Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

Simon D. Gerber1,*, Ruth Amann1, Stefan Wyder1, Beat Trueb1,2*

1 Department of Clinical Research, University of Bern, Bern, Switzerland, 2 Department of Rheumatology, University Hospital, Bern, Switzerland

Abstract

Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron.

Introduction

The mammalian kidney is a complex organ comprising thousands of nephrons that are connected by a branched collecting duct system [1]. The nephrons, the functional units of the kidney, filter the blood through a basement membrane and drain the filtrate via the collecting ducts to the bladder. In the mouse, nephron development is initiated at E10.5 when a caudal portion of the Wolffian duct near the hindlimbs bulges out and forms the ureteric bud. Signals from the metanephric mesenchyme induce the ureteric bud to branch in a stereotypical fashion to form the highly branched collecting duct system. The ureteric bud then needed to pattern the proximal tubule of the nephron [7,8]. Recently, we have identified Fgfrl1 as a novel receptor that is essential for nephron development [9]. Fgfrl1 belongs to the Fgfr (fibroblast growth factor receptor) family of single transmembrane receptors for review see [10]) Its extracellular domain resembles those of the classical Fgfrs in amino acid sequence and in that it contains three Ig-like loops. However, the intracellular domain differs from the classical receptors and does not possess any tyrosine kinase activity [11,12]. The extracellular domain of Fgfrl1 interacts with heparin [13] and with Fgf ligands, primarily Fgf-2, -3, -4, -8, and -22 [14]. The intracellular domain binds to members of the Sprouty/Spred family that are known as negative regulators of the growth factor-mediated activation of the Ras/Raf/Erk signaling pathway [15]. During embryonic development, Fgfrl1 is expressed in tissues of the musculoskeletal system, including cartilage, bone and muscles [13], but also in the lung and the kidneys [9]. Information about the function of Fgfrl1 was gained from studies with mice, in which the Fgfrl1 gene was deleted by targeted inactivation [16,17]. Fgfrl1 knock-out mice die shortly after birth due to malformation of the diaphragm. The mutant diaphragm muscle obviously is not strong enough to inflate the lungs after birth. However, the most striking phenotype of the Fgfrl1 deficient mice is the nearly complete absence of the metanephric kidneys. Utilizing organ cultures and different staining techniques, we demonstrated that Fgfrl1 deficiency leads to a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition, which finally leads to the formation of renal vesicles. Signaling by Notch and Presenilin is then needed to pattern the proximal tubule of the nephron [7,8].
to a dramatic reduction of ureteric branching and to a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme [9]. As a result, the mutant embryos lack any renal vesicles in their developing kidneys.

In the present study we used the DNA microarray profiling technique to identify genes that act downstream of Fgfrl1 signaling in the regulatory hierarchy of genes required for early nephron development. We confirmed reduced expression of Wnt4 and Fgf8 in the kidneys of the Fgfrl1 deficient mice. In addition, we identified more than 50 genes that are expressed at significantly reduced levels in our mutant mice. Many of these genes are involved in the Fgf/Fgfr, Wnt/ß-catenin, Bmp, Notch, and Six/Eya/Dach signaling pathway.

Results

Fgfrl1 is expressed throughout metanephric kidney development

In a previous study we have used polyclonal antibodies on thin sections of E15.5 mouse kidneys to demonstrate that Fgfrl1 is expressed in nephrogenic structures of the cortical zone, with strong expression in renal vesicles, comma- and s-shaped bodies. Weaker staining was found in the undifferentiated mesenchyme and in the ureteric epithelium [9]. To verify these findings and to gain more information about Fgfrl1 expression during kidney development, we performed in situ hybridization on thin sections (SISH) at three developmental stages (Fig. 1). At E12.5, Fgfrl1 mRNA was highly expressed in the metanephric mesenchyme and in the ureteric bud. At E14.5, strong Fgfrl1 signal was detected in nascent nephrons and in the metanephric mesenchyme. At E18.5, Fgfrl1 signal was primarily found in tubules and nephrons. These results demonstrate that Fgfrl1 is expressed in developing nephrons and in the ureteric bud throughout kidney development, thus confirming our previous results obtained by immunohistochemistry.

