Research Paper

Clinical characteristics and outcomes among hospitalized adults with severe COVID-19 admitted to a tertiary medical center and receiving antiviral, antimalarials, glucocorticoids, or immunomodulation with tocilizumab or cyclosporine: A retrospective observational study (COQUIMA cohort)

Pablo Guisado-Vasco¹,*, Sofia Valderas-Ortega¹, Maria Maravillas Carralón-González¹, Ana Roda-Santacrucz³, Lucía González-Cortijo⁴, Gabriel Sotres-Fernández¹, Eva María Martí-Ballesteros⁵, José Manuel Luque-Pinilla⁶, Elena Almagro-Casado⁷, Félix J. La Coma-Lanuza⁷, Ruth Barrena-Puertas⁸, Esteban Javier Malo-Benages⁹, María José Monforte-Gómez¹³, Rocío Diez-Munara, Esther Merino-Lanza¹⁶, Lorena Comeche-Casanovak, Margarita Remírez-de-Esparza-Otero¹, María Correjero-Plazam, Manuel Recio-Rodríguez³⁰, Margarita Rodríguez-López³⁰, María Dolores Sánchez-Manzano³⁰, Cristina Andreu-Vázquez³⁰, Israel John Thuissard-Vasallo¹, José María Echave-Sustaeta María-Tomé³, Daniel Carnevali-Ruiz⁶

¹Department of Internal Medicine. Hospital universitario quironsalud Madrid, Universidad Europea (Madrid), Pozuelo de Alarcon, Madrid, Spain
²Nurse. Hospital Infectious Diseases Control Unit, Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
³Research coordinator. Research and clinical trials unit, Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
⁴Department of Oncology. Hospital universitario quironsalud Madrid, Universidad Europea (Madrid), Pozuelo de Alarcon, Madrid, Spain
⁵Department of Hematology, Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
⁶Intensive Care Unit, Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
⁷Department of Angiology and Vascular Surgery. Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
⁸Department of Internal Medicine, Hospital quironsalud San Jose, Madrid, Spain
⁹Department of Cardiology, Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
¹⁰Department of Pharmacology, Hospital universitario quironsalud Madrid, Universidad Europea (Madrid), Pozuelo de Alarcon, Madrid, Spain
¹¹Department of Rheumatology, Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
¹²Department of Radiology department, Hospital universitario quironsalud Madrid, Universidad Europea (Madrid), Pozuelo de Alarcon, Madrid, Spain
¹³Department of Endocrinology, Hospital universitario quironsalud Madrid, Pozuelo de Alarcon, Madrid, Spain
¹⁴Statistical section, Faculty of Biomedical Science and Health, Universidad Europea (Madrid), Villacisosa de Oden, Madrid, Spain

Article Info

Article History:
Received 8 July 2020
Revised 22 September 2020
Accepted 25 September 2020
Available online 15 October 2020

Keywords:
Severe COVID-19
SARS-CoV-2 infection
Cyclosporine a
Acute respiratory insufficiency
Immunosuppressants
Hyperinflammation state

Abstract

Background: The COVID-19 outbreak challenges the Spanish health system since March 2020. Some available therapies (antimalarials, antivirals, biological agents) were grounded on clinical case observations or basic science data. The aim of this study is to describe the characteristics and impact of different therapies on clinical outcomes in a cohort of severe COVID-19 patients.

Methods: In this retrospective, single-center, observational study, we collected sequential data on adult patients admitted to Hospital Universitario Quironsalud Madrid. Eligible patients should have a microbiological (positive test on RT-PCR assay from a nasal swab) or an epidemiological diagnosis of severe COVID-19. Demographic, baseline comorbidities, laboratory data, clinical outcomes, and treatments were compared between survivors and non-survivors. We carried out univariate and multivariate logistic regression models to assess potential risk factors for in-hospital mortality.

Findings: From March 10th to April 15th, 2020, 607 patients were included. Median age was 69 years [inter-quartile range, IQR 22; 65% male]. The most common comorbidities were hypertension (276 [46.94%]),
diabetes (95 [16 16%]), chronic cardiac (133 [22 62%]) and respiratory (114 [19 39%]) diseases. 141 patients (23 2%) died. In the multivariate model the risk of death increased with older age (odds ratio, for every year of age, 1.15, [95% CI 1.11 - 1.21]), tocilizumab therapy (2.4, [1.13 - 5.11]), C-reactive protein at admission (1.07, per 10 mg/L, [1.04 - 1.10]), v-dimer > 2.5 μg/ml (1.99, [1.03 - 3.86]), diabetes mellitus (2.61, [1.19 - 5.73]), and the \(\text{PaO}_2/\text{FiO}_2 \) at admission (0.99, per every 1 mmHg, [0.98 - 0.99]). Among the prescribed therapies (tocilizumab, glucocorticoids, lopinavir/ritonavir, hydroxychloroquine, cyclosporine), only cyclosporine was associated with a significant decrease in mortality (0.24, [0.12 - 0.46]; \(p < 0.001 \)).

Interpretation: In a real-clinical setting, inhibition of the calcineurin immunosuppressant pathway, NF-\(\kappa \)B, could reduce the hyperinflammatory phase in COVID-19. Our findings might entail relevant implications for the therapy of this disease and could boost the design of new clinical trials among subjects affected by severe COVID-19.

Funding: Hospital Universitario Quironsalud Madrid. Own foundations for COVID-19 research.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research in context

Evidence before this study

We searched PubMed, up to March 12, 2020, for published clinical studies describing therapies in different cohorts of hospitalized COVID-19 patients. The search terms were “COVID-19”, “SARS-CoV-2”, and “therapy”.

Severe COVID-19 occurs more frequently in people harboring chronic diseases - about all those with cardiovascular or chronic lung conditions, obesity, and diabetes mellitus. Contrary to the first expectations, immunosuppressed patients were infrequent reported in large clinical cohorts of COVID-19. Therefore, in-hospital mortality could be more influenced by these previous risk factors than by the immunosuppression itself.

We found that there were no approved therapies for this condition. Some of the described empiric approaches included antiviral compounds or immunomodulatory drugs. The efficacy of all of them was not defined yet.

