10-Year Experience with the Modified Pectoralis Major Flap: The Use of the Deltopectoral Flap to Reduce Skin Tension

Swee Keong Kang · Sabih Nadeem Qamar · Imran Mohib Khan · Robin Crosbie · Theofano Tikka

Abstract
Purpose: Pectoralis major myocutaneous flap has been the workhorse flap for head and neck reconstruction. However, due to the bulky nature of the pedicle it is not uncommon to struggle to achieve tension free closure of the neck skin incision. This case series presents a modified pectoralis major flap technique to overcome the difficulty of tight closure or the need to graft the residual cutaneous defect. Method: This 10-year study includes 73 patients who underwent modified pectoralis major flap reconstruction for complex laryngo-pharyngeal defects following resection of tumours involving larynx, hypopharynx oropharynx and cervical oesophagus. The modified technique involves accommodating a deltopectoral fasciocutaneous flap which rotates over the pedicle to insert into the neck incision providing extra tissue to achieve a tension free closure. Results: 73 patients underwent the procedure, 80% were male. Mean age of patients was 62.8 years. Larynx was the most common site and the average size of the tumour was 34.8 mm. 13 patients developed minor complications such as wound dehiscence out of which 10 were managed conservatively, 3 patients required additional reconstructive procedures. 13 patients developed pharyngocutaneous fistula and 6 developed Neopharyngeal stenosis. 51 patients achieved good swallowing and 55 developed intelligible speech following recovery. Conclusion: We recommend the use of this technique as an effective method to achieve tension free neck incision closure and improved cosmetic results especially in centres which do not have free flap facility readily available.

Keywords Pectoralis Major Flap · Myocutaneous Flap · Deltopectoral Flap · Fasciocutaneous Flap · Head and Neck Reconstruction
free flaps reconstruction. Despite the fact that the pectoralis major muscle makes a robust flap, its pedicle is usually bulky thus, at times it is difficult to close the neck skin incision which allows the flap to enter the neck without adding tension to the pedicle. Many surgeons use skin grafts to manage the potential cutaneous defect after pectoralis major flap placement or to decrease the thickness of the flap. A modified pectoralis major myofascial flap has also been used with varying success [11].

The study describes the surgical outcomes and technique of an alternative to the classic approach of primary or skin graft closure of the neck incision following insertion of the pectoralis major flap. This may help overcoming skin tension following closure of the defects with the above mentioned commonly performed techniques.

Methods

Patient Population

This is a 10-year prospective cohort study of all patients who underwent pharyngo-laryngectomy from February 2010 until March 2020, requiring a pectoralis major flap for reconstruction of complex laryngo-pharyngeal defects following resection of tumours involving larynx, hypopharynx, oropharynx and cervical oesophagus. All patients had a minimum of 1-year follow-up following cancer resection allowing us to present short and long-term outcomes of the modified pectoralis major flap reconstruction. Seventy-three patients were identified during the study period.

Data were collected on patients’ demographics, tumour staging, intra- and post-operative complications, long term morbidity and mortality. The database was analysed using the SPSS 23.0 statistical software.

Ethical Considerations

Institutional approval was attained following discussion at the local Head and Neck Oncology multidisciplinary team meeting and Caldicott Guardian approval was granted.

Surgical Technique

A modified shortened deltopectoral flap is used to close the defect created between the neck skin incision where the pedicled flap is placed across into the neck covering the rotated pedicle of the pectoralis major flap. (Fig. 1)

This technique involves marking a modified incision starting at the chest for pectoralis major flap extending supero-laterally towards the deltoid accommodating the deltopectoral flap. (Fig. 2a) The later extends medially over the clavicle to join the neck incision (Fig. 2b). As the pectoralis major flap is harvested, the skin paddle medial to the incision is raised as the fasciocutaneous deltopectoral flap simultaneously (Fig. 2c). The safe length of this flap reaches the deltopectoral groove. Care is taken to avoid damaging the perforating branches of the internal mammary artery which is the blood supply to the deltopectoral flap as well as the cephalic vein which lies into the deltopectoral groove.

