Primordial Non-Gaussianity from a Joint Analysis of Cosmic Microwave Background Temperature and Polarization

Dipak Munshi1,2, Peter Coles1, Asantha Cooray3, Alan Heavens2, Joseph Smidt3

1School of Physics and Astronomy, Cardiff University, Queen’s Buildings, 5, The Parade, Cardiff, CF24 3AA, UK
2Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
3Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

ABSTRACT

We explore a systematic approach to the analysis of primordial non-Gaussianity using fluctuations in temperature and polarization of the Cosmic Microwave Background (CMB). Following Munshi & Heavens (2009), we define a set of power-spectra as compressed forms of the bispectrum and trispectrum derived from CMB temperature and polarization maps; these spectra compress the information content of the corresponding full multispectra and can be useful in constraining early Universe theories. We generalize the standard pseudo-\(C_l\) estimators in such a way that they apply to these spectra involving both spin-0 and spin-2 fields, developing explicit expressions which can be used in the practical implementation of these estimators. While these estimators are suboptimal, they are nevertheless unbiased and robust hence can provide useful diagnostic tests at a relatively small computational cost. We next consider approximate inverse-covariance weighting of the data and construct a set of near-optimal estimators based on that approach. Instead of combining all available information from the entire set of mixed bi- or trispectra, i.e. multispectra describing both temperature and polarization information, we provide analytical constructions for individual estimators, associated with particular multispectra. The bias and scatter of these estimators can be computed using Monte-Carlo techniques. Finally, we provide estimators which are completely optimal for arbitrary scan strategies and involve inverse covariance weighting; we present the results of an error analysis performed using a Fisher-matrix formalism at both the one-point and two-point level.

Key words: Cosmology– Cosmic microwave background– large-scale structure of Universe – Methods: analytical, statistical, numerical

INTRODUCTION

The Cosmic Microwave Background (CMB) has the potential to provide cosmologists with the cleanest statistical characterization of primordial fluctuations. In most early universe studies the primordial fluctuations are assumed to be nearly Gaussian, but the quest for an experimental detection of primordial non-Gaussian is of considerable importance. Early observational work on the bispectrum from COBE (Komatsu et al. 2002) and MAXIMA (Santos et al. 2003) was followed by much more accurate analysis using data from the Wilkinson Microwave Anisotropy Probe (WMAP)1 (Komatsu et al. 2003; Creminelli et al. 2007; Spergel et al. 2007). With the recent claim of a detection of non-Gaussianity (Yadav & Wandelt 2008) in the 5-year WMAP data, interest in non-Gaussianity has received a tremendous boost. However, these, and most other, studies of primordial non-Gaussianity focus primarily on data relating to temperature anisotropies whereas inclusion of E-polarization data could, in principle, increase the sensitivity of such tests. Ongoing surveys, such as that derived from the Planck Surveyor2, will throw more light on this question both by improving sensitivity to both temperature and polarization fluctuations. It is the primary purpose of this paper to extend a number of previously obtained analytical results in order to design a new set of diagnostic tools for the analysis of primordial non-Gaussianity using both temperature and polarization data.

The CMB polarization field can be decomposed into a gradient part with even parity (the “electric” or \(E\)-mode) and a curl part with odd parity (the “magnetic” or \(B\)-mode), with important ramifications for its interpretation in a cosmological setting. Scalar (density) perturbations, at least in the linear regime, are unable to generate \(B\)-mode polarization directly. Secondary effects such as gravitational lensing can generate magnetic polarization from an initial purely electric type, but only on relatively small angular scales. Tensor (gravitational-wave) perturbations, however, can generate both \(E\)-mode and \(B\)-mode on large scales. Detection of \(B\)-mode polarization on large angular scales is therefore, at least in principle, a tell-tale signature of the existence of gravitational waves predicted to be generated during inflation. The amplitude of these tensor perturbations also contains information relating to the energy scale of inflation and thus has considerable power to differentiate among alternative models of the early Universe.

1http://map.gsfc.nasa.gov/
2http://www.rssd.esa.int/index.php?project=Planck
A number of experiments therefore are either being planned or currently underway to characterize the polarized CMB sky, including Planck. The
primary statistical tools used currently to characterize the stochastic polarized component are the power spectra of the E and B-mode contributions;
these have been studied in the literature in great detail for various survey strategies, non-uniform noise distribution, and partial sky coverage
(Hivon et al. 2002). Most studies in this vein involve a (computationally extensive) maximum likelihood analysis or a quadratic estimator, which have limited ability
to handle maps with large numbers of pixels, or the so-called pseudo-\(C_l\)s estimator (PCL) which uses a heuristic weighting of various pixels, instead of
an optimal or near-optimal one.

Information about non-Gaussianity, however, is not contained in the power-spectrum \(C_l\), however it is estimated. A recent study by Munshi et al.
(2009) extended the PCL approach to the study of non-Gaussianity by taking into account higher-order spectra, as well as clarifying the relationship of
the estimators obtained to the optimal ones. This was done for temperature only, so one of the aims of this paper is to generalise this early work to take
into account both temperature and polarization.

Approaches based on PCL do not require detailed theoretical modelling of the target bispectrum. Optimal estimators on the other hand, work using
a matched-filter approach which does require analytical modelling. The simplest inflationary models - based on a single slowly-rolling scalar field -
are associated with a very small level of non-Gaussianity (Salopek & Bond 1990; Falk et al. 1993; Gangui et al. 1994; Acquaviva et al. 2003; Maldacena 2003);
see (Bartolo, Matarrese & Riotto 2006) and references there in for more details. More elaborate variations on the inflationary theme,
such as those involving multiple scalar fields (Lyth, Uggarelli & Wandz 2003), features in the inflationary potential, non-adiabatic fluctuations, non-
standard kinetic terms, warm inflation (Gupta, Berera & Heavens 2002; Moss & Xiong 2007), or deviations from Bunch-Davies vacuum can all lead to
much higher level of non-Gaussianity.

Generally speaking, the apparatus used to model primordial non-Gaussianity has focused on a phenomenological \('local\) \(f_{NL}\)\) parametrization in
terms of the perturbative non-linear coupling in the primordial curvature perturbation (Komatsu & Spergel 2001):

\[
\Phi(x) = \Phi_L(x) + f_{NL}[\Phi_L^2(x) - \langle \Phi_L^2(x) \rangle] + g_{NL} \Phi_L^3(x) + \ldots ,
\]

where \(\Phi_L(x)\) denotes the linear Gaussian part of the Bardeen curvature (Bartolo, Matarrese & Riotto 2006) and \(f_{NL}\) is the non-linear coupling parameter.
A number of models have non-Gaussianity which can be approximated by this form. The leading order non-Gaussianity therefore is at the level of the
bispectrum or, equivalent, at the three-point level in configuration space. Many studies involving primordial non-Gaussianity have used the bispectrum,
motivated by the fact that it contains all the information about \(f_{NL}\) (Babich 2005). This has been extensively studied (Komatsu, Spergel & Wandz 2005;
Creminelli 2003; Creminelli et al. 2006; Medeiros & Contaldi 2006; Cabella et al. 2006; Liguori et al. 2007; Smith, Senatore & Zaldarriaga 2009), with
most of these measurements providing convolved estimates of the bispectrum. Optimized 3-point estimators were introduced by Heavens (1998), and have
been successively developed (Komatsu, Spergel & Wandz 2005; Creminelli et al. 2006; Creminelli, Senatore & Zaldarriaga 2007; Smith, Zahn & Dor{\c{s}}
2000; Smith & Zaldarriaga 2006) to the point where an estimator for \(f_{NL}\) which saturates the Cramer-Rao bound exists for partial sky coverage and
inhomogeneous noise (Smith, Senatore & Zaldarriaga 2009). Approximate forms also exist for \('equilateral\) non-Gaussianity, which may arise in models
with non-minimal Lagrangian with higher-derivative terms (Chen, Huang & Kachru 2004; Chen, Easther & Lin 2007). In these models, the largest signal
comes from spherical harmonic modes with \(\ell_1 \simeq \ell_2 \simeq \ell_3\), whereas for the local model, the signal is highest when one \(\ell\) is much smaller than the other two.
Moreover, the covariances associated with these power-spectra can be computed analytically for various models, thereby furnishing methods to test
simulation pipeline in a relatively cost-effective way.

As we mentioned above, most analysis of the CMB bispectrum take into account only temperature information because of lower sensitivity associated
with polarisation measurements. However, the overall signal-to-noise ratio of a detection of non-Gaussianity can in principle be improved by incorporating
E-type polarisation information in a joint analysis. Several ground-based or future experiments have either started or will be measuring E-polarisation,
and ongoing all-sky experiments such as Planck will certainly improve the signal to noise. Moreover, there are many planned experiments which will
survey the sky with even better sensitivity; see e.g. Baumann et al. (2009) for the CMBPol mission concept study. It is therefore clearly timely to update
and upgrade the available estimators which can analyze non-Gaussianity including both temperature and polarization. The main question is to how to do
it optimally.

The fast estimator introduced initially by Komatsu, Spergel & Wandz (2005) can handle temperature and polarization data. Extension of this estimator
to take into account a linear term, which can reduce the variance in the presence of partial sky coverage, was introduced later in (Creminelli et al.
2006). In the absence of a linear term the scatter associated with the estimator increases at high \(-\ell\). A more general approach, that includes inverse
variance weighting of the data, was introduced by Smith & Zaldarriaga (2006) and can make the estimator optimal. However most of these estimators
tend to compress all available information into a single point. This has the advantage of reducing the scatter in the estimator but it throws away a great
deal of potentially relevant information.

Recently Munshi & Heavens (2010) have extended this approach by devising a method which can map the bispectrum, or even higher-order spectra
such as the trispectrum, to associated power-spectra; these power spectra are related to the cumulant correlators used in the context of projected
galaxy surveys (Munshi, Melott & Cole 2000; Szapudi & Szalay 1999). These compressed spectra do not contain all the information contained in the
multispectra but they certainly do carry more information than a single number, and for certain purposes, such as \(f_{NL}\) estimation, can be completely
optimal.

In this paper we extend the analysis of Munshi & Heavens (2010) to the case of a joint analysis of temperature and E-mode polarization data. We
provide realistic estimators for power spectra related to mixed bispectra and trispectra (i.e. multispectra incorporating and describing both temperature
and polarization properties of the radiation field) in the presence of partial sky coverage. We then generalize these results to the case of optimized estimators
which can handle all realistic complications by an appropriate optimal weighting of the data. We also provide a detailed analysis of pseudo-\(C_l\) based
estimators. Though suboptimal, these estimators are unbiased and turn out to be valuable diagnostics for analyzing large number of simulations very
quickly.

The plan of the paper is as follows. In §2 we describe the basic results needed for the PCL analysis. We then introduce the power spectrum associated

3 See e.g. http://cmbpol.uchicago.edu/workshops/path2009/abstracts.html for various ongoing and planned surveys.
with the mixed bispectrum. The formalism is sufficiently general to handle both E and B-mode, but for simplicity and practical relevance we give results for the E-mode only. These results are next generalized in §4 to near-optimal estimators which were introduced by Konstandin, Spergel & Wandelt [2003]. The optimization depends on matched-filtering techniques based on theoretical modeling of primordial non-Gaussianity presented in §3 and relies on Monte-Carlo standardization of bias and scatter. Next, we consider the approach where various fields are weighted by inverse covariance matrices to make them optimal in §5. Though this approach does not rely on Monte-Carlo simulations, accurate modelling of inverse covariance matrix can be computationally expensive and can only be achieved for maps with relatively low resolution.

2 Method of Direct Inversion or Pseudo C$_l$ Approach

Maximum likelihood analysis techniques, or related quadratic estimators, are generally used to estimate the power spectrum from a given cosmological data set such as a map of the CMB. This approach relies on (optimal) inverse-covariance weighting of the data which, unfortunately, is virtually impossible to implement in practice for large data sets. However, faster direct inversion techniques with heuristic weighting schemes are faster and are typically employed for estimation of power spectrum from cosmological data (Hivon et al. 2002). The alternative, PCL, technique discussed above can, however, be used to study the power spectrum related to the bispectrum. This method is not optimal, but remains unbiased and can act as a precursor to more computationally expensive studies using various optimal estimators.

This section is devoted to the generalization of the pseudo-C_l (PCL) results to the skew-spectrum associated with spinorial fields such as polarization radiation. The results we shall derive are valid for all-sky coverage as well as for partial sky coverage; we relate the two using a coupling matrix which depends on the power spectrum associated with the mask describing the coverage. We provide results for the coupling matrix for various generic combinations of spin-0 and spin-2 fields. These results extend the results obtained previously for the temperature-only case (spin-0).

2.1 The Power Spectrum associated with the Bispectrum

We start by defining the complex field $P_{\pm}(\hat{\Omega})$ constructed from the Stoke's parameters $Q(\hat{\Omega})$ and $U(\hat{\Omega})$.

$$ P_{\pm}(\hat{\Omega}) = Q(\hat{\Omega}) \mp iU(\hat{\Omega}) $$

The fields denoted $P_{\pm}(\hat{\Omega})$ are spin-2 (tensor) fields, whereas the temperature field can be represented as a spin-0 (scalar) field on the surface of the sky. The appropriate multipole expansion of these objects is performed using the spin-2 spherical harmonics, $\pm 2 Y_{lm}$, as basis functions. We will denote the spin harmonics of spin s with $Y_{lm}(\hat{\Omega})$ on the surface of a unit sphere.

$$ P_{\pm}(\hat{\Omega}) = \sum_{lm} \pm 2 Y_{lm}(\hat{\Omega})(E_{lm} \pm B_{lm}); \quad [P_{\pm}]_{lm} = (E_{lm} \pm B_{lm}). $$

The terms E_{lm} and B_{lm} are the harmonic components of Electric and Magnetic components respectively. It should be clear that the fields P_{\pm}, constructed from Q and U, correspond to spin ∓ 2 respectively.

Estimation of power spectrum for the E and B fields from experiments with partial sky coverage is of great importance for cosmological experiments and has attracted a great deal of interest.

