Low birth weight and premature births and their associated maternal factors

Mithila Dayanithi*

Department of Community Medicine, Rama Medical College Hospital and Research Centre, Pilkhuwa, Hapur, Uttar Pradesh, India

Received: 28 April 2018
Revised: 14 May 2018
Accepted: 15 May 2018

*Correspondence:
Dr. Mithila Dayanithi,
E-mail: dmithila@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: LBW is a significant public health problem globally. In India every 3rd newborn is a LBW contributing to about 40% of the global burden. The objective of the study was to determine the prevalence of LBW and premature births and their associated maternal factors.

Methods: A cross sectional study was done in antenatal women attending Rama Medical College Hospital & Research Centre, Hapur. Maternal factors and socioeconomic factors collected from 406 mothers were coded and analyzed using the SPSS 16. Chi square test was applied and p value less than 0.5 was considered as statistically significant.

Results: Prevalence of LBW was 31.8% and prematurity was 25.6% in the study. LBW and premature babies were more associated with joint families, ≤Rs. 2999/- monthly income, maternal illiteracy and house wives. LBW and Premature babies decreased with increase in income, Hb >11.1 gms and ≥ 100 IFA tablets intake. The rates of LBW were the same whether mothers had no ANC or full ANC. This raises doubts about the content of the ANC.

Conclusions: A good quality dedicated and sincere comprehensive ANC package including 4 ANCs, 100 IFA, 2TT/Booster, simple serial measurement of BP, weight, haemoglobin, fundal height and abdominal girth during each visit and screening for complications, counselling for birth and emergency preparedness, newborn care, breast feeding would help avert LBW and premature birth.

Keywords: Low birth weight, Premature births, Maternal and paternal factors, Quality ANC

INTRODUCTION

Low birth weight (LBW) is defined by the WHO as weight at birth less than 2500 g (5.5 lb). This is birth weight up to and including 2,499 gm. LBW is complex and includes preterm neonates (born before 37 weeks of gestation), small for gestational age at term and the overlap between these two situations – preterm, small for gestational age.

Preterm birth is the most common direct cause of neonatal mortality. Every year, 1.1 million babies die from complications of preterm birth. LBW is not only a major predictor of prenatal mortality and morbidity, but it is found to also increase the risk for non-communicable diseases such as diabetes and cardiovascular disease later in life.

LBW continues to be a significant public health problem globally and is associated with a range of both short- and long term consequences. Overall, about 15% to 20% of all births worldwide are LBW, representing more than 20 million births a year. Regional estimates of LBW include...
28% in south Asia, 13% in sub-Saharan Africa and 9% in Latin America.\(^1\)

In India, of the 26 million born every year, 8 million are LBW infants i.e. around 40% of the global burden of LBW infants. Nearly three fourth of all neonatal deaths and half of infant deaths occur among LBW infants. A LBW baby is at higher risk of both mortality and morbidity compared to the normal birth weight infants.\(^3\)

The causes of LBW are multifactorial. Kramer mentioned 43 factors influencing intrauterine growth and gestational duration: genetic, constitution, demographic & psychosocial, obstetric, nutritional, morbidity during pregnancy, toxic exposure and prenatal care etc.\(^4\) There are multiple causes of LBW, including early induction of labour or caesarean birth (for medical or non-medical reasons), multiple pregnancies, infections and chronic conditions such as diabetes and high blood pressure\(^1\).

In the Indian context; age, height, weight (pre-pregnancy and pregnancy weight gain), nutritional anemia, socio-economic status, ANC checkup, education (maternal and family), parity, maternal morbidity, bad obstetric history, physical labour, tobacco exposure, infections all influence the new born weight. In addition fetal defects due to genetic conditions or environmental factors limit the normal development of the fetus.\(^3,5,9\)

In the past from 1962’s to 2004 LBW varied from 20% to 40% based on Institutional deliveries and some community based studies.\(^3,10-12\) Almost every third newborn in India (30%) is a LBW baby.\(^1\) The consequences of LBW include fetal and neonatal mortality and morbidity, poor cognitive development and an increased risk of chronic diseases later in life.\(^1\)

In 2012, the WHA endorsed a comprehensive implementation plan on maternal, infant and young child nutrition, which specified 6 global nutrition targets for 2025, which covered the third target: a 30% reduction in low birth weight.\(^1\) A study was conducted to determine the prevalence of low birth weight and premature births and their associated maternal factors.