Transcriptional profiling of Fgfrl1 deficient kidneys

To determine how the absence of Fgfrl1 signaling would affect kidney development, we used Agilent DNA microarrays and compared mRNA levels between wildtype and Fgfrl1 deficient kidneys at E12.5. This time point was chosen because the first phenotypic differences between wildtype and Fgfrl1−/− kidneys are observed at E12.5 and because the first nephrogenic structures become visible at this developmental stage. Our efforts led to the identification of significant alterations in the transcriptome of the Fgfrl1 deficient kidneys. Of the ~20,000 genes analyzed, 17 genes showed an up-regulation ≥2 fold and 56 genes showed a down-regulation ≥2 fold. None of the genes was up-regulated ≥3 fold and only 14 genes were down-regulated ≥3 fold (Fig. 2). Among the most strongly affected genes (indicated in the scatter plot of Fig. 2 by gene symbols) were Wnt4, Fgfr8, Lhx1 and Fgfrl1, which had already been discovered as down-regulated markers in our previous study [9]. Expression of Eya1 and Six2, which define the undifferentiated mesenchyme, was barely affected by the absence of Fgfrl1 (fold change 1.3 and 1.0, respectively). Thus, the microarray data demonstrate the validity of our approach to identify mRNAs that may act downstream of Fgfrl1 in the regulatory hierarchy of genes required for nephron development.

Arbitrarily, we have chosen a minimal fold change >1.9 and a p-value cutoff <0.05 to generate a list of the most critical genes that were down-regulated in Fgfrl1 deficient kidneys (Table 1, for a list of all genes see GEO Series accession number GSE32013). This table included all the genes that had previously been found to be affected in the Fgfrl1 knock-out mouse (indicated in bold in Tables 1 and 2). Besides Wnt4, Pax8, Fgfr8 and Lhx1, our list included 60 other genes that might contribute to the phenotype of the Fgfrl1 knock-out mice. Among these hits are many genes that have previously been described to be essential for normal kidney development, such as Spry1 [18], Etv4 [19] and Itga8 [20], but there are also several genes whose function in kidney development has not been appreciated so far, including Fzd10, Frzb, Bmi1 and Dach1 (Table 1).

Validation by quantitative PCR

In order to confirm the results of the DNA microarray, we quantified the mRNA levels of selected genes by RT-PCR. For this purpose, we focused on hits that had yielded large differences between wildtype and mutant kidneys. In this way, 29 down-regulated genes, two control genes (Rps9 and Gapdh) and 3 up-regulated genes were analyzed by qPCR (Table 2). For the majority of the down-regulated hits, the qPCR results were found...
to be in good agreement with the microarray data, although the differences (fold changes) observed by qPCR were larger than those determined by microarray analysis. Only three genes (Dll1, Msx2, Hey1) showed a minimal fold change, 1.9 by qPCR, which had been selected as cutoff above.

In sharp contrast to the down-regulated transcripts, none of the up-regulated transcripts (Tcfcp2l1, Cxcl12, Col1a1) could be confirmed by qPCR as the fold changes observed by qPCR were between 1.0 and 1.4. We may therefore conclude that the lack of Fgfrl1 expression in the mutant kidneys was barely compensated for by the up-regulation of other genes. In particular, the classical receptors Fgfr1-Fgfr4 did not show altered expression in the mutant kidneys.

For the microarray experiment, we had used E12.5 kidneys because overt differences in the phenotype between wildtype and Fgfrl1 deficient kidneys appear at this developmental stage. However, changes in gene expression may occur prior to the actual appearance of an altered phenotype and these changes may or may not persist throughout kidney development. We therefore analyzed the 29 down-regulated genes, the 3 up-regulated genes and the two control genes also at three additional time points during kidney development, one prior to and two after the stage used for the microarray experiment (E11.5, E14.5, E16.5). These data are also included in Table 2. Although some of the results might be difficult to interpret, the majority of the genes can clearly be grouped into two different categories. One category includes genes whose fold changes show a bell-shaped curve during embryonic development (e.g. Slc32a1, Pcp4, Wnt4, Lef1, Iga3, Egr1). These genes might preferentially be required during the initial stages of nephron development. The other category includes genes whose fold changes steadily increase throughout development (e.g. Fgfs, Lhx1, Uncx, Osx2, Dkk1, Clec18a, Dll1). It is likely that these genes are particularly needed at later stages of nephron development.

