Tan(beta) enhanced Yukawa couplings for supersymmetric Higgs singlets at one loop

Robert N. Hodgkinson

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

Abstract. Extensions of the MSSM generically feature gauge singlet Higgs bosons. These singlet Higgs bosons have tan β-enhanced Yukawa couplings to down-type quarks and leptons at the one-loop level. We present an effective Lagrangian incorporating these Yukawa couplings and use it to study their effect on singlet Higgs boson phenomenology within both the mnSSM and NMSSM. It is found that the loop-induced couplings represent an appreciable effect for the singlet pseudoscalar in particular, and may dominate its decay modes in some regions of parameter space.

PACS. 12.60.Jv Supersymmetric models – 14.80.Cp Non-standard-model Higgs bosons

1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) is a well-motivated extension of the Standard Model of particle physics (SM), which provides a technical solution to the gauge hierarchy problem. The model is minimal in the sense that it includes only those terms in the superpotential which are phenomenologically required, namely the Yukawa couplings \(h_u, h_d, h_c \) and a Higgs mass term \(\mu \).

One theoretical weakness of the MSSM is the so-called \(\mu \)-problem \[1,2\]. In order to achieve a successful electroweak symmetry breaking scheme, the \(\mu \)-parameter describing the mixing of the two Higgs superfields in the superpotential, i.e. \(\mu H_u H_d \), must be of the order of the soft SUSY-breaking scale \(M_{\text{SUSY}} \sim 1 \text{ TeV} \). Within the context of supergravity (SUGRA), the \(\mu \)-parameter is not in general protected from gravity effects, and is expected to be of the order the Planck scale \(M_{\text{Pl}} \).

A natural solution to the \(\mu \)-problem may be obtained by extending the MSSM to include a third Higgs superfield \(S \), which is a singlet under the SM gauge group, and replacing the \(\mu \)-term in the superpotential by \(\lambda S H_u H_d \). When supersymmetry is softly broken, the scalar component \(S \) of \(\tilde{S} \) generically acquires a vacuum expectation value (VEV) of order \(M_{\text{SUSY}} \), giving rise to an effective \(\mu \)-term of the required order.

The superpotential of such a singlet extension of the MSSM exhibits an unwanted global Peccei-Quinn (PQ) symmetry \(U(1)_{\text{PQ}} \), unless further additions or assumptions are made to the model. The PQ symmetry must be explicitly broken above the electroweak scale to avoid the appearance of visible axions after spontaneous symmetry breaking. Several models have been proposed in the literature based on different choices of discrete and gauged symmetries to break the PQ symmetry \[2\], including the Next-to-Minimal Supersymmetric SM (NMSSM) \[3\], the minimal nonminimal Supersymmetric SM (mnSSM) \[4\] and the \(U(1)' \)-extended Supersymmetric SM (UMSSM) \[5\].

A common feature of all these models is that the singlet Higgs boson has no tree level couplings to SM fermions or gauge bosons. It has long been known \[6,7\] that within the MSSM, threshold corrections to the Yukawa couplings to \(b \) quarks and \(\tau \) leptons can become significant in the limit of large \(\tan \beta \), where \(\tan \beta \) is the ratio of the two Higgs VEVs. This enhancement partially overcomes the loop suppression factor, and in regions where mixing between the Higgs particles is negligible, the one-loop correction can dominate the \(H_1 \rightarrow b\bar{b} \) decay width \[8\]. The dominant contribution to the inhomogenous coupling \(\phi_2 b \bar{b} \) is shown in Fig. 1.

![Fig. 1. The dominant contribution to the inhomogenous coupling \(\phi_2 b\bar{b} \) in the MSSM at large \(\tan \beta \).](image)

An analogous \(\tan \beta \) enhanced Yukawa coupling for the singlet Higgs boson is generated at one-loop through sfermion-gaugino loops in singlet extensions of the MSSM \[9\]. The dominant contribution to the \(\phi_2 b\bar{b} \) coupling is shown in Fig. 2. These effective couplings can be significant, e.g. of order the SM Yukawa couplings, and in the limit where the \(H_d \) doublet decouples from the
low energy spectrum, they can provide the dominant decay mechanism for light singlets.

