Adaptive Edge Offloading for Image Classification Under Rate Limit

Jiaming Qiu, Graduate Student Member, IEEE, Ruiqi Wang, Ayan Chakrabarti, Member, IEEE, Roch Guérin, Fellow, IEEE, and Chenyang Lu, Fellow, IEEE

Abstract—This article considers a setting where embedded devices are used to acquire and classify images. Because of limited computing capacity, embedded devices rely on a parsimonious classification model with uneven accuracy. When local classification is deemed inaccurate, devices can decide to offload the image to an edge server with a more accurate but resource-intensive model. Resource constraints, e.g., network bandwidth, however, require regulating such transmissions to avoid congestion and high latency. This article investigates this offloading problem when transmissions regulation is through a token bucket, a mechanism commonly used for such purposes. The goal is to devise a lightweight, online offloading policy that optimizes an application-specific metric (e.g., classification accuracy) under the constraints of the token bucket. This article develops a policy based on a deep Q-network (DQN), and demonstrates both its efficacy and the feasibility of its deployment on embedded devices. Of note is the fact that the policy can handle complex input patterns, including correlation in image arrivals and classification accuracy. The evaluation is carried out by performing image classification over a local testbed using synthetic traces generated from the ImageNet image classification benchmark. Implementation of this work is available at https://github.com/qiujiaming315/edgeml-dqn.

Index Terms—Deep reinforcement learning, edge computing, embedded machine learning, image classification, token bucket.

I. INTRODUCTION

RECENT years have witnessed the emergence of artificial intelligence of things (AIoT), a new paradigm of embedded systems that builds on two important advances. First, through progress in embedded hardware [1], [2], [3], machine learning models can now run on embedded devices, even if resource constraints limit them to relatively weak models [4], [5], [6] that trade accuracy for resource efficiency. Second, edge servers accessible through shared local networks are increasingly common, providing access to additional compute resources [7]. Those edge servers are powerful enough to run strong(er), more complex models that are more accurate, therefore, supplementing the weak local models running on embedded devices.

Of relevance in our setting is that independent of the edge compute resources, the large amount of input data (e.g., images) acquired by embedded devices and the limited bandwidth of the shared network call for judicious decisions on what to offload to edge servers and when. In particular, bandwidth constraints call for rate-limiting transmissions from embedded devices. In this work and following common practice, we employ a standard token bucket [8, Sec. 18.4.2] to regulate offloading traffic. A token bucket (sometimes called a leaky bucket) provides a simple and flexible mechanism that specifies both a long-term transmission rate and a maximum number of consecutive transmissions (bucket size). It has become the de facto standard for limiting user transmissions in both wired and wireless networks, with implementations available across commercial router/switch products, cloud providers offerings, and all major operating systems and programming languages. As a result, the findings of this article should have applicability beyond the specific environment it considers.

Fig. 1 offers a representative example of the type of edge computing setting we consider. We use image classification as our target application, although the framework may be generalized to other types of classification or inference applications.

Cameras distributed across an area share a network connecting them to an edge server. They are responsible for capturing images and classifying them according to the category to which they belong. As is common [9], this is done using a deep learning model. The limited computational resources available in the cameras impose the use of what we term a weak model in contrast to the strong model available on the edge server that boasts greater compute resources. The primary difference between the two models is the confidence metric of their outputs, with the strong model outperforming the weak one. In many instances, the weak model returns a satisfactory (of sufficient confidence) answer, but it occasionally falls short. In those cases, the embedded device has the option to send its input to the edge server for a higher confidence answer. However, network bandwidth constraints call for regulating such offloading decisions through a token bucket mechanism, with each image transmission consuming a token. The challenge is to
devise a policy that meets those constraints while maximizing classification accuracy (the metric of interest).

Offloading decisions influence both immediate and future “rewards” (improvements in classification accuracy). Offloading an image generates an immediate reward from the higher (expected) accuracy of the edge server classification. However, the token this transmission consumes may be better spent on a future higher reward image. This tradeoff depends on both future image arrivals and how the classifiers would perform on those images. Neither aspect is likely to follow a simple pattern. For example, image capture may be triggered by external events (e.g., motion detectors), with the resulting arrival process exhibiting complex variations. Similarly, the accuracy of the weak classifier may be influenced by weather and lighting conditions or the type of objects in the images. This may in turn introduce correlation in the accuracy of consecutive images classifications.

Examples of real-world image classification applications that may exhibit such complex input patterns include automatic check-out in retail stores, wildlife monitoring, or AI-powered robots that classify waste in recycling plants. In all those settings, external factors, e.g., store layout, animals behavior, or how items are stacked in recycling bins, can produce complex input sequences to the classifier.

This article presents a general solution capable of handling arbitrary input sequences while making efficient offloading decisions on embedded devices. The solution is built on a deep Q-network (DQN) framework that can learn an efficient offloading policy given a training sequence of representative inputs, i.e., based on a history of consecutive images, classification outputs, offloading rewards, and token bucket states. More specifically, this article makes the following contributions.

1) A DQN-based policy that optimizes offloading decisions under variable image arrival patterns and correlation in the accuracy of consecutive images classifications, while accounting for token bucket constraints.
2) An implementation and benchmarking of the policy in an edge computing testbed demonstrating its efficiency on embedded devices.
3) A comprehensive evaluation using a wide range of image sequences from the ImageNet dataset, illustrating its benefits over competing alternatives.

II. BACKGROUND AND MOTIVATION

As mentioned in Section I, embedded devices can now run deep learning models. The co-location of data and processing offers significant benefits in leveraging distributed compute resources and timeliness of execution. For example, as we report in Section VI-B, local execution can return an image classification answer in about 20 ms versus over 50 ms if performed on an edge server after transmission over a local WiFi network.

This gain in timeliness, however, comes at a cost, as the weak(er) models running in embedded devices can underperform the stronger models that edge servers can run. Of interest though is the fact that differences in image classification accuracy are not systematic or even common. Those differences vary depending on the classifiers (weak and strong) used, but broadly fall in three categories: 1) images that both classifiers accurately classify; 2) images that both classifiers struggle to classify accurately; and 3) images that the strong classifier can handle but not the weak classifier.

