Advection-Dominated Accretion Disks: Geometrically Slim or Thick?

Wei-Min GU,1 Li XUE,1 Tong LIU,1,2 and Ju-Fu LU 1

1Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005, China
lajj@xmu.edu.cn

2Department of Astronomy, Nanjing University, Nanjing, Jiangsu 210093, China

(Received 2009 June 11; accepted 2009 September 24)

Abstract

We revisit the vertical structure of black-hole accretion disks in spherical coordinates. By comparing the advective cooling with the viscous heating, we show that advection-dominated disks are geometrically thick, i.e., with a half-opening angle of $\Delta \theta > 2\pi/5$, rather than being slim, as supposed previously in the literature.

Key words: accretion, accretion disks — black hole physics — hydrodynamics

1. Introduction

It was known long since that the very basic assumption of the Shakura–Sunyaev disk (SSD: Shakura & Sunyaev 1973), that is, the geometrical thickness of the disk, $H/R \ll 1$, where H is the half thickness of the disk and R is the radius in cylindrical coordinates, would break down for the inner region of the disk in some specific situations. For example, when the mass accretion rate, M, approaches and surpasses its critical value corresponding to the Eddington luminosity, radiation pressure will act to huff the inner region of the disk in the vertical direction; or when the cooling mechanism is inefficient, so that the temperature in the disk becomes very high, then the gas pressure will act in a similar way. In either of these two situations, the inner region of the disk will become geometrically thick, i.e., with $H/R \sim 1$ (e.g., Frank et al. 2002). Based on these understandings, two types of models were proposed more than twenty years ago, namely an optically thick, radiation pressure-supported thick disk (Abramowicz et al. 1978; Paczyński & Wiita 1980; Madau 1988) and an optically thin, ion pressure-supported thick disk (Rees et al. 1982). To avoid mathematical difficulties, in these models, the disk was assumed to be purely rotating, i.e., with no mass accretion. However, the very existence of non-accreting thick disks was thrown into doubt by the discovery of Papaloizou and Pringle (1984) that such disks are dynamically unstable to global non-axisymmetric modes. Since the work of Blaes (1987), it had been recognized that it is accretion, i.e., radial matter motion and energy advection into the central black hole, that can sufficiently stabilize all modes. Accordingly, the concept of advection dominance was introduced and two new types of models were constructed, namely an optically thick, radiation pressure-supported slim disk (Abramowicz et al. 1988) and an optically thin, ion pressure-supported, advection-dominated accretion flow (ADAF: Narayan & Yi 1994; Abramowicz et al. 1995). Both these two types of models are currently popular.

Slim disks and ADAFs were supposed to be geometrically slim, i.e., with $H/R \ll 1$, neither thin nor thick. The reason for this restriction is the following. As argued by Abramowicz et al. (1995), the advection factor, $f_{\text{adv}} \equiv Q_{\text{adv}}/Q_{\text{vis}}$, where Q_{adv} is the advective cooling rate per unit area and Q_{vis} is the viscous heating rate per unit area, should satisfy the relation

$$f_{\text{adv}} \gtrsim \left(\frac{H}{R}\right)^2.$$ \hfill (1)

Obviously, advection can be important only for disks that are not thin. But the disk cannot be thick either, because the value of f_{adv} cannot exceed 1.

Recently, Gu and Lu (2007, hereafter GL07), addressed a problem in the slim-disk model of Abramowicz et al. (1988; see also Kato et al. 1998). In this model, the gravitational potential was approximated in a form suggested by Hoshi (1977), i.e.,

$$\psi(R,z) \approx \psi(R,0) + \frac{1}{2} \Omega_K^2 R^2 z^2,$$ \hfill (2)

where Ω_K is the Keplerian angular velocity. As shown by GL07, such an approximation is valid only for geometrically thin disks with $H/R \lesssim 0.2$, and for a larger thickness it would greatly magnify the gravitational force in the vertical direction. Accordingly, the widely adopted relationship $H \Omega_K/\epsilon_s = \text{constant}$ can approximately hold only for thin disks as well. Since inequality (1) was derived by using this relationship, its validity for thicker disks has not been justified. GL07 noted that, when the vertical gravitational force is correctly calculated with the explicit potential, $\psi(R,z)$, “slim” disks are much thicker than previously thought. However, the work of GL07 was still within the framework of the slim-disk model in some sense. In particular, those authors did not consider the vertical distribution of velocities, but instead kept the assumption of vertical hydrostatic equilibrium,

$$\frac{1}{\rho} \frac{\partial \rho}{\partial z} + \frac{\partial \psi}{\partial z} = 0,$$ \hfill (3)

which is a simplification of the more general vertical momentum equation,

$$\frac{1}{\rho} \frac{\partial \rho}{\partial z} + \frac{\partial \psi}{\partial z} + v_R \frac{\partial v_z}{\partial R} + v_z \frac{\partial v_z}{\partial z} = 0$$ \hfill (4)

