The effects of surface spin on magnetic properties of weak magnetic ZnLa$_{0.02}$Fe$_{1.98}$O$_4$ nanoparticles

Shitao Xu1,2, Yongqing Ma*, Yuanfeng Xu1, Xiao Sun1, Bingqian Geng1, Ganhong Zheng1 and Zhenxiang Dai1

Abstract

In order to prominently investigate the effects of the surface spin on the magnetic properties, the weak magnetic ZnLa$_{0.02}$Fe$_{1.98}$O$_4$ nanoparticles were chosen as studying objects which benefit to reduce as possibly the effects of interparticle dipolar interaction and crystalline anisotropy energies. By annealing the undiluted and diluted ZnLa$_{0.02}$Fe$_{1.98}$O$_4$ nanoparticles at different temperatures, we observed the rich variations of magnetic ordering states (superparamagnetism, weak ferromagnetism, and paramagnetism). The magnetic properties can be well understood by considering the effects of the surface spin of the magnetic nanoparticles. Our results indicate that in the nano-sized magnets with weak magnetism, the surface spin plays a crucial role in the magnetic properties.

Keywords: Nanoparticles; Ferrite; Surface spin; Magnetic properties

Background

Ferrite nanocrystals have been extensively studied due to their tunable and remarkable magnetic properties as well as catalytic properties not existing in the corresponding bulk materials [1-5]. In the fundamental research field, magnetic nanoparticles (NPs) usually serve as ideal model systems, e.g., the Stoner-Wohlfarth [6,7] and Néel-Brown model [8], or to study the finite-size effect [9]. As the size of a magnetic particle decreases, the significance of the surface spins increases, resulting in the various magnetic ordering states such as spin-glass or cluster-glass-like behavior [10-13] or weak ferromagnetism [14,15] of the surface spins.

Compared with strong magnetic materials which have higher H_c and M values, the material with weak magnetism (small values of coercivity H_c and magnetization M) is a good candidate for studying the effects of surface spins on magnetic properties, because the strong anisotropy or interparticle dipolar interaction in the strong magnetic system can suppress the effects of surface spin [16,17]. ZnFe$_2$O$_4$ crystallizes in the bulk in the normal spinel structure with Fe$^{3+}$ ions (5 μ_B moment per Fe$^{3+}$ ion) occupying octahedral sites and Zn$^{2+}$ ions (with zero moment) occupying tetrahedral sites. Superexchange interaction between two Fe$^{3+}$ ions will have their moments aligned anti-parallel to each other which results in the antiferromagnetic (AFM) ZnFe$_2$O$_4$ [18,19] with the theoretical moment being 0 μ_B/f.u. For the La$^{3+}$ substituted bulk ZnLa$_{0.02}$Fe$_{1.98}$O$_4$ (ZLFO), the theoretical moment is 0.1 μ_B/f.u., which exhibits the weak ferromagnetism. In the present work, we take ZLFO as a studying object to investigate the effects of surface spins on the magnetic properties. We first prepared ZLFO NPs via a hydrothermal method. Then, some of the NPs were diluted in the Al$_2$O$_3$ matrix and others were undiluted, both followed by annealing at different temperatures of 700°C, 800°C, 900°C, and 1,000°C. The magnetic measurements show that the ZLFO NPs have the weak magnetism with small M and H_c values. Our results indicate that the surface spins significantly affect the macromagnetism of ZLFO NPs.

Experimental details

Material preparation

All raw materials include: iron (III) nitrate hexahydrate [Fe(NO$_3$)$_3$·6H$_2$O, 99%], zinc nitrate hexahydrate [Zn(NO$_3$)$_2$·6H$_2$O, 99%], lanthanum (III) acetate sesquihydrate [La(OOCCH$_3$)$_3$·1.5H$_2$O, 99.9%], and aluminum nitrate nonahydrate [Al(NO$_3$)$_3$·9H$_2$O], serving as the sources of metallic ions in ZLFO and Al$_2$O$_3$-sodium...
acetate trihydrate \((\text{C}_2\text{H}_3\text{NaO}_3 \cdot 3\text{H}_2\text{O}, 99\%)\) and 1-hexadecyltrimethylammonium bromide \((\text{C}_{16}\text{H}_{32}\text{BrN}, 99\%)\), being used as surfactants for improving precursor’s dispersibility; ethylene glycol \((\text{C}_2\text{H}_4\text{O}_2, 99\%)\), acting as the solvent.