2 Effective Lagrangian framework

The general effective Lagrangian for the self-energy transition $f_L \rightarrow f_R$ in the nonvanishing Higgs background may be written as

$$-\mathcal{L}_{\text{self}}^f = h_f \tilde{f}_R \left(\Phi_1^{0*} + \Delta_f \left(\Phi_1^0, \Phi_2^0, S \right) \right) f_L + \text{H.c.} \quad (1)$$

where $\Phi_{1,2} = \frac{1}{\sqrt{2}} \left(\psi_{1,2} + \phi_{1,2} + i a_{1,2} \right)$ are the electrically neutral components of the two Higgs doublets H_d, H_u and $S = \frac{1}{\sqrt{2}} \left(\upsilon_s + \phi_s + i a_s \right)$ is the singlet Higgs field. Here $\Delta \left(\Phi_1^0, \Phi_2^0, S \right)$ is a Coleman-Weinberg type functional which encodes the radiative corrections. The VEV of the effective Lagrangian $-\mathcal{L}_{\text{self}}^f$ is equal to the fermion mass m_f, allowing us to substitute for the effective Yukawa coupling h_f.

We can use the self-energy effective Lagrangian $\mathcal{L}_{\text{self}}^f$ to obtain the form of the effective Lagrangian for the Higgs boson couplings to the fermion f through a Higgs boson low energy theorem [10, 11]. Written in terms of the physical Higgs eigenstates $H_{1,2,3}$ and $A_{1,2}$, the effective interaction Lagrangian is

$$-\mathcal{L}_{\text{eff}}^f = \frac{g_{\phi f} m_f}{2 M_W} \left[\sum_{i=1}^{3} g_{H_{i,ff}}^S H_{i} \tilde{f} f + \sum_{i=1}^{2} g_{A_{i,ff}}^P A_i (\bar{f} t \gamma^5 f) \right] , \quad (2)$$

where the effective couplings g_S^f and g_P^f are given by

$$g_{H_{i,ff}}^S = \left(1 + \frac{\sqrt{2}}{v_1} \langle \Delta_f \rangle \right)^{-1} \left(\frac{O_{H}^H}{c_\beta} + \Delta_f \phi_2^0 O_{H}^H \phi_2^0 \frac{O_{H}^H}{c_\beta} + \Delta_f \phi_3^0 \frac{O_{H}^H}{c_\beta} \right) , \quad (3)$$

$$g_{A_{i,ff}}^S = \left(1 + \frac{\sqrt{2}}{v_1} \langle \Delta_f \rangle \right)^{-1} \left(-t_\beta \Delta_f \phi_2^0 O_{A}^A \phi_2^0 \frac{O_{A}^A}{c_\beta} + \Delta_f \phi_3^0 \frac{O_{A}^A}{c_\beta} \right) , \quad (4)$$

Here the orthogonal matrix O_H^H (O_A) is related to the mixing of the CP-even (CP-odd) scalars and the loop corrections are given by the HLET.

2.1 One-loop evaluation

As may be seen from the above discussion, the effective low-energy couplings of the Higgs bosons to fermions may be calculated from the fermion self-energies. The dominant contributions to the b quark self-energy at large $\tan \beta$ are due to squark-gluino and squark-higgsino loops, giving

$$\Delta_f = \frac{2 \alpha_s}{3 \pi} M_3 \left(A_0 \phi_1^0 - \lambda S^* \phi_2^0 \right) I \left(m_{b_1}^2, m_{b_2}^2, M_2^2 \right)$$

$$+ \frac{h_f^2}{16 \pi^2} \left(A_0 \phi_1^0 - \lambda S \phi_2^0 \right) \times \left[m_{\tilde{t}_1} V_{[21]}^{*} \left(m_{\tilde{t}_1}, m_{\tilde{t}_2}, m_{\tilde{t}_3} \right) \right.$$}

$$\left. + m_{\tilde{t}_2} V_{[22]}^{*} \left(m_{\tilde{t}_2}, m_{\tilde{t}_1}, m_{\tilde{t}_3} \right) \right] . \quad (6)$$

Here $I(a, b, c)$ is the usual 1-loop integral function

$$I(a, b, c) = \frac{ab \ln (a/b) + bc \ln (b/c) + ac \ln (c/a)}{(a-b)(b-c)(a-c)} . \quad (7)$$

Note that the chargino-mixing matrices V, U are functions of $\Phi_{1,2}^0$ and S, as are the sbottom quark masses $m_{b_{1,2}}$ and stop quark masses $m_{\tilde{t}_{1,2}}$.

Similarly, the dominant $\tan \beta$ enhanced contribution to the τ lepton self-energy is due to a stau-chargino loop and is easily derived. The effective Yukawa couplings $\Delta_f^{\tau a}$ are obtained as the derivatives of these expressions. Note that the presence of the singlet in the model does not alter the form of the 1-loop $\tan \beta$ enhanced couplings of the doublet Higgs fields well known from the MSSM [13].

