Model of Integrated Production Allocation for Minimizing Distribution Costs in a Cement Company

YP Pamungkas¹, U Ciptomulyono² and PD Karningsih³

¹,²,³Department of Industrial and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

E-mail: yanuarpamungkas31@gmail.com, udisubakti@ie.its.ac.id, dana@ie.its.ac.id

Abstract. This paper, in order to get a gain after the acquisition process with whose carry out by the company and the competitor. Post-acquisition, to analyse getting better efficiency, to do so a process restructuring in an existing distribution network is consolidated and integrated by the existing distribution network with the distribution network of the newly acquired company in supply chain management. The acquisition process is expected to expand the network in the domestic market and increase the efficiency of supply chain costs by planning production allocations in an effort to optimize distribution costs more efficiently. The purpose of this work is to determine the optimal configuration of production and distribution networks with operational and financial constraints. A linear programming model is proposed to describe and to optimize the problem. By considering various parameters of the model such as plant capacity, production costs, and distribution costs, this model is hoping to be able for determining where the production of cement facilities is carried out to meet the demand for cement in the market to obtain more efficient distribution costs.

1. Introduction
The current global economy is undergoing rapid change, and of course, logistics is one area that is also experiencing rapid change, including supply chain management itself [1]. The supply chain in a company can be seen as a network that has multi-process and complex activities. The current trend of supply chain management is leading to integrated systems, where manufacturing companies seek or develop strategies globally by designing their products by producing materials, components, and labor at the lowest possible cost.

At this time in the manufacturing industry, the problem of the relationship between set up and supply chain management becomes complex and important. Where companies in making a decision must coordinate between the functions of production, storage, and distribution to control the costs of these functions to be competitive in product price competition in the market. To be able to offer attractive products at competitive prices, every company must try to reduce all operating costs of the company while maintaining product quality under established standards. One effort to reduce these costs is by optimizing production from upstream to downstream by optimizing the distribution of materials from suppliers, the flow of material in the production process to the distribution of products to the hands of consumers.

The Integration of operational activities is also carried out by one of the cement industry companies in Indonesia, which centralizes the marketing, supply chain, and procurement functions in the increasingly tight competition in the cement industry in Indonesia at this time. The Company hereinafter
referred to as "the Company", believes that the implementation of an integrated strategy in all aspects of operations will provide maximum and sustainable business results for the company going forward. In early 2019, the company will also expand its business by expanding to acquire other cement industry companies in Indonesia, thereby increasing the company's competitiveness in supply capacity and distribution networks. With the addition of supply source facilities and distribution facilities, it is necessary to re-evaluate the supply chain management, especially in the downstream supply chain or product delivery activities to customers. The cement distribution network in the "Company" uses the modes of transportation of trucks, trains, and ships. Ships are used to transport bulk cement from the Cement Plant to the Packing Plant, while trucks and trains are used to transport cement from the Cement Plant to the Distribution Center or directly to the sales district. Between the factory and the sales district, there is a Distribution Center that serves as a place to temporarily collect and store cement products from various factories to be distributed to several marketing areas around the Distribution Center which are expected to minimize distribution costs. The distribution network in "Company" in general can be described as follows:

![Distribution Network Diagram](image)

Figure 1. Illustration of distribution network in "company"

Post-acquisition, restructuring of the existing distribution network in the company is needed by consolidating and integrating the existing distribution network with the distribution network of the newly acquired company in supply chain management to improve distribution cost efficiency. The company's distribution costs are a large contributor to the company's cost of revenue.

Table 1. Cost of revenue period of 2016 - 2019

Cost of Revenue (IDR Billion)	2016	2017	2018	2019	Growth 2017:2016	Growth 2018:2017	Growth 2019:2018
Energy	5.563	6.992	7.349	8.996	25.7%	5.1%	22.4%
Distribution	1.813	2.109	2.376	3.204	16.3%	12.7%	34.8%
Raw Material	1.376	1.877	1.876	1.874	36.4%	-0.1%	-0.1%
Depreciation	1.571	1.853	1.523	1.956	18.0%	-17.8%	28.4%
Labor	1.534	1.488	1.223	2.254	-3.0%	-17.8%	84.3%
Fabrication Expenses	4.422	5.535	7.010	9.370	25.2%	26.6%	33.7%
Total	**16.279**	**19.854**	**21.357**	**27.654**	**22.0%**	**7.6%**	**29.5%**
Distribution costs have increased from year to year, with distribution costs in 2019 reaching 3.2 trillion Rupiah. The amount of distribution costs is of concern to the company because cement products are commodities that have large volumes that require high product distribution costs. The increase in distribution costs was not followed commensurately with the increase in the volume of cement sales, where the volume of cement sales in 2016 to 2019 only experienced an increase in sales volume of 1.42%.