We start by considering two fields on the surface of a sphere $X(\hat{\Omega})$ and $Y(\hat{\Omega})$, which are respectively of spin x and y. These objects can be P_\pm or δT. Resulting product fields such as $P_x P_\pm$ can be of spin zero, while those like P_x^2 and P_\pm^2 are of spin -4 and $+4$ respectively. The results can also involve fields such as $\delta T P_\pm$ which is a spin -2 field. All these spin-s fields can be decomposed using spin-harmonics $Y_{lm}(\hat{\Omega})$ given above. These spin harmonics are generalization of ordinary spherical harmonics $Y_{lm}(\hat{\Omega})$ which are used to decompose the spin-0 (or scalar) functions e.g. δT defined over a surface of the celestial sphere. Throughout we will be using lower case symbols x, y to denote the spins associated with the corresponding fields denoted in italics. The fields that are constructed from various powers of P_x and P_\pm can be expanded in terms of the corresponding spin-harmonics $Y_{lm}(\hat{\Omega})$. The product field such as $[X(\hat{\Omega}) Y(\hat{\Omega})]$ which is of spin $x + y$ can therefore be expanded in terms of the harmonics $x + y Y_{lm}(\hat{\Omega})$. The following relationship therefore expresses the harmonics of the product field in terms of the harmonics of individual fields.

$$ [X(\hat{\Omega}) Y(\hat{\Omega})]_{lm} = \int d\Omega X(\hat{\Omega}) Y(\hat{\Omega})[x + y Y_{lm}(\hat{\Omega})] $$

$$ = \sum_{l_1, l_2, m_1, m_2} X_{l_1 m_1} Y_{l_2 m_2} (I_{l_1 l_2})^{x y} \left(\begin{array}{ccc} 1 \quad l_2 \quad -l \\ x \quad y \quad -(x + y) \end{array} \right) (I_{l_1 m_1} I_{l_2 m_2})^{x y} \left(\begin{array}{ccc} 1 \quad l_1 \quad -m \\ m_1 \quad m_2 \quad -l \end{array} \right) ; \quad I_{l_1 l_2} = \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)(2l + 1)}{4\pi}}. $$

The expression derived above is valid for all-sky coverage; it will be generalized later to take into account arbitrary partial sky coverage. We have assumed that any noise contamination is Gaussian, so that it will not contribute to this non-Gaussianity statistic. To define the associated power spectra we can write:

$$ C_{lm}^{x, y, z} = \frac{1}{2l + 1} \sum_m [X Y]_{lm} Z_{lm}^* \sum_{l_1 l_2} B_{l_1 l_2}^{x y} \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)}{2l + 1}} \left(\begin{array}{ccc} 1 \quad l_2 \quad l \\ x \quad y \quad -(x + y) \end{array} \right) . $$

Here we have introduced the bispectrum $B_{l_1 l_2}^{x y}$ which can be related to the harmonics of the relevant fields by the following equation:
The simplest example of a mask would be masks in each case to be the same, but the results could be very easily generalized for two different masks. The result derived above is valid for a general E and B type polarization field. The contribution from B-type magnetic polarization is believed to be considerably smaller than the E-type electric polarization. The results derived above will simplify considerably if we ignore the B type polarization field in our analysis. In general the power-spectra described above will be complex functions, though the real and imaginary parts can be separated by considering different components of the bispectrum. However, if we assume that the magnetic part of the polarization is zero the following equalities will hold:

$$B_{l_1l_2l_3}^{STST} = B_{l_1l_2l_3}^{TTT}, \quad B_{l_1l_2l_3}^{P_eST} = B_{l_1l_2l_3}^{EEE}, \quad B_{l_1l_2l_3}^{P_pST} = B_{l_1l_2l_3}^{EEE}, \quad B_{l_1l_2l_3}^{P_eP_p} = B_{l_1l_2l_3}^{EEE}. \quad (9)$$

The result detailed above is valid for all-sky coverage. Clearly, for our results to be relevant in practical applications, we need to add a Galactic mask. If we consider the masked harmonics associated where the (arbitrary) mask $w(\Omega)$ then, expanding the product field in the presence of the mask, we can write:

$$[\mathcal{X}(\Omega)\mathcal{Y}(\Omega)w(\Omega)]_{lm} = \sum_{l_1m_1l_2m_2} \mathcal{X}_{l_1m_1}\mathcal{Y}_{l_2m_2}w_{l_1m_1} \int [xY_{l_1m_1}(\Omega)][Y_{l_2m_2}(\hat{\Omega})][Y_{l_1m_1}][x+yY_{l_1m_1}]d\Omega$$

$$= \sum_{l_1m_1l_2m_2} (-1)^{l_1+l_2} \mathcal{X}_{l_1m_1}\mathcal{Y}_{l_2m_2}w_{l_1m_1} I_{l_1l_2} \left(\begin{array}{ccc} l_1 & l_2 & l' \\ x & y & -(x+y) \end{array} \right) \left(\begin{array}{ccc} l_1 & l_2 & -m' \\ m_1 & m_2 & -l' \end{array} \right) \int [-(x+y)Y^*_{l'2m_2}]Y_{l_1m_1} [x+yY_{l_1m_1}]$$

$$= \sum_{l_1m_1} (-1)^{l_1+l_2} \sum_{l_2m_2} \mathcal{X}_{l_1m_1}\mathcal{Y}_{l_2m_2}w_{l_1m_1} I_{l_1l_2} I_{l_2l_1} \left(\begin{array}{ccc} l_1 & l_2 & l' \\ x & y & -(x+y) \end{array} \right) \left(\begin{array}{ccc} l_1 & l_2 & l' \\ m_1 & m_2 & -m' \end{array} \right) \times \left(\begin{array}{ccc} l' & -l & l \\ 0 & -x+y & m \end{array} \right) \left(\begin{array}{ccc} l & l' & l \\ y & -l & m \end{array} \right). \quad (10)$$

In simplifying the relations derived in this section we have used the relationship Eq. (8) and Eq. (9). We have also used the fact that $Y_{l1m_1}^* = (-1)^{m_1}Y_{l1m_1}$. Similarly, we can express the pseudo-harmonics of the field $\mathcal{Z}(\Omega)$ observed with the same mask in terms of its all-sky harmonics:

$$[\mathcal{Z}(\Omega)w(\Omega)]_{lm} = \int d\Omega[\mathcal{Z}(\Omega)w(\Omega)]_{lm} \sum_{l_1m_1} \mathcal{Z}_{l_1m_1}w_{l_1m_1} \int [xY_{l_1m_1}(\Omega)][Y_{l_1m_1}(\hat{\Omega})][xY_{l_1m_1}]d\Omega$$

$$= \sum_{l_1m_1} \sum_{l_2m_2} \mathcal{Z}_{l_1m_1}w_{l_1m_1} I_{l_1l_2} \left(\begin{array}{ccc} l_1 & l_2 & -z \\ x & y & m \end{array} \right) \left(\begin{array}{ccc} l_1 & l_2 & -z \\ m_1 & m_2 & l \end{array} \right). \quad (11)$$

The harmonics of the composite field $[\mathcal{X}(\Omega)\mathcal{Y}(\Omega)]$ when constructed on a partial sky are also functions of the harmonics of the mask used, w_{lm}. The simplest example of a mask would be $w = 1$ within the observed part of the sky and $w = 0$ outside. For more complicated mask, the harmonics w_{lm} are constructed out of spherical harmonics transforms. We also need to apply the mask to the third field which we will be using in our construction of the pseudo power spectrum related to the bispectrum (which we sometimes refer to as the skew-spectrum) associated with these three fields. We will take the masks in each case to be the same, but the results could be very easily generalized for two different masks. The pseudo power spectrum is constructed from the masked harmonics of the relevant fields in the form of a cross-correlation power spectrum:

$$\tilde{C}_l^{XY} = \frac{1}{2l+1} \sum_{m=-l}^l [\mathcal{X}(\Omega)\mathcal{Y}(\Omega)w(\Omega)]_{lm} [\mathcal{Z}(\Omega)w(\Omega)]_{lm}. \quad (12)$$

The pseudo power spectrum \tilde{C}_l is thus a linear combination of the modes of its all-sky counterpart C_l. In this sense, masking introduces a coupling of modes of various order which is absent in the case of all-sky coverage. The matrix $M_{ll'}$ encodes the information regarding the mode-mode coupling and depends on the power spectrum of the mask w_l. For surveys with partial sky coverage the matrix is not invertible which signifies the loss of information due to masking. Therefore, binning of the pseudo skew-spectrum or any higher-order version based on, e.g., kurtosis, may be necessary before it can be inverted, which leads to the recovery of (unbiased) binned spectrum.

$$\tilde{C}_l^{XY} = \sum_{l'} M_{ll'}^{xy} C_{l'}^{XY}. \quad (13)$$

The all-sky power spectrum C_l^{XY} can be recovered by inverting the equation related to the accompanying bispectrum by Eq. (7) discussed above. The mode-mode coupling matrix depends not only on the power spectrum $|w_l|$ of the mask but also on the spin associated with the various fields which are being probed in construction of skew-spectrum:
Primordial Non-Gaussianity and CMB Observations

\[M_{lll}^{yyzz} = \frac{1}{4\pi} \sum_{l_a} (2l_a + 1) \left(\begin{array}{ccc} l & l & l' \\ x+y & 0 & -l' \\ z & 0 & -z \end{array} \right) \left| w_{la} \right|^2 \]

(14)

This expression reduces to that of the temperature bispectrum if we set all the spins to be zero \(x = y = z = 0 \), in which case the coupling of various modes due to partial sky coverage only depends on the power spectrum of the mask. In case of temperature-only (spin-0) analysis we have seen that the mode-mode coupling matrix do not depend on the order of the statistics. The skew-spectrum or the power spectrum related to bispectrum, as well as its higher order counterparts, such as the power spectrum related to trispectrum, can all have the same mode-mode coupling matrix in the presence of partial sky coverage. However, this is not the case for power-spectra related to the polarization multipoles; that depends on the spin of various fields used to construct the bispectrum. It is customary to define a single number associated with each of these bispectra. The skewness is a weighted sum of the power spectrum related to the bispectrum \(S_{nl}^{y,yyzz} = \sum (2l + 1) C_{nl}^{EE,x} \).

We list the specific cases of interest below. The relations between the bispectra and the associated power spectra generalize cases previously obtained where only the temperature bispectrum was considered (Cooray [2001]).

\[C_{l}^{TT,EE} = \sum_{l_1 l_2} B_{l_1 l_2}^{TT,EE} \left(\begin{array}{ccc} l_1 & l_2 & l \\ 0 & 0 & 0 \end{array} \right) \]

(15)

\[M_{lll}^{002} = \frac{1}{4\pi} \sum_{l_a} (2l_a + 1) \left(\begin{array}{ccc} l & l_a & l' \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 2 & 0 & -2 \\ 0 & -2 & -2 \end{array} \right) \left| w_{la} \right|^2. \]

(16)

Next we can express the power spectrum \(C_{l}^{TT,EE} \) probing the mixed bispectrum \(B_{l_1 l_2}^{TT,EE} \) by the following relation:

\[C_{l}^{TT,EE} = \sum_{l_1 l_2} B_{l_1 l_2}^{TT,EE} \left(\begin{array}{ccc} l_1 & l_2 & l \\ 2 & 0 & -2 \end{array} \right) \]

(17)

\[M_{lll}^{022} = \frac{1}{4\pi} \sum_{l_a} (2l_a + 1) \left(\begin{array}{ccc} l & l_a & l' \\ 2 & 0 & -2 \end{array} \right) \left(\begin{array}{ccc} 2 & 0 & -2 \\ 0 & -2 & -2 \end{array} \right) \left| w_{la} \right|^2. \]

(18)

Similarly, for the case \(C_{l}^{EEE,EE} \), which probes the bispectrum \(B_{l_1 l_2}^{EEE,EE} \), we have the following expressions.

\[C_{l}^{EEE,EE} = \sum_{l_1 l_2} B_{l_1 l_2}^{EEE,EE} \left(\begin{array}{ccc} l_1 & l_2 & l \\ 4 & 0 & -4 \end{array} \right) \]

(19)

\[M_{lll}^{222} = \frac{1}{4\pi} \sum_{l_a} (2l_a + 1) \left(\begin{array}{ccc} l & l_a & l' \\ 4 & 0 & -4 \end{array} \right) \left(\begin{array}{ccc} 2 & 0 & -2 \\ 0 & -2 & -2 \end{array} \right) \left| w_{la} \right|^2. \]

(20)

Other power spectra, such as \(C_{l}^{EEE,TT} \) and those involving B-mode polarization, can be expressed in terms of the underlying bispectrum in a very similar manner. It is likely that future high sensitivity experiments can probe these power spectra individually. As these are unbiased estimators they can also be useful in testing simulation pipelines involving a large number of Monte-Carlo realizations, which are routinely used for standardization and characterization of data-analysis pipelines. The inversion of the coupling matrix \(M_{lll} \) require binning, in which case the relevant binned coupling matrix \(M_{lb} \) in the case of small sky coverage (such as ground-based and balloon-borne) surveys will lead to recovery of binned power spectra \(C_{lb} \). The flat sky analogs of these results can be useful in other cosmological studies, including weak lensing observations, involving spin-2 fields (mapping out the shear or \(\gamma \) on the surface of the sky) that covers a small fraction of the sky. We plan to present results of such an analysis elsewhere (Munshi et al. 2010, in preparation).

2.2 The Power spectrum associated with the Trispectrum

The bispectrum represents the lowest-order deviation from Gaussianity; the next highest order is the trispectrum. There are many reasons for wanting to go beyond the lowest-order description. Many studies relating to secondary anisotropies have shown that ongoing surveys such as Planck can provide information about non-Gaussianity beyond lowest order. These include the mode coupling of CMB due to weak lensing of CMB as well as the other secondary effects such as thermal Sunyaev-Zeldovich (tSZ) and kinetic Sunyaev-Zeldovich effect (kSZ) (Cooray & Hu 2000). With the recent (claimed) detection of primordial non-Gaussianity in the CMB, there has also been a renewed interest in detection of primordial non-Gaussianity beyond lowest order with reasonable signal-to-noise. Such studies will constrain the parameters \(g_{NL} \) and \(f_{NL} \) independently. The signal-to-noise for such constraints is weaker compared to the ones achieved using bispectrum, but with anticipated future increases in sensitivity of ongoing as well as future planned surveys such studies will play an important role in future. Future 21cm surveys can also provide valuable information about the trispectrum (Cooray, Li & Melchiorri 2008). A recent study by Munshi et al. (2009) constructed an estimator for trispectrum which can work with temperature data and which is optimized to detect primordial non-Gaussianity. This statistic was also applied to WMAP 5-year data in Smidt et al. (2010) to provide the first constraints on \(g_{NL} \) and \(g_{NL} \), the third order corrections to primordial perturbations in non-Gaussian models. We generalise and extend these works here to include both temperature and polarizations data for independent or joint estimate of such quantities.
6 D. Munshi et al.

2.2.1 The Two-to-Two Power spectrum

In constructing the power-spectrum related to the trispectrum, we start with two fields \mathcal{U} and \mathcal{V} respectively on the surface of the sphere. As before, we can take specific examples where these fields are either P_\pm or δT. We will keep the analysis generic here, but will consider more specific examples later on. The spins associated with various fields are denoted by lower case symbols, i.e. u and v. The product field now can be expanded in terms of the spin harmonics of spin $u + v$, as was done in Eq. (6). Similarly, decomposing the other set of product field we obtain $|\mathcal{W}(\hat{\Omega}), \mathcal{X}(\hat{\Omega})|_{lm}$. We next construct the the power spectrum associated with the trispectrum from these harmonics:

$$C_{\ell}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} [\mathcal{U}(\hat{\Omega}) \mathcal{V}(\hat{\Omega})]_{lm} [\mathcal{W}(\hat{\Omega}), \mathcal{X}(\hat{\Omega})]_{lm}. \quad (21)$$

This particular type of power spectrum associated with trispectra has been studied extensively in the literature in the context of CMB studies (see e.g. Cooray & Kesden (2003)). It is one of the two degenerate power spectra associated with trispectrum. After going through very similar algebra outlined in the previous section we can express the $C_{\ell}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}}$ in terms of the relevant trispectra which it is probing. The resulting expression, in the absence of any mask, takes the following form:

$$C_{\ell}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}} = \sum_{l_1, l_2, l_3, l_4} T_{W_{l_3}X_{l_4}}^{U_{l_1}V_{l_2}}(l) \left(\begin{array}{cccc} l_1 & l_2 & l & l \\ u & v & (u+v) & (u+v) \end{array} \right) \left(\begin{array}{cccc} l_3 & l_4 & l & l \\ x & y & -(x+y) & -(x+y) \end{array} \right) \frac{(2l_1+1)(2l_2+1)}{(2l+1)} \frac{(2l_3+1)(2l_4+1)}{(2l+1)}; \quad (22)$$

$$C_{\ell}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} [\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}]_{lm}^{*}; \quad w_l = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} w_{lm}^{*}. \quad (24)$$

Again, the resulting PCLs are linear combinations of their all-sky counterparts. The mixing matrix which encodes information about the mode mixing will depend on the power spectrum of the mask as well as the spins of all four associated fields. The mixing matrix $M_{l'}$ expressed in terms of the Wigner’s $3j$ symbols takes the following form:

$$M_{l'}^{w,v,x} = \frac{1}{4\pi} \sum_{l_a} (2l_a + 1)(2l_a + 1) \left(\begin{array}{ccc} l & l & l' \\ u + v & 0 & -(u+v) \end{array} \right) \left(\begin{array}{ccc} l & l & l' \\ x + y & 0 & -(x+y) \end{array} \right) |w_{l_a}|^2; \quad u, v, x, y \in \pm 2, 0. \quad (25)$$

The pseudo-C$_s$'s expressed as a linear combination of all-sky power spectra can now be expressed using the following relationship:

$$C_{\ell}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}} = \sum_{l'} M_{l'}^{w,v,x} C_{l'}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}}. \quad (26)$$

For nearly complete sky surveys, and with proper binning, the mixing matrix $M_{l'}$ can be made invertible. This provides a unique way to estimate all-sky $C_{l'}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}}$ and extract the information it contains about the trispectra. For a given theoretical prediction, the all-sky power spectra $C_{l'}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}}$ can be analytically computed. Knowing the detailed model of an experimental mask then allows us to compute the observed $C_{l}^{\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X}}$ accurately. The results presented here generalizes those obtained in Munshi et al. (2009) for the case of polarization studies.

