A review of application of natural products as fungicides for chili
Khoirul Ngibad1*, Afidatul Muadifah2, Lailatul Jannah Tiarini1, Laily Rizki Amalia1, Novita Karel Damayanti1

1 Study Program of Medical Laboratory Technology, Faculty of Health Sciences, Universitas Maarif Hasyim Latif, Sidoarjo, Indonesia
2 Study Program of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Karya putra Bangsa, Tulungagung, Indonesia

Abstract

Anthracnose disease in chillies is a serious problem for farmers. So far, synthetic fungicides have been used as solution for the treatment of this disease. However, the side effects of synthetic fungicides to public health and environment raised awareness on alternative fungicides derived from natural resources. This paper aims to review plants that are potential as an alternative to fungicides for chili plantation, fabrication of test solutions, in vitro and in vivo fungicide test. Many plants were investigated as alternatives to plant-based fungicide. The utilization of leaves as samples including rhizomes, roots, tubers, weevils, seeds, fruit, flowers and other parts of the plant. The extract fabrication method used as a fungicide test include: maceration method, gradual fractionation method, and decoction method. The maceration method is the method most widely used to extract fungicidal active compounds from plants. Some studies that carried out in vitro tests were unable to compare with synthetic fungicides so it was not possible to determine their effectiveness for plant-based fungicide for chillies when compared to synthetic fungicides. In vitro extract of 80% alcohol and 10%/60% n-hexane of pacar cina (Aglaia odorata L.) leaves can be compared with the performance of propineb 0.2%. In addition, the 60% and 70% kirinyuh (Chromolaena odorata L.) leaf extracts were also able to match Acrobat 0.2% performance in vitro. Based on the in vivo test, suren (Toona sureni Men) leaf extract and nut bulbs can be used as an alternative to vegetable/fungal fungicides to help overcome the problem of anthracnose in chilies.

Keywords:
Chili anthracnose disease, in vitro test, in vivo test, natural fungicide

1 Introduction

One of the goals of the Sustainable development goals (SDGs) is to achieve food security and declare as sustainable agriculture. Chili is one of the food commodities whose production must be increased in order to realize food security in Indonesia. Every year, there are increased in demand for chilies which is in line with the growth in population and the development of food industry that require the chilies as raw material (Subagyno et al., 2010). In addition, there is always increase in the price of chili in particular month due to low productivity of chili harvest. The decrease in chili productivity can be caused by pests and plant diseases (Warisno Dahana, 2018). The pests attack the plants and causes chilies suffered severe damage and crop failure. The pests that can attack chili plants include: peach aphids, thrips pests, mites, fruit fly pests, and fruit borer pests. On the other hand, chili plant diseases include: anthracnose, phytophthora rot, fusarium wilt, cercospora leaf spot, bacterial wilt, yellow virus, mosaic disease (Piay et al., 2010). Therefore, control of plant pest organisms must be done in order to increase the production of chilies (Badan Pusat Statistik Republik Indonesia, 2019).

* Corresponding Author:
Email Address: khoirul_ngibad@dosen.umaha.ac.id
https://doi.org/10.33086/etm.v12i.2022
Received from 20 March 2021;
Received in revised from 30 April 2021;
Accepted 30 April 2021;
Available online 22 May 2021;

Anthracnose is a red chili plant disease caused by 2 types of fungi, namely: Colletotrichum capsici and Colletotrichum gloeosporioides. Colletotrichum capsici population is fewer than Colletotrichum gloeosporioides. The Colletotrichum capsica fungus attacks ripen chilies that are reddish in color, while Colletotrichum gloeosporioides which has 2 strains, namely: the R strain which only attacks ripe red chilies and the G strain which can attack all parts of the plant, including mature red chilies and those that are still unripe and green. These two types of pathogens are seed-borne diseases because they are able to survive in the seeds for a long time to form acervulus (Play et al., 2010).

The use of chemical or synthetic pesticides is the most common control. Some examples of synthetic pesticides included: Pyraclostrobin, Azoxystrobin, Picoxystrobin, Difenconazole, Thiophanate-methyl, Mancozeb (Gao et al., 2017), Metalaxyl-M (Esyanti et al., 2020), Orion 72 WP, Indofil Z-78 WP Metarial 72 WP, Proven 250 EC, Folicure 5 EC, Propicon 250 EC, Fuji one 40 EC, Flowin HT, dan Winner 250EC (Naznin et al., 2016). The negative impact of usage chemical/fungal fungicides continuously includes: 1) polluting / damaging the environment, 2) causing residues on plants thus endanger health, and 3) causing resistance on pathogens (Amelia et al., 2020). Therefore, to overcome the negative impact of usage synthetic fungicides, plant-based/fungal fungicides can be used. The advantages of natural fungicides include: 1) relatively more environmentally friendly and safe for humans because they are made from natural materials that are easily biodegradable, and 2) cheaper, easy to obtained and easy to applied.
Some plants that have the potential to be used as natural pesticides include: tembelekan/cherry pie (Lantana camara), jarak tintir/coral plant (Jatropha multifida), pacar cina/chinese rice (Aglai a odorata L.), mengku/du/moni (Morinda citrifolia L.), mimba/neem (Azadirachta indica A. Juss.), kenikir/compositae (Cosmos caudatus Kunth.), sirih/betel (Piper betle L.), awar-awar (Ficus septica) and others. Basically, natural pesticides do not only come from plants, but also from bacteria, viruses, and fungi (Novizan, 2002). The purpose of this paper is to review: 1) plants that have the potential as an alternative natural fungicide for chili, 2) fabrication of solution for in vitro and in vivo test, 3) in vitro test as fungicide for chili, and 4) in vivo test as fungicide for chili.

2 Potential plants as alternative fungicide for chili

Many plants have been investigated on the potential as an alternative to plant-based/natural fungicides for chili. Table 1 shows the names and parts of the plant and the method tested for fungicide. The part of plants that is widely used in research on finding alternative natural fungicides is the leaves. Few studies have used parts of rhizomes, roots, tubers, weevils, seeds, fruit, flowers or all parts of a plant (combination of flowers, leaves, stems, roots, and seeds). Betel leaf is a part of the plant that has been investigated both in vitro and in vivo. The researchers only used one plant type separately to determine its potential as natural fungicide. Only a few researchers have combined 2 plants, for example: mixture of betel and tobacco leaf (Oktarina et al., 2017), Zulkipli et al., 2018, Nur Rohmah, 2017 and mixture of kenikir/compositae (Cosmos caudatus Kunth.) and betel (Maimunah et al., 2019).

In general, fungicide test methods used in many studies are divided into 2 categories, namely: 1) in vitro and 2) in vivo. There are researchers who only focus on using in vitro test methods or in vivo test methods. In addition, the researchers also used both test methods in combination. In the in vitro test method, many types of fungi that cause Anthracnose disease in chilies are used, for example: Colletotrichum capsici, Colletotrichum gloeosporioides and Colletotrichum acutum. Several parameters that can be observed in the in vitro test include: percentage of inhibition, diameter of fungal colony growth, zone of inhibition, spore growth, spore germination and percentage of spore density. On the other hand, in the in vivo test more parameters can be observed which include: anthracnose disease severity, intensity of fungal attack on chilies, percentage of disease incidence, effectiveness of fungicides, diameter of chili spots, incubation period of fungi in chilies, plant height, number of fruit and the weight of the chilies. In this in vivo test, the success of the research is strongly influenced by environmental factors, for example: temperature, humidity and rainfall (Suwastini et al., 2020).