(e.g., Abramowicz et al. 1997), where ρ is the mass density, ρ is the pressure, and v_R and v_z are the cylindrical radial and vertical velocities, respectively. While the terms containing
We do not simply assume vertical hydrostatic equilibrium [equation (3)]. Equation (7) is the general vertical momentum equation in spherical coordinates, corresponding to equation (4) in cylindrical coordinates. Abramowicz et al. (1997) have given several reasons why spherical coordinates are a much better choice. We only mention one of these reasons that is particularly important for our study here. The stationary accretion disks calculated in realistic two-dimensional (2D) and three-dimensional (3D) simulations resemble quasi-spherical flows, i.e., in spherical coordinates the half-opening angle of the flow $\Delta \theta \approx \text{constant}$, or in cylindrical coordinates the relative thickness $H/R \approx \text{constant}$, much more than in quasi-horizontal flows, i.e., $H \approx \text{constant}$ (e.g., Papaloizou & Szuszkiewicz 1994; NY95). If no outflow production from the surface of the disk is assumed, then obviously $v_{\theta} = 0$ is a reasonable approximation for disks with any thickness (Xue & Wang 2005); but, v_z cannot be neglected for disks that are not thin, because there is a relation $v_z/v_R \sim H/R$ for quasi-spherical flows, making equation (4) difficult to deal with.

Similar to NY95, we assume self-similarity in the radial direction:

$$v_r \propto r^{-1/2}; \quad v_\theta \propto r^{-1/2}; \quad \rho \propto r^{-3/2}; \quad c_s \propto r^{-1/2}.$$

(9)

The above relation automatically satisfies continuity equation (5). By substituting the relation, the momentum equations (6–8) are reduced to be

$$\frac{1}{2} v_r^2 + \frac{5}{2}c_s^2 + v_\theta^2 = 0 \ ,$$

(10)

$$\frac{c_s^2}{\rho} \frac{d\rho}{d\theta} = v_\theta^2 \cot \theta \ ,$$

(11)

$$v_r = -\frac{3}{2} \frac{\alpha c_s^2}{v_K} \ .$$

(12)

Four unknown quantities, namely v_r, v_ϕ, c_s, and p, appear in these three equations. This is because we do not write the energy equation, whose general form is $q_{\text{vis}} = q_{\text{adv}} + q_{\text{rad}}$, where q_{rad} is the radiation cooling rate per unit volume. In principle, the general energy equation should be solved, and then f_{adv} is obtained as a variable, as done, e.g., by Mannoto et al. (1997) for ADAFs and by Abramowicz et al. (1988) and Watarai et al. (2000) for slim disks. However, due to complications in calculating the radiation processes, in NY95 and even in works on global ADAF solutions (e.g., Narayan et al. 1997), $q_{\text{adv}} = f_{\text{adv}} q_{\text{vis}}$ or $Q_{\text{adv}} = f_{\text{adv}} Q_{\text{vis}}$ was used instead as an energy equation and f_{adv} or Q_{adv} was given as constant. Since our purpose here is to investigate the variation of f_{adv} with the thickness of the disk, we wish to calculate Q_{adv} and Q_{vis}, respectively, and then to estimate f_{adv}. To do this, we further assume a polytropic relation, $p = K \rho^\gamma$, in the vertical direction, which is often adopted in vertically integrated models of geometrically slim disks (e.g., Kato et al. 1998, p241). We admit that the polytropic assumption is a simple way to close the system, and then enables us to calculate the dynamical quantities and to evaluate f_{adv} self-consistently.

With the polytropic relation and the definition of the sound wave speed in equation (4) can be reasonably dropped for thin disks because in this case v_z must be negligibly small, it needs a careful consideration whether the same can be done for not just thin disks (Abramowicz et al. 1997; also see below in section 2).

