Limit on the dark matter mass from its interaction with photons

Zhihuan Zhou,* Gang Liu, Yuhao Mu, and Lixin Xu†
Institute of Theoretical Physics
School of Physics
Dalian University of Technology
Dalian 116024, People’s Republic of China
(Dated: May 18, 2022)

In this work, we explore the phenomenology of generalized dark matter (GDM) which interacts with photons (γ). We assume that DM establishes elastic scattering with γ when it has already become nonrelativistic, otherwise the abundance of DM today is disfavored by current observations. Within this scenario, the equation of state (EoS) of DM is determined by its mass (m_χ) and the DM-γ scattering cross-section. The distinctive imprints of a nonzero EoS of DM on CMB angular power spectrum allow us to set a lower limit on m_χ with Planck 2018 data alone, i.e., $m_\chi > 8.7$ keV at 95% C.L. In the study of cosmic concordance problems, we find that the GDM scenario preserves the sound horizon ($r_s(z_\star)$) predicted in the fiducial ΛCDM model, and thus does not solve the H_0 tension. When performing the joint analysis of Planck+LSS datasets, the best-fit $S_8 = 0.785 \pm 0.017$ closely matches the given S_8 prior. This suggests that the GDM scenario can be counted as a viable candidate to restore the S_8 (σ_8) tension.

I. INTRODUCTION

Despite that tremendous progresses in observational cosmology [1–5] have allowed us to determine the standard ΛCDM model with great precision, the origin and composition of dark matter (DM) and dark energy (DE) [6] which comprise most of the energy content in the universe remain unknown. In the standard picture, the cold dark matter (CDM) consists of non-interacting or weakly-interacting massive particles (WIMPS) of mass 10 GeV $\lesssim m_\chi \lesssim 1$ TeV, which currently could only be observed through its gravitational effect [7–9]. Although the CDM paradigm is in good agreement with a large bunch of experiments, we still lack of direct evidence for its existence and understanding of its particle nature. Hence, extensive work has been dedicated to determine the mass of DM [10–15].

With the increase in precision of cosmological measurement, the standard picture is faced with the cosmic concordance problems. The most famous discrepancy are known as the H_0 tension [2, 16–18] and the σ_8 (S_8) tension [4, 19–21]. Moreover, observations on galaxy scales indicates that ΛCDM model are faced with serval problems[22, 23] in describing structure at small scales. These issues have motivated people to explore the physics beyond the standard CDM paradigm. One important aspect is the possible interaction of DM with standard model particles like baryons [25–31], neutrinos [32–38], or photons [39–45]. Meanwhile, current bounds on DM mass are often relying on the assumption that the abundance of DM is acquired through the thermal contact with the SM particles [10, 12]. If DM transfers its entropy to either the electrons and photons or to the neutrinos [46], one can set a lower limit on m_χ of \mathcal{O}(MeV) through its impact on the effective number of neutrinos (N_{eff}) [46–52]. Nevertheless, thermal DM can be as light as a few keV as long as dark matter thermalizes with the Standard Model below the temperature of neutrino-photon decoupling [14].

In this work, we focus on the interaction between DM and photons (γ) and purpose an alternative method to set limit on m_χ. Note that this method is applicable to the interaction of DM with other standard model particles like baryons or neutrinos. By assuming elastic scattering between DM and photons, previous works [27, 39–41] have derived a upper bounds on the DM-photon(γ) scattering cross sections ($\sigma_{\chi-\gamma}$) to mass ratio, e.g. $\sigma_{\chi-\gamma} \lesssim 8 \times 10^{-31} (m_\chi/$GeV) at 68% C.L. This ratio can be translate to the DM-γ decoupling scale (a_{dec}) [41]. Note that the temperature of DM traces the temperature of photons ($T_\chi \propto a^{-1}$) prior to DM-γ decoupling, and dilute as: $T_\chi \propto a^{-2}$ after a_{dec}. At the beginning, we assume that DM enters equilibrium with the SM at early times and acquires a large thermal abundance as relativistic species. If DM cools naturally with the Hubble flow, the mass of DM will be too small ($m_\chi \lesssim 1$eV) to be compatible with current observations [53–56]. Thus, we are left with the possibility that the elastic scattering is established when DM has already become nonrelativistic1. This requires the DM mass exceeding its kinetic energy when entering equilibrium with photons, i.e., $m_\chi \gg T_\chi(a_{\text{eqn}}) \equiv T_\gamma(a_{\text{eqn}})$. Even so, the energy and pressure density of DM can still contribute non-negligibly at the background level. This motivates us to consider

1 It is possible that DM coupled to photons at early time as relativistic species. In this case one has $m_\chi \gtrsim \mathcal{O}$(MeV), because DM shall transfer most of its entropy to SM particles prior to big ban nucleosynthesis (BBN) as it becomes nonrelativist [46–49].
the equation of state (EoS) of DM. Such a picture can be subscribed to the scenarios of generalized dark matter (so we denote as GDM hereinbelow) which is first pro-
be subscribed to the scenarios of generalized dark matter

EoS of DM is dependent on both the DM mass (m_χ) and $\sigma_{\chi-\gamma}$. We include an extra parameter m_χ to study the EoS of DM and further its distinctive imprints on the CMB angular power spectrum. These imprints allows us to constrain m_χ independently of $\sigma_{\chi-\gamma}$, and thus one can set a lower limit on m_χ with Planck data alone. In the study of cosmic concordance problem, we find that the thermalization of DM has negligible impact on the sound horizon at last scattering $r_s(z_\ast)$ as well as the late expansion history, and thus does not solve the H_0 ten-

While the most prominent feature of this scenario is the suppression in small-scale modes, which lowers the inferred value of σ_8 and $S_8 \equiv \sigma_8(\Omega_m/0.3)^{0.5}$.

To study the transitional epoch of the DM-γ decoupling, we have also investigated the background bulk viscous pressure Π [60, 61]. We find that the (negative) bulk viscous pressure can be viewed as a correction to the overestimated DM pressure when the two fluids are approximated by a single coupled fluid. Meanwhile, the impact of bulk viscous pressure on the background evolution of the universe is negligible when compared with the influence of the EoS of DM. The outline of this paper is as follows: in Sec. II we take a brief review of the basic equations associated with DM-γ interaction. In Sec. III, we introduce the basic features of the GDM scenario at both the background and perturbation levels. In Sec. IV, we describe our numerical implementation of the GDM model and the datasets used in our analysis. The numerical results of the Markov chain Monte Carlo (MCMC) analysis are presented in Sec. V. The discussion and conclusions are presented in Sec. VI.

