Seagrass meadows for fisheries in Indonesia: a preliminary study

R Ambo-Rappe

Marine Science Department, Faculty of Marine Science and Fisheries, Hasanuddin University, Jl. Perintis Kemerdekaan Km.10 Tamalanrea, Makassar, Indonesia, 90245

Email: rohani.amborappe@mar-sci.unhas.ac.id

Abstract. Seagrass meadows are among the most productive ecosystems on earth and are of great importance to support an abundance and diverse fish assemblages that form the basis for artisanal fisheries, especially in the tropics. Fisheries are vital in maintaining food security, and therefore the ecosystems that support these fisheries are also essential. Seagrass ecosystems contribute to fishery productivity, and seagrass fisheries are especially common in the Indo-Pacific region, where seagrass beds and their associated fauna are heavily exploited. However, these fisheries remain largely undocumented. Within the Indo-Pacific region, Indonesia contributes significantly to seagrass biodiversity and global seagrass extent. Seagrass fisheries undoubtedly exist in Indonesia, but publications on this topic are rare. Therefore, there is a need to highlight the extent, importance, and status of fisheries exploitation in the seagrass meadows of Indonesia. The aims of this study were to determine the importance of seagrass meadows in supporting fisheries productivity and examining the variability of seagrass fisheries in Indonesia. A literature search of published data on fisheries activities in seagrass meadows in Indonesia was conducted from March-May 2020. Google Scholar database was searched using the most specific keywords in English and Indonesian, for example, “seagrass” AND “fisheries” AND “Indonesia”, “seagrass fisheries” AND “Indonesia”, “Perikanan Skala Kecil” DAN “Padang Lamun”, in the title, abstract or keywords, in order to obtain information from the few papers on seagrass fisheries in Indonesia published in English (international journals) and Indonesian. Additional data on seagrass fisheries and the fishing methods/gears used were collected by interviewing people who live or work in areas with few or no published data to gain a broader picture of seagrass fisheries in Indonesia. It was found that seagrass fisheries occur in almost all nearshore seagrass areas in Indonesia, including around many small islands. Many fishing gears are used in these fisheries, the most common being gill nets, traps, and gleaning (directly picking up fauna from the seagrass beds using bare hands or very simple tools). Therefore, from a socioeconomic perspective, seagrass beds are extremely important for the livelihoods of coastal and island communities in Indonesia.

1. Introduction

Seagrasses are true flowering plants that have evolved to live in the marine environment; they include approximately 72 different species belonging to four major groups [1]. Although seagrass meadows often receive little attention compared to other marine ecosystems [2], seagrass is one of the dominant primary producers especially in coastal waters around the world, providing an important foundation for marine biological communities and playing important roles for coastal communities, for example through their contributions to fishery yields and cultural values [3]. Seagrass ecosystems are also crucial ecosystem service providers throughout their global extent (up to a maximum of 600,000 km²),
are found along the shores of all continents (except Antarctica) to a maximum depth of 50 m [4,5]. Seagrass meadows in Southeast Asia have the highest seagrass diversity in the world, with a recently estimated extent of 36,762.6 km² [6].

In the last few decades, seagrasses have received greater attention with the recognition of their important ecosystem services. Seagrasses were ranked as one of the most ecologically and economically valuable biological systems on earth [7]. They also provide services that are little or less obvious such as nutrient and carbon cycling, acting as a carbon sink, and carbon exporter to sediments outside seagrass meadows and in the deep sea [8,9]. Moreover, seagrass ecosystems rank with mangroves and coral reefs in terms of primary production [10], and seagrass production was estimated to be responsible for up to 15% of the ocean’s annual net carbon production [11].

Another important aspect is the physical structure for recruitment and attachment of a variety of small organisms increasing with seagrass presence, leading to a higher abundance and diversity of marine organisms in seagrass bed compared with bare areas [12]. Different morphological structures of seagrass leaves and stems enhance the attachment of numerous and abundance of epiphytes which are the food preference of epifaunal organisms [13]. Furthermore, many seagrass fishes also depend on the epiphytes and/or the epifaunal organisms associated in seagrass beds for food [5,14]. Thus, seagrasses play a significant part in the food web of marine areas and are commonly perceived as nursery grounds as they act as a source of food and shelter for a variety of marine organisms [15,16]. This leads to the important ecosystem services of the seagrass ecosystem, i.e., provisioning and supporting services, where seagrass facilitates and provides food through fisheries [17–19].

