Flexible Subcarrier Allocation for Interleaved Frequency Division Multiple Access

Yulin Shao, Graduate Student Member, IEEE, and Soung Chang Liew, Fellow, IEEE

Abstract—Interleaved Frequency Division Multiple Access (IFDMA) and Orthogonal FDMA (OFDMA) belong to a class of signal modulation and multiple-access techniques in which information of multiple users are multiplexed and carried on subcarriers within a shared spectrum. Compared with OFDMA, IFDMA has lower Peak-to-Average Power Ratio (PAPR). However, IFDMA poses two rigid constraints on subcarrier allocation: 1) the subcarriers occupied by a user must be evenly-spaced among the available subcarriers. 2) the number of subcarriers used by a user must be a divisor of the total number of subcarriers. Unless these constraints can be overcome, IFDMA may remain impractical despite its excellent PAPR. This paper investigates how to overcome these constraints to allow flexible and fine-grained subcarrier allocation in IFDMA. Specifically, we put forth i) a bit-reversal subcarrier allocation scheme whereby the problem of allocating evenly-spaced subcarriers is transformed to a more intuitive problem of filling contiguous bins; ii) a multi-stream IFDMA scheme whereby a user can have an arbitrary number of subcarriers. For the synchronous scenario in which user requests arrive in a synchronous manner, we show that IFDMA can achieve the same level of flexibility and granularity as OFDMA in subcarrier allocation. For the asynchronous scenario in which user requests arrive and depart asynchronously, we show that the blocking probability of IFDMA is only slightly worse than that of OFDMA: specifically, the gap between the blocking probabilities of IFDMA and OFDMA is only 2.56% at a moderate offered load.

Index Terms—IFDMA, SC-FDMA, PAPR, resource allocation, multiple access, bit-reversal mapping.

I. INTRODUCTION

Wireless networks are consuming ever more energy [1]. For example, China Mobile operated 3.85 million base stations (BS) in 2018 (inclusive of 2.41 million 4G BS) [2], with an annual energy consumption of 24,470 GWhs [3]. This is only the energy consumption by one operating company. In the 5G era, worldwide energy consumption of wireless networks is expected to increase by two to three times [4]. Energy efficiency has become a primary concern in the design and operation of future cellular, Internet of Things (IoT), and sensor networks.

Orthogonal Frequency Division Multiplexing (OFDM) accounts for a large part of the energy consumption in 5G [4], [5]. A major problem of OFDM signals is the large amplitude fluctuation. When passed through a nonlinear power amplifier, the large peak of OFDM signals leads to in-band distortion and out-of-band radiation [6], [7]. Thus, Highly Linear Amplifiers (HLA) are required for OFDM systems. HLA, however, incurs large power dissipation [8].

Interleaved Frequency Division Multiple Access (IFDMA) and Orthogonal FDMA (OFDMA) are signal modulation and multiple-access techniques that multiplex information of multiple users onto a set of subcarriers within a shared spectrum [9], [10]. OFDMA is widely used in existing broadband wireless systems. It is based on OFDM and therefore also suffers from large amplitude fluctuation. Compared with OFDMA, IFDMA presents a waveform with significantly lower Peak-to-Average Power Ratio (PAPR) [11], [12]. As a result, IFDMA transmitters do not require HLA, and by avoiding the large power dissipation associated with HLA, IFDMA can be more energy saving than OFDMA [13]. Other advantages of IFDMA over OFDMA includes the ability to achieve full frequency diversity, smaller sensitivity to frequency offset, and the ability to combat frequency nulls [14].

The excellent PAPR performance of IFDMA comes from the combining of multi-carrier modulation with spreading [15], [16]. Specifically, in IFDMA, the information of a user is precoded by a DFT and then modulated to subcarriers that are evenly distributed across the whole spectrum.1 As a result, the PAPR of IFDMA is similar to that of Code Division Multiple Access (CDMA) [18]. In particular, a constant-envelope waveform (with 0 dB PAPR) is obtained if the users adopt Phase Shift Keying (PSK) modulation and rectangular pulse shaping.

IFDMA, however, has rigid requirements on subcarrier allocation. Let us refer to a data stream multiplexed onto a set of subcarriers as an IFDMA stream. At any one time, the shared spectrum may be occupied by IFDMA streams of

1In LTE uplink, the DFT-precoded symbols are modulated onto contiguous subcarriers. This is named Localized single-carrier FDMA (LFDMA) [10]. IFDMA and LFDMA differ only in the subcarrier mapping scheme (i.e., interleaved versus localized), but IFDMA has better PAPR performance [16], [17] and is able to achieve full frequency diversity.
multiple users. An IFDMA stream is subject to the following two constraints [10], [16]:

- **Constraint 1:** Subcarrier allocation in IFDMA must be carefully orchestrated so that not only the subcarriers of different IFDMA streams are non-overlapping, but also that the subcarriers of each IFDMA stream are evenly spaced (e.g., subcarriers \{0, 4, 8, \ldots\} are allocated to one IFDMA stream; subcarriers \{1, 17, 33, \ldots\} to another IFDMA stream).

- **Constraint 2:** The number of subcarriers of an IFDMA stream must be a divisor of the number of the overall available subcarriers (e.g., if there are 64 subcarriers, the number of subcarriers of an IFDMA stream must be one of \{1, 2, 4, 8, 16, 32, 64\}; the number of subcarriers of a stream cannot be 3).

These two constraints lead to the following impressions:

1) With Constraint 1, the subcarrier allocation of IFDMA is very inflexible, even in the synchronous scenario where all the user requests arrive at the AP simultaneously.

2) With Constraint 1, the subcarrier allocation of IFDMA is even more complex in the asynchronous scenario where the requests of different users can come and go in an asynchronous manner.

3) With Constraint 2, the subcarrier allocation of IFDMA can only be coarse-grained.

Prior works on IFDMA subcarrier allocation, to be elaborated in Section II-B, addresses only Constraint 1 in the synchronous request arrival scenario [19], [20]. In this paper, we argue that all the above three impressions due to Constraints 1 and 2 are not exactly true. In fact, the imposed rigidity of IFDMA belies nice mathematical structures that can be exploited to simplify subcarrier allocation and transceiver design. Specifically, (i) the bit-reversal mapping, and (ii) signal modulations of IFDMA streams of different sizes can be interpreted as FFTs of different scales embedded within the overall Cooley-Tukey FFT recursive decomposition scheme. The simple IFDMA transceiver designs inspired by (ii) are treated comprehensively in our companion paper [17]. The main focus of this paper is on subcarrier allocation in IFDMA systems and we will exploit (i) to simplify the process.

The major contributions and conclusions of this paper are as follows:

1) We put forth a new bit-reversal subcarrier allocation scheme for IFDMA whereby, instead of focusing on allocating evenly-spaced subcarriers to an IFDMA stream, we focus on a simpler notion of filling contiguous “bins”. We show that, after such contiguous bin filling, a bit-reversal mapping of the contiguous bin indexes automatically yields the evenly-spaced subcarrier indexes. Based on this scheme, we design two bin-filling policies: the sort-first policy and the min-small-change policy.

2) In the synchronous request arrival scenario, we prove that both the sort-first and the min-small-change policies allow full loading in IFDMA systems. Specifically, as long as the sum total of the subcarriers requested by all users does not exceed the number of available subcarriers in the system, the two policies will be able to satisfy all the requests. Thus, IFDMA is as flexible as OFDMA in synchronous subcarrier allocation.

3) In the asynchronous scenario where requests do not arrive simultaneously and where each newly arriving request sees some subcarriers already occupied by other earlier arriving requests, we investigate the blocking properties of IFDMA requests. We prove that the offered load of an asynchronous IFDMA system has to be severely limited in order that the system is strictly nonblocking. That is, the allowed loading would be much lower than full loading if IFDMA were to be operated as a strictly nonblocking system. Fortunately, by allowing a small blocking probability, IFDMA can have good performance. Under moderate offered load, our min-small-change policy reduces the blocking probability of IFDMA systems by 17.21% compared with the random policy in [19], [20], and the gap between the blocking probabilities of IFDMA and OFDMA is only 2.56%.

