A systematic literature review on the use of platelet transfusions in patients with thrombocytopenia

Adrian Newland, Roy Bentley, Anna Jakubowska, Howard Liebman, Joanna Lorenz, Markus Peck-Radosavljevic, Vanessa Taieb, Akiyoshi Takami, Ryosuke Tateishii and Zobair M. Younossi

Background

Thrombocytopenia (TCP) is a common hematologic condition, usually characterized by a platelet count (PC) of $<150 \times 10^9/L$, but definitions can range from $\leq 100 \times 10^9/L$ to $\leq 180 \times 10^9/L$ [1]. The causes of TCP are varied and include decreased platelet production, increased platelet destruction, increased splenic sequestration, and/or dilution [2]. Similarly, treatment is dependent on underlying cause but may involve platelet transfusion (PT), thrombopoietin receptor (TPO-R) agonists, bone marrow transplant (BMT) or other treatments [2]. PTs are frequently administered to hospital patients with platelet consumptive/destructive disorders such as thrombotic thrombocytopenic purpura (TTP), heparin-induced thrombocytopenia (HIT) and immune (previously idiopathic) thrombocytopenia (ITP). Clinically, TCP may independently predict major bleeding [3], which can complicate the management of patients with cancer, chronic liver disease (CLD), and ITP, resulting in delayed or canceled procedures [4–6]. In addition, TCP can limit the frequency and dose of chemotherapy [7], leading to protracted hospital stays, treatment modification, and increased economic burden [7,8].

PT has been used for over 50 years for active bleeding and prophylaxis in high-risk populations (eg, cancer patients or TCP patients undergoing invasive procedures) [9–12]. Most guidelines recommend a PC threshold of $50 \times 10^9/L$ to prevent hemorrhage prior to invasive procedures but vary depending on the type of procedure [10,11,13,14]. Although widely used, PTs are associated with a variety of risks including infection (that may result in sepsis) [15–17], transfusion reactions and alloimmunization (up to 40%) [18–20]. PTs are associated with higher odds ratios of arterial

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
thrombosis and mortality among TTP and HIT patients [21], and with higher rates of transfusion-associated circulatory overload (TACO) [22] and transfusion-related acute lung injury [23]. Any transfusion-related intervention can increase the risk of TACO which has been shown to be under-reported [24]. Thrombocytopenic patients who receive PTs also have a variety of underlying conditions and diseases, making the decision to transfuse difficult in light of potential risks [11,12,25–27].

There are practical, logistical and quality control issues associated with platelet preparation and storage and donor platelet quality varies [28,29]. There is currently no routine testing of platelet quality (such as the percentage of active platelets) [29] and quality is negatively affected by prolonged storage times [30]. PTs must be delivered under strict local/national guidelines that may be difficult to meet [31–34]. Although 94% of PTs in the USA are collected through apheresis, leukocyte reduction in whole blood collection is often avoided in an effort to reduce costs, despite evidence suggesting that it reduces -related adverse reactions [35]. In addition, the demand for platelet components is rising substantially worldwide, placing pressure on an already scarce resource [36].

There is currently a lack of concrete evidence on the efficacy and effectiveness of PT in patients with TCP (ie, at risk for bleeding), making clinical decisions difficult. To date, minimal research has been conducted to evaluate and understand the current burden and benefit-risk trade-off of PT use in TCP patients. Therefore, this multi-topic, global systematic literature review (SLR) was conducted to investigate current treatment patterns, benefit-risk assessments, as well as the economic, societal and humanistic burden of therapeutic and prophylactic PT in the TCP patient population.

Methods

Data sources and searches

A SLR was conducted to identify key literature evaluating the use of PT in the TCP population specific to each of the following domains: (1) Randomized controlled trials (RCTs): namely, efficacy and safety, and (2) Real-world evidence (RWE): namely, epidemiology and treatment patterns, effectiveness and safety, as well as humanistic and societal burden, and (3) Economic burden. Separate and unique searches were performed for each domain. Efficacy and effectiveness were reviewed separately. Efficacy is defined as the evaluation of whether an intervention produces the expected result under ideal circumstances, such as RCTs, whereas effectiveness is a measure of the degree of beneficial effect in ‘real-world’ clinical settings [37].

Publications indexed from 1998 to June 27, 2018 (May 23, 2018 for the economic burden domain) were identified from the following sources: MEDLINE® (1946 to present); Embase (1974 to present); Cochrane Database of Systematic Reviews; Cochrane Central Register of Controlled Trials; Database of Abstracts of Reviews of Effects; Health Technology Assessment database, UK NHS Economic Evaluation database; and reference lists from relevant systematic reviews. Full search terms and search strategies are provided in the appendix (Appendix Table A1). Additional manual searches were conducted.

This study is reported in accordance with the Cochrane Handbook for Systematic Reviews of Interventions [38] and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols statement [39].

Study selection

Two independent reviewers screened titles and abstracts to identify relevant publications based on pre-defined inclusion and exclusion criteria (see Appendix Table A2), and then full text publications were assessed, with any discrepancies resolved by a third independent reviewer.

The patient population was restricted to adults with TCP receiving PT (e.g. such as, but not limited to, patients with chemotherapy-induced TCP, patients with bone marrow suppression, and patients with or without CLD undergoing elective invasive procedures).

Specific to epidemiology, treatment patterns and economic burden, only studies that pertained to the USA, Japan or European Union Five (France, Germany, Italy, Spain and UK) were included. For the remaining searches, studies were not restricted to a geographic location.

Data extraction and quality assessment

Data from studies meeting pre-specified criteria were extracted using Excel tables by 1 reviewer and validated for accuracy and quality by a second reviewer. Outcomes of interest varied according to the domain evaluated, and are summarized in Appendix Table A2. For RCTs, quality was assessed using the Cochrane Risk of Bias Tool for RCTs [40], and RWE studies were assessed using the Newcastle-Ottawa Scale [41]. A risk of bias assessment in RCTs is provided in Appendix Table A3 and a quality assessment of RWE studies in Appendix Table A4.

Data synthesis and analysis

Detailed evidence tables were created and studies summarized by project reviewers. Due to the heterogeneity of interventions examined, and the range of
methods between studies, tables were designed to capture relevant study findings. Study results are presented as a descriptive narrative synthesis.

Results

A total of 3425 abstracts were identified through database searches as well as additional sources (Figure 1). Following omission of duplicates \((n = 625)\) 2800 abstracts were screened and 2456 excluded. A total of 344 full-text publications were assessed and from these 150 were excluded leaving 194 publications, with 190 studies included (see Appendix Table A5).

RWE: epidemiology and treatment patterns

The treatment patterns of PT were identified in 79 publications. The patient populations were TCP overall in 55 publications, TCP and elective invasive procedure in 20 publications and CLD TCP and elective invasive procedure in 4 publications. The epidemiology and treatment patterns reported in 77 of these 79 publications are summarized in Appendix Table A6. The remaining 2 studies looked at either compliance among 113 patients who received PT [42] or the role of the CD40 ligand in adverse reactions to PT [43].

Patient types in which platelet transfusions were used

The use of PT was reported in several studies including large cohorts (>1000 patients with TCP). A review of admissions to a single institution over 5 years, found that of 40,693 patients, 9158 (22.5%) patients had TCP (PC \(< 100 \times 10^9/L\)) [44]. Approximately a quarter (24.5%) of those patients with TCP were transfused platelets. Use of PT in a total of 3743 patients with chronic ITP was analyzed and 1.7% received platelets [45]. In a population of 18204 patients undergoing interventional radiology procedures, 2060 (11.3%) had a PC \(\leq 100 \times 10^9/L\) prior to their procedure [46]. Approximately a tenth (9.9%) of these patients received pre-procedural platelets, and their median baseline PC was 39 \(\times 10^9/L\) compared to 77 \(\times 10^9/L\) for those who did not require pre-procedural PT. In a study of 47,159 patients undergoing chemotherapy for solid tumors, over 4800 patients had a PC \(\leq 150 \times 10^9/L\) [47]. PTs were reported in 2.5% of the 47159 patients treated.

Platelet transfusions by age

Use of PT by age was reported in one study treating patients with non-Hodgkin lymphoma [48]. A total of 23 of the 108 patients received platelets during treatment. A quarter (26%) of patients aged 65 years or older required a PT, whilst a smaller proportion (18%) of patients aged less than 65 years required a PT.

Therapeutic versus prophylactic platelet transfusions

The use of PT for therapeutic or prophylactic purposes was reported in 3 studies. Over 7400 PTs administered to 503 patients over 6 months were analyzed [49]. Patients receiving prophylactic PT were compared to those receiving therapeutic PT. Nearly three quarters

Figure 1. Global PRISMA diagram. PRISMA = Preferred reporting items for systematic reviews and meta-analysis; RCT = randomized controlled trial; RWE = real-world evidence. *8 of 194 publications were captured and/or extracted in more than one domain.
Platelet transfusions in patients with chronic liver disease

The use of PTs in patients with CLD undergoing elective invasive procedures was reported in 4 publications. In Benson et al. 64% of 525 liver transplant patients required at least 1 unit of intra-operative PT [52]. In a study by Pillarsetti et al. of cardiac catheterization in 43 patients with end-stage liver disease, of 12 patients with PC <60 × 10^9/L, 5 patients received PT compared to none of the 31 patients with PC >60 × 10^9/L [53]. Mean baseline PC in those receiving PT was 34.8 × 10^9/L compared to 93.0 × 10^9/L in those who did not receive PT. Giannini et al. studied 121 patients with liver cirrhosis, and the prevalence of TCP (PC <150 × 10^9/L) and severe TCP (PC <75 × 10^9/L) was 84% and 51%, respectively [54]. A pre-procedural PT was administered to 7 (14%) of 50 patients with TCP who had an invasive procedure. There was no significant difference in mean PC between those who received PT (45.3 × 10^9/L) and those who did not (51.9 × 10^9/L). Of the patients with severe TCP, 32 patients had an invasive procedure. The proportion of bleeding and non-bleeding patients with severe TCP who had an invasive procedure and received prophylactic PT was 40% and 14%, respectively. A total of 363 patients with cirrhosis were included in a study by Napolitano et al. examining PC and bleeding following invasive procedures [55]. Bleeding events were recorded in 8 patients with a pre-procedural PC <150 × 10^9/L, 5 of whom had received prophylactic PT. Of an additional 10 patients with a pre-procedural PC <150 × 10^9/L who did not experience post-procedural bleeding, 6 patients had received prophylactic PT. The authors reported that post-infusion PC was barely affected.

In summary, the use of PT in patients with TCP varied widely across studies, from 0% to 100% of patients; in studies with large cohorts (>1000 patients with TCP), PT administration ranged from 1.7% [45] to 24.5% [44] of patients. When indications for use were reported, transfusions were generally prophylactic rather than therapeutic.

RCTs: efficacy and safety

The efficacy and safety of PTs were discussed in 47 publications covering 43 primary RCTs, with 1 publication including 2 RCTs [56] and 5 publications [57–61] including additional analyses of 4 of the RCTs [62–65]. Prophylactic PT was the intervention in 34 of the 43 primary RCTs, being compared with no treatment in 5 studies, with other treatments in 2 studies, and included in both intervention and comparator arms in the remaining 27 studies. The efficacy and safety results for the 7 RCTs comparing prophylactic PT with best supportive care alone or with other treatments are summarized in Table 1. The remaining 9 of the 43 primary RCTs looked at other drugs to treat TCP, with therapeutic PT included as best supportive care in both arms. There was significant heterogeneity in primary outcome measures, with some reporting the effects on PC and requirement for therapeutic PT, while others focused on adverse events (AEs) including risk of bleeding and transfusion reactions.

Underlying etiology of TCP was CLD in 8, chemotherapy-induced in 2, hematological malignancies in 2, and mixed in 25 (broadly ‘hematological’ in 16) RCTs. All were performed in a non-emergency setting, when patients were thrombocytopenic but not actively bleeding, and PT was used prophylactically to raise PC. Most studies allowed for therapeutic use of PT in any of the treatment arms if patients began actively bleeding, and strategies of prophylactic versus therapeutic use were formally compared in 1 study [68].

Platelet transfusions: bleeding events and platelet count response

Only 5 RCTs (of the 7 in Table 1) compared prophylactic PT with no intervention/best supportive care. In 2 studies in patients with Dengue fever prophylactic PT did not significantly reduce bleeding rates, with 1 study [66] showing the primary outcome of clinical bleeding occurred in 21% of the PT group vs 26% of the controls (p = 0.16), and the other that prophylactic PT did not prevent severe bleeding or shorten time to bleeding cessation [26]. Lye et al. reported that prophylactic PT was associated with more AEs (13 vs 2 in control group, p = 0.0064), although most were non-severe and all fully resolved [66]. The effect of prophylactic PT on PC was transient, with no difference in mean daily PC between the 2 groups except on Day 2. Khan-Assir et al. [26] reported that approximately half the patients showed no response to PT when measured by post-transfusion platelet increment (PPI), although overall PPI was higher at 24 and 72 h post-transfusion in the group who had received
Article	TCP Etiology	PC Criteria for Inclusion	Intervention	Sample Size	Effect on PC	Need for TPT	Bleeding-related Events	Other AEs
Lye 2017 [66]	Dengue and TCP	PC ≤ 20 × 10⁹/L	PPT 4U/day if PC ≤ 20 × 10⁹/L in transfusion group; best supportive care alone in control group	372 (188 PPT, 184 control); ITT analysis: 369 (187 PPT, 182 control).	NR	NR	Clinical bleeding (by Day 7 or hospital discharge) occurred in 21% of PPT group vs 26% of control group (p = 0.16). Possibly/probably/definitely related to transfusion: urticaria (3), maculopapular rash (1), pruritus (1), chest pain (1), and 3 SAEs with 1 case each (anaphylaxis, TRALI, fluid overload).	PPT group: 3 severe transfusion reactions, 2 deaths.
Khan-Assir 2013 [26]	Dengue and TCP	PC <30 × 10⁹/L	PPT	87 (43 PPT, 44 control)	53.6% (22/43) in PPT were non-responders Mean PPI higher in PPT vs no PPT at 24 and 72 h. Patients with lower baseline PC more like to be non-responders.	NR	NR	PPT did not prevent development of severe bleeding or shorten time to cessation of bleeding.
Veelo 2012 [67]	Mixed (ICU with uncorrected mild coagulation disorders). Undergoing planned percutaneous dilatational tracheotomy.	PC = 40–100 × 10⁹/L (31.9%); prothrombin time 14.7–20.0 s (56.9%); and/or active treatment with aspirin (31.9%). 20.8% had ≥ 1 factor. Had or were expected to have TCP (PC <30 × 10⁹/L for ≥ 5 days)	FFP and/or PPT (17 patients received PPT alone, 12 received FFP alone, and 6 received both FFP/PPT). PPT if PC <10 × 10⁹/L vs no-PPT	72 (Randomized: 35 FFP/PPT, 37 control; Analyzed 31 FFP/PPT, 33 control).	NR	NR	Median blood loss: FFP/PPT = 3.0 g vs control = 3.0 g (p = 0.96).	
Stanworth 2013 [65]	Mixed (hematologic malignancies: chemotherapy or SCT)	PC = 40–100 × 10⁹/L (31.9%); prothrombin time 14.7–20.0 s (56.9%); and/or active treatment with aspirin (31.9%). 20.8% had ≥ 1 factor. Had or were expected to have TCP (PC <30 × 10⁹/L for ≥ 5 days)	FFP and/or PPT (17 patients received PPT alone, 12 received FFP alone, and 6 received both FFP/PPT). PPT if PC <10 × 10⁹/L vs no-PPT	600 (299 PPT, 301 no-PPT)	NR	NR	43% (128/298) in PPT group vs 50% (151/300) in no-PPT group experienced bleeding of WHO grade 2, 3 or 4 up to 30 days after randomization (p = 0.06 for non-inferiority). The number of days with bleeding episodes (WHO grade 2, 3 or 4) during follow-up was higher (p = 0.004) and time to first bleeding episode shorter (p = 0.02) for the no-PPT group compared to the PPT group.	Proportion of patients with SAE was not significantly different between the groups (7% PPT vs 6% no-PPT). There was 1 transfusion-related SAE in the PPT group (urticaria and angioedema).
Stanworth 2014 [60]	Subgroup analysis of Stanworth 2013 for autoHSCT vs chemo/alloHSCT	As above	As above	600 (AutoHSCT 421; chemo/alloHSCT 179)	NR	NR	The reduction in proportion of patients experiencing WHO grade 2, 3 or 4 bleeding seen in the PPT group was greater for chemo/alloHSCT vs autoHSCT (interaction p = 0.04). With no-PPT, the chemo/alloHSCT group showed shorter time to first bleeding episode vs autoHSCT group (HR 1.84 vs 1).	Number of patients with SAE for autoHSCT was 10 with PPT vs 15 with no-PPT, and for chemo/alloHSCT was 10 with PPT vs 3 with no-PPT. Difference between subgroups reached significance (interaction p = 0.02).

(Continued)
Table 1. Continued.

Article	TCP Etiology	PC Criteria for Inclusion	Intervention	Sample Size	Effect on PC	Need for TPT*	Bleeding-related Events	Other AEs
Wandt 2012 [68]	Mixed (Hypoproliferative TCP, undergoing intensive chemotherapy for AML or autoHSCT for hematological cancers)	NR	TPT when bleeding occurred vs PPT when morning PC ≤ 10 x 10^9/L	396 randomized (197 PPT, 199 TPT); 391 analyzed	NR	Mean number of PT was reduced by 33.5% with TPT strategy (1.63) vs PPT (2.44) (p < 0.0001). Reduction was 31.6% with AML and 34.2% with autoHSCT.	1.12, p = 0.08). Increased number of days with bleeding with no-PPT was similar for both subgroups.	12 deaths: 2 from fatal cerebral hemorrhage in TPT group, 5 in each group unrelated to major bleeding.
Basu 2012a [64]	CLD (undergoing planned percutaneous liver biopsy)	NR	A: PPT B: ROM C: ELT (A = 18, B = 23, C = 24)	Pre-op PC (x 10^9/L): PPT 183.8 vs ROM 232.0 (p < 0.05) and vs ELT 189.9 x 10^9/L (NS). 4 w post-op PC (x 10^9/L): PPT 85.9 vs ROM 366.2 and vs ELT 173.6 (both p < 0.001)	NR	No post-biopsy bleeding or hematoma observed in any group.	AEs were only quoted for all 3 groups combined, with the most common being erythema post-injection site 39%, myalgia 24% and local skin rash 20%.	
Basu 2012b [59]								
Stanca 2010 [69]	CLD (undergoing dental extraction)	PC = 30–50 x 10^9/L and INR 2–3	FFP (10 mL/kg) and or PPT (1 unit) vs DDAVP (300 µg intranasal)	43 randomized (22 FFP/PPT, 21 DDAVP); 36 completed study (19 FFP/PPT, 17 DDAVP)	NR	Only 1 patient in the FFP/PPT group required rescue transfusion (additional FFP but no PT).	One patient in FFP/PPT group had post-procedural bleeding and required additional FFP (but no PT).	One patient in FFP/PPT group had an allergic reaction at end of transfusion, effectively treated with diphenhydramine.

AE = adverse event; AML = acute myeloid leukemia; autoHSCT = autologous HSCT; chemo/alloHSCT = chemotherapy/allogeneic HSCT; CLD = chronic liver disease; CNS = central nervous system; DDAVP = desmopressin; ELT = eltrombopag; FFP = fresh frozen plasma; HR = hazard ratio; HSCT = hematopoietic stem cell transplant; ICU = intensive care unit; INR = international normalized ratio; IQR = interquartile range; NR = not recorded; PC = platelet count; PPI = post-transfusion platelet increment; PPT = prophylactic PT; PT = platelet transfusion; ROM = romiplostim; SAE = serious adverse event; SCT = stem cell transplant; TCP = thrombocytopenia; TPT = therapeutic PT; TRALI = transfusion-related acute lung injury; WHO = World Health Organization.

*Patients could receive TPT in any study arm across all studies if clinically indicated, including for active bleeding.
prophylactic PT. There were 3 severe transfusion reactions and 2 deaths in the treatment group.

The effect of prophylactic PT on bleeding risk was more mixed in patients with hematological malignancies. Stanworth et al. reported a lower rate of World Health Organization (WHO) grade ≥2 bleeding with prophylactic PT (43% vs 50% control, \(p = 0.06 \) for non-inferiority), although background rate was still high [65]. The prophylactic group also had significantly fewer days with bleeding (\(p = 0.004 \)) and a longer time to first bleeding episode (\(p = 0.02 \)). The proportion of patients with serious AEs was comparable (7% for prophylactic vs 6% control group). Only Wandt et al. formally compared prophylactic PT (PC \(\leq 10 \times 10^9/L \)) with therapeutic PT [68]. Therapeutic use resulted in a 33% reduction in the mean number of PTs given (1.63 therapeutic PTs vs 2.44 prophylactic PTs, \(p < 0.0001 \)). Risk of WHO grade ≥2 (42% vs 19%, \(p < 0.0001 \)) and grade 4 (5% vs 1%, \(p = 0.0159 \)) bleeding was greater in the therapeutic group.

