Predictors of Delirium Incidence, Time to Onset, and Recurrence in a Mixed Medical-surgical ICU Population: A Secondary Analysis Using Cox and CHIAD Decision Tree Modeling

Keivan Gohari Moghadam
Tehran University of Medical Sciences

Andrew C Miller
College of Osteopathic Medicine, Philadelphia, PA, USA

Farshid Rahimibashar
Hamadan University of Medical Sciences Medical School

Mahmood Salesi
Baqiyatallah University of Medical Sciences

Sara Ashtari
Shaheed Beheshti University of Medical Sciences

Amir Vahedian-Azimi (✉ Amirvahedian63@gmail.com)
Baqiyatallah University of Medical Sciences https://orcid.org/0000-0002-1678-7608

Research

Keywords: Delirium, Intensive Care Units, Critical Care, Risk factors, Iran

DOI: https://doi.org/10.21203/rs.3.rs-60934/v1

License: ☎️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: To address whether in intensive care unit (ICU) patients, which factors correlate with development of delirium (primary outcome), as well as more rapid delirium onset and recurrence (secondary outcomes).

Methods: A retrospective secondary analysis of 4,200 patients was collected from two academic medical centers. Delirium was assessed with the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) in all patients. Univariate and multivariate Cox models, logistic regression analysis, and Chi-square Automatic Interaction Detector (CHAID) decision tree modeling were used to explore delirium risk factors.

Results: Increased delirium risk as associated with exposed only to artificial light (AL) hazard ratio (HR) 1.84 (95% CI: 1.66-2.044, *P*<0.001), physical restraint application 1.11 (95% CI: 1.001-1.226, *P*=0.049), and high nursing care requirements (>8 hours per 8-hour shift) 1.18 (95% CI: 1.048-1.338, *P*=0.007). Delirium incidence was inversely associated with greater family engagement 0.092 (95% CI: 0.014-0.596, *P*=0.012), low staff burnout and anticipated turnover scores 0.093 (95% CI: 0.014-0.600, *P*=0.013), non-ICU length-of-stay (LOS)<15 days 0.725 (95% CI: 0.655-0.804, *P*<0.001), and ICU LOS ≤15 days 0.509 (95% CI: 0.456-0.567, *P*<0.001). CHAID modelling indicated that AL exposure and age <65 years conveyed a high risk of delirium incidence, whereas SOFA score ≤11, APACHE IV score >15 and natural light (NL) exposure were associated with moderate risk, and female sex were associated with low risk. More rapid time to delirium onset correlated with baseline sleep disturbance (*P*=0.049), high nursing care requirements (*P*=0.019), and prolonged ICU and non-ICU hospital LOS (*P*<0.001). Delirium recurrence correlated with age>65 years (HR 2.198; 95% CI: 1.101-4.388, *P*=0.026) and high nursing care requirements (HR 1.978, 95% CI: 1.096-3.569), with CHAID modeling identifying AL exposure (*P*<0.001) and age >65 years (*P*=0.032) as predictive variables.

Conclusion: Development of ICU delirium correlated with application of physical restraints, high nursing care requirements, prolonged ICU and non-ICU LOS, exposure exclusively to AL (rather than natural), less family engagement, and greater staff burnout and anticipated turnover scores. ICU delirium occurred more rapidly in patients with baseline sleep disturbance, and recurrence correlated with presence of delirium on ICU admission, exclusive AL exposure, and high nursing care requirements.

Backgrounds

Delirium is a transient fluctuating global disorder of cognition associated with increased morbidity and mortality [1–4], whose prevalence amongst intensive care unit (ICU) patients may reach 80% [5], with a daily probability up to 14% [6]. ICU delirium may be a predictor of increased complications, prolonged ICU [7] and non-ICU hospital length-of-stay (LOS) [8], increased hospital costs [9, 10], long-term disability [11], long-term cognitive impairment [12, 13], and decreased odds of discharge home [14–16]. Moreover, ICU delirium has been associated with the development of incident neuropsychiatric disorders including depression, anxiety, trauma and stress-related, and neurocognitive disorders [17]. Therefore, delirium
prevention, early diagnosis and treatment are important aspects of caring for the critically-ill patient [18, 19]. The mechanism(s) of delirium remains unclear, and no diagnostic laboratory or imaging test is available [20, 21]. The American Psychiatric Association's Diagnostic and Statistical Manual, 5th edition (DSM-V) defines delirium by: disturbances of (1) attention, (2) cognition, (3) that develops over a short period, (4) differs from baseline, (5) fluctuates, (5) is not otherwise explained by another neurocognitive disorder, and (6) with evidence suggesting a potential cause in the history, physical examination, or laboratory findings [22]. Risk factors are multifactorial and may be divided into patient-related and hospital-related [23]. Patient-related factors include: age, gender, underlying disease, baseline cognitive impairment, illness severity (measured as Acute Physiology and Chronic Health Evaluation (APACHE) IV score), and presence of delirium at admission. Hospital-related factors include medications (including sedatives), nursing care, staff burnout and turnover, mechanical ventilation (MV), non-ICU hospital or ICU LOS, isolation, physical restraint application, and artificial vs. natural light exposure [24–26].

This study aims to determine delirium incidence, recurrence rates, and associated risk factors in ICU patients with acute respiratory distress syndrome (ARDS) on MV using univariate and multivariate Cox models, logistic regression analysis, and Chi-square Automatic Interaction Detector (CHAID) decision tree.

Methods

Study design and setting

A prospective longitudinal cohort study was conducted of 16,000 ICU patients with ARDS on MV from 21 ICUs (10 mixed, 5 surgical, 6 medical) at 6 academic medical centers [20, 21]. Herein is reported a retrospective secondary analysis of 4,200 patients from the mixed medical–surgical ICUs of two academic medical centers. The parent study was approved by the Investigative Review Board at Baqiyatallah University of Medical Sciences, Tehran, Iran (IR.BMSU.REC.1394.451) [20] and Shariati Hospital of Tehran University of Medical Sciences, Tehran, Iran. Written informed consent from the patient or designated surrogate was required for participation in the parent study. The manuscript was prepared in accordance with the “Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement” [27].

Participants and data collection

All adult patients admitted to mixed medical-surgical ICUs of two academic teaching hospitals from June 1, 2007 to October 31, 2015 were eligible for this study. The inclusion criteria were: (1) age ≥ 18 years, (2) endotracheally intubated and on MV for ≥ 48 hours, (3) full-code status, and (4) informed consent obtained from the patient, legal guardian, or healthcare surrogate. Patients were excluded for: (1) if death occurred while on MV, (3) permanent ventilator dependence, (4) tracheostomy placement for long-term weaning, and (5) incomplete data.

Delirium
Delirium was assessed during each shift (three times daily) by the bedside nurse and researcher (kappa agreement coefficient 0.801–0.902), using the Confusion Assessment Method for the ICU (CAM-ICU) screening tool [28]. The CAM-ICU allows one to screen for delirium presence (not severity) in critically ill patients, including those on MV (sensitivity 75.5%, specificity 95.8%) [28–30]. If delirium occurred at any point during the 24-hour period, the day was considered as a day with delirium. Time to onset of ICU delirium was calculated from the patient's physical arrival in the ICU.

