3M-CDNet: A Universal Powerful Benchmark for Remote Sensing Image Change Detection
Kaiqiang Song and Jie Jiang

Abstract—While deep learning-based methods have gained popularity and have made remarkable progress in remote sensing (RS) image change detection (CD), the limited amount of available data hinders the performance of most supervised methods. The CD networks transferred or derived from other fields can be faced with a weak generalization capability. Developing a universal benchmark for performance evaluation based on the available datasets is urgent. To address these problems, we proposed a lightweight network, termed 3M-CDNet, which only requires about 3.12 M parameters. The lighter the network, the easier it is to train and alleviate overfitting the limited amount of data, resulting in better generalization capability. 3M-CDNet has a flexible modular design that achieves performance improvements by incorporating plug-and-play modules. 3M-CDNet gains accuracy improvements in two ways: (1) the application of deformable convolutions (DConv) in the backbone network to gain a good geometric transformation modeling capacity for CD and (2) the application of an effective two-level feature fusion strategy to enhance the feature representation capacity. 3M-CDNet gains a good generalization capability by incorporating effective “tricks” to alleviate overfitting, in which online data augmentation (Online DA) is applied to increase the diversity of the training samples, and Dropout regularization is applied in the classifier. Extensive ablation studies have proved the effectiveness of the core components. Experiment results suggest that 3M-CDNet outperforms state-of-the-art methods on several optical RS datasets and serves as a new universal benchmark. Specifically, 3M-CDNet achieves the best F1-score, i.e., LEVIR-CD (0.9161), Season-Varying (0.9473), and DSIFN (0.7031).

Index Terms—Change detection (CD), convolutional neural networks (CNNs), deformable convolutions (DConv), optical remote sensing (RS) images.

I. INTRODUCTION

CHANGE detection (CD) aims to identify and locate the change footprints from multitemporal remote sensing (RS) images acquired over the same geographical region at different times. CD has a wide range of applications, such as land cover and land use identification, urbanization monitoring, and damage assessment [1]. With the rapid development of RS techniques, optical RS images are among the most representative data widely utilized for CD. Especially the high- and very high-resolution RS images, which can reflect abundant spectral and spatial information of geospatial objects, allow us to retain more details and obtain high-quality change maps. In this study, the main concern was binary CD based on optical RS images. CD methods usually generate a pixel-level change map, in which pixels are classified as changed or unchanged.

With the impressive breakthroughs made in deep learning, CD methods have gradually evolved from traditional [2] to deep neural network (DNN)-based methods [1]. Supervised CD methods built on convolutional neural networks (CNNs) have gained popularity and show promising performance. Some attempts adopted the U-shaped architecture [3]–[5], which concatenates feature maps from different levels through multiple skip connections to improve accuracy. These studies demonstrated that both high-level semantic information and low-level detail information are important in CD. Unfortunately, which multilevel feature fusion strategy is the better is not clear, and dense skip connections bring about heavy computational costs. Alternatively, recent works proposed attention-mechanism-based networks to learn discriminative features and alleviate distracting by pseudo-changes [6]–[10]. However, they usually require a large amount of data to achieve satisfactory performance; otherwise, it is easy to overfit.

Despite the increasing number of raw RS images, the time-consuming and labor-intensive work of manual interpretation still hinders the development of CD methods considering the data-hungry nature of DNNs. Currently, only a few open available labelled datasets can be used for model training and evaluation, such as LEVIR-CD [6], Season-Varying [11], DSIFN [8], HRSCD [4]. Unfortunately, all of them have less data than the ImageNet and COCO datasets. While DNN-based CD methods have made remarkable progress, the limited data hinder the performance of most supervised methods. The CD networks derived from other CV tasks can be faced with a weak generalization capability. Thus, overfitting becomes one of the main concerns. To address the problem, a lightweight CD model with few parameters becomes an intuitive solution.

