Materials Research Express

PAPER

Physical properties of indium zinc oxide and aluminium zinc oxide thin films deposited by radio-frequency magnetron sputtering

Nicoleta Vasile¹,², Sorina Iftimie¹,², Tomy Acsente³, Claudiu Locovei¹,², Alina Irina Călugăr¹,², Adrian Radu⁴, Lucian Ion⁵, Vlad-Andrei Antohe¹,⁶, Dumitru Manica⁴, Ovidiu Toma¹, Gheorghe Dinescu¹ and Ștefan Antohe¹,²

¹ University of Bucharest, Faculty of Physics, 077125 Măgurele, Ilfov, Romania
² National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Ilfov, Romania
³ National Institute of Materials Physics, 077125 Măgurele, Ilfov, Romania
⁴ Université Catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), B-1348 Louvain-la-Neuve, Belgium
⁵ Academy of Romanian Scientists, 030167 Bucharest, Romania
⁶ Authors to whom any correspondence should be addressed.

E-mail: sorina.iftimie@fizica.unibuc.ro and vlad.antoh@fizica.unibuc.ro

Keywords: IZO, AZO, ZnO, RF magnetron sputtering

Abstract

Indium-doped zinc oxide (IZO) and aluminium-doped zinc oxide (AZO) thin films were grown by radio-frequency (RF) magnetron sputtering onto optical glass substrates and their structural, morphological, and optical properties were discussed in terms of varying the sputtering power as 40 W, 60 W, 80 W, and 100 W. No heating substrate or any post-thermal treatment was performed. The structural features were analyzed by grazing incidence X-ray diffraction and revealed the amorphous phase for IZO samples, while the AZO thin films inherited the Wurtzite structure of zinc oxide. The morphological properties were investigated by atomic force microscopy (AFM), in tapping mode and scanning electron microscopy (SEM). The AFM images showed relatively uniform and smooth surfaces for all prepared structures. The optical transmission spectra proved the excellent theoretical values of transparency for metallic oxides in the visible region of the electromagnetic spectrum, i.e. ~60% for IZO and ~70% for AZO. The obtained results showed that even without any thermal treatment the structural, morphological, and optical properties of IZO and AZO thin films prepared by RF magnetron sputtering are similar with those for samples subjected to medium or high temperatures.

1. Introduction

Zinc oxide (ZnO) is an A\textsubscript{II}B\textsubscript{VI} binary compound which exhibits specific semiconducting features, such as n-type conductivity, large exciton binding energy (60 meV) and wide direct band gap (3.35–3.37 eV) at room temperature, and Wurtzite thermodynamically stable phase [1–6]. Moreover, its intense study is also due to the low toxicity and relatively cheap cost material [7] and excellent piezoelectricity and pyroelectricity properties [8, 9], manifested also at nanometric scale[10–13]. Notwithstanding, the pristine ZnO has rather high electrical resistivity because the free charge carriers’ concentration is small [14]. This is the reason why frequently materials from group III, such as aluminium, gallium, and indium, are used as doping elements to improve both its electrical and optical behaviour [15, 16]. Indium-doped zinc oxide (IZO) and aluminium-doped zinc oxide (AZO) are two of the most used metallic oxides for electronic and optoelectronic applications, such as anti-reflection coatings for transparent electrodes [17–21], gas sensors [22, 23], light-emitting diodes [24], photocatalysts [25], piezoelectric transducers [26], varistors, spintronic devices, lasers [27], and photovoltaica structures [28]. Their versatility is strongly related to a large variety of deposition methods; e.g. Lee and collaborators studied the effects of annealing temperature on the optical band-gap of IZO thin films, obtained by radio-frequency (RF) magnetron sputtering [29], Ma and collaborators proposed one-step spinning coating method [2], while Yung-Chen Cheng obtained AZO films by atomic layer deposition [30].
Despite that the atomic radius of indium ions (In$^{3+}$, 0.80 Å) is larger than that of zinc ions (Zn$^{2+}$, 0.74 Å), the mixture of these two leads to specific optoelectronic properties and make the IZO compound very sensitive to the cationic coordination [31, 32]. In the case of AZO, the atomic radius of aluminium ions (Al$^{3+}$, 0.53 Å) is smaller than that of Zn$^{2+}$, so ZnO lattice will diminish [11, 33]. Besides, the substitution of Zn$^{2+}$ with Al$^{3+}$ forms shallow donor levels which improve the electrical conductivity of AZO material.