Table 1 Plants that have the potential as alternative fungicide for chili

Name of Plant	Scientific Name	Part of Plant	Test Method for Fungicide	Reference
Umbi Teki	Cyperus rotundus L.	Leaves	In vivo	(Shite et al., 2020)
Urang Aring	Eclipta alba (L.) Hassk	-	In vitro	(Andreas et al., 2018)
Ketepeng Cena	Cassia alata Linnaeus	All parts of plant	In vitro	(Arneti & Sulyanti, 2017)
Forest Betel	Piper aduncum L.	Leaves	In vitro and In vivo	(Elfina, 2015)
Fragrant Lemon-grass	Cymbopogon nardus L.	Leaves	In vitro and In vivo	(Elfina, 2016)
Tobacco	Nicotiana tabacum L.	Leaves	In vitro	(Isman Duila, 2017)
Mixture of Betel and Tobacco	Piper betle L. dan Nicotina tobacum	Leaves	In vitro and In vivo	(Oktarina et al., 2017)
Kunyit	Curcuma longa sensu Val	Rhizome	In vitro and In vivo	(Sari et al., 2020a)
Temu Putih	Curcuma zedoaria (Berg.) Roscoe	-	In vitro	
Temu Hitam	Curcuma aeruginosa Roxb	-	In vitro	
Putri Malu	Mimosa pudica L.	Root	In vitro and In vivo	(Septianing Ratri, 2017)
Soursop	-	Leaves	In vivo	(Zulkipli et al., 2018)
Betel	-	Leaves	In vivo	(Zulkipli et al., 2018)
Papaya	-	Leaves	In vivo	(Zulkipli et al., 2018)
Garlic	-	Tubers	In vivo	(Zulkipli et al., 2018)
Jarak Tintir	Jatropha multifida	Leaves	In vivo	(Suwastini et al., 2020)
Tembelekan	Lantana camara H. suaveolens (L.) Poit	Leaves	In vitro	(Chatri & Mansyur-din, 2015)
Karamunting	Melastoma malabathricum L.	Leaves	In vitro and In vivo	(Suyanti et al., 2020)
Purun Tikus	Eleoharis dulcis	Leaves	In vitro and In vivo	
Kirinyuh	Chromolaena odorata L.			
Noni	Morinda citrifolia	Leaves	In vivo	(Marsuni, 2020)
Betel	Piper betle L.	Leaves	In vivo	(Juniar Dwi Cahya, 2019)
Tagetes	Tagetes erecta	Leaves	In vitro	(Satryawibowo et al., 2015)
Suren	Toona sureni Merr.	Leaves	In vivo	(Andriyani et al., 2020)
Betel	Piper betle	Leaves	In vitro and In vivo	(Andriyani & Purwantisari, 2019)

10
Plant Name	Scientific Name	Part(s)	Extraction Method(s)	Authors
Fragrant Lemon-grass	*Cymbopogon nardus* L.	Leaves	In vitro and In vivo	Syabana et al., (2015)
Papaya	*Carica papaya* Linnaeus	Leaves	In vitro	Liswarni & Edriwilya, (2020)
Pacar Cina	*Aglaia odorata* L.	Leaves	In vitro	Efri et al., (2017)
Neem	*Azadirachta indica* A. Juss.	Juss	Leaves In vivo	Aziziy et al., (2020)
Kepok Banana	-	Hump		
Noni	*Morinda citrifolia* L.	Leaves	In vitro	Anggreini et al., (2016)
Neem	*Azadirachta indica* A. Juss.			
Kenikir	*Cosmos caudatus* Kunth.	Leaves	In vitro and In vivo	Amelia et al., (2020)
Babadotan	*Ageratum conyzoides*		In vitro	Wulandari et al., (2015)
Awar-awar	*Ficus septica*	Leaves	In vitro and In vivo	Sudirga, (2018)
Mixture of Betel and Tobacco	*Piper betle* L. dan *Nicotiana tobacum*	Leaves	In vitro and In vivo	Anjani, (2018)
Gelinggang	*Cassia alata* L.	Leaves	In vivo	Supriati et al., (2016)
Jarak Pagar	*Jatropha curcas* L.	Seed	In vitro and In vivo	Lestari et al., (2020)
Mixture of Betel and Tobacco	*Piper betle* L. dan *Nicotiana tabacum* L.	Leaves	In vitro and In vivo	Nur Rohmah, (2017)
Binahong	*Anredera cordifolia*	Leaves	In vitro and In vivo	Yulia et al., (2019)
Neem	*Azadirachta indica* A. Juss.	Fruits	In vitro and In vivo	Ali et al., (2012)
Noni	*Morinda citrifolia* L.	Fruits	In vitro and In vivo	Ali et al., (2013)
Betel	*Piper betle* L.	Leaves	In vivo	Damiri, (2011)
Noni	*M. citrifolia*	Fruits	In vitro	Septiana et al., (2013)
Betel	*Piper betle* L.	Leaves	In vivo	Ningtyas et al., (2013)
Babadotan	*Ageratum conyzoides*			
Noni	*Morinda citrifolia*	Leaves, Flowers, and Fruits	In vivo	Efri, (2010)
Jarak	*Jatropha curcas* L.	Leaves	In vivo	Wanda et al., (2014)
Mimba	*Azadirachta indica*			
Betel	*Piper betle* L.	Leaves	In vivo	Wati et al., (2014)
Babadotan	*Ageratum conyzoides* L.			
Babadotan	*A. conyzoides*	-	In vivo	Gusmarini et al., (2014)
Siam	*C. odorata*	-		
Reed	*I. cylindrica*	-		
Teki	*C. rotundas*	-		
Camplong	*Callophyllum inophyllum*	Fruits	In vitro	Sholehah, (2012)
Patchouli Oil	-	-	In vitro and In vivo	Sakerebui & Wahyu, (2013)
Ubhi Ungu	*Ipomoea batatas*	Leaves	In vitro and In vivo	Saputri & Utami, (2020)
Mixture of Kenikir and Betel	*Cosmos caudatus* dan *Piper betle*	Leaves	In vitro	Maimunah et al., (2019)
Putri Malu	*Mimosa pudica*	Leaves	In vivo	Eviganti, (2020)
Kirinyuh	*Euphoratorium odoratum* L.	Leaves	In vitro and In vivo	Indrawati, (2021)
Cinnamon	*Cinnamomum burmannii*	Leaves	In vitro	Darmadi et al., (2021)
Neem	*Azadirachta indica*	Leaves	In vitro	Rahman et al., (2019)
Garlic	*Allium sativum*	Rhizome	In vitro	Rahman et al., (2019)
Zinger	*Zingiber officinale* Rhizome	Rhizome		
Termaric	*Curcuma longa*	Rhizome		
Tulsii	*Osmium sanctum* Linn.	Leaves		
Mahogoni	*Swietenia mahogoni*	Leaves		
Mehendi	-	-		
Table 2 Methods of extract preparation for *in vitro* and *in vivo* test

Plant	Method	Solvent	Sample : Solvent (w/v)	Result	Reference
Binahong Leaf	Maceration for 1 x 24 hours then concentrated using rotary evaporator	90% methanol	1 : 4	Sticky	(Yulia et al., 2019)
Banana Hump and Mimba Leaf	The sample was sieved with size of 25 mesh and macerated separately for 1 x 24 hours then concentrated with rotary evaporator to 250 mL	100% methanol	6 : 10	Condensed extract	(Tobing & Mulyaningsih, 2020)
Jarak Pagar Seed	Maceration for 48 hours then concentrated with rotary evaporator	96% ethanol	1 : 3 and 1 : 2	-	(Lestari et al., 2020)
Mixture of Betel and Tobacco Leaf	The sample was separately dried and then crushed by adding distilled water and then filtered	Distilled water	1 : 1	-	(Oktarina et al., 2017)
Leaf of Pasang Surut Weeds	Leaf powder is macerated for 2 x 24 hours then concentrated with rotary evaporator at a temperature of 40 - 70 °C and followed by evaporation process with water bath at temperature of 50 - 60 °C	96% ethanol	1 : 4	-	(Suyanti et al., 2020)
Awar Awar Leaf	Maceration for 72 hours then evaporated with rotary evaporator	Methanol	1 : 10	-	(Sudirga, 2018)
Babadotan Leaf	Graded fractionation	Water, methanol, ethyl acetate, and n-hexane	1 : 10	-	(Wulandari et al., 2015)
Noni Leaves and Fruit	Maceration for 3 x 24 hours then concentrated with rotary evaporator and water bath at temperature of 60 °C	Methanol	1 : 3	Condensed extract	(Nurul et al., 2020)
Kenikir Leaf	Maceration for 2 x 24 hours: the first soaking for 6 hours, then stirring it then leaving it for 18 hours then concentrating it with rotary evaporator and then concentrating again with a water bath at temperature of 40 °C	96% ethanol	1 : 3 and 1 : 2	-	(Amelia et al., 2020)
Noni and neem leaf	Using simple fractionation tool	Water	1 : 5	-	(Anggreini et al., 2016)
Pacar Cina Leaf	The sample was added with sterile distilled water, blended until smooth and put in sterile erlenmeyer and covered with aluminum foil. Extract was heated until boiling and then filtered	Distilled water	1 : 20	-	(Arneti & Sulyanti, 2017)
Ketepeng Cina Fragrant Lemongrass Leaf	The sample was heated in water at 90 °C for 30 minutes then concentrated on rotary evaporator	Water	-	Concentrated extract	(Syabana et al., 2015)
Suren Leaf	Maceration for 1 x 24 hours then concentrated with rotary evaporator	70% ethanol	1 : 3	Pure extract	(Andriyani & Purwantisari, 2019)
Tagetes Leaf	Using simple fractionation tool	Water, methanol, ethyl acetate, and n-hexane	-	-	(Satryawibowo, 2015)
Putri Malu Root	The maceration and then evaporated with rotary evaporator	Ethanol	9 : 10	Condensed extract	(Evayianti, 2020)
Jarak Tintir and Tembelekan	The sample was separately extracted using simple fractionation tool and then evaporated with rotary evaporator	Water	1 : 5	Dry extract	(Suwastini et al., 2020)
Neem, Betel, and Clove Leaf	Maceration for 3 days and stirring 3 times a day then concentrated with rotary evaporator	96% ethanol	1 : 5	Concentrated extract	(Sitompul, 2017)
Plant Type	Extraction Method	Solvent(s)	Concentration	Notes	
---	-------------------	------------	---------------	--	
Curcuma spp. Rhizome	Maceration	Methanol	1:4	Concentrated extract (Sari et al., 2020b)	
Urang aring	Maceration for 3 x 24 hours then evaporated with rotary evaporator at temperature of 40 °C	Ethanol	1:1	Crude extract (Sittisart et al., 2017)	
Shallot and Garlic	Extraction and then extracted in centrifuge and filtered	Distilled water	1:8, 1:10, 1:12	- (Chávez-Quintal et al., 2011)	
Carica papaya L. Cv. Leaf and Maradol Seed	Maceration for 24 hours then the extract was filtered and centrifuged then evaporated with rotary evaporator	Ethanol	-		
Noni Leaf	Using multilevel extraction	Water, alcohol, acetate 95% ethanol	1:5	Dry extract (Putra, 2017)	
Galangal Rhi-zome, Clove Leaf, and Banggun Bangun	Maceration extraction for 24 hours then evaporated by rotary evaporator	-	-	Condensed extract (Harianto, 2018)	

