KIFC1 regulated by miR-532-3p promotes epithelial-to-mesenchymal transition and metastasis of hepatocellular carcinoma via gankyrin/AKT signaling

Jihua Han1,2 · Fengyue Wang1 · Yaliang Lan1 · Jiabei Wang1 · Chunlei Nie2 · Yingjian Liang1 · Ruipeng Song1 · Tongsen Zheng3 · Shangha Pan1 · Tiemin Pei1 · Changming Xie1 · Guangchao Yang1 · Xirui Liu1 · Mingxi Zhu1 · Yan Wang1 · Yao Liu1 · Fanzheng Meng1 · Yifeng Cui1 · Bo Zhang1 · Yufeng Liu1 · Xianzhi Meng1 · Jiewu Zhang2 · Lianxin Liu1

Received: 18 November 2017 / Revised: 14 June 2018 / Accepted: 20 July 2018 / Published online: 16 August 2018 © The Author(s) 2018. This article is published with open access

Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. The poor survival may be due to a high proportion of tumor recurrence and metastasis. Kinesin family member C1 (KIFC1) is highly expressed in a variety of neoplasms and is a potential marker for non-small cell lung cancer or ovarian adenocarcinoma metastasis. Nevertheless, the role of KIFC1 in HCC metastasis remains obscure. We investigated this in the present study using HCC cell lines and clinical specimens. Our results indicated that increased levels of KIFC1 were associated with poor prognosis and metastasis in HCC. In addition, KIFC1 induced epithelial-to-mesenchymal transition (EMT) and HCC metastasis both in vitro and in vivo. This tumorigenic effect depended on gankyrin; inhibiting gankyrin activity reversed EMT via activation of protein kinase B (AKT)/Twist family BHLH transcription factor 1 (AKT/TWIST1). We also found that KIFC1 was directly regulated by the microRNA miR-532-3p, whose downregulation was associated with metastatic progression in HCC. These results denote that a decrease in miR-532-3p levels results in increased KIFC1 expression in HCC, leading to metastasis via activation of the gankyrin/AKT/TWIST1 signaling pathway.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer and second leading cause of cancer-related mortality worldwide [1]. The incidence of HCC is increasing, with the main causes being hepatitis B/C virus infection-derived cirrhosis related to heavy alcohol consumption [2]. Liver transplantation and surgical resection are the most effective treatments for HCC, but overall survival (OS) remains unsatisfactory due to tumor recurrence and metastasis [3]. The mechanism underlying HCC development and progression are not fully understood; clarifying these can lead to the development of novel therapeutic strategies that improve HCC patient prognosis.

Kinesin family member C1 (KIFC1) belongs to the kinesin-14 family of motor proteins and is implicated in centrosome clustering, microtubule transport and spindle formations during mitosis [4, 5]. KIFC1 is overexpressed in various cancers including breast and gastric cancers and ovarian adenocarcinoma, and was shown to promote tumor cell proliferation and/or drug resistance [6–8]. It is also a
putative marker for metastasis in patients with lung cancer or ovarian adenocarcinoma [6, 9]. However, the role of KIFC1 in HCC progression and the underlying mechanism are unknown.

Fig. 1 Upregulation of KIFC1 is associated with metastasis in HCC. a KIFC1 mRNA level was analyzed in 101 paired HCC and paracancerous tissue specimens by real-time PCR. b Kaplan–Meier analysis of OS in patients with variable expression of KIFC1. c Representative images of KIFC1 expression detected by immunohistochemistry in metastatic (n = 25, median Allred score = 6.263) and non-metastatic (n = 42, median Allred score = 3.594) HCC tissue specimens (100 ×). Scale bars, 100 μm. d The proteins levels of KIFC1 normalized to the GAPDH level in metastatic (n = 25, median fold change = 4.274) and non-metastatic (n = 42, median fold change = 1.553) HCC tissue specimens, as determined using western blotting. e Western blotting analyze KIFC1 expression in L02 and HCC cells. f KIFC1 mRNA levels of in HCC cells relative to L02. Data represent mean ± SD of three independent experiments. **P < 0.01, ***P < 0.001. C cancer, P paracancerous tissue
We addressed this in the present study by utilizing HCC clinical specimens and six different cell lines. We found that KIFC1 overexpression in HCC cells and tissues was associated with poor prognosis and metastasis. KIFC1 stimulated HCC cell proliferation, metastasis and was proved to be a direct target of the micro (mi)RNA miR-
KIFC1 was closely correlated with tumor diameter (HCC patients demonstrated that high expression level of 1). An analysis of the clinicopathological features of 101 in vitro and in vivo.

well was counted (right panels). d, e KIFC1 overexpression increased SMCC7221 cell subcutaneous and orthotopic xenograft growth in nude mice, whereas KIFC1 knockdown had the opposite effect. Tumor volume and weight are shown in the right panels (n = 6/group). f Immunohistochemical detection of KIFC1 and Ki-67 protein levels in xenograft tissues (100 ×). Scale bars, 100 μm. Data represent mean ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001

532-3p, which was downregulated in HCC and suppressed metastasis when overexpressed. The tumorigenic effects of KIFC1 were exerted via activation of the gankyrin/AKT signaling pathway and induction of epithelial-to-mesenchymal transition (EMT). These findings indicate that KIFC1 is a potential therapeutic target for the treatment of HCC.

