Analysis of the *Legionella longbeachae* Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires’ Disease

Christel Cazalet¹, Laura Gomez-Valero¹, Christophe Rusniok¹, Mariella Lomma¹, Delphine Dervins-Ravault¹, Hayley J. Newton², Fiona M. Sansom², Sophie Jarraud³, Nora Zidane⁴, Laurence Ma⁴, Christiane Bouchier⁴, Jérôme Etienne⁵, Elizabeth L. Hartland², Carmen Buchrieser¹∗

¹ Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France. ² Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia. ³ Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France. ⁴ Institut Pasteur, Plate-forme Génomique, Pasteur Génopole Ile de France, Paris, France

Abstract

Legionella pneumophila and *L. longbeachae* are two species of a large genus of bacteria that are ubiquitous in nature. *L. pneumophila* is mainly found in natural and artificial water circuits while *L. longbeachae* is presently found in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires’ disease. Here we report the sequencing and analysis of four *L. longbeachae* genomes, one complete genome sequence of *L. longbeachae* strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four *L. longbeachae* genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of *L. longbeachae* strain NSW150 with *L. pneumophila* revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from *L. pneumophila*, as *L. longbeachae* possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a *dotA* mutant of *L. longbeachae* NSW150 to replicate in the *Acanthamoeba castellani* and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of *L. longbeachae*. In contrast to *L. pneumophila*, *L. longbeachae* does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that *L. longbeachae* has a less pronounced biphasic life cycle as compared to *L. pneumophila*, and genome analysis and electron microscopy suggested that *L. longbeachae* is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two *Legionella* species.

Introduction

Legionella longbeachae is one species of the family *Legionellaceae* that causes legionellosis, an atypical pneumonia that can be fatal if not promptly treated. While *Legionella pneumophila* is the leading cause of legionellosis in the USA and Europe, and is associated with around 91% of the cases worldwide, *L. longbeachae* is responsible for approximately 30% of legionellosis cases in Australia and New Zealand and nearly 50% in South Australia [1] and Thailand [2]. Two serogroups (Sg) are distinguished within *L. longbeachae* but most of the human cases of legionellosis are due to Sg1 strains [3,4]. Interestingly, unlike *L. pneumophila*, which inhabits aquatic environments, *L. longbeachae* is found predominantly in potting soil and is transmitted by inhalation of dust from contaminated soils [4,5].

Little is known about the biology and the genetic basis of virulence of *L. longbeachae* but a few studies suggest considerable differences with respect to *L. pneumophila*. In contrast, the intracellular life cycle of *L. pneumophila* is well characterized (for recent reviews see [6–8]). *L. pneumophila* replicates within alveolar macrophages inside a unique phagosome that excludes both early and late endosomal markers, resists fusion with lysosomes and recruits endoplasmic reticulum and mitochondria. Within this protected vacuole *L. pneumophila* replicates and down-regulates the expression of virulence factors. It has been proposed that nutrient limitation then leads to the transition to transmissive phase bacteria that express many virulence-associated traits allowing the release and infection of new host cells [9]. This biphasic life cycle is observed both in vitro and in vivo as exponential phase bacteria do...
Author Summary

Legionella longbeachae, found in potting soil, and *L. pneumophila*, present in aquatic environments, are opportunistic human pathogens that cause Legionnaires’ disease, a severe and often fatal pneumonia. The analysis and comparison of the genome sequences of four *L. longbeachae* genomes together with the study of its gene expression program and virulence pattern in different infection models provides important new insight on the organism’s lifestyle and virulence strategies. *L. longbeachae* harbors a unique repertoire of secreted substrates, many of which encode eukaryotic like domains that may help the pathogen to subvert host functions and cause disease. Curiously, *L. longbeachae* may also be able to interact with plants. Several proteins present mainly in plants and phytopathogenic bacteria and several enzymes that might confer the ability to degrade plant material were identified in its genome. Interestingly, *L. longbeachae* encodes a chemotaxis system but no flagella, in contrast *L. pneumophila* encodes flagella but no chemotaxis system. It will be an interesting aspect of future research to understand these peculiarities. Finally, the genome sequence and analysis reported here will aid in understanding how *L. longbeachae* causes disease and will open new possibilities to develop tools for rapid identification and risk prediction of *L. longbeachae* infection.

not express virulence factors and the bacteria fail to evade the destructive lysosomes and are delivered to the endocytic network and destroyed [9,10]. The ability of *L. pneumophila* to replicate intracellularly is triggered at the post-exponential phase together with other virulence traits. Less is known about the intracellular life cycle of *L. longbeachae* and its virulence factors. Unlike *L. pneumophila* the ability of *L. longbeachae* to replicate intracellularly is independent of the bacterial growth phase [11]. Phagosome biogenesis is also different. Like *L. pneumophila*, the *L. longbeachae* phagosome is surrounded by endoplasmic reticulum and evades lysosome fusion but in contrast to *L. pneumophila* containing phagosomes the *L. longbeachae* vacuole acquires early and late endosomal markers [12].

Efficient formation of the *L. pneumophila* replication vacuole requires the Dot/Icm type IV secretion system (T4SS) [13–16] and probably more than 100 translocated effector proteins that modulate different host cell processes, in particular vesicle trafficking [17–19]. While *L. longbeachae* possesses all genes necessary to code a Dot/Icm T4SS [20], it is not known whether it is also essential for virulence and whether *L. pneumophila* and *L. longbeachae* share common effectors.

Another interesting difference between these two species is their ability to colonize the lungs of mice. While only A/J mice are permissive for replication of *L. pneumophila*, A/J, C57BL/6 and BALB/c mice are all permissive for replication of *L. longbeachae* [12,21]. Resistance of C57BL/6 and BALB/c mice to *L. pneumophila* has been attributed to polymorphisms in Nod-like receptor apoptosis inhibitory protein 5 (naip5) allele [22–24]. The current model states that *L. pneumophila* replication is restricted due to flagellin dependent caspase-1 activation through Naip5-Ipaf and early macrophage cell death by pyroptosis. Why *L. longbeachae*, in contrast to *L. pneumophila*, is able to replicate in macrophages of all three different mouse strains is still not understood.

In this study we report the complete genome sequencing and analysis of a clinical *L. longbeachae* Sg1 strain isolated in Australia and compare this genome to three *L. longbeachae* draft genome sequences (one Sg1 and two Sg2 strains) and the published genome sequences of four *L. pneumophila* strains [25–27]. In addition, we performed transcriptome analysis and virulence studies of a T4SS mutant of *L. longbeachae*. This has allowed us to propose answers for the questions raised above and brings exciting new insight into the varying adaptation to different ecological niches and different intracellular life cycles of *Legionella* species.

Results/Discussion

The *L. longbeachae* genomes are highly conserved and are 500 kb larger than those of *L. pneumophila*

The *L. longbeachae* NSW150 genome consists of a 4,077,332-bp chromosome and a 71,926-bp plasmid with an average GC content of 37.11% and 38.19%, respectively (Table 1). A total of 3512 protein-encoding genes are predicted, 2046 (58.3%) of which encode flagella but no chemotaxis system, in contrast to *L. pneumophila*. This has allowed us to propose answers for the questions raised above and brings exciting new insight into the varying adaptation to different ecological niches and different intracellular life cycles of *Legionella* species.

Table 1. General features of the completely sequenced *L. pneumophila* and *L. longbeachae* genomes.

	L. longbeachae	*L. pneumophila*			
	NSW 150	Paris	Lens	Philadelphia	Corby
Chromosome size (kb)*	4077 (71)	3504 (131.8)	3345 (39.8)	3397	3576
G + C content (%)	37.1 (38.2)	38.3 (37.4)	38.4 (38)	38.27	38
G + C content of CDS (%)	37.4	39.1	39.4	38.6	38.6
No. of genes*	3660 (75)	3136 (142)	3001 (60)	3002	3259
No. of protein coding genes*	3512 (67)	2878 (140)	2878 (60)	2942	3206
Percentage of CDS (%)	84.5	87.9	88	90.2	86.8
Average length of CDS (pb)	1015.2	994.6	935.9	960.7	959.4
No. of 16S/23S/5S	4/4/4	3/3/3	3/3/3	3/3/3	3/3/3
No. of transfer RNA	46	44	43	43	43
Plasmids	1	1	1	0	0

* Updated annotation; CDS = coding sequence; in parenthesis data from plasmids.

doi:10.1371/journal.pgen.1000851.t001
Figure 1. Whole-genome synteny map of *L. longbeachae* strain NSW150 and *L. pneumophila* strain Paris. The linearized chromosomes were aligned and visualized by Lineplot in MAGE. Syntenic relationships comprising at least 8 genes are indicated by green and red lines for genes found on the same strand or on opposite strands, respectively. IS elements (pink), ribosomal operons (blue) and tRNAs (green) are also indicated.

whereas 1222 (34.8%) are *L. longbeachae* specific with respect to *L. pneumophila* Paris, Lens, Philadelphia and Corby (defined by less than 30% amino acid identity over 80% of the length of the smallest protein, s Table S2). It was previously suggested that plasmid-encoded functions such as a two-component system, are important for *L. longbeachae* virulence [28]. Although no similarity was detected between the *L. longbeachae* plasmid here characterized and the 9kb partial plasmid sequence reported of strain *L. longbeachae* A5H5 [28], similar plasmids seem to circulate among different *Legionella* species, as 30 kb of the plasmid of strains Paris, Lens and NSW150, 18 kb of which encode transfer genes (tal – trad), encoded ORFs showing high amino acid sequence similarity (Figure S3).

