The association between prior physical fitness and depression in young adults during the COVID-19 pandemic - a cross-sectional, retrospective study

Yaoshan Dun, Jeffrey W. Ripley-Gonzalez, Nanjiang Zhou, Qiuxia Li, Meijuan Chen, Zihang Hu, Wenliang Zhang, Randal J. Thomas, Thomas P. Olson, Jie Liu, Yuchen Dong, Suixin Liu

1 Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan, China
2 National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
3 Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
4 Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
5 Medical College of Jinhua Polytechnic, Jinhua, Zhejiang, China

Corresponding Author: Suixin Liu
Email address: liusuixin@csu.edu.cn

Background: The COVID-19 pandemic has led to a spike in deleterious mental health. This dual-center retrospective cross-sectional study assessed the prevalence of depression in young adults during this pandemic and explored its association with various physical fitness measures. Methods: This study enrolled 12,889 (80% female) young adults (mean age 20 ± 1) who performed a National Student Physical Fitness battery from December 1st, 2019, to January 20th, 2020, and completed a questionnaire including Beck’s Depression Inventory in May 2020. Independent associations between prior physical fitness and depression during the pandemic were assessed using multivariable linear and binary logistic regressions accordingly, covariates including age, dwelling location, economic level, smoking, alcohol, living status, weight change, and exercise volume during the pandemic. Sex- and baseline stress-stratified analyses were performed. Results: Of the study population 13.9% of men and 15.0% of women sampled qualified for a diagnosis of depression. After multivariable adjustment, anaerobic (mean change [95% CI], -3.3 [-4.8 to 1.8]) aerobic (-1.5 [-2.64 to -0.5]), explosive (-1.64 [-2.7 to -0.6]) and muscular (-1.7 [-3.0 to -0.5]) fitness were independently and inversely associated with depression for the overall population. These remained consistent after sex- and baseline stress-stratification. In binary logistic regression, the combined participants with moderate, high or excellent fitness also showed a much lower risk compared to those least fit in anaerobic (odd ratio (OR) [95% CI], 0.68 [0.55 to 0.82]), aerobic (0.80 [0.68 to 0.91]), explosive (0.72 [0.61 to 0.82]), and muscular (0.66 [0.57 to 0.75]) fitness. Conclusions: These findings suggest that prior physical fitness may be inversely associated with depression in young adults.
during a pandemic.
Title page

The Association between Prior Physical Fitness and Depression in Young Adults during the COVID-19 Pandemic – A Cross-sectional, Retrospective Study

Yaoshan Dun 1,2,3*, Jeffrey W. Ripley-Gonzalez 1*, Nanjiang Zhou 1, Qiuxia Li 1, Meijuan Chen 1, Zihang Hu 1, Wenliang Zhang 1, Randal J. Thomas 3, Thomas P. Olson 3, Jie Liu 4, Yuchen Dong 5, Suixin Liu 1,2

1. Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan, China.

2. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China.

3. Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.

4. Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China.

5. Medical College of Jinhua Polytechnic, Jinhua, Zhejiang, China.

*Dr. Yaoshan Dun and Mr. Jeffrey W. Ripley-Gonzalez contributed equally to this study.

Corresponding author: Suixin Liu, MD & PhD
Professor of Medicine
Xiangya Hospital, Central South University
Medical Director
ABSTRACT

Background: The COVID-19 pandemic has led to a spike in deleterious mental health. This dual-center retrospective cross-sectional study assessed the prevalence of depression in young adults during this pandemic and explored its association with various physical fitness measures.

Methods: This study enrolled 12,889 (80% female) young adults (mean age 20 ± 1) who performed a National Student Physical Fitness battery from December 1st, 2019, to January 20th, 2020, and completed a questionnaire including Beck’s Depression Inventory in May 2020. Independent associations between prior physical fitness and depression during the pandemic were assessed using multivariable linear and binary logistic regressions accordingly, covariates including age, dwelling location, economic level, smoking, alcohol, living status, weight change, and exercise volume during the pandemic. Sex- and baseline stress-stratified analyses were performed.

Results: Of the study population 13.9% of men and 15.0% of women sampled qualified for a diagnosis of depression. After multivariable adjustment, anaerobic (mean change [95% CI], -3.3 [-4.8 to 1.8]) aerobic (-1.5 [-2.64 to -0.5]), explosive (-1.64 [-2.7 to -0.6]) and muscular (-1.7 [-3.0 to -0.5]) fitness were independently and inversely associated with depression for the overall population. These remained consistent after sex- and baseline stress-stratification. In binary logistic regression, the combined participants with moderate, high or excellent fitness also showed a much lower risk compared to those least fit in anaerobic (odd ratio (OR) [95% CI], 0.68 [0.55 to 0.82]), aerobic (0.80 [0.68 to 0.91]), explosive (0.72 [0.61 to 0.82]), and muscular (0.66 [0.57 to 0.75]) fitness.

Conclusions: These findings suggest that prior physical fitness may be inversely associated with depression in young adults during a pandemic.

Keywords: Depression; Physical fitness; COVID-19.
INTRODUCTION

Since its onset, coronavirus-2019 (COVID-19) has personified overwhelming stresses, stemming from infections, loss of work, loss of freedoms, isolation, and death, leaving behind an aura of uncertainty amongst the world’s citizens. COVID-19 has led to a spike in deleterious mental health issues (Wang et al. 2020), particularly in depression (Brooks et al. 2020). There’s concern that such a surge may lead to an increased rate of suicides (Reger et al. 2020) domestic abuse, economic, and somatic health issues. (Moulton et al. 2015) Hence, evidence-based research is needed to address the rise in depression across multiple populations as a result of COVID-19.

Physical fitness, particularly cardiorespiratory fitness, and exercise training have repeatedly been shown to be negatively associated with future CVD and diabetes risk (Dun et al. 2019a; Dun et al. 2019b; Myers et al. 2015; Pedersen et al. 2019) as well as having a positive relationship with mental health in multiple populations. (Baumeister et al. 2017; Cho et al. 2019; Kerling et al. 2015) Studies have been published on COVID-19 and previous outbreaks and their adverse effects on mental health. (Brooks et al. 2020; Torales et al. 2020) Furthermore, recent studies have alluded to an association between current physical activity and mental health during the pandemic (Lopez-Bueno et al. 2020; Stanton et al. 2020), with a commonality that decreased physical activity appears with lockdowns. However, these studies are largely limited to current physical activity and mental health. To our knowledge, none have explored the possible association between prior multiple physical fitness and pandemic-related depression.
From the existing evidence, it may be hypothesized that physical fitness factors are inversely correlated with depression during COVID-19. Therefore, this retrospective cross-sectional study’s aims are two-fold: to assess the prevalence of depression in young adults during the pandemic and to investigate the associations between a variety of different measures of physical fitness, including prior anaerobic, aerobic, explosive, muscular, flexibility, and pulmonary fitness on the prevalence of depression during the COVID-19 pandemic.

