New heuristics on Rooted Triplet Consistency

Soheil Jahangiri Tazehkand 1,3,*, Seyed Naser Hashemi 1 and Hadi Poormohammadi 2

1 Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
2 Shahid Beheshti University, Evin, Tehran, Iran
3 Bioinformatics Group, School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Niavaran, Tehran, Iran

* Author to whom correspondence should be addressed; s.jahangiri@aut.ac.ir, Tel. +98 936 9220139.

Abstract: Rooted triplets are becoming one of the important types of input for reconstructing rooted phylogenies. A rooted triplet is a phylogenetic tree on three leaves and shows the evolutionary relationship of the corresponding three species. In this paper, we investigate the problem of inferring the maximum consensus evolutionary tree from a set of rooted triplets. The mentioned problem is known to be APX-hard. We present two new heuristic algorithms. For a given set of m triplets on n species, the FastTree algorithm runs in O(m + α(n)n^2) time, where α(n) is functional inverse of Ackermann’s function. This is faster than any other previously known algorithms, although, the outcome is less satisfactory. The BPMTR algorithm runs in O(mn^3) time and in average performs better than any other previously known algorithms for this problem.

Keywords: Phylogenetic tree; Rooted triplet; Consensus tree; Approximation algorithm

1. Introduction

After publication of Charles Darwin’s book On the origin of species; By means of natural selection, the theory of evolution was widely accepted. Since then remarkable developments in evolutionary studies brought the scientists to the Phylogenetics, a field that studies the biological or the morphological data of species to output a mathematical model such as a tree or a network representing the evolutionary
interrelationship of species and the process of their evolution. Besides, Phylogenetics is not only limited to the biology but may also arise anywhere that the concept of evolution appears. For example, a recent study in evolutionary linguistic employs phylogeny inference to clarify the origin of Indo-European language family[1]. Several approaches have been introduced to infer evolutionary relationships [2]. Amongst those, well known approaches are character based methods (e.g., Maximum Parsimony), distance based methods (e.g., Neighbor Joining and UPGMA) and quartet based methods (e.g., QNet). Recently, rather new approaches namely triplet based methods have been introduced. Triplet based methods output rooted trees and networks due to the rooted nature of triplets. A rooted triplet is a rooted unordered leaf labeled binary tree on three leaves and shows the evolutionary relationship of the corresponding three species. Triplets can be obtained accurately using a maximum likelihood method such as the one introduced by Chor et al. [3] or Sibley-Ahlquist-style DNA-DNA hybridization experiments [4]. Indeed, we expect highly accurate results from triplet based methods. However, sometimes due to experimental errors or some biological events such as hybridization (recombination) or horizontal gene transfer it is not possible to reconstruct a tree that satisfies all of the input constraints (triplets). There are two approaches to overcome this problem. The first approach is to employ a more complex model such as network which is the proper approach when the mentioned biological events have actually happened. The second approach tries to reconstruct a tree satisfying as many input triplets as possible. This approach is more useful when the input data contains error. The latter approach forms the subject of this paper. In the next section we will provide necessary definitions and notations. Section 3 contains an overview of previous results. We will present our algorithms and experimental results in section 4. Finally, in section 5 open problems and ideas for further improvements are discussed.

2. Preliminaries

An evolutionary tree (phylogenetic tree) on a set S of n species, $|S| = n$, is a binary, rooted\(^1\), unordered tree in which leaves are distinctly labeled by members of S (see Fig. 1a). A rooted triplet is a phylogenetic tree on three leaves. The unique triplet on leaves x, y, and z is denoted by $((x, y), z)$ or $xy|z$, if the lowest common ancestor of x and y is a proper descendant of the lowest common ancestor of x and z, or equivalently the lowest common ancestor of x and y is a proper descendant of lowest common ancestor of y and z (see Fig. 1b). A triplet t (e.g., $xy|z$) is consistent with a tree T (or equivalently T is consistent with t) if t is an embedded subtree of T. It means t can be obtained from T by a series of edge contractions (i.e., if in T the lowest common ancestor of x and y is a proper descendant of the lowest common ancestor of x and z). We also say T satisfies t, if T is consistent with t. The tree in Fig. 1a is consistent with the triplet in Fig. 1b. A phylogenetic tree T is consistent with a set of rooted triplets if it is consistent with every triplet in the set. We call two leaves siblings or cherry if they share the same parent. For example, $\{x, y\}$ in Fig. 1a form a cherry.

