Majorana corner and hinge modes in second-order topological insulator-superconductor heterostructures

Zhongbo Yan1,*

1School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

As platforms of Majorana modes, topological insulator (quantum anomalous Hall insulator)/superconductor (SC) heterostructures have attracted tremendous attention over the past decade. Here we substitute the topological insulator by its higher-order counterparts. Concretely, we consider second-order topological insulators (SOTIs) without time-reversal symmetry and investigate SOTI/SC heterostructures in both two and three dimensions. Remarkably, we find that such novel heterostructures provide natural realizations of second-order topological superconductors (SOTSCs) which host Majorana corner modes in two dimensions and chiral Majorana hinge modes in three dimensions. As here the realization of SOTSCs requires neither special pairings nor magnetic fields, such SOTI/SC heterostructures are outstanding platforms of Majorana modes and may have wide applications in future.

Over the past decade, topological superconductors (TSCs) have attracted continuous and tremendous attention[1–9]. Among various TSCs, one-dimensional (1d) and two-dimensional (2d) TSCs without time-reversal symmetry (TRS) have attracted particular interest as they harbor Majorana zero modes (MZMs) at their boundaries[10–12] and in the cores of vortices[13–16], respectively. Owing to their fractional nature, MZMs are considered to be nonlocal qubits immune to local decoherence[10]. Moreover, owing to their non-Abelian statistics[17], their braiding operations are found to realize elementary quantum gates. Thus, MZMs are believed to be building blocks of topological quantum computation[18] and have been actively sought in experiments[19–29].

As is known, odd-parity superconductors (SCs) provide natural realizations of TSCs, however, they are unfortunately rare in nature. In a seminal paper[14], Fu and Kane pointed out that topological insulator (TI)/SC heterostructures provide an effective realization of odd-parity superconductivity. Accordingly, in the presence of magnetic field, vortices emerging in such heterostructures are found to carry MZMs. In a later influential paper[30], Qi et al pointed out that quantum anomalous Hall insulator (QAH)[1/2]SC heterostructures provide a simple realization of 2d chiral TSCs which harbor not only vortex-core MZMs, but also chiral Majorana edge modes. These two theoretical works have triggered a lot of experimental works on TI(QAH)/SC heterostructures[28, 29, 31–41], and remarkable progress in detecting vortex-core MZMs has been witnessed in recent years[28, 29, 40, 41].

Very recently, TIs and TSCs have been generalized to include their higher-order counterparts[42–56]. Importantly, higher-order TIs (HOTIs) and TSCs (HOTSCs) have extended the conventional bulk-boundary correspondence. Accordingly, an n-th order TI or TSC in d dimensions host (d−n)-dimensional boundary modes. For instance, a second-order TI (SOTI) in 2d and 3d host zero-dimensional (0d) corner modes and 1d hinge modes, respectively. The existence of HOTIs and the lessons from the study of TI(QAH)/SC heterostructures lead us to ask the natural question that whether

Majorana corner modes (MCMs, i.e., MZMs bound at the corners) or chiral Majorana hinge modes (CMHMs) can also be achieved in a HOTI/SC heterostructure. It is worth noting that such a question is quite timely as recently the electronic material candidates for SOTIs, both in two dimensions (2D) and three dimensions (3D), are growing[57–63]. Moreover, signature of MZM has also been observed in a heterostructure which consists of a bismuth thin film (a SOTI with TRS[57]), a conventional s-wave SC, and magnetic iron clusters[64].

In this work, we consider SOTIs without TRS and investigate SOTI/SC heterostructures in both 2D and 3D. Remarkably, we find that such heterostructures provide natural realizations of second-order topological superconductors (SOTSCs) which host MCMs in 2D and CMHMs in 3D. Furthermore, here the realization of SOTSCs does not require the pairing of SCs to take any specific form. It can be achieved for both unconventional SCs and conventional s-wave SCs. In addition, it does not need magnetic fields or the deposition of magnetic atoms. In comparison to previous proposals[65–90], these merits make SOTI/SC heterostructures stand out, and potentially allow them to have wide applications in topological quantum computation[91–93].

MCMS in a 2d SOTI-SC heterostructure.— A 2d SOTI/SC heterostructure (Fig.1) could be described by a Bogoliubov-de Gennes (BdG) Hamiltonian, $H = \sum_k \Psi^\dagger_k H(k) \Psi_k$, with $\Psi_k = (c_{a,k\uparrow}, c_{b,k\uparrow}, c_{a,k\downarrow}, c_{b,k\downarrow}, c_{1-a,-k\uparrow}, c_{1-b,-k\uparrow}, c_{1-a,-k\downarrow}, c_{1-b,-k\downarrow})^T$ and

$$H(k) = \epsilon(k)\sigma_z \tau_z + \Lambda_s \sin k_x \sigma_z \tau_y + \Lambda_y \sin k_y \sigma_y \tau_z + \Lambda(k) \sigma_z s_z \tau_z + \mu \tau_z + \Delta(k) s_y \tau_y,$$

where σ_z, s_z, and τ_z are Pauli matrices in orbit (a, b), spin (\uparrow, \downarrow)
and particle-hole spaces, respectively; $\epsilon(\mathbf{k}) = m_0 - t_x \cos k_x - t_y \cos k_y$ is the kinetic energy; $\Lambda(\mathbf{k}) = \Lambda_x \cos k_x - \Lambda_y \cos k_y$ is a TRS breaking term crucial for the realization of SOTI; μ is the chemical potential, and $\Delta(\mathbf{k}) = \Delta_0 + \Delta_x \cos k_x + \Delta_y \cos k_y$ represents the pairing. Such a form is general enough to model s-wave, s_\pm-wave and d-wave pairings[68]. For convenience, the lattice constants have been set to unit, and $t_{x,y}$, $\Lambda_{x,y}$ and $\Delta_{x,y}$ are set to be positive throughout this work.

Let us focus on the normal state first. Without the terms in the second line of Eq. (1), the Hamiltonian describes a 2d first-order TI when $\prod_{\alpha,\beta=\pm}[m_0 + \alpha(t_x \cos k_x + t_y \cos k_y)] < 0$[94]. Accordingly, when open boundary condition is taken, gapless helical modes will appear on the boundary. Adding the $\Lambda(\mathbf{k})$ term breaks TRS and consequently gaps out the helical modes, resulting in a transition from a first-order TI to a SOTI. When open boundary conditions are taken in both the x and y directions, one can find that in the SOTI phase, each corner of the system will harbor one zero-energy bound state with a fractional charge $e/2[43]$. The pinning of the corner modes’ energy to zero is due to the existence of a chiral symmetry (the operator is $\sigma_x \partial_x$). When superconductivity enters, the operator is accordingly modified as $\sigma_y \tau_y \partial_x$. However, this chiral symmetry is just an accidental symmetry, adding an arbitrary term proportional to the identity matrix (e.g., the chemical potential) immediately breaks this symmetry and accordingly shifts the energy away from zero. Nevertheless, whether the chiral symmetry is preserved or not does not affect our following discussions since the particle-hole symmetry of a SC is sufficient to guarantee the topological robustness of MCMs.