Results

KIFC1 overexpression in HCC is associated with metastasis and poor prognosis

KIFC1 was drastically overexpressed in HCC as compared with paracancerous tissue, as determined by real-time PCR (Fig. 1a), which was supported by data from TCGA database (https://cancergenome.nih.gov/; Supplementary Figure 1). An analysis of the clinicopathological features of 101 HCC patients demonstrated that high expression level of KIFC1 was closely correlated with tumor diameter (P = 0.0281), differentiation (P = 0.0289) and metastasis (P = 0.0085) in HCC (Supplementary Table 1). Meanwhile, we found that patients with higher KIFC1 expression exhibited significantly poorer OS than those expressing lower levels of KIFC1 (Fig. 1b). KIFC1 protein levels were detected by immunohistochemistry (IHC) and western blotting. Consistent with the above findings, KIFC1 was distinctly higher in metastatic HCC tissue samples than those was in non-metastatic tissues (Figs. 1c, d). Furthermore, we investigated the expression of KIFC1 in normal liver cell line L02 and five HCC cell lines by real-time PCR and western blotting, and revealed that KIFC1 level increased as a function of metastatic potential (Figs. 1e, f). These results indicate that KIFC1 is upregulated in HCC, which is linked to poor prognosis and metastasis.

KIFC1 enhances HCC growth

In order to determine the functions of KIFC1 in HCC, we performed gain- and loss-of-function experiments by overexpressing KIFC1 in SMCC7221 and Huh7 (low metastatic potential HCC cell lines) and by silencing KIFC1 in HCCLM3 and SK-Hep-1 (high metastatic potential), respectively, by lentiviral infection. Among four KIFC1 short hairpin RNAs tested, shKIFC1-3 resulted in the most significant knockdown effect in HCC cells, it was used for subsequent experiments (Fig. 2a and Supplementary Figure 2). Next, growth curves and the colony formation assay were carried out to measure cell growth. KIFC1 overexpression enhanced the cell proliferation and foci formation of SMCC7221 and Huh7, whereas KIFC1 knockdown suppressed the cell growth and foci formation of HCCLM3 and SK-Hep-1 cells (Figs. 2b, c).

To verify the above findings in vivo, we established subcutaneous and orthotopic tumor models. Tumor growth and initiation were evidently increased in SMCC7221 cells stably overexpressing KIFC1 (SMCC7221-KIFC1) and were decreased in HCCLM3 cells with stable KIFC1 knockdown (HCCLM3-shKIFC1) relative to the corresponding control groups (Figs. 2d, e). The results of IHC analysis revealed that the expression level of Ki-67 in SMCC7221-KIFC1 group is higher than SMCC7221-Con group, whereas it is lower in HCCLM3-shKIFC1 than the control group (Fig. 2f). These data indicate that KIFC1 has an oncogenic function and promotes HCC development in vitro and in vivo.

KIFC1 promotes HCC cell invasion and lung metastasis

Previous data suggested a relevance between KIFC1 expression and HCC metastasis. We therefore investigated whether the increased expression of KIFC1 in HCC affects cell motility and invasiveness. Wound-healing assay indicated that KIFC1 overexpression increased the cell migration ability of HCC cells, whereas KIFC1 knockdown repressed the HCC cell migration ability (Fig. 3a and Supplementary Figure 3a). The transwell migration and Matrigel invasion assays showed that the migratory and invasive capacities of SMCC7221 and Huh7 cells were increased by KIFC1 overexpression; meanwhile, KIFC1 silencing in HCCLM3 and SK-Hep-1 cells suppressed migration and invasion (Fig. 3b and Supplementary Figure 3b).

