Some Notes on Complex Symmetric Operators

MARCOS S. FERREIRA *

February 12, 2019

Abstract

In this paper we show that every conjugation C on the Hardy-Hilbert space H^2 is of type $C = T^*C_1 T$, where T is an unitary operator and $C_1 f(z) = \overline{f(z)}$, with $f \in H^2$. In the sequence, we extend this result for all separable Hilbert space H and we prove some properties of complex symmetry on H. Finally, we prove some relations of complex symmetry between the operators T and $|T|$, where $T = U|T|$ is the polar decomposition of bounded operator $T \in \mathcal{L}(H)$ on the separable Hilbert space H.

1 Introduction

Let $\mathcal{L}(H)$ be the space of bounded linear operators on a separable Hilbert space H. A conjugation C on H is an antilinear operator $C : H \rightarrow H$ such that $C^2 = I$ and $\langle Cf, Cg \rangle = \langle g, f \rangle$, for all $f, g \in H$. An operator $T \in \mathcal{L}(H)$ is said to be complex symmetric if there exists a conjugation C on H such that $CT = T^*C$ (we will often say that T is C-symmetric). Complex symmetric operators generalize the concept of symmetric matrices of linear algebra. Indeed, it is well known (\cite[Lemma 1]{5}) that given a conjugation C, there exists an orthonormal basis $\{f_n\}_{n=0}^{\infty}$ for H such that $Cf_n = f_n$. Hence, if T is C-symmetric then

$$\langle Tf_n, f_m \rangle = \langle Cf_m, CTf_n \rangle = \langle f_m, T^*Cf_n \rangle = \langle Tf_m, f_n \rangle,$$

(1)

that is, T has a symmetric matrix representation. The reciprocal of this fact is also true. That is, if there is an orthonormal basis such that T has a symmetric matrix representation, then T is complex symmetric.

The complex symmetric operators class was initially addressed by Garcia and Putinar \cite{5} \cite{6} and includes the normal operators, Hankel operators and Volterra integration operators.

Now, let L^2 be the Hilbert space on the unit circle \mathbb{T} and let L^∞ be the Banach space of all essentially bounded functions on \mathbb{T}. It is known that $\{e_n(e^it) := e^{int} : n \in \mathbb{Z}\}$ is

*DCET, UESC, Bahia, Brazil, msferreira@uesc.br
an orthonormal basis for L^2. The *Hardy-Hilbert space*, denoted by H^2, consists of all analytic functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ on the unit disk \mathbb{D} such that $\sum_{n=0}^{\infty} |a_n|^2 < \infty$. It is clear that $\mathcal{B} := \{e_n(z) = z^n : n = 0, 1, 2, \ldots \}$ is an orthonormal basis for H^2.

For each $\phi \in L^\infty$, the *Toeplitz operator* $T_\phi : H^2 \to H^2$ is defined by
\[
T_\phi f = P(\phi f),
\]
for each $f \in H^2$, where $P : L^2 \to H^2$ is the orthogonal projection. The concept of Toeplitz operators was initiated by Brown and Halmos [1] and generalizes the concept of Toeplitz matrices.

In [7], Guo and Zhu raised the question of characterizing complex symmetric Toeplitz operators on H^2 in the unit disk. In order to obtain such characterization, Ko and Lee [8] introduced the family of conjugations $C_\lambda : H^2 \to H^2$, given by
\[
C_\lambda f(z) = \overline{f(\lambda \bar{z})}
\]
with $\lambda \in \mathbb{T}$ and proved the following result:

Theorem 1.1. Let $\phi(z) = \sum_{n=-\infty}^{\infty} \hat{\phi}(n) z^n \in L^\infty$. Then T_ϕ is C_λ-symmetric if, and only if, $\hat{\phi}(-n) = \lambda^n \hat{\phi}(n)$, for all $n \in \mathbb{Z}$.

2 Canonical Conjugations

Our first objective in this paper is to study relations between an arbitrary conjugation C on H^2 and the conjugation $C_1 f(z) = \overline{f(\bar{z})}$. Once the conjugation C_1 is a kind of canonical conjugation on H^2, we observe a close relationship between conjugations of H^2 and conjugation C_1, namely:

Theorem 2.1. If C is a conjugation on H^2, then exists an unitary operator $T : H^2 \to H^2$ such that $TC = C_1 T$.

