A REVIEW ON THE SYNTHETIC METHODOLOGIES OF CHROMONES

MAHATHY VANGURU1, RAMCHANDER MERUGU1, SWETHA GARIMELLA1, LAXMINARAYANA E2*

1Department of Biochemistry, University College of Science and Informatics, Mahatma Gandhi University, Nalgonda, Telangana, India. 2Department of Science and Humanities, Sreenidhi Institute of Science and Technology, Hyderabad, Telangana, India. Email: elxnkits@yahoo.co.in

Received: 15 June 2018, Revised and Accepted: 18 July 2018

ABSTRACT

Chromones group of compounds and their derivatives form the essential component of pharmacophores in many biologically active molecules. They exhibit a wide range of biological activities such as antibiotic, antitumor, antiviral, antioxidant, antipsychotic, and antihypoxic activities. These applications have stimulated a continuous search for the synthesis of new compounds in this field and are being extensively investigated. The various methodologies so far reported for the synthesis of these compounds with the compounds biological applications are discussed in this communication.

Keywords: Chromones, Synthesis, Biological activities.

INTRODUCTION

Chromones and their structural analogs have motivated a great interest because of their usefulness as biologically active agents. The chromone moiety is the essential component of pharmacophores of a large number of bioactive molecules.

Chromone (1,4-benzopyrone) is a derivative of benzopyran with a substituted keto group on the pyran ring. Chromone, benzopyran, and coumarin possess a similar structure (Douglas et al., 2003) [1]. The first chromone to be used in pure form in clinical practice was Khellin extracted from the seeds of plant Ammi visnaga. Khellin was first prepared in impure form (Edwards and Howell, 2000) [2].

SYNTHESIS

Chromone may be synthesized under either acidic/basic conditions. The classical 2,3-disubstituted benzopyrone (c). Synthesis utilizes acidic conditions and is by far the most common method [3]. It proceeds through an intramolecular condensation of molecules such as (b), which are usually obtained through a Baker-Venkataraman rearrangement of compound (a), or through a Claisen ester condensation.

Jaen et al. [4] (1991) described the synthesis of novel type of [(aryl piperazinyl)alkoxy]-4H-1-benzopyran-4-ones.

Zhi et al. [7] synthesized 1,2-dihydro chromeno[3,4-f] quinoline derivatives.
A new class of estrogen receptor beta (ERβ) ligands based on the 6H-chromeno[4,3-b]quinoline scaffold were reported by Vu et al. (2007) [8].

Yu et al. (2003) [9] reported synthesis of 3′,4′-R-Di-O-(-)-camphanoyl-Z,2′-dimethyl dihydro pyrano-[2,3-f]chromone on the basis of a structure-activity relationship study of 3′,4′-R-Di-O-(-)-camphanoyl-(+)-cis-Khellactone and its analogs.

Recanatini et al. (2001) [10] designed and synthesized chromone and xanthone derivatives.

A new series of novel 2-vinyl chroman-4-ones (Albrecht et al., 2005) [11] were synthesized which were analogs of natural products aposphaerin A and B.

A new group of 2-phenyl naphthalene type structures of 11H-indolo[3,2-c]quinoline derivatives was designed by He et al. [12] (2003). Loaiza et al. [13] (2004) synthesized new 9-anilinothiazolo[5,4-b]quinoline derivatives. Guo et al. [14] (2009) synthesized a series of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives.

Shi et al. [15] (2008) synthesized substituted quinolines.

Pedram et al. [16] (2008) described the discovery of a new selective progesterone receptor modular which was the lead compound, 7,9-difluoro-5-(3-methyl cyclohex-2-enyl)-2,3,4-trimethyl-1,2-dihydro chromeno[3,4-f]quinoline

Nagaiah et al. (2010) [17] synthesized new cis-fused tetra hydro chromeno[4,3-b]quinolines by intramolecular [4+2] imino diels-alder reactions of 2-azadienes.

A new class of estrogen receptor beta (ERβ) ligands based on the 6H-chromeno[4,3-b]quinoline scaffold were reported by Vu et al. (2007) [8].

