ASYMPTOTIC FOR THE PERTURBED HEAVY BALL SYSTEM
WITH VANISHING DAMPING TERM

Mounir BALTI\(^1,2\) & Ramzi MAY\(^3\)
\(^1\)Institut Préparatoire aux Etude Scientifiques et Techniques
Université de Carthage
Bp 51 La Marsa
Tunisia
\(^2\)Faculté des Sciences de Tunis
Université de Tunis Al Manar Tunis
Laboratoire EDP-LR03ES04
Tunisia
E-mail: mounir.balti@gmail.com
\(^3\) Ramzi May
College of Sciences
Department of Mathematics and Statistics
King Faisal University
P.O. 400 Al Ahsaa 31982, Kingdom of Saudi Arabia
E-mail: rmay@kfu.edu.sa

Abstract: We investigate the long time behavior of solutions to the differential equation:

\[(0.1) \ddot{x}(t) + c(t+1)\dot{x}(t) + \nabla \Phi(x(t)) = g(t), \quad t \geq 0,\]

where \(c\) is nonnegative constant, \(\alpha \in [0, 1[\), \(\Phi\) is a \(C^1\) convex function on a Hilbert space \(\mathcal{H}\) and \(g \in L^1(0, +\infty; \mathcal{H})\). We obtain sufficient conditions on the source term \(g(t)\) ensuring the weak or the strong convergence of any trajectory \(x(t)\) of \((0.1)\) as \(t \to +\infty\) to a minimizer of the function \(\Phi\) if one exists.

keywords: Differential equation, asymptotically small dissipation, asymptotic behavior, energy function, convex function.

AMS classification numbers: 34G20, 35B40, 35L71, 34D05.
1. Introduction and main results

Let \mathcal{H} be a real Hilbert space with inner product and norm respectively denoted by $\langle ., . \rangle$ and $\| . \|$. In this paper, we consider the following second order equation:

\begin{equation}
\ddot{x}(t) + \gamma(t) \dot{x}(t) + \nabla \Phi(x(t)) = g(t), \quad t \geq 0,
\end{equation}

where $\gamma(t) = \frac{c}{(1+t)^{\alpha}}$ with $c > 0$ and $\alpha \in [0, 1[$, $g \in L^1(0, +\infty; \mathcal{H})$ and $\Phi : \mathcal{H} \to \mathbb{R}$ is a C^1 convex function such that its minimizers subset

$$\arg \min \Phi := \{ v \in \mathcal{H} : \Phi(v) = \Phi^* M = \min_{x \in \mathcal{H}} \Phi(x) \}$$

is not empty.

Using classical arguments (see for instance [7]), one can easily prove that if the function $\nabla \Phi : \mathcal{H} \to \mathcal{H}$ is Lipschitz on bounded subset of \mathcal{H}, then for any initial data $(x_0, x_1) \in \mathcal{H} \times \mathcal{H}$, the equation (1.1) has a unique global solution $x \in W^{2,1}_{\text{loc}}(0, +\infty; \mathcal{H})$ satisfying $(x(0), \dot{x}(0)) = (x_0, x_1)$. Moreover, the associated energy function

\begin{equation}
W(t) = \frac{1}{2} \| \dot{x}(t) \|^2 + \Phi(x(t)) - \Phi^*
\end{equation}

is nonincreasing and converges to 0 as $t \to +\infty$. Hence hereafter, we will assume that $x \in W^{2,1}_{\text{loc}}(0, +\infty; \mathcal{H})$ is a solution to (1.1) and we will focus our attention on the study of the asymptotic behavior of $x(t)$ as $t \to +\infty$ and on the rate of convergence of the energy function W.

