivial elements of order 2 of $\text{Pic}(E)$, hence $h^0(S, \mathcal{O}_S(-K_S)) = 0$.

We conclude that a geometrically ruled surface on an elliptic curve is anticanonical if and only if $e \geq 0$.

Thanks to the above remark and Corollary 3.4 we know that each geometrically ruled surface S with $q(S) = 1$ and $e \geq 0$ supports special Ulrich bundles of rank 2 with respect to each very ample line bundle $\mathcal{O}_S(h)$. We can extend the result also to the case $e = -1$.

Corollary 3.6. Let S be a geometrically ruled surface with $q(S) = 1$ and endowed with a very ample line bundle $\mathcal{O}_S(h)$.

Then $\mathcal{O}_S(h)$ is non–special and S supports special Ulrich bundles of rank 2.

Proof. We have to prove the statement only for $e = -1$. If $\mathcal{O}_S(h) = \mathcal{O}_{\mathcal{H}}(a\xi + p^*b)$, then $\deg(b) > -a/2$ (see [22], Proposition V.2.21). Thus the Table in Proposition 3.1 of [21] implies that $h^1(S, \mathcal{O}_S(h + \eta)) = 0$ for each $\eta \in \text{Pic}^0(S)$.

Again the statement follows from Theorem 1.1 by taking any non–trivial $\mathcal{O}_S(\eta)$ of order 2.

Remark 3.7. The corollary above extends Propositions 3.1, 3.3 and Theorem 3.4 of [2] to the range $e \leq 0$, when $g = 1$.

Recall that an embedded surface $S \subseteq \mathbb{P}^N$ is called non–degenerate if it is not contained in any hyperplane.

Corollary 3.8. Let $S \subseteq \mathbb{P}^4$ be a non–degenerate non–special surface with $p_g(S) = 0$. Then S supports special Ulrich bundles of rank 2.

Proof. The cohomology of Sequence (8) tensored by $\mathcal{O}_S(h)$ implies $h^1(C, i^*\mathcal{O}_S(h)) = 0$. In particular such surfaces are sectionally non–special (see [24] for details). Non–special and sectionally non–special surfaces are completely classified in [24] and [25]. They satisfy $q(S) \leq 1$ and, if equality holds, then they are either quintic scrolls over elliptic curves, or the Serrano surfaces (these are very special bielliptic surfaces of degree 10: see [32]). The results above and Section 4 of [14] yields the statement.

Remark 3.9. Linearly normal non–special surface $S \subseteq \mathbb{P}^4$ with $p_g(S) = 0$ satisfy $3 \leq h^2 \leq 10$ (see [24] and [25]). If $h^2 \leq 6$, such surfaces are known to support Ulrich line bundles: see [27] for the case $q(S) = 0$ and [10], Assertion 2) of Proposition 5 for the case $q(S) = 1$.
4. Stability of Ulrich bundles

We start this section by recalling the following result: see [13], Theorem 2.9 for its proof.

Theorem 4.1. Let X be a smooth variety endowed with a very ample line bundle $\mathcal{O}_X(h)$.
If \mathcal{E} is an Ulrich bundle on X with respect to $\mathcal{O}_X(h)$, the following assertions hold:

1. \mathcal{E} is semistable and μ–semistable;
2. \mathcal{E} is stable if and only if it is μ–stable;
3. if $0 \rightarrow \mathcal{L} \rightarrow \mathcal{E} \rightarrow \mathcal{M} \rightarrow 0$
is an exact sequence of coherent sheaves with \mathcal{M} torsion free and $\mu(\mathcal{L}) = \mu(\mathcal{E})$, then both \mathcal{L} and \mathcal{M} are Ulrich bundles.

We now prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. Recall that \mathcal{E} is constructed as follows. First we choose $C := S \cap H \in |h|$ where $H \cong \mathbb{P}^{N-1}$ is a general hyperplane: from now on we denote by $i: C \rightarrow S$ the inclusion morphism. The Hilbert scheme \mathcal{H}_C of 0–dimensional subschemes of degree $N + 1$ on C has dimension $N + 1$ and contains an open non–empty subset $\mathcal{R} \subseteq \mathcal{H}_C$ corresponding to reduced schemes of $N + 1$ points in general position in H. If we choose a general $Z \in \mathcal{R}$, then we finally construct \mathcal{E} from Z by means of Theorem 3.1.