METHODS

A cross sectional study was done in the antenatal women attending Rama Medical College Hospital & Research Centre, Hapur, Uttar Pradesh to determine the prevalence of low birth weight and preterm births and their associated maternal factors.

Data was collected from 406 antenatal mothers who attended the hospital from 1\(^{st}\) April 2016 to 31\(^{st}\) March 2017. Inclusion criteria were all mothers who came for delivery to the hospital during this period. Exclusion criteria were any twin pregnancies, thus 3 twin pregnancies were excluded i.e. 6 babies excluded from 412 babies. Details were collected through a semi-structured questionnaire, noted possible details from mother and baby’s case sheet. Variables for the study were maternal factors and social factors seen in Table 2 to 4. Maternal height was taken for all mother’s even if not available in the case sheet. Data collected were coded and analyzed using the SPSS 16. Chi square test was applied to test the relationship between birth weight and premature births with different variables. P value less than 0.5 was considered as statistically significant in the study.

RESULTS

The mean birth weight was 2606 gms and mean gestational age was 38.3 weeks in the study. Among 406 babies, 52%, 211 were baby boys and 48%, 195 were baby girls. Prevalence of LBW was 31.8%, 129 and prematurity was 25.6%, 104. Out of LBW babies, 52.7%, 68 were premature (<37 weeks) and 47.3%, 61 were ≥37 weeks. Among the 277 normal weight babies 13%, 36 were premature and 87%, 241 were normal babies, Table 1.

Gestational age	Birth weight (in grams)	Total (%)			
	<2500 gms (%)	%	≥ 2500 gms (%)	%	
<37 weeks	68 (52.7)	65.4	36 (13)	34.6	104 (100)
≥ 37 weeks	61 (47.3)	20.2	241 (87)	79.2	302 (100)
Total	129 (100)	31.8	277 (100)	68.2	406 (100)

Variables analyzed in the study are in Table 2. Majority of mothers, 85.5%, 347 had registered in a health facility, 56.4%, 229 were Gravida 1-4 and 2.2%, 9 were ≥5 Gravida, 47.3%, 192 were Para 0 and 52.7%, 214 were Para 1-4. Only 41.6%, 169 had full ANC, 90.6%, 368 were Hindus, 57%, 232 lived in joint families and 51.3%, 208 lived with 3 to 5 family members. There were 96.6%, 392, housewives, 43.1%, 175 husbands were skilled labourers. 39.7%, 161 mother and 45%, 181 were educated till secondary school, 40.9%, 166 had an income of < Rs. 2999/ per month.
Table 2: Variables in the study.

Variables	No	Percentage (%)
Registration		
Registered	347	85.5
Not Registered	59	14.5
Gravida		
Primigravida	168	41.4
Gravida 1-4	229	56.4
Gravida ≥5	9	2.2
Religion		
Hindu	368	90.6
Muslim	30	7.4
Others	8	2
No. of family members		
2	76	18.7
3 to 5	208	51.3
6 to 8	80	19.7
≥9	42	10.3
Paternal income per month		
≤ Rs 2999	166	40.9
Rs 3000-4999	139	34.2
Rs 5000-6999	63	15.5
≥ Rs7000	38	9.4
Maternal occupation		
House wife	392	96.6
Unskilled Worker	13	3.2
Skilled worker	1	0.2
Maternal education		
Illiterate	119	29.3
Primary School	41	10.1
6th to 10th Std	161	39.7
Higher Secondary School & Above	85	20.9
Paternal education		
Illiterate	36	8.9
Primary School	34	8.4
6th to 10th Std	181	44.6
Higher Secondary School & Above	155	38.2
Maternal age		
≤ 20 years	86	21.2
21-34 years	316	77.8
≥ 35 years	4	1.0
Paternal age		
≤ 20 years	0	0.0
21-34 years	368	90.6
≥ 35+ years	34	8.4
Table 3: Socioeconomic factors with birth weight and gestational age.