Yu et al. (2003) [9] reported synthesis of 3′,4′-R-Di-O-(-)-camphanoyl-Z,2′-dimethyl dihydro pyrano-[2,3-f]chromone on the basis of a structure-activity relationship study of 3′,4′-R-Di-O-(-)-camphanoyl-(+)-cis-Khellactone and its analogs.

Recanatini et al. (2001) [10] designed and synthesized chromone and xanthone derivatives.

A new series of novel 2-vinyl chroman-4-ones (Albrecht et al., 2005) [11] were synthesized which were analogs of natural products aposphaerin A and B.

A new group of 2-phenyl naphthalene type structures of 11H-indolo[3,2-c]quinoline derivatives was designed by He et al. [12] (2003). Loaiza et al. [13] (2004) synthesized new 9-anilinothiazolo[5,4-b]quinoline derivatives. Guo et al. [14] (2009) synthesized a series of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives.

Shi et al. [15] (2008) synthesized substituted quinolines.

Pedram et al. [16] (2008) described the discovery of a new selective progesterone receptor modular which was the lead compound, 7,9-difluoro-5-(3-methyl cyclohex-2-enyl)-2,3,4-trimethyl-1,2-dihydro chromeno[3,4-f]quinoline

Nagaiah et al. (2010) [17] synthesized new cis-fused tetra hydro chromeno[4,3-b]quinolines by intramolecular [4+2] imino diels-alder reactions of 2-azadienes.
2,2-dimethyl-2H-chromone containing compounds were synthesized using microwave method by Zhou et al. [18] (2010)

Ramesh and Nagarajan (2010) [19] synthesized chromenoquinolines through cyclization of different substituted anilines/naphthyl amine with O-Propargylated salicylaldehydes using Cul/La(OTf)3 as a catalyst.

Prasad et al. (2011) [20] synthesized fused chromono[4,3-b]quinolin-6-ones by ultrasound irradiation using 4-chloro-3-formyl coumarin. (Scheme 1)

Majumdar et al. (2011) [21] synthesized dihydro-3H-chromeno[4,7]phenanthroline-3-one and chromono [4,3-b]pyran-3,2-fquinolin-3(13H)-one derivatives by aza Diels-Alder reaction. (Scheme 2)

Motamedi et al. (2012) [25] combined silica sulfuric acid and sodium nitrite in the presence of wet SiO2 for the oxidative aromatization of novel tetrahydrochromeno[4,3-b] quinolines to their corresponding pyridine derivatives.

Luniewski et al. [26] (2012) synthesized novel indolo-[2,3-b] quinoline derivatives substituted at N-6 and C-2 or C-9 positions with (di methyl amino) ethyl chains linked to heteroaromatic core by ether, amide or amine bonds.

Bedoya et al. [27] (2012) synthesized 18-quinoline-based compounds containing quinoline/tetrahydroquinoline rings.
Godrey et al. [28] (2011) carried out Pd-mediated coupling for the synthesis of quinoline-oxazole hybrid compounds.

Bennardi et al. [29] (2008) carried out synthesis of substituted flavones and chromones using a Wells-Dawson heteropolyacid as a catalyst.

Dengle et al. [30] (2013) carried out synthesis and antimicrobial evaluation of chromones bearing

1, 5-benzo thiazepiny moiety.

Suryanarayana and Anuradha [31] (2013) reported that new series of heteroannulated chromene-9-carbonitrile derivatives have been synthesized from 4-diazobicyclo [2, 2, 2]-octane catalyzed Baylis-Hillmann reaction of diversely substituted 7-hydroxy-8-formyl-2-furylchromones under a nitrogen atmosphere at room temperature in good yields.

Bennardi et al. [29] (2008) carried out synthesis of substituted flavones and chromones using a Wells-Dawson heteropolyacid as a catalyst.

Yanhui Guo et al. [32] (2017) reported the reactions between o-hydroxyphenyl-functionalized enamiones and sulfonyl hydrazines providing 3-sulfenylated chromones through domino chromone ring construction and C(sp²)-H bond sulfenylation has been achieved under transition-metal-free conditions using KIO₃ as the only catalyst.

Tetsuya Eguchi and Yukio Hoshino [33] (2001) reported chromones regioselectivity reduced to 2H-1-benzopyrans through the 1, 2-addition of 9-borabicyclo-[3.3.1] nonane.