In the meantime, we established a lung metastasis model to examine these finding in vivo. At 6 weeks after injection, SMCC7221-KIFC1-derived tumors had a larger mass and were more numerous as compared with the control group. Conversely, the lung metastases in the HCCLM3-shKIFC1 group were obviously inhibited relative to the control (Figs. 3c, d). Hematoxylin and eosin (H&E) staining of lung tissue samples from these mice confirmed these findings (Fig. 3e), providing further evidence that KIFC1 promotes HCC metastasis in vitro and in vivo.
Fig. 3 KIFC1 promotes HCC cell migration and invasion in vitro and lung metastasis in vivo. a Results from the wound-healing assay demonstrating that KIFC1 overexpression enhanced the motility of SMMC7721-KIFC1 cells, whereas KIFC1 knockdown suppressed the motility of HCCLM3-shKIFC1 cells compared with control cells (left panel, 200 ×). Photomicrographs were obtained at 0 and 24 h and migrated distance (right panel) was measured using ImageJ software (Bethesda, USA). b Migration and invasion assays for indicated cell lines (200 ×); counts of migrated and invaded HCC cells are shown in the lower panel. c In vivo metastasis assay was performed in mice injected with stably transfected cell lines. Representative bioluminescence images and photographs of lung tumors from indicated groups are shown. d Number of lung metastatic nodules in indicated groups. e Representative H&E images of lung metastases in each group (n = 10/group, 40 ×). Scale bars, 250 μm. Data represent mean ± SD of three independent experiments. **P < 0.01, ***P < 0.001
KIFC1 induces EMT in HCC cells

EMT, in which tumor-associated epithelial cells acquire mesenchymal features; during this process, cell–cell contact is decreased, which increases tumor cell motility [10]. To determine how KIFC1 affects the invasive phenotype of HCC cells, we evaluated the markers of EMT by real-time PCR and western blotting. The epithelial marker E-cadherin was inhibited, whereas the mesenchymal markers N-cadherin and vimentin were upregulated in SMMC7721 cells overexpressing KIFC1 (Figs. 4a, b). Conversely, KIFC1 knockdown increased the expression of E-cadherin and inhibited that of N-cadherin and vimentin relative to control cells. Immunofluorescence analysis further confirmed those findings (Fig. 4c). Additionally, cell morphology was drastically altered by KIFC1 overexpression or silencing: phase-contrast images revealed that SMMC7221-KIFC1 cells had a spindle shape (mesenchymal morphology), whereas HCCLM3-shKIFC1 cells had a round or cobblestone-like appearance (epithelial morphology) as compared with the control cells (Supplementary Figure 4). Therefore, these results reveal that KIFC1 induces EMT in HCC cells.

Gankyrin is essential for KIFC1-mediated EMT and HCC metastasis

To identify the key molecules participated in KIFC1-induced EMT of HCC, we screened a set of EMT-related transcriptional factors by real-time PCR. Twist family BHLH transcription factor 1 (TWIST1) was the only transcription factor that was up- and downregulated upon KIFC1 overexpression and knockdown, respectively, with no obvious changes observed in Snail, Slug and ZEB1.
mRNA levels (Supplementary Figure 5a). Moreover, these finding were supported by western blotting (Supplementary Figure 5b). Thus, KIFC1 may induce EMT by modulating TWIST1 expression.
TWIST1 induces EMT in cancer by modulating a variety of signaling pathways, including AKT, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and signal transducer and activator of transcription 3 (STAT3) [11, 12]. We therefore examined the expression of key molecules in these pathways to determine whether they are involved in KIFC1-mediated EMT. A western blot analysis revealed that phosphorylated (p)-AKT level was increased by KIFC1 overexpression and decreased by KIFC1 silencing. However, there were no significant changes observed in total AKT, p-ERK and p-STAT3 levels (Supplementary Figure 5c).

A previous study reported that gankyrin is a key regulator of hepatic development and metastasis that functions by activating the AKT/TWIST1 EMT signaling pathway [13]. We found that gankyrin was up- and downregulated by KIFC1 overexpression and knockdown, respectively (Fig. 5a). We therefore investigated whether KIFC1-mediated enhancement of EMT is gankyrin dependent. We performed gain- and loss-of-function experiments by overexpressing or silencing gankyrin in both SMMC7721 and HCCLM3 cells, by lentiviral infection. Given that shGank-3 showed the most consistent knockdown effect in HCC cells, it was chosen for subsequent study (Fig. 5b and Supplementary Figure 6). As expected, a western blot analysis demonstrated that KIFC1 stimulated gankyrin, p-AKT, TWIST1, N-cadherin and vimentin expression and suppressed that of E-cadherin in SMMC7721 cells, effects that were reversed by gankyrin silencing. The converse was observed by KIFC1 knockdown in HCCLM3 cells, with gankyrin overexpression abrogating the effects of KIFC1 silencing (Fig. 5c). Thus, gankyrin likely play a vital part in KIFC1-mediated metastasis in HCC cells. Matrigel invasion assay showed that the invasive capacity of SMMC7721-overexpressing KIFC1 cells was decreased by gankyrin knockdown, whereas that of KIFC1-deficient HCCLM3 cells was increased by gankyrin overexpression (Fig. 5d). The migratory capacity of HCC cells was similarly affected, as determined with the transwell migration assay (Supplementary Figure 7).