Table 2. Distribution costs per sales volume for the period of 2016-2019

Year	Distribution Cost (IDR Billion)	Sales Volume (Ton)	Distribution Cost per Sales (IDR/Ton)
2016	1.813	25.682.143	70.594
2017	2.109	27.091.728	77.847
2018	2.376	27.421.500	86.647
2019	3.204	36.340.833	88.165

By rearranging the product supply source facilities and distribution facilities is expected to get the most efficient distribution costs to produce the maximum margin.

2. Methodology

Supply Chain is a network of companies that jointly work to create and deliver a product to the end-user. These companies usually include suppliers, factories, distributors, stores, or retail, as well as supporting companies such as logistics service companies [2]. Understanding of supply chain management, in general, can be explained as the integration of various activities starting from the procurement of goods and services, turning raw materials into goods in process and finished goods, and sending these goods to customers in an efficient manner.

In the current modern economic era, distribution is one of the main determinants in developing an effective supply chain management system. Effective distribution is the process that determines the best placement of products, supplies, and choosing the right mode of transportation to serve the external supply chain [3]. So in determining the decision to establish a production facility or warehousing facility, it should be done simultaneously in matters relating to production and distribution allocations [4].

Competitive distribution management has a very important role in concentration and market penetration to gain sustainable profits by giving internal and external customer satisfaction. Distribution management is the process of managing the movement of goods from suppliers or producers to the point of sale. This is a comprehensive term that refers to various activities and processes such as packaging, inventory, warehousing, supply chain, and logistics. Effective distribution management by monitoring the movement of products from suppliers or manufacturers to the point of sale. The effective distribution gives customers convenience in the form of availability (what, where, when - the right product, in the right place, at the right time), access (customer awareness of availability and authorization to buy), and support (for example advice pre-sales, sales promotion and merchandising, after-sales service improvement). Efficiency in distribution management can be defined as the movement of goods from producers to consumers with optimal costs that are consistent with the desired customer service.

Ideally, the entire supply chain process needs to be designed, managed, and coordinated as one work unit, thus the integration of the supply chain as a key element in the supply chain management strategy. The challenge in supply chain integration is how to coordinate activities throughout the supply chain so that companies can improve performance in the form of reducing costs, increasing service levels, reducing the bullwhip effect, using better resources, and responding effectively to changes in the market. As many companies have recently realized, these challenges are met not only by coordinating production, transportation, and supply decisions but more generally by integrating from the front end of the supply chain in the form of customer demand and to the back end of the supply chain, part manufacturing from the supply chain [5].
Production allocation is carried out by determining the types of goods produced, the amount of production capacity, allocation to distribution facilities, and allocation to customers in each factory that produces. Distribution allocation determines the delivery of products from production facilities to customers with the aim of the right place, the right time, the right quality specifications, and at an efficient cost.

Using the set covering model is a way to determine the lowest cost of placing several facilities where each demand node can be reached by at least one facility. The Model Covering Set is one part of the allocation location problem [6]. The purpose of the allocation location model is to determine the location of facilities that can minimize the cost of assigning facilities to customers with the limitation that each facility is used for a specified number of customers.

For this reason, it is necessary to have activities that can be carried out by the company itself or submitted to the transportation service company to design an appropriate and appropriate distribution system by considering aspects of cost, aspects of flexibility, and aspects of the speed of response to customers. In designing a distribution system to meet customer desires suggest three criteria, namely: rapid response, product choices, and services [7].

Figure 2. Number of facilities in the distribution system network [7]

3. Model Formulation

At this stage, an analysis of the optimization of integrated production and distribution allocations is carried out to obtain optimal results. There are several methods approaches in analyzing optimization problems, wherein this study using a linear programming model to solve the problems encountered. Modeling formulation in describing supply chain networks is carried out using data collected from companies consisting of 21 supply facilities and 136 marketing districts. Among the 21 supply facilities consist of 5 integrated Cement Plants, 1 Grinding Plant (GP), 4 Packing Plants (PP), and 11 Distribution Centers (D). The following formulation models will be developed to optimize distribution costs:

3.1 Notation

The notation that will be used in the development of this modeling is as follows:

Index:
P: cement product, p ∀ P for p = 1 ... 3
I: cement plant, i ∀ I for i = 1 ... 5
J: grinding plant and packing plant, j ∀ J for k = 1 ... 5
M: distribution center (DC), m ∀ M for m = 1 ... 11
N: region or sales district, n ∀ N for n = 1 ... 136
Parameter:

\[C_{pi}^P = \text{production cost for product } p \text{ at cement plant } i \]
\[C_{pj}^P = \text{production cost for product } p \text{ at grinding plant or packing plant } j \]
\[C_{pm}^S = \text{saving cost for product } p \text{ at distribution center } m \]
\[C_{pij}^D = \text{distribution cost for product } p \text{ from cement plant } i \text{ to grinding plant or packing plant } j \]
\[C_{pjm}^D = \text{distribution cost for product } p \text{ from grinding plant or packing plant } j \text{ to distribution center } m \]
\[C_{pim}^D = \text{distribution cost for product } p \text{ from cement plant } i \text{ to distribution center } m \]
\[C_{pjn}^D = \text{distribution cost for product } p \text{ from grinding plant or packing plant } j \text{ to sales district } n \]
\[U_{pi} = \text{production capacity for product } p \text{ in cement plant } i \]
\[V_{pj} = \text{production capacity for product } p \text{ in grinding plant or packing plant } j \]
\[W_{pm} = \text{storage capacity for product } p \text{ in distribution center } m \]
\[D_{pn} = \text{product demand for product } p \text{ in sales district } n \]

3.2 Decision Variable

Decision variables for supply chain distribution problems are described as follows:

\[X_{pij} = \text{number of product } p \text{ from cement plant } i \text{ to grinding plant/packing plant } j \]
\[X_{pjm} = \text{number of product } p \text{ from grinding plant/packing plant } j \text{ to distribution center } m \]
\[X_{pim} = \text{number of product } p \text{ from cement plant } i \text{ to distribution center } m \]
\[X_{pjn} = \text{number of product } p \text{ from grinding plant/packing plant } j \text{ to sales district } n \]
\[Y_i = \text{value 1 if cement plant is operated and value 0 if it does not operate} \]
\[Y_j = \text{value 1 if grinding plant or packing plant is operated and value 0 if it does not operate} \]
\[Y_m = \text{value 1 if distribution center is operated and value 0 if it does not operate} \]

3.3 Objective Function

The goal of this supply chain problem is to minimize the cost of product distribution from supply sources to customers. The destination function can be described as follows:

- Production cost
 These production costs multiply the cost of production with the number of products sent from the factory to the distribution center and sent directly from the factory to the sales district.

\[
\sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{j=1}^{5} X_{pij} C_{pi}^P + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{m=1}^{11} X_{pim} C_{pi}^P + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{n=1}^{136} X_{pin} C_{pi}^P \\
+ \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{m=1}^{11} X_{pjm} C_{pj}^P + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{n=1}^{136} X_{pjn} C_{pj}^P
\]
(1)
• Distribution cost
 This distribution fee multiplies the number of products shipped with the cost of distribution.
 \[
 \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{j=1}^{5} X_{pij} C_{ pij}^D + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{m=1}^{11} X_{pjm} C_{ pj m}^D + \sum_{p=1}^{3} \sum_{m=1}^{11} \sum_{n=1}^{136} X_{pmn} C_{ pm n}^D \\
 + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{m=1}^{11} X_{pim} C_{ pim}^D + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{n=1}^{136} X_{pin} C_{ pin}^D \\
 + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{n=1}^{136} X_{pjn} C_{ pj n}^D
 \]

(2)

• Storage cost
 This storage cost multiplies the number of products stored in the distribution center with the cost of handling and storing components while in the distribution center.
 \[
 \sum_{p=1}^{3} \sum_{m=1}^{5} \sum_{n=1}^{136} X_{pmn} C_{ pm n}^S
 \]

(3)

• Merge objective function
 Combining the production and distribution cost functions will produce the overall optimization objective function as follows:
 Minimization of total costs (production, storage, and distribution)
 \[
 \text{Min} = \\
 \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{j=1}^{5} X_{pij} C_{ pi}^P + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{m=1}^{11} X_{pim} C_{ pim}^P + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{n=1}^{136} X_{pin} C_{ pin}^P \\
 + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{m=1}^{11} X_{pjm} C_{ pj m}^P + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{n=1}^{136} X_{pjn} C_{ pj n}^P \\
 + \sum_{p=1}^{3} \sum_{m=1}^{5} \sum_{n=1}^{136} X_{pmn} C_{ pm n}^P \\
 + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{m=1}^{11} X_{pim} C_{ pim}^D + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{n=1}^{136} X_{pin} C_{ pin}^D \\
 + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{m=1}^{11} X_{pjm} C_{ pj m}^D + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{n=1}^{136} X_{pjn} C_{ pj n}^D \\
 + \sum_{p=1}^{3} \sum_{m=1}^{5} \sum_{n=1}^{136} X_{pmn} C_{ pm n}^D
 \]

(4)
The objective function in this model is the minimization of costs consisting of production costs, storage costs, and distribution costs. The production costs and savings costs are also taken into consideration the fixed production costs of all the supply facilities.