Moreover, due to some works adopting different datasets for evaluation, it is difficult to say which one achieves the best performance. Although some methods are evaluated on the same dataset, unfortunately, they adopt different criteria to split the datasets [6], [7], which makes it difficult to compare them directly. In addition, only a few works are openly available to the public. The lack of implementation details results in poor reproducibility, which heavily hinders the development of CD algorithms from research to application. Therefore, developing a universal benchmark based on available datasets is urgent.

The main concerns of this study are as follows: (1) achieve a good generalization capability and (2) gain considerable accuracy improvements. Inspired by Occam’s Razor (“Non sunt multiplicanda entia sine necessitate”, or “Entities are not to be multiplied without necessity”), we propose a lightweight network called 3M-CDNet. To provide a universal benchmark with good reproducibility, all the implementation details will be

The authors are with the School of Instrumentation and Optoelectronic Engineering, Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China (e-mail: kaiqiangsong@buaa.edu.cn; jiejiang@buaa.edu.cn).

Color versions of one or more of the figures in this article are available online at http://ieeexplore.ieee.org.
We proposed a universal benchmark for CD, termed 3M-CDNet, which only involves about 3.12 M parameters. 3M-CDNet has a modular design with high flexibility for easy plug-in of plug-and-play modules, e.g., DConv [12], to gain performance improvements.

2) To the best of our knowledge, this study is among the first to incorporate DConv into the backbone network to enhance the geometric transformation modeling capacity for CD.

3) This study explores a "bag of tricks" to achieve considerable performance improvements. Specifically, Online DA and Dropout regularization [13] were used to improve the generalization capability. A two-level feature fusion strategy was applied to improve the feature representation capacity.

II. PROPOSED METHOD

We proposed a universal benchmark for CD, termed 3M-CDNet, which only involves about 3.12 M parameters. As shown in Fig. 1, 3M-CDNet mainly consists of two core components: (a) DConv-based backbone and (b) Pixelwise classifier. The former is used for feature extraction from input $f^{(i, j)} \in \mathbb{R}^{k \times h \times w}$, e.g., taking as an input with 6 bands a pair of bitemporal RGB images. The latter is used to classify the extracted features into two classes, and then generate a binary change map $CM \in \mathbb{R}^{k \times h \times w}$, where pixels are either changed or unchanged. 3M-CDNet has a modular structure with high flexibility. It allows achieving performance improvements by incorporating some plug-and-play modules, such as DConv.

A. Network Architecture

1) DConv-based Backbone Network. As shown in Fig. 1(a), the backbone network of 3M-CDNet is composed of the Input Layer, Layer1, and Layer2. The main concern is to reduce the size of input through consecutive downsampling and convolution operations, and extract features maps with varying degrees of semantics. Specifically, Input Layer consists of three stacked 3×3 convolutional layers followed by a MaxPool layer. Input Layer is applied to downsample the input by 4 times and transform $f^{(i, j)} \in \mathbb{R}^{k \times h \times w}$ into a 3-D tensor $X_{s} \in \mathbb{R}^{k \times 12 \times 3 \times 3 \times 3}$, of which the spatial resolution is 1/4 of the input size. $X_{s} \in \mathbb{R}^{256 \times 12 \times 3 \times 3 \times 3}$ and $X_{ms} \in \mathbb{R}^{128 \times 12 \times 3 \times 3 \times 3}$ are feature maps extracted from Layer1 and Layer2, respectively.

(b) Pixelwise Classifier

Conv1 $\times 1 \times 1$ [768, 256]
Bilinearly Upsample by 2$	imes$
Conv1 $\times 1 \times 1$[256, 256]
Dropout (0.5)
Conv2 $\times 3 \times 3$[256, 256]
Dropout (0.1)
Conv1 $\times 1 \times 1$[256, 1]
Bilinearly Upsample by 2$	imes$
Sigmoid(\cdot)
Thresholding 0.5

Fig. 1. Network architecture of 3M-CDNet. Zoom in for an improved view. (a) DConv-based backbone network. (b) Pixelwise classifier. (c) DConv-based bottleneck residual blocks. (d) DConv. Best viewed in color. For brevity, ReLU and batch normalization (BN) at the tail of convolution layers are not fully shown.