Natural vs. artificial light

The impact of natural light (NL) and artificial light (AL) on delirium was also assessed. Both ICUs had the same geographic layout including 10 beds; 5 with adjacent windows allowing for NL (circadian pattern), and 5 positioned 13 m from the nearest window receiving only AL. Patients were categorized according to their original bed locations as NL and AL groups [26].

Variables and outcomes

Baseline demographic data was recorded including age, gender, delirium present on admission, baseline cognitive impairment (CI) determined by the six-item cognitive impairment test (6-CIT) which assess logical memory (5-items), attention (2 items) and orientation (3 items) [31]. 6-CIT scores range from 0 to 28, with higher scores indicating greater CI. In accordance with prior studies, the threshold of 9/10 was used for delirium screening[32–34]. Scores of 0–7 are considered normal and 8 or more significant.

Comorbidities such as diabetes, hypertension, malignancy, congestive heart failure (CHF), and chronic kidney, liver and pulmonary diseases, which were assessed by the Charlson Comorbidity Index [35, 36].

Activity and mobility as measured by the Perme ICU mobility score (IMS), which reflects the patient’s mobility status at one particular moment in time [37, 38]. Data was collected by a trained physical therapist. The score is derived from 15 items grouped in 7 categories: mental status, potential mobility barriers, functional strength, bed mobility, transfers, gait, and endurance. The score uses a maximum range of 2 to 4 points for each item, with total scores ranging 0 to 32 and comprises 15 items grouped into 7 categories: mental status; potential mobility barriers; functional strength; bed mobility; transfers; gait (with or without assistive devices); and endurance. In this instrument, a high score indicates high mobility and a decreased need for assistance. In contrast, a low score indicates low mobility and an increased need for assistance [37, 38].

Hospital-related factors including family engagement (family bedside presence ≥ 2 hours daily) [39], staff burnout and anticipated turnover (measured by the anticipated turnover scale (ATS) questionnaire) [40–43], non-ICU hospital and ICU LOS, sedative dose (determined in accordance with published recommendations) [21, 44–46], and physical restraint application were collected for each patient. Illness severity was measured by the APACHEIVand Sequential Organ Failure Assessment (SOFA) scores [47–49]. Additionally, baseline sleep disturbance was assessed on ICU day 1 using the Pittsburgh Sleep Quality Index (PSQI) [50].

Environmental noise assessment and intervention
Ambient noise level and use of an alarm silence strategy were assessed using the TES 1352A sound level meter (SLM) device (TES Electrical Electronic Corp., Taiwan) with a range of 30–130 decibel (dB). It has a 1.27 cm electret condenser microphone and accuracy of ± 1.5 dB (ref 94 dB@1KHz) [51]. For the most accurate estimate of what a patient would hear, the sound meter was placed adjacent to the patient’s head (or on their pillow if out of the room) for measurements. Measurements were made by the patient’s nurse three times daily (10 AM, 5 PM, and 10 PM).

As the World Health Organization (WHO) recommends noise levels in hospitals should be ≤ 40 dB during the day, and ≤ 35 dB during the night shift [52], days were categorized as noisy if ≥ 1 reading measured > 40 dB. Patients were then grouped according to environmental noise into more noise (≥ 50% days with measurements ≥ 40 dB) and less noise groups (< 50% days with measurements ≥ 40 dB).

At our center, we have a noise control policy to minimize sound by utilizing an alarm silence strategy which was accentuated during the study. The alarm load is minimized by setting alarms based on the patient’s condition and planned reduction of unnecessary alarms. For example, alarms are silenced proactively when performing bedside procedures such as endotracheal tube suctioning, phlebotomy, and when handling invasive lines. Alarms are then reset upon task conclusion. Additionally, ambient noise is reduced by muting personal phones, limiting unnecessary staff conversation in patient care and common areas. After the alarm silence strategy, noise intensity was measured again in the same locations using a sound meter in dB. If the level of noise was reduced < 40 dB, this item would be considered as positive for patients.

Statistical analysis

All analyses were performed using IBM® SPSS® 23.0 (IBM Corp., Armonk, NY) [53] and GraphPad Prism 5© (GraphPad Software Inc., La Jolla, CA). Descriptive statistics were calculated for all variables. Categorical variables were expressed as counts (percentage), and continuous variables as mean ± standard deviation (SD). Patients were stratified by the occurrence or absence of delirium during the ICU LOS, and demographic and clinical characteristics were assessed using t-test with continuous variable and Chi-Square, or Fisher’s Exact test (as appropriate) with categorical variables.

Univariate and multivariate Cox models were separately used to assess predictors of delirium incidence as the time to delirium onset. In the Cox model, the time to delirium onset was the main predictor. In the multivariate analyses, the significant variables in a backward selection modeling (considering Pentry = 0.05 and Premoveal = 0.10) were reported as hazard ratio (HR) with 95% CI, also; a multivariate linear regression was used to predict the occurrence of delirium. In addition, multivariate logistic regression was used to identify those factors exerting a statistically significant effect on the incidence of delirium recurrence by using backward method and the significant variables were reported as odds ratio with 95% CI.

Chi-square Automatic Interaction Detector (CHAID) decision tree analysis is a data mining technique which can be demonstrate the relationship between split variables and related factors in homogeneous
population subgroups [54]. Moreover, CHAID enables one to deal with whole variables, partition consecutive data effectively, and make decision trees by using a forward stopping or pruning rule [55, 56]. For CHAID decision tree analysis in this study, all parameters collected for delirium incidence and recurrence were used. The minimum parent and child nodes were determined as 100 and 50, respectively. “Nodes” are midpoints or terminal points after bifurcation according to each factor. The parent nodes are the nodes before bifurcation, and the child nodes are ones after bifurcation. Based on the result, a group of patients was divided into one of the terminal nodes (risk groups) with predictive probability calculated. Significance was determined as an alpha of 0.05.

