MicroRNAs as Biomarkers of B-cell Lymphoma

Carla Solé¹, Esther Arnaiz¹ and Charles H Lawrie¹,²,³
¹Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain. ²Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK. ³Ikerbasque, Basque Foundation for Science, Bilbao, Spain.

ABSTRACT: B-cell lymphomas represent a diverse group of neoplasms classified primarily by histopathology and are often challenging to accurately diagnose. Despite having been recognized less than 20 years ago, microRNAs (miRNAs) have emerged as one of the most promising class of cancer molecular biomarkers and are particularly attractive as they can be readily detected in formalin-fixed paraffin-embedded biopsy material and biological fluids such as blood. Many of the identified B-cell lymphoma miRNA biomarkers also play crucial regulatory roles in normal B-cell development. Below we consider the identity, function, and biomarker potential of miRNAs in B-cell lymphoma and most importantly the barriers that remain to be overcome if they are really to become part of routine clinical practice.

KEYWORDS: microRNA, B-cell lymphoma, non-Hodgkin lymphoma, Hodgkin lymphoma, biomarker, liquid biopsies

Introduction

The first discovery of what we now know as microRNAs (miRNAs) came in 1993 from the laboratories of Victor Ambros in Dartmouth College and Gary Ruvkun in Harvard. They simultaneously published a description of lin-4, a previously identified locus in Caenorhabditis elegans involved in developmental timing, that appeared to have a direct function without encoding for a protein.¹,² Things went quiet for the next 7 years, until the Ruvkun lab identified, let-7a, a second sequence from C. elegans, with similar properties to lin-4.³ Unlike lin-4, however, the sequence of let-7 was found to be highly conserved in eukaryotic genomes and it was realized that many similar sequences were present in the genomes of higher species. The first use of the term miRNA was made in 2001 by Lee and Ambros in a publication where they identified a further 15 miRNAs.⁴ Since that time, there have been more than 25000 miRNA sequences identified in over 200 different species (http://www.mirbase.org), including more than 2500 human miRNAs.⁵,⁶

MicroRNAs are short non-coding (nc)RNAs of 18 to 24 nucleotides in length that bind to regions of complementarity generally located in the 3’-UTR (untranslated region) of target genes. They primarily act as inhibitor molecules causing post-transcriptional inhibition or degradation, although in some instances, they may also act as gene activators.⁷ It is estimated that two-thirds of human genes are directly regulated by miRNAs,⁸ and as a consequence, miRNAs are involved in most, if not all, cellular processes under physiological conditions. Moreover, dysfunctional expression of miRNAs appears to be a hallmark of all cancer types,⁹,¹⁰ including B-cell lymphomas that are the focus of this review.

Lymphoma is a cancer of the lymphatic system arising from B cells or T cells that represents the fifth most common cancer type worldwide, affecting more than a million people. Lymphomas are a heterogeneous group of cancers that vary in presentation, prognosis, and pathogenesis. In the latest version of World Health Organization (WHO) classification, there were more than 100 different lymphoma types listed, most of which were B-cell lymphomas, but which can have very different clinical characteristics and treatment regimens.¹¹ As a consequence, correct classification of a given lymphoma is often challenging, and therefore there is a clear clinical need for better biomarkers for these diseases. MicroRNAs are particularly attractive candidates as biomarkers, as their expression can classify different tumours according to their diagnosis, subtype, and stage more accurately than messenger RNA expression profiles.¹² Moreover, due to their intrinsic stability, they can be reliably detected in routinely prepared formalin-fixed paraffin-embedded (FFPE) tissue. This stability also means they are readily detected in biological fluids such as blood, which has led to a great deal of interest in the use of miRNAs as biomarkers in liquid biopsies discussed below.

MIRNAs as lymphoma liquid biopsy biomarkers

Currently, the gold standard of B-cell lymphoma diagnosis depends on the histopathologic examination of surgically excised biopsy material. This procedure, however, is expensive, invasive, uncomfortable, and can be risky for patients. Therefore, there has been a great interest in the development of non-invasive cancer biomarkers, also known as liquid biopsies. MicroRNAs hold a great promise in this area, as not only can they be extracted from frozen and paraffin-embedded tissue but also from many different body fluids including blood,¹³,¹⁴ urine,¹⁵ saliva,¹⁶,¹⁷ sputum,¹⁸,¹⁹ amniotic fluid, and even from tears.²⁰
Most of the attention has been focused circulating miRNAs in blood, either in whole plasma or within circulating extracellular vesicles such as exosomes.\(^{21,22}\) The first report of miRNAs in the blood of B-cell lymphomas, or indeed any cancer, came in 2007.\(^{23}\) We found that levels of \(\text{miR}-21\), \(\text{miR}-155\), and \(\text{miR}-210\) in the serum samples of patients with diffuse large B-cell lymphoma (DLBCL) compared with healthy controls were higher suggesting their usefulness as biomarkers.\(^{24}\) Since this time, there have been many follow-up studies in blood of patients with lymphoma as described below and in Table 1.

Aberrant Expression of miRNAs in B-cell Lymphoma

Many of the miRNAs that have been identified as lymphoma biomarkers (Figure 1 and Table 1) also play key roles in normal B-cell lymphopoiesis. Frequently, these aberrantly expressed biomarker miRNAs also appear to be key drivers of lymphomagenesis.\(^{100,101}\) For example, \(\text{miR}-155\) controls germinal centre (GC) development by controlling immunoglobulin production, after activation of the B-cell receptor (BCR), and is a requirement for high-affinity antibody formation.\(^{102,103}\) However, when overexpressed in a transgenic mouse model, the mice developed a high-grade lymphoma similar to DLBCL.\(^{104}\) In a similar manner, the \(\text{miR}-17-92\) controls pro–B-cell to pre–B-cell development via targeting of the proapoptotic protein BIM,\(^{105}\) but when overexpressed in a murine MYC model, increased the aggressiveness of B-cell lymphomas.\(^{106,107}\) \(\text{MiR}-21\) that targets tumour suppressor molecules including PTEN and PDCD4,\(^{108,109}\) when overexpressed in mice resulted in formation of B-cell lymphomas.\(^{110}\) \(\text{MiR}-34a\) controls the transition of pro–to pre–B cell in haematopoietic stem cells via FOXP1 and SIRT1 targeting,\(^{111,112}\) and overexpression of this miRNA in mice abrogated lymphoma formation in a xenotransplant model.