Firstly, 36 mmol \(\text{Zn(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O}\), 72 mmol \(\text{Fe(NO}_3\text{)}_3 \cdot 6\text{H}_2\text{O}\), 7.2 mmol \(\text{La(OOCH}_2\text{CH}_3\text{)}_3 \cdot 1.5\text{H}_2\text{O}\), and 108 mmol \(\text{C}_2\text{H}_6\text{O}_2\) were dissolved in 300-mL anhydrous \(\text{C}_2\text{H}_4\text{O}_2\) with magnetic stirring. Then, 1.08 mmol \(\text{C}_{19}\text{H}_42\text{BrN,} \) was added into the solution with continuous stirring at 40°C for 30 min to get a homogeneous solution. Subsequently, the solution was transferred into 50-mL Teflon-lined stainless steel autoclave and maintained at 200°C for 24 h to obtain the ZLFO NPs. The typical synthesis procedure can be shown by the following [20]:

\[
\text{Zn(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O} + 0.02 \text{La(OOCH}_2\text{CH}_3\text{)}_3 \cdot 1.5\text{H}_2\text{O} + 1.98 \text{Fe(NO}_3\text{)}_3 \cdot 6\text{H}_2\text{O} + 3\text{H}_2\text{O} + 2\text{C}_2\text{H}_6\text{O}_2 \rightarrow \text{ZnLa}_{0.02} \text{Fe}_{1.98}(\text{OOCH}_2\text{CH}_3)_3 \cdot \text{nH}_2\text{O} + \text{NaNO}_3.
\]

ZLFO NPs were added to the solution of \(\text{Al(NO}_3\text{)}_3 \cdot 9\text{H}_2\text{O}\) and ethanol under sonicating with mass ratio of ZLFO: \(\text{Al}_2\text{O}_3\) being 3:2. Then, the mixture was dried at 80°C. The obtained undiluted ZLFO NPs were divided into two parts. One is diluted in the \(\text{Al}_2\text{O}_3\) matrix and the other is undiluted.

ZLFO NPs were added to the solution of \(\text{Al(NO}_3\text{)}_3 \cdot 9\text{H}_2\text{O}\) and ethanol under sonicating with mass ratio of ZLFO: \(\text{Al}_2\text{O}_3\) being 3:2. Then, the mixture was dried at 80°C. The undiluted and diluted ZLFO were both divided equally into four parts for annealing at 700°C, 800°C, 900°C, and 1,000°C for 2 h to obtain the final samples, which are hereafter referred to as UD700, UD800, UD900, and UD1000 for undiluted samples and D700, D800, D900, and D1000 for diluted samples, respectively.

The crystal structure was characterized by X-ray diffraction analysis using an X-ray diffractometer (XRD; DX-2000 SSC) with Cu Ka irradiation \((\lambda = 1.5418 \text{ Å})\) from 10° to 80° with a step of 0.02°. The average crystallite grain size, calculated from the (311) XRD parameter, respectively [21]. The calculated \(d_s\) value is 5.56, 5.39, and 5.37 \(\text{g/cm}^3\), comparable to 5.30 \(\text{g/cm}^3 \) [22] and 5.35 \(\text{g/cm}^3\), being 5.30 \(\text{g/cm}^3\) for ZnFe\(_2\)O\(_4\) [23]. The average crystallite grain size, calculated from the (311) XRD peak using Debye-Scherrer’s formula, is 9.5, 10.7, and 38.8 nm.