To validate the direct relationship between KIFC1 and gankyrin, we examined their expression level in tissue microarray including 80 HCC specimens by IHC staining (Fig. 5h). A Spearman’s correlation test revealed a positive association between KIFC1 and gankyrin in HCC patients (r = 0.4943, P < 0.001) (Fig. 5i). All in all, the above finding demonstrate that gankyrin is an important downstream effector of KIFC1-mediated EMT and metastasis in HCC.

KIFC1 is a direct target of miR-532-3p in HCC

MiRNAs have been linked to tumor progression and metastasis in various human cancers [14, 15]. We screened miRNAs that potentially regulate KIFC1 using public available databases including miTarBase, TargetScan and miRanda (Supplementary Figure 8). Candidate miRNA mimics were transfected into four HCC cell lines and KIFC1 was measured by real-time PCR and western blotting. The results showed that KIFC1 expression was suppressed in all cell lines upon overexpression of miR-532-3p both at the mRNA (Supplementary Figure 9) and protein (Fig. 6a) levels relative to negative control-transfected cells. The luciferase activity was suppressed by miR-532-3p in both SMMC7721 and HCCLM3, by lentiviral infection. Given that shGank-3 showed the most consistent knockdown effect in HCC cells, it was chosen for subsequent study (Fig. 5b and Supplementary Figure 6). As expected, a western blot analysis demonstrated that KIFC1 stimulated gankyrin, p-AKT, TWIST1, N-cadherin and vimentin expression and suppressed that of E-cadherin in SMMC7721 cells, effects that were reversed by gankyrin silencing. The converse was observed by KIFC1 knockdown in HCCLM3 cells, with gankyrin overexpression abrogating the effects of KIFC1 silencing (Fig. 5c). Thus, gankyrin likely play a vital part in KIFC1-mediated metastasis in HCC cells. Matrigel invasion assay showed that the invasive capacity of SMMC7721-overexpressing KIFC1 cells was decreased by gankyrin knockdown, whereas that of KIFC1-deficient HCCLM3 cells was increased by gankyrin overexpression (Fig. 5d). The migratory capacity of HCC cells was similarly affected, as determined with the transwell migration assay (Supplementary Figure 7). Furthermore, in vivo analysis revealed that the fluorescence signal and number of HCCLM3 cell-derived metastatic nodules in the lungs were decreased by KIFC1 knockdown and increased by gankyrin overexpression (Figs. 5e, f), which were confirmed by H&E staining (Fig. 5g).
miR-532-3p-KIFC1 and SK-Hep-1-miR-532-3p-KIFC1) (Fig. 6d). In subcutaneous and orthotopic tumor xenograft models, increased levels of miR-532-3p attenuated HCC tumorigenesis relative to mice harboring tumors derived
from HCCLM3 cells transduced with a negative control vector; however, tumor growth was rescued by KIFC1 overexpression (Figs. 6e, f).

The invasive and migratory capacities of HCC cells were repressed by overexpression of miR-532-3p, as determined by the Matrigel invasion and transwell migration assays, respectively. KIFC1 overexpression restored the metastatic potential of HCCLM3-miR-532-3p-KIFC1 and SK-Hep-1-miR-532-3p-KIFC1 cells (Fig. 6g and Supplementary Figure 10). We confirmed these results in vivo by injecting HCCLM3-miR-532-3p and HCCLM3-miR-532-3p-KIFC1 cells into nude mice through the tail vein. Mice in the HCCLM3-miR-532-3p group had fewer and smaller metastatic nodules in the lungs; this effect was reversed in the HCCLM3-miR-532-3p-KIFC1 group (Figs. 6h, i). H&E staining of the lung sections confirmed these observations (Fig. 6j). These results suggest that KIFC1 is negatively regulated by miR-532-3p in HCC and that miR-532-3p suppress HCC development and metastasis both in vitro and in vivo.
MiR-532-3p inhibits HCC metastasis by blocking EMT via KIFC1/gankyrin/AKT/TWIST1 signaling

Then, we investigated the mechanism by which miR-532-3p inhibits HCC metastasis. Western blotting and real-time PCR assays showed that miR-532-3p overexpression suppressed the expression of KIFC1, gankyrin, p-AKT, TWIST1 and mesenchymal markers (N-cadherin and vimentin) and increased that of E-cadherin in HCC cells, effects that were reversed by KIFC1 overexpression (Supplementary Figure 11). Thus, miR-532-3p inhibits EMT in HCC via activation of KIFC1/Gankyrin/AKT/TWIST1 signaling.

