TITLE:
Kinematic and Excitation Structure of the NGC 1068 Narrow-Line Region

AUTHOR(S):
Ozaki, Shinobu

CITATION:
Ozaki, Shinobu. Kinematic and Excitation Structure of the NGC 1068 Narrow-Line Region.京都大学, 2009, 博士(理学)

ISSUE DATE:
2009-03-23

URL:
http://hdl.handle.net/2433/124486

RIGHT:
銀河の中心には超巨大ブラックホールが存在すると考えられており、そこにガスが供給されるとその重力エネルギーが最終的には輻射のエネルギーに変換されて明るく光る。こうして放射された紫外線やX線は、周囲にあるガスを電離し、輝線放射領域を形成する。このような輝線放射領域のなかでも狭輝線領域と呼ばれる領域は、超巨大ブラックホールをとりまく比較的大きな領域に存在し、中心核の構造や進化を解明する上で重要な成分となっている。申請者は、狭輝線領域の構造を詳細に観測しやすい、近傍の活動銀河であるNGC 1068を取りあげ、狭輝線放射領域におけるガスの運動状態と励起状態の構造に関する研究を行った。

申請者は、通常よく観測される2階電離した酸素の禁制線（波長5007Å）と水素再結合線（4861Å）のみならず、中性酸素の禁制線（6300Å）と6階電離した鉄の禁制線（6087Å）をも含むことにより、幅広い範囲にわたる電離ポテンシャルの輝線を調べることに成功した。輝線プロファイルを、毎秒約30〜40キロメートルという高い速度分解能で取得することにより、これらの輝線が互いに異なるプロファイルを示すことを確認した。これらの電離ポテンシャルの異なる輝線の、異なるプロファイルを用いることにより、狭輝線放射領域におけるガスの運動状態と励起状態を理解することが可能となった。

観測結果を光電離モデルと比較することにより、以下の3点を明らかにした。
1) 銀河中心付近の青方偏移を示す電離ガス成分は非常に高密度である。
2) 北東部の青方偏移成分は中心付近よりも若干低密度である。
3) 青方偏移成分の電離パラメーターは各速度から青方偏移するに従って大きくなる。ここで、電離パラメーターとは、電離光子の個数（体積）密度と水素の個数（体積）密度との比であり、値が大きいほど電離が進んでいることになる。

ところで、ハッブル宇宙望遠鏡を用いた観測から、NGC 1068の狭輝線放射領域では中心から離れるに従って徐々に速度が増加するという速度場が明らかとなっている。この速度場と、この研究で明らかとなった電離パラメーターの速度依存性を同時に説明しうる狭輝線放射領域の構造について検討をおこなった。その結果、以下の3つを仮定することで、速度場と電離パラメーターの速度依存性を再現できことが分かった。
1) 狭輝線放射領域のガス雲と中心核との間に吸収体があり、その柱密度が方向によって変化している。
2) ガス雲は外側に向かって流れており（アウトフロー）、その全体構造は中空円錐状である。
3) 様々な柱密度を持つガス雲が、中心から同じ距離のところから同時にアウトフローし始める。

NGC 1068の速度場を再現する試みは今までにもなされてきたが、速度の半径依存性を再現できたのは、この研究が初めてである。
（論文審査の結果の要旨）

活動銀河中心核は、銀河の中心に存在する超巨大ブラックホールに、ガスが落ち込める際にその重力エネルギーを解放することから生じる。超巨大ブラックホールが周囲に対して重力的に及ぼす影響が支配的になる範囲は比較的小さな領域に限られているが、活動銀河中心核からの放射が与える影響は空間的に広い範囲に及ぶ。狭帯線放射領域というガス領域は、まさにこのような大きなスケールでの影響を受けた領域であり、活動銀河中心核に関する現象の理解には欠かせない重要な要素である。

本論文の意義は、大別すると2つあり、どちらも活動銀河中心核の研究において価値の高いものである。1つは、NGC 1068という活動銀河中心核の狭帯線放射領域について、広範囲にわたる電離状態の輝線を含むスペクトル（速度情報を含む）を、空間の情報を含めて得たことである。この天体は私たちの近傍にあるために詳細観測が可能で重要な天体であるにもかかわらず、6階電離した鉄（電離エネルギー～1000エレクトロンボルト）からの禁制線や中性酸素（0エレクトロンボルト）からの禁制線を含んでこのような議論をすることが可能になったのは初めてである。申請者自らが設計・製作を行った、高い波長分解能を持った分光器を用いて、これらの強度の小さい輝線にも着目した観測を行ったことにより可能となったもので、非常に高く評価できる。

もう1つの意義は、これらの新しいデータと、過去の文献から得られた観測情報全てを矛盾なく説明できる、今のところ唯一のモデルを構築したことにある。このモデルが他の活動銀河中心核にも一般的に成り立つのかどうかの決定は、今後の観測的研究の発展を待たなければならないが、全く新しい視点からの議論を完成させた意義は大きい。従来は定常状態の仮定にしばられていたため、どうしても速度構造・電離構造の観測データを矛盾なく説明できるモデルが無かった。申請者は発想を転換し非定常な状態を考えた点が大きく評価できる。柱密度（面積あたりのガス粒子数）の異なる（光学的に厚い）ガス雲が銀河中心に近いところから同時に打ち上げられたとする説を打ち立て速度場を説明したのである。活動銀河中心核による幅射圧を受けけてガス雲は加速される。光学的に厚いガス雲が受ける力は柱密度に依らないが、質量は柱密度に比例するために、柱密度の小さいガス雲がより加速されやすく、速度が大きく、空間的にはより外側に観測されるという仕組みである。申請者は、観測されるガス雲における位置と速度の関係を定量的に再現することに成功した。また、吸収体の存在と視線速度成分の考察を加えることにより、電離構造も矛盾なく説明することに成功した。
申請者の新しい描像は、将来への発展性の観点からも高く評価される。非定常な状態でのある瞬間を観ているとするこの描像是、どれだけ一般的に活動銀河中心核の狭輝線放射領域に成り立つかどうかはさらなる観測待たなければならない。しかし、申請者は既に、ある種の活動銀河中心核についての良いモデルになる可能性を意識している。超巨大ブラックホールが急激に成長しつつある可能性が指摘されているような活動銀河中心核の種族が存在するが、NGC 1068 はこの種族との類似性が高い。実際、NGC 1068 には恒星の空間分布が棒状になっている構造があり、この構造に沿って中心部へのガス供給が効率良く行われている可能性がある。このようにガス供給が効率良く行われているような天体では、一部の分子雲コアが放射の影響を直接受ける領域に入り込み、外側へ向かって加速されるという現象がみられる確率も高くなるはずである。このように、1 つの天体に特殊な現象というだけではなく、将来への発展の可能性も見据えている。

以上の通り、本論文は博士（理学）の学位論文として価値あるものと認める。また、論文内容とそれに関連した事項について試問を行った結果、合格と認めた。