We now show that if Z is very general inside \mathcal{R}, i.e. it is in the complement of a countable union of suitable proper closed subsets, then \mathcal{E} is stable.

To this purpose, let $\mathcal{O}_S(D)$ be an Ulrich line bundle on S (if any). By hypothesis $\pi(\mathcal{O}_S(h)) \geq 2$, then

$$(h + \eta - D)h = -\frac{h^2 + hK_S}{2} = 1 - \pi(\mathcal{O}_S(h)) \leq -1,$$

hence

$$(12) \quad h^0(S, \mathcal{I}_C|S(2h + \eta - D)) = h^0(S, \mathcal{O}_S(h + \eta - D)) = 0,$$

i.e. there are no divisors in $|2h + \eta - D|$ containing C. Thus the cohomology of Sequence (8) tensored by $\mathcal{O}_S(2h + \eta - D)$ yields the injectivity of the restriction map

$h^0(S, \mathcal{O}_S(2h + \eta - D)) \rightarrow H^0(C, i^*\mathcal{O}_S(2h + \eta - D)).$

Since $(2h + \eta - D)h = N + 1$, it follows that each $Z \subseteq A \in |2h + \eta - D|$ containing a point the Hilbert scheme \mathcal{H}_C of subschemes of degree $N + 1$ on C, is actually cut out on C by A.

Thus, if \mathcal{Z}_D denotes the closed subset of \mathcal{H}_C of points Z such that $h^0(C, \mathcal{I}_Z|C \otimes i^*\mathcal{O}_S(2h + \eta - D)) \geq 1$, then

$$\dim(\mathcal{Z}_D) = h^0(C, i^*\mathcal{O}_S(2h + \eta - D)) - 1.$$
On the one hand, if \(i^* \mathcal{O}_S(2h + \eta - D) \) is special, then the Clifford theorem and the second Equality (1) imply
\[
h^0(C, i^* \mathcal{O}_S(2h + \eta - D)) \leq \frac{(2h + \eta - D)h}{2} + 1 = \frac{N + 3}{2} \leq N,
\]
because \(N \geq 4 \) (see Inequality (3)). On the other hand, if \(i^* \mathcal{O}_S(2h + \eta - D) \) is non–special, the Riemann–Roch theorem on \(C \) and the second Equality (4) return
\[
h^0(C, i^* \mathcal{O}_S(2h + \eta - D)) = N + 2 - \pi(\mathcal{O}_S(h)) \leq N,
\]
because \(\pi(\mathcal{O}_S(h)) \geq 2 \). It follows from the above inequalities that \(\dim(Z_D) \leq N - 1 \).

Since \(q(S) = 1 \) and the Néron–Severi group of \(S \) is a finitely generated abelian group, it follows that the set \(\mathcal{D} \subseteq \text{Pic}(S) \) of Ulrich line bundles is contained in a countable disjoint union of a fixed elliptic curve. In particular there is
\[
Z \in \mathcal{R} \setminus \bigcup_{\mathcal{O}_S(D) \in \mathcal{D}} Z_D
\]
because \(\dim(\mathcal{R}) = N + 1 \). Let \(\mathcal{E} \) be the corresponding bundle.

Assume that \(\mathcal{E} \) is not stable: then it is not \(\mu \)–stable, thanks to Theorem 4.1. In particular there exists a line subbundle \(\mathcal{O}_S(D) \subseteq \mathcal{E} \) such that \(\mu(\mathcal{E}) = \mu(\mathcal{O}_S(D)) \).

Again Theorem 4.1 implies that \(\mathcal{O}_S(D) \) is Ulrich.