Also regarding to the two main features of advection-dominated disks, i.e., the advection dominance and the slimness, an important different approach was taken earlier by Narayan and Yi (1995, hereafter NY95). NY95 considered rotating spherical accretion flows ranging from the equatorial plane to the rotation axis, i.e., with $H/R \rightarrow \infty$ and with no free surfaces. They assumed self-similarity in the radial direction, solved differential equations describing the vertical structure of the flow, and showed that, comparing to their exact solutions, the solutions obtained previously with the vertical integration approach are very good approximations, provided that “vertical” means the spherical polar angle θ, rather than the cylindrical height z. This seemed to indicate that advection-dominated disks are not necessarily limited to be slim. However, those authors did not calculate the advection factor, f_{adv} (they defined $f_{\text{adv}} \equiv q_{\text{adv}}/q_{\text{vis}}$ with q_{adv} and q_{vis} being the advective cooling rate and the viscous heating rate per unit volume, respectively), but rather set it a priori to be a constant. It is still not answered how their f_{adv} varies with θ, or how f_{adv} per unit area varies with the thickness of the disk, and what is required for advection to be dominant.

In this work we try to make some complementarity to NY95 and some refinements to GL07. We consider the vertical structure of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that and some refinements to GL07. We consider the vertical structure of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick structures of accretion flows with free surfaces, and show that advection-dominated disks must be geometrically thick rather than slim. Our results may suggest to recall the historical thick
speed, \(c_s^2 = p/\rho \), equation (11) becomes
\[
\frac{dc_s^2}{d\theta} = \frac{\gamma - 1}{\gamma} v_p^2 \cot \theta,
\]
(13)
which along with equations (10) and (12) can be solved for \(v_r, v_\phi \), and \(c_s \). A boundary condition is required for solving differential equation (13), which is set to be \(c_s = 0 \) (accordingly \(\rho = p = 0 \)) at the surface of the disk. The quantities \(q_{\text{adv}} = pv_r(\partial \ln p/\partial r - \gamma \ln \rho/\partial r)/(\gamma - 1) \) and \(q_{\text{vis}} = pv_r^2[\partial(v_\phi/r)/\partial r]^2 \) are expressed in the self-similar formalism as
\[
q_{\text{adv}} = -\frac{5 - 3\gamma}{2(\gamma - 1)} \frac{pv_r}{r},
\]
(14)
\[
q_{\text{vis}} = \frac{9}{4} \frac{\alpha pv_r^2}{r v_K^2};
\]
(15)
then, \(Q_{\text{adv}} \) and \(Q_{\text{vis}} \) are given by vertical integration:
\[
Q_{\text{adv}} = \int_{\theta - \Delta \theta}^{\theta + \Delta \theta} q_{\text{adv}} r \sin \theta \, d\theta,
\]
(16)
\[
Q_{\text{vis}} = \int_{\theta - \Delta \theta}^{\theta + \Delta \theta} q_{\text{vis}} r \sin \theta \, d\theta,
\]
(17)
and \(f_{\text{adv}} \equiv Q_{\text{adv}}/Q_{\text{vis}} \) is obtained. In our calculations \(\alpha = 0.1 \) is fixed.