Seagrass meadows provide important support to fisheries in many ways, for example, through providing ecological role in the life cycle, nursery habitat for a critical stage of juvenile period, foraging habitat, of some important fisheries commodities [18]. Some of the good examples on how seagrass ecosystem economically benefit fisheries comes from shrimp fisheries in Queensland, Australia which was estimated as AU$ 1.2 million y⁻¹ [20]; seagrass supported fisheries have been valued at US$ 100 million y⁻¹ in the Gulf waters of South Australia [21]; a major loss of seagrass in South Australia resulted in a 40% reduction in catch of a coastal marine fish, the King George whiting [18]; seagrasses contribute as much as $A 230,000 ha⁻¹ y⁻¹ (153,000 € ha⁻¹ y⁻¹) to onshore fisheries in Gran Canaria (eastern Atlantic) [22].

The provisioning services supporting fish are unlikely to be the same for all seagrass meadows, as the structure they create can be different depending on numerous environmental and biological factors. The higher structural complexity of seagrass bed was related to higher species richness, abundance, and biomass of fish in Ambon Bay, Indonesia [23]. Moreover, this study found that smaller fish preferred dense seagrass of small-sized seagrass species and moved to a less dense bed of large-sized seagrass with increasing size. Studies in East Africa found that the presence of areas with seagrass meadows positively influenced adult densities of many reef fish species on adjacent coral reefs [24].

The role of seagrasses in provisioning high abundance and diversity of fishes is an important foundation for seagrass fisheries to be present in all seagrass regions or adjacent areas [17]. Indonesia has some of the most extensive and diverse seagrass meadows in the world, and it could be assumed that seagrass fisheries would be widespread in this region. However, information on the nature and existence of such fisheries in Indonesia lacks in the literature, so that they are poorly understood. This preliminary literature review synthesizes what is known about the nature of seagrass fisheries and their presence in Indonesia.

2. Methodology
The literature search was conducted from March-May 2020. We compiled studies on seagrass fisheries in Indonesia from all types of published literature available in the Google Scholar database. The first search included those studies which contained terms “seagrass” AND "fisheries" AND "Indonesia" in the title, abstract, or keywords. This search resulted in a total of 10,800 results. The abstracts of the documents were screened to ascertain the relevance of the studies, and we found that many documents were not really relevant to this study.
The second search was done with more specific terms, “seagrass fisheries” AND ”Indonesia”. We found 95 results from this second search, and after screening the abstracts, the results were narrowed down to 25 papers relevant to this study; 10 papers specifically presented seagrass fisheries in Indonesia. However, they have all focused on seagrass related fisheries in Sulawesi, one out of 7 large islands in Indonesia. We then performed a third search using the Indonesian terms “Perikanan Skala Kecil” DAN “Padang Lamun” in order to find related papers published in Indonesian literature with a wider geographical coverage within Indonesia. We had 62 results from this search, of which 12 papers were relevant.

A fourth search was performed with the same Indonesian keywords, but using Google Search, in order to obtain information not just from scientific journal articles, but also from reports, to supplement the very view papers on seagrass fisheries in Indonesia published in peer-reviewed national or international journals. This last search resulted in a total of 1,760 miscellaneous documents which were carefully screened to select information representative of all seagrass regions in Indonesia. Additional data regarding the presence of seagrass fisheries in their area and the fishing gear used were collected by interviewing some people who live or work in areas for which little or no data were found during the literature search to gain a broader picture of seagrass fisheries in Indonesia. All representative and selected documents were retained for further descriptive analysis.

3. Results and discussion
3.1 Seagrass extent and distribution in Indonesia
The estimated extent of seagrass meadows in Indonesia is about 8,812.9 km2, with a coastline length of 80,791 km [6], which is much lower than a previous estimation of about 30,000 km2 of seagrass meadows throughout the Indonesia Archipelago [25]. Moreover, the Indonesian Institute for Science has been validating seagrass areas in Indonesia and has found an extent of about 2,934.64 km2, which is 16%-35% of the potential seagrass extent in this region [26]. The seagrass meadows are distributed along the coastline, surrounding some large and almost all small islands in Indonesia (Figure 1) [27].

![Figure 1](image_url). Map of seagrass distribution in Indonesia (from [27]).