In addition to the miRNAs mentioned above, \(\text{miR}-181\) has long been recognized as a key regulator of GC B-cell differentiation,\(^{113,114}\) along with \(\text{miR}-150\) that inhibits MYB downregulation.\(^{115}\) The GC B cells are characterized by expression of markers BCL6, CD10, HGAL, and LMO2, as well as the absence of activated B-cell markers such as IRF4, PRDM1/BLIMP1, and XBP1. These transcription factors are also regulated at the level of miRNAs. For example, BCL6 is regulated by \(\text{miR}-30\) family, \(\text{miR}-9\) and \(-7a,\)\(^{116}\) whereas \(\text{miR}-155\) regulates expression of HGAL and CD10 protein expression,\(^{117,118}\) and \(\text{miR}-223\) regulates expression of LMO2.\(^{119}\) In contrast, \(\text{miR}-125b\) and \(\text{miR}-155\) regulate expression of the activated B-cell markers, IRF4 and PRDM1.\(^{116,120}\)

The cause of aberrant miRNA expression in lymphoma (and other cancers) can result from many genominc events, such as chromosomal aberrations, epigenetic modifications, mutations in the sequence of miRNAs or their promoter regions, or factors that regulate synthesis or function of miRNAs (for further details see the work by Croce\(^{121}\)). Below, we discuss the aberrantly expressed miRNAs in different B-cell lymphoproliferative diseases that could facilitate the diagnosis, prognosis, and prediction of treatment response.

Chronic lymphocytic leukaemia

Chronic lymphocytic leukaemia (CLL) is the most common haematologic malignancy worldwide\(^{122}\) and was the first hematologic malignancy, or indeed any cancer to be associated with aberrant miRNA expression when in 2002, George Calin and colleagues reported that the frequently (55%) deleted locus, 13q14, encodes for the \(\text{miR}-15a/16-1\) cluster, and that these miRNAs were downregulated in most of the patients with 13q(del) CLL.\(^{33}\) These miRNAs act as tumour suppressors in CLL through targeting of the anti-apoptotic BCL2 protein\(^{123}\) and the tumour suppressor \(\text{TP53}\).\(^{124}\) In contrast, \(\text{miR}-7-5p, \text{miR}-182-5p, \text{and miR}-320c/d\) are regulated by p53 in CLL.\(^{34}\) Epigenetic silencing of the \(\text{miR}-15a/16-1\) cluster is observed in 30% to 35% of patients with CLL, a feature mediated through \(\text{HDAC1-3}\) overexpression,\(^{125}\) suggesting that these patients might benefit from HDAC-inhibitor–based therapies. However, murine models of the 13q14 deletion suggest that other factors also contribute to the aggressiveness of the disease.\(^{126}\) Furthermore, the closely related \(\text{miR}-15b/16-2\) cluster also appears to modulate genes involved in proliferation and anti-apoptotic pathways.\(^{127}\)

Similar to \(\text{miR}-15a/16-1, \text{miR}-181b\) is also typically downregulated in CLL, and low expression of this miRNA has been related to poor prognostic outcome.\(^{39}\) Consistent with this phenotype, levels of \(\text{miR}-181b\) correlate with treatment-free survival in CLL.\(^{40}\)

In contrast, \(\text{miR}-155\) is overexpressed in CLL but was found to be lower in patients who responded to therapy compared with refractory patients,\(^{37}\) suggesting its usefulness as a predictive biomarker for CLL. \(\text{MiR}-29\) is also overexpressed in both indolent and aggressive CLL, when compared with normal counterpart, but its expression was found to be lower in aggressive CLL.\(^{35}\) When \(\text{miR}-29\) was overexpressed in murine B cells, the animals developed an indolent-type form of CLL.\(^{128}\)

MicroRNA expression profiling has been used to distinguish between aggressive and indolent CLLS, with high levels of \(\text{miR}-21\) and \(\text{miR}-155\) being associated with a higher mortality rate.\(^{40,41}\) In contrast, upregulation of \(\text{miR}-708\) has been associated with a favourable prognostic outcome for patients with CLL that was shown to be linked to a reduction in the nuclear factor kB signalling pathway.\(^{42}\) The proliferation status of a subset of peripheral blood cells–unmutated patients with CLL was linked with \(\text{miR}-22\) overexpression via inhibition of PTEN and PI3K/AKT activation.\(^{129}\)

Recently, it has been described that low levels of \(\text{miR}-150\) in tumour cells or alternatively high levels of this miRNA in (circulating) serum are related to poor prognosis in CLL.\(^{43}\) In another study, levels of both \(\text{miR}-150\) and \(\text{miR}-153\) in the blood were associated with the prognostic outcome of CLL.\(^{44}\)
Table 1. List of major miRNAs identified as biomarkers in B-cell malignancies.