On the one hand, if \(\mathcal{O}_S(D) \) is contained in the kernel \(\mathcal{K} \cong \mathcal{O}_S(h + K_S + \eta) \) of the map \(\mathcal{E} \to \mathcal{I}_{Z|S}(2h + \eta) \) in Sequence (1), then \(h^0(S, \mathcal{O}_S(h + K_S + \eta - D)) \neq 0 \). On the other hand, Equality (4) and Inequality (6) imply
\[
(h + K_S + \eta - D)h = -\frac{h^2 - hK_S}{2} = 1 - N \leq -3,
\]
whence \(h^0(S, \mathcal{O}_S(h + K_S + \eta - D)) = 0 \).

We deduce that \(\mathcal{O}_S(D) \not\subseteq \mathcal{K} \), hence the composite map \(\mathcal{O}_S(D) \subseteq \mathcal{E} \to \mathcal{I}_{Z|S}(2h + \eta) \) should be non–zero, i.e. \(h^0(S, \mathcal{I}_{Z|S}(2h + \eta - D)) \geq 1 \). The cohomology of Sequence (7) tensored by \(\mathcal{O}_S(2h + \eta - D) \) and Equality (12) then would imply
\[
h^0(C, \mathcal{I}_{Z|C} \otimes \mathcal{O}_S(2h + \eta - D)) \geq h^0(S, \mathcal{I}_{Z|S}(2h + \eta - D)) \geq 1,
\]
contradicting our choice of \(Z \): thus the bundle \(\mathcal{E} \) is necessarily stable. \(\square \)

Remark 4.2. If \(\pi(\mathcal{O}_S(h)) = 1 \), then \(S \) is a geometrically ruled surface embedded as a scroll by \(\mathcal{O}_S(h) \cong \mathcal{O}_S(\xi + p^*b) \) over an elliptic curve, thanks to [11], Theorem A (here we are using the notation introduced in Remark 3.5).

Moreover \((h + \eta - D)h = 0 \), hence the argument in the above proof does not lead to any contradiction when \(\mathcal{O}_S(D) \cong \mathcal{O}_S(h + \eta) \). Such a line bundle is actually Ulrich, because one easily checks that it satisfies all the conditions of Corollary 2.2.

In [16], via a slightly different but similar construction, we are able to show the existence of special Ulrich bundles of rank 2 on elliptic scrolls.

Let \(S \) be a surface with \(p_g(S) = 0 \), \(q(S) = 1 \) and endowed with a very ample non–special line bundle \(\mathcal{O}_S(h) \). Let
\[
c_1 := 3h + K_S + 2\eta, \quad c_2 := \frac{5h^2 + 3hK_S}{2},
\]
where $\mathcal{O}_S(\eta) \in \text{Pic}^0(S) \setminus \{0\}$ satisfies
\[
h^0(S, \mathcal{O}_S(K_S \pm \eta)) = h^1(S, \mathcal{O}_S(h \pm \eta)) = 0.
\]
If $\pi(\mathcal{O}_S(h)) \geq 2$, then the coarse moduli space $\mathcal{M}_S^U(2; c_1, c_2)$ parameterizing isomorphism classes of stable rank 2 bundles on S with Chern classes c_1 and c_2 is non-empty (see Theorem [7.2]). The locus $\mathcal{M}_S^{s,U}(2; c_1, c_2) \subseteq \mathcal{M}_S^U(2; c_1, c_2)$ parameterizing stable Ulrich bundles is open as pointed out in [13].

Proposition 4.3. Let S be a surface with $p_g(S) = 0$, $q(S) = 1$ and endowed with a very ample non-special line bundle $\mathcal{O}_S(h)$.

If $\pi(\mathcal{O}_S(h)) \geq 2$, then there is a component $\mathcal{C}_S(\eta)$ of dimension at least $h^2 - K_S^2$ in $\mathcal{M}_S^{s,U}(2; c_1, c_2)$ containing all the points representing the stable bundles \mathcal{E} constructed in Theorem [11].

Proof. Let us denote by \mathcal{H}_S the Hilbert flag scheme of pairs (Z, C) where $C \in |\mathcal{O}_S(h)|$ and $Z \subseteq C$ is a 0-dimensional subscheme of degree $N + 1$. The general $C \in |\mathcal{O}_S(h)|$ is smooth and its image via the map induced by $\mathcal{O}_S(h)$ generate a hyperplane inside \mathbb{P}^N. Thus the set $\mathcal{H}_U^U \subseteq \mathcal{H}_S$ of pairs (Z, C) corresponding to sets of points Z in a smooth curve $C \subseteq \mathbb{P}^N$ which are in general position in the linear space generated by C is open and non-empty.