Seagrasses are also distributed across all marine ecoregions in Indonesia; there are 12 marine ecoregions, a biogeographic classification for the world’s coastal and shelf areas determined based on their biological diversity, including seagrass diversity (Figure 2) [28,29]. Generally speaking, the distribution of seagrass meadows in all marine ecoregions shows the importance of this ecosystem for
marine biodiversity as a whole and that seagrass meadows should be purposefully considered in the management and conservation of marine biodiversity.

Overlaying Figures 1 and 2 shows that the Lesser Sundas, the southern-most marine ecoregion of Indonesia, is the ecoregion with the most extensive seagrass meadows. This ecoregion encompasses the Indonesian provinces of Bali, West Nusa Tenggara, East Nusa Tenggara, and part of southeast Maluku. Seagrass meadows within the Lesser Sundas ecoregion mostly occur in close association with fringing reefs, the most common reef type within the ecoregion, with total seagrass area in the shallow waters of this ecoregion estimated at 273 km2 based on Landsat imagery [30]. The highest seagrass abundance in Indonesia is mostly associated with fringing reefs, as the fringing reefs dissipate the energy of incoming waves and create a protective environment in the back reef zone and coastal lagoons [31], resulting in a preferred habitat for most seagrass species to live [5].

![Figure 2. Map of the twelve marine ecoregions in Indonesia where seagrasses are found (from [28]).](image)

3.2 The importance of seagrass to fisheries in Indonesia

Seagrass meadows support fisheries through providing nursery habitat for fish stocks in adjacent and deepwater habitats, creating expansive fishery habitat rich in fauna, and providing trophic support to adjacent fisheries (Figure 3) [32]. Moreover, seagrass meadows also provide support by promoting the health of fisheries associated to connected habitats (e.g., coral reefs) [24], and as an important fishing ground for small-scale fisheries in shallow coastal tropical habitats, and can even support a larger fish catch volume compared to coral reef and mangrove ecosystems [33].

We assessed the diversity of fish and invertebrate species utilizing seagrass meadows in Indonesia by collating some studies on seagrass associated fauna in the Indonesian Archipelago (Table 1). The data show that seagrass meadows in many regions in Indonesia are occupied by highly diverse faunal communities, with many species that are important for fisheries. The high diversity of fishes and invertebrates found in seagrass beds is facilitated not only from the provision of habitat for living, shelter, and protection but also because the primary productivity of the seagrasses also serves as a basic energy source for the faunal communities [5].
Figure 3. Seagrass meadows support food security through fishery through three key roles: as nursery habitat, fishery habitat, and trophic subsidy of adjacent fisheries (from [32]).

Table 1. Seagrass associated fauna in some seagrass meadows in Indonesia.

Seagrass Meadow Location (Extent)	Seagrass Ecosystem Goods	Refs.
East Coast of Bintan Island, Riau (seagrass area 25 km²)	Fishes, swimming crabs, squids, and mollusks	[34]
Teluk Bakau, Bintan, Riau		
Eastern Bintan (Berakit, Malang Rapat, Teluk Bakau), Riau (seagrass area 15.9 km²)	Economically valuable species: 13 fishes, 2 crustaceans, 4 mollusks	[35]
Seribu Islands, Jakarta	Fishes, crustaceans, and mollusks	[36]
Banten Bay, Serang, Banten (seagrass area 3.3 km²)	Holothurians and many other invertebrates	[37]
Teluk Ekas, Lombok Timur, West Nusa Tenggara	9 economically valuable fish species, squids, crabs, holothurians, and feeding ground for dugong	[38]
Barrang Lompo Island, Spermonde Archipelago, South Sulawesi (seagrass area 0.5 km²)	35 fish species	[39]
Bone Batang Island, Spermonde Archipelago, South Sulawesi	28 fish species,	[40]
Kapoposang Island, Spermonde Archipelago, South Sulawesi	46 fish species, 38 invertebrate species	[41]
Wakatobi Marine National Park, South-West Sulawesi	62 fish species	[42]
Wori Sub-District, North Sulawesi	81 fish species	[43]
Tongkaina, Bunaken, North Sulawesi	75 fish species	[44]
Napomanuk Island, Western Likupang, North Minahasa, North Sulawesi	10 fish species	[45]
	55 fish species	[46]
3.3. Seagrass fisheries in Indonesia