Validation by WISH

To further validate our data and to examine the spatial expression pattern of the genes in the kidney, we performed whole-mount in situ hybridization experiments (WISH). For this purpose, we used E14.5 kidneys because samples at this stage revealed a clearer expression pattern than samples at E12.5 due to the increased size and the generally stronger gene expression level [9]. We primarily focused on genes, which had shown a difference >3 and which had not yet been annotated in the GUDMAP database (www.gudmap.org). In total 12 genes were tested, including the positive control Calb1 (Fig. 3). Calb1 revealed the expected expression pattern in the ureteric bud and its derivatives, in both the wildtype and the Fgfrl1 knock-out kidneys. In contrast, expression of the other 11 genes was significantly reduced or even absent in the Fgfrl1 deficient kidneys (Fig. 3). Likewise, expression of the four nephrogenic marker genes Wnt4, Fgfl, Lhx1 and Pax8 that had been analyzed by WISH in our previous study was not detected in the Fgfrl1−/− kidneys [9]. Thus, our in situ hybridization data confirmed the microarray and the qPCR results.

It is of interest to note that most of the genes detected by WISH in the wildtype kidneys were expressed in the ureteric bud and/or in developing nephrogenic structures, such as renal vesicles and s-
Table 1. Genes with reduced expression in Fgfrl1 deficient kidneys.