This paper explains the inter-relation between the structural, morphological, and optical characteristics of IZO and AZO thin films, obtained by RF magnetron sputtering. The samples were fabricated without heating the substrate or any post-thermal treatments. This approach is motivated by the fact that the electrochromic devices and polymer photovoltaic structures are sensitive to high temperatures [34, 35].

2. Experimental procedures

Indium zinc oxide (IZO) and aluminium zinc oxide (AZO) thin films were deposited onto optical glass, by RF magnetron sputtering. The equipment used for the deposition was from Tectra Company, accommodating one sputtering gun and the used targets were commercially available from Kurt J. Lesker Company (AZO) and FHR Company (IZO), respectively, and were used without further purification. Their purity was 99.99% and the ratio of the compounds was In$_2$O$_3$:ZnO 90:10, wt% and Al$_2$O$_3$:ZnO 2:98, wt%, respectively. The working gas was Argon 5.0 and the substrate-to-target distance was 11 cm. All glass substrates were subsequently cleaned in acetone and distilled water for 15 min, into an ultrasonic bath, prior to the deposition process. Working pressure, deposition time and the distance between target and samples were maintained constant, while the sputtering power was varied as 40 W, 60 W, 80 W, and 100 W. All fabrication parameters are summarized in Table 1.

![Figure 1. GIXRD patterns of fabricated IZO films by RF magnetron sputtering.](image)

Table 1. Fabrication parameters of IZO and AZO thin films, obtained by RF magnetron sputtering.

Sample	Sputtering Power (W)	Working Pressure (Pa)	Deposition Time (min)	Target diameter (inch)
IZO1	40	0.53	30	1
IZO2	60			
IZO3	80			
IZO4	100			
AZO1	40	0.53	30	2
AZO2	60			
AZO3	80			
AZO4	100			

Despite that the atomic radius of indium ions (In$^{3+}$, 0.80 Å) is larger than that of zinc ions (Zn$^{2+}$, 0.74 Å), the mixture of these two leads to specific optoelectronic properties and make the IZO compound very sensitive to the cationic coordination [31, 32]. In the case of AZO, the atomic radius of aluminium ions (Al$^{3+}$, 0.53 Å) is smaller than that of Zn$^{2+}$, so ZnO lattice will diminish [11, 33]. Besides, the substitution of Zn$^{2+}$ with Al$^{3+}$ forms shallow donor levels which improve the electrical conductivity of AZO material.

This paper explains the inter-relation between the structural, morphological, and optical characteristics of IZO and AZO thin films, obtained by RF magnetron sputtering. The samples were fabricated without heating the substrate or any post-thermal treatments. This approach is motivated by the fact that the electrochromic devices and polymer photovoltaic structures are sensitive to high temperatures [34, 35].

2. Experimental procedures

Indium zinc oxide (IZO) and aluminium zinc oxide (AZO) thin films were deposited onto optical glass, by RF magnetron sputtering. The equipment used for the deposition was from Tectra Company, accommodating one sputtering gun and the used targets were commercially available from Kurt J. Lesker Company (AZO) and FHR Company (IZO), respectively, and were used without further purification. Their purity was 99.99% and the ratio of the compounds was In$_2$O$_3$:ZnO 90:10, wt% and Al$_2$O$_3$:ZnO 2:98, wt%, respectively. The working gas was Argon 5.0 and the substrate-to-target distance was 11 cm. All glass substrates were subsequently cleaned in acetone and distilled water for 15 min, into an ultrasonic bath, prior to the deposition process. Working pressure, deposition time and the distance between target and samples were maintained constant, while the sputtering power was varied as 40 W, 60 W, 80 W, and 100 W. All fabrication parameters are summarized in table 1.