3 Phenomenology

As the one-loop couplings of the singlet Higgs boson to the b quark and the τ lepton become significant at large values of $\tan \beta$ and λ, we shall set $t_\beta = 50$ and $\mu = \frac{1}{\sqrt{2}} \lambda S = 110$ GeV throughout our discussion. The remaining default values of the SUSY parameters for our benchmark scenario, consistent with the constraints from LEP data, are

$$M_0 = 300 \text{ GeV}, \quad M_L = 90 \text{ GeV},$$

$$M_{1/2} = 110 \text{ GeV}, \quad M_T = 600 \text{ GeV}, \quad M_\tau = 200 \text{ GeV},$$

$$A_\tau = 1 \text{ TeV}, \quad A_t = 1 \text{ TeV}, \quad A_b = 1 \text{ TeV},$$

$$M_1 = 400 \text{ GeV}, \quad M_2 = 600 \text{ GeV}, \quad M_3 = 400 \text{ GeV},$$

The physical Higgs boson couplings to the b quark and τ lepton, i.e. $H_{1,2,3} \tilde{f} f$ and $A_{1,2} \tilde{f} f$, have contributions from both the proper vertex interaction, dominated by the tree-level $h_1 \phi_1$, and also the mixing

$$\Delta_f^{\phi_1 \phi_2} = \sqrt{2} \frac{\partial \Delta_f}{\partial \phi_2} , \quad \Delta_f^{\phi_2 \phi_3} = i \sqrt{2} \frac{\partial \Delta_f}{\partial \phi_3} . \quad (5)$$
of the fields $\phi_{2,S}$ with ϕ_1. This mixing is a tree level effect and is very significant for generic Higgs boson mass matrices. Since our interest is to assess the significance of the one loop singlet Higgs vertex effects, we focus on variants of the mnSSM and NMSSM where the mixing of $\phi_1(a_1)$ with the other scalars is suppressed.

 Suppressing both the Higgs boson self-energy transitions $\phi_1 \to \phi_{2,S}$ simultaneously is difficult, except in the MSSM limit $\lambda \to 0$ with μ fixed, where the couplings $\Delta^{\phi_1(a_S)}$ also vanish. Instead we impose a constraint on the pseudoscalar mass matrix such that $(M^P)^2_{ij} = 0$. Although this condition is arbitrarily applied here, it is robust against the dominant corrections to the pseudoscalar mass matrix, which can absorbed into the would-be MSSM pseudoscalar mass M_a, and can be generated naturally within certain SUSY-breaking scenarios, e.g. 12.

3.1 mnSSM results

The mnSSM is based on the renormalizable superpotential

$$W_{\text{mnSSM}} = h_1 \hat{H}_d^T i \tau_2 \tilde{L} \tilde{E} + h_d \hat{H}_d^T i \tau_2 \tilde{Q} \tilde{D} + h_u \tilde{Q} i \tau_2 \tilde{H}_u \tilde{U} + \lambda \delta \tilde{H}_d^T i \tau_2 \tilde{H}_u + i \kappa \hat{S}^3. \quad (8)$$

The term linear in \hat{S} is induced by supergravity quantum effects from Planck-suppressed non-renormalizable operators in the Kähler potential and superpotential 14.

In Fig. 3 we plot the masses of the two lightest CP-even Higgs bosons H_1 and H_2 and the lightest CP-odd Higgs A_1 in the mnSSM with $M_{H^\pm} = 5$ TeV and $\lambda_{S/\mu} = (150 \text{ GeV})^2$. The remaining physical Higgs states $H_2 \sim \phi_1$ and $A_2 \sim a$ are heavy, of order M_{H^\pm}.

For large values of $\lambda > 0.3$ the lightest Higgs boson mass M_{H_1} is well below the LEP limit from direct Higgs searches. Fig. 4 then shows the dependence of the b-quark Yukawa couplings g_{H^1,a_1bb} and $g_{\tilde{H}_1,a_1bb}$, for the above scenario. The CP-even Yukawa couplings $g^{S}_{H^1,a_1bb}$ receive appreciable contributions from the tree-level mixing of the state ϕ_1 with $\phi_{2,S}$, which are competitive with the loop-induced Yukawa couplings $\Delta^{\phi_{2,S}}$. The coupling $g_{\tilde{H}_1,a_1bb} \approx g_{\tilde{H}_1,bb}$ is completely dominated by the 1-loop contribution $\Delta^{a_{S}}$. For moderate values of $\lambda \sim 0.3$, we find that $g_{\tilde{H}_1,bb} \sim 0.15$. Moreover, the decay $A_1 \to b \bar{b}$ is expected to be the dominant decay channel in this specific scenario of the mnSSM.