MiR-532-3p and KIFC1 levels predict HCC patient prognosis

Combination of multiple molecular may improve predictions of patient outcome [16]. We tested whether this is true for the combination of miR-532-3p and KIFC1. A negative correlation was observed between miR-532-3p and KIFC1 levels (r = −0.4625, P < 0.01) (Fig. 8a) in an analysis of 101 patient specimens by real-time PCR. Furthermore, patients with low miR-532-3p and high KIFC1 expression had worse prognosis, including shorter OS and disease-free survival (DFS) (Figs. 8b, c). On the contrary, patients with high miR-532-3p and low KIFC1 had better outcomes. Thus, a combination of these two markers can potentially improve predictions of disease outcome.

Discussion

Although significant achievement has been made in the identification of diagnostic and prognostic biomarkers of HCC, our knowledge of the molecular mechanisms underlying HCC development and metastasis is limited. In this study, we revealed that KIFC1 is upregulated in HCC and that its expression is strongly associated with HCC progression and metastasis. These findings suggest that KIFC1 has an oncogenic function in association with gankyrin/AKT/EMT signaling in HCC cells and is negatively regulated by miR-532-3p during HCC progression and metastasis.

There is increasing evidence suggesting that increased KIFC1 expression results in cancer development [17, 18]. Here, we found that KIFC1 is a potential prognostic marker for HCC, because it was upregulated in HCC as compared with paracancerous tissue and was more highly expressed in metastatic than in non-metastatic tumors. KIFC1 expression was significantly correlated with tumor size, differentiation status, metastatic status and poorer prognosis in HCC. Results from our HCC tumor xenograft model demonstrated that KIFC1 overexpression promoted tumor formation and
lung metastasis, whereas KIFC1 knockdown suppressed tumor formation and resulted in the generation of fewer lung metastatic foci. The results from the in vitro assays confirmed that KIFC1 overexpression enhanced HCC cell proliferation, migration, and invasion.

As expected, increased KIFC1 levels enhanced the expression of mesenchymal markers while reducing that of epithelial markers. EMT is regulated by the transcription factors ZEB1, Snai1, Slug and TWIST1; here we found that the expression of TWIST1 was upregulated by KIFC1 overexpression in HCC, suggesting that it may mediate EMT induced by KIFC1.

Gankyrin is a non-ATPase regulatory subunit of the 26S proteasome that acts as an oncoprotein and contributes to tumorigenesis and metastasis in various cancers [19–21]. Overexpression of gankyrin accelerates the invasiveness and metastasis of cholangiocarcinoma, cervical cancer, colorectal cancer, etc. [22–24]. It was reported that gankyrin induced EMT to promote the metastasis of HCC, non-small cell lung cancer and cholangiocarcinoma [13, 25, 26]. In this study, we observed that gankyrin was dysregulated by KIFC1 overexpression and that KIFC1-induced EMT activation depended on gankyrin. More experiments are needed to clarify whether gankyrin can regulate KIFC1, which could indicate a feedback regulatory mechanism between these two factors.

MiRNAs have long been known to post-transcriptionally regulate the expression of their target genes. They play a critical role in the activation of oncogenes or deactivation of tumor suppressors and are thus implicated in various human cancers [27–30]. Here, we identified miR-532-3p as upstream regulator of KIFC1 that directly targets KIFC1 with the luciferase reporter assay. MiR-532-3p was previously reported to be dysregulated in some cancers and to have oncogenic or tumor-suppressor functions [31–34]. We found that miR-532-3p was repressed in HCC tissue, and miR-532-3p expression was negatively correlated with tumor size, differentiation and metastasis; furthermore, it was shown to prevent HCC metastasis by blocking EMT via KIFC1/Gankyrin/AKT/TWIST1 signaling. A combination of miR-532-3p and KIFC1 showed better prognostic value for OS and DFS, which could improve patient outcome by allowing clinicians to identify metastatic progression of HCC at early stages.

Materials and methods

HCC tissue collection

From May 2009 to September 2014, we collected 101 pairs of HCC and paracancerous liver tissue specimens from patients who underwent surgical resection at the First Affiliated Hospital of Harbin Medical University. Patients enrolled in our study received neither radiation therapy nor chemotherapy prior to surgery. Our study was approved by the Research Ethics Committee of the First Affiliated Hospital of Harbin Medical University.

