Observation of $X(3872) \rightarrow J/\psi \gamma$ and search for $X(3872) \rightarrow \psi' \gamma$ in B decays

V. Bhardwaj,38 K. Trabelsi,8 J. B. Singh,38 S.-K. Choi,5 S. L. Olsen,41 I. Adachi,8 K. Adamczyk,31 D. M. Asner,37 V. Aulchenko,1,35 T. Aslanyan,15 T. Aziz,44 A. M. Bakich,43 E. Barberio,26 K. Belous,14 B. Bhuyan,9 M. Bischofberger,28 A. Boulard,1,35 M. Bračko,24,16 J. Brodzicka,31 T. E. Browder,7 A. Chen,29 P. Chen,30 B. G. Cheon,6 K. Cho,19 Y. Choi,42 J. Dalseno,25,45 Z. Doležal,2 S. Eidelman,1,35 D. Epifanov,1,35 V. Gaur,44 N. Gabyshev,1,35 B. Golob,23,16 J. Haba,8 K. Hayasaka,27 H. Hayashii,28 Y. Horii,47 Y. Hoshi,46 W.-S. Hou,30 Y. B. Hsiung,30 H. J. Hyun,21 T. Iijima,27 K. Inami,27 A. Ishikawa,47 M. Ibabeuchi,54 Y. Iwasaki,8 T. Iwashita,28 N. J. Jishi,44 T. Julius,26 J. H. Kang,54 T. Kawasaki,33 C. Kiesling,25 H. O. Kim,21 J. B. Kim,20 J. H. Kim,19 K. T. Kim,20 M. J. Kim,21 S. K. Kim,41 Y. J. Kim,19 K. Kinoshita,3 B. R. Ko,20 N. Kobayashi,39,49 S. Korpar,24,16 P. Križan,23,16 R. Kumar,38 T. Kumita,50 A. Kuzmin,1,35 Y.-J. Kwon,54 J. S. Lange,4 M. J. Lee,41 Y. Li,52 J. Libby,10 C.-L. Lim,54 D. Liventsev,15 R. Louvot,22 D. Matvienko,1,35 S. McOnie,43 K. Miyabayashi,28 H. Miyata,33 Y. Miyazaki,27 R. Mizuk,15 G. B. Mohanty,44 E. Nakano,36 M. Nakao,8 Z. Natkaniec,31 C. Ng,18 S. Nishida,8 O. Nitoh,51 T. Nozaki,8 T. Ohshima,27 S. Okuno,17 Y. Onuki,47 G. Pakhlova,15 C. W. Park,42 H. K. Park,21 R. Pestotnik,16 M. Petrić,16 L. E. Piilonen,52 M. Röhrken,18 H. Sahoo,7 K. Sakai,8 Y. Sakai,8 T. Sanuki,37 O. Schneider,22 C. Schwanda,13 O. Seon,27 M. Shapkin,14 V. Shebalin,1,35 T.-A. Shibata,39,49 J.-G. Shin,30 B. Shwartz,1,35 P. Smerkol,16 Y.-S. Sohn,54 A. Sokolov,14 E. Solovieva,15 S. Stanič,34 M. Starić,16 T. Sumiyoshi,15 Y. Teramoto,36 M. Uchida,39,49 S. Uehara,8 T. Ugo,15 Y. Unno,6 S. Uno,8 Y. Usov,1,35 G. Varner,7 A. Vossen,11 X. L. Wang,12 M. Watanabe,33 Y. Watanabe,17 K. M. Williams,52 B. D. Yabsley,43 Y. Yamashita,32 C. Z. Yuan,12 C. C. Zhang,12 Z. P. Zhang,40 V. Zhilich,1,35 P. Zhou,53 V. Zhulanov,1,35 and A. Zupanc18