4) We put forth a multi-stream IFDMA scheme that allows each user to be allocated multiple IFDMA streams to serve two purposes. First, Constraint 2 is addressed with multi-stream IFDMA. The size of a request can be any positive integer smaller than or equal to the total number of available subcarriers. Second, the multi-stream IFDMA systems are strictly nonblocking even under full loading. Overall, multi-stream IFDMA is on an equal footing with OFDMA as far as the flexibility and granularity of subcarrier allocation are concerned. Yet, multi-stream IFDMA has better PAPR performance than OFDMA.

II. SUBCARRIER ALLOCATION IN IFDMA

A. IFDMA

We consider an uplink multiple access system where multiple users transmit signals to a common access point (AP) using orthogonal subcarriers. When operated with IFDMA, each user requests a set of subcarriers according to the rate requirement, and constructs an IFDMA stream to transmit the signal.

Let \(M \) be the total number of available subcarriers, and \(N \) be the number of subcarriers requested by a user. In order for the user to be able to construct an IFDMA stream, the subcarrier allocation is subject to two constraints:

- **Constraint 1:** The \(N \) subcarriers allocated to a user must be evenly spaced among the \(M \) subcarriers. That is, the distance between the indexes of two adjacent allocated subcarriers must be \(M/N \).

- **Constraint 2:** \(M \) must be a divisor of \(M/N \) so that \(M/N \) is an integer.

Denote a sequence from 1 to \(M - 1 \) by \([M]\), i.e., \([M] = \{0, 1, \cdots, M - 1\}\). If we index the \(M \) subcarriers by \([M]\), then the indexes of the \(N \) subcarriers allocated to the user are

\[
\left\{ d + i \frac{M}{N} : i = [N] \right\},
\]

(1)

where \(d \in [M/N] \) is a constant frequency shift.

Given the \(N \) allocated subcarriers, Fig. 1 shows two possible realizations for the construction of an IFDMA stream at the
transmitter. The first is a realization in the frequency domain (the dashed modules), and the second is a realization in the time domain (the solid modules).

Let us first focus on the frequency-domain realization. As shown, the symbols to be transmitted are grouped into blocks of size N, that is, $\{x[n]: n = [N]\}$. Each block of time-domain symbols is transformed to the frequency domain by an N-point DFT, and is then mapped to the N allocated subcarriers according to (1), with the $M - N$ unoccupied subcarriers filled with 0. After that, the transmitter performs an M-point IDFT to transform the data on M subcarriers back to the time-domain, and obtains an IFDMA stream $\{x'[\ell]: \ell = [M]\}$. It is easy to verify that [10]

$$x'[\ell] = N\frac{M}{e^{j\frac{2\pi}{M}d}}x[\ell \mod N], \quad \ell = [M]. \quad (2)$$

In particular, if $d = 0$ (i.e., the allocated subcarriers are $\{\frac{M}{N}: i = [N]\}$), the IFDMA stream is simply $x'[\ell] = \frac{N}{M}x[\ell \mod N], \quad \ell = [M]$. Eq. (2) gives the simpler and more direct time-domain realization of the IFDMA stream. That is, $\{x'[\ell]\}$ can be directly constructed from $\{x[n]\}$ by repetition and frequency upshifting, hence bypassing the N-point DFT, subcarrier mapping/multiplexing and the M-point IDFT.

B. Prior Solutions to Subcarrier Allocation

Most of the nice attributes of IFDMA can be understood from its simple time-domain representation in (2), e.g., the simple transmitter design in uplink and the superior PAPR property compared with OFDMA.

Despite the advantages, a common view on IFDMA is that the subcarrier allocation, as well as the multiplexing/demultiplexing of IFDMA streams, are quite inflexible due to the above two constraints. On the one hand, the subcarriers allocated to each user have to be evenly spaced among the M subcarriers – this is even more challenging in asynchronous systems (defined below) where the requests from different users can come and go in an asynchronous manner. On the other hand, in IFDMA, users can only request for a power-of-2 subcarriers and cannot request an arbitrary number of subcarriers, which is possible in OFDMA. IFDMA thus has coarse granularity in resource allocation.

Definition 1 (Synchronous and Asynchronous Subcarrier Allocation): In synchronous subcarrier allocation, all the users’ requests arrive at and depart from the AP simultaneously. A new batch of requests will not arrive until all the earlier requests have left the system. In asynchronous subcarrier allocation, the users’ requests arrive at the AP asynchronously, and the service times of different requests are non-uniform. Thus, a newly arriving request may see some subcarriers already occupied by existing requests.

Prior works on subcarrier allocation address only Constraint 1 in synchronous arrival systems. The general idea is to construct a tree structure, and associate the vertices of the tree with eligible sets of subcarriers that can be allocated to users.

In [19], the author assumed M is a power of 2, and constructed a tree similar to the one used for generating Orthogonal Variable Spreading Factor (OVSF) codes. An example of the tree structure is given in Fig. 2.

As can be seen, each vertex of the tree is associated with a set of subcarriers (represented by black points) that can be assigned to users. Given a number of synchronous requests, the AP performs the following procedure to allocate subcarriers:

1. **Step i –** Sort the requests according to their sizes in descending order.
2. **Step ii –** For the request with the largest size, randomly choose a vertex on the tree whose associated set has the same size with the request. Assign the subcarriers in the associated set to the request.
3. **Step iii –** Eliminate the vertex chosen in step ii and all its descendent vertex.
4. **Step iv –** Repeat steps ii and iii until all requests are satisfied.

In [20], the authors studied the synchronous subcarrier allocation problem for more general composite M. Unlike the case of power-of-2 M where the binary tree is well-determined, the tree structure for general composite M has many variations. For example, Fig. 3 presents the two variations when $M = 6$.

To summarize,

1. Prior solutions address only the synchronous subcarrier allocation. Their idea is to build a tree structure so that the vertices of the tree can be mapped to different sets of evenly-spaced subcarriers of various sizes.
2) Prior solutions cannot be generalized to asynchronous subcarrier allocation because sorting the requests is no longer possible when request arrivals are asynchronous. Without sorting, the random vertex-selection policy leads to a large blocking probability of incoming requests, as will be shown in this paper.

3) Prior solutions still suffer from Constraint 2. \(N \) must be a divisor of \(M \), but not any integers, limiting the granularity of the allocated resources.

This paper makes advances on all the three problems faced by prior works.

III. Synchronous Subcarrier Allocation

This section focuses on the subcarrier allocation problem in synchronous IFDMA systems. We show that IFDMA is as flexible as OFDMA in terms of synchronous subcarrier allocation. To ease exposition, we will first assume a) the total number of available subcarriers, \(M \), is a power of 2; b) the number of subcarriers requested by each user, \(N \), is a divisor of \(M \) (hence is also a power of 2). The results obtained under the two assumptions can be well-extended to general composite \(M \) (as detailed in Appendix A), and general \(N \) which may not be a divisor of \(M \) (with our multi-stream IFDMA scheme detailed in Section III-D).

A. Bit-Reversal Subcarrier Allocation Scheme

To begin with, we put forth a new bit-reversal subcarrier allocation scheme where no tree construction is required. Given this scheme, we then prove that resource allocation of IFDMA is on an equal footing with OFDMA in that “full loading” is possible. That is, provided constraints 1 and 2 are fulfilled by all user requests, as long as the total number of subcarriers requested by the users is no more than \(M \), all the requests can be fulfilled.

Instead of allocating evenly-spaced subcarriers to users, we consider the problem of filling contiguous bins with users’ requests. Algo. 1 presents a basic version of the bit-reversal scheme with a sort-first bin-filling policy.

Algorithm 1 The Bit-Reversal Subcarrier Allocation Scheme

Suppose that we have \(M = 2^m \) bins (instead of subcarriers) labelled with \(k = 0, 1, \cdots, 2^m - 1 \).

- **Sorting.** We sort the users according to the number of requested subcarriers in descending order.
- **Bin Allocation.** We allocate bins to the sorted users in the order of bin 0 to bin \(2^m - 1 \). That is, each user who requests 2\(^i\) subcarriers is allocated the next 2\(^i\) unallocated bins. Users with larger request size is considered first.
- **Bit-reversal mapping.** We perform a bit-reversal mapping from bins to subcarriers. That is, if a bin with binary index \(b_{m-1}b_{m-2} \cdots b_1b_0 \) is allocated to a user, then the subcarrier with binary index \(b_0b_1 \cdots b_{m-2}b_{m-1} \) will be allocated to this user.