A study by Veelo et al. compared prophylactic PT with no intervention in Intensive Care Unit (ICU) patients undergoing elective percutaneous dilatational tracheotomy, who had mild coagulation disorders [67]. Of note only 32% of patients had TCP and not all (66%) of the intervention group received prophylactic PT. Those who had prothrombin time 14.7–20.0 s, PC 40–100 \(\times 10^9/L \), and/or active treatment with acetylsalicylic acid were randomized to either fresh frozen plasma (FFP) and/or prophylactic PT or no transfusion. Median blood loss and incidence of intratracheal bleeding were similar between the 2 groups.

Two RCTs (included in Table 1), both in patients with CLD and TCP, compared prophylactic PT to other treatments. Basu et al. randomized patients to either prophylactic PT or a TPO-R agonist (romiplostim or eltrombopag) prior to elective percutaneous liver biopsy [59,64]. Following treatment the pre-procedural PC achieved was significantly lower with prophylactic PT (183.8 \(\times 10^9/L \)) than romiplostim (232.0 \(\times 10^9/L \), \(p < 0.05 \)) but similar to eltrombopag (189.9 \(\times 10^9/L \), \(p = \) not significant [NS]). No post-biopsy bleeding or hema
toma was observed in either group. Stanca et al. [69] reported that intranasal desmopressin was as effective as FFP and/or prophylactic PT in achieving hemostasis in patients with CLD and TCP undergoing dental extraction.

Platelet doses
Six RCTs reported on patient response to different platelet doses, with most using bleeding risk as the primary endpoint and threshold for prophylactic PT of PC \(<10 \times 10^9/L \). The studies differed in their definitions of low (1.1–3.1 \(\times 10^11 \)), standard/medium (0.5–6 \(\times 10^{11} \)) and high (1–5 \(\times 10^{11} \)) dose PT, with significant overlap between groups. Although median number of PT was usually higher with lower doses of platelets, the median number of overall platelets transfused was lower [63,70–72]. Overall, WHO bleeding ≥ grade 2 did not vary significantly between different platelet doses [63,70,71,73], but 1 study [73] was stopped early due to higher rate of grade 4 bleeding in the low dose group (5.2% vs 0% with standard dose). One study showed that relative risk of requiring subsequent therapeutic PT was higher with low platelet doses and transfusion-free interval was shorter [74].

Platelet storage, administration and preparation
The remaining 21 platelet intervention RCTs focused on different methods of platelet storage, administration and preparation, including pathogen inactivation and white blood cell depletion, and the primary endpoints are presented in Appendix Table A7. Five were Phase III trials and in the 21 studies the number of patients randomized ranged from 16 [75,76] to 842 [77]. Efficacy measures included platelet corrected count increment (CCI, defined by formula [78]), bleeding time and time to initiate clotting, while safety included the incidence of transfusion reactions and bleeding. Ten of the RCTs had a primary endpoint related to CCI, and 4 of these demonstrated a significant reduction in CCI at 1 h with various methods of pathogen reduction technol
gy (PRT) including photochemical treatment (PCT) [78–81], whereas 5 did not [82–86], with the remaining study showing a significant reduction in CCI when platelets were stored for 6–7 days as compared to 1–5 days [87]. Three of the RCTs had a primary endpoint related to incidence of transfusion reactions, with 2 studies showing a significant reduction in reactions with use of either a platelet additive solution (PAS) [78] or plasma depletion [88], whilst one study showed no significant difference in reactions between plasma removal and 2 methods of pre-
storage white blood cell reduction [89]. Three of the RCTs had a primary endpoint of bleeding. One study demonstrated the rate of WHO grade 2 bleeding was equivalent between PCT and conventional platelets [62] whilst another study showed the criteria for non-
inferiority for WHO grade 2–4 bleeding with PRT com
pared to controls was met for the intention-to-treat analysis but not the per-protocol analysis [90]. The third study also looked at WHO grade 2–4 bleeding, with non-inferiority achieved for pathogen-reduced platelets in PAS compared to untreated platelets in PAS, but not achieved when compared to untreated platelets in plasma [77].

Non-platelet transfusion therapies including TPO-
R agonists
Nine RCTs investigated non-PT therapies. The majority
were in CLD patients with TCP requiring an invasive
procedure, demonstrating that TPO-R agonists (lusu-
trombopag [91–93], eltrombopag [94] or avatrombo-
pag [56]) increased PC and thereby significantly more
patients met the primary outcome of reduced need for pre-procedural prophylactic PT and any bleeding rescue therapy, including therapeutic PT, compared to placebo (65%–93% out of a total of 624 patients combined across studies for TPO-R agonists vs 13%–38% out of a total of 475 patients combined across studies for placebo, all \(p < 0.01 \)). Two further studies in patients with hematological malignancies suggested that TPO-R agonists (eltrombopag and romiplostim) may be an efficacious alternative to prophylactic PT [95,96]. The final study, in chemotherapy-induced TCP patients, showed that the thrombopoietic agent pegylated recombinant human megakaryocyte growth and development factor can improve PC and reduce need for therapeutic PT [97].

In summary, data from RCTs that compared prophylactic PT with either no intervention or best supportive care were mixed regarding the effect of prophylactic PT on increasing PC and reducing bleeding risk.

RWE: effectiveness and safety

The effectiveness and safety of PTs was discussed in 75 publications, of which 49 included populations of TCP overall, 20 of TCP and invasive elective procedure and 5 of CLD TCP and elective invasive procedure. Data for the effect of PTs on PCs, bleeding and other safety-related events are summarized in Appendix Tables A8–A10. One paper only reported on PT use around the time of delivery in pregnant women with TCP [98].

Platelet transfusions and platelet count response

The effect of PTs on PC was reported in 36 publications with readings 10 min to 72 h post-transfusion, when reported. PTs were generally effective, to some degree, with an increase in PC seen in most patients (\(-4 \times 10^9/L\) to \(262.9 \times 10^9/L\)). One study, that focused on 27 patients receiving PT in the ICU setting, reported that a single PT resulted in a median PC increase of \(14 \times 10^9/L\) measured at 5.2 h post-PT (based on 57 non-overlapping PTs), however, no PC increase was reported for 13 patients (48.1%) after 17 PTs [99]. In another study, also specific to the ICU setting, based on 5700 PTs, the median PC increase after a single PT was \(23 \times 10^9/L\) measured at a median of 7 h post-PT, however 21.8% of transfusions had an ineffectual PC increase of \(<5 \times 10^9/L\) [100]. The independent predictor of an ineffectual response with the greatest odds ratio (1.84 [95% confidence interval: 1.24–2.73], \(p = 0.0024 \)) was liver disease followed by a number of other factors. Refractoriness, defined as a PC increase \(<5 \times 10^9/L\) following PT or 3 consecutive days of PT, was reported in several studies. In a publication examining the safety of endoscopy interventions, 23% of patients were refractory [101]. In a second publication of all hospitalized patients receiving PT over a 6-month period, 22% of patients were refractory [102]. Charbonnier et al. found that only 10 patients out of a total of 1408 with acute myeloid leukemia (AML) were refractory to PT, whilst Wandt et al. stated that platelet refractoriness of clinical significance related to alloimmunization was not reported in their study in AML patients [103,104].

Platelet transfusions and bleeding events

Bleeding events (including minor, major and fatal) were reported in 31 publications (Appendix Table A9). Therapeutic PT and prophylactic PT were compared in the study by Charbonnier et al. of patients with AML [103]. Death from hemorrhage was reported in 2.4% and 0.4% of patients receiving therapeutic PT or prophylactic PT, respectively. The clinical impact of PT in patients with TTP was also investigated [105]. Of 54 patients analyzed, platelets were administered to 33 patients. Death due to hemorrhage was reported in 1 of the 33 patients who received PT and in 1 of 21 patients who received no PT. In a study of over 10,000 hospitalizations for TTP, PT was associated with higher odds ratios of thrombosis and death [21]. Death due to bleeding was also reported in 4 other publications [106–109] (Appendix Table A9). In 50 patients with CLD who underwent invasive procedures, peri-procedural bleeding was reported in 10 patients, of which 40% received prophylactic PT [54].

In 874 patients with cirrhosis, 21 patients (2.4%) had major bleeding after invasive procedures [110]. Platelets were administered pre-procedure to 4 patients and 1 of these developed major bleeding. Post-procedure, PTs were given to 5 patients, of which 2 were in the major bleeding group (in 1 of these PT was given with FFP). The effect of PT in 79 invasive procedures in 42 patients with cirrhosis was analyzed [111]. In 61 procedures, patients received platelets pre-procedure with 3 patients experiencing post-procedural bleeding. Of 18 invasive procedures where patients did not receive platelets pre-procedure, no patient experienced post-procedural bleeding.

Platelet transfusions and safety-related events

A total of 44 publications reported safety-related events. Eighteen studies included mortality data for patients with PT compared to those without PT (Table 2). Statistically significant odds or hazard ratios were reported for increased risk of death after PT in 8 studies [44,46,112,116–118,123,125]. However, in 1 study, death was more frequently reported in patients who had not received PT compared to those that had (2.6% and 0%, respectively, \(p = 0.05 \)) [113]. Despite a higher frequency of deaths for patients administered platelets, the risk of death with PT was actually lower following regression analysis adjusted for covariates, including nadir PC, red blood cell transfusion and need for hemodialysis [112]. Another study reported...
death in the same proportion of patients with or without PT (24% for both, \(p = 0.97\)) [105]. The transfusion of platelets can result in infection and, in severe cases, sepsis. Patient death due to sepsis was reported in 3 publications [105,127,128]. Several studies also reported infection or sepsis associated with PT. Wandt et al. investigated at two different PC triggers (PC count of \(<10 \times 10^9/L\) or \(<20 \times 10^9/L\)) for prophylactic PT in patients with AML [104]. Four of the 7 patients with major (WHO grade 3 or 4) bleeding complications (all in group with PC trigger of \(<20 \times 10^9/L\)) had associated serious infections and sepsis. The safety post-implantation of totally implantable venous access ports was assessed in 181 patients with TCP (55, 58 and 68 patients with mild (PC: 100–150 \(\times 10^9/L\)), moderate (PC: 50–100 \(\times 10^9/L\)) and severe (PC: \(<50 \times 10^9/L\)) TCP, respectively) [129]. Platelets were only administered to patients with severe TCP. Infection was reported in 4% and 9% of patients with mild or moderate TCP, respectively. In the patients with severe TCP, 10% of patients had an infection. Complication rates following dental extraction in 68 patients with TCP were examined, with 32 patients requiring PT [130]. There were 2 cases of infection (2.9% of study population), and 1 of these had received PT. In a multi-center study of patients admitted to ICUs between 2008 and 2013, the association between PT and hospital-acquired infection was investigated [17]. PT was associated with infection. 7.7% of patients with PT had infections compared with 1.4% without PT (\(p = 0.01\)). Infection was also reported in 2 studies in patients with CLD. In 1 study, no significant odds ratio associated with PT for infection was reported [52], whilst a different study reported a statistically significant odds ratio (2.53 [2.0, 3.2], \(p = 0.001\)) [131].

In summary, real-world observational studies demonstrated that PT was generally effective to some degree in increasing PC but did not always translate into a clinically significant increase in PC nor a reduction in bleeding risk. While these studies

Table 2. Mortality in patients with platelet transfusion compared with patients without platelet transfusion.

Article	PICOS classification	Treatment/subgroups	N	Deaths (% of patients)	Mortality OR (95% CI)
Arnold 2016 [112]	TCP overall	PT	5621	10.7	0.66 (0.46, 0.96)
		No PT	37,413	6.5	\(p = 0.029\)
Beneke 2017 [113]	TCP overall	PT	44	0	2.6
		No PT	206	0	\(p = ns\)
Chandran 2015 [44]	TCP overall	PPT	1792	22.5 within 1 month	1.8 (1.5, 2.1)
		No PPT	1792	14.3 within 1 month	\(p < 0.001\)
Chen 2011 [114]	TCP and elective invasive procedure	PT, PC \(<10 \times 10^9/L\)	10	0	NR
		No PT, PC \(<10 \times 10^9/L\)	20	0	NR
		No PT, PC 10–30 \(\times 10^9/L\)	24	0	NR
		No PT, PC \(\geq 30 \times 10^9/L\)	27	0	NR
Duffy 2013 [115]	TCP and elective invasive procedure	Pre-procedure PT	14	43	NR
		No PT	41	5	NR
Goel 2014 [116]	TCP overall	TTP hospitalizations, PT	NR	NR	2.02 (1.26, 3.22)
		TTP hospitalizations, no PT	NR	NR	\(p < 0.001\)
		HIT hospitalizations, PT	NR	NR	4.72 (1.53, 14.53)
		HIT hospitalizations, no PT	NR	NR	\(p < 0.01\)
		ITP hospitalizations, PT	NR	NR	1.06 (0.79, 1.42)
		ITP hospitalizations, no PT	NR	NR	\(p = 0.07\)
Guerrero 2017 [117]	TCP overall	PT	302	NR	1.39 (1, 1.94)
		No PT	2270	NR	\(p = 0.005\)
Kuter 2017 [118]	TCP overall	PT	442	NR	2.81 (1.54, 5.12) after PT, \(p < 0.001\)
Lee 2016 [119]	TCP overall	PT	486	0.2	\(p = 0.43\)
		No PT	302	0.0	\(p = 1.00\)
Lye 2009 [120]	TCP overall	PPT	188	1	\(p = 0.001\)
		Non-PPT	68	0	NR
Makroo 2014 [121]	TCP overall	PT	30	60	NR
		No PT	21	10	\(p = 0.30\)
Otrock 2015 [122]	TCP overall	PT	23	13	\(p = 0.001\)
		No PT	32	3	\(p = 0.001\)
Sethi 2017 [123]	TCP overall	PT	209	1.9	\(p = 0.024\)
		No PT	430	0.2	\(p = 0.001\)
Swisher 2009 [124]	TCP overall	PT	33	24	\(p = 0.97\)
Tran 2010 [125]	TCP overall	PT/major bleed	NR	12	\(p = 0.12\)
		No PT/major bleed	NR	9	\(p = 0.07\)
Warner 2017 [46]	TCP and elective invasive procedure	No PT	203	21.7	2.55 (1.76, 3.68)
		No PPT	1857	9.8	\(p = 0.001\)
Warner 2016 [125]	TCP and elective invasive procedure	Pre-procedure PT	71	27	3.20 (1.80, 5.67)
		No PT	789	10.1	\(p = 0.001\)
Yoshii 2014 [126]	TCP overall	PT	48	23	\(p = ns\)
		No PT	215	17.7	\(p = ns\)

Ci = confidence interval; IT = heparin-induced thrombocytopenia; HR = hazard ratio; ITP = immune thrombocytopenia; NR = not reported; ns = not significant; OR = odds ratio; PICOS = population, interventions, comparators, outcomes, study design; PPT = prophylactic platelet transfusion; PT = platelet transfusion; TCP = thrombocytopenia; TTP = thrombotic thrombocytopenia purpura.

*Hazard ratio presented in this publication.
demonstrated an association between PT and safety events, results with regards to increased mortality rate following PT were varied, with either no difference or an increased mortality rate associated with PT.

RWE: humanistic and societal burden

Two publications discussed the humanistic and societal burden of PT. The first reported completed surveys from 294 patients classified as a population of TCP overall and 73 surgeons and anaesthesiologists. Fewer patients rated transfusion as ‘very often’ or ‘always risky’ compared to their physicians (20% and 39%, respectively, \(p = 0.001 \)) [132]. The second study recruited a population of TCP and elective invasive procedure of 25 patients who were receiving their first transfusion. One third of patients were ‘concerned or worried’ about receiving the transfusion [133].

Economic burden

The economic burden of PT was discussed in 26 publications. Most (19 of 26) included a population of TCP overall, and 4 included a population of CLD TCP and elective invasive procedure. Patients in the 3 remaining publications were not classified but involved PT patients in 2 publications. The third was a survey of the National Blood Collection in the USA and included information from hospitals, blood centers and cord blood banks. Costs, including those associated with transfusion-related events, were reported in 23 of the 26 publications. These data are summarized in Table 3. The 3 remaining publications reported on the number of units transfused or transfusion episodes [49,104,154].

The overall costs of PTs were assessed at a tertiary care hospital in the USA [102] where a median hospitalization cost of $27,750 was reported. This varied depending on the service used with internal medicine/other costs lowest at $13,856 and the highest cost associated with BMT ($58,729). Notably, there was a statistically significant difference in mean cost between refractory and non-refractory patients ($103,956 and $37,818, respectively; \(p < 0.001 \)).

A cost analysis based on data from the Trial of Prophylactic Platelets trial [65,140] suggested that prophylaxis resulted in lower rates of bleeding compared to no prophylaxis. The authors examined the cost of prophylaxis and no prophylaxis policies. The total health care costs per 30 days, per patient were statistically significantly higher in the prophylaxis group compared to the no prophylaxis arm ($16,753 and $14,992, respectively). There was a statistically significant difference in favor of no prophylaxis in the cost of the units transferred and of the investigations and medications between the prophylaxis and no prophylaxis arm. In a separate publication, the health care costs of patients undergoing chemotherapy cycles complicated by TCP was compared to cycles in those same patients not complicated by TCP [142]. The mean cost of providing prophylaxis for a cycle was $792. Furthermore, the mean cost of treatment of bleeding was higher in TCP cycles compared to control cycles ($237 and $14, respectively). The mean cost of treating other complications was also higher in TCP cycles compared to control cycles, resulting in mean total costs of $6866 for TCP cycles and $4875 for control cycles (\(p < 0.001 \)).

The wholesale acquisition cost of PT was compared to that of the TPO-R agonists romiplostim and eltrombopag in a randomized, double blind clinical pilot trial [64]. Both romiplostim and eltrombopag increased pre-operative PC to a similar or greater extent as PT with a cost of less than 50% of PT ($2284 and $2991, based on off-label dosing, respectively compared to $7500 for PT). In another study, the usual standard of PTs was compared to the use of recombinant human interleukin-11 (rhIL-11, oprelvekin) for prophylaxis of severe chemotherapy-induced TCP [141]. The overall cost of the usual standard of PT over the 3-week chemotherapy cycle was $3495 compared to $5328 for rhIL-11 group over the same period. Although, the rhIL-11 group had fewer PTs and therefore avoided potential adverse reactions to transfusion, the cost of the drug was substantial, resulting in a higher overall cost.

An additional cost associated with PT is the treatment of transfusion-related events. The annual cost of such events was reported in 2001 for the USA [135]. Hospitalization due to transfusion-related sepsis cost $6408, whilst treating hepatitis B or C virus transfusion-related events cost between $1228 and $17,412 a year. In a further publication the estimated average treatment cost for acute-transfusion reactions (ATRs) in Germany was reported [136]. Grade 1 ATRs such as chills, fever and urticaria cost on average €104. For Grade 2 ATRs such as urticaria with itching, hypotension or fever >40°C, the average cost was €238. Finally, Grade 3 allergic and bacterial ATRs cost €1200 and €21,984, respectively.

Across publications reporting PT costs in CLD patients, the reported estimated cost for 1–2 PTs ranged from $500 [138] to $1639 [69], while the total estimated costs of PT were reported as $5258–13,117 in 1 publication and $4800–11,000 in another [134,138].

In summary, the available data show that PT represents a substantial cost burden. The economic costs associated with PTs extends beyond the collection and delivery of transfusion units, and there are significant costs associated with transfusion-related events.

Conclusions

PT has been considered the ‘gold-standard’ treatment for increasing PC in thrombocytopenic patients [155], and is recommended in current guidelines [10,11,13]. However, researching the efficacy and effectiveness
Table 3. Summary of the economic burden of platelet transfusions and comparators.