Added value of this study

In a real-clinical setting, inhibition of the calcineurin inflammatory pathway, NF-\(\kappa \)B, using cyclosporine A (CsA) showed a reduction in the odds ratio for death in hospitalized patients affected by severe COVID-19 (odds ratio 0.24, [0.12 - 0.46]); \(p < 0.001 \). This finding was observed in a population of patients who had baseline comorbidities and risk factors for in-hospital death similar to former research of the same scope. In this way, we hypothesize that CsA could block the hyperinflammatory phase in COVID-19.

Implications of all the available evidence

Here, we report one of the first clinical reports of the positive effect of CsA on in-hospital mortality associated with severe COVID-19, used as a first-line drug. These results, based on a retrospective analysis of observational data in single-center, should encourage the development of a randomized, multicenter, clinical trial to assess the efficacy and safety of CsA in the treatment of patients with severe COVID-19.

1. Introduction

The outbreak of the disease caused by SARS-CoV-2 has become a global health problem since its first-time description in December 2019 in Wuhan, China [1]. This novel virus belongs to the same coronavirus (CoVs) family such as SARS-CoV and MERS-CoV [2]. All can cause rapid and severe acute respiratory distress [3]. So, the health systems of several countries are facing an unprecedented challenge. Until the first pandemic wave, there has not been any proven efficacious drug against SARS-CoV-2. In this context, the therapeutic protocols focus on supportive measures. Furthermore, some therapies against SARS-CoV-2 are grounded in clinical case series and basic science research.

The coronavirus disease 2019 (COVID-19) in hospitalized patients has a high case-mortality rate [4,5] with deaths caused by respiratory failure, and many patients might need mechanical ventilation [6]. Some drugs have been available, including antimalarial [7,8], antivirals [9], or monoclonal antibodies - such as tocilizumab, an antibody against the soluble receptor of interleukin-6 (IL-6) [10,11]. Regardless, their true impact on the course of the disease was unknown at the beginning of the pandemic. In these circumstances, urgent needs arise to know the results of different treatments and approaches. Thereby, they could help to guide the design of randomized clinical trials (RCTs).

The spread of severe SARS-CoV-2 infection has been, unfortunately, quick. The selection and development of RCTs might take a long time - if scientific and ethical standards are to be met. Most of the first patients with severe COVID-19 were not a candidate to RCTs, due to the strict inclusion criteria. Last, limitations of the use of some drugs imposed by the local health authorities [12] and stock shortages become a recent concern.

Two central processes occur in SARS-CoV-2 infection. At first, viral replication predominates. Then, during the second week, a hyperinflammatory state becomes progressively stronger [13]. This hyperimmune response leads to the development of a cytokine storm syndrome and, hence, acute pulmonary injury [14,15,16].

The SARS-CoV-2 virion hijacks the human angiotensin-converting enzyme 2 (ACE2) receptor for cell entry [17]. CoVs replication relies on several host factors, but mainly cyclophilin A (CypA) [18]. This peptidyl-propyl isomerase, CypA, plays an important role in the signaling and activation of the nuclear factor binding near the inflammatory pathway, NF-\(\kappa \)B. NFAT), is a key component of the immune response and, hence, of the cytokine release storm [19]. Cyclosporine A (CsA) is a well-known immunosuppressant drug, whose action depends on interaction with intracellular Cyps [16,20]. Cell cultures’ experiments proved that CsA might inhibit the replication of CoVs. Hence it would modulate and control the deleterious immunopathogenic response [18,21]. Thus, we decided to include CsA as an off-label (or compassionate) drug in our COVID-19 protocol.

The current research aims to describe the clinical characteristics and impact of different therapies on clinical outcomes of patients with severe COVID-19 hospitalized in our center.

2. Methods

2.1. Study design and participants

We designed a retrospective, observational, longitudinal study at Hospital Universitario Quironsalud Madrid, sited in Pozuelo de Alarcon, Madrid, Spain. It is a tertiary care, academic medical center, serving approximately 2,500,000 citizens - those with health insurance
care provided by various private companies, and public workers who are mutual society members, or its beneficiaries, in the Community of Madrid. Furthermore, during the COVID-19 pandemic, we admitted any required transfers from the National Health System in the Madrid Region.

The Research Ethics Committee of the Fundación Jiménez Diaz (code E00083-20 HUQM) approved the study protocol. We obtained a signed written consent form from all patients (oral consent, or from a patient’s legal representative, was also admitted - as some patients were too unwell to provide written consent).

Patients included in the study were those admitted to the hospital between March 10th and April 15th, 2020, and then followed up until May 12th, 2020, the day of the last recorded event (in-hospital death or alive/discharge).

To define a COVID-19 pneumonia case, we followed two sets of criteria. First, clinical criteria: eligible cases must have pneumonia confirmed by chest imaging (computer tomography or radiography [22,23]) and oxygen saturation (SaO2) at or below 94% while breathing ambient air, or a ratio of the partial pressure of oxygen (PaO2) to a fraction of inspired oxygen (FiO2) (PaO2/FiO2; or PAFI) at or below 300 mmHg. When PaO2 was not available, a pulse oximetric saturation (SaO2) to FiO2 ratio (SaO2/FiO2 or SAFI) was recorded - considering the next equivalence: SAFI of 235 and 315 mmHg would correlate to PAFI of 200 and 300 mmHg, respectively [24]. Second, microbiological criteria. Those cases were eligible under three circumstances. One, if they had any positive result on polymerase chain reaction (PCR) testing of a nasopharyngeal swab against SARS-CoV-2 during admission. Two, after an initial negative PCR result, but a typical clinical picture even without conducting a PCR assay, according to local epidemiology [25].

2.2. Outcomes

The primary end-point was in-hospital mortality. The secondary outcomes were the total length of stay, the number of patients admitted to the intensive care unit (ICU), length of stay in the ICU, percentage who required mechanical ventilation, or non-invasive ventilation.

2.3. Data collection

We collected data using the electronic health records, from the time of admission to completion of the care episode. These data included demographic information, baseline comorbidities, radiographic and laboratory tests, inpatient medications against COVID-19, and outcomes. We compared the laboratory results obtained in the first 24 h of admission with the last ones available before the outcome.