The X-ray diffraction patterns were taken in grazing incidence geometry (GIXRD) at an angle of 1.5°, in the ranges of 2θ = 15° – 70°, using a Bruker D8 Discover diffractometer operating at 40 KV and 40 mA (CuKα source with λ = 1.5406 Å), at room temperature. This type of investigation is preferred to be used for the characterization of thin films because the path of incident X-ray photons through the samples is increased.
Moreover, in this way the signal of the substrate is strongly reduced. The grain size (D_g), the micro-strain ($\langle \varepsilon^2 \rangle^{1/2}$) and the lattice constants (c, a) were determined by analysing the largest diffraction peak fitted by Voigt profile.

The atomic force microscopy (AFM) analysis was performed in tapping mode, using an A.P.E Research Company equipment, at room temperature, and the scanning electron microscopy investigations with a JEOL 7600F Field-Emission Scanning Electron Microscope (FE-SEM) equipped with an energy dispersive X-ray (EDX) analyzer. The EDX spectroscopy was employed to qualitatively and quantitatively confirm the elemental composition of the samples. The optical transmission spectra were acquired in ranges of 300 nm–2500 nm, at room temperature, too, using a Perkin Elmer Lambda 750 spectrometer. When theory holds, the thickness of samples was determined by building the interference envelope functions, otherwise by X-ray reflectometry measurements (XRR) using same equipment as for GIXRD.

Figure 2. The recorded profiles of (222) peak in Bragg-Brentano theta-theta geometry and the curve obtained by fitting with Voigt profiles, for IZO fabricated films. The labels (a), (b), (c), and (d), respectively, are assigned to IZO1, IZO2, IZO3, and IZO4 samples.

Table 2. Structural parameters of prepared IZO films, evaluated from the recorded profiles of (222) peak in Bragg-Brentano theta-theta geometry.

Sample	$D_g^{(222)}$ (nm)	$\langle \varepsilon^2 \rangle^{1/2}$	a (Å)
IZO1	2.3	4.36·10^{-2}	9.65
IZO2	2.36	4.26·10^{-2}	9.70
IZO3	2.5	4.02·10^{-2}	9.71
IZO4	2.25	4.05·10^{-2}	9.67
3. Results and discussion

3.1. Results for IZO thin films

The GIXRD patterns of fabricated IZO thin films are shown in figure 1, and the recorded profile of (222) peak in Bragg-Brentano theta-theta geometry for samples IZO1, IZO2, IZO3, and IZO4 is presented in figure 2.

As one can easily notice, the grown IZO films are amorphous, despite that the thickness increases. Because the substrate was intentionally not heated, the crystalline structure of samples is very poor. This behaviour was expected because IZO is thermally stable at temperatures up to 400 °C–500 °C [36, 37]. The large peak around 34° can be interpreted as an overlap between the (222) characteristic cubic plane from In2O3 and (002) from ZnO. The structural parameters of fabricated samples were calculated and are presented in table 2; the obtained values are similar.

The morphology of the surface of prepared IZO samples investigated by AFM is shown in figure 3. One may observe that the surface of all fabricated samples is uniform and smooth, no cluster being formed during the deposition process. This remark is validated by the very small values of root mean square roughness (RMS). Also, Skewness (Skew) and Kurtosis (Kurt) parameters were determined and were summarized in table 3.

Table 3. Calculation of specific parameters of topography (root mean square roughness - RMS, Skewness and Kurtosis) for IZO fabricated films by RF magnetron sputtering. The thickness of samples is also mentioned.

Sample	RMS (nm)	Skew	Kurt	Thickness (nm)
IZO1	1.12	0.87	1.32	286
IZO2	1.19	0.90	1.95	587
IZO3	1.08	0.89	1.62	781
IZO4	1.02	0.77	1.03	959

The RMS is an overall measure of the texture of the surface and it is calculated by the formula:

$$\text{RMS} = \sqrt{\frac{1}{l} \sum_{0}^{l} Z^2(x)} \ dx$$

where l is the length of scanned area, $Z(x)$ is a function assigned to the height of the surface relative to the best fitting plane, and x is the position [38]. Skewness and Kurtosis parameters

![Figure 3. AFM analysis of fabricated IZO films, obtained in tapping mode. For all samples the scanned area was 10 μm × 10 μm.](image)
indicate the symmetry of the analyzed surface and are evaluated using the below expressions.

\[
\text{Skew} = \frac{1}{RMS^3} \int \int (Z(x, y))^3 \, dx \, dy
\]

\[
\text{Kurt} = \frac{1}{RMS^4} \int \int (Z(x, y))^4 \, dx \, dy
\]

Figure 4. Scanning electron microscope (SEM) closed-up micrographs showing cross-sectional views of the glass substrates coated with IZO films sputtered at an RF plasma power of (a) 40 W, (b) 60 W, (c) 80 W, and (d) 100 W. The inset of (d): corresponding low magnification section view of the IZO-coated glass substrate. (e) EDX analysis of the IZO films.

