Synthesis, spectral studies, antibacterial and antifungal activity of 2"– methoxy - 4"-[2 - (4' - chlorophenyl)-6-methyl imidazo [1, 2-a] pyridin-3-yl]-6"-aryl nicotinonitrile

V. V. Bhuva, V. N. Bhadani, H. D. Purohit, D. M. Purohit*

Shree M. & N. Virani science college, Department of Chemistry, Kalawad Road, Rajkot-360005, Gujarat, India.

*E-mail address: purohitdm@yahoo.com

Keywords: 2-methoxy-3-Cyanopyridine; antibacterial activity; antifungal activity

ABSTRACT

Pyridine nucleus plays an important role in medicine, agriculture and industrial chemistry. With a view of biological activities and variety of industrial applications, some new 2"– methoxy - 4"-[2 - (4' - chlorophenyl)-6-methyl imidazo [1, 2-a] pyridin-3-yl]-6"-aryl nicotinonitrile(4a-4l) has been synthesized. The products have been assayed for their biological activity against Gram +ve, Gram –ve bacteria and fungi. Some of the products showed moderate activity in concentration 50µg/ml. The structures of the products have been elucidated by IR, 1H-NMR, Mass spectral data, elemental analysis and thin layer chromatography.

1. INTRODUCTION

Imidazo[1,2-a] pyridines are potential bioactive agents due to their wide spectrum of therapeutic importance. A large number of substituted imidazo[1,2–a]pyridine derivatives are prepared and tested for varieties of biological activities such as, antiallergic1, antagonist2,3, antifungal4, antiepileptic5, antibacterial6, anticonvulsant7, antitubercular8, analgesic9, insecticidal10, antisoriasis11, antihypertensive12 etc. In view of getting to synthesized imidazo [1,2-a] pyridine derivatives and evaluated for their antibacterial antifungal activity.

Pyridine, nucleus has been extensively explored for their applications in the field of medicine, agriculture and industrial chemistry. Although many substituted pyridine compounds like other heterocyclic compounds are synthesized with their functional group present from cyclic compounds.

In our continuation work in the chemistry of pyridine nucleus, we have undertaken the synthesis of imidazo[1,2-a]pyridine derivatives such as 2"–methoxy-4"-[2-(4'-Chlorophenyl)–6 -methyl imidazo [1,2–a] pyridine -3-yl]- 6"-aryl nicotinonitrile via chalcone in presence of malononitrile and sodium methoxide.

The products (4a-4l) were assigned the IR, 1H-NMR, Mass spectral data, elemental analysis and TLC. The physical data and antimicrobial activities are represented in Table – I.

2. ANTIBACTERIAL AND ANTFUNGAL ACTIVITY

2"–methoxy-4"-[2-(4'-Chlorophenyl)–6 - methyl imidazo [1,2–a] pyridine-3-yl]- 6"-aryl nicotinonitriles were evaluated in vitro for their antibacterial activities against Gram +ve and Gram –ve bacteria such as Bacillus megaterium, Salmonella taphimurium, staphylo coccus aureus, Escherichia coli and antifungal activity against Aspergillus niger using DMF as solvent at 50 µg / ml. concentration by cup-plate method15. After 24 hrs of incubation at 37°C, the zones of inhibition were measured in mm. The activity was compared with the known standard drugs, viz., ampicillin, chloramphenicol, norfloxacin, gresiofulvin at same concentration.

All the synthesized compounds (4a-4l) showed moderate to good and remarkable activities with known standard drugs at the same concentration, which is represented in Table-I.
Reaction scheme

\[\text{H}_3\text{C} - \text{N} - \text{NH}_2 + \text{O} - \text{C} - \text{O} + \text{Cl} - \text{Cl} \]

\[\text{MeOH} \quad \text{TEA} \quad \text{Reflux 4 hrs.} \]

\[\text{DMF} + \text{POCl}_3 \quad \text{Reflux 6 hrs} \]

\[\text{40\% NaOH} \quad \text{R - COCH}_3 \]

\[\text{NaOCH}_3 \]

\[\text{R = Aryl} \]