Table I gives an example of the bit-reversal subcarrier allocation scheme. In this example, we assume \(M = 8 \) \((m = 3)\), and three users \(A, B \) and \(C \) requests for 1, 4 and 2 subcarriers, respectively. To use the bit-reversal subcarrier allocation scheme, we first sort the users according to their requests. The sorted users are \(B \) (4 subcarriers), \(C \) (2 subcarriers) and \(A \) (1 subcarrier). Following the second step, we allocate bins \(\{0, 1, 2, 3\} \) to user \(B \), bins \(\{4, 5\} \) to user \(C \), and then bins \(\{6\} \) to user \(A \). After bit-reversal mapping, users \(A, B \) and \(C \) finally get subcarriers indexed by \(\{0, 2, 4, 6\} \), \(\{1, 5\} \) and \(\{3\} \), respectively.

Table I

Bins	Binary index of bins	Bit-reversal	Subcarriers
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Essentially, our bit-reversal subcarrier allocation scheme reveals that the underlying relationship between evenly-spaced subcarriers and contiguous bins is a bit-reversal mapping.

In this context, instead of subcarrier allocation, we can consider an equivalent problem of bin allocation; and instead of evenly-spaced subcarriers, we can now have the simpler mental picture of contiguous bins when performing resource allocation. As a result, the problem of allocating evenly-spaced subcarriers is transformed to the more intuitive problem of filling contiguous bins (this model also comes in handy when we consider asynchronous subcarrier allocation later), and no tree construction is needed as in [19], [20]. In fact, if we go back to tree in Fig. 2, it can be found that the subcarrier locations in the leaf vertices form a bit-reversal permutation. The tree structure and the bit-reversal mapping are closely related.

Given the bit-reversal scheme, we prove in Theorem 2 below that IFDMA is as flexible as OFDMA in terms of synchronous subcarrier allocation. In particular, provided that the total number of subcarriers requested by all the users does not exceed \(M \), all the requests can be fulfilled, and full loading is possible for IFDMA systems. The validity of bit-reversal mapping is also proved within the proof of Theorem 2 (i.e., bit reversing the indexes of allocated contiguous bins give rise to subcarrier indexes that are evenly spaced).

Theorem 2 (Full Loading Is Possible in IFDMA): Let \(a_n \) be the number of users requesting for \(2^n \) subcarriers, and \(M = 2^m \). If the inequality in (3) below is satisfied, we can use the bit-reversal subcarrier allocation scheme to assign subcarriers to users such that the spacing between the subcarriers assign to a user with request size \(2^n \) is \(2^{m-n} \) (i.e., the
Proof: We prove Theorem 2 by induction. The theorem can be easily verified to be valid for \(m = 1 \) or 2. We prove below that if the theorem is valid for any \(m \geq 2 \), it is also valid for \(m + 1 \).

A first observation is that, the length-(\(m+1 \)) bit-reversal permutation can be generated from the length-\(m \) bit-reversal permutation by doubling the numbers in the length-\(m \) permutation and concatenate the resulting sequence with the same sequence with each value increased by one [21]. For example, doubling the length-4 permutation \((0, 2, 1, 3)\) gives \((0, 4, 2, 6)\); adding one to each value in \((0, 4, 2, 6)\) gives \((1, 5, 3, 7)\); and concatenating these two sequences gives the length-8 permutation \((0, 4, 2, 6, 1, 5, 3, 7)\).

Consider bin allocation associated with the second step of our bit-reversal allocation algorithm. We have two possible cases as far as the set \(\{a_n : n = 1, 2, \ldots, m+1\} \) is concerned. Case I: \(a_{m+1} = 1 \); Case II: \(a_{m+1} = 0 \). For Case I, there is a single user wanting all the \(2^{m+1} \) subcarriers. The theorem is trivially true for this case. For Case II, we divide the bins into two subsets: subset \(A \) consists of bins \(\{0, 1, \cdots, 2^m-1\} \) and subset \(B \) consists of bins \(\{2^m, 2^m+1, \cdots, 2^{m+1}-1\} \). Since \(a_{m+1} = 0 \), and all the users want only a multiple of \(2^m (n = 0, 1, 2, \cdots, m) \) bins, the bins allocated to a user must all belong to one of the two subsets according to our bin allocation algorithm in the second step.

Let us first consider the users being allocated bins in subset \(A \). If we were to consider the length-\(m \) bit-reversal permutation for this group of users, the subcarriers allocated to them would satisfy the length-\(m \) problem by the assumption of our inductive argument. Specifically, if a user wants \(2^m \) subcarriers, \(0 \leq n \leq m \), then the spacing between subcarriers allocated would be \(2^{m-n} \) by assumption. When we migrate to the length-(\(m+1 \)) problem, the indexes of the subcarriers allocated to these users would be doubled. Specifically, the new spacing would be \(2 \times 2^{m-n} = 2^{m+1-n} \), thus satisfying the new IFDMA constraint.

We next consider the users being allocated bins in subset \(B \). If we were to index these bins by \(\{0, 1, \cdots, 2^m-1\} \) rather than \(\{2^m, 2^m+1, \cdots, 2^{m+1}-1\} \), we see that, by the same reasoning as in the previous paragraph, these users would also satisfy the new IFDMA constraint for the length-(\(m+1 \)) problem. The rest is adding one to the indexes of the allocated subcarriers so that these subcarriers are distinct from the subcarriers allocated to users of the first group in the previous paragraph. Adding one to all subcarrier indexes preserves the spacing between subcarriers. Thus, the IFDMA constraint for the length-(\(m+1 \)) problem remains satisfied.

B. Bin-Filling Policies

With the bit-reversal scheme, the problem of allocating evenly-spaced subcarriers is transformed to a more intuitive problem of filling contiguous bins. Algo. 1 in Section III-A is a bin-filling policy that satisfies the subcarrier allocation constraints. There could be other bin-filling policies that also satisfy the subcarrier allocation constraints. In this subsection, we give another policy that does so without the need for the sorting step in Algo 1. By getting rid of the need for sorting, this policy also suggests what we should do for asynchronous subcarrier allocation where user requests do not arrive together (in which case sorting the requests before allocating subcarriers to them is not possible). This part considers synchronous subcarrier allocation with this new policy, and asynchronous subcarrier allocation will be considered in Section IV.

To satisfy the IFDMA constraint, an eligible bin-filling policy must allocate an “unoccupied fillable bin subset” to each user. An unoccupied fillable bin subset is basically a subset of as-yet unallocated bins with contiguous indexes that can be used to fulfill a new request, defined below:

Definition 3 (Fillable Bin Subset): A fillable bin subset of size \(N \), denoted by \([iN, iN + N - 1]\), is a subset of contiguous bins with labels \([iN, iN + 1, \cdots, iN + N - 1]\) such that a request of size \(N \) can be allocated in the subset without violating the IFDMA constraint. In particular, given a request of size \(N \), there are \(M/N \) “potential fillable bin subsets” that can be used to fulfill it, i.e., \(i = 0, 1, 2, \cdots, M/N - 1 \). A potential fillable bin subset can be occupied or unoccupied. For the “occupied fillable bin subset”, at least one bin in the subset is already occupied by another request. For the “unoccupied fillable bin subset”, all the \(N \) bins in the subset are as yet unallocated and therefore can be used to fulfill a request of size \(N \).

The Min-Small-Change Bin-Filling Policy: The idea of the min-small-change policy is to partition the unallocated bins into as few fillable bin subsets as possible to prevent fragmentation. With this notion, initially, without any request, we have a single unoccupied fillable bin subset, \([0, M - 1]\). Suppose that the first request presented to us is a request for two bins. We can give it bins \([0, 1]\). Now, the remaining unoccupied fillable bin subsets are \([2, 3]\), \([4, 5, 6, 7]\), \([8, 9, 10, 11, 12, 13, 14, 15]\), \cdots. If the next request presented to us is also for two bins, we should give it the subset \([2, 3]\) rather than fragmenting other subsets for the allocation. If the request is for four bins, we should give it \([4, 5, 6, 7]\). The idea is analogous to keeping as little small change as possible when we spend our money. Large fillable bin subsets correspond to bills of large denominations, and small fillable bin subsets correspond to bills of small denominations. That is where the name “min-small-change” is coined from.