The expression “seagrass fishery” refers to the capture of fish and invertebrates from the seagrass habitat [57]. Seagrass meadows in Indonesia are important as fishing grounds, and therefore seagrass fisheries in Indonesia definitely exist. For a long time, these fisheries were not well recognized, especially because the occurrence of seagrass beds in the fishing ground is mostly combined with adjacent or overlapping coral reefs so that the term “coral reef fishery” is far more popular [58]. In total, Indonesian seagrass fisheries have been estimated to be worth a minimum of approximately US$230 million [14]. Some studies have been done to determine the economic benefits of seagrass fisheries in Indonesia, for example: (1) seagrass fisheries in East Bintan, Riau (with seagrass area 16 km²) were valued of US$ 1,131,600 y⁻¹ [36], while the value of recreational fishing from the area was estimated at approximately IDR 351,179.56 h⁻¹ y⁻¹ [59]; (2) seagrass fisheries in Banten Bay (seagrass area 3.3 km²) were valued at IDR 712 million h⁻¹ y⁻¹ [60]; (3) in Wakatobi Marine National Park, Southeast Sulawesi, the contribution of seagrass to fisheries was estimated at an average of US$77.9±40.4 h⁻¹ [14]; (4) in Kotania Bay, Western Seram, Maluku (seagrass area 8.24 km²), the catch was valued at IDR 30 – 44 million y⁻¹ per fisherman [48]; (5) the seagrass fisheries in Youtefa Bay, Jayapura, Papua, targeting fishes and invertebrates, were valued at about IDR39 million y⁻¹ per fisherman [55]; (6) the contribution of the seagrass meadows in the Derawan Islands, North Kalimantan to seagrass fisheries (fish and invertebrates) was estimated at US$ 49,233.49 h⁻¹ y⁻¹ [61]. The distribution of fishing activity in seagrass beds is very extensive and occurs in all regions of Indonesia (Figure 4) [58].

Seagrass Meadow Location (Extent)	Seagrass Ecosystem Goods	Refs.
Rap-Rap Reef, Wowantulap, South Minahasa, North Sulawesi (seagrass area 13 km²)	A feeding ground for green turtle and dugong	[47]
Kotania Bay, Western Seram, Maluku (seagrass area 8.24 km²)	35 seaweed species, 9 sea cucumber species, 6 species of economically important mollusks, 99 fish species, dugong and sea turtle	[48]
Tanjung Tiram, Teluk Ambon Dalam, Maluku	72 fish species	[50]
Laut Banda Marine Tourism Park, Maluku	20 fish species	[51]
Kei Besar Islands (South Kelapa Island, East Kelapa Island, West Kelapa Island, Karkarit, Tansos, Uwatrean), Southeast Maluku	56 fish species	[52]
Kei Kecil Islands, Southeast Maluku	103 species of mollusks (including 72 economically important species)	[53]
Sibu Island, Tidore, North Maluku	13 fish species	[54]
Youtefa Bay, Jayapura, Papua	79 fish species	[55]
Kornasoren and Yenburwo Villages, Numfor Island, Papua	fishes, molluscs, holothurians	[56]
Figure 4. Map of seagrasses and seagrass fisheries (from [58]) illustrating the importance of these fisheries across the Indonesian archipelago.

Gleaning is a traditional fishing method (usually targeting invertebrates) conducted by just walking in seagrass beds during low tide and directly picking up the fauna from the substrate with bare hands or using simple tools. In Indonesia, several scientific studies on this practice have been published [32,35,39,48,55,56,62,63]. These gleaning fisheries are widely distributed across Indonesia, as shown by the map in Figure 5 [32]. Data from the literature on seagrass fisheries in different parts of Indonesia, including fishing methods, are shown in Table 2.

Figure 5. Map illustrating the wide distribution and high intensity of gleaning fisheries across the Indonesian archipelago (from [14]).
Table 2. Fishing methods used in the seagrass fisheries in Indonesia.