A set of triplets R is called dense if for each set of three species $\{x, y, z\}$, R contains at least one of three possible triplets $xy|z$, $xz|y$ or $yz|x$. If R contains exactly one triplet for each set of three species, it is called minimal dense, and if it contains every possible triplet it is called maximal dense. Now we can define

\(^1\)More precisely speaking, an evolutionary tree can also be unrooted, however triplet based methods output rooted phylogenies.
the problem of reconstructing an evolutionary tree from a set of rooted triplets. Suppose S is a finite set of species of cardinality n and R is a finite set of rooted triplets of cardinality m on S. The problem is to find an evolutionary tree leaf-labeled by members of S which is consistent with the maximum number of rooted triplets in R. This problem is called Maximum Rooted Triplets Consistency (MaxRTC) problem [5] or Maximum Inferred Local Consensus Tree (MILCT) problem [6]. This problem is NP-hard (see section 3) which means no polynomial-time algorithm can be found to solves the problem optimally unless P=NP. For this problem and similar problems, one might search for polynomial-time algorithms that produce approximate solutions. We call an algorithm an approximation algorithm if its solution is guaranteed to be within some factor of optimum solution. In contrast, heuristics may produce good solutions but do not come with a guarantee on their quality of solution. An algorithm for a maximization problem is called an α-approximation algorithm, for some $\alpha > 1$, if for any input the output of algorithm be at most α times worse than the optimum solution. The factor α is called approximation factor or approximation ratio.

3. Related works

Aho et al. [7] investigated the problem of constructing a tree consistent with a set of rooted triplets for the first time. They designed a simple recursive algorithm which runs in $O(mn)$ time and returns a tree consistent with all of the given triplets if at least one tree exists. Otherwise, it returns null. Later Henzinger et al. [8] improved Aho et al.’s algorithm to run in $\min\{O(n+m\sqrt{n}), O(m+n\log n)\}$ time. The time complexity of this algorithm further improved to $\min\{O(n+m\log^2 n), O(m+n^2\log n)\}$ by Jansson et al. [9] using more recent data structures introduced by Holm et al. [10]. MaxRTC is proved to be NP-hard [6,11,12]. Byrka et al. [13] reported that this proof is an L-reduction from an APX-hard problem meaning that the problem is APX-hard in general (non-dense case). Later, Van Iersel et al. [14] proved that MaxRTC is NP-hard even if the input triplet set is dense.

Several heuristics and approximation algorithms have been presented for the so called MaxRTC problem each of which performs better in practice on different input triplet sets. Gasieniec et al. [15]
proposed two algorithms by modifying Aho et al.’s algorithm. Their first algorithm which is referred as \textit{One-Leaf-Split} [5] runs in $O((m + n) \log n)$ time and the second one which is referred as \textit{Min-Cut-Split} [5] runs in $\min\{O(mn^2 + n^3 \log n), O(n^4)\}$ time. The tree generated by the first algorithm is guaranteed to be consistent with at least one third of the input triplet set. This gives a lower bound for the problem. In another study, Wu [11] introduced a bottom up heuristic approach called BPMF2 which runs in $O(mn^3)$ time. In the same study he proposed an exact exponential algorithm for the problem which runs in $O((m + n^2)3^n)$ time and $O(2^n)$ space. According to the results of Wu [11] BPMF seems to perform well in average on randomly generated data. Later Maemura et al. [16] presented a modified version of BPMF called BPMR3 which employs the same approach but with a little different reconstruction routine. BPMR runs in $O(mn^3)$ time and according to Maemura et al.’s experiments outperforms BPMF. Byrka et al. [13] designed a modified version of BPMF to achieve an approximation ratio of 3. They also investigated how \textit{MinRTI}4 can be used to approximate MaxRTC and proved that MaxRTC admits a polynomial-time $(3 - \frac{2}{n-2})$-approximation.

4. Algorithms and experimental results

In this section we present two new heuristic algorithms for the MaxRTC problem.

4.1. FastTree

The first heuristic algorithm has a bottom up greedy approach which is faster than the other previously known algorithms employing a simple data structure.