3 Preparation of extract

The preparation of test solutions for chillies fungicide was summarized in Table 2. In general, the method of extracts preparation used can be classified into 3 types, namely: 1) maceration method, 2) graded fractionation method, and 3) decoction method.

3.1 Maceration method

This method is most widely used to extract active compounds from certain plants for fungicide. Plants were prepared in the powder or flour form are added with a solvent and then are soaked for a designated time. The filtrate is separated from the dregs and the maceration process can be continued with new solvent until color filtrate is clear. The filtrate is concentrated using rotary evaporator with temperature control according to the type of solvent used until concentrated extract is free solvent (K Ngibad, 2019), (Khoirul Ngibad, 2019), (Wibowo et al., 2019). The solvents used in the extract preparation for test fungicide on chillies, including: water solvent (ultrapure water) and organic solvents (90% methanol, methanol, 70% ethanol, 96% ethanol, ethanol, ethyl acetate, and n-hexane). The usage of solvents in the maceration process is expected to extract the large fraction of possible fungicidal active compounds. In addition, there are differences in the ratio of sample weight and volume of solvent used between researchers, ranging from 1: 1 to 1: 10. The greater the ratio of solvent volume and sample weight will maximize the extract or active fungicidal compound produced. However, it is necessary to pay attention to the effectiveness of usage the solvent volume.

3.2 Stratified fractionation method

Practices of the graded fractionation method have been carried out, for example: the fine powder of Chinese henna leaves was fractionated in stages using filter made of various sizes of paralon to form funnel containing activated charcoal as filter and adsorption of nonpolar compounds. The liquid-liquid solvent extraction method used cold distilled water. Then, it was followed by solution of alcohol or n-hexane with concentrations of 10, 20, 30, 40, 50, 60, 70, 80, and 90%, respectively (Efi et al., 2017). Then, babadotan/goatweed (Ageratum conyzoides) leaf powder was placed into simple fractionation tool, then the filtered residue was collected and air-dried. The filtrate or crude extract was added with methanol solvent then was collected and air-dried to obtain the methanol fraction of the babadotan leaf extract. In the same way, to get ethyl acetate and n-hexane extract (Wulandari et al., 2015). The water solvent is expected to be able to extract the active polar fungicide compound which is polar. Decreasing the level of polarity starting from methanol, ethyl acetate, and n-hexane solvents is expected to be able to separate the active fungicide compounds based on their polarity level.

3.3 Decoction method

Decoction method has been used to extract the fungicidal active compounds found in betel leaf. Samples were boiled in water with ratio of 1: 1 for 1 hour. The extract are filtered and sterilized using autoclave at temperature of 121 °C to obtain sterile betel leaf extract (Trisnawati et al., 2019). The boiling process of the Nassau alata Linnaeus sample which was blended with water was carried out for 15 minutes (Arnet Sulyanti, 2017). This decoction method is rarely used because it is feared that the active fungicidal compounds present in the sample could be damaged by heat treatment.

4 In vitro test as fungicide for chili

The review results of research related to in vitro fungicide test are summarized in Table 3. The concentration of the test solution was carried out in various ways. For example, the concentration of mixture of betel leaf and tobacco extract with concentration of 30% was made by mixing 7 ml of PDA (Potato Dextrosa Agar) and 3 ml of mixture of betel and tobacco extracts (Nur Rohmah, 2017). Another technique was found in preparation of kenikir leaf extract test solution which is done by mixing the extract with Tween 80 as emulsifier with ratio of 1: 1 (w / v) and diluted using sterile distilled water to get concentration of 5%, 10%, 15%, and 20% (Amelia et al., 2020). In other cases, the suren concentrated extract was assumed to be 100% concentration then the concentrated extract was diluted using distilled water into several concentrations (25%, 50%, and 75%) (Andriyani et al., 2020). Besides water, methanol was also used as solvent to make test solution for the Curcuma sp. rhizome with concentration of 4-12 ppm (Sari et al., 2020b).

The synthetic fungicide control used by several researchers in vitro tests included: propineb 70%, 0.2% propineb, azoxistrobin, dithiophonamide, benomyl, anthracol, 0.2% acrobat and 0.2% carbendazim. The usage of synthetic fungicide controls is very useful as comparison against the plants being studied. Many studies do not use synthetic fungicide controls so that the potential of these plants is less known when compared to synthetic fungicide controls. On the other hand, the most widely used fungi for in vitro tests are Colletotrichum capsici and then Colletotrichum gloeosporioides.
Plant	Concentration Test Solution	Synthetic Fungicide Control	Type of Mushroom	Test Results	Reference
Jarak Pagar Seed	10 - 40%	-	Colletotrichum capsici	The percentage of inhibition of fungal mycelium (%): 18.90 – 31.08	(Lestari et al., 2020)
Betel and Tobacco	30% with concentration ratio (1: 1), (1: 2), (2: 1), (1: 3) (3:1)	-	Colletotrichum capsici	Percentage of Colletotrichum sp colony inhibition (%): 0.56 - 30.44	(Nur Rohmah, 2017)
Betel and Tobacco	30% with ratio of 3:1	-	Colletotrichum sp	Average of inhibition power (%): 45.08 - 15.68 Average of spore density (106 spores / mL): 15.8 - 35.2	(Anjani, 2018)
Babadotan Seed	-	Propineb 70%	Colletotrichum capsici	Water extract: 99.28% Methanol extract: 76.81% Ethyl acetate extract: 137.20% N-hexane extract: 85.27% Propineb 70%: 0%	(Wulandari et al., 2015)
Noni Leaves and Fruit	5%	-	Colletotrichum capsici	Percentage of inhibition (%) from leaves: 2.27 Fruits: 2.78 Amount of conidium (conidium/mL) Leaves: 1.44 Fruits: 1.42	(Nurul et al., 2020)
Kenikir Leaf	5 – 20%	-	Colletotrichum capsici	Percentage of inhibition (%): 10.76 – 41.12	(Amelia et al., 2020)
Pacar Cina Leaf	Aquades extract and 10 - 90% alcohol extract	Propineb 0,2%	Colletotrichum capsici	Growth diameter of C. capsici on day 7 (cm): 5.85 - 1.00 Spore density of C. capsici: 15.77 - 0.88	(Efri et al., 2017)
Papaya Leaf	1 – 5 %	-	Colletotrichum gloeosporioides	Colony area and effectiveness: 41.32 - 20.11 and 6.13% - 64.04% Mushroom wet weight: 4.69 - 45.16% Mushroom dry weight: 8.33 - 54.16% Number of conidia: 27.5 - 82.5%	(Arneti & Sulyanti, 2017)
Suren Leaf	10 – 30%	-	Colletotrichum capsici	Percentage of inhibition of C. capsici colony diameter: 45.49 - 62.74 Percentage of colony diameter: 55.18 - 92.47% Percentage of Spore density: 7.20 - 36.88	(Andriyani & Purwantisari, 2019)
Tagetes Leaf	Water, methanol, ethyl acetate, and n – hexane extracts)	Propineb 70%	Colletotrichum capsici	Percentage of inhibition of C. capsici	(Satryawibowo, 2015)
Pasang Surut Weeds	Extract of purun tikus, extract of kirinyuh, and extract of karamunting	-	Azoxystrobin, diphenoconazole, and benomyl	The percentage of inhibition: 6.99 - 79.54	(Suyanti et al., 2020)
Essential oil (Hyptis suaveolens L.)	Young leaves 0.5 - 2.5% Mature leaves 0.5 - 2.5%	-	Colletotrichum gloeosporioides	Percentage of inhibition (%): 50 - 65	(Chatri & Mansyur-din, 2015)
Putri Malu	30 – 90%	-	Colletotrichum sp	Percentage of inhibitory power (%): 14.36 - 28.01 The average of spore density (10^6 spores / mL): 19.11 - 4.44 The average of colony growth diameter (cm): 1.50 - 0.58	(Septianing Ratri, 2017)
Curcuma spp	4 – 12 ppm	-	Colletotrichum capsici		(Sari et al., 2020b)