(a) Introducing residual network [14]. When the CNN goes deeper, which could hamper the convergence, it may suffer from a degradation problem. Therefore, Layer1 and Layer2 adopt bottleneck residual blocks [14] as basic units, since residual blocks have the advantage of alleviating the degradation problem and promoting convergence during training. As shown in Fig. 1(c), bottleneck blocks can be formulated as follows:

$$X_{out} = \text{ReLU}(H(X_{in}) + \zeta(X_{in}, \Omega_i)).$$

where X_{in} and X_{out} are the input and output tensors of the lth residual block, respectively. $\zeta(\cdot)$ indicates the residual function, i.e., the right branch that consists of three stacked convolution layers. $H(\cdot)$ indicates the identity mapping function, i.e., the left branch. $H(\cdot)$ applies a downsampling projection shortcut through a Conv1\times1\times1 BN layer only if stride is set to 2, e.g., the first block of Layer2, otherwise applying an identity shortcut. ReLU(\cdot) is the rectified linear unit activation function for enhancing the non-linear fitting ability, and batch normalization (BN) is also applied at the tail end of each convolution kernel to facilitate training procedure more stable.

(b) Introducing deformable convolutions [12]. Let $X_{in}(p)$ and $X_{out}(p)$ denote the feature at location p of the input and output feature maps, respectively. Given a convolution kernel of K sampling locations, let w_k and p_k denote the weight value and default offset for the kth location of the kernel, respectively, e.g., a 3×3 kernel with $p_k \in \{(-1, -1), (-1, 0), ..., (1, 1)\} K = 9$. The deformable convolution [12] can be formulated as follows:

$$X_{out}(p) = \sum_{k} w_k \cdot X_{in}(p + p_k + \Delta m_k) \cdot \Delta m_k.$$ (2)

where Δp_k and Δm_k are the learnable 2-D offsets and modulation factor for the kth location, respectively, and w_k enumerates the weights of the kernel. More precisely, two convolution layers OffsetConv and ModConv of the same kernel size are separately applied over the input feature maps to obtain Δp_k and Δm_k. Due to the fractional coordinate
During training, Dropout randomly drops units from the network with a certain probability p_d, which can be equivalent to training numerous different networks simultaneously, i.e., $D(X) = D_n \odot X$, where D_n indicates a binary mask of the same size with the feature map X, and \odot indicates the element-wise multiplication operation. D_n is randomly generated from a Bernoulli distribution with a probability p_d, and the units of the feature maps corresponding to the locations of zeros are to be discarded during training. At test time, a neural unit is always presented, and the weights are multiplied by p_d so that the output of the unit would be the same as the expected output at training time, i.e., $D(X) = p_d \cdot X$. As shown in Fig. 1(b), two Dropout layers with probabilities of 0.5 and 0.1 are applied at the tail end of the classifier’s 3×3 convolution layers.

3) **Online Data Augmentation.** Data augmentation (DA) is a simple yet effective technique for regularizing the network. DA can be used to simulate scale variations, illumination variations, and pseudo-changes, such as the spectra changes between bitemporal images. **Online DA** means that do DA only when training instead of expanding the training set at the cost of expensive training time. **Online DA** was randomly applied over every batch data with a probability of 0.8 by randomly shifting-rotating-scaling with padding zeros, rotating by 90°, 180°, and 270°, and flipping in horizontal and vertical directions, and applying color jitter. Each kind of augmentation was randomly applied with a probability of 0.5.