II. THEORY

In this section we present the basic ingredients of the GDM model.

A. Background

At early times, the elastic scattering between dark matter and photons keeps the two species in kinetic equi-

librium. When the momentum exchange rate between the two species falls off the Hubble expansion rate, DM is assumed to decouple from photon-bath after which its temperature T_χ evolves as a^{-2}. The evolution of DM temperature is expressed as:

$$\dot{T}_\chi = -2\mathcal{H} T_\chi + \frac{8\rho_\chi}{3\rho_\gamma} \dot{\mu}(T_\gamma - T_\chi),$$ \hspace{1cm} (1)

where $\cdot \equiv \frac{d}{da}$, $\mathcal{H} \equiv aH$ is conformal Hubble rate and μ is the DM-γ scattering rate defined as

$$\mu \equiv an_\chi \sigma_{\chi-\gamma},$$ \hspace{1cm} (2)

which is in analogous to the Thomson scattering rate $\kappa \equiv an_\gamma \sigma_{Th}$, with $\sigma_{\chi-\gamma}$, σ_{Th} the DM-γ scattering cross section and Thomson scattering cross section, respectively. Following form previous works [39, 40], we parameterize the effect of interaction by dimensionless quantity

$$u_{\chi-\gamma} = \frac{\sigma_{\chi-\gamma}}{\sigma_{Th}} \left(\frac{m_\chi}{100 \text{ GeV}}\right)^{-1},$$ \hspace{1cm} (3)

which is proportional to the ratio of n_γ and n_χ. We denote as a_{dec} the scale at which the conformal DM-γ momentum exchange rate $\frac{\partial p_\chi}{\partial a} \mu$ equals to the conformal Hubble rate \mathcal{H}, after that DM decouple from photons. In the radiation-dominated era where $\mathcal{H} \propto 1/a$, the decoupling scale can be approximated as:

$$a_{dec} \approx 1.6 \times 10^{-3} \frac{a_0^2}{u_{\chi-\gamma}}.$$ \hspace{1cm} (4)

CMB constraint in Ref. [40] set an upper limit on the DM-γ interaction ($u_{\chi-\gamma} \lesssim 2.25 \times 10^{-4}$) and equivalently an upper bound on the decoupling scale, i.e, $a_{dec} \lesssim 2.4 \times 10^{-5}$.

If the DM particles are relativistic at early times, the energy density and pressure are given by

$$P_\chi(T_\chi(a, u_{\chi-\gamma})) = \frac{g}{3} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{E_\chi} \epsilon_{E_\chi/k_B T_\chi(a, u_{\chi-\gamma})} \pm 1,$$ \hspace{1cm} (5a)

$$\rho_\chi(T_\chi(a, u_{\chi-\gamma})) = \frac{g}{3} \int_0^\infty \frac{d^3p}{(2\pi)^3} E_\chi \epsilon_{E_\chi/k_B T_\chi(a, u_{\chi-\gamma})} \pm 1,$$ \hspace{1cm} (5b)

with $E_\chi \equiv \sqrt{p^2 + m_\chi^2}$, g the internal degrees of freedom, and ± 1 corresponds to fermions/bosons, respectively. The EoS of DM ($w_\chi = P_\chi/\rho_\chi$) determines the evolution of DM density:

$$\rho_\chi(a) = \rho_{\chi,0} \exp \left(3 \int_0^a \frac{1 + w_\chi(T_\chi(a', u_{\chi-\gamma}), m_\chi)}{a'} da' \right)$$ \hspace{1cm} (6)

where $\rho_{\chi,0} \equiv \Omega_{\chi,0} \rho_{cr}$ is the current density of DM, with ρ_{cr}, $\Omega_{\chi,0}$ the critical density and DM density fraction, respectively. In relativistic approximation ($T_\chi \gg m_\chi$), we have

$$\rho_\chi(T_\chi) = \frac{g_\ast \pi^2}{30} T_\chi^4 = \frac{g_\ast \pi^2}{30} T_\gamma^4,$$ \hspace{1cm} (7)

with g_\ast for bosons and $g_\ast = (7/8) g$ for fermions. From Eq. (7) and Eq. (6), one can determine m_χ by equating $\rho_{\chi,0}$ with Planck best-fit CDM density, i.e., $\rho_{\chi,0} / \rho_{cr} \equiv \Omega_{\chi,0} = \Omega_{c,0}$. Note that, the abundance of DM ($n_\chi \equiv \rho_{\chi,0} / m_\chi$) decrease with the increase of a_{dec}, thus, an upper bound on a_{dec} can be translate to an upper limit on m_χ of $O(\text{eV})$. This bound is much below the threshold of warm DM [62]. Consequently, DM must
be nonrelativistic when the DM-γ elastic scattering being established.

In the nonrelativistic approximation, the pressure and energy density of DM reads:

$$P_\chi = n_\chi k_B T_\chi, \quad \rho_\chi = n_\chi m_\chi + \frac{3}{2} n_\chi k_B T_\chi, \quad (8)$$

The Friedmann equations in this scenario are written as:

$$H^2(z) = H_0^2 \left[\Omega_\Lambda + \Omega_{\tau,0} a^{-4} + \Omega_{b,0} a^{-3} + \Omega_\chi(a) \right], \quad (9a)$$
$$\dot{H}(z) = -\frac{3}{2} H_0^2 \left[1 - \Omega_\Lambda + \frac{1}{3} \Omega_{\tau,0} a^{-4} + w_\chi(a) \Omega_\chi(a) \right], \quad (9b)$$

where $\Omega_{\tau,0}, \Omega_{b,0}$ and Ω_Λ are the present time density parameters for radiation, baryon and dark energy, respectively, while $\Omega_\chi(a) \equiv \rho_\chi(a)/\rho_\tau$ is the density parameter for DM.

B. Bulk viscous

Works in Ref. [60] have studied the emerging bulk viscous pressure P_χ, which acts as an extra background effect during the DM-γ transitional epoch. We show in Appendix A that the bulk viscous pressure is a secondary effect of the thermodynamics of DM at the background level, which can be viewed as a correction to overestimated DM pressure $P_\chi(T)$ when the two fluids are approximated by a single coupled fluid. As is shown in the bottom panel of Fig. 1, the peak value of bulk viscous pressure P_χ is of the order of $10^{-1} P_\chi$. Thus, the impact of bulk viscous pressure II on the cosmological background is negligible compared with the pressure density of GDM.

