RNA polymerase transcription factor IIF (TFIIF) is required for initiation at most, if not all, polymerase II promoters. We report here the cloning and sequencing of genes for a yeast protein that is the homolog of mammalian TFIIF. This yeast protein, previously designated factor g, contains two subunits, Tfg1 and Tfg2, both of which are required for transcription, essential for yeast cell viability, and whose sequences exhibit significant similarity to those of the mammalian factor. The yeast protein also contains a third subunit, Tfg3, which is less tightly associated and at most stimulatory to transcription, dispensable for cell viability, and has no known counterpart in mammalian TFIIF. Remarkably, the TFG3 gene encodes yeast TAF30, and furthermore, is identical to ANC1, a gene implicated in actin cytoskeletal function in vivo (Welch and Drubin 1994). Tfg3 is also a component of the recently described mediator complex (Kim et al. 1994), whose interaction with the carboxy-terminal repeat domain of RNA polymerase II enables transcriptional activation. Deletion of TFG3 results in diminished transcription in vivo.

[Key Words: RNA polymerase II; TFIIF; TFIID; TAF; transcription; Saccharomyces cerevisiae]

Received September 8, 1994; revised version accepted October 11, 1994.

Results

Genes for factor-g subunits

Factor g was purified to homogeneity, and the three subunits were separated by reverse phase chromatography as described previously (Henry et al. 1992). Factors a, b, and e are structurally and functionally related to human RNA polymerase II transcription factor (TF) TFIIE, TFIIH, and TFIIB, respectively (Gileadi et al. 1992; Tschochner et al. 1992; Feaver et al. 1994). Factor d can be replaced by recombinant TATA-binding protein (TBP; Flanagan et al. 1990) in support of basal transcription in vitro. A complex fraction containing TBP and associated factors (TAFs; Poon and Weil 1993) enables activated transcription in vitro (D. Poon, Y. Bai, A.M. Campbell, S. Bjorklund, Y.-J. Kim, S. Zhou, R.D. Kornberg, and P.A. Weil, in prep.). Factor g was shown previously to resemble TFIIF in its content of two essential polypeptides and its avid binding to purified RNA polymerase II (Henry et al. 1992). There were, however, notable differences between the yeast and human factors, such as the larger size of the factor-g polypeptides (105 and 54 kD, as compared with 74 and 30 kD for human TFIIF; Sopera et al. 1985) and the presence of a third subunit (30 kD) in the yeast factor that appeared to stimulate transcription but not to be required for the process. We report here the cloning and sequencing of genes for factor-g polypeptides, which clarifies the relationship to TFIIF and opens the way to genetic analysis of the factor in yeast. Our findings further disclose a surprising connection between basal and regulatory factors, which may shed light on mechanisms of transcriptional activation.
Figure 1. (See following page for legend.)
of a full-length cDNA. The gene TFG3 encodes a protein of 244 amino acids with a molecular mass of 27.4 kD, close to that determined by SDS-PAGE of 30 kD. The amino-terminal sequence and all five peptide sequences determined for p30 were present in the complete amino acid sequence.

For the 54-kD subunit of factor g (p54), degenerate primers were designed on the basis of peptide sequences [underlined in Fig. 1B], and PCR was performed using the “touchdown” method [Don et al. 1991] to limit spurious priming [see Materials and methods]. A yeast genomic library was screened with an amplified fragment, two clones were isolated, and the coding region was completely sequenced [Fig. 1B]. The gene TFG2 encodes a protein of 400 amino acids with a predicted molecular mass of 46.6 kD. All peptide sequences determined for p54 were present in the amino acid sequence.

A PCR fragment was obtained for the 105-kD subunit of factor g [p105] in the same manner as for p54, but the screening of a yeast genomic library [Gileadi et al. 1992] was unsuccessful. The PCR fragment was then used to screen a yeast cDNA library, and a single clone was isolated. The coding region was completely sequenced and proved to contain a frameshift mutation, so a 400-bp fragment of this clone was used to screen a yeast genomic library in the λYES vector [Ramer et al. 1992]. Five independent clones were obtained, and the open reading frame of one was completely sequenced [Fig. 1C]. The gene TFG1 encodes a protein of 735 amino acids with a mass of 82.2 kD, somewhat smaller than that from SDS-PAGE of 105 kD. All sequences determined from peptides were present in the amino acid sequence.

Blot hybridization of yeast genomic DNA with fragments of coding regions of TFG1, TFG2, and TFG3 [data not shown] indicated that all three genes occur in a single copy in yeast. Blot hybridization of poly[A]+ RNA [data not shown] showed that each gene gives rise to a single mRNA in yeast. The deduced amino acid sequences of Tfg1 and Tfg2 proteins contain a high proportion of charged residues, which are broadly distributed rather than concentrated in specific regions, whereas Tfg3 protein is rich in charged residues and threonine. Tfg1 protein contains an acidic region [38% aspartic acid and glutamic acid], located between residues 455 and 580. No zinc finger, kinase, or other motifs were detected in any of the sequences, except for a number of potential phosphorylation sites located throughout each protein.

Null mutations

Yeast strains were constructed in which either the entire TFG2 gene or a portion of TFG1 or TFG3 was deleted and replaced with URA3. The consequences of the deletions were determined by sporulation and tetrads dissection [data not shown]. In the case of the TFG1 and TFG2 deletions, only two spores per tetrad germinated on rich medium and formed colonies, which were ura−, indicating that both TFG1 and TFG2 are essential for cell viability. In the case of the TFG3 deletion, all four spores of a tetrad were viable on rich medium, two of which were ura+. The ura+ colonies were much smaller than the wild-type colonies on rich medium, indicating that although TFG3 is not essential for cell viability, the null mutant strain grows more slowly, which was confirmed by the measurement of generation times in liquid culture, and is inviable at 37°C.