Nr	Gene Symbol	Gene Description	Gene ID	pValue	Fold Change	Verification Method	GUDMAP
1	Svopl	SV2 related protein homolog-like	320590	0.0022	9.5	qPCR	8950;7412
2	Krt23	keratin 23	94179	0.0014	7.4	qPCR, WISH	
3	Slc32a1	solute carrier family 32 member 1	22348	0.0015	7.0	qPCR, WISH	13958
4	Wnt4	wingless-related MMTV integration site 4	22417	0.0013	6.2	qPCR, WISH	8208;11295
5	Dkk1	dickkopf homolog 1	13380	0.0106	5.4	qPCR, WISH	9041
6	Eg1	early growth response 1	13653	0.0077	4.9	qPCR	6106;11301
7	Pcp4	immunoglobulin superfamily member 5	18546	0.0043	4.4	qPCR, WISH	
8	Fgf8	fibroblast growth factor 8	14179	0.0015	4.4	qPCR, WISH	
9	Lhx1	LIM homeobox protein 1	16869	0.0028	4.1	qPCR, WISH	5384;7928
10	Sp5	trans-acting transcription factor 5	64406	0.0185	3.7	WISH	
11	Aldh1a1	aldehyde dehydrogenase family 1, subfamily A1	11668	0.0069	3.5	qPCR	
12	Clec18a	C-type lectin domain family 18 member A	353287	0.0055	3.4	qPCR, WISH	
13	Fgfr1	fibroblast growth factor receptor-like 1	116701	0.0035	3.1	qPCR, WISH	
14	Bhlhb5	basic helix-loop-helix domain containing, class B5	59058	0.0002	3.0	WISH	5911
15	Hes5	hairy and enhancer of split 5	15208	0.0011	3.0	WISH	5928
16	Fzd10	frizzled homolog 10	93897	0.0180	2.9	WISH	8488
17	Gpx6	glutathione peroxidase 6	75512	0.0116	2.9	WISH	
18	Aix1	ALX homeobox 1	216285	0.0104	2.8	WISH	5336
19	Lmcd1	LIM and cysteine-rich domains 1	30937	0.0001	2.7	WISH	6340
20	Cck	cholecystokinin	12424	0.0027	2.7	WISH	
21	Amph	amphiphysin	218038	0.0018	2.7	WISH	
22	Aldh1a7	aldehyde dehydrogenase family 1, subfamily A2	26358	0.0146	2.6	WISH	
23	Galtl2	polypeptideN-acetylgalactosaminyltransferase-like 2	78754	0.0419	2.6	WISH	
24	Jag1	jagged 1	16469	0.0269	2.5	qPCR	8532;11379
25	Hey1	hairy/enhancer-of-split related with YRPW motif 1	15213	0.0101	2.4	qPCR	5912
26	Dll1	delta-like 1	13388	0.0162	2.4	qPCR	11371
27	Plekgh6	pleckstrin homology-domain-containing family G6	213522	0.0065	2.4	WISH	
28	Akrb17	aldo-keto reductase family 1, member B7	11997	0.0025	2.4	WISH	
29	Greb1	gene regulated by estrogen in breast cancer protein	268527	0.0017	2.3	WISH	8529;8891
30	Cxc4	chemokine (C-X-C motif) receptor 4	12767	0.0233	2.3	qPCR	
31	Unx	UNC homeobox	22255	0.0060	2.3	qPCR	5729
32	Notum	notum peptidaseesterase homolog	77583	0.0061	2.3	WISH	
33	Bmp2k	BMP2 inducible kinase	140780	0.0043	2.3	qPCR	
34	Clqdc2	family with sequence similarity 132, member A	67389	0.0101	2.3	WISH	9273
35	Ism1	isthm1 1 homolog	319909	0.0106	2.3	WISH	
36	Lef1	lymphoid enhancer binding factor 1	16842	0.0071	2.3	qPCR	5539
37	Mos2	homeobox, msh-like 2	17702	0.0358	2.2	qPCR	5365
38	Pax8	paired box gene 8	18510	0.0102	2.2	qPCR, WISH	10742;11179
39	Etv4	ets variant gene 4 (E1A enhancer binding protein)	18612	0.0041	2.2	WISH	5486;12534
40	Bmp2	bone morphogenetic protein 2	12156	0.0020	2.2	qPCR	8949
41	B3galts	beta-1,3-galactosyltransferase 5	93961	0.0131	2.2	WISH	
42	Apom	apolipoprotein M	55938	0.0127	2.1	WISH	10784
43	Cxcl14	chemokine (C-X-C motif) ligand 14	57266	0.0175	2.1	WISH	8425
44	Ankrd56	mus musculus ankyrin repeat domain 56	78088	0.0165	2.1	WISH	
45	Frzb	frizzled-related protein	20378	0.0102	2.1	qPCR, WISH	
46	Naaa	N-acetyladenolamine acid amidase	67111	0.0077	2.1	WISH	
47	Osr2	odd-skipped related 2	107587	0.0094	2.0	qPCR	6335;13623
48	Il17rd	interleukin 17 receptor D	171463	0.0003	2.0	qPCR, WISH	
49	Cpa2	carboxypeptidase A2, pancreatic	232680	0.0072	2.0	qPCR	
50	Lbx2	ladybird homeobox homolog 2	16815	0.0040	2.0	qPCR	6590
shaped bodies. These genes included Wnt4, Fgf8, Lhx1 and Pax8 from the previous study and Spry1, Dach1, Dkk1, Frzb, Krt23, Clec18a and Pcp4 from the present study (Fig. 3). In contrast, expression of the transcription factor Sp5 and the amino acid transporter Slc32a1 was rather diffuse, revealing no distinct pattern. We may therefore conclude that the majority of the identified genes are involved in well-established signaling pathways. Many of these genes appear to be involved in well-established signaling pathways. However, it cannot be deduced from our study whether all these genes are directly involved in the same signaling pathway as Fgfrl1. Since Fgfrl1 deficient mice do not develop any nephrogenic structures. Mice lacking the Fgfrl1 gene do not develop any nephrogenic structures. A careful analysis of the kidney transcriptome from wildtype and knock-out mice allowed us to identify more than 50 genes that act - directly or indirectly - downstream of Fgfrl1 in the regulatory cascade of genes required for early nephron development.

WNT signaling pathway

The Wnt signaling pathway is often activated in concert with Fgf signaling during developmental processes [25]. We found by our microarray approach at least five genes that have been implicated in Wnt signaling, namely Wnt4, Fzd10, Frzb, Lef1 and Etv4. Among these hits, Wnt4 ranked at the top with a 6-fold expression difference between wildtype and knock-out mice when measured by microarray and 13-fold when verified by qPCR experiments. Wnt4 is usually expressed in the metanephric mesenchyme, where it induces the mesenchymal-to-epithelial transition. Therefore mice lacking Wnt4 activity show a greatly reduced number of nascent nephrogenic structures [6].

