A Peroxisome Proliferator-response Element in the Murine mc2-r Promoter Regulates Its Transcriptional Activation during Differentiation of 3T3-L1 Adipocytes*

Luke A. Noon, Adrian J. L. Clark, and Peter J. King‡

From the Molecular Endocrinology Center, William Harvey Research Institute, Bart’s and the London, Queen Mary University of London, London, EC1A 7BE, United Kingdom

Adrenocorticotrophic hormone can stimulate lipolysis and suppress leptin expression in murine adipocytes. These effects are mediated via the melanocortin 2 receptor (MC2-R), which is expressed when 3T3-L1 cells are induced to undergo adipogenesis. In this study, we have characterized the mc2-r promoter in the murine adipocyte, one of the few extra-adrenal sites of expression and a cell type that lacks steroidogenic factor 1 (SF-1), a transcription factor that is required for mc2-r expression in adrenal cells. Transcriptional regulation of the mc2-r in the absence of SF-1 was investigated by 5' deletion analysis of the murine mc2-r promoter in both undifferentiated and differentiated 3T3-L1 cells. The results revealed the presence of a 59-base pair regulatory region within the promoter containing an adipocyte-specific enhancer. The ability of this region to confer enhanced activity in the adipocyte was mapped to a peroxisome proliferator-response element (PPRE)-like sequence that bound to peroxisome proliferator-activated receptor γ (PPARγ) and its heterodimeric partner retinoid X receptor α (RXRα) in adipocyte nuclear extracts. Co-transfection of PPARγ/RXRα with the pmC2-R(−112/+105)/GL3 reporter resulted in transcriptional activation in preadipocytes, and this response required an intact PPRE. Mutation of the PPRE to prevent PPARγ/RXRα binding resulted in a complete abrogation of the pmC2-R(−112/+105)/GL3 reporter activity in day 3 differentiated 3T3-L1 cells, demonstrating a key role played by this site in regulating MC2-R expression in the murine adipocyte. These data highlight a novel mechanism for mc2-r transcription, which may have significance in both adrenal and extra-adrenal sites of expression.

The melanocortin 2 receptor (MC2-R)1,2 is a seven-transmembrane G-protein coupled receptor best known for its role in the adrenal cortex where it couples the actions of adrenocorticotropic hormone (ACTH) to steroidogenesis and increased glucocorticoid output (1). Although the key role of MC2-R in the hypothalamo-pituitary-adrenal axis has been the focus of the majority of publications to date, it is also expressed in a number of extra-adrenal sites including the murine adipocyte, fetal testis, human skin, and sympathetic ganglia (2–5).

Early studies using the murine 3T3-L1 cell line, a widely used model of adipogenesis, demonstrated the appearance of high affinity ACTH binding sites following treatment of growth-arrested cells with a mixture of adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine (6). Subsequent characterization of the melanocortin receptors expressed by 3T3-L1 adipocytes revealed the presence of both the MC2 and MC5-R. However, a pharmacological analysis showed that the actions of ACTH were mediated solely through the MC2-R in this cell line (2). ACTH exerts a potent lipolytic effect on the murine adipocyte via the cAMP pathway (7, 8) and has more recently been shown to suppress the expression and secretion of the appetite regulating hormone leptin in differentiated 3T3-L1 cells (9). MC2-R expression may therefore be important in providing feedback between the hypothalamo-pituitary-adrenal axis and peripheral leptin production by adipose tissue.

Studies to date on the transcriptional regulation of the murine and human mc2-r have focused solely on expression in adrenal-derived cell lines such as murine Y1 and human H295R cells (10–13). Such studies have demonstrated a role for the transcription factor steroidogenic factor-1 (SF-1), an orphan nuclear hormone receptor that is widely expressed by steroidogenic tissues and that is important for the expression of key regulators of steroidogenesis in both the adrenal and gonadal systems (14). However, although heterologous expression of SF-1 can induce mc2-r promoter activity in non-expressing, non-adrenal cell lines such as JEG3 and L cells (10, 15), MC2-R is not expressed by all of the SF-1-positive tissues and, therefore, SF-1 is not sufficient for mc2-r gene expression. In contrast, 3T3-L1 adipocytes have been shown not to express SF-1 (16). In the absence of SF-1, mc2-r gene expression must be regulated via an alternative transcriptional mechanism in this cell line and the elucidation of such a mechanism would greatly improve our understanding of the tissue-specific expression of this receptor.