Before setting the main results of our present paper, let us first recall some previous results: In the pioneer paper [11], Alvarez considered the case where $\alpha = 0$ and $g = 0$. He proved that $x(t)$ converges weakly in \mathcal{H} as $t \to +\infty$ to a minimizer of the function Φ. Moreover, he showed that the convergence is strong if either the function Φ is even or the interior of the set $\arg \min \Phi$ is not empty. In [6], Haraux and Jendoubi extended the weak convergence result of Alvarez to the case where the source term g belongs to the space $L^1(0, +\infty; \mathcal{H})$. Recently, Cabot and Frankel [5] studied (1.1) where $g = 0$ and $\alpha \in]0, 1[$. They proved that every bounded solution $x(t)$ (i.e. $x \in L^\infty(0, +\infty; \mathcal{H})$) converges weakly toward a critical point of Φ. In a very recent work [8], the second author of this paper improved the result of Cabot and Frankel by getting rid of the superfluous hypothesis on the boundedness of the solution. Moreover he established that $W(t) = o(\frac{1}{t^{\alpha}})$ as $t \to +\infty$ for every $\bar{\alpha} < \alpha$. In [7], Jendoubi and May proved that the main convergence result of Cabot and Frankel remains true if the source term g satisfies the condition $\int_0^{+\infty} (1 + t) \| g(t) \| \, dt < \infty$. Recently, this result was improved in [4]. In fact, we proved...
that if the solution $x(t)$ is bounded and the function g satisfies the optimal condition
\begin{equation}
\int_0^{+\infty} (1 + t)^\alpha \|g(t)\| \, dt < \infty,
\end{equation}
then $x(t)$ converges weakly to some element of $\text{arg min} \Phi$ and $W(t) = o\left(\frac{1}{t^2}\right)$ as $t \to +\infty$. One of the main purpose of this paper is to prove that the sole assumption (1.3) guarantees the boundedness (and therefore the weak convergence) of the solution $x(t)$.

We notice that, in a very recent work [2], Attouch, Chbani, Peypouquet and Redont have considered the equation (1.1) in the case $\alpha = 1$. They have proved that if $c > 3$ and $\int_0^{+\infty} (1 + t)^\alpha \|g(t)\| \, dt < \infty$ then $x(t)$ converges weakly to some element of $\text{arg min} \Phi$ and that $W(t) = O\left(\frac{1}{t^2}\right)$. Moreover, they have established the strong convergence of $x(t)$ in the case where the function Φ is even or the interior of the subset $\text{arg min} \Phi$ is not empty. In this paper, we extend their results to the case $\alpha < 1$.

Our main first result is the weak convergence of the trajectories of (1.1) under the optimal condition (1.3) on the source term g.

Theorem 1.1. Assume that $\int_0^{+\infty} (1 + t)^\alpha \|g(t)\| \, dt < \infty$. Then $x(t)$ converges weakly in \mathcal{H} as $t \to +\infty$ to some $x^* \in \text{arg min} \Phi$. Moreover the energy function W satisfies the two following properties:

\begin{equation}
W(t) = O\left(\frac{1}{t^{2\alpha}}\right)
\end{equation}

\begin{equation}
\int_0^{+\infty} (1 + t)^\alpha W(t) \, dt < \infty.
\end{equation}

Our second theorem improves the result on the convergence rate of the energy function W obtained in [8] in the case where $g = 0$ and it will be useful in the proof of the strong convergence of the solution $x(t)$ when the convex function Φ is even.

Theorem 1.2. Assume that $\int_0^{+\infty} (1 + t)^\nu \|g(t)\| \, dt < \infty$ where $\nu \in [\alpha, \frac{1 + \alpha}{2}]$. Then

\begin{equation}
W(t) = o\left(\frac{1}{t^{2\nu}}\right) \text{ as } t \to +\infty,
\end{equation}

\begin{equation}
\int_0^{+\infty} (1 + t)^{2\nu - \alpha} \|\dot{x}(t)\|^2 \, dt < \infty.
\end{equation}

The next result shows that, as in the limit case $\alpha = 1$ (see [2] Theorem 3.1), the strong convergence of $x(t)$ as $t \to +\infty$ holds if the interior of $\text{arg min} \Phi$ is not empty.

Theorem 1.3. Suppose that $\int_0^{+\infty} (1 + t)^\alpha \|g(t)\| \, dt < \infty$ and $\text{int} (\text{arg min} \Phi) \neq \emptyset$. Then there exists some $x^* \in \text{arg min} \Phi$ such that $x(t) \to x^*$ strongly in \mathcal{H} as $t \to +\infty$.
In the last theorem, we prove, under an assumption on the source term g slightly stronger than the optimal condition (1.3), the strong convergence of the solution $x(t)$ when the potential function Φ is even.

