Towards a measurement of internalization of collaboration scripts in the medical context – results of a pilot study

Abstract

Background: Collaboration as a key qualification in medical education and everyday routine in clinical care can substantially contribute to improving patient safety. Internal collaboration scripts are conceptualized as organized yet adaptive knowledge that can be used in specific situations in professional everyday life. This study examines the level of internalization of collaboration scripts in medicine. Internalization is understood as fast retrieval of script information.

Goal: The goals of the current study were the assessment of collaborative information, which is part of collaboration scripts, and the development of a methodology for measuring the level of internalization of collaboration scripts in medicine.

Method: For the contrastive comparison of internal collaboration scripts, 20 collaborative novices (medical students in their final year) and 20 collaborative experts (physicians with specialist degrees in internal medicine or anesthesiology) were included in the study. Eight typical medical collaborative situations as shown on a photo or video were presented to the participants for five seconds each. Afterwards, the participants were asked to describe what they saw on the photo or video. Based on the answers, the amount of information belonging to a collaboration script (script-information) was determined and the time each participant needed for answering was measured. In order to measure the level of internalization, script-information per recall time was calculated.

Results: As expected, collaborative experts stated significantly more script-information than collaborative novices. As well, collaborative experts showed a significantly higher level of internalization.

Conclusions: Based on the findings of this research, we conclude that our instrument can discriminate between collaboration novices and experts. It therefore can be used to analyze measures to foster subject-specific competency in medical education.

Keywords: collaboration, teamwork, collaboration scripts, internalization

Background

The ability to collaborate in the health professions has been identified and called for as one of the core competencies for the 21st century by the World Health Organization [1]. Collaboration in this sense means the process that enables teamwork [2] (see Figure 1). When clinical teamwork in the hospital is efficient, it has been associated with less errors [3], [4] and greater work satisfaction [5]. Within the development of the national competency-based learning catalogues of medicine and dental medicine (Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLM) und Zahnmedizin (NKLZ)), it has been defined as a goal to integrate teamwork competencies through the role of a physician as member of a team into medical curricula in Germany [http://www.mft-online.de/files/2012_omft_hickel_fischer.pdf, last viewed June 25th, 2015]. An improvement of teamwork through the consideration of collaboration within trainings is desirable but not easy to realize [6]. Domains outside medicine found that knowledge regarding collaboration is associated with performance and the learning in collaborative situations [7]. The internal representation of the sequence of actions has been conceptualized as internal collaboration script [8], including knowledge, which is organized and flexible with describable sequences of activities in a given context [9]. In this paper, the described context is medical teams. The conceptual supplement to internal collaboration scripts are external collaboration scripts, which include information from the outside to structure collaborative processes. Script theory indicates that such external information is internalized over time and develops the internal collaboration script for this situation. Through this internalization, external collaboration scripts are not necessary anymore.
With an example from the medical context the development of an internal collaboration script will now be illustrated: rotations through different medical subdisciplines are an integral part of medical education. Students in the final (so-called practical) year in Germany rotate on up to four different internal medicine wards with different core areas within three months. An imaginary student in the beginning of his work on a ward does not know the typical course of events and treatments are not yet known. It is difficult to keep up with the daily routine and be a part of the clinical team. Gradually the student develops adequate collaboration scripts; first through observation and then, through continuous practice, he is able to support the daily routine. The student learns the typical situations and can integrate himself in the daily routine of the ward. When changing wards, some things change for the student. Besides the personnel, the diseases treated on the wards, the according diagnostic procedures and therapies and, consequently, much of the daily routine. Accordingly, two internal medicine wards with different core areas (i.e. cardiology and nephrology) can differ in the attributes mentioned above. The script developed in one ward is valid only partly and has to be adapted to the new context, or rather new aspects have to be added to the existing script. So the collaboration script is supplemented with the new components for the new ward. In the example, the medical student has developed a set of expectations, notions and a repertoire of possible actions from which he can choose the most appropriate for a given situation from two wards [10].

When changing wards again, the adequate behavior in changing situations will continue to be easier through continual development and/or adaption of collaboration scripts. The situations are familiar and he has an increased number of available courses of actions compared to the beginning of his work. This example points out the theoretical foundation of collaboration scripts. However, little is known regarding the assessment and development of internal collaboration scripts in the context of medicine. To realize goal-oriented trainings in medical education, reliably assessing the existing collaboration scripts of training participants is of great importance. The assessment is seen as challenging because, in addition to knowledge regarding collaboration, knowledge in another domain, the so called content domain, which the people collaborate in, is necessary [11]. Differences in measurement cannot only be traced back to differences in the internal collaboration scripts but also to differences in the specialized knowledge of the content domain. An approach in which the specialized knowledge has not been integrated in the assessment of collaboration scripts has been presented by Kiesewetter, Fischer and Fischer [12]. Controlling the collaboration situation, collaborative expertise has been found to be a rather domain-specific ability. This means that collaboration is related to one content domain and cannot be transferred to another content domain easily. Based on this study, the question is how collaboration scripts of experts and novices can be retrieved in a new content domain. In other domains outside of medicine it was found that collaboration scripts develop through repeated experience and are internalized gradually [13], [14]. The principle of internalization describes that the time of retrieval of internalized components of the script is an indicator of how well the components are linked to one another: The more often components of a script are utilized together the faster they should be retrievable [14]. The measured time for the retrieval of all of the collaboration script information is used as a surrogate parameter for internalization. A simple example is used as an illustration for the link of the terms “hyperthyroidism” and “cardiac arythmia”. In a task in which the phrase is tested for correctness, the sentence “hyperthyroidism leads to TSH-decrease” verified faster than the sentence “hyperthyroidism leads to cardiac arythmia” and this, in turn, is verified faster than “hyperthyroidism has influence on the metabolism”. Because the terms “hyperthyroidism” and “TSH-decrease” are used immediately together more often, the correctness of the sentence can be verified faster.

Especially in medicine, the fast retrieval of collaborative actions is of particular importance. To measure the availability of script information, valid measurement instruments are necessary. The goal of the following investigation was the assessment of information, integrated in collaboration scripts as well as the development of a
measurement method to quantify the level of internalization. It is assumed that, based on a better organization and linkage of their internal collaboration scripts, experts possess more elaborate script information and can retrieve it faster than novices. This assumption was used to conceptualize a study in which a group of experts and novices was confronted with a collaborative situation and to investigate whether these groups can be distinguished regarding the amount of script information and the retrieval time.