Ibrahim et al. [34] (2017) presented a review which discusses the methods developed for the synthesis and reactions of 2-aminochromone-3-carboxaldehydes.
Santosh [35] (2014) reported the process for the preparation of chromones, isoflavones, and homoisoflavones using vilsmeier reagent generated from phthaloyl dichloride and DMF.

Engelhart et al. [36] (2013) reported the synthesis of chromone, quinolone, and benzoazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylylating enzymes required for siderophore biosynthesis.

Chen et al. [37] (2017) reported that a concise and environmentally friendly route for the synthesis of multisubstituted chromone-fused bicyclic pyridine compounds through one-step reaction of chromone-3-carboxaldehyde 1 and N-benzyl nitro ketene aminals (NBNKAs, 2) in ethanol media has been developed.

Gang Cheng et al. [38] (2017) developed an efficient synthesis of aza-chromones from 3-iodo-4-(1H)-pyridones and terminal acetylenes through a cascade carbonylation-Sonogashira-cyclization reaction. By controlling the use of bases, both 5-aza-chromones 5 and 3-(4-oxo-1,4-dihydroquinoline-3-carbonyl)-4H-pyrano[3,2-c]quinolin-4-ones 6 could be selectively obtained in moderate to good yields.

Patel et al. [39] (2011) reported that novel (3E)-3-[[4-(Aryl or Alkyl sulfonyl, Aryl carbonyl and Heteroaryl) piperazin-1-yl]methylene] chroman-4-one and N-[1-[(Aryl or Alkyl sulfonyl, Aryl carbonyl and Heteroaryl) -4-piperidinyl]6-methyl-4-oxo-chromene-3-carboxamide was synthesized and antibacterial good activity against the bacterial strains.
Talhi et al. [40] (2016) reported a one-pot synthesis of novel benzopyran-4-ones is organo base-catalyzed Michael addition on chromone-3-carboxylic acid led to decarboxylation and pyran-4-one ring opening of the latter. This was followed by chromone - and/or chromanone ring closure of the resulting Michael adducts when R is an ortho-hydroxyaryl group.

A tandem deprotection–cyclization reaction of 1,1-diacylcyclopropanes is described which allows rapid access to structurally diverse 2,3-disubstituted chromones in good yields, and with straightforward purification. The utility of this reaction is showcased by the construction of the potent antibacterial marine natural product bromophycoic acid E scaffold (Robert et al., 2017) [41].

A highly efficient and selective palladium-catalyzed ligand-free cyclocarbonylation reaction of o-iodophenols with terminal acetylenes under atmospheric CO pressure affords diversified chromones in very good yields [42]. The use of a phosphonium salt ionic liquid as the reaction medium enhances the efficiency of the cyclocarbonylation reaction.

A palladium complex of 1,3,5,7-tetramethyl-2,4,8-trioxo-6-phenyl-6-phosphaadamantane is an effective catalyst for a sequential microwave-assisted Sonogashira and carbonylative annulation reaction to give substituted flavones [43].

Chromone derivatives were synthesized from 2,3-alkenonic acids and benzenes in good yields under mild conditions. The benzyne intermediate undergoes 1,2-addition with the carbonyl group, followed by ring opening, conjugate addition, and protonolysis to afford chromone derivatives. This protocol allows the diversity due to the substituent-loading capability of 2,3-alkenonic acids as well as benzenes [44].

The unusual alcohol-mediated reaction of 4-hydroxycoumarins and β-nitroalkenes leads to 4-oxo-2-aryl-4H-chromene-3-carboxylate (flavone-3-carboxylate) derivatives. The transformation occurs through the in situ formation of a Michael adduct, followed by the alkoxide ion mediated rearrangement of the intermediate. The effects of different media on the reaction were investigated [45].

A Pd-catalyzed copper-free carbonylative Sonogashira coupling reaction at room temperature was achieved using water as a solvent under balloon pressure of CO with Br₂ as a base [46]. The developed method was successfully applied to the synthesis of flavones.

A mild ICl-induced cyclization of heteroatom-substituted alkynones provides a simple, highly efficient approach to various 3-iodochromones, iodothiochromenones, iodoquinolinones, and analogs in good to excellent yields. Subsequent palladium-catalyzed transformations afford a rapid increase in molecular complexity [47].