Homology to TFIIF

Searches of the Swiss-Prot data base [release 28] with the Tfg1 and Tfg2 sequences revealed homologies to TFIIF. Tfg1 exhibits 26.6%, 28.1%, and 27.5% identity and 49.9%, 50.2%, and 50.3% similarity to the proteins for the large subunits of human [Aso et al. 1992; Finkelstein et al. 1992], Drosophila [Gong et al. 1993; Keohart et al. 1993], and Xenopus [Gong et al. 1992b] TFIIF (RAP74), respectively [Fig. 2A; data not shown]. Tfg2 is 30.6%, 30.3%, and 28.8% identical and 50.8%, 51%, and 51.5% similar to the proteins for the small subunits of human [Sopra et al. 1989; Horikoshi et al. 1991], rat [Garrett et al. 1992; Kobayashi et al. 1992], and Xenopus [Gong et al. 1992a] TFIIF (RAP30), respectively [Fig. 2B; data not shown]. Tfg2 is also 28.6% identical and 50.7% similar to the Escherichia coli σ70 protein and 22.9% identical and 45.1% similar to E. coli σ38 [data not shown], both of which were reported previously to have homology to mammalian RAP30 [Garrett et al. 1992]. After TFG3 was cloned and sequenced, it was found to be identical to ANCI [EMBL accession number Z26400], a gene implicated in actin cytoskeletal function [Welch and Drubin 1994].

Recombinant factor g

To demonstrate that the cloned genes encode functional subunits of factor g, TFG2 and TFG3 were expressed in bacteria, with six-histidine tags fused to the amino termini of the proteins to facilitate purification. TFG1 could not be subcloned into an expression vector, perhaps because it is toxic to E. coli. Purified Tfg3 protein was nearly homogeneous, whereas purified Tfg2 protein had one major contaminant, a 30-kD degradation product [Fig. 3A]. Both bacterially expressed proteins were slightly larger than the corresponding subunits of factor g purified from yeast [Fig. 3A], probably reflecting either the addition of the six-histidine tag or proteolysis during purification.
purification from yeast. When tested in a reconstituted transcription assay [Fig. 3B], neither Tfg2 nor Tfg3 was able to function alone in the absence of other factor-g subunits. Tfg2 was active, however, in the presence of Tfg1 and conversely, Tfg1 was immunoprecipitated by antibodies against Tfg3 (data not shown). Immunoprecipitation of all three subunits of factor g by anti-Tfg3 specific antibodies showed that Tfg3 association with factor g is greater than its mere coincidental comigration during factor-g purification. Two findings establish that Tfg3 is truly a component of factor g. First, Tfg3 could be immunoprecipitated from whole cell extracts by antibodies against Tfg3 antibodies against Tfg3 (data not shown). Immunoprecipitation of all three subunits of factor g by anti-Tfg3 antibody was demonstrated with a more purified fraction [data not shown]. Second, 35S-labeled Tfg3 interacted specifically with Tfg1, both in solution [Fig. 3D] and in blots [Fig. 3E]. Binding in solution was assessed with Tfg1 as renatured p105 or as p105/p54 complex isolated from the tfg3 null strain. 35S-Labeled Tfg3 was communoprecipitated by anti-Tfg3 antibodies in the presence of either form of Tfg1 but not in its absence.

Figure 2. Sequence similarity between yeast factor g and human TFII F. (A) Alignment of Tfg1 and human RAP74 sequences using the BESTFIT computer alignment program [see text]. Identical amino acids (vertical line), amino acids whose comparison value is >0.5 (colon), and amino acids whose comparison value is =0.1 (dot) are indicated. Sequences are identified as yeast [y] and human [h] on the right, and residue numbers are indicated on the left. (B) Alignment of Tfg2 and human RAP30 sequences. Notations are as in A.

Association of Tfg3 with TFII F
Because Tfg3 had little effect on factor g function in transcription and, furthermore, because it could be partially resolved from the two larger subunits by gel filtration or glycerol gradient sedimentation (Henry et al. 1992), the question arose whether Tfg3 is associated with the other subunits or whether it merely comigrates during factor-g purification. Two findings establish that Tfg3 is truly a component of factor g. First, Tfg3 could be immunoprecipitated from whole cell extracts by antibodies against Tfg3, and conversely, Tfg1 was immunoprecipitated by antibodies against Tfg3 [data not shown]. Immunoprecipitation of all three subunits of factor g by anti-Tfg3 antibody was demonstrated with a more purified fraction [data not shown]. Second, 35S-labeled Tfg3 interacted specifically with Tfg1, both in solution [Fig. 3D] and in blots [Fig. 3E]. Binding in solution was assessed with Tfg1 as renatured p105 or as p105/p54 complex isolated from the tfg3 null strain. 35S-Labeled Tfg3 was communoprecipitated by anti-Tfg3 antibodies in the presence of either form of Tfg1 but not in its absence.

Association of Tfg3 with other transcription protein assemblies
The TFG3 sequence proved to encode three peptides derived from yeast TAF30: IKTQQLPEVPPVF [residues 11–24], KIPHDLNFLQES [residues 100–111], and...
Henry et al.