Method

Participants

Novices (N=20, 13 female, 25.8 years in average, SD=4.7) and collaborative experts (N=20, 8 female, M=41.6 years in average, SD=7.9) volunteered to participate in the study. The number of participants was analyzed a priori using G*Power (http://www.gpower.hhu.de/) and is large enough to uncover medium-sized effects. All novices were medical students (predominantly in their 5th year) of the Ludwig-Maximilians-University Munich. As collaborative experts, specialist doctors (on average, M=15.2 years of professional experience, SD=7.7) were recruited from the collaboration-intensive specialties internal medicine and anesthesiology. Through their completed specialty training, it could be verified that the number of collaborative situations should be sufficient and numerous, and that experts should be able to outperform the novices. Further demographic data as well as number of collaboratively worked hours per day were acquired. Physicians were included in the study only when the number of collaboratively worked hours per day exceeded four hours per weekday. The restriction on two specialties and the control of the number of collaboratively worked hours was set to counteract confounding effects of the content and collaboration domain.

Procedure

To enable the utilization of internal collaboration scripts all participants were successively confronted with eight stimuli of four 5-second videos and four photos, each for five seconds. The stimuli showed collaborative situations in the medical context (i.e. an enacted ward round situation). Figure 2 is an example of a stimulus of such a collaborative situation. After each of four stimuli, a memory question was asked, while after each of the other four stimuli three script questions were asked. The script questions were asked to simplify the task for novices because they were asking for courses of action more directly. The memory question was: “Please state what you can remember from the just viewed stimulus”. The script questions were

1. “What are the persons doing in the picture/video?”
2. “How does this type of situation typically come to happen?”
3. “What is the most likely way how this situation could continue?”

It was ensured that the type of stimulus (video/photo) and the type of question (memory/script question) were counterbalanced so that each participant had the combination video-script question at least twice and the combination photo-script question twice. The presentation of the stimuli and the answer of the questions was performed at a laptop computer, which made measuring the time per stimulus for each participant possible via logfiles. Using the logfiles, it was possible to trace back when a participant had sent an answer. The participants were given as much time as they needed to answer the questions.

Coding scheme

To analyze the data, a proved and tested coding scheme was used [12], which is focused on collaboration scripts but not content knowledge. The coding scheme included two major categories: superficial and script information. Superficial information included the type of clothing, the color of hair (etc.), which didn’t give any valuable clues regarding the role of the person in the situation. Script information specified activities, sequences of activities, and roles for persons visible in the scene. The coding scheme for script information goes back to the theory-based components of collaboration scripts by Kollar, Fischer & Hesse [8]. Information was coded regarding keywords. If a predefined keyword occurred in one of the answers of a participant, it was either coded as a superficial or a script information. Script information was further subdivided into goals (i.e. use of the word “ward round”), part activities (denomination of specific activities like “retrieve laboratory results”), order (correct denomination of courses of action), role assignment (denomination of persons as “nurse” or “physician”), attributes (denomination of adjectives for persons with regard to teamwork like “dominant”), and typical objects (denomination of typical hospital objects like “patient’s file”).

Answers of participants were first coded and counted by one coder with the use of Microsoft Excel 2010. Afterwards, 10% of the answers were coded by a second, independent person. The inter-rater reliability was Cohens k=.84.

Data analysis

As a measurement of the level of internalization of a collaboration script, a quotient of the time per answer in seconds and number of script information was calculated. The difference in the level of internalization between experts and novices was tested using a t-test. Alpha-error was set to .05. If data was used more than once in an analysis, the alpha error level was Bonferroni-corrected. Further, a group comparison between experts and novices
Results

The statistical analysis revealed that collaboration experts ($M_{\text{Experts}}=71.65, \text{SD}=33.23$) stated significantly more script information than novices ($M_{\text{Novices}}=54.25, \text{SD}=15.01, F(1;38)=4.55; p<0.05; d=0.69$). The difference of means indicates a medium sized effect [16]. The number of script information are illustrated in Table 1.

Table 1: Number of script information of collaboration experts and novices

	Mean	SD
Experts	71.65	33.23
Novices	54.25	15.01

As hypothesized, experts had a deeper level of internalization regarding the time (seconds) per script information ($M_{\text{Experts}}=9.73, \text{SD}=7.39$) than novices ($M_{\text{Novices}}=14.15, \text{SD}=3.84$). From the lower mean of the experts, one can infer that they needed a shorter amount of time to retrieve script information than novices or that more information was retrieved in the same amount of time, both indicating a deeper level of internalization of collaboration scripts of experts. The t-test to analyze the difference in level of internalization between experts and novices is significant with a medium to large effect size ($t(38)=2.38; d=0.75$). The comparison is depicted in Figure 3.

Discussion

This study was designed to test how to quantify the level of script internalization by utilizing the script information per time as surrogate parameter of internalization for the first time. Collaboration experts (physicians from internal medicine and anaesthesiology) differ significantly from novices (medical students) regarding their knowledge about collaborative situations. Methodologically, a presentation of different stimuli to simulate standardized collaborative situations was applied. The study showed that experts could retrieve more internalized script information than novices. Further, the defined level of internalization of collaboration scripts of the experts differed significantly from novices. Experts were not only able to state more script information but also to retrieve them significantly faster. This strengthens the notion that components of a collaboration script can be retrieved faster, the more often they are used together (cf. [14]). The results indicate that during the development of expertise, internal collaboration scripts are extended and stored differently.

Collaboration as a core qualification is going to be an integral part of medical curricula in Germany and throughout the world [17]. To measure curricular implementations and to support the development of collaborative abilities, internal collaboration scripts and their level of internalization need to be assessed validly. Promising approaches exist for the domain of computer-supported collaborative learning [18]. Ways to advance the present study comprise the use of interventions to validate the measurement approach in the scope of a randomized controlled trial. As a next step, concrete collaborative behavior could be investigated in existing as well as new collaborative situations. This operationalization of internal collaboration
scripts in a wider context of application is expected to advance validity to a notable extent.

The measurement instrument presented here is a beneficial means to study trainings of collaboration expertise, demonstrating that collaboration experts have a more efficient comprehension of collaborative situations and can retrieve more possible courses of action. Further, the – assumed – capability of the instrument to show that novices profit significantly from a repeated training of (authentic) collaborative situations should be expressed in two ways: a) the acquired knowledge regarding collaboration should be internalized more deeply and b) the retrieval should be faster.

