Beijing genotype of *Mycobacterium tuberculosis* is associated with extensively drug-resistant tuberculosis: A global analysis

M. Keikha\(^1,2\) and M. Majidzadeh\(^1,2\)
1) Antimicrobial Resistance Research Center and 2) Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

We found that the frequency of Beijing genotype among XDR-TB strains was high. The data in this study would help guide the TB control program, and we however need further investigation to confirm the reliability of the present findings.

© 2021 The Author(s). Published by Elsevier Ltd.

Keywords: Mycobacterium tuberculosis, Tuberculosis, Beijing, MIRU-VNTR, IS6110-RF

Original Submission: 21 June 2021; **Revised Submission:** 5 July 2021; **Accepted:** 15 July 2021

Article published online: 1 August 2021

Dear Editor;

Tuberculosis is one of the most important infectious diseases in human history that is also known as the white plague. Tuberculosis is caused by the infection with *Mycobacterium tuberculosis* and is the second leading cause of death after HIV among the infectious aspects [1,2]. According to the WHO, there were about 10 million people who fell ill with TB in 2019; Furthermore, there were 1.5 million TB deaths in 2019 [3]. Despite more than a century of extensive studies, the control and eradication of tuberculosis have yet remained a global challenge and one of the medical emergencies considered by the World Health Organization [4,5].

It is not possible to eradicate *Mtb* due to the infection of a quarter of the world’s population with latent TB. In addition, other factors such as co-infection with infectious agents (HIV, HTLV-1, HCV, and HBV), lack of effective vaccine in adults, and increased MDR and XDR strains all contribute to failure in the complete eradication of TB. However, continuous monitoring of patient data and genetic characterizations of *Mtb* strains in different geographical areas can be helpful in setting local programs and global policies to control and reduce TB disease [6–8].

Molecular typing of *Mtb* strains is an important tool in evaluating the transmission and outbreaks of this disease performed using molecular techniques, including *IS6110-RFLP*, Spoligotyping, and the variable number of tandem repetition of mycobacterial interspersed repetitive units typing (MIRU-VNTR) [7]. Nowadays, nine superfamilies have been identified for *M. tuberculosis* complex, including *Mycobacterium africanum*, *Mycobacterium bovis*, Beijing, EAI, CAS, T, Haarlem, X, and LAM, which account for more than a quarter of TB cases due to infection with the Beijing family [10]. Interestingly, most reported MDR-outbreaks are caused by the Beijing family [11]. Recently, we showed in a comprehensive literature review that the Beijing family is the most dominant resistant genotype in Iran; We also found that the frequency of the Beijing family among Iranian drug-resistance strains is significantly higher than the other genotypes [12]. However, the diversity of XDR-TB genotypes has not yet been properly elucidated. This study aimed to evaluate the frequency of common genotypes among the XDR-TB strains worldwide.

To collect the studies relevant to the genotyping XDR-TB strains of computer-assisted literature indicates search in PubMed, Scopus, and Google Scholar databases using the search terms based on MesH such as ‘Tuberculosis’, ‘*Mycobacterium tuberculosis*’, ‘M. tuberculosis’, ‘Extensively drug-resistant TB’, ‘Genotyping’, ‘*IS6110-RFLP*’, ‘Spoligotyping’, and ‘MIRU-VNTR’. Relevant studies were collected without restriction on publication dates; Also, the bibliography section of the articles was carefully examined in order not to miss the potential articles. We considered studies published in English with their available full-texts and considered XDR-TB genotypes as eligible studies using standard methods, including *IS6110-RFLP*, Spoligotyping, MIRU-VNTR, or whole-genome sequencing, and excluded articles on non-XDR-TB subjects, studies with repetitive samples, studies with unclear results and insufficient data, and studies published in non-English languages. Processing the literature search and evaluation of eligible studies was performed by two independent authors (MK and MM). The required data such as first author, publication year,
TABLE 1. Characteristics of included studies