C. Loss Function Definition

During training, network parameters are iteratively updated by minimizing the loss between the forward output of 3M-CDNet and the reference change map with the BP algorithm according to a specific loss function. Since CD aims to classify the pixels as changed or unchanged, binary cross-entropy (BCE) loss is a natural candidate. Due to the widespread class imbalance, dominant unchanged pixels would make models tend to collapse. Thus, a soft Jaccard term is introduced, and the loss function can be formulated as shown in Equation (3).

$$L_	ext{BCE} = -\lambda \frac{1}{N} \sum_{n=1}^{N} \left(y_n \log(\hat{y}_n) + (1 - y_n) \log(1 - \hat{y}_n) \right) + (1 - \lambda) \frac{1}{N} \log \sum_{n=1}^{N} y_n \cdot \hat{y}_n + \hat{y}_n - y_n \cdot \hat{y}_n,$$

where two terms indicate the BCE loss and soft Jaccard with the weights λ and $1 - \lambda$, respectively, and λ is empirically set to 0.7. N is the number of training samples, and \hat{y}_n and y_n are pixels of predicted change maps and the reference, respectively.

III. Experiments

A. Evaluation Metrics and Experiment Settings

The most common metrics related to the changed category were adopted for the quantitative evaluation, including overall accuracy (OA), precision (Pr), recall (Re), F1-score (F1), and the intersection of union (IoU). F_1 and IoU are comprehensive indicators; the higher the value, the better the performance.

The proposed 3M-CDNet was implemented using PyTorch framework and optimized by minimizing Eq. (3) through the
AdamW optimizer [16] with $\beta_1 = 0.9$ and $\beta_2 = 0.99$, of which the initial learning rate and weight decay were set to 0.00125 and 0.0005, respectively. The minibatch size was set to 16 on an NVIDIA RTX 3090 GPU with 24 GB memory. For evaluation, we adopted three representative datasets, i.e., LEVIR-CD [6], Season-Varying [11], and DSIFN [8]; we applied the criteria as recommended by the creators to split the datasets (see Table I).

Table I	EXPERIMENTAL DATASETS	
Datasets	**Size of Samples**	**Number of Samples**
LEVIR-CD	512×512	training: $4,016$, validation: $1,024$, test: 512
Season-Varying	256×256	training: $10,000$, validation: $3,000$, test: $3,000$
DSIFN	512×512	training: $3,546$, validation: 394, test: 48

B. Ablation Studies

Ablation studies have been conducted to verify each component’s contribution of 3M-CDNet. Table II presents the quantitative results on several public datasets, where “w/o” and “w/” mean “without” and “with”, respectively.

1) Effects of Multilevel Feature Fusion Strategies. The first three rows of the Method applied with all components were used to verify the contributions of three different kinds of multilevel feature fusion strategies. Table II suggests that the **two-level strategy** always achieves the best performance in terms of F_1, i.e., LEVIR-CD (0.9161), Season-Varying (0.9471), and DSIFN (0.7031). Compared with the **one-level strategy** that lacks low-level details, it increased IoU and F_1 significantly by about 2.09% and 1.24% on LEVIR-CD, 2.75% and 1.55% on Season-Varying, as well as 4.96% and 4.31% on DSIFN, respectively. Unfortunately, the impact of the **three-level strategy** is negligible when using samples with size 512×512 for model training, e.g., as shown in the LEVIR-CD and DSIFN. However, the **three-level strategy** helps to achieve an improvement of F_1 (1.01%) and IoU (1.79%), compared to the **one-level strategy**, because it provides more spatial details in the case of using samples with the smaller size of 256×256 on Season-Varying. We can conclude that the **two-level strategy** is enough for improvements in our case, while introducing either insufficient or excessive features could bring about an unexpected degradation problem.