The following study investigates the transcriptional activation of the mc2-r during 3T3-L1 differentiation. We show that murine mc2-r promoter constructs are activated in adipocytes and that the region of activation maps to a peroxisome proliferator response element (PPRE)-like sequence in the proximal promoter. This is a binding site for the nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipogenesis that has been shown to directly reg-

Received for publication, February 20, 2004
Published, JBC Papers in Press, March 17, 2004, DOI 10.1074/jbc.M401861200

© 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

This paper is available on line at http://www.jbc.org

22803

Printed in U.S.A.
ulate the expression of genes such as adipocyte P2 (17) and lipoprotein lipase (18). We show that deletion or mutation of this sequence renders mc2-r promoter constructs uninducible during differentiation into adipocytes or by co-transfection with expression vectors for PPARγ and its heterodimeric partner retinoid X receptor α (RXRα).

EXPERIMENTAL PROCEDURES

Plasmids and Constructs—5′ deletions were created by linearizing pMC2-R−1085/+105GL3, which contains mouse MC2-R sequences from −1085 to +105 cloned into the Smal site of the promoterless luciferase vector pGL3 (Promega) with MluI and treated with exonuclease I. Deleted products were blunt-ended, ligated to MluI linkers, and ligated back into pGL3 as Mlu/BglII fragments to create a 5′ deletion series with the structure pMC2-R (−x/+105)GL3. Expression vectors for RXRα (pCMX-hRXRα) (19) and PPARγ (pCMX-mPPARγ) (20) were the kind gifts of Prof. R. Evans (Salk Institute, San Diego, CA) and Prof. M. Lazar (University of Pennsylvania, Philadelphia, PA, respectively). Site-directed mutagenesis was performed using the QuickChange protocol (Stratagene).

Cell Culture—3T3-L1 preadipocytes (American Type Culture Collection) were maintained in Dulbecco’s modified Eagle’s medium, 10% fetal calf serum (Sigma) at 37 °C with 5% CO2, and differentiated by treating 2-day post-confluent cells (day 0) with medium containing 0.5 mM 3-isobutyl-1-methyl-xanthine, 0.25 μM dexamethasone, and 1 μg/ml insulin for 2 days. On day 2, medium was replaced with insulin only containing medium (1 μg/ml) for a further 48 h before returning the cells to normal cell culture conditions (day 4).

Transfections—Cell lines stably harboring the pMC2-R−1085/+105GL3 reporter or the empty vector pGL3 were created by calcium phosphate precipitation transformation. Ten micrograms of each plasmid were co-transfected with 0.5 μg of pCDNA1 (Invitrogen), which confers resistance to G418S (Geneticin, Invitrogen). Cells were selected and maintained in medium containing 50 μg/ml G418S for 24 h after transfection, and the resulting colonies were pooled to produce polyclonal cell cultures. Transient transfections were performed by lipofection using FuGENE 6 (Roche Applied Science) according to the manufacturer’s instructions. Cationic lipid was combined in a 2:1 ratio with 2 μg of plasmid DNA and then incubated with the cells under serum-free conditions for 1 h. An equal volume of Dulbecco’s modified Eagle’s medium, 20% fetal calf serum was then added to the cells, which were subsequently harvested for luciferase assay after 24 h. When differentiating cells were transfected, insulin was included in the media for the 24 h after transfection. All of the transient transfections for luciferase reporter assays included 200 ng of the pRL-CMV Renilla control vector (Promega). For transfections with expression vectors for PPARγ and RXRα, the ratio of reporter, expression vector was kept constant by adding the pCMX empty vector.