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Faculty of Mathematics and Physics, Charles University, Prague
3University of Cincinnati, Cincinnati, Ohio 45221
4Justus-Liebig-Universität Gießen, Gießen
5Gyeongsang National University, Chinju
6Hanyang University, Seoul
7University of Hawaii, Honolulu, Hawaii 96822
8High Energy Accelerator Research Organization (KEK), Tsukuba
9Institute of High Energy Physics, Guwahati, Guwahati
10Indian Institute of Technology Madras, Madras
11Indiana University, Bloomington, Indiana 47408
12Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
13Institute of High Energy Physics, Vienna
14Institute of High Energy Physics, Protvino
15Institute for Theoretical and Experimental Physics, Moscow
16J. Stefan Institute, Ljubljana
17Kanagawa University, Yokohama
18Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, Karlsruhe
19Korea Institute of Science and Technology Information, Daejeon
20Korea University, Seoul
21Kyungpook National University, Taegu
22École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
23Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
24University of Maribor, Maribor
25Max-Planck-Institut für Physik, München
26University of Melbourne, School of Physics, Victoria 3010
27Nagoya University, Nagoya
28Nara Women’s University, Nara
29National Central University, Chung-Li
30Department of Physics, National Taiwan University, Taipei
31H. Niewodniczanski Institute of Nuclear Physics, Krakow
32Nippon Dental University, Niigata
33Niigata University, Niigata
34University of Nova Gorica, Nova Gorica
35University of Oregon, Eugene, Oregon 97403
36University of Tennessee, Knoxville, Tennessee 37996
37University of Texas, Austin, Texas 78712
38University of Vienna, Austria
39University of Wisconsin, Madison, Wisconsin 53706
40Université Paris-Sud, Orsay, France
41University of York, York YO10 5DD, United Kingdom
42Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
43Washington University, St. Louis, Missouri 63130
44Wayne State University, Detroit, Michigan 48202
45Waseda University, Tokyo, Japan
46Weizmann Institute of Science, Rehovot 76100, Israel
47Worcester Polytechnic Institute, Worcester, Massachusetts 01609
48Xi’an Jiaotong University, Xi’an 710049, China
49Xi’an University of Chemistry and Technology, Xi’an, Shaanxi, China
50Xiamen University, Xiamen 361005, China
51Xinjiang Institute of Physics, Chinese Academy of Sciences, Urumqi, China
52Xinjiang Normal University, Korla, China
53Xinjiang University, Urumqi, China
54Xiamen University, Xiamen 361005, China
55Xi’an Jiaotong University, Xi’an 710049, China
56Xi’an Jiaotong University, Xi’an, Shaanxi, China
57Xiamen University, Xiamen 361005, China
58Xi’an Jiaotong University, Xi’an 710049, China
59Xinjiang Institute of Physics, Chinese Academy of Sciences, Urumqi, China
60Xinjiang Normal University, Korla, China
61Xinjiang University, Urumqi, China
62Xiamen University, Xiamen 361005, China
63Xi’an Jiaotong University, Xi’an 710049, China
64Xinjiang Institute of Physics, Chinese Academy of Sciences, Urumqi, China
65Xinjiang Normal University, Korla, China
66Xinjiang University, Urumqi, China
We report a study of $B \to (J/\psi \gamma) K$ and $B \to (\psi' \gamma) K$ decay modes using $772 \times 10^6 B \bar{B}$ events collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB energy-asymmetric $e^+ e^-$ collider. We observe $X(3872) \to J/\psi \gamma$ and report the first evidence for $\chi_{c2} \to J/\psi \gamma$ in $B \to (X_{\psi\gamma}) K$ decays, while in a search for $X(3872) \to \psi' \gamma$ no significant signal is found. We measure the branching ratios, $B(B^\pm \to X(3872)K^\mp) = (1.78^{+0.48}_{-0.44} \pm 0.12) \times 10^{-6}$, $B(B^\pm \to \chi_{c2} K^\mp) = (1.11^{+0.36}_{-0.34} \pm 0.09) \times 10^{-6}$, $B(B^\pm \to X(3872)K^\mp)B(X(3872) \to \psi' \gamma) < 3.45 \times 10^{-6}$ (upper limit at 90% C.L.) and also provide upper limits for other searches.

PACS numbers: 13.20.Gd, 13.20.He, 14.40.Gx

The $X(3872)$ state was observed by the Belle Collaboration [1] in 2003, and later confirmed by CDF [2], DO [3] and BaBar [4]. The fact that it was not seen in decays to $\chi_{c1} \gamma$, $\chi_{c2} \gamma$, and $J/\psi \eta$ final states suggests that the $X(3872)$ is not a conventional $q\bar{q}$ meson state that can be explained by a simple quark model [1, 2, 3]. Because of its narrow width and the proximity of its mass, 3871.5 ± 0.2 MeV/c^2 [2] to the $D^{*0}\overline{T^0}$ threshold, the $X(3872)$ is a good candidate for a $D^{*0}\overline{D}^*$ molecule [5]. Other possibilities have also been proposed for the $X(3872)$ state, such as tetraquark [8], σg hybrid meson [10] and vector glueball models [11].