LYMPHOMA	BIOMARKER	MIRNA	SAMPLE	REFERENCES
HL	Diagnostic	miR-155	Cell lines	van den berg et al²⁵ and Metzler et al²⁶
		23-miRNA signature	Cell lines	Gibcus et al²⁷
		25-miRNA signature	Tissue	Navarro et al²⁸
		134- and 100-miRNA signature	Cell lines and tissue	Sanchez-Espiridion et al²⁹
		miR-9-2 (methylation)	Tissue	Ben Dhiab et al³⁰
Prognostic		miR-135a	Tissue and cell lines	Navarro et al³¹
		miR-21, miR-30e/d, and miR-92b	Tissue	Sanchez-Espiridion et al²⁹
		miR-124a (methylation)	Tissue	Ben Dhiab et al³²
CLL	Diagnostic	miR-15a/16 cluster	PBMCs and cell lines	Calin et al³³
		miR-7, miR-182, and miR-320c/d	PBMCs and cell lines	Blume et al³⁴
		miR-29	PBMCs and cell lines	Pekarsky et al³⁵
		miR-151	Serum (EV)	Caivano et al³⁶
		miR-34a, miR-31, miR-155, miR-150, miR-15a, miR-29a	Serum	Filip et al³⁷
		miR-192	PBMCs	Fathullahzadeh et al³⁸⁸
Prognostic		miR-181b	PBMCs	Visone et al³⁹
		miR-21	PBMCs	Rossi et al⁴⁰
		miR-155	PBMCs	Cui et al⁴¹
		miR-708	PBMCs and cell lines	Baer et al⁴²
		miR-150	Cell lines and serum	Stamatopoulos et al⁴³
		miR-150 and miR-155	Blood cells	Georgiadis et al⁴⁴
		miR-17–92 cluster	PBMCs	Bomben et al⁴⁵
		13-miRNA signature	PBMCs and cell lines	Calin et al⁴⁶
Predictive		miR-181b	PBMCs	Rossi et al⁴⁰
		miR-155	PBMCs	Ferrajoli et al⁴⁷
		miR-21*, miR-148a, and miR-222	PBMCs and cell lines	Ferracin et al⁴⁸
DLBCL	Diagnostic	miR-21, miR-155, and miR-210	Serum	Lawrie et al⁴⁴
		12-miRNA signature	Tissue	Roehle et al⁴⁹
		15-miRNA signature	Tissue	Lawrie et al⁵⁰
		12-miRNA signature	Tissue	Caramuta et al⁵¹
		miR-155, miR-221, miR-222, miR-21, miR-363, miR-518a, miR-181a, miR-590, miR-421, and miR-324	Cell lines	Lawrie et al⁵²
		miR-155 and miR-146a	Tissue	Zhong et al⁵³
		27-miRNA signature	Tissue and cell lines	Iqbal et al⁵⁴
		miR-124, miR-532, miR-122, miR-128, miR-141, miR-145, miR-197, miR-345, miR-424, and miR-425	Plasma and exosomes	Khare et al⁵⁵
		miR-34a, miR-323b, and miR-431	Serum	Meng et al⁵⁶

(Continued)
Table 1. (Continued)

LYMPHOMA	BIOMARKER	MI RNA	SAMPLE	REFERENCES
Prognostic	miR-21	Serum	Lawrie et al²⁴	
	miR-155 and miR-146a	Tissue	Zhong et al²³	
	miR-22	Serum	Marchesi et al²⁷	
	miR-155	Tissue and cell lines	Iqbal et al²⁴	
	miR-20a and miR-30d	Tissue	Pillar et al²⁸	
	miR-155	Tissue and cell lines	Zhang et al²⁹	
	miR-17–92 cluster	Tissue and cell lines	Tagawa et al³⁰	
	miR-34a	Tissue	He et al³¹	
	miR-27b	Tissue	Jia et al³²	
	miR-21	Cell lines	Gu et al³³	
	miR-21	Tissue	Lawrie et al³⁴ and Zheng et al³⁵	
Predictive	miR-27a, miR-142, miR-199b, miR-222, miR-302, miR-330, miR-425, and miR-519	Tissue	Lawrie et al³⁶	
	miR-155 and miR-146a	Tissue	Zhong et al³³	
	miR-21	Cell lines	Gu et al³³ and Bai et al³⁵	
	miR-224, miR-455, miR-1236, miR-33a, and miR-520d	Serum	Song et al³⁶	
	miR-125b and miR-130a	Tissue and blood	Yuan et al³⁷	
	miR-199a and miR-497	Tissue and cell lines	Troppan et al³⁸	
	miR-370, miR-381, and miR-409	Tissue and cell lines	Leivonen et al³⁹	
FL	Diagnostic	miR-9 and miR-155	Tissue	Roehle et al⁴⁰
	miR-217, miR-221, miR-222, let-7i, and let-7b	Tissue	Lawrie et al⁴¹	
	miR-31 and miR-17	Tissue	Thompson et al⁴²	
	17-miRNA signature	Tissue	Leich et al⁴³	
	44-miRNA signature	Tissue	Wang et al⁴⁴	
	miR-494	Tissue	Arribas et al⁴⁵	
	66-miRNA signature	Bone marrow smears	Takei et al⁴⁶	
Predictive	23-miRNA signature	Tissue	Wang et al⁴⁷	
BL	Diagnostic	miR-23a, miR-26a, miR-29b, miR-30d, miR-146a, miR-148b, miR-155, and miR-221	Tissue	Lenze et al⁴⁸
	miR-34b	Cell lines and tissue	Leucci et al⁴⁹	
	22-miRNA signature	Tissue	Hezaveh et al⁵⁰	
	miR-155, miR-21, and miR-26a	Needle aspirates	Zajdel et al⁵¹	
	miR-29 family	Cell lines and tissue	Robaina et al⁵² and De Falco et al⁵³	
	miR-513a	Tissue	De Falco et al⁵⁴	
	miR-628	Tissue	De Falco et al⁵⁴	
Moreover, high levels of miR-155 in extracellular vesicles derived from the serum samples of patients with CLL were found compared with healthy controls. Filip et al37 found that the serum of patients with CLL had higher levels of miR-34a, miR-31, miR-155, miR-150, miR-15a, and miR-29a than controls. Another study showed that levels of miR-192 in peripheral blood mononuclear cells (PBMCs) are downregulated in patients with CLL compared with controls, suggesting that this miRNA could be a diagnostic biomarker for early stage of CLL.38 In CLL, proliferation centres, considered to drive the disease and play a role in progression of disease, had high levels of miR-155 and miR-92 and low levels of miR-150.130