In addition to the assessment of internal collaboration scripts the question of how learning processes can be supported and scaffolded through external collaboration scripts should be examined. In the literature there are isolated approaches, such as how feedback processes can be advanced using external scripts [19]. Through goal-oriented scaffolding, team members could develop shared knowledge (meaning shared collaboration scripts and transactive memory systems [18]), which could positively influence teamwork on a daily basis. This paper demonstrated a methodical proposal as to how such a learning process can be quantitatively conducted and assessed. Further research in this field could contribute to the implementation of the “collaborate practice-ready health workforce” stipulated by the World Health Organization [1].

Limitations

The generalizability of the conclusions is limited by the non-interventional study design. Applying an experimental approach, the effects of this study should be tested in order to target more generalizable effects. Another limitation is the large variance in the group of experts regarding the amount of script information and the amount of time. This is possibly due to the assumption that during the time-on-task, other cognitive processes – not assessed in this study – take place, such as the change of attention and motivation. As the collaborative work times were controlled with a questionnaire and the study sample was carefully selected, another explanation for the variance can be that collaboration expertise is determined multifactorially and expressing quite differently. Further studies are necessary to probe these assumptions. Medium sized effects, distinguishing novices from experts do, however, speak for the presented approach. A possible confound between the content and collaboration domain cannot be eliminated with full certainty. Two measures were taken to counteract this influence. First, the comparison was limited to the disciplines anesthesiology and internal medicine to limit the heterogeneity of content domains. Second, the coding scheme was designed for collaboration scripts and did not measure content knowledge.

Outlook

In this pilot study, a method to assess the amount of information, integrated in collaboration scripts was applied to test the level of internalization of collaboration scripts in medicine. Collaboration experts, physicians from internal medicine and anesthesiology stated significantly more collaboration script information per timeframe when compared with novices (medical students). The collaboration experts showed a significant deeper level of internalization. The measurement instrument has the potential to evaluate trainings to teach collaborative competencies in medical education. Other studies to validate the measurement instrument are definitely necessary.
Acknowledgements

The first author is grateful for the financial support of the German Academic Exchange Agency during the development of this research.

Competing interests

The authors declare that they have no competing interests.

References

1. Gilbert JH, Yan J. Framework for Action on Interprofessional Education & Collaborative Practice. Geneva: World Health Organization; 2010.
2. Salas E, Sims DE, Burke CS. Is there a “Big Five” in teamwork? Small Group Res. 2005;36(5):555-599. DOI: 10.1177/1046496405277134
3. Kohn LT, Corrigan J, Donaldson MS. To err is human: building a safer health system, Ed. 6. Washington: National Academy Press; 2000.
4. Manser T. Teamwork and patient safety in dynamic domains of healthcare: a review of the literature. Act Anaesth Scand. 2009;53(2):143-151. DOI: 10.1111/j.1399-6576.2008.01717.x
5. Rafferty A, Ball J, Aiken L. Are teamwork and professional autonomy compatible, and do they result in improved hospital care? Qual Health Care. 2001;10(suppl 2):ii32-ii7. DOI: 10.1136/qhc.0100032
6. Chakraborti C, Boonyasai RT, Wright SM, Kern DE. A systematic review of teamwork training interventions in medical student and resident education. J Gen Intern Med. 2008;23(6):846-853. DOI: 10.1007/s11606-008-0600-6
7. Weinberger A, Stegmann K, Fischer F, Mandl H. Scripting argumentative knowledge construction in computer-supported learning environments. In: Fischer F, Kollar I, Mandl H, Harke JM (Hrsg). Scripting computer-supported collaborative learning. Heidelberg: Springer; 2007. S.191-211. DOI: 10.1007/978-3-642-37694-5_12
8. Kollar I, Fischer F, Hesse FW. Collaboration scripts – a conceptual analysis. Educ Psychol Rev. 2006;18(2):159-185. DOI: 10.1007/s10648-006-9007-2
9. Carmien S, Kollar I, Fischer G, Fischer F. The interplay of internal and external scripts. In: Fischer F, Kollar I, Mandl H, Harke JM (Hrsg). Scripting computer-supported collaborative learning. Heidelberg: Springer; 2007. S.303-326. DOI: 10.1007/978-3-642-37694-5_17
10. Weinberger A, Kollar I, Dimitriadis Y, Mäkitalo-Siegl K, Fischer F. Computer-supported collaboration scripts. In: Balacheff N, Ludvigsen S, de Jong T, Lazonder A, Barnes S (Hrsg). Technology-enhanced learning. Heidelberg: Springer; 2009. S.155-173. DOI: 10.1007/978-3-4020-9827-7_10
11. Gruber H. Expertise. In: Rost DH (Hrsg), Handwörterbuch pädagogische Psychologie. Weinheim: Beltz; 2001. S.183-189.
12. Kiesewetter J, Fischer MR, Fischer F. Is there evidence for expertise on collaboration and if so, is it domain-specific or domain-general? München: European Association Research of Learning and Instruction; 2013. (im Druck)
13. Kolodner JL. The roles of scripts in promoting collaborative discourse in learning by design. In: Fischer F, Kollar I, Mandl H, Harke JM (Hrsg). Scripting Computer-Supported Collaborative Learning. Heidelberg: Springer; 2007. S.237-262. DOI: 10.1007/978-3-87-36949-5_14
14. ollins AM, Quillian MR. Retrieval time from semantic memory. J Ver Learn Ver Behav. 1969;8(2):240-247. DOI: 10.1016/0022-5371(69)90069-1
15. Kollar I, Fischer F, Stotta JD. Internal and external scripts in computer-supported collaborative learning. Learn Instruct. 2007;17(6):709-721. DOI: 10.1016/j.learninstruc.2007.09.021
16. Cohen J. A power primer. Psychol Bull. 1992;112(1):155. DOI: 10.1037/0033-2909.112.1.155
17. Stegmann K, Piz F, Siebeck M, Fischer F. Vicarious learning during simulations: is it more effective than hands-on training? Med Educ. 2012;46(10):1001-1008. DOI: 10.1111/j.1365-2923.2012.04344.x
18. Michinov E, Olivier-Chiron E, Rusch E, Chiron B. Influence of transactive memory on perceived performance, job satisfaction and identification in anaesthesia teams. Br J Anaesth. 2008;100(3):327-332. DOI: 10.1093/bja/aem404
19. Kiesewetter J, Semmelies F, Saravo B, Fischer M, Wershofen B. Collaboration expertise in health care - Mapping the mosaic of shared work experience, transactive memory system and performance. In: Duffy V (Hrsg), Advances in Human Aspects of Healthcare. Boca Raton: Taylor & Francis; 2014.