We have a well-defined forgetful dominant morphism $\mathcal{H}_S \to |\mathcal{O}_S(h)|$ whose fibre over C is an open subset of the $(N + 1)$–symmetric product of C. In particular \mathcal{H}_S^U is irreducible of dimension $2N + 1$. Let (Z, C) represent a point of \mathcal{H}_S^U: the Ulrich bundles associated to such a point via the construction described in Theorem [11] correspond to the sections of
\[
\text{Ext}^1_0(\mathcal{I}_{Z|S}(h - K_S), \mathcal{O}) \cong H^1(S, \mathcal{I}_{Z|S}(h))^\vee.
\]
By definition of \mathcal{H}_S^U, we have $h^0(C, \mathcal{I}_{Z|C}(h)) = 0$, hence the cohomology of the exact sequence
\[
0 \to \mathcal{I}_{Z|C}(h) \to \mathcal{O}_C(h) \to \mathcal{O}_Z(h) \to 0
\]
and the Riemann–Roch theorem for $\mathcal{O}_C(h)$ yield $h^1(C, \mathcal{I}_{Z|C}(h)) = \text{deg}(Z) - \chi(\mathcal{O}_C(h)) = 0$. Sequence [7], the isomorphism $\mathcal{I}_{C|S} \cong \mathcal{O}_S(-h)$ and the hypothesis $q(S) = p_g(S) = 0$ finally return $h^1(S, \mathcal{I}_{Z|S}(h)) = 1$. Thus we have a family \mathcal{C} of Ulrich bundles of rank 2 with Chern classes c_1 and c_2 parameterized by \mathcal{H}_S^U.

If $\pi(\mathcal{O}_S(h)) \geq 2$, then the bundles in the family are also stable for a general choice of Z. Since stability is an open property in a flat family (see [23], Proposition 2.3.1 and Corollary 1.5.11), it follows the existence of an irreducible open subset $\mathcal{H}_S^{s,U} \subseteq \mathcal{H}_S^U \subseteq \mathcal{H}_S$ of points corresponding to stable bundles.

Thus, we have a morphism $\mathcal{H}_S^{s,U} \to \mathcal{M}_S^{s,U}(2; c_1, c_2)$ whose image parameterizes the isomorphism classes of stable bundles constructed in Theorem [11]. In particular such bundles, correspond to the points of a single irreducible component $\mathcal{U}_S(\eta) \subseteq \mathcal{M}_S^{s,U}(2; c_1, c_2)$.

Theorems 4.5.4 and 4.5.8 of [23] imply that $\dim(\mathcal{U}_S(\eta)) \geq 4c_2 - c_1^2 - 3\chi(\mathcal{O}_S)$. Taking into account the definitions of c_1 and c_2, simple computations finally yield $\dim(\mathcal{U}_S(\eta)) \geq h^2 - K_S^2$. \qed
If we have some extra informations on the surface \(S \), then we can describe \(\mathcal{U}_S(\eta) \) as the following proposition shows.

Proposition 4.4. Let \(S \) be an anticanonical surface with \(p_g(S) = 0, q(S) = 1 \) and endowed with a very ample line bundle \(\mathcal{O}_S(h) \).

If \(\pi(\mathcal{O}_S(h)) \geq 2 \), then \(\mathcal{U}_S(\eta) \) is non–rational and generically smooth of dimension \(h^2 - K_S^2 \).