Hodgkin lymphoma

Hodgkin lymphoma (HL), first described in 1832 by Thomas Hodgkin,131 is one of the most frequent lymphomas, accounting for 1% of total cancers worldwide. The defining characteristic of HL is that neoplastic cells typically account for less than 1% of the tumour mass.132 Tumour cells in classical HL (cHL), known as Hodgkin and Reed–Sternberg (HRS) cells, lack functional BCR expression or typical B-cell markers and instead express CD15 and CD30 cell surface markers.133,134 Anke van den Berg’s lab was the first to identify miRNAs in HL, when they observed in 2003 that the non-coding BIC locus, subsequently found to encode for miR-155, was overexpressed in HL cell lines.25,26 Since this time, miR-155 has been shown to target several genes in HL cells including DET1 and NIAM, among others.135

Apart from this miRNA, several others have been implicated in HL including miR-135a which was the first miRNA to be associated with survival in HL.31 The patients with HL with low levels of miR-135a had shorter disease-free survival than those with high levels of this miRNA. JAK2 is directly targeted by miR-135a, and the overexpression of this miRNA increases apoptotic levels and decreases cell growth via Bcl-xL.
In addition, let-7 and miR-9 inhibition has been shown to block plasma cell differentiation, by decreasing levels of PRDM1/BLIMP1, as well as targeting Dicer and HuR. In a complementary study, inhibition of miR-9 was observed to hamper cytokine production and consequent inflammatory cell attraction in HL cell lines. A 25-miRNA signature that could differentiate between cHL and reactive lymph nodes was identified by Navarro et al using chromogenic in situ hybridization. Gibcus et al compared the expression of miRNAs between different HL cell lines and other B-cell lymphoma cell lines and described a 23-miRNA signature for HL, which included the overexpression of miR-17-92 cluster, miR-16, miR-21, miR-24, and miR-155 along with the downregulation of miR-150. Using microarrays, another group identified 134 differentially expressed miRNAs in HL cell lines and an overlapping signature of 100 miRNAs differentially expressed in tumour samples. Moreover, they observed that the levels of miR-21, miR-30e, miR-30d, and miR-92b could differentiate patients with HL according to prognostic risk groups. Epigenetic modifications of miRNA sequences have also been associated with HL including hypermethylation of miR-124a which was associated with more aggressive HL, and miR-9-2 methylation which is a common feature of this disease. Navarro et al recently observed that miR-34a and miR-203 are frequently methylated in HL cells. It has been recently found that the alteration of miRNAs related to the regulation of antioxidant enzymes is associated with an aggressive outcome of the disease. In plasma, the levels of miR-494, miR-1973, and miR-21 were higher in patients with HL than controls, and in another study, levels of miR-24, miR-127, miR-21, miR-155, and let-7a were higher in purified plasma exosomes from patients with HL than disease controls.

Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma is the most common B-cell lymphoma in Western countries, accounting for around 20% to
30% of cases. Thanks to the routine implementation of R-CHOP therapy, the survival of patients with DLBCL has been greatly improved; however, a third of patients still relapse or have a refractory disease. Diffuse large B-cell lymphoma is a heterogeneous disease both at the clinical and molecular level, with the existence of at least 2 different molecular subtypes: GC B-cell like (GC-DLBCL) and activated B-cell like (ABC-DLBCL). These subtypes are also distinguishable at the miRNA profile level with ABC-type lymphoma being associated with high expression of miR-21, miR-146a, miR-155, miR-221, and miR-363, and GCB-type DLBCL with high expression of miR-421 and the miR-17-92 cluster. It has been described that miRNAs can predict differences between DLBCL and follicular lymphoma (FL) or DLBCL and Burkitt lymphoma (BL). Central nervous system (CNS) relapse is a complication of DLBCL that occurs in approximately 5% of patients, associated with low survival, miR-20a and miR-30d are correlated with CNS relapse in patients with DLBCL and therefore could be used for patient stratification.

As noted above, overexpression of miR-155 in mice is enough to cause development of a high-grade lymphoma, similar to DLBCL. Indeed, when the same authors used an inducible expression system, removal of the miR-155 stimulus was sufficient to allow complete recovery of affected mice. MiR-155 has also been linked with metastasis and prognosis in patients with DLBCL. Apart from miR-155 overexpression, low expression of both miR-34a and miR-27b expression has also been linked with a worse prognostic outcome for patients with DLBCL. In addition, low levels of miR-21 have been linked with shorter relapse-free survival in both tumour tissue and in serum from patients. As a consequence, levels of this miRNA have been proposed to act as an independent prognostic factor in DLBCL. It has been suggested that miR-21 may contribute to increase viability and reduce apoptotic levels of tumour cells through targeting BCL2 and PTEN. Furthermore, miR-21 inhibition leads to an increase in the sensitivity of DLBCL cell lines to CHOP treatment and reduces tumour cell proliferation and invasion.

