Anti-osteosarcoma Biological Activity Evaluation and Complete Chloroplast Genome Sequencing of *Populus yunnanensis*

Yue-Wen Chang§*, Wen-Jun Zhu§, Wei Gu, Jun Sun, Zhi-Qiang Li, and Xiao-En Wei

Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, CHINA

1 Introduction

Cancer is one of the most dreaded diseases of the 21th century, which is also a leading cause of death all over the world, seriously influence the economic development and quality of people’s life. The risk of cancer is still increasing because of the increased population aging and adopt lifestyle behaviors1, 2. Osteosarcoma is one of the most common high-grade malignant tumors that occurs in middle-aged and young people. As molecular biology techniques are widely used in the study of tumor etiology, we have a better understanding of the evolutionary characteristics of cancer. Exploring the molecular biological mechanism of osteosarcoma has positive significance for the diagnosis and treatment of the disease. Surgery, radiation, chemotherapy and immunotherapy were the traditionally the cancer treatment commonly used in clinic3. Improper operation of malignant tumor surgery can lead to tumor dissemination. The large-dose and long-term radiotherapy and chemotherapy are very harmful to the immune system of the patients4. The immunotherapy would sometime cause the over-immune, as well as off-target effects5, 6. Although these treatments have inevitable adverse effects, it is still an effective method for clinical treatment of malignant tumors before an emerging treatment has not been widely verified. Recently, the originally derived natural products have drawn the attention of researchers, because of their excellent applications on the cancer treatment7, 8. The use of plant extracts for tumor treatment has a long history, and hematophylline and hematoblastine are the first natural products proved exhibiting anti-cancer activity. Up to now, more than half of the anti-cancer drugs used in hospitals are derived from plant, and more plant derived products were needed to be developed for their anti-cancer application.

As a specie of *Populus*, the *Populus yunnanensis* is widely distributed in the central, northern and southern part of Yunnan, western part of Guizhou, as well as the southwest part of Sichuan province of China. The *Populus yunnanensis* has important economic value, such as for construction, matchsticks, plywood and furniture. The bud fat of *Populus yunnanensis* can be used as yellow-brown dye. Additionally, the *Populus yunnanensis* also has im-

§ Authors are contributed equally to this work.

*Correspondence to: Yue-Wen Chang, Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, CHINA
E-mail: changyw9@126.com

Accepted June 14, 2021 (received for review May 23, 2021)

Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online
http://www.jstage.jst.go.jp/browse/jos/ http://mc.manuscriptcentral.com/jjocs

1429
important landscape values, which is widely planted on lawns and watersides\cite{9,10}. However, there is almost no reports about the pharmacological activity, especially the application of the *Populus yunnanensis* extract on the osteosarcoma treatment. Thus, in this present research, the inhibitory activity of the *Populus yunnanensis* extract on osteosarcoma cancer viability, migration and invasion was evaluated, and the phylogenetic relationship between *Populus yunnanensis* and other *Populus* species were analyzed for the evolution revealing. Above all, we proved *Populus yunnanensis* extract showed excellent inhibitory activity on the cancer cell viability, migration and invasion.

2 Methods

2.1 Extraction

In this present research, for the extraction of mainly material in *Populus yunnanensis*, the soxhlet apparatus was applied. Briefly, 100 mg *Populus yunnanensis* fresh leaves were dissolved with 100 mL EtOH in a 50 mL flask. Next, the soxhlet extractor was placed onto the flask containing the extraction solvent. The flask was heated for 4-5 h, the solvent was evaporated and the desired extraction compound (white powder) was obtained\cite{11}.

2.2 Cancer cell viability

After the extraction of the main ingredients of *Populus yunnanensis*, its inhibitory activity on the osteosarcoma cancer HOS cell viability was evaluated. Thus, the Cell Counting Kit-8 (Dojindo, Japan) detection kit was used in this experiment for measurement. This preformation was conducted totally under the guidance of the instructions with a little change\cite{12}. In brief, the osteosarcoma cancer HOS cells in the logarithmic growth phase were harvested and were planted in 96-well plates at the density of 1 \times 10^7 well. The cells were cultured in an incubator at the condition of 37°C, 5% humidified CO₂ for 12 h to get 70-80% confluence. Then, the *Populus yunnanensis* extracts were added into wells at serial different dilutions (1, 2, 4, 8, 10, 20, 40, 80 µg/mL) for 48 h. After that, the culture medium was discarded, and the osteosarcoma cancer HOS cells were washed and incubated with fresh medium containing 10 µL CCK 8 (Sigma) reagent for 4 h incubation in the dark. In the end, the optical density (OD) value of each well was measured at a wavelength of 450 nm, and the viability curves of the osteosarcoma cancer HOS cells were plotted.