Article	PICOS Classificationa	Outcome	Subgroup	Sample Size	Cost	Year	P
Barnett 2018 [134]	CLD TCP and elective invasive procedure	Total estimated cost of a PT	All	NR	5258–13,117 USD	2017	NR
Basu 2012b [59]	CLD TCP and elective invasive procedure	Cost (wholesale acquisition cost)	PT, Romiplostim, Eltrombopag	18, 23, 24	500–1000 USD	2012	NR
Bell 2003 [135]	TCP overall	Random-donor pooled platelet concentrate	Single-donor apheresis platelets, Pathogen inactivation cost per unit, Annual cost of treating transfusion-related sequelae	All	469 USD, 100 USD, 45,776 USD	2001	NR
Berger 2013 [136]	TCP overall	Estimated average costs of ATRs Grade 1	All	NR	104 EURO	2013	NR
Birchall 2017 [137]	TCP overall	Cost of dose	All	1,781 PTs	193 GBP	2016/17	NR
Brown 2007 [138]	CLD TCP and elective invasive procedure	Average cost of care during cycles	Patients with TCP, Patients without TCP	All	6866 USD, 4875 USD	<0.001	
Campbell 2014 [140]	TCP overall	Costs of PLT units transfused per 30 day per patient	No prophylaxis, Prophylaxis	301, 299	966 USD, 11,976 USD	<0.001	
Cantor 2003 [141]	TCP overall	Expected costs per 3-week cycle	Usual care, rhl-11	27	5328 USD	2003	NR
Elting 2003 [142]	TCP overall	Reported cost per PT	All	NR	590 USD	1999	NR
FDA 2006 [143]	NR (PT patients)	Costs of bacterial testing of single unit WBD PLTs and speciation of bacterially contaminated PLTs (transfusion services)	Low annual cost, Medium annual cost, High annual cost	164,000, 164,000, 164,000	446,095 USD, 892,333 USD, 1,338,370 USD	2013	NR
Forsythe 2017 [144]	TCP overall	Rescue medication/transfusion costs	Eltrombopag + PT, Romiplostim + PT	650, 380	1220 USD, 1906 USD	2017	NR

(Continued)
of PT is challenging, with limited numbers of RCTs, with a variety of outcome measures and clinical outcomes. This SLR has demonstrated that TCP patients are a heterogeneous group. In studies including large cohorts (>1000 patients with TCP), PT use varied widely between 1.7% and 24.5% of patients [44,45]. Some variability may be explained by the differences in patient baseline characteristics both between and within studies, including type of procedure, underlying medical condition(s), and patient age. Evidence for the impact of these differences is largely lacking, although one study in patients with non-Hodgkin lymphoma showed that older patients had a higher incidence of PT [48].

In one real-world observational study comparing therapeutic PT versus prophylactic PT in patients with AML [103], death from hemorrhage was reported in more patients receiving therapeutic PT than prophylactic PT. Also, in one RCT comparing therapeutic PT versus prophylactic PT [68], the grade 4 bleeding risk was greater in the therapeutic group; however therapeutic use resulted in a 33% reduction in the mean number of PTs given. Data from trials directly comparing prophylactic PT with no intervention/best supportive care were mixed regarding the effect of prophylactic PT on increasing PC and reducing bleeding risk [26,65–68]. One study demonstrated increases in PC with PT but rates of non-response were high [26], and in another study PC increases were only transient [66]. Studies reporting on the response to different platelet doses suggested that lower doses led to an overall reduction in number of platelets transfused [63,70–72], although one study was stopped early due to a higher rate of grade 4 bleeding in the low dose group [73]. PC threshold for intervention varied widely, due to heterogeneity in patient type and procedure, and ranged from <10 to ≤100 x 10^9/L [46,139]. This is reflected in a recent guideline update from the American Society of Clinical Oncology that recommends PC thresholds ranging from 10 to 50 x 10^9/L depending on patient characteristics or whether the patient will undergo invasive procedures [10]. These data support further investigation of PT strategies and doses to ensure that the benefits of PTs are maximized whilst minimizing the risks.

Real-world observational studies demonstrated that although PT might be effective to some degree in increasing PC, it did not always translate into a clinically

Article	PICOS Classification	Outcome	Subgroup	Sample Size	Cost	Year	P
Jimenez-Marco 2014 [145]	TCP overall	Cost of outdated PLT units	Pre PRT PLT	NR	310,861 USD	2014	NR
			Post PRT PLT	NR	2368 USD		
Juskewitch 2017 [146]	TCP overall	Cost of apheresis PLT (institution-run blood bank)	All	NR	460 USD	2017	NR
Lin 2017 [147]	TCP overall	Mean reimbursement costs of 14,115 bleeding-related episodes	All	6651	5606 USD	2013	NR
Meehan 2000 [102]	TCP overall	Total hospitalization costs (median) per admission	All	245	27,750 USD	2000	NR
		Total hospitalization costs (mean)	Refractory	63	103,956 USD	<0.001	
Paessens 2012 [148]	TCP overall	Mean cost of PT of 189 CT lines	All	229	37,818 USD	2016	NR
Riley 2012 [149]	TCP overall	Simulated total cost/patient	Low-dose strategy	259	4504 USD	2012	NR
Staginnus 2004 [150]	TCP overall	Estimated net cost	Medium-dose strategy	259	5658 USD		
Stang 2010 [69]	CLD TCP and elective	PT- fixed costs	Without IBS NR	19	16,908 YEN	2004	NR
	invasive procedure	PT- single donor platelets costs with blood transfusion treatment	With IBS NR	19	20,806 YEN		
		Approximate costs per patient associated with blood transfusion treatment	All	19	537 USD	2008	NR
		Approximate costs per patient associated with desmopressin treatment	All	19	932 USD		
			All	17	700 USD		
Stokes 2018 [151]	TCP overall	Mean costs of administering blood (PLT) per unit transfused	All	NR	84 USD	2014	S
Whittaker 2011 [152]	NR (PT patients)	Mean hospital amount paid per apheresis PLT (leukocyte reduced)	All	NR	535 USD	2011	NR
Whittaker 2016 [153]	NR (PT patients)	Mean hospital amount paid per apheresis PLT (leukocyte reduced)	All	NR	517 USD	2013	NR

Abbreviations: AIDS = acquired immune deficiency syndrome; ATL = adult T-cell lymphoma; ATR = acute transfusion reaction; BMT = bone marrow transplantation; CIT = chemotherapy-induced thrombocytopenia; CLD = chronic liver disease; CT = chemotherapy; GBP = Pound sterling; HAM = HTLV-I-associated myelopathy; HBV = hepatitis B virus; HCC = hepatocellular carcinoma; HCV = hepatitis C virus; HTLV-I = human T-cell lymphotropic virus type I; IBS = intercept blood; PRT = pathogen reduction technology; PICOS = population, interventions, comparators, outcomes, study design; PT = platelet transfusion; rhIL-11 = recombinant human interleukin-11; TCP = thrombocytopenia; USD = United States dollar; WBD = whole blood derived.

PICOS classification based on population, interventions, comparators, outcomes and study design.

A stringent prophylactic-platelet transfusion policy <10 x 10^9/L for stable patients and <20 x 10^9/L in the presence of major bleeding or additional risk factors. A trigger of <50 x 10^9/L was introduced for patients undergoing invasive procedures.

Units of currency not provided in the publication.
significant reduction in bleeding risk [54,111], and refractoriness was a significant problem [101,102]. PT was also associated with safety concerns, including an increased infection risk in some studies [17,131]. Studies varied as to whether mortality rate was higher following PT, with 8 showing a significantly increased odds ratio/hazard ratio [44,46,112,116–118,123,125], although in one the rate was lower after regression analysis adjusted for covariates [112], and others showed no difference [105]. It is noteworthy that in individual RWE studies comparing PT versus no PT, patients receiving PT might have been at higher risk than patients who did not receive PT which can create potential bias when comparing results.

Publications that discussed the humanistic burden of PT demonstrated that 20% of patients rated transfusion as ‘very often’ or ‘always risky’ [132] while one third of patients were ‘concerned or worried’ about receiving PT [133]. Limited research on the humanistic and societal burden of PT means that the impact of this procedure on patient experience and quality of life is also largely unknown.

Evidence is lacking for the cost-effectiveness of PT, and most studies examining the economic burden of PT in this SLR did not distinguish between prophylactic and therapeutic use. Available data show that PT represents a substantial cost burden [102], and this includes the higher costs associated with the management of transfusion-related AEs [135,136] and particularly those associated with PT-refractory status [102]. Measures to decrease PT-related costs could include implementing uniform management algorithms, as well as updating guidelines and protocols to include appropriately licensed treatment alternatives such as pharmacotherapy options.

Due to this growing evidence of the limitations of PT, alternative treatment approaches to increase PC are being investigated. Studies with TPO-R agonists demonstrated promising results in reducing patients’ need for pre-procedural prophylactic PT and any bleeding rescue therapy, including therapeutic PT, from 65% to 93% vs 13% to 38% for placebo [56,91–94]. Although PTs are used to varying degrees for increasing PC in TCP, it is important to understand the limitations of PTs, and to explore the use of alternative treatment options where available.

Acknowledgements

Medical writing support was provided by Insight Medical Writing, Kidlington, UK (Sarah Germain).

Disclosure statement

AN reports research support from Amgen, Bristol-Myers Squibb, GlaxoSmithKline, Octapharma and Rigel and consulting for Amgen, Angle, Argenx, Dova, GlaxoSmithKline, Novartis, ONO Pharmaceutical, Rigel, Shionogi and UCB Biosciences. HL reports grants from Novartis, grants and personal fees from Rigel, personal fees from Dova, grants and personal fees from Argenx, and grants and personal fees from Symimmune (now Alexion), all outside the submitted work. He also reports previous consulting for Dova on the use of avatrombopag for ITP. MP-R reports personal fees from Shionogi, outside the submitted work. AT reports grants from Shionogi, Kyowa Hakko Kirin, Chugai Pharmaceutical, Zenebyu Kogyo, and the Ministry of Health, Labour and Welfare of Japan, all during the conduct of the study. He also reports grants from the Ministry of Education, Culture, Sports and Technology of Japan, Astellas Pharma, Yamada Bee Farm, and Pfizer, all outside the submitted work. RT reports personal fees of a consultation fee from Shionogi and lecturer fees from Shionogi, Eisai, MSD, Gilead Sciences, Fujifilm Wako and AbbVie, all outside the submitted work. ZY reports being a consultant for Gilead Sciences, Intercept, Bristol-Myers Squibb, Novo Nordisk, Viking, TERNs, Shionogi and AbbVie, all outside the submitted work. RB is an employee of Shionogi. AJ, JL and VT are employees of Creativ-Ceutical.

Funding

Study design and conduct, data collection, management, data analysis and interpretation, and manuscript development was funded by Shionogi.

Availability of data and material

The datasets generated and analyzed during this study are available from the corresponding author on reasonable request.

Notes on contributors

Adrian Newland is Professor of Hematology at Barts NHS Trust, UK. He is ex-Chair of the UK National Blood Transfusion Committee and currently chairs the DMC for NHS Blood and Transplant. He has clinical and research interests in TCP and has been Principal Investigator on many treatment studies and has published extensively on the condition.

Roy Bentley MSc, PhD, is an employee of Shionogi with an interest in health economics and outcomes research, patient-reported outcomes and healthcare policy.

Anna Jakubowska received a PhD in Pharmaceutical Sciences from Jagiellonian University and is an employee of Creativ-Ceutical with experience in the preparation of systematic reviews and health economics and outcomes research.

Howard Liebman is the Donald I Feinstein Professor of Hematology and director of the Diagnostic Hematology group of the Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, USA. His research and publications have centered upon disorders of hemostasis and thrombosis, with a particular interest in platelet disorders and immune TCP.

Joanna Lorens is an employee of Creativ-Ceutical with experience in the preparation of systematic reviews.

Markus Peck-Radosavljevic is Professor of Medicine and Chairman at the Department of Gastroenterology & Hepatology, Endocrinology, Rheumatology and Nephrology at Klinikum Klagenfurt in Klagenfurt, Austria. He began his
research in liver disease in the field of TCP in portal hypertension in 1994 and has been working on the role of TPO in advanced stage liver disease for many years, including his role as one of the lead-investigators in the L-PLUS-2 trial. He has also been running a translational lab testing novel approaches to the treatment of portal hypertension and hepatocellular carcinoma (HCC) for many years, while working at the Medical University of Vienna. Since January 2016, he has taken over as Chair of Internal Medicine and Gastroenterology in Klagenfurt, which also includes the Endocrinology, the Rheumatology, the Nephrology (including Hemodialysis) and the Emergency Medicine service. He has set up a new Clinical trials study unit there and is running a broad range of clinical trials in various different indications, including HCC, cholestatic liver diseases and non-alcoholic steatohepatitis.

Vanessa Taieb studied at the Ecole Nationale de la Statistique et de l’Analyse de l’Information and is an employee of CreativeCeutical with experience in the preparation of systematic reviews and health economics and outcomes research.

Akiyoshi Takami is Professor of Hematology, Department of Internal Medicine, Aichi Medical University, Japan; Executive director for the Japanese Society for Laboratory Hematology; Supervisor for the Japan Society for Hematopoietic Cell Transplantation; and Chairperson for the Subcommittee on the Guideline for the use of PT preparation of the Japan Society of Transfusion Medicine and Therapy.

Ryosuke Tateishi has worked in the HCC field since 1998 and has served on two guideline committees: Japanese Clinical Practice Guideline for liver cancer and Asian Conference on Tumor Ablation Guideline.

Zobair M. Younossi is Chairman of Medicine and Outcomes Researcher with extensive experience in all types of health services research, including systematic reviews. He is extensively published with a Scopus h-index of 81.

References

[1] Peck-Radosavljevic M. Thrombocytopenia in chronic liver disease. Liver International: Official Journal of the International Association for the Study of the Liver. 2017;37(6):778–793.
[2] Smock KJ, Perkins SL. Thrombocytopenia: an update. Int J Lab Hematol. 2014;36(3):269–278.
[3] Williamson DR, Lesur O, Tétrault JP, et al. Thrombocytopenia in the critically ill: prevalence, incidence, risk factors, and clinical outcomes. Can J Anaesth. 2013;60(7):641–651.
[4] Vadhan-Raj S. Management of chemotherapy-induced thrombocytopenia: current status of thrombopoietic agents. Semin Hematol. 2009;46(1 Suppl 2):S26–S32.
[5] Afzal N, McHutchison J, Brown R, et al. Thrombocytopenia associated with chronic liver disease. J Hepatol. 2008;48(6):1000–1007.
[6] Provan D, Newland AC. Current management of primary immune thrombocytopenia. Adv Ther. 2015;32(10):875–887.
[7] Kuter DJ. Managing thrombocytopenia associated with cancer chemotherapy. Oncology (Williston Park). 2015;29(4):282–294.
[8] Liou SY, Stephens JM, Carpicut KT, et al. Economic burden of haematological adverse effects in cancer patients: a systematic review. Clin Drug Invest. 2007;27(6):381–396.
[9] Freireich EJ. Origins of platelet transfusion therapy. Transfus Med Rev. 2011;25(3):252–256.
[10] Schiffer CA, Bohlke K, Delaney M, et al. Platelet transfusion for patients with cancer: American society of clinical oncology clinical practice guideline update. J Clin Oncol. 2018;36(3):283–299.
[11] Estcourt LJ, Birchall J, Allard S, et al. Guidelines for the use of platelet transfusions. Br J Haematol. 2017;176(3):365–394.
[12] Squires JE. Indications for platelet transfusion in patients with thrombocytopenia. Blood Transfus. 2015;13(2):221–226.
[13] Kaufman RM, Djulbegovic B, Gensheimer T, et al. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2015;162(3):205–213.
[14] National Institute for Health and Care Excellence. Blood transfusion. NICE guideline [NG24]. 2015 [cited 2019 June 20]. Available from: https://www.nice.org.uk/guidance/ng24.
[15] Spiess BD, Royston D, Levy JH, et al. Platelet transfusions during coronary artery bypass graft surgery are associated with serious adverse outcomes. Transfusion. 2004;44(8):1143–1148.
[16] Bilgin YM, van de Watering LM, Versteegh MJ, et al. Postoperative complications associated with transfusion of platelets and plasma in cardiac surgery. Transfusion. 2011;51(12):2603–2610.
[17] Aubron C, Flint AW, Bailey M, et al. Is platelet transfusion associated with hospital-acquired infections in critically ill patients? Crit Care. 2017;21(1):2.
[18] Tinegate H, Birchall J, Gray A, et al. Guideline on the investigation and management of acute transfusion reactions. Prepared by the BCSH blood transfusion task force. Br J Haematol. 2012;159(2):143–153.
[19] Katus MC, Szczepiorkowski ZM, Dumont LJ, et al. Safety of platelet transfusion: past, present and future. Vox Sang. 2014;107(2):103–113.
[20] Valsami S, Dimitroulis D, Gialeraki A, et al. Current trends in platelet transfusions practice: the role of ABO-RhD and human leukocyte antigen incompatibility. Asian J Transfus Sci. 2015;9(2):117–123.
[21] Goel R, Ness PM, Takemoto CM, et al. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality. Blood. 2015;125(9):1470–1476.
[22] Raval JS, Mazepa MA, Russell SL, et al. Passive reporting greatly underestimates the rate of transfusion-associated circulatory overload after platelet transfusion. Vox Sang. 2015;108(4):387–392.
[23] Stoilla M, Refaai MA, Heald JI, et al. Platelet transfusion – the new immunology of an old therapy. Front Immunol. 2015;6:28.
[24] Narick C, Triulzi DJ, Yazer MH. Transfusion-associated circulatory overload after plasma transfusion. Transfusion. 2012;52(1):160–165.
[25] Killick SB, Carter C, Culligan D, et al. Guidelines for the diagnosis and management of adult myelodysplastic syndromes. Br J Haematol. 2014;164(4):503–525.
[26] Khan Assir MZ, Kamran U, Ahmad HI, et al. Effectiveness of platelet transfusion in dengue fever:
a randomized controlled trial. Transfus Med Hemother. 2013;40(5):362–368.

[27] Estcourt LJ, Birchall J, Lowe D, et al. Platelet transfusions in haematology patients: are we using them appropriately? Vox Sang. 2012;103(4):284–293.

[28] Garner S. Inherent variation in donor platelet function: potential clinical implications. Transfus Med. 2013;23 (Suppl 2):4.

[29] Hess JR. Conventional blood banking and blood component storage regulation: opportunities for improvement. Blood Transfus. 2010;8(Suppl 3):s9–s15.

[30] Maurer-Spurej E, Chipperfield K. Past and future approaches to assess the quality of platelets for transfusion. Transfus Med Rev. 2007;21(4):295–306.

[31] US Food and Drug Administration. Guidance for industry. Determining donor eligibility for autologous donors of blood and blood components intended solely for autologous use – compliance policy. 2016 [cited 2019 June 20]. Available from: https://www.fda.gov/media/99325/download.

[32] US Food and Drug Administration. Guidance for industry. Use of Sterile Connecting Devices in Blood Bank Practices; Department of Health and Human Services. 2000 [cited 2019 June 20]. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Blood/ucm062885.pdf.

[33] US Food and Drug Administration. Pre storage leukocyte reduction of whole blood and blood components intended for transfusion. Department of Health and Human Services. 2012 [cited 2019 June 20]. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Blood/ucm062885.pdf.

[34] Robinson S, Harris A, Atkinson S, et al. The administration of blood components: a British society for haematology guideline. Transfus Med. 2018;28(1):3–21.

[35] Ellingson KD, Sapiano MRP, Haass KA, et al. Continued decline in blood collection and transfusion in the United States-2015. Transfusion. 2017;57(Suppl 2):1588–1598.

[36] Estcourt LJ. Why has demand for platelet components declined? A review. Transfus Med. 2014;24(5):260–268.

[37] Gartlehner G, Hansen RA, Nissman D, et al. AHRQ technical reviews. Criteria for distinguishing effect size from efficacy trials in systematic reviews. Rockville (MD): Agency for Healthcare Research and Quality (US); 2006.

[38] Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. March 2011 [cited 2019 June 20]. Available from: https://handbook-5-1.cochrane.org/.

[39] Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

[40] Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

[41] Penson DF, Krishnaswami S, Jules A, et al. AHRQ comparative effectiveness reviews. Evaluation and treatment of cryptorchidism. Rockville (MD): Agency for Healthcare Research and Quality (US); 2012.

[42] Ang DC, Marinescu L, Kuriyan M. Physician compliance with platelet usage criteria. Arch Pathol Lab Med. 2008;132(8):1321–1324.

[43] Blumberg N, Gettings KF, Turner C, et al. An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions. Transfusion. 2006;46(10):1813–1821.

[44] Chandran A, Warner M, Schenck L, et al. Prophylactic platelet transfusion is not associated with decreased ICU red blood cell requirements. Crit Care. 2015;43 (12):97.

[45] Saleh MN, Fisher M, Grotzinger KM. Analysis of the impact and burden of illness of adult chronic ITP in the US. Curr Med Res Opin. 2009;25(12):2961–2969.

[46] Warner MA, Woodrum D, Hanson A, et al. Preprocedural platelet transfusion for patients with thrombocytopenia undergoing interventional radiology procedures is not associated with reduced bleeding complications. Transfusion. 2017;57(4):890–898.

[47] Wu Y, Aravind S, Ranganathan G, et al. Anemia and thrombocytopenia in patients undergoing chemotherapy for solid tumors: a descriptive study of a large out-patient oncology practice database, 2000–2007. Clin Ther. 2009;31(Pt. 2):2416–2432.

[48] Andrade-Campos MM, Montes-Limón AE, Soro-Alcubierre G, et al. Patients older than 65 years with non-hodgkin lymphoma are suitable for treatment with (90)Yttrium-ibritumomab tiuxetan: a single-institution experience. Clin Lymphoma Myeloma Leuk. 2015;15(8):464–471.

[49] Greeno E, McCullough J, Weisdorf D. Platelet utilization and the transfusion trigger: a prospective analysis. Transfusion. 2007;47(2):201–205.

[50] Habr B, Charpentier J, Champigneulle B, et al. Platelet transfusions in cancer patients with hypoproliferative thrombocytopenia in the intensive care unit. Ann Intensive Care. 2015;5(1):46.