Radiative decays of the $X(3872)$ are important in understanding its nature. One such decay, $X(3872) \to J/\psi \gamma$ [3, 12], established its charge parity to be $+1$. In the molecular model, the radiative decays of the $X(3872)$ occur through vector meson dominance (VMD) and light quark annihilation (LQA) [8]. The decay rate of $X(3872) \to J/\psi \gamma$ is dominated by VMD while for $X(3872) \to \psi' \gamma$ [3], it is mostly driven by LQA, implying that $X(3872)$ decay to $\psi' \gamma$ is highly suppressed compared to $J/\psi \gamma$ [8]. Recent results from the BaBar Collaboration [14] show that $B(X(3872) \to \psi' \gamma)$ is almost three times that of $B(X(3872) \to J/\psi \gamma)$, which is inconsistent with a pure $D^{*0}\overline{T^0}$ molecular model, and can be interpreted as indicating a σg-$D^{*0}\overline{T^0}$ admixture [8, 15]. If the $X(3872)$ is an admixture of χ_{c1} and a molecular state, and its production and radiative decays are mainly due to its χ_{c1}' component, then the $\psi' \gamma$ decay, a favored E1 transition of χ_{c1}', should be significantly enhanced compared to the $J/\psi \gamma$ decay, which is “hindered” by poor wave function overlap [16].

In this Letter, we present new results on $B \to (\chi_{c1}, \chi_{c2}, X(3872)) K$, where the $\chi_{c1}, \chi_{c2}, X(3872)$ decays to $J/\psi \gamma$, and the $X(3872)$ decays to $\psi' \gamma$ [17]. These results are obtained from the final data sample of $772 \times 10^6 B \bar{B}$ events collected with the Belle detector at the KEKB [10] energy-asymmetric $e^+ e^-$ collider operating at the $\Upsilon(4S)$ resonance. The Belle detector is a large-solid-angle spectrometer which includes a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), and an electromagnetic calorimeter (ECL) comprising CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field.

The J/ψ meson is reconstructed in its decays to $\ell^+ \ell^-$ ($\ell = e$ or μ), and the ψ' meson in its decays to $\ell^+ \ell^-$ and $J/\psi \pi^+ \pi^-$. In the $\psi' \to e^+ e^-$ and $J/\psi \to e^+ e^-$ decays, the four-momenta of all photons within 50 mrad of each of the original e^+ or e^- tracks are included in the invariant mass calculation [hereafter denoted as $M_{e^+ e^-(\gamma)}$], in order to reduce the radiative tail. The reconstructed invariant mass of the J/ψ candidates is required to satisfy $2.95 \text{ GeV}/c^2 < M_{e^+ e^-(\gamma)} < 3.13 \text{ GeV}/c^2$ or $3.03 \text{ GeV}/c^2 < M_{\mu^+ \mu^-} < 3.13 \text{ GeV}/c^2$. In the $\psi' \to \ell^+ \ell^-$ decay,
reconstruction, the invariant mass is restricted to the range 3.63 GeV/c² < M_{J/ψ+π−} < 3.72 GeV/c² or 3.65 GeV/c² < M_{K^+K^−} < 3.72 GeV/c². To reconstruct ψ' → J/ψπ+π− decays, ΔM = M_{ψ'π+π−} − M_{J/ψπ} should satisfy the condition 0.58 GeV/c² < ΔM < 0.60 GeV/c². In order to reduce the combinatorial background due to low-momentum pions, the invariant mass of the two pions from the ψ' decay, M_{π+π−}, is required to be greater than 0.40 GeV/c². A mass- and vertex-constrained fit is performed to all the selected J/ψ and ψ' candidates to improve their momentum resolution.

The χ_{c1,2} and the X(3872) candidates are formed by combining the J/ψ candidates with a photon. The photons are reconstructed from energy depositions in the ECL and are required to have energies (in the lab frame) greater than 270 (470) MeV for χ_{c1,2} (X(3872)) reconstruction. In a similar fashion, X(3872) candidates decaying to ψ′γ are reconstructed by combining ψ' candidates with γ candidates with energies greater than 100 MeV.

