Phylogenetic assessment and taxonomic revision of *Halobyssothecium* and *Lentithecium* (Lentitheciaceae, Pleosporales)

Mark Seasat Calabon 1,2 • E.B. Gareth Jones 3 • Kevin D. Hyde 1,4 • Saranyaphat Boonmee 1,2 • Sanja Tibell 5 • Leif Tibell 5 • Ka-Lai Pang 6 • Rungtiwa Phookamsak 7,8,9,10

Received: 3 January 2021 / Revised: 2 March 2021 / Accepted: 4 March 2021
© The Author(s) 2021

Abstract

Our studies on lignicolous aquatic fungi in Thailand, Sweden, and the UK resulted in the collection of three new *Halobyssothecium* species (*H. bambusicola*, *H. phragmitis*, *H. versicolor*) assigned to Lentitheciaceae (Pleosporales, Dothideomycetes). Multi-loci phylogenetic analyses of the combined large subunit, small subunit, internal transcribed spacers of ribosomal DNA, and the translation elongation factor 1-alpha sequence data enabled a revision of the taxa assigned to *Lentithecium* and the transfer of *L. cangshanense*, *L. carbonneanum*, *L. kunmingense*, *L. unicellulare*, and *L. voraginesporum* to *Halobyssothecium*. Collection of an asexual morph of *L. lineare* and phylogenetic analysis confirmed its taxonomic placement in *Keissleriella*. Detailed descriptions and illustrations of *H. bambusicola*, *H. phragmitis*, and *H. versicolor* are provided.

Keywords 3 new taxa • Dothideomycetes • Freshwater fungi • Marine fungi • Multi-locus phylogeny

Introduction

Pleosporales, typified by *Pleospora herbarum* (Pers.) Rabenh. (Pleosporaceae), was formally established by Luttrell and Barr (in Barr 1987) and characterized by perithecioid ascomata, usually with a papillate apex, ostiolate, cellular pseudoparaphyses, and bitunicate asci. Phylogenetic studies of Pleosporales have been provided by Schoch et al. (2009), Zhang et al. (2009a, 2012), Hyde et al. (2013), Liu et al. (2017), and Hongsanan et al. (2020). Lumbsch and Huhndorf (2010) included 28 families and 175 genera in Pleosporales, with 12 genera listed under Pleosporales, genera incertae sedis. Hyde et al. (2013) accepted 88 families in Pleosporales. Wijayawardene et al. (2020) and Hongsanan...
et al. (2020) included 91 families in Pleosporales. Ecologically, the order includes saprotrophs, parasites, pathogens, epiphytes, and endophytes (Hongsanan et al. 2020).

Zhang et al. (2009b) established Lentitheciaceae with Lentithecium fluviatile (Aptroot & Van Ryck.) K.D. Hyde, J. Fourn. & Ying Zhang as the genus and species type, and included L. arundinaceum (Sowerby) K.D. Hyde, J. Fourn. & Ying Zhang, L. aquaticum Ying Zhang, J. Fourn. & K.D. Hyde, Stagonospora macrocypnidia Cunnell, Wettsteinina lacustris (Fuckel) Shoemaker & C.E. Babc., Keissleriella cladophila (Niessl) Corbaz, and Katumotoa bambusicola Kaz. Tanaka & Y. Harada. Suetrong et al. (2009) also referred Massarina phragmiticola Poon & K.D. Hyde to the new family. Lentitheciaceous taxa are saprobic on herbaceous and woody plants having narrow peridia, fusiform to cylindric pseudoparaphyses, hyaline ascosporas with 1–3-transverse septa and containing refractive globules, surrounded by a mucilaginous sheath or extended appendage-like sheaths and asexual morphs producing stagonospora-like or dendrophoma-like asexual morphs (Zhang et al. 2012; Hyde et al. 2013; Wanasinghe et al. 2014). Fourteen genera from different habitats are included in Lentitheciaceae based on molecular data: Darksidea (Knapp et al. 2015), Halobyssothecium (Dayarathne et al. 2018), Katumotoa (Tanaka and Harada 2005), Keissleriella (Höhn 1919), Lentithecium (Zhang et al. 2009b), Muri lentithecium (Wanasinghe et al. 2014), Neoo phiosphaerella (Tanaka et al. 2015), Phragmocamarosporium (Wijayawardene et al. 2015), Pleurophoma (de Gruyter et al. 2009; Croux et al. 2015), P. a ceascom a (Pho o kamsak et al. 2015), Pseudomuri lentithecium (Hyde et al. 2020b), Setoseptoria (Quaedvlieg et al. 2013), Tingoldiago (Hirayama et al. 2010), and Towyspora (Li et al. 2016).

Lentithecium was proposed to accommodate Massarina arundinacea (Sowerby) Leuchtn., M. fl uvialitis Aptroot & Van Ryck., and Keissleriella linearis E. Müll. ex Dennis (Zhang et al. 2009b). The genus currently contains ten species that were described from aquatic habitats, seven from freshwater, and three from marine environments. Lentithecium species have been described from submerged wood (Tanaka et al. 2005, 2015; Hyde et al. 2016; Su et al. 2016; Croux et al. 2018) and submerged parts of plant host species (Juncus, Phragmites, Fraxinus, Alnus, and Platanus) (Kohlmeier et al. 1996; Van Ryckegem and Aptroot 2001; Su et al. 2009; Zhang et al. 2009b). Lentithecium is characterized by its immersed to semi-immersed, globose to subglobose ascocoma, a thin peridium, cellular pseudoparaphyses, short pedicellate asci and fusoid or filiform, subglobose, hyaline, brown, uni- to multi-septate ascosporas, usually surrounded by a sheath (Zhang et al. 2009b; Hyde et al. 2013, 2016).

Halobyssothecium was introduced by Dayarathne et al. (2018) to accommodate several taxa variously described under Ple spora obiones P. Crouan & H. Crouan and Crouan (1867) and Leptosphaeria discors Sacc. & Ellis by Saccardo (1882). This “taxon” had been assigned to various genera: Metasphaeria (Saccardo 1883), Heptameria (Cooke 1889), and P asserini ella (Apinis and Chesters 1964; Hyde and Mouzouras 1988; Khashnobish and Shearer 1996). Various studies have shown that Ple spora obiones/Leptosphaeria discors are synonyms, but clearly do not belong in any of these genera (Khashnobish and Shearer 1996). Jones (1962), Cavaliere (1968), and Webber (1970) reported Leptosphaeria discors collections with larger ascosporas than those by Crouan and Crouan (1867) indicating that there might be a second morphologically similar species. Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019). Devadatha et al. (2020) introduced Halobyssothecium obiones (P. Crouan & H. Crouan) Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019). Devadatha et al. (2020) introduced Halobyssothecium obiones (P. Crouan & H. Crouan) Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019). Devadatha et al. (2020) introduced Halobyssothecium obiones (P. Crouan & H. Crouan) Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019). Devadatha et al. (2020) introduced Halobyssothecium obiones (P. Crouan & H. Crouan) Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019). Devadatha et al. (2020) introduced Halobyssothecium obiones (P. Crouan & H. Crouan) Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019). Devadatha et al. (2020) introduced Halobyssothecium obiones (P. Crouan & H. Crouan) Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019). Devadatha et al. (2020) introduced Halobyssothecium obiones (P. Crouan & H. Crouan) Dayarathne, E.B.G. Jones & K.D. Hyde has a worldwide distribution in temperate regions and occurs as a saprobe of Agropyron junceiforme, Halimone portulacoides, Spartina species, on intertidal wood, bamboo, and exposed test panels of Betula pubescens and Fagus sylvatica (Kohlmeier and Kohlmeyer 1979; Jones et al. 2019).
confirm the taxonomic placement of *Lentithecium lineare* (E. Müll. ex Dennis) K.D. Hyde, J. Fourn. & Ying Zhang in *Keissleriella*, and *L. cana-shanense* Z.L. Luo, X.J. Su & K.D. Hyde, *L. carbo-nearum* J. Fourn., Raja & Oberlies, *L. kunmingense* Dong, H. Zhang & K.D. Hyde, *L. unicellulare* Abdel-Aziz and *L. voraginesporum* Abdel-Wahab, Bahkali & E.B.G. Jones in *Haloybissothecium*. The transfers are made, and descriptions, photographic plates, and multi-loci phylogenetic analyses are provided.