Theorem 4 (The Min-Small-Change Policy Enables Fully Loaded IFDMA Systems): Let \(M = 2^m \) and \(N = 2^n \) where \(n \leq m \). Suppose that a set of requests are presented to us in a random order in synchronous IFDMA systems. When using the min-small-change policy to fill the bins for the bit-reversal subcarrier allocation scheme, a new request for \(N \) subcarriers is guaranteed to be granted provided that \((3) \) is satisfied (i.e., the total number of requested subcarriers in the system does not exceed \(M \)).

Proof: We prove Theorem 4 by contradiction. Suppose at some point during the allocation process, we are faced with a situation where the next request is for \(N \) bins but we cannot find an unoccupied fillable bin subset with \(N = 2^n \) or...
more bins. If (3) is satisfied, there must be multiple smaller unoccupied fillable bin subsets such that together they have \(N\) bins. These smaller bin subsets must each have \(2^i\) bins for some \(i < n\). In other words, we have

\[
2^n = \sum_{i=0}^{n-1} \psi_i 2^i, \tag{4}
\]

where \(\psi_i\) is the number of unoccupied fillable bin subsets of the size \(2^i\) in the system.

On the other hand, a key observation from the bin allocation process of the min-small-change policy is that at any one time as we allocate bins to successive requests, we cannot have two unoccupied fillable bin subsets of the same size thanks to the min-small-change policy. That is, for each \(i\), there can be at most one such bin subset. This means \(\psi_i\) can only be either 1 or 0. However, in this case, we must have

\[
2^n > \sum_{i=0}^{n-1} \psi_i 2^i, \tag{5}
\]

because the LHS is larger than the RHS even if \(\psi_i = 1\) for all \(i < n\).

Eq. (4) contradicts (5). Thus, the next request for \(N\) bins can always be granted as long as (3) is satisfied.

Theorem 4 shows that fully loaded IFDMA systems can be achieved even without sorting the synchronous requests.\(^3\) In fact, the benefits of the min-small-change policy go far beyond this. Unlike the sort-first bin-filling policy, the min-small-change policy can be further applied in 1) asynchronous IFDMA systems where the requests come and go, as will be expounded in Section IV; and 2) systems wherein a subset of subcarriers are not available for use, e.g., the direct-conversion receivers in Section III-C below.

Corollary 5 (Subcarrier Allocation for DCR): Let \(a_n\) be the number of users requesting for \(2^n\) subcarriers, and \(M = 2^m\). Consider direct-conversion receivers where the DC subcarrier is unavailable. Provided that the inequality in (6) below is satisfied, then we can use the bit-reversal subcarrier allocation scheme with the min-small-change bin-filling policy to assign subcarriers to users such that their IFDMA constraints are satisfied.

\[
\sum_{n=0}^{m} a_n 2^n \leq 2^m - 1. \tag{6}
\]

Comment: The RHS of (6) is due to the fact that we are giving up one subcarrier.

Proof: We can treat the unavailable subcarrier as one that has already been allocated to a fictitious request of size 1 that was presented to us first in the allocation process.

To illustrate Corollary 5, consider the example of \(M = 8\) \((m = 3)\). At the beginning, instead of having a complete unoccupied fillable bin subset \([0, M - 1]\), we have multiple smaller unoccupied fillable bin subsets. Suppose that the DC subcarrier is subcarrier \{4\}. After bit reversal, the corresponding bin to be avoided is bin \{1\}. Thus, the initial fillable bin subsets are \([0]\), \([2, 3]\), \([4, 5, 6, 7]\). That is, it is as if we have already granted bin 1 to a fictitious request that asks for one subcarrier before we begin the real bin allocation.

For the original IFDMA system with the DC subcarrier, we have \(2^m-1\) potential fillable bin subsets for a request that asks for \(2^n\) subcarriers. For an IFDMA system that avoids the DC subcarriers, the number of possible allocations is just one less than the above. That is, we have \(2^m-2\) potential allocations for requests that ask for \(2^n\) subcarriers. It is not possible to grant a request for \(2^m\) subcarriers now; but this is the case even for an OFDM system that avoids the DC subcarrier. For requests that ask for \(2^m-1\) subcarriers, we have one potential fillable bin subset in IFDMA that avoids the DC subcarrier; but even for the OFDMA system that avoids the DC subcarrier, one can only grant one (but not two) request that asks for \(2^m-2\) subcarriers. Compared with non-DC OFDMA system, non-DC IFDMA has the same “capacity performance” in that the fully loaded capacity is decreased by 1 only.

D. Multi-Stream IFDMA

Our bit-reversal subcarrier allocation scheme well addresses Constraint 1 (i.e., the evenly-spaced-subcarrier constraint). In this subsection, we further put forth a new multi-stream IFDMA scheme to address Constraint 2 (i.e., the divisor-of-\(M\) constraint).

Definition 6 (Multi-Stream IFDMA): Let \(M\) be the total number of subcarriers. Suppose a user request for \(N\) subcarriers, where \(N\) can be any positive integer smaller than or equal to \(M\). A multi-stream IFDMA system allows the user to construct multiple IFDMA streams, as opposed to only one stream in traditional IFDMA systems. Specifically, the AP will partition the request to \(Q\) sub-requests, and the size of each sub-request is a divisor of \(M\). That is, \(N = \sum_{i=1}^{Q} N_i\) and each \(N_i\) is a divisor of \(M\). The AP then allocates subcarriers to each sub-request following the evenly-spaced-subcarrier rule.
The user will then construct Q IFDMA streams and transmit the sum of the Q streams.

For example, suppose that $M = 16$ and $N = 6$. In a conventional IFDMA system, the user has to request for 8 instead of 6 subcarriers to fulfill its rate requirement because 6 is not a divisor of 16, causing bandwidth wastage. However, in multi-stream IFDMA systems, the user can partition 6 into $4 + 2$, and construct two IFDMA streams, one of size 4 and the other of size 2. The transmitted signal of this user is then the sum of the two IFDMA streams. Note that the partition is not unique. In the extreme case, the user can construct 6 streams, each of size 1. Thus, the size of users’ request N can be any positive integer smaller than or equal to M in multi-stream IFDMA systems.

Despite its advantages in subcarrier allocation, multi-stream IFDMA does not retain the perfect PAPR performance of the conventional IFDMA. This is because the sum of multiple IFDMA streams causes fluctuations in the amplitude of the transmitted signal.

Fig. 4 compares the PAPR performance of the conventional single-stream IFDMA, multi-stream IFDMA, and OFDMA, where $M = 16$, $N = 64, 65, 127$. The transmitted symbols are QPSK modulated, and shaped by root-raised-cosine (RRC) pulse with a roll-off factor $\beta = 0.5$.

The multi-stream IFDMA scheme does not incur extra complexity in transceiver designs. We refer interested readers to our companion paper [17] for a class of new transceiver designs for IFDMA/Multi-IFDMA systems that are significantly less complex than the conventional IFDMA transceiver.
The reason is that the two bin-filling policies minimize fragmentation of unoccupied fillable bin subsets. For example, when \(M = 4 \), \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) is a legal state, but \(\begin{array}{ccc} 0 & 0 & 1 \end{array} \) is illegal with the min-small-change policy when applied to synchronous IFDMA systems: in the first case, the two 0’s represent an unoccupied fillable bin subset of size 2, while in the second case, the two 0’s represent two unoccupied fillable bin subsets of size 1, which does not conform to the min-small-change policy.

On the other hand, even with the min-small-change bin-filling policy, \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) is legal in asynchronous IFDMA systems because of departures of ongoing requests. For example, state \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) is legal because there could be three ongoing requests of size 1. In an asynchronous IFDMA system, state \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) can evolve to state \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) upon the departure of the request holding the third bin. If a new request of size 2 then arrives, the new request cannot be granted even though there are two vacant bins in \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) because the two vacant bins cannot form a fillable bin subset of size 2.