[51] Wandt H, Schaefer-Eckart K, Frank M, et al. A therapeutic platelet transfusion strategy is safe and feasible in patients after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 2006;37 (4):387–392.

[52] Benson AB, Burton JRJ, Austin GL, et al. Differential effects of plasma and red blood cell transfusions on acute lung injury and infection risk following liver transplantation, Liver Transpl. 2011;17(2):149–158.

[53] Pillarisetty J, Patel P, Duthuluru S, et al. Cardiac catheterization in patients with end-stage liver disease: safety and outcomes. Catheter Cardiovasc Interv. 2011;77(1):45–48.

[54] Giannini EG, Greco A, Marenco S, et al. Incidence of bleeding following invasive procedures in patients with thrombocytopenia and advanced liver disease. Clin Gastroenterol Hepatol. 2010;8(10):899–902. quiz e109.

[55] Napolitano G, Iacobellis A, Merla A, et al. Bleeding during invasive procedures is rare and unpredicted by platelet counts in cirrhotic patients with thrombocytopenia. Eur J Intern Med. 2017;38:79–82.

[56] Terrault N, Kuter DJ, Izumi N, et al. Superiority of aavotrombopag to placebo in increasing platelet counts in patients with chronic liver disease-associated thrombocytopenia undergoing scheduled procedures: results from 2, Phase 3 randomized studies. Blood. 2017;130(Suppl 1):18.

[57] Snyder E, McCullough J, Slichter SJ, et al. Clinical safety and effectiveness trials of platelets photochemically treated with amatosenal HCl and ultraviolet A light for pathogen inactivation: the SPRINT trial. Transfusion. 2005;45(12):1864–1875.

[58] Murphy S, Snyder E, Cable R, et al. Platelet dose consistency and its effect on the number of platelet transfusions for support of thrombocytopenia: an analysis of the SPRINT trial of platelets photochemically treated
with amotosalen HCl and ultraviolet A light. Transfusion. 2006;46(1):24–33.

[59] Basu P, Shah N, Krishnaswamy N, et al. Assessment of tissue tumor necrosis factor alpha (TNF-α) as a novel marker for latent celiac disease. J Gastroenterol Hepatol. 2012;27(Suppl 5):152.

[60] Stanworth SJ, Estcourt LJ, Llewelyn CA, et al. Impact of prophylactic platelet transfusions on bleeding events in patients with hematologic malignancies: a subgroup analysis of a randomized trial. Transfusion. 2014;54(10):2385–2393.

[61] Hess JR, Trachtenberg FL, Assmann SF, et al. Clinical and laboratory correlates of platelet alloimmunization and refractoriness in the PLADO trial. Vox Sang. 2016;111(3):281–291.

[62] McCullough J, Vesole DH, Benjamin RJ, et al. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: the SPRINT Trial. Blood. 2004;104(5):1534–1541.

[63] Slichter SJ, Kaufman RM, Assmann SF, et al. Dose of thrombopoietin analogue (TPO) in severe thrombocytopenia for outpatient percutaneous liver biopsy in patients with chronic liver disease (CLD): a randomised double blinded prospective clinical pilot trial. Gut. 2012;61(Suppl 2):A187–A188.

[65] Stanworth SJ, Estcourt LJ, Powter G, et al. A no-prophylaxis platelet-transfusion strategy for hematologic cancers. N Engl J Med. 2010;362(7):600–613.

[66] Basu P, Shah NJ, Farhat S, et al. Single use of romiplostim thrombopoietin analogue (TPO) in severe thrombocytopenia for outpatient percutaneous liver biopsy in patients with chronic liver disease (CLD): a randomised double blinded prospective clinical pilot trial. Gut. 2012;61(Suppl 2):A187–A188.

[67] Stanworth SJ, Estcourt LJ, Powter G, et al. A no-prophylaxis platelet-transfusion strategy for hematologic cancers. N Engl J Med. 2010;362(7):600–613.

[68] Lye DC, Archuleta S, Syed-Omar SF, et al. Prophylactic platelet transfusion plus supportive care versus supportive care alone in adults with dengue and thrombocytopenia: a multicentre, open-label, randomised, superiority trial. Lancet. 2017;389(10079):1611–1618.

[69] Veelo DP, Vlaar AP, Dongelmans DA, et al. Correction of subclinical coagulation disorders before percutaneous dilatational tracheotomy. Blood Transfus. 2012;10(2):213–220.

[70] Lu FQ, Zhao DW, Peng Y. Clinical study on the effect of reducing prophylactic platelet transfusion dose on bleeding in stable thrombocytopenia patients. Vox Sang. 2013;105:262.

[71] Timouth A, Tannock IF, Crump M, et al. Low-dose prophylactic platelet transfusions in recipients of an autologous peripheral blood progenitor cell transplant and patients with acute leukemia: a randomized controlled trial with a sequential Bayesian design. Transfusion. 2004;44(12):1711–1719.

[72] Sensebé L, Giraudreau B, Bardiaux L, et al. The efficiency of transfusing high doses of platelets in hematologic patients with thrombocytopenia: results of a prospective, randomized, open, blinded end point (PROBE) study. Blood. 2005;105(2):862–864.

[73] Heddle NM, Cook RJ, Timouth A, et al. A randomized controlled trial comparing standard- and low-dose strategies for transfusion of platelets (SToP) to patients with thrombocytopenia. Blood. 2009;113(7):1564–1573.

[74] Klumpp TR, Herman JH, Gaughan JP, et al. Clinical consequences of alterations in platelet transfusion dose: a prospective, randomized, double-blind trial. Transfusion. 1999;39(7):674–681.

[75] Johansson P, Simonsen A, Ostrowski SR, et al. TEG as a surrogate marker for the haemostatic function of PRT treated platelets in thrombocytopenic patients. Transfusion (Paris). 2012;52:67A.

[76] Johansson PI, Simonsen AC, Brown PN, et al. A pilot study to assess the haemostatic function of pathogen-reduced platelets in patients with thrombocytopenia. Transfusion. 2013;53(9):2043–2052.

[77] Garban F, Guyard A, Labussière H, et al. Comparison of the haemostatic efficacy of pathogen-reduced platelets vs untreated platelets in patients with thrombocytopenia and malignant hematologic diseases: a randomized clinical trial. JAMA Oncol. 2018;4(4):468–475.

[78] de Wildt-Eggen J, van Putten WL, Noutovyn VM, et al. Clinical effectiveness of leucoreduced, pooled donor platelet concentrates, stored in plasma or additive solution: a prospective, randomised study. Transfusion. 2000;40(4):398–403.

[79] Mirasol Clinical Evaluation Study Group. A randomized controlled trial evaluating the performance and safety of platelets treated with MIRASOL pathogen reduction technology. Transfusion. 2010;50(11):2362–2375.

[80] Kerkhoffs JL, van Putten WL, Noutovyn VM, et al. Clinical effectiveness of leucoreduced, pooled donor platelet concentrates, stored in plasma or additive solution with and without pathogen reduction. Br J Haematol. 2010;150(2):209–217.

[81] Lozano M, Knutsen F, Tardivel R, et al. A multi-centre study of therapeutic efficacy and safety of platelet components treated with amotosalen and ultraviolet A pathogen inactivation stored for 6 or 7 d prior to transfusion. Br J Haematol. 2011;153(3):393–401.

[82] Janetzko K, Cazenave JP, Klüter H, et al. Therapeutic efficacy and safety of photochemically treated apheresis platelets processed with an optimized integrated set. Transfusion. 2005;45(9):1443–1452.

[83] Simonsen AC, Johansson PI, Conlan MG, et al. Transfusion of 7-day-old amotosalen photochemically treated buffy-coat platelets to patients with thrombocytopenia: a pilot study. Transfusion. 2006;46(3):424–433.

[84] van Rhenen D, Gulliksson H, Cazenave JP, et al. Transfusion of pooled buffy coat platelet components prepared with photochemical pathogen inactivation treatment: the euroSPRiTE trial. Blood. 2003;101(6):2426–2433.

[85] Vadhan-Raj S, Kavanagh JJ, Freedman RS, et al. Safety and efficacy of transfusions of autologous cryopreserved platelets derived from recombinant human thrombopoietin to support chemotherapy-associated severe thrombocytopenia: a randomised cross-over study. Lancet. 2002;359(9234):2145–2152.

[86] Zhu M, Xu W, Wang BL, et al. Hemostatic function of apheresis platelet concentrates treated with gamma irradiation in use for thrombocytopenic patients. Transfus Med Hemother. 2014;41(3):189–196.

[87] Diedrich B, Ringdén O, Watz E, et al. A randomized study of buffy coat platelets in platelet additive
solution stored 1-5 versus 6-7 days prior to prophylactic transfusion of allogeneic haematopoietic progenitor cell transplant recipients. Vox Sang. 2009;97 (3):254–259.

[88] Heddle NM, Klama L, Meyer R, et al. A randomized controlled trial comparing plasma removal with white cell reduction to prevent reactions to platelets. Transfusion. 1999;39(3):231–238.

[89] Heddle NM, Blajchman MA, Meyer RM, et al. A randomized controlled trial comparing the frequency of acute reactions to plasma-reduced platelets and prestorage WBC-reduced platelets. Transfusion. 2002;42(5):556–566.

[90] Van Der Meer PF, Ypma PF, van Geloven N, et al. Hemostatic efficacy of pathogen-inactivated buffy coat-derived platelet concentrates in hemato-oncological patients: outcomes of the prepares trial. Blood. 2017;130(Suppl 1):704.

[91] Afdfhal N, Duggal A, Ochiai T, et al. Platelet response to lusutrombopag, a thrombopoietin receptor agonist, in patients with chronic liver disease and thrombocytopenia undergoing non-emergency invasive procedures: results from a Phase 3 randomized, double-blind, placebo-controlled study. Blood. 2017;130 (Suppl 1):291.

[92] Izumi N, Osaki Y, Yamamoto K, et al. A Phase 3, randomized, double-blind, placebo-controlled study of lusutrombopag for thrombocytopenia in patients with chronic liver disease undergoing elective invasive procedures in Japan (L-PLUS 1). Hepatology. 2015;62 (6):1397A–1398A.

[93] Tateishi R, Seike M, Kudo M, et al. A randomized controlled trial of lusutrombopag in Japanese patients with chronic liver disease undergoing radiofrequency ablation. J Gastroenterol. 2019;54(2):171–181.

[94] Afdfhal NH, Giannini EG, Tayyab G, et al. Eltrombopag before procedures in patients with cirrhosis and thrombocytopenia. N Engl J Med. 2012;367(8):716–724.

[95] Platzbecker U, Wong RS, Verma A, et al. Safety and tolerability of eltrombopag versus placebo for treatment of thrombocytopenia in patients with advanced myelodysplastic syndromes or acute myeloid leukemia: a multicentre, randomised, placebo-controlled, double-blind, phase 1/2 trial. Lancet Haematol. 2015;2(10):e417–e426.

[96] Kantarjian HM, Giles FJ, Greenberg PL, et al. Phase 2 study of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving azacitidine therapy. Blood. 2010;116(17):3163–3170.

[97] Moskowitz CH, Hamlin PA, Gabrilove J, et al. Maintaining the dose intensity of ICE chemotherapy with a thrombopoietic agent, PEG-rHuMGDF, may confer a survival advantage in relapsed and refractory aggressive non-Hodgkin lymphoma. Ann Oncol. 2007;18(11):1842–1850.

[98] Noris P, Schlegel N, Klerys C, et al. Analysis of 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia. Haematologica. 2014;99 (8):1387–1394.

[99] Arnold DM, Crowther MA, Cook Rj, et al. Utilization of platelet transfusions in the intensive care unit: indications, transfusion triggers, and platelet count responses. Transfusion. 2006;46(8):1286–1291.

[100] Ning S, Barty R, Liu Y, et al. Platelet transfusion practices in the ICU: data from a large transfusion registry. Chest. 2016;150(3):516–523.

[101] Krishna SG, Rao BB, Thirumurthi S, et al. Safety of endoscopic interventions in patients with thrombocytopenia. Gastrointest Endosc. 2014;80(3):425–434.

[102] Meehan KR, Matias CO, Rathore SS, et al. Platelet transfusions: utilization and associated costs in a tertiary care hospital. Am J Hematol. 2000;64(4):251–256.

[103] Charbonnier A, Raba M, Ladaque P, et al. Preventive versus curative platelet transfusion strategies in the treatment of acute myeloid leukemia patients: a comparative study. Blood. 2014;124(21):4288.

[104] Wandt H, Frank M, Ehninger G, et al. Safety and cost effectiveness of a 10 x 10(9)/L trigger for prophylactic platelet transfusions compared with the traditional 20 x 10(9)/L trigger: a prospective comparative trial in 105 patients with acute myeloid leukemia. Blood. 1998;91 (10):3601–3606.

[105] Swisher KK, Terrell DR, Vesely SK, et al. Clinical outcomes after platelet transfusions in patients with thrombotic thrombocytopenic purpura. Transfusion. 2009;49(5):873–887.

[106] Samuelson Bannow BT, Walter RB, Gernsheimer TB, et al. Patients treated for acute VTE during periods of treatment-related thrombocytopenia have high rates of recurrent thrombosis and transfusion-related adverse outcomes. J Thromb Thrombolysis. 2017;44 (4):442–447.

[107] Spahr JE, Rodgers GM. Treatment of immune-mediated thrombocytopenic purpura with concurrent intravenous immunoglobulin and platelet transfusion: a retrospective review of 40 patients. Am J Hematol. 2008;83 (2):122–125.

[108] Tooor AA, Choo SY, Little JA. Bleeding risk and platelet transfusion refractoriness in patients with acute myelogenous leukemia who undergo autologous stem cell transplantation. Bone Marrow Transplant. 2000;26(3):315–320.

[109] Ypma PF, Kerkhoffs JL, van Hilten JA, et al. The observation of bleeding complications in haematology-oncological patients: stringent watching, relevant reporting. Transfus Med. 2012;22(6):426–431.

[110] Li J, Han B, Li H, et al. Association of coagulopathy with the risk of bleeding after invasive procedures in liver cirrhosis. Saudi J Gastroenterol. 2018;24(4):220–227.

[111] Park JA, Kim HD, An J, et al. Platelet replacement is not necessary before endoscopic variceal band ligation in patients with cirrhosis and severe thrombocytopenia. J Gastroenterol and Hepatol (Australia). 2015;30 (Suppl 4):362.

[112] Arnold DM, Ning S, Barty R, et al. The effect of platelet transfusion on death in the intensive care unit. Blood. 2016;128(22):3850.

[113] Beneke J, Sartison A, Kielstein JT, et al. Clinical and laboratory consequences of platelet transfusion in Shiga toxin-mediated hemolytic uremic syndrome. Transfus Med Rev. 2017;31(1):51–55.

[114] Chen X, Peng B, Cai Y, et al. Laparoscopic splenectomy for patients with immune thrombocytopenia and very low platelet count: is platelet transfusion necessary? J Surg Res. 2011;170(2):e225–e232.

[115] Duffy SM, Coyle TE. Platelet transfusions and bleeding complications associated with plasma exchange catheter placement in patients with presumed thrombotic thrombocytopenic purpura. J Clin Apher. 2013;28 (5):356–358.

[116] Goel R, Ness PM, Takemoto C, et al. Platelet transfusion practices in platelet consumptive disorders and associated in-hospital complications and mortality:
nationally representative data from 2007–2011. Transfusion (Paris). 2014;2014(54):33A.

[117] Guerrero WR, Gonzales NR, Sekar P, et al. Variability in the use of platelet transfusion in patients with intracerebral hemorrhage: observations from the ethnic/racial variations of intracerebral hemorrhage study. J Stroke Cerebrovasc Dis. 2017;26(9):1974–1980.

[118] Kuter DJ, Konkle BA, Hamza TH, et al. Clinical outcomes in a cohort of patients with heparin-induced thrombocytopenia. Am J Hematol. 2017;92(8):730–738.

[119] Lee TH, Wong JG, Leo YS, et al. Potential harm of prophylactic platelet transfusion in adult dengue patients. PLoS Negl Trop Dis. 2016;10(3):e0004576.

[120] Lye DC, Lee VJ, Sun Y, et al. Lack of efficacy of prophylactic platelet transfusion for severe thrombocytopenia in adults with acute uncomplicated dengue infection. Clin Infect Dis. 2009;48(9):1262–1265.

[121] Makroo R, Chowdhry M, Nayak S, et al. Platelet transfusion in cases of TTP undergoing therapeutic plasma exchange: retrospective analysis of 5 years. Vox Sang. 2014;107(Suppl 1):211.

[122] Otrock ZK, Liu C, Grossman BJ. Platelet transfusion in patients with chronic liver disease and associated thrombocytopenia undergoing elective procedures. J Med Econ. 2018;21(8):827–834.

[123] Sethi SM, Khalil A, Naseem Khan MR, et al. Clinical outcomes of prophylactic platelet transfusion in patients with dengue: a retrospective study of patients at a tertiary care hospital in Karachi. J Pak Med Assoc. 2017;67(9):1374–1378.

[124] Tran L, Goel R, Krishnamurti L. Platelet transfusions in patients with immune thrombocytopenic purpura. Vox Sang. 2015;109(2):168–172.

[125] Sethi SM, Khalil A, Naseem Khan MR, et al. Clinical outcomes of prophylactic platelet transfusion in patients with dengue: a retrospective study of patients at a tertiary care hospital in Karachi. J Pak Med Assoc. 2017;67(9):1374–1378.

[126] Tran L, Goel R, Krishnamurti L. Platelet transfusions in patients with immune thrombocytopenic purpura (ITP) – evaluation of the current nationwide inpatient hospital practices. Blood. 2010;116(21):3809.

[127] Warner MA, Jia Q, Clifford L, et al. Preoperative platelet transfusions and perioperative red blood cell requirements in patients with thrombocytopenia undergoing noncardiac surgery. Transfusion. 2016;56(3):682–690.

[128] Yoshii Y, Matsumoto M, Norio K, et al. Introduction of a quick assay for ADAMTS13 activity improved a survival of acquired TTP patients who received platelet transfusions. Blood. 2014;124(21):4209.

[129] Wallace MJ, Nervios A, Lichtiger B, et al. Transjugular liver biopsy in patients with hematologic malignancy and severe thrombocytopenia. J Vasc Interv Radiol. 2003;14(3):323–327.

[130] Schmidt AE, Henrichs KF, Kirkley SA, et al. Prophylactic preprocedure platelet transfusion is associated with increased risk of thrombosis and mortality. Am J Clin Pathol. 2018;149(1):87–94.

[131] Keulers AR, Kiesow L, Mahnken AH. Port implantation in cases of TTP undergoing therapeutic plasma exchange: retrospective analysis of 5 years. Vox Sang. 2014;107(Suppl 1):211.

[132] Fillmore WJ, Leavitt BD, Arce K. Dental extraction in the thrombocytopathy-induced thrombocytopenia among patients with lymphoma or solid tumors. Cancer. 2003;97(12):3099–3106.

[133] Elting LS, Hudson DJV, et al. Pharmacoeconomic analysis of aprepivirin (recombinant human interleukin-11) for secondary prophylaxis of thrombocytopenia in solid tumor patients receiving chemotherapy. Cancer. 2003;97(12):3099–3106.

[134] Campbell HE, Estcourt LJ, Stokes EA, et al. Prophylactic platelet transfusions in patients with blood malignancies: cost analysis of a randomized trial. Transfusion. 2014;54(10):2394–2403.

[135] Birchall J, Karakantza M, Moss R, et al. A quality improvement project which initiated a change in practice and several million pounds worth of savings to the NHS. Br J Haematol. 2017;176(Suppl 1):133–134.

[136] Brown RSJ. Review article: a pharmacoeconomic analysis of thrombocytopenia in chronic liver disease. Aliment Pharmacol Ther. 2007;26(1):41–48.

[137] Callow CR, Swindell R, Randall W, et al. The frequency of bleeding complications in patients with haematological malignancy following the introduction of a stringent prophylactic platelet transfusion policy. Br J Haematol. 2002;118(2):677–682.

[138] Berger K, Bauer M, Schopohl D, et al. Model calculations to quantify clinical and economic effects of pathogen inactivation in platelet concentrates. Onkologie. 2013;36(1-2):53–59.

[139] Elting LS, Martin CG, et al. Cost of chemotherapy-induced thrombocytopenia among patients with lymphoma or solid tumors. Cancer. 2003;97(6):1541–1550.

[140] US Food and Drug Administration. Requirements for blood and blood components intended for transfusion or for further manufacturing use. Department of Health and Human Services. 2006 [cited 2019 June 20]. Available from: https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/EconomicAnalyses/UCM449783.pdf.
[148] Paessens B, Ihbe-Heffinger A, von Schilling C, et al. Blood component use and associated costs after standard dose chemotherapy—a prospective analysis of routine hospital care in lymphoproliferative disorders and NSCLC in Germany. Support Care Cancer. 2012;20(5):1011–1021.

[149] Riley W, Smalley B, Pulkabek S, et al. Using lean techniques to define the platelet (PLT) transfusion process and cost-effectiveness to evaluate PLT dose transfusion strategies. Transfusion. 2012;52(9):1957–1967.