(1) \[\] (2) \[\] (3a-3l) \[\] (4a-4l)
Compound Id	Ar	Molecular Formula	M.P. °C	Antibacterial Activity	Antifungal Activity	% of Nitrogen
				B. Meg		
S. aureus	E. coli	S. typhi	A. niger	Calcd.	Found	
4a	C_6H_5	C_{27}H_{13}ClN_4O	190	16 15 13 19	14	12.43 12.40
4b	3-Cl-C_6H_4	C_{27}H_{13}Cl_2N_4O	185	18 19 19 18	19	11.54 11.51
4c	4-Cl-C_6H_4	C_{27}H_{11}Cl_2N_4O	170	19 13 15 19	18	11.54 11.52
4d	2,4-Cl_2-C_6H_3	C_{27}H_{17}Cl_3N_4O	195	14 14 17 23	21	10.78 10.76
4e	4-F-C_6H_4	C_{27}H_{13}ClF_4O	200	15 22 14 25	18	11.95 11.93
4f	4-Br-C_6H_4	C_{27}H_{13}BrClN_4O	222	18 14 16 17	19	10.57 10.55
4g	4-OH-C_6H_4	C_{27}H_{19}ClN_4O_2	180	21 17 22 19	18	12.00 12.00
4h	4-NH_2-C_6H_4	C_{27}H_{19}ClN_4O	165	20 15 23 23	22	15.03 15.01
4i	4-CH_3-C_6H_4	C_{28}H_{21}ClN_4O	159	21 23 21 19	17	12.05 12.02
4j	4-OCH_3-C_6H_4	C_{28}H_{21}ClN_4O_2	160	17 14 17 24	17	11.65 11.61
4k	3-NO_2-C_6H_4	C_{27}H_{19}ClN_6O_3	167	16 17 13 15	14	14.12 14.10
4l	4-NO_2-C_6H_4	C_{27}H_{19}ClN_6O_3	188	14 15 15 16	13	14.12 14.11

The physical data and antimicrobial activities of compounds (4a-4l). [Zone of Inhibition in mm]
3. EXPERIMENTAL SECTION

All the melting point was measured by open glass capillary method and are uncorrected. IR absorption spectra (ν max in cm⁻¹) were recorded on a shimadzu IR-435 spectrophotometer using KBr pellet method, ¹H-NMR spectra on Hitachi, R-1200 (300-mHz) spectrometer using DMSO-d₆ method, as internal standard (chemical shift in, δ ppm) and mass spectra on a Joel 300 ev. The compounds were routinely checked by the TLC using silica gel-G.

[A] Synthesis of 6-methyl-2-(4'-chlorophenyl) imidazo[1,2-a]pyridine (1)

Arranged 1.0 lit 4/N RBF equipped with stirrer thermo pocket and condenser. Charge 100ml methanol and 21.3g (0.1 mole) (4-chlorophenyl)acetyl chloride and then charge 11.9g (0.11mole) 2-amino-5- methyl pyridine at room temperature stir till clear solution. Add drop-wise triethyl amine at room temperature till pH adjust 8 to 9. After addition complete heat 60-65°C for 3 to 4 hrs then check TLC. After complies TLC cool reaction mass at room temperature and poured in 1.0 lit water & filter it. Yield 86%, m.p. 200°C.

Anal. Calcd. For C₁₅H₁₁ClN₂; Require : C, 69.28, H, 4.53, N, 11.54 %; Found: C, 69.26, H, 4.52, N, 11.50. IR (KBr, cm⁻¹): 2958 (C-H str, Sym.); 1466, (C-H def, asym.); 1368 (C-H def, asym.); 3650 (C-H Str. Aromatic); 801 (C-H, Str. o.p.p def.); 1488 (C=C str.); 1350 (C-N str.); 760 (C-Cl Str.); 1648 (C=N str.); 1680 (C=N, Str.); 1470 (C=N str.); 1369 (C=N str.); 1110 (C-N str.); 1716 (C=O); 2820-2750(C-H Str.); 1680 (C=N). ¹H-NMR (DMSO-d₆, δ ppm): 2.4 (s, 3H–CH₃); 7.02-7.94 (m, 8H, Ar-H). m/z: 44, 65, 77, 92, 110, 219, 242.