For asynchronous IFDMA, if we allow the rearrangement of the occupied bins, there will also be no rejections in asynchronous IFDMA systems provided (3) is satisfied. For the same example in the above, a new request of size two can still be granted even when the system is in state \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) because we can reassign bins to the existing requests so that the state becomes \(\begin{array}{ccc} 1 & 0 & 0 \end{array} \) or \(\begin{array}{ccc} 0 & 0 & 1 \end{array} \), creating an unoccupied fillable bin subset of two.

For concreteness, let us state the formal definitions of “Rearrangeably Nonblocking” and “Strictly Nonblocking” [25].

Definition 7 (Rearrangeably Nonblocking): A system is said to be rearrangeably nonblocking if a new request can always be granted, after rearranging the assigned bins to the existing requests if necessary, provided that (3) is satisfied (i.e., the total size of the requests, including the new request, does not exceed \(M \)).

Proposition 8: Asynchronous IFDMA systems are rearrangeably nonblocking.

Proof: Since we are allowed to reassign bins for the existing requests, we can rerun the synchronous resource allocation algorithm for all the requests (the existing requests plus the new request) as if they arrive synchronously.

Definition 9 (Strictly Nonblocking): A system is said to be strictly nonblocking if a new request can always be granted without rearranging the assigned bins to the existing requests, provided that (3) is satisfied (i.e., the total size of the requests, including the new request, does not exceed \(M \)).

Comment: For example, OFDMA systems are strictly nonblocking, because a new request can be granted in OFDMA systems as long as there are enough vacant subcarriers, i.e., (3) is satisfied.

Asynchronous IFDMA poses a stringent requirement on the offered load if the system is to be strictly nonblocking. The RHS of (3) must be relaxed to guarantee that there is no rejection/blocking of new requests.

Definition 10 (Strictly Nonblocking Under Offered Load Limit): A system is said to be strictly nonblocking with number of occupied bins limited to \(K \) if a new request can always be granted, provided the total size of all requests (existing plus the new request) is no more than \(K \).

Theorem 11 (Strictly Nonblocking Property of Asynchronous IFDMA Systems Under Offered Load Limit): Suppose that \(M = 2^m \) is the total number of subcarriers, and there is a new request arriving at an asynchronous IFDMA system. Denote by \(a_n \) the number of requests (including the new request) requiring \(2^n \) subcarriers. The asynchronous IFDMA system is strictly nonblocking if and only if the following inequality is satisfied:

\[
\sum_{n=0}^{m} a_n 2^n < \frac{2^m+1}{3 \times 2^{m-1}} \quad \text{if } m \text{ is even},
\]

\[
\sum_{n=0}^{m} a_n 2^n < \frac{2^{m-1}+1}{3 \times 2^{m-1}} \quad \text{if } m \text{ is odd}.
\]

Proof: Subcarrier occupancy can translate from bin occupancy through bit-reversal mapping. Thus, we can think in terms of bin occupancy. We ask the following question. Suppose that there is a new request for \(2^n \) subcarriers. What is the minimum number of bins occupied by existing users that can block the new request? For this new request, there are \(M/2^n = 2^{m-n} \) potential fillable bin subsets that can be used to fulfill it. However, if some bin in each and every of these potential fillable bin subsets is already occupied by an existing request, then none of them can be used to fulfill the new request. The minimum number of occupied bins to cause this situation is \(2^{m-n} \), wherein one bin in each of the potential fillable bin subsets is occupied by an existing request of size 1. If, on the other hand, the number of occupied bins is less than \(2^{m-n} \), then at least one of the potential fillable bin subsets is empty, and blocking cannot occur for the new request. Thus, to guarantee nonblocking property, the number of occupied bins plus the number of newly requested bins must be less than \(2^{m-n} + 2^n \). The RHS of (7) is found by \(\min_{0 \leq n \leq m}(2^{m-n} + 2^n) \) (i.e., finding the worst-case \(n \)).

Theorem 11 indicates that, for asynchronous IFDMA systems, the price to pay for having the strictly nonblocking property is pretty steep and may not be worthwhile. Compared with (3), the total number of requested subcarriers allowed at any one time has to be severely limited in order to have the strictly nonblocking property as in (7).

Multi-Stream IFDMA: A multi-stream IFDMA scheme can enable strictly nonblocking IFDMA systems with full loading (i.e., a multi-stream IFDMA system is strictly nonblocking in the sense of Definition 9).

As stated in Definition 6, a multi-stream IFDMA scheme allows the user to construct multiple IFDMA streams, as opposed to only one stream in traditional IFDMA systems. Given a new request of size \(N \), the AP can partition the request to multiple sub-requests, and the size of each sub-request is a divisor of \(M \). In this context, the problem of finding an unoccupied fillable bin subset of size \(N \) is transformed to a problem of finding multiple unoccupied fillable bin subsets of smaller size. In the extreme case, the AP can partition the request to \(N \) sub-requests, each of size one.

Proposition 12: Multi-stream IFDMA systems are strictly nonblocking.

Proof: If the number of total requested subcarriers does not exceed \(M \), a new request can always be partitioned...
to multiple sub-requests so that multiple empty fillable bin subsets can be used to fulfill the request— in the extreme case, we partition the incoming request to multiple sub-requests of size one.

In addition to the strictly nonblocking property, multi-stream IFDMA also enables fine-grained asynchronous subcarrier allocation. The size of requests is restricted to a divisor of M in Theorem 11. This restriction can be removed with the multi-stream scheme. Each user can request an arbitrary number of subcarriers, and the multi-stream IFDMA systems are strictly nonblocking as long as the total number of requested subcarriers is no more than M.

B. Blocking Probability of Asynchronous IFDMA Systems

Without the multi-stream scheme, the strictly nonblocking property is expensive to achieve for asynchronous IFDMA systems. Let $M = 1024$ ($m = 10$), for example. To have a strictly nonblocking IFDMA system, the load needs to be limited to $2^{2^m + 1} = 64$ subcarriers according to Theorem 11. On the other hand, OFDMA systems are strictly nonblocking even with full loading of 1024 subcarriers.

However, given a certain amount of blocking tolerance (i.e., we give up making the system strictly nonblocking by allowing blocking as long as the blocking probability is not excessive), how does an IFDMA system perform when benchmarked against an OFDMA system in the asynchronous scenario? This subsection answers this question.

In asynchronous IFDMA systems, the bin-filling policy is very important in that it determines the probability that a new request gets blocked. We will consider two bin-filling polices for asynchronous IFDMA: the random policy considered in [19], [20], and our min-small-change policy proposed in Section III.

1) **The Markov Chain**: Analytically, the state transitions in asynchronous IFDMA systems can be modeled as a Markov Chain (MC) [26] for a given request arrival model (e.g., Poisson arrival), a given holding-time model (e.g., exponential holding time), and a given bin-filling policy.

The complete state transitions of the MC when $M = 4$ is shown in Fig. 5, where the min-small-change policy is used to fill the bins (we omit the state-transition probabilities to avoid cluttering the picture). As can be seen, there are 26 states. A bidirectional edge between two states means the transition can be from left to right (upon a request arrival), and also from right to left (upon a request departure). A unidirectional links means the state can only transit in one direction, in particular, from right to left. For instance, suppose the system is in state 0001. Upon an arrival of request of size one, the state can become 11000, but not 01010 or 10011 according to the min-small-change policy. On the other hand, all three states 01100, 10010 and 11001 can potentially evolve to state 10000 upon a departure of a request of size one. Thus, the edge between states 10000 and 11000 is bidirectional, while the edge between 01100 and 11000 (or 11001) is unidirectional.

To derive the blocking probability of the IFDMA system, we have to compute the steady-state distribution of the associated MC. However, the number of the states in the MC grows at an extremely fast rate (even faster than exponential) with the increase of M. As indicated by Proposition 13, the MC becomes analytically intractable very quickly.

Proposition 13 (Number of States in the MC): Let $M = 2^m$ be the total number of subcarriers, and $f(m)$ be the number of states in the MC associated with the asynchronous IFDMA systems. We have

$$f(m) = f^2(m - 1) + 1 \geq 2^{2m}. \quad (8)$$

Proof: To conserve space, the proof is presented in Appendix B of our technical report [27].

A possible way to reduce the number of states in the MC is to merge the states that have the same blocking probabilities into a super state. For example, the states 10000, 01100, 00011, and 00001 can be merged together as a super state because they are equivalent in terms of blocking probability. The MC then becomes a consolidated MC, in which the number of super states is much less than the number of fine states in the original MC. As an example, the fine-state MC in Fig. 5 can be transformed to the consolidated MC in Fig. 6, where the number of super states is 11, while the number of fine states is 26.