SLWDYVK [residues 234–240]. The identity of Tfg3 with yTAF30 was shown further by the following. First, the two proteins comigrated in SDS-PAGE [Fig. 4A]. Second, affinity-purified anti-Tfg3 antibodies reacted specifically with yTAF30 in blots of yeast TAF preparations [Fig. 4B]. Third, Tfg3 could be immunoprecipitated from whole-cell extracts with anti-TBP antibodies, and conversely, TBP could be immunoprecipitated with anti-Tfg3 antibodies [Fig. 4C]. Neither TBP nor Tfg3 was immunoprecipitated from whole-cell extract in control reactions containing either preimmune serum or an unrelated monoclonal antibody [data not shown]. Finally, Tfg3 was found to be associated with yTAF90 and yTAF130, but not with yTAF170, as revealed in both immunoblots and stained gels [Fig. 4D,E], consistent with previous evidence for the occurrence of these proteins in distinctive complexes with TBP [Poon et al. 1994; D. Poon, Y. Bai, A.M. Campbell, S. Bjorklund, Y.-J. Kim, S. Zhou, R.D. Kornberg, and P.A. Weil, in prep.] or mediator [Kim et al. 1994]. These apparently disparate mechanisms are now related through the common occurrence of Tfg3/TAF30 in both TFIID and mediator. Whether activated transcription actually depends in any way on Tfg3/TAF30 was investigated with the use of a CYC1–lacZ reporter gene in wild-type and tfg3 null mutant strains in vivo. Both galactose-inducible [Gal4 protein-binding] and constitutive [thymidine-rich] upstream activating sequences (UASs) remained effective in the null mutant strain, but the overall level of transcription was reduced five to sixfold (Table 1). In the absence of a UAS, the level of transcription fell below the level of detection. This significant but not absolute dependence on Tfg3/TAF30 is consistent with the diminished growth rate, but nonetheless viability, of the null mutant strain.

Discussion

The evidence presented here, together with that from previous work [Henry et al. 1992], identifies general transcription factor g as the counterpart in yeast of TFIIF in human cells: Both the yeast and the human protein contain two subunits essential for transcription in vitro, both proteins bind tightly and specifically to purified RNA polymerase II [Sopta et al. 1985; Flores et al. 1989];
and the yeast proteins, Tfg1 and Tfg2, exhibit ~50% sequence similarity to the human proteins, RAP74 and RAP30, respectively. Tfg2, like RAP30 (McCracken and Greenblatt 1991; Garrett et al. 1992), is also ~50% similar in sequence to E. coli σ^{70}.

The sequence homologies noted here are found particularly in regions near the amino and carboxyl termini of the proteins, as well as in an acidic region in the middle of Tfg1 and RAP74 (Aso et al. 1992). For Tfg2 and RAP30, the best sequence alignment was between a subterminal region (ending at residue 365 out of a total of 400) of the yeast protein and the extreme carboxyl terminus of the human protein [Fig. 2B]. However, the extreme carboxyl termini of both proteins [residues 366–400 of Tfg2] exhibited greatest homology with region 4.2 of bacterial σ factors [Fig. 5, for homology to rat RAP30, see Garrett et al. 1992]. It may well be that the extreme carboxyl terminus, rather than the subterminal region of Tfg2, is the functional homolog of the carboxyl terminal region of RAP30.

Although TFG3 showed no significant sequence homology to genes encoding transcription factors, it proved to be identical to a known gene, ANC1, implicated in cytoskeletal function. ANC1 was identified in a screen for mutants failing to complement temperature-sensi-

Table 1. Effect of tfg3 deletion on transcription in vivo

Plasmid	UAS	$-\text{Galactose}$	$+\text{Galactose}$
	wild type	$tfg3$	wild type
pCZA	None	2.0 $<$1	2.3 $<$1
pCZGAL	GAL10	4.0 <1	40.7 7.4
pCZ(DED48)2	[dA : dT]2	42.6 6.9	49.8 12.0

Single-copy reporter plasmids containing CYC1-lacZ fusions with the indicated UAS elements were introduced into either wild-type or $tfg3$ null strains and grown in the presence or absence of galactose.

Figure 4. Tfg3 is a component of yeast TFIID. (A) Yeast factor-g subunit p30 (lane 1) comigrates with $yTAF30$ (lane 2) in a SDS–10% polyacrylamide gel. Molecular mass markers (in kD) are at left; the 30-kD protein bands are indicated at right. (B) Affinity-purified anti-Tfg3 antibodies react with 30-kD polypeptides in holo-RNA polymerase II (lane 1), mediator (lane 2), factor g (lane 3), and TFIID (lane 4). Holo-RNA polymerase II and mediator were purified as in Kim et al. (1994), and factor g and TFIID were as in A. Molecular mass markers (in kD) are at left. (C) Tfg3 is associated with TBP in whole-cell extracts. Extracts were immunoprecipitated with antibodies against either Tfg3 (lanes 1,3) or TBP (lanes 2,4) and immunoblotted with these antibodies as indicated. (D) Tfg3 is associated with RNA polymerase II-specific yeast TAFs. Whole-cell extracts prepared from yeast strains expressing the indicated HA-tagged proteins were immunoprecipitated with monoclonal antibody 12CA5 and immunoblotted with antibodies against Tfg3. (E) Yeast TAFs can be immunoprecipitated by antibodies against Tfg3. Antibody against Tfg3 (lane 1) or mAb 12CA5 (lane 2) was used to immunoprecipitate yeast TAFs from a complex fraction. The precipitates were electrophoresed in a SDS–10% polyacrylamide gel. Molecular mass markers (in kD) are at left.

Figure 5. Sequence homology between Tfg2 and region 4.2 of bacterial σ factors. Alignment of the carboxy-terminal residues of Tfg2 with the carboxy-terminal residues of E. coli σ^{70} and σ^{32}, and Bacillus subtilis σ^{A} (spoIIIC gene). Boldface type indicates similar and identical amino acids. The residue number is indicated at right. The following sets of amino acids are chemically similar: S and T; A and G; F, W, and Y; I, L, M, and V; D, E, N, and Q; H, K, and R.
tive mutations in actin [Welch et al. 1993]. Mutations in the ANCI gene also cause osmosensitivity and defects in actin organization. A data base search identified two human proteins, ENL [Tkachuk et al. 1992; Yamamoto et al. 1993] and AF-9 [Nakamura et al. 1993], as having possible amino- and carboxy-terminal sequence homology to Tfg3/TAF30 (22.7% and 26.2% identity, 49.4% and 47.8% similarity to ENL and AF-9 proteins, respectively, Fig. 6). Both the ENL and AF-9 genes were revealed by chromosomal translocations in acute leukemias causing their fusion to the trithorax gene. Both genes contain regions rich in serine and charged residues, similar to those found in some transcriptional activators, and it has been proposed that fusion of ENL to trithorax, which contains DNA-binding motifs, results in a rogue activator protein [Tkachuk et al. 1992]. Our findings raise the alternative possibility that fusion of ENL and AF-9 to trithorax brings about persistent recruitment of TFIIID and RNA polymerase II holoenzyme to polymerase II promoters, causing inappropriate transcriptional activation.