Variables	Birth weight <2500 gms (%)	≥ 2500 gms (%)	Total (%) 406 (100)	P value	Gestational Weeks < 37 weeks (%)	≥ 37 weeks (%)	Total (%) 406 (100)	P value
Type of family								
Nuclear	46 (26.4)	128 (73.6)	174 (100)	0.07	39 (22.4)	135 (77.6)	174 (100)	0.201
Joint	83 (35.8)	149 (64.2)	232 (100)		65 (28.0)	167 (72.0)	232 (100)	
No. of family members				0.057				
2	26 (34.2)	50 (65.8)	76 (100)		26 (34.2)	50 (65.8)	76 (100)	0.004
3 to 5	53 (25.5)	155 (74.5)	208 (100)		41 (19.7)	167 (80.3)	208 (100)	
6 to 8	34 (42.5)	46 (57.5)	80 (100)		25 (31.3)	55 (68.8)	80 (100)	
≥ 9	16 (38.1)	26 (61.9)	42 (100)		12 (28.6)	30 (71.4)	42 (100)	
Religion				0.593				0.661
Hindu	115 (31.3)	253 (68.8)	368 (100)		94 (25.5)	274 (74.5)	368 (100)	
Muslim	10 (33.3)	20 (66.7)	30 (100)		8 (26.7)	22 (73.3)	30 (100)	
Christian	2 (40.0)	3 (60.0)	5 (100)		2 (40.0)	3 (60.0)	5 (100)	
Sikh	2 (66.7)	1 (33.3)	3 (100)					
Parental income in Rs	≤ 2999	56 (33.7)	110 (66.3)	0.847	42 (25.3)	124 (74.7)	166 (100)	0.565
	3000-4999	42 (30.2)	97 (69.8)		32 (23.0)	107 (77.0)	139 (100)	
	5000-6999	21 (33.3)	42 (66.7)		17 (27.0)	46 (73.0)	63 (100)	
	≥ 7000	10 (26.3)	28 (73.7)		13 (34.2)	25 (65.8)	38 (100)	
Maternal age (years)	≤ 20	28 (32.6)	58 (65.2)	0.371	4 (17.4)	19 (82.6)	23 (100)	0.894
	21-34	98 (31.0)	218 (69.0)		99 (26.1)	280 (73.9)	379 (100)	
	≥ 35	3 (75.0)	1 (25.0)		1 (25)	3 (75)	4 (100)	
Paternal age (years)	≤ 20	0	0	0.823	0 (0)	0 (0)	0 (0)	0.206
	21 to 34	118 (32.1)	250 (67.9)		94 (25.3)	278 (74.7)	372 (100)	
	≥ 35	11 (32.4)	23 (67.6)		10 (29.4)	24 (70.6)	34 (100)	
Total	129 (31.8)	277 (68.2)	406 (100)		104 (25.6)	302 (74.4)	406 (100)	
Table 4: Socioeconomic factors with birth weight and gestational age.