Several studies have looked at the association between miRNA expression and prognostic outcome in R-CHOP-treated patients with DLBCL. Our study found that levels of miR-27a, miR-142, miR-199b, miR-222, miR-302, miR-330, miR-425, and miR-519 were linked with overall survival. More recently, miR-125b and miR-130a were associated with resistance to R-CHOP in DLBCL, and high expression of miR-155 has also been linked to treatment failure. In vitro, overexpression of miR-199a and miR-497 resulted in increased sensitivity to rituximab, vincristine, and doxorubicin, drugs present in R-CHOP regimen. Overexpression of miR-370-3p, miR-381-3p, and miR-409-3p also increased sensitivity to rituximab and doxorubicin.

Outside of the tumour itself, we observed that levels of miR-21, miR-155, and miR-210 in the serum samples of patients with DLBCL were differentially expressed when compared with serum samples from healthy controls. Subsequent studies using plasma also observed increased levels of miR-124 and miR-532-5p along with decreased levels of miR-122, miR-128, miR-141, miR-145, miR-197, miR-345, miR-424, and miR-425. Fang et al. found that miR-15a, miR-16, miR-29c, and miR-155 were upregulated and miR-34a was downregulated in the serum samples of patients with DLBCL, and more recently Yuan et al. found a good correlation between circulating levels of 8 miRNAs and their matched FFPE samples. High expression of serum miR-22 was associated with poor prognostic outcome. Recently, next-generation sequencing (NGS) technology was used to identify 51 miRNAs that were differentially expressed in the serum samples of patients with DLBCL compared with control serum samples. Three of these were validated by quantitative reverse transcription-polymerase chain reaction in a validation cohort. MiR-34a-5p was upregulated, whereas miR-323-3p and miR-431-5p were downregulated.

Follicular lymphoma

Follicular lymphoma is the most common indolent B-cell lymphoma worldwide, and despite being essentially incurable, it has a median overall survival of ~20 years. However, nearly a third of patients with FL will suffer histologic transformation into a high-grade lymphoma often termed transformed FL (tFL), that is morphologically indistinguishable from DLBCL, with a much worse prognosis than the antecedent FL. We identified a signature of 6 miRNAs (miR-223, miR-217, miR-222, miR-221, and let-7i and let-7b) that could distinguish between de novo DLBCL and tFL. Subsequently, miR-31 and miR-17-5p have also been identified as being differentially expressed between FL and tFL.

The t(14;18) translocation resulting in the constitutive expression of the anti-apoptotic BCL2 protein is the genetic hallmark of more than 90% of FL cases. Using microarrays, a signature of 17 miRNAs was identified when comparing t(14;18)-positive and t(14;18)-negative FL cases. Down regulation of miR-16, miR-26a, miR-101, miR-29c, and miR-138 was associated with changes in the expression of target genes related to cell cycle control, apoptosis, and B-cell differentiation. It has been demonstrated that miRNA expression differs between pathogenic and non-neoplastic tissue, such as miR-9 and miR-155. Another study found a subset of 44 miRNAs which discriminates between FL and follicular hyperplasia, and the same study also described a 23-miRNA signature that was associated with an improved response to chemotherapy. Moreover, miR-494 was found overexpressed in FL compared with a potentially confounding diagnosis of nodal marginal zone lymphoma.
Finally, one study analysed bone marrow smears from patients with FL and showed that 39 miRNA were decreased and 27 miRNA were increased significantly; among these, miR-451 showed the greatest decrease and miR-338-5p the greatest increase in patients with FL.74

Burkitt lymphoma

Burkitt lymphoma most commonly affects children and adolescents and is a highly aggressive lymphoma with a very poor prognosis that often involves extra-nodal sites. Burkitt lymphoma is characterized by overexpression of the MYC oncogene and is associated with the t(8:14) translocation in most of the cases (>90%).11 However, there are few cases that lack the t(8:14) translocation but have MYC overexpressed.76 The authors suggest that miR-34b could be responsible for MYC overexpression in these cases.76 In further studies, additional miRNAs have been identified as being differentially expressed between t(8:14)-positive and t(8:14)-negative cases by downregulation of miR-29 family members,79,80 miR-96 and miR-34b,26 and upregulation of miR-15a-5p and miR-628-3p.77,80 Furthermore, levels of MYC-regulated miRNAs, such as the let-7 family, miR-155, miR-146a, miR-29, and the miR-17–92 cluster, can distinguish BL from other B-cell lymphoma types.75,81–83,150 Recently, NGS was used to identify 49 differentially expressed miRNAs between BL cases and normal GC B cells, many of which can target MYC.84 Furthermore, miR-181b was found downregulated in BL cases, and the authors propose that it may function as a tumour suppressor.85

In an earlier study, significantly lower expression of miR-155, miR-21, and miR-26a was observed between classical BL and cases with intermediate features between BL and DLBCL (DLBCL/BL).78 Most of the endemic BL cases (>90%) are associated with Epstein-Barr virus (EBV) infection1,11,151 that has been shown to regulate several miRNAs, including miR-21, miR-146a, miR-155, miR-10a, and miR-127 in BL cases.152–155 In addition, EBV itself encodes for miRNAs that can interfere and regulate several miRNAs, including miR-15b, miR-127, miR-139, miR-335, miR-29a, miR-29b1, miR-96, miR-129, miR-182, miR-183, miR-335, and miR-593 in SMZL cases.99 MiR-127, miR-139, miR-335, and miR-411 were also found downregulated in SMZL cases, whereas miR-451 and miR-486 were upregulated.96

Mucosa-associated lymphoid tissue (MALT) lymphoma is a multifocal disease that involves the MALT frequently of the stomach, and is frequently associated with chronic inflammation as a result of Helicobacter pylori infection.11 On one hand, a signature of 27 miRNAs has been identified that can distinguish between gastritis and MALT lymphoma cases.77,98 On the other hand, miR-142 and miR-155 were found overexpressed in MALT lymphoma lesions compared with surrounding non-tumour mucosa. The expression levels of miR-142–5p and miR-155 were significantly increased in MALT lymphomas resistant to H pylori eradication than in cases showing complete remission after H pylori eradication. The expression levels of miR-142–5p and miR-155 were also associated with the clinical courses of gastric MALT lymphoma cases.99

Discussion and Future Directions

Despite the rapid growth of literature proposing miRNAs as B-cell lymphoma biomarkers, we are still far from the clinical implementation. Most of the miRNA biomarker studies to date are single centre with a retrospective design, with not enough power in most cases (Table 1). As a consequence, many reports are non-overlapping or even contradictory. These differences are probably due to variation in the handling of the material and the technical methodology used in each study.