C. Perturbations

Throughout the paper, we work in Newtonian gauge as is commonly used in numerical implementation, and our notation is followed from Ref. [63]. We are interested only in scalar perturbations which are described by two potentials ϕ and ψ and the line element is

$$ds^2 = a^2(\tau) \left[-(1 + 2\psi) \, dt^2 + (1 - 2\phi) \, dx_i dx^i \right], \quad (10)$$

where τ is the conformal time. We denote derivatives with respect to τ by a dot. The pressure and energy density can be split into homogeneous background and small fluctuations, i.e., $P = \bar{P} + \delta P$ and $\rho = \bar{\rho} + \delta \rho$. In conformal Newton gauge, the continuity and Euler equations for the fluctuations of fluid read [63]

$$\dot{\delta} = -3 H \frac{\delta P}{\delta \rho} \delta - \left(1 + w \right) \left(\theta - 3 \phi \right), \quad (11a)$$
$$\dot{\psi} = -H(1 - 3w) \theta - \frac{\dot{\phi}}{1 + \omega} \theta + \frac{\delta P / \delta \rho}{1 + \omega} k^2 \delta - k^2 \sigma + k^2 \psi, \quad (11b)$$

with k the comoving wavenumber, σ the shear stress, $\delta \equiv \delta \rho / \rho$ the density perturbation and θ the velocity dispersion. The total entropy perturbation is defined as

$$S \equiv \mathcal{H} \left(\frac{\delta P}{P - \frac{4}{3} \dot{\rho}} \right) \quad (12)$$

In this work, we consider only isentropic perturbations, i.e., $S = 0$. In this case, the adiabatic sound speed is written as

$$c_s^2 = \frac{\delta P}{\delta \rho} = \frac{\dot{\rho}}{\rho}, \quad (13)$$

Given the EoS (see Eq. (8)), we get immediately the sound speed of DM:

$$c_s^2(\chi) = \frac{\delta P}{\delta \rho} = \frac{\dot{\rho}_\chi}{\rho_\chi} \approx \frac{k_B T_\chi}{m_\chi} \left(1 - \frac{1}{3} \frac{d \ln T_\chi}{d \ln a} \right). \quad (14)$$

The sound speed and EoS of DM are of the same order, meanwhile, the relationship between the two is written as

$$\dot{\omega}_\chi = 3(1 + w_\chi)(w_\chi - c_s^2(\chi)H). \quad (15)$$

Substituting Eqs. (14), (15) into Eq. (11) we get the equations that collisionless DM obeys in a spatially flat
Universe. With the addition of DM-γ collisional term, these equations become

\[\dot{\delta}_x = -(1 + w_x) \left(\theta_x - 3\dot{\tau} \right) - 3H \left(c_s^2(\chi) - w_x \right) \delta_x, \]

\[\dot{\theta}_x = -H(1 - 3c_s^2(\chi))\theta_x + c_s^2(\chi)k^2 \delta_x + k^2\psi - R\mu(\theta_x - \theta_\gamma), \]

(16a)

(16b)

where \(R \equiv 4\rho_\gamma/3\rho_x \), \(\theta_\gamma \) and \(\theta_\tau \) are velocity dispersion for photon and DM, respectively. The last term in Eq. (16b) is the collisional term, which is nonzero only in the presence of DM-γ interactions. Note that we have not taken into consider the presence of shear stress \(\sigma_x \). The introduction of DM-γ interaction changes both the Boltzmann equations for DM and photons. Assuming that the DM-γ scattering amplitude has the same angular polarization dependence as the Thomson elastic scattering cross section, we can add the DM-γ collision term in the equations governing the evolution of the photon fluid additional to Thomson interaction. Thus, the decomposed Boltzmann equation for photons augmented by a new interaction term (see detailed derivations and higher orders of the Legendre polynomial decomposition of the energy distribution for photons in Ref. [40]), written as:

\[\delta_\gamma = -\frac{4}{3} \theta_\gamma + 4\phi, \]

\[\dot{\delta}_\gamma = k^2 \left(\frac{1}{3} \delta_\gamma - \sigma_\gamma \right) + k^2\psi + \dot{\kappa}(\theta_\gamma - \theta_\gamma) + \dot{\mu}(\theta_x - \theta_\gamma), \]

(17a)

(17b)

where \(\dot{\kappa} \) is the Thomson scattering rate defined as \(\dot{\kappa} = n_e\sigma_{Th} \), with \(n_e \) the electron number density and \(\sigma_{Th} \) the Thomson scattering cross section.

The initial conditions for the isentropic perturbations in the conformal Newtonian gauge are written as:

\[\delta_\gamma = -\frac{40C}{15 + 4R_\nu} = -2\psi, \quad \delta_x = \frac{3}{4} \delta_\gamma, \]

\[\theta_\gamma = \theta_x = \frac{10C}{15 + 4R_\nu} \left(k^2 \right), \]

\[\psi = \frac{20C}{15 + 4R_\nu}, \quad \phi = \left(1 + \frac{2}{5} R_\nu \right) \psi. \]

Where the functions \(\psi, \phi \) represent metric perturbations in the conformal Newtonian gauge, and \(C \) is arbitrary dimensionless constants. Note that the neutrino energy fraction \(R_\nu \) is nonzero only in the presence of neutrinos. See detailed derivations and discussions in Ref. [63]. Note that these initial conditions are valid since the DM are nonrelativistic when all modes of interest enter the comoving horizon.

III. PHENOMENOLOGY

In this section, we discuss the impact of DM-γ interaction on cosmological observations at both background and perturbation levels. The effect of DM-γ scattering on CMB and matter power spectrum (captured by the parameter \(u_{x-\gamma} \)) have been elaborately discussed in previous works [39, 40]. Whereas, in this work we focus on the influence of EoS of DM (captured by the parameter \(m_\chi \)). As is discussed in Sec. IIIA, DM decouples from DM-γ plasma in radiation-dominated era. Before the decoupling, the temperature of DM is equal to that of photons which evolves as \(a^{-1} \), during this epoch, the EoS of DM is determined mainly by its masses rather than \(u_{x-\gamma} \), which allow us to study characteristic imprints of \(m_\chi \) on the CMB power spectra. At early times, the kinetic energy of DM particles is non-negligible and can be effectively be viewed as an “extra” energy density component (compared with the cold DM scenario) which alters the expansion history in the early universe.
The DM-γ scattering cross section is much smaller than the Compton scattering cross section, hence, the DM-γ decoupling is much earlier than the last scattering. Moreover, the temperature of DM dissipates quadratically after the DM-γ decoupling. Consequently, the temperature of DM is sufficiently low that after the last scattering, which enables us to neglect the impact of DM pressure on the late-time growth faction $D(z)$ and growth function $f(z) \equiv d \ln D(z)/d \ln a$.