Materials and methods

Sample collection, morphological observation, and fungal isolation

Samples of submerged decayed wood were collected from a freshwater stream in Chiang Mai, Thailand. Dead and decaying *Halimione portulacoides* was collected from Hayling Island bridge, Hampshire, UK. Drift culms and stems of *Phragmites* sp. were obtained from Sudersand and Kappelshamnsviken in Gotland, Sweden. The samples were observed using a stereomicroscope for the presence of fruiting bodies. Micromorphological features were photographed using a Motic SMZ 168 Series dissection microscope for fungal structures on the woody substrate while microscopic characters were documented using a Nikon Eclipse 80i microscope. Single spore isolation was used to obtain pure cultures and colonial characteristics described. Herbarium-type specimens are deposited in Mae Fah Luang University (MFLU). Ex-type and ex-paratype living cultures are deposited at Mae Fah Luang University Culture Collection (MFLUCC). The new species and combinations were registered in Faces of Fungi (http://www.facesoffungi.org/; Jayasiri et al. 2015) and Index Fungorum database (http://www.indexfungorum.org/names/IndexFungorumRegisterName.asp).

DNA extraction, PCR amplification, and sequencing

Fungal mycelia from pure cultures grown in malt extract agar (MEA) for 30 days were scraped using a sterilized scalpel and kept in a sterilized 1.5 mL microcentrifuge tube. Genomic DNA was extracted using the Biospin Fungus Genomic DNA Extraction Kit (BioFlux®, China) following the manufacturer’s protocol. Polymerase chain reaction (PCR) was used to amplify four markers: the large subunit (LSU), small subunit (SSU), internal transcribed spacers (ITS) of rDNA, and the translation elongation factor 1-alpha gene (*TEF1-α*). The LSU was amplified using the primers LR0R and LR5 (Vilgalys and Hester 1990). The SSU was amplified using the primers NS1 and NS4 (White et al. 1990). For ITS, primers ITS5 and ITS4 were used (White et al., 1990). *TEF1-α* was amplified using primers EF1-983F and EF1-2218R (Rehner 2001). Polymerase chain reaction was performed in a volume of 25 μl, which contained 12.5 μl of 2× Power Taq PCR Master Mix (Bioteke Co., China), 1 μl of each primer (10 pM), 1 μl genomic DNA, and 9.5 μl double-distilled water (ddH2O). The PCR thermal cycle program for LSU, SSU, ITS, and *TEF1-α* amplification were as follows: initial denaturing step of 94 °C for 3 min, followed by 40 cycles of denaturation at 94 °C for 45 seconds, annealing at 56 °C for 50 seconds, elongation at 72 °C for 1 min, and final extension at 72 °C for 10 min. Agarose gel electrophoresis was done to confirm the presence of amplicons at the expected molecular weight. PCR products were purified and sequenced with the primers mentioned above at a commercial sequencing provider (Beijing Qingke Biotechnology Co., Ltd). A BLASTn search of the newly generated sequences was carried out to exclude contamination and to search for related taxa in GenBank database (www.ncbi.nlm.nih.gov/blast/).

Phylogenetic analyses

The taxa table was assembled based on the closest matches from the BLASTn search results and from recently published data in Dayarathne et al. (2018) and Devadatha et al. (2020). Sequences generated from the four markers were analyzed along with other sequences retrieved from GenBank (Table 1). Four datasets, one for each marker, were aligned with MAFFT v. 7 using the web server (http://mafft.cbrc.jp/alignment/server; Katoh et al. 2019) with the following settings: L-INS-i tree-based iterative refinement methods, 20PAM/k = 2 scoring matrix for nucleotide sequences and 1.53 gap opening penalty. Alignment was further refined manually, where necessary, using BioEdit v.7.0.9.0 (Hall 1999). Aligned sequences were automatically trimmed using TrimAl v. 1.3 on the web server (http://phylemon.bioinfo.cipf.es/utilities.html). The online tool “ALTER” (Glez-Peña et al. 2010) was used to convert the alignment file to phylip and nexus formats. Phylogenetic analyses of both individual and combined gene data were performed using maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI).

Maximum parsimony (MP) analysis was performed using the heuristic search option with 1000 random taxa addition and tree bisection and reconnection (TBR) as the branch-swapping algorithm in PAUP*. 4.0b4 (Swofford 2002). All characters were unordered and of equal weight and gaps were treated as missing data. Maxtrees were unlimited, branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. Clade stability was assessed using a bootstrap (BS) analysis with 1000 replicates, each with ten replicates of random stepwise addition of taxa (Hillis and Bull 1993). Descriptive tree statistics for parsimony (tree length [TL], consistency index [CI], retention index [RI], relative consistency index [RC], and homoplasy index [HI]) were calculated for trees generated under different optimality criteria.
Species	Strain/voucher number	LSU access.	SSU access.	ITS access.	TEF1-α access.
Bambusicola bambusae	MFLUCC 11–0614	JX42489	JX42490	JX44203	DQ471087
Bambusicola irregulispora	MFLUCC 11–0437	JX42236	JX42238	JX44202	DQ471087
Bambusicola massaarinia	MFLUCC 11–0389	JX42240	JX42241	JX44201	DQ471087
Bambusicola splendida	MFLUCC 11–0439	JX42242	JX42243	JX44200	DQ471087
Bimuria novae-zelandiae	CBS 107.79	AY016356	AY016356	–	GU300025
Byssothecium circinans	CBS 675.92	GU205217	GU205217	GU349061	–
Corynespora cassiicola	CBS 1008.22	GU290484	GU290484	–	GU349062
Corynespora caespitosa	CBS 1069.96	GU32286	GU32286	–	GU349062
Darksidea alpha	CBS 135650	KU991149	KU991149	–	GU349062
Darksidea beta	CBS 135638	KU991150	KU991150	–	GU349062
Darksidea delta	CBS 135666	KU991160	KU991160	–	GU349062
Darksidea epsilon	CBS 135658	KU991170	KU991170	–	GU349062
Darksidea gamma	CBS 135640	KU991180	KU991180	–	GU349062
Falciformispora lignatilis	BCC 21117	GU371826	GU371826	–	GU349062
Halobyssothecium bambusicola*	MFLUCC 20–0226	MT068486	MT068486	–	GU349062
Halobyssothecium cangshanense	DLUCC 0143	KU991139	KU991139	–	GU349062
Halobyssothecium carbonneanum	CBS 144076	MH069699	MH069699	–	GU349062
Halobyssothecium estuariae	MFLUCC 19–0386	MN598871	MN598871	–	GU349062
Halobyssothecium kunmingense	KUMCC 19–0101	KV991150	KV991150	–	GU349062
Halobyssothecium obiones	MFLUCC 15–0431	MT068491	MT068491	–	GU349062
Halobyssothecium phragmitis*	MFLUCC 20–0226	MT068486	MT068486	–	GU349062
Halobyssothecium unicellulare	MD129	KX505374	KX505374	–	GU349062
Halobyssothecium versicolor*	MFLUCC 20–0226	MT068491	MT068491	–	GU349062
Halobyssothecium voraginesporum	CBS H-22560	NG063065	NG063065	–	GU349062