Proof. Thanks to Corollary 3.4 we know that \(\mathcal{O}_S(h) \) is non–special. Let \(A \in |-K_S| \):

the cohomology of

\[
0 \to \mathcal{O}_S(K_S) \to \mathcal{O}_S \to \mathcal{O}_A \to 0
\]

tensored with \(\mathcal{E} \otimes \mathcal{E}^\vee \) yields the exact sequence

\[
0 \to H^0(S, \mathcal{E} \otimes \mathcal{E}^\vee(K_S)) \to H^0(S, \mathcal{E} \otimes \mathcal{E}^\vee) \to H^0(A, \mathcal{E} \otimes \mathcal{E}^\vee \otimes \mathcal{O}_A).
\]

Since \(\mathcal{E} \) is stable (see Theorem 1.2), then it is simple, i.e. \(h^0(S, \mathcal{E} \otimes \mathcal{E}^\vee) = 1 \) (see [23], Corollary 1.2.8), hence the map

\[
H^0(S, \mathcal{E} \otimes \mathcal{E}^\vee) \to H^0(A, \mathcal{E} \otimes \mathcal{E}^\vee \otimes \mathcal{O}_A)
\]

is injective. We deduce that \(h^2(S, \mathcal{E} \otimes \mathcal{E}^\vee) = h^0(S, \mathcal{E} \otimes \mathcal{E}^\vee(K_S)) = 0 \).

Thus \(\mathcal{E} \) corresponds to a smooth point of \(\mathcal{U}_S(\eta) \) and \(\dim(\mathcal{U}_S(\eta)) = h^2 - K_S^2 \), thanks to Corollary 4.5.2 of [23]. Finally, being \(q(S) = 1 \), then \(\mathcal{U}_S(\eta) \) is irregular thanks to [5] as well.

Remark 3.5 and the above proposition yield the following corollary.

Corollary 4.5. Let \(S \) be a geometrically ruled surface with \(q(S) = 1, e \geq 0 \) and endowed with a very ample line bundle \(\mathcal{O}_S(h) \).

If \(\pi(\mathcal{O}_S(h)) \geq 2 \), then \(\mathcal{U}_S(\eta) \) is non–rational and generically smooth of dimension \(h^2 \).

5. Ulrich–wildness

Let \(S \) be a surface with \(p_g(S) = 0 \) and \(q(S) = 1 \). Moreover \(\pi(\mathcal{O}_S(h)) \geq 1 \) because \(S \) is not rational, as pointed out in the introduction.

We will make use of the following result.

Theorem 5.1. Let \(X \) be a smooth variety endowed with a very ample line bundle \(\mathcal{O}_X(h) \).

If \(\mathcal{A} \) and \(\mathcal{B} \) are simple Ulrich bundles on \(X \) such that \(h^1(X, \mathcal{A} \otimes \mathcal{B}^\vee) \geq 3 \) and \(h^0(X, \mathcal{A} \otimes \mathcal{B}^\vee) = h^0(X, \mathcal{B} \otimes \mathcal{A}^\vee) = 0 \), then \(X \) is Ulrich–wild.

Proof. See [20], Theorem 1 and Corollary 1.

An immediate consequence of the above Theorem is the proof of Theorem 1.3.

Proof of Theorem 1.3. Recall that \(S \) is a surface with \(p_g(S) = 0, q(S) = 1 \) and endowed with a very ample non–special line bundle \(\mathcal{O}_S(h) \). We have \(\pi(\mathcal{O}_S(h)) \geq 1 \), \(\chi(\mathcal{O}_S) = 0 \) and \(K_S^2 \leq 0 \).

If \(\pi(\mathcal{O}_S(h)) \geq 2 \), then Theorems 1.1 and 1.2 yield the existence of a stable special Ulrich bundle \(\mathcal{E} \) of rank 2 on \(S \).
The local dimension of $\mathcal{M}_S^s(2; c_1, c_2)$ at the point corresponding to E is at least $4c_2 - c_1^2 = h^2 - K_S^2 \geq 1$. Thus, there exists a second stable Ulrich bundle $G \not\cong E$ of rank 2 with $c_i(G) = c_i$, for $i = 1, 2$. Both E and G, being stable, are simple (see [23, Corollary 1.2.8]).