After the pectoralis major flap is harvested and the reconstructive process is complete, the deltopectoral fasciocutaneous flap is used as a rotational flap to fill in the gap of vertical neck incision which was made for access of the pectoralis major flap pedicle. This technique reduces the pressure on the pedicle of the pectoralis major which is otherwise caused by tunnelling the flap or with primary closure. The flap aids in a tension free closure of the neck incision. (Fig. 3)

Results

A total of 73 patients underwent the modified deltopectoral flap closure during the study period. The majority of these were males (n = 59, 80.8%) with a mean age of 62.8 years. (range: 34–79 years). All patients underwent a neck dissection as a part of the primary procedure out of which 51 (69.9%) had bilateral neck dissection being unilateral neck dissection for the remainder (n = 22, 30.1%). Fourteen cases were salvage surgery (n = 19.2%) as patients had previous radiotherapy for their primary tumour. The average primary size for the tumours was 34.8 mm based on the final pathology report and larynx was the most common site of the primary tumour. A breakdown of the tumours’ sub sites and staging is available in Table 1.

Minor complications of superficial wound dehiscence (n = 13, 17.8%) was seen and managed conservatively, average healing time being 10 days. No skin dehiscence or fistula was seen in the region of the deltopectoral flap closure or the pectoralis major/deltpectoral skin crease closure. Thirteen (17.8%) patients developed pharyngocutaneous fistula out of which 10 were managed conservatively and 3 had to return to theatre for another flap. The 10 patient who were managed conservatively had an average fistula healing time of 10 weeks. This is reflected on the average hospital stay for our cohort which was 79 days (range: 12–90), 4 patients died post operatively as an inpatient. Details of complications according to subsite is available in Table 2.

The mean follow-up period was 9 months (range: 3 days – 66 months). All patients were seen at 6 weekly basis in the first year post-operatively, then 2–3 monthly thereafter. Six (8.2%) patients developed neopharyngeal stenosis out of which 4 have been managing soft diet with self-dilatation
Fig. 1 Deltopectoral flap converted into a rotational flap covering pectoralis major flap
Data on cause of death and complications has been tabulated in Table 4 according to the subsites.

Discussion

Reconstruction of pharyngeal defects following resection of advanced laryngopharyngeal cancer remains a challenge. Many techniques have been proposed and utilised over the years with free flap reconstruction being the current mainstay of treatment providing very good functional and cosmetic outcomes even though donor site morbidity and flap failures remains an issue [11–13]. Pectoralis major flap reconstruction is an alternative reconstructive option.
Table 1 Patients’ demographic details and clinical outcomes

Mean Age/years (Range)	62.8	34–79	
Gender	Male	59	
	Female	14	
Neck Dissection	Bilateral	51	
	Unilateral	22	
Site of tumour	Primary site	Sub site	
	Larynx	38	
	Hypopharynx	31	
	Oropharynx	3	
	Oesophagus	1	
	Glottis	8	
	Supraglottis	32	
	Pyriform fossa	17	
	Post cricoid	5	
	Post Pharynx	7	
	Tongue Base	2	
	Tonsil	1	
	Proximal oesophagus	1	
Previous radiotherapy	Yes	14	
	No	59	
Primary size/mm (range)	Average 34.8 mm	Range (12–76)	
Pathological t stage	T1	3	
	T2	10	
	T3	21	
	T4	39	
Pathological/radiological N stage	N3b	8	
	N2a	1	
	N2b	14	
	N2c	12	
	N1	10	
	N0	28	
Adjuvant treatment	Radiotherapy	11	
	Chemo radiotherapy	9	
	No	53	
Complications	Fistula	13	
	Minor wound Dehiscence	13	
	Hematoma	2	
	Flap Necrosis	2	
	Neopahryngeal stenosis	6	
Fistula healing time days/range	Managed Conservatively (10)	Average	Range
	7 weeks	3–10 weeks	
Hospital stay days/range	Average 79	Range (12–90)	
Nutritional status	Solid	44	
	Oral soft diet	8	
	Liquids	9	
	Peg/NG fed	12	
Speech	Tracheo-oesophageal	56	
	(very good voice)	16	
	No Speech	1	
	Awaited		

Table 2 Complications according to subsite

Fistula healing time days/range	Average 7 weeks	Range 3–10 weeks
Hospital stay days/range	Average 79	Range (12–90)
Nutritional status	Solid	44
	Oral soft diet	8
	Liquids	9
	Peg/NG fed	12

Speech	Tracheo-oesophageal	56
	(very good voice)	16
	No Speech	1
	Awaited	

Complications	Fistula	Minor wound Dehiscence	Hematoma	Flap Necrosis	Neopahryngeal Stenosis	Outcome in terms of recurrence (R) / metastasis (M)
Larynx	7	10	1	0	2	3 x R 3 x M
Hypopharynx	5	3	1	2	3	2 x R 1 x M
Oropharynx	0	0	0	0	0	0
Upper Oesophagus	1 0	0	0	1	0	0
in regions where there is no availability of a microsurgical reconstruction team or if patient’s comorbidities preclude the use of a free flap. It can be used for repair of partial and circumferential pharyngeal defects. Large case series have reported fistula rates ranging from 0 to 57% and stenosis rates from 0 to 43%. Peri-operative mortality is less than 1% [14].