 Luciferase was measured using the Dual Luciferase reporter assay (Promega). Cell lysates were prepared according to the manufacturer’s instructions, and luciferase activity was measured using a BioOrbit 1253 luminometer (LabTech International, Sussex, United Kingdom). Reporter activity for transient transfections was calculated by normalizing the reporter luciferase to that of cells stably expressing empty vector pGL3 on each day. RLUs, relative light units. Data are presented as mean ± S.E. C, panel of gene expression as determined by RT-PCR. Cytoplasmic RNA was harvested from differentiating 3T3-L1 cells at daily intervals, and RT-PCR was performed as outlined under “Experimental Procedures.” The PCR product in each panel is indicated in the figure. Positive control cDNAs (+) are from adenovirally infected Y1 cells (MC2-R and SF-1) or day 14 adipocytes (SCD-1).

RESULTS

Transcriptional Activation of the mc2-r in the Absence of SF-1—Prior to any detailed transcriptional analysis of the mc2-r promoter, it was first necessary to document the timing of MC2-R up-regulation in differentiating 3T3-L1 cells. This was achieved by measuring three relevant aspects of MC2-R expression: receptor activity, promoter activity, and mRNA expression (Fig. 1).

Because of the absence of a suitable MC2-R antibody, it was not possible to measure protein expression directly. Although
MC5-R has also been shown to be expressed during 3T3-L1 cell adipogenesis, ACTH has been shown to act solely through the MC2-R in this cell line (2) and, therefore, the cAMP response to ACTH was measured as a surrogate for MC2-R protein expression. Fig. 1A shows a 4.8-fold increase in cAMP production following ACTH treatment on day 2. This response peaked on day 4 and was completely absent in untreated cells on day 5 (5u). Therefore, these data are consistent with previous studies, which have shown the ACTH response to be differentiation-dependent (7, 8).

The second aspect of MC2-R expression to be measured was promoter activity. 3T3-L1 preadipocytes were stably transfected with the full-length pMC2-R (1805/105)GL3, and the activity of the resulting deletion series was compared. RLUs, relative light units. *, *p < 0.05; **, p < 0.01; n/s, not significant. B, location of the PPRE-like sequence identified between positions −95 and −83 relative to the transcription start site is shown, and the sequence is aligned with a consensus PPRE. C, RT-PCR for MC2-R and PPARγ2 mRNA in a time course of adipocyte differentiation compared with glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

3T3-L1 cells using intron-spanning primers (Fig. 1C). Consistent with the observed increase in promoter activation, MC2-R message was detectable 24 h after hormonal induction and this appearance preceded the up-regulation of the adipocyte marker SCD-1 (24) by 72 h. MC2-R transcriptional activation therefore precedes the attainment of terminal characteristics of differentiation and the accumulation of lipid, which was not apparent until day 3 post-induction as measured by Oil-Red O staining.2 RT-PCR was also used to measure SF-1 expression in 3T3-L1 cells. The results confirmed the absence of mRNA for this factor throughout the time course of differentiation, and this result prompted a search for an alternative positive acting factor(s) driving the basal activity of the promoter in adipocytes.

A 59-bp Region of the Proximal Promoter Enhances mc2-r Transcription in the Adipocyte—In an attempt to characterize regions of the mc2-r promoter that confer enhanced activity in the adipocyte, a 5’ deletion series was transiently transfected into both undifferentiated and differentiated cells and the activities of the constructs were compared (Fig. 2A). Consistent with the results obtained using stable cells, the activity of the full-length pMC2-R (1805/105)GL3 reporter was significantly higher in day 3 adipocytes compared with undifferentiated cells and similar significantly enhanced levels of luciferase activity were observed for all of the deletion constructs between −1805 and −112. This suggested that each of these constructs contained within their sequence an adipocyte-specific enhancer. Further deletion of the promoter between −112 and −53 effectively abolished this enhanced activity, indicating that the enhancer sequence(s) resided between these two markers. When this 59-bp region of sequence was analyzed using MatInspector (25), a putative PPRE was identified between −95 and −83 relative to the transcription start site (Fig. 2B).
The ability of the −95 PPRE to bind to protein factors in both preadipocyte (Pre) (lanes 1 and 3) and adipocyte (Adip) (lanes 2 and 5–7) nuclear extracts was compared with in vitro translated mPPARγ2/RXRα protein (lanes 8–10) using EMSA. Antibodies to both RXRα (lanes 6 and 9) and PPARγ (lanes 7 and 10) were included to supershift the DNA/protein complexes formed. The bands corresponding to PPARγ/RXRα heterodimers and RXRα homodimers are highlighted. The mutated −95 (−35mut) PPRE was used as a probe in combination with preadipocyte (lane 3) and adipocyte (lane 4) nuclear extracts (N/E), respectively.