Charged tracks are identified as pion or kaon candidates using information from the CDC, TOF, and ACC systems. The kaon identification efficiency is 88% while the probability of a pion misidentified as a kaon is 10%. The pions used in the reconstruction of the ψ' in the J/ψπ+π− channel have an identification efficiency of 99% with a kaon to pion misidentification probability of 2%. Candidate K_{S}^{0} mesons are reconstructed by combining two oppositely charged tracks (with a pion mass assumed) with invariant mass lying between [0.482, 0.514] GeV/c²; the selected candidates are required to satisfy the criteria given in detail in Ref. [21].

To reconstruct the B candidates, each J/ψγ or ψ′γ system is combined with a kaon candidate. Two kinematic variables are formed: the beam-constrained mass (M_{bc} ≡ \sqrt{E_{beam}^{2} − p_{B}^{2}}) and the energy difference (ΔE ≡ E_{γ}^{∗} − E_{beam}^{∗}). Here E_{beam}^{∗} is the run-dependent beam energy, and E_{γ} and p_{B} are the reconstructed energy and momentum, respectively, of the B meson candidates in the T(4S) center-of-mass (CM) frame. Candidates having M_{bc} > 5.27 GeV/c² and within a ΔE window of [−25, 30] MeV for χ_{c1,2} and [−30, 35] MeV ([−20, 20] MeV) for X(3872) → J/ψγ (X(3872) → ψ′γ) are retained for further analysis. We extract the signal yield by performing an unbinned extended maximum likelihood fit to the variable M_{ψγ} defined as M_{ψγ} = M_{π+π−} + m_{γ} [21], where m_{γ} is the world average mass [22]. In order to improve the resolution of M_{ψγ}, we scale the energy of the γ so that ΔE is equal to zero.

To suppress continuum background, events having a ratio of the second to zeroth Fox-Wolfram moments R_{2} > 0.5 are rejected. Large B → ψX MC samples (corresponding to 50 times the data sample size used in this analysis) are used to study the background. To study the non-J/ψ (non-ψ') background \ M_{π+π−} sidebands in data, within [2.5-2.6] GeV/c² ([3.35-3.45] GeV/c²) and [3.2-3.5] GeV/c² ([3.8-4.0] GeV/c²), are used.

For the (J/ψγ)K channels, the background is primarily from B → J/ψK* decays that do not peak in M_{J/ψγ}. To reduce this background, we veto candidate photons from π^{0} → γγ by combining them with any other photon and then by rejecting both γ's in the pair if the π^{0} likelihood is greater than 0.52. This likelihood is a function of the laboratory energy of the other photon, its polar angle and the invariant mass of the two-photon system, and is determined using MC study [24]. We also reject photon candidates with cosθ_{hel} > 0.76 (> 0.85) in the χ_{c1,2} (X(3872)) selection, where the helicity angle θ_{hel} is defined as the angle between the direction of the photon and the direction opposite to the B momentum in the χ_{c1,2} (X(3872)) rest frame. Applying these criteria, the background is reduced by 86% (79%) with a signal loss of 35% (30%) for the B → χ_{c1,2}K (B → X(3872)K) decay mode. For 1.3% of events with multiple candidates in B → (J/ψγ)K decay modes, we select the B candidate having M_{bc} closest to the nominal B mass [22].

A sum of two Gaussians is used to model the signal shapes of B → χ_{c1}K and B → χ_{c2}K. The fraction of each Gaussian is fixed to the value obtained from MC simulated events. For B^{+} → χ_{c1}K^{+} the other shape parameters are floated in the fit whereas for B^{+} → χ_{c2}K^{+} they are fixed using the mass difference (from Ref. [22]) and the width difference (from MC simulations) between the χ_{c1} and χ_{c2}. The non-peaking combinatorial background component is modeled with a second-order polynomial. For the B^{0} → χ_{c1}K_{S}^{0} and B^{0} → χ_{c2}K_{S}^{0} decay modes, the signal shape is fixed using the results from the charged B mode.