Taxa used in this study for the analysis of combined LSU, SSU, ITS rDNA, and TEF1-α sequence data and their GenBank accession numbers. The newly generated sequences are indicated with an asterisk () and the ex-type strains are indicated in bold.
Species	Strain/voucher number	LSU accession number	SSU accession number	ITS accession number	TEF1-α accession number
Karstenula rhodostoma	CBS 690.94	GU301821	GU296154	–	GU349067
Katumotoa bambusicola	KT 1517a	AB524595	AB524454	LC014560	AB539108
Keissleriella bambusicola	KUMCC 18–0122	MK995880	MK995878	MK959881	MN213156
Keissleriella brevisaca	KT 581	AB807587	AB797297	AB811454	AB808566
Keissleriella brevisaca	KT 649	AB807588	AB797298	AB811455	AB808567
Keissleriella camporesiana	MFLUCC 15–0029	MN401741	MN401743	MN401745	MN397907
Keissleriella camporesii	MFLUCC 15–0117	MN252886	MN252907	MN252879	–
Keissleriella caraganae	KUMCC 18–0164	MK359439	MK359444	MK359434	MK359073
Keissleriella cirsii	MFLUCC 16–0454	KY497780	KY497782	KY497783	KY497786
Keissleriella cladophila	CBS 104.55	GU301822	GU296155	MIB57391	GU349043
Keissleriella culmiifida	KT2308	AB807591	AB797301	LC014561	AB808570
Keissleriella culmiifida	KT2642	AB807592	AB797302	LC014562	AB808571
Keissleriella dactylidicola	MFLUCC 13–0866	KT315506	KT315505	–	KT315507
Keissleriella dactylidis	MFLUCC 13–0751	KP197668	KP197666	KP197667	KP197669
Keissleriella genistae	CBS 113798	GU205222	GU205242	–	–
Keissleriella gloeospora	KT829	AB807589	AB797299	LC014563	AB808568
Keissleriellainearis	IFRD2008	FJ795435	FJ795478	–	–
Keissleriellainearis	MFLUCC 19–0410	MN598873	MN598870	MN598892	MN607978
Keissleriellainearis	MFLUCC 20–0224	MT068487	MT068492	MT232436	MT477866
Keissleriella phragmiticola	CPC 33249	MT223903	–	MT223808	MT23715
Keissleriella phragmiticola	MFLUCC 17–0779	MG829014	–	MG829004	–
Keissleriella poogena	CBS 136767	KJ869170	–	KJ869112	–
Keissleriella quadriseptata	KT 2292	AB807593	AB797303	AB811456	AB808572
Keissleriella rara	CBS 118429	GU479791	GU479757	–	–
Keissleriella rosacearum	MFLUCC 15–0045	MG829015	MG829123	–	–
Keissleriella rosae	MFLUCC 15–0180	MG829016	MG922549	–	–
Keissleriella rosarum	MFLUCC 15–0089	MG829017	MG829124	MG828905	–
Keissleriella sp.	KT895	AB807590	AB797300	–	AB808569
Keissleriella sparticola	MFLUCC 14–0196	KP639571	–	–	–
Keissleriella tamaricicola	MFLUCC 14–0168	KU900300	–	KU900328	–
Keissleriella taminensis	KT571	AB807595	AB797305	LC014564	AB808574
Keissleriella taminensis	KT594	AB807596	AB797306	–	–
Keissleriella taminensis	KT678	AB807597	AB797307	LC014565	AB808575
Keissleriella trichophoricola	CBS 136770	KJ869171	–	KJ869113	–
Species	Strain/voucher number	GenBank accession number			
-------------------------	-----------------------	-------------------------			
		LSU	SSU	ITS	TEF1-α
Keissleriella yonaguniensis	HHUF 30138	NG_059402	NG_064856	NR_155212	AB808573
Latorua caligans	CBS 576.65	MH870362		MH858723	–
Latorua grootfooteinensis	CBS 369.72	NG_058181			–
Lentithecium aquaticum	CBS 123099	GU301823	GU296156	NR_160229	GU349068
Lentithecium clioninum	KT1149A	AB807540	AB797250	LC014566	AB808515
Lentithecium clioninum	KT1220	AB807541	AB797251	LC014567	AB808516
Lentithecium fluvatilie	CBS 122367	FJ795451	FJ795493	–	GU349074
Lentithecium fluvatilie	CBS 123090	FJ795450	FJ795492	–	–
Lentithecium pseudoclioninum	KTI111	AB807544	AB797254	AB809632	AB808520
Longipedicellata aprootii	MFLUCC 10–0297	KU238894	KU238895	KU238893	KU238892
Macrodiptodiopsis desmazieri	CBS 140062	NG_058182		–	–
Massarina cistí	CBS 266.62	FJ795447	FJ795490	LC014568	AB808514
Massarina eburnea	CBS 139697	AB521735	AB521718	LC014569	AB808517
Massarina eburnea	CBS 473.64	GU301840	GU296170	AF383959	GU349040
Montagnula opulenta	AFTOL-ID 1734	DQ678086	AF164370	AF383966	–
Morosphaeria ramuncučíola	JK530.4B	GU479794	GU479760	–	–
Multiseptospora thailandica	MFLUCC 11–0183	NG_059554	KP753955	NR_140808	KU705657
Murilentithecium clioninum	MFLUCC 14–0561	KM408758	KM408760	KM408756	KM454444
Murilentithecium clioninum	MFLUCC 14–0562	KM408759	KM408761	KM408757	KM454445
Murilentithecium lonicerae	MFLUCC 18–0675	MK214373	MK214376	MK214370	MK214379
Murilentithecium rosae	MFLUCC 15–0044	MG829030	MG829137	MG829820	–
Neoosphosphaerella sasicola	KT1706	AB524599	AB524458	LC014577	AB539111
Palmascoma gregariuscomum	MFLUCC 11–0175	KP744495	KP753958	KP744452	–
Parabambusicola thysonaenae	KUMCC 18–0147	NG_066345	NG_067681	NR_164044	KM208920
Parabambusicola thysonaenae	KUMCC 18–0148	MK098198	MK098202	MK098193	MK098211
Paraconiothyrium brasiliense	CBS 100299	JX496124	AY642523	JX496111	–
Paraphaeosphaeria michottii	MFLUCC 13–0349	KJ939282	KJ939285	KJ393279	–
Pheodoliths winteri	CBS 127788	EU754173	EU754074	–	GU349083
Phragmocamarosporium hederae	MFLUCC 13–0552	KP842915	KP842918	–	–
Phragmocamarosporium platani	MFLUCC 14–1191	KP842916	KP842919	–	–
Phragmocamarosporium rosae	MFLUCC 17–0797	MG829051	MG829156	–	MG829225
Pleohelicoon fagi	MFLUCC 15–0182	NG_066320	NG_065791	NR_163353	–
Table 1 (continued)