3.2 NMSSM results

We now turn our attention to the NMSSM. The superpotential of this model is given by

$$W_{\text{NMSSM}} = h_1 \hat{H}_d^T i \tau_2 \tilde{L} \tilde{E} + h_d \hat{H}_d^T i \tau_2 \tilde{Q} \tilde{D} + h_u \tilde{Q} i \tau_2 \tilde{H}_u \tilde{U} + \lambda \delta \tilde{H}_d^T i \tau_2 \tilde{H}_u + i \kappa \hat{S}^3. \quad (9)$$

The NMSSM spectrum contains a light singlet dominated pseudoscalar if the soft trilinear couplings are approximately $A_\lambda \sim 200 \text{ GeV}$ and $A_\kappa \sim 5 \text{ GeV}$. This can be naturally arranged in gauge or gaugino mediated SUSY breaking scenarios, where these parameters are zero at tree level. The above scales are generated by quantum corrections if the gaugino masses are of the order 100 GeV.

In recent years there has been some interest in the phenomenology of light Higgs pseudoscalars in the NMSSM, which may provide an invisible decay channel for a light SM-like Higgs boson. If these CP-odd scalars have a large singlet component, it is possible for them to escape experimental bounds 15. In Fig. 4 we plot the couplings of H_1 to $b \bar{b}$ and of A_1 to both $b \bar{b}$ and $\tau \bar{\tau}$ pairs for such a scenario with $M_{H^\pm} = 2$ TeV. Here M_{A_1} is in the range $6 \sim 9 \text{ GeV}$ and M_{H^\pm} the range $120 \sim 140 \text{ GeV}$. The threshold corrections can clearly have a significant effect on the branching ratios of a light CP-odd singlet scalar for moderate to large values of λ. Previous studies have considered detection of these particles through decays to photon pairs as the dominant mode 16 in the limit of vanishing singlet-doublet pseudoscalar mixing. Our analysis shows that this need not be the case, and the impact of the hadronic decays of A_1 in so-called “invisible Higgs” scenarios should still be considered even in this limit.
4 Conclusions

Minimal extensions of the MSSM generically include singlet Higgs bosons. Although singlet Higgs bosons have no direct or proper couplings to the SM particles, their interaction with the observed matter can still be significant as a result of two contributions. The first one is their mixing with Higgs doublet states, which is often considered in the literature. The second contribution is novel and persists even if the Higgs doublet-singlet mixing is completely switched off. It results from the 1-loop quantum effects we have been studying here.

In the absence of a Higgs doublet-singlet mixing, the 1-loop quantum effects we have been studying here will be the only means by which the CP-odd singlet may couple to quarks and leptons. For a sufficiently light CP-odd singlet scalar, with a mass below the squark threshold, the loop-induced Yukawa couplings may couple to quarks and leptons. For a sufficiently light CP-odd singlet scalar, with a mass below the squark threshold, the loop-induced Yukawa couplings may couple to quarks and leptons. For a sufficiently light CP-odd singlet scalar, with a mass below the squark threshold, the loop-induced Yukawa couplings may couple to quarks and leptons.

This has important phenomenological implications for studies of the NMSSM with light pseudoscalars.

References

1. J. E. Kim and H. P. Nilles, Phys. Lett. B 138 (1984) 150; L. J. Hall, J. D. Lykken and S. Weinberg, Phys. Rev. D 27, (1983) 2359; G. F. Giudice and A. Masiero, Phys. Lett. B 206, (1988) 480; E. J. Chun, J. E. Kim and H. P. Nilles, Nucl. Phys. B 370, (1992) 105; I. Antoniadis, E. Gava, K. S. Narain and T. R. Taylor, Nucl. Phys. B 432, (1994) 187.