The 13-bp sequence shared a 77% similarity with a consensus direct repeat-1 site to which PPARγ is known to bind as a heterodimer with RXRα (26). PPARγ2 is the adipocyte-specific PPARγ isoform, and it is up-regulated during 3T3-L1 differentiation (27). RT-PCR was used to compare the mRNA profile of PPARγ2 with that of the MC2-R in a time course of differentiation of 3T3-L1 cells. Both mRNAs were up-regulated within the first 24 h following hormonal induction, and therefore, an increase in PPARγ2 levels might explain the activation of the mc2-r (Fig. 2C). This coincidence of PPARγ2/MC2-R expression together with the presence of a PPRE in the regulatory region of the mc2-r promoter highlighted PPARγ2 as a potential candidate regulator of MC2-R expression.

The −95 PPRE Binds to PPARγ/RXRα in Adipocyte Nuclear Extracts—A series of experiments were carried out to test the ability of the −95/−83 sequence to bind to endogenous PPARγ/RXRα in 3T3-L1 adipocytes. A radiolabeled double-stranded oligonucleotide probe corresponding to the −95/−83 sequence was prepared and used in EMSA with both preadipocyte and day 3 adipocyte nuclear extracts (Fig. 3). No factors binding to this sequence were observed in preadipocyte nuclear extracts, but a DNA-protein complex was seen when adipocyte nuclear extracts were used (lanes 1 and 2). This result was consistent with the hypothesis that the transcription factor regulating the expression of the MC2-R is expressed as the cells begin to differentiate. The binding observed with adipocyte nuclear extract could be abolished by mutating 3 of the 4 core bp (28) within the direct repeat-1 sequence, and this inactivation of the site formed the basis of later mutational analysis (lanes 3 and 4). When in vitro translated RXRα and PPARγ2 were combined with the −95/−83 probe, three bands were observed, the largest of which had the same mobility as that formed with day 3 adipocyte nuclear extracts (lane 8). Antibodies to both RXRα and PPARγ were able to supershift the complex formed with adipocyte nuclear extracts (lanes 6 and 7) as well as the upper band formed with in vitro translated protein (lanes 9 and 10), confirming the presence of these two proteins in the gel shift complexes. The lower complex is retarded with the RXR anti-body and represents RXRα homodimers that are known to bind to a direct repeat-1 site (lane 9) (29, 30).

