We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,000
Open access books available

125,000
International authors and editors

140M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com
Infectious diseases are the world’s leading cause of premature deaths, killing almost 50,000 people every day. In recent years, drug resistance to human pathogenic bacteria has been commonly reported from all over the world (N’guessan et al., 2007). The abusive and indiscriminate use of antimicrobial compounds over many years is the main factor responsible for the appearance of the phenomenon of bacterial resistance to such compounds (Andremont, 2001). With increased incidence of resistance to antibiotics, natural products from plants could be interesting alternatives (Lu et al., 2007; Mbwambo et al., 2007). Some plant extracts and phytochemicals are known to have antimicrobial properties, and can be of great significance in therapeutic treatments. In the last few years, a number of studies have been conducted in different countries to demonstrate such efficacy (Benoit-Vical et al., 2006; Senatore et al., 2007; Singh et al., 2007). On the other hand, free radicals are known to be the major cause of various chronic and degenerative diseases. Oxidative stress is associated with pathogenic mechanisms of many diseases including atherosclerosis, neurodegenerative diseases, cancer, diabetes and inflammatory diseases, as well as aging processes. It is defined as an imbalance between production of free radicals and reactive metabolites, so-called oxidants, and it also includes their elimination by protective mechanisms, referred to as antioxidative systems. This imbalance leads to damage of important biomolecules and organs with potential impact on the whole organism. Antioxidants can delay, inhibit or prevent the oxidation of oxidizable materials by scavenging free radicals and diminishing oxidative stress (Duracková, 2010; Reuter et al., 2010). Natural antioxidants have been studied extensively for decades in order to find compounds protecting against a number of diseases related to oxidative stress and free radical-induced damage. To date, many plants have been claimed to pose beneficial health effects such as antioxidant properties (Kaur & Arora, 2009; Newman & Cragg 2007). According to World Health Organization (WHO), 65 - 80% of the world populations rely on traditional medicine to treat various diseases (Kaur & Arora, 2009). The WHO recommends...
research into the use of the local flora for therapeutic purposes, with the intention of reducing the number of people excluded from effective therapy in the government health systems, which could constitute an economically viable alternative treatment of several diseases, especially in developing countries (Gonçalves et al., 2005; WHO, 2002). The potential of higher plants as source for new drugs is still largely unexplored. Among the estimated 250,000 - 500,000 plant species, only a small percentage has been investigated phytochemically and the fraction submitted to biological or pharmacological screening is even smaller (Mahesh & Satish, 2008). In this scenario, the screening of plant extracts has been of great interest to scientists for the discovery of new drugs effective in the treatment of several diseases, and about 20% of the plants or their extracts in the world have been submitted to biological or pharmacological tests (Rayne & Mazza, 2007; Suffredini et al., 2004). The phytochemical research based on ethnopharmacological information is considered an effective approach in the discovery of new agents from higher plants (Chen et al., 2008; Duraipiyan, 2006). Thus, in this study, methanol extracts of different parts of 70 species, most of them commonly used in Brazil for treating conditions likely to be associated with microorganisms, were evaluated for their antimicrobial and antioxidant activity. Furthermore, a phytochemical screening of the bioactive extracts was performed.

2. Materials and methods

2.1 Plant material

Specimens of 70 species (Table 1) were collected in Juiz de Fora, Minas Gerais, Brazil. A voucher specimen was deposited at the Herbarium Leopoldo Krieger (CESJ) of Federal University of Juiz de Fora.

2.2 Preparation of plant extracts

The dried parts of the plant (50 g each) were powdered and macerated with methanol (3 x 200 mL) for five days at room temperature. After evaporation of the solvent under reduced pressure, the respective methanol extracts were obtained. All the extracts were kept in tightly stoppered bottles under refrigeration (4 °C) until used for the biological testing and phytochemical analysis.

2.3 Antioxidant activity

2.3.1 DPPH assay

The free radical scavenging activity of samples and standard α-tocopherol solutions in methanol was determined based on their ability to react with stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical (Govidarajan et al., 2003). The plant samples at various concentrations (7.8 to 250 μg/mL) were added to a 152 μM solution of DPPH in methanol. After incubation at 37 °C for 30 min, the absorbance of each solution was determined at 517 nm. The antioxidant activity of the samples was expressed as IC_{50} (inhibitory concentration), which was defined as the concentration (in μg/mL) of sample required to inhibit the formation of DPPH radicals by 50%. Ascorbic acid, α-tocopherol, BHT, rutin and quercetin were used as positive control.
Family	Botanical name	Common name	Plant parts used*	Ethnomedical uses
Amaranthaceae	Alternanthera brasiliana (L.) Kuntze [CESJ 48585]	Acônito-do-mato, caaponga, cabeça-branca	F, L	Diuretic, digestive, depurative, liver and bladder diseases, astringent, laxative, cough
Apocynaceae	Allamanda cathartica L. [CESJ 47443]	Alamanda, buiussu, carolina, cipó-de-leite	B, F, L, La	Scabies and lice elimination, purgative, parasitosis, fever, treatment of jaundice, complications of malaria, enlarged spleen, laxative
	Aspidosperma olivaceum Müll. Arg. [CESJ 49229]	Guatambu, guatambu-branco, guatambu-amarelo, tambu	No use reported	
Asteraceae	Acanthospermum australe (Loefl.) Kuntze [CESJ 47438]	Picão-da-prata, carrapicho-rasteiro, mata-pasto	AP	Liver diseases, diaphoretic, gonorrhea, malaria
	Achillea millefolium L. [CESJ 46087]	Novalgina, erva-de-carpinteiro, aquiléia, milefólio	L	Fever, head and general aches, colds indigestion
	Anthemis cotula L. [CESJ 48584]	Camomila-do-campo	F, L	Fever, gastrointestinal disorders, dysentery, gouty arthritis
	Baccharis trimera (Less.) DC. [CESJ 46074]	Carqueja	L	Gastrointestinal and liver diseases, diabetes, inflammation
	Bidens segetum Mart. ex Colla [CESJ 47437]	Picão-do-mato	No use reported	
	Cardaus marianus L. [CESJ 48581]	Cardo-mariano, cardo-santo, cardo-de-nossa-senhora, cardo-branco	S, SB	Appetite stimulant, diuretic, tonic, liver cell regenerator, gastrointestinal disorders, bile flow stimulant, cirrhosis, hepatitis
	Matricaria chamomilla L. [CESJ 47435]	Camomila, camomila-romana, camomila-comum	F	Digestive, sedative, colic treatment, appetite stimulant, carminative
	Piptocarpha macropoda (DC.) Baker [CESJ 49448]	Arnica, erva-de-lagarto, erva-lanceta, espiga-de-ouro	L	Stomachic, astringent
Vernonanthura divaricata (Spreng.) H. Rob. [CESJ 49450]
- Cambará-açu
- No use reported

Vernonia condensata Baker [CESJ 46086]
- Boldo, alumã, alcachofra, figatil, cidreira-da-mata

Bignoniaceae

Stenolobium stans (L.) Seem [CESJ 46071]
- Ipê-de-jardim, ipê-amarelo-de-jardim, ipêzinho-de-jardim

Bixa orellana L. [CESJ 46077]
- Urucum

Commelinaceae

Commelina robusta Kunth [CESJ 50021]
- Batata-ovo, manobiaça, trapoeraba-açu

Commelina robusta Kunth [CESJ 50021]
- Batata-ovo, manobiaça, trapoeraba-açu

Euphorbiaceae

Alchornea triplinervia (Spreng.) Müll. Arg. [CESJ 49442]
- Tapiá-vermelho, tapiá-guaçu-branco, pau-óleo

Acalypha brasiliensis Müll. Arg. [CESJ 50011]
- Tapa-buraco

Fabaceae

Chamaecrista desvauxii (Collad.) Killip [CESJ 23372]
- Sene, acácia, carquejado-tabuleiro, flor-de-lilás, capim reis

Sananea tubulosa (Benth.) Barneby & J.W. Grimes [CESJ 49743]
- Amendoim-de-veado, árvore-da-chuva e pau-de-cangalha

Senna macranthera (DC. ex Collad.) H.S. Irwin & Barneby [CESJ 46159]
- Manduirana, pau-fava, aleluia, mamangá, fedegoso

Senna multiflora (Rich.) H.S. Irwin & Barneby [CESJ 49783]
- Pau-cigarra, canafístula, aleluia

Stylosanthes scabra Vogel [CESJ 47436]
- Alfafa do nordeste, alfafa do campo

Senna multijuga (Rich.) H.S. Irwin & Barneby [CESJ 49783]
- Pau-cigarra, canafístula, aleluia

Senna multiflora (Rich.) H.S. Irwin & Barneby [CESJ 49783]
- Pau-cigarra, canafístula, aleluia

Bignoniaceae

Stenolobium stans (L.) Seem [CESJ 46071]
- Ipê-de-jardim, ipê-amarelo-de-jardim, ipêzinho-de-jardim