Whatever the significance of the homology between Tfg3 and both ENL and AF-9, two recent biochemical studies raise the possibility of factor-g/TFIIF function in activated as well as basal transcription. In the first study, low amounts of TFIIF were sufficient for basal transcription in vitro, whereas additional TFIIF enabled activation by serum response factor (SRF) and GAL4-VP16, but not Sp1 [Zhu et al. 1994]. TFIIF also relieved squelching by SRF, and RAP74 bound to DNA interacted with either SRF or GAL4-VP16. The second study identified TFIIF as a stoichiometric component of a multiprotein mediator complex that enables a response to both GAL4-VP16 and GCN4 activator proteins in transcription in vitro [Kim et al. 1994]. To these lines of evidence must now be added the equivalence of the Tfg3 subunit of TFIIF to TAF30, whose association with TBP in TFIIID may be instrumental in activated transcription. Tfg3/TAF30 protein seems unlikely to mediate a physical linkage between TFIIF and TFID, inasmuch as the two complexes are discrete and both contain a stoichiometric amount of the protein. Rather, the existence of a common subunit points to common functional requirements, such as interaction with other components of the transcription apparatus or coupling to regulatory processes.

Materials and methods

Purification and amino acid sequencing of factor-g subunits

Factor g was purified to homogeneity, and the subunits were separated by reverse-phase chromatography as described previously [Henry et al. 1992]. Amino-terminal sequencing, tryptic digestion, and peptide sequencing were performed by J. Kenny [PAN Facility, Stanford University, CA], and endoproteinase Lys-C digestion and peptide sequencing were performed by William S. Lane [Harvard Microchemistry Facility, Cambridge, MA].

Cloning of TFG3

A single long peptide sequence, LNEEEDLGVQVQMVDNKTCPEMNVTNVNEEGLXFX, obtained from Lys-C digestion of the protein, is located in open reading frame number 2 of the GenBank data base entry for yeast TBF1 (accession number X69394, Brigati et al. 1993). Based on this sequence, two primers were designed, 5'-ATATCGCAGAGATTGAGAACAAGGGTT-3' and 5'-TTTGTTCTCGCAGTTGTT-3' [restriction sites are underlined], to amplify the fragment corresponding to nucleotides 441-701 [Fig. 1A] from yeast genomic DNA by PCR. This 251-bp fragment was used to screen a yeast genomic library in the plasmid pBluescript II KS [Stratagene] transformed into the E. coli XL1 strain [Stratagene] (Gileadi et al. 1992). A total of 10^4 colonies were plated, transferred to Hybond-N filters [Amersham], and probed with the fragment labeled by random priming. Hybridization was performed at 55°C in 6x SSC (3 M sodium chloride, and 0.3 M sodium citrate), 1% SDS, and 0.25% dry milk [Johnson et al. 1984]. After washing four times at 50°C with 0.1X SSC, and 0.5% SDS, the filters were exposed to XAR-5 film [Kodak] at −80°C for 16 hr. Following rescreening, three independent clones were obtained [plasmids designated pPL2, pPL3, and pPL4]. The entire coding region was sequenced on both strands using the dideoxynucleotide chain termination method with a T7 Sequenase kit (U.S. Biochemical). The gene was found to contain an intron, so the same PCR fragment was used to screen a yeast cDNA library constructed in YESt [Ellidge et al. 1991]. A total of 90,000 plaques were screened, and four independent clones were obtained, one of which contained the entire spliced gene [plasmid pPL3].

Cloning of TFG2

Four sequences were obtained by tryptic digestion, and two sequences were obtained by Lys-C digestion of the 54-kD subunit. Based on the two peptides indicated in Figure IB, the following degenerate oligonucleotides were synthesized: [1] 5'-ATAT- GAATTTCTAGAATGAGCAYACNCGNATG-3'; [2] 5'-ATA- TGAATTCTAGAATGCNCAAYACNCGNATG-3'; [3] 5'-ATA- TCGATCCCTCGAGYTTRATYTCNCGNCCG-3', and [4] 5'- ATGAGATCTCTCGAGYTTRATYTCNCGYCT-3' (R is A or G, Y is C or T; N is A, C, T, or G, underlined nucleotides represent restriction sites). Sense primers 1 and 2 were combined, as were antisense primers 3 and 4. PCR was performed by the "touch-
down" method [Don et al. 1991] using 35 cycles of 1 min at 94°C, 2 min at a variable temperature, and 3 min at 72°C, with 1 µg of each set of primers and 0.1 µg of yeast genomic DNA. The temperature of the second step was 65°C for the first two cycles, was decreased one degree every other cycle to a temperature of 55°C, and was 55°C for the final 15 cycles. A PCR product of 294 bp was used to screen the yeast genomic library [Gilad et al. 1992] as described above. Two independent clones were obtained, one of which contained the complete TFG2 gene [on pPL16]. The entire coding region was sequenced on both strands as described above, using custom primers, exonuclease III depletions, and subcloning techniques.