Total and partial pectoralis major flap necrosis has been reported in 2.4% and 9.7% respectively [15]. Fistula formation has been associated with flap necrosis especially in reconstruction of hypopharyngeal defects [16, 17]. Reduced tension over the region of the pedicle using our modified technique has shown much lower percentage of fistula being 17.3% in our series versus a mean of 27% reported in the literature [14]. Minor complications are comparable with the free flap reconstruction but local morbidity and cosmesis in the chest and arm region, and the muscle bulk which affects swallowing and voice outcomes especially following reconstruction of the base of tongue, oral cavity and hypopharynx defects remain worse using the pectoralis major flap [18–21]. Despite the fact that it remains second – choice reconstruction option for primary pharyngolaryngectomy, a systematic review of the literature has shown that pectoralis major flap significantly reduces the likelihood of fistulation following salvage laryngectomy, being primarily used in an on-lay fashion [22].

The muscle bulk of the pectoralis major flap is one of the main reasons that the free flap reconstruction gained popularity and developed as the mainstay of treatment for reconstruction. The bulk of the muscle makes difficult the closure

Table 3 Outcomes according to subsite

Subsite	Speech	Nutritional Status				
	Good Voice	No Voice	Solid	Soft	Liquids	Peg/Ng
Larynx	33	8	24	6	4	6
Hypopharynx	20	8	18	2	4	5
Oropharynx	2	1	2	0	1	0
Upper Oesophagus	1	0	0	0	0	1

Table 4 Patients developing complications & cause of death

Subsite	Complication	Cause of death	Time after surgery
Larynx	Discitis & pulmonary mets	Chest infection on background of mets	4 months
	Pulmonary embolism	Pulmonary embolism/cardiac arrest	3 Post-operative day
	Neck Hematoma	Multiple medical co morbidities	1 month
	Chest infection & recurrence	Respiratory failure	2 months
	Recurrence	Chest infection	8 months
	Minor wound dehiscence	Chest infection	2 months
	Recurrence left neopharynx	Disease process	14 months
	Minor wound dehiscence	Synchronous lung primary	6 months
None	Recurrence / Pleural metastasis	23 months	
None	Bilateral nodal recurrence	11 months	
None	Late stomal recurrence	7 months	
None	Respiratory failure	8 months	
None	Recurrence tongue base	Bleeding from recurrence	7 months
None	Acute Kidney Injury Rhabdomyolysis	5 months	
None	Liver Metastasis	30 months	
None	Chest infection	16 months	
Hypopharynx	Recurrence at tongue base	Recurrence at tongue base	16 months
	Aspiration pneumonia	Sepsis/ Respiratory failure	66 months
None	Medical comorbidities	15 months	
New lung primary	-	15 months	
Sepsis	2nd lung primary	13 months	
Chest infections	2nd lung primary	48 months	
Aspiration pneumonia	Aspiration pneumonia	4 months	
Chest infection	Lung metastasis	15 months	
Recurrence of primary	11 months		
Hypercalcaemia – paraneoplastic syndrome	Multiple metastasis- pleura, lung, bone	12 months	
Aspiration pneumonia	25 months		
Mediastinal and local recurrence	16 months		
Chest infection	Recurrence local and mediastinal	4 months	
of the defect following the flap insertion and it has also been linked to worse swallow and speech outcomes compared to free flap alternatives, especially since the utilisation of fasciocutaneous free flaps [11, 14]. The muscle bulk eventually atrophies, and the muscle shrinks in the months to come after surgery giving a comparable long-term post-operative neck cosmesis outcome to the free flap reconstruction. In our study we are describing a technique that deals with the problem of initial excess muscle bulk during closure of the skin defect following the insertion of the pectoralis major flap utilising the deltopectoral fasciocutaneous flap to reduce the skin tension around the pectoralis major pedicle during skin closure [23].