![FIG. 1: M_{J/ψγ} distributions for (a) B^{+} → χ_{c1,2}(→ J/ψγ)K^{+} and (b) B^{0} → χ_{c1,2}(→ J/ψγ)K_{S}^{0} decays. The curves show the signal (pink dot-dashed for χ_{c1} and red dashed for χ_{c2}), and the background component (black dotted) as well as the overall fit (blue solid). The insets show a reduced range of M_{J/ψγ} and the contribution of the B → χ_{c2}K peak.](image-url)
Figure 1 shows the fit to the $M_{J/\psi\gamma}$ distribution for $B \to \chi_{c1}K$ and $B \to \chi_{c2}K$ decays in the range of $[3.38, 3.70]$ GeV/c^2. We observe the χ_{c1} in both B decay modes, and obtain 3.6 standard deviation (σ) evidence for the χ_{c2} in the charged B decay mode. The statistical significance is defined as $\sqrt{-2 \ln(L_0/L_{\text{max}})}$ where L_{max} (L_0) denotes the likelihood value when the yield is allowed to vary (is set to zero). The systematic uncertainty, which is described below, is included in the significance [22]. As no significant signal is found for $B^0 \to \chi_{c2}K^0$, we determine a 90% confidence level (C.L.) upper limit (U.L.) on its branching fraction with a frequentist method that uses ensembles of pseudo-experiments. For a given signal yield, 10000 sets of signal and background events are generated according to their PDFs, and fits are performed. The U.L. is determined from the fraction of samples that give a yield larger than that of data.

For the $B \to X(3872)(\to J/\psi\gamma)K$ decay mode, a sum of two Gaussians is also used to model the signal PDF and the combinatorial background component is modeled by a first-order polynomial. To take into account small differences between the MC simulation and data, the signal PDF shapes are corrected for calibration factors determined from the $B^+ \to \chi_{c1}K^+$ fit. Figure 2 shows the fit to the $M_{J/\psi\gamma}$ distributions for $B \to X(3872)K$ performed in the range $[3.7, 4.1]$ GeV/c^2. We find a clear signal for $X(3872) \to J/\psi\gamma$ in the charged decay $B^+ \to X(3872)K^+$ with a significance of 4.9σ and measure the product branching fraction $B(B^+ \to X(3872)K^+)B(X(3872) \to J/\psi\gamma) = (1.78\pm0.48\text{(stat.)} \pm 0.12\text{(syst.)}) \times 10^{-6}$. We also give an U.L. on the branching fraction for the neutral B mode whose significance is 2.4σ (Table I). We estimate the significance of the $X(3872) \to J/\psi\gamma$ signal by simultaneously fitting the charged and the neutral B decay modes; we obtain a significance of 5.5σ including systematic uncertainties.

![FIG. 2: $M_{J/\psi\gamma}$ distributions for (a) $B^+ \to X(3872)(\to J/\psi\gamma)K^+$ and (b) $B^0 \to X(3872)(\to J/\psi\gamma)K^0$ decays. The curves show the signal (red dashed) and the background component (blue dotted) as well as the overall fit (blue solid).](image)

For the $B \to (\psi'\gamma)K$ decay mode, the background has a broad peaking structure, most of which is from $B \to \psi'K^*$ decay mode. Here, since the $\gamma's$ from $X(3872) \to \psi'\gamma$ have low energy (less than one third of the energy of the $\gamma's$ coming from $X(3872) \to J/\psi\gamma$), the π^0-veto and cosθ_{inel} selection result in more signal loss than background reduction. Instead, we combine the $\psi'K$ of the $\psi'\gamma K$ candidates with any $\pi\pm$ or π^0 candidate in the event. Three variables, namely $\Delta E'$ ($\equiv E^*_\psi + E^*_K - E^*_{\text{beam}}$), M'_{bc} ($\equiv \sqrt{E^2_{\text{beam}} - (p^*_\psi + p^*_K)^2}$) and the invariant mass of $K\pi$ ($M_{K\pi}$), are used for this purpose. Events satisfying the criteria of 817 MeV/$c^2 < M_{K\pi} < 967$ MeV/c^2, $\Delta E'$ within $[-20, 20]$ MeV and $M'_{bc} > 5.27$ GeV/c^2, are identified as $B \to \psi'K^*$ candidates and discarded. This results in the reduction of the background by 59% with a 22% loss of signal. For 15.4% of events with multiple candidates in $B \to (\psi'\gamma)K$ decay modes, we select the B candidate having M'_{bc} closest to the nominal B mass [22].