To see the effect of superconductivity intuitively, let us focus on the case with chiral symmetry first. As is known, when a chiral electronic mode is in proximity to a SC, it becomes a chiral electronic mode instead of a normal mode. This is why the amplitude of the superconducting order parameter is zero in the chiral edge state. Now, let us focus on the edge (I) first. To obtain the corresponding Hamiltonian to edge (I), we follow ref.[30]. Accordingly, the matrix elements of H_0 under the basis composed by the four zero-energy solutions, which read

$$\psi_{\alpha}(x) = N_s \sin(n \pi x / 2) e^{i k_0 y} \chi_{\alpha},$$

where $N_s = 2 \sqrt{|\eta_1|^2 + |\eta_2|^2}$, $\eta_1 = \sqrt{2} \lambda \tau_x / t_x$ and $\eta_2 = \lambda \tau_z$. The four spinors χ_{α} are determined by $\sigma_y \tau_y \partial_x \chi_{\alpha} = \lambda \chi_{\alpha}$. For their concrete forms, here we follow ref.[68]. Accordingly, the matrix elements of H_0 under the basis composed by the four zero-energy solutions are

$$H_{\text{LRD}}(k_y) = \int_0^{\infty} \psi_{\alpha}^*(x)(-i \partial_x, k_y) \psi_{\alpha}(x) dx.$$ (5)

The corresponding low-energy Hamiltonian for edge (1) is

$$H_1(k_y) = -\lambda_s k_y \tau_z + M_{\text{LA}} s_y + M_{\text{LS}} s_y \tau_y,$$ (6)

where the two Dirac masses M_{LA} and M_{LS} are of different origins, and they are given by

$$M_{\text{LA}} = -\int_0^{\infty} dx \psi_{\alpha}^* \Lambda(-i \partial_x) \psi_{\alpha}(x) = -\Lambda \frac{m_{\Lambda}}{t_x},$$

$$M_{\text{LS}} = \int_0^{\infty} dx \psi_{\alpha}^* \Lambda(-i \partial_x) \psi_{\alpha}(x) = \Delta \frac{m_{\Delta}}{t_x}.$$ (7)

Similarly, the low-energy Hamiltonians for the other three edges are

$$H_{\text{II}}(k_y) = \lambda_y k_y \tau_z + M_{\text{IIA}} s_y + M_{\text{IIS}} s_y \tau_y,$$

$$H_{\text{III}}(k_y) = \lambda_y k_y s_z + M_{\text{IIIA}} s_y + M_{\text{IIS}} s_y \tau_y,$$

$$H_{\text{IV}}(k_y) = -\lambda_s k_y s_z + M_{\text{IVA}} s_y + M_{\text{IVS}} s_y \tau_y,$$ (8)

with $M_{\text{IIA}} = M_{\text{IVA}} = -\Lambda - m_{\Lambda} / t_y$, $M_{\text{IIS}} = M_{\text{IVS}} = \Delta - m_{\Delta} / t_y$, and $M_{\text{IIIA}} = M_{\text{IVA}}, M_{\text{IIS}} = M_{\text{IVS}}$. By using the boundary coordinate, the low-energy Hamiltonian can be written compactly as

$$H_{\text{Edge}} = -i (l \partial_x) \sigma_y \tau_z + M_L(l) s_y + M_S(l) s_y \tau_y.$$ (9)
where \(\lambda(l) \), \(M_\lambda(l) \) and \(M_S(l) \) are step functions with their values following the sequences: \(\lambda(l) = \lambda_x, \lambda_y, \lambda_z, \Lambda_x, M_\lambda(l) = -\Lambda + m\Delta_x/t_x, -\Lambda - m\Delta_y/t_y, -\Lambda + m\Delta_z/t_z, -\Lambda - m\Delta_y/t_y \), and \(M_S(l) = \Delta - m\Delta_x/t_x, \Delta - m\Delta_y/t_y, \Delta - m\Delta_y/t_y \) for (I), (II), (III) and (IV), respectively.

Without loss of generality, let us focus on the case with \(\Lambda_x = \Lambda_y \) so that \(\Lambda = 0 \). In the absence of pairing, i.e., \(M_S(l) = 0 \), \(H_{\text{Edge}} \) reduces to a \(2 \times 2 \) matrix. At each corner, \(\lambda(l) \) does not change sign, but \(M_\lambda(l) \) does, realizing a domain wall of Dirac mass which harbors one charged zero mode according to the Jackiw-Rebbi theory. When superconductivity enters, one can see that \(H_{\text{Edge}} \) is the direct sum of two independent parts, i.e., \(H_{\text{Edge}} = H_{\tau_x=1} \oplus H_{\tau_y=1} \) with

\[
H_{\tau_x=1} = -i\lambda(l)\hat{s}_x + (M_\lambda(l) + M_S(l))s_y,
H_{\tau_y=1} = -i\lambda(l)\hat{s}_y + (M_\lambda(l) - M_S(l))s_y.
\]

One can see that the Dirac mass induced by superconductivity takes different signs in the two parts. In the weak-pairing limit, \(|M_S(l)|/|M_\lambda(l)| \ll 1 \), each part realizes one zero mode per corner. As the particle component and the hole component of these zero modes’ wave functions are equal (note \(\tau_y\psi_0(l) = \pm \psi_0(l) \), where \(\psi_0(l) \) denotes the wave function of zero mode), they are MZMs, agreeing with our previous argument that weak superconductivity will transform one charged zero mode to two MZMs. As now each corner harbors two MZMs, these MCMs are not stable. Indeed, we find that any finite \(\mu \) or on-site potential will make them couple (the chemical potential term contains \(\tau_z \), so it makes the \(\tau_y = 1 \) part couple with the \(\tau_y = -1 \) part) and consequently destroy their self-conjugate nature. This can also be understood from the perspective that because \(\mu \) shifts the energy of charged corner modes away from zero, the energy of corner modes will keep taking finite values if the superconductivity is very weak. Therefore, for the square geometry presented in Fig.1, robust MCMs are absent in the weak-pairing limit. Noteworthily, as \(M_\lambda(l) \) is in fact sensitive to the orientation of edge, here we have emphasized the particular square geometry shown in Fig.1. As will see shortly, if the sample’s geometry is appropriately designed, the critical value of pairing amplitude for realizing robust MCMs can be very small, so even weak superconductivity is sufficient.