Results

A total of 4,200 subjects were included in the analysis. Demographic and clinical characteristics are presented in Table 1. The mean participant age was 67.25 ± 11.5 years, with more than half with age > 65 years (51.2%) with a female preponderance (58.1%). No significant differences were noted in these variables between those who did and did not develop delirium. Delirium was identified in 1,540 (36.7%) of patients during the ICU stay. The mean time to delirium recognition was 7.55 ± 1.88 days. The majority of patients did not have documented comorbidities (n = 3,289, 78.3%, Table 1), and comorbidities did not differ between groups (P = 0.102). However, of those 911 with documented comorbidities based on Charlson comorbidity index which includes 217 (23.8%) CHF, 183 (20.1%) malignancy, 145 (15.9%) chronic kidney diseases, 129 (14.1%) chronic liver diseases, 121 (13.2%) diabetes mellitus, 84 (9.2%) chronic pulmonary diseases, 16 (1.7%) hypertension and 16 (1.7%) arthritis.
Variables	Patients without delirium (n = 2660)	Patients with delirium (n = 1540)	Total patients (n = 4200)	P-value
Age, mean ± SD (years)	67.44 ± 11.9	66.92 ± 10.97	67.25 ± 11.57	0.160
Age > 65 years, yes, n (%)	1320 (49.6)	731 (47.5)	2051 (48.8)	0.178
Gender, female, n (%)	1542 (58)	897 (58.2)	2439 (58.1)	0.861
Family engagement, high, n (%) a	645 (24.2)	399 (25.9)	1044 (24.9)	0.230
Baseline cognitive impairment, yes, n (%) b	520 (19.5)	198 (12.9)	718 (17.1)	< 0.001*
Baseline sleep disturbance, yes, n (%) c	1737 (65.3)	997 (64.7)	2734 (65.1)	0.713
Comorbidities, yes, n (%) d	598 (22.5)	313 (20.3)	911 (21.7)	0.102
Activity, high, n (%) e	1006 (37.8)	608 (39.5)	1614 (38.4)	0.286
Delirium present on admission, yes, n (%)	217 (8.2)	103 (6.7)	320 (7.6)	0.084
Natural light exposure group, yes, n (%)	1546 (58.1)	574 (37.3)	2120 (50.5)	< 0.001*
Physician ATS, ≤ 35 (%) f	1613 (60.6)	911 (59.2)	2524 (60.1)	0.344

Abbreviations: APACHE IV means Acute Physiology and Chronic Health Evaluation IV; SOFA means Sequential Organ Failure Assessment; MV means mechanical ventilator; LOS means length of stay; # noise related to the nursing stations, staff conversation in patients’ bedside and medical devices; * statistically significant. a As determined by having family at bedside for ≥ 2 hours daily; b As determined by the six-item cognitive impairment test (6-CIT) and > 8 score significant as cognitive impairment; c As determined by the Pittsburgh Sleep Quality Index (PSQI) and PSQI score > 5 indicate worse sleep quality; d As determined by the Charlson Comorbidity Index based on the International Classification of Diseases (ICD) that a score of zero indicates that no comorbidities were found and the higher the score shows comorbidity; e As determined by the ICU mobility score (IMS) is scored from 0 to 10, with a score of 0 to 4 meaning low mobility, 4 to 8 moderate mobility and a score between 8 and 10 meaning high mobility; f As determined by the anticipated turnover scale (ATS); g Noise related to the nursing stations, staff conversation in patients’ bedside and medical devices, h As determined by requiring > 8 hours nursing care in an 8 hour shift.
Variables	Patients without delirium (n = 2660)	Patients with delirium (n = 1540)	Total patients (n = 4200)	P value
Nurse ATS, ≤ 35 (%) f	644 (24.2)	400 (26)	1044 (24.9)	0.203
Noise of invasive procedures, > 40 dB, n (%)	238 (8.9)	155 (10.1)	393 (9.4)	0.231
Noise related to others#, > 40 dB, n (%) g	1149 (43.2)	623 (40.5)	1772 (42.2)	0.083
Alarm silence strategy, < 40 dB, n (%)	329 (12.4)	160 (10.4)	489 (11.6)	0.054
Sedation, high dose, n (%)	574 (21.6)	317 (20.6)	891 (21.2)	0.446
Level of nursing care, high, n (%) h	518 (19.5)	336 (21.8)	854 (20.3)	0.069
APACHE IV score, mean ± SD	15.57 ± 2.38	15.65 ± 2.47	15.60 ± 2.41	0.357
SOFA Score, ≤ 11, n (%)	1934 (72.7)	1097 (71.2)	3031 (72.2)	0.305
Duration of MV, mean ± SD (hours)	254.78 ± 110.14	251.93 ± 110.89	253.75 ± 110.31	0.420
Application of physical restraint, yes, n (%)	1107 (41.6)	656 (42.6)	1763 (42)	0.535
Non-ICU LOS, mean ± SD (day)	16.91 ± 10.85	16.72 ± 10.89	16.84 ± 10.87	0.584
ICU LOS, mean ± SD (day)	16.98 ± 10.83	17.19 ± 11.97	17.08 ± 11.26	0.552

Abbreviations: APACHE IV means Acute Physiology and Chronic Health Evaluation IV; SOFA means Sequential Organ Failure Assessment; MV means mechanical ventilator; LOS means length of stay; # noise related to the nursing stations, staff conversation in patients' bedside and medical devices; * statistically significant. a As determined by having family at bedside for ≥ 2 hours daily; b As determined by the six-item cognitive impairment test (6-CIT) and > 8 score significant as cognitive impairment; c As determined by the Pittsburgh Sleep Quality Index (PSQI) and PSQI score > 5 indicate worse sleep quality; d As determined by the Charlson Comorbidity Index based on the International Classification of Diseases (ICD) that a score of zero indicates that no comorbidities were found and the higher the score shows comorbidity; e As determined by the ICU mobility score (IMS) is scored from 0 to 10, with a score of 0 to 4 meaning low mobility, 4 to 8 moderate mobility and a score between 8 and 10 meaning high mobility; f As determined by the anticipated turnover scale (ATS); g Noise related to the nursing stations, staff conversation in patients' bedside and medical devices; h As determined by requiring > 8 hours nursing care in an 8 hour shift.
Variables

Variables	Patients without delirium (n = 2660)	Patients with delirium (n = 1540)	Total patients (n = 4200)	P-value
Outcome, mortality, n (%)	715 (26.9)	454 (29.5)	11.69 (27.8)	0.070

Abbreviations: APACHE IV means Acute Physiology and Chronic Health Evaluation IV; SOFA means Sequential Organ Failure Assessment; MV means mechanical ventilator; LOS means length of stay; # noise related to the nursing stations, staff conversation in patients’ bedside and medical devices; * statistically significant. a As determined by having family at bedside for ≥ 2 hours daily; b As determined by the six-item cognitive impairment test (6-CIT) and > 8 score significant as cognitive impairment; c As determined by the Pittsburgh Sleep Quality Index (PSQI) and PSQI score > 5 indicate worse sleep quality; d As determined by the Charlson Comorbidity Index based on the International Classification of Diseases (ICD) that a score of zero indicates that no comorbidities were found and the higher the score shows comorbidity; e As determined by the ICU mobility score (IMS) is scored from 0 to 10, with a score of 0 to 4 meaning low mobility, 4 to 8 moderate mobility and a score between 8 and 10 meaning high mobility; f As determined by the anticipated turnover scale (ATS); g Noise related to the nursing stations, staff conversation in patients’ bedside and medical devices, h As determined by requiring > 8 hours nursing care in an 8 hour shift.

Non-ICU hospital LOS (P = 0.584) and ICU LOS (P = 0.552) was similar between groups. Illness severity as measured by the APACHE IV and SOFA score was similar between groups (P = 0.357) and (P = 0.305), respectively.

Patients with and without delirium differed significantly in terms of cognitive impairment at the time of admission. Baseline cognitive impairment significantly was higher in patients with delirium (33.7% vs. 7.4%, P < 0.001). Additionally, a greater portion of delirium patients (62.7%) were observed in the AL group (P < 0.001). Other characteristics did not differ significantly between groups (P > 0.05) Table 1.