METHODS

Study design and participants

This retrospective cross-sectional study enrolled two universities (Hunan Traditional Chinese Medical College, Hunan, China, and Medical College of Jinhua Polytechnic, Zhejiang, China) selected by convenience sampling, that performed the Chinese National Student Physical Fitness Standard (CNSPFS) battery between December 1st, 2019 to January 20th, 2020 when government-issued sanctioned lockdowns and social distancing. A total of 14,059 university students who were free of chronic diseases and had completed a CNSPFS were screened. Of these, 13,013 participants (response rate of 93.2%) completed a follow-up questionnaire from May 1st to 23rd, 2020. Participants who provided poor quality questionnaires were excluded (n = 124). The criteria of poor quality were: (1) If the ID information in the CNSPFS system did not match that of the follow-up questionnaire; or (2) If the 81-question survey was completed in less than three minutes. A total of 12,889 participants were included in the study. All baseline data
were extracted from the CNSPFS system; the data during the COVID-19 pandemic were collected from the survey platform (https://www.wjx.cn). Data from the two time-points were linked by identifying each participant’s university student ID number and matching them accordingly. This study was evaluated and approved by the Review Board of Xiangya Hospital Central South University (approval No. 202005126). Written informed consent was documented during the baseline, and digital informed consent was given upon initiating the survey. All participants were codified and anonymized to protect the confidentiality of individual participants.

Physical fitness

Fitness measures were obtained from the completion of the CNSPFS battery, and scores were attained through the standardized scoring system that weighted each fitness indicator score by age- and sex-specific percentage. The CNSPFS battery included a 50-m sprint,(Duffield et al. 2004) an 800-m (women) and 1,000-m (men),(Margaria et al. 1975) a standing long jump,(Robertson & Fleming 1987) timed sit-ups (women) and pull-ups (men), (Rutherford & Corbin 1994) sit and reach test and vital lung capacity respectively. (Ranu et al. 2011) Anaerobic, aerobic, explosive, muscular fitness, flexibility, and pulmonary fitness were assessed through these tests. The scores were classified as follows: low fitness (<60), moderate fitness (60 - 79), high fitness (80 - 89), and excellent fitness (>90). All tests were administered by trained physical education teachers following the CNSPFS standard operating procedures. The test-retest
reliability across all assessments employed as an intraclass correlation coefficient (ICC) > 0.90.

The details about performing CNSPFS have been described previously. (Yi et al. 2019; Zhu et al. 2017)

Baseline stress and depression during the COVID-19 pandemic

Baseline stress was assessed concurrently with the CNSPFS test through a modified question as described previously. (Frazier et al. 2014) Beck’s Depression Inventory, second edition (BDI-II) was also administered during the follow-up questionnaire performed in May. (Yang & Stewart 2020) The BDI-II is a 21-item self-report questionnaire validated in young Chinese adults (Yang & Stewart 2020; Zhu et al. 2018) and well correlated with a clinical diagnosis of depression,(Moullec et al. 2015) with four response options for each item. The added total scores of the BDI-II can vary from 0 to 63 and are classified as: 0–13 no depression, 14–19 mild depression, 20–28 moderate depression, and 29–63 severe depression. (Beck et al. 1996; Zhu et al. 2018)

Covariates

Exercise and physical activity habits were collected through a modified version with added items of the International Physical Activity Questionnaire-Long form-Chinese (IPAQ-LC) which had shown adequate reliability and reasonable validity for use in Chinese students(Macfarlane et al. 2011). Questions regarded exercise pre-and during the lockdown, including frequency, duration,
and intensity of aerobic exercise and strength exercise. Smoking status and alcohol intake were assessed as daily and weekly consumption, respectively. Socioeconomic status and dwelling location were retrieved from the university databases. Pre-pandemic body weight was assessed at the time of the CNSPFS test, while body weight during the COVID-19 pandemic was obtained via a self-reported questionnaire throughout May 2020. (Ross et al. 2019)

Characteristics of Lockdown

The first lockdown order in China was delivered on January 23rd, 2020 by the government of Wuhan, Hubei province, followed by the other provinces across China. The main requirements were: (1) all individuals were ordered to stay home or at their place of residence, except for permitted work, local shopping, or other permitted errands, or as otherwise authorized. (2) all schools, sports facilities, entertainment, and recreational venues, personal care and beauty services, and the majority of factories and markets were closed.

Statistical methods

For data of participants’ demographics and characteristics, independent t-test and Chi-square test were used for assessment in mean difference between sexes of continuous and categorical variables, respectively.

The primary outcomes of the present study were the change in BDI-II depression scores
(continuous variable) and the presence of depression (categorical variable), defined as a BDI-II score ≥ 14, (Beck et al. 1996; Zhu et al. 2018) during the COVID-19 pandemic. The independent variables included prior fitness factors, stress, socioeconomic status, dwelling location, and smoking, alcohol, living status, changes in body weight, and exercise volume per week during the pandemic. The associations between each independent variable and BDI-II depression score change were assessed by univariate analyses. The independent relationships of prior physical fitness factors and BDI-II depression score change were assessed using multivariable linear regression. The associations between prior physical fitness factors and the presence of depression, defined as a BDI-II depression score ≥ 14, were evaluated via binary logistic regression in which the lowest level was set as the reference. The variables included in the regression models were demographics, the independent variables mentioned above and potentially associated with depression or those with a p value < 0.20 in the univariate analyses were included in the multivariable linear and binary logistic regression analyses. To minimize confounding from baseline psychological status, baseline stress-stratified multivariable linear regression was performed. Analyses were carried out using SAS software, version 9.4 (SAS Institute), a two-tailed alpha level of 0.05 was considered to be statistically significant.

RESULTS

Demographic
Demographics of 12,889 participants are presented in Table 1. Male participants were proportionally a smaller percentage of the population. In the overall population, there were 12.2%, 60.6%, and 27.3% of participants that came from lower-income, middle-income, and upper-income families, respectively, and 35.4%, 42.4%, and 22.2% of participants lived in a rural, urban-rural junction, and urban areas, respectively. During the COVID-19 pandemic, 41% and 59% of participants lived alone or with family/friends, respectively.

Characteristics of prior physical fitness and prevalence of depression during the COVID-19 pandemic

Each of five physical fitness parameters was scored and graded as low fitness (not pass), moderate fitness, good, or excellent according to CNSPFS that was established referring to national physical fitness test data while taking age and sex into account. Across multiple physical fitness tests, the mean score ranged from 53 to 78 in men and 67 to 78 in women, there were significant differences in physical fitness score between sexes ($P<0.001$ for each comparison except pulmonary fitness score). The grade distributions were evaluated by the histogram and conformed to a normal distribution; the majority of participants were graded between moderate and high fitness. Less than 25% of participants were graded as low fitness or excellent. The median BDI-II depression during the pandemic scores were 2 for men and 1 for women ($P<0.001$). Men and women who presented depression made up 13.9% and 15.0% of their respective populations, no significance was found between sexes ($P=0.14$) (More in Table 1).
Association between anaerobic fitness and depression during the pandemic

After multivariable adjustment, anaerobic fitness was independently and negatively associated with the BDI-II score. Across four grades, participants with excellent anaerobic fitness had an average BDI-II score that was -3.300 (95% CI, -4.761 to -1.838) points lower BDI-II score than those with low fitness (Table 2 and 3). This finding showed consistency in subjects with and without baseline stress (-2.689 [-4.199 to -1.178]) (Table 4). In binary (participants with depression versus without depression) logistic regression, compared to low fitness participants, participants with an excellent anaerobic fitness had less than half the risk of the presence of depression during the pandemic (OR [95% CI], 0.58 [0.37 to 0.90]), and combined participants with moderate, high or excellent anaerobic fitness also showed a much lower risk 0.68 [0.55 to 0.82]) (Figure 1).