Cell lines and transfection

L02 immortalized normal liver cells were purchased from Cell Bank of Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). Human HCC cell lines (Huh7, SMMC7721, HepG2, HCCLM3 and Sk-Hep-1) were purchased from the American Type Culture Collection. All cell were grown in Dulbecco’s modified Eagle’s medium (Gibco) containing 10% fetal bovine serum and 1% antibiotics at 37°C and 5% CO2. MiRNA oligonucleotides (RiboBio, Guangzhou, China) were transfected using Lipofectamine 2000 (Invitrogen, USA).

Lentivirus and regents

Lentiviral vector encoding human firefly luciferase, KIFC1, gankyrin and miR-532-3p genes (LV-KIFC1, LV-Gank and LV-miR-532-3p), short hairpin RNAs against KIFC1 and gankyrin (LV-shKIFC1 and LV-shGank) and the empty vector (LV-Con and LV-shCon) were purchased from GeneChem (Shanghai, China). The stable cells were transduced in polybrene, generated and harvested after purineomycin selecting for 14 days. Sequences of the specific short interfering RNAs were shown in Supplementary Table 3. Detailed information of our commercial antibodies are described in Supplementary Table 4.

Real-time PCR

Total RNA was isolated using the RNeasy Mini kit (Qiagen, USA) and reverse-transcribed with the Reverse Transcription kit (Applied Biosystems, USA). The amplification was performed using SYBR Green or TaqMan PCR Master Mix on an ABI Prism 7500 Fast (Applied Biosystems). MRNAs and miRNAs expression levels were normalized to GAPDH and U6, respectively, and were determined by the 2−ΔΔCt method. All primers and probe could be found in Supplementary Table 5.

IHC staining

Tissue sections were de-paraffinized in xylene and rehydrated in a graded series of alcohol, followed by antigen retrieval, goat serum, primary antibody and biotinylated secondary antibody incubation (Vector Laboratories, USA). The immunoreaction was visualized by staining with diaminobenzidine tetrahydrochloride solution (Vector...
Laboratories); sections were counterstained with hematoxylin (Sigma-Aldrich) and dehydrated through a graded series of alcohol before sealing the slides with coverslips. Allred scoring system was applied to quantifying the protein staining accounting as previously described [35]. Briefly, the proportion score was defined as: 0 = 0%, 1 < 1%, 2 = 1–10%, 3 = 11–33%, 4 = 34–66%, 5 > 66%, the staining intensity was defined as 0, none; 1, weak; 2, intermediate; 3, strong staining, and providing a composite score (intensity + proportion = 0–8).

Western blotting

Cells or tissues were lysed with cell lysis buffer supplemented with a protease inhibitor cocktail and PhosStop phosphatase inhibitor cocktail (Roche Diagnostics, USA). After quantification, 30-µg samples were denatured, separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and then transferred onto polyvinylidene difluoride (PVDF) membrane (Invitrogen). The membranes were blocked with fat-free milk for 1 h, incubated with primary antibody overnight and alkaline phosphatase-conjugated secondary antibody for 60 min. The membranes were visualized by enhanced chemiluminescence (Pierce, USA).

Proliferation assay

The cell growth assay was measured by growth curve and colony formation assay. Briefly, indicated cells were seeded and counted at various time after transfection. For colony formation assay, 500–1000 cells were seeded in six-well plates for 14 days. Then, the colonies were fixed by paraformaldehyde and stained to visualize with crystal violet.

Migration and invasion assays

Wound-healing assays were performed in six-well plates. Indicated cells were seeded and allowed to grow to confluence. They were then washed twice in medium, scratched with a pipette tip (200 µl) and imaged at 0 h and 24 h. For the transwell migration assays, 2–4 × 10⁴ cells were suspended in serum-free medium, placed into the upper chamber and allowed to migrate towards normal medium in the lower chamber for 24–48 h.

The cell invasion assays were examined using Matrigel-coated membranes in 24-well BioCoat dishes (BD Biosciences, USA). Cells was incubated for 24–48 h at 37 °C, fixed in formaldehyde and stained with crystal violet for 10 min. Cells that migrated to the bottom surface of filter were counted as invaded cells by an inverted microscope.

Immunofluorescence analysis

HCC cells were seeded onto a clear coverslips, fixed with 4% paraformaldehyde and incubated with 0.5% Triton X-100. After blocking with 10% normal goat serum, the cells were incubated with primary antibodies at 4 °C overnight. Then, the slides were incubated with fluorescent secondary antibodies (Invitrogen) for 1 h at room temperature. Ultimately, nuclei were counterstained with 4,6-diamidino-2-phenylindole (Vector Laboratories), and the stained sections were photographed by DMRA fluorescence microscope (Leica, Germany).