Exclusion criteria included pregnancy or breast-feeding, age under 18 years old, known allergy or hypersensitivity to any drug included in the protocol, advanced dementia, vital prognosis less than 6 months according to best physician judgment, chronic renal included in the protocol, advanced dementia, vital prognosis less than 6 months according to best physician judgment, chronic renal

2.4. Treatments

Table 1S contains a summary of our protocol. Below, we include some comments to explain the use of CsA.

We used the next CsA oral formulations: Sandimmun Neoral (Novartis) and Ciqorin EFG (Teva), 50 mg, or 100 mg modified capsules taking with food. The intravenous formulations were 50 mg/ml or 250 mg/5 ml, Sandimmun (Novartis). Patients avoid high fatty meals. We designed a CsA low-dose schema, adjusted by patients’ weight (≤ 5 mg/kg/day) because acute renal failure is related to higher doses of CsA.

We started CsA either as a salvage therapy between the first 72 h after admission in non-responder patients to other drugs or as soon as possible, according to the attending physician. We set the CsA therapy duration in 7-10 days or up to 21 days in the most severe cases.

We took into account some relevant points in the CsA use. We selected a target plasma CsA concentration (ng/ml) levels between 83-2 - 374-4 nmol/liter - upper allowed limit up to 600 - 1050 nmol/liter [26]. CsA steady-state tissue concentration takes place after a minimum accumulated dose of 300 mg (300 mg m.c.d.), approximately. If the patient took CsA beyond one week, we assessed plasma levels systematically.

We recorded the next adverse side effects of CsA: new-onset arterial hypertension or worsening of previous controlled measures, acute renal injury defined as an increase in serum creatinine above 0.5 mg/dl, or more, within the first 48 h of its use, and above previous serum creatinine level; hypokalemia; and an increase in transaminases more than 2.5 times the upper limit of the normal range.

We designed a withdrawal of CsA in those patients admitted to the ICU. Then, intravenous dexamethasone was prescribed according to formerly published data in acute respiratory distress syndrome. The use of azithromycin, or other concomitant antibiotics, was not recorded. The impact of these drugs on the evolution of severe COVID-19 might be marginal.

For the present study, we compared patients who received a total cumulative dose of 300 mg 300 mg (m.c.d.), or more, of CsA during their in-hospital admission with those who did not receive CsA or received a total cumulative dose of less than 300 mg. Some drugs (hydroxychloroquine, CsA, glucocorticosteroids) might complete at home after hospital discharge, according to the physician’s criteria. All patients who were discharged, and able to complete the dose of CsA by mouth, were also included in the cohort of CsA 300 mg (m.c.d.).

2.5. Statistical analysis

Continuous variables were presented as median [interquartile range, IQR] or mean, ± standard deviation, SD - according to the Kolmogorov-Smirnov test- and absolute (n) or relative (%) frequencies in categorical variables. We applied the χ² test and Student’s t-test (or Mann-Whitney test if variables have non-normal distribution) to assess the differences in the clinical outcome, radiologic scores, biochemical values, and treatments. The missing values on the database (missing completely at random) were excluded from the analysis — although not the whole case/patient. Thus, no additional technique was used to fill these gaps in current clinical research.

A binary logistic regression model appraised the risk factor for in-hospital mortality. The factors included in the univariate model were those with any variable with a p-value < 0.1. Then, to estimate the odds ratios and 95% CI for each factor — applying the Wilson method for calculating CI [27] — a multivariate model was run.

We then aimed to assess the association between different drugs and in-hospital mortality in patients admitted with COVID-19 using a Kaplan-Meier method and log-rank test. While multiple combinations might be possible and considering a retrospective analysis, we appraised the effect of receiving, or not, each of the available drugs included in the protocol (combined or alone): hydroxychloroquine, lopinavir/ritonavir, CsA, glucocorticoids, and tocilizumab.
Table 1
Baseline characteristics of patients hospitalized with COVID-19 according to survival outcome.

Characteristics	All patients (n = 607)	Survivors (n = 466, 76.8%)	Non-survivors (n = 141, 23.2%)	P-value*	
Age, yrs -Median (IQR)	69.00 [22.00]	65.00 [21.00]	79.00 [12.00]	-0.001	
Sex (n,%)					
Female	321	169	36.34%	30.50%	0.202
Male	286	196	34.66%	43.50%	0.104
Chest X-ray score -Median (IQR)	6.00 [3.00]	5.00 [2.00]	6.00 [2.00]	-0.001	
Non-invasive mechanical ventilation/ Boussignac (Yes; n,%)	30	25	5.36%	3.55%	0.003
Invasive mechanical ventilation (Yes; n,%)	45	21	4.51%	24	0.102
Days on mechanical ventilation – Median (IQR)	11.00 [16.00]	10.00 [16.00]	11.00 [15.00]	0.459	
Intensive care unit (ICU) admission (Yes; n,%)	49	25	5.36%	24	0.102
Length of stay, ICU - Median (IQR), d.	11.00 [13.50]	11.00 [17.00]	11.00 [13.75]	0.120	
Length of stay (total) - Median (IQR), d.	8.00 [9.00]	8.00 [9.00]	6.00 [6.00]	0.001	
Absolute white-cell count at admission; \(\times 10^{9} \) -Median (IQR)	6.88 [4.24]	6.62 [3.88]	8.08 [5.19]	0.003	
Lymphocyte count at admission; \(\times 10^{9} \) -Median (IQR)	0.90 [0.60]	1.00 [0.70]	0.80 [0.60]	0.003	
Lymphocyte count at nadir; \(\times 10^{9} \) -Median (IQR)	0.70 [0.50]	0.80 [0.50]	0.60 [0.40]	0.001	
Ferritin at admission; \(\mu g/liter \) - Median (IQR)	1067.50 [1380.25]	925.00 [1344.00]	1371.00 [2097.00]	0.001	
Ferritin at admission	\(\leq 1000, \mu g/liter \)	210	199	204	0.057
Ferritin at admission	\(> 1000, \mu g/liter \)	216	215	220	0.056
Ferritin at admission	\(\leq 2.5, \mu g/ml \)	374	372	370	0.001
Ferritin at admission	\(> 2.5, \mu g/ml \)	160	159	160	0.001
Creatinine at admission; \(\mu mol/liter \)	79.56 [26.52]	79.56 [35.36]	83.88 [38.13]	-0.001	
Creatinine at admission; \(\mu mol/liter \)	79.56 [35.36]	68.63 [26.52]	91.5 [82.35]	-0.001	
Creatinine; peak during admission; \(\mu mol/liter \)	76.25 [38.13]	76.25 [35.36]	102.94 [91.5]	-0.001	
Arterial hypertension (Yes; n,%)	276	46.94%	43.81%	0.006	
Diabetes mellitus (Yes; n,%)	95	16.16%	12.83%	0.001	
Chronic respiratory disease (asthma, COPD)	114	19.39%	18.58%	0.001	
Previous rheumatic disease (Yes; n,%)	28	4.76%	4.22%	0.001	
Cancer (Yes; n,%)	77	13.10%	11.73%	0.073	
Previous cerebral ischemic disease (Yes; n,%)	21	3.57%	2.65%	6.62%	0.037
Chronic liver disease (Yes; n,%)	24	4.08%	3.98%	6.47%	0.104
Chronic kidney disease (Yes; n,%)	22	3.74%	2.65%	7.35%	0.011
Chronic cardiac disease, including heart failure (Yes; n,%)	133	22.62%	17.26%	0.001	
Smoker (n,%)	508	86.39%	85.62%	12.88%	0.330
Active smoker	68	11.56%	12.00%	10.29%	
Former smoker	12	2.04%	2.43%	1.07%	
PaO2/FiO2 (PAFi), at admission, mmHg - Median (IQR)	313.00 [98.00]	319.00 [71.00]	223.00 [147.00]	-0.001	