To see how robust MCMs emerge in a square sample, we take \(s \)-wave pairing for illustration (other more exotic cases can similarly be analyzed). Accordingly, \(M_S(l) = \Delta_0 \) is uniform on the boundary. Without loss of generality, we further assume \(m\Delta_y/t_y > m\Delta_x/t_x \). According to Eq.(10), one can find when \(m\Delta_x/t_x < \Delta_0 < m\Delta_y/t_y \), while the domain walls for \(H_{\tau_x=1} \) are preserved since \(m\Delta_x/t_x + \Delta_0 \) and \(-m\Delta_y/t_y + \Delta_0 \) still take opposite signs, the ones for \(H_{\tau_y=1} \) are removed since now \(m\Delta_x/t_x - \Delta_0 \) and \(-m\Delta_y/t_y - \Delta_0 \) take same sign. As a result, there is only one MZM per corner in this regime, as shown in Fig.2(a). We have numerically checked that these MCMs are robust against local perturbations, doping and random disorder as long as the doping level and disorder strength are small than some critical values (note in Fig.2(a), \(\mu = 0.1 \)).

According to the criterion \(m\Delta_x/t_x < \Delta_0 < m\Delta_y/t_y \), one may make the conclusion that if the underlying pairing is \(s \)-wave, anisotropy is necessary for the realization of SOTSC. That is, if \(\Lambda_x = \Lambda_y \), \(t_x \neq t_y \) must be satisfied. However, anisotropy is in fact unnecessary. For the isotropic case with \(t_x = t_y \) and \(\Lambda_x = \Lambda_y \), \(M_\lambda(l) \) follows the angle dependence \(M_\lambda(l) \approx m\Lambda_x \cos \theta/l_x \), where \(\theta \) represents the angle relative to edge (I). This indicates that on the edge whose orientation is pointing to \(\theta = \pi/4, M_\lambda(l) = 0 \). As a result, one can find that for the \(\pi/4 \)-angle corner formed by edge (I) and the \(\theta = \pi/4 \)-orientation edge, it will harbor one MZM as long as \(0 < |\Delta_0| < m\Delta_x/t_x \). We demonstrate the validity of this analysis numerically, as shown in Figs.2(b)(c). According to the phase diagram in Fig.2(c), one can see that for an isosceles-right-triangle geometry, MCMs can exist for a quite broad range of \(\mu \) and for infinitely weak pairing amplitude.
As for a SOTI, $M_N(l)$ inevitably vanishes along some direction, this implies that a judicious design of the corners is always able to realize MCMs even though the superconductivity is weak. Clearly, this conclusion also holds for other unconventional SCs.

CMHMs in a 3d SOTI/SC heterostructure.—The scenario above can straightforwardly be generalized to 3D. For example, if we have a 3d SOTI at hand, we can grow a thin film of s-wave SC on its surface (see Figs.3(a)(b)). Accordingly, the system could be modeled by $H = \sum_{l} \Psi_{l}^{\dagger}H(k)\Psi_{l}$ with

$$H(k) = \xi(k)\sigma_z\tau_z + \sum_{i=x,y,z} \lambda_i \sin k_{i}\sigma_i \xi_i + \lambda_0 \sin k_{D}\sigma_y \tau_z$$

$$+ \Lambda(k)\sigma_y + \mu \tau_z + \Delta_0 \sigma_y \tau_y,$$

where $\xi(k) = m_0 - t_x \cos k_x - t_y \cos k_y - t_z \cos k_z$. Without the terms in the second line, the Hamiltonian describes a strong TI when $\prod_{\alpha,\beta=x,y}(m_0 + \alpha t_{\alpha} + \beta t_{\beta} + \gamma t_{\gamma}) < 0$. Accordingly, when open boundary condition is taken, gapless Dirac surface states will appear on the boundary. The presence of the term $\Lambda(k)$ gaps out the Dirac surface states on the four lateral surfaces (in 3D, we take open boundary condition in both the x and y directions, and periodic boundary condition in the z direction) and leaves one chiral electronic mode per hinge\[46\].

As mentioned before, when superconductivity enters, one chiral electronic mode becomes two chiral Majorana modes in the weak-pairing limit\[30\]. Unlike the MCMs in two dimensions, while here the wave functions of the two chiral Majorana modes also overlap in space, they are stable against perturbations since they are chiral in nature. Therefore, in the weak-pairing regime, there are two robust chiral Majorana modes per hinge (see Figs.3(a)(c)). Interestingly, we find that with the increase of pairing amplitude, a topological phase transition will take place on the boundary and accordingly a new SOTSC which host one robust chiral Majorana mode per hinge will be realized (see Figs.3(b)(d)). It is worth noting that when doing the calculation of the energy spectra presented in Figs.3(c)(d), the superconductivity has been taken to be uniform throughout the whole sample. It is apparent that this assumption is unrealistic for the heterostructure since deep in the bulk the superconductivity induced by proximity effect should vanish, however, the low-energy physics within the gap can be well captured since the in-gap states are located on the surfaces which are well in contact with the SC. In other words, here the derivation from real situation only has strong impact on the bulk states. In fact, if we focus on the in-gap states, we can also adopt the edge theory as in 2D. For the geometry shown in Figs.3(a)(b), one can easily find that the criterion for realizing the SOTSC phase with one robust chiral Majorana mode per hinge is also $m_{\Lambda} l_{x} - \Delta_0 < m_{\Lambda} l_{y}$ ($m = t_{x} + t_{y} + t_{z} - m_0 > 0$, $\mu = 0$, and $\Lambda_x = \Lambda_y$ are also presumed). One can see that the results presented in Figs.3(c)(d) are consistent with this criterion. Similar to the 2d situation, the critical pairing amplitude can also be tuned to take a very small value if the sample’s geometry is appropriately designed.

Conclusions.—We have shown that SOTI/SC heterostructures provide promising new platforms of MCMs and CMHMs. As our proposed scheme requires neither special pairings nor magnetic fields, we believe it should be simple to implement experimentally. Consider the fast growth of material candidates for SOTIs\[57–63\], we can foresee that such novel heterostructures will be synthesised and investigated in the near future. Experimentally, MCMs and CMHMs can be probed by STM techniques\[64\] and transport experiments\[97\].