The mmc2-r Promoter Responds to RXRα/PPARγ2 in Preadipocytes and This Response Maps to the −95 PPRE—Having determined that endogenous RXRα and PPARγ in adipocyte nuclear extracts could bind to the −95/−83 sequence, the ability of these factors to transactivate the MC2-R promoter was tested. 3T3-L1 preadipocytes were transfected with pMC2-R(−112/+105)GL3 and expression constructs for PPARγ2 and RXRα. Consistent with previous studies of PPRE-containing promoters (27, 31), transfection of either PPARγ2 or RXRα expression vectors alone had no effect on the activity of the pMC2-R(−112/+105)GL3 reporter in 3T3-L1 preadipocytes. However, when both PPARγ2 and RXRα expression vectors were transfected together with the pMC2-R(−112/+105)GL3 reporter, a 9-fold induction of luciferase activity was observed (Fig. 4A). This response to PPARγ2/RXRα was mapped by co-expressing the two factors with a series of fine deletion constructs prepared between −112 and −53, the two markers that had previously been shown to contain the adipocyte-specific enhancer (Fig. 3B). This analysis showed that deletion between −104 and −86, which effectively removes the putative PPRE, resulted in a dramatic reduction in the ability of the promoter to respond to PPARγ2/RXRα. Mutating the −95/−83 sequence in the context of the pMC2-R(−112/+105)GL3 reporter by introducing, by site-directed mutagenesis, the 3-bp mutation that had previously been shown to abolish PPARγ2/RXRα binding in day 3 differentiated cell extracts (Fig. 3, lane 4) reduced the PPARγ2/RXRα response in preadipocytes to 20% of that of the wild-type reporter. These results indicated the requirement of the −95 PPRE in mediating the effects of heterologously expressed PPARγ2/RXRα in undifferentiated 3T3-L1 cells. However, to assess whether or not endogenous PPARγ2/RXRα contribute to the basal activity of the mMC2-R promoter during adipogenesis, the wild-type and −95 PPRE-mutated pMC2-R(−112/+105)GL3 reporter constructs were transfected into differentiating 3T3-L1 cells and their activity was compared on day 3 post-induction (Fig. 4D). These data demonstrate the complete abrogation of reporter activity in adipocytes following mutagenesis of the −95 PPRE in the context of the pMC2-R(−112/+105)GL3 construct.

DISCUSSION

ACTH exerts its effects upon the murine adipocyte via the MC2-R, which is expressed in 3T3-L1 cells when they are induced to differentiate into adipocytes. In this study, we have used a range of techniques to map precisely the dynamics of receptor expression during adipogenesis and the mechanism of transcriptional activation has been elucidated through mutational analysis of the murine promoter. MC2-R expression is limited to a small number of tissues, and previous work has implicated SF-1, a key regulator of steroidogenic genes, in the basal expression of the MC2-R in adrenal cells. One possible mechanism for MC2-R expression in the SF-1 non-expressing adipocyte was by SF-1 homologues acting through the same sites in the promoter as those thought to regulate expression in adrenal cells. However, a minimal promoter construct in which both SF-1 sites at −31 and +31 were mutated (32) was not impaired during adipocyte differentiation. Therefore, it was hypothesized that a novel SF-1-independent mechanism controls the expression of the mc2-r in the adipocyte. This study set out to explore MC2-R expression in the 3T3-L1 cell line, and the results highlight a key role played by a previously uncharacterized PPRE located between positions −95 and −83 upstream of the transcription start site.

Although the up-regulation of MC2-R in murine adipocytes has been documented (33), the precise timing of this event was
unknown. We have shown that mc2-r transcription is activated within the first 24 h following hormonal induction, several days prior to the expression of mature adipocyte markers such as SCD-1 (24) and the morphological changes associated with lipid accumulation. The early nature of MC2-R expression raises the possibility that this receptor plays a role in the process of differentiation itself, and the effect of ACTH treatment during adipogenesis is currently being investigated. Also, in addition to its early expression, the transcriptional activation of the mc2-r promoter appears to be transient with peak activity on day 3 and a peak ACTH response on day 4. PPARγ levels remain elevated throughout the time course of differentiation; therefore it is possible that the mc2-r promoter is subject to transcriptional repression after day 3. The mechanism of this down-regulation of promoter activity is the focus of ongoing studies.

Systematic analysis of the mc2-r promoter revealed the presence of an adipocyte-specific enhancer element(s) within a 59-bp region of the proximal promoter. In addition to the putative PPRE at −95/−83, a potential signal transducer and activator of transcription (STAT) site was also identified within this region between −68 and −60. STATs 1, 3, and 5 have been shown to be induced during adipogenesis (34, 35), and a dominant negative STAT5 construct can down-regulate a number of genes activated during adipogenesis (35). EMSA experiments using a double-stranded oligonucleotide probe corresponding to the −68/−60 sequence failed to show binding to either preadipocyte or adipocyte nuclear extracts, and this sequence was therefore unlikely to be important for MC2-R expression in these cells. In contrast, the −95/−83 PPRE binds PPARγ/RXR heterodimers in adipocyte nuclear extracts and mediates PPARγ/RXR-induced transcriptional activation. Furthermore, mutation of this sequence renders the promoter inactive in the adipocyte in the presence of endogenous PPARγ/RXR and thereby demonstrates the important role played by the −95 PPRE in regulating the expression of the MC2-R gene. These data explain the ability of the MC2-R to be expressed in the adipocyte in the absence of SF-1.

