Calculating datastructures

Ralf Hinze and Wouter Swierstra

TU Kaiserslautern and Utrecht University
Calculating datastructures

There are tons of (purely functional) datastructures:

- binary random access lists;
- 2-3 trees;
- finger trees;
- binomial heaps;
- Braun trees;
- ...

Who comes up with these?
Calculating datastructures

There are tons of (purely functional) datastructures:

- binary random access lists;
- 2-3 trees;
- finger trees;
- binomial heaps;
- Braun trees;
- ...

Who comes up with these?
Purely functional datastructures

...data structures that can be cast as numerical representations are surprisingly common, but only rarely is the connection to a number system noted explicitly.
Calculating datastructures

• We will fix a particular API, keeping the numerical representation we use abstract for the moment.

• We can then show how different choices of numerical representation lead to different implementations of this API.

• Using the properties our API must satisfy, we can apply familiar type isomorphisms to calculate the datastructure that implements the API.

All these calculations can be performed and verified in Agda.
Flexible arrays – the interface

Number : Set
Index : Number → Set
Array : Number → Set → Set

lookup : Array n elem → (Index n → elem)
tabulate : (Index n → elem) → Array n elem

nil : Array 0 elem
cons : elem → Array n elem → Array (1 + n) elem
head : Array (1 + n) elem → elem
tail : Array (1 + n) elem → Array n elem
Take 0: Peano numbers

\textbf{data} Peano : Set where
\begin{itemize}
\item zero : Peano
\item succ : Peano \rightarrow Peano
\end{itemize}

\textbf{data} Index : Peano \rightarrow Set where
\begin{itemize}
\item izero : Peano (succ n)
\item isucc : Peano n \rightarrow Peano (succ n)
\end{itemize}
Towards calculation...

lookup : Array n elem → (Index n → elem)
tabulate : (Index n → elem) → Array n elem

These two functions should form an isomorphism.

If we perform induction on n, we can calculate a definition of Array.
Index isomorphisms

\begin{align*}
\text{Index}(0) & \cong \bot \\
\text{Index}(1) & \cong \top \\
\text{Index}(m + n) & \cong \text{Index}(m) \uplus \text{Index}(n) \\
\text{Index}(m \cdot n) & \cong \text{Index}(m) \times \text{Index}(n) \\
\text{Index}(n^m) & \cong \text{Index}(m) \rightarrow \text{Index}(n)
\end{align*}

Note – these isomorphisms are not unique! There are many different choices:

• interleaving vs appending
• column major vs row major
• ...

While these choices are all correct, they lead to different datastructures.
Calculating with generic tries

We’ll try to find an isomorphism given by the lookup and tabulate functions to ‘discover’ an implementation of a datastructure.

If we ‘calculate’ this iso using familiar laws – we can hopefully use this to read off the datastructures that arise.

In particular, we’ll use the laws of exponents:

\[
\begin{align*}
X^0 & \cong 1 \\
X^1 & \cong X \\
X^{A+B} & \cong X^A \cdot X^B \\
X^{A \cdot B} & \cong (X^B)^A
\end{align*}
\]

These should be familiar from high school – but can also be read as type isomorphisms.
Example: vectors – base case

proof

(Index zero → elem)

≃ -- Index-0 law

(⊥ → elem)

≃ -- law of exponents

⊤

≃ -- use as definition

Array zero elem

∎
Example: vectors – inductive step

proof

\[(\text{Index } (\text{succ } n) \rightarrow \text{elem})\]
\[\equiv -- \text{definition of Index}\]
\[(\top \cup \text{Index } n) \rightarrow \text{elem}\]
\[\equiv -- \text{law of exponents}\]
\[(\top \rightarrow \text{elem}) \times (\text{Index } n \rightarrow \text{elem})\]
\[\equiv -- \text{law of exponents}\]
\[\text{elem} \times \text{Array } n \text{ elem}\]
\[\equiv -- \text{use as definition}\]
\[\text{Array } (\text{succ } n) \text{ elem}\]

In this way, we have connected Peano naturals to vectors – but that’s hardly interesting...
Binary numbers

```haskell
data Leibniz : Set where
  0b : Leibniz
  _1 : Leibniz → Leibniz
  _2 : Leibniz → Leibniz

convert : Leibniz → Peano
convert 0b = 0
convert (n 1) = convert n · 2 + 1
convert (n 2) = convert n · 2 + 2

This representation of binary numbers is unique.
```
I’ll go through one of the two cases in some detail:

\[(\text{Index } (n \ 2) \rightarrow \elem)\]

\[\equiv \ -- \ arithmetic \ on \ indices\]

\[(\top \maplus \top \maplus \text{Index } n \maplus \text{Index } n \rightarrow \elem)\]

\[\equiv \ -- \ laws \ of \ exponents\]

\[\elem \times \elem \times (\text{Index } n \rightarrow \elem) \times (\text{Index } n \rightarrow \elem)\]

\[\equiv \ -- \ recurse\]

\[\elem \times \elem \times \text{Array } n \elem \times \text{Array } n \elem\]

\[\equiv \ -- \ use \ as \ definition\]

\[\text{Array } (n \ 2) \elem\]
In this style, we can (re)discover the type of 1-2 trees:

```haskell
data Array : Leibniz \rightarrow Set \rightarrow Set where
  Leaf  : Array 0 b
  Node₁ : elem \rightarrow Array n elem \rightarrow Array n elem \rightarrow Array (n 1) elem
  Node₂ : elem \times elem \rightarrow Array n elem \rightarrow Array n elem \rightarrow Array (n 2) elem
```