Species	Strain/voucher number	GenBank accession number			
		LSU	SSU	ITS	TEF1-α
Pleomoniectys descalsii	CBS 142298	KY853522	–	–	–
Pleurophoma ossicola	CBS139905	KR476769	–	–	–
Pleurophoma ossicola	CPC24985	KR476770	–	–	–
Pleurophoma pleurospora	CBS130329	JF740327	–	–	–
Poaceascoma aquaticum	MFLUCC 14–0048	KT324690	KT324691	–	–
Poaceascoma halophila	MFLUCC 15–0949	MF615399	MF615400	–	–
Poaceascoma helicoides	MFLUCC 11–0136	KP998462	KP998463	KP998459	KP998461
Poaceascoma taiwanense	MFLUCC 18–0083	MG831567	MG831568	MG831569	–
Pseudomurilentithecium camporesii	MFLUCC 14–1118	MN638846	MN638850	MN638861	MN648730
Pseudoxylosemyces elegans	KT 2887	AB807598	AB797308	–	AB808576
Setoseptoria arundelensis	MFLUCC 17–0759	MG829073	MG829173	MG828962	–
Setoseptoria arundinacea	CBS 123131	GU456320	GU456298	–	GU456281
Setoseptoria arundinacea	CBS 619.86	GU301824	GU296157	–	–
Setoseptoria englandensis	MFLUCC 17–0778	MG829074	MG829174	MG828963	–
Setoseptoria halworthensis	MFLUCC 18–0110	MG829075	–	–	–
Setoseptoria magniarundinacea	KTI174	AB807576	AB797286	LC014596	AB808552
Setoseptoria phragmitis	CBS 114802	KF251752	–	KF251249	KF253199
Setoseptoria phragmitis	CBS 114966	KF251753	–	KF251250	KF253200
Setoseptoria scirpi	MFLUCC 14–0811	KY770982	KY770980	MF939637	KY770981
Splanchnonema platani	CBS 221.37	MH867404	–	MH855894	DQ677908
Splanchnonema platani	CBS 222.37	KR909316	KR909318	KR909310	KR909319
Stagonospora macropycnidia	CBS 114202	GU301824	GU296157	–	GU349026
Tingoldiago clavata	MFLUCC 19–0495	MN857180	MN857188	MN857184	–
Tingoldiago clavata	MFLUCC 19–0496	MN857178	MN857186	MN857182	–
Tingoldiago clavata	MFLUCC 19–0498	MN857179	MN857187	MN857183	–
Tingoldiago graminicola	KH155	AB521745	AB521728	LC014599	AB808562
Tingoldiago graminicola	KH168	AB521743	AB521726	LC014598	AB808561
Tingoldiago graminicola	KT891	AB521744	AB521727	LC014600	AB808563
Tingoldiago hydei	MFLUCC 19–0499	MN857177	–	MN857181	–
Towyspora aestuarii	MFLUCC 15–1274	KU248852	KU248853	NR_148095	–
Trematosphaeria pertusa	CBS 122368	FJ201990	FJ201991	KF015668	KF015701
Trematosphaeria pertusa	CBS 122371	GU301876	GU348999	KF015669	KF015702
Maximum likelihood analysis was performed using RAxML-HPC2 on XSEDE on the CIPRES web portal (Stamatakis 2006, 2014; Stamatakis et al. 2008) (http://www.phylo.org/portal2/; Miller et al. 2010). The GTR+GAMMA model of nucleotide evolution was used. RAxML rapid bootstrapping of 1,000 replicates was performed. The best-fit evolutionary models for individual and combined datasets were estimated under the Akaike Information Criterion (AIC) using jModeltest 2.1.10 on the CIPRES web portal and each resulted to the GTR+I+G model (Nylander 2004; Darriba et al. 2012). Bayesian inference analyses were performed using MrBayes v. 3.2.6 on XSEDE at the CIPRES webportal (Ronquist and Huelsenbeck 2003), using the parameter setting of two parallel runs, four chains, the run for 1,000 generations and all other parameters were left as default. The split frequencies was below 0.01. Trees were sampled every 4,000,000 generations at which point the standard deviation of split frequencies at the end of total MCMC generations is 0.007035. Phylogenetic analyses of the combined data matrix resulted in well-resolved clades (Fig. 1). The tree topologies resulted from maximum likelihood (ML), maximum parsimony (MP), and Bayesian posterior probabilities (BYP) analyses were congruent.

Genealogical concordance phylogenetic species recognition analysis

New species and their most closely related species were analyzed using the Genealogical concordance phylogenetic species recognition (GCPSR) model. A pairwise homoplasy index (PHI) (Bruen et al. 2006) test was performed in SplitsTree4 (Huson 1998; Huson and Bryant 2006) as described by Quaedvlieg et al. (2014). This was done to determine the recombination level within phylogenetically closely related species using a four-locus concatenated dataset for new species of *Halobyssothecium*. The test detects incompatibility between pairs of sites regarding whether there is genealogical history that can be inferred parsimoniously that does not involve any recurrent or convergent mutations. Pairwise homoplasy index below a 0.05 threshold (Φw < 0.05) indicates that there is significant recombination present in the dataset. The relationships between closely related species were visualized by constructing a split graph, using both the LogDet transformation and splits decomposition options.

Results

Phylogenetic analyses

The combined LSU, SSU, ITS and *TEF1*-α dataset comprised of 133 taxa from Lentitheciaceae, with Corynespora cassicola (Berk. & M.A. Curtis) C.T. Wei (CBS 100822) and *C. smithii* (Berk. & Broome) M.B. Ellis (CABI5649b) as outgroup taxa (Table 1). The analyzed dataset, after trimming, comprised a total 3,578 characters including gaps (LSU = 1,274 bp, SSU = 916 bp, ITS = 473 bp, *TEF1*-α = 915 bp) with 1,632 distinct alignment patterns and 28.64% proportion of gaps and completely undetermined characters, 2,235 constant, 414 parsimony uninformative and 940 parsimony informative characters. The MP analysis resulted a single most parsimonious tree (TL = 5,457, CI = 0.364, RI = 0.674, RC = 0.245, HI = 0.636). The ML analysis for the combined dataset provided the best scoring tree (Fig. 1) with a final ML optimization likelihood value of -32434.024914 (ln). Parameters for the GTR+I+G model of the combined LSU, SSU, ITS and *TEF1*-α dataset are as follows: estimated base frequencies; A = 0.241074, C = 0.248510, G = 0.273533, T = 0.236882; substitution rates AC = 1.038579, AG = 2.219296, AT = 1.397250, CG = 1.151737, CT = 6.450277, GT = 1.000000; gamma distribution shape parameter α = 0.228421. The Bayesian analysis indicated the average standard deviation of split frequencies at the end of total MCMC generations is 0.007035. Phylogenetic analyses of the combined data matrix resulted in well-resolved clades (Fig. 1). The tree topologies resulted from maximum likelihood (ML), maximum parsimony (MP), and Bayesian posterior probabilities (BYP) analyses were congruent.

In the phylogenetic analysis (Fig. 1), *Halobyssothecium* formed a well-supported monophyletic clade, separate from *Lentithecium* (99% ML, 95% MP, 1.00 BYPP). Three novel *Halobyssothecium* species, *H. bambusicola*, *H. phragmitis* and *H. versicolor* grouped with the other *Halobyssothecium* species in Lentitheciaceae. Moreover, five species of *Lentithecium* (*L. gangshanense*, *L. carbonneanum*, *L. kunmingense*, *L. unicellulare*, *L. voraginesporum*) clustered with *Halobyssothecium*. Therefore, these five *Lentithecium* species were transferred to *Halobyssothecium* in this study. *Halobyssothecium bambusicola* MFLUCC 20–0226 and *H. kunmingense* KUMCC 19–0101 were strongly supported as sister species (100% ML, 100% MP, 1.00 BYPP) and clustered with *H. phragmitis* (MFLUCC 20–0223, MFLUCC 20–0225) with high support (93% ML, 80% MP, 1.00 BYPP). *Halobyssothecium versicolor* MFLUCC 20–0222 forms a distinct lineage and basal to other *Halobyssothecium* species. *Lentithecium clioninum* (Kaz. Tanaka, Sat. Hatak. & Y. Harada) Kaz. Tanaka & K. Hiray. and *L. pseudoclioninum* Kaz. Tanaka & K. Hiray. clustered together with *L. flaviatile*, the type species of *Lentithecium* (99% ML, 96% MP, 1.00 BYPP). Furthermore, *L. lineare* MFLUCC 20–0224 clustered with the other two strains of *L. lineare* (IFRD2008, MFLUCC 19–0410) (100% ML, 100% MP, 1.00 BYPP).

The relationships between the three new species of *Halobyssothecium* were visualized by constructing a split graph and PHI-test revealed significant genetic recombination levels between two strains of *H. phragmitis* suggesting that
they are conspecific. The presence of recombination among fungal isolates is the hallmark that these belong to the same biological species. No significant recombination events were observed between H. bambusicola, H. kunmingense, and H. phragmitis indicating that these are different species (Fig. 2). PHI-test returns the probability of observing the data under the null hypothesis of no recombination.