Bixa orellana L. [CESJ 46077]
- Urucum

Commelinaceae

Commelina robusta Kunth [CESJ 50021]
- Batata-ovo, manobi-açu, trapoeraba-açu

Commelina robusta Kunth [CESJ 50021]
- Batata-ovo, manobi-açu, trapoeraba-açu

Euphorbiaceae

Alchornea triplinervia (Spreng.) Müll. Arg. [CESJ 49442]
- Tapiá-vermelho, tapiá-guaçu-branco, pau-óleo

Acalypha brasiliensis Müll. Arg. [CESJ 50011]
- Tapa-buraco

Fabaceae

Chamaecrista desvauxii (Collad.) Killip [CESJ 23372]
- Sene, acácia, carquejado-tabuleiro, flor-de-lilás, capim reis

Sananea tubulosa (Benth.) Barneby & J.W. Grimes [CESJ 49743]
- Amendoim-de-veado, árvore-da-chuva e pau-de-cangalha

Senna macranthera (DC. ex Collad.) H.S. Irwin & Barneby [CESJ 46159]
- Manduirana, pau-fava, aleluia, mamangá, fedegoso

Senna multiflora (Rich.) H.S. Irwin & Barneby [CESJ 49783]
- Pau-cigarra, canafístula, aleluia

Stylosanthes scabra Vogel [CESJ 47436]
- Alfafa do nordeste, alfafa do campo

Senna multijuga (Rich.) H.S. Irwin & Barneby [CESJ 49783]
- Pau-cigarra, canafístula, aleluia

Bignoniaceae

Stenolobium stans (L.) Seem [CESJ 46071]
- Ipê-de-jardim, ipê-amarelo-de-jardim, ipêzinho-de-jardim

Bixa orellana L. [CESJ 46077]
- Urucum

Commelinaceae

Commelina robusta Kunth [CESJ 50021]
- Batata-ovo, manobi-açu, trapoeraba-açu

Commelina robusta Kunth [CESJ 50021]
- Batata-ovo, manobi-açu, trapoeraba-açu

Euphorbiaceae

Alchornea triplinervia (Spreng.) Müll. Arg. [CESJ 49442]
- Tapiá-vermelho, tapiá-guaçu-branco, pau-óleo

Acalypha brasiliensis Müll. Arg. [CESJ 50011]
- Tapa-buraco

Fabaceae

Chamaecrista desvauxii (Collad.) Killip [CESJ 23372]
- Sene, acácia, carquejado-tabuleiro, flor-de-lilás, capim reis

Sananea tubulosa (Benth.) Barneby & J.W. Grimes [CESJ 49743]
- Amendoim-de-veado, árvore-da-chuva e pau-de-cangalha

Senna macranthera (DC. ex Collad.) H.S. Irwin & Barneby [CESJ 46159]
- Manduirana, pau-fava, aleluia, mamangá, fedegoso

Senna multiflora (Rich.) H.S. Irwin & Barneby [CESJ 49783]
- Pau-cigarra, canafístula, aleluia

Stylosanthes scabra Vogel [CESJ 47436]
- Alfafa do nordeste, alfafa do campo

Senna multijuga (Rich.) H.S. Irwin & Barneby [CESJ 49783]
- Pau-cigarra, canafístula, aleluia

www.intechopen.com
Family	Genus	Species	Common Names	Uses
Flacourtiaceae	Casearia sylvestris	Sw.	Guaçatonga, bugre-branco, café-bravo, café-de-frade	Burns, cutaneous injuries, herpes, tonic, depurative, rheumatism, inflammation, analgesic, hemostatic, gastritis
		[CESJ 49218]		No use reported
Hypericaceae	Vismia magnolifolia	Schltdl. & Cham.		
		[CESJ 49759]		
	Lacistema pubescens	Mart.	Espeto-vermelho, canela-vermelha, sabonete, cafezinho	No use reported
		[CESJ 49751]		
Lamiaceae	Hyptis suaveolens	(L.) Poit	Bamburral, erva-canudo, arbustoselvagem	AP Cramps, skin infections, respiratory tract infections, nasal congestion, fever, flu
		[CESJ 46089]		
	Ocimum basilicum	L.	Manjeriako, alfavaca	L Gastrointestinal disorders, fever, digestive, bacterial infections, parasitosis
		[CESJ 46161]		
	Peptodon radicans	Pohl	Paracari, hortelá-doma, rabugem-de-cachorro	AP Expectorant, pertussis, cough, asthma, sneezing, carminative, dermatites, scorpion and snake bites, antispasmodic, syphilitic, parasitosis, diuretic
		[CESJ 46158]		
	Plectranthus neochilus	Schltr.	Boldo	L Treatment of respiratory infections or related symptoms
		[CESJ 46580]		
	Salvia officinalis	L.	Sálvia, salva	AP Infections diseases, astringent
		[CESJ 46579]		
Lauraceae	Nectandra rigida	(Kunth) Nees	Canela-amarela	B Rheumatism
		[CESJ 49221]		
Lythraceae	Cuphea tigrina	Cham. & Schltdl.	Sete-sangrias-do-campo	WP Fever, venereal diseases, rheumatism
		[CESJ 47432]		
Malpighiaceae	Byrsonima variabilis	A. Juss.	Murici	No use reported
		[CESJ 49240]		
Malvaceae	Sida glaziovii	K. Schum.	Guanxuma-branca	No use reported
		[CESJ 47439]		
Melastomataceae	Miconia latercrenata	(DC.) Naudin	Pixirica-preta	No use reported
		[CESJ 49990]		
	Tibouchina grandifolia	Cogn.	Orelha-de-onça	No use reported
		[CESJ 40445]		

www.intechopen.com
Family	Species	Common Name	Use Reporting	
Monimiaceae	**Tibouchina granulosa**	Quaresmeira	No use reported	
	(Desr.) Cogn. [CESJ 49761]			
	Tibouchina mutabilis	Manacá	No use reported	
	(Vell.) Cogn. [CESJ 46175]			
	Trembleya parviflora	Manacá	No use reported	
	(D. Don) Cogn. [CESJ 49219]			
	Mollinedia schottiana		No use reported	
	(Spreng.) Perkins [CESJ 48921]			
	Siparuna guianensis	Capitû, caã-pitiú, erva-santa, pedreita, negrâmina, negra-mena	SB Carminativo, stimulant, fever, antidisperse, diuretic, muscle spasms prevention, headache, inflammation	
	Aubl. [CESJ 49778]			
Myrtaceae	**Eugenia canina**	Jambolão, cereja, jamelão, jalão	B Fr Diabetes	
	(L.) Druce [CESJ 46601]			
	Myrcia splendens	Guamirim, folha-miúda	No use reported	
	(Sw.) DC. [CESJ 49230]			
	Piper corcovadensis	João-brandinho L	Mucous membranes anesthesia (mouth), rheumathism, cough	
	(Miq.) C. DC. [CESJ 49993]			
Poaceae	**Cymbopogon citratus**	Capim-cheiroso, ervacistreia, capim-cideira, capim-limão	L Calmant, gastrointestinal disorders, infections diseases, colic treatment, anxiety	
	(DC) Stapf. [CESJ 46582]			
	Erionotrya japonica	Nespereira, ameixiira	FR L Cough, asthma, chronic bronchitis, phlegm, high fever and gastroenteric disorders	
	(Thunb.) Lindl. [CESJ 47434]			
	Rubus rosifolius	Morango-silvestre, amora-do-mato	AP Infectious and dolorous diseases	
	Sm. [CESJ 48580]			
	Rubus urticifolius	Nhambuí, árvore-preta, amora-do-silva	Fr Throat diseases, diuretic	
	Poir. [CESJ 46583]			
Rubiaceae	**Amaroua intermedia**	Canela-de-veado, vachila, carvoeiro, pimentão-bravo, marmelada-brava	No use reported	
	Mart. [CESJ 49994]			
Rutaceae	**Zanthoxylum rhoifolium**	Mamica-de-cadela L SB Toothache, earache, malaria		
	Lam. [CESJ 49782]			
Family	Species	Common Name	Use Reported	Properties
---------------	--	----------------------	-----------------------	---
Sapindaceae	*Allophylus semidentatus* (Miq.) Radlk. [CESJ 49774]	Fruta-de-faraó	No use reported	-
	Capania oblongifolia Mart. [CESJ 49447]	Pau-magro, cabocatã	B, L Weight loss	-
	Sapindus saponaria L. [CESJ 46172]	Sabão-de-soldado	Fr, R SB Antitussive, adstringent, calmant, diuretic, expectorant	-
Solanaceae	*Solanum sellowianum* Dunal [CESJ 49225]	Barbaso, fruta-de-pombo	No use reported	-
	Solanum swartzianum Roem. & Schult. [CESJ 49226]	Capuchinha, chaguihã, acapararr-de-pobre, chagas, mastruço-do-peru	L Scurvy, sepse, expectorant, urinary, gastrointestinal and dermatological disinfectant	-
Tropaeolaceae	*Tropaeolum majus* L. [CESJ 46586]	Chanana, flor-do-Guarujá	R Amenorrhea	-
Turneraceae	*Turnera subulata* Sm. [CESJ 47442]	Taboa	F, R Treatment of burns, wounds and inflammation, kidney stones and diarrhea	-
Typhaceae	*Typha dominguensis* Pers. [CESJ 49773]	Embaúba,umbaúba, torem	B, L Cough, expectorant, asthma and diabetes	-
Urticaceae	*Cecropia pachystachya* Trécul [CESJ 46591]	Capitão-do-matto, câmara, châ-de-frade, châ-de-pedestre, cidrilha	L Gastrointestinal disorders, expectorant, stimulant, rheumatism	No use reported
Verbenaceae	*Lippia pseudo-thea* Schauer [CESJ 46171]	Ermidireira, ermidireira-do-campo, alecrim-do-campo, salsa	L R Hypertension, stomach cramps, nausea, coughs, colds	No use reported
	Lippia hermannioides Cham. [CESJ 46088]	Ermidireira, ermidireira-do-campo, alecrim-do-campo, salsa	L R Hypertension, stomach cramps, nausea, coughs, colds	No use reported
	Lippia alba (Mill.) N.E. Br. ex Britton & P. Wilson [CESJ 46177]	Ermidireira, ermidireira-do-campo, alecrim-do-campo, salsa	L R Hypertension, stomach cramps, nausea, coughs, colds	No use reported
	Lippia rubella (Moldenke) T.R.S. Silva & Salimena [CESJ 46178]	Ermidireira, ermidireira-do-campo, alecrim-do-campo, salsa	L R Hypertension, stomach cramps, nausea, coughs, colds	No use reported
Lippia sidoides Cham.
[CESJ 46180]
Alecrid-pimenta, alecrim-do-nordeste, estrepá-cavalo, alecrim-bravo
F, L
Allergic rhinitis, throat and mouth infections, antiseptic, skin and scalp disorders