Let $R(T)$ denote the set of all triplets consistent with a given tree T. $R(T)$ is called the \textit{reflective triplet set} of T. It forms a minimal dense triplet set and represents T uniquely[17]. Now we define the \textit{closeness} of the pair $\{ij\}$. The closeness of the pair $\{ij\}$, $C_{i,j}$, is defined as the number of triplets of the form ijk in a triplet set. Clearly, for any arbitrary tree T, closeness of cherry species equals $n - 2$ which is maximum in $R(T)$. The reason is that every cherry species has a triplet with every other specie. Now suppose we contract every cherry species of the form $\{ij\}$ to their parents p_{ij} and then update $R(T)$ as following. For each contracted cherry species $\{ij\}$ we remove triplets of the form ijk from $R(T)$ and replace i and j with p_{ij} within the remaining triplets. The updated set, $R'(T')$, would be the reflective triplet set for the new tree T'. Observe that for cherries of the form $\{p_{ij}, k\}$ in T', $C_{i,k}$ and $C_{j,k}$ would equal $n-3$ in $R(T)$. Similarly, for cherries of the form $\{p_{ij}, p_{kl}\}$ in T', $C_{i,k}$, $C_{j,k}$, $C_{i,l}$ and $C_{j,l}$ would equal $n-4$ in $R(T)$. This forms the main idea of the first heuristic algorithm. We first compute the closeness of pairs of species by visiting triplets. Furthermore, sorting the pairs according to their closeness gives us the reconstruction order of the tree. This routine outputs the unique tree T for any given reflective triplet set $R(T)$. Yet, we have to consider that the input triplet set is not always a reflective triplet set. Consequently, the reconstruction order produced by sorting may not be the right order. However, if the loss of triplets admits a uniform distribution it won’t affect the reconstruction order. An approximate solution for this problem is refining the closeness. This can be done by reducing the closeness of the

2Best Pair Merge First
3Best Pair Merge with Reconstruction
4Minimum Rooted Triplet Inconsistency
pairs \(\{i,k\} \) and \(\{j,k\} \) for any visited triplet of the form \(ij|k \). Thus, if the pair \(\{i,j\} \) were actually cherries, then the probability of choosing the pairs \(\{i,k\} \) or \(\{j,k\} \) before choosing the pair \(\{i,j\} \) due to triplet loss will be reduced. We call this algorithm FastTree. See Alg. 1 for the whole algorithm.

Theorem 1. FastTree runs in \(O(m + \alpha(n)n^2) \) time.

Proof. Initializing a forest in step 1 takes \(O(n) \) time. Steps 2-6 take \(O(m) \) time. We know that the closeness is an integer value between 0 and \(n-2 \). Thus, we can employ a linear time sorting algorithm [18]. There are \(O(n^2) \) possible pairs, therefore, step 8 takes \(O(n^2) \) time. Similarly, the while loop in step 9 takes \(O(n^2) \) time. Each removal in step 10 can be done in \(O(1) \) time. By employing optimal data structures which are used for disjoint-set unions[18], the amortized time complexity of steps 11 and 12 will be \(O(\alpha(n)) \), where \(\alpha(n) \) is the inverse of the function \(f(x) = A(n,n) \), and \(A \) is the well known fast-growing Ackermann function. Furthermore, step 16 takes \(O(n\alpha(n)) \) time. Hence, the running time of FastTree would be \(O(m + \alpha(n)n^2) \).

Since \(A(4, 4) = 2^{2^{65536}} \), \(\alpha(n) \) is less than 4 for any practical input size \(n \). In comparison to the fast version of Aho et al.’s algorithm FastTree employs a simpler data structure and in comparison to Aho et al.’s original algorithm it has smaller time complexity. Yet, the most important advantage of FastTree to Aho et al.’s algorithm is that it won’t stuck if there is not a consistent tree with the input triplets, and it will output a proper tree in such a way that the clusters are very similar to that of the real network. The tree in Fig. 2 is the output of FastTree on a dense set of triplets based on yeast Cryptococcus gattii data. There is no consistent tree with the whole triplet set, however, Van Iersel et al. [19] presented a
level-2 network consistent with the set (see Fig. 3). This set is available online [20]. In comparison to BPMR and BPMF, FastTree runs much faster for large set of triplets and species. However, for highly sparse triplet sets, the output of FastTree may satisfy considerably less triplets than the tree constructed by BPMF or BPMR.