Acknowledgements.—We would like to acknowledge the support by a startup grant at Sun Yat-sen University.

[1] Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).

[2] Jason Alicea, “New directions in the pursuit of majorana fermions in solid state systems,”
Reports on Progress in Physics 75, 076501 (2012).

[3] C. W. J. Beenakker, “Search for Majorana Fermions in Superconductors,” Annual Review of Condensed Matter Physics 4, 113–136 (2013).

[4] Tudor D Stanescu and Sumanta Tewari, “Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment,” Journal of Physics: Condensed Matter 25, 233201 (2013).

[5] Martin Leijnse and Karsten Flensberg, “Introduction to topological superconductivity and majorana fermions,” Semiconductor Science and Technology 27, 124003 (2012).

[6] Steven R. Elliott and Marcel Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Mod. Phys. 87, 137–163 (2015).

[7] Sankar Das Sarma, Michael Freedman, and Chetan Nayak, “Majorana zero modes and topological quantum computation,” npj Quantum Information 1, 15001 (2015).

[8] Masatoshi Sato and Satoshi Fujimoto, “Majorana fermions and topology in superconductors,” Journal of the Physical Society of Japan 85, 072001 (2016).

[9] R. Aguado, “Majorana quasiparticles in condensed matter,” La Rivista del Nuovo Cimento 40, 523 (2017) 40, 523 (2017).

[10] A Yu Kitaev, “Unpaired majorana fermions in quantum wires,” Uspekhi Phys. 44, 131 (2001).

[11] Yuval Oreg, Gil Refael, and Felix von Oppen, “Helical liquids and majorana bound states in quantum wires,” Phys. Rev. Lett. 105, 177002 (2010).

[12] Roman M. Lutchyn, Jay D. Sau, and S. Das Sarma, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures,” Phys. Rev. Lett. 105, 077001 (2010).

[13] N. Read and Dmitry Green, “Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall effect,” Phys. Rev. B 61, 10267–10297 (2000).

[14] Liang Fu and C. L. Kane, “Superconducting proximity effect and majorana fermions at the surface of a topological insulator,” Phys. Rev. Lett. 100, 096407 (2008).

[15] Jay D. Sau, Roman M. Lutchyn, Sumanta Tewari, and S. Das Sarma, “Generic new platform for topological quantum computation using semiconductor heterostructures,” Phys. Rev. Lett. 104, 040502 (2010).

[16] Jason Alicea, “Majorana fermions in a tunable semiconductor device,” Phys. Rev. B 81, 125318 (2010).

[17] D. A. Ivanov, “Non-abelian statistics of half-quantum vortices in p-wave superconductors,” Phys. Rev. Lett. 86, 268–271 (2001).

[18] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma, “Non-abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083–1159 (2008).

[19] Vincent Mourik, Kun Zao, Sergey M Frolov, SR Plissard, EPAM Bakkers, and LP Kouwenhoven, “Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices,” Science 336, 1003–1007 (2012).

[20] Leonid P Rokhinson, Xinyu Liu, and Jacek Kurdyuna, “The fractional ac Josephson effect in a semiconductor-superconductor nanowire as a signature of majorana particles,” Nature Physics 8, 795–799 (2012).

[21] MT Deng, CL Yu, GY Huang, Marcus Larsson, Philippe Caroff, and HQ Xu, “Anomalous zero-bias conductance peak in a nb-insb nanowire–nb hybrid device,” Nano letters 12, 6414–6419 (2012).

[22] Anindya Das, Yuval Ronen, Yonatan Most, Yuval Oreg, Moty Heiblum, and Hadas Shtrikman, “Zero-bias peaks and splitting in an al-ina nanowire topological superconductor as a signature of majorana fermions,” Nature Physics 8, 887–895 (2012).

[23] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, “Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device,” Phys. Rev. Lett. 110, 126406 (2013).

[24] Stevan Nadj-Perge, Ilya K Drozdov, Jian Li, Hua Chen, Sangjun Jeon, Jung pil Seo, Allan H MacDonald, B Andrei Bernevig, and Ali Yazdani, “Observation of majorana fermions in ferromagnetic atomic chains on a superconductor,” Science 346, 602–607 (2014).

[25] SM Albrecht, AP Higginbotham, M Madsen, F Kuemmeth, TS Jespersen, Jesper Nygård, P Krogstrup, and CM Marcus, “Exponential protection of zero modes in majorana islands,” Nature 531, 206–209 (2016).

[26] MT Deng, S Vaitiekénas, EB Hansen, J Danon, M Leijnse, K Flensberg, J Nygård, P Krogstrup, and CM Marcus, “Majorana bound state in a coupled quantum-dot hybrid-nanowire system,” Science 354, 1557–1562 (2016).

[27] Hao Zhang, Chun-Xiao Liu, Sasa Gazibegovic, Di Xu, John A Logan, Guanzhong Wang, Nick van Loo, Jouri DS Bommer, Michiel WA de Moor, Diana Car, Roy L. M. Op het Veld, Peters J van Veldhoven, Sebastian Koelling, Marcel A. Verheijen, Mihir Pendharkar, Daniel J. Pennachio, Borzoyeh Shojaei, Joon Sue Lee, Chris J. Palmstrøm, Erik P. A. M. Bakkers, S. Das Sarma, and Leo P. Kouwenhoven, “Quantized majorana conductance,” Nature 556, 74 (2018).

[28] Hao-Hua Sun, Kai-Wen Zhang, Lun-Hui Hu, Chuang Li, Guang-Yong Wang, Hai-Yang Ma, Zhu-An Xu, Chun-Lei Gao, Dan-Dan Guan, Yao-Yi Li, Canhua Liu, Dong Qian, Yi Zhou, Liang Fu, Shao-Chun Li, Fu-Chun Zhang, and Jin-Feng Jia, “Majorana zero mode detected with spin selective an dreew reflection in the vortex of a topological superconductor,” Phys. Rev. Lett. 116, 257003 (2016).

[29] Dongfei Wang, Lingyuan Kong, Peng Fan, Hui Chen, Shiyu Zhu, Wenyao Liu, Lu Cao, Yujie Sun, Shixuan Du, John A Logan, Guanzhong Wang, Nick van Loo, Jouri DS Bommer, Michiel WA de Moor, Diana Car, Roy L. M. Op het Veld, Peters J van Veldhoven, Sebastian Koelling, Marcel A. Verheijen, Mihir Pendharkar, Daniel J. Pennachio, Borzoyeh Shojaei, Joon Sue Lee, Chris J. Palmstrøm, Erik P. A. M. Bakkers, S. Das Sarma, and Leo P. Kouwenhoven, “Quantized majorana conductance,” Nature 556, 74 (2018).