Development of delirium

The results of the univariate and multivariate Cox regression analyses to predict the risk of developing delirium are presented in Figs. 1 and Table 2. On multivariate analysis, patients were at increased risk of developing delirium if: (1) categorized in the AL cohort (hazard ratio (HR) 1.84, 95% CI: 1.66–2.044, P < 0.001), (2) had physical restraints applied (HR 1.11, 95% CI: 1.001–1.226, P = 0.049), and (3) required more nursing care (> 8 hours per 8 hour shift; HR 1.18, 95% CI: 1.048–1.338, P = 0.007). Notably, the application of physical restraints was associated with a 10% increased risk of delirium, whereas greater nursing care requirements were associated with an 18% increased risk.
Table 2
Univariate and multivariate Cox regression analysis of influencing factors to predict delirium incidence

Variables	Univariate	Multivariate		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Category (NL vs. AL)	1.877 (1.693–2.082)	< 0.001*	1.842 (1.660–2.044)	< 0.001*
Age (> 65 V s. ≤ 65 years)	0.972 (0.879–1.074)	0.571		
Gender (female vs. male)	0.961 (0.868–1.064)	0.444		
Family engagement (yes vs. no)	1.057 (0.943–1.185)	0.339	0.092 (0.014–0.596)	0.012*
Baseline cognitive impairment (yes vs. no)	0.724 (0.623–0.840)	< 0.001*		
Baseline sleep disturbance (yes vs. no)	1.008 (0.908–1.119)	0.881		
Comorbidities (yes vs. no)	0.864 (0.763–0.978)	0.021*		
Activity (high vs. low)	0.982 (0.887–1.088)	0.733		
Delirium present on admission (yes vs. no)	0.865 (0.709–1.057)	0.157		
Physician ATS (≤ 35 vs. >35) a	0.964 (0.871–1.067)	0.479		
Nurse ATS (≤ 35 vs. >35) a	0.942 (0.840–1.055)	0.301	0.093 (0.014–0.600)	0.013*
Noise of invasive procedures (> 40 vs.<40 dB)	0.911 (0.772–1.076)	0.273		
Noise related others b	0.890 (0.804–0.986)	0.025*		

Abbreviations: HR means hazard ratio; ATS means anticipated turnover scale; APACHE IV means Acute Physiology and Chronic Health Evaluation IV; SOFA means Sequential Organ Failure Assessment; MV means mechanical ventilator; LOS means length of stay, * statistically significant, p < 0.005, a Determined by the anticipated turnover scale (ATS), b Noise related to the nursing stations, staff conversation in patients’ bedside and medical devices
Variables	Univariate	Multivariate		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Alarm silence strategy (< 40 vs. >40 dB)	0.887 (0.753–1.045)	0.153	0.852 (0.732–1.004)	0.056
Dose of sedation (high vs. mild to moderate)	1.041 (0.920–1.178)	0.523		
Nursing care (high vs. mild to moderate)	1.310 (1.160–1.479)	< 0.001*	1.184 (1.048–1.338)	0.007*
APACHE IV score (≤ 15 vs. >15)	0.980 (0.886–1.085)	0.700		
SOFA score (≤ 11 vs. >11)	0.831 (0.744–0.928)	< 0.001*		
Duration of MV (≥ 250 vs. <250 hours)	0.992 (0.898–1.097)	0.882		
Application of physical restraint (yes vs. no)	1.119 (1.001–1.238)	0.030*	1.108 (1.001–1.226)	0.049*
Non-ICU LOS (≥ 15 vs. <15 days)	0.755 (0.682–0.836)	< 0.001*	0.725 (0.655–0.804)	< 0.001*
ICU LOS (> 15 vs. ≤ 15 days)	0.494 (0.444–0.551)	< 0.001*	0.509 (0.456–0.567)	< 0.001*

Abbreviations: HR means hazard ratio; ATS means anticipated turnover scale; APACHE IV means Acute Physiology and Chronic Health Evaluation IV; SOFA means Sequential Organ Failure Assessment; MV means mechanical ventilator; LOS means length of stay, * statistically significant, p < 0.005. a Determined by the anticipated turnover scale (ATS), b Noise related to the nursing stations, staff conversation in patients' bedside and medical devices

Conversely, lower delirium rates were associated with: (1) greater family engagement (HR 0.092, 95% CI: 0.014–0.596, P= 0.012), (2) low staff burnout and anticipated turnover (ATS ≤ 3.5; HR 0.093, 95% CI: 0.014-0.600, P= 0.013), (3) non-ICU hospital LOS < 15 days (HR 0.725, 95% CI: 0.655–0.804, P < 0.001), and (4) ICU LOS ≤ 15 days (HR 0.509,95% CI: 0.456–0.567, P< 0.001).

Figure 2 depicts the CHAID decision tree analysis for predicting delirium incidence among all participants (n = 4,200). Five variables were used for grouping in the decision tree model: type of light exposure, age, SOFA score, APACHE IV score, and gender. The model includes the total of 11 nodes, 3 intermediate nodes and 6 terminal nodes. Each node contains three statistical values; category, percentage (%) and the number (n) of patients in this particular category. First, subjects were compared according to type of light exposure. If in the AL group, age was assessed. If in the NL group, SOFA score was assessed. If SOFA
score was > 11, then APACHE IV score was checked. If SOFA score was ≤ 11, then patient sex was assessed. Subjects were then stratified according risk of delirium incidence into low (<20%), moderate (20–30%), high (30–40%), and very high (>40%) risk groups. The findings suggest that AL and age < 65 years conveyed a high risk of delirium incidence, whereas SOFA score ≤ 11 and female sex were associated with low risk, and APACHE IV score (>15) score and NL were associated with moderate risk.

Time to delirium onset

Multivariate linear regression analysis was conducted to identify those variables predictive of time to delirium onset. As shown in Table 3, sleep disturbance, high nursing care requirements (>8 h per 8 h shift) and non-ICU hospital LOS > 15 days correlated with shorter time to delirium onset. Notably, delirium occurred 1.12 days earlier in patients with baseline sleep disturbance ($P = 0.049$). In terms hours of nursing care required per 8 hours shift, delirium occurred 1.55 days later in patients requiring mild (<4 hours) to moderate (4-8 hours) nursing care than in those requiring a high level (>8 hours) of nursing care ($P = 0.019$). Lastly, delirium occurred 10.48 days earlier in patients with a non-ICU hospital LOS > 15 days prior to ICU admission ($P < 0.001$).

Delirium recurrence

Multivariate logistic regression was used to identify those factors exerting a statistically significant effect on the incidence of delirium recurrence by using backward method and the significant variables were reported as odds ratio (OR) in 320 patients (7.6%) with delirium at the time of admission. The results, as shown in (Table 4), indicate that AL (HR; 3.239, 95% CI: 1.881–5.577, $P < 0.001$), high nursing care (>8 hours per shift; HR 1.978, 95% CI: 1.096–3.569, $P = 0.024$), and age > 65 years (HR; 2.198, %95 CI: 1.101–4.388, $P = 0.026$) were associated with increased rates of delirium recurrence.