Lantana camara L.
[CESJ 47441]
Camará, cambará, chumbinho, camará-de-chumbo
L
Treatment of respiratory diseases such as cough, bronchitis, pertussis, colds, flu, asthma, hoarseness, expectorant, antispasmodic, rheumatism, digestive, diuretic

Aloysia floribunda
M. Martens & Galeotti
[CESJ 46584]
No use reported

Vitaceae
Cissus verticillata (L.) Nicolson & C.E. Jarvis
[CESJ 46587]
Anil-trepador, cipó-pucá, cipo-pucá, puçá, insulina, insulina-vegetal
AP, L
Tachycardia, hypertension, dropsy, anemia, leakage, tremors, activator of blood circulation, diabetes, anticonvulsant

Zingiberaceae
Hedychium coronarium
J. König
[CESJ 50022]
Gengibre-branco, lírio-do-brejo, lágrima-de-moça, lírio-branco, borboleta, lágrima-de-vênus
Fr, Rh
Arthritis, diabetes, headache and hypertension

Table 1. Ethnomedical data on medicinal plants.

2.3.2 Reducing power assay

The reducing power was determined by the method of Oyazu (1986), based on the chemical reaction of Fe(III) to Fe(II). Ten mg of each sample were mixed with potassium phosphate buffer (0.2 M, pH 6.6) (2.5 mL) and potassium ferricyanide (10 g/L) (2.5 mL). The mixture was incubated at 50 °C for 20 min. A 2.5 mL aliquot of 10% trichloroacetic acid was added to the mixture, which was then centrifuged at 3,000 g for 10 min. The upper layer of the solution (2.5 mL) was mixed with distilled water (2.5 mL) and 0.1% FeCl₃ (0.5 mL), and the absorbance was measured at 700 nm. Ascorbic acid was used as reference material. All tests were performed in triplicate. Increase in absorbance of the reaction indicated the reducing power of the samples. A higher absorbance indicated a higher reducing power. EC₅₀ (effective concentration) values (µg/mL) were calculated and indicate the effective concentration at which the absorbance was 0.5 for reducing power.

2.3.3 β-carotene - linoleic acid assay

In this assay, antioxidant capacity is determined by measuring the inhibition of the volatile organic compounds and the conjugated diene hydroperoxides arising from linoleic acid oxidation (Dapkevicius et al., 1998). A stock solution of β-carotene/linoleic acid mixture was prepared as follows: 50 µL of β-carotene (10 mg/mL) in chloroform (HPLC grade), 20 µL linoleic acid, 200 µL Tween 40 and 1 mL of chloroform was added. Chloroform was completely evaporated using a vacuum evaporator. Then, 30 mL of distilled water saturated with oxygen (30 min 100 mL/min) were added with vigorous shaking, and 250 µL of the reactive mixture and 10 µL of the extracts (40 µg/mL) were added in a microplate and
incubated at 45 °C to accelerate oxidation reactions and start the bleaching of β-carotene. The absorbance readings were taken immediately at intervals of 15 min for 120 min in spectrophotometer at 470 nm (Duarte-Almeida et al., 2006). The same procedure was repeated with the antioxidant flavonoid quercetin as positive control, and a blank. After this incubation period, absorbances of the mixtures were measured at 490 nm. Antioxidative capacities of the extracts were expressed as percentage inhibition (1).

\[
\text{Inhibition (\%) } = \frac{\text{control absorbance } - \text{ sample absorbance}}{\text{control absorbance}} \times 100
\]

(1)

2.4 Antimicrobial assay

2.4.1 Microbial strains

The samples were evaluated against a panel of microorganisms, including the bacterial strains *Staphylococcus aureus* (ATCC 6538), *Pseudomonas aeruginosa* (ATCC 15442), *Salmonella enterica* serovar Typhimurium (ATCC 13311), *Shigella sonnei* (ATCC 11060), *Klebsiella pneumoniae* (ATCC 13866), *Escherichia coli* (ATCC 10536), *Bacillus cereus* (ATCC 11778), and the yeasts *Candida albicans* (ATCC 18804) and *Cryptococcus neoformans* (ATCC 32608).

2.4.2 Serial dilution assay for determination of the minimal inhibitory concentration (MIC)

The MIC of each extract was determined by using the broth microdilution techniques for bacteria and yeasts, respectively (Bouzada et al., 2009; NCCLS, 2002). MIC values were determined in RPMI 1640 buffered to pH 7.0 with MOPS for yeasts and Mueller Hinton broth (MHB) for bacteria. Bacterial strains were cultured overnight at 37 °C in Mueller Hinton agar (MHA). Yeasts were cultured for 48 h at 30 °C in Sabouraud dextrose agar (SDA). Sample stock solutions were two-fold diluted from 500 to 2.0 μg/mL (final volume = 80 μL) and a final DMSO concentration ≤ 1%. Then, RPMI or MHB (100 μL) was added onto microplates. Finally, 20 μL of 10^6 CFU/mL (values of 0.08 - 0.10 at 625 nm, according to McFarland turbidity standards) of standardized yeasts and bacterial suspensions were inoculated onto microplates and the test was performed in a volume of 200 μL. Plates were incubated at 30 °C for 48 h for yeasts and at 37 °C for 24 h for bacteria. The same tests were performed simultaneously for growth control (RPMI + yeast and MHB + bacteria) and sterility control (RPMI or MHB + extract). The MIC values were calculated as the highest dilution showing complete inhibition of the tested strain. Chloramphenicol and Amphotericin B were used as reference drugs for bacteria and yeasts, respectively.

2.5 Phytochemical studies

A portion of each extract that was subjected for the biological screening was used for the identification of the major secondary metabolites employing the protocols described by Matos (1997). Briefly, the extract (1 mg/mL) was submitted to the following identification reactions: The characterization for tannins was performed by gelatin, iron salt and lead acetate reactions. Triterpenoids and sterols were investigated by Liebermann-Burchard reagent and the alkaloids analysis was done by precipitation reactions with the reagents of Dragendorff, Bouchardat, Mayer and Bertrand. For the research of flavonoids, the reactions...
of Shinoda and aluminum chloride were employed and the presence of saponins was determined by the formation of foam.

2.6 Statistical analysis

DPPH, reducing power and β-carotene/linoleic acid assays were carried out in triplicates. The results were expressed as mean ± standard deviation (SD). All statistical analysis were conducted using Graph Pad Prism software.

3. Results and discussion

The paper describes the antimicrobial and antioxidant activities and the phytochemical profile of some methanol extracts belonging to Brazilian traditional medicinal plants, most of them commonly used for treating conditions likely to be associated with microorganisms.

The major classes of phytocompounds of the bioactive extracts are presented in Table 2.