[150] Stagginus U, Corash L. Economics of pathogen inactivation technology for platelet concentrates in Japan. Int J Hematol. 2004;80(4):317–324.

[151] Stokes EA, Wordsworth S, Staves J, et al. Accurate costs of blood transfusion: a microcosting of administering blood products in the United Kingdom National Health Service. Transfusion. 2018;58(4):846–853.

[152] Whitaker B. The 2011 National blood collection and utilization survey report. 2011 [cited 2019 June 20]. Available from: http://www.aabb.org/research/hemovigilance/bloodsurvey/Documents/11-nbcus-report.pdf.

[153] Whitaker BI, Rajbhandary S, Kleinman S, et al. Incidence, cost, and outcomes of bleeding and chemotherapy dose modification among solid tumor patients with chemotherapy-induced thrombocytopenia. J Clin Oncol. 2001;19(4):1137–1146.

[154] Goodnough LT, DiPersio JF. Issues in the management of cancer-related thrombocytopenia. Oncology (Williston Park). 2002;16(11):1558–1567. discussion 70, 72–74.

[155] Habibi A, Esfandbod M, Ghafari MH, et al. Platelet kinetics after slow versus standard transfusions: a pilot study. Ups J Med Sci. 2011;116(3):212–215.

[156] Khalafallah AA, Al-Barzan AM, Camino A, et al. An open-labelled, randomized cross-over study of the effect of electromechanical pumps versus conventional gravity flow on platelet transfusion in adult hematologic patients. Transfus Med Hemother. 2013;40(1):22–26.

[157] MacLennan S, Harding K, Llewelyn C, et al. A randomized noninferiority crossover trial of corrected count increments and bleeding in thrombocytopenic hematology patients receiving 2- to 5- versus 6- or 7-day-stored platelets. Transfusion. 2015;55(8):1856–1865. quiz 5.

[158] Slichter SJ, Raife TJ, Davis K, et al. Platelets photochemically treated with amotosalen HCl and ultraviolet A light correct prolonged bleeding times in patients with thrombocytopenia. Transfusion. 2006;46(5):731–740.

[159] Alkunonou P, Luu S, Brudevold J, et al. Prevalence and characteristics of thrombocytopenia after North American rattlesnake envenomations reported to a statewide poison control system. Clin Toxicol. 2013;52(7):739.

[160] Al Zaabi M, Clark S, Gomez K, et al. Assessing risk of bleeding in thrombocytopenic patients requiring platelet transfusion prior to invasive procedures. Haematologica. 2014;99(Suppl 1):199.

[161] Alikiai B, Hashemi S, Manteghi F. Evaluation of platelet elevation after injection in patients over 40 years of age admitted hospital; a retrospective study. Journal of Isfahan Medical School. 2017;33(451):1438–1443.

[162] Al-Samkari H, Marshall AL, Goodarzi K, et al. Romiplostim for the management of perioperative thrombocytopenia. Br J Haematol. 2018;182(1):106–113.

[163] Antun AG, Gleason S, Arellano M, et al. Epsilon amino caproic acid prevents bleeding in severely thrombocytopenic patients with hematological malignancies. Cancer. 2013;119(21):3784–3787.

[164] Bhat A, Chowdappa V, Masamatti SS. Effectiveness of pooled platelet transfusion in concordant and discordant groups among dengue patients. J Clin Diagn Res. 2016;10(7):EC21–EC24.

[165] Chan G, DiVenuti G, Miller K. Danazol for the treatment of thrombocytopenia in patients with myelodysplastic syndrome. Am J Hematol. 2002;71(3):166–171.

[166] Chaueri J, Chakroun T, Robert F, et al. Reticulated platelets: a reliable measure to reduce prophylactic platelet transfusions after intensive chemotherapy. Transfusion. 2005;45(5):766–772.

[167] Chern JJ, Tsung AJ, Humphries W, et al. Clinical outcome of leukemia patients with intracranial hemorrhage. Clinical article. J Neurosurg. 2011;115(2):268–272.

[168] Chien JL, Hsu LW, Tsai JT, et al. Retrospective study of platelet transfusion refractoriness in Tzu Chi hospital in central Taiwan. Vox Sang. 2014;107(Suppl 1):228.

[169] Cirasino L, Robino AM, Cattaneo M, et al. Appropriate hospital management of adult immune thrombocytopenic purpura patients in major Italian institutions in 2000–2002: a retrospective analysis. Blood Coagul Fibrinolysis. 2010;21(1):77–84.

[170] Davasaasambu B, Gritsaev S. The effectiveness of platelets transfusions in patients with de novo acute myeloid leukemia (AML) during induction chemotherapy (IC). Haematologica. 2013;98(Suppl 1):193.

[171] Delaître B, Champault G, Barrat C, et al. Laparoscopic splenectomy for hematologic diseases. Study of 275 cases. Ann Chir. 2000;125(6):522–529.

[172] Dzierba AL, Roberts R, Muir J, et al. Severe thrombocytopenia in adults with severe acute respiratory distress syndrome: impact of extracorporeal membrane oxygenation. ASAIO J. 2016;62(6):710–714.

[173] Eder AF, Dy BA, Perez JM, et al. The residual risk of transfusion-related acute lung injury at the American Red Cross (2008–2011): limitations of a predominantly male-donor plasma mitigation strategy. Transfusion. 2013;53(7):1442–1449.

[174] Feliciano J, Yang Y, Lu M, et al. Burden of cytopenias among myelofibrosis patients. J Clin Oncol. 2016;34 (Suppl 15):e18260.

[175] Frigaa I, Mahnaoui H, Rached B, et al. Assessment of efficacy platelet transfusion in acute leukemia. Vox Sang. 2015;109(Suppl 2):88.

[176] Fujimura K, Harada Y, Fujimoto T, et al. Nationwide study of idiopathic thrombocytopenic purpura in pregnant women and the clinical influence on neonates. Int J Hematol. 2002;75(4):426–433.

[177] Gerber DE, Grossman SA, Zeltzman M, et al. The impact of thrombocytopenia from temozolomide and radiation in newly diagnosed adults with high-grade gliomas. Neuro-Oncology. 2007;9(1):47–52.

[178] Guerrero WR, Gonzales NR, Sekar P, et al. Predictors of platelet transfusion in patients with intracerebral hemorrhage. Stroke. 2014;45(Suppl 1):AWP235.
Hashiguchi Y, Fukuda T, Ichimura T, et al. Chemotherapy-induced thrombocytopenia and clinical bleeding in patients with gynecologic malignancy. Eur J Gynaecol Oncol. 2015;36(2):168–173.

Hitron A, Steinke D, Sutphin S, et al. Incidence and risk factors of clinically significant chemotherapy-induced thrombocytopenia in patients with solid tumors. J Oncol Pharm Pract. 2011;17(4):312–319.

Hashiguchi Y, Fukuda T, Ichimura T, et al. 698

Hashiguchi Y, Fukuda T, Ichimura T, et al. Bronchoscopy can be done safely in patients with thrombocytopenia. Transfusion. 2016;56(2):344–348.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Neurkirchen J, Blum S, Kuendgen A, et al. Platelet counts and haemorrhagic diathesis in patients with myelodysplastic syndromes. Eur J Haematol. 2009;83(5):477–482.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Acute bleeding complications in patients after hematopoietic stem cell transplantation with prophylactic platelet transfusion triggers of 10 × 10^9 and 20 × 10^9 per L. Transfusion. 2007;47(5):801–812.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Fuller AK, Hartley E, et al. Acute bleeding and thrombocytopenia after bone marrow transplantation. Bone Marrow Transplant. 2001;27(1):65–72.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Suzuki A, Sakakibara S, et al. Retrospective cohort chart review study of factors associated with the development of thrombocytopenia in adult Japanese patients who received intravenous linezolid therapy. Clin Ther. 2009;31(10):2126–2133.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Enger C, Hartley E, et al. Acute bleeding and thrombocytopenia after bone marrow transplantation. Bone Marrow Transplant. 2001;27(1):65–72.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Fuller AK, Zahurak ML, et al. Prophound thrombocytopenia and survival of hematopoietic stem cell transplant patients without clinically significant bleeding, using prophylactic platelet transfusion triggers of 10 × 10^9 or 20 × 10^9 per L. Transfusion. 2007;47(9):1700–1709.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Enger C, Hartley E, et al. Acute bleeding and thrombocytopenia after bone marrow transplantation. Bone Marrow Transplant. 2001;27(1):65–72.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Fuller AK, Zahurak ML, et al. Prophound thrombocytopenia and survival of hematopoietic stem cell transplant patients without clinically significant bleeding, using prophylactic platelet transfusion triggers of 10 × 10^9 or 20 × 10^9 per L. Transfusion. 2007;47(9):1700–1709.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Enger C, Hartley E, et al. Acute bleeding and thrombocytopenia after bone marrow transplantation. Bone Marrow Transplant. 2001;27(1):65–72.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Fuller AK, Zahurak ML, et al. Prophound thrombocytopenia and survival of hematopoietic stem cell transplant patients without clinically significant bleeding, using prophylactic platelet transfusion triggers of 10 × 10^9 or 20 × 10^9 per L. Transfusion. 2007;47(9):1700–1709.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Enger C, Hartley E, et al. Acute bleeding and thrombocytopenia after bone marrow transplantation. Bone Marrow Transplant. 2001;27(1):65–72.

Hashiguchi Y, Fukuda T, Ichimura T, et al. Nevo S, Fuller AK, Zahurak ML, et al. Prophound thrombocytopenia and survival of hematopoietic stem cell transplant patients without clinically significant bleeding, using prophylactic platelet transfusion triggers of 10 × 10^9 or 20 × 10^9 per L. Transfusion. 2007;47(9):1700–1709.
thrombocytopenia – a European perspective. Eur J Haematol. 2010;84(2):160–168.

[213] Roubinian N, Escober G, Gardner M, et al. Epidemiology of platelet transfusion in hospitalized patients: data from an integrated health care delivery system. Transfusion (Paris). 2016;56(Suppl 4):168A–169A.

[214] Samuelson BT, Garcia DA, Gernsheimer TB, et al. Central venous catheter (CVC)-related thrombosis (CRT) in leukemia patients with severe thrombocytopenia: a retrospective analysis. Am J Hematol. 2016;91: E368.

[215] Sanz MA, Jarque I, Yuste VJ, et al. Sequence of treatment in immune thrombocytopenia (ITP) patients: results of a medical record review from eight hospitals in Spain. Value Health. 2010;13(7):A472.

[216] Schuh J, Carreira J, Gaspar C, et al. Posttransfusion platelet response in hematological inpatients. Haematol. 2013;98(Suppl 1):729.

[217] Sekeres MA, Narang M, Komrokji RS, et al. Therapeutic response to azacitidine (AZA) in patients with secondary myelodysplastic syndromes (sMDS) enrolled in the AVIDA registry. Blood. 2010;116(21):2931.

[218] Shreenivas AV, Coltoff A, Afshar S, et al. A single institution experience of performing bloodless transplant in a Jehovah’s Witness patient based on data gathered from review of transfusion support requirements in autologous stem cell transplantation for the treatment of 60 myeloma patients. Biol Blood Marrow Transplant. 2018;24(14):5143.

[219] Singh PP, Timucin T, Nagorney DM, et al. Splenectomy for massive splenomegaly associated with myelofibrosis: outcomes from 63 patients at Mayo clinic. Blood. 2012;120(21):2848.

[220] Tada K, Ohta M, Saga K, et al. Long-term outcomes of laparoscopic versus open splenectomy for immune thrombocytopenia. Surg Today. 2018;48(2):180–185.

[221] Takahashi Y, Takesue Y, Nakajima K, et al. Risk factors associated with the development of thrombocytopenia in patients who received linezolid therapy. J Infect Chemother. 2011;17(3):382–387.

[222] Tessier JM, Puzio T, Young A, et al. Thrombocytopenia associated with linezolid therapy in solid organ transplant recipients: a retrospective cohort study. Surg Infect (Larchmt). 2015;16(4):361–367.

[223] Tsukune Y, Komatsu N. Management of adult chronic immune thrombocytopenia in Japan: patient and hematologist perspectives from a multi-center cross-sectional questionnaire survey. Intern Med. 2016;55 (17):2379–2385.

[224] Vecchio R, Cacciola E, Lipari G, et al. Laparoscopic splenectomy reduces the need for platelet transfusion in patients with idiopathic thrombocytopenic purpura. JSLS. 2005;9(4):415–418.

[225] Vigil-De Gracia P. Addition of platelet transfusions to corticosteroids does not increase the recovery of severe HELLP syndrome. Eur J Obstet Gynecol Reprod Biol. 2006;128(1-2):194–198.

[226] Vijenthira A, Premkumar D, Wells RA, et al. Rates of severe bleeding are low in patients with MDS and severe thrombocytopenia and may be mitigated by tranexamic acid. Blood. 2017;130(Suppl 1):1691.

[227] Virgili A, Arqueros C, Payán S, et al. Retrospective analyses of the patterns of platelet transfusions in patients with solid tumors treated with chemotherapy. Eur J Cancer. 2015;51(Suppl 3):S246.

[228] Wang C, Smith BR, Ault KA, et al. Reticulated platelets predict platelet count recovery following chemotherapy. Transfusion. 2002;42(3):368–374.

[229] Wu Z, Zhou J, Li J, et al. The feasibility of laparoscopic splenectomy for ITP patients without preoperative platelet transfusion. Hepatogastroenterology. 2012;59(113):81–85.

[230] Zahir-ur-Rehman A, Alam M. Platelet transfusion practice in a tertiary care hospital. J Coll Physicians Surg Pak. 2002;12(8):485–487.

[231] Zeidler K, Arm K, Senn O, et al. Optimal preprocedural platelet transfusion threshold for central venous catheter insertions in patients with thrombocytopenia. Transfusion. 2011;51(11):2269–2276.

[232] Zhou L, Zhang LZ, Wang JY, et al. Perioperative safety analysis of transcatheter arterial chemoembolization for hepatocellular carcinoma patients with preprocedural leukopenia or thrombocytopenia. Mol Clin Oncol. 2017;7(3):435–442.
Table A1. Search terms and search strategy.

Search strategy: randomised controlled trials

Database	Search terms	Limits*
Medline and Embase on 27-Jun-2018	exp thrombocytopenia/ OR thrombopenia?.mp. OR thrombocytopenia?.mp. OR thrombocytopenic.mp. AND exp platelet transfusion/ OR thrombocyte transfusion?.mp. OR platelet transfusion?.mp.	Publication dates: Year 1998 to current. Study type: (Randomized controlled trial (topic)/ OR randomized controlled trial/ OR random allocation/ OR double blind method/ OR single blind method/ OR clinical trial/ OR exp clinical trials (topic)/ OR (clinical trial/ OR clinical trial, phase i/ OR clinical trial, phase ii/ OR clinical trial, phase iii/ OR clinical trial, phase iv/ OR multicenter study/)) OR (Randomized controlled trial.pt. OR controlled clinical trial.pt. OR random allocation.sh. OR double blind method.sh. OR single blind method.sh. OR clin$.adj25 trial$.tw OR ((singl$ or doubl$ or tripl$ or trebl$) adj25 (blind$ or mask$ or dummy$)).tw. OR placebo/ OR placebo$tw. OR placebo$.sh. OR random$.tw.) NOT (case report.tw. OR letter/ OR historical article/) Species: Humans
Cochrane on 27-Jun-2018	Thrombocytopenia (MESH descriptor; explode all trees) OR thrombopenia:ti,ab,kw (and word variations of) OR thrombocytopenia:ti,ab,kw (and word variations of) AND Platelet transfusion (MESH descriptor; explode all trees) OR thrombocyte transfusion*:ti,ab,kw (and word variations of) OR platelet transfusion*:ti,ab,kw (and word variations of)	Publication dates: From year 1998 Study type: Trials

Search strategy: economic burden

Database	Search terms	Limits*
Medline and Embase on 22-May-2018	exp thrombocytopenia/ OR thrombopenia?.mp. OR thrombocytopenia?.mp. OR thrombocytopenic.mp. AND exp platelet transfusion/ OR thrombocyte transfusion?.mp. OR platelet transfusion?.mp. AND exp costs/ OR exp cost analysis/ OR exp health care costs/ OR exp economics/ OR exp value of life/ OR (burden adj5 (disease or illness)).tw. OR (cost$ or economic$ or expenditure$ or price$ or pharmacoeconomic$).tw. OR (resource adj5 (allocation$ or utilit$)).tw. OR (value adj5 money).tw.	Publication dates: Year 1998 to current. Countries: Japan OR Japanese OR US OR USA OR American OR Europe OR European OR France OR French OR Germany OR German OR Spain OR Spanish OR Italy OR Italian OR UK OR United Kingdom OR EU-5 OR EU5 OR (England OR Scotland OR Ireland OR Wales OR English OR Scottish OR Welsh OR Irish OR British OR Great Britain).mp. Species: Humans
Cochrane on 23-May-2018	Platelet transfusion (MESH descriptor; explode all trees) OR thrombocyte transfusion*:ti,ab,kw (and word variations of) OR platelet transfusion*:ti,ab,kw (and word variations of)	Publication dates: From year 1998 Study type: Economic evaluations

Search strategy: real-world evidence: effectiveness and safety, epidemiology and humanistic burden

Database	Search terms	Limits*
Medline and Embase on 27-Jun-2018	exp thrombocytopenia/ OR thrombopenia?.mp. OR thrombocytopenia?.mp. OR thrombocytopenic.mp. AND exp platelet transfusion/ OR thrombocyte transfusion?.mp. OR platelet transfusion?.mp.	Publication dates: Year 1998 to current. Study type: Epidemiologic studies/ OR clinical study/ OR case control study/ OR family study/ OR longitudinal study/ OR retrospective study/ OR (prospective study/ NOT randomized controlled trials/) OR cohort analysis/ OR (cohort adj (study OR studies)).mp. OR (case control adj (study OR studies)).tw. OR (follow up adj (study OR studies)).tw. OR (observational adj (study OR studies)).tw. OR (epidemiologic adj (study OR studies)).tw. OR (cross sectional adj (study or studies)).tw. OR cohort studies/ OR case control.tw. OR cohort analy$.stw. OR longitudinal.tw. OR retrospective.tw. OR cross sectional.tw. OR cross-sectional studies/ NOT Letter/ OR historical article/ Species: Humans
Table A1. Continued.

Search strategy: additional handsearches

Database	Websites
	French National Authority for Health (HAS) (France)
	French National Blood Service (EFS) (France)
	Institute for Quality and Efficiency in Healthcare (IQWIG) (Germany)
	Spanish Agency for Health Technology Assessment (AETS) (Spain)
	Committee on Pharmaceuticals/Italian Medicines Agency (AIFA) (Italy)
	National Institute for Health and Care Excellence (NICE) (UK)
	Joint UK Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee (JPAC) (UK)
	Food and Drug Administration (FDA) (USA)
	Agency for Healthcare Research and Quality (AHRQ) (USA)
	Pharmaceuticals and Medical Devices Agency (PMDA) (Japan)
	European Medicine Agency (EMA) (Europe)

Conference searches (all were indexed in Embase):
	International Society of Blood Transfusion (ISBT)
	British Blood Transfusion Society (BBTS)
	AABB Center for Cellular Therapies (AABB)
	European Hematology Association (EHA)
	American Society of Hematology (ASH)
	International Society of Hematology (ISH)
	American Association for the Study of Liver Diseases (AASLD)
	European Association for the Study of the Liver (EASL)
	European Society for Medical Oncology (ESMO)
	American Society of Clinical Oncology (ASCO)

*Duplicates removed.

Table A2. Detailed inclusion and exclusion criteria.

Domain	Inclusion criteria	Exclusion criteria
RCT: efficacy and safety	Adults (≥18 years) with TCP having elective invasive procedures or surgeries	Children (<18 years)
	Adults (≥18 years) with CLD TCP having elective invasive procedures or surgeries	Adults receiving PT on emergent-basis
	Adults (≥18 years) with TCP (such as but not limited to CIT, bone marrow suppression)	Mixed population with outcomes not separable by the POI
Interventions	PT or PT as BSC	NA
Comparators	Difference between treatment arms in PT used as BSC of more than 30%	NA
Outcomes of interest	Efficacy: Increase in PC, CCI and platelet response	NA
	Total bleeding events and fatal, life-threatening and other individual bleedings	NA
	Safety: Total AEs, SAEs and severe AEs	NA
	Complications, infections, allergic reactions, TRALI and TACO	NA
	All-cause mortality	NA
Study design	RCT	Animal/in vitro studies; letters, comments; individual case reports; editorials
Publication year	Publications indexed in the databases since 1998; abstracts or other materials from conferences from the last 10 years/meetings	NA
Language	No restrictions on language	NA
Other	NA	NA

RWE: effectiveness, safety, epidemiology and humanistic burden

Domains	Inclusion criteria	Exclusion criteria
Adults (≥18 years) with TCP having elective invasive procedures or surgeries	Children (<18 years)	
Adults (≥18 years) with CLD TCP having elective invasive procedures or surgeries	Adults receiving PT on emergent-basis	
Adults (≥18 years) with TCP (such as but not limited to CIT, bone marrow suppression)	Mixed population with outcomes not separable by the POI	
Interventions	PT or PT as BSC	NA
Comparators	NA	NA
Outcomes of interest	Efficacy: Increase in PC, CCI and platelet response	NA
	Total bleeding events and fatal, life-threatening and other individual bleedings	NA
	Safety: Total AEs, SAEs and severe AEs	NA
	Complications, infections, allergic reactions, TRALI and TACO	NA
	All-cause mortality	NA
Study design	Prospective or retrospective observational studies	Animal/in vitro studies; letters, comments; individual case reports; editorials
Publication year	Publications indexed in the databases since 1998; abstracts or other materials from conferences from the last 10 years/meetings	NA
Language	No restrictions on language	NA
Other	Focus on US, EU-5, Japan; sample size ≥30 patients	NA

(Continued)
Table A2. Continued.