Association between aerobic fitness and depression during the pandemic

Aerobic fitness showed a similar association with BDI-II score. Across four grades of aerobic fitness, participants categorized as excellent had an average BDI-II score on average -1.521 (95% CI, -2.586 to -0.455) lower than those with low fitness (Table 3). This finding was consistent in participants with and without baseline stress (-1.772 [-2.846 to -0.699]) (Table 4). In binary logistic regression, compared to those who had low fitness scores, combined
participants with moderate, high, or excellent aerobic fitness grades showed a lower risk of the presence of depression (OR [95% CI], 0.80 [0.68 to 0.91]) (Figure 1).

Association between explosive fitness and depression during the pandemic

Explosive fitness was inversely correlated with depression during the COVID-19 pandemic. Participants with excellent explosive fitness had an average of -1.643 (95% CI, -2.673 to -0.613) lower BDI-II score than participants with low fitness (Table 2 and 3). This finding was in participants with and without baseline stress across sex (-1.849 [-2.884 to -0.815]) (Table 4). In binary logistic regression, compared to those with low fitness scores, participants with excellent explosive fitness had a 36% lower risk of the presence of depression (OR [95% CI], 0.62 [0.46 to 0.85]), and combined participants with moderate, high or excellent explosive fitness scores also showed a lower risk (0.72 [0.61 to 0.82]) (Figure 1).

Association between muscular fitness and depression during the pandemic

Muscular fitness was also independently and negatively correlated with depression. Participants with excellent muscular fitness had an average of -1.713 (95% CI, -2.956 to -0.470) lower BDI-II score than participants with low fitness (Table 3). This finding was consistent in those with and without baseline stress (-2.136 [-3.383 to -0.889]) (Table 4). In binary logistic regression, compared to those who were categorized as low fitness, participants with excellent muscular fitness had less than half risk of the presence of depression during the pandemic (OR [95% CI],...
0.47 [0.31 to 0.72]), and combined participants with moderate, high or excellent muscular fitness also showed a much lower risk 0.66 [0.57 to 0.75]) (Figure 1).

DISCUSSION

This study is the first to examine the relationship between physical fitness across multiple domains and the presence of depressive symptoms during the COVID-19 pandemic. Our data showed that 13.9% of young men and 15.0% of women had BDI scores that qualified them for the diagnosis of depression, which is unexpectedly similar to the level of depression reported previously in older adult populations (16.5%). (Wang et al. 2020) Findings that are particularly implicative as both depression and low physical fitness are risk factors for future CVD and diabetes. (Moulton et al. 2015; Myers et al. 2015; Pedersen et al. 2019) This study further explored the association between previous levels of explosive, anaerobic, flexibility, and pulmonary domains of fitness, with depression. Our data demonstrate that apart from flexibility and pulmonary fitness, all of these fitness parameters were independently inversely associated with depression in young adults free from chronic diseases.

Depression and depressive symptom severity vary in individuals, and at different periods, at times, it may impact functional capabilities, whose effects are deleterious on individuals’ physical and psychological wellbeing. While the etiology of depression remains largely unknown, the onset of depression may come in various forms, ranging from physiological
factors, psychological factors, and those coming from an individual’s environment. Both chronic and acute stresses are believed to play an integral part in the development of depression. Chronic stress, encompassing long-term negative environmental circumstances, such as financial difficulties; conflictual relationships with family, friends, or romantic partners (Hammen et al. 2009), acute stresses coming from episodes of stress such as those environmental or from personal loss. The COVID-19 pandemic and lockdowns have led to a surge in negative emotions and increased depression (Choi et al. 2020; Lei et al. 2020).

Recent research has shown that anaerobic training to be inversely associated with depression severity independent of aerobic activity. (Cangin et al. 2018) Our research showed for the first time that anaerobic fitness was the greatest predictor of a lower BDI-II score among the fitness parameters. After stratification of baseline stress, increasing levels of fitness were significantly correlated with lower BDI-II scores in a near dose-response fashion, with those with the highest fitness being less likely to be depressed (Table 4). Furthermore, in conjunction with previous research,(Harvey et al. 2018; Kerling et al. 2015) our findings showed that aerobic fitness was independently associated with lower depression scores. A number of studies have found that aerobic exercise is an effective therapy for moderate forms of depression while also showing it may be equally effective compared to other traditional methods of psychotherapy. The association of aerobic fitness with lower levels of depression is not limited to young adults as
longitudinal studies have similar results in reducing depression in middle-aged and older
individuals and younger adults. (Jaworska et al. 2019)

Muscular fitness was measured through two strength tests to best evaluate for muscular strength
and endurance, given the variability of muscular fitness across sexes. Muscular fitness and its
inverse association with depressive symptoms have been previously investigated (Marques et al.
2020). This association was also shown in this study after multivariable analysis, showing that
participants in the highest subset of muscular fitness demonstrated a BDI-II score lower than
participants with low scores. These findings are consistent with those found during pre-pandemic
conditions, where increased handgrip strength as well as comprehensive muscular fitness appears
to act as a buffer against depressive symptoms and are associated with improvements in
depression. (Krogh et al. 2009; Suija et al. 2013) Previous large-scale observational studies
suggested that muscular fitness may even have greater effects than those associated with aerobic
fitness in the reduction of depression. (Bennie et al. 2019) Our findings extend those of others, in
that we found muscular fitness to be associated with lower depression scores during the COVID-
19 pandemic. Moreover, Explosive fitness, utilizing the phosphocreatine system (Baker et al.
2010), was found to be independently and inversely associated with depressive symptoms, with
the highest level of explosive fitness being associated with a lower BDI-II score. Furthermore,
individuals in the highest explosive fitness level had less than half the associated risk of
depression than individuals in the lowest levels. This is a particularly interesting finding as it
appears to suggest that different types of fitness than those reported elsewhere (Ren et al. 2020) may have an effect of protection from depressive symptoms. Future prospective cohort or intervention studies are required to better elucidate the relationships between explosive fitness and the risk of depressive symptoms.