Table 3. In vitro fungicide test on chili test.
Plant/Extract	Application	Fungal Strain	Percentage of inhibition of fungal colonies (%)	References
Betel and Tobacco Leaf	Biorational extract: (1:1), (1:2), (2:1), (1:3), (3:1)	Colletotrichum capsici	Percentage of inhibition: 0.56 - 0.44	(Oktarina et al., 2017)
Tobacco	25 – 100%	Colletotrichum sp	Percentage of inhibition (%): 6.56 - 3.78	(Isman Duila, 2017)
Flour of fragrant lemon-grass	50 – 250 g/l	Colletotrichum capsici	Percentage of inhibitory power (%): 17.47 - 34.43	(Elfina et al., 2016)
Ketepeng	5%	Colletotrichum gloeosporioides	Percentage of inhibitory power (%)	(Arneti & Sulyanti, 2017)
Urang Aring	5 - 25%	Antracol	Number of mushroom colonies on day 7: 125.75 - 72.75	(Andreas et al., 2018)
Banana and Mimba Leaf	15 – 45%	Colletotrichum capsici	Percentage of inhibition zone for fungal colonies: 10.76 - 6.58	(Tobing & Mulyaningsih, 2020)
Leaf Extract of Ficus septica	1 – 5%	Colletotrichum acutacum	Colony diameter (mm): 29.72 - 81.39	(Sudirga et al., 2014)
Kirinyuh Leaf Extract	10 – 70%	Acrobat 0.2%	Percentage of spore density (10^6 spores / ml): 63.21 - 99.11	(Indrawati, 2021)
Mansoa alliacea Extract	1 – 5%	Colletotrichum acutacum	Colony diameter (mm): 63.25 - 17.00	(Sudirga et al., 2019)
Akar Putri Malu	25 - 100%	Colletotrichum sp	Percentage of inhibition zone diameter (%): 70 - 10	(Evivanti, 2020)
Neem Seed Kernel Extract	Neem oil, garlic bulb extract, combine application of neem, garlic, ginger, onion plant extract, and neem seed kernel extract (NSKE)	Carbendazim 0.2%	Percentage of inhibition: 74.77 - 68.75	(Musakhan & Zacharia, 2017)
Purple Sweet Potato	5 – 40%	Fusarium sp	Average percentage of inhibitory power (%): 56.7 - 76.6	(Saputri & Utami, 2020)

Some of the parameters used in the in vitro test include: colony diameter, percentage of colony inhibition, density / number of spores, and colony area. Colony diameter is measured by making vertical and horizontal lines perpendicular to each other at the bottom of the petri dish as vertical and horizontal diameters.

Then, the colony diameter is calculated using formula (Andreas et al., 2018):

\[\text{Colony diameter (cm)} = \frac{(D1 + D2)}{2} \]

With:

- \(D1 \): Vertical diameter
- \(D2 \): Horizontal diameter
Spore density was determined by taking 1 ml of spore suspension from isolate propagation treatment. Furthermore, the spore density was calculated using hemocytometer that had been dropped by the suspension under a double lens (binocular), which is one type of lens from a light microscope with a magnification of 400 times. (Herlinda et al., 2006). The spore density was calculated using Gabriel Riyanto formula (1989) (Gabriel Riyanto, 1989):

\[
C = \frac{t}{nx_{0,25}} \times 10^6
\]

With:
- \(C \) = spore density per ml of solution
- \(t \) = total number of spores in the sample box observed
- \(n \) = number of sample boxes (5 large x 16 small boxes)
- \(0.25 \) = correction factor for the use of a small-scale sample box on the haemacytometer

Colony area was measured using millimeter plotting paper by depicting the colony area on plastic glass (Liswanti Edriwilya, 2020). The plants studied as an alternative to natural fungicides for chili have the ability to inhibit the growth of anthrax-causing fungi in chilies by in vitro study, which include: Colletotrichum capsici, Colletotrichum gloeosporioides, and Colletotrichum acutatum. However, many in vitro studies do not compare with synthetic fungicides. So, it is not possible to know the effectiveness of the performance of natural fungicides for chilies when compared to synthetic fungicides. Based on Table 4, it can be seen that 80% alcohol extract and 10% n-hexane extract and 60% Chinese henna leaves is similar with the 0.2% propineb performance by in vitro study. In addition, the 60% and 70% kirinyuh leaf extracts were also able to match 0.2% acrobat performance by in vitro study.

Table 4 Comparison of effectiveness of natural fungicides for chilies with synthetic fungicides

Plants	Synthetic Fungicides	Explanation	Reference
Babadotan Leaf	70% Propineb	The effectiveness of the three extract fractions < propineb 70%	(Wulandari et al., 2015)
Pacar Cina Leaf	0.0% Propineb	The effectiveness of 80% alcohol extract and 10% and 60% n-hexane extract is is comparable to 0.2% propineb	(Efri et al., 2017)
Tagetes Leaf	70% Propineb	Cannot match the effect of 70% propineb	(Satryawibowo, 2015)
Urang Aring	Antracol	Effectiveness of urang-aring < Antracol	(Andres et al., 2018)
Kirinyuh Leaf Extract	0.2% Acrobat	The effectiveness of 60% and 70% kirinyuh leaf extract is comparable to 0.2% acrobat	(Indrawati, 2021)
Neem Seed Kernel Extract	0.2% Carbendazim	The effectiveness of neem seed kernel extract < 0.2% carbendazim	(Musakhan & Zacharia, 2017)

Table 5 In vivo fungicide test for chili

Plants	Concentration of Test Solution	Synthetic Fungicide	Test Parameters	Test Results	Reference
Neem Leaf Extract	5 – 20%	-	Incubation period	9 – 12 days	(Sitompul, 2017)
Betel Leaf Extract	Incubation period 12 – 19 days	-	The severity of anthracnosse	8.84 – 8.43%	(Sitompul, 2017)
Clove Leaf Putri Malu Root Extract	30 – 90%	-	Incubation period and percentage of disease incidence	14 – 14.33 days 62.5 – 0%	(Sitompul, 2017)
Suren Leaf Extract	25 – 100%	Mankozeb 1g/L	Spot diameter and morphometry of chili fruit	91.16 – 99.68%	(Andriyani et al., 2020)