Table 3
Linear regression analysis of influencing factors to predict time incidence of delirium

Variables	B	SE	P-value	t-Statistic	95% CI
Sleep disturbance (yes vs. no) a	1.127	0.572	0.049	1.969	0.004-2.250
Non-ICU LOS (≥15 vs. <15 days)	10.48	0.556	<0.001	18.848	9.390-11.57
Nursing care (high vs. mild to moderate) b	1.554	0.662	0.019	2.346	0.255-2.853

Abbreviations: B means coefficient; SE means standard error; CI means confidence interval; LOS means length-of-stay. a Determined by the Pittsburgh Sleep Quality Index (PSQI). PSQI score > 5 indicates worse sleep quality b Categorized as mild (<4 hours), moderate (4-8 hours), or high (>8 hours) of nursing care in an 8-hour shift.
Table 4
Backward logistic regression analysis of influencing factors to predict delirium recurrence in patients with delirium at the admission time

Variables	B	SE	P-value	OR	95% CI
Category (AL vs. NL)	1.175	0.277	<0.001	3.239	1.881-5.577
Age (>65 Vs. ≤65 years)	0.788	0.353	0.026	2.198	1.101-4.388
Nursing care (high vs. mild to moderate)	0.682	0.301	0.024	1.978	1.096-3.569

Abbreviations: B means coefficient; SE means standard error; OR means odd ratio, which equals to the exponentiation of B coefficient; CI means confidence interval, a Categorized as mild (<4 hours), moderate (4-8 hours), or high (>8 hours) of nursing care in an 8-hour shift

Figure 3 depicts the CHAID decision tree analysis for predicting delirium recurrence in patients with delirium present on ICU admission (n = 320). This decision tree has a depth of 2 levels from the root node, with one intermediate node, and three terminal nodes. Each node contains three statistical values, category, percentage (%) and the number (n) of patients in this particular category. As shown in Fig. 3, the main variables associated with delirium recurrence were AL exposure (P < 0.001) and age > 65 years (P = 0.032).

Discussion
Delirium is a common and serious clinical syndrome characterized by fluctuating cognitive dysfunction that affects 20–80% of ICU patients [57, 58]. The risk of delirium relies on the interaction between predisposing and precipitating risk factors [23, 29]. It is associated with increased short- and long-term morbidity and mortality [1–5, 7–9, 11–17]. Thus, a thorough understanding of mitigating and contributing factors is necessary to development of an accurate delirium prediction model for critically ill patients.

The incidence of delirium in this study (36.7%) was consistent with that of some published studies [59, 60], but lower than some other cohorts [2, 15]. The median time to ICU delirium onset was similar to other published studies [61, 62]. Moreover, the seven variables identified on Cox regression analysis were similar to other published reports [60, 63, 64] including: light category (artificial vs. natural), low level of family engagement (< 2 hours at bedside per day), high nurse burnout and anticipated turnover (ATS > 35), application of physical restraints, high nursing care requirements (> 8 hours in 8 hours shift), ICU LOS > 15 days, and hospital LOS > 15 days. The five variables noted to be most predictive of developing delirium on CHAID decision tree modeling were AL group and age > 65 years (high risk), APACHE IV score > 15 (moderate risk), and SOFA score ≤ 11 and female sex (low risk). As it pertains to light exposure, loss of NL exposure is associated with circadian rhythm disturbances that may affect delirium incidence and
outcomes in the critically ill [26, 65–67]. The connection of NL vs. AL light exposure and delirium incidence has been variably reported [26, 68–70]. This discrepancy may be related to differences in delirium definition, screening method, NL category criteria, and sample size [26].

Beyond grouping by light exposure type, CHAID analysis further identified the female gender, SOFA > 11, and APACHE IV > 15 as a risk factors in the second and third layer of the decision tree model. These factors were likely not detected in Cox regression analysis because of higher proportion of females in participants and the similar median score of APACHE IV and SOFA in two groups. In fact, one advantage of the CHAID decision tree is that it can divide the population into subgroups with different characteristics and estimate the prevalence in each subgroup. While, regression analysis examines risk factors throughout the whole population and treats different factors equally [71]. However, we believed both models were clinically reasonable.

According to the Cox regression analysis, high nursing care and use of the physical restraint predisposed patients to 18% and 10% greater risk of delirium, respectively, and it is consistent with the other studies in this field [72, 73]. Physical restraints are often used for critically ill patients to ensure patient safety, ensure safety and prevent the removal of medical equipment (e.g., tracheal tubes) [74]. However, the use of physical restraints in different countries varies considerably. For example, the use of physical restraints in European general ICU populations ranges from 10–50%, 76% in Canada, and up to 87% in American surgical ICUs [75–77]. According to one meta-analysis, the prevalence of physical restraint use in Iranian medical-surgical ICUs was 47.6%, in keeping with the findings of this analysis [78]. Similarly, physical restraint applications have previously been identified as an independent risk factor for development of ICU delirium [75, 79]. As restraint use increased two- and three-fold, observed incidence of ICU delirium increased 2.38- and 3.62-fold respectively.

Additionally, the presence of family at bedside for > 2 hours per day (reported as family engagement) was identified as a potential mitigating factor for ICU delirium this study, similar to other published reports [80, 81]. This raises questions about the role that family may play in the care of a critically-ill loved one and presents an opportunity for inquiry as ICU visitation policies have been restricted in many cases during the current COVID-19 pandemic. Current evidence suggests that this may potentially be accomplished in the confines of traditional visiting hours, rather more flexible visitation policies that may contribute to staff burnout [82, 83].

Healthcare provider turnover is an important indicator for care quality and is widely used as a measure for health-care system analysis. Burnout and provider turnover may disrupt patient care quality and continuity [41–43, 84]. However, whether provider burnout is linked to patient development of ICU delirium remains unclear. In the current study, provider burnout and intent for job turnover was assessed as regards to its correlation to development of ICU delirium. This study found that delirium risk was higher in patients whose providers had higher rates of burnout and anticipated turnover as measured by ATS scores (HR 0.093, 95% CI: 0.014-0.600, $P = 0.013$).
To identify factors predictive of delirium recurrence amongst those patients with delirium present on ICU admission, backward logistic regression analysis and CHAID decision tree modeling identified exclusive AL light exposure and age > 65 years as major risk factors in the present study. Similar to prior studies, hospitalization in a room without NL exposure was associated with a 3.24-fold increase in delirium recurrence [26], whereas age > 65 years increased delirium recurrence by 2.19-fold [62]. This may not be entirely surprising, as the elderly may be more susceptible to the effects of metabolic disturbances, hypoxemia, and other stresses imposed by the critically ill state [62]. It remains unclear whether the high levels of nursing requirements associated with increased delirium recurrence are merely a reflection of patients with more severe illness or delirium, or whether it correlates with an as-yet unmeasured risk factor.

This report details the largest study of its type on ICU delirium. More than twenty related factors were analyzed using two different prediction model methods. Nevertheless, this study is not without limitations. First, our prediction model method requires knowledge of the patient's medical history. In some cases, this may be limited by recall bias, or non-availability of information. Second, it's related to the inherent limitations of an observational study design.