Figure 5. Transmission spectra of obtained IZO samples, acquired in the ranges of 300–2500 nm, at room temperature, together with the spectrum for glass substrate.
For grown IZO films, despite the working power variation, no significant changes of RMS are observed. Moreover, because the values of Skewness parameter are larger than 0, the surface of samples is dominated by peaks, while the smaller values of 3 of Kurtosis parameter indicate that no extreme peaks or valleys are present.

The cross-section SEM micrographs of fabricated IZO thin films are presented in figure 4, together with their corresponding EDX spectra. The EDX patterns indicate the presence of silicon (Si), oxygen (O), indium (In), and zinc (Zn) elements, with neglected impurities concentration, and the elemental calculations described well the coexistence of both, the supporting glass and IZO film. Noteworthy, excluding the contribution coming from the glass support (SiO$_2$), the elemental analysis table suggests also an excellent stoichiometry of the IZO film, as the calculated values for the elemental components were obtained in the expected atomic ratios for ZnO and In$_2$O$_3$, respectively.

The optical transmission spectra of prepared IZO films are presented in figure 5. Against their thickness, IZO films have relatively good optical transmission, larger than 60% in the visible range. Because IZO is a direct band gap semiconductor, the values of forbidden energy band were determined using the well-known formula: $a h \nu = A(\nu - E_g)^{1/2}$, in which A is a constant, $h \nu$ is the energy of the incident photons, and E_g is the value of the band gap. The calculated values of E_g by optical spectroscopy are reported in table 4.

The obtained values of E_g are smaller than those reported in literature, e.g. 3.75–3.79 eV [30, 39] for IZO, and we admit that the differences between prepared samples are just noticeable. Nevertheless, a decrease of band gap with the increase of thickness can be observed. This behaviour was also noticed for some $A_2B_6V_4$ compounds [40, 41], and is associated either with the reduction of strain in the films or with the enlargement of size of the grains [42] according with quantum confinement process. For our samples, by correlating the GIXRD results, we concluded that both assumptions are appropriate.

3.2. Results for AZO thin films

The GIXRD patterns of fabricated AZO thin films are shown in figure 6, while the recorded profiles of (002) peak of AZO1, AZO2, AZO3, and AZO4 samples are presented in figure 7. Same equipment and parameters were used as for IZO layers analysis.
The fabricated AZO layers are polycrystalline and they inherited the Wurtzite structure of zinc oxide \(\text{ZnO} \).

As can be easily observed, the grains are preferentially located on \((002)\) direction and, also, the \((103)\) peak becomes more pronounced by increasing the thickness. Quantitative data of crystalline structure have been measured in Bragg-Brentano theta-theta geometry for the highest diffraction peak \((002)\) to avoid the additional bordering of peaks from GIXRD. For each fit of samples, the residuals between experimental information and theoretical analysis are presented at the bottom of the graphs.

In table 5 are shown the calculated values for grain size \(D_{\text{eq}} \), micro-strain \(\langle \varepsilon^2 \rangle^{1/2} \) and lattice constants. All samples have small crystallite size and AZO2, AZO3 and AZO4 have similar values for mean-square strain and grain size. Due to the low deposition power used for AZO1, the sputtered atoms had more time to achieve an equilibrium position in crystal structure and so are forming larger crystallites and structural defects along \((002)\) orientation. At 100 W power deposition is observed a low decrease in the accumulated strain with slightly larger

Table 5. Structural parameters of prepared AZO films, evaluated from the recorded profiles of \((002)\) peak in Bragg-Brentano theta-theta geometry.