A. Impact on the matter power spectra

To quantify the impact of EoS of DM on matter perturbations, we fix $u_{\chi-\gamma}$ at 10^{-6}. In this case, DM decouples from photons earlier than the modes of interest enter the comoving horizon, thus, the small-scale suppression by collisional damping [39] can be neglected. The small-scale modes evolve within the linear regime at early times and start evolving nonlinearly during the matter domination. As is discussed previously, the EoS of DM is negligible after last scattering \(^2\), and thus has no impact on the evolution of perturbation in late (nonlinear) regime. Consequently, we only consider its influence on the linear matter power spectrum.

\(^2\) We show in Sec. V the Planck constraints on DM masses and $u_{\chi-\gamma}$. If we set m_{χ} to the lower limit (10^{-5} GeV) and $u_{\chi-\gamma}$ to the upper limit (1.6×10^{-4}), then the temperature and EoS of DM at last scattering reads: $T_{\chi}(z_s) \approx 10^5K$ and $w_{\chi}(z_s) \approx 10^{-6}$.

To give a clear view, we separate the modifications to ΛCDM model into the “background” part, the “perturbation” part and their combinations. By background, we mean that only the modifications to background quantities are considered, e.g., ρ_{χ} and P_{χ}, meanwhile, the equations governing the perturbations are identical with that of ΛCDM model, i.e., $\delta_{\chi} = -3\phi + \theta_{\chi} = -H\theta_{\chi} + k^2 \psi$ [63]. Accordingly, perturbation means that the background quantities are the same with that of the CDM scenario, while only the modifications to the continuity equation [Eq. (16a)], Euler equation [Eq. (16b)] and Boltzmann equations for photons [Eq. (17)] are considered. We obtained $u_{\chi-\gamma} < 1.58 \times 10^{-4}$ and $m_{\chi} > 0.87 \times 10^{-5}$ GeV by fitting with the Planck data (see section V). Accordingly, we choose $u_{\chi-\gamma} = 10^{-4}$ and $m_{\chi} = 10^{-5}$ GeV to illustrate the impact of DM-γ scattering (captured by $u_{\chi-\gamma}$) and EoS of DM (captured by m_{χ}). To isolate the impact of the parameter m_{χ}, we choose $u_{\chi-\gamma} = 10^{-6}$ so that its impact on matter power spectrum is negligible. As can be seen in the top panel of Fig. 2, the most prominent feature is the suppression on small-scale modes which exacerbates with the decreasing of m_{χ}. This suppression can be attributed to the reduction in the gravitational potential $\Psi \equiv \psi$ (see Fig. 3). For small-scale modes which enter the horizon during the radiation-dominated era, its potential starts to decay and oscillates after decaying. With the presence of “extra” pressure density P_{χ} (which is inversely correlated with m_{χ}), the decay is even more rapid (Ψ decreases).

At the perturbation level, we can see a similar suppression on the small-scale modes. Compared with the background effect, the onset of the suppression is extrapolated...
oscillations in the matter spectrum (see Eq. (13) and discussion in Ref. [40]).

The amplitude of spectrum at small scales is efficiently captured by the parameter σ_8, which gives the fluctuations of mass within the spheres of radius $8h^{-1}$ Mpc. In this light, we use $\delta \sigma_8 / \sigma_8$ (or equivalently $\delta S_8 / S_8$) to quantify the small scale suppression suppression. When DM-γ scattering cross section is sufficiently small, i.e., $u_{\chi-\gamma} \leq 10^{-6}$, the inferred value of σ_8 is reduced by 0.5% for $m_{\chi} = 10$ keV and 3% for $m_{\chi} = 1$ keV. In the presence of considerable DM-γ scattering ($u_{\chi-\gamma} \leq 10^{-4}$), the inferred value of σ_8 is reduced by 5% for $m_{\chi} \geq 1$ MeV ($w_\chi \approx 0$), while the reduction reach to 6% for $m_{\chi} = 10$ keV and 11% for $m_{\chi} = 1$ keV. We show in Fig. 4 that the larger $u_{\chi-\gamma}$ the smaller inferred value of $S_8 \equiv \sigma_8(\Omega_m, 0 / 0.3)^{1/2}$, meanwhile, S_8 decreases with the decrease of m_{χ}. The same is true for the combination $f(z) \sigma_8(z) \equiv f \sigma_8(z)$, as can be seen in Fig. 4.

B. Impact on CMB spectra

In this section, we discuss the impact of DM-γ on the CMB anisotropy spectrum with the standard cosmological parameters kept fixed at Planck 2018 best-fit values. We start our analysis by investigating the key observables. As is shown in Fig. 1, GDM occupies a non-negligible fraction in the early universe, which shifts the matter-radiation equality scale and further affects the position and amplitude of the acoustic peaks in the angular power spectrum. While a change in the expansion history of the universe $H(z)$ alters the comoving sound horizon $r_s(z_*)$ and angular diameter distance $D_A(z_*)$ at last scattering surface, which determines the acoustic scale θ_s of the peaks. However, our results suggest that within the scenario of GDM none of the above effects have considerable impacts on the shape of angular power spectrum. As is discussed in the previous section, the EoS of DM
is consistent with zero \((w_\chi \lesssim 10^{-6})\) after last scattering, and thus does not affect the late-time expansion history and \(D_A(z*)\). Although the increase of energy density for DM component \((\Delta \rho_{\rm DM} = \rho_\chi - \rho_{\rm CDM})\) does reduce the sound horizon \(r_s(z_s)\), we show in Fig. 5 that the reduction is negligible \((\Delta r_s < 10^{-3})\) unless the mass of DM is sufficiently small \((m_\chi < 10^{-7} \text{ GeV})\). Hence, the spacings between the acoustic peaks are preserved. Also, the shift in \(z_{eq}\) is sufficiently small \((\Delta z_{eq} \sim 10^{-6})\), and thus should not be counted as the main contribution to the relative differences.

To distinguish the impact of GDM on CMB angular power, the modifications to the ΛCDM model are separated into background and perturbation part (see Sec. IIIA for the details of the separation method).