The relative fraction of images in each category can vary, but for typical combinations of classifiers many images are in (a), a small fraction of images are in (b), and the remainder is in (c). For example, using the model of [10] with a computational footprint of 595MFlops as the strong classifier, and a 16-layer VGG-style model as the weak classifier, we find that across the ILSVRC validation set 70.00% of images are in 1), 4.47% are in 2), and the remaining 25.53% images are in 3) (Fig. 2 shows sample images from all three categories).

To improve overall classification accuracy, images in (c) should be offloaded, while offloading images in (a) or (b) is a waste of network bandwidth and edge resources. Any solution must, therefore, first identify images in (c), and then ensure that as many of them can be transmitted under the constraints imposed by the rate control mechanism (token bucket). This is difficult because of the often unpredictable nature of the arrival pattern of images in (c). Developing a policy capable of handling this complexity is one of the challenges the solution developed in this article addresses.

III. RELATED WORK

A. Edge Computing for Deep Learning Applications

Three general approaches have been explored to address bandwidth constraints in edge computing systems running deep neural network (DNN) models. We briefly review them.

Input Adaptation: In this approach the deep learning model is only deployed on the edge server, and the embedded devices offload all inputs to the edge server for inference. A variety of application-specific techniques have been exploited to reduce...
the size of the input data, including compression based on regions of interest (RoI) for object detection [11], [12], adaptation of video frame size and rate [13], exploiting motion vector for object tracking [12], face cropping and contrast enhancement for emotion recognition [14], and DNN-driven feedback regions for video streaming [15]. The key idea is to adapt the input as a function of the inference tasks toward preserving its accuracy. None of these solutions exploit the capabilities of modern embedded hardware to execute machine learning models locally.

Split Computing: This approach takes advantage of the computing capability of embedded devices by splitting the inference task between the device and the server, with each side completing part of the computation. The deep learning model is partitioned into head and tail models deployed on the device and the server, respectively. Early works [16], [17] partition the original DNN to minimize bandwidth utilization. More recent techniques [18], [19] modify the original DNN structure by injecting a bottleneck autoencoder that ensures a lightweight head model. Other works [20], [21] apply knowledge distillation techniques to train an autoencoder that serves as its head model and performs part of the inference task in addition to compressing the input. In all these solutions, the offloading rate is fixed once the splitting is selected.

Model Cascade and Early Exiting: The cascade of models framework [22], [23] relies on a cascade of models of increasing complexity and accuracy to achieve fast and accurate inference with deep learning models. A weak (and fast) model is used first, with stronger but computationally more expensive models invoked only if the weak model is not sufficiently confident of its output. In an edge computing setting, this naturally suggests deploying a pair of weak and strong models on embedded devices and servers, respectively, [24], [25]. Distributed DNNs (DDNNs) [26] have a similar focus but rely on early exiting to avoid redundant inferences. Intermediate exits (i.e., sub-branches) added to the DNN model allow inference queries to exit once confidence exceeds a threshold. As with the cascade framework, this readily maps to an edge computing setting by assigning early exit layers to the embedded device and the remaining layers to the edge server [27], [28]. Of particular relevance is [27] that seeks to select exit points based on network conditions. However, none of those works focus on enforcing explicit rate limits as imposed by token buckets.

B. Computation Offloading Algorithms in Edge Computing

Devising effective offloading policies is a fundamental problem in edge computing; one that has received significant attention. In most works, the offloading problem is formulated as an optimization problem that aims to minimize a metric such as latency and/or energy consumption, with, as in this article, deep Q-learning often the solution method of choice when dealing with dynamic and high-dimensionality inputs.

Focusing on a few representative examples, Chen et al. [30] considered a mobile edge computing setup with a sliced radio access network and wireless charging and relies on a double DQN approach to maximize a utility function that incorporates latency and energy consumption. Similarly, Min et al. [31] investigated a scenario where energy harvesting IoT devices make offloading decisions across multiple edge servers and use DQN to optimize offloading rate and edge server selection. Finally, Huang et al. [32] considered a wireless powered mobile edge computing system, and uses DQN to make real-time offloading and wireless resource allocation decisions that adapt to channel conditions.

In spite of their reliance on DQN for offloading decisions in an edge computing setting, there are several important differences with this article. The first is that those papers aim to optimize the general system or computational metrics rather than an application-specific metric (classification accuracy) that depends on both local and edge performance. In addition, although they also target an optimization under constraints, e.g., energy constraints [30], [31], [32], those give rise to different state representations and, therefore, problem formulation than the token bucket constraint we consider.

The problem of optimizing offload decisions to maximize inference accuracy under token bucket constraint, which we consider, was first introduced in [33] based on the cascade of models framework. The work formulated the offloading decision problem as a Markov decision process (MDP) assuming that the inputs to the classifier are periodic and independent and identically distributed (i.i.d.). It generalized the fixed offloading threshold model of the cascade framework [22], [23], [26], [27] to account for the token bucket constraints by adopting an offloading policy that, for every token bucket state, learned a threshold based on the local classifier confidence score. As alluded to in Section I, the periodic and i.i.d. assumptions may apply in some settings, but they are overly restrictive and unlikely to hold in many real-world applications. Devising policies capable of handling more complex image sequences is the focus and main contribution of this article.

IV. PROBLEM FORMULATION

Recalling the system of Fig. 1, images captured by cameras are classified by the local (weak) classifier and an offloading decision is made based on that classifier’s confidence and the
token bucket state. This offloading policy can be formulated as an online constrained optimization problem that accounts for: 1) the image arrival process; 2) the output of the (weak) classifier; 3) the token bucket state; and 4) the metric to optimize (classification accuracy).

In the rest of this section, we review our assumptions along each of those dimensions before formulating our optimization, with Section V introducing a possible solution suitable for the limited computational resources of embedded devices.