Cloning of TFG1

Tryptic digestion of the 105-kD subunit yielded a single peptide sequence that overlapped one of the three peptide sequences obtained by Lys-C digestion. Based on these sequences [Fig. 1C], the following primers were synthesized: 5'-ATATGGAT-CCCAGGCTGATCAGTAC-3' and 5'-ATATGAATTCTAGAACCAAAATATATACGTG-3' (K is G or T; D is G, T, or A; H is C, T, or A; underlined nucleotides represent restriction sites). PCR was performed as described above, yielding a 101-bp fragment. The yeast genomic library [Gilad et al. 1992] was screened unsuccessfully, so the fragment was used to screen the YEp24 bearing the URA3 gene, which was end-filled with Klenow enzyme in the presence of deoxynucleoside triphosphates. For the disruption of TFG2, pPL2 was digested with NdeI and PstI to remove a 336-bp fragment from the coding region, blunted, and ligated with the URA3 fragment to create pPL13. For disruption of TFG2, pPL16 was digested with NdeI and blunted. The 1578-bp fragment that was removed included the entire coding region and some flanking sequence. Ligation with the URA3 fragment created pPL29. Disruption of TFG1 was accomplished by digestion of pPL41 with XbaI and Smal to remove a portion of the polylinker, followed by digestion of the resulting plasmid [pPL65] with StuI and BamHI, end-filling with Klenow enzyme, and insertion of the URA3 fragment to create pPL66.

All three plasmids were digested with restriction enzymes that cut in the polylinker but not in the cloned gene and transformed into the S. cerevisiae strain CRY3 [MATa/a ade2-1 can1-100 his3-11 15 leu2-3 112 trpl-1 ura3-1; Kean et al. 1994]. Yeast genomic DNA was isolated, and Southern blot analysis was performed to verify that the URA3 gene had recombined correctly into each of the factor-g genes. The strains harboring the null mutations were induced to undergo meiosis. Tetrads were dissected by micromanipulation on YPD agar (Sherman and Hicks 1991) and replica plated to synthetic medium lacking uracil.

Identification of homologous proteins

The protein data base Swiss-Prot [release 28] was searched with the amino acid sequences of Tfg1, Tfg2, and Tfg3 using the BLAZE program [IntelliGenetics, Inc.]. To determine the degree of homology to individual proteins, percentiles were calculated by the BESTFIT program [Genetics Computer Group, Madison, WI; Devereux et al. 1984] comparing the amino acid sequences of the proteins to the corresponding homologous proteins of other organisms. The parameters were gap weight of 2.0 and gap length weight of 0.1. For sequence analysis to identify potential protein sequence motifs, the PROSITE data base [Bairoch 1991] was searched using QUEST [IntelliGenetics].

Recombinant Tfg2 and Tfg3

To express the proteins in bacteria, the coding regions of the genes were first amplified by PCR and cloned into the expression plasmid. The primers used for Tfg2 were 5'-ATATCACT-GCATCACCATTACCACTACCTGATGCGATGGTTCCATTT-3' and 5'-ATATGATCCCTCTACGGATTATTTTCAATTT-3'. The first oligonucleotide contained an Ndel site [underlined] followed by six histidine codons, and the second oligonucleotide contained a BamHI site [underlined]. The PCR product was cloned into the PET11a expression plasmid [Novagen] to create pPL9. The primers for Tfg3 were 5'-ATATCGAT-CATGCGATCATACCCATACCTGATGCGATGGTTCCATTT-3' and 5'-ATATGATCCCTCTACGGATTATTTTCAATTT-3'. The first oligonucleotide contained an NcoI site [underlined] followed by an inserted valine codon and six histidine codons, whereas the second oligonucleotide contained a BamHI site [underlined]. The PCR fragment was cloned into PET11d [Novagen] to create pPL28.

The expression plasmids were transformed into E. coli BL21 [DE3] and grown in 2 liters of Luria broth [LB] supplemented with 200 µg/ml of ampicillin (Sigma) at 30°C. Cells were grown to an OD₆₀₀ of 0.6, and the cells were induced with 0.4 mM IPTG [Calbiochem] and grown for an additional 2 hr. The cells were harvested by centrifugation and suspended in lysis buffer [0.05 M Tris at pH 8.0, 0.5 M NaCl, 20% glycerol, 5 mM β-mercaptoethanol, 2 mM imidazole, protease inhibitors [Sayre et al. 1992], and 0.02% Tween-20]. After brief sonication, cellular debris was removed by centrifugation at 10,000 rpm for 20 min in a Beckman JA-20 rotor.

The soluble fraction containing Tfg3 protein [39 ml, 5.8 mg/ml] was incubated for 2 hr with 6 ml of Ni²⁺-nitrilotriacetic acid–agarose [Ni-NTA] resin [Qiagen] equilibrated in lysis buffer. The slurry was washed in a column at 21 ml/hr with 6 ml of lysis buffer, followed by 6 ml of 0.5 M NaCl, 50 mM PIPES [pH 6.3], 20% glycerol, 2 mM imidazole, 0.01% NP-40, 5 mM β-mercaptoethanol, and protease inhibitors and then 6 ml of the same buffer except with 0.1 M NaCl rather than 0.5 M NaCl. The column was developed with a linear gradient [100 ml] of 0–0.15 M imidazole in 50 mM HEPES [pH 7.6], 0.1 M NaCl, 20% glycerol, 0.01% NP-40, 5 mM β-mercaptoethanol, and protease inhibitors and then 6 ml of the same buffer except with 0.1 M NaCl rather than 0.1 M NaCl. The protein eluted in a broad peak starting at 25 mM imidazole. Fractions containing protein were pooled [19 ml, 0.5 mg/ml] and applied at 8.4 ml/hr to a 4-ml Bio-Gel HTP hydroxylapatite (Bio-Rad) column equilibrated in buffer P-0.01 [0.1 M NaCl, 20% glycerol, 5 mM β-mercaptoethanol, and protease inhibitors, containing 0.01 M potassium phosphate at pH 7.7]. The column was washed with 10 ml of buffer P-0.01 and developed with a linear gradient to buffer P-0.3 (same as P-0.01, except with 0.3 M potassium phosphate). Protein eluted in a sharp peak at 0.02 M potassium phosphate.