Sample	\(D_{\text{eq}} \) (nm)	\(\langle \varepsilon^2 \rangle^{1/2} \) \((\varepsilon^2)_{1/2} \)	\(a (\text{Å}) \)	\(c (\text{Å}) \)
AZO1	11.25	8.45 \(\times \) \(10^{-3} \)	3.24	5.30
AZO2	6.34	1.49 \(\times \) \(10^{-2} \)	3.21	5.25
AZO3	4.38	2.15 \(\times \) \(10^{-2} \)	3.21	5.25
AZO4	4.96	1.91 \(\times \) \(10^{-2} \)	3.23	5.27

The fabricated AZO layers are polycrystalline and they inherited the Wurtzite structure of zinc oxide \(\text{ZnO} \). As can be easily observed, the grains are preferentially located on \((002)\) direction and, also, the \((103)\) peak becomes more pronounced by increasing the thickness. Quantitative data of crystalline structure have been measured in Bragg-Brentano theta-theta geometry for the highest diffraction peak \((002)\) to avoid the additional bordering of peaks from GIXRD. For each fit of samples, the residuals between experimental information and theoretical analysis are presented at the bottom of the graphs.

In table 5 are shown the calculated values for grain size \(D_{\text{eq}} \), micro-strain \(\langle \varepsilon^2 \rangle^{1/2} \) and lattice constants. All samples have small crystallite size and AZO2, AZO3 and AZO4 have similar values for mean-square strain and grain size. Due to the low deposition power used for AZO1, the sputtered atoms had more time to achieve an equilibrium position in crystal structure and so are forming larger crystallites and structural defects along \((002)\) orientation. At 100 W power deposition is observed a low decrease in the accumulated strain with slightly larger.
grain size mostly because the film has reached a thickness for which the crystalline structure is more stable. Similar results were reported by A. Pruna and collaborators [16]. No Al₂O₃ phase was identified and this can be associated with the substitution of Zn atoms by Al ones or with the segregation of Al and the formation of Al-O bonds [43, 44].

The topography of the surface of prepared AZO thin films was analysed by AFM, in tapping mode, and the results are presented in figure 8. As one can notice, the surface of AZO1 contains clusters of less than 1 μm dimension, most likely formed during the deposition process due to the low sputtering power that lead to small values of kinetic energy when the atoms reached the substrate. Despite these clusters, the overall RMS for scanned area is 1.06 nm. Moreover, by increasing the thickness a slightly increase of roughness was observed. The calculated RMS, Skewness and Kurtosis parameters for AZO grown samples are summarized in table 6.

Because the values of Kurtosis parameter for AZO3 and AZO4 samples are larger than 3, this indicates extreme differences between valleys and peaks. This observation is validated by the increase of Skewness parameter, showing that from a surface dominated by peaks, for AZO1 and AZO2 films, an easy passage to surfaces containing a mixture of valleys and hills, for AZO3 and AZO4 samples, appeared. We assume this behaviour is strongly related to the increase of thickness of fabricated AZO thin layers.

The cross-section SEM micrographs of fabricated AZO films, together with their corresponding EDX pattern are shown in figure 9.

The EDX analysis of AZO films indicates the only presence of constitutive elements, i.e. oxygen (O), silicon (Si), zinc (Zn), and aluminium (Al). Similarly as for IZO samples, the quantitative elemental analysis of AZO films demonstrates a very good compositional quality of the AZO-coated substrate in terms of atomic ratios.
associated with ZnO and Al_2O_3. As a general remark, the obtained EDX spectra include In and Al peaks demonstrating that the elements have been successfully accommodated into the ZnO matrix during the sputtering process.

The optical transmission spectra of AZO fabricated thin films are shown in figure 10, altogether with that of optical glass substrate.

All obtained samples have good transparency, larger than 70% in the investigated spectral domain, i.e. 300 nm—2500 nm. As expected, the aluminium doping ZnO does have neglected effects on the transparency of
grown AZO films, especially in the visible region of electromagnetic spectrum, but reduces the optical band gap [43]. AZO samples are direct energy band gap semiconductors, so the optical band gap values were calculated as for IZO films (see table 7).

The AZO thin films inherited the crystalline structure and high transparency of ZnO in the visible range and the replacement of zinc atoms with aluminium ones drove to a reduction of forbidden energy gap due to a shift of Fermi surfaces to conduction band [45]. As a general observation, we may notice small differences for the values of the optical band gap of prepared samples.