Region	Province	District	Island/Village	Fishing Method	Refs	
Sumatera	Riau	Bintan	Malang Rapat, Bakau Bay, Berakit	nets, fishing rods, crab traps, tidal trap*/"kelong karang*/", gleaning*/"berkara ng*/"	[34,35]	
Nusa Tenggara	Nusa Tenggara Barat	Sumbawa	Saleh Bay	tidal trap*/"sero*/", traps, nets	[64]	
Nusa Tenggara	Nusa Tenggara Barat	East Lombok	Tanjung Luar	gill nets, traps, trawl, gleaning	[65]	
Java	Banten	Serang	Ekas Bay, Panjang Island	Gleaning*/"madak*/", fishing rods, nets, traps	[39,38]	
Jakarta			Seribu Islands	fishing rods, nets, gleaning	[37]	
Kalimantan	North Kalimantan	Derawan Islands		gill net, gleaning	[61]	
Sulawesi	South Sulawesi	Selayar Islands	Benteng	“samba” nets, fishing rods, crab traps, gleaning. tidal trap*/"sero*/" gleaning	[62,66]; pers.obs	
			Bulukumba, Kampung Beru, Lemo-Lemo, Panrang Luhu, Kasuso		[67]	
			Sinjai, Sembilan Islands	seine net for siganids	[68]	
Sulawesi	South Sulawesi	Takalar	Laikang	nets, traps, gleaning, “sero”	[62,69]	
			Tanakeke Islands	nets, traps, push net for seahorse	pers.obs	
			Wakatobi, Hoga, Kaledupa	gill net, seine net, traps, gleaning	[14]	
			Numana, Mandatti, Horuo, Mantigola	gill net, seine net, traps, gleaning	[62]	
				Sama Bahari, Mola, Wakatobi National Park	gill net, traps, handlines, spearfishing, gleaning	[62,70]
Maluku	North Maluku	Morotai Islands	Galo-Galo Island	“sero” gleaning	pers.com	
			Rao Island	gill net and gleaning	pers.com	
			Halmahera Tengah	gill net and gleaning	[62,71]	
This preliminary study based on a search of the related literature shows that seagrass meadows in Indonesia are very important for the seagrass fisheries that occur in almost all nearshore seagrass areas across the Indonesian Archipelago, including the shallow waters around many small islands. These fisheries are small-scale multi-species and multi-gear fisheries employing many different kinds of fishing gear, including tidal traps (*sero*), fish traps, push nets, gill nets, fishing rods, spearfishing, and gleaning.

Acknowledgments

This study was supported by a three years fundamental research grant (2018-2020) from the Indonesian Ministry for Research and Higher Education (Kemenristekdikti) under Contract No. 1578/UN4.21/PL.00.00/2018. Thanks are extended to Dr. Abigail Moore for reading and improving the manuscript prior to submission.

References

[1] Short F T, Polidoro B, Livingstone SR, Carpenter K E, Bandeira S, Bujang J S, Calumpong HP, Carruthers T J B, Coles R G, Dennison W C, Erfemeijer P L A, Fortes M D, Freeman A S, Jagtap T G, Kamal A H M, Kendrick G A, Judson Kenworthy W, La Nafie Y A, Nasution I M, Orth R J, Prathep A, Sanjungco J C, Tussenbroek B van, Vergara SG, Waycott M and Zieman J C 2011 Extinction risk assessment of the world’s seagrass species *Biol. Conserv.* 144 1961–71

[2] Orth R J, Carruthers T J B, Dennison W C, Duarte CM, Fourquear J W, Heck K L, Hughes A R, Kendrick G A, Kenworthy W J, Olyarnik S, Shorth T F, Waycott M and Williams S L 2006 A Global Crisis for Seagrass Ecosystems *Bioscience* 56 987–96

[3] Duffy J E, Benedetti-Cecchi L, Trinanes J, Muller-Karger F E, Ambo-Rappe R, Boström C, Buschmann AH, Byrnes J, Coles R G, Creed J, Cullen-Unsworth LC, Diaz-Pulido G, Duarte C M, Edgar G J, Fortes M, Goni G, Hu C, Huang X, Hurd C L, Johnson C, Konar B, Krause-
Jensen D, Krumhansl K, Macreadie P, Marsh H, McKenzie L J, Mieszkowska N, Miloslavich P, Montes E, Nakaoka M, Norderhaug KM, Norlund L M, Orth R J, Prathep A, Putman N F, Samper-Villarreal J, Serrao E A, Short F, Pinto I S, Steinberg P, Stuart-Smith R, Unsworth R K F, van Keulen M, van Tussenbroek B I, Wang M, Waycott M, Weatheron L V., Wernberg T and Yaakub S M 2019 Toward a coordinated global observing system for seagrasses and marine macroalgae Front. Mar. Sci. 6 317