A. Input Process

The first aspect affecting offloading decisions is how inputs arrive at each device, both in terms of their frequency (rate) and temporal patterns. Our goal is to accommodate as broad a set of scenarios as possible, and we describe next our model for the input arrival process at each device.

For modeling sake, we assume a discrete-time system with an underlying clock that determines when images can arrive. Image arrivals follow a general interarrival time process with an underlying clock that determines when images can arrive. For modeling sake, we assume a discrete-time system with a general input process, a policy only making decisions at image arrival times.

Under the assumption of a general input process, a policy \(\pi \) is unknown so that neither it is not offloaded, and for image arrivals follow alternating periods of high and low intensity.

\[n[t + 1] = \min(n[t] - a[t] + r) \]

where \(a[t] \) is the offloading action at \(t \), which is 1 if an image arrives and is offloaded (this needs \(n[t] \geq 1 \), and 0 otherwise.

Again as in [33], we assume that both \(r \) and \(b \) are rational so that \(r = N/P \) and \(b = M/P \) for some integers \(N \leq P \leq M \). We can then scale up the token count by a factor of \(P \) and express it as \(\tilde{n} \).

\[\tilde{n}[t + 1] = \min(M, \tilde{n}[t] - P \times a[t] + N) \]

which ensures that \(\tilde{n}[t] \) is an integer in the set \(\{N, N + 1, \ldots, M\} \), with images offloaded only when \(\tilde{n}[t] \geq P \).

D. Offloading Reward and Decisions

The offloading policy seeks to “spend” tokens on images that maximize an application-specific metric (classification accuracy) while conforming to the token bucket constraints.

Suppose at time unit \(t \) the image \(x[t] \) with ground truth category \(y[t] \) arrives, so that, as defined earlier, the loss of the classification predictions of the weak and strong classifiers are \(L(V(x[t]), y[t]) \) and \(L(S(x[t]), y[t]) \), respectively. We define the offloading reward \(R[t] \) as the reduction in loss through offloading the image to the edge

\[R[t] = L(V(x[t]), y[t]) - L(S(x[t]), y[t]). \]

Under the assumption of a general input process, a policy \(\pi \) making an offloading decision \(a[t] \) at time \(t \) may need to account for the entire input history up to time \(t \) as well as the scaled token count \(\tilde{n}[t] \), namely,

\[a[t] = \pi(X[t], \tilde{n}[t]) \]

where \(X[t] \) is the input history from time 0 to time \(t \) that accounts for past image arrivals and classification outputs.

As alluded to in Section IV-B, we seek an offloading policy \(\pi^* \) that maximizes the expected sum of rewards over an infinite horizon with a discount factor \(\gamma \in (0, 1) \). In other words

\[\pi^* = \arg \max_{\pi} \mathbb{E} \sum_{t=0}^{\infty} \gamma^t a[t] R[t]. \]

Note that, when no image arrives at time \(t \), we implicitly assume that \(x[t] \) is null and that correspondingly so is the classification output. The offloading action \(a[t] \) and reward \(R[t] \) are then both 0. This ensures that the input history \(X[t] \) incorporates information on past image interarrival times and the classification outputs following each image arrival, with the policy only making decisions at image arrival times.
V. Solution

We now describe the approach we rely on to derive π^*. The policy assumes a given pair of image classifiers \mathcal{W}, \mathcal{S}, access to representative training data, and seeks to specify actions that maximize an expected discounted reward as expressed in (5). There are several challenges in realizing π^*.

The first is that, to improve classification accuracy by taking advantage of the edge server’s strong classifier, we need to identify images with a positive offloading reward (i.e., images in (c) as described in Section II). Based on (3), the reward associated with an input $x(t)$ depends on the outputs of both the weak and strong classifiers, $\mathcal{W}(x(t))$ and $\mathcal{S}(x(t))$, and knowledge of the true class $y(t)$ of the input. Unfortunately, neither $\mathcal{S}(x(t))$ nor $y(t)$ are available at the time an offloading decision needs to be made. We address this challenge through an approach similar to that of [33] that relies on an offloading metric $m(x)$, which learns an estimate of the offloading reward $R(t)$. We briefly review this approach in Section V-A.

The second more significant challenge is that, as reflected in (4), policy decisions may need the entire history of inputs (and associated metrics) to accurately capture dependencies in arrival patterns and classification outputs. The size of the resulting state space can translate into significant complexity, which we address through a deep reinforcement learning approach based on Q-values as in [35]. We expand on this approach in Section V-B.

In summary, the processing pipeline for each image in an embedded device has following steps: 1) the weak classifier classifies the image and produces an output $\mathcal{W}(x)$; 2) using $\mathcal{W}(x)$ the offloading metric $m(x)$ is computed as an estimate of the reward R; and 3) Q-values are then computed based on the current state (which includes a history of offloading metrics and input interarrival times, and the token bucket state) and an offloading decision is made. Of note is that Q-values rely only on current and local information, which allows for timely offloading decisions independent of the edge server.

A. Offloading Metric

As mentioned, each time an image x arrives, the only information available after its local processing is the output of the weak classifier $\mathcal{W}(x)$. The offloading metric $m(x)$ represents then an estimate for the corresponding offloading reward R. We compute $m(x)$ following the approach outlined in [33, Sec. 4.1], which uses a training set of K representative image samples to generate a mapping from the entropy $h(\mathcal{W}(x))$ of the weak classifier output to the expected reward.

The entropy $h(z)$ of a classification output z is given by

$$h(z) = -\sum_{y \in \mathcal{Y}} z_y \log z_y$$

which captures the classifier’s confidence in its result (recall that the classifier’s output is in the form of a probability distribution over the set of possible classes). This entropy is then mapped to an expected offloading reward using a standard radial basis function kernel

$$f(\hat{h}) = \frac{\sum_{k=1}^{K} \sigma(\hat{h}, h_k) \times R_k}{\sum_{k=1}^{K} \sigma(\hat{h}, h_k)}$$

where $\hat{h} = h(z)$ for classification output z, $\sigma(\hat{h}, h_k) = \exp(-\lambda(\hat{h} - h_k)^2)$, and R_k is the reward from the kth sample in the training set with h_k its entropy.