Physical fitness and its inverse relationship with depression could be brought about through increased physical activity and exercise. Accumulating evidence suggests that exercise could be associated with primary monoamines, whereby higher amounts of exercise have a positive impact on neurotransmitter systems that regulate primary monoamines, dopamine, noradrenaline, and serotonin. (Dishman 1997; Poulton & Muir 2005) As well as having a positive effect on physiological states, regular exercise and higher fitness could impact psychological states. Mental resilience may be improved through exercise and attainability of higher fitness,(Childs & de Wit 2014) as persons who feel or believe themselves to be healthier may be less inclined to fear the COVID-19 pandemic or at least feel more resilient against it. This has been demonstrated as those with higher mental resilience were less likely to be depressed, (Kirby et al. 2017) as participation in regular exercise can usually distract individuals from noxious stimuli, thereby improving depression. Furthermore, since exercise is often extrinsic, increased self-efficacy and self-esteem, garnered from higher muscle mass and fitness could lead to improved mental health. (Blumenthal et al. 2007)
While this study provides certain insights into the associations through which higher physical fitness levels in several parameters of fitness is related to a decreased risk of depressive symptoms, the causation between fitness parameters and depressive symptoms could not be established due to the cross-sectional study design. Associations between fitness measures and depressive symptoms in young adults may be bidirectional. Studies have indicated that previous depression could be a factor in the cessation of exercise, and the development of a sedentary lifestyle since those with depression may have lower self-worth, and confidence, increased self-criticism, and unwarranted guilt. (Faulkner et al. 2014; Ren et al. 2020) Future prospective cohort or intervention studies are required to better elucidate the relationships between fitness, particularly anaerobic and explosive fitness, and the risk of depressive symptoms.

Furthermore, the sample was selected through convenience sampling and therefore may be subject to a degree of information bias, may not be representative of the whole population, and variations within individuals exist. As is with all cross-sectional studies, our data demonstrate an association between physical fitness and prevalence of rather than incidence of depression during the COVID-19 pandemic, although baseline stress status was included as a covariate in all multivariable analyses, and baseline stress-stratified multivariable analysis was performed, with consistent findings. The present study only comprised university-educated Chinese young adults, which potentially limits the generalizability of the findings. However, our findings were consistent among sexes, and with multivariable adjustment of age, baseline stress, geographic
attribute, socio-economic level, and smoking, alcohol, living status, changes in weight, and exercise volume during the pandemic. In addition, all findings were consistent in both multivariable linear and binary logistic regressions. It seems plausible that the biologic effects of many factors would be qualitatively similar in other populations.

CONCLUSION

Multiple physical fitness parameters are inversely associated with the prevalence of depression in young adults during the COVID-19 pandemic. These associations were independent of other potential confounders, such as sex, age, baseline stress, dwelling location, socio-economic level, and smoking, alcohol, living status, weight changes, and exercise volume during the pandemic. These findings along with previous research suggest that that techniques and lifestyle management that lead to improved comprehensive fitness including a wider range of muscle groups and energy systems may be considered as a possible approach to help prevent and/or reverse depression during the pandemic.
Acknowledgments We would like to thank all participants and investigators in participating centers.

Author Contributions SXL, YSD and JWR conceived the study. SXL and YSD were involved in securing funding for the study. NJZ, WLZ, YCD, MJC, ZHH, JL and QXL coordinated the study conduct and data collection. YSD did the study analyses, supervised by SXL. YSD and JWR wrote the article, with assistance from RJT, TPO, QXL and SXL. All authors approved the final version of the manuscript. SXL had full access to all the data in the study and had final responsibility for the decision to submit for publication.
REFERENCES

Baker JS, McCormick MC, and Robergs RA. 2010. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. *J Nutr Metab* 2010:905612. 10.1155/2010/905612

Baumeister SE, Leitzmann MF, Bahls M, Dörr M, Schmid D, Schomerus G, Appel K, Markus MR, Völzke H, Gläser S, and Grabe HJ. 2017. Associations of Leisure-Time and Occupational Physical Activity and Cardiorespiratory Fitness With Incident and Recurrent Major Depressive Disorder, Depressive Symptoms, and Incident Anxiety in a General Population. *J Clin Psychiatry* 78:e41-e47. 10.4088/JCP.15m10474

Beck AT, Steer RA, and Brown GK. 1996. *Manual for the Beck Depression Inventory-II*. San Antonio, TX: Psychological Corporation.

Bennie JA, Teychenne MJ, De Cocker K, and Biddle SJH. 2019. Associations between aerobic and muscle-strengthening exercise with depressive symptom severity among 17,839 U.S. adults. *Prev Med* 121:121-127. 10.1016/j.ypmed.2019.02.022
Blumenthal JA, Babyak MA, Doraiswamy PM, Watkins L, Hoffman BM, Barbour KA, Herman S, Craighead WE, Brosse AL, Waugh R, Hinderliter A, and Sherwood A. 2007. Exercise and pharmacotherapy in the treatment of major depressive disorder. *Psychosom Med* 69:587-596. 10.1097/PSY.0b013e318148c19a

Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, and Rubin GJ. 2020. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. *Lancet* 395:912-920. 10.1016/S0140-6736(20)30460-8

Cangin C, Harris R, Binkley P, Schwartzbaum J, and Focht B. 2018. Anaerobic muscle strengthening physical activity and depression severity among USA adults. *Prev Med Rep* 10:299-303. 10.1016/j.pmedr.2018.03.005

Childs E, and de Wit H. 2014. Regular exercise is associated with emotional resilience to acute stress in healthy adults. *Front Physiol* 5:161. 10.3389/fphys.2014.00161

Cho S, Park S, Takahashi S, Yoshiuchi K, Shephard RJ, and Aoyagi Y. 2019. Changes in and Interactions between Physical and Mental Health in Older Japanese: The Nakanojo Study. *Gerontology* 65:340-352. 10.1159/000494383

Choi EPH, Hui BPH, and Wan EYF. 2020. Depression and Anxiety in Hong Kong during COVID-19. *Int J Environ Res Public Health* 17. 10.3390/ijerph17103740

Dishman RK. 1997. Brain monoamines, exercise, and behavioral stress: animal models. *Med Sci Sports Exerc* 29:63-74. 10.1097/00005768-199701000-00010
Duffield R, Dawson B, and Goodman C. 2004. Energy system contribution to 100-m and 200-m track running events. *J Sci Med Sport* 7:302-313. 10.1016/s1440-2440(04)80025-2

Dun Y, Thomas RJ, Medina-Inojosa JR, Squires RW, Huang H, Smith JR, Liu S, and Olson TP. 2019a. High-Intensity Interval Training in Cardiac Rehabilitation: Impact on Fat Mass in Patients With Myocardial Infarction. *Mayo Clin Proc* 94:1718-1730. 10.1016/j.mayocp.2019.04.033

Dun Y, Thomas RJ, Smith JR, Medina-Inojosa JR, Squires RW, Bonikowske AR, Huang H, Liu S, and Olson TP. 2019b. High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction. *Cardiovasc Diabetol* 18:104. 10.1186/s12933-019-0907-0

Faulkner G, Carson V, and Stone M. 2014. Objectively measured sedentary behaviour and self-esteem among children. *Mental Health and Physical Activity* 7:25-29. 10.1016/j.mhpa.2013.11.001

Frazier L, Sanner J, Yu E, Cron SG, and Moeller FG. 2014. Using a single screening question for depressive symptoms in patients with acute coronary syndrome. *J Cardiovasc Nurs* 29:347-353. 10.1097/JCN.0b013e318291ee16