[4] Duarte C M, Marbà N, Gacia E, Fourquarean J W, Beggins J, Barrón C and Apostolaki E T 2010 Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows Global Biogeochem. Cycles 24 1–8

[5] Hemminga M A and Duarte C M 2000 Seagrass Ecology (UK: Cambridge University Press)

[6] Fortes M D, Ooi J L S, Tan Y M, Prathep A, Bujang J S, and Yaakub S M 2018 Seagrass in Southeast Asia: A review of status and knowledge gaps, and a road map for conservation Bot. Mar. 61 269–88

[7] Björk M, Short F, Mcleod E and Beer S 2008 Managing Seagrasses for Resilience to Climate Change IUCN Global Marine Programme

[8] Duarte CM, Kennedy H, Marbà N and Hendriks I 2013 Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies Ocean Coast. Manag. 83 32–8

[9] Duarte C M and Krause-Jensen D 2017 Export from seagrass meadows contributes to marine carbon sequestration Front. Mar. Sci. 4 1–7

[10] Short F T and Wyllie-Echeverria S 1996 Natural and human-induced disturbance of seagrasses Environ. Conserv. 23 17–27

[11] Duarte C M and Chiscano C L 1999 Seagrass biomass and production: A reassessment Aquat. Bot. 65 159–74

[12] Lee S Y, Fong C W and Wu R S S 2001 The effects of seagrass (Zostera japonica) canopy structure on associated fauna: A study using artificial seagrass units and sampling of natural beds J. Exp. Mar. Bio. Ecol. 259 23–50

[13] Jernakoff P and Nielsen J 1998 Plant-animal associations in two species of seagrasses in Western Australia Aquat. Bot. 60 359–76

[14] Unsworth R K F, Cullen LC, Pretty J N, Smith D J, and Bell J J 2010 Economic and subsistence values of the standing stocks of seagrass fisheries: Potential benefits of no-fishing marine protected area management Ocean Coast. Manag. 53 218–24

[15] Gillanders BM 2006 Seagrasses, Fish, and Fisheries Seagrasses: Biology, Ecology, and Conservation ed A.W.D. Larkum, R J O Orth and C M Duarte (The Netherlands: Springer Netherlands) pp 503–36

[16] Williams S L, Abbott J, Ha G and Ambo-Rappe R 2014 Juvenile batfish hidden in seagrass Coral Reefs 33 909

[17] Nordlund L M, Unsworth R K F, Gullström M, and Cullen-Unsworth LC 2016 Global significance of seagrass fishery activity Fish Fish. 19 399–412

[18] Cullen-Unsworth L and Unsworth R 2013 Seagrass meadows, ecosystem services, and sustainability Environment 55 14–28

[19] Ambo-Rappe R, La Nafie Y A, Marimba A A, Cullen-Unsworth LC, and Unsworth R K 2019 Perspectives on seagrass ecosystem services from a coastal community IOP Conf. Ser. Earth Environ. Sci. 370

[20] Watson R A, Coles R G, and Lee Long W J 1993 Simulation estimates of annual yield and landed value for commercial penaeid prawns from a tropical seagrass habitat, Northern Queensland, Australia Mar. Freshw. Res. 211–9

[21] McArthur LC and Boland J W 2006 The economic contribution of seagrass to secondary production in South Australia Ecol. Modell. 196 163–72