Proof. Since C is a conjugation, there exists an orthonormal basis $\mathcal{B}' = \{f_n\}_{n=0}^{\infty}$ of H^2 such that $C f_n = f_n$. Now, let $\mathcal{B} = \{e_n\}_{n=0}^{\infty}$ the standard orthonormal basis of H^2 and the linear isomorphism $T : H^2 \to H^2$ given by
\[
T \left(\sum_{n=0}^{\infty} a_n f_n \right) = \sum_{n=0}^{\infty} a_n e_n.
\]

Note that $T f_n = e_n$, for all $n \geq 0$, and therefore T is unitary. Now, for
\[f(z) = \sum_{n=0}^{\infty} a_n e_n \in H^2, \] we get

\[
C_1 f(z) = \sum_{n=0}^{\infty} a_n e_n \\
= \sum_{n=0}^{\infty} a_n T(f_n) \\
= T\left(\sum_{n=0}^{\infty} a_n C f_n\right) \\
= (TC) \left(\sum_{n=0}^{\infty} a_n f_n\right) \\
= (TC) \left(\sum_{n=0}^{\infty} a_n T^{-1}(e_n)\right) \\
= (TCT^{-1}) f(z),
\]

whence \(C_1 T = TC. \) \(\square \)

The previous theorem says that all complex symmetric Toeplitz operator is unitarily equivalent to a \(C_1 \)-symmetric operator. Indeed:

Remark 2.2. Let \(T_\phi : H^2 \to H^2 \) an Toeplitz operator. Observe that, if \(T_\phi \) is \(C \)-symmetric, since the operator \(T \) of previous theorem is unitary, we have

\[C_1 = TCT^*, \]

therefore the operator \(T_2 := TT_\phi T^* \) is \(C_1 \)-symmetric (see \[5\] p. 1291). This shows that \(T_\phi \) and \(T_2 \) are unitarily equivalent operators. Moreover, is obvious that, if \(T \) commutes with \(C_1 \) or \(C \), then \(C = C_1 \).

Corollary 2.3. Let \(A \in \mathcal{L}(H^2) \). Then \(A \) is \(C_1 \)-symmetric if, and only if, the matrix of \(A \) with respect the canonical basis of \(H^2 \) is symmetric.

Proof. If \(A \) is \(C_1 \)-symmetric, then \(C_1 A = A^* C_1 \). Moreover, by previous theorem there exists an isomorphism \(T \) on \(H^2 \) such that \(TC_1 = C_1 T \). Consider \(B = \{ e_n \}_{n=0}^{\infty} \) and \(B' = \{ f_n \}_{n=0}^{\infty} \) orthonormal basis of \(H^2 \) such that

\[T f_n = e_n \text{ and } C_1 f_n = f_n. \]

Thus, we must

\[C_1 e_n = C_1 (T f_n) = TC_1 (f_n) = T f_n = e_n, \]

that is \(C_1 e_n = e_n, \forall n \geq 0. \) Therefore, by \([\Pi]\), follows that \([A]_B = [A]_B^t\).

Reciprocally, suppose that \(A \) is \(C \)-symmetric such that \(C e_n = e_n \). By previous theorem, \(TC = C_1 T \) and \(T e_n = e_n \). Hence, \(T \) is the identity operator and so \(C = C_1 \). \(\square \)
In fact, the reciprocal of the Theorem 2.1 is true:

Proposition 2.4. If \(T : H^2 \to H^2 \) is an unitary operator, then \(C := T^{-1}C_1T \) is an conjugation on \(H^2 \).

Proof. It is easy to see that \(C \) is an antilinear operator. Now, since \(T \) is an unitary operator, considering \(B = \{e_n\}_{n=0}^{\infty} \) the orthonormal basis of \(H^2 \), we have

\[
\langle Ce_n, Ce_m \rangle = \langle T^*C_1Te_n, T^*C_1Te_m \rangle = \langle TT^*C_1Te_n, C_1Te_m \rangle = \langle Te_n, Te_m \rangle = \langle e_m, T^*Te_n \rangle = \langle e_m, e_n \rangle.
\]

By other hand, once \(C^2 = (T^{-1}C_1T)(T^{-1}C_1T) = I \), follow the desired. \(\Box \)

In short, the Theorem 2.1 and the Proposition 2.4 tell us that:

Corollary 2.5. If \(T : H^2 \to H^2 \) an linear isomorphism and \(C := T^{-1}C_1T \), then \(T \) is unitary if, and only if, \(C \) is a conjugation on \(H^2 \).