By setting $m(x) = f(h(\mathcal{W}(x)))$, we choose an expected reward that is essentially a weighted average over the entire training set of K images of reward values for training set inputs with similar entropy values, where images with entropy values closer to that of image x are assigned higher weights.

B. Deep Q-Learning Policy

With the metric $m(x)$ of image x in hand, the policy’s goal is to decide whether to offload it given also the system state as captured in $X(t)$ and $\bar{n}(t)$, the past history of image arrivals, classification outputs, and the token bucket state. The potential sheer size of the underlying state space makes a direct approach impractical. This leads us to exploring the use of deep Q-learning proposed in [35]. In the remainder of this section, we first provide a brief overview of deep Q-learning before discussing its mapping to our problem and articulating its use in learning from our training data set an offloading policy that seeks to maximize the expected offloading reward.

1) Background: Q-learning is a standard Reinforcement Learning approach for devising policies that maximize a discounted expected reward summed over an infinite horizon as expressed in (5). It relies on estimating a Q-value, $Q(s, a)$ as a measure of this reward, assuming that the current state is s and the policy takes action a. As mentioned above, in our setting, s consists of the arrival and classification history X and the token count \bar{n}, while a is the offloading decision.

Estimating Q-values relies on a Q-value function, which in deep Q-learning is in the form of a DNN, or DQN. Denoting this network as Q, it learns Q-values during a training phase through a standard Q-value update. Specifically, denoting the current DQN as Q^- let

$$Q^+(s, a) = R(s, a, s') + \gamma \max_a Q^- (s', a')$$

where s' is the state following action a at state s, $R(s, a, s')$ is the reward from this transition (available during the training phase) with γ the discount factor of (5), and both a and a' are selected from the set of feasible actions in the corresponding states s and s'.

The value $Q^+(s, a)$ is used as the “ground-truth,” with the difference between $Q^+(s, a)$ and $Q^-(s, a)$ representing a loss function to minimize, which can be realized by updating the weights of the DQN through standard gradient descent. The approach ultimately computes Q-values for all combinations of inputs (state s) and possible actions a, and the resulting policy greedily takes the action with maximum Q-value in each state

$$\pi(s) = \arg \max_a Q(s, a).$$

The challenges in learning the policy of (8) are the size of the state space and the possibility of correlation and nonstationary input distributions, which can all affect convergence. Deep Q-learning introduced two additional techniques to address those challenges.

Experience Replay: The Q-value updates of (7) rely on a (s, a, R, s') tuple, where we recall that the state s may include
the entire past history of the system, e.g., the tuple \((X, \bar{n})\) of (4) in our case. Deep Q-learning generates (through simulation\(^1\)) a set of \((s, a, R, s')\) tuples, stores them in a so-called replay buffer, which it then randomly samples to perform Q-value updates. This shuffles the order of the collected tuples so that the learned Q-values are less likely to diverge because of bias from groups of consecutive tuples.

Target Network: A Q-value update changes the weights of the DQN and consequently its Q-value estimates in subsequent updates. Deep Q-learning makes a separate copy of the DQN, known as the target network, \(Q_{\text{target}}\), which it then uses across multiple successive updates. Specifically, the Q-value update of (7) is modified to use

\[
Q^+(s, a) = R(s, a, s') + \gamma \max_{a'} Q_{\text{target}}(s', a').
\]

Weights of the current DQN are still modified using gradient descent after each update, but subsequent values continue to be computed using \(Q_{\text{target}}\). The two networks are eventually synchronized, i.e., \(Q_{\text{target}}\) is updated to the current DQN, but limiting the frequency of such updates has been shown to improve learning stability.

2) **DQN Setup:** This section introduces the architecture and setup of the DQN used to estimate Q-values for making efficient offloading decisions based on the structure of the input process, dependencies in the classification output, and the token bucket state. Aspects of relevance to our DQN include its inputs and outputs, as well as its internal architecture.

Our system state consists of the input \(X\) (image arrivals and classification history) and the (scaled) token count \(\bar{n}\), i.e., \(s = (X, \bar{n})\). For computational efficiency, rather than using raw images, we instead rely on the offloading metrics \(m(x)\) to estimate Q-values.\(^2\) The input history \(X\), therefore, reduces to \((I, m)\), i.e., the history of image interarrival times and offloading metrics. As mentioned earlier, the state space is independent of the strong classifier, so that offloading decisions can be made immediately based only on local information.

With this state definition, Q-values are produced for each combination of \((X, \bar{n}, a)\), where \(a\) is a (feasible) offloading decision. This suggests \((X, \bar{n}, a)\) as our input to the DQN. Such a selection is, however, relatively inefficient; both from a runtime and a training standpoint. From a runtime perspective, it calls for multiple passes through the DQN, one for each possible action. More importantly, a different choice of input can significantly improve training efficiency.

In particular, token states are a deterministic function of offloading actions and our inputs (and metrics) are statistically independent of actions. This allows the parallel computation of Q-values across possible actions, and computing (and updating during the training phase) Q-values for all token bucket states \(\bar{n}\) at the same time without resampling training data based on policy, i.e., avoid doing proper reinforcement learning. This can significantly improve training efficiency. As a result, we select \(X\) as our system input, with our DQN producing a set of \(2M - P - N + 2\) outputs (Q-values), one for each combination of token bucket states \(\bar{n}\) and offloading actions \(a \in \{0, 1\}\).

Many recent works in deep reinforcement learning involve relatively complex deep convolutional neural networks (CNNs) to handle high-dimensional inputs such as raw images, or rely on more sophisticated algorithms than DQN, e.g., proximal policy optimization (PPO) [36] or Rainbow [37]. Initial experiments with CNNs did not yield meaningful improvements over a lightweight multilayer perceptron (MLP), possibly from our state space relative low dimensionality. As a result, given our focus on a light computational footprint, we opted for a simple MLP architecture with 5 layers and 64 units in each layer,\(^4\) and the relative simplicity of the DQN algorithm. Exploring the feasibility and benefits of more sophisticated RL algorithms and more complex architectures such as recurrent neural networks (RNNs) is a topic we leave to future work.