Plant species	Part testeda	Phytocompoundsb					
Alternanthera brasiliana	AP	Al	Tr	St	Ta	Sa	Fl
Allamanda cathartica	L	+	-	+	-	-	+
Acanthospermum australe	AP	+	-	+	+	+	+
Achillea millefolium	L	+	-	+	-	-	+
Anthemis cotula	L	-	+	-	-	-	+
Anthemis cotula	F	-	-	+	-	-	-
Baccharis trimera	AP	-	-	+	+	-	-
Bidens segetum	L	-	-	+	+	-	+
Carduus marianus	L	-	-	+	+	-	+
Matricaria chamomilla	L	+	+	-	+	-	+
Piptocarpa macropoda	L	+	+	-	+	-	+
Solidago chilensis	L	+	+	-	+	+	+
Vernonanthura divaricata	L	+	-	+	+	-	+
Stenolobium stans	L	+	-	+	+	-	+
Bixa orellana	L	+	+	-	+	+	+
Alchornea triplinervia	L	+	+	-	+	-	-
Acalypha brasilensis	L	+	+	-	+	-	+
Chamaecrista desvauxii	L	+	+	-	+	-	+
Samanea tubulosa	L	+	+	-	+	-	+
Senna macranthera	L	+	-	+	+	-	+
Senna multijuga	F	+	+	-	+	-	+
Stylosanthes scabra	A	-	-	+	+	-	+
Casearia sylvestris	L	+	-	+	+	+	+
Vismia magnoliifolia	L	-	+	-	+	-	+
Plant species	Part tested\(^a\)	Phytocompounds\(^b\)					
----------------------------	------------------	---------------------					
	L	Al	Tr	St	Ta	Sa	Fl
Lacistema pubescens	L	-	+	-	+	-	+
Hyptis suaveolens	L	+	-	+	-	-	+
Ocimum basilicum	L	+	-	+	+	-	+
Peltoodon radicans	L	-	+	-	-	-	+
Salvia officinalis	L	+	-	+	-	-	+
Nectandra rigida	L	-	+	-	-	+	-
Cuphea ingrata	AP	+	+	+	+	+	+
Byrsonima variabilis	L	+	-	+	+	+	+
Sida glaziovii	AP	-	-	+	-	+	+
Miconia latecrenata	L	+	-	+	-	+	+
Tibouchina grandifolia	L	+	+	-	+	-	+
Tibouchina granulosa	L	-	-	+	+	-	-
Tibouchina mutabilis	L	+	-	+	+	+	-
Eugenia cumini	L	+	+	-	-	-	+
Myrcia splendens	L	+	-	+	+	-	-
Piper corcovadensis	L	-	-	+	-	+	-
Eriobotrya japonica	L	+	-	+	-	-	+
Rubus rosifolias	L	+	-	+	+	+	+
Amatoua intermedia	L	-	+	-	-	-	+
Cupania oblongifolia	L	-	+	-	+	-	+
Sapindus saponaria	Fr	+	+	-	+	+	-
Solanum swartzianum	L	+	-	+	+	-	+
Tropaeolum majus	F	+	+	-	-	-	+
Turnera subulata	L	+	-	+	+	-	+
Cecropia pachystachya	L	+	+	-	+	-	+
Lippia pseudo-thea	L	+	+	-	+	+	+
Lippia hermannioides	L	+	+	-	+	-	+
Lippia alba	AP	+	+	-	+	+	+
Lippia rubella	AP	+	+	-	+	+	+
Lippia sidoides	AP	+	+	-	+	-	+
Lantana camara	L	-	-	+	-	-	+
Lantana camara	F	-	+	-	-	+	-
Aloysia floribunda	L	-	+	-	-	-	+
Cissus verticillata	L	+	-	+	-	-	+

\(^a\)AP, Aerial Parts; F, Flowers; Fr, Fruits; L, Leaves. \(^b\)Al, Alkaloids; Tr, Triterpenes; St, Sterols; Ta, Tannins; Sa, Saponins; Fl, Flavonoids

Table 2. Phytocompounds of methanol extracts of the active medicinal plants.
Plant species	Part tested	MIC (µg/mL)								
		Sa	Pa	Bc	Ss	St	Ec	Kp	Ca	Cn
Alternanthera brasiliana	AP	-	-	-	-	-	-	39	-	-
Allamanda cathartica	L	-	-	-	-	-	-	39	-	-
Achantospermum australe	AP	-	-	-	-	-	-	39	-	-
Anthemis cotula	L	-	-	-	-	-	-	39	-	-
Anthemis cotula	F	-	-	-	156	-	-	39	-	-
Baccharis trimera	AP	-	-	-	-	-	-	-	39	-
Bidens senegatrum	L	-	156	156	156	-	-	-	-	-
Carduus marianus	L	-	-	-	-	-	-	39	-	-
Matricaria chamomilla	L	300	78	-	-	-	-	-	-	-
Piptocarpha macrospora	L	-	78	-	-	-	-	78	300	-
Solidago chilensis	L	-	-	-	-	-	-	39	-	-
Vernonanthura diversicata	L	-	-	-	-	-	-	156	-	-
Bixa orellana	L	-	-	-	-	-	-	-	156	-
Alchornea triplinervia	L	-	-	-	-	-	-	-	78	-
Acalypha brasiliensis	L	-	-	-	-	-	-	-	78	-
Chamaecrista desvauxii	L	5	5	-	78	-	300	-	-	-
Samanea tubulosa	L	39	39	39	-	-	-	300	156	-
Senna macranthera	L	-	156	300	156	-	-	-	-	-
Senna multijuga	F	300	78	39	156	78	300	39	20	-
Stylosanthes scabra	AP	2	39	5	-	-	-	-	-	-
Casearia sylvestris	L	-	-	-	-	-	-	-	39	-
Vismia magnoliolitifolia	L	-	-	39	-	-	-	300	156	-
Lactestra pubescens	L	-	-	39	-	-	-	-	-	-
Nectandra rigida	L	-	300	-	-	-	-	-	-	-
Cuphea ingrata	AP	-	39	-	-	-	-	39	-	-
Sida glaziovii	AP	-	-	-	-	-	-	39	-	-
Micromys lastrenata	L	-	-	-	-	-	-	-	300	-
Tibouchina grandifolia	L	5	-	-	300	-	-	-	-	-
Tibouchina granulosa	L	39	39	39	-	-	-	-	-	-
Eugenia cumini	L	-	-	-	-	-	-	39	-	-
Myrcia splendens	L	-	300	-	-	-	-	-	-	-
Piper corcovadensis	L	-	-	-	-	-	-	-	78	-
Rubus rasefolius	L	-	-	-	-	-	-	-	39	-
Amoiaea intermedia	L	-	-	-	-	-	-	-	78	-
Cupania oblongifolia	L	39	39	39	39	-	-	-	-	-
Sapindus saponaria	Fr	-	-	-	-	-	-	-	156	300
Solanum swartziunum	L	-	-	-	-	-	-	-	78	-
Tropaeolum majus	F	-	-	-	-	-	-	-	39	-
Turnera subulata	L	-	-	-	-	-	-	78	-	-
Cecropia pachystachya	L	-	-	-	-	-	-	-	39	-
Lippia pseudothea	L	-	156	-	-	-	-	-	-	-
Lippia hermanniioides	L	-	78	-	-	-	-	-	-	-
Lippia sidoides	AP	-	78	-	-	-	-	-	-	-
Lantana camara	L	-	-	-	-	-	-	39	-	-
Lantana camara	F	-	-	-	-	-	-	39	-	-
Table 3. Antimicrobial activity of methanol extracts of the medicinal plants.

The results of the antimicrobial screening of the most active extracts are summarized in Table 3. The MIC values presented in this study for the extracts tested ranged from 300 to 5 µg/mL. All the extracts exhibited activity against at least one organism tested. According to Cos et al. (2006), plant extracts with MIC values below 100 µg/mL are very promising. So, *Bidens segetum*, *Chamaecrista desvauxii* and *Stylosanthes scabra* presented a very strong activity against *Shigella sonnei* with MIC of 5 µg/mL. *Chamaecrista desvauxii* and *Stylosanthes scabra* were also very active against *Pseudomonas aeruginosa* with MIC of 5 and 20 µg/mL, respectively. Against *Staphylococcus aureus*, the extracts of *Tibouchina grandifolia*, *Chamaecrista desvauxii* and *Aloysia floribunda* presented an outstanding activity with MIC of 5 µg/mL. On the other hand, *Senna multijuga* displayed a broader spectrum of antibacterial activity, showing activity against all bacteria tested with MIC values varying from 300 to 39 µg/mL (Table 3). Infections still cause about one-third of all deaths worldwide and are the leading cause of death, mainly because of disease in developing countries.