In vivo experiments

Four- to 6-week-old male BALB/c nude mice were purchased from the Shanghai Animal Center. Experimental procedures involving the animals were authorized by the Animal Ethics Committee of Harbin Medical University. In all, 2 × 10⁶ cells were resuspended in 0.1 ml phosphate-buffered saline and subcutaneously inoculated into the flanks of each mouse. The tumors were completely resected at 4th week, the tumor weight were measured and the tumor volume was calculated as: W² × L/2.

The orthotopic xenograft model was established by resecting and cutting the subcutaneous xenograft tumor into 1 mm³ cubes, and implanting the pieces into the left lobe of the liver. Tumor bioluminescent signals were measured in vivo weekly to monitor the tumor growth. At week 8, the mice were sacrificed and tumor tissue was collected.

The in vivo metastasis model was established by intravenously injecting 1 × 10⁶ cells into nude mice (n = 10 per group) via lateral tail vein. The mice were measured using the Berthold bioluminescence system, and sacrificed at week 8. For histological analysis, lungs were fixed, embedded, sectioned, stained with H&E and analyzed for the presence of metastatic nodules.

Dual-luciferase assay

Indicated cells were plate and cultured in triplicate for 24 h, and co-transfected the KIFC1–3'-UTR clones or mutant clones with pRL-TK Renilla plasmid. After 48 h, luciferase activities in transfected cells were measured by the dual-luciferase reporter assay kit (Promega, USA) according to the manufacturer’s protocol.

Statistical analysis

Statistical analysis was conducted using the SPSS 18.0 (Chicago, USA) and GraphPad Prism 6 (San Diego, USA). Results are presented as mean values ± SD of at least three different experiments performed in triplicate. The survival
curves were plotted using the Kaplan–Meier method and log-rank test assays. The statistical significance between two groups was determined by two tailed Student’s t-tests. \(P < 0.05 \) was considered statistically significant.

Acknowledgements This study was supported by National Key Program for Science and Technology Research and Development (grant no. 2016YFC0106503, no. 2016YFC0106500 and no. 2016YFC0905902), Program for Innovative Research Team (in Science and Technology) in Higher Educational Institutions of Hei-longjiang Province (grant no. 2009md06), Changjiang Scholars and Innovative Research Team in University (grant no. IRT1112), the National Natural Scientific Foundation of China (grant no. 81602058, no. 81772588, no. 81773194), Hei Longjiang Postdoctoral Foundation, China Postdoctoral Science Foundation Grant (grant no. 2018M630368), the Science and Technology Research Projects of Hei Longjiang Province (grant no. GC12C304-5), Haian Research Fund of the Third Affiliated Hospital of Harbin Medical University (grant no. JZZD2017-03, no. JJQN2018-14), the Fundamental Research Funds for the Provincial Universities (grant no. 2017LCZX24), the Foundation of the First Affiliated Hospital of Harbin Medical University (grant no. 2018BO17), Innovative Research Program for Graduate of Harbin Medical University (grant no. YJSCX2015-17HYD). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
2. Goh GB, Chang PE, Tan CK. Changing epidemiology of hepatocellular carcinoma in Asia. Best Pract Res Clin Gastroenterol. 2015;29:919–28.
3. Serper M, Taddei TH, Mehta R, D’Addeo K, Dai F, Aytaman A, et al. Association of provider specialty and multi-disciplinary care with hepatocellular carcinoma treatment and mortality. Gastroenterology. 2017;152:1954–64.
4. Yu K, Hou L, Zhu JQ, Ying XP, Yang WX. KIFC1 participates in acrosomal biogenesis, with discussion of its importance for the perforatorium in the Chinese mitten crab Eriocheir sinensis. Cell Tissue Res. 2009;337:113–23.
5. Nath S, Bananis E, Sarkar S, Stockert RJ, Sperry AO, Murray JW, et al. Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver. Mol Biol Cell. 2007;18:1839–49.
6. Pawar S, Donthamsetty S, Pannu V, Rida P, Ogden A, Bowen N, et al. KIFC1, a novel putative prognostic biomarker for ovarian adenocarcinomas: delineating protein interaction networks and signaling circuits. J Ovarian Res. 2014;7:53.
7. Oue N, Mukai S, Imai T, Pham TT, Oshima T, Sentani K, et al. Induction of KIFC1 expression in gastric cancer spheroids. Oncol Rep. 2016;36:349–55.
8. Li Y, Lu W, Chen D, Booiker RJ, Zhai L, Padmalayam I, et al. KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biol Ther. 2015;16:1316–22.
9. Grinberg-Rashi H, Ofek E, Perelman M, Skarda J, Yaron P, Hajduch M, et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res. 2009;15:1755–61.
10. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.
11. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.
12. Zou H, Feng X, Cao JG. Twist in hepatocellular carcinoma: pathophysiology and therapeutics. Hepatol Int. 2015;9:399–405.
13. Fu J, Chen Y, Cao J, Luo T, Qian YW, Yang W, et al. p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-alpha pathways. Pathology. 2011;53:181–92.
14. Chang RM, Xiao S, Lei X, Yang H, Fang F, Yang LY. miRNA-487a promotes proliferation and metastasis in hepatocellular carcinoma. Clin Cancer Res. 2017;23:2593–604.
15. Rokavec M, Horst D, Herrinck H. Cellular model of colon cancer progression reveals signatures of mRNAs, miRNA, lncRNAs, and epigenetic modifications associated with metastasis. Cancer Res. 2017;77:1854–67.
16. Han J, Xie C, Pei T, Wang J, Lan Y, Huang K, et al. Deregulated AJAP1/beta-catentin/ZEB1 signaling promotes hepatocellular carcinoma carcinogenesis and metastasis. Cell Death Dis. 2017;8:e2736.
17. Liu Y, Zhan P, Zhou Z, Xing Z, Zhu S, Ma C, et al. The overexpression of KIFC1 was associated with the proliferation and prognosis of non-small cell lung cancer. J Thorac Dis. 2016;8:2911–23.
18. Xiao YX, Yang WX. KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget. 2016;7:48656–70.
19. Chen J, Bai M, Ning C, Xie B, Zhang J, Liao H, et al. Gankyrin overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-alpha pathways. Oncogene. 2016;35:2506–17.
20. Riahi MM, Sistani NS, Zamani P, Abnous K, Jamialahmadi K. Correlation of gankyrin oncoprotein overexpression with histopathological grade in prostate cancer. Neoplasma. 2017;63:1560–75.
21. Wang WP, Yan XL, Li WM, Ni YF, Zhao JB, Lu Q, et al. Clinicopathologic features and prognostic implications of gankyrin protein expression in non-small cell lung cancer. Pathol Res Pract. 2015;211:939–47.
22. Liu Y, Zhang J, Qian W, Dong Y, Yang Y, Liu Z, et al. Gankyrin is frequently overexpressed in cervical high grade disease and is associated with cervical carcinogenesis and metastasis. PLoS ONE. 2014;9:e95043.
23. Zheng T, Hong X, Wang J, Pei T, Liang Y, Yin D, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology. 2014;59:935–46.
24. Bai Z, Tai Y, Li W, Zhen C, Gu W, Jian Z, et al. Gankyrin activates IL-8 to promote hepatic metastasis of colorectal cancer. Cancer Res. 2013;73:4548–58.