Theorem 1.4. Suppose that $\int_0^{+\infty} (t + 1)^{\frac{\alpha+1}{2}} \|g(t)\| \, dt < \infty$ and Φ is even (i.e. $\Phi(-x) = \Phi(x)$, $\forall x \in \mathcal{H}$). Then $x(t)$ converges strongly in \mathcal{H} as $t \to +\infty$ to some $x^* \in \arg\min \Phi$.

2. Proof of Theorem 1.1

The proof makes use of a modified version of the method used Attouch, Chbani, Pey-ouquet and Redont in [2]. It relies on the study of a suitable Lyapunov function \mathcal{E} and uses the following two classical lemmas.

Lemma 2.1 (Gronwall-Bellman lemma). Let $f \in L^1([a, b], \mathbb{R}_+)$ and c a nonnegative constant. Suppose that w is a continuous function from $[a, b]$ into \mathbb{R} that satisfies: for all $t \in [a, b]$,

$$\frac{1}{2} w^2(t) \leq \frac{1}{2} c^2 + \int_a^t f(s) w(s) \, ds.$$

Then, for all $t \in [a, b]$,

$$w(t) \leq c + \int_a^t f(s) \, ds.$$

The proof of this lemma is easy and similar to the proof of the classical Gronwall’s lemma.

Lemma 2.2 (Opial’s lemma [9]). Let $x : [0, +\infty[\to \mathcal{H}$. Assume that there exists a nonempty subset S of \mathcal{H} such that:

i) If $t_n \to +\infty$ and $x(t_n) \rightharpoonup x$ weakly in \mathcal{H}, then $x \in S$.

ii) For every $z \in S$, $\lim_{t \to +\infty} \|x(t) - z\|$ exists.

The proof of Opial’s lemma is easy, see for instance [3].

Let us now start the proof our theorem. We first define on $[0, +\infty[$ the function

\begin{equation}
(2.1) \quad h(t) = e^{\Gamma(t)} \int_t^{+\infty} e^{-\Gamma(s)} \, ds,
\end{equation}

where $\Gamma(t) = \int_0^t \gamma(s) \, ds$. A simple calculation yields that h satisfies the differential equation

\begin{equation}
(2.2) \quad h'(t) - \gamma(t) h(t) + 1 = 0.
\end{equation}
Moreover, since
\[\left(\frac{-1}{\gamma(s)} e^{-\Gamma(s)} \right)' = \left(1 + \frac{\gamma'(s)}{\gamma^2(s)} \right) e^{-\Gamma(s)} \leq e^{-\Gamma(s)} \]
then
\[h(t) \sim \frac{1}{+\infty \gamma(t)}. \tag{2.3} \]

Let \(x^* \in \text{arg min} \Phi \) and define the function
\[\mathcal{E}(t) = 2(h(t))^2 (\Phi(x(t)) - \Phi^*) + \|x(t) - x^* + h(t) \dot{x}(t)\|^2 \]
\[-2 \int_0^t h(s) \langle g(s), x(s) - x^* + h(s) \dot{x}(s) \rangle \, ds. \tag{2.4} \]

By differentiating, we obtain
\[\mathcal{E}'(t) = 4h'(t) h(t) (\Phi(x(t)) - \Phi^*) + 2(h(t))^2 \langle \nabla \Phi(x(t)), \dot{x}(t) \rangle \]
\[+ 2 \langle (1 + h'(t)) \dot{x}(t) + h(t) \ddot{x}(t), x(t) - x^* + h(t) \dot{x}(t) \rangle \]
\[- 2h(t) \langle g(t), x(t) - x^* + h(t) \dot{x}(t) \rangle. \]

Hence by sing \([1.1]\), we get
\[\mathcal{E}'(t) = 4h'(t) h(t) (\Phi(x(t)) - \Phi^*) - 2h(t) \langle \nabla \Phi(x(t)), x(t) - x^* \rangle. \tag{2.5} \]

Since the function \(\Phi \) is convex, we have
\[\Phi^* = \Phi(x^*) \geq \Phi(x(t)) + \langle \nabla \Phi(x(t)), x^* - x(t) \rangle. \]