Domain	Inclusion criteria	Exclusion criteria
Economic burden	**Populations** Adults (≥18 years) with TCP having elective invasive procedures or surgeries	Adults (≥18 years) with TCP having elective invasive procedures or surgeries (<18 years)
	Adults (≥18 years) with CLD TCP having elective invasive procedures or surgeries	Adults (<18 years) with TCP having elective invasive procedures or surgeries (<18 years)
	Adults (≥18 years) with TCP (such as but not limited to CIT, bone marrow suppression)	Adults receiving PT on emergent-basis mixed population with outcomes not separable by the POI
Interventions	PT or PT as BSC	NA
Comparators	Non-PT interventions; no comparator	NA
Outcomes of interest	Costs associated with PT AE / complications following PT	Resource use (number of PT doses, number of admissions, etc.)
Study design	Any	Animal/in vitro studies; letters, comments; individual case reports; editorials
Publication year	Publications indexed in the databases since 1998; abstracts or other materials from conferences from the last 10 years/meetings	NA
Language	No restrictions on language	NA
Other	Focus on US, EU-5, Japan	NA

AE = adverse event; BSC = best supportive care; CCI = corrected count increment; CIT = chemotherapy-induced thrombocytopenia; CLD = chronic liver disease; EU = European Union; NA = not applicable; PC = platelet count; POI = population of interest; PT = platelet transfusion; RCT = randomized controlled trial; RWE = real world evidence; SAE = serious adverse event; TACO = transfusion-associated circulatory overload; TCP = thrombocytopenia; TRALI = transfusion-related acute lung injury; US = United States.

Table A3. Risk of bias assessments of randomized controlled trials.

Article	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Attrition bias	Reporting bias	
Afdhal 2012 [94]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Afdhal 2017 [91]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Khan-Assir 2013 [26]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Basu 2012 [64]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
de Wildt-Eggen 2000 [78]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Diedrich 2009 [87]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Garban 2018 [77]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Goodrich 2010 [79]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Habibi 2011 [156]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Heddie 1999 [88]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Heddie 2002 [89]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Heddie 2009 [73]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Izumi 2015 [92]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Janetzko 2005 [82]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Johansson 2012 [75]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Johansson 2013 [76]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Kantarijan 2010 [96]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Kerckoffs 2010 [80]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Khalaftahlah 2013 [157]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Klumpp 1999 [74]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Lozano 2011 [81]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Lu 2013 [70]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Lye 2017 [66]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
MacLennan 2015 [158]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
McCulloough 2004 [62]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Moskowitz 2007 [97]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Platzbecker 2015 [95]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Sensebe 2004 [72]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Siemonsen 2006 [83]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Slichter 2006 [159]	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk

(Continued)
Table A3. Continued.

Article	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Reporting bias	Other bias
Slichter 2010 [63]	Low risk	Unclear	Unclear	Unclear	Low risk	Low risk	Low risk	
Stanca 2010 [69]	Low risk	Low risk	High risk	High risk	Low risk	Low risk	Low risk	
Stanworth 2013 [65]	Low risk	Low risk	High risk	High risk	Low risk	Low risk	Low risk	
Tateishi 2018 [93]	Low risk	Low risk	Low risk	Unclear	Low risk	Low risk	Low risk	
Terrault 2017a [56]	Low risk	Unclear	Low risk	Low risk	Low risk	High risk	Low risk	
Terrault 2017b [56]	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk	
Timmouthe 2004 [71]	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	Low risk	
Vadhan-Raj 2002 [85]	Low risk	Low risk	Unclear	Unclear	Low risk	Low risk	High risk	
Van Der Meer 2017 [90]	Unclear	Unclear	Low risk	Unclear	Low risk	Low risk	High risk	
van Rhenen 2003 [84]	Unclear	Unclear	Low risk	Unclear	Low risk	Low risk	Unclear	
Veelo 2014 [86]	Unclear	Unclear	Low risk	Unclear	Low risk	Low risk	Low risk	

*Assessment of Study NCT01972529.

Table A4. Newcastle-Ottawa quality assessment of real-world evidence studies.

Article	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Assessment of the design or analysis controlled for confounders	Was follow-up long enough for outcomes to occur	Adequacy of follow-up of cohorts	AHRQ standard
Akpunonu 2014 [160]	NA	NA	NA	NA	NA	NA	NA	NA
Al Zaabi 2014 [161]	NA	NA	NA	NA	NA	NA	NA	NA
Alkilai 2017 [162]	NA	NA	NA	NA	NA	NA	NA	NA
Al-Samkari 2018 [163]	NA	NA	NA	NA	NA	NA	NA	NA
Andrade-Campos 2015 [48]	NA	NA	NA	NA	NA	NA	NA	NA
Ang 2008 [42]	NA	NA	NA	NA	NA	NA	NA	NA
Antun 2013 [164]	NA	NA	NA	NA	NA	NA	NA	NA
Arnold 2016 [112]	A	A	A	A	B	A	UTD	Poor
Arnold 2006 [99]	NA	NA	NA	NA	NA	NA	NA	NA
Aubron 2017 [17]	A	A	A	A	A	A	A	Good
Beneke 2017 [113]	A	C	A	A	C	B	A	A
Benson 2011 [52]	NA	NA	NA	NA	NA	NA	NA	NA
Bh at 2016 [165]	NA	NA	NA	NA	NA	NA	NA	NA
Birchall 2017 [137]	NA	NA	NA	NA	NA	NA	NA	NA
Blumberg 2006 [43]	NA	NA	NA	NA	NA	NA	NA	NA
Callow 2002 [139]	NA	NA	NA	NA	NA	NA	NA	NA
Chan 2002 [160]	NA	NA	NA	NA	NA	NA	NA	NA
Chandran 2015 [44]	A	A	D	A	AB	D	A	Poor
Chaouli 2004 [167]	NA	NA	NA	NA	NA	NA	NA	NA

(Continued)
Table A4. Continued.

Article	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis controlled for confounders	Assessment of outcome	Was follow-up long enough for outcomes to occur	Adequacy of follow-up of cohorts	AHRQ standard
Charbonnier 2014 [103]	A	A	D	A	C	D	A	D	Poor
Chen 2011 [114]	A	A	A	B	C	A	A	D	Poor
Chern 2011 [168]	NA								
Cheung 2014 [133]	NA								
Chien 2014 [169]	NA								
Cirasino 2010 [170]	NA								
Davaasambuu 2013 [171]	NA								
Delaitre 2000 [172]	NA								
Duffy 2013 [115]	A	A	A	A	C	A	UTD	A	Poor
Dizerba 2016 [173]	NA								
Eder 2013 [174]	NA								
Elting 2001 [154]	NA								
Engele 2016 [131]	NA								
Feliciano 2016 [175]	A	A	A	A	C	A	A	B	Poor
Fillmore 2013 [130]	NA								
Frigaa 2015 [176]	NA								
Fujimura 2002 [177]	A	A	D	A	C	E	UTD	B	Poor
Gerber 2007 [178]	NA								
Giannini 2010 [54]	NA								
Goel 2014 [116]	A	A	A	B	A	B	UTD	D	Poor
Goel 2015 [21]	NA								
Greeno 2007 [49]	NA								
Guerrero 2017 [117]	A	A	A	A	AB	A	A	A	Good
Guerrero 2014 [179]	NA								
Habr 2015 [50]	NA								
Hashiguchi 2015 [180]	NA								
Hitron 2011 [181]	NA								
Hussein 1998 [182]	NA								
Jones 2016 [183]	NA								
Jubelirer 2011 [184]	NA								
Kander 2014 [185]	NA								
Keulers 2018 [129]	NA								
Kluge 2004 [186]	NA								
Krishna 2014 [101]	NA								
Kuter 2017 [118]	A	A	A	A	C	A	A	A	Poor

(Continued)
Article	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis controlled for confounders	Assessment of outcome	Was follow-up long enough for outcomes to occur	Adequacy of follow-up of cohorts	AHRQ standard
Kwon 2017	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lawrence 2001	A	A	A	A	C	A	A	A	Poor
Lee 2016[119]	A	A	A	A	C	A	UTD	D	Poor
Levin 2003[189]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Li 2018[110]	B	A	A	A	C	A	UTD	D	Poor
Limkemann 2015[190]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lye 2009[120]	B	A	A	A	C	A	UTD	D	Poor
Mahavas 2015[191]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Makroo 2014[121]	A	A	A	A	C	A	UTD	D	Poor
Mathias 2007[192]	NA	NA	NA	NA	NA	NA	NA	NA	NA
McDonald 2012[193]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Meehan 2000[102]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mohd Hayat 2016[194]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Moulis 2015[195]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nandagopal 2016[196]	A	A	A	A	C	A	UTD	D	Poor
Napolitano 2016[53]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Neukirchen 2009[197]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nevo 2007[198]	A	A	A	A	AB	A	A	B	Good
Nevo 2007[199]	A	A	A	A	C	A	A	A	Poor
Nevo 2001[200]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ning 2016[100]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Niwa 2009[201]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Noris 2014[98]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Norol 1998[202]	B	A	A	A	C	A	UTD	D	Poor
Otrock 2015[122]	A	A	A	A	C	A	A	A	Poor
Palo 2010[203]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Park 2015[111]	D	C	D	A	C	D	UTD	D	Poor
Pillarisetti 2011[53]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Poordad 2011[204]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pugmire 2006[205]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Qureshi 2007[206]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Rabon 2018[207]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ramos 2018[208]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ramos 2016[209]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ranucci 2017[210]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Rao 2002[211]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Raval 2015[22]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Table A4. Continued.

Article	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis controlled for confounders	Assessment of outcome of interest	Was follow-up long enough for outcomes to occur	Adequacy of follow-up of cohorts	AHRQ standard
Rodeghiero 2010 [212]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Roubinian 2016 [213]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Saleh 2009 [45]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Samuelson 2016 [214]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Samuelson 2017 [106]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sanz 2010 [215]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Schmidt 2018 [126]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Schuh 2013 [216]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sekeres 2010 [217]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sethi 2017 [123]	B	A	A	A	A	A	A	A	Good
Shreenivas 2018 [218]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Singh 2012 [219]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Spahr 2008 [107]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Swisher 2009 [105]	A	A	A	A	C	A	UTD	D	Poor
Tada 2018 [220]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Takahashi 2011 [221]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tessier 2015 [222]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toor 2000 [108]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tran 2010 [124]	A	A	A	A	C	B	UTD	D	Poor
Tsukune 2016 [223]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vecchio 2005 [224]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vetter 2014 [132]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vigil-De Gracia 2006 [225]	A	A	A	A	C	A	UTD	D	Poor
Vijenthira 2017 [226]	A	A	A	A	C	B	A	D	Poor
Virgili 2015 [227]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Wallace 2003 [127]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Wandt 1998 [104]	A	A	A	A	C	A	A	A	Poor
Wandt 2006 [51]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Wang 2002 [228]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Warner 2017 [46]	A	A	A	A	B	A	UTD	D	Poor
Warner 2016 [125]	B	A	A	A	B	A	UTD	D	Poor
Wu 2012 [229]	A	A	D	A	C	D	UTD	D	Poor
Wu 2009 [47]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Yoshio 2014 [126]	A	A	A	A	B	A	UTD	D	Poor
Ypma 2012 [109]	NA	NA	NA	NA	NA	NA	NA	NA	NA

(Continued)
Table A4. Continued.

Article	Selection	Comparability	Outcome					
	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	AHRQ standard of cohorts on the basis of the design or analysis controlled for confounders	Assessment of outcome	Was follow-up long enough for outcomes to occur	Adequacy of follow-up of cohorts
------------------------------	-----------	---------------	---------					
Rehman 2002 [230]	NA	NA	NA	NA	NA	NA	NA	NA
Zeidler 2011 [231]	NA	NA	NA	NA	NA	NA	NA	NA
Zhou 2017 [232]	NA	NA	NA	NA	NA	NA	NA	NA

AHRQ = Agency for Healthcare Research and Quality; NA = not applicable; UTD = unable to determine.
*Letters A to E correspond to answers to questions of the Newcastle-Ottawa quality assessment scale (41).

Table A5. Overview of all studies by patient population classification.

Article domain*	Number of studies	Population classification	Total number of patients (where reported)			
	TCP overall	TCP + elective IP	CLD TCP and elective IP	No classification		
All	190	139	31	17	3	458,480
RCT	43	34	1	8	0	8276
RWE	129	92	30	7	0	431,355
Effectiveness and safety	75	51	19	5	0	339,140
Epidemiology/treatment patterns	79	55	21	3	0	359,613
Humanistic burden	2	1	1	0	0	319
Economic	26	19	0	4	3	20,517

CLD = chronic liver disease; IP = invasive procedure; RCT = randomized controlled trial; RWE = real-world evidence; TCP = thrombocytopenia.
*Some studies were captured and/or extracted in more than one domain.
Table A6. Summary of the epidemiology and treatment patterns by population.

Article	PICOS classification	TCP etiology grouped	Overall study population	Mean baseline PC × 10⁹/L (SD)	Age (Years), mean (SD)	Male, n (%)	TCP population / subgroup	PT type (PPT or TPT)	Number with TCP	Number with PT	% of those with TCP receiving PT	
Cirasino 2010 [170]	TCP overall	ITP	120b	NR	58.3 (18.8)b	46 (38.3)b	All (ITP hospitalizations)	PPT and TPT	120b	25b	21b	
Fujimura 2002 [177]	TCP overall	ITP	284	NR	24.8c	0 (0)	All (ITP patients)	TPT	284	59	20.8	
Kwon 2017 [187]	TCP overall	ITP	570d	NR	45 (15.7)	17 (23)	All (ITP patients)	NR	73	37	22	
Mahevas 2015 [191]	TCP overall	ITP	37	NR	12 (32.4)	NR	All (ITP patients; multi-refractory)	NR	37	22	60	
Mathias 2007 [192]	TCP overall	ITP	113	17c	65c	NR (NR)	All (patients with PC <150 × 10⁹/L)	NR	113	8	7	
Rodeghiero 2010 [212]	TCP overall	ITP	610	77c	54.6 (18.2)	194 (32)	All (ITP patients)	NR	610	2	2	
Saleh 2009 [45]	TCP overall	ITP	3743	NR	1774 (47.4)	22 (37)	All (ITP patients)	NR	3743	2	1.7	
Takahashi 2011 [221]	TCP overall	ITP	331	20.2 (13.9)f	221 (66.8%)	Patients who developed TCP after receiving linezolid	NR	128	21	16		
Tran 2010 [124]	TCP overall	ITP	50,275	NR	45.9 (1.3)	NR	All (ITP patients)	TPT	50,275	2	1.7	
Tsukune 2016 [223]	TCP overall	ITP	213	NR	65 (30.5)	NR	All (ITP patients)	NR	213	52	24.4	
Andrade-Campos 2015 [48]	TCP overall	CIT	108	NR	60.1 (NR)	48 (44.4)	All (patients with PC ≥100 × 10⁹/L)	NR	108	23	21	
Chaoui 2005 [167]	TCP overall	CIT	98m	NR	52	62 (63)	NR	All (patients with CIT)	PPT	98	12	26
Elting 2001 [154]	TCP overall	CIT	47	NR	54 (9)	31 (66)	All (patients with CIT)	PPT	47	42	89	
Hashiguchi 2015 [180]	TCP overall	CIT	609 (1262 chemotherapy cycles)	NR	52	NR (48)	Chemotherapy cycles	PPT	1262	532	42.2	
Hitron 2011 [181]	TCP overall	CIT	291	NR	60	0 (0)	Patients with PC <50 × 10⁹/L	PPT and TPT	43	8	19	

(Continued)
Article	PICOS classification	TCP etiology grouped	Overall study population	Mean baseline PC × 10^9/L (SD)a	Age (Years), mean (SD)a	Male, n (%)a	TCP population / subgroup	PT type (PPT or TPT)	Number with TCP	Number with PT	% of those with TCP receiving PT	
Pugmire 2006	TCP overall	CIT	54	111.7^{i} 48.3^{i}	74.6 (15.0)	0 (0)	Patients administered rhIL-11 on C1C1 who developed TCP	PPT and TPT	5	1	20	
Shreenivas 2018	TCP overall	CIT	60	NR	NR	NR	Patients administered rhIL-11 from C1C2 who developed TCP	PPT and TPT	39	8	21	
Virgili 2015	TCP overall	CIT	1743	NR	NR	NR	All (patients with MM and PC >100 × 10^9/L undergoing ASCT)	PPT and TPT	1743	49	2.8	
Wang 2002	TCP overall	CIT	35	NR	296.01 (212.6)^{i}	60.76 (13.9)	19,598 (41.6)	All (patients with PC <100 × 10^9/L)	PPT and TPT	NR	2.5	
Chan 2002	TCP overall	HM	33	NR	42	68	20 (60.6)	All (MDS patients with TCP)	PPT and TPT	33	9	27
Chem 2011	TCP overall	HM	76	26.5 (29.1)	55.8	38 (50)	ICH patients with PC >50 × 10^9/L	PPT	8	4	50	
Neukirchen 2009	TCP overall	HM	2900	NR	116	71	NR (53)	PPT	68	64	94	
Poordad 2011	TCP overall	CLD (HCV patients)	7905	112.9^{i}	50 (7.8)	221 (72.5)	Patients with TCP	NR	305	26	8.5	
Antun 2013	TCP overall	Mixed (patients receiving EACA)	44	NR	8	61	29 (65.9)	All (TCP patients receiving EACA)	PPT	44	7	16
Birchall 2017	TCP overall	Mixed (hematology patients)	NR	47.8 (0.5)	33.4	NR	Patients with reversible BMF (2010)	PPT	NR	NR	46	
Chandran 2015	TCP overall	Mixed (ICU patients)	40,693	NR	47.8	62	196 (66)	Patients with PC <100 × 10^9/L	PPT	9158	2244	24.5
Goel 2014	TCP overall	Mixed (TTP, HIT and ITP)	NR	47.8 (0.5)	33.4	NR	TTP hospitalizations	NR	10,624	NR	10.2	
Goel 2015	TCP overall	Mixed (TTP, HIT and ITP)	NR	47.8 (0.5)	33.4	NR	HIT hospitalizations	NR	1448	NR	15.6	
Guerrero 2014	TCP overall	Mixed (IC)	1341	NR	NR	NR	PT administered for bleeding risk	PPT	7401 PTs	5479 PTs	74.0	
Guerrero 2017	TCP overall	Mixed (IC)	2572	64.2 (13.7)	182 (60.3)	NR	PT administered for therapeutic indication	TPT	208 PTs	1340 PTs	2.8	
Habr 2015	TCP overall	Mixed (patients receiving PT)	296^{m}	29	NR	NR	All (ICH patients)	PPT	904 PTs	300 PTs	33.2	