In a recent study, Valarius & McMahon [26] performed a transcriptional profiling screen using Wnt4 deficient kidneys. The authors identified 236 genes with differential expression levels between wildtype and Wnt4−/− kidneys. Interestingly, several genes exhibiting reduced expression in their study were also found to be downregulated in our Fgfrl1 deficient mice.
to be down-regulated in our study, such as Dil1, Pcp4, Dkk1, Pax8, Fgf8, Lhx1, Hes5, Hey1 and Egr1. This result can be explained by the fact that Fgf11 acts upstream of Wnt4 in the cascade of regulatory genes as Fgf11 deficient mice lack Wnt4 expression in their kidney rudiments. The other members of the Wnt signaling cascade that were significantly down-regulated in our study appear to have diverse functions. Fzd10 is one of the receptors for Wnt ligands. Fzd10 is a secreted, frizzled-related receptor that interferes with Wnt signaling. Lef1 is a transcription factor participating in Wnt signaling. Canonical Wnt signaling leads to the stabilization of β-catenin, which - after translocation to the nucleus - interacts with transcription factors of the Lef/Tcf family to induce expression of target genes [27]. Sp5 is a member of the Sp1 transcription factor family. It ranks among the ten best hits of our microarray analysis.

Fujimura et al. [28] presented evidence that Sp5 is involved in Wnt signaling since constitutive activation of the Wnt/β-catenin pathway resulted in the up-regulation of Sp5 expression in the mouse telencephalon.

Bmp signaling

With our microarray, we found reduced expression of Bmp2 and Bmp2k. The Bmps play a key role in the development of the skeleton, but they are also involved in patterning of the metanephric kidney [29]. Bmp2 is expressed in the distal renal vesicle as shown by Georgas et al. [30]. The authors suggested that Bmp2 might be involved - together with other factors - in the fusion of the renal vesicle with the ureteric tip. Bmp2 is a serine/threonine protein kinase whose expression is induced after addition of Bmp2 to prechondroblastic cells in order to trigger their differentiation [31]. However, the role of Bmp2 during nephron formation has not yet been investigated.

Notch signaling pathway

Notch signaling is required to pattern the distal and proximal tubule of the nephron [32]. In our microarray, the Notch ligands Jag1 and Dil1 as well as the downstream effector Hey1 were down-regulated. However, Hey1 and Dil1 showed only mild reduction when validated by qPCR (1.4- and 1.7-fold, respectively), in contrast to Jag1, whose expression was reduced 7.4-fold. Jag1 is known to interact with Notch2 and other Notch receptors [33]. It regulates ureteric budding and branching by crosstalk with Gdnf/Ret signaling [34]. It is therefore likely that downregulation of Jag1 in the Fgf11 deficient kidneys reduces Notch signaling and hence interferes with normal nephron development.

Six-Eya-Dach signaling pathway

Six (sine oculis), Eya (eyes absent) and Dach are transcription factors that constitute the “retinal determination network”, whose loss inhibits eye development and whose forced expression leads to ectopic eye formation [35]. It is believed that the three factors form a complex that binds to the promoter region of target genes to control eye formation in mammals and insects. Besides their function in eye formation, Six1 and Eya1 are also involved in the development of the metanephric kidneys of mammals [36] as targeted deletion of either one of these genes leads to severe kidney malformation. Targeted disruption of Dach1, however, does not seem to have any obvious effect on kidney or eye formation, although mice without Dach1 exhibit postnatal lethality [37].

In our gene array, Six1 and Eya1 were not differentially expressed (fold change 1.1 and 1.3, respectively). This is in contrast to Dach1, which was significantly down-regulated (qPCR 6.0-fold, Table 2). It is therefore likely that Six1 and Eya1 act upstream, while Dach1 acts downstream of Fgf11 in the same regulatory network of genes that are required for kidney development. As a matter of fact, the phenotypes of Fgf11, Eya1 and Six1 deficient mice look intriguingly similar. All of them show kidney and bone malformations [9,38,39]. In addition, Six1 and Fgf11 knock-out mice exhibit defects in the diaphragm [16,40]. Dach1 is expressed in developing nephrons, primarily in comma- and s-shaped bodies [41]. This is consistent with our WISH experiments where a prominent signal for Dach1 was found in the metanephric mesenchyme surrounding the ureteric tips (Fig. 3). Brunskill et al. [42] observed strong upregulation of Dach1 during nephron formation, especially when the stage of the renal vesicle was compared with that of the s-shaped body (46-fold). It is likely that Fgf11 is involved in this upregulation since our Fgf11 deficient kidneys show strongly reduced Dach1 expression.