Inserting this inequality in \([2.5]\) yields
\[\mathcal{E}'(t) \leq 2[2h'(t) - 1] h(t) (\Phi(x(t)) - \Phi^*). \]

From \([2.2]\) and \([2.3]\), \(2h'(t) - 1 \to -1 \) as \(t \to +\infty \). Then there exists \(t_1 \geq 0 \) such that
\[\mathcal{E}'(t) + h(t) (\Phi(x(t)) - \Phi^*) \leq 0, \ \forall t \geq t_1. \tag{2.6} \]

Therefore \(\mathcal{E} \) is a decreasing function on \([t_1, +\infty]\). Then for every \(t \geq t_1 \), \(\mathcal{E}(t) \leq \mathcal{E}(t_1) \), which implies that
\[2(h(t))^2 (\Phi(x(t)) - \Phi^*) + \|x(t) - x^* + h(t) \dot{x}(t)\|^2 \]
\[\leq C^2 + 2 \int_{t_1}^t h(s) \langle g(s), x(s) - x^* + h(s) \dot{x}(s) \rangle \, ds, \tag{2.7} \]

where
\[C^2 = 2(h(t_1))^2 (\Phi(x(t_1)) - \Phi^*) + \|x(t_1) - x^* + h(t_1) \dot{x}(t_1)\|^2. \]
Using now the Cauchy-Schwarz inequality, we obtain
\[
\frac{1}{2} \|x(t) - x^* + h(t) \dot{x}(t)\|^2 \leq \frac{C^2}{2} + \int_{t_1}^{t} h(s) \|g(s)\| \|x(s) - x^* + h(s) \dot{x}(s)\| ds.
\]
Hence by applying the Gronwall-Bellman lemma we obtain
\[
\|x(t) - x^* + h(t) \dot{x}(t)\| \leq C + \int_{t_1}^{t} h(s) \|g(s)\| ds,
\]
which implies, thanks to (2.3), that
\[
M_1 = \sup_{t \geq 0} \|x(t) - x^* + h(t) \dot{x}(t)\| < +\infty \tag{2.8}
\]
Returning to (2.7), we then infer that
\[
\sup_{t \geq 0} h(t)^2 (\Phi(x(t)) - \Phi^*) \leq C^2 + 2M_1 \int_{t_1}^{+\infty} h(s) \|g(s)\| ds < +\infty.
\]
Therefore, we deduce from the expression (2.3) of the function \(\mathcal{E} \), that
\[
\sup_{t \geq 0} |\mathcal{E}(t)| < +\infty \tag{2.9}
\]
Hence by integrating the inequality (2.6) on \([t_1, t]\) with \(t \geq t_1 \), we infer that
\[
\int_{t_1}^{+\infty} h(t) (\Phi(x(t)) - \Phi^*) \, dt < +\infty. \tag{2.10}
\]
Taking the inner product of (1.1) with \(\dot{x}(t) \), we obtain
\[
\langle \ddot{x}(t) + \nabla \Phi(x(t)), \dot{x}(t) \rangle + \gamma(t) \|\dot{x}(t)\|^2 = \langle g(t), \dot{x}(t) \rangle \\
\leq \|g(t)\| \|\dot{x}(t)\| \\
\leq \sqrt{2} \|g(t)\| W(t).
\]
Multiplying the last inequality by \(h^2(t) \) and using the fact that
\[
\dot{W}(t) = \langle \ddot{x}(t) + \nabla \Phi(x(t)), \dot{x}(t) \rangle,
\]
we get after integration by parts on \([0, t]\),
\[
\begin{align*}
(h(t))^2 W(t) + \int_{0}^{t} \left(\gamma(s) (h(s))^2 - \dot{h}(s) h(s) \right) \|\dot{x}(s)\|^2 ds \\
\leq h(0) W(0) + \int_{0}^{t} 2h(s) h(s) [\Phi(x(s)) - \Phi^*] ds + \sqrt{2} \int_{0}^{t} (h(s))^2 \|g(s)\| \sqrt{W(s)} ds.
\end{align*}
\]
Using now (2.2), the fact the function \(\dot{h}\) is bounded, and (2.10), we obtain
\[
(h(t))^2 W(t) + \int_0^t h(s) \|\dot{x}(s)\|^2 ds \leq C + \sqrt{2} \int_0^t (h(s))^2 \|g(s)\| \sqrt{W(s)} ds,
\]
where \(C\) is an absolute constant.