Corresponding author:
Jan Kiesewetter
Klinikum der Universität München, Institut für Didaktik und Ausbildungsforschung in der Medizin, Ziemssenstraße 1, 80336 München, Deutschland, Tel: +49 (0)89/4400-57207
jan.kiesewetter@med.lmu.de

Please cite as
Kiesewetter J, Gluza M, Holzer M, Saravo B, Hammitzsch L, Fischer MR. Towards a measurement of internalization of collaboration scripts in the medical context – results of a pilot study. GMS Z Med Ausbild. 2015;32(3):Doc32. DOI: 10.3205/zma000974, URN: urn:nbn:de:0183-zma000974

This article is freely available from http://www.egms.de/en/journals/zma/2015-32/zma000974.shtml

Received: 2014-06-23
Revised: 2015-06-02
Accepted: 2015-06-02
Published: 2015-08-17

Copyright
©2015 Kiesewetter et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Zur Messung der Internalisierung von Kooperationsskripts im medizinischen Kontext – Ergebnisse einer Pilotstudie

Zusammenfassung

Hintergrund: Kooperation als eine Schlüsselqualifikation in der medizinischen Ausbildung und im medizinischen Alltag kann einen entscheidenden Beitrag zur Verbesserung der Patientensicherheit leisten. Unter internationalen Kooperationsskripts wird Wissen verstanden, welches zugleich in organisierter und adaptiver Form vorliegt. Sie können situationspezifisch im Berufsalltag abgerufen und eingesetzt werden. Die vorliegende Studie untersucht die Internalisierung von Kooperationsskripts in der Medizin. Internalisierung wird als schnelle Abrufbarkeit von Skriptinformationen verstanden.

Ziel: Das Ziel der Untersuchung war die Erfassung von Informationen, die Bestandteil von Kooperationsskripts sind, sowie die Entwicklung einer Methode zur Messung des Internalisierungsgrades von Kooperationsskripts in der Medizin.

Methode: Für den kontrastiven Vergleich der internationalen Kooperationsskripts wurden insgesamt 20 Kooperationsnovizen (Studierende im Praktischen Jahr (PJ)) und 20 Kooperationsexperten (Fachärzte der Inneren Medizin oder Anästhesiologie) in die Studie einbezogen. Den Probanden wurden jeweils für fünf Sekunden acht kooperationstypische Situationen in Form eines Fotos oder eines Videos präsentiert. Anschließend wurde zu jeder Situation gefragt, was auf dem Bild zu sehen war. Aus den Antworten wurde die Anzahl von Informationen, die zu einem Kooperationsskript (Skriptinformationen) gehören, nach einem etablierten, theoriebasierten Kodierschema erfasst sowie die Zeit, die ein Proband zum Antworten benötigte, gemessen. Als Maß für den Internalisierungsgrad wurden die Skriptinformationen pro Zeiteinheit berechnet.

Ergebnisse: Verglichen mit Kooperationsskripts nannten Kooperationsexperten signifikant mehr Skriptinformationen. Kooperationsexperten zeigten zudem einen signifikant höheren Internalisierungsgrad.

Schlussfolgerung: Die gewonnenen Erkenntnisse belegen, dass das entwickelte Messinstrument zwischen Novizen und Experten im Bereich Kooperation diskriminieren kann. Es kann somit eingesetzt werden, um Maßnahmen zur fachspezifischen Vermittlung von Kooperation in der medizinischen Lehre zu untersuchen und zu bewerten.

Schlüsselwörter: Kooperation, Teamarbeit, Skripts, Kooperationsskripts, Internalisierung

Hintergrund

Die Fähigkeit zur Kooperation in den Gesundheitsberufen ist von der Weltgesundheitsorganisation als eine der anzustrebenden Kernkompetenzen für die Gesundheitsversorgung des 21. Jahrhunderts identifiziert worden [1]. Mit Kooperation ist hierbei der Prozess gemeint, welcher funktionierende Teamarbeit ermöglicht [2] (siehe Abbildung 1). Im Falle gut funktionierender klinischer Teamarbeit im Krankenhaus treten nachweislich weniger Behandlungsfehler auf [3], [4] und es ist daneben auch eine höhere Arbeitszufriedenheit zu verzeichnen [5]. Auch im Zuge der Entwicklung der Nationalen Kompetenzbasierten Lernzielkataloge Medizin (NKLM) und Zahnmedizin (NKLZ) wurden Überlegungen angestellt, Kompetenzen der Teamarbeit durch die Arztrolle als Mitglied eines Teams deutschlandweit in medizinische Curricula zu integrieren [http://www.mft-online.de/files/2012_omft_hickel_fischer.pdf, zitiert am 01.10.2012]. Eine Verbesserung der Zusammenarbeit durch die Berücksichtigung der Kooperation im Rahmen von Trainings ist demnach sehr erstrebenswert, wenn auch nicht leicht zu realisieren [6]. Aus Domänen außerhalb der Medizin ist bekannt, dass Wissen über kooperative Praktiken mit der Performanz bzw. dem Lernen in kooperativen Situationen zusammenhängt [7]. Die interne Repräsentation von Handlungsab-
Abbildung 1: Darstellung des Zusammenhangs zwischen Teamarbeit, Kooperation und Performanz.

läuft wie ein internes Kooperationsskript [8] konzipiert, welches Wissen beinhaltet, das in organisierter und flexibler Form vorhanden ist und Sequenzen von Ereignissen in einem bestimmten Kontext, in diesem Fall des medizinischen Teams, beschreibt [9]. Demgegenüber stehen externe Kooperationsskripten, welche von außen herangezogene Informationen beinhalten, um kooperative Prozesse zu strukturieren. Die Skripttheorie besagt, dass diese von außen herangezogenen Prozesse im Laufe der Zeit internalisiert werden und das internale Kooperationsskript für diese Situation bilden. Nach dieser Internalisierung werden keine externen Kooperationsskripten mehr benötigt.