For the diluted sample D1000, as shown in Figure 1a, the diffraction peaks of ZLFO cannot be observed, indicating that ZLFO was deeply embedded in the \(\text{Al}_2\text{O}_3\) matrix. Several diffraction peaks of (012), (104), and (113) facets can be attributed to the reflection of \(\text{Al}_2\text{O}_3\).

Figure 2 shows the TEM (a and d), SAED (b and e), and HRTEM (c and f) images of the samples UD700 (left panel) and D700 (right panel). The sample UD700 consists of particles with the size about 50 nm and some particles agglomerate to larger particles, as shown in Figure 2a. The SAED image in Figure 2b exhibits the
distinct diffraction circles indicating the characteristic of polycrystalline. As seen in Figure 2c, the interfringe distances of 0.24, 0.31, and 0.47 nm correspond to the (222), (220), and (111) crystalline planes of ZLFO. The particles in the diluted sample D700 are conglomerated, as shown in Figure 2d, and the SAED image in Figure 2e appears some random diffraction dots from Al2O3. The HRTEM image exhibits distinct fringes with distances being 0.24 and 0.47 nm, also corresponding to (222) and (111) crystalline planes of ZLFO.

Magnetic properties

Figure 3 shows the magnetization (M) dependence on the applied magnetic field (H) (−2 T < H < +2 T), viz M(H) loops of all undiluted samples, measured at room temperature. The loop shape of the samples UD700, UD800, and UD900 resembles to that observed in ZnFe2O4 [24], being characteristic of the superparamagnetism (SPM) with very small coercivity Hc (<80 Oe). The Hc value is 62, 68, 80, and 52 Oe for UD700, UD800, UD900, and UD1000, respectively. As shown in the inset of Figure 3a, a distinct loop shift along H axis, i.e., the exchange-bias effect, can be observed, implying the existence of the surface spin layer (SSL) of the NP [25-28]. The M(H) loop of the sample UD1000 is almost a straight line, behaving as the paramagnetism (PM). The maximum magnetization (Mmax) at H = 2 T is 0.19, 0.18, 0.17, and 0.09 μB/f.u. for UD700, UD800, UD900, and UD1000, respectively. The sample UD700 has the highest moment of 0.19 μB/f.u., larger than the theoretical value of 0.1 μB/f.u. for the 2% La3+ substituted bulk ZLFO. Such a larger Mmax value can also be assigned to the contribution of SSL [29]. With increasing the annealing temperature, the Mmax monotonously decreases. Therefore, the total moment of NPs are contributed by the moments of particle core (Mcore) and SSL (MSSL), i.e., the core-shell magnetization model.

Figure 3 The dependence of magnetization on magnetic field. The magnetization (M) dependence on the applied magnetic field (H) (−2 T < H < +2 T), viz M(H) loops of all undiluted samples UD700 (a), UD800 (b), UD900 (c), and UD1000 (d) measured at room temperature. The inset of (a) shows the magnified plot of loop in the low H region.
Figure 4 shows the magnetization measured in zero field-cooled (M_{ZFC}) and field-cooled (M_{FC}) modes from 20 to 380 K in a field of 200 Oe for the samples UD700 (a) and UD1000 (b). For the sample UD700, a peak at 66 K in the M_{ZFC} curve is found, usually signifying the blocking temperature (T_B) [5,30]. T_B is associated with the particle size (V) and the effective anisotropy (K_{eff}) through $K_{\text{eff}}V = 2k_B T_B$, where k_B is the Boltzmann constant. At the temperature above T_B, the magnetic anisotropy energy barrier is overcome by the thermal energy, and the magnetic moment of each NP randomly fluctuates from one easy direction to another. Thus, the coercive field becomes small, and the small H_c value may result from the surface anisotropy induced by the SSL [31]. This phenomenon is known as SPM. For the sample UD1000, T_B locates at 76 K. The variation of T_B can be assigned to the synergistic effects of the particle volume V and the effective anisotropy constant K_{eff}. According to the XRD results, the crystallite size of UD1000 is 38.8 nm, larger than that (10.7 nm) of UD700, which may result in the increase of T_B. According to the above discussion, the magnetic behavior at room temperature can be understood by a core-shell magnetization model, as schematically plotted in Figure 5.