The question as to whether or not human adipocytes express the MC2-R has not been satisfactorily resolved. Early studies looked for a lipolytic response to ACTH equivalent to that of the murine adipocyte in both human and primate tissues (36, 37) and concluded that such a response was absent. Such studies, together with a number of attempts to document the tissue distribution of melanocortin receptor mRNAs (36, 38), have concluded that the MC2-R is not present in human adipocytes, and this lack of expression might be explained by the absence of an equivalent PPRE-like sequence in the proximal promoter of the human mc2-r. However, an analysis of the distal human promoter sequence revealed the presence of at least three putative PPRE-like elements, and recent work using both human subcutaneous adipose tissue and human embryonic stem cell line capable of undergoing adipogenesis demonstrated the expression of mc2-r mRNA in the human adipocyte (39). Interestingly, the cell line used in this study is analogous to the 3T3-L1 cell line, being of embryonic mesenchymal origin. The expression of the MC2-R in human adipocytes may therefore be developmentally regulated in adipose tissue as it is in the testes, where expression has been shown to be restricted to fetal Leydig cells and down-regulated in the adult (3). It is interesting to speculate as to the role of PPARγ in the regulation of mc2-r in tissues other than the adipocyte. For example, PPARγ has been shown to be abundantly expressed in the adrenal gland (40) and this may explain the ability of MC2-R expression to be maintained in SF-1-haploinsufficient mice in which adrenal MC2-R expression is higher in mutant mice than in their wild type siblings (41, 42), suggesting the existence of compensatory mechanisms. PPARγ expression has also been demonstrated in the human pituitary gland where thiazolidinedione PPARγ agonists are a novel therapeutic target for ACTH-secreting adenomas (43, 44). The MC2-R is also expressed in the pituitary gland and has been proposed to
function in maintaining a negative feedback loop controlling ACTH secretion (45, 46). Our results suggest a possible mechanism by which thiazolidinediones might exert their anti-tumorigenic effects upon pituitary adenomas through activation of MC2-R expression. Increased MC2-R expression would serve to enhance the proposed negative feedback of ACTH on cell growth that has been previously demonstrated in adenocortical tumor cells (47, 48).

In conclusion, these data elucidate a novel mechanism of transcriptional regulation for the murine mc2-r and suggest potentially exciting areas of further study in the adrenal and extra-adrenal sites of expression such as the pituitary gland.