These results assumes generic field variables $\mathcal{X}(\Omega), \mathcal{Y}(\Omega)$ which can have arbitrary spin associated to them. We next specify certain specific cases where we identify three of the fields $\mathcal{X}, \mathcal{Y}, Z = \delta_T$ and $Z = P_+ = E$. The other combinations can also be obtained in a similar manner.

$$C_{l}^{TT, TE} = \sum_{l_1, l_2, l_3, l_4} T_{W_{l_3}X_{l_4}}^{U_{l_1}V_{l_2}}(l) \left(\begin{array}{cccc} l_1 & l_2 & l & l \\ 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{cccc} l_3 & l_4 & l & l \\ 2 & 0 & -2 & -2 \end{array} \right) \frac{(2l_1+1)(2l_2+1)}{(2l+1)} \frac{(2l_3+1)(2l_4+1)}{(2l+1)}; \quad (27)$$

$$M_{l'}^{00,02} = \frac{1}{4\pi} \sum_{l_a} (2l_a + 1)(2l_a + 1) \left(\begin{array}{ccc} l & l & l' \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} l & l & l' \\ 2 & 0 & -2 \end{array} \right) |w_{l_a}|^2; \quad (28)$$

Other estimators for mixed trispectra involving different combinations of E-polarization and temperature anisotropy δ_T can be derived in a similar manner and can provide independent information of corresponding trispectra. As before, we have ignored the presence of B-type polarization in our analysis. The presence of a non-zero B-mode can be dealt with very easily in our framework but the resulting expressions will be more complicated.

2.2.2 The Three-to-One Power spectrum

The number of power spectra that can be associated with a given multispenspectra depends on number of different ways the order of the multispenspectra can be decomposed into a pair of integers. The bispectrum being of order three can be decomposed uniquely $3 = 2 + 1$ and has only one associated power spectrum. On the other hand the order of the trispectrum can be decomposed in a different ways, i.e. $4 = 3 + 1 = 2 + 2$. Hence the trispectrum of
a specific type generates a pair of two different power spectrum associated with it; see, e.g. [Munshi et al. (2009)] for more details. The results presented here are generalizations for the case of non-zero spins.

The other power spectrum associated with the trispectrum is constructed by cross-correlating product of three different fields \([UVW]\) with the remaining field \([X]\). The cross-correlation power spectrum in terms of the multipoles is given by the following expression:

\[
C_{l}^{UVW,X} = \frac{1}{2l+1} \sum_{m=-l}^{l} N_{l}^{m} [UVW]^{m} [X]^{m}.
\]

By repeated use of the expressions Eq. (34) or, equivalently, Eq. (35) to simplify the harmonics of the product field in terms of the individual harmonics, we can express the all-sky result in the following form:

\[
C_{l}^{UVW,X} = \sum_{l_{1},l_{2},l_{3},L} T_{l_{1}l_{2}l_{3}L}^{U_{1}V_{1}V_{2}} \left(\begin{array}{ccc}
\frac{l_{1}}{u} & \frac{l_{2}}{v} & \frac{L}{-u-v} \\
\frac{l_{3}}{w} & \frac{l'}{-(u+v+w)}
\end{array} \right) \sqrt{\frac{2l_{1}+1}{2l_{2}+1}} \sqrt{\frac{2l_{3}+1}{2l+1}} \frac{(2l_{1}+1)(2l_{2}+1)}{(2l+1)}. \tag{30}
\]
In the case of partial sky coverage with a generic mask $w(\hat{\Omega})$ the relevant expression for the Pseudo-C_{l}s will as usual involve the harmonic transform of the mask.

$$\int [\hat{W}][\hat{W}]_{lm} = \int [\hat{W}(\hat{\Omega})][\hat{W}(\hat{\Omega})]_{ab}Y_{lm}^{a}(\hat{\Omega})Y_{lm}^{b}(\hat{\Omega})d\hat{\Omega}; \quad [Xw]_{lm} = \int [X(\hat{\Omega})w(\hat{\Omega})]_{lm}Y_{lm}^{s}(\hat{\Omega})d\hat{\Omega}; \quad C_{l}^{\hat{W}X} = M_{ll}^{\hat{W}X}C_{l}^{XX}$$

(31)

The mixing matrix has the following expression in terms of various spins involved and the power spectra of the mask introduced above. Note that the mixing matrix is of different form compared to what we obtained for two-to-one power spectra. This is related to how various fields with different spins were combined to construct these two estimators. In case of temperature trispectrum (spin-0) the two mixing matrices take the same form.

$$M_{llll}^{WXX} = \frac{1}{4\pi} \sum_{l_a}(2l_a + 1)(l_a + 1) \left(\begin{array}{ccc} l & l_a & l' \\ 0 & -l & 0 \\ x & 0 & 0 \end{array} \right) |w_{l_a}|^{2};$$

(32)

The expressions derived here apply to a general mask and to correlated Gaussian instrument noise; any non-Gaussianity from the noise will have to be allowed for. These calculations lead to optimal estimators, but the weights required depend on the precise model of non-Gaussianity being assumed.

In the remainder of the paper we will generalize the estimators by including inverse variance weighting. We will first show how to include the effect of noise and mask by using Monte-Carlo simulations. Next we will consider the exact inverse variance weighting where the inverse covariance matrix incorporates the effect of noise and mask.

Note that incorporating a non-zero B-type (magnetic) polarisation is possible in our formalism presented above by conceptually trivial extension. We have only taken into account E-type (electric) polarisation to keep the derivations simple as E-modes are assumed to dominate presence of B-mode polarisation.
3 THE BISPECTRUM AND TRISPECTRUM WITH PRIMORDIAL NON-GAUSSIANITY

The optimization techniques that we will introduce in this section follow the discussion in Munshi & Heavens (2010) and Munshi et al. (2009). The optimization procedure depends on construction of three-dimensional fields from the harmonic components of the temperature fields a_{lm} with suitable weighting with respective functions (α, β, μ) which describes primordial non-Gaussianity (Yadav, Komatsu & Wandelt 2007). These weights make the estimators act in an optimal way and the matched filtering technique adopted ensures that the response to the observed non-Gaussianity is maximum when it matches with the target primordial non-Gaussianity corresponding to the weights.

In the linear regime, the curvature perturbations which generate the fluctuations in the CMB sky are written as:

$$a_{lm}^{\chi} = 4\pi(-i)^l \int \frac{d^3k}{(2\pi)^3} \Phi(k) \Delta_X(k) Y_{lm}(k); \quad \chi \in T, E.$$ \hspace{1cm} (37)

We will need the following functions to construct the harmonic space trispectrum as well as to generate weights for the construction of optimal estimators:

$$\alpha_l^X(r) = \frac{2}{\pi} \int_0^\infty k^2 dk \Delta_X(k) j_l(kr); \quad \beta_l^X(r) = \frac{2}{\pi} \int_0^\infty k^2 dk P_\phi(k) \Delta_X^2(k) j_l(kr); \quad \mu_l^X(r) = \frac{2}{\pi} \int_0^\infty k^2 dk \Delta_X(k) j_l(kr).$$ \hspace{1cm} (38)

For a more complete description of the method for extracting the trispectrum from a given inflationary model, see Hu (2000). In the limit of low multipoles, where the perturbations are mainly dominated by Sachs-Wolfe Effect the transfer functions $\Phi(l)$ take a rather simple form $\Delta_X(k) = j_l(kr)/3$ where $r = (\pi - \theta_{dec})$ denotes the time elapsed between cosmic recombination and the present epoch. In general the transfer function needs to be computed numerically. The local model for the primordial bispectrum and trispectrum can be constructed by going beyond linear theory in the expansion of the $\Phi(x)$. Additional parameters f_{NL} and g_{NL} are introduced which need to be estimated from observation. As discussed in the introduction, g_{NL} can be linked to r the scalar to tensor ratio in a specific inflationary model and hence expected to be small.

$$\Phi(x) = \Phi_L(x) + f_{NL} (\Phi_L^2(x) - \langle \Phi_L^2(x) \rangle) + g_{NL} \Phi_L^2(x) + h_{NL} (\Phi_L^3(x) - 3\langle \Phi_L^2(x) \rangle) + \ldots$$ \hspace{1cm} (39)

We will only consider the local model of primordial non-Gaussianity in this paper and only adiabatic initial perturbations. More complicated cases of primordial non-Gaussianity will be dealt with elsewhere. In terms of the inflationary potential $V(\phi)$ associated with a scalar potential ϕ one can express these constants as f_{NL}, g_{NL} (Seery, Lidsey & Trotta 2008). Following Hu (2000) we can expand the above expression in Fourier space to write:

$$\Phi_2(k) = \int \frac{d^3k_1}{(2\pi)^3} \Phi_L(k + k_1) \Phi_L^*(k_1) - (2\pi)^3 \delta_D(k) \int \frac{d^3k_1}{(2\pi)^3} P_\phi(k_1); \quad \Phi_3(k) = \int \frac{d^3k_1}{(2\pi)^3} \Phi_L(k_1) \Phi_L(k_2) \Phi_L^*(k_1).$$ \hspace{1cm} (40)

The resulting trispectrum T_ϕ for the potential ϕ associated with these perturbations can be expressed as:

$$T_\phi(k_1, k_2, k_3, k_4) \equiv \langle \Phi(\Phi(\Phi(\phi)))) \rangle = \int \frac{d^3K}{(2\pi)^3} \delta_D(k_1 + k_2 - K) \delta_D(k_3 + k_4 + K) T_\phi(k_1, k_2, k_3, k_4, K);$$ \hspace{1cm} (42)

where the reduced trispectrum $T_\phi(k_1, k_2, k_3, k_4, K)$ can be decomposed into two distinct contributions:

$$T_\phi^{(2)}(k_1, k_2, k_3, k_4, K) = 4f_{NL} P_\phi(P_\phi(k_1)P_\phi(k_3)); \quad T_\phi^{(3)}(k_1, k_2, k_3, k_4, K) = g_{NL} (P_\phi(P_\phi(k_1)P_\phi(k_3) + P_\phi(P_\phi(k_1)P_\phi(k_3)))$$ \hspace{1cm} (43)

The resulting mixed trispectrum, involving temperature and E-type polarization now can be written as:

$$T_{W_{l_{12}l_{34}} V_{l_{13}l_{24}}}(L) = 4f_{NL}^2 II_{l_1l_2l_3l_4} \int r_1^2 dr_1 r_2^2 dr_2 F_{l_1l_2l_3l_4} (r_1, r_2) \alpha_{l_1l_2l_3l_4}^T(\alpha_{l_1l_2l_3l_4}^V(\alpha_{l_1l_2l_3l_4}^W)) \beta_{l_3l_4}^X(\beta_{l_3l_4}^V(\beta_{l_3l_4}^W)) \beta_{l_1l_2}^X(\beta_{l_1l_2}^V(\beta_{l_1l_2}^W)) + g_{NL} II_{l_1l_2l_3l_4} \int r_1^2 dr_1 \beta_{l_1l_2l_3l_4}(r_1) \beta_{l_1l_2l_3l_4}(r_1) \beta_{l_1l_2l_3l_4}(r_1) \beta_{l_1l_2l_3l_4}(r_1).$$ \hspace{1cm} (44)

For detailed descriptions of objects such as α, β, μ, F_L, see Hu & Okamoto 2002, Hu 2000, Komatsu & Spergel 2001, Kogo et al. 2004, for a detailed discussion and Smith et al. (2009) for a measurement in data. The corresponding expression is:

$$B_{W_{l_{12}l_{35}} V_{l_{13}l_{24}l_{35}}}(L) = 2f_{NL} II_{l_1l_2l_3} \int r^2 dr \left[\alpha_{l_1l_2l_3}^V(\alpha_{l_1l_2l_3}^V(\alpha_{l_1l_2l_3}^V(\alpha_{l_1l_2l_3}^V)) \beta_{l_3l_4}^W(\beta_{l_3l_4}^W(\beta_{l_3l_4}^W(\beta_{l_3l_4}^W)))) + g_{NL} II_{l_1l_2l_3} \int r^2 dr \beta_{l_1l_2l_3l_4}(r_1) \beta_{l_1l_2l_3l_4}(r_1) \beta_{l_1l_2l_3l_4}(r_1) \beta_{l_1l_2l_3l_4}(r_1).$$ \hspace{1cm} (45)

The extension to orders beyond those presented here involves higher-order Taylor coefficients and may not be practically useful as detector noise and the cosmic variance may prohibit any reasonable signal-to-noise. Numerical evaluations of the functions α, β, μ can be performed by using the publicly available Boltzmann solvers such as CAMB or CMBFAST.
A Gaussian fluctuation field has zero bispectrum. However, even a Gaussian map will have non-zero trispectrum; this corresponds to the unconnected part of the trispectrum. Its contribution can be expressed in terms of the cross power spectra associated with contributing fields:

\[
G_{VW U}^{l_1 l_2 l_3} = (-1)^{(l_1 + l_2 + l_3)} \sqrt{(2l_1 + 1)(2l_2 + 1)C^{l_1}_{l_2}C^{l_3}_{l_4}\delta_{l_1 l_2}\delta_{l_3 l_4}\delta_{l_0} + (2L + 1) \left[(-1)^{l_1 + l_2 + l_3}C^{l_1}_{l_2}C^{l_2}_{l_3}\delta_{l_1 l_2}\delta_{l_3 l_4} + C^{l_1}_{l_2}C^{l_2}_{l_3}\delta_{l_1 l_4}\delta_{l_2 l_3} \right]} \quad (46)
\]

In the case of Gaussian maps, the trispectrum can be expressed completely in terms of the relevant cross power-spectra \(C^{l_{12}} \) of corresponding fields \(\mathcal{U} \) and \(\mathcal{V} \). The estimators designed in later sections estimate the combined skew- or kurt-spectra and the Gaussian contributions are subtracted accordingly. The Gaussian maps that are used for Monte-Carlo estimates of bias and scatter are constructed to have same power spectrum as the non-Gaussian maps being analysed.

\[L = \sum_{l=1}^{l_{\text{max}}} R_{l_{\text{max}}}^{l_{\text{max}}}(Y_0) P_{l_{\text{max}}}(l_{\text{max}}) \quad (48) \]

The function \(R_{l_{\text{max}}}^{l_{\text{max}}} \) represents a beam smoothing, and from here onward we will absorb it into the harmonic transforms. The matrix \(C \) depends on both temperature (T) and E-type polarization power spectra \(C^{TT}_{l} \) and \(C^{EE}_{l} \). The cross-correlation power spectrum is denoted by \(C^{T}_{l} \).