Now, once every separable Hilbert space has an orthonormal basis, follows that the Corollary 2.5 is true for any separable Hilbert space \(\mathcal{H} \). In fact, if \(\mathcal{B} = \{f_n\} \) is an orthonormal basis on \(\mathcal{H} \), then \(J : \mathcal{H} \to \mathcal{H} \) given by

\[
J \left(\sum_{n=0}^{\infty} \lambda_n f_n \right) = \sum_{n=0}^{\infty} \overline{\lambda_n} f_n.
\] \hspace{1cm} (2)

is a conjugation on \(\mathcal{H} \). Thus, we have:

Theorem 2.6. If \(T : \mathcal{H} \to \mathcal{H} \) an linear isomorphism and \(C := T^{-1}JT \), then \(T \) is unitary if, and only if, \(C \) is a conjugation on \(\mathcal{H} \).

Proof. Analogous to Theorem 2.1 and Proposition 2.4 \(\Box \)

Remark 2.7. Note that in the Hardy-Hilbert space \(H^2 \), we have \(J = C_1 \).

We already know that every normal operator is complex symmetric and that the reciprocal in general is not true. However, for Toeplitz operators, Theorem 1.1 gives us:

Fact 2.8. If \(T_\phi \) is \(J \)-symmetric, then \(T_\phi \) is normal.

Now note that if \(T_\phi \) is normal not necessarily \(T_\phi \) is \(J \)-symmetric. In fact, if \(\phi(z) = -\overline{z} + z \) then \(T_\phi \) is normal, however is not \(J \)-symmetric.
3 Properties of Complex Symmetry

In the following, we present some properties of complex symmetry in Hilbert spaces. The first result gives us a way to get complex symmetric operators from another complex symmetric operator. First, we need some lemmas:

Lemma 3.1. ([6, Lemma 1]) If C and J are conjugations on a Hilbert space \mathcal{H}, then $U = CJ$ is a unitary operator. Moreover, U is both C-symmetric and J-symmetric.

Lemma 3.2. ([3, Lemma 2.2]) If $U : \mathcal{H} \rightarrow \mathcal{H}$ is a unitary and complex symmetric operator with conjugation C, then UC is a conjugation.

Proposition 3.3. Let $T : \mathcal{H} \rightarrow \mathcal{H}$ an operator and C and J conjugations on \mathcal{H}. Then T is C-symmetric if, and only if, UT is UC-symmetric, where $U = CJ$.

Proof. We already know that U is unitary and C and J-symmetric and that $UC = CJC$ is a conjugation, by Lemmas 3.1 and 3.2. Now since $U^* = U^{-1} = JC$ and T is C-symmetric, we have

$$UT(UC) = UTCU^* = UCT^*U^* = UC(UT)^*.$$

Reciprocally, suppose that $UC(UT)^* = UT(UC)$. Thus

$$CT^*U^* = C(UT)^* = U^*UC(UT)^* = U^*UTUC = TUC = TCU^*,$$

whence $CT^* = TC$.

Lemma 3.4. If $T : \mathcal{H} \rightarrow \mathcal{H}$ is both C-symmetric and J-symmetric, then T is both CJC-symmetric and JCJ-symmetric.

Proof. By Lemma 3.1 we have that $U := CJ$ is unitary and C and J-symmetric. Hence, by Lemma 3.2 $UC = CJC$ is a conjugation on \mathcal{H}. Thus, since $CT = T^*C$ and $JT = T^*J$ we get

$$(CJC)T = C(TJ)C = T^*(CJC),$$

and so T is CJC-symmetric. Analogous, we prove that T is JCJ-symmetric.

Proposition 3.5. If $T : \mathcal{H} \rightarrow \mathcal{H}$ is both C and J-symmetric, then TU is C-symmetric, where $U = CJ$.

Proof. In fact, once T is both C-symmetric and J-symmetric, we have by Lemma 3.4 that T is CJC-symmetric and so

$$(TU)C = T(CJC) = CU^*T^* = C(TU)^*.$$
Proposition 3.6. Let $A : \mathcal{H} \to \mathcal{H}$ an invertible operator and C-symmetric. If T is an operator on \mathcal{H} such that $TA = AT$, then T is C-symmetric if, and only if, TA is C-symmetric.

Proposition 3.7. Let $U : \mathcal{H} \to \mathcal{H}$ an unitary operator J-symmetric. If T is an operator such that $UT^* = TU$ (that is, T and T^* are unitarily equivalents), then:
(i) $JT^* = T^*J \Leftrightarrow T$ is UJ-symmetric.
(ii) $UJT = TJU^* \Leftrightarrow T$ is J-symmetric.

Proposition 3.8. An operator $T : \mathcal{H} \to \mathcal{H}$ is C-symmetric if, and only if, $JT^*C = (CJ)^*T$.