Anhand eines Beispiels in der Medizin soll der Aufbau von Kooperationsskripten verdeutlicht werden: Rotationen durch verschiedene Fachgebiete der Medizin sind ein elementarer Teil des Medizinstudiums. Studierende im Praktischen Jahr beispielsweise absolvieren das Tertial der Inneren Medizin auf bis zu vier Stationen mit unterschiedlichen inhaltlichen Schwerpunkten. Für einen Studierenden sind zu Beginn seiner Arbeit auf einer Station die typischen Abläufe und Herangehensweisen noch nicht bekannt. So fällt es häufig schwer, der Tagesroutine zu folgen und ein Teil des klinischen Teams zu werden. Durch die sukzessive Entwicklung von passenden Koope-
rationsskripten zunächst über Beobachtung, anschließend über kontinuierliche Übung des Studierenden wird es jedoch allmählich möglich, die Abläufe auf Station zu unterstützen. Der Studierende lernt den Stationsalltag und typische Situationen auf dieser Station kennen und kann sich entsprechend integrieren.

Bei einem Wechsel der Station ändern sich neben dem Personal oft auch das Krankheitsspektrum der Patienten, die damit verbundenen diagnostischen Vorgehensweisen und Therapieverfahren und somit auch viele Teile des Tagesablaufs. Demnach können sich zwei internistische Stationen mit unterschiedlichen Schwerpunkten (z.B. Kardiologie und Nephrologie) deutlich in den genannten Eigenschaften unterscheiden. Folglich ist das auf der vorherigen Station aufgebaute Skript nur noch eingeschränkt gültig und muss dem neuen Kontext angepasst bzw. um neue Aspekte ergänzt werden.

Das Kooperationsskript wird also um die Komponenten für die neue Station erweitert. In unserem Beispiel hat der Medizinstudierende bereits für zwei verschiedene Situationstypen existierende Erwartungen, Vorstellungen und ein Repertoire an möglichen Handlungsweisen, aus denen er in bestimmten Situationen die jeweils Angemessenenste auswählen kann [10].

Bei weiteren Stationswechseln fällt dem Studierenden durch das stetige Aufbauen neuer Kooperationsskripten dann das angemessene Handeln in wechselnden Situationen immer leichter, da ihm die Situationen bekannt sind und er nun eine deutlich gesteigerte Anzahl ihm zur Verfügung stehender möglicher Handlungsweisen im Vergleich zum Beginn der Ausbildung hat.

Dieses Beispiel verdeutlicht die theoretische Fundierung von Kooperationsskripten. Jedoch ist über die Erfassung und Entwicklung von internationalen Kooperationsskripten im Kontext der Medizin wenig bekannt. Um zielgerichtete Trainingsmaßnahmen im Medizinstudium durchzuführen, ist die reliable Erfassung vorhandener Kooperationsskripten bei den Teilnehmern von großer Bedeutung. Dies stellt sich jedoch als Herausforderung dar, weil zusätzlich zur Kooperation eine weitere, inhaltliche Domäne benötigt wird, in welcher die Experten kooperieren [11], die sogenannte Inhaltsdomäne. Messunsicherheit könnte dann nicht mehr allein auf Unterschiede in den internationalen Kooperationsskripten, sondern auch auf Unterschiede in Bezug auf das Fachwissen in der Inhaltsdomäne zurückgehen. Einen Ansatz, in dem das Fachwissen nicht mit in die Messung interner Kooperationsskripten einbezogen wurde, haben Kiesewetter, Fischer und Fischer [12] vorgestellt. Unter Kontrolle der kooperativen Situation stellte Kooperationsexpertise sich in diesem Versuch eher als domänenspezifische Fähigkeit dar. Dies bedeutet, dass sich Kooperationsfähigkeit auf eine Inhaltsdomäne bezieht und nicht ohne Weiteres übertragen werden kann. Ausgehend von dieser Untersuchung stellt sich zunächst die Frage, wie Kooperationsskripten von Experten und Novizen in einer neuen Inhaltsdomäne abgerufen werden können. Es konnte in anderen Domänen nachgewiesen werden, dass sich Kooperationsskripten durch wiederholte Erfahrung entwickeln und schrittweise internalisiert werden [13], [14]. Das Prinzip der Internalisierung beschreibt, dass die für den Abruf bereits verinnerlichter Komponenten des Skripts benötigte Zeit damit zusammenhängt, wie gut einzelne Komponenten miteinander verbunden
Facharztausbildung von einer ausreichenden Anzahl kooperationsintensiven Bereichen Innere Medizin und mit durchschnitt 15,2 Jahren Berufserfahrung, als Kooperationsexperten wurden Fachärzte (im Durchschnitt 9,8 Fachsemester, im Durchschnitt 10,8) und Novizen (N=20, davon 13 weiblich, im Durchschnitt 25,8 Jahre, SD=4,7) aus der Ludwig-Maximilians-Universität München. Als Kooperationsexperten wurden Fachärzte (im Durchschnitt 15,2 Jahre Berufserfahrung, SD=7,7) aus den Kooperations situationen ausgegangen werden kann und die Experten in ihren kooperativen Fähigkeiten den Novizen deutlich überlegen sein sollten. Weiterhin wurden anhand eines Fragebogens neben demografischen Daten auch die Anzahl der kooperativ gearbeiteten Stunden pro Arbeitstag abgefragt. Nur wenn die mehr als vier Stunden pro Arbeitstag umfassten, wurden die Fachärzte als Experten in die Studie eingeschlossen. Die Einschränkung der Fachdisziplinen auf zwei Bereiche und die Kontrolle der Anzahl an kooperativ gearbeiteten Stunden wurde gewählt, um Konfundierungseffekten der Inhalts- und der Kooperationsdomäne entgegen zu wirken.