First author	Publication year	Country	Geographic region	MTB strains	XDR strains	MTB genotypes distribution	Typing method	Ref
Ghebremichael	2008	Sweden	Europe	400	48	Spoligotyping IS6110		[13]
Perdigão	2010	Portugal	Europe	26	0	MIRU-VNTR		[14]
Kozinska	2011	Poland	Europe	297	19	MIRU-VNTR		[15]
Mokrousov	2015	Republic of Karelia	Europe	78	6	Spoligotyping IS6110		[16]
Roycroft	2018	Ireland	Europe	42	3	MIRU-VNTR		[17]
Sinkov	2018	former	Europe	149	7	Spoligotyping IS6110		[18]
Pole	2020	Europe	Europe	411	69	Spoligotyping IS6110		[19]
Ca’cares	2014	Peru	America	227	142	Spoligotyping IS6110		[20]
Juarez-Eusebio	2017	Mexico	America	54	1	MIRU-VNTR		[21]
Neito Ramirez	2020	Colombia	America	311	4	MIRU-VNTR		[22]
Masjedi	2006	Iran	Asia	2030	12	MIRU-VNTR		[23]
Setareh	2009	Belarus	Asia	138	30	MIRU-VNTR		[24]
Lai	2010	Taiwan	Latin Asia	39	9	MIRU-VNTR		[25]
Hasan	2010	Pakistan	Asia	9523	113	MIRU-VNTR		[26]
Ajhani	2011	India	Asia	3899	150	MIRU-VNTR		[27]
Surcouf	2011	Cambodia	Europe	101	0	MIRU-VNTR		[28]
Vadwai	2011	India	Asia	5	3	MIRU-VNTR		[29]
Zhang	2012	China	Asia	55	2	MIRU-VNTR		[30]
Arjomandzadeh	2012	Belarus	Iran and Asia	202	31	MIRU-VNTR		[31]
Yuan	2013	China	Asia	804	13	MIRU-VNTR		[32]
Fouldel	2013	Nepal	Asia	109	13	MIRU-VNTR		[33]
Arora	2013	India	Asia	311	50	MIRU-VNTR		[34]
Zhang	2014	China	Asia	158	10	MIRU-VNTR		[35]
Hu	2015	China	Asia	1332	15	MIRU-VNTR		[36]
Disratthakit	2015	Thailand	Asia	192	28	MIRU-VNTR		[37]
Zhao	2015	China	Asia	116	58	MIRU-VNTR		[38]
Hu	2015	China	Asia	166	5	MIRU-VNTR		[39]
Rufai	2016	India	Asia	234	15	MIRU-VNTR		[40]
Khanipour	2016	Iran	Asia	23	4	MIRU-VNTR		[41]
Hu	2016	China	Asia	1222	6	MIRU-VNTR		[42]
Singhal	2016	India	Asia	219	10	MIRU-VNTR		[43]
San	2018	Myanmar	Asia	256	8	MIRU-VNTR		[44]
Kazemian	2019	Iran	Asia	33	1	MIRU-VNTR		[45]
Andrews	2008	Tugela Ferry, KwaZulu-Natal	Africa	17	12	MIRU-VNTR		[46]
Said	2012	Mpumalanga, Gauteng, Limpopo Eastern Cape	Africa	336	24	MIRU-VNTR		[47]
Klopper	2013	Tugela Ferry, KwaZulu-Natal	Africa	334	108	MIRU-VNTR		[48]
Gandhi	2013	KwaZulu-Natal	Africa	86	0	MIRU-VNTR		[49]
Cohen	2014	KwaZulu-Natal	Africa	340	67	MIRU-VNTR		[50]
Dookie	2016	KwaZulu-Natal	Africa	60	28	MIRU-VNTR		[51]
Kateete	2019	Swazini, Somalia and Uganda	Africa	38	12	MIRU-VNTR		[52]