2) Effects of Different Tricks. The last four rows of the Method based on the **two-level strategy** were used to verify the effectiveness of **Online DA**, **Dropout**, and **DConv**. Table II suggests that **Online DA** makes the most impressive contributions on the smaller datasets, i.e., LEVIR-CD and DSIFN. Compared with the situation without **DA**, applying **DA** achieves considerable improvements of F_1 (1.43%) and IoU (2.40%) on LEVIR-CD. Similar situations can be observed on DSIFN. It demonstrates that **Online DA** is an effective trick to achieve immediate gains through improving the diversity of samples, especially when lacking enough training samples. Otherwise, we can observe that its impact is negligible in the case of Season-Varying dataset with sufficient samples. Meanwhile, **Dropout** can be an effective complementary regularization with **Online DA** for achieving good generalization capacity. In addition, Table II shows that **DConv** serves as an indispensable component for achieving high accuracy. For an instance, the last row shows that performance drops significantly without **DConv**, where F_1 decreased by about 1%, 2.03%, and 2.54% on the three datasets, and IoU decreased by 1.69%, 3.60%, and 2.97%, respectively. In particular, **DConv** helps to improve the generalization capacities in the challenging case of DSIFN, in which training and testing samples are collected from different cities.

C. Comparisons with Other Approaches

1) Comparisons of Network Parameters and Computational Cost. Table III shows the computational costs (GFLOPs) and number of parameters (M) of the CD networks. When calculating the computational cost during testing, it takes as an input 6x256x256 and 6x512x512 fixed-size. 3M-CDNet costs 23.66 G and 94.64 GFLOPs according to the input sizes.

2) Comparisons on LEVIR-CD. W-Net [3], FC-ER-Res [4], and Peng et al.[5], and attention-based methods STANet [6], DDCNN [7], and FarSeg [17] were selected as benchmarks. In particular, STANet was proposed by the dataset’s creator. Table IV presents the quantitative results and suggests that 3M-CDNet outperforms the state-of-the-art FarSeg/DDCNN (w/ **Online DA**) and achieves the best performance in terms of IoU (0.8452) and F_1 (0.9161), which increased by about 1.66% and 0.98% compared to FarSeg, respectively. Moreover, 3M-CDNet makes a better trade-off between precision and recall than other approaches. 3M-CDNet has broken the record and become the new benchmark for the LEVIR-CD dataset. For intuitive comparisons, the visual results are shown in Fig. 2. Compared with the change maps generated by other methods, 3M-CDNet achieves more complete and accurate boundaries and higher internal compactness on objects with various scales and shapes, which is more consistent with the reference. Moreover, 3M-CDNet successfully identifies the tiny gap among the crowded building groups and overcomes the pseudo-changes caused by the spectra changes. However, other methods suffer from more false alarms.

3) Comparisons on Season-Varying. More attention-based methods IFN [8], BA²Net [9], and DASNet [10] were selected as benchmarks for the quantitative evaluation. Table V suggests that 3M-CDNet is consistently superior to other approaches in
Table III

Method	Number of Parameters (M)	Computational Costs (GFLOPs)	
		512×512	
		256×256	
DDCNN [6]	60.21	855.59	213.90
IFN [7]	35.99	328.87	82.22
W-Net [2]	42.50	290.82	72.70
STANet [5]	16.93	155.33	19.58
Peng et al. [4]	9.04	125.35	31.34
FarSeg [16]	31.38	41.74	11.94
FC-EF-Res [3]	1.10	6.89	1.72
3M-CDNet	3.12	94.64	23.66

Table IV

Method	OA (%)	Pr (%)	Re (%)	IoU (%)	F1 (%)
STANet [5]	85.01	91.38*	0.7869	0.8808	
W-Net [2]	90.37	85.92	0.7871	0.8809	
FC-EF-Res [3]	90.22	88.25	0.8055	0.8923	
Peng et al. [4]	91.53	88.70	0.8197	0.9009	
DDCNN [6]	90.15*	89.07	0.8279	0.9059	
FarSeg [16]	91.04	90.22	0.8286	0.9063	
3M-CDNet	91.99	91.24	0.8452*	0.9161*	

