Supporting information

Accurate identification of degraded products of Aflatoxin B₁ under UV Irradiation based on UPLC-Q-TOF-MS/MS and NMR analysis

Yan-Duo Wang¹, Cheng-Gang Song², Jian Yang³, Tao Zhou⁴, Yu-Yang Zhao³, Jian-Chun Qin², Lan-Ping Guo³, Gang Ding¹

¹Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People’s Republic of China.
²College of Plant Sciences, Jilin University, Changchun, Jilin 130062, People’s Republic of China.
³State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People’s Republic of China.
⁴Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People’s Republic of China.

†These authors have contributed equally to this work and share the first authorship.
Table of contents

Table S1 Mass accuracy measurement of 10 degraded products of aflatoxin B₁ in methanol solvent, using UPLC-Q-TOF-MS/MS.

Table S2 Mass accuracy measurement of 7 degraded products of aflatoxin B₁ in acetone solvent, using UPLC-Q-TOF-MS/MS

Figure S1 Analysis of AFB₁ based on HR-ESI and MS/MS data at m/z 313, t_R = 6.09 min.

Figure S2 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 345, t_R = 4.70 min, 5.40 min, 5.84 min and 5.99 min.

Figure S3 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 361, t_R = 4.47 min and 4.82 min.

Figure S4 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 359, t_R = 4.94 min, 7.08 min and 7.30 min.

Figure S5 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 391, t_R = 6.41 min.

Figure S6 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 331, t_R = 4.06 min and 4.18 min.

Figure S7 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 347, t_R = 3.48 min.

Figure S8 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 371, t_R = 4.34 min and 5.63 min.

Figure S9 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 401, t_R = 4.86 min and 6.54 min.

Figure S10 ^1^H-NMR spectrum of compound 1 (Acetone-d₆, 600MHz)

Figure S11 (a-c) ^1^C-NMR spectrum of compound 1 (Acetone-d₆, 125 MHz)

Figure S12 ^1^H-^1^H COSY spectrum of compound 1 (Acetone-d₆, 500 MHz)

Figure S13 HSQC spectrum of compound 1 (Acetone-d₆, 500 MHz)

Figure S14 HMBC spectrum of compound 1 (Acetone-d₆, 500 MHz)

Figure S15 ROESY spectrum of compound 1 (Acetone-d₆, 500 MHz)

Figure S16 HR-ESI-MS spectrum of compound 1

Figure S17 ^1^H-NMR spectrum of compound 2 (Acetone-d₆, 600MHz)

Figure S18 HR-ESI-MS spectrum of compound 2

Figure S19 ^1^H-NMR spectrum of compound 3 (Acetone-d₆, 600 MHz)

Figure S20 (a-c) ^1^C-NMR spectrum of compound 3 (Acetone-d₆, 125 MHz)

Figure S21 ^1^H-^1^H COSY spectrum of compound 3 (Acetone-d₆, 500 MHz)
Figure S22 HSQC spectrum of compound 3 (Acetone-d_6, 500 MHz)
Figure S23 HMBC spectrum of compound 3 (Acetone-d_6, 500 MHz)
Figure S24 ROESY spectrum of compound 3 (Acetone-d_6, 500 MHz)
Figure S25 HR-ESI-MS spectrum of compound 3
Figure S26 1H-NMR spectrum of compound 4 (Acetone-d_6, 600 MHz)
Figure S27 (a-c) 13C-NMR spectrum of compound 4 (Acetone-d_6, 125 MHz)
Figure S28 1H-1H COSY spectrum of compound 4 (Acetone-d_6, 500 MHz)
Figure S29 HSQC spectrum of compound 4 (Acetone-d_6, 500 MHz)
Figure S30 HMBC spectrum of compound 4 (Acetone-d_6, 500 MHz)
Figure S31 ROESY spectrum of compound 4 (Acetone-d_6, 500 MHz)
Figure S32 HR-ESI-MS spectrum of compound 4
Figure S33 1H-NMR spectrum of compound 5 and 6 (Pyridine-d_5, 500MHz)
Figure S34 1H-NMR spectrum of compound 6 (CD$_3$OD, 500 MHz)
Figure S35 (a, b) 13C-NMR spectrum of compound 5 and 6 (Pyridine-d_5, 125 MHz)
Figure S36 1H-1H COSY spectrum of compound 5 and 6 (Pyridine-d_5, 500 MHz)
Figure S37 HSQC spectrum of compound 5 and 6 (Pyridine-d_5, 500 MHz)
Figure S38 HMBC spectrum of compound 5 and 6 (Pyridine-d_5, 500 MHz)
Figure S39 ROESY spectrum of compound 5 and 6 (Pyridine-d_5, 500 MHz)
Figure S40 HR-ESI-MS spectrum of compound 5
Figure S41 HR-ESI-MS spectrum of compound 6
Figure S42 1H-NMR spectrum of compound 7 (Pyridine-d_5, 500MHz)
Figure S43 13C-NMR spectrum of compound 7 (Pyridine-d_5, 125 MHz)
Figure S44 1H-1H COSY spectrum of compound 7 (Pyridine-d_5, 500 MHz)
Figure S45 HSQC spectrum of compound 7 (Pyridine-d_5, 500 MHz)
Figure S46 HMBC spectrum of compound 7 (Pyridine-d_5, 500 MHz)
Figure S47 ROESY spectrum of compound 7 (Pyridine-d_5, 500 MHz)
Figure S48 HR-ESI-MS spectrum of compound 7
Table S1 Mass accuracy measurement of 10 degraded products of aflatoxin B₁ in methanol solvent, using UPLC-Q-TOF-MS/MS.