Apart from the above, cytotoxicity studies of 2-vinylchromone derivatives on human breast cancer cell lines were also investigated for their biological activity [48]. Endophytic fungi seem to be a major resource for naturally occurring chromones [49-51].

Chromones group of compounds and their derivatives form the essential component of pharmacoaphores in many biologically active molecules. They exhibit a wide range of biological activities such as antibiotic, antitumor, antiviral, antioxidant, antipsychotic, and anthypoxic activities. These applications have stimulated a continuous search for the synthesis of new compounds in this field and are being extensively investigated.

AUTHOR’S CONTRIBUTION

MV and SG conceived the present idea and collected literature about chromones. RM and EL developed and analyzed the collected literature.
efficent ultra sound promoted catalysis-free protocol for the synthesis of chromene [4,3-b]quinolin-6-ones. J Chem Sci 2011;123:673-9.
21. Majumdar KC, Ponra S, Tahir A. Dihydro-3H-chromen-3,4-b[4,7] phenanthroline-1-one and chromeno[4,3-b]pyran-3,2-quinolin- 3(13H)-one derivatives by aza-diels-alder reaction. Synthesis 2013;4:463-8.
22. Maalej E, Chabchoub F, Samadi A, de los Rios C, Perona A, Morreale A, et al. Synthesis, biological assessment and molecular modeling of 14-aryl-10,11,12,14-tetrahydro-9H-benzo[5,6] chromeno[2,3-b]quinolin-13-amines. Bioorg Med Chem Lett 2011;21:2384-8.
23. Ramesh S, Nagarajan R. Synthesis of Di hydro chromen-[4,3-b] pyrrole[3,2-f]quinolines via intramolecular aza diels-alder reaction. Tetrahed Lett 2011;52:4857-60.
24. Kim MK, Yu MS, Park HR, Kim KB, Lee C, Cho SY, et al. 6-Bis-aryl methoxy-5-Hydroxy chromones with anti-viral activity against both hepatitis C virus (HCV) and SARS associated coronavirus (SARS). Eur J Med Chem 2011;46:5698-704.
25. Luniewski W, Wietrzych J, Godlewsk J, Switalsk M, Piskozub M, Peczynska-Czoch M, et al. Synthesis and biological activity studies against MDA-MB-231 and breast cancer cell lines. A new series of estrogen receptor β-selective ligands. Bioorg Med Chem 2011;19:2167-76.
26. Bedoya LM, Abad MJ, Calonge E, Saavedra LA, Gutiérez C M, et al. Synthesis of new cis-fused tetrahydrochromeno [4,3-b]quinolines using silica sulfuric acid/NaNO3. Arab J Chem 2012;101:1-4.
27. Benuardi DO, Romandini GR, Jios JL, Autino JC, Barretto GT, et al. Chromeno[4,3-b]quinolines as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J Org Chem 2013;78:7470-81.
28. Garg RY, Zheng J, Wei P, Wang R, Chau I, Wu J, Liu B, et al. Synthesis of novel tetrahydrochromeno[4,3-b]quinolines using silica sulfuric acid/NaNO3. Eur J Med Chem 2011;46:5698-704.
29. Engelhart CA, Aldrich CC. Synthesis of chromone, quinolone, chromanone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J Org Chem 2013;78:7470-81.
30. Liang C, Baoqu W, Yucheng Z, Shengjiao Y, Jun L. Synthesis of 3'-R,4'-R-di-(O)-(-)-camphanoyl-2',2'-dimethyl-2H-chromene-1,2-dihydrochromeno[3,4-f]quinoline agonist pharmacophore. Bioorg Med Chem Lett 2010;20:3259-64.
31. He L, Chang HX, Chou TC, Savaraj N, Cheng CC. Design of anti-HIV agents. Part 55: 3'R,4'R-di-(O)-(-)-camphanoyl-2',2'-dimethyl-2H-chromene-1,2-dihydrochromeno[3,4-f]quinoline agonist pharmacophore. Bioorg Med Chem Lett 2010;20:3259-64.