Conclusion

Development of ICU delirium correlated with application of physical restraints, high nursing care requirements, prolonged ICU and non-ICU hospital length-of-stay, exposure exclusively to artificial (rather than natural) lighting, less family engagement, and greater staff burnout and anticipated turnover scores. ICU delirium occurred more rapidly in patients with baseline sleep disturbance, and recurrence correlated with presence of delirium on ICU admission, exclusive artificial light exposure, and high nursing care requirements. Several of these factors are suitable for further study and intervention including natural light exposure, minimizing physical restraint application, and most notably the potential impacts of provider burnout and intent to turnover on patient development of ICU delirium.

Abbreviations

ICU: Intensive care unit, CAM-ICU: Confusion Assessment Method for the Intensive Care Unit, APACHE: Acute physiology and chronic health evaluation, SOFA: Sequential organ failure assessment, LOS: Length of stay, SD: Standard deviation, OR: Odds ratio, HR: Hazard ratio, CHAID: Chi-square Automatic Interaction Detector. MV: Mechanical ventilation, PSQI: Pittsburgh sleep quality index.

Declarations

Ethics approval and consent to participate:

The study was approved by the Investigative Review Board at the participating academic medical centers. Study participation was optional for respondents. Informed consent was obtained from the patient, legal
guardian or healthcare surrogate or designated healthcare proxy.

Consent for Publication:

Informed consent was obtained from the patient, legal guardian or healthcare surrogate and allowed for both study participation and publication of de-identified aggregate results. There is no data contained within the manuscript from which individual patients or participants may be identified.

Availability of data and material:

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests:

The authors have no conflicts of interest to disclose.

Funding:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions:

The project was conceptualized and designed by A.VA, F.RB and KMG. Data collection was performed by A.VA and F.RB and K.GM. Data analysis was performed by A.VA, MS, AC.M and SA. Manuscript writing and revision was performed by all authors.

Acknowledgements:

The authors have no specific acknowledgements to disclose.

References

1. Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P, van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. Jama. 2010;304(4):443–51. https://doi.org/10.1001/jama.2010.1013.
2. Girard TD, Jackson JC, Pandharipande PP, Pun BT, Thompson JL, Shintani AK, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Critical care medicine. 2010;38(7):1513–20. https://doi.org/10.1097/CCM.0b013e3181e47be1.

3. Pisani MA, Murphy TE, Araujo KL, Van Ness PH. Factors associated with persistent delirium after intensive care unit admission in an older medical patient population. J Crit Care. 2010;25(3):540.e1-7. https://doi.org/10.1016/j.jcrc.2010.02.009.

4. Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180(11):1092–7. https://doi.org/10.1164/rccm.200904-0537OC.

5. Kalabalik J, Brunetti L, El-Srougy R. Intensive care unit delirium: a review of the literature. J Pharm Pract. 2014;27(2):195–207. https://doi.org/10.1177/0897190013513804.

6. Schreiber MP, Colantuoni E, Bienvenu OJ, Neufeld KJ, Chen KF, Shanhoundt C, et al. Corticosteroids and transition to delirium in patients with acute lung injury. Critical care medicine. 2014;42(6):1480–6. https://doi.org/10.1097/ccm.0000000000000247.

7. Yamaguchi T, Tsukioka E, Kishi Y. Outcomes after delirium in a Japanese intensive care unit. Gen Hosp Psychiatry. 2014;36(6):634–6. https://doi.org/10.1016/j.genhosppsych.2014.09.006.

8. Al-Qadheeb NS, Skrobik Y, Schumaker G, Pacheco MN, Roberts RJ, Ruthazer RR, et al. Preventing ICU Subsyndromal Delirium Conversion to Delirium With Low-Dose IV Haloperidol: A Double-Blind, Placebo-Controlled Pilot Study. Critical care medicine. 2016;44(3):583–91. https://doi.org/10.1097.ccmm.0000000000001411.

9. Gleason LJ, Schmitt EM, Kosar CM, Tabloski P, Saczynski JS, Robinson T, et al. Effect of Delirium and Other Major Complications on Outcomes After Elective Surgery in Older Adults. JAMA surgery. 2015;150(12):1134–40. https://doi.org/10.1001/jamasurg.2015.2606.

10. Vasilevskis EE, Chandrasekhar R, Holtze CH, Graves J, Speroff T, Girard TD, et al. The Cost of ICU Delirium and Coma in the Intensive Care Unit Patient. Medical care. 2018;56(10):890–7. https://doi.org/10.1097/mlr.0000000000000975.

11. Marcantonio ER, Kiely DK, Simon SE, John Orav E, Jones RN, Murphy KM, et al. Outcomes of older people admitted to postacute facilities with delirium. J Am Geriatr Soc. 2005;53(6):963–9. https://doi.org/10.1111/j.1532-5415.2005.53305.x.

12. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–16. https://doi.org/10.1056/NEJMoa1301372.

13. Sukantarat KT, Burgess PW, Williamson RC, Brett SJ. Prolonged cognitive dysfunction in survivors of critical illness. Anaesthesia. 2005;60(9):847 – 53. https://doi.org/10.1111/j.1365-2044.2005.04148.x.

14. Devlin JW, Al-Qadhee NS, Skrobik Y. Pharmacologic prevention and treatment of delirium in critically ill and non-critically ill hospitalised patients: a review of data from prospective, randomised studies.
15. Shehabi Y, Riker RR, Bokesch PM, Wisemandle W, Shintani A, Ely EW. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Critical care medicine. 2010;38(12):2311–8. https://doi.org/10.1097/CCM.0b013e3181f85759.

16. Tsuruta R, Nakahara T, Miyauchi T, Kutsuna S, Ogino Y, Yamamoto T, et al. Prevalence and associated factors for delirium in critically ill patients at a Japanese intensive care unit. Gen Hosp Psychiatry. 2010;32(6):607–11. https://doi.org/10.1016/j.genhosppsych.2010.09.001.

17. Brown KN, Soo A, Faris P, Patten SB, Fiest KM, Stelfox HT. Association between delirium in the intensive care unit and subsequent neuropsychiatric disorders. Crit Care (London England). 2020;24(1):476. https://doi.org/10.1186/s13054-020-03193-x.

18. Chakraborti D, Tampi DJ, Tampi RR. Melatonin and melatonin agonist for delirium in the elderly patients. Am J Alzheimer’s Dis Other dement. 2015;30(2):119–29. https://doi.org/10.1177/1533317514539379.

19. Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911–22. https://doi.org/10.1016/s0140-6736(13)60688-1.

20. Bashar FR, Vahedian-Azimi A, Hajiesmaeili M, Salesi M, Farzanegan B, Shojaei S, et al. Post-ICU psychological morbidity in very long ICU stay patients with ARDS and delirium. J Crit Care. 2018;43:88–94. https://doi.org/10.1016/j.jccrc.2017.08.034.

21. Farzanegan B, Elkhatab THM, Elgazzar AE, Moghaddam KG, Torkaman M, Zarkesh M, et al. Impact of Religiosity on Delirium Severity Among Critically Ill Shi’a Muslims: A Prospective Multi-Center Observational Study. Journal of religion health. 2019. https://doi.org/10.1007/s10943-019-00895-7.