S. sonnei, a gram-negative bacterium, is a significant cause of gastroenteritis in both developing and industrialized countries (Boumghar-Bourtchai et al., 2008). People infected with *Shigella* develop diarrhoea, fever and stomach cramps starting a day or two after they are exposed to the bacterium. It is typically associated with mild self-limiting infection (DeLappe et al., 2003). Recently, there has been a rise in strains resistant to multiple antibiotics. *P. aeruginosa*, an increasingly prevalent opportunistic human pathogen, is the most common gram-negative bacterium found in nosocomial infections. Three of the more informative human diseases caused by *P. aeruginosa* are bacteremia in severe burn victims, chronic lung infection in cystic fibrosis patients, and acute ulcerative keratitis in users of extended-wear soft contact lenses (Lyczak et al., 2000). *S. aureus* is a gram-positive bacterium that commonly colonises human skin and mucosa (e.g. inside the nose) without causing any problems. However, if either of these is breached due to trauma or surgery, *S. aureus* can enter the underlying tissue, creating its characteristic local abscess lesion, and if it reaches the lymphatic channels or blood can cause septicemia (Harris et al., 2002). Antifungal properties were presented by 35 extracts. Among them, *Acanthospermum australe*, *Sida glazioui*, *Cuphea ingrata*, *Lantana camara*, *Allamanda cathartica*, *Anthemis cotula*, *Carduus marianus*, *Alternanthera brasiliana*, *Rubus rosifolius*, *Solidago chilensis*, and *Aloysia floribunda* demonstrated a strong anti-candida activity with MIC of 39 µg/mL. By the other side, extracts from *Cecropia pachystachya*, *Eugenia cuminii*, *Baccharis trimera*, and *Tropaeolum majus* were active against *C. neoformans* with MIC values of 39 µg/mL, being *Senna multijuga* the most active with MIC of 20 µg/mL. Candidiasis is a common infection of the skin, oral
cavity, esophagus, gastrointestinal tract, vagina and vascular system of humans. Although most infections occur in patients who are immunocompromised or debilitated in some other way, the organism most often responsible for disease, *Candida albicans*, expresses several virulence factors that contribute to pathogenesis (Calderone & Fonzi, 2001). *Cryptococcus neoformans* is an encapsulated basidiomycete yeast responsible for disseminated infections in immunosuppressed patients. Meningoencephalitis and pneumonia are the most frequent visceral presentations of the disease, but other rare presentations have been reported (Braga et al., 2007; Charlier-Woerther et al., 2011). Some of the most active species had already been studied for their antimicrobial effects elsewhere. The essential oil of different parts of *B. segetum* presented antifungal activity (Nascimento et al., 2008). Flavonoids isolated from the leaves of *T. grandifolia* demonstrated antifungal activity against the phytopathogenic fungus *Cladosporium cucumerinum* (Kuster et al., 2009). Dichlorometane extract of *A. australis* showed positive results against *Bacillus subtilis*, *Micrococcus luteus*, *Listeria monocytogenes* and *S. aureus* (Vivot et al., 2007). Antimicrobial efficacy of flavonoids and crude alkaloids of *L. camara* was found against *C. Albicans*, *Proteus mirabilis*, *S. aureus*, *E. coli*, and *Trichophyton mentagrophytes* (Sharma & Kumar, 2009). The iridoid isolated from *A. cathartica* presented fungitoxicity against some dermatophytes that causes dermatomycosis (Tiwari et al., 2002). The wound healing activity of this specie has also been tested, and it presented significant results in tests *in vivo* (Nayak et al., 2006). Flavonoids from *A. cotula* flowers showed interesting antimicrobial activity against both gram-negative and gram-positive microorganisms (Quarenghi et al., 2000). Quercetin isolated from the ethyl acetate extract of *A. brasiliana* presented antibacterial action against *S. aureus* (Silva et al., 2011). Antimicrobial activity of aqueous and hydroalcoholic fractions from *R. rosifolius* leaves showed activity against *E. coli*, *S. aureus*, *P. aeruginosa* and *C. albicans* (Mauro et al., 2002) and *B. trimera* was active against *S. aureus* and *E. coli* (Avancini et al., 2000). The antifungal activity of the leaf oil of *S. chilenis* was assayed by paper disk agar diffusion test and showed that human pathogenic dermatophytes were very sensitive (Vila et al., 2002). The crude hydroalcoholic extract of *S. cumini* was active against *Candida krusei* and against multi–resistant strains of *P. aeruginosa*, *K. pneumoniae* and *S. aureus* (de Oliveira et al., 2007). However, antimicrobial activity for *C. desvauxii*, *S. scabra*, *A. floribunda*, *S. multijuga*, *S. glaziovii*, *C. ingrata*, *C. marianus*, *P. chrysanthaca* and *T. majus* were reported here for the first time. Preliminary phytochemical analysis revealed that almost all the antimicrobial extracts showed flavonoids and tannins in their chemical composition (Table 2). Flavonoids are a broad class of plant phenolics that are known to possess antimicrobial activity, essentially by enzyme inhibition of DNA gyrase (Cushnie & Lamb, 2005). The mode of tannins antimicrobial action may be related to their ability to inactivate microbial adhesions, enzymes, cell envelope transport protein, etc. They also complex with polysaccharides (Ya et al., 1988). Condensed tannins have been determined to bind cell walls of ruminal bacteria, preventing growth and protease activity (Jones et al., 1994). However, the extracts tested also contain triterpenoids, sterols, saponins and alkaloids. Saponins are known to interact with cell membranes, increasing permeability and producing cell damage (Francis et al., 2002). In this sense, saponins may be involved in antimicrobial properties. The mechanism of action of some alkaloids is attributed to their ability to intercalate with DNA (Phillipson & O’Neill, 1989). The antimicrobial activity of triterpenes and sterols may be related to lipophilic components of plant extracts. This components increase permeability and loss of cellular components, and a change variety of enzyme systems, including those involved in the production of cellular energy and synthesis of structural components, inactivating or destroying genetic material (Bagamboula et al., 2004; Kim et al., 1995). The antioxidant habiliy of the extracts was also measured.
Natural antioxidants have been studied extensively for decades in order to find compounds protecting against a number of diseases related to oxidative stress and free radical-induced damage. Antioxidants are believed to play a very important role in the body defense system against reactive oxygen species (ROS), which are the harmful byproducts generated during normal cell aerobic respiration (Gutteridge & Halliwell, 2000). There is a number of assays designed to measure overall antioxidant activity/reducing potential, as an indication of host total capacity to withstand free radical stress. DPPH assay is very convenient for the screening of large numbers of samples of different polarity because of its high throughput. It evaluates the ability of antioxidants to scavenge free radicals. These antioxidants donate hydrogen to free radicals, leading to non-toxic species and therefore to inhibition of the propagation of lipid oxidation. Hydrogen-donating ability is an index of primary antioxidants (Lugasi et al., 1998). Among all extracts, 24 showed an outstanding antioxidant activity with IC₅₀ ≤ 10 µg/mL. Cecropia pachystachya, Tibouchina mutabilis, Cupania oblongifolia, and Myrcia splendens were the most active (IC₅₀ ≤ 3 µg/mL) (Table 4).

Plant species	Part tested^a	DPPH (IC₅₀ µg/mL ± SD)	Reducing power (EC₅₀ µg/mL ± SD)	β-carotene/linoleic acid (% I ± SD)
Achillea millefolium	L	12.30 ± 1.16 14.86 ± 0.33	37.82 ± 8.70	
Bidens segetum	L	6.52 ± 2.61 24.43 ± 0.06	67.67 ± 4.60	
Stenolobium stans	L	7.45 ± 0.67 16.35 ± 0.30	41.98 ± 3.27	
Bixa orellana	L	8.07 ± 0.71 23.42 ± 0.03	78.75 ± 3.30	
Alchornea triplinervia	L	11.20 ± 1.09 > 53.64	60.69 ± 1.16	
Hyptis suaveolens	L	11.70 ± 1.43 30.48 ± 0.34	51.42 ± 9.82	
Ocimum basilicum	L	8.17 ± 1.46 14.66 ± 0.01	32.76 ± 11.20	
Peltodon radicans	L	4.46 ± 1.32 23.23 ± 0.07	50.33 ± 14.30	
Salvia officinalis	L	9.59 ± 0.50 19.44 ± 0.06	61.66 ± 2.80	
Nectandra rigida	L	6.63 ± 0.63 13.19 ± 0.08	52.10 ± 12.10	
Byrsonima variabilis	L	10.7 ± 2.47 33.71 ± 0.08	31.67 ± 1.80	
Tibouchina granulosa	L	7.50 ± 0.42 10.05 ± 0.61	62.37 ± 3.17	
Tibouchina mutabilis	L	1.56 ± 0.24 5.54 ± 0.10	69.05 ± 8.06	
Myrcia splendens	L	2.90 ± 0.20 12.31 ± 0.38	49.34 ± 2.31	
Eriobotrya japonica	L	11.90 ± 0.87 13.98 ± 0.34	65.50 ± 2.00	
Cupania oblongifolia	L	2.22 ± 0.10 6.29 ± 0.08	47.48 ± 4.8	
Cecropia pachystachya	L	2.11 ± 0.40 7.70 ± 0.22	79.28 ± 2.80	
Lippia hermannioides	L	3.99 ± 0.31 13.68 ± 0.42	54.90 ± 5.22	
Lippia alba	AP	5.43 ± 0.34 14.40 ± 0.02	47.62 ± 27.30	
Lippia rubella	AP	3.79 ± 0.27 10.27 ± 0.10	10.60 ± 5.60	
Lantana camara	L	4.54 ± 0.26 14.04 ± 0.02	55.03 ± 8.80	
Lantana camara	F	9.82 ± 1.79 27.99 ± 0.07	61.84 ± 9.20	
Anamiaoua intermedia	L	8.41 ± 1.22 12.22 ± 0.08	58.13 ± 0.70	