3.4 Constraint Function

Constraints in this problem include the supply ability of each supply facility, the constraints of fulfilling customer demand, and non-negative constraints. The constraint function is as follows:

- **Constraints on cement plant production capacity**
 The amount of cement production sent from the cement plant to the grinding plant and packing plant, distribution center, and sales district must not exceed the production capacity of the cement plant.

 \[\sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{j=1}^{5} X_{pij} + \sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{m=1}^{11} X_{pim} + \sum_{i=1}^{5} \sum_{n=1}^{136} X_{pin} \leq U_{pi}, \quad \forall i \tag{5} \]

- **Constraints on the production capacity of the grinding plant and packing plant**
 The amount of cement production sent from the grinding plant and packing plant to the distribution center and sales district must not exceed the production capacity of the grinding plant or packing plant.

 \[\sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{m=1}^{11} X_{pjm} + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{n=1}^{136} X_{pjn} \leq V_{pj}, \quad \forall j \tag{6} \]

- **Distribution center capacity constraints**
 The number of cement products sent from the distribution center to the marketing area must not be greater than the capacity of the distribution center.

 \[\sum_{p=1}^{3} \sum_{m=1}^{11} \sum_{n=1}^{136} X_{pmn} \leq W_{pm}, \quad \forall m \tag{7} \]

- **Distribution center synchronization constraints**
 The number of products entering the distribution center must be the same as the number of products coming out of the distribution center, which is assumed to be zero inventory.

 \[\sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{m=1}^{11} X_{pim} + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{m=1}^{11} X_{pjm} = \sum_{p=1}^{3} \sum_{m=1}^{11} \sum_{n=1}^{136} X_{pmn}, \quad \forall m \tag{8} \]

- **Constraints on fulfilling customer requests**
 The number of requests in the marketing area must always be fulfilled.

 \[\sum_{p=1}^{3} \sum_{i=1}^{5} \sum_{n=1}^{136} X_{pin} + \sum_{p=1}^{3} \sum_{j=1}^{5} \sum_{n=1}^{136} X_{pjn} + \sum_{m=1}^{11} \sum_{n=1}^{136} X_{pmn} \geq D_{pn}, \quad \forall n \tag{9} \]
4. Case study

This research is limited to the distribution network optimization in Java, which is greatly affected by the acquisition process carried out by "companies" of competitor companies located on the island of Java. After the acquisition process, production facilities and distribution facilities have increased so there is a need to restructure the distribution network to get maximum cost efficiency. Facilities owned after the acquisition consist of 21 supply source facilities which include 5 Cement Plant (CP) units, 4 Packing Plant (PP) units, and 1 Grinding Plant (GP) unit, and 11 Distribution Centers (DC) to serve cement needs in Java, which are divided into 136 sales districts. There are more than 10 types of cement produced, but in this study, the focus is on 3 types of cement products that are generally sold in the market and have the highest demand for cement products in the domestic and foreign markets. The three types of cement products are Ordinary Portland Cement (OPC) or Ready Flow Plus (RFP); Portland Composite Cement (PCC) or Ready Flow (RF); and Portland Composite Cement Premium (PCC Premium) or Powermax.

4.1 Data

The data parameter is taken from the company shown in Table 3 to Table 14.