(Continued)
Article	PICOS classification	TCP etiology grouped	Overall study population	Mean baseline PC × 10^9/L, (SD)a	Age (Years), mean (SD)a	Male, n (%)a	TCP population / subgroup	PT type (PPT or TPT)	Number with TCP	Number with PT	% of those with TCP receiving PT
Jones 2016 [183]	TCP overall	Mixed (patients with postpartum hemorrhage)	347	192\[2\]	29\[2\]	0 (0)	All (patients with postpartum hemorrhage)	TPT	347\[4\]	12\[4\]	3.5\[4\]
Meehan 2000 [102]	TCP overall	Mixed (patients receiving PT)	245\[5\]	NR	49 (19.9)	124 (50.6)	Patients receiving 1 platelet unit	NR	245\[6\]	77	31.4\[6\]
Qureshi 2007 [206]	TCP overall	Mixed (patients receiving PT)	4421\[7\]	NR	NR	NR	Patients receiving PT with documented reason	PPT and TPT	100 P Ts\[7\]	2388	58.2\[7\]
Rabon 2018 [207]	TCP overall	Mixed (patients receiving LZD)	118	89\[8\] \[9\]	NR	NR	Patients with LZD-associated TCP	PPT and TPT	NR	45	69
Rao 2002 [211]	TCP overall	Mixed (ICU patients)	1247	54.5\[10\]	NR	NR	All (ICU patients)	PPT and TPT	1247\[10\]	202	16.2\[10\]
Roubinian 2016 [213]	TCP overall	Mixed (hospitalized patients)	13,276\[11\]	22\[12\]	62\[12\]	NR (57)	Hospitalizations in 2009	NR	NR	NR	1.7\[12\]
Samuelson 2016 [214]	TCP overall	Mixed (patients with CRT)	41	NR	50	21 (51)	All (patients with PC <50 × 10^9/L)	NR	41	36	88
Akpunonu 2014 [160]	TCP overall	Other (secondary to rattlesnake envenomations)	159\[13\]	NR	39.5	101 (87)	Patients with TCP (PC <100 × 10^9/L)	NR	116	11	9
Feliciano 2016 [175]	TCP overall	Other (myelofibrosis patients)	1658	NR	66\[14\]	NR (50)	Patients with anemia and TCP	NR	NR	NR	23
Gerber 2007 [178]	TCP overall	Other (GBM patients treated with TMZ plus radiation)	52	NR	52\[15\]	28 (54\[15\])	Patients with PC <50 × 10^9/L	NR	10	5	50
Niwa 2009 [201]	TCP overall	Other (patients treated with LZD)	42	244 (110)\[16\]	59.6 (12.8)	31 (73.8)	Patients with a ≥ 25% decrease in PC and final PC <100 × 10^9/L	NR	7	2	29
Otrock 2015 [222]	TCP overall	Other (TTP patients undergoing plasma exchange)	110	19\[17\]	39\[17\]	9 (39\[17\])	Patients with ADAMTS13-deficient TTP	PPT and TPT	55	23	42
Sekeres 2010 [217]	TCP overall	Other (MDS patients receiving azacitidine)	417	NR	75\[18\]	NR	Patients with primary MDS	NR	380\[18\]	140\[18\]	13\[18\]
TESSIER 2015 [222]	TCP overall	Other (patients treated with LZD)	693	NR	51.2 (12.7)	62 (56.4)	Patients with secondary MDS	NR	110\[19\]	36	33\[19\]
Wandt 2006 [51]	TCP overall	Other (patients receiving ABR SCT)	106	NR	54\[20\]	68 (64.2)	Non-transplant cohort	NR	572\[20\]	110	19.2\[20\]
Yoshii 2014 [126]	TCP overall	Other (patients with TMA)	1211	NR	NR	NR	All transplantations	PPT or TPT	235 P Ts	81 P Ts	65.5\[20\]
Jubelirer 2011 [184]	TCP and elective invasive procedure	ITP	51	NR	NR	NR	Patients with acquired idiopathic TTP	NR	263	48	18.3
Tada 2018 [220]	TCP and elective invasive procedure	ITP	32	44	33 (23)	8 (36.4)	Patients with ITP (PC <100 × 10^9/L)	PPT	10	5	50

(Continued)
Article	PICOS classification	TCP etiology grouped	Overall study population	Mean baseline PC × 10^9/L (SD)a	Age (Years), mean (SD)a	Male, n (%)a	TCP population / subgroup	PT type (PPT or TPT)	Number with TCP	Number with PT	% of those with TCP receiving PT
Vecchio 2005	TCP and elective invasive procedure	ITP	40	15 range 19–30 range 18–27	5 (25)	5 (25)	Patients with ITP undergoing OS	TPT	20	20	100
							Patients with ITP undergoing LS	TPT	20	6	30
Keulers 2018	TCP and elective invasive procedure	HM	1200	18 range 19–30	102 (56.35)		Patients receiving TVAP implantations with PC <150 × 10^9/L	PPT	181	68	38
							Patients receiving TVAP implantations with PC 101–150 × 10^9/L	TPT	55	0	0
							Patients receiving TVAP implantations with PC 50–100 × 10^9/L	PPT	58	0	0
							Patients receiving TVAP implantations with PC <50 × 10^9/L	PPT	68	68	100
Singh 2012 [219]	TCP and elective invasive procedure	HM	63	NR range 66–99	107 (39)		Patients with TCP who underwent surgical procedure and received ROMI	PPT	63	10	16
Al-Samkari 2018	TCP and elective invasive procedures	Mixed (patients treated with ROMI)	288	47.5 (5.8)	61 (55)		Patients with TCP who underwent surgical procedure and received ROMI	PPT	47	3	6
Delaitre 2000	TCP and elective invasive procedures	Mixed (patients undergoing splenectomy)	275	NR range 26–44	107 (39)		All (patients undergoing splenectomy)	NR	275	23	8.4
Dzierba 2016	TCP and elective invasive procedures	Mixed (patients with severe ARDS with or without ECMO)	85	NR range 50–69	NR		TCP patients with PC ≤50 × 10^9/L	TPT	18	22	
							TCP patients with PC >50 × 10^9/L	TPT	67	NR	2
Fillmore 2013	TCP and elective invasive procedures	Mixed (patients undergoing dental extraction)	68	44.6 (2.6)	53.3 (17.9)		All (PC ≤100 × 10^9/L)	PPT	68	32	47
							Patients receiving 1 PT	PPT	81	37	46
							Patients receiving >1 PT	PPT	81	44	54
Hussein 1998	TCP and elective invasive procedures	Mixed (BMT or AL patients receiving amphotericin-B and PT)	81m	NR range 50–69	NR		Patients receiving 1 PT	NR	81	37	46
Kluge 2004 [186]	TCP and elective invasive procedure	Mixed (patients undergoing percutaneous tracheostomy)	42	26.4 (11.9)	50.2 (12.4)		All (patients with PC <50 × 10^9/L)	PPT	42	40	95
Krishna 2014 [101]	TCP and elective invasive procedure	Mixed (patients undergoing endoscopy)	395d	29.4 (11.6)	54.8 (15.8)		All (patients with PC <75 × 10^9/L)	PPT	481	329	68.4
Limkemann 2015	TCP and elective invasive procedure	Mixed (patients with SOT or HSCT)	234	NR	NR		Patients treated with LZD	NR	110	43	39
Nandagopal 2016	TCP and elective invasive procedure	Mixed (patients undergoing bronchoscopy and/or BAL)	150	NR	94 (63)		Patients treated with DAP	PPT	124	24	19
Ramos 2016 [209]	TCP and elective invasive procedure	Mixed (patients with GI bleeding undergoing endoscopy)	49	0.039 (0.9)	57 (31)		All (patients with PC <50 × 10^9/mL)	NR	49	NR	88
Ramos 2018 [208]	TCP and elective invasive procedure	Mixed (patients with GI bleeding undergoing endoscopy)	144	0.041 (5.9)	59 (65)		Patients with PC ≥20 to <50 × 10^9/mL, receiving post-procedural PT	NR	144	63	
							Patients with PC ≥20 to <50 × 10^9/mL, receiving pre-procedural PT	NR	55	38	

(Continued)
Article	PICOS classification	TCP etiology grouped	Overall study population	Mean baseline PC × 10^9/L (SD)*	Age (Years), mean (SD)*	Male, n (%)*	TCP population / subgroup	PT type (PPT or TPT)	Number with TCP	Number with PT	% of those with TCP receiving PT
Ranucci 2017	TCP and elective invasive procedure	Mixed (cardiac surgery patients)	589	212†	69†	459 (78)	Patients with ADPtest ≥ 30 U and PC < 150 × 10^9/L	PPT	NR	49	NR 14
							Patients with ADPtest < 30 U and PC ≥ 150 × 10^9/L		54	NR	39
							Patients with ADPtest < 30 U and PC < 150 × 10^9/L		26	NR	50
							Patients with PC ≤ 10 × 10^9/L	PPT	376†††	NR	3*
							Patients with PC 11–20 × 10^9/L		NR	23*	
							Patients with PC 21–30 × 10^9/L		NR	27*	
							Patients with PC 31–40 × 10^9/L		NR	11*	
							Patients with PC 41–50 × 10^9/L		NR	6*	
							Patients with PC 51–75 × 10^9/L		NR	3*	
							Patients with PC ≥ 76 × 10^9/L		NR	8.3	
Schmidt 2018	TCP and elective invasive procedure	Mixed (patients receiving PT prior to IP)	376 (22.5)	48.0 (23.2)	226 (60)		Patients with PT	PPT	860	71	9.9
							Patients with PC ≤ 100 × 10^9/L		2060	203	6.8
							No preoperative PT; peri-procedural PT		1857	127	6.8
							Patients with PC ≤ 100 × 10^9/L		203	46	22.7
							Preoperative PT; peri-procedural PT		NR	25	
Warner 2016	TCP and elective invasive procedure	Mixed (patients undergoing noncardiac surgery)	13,978	49.0††	63††	43 (61)*	Patients with PC ≤ 100 × 10^9/L receiving preoperative PTs	PPT and/or NR	2060	203	9.9
	TCP and elective invasive procedure	Mixed (patients undergoing interventional radiology procedures)	18,204	NR	NR	NR	All patients with PC ≤ 100 × 10^9/L receiving preoperative PTs		1857	127	6.8
							No preoperative PT; peri-procedural PT		203	46	22.7
							Preoperative PT; peri-procedural PT		NR	25	
Duffy 2013	TCP and elective invasive procedures	Other (patients undergoing catheterization attempts)	55	26†	NR	NR	All (presumed TTP patients)	PPT	55	14	25
Benson 2011	CLD TCP and elective invasive procedure	CLD (patients undergoing liver transplantation)	525	NR	NR	NR	All (liver transplant patients)	NR	525†††	NR	64*
							Patients with ESLD, PC > 60 × 10^9/L		8	5	63
Napolitano 2016	CLD TCP and elective invasive procedure	CLD (cirrhotic patients scheduled for IP)	363	94.1 (NR)	67 (NR)	5 (62.5)	Cirrhotic patients undergoing IP with PC < 150 × 10^9/L	PPT	30	6	60
							– postprocedural bleeding		30.8	6.4	60
							Cirrhotic patients undergoing IP with PC < 150 × 10^9/L		10	6	60
							– no postprocedural bleeding		NR	6	
Pillarsetti 2011	CLD TCP and elective invasive procedure	CLD (patients with ESLD undergoing cardiac catheterization)	86	86.8 (66)	56.8 (8.5)	NR (72)	All patients with ESLD, PC > 60 × 10^9/L	PPT	43†††	5	12*
							Patients with ESLD, PC < 60 × 10^9/L		31	0	0
							Patients with ESLD, PC < 60 × 10^9/L		12	5	42

(Continued)
Table A6. Continued.

Article	PICOS classification	TCP etiology grouped	Overall study population	Mean baseline PC × 10^9/L (SD)a	Age (Years), mean (SD)a	Male, n (%)a	TCP population / subgroup	PT type (PPT or TPT)	Number with TCP	Number with PT	% of those with TCP receiving PT
Giannini 2010 [54]	CLD TCP and elective invasive procedures	Mixed (patients evaluated for orthotopic liver transplant)	102	79.0 (31.0)	56 (9)	67 (66)	Patients with PC <100 × 10^9/L	PPT	50	7	14
				50.2 (12.3)	56 (9)	8 (80)	Patients with PC <75 × 10^9/L undergoing IP		10	4	40
				50.6 (14.9)	58 (8)	14 (64)	Patients with PC <75 × 10^9/L undergoing IP – no procedure-related bleeding		22	3	14

ADP Test = testing of platelet P2Y12 receptor activity; AL = acute leukemia; APBSCT = autologous peripheral blood stem cell transplantation; ARDS = acute respiratory distress syndrome; ASCT = autologous stem cell transplantation; BAL = broncho-alveolar lavage; BMF = bone marrow failure; BMF = bone marrow transplant; C1C1 = course 1 cycle 1; C1C2 = course 1 cycle 2; CAG = coronary artery bypass grafting; CIT = chemotherapy-induced thrombocytopenia; CLD = chronic liver disease; CRIT = catheter-related thrombosis; DAP = daptomycin; EACA = epsilon aminocaproic acid; ECMO = extracorporeal membrane oxygenation; EPAG = eltrombopag; ESLD = end-stage liver disease; GBM = glioblastoma multiforme; GI = gastrointestinal; HCV = hepatitis C virus; HIT = heparin-induced thrombocytopenia; HM = hematological malignancy; HSCT = hematopoietic stem cell transplantation; ICH = intracranial hemorrhage; ICU = intensive care unit; IP = invasive procedure; ITP = immune thrombocytopenia; LS = laparoscopic splenectomy; LZD = linezolid; MDS = myelodysplastic syndrome; MM = multiple myeloma; NR = not reported; OS = open splenectomy; PC = platelet count; PPT = prophylactic platelet transfusion; PT = platelet transfusion; rhIL-11 = recombinant human interleukin-11; RITUX = rituximab; ROMI = romiplostim; SD = standard deviation; SOT = solid organ transplant; TCP = thrombocytopenia; TIVAP = totally implantable venous access ports; TMA = thrombotic microangiopathy; TMZ = temozolomide; TPT = therapeutic platelet transfusion (for active bleeding); TTP = thrombotic thrombocytopenia purpura; U = units.

aFor overall study population or subgroup, unless otherwise stated.
bData analyzed from 120 hospitalizations, corresponding to 106 patients.
cValue presented as median.
dThe total number of patients reported is 570, however a total of 590 patients results from the sum of the 3 sub-groups (320, 220 and 50).
eValue corresponds to patients ever transfused with blood or platelets.
fValue prior to LZD therapy; mean PC of 17.8 × 10^9/L during LZD therapy.
g60.7 (19.9) for TCP patients.
hTransfusion reported, but not specified whether platelet or other.
iValue corresponds to total in this subgroup; number with TCP not reported.
j41.0% of patients developed Grade 3–4 TCP.
kValue corresponds to percentage in this subgroup receiving PT (not necessarily with TCP).
l45.2% of patients developed Grade 3–4 TCP.
mAll patients in the overall study population received PTs.

nValue corresponds to percentage of PTs administered to patients in this subgroup out of total PTs administered.

The article stated that 5 patients received 0 PT and that 42 patients did receive PT. However, the article also stated that all patients with PC <20 × 10^9/L received PT and that 43 patients had PC <20 × 10^9/L. The abstract reported that all patients required at least one PT.

pValue for patients receiving PT.

qValue at nadir.
r43,995 patients with a PC were evaluated.
s43% of patients had a PC <100 × 10^9/L.
tValue corresponds to percentage of patients in this subgroup (not necessarily with TCP) requiring PT more than once a month.
uValue for TCP patients only.

6 patients administered PT had TCP before hemorrhage.

From 2570 bites identified.

56c for TCP patients. The text of the publication reports the overall cohort age as 52c, while Table 1 of the publication reports the overall cohort age as 57c.

14 (40) for TCP patients.

167 (38) for TCP patients.

11% of patients had adverse events of TCP.

27% of patients had adverse events of TCP.

Data analyzed from 140 transplantations, received by 106 patients.

Value at initiation of ROMI; 164c at time of surgery for TCP patients only.

31.1 for patients receiving PT.

Data analyzed from 481 patient encounters.

60 patients had PC <150 × 10^9/L at start of treatment.

76 patients had PC <100 × 10^9/L at start of treatment.

PC reported as 39 × 10^9/mL.

PC reported as 41 × 10^9/mL.

Of the 90 patients who received pre-procedural PT, 19 also received PT during procedure.

12c for patients receiving PT.
Table A7. Summary of the primary endpoints of remaining 21 platelet intervention studies.

Article	Primary endpoint	Treatment/subgroups	Result	P
Khalaflah 2013 [157]	1 h platelet increment (mean change, × 10^9/L)	FFGM vs Gemini pump	21.8 vs 21.7	0.90
		FFGM vs Graseby pump	21.8 vs 21.0	0.77
		FFGM vs Baxter pump	21.8 vs 21.0	0.03
Habibi 2011 [156]	Platelet count 1 h post-transfusion (× 10^9/L)	Slow vs standard infusion rate	30.9 vs 47.5	0.011
Preparation				
de Wildt-Eggen 2000 [78]	Reactions (% patients)	Plasma vs PAS-2	12 vs 3.3	<0.05
	CCI 1 h	Untreated in plasma vs untreated in PAS vs PCT in PAS	43.5 vs 45.3 vs 47.9	NR
Goodrich 2010 [79]	WHO Grade 2–4 bleeding (% patients)	PRT vs reference	11,725 vs 16,939	<0.0001
Heddie 1999 [88]	Reactions (% patients)	Post-storage WBC-reduced vs plasma-depleted	25.8 vs 17.0	<0.008
Heddie 2002 [89]	Reactions (% patients)	Plasma-removed vs random donor WBC-reduced	21.3 vs 11.4 vs 13.3	0.384
Janetzko 2005 [82]	CCI 1 h (× 10^9/L)	PCT vs reference	11.6 vs 15.1	0.11
Johansson 2012 [75]	Relative MA 1 h (mm)	PRT vs reference	0.30 vs 0.38	n.s.
Johansson 2013 [76]	Change in MA 1 h	PRT vs reference	10.6 vs 14.3	0.20
Kerkhoffs 2010 [80]	CCI 1 h	Plasma vs PAS III with PRT	17.1 vs 11.4	<0.0001
		Plasma vs PAS III without PRT	17.1 vs 15.3	n.s.
Lozano 2011 [81]	CCI 1 h (mean)	PCT vs conventional	8163 vs 9383	0.007
McCullough 2004 [62]	WHO Grade 2 bleeding (% patients)	PCT vs control	58.5 vs 57.5	<0.01b
Simonsen 2006 [83]	CCI 1 h	PCT vs reference (combined treatment periods)	6587 vs 8935	0.547c
Slichter 2006 [159]	Bleeding time (minutes)	PCT vs reference	19.3 vs 14.3	0.25
van Rhenen 2003 [84]	1 h platelet count increment (× 10^9/L)	PCT vs conventional	27.5 vs 35.8	0.03
Vadhna-Raj 2002 [85]	CCI 1 h	PCT vs conventional	13,100 vs 14,900	0.11
Van Der Meer 2017 [90]	WHO Grade 2–4 bleeding (% patients)	PRT vs control	15.7 vs 19.8	0.398
	Time to initiate clotting (minutes)a	Per-protocol analysis	52 vs 44	0.19d
Zhu 2014 [86]	Angle of clot formation (°)a	Gamma irradiated vs non-irradiated	8.30 vs 8.41	0.930
	MA (mm)a	49.55 vs 52.34	0.148	
	CCI 1 h	47.81 vs 49.26	0.397	
		11.6 vs 12.8	0.171	
Storage				
Diedrich 2009 [87]	CCI 1 h	1–5 day PT vs 6–7 day PT	10.4 vs 7.4	<0.001
MacLennan 2015 [158]	% of successful transfusions	2–5 day PT vs 6–7 day PT	71 vs 69	0.625

CCI = corrected count increment; CI = confidence interval; FFGM = free flow gravity method; MA = maximum amplitude; NR = not recorded; n.s. = not significant; PAS = platelet additive solution; PCT = photochemically treated; PRT = pathogen reduction technology; PT = platelet transfusion; WBC = white blood cell; WHO = World Health Organization.

*aWith a pre-protocol population with a pre-specified margin of 12.5%, non-inferiority was not achieved for PCT in PAS vs untreated in plasma (4.4%; 95% CI, −4.1% to 12.9%), but was achieved for PCT in PAS vs untreated in PAS (2.6%; 95% CI, −5.9% to 11.1%).

*bBased on a non-inferiority test with a non-inferiority margin of 0.125 (one-sided 95% CI of difference: −1, 0.07), p value <0.05 indicates that PCT was not inferior to control.

*cMean difference in CCI was 2400±4301 (one-sided non-inferiority test, upper bound of one-sided 95% CI of CCI, 4040). Specified non-inferior margin was 2200, indicating that the study failed to show non-inferiority within this specified margin of inferiority.

*dNon-inferiority criterion was met for the intention-to-treat analysis (indicating that PCT was not inferior to control), but not for the per-protocol analysis.

*eAll measured at 1 h post-transfusion.
Table A8. Summary of the effectiveness and safety from real-world evidence studies – change in platelets counts.