4. Conclusions

Metallic oxides based on ZnO, i.e. IZO and AZO, were grown by RF magnetron sputtering onto optical glass substrates. All fabrication parameters were maintained constant but the sputtering power was varied as 40 W, 60 W, 80 W, and 100 W. Also, no thermal treatments were performed during or after the samples’ preparation. The GIXRD analysis indicated the amorphous phase for IZO samples and the Wurtzite crystalline structure for AZO ones. Due to their amorphous phase, their calculated values of grain size and micro-strain are similar. For AZO thin films this observation is valid only for those structures obtained at 60 W, 80 W, and 100 W. The AFM images carried out in tapping mode revealed a relatively smooth and uniform surface for all prepared samples, with average values of root mean square roughness of 1.10 nm for IZO and 1.97 nm for AZO. The EDX analysis demonstrated that both indium and aluminium were embedded into the ZnO matrix, and the concentration of impurities can be neglected.

The transmission spectra acquired in the ranges of 300–2500 nm proved that these kinds of materials are suitable for optoelectronic applications due to their high transparency in the visible and near-infrared spectral domains, e.g. ~60% for IZO and ~70% for AZO. As a general conclusion, this study pointed out that the fabricated IZO and AZO layers have good structural, morphological and optical properties, many times similar with those subjected to thermal treatments, but of course finding new cheaper procedures of specific thermal treatments could further improve the properties of these films very useful in transparent electronics and optoelectronic devices.

Acknowledgments

Support from Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI) through grant no. 18PCCDI/2018 and grant no. 40PCCDI/2018 is acknowledged.

ORCID iDs

Sorina Iftimie @ https://orcid.org/0000-0001-6745-9711
Vlad-Andrei Antohe @ https://orcid.org/0000-0003-2298-0719
Gheorghe Dinescu @ https://orcid.org/0000-0003-2179-1609
Ştefan Antohe @ https://orcid.org/0000-0001-5082-0996

References

[1] Mohammadigharebagh R, Pat S, Ozsan S, Yudar H H and Korkmaz S 2018 Investigation of the optical properties of the indium-doped ZnO thin films deposited by a thermionic vacuum arc: Optik 157 667–74
[2] Wen X, Yao C-B, Han Y, Cai Y, Zhang K-X, Yin H-T and Sun W-J 2019 Influence of experimental parameters on linear, nonlinear optical and ultrafast dynamics properties of In doped ZnO nanorods Opt. Laser Technol. 113 57–63
[3] Locovei C, Coman D, Radu A, Ion L, Antohe V A, Vasile N, Dumitrut A, Ifimie S and Antohe S 2019 Physical properties of Cu and Dy co-doped ZnO thin films prepared by radiofrequency magnetron sputtering for hybrid organic/inorganic electronic devices Thin Solid Films 685 379–84

[4] Sica C, Grigoriu C, Toma O and Antohe S 2015 Study of dye sensitized solar cells based on ZnO photoelectrodes deposited by laser ablation and doctor blade methods Thin Solid Films 597 206–11

[5] Girtan M, Vlad A, Malea R, Bodea MA, Pedarig J D, Stanculescu A, Mardare D, Leontic L and Antohe S 2013 On the properties of aluminium doped zinc oxide thin films deposited on plastic substrates from ceramic targets Appl. Surf. Sci. 274 506–11

[6] Beslaga C, Ion L, Gheorsca V, Socol G, Radu A, Arghira I, Florica C and Antohe S 2012 Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends Thin Solid Films 520 6803–6

[7] Gazquez G C, Lei S D, George A, Gullapalli H, Boukamp B A, Ajayan P M and Ten Elshof J E 2016 Low-cost, large-area, facile, and rapid fabrication of aligned ZnO nanowire device arrays ACS Appl. Mater. Interfaces 8 13466–71

[8] Liu J, Fernandez-Serra M V and Allen P B 2016 First-principles study of pyroelectricity in GaN and ZnO Phys. Rev. B 93 081205

[9] Wang Z L 2012 From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures MRS Bull. 37 814–27

[10] Antohe V A, Gence L, Srivastava S K and Piraux L 2012 Template-free electrodeposition of highly oriented and aspect-ratio controlled ZnO hexagonal columnar arrays Nanotechnology 23 255602