\[
|C| = \begin{pmatrix}
C_{l}^{TT} & C_{l}^{TE} \\
C_{l}^{TE} & C_{l}^{EE}
\end{pmatrix} ; \quad |C|^{-1} = \frac{1}{D_l} \begin{pmatrix}
-C_{l}^{EE} & C_{l}^{TE} \\
-C_{l}^{TE} & -C_{l}^{TT}
\end{pmatrix} ; \quad \tilde{a}^{l_{12}} = |C|^{-1}_{l_{12}} a^{l_{12}}. \quad (49)
\]

The determinant \(D_l \) introduced above is a function of the relevant three power spectra introduced above \(D_l = C_{l}^{TT} C_{l}^{EE} - (C_{l}^{TE})^2 \) for joint \((T, E) \) analysis. Using these definitions Komatsu, Spergel & Wandelt (2005) define the one-point mixed-skewness involving the fields \(A_{l_{12}}(r, \Omega) \) and \(B_{l_{12}}(r, \Omega) \) \((i, j, k \in T, E)\):

\begin{figure}
\centering
\includegraphics[width=\textwidth]{bispectrum.png}
\caption{Various bispectrum-related power spectrum \((2l + 1)\mathcal{K}^{(2,1)}_l \) plotted as function of angular scale \(l \). We use \(f_{NL} = 1 \) for each of these plots. Plots are based on WMAP7 Larson et al. [2010] parameters equated out to \(l_{\text{max}} = 500 \).}
\end{figure}
\[S^{A^l B^V B^W} \equiv \int r^2 dr \int d\Omega A^l(r, \Omega) B^V(r, \Omega) B^W(r, \Omega). \]

(50)

\[S^{A^l B^V B^W} \] can be used to estimate \(f_{NL}^{loc} \), but such a radical compression of the data into a single number restricts the ability to estimate contamination of the estimator by other sources of non-Gaussianity. As a consequence, we construct a less radical compression, to a function of \(l \), which can be used to estimate \(f_{NL}^{loc} \), but which can also be analyzed for contamination by, for example, foregrounds. We do this by constructing the integrated cross-power spectrum of the maps \(A^l(r, \Omega) \) and \(B^V(r, \Omega) B^W(r, \Omega) \). Expanding \(B^2 \) in spherical harmonics gives

\[[B^V(\hat{r}, (r) B^V(\hat{\Omega}, r)]_{lm} \equiv \sum_{l' m' l'' m''} \beta^V_{l' m'} (r) \beta^W_{l'' m''} (r) \left(\begin{array}{ccc} l & l' & l'' \\ m & m' & m'' \end{array} \right) I_{l m l'} a^V_{l'm'} \hat{a}^W_{l''m''}. \]

and we define the cross-power spectrum \(C^{A^l B^V B^W} \) at a radial distance \(r \) as

\[C^{A^l B^V B^W}(r) = \frac{1}{2l+1} \sum_m \text{Real} \left\{ A^l_{lm}(r) [B^V(r) B^W(r)]_{lm} \right\}. \]

(52)

Integrating over \(r \) we find:

\[C^{A^l B^V B^W} \equiv \int r^2 dr C^{A^l B^V B^W}(r). \]

(53)

This integrated cross-power spectrum of \(B^2(r, \hat{\Omega}) \) and \(A(r, \hat{\Omega}) \) carries information about the underlying bispectrum \(B_{l'm'l''} \), as follows:

\[\hat{C}_l^{A^l B^V B^W} = \frac{1}{2l+1} \sum_{m} \sum_{l' m'} \sum_{l'' m''} I_{l'm'l''} \left(\begin{array}{ccc} l & l' & l'' \\ m & m' & m'' \end{array} \right) \int r^2 dr \left\{ \alpha_l^{l'}(r) \beta_{l''}^V(r) \beta_{l''}^W(r) \right\} \hat{a}_{l'm'}^V \hat{a}_{l''m''}^W. \]

(54)

Similarly we can construct the cross-power spectrum of the product map \(A^l B^V(r, \hat{\Omega}) \) and \(B^W(r, \hat{\Omega}) \), which we denote as \(C^{A^l B^V B^W} \);

\[\hat{C}_l^{A^l B^V B^W} = \frac{1}{2l+1} \sum_{m} \sum_{l' m'} \sum_{l'' m''} I_{l'm'l''} \left(\begin{array}{ccc} l & l' & l'' \\ m & m' & m'' \end{array} \right) \int r^2 dr \left\{ \beta_{l'}^V(r) \alpha_{l''}^W(r) \beta_{l''}^W(r) \right\} \hat{a}_{l'm'}^V \hat{a}_{l''m''}^W. \]

(55)

Using these expressions, and the following relation, we can write this more compactly in terms of the estimated CMB bispectrum

\[\hat{B}_{l'm'l''}^{VW} = \sum_{m''} \left(\begin{array}{ccc} l & l' & l'' \\ m & m' & m'' \end{array} \right) \hat{a}_{l'm'}^V \hat{a}_{l''m''}^W a_{l'm''}^W. \]

(56)

from which we compute our new statistic, the bispectrums-related power spectrum, \(\hat{C}_l^{loc} \) as

\[\hat{C}_l^{A^l B^V B^W} \equiv \left(\hat{C}_l^{A^l B^V B^W} + \hat{C}_l^{A^l B^V B^W} + \hat{C}_l^{A^l B^V B^W} \right) \frac{f_{NL}^{loc}}{(2l+1) \sum_{l't'm'} \sum_{l'' m''} \left\{ \hat{B}_{l't'm'}^{VW} \left[C^{-1}_{l} \right]_{l't'} \left[C^{-1}_{l} \right]_{l''m''} \right\} \hat{B}_{l''m''}^{WV} \hat{B}_{l't'm'}^{VW}. \]

(57)

Clearly, in a joint analysis, the pure skew-spectrum such as \(\hat{C}_l^{TT} \) or \(\hat{C}_l^{EE,EE} \) discussed in the previous section gets generalized to \(\hat{C}_l^{A^l B^V B^W} \), etc, and the construction of inverse covariance weighted fields mixes temperature and \(E \)-type polarisation. Hence, each of these estimators carries information from all possible types of mixed bispectra. If we combine various estimates into a unique power spectrum it compresses all available information for \(T \) and \(E \)-type polarisation maps:

\[\hat{S}_l^{A^l B^V B^W} \equiv \sum_{l't'm'} \hat{C}_l^{A^l B^V B^W}. \]

(58)

where \(\hat{B}_{l''m''}^{WV} \) is the bispectrum for the local \(f_{NL} \) model, normalized to \(f_{NL}^{loc} = 1 \). We can now use standard statistical techniques to estimate \(f_{NL}^{loc} \). Note that if we sum over all \(l \) values then we recover the estimator \(S_{\text{prim}} \) of Komatsu, Spergel & Wandeli (2003), which is the cross-skewness of \(ABB \):

\[\hat{S}_3^{A^l B^V B^W} = \sum_i (2l+1) (\hat{C}_l^{A^l B^V B^W} + \hat{C}_l^{A^l B^V B^W} + \hat{C}_l^{A^l B^V B^W}). \]

(59)

If we sum over all possible triplets \(ijk \), we can recover \(S_3 \) typically used in the literature and considered previously by Munshi & Heavens (2010).

\[\hat{S}_3 = \sum_{l't'm'} \hat{S}_3^{A^l B^V B^W}. \]

(60)

Though \(S_3 \) compresses all available information at the level of the bispectrum in temperature and polarization maps, it clearly also has less power to distinguish any effect of systematics. These can be studied in more detail if we carry out individual estimates which break up the total into the estimates resulting from their various linear combinations. The method develops here a simple extension of previously used estimators both for one-point estimators as well as two-point estimators or the associated power spectra. Such methods will be useful with future surveys with higher signal to noise for polarization measurements.

Recently, Calabrese et al. (2009) studied the impact of secondaries in estimation of primordial non-Gaussianity using temperature data. Further studies by Hikage et al. (2009) used Fisher analysis to study joint two-to-one analysis. The estimator introduced above shows how individual linear combination of mixed bispectra can also be used for joint estimation especially while dealing with non-primordial contamination.
4.2 Power Spectra related to the Trispectrum

In a recent paper, Munshi et al. (2009) extended the earlier studies by Munshi & Heavens (2010) to the power spectrum related to the trispectrum in an optimal way. This statistic was applied to WMAP 5-year data in Smit et al. (2010) to provide the first constraints on γ_{NL} and d_{NL}, the third order corrections to primordial perturbations in non-Gaussian models. The PCL estimators that we considered before are generalizations of these estimators from the temperature-only case to a fully joint temperature and polarization analysis. For a given choice of mixed bispectrum, a pair of corresponding power spectra can be defined which we optimize in this section for arbitrary partial sky coverage and instrumental noise.

4.2.1 Estimator for $K^{(3,1)}$

Moving beyond the bispectrum, we can construct estimators of the two power spectra we discussed above, $C^{(3,1)}$ and $C^{(2,2)}$. We show how to decompose these entire estimators to various choice of mixed bispectrum and compress the information optimally to define an unique estimator for each power spectra. The optimized versions for $K^{(3,1)}$ can be constructed by cross-correlating the fields $A^A(r_1, \hat{\Omega})B^V(r_1, \hat{\Omega})B^W(r_2, \hat{\Omega})$ with $B^X(r_2, \hat{\Omega})$. In the first case the harmonics depend on two radial distances (r_1, r_2) for any given angular direction. For a specific combination of U, V, W and X which we can choose either to be temperature T or E-type polarization E we can define a corresponding estimators. We will eventually combine all various contributions that we recover from these combinations to define a single estimator $K^{(3,1)}$ which will generalize the estimator introduced in [Munshi & Heavens 2010] for analysis of temperature-only data.

$$A^A(r_1)B^V(r_1)_{|lm} = \int A^A(r_1, \hat{\Omega})B^V(r_1, \hat{\Omega})Y^*_{lm}(\hat{\Omega}) \, d\hat{\Omega}; \quad B^X(r_2)_{|lm} = \int B^X(r_2, \hat{\Omega})Y^*_{lm}(\hat{\Omega}) \, d\hat{\Omega}. \ (61)$$

Next, we construct the field $C^{(3,1)}(r_1, r_2) = \sum_{lm} f_{l_1, l_2, l_3} A^A(r_1)B^V(r_1)_{|lm}Y^*_{lm}(\hat{\Omega})$. If we now form the product of $C^{(3,1)}(r_1, r_2)$ and $A^V(r_2)$ and denote it as $J^{(3,1)VW}(r_1, r_2) = C^{(3,1)}(r_1, r_2)A^V(r_2)$ the spherical harmonic transform of this product field is represented as $D^{(3,1)VW}(r_1, r_2)$. Finally we compute the cross-power spectra between $D^{(3,1)VW}(r_1, r_2)$ and $B^X(r_2)$. We denote it by $J^{(3,1)VW}A^W, B^X(r_1, r_2)$ which also depend on both radial distances r_1 and r_2:

$$J^{(3,1)VW}A^W, B^X(r_1, r_2) = \frac{1}{2l+1} \sum_m \text{Real} \left\{ \{ D^{(3,1)VW}(r_1, r_2) \}_{|lm} \{ B^X(r_2) \}_{|lm} \right\}. \ (62)$$

The construction for the second term is very similar. We start by decomposing the real space product $B^A(r, \hat{\Omega})B^V(r, \hat{\Omega})B^W(r, \hat{\Omega})$ and $M^X(r, \hat{\Omega})$ in harmonic space. There is only one radial distance involved in both of these terms.

$$B^A(r, \hat{\Omega})B^V(r, \hat{\Omega})B^W(r, \hat{\Omega})_{|lm} = \int [B^A(r, \hat{\Omega})B^V(r, \hat{\Omega})B^W(r, \hat{\Omega})]Y^*_{lm}(\hat{\Omega}) \, d\Omega; \quad M^X(r, \hat{\Omega})_{|lm} = \int M^X(r, \hat{\Omega})Y^*_{lm}(\hat{\Omega}) \, d\Omega. \ (63)$$

Finally, the line-of-sight integral which involves two overlapping contributions through the weighting kernels for the first term and only one for the second gives us the required estimator:

$$K^{(3,1)VW,X}_{l} = 4\pi l (2l+1)^2 \int r^2 dr_1 \int r_2^2 dr_2 J^{(3,1)VW}A^W, B^X(r_1, r_2) + 2g_{nl} \int r^2 drL^{(3,1)VW}B^W, M^X(r). \ (64)$$

Next we show that the construction described above does reduces to an optimum estimator for the power spectrum associated with the trispectrum. The harmonics associated with the product field $B^A(r_1)B^V(r_2)B^W(r_2)$ can be expressed in terms of various $\beta(r)$ functions:

$$B^A(r_1)B^V(r_2)B^W(r_2)_{|lm} = \sum_{LM} (-1)^{M} \sum_{l_1, l_2, l_3} \hat{C}^{(3,1)}_{l_1, l_2, l_3, m} (m_1 m_2 m_3) \alpha_{l_1}(r_1) \alpha_{l_2}(r_2) \alpha_{l_3}(r_2) \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2} g_{l_1 l_2} g_{l_3 l_2}. \ (65)$$

The cross-power spectra $J^{(3,1)VW}A^W, B^X(r_1, r_2)$ can be simplified in terms of the following expression:

$$J^{(3,1)VW}A^W, B^X(r_1, r_2) = \frac{1}{2l+1} \sum_{LM} (-1)^{M} \sum_{m} \left\{ F_{l_1, l_2, l_3} \alpha_{l_1}(r_1) \alpha_{l_2}(r_2) \alpha_{l_3}(r_2) \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2} \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2} \right\} \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2} \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2}. \ (66)$$

The Gaunt integral describing the integral involving three spherical harmonics is defined as follows:

$$G_{l_1 l_2 l_3}^{m_1 m_2 m_3} = \frac{\sqrt{(2l_1+1)(2l_2+1)(2l_3+1)}}{4\pi} \left(\begin{array}{ccc} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{array} \right). \ (67)$$

The second terms can be treated in an analogous way and the result takes the following form:

$$L^{(3,1)VW}A^W, B^X(r) = \frac{1}{2l+1} \sum_{LM} (-1)^{M} \sum_{m} \left\{ \beta_{l_1}(r) \beta_{l_2}(r) \beta_{l_3}(r) \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2} \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2} \right\} \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2} \tilde{g}_{l_1 l_2} \tilde{g}_{l_3 l_2}. \ (68)$$

Finally, when combined these terms as in Eq. (64), we recover the following expression:

$$K^{(3,1)VW,X}_{l} = \frac{1}{2l+1} \sum_{l_1, l_2, l_3} \frac{1}{2L+1} C^{(3,1)VW}_{l_1} \left[\tilde{T}^{l_1}_{l_1} \tilde{V}^{l_1}_{l_1} \tilde{W}^{l_1}_{l_1} |L \right] - G_{l_1 l_2 l_3}^{m_1 m_2 m_3} \tilde{V}^{l_1}_{l_1} \tilde{W}^{l_1}_{l_1} |L \right]. \ (69)$$
We have subtracted the Gaussian component from the estimator in the last step. This is done by simulating Gaussian maps in a Monte-Carlo chain and using the same mask and the noise as the real data, weighting functions used for real data are also used on the Gaussian realisations. The ensemble average of the Gaussian realisations are then subtracted from the estimates from the real data.