[30] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang, “Chiral topological superconductor from the quantum hall state,” Phys. Rev. B 82, 184516 (2010).

[31] Mei-Xiao Wang, Canhua Liu, Jin-Peng Xu, Fang Yang, Lin Miaoy, Meng-Yu Yao, CL Gao, Chenyi Shen, Xu cun Ma, X Chen, et al., “The coexistence of superconductivity and topological order in the bi2se3 thin films,” Science 336, 52–55 (2012).

[32] Eryin Wang, Hao Ding, Alexei V. Fedorov, Wei Yao, Zhi Li, Yan-Feng Lv, Kun Zhao, Li-Guo Zhang, Zhijun Xu, John Schneeloch, Ruidian Zhong, Shuai-Hua Ji, Lili Wang, Ke He, Xucun Ma, Genda Gu, Hong Yao, Qi-Kun Xue, Xi Chen, and Shuyun Zhou, “Fully gapped topological surface states in bi2se3 films induced by a d-wave high-temperature superconductor,” Nature Physics 9, 621 (2013).

[33] Parisa Zareapour, Alex Hayat, Shu Yang F. Zhao, Michael Kreshchuk, Achint Jain, Daniel C. Kwok, Nara Lee, Sang-Wook Cheong, Zhijun Xu, Alina Yang, G.D. Gu, Shuang Jia, Robert J. Cava, and Kenneth S. Burch, “Proximity-induced high-temperature superconductivity in the topological insulators bi2se3 and bi2te3,” Nature Physics 3, 1056 (2012).

[34] Jin-Peng Xu, Mei-Xiao Wang, Zhi Long Liu, Jian-Feng Ge, Xiaojun Yang, Canhua Liu, Zhu An Xu, Dandan Guan, Chun Lei Gao, Dong Qian, Ying Liu, Qiang-Hua Wang, Fu-Chun Zhang, Qi-Kun Xue, and Jin-Feng Jia, “Experimental detection of a
majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor $b_1 b_2/nbse_2$ heterostructure,” Phys. Rev. Lett. 114, 017001 (2015).

[35] Y.-F. Lv, W.-L. Wang, Y.-M. Zhang, H. Ding, W. Li, L. Wang, K. He, C.-L. Song, X.-C. Ma, and Q.-K. Xue, “Experimental Observation of Topological Superconductivity and Majorana Zero Modes on beta-Bi2Pd Thin Films,” arXiv e-prints (2016), arXiv:1607.07551 [cond-mat.supr-con].

[36] Peng Zhang, Koichiro Yaji, Takahiro Hashimoto, Yuichi Ota, Takeshi Kondo, Kozo Okazaki, Zhijun Wang, Jinsheng Wen, GD Gu, Hong Ding, et al., “Observation of topological superconductivity on the surface of an iron-based superconductor,” Science 360, 182–186 (2018).

[37] Qin Liu, Chen Chen, Tong Zhang, Rui Peng, Ya-Jun Yan, Chen-Hao-Ping Wen, Xia Lou, Yu-Long Huang, Jin-Peng Tian, Xiao-Li Dong, Guang-Wei Wang, Wei-Cheng Bao, Qiang-Hua Wang, Zhi-Ping Yin, Zhong-Xian Zhao, and Dong-Lai Feng, “Robust and clean majorana zero mode in the vortex core of high-temperature superconductor $(l_{0.84}fe_{0.16})OHHFeSe_{2}$,” Phys. Rev. X 8, 041056 (2018).

[38] Qing Lin He, Lei Fan, Alexander L. Stern, Edward C. Burks, Xiaoay Che, Gen Yin, Jing Wang, Biao Lian, Quan Zhou, Eun Sang Choi, Koichi Murata, Xufeng Kou, Zhijie Chen, Tianxiao Nie, Qiming Shao, Yabin Fan, Shou-Cheng Zhang, Kai Liu, Jing XIA, and Kang L. Wang, “Chiral majorana fermion modes in a quantum anomalous hall insulator–superconductor structure,” Science 357, 294–299 (2017).

[39] Morteza Kayyalha, Di Xiao, Ruoxi Zhang, Jiahe Shin, Jue Jiang, Fei Wang, Yi-Fan Zhao, Ling Zhang, Kaje-Tan M. Fijalkowski, and Pankaj Mandal, “Non-Majorana Origin of the Half-Quantized Conductance Plateau in Quantum Anomalous Hall Insulator and Superconductor Hybrid Structures,” arXiv e-prints, arXiv:1904.06463 (2019), arXiv:1904.06463 [cond-mat.mes-hall].

[40] C Chen, Q Liu, TZ Zhang, D Li, PP Shen, XL Dong, Z-X Zhao, T Zhang, and DL Feng, “Quantized conductance of majorana zero mode in the vortex of the topological superconductor $(l_{0.84}fe_{0.16})$ ohfese,” Chinese Physics Letters 36, 057403 (2019).

[41] Shiyu Zhu, Lingyuan Kong, Lu Cao, Hui Chen, Shixuan Du, Yu-Qing Xing, Wenyou Liu, Dongfei Wang, Chengmin Shen, and Fazhi Yang, “Observation of Majorana conductance plateau by scanning tunneling spectroscopy,” arXiv e-prints, arXiv:1904.06124 (2019), arXiv:1904.06124 [cond-mat.supr-con].

[42] Wladimir A Benalcazar, B Andrei Bernevig, and Taylor L. Hughes, “Quantized electric multiple insulators,” Science 357, 61–66 (2017).

[43] Zhida Song, Zhong Fang, and Chen Fang, “$(d=2)$-dimensional edge states of rotation symmetry protected topological states,” Phys. Rev. Lett. 119, 246402 (2017).

[44] J. Langbehn, Yang Peng, L. Trifunovic, Felix von Oppen, and Piet W. Brouwer, “Reflection-symmetric second-order topological insulators and superconductors,” Phys. Rev. Lett. 119, 246401 (2017).

[45] Wladimir A. Benalcazar, B. Andrei Bernevig, and Taylor L. Hughes, “Electric multiple momenta, topological multiple moment pumping, and chiral hinge states in crystalline insulators,” Phys. Rev. B 96, 245115 (2017).

[46] Frank Schindler, Ashley M. Cook, Maia G. Vergniory, Zhijun Wang, Stuart S. P. Parkin, B. Andrei Bernevig, and Titus Neupert, “Higher-order topological insulators,” Science Advances 4 (2018), 10.1126/sciadv.aat0346.