The choice of the starting material (whole blood, PBMCs, serum, plasma, fresh of FFPE biopsy material) is of vital importance for the experimental design as it will generate different expression profiles.164–166 Sample collection and handling procedures are also crucial, and in the case of liquid biopsies, they should be optimized to reduce the time between phlebotomy and processing and to avoid excessive haemolysis which could lead major differences in the levels of miRNAs.167–169

It should also be taken into account that differences in the miRNA purification procedure are a source of variability.170 In addition, miRNA detection technique (qRT-PCR, microarrays, or NGS), along with the lack of a standard approach to normalization or a suitable endogenous reference gene for miRNA studies, can influence results significantly.15,24,171–175
is therefore necessary to establish a standardized approach to miRNA biomarker studies alongside a systematic and comprehensive comparison of these confounding factors to ensure that the potential of these molecules is effectively realized in the clinic and live up to the hype.

Acknowledgements

We apologize to the authors of the many studies who were not included in this review due to space limitations.

Author Contributions

CS and EA contributed equally to this work.

ORCID iD

Esther Arnaiz
https://orcid.org/0000-0001-7838-4575

REFERENCES

1. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.
Coll. 1993;75:855–862.

2. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.
Coll. 1993;75:843–854.

3. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.
Nature. 2000;403:901–906.

4. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans.
Science. 2001;294:68–686.

5. Griffiths-Jones S, Grocock RJ, Von Dongen S, Bateman A, Enright AJ. miR-Base: microRNA sequences, targets and gene nomenclature.
Nucleic Acids Res. 2006;34:D140–D144.

6. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data.
Nucleic Acids Res. 2014;42:D68–D73.

7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function.
Coll. 2004;116:281–297.

8. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs.
Genome Res. 2009;19:92–105.

9. Vannini I, Fanini F, Fabbrì M. Emerging roles of microRNAs in cancer.
Curr Opin Genet Dev. 2018;48:128–133.

10. Fernandez-Mercado M, Manterola L, Larrea E, et al. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids.
J Cell Mol Med. 2015;19:2307–2323.

11. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms.
Blood. 2016;127:2375–2390.

12. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers.
Nature. 2005;435:834–838.

13. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable miRNA biomarker studies alongside a systematic and comprehensive comparison of these confounding factors to ensure that the potential of these molecules is effectively realized in the clinic and live up to the hype.
Insight. 2016;1:e89631.

22. van Eijndhoven MA, Zijlstra JM, Groenewegen NJ, et al. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients.
J Clin Oncol. 2010;9:123.

23. Lawrie CH. MicroRNA expression in lymphoma.
Exp Opin Biol Ther. 2007;7:1363–1374.

24. Lawrie CH, Gu S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma.
Br J Haematol. 2008;141:672–675.

25. van den Berg A, Kroezen BJ, Kooistra K, et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma.
Genes Chromosomes Cancer. 2003;37:20–28.

26. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma.
Genes Chromosomes Cancer. 2004;39:167–169.

27. Gilbics JH, Tan LP, Harms G, et al. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile.
Neoplasia. 2009;11:167–176.

28. Navarro A, Gaya A, Martinez A, et al. MicroRNA expression profiling in classic Hodgkin lymphoma.
Blood. 2008;111:2825–2832.

29. Sanchez-Espiridion B, Martin-Moreno AM, Montalban C, et al. MicroRNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma.
Br J Haematol. 2013;162:236–247.

30. Ben Dhiai M, Ziai S, Lounbachi T, Ben Gacem R, Ksiaa F, Trimeche M. Investigation of miR-9, miR-2 and miR-9-3 methylation in Hodgkin lymphoma.
Pathobiology. 2015;82:195–202.

31. Navarro A, Diaz T, Martinez A, et al. Regulation of JK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma.
Blood. 2009;114:2945–2951.

32. Ben Dhiai M, Ziai S, Ksiaa F, et al. Methylation of miR124a-1, miR124a-2, and miR124a-3 in Hodgkin lymphoma.
Tumour Biol. 2015;36:1963–1971.

33. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of microRNA genes mir15 and mir16 at 13q14 in chronic lympho-cytic leukemia.
Proc Natl Acad Sci U S A. 2002;99:15524–15529.

34. Blume CJ, Horst-Wagenblatt A, Hullein J, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia.
Leukemia. 2015;29: 2015–2023.

35. Pekarsky Y, Santamaria U, Cimmino A, et al. Tc1 expression in chronic lympho-cytic leukemia is regulated by miR-29 and miR-181.
Cancer Res. 2006;66:11590–11593.

36. Caivanova A, La Rocca F, Simeon V, et al. MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies – a short report.
Cell Oncol. 2017;40:279–286.

37. Filip AA, Greda A, Poped S, et al. Expression of circulating miRNAs associated with lymphocyte differentiation and activation in CLL--another piece in the puzzle.
Ann Hematol. 2017;96:33–50.