With the aim of gaining further information on genome content and diversity of *L. longbeachae* we selected three additional strains, two isolated in the USA one in Australia for genome sequencing and analysis. *L. longbeachae* strain ATCC39642 (Sg1), strain 98072 (Sg2) and strain C-4E7 (Sg2) were deep sequenced using the Illumina technology and then compared to the genome of strain Sg1 strains Paris and Philadelphia. The low SNP number and relatively homogeneous distribution of the SNPs around the chromosome (Figure S4) suggest recent expansion for the species *L. longbeachae*.

for SNP detection doi:10.1371/journal.pgen.1000851.t002
outer membrane protein was found. However, these proteins could also be part of T1SS and function together with a genetically unlinked outer membrane component, similar to what is seen for the Hly TISS of *Escherichia coli* and may thus constitute two additional T1SS. Finally, *L. longbeachae* encodes four type IV secretion systems (T4SS). The T4SS of *L. pneumophila* is absent from *L. longbeachae* but we identified three other type-IVA secretion systems. One T4ASS is present on the plasmid and the other two are embedded on putative mobile genomic islands (GI) in the chromosome. *llo1819-llo1929* (GI-1) of around 120 kb is bordered by Ser and Arg tRNAs and carries a gene coding for a phage integrase (*llo1819*). The second cluster (GI-2) of 106 kb spans from the integrase coding gene *llo2859* to *llo2960ab* and is also bordered by a Met tRNA. Most of the proteins encoded on GI-2 are of unknown function. However both islands code for several proteins, which may be dedicated to stress response. On GI-1, *llo1862* and *llo1863* are homologous to DNA polymerase IV subunit C and D respectively, involved in the SOS repair pathway. On GI-2 are the OsmC-like protein *llo2923*, the putative universal stress proteins *llo2926*, *llo2927*, *llo2929* and the predicted transcriptional regulator *llo2913* with S24 peptidase domain. Indeed, the S24 peptidase family includes LexA, a transcriptional repressor of SOS response genes to DNA damage. Several transporters were also identified on GI-2: *llo2918* of the MFS superfamily, the Na/H exchange protein *llo2930* and the polymerase IV subunit C and D respectively, involved in the SOS repair pathway. On GI-2 are the OsmC-like protein *llo2923*, the putative universal stress proteins *llo2926*, *llo2927*, *llo2929* and the predicted transcriptional regulator *llo2913* with S24 peptidase domain. Indeed, the S24 peptidase family includes LexA, a transcriptional repressor of SOS response genes to DNA damage. Several transporters were also identified on GI-2: *llo2918* of the MFS superfamily, the Na/H exchange protein *llo2930* and the putative TISS proteins *llo2900* and *llo2901* discussed above. It encodes four type IV secretion systems. One T4ASS is present on the plasmid and the other two are embedded on putative mobile genomic islands (GI) in the chromosome. *llo1819-llo1929* (GI-1) of around 120 kb is bordered by Ser and Arg tRNAs and carries a gene coding for a phage integrase (*llo1819*). The second cluster (GI-2) of 106 kb spans from the integrase coding gene *llo2859* to *llo2960ab* and is also bordered by a Met tRNA. Most of the proteins encoded on GI-2 are of unknown function. However both islands code for several proteins, which may be dedicated to stress response. On GI-1, *llo1862* and *llo1863* are homologous to DNA polymerase IV subunit C and D respectively, involved in the SOS repair pathway. On GI-2 are the OsmC-like protein *llo2923*, the putative universal stress proteins *llo2926*, *llo2927*, *llo2929* and the predicted transcriptional regulator *llo2913* with S24 peptidase domain. Indeed, the S24 peptidase family includes LexA, a transcriptional repressor of SOS response genes to DNA damage. Several transporters were also identified on GI-2: *llo2918* of the MFS superfamily, the Na/H exchange protein *llo2930* and the putative TISS proteins *llo2900* and *llo2901* discussed above. It possesses in addition a putative restriction/modification system encoded by *llo2865*, *llo2866* and *llo2867*.

Central to the establishment of the intracellular replicative niche and to *L. pneumophila* virulence is the Dot/Icm type IV secretion system. This T4BSS is also present in *L. longbeachae* and the general organization of the genomic region encoding it is conserved with protein identities of 47 to 92% with respect to that of *L. pneumophila*. This is similar to what has been reported previously for other *Legionella* species [20]. In *L. longbeachae* the *icmR* gene is replaced by the *lgB* gene, however, the encoded proteins have been shown to perform similar functions [32,33]. Here we found that *IcmE/DotG* of *L. longbeachae* is 477 amino acids larger than that of *L. pneumophila*. DotG is part of the core transmembrane complex of the secretion system and it is composed of three domains: a transmembrane N-terminal domain, a central region composed of 42 repeats of 10 amino acid and a C-terminal region homologous to VirB10. The central region of DotG from *L. longbeachae* comprises approximately 90 repeats. It will be challenging to understand the possible impact of this modification on the function of the type-IV secretion system.

The *dot/icm* type IV secretion system of *L. longbeachae* is essential for virulence in *Acanthamoeba castellani* and in pulmonary mouse infection

To test whether the Dot/Icm T4SS is essential for virulence of *L. longbeachae* we constructed a deletion mutant in the *L. longbeachae* NSW150 gene *llo3034*, homologous to *dotA* of *L. pneumophila* and tested its ability to replicate compared to the wild type strain in *A. castellani* and the lungs of *A/J* mice. We found that *L. longbeachae* NSW150 infects *A. castellani* in a comparable manner to *L. pneumophila* and that the *dotA* mutant was strongly attenuated for intracellular growth in *A. castellani*, similar to what is seen for a *L. pneumophila* *dotA* mutant (Figure 2A). Recently Gobin and colleagues established an experimental model of intracellular *L. longbeachae* infection in *A/J* mice [21]. Here we compared the ability of the *L. longbeachae* *dotA* mutant to compete with wild type *L. longbeachae* in the lungs of *A/J* mice. In mixed infections, we observed that the *dotA* mutant was outcompeted by the wild type

strain 24 h and 72 h after infection (Figure 2B). The competitive index of the *dotA* mutant was calculated by dividing the ratio of mutant to wild type bacteria after infection with the ratio of mutant to wild type bacteria in the inoculum. A competitive index of less than 0.5 is considered a significant attenuation [34]. The competitive index was less than 0.5 at both time-points indicating rapid loss of the *dotA* mutant following infection. In single infections, the *L. longbeachae* *dotA* mutant was also dramatically attenuated for replication (Figure 2C). Thus, the Dot/Icm secretion system was essential for the virulence of *L. longbeachae*.

L. longbeachae and *L. pneumophila* encode different sets of secreted Dot/Icm substrates and virulence genes

Despite the high degree of conservation of the Dot/Icm T4SS components between *L. pneumophila* and *L. longbeachae* the Dot/Icm substrates were not highly conserved. Indeed 66% of reported *L. pneumophila* Dot/Icm substrates were absent from *L. longbeachae* (Table 3 and Table S3). Instead, we predicted 51 new putative Dot/Icm substrates specific for *L. longbeachae* that encode eukaryotic-like domains and all but one contained the secretion signal described by Nagai and colleagues [35] and many also the additional criteria defined by Kubori and colleagues [36] (Table 4). Interestingly, the distribution of both, the conserved and the newly identified substrates of *L. longbeachae* among the four sequenced strains was highly conserved (Table 3 and Table 4). Both *L. pneumophila* and *L. longbeachae* replicate within a vacuole that recruits endoplasmic reticulum. Several effector proteins have been shown to contribute to the ability of *L. pneumophila* to manipulate host cell trafficking events resulting in this association. The effector proteins *SidJ, RalF, VipA, VipF*, *SidC, YinA* and *LepB* which contribute to trafficking or recruitment and retention of vesicles to *L. pneumophila* vacuoles were conserved in *L. longbeachae*, but VipD, *SidM/DrrA* and *LidA* which interfere also with these events are absent from the *L. longbeachae* genome; however VipD and *SidM/DrrA* are also not present in all the *L. pneumophila* genomes sequenced.