[11] Antohe V A, Mickan M, Henry F, Delmare R, Gence L and Piraux L 2014 Self-seeded electrochemical growth of ZnO nanorods using textured glass/Al-doped ZnO nanostructures Appl. Surf. Sci. 313 607–14

[12] Venkatachalam S, Iida Y and Kanno Y 2008 Preparation and characterization of Al doped ZnO thin films by PLD Superlattices Microstruct. 44 127–35

[13] Tamvakos D, Lepadatu S, Antohe V A, Tamvakos A, Weaver P M, Piriaux L, Cain M G and Pullini D 2015 Piezoelectric properties of template-free electrochemically grown ZnO nanorod arrays Applied Surface Science 356 1214–20

[14] Jeong W J and Park G C 2001 Electrical and optical properties of ZnO thin films as a function of deposition parameters Sol. Energy Mater. Sol. Cells 65 37–45

[15] Yamada T, Neblti T, Kishimoto S, Makino H, Awai K, Narusawa T and Yamamoto T 2007 Dependences of structural and electrical properties on thickness of polycrystalline Ga-doped ZnO thin films prepared by reactive plasma deposition Superlattices Microstruct. 42 68–73

[16] Podobinski D, Zannini S, Pruna A and Pullini D 2013 Effect of annealing and room temperature sputtering power on optoelectronic properties of pure and Al-doped ZnO thin films Ceram. Int. 39 1021–7

[17] Benramache S and Benhauza S 2012 Influence of structural and optical properties of ZnO:In thin films prepared by ultrasonic spray technique Superlattices Microstruct. 52 807–15

[18] Khomchenko V S, Kryshchab T G, Savin A K, Zavryolav L V, Roschchina N N, Rodionov V E, Lytvyn O S, Kushinrenko V I, Khachatryan V B and Adame J A A 2007 Fabrication and properties of ZnO:Cu and ZnO:Ag thin films Superlattices Microstruct. 42 94–98

[19] Antohe S, Hlumí S, Hrosa L, Antohe V A and Girtan M 2017 A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions Thin Solid Films 642 219–31

[20] Beslaga C, Stan G E, Galca A C, Ion L and Antohe S 2012 Double layer structure of ZnO thin films deposited by RF-magnetron sputtering on glass substrate Appl. Surf. Sci. 258 8819–24

[21] Socol G, Cracium D, Mihaielusc I N, Stefan N, Beslaga C, Ion L, Antohe S, Kim K W, Norton D and Pearton S J 2011 High quality amorphous indium zinc oxide thin films synthesized by pulsed laser deposition Thin Solid Films 520 1274–7

[22] Dewelvoel G, Reed A, Stone C, Roh K, Jiang Z T, Truc I N T, No K, Park H and Lee S 2019 Work function investigations of Al-doped ZnO for band-alignment in electronic and optoelectronic applications Appl. Surf. Sci. 484 999–8

[23] Iftimia M, El Mir L, Leonardi S, Pistone A, Mavilia L and Neri G 2014 Al-doped ZnO for highly sensitive CO gas sensors Sensor. Actuator, B Chem. 196 413–20

[24] Tomita Y, May C, Toerker M, Amelung J, Eritt M, Loeffler F, Luber C, Walzer K L, Feideh K and Huang Q 2007 Highly efficient p-i-n-type organic light emitting diodes on ZnO al substrates Appl. Phys. Lett. 91 063510

[25] Sun L, Grant T J, Jones J G and Murphy N R 2018 Tailoring electrical and optical properties of Al-doped ZnO thin films grown at room temperature by reactive magnetron co-sputtering: from band gap to near infrared Opt. Mater. 84 146–57

[26] Han W H, Zhou Y S, Zhang Y, Chen C Y, Lin L, Wang X, Wang S H and Wang Z L 2012 Strain-gated piezotronics transistors based on vertical zinc oxide nanowires ACS Nano 6 3760–6

[27] Bahrami S, Djojoudi M A, Aida M S, Barreau N and Abdallah B 2010 Power and pressure effects upon magnetron sputtered aluminium doped ZnO films Thin Solid Films 519 5–10

[28] Ben Ayadi Z, El Mir L, Djessas K and Alaya S 2011 Effect of substrate temperature on the properties of Al-doped ZnO films sputtered from aerogel nanopowders for solar cells applications Thin Solid Films 519 7572–4