Table 3. Supply facilities in java

Type	Name	Location	Capacity of Supply Facilities (Ton / Month)		
			OPC/RFP	PCC/RF	PCC Prem./Powermax
CP	CP Tuban 1	Tuban, Jawa Timur	317.676	731.459	73.146
	CP Rembang	Rembang, Jawa Tengah	128.274	74.444	47.282
	CP Narogong	Bogor, Jawa Barat	123.939	261.041	19.593
	CP Cilacap	Cilacap, Jawa Tengah	-	207.050	-
	CP Tuban 2	Tuban, Jawa Timur	75.650	158.873	-
GP & PP	GP Gresik	Gresik, Jawa Timur	23.356	48.072	5.952
	PP Banyuwangi	Banyuwangi, Jawa Timur	12.800	30.400	4.800
	PP Tj. Priok	Tanjung Priok, Jakarta	16.000	24.000	8.000
	PP Ciwandan 1	Cilegon, Banten	9.000	36.000	3.000
	PP Ciwandan 2	Cilegon, Banten	8.000	37.500	2.500
DC	DC Cibungur	Purwakarta, Jawa Barat	3 x 2300	3 x 2300	3 x 2300
	DC Ciwandan	Cilegon, Banten	3 x 2700	3 x 2700	3 x 2700
	DC Narogong	Bogor, Jawa Barat	3 x 3000	3 x 3000	3 x 3000
	DC Pasoso	Jakut, DKI Jakarta	3 x 4000	3 x 4000	3 x 4000
	DC Bogor	Bogor, Jawa Barat	3 x 1500	3 x 1500	3 x 1500
	DC Cimahi	Cimahi, Jawa Barat	3 x 2500	3 x 2500	3 x 2500
	DC Sukabumi	Sukabumi, Jawa Barat	3 x 700	3 x 700	3 x 700
	DC Jogja	Yogyakarta	3 x 3500	3 x 3500	3 x 3500
	DC Solo	Solo, Jawa Tengah	3 x 1500	3 x 1500	3 x 1500
	DC Cikande	Serang, Banten	3 x 1200	3 x 1200	3 x 1200
	DC Cirebon	Cirebon, Jawa Barat	3 x 3000	3 x 3000	3 x 3000
After the acquisition process, the location of supply source facilities is spread throughout Java Island. This gives more advantages in the process of distributing cement products to consumers.

To meet the demand for cement on the island of Java, the "company" divided marketing districts totaling 136 districts spread across 6 provinces in Java. The total sales districts that exist are merging with the marketing district of the company that was acquired by the "company" so that it is hoped that the merging of this district will provide synergy for the two companies.

Sales District	Sales District	Sales District	
Ambarawa	Jakarta Barat	Kota Sukabumi	Purworejo
Babat	Jakarta Pusat	Kudus	Rembang
Bandung	Jakarta Selatan	Kulonprogo	Salatiga
Bangkalan	Jakarta Timur	Kuningan	Sampang
Banjar	Jakarta Utara	Lamongan	Semarang
Banjarnegara	Jember	Lumajang	Serang
Bantul	Jepara	Madiun	Sidoarjo
Banyumas	Jombang	Magelang	Situbondo
Banyuwangi	Kab. Bandung	Magelang Kota	Sleman
Batang	Kab. Bekasi	Magetan	Solo
Batu	Kab. Cianjur	Majalengka	Sragen
Bawean	Kab. Cirebon	Majenang	Sukabumi
Bekasi	Kab. Garut	Malang	Sukoharjo
Blitar	Kab. Indramayu	Mojokerto	Sumedang
Blora	Kab. Karawang	Nganjuk	Sumenep
Bogor	Kab. Kuningan	Ngawi	Sumenep 2
Bojonegoro	Kab. Lebak	Pacitan	Surabaya
Bondowoso	Kab. Majalengka	Padalarang	Surabaya Barat
Boyolali	Kab. Purwakarta	Padangan	Surakarta
Brebes	Kab. Subang	Pamekasan	Tangerang
Cepu	Kab. Sukabumi	Pandeglang	Tangerang Selatan
Ciamis	Kab. Sumedang	Pangandaran	Tasikmalaya
Cianjur	Kab. Tangerang	Pare	Tegal
Cikarang	Kab. Tasikmalaya	Pasuruan	Temanggung
Cilacap	Karanganyar	Pati	Trenggalek
Cilegon	Kebumen	Pekalongan	Tuban
Cimahi	Kediri	Pekalongan Kota	Tulungagung
Cirebon	Kendal	Pemalang	Ungaran
Demak	Klaten	Ponorogo	Walikukun
Garuk	Kota Bandung	Probolinggo	Weleri
Gresik	Kota Bekasi	Purbalingga	Wonogiri
Grobogan	Kota Bogor	Purwantoro	Wonosari
Gunung Kidul	Kota Cimahi	Purwodadi	Wonosobo
Indramayu	Kota Depok	Purwokerto	Yogyakarta

Costs incurred at each supply source facility can be identified as follows:
While the production operational costs incurred at the supply facilities of the grinding plant and packing plant which includes the cement grinding process and the cement packing process can be seen in the table below.