The construction of the isos give us the definition of lookup and tabulate for free.
In this style, we can (re)discover the type of 1-2 trees:

```haskell
data Array : Leibniz → Set → Set where
  Leaf : Array 0b
  Node₁ : elem → Array n elem → Array n elem → Array (n 1) elem
  Node₂ : elem × elem → Array n elem → Array n elem → Array (n 2) elem
```

The construction of the isos give us the definition of lookup and tabulate for free.

What about the other operations?
Example: a 1-2 tree with 17 elements

- Each node has 1 or 2 elements: just enough to ensure the remaining number of elements is even.
- Note that ‘odd elements’ are stored in one subtree and ‘even elements’ in the other.
Adding new elements

To add a new element to the ‘front’ of the tree, we distinguish three cases:

cons : elem → Array n elem → Array (succ n) elem

cons \(x_0 \) (Leaf) = Node₁ \(x_0 \) Leaf Leaf
cons \(x_0 \) (Node₁ \(x_1 \) l r) = Node₂ \(x_0 \) \(x_1 \) l r
cons \(x_0 \) (Node₂ \(x_1 \) \(x_2 \) l r) = Node₁ \(x_0 \) (cons \(x_1 \) l) (cons \(x_2 \) r)

- A Node₁ becomes a Node₂, with the new element at the front.
- A Node₂ becomes a Node₁ – but we need to add the two elements to the respective subtrees.
Once we have this infrastructure, it is easy to explore variations.

\[(\text{Index } (n \ 2) \rightarrow \text{elem})\]
\[\approx \text{-- arithmetic on indices}\]
\[(\top \uplus \text{Index } (\text{succ } n) \uplus \text{Index } n \rightarrow \text{elem})\]
\[\approx \text{-- laws of exponents}\]
\[\text{elem } \times (\text{Index } (\text{succ } n) \rightarrow \text{elem}) \times (\text{Index } n \rightarrow \text{elem})\]
\[\approx \text{-- use as definition}\]
\[\text{Array } (n \ 2) \text{elem}\]

Instead of having 1-2 nodes – we can have nodes with a single element.
Braun trees

```haskell
data Array : Leibniz → Set → Set where
  Leaf    : Array 0b elem
  Node₁   : elem → Array n elem → Array (n + 1) elem
  Node₂   : elem → Array (succ n) elem → Array n elem → Array (n * 2) elem
```

Each node stores a single element; the two subtrees may store a different number of elements, but differ by at most one.
Extending Braun trees

\[
\text{cons : elem} \rightarrow \text{Array n elem} \rightarrow \text{Array (succ n) elem}
\]

\[
\text{cons } x_0 (\text{Leaf}) = \text{Node}_1 x_0 \text{ Leaf Leaf}
\]

\[
\text{cons } x_0 (\text{Node}_1 x_1 \ l \ r) = \text{Node}_2 x_0 (\text{cons } x_1 \ r) \ l
\]

\[
\text{cons } x_0 (\text{Node}_2 x_1 \ l \ r) = \text{Node}_1 x_0 (\text{cons } x_1 \ r) \ l
\]

The two subtrees swap! Every even element becomes odd and visa versa.
Random access lists

(Index (n 2) → elem)

≈ -- arithmetic on indices

(⊤ ⊎ ⊤ ⊎ Index (2 · n) → elem)

≈ -- laws of exponents

elem × elem × (Index n → elem × elem)

≈ -- use as definition

Array (n 2) elem

Instead of having two subtrees, we can also have one ‘tail’ with twice as many elements.
Random access lists

data Array : Leibniz → Set → Set where

 nil : Array 0b elem

 one : elem → Array n (elem × elem) → Array (n 1) elem

 two : elem → elem → Array n (elem × elem) → Array (n 2) elem

A linear structure with a subtree of pairs rather than pair of subtrees.

As a result, we no longer use the interleaving of even-odd elements, but rather elements are stored in ‘usual’ order.
Example: random access list of 17 elements
What else?

We go through a lot more details in the paper:

• explicit proofs of isomorphisms;
• computing index types for various structures;
• many more operations: cons, snoc, tail, lookup, etc.
• lots of pretty pictures
• Ko has already shown how to describe binary heaps as ornaments on skey binary numbers.
• Isomorphisms are quite a strong criteria – do weaker conditions suffice?
• Isomorphisms are quite a strong criteria – can we get more out of them by going cubical?