2.3 Cancer cell migration and invasion

To further determine the inhibitory activity of the *Populus yunnanensis* extracts on the migration and invasion ability of the osteosarcoma cancer HOS cells, the trans-well assay was performed in this present research strictly in accordance with the instructions with only a little change\cite{13,14}. In short, the 24-well trans-well chambers (8 µm pore size, 6.5 mm diameter; Corning, NY, USA) was used for the determination totally according to the manufactures’ protocols. For trans-well invasion assay, 100 µL of 1:8 DMEM-diluted Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) was added to each well at 37°C for 6 h. Then, the osteosarcoma cancer HOS cells were seeded in the upper chamber (1 \times 10^5 cells per well) in 100 µL of serum-free medium, and 600 µL of complete medium was added into the lower chamber as a chemoattractant at the same time. After incubated at 37°C for 24 h, the osteosarcoma cancer HOS cells remaining at the upper surface of the membrane were removed with cotton swabs, and the cells on the lower surface of the membrane are the migrated cells. The cells remaining on the upper sides of the membranes were carefully wiped off, the invaded cells were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet solution, the cells that passed through the filter were photographed and quantified in six randomly independent fields under a microscope. The migration assay was carried out as described above without Matrigel pre-treatment.

2.4 Plant DNA isolation

Fresh leaves of *Populus yunnanensis* were collected from Yunnan, China (101°06’ E, 23°53’ N), and further analyses was conducted in the Kunming Institute of Botany, Chinese Academy of Sciences. The duplicate specimens were saved in the herbarium of Kunming Institute of Botany (KIB) at −80°C condition. The chloroplast genomic DNA of *Populus yunnanensis* was extracted from 25 mg silica-gel-dried leaves with Ezup Plant Genomic DNA Prep Kit (Sangon Biotech, Shanghai, China) under the manufactures’ instructions. The quality and quantity of the chloroplast genomic DNA was measured with Agarose gel electrophoresis by measuring A260/A280\cite{15,16}.

2.5 Genome assembly and annotation

For the *Populus yunnanensis* chloroplast (cp) genome sequencing, the paired-end library of the *Populus yunnanensis* was constructed firstly with TruSeq DNA sample preparation kits (Illumina, San Diego, CA, USA). This conduction was finished strictly according to the manufactures’ protocols with only a little modification. Then, the whole genome of *Populus yunnanensis* was sequenced with the Illumina Hiseq 2500 platform (Illumina, San Diego, CA) of Kunming Institute of Botany (Kunming, China) with an average read length of 150 bp pair-end. To assemble chloroplast genomes, the MITObim 1.8 software (Hahn, Bachmann, & Chevreux, 2013) and metaSPAdes (Nurk, Meleshko, Korobeynikov, & Pevzner, 2017) were used in this present research. The *Populus gamdooensis* (GenBank: NC040868) were chosen as the reference genome. The
DOGMA software was used to annotate the chloroplast genome of *Populus yunnanensis*, and the Geneious 8.0.2 (Campos et al., 2016) and Sequin 15.50 (http://www.ncbi.nlm.nih.gov/Sequin/) was used for results correction.17.

The parameter was set as follows: Standard Mode, "Sequence source" was set as "Plastid". Then, selecting display photosystem I, photosystem II, cytochrome b/f complex, ATP synthase, NADH dehydrogenase, RubisCO large subunit, RNA polymerase, Ribosomal proteins (SSU), ribosomal proteins (LSU), *clpP*, *matK*, other genes, hypothetical chloroplast reading frames (*yef*), ORFs, transfer RNAs, ribosomal RNAs, origin of replication and polycistronic transcripts and other gene and characteristic information. Selecting "Draw GC content graph" and "Label intron-containing genes with *". The export file format was set to "PDF". Finally, submit the data and parameter settings for calculation, and finally generate a gene map of the chloroplast genome of the *Populus yunnanensis*.

2.6 Phylogenetic analysis

To analyze the relationship of the *Populus yunnanensis* with other *Populus* species, the Maximum Likelihood (ML) method was used for evolutionary history based on the General Time Reversible model.15 The analysis involved 24 nucleotide sequences. The ML phylogenetic analysis were conducted with MEGA v7.0.26 generating 1000 bootstrap replicates to determine measures of nodal support with each run initiating from a random starting tree.25, 26 The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.