As discussed above, the total moment (M_{total}) of a particle can be expressed as $M_{\text{total}} = M_{\text{core}} + M_{\text{SSL}}$. At 300 K, the ZLFO core is paramagnetic (PM) (with theoretical molecular moment of 0.1 μ_B/f.u.). The sample annealed at low temperature (such as 700°C), as shown in Figure 5a, has the small core and the thick SSL. For the sample annealed at higher temperatures such as at 800°C and 900°C, as shown in Figure 5b, the core becomes larger and simultaneously, the SSL becomes thinner. While the sample is annealed at 1,000°C, the SSL becomes thinner or disappears, as shown in Figure 5c, and the $M(H)$ loop behaves as PM with a linear loop shape in the field range used. Therefore, the gradual decrease in M_{max} for the samples UD700, UD800, UD900, and UD1000 can be assigned to the decrease of M_{SSL} [32].

Figure 6 shows the $M(H)$ loops of all diluted samples with the magnetization value being normalized according to the mass ratio of ZLFO/Al$_2$O$_3$. The H_c value is 13, 6, 191, and 391 Oe, and the M_{max} value at $H = 2$ T is 0.23, 0.15, 0.05, and 0.04 μ_B/f.u. The M_{max} value also decreases with increasing annealing temperature, which can be assigned to the reduction of SSL thickness, as discussed in Figure 5. For the samples D700 and D800, their H_c values are very small and the magnetization tends to saturate with increasing the H value, indicating the characteristic of the SPM. For the samples D900 and D1000, $M(H)$ loops exhibit the distinct hysteresis and their H_c values are much higher than those of correspondingly undiluted samples, which is characteristic of weak ferromagnetism.

Figure 7 shows the mass-normalized magnetization measured in zero field-cooled (M_{ZFC}) and field-cooled (M_{FC}) modes from 20 to 380 K in a field of 200 Oe for the samples D700 (a) and D1000 (b). A peak in the M_{ZFC}
curve appears at 150 K for the sample D700, and the \(M_{ZFC} \) and \(M_{FC} \) curves almost overlap above 150 K. However, for the sample D1000, the \(M_{ZFC} \) and \(M_{FC} \) curves do not overlap until about room temperature, much higher than 150 K, indicating the enhanced irreversibility. After annealed at 1,000°C, the interface between ZLFO and Al\(_2\)O\(_3\) may form M-O-Al (M = Zn, La, and Fe in ZLFO) bonds. These bonds play a pinning role in the moment reverse, leading to the enhanced irreversibility and consequently resulting in the increase of coercivity, as observed in diluted Co and \(\gamma \)-Fe\(_2\)O\(_3\) NPs [26,33-36].

Conclusions
The ZLFO NPs were synthesized by the hydrothermal method. Then, some of ZLFO NPs were diluted in the Al\(_2\)O\(_3\) matrix through the sol–gel method and the others were undiluted. The undiluted and diluted ZLFO were finally annealed at temperatures of 700°C, 800°C, 900°C, and 1,000°C to investigate the effects of surface spin and interface effects between ZLFO and Al\(_2\)O\(_3\) on the magnetic parameters and magnetic ordering states.

For the undiluted samples, with increasing the annealing temperature, the thickness of the SSL decreases and ZLFO experiences SPM and PM according to the results of hysteresis loops. The maximum magnetization, \(M_{\text{max}} \) at 2 T of ZLFO decreases with increasing the annealing temperature which can be assigned to the decrease of SSL. For the diluted samples, the surface spin and the interface effect between ZLFO NPs and the Al\(_2\)O\(_3\) matrix are the dominant factors affecting the magnetic properties. Our results indicate that in the nano-sized magnets with weak magnetism, the surface spin plays a crucial rule in the magnetic properties.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
STX synthesized ZLFO NPs, performed the measurements, analyzed the magnetic properties, and wrote the manuscript. YQM gave the instruction to this research work, analyzed the results, and wrote the manuscript. YFX, XS, and BQG measured and analyzed the magnetic properties of nanoparticles. GHZ and ZXD supervised the overall study. All authors contributed to discussing the results and writing manuscript. All authors read and approved the final manuscript.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11174004, 51471001, and 11204001).