38. Fathullahzadeh S, Mirzaei H, Ahmadi M, et al. miR-203 expression in chronic lympho-cytic leukemia patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival.
Blood. 2010;116:945–952.

39. Cui B, Chen L, Zhang S, et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia.
Blood. 2014;124:546–554.

40. Bae C, Oakes CC, Ruppert AS, et al. Epigenetic silencing of miR-708 enhances tumor cell growth in human chronic lymphocytic leukemia.
Leukemia. 2015;29:1990-2002.

41. Rossi S, Shimizu M, Barbarotto E, et al. microRNA-155 fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival.
BMC Cancer. 2012;3:1891-1899.

42. Baer C, Oakes CC, Ruppert AS, et al. Epigenetic silencing of miR-708 enhances tumor cell growth in human chronic lymphocytic leukemia.
Leukemia. 2015;29:1990-2002.

43. Fathullahzadeh S, Mirzaei H, Ahmadi M, et al. miR-203 expression in chronic lympho-cytic leukemia patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival.
Blood. 2010;116:945–952.

44. Cui B, Chen L, Zhang S, et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia.
Blood. 2014;124:546–554.

45. Bae C, Oakes CC, Ruppert AS, et al. Epigenetic silencing of miR-708 enhances tumor cell growth in human chronic lymphocytic leukemia.
Leukemia. 2015;29:1990-2002.

46. Fathullahzadeh S, Mirzaei H, Ahmadi M, et al. miR-203 expression in chronic lympho-cytic leukemia patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival.
BMC Cancer. 2012;3:1891-1899.

47. Fathullahzadeh S, Mirzaei H, Ahmadi M, et al. miR-203 expression in chronic lympho-cytic leukemia patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival.
BMC Cancer. 2012;3:1891-1899.
67. Yuan WX, Gui YX, Na WN, Chao J, Yang X. Circulating microRNA-125b and follicular lymphoma. *Blood Cancer J.* 2013;3:e152.

65. Bai H, Wei J, Deng C, Yang X, Wang C, Xu R. MicroRNA-21 regulates the senescence of B-lymphocytes from patients with diffuse large B-cell lymphoma. *Exp Ther Med.* 2012;3:763–770.

64. Zheng Z, Li X, Zhu Y, Gu W, Xie X, Jiang J. Prognostic significance of miRNA deregulation. *Acta Haematol.* 2015;125:1137–1145.

63. Khare D, Goldschmidt N, Bardugo A, Gur-Wahnon D, Ben-Dov IZ, Avni B. Plasma microRNA profiling: exploring better biomarkers for lymphoma surveillance. *PLoS ONE.* 2017;12:e018772.

62. Jia YJ, Liu ZB, Wang WG, et al. HDAC6 regulates microRNA-27b that suppresses proliferation, promotes apoptosis and targets MET in diffuse large B-cell lymphoma. *Blood.* 2015;174:1711–1718.

61. Meng Y, Qian L, Liu A. Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions. *Gene.* 2018;642:205–211.

60. Tagawa H, Karube K, Tsuzuki S, Ohshima K, Seto M. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. *Cancer Sci.* 2008;99:1482–1490.

59. Marchesi F, Regazzo G, Palombi F, et al. Serum miR-22 as potential non-invasive predictor of poor clinical outcome in newly diagnosed, uniformly treated patients with diffuse large B-cell lymphoma: an explorative pilot study. *J Exp Clin Cancer Res.* 2018;37:95.

58. Pillar N, Bairey O, Goldschmidt N, et al. MicroRNAs as predictors for CNS relapse of systemic diffuse large B-cell lymphoma. *Oncotarget.* 2017;8:96620–96630.

57. Zhang J, Wei B, Hu H, et al. Preliminary study on decreasing the expression of FOXP3 with miR-155 to inhibit diffuse large B-cell lymphoma. *Oncol Lett.* 2017;14:1711–1718.

56. Tagawa H, Karube K, Tsuzuki S, Ohshima K, Seto M. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. *Cancer Sci.* 2008;99:1482–1490.

55. He M, Gao L, Zhang S, et al. Prognostic significance of miR-34a and its target proteins of FOXP3, p53, and BCL2 in gastric Mal and DLBCL. *Gastric Cancer.* 2014;17:431–441.

54. Jia YJ, Liu ZB, Wang WG, et al. HDAC6 regulates microRNA-27b that suppresses proliferation, promotes apoptosis and targets MET in diffuse large B-cell lymphoma. *Leukemia.* 2017;32:703–711.

53. Gu L, Song G, Chen L, et al. Inhibition of miR-21 induces biological and behavioral alterations in diffuse large B-cell lymphoma. *Acta Haematol.* 2013;129:87–94.

52. Zheng L, Li X, Zhu Y, Gu W, Xie X, Jiang J. Prognostic significance of microRNA in patients with diffuse large B-cell lymphoma: a meta-analysis. *Cell Physiol Biochem.* 2016;39:1891–1904.

51. Bai H, Wei J, Deng C, Yang X, Wang C, Xu R. MicroRNA-21 regulates the sensitivity of diffuse large B-cell lymphoma cells to the CHOP chemotherapy regimen. *Int J Hematol.* 2013;97:223–231.

50. Song G, Gu L, Li J, et al. Serum microRNA expression profiling predicts response to R-CHOP treatment in diffuse large B-cell lymphoma patients. *Ann Hematol.* 2014;93:1725–1734.

49. Yuan WX, Gui YX, Na WN, Chao J, Yang X. Circulating microRNA-125b and microRNA-130a expression profiles predict chemoresistance to R-CHOP in diffuse large B-cell lymphoma patients. *Oncol Lett.* 2016;11:421–432.