Article	PCOS classification	Treatment/subgroup	N of patients^a	Baseline PC (<i>x</i>10⁹/L) (SD)	Time of post-transfusion readout	Post-transfusion readout	PE
Alikia 2017 [162]	TCP and elective invasive procedure	PT	35	4.4 (7.1)	Day 1	PC of 59.5 (8.2)	NR
Arnold 2006 [99]	TCP overall	PT	27	NR	5.2^b	Change in PC of 14 (−2−30)^b	NR
Benke 2017 [113]	TCP overall	PT	44	26 (18−34)^b	24 h	PC of 52 (39−76)^b	NR
Bhat 2016 [165]	TCP overall	PT/ non-responders (CCI ≥5)	159	15 (12–20)^b	4 h	PC of 41 (30−52)^b, CCI 18	For both change in PC and CCI P < 0.001
Callow 2002 [139]	TCP overall	PT	15	NR	24 h	Improvement in PC in 78%	NR
Charbonnier 2014	TCP overall	TPT	884	NR	NR	PC of 98.9% patients non-refractory	NR
Chen 2011 [114]	TCP and elective invasive procedure	PT, PC <10 × 10⁹/L	10	5.7 (3.1)	PC readout Day 1	PC of 73 (54), CR in 89%^c	
Chopra 2011 [120]	TCP overall	PT	76	26.5 (29.1)	36 h	PC of 51.6 (32.8)	NR
Chien 2014 [169]	TCP overall	PT	159	NR	16–24 h	PC increment in 64%, 36% refractory^d	
Dufty 2013 [115]	TCP and elective invasive procedure	Pre-procedure PPT	14	Median: 12 (range 1–34)^b	NR	Median PC of 50 (range 11–100)^b	
Fujimura 2002 [177]	TCP overall	PT	64	<10 in 50% of patients	1 and 24 h	Early platelet yield effective in 81%, based on CCI	NR
Habr 2015 [50]	TCP overall	PT	296	29 (15−54)^b	NR	Change in PC of 10 (2−25)^b	NR
Hussein 1998 [182]	TCP overall	PT with no AMB	39 PTs	NR	10 min	CCI of 9300	
Kander 2014 [185]	TCP and elective invasive procedure	Pre-procedure PT	39	24 (18−32)^b	1 h	PC of 42 (31−50)^b	P < 0.0001 from baseline
Krishna 2014 [101]	TCP and elective invasive procedure	PT	481 patient encounters	29.4 (11.6)	Post-transfusion	PC of 36.7 (12.4)	NR
Lee 2016 [119]	TCP overall	PT	486	14 (7−19)^b	Next day	Change in PC of 8 (−6−43)^b, Time for PC ≥50 3 (1−5)	For both change in PC and time for PC ≥50 P < 0.0001
Levin 2003 [189]	TCP overall	PT	97	Median: 11 range (4–60)	1 and 16 h	40% of 181 PTs had a <20% recovery at 1 h and 37% of 181 PTs had a <10% recovery at 16 h.	NR
Lye 2009 [120]	TCP overall	PPT	188	15 (7−19) 5th/95th	24 h	Change in PC of 7 (−7−50) 5th/95th, Time for PC ≥50 3 (1−4)	Change in PC, P = 0.26, time for PC ≥50 P = 0.59
McDonald 2012 [193]	TCP overall	PT	22	NR	24 h	PC response in 64%^b	NR
Meehan 2000 [102]	TCP overall	PT/292 study admissions	245	NR	NR	In 78% of admissions, patients were non-refractory	NR
Mohd Hayat 2016 [194]	TCP overall	PT/All	80	NR	NR	Good increment in 67%^c	NR

^a N of patients: number of patients included in the study.
^b Baseline PC: baseline platelet count.
^c Time of post-transfusion readout: time of post-transfusion readout.
^d Post-transfusion readout: post-transfusion readout.
^e PE: P value.

(Continued)
Article	PICOS classification	Treatment/subgroup	N of patients	Baseline PC [×10⁹/L] (SD)	Time of post-transfusion readout	Post-transfusion readout	P	
Nandagopal 2016 [196]	TCP and elective invasive procedure	PT/poor increment⁷	NR	NR	NR	CCI of 1571	NR	
		Pre-procedural PT	58	<50	NR	PC >50 in 33%	NR	
Ning 2016 [100]	TCP overall	PT	4467	87 (57–130)b	7 h⁸	Change in PC of 23 (7–48)⁹	PC increment ≥ 5 × 10⁹/L in 78.2% of PTs	NR
Norol 1998 [202]	TCP overall	Medium dose PT/adults	69	19	12 h post-transfusion	33 (22)	NR	
		High dose PT/adults				51 (29)	P < 0.01 vs medium	
		Very high dose PT/adults				62 (34)	P < 0.01 vs high	
Schmidt 2018 [128]	TCP and elective invasive procedure	Pre-procedural PPT	376	32.6 (22.5)	Post-procedure	PC of 56.9 (36.4)	NR	
Schuh 2013 [216]	TCP overall	PT	50	9.000/muL (6.000–15.000)b	1 h	CCI of 6.500	NR	
						24 h	NR	
						CCI of 2.146	NR	
						1 h	NR	
						Good response in 44%⁶	NR	
						24 h	Good response in 39%⁹	NR
						Change in PC of 62.8 (39.9)	p = 0.000	
Sethi 2017 [123]	TCP overall	PPT	209	NR	48 h or discharge	Change in PC of 101.7 (49.9)	NR	
		No PPT	430	NR			NR	
Spahr 2008 [107]	TCP overall	Concurrent IVig and PT	40	10	24 h	PC of 55	NR	
						48 h	PC of 69	NR
						24 h	Good response in 48%⁶	NR
Wallace 2003 [127]	TCP and elective invasive procedure	PT	50	17	1–24 h	Change in PC of 101.7 (49.9)	NR	
Wandt 1998 [104]	TCP overall	PPT, PC <10 × 10⁹/L	58	NR	0% patients non-refractory due to alloimmunization	NR		
		PPT, PC ≥20 × 10⁹/L	47	NR	0% patients non-refractory due to alloimmunization	NR		
Wu 2012 [229]	TCP and elective invasive procedure	Pre-operative PT	10	9.4 (8.7)	Non-pre-operative PT	PC of 272.3 (126.9)	PT vs no PT p = 0.096	
						PC of 387.8 (191.1)	NR	
Rehrman 2002 [230]	TCP overall	PT	20	12.6 (8.2)	Non-preoperative PT	PC of 387.8 (191.1)	NR	
Zhou 2017 [232]	TCP and elective invasive procedure	Pre-procedural PT	120	<60	NR	Increase in PC in 89%	NR	
							NR	

Notes: CCI = corrected count increment; AMB = amphotericin B; CCI = corrected count increment; CLD = chronic liver disease; CR = complete response; ER = effective rate; HLA = human leukocyte antigen; IP = invasive procedure; IVIg = intravenous immunoglobulin; NR = not reported; PC = platelet count; PICOS = population, interventions, comparators, outcomes, study design; PPT = prophylactic platelet transfusion; PT = platelet transfusion; TCP = thrombocytopenia; TPT = therapeutic platelet transfusion.

Table A8. Continued.
Table A9. Summary of the effectiveness and safety from real-world evidence studies – bleeding.

Article	PICOS classification	Treatment/subgroup	N^a	Bleeding
Al Zaabi 2014 [161]	TCP and elective invasive procedure	Pre-procedure PPT	58	Post-procedural WHO bleeding Grade 2–4 (29%) and within 72 h (24%)
C allow 2002 [139]	TCP overall	PT	98	271 bleeding episodes according to WHO criteria
Charbonnier 2014 [103]	TCP overall	TPT	884	Death due to hemorrhage (2.4%)
Chen 2011 [114]	TCP and elective invasive procedure	PPT	524	Death due to hemorrhage (0.4%)
Duffy 2013 [115]	TCP and elective invasive procedure	Pre-procedure PPT	14	Minor bleeding complications (36%)
Fillmore 2013 [130]	TCP and elective invasive procedure	PT	32	Bleeding complications (29%)
Frigaa 2015 [176]	TCP overall	PT	64	Hemorrhagic syndrome (level 02; 63%)
Giannini 2010 [54]	CLD TCP and elective invasive procedure	PPT	7	Bleeding (57%)
Goel 2015 [21]	TCP overall	PPT	25	Bleeding (14%)
Habr 2015 [50]	TCP overall	PT	279	WHO bleeding Grade 3 and 4 (14.3%)
Jubelirer 2011 [184]	TCP and elective invasive procedure	No PT	21	Excessive bleeding complications (9%)
Kander 2014 [185]	TCP and elective invasive procedure	PPT	39	4 CTCAE Grade 1 bleeding events
Keulers 2018 [129]	TCP and elective invasive procedure	Pre-procedure PT	68	Bleeding complications (0%)
Krishna 2014 [101]	TCP and elective invasive procedure	Pre-procedure PT, PC ≤ 50 × 10^9/L	329^c	OR (95% CI) 1.02 (0.98, 1.05) of bleeding with PT
Lawrence 2001 [188]	TCP overall	PPT, threshold PC < 20 × 10^9/L	64	Minor and major bleeding on 70% and 18% of patient-days, respectively
Lee 2016 [119]	TCP overall	PT	486	Bleeding (23.5%)
Li 2018 [110]	CLD TCP and elective invasive procedure	Pre-procedure PT	4^*	Major bleeding (25%)
Lye 2009 [120]	TCP overall	PPT	188	Major bleeding (2.1%)
Nevo 2007 [198]	TCP overall	PPT, threshold PC < 20 × 10^9/L	68	Bleeding (3%)
Park 2015 [111]	CLD TCP and elective invasive procedure	Pre-procedure PT	61 EBL sessions	Bleeding (5%)
Ramos 2018 [208]	TCP and elective invasive procedure	PT	144	Recurrent bleeding rate of 22% at 30 days and 30% at 1 year
Samuelson Bannow 2017 [106]	TCP overall	AII^d	82	WHO bleeding Grade 2–4 (37%); fatal bleeding (4.9%)
Schmidt 2018 [128]	TCP and elective invasive procedure	Pre-procedure PPT	376	Bleeding (0%)
Sethi 2017 [123]	TCP overall	PPT	209	Modified WHO bleeding Grade 1 (31.1%)
Spahr 2008 [107]	TCP overall	Concurrent IVIg and PT	40	Death due to a massive intracranial bleed (3%)
Swisher 2009 [105]	TCP overall	PT	33	Death due to hemorrhage (3%)
Toor 2000 [108]	TCP overall	PT	39	Death due to or in part due to hemorrhagic complications (15%)
Vijenthalira 2017 [226]	TCP overall	TXA alone	28	WHO bleeding Grade 4 (11%)
Virgili 2015 [227]	TCP overall	PT	49	Grade IV hemorrhagic episodes in 3 patients (6%)

^a N: Number of patients.

(^Continued)
Table A9. Continued.

Article	PICOS classification	Treatment/subgroup	N \(^{a}\)	Bleeding
Wandt 1998 [104]	TCP overall	PPT, threshold PC <10 \(\times 10^9\)/L	104	WHO bleeding Grade 2–4 (33%)
		No PPT	302	WHO bleeding Grade 3–4 (15%)
			2270	
Ypma 2012 [109]	TCP overall	PT	64	WHO bleeding Grade 1–4 (89%), Grade 3–4 (8%), death due to bleeding complication (2%)

\(^{a}\)Confidence interval; CI = confidence interval; CLD = chronic liver disease; CTCAE = Common Terminology Criteria for Adverse Events; EBL = endoscopic variceal band ligation; FFP = fresh frozen plasma; HIT = heparin-induced thrombocytopenia; HR = hazard ratio; ITP = immune thrombocytopenia; IVIg = intravenous immunoglobulin; OR = odds ratio; PC = platelet count; PICOS = population, interventions, comparators, outcomes, study design; PPT = prophylactic platelet transfusion; PT = platelet transfusion; TCP = thrombocytopenia, TPT = therapeutic platelet transfusion; TTP = thrombotic thrombocytopenia purpura; TXA = tranexamic acid; WHO = World Health Organization.

\(^{b}\)N of patients unless otherwise stated.

\(^{c}\)There were 43 catheterization attempts in 41 patients.

\(^{d}\)A total of 617 procedures were performed in 395 patients. PTs were administered within 24 h preceding the procedure in 329 patient encounters.

\(^{e}\)Clinical bleeding except petechiae.

\(^{f}\)Only 204 of the 874 patients had severe thrombocytopenia. 10 of 21 patients with bleeding had TCP. 194 of 853 of patients without bleeding had TCP.

\(^{g}\)Patients received a median of 6 PTs (range 0–61).

Table A10. Summary of the effectiveness and safety from real-world evidence studies – safety.

Article	PICOS classification	Treatment/subgroup	Number of patients	Safety
Arnold 2016 [112]	TCP overall	PT	5621	10.7% of patients with PT had died and 6.5% of patients without PT had died, HR (95% CI) 0.66 (0.46, 0.96) for mortality with PT, \(P = 0.028\)
		No PT	37,613	
Aubron 2017 [17]	TCP overall	PT	2250	Infection: 7.7% of patients with PT, 1.4% of patients without PT, \(P < 0.01\); Bacteremia: 4.4% of patients with PT, 0.5% of patients without PT, \(P < 0.01\); Bacteremia: 4.0% of patients with PT, 1.9% of patients without PT, \(P < 0.01\); OR (95% CI) 2.56 (1.98, 3.31) with PT, \(P < 0.01\).
		No PT	16,715	
Beneke 2017 [113]	TCP overall	PT	44	0% of patients with PT had died, 2.6% of patients without PT had died, \(P = \text{ns}\)
		No PT	206	
Benson 2011 [52]	CLD TCP and elective invasive procedure	PT	336	OR (95% CI) 1.11 (0.92, 1.34) for post-operative infection with PT, \(P = 0.28\), OR (95% CI) 1.44 per PT unit (1.12, 1.87) for TRALI, \(P < 0.01\)
		No PT	189	
Callow 2002 [139]	TCP overall	PT	98	4% of patients had died within 3 months
Chandran 2015 [44]	TCP overall	PPT	1792	22.5% of patients with PPT had died within 1 month, 14.3% of patients without PPT had died within 1 month, OR (95% CI) 1.8 (1.5, 2.1) for mortality with PT, \(P < 0.001\)
		No PPT	1792	
Charbonnier 2014 [103]	TCP overall	TPT	884	7 patients had died at a median of 12 days after diagnosis, 1 patient had died 16 days after diagnosis
Chen 2011 [114]	TCP and elective invasive procedure	PT, PC <10\(^a\)/L	10	0% of patients had died within 5 days
		No PT, PC <10\(^a\)/L	20	0% of patients had died within 5 days
		No PT, PC 10–30\(^a\)/L	24	0% of patients had died within 5 days
		No PT, PC ≥30\(^a\)/L	27	0% of patients had died within 5 days
Chern 2011 [168]	TCP overall	PT	68	OR (95% CI) 7.49 (1.3, 42.0) between responders and non-responders for mortality, \(P = 0.022\)
Davasaambuu 2013 [171]	TCP overall	PT	41	7% of patients had died
Duffy 2013 [115]	TCP and elective invasive procedure	Pre-procedure PPT	14	43% of patients had died
		No PPT	41	5% of patients had died
Eder 2013 [174]	TCP overall	PT	NR	Rate of TRALI: 7.3 per million distributed components in 2008–2011
Engele 2016 [131]	TCP and elective invasive procedure	PT	621	25.3% of patients had nosocomial infection, OR (95% CI) 2.53 (2.0, 3.2) for infection with PT, \(P < 0.001\); HR (95% CI) 1.46 (1.2, 1.8) for infection with PT, \(P < 0.001\)
Fillmore 2013 [130]	TCP and elective invasive procedure	PT, Local hemostatic measures	32	3% of patients had infection
			26	0% of patients had infection
Goel 2014 [116]	TCP overall	TTP hospitalizations, PT	NR	OR (95% CI) 2.02 (1.26, 3.22) for mortality with PT, \(P < 0.001\)
		TTP hospitalizations, no PT	NR	
		HIT hospitalizations, PT	NR	OR (95% CI) 4.72 (1.53, 14.53) for mortality with PT, \(P < 0.01\)
		HIT hospitalizations, no PT	NR	
		ITP hospitalizations, PT	NR	OR (95% CI) 1.06 (0.79, 1.42) for mortality with PT, \(P = 0.07\)
		ITP hospitalizations, no PT	NR	
Guerrero 2017 [117]	TCP overall	PT	302	OR (95% CI) 1.39 (1.19, 1.94) for mortality with PT within 3 months, \(P = 0.050\)

(Continued)
Article	PICOS classification	Treatment/ subgroup	Number of patients	Safety
Habr 2015 [50]	TCP overall	PT	296	37.8% of patients had died, there were 5 serious adverse events reported
Keulers 2018 [129]	TCP and elective invasive procedure	No PT, mild TCP	55	4% of patients had infection
		No PT, moderate TCP	58	9% of patients had infection
		TCP PT, severe TCP (PC <50)	68	10% of patients had infection
Kuter 2017 [118]	TCP overall	All	442	HR (95% CI) 2.81 (1.54, 5.12) for mortality after PT, P < 0.001 HR (95% CI) 1.77 (1.07, 2.89) for composite endpoint^a after PT, P = 0.022
Lawrence 2001 [188]	TCP overall	PPT, threshold PC <20^a	64	14% of patients treated with PPT for a PC <20 had died within 6 months and 18% of patients treated with PPT for a PC <10 had died within 6 months, P = 0.9
Lee 2016 [119]	TCP overall	PPT	486	0.2% of patients with PPT had died and 0.0% of patients without PPT had died, P = 0.43
Lye 2009 [120]	TCP overall	PPT	188	0.5% of patients with PPT had died and 0% of patients without PPT had died, P = 1.00
Makroo 2014 [121]	TCP overall	PT	30	60% of patients had died
		No PT	21	10% of patients had died
Nevo 2007 [198]	TCP overall	PPT (threshold PC <20^a)	211	10% of patients treated with PPT for a PC <20 and 7.1% of patients treated with PPT for a PC <10 had died within 100 days of HSCT, P = 0.31
Nevo 2001 [200]	TCP and elective invasive procedure	Bleeding	321	42.4% of patients had died within 100 days after BMT
Ning 2016 [100]	TCP overall	PT	7073	12.5% of patients had died within 100 days after BMT
Otrock 2015 [122]	TCP overall	PT	23	13% of patients with PT had died within 30 days and 3% of patients without PT had died within 30 days, P = 0.30
Palo 2010 [203]	TCP overall	PT	32	9.5% of patients had died within 24 months
Ramos 2018 [208]	TCP and elective invasive procedure	PT	632	19% of patients had died within 1 month and 37% within 12 months
Raval 2015 [22]	TCP overall	PT	225	1 event of septic transfusion reaction within 30 days, 2 events of allergic reactions, TACO occurred in 2 patients (0.9%), with a TACO to PT unit rate of 1:167
Samuelson Bannow 2017 [106]	TCP overall	All^b	82	13% of patients experienced transfusion reactions, 37% of patients had TACO-volume overload within 30 days
Samuelson 2016 [214]	TCP overall	PPT	36	14% of patients had a transfusion reaction, 44% of patients had TACO-volume overload within 30 days
Schmidt 2018 [128]	TCP and elective invasive procedure	Pre-procedural PPT	376	16.0% of patients had died within 1 month, of which 29 patients (48%) died from septic shock/SIRS
Sethi 2017 [123]	TCP overall	No PPT	209	1.9% of patients with PT had died and 0.2% of patients without PT had died, P = 0.024
Singh 2012 [219]	TCP and elective invasive procedure	PT	10	50% of patients had died within 12 months
Spahr 2008 [107]	TCP overall	Concurrent IVlg and PT	40	5% of patients had died within 72 h, no side effects of combined treatment were noted
Swisher 2009 [105]	TCP overall	NT	33	24% of patients with PT had died (2 patients died from sepsis) and 24% of patients without PT had died, P = 0.97
Tran 2010 [124]	TCP overall	PT/Major bleed	21	12% of patients with PT had died and 9% of patients without PT had died, P = 0.12
Vigil-De Gracia 2006 [225]	TCP overall	Dexmethasone	26	23% of patients had complications, 0% of patients had died
		Dexmethasone + PT	20	50% of patients had complications, 0% of patients had died
Wallace 2003 [127]	TCP and elective invasive procedure	PT	50	26% of patients had died within 1 month, 9 patients died from infection/sepsis
Wandt 1998 [104]	TCP overall	PPT, PC <10^a	58	4% of patients had died, 9% of patients had serious infections and sepsis
Warner 2017 [46]	TCP and elective invasive procedure	Pre-procedural PT	203	21.7% of patients with PT had died and 9.8% of patients without PT had died, OR (95% CI) 2.55 (1.76, 3.64) for mortality with PT, P < 0.001
Warner 2016 [125]	TCP and elective invasive procedure	Pre-procedure PT	71	27% of patients with PT had died and 10.1% of patients without PT had died, OR (95% CI) 3.20 (1.80, 5.67) for mortality with PT, P < 0.001
Yoshii 2014 [126]	TCP overall	PT	48	23% of patients with PT had died and 17.7% of patients without PT had died, P = ns

^aPlatelet counts are presented with the units x 10⁹/L.

^bThe composite endpoint comprised death, limb amputation/gangrene, and new thrombosis.

^cPatients received a median of 6 PTs (range 0–29).

BMT = bone marrow transplant; **CI** = confidence interval; **CLD** = chronic liver disease; **HIT** = heparin-induced thrombocytopenia; **HR** = hazard ratio; **HSCT** = hematopoietic stem cell transplantation; **IVlg** = intravenous immunoglobulin; **NS** = not significant; **NR** = not reported; **OR** = odds ratio; **PC** = platelet count; **PICOS** = population, interventions, comparators, outcomes, study design; **PPT** = prophylactic platelet transfusion; **PT** = platelet transfusion; **SIRS** = systemic inflammatory response syndrome; **TACO** = transfusion-associated circulatory overload; **TCP** = thrombocytopenia, **TTP** = thrombotic thrombocytopenia purpura.