Versuchsablauf
Um die Anwendung von internationalen Kooperationsskritiken zu ermöglichen, wurden allen Teilnehmern hintereinander acht Stimuli in Form von vier 5-sekündigen Videos und vier Fotos, jeweils fünf Sekunden lang präsentiert. Die Stimuli zeigten kooperative Situationen im medizinischen Kontext (beispielsweise eine nachgestellte Visitsituation). Abbildung 2 illustriert ein Beispiel für einen Stimulus einer Kooperationssituation. Zu jeweils vier der Stimuli wurden Erinnerungsfragen gestellt, zu den anderen vier Skriptfragen. Die Skriptfragen dienten dazu, den Novizen den Abruf der Kooperationsskritiken zu erleichtern, da diese direkter nach Handlungsabläufen fragten. Die Erinnerungsfrage lautete: „Benennen Sie bitte, woran Sie sich aus dem gerade Gesehenen erinnern können“. Die Skriptfragen lauteten
1. „Was machen die Personen auf dem Bild?“
2. „Wie könnte es typischerweise zu dieser Situation kommen sein?“ und
3. „Was ist das Wahrscheinlichste, wie diese Situation typischerweise weitergehen könnte?“

Es wurde sichergestellt, dass der Stimulus (Video/Foto) und die Fragenart (Erinnerungs-/Skript-Frage) balanciert waren, so dass für jeden Teilnehmer mindestens zweimal die Kombination Video-Skriptfrage, und zweimal die Kombination Foto-Skriptfrage realisiert wurde. Die Präsentation der Stimuli und die Beantwortung der Fragen erfolgten an einem Computer, was die Erfassung der Bearbeitungszeit pro Stimulus für jeden Teilnehmer anhand von Logfiles ermöglichte. Mit Hilfe dieser Logfiles konnte genau nachvollzogen werden, wann und die Versuchs person ihre Antwort abgeschickt hatte. Den Teilnehmern stand beliebig viel Zeit zur Beantwortung der Fragen zur Verfügung.

Kodierschema
Zur Auswertung wurde ein bereits bewährtes Kodierschema eingesetzt [12], welches sich ausschließlich auf Kooperationsskritiken, nicht jedoch auf inhaltliches Wissen bezieht. Das Kodierschema beinhaltete zwei Hauptkategorien: Oberflächen- und Skriptinformation. Oberflächen-Informationen beinhalteten zum Beispiel Informationen

Methode
Teilnehmer
Novizen (N=20, davon 13 weiblich, im Durchschnitt 25,8 Jahre, SD=4,7) und Kooperationsexperten (N=20, davon acht weiblich, im Durchschnitt 41,6 Jahre, SD=7,9) erklärten sich bereit, an der Studie teilzunehmen. Die Probanden zahl wurde a priori anhand von G*Power (http://www.gpower.hhu.de/) berechnet und ist ausreichend groß, um mittelgroße Unterschiede aufzudecken. Alle Novizen waren Medizinstudierende (vorwiegend im 10. Fachsemester, im Durchschnitt 9,8 Fachsemester, SD=0,8) der Ludwig-Maximilians-Universität München. Als Kooperationsexperten wurden Fachärzte (im Durchschnitt 15,2 Jahre Berufserfahrung, SD=7,7) aus den kooperationsintensiven Bereichen Innere Medizin und Anästhesiologie ausgewählt, da hier bedingt durch die Facharztausbildung von einer ausreichenden Anzahl an kooperationsintensiven Bereichen unterrichtet werden.
über die Farbe der Kleidung, die Haarfarbe etc., die keinen Aufschluss über die Rolle der jeweiligen Person in der Situation geben. Skriptinformationen waren solche, die Aktivitäten, Sequenzen und Rollen der in der Szene sichtbaren Personen spezifizieren. Das Kodiersystem zu Skriptinformationen geht auf die theoriebasierten Komponenten von Kooperationsskripten von Kollar, Fischer & Hesse [8] zurück, wobei die Informationen nach Schlüsselwörtern kodiert wurden. Wenn ein vorher definiertes Schlüsselwort in der Antwort eines Probanden vorkam, wurde es jeweils als eine Oberflächen- oder Skriptinformation gewertet. Skriptinformationen wurden des Weiteren in Ziele (Benutzung von Worten wie „Visite“), Teilaktivitäten (Benennung spezifischer Tätigkeiten wie „Laborwerte abrufen“), Reihenfolgen (korrektes Darstellen zeitlich versetzter Abfolgen), Rollenzuweisungen (Benennung von Personen als „Krankenschwester“ oder „Arzt“), Eigenschaften (Benutzung von Adjektiven von Personen der Zusammenarbeit wie „dominant“) und typische Objekte (Benennung krankenhaustypischer Objekte wie „Krankenakte“) unterteilt. Die Antworten der Teilnehmer wurden zunächst durchgängig von einem Erstkodierer mit Hilfe von Microsoft Excel 2010 kodiert und ausgezählt. Anschließend wurden 10% der Antworten von einer zweiten Person unabhängig kodiert. Die Interrater-Reliabilität zwischen beiden Kodierungen betrug Cohen’s \(k=0.84 \).

Datenanalyse

Als Maß für den Internalisierungsgrad des Kooperationsskriptes wurde ein Quotient aus der Bearbeitungszeit in Sekunden und der Anzahl genannter Skriptinformation gebildet. Der Unterschied im Internalisierungsgrad von Experten und Novizen wurde anhand eines t-Tests überprüft. Das Alphafehlniveau wurde auf 0,05 festgelegt.

Wenn Daten mehrfach in eine Berechnung eingingen, wurde das Alphafehlniveau Bonferroni-korrigiert. Des Weiteren wurde mittels ANOVA ein deskriptiver Gruppenvergleich zwischen Experten und Novizen bezüglich der insgesamt genannten Skriptinformationen durchgeführt. Die Datenanalyse erfolgte mittels SPSS 20.0 (IBM Inc.). Angaben der Effektstärke beziehen sich auf Cohens \(d \) [15].

Ergebnisse

Die durchgeführten statistischen Analysen ergaben, dass die Kooperationsexperten signifikant mehr Skriptinformationen benennen konnten (\(M_{\text{Experten}}=71.65, \ SD=33.23 \)) als die Novizen (\(M_{\text{Novizen}}=54.25, \ SD=15.01 \), \(F(1;38)=4.55; p<0.05; \ d=0.69 \)). Die Effektstärke des Unterschieds kann als mittelgroß bezeichnet werden [16]. Die Ergebnisse der Skriptinformationen sind in Tabelle 1 illustriert.

Tabelle 1: Anzahl von Skriptinformationen von Kooperationsexperten gegenüber Novizen.

	Mittelwert	SD
Experten	71.65	33.23
Novizen	54.25	15.01

Wie vermutet, besaßen die Experten zudem einen tieferen Grad an Internalisierung gemessen an der Bearbeitungszeit (Sekunden) pro Skriptinformation (\(M_{\text{Experten}}=9.73, \ SD=7.39 \)) als Novizen (\(M_{\text{Novizen}}=14.15, \ SD=3.84 \)). Aus dem niedrigeren Mittelwert der Experten kann geschlossen werden, dass diese eine kürzere Zeitaufwand zur Verarbeitung der gleichen Menge an Skriptinformationen benötigen als die Novizen oder dass mehr Informationen in der
gleichen Zeit verarbeitet wurden, was beides einen höheren Internalisierungsgrad des Kooperationsskripts bei den Experten nahelegt. Der t-Test zur Überprüfung des Unterschieds im Internalisierungsgrad von Experten und Novizen ist mit mittlerer bis großer Effektstärke signifikant ($t(38)=2,38; d=0,75$). Der Vergleich ist in Abbildung 3 dargestellt.