3 Results and Discussion

3.1 Significantly inhibitory activity of the *Populus yunnanensis* extract on the viability of the cancer cells

To explore the whether the *Populus yunnanensis* extract has pharmacological application values, especially on the cancer treatment. The CCK-8 assay was carried out in this study to measure the osteosarcoma cancer HOS cell viability after *Populus yunnanensis* extract treatment at serial different dilutions for 48 h. As the results showed in Fig. 1, we found, after treated with the *Populus yunnanensis* extract, the viability of the cancer obviously difference between these two groups, with *p < 0.005*. The inhibition of the *Populus yunnanensis* extract was even stronger than the positive anti-cancer drug 5-Fu, suggesting the *Populus yunnanensis* extract has the excellent clinical application values for the osteosarcoma therapy.

3.2 *Populus yunnanensis* extract significantly suppressed the migration and invasion ability of the osteosarcoma cancer

As previously described, the *Populus yunnanensis* extract has significantly inhibitory activity on the viability of the cancer cells. In addition to the abnormal proliferation, the migration and invasion ability was also the classical character of the osteosarcoma cancer HOS cells. Thus, the trans-well assay was conducted for the migration and invasion ability determination of the cancer cells after *Populus yunnanensis* extract treatment. The results in Fig. 2 indicated that compared with the control group, the migration and invasion ability of the osteosarcoma cancer HOS cells in the treatment group was significantly suppressed in a dose dependent manner. There was *p < 0.005* between these two groups.

3.3 Chloroplast genome features

Based on the chloroplast genome sequencing and annotation analysis of the *Populus yunnanensis*, we can see 131 genes exist on the chloroplast genome, which could be divided into four categories, self-replicating genes, photosynthesis genes, other functional genes and unknown function genes. Among elf-replicating genes, there were 4 duplicated ribosomal RNA genes (*rrn4.5, rrn5, rrn16*, and

J. Oleo Sci. 70, (10) 1429-1435 (2021)

1431
3.4 Chloroplast genome gene mapping

The annotated chloroplast genome of *Populus yunnanensis* was saved as .gb format file, and uploaded to OGDdraw (https://chlorobox.mpimp-golm.mpg.de/OGDraw.html), an online analysis tool for the chloroplast genome physical mapping. In Fig. 3, we can see the *Populus yunnanensis* has a typical tetrads structured chloroplast genome, including the large single-copy (LSC) region, inverted repeat A (IRA) region, inverted repeat B (IRB) region and a small single-copy (SC) region. The IRA and IRB region have 20 genes with opposite directions, they are rps19, rpl2, rpl23, trn-CAU, ycf2, ycf15, trn-L-CAA, ndhB, rps7, rps12, trn-V-GAC, rnr16S, trn-L-GAU, trn-A-UGC, rnr23S, rrrn4.5S, rrrn5S, trn-R-ACG, trn-N-GUU and ycf1. The LSC region consisted of 81 genes, rpl22, rps3, rpl16, rpl14, rpl16, rps14, rps8, rpl36, rps11, rpoA, petD, petB, psbH, psbN, psbB, clpF, rps12, rpl20, rps18, rpl33, psaJ, trn-P-UGG, trn-W-CCA, petG, petL, psbE, psbF, psbl, petA, cemA, ycf3, psaI, accD, rbcL, atpB, atpE, trn-M-CAU, trn-V-UAC, ndhC, ndhK, ndhJ, trn-F-GAA, trn-L-UAA, trn-S-GGA, ycf3, psaA, psaB, rps14, trn-F-CAU, trn-G-GCC, psbZ, trn-S-UGA, psbC, psbD, trn-T-GGU, trnT-GGU, trn-E-UCU, trn-Y-GUA, trn-D-GUC, psbM, petN, trn-C-GCA, rpoB, rpoC1, rpoC2, rps2, atpI, atpH, atpF, atpA, trn-R-UCU, trn-G-UCC, trn-S-GCU, psbl, psbK, trnQ-UUG, trn-K-UUU, matK, psbA and trn-H-GUG. And the SSC region comprised of 13 genes, including ycf1, ndhF, trnL-UAG, ccsA, ndhD, psaC, ndhE, ndhG, ndhJ, ndhA, ndhH and rps15.