In our series of laryngectomies treated with this technique over a 10-year period, we did not experience problems with skin dehiscence or fistulation at the region of the deltopectoral flap modification, with only 2% of our flaps failing. Post-operative pharyngocutaneous fistulas were noted in 17.8% of patients. These statistics are comparable and even lower than in cohorts reported in the literature using free flap closures with a mean fistula rate of 20%, ranging from 2 to 53% [14, 24]. Comparing our results with other studies utilising the pectoralis major flap with the standard closure technique, our patients had a lower number of fistulation (17.8% vs. 27%) and our surgical series are one of the largest in the literature with the majority of them having less than 70 patients in their series [15] bar the landmark paper by Chan et al., having a total of 92 patients [19].

Our technique can be used in centres where the pectoralis major flap reconstruction remains the primary options for pharyngeal reconstruction due to unavailability of a local maxillofacial or plastic surgery team but also in salvage cases using the on lay pectoralis major technique. The deltopectoral flap for tension free closure can result in reduce intra and post-operative complications as was seen in our series, not only reducing the chances or partial or total flap necrosis leading to reduced number of fistulation but also, achieving good post-operative cosmetic and functional outcomes. The deltopectoral flap provides a robust protection in the form of a cutaneous cover to the pectoralis major flap pedicle. At the same time as it is a local axial flap there are no issues with post flap management such as with skin grafts used for closure of neck wounds when primary closure is not possible. The rotated deltopectoral fasciocutaneous flap also provides an additional advantage of supplementing the cutaneous defect created by advanced laryngeal cancers in some cases involving the cervical skin anteriorly. In patients who have multiple comorbidities, pectoralis major myocutaneous flap with deltopectoral flap modification provides a faster and a reliable alternate as compared to free flap reconstruction [9]. Moreover, over the past year and a half, during the covid-19 pandemic, there has been a resurgence of the regional head and neck flaps for reconstruction aiming to reduce surgical time and hospitalisation [25]. We believe that our modified technique can be utilised to reduced surgical morbidity, especially when looking at flap survival rates.

Conclusion

The modified pectoralis major flap technique should be known to the reconstructive head and neck surgeons as it can provide a tension and complication free, solution to the closure of the skin defect following the harvest and position of a pectoralis major flap. We recommend the use of the fasciocutaneous deltopectoral flap as an axial local flap in addition to the pectoralis major flap to help protect the flap pedicle as well as for better cosmetic results.

Key Points

1. Skin tunnelling or graft closure is used for skin closure following insertion of a pectoralis major flap for reconstruction of the pharyngeal defect following pharyngolaryngectomy.
2. The use of a deltopectoral flap for skin closure takes pressure off the pectoralis major pedicle as compared to the tunnelling technique.
3. Our technique provides additional cutaneous flap to fill in the skin incision and aids in the tension free closure of the neck incision.

Funding No funding to declare.

Data Availability Corresponding Author.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics Approval All procedures performed in this study involving human participants were in accordance of the ethical standards of the institute. Caldicott Guardian approval was obtained from Monklands University Hospital.

Consent Informed consent was obtained from all individual participants included in the study.

References

1. Mahieu R, Colletti G, Bonomo P et al (2016) Head and neck reconstruction with pedicled flaps in the free flap era. Acta Otol Ital 36:459–468
2. Kruse AL, Luebbers HT, Obwegeser JA et al (2011) Evaluation of the pectoralis major flap for reconstructive head and neck surgery. Head Neck Oncol 3:12

3. Wei W, Qiu Y, Fang Q, Jia Y (2019) Pectoralis major myocutaneous flap in salvage reconstruction following free flap failure in head and neck cancer surgery. J Int Med Res 47(1):76–83

4. Tripathi M, Parshad S, Karwasra RK, Singh V (2015) Pectoralis major myocutaneous flap in head and neck reconstruction: An experience in 100 consecutive cases. Natl J Maxillofac Surg 6(1):37–41. doi: https://doi.org/10.4103/0975-5950.168225

5. Murray DJ, Novak CB, Nelligan PC (2008) Fasciocutaneous free flaps in pharyngolaryngo-oesophageal reconstruction: a critical review of the literature. J Plast Reconstr Aesthet Surg 61:1148–1156

6. Pradhan P, Samal S, Preetam C, Samal DK, Parida PK (2018) Pectoralis Major Myocutaneous Flap Reconstruction for the Mandibular Defects in Advanced Oral Cavity Malignancies: A Retrospective Study of 30 Cases. Indian J Otolaryngol Head Neck Surg 70(3):415–420. doi: https://doi.org/10.1007/s12070-018-1429

7. Pinto FR, Kanda JL “Delayed pharyngoesophageal reconstruction with combined local and regional flaps: a case report,” Ear; Nose and Throat Journal, vol. 90, no. 3, pp. E20–E24, 2011