* P-value \(\chi^2 \) test (qualitative variables) or Mann-Whitney U test (quantitative variables) comparing patients’ death or alive. Abbreviations: years, yrs; days, d; interquartile range, IQR.

All statistical analyses were conducted using SPSS software, version 23.0 (IBM Corp; USA) and considering a significance p-value <0.05.

3. Results

We collected data on a total of 607 patients (Fig. 1S). The median age in the cohort was 69 years (22); 34.98% were female (Table 1). At the end of the study period, 194 (31.92%) remained in the hospital and were followed until 12th May 2020. During the in-hospital follow-up, 466 patients survived (76.68%) and 141 died (23.3%) – with a strong weight on the older ones (Fig. 1). Table 2 shows the in-hospital mortality related to the given therapy. The median in-hospital overall length of stay was 80 [9-0] days.

The number of patients admitted to the ICU was 49 (8.07%) (Table 25). Of them, 45 (7.41%) required invasive mechanical ventilation, 6 needed continuous renal replacement therapy, and 3 had extracorporeal membrane oxygenation (ECMO) therapy. The ICU mortality rate was 17.02% (24 patients).

The median PAFI at admission was 313.0 [98.0] mmHg, with a statistically significant difference between survivors and non-survivors (319.0 [71.0] mmHg vs 223.0 [147.0] mmHg, respectively).

Table 1 shows comorbidities, clinical outcomes, and laboratory parameters for the survivors and non-survivors datasets.
The most common comorbidities were: hypertension (276 [46.94%]), mellitus (95 [16.16%]), chronic cardiac (133 [22.62%]) and respiratory (114 [19.39%]) diseases.

Hydroxychloroquine — prescribed as an intention to treat a mild stage of COVID-19 and in those without any known autoimmune disease — was given before hospital admission in 65 (10.71%) patients. During hospitalization, 558 (91.93%) patients received hydroxychloroquine, 487 (80.23%) antivirals (lopinavir/ritonavir), 132 (21.75%) tocilizumab, 159 (26.19%) glucocorticoids, and 253 (41.68%) CsA 300 mg m.c.d. alone, or in different combinations.

We did not find any differences PG (in days) from the initial symptoms of the SARS-CoV-2 infection to the start of the anti-inflammatory therapies (glucocorticoids, tocilizumab, or CsA 300 mg m.c.d.) (Table 3S).

In the univariate logistic regression model, factors associated with in-hospital death were: age, arterial hypertension, diabetes mellitus, cancer, previous cerebral ischemic disease, chronic cardiac disease (including heart failure), higher radiological score at admission, PAFI at admission, receiving invasive mechanical ventilation, previous therapy with hydroxychloroquine, treatment with tocilizumab, glucocorticoids or CsA 300 mg m.c.d.; lactate dehydrogenase (LDH), and C-reactive protein (CRP), creatinine at admission, levels of ferritin above 1000 μg/liter, and D-dimer > 2.5 μg/mL.

The risk of death in the multivariate model revealed increasing odds of death with older age (for every year of age, the odds ratio was 1.15, [95% CI 1.11 - 1.21]); CRP at admission (for every increase of 10 mg/L, the observed risk of death was 7% higher, 1-07, [1-04 - 1-10]);

Table 2

Treatment	All patients (n,% all)	Mortality (n,% treated)	IC 95%	P value*	
Hydroxychloroquine - before admission					
Yes	65 (10.71%)	2 (3.08%)	0.85%	10.54%	<0.001
No	542 (89.29%)	139 (25.65%)	22.15%	29.48%	
Hydroxychloroquine					
Yes	558 (91.93%)	127 (22.76%)	19.47%	26.42%	0.356
No	49 (8.07%)	14 (28.57%)	17.85%	42.41%	
Tocilizumab					
Yes	132 (21.75%)	44 (33.33%)	25.86%	41.75%	0.002
No	475 (78.25%)	97 (20.42%)	17.04%	24.28%	
Lopinavir/ritonavir					
Yes	487 (80.23%)	111 (22.79%)	19.29%	26.72%	0.608
No	120 (19.77%)	30 (25.00%)	18.11%	33.44%	
Cyclosporine A					
Yes	253 (41.68%)	36 (14.23%)	10.46%	19.07%	<0.001
No	354 (58.32%)	105 (29.66%)	25.14%	34.62%	
Glucocorticoids					
Yes	159 (26.19%)	46 (28.93%)	22.45%	36.41%	0.109
No	448 (73.81%)	95 (21.21%)	17.67%	25.23%	

* P-value = x² test comparing the mortality between treated patients, or not.* stable plasma dose > 300 mg.
Fig. 2. Univariate and multivariate logistic regression model of the risk factors for in-hospital death, including baseline comorbidities, laboratories parameters and available therapies.