4.2. BPMTR

Before explaining the second heuristic algorithm we need to survey BPMF [11] and BPMR [16]. BPMF utilizes a bottom up approach similar to hierarchal clustering. Initially, there are n trees each of which contains a single node representing one of n given species. In each iteration, the algorithm computes a function called e_{score} for each combination of two trees. Furthermore, two trees with the maximum e_{score} are merged into a single tree by adding a new node as the common parent of the selected trees. Wu [11] introduced six alternatives for computing the e_{score} using combinations of w, p and t. (see Tab. 1). Though, in each run one of the six alternatives must be used. In the function $e_{\text{score}}(C_1, C_2)$, w is the number of triplets satisfied by merging C_1 and C_2 which is the number of triplets of the form ijk in which i is in C_1, j is in C_2 and k is neither in C_1 nor in C_2. The value of p is the number of triplets that is in conflict with merging C_1 and C_2. It is the number of triplets of the form ijk in which i is in C_1, k is in C_2 and j is neither in C_1 nor in C_2. The value of t is the total number of triplets of the form ijk in which i is in C_1 and j is in C_2. Wu compared the BPMF with One-Leaf-Split and Min-Cut-Split and showed that BPMF works better on randomly generated triplet sets. He also notifies that none of six alternatives of e_{score} is absolutely better than the other.

Maemura et al. [16] introduced a modified version of BPMF called BPMR outperforming the results
Figure 3. A Level-2 network for dense triplet set of yeast Cryptococcus gattii data

Table 1. The six alternatives of e-score

If-Penalty	Ratio Type	Type	
False	w	w/(w+p)	w/t
True	w-p	(w-p)/(w+p)	(w-p)/t
of BPMF. BPMR works very similarly in comparison to BPMF except for a reconstruction step which is used in BPMR. Suppose T_x and T_y are two trees having the maximum e_{score} at some iteration and are selected to merge into a new tree. By merging T_x and T_y some triplets will be satisfied, but some other triplets will be in conflict. Without loss of generality, suppose T_x has two subtrees namely left subtree and right subtree. Besides, suppose a triplet $ij|k$ in which i is in the left subtree of T_x, k is in the right subtree of T_x and j is in T_y. Observe that by merging T_x and T_y the mentioned triplet becomes inconsistent. However, swapping T_y with the right subtree of the T_x satisfies this triplet while some other triplets become inconsistent. It is possible that the resulting tree of this swap satisfy more triplets than the primary tree. This is the main idea behind the BPMR. In BPMR, in addition to the regular merging of T_x and T_y, T_y is swapped with the left and the right subtree of T_x and also T_x is swapped with the left and the right tree of T_y. Finally, among these five topologies we choose the one that satisfies more triplets.

Suppose the left subtree of the T_x has also two subtrees. Swapping T_y with one of these subtrees would probably satisfy new triplets while some old ones would become inconsistent. There are examples in which this swap results in a tree that satisfies more triplets. This forms our second heuristic idea that swapping of T_y with every subtree of T_x should be checked. T_x should also be swapped with every subtree of T_y. At every iteration of BPMF after choosing two trees maximizing the e_{score}, the algorithm tests every possible swapping of these two trees with subtrees of each other and then chooses the tree having the maximum consistency with triplets. We call this algorithm BPMTR\(^5\). See Alg. 2 for details of the BPMTR.

Theorem 2. BPMTR runs in $O(mn^3)$ time.

Proof. Step 1 takes $O(n)$ time. In steps 2, initially T contains n clusters, but in each iteration two clusters merge into a cluster. Hence, the while loop in step 2 takes $O(n)$ time. In Step 3, e_{score} is computed for every subset of T of size two. By applying Bender and Farach-Colton’s preprocessing algorithm [21] which runs in $O(n)$ time for a tree with n nodes, every LCA query can be answered in $O(1)$ time. Therefore, the consistency of a triplet with a cluster can be checked in $O(1)$ time. Since there are m triplets, step 3 takes $\binom{|T|}{2}O(m)$ time. In steps 5, 9 and 15 T_{best} is a pointer that stores the best topology found so far during each iteration of the while loop in $O(1)$ time. The complexity analysis of foreach loops in steps 6-11 and 12-17 are similar, and it is enough to consider one. Every rooted binary tree with n leaves has $O(n)$ internal nodes so the total number of swaps in step 7 for any two clusters will be at most $O(n - |T|)$. In step 8 computing the number of consistent triplets with $T_{swapped}$ takes no more than $O(m)$ time. Steps 4, 7 and 18 are implementable in $O(1)$ time. Accordingly, the running time of steps 2-19 would be:

$$\sum_{|T|=2}^{n} m\left(\binom{|T|}{2} + O(n - |T|) + m\right) = O(mn^3) \quad (1)$$