Proof. We already know that $U = CJ$ is unitary and both C and J-symmetric. Now, note that
$$JT^*C = (CJ)^*T \Leftrightarrow UT^*C = CU^*T.$$ First see that if T is C-symmetric, then $UT^*C = U(CT) = (CU^*)T$. Reciprocally, we have
$$CT^* = CU^*(UT^*C)C = CU^*(CU^*TC) = (UCCU^*)TC = TC.$$

Proposition 3.9. Let $T : \mathcal{H} \to \mathcal{H}$ an operator and C a conjugation on \mathcal{H}. If $TC = CT$, then T is C-symmetric if, and only if, T is self-adjoint.

4 Complex Symmetry of Aluthge and Duggal Transforms

Recall that the polar decomposition of an operator $T : \mathcal{H} \to \mathcal{H}$ is uniquely expressed by $T = U|T|$, where $|T| = \sqrt{T^*T}$ is a positive operator and U is a partial isometry such that $\text{Ker}(U) = \text{Ker}|U|$ and U maps $\text{cl}(\text{Ran}|T|)$ onto $\text{cl}(\text{Ran}(T))$. In this case, the Aluthge and Duggal Transforms are given, respectively, by $\widetilde{T} = |T|^\frac{1}{2}U|T|^\frac{1}{2}$ and $\hat{T} = |T|U$.

We already known that the Aluthge transform of a complex symmetric operator is also complex symmetric (see [1] Theorem 1]). In this section we study relations between complex symmetry of T and $|T|$ with relation the conjugations C and J, as well as the operators \widetilde{T} and \hat{T}.

Proposition 4.1. If T is complex symmetric, then $|T|$ is also complex symmetric.
Proof. If $CT = T^*C$, we have by Remark of [3, Lemma 1] that $T = CJ\hspace{1mm}|T|$, where J commutes with $|T|$. Thus, once that CJ is a unitary operator, follows that

\[J\hspace{1mm}|T| = C(CJ\hspace{1mm}|T|) = |T|^*(CJ)^*C = |T|^*J. \]

\[\square \]

Corollary 4.2. If T is complex symmetric, then $|T|$ is self-adjoint.

Proposition 4.3. Let C and J conjugations on \mathcal{H} such that $T = CJ\hspace{1mm}|T|$. If $|T|$ is C-symmetric, then T is also C-symmetric.

Proof. First, let’s show that $|T|$ is J-symmetric. In fact, see that

\[J(JC\hspace{1mm}|T|) = C\hspace{1mm}|T| = |T|^*C = (|T|^*JC)J, \]

and so $JC\hspace{1mm}|T|$ is J-symmetric. Thus, by Proposition 3.3, $|T|$ is J-symmetric. Therefore, it is enough to see that:

\[
\begin{align*}
CT &= C(CJ\hspace{1mm}|T|) \\
 &= |T|^*J \\
 &= (|T|^*JC)C \\
 &= (CJ\hspace{1mm}|T|)^*C \\
 &= T^*C.
\end{align*}
\]

\[\square \]

Corollary 4.4. Let $T = CJ\hspace{1mm}|T|$. If $|T|$ is C-symmetric, then $\hat{T} = T$.

Corollary 4.5. Let $T = CJ\hspace{1mm}|T|$. Then $|T|$ is C-symmetric if, and only if, \hat{T} is J-symmetric.

Proposition 4.6. Let $T = CJ\hspace{1mm}|T|$. If $C\hspace{1mm}|T| = |T|^*C$ and $CJ = JC$, then T is J-symmetric.

Proof. In fact, we have that

\[
\begin{align*}
JT &= J(CJ\hspace{1mm}|T|) \\
 &= C\hspace{1mm}|T| \\
 &= |T|^*JJC \\
 &= |T|^*JCJ \\
 &= (CJ\hspace{1mm}|T|)^*J \\
 &= T^*J.
\end{align*}
\]

\[\square \]
References

[1] A. Brown, P.R. Halmos, Algebraic properties of Toeplitz operators, J.Reine Angew. Math. 213 (1963–1964) 89–102.

[2] R. G. Douglas, Banach algebra techniques in operator theory, second ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998.

[3] M. Fatehi, Complex symmetric weighted composition operators, ArXiv e-prints (2018).

[4] S. R. Garcia, Aluthge Transforms of Complex Symmetric Operators, Integr. Equ. Oper. Theory. (2008) 1-11.

[5] S.R. Garcia, M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006) 1285-1315.

[6] S.R. Garcia, M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007) 3913-3931.

[7] K. Guo, S. Zhu, A canonical decomposition of complex symmetric operators, J. Operator Theory, 72 (2014) 529-547.

[8] E. Ko, J. Lee, On complex symmetric Toeplitz operators, J. Math. Anal. Appl., 434 (2016), 20-34.