Variables	Birth weight		Gestational Weeks		P Value	P Value			
	<2500 gms (%)	≥ 2500 gms (%)	Total (%) 406 (100)	< 37 weeks (%)	≥ 37 weeks (%)	Total (%) 406 (100)			
Maternal education	Illiterate	38 (31.9)	81 (68.1)	119 (100)	33 (27.7)	86 (72.3)	119 (100)	0.209	
	1-5th std	15 (36.6)	26 (63.4)	41 (100)	5 (12.2)	36 (87.8)	41 (100)		
	6-8th std	28 (32.9)	57 (67.1)	85 (100.0)	22 (25.9)	63 (74.1)	85 (100)		
	9-10th std	25 (32.9)	51 (67.1)	76 (100)	18 (23.7)	58 (76.3)	76 (100)		
	11-12th std	7 (16.7)	3583.3	42 (100)	10 (23.8)	32 (76.2)	42 (100)		
	Graduate & Above	16 (37.2)	27 (62.8)	43 (100)	16 (37.2)	27 (62.8)	43 (100)		
Paternal education	Illiterate	13 (36.1)	23 (63.9)	36 (100)	13 (36.1)	23 (63.9)	36 (100)	0.097	
	1-5th std	13 (38.2)	21 (61.8)	34 (100)	11 (32.4)	23 (67.6)	34 (100)		
	6-8th std	27 (43.5)	35 (56.5)	62 (100)	18 (29.0)	44 (71.0)	62 (100)		
	9-10th std	40 (33.6)	79 (66.4)	119 (100)	24 (20.2)	95 (79.8)	119 (100)		
	11-12th std	16 (21.6)	58 (78.4)	74 (100)	13 (17.6)	61 (82.4)	74 (100)		
	Graduate & Above	20 (24.7)	61 (75.3)	81 (100)	25 (30.9)	56 (69.1)	81 (100)		
Maternal occupation	House wife	126 (32.1)	266 (67.9)	392 (100)	102 (26.0)	290 (74.0)	392 (100)	0.382	
	Unskilled worker	2 (15.4)	11 (84.6)	13 (100)	2 (18.2)	11 (84.6)	13 (100)		
	Skilled worker	1 (100)	0	1 (100)	0 (0)	1 (100)	1 (100)		
Paternal occupation	Unskilled worker	39 (35.1)	72 (64.9)	111 (100)	29 (27.1)	78 (72.9)	107 (100)	0.07	
	Skilled worker	47 (26.9)	128 (73.1)	175 (100)	36 (20.6)	139 (79.4)	175 (100)		
	Professionals	43 (25.9)	77 (74.1)	120 (100)	39 (73.1)	85 (26.8)	124 (100)		
Total	129 (31.8)	277 (68.2)	406 (100)	104 (25.6)	302 (74.4)	406 (100)			
Variables	Birth Weight (in grams)		Gestational age (in weeks)						
---------------------------	-------------------------	----------	----------------------------	----------					
	<2500 gms (%)	≥2500 gms (%)	Total	P value	<37 weeks (%)	≥37 weeks (%)	Total	P value	
ANC	No ANC	36 (33.3)	72 (66.7)	108	0.215	36 (33.3)	72 (66.7)	108	0.020
	Partial ANC	41 (31.8)	88 (68.2)	129	30 (23.3)	99 (76.7)	129		
	Full ANC	52 (30.8)	117 (69.2)	169	38 (22.5)	131 (77.5)	169		
Parity	Para 0	68 (35.4)	124 (64.6)	192	0.310	65 (33.9)	127 (66.1)	192	0.004
	Para 1-4	61 (28.5)	153 (71.5)	214	39 (18.2)	175 (81.8)	214		
Gravida	Primigravida	56 (33.3)	112 (66.7)	168	55 (32.7)	113 (67.3)	168		
	Gravida 2-4	70 (30.6)	159 (69.4)	229	47 (20.5)	182 (79.5)	229		
	>Gravida 5	3 (33.3)	6 (66.7)	9	2 (22.2)	7 (77.8)	9		
Birth interval	≤12 months	19 (31.1)	42 (68.9)	61	14 (23.0)	47 (77.0)	61	0.986	
	13-47 months	29 (30.2)	67 (69.8)	96	21 (21.9)	75 (78.1)	96		
	≥48 months	21 (35.6)	38 (68.1)	59	13 (22.0)	46 (78.0)	59		
IFA tablets	<100 Tablets	87 (34.8)	163 (65.2)	168	0.160	72 (28.8)	178 (71.2)	168	0.026
	≥100 Tablets	42 (26.9)	114 (73.1)	156	32 (20.5)	124 (79.5)	156		
Hemoglobin	≤ 5 gms	1 (33.3)	2 (66.7)	3	1 (33.3)	2 (66.7)	3		
	5.1-11 gms	82 (32.9)	167 (67.1)	249	68 (27.3)	181 (72.7)	249		
	> 11.1 gms	12 (26.7)	33 (73.3)	45	8 (17.8)	37 (82.2)	45		
	Total	95 (32)	202 (68)	297	77 (25.9)	220 (74.1)	297		
Maternal height	≤ 145 cms	20 (38.5)	32 (61.5)	52	9 (17.3)	43 (82.7)	52	0.298	
	> 145.1 cms	109 (30.8)	245 (69.2)	354	95 (26.8)	259 (73.2)	354		
Maternal weight	≤ 40 kgs	10 (45.5)	12 (54.5)	22	5 (22.7)	17 (77.3)	22	0.916	
	> 40.1 kgs	77 (29.4)	185 (70.6)	262	61 (23.3)	201 (76.7)	262		
	Total	87 (30.6)	197 (69.4)	284	66 (23.2)	218 (76.8)	284		
Spontaneous abortions	0-1	123 (31.6)	266 (68.4)	389	97 (24.9)	292 (75.1)	389	0.031	
	≥ 2	6 (35.3)	11 (64.7)	17	7 (41.2)	10 (58.8)	17		
	Total	129 (31.8)	277 (68.2)	406	104 (25.6)	302 (74.4)	406		
Perinatal deaths	Nil	119 (31)	265 (69.0)	384	0.046	97 (25.3)	287 (74.7)	384	0.704
	≥ 1	10 (45.5)	12 (54.5)	22	7 (31.8)	15 (68.2)	22		
Complications	Toxemia	11 (39.3)	17 (60.7)	28	9 (32.1)	19 (67.9)	28		
	Cardiac disease	1 (50)	1 (50)	2	2 (100)	0	2		
	APH	6 (60)	4 (40)	10	8 (80)	2	10		0.037
	Jaundice	2 (66.7)	1 (33.3)	3	2 (66.7)	1	3		
	None/Others	109 (30)	254 (70)	363	83 (22.9)	280 (77.1)	363		
	Total	129 (31.8)	277 (68.2)	406	104 (25.6)	302 (74.4)	406		
DISCUSSION