The frequency of each XDR-TB genotype was reported using event rate corresponding confidence intervals (95% CIs); Moreover, the odds ratio with 95% CIs was used to measure the relationship between XDR-TB and each of the genotypes. Heterogeneity was measured using the I² index and Cochran Q-test. Egger’s p-value and Begg’s p-value were used to evaluate the publication bias. All the statistical analyses were performed using the Comprehensive Meta-Analysis software (Biostat, Englewood, NJ).
After evaluating the potential documents, 41 eligible studies were identified [13–53]. These studies were conducted between 2006–2020 in Europe, Latin America, Asia, and Africa. In these studies, genotyping of Mtb strains was performed using IS6110 RFLP, Spoligotyping, and MIRU-VNTR methods. The data of 24,659 Mtb strains were evaluated in this study.

The frequency of XDR-TB strains was estimated to be about 8.3% (95% CI: 5.1–13.1; \(I^2 \): 98.2; Q-value: 2120.6; Egger’s p-value: 0.04; Begg’s p-value: 0.08); Furthermore, according to the subgrouping analysis, the prevalence of XDR-TB in Africa, Latin America, Asia, and Europe was estimated to be 29.6% (95% CI: 19.4–42.2; \(I^2 \): 93.7; Q-value: 96.4; Egger’s p-value: 0.77; Begg’s p-value: 0.76), 7.3% (95% CI: 2–7.8; \(I^2 \): 98.0; Q-value: 103.1; Egger’s p-value: 0.29; Begg’s p-value: 0.50), 5.8% (95% CI: 3.3–10.2; \(I^2 \): 97.5; Q-value: 915.2; Egger’s p-value: 0.2; Begg’s p-value: 0.39), and 5.9% (95% CI: 2.8–12.1; \(I^2 \): 88.1; Q-value: 42.1; Egger’s p-value: 0.02; Begg’s p-value: 0.3), respectively.

Beijing and Haarlem genotypes were the most prevalent and the least common genotypes among the XDR-TB strains, respectively, so that global distribution of Beijing, Dehli-Cas, EAI, and Haarlem genotypes were 40.9% (95% CI: 29.1–53.8; \(I^2 \): 88; Q-value: 300.8; Egger’s p-value: 0.35; Begg’s p-value: 0.42), 6% (95% CI: 3.6–9.9; \(I^2 \): 62.4; Q-value: 82.5; Egger’s p-value: 0.01; Begg’s p-value: 0.01), 4.7% (95% CI: 2.8–8.5; \(I^2 \): 53.7; Q-value: 71.4; Egger’s p-value: 0.02; Begg’s p-value: 0.01), and 4% (95% CI: 1.8–8.8; \(I^2 \): 79.6; Q-value: 152.2; Egger’s p-value: 0.01; Begg’s p-value: 0.01), respectively. Based on the results of subgrouping analysis, the frequency of XDR-TB strains belonging to Beijing family among Asians, Europeans, Africans and Latin Americans, respectively, was 54.5% (95% CI: 42.3–66.3; \(I^2 \): 77.8; Q-value: 90.3; Egger’s p-value: 0.9; Begg’s p-value: 0.4), 29.5% (95% CI: 8.7–64.8; \(I^2 \): 77.6; Q-value: 22.4; Egger’s p-value: 0.1; Begg’s p-value: 0.45), 10.3% (95% CI: 1.6–44.9; \(I^2 \): 93.6; Q-value: 110.0; Egger’s p-value: 0.1; Begg’s p-value: 0.9), and 35.1% (95% CI: 1.5–95.2; \(I^2 \): 90.1; Q-value: 10.1).