3.5 Phylogenetic analysis

The whole chloroplast complete sequences of 23 *Populus* species and 1 *Salix* specie was used for the phylogenetic analysis in this present study. The data of the Fig. 4 suggested that the reconstructed phylogenetic tree clustered all the species into two groups, the *Populus* evolutionary group and the *Salix* evolutionary group. In the phylogenetic tree, the *Populus yunnanensis* showed the most closely relationship with *Populus simonii*, with the phylogenetic index of 63. This result is consistence with the traditional classification system based on morphology, *Populus yunnanensis* and *Populus simonii* are both species in the *Populus* Sect. *Tacamahaca* group.

4 Conclusion

For the cancer treatment, more and more plants extracts were evaluated recently. In this present research, the inhibitory activity of the *Populus yunnanensis* extract on the osteosarcoma cancer HOS cells viability, migration and invasion was evaluated and its phylogenetic analysis was conducted for evolutionary analysis at the same time. The results of the CCK-8 detection showed that the *Populus yunnanensis* extracts could significantly reduce the via-
Anti-osteosarcoma, *Populus yunnanensis*

Table 1 Genes in *Populus yunnanensis* chloroplast genome (131 genes).

Category	Group of gene	Name of gene
Self-replication	Ribosomal RNA genes	*rrn4*⁵, *rrn5*⁵, *rrn16*⁵, *rrn23*⁵
	Transfer RNA gene	*trnH*-GUG, *trnK*-UU, *trnL*-UGA⁵, *trnS*-GCU
		trnG-UCC, *trnR*-UCU, *trnC*-GCA, *trnD*-GUC
		trnY-GUA, *trnE*-UCU, *trnT*-GUA, *trnS*-UGA
		trnQ-UGU, *trnF*-GAA, *trnV*-UAC, *trnM*-CAU
		trnQ-CCA, *trnP*-UGU, *trnL*-CAU⁺, *trnL*-CAA⁺
		trnV-GAC⁺, *trnL*-GAU⁺, *trnA*-UGC⁺, *trnR*-ACG⁺
		trnN-GUU⁺
Small subunit of ribosome		*rps*2, *rps12*^{**}, *rps11*, *rps7*^{**}, *rps15*
Large subunit of ribosome		*rpl*33, *rpl16*⁺, *rpl22*, *rpl2*^{**}, *rpl14*
RNA polymerase subunits		*rpoC2*, *rpoC1*⁺, *rpoB*, *rpoA*
Photosynthesis	Subunits of photosystem I	*psaB*, *psaA*[*], *psa1*, *psa3*
		psuC, *ycf3*^{**}
	Subunits of photosystem II	*psbA*, *psbK*, *psb1*, *psbM*
		psbD, *psbC*, *psbZ*, *psbJ*
		psbL, *psbF*, *psbE*, *psbB*
	psbT, *psbN*, *psbH*	
	Subunits of cytochrome	*petN*, *petA*, *petL*, *petG*
		petB⁺, *petD*⁺
	Subunits of ATP synthase	*atpA*, *atpA*⁺, *atpH*, *atpI*
		atpE, *atpB*
	Large subunit of Rubisco	*rbcL*
	Subunits of NADH	*ndhC*, *ndhB*^{**}, *ndhD*, *ndhA*⁺
	Dehydrogenase	*ndhJ*, *ndhK*, *ndhF*, *ndhE*
		ndhG, *ndhI*, *ndhH*
Other genes	Maturase	*matK*
	Envelope membrane protein	*cemA*
	Subunits of acetyl-CoA	*aceD*
	C-type cytochrome synthesis gene	*ccsA*
	Protease	*clpP*^{**}
Unknown function	Conserved open reading frames	*ycf4*, *ycf2*⁺, *ycf15*⁺, *ycf1*⁺

Note: *Two gene copies in IRs; one and two asterisks indicate one- and two-intron containing genes, respectively.

bility of the osteosarcoma cancer HOS cells. Besides, the data of the trans-well assay showed the *Populus yunnanensis* extracts also have excellent inhibitory effect on the cancer cell migration and invasion assay. In addition to this, the cp genome of the *Populus yunnanensis* was sequenced, which revealed *Populus yunnanensis* has the most closely relationship with *Populus simonii*, which is consistence with the traditional classification system based on morphology. *Populus yunnanensis* and *Populus simonii* are both species in the *Populus* Sect. *Tacamaha-

J. Oleo Sci. 70, (10) 1429-1435 (2021)
Fig. 3 Physical map of the *Populus yunnanensis* whole chloroplast genome. Genes lying outside of the circle are transcribed counterclockwise, and the genes inside the circle are transcribed clockwise. The genes belong to different functional groups are colored with different bars. The black lines stand for SSC small single copy, LSC large single copy and IR inverted repeat.