(i) In the background part, the main contribution for

\[
\left(C_{\ell}^\text{TT, GDM} - C_{\ell}^\text{TT, ΛCDM}\right) / C_{\ell}^\text{TT, ΛCDM}
\]

changes in \(C_\ell\)'s is the alteration in the monopole part of the perturbation, which free-stream into higher multipoles after last scattering, i.e.,

\[
\Theta_{\ell}^\text{Monopole}(\eta_0) = [\Theta_0(\eta_*) + \Psi(\eta_*)] j_0(k(\eta_0 - \eta_*)),
\]

with \(\eta_0, \eta_*\) the conformal time at present and last scattering, respectively; and \(\Theta_0 \propto \delta_s\). Note that the monopole is the dominant contribution to the \(C_\ell\)'s at small scales (see Ref. [67] for a detailed discussion). Apart from the effect on free-streaming monopole, the changes in the time evolution of \(\Psi\) also affect the angular power spectrum through the early integrated Sachs-Wolfe (eISW) effect [68, 69]. The remanent pressure of the GDM reduces the de-
cay of gravitational potential around recombination scale \(a_{\text{dec}} \sim 10^{-3}\), i.e., \(\Delta \Psi > 0\) (see Fig. 3), which leads to a depletion in the angular power spectrum on multipoles \(50 < \ell < 500\) [70]. As can be seen from the top panel of Fig. 6, the most prominent feature is the damping of the first peak compared with the angular power spectrum obtained in the \(\Lambda CDM\) model.

(ii) In the perturbation part, the trend of the evolution of \(\Delta \Psi\) is opposite to the case of the background part. Form the last panel of Fig. 3, one can notice phase displacement of the two patterns, while the combined results are the reductions of odd acoustic peaks and the boost in even peaks of the angular power spectrum (compared with \(\Lambda CDM\) model). Meanwhile, the deviation increases with the decease of \(m_\chi\), which indicates the CMB data alone is able to constrain DM masses.

We show in Fig. 7 the relative deviation of GDM scenario from the base-line Planck 2018 \(\Lambda CDM\) model. Comparing the relative deviation spectrum at background and perturbation level, one can notice phase displacement of the two patterns, while the combined results are the reductions of odd acoustic peaks and the boost in even peaks of the angular power spectrum (compared with \(\Lambda CDM\) model). Meanwhile, the deviation increases with the decease of \(m_\chi\), which indicates the CMB data alone is able to constrain DM masses.

A. CMB

We employ the Planck 2018 low-\(\ell\) TT+EE and Planck 2018 high-\(\ell\) TT+TE+EE temperature and polarization power spectrum [3]. To marginalize over nuisance parameters, we use the “lite” likelihoods. These datasets are referred to as “Planck”. We have also considered the Planck 2018 lensing power spectrum [79].

B. Hubble constant

The most recent SH0ES measurement indicates that \(H_0 = 73.2 \pm 1.3\) [80], indicating a tension at \(\sim 4\sigma\) with the Planck [2] value of \(H_0 = 67.4 \pm 0.5\) assuming a minimal \(\Lambda CDM\) model.

C. LSS

We consider the LSS datasets to probe the low-redshift universe, which include:

- BAO & RSD: SDSS BOSS DR12 [5] measurements of the BAO signal and \(f \sigma_8(z)\), at \(z = 0.38, 0.51\) and 0.61. We include the full covariance of the joint BOSS DR12 BAO and RSD data (denote as BAO).

- Weak lensing: We consider the tomographic weak gravitational lensing analysis of the Dark Energy Survey (DES-Y1) [4], the Kilo Degree Survey (KV450) [19, 20] and Subaru Hyper Suprime-Cam (HSC) [21]. Following from Ref. [81], the likelihoods for these datasets are not implemented directly. Instead, we approximately include their effect via priors on \(S_8\). These experiments yield \(S_8 = 0.770^{+0.018}_{-0.016}\) when combined with inverse-variance weights [81].

We consider as base-line a 7-dimensional parameter space described by the following parameters: the Hubble constant \(H_0\), the baryon density \(\Omega_2 h^2\), the dark matter energy density \(\Omega_\chi h^2\), the scalar amplitude \(A_s\), the spectral index \(n_s\), the cross section to mass ratio \(\sigma_8\), and the dark matter masses \(m_\chi\). Uniform priors are assumed for all these parameters. In the base-line scenario we assume the mass of neutrinos \(m_\nu = 0.06eV\) and the effective number of neutrinos \(N_{\text{eff}} = 3.046^3\) and the reionization optical depth \(\tau_{\text{reio}} = 0.054\). We set \(\chi_{\gamma} > 5 \times 10^{-7}\) \(a_{\text{dec}} > 10^{-6}\) so that the DM-\(\gamma\) decoupling have detectable imprints on the CMB. For \(a_{\text{dec}} < 10^{-6}\), one has \(m_\chi > 10(1)\)keV so that DM enters equilibrium with photons \(a_{\text{equ}}\) when it has already become nonrelativistic, i.e., \(m_\chi > T(a_{\text{equ}}) > T(a_{\text{dec}})\).

V. RESULTS AND DISCUSSIONS

In this section, we fit the GDM model to different combinations of the above datasets and discuss the obtained results. In Table I we report the constraints at

\(^3\) The GDM is fully nonrelativistic when modes of interest enter the comoving horizon, and thus does not contribute to the effective number of neutrino species \(N_{\text{eff}}\). Meanwhile, allowing \(N_{\text{eff}}\) to vary does not have a significant effect on our conclusions.
Table I. The the mean ±1σ constraints on the cosmological parameters and derived parameters in ΛCDM model (second column) and GDM model, as inferred from the combination of the Planck 2018 low-ℓ TT+EE and high-ℓ TT+TE+EE power spectrum; the SH0ES prior on \(H_0 \); the \(S_8 \) prior derived from combined LSS datasets; the joint BOSS DR12 BAO and RSD data. Upper and lower bounds correspond to the 68% C.L. interval. When only upper or lower limits are shown they correspond to 95% C.L. limits (in this case the 68% C.L. intervals are enclosed in brackets).