According to the results of subgrouping analysis, the frequency of XDR-TB strains belonging to the Beijing family among Asians, Europeans, Africans and Latin Americans, respectively, was 54.5% (95% CI: 42.3–66.3; \(I^2 \): 77.8; Q-value: 90.3; Egger’s p-value: 0.9; Begg’s p-value: 0.4), 29.5% (95% CI: 8.7–64.8; \(I^2 \): 77.6; Q-value: 22.4; Egger’s p-value: 0.1; Begg’s p-value: 0.45), 10.3% (95% CI: 1.6–44.9; \(I^2 \): 93.6; Q-value: 110.0; Egger’s p-value: 0.1; Begg’s p-value: 0.9), and 35.1% (95% CI: 1.5–95.2; \(I^2 \): 90.1; Q-value: 10.1), respectively.

We observed a significant relationship between the Beijing genotype and XDR-TB but there was no significant relationship between other genotypes and XDR-TB (OR: 2.48; 95% CI: 1.84–3.34; p-value: 0.01; \(I^2 \): 85.5; Q-value: 193.9; Egger’s p-value: 0.05; Begg’s p-value: 0.34). In the subgrouping analysis, there was a significant relationship between Beijing genotype and XDR-TB among the Asian population (OR: 7.68; 95% CI: 3.17–18.58; p-value: 0.01; Egger’s p-value: 0.37; Begg’s p-value: 0.59), among the Africans (OR: 12.93; 95% CI: 0.45–366.7; p-value: 0.01; Egger’s p-value: 0.13; Begg’s p-value: 0.3), and among the Europeans (OR: 2.29; 95% CI: 0.68–4.43; p-value: 0.01; Egger’s p-value: 0.19; Begg’s p-value: 0.30). However, no significant correlation was observed in the Latin American population (OR: 0.24; 95%CI: 0.14–0.42; p-value: 0.01). Therefore, the frequency of Beijing genotype among the XDR-TB strains was significantly higher than Dehli-Cas, EAI, and Haarlem genotypes. Based on the available data, identification of the Beijing genotypes, especially in the patients with treatment failure, is a reliable index for the XDR-TB cases.

The Beijing genotype Mycobacterium tuberculosis was first introduced by Van Soolingen et al., in 1995 from Beijing (China), and after a while, several outbreaks of Beijing genotype were reported and identified in Asia, South Africa, Germany, Canary Islands, Russia, Thailand and the United States [54,55]. According to the available reports, more than a quarter of tuberculosis cases belong to the Beijing genotype [56]. Beijing strains have several remarkable properties: (1) they are mostly associated with active TB, (2) they are associated with treatment failure and multiple drug resistance, (3) they are capable of efficient proliferation in the lung macrophages and spread in the population, and (4) they are genetically unstable. In particular, mut gene alleles cause drug resistance and alter bacterial morphology [57–59]. Numerous pieces of evidence have been reported regarding the relationship between the Beijing genotype and MDR-TB so that this genotype can be considered as a biomarker for drug-resistant TB [60–62]. We showed for the first time in a comprehensive analysis that the Beijing family is the most predominant genotype among the XDR-TB strains. Based on the present results, the Beijing genotype can lead to the occurrence of several serious outbreaks in close geographical areas, and therefore, the identification and screening of these patients from an epidemiological point of view is an important strategy in the TB control program. However, our study had several limitations: (1) the sample size was small, (2) heterogeneity was significant, and (3) in some cases, publication bias was significant. We found that the frequency of Beijing genotype among XDR-TB strains was high. The data in this study would help guide the TB control program, and we however need further investigation to confirm the reliability of the present findings.

Transparency declaration

The authors have no conflict of interest.
References

[1] Martinez L, Cords O, Horsburgh CR, Andrews JR, Acuna-Villaroiana C, Ahuja SD, Altet N, Augusto O, Balashvili D, Basu S, Becerra M, et al. The risk of tuberculosis in children after close exposure: a systematic review and individual-participant meta-analysis. Lancet 2020;395(10228):973–84.

[2] Keikha M, Soleimani S, Eslami M, Yousefi B, Karbalaei M. The mystery of tuberculosis pathogenesis from the perspective of T regulatory cells. Meta Gene 2020;23:100632.