Hammen C, Kim EY, Eberhart NK, and Brennan PA. 2009. Chronic and acute stress and the prediction of major depression in women. *Depress Anxiety* 26:718-723. 10.1002/da.20571
Harvey SB, Overland S, Hatch SL, Wessely S, Mykletun A, and Hotopf M. 2018. Exercise and the Prevention of Depression: Results of the HUNT Cohort Study. *Am J Psychiatry* 175:28-36. 10.1176/appi.ajp.2017.16111223

Jaworska N, Courtright AK, De Somma E, MacQueen GM, and MacMaster FP. 2019. Aerobic exercise in depressed youth: A feasibility and clinical outcomes pilot. *Early Interv Psychiatry* 13:128-132. 10.1111/eip.12537

Kerling A, Tegtbur U, Gützlaff E, Kück M, Borchert L, Ates Z, von Bohlen A, Frieling H, Hüper K, Hartung D, Schweiger U, and Kahl KG. 2015. Effects of adjunctive exercise on physiological and psychological parameters in depression: a randomized pilot trial. *J Affect Disord* 177:1-6. 10.1016/j.jad.2015.01.006

Kirby JS, Butt M, Esmann S, and Jemec GBE. 2017. Association of Resilience With Depression and Health-Related Quality of Life for Patients With Hidradenitis Suppurativa. *JAMA Dermatol* 153:1263-1269. 10.1001/jamadermatol.2017.3596

Krogh J, Saltin B, Gluud C, and Nordentoft M. 2009. The DEMO trial: a randomized, parallel-group, observer-blinded clinical trial of strength versus aerobic versus relaxation training for patients with mild to moderate depression. *J Clin Psychiatry* 70:790-800. 10.4088/jcp.08m04241

Lei L, Huang X, Zhang S, Yang J, Yang L, and Xu M. 2020. Comparison of Prevalence and Associated Factors of Anxiety and Depression Among People Affected by versus People
Unaffected by Quarantine During the COVID-19 Epidemic in Southwestern China. *Med Sci Monit* 26:e924609. 10.12659/MSM.924609

Lopez-Bueno R, Calatayud J, Ezzatvar Y, Casajus JA, Smith L, Andersen LL, and Lopez-Sanchez GF. 2020. Association Between Current Physical Activity and Current Perceived Anxiety and Mood in the Initial Phase of COVID-19 Confinement. *Front Psychiatry* 11:729. 10.3389/fpsyt.2020.00729

Macfarlane D, Chan A, and Cerin E. 2011. Examining the validity and reliability of the Chinese version of the International Physical Activity Questionnaire, long form (IPAQ-LC). *Public Health Nutr* 14:443-450. 10.1017/S1368980010002806

Margaria R, Aghemo P, and Piñera Limas F. 1975. A simple relation between performance in running and maximal aerobic power. *J Appl Physiol* 38:351-352. 10.1152/jappl.1975.38.2.351

Marques A, Gomez-Baya D, Peralta M, Frasquilho D, Santos T, Martins J, Ferrari G, and Gaspar de Matos M. 2020. The Effect of Muscular Strength on Depression Symptoms in Adults: A Systematic Review and Meta-Analysis. *Int J Environ Res Public Health* 17. 10.3390/ijerph17165674

Moullec G, Plourde A, Lavoie KL, Suarthana E, and Bacon SL. 2015. Beck Depression Inventory II: determination and comparison of its diagnostic accuracy in cardiac outpatients. *Eur J Prev Cardiol* 22:665-672. 10.1177/2047487314527851
Moulton CD, Pickup JC, and Ismail K. 2015. The link between depression and diabetes: the search for shared mechanisms. *Lancet Diabetes Endocrinol* 3:461-471. 10.1016/S2213-8587(15)00134-5

Myers J, McAuley P, Lavie CJ, Despres JP, Arena R, and Kokkinos P. 2015. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. *Prog Cardiovasc Dis* 57:306-314. 10.1016/j.pcad.2014.09.011

Pedersen LR, Olsen RH, Anholm C, Astrup A, Eugen-Olsen J, Fenger M, Simonsen L, Walzem RL, Haugaard SB, and Prescott E. 2019. Effects of 1 year of exercise training versus combined exercise training and weight loss on body composition, low-grade inflammation and lipids in overweight patients with coronary artery disease: a randomized trial. *Cardiovasc Diabetol* 18:127. 10.1186/s12933-019-0934-x

Poulton NP, and Muir GD. 2005. Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-parkinsonian rats. *Exp Neurol* 193:181-197. 10.1016/j.expneurol.2004.12.006

Ranu H, Wilde M, and Madden B. 2011. Pulmonary function tests. *Ulster Med J* 80:84-90.

Reger MA, Stanley IH, and Joiner TE. 2020. Suicide Mortality and Coronavirus Disease 2019-A Perfect Storm? *JAMA Psychiatry*. 10.1001/jamapsychiatry.2020.1060

Ren Z, Cao J, Li Y, Cheng P, Cao B, Hao Z, Yao H, Shi D, Liu B, Chen C, Yang G, Peng L, and Guo L. 2020. Association between muscle strength and depressive symptoms among
Chinese female college freshmen: a cross-sectional study. *BMC Musculoskelet Disord* 21:510. 10.1186/s12891-020-03478-w

Robertson DG, and Fleming D. 1987. Kinetics of standing broad and vertical jumping. *Can J Sport Sci* 12:19-23.

Ross KM, Eastman A, and Wing RR. 2019. Accuracy of Self-Report Versus Objective Smart-Scale Weights During a 12-Week Weight Management Intervention. *Obesity (Silver Spring)* 27:385-390. 10.1002/oby.22400

Rutherford WJ, and Corbin CB. 1994. Validation of criterion-referenced standards for tests of arm and shoulder girdle strength and endurance. *Res Q Exerc Sport* 65:110-119. 10.1080/02701367.1994.10607605

Stanton R, To QG, Khalesi S, Williams SL, Alley SJ, Thwaite TL, Fenning AS, and Vandelanotte C. 2020. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. *Int J Environ Res Public Health* 17. 10.3390/ijerph17114065

Suija K, Timonen M, Suviola M, Jokelainen J, Jarvelin MR, and Tammelin T. 2013. The association between physical fitness and depressive symptoms among young adults: results of the Northern Finland 1966 birth cohort study. *BMC Public Health* 13:535. 10.1186/1471-2458-13-535
537 Torales J, O'Higgins M, Castaldelli-Maia JM, and Vetrignio A. 2020. The outbreak of COVID-19 coronavirus and its impact on global mental health. *Int J Soc Psychiatry* 66:317-320. 10.1177/0020764020915212

540 Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, and Ho RC. 2020. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. *Int J Environ Res Public Health* 17. 10.3390/ijerph17051729

544 Yang X, and Stewart SM. 2020. The Beck Depression Inventory-II as a screening tool of depression in the Chinese adolescent population in Hong Kong: A validation study using the Composite International Diagnostic Interview as the gold standard. *Asian J Psychiatr* 52:102125. 10.1016/j.ajp.2020.102125

548 Yi X, Fu Y, Burns RD, Bai Y, and Zhang P. 2019. Body mass index and physical fitness among Chinese adolescents from Shandong Province: a cross-sectional study. *BMC Public Health* 19:81. 10.1186/s12889-019-6420-2