Parameter	ΛCDM	\(u_{\chi-\gamma} \geq 10^{-6} \)	\(u_{\chi-\gamma} \geq 10^{-5} \)	\(u_{\chi-\gamma} \geq 10^{-4} \)
\(S_8 \)	0.837\(^{+0.020}_{-0.016} \)	0.819\(^{+0.025}_{-0.016} \)	0.817\(^{+0.024}_{-0.017} \)	0.796\(^{+0.022}_{-0.017} \)
\(\log_{10}(m_\chi/\text{GeV}) \cdots \)	> -5.06	> -5.05	> -4.99	
\(u_{\chi-\gamma} \)	< 1.55	< 1.59	< 2.04	
\(H_0 \)	67.59\(^{+0.60}_{-0.07} \)	67.59 ± 0.55	67.55 ± 0.58	67.56\(^{+0.53}_{-0.67} \)
\(\Omega_b h^2 \)	0.02241 ± 0.00017	0.02243 ± 0.00016	0.02243 ± 0.00015	0.02246 ± 0.00016
\(\Omega_c h^2 \)	0.1198 ± 0.0013	0.1198 ± 0.0013	0.1199 ± 0.0014	0.1205\(^{+0.012}_{-0.012} \)
\(\log(10^{10} A_s) \)	3.0750\(^{+0.0099}_{-0.027} \)	3.077\(^{+0.012}_{-0.013} \)	3.077\(^{+0.0068}_{-0.0069} \)	3.078\(^{+0.0080}_{-0.0058} \)
\(n_s \)	0.9663\(^{+0.0047}_{-0.004} \)	0.9667 ± 0.0041	0.9663 ± 0.0042	0.9667 ± 0.0042
\(\chi^2_{\text{planck}} \)	1016 ± 23	1041 ± 3.67	1015.2 ± 6.7	1018.2 ± 4.1

Table II. The the mean ±1σ constraints on the cosmological parameters and derived parameters in the GDM scenario with different priors on \(u_{\chi-\gamma} \). Upper and lower bounds correspond to the 68% C.L. interval. When only upper or lower limits are shown they correspond to 95% C.L. limits.

68% C.L. on the standard cosmological parameters and some key derived quantities for several datasets combinations, when only upper (lower) limits are shown they correspond to 95% C.L. limits. The constraint obtained from the Planck 2018 datasets with different priors on \(u_{\chi-\gamma} \) are given in Table II. The triangular plot with the 1D posterior distributions and the 2D contour plots for these parameters are shown in Fig. 8 and Fig. 9.

A. Results based on Planck

To compare with previous work, we start by analysing the Planck 2018 datasets. The results obtained from Planck 2018 low-ℓ TT+EE and Planck 2018 high-ℓ TT+TE+EE are shown in the first column of Table I. We find a 95% C.L. upper limit on the DM-γ scattering cross section \(u_{\chi-\gamma} < 1.55 \times 10^{-4} \). This limit is comparable with the result \(u_{\chi-\gamma} < 1.58 \times 10^{-4} \) at 95% C.L. obtained from Planck 2015 TT+EE+ lowTEB datasets [82], which are derived in Ref. [40]. The derived value of \(S_8 = 0.808\(^{+0.022}_{-0.014} \) \) in the GDM model is smaller than that of ΛCDM model due to the effect of collisional damping discussed in Ref. [39]. When added with Planck lensing datasets, we find that the upper limits on \(u_{\chi-\gamma} \) are slightly increased while the inferred value of \(S_8 \) is mildly reduced, i.e., \(u_{\chi-\gamma} < 1.90 \times 10^{-4} \) and \(S_8 = 0.808\(^{+0.022}_{-0.014} \) \), respectively. As can be noticed in Fig. a slight upward shift on \(u_{\chi-\gamma} \) corresponds to a larger DM-γ decoupling scale. Thus, the onset of collisional damping is extrapolated to larger scale which leads to smaller inferred value of \(S_8 \). Meanwhile, we find the same 95% C.L. upper limit on the dark matter mass with and without lensing dataset, i.e., \(m_\chi > 5.06 \times 10^{-4} \) GeV, suggesting that within the GDM scenario the smallest allowed dark matter mass is roughly 10 keV.
B. Including SH0ES

To test the potential of the GDM scenario in relieving the H_0 tension, we conduct the joint analysis of SH0ES+Planck datasets, i.e., applying a Gaussian H_0 prior in the fit of Planck data. In this analysis, one would expect a significant shift of the best-fit H_0 value as long as the extra parameters in the GDM model $(u_{\chi-\gamma}, m_\chi)$ degenerate with H_0. However, this is not the case, i.e., H_0 only shifts very slightly and tensions with SH0ES remain at 2.5σ. From the contours in Fig. 8 we do not see a clear degeneracy of H_0 with any given parameters. Consequently, the GDM scenario does not relieve the H_0 tension.

C. Including LSS datasets

As is discussed in previous sections, there is a $1 \sim 3\sigma$ tension between the value of S_8 predicted within LCDM with parameters fit from the CMB, and the value of S_8 from more direct measurements of LSS. The DM-γ interaction suppresses the small-scale modes via both the reduction in free-streaming monopole $(\Theta(\eta_*) + \Psi(\eta_*))$ and diffusive damping. Thus, it’s natural to think of the GDM scenario as a viable candidate to restore the $S_8 (\sigma_8)$ tension. The results of the joint analysis of Planck+LSS are shown in the last two columns of Table I. When added with a prior on S_8 derived from joint LSS analysis, we find a 1σ detection of scattering between DM and photons and a larger upper limit of the cross section to mass ratio, i.e., $u_{\chi-\gamma} = 1.20_{-0.80}^{+0.62} \times 10^{-4}$ at 68% C.L. and $u_{\chi-\gamma} < 2.39 \times 10^{-4}$ at 95% C.L. Meanwhile, the best-fit $S_8 = 0.785\pm0.017$ from the joint analysis closely matches the given S_8 prior, which suggests that the cross section to mass ratio $u_{\chi-\gamma}$ are highly degenerate with S_8. The addition of BOSS DR12 BAO and RSD ($f\sigma_8$) data have little impact on the fitting results. In conclusion, the interaction between DM and photons helps to reduce S_8 and thus is a possible solution to the S_8 tension.

D. Prior dependence

As is discussed in previous sections, the parameter m_χ can be constrained by CMB through its impact on the EoS of DM. However, the EoS of DM is also dependent on $u_{\chi-\gamma}$ which sets the decoupling scale (δ_{dec}) of DM-γ interaction. An obvious concern is whether the constrain on m_χ from CMB is dependent on the choice of $u_{\chi-\gamma}$ prior. To account for that, we perform the fit to CMB datasets with different prior imposed on $u_{\chi-\gamma}$, i.e., the lower limit of the uniform prior ranges from 10^{-4} to 10^{-6}. The posterior distributions are shown in Fig. 9 and the parameter constraints are tabulated in Table II. It’s obvious to see that, the different choice of $u_{\chi-\gamma}$ priors have negligible impact on the constrains on m_χ as well as other cosmological parameters, except for the best-fit value of S_8. As can be seen in the last column of Table II, owing to the effect of diffusive damping the inferred value of S_8 is significantly reduced if we set the lower limit of $u_{\chi-\gamma}$ to 10^{-4}. In summary, the mass of DM can be constrained independently of $u_{\chi-\gamma}$.