Taxonomy

Halobyssothecium Dayar., E.B.G. Jones & K.D. Hyde

Saprobic on salt marsh halophytes and submerged decaying wood in aquatic habitats. **Sexual morph:** Ascomata immersed, semi-immersed or erumpent, scattered to clustered, globose to subglobose or ellipsoidal, carbonaceous, dark brown to black, gregarious, ostiolate. **Peridium** comprising of only pseudoparenchyma or two layers: outer layer of brown, inner layer of elongated, hyaline cells. **Pseudoparaphyses** cellular, septate, branched. **Asci** 8-spored, bitunicate, fissitunicate, cylindric-clavate to subcylindrical, short pedicellate, thick-walled, with or without an ocular chamber. **Conidiomatal wall** dark brown to black, centrally located. **Conidiomatal wall** dark brown to black, centrally located. **Ascomata** immersed, semi-immersed, erumpent at maturity, solitary or aggregated, unilocular, dark brown to black, centrally located. **Conidiomatal wall** composed of thick-walled, dark brown cells of **textura angularis**. **Conidiophores** reduced to conidiogenous cells. **Conidiogenous cells** enteroblastic, phialidic, determinate, smooth-walled, hyaline, asceptate, globose to subglobose, ellipsoidal, cylindrical to subcylindrical. **Conidia** spherical to globose, subglobose, ovate to obovate, ellipsoidal, clavate to subclavate, lageniform, hyaline, asceptate, straight to slightly curved, guttulate, smooth, and thick-walled. **Chlamydospores** apical, rarely intercalary, single or in chains, branching, filamentous, filiform to narrowly fusiform straight or curved, catenate, rarely solitary, branched, septate, with thickened septa, brown to dark brown at the septa, smooth-walled.

Type species: *Halobyssothecium obiones* (P. Crouan & H. Crouan) Dayar., E.B.G. Jones & K.D. Hyde, Mycological Progress 17 (10): 1165 (2018)

Notes: Two species were included in *Halobyssothecium, H. obiones* and *H. estuariae* (Dayarathne et al. 2018; Devadatha et al. 2020), collected from various host substrates in temperate regions. In the present study, three collections of morphologically distinct isolates were encountered, two were asexual morphs (*H. bambusicola* and *H. phragmitis*) and one sexual morph (*H. versicolor*), which advances the current understanding of how complex the genus is. The complexity was noted by Devadatha et al. (2020) based on previous collections by various authors. For instance, two morphologically similar taxa of *H. obiones* were collected but differed in ascospore measurements (24–38 × 8–14 μm vs. 38–56 × 16–22 μm) (Jones 1962; Caivari 1968; Webber 1970), but no sequence data was available at that time to distinguish them. *Halobyssothecium versicolor* agrees with the generic description of the genus and its placement in the phylogenetic tree redefines what comprises *Halobyssothecium*. Currently, the *Lentithecium* clade includes *L. fluviatile*, *L. elioninum* and *L. pseudocloinionum*, while *L. cangshanense*, *L. carbonneanum*, *L. kunmingense*, *L. unicellulare*, and *L. voragineporum* grouped within the *Halobyssothecium* clade and are transferred herein.

Halobyssothecium bambusicola M.S. Calabon, Boonmee, E.B.G. Jones & K.D. Hyde, sp. nov. (Fig. 3)

Index Fungorum number: IF558089; Facesoffungi number: FoF 09430

Etymology: the specific epithet “bambusicola” refers to the host, of which the fungus was collected

Holotype: MFLU 20–0549

Saprobic on decaying bamboo culms submerged in freshwater habitat. **Sexual morph:** Undetermined. **Asexual morph:** Conidiomata 350–470 μm high, 230–260 μm wide \((x = 415.4 \times 238.6, n = 10)\), pyrnicidal, immersed, erumpent at maturity, solitary or aggregated, globose, unilocular, dark brown to black, ostiolate. **Ostiole** single, circular to subcylindrical, papillate, dark brown to black, centrally located. **Conidiomatal wall** composed of thick-walled, dark brown cells of **textura angularis**. **Conidiophores** reduced to conidiogenous cells. **Conidiogenous cells** enteroblastic, phialidic, determinate, smooth-walled, hyaline, asceptate, globose to subglobose, ellipsoidal, cylindrical to subcylindrical. **Conidia** spherical to globose, subglobose, ovate to obovate, ellipsoidal, clavate to subclavate, lageniform, hyaline, asceptate, straight to slightly curved, guttulate, smooth, and thick-walled. **Chlamydospores** apical, rarely intercalary, single or in chains, branching, filamentous, filiform to narrowly fusiform straight or curved, catenate, rarely solitary, branched, septate, with thickened septa, brown to dark brown at the septa, smooth-walled.

Type species: *Halobyssothecium obiones* (P. Crouan & H. Crouan) Dayar., E.B.G. Jones & K.D. Hyde, Mycological Progress 17 (10): 1165 (2018)

Notes: Several species of freshwater fungi growing on submerged bamboo have been recorded, e.g. *Acrodictys liputii* L.
kunmingense has wider conidiomata (210 μm vs. 80 μm) and a n d Mycol Progress (2021) 20:701–720
et al. 2004; Zhang et al. 2017). μ 80 K.D. Hyde (Cai et al. 2002a, b, 2003, 2004, 2005, 2006; H o Leung, 2 Saccardoella minuta Zhang & K.D. Hyde, and C. smithii (CABI5649b) (Corynesporascaceae). Bar = 0.04 estimated number of nucleotide substitutions per site per branch.

H. kunmingense

Halobyssothecium bambusicola

Halobyssothecium phragmitis

Index Fungorum number: IF558090; Facesoffungi number: FoF 09431

Etymology: In reference to the host genus Phragmites, from which the species was isolated.

Holotype: MFLU 20–0550

Saprobic on dead Phragmites culm and stem. Sexual morph: Undetermined. Asexual morph: Conidiomata: 205–340 μm high, 215–280 μm wide, solitary, scattered, immersed to slightly immersed, pycnidial, subglobose to ellipsoidal, unilocular, black, with indistinct ostioles. Ostioles: 82–96 μm, central, circular, papillate, dark brown to black. Conidiomatal wall: 13.3–31 μm, thick-walled, 7–9 layers, comprising of dark brown cells, of textura angularis, inner layer comprising hyaline gelatinous layer, thickening at the upper and basal zone. Conidiophores reduced to conidiogenous cells. Conidiogenous cells: 8–18 × 1–5 μm (x̅ = 11.6 ± 3.2 μm, n = 20), enteroblastic, phialidic, cylindrical to lageniform, determinate, hyaline, formed from inner layers of conidiomata. Conidia: 9–19 × 2–6 μm (x̅ = 13.7–4.1 μm, n = 50), cylindrical, fusoid-ellipsoidal, straight or slightly curved, hyaline, aseptate to 1–2-septate, unilocular, mostly with one large central guttule per cell, smooth-walled.

Culture characteristics: Conidia germinated on MEA within 24 h. Colonies on MEA, reaching 10–12 mm diam. in 14 days at 25 °C. Mycelium superficial, white, flattened, hairy, dense, circular, flattened, margin entire; reverse pale brown.

Material examined: S W E D E N, Got land, Kappelshamnsviken, on dead Phragmites culm (Poaceae), 7 March 2019, E.B.G. Jones, GJ653 (MFLU 20–0550,

Fig. 2 Results of the pairwise homoplasy index (PHI) test of three novel Halobyssothecium species using both LogDet transformation and splits decomposition. PHI test results (Φw) < 0.05 indicating significant recombination within the dataset.
holotype), ex-type living cultures MFLUCC 20–0223; ibid, Sudersand, on dead *Phragmites* (Poaceae) stem, 7 March 2019, E.B.G. Jones, GJ659 (MFLU 20–0552, paratype), ex-paratype living culture MFLUCC 20–0225.