Risk Factor	Univariate model	Multivariate model
	OR (95% CI)	p-value
Gender (female)	0.769 (0.512-1.133)	0.203
Age (yrs)	1.097 (1.075-1.119)	<0.001
Chest X-ray score at admission	1.299 (1.155-1.463)	<0.001
Invasive mechanical ventilation	4.347 (2.338-8.081)	<0.001
Hydroxychloroquine - previous to admission	0.092 (0.022-0.383)	0.001
Hydroxychloroquine	0.937 (0.884-1.142)	0.257
Tocilizumab	1.948 (1.274-2.981)	<0.002
Tocilizumab/ritonavir therapy	0.886 (0.507-1.499)	0.608
Erythropoietin A therapy - cumulative total dose >1000 mg	0.527 (0.349-0.793)	0.002
Glucocorticoids therapy	1.513 (1.003-2.281)	0.048
Lymphocyte count at admission	1.037 (0.959-1.121)	0.359
Hemoglobin at admission >100,000 µg/liter	1.585 (0.982-2.558)	0.059
C-reactive protein at admission, mg/l	1.065 (0.948-1.083)	<0.001
Lactate dehydrogenase (LDH) at admission, U/L	1.002 (0.991-1.003)	<0.001
D-dimer at admission >2.5 µg/ml	3.268 (1.511-6.965)	<0.001
Creatinine at admission µmol/liter	4.228 (2.355-7.498)	<0.001
Arterial hypertension (Yes)	1.725 (1.171-2.541)	0.006
Diabetes mellitus (Yes)	2.539 (1.591-4.052)	<0.001
Chronic respiratory disease (yes, COPD) (Yes)	1.241 (0.775-1.983)	0.369
Cancer (any)	1.613 (0.954-2.729)	0.075
Previous cerebrovascular ischemic disease (Yes)	2.598 (1.071-6.306)	0.035
Chronic cardiac disease, including heart failure (Yes)	3.285 (0.188-5.957)	<0.001
PaO2/FiO2 ratio (PaO2/FiO2) at admission - mmHg	0.986 (0.983-0.989)	<0.001

Fig. 3. Observed cumulative in-hospital death, or alive, according to each given drug available in the protocol. Shading represents 95% confidence intervals. Panel A, Hydroxychloroquine. Panel B, Tocilizumab. Panel C, Lopinavir/ritonavir. Panel D Glucocorticoids.
D-dimer $> 2.5 \mu g/mL (1.99, [1.03 - 3.86]);$ and diabetes mellitus (2.61, [1.19 - 5.73]). The PaO$_2$/FiO$_2$ at admission also showed a statistical significance (per every 1 mmHg, 0.99, [0.98 - 0.99]) – for every extra unit of PAFI in any given patient, compared to another with lower values, the risk of death decreased by 1% (Fig. 2).

Among the prescribed therapies, two of them kept the statistical significance, confirming the observation of the crude mortality rate (Table 4S). On the one hand, tocilizumab therapy showed an increased odd of death (2.4, [1.13 - 5.11], $p = 0.023$). On the other hand, CsA 300 mg m.c.d. was associated with a significant decrease in the observed mortality (0.24, [0.12 - 0.46], $p < 0.001$) (Fig. 2). In other words, the odds of death were 0.24 times [one-fourth] in the CsA 300 mg m.c.d. group comparing to those cases who took any other therapy, including CsA < 300 mg m.c.d., after adjusting for age, tocilizumab therapy, CRP at admission, D-dimer $> 2.5 \mu g/mL$, mellitus, and PaO$_2$/FiO$_2$ at admission. The side effects attributed to CsA 300 mg m.c.d. were: arterial hypertension, acute renal failure, acute gouty arthritis (Table 5S); in any case, no permanent organ dysfunction arose. The median total given doses of CsA was higher among survivors than in non-survivors (750 [650] mg vs 500 [375] mg, $p < 0.001$).

Fig. 3 (A-D) shows the impact on mortality of hydroxychloroquine, tocilizumab, lopinavir/ritonavir, and glucocorticoids. The observed median time of survival in the Kaplan-Meier curve was different ($p < 0.001$) in patients treated with CsA 300 mg m.c.d., comparing to those cases with any other therapy, including CsA < 300 mg m.c.d. (Fig. 4, Table 6S).

4. Discussion

The present retrospective cohort study found well-known risk factors associated with in-hospital mortality in COVID-19 pneumonia, analogous to previous studies of similar scope [28-29]. In this setting, we observed an important finding: decreased odds of in-hospital death in patients treated with CsA 300 mg c.d. Namely, the odds of death in those cases not reaching minimum CsA 300 mg m.c.d. were 4.2 times higher compared to those patients who achieved this minimum doses or higher than in the CsA 300 mg m.c.d. group [30]. This finding might suit other populations with severe COVID-19, either in Spain or abroad. No data suggest any differences in NK-κB activity related to race or gender.

To our best knowledge, this is one of the first studies to describe the clinical use of CsA and its impact on mortality in severe COVID-19. We informed the National Health Authorities of the use of CsA in the current protocol, and a prospective study is in development. The design of the study does not allow head-to-head comparison among treatments used in COVID-19.

Few indirect data published recently might support the potential therapeutic effect of CsA in SARS-CoV-2 infection. Some researches reported a low incidence of COVID-19 among those affected by rheumatic diseases [31] or might have a better prognosis in kidney transplant recipients [32]. Other authors even proposed CsA itself as a potential therapeutic drug in COVID-19 [33,34]. CsA is a unique immune inhibitory drug as it blocks NF-κB through inhibition of calcineurin. This noticeable mechanism of CsA might interfere with the initial step of the cytokine storm release in severe COVID-19 [19].