[47] Motohiko Ezawa, “Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices,” Phys. Rev. Lett. 120, 026801 (2018).

[48] Alex Rasmussen and Yuan-Ming Lu, “Classification and construction of higher-order symmetry protected topological phases of interacting bosons,” arXiv e-prints, arXiv:1809.07325 (2018), arXiv:1809.07325 [cond-mat.str-el].

[49] Yizhi You, Trithep Devakul, F. J. Burnell, and Titus Neupert, “Higher-order symmetry-protected topological states for interacting bosons and fermions,” Phys. Rev. B 98, 235102 (2018).

[50] Eslam Khalaf, “Higher-order topological insulators and superconductors protected by inversion symmetry,” Phys. Rev. B 97, 205135 (2018).

[51] Max Geier, Luka Trifunovic, Max Hoskam, and Piet W. Brouwer, “Second-order topological insulators and superconductors with an order-two crystalline symmetry,” Phys. Rev. B 97, 205135 (2018).

[52] S. Franca, J. van den Brink, and I. C. Fulga, “An anomalous higher-order topological insulator,” Phys. Rev. B 98, 201114 (2018).

[53] Dimitriu Călugăru, Vladimir Juričić, and Bitan Roy, “Higher-order topological phases: A general principle of construction,” Phys. Rev. B 99, 041301 (2019).

[54] Luka Trifunovic and Piet W. Brouwer, “Higher-order bulk-boundary correspondence for topological crystalline phases,” Phys. Rev. X 9, 011012 (2019).

[55] Junyeong Ahn and Bohm-Jung Yang, “Higher-Order Topology of Three-Dimensional Strong Stiefel-Whitney Insulators,” arXiv e-prints, arXiv:1810.05363 (2018), arXiv:1810.05363 [cond-mat.mes-hall].

[56] Koji Kudo, Tsuchiya Yoshida, and Yasuhiro Hatsugai, “Higher-Order Topological Mott Insulators,” arXiv e-prints, arXiv:1905.03484 (2019), arXiv:1905.03484 [cond-mat.str-el].

[57] Frank Schindler, Zhijun Wang, Maia G Vergniory, Ashley M Cook, Anil Murani, Shamashis Sengupta, Alik Y u Kasumov, Richard Debloch, Sangjun Jeon, Ilya Drozdov, et al., “Higher-order topology in bismuth,” Nature physics 14, 918 (2018).

[58] Changming Yue, Yuancheng Xu, Zhida Song, Hongming Weng, Yuan-Ming Lu, Chen Fang, and Xi Dai, “Symmetry-enforced chiral hinge states and surface quantum anomalous hall effect in the magnetic axion insulator bi 2–x sm x se 3,” Nature Physics , 1 (2019).

[59] Zhijun Wang, Benjamin J. Wieder, Jian Li, Binghai Yan, and B. Andrei Bernevig, “Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides $X Te_2 (X=Mo,W),$ ” arXiv e-prints, arXiv:1806.11116 (2018), arXiv:1806.11116 [cond-mat.mtrl-sci].

[60] Yuanfeng Xu, Zhida Song, Zhijun Wang, Hongming Weng, and Xi Dai, “Higher-Order Topology of Axion Insulator $Euln_2^SAS_2^S$,” arXiv e-prints, arXiv:1903.09856 (2019), arXiv:1903.09856 [cond-mat.mtrl-sci].

[61] Xian-Lei Sheng, Cong Chen, Huiying Liu, Ziyu Chen, X. Y. Zhao, Zhi-Ming Yu, and Shengyuan A. Yang, “Two-dimensional second-order topological insulator in graphdiyne,” arXiv e-prints, arXiv:1904.09985 (2019), arXiv:1904.09985 [cond-mat.mes-hall].

[62] Eunwoo Lee, Rokyeon Kim, Junyeong Ahn, and Bohm-Jung Yang, “Higher-Order Band Topology and Corner Charges in Monolayer Graphdiyne,” arXiv e-prints, arXiv:1904.11452 (2019), arXiv:1904.11452 [cond-mat.mtrl-sci].

[63] Rui Chen, Chui-Zhen Chen, Jin-Hua Gao, Bin Zhou, and Dong-Hui Xu, “Higher-Order Topological Insulators in Quasicrystals,” arXiv e-prints, arXiv:1904.09932 (2019), arXiv:1904.09932 [cond-mat.mes-hall].

[64] Berthold Jäck, Yonglong Xie, Jian Li, Sangjun Jeon,
B. Andrei Bernevig, and Ali Yazdani, “Observation of a majorana zero mode in a topologically protected edge channel,” Science 364, 1255–1259 (2019), https://science.sciencemag.org/content/364/6447/1255.full.pdf.

65 Zhongbo Yan, Ren Bi, and Zhong Wang, “Majorana zero modes protected by a hop invariant in topologically trivial superconductors,” Phys. Rev. Lett. 118, 147003 (2017).

66 Hassan Shapourian, Yuxuan Wang, and Shinsei Ryu, “Topological crystalline superconductivity and second-order topological superconductivity in nodal-loop materials,” Phys. Rev. B 97, 094508 (2018).

67 Xiaoyu Zhu, “Tunable majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields,” Phys. Rev. B 97, 205134 (2018).

68 Zhongbo Yan, Fei Song, and Zhong Wang, “Majorana corner modes in a high-temperature platform,” Phys. Rev. Lett. 121, 096803 (2018).

69 Yuxuan Wang, Mao Lin, and Taylor L. Hughes, “Weak-pairing higher order topological superconductors,” Phys. Rev. B 98, 165144 (2018).

70 Qiyue Wang, Cheng-Cheng Liu, Yuan-Ming Lu, and Fan Zhang, “High-temperature majorana corner states,” Phys. Rev. Lett. 121, 186801 (2018).

71 Tao Liu, James Jun He, and Franco Nori, “Majorana corner states in a two-dimensional magnetic topological insulator on a high-temperature superconductor,” Phys. Rev. B 98, 245413 (2018).

72 Chen-Hsuan Hsu, Peter Stano, Jelena Klinovaja, and Daniel Loss, “Majorana kramers pairs in higher-order topological insulators,” Phys. Rev. Lett. 121, 196801 (2018).

73 Xiao-Hong Pan, Kai-Jie Yang, Li Chen, Gang Xu, Chao-Xing Liu, and Xin Liu, “Lattice symmetry assisted second order topological superconductors and Majorana patterns,” arXiv e-prints, arXiv:1812.10989 (2018), arXiv:1812.10989 [cond-mat.mes-hall].