Table 6. Production costs at the grinding plant and packing plant (IDR / Ton)

Facilities	Packing Cost
PP Banyuwangi	12.994
PP Tanjung Priok	39.200
PP Ciwandan 1	44.678
PP Ciwandan 2	30.255
GP Gresik	88.858

Operational costs contained in the distribution center in the form of savings costs are costs incurred from the product handling process and product storage while in the distribution center.

Table 7. Storage cost at distribution center (IDR / Ton)

Facilities	Storage Cost
DC Cibungur	4.786
DC Ciwandan	1.895
DC Narogong	4.966
DC Pasoso	5.420
DC Bogor	9.000
DC Cimahi	4.786
DC Sukabumi	11.700
DC Jogja	4.192
DC Solo	3.966
DC Cikande	9.825
DC Cirebon	11.182

The distribution cost per ton of cement that must be incurred by the company is very large because cement products have heavy volume characteristics and large dimensions. Distribution costs between supply facilities up to the marketing district are divided into six distribution costs between supply facilities up to consumers.

The distribution costs can be seen as follows:
Table 8. Distribution cost from cement plant to grinding plant and packing plant (IDR / Ton)

Cement Plant	Packing Plant & Grinding Plant				
	Banyuwangi	Tj. Priok	Ciwandan 1	Ciwandan 2	Gresik
Tuban-1	156.012	210.789	203.984	207.664	89.931
Rembang	242.912	297.689	290.884	294.564	115.835
Narogong	500.800	55.000	127.600	127.600	418.700
Cilacap	411.730	363.100	435.700	435.700	198.342
Tuban-2	162.800	216.800	210.000	213.715	87.400

Table 9. Distribution cost from grinding plant and packing plant to distribution center (IDR / Ton)

PP & GP	Distribution Center					
	Cibungur	Ciwandan	Narogong	Pasoso	Bogor	Cimahi
Banyuwangi	325.122	358.101	370.320	330.695	305.012	344.440
Tj. Priok	111.428	77.505	67.974	48.320	72.300	434.068
Ciwandan 1	184.028	23.525	75.514	81.840	144.900	217.228
Ciwandan 2	184.028	23.525	68.274	73.980	144.900	217.228
Gresik	259.041	226.345	304.239	252.320	436.000	190.294

(b)

PP & GP	Distribution Center				
	Sukabumi	Jogja	Solo	Cikande	Cirebon
Banyuwangi	372.112	285.128	249.720	368.762	252.648
Tj. Priok	94.100	297.316	289.768	103.150	142.436
Ciwandan 1	166.700	369.916	362.368	30.375	215.036
Ciwandan 2	166.700	369.916	362.368	30.375	215.036
Gresik	306.031	92.468	58.294	302.681	186.567

(b)

Table 10. Distribution cost from cement plant to distribution center (IDR / Ton)

CP	Distribution Center					
	Cibungur	Ciwandan	Narogong	Pasoso	Bogor	Cimahi
Tuban 1	173.896	203.984	219.274	180.103	158.000	193.214
Rembang	197.414	277.361	263.234	256.001	294.500	210.248
Narogong	61.214	85.605	24.034	46.880	26.300	94.414
Cilacap	102.814	259.205	168.634	220.480	129.300	69.614
Tuban 2	178.614	207.505	225.334	186.130	164.000	250.214

(b)
CP	Distribution Center				
	Sukabumi	Jogja	Solo	Cikande	Cirebon
Tuban 1	227.800	133.308	97.674	222.575	107.818
Rembang	319.000	138.188	68.034	326.175	147.218
Narogong	50.800	246.508	238.734	57.975	98.618
Cilacap	99.400	82.908	99.034	231.575	84.818
Tuban 2	233.800	135.116	99.708	218.750	102.636

Table 11. Distribution cost from distribution center to sales district (IDR / Ton)

Distribution Center	Sales District							
	Ambarawa	Babat	Bandung	Bangkalan	……	Wonosari	Wonosobo	Jogja
Cibungur	281.414	238.556	93.120	389.774	……	208.814	176.614	204.814
Ciwandan	361.361	268.644	226.800	301.684	……	381.800	328.800	378.300
Narogong	218.700	372.700	99.200	426.420	……	254.200	201.200	250.700
Pasoso	265.580	244.763	146.080	274.123	……	301.080	248.080	297.580
Bogor	245.000	222.660	62.100	252.020	……	242.500	210.300	238.500
Cimahi	294.248	257.874	25.000	287.234	……	230.400	198.200	226.400
Sukabumi	221.900	292.460	67.900	321.820	……	205.400	173.200	201.400
Jogja	66.588	197.968	187.908	184.960	……	34.200	92.140	25.000
Solo	42.834	162.334	204.034	180.960	……	36.500	86.574	39.200
Cikande	276.675	287.235	157.175	316.595	……	312.175	259.175	308.675
Cirebon	120.082	172.478	49.018	201.838	……	155.582	102.582	152.082