VI. CONCLUSIONS

The effect of DM-γ interaction are usually parameterized by the dimensionless quantity $u_{\chi-\gamma}$ in former researches[39, 40]. In this work, we investigate this scenario with an extra (new) parameter m_χ, i.e., the masses of DM particles, which allows us to study the temperature evolution of DM (T_χ) as well as its EoS (w_χ). This scenario are often referred to as generalized dark matter (GDM). We have also studied the distinctive imprints of GDM on the matter power spectra and CMB temperature power spectra at both background and perturbation levels. These distinctive imprints allow us to set a lower limit on m_χ within this scenario. Due to the different cooling rates of DM and photons, the background bulk viscous pressure arises during the epoch of DM-γ decoupling. However, the bulk viscous should only be counted DM and photons are treated as a single fluid. Our analysis suggests that, the peak value of bulk viscous pressure II is of the order of $10^{-1}P_\chi$ and thus have negligible impact on the background evolution of the universe.

We have modified the Boltzmann code CLASS to include the EoS of interacting DM, and use the Cobaya packages to perform the MCMC analysis. In the fit of Planck 2018 data, our numerical result yield comparable upper limit on $u_{\chi-\gamma}$ with previous works, i.e., $u_{\chi-\gamma} < 1.58 \times 10^{-4}$. Also, one can effectively use Planck data to restrict the mass of DM particles. The restriction is robust against different priors on $u_{\chi-\gamma}$. By fitting with the Planck 2018 data alone we find $m_\chi > 8.7\text{keV}$ at 95% CL, while the inclusion of other observational datasets does not significantly shift this result. To test whether the GDM scenario restores the cosmic concordance, we perform the joint analysis of SH0ES+Planck datasets. The result suggests that H_0 only shifts very slightly and tensions with SH0ES remain at 2.5σ. This is understandable since the pressure of GDM has an effective presence only at very small scales and thus has negligible impact on $r_s(z_s)$ and the expansion history after last scattering. Consequently, the GDM scenario is not likely to relieve the H_0 tension nor do the bulk viscous pressure which arises during the epoch of DM-γ decoupling. The most prominent feature in the GDM scenario is the suppression in small-scale modes due to both the reduction in free-streaming monopole and the diffusive damping. When performing the joint analysis of Planck+LSS datasets, the best-fit $S_8 = 0.785 \pm 0.017$ closely matches the given S_8 prior. In summary, the GDM scenario should be counted as a viable candidate to restore the $S_8 (\sigma_8)$ tension.
Appendix A: BULK VISCOS

We follow the key steps of the derivation in Ref. [61]. The coupled DM-γ fluid is assumed to be at equilibrium at a certain time η₀, thus

\[T(\eta_0) = T_\gamma(\eta_0) = T_\chi(\eta_0), \quad (A1a) \]
\[P(\eta_0) = P_\gamma(\eta_0) = P_\chi(\eta_0), \quad (A1b) \]

with \(P_\gamma = n_\gamma k_B T_\gamma \), \(\rho_\gamma = 3n_\gamma k_B T_\gamma \), the pressure and energy density of photons, respectively. During a subsequent time interval \(\tau_c \), each component follows its own internal perfect fluid dynamics. Due to the different cooling rates of the components, there occur temperature differences between DM and photons \(\Delta T \equiv T_\gamma - T_\chi \), which is expressed as:

\[T_\gamma - T_\chi = -3H\tau_c T \left(\frac{\partial P_\gamma/\partial T}{\partial \rho_\gamma/\partial T} - \frac{\partial P_\chi/\partial T}{\partial \rho_\chi/\partial T} \right), \quad (A2a) \]
\[T_\gamma - T = -3H\tau_c T \left(\frac{\partial P_\gamma/\partial T}{\partial \rho_\gamma/\partial T} - \frac{\partial P_\chi/\partial T}{\partial \rho_\chi/\partial T} \right), \quad (A2b) \]
\[T_\chi - T = -3H\tau_c T \left(\frac{\partial P_\chi/\partial T}{\partial \rho_\chi/\partial T} - \frac{\partial P_\gamma/\partial T}{\partial \rho_\gamma/\partial T} \right). \quad (A2c) \]

The temperature difference terms give rise to a bulk viscous pressure \(\Pi \), i.e.,

\[P_\gamma(n_\gamma, T_\gamma) + P_\chi(n_\chi, T_\chi) = P(n, T) + \Pi. \quad (A3) \]
By definition $\Pi = -3H\xi$ with the bulk viscous coefficient ξ is given by

$$\xi = -\tau_c T \left(\frac{\partial P_{\gamma}}{\partial T} \frac{\partial P_{\gamma}}{\partial \rho} - \frac{\partial P_{\chi}}{\partial \rho} \right) \left(\frac{\partial P_{\chi}}{\partial \rho} - \frac{\partial P_{\gamma}}{\partial \rho} \right),$$

(A4)

$$\tau_c = \frac{T_{\gamma} - T_{\chi}}{TH} \sigma(x),$$

(A6)

with $x \equiv \log(a/a_{dec})$ and $\sigma(x) \equiv 1/(1+e^{-x})$ the sigmoid function. After DM-γ decoupling ($a > a_{dec}$) one has $\tau_c \sim 0$. Here we have replaced T with T_{γ} according to the assumption of radiation dominance. Inserting τ_c into Eq. (A5), the emergent bulk viscous can be expressed as:

$$\Pi = -3H\xi = -\frac{1}{2+\delta} n_{\chi} k_B (T_{\gamma} - T_{\chi}) \sigma(x),$$

(A7)
where $\delta \equiv n_\gamma/n_\chi \approx 2.9/m_\chi^2).$ According to Eq. (A2a), we can obtain the following relationship:

$$
(T_\gamma - T) \frac{\partial P_\gamma}{\partial T} = -\frac{1}{2+\delta} n_\chi k_B(T_\gamma - T_\chi)\sigma(x) = -\Pi. \quad (A8)
$$

$$
(T_\chi - T) \frac{\partial P_\chi}{\partial T} = -\frac{2}{2+\delta} n_\chi k_B(T_\gamma - T_\chi)\sigma(x) = 2\Pi. \quad (A9)
$$