[22] Tuya F, Haroun R and Espino F 2014 Economic assessment of ecosystem services: Monetary value of seagrass meadows for coastal fisheries Ocean Coast. Manag. 96 181–7
[23] Ambo-Rappe R 2016 Differences in richness and abundance of species assemblages in tropical seagrass beds of different structural complexity J. Environ. Sci. Technol. 9 246–56
[24] Dorenbosch M, Grol M G G, Christianen M J A, Nagelkerken I and Van Der Velde G 2005 Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs Mar. Ecol. Prog. Ser. 302 63–76
[25] Kuriandewa T E, Kiswara W, Hutomo M and Soemodihardjo S 2003 The Seagrasses of Indonesia World Atlas of Seagrasses ed F T Short and E P Green (Berkeley, USA: University of California Press) pp 171–82
[26] Sjafrie N DM, Hernawan U E, Prayudha B, Supriyadi I H, Rahmat, Anggraini K, Rahmawati S, and Suyarso 2018 Status Padang Lamun Indonesia 2018 vol 53
[27] Carter E, Laura Kola, Tomasouw J, Wedgwood M and Saraswati R A 2018 Kondisi Laut: Indonesia, Jilid 1: Gambaran Umum Pengelolaan Sumber Daya Laut Untuk Perikanan Skala Kecil dan Habitat Laut Penting di Indonesia ed A White and T Gunawan (Jakarta: Kementerian Kelautan dan Perikanan Republik Indonesia dan Proyek Sustainable Ecosystems Advanced (SEA) USAID)
[28] Huffard C L, Erdmann M V. and Tiene R.P. Gunawan 2014 Marine Biodiversity Conservation ed C L Huffard, M V. Erdmann and T R P Gunawan (Jakarta, Indonesia: Ministry of Marine Affairs and Fisheries and Marine Protected Areas Governance Program)
[29] Spalding M F, Fox H E, Allen G R, Davidson N, Ferdaña Z A, Finlayson M, Halpern BS, Jorge M A, Lombana A, Lourie S A, Martin K D, McManus E, Molnar J, Recchia C A and Robertson J 2007 Marine ecoregions of the world: A bioregionalization of coastal and shelf areas Bioscience 57 573–83
[30] Torres-Pulliza D, Wilson J R, Darmawan A, Campbell S J, and Andréfouët S 2013 Ecoregional scale seagrass mapping: A tool to support resilient MPA network design in the Coral Triangle Ocean Coast. Manag. 80 55–64
[31] Tomascik T, Mah A J, Nontji A, and Moosa M. 1997 Seagrasses The Ecology of the Indonesian Seas VIII, Part II ed T Tomascik, A J Mah, A Nontji and M. Moosa (UK: Oxford University Press) pp 829–906
[32] Unsworth R K F, Nordlund L M, and Cullen-Unsworth LC 2018 Seagrass meadows support global fisheries production Conserv. Lett. 12 1–8
[33] De la Torre-Castro M, Di Carlo G and Jiddawi N S 2014 Seagrass importance for a small-scale fishery in the tropics: The need for seascape management Mar. Pollut. Bull. 83 398–407
[34] Sjafrie N D M 2018 Identification of Socio-Ecological System of Seagrass Ecosystem in Bintan Regency Oseanologi dan Limnol. di Indonesia. 3 123-35
[35] Siswanto E, Aras M and Windarti 2017 Jasa Ekosistem Padang Lamun Di Daerah Kawasan Konservasi Lamun Trikora (Studi Di Desa Teluk Bakau) Kabupaten Bintan, Provinsi Kepulauan Riau Berk. Perikan. Terubuk 45 59–69
[36] Dirhamsyah 2007 An Economic Valuation of Seagrass Ecosystems in East Bintan, Riau Archipelago, Indonesia Oseanologi dan Limnol. 33 257–70
[37] Taurusman A A, Shafrudin D, Nurani T W, and Komarudin D 2018 Pemulihan Stok Tangkapan Perikanan Teripang Di Kepulauan Seribu: Suatu Pendekatan Ekosistem Mar. Fish. 9 235-44
[38] Dianovita C, Takarina N D, and SuE R A 2019 Jasa Ekosistem Lamun di Pulau Panjang, Serang, Banten IJEEM Indones. J. Environ. Educ. Manag. 4 95–106
[39] Karnan K, Japa L, and Raksun A 2019 Struktur Komunitas Sumberdaya Ikan Padang Lamun Di Teluk Ekas, Lombok Timur J. Biol. Trop. 15 5–14
[40] Ambo-Rappe R 2010 Struktur Komunitas Ikan Pada Padang Lamun Yang Berbeda Di Pulau Barrang Lombo J. Ilmu dan Teknol. Kelaut. Trop. 2 62-73
[41] Vonk J A, Christianen M J A, and Stapel J 2008 Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows Estuar. Coast. Shelf Sci. 79 653–60
[42] Nadiarti, Jompa J, Riani E, and Alwi M J 2015 A comparison of fish distribution pattern in two
different seagrass species-dominated beds in tropical waters *J. Eng. Appl. Sci.* **10** 147–53

[43] Unsworth R K F, Wylie E, Smith D J, and Bell J J 2007 Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia *Estuar. Coast. Shelf Sci.* **72** 81–8