Although *L. pneumophila* also communicates with early and late endosomal vesicle trafficking pathways [37–39], a major difference in the phagosome maturation of the two species is that the *L. longbeachae* phagosome acquires early and late endocytic markers. Several proteins identified specifically in the genome of *L. longbeachae* may contribute to these differences. First, *L. longbeachae* encodes a family of Ras-related small GTPases (*Llo3288, Llo3292, Llo1716* and *Llo2249*) (Figure S5), which may also be involved in vesicular trafficking and account for the specificities of the *L. longbeachae* life cycle. Remarkably, *Llo3288, Llo3292* and *Llo1716* are the first small GTPases of the Rab subfamily described in a prokaryote. *L. pneumophila* is also known to exploit monophosphorylated host phosphoinositides (PI) to anchor the effector proteins *SidC, SidM/DrrA, LpnE* and *LidA* to the membrane of the replication vacuole [34,40–44]. *L. longbeachae* may employ an additional strategy to interfere with the host PI as *Llo0793* is homologous to a mammalian PI metabolizing enzyme phosphatidylinositol-4-phosphate 5-kinase and it is tempting to speculate that this protein allows direct modulation of the host cell PI levels.

As another strategy to alter host trafficking pathways, *L. pneumophila* is able to target microtubule-dependent vesicular transport. AnKX/AnK, for example, prevents microtubule-dependent vesicular transport interfering with the fusion of the *L. pneumophila*-containing vacuole with late endosomes [43]. AnKX/AnK is absent from *L. longbeachae*, however *L. longbeachae* did encode a putative tubulin-tyrosine ligase (TTL) *Llo2200*, which adds to the 19 bacterial TTL identified to date. TTL catalyzes the ATP-dependent post-translational addition of a
tyrosine to the carboxy terminal end of detyrosinated alpha-tubulin. Although the exact physiological function of alpha-tubulin has so far not been established, it has been linked to altered microtubule structure and function [46]. Besides AnkX/AnkN, a large family of ankyrin repeat constitutes \textit{L. pneumophila} Dot/Icm substrates. Interestingly, 23 of the 29 ankyrin proteins identified in the \textit{L. pneumophila} strains are absent from the \textit{L. longbeachae} genome, however \textit{L. longbeachae} encodes 23 specific ankyrin repeat proteins (Table 4).

\textit{L. pneumophila} is also able to interfere with the host ubiquitination pathway. The U-box protein LubX, which possesses \textit{in vitro} ubiquitin ligation activity specific for the eukaryotic Cdc2-like kinase Cik1 [36], is absent from \textit{L. longbeachae}. However, Llo0448 encodes a predicted U-box protein. None of the three \textit{L. pneumophila} F-box proteins, which may also exploit this pathway, are conserved in \textit{L. longbeachae}, but we identified two new putative F-box proteins Llo1427 and Llo2109 (Table 4). Thus, although the specific proteins may not be conserved, the eukaryotic-like protein-protein interaction domains found in \textit{L. pneumophila} are also present in \textit{L. longbeachae}.

\textit{L. longbeachae} also encodes several proteins with eukaryotic domains that are not present in \textit{L. pneumophila}. One is the above-mentioned protein Llo2200 encoding a TTL domain. A second is Llo2327, the first bacterial protein that encodes an Src Homology 2 (SH2) domain. SH2 domains, in eukaryotes, have regulatory functions in various intracellular signaling cascades. Furthermore, \textit{L. longbeachae} encodes two proteins (Llo1404 and Llo2643) with pentatricopeptide repeat (PPR) domains. This family seems to be greatly expanded in plants, where they appear to play essential roles in organelar RNA metabolism [47–49] where they appear to play essential roles in RNA/DNA metabolism, where. Only 12 bacterial PPR domain proteins have been identified to date, all encoded by two species, the plant pathogens \textit{Ralstonia solanacearum} and the facultative photosynthetic bacterium \textit{Rhodobacter sphaeroides}.

\textit{L. longbeachae} encodes putative toxins Recently, a family of cytotoxic glucosyltransferases produced by \textit{L. pneumophila} (Lgt) and related to the group of clostridial glucosylating cytotoxins has been described [50,51]. The three studied enzymes Lgt1/2/3 target one host molecule, eEF1A, and have been implicated in inhibition of eukaryotic protein synthesis and target-cell death [52]. \textit{L. longbeachae} encodes two putative specific cytotoxic glucosyltransferases Llo1721 and Llo1578. They share only low homology with the \textit{L. pneumophila} Lgt proteins with 23% protein identity over 62% of the protein length and 36% protein identity over 32% of the length, respectively. However, the DXD motif that is critical for enzymatic activity of clostridial enzymes is conserved suggesting that these enzymes might also be active in \textit{L. longbeachae}. We also identified Llo3231 as another putative specific glucosyltransferase with a DXD motif, distantly related to the \textit{L. pneumophila} SetA protein (23% protein identity over 67% of the protein length). SetA is known to cause delay in

Figure 2. Intracellular growth of the wild-type and the dotA mutant strain in mouse and amoeba infection. (A) Intracellular replication of \textit{L. longbeachae} in \textit{Acanthamoeba castellanii}. Blue, wild-type \textit{L. longbeachae} strain NSW150; Red, \textit{dotA}:Km mutant. Results are expressed as log\textsubscript{10} CFU. Each time point (in hours, x-axis) represents the mean ± SD of two independent experiments. Infections were performed at 37°C. (B) CI values from mixed infections of A/J mice. Mice were inoculated with approximately 106 CFU of each strain under investigation and were sacrificed at 24 h or 72 h after infection to examine the bacterial content of their lungs. Competition experiment between \textit{L. longbeachae} and the \textit{dotA}:Km mutant representative of 2 independent experiments. (C) Single infections of A/J mice with \textit{L. longbeachae} wt and the \textit{dotA}:Km mutant strain. Results are expressed as log\textsubscript{10} CFU. Note: to maintain numbers in the lung \textit{L. longbeachae} must be replicating Non-replicating bacteria are cleared in this infection model over 72 h (eg. dotA mutant) [21].

doi:10.1371/journal.pgen.1000851.g002

\textit{L. longbeachae} encodes putative toxins Recently, a family of cytotoxic glucosyltransferases produced by \textit{L. pneumophila} (Lgt) and related to the group of clostridial glucosylating cytotoxins has been described [50,51]. The three studied enzymes Lgt1/2/3 target one host molecule, eEF1A, and have been implicated in inhibition of eukaryotic protein synthesis and target-cell death [52]. \textit{L. longbeachae} encodes two putative specific cytotoxic glucosyltransferases Llo1721 and Llo1578. They share only low homology with the \textit{L. pneumophila} Lgt proteins with 23% protein identity over 62% of the protein length and 36% protein identity over 32% of the length, respectively. However, the DXD motif that is critical for enzymatic activity of clostridial enzymes is conserved suggesting that these enzymes might also be active in \textit{L. longbeachae}. We also identified Llo3231 as another putative specific glucosyltransferase with a DXD motif, distantly related to the \textit{L. pneumophila} SetA protein (23% protein identity over 67% of the protein length). SetA is known to cause delay in
L. pneumophila	Paris	Lens	Corby	NSW150	A	B	C	Description	
Name	**Description**								
lpg0012	lpp0012	lpI0012	lpc0013	llo0432	+	+	+	cegC1	Ankyrin repeat
lpg0038	lpp0037	lpi0038	lpc0039	−	−	−	−	ankQ/legA10	Ankyrin repeat
lpg0103	lpp0117	lpi0103	lpc0122	llo3312	+	+	+	vipF	GNAT family
lpg0171	lpp0233	lpi0234	−	−	−	−	−	legU1	F-box motif
lpg0234	lpp0304	lpi0288	lpc0309	llo0425	+	+	+	sidB/sidD	Unknown
lpg0257	lpp0327	lpi0310	lpc0314	llo2362	+	+	+	sdeA	Multidrug resistance protein
lpg0276	lpp0350	lpi0328	lpc0353	llo0327	+	+	+	legG2	Ras guanine nucleotide exchange
lpg0276	lpp0443	lpi0419	lpc2967	−	−	−	−	sidA	GRIP, coiled-coil
lpg0390	lpp0457	lpi0433	lpc2954	llo2824	+	+	+	vipA	Unknown
lpg0402	−	−	−	−	−	−	−	ankY/legA9	Ankyrin, STPK
lpg0403	lpp0469	lpi0445	lpc2906	−	−	−	−	ankK/legA11	Ankyrin
lpg0436	lpp0503	lpi0479	lpc2956	−	−	−	−	sidG	Coiled-coil
lpg0483	lpp0547	lpi0523	lpc2861	llo2705	+	+	+	ankC/legA12	Ankyrin
lpg0621	lpp0675	lpi0658	lpc2673	−	−	−	−	sidA	Unknown
lpg0642	lpp0696	lpi0679	lpc2651	−	−	−	−	wipB	Unknown
lpg0695	lpp0750	lpi0732	lpc2599	−	−	−	−	ankN/ankX/legA8	Ankyrin
lpg0940	lpp1002	lpi0971	lpc2349	−	−	−	−	sidA	Unknown
lpg1227	lpp1235	lpi1235	lpc0696	−	−	−	−	vpdB	Acyl transferase/hydrolase
lpg1328	lpp1128	lpi1128	lpc0743	−	−	−	−	legT	Thaumatin domain
lpg1355	lpp1309	−	−	−	−	−	−	sidG	Coiled-coil
lpg1488	lpp1444	lpi1540	lpc0903	−	−	−	−	legC6	Coiled-coil
lpg1588	lpp1546	lpi1437	lpc1013	−	−	−	−	legC6	Coiled-coil
lpg1642	lpp1612*	lpi1384	lpc1071	llo1144	+	+	+	sidB	Rtx toxin, lipase
lpg1701	lpp1666	lpi1160	lpc1130	−	−	−	−	ppeA/legC3	Coiled-coil
lpg1718	lpp1683	lpi1152	lpc1115	−	−	−	−	ankI/legA5	Ankyrin
lpg1884	lpp1848	lpi1845	lpc1331	−	−	−	−	yflB/legC2	Coiled-coil
lpg1950	lpp1919	lpi1423	lpc1397	llo0363	+	+	+	ralF	Sec-7 domain
lpg1953	lpp1922	lpi1426	lpc1503	−	−	−	−	legC4	Coiled-coil
lpg1978	lpp1955	lpi1464	lpc2349	−	−	−	−	legK2	STPK
lpg2076	lpp2076	lpi2006	lpc1586	−	−	−	−	sidD	Unknown
lpg2144	lpp2082	lpi1593	lpc1618	−	−	−	−	sidJ	Unknown
lpg2157	lpp2096	lpi2085	lpc1618	−	−	−	−	sidC	Unknown
lpg2167	lpp2128	lpi2102	lpc1635	−	−	−	−	legS2	Sphingosine-1-phosphate lyase 1
lpg2174	lpp2174	lpi1247	lpc1689	−	−	−	−	lpnE	Set-1 repeats
lpg2246	lpp2246	lpi1763	llo1707	+	+	+	yflA/legC7	Coiled-coil	
lpg2300	lpp2248	lpi1765	llo0584	+	+	+	ankH/legA3/ankW	Ankyrin, NFkappaB inhibitor	
lpg2322	lpp2270	lpi1789	llo0570	+	+	+	ankK/legA5	Ankyrin	
lpg2452	lpp2317	lpi2026	llo0365	+	+	+	ankD/legA15	Ankyrin	
lpg2456	lpp2322	lpi2375	lpc2020	llo0365	+	+	+	ankD/legA15	Ankyrin
lpg2464	−	lpi2384	−	−	−	−	−	sidD	Unknown
lpg2465	−	lpi2385	−	−	−	−	−	sidD	Unknown
lpg2490	lpp2555	lpi2411	lpc1987	llo0796	+	+	+	lepB	Coiled-coil, Rab1 GAP
lpg2508	lpp2576	lpi1963	lpc1987	−	−	−	−	sidA	Unknown
lpg2511	lpp2579	lpi2433	lpc1959	llo3098	+	+	+	sidC	PI(4P binding domain
lpg2556	lpp2626	lpi2481	lpc1906	llo2218	+	+	+	legK3	STPK
lpg2584	lpp2637	lpi2507	lpc0561	−	−	−	−	sidF	Unknown
lpg2718	lpp2775	lpi2646	lpc0415	−	−	−	−	wipA	Unknown
lpg2793	lpp2839	lpi2708	lpc3079	−	−	−	−	lepA	Coiled-coil
vacuolar trafficking [53], however its glucosylating activity remains to be established. In contrast, L. longbeachae does not encode a homologue of the L. pneumophila structural toxin protein RtxA, however we identified a homolog of the TcaZ toxin (Llo1558) present in the insect pathogen Photorhabdus luminescens [54].