5 **In vivo test as fungicide for chili**

In effort to find alternatives natural fungicides, the researchers focused not only on in vitro studies but also in vivo studies of various plants with certain concentrations as shown in Table 5. This in vivo test was directly applied to chili plants to be treated with natural fungicides with test conditions appropriate to the actual environment in chili farm.
| Extract of Umbi Teki | 5 – 25% | Propineb | Diameter : 1.14 – 1.48 cm
Chili plant height | The severity of anthracnose | 122.8 – 131.6 cm
Plant height | The severity of anthracnose | 4 – 0%
Number of fruit | 13.00 – 17.50%
Fruit weight | (Sihite et al., 2020)
Symptoms of anthracnose in red chili | 37.56 – 34.18 cm
Mycelium dry weight | 7.5 – 3.2 fruit
Symptoms of anthracnose in red chili | 6.2 – 3.8 gram
Mycelium dry weight | 0.67 – 0.00 cm
Symptoms of anthracnose in red chilies | (Sari et al., 2020b)
Number of fruit | 80.53 – 0.00 mg
Fruit weight | 0.88 – 0.00 cm
Yield / amount of red chilies | 0.00 mg
Losing the salvaged yield of red chilies | 0.78 – 0.00 cm

| Extract of Curcuma Longa Sensu | 4 – 12 ppm | - | Mycelium dry weight | 69.00 – 0.00 mg
Symptoms of anthracnose in red chili | When the early symptoms of anthracnose disease appear in red chilies | 2.48 – 2.00 days
Mycelium dry weight | 41.00 – 0%
Symptoms of anthracnose in red chilies | The intensity of the attack to C. capsici | 19 - 20
Mycelium dry weight | Effectiveness and level of fungicidal ability | -11.76 until 17.65%
Symptoms of anthracnose in red chilies | Percentage of incidence of anthracnose in red chilies | 41.00 – 0%
Mycelium dry weight | Percentage of incidence of anthracnose in red chilies | 41.00 – 0%
Symptoms of anthracnose in red chilies | Disease intensity | 38.21 – 0%
Mycelium dry weight | Yield / amount of red chilies (kg / plant) | 0.163 – 0.587
Symptoms of anthracnose in red chilies | Losing the salvaged yield of red chilies | 59.51 – 88.76%
Mycelium dry weight | Anthracnose incidence rate | 25 – 75%
Symptoms of anthracnose in red chilies | (Oktarina et al., 2017)
Mycelium dry weight | The incubation period for anthracnose | 4 – 9 days
Symptoms of anthracnose in red chilies | Number of fruits / plants | 33 – 36 fruits
Mycelium dry weight | Number of fruit / plot | 75 – 76 fruitd
Symptoms of anthracnose in red chilies | Fruit weight / plant | 362.23 – 387.21 gram
Mycelium dry weight | Fruit weight / plot | 757.80 – 777.93 gram
Symptoms of anthracnose in red chilies | Number of healthy fruit / plant | 21 – 24 fruits
Mycelium dry weight | Number of damaged fruit / plants | 8 – 5 fruits
Symptoms of anthracnose in red chilies | Percentage of healthy fruit / plot | 88.15 – 97.46%
Mycelium dry weight | Percentage of damaged fruit / plot | 12.24 – 2.56%
Symptoms of anthracnose in red chilies | The intensity of the plant attacked | 3.06 – 1.25%
Mycelium dry weight | Incidence of anthracnose in red chilies | 62.5 – 0%
Symptoms of anthracnose in red chilies | Incubation period | 6 – 12 days
Mycelium dry weight | Spot diameter | 6.8 – 0 mm
Symptoms of anthracnose in red chilies | Incidence of anthracnose in chilies | 43 – 15%
Mycelium dry weight | The intensity of the plant attacked | (Trisnawati et al., 2019)
Symptoms of anthracnose in red chilies | Incidence of anthracnose in red chilies | (Tobing & Mulyaningsih, 2020)

| Extract of Curcuma zedoaria | 15% - 45% | - | Incidence of anthracnose in red chilies | 30 – 90%
Incidence of anthracnose in red chilies | - | -
Incubation period | Neem Leaf Extract | 200 – 600 mL/L
Number of fruits / plants | 4 – 9 days
Number of fruits / plants | 33 – 36 fruits
Number of fruit / plot | (Juniar Dwi Cahya,
Fruit weight / plant | 2019)
Fruit weight / plot | Number of healthy fruit / plant | 75 – 76 fruitd
Number of healthy fruit / plant | 362.23 – 387.21 gram
Number of healthy fruit / plant | 21 – 24 fruits
Number of healthy fruit / plant | 8 – 5 fruits
Number of damaged fruit / plants | Percentage of healthy fruit / plot | 88.15 – 97.46%
Number of damaged fruit / plants | Percentage of damaged fruit / plot | 12.24 – 2.56%
Number of damaged fruit / plants | The intensity of the plant attacked | 3.06 – 1.25%
Number of damaged fruit / plants | Incidence of anthracnose in red chilies | 62.5 – 0%
Number of damaged fruit / plants | Incubation period | 6 – 12 days
Number of damaged fruit / plants | Spot diameter | 6.8 – 0 mm
Number of damaged fruit / plants | Incidence of anthracnose in chilies | 43 – 15%
Number of damaged fruit / plants | Average height of chili plants | 25.41 – 22.79 cm
Number of damaged fruit / plants | (Tobing & Mulyaningsih, 2020)
| Extract | Concentration | Interaction | Average width of fungal spots | Interaction of average of plant leaf area | Average weight of chilies | Interaction of the main branches of the chili plant | Dry weight of chilies | Wet weight of chilies | The average of root wet weight | The average of root dry weight | Disease incidence in chilies | The average of incidence of pest infestation | Height of red chili plant | Number of red chili leaves | Number of productive branches | Fruit weight / pPlant | Number of pieces / plant | Fruit length | Fruit diameter | Height of red chili plant | Number of red chili leaves | Number of productive branches | Fruit weight / plant | Number of pieces / plant | Fruit length | Fruit diameter | Anthracnose intensity | Disease incidence rate | Incubation period | Spot diameter | Incubation period | Disease incidence | Percentage of incidence of anthracnose in chilies |
|--------------------------|---------------|-------------|-------------------------------|--|---------------------------|--|---------------------|---------------------|-------------------------|----------------------------|-----------------------------|----------------------------------|----------------------|--------------------------|-------------------------|----------------------|------------------------|----------------------|---------------------|-----------------------------|--------------------------|--------------------------|----------------------|---------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|----------------------|------------------------|----------------|----------------|----------------|----------------|---------------------|----------------------|----------------|----------------|----------------|----------------|---------------------|
The percentage of incidence of anthracnose disease can be calculated by the following formula (Suwastini et al., 2020):

\[
TP = \frac{n \times x \times 100}{N \times V}
\]

(4)

With:
- TP = Occurrence of disease (%)
- n = Number of infected (symptomatic) fruit per plant
- N = Total number of fruits observed per plant

Anthracnose disease in chilli is characterized by the appearance of blackish brown spots that will expand into soft rot with black dots in the middle which are collection of seta and conidia of C. capsici fungi. The attack of C. capsici fungi begins by attaching the spores to the fruit and then the spores will germinate. Furthermore, through the fungal hyphae inject the fruit tissue and take nutrients in it so that it can interfere with metabolism and even cause cell death. The more severe the disease attack, the more extensive the rotting area on the fruit will be, this is due to damage to the fruit tissue and even cell death which ultimately results in the fruit experiencing dry rot or shrinking. (Andriyani et al., 2020). Disease severity is the surface area of chilies that shows symptoms of disease. Disease severity can also be interpreted as the part of the plant affected by disease or the disease area of the sample plant. Determination of the percentage of disease severity can be calculated by the formula as follows (Suwastini et al., 2020):

\[
KP = \frac{\sum n \times x \times 100}{N \times V}
\]

(5)

With:
- KP = Disease severity (%)
- N = The number of fruit observed per plant
- n = The number of fruits in each attack category
- V = Numeric value for each attack category
- V = Highest score

Several studies have also identified other parameters in the in vivo test, for example: fruit weight, mycelium dry weight, spot diameter, yield / number of red chilies, number of fruits, effectiveness and level of fungicidal ability, incubation period of anthracnose disease, morphometry of cayenne pepper, period incubation, percentage and fresh weight of healthy cayenne pepper affected by anthracnose disease, when the early symptoms of anthracnose disease appeared in red chilies, and the height of chili plants. The plants studied for chilies had the effectiveness of being used as a natural fungicide. However, many in vivo studies do not compare with synthetic fungicides. So, it is not possible to know the effectiveness of the performance of natural fungicides for chilies when compared to synthetic fungicides. Table 6 shows that suren leaf extract and nut bulbs can be used as alternatives to natural fungicides to help overcome the problem of anthracnose in chilies.