Hence by applying Gronwall-Bellman lemma with \(\omega = h\sqrt{W}\) and using the fact that
\[
\int_{-\infty}^0 h(s) \|g(s)\| ds < +\infty,
\]
we deduce that
\[
(2.11) \quad \sup_{t \geq 0} h(t) \sqrt{W(t)} < +\infty
\]
(which is equivalent to (1.4)) and therefore
\[
(2.12) \quad \int_{-\infty}^{+\infty} h(s) \|\dot{x}(s)\|^2 ds < +\infty.
\]

Combining (2.10) and (2.12), we get (1.5). Let us now prove the weak convergence of \(x(t)\) as \(t \to +\infty\). We first notice that since \(W(t) \to 0\) as \(t \to +\infty\) and \(\Phi\) is weak lower semi-continuous (in fact \(\Phi\) is continuous and convex), then the first item i) of Opial’s lemma is satisfied with \(S = \arg\min \Phi\). Hence, it remains to prove that for any \(x^*\) in \(\arg\min \Phi\), the associated function \(z(t) := \frac{1}{2} \|x(t) - x^*\|^2\) converges as \(t \to +\infty\). A simple calculation using (1.1) gives
\[
\ddot{z}(t) + \gamma(t) \dot{z}(t) = \|\dot{x}(t)\|^2 - \langle \nabla \Phi(x(t)), x(t) - x^* \rangle + \langle g(t), x(t) - x^* \rangle.
\]

Hence by using the monotonicity property of the operator \(\nabla \Phi\), the fact that \(\nabla \Phi(x^*) = 0\), and the Cauchy-Schwarz inequality we get
\[
(2.13) \quad \ddot{z}(t) + \gamma(t) \dot{z}(t) \leq \|\dot{x}(t)\|^2 + \|x(t) - x^*\| \|g(t)\| = k(t).
\]

Combining (2.8) and (2.11), we deduce that
\[
\sup_{t \geq 0} \|x(t) - x^*\| < +\infty,
\]
which implies, thanks to (1.3) and (2.12), that
\[
(2.14) \quad \int_{0}^{+\infty} \frac{1}{\gamma(t)} k(t) dt < +\infty.
\]

Multiply now the inequality (2.13) by \(e^{\Gamma(t)}\) and integrate over \([0, t]\), we get after simplification the following inequality
\[
(2.15) \quad \dot{z}(t) \leq K(t) := e^{-\Gamma(t)} z(0) + e^{-\Gamma(t)} \int_0^t e^{\Gamma(s)} k(s) ds.
\]
By Fubini theorem, we have
\[
\int_0^{+\infty} K(t) \, dt = z(0) \int_0^{+\infty} e^{-\Gamma(t)} \, dt + \int_0^{+\infty} k(s) h(s) \, ds,
\]
where \(h \) is the function defined by (2.1) at the beginning of the proof. Hence, by using (2.3) and (2.14) we deduce that the function \(K \), and therefore the positive part \(\dot{z}^+(t) \) of \(\dot{z}(t) \) belongs to the space \(L^1(0, +\infty) \).

Then the limit of \(z(t) \) as \(t \to +\infty \) exists. This proves the item ii) of the Opial’s lemma and completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

By differentiating the energy function \(W \) and using the equation (1.1), we obtain
\[
\dot{W}(t) = \langle \ddot{x}(t) + \nabla \Phi(x(t)), \dot{x}(t) \rangle
= -\gamma(t) \| \dot{x}(t) \|^2 + \langle g(t), \dot{x}(t) \rangle
\leq -\gamma(t) \| \dot{x}(t) \|^2 + \| g(t) \| \sqrt{2W(t)}
\]
(3.1)
\[
\leq \| g(t) \| \sqrt{2W(t)}
\]
(3.2)

Hence the function \(\rho(t) := (1 + t)^{2\nu} W(t) \) satisfies the differential inequality
\[
\dot{\rho}(t) \leq 2\nu(1 + t)^{2\nu-1} W(t) + \sqrt{2(1 + t)^\nu} \| g(t) \| \sqrt{\rho(t)}.
\]
(3.3)