Proposition 14 (Number of Super States in the Consolidated MC): Let $M = 2^m$, and $g(m)$ be the number of super states in the consolidated MC associated with the subcarrier
allocation in asynchronous IFDMA systems. We have
\[g(m) = \frac{1}{2} m^2 (m - 1) + \frac{1}{2} g(m - 1) + 1 \geq 2^{m-1} + 1. \]
(9)

Proof: To conserve space, the proof is presented in Appendix C of our technical report [27].

Proposition 14 shows that the number of super states is still too huge to handle. In view of the analytical intractability of the problem, we resort to simulation analysis to investigate the blocking probability of asynchronous IFDMA systems.

2) Monte-Carlo Simulations: We simulate a multiple access system with one AP and multiple users. The total number of subcarriers is \(M = 2^m = 1024 \), and the users can request \(N = 2^n, n = 0, 1, 2, \cdots, m \) subcarriers. The system is either IFDMA or OFDMA.

For requests of different sizes, we assume their arrivals follow independent Poisson process. In particular, the arrival rate (the number of arrivals per unit time) of a request is inversely proportional to its size, i.e., for a request of size \(2^n \), the arrival rate \(\lambda_n = \frac{1}{2^n} \lambda \) where \(\lambda \) is a constant. Further, we assume the holding time of a request (i.e., the duration that the user stays in the system) follows exponential distribution with mean \(1/\mu \). Without loss of generality, we assume \(\mu = 1 \) for all requests.

For this system, the offered load (normalized by the total number of subcarriers) is given by
\[G = \frac{1}{2^m} \sum_{n=0}^{m} 2^n \frac{\lambda_n}{\mu} = (m + 1) 2^{-m} \lambda. \]
(10)

The blocking probability can be computed by
\[P_B = \frac{\sum_{n=0}^{m} 2^n r_B(n)}{\sum_{n=0}^{m} 2^n r(n)} \]
(11)

where \(r(n) \) is the number of arrived requests of size \(2^n \), and \(r_B(n) \) is the number of requested requests of size \(2^n \) that gets blocked. The normalized throughput of the system \(S = 1 - P_B \).

Under random arrivals, a request is sure to be blocked in the case of instantaneous overload, wherein there are not enough unoccupied subcarriers left to fulfill the number of subcarriers requested. We note that even for a strictly nonblocking system as defined in Definition 9, blocking due to instantaneous overload can still occur under the random request arrival model.

As illustrated in Fig. 7, an OFDMA system can suffer from blocking due to instantaneous overload only. However, for an IFDMA system, besides blocking due to overload, an incoming request can also be rejected due to fragmentation of bins (i.e., the number of vacant bins is larger than the size of the request, but a set of contiguous bins is not available to fulfill the request).

In this context, we further define the “the probability of blocking due to fragmentation” to characterize the proportion of the “rejected load due to fragmentation” in the offered load:
\[P_f = \frac{\sum_{n=0}^{m} 2^n r_f(n)}{\sum_{n=0}^{m} 2^n r(n)} \]
(12)

where \(r_f(n) \) is the number of requests of size \(2^n \) that gets blocked when the system backlog (i.e., the number of occupied subcarriers) is less than or equal to \(2^m - 2^n \) (i.e., blocking only due to the fragmentation of bins). Note that \(P_f = 0 \) in OFDMA, because a request of size \(2^n \) can be granted as long as the system backlog is less than or equal to \(2^m - 2^n \).

Fig. 8 presents the blocking probabilities (\(P_B \) and \(P_f \)) versus the offered load to the system. Three schemes are simulated: OFDMA, IFDMA with random bin-filling policy, and IFDMA with the min-small-change bin-filling policy. They are abbreviated as “OFDMA”, “Random policy”, and “Min policy” in the figure, respectively.

Let us first compare the two bin-filling policies in IFDMA systems. As shown, the min-small-change policy performs significantly better than the random policy. At a moderate offered load 0.5, the min-small-change policy reduces the blocking probability \(P_B \) by 17.21%.

The performance of \(P_f \) is even more revealing to showcase the importance of a good bin-filling policy. For the min-small-change policy, 3.09% of the offered load are rejected due to the fragmentation of bins. On the other hand, for the random policy, 22.07% of the offered load are rejected due to the fragmentation of bins. The min-small-change policy reduces the blocking probability due to the fragmentation of bins by 18.98%.

Then, we benchmark the blocking probabilities of IFDMA systems (with the min-small-change policy) against the OFDMA systems. As can be seen, as expected, IFDMA systems has higher blocking probability than the OFDMA systems, but the gap is not large. When the offered load is 0.5, the performance gap is only 2.56% in terms of \(P_B \), and 3.09% in terms of \(P_f \).

In the simulation of Fig. 8, requests of different sizes (from size 1 to size \(M \)) are mixed together and fed into the systems.
Additional simulations are performed by us to investigate the blocking probabilities of requests of different sizes. We found that, unsurprisingly, the requests with larger size have higher blocking probabilities, in particular, the requests of size \(M \) are mostly blocked (again this is obvious because even there is one occupied bin only, a request of size \(M \) will be blocked). This is the case for both IFDMA and OFDMA.

Whether for IFDMA or OFDMA systems, it is not a good idea to support a mix of large and small requests at the same time. This is because large requests will be blocked most of the time, effectively eliminating the use of the system to fulfill large requests.

In this light, we advocate not mixing requests of small and large sizes into the same system. To verify the benefits of this, we repeat the simulations in Fig. 8, but change the composition of the traffic fed into the system. Specifically, given the same offered load to the system, the sizes of the request in Fig. 8 can be \(2^n \) where \(n = 0, 1, \cdots, m; \) however in the new simulation, we limit the size of the requests to \(2^n \) where \(n = 0, 1, \cdots, m/2.\)

The simulation results are presented in Fig. 9. As shown, for the same offered load, the blocking probabilities \(P_B \) of both OFDMA and IFDMA systems are reduced by much under the new traffic model where the mixing of small and large streams is prevented. In particular, for IFDMA, almost all the blocking are caused by the fragmentation of bins at a heavy load 0.9. This matches with our traffic design that the worst case of blocking due to fragmentation is retained, only the blocking due to instantaneous overload is largely reduced.

Furthermore, the performance gaps between asynchronous OFDMA and IFDMA systems are negligible under light and moderate offered load. This is reasonable because the span of the stream size is limited. We note in passing also that, to the extent that all requests are of the same size (i.e., \(2^n \) for a fixed \(n \)), then there is no difference between IFDMA and OFDMA as far as blocking probability is concerned.

C. Blocking Probability of the “Limited” Multi-Stream IFDMA

Recall that multi-stream IFDMA is strictly nonblocking (Proposition 12). However, to contain PAPR, we may want to limit the maximum number of IFDMA streams allocated to each request in multi-stream IFDMA. When such a limit is imposed, blocking can also occur in multi-stream IFDMA. This subsection studies the blocking probability of such limited multi-stream IFDMA systems benchmarked against the OFDMA systems.

In multi-stream IFDMA, users are allowed to partition their request to multiple subrequests and construct an IFDMA stream for each subrequest. Multi-stream IFDMA is thus more flexible than single-stream IFDMA. In particular,

- A divisor-of-\(M \) request rejected in single-stream IFDMA can be fulfilled by multi-stream IFDMA. For example, suppose \(M = 16 \), and the sizes of the unoccupied fillable bin subsets are \(\{1, 4\} \). In single-stream IFDMA, a new request of size \(N = 8 \) will be rejected because there is no vacant fillable bin subset of the same size. In contrast, multi-stream IFDMA allows the AP to partition the request size to \(4 + 4 \), thereby fulfilling the request.
- Non-divisor-of-\(M \) requests are legal in multi-stream IFDMA systems. Users are allowed to request any number of subcarriers in multi-stream IFDMA, not only divisor-of-\(M \) subcarriers as in single-stream IFDMA.