Table 6: Comparison of the effectiveness of natural fungicides for chilies with synthetic fungicides

Plants	Synthetic Fungicides	Explanation	Reference
Suren Leaf Extract	Mankozeb 1g/L	In general, the performance of suren leaf extract as natural fungicide > mankozeb fungicide	(Andriyani et al., 2020)
Suren Leaf Extract	Propineb	The treatment of nut bulb flour with concentration of 5%, 15%, and 25% was comparable to the propineb fungicide which is effective in controlling anthracnose in chilli plants.	(Shihite et al., 2020)
Fragrant Lemongrass Leaf Extract	0.2% w/v synthetic fungicide	In general, the performance of fragrant lemongrass leaf extract as natural fungicide < 0.2% w/v synthetic fungicide	(Syabana et al., 2015)
6 Conclusion

This paper reviews the potential plants as an alternative to chili fungicides, the preparation of test solutions, in vitro and in vivo fungicide tests. The part of the plant that is widely studied as fungicide for chilies is the leaves, while the parts of the plant that are rarely used as samples are the parts of the rhizome, roots, tubers, weevils, seeds, fruit, flowers or all parts of the plant. The methods of extract preparation used as fungicide test include: maceration method, stratified fractionation method, and decoction method. The plants studied had the ability to inhibit the growth of the Colletotrichum capsici, Colletotrichum gloeosporioides, and Colletotrichum acutatum. The 80% alcohol extract and 10% and 60% n-hexane extract of Chense henna leaves can be equal with the performance of 0.2% propineb in vitro study. In addition, the 60% and 70% kiriynuh leaf extracts were also able to match acrobat 0.2% performance by in vitro study. Two parameters that are often observed in the in vivo test are the percentage of anthracnose disease incidence and the percentage of anthracnose disease severity. Suren and nut bulbs leaf extract can be used as alternative to natural fungicides to help overcome the problem of anthracnose in chilies.

Declaration of competing interest

The authors declare no known competing interests that could have influenced the work reported in this paper.

Acknowledgements

The authors thank the Universitas Maari Hasym Latif for facilitating the current work.

References

Ali, M., Puspita, F., Siburian, M. M. (2013). Uji Beberapa Konsentrasi Ekstrak Buah Mengkudu (Morinda Citrifolia L.) Terhadap Penyakit Antraknosa Yang Disebabkan Oleh Jamur Colletotrichum Capsici Pada Buah Cabai Merah Pascapanen. Jurnal Sagu, 1(2).

Ali, M., Venita, Y., Rahman, B. (2012). Uji Beberapa Konsentrasi Ekstrak Daun Mimba (Azadirachta Indica A. Juss.) Untuk Pengendalian Penyakit Antraknosa Yang Disebabkan Jamur Colletotrichum Capsici Pada Buah Cabai Merah Pascapanen. Jurnal Sagu, 1(1).

Amelia, M., Marsuni, Y., Budi, I. S. (2020). Pengaruh Ekstrak Daun Kenikir (Cosmos Caudatus Kunth.) Terhadap Cendawan Kolletotrichum Sp. Pada Buah Cabai Rawit. Jurnal Proteksi Tanaman Tropika, 3(1), 157–163.

Andreas, B., Ekowati, C. N., Yulianty, I., Irawan, B. (2018). Uji Efektivitas Ekstrak Tumbuhan Urang Aring (Eclipta Alba (L.) Hassk) Terhadap Pertumbuhan Jamur Colletotrichum Sp. Penyebab Penyakit Antraknosa. Jurnal Ilmiah Biologi Ekserimen Dan Keanekarakarangan Hayati (J.Bekh), 5(1), 49–56.

Andriyani, F., Nurchayati, H., Haryanti, S. (2020). Pengaruh Ekstrak Suren (Toona Sureni Merr.) Terhadap Produksi Buah Cabai Rawit Yang Diserang Penyakit Antraknosa. Niche Journal Of Tropical Biology, 3(2), 89–98.

Andriyani, F., Purwantisari, S. (2019). Uji Potensi Ekstrak Daun Suren Dalam Menghambat Pertumbuhan Jamur Colletotrichum Capsici Secara In Vitro. Jurnal Akademika Biologi, 8(1), 24–28.

Anggreini, S., Efri, E., Nurdin, M. (2016). Pengaruh Tingkat Konseentrasi Fraksi Ekstrak Daun Mengkudu Dan Mumba Terhadap Pertumbuhan Dan Sporulasi Colletotrichum Capsici. Jurnal Agrotek Tropika, 4(1).

Anjani, A. G. (2018). Efektivitas Lima Penyimpanan Campuran Ekstrak Sirih Dan Tembakau Pada Colletotrichum Sp. Penyebab Antraknosa Cabai. Universitas Muhammadiyah Jember.

Arneti, A., Sulyanti, E. (2017). Pengujian Ekstrak Sederhana Bagian Tumbuhan Cassia Alata Linnaeus Terhadap Colletotrichum Gloeosporioides Secara Invitro. Jpt: Jurnal Proteksi Tanaman (Journal Of Plant Protection), 1(2), 42–51.

Aziziy, M. H., Tobing, O. L., Mulyaningsih, Y. (2020). Studi Serangan Antraknosa Pada Pertumbuhan Cabai Merah (Capsicum Annuum L.) Setelah Aplikasi Larutan Daun Mimbah Dan Mol Bonggol Pisang. Jurnal Agromadia, 6(1), 22–32. Badan Pusat Statistik Republik Indonesia. (2019). Distribusi Perdagangan Komoditas Cabai Indah Merah Indonesia 2019. Bps Rp/Eps Statistics Indonesia.

Chatri, M., Mansyuridin, A. B. P. (2015). Potensi Minyak Atsiri Hyp tis Suaveolens (L.) Poit Dalam Menghambat Pertumbuhan Colletotrichum Gloeosporioides, Penyebab Penyakit Antraknosa Pada Cabai. Semirata 2015, 4(1), 227–233.

Chávez-Quintal, P., González-Flores, T., Rodríguez-Buenfil, I., Gall egos-Tintoré, S. (2011). Antifungal Activity In Ethanolic Extracts Of Carica Papaya L. Cv. Maradol Leaves And Seeds. Indonesian Journal Of Microbiology, 51(1), 54–60.

Damiri, N. (2011). Efektivitas Ekstrak Daun Sirih Terhadap Infeksi Colletotrichum Capsici Pada Buah Cabai. Jurnal Dharma, 3(2), 54–59.

Darmadi, A. A. K., Suriani, N., Darmayasa, I. D. A. B. G., Bagus, I. D. A., Suasakara, M., Gari, N. I. M., Fudholi, A. (2021). Cinnamon Leaf Extract To Control Anthracnose Disease On Chilli Plants In Bali: A Novel And New Potential. International Journal Of Pharmaceutical Research, 13(1).

Efri, E. (2010). Pengaruh Ekstrak Berbagai Bagian Tanaman Mengkudu (Morinda Citrifolia) Terhadap Perkembangan Penyakit Antraknosa Pada Tanaman Cabe (Capsicum Annuum L.). Jurnal Hama Dan Penyakit Tumbuhan Tropika, 10(1), 52–58.

Efri, E., Aeny, T. N., Myrono, T., Roaniidli, E. (2017). Pengaruh Fraksi Ekstrak Daun Pacar Cina (Agladia Odorata L.) Terhadap Pertumbuhan Colletotrichum Capsici Penyebab Penyakit Antraknosa Pada Cabai (Capsicum Annuum L.) Secara In Vtro. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 17(2), 179-184.

Eltina, Y., Ali, M., Arlyandi, L. (2015). Uji Beberapa Konsentrasi Ekstrak Tepung Daun Sirih Hutan (Piper Aduncum L.) Untuk Mengendalikan Penyakit Antraknosa Pada Buah Cabai Merah Pasca Panen. Jurnal Sagu, 14(2), 18–27.

Eltina, Y., Ali, M., Tampubolon, M. C. (2016). Uji Beberapa Konsentrasi Fraksi Ekstrak Tepung Daun Serai Wangi (Cymbopogon Nar dus L.) Untuk Mengendalikan Penyakit Antraknosa Pada Buah Cabai Merah Pasca Panen. Jurnal Sagu, 15(1), 1–11.

Eltina, Y. E. (2015). Uji Beberapa Konsentrasi Ekstrak Tepung Daun Sirih Hutan (Piper Aduncum L.) Untuk Mengendalikan Penyakit Antraknosa Pada Buah Cabai Merah Pasca Panen. Jurnal Sagu, 14(2), 18–27.

Esyanti, R. R., Farah, N., Faiz, M. E. (2020). The Effect Of Synthetic Fungicide On Disease Severity And Plant Growth Of Chili Pepper (Capsicum Annuum L.) Infected With Phytophthora Capsici. 49(2), 7–12.

Evianti, A. (2018). Gel Fungisida Nabati Dari Ekstrak Akar Putri Ma lu Untuk Penyakit Antraknosa Pada Tanaman Cabai Di Lahan Pasir Pantai Indonesia.

Evianti, A. (2020). The Implementation Of Mimosas Pudica Root Extract For Anthracnose Disease On Red Chili To Increase Productivity. Proceeding International Conference On Science And Engineering, 3, 31–33.