Step 20 takes $O(1)$ time. Hence, the time complexity of BPMTR is $O(mn^3)$. \(\square\)

\(^5\)Best Pair Merge with Total Reconstruction
Algorithm 2 BPMTR

1: Initialize a set T consisting of n one-node trees labeled by species.
2: while $|T| > 1$ do
3: Find and remove two trees T_x, T_y with maximum e-score.
4: Create a new tree T_{merge} by adding a common parent to T_x and T_y
5: $T_{\text{best}} := T_{\text{merge}}$
6: for each subtree T_{sub} of T_x do
7: Let T_{swapped} be the tree constructed by swapping T_{sub} with T_y
8: if the number of consistent triplets with T_{swapped} was larger than the number of triplets
 consistent with T_{best} then
9: $T_{\text{best}} := T_{\text{swapped}}$
10: end if
11: end for
12: for each subtree T_{sub} of T_y do
13: Let T_{swapped} be the tree constructed by swapping T_{sub} with T_x
14: if the number of consistent triplets with T_{swapped} was larger than the number of triplets
 consistent with T_{best} then
15: $T_{\text{best}} := T_{\text{swapped}}$
16: end if
17: end for
18: Add T_{best} to T.
19: end while
20: return the tree in T
Table 2. Outperforming results of BPMTR in comparison to BPMR

No. of species and triplets	% better results	% worse results
n=20, m=500	%29	%0.0
n=20, m=1000	%37	%1
n=30, m=500	%61	%3
n=30, m=1000	%62	%4

We tested BPMTR over randomly generated triplet sets with $n = 15, 20$ species and $m = 500, 1000$ triplets. We experimented hundred times for each combination of n and m. The results in Tab. 2 indicate that BPMTR outperforms BPMR. However, in more than hundreds of tests there were few examples that BPMR performed better than BPMTR. For $n=30$ and $m=1000$, in sixty two triplet sets out of hundred randomly generated triplet sets, BPMTR satisfied more triplets. In thirty four triplet sets, BPMR and BPMTR had the same results and in only four triplet sets BPMR satisfied more triplets.

5. Conclusion and Open Problems

In this paper we presented two new algorithms for the so called MaxRTC problem. For a given set of m triplets on n species, the FastTree algorithm runs in $O(m + \alpha(n)n^2)$ time which is faster than any other previously known algorithm, although, the outcome can be less satisfactory for highly spars triplet sets. The BPMTR algorithm runs in $O(mn^3)$ time and in average performs better than any other previously known approximation algorithm for this problem. There are still more ideas for improvement of the described algorithms.

1. In the FastTree algorithm to compute the closeness of pairs of species we check triplets, and for each triplet of the form $ij|k$ we add a weight w to $C_{i,j}$ and subtract a penalty p from $C_{i,k}$ and $C_{j,k}$. In this paper, we set $w = p = 1$. If one assigns different values for w and p the closeness of pairs of species will be changed and the reconstruction order will be affected. It is interesting to check for which values of w and p FastTree performs better.

2. Wu [11] introduced six alternatives for e_score each of which performs better for different input triplet sets. It is interesting to find a new function outperforming all the alternatives for any input triplet set.

3. The best known approximation factor for the MaxRTC problem is 3 [13]. This is the approximation ratio of BPMF. Since MaxRTC is APX-hard a PTAS is unattainable, unless P=NP. However, [5] suggest that an approximation ratio in the region of 1.2 might be possible. Finding an $\alpha-$approximation algorithm for MaxRTC with $\alpha < 3$ is still open.

4. It is also interesting to find the approximation ratio of FastTree in general and for reflective triplet sets.

Acknowledgements
The authors are grateful to thank Jesper Jansson and Fatemeh Zareh for reviewing this article, providing useful comments and answering our endless questions.

References

1. Bouckaert, R.; Lemey, P.; Dunn, M.; Greenhill, S.J.; Alekseyenko, A.V.; Drummond, A.J.; Gray, R.D.; Suchard, M.A.; Atkinson, Q.D. Mapping the Origins and Expansion of the Indo-European Language Family. *Science* 2012, 337, 957–960.