REFERENCES
1. Simpson, E. R., and Waterman, M. R. (1983) Can. J. Biochem. Cell Biol. 61, 692–707
2. Boston, B. A., and Cone, R. D. (1996) Endocrinology 137, 2043–2050
3. O’Shaughnessy, P. J., Fleming, L. M., Jackson, G., Hochgeschwendt, U., Reed, P., and Baker, P. J. (2003) Endocrinology 144, 3278–3284
4. Slominski, A., Ermak, G., and Mihm, M. (1996) J. Clin. Endocrinol. Metab. 81, 2746–2749
5. Nankova, B. B., Kvetnansky, R., and Sabban, E. L. (2003) Neuropeptides 37, 149–152
6. Grundfeld, C., Hagman, J., Sabin, E. A., Buckley, D. I., Jones, D. S., and Ramachandran, J. (1985) Endocrinology 116, 113–117
7. White, J., and Engel, F. (1985) J. Clin. Invest. 75, 1558–1563
8. Ramachandran, J., and Lee, V. (1976) Biochim. Biophys. Acta 428, 339–346
9. Norman, D., Isidori, A. M., Frajese, V., Caprio, M., Chew, S. L., Grossman, A. B., Clark, A. J., Michael, B. G., and Fabbrini, A. (2003) Mol. Cell. Endocrinol. 200, 99–109
10. Cammas, F. M., Pullinger, G. D., Barker, S., and Clark, A. J. (1997) Mol. Endocrinol. 11, 867–876
11. Naville, D., Jaillard, C., Barjhoux, L., Durand, P., and Begeot, M. (1997) Biochem. Biophys. Res. Commun. 230, 7–12
12. Marshal, R., Naville, D., Durand, P., Begeot, M., and Penhoat, A. (1998) Biochem. Biophys. Res. Commun. 247, 28–32
13. Naville, D., Penhoat, A., Durand, P., and Begeot, M. (1999) Biochem. Biophys. Res. Commun. 255, 28–33
14. Parker, R. L., and Schimmer, B. P. (1997) Endocr. Rev. 18, 361–377
15. Sarkar, D., Kambe, F., Hayashi, Y., Ohmori, S., Funahashi, H., and See, H. (2000) Endocr. J. 47, 63–75
16. Cluze, C. D., Speed, C. J., Zhou, J., and Simpson, E. R. (2002) J. Biol. Chem. 277, 20591–20597
17. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., and Spiegelman, B. (1994) J. Biol. Chem. 269, 377–387
18. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., and Spiegelman, B. (1994) J. Biol. Chem. 269, 377–387
19. Brown, B. L., Albano, J. D., Ekins, R. P., and Sgherri, A. M. (1971) Biochem. J. 121, 561–562
20. Whiteside, S. T., Visvanathan, K. V., and Goodbourn, S. (1992) Nucleic Acids Res. 20, 1531–1538
21. Fowkes, R. C., Sidhu, K. K., Sosahowski, J. K., King, P., and Burdin, J. M. (2003) J. Mol. Endocrinol. 31, 263–278
22. King, Y. C., and Ntambi, J. M. (1999) Biochem. Biophys. Res. Commun. 266, 1–4
23. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995) Nucleic Acids Res. 23, 4878–4884
24. Kim, Y. C., and Ntambi, J. M. (1999) Biochem. Biophys. Res. Commun. 266, 1–4
25. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., and Spiegelman, B. (1994) Genes Dev. 8, 1224–1234
26. Fowkes, R. C., Sidhu, K. K., Sosahowski, J. K., King, P., and Burdin, J. M. (2003) J. Mol. Endocrinol. 31, 263–278
27. Brown, B. L., Albano, J. D., Ekins, R. P., and Sgherri, A. M. (1971) Biochem. J. 121, 561–562
28. Whiteside, S. T., Visvanathan, K. V., and Goodbourn, S. (1992) Nucleic Acids Res. 20, 1531–1538
29. Fowkes, R. C., Sidhu, K. K., Sosahowski, J. K., King, P., and Burdin, J. M. (2003) J. Mol. Endocrinol. 31, 263–278
30. Kim, Y. C., and Ntambi, J. M. (1999) Biochem. Biophys. Res. Commun. 266, 1–4
31. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995) Nucleic Acids Res. 23, 4878–4884
32. Kim, Y. C., and Ntambi, J. M. (1999) Biochem. Biophys. Res. Commun. 266, 1–4
33. Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995) Nucleic Acids Res. 23, 4878–4884
34. Kim, Y. C., and Ntambi, J. M. (1999) Biochem. Biophys. Res. Commun. 266, 1–4
A Peroxisome Proliferator-response Element in the Murine mc2-r Promoter Regulates Its Transcriptional Activation during Differentiation of 3T3-L1 Adipocytes

Luke A. Noon, Adrian J. L. Clark and Peter J. King

J. Biol. Chem. 2004, 279:22803-22808.
doi: 10.1074/jbc.M401861200 originally published online March 17, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M401861200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 48 references, 13 of which can be accessed free at
http://www.jbc.org/content/279/22/22803.full.html#ref-list-1