Gabriel, B., Rianto, P. (1988). Metarhizium Anisopliae (Metch) Sor: Taksonomi, Patologi, Produksi Dan Aplikasinya. Direktorat Perlindungan Tanaman Perkebunan, Departemen Pertanian. Jakarta.

Gao, Y., He, L., Li, B., Wu, M., Lin, J., Liu, F. (2017). Sensitiv
ity Of Colletotrichum Acutatum To Six Fungicides And Reduction In Incidence And Severity Of Chili Anthracnose Using Pyrochlostrin. Australasian Plant Pathology, 46(6), 521–528.

Gusmarini, M., Nurdin, M., Akin, H. M. (2014). Pengaruh Beberapa Jenis Ekstrak Tumbuhan Terhadap Penyakit Antraknosa Pada Tanaman Cabai Besar (Capsicum Annum L.) Di Lapangan. Jurnal Agrotek Tropika, 2(2). Harianto, R. (2018). Selektifitas Beberapa Fungisida Nabati Dalam Menghambat Penyakit Antraknosa (Colletroticum Capsici) Pada Tana- man Cabai (Capsicum Annum L.) Skala Laboratorium. Herlinda, S., Utama, M. D., Pujiastuti, Y., Suwandi, S. (2006). Kerap atan Dan Viabilitas Spora Beauveria Bassiana (Bals.) Akibat Subkultur Dan Pengayaan Media, Serta Virulensi nya Terhadap Larva Plutella Xylostella (Linn.). Jurnal Hama Dan Penyakit Tumbuhan Tropika, 6(2), 70–78.

Indrawati, A. (2021). Test Kirin喻h Leaf Extract (Euphorium Odo ratum. L.) As Biofungicides Against Anthracnose Disease (Col- letotrichum Capsici) On Chili Plants (Capsicum Annum L.). Budapest International Research In Exact Sciences (Birenex) Journal, 3(1), 54–67.

Isman Duila, M. (2017). Ekstrak Tembakau (Nicotian Tabacum L.) Sebagai Fungisida Nabati Pada Antraknosa Cabai Merah Yang Disebabkan Jamur Colletotrichum Sp Secara In Vitro. Juniar Dwi Cahya, A. (2019). Aplikasi Konsentrasi Dan Interval Penyemprotan Ekstrak Sirih (Piper Bade L.) Terhadap Penyakit Antraknosa Tanaman Cabai. Universitas Muhammadiyah Jember.

Lestari, W. D., Marsuni, Y., Budi, I. S. (2020). Uji Penghambatan Ko nsentrasi Biij Jarak Pagat (Jatropha Curcas L.) Terhadap Pertu mbuhan Cendawan Colletotrichum Capsici Pada Buah Cabai. Jurnal Proteksi Tanaman Tropika, 3(2), 209–214.

Liswarni, Y., Edriwilya, R. (2020). Efektivitas Ekstrak Daun Pepaya Secara In Vitro Terhadap Colletotrichum Gloeosporioides Penyebab Penyakit Antraknosa Pada Tanaman Cabai. Jpt: Jurnal Proteksi Tanaman (Journal Of Plant Protection), 4(1), 1–10.

Maimunah, M., Azwana, A., Pandala, C. (2019). The Effectiveness Of Kenikir And Betel Leaves Extract As Bio Fungicide To The Causes Of Anthracnose Disease (Colletotrichum Capsici) On Chili Plants (Capsicum Annum L.) With In Vitro. Budapest International Research In Exact Sciences (Birenex) Journal, 1(2), 29–36.

Marsuni, Y. (2020). Pencegahan Penyakit Antraknosa Pada Cabai B esar (Lokal: Lombok Gokalan) Dengan Perlakuan Bibit Kombi nasi Fungisida Nabati. Prosiding Seminar Nasional Lingkungan Gathan Bahan, 3(2), 113–116.

Musakhann, P. R., Zacharia, S. (2017). Effect Of Neem Based Plant Products And Plant Extracts Against Anthracnose Of Chili (Capsicum Annum L.). Journal Of Pharmacognosy And Phytochemistry, 6(5), 171–174.

Nazarin, S., Khalequzzaman, K., Khar, A. (2016). Effect Of New Fungicides In Controlling Anthracnose/Die Back Disease Of Chili. Asian Journal Of Applied Science And Engineering, 5(2), 117–124.

Ngibad, K. (2019). Efektivitas Kombinasi Ekstrak Etanol Daun Bun ga Matahari (Helianthius Annuus) Dan Tanaman Anting-Anting (Acalypha Indica Linn) Sebagai Antimalaria Secara In vivo. Jurnal Farmasi Galenika (Galenika Journal Of Pharmacy), 5(1), 12–19.

Ngibad, K. (2019). Phytochemical Screening Of Sunflower Leaf (Hel ianthius Annuus) And Anting-Anting (Acalypha Indica Linn) Plant Ethanol Extract. Borneo Journal Of Pharmacy, 2(1), 24–30.

Ningtyas, I. R., Efri, E., Aeny, T. N. (2013). Pengaruh Berbagai Tingkat Fraksi Ekstrak Daun Sirih (Piper Betle L) Dan Daun Babadotan (Ageratum Conyzoide) Terhadap Colletotrichum Capsici Penyebab Penyakit Antraknosa Pada Cabai (Capsicum Annum L.) Secara In Vitro. Jurnal Agrotek Tropika, 1(3).

Novizan, I. (2002). Membuat Dan Memanfaatkan Pestisida Ramah Lingkungan. Agromedia Pustaka. Jakarta. Nur Rohmah, W. (2017). Biorasional Ekstrak Sirih Dan Tembakau Sebagai Fungisida Nabati Pada Colletotrichum Sp Secara In Vitro. Universitas Muhammadiyah Jember.

Nurul, A., Gayuli, P. B., Anis, S. (2020). Uji Daya Simpan Ekstrak Daun Dan Buah Mendengku (Morinda Citrifolia L.) Terhadap Pertumbuhan Jamur Colletotrichum Capsici Asal Cabai Merah Secara In Vitro. Prosiding Seminar Pertanian 2020.

Oktarina, O., Tripana, B., Rohmah, W. N. (2017). Daya Hambat Bi o organisalekstrak Sirih Dan Tembakau Pada Colletotrichum Capsici Penyebab Penyakit Antraknosa Cabai. Agritrop: Jurnal Ilmu-Ilmu Pertanian (Journal Of Agricultural Science), 15(2).

Play, S. S., Tyasjadia, A., Ermawati, Y., Hantoro, F. R. P. (2010). Budi daya Dan Pascapanen Cabai Merah (Capsicum Annum L.). Badan Penelitian Dan Pengembangan Pertanian Balai Pengkajian Teknologi Pertanian Jawa Tengah.

Putra, M. S. (2017). Efektivitas Fraksi Ekstrak Daun Mendengku (Morinda Citrifolia L.) Terhadap Penyakit Antraknosa (Collettotrichum Capsici) Pada Tanaman Cabai (Capsicum Annum L.).

Rahman, M. S., Jahan, I., Islam, R., Sabuz, A. A., Akanda, A. M. (2019). In-Vitro Evaluation Of Some Plant Extracts And Fungicides Against Colletotrichum Capsici Causing Anthrac nose Of Chilli. Bangladesh Phytopathological Society. 35(1), 1–8.

Sakerebau, D. R. M., Wahyu, B. P. W. S. P. (2013). Minyak Nilam Sebagai Biofungisida Untuk Pengendalian Penyakit Antrak nosa Cabai. Jurnal Fitopatologi Indonesia, 9(3), 84.

Saputra, D. D., Utami, A. W. A. (2020). The Potency Of Purple Sweet Potato (Ipomoea Batatas) Leaf Extract As Biofungicide For Controlling Fusarium Rot On Chili. Journal Of Agriculture and Applied Biology, 1(1), 1–8.

Sari, A. R. K., Rahmah, F. A., Djauhari, S. (2020a). Efektivitas Senyawa Nonatsiri Dari Curcuma Sp. Terhadap Penekanan Penyakit Antraknosa Pada Buah Cabai. Buletin Penelitian Tanaman Rempah Dan Obat, 31(1), 21–30.

Sari, A. R. K., Rahmah, F. A., Djauhari, S. (2020b). Effectiveness Of Nonessential Compounds From Curcuma Sp. On Reducing Anthracnose Disease Of Chilli Pepper Fruit. Buletin Peneliti tan Tanaman Rempah Dan Obat, 31(1), 21–30.

Satryawibowo, M. W. (2015). Pengaruh Fraksi Ekstrak Daun Tagetes (Tagetes Erecta) Saliara (Lantana Camara) Dan Sirih Hijau (Piper Betle) Terhadap Pertumbuhan Dan Sporulasi Colletotrichum Capsici Secara In Vitro. Fakultas Pertanian.