[B] Synthesis of 6 – methyl - 2 - (4'-chlorophenyl) imidazo [1, 2-a] pyridine – 3 - Carboxaldehyde (2)

Arranged 2.0 lit 4/N RBF equipped with stirrer, thermo pocket and condenser in water bath. Charge 84 ml DMF and 1.0 lit CHCl₃ in RBF and cool at 0-5°C. Start drop-wise addition of 165ml POCl₃ within 1.0 hr (exothermicity observed). Stir 30 min at 0-5°C. Add 50g of 6-methyl-2-(4-chlorophenyl)imidazo[1,2-a]pyridine slowly temp raise till reflux for 6.0 hrs. Remove CHCl₃ by vacuum distillation. Cool reaction mass at room temperature and poured in 2.0 lit ice cold water. Below room temperature pH adjust neutral by caustic solution. Filter and crystallized from methanol. Yield 70%, m.p.180°C.

Anal. Calcd. For C₁₅H₁₁ClN₂O; Require : C, 66.55, H, 4.10, N, 10.35 %; Found: C, 66.54, H, 4.08, N, 10.33). IR (KBr, cm⁻¹): 2900 (C-H str, Sym.); 1369 (C-H def, sym.); 1475 (C-H def, asym.); 3650 (C-H Str. Aromatic); 799 (C-H, Str. o.p.p def.); 1508 (C=C str.); 1110 (C-N str.); 1716 (C=O); 2820-2750(C-H Str.); 1680 (C=N). ¹H-NMR (DMSO-d₆, δ ppm): 2.4 (s, 3H–CH₃); 7.2-9.4 (m, 7H Ar-H); 10.0 (s, CHO). m/z: 44, 56, 65, 79, 111, 129, 230, 256, 270.

[C] Synthesis of 2-(4'-chlorophenyl)-6-methyl- 3-[1"-(4"methylphenyl)-2"-prop-en-1"ones-3-yl]-imidazo[1,2-a]pyridine (3)

Dissolve 6-methyl- 2 - (4'-chlorophenyl)imidazo[1,2-a] pyridine3-carboxaldehyde (291gm,0.01mol) in a mixture of methanol (50 ml) and DMF (50 ml). To this add p-methyl acetophenone (1.40gm, 0.01mol) and Stir the content at room temperature for 24 hrs in presence of catalytic amount of 40% NaOH. The resulting solution was poured on to crushed ice, thus the solid separated was filtrated and crystallized from ethanol. Yield 56 %, m. p. 170°C.

Anal. Calcd. For C₂₄H₂₀ClN₂O: Require; C, 74.51, H, 4.95, N,7.24 %; Found; C, 74.50, H, 4.93, N, 7.22%. IR (KBr, cm⁻¹): 2860 (C-H str, Sym.); 1470 (C-H def, asym.); 3640 (C-H Str. Aromatic); 750 (C-H, Str. o.p.p def.); 1530 (C=C str.); 1350 (C-N str.); 1693 (C=O) 650 (C-Cl Str.); 1H-NMR (DMSO-d₆, δ ppm): 2.43-2.44 (s, 6H, –CH₃); 7.22-8.14 (m, 13H, Ar-H); m/z : 44, 65, 91, 119, 292, 242, 267, 386.

Similarly other compounds (3a-3l) were prepared and their physical data are published in our continuous publication.
Synthesis of 2\" –methoxy -4\" -[2 -(4' -chlorophenyl)-6-methyl imidazo [1, 2-a] pyridin-3-yl]-6\"-(4\"'-methylphenyl) nicotinonitrile (4i)

To a solution of 2-(4'-chlorophenyl)-6-methyl- 3-[1"-(4"'-methylphenyle)- 2"-propene-1"-one-3-yl]imidazo[1,2-a]pyridine (3.88 gm, 0.01 mol), malononitrile (0.60gm, 0.01 mol) and sodium methoxide in methanol (25ml). The content was heated under reflux with stirring for 12 hrs. The reaction mixture was poured into ice-water and extracted with chloroform. The excess solvent was distilled out and product was crystallized from ethanol. Yield 62%, m.p. 159\°C.