We can sum over all possible mixed bispectra to construct the following combined estimator:

$$\hat{K}_{l}^{(3,1)} = \sum_{UVWX} \hat{K}_{l}^{(UVWX,X)}.$$ \hspace{1cm} (70)

The estimator $K_{l}^{(UVWX,X)}$ depends linearly both on f_{NL}^{2} and g_{NL}. In principle, we can use the estimate of f_{NL} from a bispectrum analysis as a prior, or we can use the estimators $S_{l}^{(2,1)}$, $K_{l}^{(3,1)}$ and $K_{l}^{(3,1)}$ to put joint constraints on f_{NL} and g_{NL}. The former is better from a signal-to-noise point of view (Smidt et al. 2010). Computational evaluation of either of the power spectra clearly will be more involved as a double integral corresponding to two radial directions needs to be evaluated. Given the low signal-to-noise associated with these power spectra, binning will be essential.

4.2.2 Estimator for $K_{l}^{(UVWX)}$

In an analogous way the other power-spectra associated with the trispectrum can be optimized by the following construction. We start by taking the harmonic transform of the product field $A(r, \hat{\Omega})B(r, \hat{\Omega})$ evaluated at the same line-of-sight distance r:

$$A^{l}(r, \hat{\Omega})B^{l}(r, \hat{\Omega})|_{lm} = \int A^{l}(r)B^{l}(r) Y_{lm}(\hat{\Omega}) d\hat{\Omega}; \quad B^{lV}(r, \hat{\Omega})M^{X}(r, \hat{\Omega})|_{lm} = \int B^{V}(r)M^{X}(r) Y_{lm}(\hat{\Omega}) d\hat{\Omega},$$ \hspace{1cm} (71)

and contract it with its counterpart at a different distance. The corresponding power spectrum (which is a function of these two line-of-sight distances r_{1} and r_{2}) has a first term

$$\mathcal{J}_{l}^{AB} B^{lV} A^{lV} X^{l} (r_{1}, r_{2}) = \frac{1}{2l+1} \sum_{m} F_{l}(r_{1}, r_{2}) A^{l}(r_{1}, \hat{\Omega})B^{l}(r_{1}, \hat{\Omega})|_{lm} A(r_{2}, \hat{\Omega}) B^{V}(r_{2}, \hat{\Omega})|_{lm}. \hspace{1cm} (72)$$

Similarly, the second part of the contribution can be constructed by cross-correlating the product of 3D fields $B^{H}(\hat{\Omega}, r_{1})B^{V}(\hat{\Omega}, r_{1})$ against $B^{W}(\hat{\Omega}, r_{2})M^{X}(\hat{\Omega}, r_{2})$ evaluated at the same radial distance r

$$\mathcal{L}_{l}^{AB} B^{lV} B^{lW} M^{X} (r) = \frac{1}{2l+1} \sum_{m} B^{l}(r, \hat{\Omega}) B^{l}(r, \hat{\Omega})|_{lm} B^{W}(r, \hat{\Omega}) M^{X}(r, \hat{\Omega})|_{lm}. \hspace{1cm} (73)$$

Finally, the estimator is constructed by integrating along the line of sight distances:

$$\hat{K}_{l}^{(UVWX)} = 4f_{NL}^{2} \int r_{1}^{2} dr_{1} \int r_{2} dr_{2} \mathcal{J}_{l}^{AB} B^{lV} A^{lV} X^{l} (r_{1}, r_{2}) + 2g_{NL} \int r_{2} dr \mathcal{L}_{l}^{AB} B^{lV} B^{lW} M^{X} (r). \hspace{1cm} (74)$$

To see they do correspond we use the harmonic expansions and follow the same procedure outlined before:

$$\mathcal{J}_{l}^{AB} B^{lV} a^{lV} X^{l} (r_{1}, r_{2}) = \frac{1}{2l+1} \sum_{m} (-1)^{m} \sum_{i_{1}m_{1}} \left\{ \mathcal{B}_{i_{1}}^{l}(r) \mathcal{B}_{i_{1}}^{V}(r) \mathcal{B}_{i_{2}}^{V}(r) \mathcal{B}_{i_{3}}^{V}(r) \mathcal{B}_{i_{4}}^{V}(r) \right\} \left\{ \mathcal{Y}_{i_{1}m_{1}}^{l} \mathcal{Y}_{i_{2}m_{2}}^{V} \mathcal{Y}_{i_{3}m_{3}}^{V} \mathcal{Y}_{i_{4}m_{4}}^{V} \right\} G_{i_{1}l_{1}l_{2}} G_{i_{2}l_{3}l_{4}} G_{i_{3}m_{1}m_{2}} G_{i_{4}m_{3}m_{4}}. \hspace{1cm} (75)$$

$$\mathcal{J}_{l}^{AB} a^{lV} a^{lV} X^{l} (r_{1}, r_{2}) = \frac{1}{2l+1} \sum_{m} (-1)^{m} \sum_{i_{1}m_{1}} \left\{ F_{i_{1}}(r_{1}, r_{2}) \alpha_{i_{1}m_{1}}^{l} \beta_{i_{1}m_{1}}^{V} \mathcal{B}_{i_{2}}^{V}(r_{1}) \mathcal{B}_{i_{3}}^{V}(r_{2}) \mathcal{B}_{i_{4}}^{V}(r_{2}) \right\} \left\{ \mathcal{Y}_{i_{1}m_{1}}^{l} \mathcal{Y}_{i_{2}m_{2}}^{V} \mathcal{Y}_{i_{3}m_{3}}^{V} \mathcal{Y}_{i_{4}m_{4}}^{V} \right\} G_{i_{1}l_{1}l_{2}} G_{i_{2}l_{3}l_{4}} G_{i_{3}m_{1}m_{2}} G_{i_{4}m_{3}m_{4}}. \hspace{1cm} (76)$$

Here we notice that $\mathcal{J}_{l}^{AB,AB} (r_{1}, r_{2})$ is invariant under exchange of r_{1} and r_{2} but $\mathcal{J}_{l}^{AB,BM} (r_{1}, r_{2})$ is not. Finally, joining the various contributions to construct the final estimator, as given in Eq. (74), which involves a line-of-sight integration:

$$\hat{K}_{l}^{(UVWX)} = \frac{1}{2l+1} \sum_{UVWX} \sum_{l_{1}m_{1}} \frac{1}{2l+1} \left[C^{-1} d_{1} d_{2} [C^{-1}]_{1}^{V} [C^{-1}]_{2}^{V} [C^{-1}]_{3}^{V} [C^{-1}]_{4}^{V} T_{W_{1} W_{2} W_{3} W_{4}}^{H_{1} V_{1} V_{2} V_{3}} - \mathcal{G}_{W_{1} W_{2} W_{3} W_{4}}^{H_{1} V_{1} V_{2} V_{3}} \right], \hspace{1cm} (77)$$

and the combined estimator

$$\hat{K}_{l}^{(2,2)} = \sum_{UVWX} \hat{K}_{l}^{(UVWX,X)}.$$ \hspace{1cm} (78)

The prefactors associated with f_{NL}^{2} and g_{NL} are different in the linear combinations $\hat{K}_{l}^{(2,2)}$ and $\hat{K}_{l}^{(3,1)}$, and hence even without using information from third-order we can estimate both from fourth order alone.

Similarly, the one-point cumulant involving both temperature and E-type polarization at fourth order can be written in terms of the the mixed trispectra as follows:

$$\hat{K}_{l}^{(4)} = \sum_{l} (2l+1) \hat{K}_{l}^{(2,2)} = \sum_{l} (2l+1) \hat{K}_{l}^{(UVWX,X)} = \sum_{l} (2l+1) \hat{K}_{l}^{(3,1)} = \sum_{l} (2l+1) \hat{K}_{l}^{(UVWX,X)}.$$ \hspace{1cm} (79)

It is also possible to carry out the sum over the harmonics l without summing over the field types. In this case we recover independent one point estimators associated with each type of mixed trispectrum.
The expressions are similar for the other terms that depend on only one radial distance:

\[K_{I}^{UVWX} = \sum_{l} (2l + 1) \hat{K}_{l}^{UVWX} = \sum_{l} (2l + 1) \hat{K}_{l}^{UVWX}. \]

(80)

We will next consider the correction terms for these estimators due to absence of absence of spherical symmetry - which may be broken either because of mask or due to the presence of detector noise in an arbitrary scanning strategy.

4.3 Correction in the Absence of Spherical Symmetry

It was pointed out in Babich (2005); Creminelli et al. (2006); Yadav et al. (2008) that in the presence of a partial sky coverage, e.g. due to the presence of a mask or because of the galactic foregrounds and the bright point sources, as well as, in the case of non-uniform noise, spherical symmetry is destroyed. The estimators introduced above will then have to be modified by adding terms which are linear in the observed map. The corrective terms are incorporated using Monte-Carlo techniques. A more general treatment which involves computationally expensive inverse covariance weighting will be discussed later. The treatment discussed here is nearly optimal though ignores mode-mode coupling dominant at low \(\ell \).

4.3.1 Corrective terms for \(C_{l}^{4UVW} \)

The (linear) corrective terms are constructed from correlating the Monte-Carlo (MC) averaged \(\langle A^{I}(r, \hat{\Omega}) B^{J}(r, \hat{\Omega}) \rangle_{\text{sim}} \) product maps with the input \(B^{V}(r, \hat{\Omega}) \) map. The mask and the noise that are used in constructing the Monte-Carlo averaged product map are exactly same as the observed maps and the on- and off-diagonal terms are constructed from such Monte-Carlo maps to model the effect of mask and noise greatly improves the speed compared to full bispectrum analysis.

The corrective terms are derived by modifying the linear correction to the local shape:

\[
C_{l}^{4uvw} = \frac{1}{f_{sky}} \left\{ \hat{C}_{l}^{4uvw} - C_{l}^{4uvw, l} - C_{l}^{4uvw, \text{Quad}} \right\}
\]

(81)

where \(f_{sky} \) is the observed sky fraction.

The \(C_{l}^{4uvw} \) denote the cross-power spectra associated with Monte-Carlo (MC) averaged product maps \(\langle A(n, r) B(n, r) \rangle_{\text{MC}} \) constructed with the same mask and the noise model as the the observed map \(B \). Likewise, the term \(C_{l}^{4uvw} \) denotes the average cross-correlation computed from MC averaging, of the product map constructed from the observed map \(A(\Omega, r) \) multiplied with a MC realization of map \(B(\Omega, r) \) against the same MC realization \(B(\Omega, r) \). [Creminelli et al. 2006] showed via numerical analysis that the linear terms are less important in the equatorial case than in the local model. The use of such Monte-Carlo maps to model the effect of mask and noise greatly improves the speed compared to full bispectrum analysis.

The use of linear terms was found to greatly reduce the scatter of this estimator, thereby improving its optimality. The estimator was used in Yadav & Wandelli (2008) also to compute the \(f_{NL} \) from combined \(T \) and \(E \) maps. The analysis presented above is approximate, because it uses a crude \(f_{sky} \) approximation to deconvolute the estimated power spectrum to greatly simplify the component by component analysis. A more accurate analysis should take into account the mode-modes which can dominate at low \(\ell \). The speed of this analysis depends on how fast we can generate non-Gaussian maps. The general expression which includes the mode-mode coupling will be presented in the next section. However it was found by Yadav & Wandelli (2008) that removing low \(\ell \) from the analysis can be efficient way to bypass the mode-mode coupling. A complete numerical treatment for the case of two-point statistics such as \(C_{l}^{4uvw} \) will be presented elsewhere.

4.3.2 Corrective terms for the Estimator \(K_{l}^{4UVW,X} \)

For the four-point terms, we need to subtract linear and quadratic terms:

\[
\tilde{K}_{l}^{4UVW,X} = \frac{1}{f_{sky}} \left[\tilde{K}_{l}^{4UVW,X} - \tilde{K}_{l}^{4UVW,lin} - \tilde{K}_{l}^{4UVW,quad} \right]
\]

(82)

\[
\tilde{K}_{l}^{4UVW,lin} = \frac{1}{f_{sky}} \left[\tilde{K}_{l}^{4uvw} - \tilde{K}_{l}^{4uvw,lin} - \tilde{K}_{l}^{4uvw,quad} \right]
\]

(83)

\[
\tilde{K}_{l}^{4UVW,quad} = \frac{1}{f_{sky}} \left[\tilde{K}_{l}^{4uvw,quad} - \tilde{K}_{l}^{4uvw,lin} - \tilde{K}_{l}^{4uvw,quad} \right]
\]

(84)

The expressions are similar for the other terms that depend on only one radial distance:

\[
\tilde{L}_{l}^{4UVW,M^{V},M^{X}} = \frac{1}{f_{sky}} \left[\tilde{L}_{l}^{4UVW,M^{V},M^{X}} - \tilde{L}_{l}^{4UVW,lin} - \tilde{L}_{l}^{4UVW,quad} \right]
\]

(85)

\[
\tilde{L}_{l}^{4UVW,lin} = \frac{1}{f_{sky}} \left[\tilde{L}_{l}^{4uvw} - \tilde{L}_{l}^{4uvw,lin} - \tilde{L}_{l}^{4uvw,quad} \right]
\]

(86)

\[
\tilde{L}_{l}^{4UVW,quad} = \frac{1}{f_{sky}} \left[\tilde{L}_{l}^{4uvw,quad} - \tilde{L}_{l}^{4uvw,lin} - \tilde{L}_{l}^{4uvw,quad} \right]
\]

(87)

To simplify the presentation we have used the symbol \(A^{I}(r_{1}, \hat{\Omega}) = A_{l}^{I}; A^{I}(r_{2}, \hat{\Omega}) = A_{l}^{I} \) and so on. Essentially we can see that there are terms which
The general expression for the bispectrum estimator was developed by Babich (2005) for arbitrary sky coverage and inhomogeneous noise. The estimator includes a cubic term, which by matched-filtering maximizes the response for a specific type of input map bispectrum. The speed of this analysis depends on the linear and quadratic terms which are being averaged. On the other hand the prefactors for quadratic terms are 3D correlation functions of the remaining two fields. Finally putting all of these expressions we can write:

\[
\tilde{K}^{(IV,IV,IV)}_l = 4f_{NL}^2 \int r_1^2 dr_1 \int r_2^2 dr_2 \tilde{J}_l \tilde{B}^{IV,IV,IV}(r_1, r_2) + 2g_{NL} \int r^2 dr \tilde{E}^{B,IV,IV,IV}(r).
\]

From a computational point of view clearly the overlap integral \(F_L(r_1, r_2)\) will be expensive and may determine to what resolution ultimately these direct techniques can be implemented. Use of these techniques directly involving Monte-Carlo numerical simulations will be dealt with in a separate paper (Smidt et al. in preparation). To what extent the linear and quadratic terms are important in each of these contributions can only be decided by testing against simulation.