The past five year plans, NHM, MDG, NHM, India’s Newborn Action Plan and now the recent SDG all have strategies to reduce the IMR, Perinatal mortality and LBW. NHP 2017 has a target to reduce Under Five Mortality to 23 by 2025 and MMR from current levels to 100 by 2020, reduce IMR to 28 by 2019, reduce NMR to 16 and SBR to “single digit” by 2025.14

In joint families prevalence of LBW was 35.8%, 83 and prematurity was 28%, 65. LBW who lived with 3 to 5 family members was 25.5%, 53 and prematurity was 39.4%, 41, Table 3. Prevalence of LBW and prematurity reduced drastically in nuclear family. Similarly Kumar M et al. found higher prevalence of LBW babies in joint families. An ICMR study also revealed 45.5% LBW in joint family as compared to 39.1% LBW in nuclear families.15 Hindu had 89.1%, 115 of LBW and 90.4%, 94 of premature babies. Krishna et al and an ICMR study had a similar finding.15 16

With parental income of <Rs. 2999/- LBW was 33.7%, 56, as income increased it reduced to 26.3%, 21. Within same income, prematurity was 25.3%, 42 and reduced with increase in income. Kumar et al and Ghosh et al found that with increase in income the LBW babies came down.2 17

In mothers 21 to 34 years LBW was 31%, 98 and prematurity 26.1%, 99. Maternal of ≤20 years and ≥ 35 years are known risk factors of having a LBW baby.2 In ≤20 years LBW was 32.6%, 28 and prematurity was 17.4%, 4. In Ghosh et al’s study 34.3% of mothers ≤ 20 years, had LBW babies.10 With only 3 mothers ≥35 years, it was hard to conclude. In fathers 21-34 years LBW was 32.1%, 118 and prematurity was 25.3%, 94, however with increase in age both LBW and prematurity did come down. There was no other study analyzing paternal age with LBW or prematurity.

Most mothers were illiterate, LBW was 31.9%, 38 and 27.7%, 33 prematurity, Table 4. With Primary School education, LBW was 36.6%, 15 and prematurity came down to 12.2%, 5. Similar influence of education on birth weight was seen in an ICMR study.15 Fathers educated till high school had 33.6%, 40 LBW babies and 20.2%, 24 premature babies. With increase in education LBW & prematurity came down. With Graduate and above in either parents, LBW and prematurity increased.

In housewives, LBW was 32.1%, 126 and prematurity was 26%, 102. Ghosh et al’s study had a similar finding. The numbers in other groups were too small to conclude. LBW was higher in unskilled fathers at 35.1%, 39 and reduced thereafter. Prematurity was highest at 31.5% in professionals. Only association of birth weight and prematurity with number of family members was statistically significant, Table 4.

Full ANC (at least 4 ANC visits including registration, at least 1 Inj TT and ≥ 100 days of IFA tablets) was 41.6%, 169, of which LBW was 30.8%, 52 and prematurity was 22.5%, 38, Table 5. In the present study, LBW was around 30% whether the mother had no ANC, Partial ANC or full ANC. This may be due to poor content of ANC, there was no note of fundal height or abdominal girth in their case sheets during ANC visits.

With 0 Parity, both LBW and prematurity was high 35.4%, 68 and 33.9%, 65 respectively. Gravida 2-4 had 30.6%, 70 LBW and 20.5%, 47 prematurity, above Gravida 5, the numbers were too small to conclude. Majority mothers were with birth interval between 13 to 48 months, 30.2% had LBW babies and 21.2%, 21 had premature babies.