Notes: *Halobyssothecium phragmitis* resembles *Stagonospora macropycnidia* but the former species has smaller conidiomata (205–340 μm high × 215–280 μm wide) vs. 410–1020 μm high × 120–380 μm wide), and smaller conidia (9–19 × 2–6 μm vs. 22–42 × 2.5–5 μm) (Cunnell 1961). *Setoseptoria phragmitis* Quaedvl., Verkley & Crous is distinct from *H. phragmitis* with smaller conidiomata (up to 200 μm vs. 205–340 μm) and longer subcylindrical conidia (19–38 × 3.5–4 μm vs. 9–19 × 2–6 μm) (Quaedvlvieg et al. 2013). *Phragmocamarosporium platani* Wijayaw., Yong Wang bis & K.D. Hyde differs from *H. phragmitis* with smaller conidiomata (100–320 μm high, 150–300 μm diam. vs. 205–340 μm high, 215–280 μm wide) and larger brown conspicuous phragmospores (12–13 × 5–7.5 μm vs. 9–19 × 2–6 μm) (Wijayawardene et al. 2015). *Pleurophoma ossicola* Crous, Krawczynski & H.-G. Wagner differs from *H. phragmitis* with smaller conidia (3–5 × 1.5–2 μm vs. 9–19 × 2–6 μm) (Crous et al. 2015). *Murilentithecium clematidis* Wanas., Camporesi, E.B.G. Jones & K.D. Hyde is distinct from *H. phragmitis* with larger conidiomata (0.5–1.5 mm diam vs. 205–340 μm) (Wanasieghe et al. 2014). *Keissleriella quadriseptata* Kaz. Tanaka & K. Hiray. differs from *H. phragmitis* with larger cylindrical conidia (25–32 × 6–8.5 μm vs. 9–19 × 2–6 μm) (Tanaka et al. 2015). Based on multi-loci phylogenetic analyses, the above mentioned species are phylogenetically distinct to *H. phragmitis.*

Fig. 3 *Halobyssothecium bambusicola* (MFLU 20–0549, holotype). a Host. b–d Appearance of conidiomata on host surface releasing conidia in a cirrus (arrow). e Vertical section of conidioma. f Conidiomatal wall. g–j Developing conidia attach to conidiogenous cell. k–r Conidia. s–t Germinated conidia. a Colony on MEA (obverse, reverse). Scale bars: a = 200 mm; b = 1 mm; c–e = 500 μm; f = 50 μm; g–t = 10 μm.
Halobyssothecium phragmitis is phylogenetically close to H. bambusicola and H. kunmingense (93% ML, 80% MP, 1.00 BYPP). It differs from the latter with ovoidal to fusoid-ellipsoidal conidia. Halobyssothecium kunmingense has 14 base pair differences (800 bp, 1.75%) with H. bambusicola in ITS region.

Halobyssothecium versicolor M.S. Calabon, E.B.G. Jones & K.D. Hyde, sp. nov. (Fig. 5)

Index Fungorum number: IF558091; Facesoffungi number: FoF 09432

Etymology: Referring to the versicolored ascospore

Holotype: MFLU 19–0676

Saprobic on Halimione portulacoides in intertidal habitat. Sexual morph: Ascomata 265–510 μm high, 365–530 μm wide (x̄ = 408 × 459, n = 10), superficial to semi-immersed, clustered, sometimes solitary, scattered, subglobose or ellipsoidal, dark brown to black, carbonaceous, conspicuous at the surface, uni- to bi-loculate, ostiolate, with periphyses. Ostiolar neck 105–190 μm long, 95–175 μm wide (x̄ = 150 × 135, n = 10) central, papillate, rounded, short, crest-like, dark brown, composed of several layers of pseudoparenchymatous cells. Peridium 37–94 μm thick, comprising two layers: outer layer of brown pseudoparenchyma; inner layer of elongated, hyaline cells. Pseudoparaphyses 2–3 μm wide, septate, hyaline,
filiform, branched and anastomosing above the asci. *Asci* 137–173 × 17–12 μm ($\bar{x} = 153.4 \times 14.7$ μm, $n = 20$), 8-spored, clavate to subcylindrical, short pedicellate with an ocular chamber. *Ascospores* 18–41 × 6–12 μm ($\bar{x} = 27.4 \times 8.6$, $n = 20$), overlapping, uniseriate to biseriately arranged, versicolored, central cells are pale brown to dark brown, end cells hyaline, 1-septate at an early stage, 3-septate when mature, and constricted at the septa, slightly curved, lacking gelatinous sheaths or appendages. **Asexual morph**: Undetermined.

Culture characteristics: Ascospores germinated on MEA within 24 h. Colonies on MEA, reaching 10–15 mm diam. in 15 days at 25 °C. Mycelium superficial, initially pale yellow, becoming yellowish brown with age, hairy, effuse with wavy edge, dense, circular, raised, undulate, reverse dark yellowish brown.

Material examined: UK, Hampshire, Hayling Island bridge, on dead *Halimione portulacoides* (Amaranthaceae), 28 February 2019, E.B.G Jones, GJ597 (MFLU 19–0676, holotype), ex-type living cultures MFLUCC 20–0222.

Notes: *Halobyssothecium versicolor* resembles *H. obiones* and *H. estuariae* in having versicolored ascospores with brown central cells and hyaline end cells. *Halobyssothecium versicolor* differs from *H. obiones* with larger ascomata (265–510 μm high, 365–530 μm diam. vs. 360–400 μm high, 340–380 μm diam.) and smaller ascospores (18–41 × 6–12 μm vs. 28–47 × 10–18 μm) (Dayarathne et al. 2018). The asexual morph was not observed in the culture but *Halobyssothecium* species have xylomyces-like chlamydospores (Devadatha et al. 2020) and phoma-like conidia (Kohlmeier and Kohlmeier 1979; Calado et al. 2015).
Phylogenetic analysis shows that *Halobyssothecium versicolor* clustered within Lentitheciaeaceae and basal to other *Halobyssothecium* species. *Halobyssothecium versicolor* is phylogenetically close to *H. bambusicola*, *H. kunmingense*, and *H. phragmitis*. A comparison of ITS and TEF1-α sequence data of *H. versicolor* differs by 40 (8.97%, 446 bp) and 56 (6.26%, 895 bp) base pairs with *H. obiones*, type species of the genus.

Notes: *K. versicolor* was recovered from Phragmites sp. Material examined: CHINA, Yunnan Province, saprobic on decaying wood submerged in a stream. Notes: Holotype HKAS 84021. LSU and SSU sequence data are available.

New combinations

Halobyssothecium cangshanense (Z.L. Luo, X.J. Su & K.D. Hyde) M.S. Calabon, K.D. Hyde & E.B.G. Jones, comb. nov.

Halobyssothecium kunmingense (J. Fourn., Raja & Oberlies) M.S. Calabon, K.D. Hyde & E.B.G. Jones, comb. nov.

Halobyssothecium carbonneanum (J. Fourn., Raja & Oberlies) M.S. Calabon, K.D. Hyde & E.B.G. Jones, comb. nov.

Sexual morph: Undetermined. *Asexual morph:* Descriptions and illustrations refer to Su et al. (2016). Asexual morph: Undetermined

Distribution: FRANCE, Haute-Garonne, Carbonne, SW of route du Lançon, artificial lake in a gravel pit, on submerged decorticated branch of *Populus*.

Notes: Holotype ILLS 81639. ITS, LSU and RPB2 sequence data are available.

Notes: *K. carbonneanum* was recovered from decaying culm of *Phragmites* sp. Material examined: FRANCE, Haute-Garonne, Carbonne, SW of route du Lançon, artificial lake in a gravel pit, on submerged decorticated branch of *Populus*.

Notes: Holotype HKAS 84021. LSU and SSU sequence data are available.

Notes: *K. kunmingense* was recovered from decaying culm of *Phragmites* sp. Material examined: CHINA, Yunnan Province, saprobic on decaying wood submerged in a stream. Notes: Holotype HKAS 84021. LSU and SSU sequence data are available.