48. Toppar K, Wenzl K, Pichler M, et al. miR-199a and miR-497 are associated with better overall survival due to increased chemosensitivity in diffuse large B-cell lymphoma patients. *Int J Mol Sci.* 2015;16:18077–18095.

47. Leiveon SK, Icay K, Jantzi K, et al. MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B-cell lymphoma. *Blood Cancer J.* 2017;7:e65.

46. Thompson MA, Edmondson D, Li, L. et al. miR-31 and miR-17-5p levels change during transformation of follicular lymphoma. *Human Pathol.* 2016;50:118–126.

45. Leitch E, Zamo A, Horn H, et al. MicroRNA profiles of t(14;18)-negative follicular lymphoma support a late germline center B-cell phenotype. *Blood.* 2011;118:5550–5558.

44. Wang W, Corrigan-Cummings M, Hudson J, et al. MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. *Haematologica.* 2012;97:586–594.

43. Attirbas A, Cramer-Martin Y, Gomez-Abad C, et al. Nodal marginal zone lymphoma: gene expression and microRNA profiling identify diagnostic markers and potential therapeutic targets. *Blood.* 2012;119:e9–e21.

42. Takii Y, Ohnishi N, Kikusa M, Mihara K. Determination of abnormally expressed microRNAs in bone marrow smears from patients with follicular lymphoma. *Springerplus.* 2014;3:288.
104. Babar IA, Cheng CJ, Booth CJ, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Nat Acad Sci U S A. 2012;109:E1691–E1704.

105. Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:575–586.

106. Danielson LS, Reave L, Coussens M, et al. Limited miR-17-92 overexpression drives hematologic malignancies. Leuk Res. 2015;39:335–341.

107. Craig VJ, Cogliatti SB, Imig J, et al. Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FOXP1. Blood. 2011;117:6227–6236.

108. Meng F, Henson R, Wehbe-Janik H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–658.

109. Yamazaki Y, Tagawa H, Takeda N, et al. Aberrant overexpression of microRNAs activates AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114:3267–3275.

110. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of follicular lymphoma. Nature. 2010;467:86–90.

111. Yamakuchi M, Lowenstein CJ. miR-34, SRT1 and p53: the feedback loop. Cell Death Differ. 2009;16:712–715.

112. Rao DS, O’Connell RM, Chaudhuri AA, Garcia-Flores Y, Geiger TL, Balti S. miR-150 expression. Nature. 2005;437:513–520.

113. Lovat F, Fassan M, Gasparini P, et al. miR-15b/16-2 deletion promotes B-cell lymphoma identified by gene expression profiling. Blood. 2011;114:3265–3275.

114. Santanam U, Zanesi N, Efanov A, et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Nat Acad Sci U S A. 2010;107:4449–4456.

115. Smith A, Crouch S, Lax S, et al. Lymphoma incidence, survival and prevalence 2004–2014: sub-type analyses from the UK’s Haematological Malignancy Research Network. Br J Cancer. 2015;112:1575–1584.

116. Trujimoyo Y, Cosman J, Jaffe E, Croce CM. Involvement of the BCL-2 gene in human follicular lymphoma. Science. 1985;228:1440–1443.

117. Zhang Z, Jima DD, Jacobs C, et al. Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood. 2009;113:4586–4594.

118. Miyagawa A, TNF-α, R.A, et al. Phosphatase and tensin homolog/AKT/FOXO1 pathway in proliferative conditions in germinal centers. Int Immunol. 2010;22:583–592.

119. Leucci E, Zriwil A, Gregersen LH, et al. Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo. Oncogene. 2012;31:5081–5089.

120. Friedberg JW. New strategies in diffuse large B-cell lymphoma: translating findings from gene expression analyses into clinical practice. Clin Cancer Res. 2011;17:6112–6117.

121. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511.

122. Lenz G, Wright GW, Emre NC, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Nat Acad Sci U S A. 2008;105:13350–13352.
162. Perez-Galan P, Dreyling M, Wiestner A. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood. 2011;117:26–38.

163. Brizova H, Kalinova M, Kriska L, Mhalou M, Kodet R. Quantitative monitoring of cyclin D1 expression: a molecular marker for minimal residual disease monitoring and a predictor of the disease outcome in patients with mantle cell lymphoma. Int J Cancer. 2008;123:2865–2870.

164. Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol. 2010;10:543–550.

165. Gourzones C, Ferrand FR, Amiel C, et al. Consistent high concentration of the viral microRNA BART17 in plasma samples from nasopharyngeal carcinoma patients – evidence of non-exosomal transport. Front Cell Neurosci. 2013;10:119.

166. Hu J, Wang Z, Tan CJ, et al. Plasma microRNA, a potential biomarker for acute rejection after liver transplantation. Transplantation. 2013;95:991–999.

167. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chim Acta. 2011;412:833–840.

168. Kirschner MB, Kao SC, Edelman JJ, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS ONE. 2011;6:e24145.

169. Pritchard CC, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res. 2012;5:492–497.

170. Kim YK, Yeo J, Kim B, Ha M, Kim VN. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell. 2012;46:893–895.

171. Bernardo BC, Charchar FJ, Lin RC, McMullen JR. A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lang Circ. 2012;21:131–142.

172. McDermott AM, Kerin MJ, Miller N. Identification and validation of miRNAs as endogenous controls for qR-PCR in blood specimens for breast cancer studies. PLoS ONE. 2013;8:e83718.

173. Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE. 2009;4:e6229.

174. Friedman EB, Shang S, de Miera EV, et al. Serum microRNAs as biomarkers for recurrence in melanoma. J Dan Med. 2012;10:155.

175. Murata K, Furu M, Yoshitomi H, et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS ONE. 2013;8:e69118.