2. E. Accomando et al., arXiv:hep-ph/0608079.

3. P. Fayet, Nucl. Phys. B 90 (1975) 104; J. M. Frere, D. R. T. Jones and S. Raby, Nucl. Phys. B 222 (1983) 11; J. P. Derendinger and C. A. Savoy, Nucl. Phys. B 237 (1984) 307; J. R. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski and F. Zwirner, Phys. Rev. D 39 (1989) 844; S. F. King and P. L. White, Phys. Rev. D 52 (1995) 4183; M. Bastero-Gil, C. Hugonie, S. F. King, D. P. Roy and S. Vempati, Phys. Lett. B 489, (2000) 359; U. Ellwanger, J. F. Gunion and C. Hugonie, JHEP 0507 (2005) 041.

4. C. Panagiotakopoulos and A. Pilaftsis, Phys. Rev. D 63 (2001) 055003; A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phys. Rev. D 63 (2001) 055009; A. Menon, D. E. Morrissey and C. E. M. Wagner, Phys. Rev. D 70 (2004) 035005; S. W. Ham, S. K. Oh, C. M. Kim, E. J. Yoo and D. Son, Phys. Rev. D 70 (2004) 075001.

5. M. Cvetic, D. A. Demir, J. R. Espinosa, L. L. Everett and P. Langacker, Phys. Rev. D 56, (1997) 2861 [Erratum-ibid. D 58, (1998) 119905]; P. Langacker and J. Wang, Phys. Rev. D 58, (1998) 115010; S. F. King, S. Moretti and R. Nevzorov, Phys. Rev. D 73 (2006) 035009.

6. T. Banks, Nucl. Phys. B 303 (1988) 172; E. Ma, Phys. Rev. D 39 (1989) 1922.

7. R. Hempfling, Phys. Rev. D 49 (1994) 6168; L. J. Hall, R. Rattazzi and U. Sarid, Phys. Rev. D 50 (1994) 7048; M. Carena, M. Olechowski, S. Pokorski and C. E. M. Wagner, Nucl. Phys. B 426 (1994) 269; D. M. Pierce, J. A. Bagger, K. T. Matchev and R. J. Zhang, Nucl. Phys. B 491 (1997) 3; F. Borzumati, G. R. Farrar, N. Polonsky and S. D. Thomas, Nucl. Phys. B 555 (1999) 53.

8. J. A. Coarasa, R. A. Jimenez and J. Sola, Phys. Lett. B 389 (1996) 312; R. A. Jimenez and J. Sola, Phys. Lett. B 389 (1996) 53; K. T. Matchev and D. M. Pierce, Phys. Lett. B 445 (1999) 331; P. H. Chankowski, J. R. Ellis, M. Olechowski and S. Pokorski, Nucl. Phys. B 544 (1999) 39; S. K. Babu and C. F. Kolda, Phys. Lett. B 451 (1999) 77.

9. R. N. Hodgkinson and A. Pilaftsis, Phys. Rev. D 76 (2007) 015007.

10. J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292; M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. B 78 (1978) 443; M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys. 30 (1979) 711; A. I. Vainshtein, V. I. Zakharov and M. A. Shifman, Sov. Phys. Usp. 23 (1980) 429 [Usp. Fiz. Nauk 131 (1980) 537]; M. B. Voloshin, Sov. J. Nucl. Phys. 44 (1986) 478 [Yad. Fiz. 44 (1986) 738]; M. A. Shifman, Phys. Rept. 209 (1991) 341 [Sov. Phys. Usp. 32 (1989) UFNA.157,561-598.1989.289]; S. Dawson and H. E. Haber, Int. J. Mod. Phys. A 7 (1992) 107; B. A. Kniehl and M. Spira, Z. Phys. C 69 (1995) 77.

11. D. Binosi, J. Papavassiliou and A. Pilaftsis, Phys. Rev. D 71 (2005) 085007.

12. R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95 (2005) 041801; R. Dermisek and J. F. Gunion, Phys. Rev. D 73 (2006) 111701; S. Chang, P. J. Fox and N. Weiner, JHEP 0608 (2006) 068.

13. M. Carena, D. Garcia, U. Nierste and C. E. M. Wagner, Nucl. Phys. B 577 (2000) 88; M. E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, Phys. Rev. D 74 (2006) 015015; A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawanowska, Nucl. Phys. B 659 (2003) 3.

14. For a power-counting calculation of the size of the effective tadpole in the mssm, see the first reference in [4].

15. J. F. Gunion, D. Hooper and B. McElrath, Phys. Rev. D 73 (2006) 015011.

16. B. A. Dobrescu, G. Landsberg and K. T. Matchev, Phys. Rev. D 63 (2001) 075003; A. Arhrib, K. Cheung, T. J. Hou and K. W. Song, arXiv:hep-ph/0606114; arXiv:hep-ph/0611211.