Anal. Calcd. For C_{29}H_{21}ClN_{4}O ; Required : C, 72.33; H, 4.55; N, 12.05 %; found : C, 71.31; H, 4.53; N, 12.02 %; IR (KBr cm\(^{-1}\)): 2894 (C-H str, Sym,); 1373 (C-H def, sym.); 1440 (C-H def, asym.); 3650 (C-H Str. Aromatic); 799 (C- H, Str, o.p.p def.); 1494 (C=C str.); 1117 (C-N str.); 1209 (C-O-C); 2923-2894 (C-H Str.); 1595 (C=N); 703(C-Cl); \(^1\)H-NMR (CDCl\(_3\), \(\delta\) ppm); 2.3-2.4 (s, 3H –CH\(_3\)); 7.1-7.6 (m, 7H Ar-H); 4.2 (s, OCH\(_3\)). m/z: 43, 112, 132, 205, 224, 242, 268, 374, 464.

Similarly, other 2\" – methoxy - 4\" - [2 - (4' -chlorophenyl)-6-methylimidazo [1, 2-a] pyridin-3-yl]-6\"- aryl nicotinonitriles were prepared. The physical data are recorded in Table No. I.

Table: II

Compounds showing comparable antibacterial and antifungal activity with known standard drugs.

Compound	B.maga	S.aureus	E.Coli	S.typhi	A.niger
(4a – 4l)	4g,4h,4i	4b,4e,6i	4b,4g,4h,4i	4d,4e,4h,4j	4d,4h,

Activity of standard drugs.

Compound	B.maga	S.aureus	E.Coli	S.typhi	A.niger
1.Ampicillin	22	19	19	22	
2.chloramphenicol	22	23	22	25	
3.norfloxacin	22	22	24	23	
4.greasiofulvin				22	

4. CONCLUSION

2\" – Methoxy - 4\" - [2 - (4' -chlorophenyl)-6-methylimidazo [1, 2-a] pyridin-3-yl]-6\"- aryl nicotinonitrile (4a-4l) have been synthesized. Some of the compounds showed good remarkable antibacterial and antifungal activity with compare to known standard drugs e.g. Ampicillin, chloramphenicol, norfloxacin and gresiofulvin at same concentration 50μg/ml.

Acknowledgement

The authors are thankful to management and principal of Shree M. & N. Virani Science College, Rajkot for providing research facilities.

Reference

[1]. D. B. Shinde, M. S. Shingare; Indian J. Chem., 30B, 450, 1991.
[2]. G. A. Kileigil and R. Ertan; J. Heterocycl. Chem., 35, 1485, 1998.
[3]. Saheyla Ozbey and Engin Kendi; J. Heterocycl. Chem., 35, 1485, 1998.
[4]. N. Latif, N. Mishrky and N. S. Girgis; Indian J. Chem., 20B, 147-149, 1981.
[5]. W. Von Behenburg, J. Engel, J. Heese and K. Thiele; *Ger. oftent*. D.E.,3, 337, 593 (Cl C07D 213/72) 1984; Chem. Abstr., 101, 130595n, 1984.

[6]. L. Castedo, J. M. Quintela and R. Riguers; *Eur. J. Med. Chem. Chim. Ther.*, 19(6), 555, 1984; Chem. Abstr., 103, 37337, 1985.

[7]. M. R. Pavia, C. P. Taylor, F. M. Hershenson and S. J. Lobbestael; *J. Med. Chem.*, 30, 1210, 1987.

[8]. W. L. Hoefling, D. Elhaner and E. Reckling; *VEB Leund-Werke “Walter Ulbricht” Ger.*, 1,193, 506, 1965; Chem. Abstr., 63, 6979, 1965.

[9]. Thiele Kurt, Von Be Benburg and E. Walter; *S. African* 6, 905, 06, 13 Feb.,1970.

[10]. B. John E.D., F. M. Peter and Freeman; *Ger. oftien.*, 2, 029, 079 (Cl. A 01 N007d), 1971; *Brist. Appl. (1969); Chem. Abstr.*, 74, 99891d, 1971.

[11]. V. Scott and Joseph; *Jap. Pat.*, 2, 803, 592, 1979; Chem. Abstr., 92, 47216, 1980.

[12]. J. J. Baldwin, A. Scialrime, G. S. Ponticeello, E. L. Engelhardt and C. S. Sweeti; *J. Heterocycl. Chem.*, 17(3), 425, 1980; Chem. Abstr., 93,186222, 1980.

[13]. A. L. Barry; the antimicrobial acceptability test, principal and practices, edited by illus lee and febiger; 180, *Bio. Abstr.*, 64, 25183,1997.

(Received 01 April 2015; accepted 14 April 2015)