*AP, Aerial Parts; F, Flowers; L, Leaves

Table 4. Antioxidant activity of methanol extracts of the selected medicinal plants.
The total antioxidant activity of the extracts is constituted by individual activities of each of the antioxidant compounds. Moreover, these compounds render their effects via different mechanisms such as radical scavenging, metal chelating activity, inhibition of lipid peroxidation, quenching of singlet oxygen, and so on to act as antioxidants. Even if a sample exhibits high activity with one method, it does not always show similar good results with all other methods. Therefore, it is essential to evaluate samples accurately by several methods. Hence, the antioxidant activity for those extracts was also evaluated by reducing power and β-carotene/linoleic acid assays. The reducing ability of a compound generally depends on the presence of reductants, which exhibited antioxidative potential by breaking the free radical chain, by donating a hydrogen atom. Antioxidant action of the reductones is based on the breaking of free radicals chain by the donation of a hydrogen atom. Reductones are believed not only to react directly with peroxides, but also prevent peroxide formation by reacting with certain precursors (Jamuna et al. 2010). The results found using this assay showed an outstanding antioxidant property of C. pachystachya, T. mutabilis, C. oblongifolia, and M. splendens and suggested that compounds present in those extracts were good electron and hydrogen donors, and could terminate the radical chain reaction by converting free radicals into more stable products. When employing β-carotene/linoleic acid assay, the more active inhibitors of β-carotene bleaching were C. pachystachya, T. mutabilis and B. orellana which showed values greater than 75% of inhibition. Interestingly, C. oblongifolia and M. splendens were not so effective in quenching β-carotene. It is well known that the value of this method appears to be limited to less polar compounds. They exhibit stronger antioxidative properties in emulsions because they concentrate at the lipid:air surface, thus ensuring high protection of the emulsion itself. On the other hand, polar antioxidants remaining in the aqueous phase are more diluted and are thus less effective in protecting the lipid (Koleva et al., 2002). It is well known that plants which possess antioxidative and pharmacological properties are related to the presence of phenolic compounds, specially phenolic acids and flavonoids (Fabri et al., 2009). Antioxidant activity had also been detected for C. pachystachya (Aragão et al., 2010) and B. orellana (Chisté et al., 2011). For T. mutabilis, C. oblongifolia and M. splendens, the antioxidant capacities were reported here for the first time. Polyphenolic compounds such as flavonoids and tannins found in the extracts (Table 2) are considered to be the major contributors to the antioxidant activity of medicinal plants. The antioxidant activities of polyphenols were attributed to their redox properties, which allow them to act as reducing agents, hydrogen donators and singlet oxygen quenchers, as well as their metal chelating abilities (Vladimir-Knezevic et al., 2011). It would seem that a great part of the extracts tested in this study for antimicrobial activity does not possess antioxidant effects (Table 3 and 4).

3. Conclusion
The results obtained represent a worthwhile expressive contribution to the characterization of antimicrobial and antioxidant activity of plant extracts of traditional medicinal plants from Brazilian flora and justify, in part, the popular uses of some of these species.

4. Acknowledgment
The authors are grateful to Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Universidade Federal de Juiz de Fora (UFJF)/Brazil for financial
support, to Dr. Fatima Regina Salimena for the botanical identification of the species, and to Delfino Antônio Campos for his technical assistance.

5. References

Albuquerque, J.M. (1989). Plantas medicinais de uso popular. Ministério da Educação, ABEAS, ISBN 85-85234-05-9, Brasília, Brazil

Alice, C.B.; Siqueira, N.C.S.; Mentz, L.A.; Silva, G.A.A.B. & José, K.F.D. (1995). Plantas Medicinais de Uso Popular. Atlas Farmacognóstico, Ulbra, ISBN: 85-8569212X, Canoas, Brazil

Andremont, A. (2001). The Future Control of Bacterial Resistance to Antimicrobial Agents. American Journal Infect Control, Vol.29, No. 4, (August 2001), pp. 256-258, ISSN 0196-6553

Aragão, D.M.O; Guarize, L.; Lanini, J.; Garcia, R.M.G. & Scio, E. (2010). Hypoglycemic Effects of Cecropia pachystachya in Normal and Alloxan-induced Diabetic Rats. Journal of Ethnopharmacology, Vol.128, No.3, (April 2010), pp. 629-633, ISSN 0378-8741

Avancini, C. A. M.; Wiest, J. M. & Mundstock, E. (2000). Atividade Bacteriostática e Bactericida do Decocto de Baccharis primera (Less.) D.C., Compositae, Carqueja, como Desinfetante ou Anti-Séptico. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, Vol.52, No.3, (June 2000), pp. 230-234, ISSN 1678-4162

Bagamboula, C. F.; Uyttendaele, M. & Debevere, J. (2004). Antimicrobial and Antioxidative Activities of the Essential oils and Methanol Extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl.). Food Chemistry, Vol.84, No.4, (March 2004), pp. 519-525, ISSN 0308-8146

Benoit-Vical, F.; Grellier, P.; Abdoulaye, A.; Moussa, I.; Ousmane, A. & Berry, A. (2006). In vitro and in vivo Antiplasmodial Activity of Momordica balsamina Alone or in a Traditional Mixture. Chemotherapy, Vol.52, No.6, (September 2006), pp. 288-292, ISSN 1421-9794

Boumghar-Bourtchai, L.B.; Kurkdjian, P.M.; Bingen, E.; Filliol, I.; Dhalluin, A.; Ifrane, S.A.; Weill, F-X. & Leclercq, R. (2008). Macrolide-Resistant Shigella sonnei. Emerging Infectious Diseases, Vol.14, No.6, (August 2008), pp. 1297-1299, ISSN 1080-6040

Bouzada, M.L.M; Fabri, R.L.; Nogueira, M.; Konno, T.U.P.; Duarte, G.G. & Scio, E. (2009). Antibiometric, Cytotoxic and Phytochemical Screening of Some Traditional Medicinal Plants in Brazil. Pharmaceutical Biology, Vol.47, No.1, (January 2009), pp. 44-52, ISSN 1388-0209

Braga, F.C.; Bouzada, M.L.M; Fabri, R.L.; Matos, M.O.; Moreira, F.O.; Scio, E. & Coimbra, E.S. (2007). Antileishmanial and Antifungal Activity of Plants Used in Traditional Medicine in Brazil. Journal of Ethnopharmacology, Vol.111, No.2, (May 2007), pp. 396-402, ISSN 0378-8741

Calderone, R.A. & Fonzi, W.A. (2001). Virulence Factors of Candida albicans. Trends in Microbiology, Vol.9, No.7, (July 2001), pp. 327-335, ISSN 0966-842X

Chen, I.N.; Chen-Chin, C.; Chang-Chai, N.G.; Chung-Yi, W.; Yuan-Tay, S. & Tsu-Liang, C. (2008). Antioxidant and Antimicrobial Activity of Zingiberaceae Plants in Taiwan. Plant Foods for Human Nutrition, Vol.63, No.1, (December 2007), pp. 15-20, ISSN 0921-9668

Chisté, R.C.; Mercadante, A.Z.; Gomes, A.; Fernandes, E.; Lima, J.L.F.C. & Bragagnolo, N. (2011). In vitro Scavenging Capacity of Annatto Seed Extracts Against Reactive...
Oxygen and Nitrogen Species. *Food Chemistry*, Vol.127, No.2, (July 2011), pp. 419-426, ISSN 0308-8146

Camargo, M.T.L.A. (1988). Plantas medicinais e de rituais afro-brasileiros, Almed, ISBN 85-274-0545-8, São Paulo, Brazil

Charlier-Woerther, C.C.; Fenoll, C.; Michel, C.B.; Valeyre, D.; Lortholary, O. & Masquelier, A.C. (2011). Cryptococcal myositis and Sarcoidosis. *Lettres à la rédaction / Médicine et maladies infectieuses*, Vol.41, No.5, (May 2011), pp. 267-272, ISSN 0399-077X

Corrêa, A.D; Siqueira-Batista, R. & Quintas, L.E.M. (1998). Plantas Medicinais: do Cultivo à Terapêutica, Vozes, ISBN 85-3261995-9, Petrópolis, Brazil

Corrêa, M.P. (1984). *Dicionário de Plantas Úteis do Brasil e das Exóticas Cultivadas*, Ministério da Agricultura, ISBN 9788573594218, Rio de Janeiro, Brazil