Retention time (min)	Experimental mass (m/z)	Theoretical mass (m/z)	Elemental composition	Error mDa	Error ppm	DBE	Scores (%)
4.47	361.0912	361.0923	C₁₈H₁₇O₈	-1.1	-3.0	11	100
4.70	345.0960	345.0974	C₁₈H₁₇O₇	-1.4	-4.1	11	98.74
4.82	361.0905	361.0923	C₁₈H₁₇O₈	-1.8	-5.0	11	99.29
4.93	359.1118	359.1131	C₁₉H₁₉O₇	-1.3	-3.6	11	97.72
5.40	345.0963	345.0974	C₁₈H₁₇O₇	-1.1	-3.2	11	99.70
5.84	345.0971	345.0974	C₁₈H₁₉O₇	0.3	0.9	11	100
5.99	345.0963	345.0974	C₁₈H₁₇O₇	-1.1	-3.2	11	86.77
6.41	391.1380	391.1393	C₂₀H₂₁O₈	-1.3	-3.3	10	99.18
7.08	359.1127	359.1131	C₁₉H₁₉O₇	-0.4	-0.9	11	100
7.30	359.1121	359.1131	C₁₉H₁₉O₇	-1.0	-2.8	11	98.97

Table S2 Mass accuracy measurement of 7 degraded products of aflatoxin B₁ in acetone solvent, using UPLC-Q-TOF-MS/MS.

Retention time (min)	Experimental mass (m/z)	Theoretical mass (m/z)	Elemental composition	Error mDa	Error ppm	DBE	Scores (%)
3.48	347.0758	347.0767	C₁₇H₁₅O₈	0.9	2.6	11	99.13
4.06	331.0805	331.0818	C₁₇H₁₅O₇	1.3	3.9	11	54.98
4.18	331.0801	331.0818	C₁₇H₁₅O₇	1.7	5.1	11	79.61
4.34	371.1112	371.1131	C₂₀H₂₁O₈	1.9	5.1	12	98.58
4.86	401.1224	401.1236	C₂₀H₂₁O₇	1.2	3.0	12	100
5.63	371.1121	371.1131	C₂₀H₂₁O₇	1.0	2.7	12	99.33
6.53	401.1221	401.1236	C₂₁H₂₁O₈	1.5	3.7	12	100
Figure S1 Analysis of AFB₁ based on HR-ESI and MS/MS data at m/z 313, \(t_R = 6.09 \) min.
Figure S2 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 345, $t_R = 4.70$ min, 5.40 min, 5.84 min and 5.99 min.
Figure S3 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 361, $t_R = 4.47$ min and 4.82 min.
$m/z \ 361, \ t_R = 4.47 \ min$

$1: \ TOF \ MS \ ES^+ \ 361.0912 \ 2.87e5$

$m/z \ 361, \ t_R = 4.82 \ min$

$1: \ TOF \ MS \ ES^+ \ 361.0905 \ 1.12e6$
Figure S4 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 359, t_R = 4.94 min, 7.08 min and 7.30 min.
m/z 359, \(t_R = 4.94 \) min

m/z 359, \(t_R = 7.08 \) min
Figure S5 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 391, t_r = 6.41 min.
Figure S6 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 331, $t_R = 4.06$ min and 4.18 min.
Figure S7 Analysis of degraded products structures based on HR-ESI and MS/MS data at \(m/z \) 347, \(t_R = 3.48 \) min.
Figure S8 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 371, $t_R = 4.34$ min and 5.63 min.
m/z 371, $t_R = 5.63$ min

$1: \text{TOF MS ES}^+$

7.70e3

273.0743

271.0581

259.0582

257.0785

256.1534

269.0783

261.0754

264.1920

261.1521

264.1920

261.1521

278.1734

274.0793

275.0527

$5.25e6$

371.1121

289.0694

285.0749

313.0696

290.0731

353.1009

345.0953

320.1839

369.0960

372.1147

373.1172

$1: \text{TOF MS ES}^+$

371.1121

5.25e6
Figure S9 Analysis of degraded products structures based on HR-ESI and MS/MS data at m/z 401, $t_R = 4.86$ min and 6.54 min.
m/z 401, $t_R = 4.86$ min