74 Nick Bultinck, B. Andrei Bernevig, and Michael P. Zaletel, “Three-dimensional superconductors with hybrid higher-order topology,” Phys. Rev. B 99, 125149 (2019).

75 Yang Peng and Yong Xu, “Proximity-induced majorana hinge modes in antiferromagnetic topological insulators,” Phys. Rev. B 99, 195431 (2019).

76 Yanick Volpez, Daniel Loss, and Jelena Klinovaja, “Second-order topological superconductivity in x-junction rashba layers,” Phys. Rev. Lett. 122, 126402 (2019).

77 Zhigang Wu, Zhongbo Yan, and Wen Huang, “Higher-order topological superconductivity: Possible realization in fermi gases and sr$_{1-x}$ru$_x$,” Phys. Rev. B 99, 020508 (2019).

78 Chuanchong Zeng, T. D. Stanescu, Chuanwei Zhang, V. V. Scarola, and Sumanta Tewari, “Majorana corner modes with solitons in an attractive Hubbard-Hofstadter model of cold atom optical lattices,” arXiv e-prints, arXiv:1901.04466 (2019), arXiv:1901.04466 [cond-mat.mes-hall].

79 Sayed Ali Akbar Ghorashi, Xiang Hu, Taylor L. Hughes, and Enrico Rossi, “Second-order Dirac superconductors and magnetic field induced Majorana hinge modes,” arXiv e-prints, arXiv:1901.07579 (2019), arXiv:1901.07579 [cond-mat.mes-hall].

80 Rui-Xing Zhang, William S. Cole, and S. Das Sarma, “Helical hinge majorana modes in iron-based superconductors,” Phys. Rev. Lett. 122, 187001 (2019).

81 Majid Kheirkhah, Yuki Nagai, Chun Chen, and Frank Marsiglio, “Majorana corner flat bands in two-dimensional second-order topological superconductors,” arXiv e-prints, arXiv:1904.00990 (2019), arXiv:1904.00990 [cond-mat.supr-con].

82 Yi-Ting Hsu, William S. Cole, Rui-Xing Zhang, and Jay D. Sau, “Inversion-protected topological crystalline superconductivity in monolayer WTe$_2$,” arXiv e-prints, arXiv:1904.06361 (2019), arXiv:1904.06361 [cond-mat.supr-con].

83 Ya-Jie Wu, Junpeng Hou, Yun-Mei Li, Xi-Wang Luo, and Chuanwei Zhang, “In-plane Zeeman field induced Majorana corner and hinge modes in an SS-wave superconductor heterostructure,” arXiv e-prints, arXiv:1905.08896 (2019), arXiv:1905.08896 [cond-mat.mes-hall].

84 Katharina Laubscher, Daniel Loss, and Jelena Klinovaja, “Fractional Topological Superconductivity and Parafermion Corner States,” arXiv e-prints, arXiv:1905.00885 (2019), arXiv:1905.00885 [cond-mat.mes-hall].

85 Song-Bo Zhang and Björn Trauzettel, “Detection of second-order topological superconductors by Josephson junctions,” arXiv e-prints, arXiv:1905.09308 (2019), arXiv:1905.09308 [cond-mat.supr-con].

86 Xiaoyu Zhu, “Second-order topological superconductors with mixed pairing,” Phys. Rev. Lett. 122, 236401 (2019).

87 Rui-Xing Zhang, William S. Cole, Xianxin Wu, and S. Das Sarma, “Higher Order Topology and Nodal Topological Superconductivity in Fe(Se,Te) Heterostructures,” arXiv e-prints, arXiv:1905.10647 (2019), arXiv:1905.10647 [cond-mat.supr-con].

88 Xianxin Wu, Xin Liu, Ronny Thomale, and Chao-Xing Liu, “High-Tc Superconductor Fe(Se,Te) Monolayer: An Intrinsic, Scalable and Electrically-tunable Majorana Platform,” arXiv e-prints, arXiv:1905.10648 (2019), arXiv:1905.10648 [cond-mat.supr-con].

89 Zhongbo Yan, “Higher-order topological odd-parity superconductors,” arXiv e-prints, arXiv:1905.11411 (2019), arXiv:1905.11411 [cond-mat.supr-con].

90 Junyeong Ahn and Bohm-Jung Yang, “Higher-Order Topological Superconductivity of Spin-Polarized Fermions,” arXiv e-prints, arXiv:1906.02709 (2019), arXiv:1906.02709 [cond-mat.mes-hall].

91 Y. You, D. Litinski, and F. von Oppen, “Higher order topological superconductors as generators of quantum codes,” arXiv e-prints (2018), arXiv:1810.10556 [cond-mat.str-el].

92 Raditya Weda Bonmantara and Jiangbin Gong, “Measurement-only quantum computation with Majorana corner modes,” arXiv e-prints, arXiv:1904.03161 (2019), arXiv:1904.03161 [quant-ph].

93 Tudor E. Pahomi, Manfred Sigrist, and Alexey A. Soluyanov, “Braiding Majorana corner modes in a two-layer second-order topological insulator,” arXiv e-prints, arXiv:1904.07822 (2019), arXiv:1904.07822 [cond-mat.mes-hall].

94 Liang Fu and C. L. Kane, “Fractional Topological Superconductivity and Parafermion Patterns,” arXiv e-prints, arXiv:1905.10647 (2019), arXiv:1905.10647 [cond-mat.supr-con].

95 Roman Jackiw and Claudio Rebbi, “Solitons with fermion numbers 1/2,” Physical Review D 13, 3398 (1976).

96 The supplemental material contains the details of determining the phase diagram.

97 Mason J. Gray, Josef Freudenstein, Shu Yang F. Zhao, Ryan O’Connor, Samuel Jenkins, Narendra Kumar, Marcel Hoek, Abigail Kopec, Takashi Taniguchi, Kenji Watanabe, Ruidan Zhong, G. D. Gu, and K. S. Burch, “Evidence for Helical Hinge Zero Modes in an Fe-Based Superconductor,” arXiv e-prints, arXiv:1902.10723 (2019), arXiv:1902.10723 [cond-mat.supr-con].
Supplemental Material

In this supplemental material, we provide the details about the determination of the phase diagram. Let us first rewrite down the Hamiltonian, which is

\[H(\mathbf{k}) = \epsilon(\mathbf{k})\sigma_i x^i + \lambda_4 \sin k_x \sigma_z s_x + \lambda_4 \sin k_y \sigma_y s_z + \Lambda(\mathbf{k})\sigma_i x^i \tau_x + \mu \tau_z + \Delta(\mathbf{k}) s_y \tau_y, \]

where \(\sigma_i, s_i \) and \(\tau_i \) are Pauli matrices in orbit \((a, b) \), spin \((\uparrow, \downarrow) \) and particle-hole spaces, respectively; \(\epsilon(\mathbf{k}) = m_0 - t_x \cos k_x - t_y \cos k_y \) is the kinetic energy; \(\Lambda(\mathbf{k}) = \Lambda_4 \cos k_x - \Lambda_4 \cos k_y \) is a time-reversal symmetry breaking term crucial for the realization of SOTI; \(\mu \) is the chemical potential, and \(\Delta(\mathbf{k}) = \Delta_0 + \Delta_4 \cos k_x + \Delta_4 \cos k_y \) represents the pairing. Here we focus on conventional \(s \)-wave superconductor, so we let \(\Delta_4 = 0 \).