As mentioned above, CsA activity against CoVs grounds on pre-clinical data [35,36] – some were recently replicated in a SARS-CoV-2 infection model [37]. In this sense, the non-structural protein type 1 (nsp1) of CoVs interacts with its counterpart immunophilin molecules. This immune pathway plays a central role in the activation of immune cells. Overexpression of nsp1 in CoV infection steadily...
increases the signaling of this pathway [18]. CsA is a potent blocker of the growth of CoVs of all genera, including SARS-CoV, human CoV- NL63 and CoV-229E in cell culture. This inhibitory effect occurs at low, non-cytotoxic concentrations of the drug [38] - FK-506 (tacrolimus) shows similar findings, although perhaps not with such broad a spectrum as CsA [39].

The CsA-CypA complex can sequester and inhibit calcineurin (a calcium-calmodulin-activated serine/threonine-specific phosphatase), which would prevent the nuclear translocation of NFAT, and finally, the expression of genes implicated in the immune response to the infection, such as IL-2, IL-12, or TNF-α [40,41]. Accordingly, CsA might convey an anti-inflammatory cytokine profile by inhibiting NFAT (thus, increasing IL-10 secretion, and reducing IL-12 and TNFα release). Otherwise, CypA regulates the activation and signaling of NF-κB too. The actions and role of NF-κB go beyond T cell regulation. CsA also impacts on the function and maturation of innate immune cells, including dendritic cells (DC), macrophages, and neutrophils. This drug inhibits DC expression of IL-2 and maturation markers, CD80, CD86, CD40, which in turn reduces T cell proliferation. Furthermore, another property of CsA is the ability to inhibit the mitochondria permeability transition (MPT) pore and prevent the release of danger-associated molecular patterns (DAMPs) — downregulating the secretion of IL1β and type I interferons [41].

Some differences in the activity of NF-κB among individuals could help to explain the impact of CsA on mortality in the current study. It is noteworthy to underscore the previous description of an age-dependent NF-κB activation connected with systemic inflammation and impaired endothelial-dependent dilatation. On the one hand, NF-κB plays a pivotal role in mediating vascular endothelial dysfunction in overweight and obese middle-aged and older humans (pro-inflammatory phenotype) [42]. On the other hand, an inflammatory activation of NF-κB, and oxidative stress, cause vascular insulin resistance and may contribute to endothelial dysfunction in diabetes mellitus [43].

An over activation of NF-κB related to age (inflamming) might explain the severity of COVID-19 in the elderly - in opposite to young adults without any comorbidity, including obesity. It might also explain why most hospitalized patients are older [44].

To minimize expected adverse side effects of CsA, we used it with the following precautions: short time of treatment -maximum 3-weeks-, low-dose, weight-adjusted, and compatible with other available drugs.

Considering the time required for CsA to reach a biological therapeutic effect, we examined at least an accumulated dose of 300 mg of CsA to make clinical endpoint comparisons among patients. In fact, in a recent study on the use of an inhibitor of Bruton tyrosine kinase in COVID-19 pneumonia, a 3-day therapeutic effect was also reported [45].

During our experience in the treatment of COVID-19, CsA use moved swift from salvage therapy in refractory cases to initial therapy at triage. Nevertheless, some other relevant aspects might have influenced our in-hospital mortality results. Since the beginning of the SARS-CoV-2 epidemic, our protocol recommended the use of subcutaneous prophylactic low-molecular-weight heparin (bemiparin 3-500 UI q.d.). Full anticoagulation started if we diagnosed a venous thromboembolic disease. Some selected cases might change to the anticoagulation schema if their respiratory situation did not improve, d-dimer levels reached extreme values, or imaging techniques were negative to detect pulmonary embolism or deep venous thrombosis.

Some authors have prior reported an increase in plasma levels of IL-6 in COVID-19 patients with acute pulmonary damage [46]. Thereupon, blocking the action of this cytokine with tocilizumab, or other similar agents, was proposed as a theoretical therapeutic approach for COVID-19 pneumonia [11,17]. But IL-6 is not the only marker of inflammation in COVID-19. Other inflammatory parameters have a robust association with mortality, such as d-dimer > 2.5 μg/mL or levels of CPR above 200 mg/L [8]. We did not measure IL-6 plasma levels in our patients, including those receiving tocilizumab. Our hospital does not currently have access to rapid-turnaround cytokine measurements. However, different studies found that IL-6 does not appear to be a determinant prognostic factor in COVID-19 [29]. A common clinical problem exists with the cytokine release syndrome and the CAR T-cells therapy: the optimal time to administration of tocilizumab is unclear if only guided by IL-6 plasma levels. A clinical grading scale, together with other widely available inflammatory markers, might be more flexible and accurate [48]. Moreover, after tocilizumab scheduled, the plasma levels of IL-6 do not help patient follow-up: after blocking the IL-6 receptor, the levels of IL-6 become even higher or do not drop immediately [11].

Tocilizumab was not associated with a benefit in mortality rates in our patients, even adjusting for dose and the severity of hypoxemia [49]. Our observations underscore the need of releasing the results of ongoing clinical trials to clarify these findings. Noteworthy, in our patients, the time from the beginning of symptoms to the initiation of tocilizumab or CsA was similar (11 days).

The finding of no benefit in glucocorticoids in a retrospective study was pointed out previously. On the contrary, recently some research groups reported a positive effect of glucocorticoids on COVID-19 mortality [50]. Although drawing a categorical conclusion about the systemic benefit of glucocorticoids in severe COVID-19 might be not exactly accurate [51].

In general, we used glucocorticoids in some cases and dexamethasone in all ICU admissions. We also treated with this glucocorticoid some selected patients who were admitted to general wards. The doses of glucocorticoids varied but preventing the higher ones [47].

Our study has some limitations. The research was carried out in a single academic center and had an observational and retrospective design. Thus, unmeasured confounding factors might influence our findings - including a time-varying effect (if any) of previous treatment or other covariables. What’s more, even the natural evolution of the disease itself, as well as the immortal time bias, might have an impact on our results. A few aspects of the use of CsA on COVID-19 pneumonia should assess in future research, such as the drop in inflammatory parameters, rise in the PAFI, or the incidence of thromboembolic disease. We did not record some variables systematically as obesity, race, and ethnicity in our clinical records. For this reason, we decided to exclude them for statistical analysis purposes. For this reason, we decided to exclude them for statistical analysis purposes.

