Generalization of order separability for free groups.

Vladimir V. Yedynak

Abstract

In this work the author studies the property close to property of order separability.

Key words: free groups, residual properties.

MSC: 20E26, 20E06.

1 Introduction.

Definition 1. We say that a group G is order separable if, for each elements g, h of G such that g and $h^{\pm 1}$ are not conjugate, there exists a homomorphism of G onto a finite group such that the orders of the images of g and h are different.

In [1] it is proved that free groups are order separable. This result was generalized in [2] where it was shown that each free group F is omnipotent, that is, for an arbitrary finite set of elements $g_1, ..., g_n$ of F such that for each $i \neq j$ elements g_i and g_j have no nontrivial conjugate powers there exists a constant k such that for each ordered sequence of positive integers $t_1, ..., t_n$ there exists a homomorphism φ of F onto a finite group such that the order of $\varphi(g_i)$ is kl_i.

It is known also that the property of order separability is inherited by free products [3]. The following theorem generalizes the property of order separability for free groups.

Theorem. Let u_1, u_2 be the elements of a free group F, which does not belong to conjugate cyclic subgroups. Then for each prime number p and for each integer m there exists a homomorphism φ of F onto a finite p-group such that u_1 and u_2 do not belong to the kernel of φ and $|\varphi(u_1)| / |\varphi(u_2)| = p^m$.

2 Notations and definitions.

We shall use the correspondence between the actions of a free group $F(x, y)$ with basis x, y and the graphs satisfying the following properties:

1) for each vertex p of a graph there exist exactly one edge with label x that goes away from this vertex and exactly one edge with label y that goes into p;

2) we consider that for each labelled edge there exists the corresponding inverse edge and each two edges with labels are not mutually inverse;

Definition 2. We say that the graph is the action graph of a free group $F = F(x, y)$ if it satisfies the properties 1), 2). We shall consider additionally that all labelled edges in this graph are positively oriented and set the orientation of this graph.

If φ is a homomorphism of a group F then the Cayley graph of the group $\varphi(F)$ with the generating set $\{\varphi(x), \varphi(y)\}$ is the action graph for F (we identify labels $\varphi(x), \varphi(y)$ with x, y correspondingly in this graph).
Let Γ be the action graph of the free group F. Fix a natural number n, vertex p of the graph Γ and element $z \in \{x^{\pm 1}, y^{\pm 1}\}$ of the group F. Consider n copies of the graph $\Gamma : \Delta_1, \ldots, \Delta_n$. Let p_i be the vertex of the graph Δ_i corresponding to the vertex p of the graph Γ. If $z \in \{x, y\}$ then denote by q_i the vertex such that there exists the edge f_i with label z which goes into q_i from p_i. If $z \in \{x^{-1}, y^{-1}\}$ then denote by q_i the vertex such that there exists the edge f_i with label z^{-1} which goes away from q_i into p_i. We construct the graph $\Delta = \gamma_n(\Gamma; p; z)$ from graphs $\Delta_i, 1 \leq i \leq n$ deleting edges f_i and connecting vertexes p_i and q_{i+1} by an edge whose label equals either z when $z \in \{x, y\}$ or z^{-1} when $z \in \{x^{-1}, y^{-1}\}$ (indices are modulo n). If $z \in \{x, y\}$ then this new edge goes away from the vertex p_i. If $z \in \{x^{-1}, y^{-1}\}$ then this new edge goes into the vertex p_i. The graph Δ is the action graph of the group F.

If S is a path in a graph then $\alpha(S), \omega(S)$ are the beginning and the end of S correspondingly. If $S = e_1 \ldots e_n$ is a path in the action graph of the group F, then $\text{Lab}(S) = \text{Lab}(e_1)' \ldots \text{Lab}(e_n)'$ is the label of the path S, where $\text{Lab}(e_i)' = \text{Lab}(e_i)$ is a label of edge e_i in case e_i is positively oriented and if the edge e_i is negatively oriented then $\text{Lab}(e_i)' = \text{Lab}(e_i)^{-1}$, where edges e_i, e_i' are mutually inverse.

Definition 3. Suppose we have two action graphs of the group F — Γ and $\gamma_n(\Gamma; q; z)$. If p is a vertex of Γ then p' is a vertex in the graph $\gamma_n(\Gamma; q; z)$ which belongs to i-th copy of the graph Γ and corresponds to the vertex p. If S is a path in Γ then S^i is the path in $\gamma_n(\Gamma; q; z)$ which goes from the vertex $\alpha(S)^i$ and whose label is equal to the label of the path S.

Definition 4. Let u be a cyclically reduced element of the free group F. If $S = e_1 \ldots e_n$ is a closed path without returnings whose label equals u^k in the action graph of F then we say that S is the u-cycle whose length equals k (we consider that there exists exactly one subpath of the path S ending in $\omega(S)$ whose label equals u).

3 Proof of theorem.

Fix elements u_1, u_2 of F. We consider that these elements are cyclically reduced.

Suppose that $u_i = u_i^{p^m_i t_i}, i = 1, 2$, where $p \nmid t_i$. Denote by v_i the elements $u_i^{t_i}, i = 1, 2$. Without loss of generality we may assume that $m_1 \geq m_2$. If there exists a homomorphism ψ of F onto a finite group such that $|\psi(v_1)| / |\psi(v_2)| = p^{n+m_1-m_2}$ then $|\psi(u_1)| / |\psi(u_2)| = p^n$. Hence we may assume that the subgroups $\langle u_1 \rangle$ and $\langle u_2 \rangle$ are p'-isolated.