The blocking probability of limited multi-stream IFDMA is determined by the maximum number of IFDMA streams that users are allowed to construct for a request (denoted by \(H \)). To the extend that users are allowed to construct any number of IFDMA streams, the multi-stream IFDMA is unlimited and its blocking performance is the same as that of OFDMA (in either synchronous or asynchronous systems). This is because a request of size \(N \) can always be partitioned to \(N \) subrequests of size 1, and the blocking in multi-stream IFDMA systems is only due to instantaneous overload (as in OFDMA). On the other hand, if each user is allowed to construct at most one IFDMA stream, i.e., \(H = 1 \), multi-stream IFDMA degrades to single-stream IFDMA.

Consider the same multiple access system as in Fig. 8, wherein \(M = 2^m = 1024 \), and the arrivals follow independent Poisson process. When operated with multi-stream IFDMA, users can request an arbitrary number of subcarriers, i.e., \(N = [M] \). The offered load and the blocking probabilities in (10), (11), and (12) can be rewritten as

\[
G = \frac{1}{M} \sum_{N=1}^{M} \frac{N\lambda N}{\mu} = \lambda.
\]

\[
P_B = \frac{\sum_{N=1}^{M} r_B(N)N}{\sum_{N=1}^{M} r(N)N}, \quad P_f = \frac{\sum_{N=1}^{M} r_f(N)N}{\sum_{N=1}^{M} r(N)N}.
\]

Fig. 10 presents the blocking probabilities of limited multi-stream IFDMA (with our min-small-change policy) and OFDMA versus the offered load. In this system, users can
request an arbitrary number of subcarriers, i.e., \(N = [M] \). To ensure that any non-divisor-of-\(M \) request can be partitioned, we set the maximum number of streams that users are allowed to construct, \(H \), to \(\log_2 M \) because the partitions of \(M - 1 \) result in at least \(\log_2 M \) power-of-2 integers. In other words, if \(H < \log_2 M \), a request of size \(M - 1 \) will be rejected for sure, and that the minimum \(H \) that makes sense is \(\log_2 M \).

As can be seen from Fig. 10, the gaps between the blocking probabilities of multi-stream IFDMA and OFDMA are negligible. Multi-stream IFDMA is as flexible as OFDMA in terms of subcarrier allocation while having far better PAPR performance (see Fig. 4).

V. CONCLUSION

Interleaved Frequency Division Multiple Access (IFDMA) is a multiplexing and signal modulation technique for multi-user systems with excellent Peak-to-Average Power Ratio (PAPR) performance. However, the evenly-spaced-subcarrier and the divisor-of-\(M \) constraints make subcarrier allocation of IFDMA inflexible.

This paper put forth a bit-reversal subcarrier allocation scheme and a multi-stream IFDMA scheme for IFDMA systems to enable flexible and fine-grained resource allocation while retaining the nice PAPR performance of IFDMA. Specifically,

1) in the synchronous scenario where all requests arrive simultaneously, all the requests can be satisfied provided that the sum total of the requested subcarriers does not exceed the number of available subcarriers in the system;

2) in the asynchronous scenario where requests do not arrive simultaneously and where each newly arriving request sees some subcarriers already occupied by other earlier arriving requests, the blocking probability of IFDMA is only slightly worse than that of OFDMA: specifically, the gap between the blocking probabilities of IFDMA and OFDMA is only 2.56% at a moderate offered load.

In essence, the major shortcomings of IFDMA due to the evenly-spaced-subcarrier and the divisor-of-\(M \) subcarrier allocation constraints can be overcome with our proposed schemes. With the shortcomings thus removed, given its excellent PAPR performance (hence excellent energy efficiency), IFDMA is a serious green technology for future wireless communications networks.

APPENDIX A

DIGIT-REVERSAL SUBCARRIER ALLOCATION FOR COMPOSITE-\(M \) IFDMA

The foundation of many of our results in Section III and IV is the bit-reversal subcarrier allocation scheme, where we assume the total number of subcarriers \(M \) is a power of 2. For general composite \(M \), the bit-reversal procedure can be generalized to a digit-reversal procedure. With digit reversal, the results for the power-of-2 \(M \) case can then be generalized to those for general composite \(M \).

Let us consider a synchronous IFDMA system to elaborate the idea of digit-reversal subcarrier allocation. Let \(M \) be the total number of subcarriers in the system, where \(M \) is a composite number. A prime factorization of \(M \) is an operation of factoring \(M \) into a product of \(T \) primes in the order of \(p_{T − 1}, p_{T − 2}, \ldots, p_1, p_0 \), i.e., \(M = p_{T − 1} \times p_{T − 2} \times \cdots \times p_1 \times p_0 \). The prime factorization of \(M \) is not unique in that the order of the primes can vary. Power-of-2 \(M \) is a special case, however, in that all prime factors are 2, and therefore the order does not matter and the prime factorization is unique.

When the prime factorization of \(M \) is not unique, we can only choose one of the possible prime factorizations to serve as the architectural bedrock for our digit-reversal subcarrier-allocation algorithm and the transceiver designs (see our companion paper [17]). Intermixing of different factorizations by different users (i.e., different users assume different factorizations) will lead to inconsistencies in the subcarrier allocation, as well as the multiplexing and demultiplexing processes in the transceiver design.

Given a decomposition \(M = p_{T − 1} \times p_{T − 2} \times \cdots \times p_1 \times p_0 \), the IFDMA system can only support requests of sizes \(\{1, p_1, p_0 p_1, p_0 p_1 p_2, \ldots, p_0 p_1 p_2 \cdots p_{T − 1}\} \). For example, there are three possible factorizations for \(M = 12 \): \(12 = 3 \times 2 \times 2 \), \(12 = 2 \times 3 \times 2 \), and \(12 = 2 \times 2 \times 3 \). The three corresponding sets of allowed request sizes are \(\{1, 2, 4, 12\} \), \(\{1, 2, 6, 12\} \), and \(\{1, 3, 6, 12\} \).

This resource allocation constraint applies to single-stream IFDMA system only, and for multi-stream IFDMA, requests of any size can be satisfied by allocating multiple streams of IFDMA to a request. For example, a request of size 6 can be satisfied by an IFDMA stream of size 2 plus an IFDMA stream of size 4 if the factorization that leads to allowed stream sizes of \(\{1, 2, 4, 12\} \) is adopted. On the other hand, the same request can be satisfied by an IFDMA stream size of 6 if the factorization that leads to allowed stream sizes of \(\{1, 2, 6, 12\} \) is adopted instead.

We note, however, that even for multi-stream IFDMA, the transceiver design still depends on the factorization adopted, and that for consistency of the system, all users must assume the same factorization. Although the sizes of requests are not limited, how to construct multiple streams to satisfy a request does depend on the factorization adopted, and hence the transceiver design [17].
The prime factorization of a composite number, provided that the total number of requested subcarriers does not exceed \(M \), we can use the digit-reversal subcarrier allocation scheme, with either the sort-first or the min-small-change bin-filling policy, to assign subcarriers to users such that the evenly-spaced-subcarrier constraint is satisfied.

Proof: The general proof follows the proof of Theorem 2 by induction. See Appendix A of our technical report [27] for more details.

Besides the sort-first bin-filling policy presented in Algo. 2, it is straightforward that the min-small-change policy can also be used to achieve fully loaded IFDMA systems.

Algorithm 2 The Digit-Reversal Subcarrier Allocation Scheme

Suppose that we have \(M = \prod_{t=0}^{T-1} p_t \) bins labelled with \(k = 0, 1, \ldots, M - 1 \). In particular, an index \(k \) can be expressed in the digit form as \(d_{T-1} d_{T-2} \cdots d_0 \), where \(d_t = 0, 1, 2, \ldots, p_t - 1 \).

- **Sorting.** We sort the users according to the number of requested subcarriers in descending order.
- **Bin Allocation.** We allocate bins to the sorted users in the order of bin 0 to bin \(M - 1 \). That is, each user who requests \(N_i \) subcarriers is allocated the next \(N_i \) unallocated bins. Users with larger request size is considered first.
- **Bit-reversal mapping.** We perform a bit-reversal mapping from bins to subcarriers. That is, if a bin with binary index \(d_{T-1} d_{T-2} \cdots d_0 \) is allocated to a user, then the subcarrier with binary index \(d_0 d_1 \cdots d_{T-2} d_{T-1} \) will be allocated to this user.