Due to Proposition 1.2.7 of [23] we have $h^0(F, E \otimes G^\vee) = h^0(F, G \otimes E^\vee) = 0$, thus

$$h^1(F, E \otimes G^\vee) = h^2(F, E \otimes G^\vee) - \chi(E \otimes G^\vee) \geq -\chi(E \otimes G^\vee).$$

Equality [2] with $F := E \otimes G^\vee$ and the equalities $\text{rk}(E \otimes G^\vee) = 4$, $c_1(E \otimes G^\vee) = 0$ and $c_2(E \otimes G^\vee) = 4c_2 - c_1^2$ imply

$$h^1(F, E \otimes G^\vee) \geq 4c_2 - c_1^2 = h^2 - K_S^2 \geq 3.$$

because surfaces of degree up to 2 are rational. We conclude that S is Ulrich–wild, by Theorem 5.1.

Finally let $\pi(O_S(h)) = 1$. In this case, S is a geometrically ruled surface on an elliptic curve E thanks to Theorem A of [11] embedded as a scroll by $O_S(h)$. Using the notations of Remark 3.3 we can thus assume that $O_S(h) = O_S(\xi + p^e b)$, where $\deg(b) \geq e + 3$.

Assertion 2) of Proposition 5 in [10] yields that for each $\vartheta \in \text{Pic}^0(E) \setminus \{ O_E \}$ the line bundle $L := O_S(h + p^e \vartheta) \cong O_S(\xi + p^e b + p^e \vartheta)$ is Ulrich. It follows from Corollary 2.2 that $M := O_S(2h + K_S - p^e \vartheta) \cong p^e O_E(2b + h - \vartheta)$ is Ulrich too.

Trivially, such bundles are simple and $h^0(S, L \otimes M^\vee) = h^0(S, M \otimes L^\vee) = 0$ because $L \not\cong M$. Since $L \otimes M^\vee \cong O_S(\xi - p^e b - p^e b + 2\vartheta)$ and $e = -\deg(h) \geq -1$, it follows from Equality [2] that

$$h^1(S, L \otimes M^\vee) \geq -\chi(L \otimes M^\vee) = 2\deg(b) - e \geq e + 6 \geq 5.$$

The statement thus again follows from Theorem 5.1. \]

The following consequence of the above theorem is immediate, thanks to Corollaries 3.3, 3.4, 3.6.

Corollary 5.2. Let S be a surface endowed with a very ample line bundle $O_S(h)$. If S is either bielliptic, or anticanonical with $q(S) = 1$, or geometrically ruled with $q(S) = 1$, then it is Ulrich–wild.

The following corollary strengthens the second part of the statements of Theorems 4.13 and 4.18 in [27].

Corollary 5.3. Let $S \subseteq \mathbb{P}^4$ be a non–degenerate linearly normal non–special surface of degree at least 4 with $p_g(S) = 0$. Then S is Ulrich–wild.

Proof. As pointed out in the proof of Corollary 3.8 the surface S satisfies $q(S) \leq 1$ and if equality holds it is either an elliptic scroll or a bielliptic surface. Theorem 13.3 above and Section 5 of [14] yields that S is Ulrich–wild. \]

References

[1] M. Andreatta, A. Sommese: *Classification of irreducible projective surfaces of smooth sectional genus* ≤ 3. Math. Scand. 67 (1990), 197–214.