In conclusion, the NF-κB and NFAT appear to be pivotal mediators of pro-inflammatory gene induction after infection of SARS-CoV-2. Both might play a central role in the hyperinflammation state observed in severe COVID-19 patients. Our findings suggest a possible benefit of CsA on in-hospital mortality among patients with severe COVID-19. These findings might support the hypothesis to include CsA in future therapeutic protocols if prospective, well-designed clinical trials confirm the current results.

Role of the funding

The research design, data collection, analysis, interpretation, and manuscript writing were all carried out in our academic center by our research group without any additional external funding. All the authors had access to the data and read and agreed to submit the last version of the manuscript. None of the companies (Novartis, Teva, Roche, or any other party) has taken part in any of the above decisions or influenced in any way in the conception and development of the current research.

Authors contributions

PGV and DCR developed the idea for, designed the study, supervised and checked the data. Both authors had full access to all the data of the study. They assume the responsibility for the integrity of them and the accuracy of the analysis.
JMES helped in the design of the study. ARS and SVO collected the data and coordinate the analysis. CAV and IJTV run the statistical analysis and designed the table and figures.

JMLP, GSF, LGC, EAC, MDSM, MCG, RBP, EMMB, EJMB, MJMG, RDM, MLC, ECC, ICHL, FFCB, MMR, MRL, FLL collected the data. PGV, DCR, CAV, IJTV, ARS, GSF, LGC drafted the paper. All authors critically revised the manuscript for important intellectual content and gave final approval for the version to be published.

All authors agree to be accountable for all aspects of the work. They also in ensuring in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Data sharing statement

The dataset used for the present analyses, although partially anonymized, contains detailed and thus possibly identifiable patient data so that a publication of the database is not possible.

However, upon reasonable and personal requests to the Authors, and as a further notification to the Ethics Committee and amendment of the study protocol, anonymous data would be shared with individual researchers or working groups.

List of contributors

Name	Department	
A	Marco-Martínez	Endocrinology Unit
I	De-Luna-Boquera	Endocrinology Unit
R	Domínguez-Fernández	Endocrinology Unit
P	Chávez-Ross	Endocrinology Unit
J	Hornedo-Muguiro	Chief of Oncology department
G	DErrico	Oncology department
J	García-Ormazabal	Cardiology department
J	Urmeneta-Ulloa	Cardiology department
C	Sánchez-Enrique	Cardiology department
JP	Vilchez-Tschischke	Cardiology department
G	Salvador-Montañés	Cardiology department
M	Martin-Mariscal	Cardiology department
C	Sánchez-Enrique	Cardiology department
MC	Gómez-Rubin-de-Celis	Cardiology department
M	Moreno-Zazo	Chief of Rheumatology department
A	Perez-Montero	Chief of Allergology department
A	Plaza-Diaz	Allergology department
J	Merelo-Godino	Chief of General Surgery department
JM	Rodríguez-Luna	Chief of Urology department
J	Rivas-Oyarzabal	Heart surgery unit
R	Arroyo-González	Chief of Department of neurology
L	Gómez-Vicente	Neurology department
A	Gómez-Caicedo	Neurology department
T	Maycas-Cepeda	Neurology department
P	Moreno-Fernández	Neurology department
R	García-Cobos	Neurology department
P	López-Ruiz	Neurology department
JL	Martín-del-Yerro Coca	Chief of Plastic Surgery department
D	Vázquez-Vecilla	Plastic Surgery department
EV	Fernández-Sánchez	Plastic Surgery department
S	Domínguez-Bengoá	Plastic Surgery department
M	Alonso-Sierra	Digestive department
L	Serratos-Fernández	Chief of the Rehabilitation department
MA	González-Aragón	Orthopedics and traumatology department
JA	Zafra-Jiménez	Orthopedics and traumatology department
D	Abejon-González	Chief of pain unit
A	Ríos-Llortente	Pain unit
MJ	García-Fernández-Vilalta	Chief of Dermatology department
A	Alegre-Sánchez	Dermatology department
C	Ruiz-Escudero	Chief of otorhinolaryngology department
G	García-Galvez	Gynecology department
N	Martín-Fernández	Gynecology department
M	de-la-Mota-Nicolás	Emergency unit
S	Maldera	Emergency unit

(continued)

Declaration of Competing Interest

Dr. Correjero Plaza reports grants from Procare, Pfizer, Novartis, Lilly, Abbvie, Roche and personal fees from Onclinical during the conduct of the study; grants from Procare, Abbvie, Roche and personal fees from Onclinical outside the submitted work.

The rest of the authors declares no competing interest for the current work.

Acknowledgements

The authors thank patients and their families, all the nurses and health-care staff that have worked tirelessly on the frontlines of the COVID-19 pandemic. We thank the head of the IT and Project Development Department, and all the hospital management staff for their support. We would also thank the head of Research Coordination Department for allocating the human resources for this project. Finally, we would like to thank Caroline Coope (MW) her help in reviewing this article.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.eclinm.2020.100591.

References

1. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020 Mar;579(7798):265–9.
2. Jin Y, Yang H, Ji W, Wu W, Wu S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020;12:372. doi: 10.3390/v12040372.
3. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020 Apr;8(4):420–2.
4. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020 Mar 28;395(10229):1054–62.
5. Onder G, Rezza G, Brusaforo S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020 Mar 23Online ahead of print. doi: 10.1001/jama.2020.4683.
6. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs on the Lombardy region Italy. JAMA 2020 Apr 6;323(14):1574–81.
7. Sarma P, Kaur H, Kumar H, Mahendru D, Avti P, Bhattacharyya A, et al. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: a systematic review and meta-analysis. J Med Virol 2020 Jul;92(7):776–85. doi: 10.1002/jmv.25898.
8. Borba MCS, Val FFA, Sampaio VS, Alexandre MA, Melo CC, Brito M, et al. Effect high or low dose of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open 2020 Apr 24;3(4):e208857. doi:10.1001/jamanetworkopen.2020.8857.
9. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir/ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020 May 7;382(19):1787–99.
10. Luo P, Liu Y, Qu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: a single-center experience. J Med Virol 2020 Jul;92(7):814–48.
11. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020 May;117(209):10970–5.
12. Bassetti M, Pelosi P, Robba C, Vena A, Giacobbe DR. A brief note on randomized controlled trials and compassionate/ off-label use of drugs in the early phases
of the COVID-19 pandemic. Drugs Context 2020;9 2020-5.2. doi: 10.7573/_dic2020-5.