4.3.3 Corrective terms for the Estimator \(K^{IV,IV,IV}_l\)

The unbiased estimator for the other estimator can be constructed in a similar manner. As before there are terms which are quadratic in input harmonics with a prefactor proportional to terms involving cross-correlation or variance of various combinations of 3D fields and there will be linear terms (linear in input harmonics) with a prefactor proportional to bispectrum associated with various 3D fields.

\[
\tilde{J}_l^{(IV,IV,IV)} = \frac{1}{f_{sky}} \left[\tilde{J}_l^{IV,IV,IV} - I_{lin}^{IV,IV} - I_{quad}^{IV,IV} \right]
\]

\[
I_{lin}^{IV,IV} = \frac{1}{f_{sky}} \left[\tilde{J}_l^{IV,IV} + \tilde{J}_l^{IV,IV,IV} + \tilde{J}_l^{IV,IV,IV} + \tilde{J}_l^{IV,IV,IV} + \tilde{J}_l^{IV,IV,IV} \right]
\]

\[
I_{quad}^{IV,IV} = \frac{1}{f_{sky}} \left[\tilde{J}_l^{IV,IV,IV} + \tilde{J}_l^{IV,IV,IV} + \tilde{J}_l^{IV,IV,IV} \right].
\]

The terms such as \(K^{AB,IV,IV}_l\) can be constructed in a very similar way. We display the term \(K^{AB,IV,IV}_l\) with all its corrections included.

\[
\tilde{L}_l^{B^I_B,IV,IV,IV} = \frac{1}{f_{sky}} \left[\tilde{L}_l^{B^I_B,IV,IV,IV} - I_{lin}^{IV,IV,IV} - I_{quad}^{IV,IV,IV} \right]
\]

\[
I_{quad}^{IV,IV,IV} = \frac{1}{f_{sky}} \left[\tilde{L}_l^{IV,IV,IV,IV} + \tilde{L}_l^{IV,IV,IV,IV} + \tilde{L}_l^{IV,IV,IV,IV} + \tilde{L}_l^{IV,IV,IV,IV} + \tilde{L}_l^{IV,IV,IV,IV} \right]
\]

The importance of the linear terms depends greatly on the target model being considered. For example, while linear terms for bispectral analysis can greatly reduce the amount of scatter in the estimator for local non-Gaussianity, the linear term is less important in modeling the equilateral model. In any case the use of such Monte-Carlo (MC) maps is known to reduce the scatter and can greatly simplify the estimation of non-Gaussianity. This can be useful, as fully optimal analysis with inverse-variance weighting, which treats mode-mode coupling completely, may only be possible on low-resolution maps.

The corrections to one-point estimators can be recovered by performing appropriate sums. In the next section we use direct summations and proper modelling of the covariance matrix as opposed to the Monte-Carlo techniques used here. However in certain situation it may be difficult to model the covariance matrix in an accurate way, we also provide analytical results which can handle such situations.

5 EXACT ANALYSIS OF OPTIMAL ESTIMATORS

In the previous section we relied on Monte-Carlo simulations to model the effect of finite sky coverage, noise as well as other observational artefacts. The resulting method nearly optimal and for most cases where mode mode coupling is not strong i.e. for near all-sky coverage can be efficient. To take mode-mode coupling properly into account which is the case for low multipoles we need to model the covariance matrix as accurately as we can. In this section we tackle the case where inverse covariance weighting is required. The resulting method is optimal and can provide accurate results for studies with degraded resolution maps where cross-contamination to primordial non-Gaussianities coming from secondaries is minimum.

5.1 The Power Spectrum Related to the Bispectrum

The general expression for the bispectrum estimator was developed by Babich (2005) for arbitrary sky coverage and inhomogeneous noise. The estimator includes a cubic term, which by matched-filtering maximizes the response for a specific type of input map bispectrum. The speed of this analysis depends...
on how fast we can generate non-Gaussian maps. The linear terms vanish in the absence of anisotropy but should be included for realistic noise to reduce the scatter in the estimates; see Babich (2005) for details. We define the optimal estimator as:

\[\hat{E}_L^{X,Y,Z}[a] = \sum_{LL'} [N^{-1}]_{LL'} \left\{ \frac{1}{6} \sum_{X'Y'Z'} \sum_{M'M'} \sum_{ll'm'm'} B_{L'M'M'}^{X'Y'Z'} \left(L' M' \ l' m' \right) \times \left\{ \left((C_{LL'M'}^{X'} a_{111}^{X'}) (C_{1l1m}^{Y'}) a_{122}^{Y'} (C_{l1m'}^{Z'}) a_{133}^{Z'} \right) \right\} \right\} \]

where \(N_{LL'} \) is a normalization to be discussed later. A factor of \(1/(2l+1) \) can be introduced with the sum \(\sum_{M'} \), if we choose not to introduce the \(N_{LL'} \) normalization constant. This will make the estimator equivalent to the one introduced in the previous section. As the data is weighted by \(C^{-1} = (S + N)^{-1} \), or the inverse covariance matrix, the speed of this analysis depends on how quickly we can generate non-Gaussian maps. Addition of higher modes will reduce the variance of the estimator. In contrast, the performance of sub-optimal estimators can degrade with resolution, due to the presence of inhomogeneous noise or a galactic mask. However, an incorrect noise covariance matrix can not only make the estimator sub-optimal but it will make the estimator biased too. The noise model will depend on the specific survey scan strategy. Numerical implementation of such inverse-variance weighting or multiplication of a map by \(C^{-1} \) can be carried out by conjugate gradient inversion techniques. Taking clues from Smith & Zaldarriaga (2006), we extend our estimators for the case of the skew spectrum. We will be closely following their notation whenever possible. First, we define \(Q_L[a] \) and its derivative \(\partial_{lm} Q_L[a] \). The required input harmonics \(a_{lm} \) are denoted as \(a \).

\[\hat{Q}_L^{X,Y,Z}[a] = \frac{1}{6} \sum_{M} a_{LM} \sum_{l'm'} B_{Ll'm'}^{X,Y,Z} \left(L \ M \ l' m' \right) a_{l'm'}^{Y,Z} \]

\[\partial_{lm} Q_L^{X,Y,Z}[a] = \frac{1}{6} \delta_{lm} \sum_{l''m''} B_{l''m''}^{X,Y,Z} \left(L \ m \ l'' m'' \right) a_{l''m''}^{Y,Z} \]

\[\partial_{lm} \partial_{lm'} Q_L^{X,Y,Z}[a] = \frac{1}{6} \sum_{M} a_{LM} \sum_{l''m''} B_{l''m''}^{X,Y,Z} \left(L \ M \ l' m' \right) a_{l''m''}^{Y,Z} \]

These expressions differ from those for the one-point estimators by the absence of an extra summation index. If summed over the free index \(L \), the expression for \(Q_L \) reduces to a one-point estimator. \(Q_L^{X,Y,Z}[a] \) represents a map as well as \(\partial_{lm} Q_L^{X,Y,Z}[a] \), however \(Q_L^{X,Y,Z}[a] \) is cubic in input maps \(a_{lm} \) whereas the derivatives \(\partial_{lm} Q_L^{X,Y,Z}[a] \) are quadratic in input. The expression for the derivative, is different, when the derivative is taken w.r.t the field (e.g. \(X \) in this case) associated with the free indices than when it is taken with respect to a field \(Y \) or \(Z \) whose indices are summed over.

The skew-spectrum can then be written as (the summation convention is assumed for the next two equations):

\[E_L^{X,Y,Z}[a] = [N^{-1}]_{LL'} \left\{ Q_L^{X,Y,Z}[C^{-1}a] - \sum_{S} [C^{-1}a]_{lm} \left(\partial_{lm} Q_L^{X,Y,Z}[C^{-1}a'] \right)_{S' MC} \right\} \quad S \in (X, Y, Z) \]

Here \(\langle \rangle_{MC} \) denotes the Monte-Carlo averages. The inverse covariance matrix in the harmonic domain \([C^{XY}]^{l_1 m_1 l_2 m_2} = (a_{l_1 m_1} a_{l_2 m_2})^{-1} \) encodes the effects of noise and the mask. For all-sky and in the signal-only limit, it reduces to the usual \([C^{-1}]_{l_1 m_1 l_2 m_2} = \frac{1}{l_1^2} \delta_{ll'} \delta_{mm'} \). The normalization of the estimator which ensures unit response can be written as:

\[N_{LL'} = \frac{1}{6} \sum_{SS'} \left\{ \left(\partial_{l_1 m_1} Q_L[C^{-1}a] \right) \left(\partial_{l_2 m_2} Q_L[C^{-1}a] \right) \right\} ^{SS'} \left\{ \partial_{l_2 m_2} Q_L[C^{-1}a] \right\} \]

In the above expression, and those in those that follow, we will not explicitly display the superscript on the normalization matrix \(N_{LL'} \) and \(Q_L \) as they are obvious from the context. Summing over repeated indices is assumed and the second term ensures subtraction of terms with self-coupling(s). We will be using the following identity in our derivation:

\[C_{l_1 m_1 l_2 m_2} = \langle a_{l_1 m_1} a_{l_2 m_2} \rangle = \langle [C^{-1}]_{l_1 m_1 l_2 m_2} \rangle \]

The Fisher matrix, encapsulating the errors and covariances on the \(E_L \), for a general survey associated with a specific form of bispectrum can finally be written as:

\[F_{LL'} = \frac{1}{36} \left\{ \left(\alpha P_{LL'}^P + \alpha P_{LL'}^P + \alpha Q_{LL'}^Q + \alpha Q_{LL'}^Q + \alpha Q_{LL'}^Q + \alpha Q_{LL'}^Q \right) \right\} \]

Using the following expressions, which are extensions of Smith & Zaldarriaga (2006), we find that the Fisher matrix can be written as a sum of two \(\alpha \) terms \(\alpha P_{LL'}^P \) and \(\alpha Q_{LL'}^Q \). The terms involved \(\alpha \) correspond to coupling only of modes that appear in different 3j symbols. Self-couplings are represented by the beta terms. The subscripts describes the coupling of various \(l \) and \(m \) indices. The subscript \(P \) correspond to coupling of free indices,i.e one free index \(L_1 \) with another free index \(L_2 \) and similar coupling for indices that are summed over such as \(l_1, l_2 \) etc. Similarly for subscript \(Q \) the free indices
are coupled with summed indices. Couplings are represented by the inverse covariance matrices in the harmonic domain e.g. $C^{-1}_{m_1, m_2}$ denotes coupling of mode LM with l_m.

\begin{align*}
(\alpha^{PP}_{LL,L2})_{1} &= \sum_{M_1, M_2} \sum_{l_1, l_1', m_1, m_1'} B_{L_1 l_1 l_1'} B_{L_2 l_2 l_2'} \left(\begin{array}{ccc} L_1 & l_1 & l_1' \\ M_1 & m_1 & m_1' \end{array} \right) \left(\begin{array}{ccc} L_2 & l_2 & l_2' \\ M_2 & m_2 & m_2' \end{array} \right) \left[\hat{C}_{L_1, M_1, L_2, M_2} \right]^{X X} \left[\hat{C}_{L_1, m_1, l_2, m_2} \right]^{Y Y} \left[\hat{C}_{l_1', m_1', l_2', m_2'} \right]^{Z Z} \\
(\alpha^{QQ}_{LL,L2})_{1} &= \sum_{M_1, M_2} \sum_{l_1, l_1', m_1, m_1'} B_{L_1 l_1 l_1'} B_{L_2 l_2 l_2'} \left(\begin{array}{ccc} L_1 & l_1 & l_1' \\ M_1 & m_1 & m_1' \end{array} \right) \left(\begin{array}{ccc} L_2 & l_2 & l_2' \\ M_2 & m_2 & m_2' \end{array} \right) \left[\hat{C}_{L_1, M_1, L_2, M_2} \right]^{X Y} \left[\hat{C}_{L_1, m_1, l_2, m_2} \right]^{Y X} \left[\hat{C}_{l_1', m_1', l_2', m_2'} \right]^{Z Z} \\
\alpha^{PP}_{LL,L2} &= (L_1 l_1 l_1')(L_2 l_2 l_2'); \quad \alpha^{QQ}_{LL,L2} = (L_1 l_1 l_1')(L_2 l_2 l_2').
\end{align*}

(104)

Similar results for $(2)\alpha^{PP}_{LL,L2}$ and $(2-4)\alpha^{QQ}_{LL,L2}$ can be obtained from permutative reordering of the above results. The ordering of the multipole indices and that of corresponding fields denoted by X is important. For each different choice of field triplets we will have a different set of skew-spectra associated with the bispectrum. If we choose to have the same triplets for the primed and unprimed fields then we will recover the Fisher matrix associated with that specific choice. However, if we decide to choose a different set of triplets then we will have the information about the level of cross-contamination from one type of power spectra to another. Within a specific choice of triplet e.g. TEE choice to associate the free index l_1 to a given field type e.g. T or E will generate two different skew spectra from the same bispectrum B^{TEE}. Results presented above will reduce to those of Smith & Zaldarriaga (2006) when further summations over free indices L_1 and L_2 are introduced to collapse the two-point object to the corresponding one-point quantity. The β terms that denote cross-coupling are not presented here as they do not appear in the final expressions for the Fisher matrix.

5.1.1 Joint Estimation of multiple Bispectrum-related Power-Spectra

The estimation technique described above can be generalized to cover the bispectrum-related power spectrum associated with different sets of bispectra (X, Y), where X and Y can be one of the combinations from the set $\{T T T, T T E, T E E\}^{loc/eq}$. In addition to considering triplets corresponding to a given primordial bispectrum, we can as well consider joint estimation of different initial primordial bispectrum such as local (loc) bispectrum or equilateral (eq).

\begin{equation}
\hat{E}_L[a] = \sum_S \left[F^{-1}_{LL'} \right]^{EE} \left[\hat{Q}^{EE}_{L[L']} [C^{-1} a] - \sum_{S'} [C^{-1} a]^{S'} [\hat{Q}^{EE}_{LL'} [C^{-1} a]]_{MC} \right]; \quad \Gamma, \Gamma' \in \{T T T, T T E, T E E\}^{loc/eq}; \quad S \in T, E.
\end{equation}

(105)

The associated Fisher matrix now will consist of sectors $F^{EE}_{LL'}, F^{EE}_{LL'}$ and $F^{EE}_{LL'}$. The sector $\Gamma \Gamma'$ will generally be related to errors associated with estimation of bispectra of Γ and Γ' types, whereas the sector $\Gamma \Gamma'$ will correspond to their cross-correlation. Clearly with a given mixed bispectrum type it is possible to have different estimators by associating a specific type of field T or E with the index which is not summed over.

\begin{equation}
F^{EE}_{LL'} = \left\{ \begin{array}{c}
\frac{2}{36} [1^{PP}_{LL'} + \ldots]^{EE} + 4 \frac{36}{36} [1^{QQ}_{LL'} + \ldots]^{EE} \\
\frac{2}{36} [1^{PP}_{LL'} + \ldots]^{EE} + 4 \frac{36}{36} [1^{QQ}_{LL'} + \ldots]^{EE}. \\
\end{array} \right.
\end{equation}

(106)

Here the dots represent contribution from other terms represented by α, which are obtained from permutation of various indices. We have introduced the following notation above:

\begin{equation}
1 \left[\alpha^{PP}_{LL'} \right]^{EE} = \sum_{M M'} \sum_{l_1, l_1', m_1, m_1'} B_{L_1 l_1 l_1'} B_{L_2 l_2 l_2'} \left(\begin{array}{ccc} L_1 & l_1 & l_1' \\ M_1 & m_1 & m_1' \end{array} \right) \left(\begin{array}{ccc} L_2 & l_2 & l_2' \\ M_2 & m_2 & m_2' \end{array} \right) \left[\hat{C}_{L_1, M_1, L_2, M_2} \right]^{X X} \left[\hat{C}_{L_1, m_1, l_2, m_2} \right]^{Y Y} \left[\hat{C}_{l_1', m_1', l_2', m_2'} \right]^{Z Z}.
\end{equation}

(107)

and a similar expression holds for the other $\alpha^{PP}_{LL'}$ terms as well as the $\alpha^{QQ}_{LL'}$ terms. We can also use the above formalism to obtain the cross-correlation of a given skew-spectrum type from different kinds of primordial bispectrum, as well as, say, local type and equilateral types of non-Gaussianity.

5.1.2 All-sky Homogeneous Noise

The above expressions are very general results for arbitrary sky coverage due to a specific scanning strategy. Our approach can deal with complications resulting from partial sky coverage and inhomogeneous gaussian noise. Any residual non-gaussian noise will have to be subtracted out and we need more elaborate analysis of variance estimation.