3) **DQN Learning Procedure:** As our inputs, \(X\) are independent of actions and the token state is a deterministic function of action, we can limit ourselves to generating a sequence of image arrivals and corresponding the offloading metrics and rewards as our training set, which we store in our replay buffer.

During training, the replay buffer is randomly sampled, each time extracting a finite history window (segment) of length \(T\), which is assumed sufficient to allow learning the joint distribution of interarrival times and classification outputs. Segments sampled from the beginning of the image sequence are zero-padded to ensure a window size of \(T\) for all segments. For each segment, we create an input tuple \(X = (I, m)\) that consists of the first \(T - 1\) image interarrival times and the corresponding offloading metrics. Conversely, the tuple \(X'\) includes the same information but for the last \(T - 1\) entries in the segment, and represents our next “input state.” We can then adapt the Q-value update expression of (9) as follows:

\[
Q^+(X, \bar{n}; a) = a \cdot R + \gamma \max_{a'} Q_{\text{target}}(X', \bar{n}'; a').
\]

where \(\bar{n}\) is the token state when the current image (last entry in \(X\)) arrives, \(R\) is the reward from offloading it, \(a\) is the offloading decision for that image (\(a = 0\) when \(\bar{n} < P\)), and \(\bar{n}'\) is the updated token state following action \(a\). Note that since no additional images can be offloaded until the next one arrives, \(\bar{n}'\) can be readily computed from \(\bar{n}, a\), and the last interarrival time \(I_T\) in \(X'\), namely,

\[
\bar{n}' = \min(M, \bar{n} - P \times a + N \times I_T).
\]

This also means that for any pair \((X, X')\) from a given segment in our replay buffer, we can simultaneously update all Q-values associated with different token states. This significantly speeds-up convergence of our learning process.

VI. Evaluation

Our goal is to demonstrate that the DQN-based policy: 1) estimates Q-values efficiently with negligible overhead in...
embedded devices and 2) can learn complex input structures to realize offloading decisions that outperform state-of-the-art solutions. To that end, we implemented a testbed emulating a real-world edge computing setting, and, in addition to simulations, ran extensive experiments to evaluate the policy’s runtime efficiency on embedded devices and its performance for different configurations. Section VI-A reviews our experimental setup. Section VI-B presents our implementation and empirical evaluation of runtime efficiency in embedded systems. Finally, Section VI-C evaluates our policy’s efficacy in making offloading decisions for different input structures.

A. Experimental Setup

1) Classification Task: We rely on the standard task of image classification with 1000 categories from the ImageNet large-scale visual recognition challenge (ILSVRC) to evaluate the classification performance of our offloading policy.

Our classification metric is the top-5 loss (or error). It assigns a penalty of 0 if the image is in the five most likely classes returned by the classifier and 1 otherwise. The strong classifier in our edge server is that of [10] with a computational footprint of 595MFlops. Our weak classifier is a “home-grown” 16 layers model acting on low-resolution 64 × 64 images with 13 convolutional layers (8 with 1 × 1 kernels and 5 with 3 × 3 kernels) and 3 fully connected layers.

Given our classifiers and the top-5 loss metric, the function \(f(h) \) of (6) that maps the entropy\(^5\) of the weak classifier output to the offloading rewards across the training set is reported in Fig. 3. We note that the relatively low prediction accuracy of our weak qualifier results in a monotonic mapping from entropy to metric, i.e., in most instances where the weak classifier is very uncertain about its decision, the strong classifier can provide a more confident (and accurate) output.

2) Image Sequence Generation: The other main aspect of our experimental setup is our “image generators.” They determine both the image arrival process and how those images are sampled from the ImageNet dataset. The former affects temporal patterns in image arrivals at the weak classifier, while the latter determines potential similarities among successive classification outputs. To test our solution’s ability to infer such patterns, distinct sequence generators separately control image arrivals and similarities in classification outputs.

 Image Arrival Process: We rely on a simple two-state Markov-Modulated mechanism to create variable image arrival patterns. Each state is associated with a different but fixed image interarrival time, \(I_1 \) and \(I_2 \), with each state having a given probability \(r_{prob_i} \), \(i = 1, 2 \), of transitioning to the other state. Given our discrete-time setting, up to one image arrives in each time slot, and the two states emulate alternating periods of high and low image arrival rates. Of interest is the extent to which DQN recognizes when it enters a state with a lower/higher image arrival rate and adjusts its offloading decisions based not only on the token bucket state but also its estimate on when the next images might arrive.

 Image Selection Process: In the simplest instance, images are selected randomly from the ImageNet dataset. This results in classification outputs with metrics randomly distributed across the ImageNet distribution. As mentioned in Section IV-B, this may not be reflective of many practical situations. To create patterns of correlated confidence outputs, we rank-order the ImageNet dataset by images’ offloading metric, and sample it using a simple two-parameter model based on a sampling spread \(sp \) and a location reset probability \(r_{prob} \). The reset probability \(r_{prob} \) determines the odds of jumping to a new random location in the rank-ordered ImageNet dataset, while the spread \(sp \) identifies a range of images, and, therefore, metrics, from which to randomly select once at a location. Correlation in the metrics of successive classification outputs can then be varied by adjusting \(sp \) and \(r_{prob} \).

3) DQN Configuration: We use the official ILSVRC validation set with 50,000 images (1000 categories with 50 images each). We evenly split the validation set into three subsets; two are used as training sets and the third as test set. Given a token bucket configuration and sequence generator settings, we generate a training sequence of \(10^8 \) images from the training sets along with corresponding interarrival times and metrics. This sequence is stored in the replay buffer from which we randomly sample (with replacement) input history segments with a fixed length history window of \(T = 97 \) to train DQN. The effect of the history window length \(T \) on DQN’s performance is investigated in Section VI-C4. Throughout the training procedure, we synchronize the target network with DQN every \(2^{14} \) segments, and perform 4000 synchronizations, for a total of \(4000 \times 2^{14} \approx 6.55 \times 10^7 \) segments for \(Q \)-value updates. The DQN policy is then evaluated with test sequences of \(10^7 \) images from the test set sampled using the same sequence generator settings.