Tfg2 was purified by essentially the same procedure as Tfg3.
The protein eluted from Ni-NTA agarose in a broad peak at 75 mM imidazole, and from hydroxylapatite at 0.15 mM potassium phosphate.

Transcription assays

The transcription assay for factor g contained (25 μl) 250 ng of plasmid DNA template, 120 ng of homogeneous bacterially expressed yeast TFIIB, 36 ng of homogeneous bacterially expressed yeast TBP (Kelleher et al. 1992), 40 ng of homogeneous bacterially expressed yeast TFIIE (Feaver et al. 1994), 1.5 μg yeast factor b [Mono S fraction, Sayre et al. 1992], and 180 ng of homogeneous RNA polymerase II (Sayre et al. 1992). The factor g fraction was purified to apparent homogeneity from yeast as described previously (Henry et al. 1992). Renatured Tfg1 was the same as that used in Figure 4 of Henry et al. (1992). The fractions containing Tfg2 and Tfg3 were those shown in Figure 3A, lanes 1,3. The DNA template contained the yeast CYCI promoter fused to a G-less cassette (Lue et al. 1989). Assays were performed as described previously (Sayre et al. 1992) except that the reactions contained 110 mM potassium acetate.

Antibodies

To raise antibodies against Tfg3, a portion of the peak hydroxylapatite fraction (Fig. 3A, lane 1) was injected into a rabbit [Berkeley Antibody Co., Richmond, CA] and polyclonal serum was collected 10–14 days postimmunization. For antibodies against Tfg1, a 121 amino acid fragment of the protein fused to GST was expressed in bacteria as follows. The carboxy-terminal portion of the TFG1 gene (encoding residues 466–735) was amplified by PCR, with a BamHI site introduced by the sense primer and an EcoRI site by the antisense primer. The amplified fragment was cloned into pGEX-3X [Pharmacia], cut with BamHI and EcoRI to give pFL71, which was then digested with BglII and EcoRI, blunted with Klenow fragment, and religated to create pFL206, which expresses residues 466–587 of Tfg1 fused to GST. E. coli SURE strain [Stratagene] was transformed with pFL206, grown in 4 liters of LB supplemented with 200 μg/ml of ampicillin at 30°C to an OD600 of 0.3, and induced with 0.4 mM IPTG for an additional 2 hr. The cells were harvested by centrifugation and suspended in 80 ml of GST buffer (0.15 M NaCl, 10% glycerol, 1% Triton X-100, 50 mM HEPES at pH 7.6, 1 mM EDTA, 1 mM dithiothreitol, and protease inhibitors). After brief sonication, cellular debris was removed by centrifugation. The soluble fraction (70 ml, 9.9 mg/ml) was incubated overnight at 4°C with 2 ml of glutathione–Sepharose 4B [Pharmacia] equilibrated in GST buffer. The slurry was washed in a column with 15 ml of GST buffer, and eluted with 0.5 M NaCl, 0.1 M HEPES (pH 7.6), 5 mM glutathione, 10% glycerol, and 1 mM EDTA. The peak fractions, which contained full-length and degradation products of the fusion protein and a single contaminating E. coli protein, were pooled and injected into a rabbit [Berkeley Antibody Co.]. Polyclonal serum was collected 10–14 days after immunization.

Tfg3 protein, Tfg1–GST fusion protein, and GST were also coupled individually to cyanogen bromide-activated Sepharose [Sigma]. Anti-Tfg3 and anti-Tfg1 polyclonal sera were affinity-purified by binding the antibodies to the Tfg3 Sepharose and Tfg1-GST Sepharose columns, respectively, washing, and eluting with 100 mM glycine (pH 2.5) as described [Harlow and Lane 1988]. The Tfg1-GST eluate was then passed through the GST column and concentrated on a protein A–Sepharose [Bio-Rad] column [Harlow and Lane 1988].

Western blots were performed according to Chasman and Kornberg (1990). Dilutions were 1/200 and 1/500 for the anti-Tfg3 and anti-Tfg1 antibodies, respectively. The secondary antibody was goat anti-rabbit IgG conjugated to alkaline phosphatase [Bio-Rad], used at a dilution of 1/1000.

Amino acid sequencing of TAF30

Yeast TAF30 was purified and transferred to nitrocellulose as described [D. Poon, Y. Bai, A.M. Campbell, S. Bjorklund, Y.-J. Kim, S. Zhou, R.D. Kornberg, and P.A. Weil, in prep.]. The protein was digested with trypsin and microsequenced by R. Tian [University of California, Berkeley].

Immunoprecipitations

To study the interaction between Tfg3 and the rest of yeast TFIIF, proteins were combined in 200 μl of immunoprecipitation buffer (20 mM HEPES at pH 7.6, 75 mM KCl, 0.1 mM EDTA, 2.5 mM MgCl2, 10% glycerol, and 0.05% NP-40) and incubated on ice for 1 hr. All reactions contained 5 μl of 35S-labeled Tfg3. Reaction 2 also contained ~200 ng of ps4/p105, isolated from a tfg3 null strain [see below], and reaction 3 contained 5 μl of renatured p105 (Henry et al. 1992). After the incubation, 50 ng of affinity-purified Tfg1 antibody was added and the immunoprecipitations were performed as described [Bardwell et al. 1992]. The beads were washed three times in immunoprecipitation buffer and eluted with 0.1 M glycerol (pH 2.5). The elutions were subjected to electrophoresis in a SDS–10% polyacrylamide gel.