[13] Siddigi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant 2020;39 (5):405–7. doi: 10.1016/j.healun.2020.03.012.

[14] Shimabukuro-Vornhagen Gödel P, Subklewe M, Stemmler HJ, Schlöfer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer 2018 Jun 15;6(1):56. doi: 10.1186/s40425-018-0343-9.

[15] Mehta P, McAuley DF, Brown M, Sanchez E. Manson JI on behalf of the HIILJ across specialty collaboration UK: COVID-19: consider cytokine storm syndrome and immunosuppression. Lancet 2020 March 16. doi: 10.1016/S0140-6736(20)30288-6.

[16] Sun S, Guo M, Zhang BJ, Ha A, Yokoyama KK, et al. Cyclophilin A (CypA) interacts with NF-κB subunit, p65/RelA, and contributes to NF-κB activation signaling. PLoS ONE 2014;9(8):e96211. doi: 10.1371/journal.pone.0096211.

[17] Li W, Moore MJ, Vasilieva N, Su J, Wong SK, Berne MA, et al. Angiotensin-convert- ing enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:44–4.

[18] Tanaka Y, Sato Y, Sasaki T. Suppression of Coronavirus replication by cyclophilin inhibitors. Antiviral Res 2013;5(5):1250–60.

[19] Hirano T, Murakami M. Coronavirus–a new virus, but familiar receptor and cytokine release syndrome. Immunity 2020 May 19;52(5):731–3. doi: 10.1016/j.immuni.2020.04.003.

[20] Dawar FU, Xiong Y, Khattak MBK, Li J, Lin L, Mei J. Potential role of cyclophilin A in regulating cytokine secretion. J Leukoc Biol 2017;102(4):989–92.

[21] Romanelli A, Mascolo S. Immunosuppression drug-related and clinical manifesta-

[22]tion of antiviral activity of single and combined repurposable drugs against SARS-

[23]CoV-2. Antiviral Res 2020;181:104878. doi: 10.1016/j.antiviral.2020.104878.

[24] Pfeiffer S, Schüpp J, Kögel M, Friedel CC, Müller MA, Carbayo-Lozoya J, et al. The SARS-coronavirus-host interac
tome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 2011;7(10):e1002331.

[25] Carbayo-Lozoya J, Müller MA, Kallies S, Thiel V, Drosten C, von Brunn B. A. African immune system findings in COVID-19 positive patients. Radiology 2020;208(5):159–66.

[26] Akbar AN, Gilroy DW. Aging immunity may exacerbated COVID-19. Science 2020;369(6501):256–7.

[27] Boskiewski M, Lonakis MS, Sharman JP, Roswarski J, Goy C, Monticelli MA, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Science 2020;369(6501):256–7.

[28] Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest 2020 May 11;130(5):6260–9. doi: 10.1172/JCI137244.

[29] Petkli CM, Jones SA, Yang J, Rajagopalan H, O-arm2021436.

[30] Cour M, Ovize M, Argaud L. Cyclosporine A: a valid candidate to treat COVID-19 patients with acute respiratory failure? Critical Care 2020;24:476.

[31] Mohyades A, Matalon S. Cyclosporine: an old weapon in the fight against Coro

[32]naviruses. Eur Respir J 2020;Jul 30: 2002484 in press. doi: 10.1183/13993003.02484-

[33]2020 [Epub ahead of print].

[34] Sauerheing L, Kupke A, Meier I, Dietzel E, Hoppe J, Gruber AD, et al. Cyclophilin inhibitors restrict Middle East Respiratory Syndrome Coronavirus via interferon α; in vitro and in mice. Eur Respir J 2020;Jul 2; 1901826. in press. doi: 10.1183/13993003.01826-2019.

[35] Ma-Laurier Y, Zheng Y, Maleieiev M, von Brunn B, Fischer G, von Brunn A. Influences of cyclophilin A and non-immunosuppressive derivatives on cellular cyclophi-

[36]lins and viral nucleocapsid protein during human coronavirus 229e replication. Antiviral Res 2020;173:106240. doi: 10.1016/j.antiviral.2019.106240.

[37] Pizzorno A, Paday R, Dubois J, Julien T, Traversier A, Duleire V, et al. In vitro evalu-

[38]ation of antiviral activity of single and combined repurposable drugs against SARS-

[39]CoV-2. Antiviral Res 2020;181:104878. doi: 10.1016/j.antiviral.2020.104878.

[40] de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin

[41]inhibitors in Nidovirus replication. Virology 2018;522:42–6.

[42] Liddicoat AM, Lavelle EC. Modulation of innate immunity by cyclosporine A. Bio-

[43]chem Pharmacol 2015;163:472–80. doi: 10.1016/j.bcp.2015.02.33.

[44] Pierse GL, Lesnievsk LA, Lawson BR, Bled SD, Seals DR. Nuclear factor–(kappa)B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 2009;119: 1284–92.

[45] Tabit CE, Shenouda SM, Holbrook M, Fettermen JL, Kiani S, Frame AA, et al. Protein kinase C β contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation 2013;127(1):86–95.

[46] de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin

[47]inhibitors in Nidovirus replication. Virology 2018;522:42–6.

[48] Liddicoat AM, Lavelle EC. Modulation of innate immunity by cyclosporine A. Bio-

[49]chem Pharmacol 2015;163:472–80. doi: 10.1016/j.bcp.2015.02.33.

[50] Pierse GL, Lesnievsk LA, Lawson BR, Bled SD, Seals DR. Nuclear factor–(kappa)B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 2009;119: 1284–92.

[51] Tabit CE, Shenouda SM, Holbrook M, Fettermen JL, Kiani S, Frame AA, et al. Protein kinase C β contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation 2013;127(1):86–95.