4) Evaluation Scenarios: In evaluating DQN, we vary image arrival patterns, classification output correlation, and token bucket parameters, and compare DQN to several benchmarks.

The first is a lower bound that corresponds to a setting where the weak classifier is limited to only offloading a fixed fraction of images based on its token rate \(r \) (i.e., images with offloading metrics above the \((1 - r) \)th percentile), but it is not constrained by the bucket size (equivalent to an infinite bucket size). This lower bound is often not feasible, but barring knowing an optimal policy, it offers a useful reference.

\(^5\)Prior to computing the entropy, we calibrate the predictions of the weak classifier using temperature-scaling as outlined in [38].
TABLE I
TIME SPENT ACROSS COMPONENT THE IMAGE CLASSIFICATION PIPELINE

Time	Weak Classifier	DQN	Transmission	Strong Classifier
Absolute: mean(σ) (ms)	20.62(0.57)	0.25(0.07)	40.97(9.30)	11.64(5.79)
Relative: (not offloaded)	98.78%	1.22%	–	–
(offloaded)	27.96%	0.33%	55.84%	15.87%

We also compare DQN to two practical policies. The first is the MDP policy introduced in [33]. It is oblivious to any structure in either the image arrival process or the classifier output (it assumes that they are i.i.d.), but is cognizant of the token bucket state and attempts to adapt its decisions based on the number of available tokens and its estimate of the long-term image arrival rate. The second, denoted as Baseline, is a fixed threshold policy commonly adopted by many works in the model cascade framework [22], [23], [26], [27]. Baseline uses the same threshold as lower bound, i.e., attempting to offload images with offloading metrics above the $(1 - r)$th percentile, but in contrast to lower bound, it needs to conform to the token bucket constraint at run time. Further, unlike DQN, it is oblivious to the token bucket state and any structure in either the arrival process or the classification output.

B. Runtime Efficiency

To evaluate the feasibility of our DQN-based policy, we implemented it on a testbed consisting of an embedded device and an edge server connected over WiFi, and quantified its overhead by comparing its runtime execution time on the embedded device to the time spent in other components in an end-to-end classification task. Next, we briefly describe our testbed and methodology.

1) Testbed Configuration: Our testbed comprises a Raspberry Pi 4 Model B 8 GB that costs $75 as the embedded device and a server equipped with an Intel Core i7-10700K CPU @ 3.80 GHz and Nvidia GeForce RTX 3090 GPU as the edge server. The pair of weak and strong classifiers of Section VI-A are deployed on the embedded device and the edge server, respectively. To further accelerate the inference speed of the weak classifier, we convert the classifier to a float16 TensorFlow Lite model and accelerate the inference with a Coral USB accelerator. The DQN is also converted to a float16 TensorFlow Lite model. The Raspberry Pi and the edge server communicate over a WiFi network using the 802.11/n mode from the 2.4-GHz frequency band.

We resize the ILSVRC validation images to 236×236 in the preprocessing stage to unify the input images size to 1.34×10^6 bits, and set the image arrival rate to 5 images/s. To introduce correlation in consecutive classifications, we use $sp = 0.1$ and $rprob = 0.1$ for the classifier output process.

The token bucket is configured with a rate $r = 0.1$ (i.e., a long-term offloading rate of one out of 10 images or 0.67 Mb/s) and a bucket size $b = 4$ (i.e., allowing the offloading of up to 4 consecutive images). We note that while the rate of 0.67 Mb/s is well below the bandwidth of the WiFi network, that bandwidth would in practice be shared among many embedded devices, so that rate controlling their individual transmissions, as we do, would be required.

2) Computation Cost: To quantify the overhead that DQN imposes, we measure where time is spent across the different components of the classification pipeline. The embedded device first classifies every image using its weak classifier, and then executes the DQN model to estimate the Q-values before making an offloading decision that accounts for the current token bucket state. Offloaded images are transmitted to the edge server over the network and finally classified by the strong classifier. Hence, a full classification task includes four main stages: 1) weak classifier inference; 2) DQN inference; 3) network transmission; and 4) strong classifier inference, which all contribute to how long it takes to complete.

As shown in Table I, DQN only takes 0.25 ms on average. This is just over 1% of the time spent in the weak classifier, and for offloaded images, it is less than a third of a percent of the total classification pipeline time. This demonstrates that the benefits DQN affords impose a minimal overhead. Quantifying those benefits is the focus of the next section.

C. Policy Performance

In this section, we evaluate DQN’s performance across a range of scenarios, which illustrate its ability to learn complex input structures and highlight how this affects its offloading decisions. To that end, we proceed in three stages. In the first two, we introduce complexity in only one dimension of the input structure, i.e., correlation is present in either classification outputs or image arrivals. This facilitates developing insight into how such structure affects DQN’s decisions. In the third stage, we create a scenario with complexity in both classification outputs and image arrivals, and use it to demonstrate DQN’s ability to learn policies when complexity spans multiple dimensions. Finally, as a sanity check, we evaluate how different choices of model parameters, including history window length T, number of hidden layers, and number of units in each layer, affect the performance of DQN.

1) Deterministic Image Arrivals and Correlated Classification Outputs: To explore DQN’s ability to learn about the presence of correlation in classification outputs,
Fig. 4. Traces of offloading metrics, token bucket states, and time spent in the image classification pipeline in a representative experiment.

Fig. 5. Offloading policies performance as a function of classifier output correlation. Correlation decreases as spread sp (Top) or location resetting probability $rprob$ (Bottom) increase. Token bucket: $r = 0.1, b = 4$. We first fix the token bucket parameters to $r = 0.1$ and $b = 4$, and vary the two hyper-parameters of our sequence generator to realize different levels of classification output correlation: the sampling spread sp is varied from 0 (single image) to 1 (full dataset and, therefore, no correlation), while the reset probability $rprob$ is varied from 10^{-3} to 1 (no correlation). Fig. 5 reports the top-5 loss for DQN and our three benchmarks.