Two-subunit factor g (ps4/p105) was purified from the tfg3 null strain by the same purification scheme [Henry et al. 1992] as wild-type factor g, except with a Mono Q HRS/5 FPLC column [Pharmacia] in place of the DEAE-5-PW HPLC column [Bio-Rad], and with an SP-5-PW HPLC column [Bio-Rad] added at the end of the purification. The two-subunit factor g behaved similarly to the wild-type protein on all columns.

To study the association of Tfg3 with yeast TFIID, yeast whole-cell extracts were prepared and immunoprecipitated as described [Poon et al. 1994]. The immunoprecipitates were analyzed by 4–15% gradient SDS-PAGE, transferred to PVDF filters, blotted with the indicated antibodies, and visualized using chemiluminescence. Extract was also prepared from the strain expressing hemagglutinin [HA]-tagged yeast TAF90 [D. Poon, Y. Bai, A.M. Campbell, S. Bjorklund, Y.-J. Kim, S. Zhou, R.D. Kornberg, and P.A. Weil, in prep.] and purified using Bio-Rex70 as described [Poon and Weil 1993]. The Bio-Rex 1000 mM potassium acetate fraction was applied to a P11 column [Whatman] and developed with a linear gradient from 200–1200 mM potassium acetate. The fraction containing the peak of both Tfg3 and yeast TAF90, which did not contain factor g, was immunoprecipitated and analyzed by SDS-PAGE.

Far Western blotting

For the Far Western blot, 1 μg of factor g was electrophoresed in a 4–20% gradient gel and transferred to nitrocellulose. Denaturation and renaturation were performed as described [Vinson et al. 1988]. The blot was incubated overnight at 4°C in hybridization buffer (20 mM HEPES at pH 7.6, 75 mM KCl, 0.1 mM EDTA, 2.5 mM MgCl2, 1 mM DTT, 0.05% NP-40, 1% dry milk) with 5 μl of 35S-labeled Tfg3 [shown in Fig. 3D], washed with hybridization buffer, and exposed to XAR film.

β-Galactosidase assays

Wild-type CRY3 and tfg3 null strains were transformed with the indicated plasmids [Kelleher et al. 1990]. Single transformants
were grown on minimal medium (0.67% yeast nitrogen base, 2% raffinose with or without 2% galactose as indicated) supplemented with all required amino acids except uracil and grown at 30°C to an OD$_{600}$ of 0.3. CRY3 strains were grown for a total of 8 hr, whereas tfg3 null strains were grown for 24 hr. Whole-cell extracts were made and β-galactosidase activities (expressed as nanomoles of ONPG hydrolyzed per minute per milligram of protein) were determined as described (Kelleher et al. 1990).

Other methods

Growth of yeast and E. coli, DNA and RNA isolation, and standard DNA manipulations were as described (Sambrook et al. 1989; Guthrie and Fink 1991). SDS-PAGE was done according to Laemmli (1970), and proteins were visualized with Coomassie blue R-250.

Acknowledgments

We thank W.S. Lane, R. Tjian, and the Stanford PAN Facility for microsequencing, R.W. Davis for AYES yeast libraries, O. Gileadi for a yeast genomic library, H. Goodson and R.S. Fuller for the CRY3 strain, and H. Goodson and K. Leuther for assistance with tetrad dissections. N.L.H. is a Howard Hughes Medical Institute predoctoral fellow. A.M.C. and D.P. were supported by grants GM36659 to R.D.K. and DK42502 to GM07347 and 1F31 GM93003, respectively. This research was supported by a yeast genomic library, H. Goodson and R.S. Fuller from the NIH.

References

Aso, T., H.A. Vasavada, T. Kawaguchi, F.J. Germino, S. Ganguy, S. Kitajima, S.M. Weissman, and Y. Yasukochi. 1992. Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF. Nature 355: 461–464.

Bairoch, A. 1991. PROSITE: A dictionary of sites and patterns in proteins. Nucleic Acids Res. 19: 2241–2245.

Bardwell, L., A.J. Cooper, and E.C. Friedberg. 1992. Stable and specific association between the yeast recombination and transcription initiation factor TFIIH and M. Horikoshi. 1992b. Elucidation of three putative structural subdomains by comparison of primary structure of Xenopus and human RAP74. Nucleic Acids Res. 20: 6736.

Garrett, K.P., H. Serizawa, J.P. Hanley, J.N. Bradsher, A. Tsuboi, N. Arai, T. Yokota, K. Arai, R.C. Conaway, and J.W. Conaway. 1992. The carboxyl terminus of RAP30 is similar in sequence to region 4 of bacterial sigma factors and is required for function. J. Biol. Chem. 267: 23942–23949.

Gileadi, O., W.J. Feaver, and R.D. Kornberg. 1992. Cloning of a subunit of yeast RNA polymerase II transcription factor b and CTD kinase. Science 257: 1389–1392.

Gong, D.-W., S. Hashimoto, K. Wada, R.G. Roeder, Y. Nakatani, and M. Horikoshi. 1992a. Imperfect conservation of a sigma factor-like subregion in Xenopus general transcription factor RAP30. Nucleic Acids Res. 20: 6414.

Gong, D.-W., S. Hasegawa, K. Wada, R.G. Roeder, Y. Nakatani, and M. Horikoshi. 1992b. Elucidation of three putative structural subdomains by comparison of primary structure of Xenopus and human RAP74. Nucleic Acids Res. 20: 6736.

Gong, D.-W., M. Horikoshi, and Y. Nakatani. 1993. Analysis of cDNA encoding Drosophila transcription initiation factor TFIIH (RAP74). Nucleic Acids Res. 21: 1492.

Guthrie, C. and G.R. Fink. 1991. Methods in enzymology: Guide to yeast genetics and molecular biology. Academic Press, New York.