Table V

Method	OA (%)	Pr (%)	Re (%)	F1 (%)	
Peng et al. [4]	96.73	89.54	87.11	0.8756	
FC-EF-Res [3]	97.25	89.91	87.37	0.8862	
IFN [7]	97.71	94.96	86.08	0.9030	
BA²Net [8]	98.94*	88.12	95.28	0.9136	
DASNet [9]	98.20	92.20	93.20	0.9270	
FarSeg [16]	98.23	87.75	99.56*	0.9328	
DDCNN [6]	98.64	96.71*	92.32	0.9446	
3M-CDNet	98.64	90.78	99.04	0.9473*	

IV. Conclusions

The universal network 3M-CDNet is proposed for CD. The lightweight 3M-CDNet exhibits a good generalization capacity by incorporating effective tricks, i.e., Online DA and Dropout regularization. The flexible 3M-CDNet achieves accuracy improvements in two ways. One is by applying DConv in the backbone network to gain good geometric transformation modeling capacity for objects with various scales and appearance. Another is by applying a two-level feature fusion strategy to enhance the feature representation capacity. Experiment results show 3M-CDNet broke the record for accuracy compared to the state-of-the-art methods and is the new benchmark on three public datasets.

REFERENCES

[1] W. Shi, Z. Min, R. Zhang, S. Chen, and Z. Zhan, “Change detection based on artificial intelligence: State-of-the-art and challenges,” Remote Sensing, vol. 12, pp. 1688, May 2020.
[2] T. Celik, “Unsupervised change detection in satellite images using principal component analysis and k-Means clustering,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 772-776, Oct. 2009.
[3] B. Hou, Q. Liu, H. Wang, and Y. Wang, “From W-Net to CDGAN: Bitemporal change detection via deep learning techniques,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3, pp. 1790-1802, Mar. 2020.
[4] R. C. Daudt, B. Le Saux, A. Boulch, and Y. Gousseau, “Multi-task learning for large-scale semantic change detection,” Comput. Vision Image Understanding, vol. 187, pp. 102783, Oct. 2019.
[5] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high resolution satellite images using improved UNET+,” Remote Sensing, vol. 11, no. 11, pp. 1382, Jun. 2019.
[6] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a new dataset for fine-grained semantic change detection,” Remote Sensing, vol. 12, no. 10, pp. 1662, May 2020.
[7] X. Peng, R. Zhong, Z. Li, and Q. Li, “Optical remote sensing image change detection based on attention mechanism and image difference,” IEEE Trans. Geosci. Remote Sens., pp. 1-12, 2020.
[8] C. Zhang, P. Yue, D. Tapete, L. Jiang, B. Shangguan, L. Huang, and G. Liu, “A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 166, pp. 183-200, Aug. 2020.
[9] Y. Zhang, S. Zhang, Y. Li, and Y. Zhang, “Coarse-to-fine satellite images change detection framework by boundary-aware attentive network,” Sensors, vol. 20, no. 23, pp. 6735, Nov. 2020.
[10] J. Chen, Z. Yuan, J. Peng, L. Chen, H. Haozhe, J. Zhu, Y. Liu, and H. Li, “DASNet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., pp. 1-1, Nov. 2020.
[11] M. Lebedev, Y. V. Vizhler, O. Vygolov, V. Knyaz, and A. Y. Rubis, “Change detection in remote sensing images using conditional adversarial networks,” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 42, no. 2, pp. 565-571, Jun. 2018.
[12] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable ConvNets v2: More deformable, better results,” in Proc. CVPR, LGB, CA, USA, Jun. 2019, pp. 9300-9308.
[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image classification,” in Proc. CVPR, LAS, NV, USA, Jun. 2016, pp. 770-778.
[15] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “CBAM: Convolutional block attention module,” in Proc. ECCV, Munich, Germany, Sep. 2018, pp. 3-19.
[16] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in Proc. ICLR, NO, LA, USA, May 2019.
[17] Z. Zheng, Y. Zhong, J. Wang, and A. Ma, “Foreground-aware relation network for geospatial object segmentation in high spatial resolution remote sensing imagery,” in Proc. CVPR, SEA, WA, USA, Jun. 2020, pp. 4095-4104.