3. Numerical Results

We first study the variation of the dynamical quantities with the polar angle \(\theta \) for a given disk’s half-opening angle, \(\Delta \theta \). Figure 1 shows the profiles of \(v_r \) (the dashed line), \(v_\phi \) (the dot-dashed line), \(c_s \) (the solid line), and \(\rho \) (the dotted line) for three pairs of parameters, i.e., \(\gamma = 4/3 \) and \(\Delta \theta = 0.25 \pi \) for figure 1a, \(\gamma = 4/3 \) and \(\Delta \theta = 0.45 \pi \) for figure 1b, and \(\gamma = 1.65 \) and \(\Delta \theta = 0.498 \pi \) for figure 1c. The parameters are marked in figure 3 by filled stars, which clearly show the corresponding values of the advection factor, \(f_{\text{adv}} \). Obviously, advection is not significant for case a \(f_{\text{adv}} < 0.1 \), but is dominant for cases b and c \((0.5 < f_{\text{adv}} < 1) \). Comparing our results with figure 1 of NY95, it can be seen that the profiles of \(v_r \) and \(\rho \) are similar, i.e., \(v_r \) (the absolute value) and \(\rho \) increase with increasing \(\theta \) and achieve the maximal value at the equatorial plane \((\theta = \pi/2) \). On the contrary, the two profiles of \(c_s \) are significantly different. In their figure 1, the value of \(c_s \) decreases with increasing \(\theta \) and achieves the minimal value at the equatorial plane; in our figure 1, however, \(c_s \) increases with increasing \(\theta \), and achieves the maximal value at the equatorial plane. In our opinion, the difference results from different assumptions, i.e., NY95 assumed an energy advection factor, \(f_{\text{adv}} \), in advance, whereas we solve for the energy advection factor, \(f_{\text{adv}} \), self-consistently based on a polytropic relation in the vertical direction. We think that our profile for \(c_s \) is reasonable for disk-like accretion. For example, in the standard thin disk, the direction of the radiative flux is from the equatorial plane to the surface, which means that the temperature (or the sound speed) decreases from the equatorial plane to the surface. Such a picture agrees with our figure 1, but conflicts with figure 1 of NY95.
Figure 2 shows the variation of \(f_{\text{adv}} \) with \(\Delta \theta \) for the ratio of specific heats, \(\gamma = 4/3 \). Advection dominance means 0.5 < \(f_{\text{adv}} \leq 1 \). We first explain the two dashed lines and the dotted line that correspond to previous works in the slim-disk model, then the solid line that represents our results here, and leave the dot-dashed line to later. Both of the two dashed lines are obtained by assuming vertical hydrostatic equilibrium \([\text{equation (3)}]\) and using the H\(\ddot{o} \)shi form of the potential. Even so, according to the more sophisticated version of the slim-disk model (line b), advection dominance, \(f_{\text{adv}} > 0.5 \), would require \(H/R > 1 \) (\(\Delta \theta > \pi/4 \)), and full advection dominance would require \(H/R = 3/2 \), in contradiction with \(H/R \lesssim 1 \), the supposed feature of the model.

The dotted line in figure 2 is for the results of GL07. The point made in that work was that the explicit potential, \(\psi(R,z) \), rather than its H\(\ddot{o} \)shi approximation \([\text{equation (2)}]\), was used, so that the vertical gravitational force was correctly calculated. However, GL07 still kept the assumption of vertical hydrostatic equilibrium \([\text{equation (3)}]\), i.e., the terms containing \(v_r \) in equation (4) were incorrectly ignored. Because of this, the thickness of the disk was overestimated; and accordingly, it seemed that advection dominance could never be possible, since even for the extreme thickness, \(\Delta \theta = \pi/2 \) (or \(H/R \to \infty \)), the value of \(f_{\text{adv}} \) can only marginally reach 0.5.

We have made improvements over GL07. We used spherical coordinates with the assumption \(v_\theta = 0 \), which is better than \(v_\theta = 0 \) in cylindrical coordinates, and then calculated the vertical distribution of velocities (\(v_r \) and \(v_\theta \)) and thermal quantities (\(\rho \), \(\rho \), and \(c_\text{s} \)). Our results are shown by the solid line in figure 2. It can be seen that advection dominance \((f_{\text{adv}} > 0.5)\) is possible, but only for \(\Delta \theta > 2\pi/5 \) (or \(72^\circ \)). Therefore, advection-dominated disks must be geometrically thicker, rather than slim, as previously supposed.

It is also seen that line b, the dotted line, and the solid line in figure 2 almost coincide with each other for thin disks with \(\Delta \theta < 0.1\pi \). This is natural, since for thin disks both the H\(\ddot{o} \)shi approximation of the potential and the assumption of vertical hydrostatic equilibrium are valid, and the three approaches represented by the three lines make no significant difference. However, the one-zone treatment, i.e., total ignorance of the vertical structure of the disk, seems to be too crude, making the resulting line deviate from the other three lines, even for thin disks.

The value \(\gamma = 4/3 \) in figure 2 corresponds to the optically thick and radiation pressure-dominated case, to which the historical ion pressure-supported thick disk and the ADAF belong. While it is \(\gamma = 5/3 \) for the optically thin gas pressure-dominated case, to which the historical ion pressure-supported thick disk and the ADAF belong.