Accordingly, the sum of the fluid pressures can be expressed as

$$
P_T(T_\gamma) + P_\chi(T_\chi), \quad (A10a)
$$

$$= P_T(T) + P_\chi(T) + (T_\gamma - T) \frac{\partial P_\gamma}{\partial T} + (T_\chi - T) \frac{\partial P_\chi}{\partial T}, \quad (A10b)
$$

$$= P_T(T) + P_\chi(T) - \Pi + 2\Pi = p(T) + \Pi, \quad (A10c)
$$

$$= P_T(T_\gamma) + P_\chi(T_\chi) + 2\Pi. \quad (A10d)
$$

The bulk viscous arises as the DM temperature T_χ drops below the equilibrium temperature $T \approx T_\gamma.$ Comparing Eq. (A10a) and Eq. (A10d) we obtain

$$
P_T(T_\chi) = P_\chi(T) + 2\Pi. \quad (A11)
$$

This indicates that the (negative) bulk viscous pressure Π can be viewed as a correction to overestimated DM pressure $P_\chi(T)$ when the two fluids are approximated by a single coupled fluid during a short period (τ_i).

ACKNOWLEDGMENTS

This work is supported in part by National Natural Science Foundation of China under Grant No. 12075042, Grant No. 11675032 (People’s Republic of China).

[1] A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201.
[2] N. Aghanim et al. (Planck), (2018), arXiv:1807.06209 [astro-ph.CO].
[3] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A5 (2020), arXiv:1901.12875 [astro-ph.CO].
[4] T. Abbott et al. (DES), Phys. Rev. D 98, 043526 (2018), arXiv:1708.01530 [astro-ph.CO].
[5] S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO].
[6] M. Li, X.-D. Li, S. Wang, and Y. Wang, Communications in Theoretical Physics 56, 525 (2011).
[7] M. Persic, P. Salucci, and F. Stel, Mon. Not. Roy. Astron. Soc. 281, 27 (1996), arXiv:astro-ph/9506004.
[8] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. Lett. 648, L109 (2006), arXiv:0608047.
[9] D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley, Science 347, 1462 (2015), arXiv:1503.07675 [astro-ph.CO].
[10] K. Griest and M. Kamionkowski, Physical Review Letters 64, 615 (1990).
[11] C. Boehm, P. Fayet, and R. Schaeffer, Phys. Lett. B 518, 8 (2001), arXiv:astro-ph/0012504.
[12] A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, JCAP 03, 005 (2009), arXiv:0808.3902 [hep-ph].
[13] B. J. Kavanagh and A. M. Green, Phys. Rev. Lett. 111, 031302 (2013), arXiv:1303.6868 [astro-ph.CO].
[14] A. Berlin and N. Blinov, Phys. Rev. Lett. 120, 021801 (2018), arXiv:1706.07046 [hep-ph].
[15] P. Agnes et al. (DarkSide), Phys. Rev. Lett. 121, 081307 (2018), arXiv:1802.06994 [astro-ph.HE].
[16] L. Perivolaropoulos and F. Skara, (2021), arXiv:2105.05208 [astro-ph.CO].
[17] L. Verde, T. Treu, and A. Riess, Nature Astron. 3, 891 (2019), arXiv:1907.09265 [astro-ph.CO].
[18] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, Class. Quant. Grav. 38, 153001 (2021), arXiv:2103.01183 [astro-ph.CO].
[19] H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), arXiv:1606.05338 [astro-ph.CO].
[20] H. Hildebrandt et al., Astron. Astrophys. 633, A69 (2020), arXiv:1812.06076 [astro-ph.CO].
[21] C. Hikage et al. (HSC), Publ. Astron. Soc. Jap. 71, 43 (2019), arXiv:1809.00145 [astro-ph.CO].
[22] B. Bellazzini, M. Cliche, and P. Tanedo, Phys. Rev. D 88, 083506 (2013), arXiv:1307.1129 [hep-ph].
[23] S. Tulin and H.-B. Yu, Physio. Reports 750, 1 (2018), dark matter self-interactions and small scale structure.
[24] P. Salucci, Astron. Astrophys. Rev. 27, 2 (2019), arXiv:1811.08843 [astro-ph.GA].
[25] R. Barkana, Nature 555, 71 (2018), arXiv:1803.06698 [astro-ph.CO].
[26] J. B. Muñoza and A. Loeb, JCAP 11, 043 (2017), arXiv:1708.08923 [astro-ph.CO].
[27] Y. Ali-Haimoud, J. Chluba, and M. Kamionkowski, Phys. Rev. Lett. 115, 071304 (2015), arXiv:1506.04574 [astro-ph.CO].
[28] J. B. Muñoza, E. D. Kovetz, and Y. Ali-Haimoud, Phys. Rev. D 92, 083528 (2015), arXiv:1509.00029 [astro-ph.CO].
[29] V. Gluscevic and K. K. Bodey, Phys. Lett. B 712, 1081301 (2018), arXiv:1712.07133 [astro-ph.CO].
[30] T. R. Slatyer and C.-L. Wu, Phys. Rev. D 98, 023504 (2018), arXiv:1709.00479 [hep-ph].
[31] W. L. Xu, C. Dvorkin, and A. Chael, Phys. Rev. D 97, 103530 (2018), arXiv:1802.06788 [astro-ph.CO].
[32] T. Bringmann, J. Hasenamp, and J. Kersten, JCAP 07, 042 (2014), arXiv:1312.4947 [hep-ph].
[33] B. Audren et al., JCAP 03, 036 (2015), arXiv:1412.5948 [astro-ph.CO].
[34] S. Horiiuchi, B. Bozek, K. N. Abazajian, M. Boylan-Kolchin, J. S. Bullock, S. Garrison-Kimmel, and J. Onorbe, Mon. Not. Roy. Astron. Soc. 456, 4346 (2016), arXiv:1512.04548 [astro-ph.CO].
[35] E. Di Valentino, C. Boehm, E. Hivon, and F. R. Bouchet, Phys. Rev. D 97, 043513 (2018), arXiv:1710.02559 [astro-ph.CO].
[36] S. Pandey, S. Karmakar, and S. Rakshit, JHEP 01, 095 (2019), arXiv:1810.04203 [hep-ph].