Fig. 4 Molecular phylogenetic analysis by Maximum Likelihood method. Phylogenetic relationships of 23 *Populus* species and 1 *Salix* specie with Maximum Likelihood (ML) method based on complete chloroplast genome sequences.
Conflict of Interest
The authors have conflict of interest.

Author Contributions
Yue-Wen Chang performed research and wrote the manuscript; Wen-Jun Zhu performed research and contributed analytic tools; Wei Gu analyzed data; Jun Sun performed research; Zhi-Qiang Li performed research; Xiao-En Wei analyzed data.

Acknowledgments
Not applicable.

Data Availability Statement
The data that support the findings of this study are openly available in GenBank (https://www.ncbi.nlm.nih.gov). reference number MT482537.1.

References
1) Roy, P.S.; Saikia, B.J. Cancer and cure: A critical analysis. Indian J. Cancer 53, 441-442 (2016).
2) Hausman, D.M. What Is Cancer? Perspect. Biol. Med. 62, 778-784 (2019).
3) Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci. 22, 3855-3864 (2018).
4) Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 834, 188-196 (2018).
5) Helmy, K.Y.; Patel, S.A.; Nahas, G.R.; Rameshwar, P. Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv. 4, 1307-1320 (2013).
6) Granier, C.; Karaki, S.; Roussel, H.; Badoual, C.; Tran, T.; Anson, M.; Fabre, E.; Oudard, S.; Tartour, E. Cancer immunotherapy: Rational and recent breakthroughs. Rev. Med. Interne 37, 694-700 (2016).
7) Moore, J.; Yousef, M.; Tsiani, E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 8, 731 (2016).
8) Rezadoost, M.H.; Kumleh, H.H.; Ghasempour, A. Cyto-toxicity and apoptosis induction in breast cancer, skin cancer and glioblastoma cells by plant extracts. Mol. Biol. Rep. 46, 5131-5142 (2019).
9) Zhou, A.P.; Gan, P.H.; Zong, D.; Fei, X.; Zhong, YY, Li, S.Q.; Yu, J.D.; He, C.Z. Bark tissue transcriptome analyses of inverted Populus yunnanensis cuttings reveal the crucial role of plant hormones in response to inversion. PeerJ 7, e7740 (2019).
10) Lin, T.; Chen, J.; Zhou, S.; Yu, W.; Chen, G.; Chen, L.; Wang, X.; Shi, H.; Han, S.; Zhang, F. Testing the elemental defense hypothesis with a woody plant species: Cadmium accumulation protects Populus yunnanensis from leaf herbivory and pathogen infection. Chemosphere 247, 125851 (2020).
11) Tuo, Y.; Dong, Z.; Wang, X.; Gao, B.; Zhu, C.; Tuo, F. Metagenomics reveal correlations between microbial organisms in soils and the health of Populus euphratica. Front Microbiol. 11, 2095 (2020).
12) Zhao, B.; Song, X.; Guan, H. CircACAP2 promotes breast cancer proliferation and metastasis by targeting miR-29a/b-3p-COL5A1 axis. Life Sci. 244, 117179 (2020).
13) Zhang, C.; Wang, W.; Lin, J.; Xiao, J.; Tan, Y. IncRNA CCAT1 promotes bladder cancer cell proliferation, migration and invasion. Int. Braz. J. Urol. 45, 549-559 (2019).
14) Xu, F.; Li, Q.; Wang, Z.; Cao, X. Sinomenine inhibits proliferation, migration, invasion and promotes apoptosis of prostate cancer cells by regulation of miR-23a. Biomed. Pharmacother. 112, 108592 (2019).
15) Varma, A.; Padh, H.; Shrivastava, N. Plant genomic DNA isolation: An art or a science. Biotechnol. J. 2, 386-392 (2007).
16) Gupta, P.; Salava, H.; Sreelakshmi, Y.; Sharma, R. A low-cost high-throughput method for plant genomic DNA isolation. Methods Mol. Biol. 2072, 1-7 (2020).
17) Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227-245 (2019).
18) Nei, M.; Kumar, S. Molecular evolution and phylogenetics. Oxford University Press, New York (2000).
19) Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874 (2016).
20) Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791 (1985).

CC BY 4.0 (Attribution 4.0 International). This license allows users to share and adapt an article, even commercially, as long as appropriate credit is given. That is, this license lets others copy, distribute, remix, and build upon the Article, even commercially, provided the original source and Authors are credited.