The branching fraction for the $B \to (\psi'\gamma)K$ mode is determined from a simultaneous fit performed to the two decay modes of the ψ'. The background shape for $B \to (\psi'\gamma)K$ has both a peaking and a non-peaking component. For the peaking component, the shape is estimated from a large sample of MC simulated events of $\psi'K$ and $\psi'K^*$, and their fractions are fixed using the branching fractions from Ref. [22]. The non-peaking background (combinatorial background) is parameterized by a threshold function ($M_{\psi'\gamma})^2 \times \exp(a (M_{\psi'\gamma} - M_{Th}) + b (M_{\psi'\gamma} - M_{Th})^2)$, where $M_{Th} = 3.725$ GeV/c^2. The ψ mass data sidebands and large $B \to \psi'X$ MC sample (after removing $B \to \psi'K$ and $B \to \psi'K^*$ decays) are used to estimate the parameters of the threshold function. The shapes for both background components are fixed whereas their yields are allowed to float in the fit. The signal is described as a sum of two Gaussians and is used from MC study after applying calibration corrections (from $B^+ \to \chi_{c1}K^+$ study) while its yield is allowed to vary in the fit. No significant bias is found in fitting ensembles of the simulated experiments containing the signal and background components.

Figure 3 shows the results of the fit to the $M_{\psi'\gamma}$ distribution for $B \to X(3872)K$. The fitted yields are $5.0^{+11.9}_{-10.0}$ events (1.5$^{+4.8}_{-3.9}$ events) for $B^+ \to X(3872)K^+$ ($B^0 \to X(3872)K^0)$. Since there is no significant signal in either channel, we determine U.L.s of $B(B^+ \to X(3872)K^+)B(X(3872) \to \psi'\gamma)$ ($B(B^0 \to X(3872)K^0)B(X(3872) \to \psi'\gamma)$) as $3.45 \times 10^{-6} (6.62 \times 10^{-6})$ using the method described above. A completely independent analysis, with different selection criteria and a different fitting technique was performed on the same data sample; the results were found to be consistent with the results reported in this Letter.

The branching fractions and the fit results are summarized in Table I. Equal production of neutral and charged B meson pairs in the $\Upsilon(4S)$ decay is assumed. Secondary
branching fractions used to calculate B are taken from Ref. [22].

![Graph](image)

FIG. 3: $M_{\psi\gamma}$ distributions for (a) $B^+ \to X(3872) \to \psi'\gamma K^+$ and (b) $B^0 \to X(3872) \to \psi'\gamma K^0$. The curves show the signal (red dashed for $X(3872)$) and the background component (pink dot-dashed for background from $B \to \psi'K^+$ and $B \to \psi K$ component, and black dotted for combinatorial background modeled by the threshold function) as well as the overall fit (blue solid).

A correction for small differences in the signal detection efficiency calculated from signal MC and data has been applied for the lepton (kaon/pion) identification requirement. Samples of $J/\psi \to \ell^+\ell^-$ and $D^{*+} \to D^0(K^-\pi^+)\pi^+$ decays are used to estimate the lepton identification correction and the kaon (pion) identification correction, respectively. The uncertainties on these corrections are included in the systematic error. The errors on the PDF shapes are obtained by varying all fixed parameters by $\pm 1\sigma$ and taking the change in the yield as the systematic error. To estimate the uncertainty arising from the fixed fractions of $B \to \psi'K$ and $B \to \psi'K^*$ in the $B \to (\psi'\gamma)K$ background shape, we vary their branching fractions by $\pm 1\sigma$. The uncertainty due to the secondary branching fractions are similarly taken into account. The uncertainty on the tracking efficiency and the number of recorded B meson pairs are estimated to be 1.0% per track and 1.4%, respectively. The uncertainty on the photon identification is estimated to be 2.0% and 3.0% for $B \to (J/\psi\gamma)K$ and $B \to (\psi'\gamma)K$, respectively.

TABLE I: Corrected efficiency (ϵ), signal yield (γ) from the fit, measured B or 90% C.L. upper limit (U.L.) for $B \to \chi_{c1,2}K$, $B \to X(3872)(\to J/\psi\gamma)K$ and $B \to X(3872)(\to \psi'\gamma)K$ decay modes and significance (S) with systematics included. B for $B \to X(3872)K$ is the product $B(B \to X(3872)K)\mathcal{B}(X(3872) \to \psi'\gamma)$. For B, the first (second) error is statistical (systematic).