Cos, P.; Vlietinck, A.J.; Berghe, D.V. & Maes, L. (2006). Anti-infective Potential of Natural Products: How to Develop a Stronger in vitro 'Proof-of-Concept'. *Journal of Ethnopharmacology*, Vol.106, No.3, (July 2006), pp. 290-302, ISSN 0378-8741

Cushnie, T.P.T. & Lamb, A.J. (2005). *Antimicrobial Activity of Flavanoids*. *International Journal of Antimicrobial Agents*, Vol.26, No.5, (November 2005), pp. 343-356, ISSN 0924-8579

Dapkevicius, A.; Venskutonis, R.; Beek, T. A. & Linssen, P. H. (1998). Antioxidant Activity of Extracts Obtained by Different Isolation Procedures from Some Aromatic Herbs Grown in Lithuania. *Journal of the Science of Food and Agriculture*, Vol.77, No.1, (March 1999), pp. 140-146, ISSN 0022-5142

DeLappe, N.; O’Halloran, F.; Fanning, S.; Corbett-Feeney, G.; Cheasty, T. & Cormican, M. (2003). *Antimicrobial Resistance and Genetic Diversity of Shigella sonnei Isolates from Western Ireland, an Area of Low Incidence of Infection*. *Journal of Clinical Microbiology*, Vol.41, No.5, (May 2003), pp. 1919-1924, ISSN 0095-1137

Duarte-Almeida, J.M.; Santos, R.J Dos; Genovese, M.I. & Lajolo, F.M. (2006). Avaliação da Atividade Antioxidante Utilizando Sistema β-caroteno/Acido linoléico e Método de Seqüestro de Radicais DPPH•. *Ciência e Tecnologia de Alimentos*, Vol.26, No.2, (June 2006), pp. 446-452, ISSN 0101-2061

Duracková, Z. (2010). Some Current Insights into Oxidative Stress. *Physiological Research*, Vol.59, No.4, (November 2009), pp. 459-469, ISSN 0862-8408

Duraipiyan, V.; Ayyanar, M. & Ignacimuthu, S. (2006). *Antimicrobial Activity of Some Ethnomedical Plants Used by Paliyar Tribe from Tamil Nadu, India*. BMC Complementary and Alternative Medicine, Vol.6, No.35, (October 2006), pp. 1-7, ISSN 1472-6882

Fabri, R.L.; Nogueira, M.S.; Braga, F.G.; Coimbra, E.S. & E. Scio (2009). *Mitracarpus frigidus Aerial Parts Exhibited potent Antimicrobial, Antileismanial and Antioxidant Effects*. *Bioresource Technology*, Vol.100, No.1, (January 2009), pp. 428-433, ISSN 09608524

Francis, G.; Kerem, Z.; Makkar, H.P.S. & Becker, K. (2002). The Biological Action of Saponins in Animal Systems: a Review. *British Journal of Nutrition*, Vol.88, No.6, (December 2002), pp. 587-605, ISSN 0007-1145

Gonçalves, A.L.; Alves Filho, A. & Menezes, H. (2005). Estudo Comparativo da Atividade Antimicrobiana de Extratos de Algumas Árvores Nativas. *Arquivos do Instituto Biológico*, Vol.72, No.3, (September 2005), pp. 353-358, ISSN 0020-3653
Govidarajan, R.; Rastogi, S.; Vijayakumar, M.; Shirwaikar, A.; Rawat, A.K.S.; Mehrotra, S. & Pushpangadan, P. (2003). Studies on the Antioxidant Activities of Desmodium gangeticum. Biological & Pharmaceutical Bulletin, Vol.26, No.10, (October 2003), pp. 1424-1427, ISSN 1347-5217

Gutteridge, J. M. C. & Halliwell, B. (2000). Free Radicals and Antioxidants in the Year 2000 - A Historical Look to the Future. Annals of the New York Academy of Sciences, Vol.899, No.1, (January 2000), pp. 136-147, ISSN 0077-8923

Harris, L.G.; Foster, S.J. & Richards, R.G. (2002). An Introduction to Staphylococcus aureus and Techniques for Identifying and Quantifying S. aureus Adhesins in Relation to Adhesion to Biomaterials: Review. European Cells & Materials Journal, Vol.4, No.1, (December 2002), pp. 39-60, ISSN 1473-2262

Jamuna, K.S.; Ramesh, C.K.; Srinivasa, T.R. & Raghu, K.L. (2010). Comparative Studies on DPPH and Reducing Power Antioxidant Properties in Aquous Extracts of some Common Fruits. Journal of Pharmacy Research, Vol.3, No.10, (September 2010), pp. 2378-2380, ISSN 0974-6943

Jones, G.A.; Mcallister, T.A.; Muir, A.D. & Cheng, K.J. (1994). Effects of Sainfoin (Onobrychis vicifolia Scop.) Condensed Tannins on Grown and Proteolysis by Four Strains of Ruminal Bacteria. Applied and Environmental Microbiology, Vol.60, No.4, (April 1994), pp. 1374-1378, ISSN 1098-5336

Kaur, G.J. & Arora, D.S. (2009). Antibacterial and Phytochemical Screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complementary and Alternative Medicine, Vol.9, No.30, (August 2009), pp. 1-10, ISSN 1472-6882

Kim, J.M.; Marshall, M.R.; Cornell, J.A.; Preston, J.F. & Wei, C.I. (1995). Antibacterial Activity of Carvacrol, Citral and Geraniol against Salmonella typhymurium in Culture Medium and on Fresh Cubers. Journal of Food Science, Vol.60, No.6, (November 1995), pp. 1364-1368, ISSN 0022-1147

Koleva, I.I.; Beek Van, T.; Linssen, J.P.H.; Groot, A. & Evstatieva, L.N. (2002). Screening of Plant Extract for Antioxidant Activity: a Comparative Study on Three Testing Methods. Phytochemical Analysis, Vol.13, No.1, (January/February 2002), pp. 8-17, ISSN 1099-1565

Kuster, R.M.; Arnold, N. & Wesjohann, L. (2009). Anti-fungal flavonoids from Tibouchina grandifolia. Biochemical Systematics and Ecology, Vol.37, No.1, (February 2009), pp. 63-65, ISSN 0305-1978

Lorenzi, H. (2000). Plantas Daninhas do Brasil - Terrestres, Aquáticas, Parasitas e Tóxicas, Plantarum, ISBN 85-86714-27-6, São Paulo, Brazil

Lorenzi, H. & Matos, F.J.A. (2002). Plantas Medicinais no Brasil: Nativas e Exóticas Cultivadas, Plantarum, ISBN 85-86714-18-6, São Paulo, Brazil

Lu, Y.; Zhao, Y.P.; Wang, Z.C.; Chen, S.Y. & Fu, C.X. (2007). Composition and Antimicrobial Activity of the Essential Oil of Actinidia macroserpa from China. Natural Product Research, Vol.21, No.3, (March 2007), pp. 227-233, ISSN 1478-6419

Lugasi, A.; Horvahovich, P. & Dworschák, E. (1999). Additional Information to the in vitro Antioxidant Activity of Ginkgo biloba L. Phytotherapy Research, Vol.13, No.2, (March 1999), pp. 160-162, ISSN 1099-1573

Lyczak, J.B.; Cannon, C.L. & Pier, G.B. (2000). Establishment of Pseudomonas aeruginosa Infection: Lessons from a Versatile Opportunist. Microbes and Infection, Vol.2, No.9, (July 2000), pp. 1051-1060, ISSN 1286-4579

www.intechopen.com
Phytochemicals as Nutraceuticals – Global Approaches to Their Role in Nutrition and Health

Mahesh, B. & Satish, S. (2008). Antimicrobial Activity of Some Important Medicinal Plant against Plant and Human Pathogens. World Journal of Agricultural Sciences, Vol.4, No.4(5), pp. 839-843, ISSN 1817-3047

Matos, F.J.A. (1997). Introdução à Fitoquímica Experimental, EUFC, ISBN 85-7282-026-4, Fortaleza, Brazil

Matos, F.J.A. (2000). Plantas Medicinais - Guia de Seleção e Emprego de Plantas Usadas em Fitoterapia no Nordeste do Brasil, UFC, ISBN 85-7485008-X, Fortaleza, Brazil

Mauro, C.; Cardoso, C.M.Z.; Schultze, C.; Yamamichi, E.; Lopes, P.S.; Marcondes, E.M.C.; Miranda, J.P.; Arruda, D.A.O.; Frota, M. & Pacheco, A.L. (2002). Estudo Botânico, Fitoquímico e Avaliação da Atividade Antimicrobiana de Rubus roseofolius Sm. - Rosaceae. Revista Brasileira de Farmacognosia, Vol.12, Suppl.1, pp. 23-25, ISSN 0102-695X

Mbwambo, Z.H.; Moshi, M.J.; Masimba, P.J.; Kapingu, M.C, & Nondo R.S. (2007). Antimicrobial Activity and Brine Shrimp Toxicity of Extracts of Terminalia brownii Roots and Stem. BMC Complementary and Alternative Medicine, Vol.7, No.9, (March 2007), pp. 1-5, ISSN 1472-6882