Diskussion

In dieser Studie wurde erstmals der Versuch unternommen, den Grad der Internalisierung von Skripts quantitativ zu erfassen, indem die Skriptinformation pro Bearbeitungszeit als Surrogatmaß der Internalisierung herangezogen wurde. Es konnte gezeigt werden, dass Kooperationsexperten (Ärzte aus der Inneren Medizin und Anästhesiologie) sich in Bezug auf ihr Wissen über kooperative Situationen signifikant von Kooperationsnovizen (Medizinstudierende) unterscheiden. Als methodisches Vorgehen diente die Konfrontation mit unterschiedlichen Stimuli zur Simulation von standardisierten kooperativen Situationen. Experten konnten dabei mehr internalisierte Skriptinformationen abrufen als Novizen. Auch der in der Studie definierte Internalisierungsgrad des Kooperationsskripts unterschied sich signifikant von dem der Novizen. So konnten Experten nicht nur insgesamt mehr Skriptinformationen benennen, sondern diese auch schneller abrufen. Dies bekräftigt die Vorstellung, dass die Teilkomponenten eines Kooperationsskripts umso schneller abgerufen werden können, je öfter sie gemeinsam genutzt werden (vgl. [14]).

Darüber hinaus gibt die gewählte Vorgehensweise Hinweise darauf, dass im Laufe der Expertiseentwicklung interne Kooperationsskripts im menschlichen Gedächtnis unterschiedlich ausgeprägt und verankert sind.

Kooperation als Basisqualifikation findet deutschlandweit immer mehr Einzug in medizinische Curricula [17]. Um curriculare Implementierungen messen zu können und den Prozess der Entwicklung kooperativer Fähigkeiten zu unterstützen, sollten internale Kooperationsskripts und deren Internalisierungsgrad valide erfasst werden. Hierzu existieren erste vielversprechende Ansätze aus dem Bereich des computerunterstützten-kooperativen Lernens [18]. Vor diesem Hintergrund könnte die vorliegende Untersuchung um eine Intervention erweitert und dies hier eingesetzte Messverfahren in einer kontrollierten randomisierten Untersuchung validiert werden. Ein nächster Schritt könnte sein, die konkrete Anwendung von kooperativen Verhaltensweisen in bekannten und neuen kooperativen Situationen zu untersuchen. Diese Operationalisierung von internationalen Kooperationsskripts in einem breiteren Anwendungskontext würde ebenfalls zur Steigerung der Validität beitragen.

Das vorliegende Messinstrument ermöglicht die Untersuchung von Maßnahmen zur Vermittlung von Kooperationsexpertise, da es zeigt, dass Kooperationsexperten über ein wesentlich effizienter Verständnis von kooperativen Situationen verfügen und schneller mehrere Handlungsmöglichkeiten abrufen können. Wenn Novizen von einem wiederholten Training von (authentischen) Kooperationssituationen in ihrer Ausbildung profitieren, sollte das Instrument zeigen, dass sie auch das erlernte Wissen über Kooperation tiefer internalisieren und schneller abrufen können.

Über die hier untersuchte Erfassbarkeit innerhalb von Kooperationsskripts hinaus stellt sich die Frage, wie Lernprozesse gezielt durch externe Kooperationsskripts gefördert werden können. Vereinzelt finden sich hierzu in der Literatur bereits bestimmte Ansätze, in denen beispielsweise Feedbackprozesse durch externe Skripts unterstützt werden [19].

Durch solche gezielten Unterstützungsmaßnahmen könnten Teammitglieder geteilte Wissensstrukturen entwickeln (d.h. gemeinsame Kooperationsskripts und transaktive Gedächtnissysteme [18]), was sich zudem positiv auf die Zusammenarbeit im Alltag auswirken könnte. Der vorliegende Beitrag liefert einen methodischen Vorschlag, wie ein solcher Lernprozess quantitativ...
begleitet und erfasst werden könnte. Weitere Forschung dazu könnte einen Beitrag zur Ausbildung der von der WHO geforderten „Collaborative practice–ready health workforce“ [1] liefern.

Limitationen

Die Verallgemeinerbarkeit der Aussagen ist durch das nicht-interventionelle Studiendesign eingeschränkt. Im Rahmen eines experimentellen Vorgehens sollten daher die ermittelten Effekte überprüft werden, um eine Generalisierbarkeit der Ergebnisse zu erzielen. Als weitere Limitation der Studie ist die relativ große Varianz in der Gruppe der Experten in Bezug auf die Menge der Skriptinformation und die Bearbeitungszeit zu nennen. Möglicherweise finden in der Bearbeitungszeit weitere kognitive Prozesse statt, die hier nicht erfasst wurden, wie zum Beispiel Unterschiede in der Aufmerksamkeitsfokussierung oder der Motivation. Auch angesichts der Kontrolle der Kooperationszeiten im Fragebogen und der sorgfältigen Auswahl der Stichprobe könnte diese Varianz damit erklärt werden, dass die Kooperationsexpertise in den Fachgebieten der Inneren Medizin und der Anästhesiologie unterschiedlich ausgeprägt und multifaktoriell ist. Es bedarf weiterer Studien, um dieser Annahme nachzugehen. Dass sich trotz der hohen Varianz innerhalb der Expertengruppe signifikante Unterschiede zur Gruppe der Novizen mit einer mittelgroßen Effektstärke fanden, spricht dennoch für das gewählte Vorgehen. Eine mögliche Konfundierung der Inhalts- und Kooperationsdomäne kann nicht mit letzter Sicherheit ausgeschlossen werden. Jedoch wurden zwei Maßnahmen ergriffen, um diesem möglichen Einfluss entgegen zu wirken. Ers- tens wurde der Vergleich auf die beiden Fachdisziplinen Anästhesiologie und Innere Medizin beschränkt, um die Heterogenität der Inhaltsdomänen einzuschränken. Zweitens bezog sich das Kodierschema ausschließlich auf Kooperationsskripts und nicht auf inhaltliches Wissen.