Decay $\epsilon(\%)$	Yield (γ)	Branching fraction	S (σ)		
$B \to \chi_{c2}(\to J/\psi\gamma)K$	$B \times 10^{-5}$	$B \times 10^{-5}$	$B \times 10^{-5}$		
K^+	14.8	2308$^{+55}_{-52}$	4.94$^{+0.11}_{-0.33}$	37	
K^0	13.2	542$^{+24}_{-24}$	3.78$^{+0.17}_{-0.33}$	37	
$B \to \chi_{c2}(\to J/\psi\gamma)K$	$B \times 10^{-5}$	$B \times 10^{-5}$	$B \times 10^{-5}$		
K^+	16.6	328$^{+10.9}_{-10.2}$	1.11$^{+0.36}_{-0.34}$	3.6	
K^0	14.4	2.8$^{+4.7}_{-2.9}$	0.32$^{+0.53}_{-0.34}$	0.03 (1 < 1.5)	0.7
$B \to X(3872)(\to J/\psi\gamma)K$	$B \times 10^{-5}$	$B \times 10^{-5}$	$B \times 10^{-5}$		
K^+	18.3	30.0$^{+0.9}_{-0.7}$	1.78$^{+0.44}_{-0.12}$	4.9	
K^0	14.5	5.7$^{+3.5}_{-2.8}$	1.24$^{+0.73}_{-0.61}$	1.11 (1 < 2.4)	2.4
$B \to X(3872)(\to \psi'\gamma)K$	$B \times 10^{-5}$	$B \times 10^{-5}$	$B \times 10^{-5}$		
K^+	14.7	5.0$^{+1.1}_{-1.0}$	0.83$^{+1.93}_{-1.85}$	0.44 (3 < 4.35)	0.4
K^0	10.8	1.5$^{+4.9}_{-4.9}$	1.12$^{+7.57}_{-2.96}$	0.57 (6 < 6.62)	0.3

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and SINET3 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); MEST, NRF, NSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[1] S.K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
[2] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 93, 072001 (2004).
[3] V.M. Abazov et al. (DO Collaboration), Phys. Rev. Lett. 93, 162002 (2004).
[4] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D
71, 071103 (2005).

[5] K. Abe et al. (Belle Collaboration), arXiv:hep-ex/0408116.

[6] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 041801 (2004).

[7] Our own average using the most recent measurements $(X(3872) \rightarrow J/\psi \pi\pi$ decay channel) from Belle, BaBar, CDF and DØ.

[8] E.S. Swanson, Phys. Lett. B 598, 197 (2004); E.S. Swanson, Phys. Rept. 429, 243 (2006).

[9] L. Maiani et al., Phys. Rev. D 71, 014028 (2005).

[10] B.A. Li, Phys. Lett. B 605, 306 (2005).

[11] K.K. Seth, Phys. Lett. B 612, 1 (2005).

[12] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 74, 071101(R) (2006).

[13] The ψ', which is sometimes designated as the $\psi(2S)$, is not a pure S-wave vector charmonium, rather it has a significant admixture of $^{3}D_{1}$: $|\psi' > = \cos \phi|^{3}S_{1} > - \sin \phi|^{3}D_{1} >$.

[14] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 102, 132001 (2009).

[15] M. Suzuki, Phys. Rev. D 72, 114013 (2005).

[16] T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004).

[17] Hereafter charge-conjugate and neutral modes are included throughout the paper unless stated otherwise.

[18] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods in Phys. Res., Sect. A 479, 117 (2002).

[19] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods in Phys. Res., Sect. A 499, 1 (2003) and other papers included in this volume.

[20] K-F. Chen et al. (Belle Collaboration), Phys. Rev. D 72, 012004 (2005).

[21] Here ψ refers to J/ψ or ψ' and $\psi \gamma$ refers to χ_{c1}, χ_{c2} or $X(3872)$ depending upon the reconstruction of the particle.

[22] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[23] G. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).

[24] P. Koppenburg et al. (Belle Collaboration), Phys. Rev. Lett. 93, 061803 (2004).

[25] R.D. Cousins and V.I. Highland, Nucl. Instrum. Methods in Phys. Res., Sect. A 320, 331 (1992).

[26] D.J. Lange, Nucl. Instrum. Methods in Phys. Res., Sect. A 462, 152 (2001).

[27] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 98, 132002 (2007).

[28] I. Adachi et al. (Belle Collaboration), arXiv:hep-ex/0809.1224.

[29] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 77, 111101 (2008).

[30] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 152001 (2009).