551 Zhu JB, Zhang JW, Sheng ZH, and Wang FT. 2018. Reliability and Validity of the Beck Depression Inventory-Ii Applied to Chinese Construction Workers. *Social Behavior and Personality* 46:249-258. 10.2224/sbp.6638

554 Zhu Z, Yang Y, Kong Z, Zhang Y, and Zhuang J. 2017. Prevalence of physical fitness in Chinese school-aged children: Findings from the 2016 Physical Activity and Fitness in China-The Youth Study. *J Sport Health Sci* 6:395-403. 10.1016/j.jshs.2017.09.003
Demographics and characteristics of participants pre- and during the COVID-19 pandemic

CI, confidence interval; COVID-19, coronavirus disease-19. Data were expressed as mean ± standard deviation or number (percent) accordingly. † Socio-economic level data was obtained based on residence place of participants and 2019 Chinese Family Income data. A family earning less than ¥14,360 per year was considered a lower-income family; between ¥14,360 and ¥36,470 per year was considered a middle-income family; more than ¥36,470 per year was considered a upper-income family. * Mean difference (95% CI) and \(P \) value are for the comparison between men and women. ‡ Mean difference (95% CI) in percent.

Table 1 (on next page)
Table 1. Demographics and characteristics of participants pre- and during the COVID-19 pandemic

	Men	Women	Total	Mean diff. (95% CI) *	P value*
Age, yr	20 ± 1	19 ± 1	20 ± 1	0.2 (0.2 to 0.3)	<0.001
Weight, kg	63.4 ± 10.3	52.0 ± 7.7	54.3 ± 9.5	11.4 (11.0 to 11.8)	<0.001
Body mass index, kg/m²	21.2 ± 3.2	20.2 ± 2.7	20.4 ± 2.8	1.0 (0.8 to 1.1)	<0.001
Socio-economic status†				0.002	
Lower-income	288 (11.3)	1,282 (12.4)	1,570 (12.2)	NA	
Middle-income	1,621 (63.6)	6,183 (59.8)	7,804 (60.6)	NA	
Upper-income	640 (25.1)	2,875 (27.8)	3,514 (27.3)	NA	
Baseline stress, yes, n (%)	1,026 (40.3)	4,458 (43.1)	5,484 (42.5)	NA	0.009
Exercise volume, MET-hr/wk	13.9 ±12.3	8.8 ± 8.3	9.8 ± 9.4	5.2 (4.7 to 5.7)	<0.001
Physical fitness					
Anaerobic fitness, 50-m sprint, s	7.5 ± 0.5	9.2 ± 0.6	8.9 ± 0.9	-1.7 (-1.7 to -1.7)	<0.001
Anaerobic fitness score	78 ± 10	70 ± 9	71 ± 10	8.4 (7.9 to 8.4)	<0.001
Aerobic fitness, 800-m/1000-m run, s	237 ± 22	247 ± 27	NA	NA	NA
Aerobic fitness score	67 ± 13	73 ± 11	72 ± 12	-5.8 (-6.3 to -5.2)	<0.001
Explosive fitness, standing jump, meters	2.2 ± 0.2	1.7 ± 0.1	1.8 ± 0.3	0.5 (0.4 to 0.6)	<0.001
Explosive fitness score	67 ± 14	71 ± 12	70 ± 13	-3.6 (-4.3 to -3.0)	<0.001
Muscular fitness, timed sit-ups/pull-ups	34 ± 8	8 ± 5	NA	NA	NA
Muscular fitness score	53 ± 27	67 ± 11	65 ± 15	-13.7 (-15.0 to -12.4)	<0.001
Flexibility fitness, sit and reach, cm	14 ± 6	17 ± 5	17 ± 6	-3.7 (-3.9 to -3.4)	<0.001
Flexibility fitness score	73 ± 13	78 ± 11	77 ± 12	-4.7 (-5.3 to -4.2)	<0.001
Pulmonary fitness, vital capacity, L	4.1 ± 0.7	2.8 ± 0.4	3.1 ± 0.7	1.3 (1.3 to 1.3)	<0.001
Pulmonary fitness score	75 ± 13	76 ± 11	76 ± 11	-0.5 (-1.0 to 0.1)	0.100
Depression score during COVID-19 pandemic	5 ± 8	6 ± 8	6 ± 8	-0.6 (-0.9 to -0.2)	0.001
--	-------	-------	-------	---------------------	-------
Without depression	2,195 (86.1)	8,789 (85.0)	10,984 (85.2)	NA	0.151
With depression	354 (13.9)	1,551 (15.0)	1,905 (14.8)	NA	0.650
Mild depression	155 (6.1)	672 (6.5)	827 (6.4)	NA	
Moderate depression	138 (5.4)	579 (5.6)	717 (5.6)	NA	
Severe depression	61 (2.4)	300 (2.9)	361 (2.8)	NA	
Geographic attribute				<0.001	
Rural area	1,007 (39.5)	3,557 (34.4)	4,564 (35.4)	NA	
Urban-rural junction area	1,037 (40.7)	4,426 (42.8)	5,463 (42.4)	NA	
Urban area	505 (19.8)	2,358 (22.8)	2,862 (22.2)	NA	
Living status during COVID-19 pandemic	<0.001				
Living alone	1,207 (47.4)	4,081 (39.5)	5,288 (41.0)	NA	
Living with family/friends	1,342 (52.6)	6,259 (60.5)	7,601 (59.0)	NA	
Smoking, n (%)		<0.001			
Never smoke	1932 (75.8)	10,107 (97.7)	12,039 (93.4)	NA	
Former smoker	227 (8.9)	147 (1.4)	374 (2.9)	NA	
Currently smoking	390 (15.3)	86 (0.9)	476 (3.7)	NA	
<10 cigarettes/day	297 (11.7)	73 (0.7)	370 (2.9)	NA	
10-15 cigarettes/day	57 (2.2)	9 (0.09)	66 (0.5)	NA	
>15 cigarettes/day	36 (1.4)	4 (0.03)	40 (0.3)	NA	
Alcohol, drinks/wk	1.8 ± 2.9	0.7 ± 1.6	0.9 ± 2.0	1.2 (0.1 to 1.3)	<0.001
Change in weight, kg	2.6 ± 3.9	2.1 ± 3.6	2.2 ± 3.7	0.5 (0.3 to 0.6)	<0.001
Change in exercise volume, MET-hr/wk	-0.6 ± 13.0	2.5 ± 10.1	1.9 ± 10.8	-3.1 (-3.6 to -2.5)	<0.001

3 CI, confidence interval; COVID-19, coronavirus disease-19. Data were expressed as mean ± standard deviation or number (percent) accordingly.
† Socio-economic level data was obtained based on residence place of participants and 2019 Chinese Family Income data. A family earning less than ¥14,360 per year was considered a lower-income family; between ¥14,360 and ¥36,470 per year was considered a middle-income family; more than ¥36,470 per year was considered a upper-income family.

* Mean difference was calculated as women subtracted by men, and expressed as mean difference (95% CI). P values are for the comparison between men and women.
Table 2 (on next page)

Univariate linear regression for the relationships between prior physical fitness and depression during the COVID-19 pandemic.