[3] World Health Organization. Myanmar: extending TB services to hard-to-reach areas: case study. 2018.

[4] McShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis 2014;94(2):105–10.

[5] Jacobson KR, Tierney DB, Jeon CY, Minick CD, Murray MB. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis 2010;51(1):6–14.

[6] Li Y, Ehi J, Tang S, Li D, Bian Y, Lin H, Marshall C, Cao J, et al. Factors associated with patient, and diagnostic delays in Chinese TB patients: a systematic review and meta-analysis. BMC Med 2013;11(1):1–5.

[7] Bouklata N, Supply P, Jaouhari S, Charof R, Seghrouchni F, Sadki K, El Lami A. Extending tuberculosis services to susceptible MDR patients in Peru. PLoS One 2014;9(12):e112789.

[8] Juarez-Eusebio DM, Munro-Rojas D, Muñoz-Salazar R, Laniado-Laborín R, Martinez-Guarnier JA, Flores-López CA, et al. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from high prevalence tuberculosis states in Mexico. Infect Genet Evol 2017;55:384–91.

[9] Nieto Ramirez LM, Ferro BE, Diaz G, Anthony RM, de Beer J, van Soolingen D. Genetic profiling of Mycobacterium tuberculosis revealed “modern” Beijing strains linked to MDR-TB from Southwestern Colombia. PLoS One 2020;15(4):e0224908.

[10] Filliol I, Driscoll JR, Van Soolingen D, Kreiswirth BN, Kremer K, Martínez L, Cords O, Horsburgh CR, Andrews JR, Acuna-Villaroiana C, et al. Prevalence of Haarlem I and Beijing genotype in extensively drug-resistant tuberculosis in Belarus. Acta microbiologica et immunologica Hungarica 2009;56(4):313–25.

[11] Xu L, Tan C, Lin S, Liao C, Huang Y, Chou C, et al. Clinical and genotypic characteristics of extensively drug-resistant and multidrug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis 2010;29(5):597–600.

[12] Hasan R, Jabeen K, Ali A, Rafiq Y, Laiq R, Malik B, et al. Extensively drug-resistant tuberculosis, Pakistan. Emerg Infect Dis 2010;16(9):1473.

[13] Afjani K, Rodrigues C, Shenai S, Mehta A. Mutation detection and accurate diagnosis of extensively drug-resistant tuberculosis: report from a tertiary care center in India. J Clin Microbiol 2011;49(4):1588–90.

[14] Yuan X, Zhang T, Kawakami K, Zhu J, Zheng W, Li H, et al. Genotyping of extensively drug-resistant tuberculosis in China. BMC Infect Dis 2013;13(1):255.

[15] Czotyr V, Daven G, Udawia Z, Sadani M, Shetty A, Rodrigues C. Clonal population of Mycobacterium tuberculosis strains reside within multiple lung cavities. PLoS One 2011;6(9):e24770.

[16] Zhang J, Mi L, Wang Y, Liu P, Liang H, Huang Y, et al. Genotypes and drug susceptibility of Mycobacterium tuberculosis isolates in shihezi, Xinjiang province, China. BMC Res Notes 2012;5(1):309.

[17] Poudel A, Marahjan B, Nakajima C, Fukushima Y, Pandey BD, Beneke A, et al. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal. Tuberculosis 2013;93(1):84–8.

[18] Sinkov V, Ogarkov O, Mokrousov I, Bukin Y, Zhdanova S, Heyssel SK. New epidemic cluster of pre-extensively drug resistant isolates of Mycobacterium tuberculosis Ural family emerging in Eastern Europe. BMC Gen 2018;19(1):762.

[19] Pole I, Tryptoňova J, Vanacova I, Supply P, Skenders G, Nodívea A, et al. Analysis of Mycobacterium tuberculosis genetic lineages circulating in Riga and Riga region, Latvia, isolated between 2008 and 2012. Infect Genet Evol 2020;78:104126.