Now since \(2\nu - 1 \leq \alpha \), we have from (1.5),
\[
\int_0^{+\infty} (1 + t)^{2\nu-1} W(t) \, dt < \infty.
\]
(3.4)

Thus by integrating the differential inequality (3.3) and applying Gronwall-Bellman lemma we deduce that \(\sup_{t \geq 0} \rho(t) < \infty \). Therefore (3.3) and (3.4) imply that the positive part \([\dot{\rho}(t)]^+ \) of \(\dot{\rho}(t) \) belongs to \(L^1(0, +\infty) \). Thus \(\rho(t) \) converges as \(t \to +\infty \) to some real number \(\lambda \) which in view of (3.4) must be equal to 0. This proves (1.6). Now multiply (3.1) by \((1 + t)^{2\nu} \) and then integrate on \([0, t] \) with \(t > 0 \), we obtain
\[
\int_0^t (1 + s)^{2\nu} \gamma(s) \| \dot{x}(s) \|^2 \, ds \leq \sup_{s \geq 0} \sqrt{2(1 + s)^{2\nu} W(s)} \int_0^{+\infty} (1 + s)^\nu \| g(s) \| \, ds
+ W(0) - (1 + t)^{2\nu} W(t) + 2\nu \int_0^{+\infty} (1 + s)^{2\nu-1} W(s) \, ds,
\]
which implies (1.7) thanks to (3.4).
4. Proof of Theorem 1.3

We follow the same method used in the proof of [2, Theorem 3.1]. The assumption \(\text{int} (\text{arg min} \Phi) \neq \emptyset \) implies the existence of \(z_0 \in \mathcal{H} \) and \(r > 0 \) such that for any \(v \in \mathcal{H} \) with \(\|v\| \leq 1 \) we have \(\nabla (z_0 + rv) = 0 \) which implies by the monotocity property of \(\nabla \Phi \) that for any \(z \in \mathcal{H} \) we have \(\langle \nabla \Phi(z), z - z_0 - rv \rangle \geq 0 \). Thus by taking the supremum on \(v \), we get
\[
\langle \nabla \Phi(z), z - z_0 \rangle \geq r \| \nabla \Phi \| .
\]
Hence (2.5) with \(x^* = z_0 \) gives
\[
\mathcal{E}'(t) + 2h(t) \| \nabla \Phi(x(t)) \| \leq 4 \dot{\mathcal{E}}(t) - \mathcal{E}(t) = 4 \dot{\mathcal{E}}(t) - \mathcal{E}^*.
\]
Integrating this inequality on \([0, t]\) and using (2.3), (2.9), (2.10), and the boundedness of \(\dot{\mathcal{E}} \), we deduce that
\[
\left(\begin{array}{c}
\int_{0}^{+\infty} \frac{1}{\gamma(t)} \| \nabla \Phi(x(t)) \| \ dt < +\infty.
\end{array} \right)
\]
Setting \(\omega(t) = g(t) - \nabla \Phi(x(t)) \), the equation (1.1) becomes
\[
\ddot{x}(t) + \gamma(t) \dot{x}(t) = \omega(t).
\]
Hence thanks to (4.1), the following lemma completes the proof of Theorem 1.3

Lemma 4.1. Let \(\omega : [0, +\infty[\rightarrow \mathcal{H} \) be a measurable function that satisfies
\[
\int_{a}^{+\infty} \frac{1}{\gamma(t)} \| \omega(t) \| \ dt < +\infty.
\]
If \(y \in W^{2,1}_{\text{loc}}(0, +\infty; \mathcal{H}) \) is a solution of the differential equation
\[
\ddot{y}(t) + \gamma(t) \dot{y}(t) = \omega(t),
\]
then \(y(t) \) converge strongly in \(\mathcal{H} \) as \(t \rightarrow +\infty \).