[44] Manik N 2011 Struktur Komunitas Ikan di Padang Lamun Kecamatan Wori Sulawesi Utara *J. Oseanologi dan Limnol. di Indonesia*. **37** 29–41

[45] Assa J D, Wagey B T and Boneka F B 2015 Jenis-Jenis Ikan Di Padang Lamun Pantai Tongkaina *J. Pesisir dan Kelaut. Trop.* **10** 110–20

[46] Durand S S 2010 Studi Potensi Sumberdaya Alam Di Kawasan Pesisir Kabupaten Minahasa Selatan *J. Perikan. Dan Kelaut. Trop.* **6** 1–7

[47] Wahyudin Y, Kusumastanto T, Adrianto L and Wardiatno Y 2018 A Social-Ecological System of Recreational Fishing in the Seagrass Meadow Conservation Area on the East Coast of Bintan Island, Indonesia *Ecol. Econ.* **148** 22–35

[48] Wahyudin Y, Kusumastanto T, Adrianto L and Wardiatno Y 2018 A Social-Ecological System of Recreational Fishing in the Seagrass Meadow Conservation Area on the East Coast of Bintan Island, Indonesia *Ecol. Econ.* **148** 22–35

[49] Kiswara W 1999 Perkembangan Penelitian Ekosistem Padang Lamun di Indonesia *Seminar Tentang Oseanografi* (Jakarta: LIPI)

[50] Kurniawan F, Arkham M N, Rustam A, Rahayu Y P, Adi N S, Adrianto L and Damar A 2020 An ecosystem services perspective for the economic value of seafood production supported by seagrass ecosystems: An exercise in Derawan Island, Indonesia *IOP Conf. Ser. Earth Environ. Sci.* **414**

[51] Furkon, Nessa N, Ambo-Rappe R, Cullen-Unsworth LC and Unsworth R K F 2020 Social-ecological drivers and dynamics of seagrass gleaning fisheries *Ambio* **49** 1271–81
[63] Mustari T, Manaf S and Manafi L O A 2019 Pola Pemanfaatan Sumberdaya Laut Berbasis Kearifan Lokal Pada Masyarakat Wabula di Kabupaten Buton Simulacra 2 53–63

[64] Edrus I N and Suprapto 2013 Arah dan Kebijakan Pengembangan Perikanan Perikanan di Sekitar Teluk Saleh, Nusa Tenggara Barat J. Kebijak. Perikan. Indones. 5 25–38

[65] Syukur A, Khaeruddin K, and Yamin M 2018 Penerapan Teknologi Budidaya Ramah Lingkungan Pada Nelayan Kecil di Desa Ketapang Raya Lombok Timur J. Pengabdi. Magister Pendidik. IPA 1 24–31

[66] Marimba A A, Ambo-Rappe R, Nafie Y A L and Unsworth R K F 2019 “samba” Fish Catching Operations in the seagrass meadows of Selayar Island, Indonesia IOP Conf. Ser. Earth Environ. Sci. 253

[67] Furkon, Nessa M N, and Ambo-Rappe R 2019 Invertebrate Gleaning: Forgotten Fisheries IOP Conf. Ser. Earth Environ. Sci. 253

[68] Ismail F, Akbar N, Pembonan R E, Studi P, Kelautan I, Studi P and Kelautan I 2019 Kajian Pemanfaatan Padang Lamun Sebagai Lahan Budidaya Ikan Baronang di Pulau Sembilan Kabupaten Sinjai Assessment of Land Utilization Seagrass As Aquaculture Baronang In Pulau Sembilan, Sinjai J. Ilmu Kelaut. dan Kepul. 2 48–62

[69] Blankenhorn S U 2007 Seaweed farming and artisanal fisheries in an Indonesian seagrass bed - Complementary or competitive usages? vol 2 (Bremen, Germany: Ph.D. Thesis, University Bremen)

[70] Nanto, Mustafa A, and Arami H 2016 Studi komunitas ikan pada ekosistem Padang lamun yang terexplloitasi di Perairan Mola Taman Nasional Laut Wakatobi J. Manaj. Sumber Daya Perair. 1 415–26

[71] Kaeli F, Subur R and Abubakar S 2016 Studi Komparatif Komunitas Ikan Padang Lamun Pada Bulan Perbani Awal Dan Perbani Akhir Di Perairan Loleo Kecamatan Weda Selatan Kabupaten Halmahera Tengah J. Biol. Trop. 16 43–55