There exists a homomorphism φ of F onto a finite p'-group such that the images of the elements u_1, u_2 are nonunit p'-elements [4]. Since all p'-isolated cyclic subgroups of free groups are separable in the class of finite p'-groups we may also assume that all u_1- and u_2-cycles in the Cayley graph Γ of the group $\varphi(G)$ with the set of generators $x = \varphi(x'), y = \varphi(y')$ are simple. Without loss of generality we may consider that $|\varphi(u_1)| = p^k, |\varphi(u_2)| = p^{k+l}, k \geq 1$. Put $\Gamma_{-1} = \Gamma$. Let $u_1 = y_{-1}^{\varepsilon_1} \ldots y_{-1}^{\varepsilon_{-1}}$, $y_i \in \{x, y\}, \varepsilon_i \in \{-1, 1\}$ be the reduced form of the element u_1 in the basis x, y. Fix an arbitrary vertex q in the graph Γ_{-1}.
For $i > -1$ we shall define by the induction the graph $\Gamma_i = \gamma_p(\Gamma_{i-1}; q_{i-1}; y_{i}^2)$ and the path S_i in Γ_i whose length equals $i + 1$, where i' is the remainder from a division of i on k. If $i > -1$ then q_i is the vertex of the graph Γ_i which is the end point of the path S_i. The vertex q_{-1} is equal to the vertex q. If $i > -1$ we define a path S_i in the graph Γ_i in the following way. If $i = 0$ then S_0 is the first edge of the u_1-cycle which goes from the vertex q_{-1} or its inverse. In case $i > 0$ we define the path S_i as $S_{i-1} \cup f_i$ where f_i is the edge of the graph Γ_i one of whose endpoints coincides with $\omega(S_{i-1})$ and the label of f_i or its inverse equals y_i. Also if $\varepsilon_i = 1$ then f_i is positively oriented and has a label. If $\varepsilon_i = -1$ then f_i is negatively oriented. It is easy to notice that the length of each u_1- or u_2-cycle in Γ_i is the power of p. Since all u_1- and u_2-cycles are simple in the graph Γ_{-1} this condition is also held for Γ_i for each i. Besides for each i the graph Γ_i contains the maximal u_1-cycle which contains the path S_i.

Suppose that there exists i such that the following conditions are true. In the graph Γ_j each maximal u_2-cycle contains the path S_j for all $j \leq i$ but not for $j = i + 1$ (if $i + 1 = 0$ we simply consider that in the graph Γ_0 not all maximal u_2-cycles contains S_0). Notice that if $j \leq i$ then in the graph Γ_j the length of the maximal u_1-cycle coincide with $|\varphi(u_1)|p^{i+1}$, $i = 1, 2$. In the graph Γ_{i+1} the length of the maximal u_1-cycle equals $|\varphi(u_1)|p^{i+1}$. Let's find the length of the maximal u_2-cycle in Γ_{i+1}. Fix a vertex r of Γ_i. Then the length of the u_2-cycle which goes away from r is equal to $|\varphi(u_2)|p^k$, $k \leq i$. Then for each $l = 1, ..., p$ in the graph Γ_{i+1} the length of the u_2-cycle that goes away from the vertex r_l is not more than $|\varphi(u_2)|p^{k+1}$. Suppose that the u_2-cycle T of Γ_i starting from r is maximal, that is its length coincide with $|\varphi(u_2)|p^i$. The path S_i is contained in T. The u_2-cycle T' of Γ_{i+1} contains the path S_i. From the condition on i and the simplicity of u_2-cycles of Γ_{i+1} we may deduce that T' does not contain the edge f_{i+1}. This u_2-cycle does not also contain the edge connecting the first and the last copies of the graph Γ_i because otherwise T would have the self-intersection in the vertex $\omega(S_{i-1})$. Hence the length of T' coincide with the length of T. It means that the length of the maximal u_2-cycle in Γ_{i+1} coincide with $|\varphi(u_2)|p^i$. Since u_1 and u_2 does not belong to the conjugate cyclic subgroups then there exists i that satisfies the conditions mentioned above.

The number of vertices in the graph Γ_{i+1} equals $|\varphi(F)|p^{i+2}$. So there exists a homomorphism φ_1 of F onto a finite p-group such that in the Cayley graph of the group $\varphi_1(F)$ with the set of generators $\varphi_1(x')$, $\varphi_1(y')$ all u_1- and u_2-cycles are simple. Besides $|\varphi_1(u_2)|/|\varphi_1(u_1)| = |\varphi(u_2)|/|\varphi(u_1)| \ast 1/p$.

If we construct graphs Γ_i using the element u_2 instead of u_1 we obtain the homomorphism φ_2 that satisfies the same conditions concerning to the u_1- and u_2-cycles in the graph $\varphi_2(F)$ and the homomorphism φ_1 and $|\varphi_2(u_2)|/|\varphi_2(u_1)| = |\varphi(u_2)|/|\varphi(u_1)| \ast p$. In order to obtain the homomorphism of F onto a finite p-group such that the ratio of orders of the images of u_1 and u_2 sufficient p^n it is enough to apply these procedures several times. The theorem is proved.

Acknowledgements.

The author thanks A. A. Klyachko for valuable comments and discussions.
References.

1. Klyachko A. A. Equations over groups, quasivarieties, and a residual property of a free group // J. Group Theory. 1999. 2. 319–327.

2. Wise, Daniel T. Subgroup separability of graphs of free groups with cyclic edge groups. Q. J. Math. 51, No.1, 107-129 (2000). [ISSN 0033-5606; ISSN 1464-3847]

3. Yedynak V. V. Order separability. Bulletin of MSU 3: 53-56.

4. Kargapolov, M. I., Merzlyakov, Yu. I. (1977). Foundations of group theory. Nauka.