Proof. Multiply (4.2) by \(e^{\Gamma(t)} \) and integrate on \([0, t]\), we obtain
\[
\dot{y}(t) = e^{-\Gamma(t)} y(0) + e^{-\Gamma(t)} \int_{0}^{t} e^{\Gamma(s)} \omega(s) ds.
\]
Hence by using Fubini theorem and (2.1) as in the proof of Theorem 1.1 we get
\[
\int_{0}^{+\infty} \| \dot{y}(t) \| \ dt \leq \| y(0) \| \int_{0}^{+\infty} e^{-\Gamma(t)} dt + \int_{0}^{+\infty} \dot{\mathcal{E}}(t) \| \omega(t) \| \ dt < +\infty \text{ (thanks to (2.3)).}
\]
This completes the proof of the lemma. \(\square \)
Using now the inequality (3.2), we get

By a classical calculus using (1.1) and the fact that Φ is convex and even, we obtain

Integrating this inequality and using the fact that $y \in L^\infty(0, +\infty, \mathcal{H})$. Using now the inequality (3.2), we get

Applying Theorem 1.2 with ν such that $\arg\min (\Phi)$, we have $0 \leq \|x(s)\|$ (Recall that from Theorem 1.1 we have $x \in L^\infty(0, +\infty, \mathcal{H})$).

Therefore, for every t in $[0, T]$, we have

Since Φ is even and convex, we have $0 \in \arg\min (\Phi)$. Hence by using the convergence of the function $z(t) = \frac{1}{2} \|x(t) - x^*\|^2$ proved in Theorem 1.1 with $x^* = 0$, we infer that the
limit of $\|x(t)\|^2$ as t goes to $+\infty$ exists which implies that

$$\lim_{t,T \to +\infty} \|x(t)\|^2 - \|x(T)\|^2 = 0. \quad (5.2)$$

On the other hand, in view of Fubini theorem and (2.3), there exists an absolute constant $C' \geq 0$ such that

$$\int_0^{+\infty} e^{-\Gamma(s)} \int_0^{s} e^{\Gamma(\tau)} \omega(\tau) d\tau ds = \int_0^{+\infty} h(\tau) \omega(\tau) d\tau$$

$$\leq C' \int_0^{+\infty} (1 + \tau)^{1+\alpha} \omega(\tau) d\tau$$

$$= C' \int_0^{+\infty} \left(\frac{3}{2} \|\dot{x}(\tau)\|^2 + M \|g(\tau)\| \right) (1 + \tau)^{1+\alpha} d\tau$$

$$+ \frac{CC'}{1+\alpha} \int_0^{+\infty} (1 + s)^{\frac{1+\alpha}{2}} \|g(s)\| ds$$

$$< +\infty \quad \text{(in view of \,(1.3).)}$$

Therefore

$$\lim_{t \to +\infty} \varpi(t) = 0. \quad (5.3)$$

Combining (5.1), (5.2) and (5.3), we conclude that $x(t)$ satisfies the Cauchy convergence criterion in the Hilbert space \mathcal{H} as $t \to +\infty$, and hence converges strongly in \mathcal{H} as $t \to +\infty$.

References

[1] F. Alvarez, On the minimizing properties of a second order dissipative system in Hilbert spaces. SIAM J. Cont. Optim. 38 (4)(2000) 1102-1119.

[2] Attouch H, Chbani Z, Peyroutou J, Redont P. Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math Program Ser B 2016: 1-53.

[3] H. Attouch, X. Goudou, and P. Redont, The heavy ball with friction method, I. The continuous dynamical system. Commun. Contemp. Math. 02, 1 (2000). DOI: 10.1142/S0219199700000025

[4] M. Balti and R. May, Asymptotic for a semilinear hyperbolic equation with asymptotically vanishing damping term, convex potential, and integrable source. Submitted.

[5] A. Cabot and P. Frankel, Asymptotics for some semilinear hyperbolic equations with non-autonomous damping. J. Differential Equations 252 (2012) 294-322.

[6] A. Haraux, M.A. Jendoubi, On a second order dissipative ODE in Hilbert space with an integrable source term. Acta Mathematica Scientia 32B(1)(2012) 155-163.

[7] M.A Jendoubi and R. May, Asymptotics for a second-order differential equation with non-autonomous damping and an integrable source term. Applicable Analysis 94(2)(2015) 435-443.
[8] R. May, Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential. J. Math. Anal. Appl. 430 (2015) 410-416.
[9] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mapping. Bull. Amer. Math. Soc. 73 (1967) 591-597.