25. Pei T, Li Y, Wang J, Wang H, Liang Y, Shi H, et al. YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget. 2015;6:17206–20.

26. Wang WP, Sun Y, Lu Q, Zhao JB, Wang XJ, Chen Z, et al. Gankyrin promotes epithelial-mesenchymal transition and metastasis in NSCLC through forming a closed circle with IL-6/STAT3 and TGF-beta/SMAD3 signaling pathway. Oncotarget. 2017;8:5909–23.

27. Hu J, Sun T, Wang H, Chen Z, Wang S, Yuan L, et al. MiR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell. 2016;29:49–60.

28. Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y, et al. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology. 2016;63:1560–75.

29. Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, et al. Hippo signaling regulates microprocessor and links cell-density-dependent mRNA biogenesis to cancer. Cell. 2014;156:893–906.

30. Wang J, Xie C, Pan S, Liang Y, Han J, Lan Y, et al. N-myc downstream-regulated gene 2 inhibits human cholangiocarcinoma progression and is regulated by leukemia inhibitory factor/microRNA-181c negative feedback pathway. Hepatology. 2016;64:1606–22.

31. Zhao BS, Liu SG, Wang TY, Ji YH, Qi B, Tao YP, et al. Screening of microRNA in patients with esophageal cancer at same tumor node metastasis stage with different prognoses. Asian Pac J Cancer Prev. 2013;14:139–43.

32. Kanaan Z, Roberts H, Eichenberger MR, Billeter A, Ocheretner G, Pan J, et al. A plasma microRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer. Ann Surg. 2013;258:400–8.

33. Benson EA, Skaar TC, Liu Y, Nephew KP, Matei D. Carboplatin with decitabine therapy, in recurrent platinum resistant ovarian cancer, alters circulating miRNAs concentrations: a pilot study. PLoS ONE. 2015;10:e0141279.

34. Pospisilova S, Pazourkova E, Horinek A, Brisuda A, Svobodova I, Soukup V, et al. MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasma. 2016;63:799–808.

35. Ross-Innes CS, Stark R, Tschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature. 2012;481:389–93.