Moreira, D. L. & Guarim-Neto, G. (2009). Usos Múltiplos de Plantas do Cerrado: Um Estudo Etnobotânico na Comunidade Sitio Pindura, Rosário Oeste, Mato Grosso, Brasil. Polibotânica, No.27, (April, 2009), pp. 159-190, ISSN 1596-5996

Morim, M.P. (2010). Samanea, In: Lista de Espécies da Flora do Brasil, 05.27.2011. Available from: <http://floradobrasil.jbrj.gov.br/2010/FB023141>

N’guessan, J.D; Dinzedi, M.R.; Guessernd, N.; Coulibaly, A.; Dosso, M.; Djanman, A.J. & Guede-Guina, F. (2007). Antibacterial Activity of the Aqueous Extract of Thonningia sanguinea Against Extended-Spectrum-ǃ-Lactamases (ESBL) Producing Escherichia coli and Klebsiella pneumoniae Strains. Tropical Journal of Pharmaceutical Research, Vol.6, No.3, (September 2007), pp. 779-783, ISSN 1596-5996

Nascimento, A.; Moreno, P.R.H; Souza. A. & Young, M.C.M. (2008). Chemical Composition and Antimicrobial Activity of the Essential oil from Bidens segetum Mart. Ex Colla Leaves, Flowers and Fruits. Planta Medica, Vol.74, No.9, (July 2008), pp. 1199-1199, ISSN 0032-0943

NCCLS (National Committee for Clinical Laboratory Standards) (2002). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard M27-A2 - P. National Committee for Clinical Laboratory Standards. Wayne, P.A.

Nayak, S.; Nalabothu, P.; Sandiford, S. & Bhogadi, V. (2006). Evaluation of Wound Healing Activity of Allamanda cathartica L. and Laurus nobilis. L. Extracts on Rats. BMC Complementary and Alternative Medicine, Vol.6, No.12, (April 2006), pp.1-6, ISSN 1472-6882

Newman, D.J. & Cragg, G.M. (2007). Natural Products as Sources of New Drugs Over the Last 25 Years. Journal of Natural Products, Vol.70, No.3, (March 2007), pp. 461-477, ISSN 0163-3864

de Oliveira, G.F.; Furtado, N.A.C.; Silva, A.A.; Martins, C.H.G.; Bastos, J.K.; Cunha, W.R. & Silva, M.I.D.E. (2007). Antimicrobial Activity of Syzygium cumini (Myrtaceae) Leaves Extract. Brazilian Journal of Microbiology, Vol.38, No.2, (June 2007), pp. 381-384, ISSN 1517-8382

Oyazu, M. (1986). Studies on Product of Browning Reaction Prepared from Glucose Amine. Japanese Journal of Nutrition, Vol.44, No.9, pp. 307-315, ISSN 0021-5147

www.intechopen.com
Panizza, S. (1998). Plantas que Curam - Cheiro de Mato, Ibrasa, ISBN 85-3480067-7, São Paulo, Brazil
Phillipson, J.D. & O’Neil, M.J. (1989). New Leads to the Treatment of Protozoal Infections Based on Natural Product Molecules. Acta Pharmaceutica Nordica, Vol.1, No.1, pp. 131-144, ISSN 1100-1801
Quarenghi, M.V.; Tereshuk, M.L.; Baigori, M.D. & Abdala, L.R. (2000). Antimicrobial Activity of Flowers from *Anthemis cotula*. Fitoterapia, Vol.71, No.6, (December 2000), pp. 710-712, ISSN 0367-326X
Rayne, S. & Mazza, G. (2007). Biological Activities of Extracts from Sumac (Rhus spp.): A Review. Plant Foods for Human Nutrition, Vol.62, No.4, (August 2007), pp. 165-175 ISSN 0921-9668
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M. & Aggarwal, B.B. (2010). Oxidative Stress, Inflammation, and Cancer: How are They Linked? Free Radical Biology & Medicine, Vol.49, No.11, (December 2010), pp. 1603-1616, ISSN 0891-5849
Senatore, F.; Rigano, D.; Formisano, C.; Grassia, A.; Basile, A. & Sorbo, S. (2007). Phytogrowth-Inhibitory and Antibacterial Activity of Verbascum sinuatum. Fitoterapia, Vol.78, No.3, (April 2007), pp. 244-247, ISSN 0367-326X
Sharma, B. & Kumar, P. (2009). Bioefficacy of Lantana camara L. Against some Human Pathogens. Indian Journal of Pharmaceutical Sciences, Vol.71, No.5, (September - October 2009), pp. 589-593, ISSN 0250-474X
Silva, L.C.; Pegoraro, K.A.; Pereira, A.V.; Esmerino, L.A.; Cass, Q.B.; Barison, A. & Beltrame, F.L. (2011). Antimicrobial Activity of *Alternanthera brasiliensis* (Amaranthaceae): a Biomonitored Study. Latin American Journal of Pharmacy, Vol.30, No.1, (April 2010), pp. 147-153, ISSN 0326-2383
Singh, G.; Maurya, S.; de Lampasona, M.P. & Catalan, C.A. (2007). A Comparison of Chemical, Antioxidant and Antimicrobial Studies of Cinnamon Leaf and Bark Volatile Oils, Oleoresins and Their Constituents. Food and Chemical Toxicology, Vol.45, No.9, (September 2007), pp. 1650-1661, ISSN 0278-6915
Suffredini, I.B.; Sader, H.S.; Gonçalves, A.G.; Reis, A.O.; Gales, A.C.; Varellal, A.D. & Younes, R.N. (2004). Screening of Antibacterial Extracts from Plants Native to the Brazilian Amazon Rain Forest and Atlantic Forest. Brazilian Journal of Medical and Biological Research, Vol.37, No.3, (March 2004), pp. 379-384, ISSN 0100-879X
Tiwari, T. N.; Pandey, V. B. & Dubey, N. K. (2002). Plumieride from Allamanda cathartica as an Antidermatophytic Agent. Phytotherapy Research, Vol.16, No.4, (June 2002), pp. 393-394, ISSN 0951-418X
Vila, R.; Mundina, M.; Tomi, F.; Furlan, R.; Zacchino, S.; Casanova, J. & Caniguera, S. (2002). Composition and Antifungal Activity of the Essential Oil of *Solidago chilensis*. Planta Medica, Vol.68, No.2, (February 2002), pp. 164-167, ISSN 0032-0943
Vladimir-Knezević, S.; Blazeković, B.; Stefan, M.B.; Alegro, A.; Koszegi, T. & Petrik, J. (2011). Antioxidant Activities and Polyphenolic Contents of Three Selected Micromeria Species from Croatia. Molecules, Vol.16, No.2, (February 2011), pp. 1454-1470, ISSN 1420-3049
Vivot, E.; Massa, R; Cruanes, M.J.; Munoz, J.D.; Ferraro, G.; Gutkind, G. & Martino, V. (2007). In vitro Antimicrobial Activity of Six Native Species from Entre Rios Flora (Argentini). Latin American Journal of Pharmacy, Vol.26, No.4, (July - August 2007), pp. 563-566, ISSN 0326-2383
WHO (World Health Organization) (2002). Traditional Medicine - Growing Needs and Potential. World Health Organization Policy Perspectives on Medicines. Bulletin of the World Health Organization, Vol.80, No.2, (May 2002), pp.1-6, ISSN 0042-9686
Ya, C.; Gaffney, T.H. & Haslam, E. (1988). Carbohydrate-polyphenol complexation. In Chemistry and Significance of Condensed Tannins, R.M. Hemingway & J.J.Karchesy (Eds.), 553, Plenum Press, ISBN 0306433265, New York, USA
Phytochemicals are biologically active compounds present in plants used for food and medicine. A great deal of interest has been generated recently in the isolation, characterization and biological activity of these phytochemicals. This book is in response to the need for more current and global scope of phytochemicals. It contains chapters written by internationally recognized authors. The topics covered in the book range from their occurrence, chemical and physical characteristics, analytical procedures, biological activity, safety and industrial applications. The book has been planned to meet the needs of the researchers, health professionals, government regulatory agencies and industries. This book will serve as a standard reference book in this important and fast growing area of phytochemicals, human nutrition and health.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Elita Scio, Renata F. Mendes, Erick V.S. Motta, Paula M.Q. Bellozi, Danielle M.O. Aragão, Josiane Mello, Rodrigo L. Fabri, Jussara R. Moreira, Isabel V.L. de Assis and Maria Lúcia M. Bouzada (2012). Antimicrobial and Antioxidant Activities of Some Plant Extracts, Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health, Dr Venketeshwer Rao (Ed.), ISBN: 978-953-51-0203-8, InTech, Available from: http://www.intechopen.com/books/phytochemicals-as-nutraceuticals-global-approaches-to-their-role-in-nutrition-and-health/antimicrobial-and-antioxidant-activities-of-some-plant-extracts