Notes: *K. kunmingense* was recovered from decaying culm of *Phragmites* sp. Material examined: CHINA, Yunnan Province, saprobic on decaying wood submerged in a stream. Notes: Holotype HKAS 84021. LSU and SSU sequence data are available.

Notes: *K. cangshanense* was recovered from decaying culm of *Phragmites* sp. Material examined: CHINA, Yunnan Province, saprobic on decaying wood submerged in a stream. Notes: Holotype HKAS 84021. LSU and SSU sequence data are available.

Notes: *K. versicolor* was recovered from Phragmites sp. Material examined: CHINA, Yunnan Province, saprobic on decaying wood submerged in a stream. Notes: Holotype HKAS 84021. LSU and SSU sequence data are available.

Notes: *K. kunmingense* was recovered from decaying culm of *Phragmites* sp. Material examined: CHINA, Yunnan Province, saprobic on decaying wood submerged in a stream. Notes: Holotype HKAS 84021. LSU and SSU sequence data are available.
Basionym: Lentithecium unicellulare Abdel-Aziz, Fungal Diversity 80: 53 (2016)

Sexual morph: Undetermined. Asexual morph: Descriptions and illustrations refer to Hyde et al. (2016) Distribution: EGYPT, Sohag City, on decayed wood submerged in the River Nile (Hyde et al. 2016).

Notes: Holotype CBS H-22674. LSU and SSU sequence data are available.

Haloscyphus voragensporum (Abdel-Wahab, Bahkali & E.B.G. Jones) M.S. Calabon, K.D. Hyde & E.B.G. Jones, comb. nov.

Index Fungorum number: IF558095; Facesoffungi number: FoF 09438

Basionym: Lentithecium voragensporum Abdel-Wahab, Bahkali & E.B.G. Jones, Fungal Diversity 80: 53 (2016)

Sexual morph: Descriptions and illustrations refer to Hyde et al. (2016). Asexual morph: Undetermined

Distribution: SAUDI ARABIA, Arabian Gulf, Tarut mangrove, stem inside the mangrove stand (Hyde et al. 2016)

Notes: Holotype CBS H-22560. LSU and SSU sequence data are available.

Notes for Lentithecaceae

Lentithecium aquaticum Ying Zhang, J. Fourn. & K.D. Hyde, Fungal Diversity 38: 234 (2009)

Phylogenetic analysis shows that Lentithecium aquaticum does not cluster within the Lentithecium clade but forms a weakly supported subclade basal to Darksidea species. Further collections are required to establish the taxonomic position of L. aquaticum.

Pseudomurillentithecium camporeii Mapook & K.D. Hyde, Fungal Diversity 100: 69 (2020)

In the phylogenetic analysis (Fig. 1), Pseudomurillentithecium camporeii does not cluster within Lentithecaceae but forms a weakly supported clade basal to Latoruaceae, Longipedicellataceae, and Trematosphaeriaceae. Broader sampling, including other families in Pleosporales, is necessary to confirm its placement.

Keissleriella caudata (E. Müll.) Corbaz, Phytopathologische Zeitschrift 28 (4): 411 (1957)

Preliminary phylogenetic analysis shows that Keissleriella caudata does not group with other Keissleriella species, but clusters instead with Corynespora species. Only ITS sequence data of K. caudata is available in GenBank with an accession number MH857034. BLAST analysis did not show any Keissleriella species in the first 100 closely related sequence data. A fresh collection of specimens and additional DNA sequence data are required to confirm its placement within Pleosporales.

Discussion

Since Lentithecium was established for L. fluvialis (≡ Massarina fluvialis), ten additional species have been introduced from lotic and lentic freshwater (Zhang et al. 2009b; Tanaka et al. 2015; Hyde et al. 2016; Su et al. 2016; Crous et al. 2018), as well as marine (Suetrong et al. 2009; Zhang et al. 2009b; Hyde et al. 2016) habitats and from different hosts. Lentithecium arundinaceum (≡ Massarina arundinacea), whose phylogenetic position was unclear for a long time and has been assigned to various genera (i.e., Ampullina, Heptameria, Leptosphaeria, Lophiostoma, Massarina, Metaphoma, Peripherostoma, Phaeosphaeria, Pleospora, Rpogophagus, Sphaeria, Sphaeropsis), was transferred by Tanaka et al. (2015) to Setosepertoria. Setosepertoria arundinacea clustered with other Setosepertoria species in the phylogenetic analysis (Fig. 1).

Multi-locus phylogenetic analysis shows that the three Lentithecium species, L. aquaticum, L. lineare and L. rarum (Kohl., Volkm.-Kohl. & O.E. Erikss.) Suetrong, Sakay, E.B.G. Jones, Kohlm. & Volkm.-Kohl. do not group with other Lentithecium species, which was also reported by Tanaka et al. (2015), Devadatha et al. (2020), Dong et al. (2020), and Wijayawardene et al. (2020). Lentithecium aquaticum, a species introduced by Zhang et al. (2009b) based on LSU, SSU and RPB2 sequence data, forms a weakly supported clade basal to Darksidea and Lentithecium, which confirms the observations of Tanaka et al. (2015) (Fig. 1). Dayarathne et al. (2018) and Devadatha et al. (2020) showed that Lentithecium aquaticum clustered within Setosepertoria and the asexual morph Stagonospora macrospynedia, while Crous et al. (2018) confirmed that it does not group in Lentithecium.

Keissleriella rara was transferred to Lentithecium by Suetrong et al. (2009) together with K. cladophila and Massarina phragmiticola. The present phylogenetic analysis shows that Lentithecium rarum clustered in Keissleriella as sister taxon to K. trichophoricola Crous & Quaedvl. (Fig. 1). The same placement was observed also by Singtripop et al. (2015). Keissleriella linearis was transferred by Zhang et al. (2009b) to Lentithecium based on LSU and SSU sequence data. Keissleriella linearis, in common with other Keissleriella species, has short brown setae around the apex of the ascomatal ostiole, but Zhang et al. (2009b) opined that the presence of setae has little phylogenetic significance. In their phylogenetic analysis, other species and strains of Keissleriella were not included. Singtripop et al. (2015) reexamined the type specimen of L. lineare and transferred it to Keissleriella based on
morphology and LSU sequence data, and this is in agreement with recent studies by Tanaka et al. (2015), Hyde et al. (2016) and the present study. However, Dayarathne et al. (2018) and Devadatha et al. (2020) placed L. lineare in the Lentitheciaceae clade. The recent discovery of the asexual morph of L. lineare by Tibell et al. (2020) and the phylogenetic analysis based on the four-locus sequence dataset in the present study supports its taxonomic placement in Keissleriella.

The continuous discovery of novel fungal species has significantly contributed to the revision of fungal taxa (Arzanlou et al. 2007; Boonmee et al. 2011; Tanaka et al. 2015; Hashimoto et al. 2017; Hyde et al. 2018, 2020a,b,c). Phylogenetic analysis of the newly discovered Halobyssothecium species, including all the members of Lentitheciaceae, with molecular data supports the transfer of Lentithecium cangshanense, L. carbonneanum, L. kunmingense, L. unicellulare, and L. voraginesporum to Halobyssothecium. In the present placement, members of Halobyssothecium have brown and versicolored ascospores without sheath and hyaline conidia, while Lentitheciu species possess hyaline ascospores with mucilaginous sheaths.