If we now take the limiting case when we have all sky coverage and homogeneous noise we can recover analytical results which are useful for comparing various planned and ongoing surveys. In the all-sky limit, the covariance matrices are determined entirely by signal and noise power spectra. To simplify the general expressions derived so far for the case of all-sky coverage and uniform noise we will use the following expression:

\begin{equation}
C^{Y Y}_{l_1 l_2, m_1 m_2} = \left(\begin{array}{ccc} 1/d^{TT}_{l_1} & 1/d^{TE}_{l_1} & 1/d^{EE}_{l_1} \\
1/d^{TT}_{l_2} & 1/d^{TE}_{l_2} & 1/d^{EE}_{l_2} \\
1/d^{TT}_{m_1} & 1/d^{TE}_{m_1} & 1/d^{EE}_{m_1} \\
\end{array} \right) \delta_{l_1 l_2} \delta_{m_1 m_2}.
\end{equation}

(108)

We recover following expression for the case of temperature:
and homogeneous noise, we can we recover the results derived in the previous section. We start by keeping in mind that the trispectrum can be expressed in terms of the harmonic transforms

\[C_{ll' \ell'} = \frac{1}{36} \left\{ 2\delta_{ll'} \sum_{\ell''} \left[\frac{B_{ll' \ell''}^{TTT}}{d_{ll'}^4 d_{l'l''}^4} \right]^2 + 4 \sum_{l} \left[\frac{B_{llll}^{TTT}}{d_{lll}^4 d_{ll}^4} \right]^2 \right\} \]

(109)

If we assume that there is no correlation between the temperature and E-type polarization then \(d_{ll}^2 = C_{ij}^T \) which reduces to the temperature-only result. Notice that in this case the corresponding \(\alpha^{PP} \) functions and \(\alpha^{QQ} \) functions become degenerate. Expressions for the case of estimation error of \(E_{LL'^{}} \), \(E_{LL'}^{EE} \) can be obtained using the following expressions for the related Fisher matrices:

\[F_{LL'^{}}^{T,EE} = \frac{1}{36} \left\{ 2\delta_{ll'} \sum_{\ell''} \left[\frac{B_{ll' \ell''}^{TEE}}{d_{ll'}^4 d_{l'l''}^4} \right]^2 + 4 \sum_{l} \left[\frac{B_{llll}^{TEE}}{d_{lll}^4 d_{ll}^4} \right]^2 \right\} \]

(110)

\[F_{LL'^{}}^{E,EE} = \frac{1}{36} \left\{ \delta_{ll'} \sum_{\ell''} \left[\frac{B_{ll' \ell''}^{TEE}}{d_{lll}^4 d_{ll}^4} \right]^2 + 4 \sum_{l} \left[\frac{B_{llll}^{TEE}}{d_{lll}^4 d_{ll}^4} \right]^2 \right\} \]

(111)

The Fisher matrices for \(F_{LL'^{}}^{T,TT} \) and \(F_{LL'^{}}^{E,EE} \) can also be constructed in a similar manner.

Using a specific form for the bispectrum \(b_{LM}^{XY} \), such as the local model, the Fisher matrix elements can be further expressed in terms of the transfer functions \(\alpha^X \) and \(\beta^Y \) and the associated power spectra \(C_{ij}^Y \) using the definitions of \(\alpha^{PP} \) and \(\alpha^{QQ} \) introduced before:

\[1[\alpha_{LL'}^{PP}]^{\Gamma \Gamma} = \frac{f_{LL'^{}}}{4\pi} (2L+1)(2L'+1) \sum_{\ell} (2l+1) \left(\begin{array}{ccc} L & L' & l \\ 0 & 0 & 0 \end{array} \right)^2 \frac{1}{d_{ll'}^4 d_{l'l''}^4} \]

\[\times \left\{ \int r^2 dr \left[\alpha^X_l (r) \beta^X_{l'} (r) \beta^Z_{l''} (r) + \alpha^Y_l (r) \beta^Y_{l'} (r) \beta^Z_{l''} (r) + \alpha^Z_l (r) \beta^X_{l'} (r) \beta^Y_{l''} (r) \right]^2 \right\}; \quad \Gamma = XYZ \]

(112)

\[1[\alpha_{LL'}^{QQ}]^{\Gamma \Gamma} = \frac{f_{LL'^{}}}{4\pi} (2L+1)(2L'+1) \sum_{\ell'} (2l+1) \left(\begin{array}{ccc} L & L' & l \\ 0 & 0 & 0 \end{array} \right)^2 \frac{1}{d_{ll'}^4 d_{l'l''}^4} \]

\[\times \left\{ \int r^2 dr \left[\alpha^Y_l (r) \beta^Y_{l'} (r) \beta^Z_{l''} (r) + \alpha^Z_l (r) \beta^X_{l'} (r) \beta^Z_{l''} (r) + \alpha^Z_l (r) \beta^Y_{l'} (r) \beta^Y_{l''} (r) \right]^2 \right\}; \quad \Gamma = XYZ \]

(113)

The power spectra \(C_{ij} \) appearing in the denominator take contributions from both the pure signal (i.e. the CMB) and the detector noise. It is possible to bin the estimates in sufficiently large bins that these are practically uncorrelated estimates for an experiment such as Planck with very high sky-coverage. A joint analysis will combine the results from all possible estimators. The cross-correlation among various estimators (characterized by different choice of \(X, Y, Z \)) can be computed following the same techniques. A detailed analysis of the singularity structure of the error-covariance matrix will be presented elsewhere.

5.2 Power Spectra related to Trispectra

Extending our analysis to the case of four-point correlation functions involving both temperature and polarization data, we will next consider the case of one-point and two-point estimators which are related to the mixed trispectra.

5.2.1 One-point Estimators

We will use an inverse-variance weighting for harmonics recovered from the sky. The covariance matrix, expressed in the harmonic domain, \(\langle \alpha_{LM}^{XY} \alpha_{LM}'^{XY} \rangle = [C_{ij}^{XY}]_{LM,LM'}^{\alpha_{LM}^{XY}} \) is used to filter out modes recovered directly from the sky \(a_{LM} \). We use these harmonics to construct optimal estimators. For all-sky coverage and homogeneous noise, we can recover the results derived in the previous section. We start by keeping in mind that the trispectrum can be expressed in terms of the harmonic transforms \(a_{LM} \), which can either be temperature multipoles or polarization multipoles:

\[T_{LM;X,Y}^{ab} = (2l+1) \sum_M \left\{ (-1)^M \left(\begin{array}{ccc} l & m & L \\ a & b & M \end{array} \right) \right\} \alpha^X_{a} \alpha^Y_{b} \alpha^Z_{LM} \]

(114)

Based on this expression we can devise a one-point estimator. In the following discussion, the relevant harmonics can be based on partial sky coverage.

\[Q^{UVWX}[a] = \frac{1}{4!} \sum_{LM} \left\{ (-1)^M \Delta(l; L) T_{LM;X,Y}^{ab} \right\} \alpha^X_{a} \alpha^Y_{b} \alpha^Z_{LM} \]

(115)

The term \(\Delta(l; L) \) is introduced here to avoid contributions from Gaussian or disconnected contributions: \(\Delta(l; L) \) vanishes if any pair of \(l \) components becomes equal or \(L = 0 \) which effectively reduces the trispectrum to a product of two power spectra (i.e. disconnected Gaussian pieces). Its value is unity for the connected terms. We will also need the first-order and second-order derivative with respect to the input harmonics. The linear terms are proportional to the first derivatives, and the quadratic terms are proportional to second derivatives, of the function \(Q[a] \), which is quartic in the input harmonics.

\[\partial_{LL'}^{ab} Q^{UVWX}[a] = \frac{1}{4!} \sum_{LM} \left\{ (-1)^M \Delta(l; L) T_{LM;X,Y}^{ab} \right\} \alpha^X_{a} \alpha^Y_{b} \alpha^Z_{LM} \]

(116)
The first-order derivative term such as \(\partial \phi \langle Q \rangle \) in the input maps and the second-order derivative is quadratic in input maps (in terms of harmonics). However, unlike the estimator itself, \(\langle Q \rangle \), which is simply a number, these objects represent maps constructed from harmonics of the observed maps. The quadratic terms contribute only to disconnected parts and hence will not be considered. The optimal estimator for the one-point cumulant can therefore be written as follows. This is optimal in the presence of partial sky coverage and most general inhomogeneous noise:

\[
E^{UVWX}[a] = \frac{1}{N} \left\{ \int_{UVWX} \langle C^{-1} a \rangle - \sum_{S,lm} \left[C^{-1} a \right]_{lm} \phi_{lm} \langle Q \rangle_{lm} \langle C^{-1} a \rangle \right\}; \quad S \in (U, V, W, X).
\]

The terms which are subtracted out can be linear or quadratic in input harmonics. The linear term is similar to the one which is used for bispectrum estimation, whereas the quadratic terms correspond to the disconnected contributions and will vanish identically as we have designed our estimators in harmonics. However, unlike the estimator itself, the observed maps. The quadratic terms contribute only to disconnected parts and hence will not be considered. The optimal estimator for the one-point of superposition can therefore be written as follows. This is optimal in the presence of partial sky coverage and most general inhomogeneous noise:

\[
E^{UVWX}[a] = \frac{1}{N} \left\{ \int_{UVWX} \langle C^{-1} a \rangle - \sum_{S,lm} \left[C^{-1} a \right]_{lm} \phi_{lm} \langle Q \rangle_{lm} \langle C^{-1} a \rangle \right\}; \quad S \in (U, V, W, X).
\]

The choices of estimator are related to the level of compromise one is willing to made to increase the signal-to-noise at the expense of losing the crucial information content in the trispectrum from Temperature and E-type polarization maps. Clearly it is also possible to design estimators by fixing a subset of all available indices regarding the trispectrum from Temperature and E-type polarization maps. This true for the case of estimators too. A given estimator \(E^{UVWX} \) though correspond to a specific choice of bispectrum takes contributions from modes which are themselves linear combinations of pure mode types.

\[
E^{UVWX} = \frac{1}{N} = \left(\frac{1}{N} \right)^2 \sum_{UVWX} \sum_{LM} \sum_{(all \ lm)} \sum_{(all \ mn)} (-1)^{M} \langle U \rangle \Delta(l; L) \triangle(l'; L') T_{W_{L} X_{d}}^{U_{L} V_{d}}(L) T_{V_{L} W_{d}}^{U_{W} X_{d}}(L) \times \left\{ \left[\delta_{l_{a} m_{a}} \right]_{la} \right\} \langle U \rangle \Delta(l; L) \triangle(l'; L') T_{W_{L} X_{d}}^{U_{L} V_{d}}(L) T_{V_{L} W_{d}}^{U_{W} X_{d}}(L)
\]

The cyclic permutations in these terms will include covariances involving all-possible permutations of the four fields involved in construction of the mixed trispectrum and the related power spectra. The ensemble average of this one-point estimator will be a linear combination of parameters \(A_{NL} \) and \(B_{NL} \). Estimators constructed at the level of three-point cumulants (Smith & Zaldarriaga 2006; Munshi & Heavens 2010) can be used jointly with this estimator to put independent constraints separately on \(A_{NL} \) and \(B_{NL} \). As discussed before, while the one-point estimator has the advantage of higher signal-to-noise, such estimators are not immune to contributions from an unknown component which may not have cosmological origin, such as inadequate foreground subtraction. The study of these power spectra associated with bispectra or trispectra can be useful in this direction. Note that these direct estimators are computationally expensive due to the inversion and multiplication of large matrices, but can be implemented in low-resolution studies where primordial signals may be less contaminated by foreground contributions or secondaries.

Combining all possible choices of mixed trispectra it is possible to introduce one single number which represents the entire information content regarding the trispectrum from Temperature and E-type polarization in the absence of B-modes. The corresponding estimators and the Fisher matrix takes the following form:

\[
E^{(4)} = \sum_{UVWX} E^{UVWX}; \quad F^{(4)} = \sum_{UVWX} F^{UVWX}.
\]

The choice of estimator is related to the level of compromise one is willing to made to increase the signal-to-noise at the expense of losing the crucial power to distinguish contributions from various contributions. Clearly it is also possible to design estimators by fixing a subset of all available indices representing the choice of \(T \) or \(E \).

5.2.2 Two-Point Estimators

Generalizing the above expressions for the case of the power spectrum associated with trispectrum, we introduce two power-spectra which we have discussed in previous section in the context of construction of nearly-optimal estimators. The information content in these power spectra are optimal, and when summed for over \(L \) we can recover the results of one-point estimators.

\[
Q_{L}^{UVWX} \langle a \rangle = \frac{1}{4!} \sum_{l_{a} m_{a}} \left\{ \sum_{l_{b} m_{b}} \sum_{l_{c} m_{c}} \sum_{l_{d} m_{d}} \Delta(l; L) T_{W_{L} X_{d}}^{U_{L} V_{d}}(L) \left(\begin{array}{ccc} l_{a} & l_{b} & L \\ m_{a} & m_{b} & M \end{array} \right) \left(\begin{array}{ccc} l_{c} & l_{d} & L \\ m_{c} & m_{d} & M \end{array} \right) \left(\begin{array}{ccc} l_{a} & l_{b} & L \\ m_{a} & m_{b} & M \end{array} \right) \right\} a_{l_{a} m_{a}} \ldots a_{l_{d} m_{d}}.
\]

The derivatives at first order and second order are as series of maps (for each \(L \)) constructed from the harmonics of the observed sky. These are used in the construction of linear and quadratic terms. We have retained the overall normalization factor \(\frac{1}{4!} \) so that our estimator reduces to the temperature-only estimator introduced in [Munshi et al. 2009].

\[
\partial_{m} Q_{L}^{UVWX} \langle a \rangle = \frac{1}{4!} \sum_{T} \left\{ \sum_{l_{a} m_{a}} \Delta(l; L) T_{W_{L} X_{d}}^{U_{L} V_{d}}(L) \left(\begin{array}{ccc} l_{a} & l_{b} & L \\ m_{a} & m_{b} & M \end{array} \right) \right\} a_{l_{a} m_{a}} \ldots a_{l_{d} m_{d}}.
\]

We can construct the other estimator in a similar manner. To start with, we define the function \(Q_{L}^{UVWX} \langle a \rangle \) and construct its first and second derivatives. These are eventually used for construction of the estimator \(E^{UVWX} \langle a \rangle \). As we have seen, both of these estimators can be collapsed to a one-point estimator \(Q_{L}^{UVWX} \langle a \rangle \). As before, the variable \(a \) here denotes input harmonics \(a_{l_{a} m_{a}} \) recovered from the noisy observed sky.
The first set of terms can be recovered from the first term by permuting the multipole indices while still keeping the coupling of the free indices intact. Knowledge of the sky coverage and the noise characteristics results from a specific scanning strategy is needed for modeling of these expressions. We need to make simplifying assumptions for a specific type of trispectra, see Munshi & Heavens (2010) for more details.