CI, confidence interval; COVID-19, coronavirus disease-19; BDI-II, Becks’ Depression Inventory-II. The first level of the ordered categorical variables were used as reference. Data are expressed as BDI-II score change related to each variable.
Table 2. Univariate linear regression for the associations between each prior physical fitness and BDI-II depression score during the COVID-19 pandemic.

	Men (N = 2,549)	P Value	Women (N = 10,340)	P Value	Total (N = 12,889)	P Value									
	Coefficients	(95% CI)	Coefficients	(95% CI)	Coefficients	(95% CI)									
Age, yr	-0.100 (-0.352 to 0.151)	0.432	-0.038 (-0.172 to 0.095)	0.574	-0.064 (-0.182 to 0.054)	0.287									
Change in weight, kg	0.147 (0.066 to 0.228)	<0.001	0.127 (0.082 to 0.171)	<0.001	0.128 (0.089 to 0.167)	<0.001									
Change in exercise volume, MET-hr/wk	-0.010 (-0.035 to 0.014)	0.411	-0.021 (-0.037 to -0.005)	0.010	-0.015 (-0.029 to -0.002)	0.025									
Baseline stress, yes															
No	Reference		Reference		Reference										
Yes	0.467 (0.144 to 0.789)	0.005	0.283 (0.120 to 0.446)	<0.001	0.324 (0.179 to 0.470)	<0.001									
Prior physical fitness															
Anaerobic fitness															
Low	Reference		Reference		Reference										
Moderate	-3.471 (-7.368 to 0.426)	0.084	-1.504 (-2.502 to -0.505)	0.001	-1.635 (-2.580 to -0.690)	<0.001									
High	-3.929 (-7.919 to 0.060)	0.054	-1.504 (-0.706 to -0.302)	0.010	-1.816 (-2.906 to -0.727)	<0.001									
Excellent	-4.547 (-8.504 to -0.590)	0.023	-2.680 (-4.716 to -0.443)	0.014	-2.964 (-4.197 to -1.732)	<0.001									
Aerobic fitness															
Low	Reference		Reference		Reference										
Moderate	-1.123 (-2.176 to -0.070)	0.033	-1.497 (-2.322 to -0.673)	<0.001	-1.120 (-1.841 to -0.558)	<0.001									
High	-0.978 (-2.550 to 0.594)	0.340	-1.548 (-2.460 to -0.637)	<0.001	-1.176 (-1.919 to -0.434)	<0.001									
Excellent	-2.648 (-4.887 to -0.408)	0.015	-2.017 (-3.103 to -0.931)	<0.001	-1.794 (-2.723 to -0.865)	<0.001									
Explosive fitness															
Low	Reference		Reference		Reference										
Moderate	-1.236 (-2.452 to -0.019)	0.046	-0.652 (-1.399 to 0.100)	0.100	-0.745 (-1.383 to -0.108)	0.017									
High	-0.978 (-2.550 to 0.594)	0.340	-1.548 (-2.460 to -0.637)	<0.001	-1.176 (-1.919 to -0.434)	<0.001									
Excellent	-2.486 (-4.765 to -0.208)	0.028	-1.531 (-2.545 to -0.517)	<0.001	-1.605 (-2.513 to -0.697)	<0.001									
Muscular fitness															
Low	Reference		Reference		Reference										
	Flexibility fitness	Pulmonary fitness	Geographic attribute	Socio-economic status	Living status	Smoking									
---------------	---------------------	-------------------	----------------------	----------------------	--------------	---------									
	Low	Moderate	High	Excellent	Rural area	Urban-rural junction area	Urban area	Middle-income	Upper-income	Alcohol, drinks/wk	Living alone	Living with family/friends	Never smoke	Former smoker	Currently smoking
Moderate	0.434 (-0.316 to 1.184)	0.263 (-1.410 to -0.721)	<0.001	-1.393 (-0.586 to 0.307)	0.824	-0.139 (-0.586 to 0.307)	-0.759 (-2.593 to 1.074)	0.572	-0.0.804 (-2.364 to 0.756)	0.358	-1.044 (-1.871 to -0.218)	-1.410 (-2.100 to -0.721)	0.016	-1.482 (-2.562 to -0.402)	0.008
High	0.152 (-1.265 to 1.569)	0.860 (-2.438 to -1.400)	<0.001	-1.044 (-1.871 to -0.218)	0.008	-1.044 (-1.871 to -0.218)	-2.438 (-3.476 to -1.400)	0.860	-0.0.804 (-2.364 to 0.756)	0.358	-1.044 (-1.871 to -0.218)	-2.438 (-3.476 to -1.400)	0.860	-1.044 (-1.871 to -0.218)	0.008
Excellent	-1.610 (-2.952 to -0.268)	0.018 (-2.152 to -0.687)	<0.001	-1.482 (-2.562 to -0.402)	0.003	-1.482 (-2.562 to -0.402)	-3.618 (-5.246 to -1.990)	0.018	-0.0.804 (-2.364 to 0.756)	0.358	-1.044 (-1.871 to -0.218)	-3.618 (-5.246 to -1.990)	0.018	-1.044 (-1.871 to -0.218)	0.008

Flexibility fitness
- **Low**: Reference
- **Moderate**: Reference
- **High**: Reference
- **Excellent**: Reference

Pulmonary fitness
- **Low**: Reference
- **Moderate**: Reference
- **High**: Reference
- **Excellent**: Reference

Geographic attribute
- **Rural area**: Reference
- **Urban-rural junction area**: Reference
- **Urban area**: Reference

Socio-economic status
- **Lower-income**: Reference
- **Middle-income**: Reference
- **Upper-income**: Reference
- **Alcohol, drinks/wk**: Reference

Living status
- **Living alone**: Reference
- **Living with family/friends**: Reference

Smoking
- **Never smoke**: Reference
- **Former smoker**: Reference
- **Currently smoking**: Reference
- **<10 cigarettes/day**: Reference
| | 10-15 cigarettes/day | | >15 cigarettes/day | | | |
|--------------------------|----------------------|------|-------------------|------|------|------|
| | 5.327 (2.927 to 7.727) | <0.001 | 9.669 (4.126 to 15.212) | <0.001 | 5.246 (3.195 to 7.298) | <0.001 |
| >15 cigarettes/day | 5.989 (2.854 to 9.124) | <0.001 | 12.835 (4.523 to 21.148) | 0.002 | 6.029 (3.293 to 8.766) | <0.001 |

3 CI, confidence interval; COVID-19, coronavirus disease-19; BDI-II, Becks’ Depression Inventory-II. The first level of the ordered categorical variables were used as reference.
Table 3 (on next page)

Multivariate linear regression for the relationships between prior physical fitness and depression during the COVID-19 pandemic.

CI, confidence interval; COVID-19, coronavirus disease-19; BDI-II, Becks’ Depression Inventory-II. Multivariate models were adjusted for age, baseline stress, dwelling location, socio-economic level, and smoking, alcohol, living status, changes in weight and exercise volume during COVID-19 pandemic. The low fitness level of each physical fitness variable were used as reference. Data are expressed as BDI-II score change related to each variable.
Table 3. Multivariable linear regression for the relationships between prior physical fitness and depression during the COVID-19 pandemic.