Many metabolic features of the genome of L. longbeachae reflect its soil habitat

L. longbeachae encodes a variety of proteins probably devoted to the metabolism of compounds present in plant cell walls, going in hand with the fact that that bacterium can be isolated from composted plant material. The main components of the plant cell wall are cellulose, hemicellulose and pectin. Cellulose utilization by microorganisms involves endo-1,4-beta-glucanases, celllobiohydrolases and beta-glucosidases, that act synergically to convert cellulose to glucose. Examination of the L. longbeachae genome sequence revealed the presence of twelve such cellulosytic enzymes. Five glucanases, four celllobiohydrolases and three beta-glucosidases are present. Interestingly, L. pneumophila also encodes two putative endo-1,4-beta-glucanases and one putative beta-glucosidase but does not encode any celllobiohydrolase.

Within the plant cell wall, the cellulose microfibrils are linked via hemicellulosic tethers to form the cellulose-hemicellulose network, which is embedded in the pectin matrix. To gain access to cellulose in plant material, pectin and hemicellulose hydrolysis is necessary. Interestingly, L. longbeachae encodes three pectin lyases (Llo1693, Llo1410, Llo1162). The last two proteins possess a signal peptide and may therefore be secreted. Pectin lyases are virulence factors usually found in phytopathogenic microorganisms that degrade the pectic component of the plant cell wall. In addition to these specific enzymes and similar to L. pneumophila, L. longbeachae encodes a protein homologous to endo-1,4-beta-xylanase. Endo-1,4-beta-xylanase hydrolyses xylan the most common hemicellulose polymer in the plant kingdom and the second most abundant polysaccharide on earth. So, unlike L. pneumophila, which does not possess celllobiohydrolase and pectin lyase, L. longbeachae seems to be fully equipped to utilize cellulose as a carbon source (Table 5).

Soil bacteria also often hydrolyse chitin by the means of chitinases. Five L. longbeachae putative endo-1,4-beta-glucanases and one putative beta-glucosidase do not encode any celllobiohydrolase. In the genome of L. longbeachae, we found two putative endo-1,4-beta-glucanases and one putative beta-glucosidase but does not encode any celllobiohydrolase.

Table 3. Cont.

L. pneumophila	L. longbeachae	Name	Description					
Phila-1	Paris	Lens	Corby	NSW150	A	B	C	
lpg2829	lpp2883	–	–	–	–	–	sidP	Unknown
lpg2830	lpp2887	–	–	–	–	–	lubX/legU2	U-box motif
lpg2831	lpp2888	lpl4276	–	–	–	–	vipO	Patatin-like phospholipase
lpg2999	lpp3071	lpl2927	lpc3315	–	–	–	legP	Astacin protease

*pseudogene, lpp1612a et 1612b; A: L. longbeachae strain ATCC39462; B: 98072; C: C-4E7. doi:10.1371/journal.pgen.1000851.t003

In the genome of L. longbeachae NSW150 we identified two gene clusters encoding proteins that are predicted to be involved in production of lipopolysaccharide (LPS) and/or capsule (Figure 5). Neither shared homology with the L. pneumophila LPS biosynthesis gene cluster. One region of 48 kb spans from llo3148 to llo3180 (Figure 3A) and the second of 24 kb from llo2017 to llo2036 (Figure 3B). In total they contain 26 genes for synthesis of the nucleotide sugar precursor, 12 genes encoding putative glycosyltransferases, 5 polysaccharide translocation genes including homologs of the ctrABC capsule transport operon of N. meningitidis, and 10 genes of unknown function (Table S4). The finding that L. longbeachae might be encapsulated was further substantiated by electron microscopy analysis. Figure 4 shows that a capsule-like structure surrounds the bacteria in L. longbeachae.

Gene clusters encoding the core lipopolysaccharide of L. pneumophila and L. longbeachae are not conserved; however we identified in the genome of L. longbeachae homologs of L. pneumophila lipidA biosynthesis genes. Llo2684, Llo1461, Llo2686 and Llo0524 are homologous to LpxA, LpxB, LpxD and WaaM lipidA biosynthesis proteins with respectively 84%, 68%, 60% and 78% of identity. Predictions deduced from the sequence analysis of strain NSW150 did not clarify which region was coding for the LPS and which for the capsule. Further insight into the LPS and capsule encoding regions came from the comparison of this region among the four L. longbeachae genomes sequenced. The 24 kb region B is identical between the two Sg1 strains sequenced and identical between the two Sg2 strains analyzed, but the Sg1 and Sg2 strains differed from each other in an approximately 10 kb region carrying glycosyltransferases, methyltransferases, and LPS biosynthesis genes (Figure S6). In contrast the putative capsule encoding region A was highly conserved among all four strains sequenced except for a region carrying three genes, that differed among all four strains independent of the Sg. However, as it is not known whether the Sg specificity of L. longbeachae is defined by its capsule or by LPS, further studies are necessary to clearly define the function of the proteins encoded in these two genomic regions.
Table 4. Putative new type IV secretion substrates specific for *L. longbeachae*.