When mothers took <100 IFA tablets, LBW was 34.80%, 87 and prematurity was 28.8%, 72 babies. Both LBW and prematurity reduced to almost half when ≥100 IFA tablets to 42 and prematurity reduced to 32. Only 297 mothers had haemoglobin noted in their case sheet out of which 95 were LBW babies, 32.9%, 82 with 5.1-11gms Hb, and 27.3%, 68 prematurity. With Hb >11.1gms both LBW and prematurity reduced, similar to the study of Kumar et al, Bhargava et al and Ghosh et al in which LBW came down with better Hb.3 6 15

Height was noted in the case sheet in only 53.2%, 216, irrespective of it, height was measured in all of them. In height >145.1 cm, LBW was 30.8%, 109 and prematurity was 26.8%, 95. In short stature ≤(145 cm) LBW was high at 38.5%, 20 and prematurity was 17.3%, 9. Like in other studies maternal height did influence the birth weight.4 16 In those with ≤40 kgs, LBW was at 45.5%, 10 than 29.4%, 77 with >40.1 kgs. However prematurity was the same around 23% in both the groups. The weight considered in the study was any maternal weight noted in the case sheet and not the exact maternal weight gain.

Previous fetal loss, Anemia, Toxemia, APH & Bleeding also contributed to LBW.6 Bhargava et al in his study revealed that with a history of previous fetal loss LBW was17.4% in those <2000 gms and prematurity was 18.5%.6 Though in the present study maternal complications all contributed to increase in LBW and prematurity, the numbers were too small to conclude. Prematurity was statistical significant with parity, IFA tablets intake, hemoglobin and spontaneous abortions. LBW was statistically significant with maternal weight, spontaneous abortions and perinatal deaths, Table 5.

Maternal care has improved over years: IFA consumption has increased to 30.3% (NFHS-4, 2015-16) from 15.2% (NFHS-3, 2005-06). During NFHS-4, Inj TT in antenatal was at 89% and institutional birth was at 78.9% as compared to 76.3% and 38.7% respectively during NFHS-3. However, there seems to no holistic improvement as full ANC is still at a low of 21% though improved from 11.6% during NFHS-3.18
Most of the preterm and LBW babies born do not need intensive care to survive. Essential New born Care of drying, warmth, immediate exclusive breast feeding and basic care for feeding, infections and breathing difficulty is all that is required for these small babies to survive. More effort is needed to identify women at risk of preterm labor through proper ANC and support them to give birth in a health facility that can offer extra care.19 WHO recommends minimum eight ANC visits with each ANC component having five interventions: Nutritional, Maternal and fetal assessment, preventive measures, Interventions for common physiological symptoms and health systems to improve the utilization and quality of ANC.20 NHM has been facilitating minimum 4 ANC’s: Early registration and 1st visit within 12 weeks, 2nd visit between 14-26 weeks, 3rd visit between 28-34 weeks and 4th visit between 36 weeks and term.21,22 During the first visit record LMP to calculate EDD, BP, Weight, Height, do blood group, Rh typing, blood sugar. Also check for VDRL, HIV, HBsAg and urine for protein & sugar and record all findings in the mother and child protection card (MCP). In all subsequent visits, note the serial measurements of BP, weight, Hb, fundal height and abdominal girth in the MCP card to monitor foetal growth. Also screen for high risk/ complications like pre-eclampsia, anaemia, etc., counsel for birth/emergency preparedness in institution, newborn care, breast feeding, nutrition, FP, including post-partum FP methods.23 Provide supplements from 2nd Trimester: 100 tablets of IFA, 182 tablets Calcium Tablets and a single dose of Albendazole.21 These simple and meticulous ANC package will ensure early and appropriate corrective measures whenever required.