Physical Fitness Variable	Men (N = 2,549)	Women (N = 10,340)	Total (N = 12,889)			
	Coefficient	P Value	Coefficient	P Value	Coefficient	P Value
	(95% CI)		(95% CI)		(95% CI)	
Anaerobic fitness						
Low	Reference		Reference		Reference	
Moderate	-1.564 (-6.263 to 3.135)	0.292	-1.544 (-2.639 to -0.450)	0.003	-1.612 (-2.668 to -0.557)	0.001
High	-2.336 (-7.156 to 2.484)	0.390	-1.558 (-2.878 to -0.238)	0.016	-1.958 (-3.168 to -0.731)	<0.001
Excellent	-2.593 (-7.375 to 2.187)	0.325	-2.712 (-5.192 to -0.233)	0.028	-3.300 (-4.761 to -1.838)	<0.001
Aerobic fitness						
Low	Reference		Reference		Reference	
Moderate	-0.923 (-2.306 to 0.460)	0.279	-1.449 (-2.376 to -0.522)	0.001	-1.137 (-1.896 to -0.378)	<0.002
High	-0.913 (-2.966 to 1.140)	0.605	-1.447 (-2.466 to -0.429)	0.003	-1.071 (-1.935 to -0.207)	<0.011
Excellent	-2.152 (-5.101 to 0.797)	0.212	-1.820 (-3.026 to -0.615)	0.002	-1.521 (-2.586 to -0.455)	0.003
Explosive fitness						
Low	Reference		Reference		Reference	
Moderate	-1.797 (-3.326 to -0.268)	0.016	-0.693 (-1.536 to 0.150)	0.127	-0.851 (-1.587 to -0.115)	0.019
High	-1.355 (-3.327 to 0.616)	0.250	-0.859 (-1.844 to -0.042)	0.003	-0.923 (-1.798 to -0.048)	0.036
Excellent	-3.139 (-6.441 to 0.164)	0.067	-1.550 (-2.669 to -0.431)	0.004	-1.643 (-2.673 to -0.613)	<0.001
Muscular fitness						
Low	Reference		Reference		Reference	
Moderate	-0.777 (-1.919 to 0.364)	0.277	-1.601 (-2.379 to -0.823)	<0.001	-0.498 (-1.049 to 0.053)	0.088
High	-1.408 (-3.560 to 0.744)	0.310	-2.324 (-3.482 to -1.166)	<0.001	-1.355 (-2.3 to -0.398)	0.002
Excellent	-2.171 (-4.207 to -0.135)	0.033	-2.084 (-3.680 to -0.488)	0.006	-1.713 (2.956 to -0.470)	0.003

CI, confidence interval; COVID-19, coronavirus disease-19; BDI-II, Becks’ Depression Inventory-II. Multivariate models were adjusted for age, baseline stress, dwelling location, socioeconomic level, and smoking, alcohol, living status, changes in weight and exercise volume during COVID-19 pandemic. The low fitness level of each physical fitness variable were used as reference.
Table 4 (on next page)

Baseline stress-stratified multivariate linear regression for the relationships between prior physical fitness and depression during the COVID-19 pandemic.

CI, confidence interval; COVID-19, coronavirus disease-19; BDI-II, Becks’ Depression Inventory-II. Multivariate models were adjusted for sex, age, dwelling location, socio-economic level, and smoking, alcohol, living status, changes in weight and exercise volume during COVID-19 pandemic. The low fitness level of each physical fitness variable were used as reference. Data are expressed as BDI-II score change related to each variable.
Table 4. Baseline stress-stratified multivariable linear regression for the relationships between prior physical fitness and depression during the COVID-19 pandemic.

	No baseline stress (N = 2,549)	Baseline stress (N = 10,340)	Total (N = 12,889)
	Coefficient (95% CI) P Value	Coefficient (95% CI) P Value	Coefficient (95% CI) P Value
Anaerobic fitness			
Low	Reference	Reference	Reference
Moderate	-1.501 (-2.843 to -0.158) 0.025	-1.613 (-3.309 to 0.082) 0.065	-1.543 (-2.601 to -0.486) 0.002
High	-2.101 (-3.679 to -0.523) 0.006	-1.482 (-3.442 to 0.479) 0.172	-1.762 (-2.995 to -0.528) 0.003
Excellent	-2.628 (-4.518 to -0.738) 0.004	-2.821 (-5.298 to -0.343) 0.022	-2.689 (-4.199 to -1.178) <0.001
Aerobic fitness			
Low	Reference	Reference	Reference
Moderate	-1.020 (-1.953 to -0.087) 0.029	-1.976 (-3.276 to -0.676) 0.001	-1.346 (-2.111 to -0.581) <0.001
High	-1.257 (-2.338 to -0.175) 0.018	-1.700 (-3.159 to -0.242) 0.018	-1.340 (-2.214 to -0.466) 0.001
Excellent	-1.579 (-2.947 to -0.211) 0.019	-2.380 (-4.111 to -0.649) 0.004	-1.772 (-2.846 to -0.699) <0.001
Explosive fitness			
Low	Reference	Reference	Reference
Moderate	-0.836 (-1.759 to -0.087) 0.084	-1.197 (-2.404 to 0.012) 0.053	0.983 (-1.721 to -0.245) 0.006
High	-0.502 (-1.604 to 0.600) 0.538	-1.786 (-3.212 to -0.360) 0.010	-1.040 (-1.916 to -0.163) 0.016
Excellent	-1.448 (-2.763 to -0.133) 0.027	-2.456 (-4.114 to -0.798) 0.002	-1.849 (-2.884 to -0.815) <0.001
Muscular fitness			
Low	Reference	Reference	Reference
Moderate	-1.095 (-1.884 to -0.305) 0.003	-1.903 (-2.927 to -0.879) <0.001	-1.419 (-2.048 to -0.792) <0.001
High	-1.568 (-2.774 to -0.362) 0.006	-2.963 (-4.634 to -1.292) <0.001	-2.139 (-3.125 to -1.153) <0.001
Excellent	-2.399 (-3.958 to -0.841) <0.001	-1.749 (-3.723 to 0.296) 0.115	-2.136 (-3.383 to -0.889) <0.001

CI, confidence interval; COVID-19, coronavirus disease-19; BDI-II, Becks’ Depression Inventory-II. Multivariate models were adjusted for sex, age, dwelling location, socio-economic level, and smoking, alcohol, living status, changes in weight and exercise volume during
COVID-19 pandemic. The low fitness level of each physical fitness variable were used as reference.
Figure 1

Binary logistic regression for the relationships between prior physical fitness and depression during the COVID-19 pandemic.

Figure 1. OR, odds ratio; CI, confidence interval; COVID-19, coronavirus disease-19. The low fitness was used as reference for each physical fitness variable. Multivariate models were adjusted for sex, age, prior perceived stress, dwelling location, socio-economic level, and smoking, alcohol, living status, changes in weight and exercise volume during the COVID-19 pandemic. * Overall equates to the participants that were graded as pass, good and excellent.