Table 2. Verification of differential gene expression by qPCR.

Gene	Fold change wt/ko qPCR	Fold change wt/ko array E12.5
Slc32a1	0.8	>20
Krt23	7.5	17.4
Pcp4	2.7	17
Wnt4	2.3	13.3
Pax8	1.9	9.6
Suv3p	1.1	9.4
Fgf8	3.2	9.2
Il17rd	2.3	8.5
Lef1	2.4	8.2
Lhx1	0.7	7.7
Jag1	2	7.4
Uncx	1.6	7.1
Itga8	3.1	6.9
Fgfr1	>20	6.8
Frzb	2.5	6.1
Dach1	1.7	6.4
Bmp2	0.8	5.2
Osr2	2.9	4.8
Egr1	1.1	4.6
Aldh1a1	9.8	4.6
Gdnf	3.5	3.3
Cxcr4	1.7	3.4
Dkk1	2.5	3.3
Clec18a	2.1	2.3
Lbx2	0.8	2.1
Bmp2k	1	2.1
Dil1	1.1	1.7
Mx2	0.4	1.6
Hey1	1.6	1.4
Tcfcp2II	3.1	1.4
Cxcl12	2.2	1.3
Rps9	1.9	1.2
Gapdh	1	1
Col1a1	0.8	0.7

doi:10.1371/journal.pone.0033457.t002
Conclusions

We have identified a number of genes that act downstream of Fgfrl1 signaling in the regulatory hierarchy of genes required for early nephron development. Several of these genes are involved in Fgf/Fgfr, Wnt/β-catenin, Bmp, Notch, and Six/Eya/Dach signaling. The downregulation of these genes might be responsible for the lack of nephrogenesis observed in Fgfrl1 knock-out mice. For some of the identified genes, a potential involvement in the development of the metanephric kidneys has not yet been appreciated (e.g. Fzd10, Frzb, Il17rd and Dach1). Our study should therefore help to define the minimal set of genes that is required for normal nephron formation.

Materials and Methods

Animals

All animal work was conducted according to the relevant national guidelines and was approved by the Amt für Landwirtschaft und Natur of Bern [approval number 69/09]. The Fgfrl1 deficient mice have previously been described [9]. Littermates of wildtype and Fgfrl1 knock-out mice were used for all experiments. For an exactly timed pregnancy, the noon of the day, at which a vaginal plug was detected, was considered as E0.5.

DNA Microarray analysis

Kidney rudiments were dissected in parallel from wildtype and Fgfrl1 knock-out mice of stage E12.5. Total RNA was extracted from pooled kidney rudiments (n = 6–9) with the GeneElute miniprep kit from Sigma-Aldrich Co. The quality of the RNA was assessed with an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Three individual RNA preparations from wildtype mice and three individual RNA preparations from Fgfrl1 knock-out mice were separately transcribed into double stranded cDNA in the presence of RNA poly-A controls (RNA Spike-In Kit, Agilent 5188-5279). The cDNAs were transcribed with T7 polymerase into cRNA utilizing cyanine 3-CTP (Cy3) for knock-out and cyanine 5-CTP (Cy5) for wildtype samples, respectively (Agilent 5190-0444). No amplification step was performed. The three pairs of fluorescently labeled cRNA were hybridized for 17 h at 65°C to an Agilent gene expression array (Whole Mouse Genome Microarray 4 × 44 K, G4122F) according to the instructions of the manufacturer utilizing reagents from the Gene
Expression Hybridization Kit (Agilent 5188-5242). The slides were washed and scanned using an Agilent G2565BA microarray scanner. Signals were extracted from images using the Agilent Feature Extraction software version 10. Data analysis was performed on the R platform for statistical computing with packages from the Bioconductor project [43]. Gene annotation and identifier conversions were retrieved from the Mouse Genome Database (MGD, http://www.informatics.jax.org). All microarray data were deposited in the GEO database and comply with MIAME standards (accession number GSE32013).