Table 12. Distribution cost from cement plant to sales district (IDR / Ton)

CP	Sales District							
	Ambarawa	Babat	Bandung	Bangkalan	……	Wonosari	Wonosobo	Jogja
Tuban 1	117.260	64.660	194.000	94.020	……	135.000	160.000	137.500
Rembang	84.000	125.160	241.980	154.520	……	108.032	115.120	142.380
Narogong	218.700	372.700	99.200	426.420	……	254.200	201.200	250.700
Cilacap	122.500	286.220	105.000	286.960	……	106.000	73.800	102.000
Tuban 2	100.300	63.500	200.000	100.020	……	141.000	166.000	143.500

Table 13. Distribution cost from grinding plant and packing plant to sales district (IDR / Ton)

PP & GP	Sales District							
	Ambarawa	Babat	Bandung	Bangkalan	……	Wonosari	Wonosobo	Jogja
Banyuwangi	273.272	91.352	350.012	108.032	……	291.012	316.012	293.512
Tj. Priok	273.700	275.449	146.900	304.809	……	309.200	256.200	305.700
Ciwandan 1	346.300	268.644	226.800	298.004	……	381.800	328.800	378.300
Ciwandan 2	346.300	272.324	226.800	301.684	……	381.800	328.800	378.300
Gresik	122.980	38.180	283.931	57.700	……	122.600	139.440	116.800
Table 14. Demand sales of sales district in Java (Ton)

No	Sales District	Sales Demand	
		Semester 1	Semester 2
1	Ambarawa	23,513	31,118
2	Babat	8,797	12,054
3	Bandung	92,400	122,986
4	Bangkalan	70,451	88,900
5	Banjar	24,625	31,059
...
133	Wonogiri	52,450	69,774
134	Wonesari	22,913	30,337
135	Wonesobo	20,705	27,568
136	Yogyakarta	19,740	27,343

4.2 Results and Discussions
The process of finding solutions using Lingo software to get the optimal solution. Finding a solution using Lingo11 software is done by translating the mathematical model into coding following the syntax of the Lingo11 application.

The distribution system model that has a multi-product, multi-facility (cement plant, grinding plant, packing plant, distribution center, and sales district) has been successfully modeled using the linear programming method. The pulDRose of the model function is to minimize the total cost of distribution which consists of production costs in each facility, distribution costs from each facility to the distribution center, fixed costs in the distribution center for product storage, variable costs in the distribution center for each product, and distribution costs from distribution center to consumers.

Table 15. Comparison of results between existing vs. Lingo optimization

Description	Period	Existing	Lingo Optimization	Efficiency
Production Cost	Semester I	IDR 4,390,072,021.885	IDR 3,994,872,505.369	IDR 395,199,516,515
	Semester II	IDR 5,431,750,515.281	IDR 5,259,567,521.741	IDR 172,182,993,539
	Total	IDR 9,821,822,537.166	IDR 9,254,440,027.111	IDR 567,382,510,055
Distribution Cost	Semester I	IDR 1,226,525,986.876	IDR 836,890,188.783	IDR 389,635,798.093
	Semester II	IDR 1,598,250,879.799	IDR 1,108,779,663.080	IDR 489,471,216.719
	Total	IDR 2,824,776,866.674	IDR 1,945,669,851.863	IDR 879,107,014.811
Prod. Cost + Distr. Cost		IDR 12,646,599,403.840	IDR 11,200,109,878.974	IDR 1,446,489,524.866

From the above table, it can be seen that both production costs and distribution costs have decreased from the results of running models using Lingo software. Production costs have decreased by IDR 567,382,510,055 due to changes in production allocation at each supply source facility in meeting the demand for all three cement products. While the optimization of distribution costs can be obtained from the optimization results of IDR 879,107,014,811. So the total cost that can be saved from the optimization of the allocation of production and distribution is IDR 1,446,489,524,866 or its value is almost 1.5 trillion rupiahs.
Table 16. Production allocation and utilization of cement plants after optimization