Similarly the second set of terms represented by can be recovered from the second terms but considering only coupling between free indices and the

Summing over the free indices we recover the one-point estimators and the corresponding Fisher matrices:

Using these derivatives we can construct the estimators and

where summation over is implied. The quadratic terms will vanish, as they contribute only to the disconnected part. The normalization constants are the Fisher matrix elements for which can be expressed in terms of the target trispectrum and inverse covariance matrices used for the construction of these estimators. The Fisher matrix for the estimator , i.e., can be expressed as:

The first set of terms can be recovered from the first term by permuting the multipole indices while still keeping the coupling of the free indices intact. Similarly the second set of terms represented by can be recovered from the second terms but considering only coupling between free indices and the one that are summed over. There will be a total of six terms of first type and eighteen of the second type. Similarly, for the other estimator , the Fisher matrix can be written as a function of the associated trispectrum and the covariance matrix of various modes. For further simplification of these expressions we need to make simplifying assumptions for a specific type of trispectra, see Munshi & Heavens (2010) for more details for such simplifications in the bispectrum.
5.2.3 Approximation to exact weighting and non-optimal weighting

If the covariance matrix is not accurately known which is most often the case due to the lack of exact beam or noise characteristics, as well as due to limitations on computer resources to model to high accuracy, it can be approximated. An approximation R of C^{-1} then acts as a regularization method. The corresponding generic estimator can then be expressed as:

$$
\hat{E}_L^Z[a] = \sum_{L'} [F^{-1}]_{LL'} \left\{ Q_L^{Z}[Ra] - \sum_{S} [Ra]_{lm} \langle \partial_{lm}' Q_L^{Z}[Ra] \rangle \right\}; \quad Z \in \{ (U,V,W,X), (U,VW,X) \}; \quad S \in U, V, W, X.
$$

As before we have assumed sums over repeated indices and $\langle \cdot \rangle$ denote Monte-Carlo (MC) averages. As is evident from the notation, the estimator above can be of type $E_L^{Z(U,V,W,X)}$ or $E_L^{Z(U,V,W,X)}$. For the collapsed case $E_L^{(4)}$ can also be handled in a very similar manner.

$$
\hat{E}_L^Z[a] = \sum_{L} E_L^Z = \sum_{LL'} [F^{-1}]_{LL'} \left\{ Q_L^Z[Ra] - [Ra]_{lm} \langle \partial_{lm}' Q_L^Z[Ra] \rangle \right\}; \quad Z \in \{ (U,V,W,X), (U,VW,X) \}; \quad S \in U, V, W, X.
$$

We will drop the superscript Z for simplicity, but any conclusion drawn below will be valid for both specific cases i.e. $Z \in \{ (U,V,W,X), (U,VW,X) \}$. The normalization constant which acts also as inverse of associated Fisher matrix $F_{LL'}$ can be written as:

$$
F_{LL'} = \langle \hat{E}_L(\hat{E}_L') \rangle - \langle \hat{E}_L \rangle \langle \hat{E}_L' \rangle = \frac{1}{4} \sum_{SS'} \left\{ \langle \partial_{lm}^S Q_L[Ra]C^{-1}_{lm,l'm'} \partial_{l'm'}^S Q_L'[Ra] \rangle - \langle \partial_{lm}^S Q_L[Ra] \rangle \langle C^{-1}_{lm,l'm'} \partial_{l'm'}^S Q_L'[Ra] \rangle \right\}; \quad S, S' \in U, V, W, X.
$$

The construction of $F_{LL'}$ is equivalent to the calculation presented for the case of $R = C^{-1}$. For the one-point estimator we similarly can write $F^R = \sum_{LL'} F_{LL'}^R$. The optimal weighting can be replaced by arbitrary weighting. As a special case we can also use no weighting at all $R = I$. This...
reduces the cost of the estimator drastically. Although the estimator still remains unbiased the scatter however increases as the estimator is no longer optimal. Use of arbitrary weights makes the estimator equivalent to a PCL estimator discussed before. In certain circumstances the use of a fast method can be very useful before applying more robust and optimal techniques.

5.2.4 Joint Estimation of Multiple Mixed Trispectra

It may be of interest to estimate several trispectra jointly. The different sources of trispectra can be of all primordial type such as from “adiabatic” and “isothermal” perturbations. Such an estimation can explore the joint error budget on parameters involved from the same data-set. In such scenarios it is indeed important to construct a joint Fisher matrix which will take the form

\[\hat{E}^\Gamma_{L}[a] = \sum_{\Gamma^\prime, L^\prime, L} (F^{-1})_{LL^\prime, L^\prime L} \hat{E}^{\Gamma^\prime}_{L^\prime}[a]; \]
\[\Gamma, \Gamma^\prime \in \text{Adiabatic, Isothermal}. \]

(134)

The estimator \(\hat{E}^\Gamma_{L}[a] \) is generic and it could be either \(E^{(3,1)} \) or \(E^{(2,2)} \). Here \(X \) and \(Y \) corresponds to different trispectra of type \(X \) and \(Y \), these could be e.g. primordial trispectra from various inflationary scenarios. It is possible of course to do a joint estimation of primary and secondary trispectra. The off-diagonal blocks of the Fisher matrix will correspond to the cross-talk between various types of bispectra. Indeed, a principal component or generalized eigenmode analysis can be useful in finding how many independent components of such trispectra can be estimated from the data.

The cross terms in the Fisher matrix elements will be of following type:

\[F_{LL^\prime}^{XY} = \left(\frac{1}{4!} \right)^2 \sum_{ST, S^T} \sum_{(all \; \ell m l^\prime m^\prime)} (-1)^T (-1)^{T^\prime} \left[T_{W_{L}, X_{L}} (L) \right] \Gamma \left[T_{W_{L^\prime}, X_{L^\prime}} (L^\prime) \right]^{T^\prime} \]
\[\times \left(\begin{array}{ccc} l_a & m_a & S \\ l_b & m_b & T \end{array} \right) \left(\begin{array}{ccc} l_d & m_d & \bar{T} \end{array} \right) \left(\begin{array}{ccc} l'_a & m'_a & S^T \\ l'_b & m'_b & T^T \end{array} \right) \left(\begin{array}{ccc} l'_d & m'_d & \bar{T}^T \end{array} \right) \]
\[\times \left\{ C_{L M, L^\prime M^\prime}^{(3,1)} \left[\tilde{C}_{l'_a m'_a, l'_b m'_b} \right]^{WVW^\prime} \left[\tilde{C}_{l_b m_b, l'_a m'_a} \right]^{WVW^\prime} \left[\tilde{C}_{l'_d m'_d, l'_b m'_b} \right]^{WVW^\prime} \left[\tilde{C}_{l_d m_d, l'_a m'_a} \right]^{WVW^\prime} \left[\tilde{C}_{l'_d m'_d, l'_b m'_b} \right]^{WVW^\prime} \right\} \]
\[+ \left\{ C_{L M, L^\prime M^\prime}^{(2,2)} \left[\tilde{C}_{l'_a m'_a, l'_b m'_b} \right]^{WWW^\prime} \left[\tilde{C}_{l_b m_b, l'_a m'_a} \right]^{WWW^\prime} \left[\tilde{C}_{l'_d m'_d, l'_b m'_b} \right]^{WWW^\prime} \left[\tilde{C}_{l_d m_d, l'_a m'_a} \right]^{WWW^\prime} \left[\tilde{C}_{l'_d m'_d, l'_b m'_b} \right]^{WWW^\prime} \right\}. \]

(135)

The expression displayed above is valid only for \(E^{(uv, vw, w\prime)} \); exactly similar results holds for the other estimator \(E^{(uv, v\prime w, w\prime)} \). For \(X = Y \) we recover the results presented in previous section for independent estimators. As before we recover the usual result for one-point estimator for \(Q^4 \) from the Fisher matrix of \(Q^{(3,1)} \) or \(Q^{(2,2)} \), with corresponding estimator modified accordingly.

\[F_{LL^\prime}^{\Gamma \Gamma^\prime} = \sum_{\Gamma^\prime, L^\prime} F_{L^\prime L^\prime}^{\Gamma \Gamma^\prime}; \]
\[\hat{E}^{\Gamma^\prime}_{L^\prime}[a] = \sum_{\Gamma} (F^{-1})^{\Gamma \Gamma^\prime} \hat{E}^{\Gamma}_{L}[a]. \]

(136)

A joint estimation can provide clues to cross-contamination from different sources of trispectra. It also provide information about the level of degeneracy involved in such estimates. It is also possible to do joint estimation involving two different types of power spectra associated with trispectra or to include even the power spectrum associated with the bispectrum. The results presented in this section can be generalized to include such cases too.

6 CONCLUSION

The ongoing all-sky survey performed by the Planck satellite will complete mapping the CMB sky in unprecedented detail, covering a huge frequency range. It will provide high resolution temperature and polarization maps which will provide the cosmological community with the opportunity to constrain available theoretical models with unprecedented accuracy. Recent detection of non-Gaussianity in WMAP data has added momentum to non-Gaussianity studies.

The temperature and polarization power spectra carry the bulk of the cosmological information, though many degenerate early universe scenarios can lead to similar power spectra. Higher-order multi-spectra can lift these degeneracies. The higher-order spectra are the harmonic transforms of multi-point correlation functions, which contain information that can be difficult to extract using conventional techniques. This is related to their complicated response to the inhomogeneous noise and partial sky coverage. Analysis of the higher order polarization statistics is more complicated not only by relatively low signal-to-noise ratio and their spinorial nature but also because of uncertainties in modeling the polarized foreground. A practical advance is to form collapsed two-point statistics, constructed from higher-order correlations, which can be extracted using conventional power-spectrum estimation methods. If the polarization data can be analyzed and handled properly it can help to further tighten the constraints on parameters describing non-gaussianity that are achieved by analysis of temperature data alone.

In a recent study, Munshi et al. (2009) studied and developed three different types of estimators which can be employed to analyze these power spectra associated with higher-order statistics such as bispectrum or trispectrum for analysis of temperature data. In this work we include polarization on top of this to further tighten the constraints. The analysis of polarization data makes the analysis bit involved because of the spinorial nature of the data. We start with the MASTER-based approach (Hivon et al. 2002) which is typically employed to estimate pseudo-Cl's from the masked sky in the presence of noise These are unbiased estimators but the associated variances and scatter can be estimated analytically with very few simplifying assumptions. We extend these estimators to study higher-order correlation functions associated mixed multispectra such as bispectrum and trispectrum which involve both temperature and polarization. Ignoring the contributions from B-polarization makes these estimators much simpler. These estimator can be very useful for testing simulation pipeline running Monte-Carlo chain in a rather smaller time scale to spot spurious contributions from foreground or other
secondary sources. Generalizing the temperature-only estimators we develop estimators for $C_{l}^{(TV,W)}$ for the skew-spectrum (3-point) for specific but arbitrary choice of $\mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}$ as well as $C_{l}^{(UW)}$ and $C_{l}^{(UW)}$ which are power spectra of fields related to the specific choice of mixed trispectrum, or kurt-spectrum involving temperature and E-type polarization fields.

For our next step, we generalized the estimators employed by Yadav, Komatsu & Wandelt (2007); Yadav & Wandelt (2008); Yadav et al. (2008) to study the kurt-spectrum. These methods are computationally less expensive and can be implemented using a Monte-Carlo pipeline which involves the generation of 3D maps from the cut-sky harmonics using radial integrations of a target theoretical model bispectrum along the line of sight. The Monte-Carlo generation of 3D maps is the most computationally expensive part and dominates the calculation. Including polarization field increases the computational cost. The technique nevertheless has been used extensively, as it remains highly parallelisable and is near optimal in the presence of homogeneous noise and near all-sky coverage. The corrective terms involve linear and quadratic contributions for the lack of spherical symmetry due to the presence of inhomogeneous noise and partial sky coverage. These terms can be computed using a Monte-Carlo chain for joint temperature and polarization data, but including polarization data requires the ability to handle further complications with an added level of sophistication. We also showed that the radial integral involved at the three-point analysis needs to extended to incorporate a double-integral for the mixed trispectrum. For every choice of the bi- or trispectrum involving a specific combination of temperature and polarization field, related power spectra can always be defined. These can help as a diagnosis for cross-contamination from non-primordial sources in different available frequency channels.

Though the estimators based on Monte-Carlo analysis based method are very fast, they do not accurately take care of the mode-mode coupling, which are present at least at low resolution. We have developed estimators, which are completely optimal even in the presence of inhomogeneous noise and arbitrary sky coverage (e.g. Smith & Zaldarriaga (2006)). These can handle mode-mode coupling more accurately. Extending previous work by Munshi & Heavens (2010) which concentrated only on the skew-spectrum, Munshi et al. (2009) showed how to generalize it to the case of power spectrum related to the trispectrum. In this study we have included polarization in a completely general manner both at the level of the bispectrum and trispectrum. This involves finding a fast method to construct and invert the joint covariance matrix $C_{\alpha\beta\gamma\delta}^{l}$ in multipole space. In most practical circumstances it is possible only to find an approximation to the exact joint covariance matrix, and to cover this we present analysis for an approximate matrix which can be used instead of C^{-1}. This makes the method marginally suboptimal but it remains unbiased. The four-point correlation function also takes contributions which are purely Gaussian in nature. The subtraction of these contributions is again simplified by the use of Gaussian Monte-Carlo polarized maps with the same power spectrum. A joint Fisher analysis is presented for the construction of the error covariance matrix, allowing joint estimation of trispectra contributions from various polarized sources, primaries or secondaries. Such a joint estimation give us fundamental limits on how many sources of non-Gaussianity can be jointly estimated from a specific experimental set up which scans the sky for temperature as well as for polarization.

At the level of the bispectrum, primordial non-Gaussianity can for many models be described by a single parameter f_{NL}. The two degenerate power spectra related to the trispectrum we have studied at the 4-point level, require two parameters, typically f_{NL} and g_{NL}. Use of the two power spectra will enable us to put separate constraints on f_{NL} and g_{NL} without using information from lower-order analysis of the bispectrum, but they can all be used in combination (see Smith et al. 2010). Clearly at even higher-order more parameters will be needed to describe various parameters ($f_{NL}, g_{NL}, h_{NL}, . . .$) which will all be essential in describing degenerate sets of power spectra associated with multispectra at a specific level. Previous studies concentrated only on temperature data, including information from polarisation data can improve the constraints. At present the polarization data is dominated by noise, but surveys such as Planck will improve the signal to noise available in polarization data. Future all-sky high sensitivity polarization surveys too can further improve the situation and our estimators will be be useful for analysis of such data. Numerical implementation of our estimators will be reported elsewhere. We have ignored presence of B-mode polarisation but our formalism can be extended to take into account the magnetic or B-type polarisation.

The analytical results presented here can also be useful in the context of study of shear data from weak lensing surveys. We plan to present our results elsewhere (Munshi et al. 2010).

7 ACKNOWLEDGEMENT

DM acknowledges support from STFC standard grant ST/G002231/1 at School of Physics and Astronomy at Cardiff University. This work was initiated when DM was supported by a STFC postdoctoral fellowship at the Royal Observatory, Institute for Astronomy, Edinburgh. It is a pleasure to thank Walter Gear for useful exchanges. We also acknowledge many useful discussions with Michele Liguori. AC and JS acknowledge support from NSF AST-0645427 and NASA NNX10AD42G.

REFERENCES

Acquaviva V., Bartolo N., Matarrese S., Riotto A., 2003, Nucl. Phys. B667, 119
Alishahiha M., Silverstein E., Tong T., 2004, Phys. Rev. D70, 123505
Arkani-Hamed N., Creminelli P., Mukohyama S., Zaldarriaga M., 2004, JCAP0404:001
Babich D., 2005, Phys. Rev. D72, 043003
Babich D., Pierpaoli E., 2008, Phys. Rev. D77, 123011
Babich D., Zaldarriaga M., 2004, Phys. Rev. D70, 083005
Babich D., Creminelli P., Zaldarriaga M., 2004, JCAP, 8, 9
Bartolo N., Matarrese S., Riotto A., 2006, JCAP, 06, 024
Baumann et al., 2009, arXiv:0811.3919
Buchbinder E.I., Khoury J., Ovrut B.A., 2008, Phys.Rev.Lett,100:171302
Cabella P., Hansen F.K., Liguori M., Marinucci D., Matarrese S., Moscardini L., Vittorio N., 2006, MNRAS, 369, 819
Yadav A. P. S., Wandelt B. D., 2008, PhRvL, 100, 181301
Yadav A. P. S., Komatsu E., Wandelt B. D., Liguori M., Hansen F. K., Matarrese S., 2008, ApJ, 678, 578
Yadav A. P. S., Komatsu E., Wandelt B. D., 2007, ApJ, 664, 680