[20] Cáceres O, Rastogi N, Bartra C, Couvin D, Galarza M, Asencios L, et al. Characterization of the genetic diversity of extensively-drug-resistant Mycobacterium tuberculosis clinical isolates from pulmonary tuberculosis patients in Peru. PLoS One 2014;9(12):e112789.

[21] Jerez-Eusebio DM, Munro-Rojas D, Muñoz-Salazar R, Laniado-Laborín R, Martinez-Guarnier JA, Flores-López CA, et al. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from high prevalence tuberculosis states in Mexico. Infect Genet Evol 2017;55:384–91.

[22] Martinez L, Cords O, Horsburgh CR, Andrews JR, Acuna-Villaroiana C, et al. The risk of tuberculosis in children after close exposure: a systematic review and individual-participant meta-analysis. Lancet 2020;395(10228):973–84.

[23] Keikha M, Soleimani S, Eslami M, Yousefi B, Karbalaei M. The mystery of tuberculosis pathogenesis from the perspective of T regulatory cells. Meta Gene 2020;23:100632.

[24] World Health Organization. Myanmar: extending TB services to hard-to-reach areas: case study. 2018.

[25] McShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis 2014;94(2):105–10.

[26] Jacobson KR, Tierney DB, Jeon CY, Minick CD, Murray MB. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis 2010;51(1):6–14.

[27] Li Y, Ehi J, Tang S, Li D, Bian Y, Lin H, Marshall C, Cao J, et al. Factors associated with patient, and diagnostic delays in Chinese TB patients: a systematic review and meta-analysis. BMC Med 2013;11(1):1–5.

[28] Bouklata N, Supply P, Jaouhari S, Charof R, Seghrouchni F, Sadki K, El Aouad R, et al. Molecular typing of Mycobacterium tuberculosis complex by 24-locus based MIRU-VNTR typing in conjunction with spoligotyping to assess genetic diversity of strains circulating in Morocco. PLoS One 2015;10(8):e0135695.

[29] Filliol I, Driscoll JR, Van Soolingen D, Kreiswirth BN, Kremer K, Valentudie G, Anh DD, Barlow R, Barnerjes D, Bifani PJ, Brudke Y, et al. Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Inf Dis 2002;8(11):1347.

[30] Farmia P, Masjedi MR, Mirsaiedi M, Mohammadi F, Vincent V, Bahadori M, Velayati AA, et al. Prevalence of Haarlem I and Beijing types of Mycobacterium tuberculosis strains in Iranian and Afghan MDR-TB patients. J Infect 2006;53(5):331–6.

[31] Keikha M. There is significant relationship between Beijing genotype family strains and resistance to the first-line anti-tuberculosis drugs in the Iranian population. J Clin Tubercul Other Mycobact Dis 2020;19.

[32] Hehrebrinichial S, Peterson R, Koivula T, Pennag H, Romanus V, Bergren I, et al. Molecular epidemiology of drug-resistant tuberculosis in Sweden. Microb Infect 2008;10(6):699–705.

[33] Perdigo J, Macedo R, Malquias A, Ferreira A, Brum L, Portugal I. Genetic analysis of extensively drug-resistant Mycobacterium tuberculosis strains in Lisbon, Portugal. J Antimicrob Chemother 2010;65(2):224–7.

[34] Kozinska M, Brzostek A, Krawiecka D, Rybczynska M, Wzolkowska Z, Augustynowicz-Kopeć E, MDR, pre-XDR and XDR drug-resistant tuberculosis in Poland in 2000–2009. Adv Resp Med 2011;79(4):278–87.

[35] Mokrousov I, Vyazova A, Solovieva N, Sunchalina T, Markelov Y, Chernyava E, et al. Trends in molecular epidemiology of drug-resistant tuberculosis in Republic of Karelia, Russian Federation. BMC Microbiol 2015;15(1):279.