Key to Halobyssothecium species

1. Asexual morph...2
2. Sexual morph...5

1* Conidiomata < 350 μm long..4
1* Conidiomata > 350 μm long..2
2* Conidia, ellipsoidal to cylindrical..................H. phragmitis
3 Conidiomata > 350 μm long............................H. bambusicola
3* Conidiomata < 350 μm long..........................H. carbonneanum
4 Conidiomata 210–250 × 320–350 μm..................H. kunmingense
4* Conidiomata 115–235 × 140–235 μm..................H. unicellulare
5 Ascospores, brown...6
5* Ascospores, versicolored............................H. voraginesporum
6 Asci > 100 μm high...7
6* Asci < 100 μm high........................H. estuariae
7 Asci 38–50 × 8–10 μm..H. voraginesporum
7* Asci 65–78 × 11–13 μm.................................H. kunmingense
8 Asci > 200 μm high..9
8* Asci < 200 μm high..H. versicolor
9 Asci 180–214 × 12–16 μm..........................H. obiones
9* Asci 120–235 × 10–25 μm.............................H. estuariae

References

Apinis AE, Chesters CGC (1964) Ascomycetes of some salt marshes and sand dunes. Trans Br Mycol Soc 47:419–435. https://doi.org/10.1016/s0007-1536(64)80014-0
Arzanlou M, Groenewald JZ, Gams W et al (2007) Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera. Stud Mycol 58:57–93. https://doi.org/10.3114/sim.2007.58.03
Barr ME (1987) Prodomus to Class Leculoascomycetes. Amherst.
University of Massachusetts, Massachusetts

Boonmee S, Zhang Y, Chomnunti P et al (2011) Revision of lignicolous Tubeufiaceae based on morphological reexamination and phylo-
genetic analysis. Fungal Divers 51:63–102. https://doi.org/10.1007/s13225-011-0147-4

Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681. https://doi.org/10.1534/genetics.105.048975

Cai L, Li, J., Hyde KD (2006) Variation between freshwater and terres-
trial fungal communities on decaying bamboo culms. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 89:293–301. https://doi.org/10.1007/s10482-005-9030-1

Cai L, Lyumong P, Zhang K, Hyde KD (2002a) New species of Annullatascus and Saccardoellia from the Philippines. Mycota 24:255–263

Cai L, Zhang K, Hyde KD (2005) Ascosynnmania aquatica gen. et sp.
nov., a freshwater fungus collected from China and its micryclic conidiation. Fungal Divers 18:1–8. https://doi.org/10.2307/1468376

Cai L, Zhang K, McKenzie EHC et al (2002b) Acroclydia lipput sp. nov.
and Digitodesmium bambusicola sp. nov. from bamboo submerged in the Liput River in the Philippines. Mycologia 97:525–532. https://doi.org/10.101177/0029-5035/2002/0075-0052

Cai L, Zhang K, McKenzie EHC, Hyde KD (2003) Freshwater fungi from bamboo and wood submerged in the Liput River in the Philippines. Fungal Divers 13–12.

Cai L, Zhang K, McKenzie EHC, Hyde KD (2004) Linocarpon bambusicola sp. nov. and Dictyochaeta curvispora sp. nov. from bamboo submerged in freshwater. Nova Hedwigia 78:439–445. https://doi.org/10.1007/s10029-005-0397-9

Calado MDL, Carvalho L, Pang KL, Barata M (2015) Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microb Ecol 70:612–633. https://doi.org/10.1007/s00248-015-0600-0

Cavaliere AR (1968) Marine fungi of Iceland: A preliminary account of Calfiellopsis and Saccardoellia from the Philippines. Mycota 84:255–263

Crouan PL, Crouan HM (1867) Florule du Finistère: Contenant les de-
scriptions de 360 espèces nouvelles de sporagames, de nombreuses observations et une synonymie des plantes cellulaires et vasculaires, et la table des principaux organismes. Société d'histoire naturelle de Brest et Morlaix. 784 p. [Brest, 1867. L. Lavoisier]

Crous PW, Wingfield MJ, Guarro J et al (2015) Fungal Planet description 84:255–267. Mycol Progress (2021) 20:701–720

Dayarathne MC, Wanasinghe DN, Jones EBG et al (2018) A novel ma-
rine genus, Halobythoscytium (Lenthiaceae) and epitypification of Halobythoscytium obiones comb. nov. Mycol Prog 17:1161–1171. https://doi.org/10.1007/s11557-018-1432-3

de Gruyter J, Aveskamp MM, Woudenberg JHC et al (2009) Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclas-
sification of the Phoma complex. Mycol Res 113:508–519. https://doi.org/10.1016/j.mycres.2009.01.002

Dennis RWG (1964) The Fungi of the Isle of Rhum. Kew Bull 19:77–127. https://doi.org/10.2307/4108295

Devadatha B, Calabon MS, Abeywickrama PD et al (2020) Molecular data reveals a new holomorphic marine fungus, Halobythoscytium estuariae, and the asexual morph of Keissleriella phragmiticola. Mycologia 11:167–183. https://doi.org/10.1080/21501203.2019.1700025

Dong W, Wang B, Hyde KD et al (2020) Freshwater Dothideomycetes. Fungal Divers 105:319–575. https://doi.org/10.1007/s13225-020-00463-5

Glez-Peña D, Gómez-Blanco D, Reiboaro-Jato M et al (2010) ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acids Res 38:W14–W18. https://doi.org/10.1093/nar/gkq321

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41(1999):95–98. https://doi.org/10.14601/Phytopathol_Meditter-14998u1.29

Hashimoto A, Matsumura M, Hirayama K, Tanaka K (2017) Revision of Lophiostomataceae (Pleosporales, Dothideomycetes): Aquasubmersaceae, Cryptocoryneaceae, and Hermatomyctaceae fam. nov. Persoonia Mol Phylogeny Evol Fungi 39:51–73. https://doi.org/10.3767/persoonia.2017.39.03

Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192. https://doi.org/10.1093/sysbio/42.2.182

Hirayama K, Tanaka K, Raja HA et al (2010) A molecular phylogenetic assessment of Massarinae ingoldiana sensu lato. Mycologia 102: 729–746. https://doi.org/10.3852/09-230

Ho WH, Hyde KD, Hodgkiiss IJ (2004) Cataractispora receptaculorum, a new freshwater ascomycete from Hong Kong. Mycologia 96:411–417. https://doi.org/10.1080/15572536.2005.11832986

Höhnel F (1919) Fragmente zur Mykologie. XXIII Mitteilung, Nr. 1154 bis 1188. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-naturw. Klasse Abt I 128:535–625

Hongsanan S, Hyde KD, Phookamsak R et al (2020) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11:1553–2107. https://doi.org/10.5943/mycosphere/11/1/13

Huson DH (1998) SplitsTree: Analysing and visualizing evolutionary data. Bioinformatics 14:68–73. https://doi.org/10.1093/bioinformatics/14.1.68

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

Hyde KD, Chetana KWT, Jayawardena RS et al (2020a) The rise of mycology in Asia. Sci Asia 46:1–11. https://doi.org/10.2306/scienciaasia1513-1874.2020.S001

Hyde KD, Dong Y, Phookamsak R et al (2020b) Fungal diversity notes 1151–1276; taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers 100:5–277. https://doi.org/10.1007/s13225-020-00439-5

Hyde KD, Hongsanan S, Jeewon R et al (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 80:1–270. https://doi.org/10.1007/s13225-016-0373-x

Hyde KD, Jeewon R, Chen YJ et al (2020c) The numbers of fungi: is the descriptive curve flattening? Fungal Divers 103:219–271. https://doi.org/10.1007/s13225-020-00458-2

Hyde KD, Jones EBG, Liu JK et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313. https://doi.org/10.1007/s13225-013-0263-4

Hyde KD, Mouzouras R (1988) Passeriniella savoryiopsis sp. nov., a new ascomycete from intertidal mangrove wood. Trans Br Mycol Soc 91:179–185. https://doi.org/10.1016/s0007-1536(88)80024-x

Hyde KD, Norphanshoun C, Chen J et al (2018) Thailand’s amazing diversity: up to 96% of fungi in northern Thailand may be novel.

Springer
Zhang Y, Schoch CL, Fournier J et al (2009a) Multi-locus phylogeny of Pleosporales: A taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102.S5. https://doi.org/10.3114/sim.2009.64.04
Zhang Y, Wang HK, Fournier J et al (2009b) Towards a phylogenetic clarification of Lophiosoma/Massarina and morphologically similar genera in the Pleosporales. Fungal Divers 38:225–251

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.