Harlow, E. and D. Lane. 1988. Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Henry, N.L., M.H. Sayre, and R.D. Kornberg. 1992. Purification and characterization of yeast RNA polymerase II general initiation factor g. J. Biol. Chem. 267: 23388–23392.

Higgins, D.G., A.J. Blesby, and R. Fuchs. 1992. CLUSTAL V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 8: 189–191.

Horikoshi, M., H. Fujita, J. Wang, R. Takada, and R.G. Roeder. 1991. Nucleotide and amino acid sequences of RAP30. Nucleic Acids Res. 19: 5436.

Johnson, D.A., J.W. Gautsch, J.R. Sportsman, and J.H. Elder. 1984. Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal. Technol. 1: 3–8.

Kean, L.S., R.S. Fuller, and J.W. Nichols. 1993. Retrograde lipid traffic in yeast: Identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylethanolamine from the plasma membrane. J. Cell Biol. 123: 1403–1419.

Kelleher, R.J., III, P.M. Flanagan, and R.D. Kornberg. 1990. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61: 1209–1215.

Kelleher, R.J., III, P.M. Flanagan, D.I. Chasman, A.S. Ponticelli, K. Struhl, and R.D. Kornberg. 1992. Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes & Dev. 6: 296–303.

Kephart, D.D., M.P. Price, Z.F. Burton, A. Finkelstein, J. Greenblatt, and D.H. Price. 1993. Cloning of a Drosophila cDNA encoding TFIIF-TAF–RNA polymerase II connection

Feaver, W.J., N.L. Henry, D.A. Bushnell, M.H. Sayre, J.H. Brickner, O. Gileadi, and R.D. Kornberg. 1994. Yeast TFIIIE: Cloning, expression and homology to vertebrate proteins. J. Biol. Chem. [in press].

Finkelstein, A., C.F. Kostrub, J. Li, D.P. Chavez, B.Q. Wang, S.M. Fang, J. Greenblatt, and Z.F. Burton. 1992. A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II. Nature 355: 464–467.

Flanagan, P.M., R.J. Kelleher, III, W.J. Feaver, N.F. Lue, J.W. LaPointe, and R.D. Kornberg. 1990. Resolution of factors required for the initiation of transcription by yeast RNA polymerase II. J. Biol. Chem. 265: 11105–11107.

Flores, O., E. Maldonado, and D. Reinberg. 1989. Factors involved in specific transcription by mammalian RNA polymerase II. J. Biol. Chem. 264: 8913–8921.

Garrett, K.P., H. Serizawa, J.P. Hanley, J.N. Bradsher, A. Tsuboi, N. Arai, T. Yokota, K. Arai, R.C. Conaway, and J.W. Conaway. 1992. The carboxyl terminus of RAP30 is similar in sequence to region 4 of bacterial sigma factors and is required for function. J. Biol. Chem. 267: 23942–23949.
with sequence similarity to human transcription factor RAP74. *Nucleic Acids Res.* 21: 1319.

Kim, Y.-J., S. Bjorklund, Y. Li, M.H. Sayre, and R.D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. *Cell* 77: 599–608.

Kobayashi, Y., S. Kitajima, and Y. Yasukochi. 1992. Isolation and nucleotide sequence of a rat cDNA homologous to human RAP30. *Nucleic Acids Res.* 20: 1994.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227: 680–685.

Lue, N.F., P.M. Flanagan, K. Sugimoto, and R.D. Kornberg. 1989. Initiation by yeast RNA polymerase II at the adenoviral major late promoter in vitro. *Science* 246: 661–664.

McCracken, S. and J. Greenblatt. 1991. Related RNA polymerase-binding regions in human RAP30/74 and *Escherichia coli* 70. *Science* 253: 900–902.

Nakamura, T., H. Alder, Y. Gu, R. Prasad, O. Canaani, N. Kamada, R.P. Gale, B. Lange, W.M. Crist, P.C. Nowell, C.M. Croce, and E. Canaani. 1993. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. *Proc. Natl. Acad. Sci.* 90: 4631–4635.

Poon, D. and P.A. Weil. 1993. Immunopurification of yeast TATA-binding protein and associated factors. *J. Biol. Chem.* 268: 15325–15328.

Ramer, S.W., S.J. Elledge, and R.W. Davis. 1992. Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. *Proc. Natl. Acad. Sci.* 89: 11589–11593.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. *Molecular cloning: A laboratory manual*, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sayre, M.H., H. Tschochner, and R.D. Kornberg. 1992. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from *Saccharomyces cerevisiae*. *J. Biol. Chem.* 267: 23376–23382.

Welch, M.D., D.B.N. Vinh, H.H. Okamura, and D.G. Drubin. 1993. Screens for extragenic mutations that fail to complement act1 alleles identify genes that are important for actin function in *Saccharomyces cerevisiae*. *Genetics* 135: 265–274.

Yamamoto, K., M. Seto, H. Komatsu, S. Iida, Y. Akao, S. Kojima, Y. Kodera, S. Nakazawa, Y. Ariyoshi, T. Takahashi, and R. Ueda. 1993. Two distinct portions of LTG19/ENL at 19p13 are involved in t(11;19) leukemia. *Oncogene* 8: 2617–2625.

Zhu, H., V. Joliot, and R. Prywes. 1994. Role of transcription factor TFIIF in serum response factor-activated transcription. *J. Biol. Chem.* 269: 3489–3497.
TFIIF-TAF-RNA polymerase II connection.

N L Henry, A M Campbell, W J Feaver, et al.

Genes Dev. 1994, 8:
Access the most recent version at doi:10.1101/gad.8.23.2868

References
This article cites 44 articles, 24 of which can be accessed free at: http://genesdev.cshlp.org/content/8/23/2868.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.