8. El-Maraby H (2006) The reliability of pectoralis major myocutaneous flap in head and neck reconstruction. J Egypt Nat Canc Inst 18(1):41–50

9. Ribeiro Salles Vanni CM, de Matos LL, Faro Junior MP et al (2012) Enhanced morbidity of pectoralis major myocutaneous flap used for salvage after previously failed oncological treatment and unsuccessful reconstructive head and neck surgery. ScientificWorldJournal; 2012:384719. doi: https://doi.org/10.11002012/384719

10. Bussu F, Gallus R, Navach V et al (2014) Contemporary role of pectoralis major regional flaps in head and neck surgery. Acta Otol Ital 34:327–341

11. Phillips JG, Postlethwaite K, Peckitt N (1988) The pectoralis major muscle flap without skin in intra-oral reconstruction. Br J Oral Maxillofac Surg 26:479–485

12. Anthony JP, Singer MI, Deschler DG et al (1994) Long-term functional results after pharyngoesophageal reconstruction with the radial forearm free flap. Am J Surg 168:441–445

13. Elson NC, Martinez DC, Cervenka BP (2020) Current opinions in otolaryngology and head and neck surgery: functional considerations in reconstruction after laryngectomy. Curr Opin Otolaryngol Head Neck Surg 28(5):355–364. doi: https://doi.org/10.1097/MOO.0000000000000645

14. Piazza C, Taglietti V, Nicolai P & (2012) Reconstructive options after total laryngectomy with subtotal or circumferential hypopharyngeal and cervical esophagectomy. Curr Opin Otolaryngol Head Neck Surg 20(2):77–88. doi: https://doi.org/10.1097/MOO.0b013e328350a5cc

15. Vartanian JG, Carvalho AL, Carvalho SMT et al (2004) Pectoralis major and other myofascial/myocutaneous flaps in head and neck cancer reconstruction: experience with 437 cases at a single institution. Head Neck 26:1018–1023

16. Chepeha DB, Annich G, Pynnonen MA et al (2004) Pectoralis major myocutaneous flap vs revascularized free tissue transfer. Complications, gastrostomy tube dependence, and hospitalization. Arch Otolaryngol Head Neck Surg 130:181–186

17. Pinto FR, Malena CR, Vanni CMRS et al (2010) Pectoralis major myocutaneous flaps for head and neck reconstruction: factors influencing occurrences of complications and the final outcome. Sao Paulo Med J 128:336–341

18. Spriano G, Pellini R, Roselli R (2002) Pectoralis major myocutaneous flap for hypopharyngeal reconstruction. Plast Reconstr Surg 110:1408–1413

19. ChanYW, Ng RWM, Liu LHL et al (2011) Reconstruction of circumferential pharyngeal defects after tumour resection: reference or preference. J Plast Reconstr Aesthet Surg 64:1022–1029

20. Medina JE, Nance A, Burns L et al (1987) Voice restoration after total laryngopharyngectomy and cervical esophagectomy using the duckbill prosthesis. Am J Surg 154:407–410

21. Liu M, Liu W, Yang X, Guo H, Peng H (2017) Pectoralis Major Myocutaneous Flap for Head and Neck Defects in the Era of Free Flaps: Harvesting Technique and Indications. Sci Rep 7:46256. Published 2017 Apr 7. doi: https://doi.org/10.1038/srep46256

22. Cabrera CI, Joseph Jones A, Phillee Parker N, Emily Lynn Blevins A, Weidenbacher MS Pectoralis Major Onlay vs Interpositional Reconstruction Fistulation After Salvage Total Laryngectomy: Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg. 2021 May; 164(5):972–983. doi: 10.1177/0194599820957962. Epub 2020 Sep 29. PMID: 32988281.

23. Gray ML, Drake VE, Desai SC (2021) Resurgence of regional flaps for head and neck reconstruction. Curr Opin Otolaryngol Head Neck Surg. May 17. doi: https://doi.org/10.1097/MOO.0000000000000725. Epub ahead of print. PMID: 34109945

24. Andrades P, Pehler SF, Baranano CF et al (2008) Fistula analysis after radial forearm free flap reconstruction of hypopharyngeal defects. Laryngoscope 118:1157–1163

25. Gray ML, Drake VE, Desai SC Resurgence of regional flaps for head and neck reconstruction, Current Opinion in Otolaryngology & Head and Neck Surgery: August 2021 - Volume 29 - Issue 4 - p237–243doi: https://doi.org/10.1097/MOO.0000000000000725

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.