As expected, when either sp or $rprob$ are large so that classification output correlation is minimal, both DQN and MDP perform similarly and approach the performance of the lower bound. However, when classification output correlation is present, DQN consistently outperforms MDP (and the baseline). As correlation increases, performance degrades when compared to the lower bound, but this is not surprising given the token bucket constraints. Correlation in the classification output means that sequences of either high or low metrics are more likely, which are harder to handle under token bucket constraints. A sequence of high metric images may rapidly deplete a finite token bucket, so that it may not be possible to offload all of them, irrespective of how forward looking the policy is. Conversely, a sequence of low metric images may result in wasted tokens (the bucket fills up) even if, as we shall see, the DQN policy is able to mitigate this by recognizing that it has entered such a period and adapting its behavior.

This is illustrated in the top portion of Fig. 7 that reports traces of classification outputs and policy decisions for a sample configuration of Fig. 5 (sp restricts classification output metrics to a range of 10% of the full set, while $rprob$ results in an average of 100 images consecutively sampled from that range). When compared to MDP, DQN recognizes when it enters periods of low metrics and proceeds to offload some low metric images while MDP does not. Conversely, both policies perform mostly similarly during periods of high metric.

Fig. 5 relied on a single token bucket configuration, $(r, b) = (0.1, 4)$. Fig. 6 extends this by still relying on a particular pattern of classification output correlation ($sp = 0.1$ and $rprob = 0.1$), but now for different token bucket configurations. Specifically, we select three different token rates, $r = 0.05, 0.1, 0.25$ and for each vary the token bucket depth b from 1 to 20. The figure demonstrates that DQN consistently outperforms MDP and Baseline, even if the difference diminishes as either r or b increases. This is expected. A larger token rate lowers the cost of missed offloading opportunities because of wasted tokens, while a larger bucket depth makes
offloading decisions less dependent on accurately predicting classification output correlation in successive images.

We illustrate the latter in Fig. 7, where we again plot traces of the decisions that the DQN and MDP policies make for a scenario with correlated output metrics (sp = 0.1 and rprob = 0.01) and two different bucket depths, b = 4 (Top) and b = 20 (Bottom). We note that the value rprob = 0.01 differs from that used in Fig. 6, i.e., rprob = 0.1. The motivation is visual clarity, as the lower rprob value stretches the periods during which classification output metrics are sampled from a given range, which amplifies differences in policy decisions. Comparing the Top and Bottom parts of the figures, we see that when b is larger, DQN recognizes that the odds of wasting tokens during periods of low metrics are lower, which results in fewer offloading decisions during those times. This is especially so after periods of high metrics, e.g., after t ≈ 500, when the token bucket count is low.

2) Markov-Modulated Image Arrivals and I.I.D. Classification Outputs: Next, we proceed to demonstrate that DQN can also learn variations in the structure of the image arrival process, and in particular changes in the arrival rate that extend over long enough periods of time to affect offloading decisions. As the focus is on variations in the image arrival process, we rely on a simple i.i.d. structure for the classifier outputs.

As in the previous section, we chose r = 0.1, b = 4, as our base token bucket configuration, and evaluate offloading performance under Markov-modulated image arrival processes. We rely on two base configurations. Configuration 1 alternates between high and low-intensity states with constant image interarrival times of I1 = 1 and I2 = 3, i.e., images in every time slot versus every three-time slots. We set the ratio of the transition probabilities out of each state to two, i.e., tprob1/tprob2 = 2 so that the low-intensity state lasts twice as long, and vary the state transition probability out of state 1, tprob1, from 10−3 to 10−0.5. Configuration 2 uses I1 = 1 and I2 = 6, i.e., images again in every time slot in the high-intensity state, but only every six-time slots in the low-intensity state, with tprob1/tprob2 = 4, i.e., a low-intensity state that now lasts four times as long. As with the first configuration, we vary tprob1 from 10−3 to 10−0.5.

The results are in Fig. 8, which reports the average top-5 loss for DQN and our three benchmarks for configurations 1 (Left) and 2 (Right). DQN’s ability to learn the structure of the arrival process improves performance (lower Top-5 loss) over both MDP and Baseline, with those improvements diminishing as correlation in the arrival process decreases (increased transition probabilities out each state).

To better understand how learning about the arrival process affects DQN’s offloading decisions, we again use a sample trace showing the decisions of both DQN and MDP for a sequence of image arrivals. To illustrate DQN’s ability to “recognize” rate transitions, the trace explicitly includes one. The results are reported in the top portion of Fig. 10 for configuration 1 with state transition probabilities of tprob1 = 0.001, tprob2 = 0.0005. The transition from high to low arrival intensity is indicated by a vertical line in the figure.

In the high arrival rate state (left of the dividing line), DQN is more conservative than MDP with slightly fewer offloading decisions. This is, however, offset by its ability to offload some higher metric images than MDP whose more aggressive behavior resulted in an empty token bucket when those images arrived. Conversely, once DQN recognizes that it has transitioned to a state with a lower image arrival rate (right of the dividing line), it proceeds to be more aggressive and selects more lower metric images as it knows that the lower image arrival rate means that tokens will be replenished faster relative to image arrivals. In contrast, MDP ends-up wasting tokens it could have used during periods of lower arrival rate.

Next, we investigate the extent to which the results of Fig. 8 remain under different token bucket configurations. For that purpose, we select configuration 1 with I1 = 1, I2 = 3 and tprob1 = 0.001, tprob2 = 0.0005. Fig. 9 reports the performance (top-5 loss) of DQN and our three benchmarks across a range of token bucket configurations, namely, token rates of r = 0.05, 0.1, 0.25, and token bucket depths that vary from b = 1 to 20. The figure illustrates that DQN continues to outperform MDP across all configurations, even if, as with Fig. 6, the differences are smaller than between MDP and MDP.
the Baseline. The latter ignores the token bucket state, which remains the main contributor to differences in performance.