[2] M. Aprodu, L. Costa, R.M. Miró–Roig: *Ulrich bundles on ruled surfaces*. J. Pure Appl. Algebra, 222 (2018), 131–138.
[3] M. Aprodu, G. Farkas, A. Ortega: Minimal resolutions, Chow forms and Ulrich bundles on K3 surfaces. J. Reine Angew. Math. 730 (2017), 225–249.
[4] M.F. Atiyah: Vector bundles over an elliptic curve. Proc. London Math. Soc. 7 (1957), 414–452.
[5] E. Ballico, L. Chiantini: Some properties of stable rank 2 bundles on algebraic surfaces. Forum Math. 4 (1992), 417–424.
[6] A. Beauville: Complex Algebraic Surfaces. L.M.S. Student Texts 34, (1996).
[7] A. Beauville: Determinantal hypersurfaces. Michigan Math. J. 48 (2000), 39–64.
[8] A. Beauville: Ulrich bundles on abelian surfaces. Proc. Amer. Math. Soc. 144 (2016), 4609–4611.
[9] A. Beauville: Ulrich bundles on surfaces with $p_g = q = 0$. Available at arXiv:1607.00895 [math.AG].
[10] A. Beauville: An introduction to Ulrich bundles. Available at arXiv:1610.02771 [math.AG].
[11] L. Borisov, H. Nuer: Ulrich bundles on Enriques surfaces. Available at arXiv:1606.01459 [math.AG].
[12] M. Casanellas, R. Hartshorne: ACM bundles on cubic surfaces. J. Eur. Math. Soc. 13 (2011), 709–731.
[13] M. Casanellas, R. Hartshorne, F. Geiss, F.O. Schreyer: Stable Ulrich bundles. Int. J. of Math. 23 1250083 (2012).
[14] G. Casnati: Special Ulrich bundles on non–special surfaces with $p_g = q = 0$. Int. J. Math. 28 (2017), 1750061.
[15] G. Casnati, F. Galluzzi: Stability of rank 2 Ulrich bundles on projective K3 surface. Available at arXiv:1607.05469 [math.AG]. To appear in Math. Scand..
[16] G. Casnati: On the existence of Ulrich bundles on geometrically ruled surface. Preprint.
[17] E. Coskun, R.S. Kulkarni, Y. Mustopa: The geometry of Ulrich bundles on del Pezzo surfaces. J. Algebra 375 (2013), 280–301.
[18] E. Coskun, R.S. Kulkarni, Y. Mustopa: Pfaffian quartic surfaces and representations of Clifford algebras. Doc. Math. 17 (2012), 1003–1028.
[19] D. Eisenbud, F.O. Schreyer, J. Weyman: Resultants and Chow forms via exterior syzygies. J. Amer. Math. Soc. 16 (2003), 537–579.
[20] D. Faenzi, J. Pons-Llopis: The CM representation type of projective varieties. Available at arXiv:1504.03819 [math.AG].
[21] F.J. Gallego, B. P. Purnaprajna: Normal presentation on elliptic ruled surfaces. J. Algebra 186 (1996), 597–625.
[22] R. Hartshorne: Algebraic geometry. G.T.M. 52, Springer (1977).
[23] D. Huybrechts, M. Lehn: The geometry of moduli spaces of sheaves. Second edition. Cambridge Mathematical Library, Cambridge U.P. (2001).
[24] M. Ida, E. Mezzetti: Smooth non–special surfaces in \mathbb{P}^4. Manuscripta Math. 68 (1990), 57–77.
[25] E. Mezzetti, K. Ranestad: The non–existence of a smooth sectionally non–special surface of degree 11 and sectional genus 8 in the projective fourspace. Manuscripta Math. 70 (1991), 279–283.
[26] R.M. Miró–Roig: The representation type of rational normal scrolls. Rend. Circ. Mat. Palermo 62 (2013), 153–164.
[27] R.M. Miró–Roig, J. Pons–Llopis: Representation Type of Rational ACM Surfaces $X \subseteq \mathbb{P}^4$. Algebr. Represent. Theor. 16 (2013), 1135–1157.
[28] R.M. Miró–Roig, J. Pons–Llopis: N–dimensional Fano varieties of wild representation type. J. Pure Appl. Algebra 218 (2014), 1867–1884.
[29] D. Mumford: Lectures on curves on an algebraic surface. With a section by G. M. Bergman. Annals of Mathematics Studies, 59 Princeton U. P. (1966).
[30] M. Nagata: On self–intersection numbers of a section on a ruled surface. Nagoya Math. J., 37 (1970), 191–196.
[31] J. Pons–Llopis, F. Tonini: *ACM bundles on del Pezzo surfaces*. Matematiche (Catania) **64** (2009), 177–211.

[32] F. Serrano: *Divisors of bielliptic surfaces and embeddings in \(\mathbb{P}^4 \).* Math. Z. **203** (1990), 527–533.

Gianfranco Casnati,
Dipartimento di Scienze Matematiche, Politecnico di Torino,
c.so Duca degli Abruzzi 24, 10129 Torino, Italy
e-mail: gianfranco.casnati@polito.it