Satryawibowo, M. W., Efri, E., Aeny, T. N. (2015). Pengaruh Fraksi Ekstrak Daun Tagetes (Tagetes Erecta) Terhadap Pertumbuhan Dan Sporulasi Colletotrichum Capsici Secara In Vitro. Jurnal Agrotek Tropika, 3(2).

Septiana, W., Efri, E., Aeny, T. N. (2013). Pengaruh Berbagai Tingkat Fraksi Ekstrak Buah Mendengku (M. Citrifolia) Terhadap Capsici Pada Cabai (C. Annum L.) Secara In Vitro. Jurnal Agrotek Tropika, 1(2).

Septianing Ratri, E. (2017). Ekstrak Putri Malu (Mimosas Pudica L.) Sebagai Fungisida Nabati Pada Antraknosa Cabai Yang Disebakkan Jamur Colletotrichum Sp. Secara In Vitro. Universitas Muhammadiyah Jember.

Sholehah, D. N. (2012). Uji Aktivitas Minyak Camphong (Callophyllum Inophyllum) Terhadap Pertumbuhan Jamur Colletotrichum Sp. Penyebab Penyakit Antraknosa Pada Tanaman Cabai, Rekayas, 5(1), 66–70.

Sihite, D. M., Nurdin, M., Dirmawati, S. R., Akin, H. M. (2020). Uji Efektivitas Tepung Umbi Teki (Cyperus Rotundus L.) Dalam Mengendalikan Penyakit Antraknosa Pada Tanaman Cabai Dilapang. Jurnal Agrotek Tropika, 8(1), 11–17.
Sipompul, L. Y. (2017). Uji Efektivitas Beberapa Ekstrak Tanaman Te rhadap Patogen Colletotrichum Capsici (Syd.) Ej Butler And Bisby Secara In vitro Dan In vivo Pada Tanaman Cabai Besar (Capsicum Annuum L.).

Sittisart, P., Yossan, S., Prasertsan, P. (2017). Antifungal Property Of Chili, Shallot And Garlic Extracts Against Pathogenic Fungi, Phomopsis Spp., Isolated From Infected Leaves Of Para Rub ber (Hevea Brasiliensis Muell. Arg.). Agriculture And Natural Resources, 51(6), 485–491.

Subagyo, K., Sisca Play, S., Tyasdaja, A., Erma wati, Y., Rudi Pr setyo Han toro, E., Prayudi, B., Jauhari, S., Basuki, S. (2010). Budidaya Dan Pascapanen Cabai Merah (Capsicum An num L.). Bptp Jateng/Kan.

Sudirga, S. K. (2016). Isolasi Dan Identifikasi Jamur Colletotrichum Spp. Isolat Pcs Penyebab Penyakit Antraknosa Pada Buah Cabai Besar (Capsicum Annuum L.) Di Bali. Metamorfofa: Journal Of Biological Sciences, 3(1), 23–30.

Sudirga, S. K. (2018). Efektivitas Ekstrak Daun Awar-Awar (Ficus Se ptica) Sebagai Fungisida Nabati Terhadap Penekanan Penyakit Antraknosa Pada Tanaman Cabai Besar. Prosiding Seminar Nasional Pendidikan Biologi, 1(1), 369–374.

Sudirga, S. K., Ginantra, I. K., Darmayasa, I. B. G. (2019). Antifungal Activity Of Leaf Extract Of Mansoa Alliacea Against Colletotrichum Acutatum The Cause Of Anthracnose Disease On Chili Pepper. Iop Conference Series: Earth And Environmental Science, 347(1), 12058.

Sudirga, S. K., Suprapt a, D. N., Sudana, I. M., Wirya, I. (2014). Antif ungal Activity Of Leaf Extract Of Ficus Septica Against Col letotrichum Acutatum The Cause Of Anthracnose Disease On Chili Pepper. Journal Of Biology, Agriculture And Health care, 4(28).

Supriatni, L., Oemar, O., Anwar, M. (2016). Pemanfaatan Trichoder ma Harzianum Dan Ekstrak Daun Gelinggang (Cassia Alata L.) Untuk Mengendalikan Penyakit Antraknosa Pada Usaha Tani Cabai Rawit Di Kelurahan Kalampangan. Prosiding Seminar Nasional Inovasi Teknologi Pertanian Fak. Pertanan Universitas Palangkaraya.

Suwastini, M., Efri, E., Ivay ani, L., Suharjo, R. (2020). Evaluasi Efek tivitas Fraksi Ekstrak Jarak Tintir Dan Temblekanuntuk Mengendalikan Penyakit Antraknosa Pada Cabai Merah. Journ al Agrotek Tropika, 8(1), 19–26.

Suyant i, A. P., Mariana, M., Rosa, H. O. (2020). Pengaruh Pemberi an Beberapa Ekstrak Gulma Lahan Pasang Surut Dalam Menghambat Colletotrichum Sp Penyebab Penyakit Antraknosa Pada Buah Cabai Rawit. Jurnal Proteksi Tanaman Tropika, 3(2), 215–225.

Syabana, M. A., Saylendra, A., Ramdhani, D. (2015). Aktivitas Anti Cendawan Ekstrak Daun Sereh Wangi (Cymbopogon Nardus L) Terhadap Colletotrichum Sp Penyebab Penyakit Antraknosa Pada Buah Cabai (Capsicum Annum L.) Secara In vitro Dan In vivo. Agrologia, 4(1).

Tobing, O. L., Mulyaning sih, Y. (2020). The Reconditioning Growth And Production Of Chili Through The Banana Hump And Mimb a Leaf Extract. Indonesian Journal Of Applied Research (Ijar), 1(3), 136–148.

Trisnawati, D., Nugroho, L. P. E., T. (2019). Pengaruh Ekstrak Daun Sirih Dan Metode Ekstraksinya Dalam Menghambat Penyakit Antraknosa Pada Cabai Pascapanen. Jurnal Fitopatiologi, 15(6), 213–227.

Trisnawati, D., Pujantoro, L., Nugroho, E., Tondok, E. T. (2019). Pengaruh Ekstrak Daun Sirih Dan Metode Ekstraksinya Dalam Menghambat Penyakit Antraknosa Pada Cabai Pascapanen Extract Of Piper Betle As An Inhibitor Of Anthracnose Postharvest Disease On Chili Pepper. Fitopatologi Indonesia, 15(11), 213–227. Https://Doi.Org/10.14692/fiti.15.6.

Wanda, T. S., Efri, E., Aeny, T. N., Akin, H. M. (2014). Uji Kek ektifanfr Efstrak Daun Jarak Dan Daun Nimba Terhadap Intensitas Penyakit Antraknosa Pada Tanaman Cabai (Capsicum Annum L.). Jurnal Agrotek Tropika, 2(3).

Warisno, S., Dahana, K. (2018). Peluang Usaha Dan Budi Daya Ca bai. Gamedia Pustaka Utama.

Wati, I. F., Efri, E., Maryono, T. (2014). Keefektifan Ekstrak Daun Sirih Dan Daun Babadotan Mengendalikan Penyakit Antraknosa Pada Buah Cabai (Capsicum Annum L.). Jurnal Agrotek Tropika, 2(3).

Wiratno, C. H., Oktarina, E., Wardani, R. D., Ngibad, K. (2019). The Potential Of Walnut Seeds (Canarium Indicum L.) In Repairing The Genotoxicity Effect Of Mercury On Mice Erythrocytes. Borneo Journal Of Pharmacy, 2(2), 48–54.

Wulandari, S., Aeny, T. N., Efri, E. (2015). Pengaruh Fraksi Ekstrak Daun Babadotan (Ageratum Conyzoides) Terhadap Pertumbuhan Dan Sporulasi Colletotrichum Capsici Secara In Vitro. Jurnal Agrotek Tropika, 3(2).

Yulia, E., Muhadam, H. S., Widiantini, F., Kurniawan, W. (2019). P e rlakuan Benih Ekstrak Anredera Cordifolia Menekan Kejadian Penyakit Antraknosa Benih Cabai Terinfeksi Colletotrichum Acutatum. Agrikultura, 30(2), 75–82.

Zulkipi, S., Marsuni, Y., Rosa, H. O. (2018). Uji Lapangan Beberapa Pestisida Nabati Untuk Menekan Perkembangan Penyakit Antraknosa Pada Tanaman Cabai Besar. Jurnal Proteksi Tanaman Tropika, 1(2), 32–35.