NSW150	ATCC39462	98072	c-4E7	Motif	A	B	C
llo0037	+	+	+	ankyrin	+	42,86	60,00
llo0087	+	+	+	ankyrin	+	57,14	53,33
llo0115	+	+	+	ankyrin	+	28,57	53,33
llo0246	+	+	+	ankyrin	+	28,57	66,67
llo0990	+	—	—	ankyrin	+	28,57	46,67
llo1043	+	+	+	ankyrin	+	28,57	46,67
llo1168	+	+	+	ankyrin	+	28,57	53,33
llo1371	+	+	+	ankyrin, coiled-coil	+	28,57	66,67
llo1395	+	+	+	ankyrin	+	42,86	53,33
llo1618	+	+	+	ankyrin	+	28,57	66,67
llo1646	+	+	+	ankyrin	+	28,57	40,00
llo1651	+	+	+	ankyrin	+	14,29	60,00
llo1715	+	+	+	ankyrin	+	57,14	46,67
llo1742	+	+	+	ankyrin	+	28,57	66,67
llo1894	+	+	+	ankyrin	+	0,00	33,33
llo2133*	+	+	+	ankyrin	+	28,57	46,67
llo2476	+	+	+	ankyrin	+	28,57	40,00
llo2668	+	+	+	ankyrin	+	14,29	46,67
llo3081	+	+	+	ankyrin, patatin-like phospholipase	+	28,57	60,00
llo3093	+	+	+	ankyrin, STPK	+	0,00	66,67
llo3343	+	+	+	ankyrin	+	14,29	33,33
llo3353	+	+	+	ankyrin, NUDIX hydrolase	+	28,57	53,33
llo0114	+	+	+	LRR	+	14,29	40,00
llo3116	---	---	---	LRR	+	57,14	26,67
llo1314	+	+	+	LRR	+	0,00	40,00
llo2165	+	+	+	LRR	+	42,86	66,67
llo2494	+	+	+	LRR	+	28,57	66,67
llo2683	+	+	+	ankyrin	+	28,57	46,67
llo3081	+	+	+	ankyrin, STPK	+	0,00	66,67
llo3093	+	+	+	ankyrin, patatin-like phospholipase	+	28,57	60,00
llo3343	+	+	+	ankyrin	+	14,29	33,33
llo3353	+	+	+	ankyrin, NUDIX hydrolase	+	28,57	53,33
llo0114	+	+	+	LRR	+	14,29	40,00
llo3116	---	---	---	LRR	+	57,14	26,67
llo1314	+	+	+	LRR	+	0,00	40,00
llo2165	+	+	+	LRR	+	42,86	66,67
llo2494	+	+	+	LRR	+	28,57	66,67
llo2683	+	+	+	ankyrin	+	28,57	46,67
llo1395	+	+	+	STPK	+	14,29	33,33
llo1681	+	+	+	STPK	+	42,86	73,33
llo2132	+	+	+	STPK, coiled-coil	-	14,29	73,33
llo2984	+	+	+	STPK	+	14,29	53,33
llo3049	+	+	+	STPK	+	14,29	66,67
llo1427	+	+	+	F-Box	+	14,29	66,67
llo2109	+	+	+	F-Box	+	28,57	60,00
llo3081	+	+	+	U-Box	+	28,57	73,33
llo1404	+	+	+	PPR	+	28,57	20,00
llo2043	+	+	+	PPR, coiled-coil	+	28,57	46,67
llo2200	+	+	+	TTL	+	14,29	53,33
llo2277	+	+	+	SH2	+	28,57	73,33
llo2352	+	+	+	PAM2	+	42,86	60,00
llo1196	+	+	+	Snare	+	0,00	73,33
llo2381	+	+	+	Snare	+	42,86	60,00
llo7093	+	+	+	Phosphatidylinositol-4-phosphate 5-kinase	+	28,57	66,67
llo2288	+	+	+	Ras-related small GTPase domain	+	14,29	60,00
llo2299	+	+	+	Ras-related small GTPase, Miro-like domain	+	28,57	60,00
llo2249	+	+	+	Miro-like domains	+	57,14	80,00
llo1716	+	+	+	Ras-related small GTPase, Miro-like domain	+	28,57	73,33
llo1892	+	+	+	Putative Immunoglobulin I-set domain	+	14,29	40,00

(A) Presence of a hydrophobic residue or a proline in positions -3 or -4 according to [35]. (B) Enrichment in amino acids that have small side-chains (alanine, glycine, serine and threonine) at positions -8 to -2 according to [36]. (C) Percentage of Polar aminoacids that are favored at positions +13 to +1 according to [36].

doi:10.1371/journal.pgen.1000851.t004
L. longbeachae does not encode flagella explaining differences in mouse susceptibility as compared to L. pneumophila

Cytosolic flagellin of L. pneumophila triggers Naip5-dependent caspase-1 activation and subsequent proinflammatory cell death by pyroptosis in C57BL/6 mice rendering these mice resistant to infection with L. pneumophila [22–24,59–62]. In contrast, caspase-1 activation does not occur upon infection of C57BL/6 and A/J mice macrophages with L. longbeachae, which is then able to replicate. One possible explanation has been that due to a lack of pore-forming activity, L. longbeachae flagellin may not have access to the cytoplasm of the macrophage where it is thought to be involved in caspase-1 activation. Alternatively, L. longbeachae flagellin may not be recognized by the Naip5 pathway [11]. Genome analysis clarified this issue, as we found that L. pneumophila does not carry any flagellar biosynthesis genes except the sigma factor FliA, the regulator FleN, and a putative chemotaxis system. Chemotaxis enables bacteria to find favorable conditions by migrating towards higher concentrations of attractants. The chemotactic response is mediated by a two-component signal transduction pathway, with the histidine kinase CheA and the response regulator CheY, putatively encoded by the genes llo3292 and llo3303 respectively, in the L. longbeachae genome. Furthermore, two homologues of the ‘adapt’ protein CheW (encoded by llo2998, llo3300) that associate with CheA or cytoplasmic chemosensory receptors are present. Ligand-binding to receptors regulates the autophosphorylation activity of CheA in these complexes. The CheA phosphoryl group is subsequently transferred to CheY, which then diffuses away to the flagellum where it modulates motor rotation. Adaptation to continuous stimulation is mediated by a methyltransferase CheR encoded by llo3299 in L. longbeachae. Together, these proteins represent an evolutionarily conserved core of the chemotaxis pathway, common to many bacteria and archaea [55,63]. A similar chemotaxis system is also present in L. drancourtii LLAP12 [64] but it is absent from L. pneumophila. The flagging genomic regions are highly conserved among L. longbeachae and all L. pneumophila strains sequenced, suggesting that L. pneumophila, although it encodes flagella has lost the chemotaxis system encoding genes.

We also observed using electron microscopy (Figure 4) that L. longbeachae possesses a long pilus-like structure. Indeed, all genes necessary to code for type IV pili are present in the genome of L. longbeachae and are, with 63–88% amino acid similarity, highly conserved between L. longbeachae and L. pneumophila. Taken together genome analysis revealed interesting features of the Legionella genomes: both encode pilus-like structures, in contrast L. longbeachae encodes a chemotaxis system but no flagella, and L. pneumophila encodes flagella but no chemotaxis system. It will be an interesting aspect of future research to understand these particular features of the two Legionella species.

The regulatory repertoire of L. longbeachae suggests different adaptation mechanisms as compared to L. pneumophila

Similar to the L. pneumophila genomes and consistent with its intracellular lifestyle, the regulatory repertoire of L. longbeachae is
rather small. Genome analysis identified 121 transcriptional regulators (113–116 in the four sequenced *L. pneumophila* genomes), which represent only 3.0% of the predicted genes (Table S6). Similar to *L. pneumophila*, *L. longbeachae* encodes six putative sigma factors, RpoD, RpoH, RpoS, RpoN, FliA and the ECF-type sigma factor RpoE.

The most abundant class of regulators of *L. pneumophila* is the GGDEF/EAL family (24 or 23 in all *L. pneumophila* genomes sequenced). This is significantly different in *L. longbeachae*, as identified only 14 GGDEF/EAL domain-containing regulators, despite the larger size of the *L. longbeachae* genome. Furthermore, this group of regulators may fulfill specific functions in *L. longbeachae*, since most of the regulators possess no orthologs in the *L. pneumophila* genomes (Table S6). The function of these regulators in *L. pneumophila* and *L. longbeachae* is unknown, but in other bacteria these regulators play a role in aggregation, biofilm formation, twitching motility or flagella regulation. In *L. pneumophila* it was suggested, as deduced from gene expression analysis, that some of the GGDEF/EAL regulators may play a role in modulating flagella expression [65,66], thus the lower number of GGDEF/EAL domain-containing proteins of *L. longbeachae* may in part be related to the missing flagellum.

Another difference in the regulatory repertoire of the two *Legionella* species was observed for two component systems. There

Figure 3. Putative capsule and LPS encoding loci in the genome of *L. longbeachae*. (A) 48 kb chromosomal region highly conserved in the four *L. longbeachae* genomes sequenced putatively encoding the capsular biosynthesis genes. (B) 24 kb chromosomal region differing between Sg1 and Sg2 isolates putatively encoding the lipo polysaccharide biosynthesis genes of *L. longbeachae*. Colors indicate different classes of genes: magenta, synthesis pathway of nucleoside sugar precursors; blue, glycosyltransferase; yellow, transportation; grey, genes of unknown function. doi:10.1371/journal.pgen.1000851.g003

Figure 4. Electron microscopy showing the presence of capsule like structures. Transmission electron micrographs of *L. longbeache* cells cultured in BYE broth to post exponential growth phase (OD600 3.8). Black arrows, putative capsule structures, red Arrow, putative pili. doi:10.1371/journal.pgen.1000851.g004
are 14 response regulators and 13 histidine kinases in *L. pneumophila*, and 17 response regulators and 16 histidine kinases in the *L. longbeachae* genome, but only half of the *L. longbeachae* response regulators possess an ortholog in *L. pneumophila*. For example the recently described two-component system LqsS/LqsR that is part of a quorum sensing system in *L. pneumophila* is missing in *L. longbeachae* [67–69]. Two-component systems are involved in signal transduction pathways that enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions [70]. Different two-component systems may be linked to the different environments to which *L. longbeachae* has to adapt compared to *L. pneumophila*.