CONCLUSION

Weight of the newborn is an important determinant of the newborn health and health of a nation. In the present study prevalence of LBW was 31.8% and prematurity was 25.6%. LBW and premature babies were more prevalent in joint families, with parental monthly income of ≤Rs. 2999, maternal illiteracy and house wives. With increase in income, both LBW and prematurity decreased reflecting a better distribution of nutrition and care for pregnant and the new born. Fathers educated till Primary School and unskilled workers had higher prevalence of LBW babies. However after graduation in both parents, the LBW and prematurity increased after showing reduction with Higher Secondary education. May be higher education is delaying the plan for a family. Socioeconomic factors reflected on maternal health. This was evident from the study when LBW babies became almost 7 times more with 5.1 -11gms Hb when compared to those with Hb >11.1gms. With IFA intake of ≥100 tablets both LBW and prematurity reduced to almost half as compared to those who took <100 IFA tablets. Antenatal care being an essential element of maternal health gives us a window of opportunity to improve the birth weight and birth gestational age. A good quality, dedicated and sincere comprehensive ANC package will ensure prevention of babies being born too early and too small.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. World Health Organization. Global nutrition targets 2025: low birth weight policy brief (WHO/NMH/NHD/14.5). Geneva: World Health Organization; 2014.
2. Kumar M, Verma R, Khanna P, Bhalla K, Kumar R, Dhaka R, et al. Prevalence and associate factors of low birth weight in North Indian babies: a rural based study. Int J Community Med Public Health. 2017;4(9):3212-7.
3. State of India’s Newborns (2004): New Delhi/Washington DC. NNF & Save the Children/US, 2004;43-65.
4. Kramer MS. Intra Uterine Growth & Gestational Duration Determinants. Paediatrics 1987;80(4):502-11.
5. Dutta. Low Birth Weight Baby. In: Hiralal Konar, editor, Text Book of Obstetrics, 7th Edition, Kolkata: New Central Book Agency(P) Ltd; 2011: 456-467.
6. Bhargava SK, Bhargava V, Kumari S, Madhavan S, Ghosh S. Birth weight, Gestational age & Maternal Factors in Low Birth Weight babies. Indian Paediatrics 1973;10(3):161-6.
7. Sachdev HPS. Nutrition in Children. In: Nutrition in Children: Developing country concerns. 1st Edition. New Delhi, Department of Paediatrics, Maulana Azad Medical College. 1994: 1-45.
8. Annual Report. National Institute of Nutrition, Hyderabad; 1979: 60-76.
9. ICMR Bulletin; 1985;15(1):1-8.
10. Ghosh S, Beri S. Standards of Prematurity for North Indian babies. Indian J Child Health. 1962;11:210-5.
11. Bhargava SK, Sachdev HPS, Ramji S, Iyer PU. Low Birth Weight: aetiology and prevention in India. Ann Trop Paediatr. 1987;7:59-65.
12. Bhargava SK. Perspectives in Child health in India. Indian Paediatr. 1991;28:1403-10.
13. United Nations Children’s Fund and World Health Organization, Low Birthweight: Country, regional and global estimates. UNICEF, New York, 2004.
14. National Health Policy 2017, Ministry of Health & Family Welfare, Govt. of India.
15. Bhargava SK, Singh KK, Saxena BN. National Collaborative Study of Identification of High Risk Families Mothers and Outcome of their offsprings with particular reference to the problem of Maternal,
Nutrition, Low Birth Weight, Perinatal and Infant Morbidity and Mortality in Rural and Urban Slum communities. 1990; New Delhi, Indian Council of Med Res.

16. Krishna U, Kambo I, Nair A, Saxena NC, Saxena BN. Collaborative study on High risk Pregnancies Maternal Mortality. New Delhi, ICMR. 1990.

17. Ghosh S, Hooja V, Mittal SK, Varma RK. Bio-social Determinants of Birth weight. Indian Paediatr. 1977;14(2):107-14.

18. National Family Health Survey (NFHS-4), 2015-2016, International Institute for Population Science (IIPS) and Macro International.

19. India-Profile for Preterm and Low Birth Weight Prevention Care. Available at: www.EveryPreemie.org. Accessed on 12 January 2018.

20. World Health Organisation. Implementation of ANC guidelines and recommendations. In: WHO recommendations on Antenatal Care for a Positive Pregnancy Experience, Luxembourg: Green Ink; 2016: 105-117.

21. National Health Mission, Maternal Health. Available at: http://nhm.gov.in/nrhm-components/rmnch-a/maternal-health/background.html. Accessed on 5 May 2018.

22. Guidelines for Antenatal Care and Skilled Attendance at Birth by ANMs/LHVs/SNs, Maternal Health Division, Ministry of Health & Family Welfare, Govt. of India; 2010:7-38.

Cite this article as: Dayanithi M. Low birth weight and premature births and their associated maternal factors. Int J Community Med Public Health 2018;5:2277-85.