$1: \text{TOF MS ES}^+$

$1.50e4$

283.0601

275.0545

287.0538

289.0704

290.0706

369.0967

m/z 401, $t_R = 6.54$ min

$1: \text{TOF MS ES}^+$

$9.87e3$

283.0588

285.0743

287.0546

289.0699

297.0749

313.0699

315.0851

343.0803

351.0854

361.0912

370.0998

389.1223

401.1224

402.1258

m/z 401, $t_R = 6.54$ min

$2.80e5$

283.0586

289.0699

315.0837

319.0736

327.0850

343.0803

351.0854

370.0992

376.1106

401.1221

402.1256
Figure S10 1H-NMR spectrum of compound 1 (Acetone-d_6, 600 MHz)

Figure S11-a 13C-NMR spectrum of compound 1 (Acetone-d_6, 125 MHz)
Figure S11-b 13C-NMR spectrum of compound 1 (Acetone-d_6, 125 MHz)

Figure S11-c 13C-NMR spectrum of compound 1 (Acetone-d_6, 125 MHz)
Figure S12 1H-1H COSY spectrum of compound 1 (Acetone-d_6, 500 MHz)

Figure S13 HSQC spectrum of compound 1 (Acetone-d_6, 500 MHz)
Figure S14 HMBC spectrum of compound 1 (Acetone-d_6, 500 MHz)

Figure S15 ROESY spectrum of compound 1 (Acetone-d_6, 500 MHz)
Figure S16 HR-ESI-MS spectrum of compound 1

Figure S17 1H-NMR spectrum of compound 2 (Acetone-d_6, 600MHz)
Figure S18 HR-ESI-MS spectrum of compound 2

Figure S19 1H-NMR spectrum of compound 3 (Acetone-d_6, 600 MHz)
Figure S20-a 13C-NMR spectrum of compound 3 (Acetone-d_6, 125 MHz)

Figure S20-b 13C-NMR spectrum of compound 3 (Acetone-d_6, 125 MHz)
Figure S20-c 1C-NMR spectrum of compound 3 (Acetone-d_6, 125 MHz)

Figure S21 1H-1H COSY spectrum of compound 3 (Acetone-d_6, 500 MHz)
Figure S22 HSQC spectrum of compound 3 (Acetone-d_6, 500 MHz)

Figure S23 HMBC spectrum of compound 3 (Acetone-d_6, 500 MHz)
Figure S24 ROESY spectrum of compound 3 (Acetone-d_6, 500 MHz)

Figure S25 HR-ESI-MS spectrum of compound 3
Figure S26 1H-NMR spectrum of compound 4 (Acetone-d_6, 600 MHz)

Figure S27-a 13C-NMR spectrum of compound 4 (Acetone-d_6, 125 MHz)
Figure S27-b 13C-NMR spectrum of compound 4 (Acetone-d_6, 125 MHz)

Figure S27-c 13C-NMR spectrum of compound 4 (Acetone-d_6, 125 MHz)
Figure S28 1H-1HCOSY spectrum of compound 4 (Acetone-d_6, 500 MHz)

Figure S29 HSQC spectrum of compound 4 (Acetone-d_6, 500 MHz)
Figure S30 HMBC spectrum of compound 4 (Acetone-d_6, 500 MHz)

Figure S31 ROESY spectrum of compound 4 (Acetone-d_6, 500 MHz)
Figure S32 HR-ESI-MS spectrum of compound 4

Figure S33 1H-NMR spectrum of compound 5 and 6 (Pyridine-d_5, 500MHz)
Figure S34 1H-NMR spectrum of compound 6 (CD$_3$OD, 500 MHz)

Figure S35-a 13C-NMR spectrum of compound 5 and 6 (Pyridine-d_5, 125 MHz)
Figure S35-b 13C-NMR spectrum of compound 5 and 6 (Pyridine-d_5, 125 MHz)

Figure S36 1H-1H COSY spectrum of compound 5 and 6 (Pyridine-d_5, 500 MHz)
Figure S37 HSQC spectrum of compound 5 and 6 (Pyridine-\textit{d}5, 500 MHz)

Figure S38 HMBC spectrum of compound 5 and 6 (Pyridine-\textit{d}5, 500 MHz)
Figure S39 ROESY spectrum of compound 5 and 6 (Pyridine-d_5, 500 MHz)

Figure S40 HR-ESI-MS spectrum of compound 5

Figure S41 HR-ESI-MS spectrum of compound 6
Figure S42 1H-NMR spectrum of compound 7 (Pyridine-d_5, 500MHz)

Figure S43 13C-NMR spectrum of compound 7 (Pyridine-d_5, 125 MHz)
Figure S44 1H-1HCOSY spectrum of compound 7 (Pyridine-d$_5$, 500 MHz)

Figure S45 HSQC spectrum of compound 7 (Pyridine-d$_5$, 500 MHz)
Figure S46 HMBC spectrum of compound 7 (Pyridine-d_5, 500 MHz)

Figure S47 ROESY spectrum of compound 7 (Pyridine-d_5, 500 MHz)
Figure S48 HR-ESI-MS spectrum of compound 7