[29] Jeon J W, Jeon D W, Sahoo T, Kim M, Baek T H, Hoffmann J L, Kim N S and Lee J H 2011 Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide films J. Alloys Compd. 509 10062–5

[30] Cheng V C 2011 Effects of post-deposition rapid thermal annealing on aluminium-doped ZnO thin films grown by atomic layer deposition Appl. Surf. Sci. 258 604–7

[31] Ramamoorthy K, Kumar K, Chandramohan R, Sankaranarayanan K, Saravanan R, Kityk I V and Ramasamy P 2006 High optical quality InZO thin films by PLD—a novel development for III-V opto-electronic devices Opt. Commm. 262 91–6

[32] Sugumarana S, Jamlos M F, Ahmad M N, Bellan C S and Sivaraj M 2016 Thickness and annealing effects on thermally evaporated InZnO thin films for gas sensors and blue, green and yellow emissive optical devices Opt. Mater. 58 342–52

[33] Hongyan L, Wang X, Li M, Yu S and Zheng R 2019 Optical and electrical properties of Al doped ZnO thin films with preferred orientation in situ grown at room temperature Ceram. Int. 45 14347–53

[34] Misra P, Gameshan V and Agrawal N 2017 Low temperature deposition of highly transparent and conducting Al-doped ZnO films by RF magnetron sputtering J. Alloys Compd. 720 658–60

[35] Wang M, Liu Q, Dong G, He Y and Xiao D 2017 Influence of thickness on the structure, electrical, optical and electrochromic properties of AZO thin films and their inorganic all-solid-state devices Electrochem. Acta 258 1336–47

[36] Li Y L, Lee D Y, Min S R, Cho H N, Kim J S and Chung C W 2008 Effect of oxygen concentration on properties of indium zinc oxide thin films for flexible dye-sensitized solar cells Jpn. J. Appl. Phys. 47 6896–9

[37] Marcel G, Naghavi N, Couturier G, Salderranne J and Tarascon J M 2002 Scattering mechanisms and electronic behavior in transparent conducting InZnO thin films J. Appl. Phys. 91 4291–7

[38] Socol M, Preda N, Stanculescu A, Breazu C, Florica C, Rasoga O, Stanculescu F and Socol G 2017 IZO deposited by PLD on flexible substrate for organic heterostructures Appl. Phys. A 123 371
[39] Medjaldi M, Touil O, Boudine B, Zaabat M, Halimi O, Sebais M and Ozyuzer L 2018 Study of undoped and indium doped zinc oxide thin films deposited by sol gel method Silicon 10 2577–84
[40] Radu A, Iftimie S, Gheneascu V, Besleaga C, Antohe V A, Bratina G, Ion L, Craciun S, Girtan M and Antohe S 2011 The influence of LiF layer and ZnO nanoparticles addings on the performances of flexible photovoltaic cells based on polymer blends Dig J Nanomater Bios. 6 1141–8 http://www.chalcogen.ro/1141_Radu.pdf
[41] Toma O, Ion L, Iftimie S, Radu A and Antohe S 2016 Structural, morphological and optical properties of rf-sputtered CdS thin films Mater. Des. 100 196–203
[42] Wong A B, Brittman S, Yu Y, Dasgupta N P and Yang P D 2015 core–shell CdS-Cu2S nanorod array solar cells Nano Lett. 15 4096–101
[43] Xue S-Y, Liu K-C, Lai F-I, Yang I-F, Chen W-C, Hsieh M-Y, Lin H-I and Lin W-T 2010 Effects of RF power on the structural, optical and electrical properties of Al-doped zinc oxide films Microelectron. Reliab. 50 730–3
[44] Besleaga C, Ion L and Antohe S 2014 AZO thin films synthesized by rf-magnetron sputtering: the role of deposition power Rom Rep Phys. 66 993–1001 http://www.rrp.infm.ro/2014_66_4/A8.pdf
[45] Shirazi M, Dariani R S and Toroghinejad M R 2016 Influence of doping behavior of Al on nanostructure, morphology and optoelectronic properties of Al doped ZnO thin film grown on FTO substrate J. Mater. Sci., Mater. Electron. 27 10226–36