Table II gives an example of the digit-reversal subcarrier allocation scheme. In this example, we assume \(M = 12 \), and the prime factorization of \(M \) is fixed to \(12 = 2 \times 2 \times 3 \) (i.e., \(p_0 = 3, p_1 = 2, \) and \(p_2 = 2 \)). In this system, the request sizes can be \(\{1, 3, 6, 12\} \). Suppose that there are three users, \(A, B, \) and \(C \) requesting \(3, 1, \) and 6 subcarriers, respectively. To use the digit-reversal subcarrier allocation scheme, we first sort the users according to their requests. The sorted users are \(C \) (6 subcarriers), \(A \) (3 subcarriers) and \(B \) (1 subcarrier).

Following the second step, we allocate bins \(\{0, 1, 2, 3, 4, 5\} \) to user \(C \), bins \(\{6, 7, 8\} \) to user \(A \), and then bins \(\{9\} \) to user \(B \). After digit-reversal mapping, users \(A, B \) and \(C \) finally get subcarriers indexed by \(\{1, 5, 9\}, \{3\}, \) and \(\{0, 4, 8, 2, 6, 10\} \), respectively.

When operated with the digit-reversal subcarrier allocation scheme, we have similar claims to Theorem 2 that full loading is possible for synchronous IFDMA systems with a composite \(M \).

Corollary 15 (Full Loading Is Possible for Composite-M IFDMA): In a synchronous IFDMA system with \(M \) subcarriers where \(M \) is a composite number, provided that the total number of requested subcarriers does not exceed \(M \), we can use the digit-reversal subcarrier allocation scheme, with either the sort-first or the min-small-change bin-filling policy, to assign subcarriers to users such that the evenly-spaced-subcarrier constraint is satisfied.

References

[1] A. Andrae and T. Edler, “On global electricity usage of communication technology: Trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, Apr. 2015.

[2] ChinaMobile. (2018). Annual Report: Our Way Ahead. [Online]. Available: https://www.chinamobile.com/en/hr/reports/ar2018.pdf

[3] ChinaMobile. (2018). Sustainability Report: Connect to the Future. [Online]. Available: https://www.chinamobile.com/en/hr/reports/ar2018sd2018.pdf

[4] M. Kozioł, “5G’s waveform is a battery vampire,” IEEE Spectr., vol. 56, no. 1, Jan. 2019.

[5] G. Wunder, R. F. H. Fischer, H. Boche, S. Litsyn, and J.-S. No, “The PAPR problem in OFDM transmission: New directions for a long-lasting problem,” IEEE Signal Process. Mag., vol. 30, no. 6, pp. 130–144, Nov. 2013.

[6] T. Giannopoulos and V. Palouras, “Relationship among BER, power consumption and PAPR,” in Proc. 3rd Int. Symp. Wireless Pervasive Comput., May 2008, pp. 633–637.

[7] M. C. Paredes and M. J. Fernández-Getino García, “The problem of peak-to-average power ratio in OFDM systems,” 2015, arXiv:1503.08271. [Online]. Available: http://arxiv.org/abs/1503.08271

[8] L. Frenzel, “Understanding an instrument amplifier’s linear operating range,” Electron. Des., Jan. 2017.

[9] H. G. Myung, “Introduction to single carrier FDMA,” in Proc. 15th Eur. Signal Process. Conf. (EUSIPCO), Sep. 2007, pp. 2144–2148.

[10] H. Myung, J. Lim, and D. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 30–38, Sep. 2006.

[11] D. Wulich and L. Goldfeld, “Bound of the distribution of instantaneous power in single carrier modulation,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1773–1778, Jul. 2005.

[12] B. Lin et al., “Experimental demonstration of IFDMA for uplink visible light communication,” IEEE Photon. Technol. Lett., vol. 28, no. 20, pp. 2218–2220, Oct. 15, 2016.

[13] H. Holma and A. Toskala, LTE for UMTS: OFDMA and SC-OFDM Based Radio Access. Hoboken, NJ, USA: Wiley, 2009.

[14] F. El-Samie, F. Al-Kamali, A. Al-Nahari, and M. Dessouky, SC-OFDMA for Mobile Communications. Boca Raton, FL, USA: CRC Press, 2016.

[15] C. Ciochina and H. Sari, “A review of OFDMA and single-carrier FDMA.” in Proc. Eur. Wireless Conf., Apr. 2010, pp. 706–710.

[16] T. Frank, A. Klein, and E. Costa, “IFDMA: A scheme combining the advantages of OFDMA and CDMA,” IEEE Wireless Commun., vol. 14, no. 3, pp. 9–17, Jun. 2007.

[17] S. C. Liew and Y. Shao, “New transceiver designs for interleaved frequency division multiple access,” 2019, arXiv:1911.10303. [Online]. Available: http://arxiv.org/abs/1911.10303

[18] K.-C. Chen and C.-M. Chang, “Frequency-domain approach to multiuser detection in DS-CDMA communications,” IEEE Commun., Lett., vol. 4, no. 11, pp. 331–333, Nov. 2000.

[19] R. Dinis, D. Falconer, C. T. Lam, and M. Sabbaghian, “A multiple access scheme for the uplink of broadband wireless systems,” in Proc. GLOBECOM, vol. 6, Nov./Dec. 2004, pp. 3808–3812.

[20] T. Frank, A. Klein, E. Costa, and E. Schulz, “Interleaved orthogonal frequency division multiple access with variable data rates,” in Proc. Int. OFDM Workshop, 2005, pp. 179–183.

[21] R. A. Al Na’mneh and K. A. Darabkh, “An efficient bit reversal permutation algorithm,” in Proc. Int. Conf. Robot., Biomimetics, Intel. Comput. Syst., Nov. 2013, pp. 121–124.
[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*. Cambridge, MA, USA: MIT Press, 2009.

[23] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” *IEEE J. Solid-State Circuits*, vol. 30, no. 12, pp. 1399–1410, Dec. 1995.

[24] A. S. Rajasekaran, M. Vameghestahbanati, M. Farsi, H. Yanikomeroglu, and H. Saeedi, “Resource allocation-based PAPR analysis in uplink SCMA-OFDM systems,” *IEEE Access*, vol. 7, pp. 162803–162817, 2019.

[25] S. C. Liew and T. T. Lee, *Principles of Broadband Switching and Networking*. Hoboken, NJ, USA: Wiley, 2010.

[26] L. Kleinrock, *Queueing Systems. Volume I: Theory*. New York, NY, USA: Wiley, 1975.

[27] Y. Shao and S. C. Liew, “Flexible subcarrier allocation for interleaved frequency division multiple access,” 2020, arXiv:2002.06552. [Online]. Available: http://arxiv.org/abs/2002.06552

Yulin Shao (Graduate Student Member, IEEE) received the B.S. and M.S. degrees in electronic and communications engineering from Xidian University (XDU), in 2013 and 2016, respectively, and the Ph.D. degree in information engineering from The Chinese University of Hong Kong (CUHK) in 2020. He was a Research Assistant with the Institute of Network Coding (INC) from March 2015 to August 2016, and a Visiting Scholar with the Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), from September 2018 to March 2019. He is currently a Post-Doctoral Fellow with the Department of Information Engineering, CUHK. His research interests include signal processing, fundamentals of wireless communications and networking, and machine learning (deep reinforcement learning, in particular).

Soung Chang Liew (Fellow, IEEE) received the S.B., S.M., E.E., and Ph.D. degrees from the Massachusetts Institute of Technology. From 1984 to 1988, he was with the MIT Laboratory for Information and Decision Systems, where he investigated Fiber-Optic Communications Networks. From March 1988 to July 1993, he was at Bellcore (now Telcordia), where he engaged in Broadband Network Research. He has been a Professor with the Department of Information Engineering, The Chinese University of Hong Kong (CUHK), since 1993. He is currently the Division Head of the Department of Information Engineering and the Co-Director of the Institute of Network Coding, CUHK. His research interests include wireless networks, the Internet of Things, intelligent transport systems, Internet protocols, multimedia communications, and packet switch design. He holds 15 U.S. patents. He is a fellow of IET and HKIE. He was a recipient of the first Vice-Chancellor Exemplary Teaching Award in 2000 and the Research Excellence Award in 2013, at The Chinese University of Hong Kong.