32. Dengle RV, Deshmukh RN. Synthesis and antimicrobial evaluation of chromones bearing 5-benzo thiазепин moiety. Inter J Pharm Sci Res 2013;4(4):1495-8.
33. Ch VS, Anuradha V. An efficient synthesis of heteroannulated chromene-9-carbonitrile derivatives via baylis-Hillman reaction. Int J Curr Pharm Res 2013;5(3):36-9.
34. Dengle RV, Deshmukh RN. Synthesis and antimicrobial evaluation of chromones bearing 5-benzo-thiazepine moiety. In J Pharm Sci Res 2013;4:1495-8.
35. Ch VS, Anuradha V. An efficient synthesis of heteroannulated chromene-9-carbonitrile derivatives via baylis-hillman reaction. Int J Curr Pharm Res 2013;5:36-9.
36. Gao Y, Zhong S, Wei L, Wan JP. Transition-metal-free synthesis of 3-sulfenylated chromones via KIO4-catalyzed radical C(sp2)-H sulfonylation. Beilstein J Org Chem 2017;13:2017-22.
37. Eguchi T, Hoshino Y. Synthesis of 2H-chromones through the reduction of chromones with 9-BBN. Chem Soc Jpn 2001;74:967-70.
38. Ibrahima MA, El-Gohary MM, Badran S, Hashiem SH. Synthesis and reactivity of 2-aminochromone-3-carboxaldehydes towards nucleophilic reagents. J Pharm Appl Chem 2017;3:83-92.
39. Yadav SK. Process for the preparation of chromones, isoflavones and homoisoflavones using vielmeyer reagent generated from phthaloyl dichloride and DMF. Int J Org Chem 2017;7:4398.
40. Engelhardt CA, Aldrich CC. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J Org Chem 2013;78:7470-81.
41. Patel MC, Nilesh NG, Rajani DP. Synthesis and characterization of some novel chromones and chromanones derivatives and its biological screening. Pharm Chem 2011;3:422-32.
42. Tafhi O, Brodziak-Jarosz L, Panning J, Orlikova B, Zwerogl T, Taranova T, et al. Synthesis of benzopyran-4-ones with cancer preventive and therapeutic potential. J Eur Org Chem 2016;5:965-75.
43. Smith RJ, Nhu D, Clark MR, Gai S, Lucas NT, Hawkins BC. Synthesis of chromones from 1,1-diacylcyclopropanes: Toward the synthesis of bromophycoic acid. J Org Chem 2017;82:5317-27.
44. Yang Q, Alper H. Synthesis of chromones via palladium-catalyzed ligand-free cyclocarbonylation of o-iodophenols with terminal acetylenes in phosphonium salt ionic liquids. J Org Chem 2010;75:948-50.
45. Awuah E, Capretta A. Access to flavones via a microwave-assisted, one-pot sonogashira-carbonylation-annulation reaction. Org Lett 2009;11:3210-3.
46. Chai G, Qiu Y, Fu C, Ma S. Efficient assembly of chromone skeleton from 2,3-allenoic acids and benzynes. Org Lett 2011;13:5196-9.
47. Zanwar MR, Raihan MJ, Gawande SD, Kavala V, Janreddy D, Kuo CW, et al. Alcohol mediated synthesis of 4-Oxo-2-aryl-4H-chromene-3-carboxylate derivatives from 4-hydroxycoumarins. J Org Chem 2012;77:6495-504.
48. Liang B, Huang M, You Z, Xiong Z, Lu K, Fathi R, et al. Pd-catalyzed copper-free carbonylative sonogashira reaction of aryl iodides with alkynes for the synthesis of alkynyl ketones and flavones by using water as a solvent. Org Chem 2005;70:6097-100.
49. Zhou C, Dubrovsky AV, Larock RC. Diversity-oriented synthesis of 3-iodochromones and heteroatom analogues via ICL-induced cyclization. J Org Chem 2006;71:1626-32.
50. Swati K, Megha R, Seema B. Docking and cytotoxicity studies of 2-vinylchromone derivatives on human breast cancer cell lines. Int J Pharm Pharm Sci 2015;1:113-7.
51. Dilip FA, Kumar TR. Endophytic fungi: treasure for anti-cancerous compounds. Int J Pharm Pharm Sci 2016;1:35-42.