In figure 3, the four solid lines show variations of \(\Delta \theta \) with \(\gamma \) for four given values of \(f_{\text{adv}} \). It can be seen that advection dominance \((f_{\text{adv}} > 0.5)\) requires \(\Delta \theta \) to be large for any value of \(\gamma \), and that for a fixed \(f_{\text{adv}} \) (the same degree of advection) the required \(\Delta \theta \) increases with increasing \(\gamma \); that is, for advection to be dominant, optically thin disks must get even geometrically thicker than optically thick ones.

For the geometrically thin case, \(\Delta \theta \ll 1 \), the Taylor expansion of equations (10), (12), and (13) with respect to \(\Delta \theta \) can be performed, and we derived an approximate analytic relation,

\[f_{\text{adv}} \approx \frac{(5-3\gamma)(2\gamma-1)}{3\gamma(5\gamma-3)} \cdot \Delta \theta^2, \tag{18} \]

which is similar to inequality (1) in cylindrical coordinates. The dot-dashed lines in figures 2 and 3 correspond to equation (18) for a fixed \(\gamma = 4/3 \) and for a fixed \(f_{\text{adv}} = 0.01 \), respectively. It can be seen from figure 2 that, as expected, the analytic approximation of equation (18) agrees well with the correct numerical results (the solid line) for small \(\Delta \theta \).
but deviates a lot for a large $\Delta \theta$. In figure 3 a good agreement between equation (18) and the numerical results (the lowest solid line) is seen again, especially for small values of γ. The limitation that equation (18) is valid only for small $\Delta \theta$, and accordingly only for small f_{adv}, should also apply to inequality (1), because that the inequality is derived from the Hoshis approximate potential.

4. Discussion

The key concept of the slim and ADAF disk models is advection dominance. This concept was introduced rather as an assumption; whether and under what physical conditions can it be realized have not been clarified. The main result of our work is to have shown that, in order for advection to be dominant, the disk must be geometrically thick with the half-opening angle $\Delta \theta > 2\pi/5$, rather than being slim, as suggested previously in the slim-disk and ADAF models. Thus, advection-dominated disks are geometrically similar to the historical thick disks mentioned in section 1. This result is obvious because, as revealed in GL07, in the slim disk and ADAF models the vertical gravitational force was overestimated by using the Hoshi’s approximate potential, and accordingly the disk’s thickness was underestimated. NY95 considered accretion flows with no free surfaces, and found that when the given advective factor, $f_{adv} = Q_{adv}/Q_{vis}$, is small (full advection dominance), their solutions approach nearly spherical accretion. If “nearly spherical” can be regarded as extremely thick, then their results and ours agree with each other, but we take a different approach. We do not give the value of $f_{adv} = Q_{adv}/Q_{vis}$ in advance, but instead consider accretion flows with free surfaces, i.e., accretion disks. The boundary condition is set to be $p = 0$, which is usually adopted in the literature (e.g., Kato et al. 1998). Then, the thickness of the disk, $\Delta \theta$, makes sense, and we calculated f_{adv} to see how it relates to $\Delta \theta$.

Many 2D and 3D numerical simulations of viscous radiatively inefficient accretion flows (RIAFs) revealed the existence of convection-dominated accretion flows (CDAFs), while ADAFs could not be obtained (e.g., Stone et al. 1999; Igumenshchev & Abramowicz 2000; McKinney & Gammie 2002; Igumenshchev et al. 2003). We think that this fact probably indicates that the existing analytic ADAF models might have hidden inconsistencies, and an incorrect treatment of the vertical structure might be one such inconsistency, as addressed in our work. Moreover, recent radiation-MHD simulations (Ohsuga et al. 2009) have shown that the disk is geometrically thick in their models A and C (corresponding to slim disks and ADAFs, respectively), which is in agreement with our results.

Apart from the convective motion, outflow is found in 2D and 3D MHD simulations of non-radiative accretion flows (e.g., Stone & Pringle 2001; Hawley & Balbus 2002). For optically thick flows, the circular motion and the outflow are found in 2D radiation-HD simulations (e.g., Ohsuga et al. 2005; Ohsuga 2006). The assumption $v_{\phi} = 0$ would break down when the convective motion or the outflowing motion is significant; we thus have to point out the limitation of our solutions, which are based on the self-similar assumption in the radial direction, and particularly for $v_{\theta} = 0$.