Cement Plant	Capacity (Ton)	Existing Volume (Ton)	Utilization	Lingo Optimization Volume (Ton)	Utilization
Tuban 1	13,467,372	11,289,201	83.83%	13,062,640	96.99%
Rembang	3,000,000	2,997,925	99.93%	859,703	28.66%
Narogong	4,854,876	3,292,766	67.82%	4,854,876	100.00%
Cilacap	2,484,600	2,137,508	86.03%	1,725,790	69.46%
Tuban 2	2,814,276	1,687,183	59.95%	901,895	32.05%

Table 17. Production allocation and utilization of grinding plant & packing plants after optimization

Grinding Plant & Packing Plant	Capacity (Ton)	Existing Volume (Ton)	Utilization	Lingo Optimization Volume (Ton)	Utilization
Banyuwangi	576,000	480,092	83.35%	56,527	9.81%
Tanjung Priok	726,000	690,409	95.10%	-	0.00%
Ciwandan 1	576,000	507,202	88.06%	-	0.00%
Ciwandan 2	876,000	840,605	95.96%	-	0.00%
Gresik	928,560	689,692	74.28%	-	0.00%

Table 18. Utilization of distribution center after optimization

Distribution Center	Capacity (Ton)	Existing Volume (Ton)	Utilization	Lingo Optimization Volume (Ton)	Utilization
Cibungur	248,400	103,334	41.60%	87,757	35.33%
Ciwandan	324,000	295,448	91.19%	-	0.00%
Narogong	342,000	329,426	96.32%	216,000	63.16%
Pasoso	432,000	425,155	98.42%	181,002	41.90%
Bogor	270,000	249,312	92.34%	162,000	60.00%
Cimah	270,000	126,931	47.01%	144,613	53.56%
Sukabumi	84,000	80,544	95.89%	35,898	42.74%
Jogja	378,000	150,078	39.70%	63,000	16.67%
Solo	180,000	169,213	94.01%	135,000	75.00%
Cikande	144,000	130,649	90.73%	86,400	60.00%
Cirebon	324,000	245,091	75.65%	253,870	78.35%

Changes in production allocations at the cement plant facilities occur because the two cement plant units that have the lowest production costs, namely CP Tuban 1 and CP Narogong, have increased utilization, while CP Rembang and CP Tuban 2 have experienced a very significant decrease in utilization because both facilities have production costs per tons of big ones. A very striking change occurred in the grinding plant and packing plant unit units where almost all units did not operate. This happens because shipping products to GP and PP facilities generally use a sea transportation mode, where the cost of using this mode is more expensive than using a land transportation mode. Distribution center utilization has decreased, only DC Cimah and DC Cirebon have increased utilization. Only DC
Ciwanダン does not operate from the optimization results because PP Ciwandan 1 and PP Ciwandan 2 also do not operate from the results of this optimization.

5. Conclusions
Production allocation and distribution networks are very important in supply chain management. With the increase in supply source facilities after the acquisition of similar companies, it is necessary to re-arrange production allocations for each integrated cement plant and reconfigure the existing distribution network in Java. By using linear programming to obtain minimal distribution costs to provide benefits to the company after the acquisition process. With several obstacles such as production capacity in the cement plant, grinding plant, and packing plant as well as storage capacity constraints at the distribution center, the optimum optimization results are obtained for production costs and distribution costs. However, from this result, some supply facilities are not optimal in their utilization, and there are even some non-operational supply source facilities. This modeling can still be developed in future research by considering whether the company will maintain or release the source of supply and distribution facilities that are not optimal in this modeling.

References
[1] Tsiakis P. and Papageorgiou L G 2008 Optimal production allocation and distribution supply chain networks International Journal of Production Economics 111 pp. 468-483
[2] Pujawan N and Mahendrawathi 2017 Supply Chain Management Third Edition, (Yogyakarta: Andi) p 4
[3] Krajewski L J and Ritzman L P 2000 Operations Management- Strategy and Analysis 5th Edition, (Singapore: Addison Wesly Longman)
[4] Yu V F, Normasari N M E and Luong H T 2015 Integrated location-production-distribution planning in a multiproducts supply chain network design model Mathematical Problems in Engineering 1-13
[5] Simchi-Levi D, Kaminski P and Simchi-Levi E 2008 Designing and Managing The Supply Chain: Concepts, Strategies and Case Studies 3rd Edition (USA:Irwin Mc Graw-Hill)
[6] Daskin M S 2013 Network and Discrete Location: Models, Algorithms and Applications. Second Edition (New Jersey: John Wiley & Sons, Inc.)
[7] Heizer J, Render B AND Munson C 2017 Operations Management: Sustainability and Supply Chain Management 12th Edition (New York City: Pearson Education, Inc)