[36] Roycroft E, O’Toole RF, Fitzgibbon B, Montgomery L, O’Meara M, Downes P, et al. Molecular epidemiology of multi-and extensively drug-resistant Mycobacterium tuberculosis in Ireland, 2001–2014. J Infect 2018;76(1):55–67.
[35] Zhang Z, Pang Y, Wang Y, Liu C, Zhao Y. Beijing genotype of Mycobacterium tuberculosis is significantly associated with linezolid resistance in multidrug-resistant and extensively drug-resistant tuberculosis in China. Int J Antimicrob Agents 2014;43(3):211–5.

[36] Hu Y, Mathema B, Zhao Q, Chen L, Lu W, Wang W, et al. Acquisition of second-line drug resistance and drug resistance during recent transmission of Mycobacterium tuberculosis in rural China. Clin Microbiol Infect 2015;21(12):1093.e9–e18.

[37] Dstrathakit A, Meada S, Prammananan T, Thaisaithikul I, Doi N, Chaiprasert A. Genotypic diversity of multidrug-resistant tuberculosis isolates in Thailand. Infect Genet Evol 2015;32:432–9.

[38] Zhao L-i, Sun Q, Zeng C-y, Chen Y, Zhao B, Liu H-c, et al. Molecular characterisation of extensively drug-resistant Mycobacterium tuberculosis isolates in China. Int J Antimicrob Agents 2015;45(2):137–43.

[39] Hu Y, Zhao Q, Wengren J, Hoffner S, Diwan VK, Xu B. Drug resistance characteristics and cluster analysis of M. tuberculosis in Chinese patients with multiple episodes of anti-tuberculosis treatment. BMC Infect Dis 2015;16(1):4.

[40] Ruffai SB, Sankar MM, Singh J, Singh S. Predominance of Beijing lineage among pre-extensively drug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis: a tertiary care center experience. Int J Mycobacteriol 2016;5:917–8.

[41] Khanipour S, Ebrahimzadeh N, Masoumi M, Sakhavi F, Alinezhad F, Safarpour E, et al. Haarlem J is the predominant genotype family in multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in the capital of Iran: a 5-year survey. J Glob Antimicrob Resistance 2016;5:7–10.

[42] Hu Y, Mathema B, Zhao Q, Zheng X, Li D, Jiang W, et al. Comparison of the socio-demographic and clinical features of pulmonary TB patients infected with sub-lineages within the W-Beijing and non-Beijing Mycobacterium tuberculosis. Tuberculosis 2016;96:18–25.

[43] Singhal P, Dixit P, Singh P, Jaival I, Singh M, Jain A. A study on pre-XDR & XDR tuberculosis & their prevalent genotypes in clinical isolates of Mycobacterium tuberculosis in north India. Indian J Med Res 2016;143(3):341.

[44] San LL, Aye KS, Oo NAT, Shwe MM, Fukushima Y, Gordon SV, et al. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int J Infect Dis 2018;76:109–19.

[45] Kazemian H, Kardan-Tamchi J, Mosavari N, Feizabadi MM. Molecular characterization of multidrug and extensively drug-resistant Mycobacterium tuberculosis isolates from Iran. Infez Med 2019;27(1):26–31.

[46] Andrews JR, Gandhi NR, Moodley P, Shah NS, Bolliken L, Moll AP, et al. Exogenous reinfection as a cause of multidrug-resistant and extensively drug-resistant tuberculosis in rural South Africa. J Infect Dis 2008;198(1):582–9.

[47] Said HM, Kock MM, Ismail NA, Mphahlehle M, Baba K, Omar SV, et al. Molecular characterization and second-line antituberculosis drug resistance patterns of multidrug-resistant Mycobacterium tuberculosis isolates from the northern region of South Africa. J Clin Microbiol 2012;50(9):2857–62.