In this paper we have not shown the exact thermal equilibrium solution for a certain mass accretion rate. We wish to stress that our main concern here is the relationship between the energy advection factor and the thickness of the disk. The well-known inequality (1), which was previously believed to be valid for both optically thick and thin disks, implied that advection-dominated accretion disks are geometrically thin. As shown in figures 2 and 3, however, inequality (1) is inaccurate for disks that are not geometrically thin. We think that the new relationship between f_{adv} and $\Delta \theta$, shown in figures 2 and 3, should also work for both optically thick and thin cases. Even without the exact solutions, we can predict that advection-dominated accretion disks ought to be geometrically thick, rather than slim. Our next work will concentrate on the optically thick disks, and take radiative cooling into consideration. In the vertical direction, we will solve the dynamical equations combined with the radiative transfer equations, and thus the polytropic assumption will be relaxed. At that step, we will be able to calculate the thermal-equilibrium solutions with given mass-accretion rates, and show the optical depth, pressure, and luminosity of the disks.

We thank Marek A. Abramowicz, Ramesh Narayan, and Ken Ohsuga for beneficial discussions and the referee for helpful comments. This work was supported by the National Basic Research Program of China under Grant No. 2009CB824800, the National Natural Science Foundation of China under Grants Nos. 10778711 and 10833002, the Program for New Century Excellent Talents in University under Grant No. 06-0559, and the China Postdoctoral Science Foundation funded project 20080441038.
References

Abramowicz, M. A., Chen, X., Kato, S., Lasota, J.-P., & Regev, O. 1995, ApJ, 438, L37
Abramowicz, M. A., Czerny, B., Lasota, J. P., & Szuszkiewicz, E. 1988, ApJ, 332, 646
Abramowicz, M., Jaroszyński, M., & Sikora, M. 1978, A&A, 63, 221
Abramowicz, M. A., Lanza, A., & Percival, M. J. 1997, ApJ, 479, 179
Blaes, O. M. 1987, MNRAS, 227, 975
Frank, J., King, A., & Raine, D. 2002, Accretion Power in Astrophysics (Cambridge: Cambridge Univ. Press), 98
Gu, W.-M., & Lu, J.-F. 2007, ApJ, 660, 541 (GL07)
Hawley, J. F., & Balbus, S. A. 2002, ApJ, 573, 738
Hoshi, R. 1977, Prog. Theor. Phys., 58, 1191
Igumenshchev, I. V., & Abramowicz, M. A. 2000, ApJS, 130, 463
Igumenshchev, I. V., Narayan, R., & Abramowicz, M. A. 2003, ApJ, 592, 1042
Kato, S., Fukue, J., & Mineshige, S. 1998, Black-Hole Accretion Disks (Kyoto: Kyoto Univ. Press)
Madau, P. 1988, ApJ, 327, 116
Manmoto, T., Mineshige, S., & Kusunose, M. 1997, ApJ, 489, 791
McKinney, J. C., & Gammie, C. F. 2002, ApJ, 573, 728
Narayan, R., Kato, S., & Honma, F. 1997, ApJ, 476, 49
Narayan, R., & Yi, I. 1994, ApJ, 428, L13
Narayan, R., & Yi, I. 1995, ApJ, 444, 231 (NY95)
Ohsuga, K. 2006, ApJ, 640, 923
Ohsuga, K., Mineshige, S., Mori, M., & Kato, Y. 2009, PASJ, 61, L7
Ohsuga, K., Mori, M., Nakamoto, T., & Mineshige, S. 2005, ApJ, 628, 368
Paczyński, B., & Wiita, P. J. 1980, A&A, 88, 23
Papaloizou, J. C. B., & Pringle, J. E. 1984, MNRAS, 208, 721
Papaloizou, J., & Szuszkiewicz, E. 1994, MNRAS, 268, 29
Rees, M. J., Begelman, M. C., Blandford, R. D., & Phinney, E. S. 1982, Nature, 295, 17
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Stone, J. M., & Pringle, J. E. 2001, MNRAS, 322, 461
Stone, J. M., Pringle, J. E., & Begelman, M. C. 1999, MNRAS, 310, 1002
Watarai, K., Fukue, J., Takeuchi, M., & Mineshige, S. 2000, PASJ, 52, 133
Xue, L., & Wang, J. 2005, ApJ, 623, 372