The Hamiltonian has an intrinsic particle-hole symmetry, i.e., \(PH(\mathbf{k})P^{-1} = -H(-\mathbf{k}) \) with \(P = \tau_1 K \) \((K \) denotes the charge conjugate). For the special case with \(\mu = 0 \), the Hamiltonian has an additional chiral symmetry, i.e., \(\{ C, H(\mathbf{k}) \} = -H(\mathbf{k}) \) with \(C = \sigma_3 s_y \tau_z \). The energy spectra of this Hamiltonian are given by

\[E(\mathbf{k}) = \pm \sqrt{F(\mathbf{k}) \pm 2 \sqrt{G(\mathbf{k})}}, \]

where \(F(\mathbf{k}) = \epsilon^2(\mathbf{k}) + \lambda_4^2 \sin^2 k_x + \lambda_4^2 \sin^2 k_y + \Lambda^2(\mathbf{k}) + \frac{\mu^2}{2} \), and \(G(\mathbf{k}) = \mu^2(\epsilon^2(\mathbf{k}) + \lambda_4^2 \sin^2 k_x + \lambda_4^2 \sin^2 k_y + \Lambda^2(\mathbf{k}) + \Lambda^2(\mathbf{k}) \Lambda_4^2) \). If without the terms in the second line the Hamiltonian in Eq.(12) describes an insulator, then the above energy spectra are always gapped as long as \(\Delta_0 \neq 0 \).

Now we consider that without the terms in the second line in Eq.(12), the Hamiltonian describes a first-order topological insulator with gapless helical edge modes on the boundary. As mentioned in the main text, adding the \(\Lambda(\mathbf{k}) \) term drives the system to a second-order topological insulator with localized corner modes. When superconductivity enters, as bulk energy spectra keep gapped no matter what value the pairing amplitude and the chemical potential take, this implies that the first-order topological property is always trivial.

The change of topological property (or say topological phase transition) is associated with the close of energy gap. For a first-order topological phase, topological phase transition is associated with the close of bulk energy gap. Accordingly, for an \(n \)-th-order topological phase in \(d \) dimensions, the topological phase transition is associated with the close of energy gap of the \((d-n+1)\)-dimensional boundary modes. Guided by this principle, in the following we investigate the phase diagram.

For concreteness, we consider the isosceles-right-triangle geometry (see Fig.2(b) in the main text) and focus on the case with isotropic parameters, i.e., \(t_x = t_y = \lambda_4 = \lambda_4 = \Lambda_4 = 1 \). Let us first focus on the edge whose orientation is in parallel to the \(y \) direction. To obtain the corresponding energy spectra of edge modes, it is more convenient to consider that the system takes open boundary condition in the \(x \) direction and periodic boundary condition in the \(y \) direction. We first consider the case without superconductivity. As shown in Fig.4(a), the in-gap edge modes are gapped, which is consistent with the trivialness of first-order topological property.

For convenience, we label the gap of edge-mode energy spectra as \(E_g \). When \(|\mu| < E_g/2 \), there is no boundary Fermi surface, therefore when superconductivity enters, the topological property of this edge corresponds to the strong pairing regime[13]. For a fixed pairing amplitude, with the increase of \(\mu \), the boundary topological property will undergo a transition from strong pairing regime to weak pairing regime[13]. Accordingly, \(E_g \) will undergo an “open-to-closed-to-open” transition (see Figs.4(b)(c)(d)). At the critical point, it gets closed (see Fig.4(c)). In comparison, as the \(\Lambda(\mathbf{k}) \) term vanishes along the \(k_x = k_y \) and \(k_z = -k_y \) directions, the energy spectra of edge modes on the edge with orientation pointing to \(\theta = \pi/4 \) (\(\theta \) is defined in relative to the positive \(y \) direction) will keep gapless before the superconductivity enters, implying that the topological property on the \(\theta = \pi/4 \)-orientation edge always corresponds to the weak pairing regime. As a result, when the topological property of the \(\theta = 0 \)-orientation edge corresponds to the strong pairing regime, the \(\pi/4 \)-angle corner, which is the intersection of \(\theta = 0 \)-orientation edge and \(\theta = \pi/4 \)-orientation edge, is a domain wall which harbors one robust Majorana zero mode. According to this principle, the phase diagram can be mapped out, as shown in Fig.5(a). We have confirmed that the phase boundary determined by using this principle is consistent with the approach based on the direct diagonalization of the real-space Hamiltonian (see Fig.5(b)(c)(d)). Owing
FIG. 5. (a) Phase diagram for an isosceles-right-triangle geometry. Common parameter are $t_x = t_y = A_x = A_y = \Lambda_x = \Lambda_y = 1$, and $m_0 = 1.5$. To show that the phase diagram can be determined by simply investigating the gap of edge-mode energy spectra, we focus on the two dashed lines shown in (a) for illustration. (b) E_g-vs-μ. For a fixed pairing amplitude, with the increase of μ, the gap of edge-mode energy spectra for the edge with orientation in parallel to the y direction will undergo an “open-to-closed-to-open” transition. Accordingly, the topological property of this edge undergoes a transition from the strong pairing regime to weak pairing regime. (c)(d) Energy spectra for an isosceles-right-triangle sample whose length of the two right-angle sides are equal to 40. Here only the part near zero energy has been shown. (c) $\Delta_0 = 0.1$; (d) $\Delta_0 = 0.2$. In (c)(d), the red lines correspond to the energy spectra of the two Majorana corner modes. The blue lines correspond to the energy spectra of two bound states located at the right-angle corner, one can see that once μ goes away from zero, their energies are split. One can infer from (b)(c)(d) that using the gap close of edge-mode energy spectra can faithfully determine the phase boundary.