Author details
1 Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University, Hefei 230039, People’s Republic of China. 2 School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, People’s Republic of China.

Received: 19 August 2014 Accepted: 20 September 2014

References
1. Liang YC, Hsia HY: Growth and crystallographic feature-dependent characterization of spinnel zinc ferrite thin films by RF sputtering. Nanoscale Res Lett 2013, 8:537(p8).
2. Dong CH, Wang GY, Guo DW, Jiang CJ, Xue DS: Growth, structure, morphology, and magnetic properties of Ni ferrite films. Nanoscale Res Lett 2013, 8:196(p6).
3. Batoo KM, Ansari MS: Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Research Letters 2012, 7:112(p14).
4. Batoo KM: Microstructural and Mösßbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles. Nanoscale Res Lett 2011, 6:409(pp7).
5. Yoon H, Lee JS, Min JH, Wu JH, Kim Y: Synthesis, microstructure, and magnetic properties of mononzsed Mn2Zn6Fe12O4 ferrite nanocrystals. Nanoscale Res Lett 2013, 8:300(pp5).
6. Gan FL, Ma YQ, Ma Z, Zheng GH, Dai ZX, Wu MZ, Li G, Sun ZQ, Chen XS: One-step hydrothermal synthesis and characterization of high magnetization CoFe2O4/C0Fe2O4nanocomposites. Materials 2013, 5:79–86.
7. Xu YF, Ma YQ, Zhang X, Zheng GH, Dai ZX, Ma Q, Zan FL, Li G, Wu MZ: Effects of the Fe3+/Sr2+ molar ratio on the exchange-coupling of the composite and single-phase SrFe12O19. Phys J Appl Phys 2013, 62:102011(pp8).
8. Dorrman JL, Fiorani D, Tronc E: Magnetic relaxation in fine-particle systems. Adv Chem 1997, 98:283–294.
9. Zheng XG, Xu CN, Nishikubo K, Nishiyama K, Higemoto W, Moon WJ, Xu CN: Preparation and characterization of ZnFe2O3/SrFe12O19 nanocomposites. Materials 2012, 5:381–386.
10. Benitez MJ, Petracic O, Salabas EL, Radu F, Tüysüz H, Schüth F, Zabel H: Evidence for core-shell magnetic behavior in antiferromagnetic Co2O4 nanocomposites. Phys Rev B 2012, 85:241305.(pp12).
11. Dong CG, Zhang HW, He SL, Sheng BG: The role of dopant interaction in nanocomposite permanent magnets. J Magn Mater 2006, 302:126–136.
12. Chen JP, Sorensen CM, Klubandne KJ, Hadjipanayis GC: Enhanced magnetization of nanoscale colloidal cobalt particles. Phys Rev B 1995, 51:11527–11532.
13. Respaut M, Brotto JM, Rakočević H, Font A, Thomas L, Barbara B, Verelst M, Amemiya Y, Kishita H, Chaudret B: Surface effects on the magnetic properties of ultrafine cobalt particles. Phys Rev B 1998, 57:2925–2935.
14. Tronc E, Ezzir A, Cherkaoui R, Chanéac C, Noguès M, Kachkachi H, Fiorani D, Testa AM, Grenèche JM, Jolivet JP: Surface-related properties of γ-Fe2O3 nanoparticles. J Magn Mater 2000, 221:63–79.

Cite this article as: Xu et al.: The effects of surface spin on magnetic properties of weak magnetic ZnLa0.02Fe1.98O4 nanoparticles. Nanoscale Research Letters 2014 9:545.