In *L. longbeachae*, cyclic AMP may also transduce cellular signals as the genome encodes eight class III adenylate cyclases (Llo0181, Llo1751, Llo2196, Llo1669, Llo0753, Llo1197, Llo1216, Llo3304) of which only one (Llo0181) is also conserved in *L. pneumophila*. LadC, an adenylate cyclase of *L. pneumophila* that was shown to have a significant role in the initiation of infection in vitro and in vivo [71], is absent from *L. longbeachae*. As shown for *Pseudomonas aeruginosa*, these class III adenylate cyclases may sense environmental signals ranging from nutritional content of the surrounding media to the presence of host cells and control virulence gene expression accordingly [72]. Furthermore, 13 proteins containing cAMP binding motifs were identified, only one of which is shared with *L. pneumophila*. LadC, again indicating specific regulatory circuits for *L. longbeachae*. This high number of proteins that may sense cAMP indicates the potential importance of this signaling molecule in *L. longbeachae*.

In contrast, the regulators shown to be important for growth phase and life cycle dependent gene expression, such as the two component system LetA/LetS (Llo2653/Llo1235), the RNA-binding protein CsrA (Llo2071), the two small RNAs RsmY and RsmZ regulating CsrA [66,73], SpoT (Llo0908) and RelA (Llo1756) are conserved in *L. longbeachae*. Likewise, the two-component systems PmrAB (Llo1159/Llo1158) and CpxRA (Llo1781/Llo1782) that regulate the Dot/Icm T4SS system and some of its substrates are both conserved in *L. longbeachae* [74–76].

Global gene expression analysis reveals differences in the *L. longbeachae* and *L. pneumophila* life cycles

It has been shown in several studies that *L. pneumophila* exhibits at least two developmental stages, a replicative/avirulent and a transmissive/virulent phase that are each characterized by the expression of specific traits [9]. These stages are also reflected in a major shift in the gene expression program of *L. pneumophila* between the two phases of its life cycle [65]. In order to investigate, whether *L. longbeachae* had a similar biphasic life cycle we studied its gene expression program in exponential and post exponential growth phase in vitro. A multiple-genome microarray was constructed containing 10 692 gene-specific oligonucleotides representing 3567 genes predicted in the genome and on the plasmid and 3010 oligonucleotides specific for intergenic regions. RNA of in vitro grown bacteria was sampled at OD 2.5 (exponential growth) and at OD 3.7 (post exponential growth) and the global gene expression program was compared.

Overall, 187 genes in *L. longbeachae* were upregulated in the exponential (E) phase (likewise, downregulated in the postexponential phase, Table S7), and 313 genes were upregulated in the postexponential (PE) phase (downregulated in the E phase, Table S8). Real-time PCR analysis of selected genes validated the microarray results (data not shown). If we compare these results to those obtained for *L. pneumophila* grown in vitro [65], we observed several differences. In *L. pneumophila* strain Paris 543 genes are upregulated in E phase. Of the genes present in both genomes 270 are only upregulated in *L. pneumophila* but not in *L. longbeachae*. The 117 genes that are upregulated in both species in exponential phase include many ribosomal proteins, the genes belonging to the ATP synthase machinery (atp genes), the NADH dehydrogenase
are not induced in (nuo genes) and several enzymatic activities (Table S7). However, several metabolic pathways clearly induced in E phase in L. pneumophila are not induced in L. longbeachae. These include the formyl THF biosynthesis, the purine and pyrimidine and the tetrahydrofolate biosynthesis pathways. Furthermore, genes coding for several chaperones (DnaJ, DnaK or GroES), the regulatory protein RecX and several proteins related to starvation and stress are not upregulated in E phase L. longbeachae. There are only 11 genes specific for L. longbeachae and induced in E phase, all of which code proteins for which no function could be predicted.

In PE phase 313 genes are upregulated in L. longbeachae, of which only 53 are also among the 441 PE phase genes of L. pneumophila. Interestingly, 208 of the genes upregulated in PE in L. longbeachae have no orthologs in L. pneumophila, and for 70% of these no function could be predicted. Thus the response of L. longbeachae to PE phase growth is distinct from that of L. pneumophila. In particular we observed differences in the expression profiles of many factors known to be involved in L. pneumophila virulence. For example, of the genes coding putative substrates of the Dot/Icm secretion system only few, sdiC (llo3098), sdbR (llo2439), sde homologue (llo2210), sdcC/lacC (llo3092) and sdeB (llo3095) are upregulated in post-exponential phase. However, several of the newly identified putative substrates are induced in L. longbeachae in PE phase. These comprise seven proteins homologous to Sid proteins of L. pneumophila (llo0424, llo0426, llo2210, llo2439, llo3092, llo3095 and llo3096), three genes coding homologues of EnhA (llo0852, llo1475 and llo2343), seven ankyrin proteins (llo0115, llo1646 and llo1715) and a putative serine threonine kinase (llo1139). However, clear differences in gene expression between L. pneumophila and L. longbeachae exist and the switch from replicative to transmissive phase seems to be less pronounced in L. longbeachae than in L. pneumophila. Interestingly, the genes coding the stationary phase sigma factor RpoS and the sigma factor 28 (FlaA) and CsrA, all involved in the regulation of the biphasic life cycle of L. pneumophila are not differentially regulated in L. longbeachae. In contrast, seven GGDEF/EAL domain-containing regulators (llo0909, llo1253, llo1377, llo2065, llo3125, llo3392 and llo3414) and four cAMP binding proteins (llo3395, llo2387, llo2144 and llo1336) are induced in PE phase. Thus cyclic di-GMP and cAMP may be important signaling molecules for regulating PE phase traits of L. longbeachae. According to our transcriptome analysis, the switch in the lifecycle of L. longbeachae appears less pronounced as compared to L. pneumophila, and regulation may be achieved mainly by secondary messenger molecules.

Concluding remarks

L. longbeachae is the second leading cause of Legionnaires’ disease in the world and a major cause of pneumonia in Australia and New Zealand. Yet, still very little is known about its virulence strategies and the genetic basis of virulence and niche adaptation. Analysis of the genome sequences of four L. longbeachae strains and its comparison with the published L. pneumophila genomes has uncovered important differences in the genetic repertoire of the two species and suggests different strategies for intracellular replication and niche adaptation.

Similar to L. pneumophila, L. longbeachae encodes a type IVB secretion system homologous to the Dot/Icm system. Inactivation of the type IV secretion system, through deletion of the dotA gene, showed that it is essential for virulence, as the dotA mutant had a severe growth defect in A. castellanii infection and could not establish an infection in the lungs of A/J mice. Despite this resemblance to L. pneumophila, the secreted effectors are very different as only 44% of the known L. pneumophila substrates were conserved in L. longbeachae. However, like L. pneumophila, many of them have eukaryotic domains or resemble eukaryotic proteins. Thus a large cohort of eukaryotic-like proteins was also a specific feature of the L. longbeachae genomes. An emerging theme in bacterial virulence is the evolution of virulence factors that can mimic the activities of Ras small GTPases (for a review see [72]). Small GTPases regulate unique biological functions of the cell as diverse as cell division/differentiation, actin cytoskeleton rearrangements, intracellular membrane trafficking. L. pneumophila produces the effector proteins RaIF [78] and SidM/DraA [80,41] that activate small G-protein signaling cascades and interfere with host membrane trafficking. Here we identified L. longbeachae specific proteins belonging to the Rab subfamily of Ras small GTPases. These are the first prokaryotic Rab GTPases described and they may account for some of the differences in phagosome maturation between L. longbeachae and L. pneumophila. Overall, more than 3% of the L. pneumophila genome is thought to encode TSSS substrates that fulfill various functions, such as interfering with small GTPases of the early secretory pathway, disrupting phosphoinositide signaling or targeting microtubule-dependent vesicular transport. They may represent new strategies to interfere with host cell processes and may partly explain variations in the replication cycle of the two species.

An intriguing and unresolved question has been the susceptibility of C57BL/6 mice to L. longbeachae infection but their resistance to L. pneumophila infection. Only A/J mice that carry a particular Naip-5 allele are susceptible to L. pneumophila infection. Genome analysis has provided some insight into this question through the observation that L. longbeachae does not encode flagella, and thus does not trigger Naip5-dependent caspase-1 activation and subsequent proinflammatory cell death by pyroptosis [22–24,59–62]. In contrast, L. longbeachae encodes a capsule that might be implicated in the recognition by the host immune system and which may provide some protection against killing by phagocytes. In L. pneumophila, expression of flagella is a hallmark of transmissible, virulent bacteria and a marker of its biphasic life cycle. In line with the absence of flagella, L. longbeachae also seems to have a less pronounced life cycle switch, as transcriptome analysis revealed a less dramatic change in gene expression compared to L. pneumophila. This result might explain the fact that intracellular proliferation of L. longbeachae is independent of the growth phase [11].