22. Association AP. Diagnostic and statistical manual. 5th ed. Washington, DC: APA Press; 2013. https://doi.org/.

23. Kanova M, Sklienka P, Roman K, Burda M, Janoutova J. Incidence and risk factors for delirium development in ICU patients - a prospective observational study. Biomedical papers of the Medical Faculty of the University Palacky. Olomouc Czechoslovakia. 2017;161(2):187–96. https://doi.org/10.5507/bp.2017.004.

24. Inouye SK, Bogardus ST Jr, Charpentier PA, Leo-Summers L, Acampora D, Holford TR, et al. A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med. 1999;340(9):669–76. https://doi.org/10.1056/nejm199903043400901.

25. Arenson BG, MacDonald LA, Grocott HP, Hiebert BM, Arora RC. Effect of intensive care unit environment on in-hospital delirium after cardiac surgery. J Thorac Cardiovasc Surg. 2013;146(1):172–8. https://doi.org/10.1016/j.jtcvs.2012.12.042.

26. Vahedian-Azimi A, Bashar FR, Khan AM, Miller AC. Natural versus artificial light exposure on delirium incidence in ARDS patients. Ann Intensiv Care. 2020;10(1):15. https://doi.org/10.1186/s13613-020-0630-8.
27. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9. https://doi.org/10.1016/j.jclinepi.2007.11.008.

28. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Critical care medicine. 2001;29(7):1370–9. https://doi.org/10.1097/00003246-200107000-00012.

29. Ely EW, Siegel MD, Inouye SK. Delirium in the intensive care unit: an under-recognized syndrome of organ dysfunction. Semin Respir Crit Care Med. 2001;22(2):115–26. https://doi.org/10.1055/s-2001-13826.

30. Neto AS, Nassar AP Jr, Cardoso SO, Manetta JA, Pereira VG, Esposito DC, et al. Delirium screening in critically ill patients: a systematic review and meta-analysis. Critical care medicine. 2012;40(6):1946–51. https://doi.org/10.1097/CCM.0b013e31824e16c9.

31. Hessler JB, Schäufele M, Hendlmeier I, Nora Junge M, Leonhardt S, Weber J, et al. The 6-Item Cognitive Impairment Test as a bedside screening for dementia in general hospital patients: results of the General Hospital Study (GHoSt). Int J Geriatr Psychiatry. 2017;32(7):726–33. https://doi.org/10.1002/gps.4514.

32. O’Sullivan D, Brady N, Manning E, O’Shea E, O’Grady S. N OR, et al. Validation of the 6-Item Cognitive Impairment Test and the 4AT test for combined delirium and dementia screening in older Emergency Department attendees. Age Ageing. 2018;47(1):61–8. https://doi.org/10.1093/ageing/afx149.

33. Lacko L, Bryan Y, Dellasega C, Salerno F. Changing clinical practice through research: the case of delirium. Clin Nurs Res. 1999;8(3):235–50. https://doi.org/10.1177/105477389900800304.

34. Queally VR, Evans JJ, McMillan TM. Accuracy in scoring vignettes using the mini mental state examination and the short orientation memory concentration test. J Geriatr Psychiatr Neurol. 2010;23(3):160–4. https://doi.org/10.1177/0891988710363712.

35. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9. https://doi.org/10.1016/0895-4356(92)90133-8.

36. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical care. 2005;43(11):1130–9. https://doi.org/10.1097/01.mlr.0000182534.19832.83.

37. Perme C, Nawa RK, Winkelman C, Masud F. A tool to assess mobility status in critically ill patients: the Perme Intensive Care Unit Mobility Score. Methodist Deakey Cardiovasc J. 2014;10(1):41–9. https://doi.org/10.14797/mdcj-10-1-41.

38. Wilches Luna EC, Hernández NL, Siriani de Oliveira A, Kenji Nawa R, Perme C, Gastaldi AC. Perme ICU Mobility Score (Perme Score) and the ICU Mobility Scale (IMS): translation and cultural adaptation for the Spanish language. Colombia medica (Cali. Colombia). 2018;49(4):265–72. https://doi.org/10.25100/cm.v49i3.4042.
39. Khaleghparast S, Joolaee S, Ghanbari B, Maleki M, Peyrovi H, Bahrani N. A Review of Visiting Policies in Intensive Care Units. Global journal of health science. 2015;8(6):267–76. https://doi.org/10.5539/gjhs.v8n6p267.

40. Barlow KM, Zangaro GA. Meta-analysis of the reliability and validity of the Anticipated Turnover Scale across studies of registered nurses in the United States. J Nurs Adm Manag. 2010;18(7):862–73. https://doi.org/10.1111/j.1365-2834.2010.01171.x.

41. Shoorideh FA, Ashktorab T, Yaghmaei F, Alavi Majd H. Relationship between ICU nurses' moral distress with burnout and anticipated turnover. Nurs Ethics. 2015;22(1):64–76. https://doi.org/10.1177/0969733014534874.

42. Kaddourah B, Abu-Shaheen AK, Al-Tannir M. Quality of nursing work life and turnover intention among nurses of tertiary care hospitals in Riyadh: a cross-sectional survey. BMC nursing. 2018;17:43. https://doi.org/10.1186/s12912-018-0312-0.

43. Adams A, Hollingsworth A, Osman A. The Implementation of a Cultural Change Toolkit to Reduce Nursing Burnout and Mitigate Nurse Turnover in the Emergency Department. Journal of emergency nursing. 2019;45(4):452–6. https://doi.org/10.1016/j.jen.2019.03.004.

44. Miller RD, Eriksson L, Fleisher L, Weiner-Kronish J, Cohen N, Young W. Miller's Anesthesia (8th edn.). Philadelphia: Elsevier Churchill Livingston. 2015. https://doi.org/.

45. Nagaraj SB, Biswal S, Boyle EJ, Zhou DW, McClain LM, Bajwa EK, et al. Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability. Critical care medicine. 2017;45(7):e683-e90. https://doi.org/10.1097/ccm.0000000000002364.

46. Nagaraj SB, McClain LM, Zhou DW, Biswal S, Rosenthal ES, Purdon PL, et al. Automatic Classification of Sedation Levels in ICU Patients Using Heart Rate Variability. Critical care medicine. 2016;44(9):e782-9. https://doi.org/10.1097/ccm.0000000000001708.

47. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Critical care medicine. 1985;13(10):818–29. https://doi.org/.

48. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Critical care medicine. 2006;34(5):1297–310. https://doi.org/10.1097/01.ccm.0000215112.84523.f0.

49. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive care medicine. 1996;22(7):707–10. https://doi.org/10.1007/bf01709751.

50. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry research. 1989;28(2):193–213. https://doi.org/10.1016/0165-1781(89)90047-4.