[48] Klopfer M, Warren RM, Hayes C, van Pittius NCG, Streicher EM, Müllner B, et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis 2013;19(3):449.

[49] Gandhi NR, Weissman D, Moodley P, Ramathal M, Elson I, Kreiswirth BN, et al. Nosocomial transmission of extensively drug-resistant tuberculosis in a rural hospital in South Africa. J Infect Dis 2013;207(1):9–17.

[50] Gandhi NR, Brux JC, Moodley P, Weissman D, Heo M, Ning Y, et al. Minimal diversity of drug-resistant Mycobacterium tuberculosis strains, South Africa. Emerg Infect Dis 2014;20(3):426.

[51] Cohen KA, Abeel T, McGuire AM, Desjardins CA, Munsamy V, Shea TP, et al. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 2015;12(9):e1001880.

[52] Dookie N, Sturm AW, Moodley P. Mechanisms of first-line antimicrobial resistance in multi-drug and extensively drug resistant strains of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa. BMC Infect Dis 2016;16(1):609.

[53] Kateete DP, Kamulegeya R, Kigozi E, Katabazi FA, Lukoye D, Sebit SI, et al. Frequency and patterns of second-line resistance conferring mutations among MDR-TB isolates resistant to a second-line drug from eSwatini, Somalia and Uganda (2014–2016). BMC Pulm Med 2019;19(1):124.

[54] Kremer K, Au BK, Yi P, Skuce R, Supply P, Kam KM, van Soolingen D, et al. Use of variable-number tandem-repeat typing to differentiate Mycobacterium tuberculosis Beijing family isolates from Hong Kong and comparison with IS6110 restriction fragment length polymorphism typing and spoligotyping. J Clin Microbiol 2005;43(1):314–20.

[55] Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 2002;8(8):843.

[56] Tajeddin E, Farnia P, Kargar M, Noroozi M, Ahmadi M, Kazempour M, Masjedi MR, Velayati AA, et al. Identification of Mycobacterium tuberculosis Beijing genotype using three different molecular methods. Koomesh 2009;11(1).

[57] Mokrousov I, Narvskaya E, Limeschenko E, Vyzavaya A, Otten T, Vyshevskiy B, et al. Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family: practical implications and evolutionary considerations. J Clin Microbiol 2004;42(6):2438–44.

[58] Drobniwksie F, Balabanova Y, Ruddy M, Weldon L, Jeltkova K, Brown T, Malanovana N, Elizarova E, Melentyey A, Mutovkin E, Zhakhavrova S, et al. Rifampin-and multidrug-resistant tuberculosis in Russian civilians and prison inmates: dominance of the Beijing strain family. Emerg Infect Dis 2002;8(11):1320.

[59] Merker M, Kohl TA, Roeterer A, Trusee L, Richter E, Rusch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F, Niemann S, et al. Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One 2013;8(12):e82551.

[60] Lam C, Martinez E, Crighton T, Furlong C, Donnan E, Marais BJ, Sintchenko V, et al. Value of routine whole genome sequencing for Mycobacterium tuberculosis drug resistance detection. Int J Infect Dis 2021.

[61] de Steenwinkel JE, Aarnoutse RE, de Knegt GJ, van Soolingen D, Bakker-Woudenberg IA, Drobniewski F, Balabanova Y, et al. Mycobacterium tuberculosis drug resistance detection. Int J Infect Dis 2021.

[62] Githui WA, Jordaan AM, Juma ES, Kinyanjui P, Karimi FG, Kimwomi J, Lam C, Martinez E, Crighton T, Furlong C, Donnan E, Marais BJ, Sintchenko V, et al. Minimal diversity of drug-resistant Mycobacterium tuberculosis strains, South Africa. Emerg Infect Dis 2014;20(3):426.

[63] Cohen KA, Abeel T, McGuire AM, Desjardins CA, Munsamy V, Shea TP, et al. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 2015;12(9):e1001880.