Previously we and others hypothesized, that L. pneumophila had acquired DNA by horizontal transfer or by convergent evolution during its co-evolution with free-living amoebae [25,79] and that L. pneumophila uses molecular mimicry to subvert host functions [8,80]. Presumably, L. longbeachae is not only able to interact with protozoa but also with plants, as several proteins present in plants and several enzymes which might confer the ability to degrade plant material were identified in the L. longbeachae genome.

Interestingly, the comparison of the genome sequence of four strains of L. longbeachae identified high gene content conservation unlike L. pneumophila. Furthermore, between strains of the same serogroup very few SNPs are present, most of them located in few plasticity zones, indicating recent expansion of this species. Based on these genome sequences, future comparative and functional studies will allow definition of the common and distinct survival tactics of pathogenic Legionella spp. and may open new ways to combat L. pneumophila and L. longbeachae infections.

Materials and Methods

Ethics statement

All animal experiments were conducted with approval from the University of Melbourne Animal Ethics committee application ID 0704867.3.
DNA preparation and sequencing techniques

L. longbeachae strain NSW150 was grown on BCYE agar at 37°C for 3 days and chromosomal DNA was isolated by standard protocols. Cloning, sequencing and assembly were done as described [81]. One library (inserts of 1–3 kb) was generated by random mechanical shearing of genomic DNA, followed by cloning of the fragments into pDNA-2.1 (Invitrogen). A scaffold was obtained by end-sequencing clones from a BAC library constructed as described [82] using pIndigoBac (Epicentre) as a vector. Plasmid DNA purification was done with a TempliPhi DNA sequencing template amplification kit (Amersham Biosciences). Sequencing reactions were done with an ABI PRISM BigDye Terminator cycle sequencing ready reactions kit and a 3730 Xi Genetic Analyzer (Applied Biosystems). We obtained and assembled 40299 sequences and performed finishing by adding 1125 additional sequences, as described earlier [81]. For draft genome sequencing of strains ATCC39642, 98072 and C-4E7 Illumina, shotgun libraries were generated from 5 μg of genomic DNA each using the standard Illumina protocols. Sequencing was carried out on an Illumina Genome Analyzer II as paired-end DNA each using the standard Illumina protocols. Sequencing was performed by the Genome Analyser pipeline version 1.3 with default parameters.

Annotation and sequence analysis

Definition of coding sequences and annotation were done as described [81] by using CAAT-box software [83] and MAGE (Magnifying Genomes) [84]. All predicted coding sequences were examined visually. Function predictions were based on BLASTp similarity searches and on the analysis of motifs using the PFAM, Prosite and SMART databases. We identified orthologous genes by reciprocal best-match BLAST and FASTA comparisons. Pseudogenes had one or more mutations that would prevent complete translation. Analysis of the three drafts genome sequences obtained by the Illumina technique was done as follows. First, to precisely determine the average insert size of mate-paired reads, we mapped the reads of each strain to the NSW150 sequence. Then, this value was used to give good mate-pair information to the de novo assembler. Short-reads were assembled de novo into contigs (without reference to any other sequence) using Velvet (version 0.7.35) [85]. To increase specificity and length of the generated contigs, we used the hash length (k-mer) of 27. Subsequently Mauve (version 2.3.0) [86] was used to build super contigs by aligning the de novo obtained contigs on the finished NSW150 sequence. Finally, for SNP discovery the program Maq (version 0.7.1) [87] was used for mapping the Solexa reads to the NSW150 reference. To detect high confidence SNPs, we only kept those SNPs that had a coverage of 10x to 300x. SNPs with a frequency lower than 80% were removed.

Construction of a dotA mutant in strain L. longbeachae NSW150

To construct the dotA mutant strain, the chromosomal region containing the dotA gene was PCR-amplified with the primers dotA-for CTCGCCGATTGGAACTTTAT and dotA-rev TTGGCTGTATAAAACCGGTCTTT. The product was cloned into the pGEM-T Easy vector (Promega) yielding pGEM-dotA. We performed inverse PCR on pGEM-dotA with primers dotAinv-for CGCGGATGCCGCAATTATACGCGCAAAC and dotAinv-rev CGCGGATCCAGGTGTTGGATAGG containing BamHI overhangs allowing internal deletion of 2582 bp in dotA. PCR product was digested with BamHI and ligated to the kanamycin resistance cassette, which was amplified via PCR from the plasmid pGEM-KanR, using primers containing BamHI restriction sites at the ends (Bam-HI-for TGCAGGTTCGACTCAGGAGGAT Kan-BamHI-rev CGCGGATCCGAGCTGCGG-TACC). Linearized vector was electroporated in L. longbeachae to obtain dotA::Km mutant.

Acanthamoeba castellani infection assay

For in vivo growth of L. longbeachae and its dotA deletion mutant in A. castellanii we followed a protocol previously described [63]. In brief, three days old cultures of A. castellanii were washed in infection buffer (PYG 712 medium without proteose peptone, glucose, and yeast extract) and adjusted to 10^2–10^3 cells per ml. Stationary phase Legionella grown on BCYE agar, diluted in water were mixed with A. castellanii at a MOI of 0.1. After allowing invasion for 1 hour at 37°C the A. castellanii layer was washed twice with infection buffer (start point of time-course experiment). Intracellular multiplication was monitored using a 500 μl sample, which was centrifuged (14 000 rpm) and vortexed to break up amoeba. The number of colony forming units (CFU) of Legionella was determined by plating on BCYE agar. Each infection was carried out in duplicates.

Pulmonary infection of A/J mice with L. longbeachae

The comparative virulence of L. longbeachae NSW150 and the dotA::Km derivative within A/J mice was examined via competition assays and in single infections, as described previously [21,34]. Briefly, 6–to 8-week-old female A/J mice (Jackson Laboratory, ME) were anesthetized and inoculated intratracheally with approximatively 10^5 CFU of each L. longbeachae strain under investigation. At 24 and 72 h following inoculation, mice were sacrificed and their lung tissue isolated. Tissue was homogenized, and complete host cell lysis was achieved by incubation in 0.1% saponin for 15 min at 37°C. Serial dilutions of the homogenates were plated onto both plain and antibiotic-selective BCYE agar to determine the number of viable bacteria and the ratio of wild-type to mutant bacteria colonizing the lung in mixed infections.

Electron microscopy

Bacteria were transferred to Formvar-carbon-coated copper grids after glow discharged for 3’, stained with 1% uranyl acetate for 3sec, air dried and observed under a Jeol 1200EXII transmission electron microscope (Jeol, Tokyo, Japan) operated at 80kV. Digital acquisition was performed with a Mega View camera and the Analysis pro software version 3.1 (ELOISE, Roissy, France).

PCR analysis

PCR for the regions containing the flagella biosynthesis coding genes in strain L. pneumophila Paris and L. longbeachae NSW150 were amplified with genomic DNA of strain Paris and NSW150 respectively. Primers were designed using the Primer 3 software to amplify a specific fragment of about 1–3kb respectively for each region (melting temperatures 58°C). Amplification reactions were performed in a 50-μl reaction volume containing 6 ng of chromosomal DNA. The size of each PCR product was verified on agarose gels. Primers used are listed in Table S9.

Transcriptome analysis

L. longbeachae strain NSW150 was cultured in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES)-buffered yeast extract broth or on ACES-buffered charcoal –yeast (BCYE) extract agar at 57°C. Total RNA was extracted as previously described [88]. L.
longbeachae was harvested for RNA isolation at the exponential (OD 2.5) and post-exponential phase (OD 3.7). RNA was prepared from three independent cultures and each RNA sample was hybridized twice to the microarrays (dye swap). RNA was reverse-transcribed with Superscript indirect cDNA kit (Invitrogen) and labeled with Cy3 or Cy5 (Amersham Bioscience) according to the supplier’s instructions. The microarray containing 15 710 60mer oligonucleotides specific for 3567 predicted genes of the genome, the plasmid and all intergenic regions longer than 200nts has been designed using the program OligoArray (http://berry.engin. umich.edu/oligoarray/). Based on these sequences a custom oligonucleotide array was manufactured (Agilent Technologies) with a final density of 15K. For hybridization, Cy3 and Cy5 target quantities were normalized at 150 pmol. Arrays were scanned using an Axon 4000B scanner with fixed PMT (PMT = 550 for Cy3 and 650 for Cy5). Data were acquired and analyzed by Genepix Pro 5.0 (Axon Instrument). Spots were excluded from analysis in case of high local background fluorescence slide abnormalities or weak intensity. Data normalization and differential analysis were conducted using the R software (http://www.r-project.org). For each gene 3 probes were present on the microarray. Data for which at least 2 of the 3 probes gave a significant and non-contradictory result were taken into account. A loess normalization [89] was performed on a slide-by-slide basis (BioConductor package marray; http://www.bioconductor.org/packages/bioc/html/marray.html). Differential analysis was carried out separately for each comparison between two time points, using the VM method (VarMixt package [90], together with the Benjamini and Yekutieli [91] p-value adjustment method. The cut off for the expression ratio was set to either superior/equal to 2 or inferior/equal to 0.5 and the general ratio of expression of each gene was calculated as the average expression ratio from the different significant probes.