Ausblick

In dieser Pilotstudie wurde erstmals eine Methode zur Messung der Menge von Informationen, die Bestandteil von Kooperationsskripts sind, und des Internalisierungsgrades von Kooperationsskripts in der Medizin erprobt. Ärztliche Kooperationsexperten aus der Inneren Medizin und Anästhesiologie nannten im Vergleich zu studentischen Kooperationsnovizen signifikant mehr kooperationsbezogene Skriptinformationen pro Zeiteinheit. Die Kooperationsexperten zeigten zudem einen signifikant höheren Internalisierungsgrad als die Kooperationsnovizen. Das im Rahmen dieser Studie entwickelte Messinstrument hat Potential zur Beurteilung von Methoden zur fachspezifischen Vermittlung von Kooperationskompetenz in der medizinischen Lehre. Weitere Studien zur Validierung der Messmethode sind erforderlich.

Danksagung

Der Erstautor ist dankbar für die Unterstützung durch ein DAAD Stipendium während dieser Arbeit.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Gilbert JH, Yan J. Framework for Action on Interprofessional Education & Collaborative Practice. Geneva: World Health Organization; 2010.
2. Salas E, Sims DS, Burke OJ. Is there a “Big Five” in teamwork? Small Group Res. 2005;36(5):555-599. DOI: 10.1177/1046496405277154
3. Kohn LT, Corrigan J, Donaldson MS. To err is human: building a safer health system, Ed. 6. Washington: National Academy Press; 2000.
4. Manser T. Teamwork and patient safety in dynamic domains of healthcare: a review of the literature. Act Anaesth Scand. 2009;53(2):143-151. DOI: 10.1111/j.1399-6576.2008.01717.x
5. Rafferty A, Bail J, Aiken L. Are teamwork and professional autonomy compatible, and do they result in improved hospital care? Qual Health Care. 2001;10(suppl 2):ii32-ii7. DOI: 10.1196/qhc.0100032
6. Chakraborti C, Boonyasai RT, Wright SM, Kern DE. A systematic review of teamwork training interventions in medical student and resident education. J Gen Intern Med. 2008;23(6):846-853. DOI: 10.1007/s11606-008-0600-6
7. Weinberger A, Stagmann K, Fischer F, Mandl H. Scripting argumentative knowledge construction in computer-supported learning environments, In: Fischer F, Kollar I, Mandl H, Harke JM (Hrsg). Scripting computer-supported collaborative learning. Heidelberg: Springer; 2007. S.191-211. DOI: 10.1007/978-0-387-36949-5_12
8. Kollar I, Fischer F, Hesse FW. Collaboration scripts—a conceptual analysis. Educ Psychol Rev. 2006;18(2):159-185. DOI: 10.1007/s10648-006-9007-2
9. Carmien S, Kollar I, Fischer G, Fischer F. The interplay of internal and external scripts. In: Fischer F, Kollar I, Mandl H, Harke JM (Hrsg). Scripting computer-supported collaborative learning. Heidelberg: Springer; 2007. S.303-326. DOI: 10.1007/978-0-387-36949-5_17
10. Weinberger A, Kollar I, Dimitriadis Y, Mäktalo-Sieg K, Fischer F. Computer-supported collaboration scripts. In: Balacheff N, Ludvigsen S, de Jong T, Lazonder A, Barnes S (Hrsg). Technology-enhanced learning, Heidelberg: Springer; 2009. S.155-173. DOI: 10.1007/978-3-7908-9827-7_10
11. Gruber H. Expertise. In: Rost DH (Hrsg). Handwörterbuch pädagogische Psychologie. Weinheim: Beltz; 2001. S.183-189.
12. Kiesewetter J, Fischer MR, Fischer F. Is there evidence for expertise on collaboration and if so, is it domain-specific or domain-general? München: European Association Research of Learning and Instruction; 2013. [im Druck]
13. Kolodner JL. The roles of scripts in promoting collaborative discourse in learning by design. In: Fischer F, Kollar I, Mandl H, Harke JM (Hrsg). Scripting Computer-Supported Collaborative Learning. Heidelberg: Springer; 2007. S.237-262. DOI: 10.1007/978-0-387-36949-5_14

14. Collins AM, Quillian MR. Retrieval time from semantic memory. J Ver Learn Ver Behav. 1969;8(2):240-247. DOI: 10.1016/S0022-5371(69)80069-1

15. Kollar I, Fischer F, Slotta JD. Internal and external scripts in computer-supported collaborative inquiry learning. Learn Instruc. 2007;17(6):708-721. DOI: 10.1016/j.learninstruc.2007.09.021

16. Cohen J. A power primer. Psychol Bull. 1992;112(1):155. DOI: 10.1037/0033-2909.112.1.155

17. Stegmann K, Pilz F, Siebeck M, Fischer F. Vicarious learning during simulations: is it more effective than hands-on training? Med Educ. 2012;46(10):1001-1008. DOI: 10.1111/j.1365-2923.2012.04344.x

18. Michinov E, Olivier-Chiron E, Rusch E, Chiron B. Influence of transactive memory on perceived performance, job satisfaction and identification in anaesthesia teams. Br J Anaesth. 2008;100(3):327-332. DOI: 10.1093/bja/aem404

19. Kiesewetter J, Semmelies F, Saravo B, Fischer M, Wershofen B. Collaboration expertise in health care - Mapping the mosaic of shared work experience, transactive memory system and performance. In: Duffy V (Hrsg). Advances in Human Aspects of Healthcare. Boca Raton: Taylor & Francis; 2014.

Korrespondenzadresse:
Jan Kiesewetter
Klinikum der Universität München, Institut für Didaktik und Ausbildungsforschung in der Medizin, Ziemssenstraße 1, 80336 München, Deutschland, Tel: +49 (0)89/4400-57207
jan.kiesewetter@med.lmu.de

Bitte zitieren als
Kiesewetter J, Gluza M, Holzer M, Saravo B, Hammitzsch L, Fischer MR. Towards a measurement of internalization of collaboration scripts in the medical context – results of a pilot study. GMS Z Med Ausbild. 2015;32(3):Doc32.
DOI: 10.3205/zma000974, URN: urn:nbn:de:0183-zma0009745

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2015-32/zma000974.shtml

Eingereicht: 23.06.2014
Überarbeitet: 02.06.2015
Angenommen: 02.06.2015
Veröffentlicht: 17.08.2015

Copyright
©2015 Kiesewetter et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.