2. Felsenstein, J. *Inferring Phylogenies*; Sinauer Associates: Sunderland, MA, USA, 2004.

3. Chor, B.; Hendy, M.; Penny, D. Analytic Solutions for Three-Taxon ML_{MC} Trees with Variable Rates Across Sites. In *Algorithms in Bioinformatics*; Gascuel, O.; Moret, B., Eds.; Springer Berlin / Heidelberg, 2001; Vol. 2149, *Lecture Notes in Computer Science*, pp. 204–213.

4. Kannan, S.K.; Lawler, E.L.; Warnow, T.J. Determining the Evolutionary Tree Using Experiments. *Journal of Algorithms* 1996, 21, 26 – 50.

5. Byrka, J.; Gawrychowski, P.; Huber, K.T.; Kelk, S. Worst-case optimal approximation algorithms for maximizing triplet consistency within phylogenetic networks. *Journal of Discrete Algorithms* 2010, 8, 65 – 75.

6. Jansson, J. On the Complexity of Inferring Rooted Evolutionary Trees. *Electronic Notes in Discrete Mathematics* 2001, 7, 50 – 53.

7. Aho, A.V.; Sagiv, Y.; Szymanski, T.G.; Ullman, J.D. Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions. *SIAM J. Comput.* 1981, 10, 405–421.

8. Henzinger, M.R.; King, V.; Warnow, T. Constructing a Tree from Homeomorphic Subtrees, with Applications to Computational Evolutionary Biology. *Algorithmica* 1999, 24, 1–13.

9. Jansson, J.; Ng, J.H.K.; Sadakane, K.; Sung, W.K. Rooted Maximum Agreement Supertrees. *Algorithmica* 2005, 43, 293–307.

10. Holm, J.; de Lichtenberg, K.; Thorup, M. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. *J. ACM* 2001, 48, 723–760.

11. Wu, B.Y. Constructing the Maximum Consensus Tree from Rooted Triples. *Journal of Combinatorial Optimization* 2004, 8, 29–39.

12. Bryant, D. Building Trees, Hunting for Trees, and Comparing Trees - Theory and Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury, 1997.

13. Byrka, J.; Guillemot, S.; Jansson, J. New Results on Optimizing Rooted Triplets Consistency. In *Algorithms and Computation*; Hong, S.H.; Nagamochi, H.; Fukunaga, T., Eds.; Springer Berlin / Heidelberg, 2008; Vol. 5369, *Lecture Notes in Computer Science*, pp. 484–495.

14. Van Iersel, L.; Kelk, S.; Mnich, M. Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks. *Journal of Bioinformatics and Computational Biology (JBCB)* 2009, 7, 597 – 623.

15. Gasieniec, L.; Jansson, J.; Lingas, A.; Ostlin, A. On the Complexity of Constructing Evolutionary Trees. *Journal of Combinatorial Optimization* 1999, 3, 183–197.
16. Maemura, K.; Jansson, J. Ono, H.; Sadakane, K.; Yamashita, M. Approximation algorithms for constructing evolutionary trees from rooted triplets. 10th Korea-Japan joint workshop on algorithms and computation, 2007.

17. Jansson, J.; Sung, W.K. Inferring a level-1 phylogenetic network from a dense set of rooted triplets. *Theoretical Computer Science* **2006**, *363*, 60 – 68.

18. Cormen, T.T.; Leiserson, C.E.; Rivest, R.L. *Introduction to algorithms*; MIT Press: Cambridge, MA, USA, 1990.

19. Van Iersel, L.; Keijsper, J.; Kelk, S.; Stougie, L.; Hagen, F.; Boekhout, T. Constructing Level-2 Phylogenetic Networks from Triplets. In *Research in Computational Molecular Biology*; Vingron, M.; Wong, L., Eds.; Springer Berlin / Heidelberg, 2008; Vol. 4955, *Lecture Notes in Computer Science*, pp. 450–462.

20. Kelk, S. LEVEL2: A fast algorithm for constructing level-2 phylogenetic networks from dense sets of rooted triplets, 2008.

21. Bender, M.A.; Farach-Colton, M. The LCA Problem Revisited. In *LATIN 2000: Theoretical Informatics*; Gonnet, G.; Viola, A., Eds.; Springer Berlin / Heidelberg, 2000; Vol. 1776, *Lecture Notes in Computer Science*, pp. 88–94.