URLs

The sequence and the annotation of the *L. longbeachae* NSW150 genome is accessible at the LegioList Web Server (http://genolist.pasteur.fr/LegioList and http://genolist.pasteur.fr/) and under the EMBL/Genbank Accession number: FN650140 the *L. longbeachae* NSW150 plasmid under the EMBL/Genbank Accession number: FN650141. Due to new regulations for genome sequence submissions to EMBL/Genbank the gene names (locus_tag), which are e.g. llo0001 in the article and in the Institut Pasteur databases had to be changed to LLO_0001 in the article and in the Institut Pasteur databases. According to the standards for genome sequences published by Chain and colleagues [92] the *L. pneumophila* NSW150 genome sequence can be defined as “Finished” and the three Solaxa genome sequence drafts can be defined as “High-Quality Draft”. The complete dataset for the transcriptome analysis is available at http://genoscript.pasteur.fr in a MIAME compliance public database maintained at the Institut Pasteur and was submitted to the ArrayExpress database maintained at http://www.ebi.ac.uk/microarray-as/ae/ under the Accession number: A-MEXP-1779.

Supporting Information

Figure S1 Classification of the *L. longbeachae* CDS in the different COG groups. 2,506 CDS are classified in at least one COG group. Since several genes are assigned to multiple categories, the total number of assignments is greater than the number of ORFs in the genome. Found at: doi:10.1371/journal.pgen.1000851.s001 (11.39 MB TIF)

Figure S2 Synteny plot of the chromosomes of *L. pneumophila* strain Paris and *L. longbeachae* NSW150. The plot was created using the mummer software package (http://mummer.sourceforge.net/). Found at: doi:10.1371/journal.pgen.1000851.s002 (6.88 MB TIF)

Figure S3 Comparison of the plasmids identified in *L. longbeachae* and *L. pneumophila*. (A) Synteny LinePlot between the *L. longbeachae* plasmid and the plasmids of *L. pneumophila* strain Lens and Paris, respectively. Orthologous genes are defined by bi-directional blastP best hits (BDBH) or a blastP alignment threshold of 35% sequence identity over 80% of the length of the smaller protein. The gap parameter, representing the maximum number of consecutive genes that are not involved in a synteny group was set to 3. (B) Percentage of amino acid identity among Tra proteins of the *L. longbeachae* and the *L. pneumophila* strain Lens as compared to the Tra region of strain Paris. (C) Venn diagram showing the common and specific gene content of the plasmids of *L. pneumophila* strains Paris, Lens and *L. longbeachae* NSW150. Found at: doi:10.1371/journal.pgen.1000851.s003 (17.22 MB TIF)

Figure S4 Distribution of SNPs along the chromosome of *L. longbeachae* ATCC39462 (Sg1) and C-4E7 (Sg2) with respect to the completely sequenced genome of *L. longbeachae* NSW150 (Sg1). Outer circle, Mapping of SNPs between *L. longbeachae* Sg1 (NSW150) and Sg2 (C-4E7), central circle in green, sequence coverage of mapped reads of strain ATCC39462 on the NSW150 genome, inner circle; SNP distribution among the two Sg1 strains sequenced. 1426 SNPs are located in 7 genomic regions: region 1: llo0557-llo0587 containing 112 SNPs; region 2: llo0643-llo0653, carries an integrase gene and contains 152 SNPs; region 3: llo0814-llo0841 containing 38 SNPs; region 4: llo0943-llo0952, carries an integrase gene and contains 152 SNPs; region 5: llo1813-llo1886, carries many tra-like genes and contains 651 SNPs; region 6: llo2119-llo2142, contains 89 SNPs, region 7: llo3148-llo3180, carries genes encoding the putative capsule and contains 166 SNPs. Found at: doi:10.1371/journal.pgen.1000851.s004 (10.54 MB TIF)

Figure S5 Aminoacid alignment of the RAS-domains of different *L. longbeachae* proteins identified in the genome of strain NSW150. PFAM was used to align the different sequences (http://pfam.sanger.ac.uk/). Found at: doi:10.1371/journal.pgen.1000851.s005 (14.63 MB TIF)

Figure S6 Alignment of the putative LPS-encoding region of *L. longbeachae* Sg1 and Sg2 using the ARTEMIS comparison tool. Note the nearly perfect alignment of the four segments with only two regions differing between Sg1 and Sg2. Furthermore, the putative LPS-coding region of the two strains of the same Sg line perfectly up with a over 90% nucleotide identity. Specific regions and the predicted proteins encoded are depicted below. Found at: doi:10.1371/journal.pgen.1000851.s006 (8.74 MB TIF)

Table S1 *L. longbeachae* NSW150 protein coding genes and their distribution within functional categories. Found at: doi:10.1371/journal.pgen.1000851.s007 (0.03 MB DOC)

Table S2 Specific genes of *L. longbeachae* without orthologues in any of the four sequenced *L. pneumophila* genomes. Found at: doi:10.1371/journal.pgen.1000851.s008 (0.50 MB DOC)

Table S3 Distribution of known and predicted Dot/Icm substrates of *L. pneumophila* in *L. longbeachae*.
References

1. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, et al. (2002) Identification of Legionella pneumophila substrates: a sum of parts. Curr Opin Microbiol 12: 67–73.

2. Cazalet C, Jarraud S, Ghavi-Helm Y, Kunst F, Glaser P, et al. (2008) Multigenome analysis identifies a worldwide distributed epidemic strain of Legionella pneumophila. Proc Natl Acad Sci U S A 105: 1966–1968.

3. Feldman M, Segal G (2004) A specific genomic location within the icm/dot region determines virulence of Legionella pneumophila. Cell Microbiol 6: 1165–1173.

4. Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J, et al. (2007) Sel1 repeat proteins localize to cell membranes in confluent monolayers infected with Legionella pneumophila. Mol Microbiol 9: 1571–1587.

5. Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, et al. (2005) A C-terminal translocation signal required for Dot/Tem-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102: 826–831.
47. Lurin C, Batzilila C, Hagele S, Kusch H, Engelmann S, et al. (2004) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. J Int Med J Med Microbiol 299: 489–508.

48. Nakamura T, Schuster G, Sugiura M, Sugita M (2004) Chloroplast RNA-polymerase I and II: the Birc1e cytosolic pattern-recognition receptor contributes to the detection of flagellin. Nat Immunol 9: 1171–1178.

49. Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, et al. (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8: 137–147.

50. Belyi Y, Stahl M, Sovkova I, Kaden P, Luy B, et al. (2009) Region of elongation factor 1A involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase. J Biol Chem 284: 20167–20174.

51. Mori T, Schuster G, Sugiura M, Sugita M (2008) Legionella pneumophila exploits PIP(2) and PIP(3) anchor secreted effectors to the replicative vacuole. PLoS Pathog 2: e6. doi:10.1371/journal.ppat.0020046.

52. Schuster G, Belyi Y, Sugiura M, Bruggemann H, Jules M, et al. (2009) Component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3: e334. doi:10.1371/journal.pbio.0030334.

53. Heidtman M, Chen EJ, Moy MY, Isberg RR (2009) Large-scale identification of non-cyanobacterial genome sequences for occurrence of genes encoding proteins of the Birc1e family. Proc Natl Acad Sci U S A 96: 6363–6370.

54. Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, et al. (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8: 137–147.

55. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-affinity “lights-out” signaling in networked arrays. Trends Biochem Sci 33: 9–19.

56. Krehenbrink M, Oppermann-Sanio FB, Steinbuchel A (2002) Evaluation of the kilobase pgm locus of Yersinia pseudotuberculosis. J Bacteriol 184: 5701–5707.
Author/s:
Cazalet, C; Gomez-Valero, L; Rusniok, C; Lomma, M; Dervins-Ravault, D; Newton, HJ; Sansom, FM; Jarraud, S; Zidane, N; Ma, L; Bouchier, C; Etienne, J; Hartland, EL; Buchrieser, C

Title:
Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease

Date:
2010-02-01

Citation:
Cazalet, C., Gomez-Valero, L., Rusniok, C., Lomma, M., Dervins-Ravault, D., Newton, H. J., Sansom, F. M., Jarraud, S., Zidane, N., Ma, L., Bouchier, C., Etienne, J., Hartland, E. L. & Buchrieser, C. (2010). Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease. PLOS GENETICS, 6 (2), https://doi.org/10.1371/journal.pgen.1000851.

Persistent Link:
http://hdl.handle.net/11343/242937

File Description:
published version

License:
CC BY