Quantitative PCR analysis

Quantitative PCR was performed as previously described [9]. In brief, the RNA was transcribed into first strand cDNA with reverse transcriptase from Moloney Murine Leukemia Virus. The cDNAs were quantified by real time PCR on an ABI 7500 platform using the primer pairs listed in Table S1.

In situ hybridization

Whole-mount in situ hybridization (WISH) was performed as described before [9]. Different hybridization probes were generated by PCR utilizing cDNA prepared from E16.5 kidneys and the primer pairs listed in Table S2.

In situ hybridization on thin sections (SISH) was performed according to Koch et al. [44] with minor modifications. Sense and anti-sense riboprobes for Fgfrl1 were prepared by reverse transcription from the full-length cDNA cloned into the vector pcDNA3.1 (+/−) using the digoxigenin RNA labeling kit from Roche Diagnostics (Rotkreuz, Switzerland). Dissected kidneys were fixed with paraformaldehyde (4% PFA in PBS, overnight at 4°C) and incubated in a sucrose solution (30% sucrose in PBS, overnight at 4°C). Equilibrated samples were embedded in Tissue-Tek, frozen on dry ice and cut to 12 μm sections. Cryosections were fixed with PFA (4% in PBS, 20 min at RT) and digested with proteinase K (10 μg/ml, 10 min at RT). After fixation (4% PFA, 20 min), sections were acetylated (0.25% acetic anhydride, 0.1 M triethanolamine, pH 8.0, 10 min). Acetylated sections were prehybridized in hybridization buffer (50% formamide, 4× SSC, 2× Denhardt’s solution, 5% dextran sulfate, 100 μg/ml yeast tRNA, 5 h at RT) and hybridized with the Fgfrl1 probe (overnight at 68°C with 1 μg/ml of the digoxigenin-labeled riboprobe). After a series of washing steps (wash 1: 0.2× SSC, 30 min at 60°C; wash 2: 50% formamide, 2× SSC, 30 min at RT; wash 3: 0.2× SSC, 10 min at RT; wash 4: 0.1 M maleic acid, 0.15 M NaCl, 0.1% Tween-20, pH 7.4, 15 min at RT) the sections were blocked with BSA (5% in Tris buffered saline, 2 h at RT) and incubated with anti-digoxigenin antibodies (alkaline phosphatase-conjugated Fab fragments from Roche, diluted 1:2000, overnight at 4°C). The slides were rinsed and equilibrated with detection buffer (0.1 M Tris, 0.1 M NaCl, 50 mM MgCl2, pH 9.5). Finally, the hybridization signal was developed with BM Purple (Roche, 12–24 h at RT) and the slides were photographed under an Olympus BX-51 microscope.

Supporting Information

Table S1 Primers used for RT-PCR. (DOC)

Table S2 Primers used for WISH. Underlined nucleotides indicate restriction sites used for subcloning. (DOC)

Acknowledgments

We thank Sabina Hafen-Wirth and Andrea Patrignani (Functional Genomic Center Zurich) for their help with the Agilent gene expression arrays.

Author Contributions

Conceived and designed the experiments: SDG BT. Performed the experiments: SDG RA BT. Analyzed the data: SW. Wrote the paper: SDG BT SW.