Toward better understanding factors that influence differences between DQN and the MDP policy in the presence of arrival correlation, the bottom part of Fig. 10 reports a trace of image arrivals ($I_1 = 1, I_2 = 3, \text{tprob}_1 = 0.001, \text{tprob}_2 = 0.0005$) and policy decisions that parallels that of the top part of the figure, but for a different token bucket depth, i.e., $b = 20$ versus $b = 4$. The bigger bucket depth means that MDP’s overly aggressive behavior during periods of high arrival rate (it still assumes the lower long-term rate) has less of an impact, as the larger bucket makes it easier to sustain the higher offloading rate (at least for a period of time). This is illustrated by the fewer policy decision differences between MDP and DQN in the bottom part of the figure’s left-hand side. Conversely, the larger bucket also means that DQN needs not to be as aggressive during periods of lower arrival rate since the larger bucket reduces the odds of wasting tokens by not offloading enough images. This is reflected in the higher metrics used by DQN in its offloading decisions in the right-hand-side of the bottom part of Fig. 10.

3) Markov-Modulated Image Arrival and Correlated Classification Outputs: Finally, because the combination of variability/correlation in both classification accuracy/image arrival rates makes for a much more challenging (higher dimensionality) input structure, it is important to test DQN’s ability to learn such structure toward making effective policy decisions. Due to lack of space, we omit to presenting the results, but they are available in [39] and confirm that DQN is indeed capable of accounting for this higher level of input complexity.

4) DQN Modeling Parameters: In this last section, we investigate how the DQN’s parameters, including the history window length T, the number of layers, and the number of units in each layer, impact the performance of our policy. We report results for a setting that combines both variable image arrival rate and correlated classification output, as it represents a more complex environment for which the choice of window length can, therefore, be anticipated to have a greater impact.

Fig. 11 reports the performance (average top-5 loss) of DQN (and MDP)7 for different values of $\log_2 T$. The lowest value ($T = 2$) corresponds to a setting where DQN uses only the current offloading metric and image interarrival time, while the largest setting of $T = 128$ offers enough samples for DQN to learn the correlation structure in both arrivals and classification outputs.

The results display relatively limited sensitivity to the choice of T even if some variations are present. Of note is the fact that even in the absence of any history ($T = 2$), DQN still outperforms MDP because it can use its knowledge of the current interarrival time to make better policy decisions (MDP only has access to the current offloading metric and token bucket state). As T increases and more history information becomes available, DQN quickly stabilizes at its best performance and remains insensitive to T over a wide range. Performance eventually starts to decrease as T becomes too large. This is likely because its simple architecture (a 5×64 MLP) does not contain a sufficiently large number of parameters to interpret all the information within the high-dimensionality input.

We also performed a grid search on the model parameters by varying the number of hidden layers from 3 to 8, and the base 2 logarithm of the number of units in each layer from 4 to 8. As when varying the history window length T, we observed only small variations (within 1%) in the relative difference between the best and the worst performance for the top-5 loss. This indicates limited sensitivity of the model to these choices.

7MDP is included only to show that DQN outperforms it for all T values.
VII. CONCLUSION

This article investigates a distributed image classification problem in an edge-assisted AoIoT setting, where classification accuracy is improved by dynamically offloading some images to an edge server subject to network bandwidth constraints. Managing access to the shared network is regulated through a token bucket that constrains offloading decisions. This article devises and evaluates a policy that manages offload decisions from devices under such constraints while optimizing classification accuracy. Because image arrival patterns and classification results can be arbitrary, the policy needs to accommodate complex input sequences. To that end, we investigate the use of DQN to realize such a policy, and demonstrate its ability to effectively "learn" effective policy decisions. Experiments demonstrate both the efficacy of the DQN-based offloading policy and its runtime efficiency on embedded devices with limited computational resources.

REFERENCES

[1] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D. Lane, “EmiBench: Quantifying performance variations of deep neural networks across modern commodity devices,” in Proc. 3rd Int. Workshop Deep Learn. Mobile Syst. Appl., 2019, pp. 1–6.
[2] A. Ignatov et al., “AI benchmark: All about deep learning on smartphones in 2019,” in Proc. IEEE/ACM Int. Conf. Comput. Vis. Interaction (ICCVI), 2019, pp. 3617–3635.
[3] S. Wang, A. Pathania, and T. Mitra, “Neural network inference on mobile devices,” ACM Trans. Softw. Eng. Test., vol. 37, no. 5, pp. 50–57, Oct. 2020.
[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 4510–4520.
[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural network with pruning, trained quantization and Huffman coding,” 2015, arXiv:1510.00149.
[6] B. Jacob et al., “Quantization and training of neural networks for efficient integer-arithmetic-only inference,” in Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 2704–2713.
[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.
[8] D. Medi and K. Ramasamy, Network Routing, 2nd ed. Boston, MA, USA: Morgan Kaufmann, 2018.
[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst. (NeurIPS), 2012, pp. 1097–1105.
[10] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train embedded devices with limited computational resources.
[11] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang, “Distributed and efficient object detection in edge computing: Challenges and solutions,” IEEE Netw., vol. 32, no. 6, pp. 137–143, Nov./Dec. 2018.
[12] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection for mobile augmented reality,” in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2019, pp. 1–16.
[13] Q. Liu and T. Han, “DARE: Dynamic adaptive mobile augmented reality with edge computing,” in Proc. 26th Int. Conf. Inf. Netw. Protocols (ICNP), 2018, pp. 557–570.
[14] G. Muhammad and M. S. Hossain, “Emotion recognition for cognitive edge computing using deep learning,” IEEE Internet Things J., vol. 8, no. 23, pp. 16894–16901, Dec. 2021.
[15] K. Du et al., “Server-driven video streaming for deep learning inference,” in Proc. Annu. Conf. ACM Spec. Interest Group Data Commun. Appl. Technol. Archit. Protocols Comput. Commun. (SIGCOMM), 2020, pp. 557–570.
[16] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the cloud and mobile edge,” SIGARCH Comput. Archit. News, vol. 45, no. 1, pp. 615–629, 2017.