51. Sosa FA, Roberti J, Franco MT, Kleinert MM, Patron AR, Osatnik J. Assessment of delirium using the PRE-DELIRIC model in an intensive care unit in Argentina. Revista Brasileira de terapia intensiva. 2018;30(1):50–6. https://doi.org/10.5935/0103-507x.20180010.
52. Buntinx F, Truyen J, Embrechts P, Moreel G, Peeters R. Evaluating patients with chest pain using classification and regression trees. Family practice. 1992;9(2):149–53. https://doi.org/10.1093/fampra/9.2.149.

53. Kline RB. Software programs for structural equation modeling: AMOS, EQS, and LISREL. J Psychoeduc Assess. 1998;16(4):343–64. https://doi.org/.

54. Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry. 2015;27(2):130–5. https://doi.org/10.11919/j.issn.1002-0829.215044.

55. Gandomi AH, Fridline MM, Roke DA. Decision tree approach for soil liquefaction assessment. TheScientificWorldJournal. 2013;2013:346285. https://doi.org/10.1155/2013/346285.

56. Miller B, Fridline M, Liu PY, Marino D. Use of CHAID decision trees to formulate pathways for the early detection of metabolic syndrome in young adults. Comput Math Methods Med. 2014;2014:242717. https://doi.org/10.1155/2014/242717.

57. Martinez JA, Belastegui A, Basabe I, Goicoechea X, Aguirre C, Lizeaga N, et al. Derivation and validation of a clinical prediction rule for delirium in patients admitted to a medical ward: an observational study. BMJ open. 2012;2(5):e001599. https://doi.org/10.1136/bmjopen-2012-001599.

58. Ryan DJ, O'Regan NA, Caoimh R, Clare J, O'Connor M, Leonard M, et al. Delirium in an adult acute hospital population: predictors, prevalence and detection. BMJ open. 2013;3(1):e001772. https://doi.org/10.1136/bmjopen-2012-001772.

59. Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538. https://doi.org/10.1136/bmj.h2538.

60. Jayaswal AK, Sampath H, Soohinda G, Dutta S. Delirium in medical intensive care units: Incidence, subtypes, risk factors, and outcome. Indian journal of psychiatry. 2019;61(4):352–8. https://doi.org/10.4103/psychiatry.IIndianJPsiychiatry_583_18.

61. Heymann A, Sander M, Krahne D, Deja M, Weber-Carstens S, MacGuill M, et al. Hyperactive delirium and blood glucose control in critically ill patients. J Int Med Res. 2007;35(5):666–77. https://doi.org/10.1177/147323000703500511.

62. Tilouche N, Hassen MF, Ali HBS, Jaoued O, Garbi R, El Atrous SS. Delirium in the Intensive Care Unit: Incidence, Risk Factors, and Impact on Outcome. Indian journal of critical care medicine: peer-reviewed. official publication of Indian Society of Critical Care Medicine. 2018;22(3):144–9. https://doi.org/10.4103/ijccm.IJCCM_244_17.

63. Vahedian Azimi A, Ebadi A, Ahmadi F, Saadat S. Delirium in Prolonged Hospitalized Patients in the Intensive Care Unit. Trauma monthly. 2015;20(2):e17874. https://doi.org/10.5812/traumamon.17874.

64. Kobayashi D, Takahashi O, Arioka H, Koga S, Fukui T. A prediction rule for the development of delirium among patients in medical wards: Chi-Square Automatic Interaction Detector (CHAID) decision tree analysis model. The American journal of geriatric psychiatry: official journal of the
65. Boyko Y, Jennum P, Toft P. Sleep quality and circadian rhythm disruption in the intensive care unit: a review. Nature science of sleep. 2017;9:277–84. https://doi.org/10.2147/NSS.S151525.

66. Oldham MA, Lee HB, Desan PH. Circadian Rhythm Disruption in the Critically Ill: An Opportunity for Improving Outcomes. Critical care medicine. 2016;44(1):207–17. https://doi.org/10.1097/CCM.0000000000001282.

67. Kohn R, Harhay MO, Cooney E, Small DS, Halpern SD. Do Windows or Natural Views Affect Outcomes or Costs Among Patients in ICUs? Critical care medicine. 2013;41(7):1645–55. https://doi.org/10.1097/CCM.0b013e318287f6cb.

68. Smonig R, Magalhaes E, Bouadma L, Andremont O, de Montmollin E, Essardy F, et al. Impact of natural light exposure on delirium burden in adult patients receiving invasive mechanical ventilation in the ICU: a prospective study. Ann Intensiv Care. 2019;9(1):120. https://doi.org/10.1186/s13613-019-0592-x.

69. Estrup S, Kjer CKW, Poulsen LM, Gogenur I, Mathiesen O. Delirium and effect of circadian light in the intensive care unit: a retrospective cohort study. Acta anaesthesiologica Scandinavica. 2018;62(3):367–75. https://doi.org/10.1111/aas.13037.

70. Zaal IJ, Spruyt CF, Peelen LM, van Eijk MM, Wientjes R, Schneider MM, et al. Intensive care unit environment may affect the course of delirium. Intensive care medicine. 2013;39(3):481–8. https://doi.org/10.1007/s00134-012-2726-6.

71. Ye F, Chen ZH, Chen J, Liu F, Zhang Y, Fan QY, et al. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China. Chin Med J. 2016;129(10):1193–9. https://doi.org/10.4103/0366-6999.181955.

72. McPherson JA, Wagner CE, Boehm LM, Hall JD, Johnson DC, Miller LR, et al. Delirium in the cardiovascular ICU: exploring modifiable risk factors. Critical care medicine. 2013;41(2):405–13. https://doi.org/10.1097/CCM.0b013e31826ab49b.

73. Mehta S, Cook D, Devlin JW, Skrobik Y, Meade M, Fergusson D, et al. Prevalence, risk factors, and outcomes of delirium in mechanically ventilated adults. Critical care medicine. 2015;43(3):557–66. https://doi.org/10.1097/ccm.0000000000000727.

74. Unoki T, Sakuramoto H, Ouchi A, Fujitani S. Physical restraints in intensive care units: a national questionnaire survey of physical restraint use for critically ill patients undergoing invasive mechanical ventilation in Japan. Acute medicine surgery. 2019;6(1):68–72. https://doi.org/10.1002/ams2.380.

75. Perez D, Peters K, Wilkes L, Murphy G. Physical restraints in intensive care-An integrative review. Australian critical care: official journal of the Confederation of Australian Critical Care Nurses. 2019;32(2):165–74. https://doi.org/10.1016/j.aucc.2017.12.089.

76. Benbenbishy J, Adam S, Endacott R. Physical restraint use in intensive care units across Europe: the PRICE study. Intensive critical care nursing. 2010;26(5):241–5.
Figures
Figure 1

Univariate (A) and multivariate (B) Cox regression analyses to identify factors predictive of developing ICU delirium.
Figure 1

Univariate (A) and multivariate (B) Cox regression analyses to identify factors predictive of developing ICU delirium.
Figure 2

A CHAID decision classification tree analysis to predict delirium among participants.
Figure 2

A CHAID decision classification tree analysis to predict delirium among participants.
Figure 3

A CHAID decision classification tree analysis to predict delirium recurrence in patients with delirium at the admission time
Figure 3

A CHAID decision classification tree analysis to predict delirium recurrence in patients with delirium at the admission time