References

1. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18: 698–712.
2. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9: 283–292.
3. Park JS, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134: 2533–2539.
4. Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, et al. (2005) FGFR8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132: 3547–3557.
5. Perantoni AO, Timofeva O, Naillat F, Richman C, Pajni-Underwood S, et al. (2005) Inactivation of FGFR8 in early mesoderm reveals an essential role in kidney development. Development 132: 3853–3867.
6. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Development 120: 5019–5029.
7. Steinberg F, Zhuang L, Belyer M, Kalin RE, Mullis PE, et al. (2010) The Fgfrl1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. J Biol Chem 285: 2193–2192.
8. Jiang L, Villiger PM, Trubel B (2011) Interaction of the receptor FGFR1L with the negative regulator Spred1. Cell Signal 23: 1496–1504.
9. Baertschi S, Zhuang L, Trueb B (2007) Mice with a targeted disruption of the Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Cell 13: 623–636.
10. Catela C, Bilbao-Cortes D, Slonimsky E, Kratsios P, Rosenthal N, et al. (2009) Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfrl1 null mice. Dev Model Mech 2: 203–204.
11. Basson MA, Abahutu S, Watson-Johnson J, Simon R, Carroll TJ, et al. (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8: 229–239.
12. Baertschi S, Zhuang L, Trueb B (2007) mice with a targeted disruption of the Fgfrl1 gene die at birth due to alterations in the diaphragm. FEBs J 274: 6241–6253.
13. Steinberg F, Zhuang L, Belyer M, Kalin RE, Mullis PE, et al. (2010) The Fgfrl1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. J Biol Chem 285: 2193–2192.
14. Niehrs C, Meinhardt H (2002) Modular feedback. Nature 417: 35–36.
15. Birnbaum PN, Slonimsky E, Kratsios P, Rosenthal N, et al. (2009) Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfrl1 null mice. Dev Model Mech 2: 203–204.
16. Basson MA, Abahutu S, Watson-Johnson J, Simon R, Carroll TJ, et al. (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8: 229–239.
17. Lu BC, Cebrian C, Chi X, Kaur S, Koo R, et al. (2009) Env4 and Env5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41: 1295–1302.
18. Muller U, Wang D, Denuda S, Meneses JJ, Pedersen RA, et al. (1997) Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 83: 605–613.
19. Ron D, Fuchs Y, Chorev DS (2008) Know thy Sef: a novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol 40: 2060–2062.
24. Polańska DP, Kish K, Kutay B, Hains D, Kegg H, et al. (2006) Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 291: 325–339.

25. Katoh M, Katoh M (2006) Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL, signaling cascades. Cancer Biol Ther 5: 1059–1064.

26. Valerius MT, McMahon AP (2008) Transcriptional profiling of Wnt1 mutant mouse kidneys identifies genes expressed during nephron formation. Gene Expr Patterns 8: 297–306.

27. Schmidt-Ott KM, Masckauchan TN, Chen X, Hirsh BJ, Sarkar A, et al. (2007) Beta-catenin/TGF/LeF controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development 134: 3177–3190.

28. Fujimura N, Vacik T, Machon O, Vlcek C, Scalabrini S, et al. (2007) Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem 282: 1225–1237.

29. Cain JE, Hartwig S, Bertram JF, Rosenblum ND (2008) Bone morphogenetic protein signaling in the developing kidney: present and future. Differentiation 76: 831–842.

30. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, et al. (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 325: 273–286.

31. Kearns AE, Donohue MM, Sanzal B, Demay MB (2001) Cloning and characterization of a novel protein kinase that impairs osteoblast differentiation in vitro. J Biol Chem 276: 42213–42218.

32. McCright B (2003) Notch signaling in kidney development. Curr Opin Nephrol Hypertens 12: 5–10.

33. Shimizu K, Chiha S, Kumano K, Hosoya N, Takahashi T, et al. (1999) Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961–32969.

34. Kuure S, Sainio K, Vuolleenaho R, Ilves M, Wartiovaara K, et al. (2005) Crosstalk between Jagged1 and GDNF/Ret/GFRA1 signalling regulates ureteric budding and branching. Mech Dev 122: 765–780.

35. Wawersik S, Maas RL (2000) Vertebrate eye development as modeled in Drosophila. Hum Mol Genet 9: 917–923.

36. Li X, Ogli KA, Zhang J, Krones A, Bush KT, et al. (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426: 247–254.

37. Davis RJ, Shea W, Sander YJ, Assou M, Purcell P, et al. (2001) Dach1 mutant mice bear no gross abnormalities in eye, limb, and brain development and exhibit postnatal lethality. Mol Cell Biol 21: 1481–1490.

38. Xu PX, Adams J, Peters H, Brown MC, Heaney S, et al. (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23: 113–117.

39. Laclef C, Souil E, Demignon J, Maire P (2003) Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech Dev 120: 669–679.

40. Laclef C, Hamard G, Demignon J, Soulé E, Houbre C, et al. (2003) Altered myogenesis in Six1-deficient mice. Development 130: 2239–2252.

41. Ayres JA, Shum L, Akarsu AN, Dasher R, Takahashi K, et al. (2001) DACH: genomic characterization, evaluation as a candidate for postaxial polydactyly type A2, and developmental expression pattern of the mouse homologue. Genomics 77: 18–26.

42. Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, et al. (2008) Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 15: 781–791.

43. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.