Assisted Multi Objectives Research Optimization of the Arm Type Robot’s Forces

Adrian D. Olaru, Serban A. Olaru, Niculce C. Mihai, and Natalia M. Smidova

Abstract—Multi objectives optimization in Robotics is one of the most difficult problem to be solved. In the paper will be shown the matrix form of the resistive and active forces and the proper algorithm to establish the best case between all studied cases. The mathematical matrix form of the active forces equations was transposed to the virtual LabVIEW instrumentation with the goals to obtain some characteristics of the active forces in each joints of the robot variation vs. time in the case when were changed some functional or constructive parameters. By using proper algorithm was choose the best solution between the studied cases for down movements of the robot’s arm. The applied method, the algorithm and the proper virtual instrumentation solve one small part of the complex problems of the optimisation in robotics.

Index Terms—Assisted research, multi objective optimization, virtual instrumentation, robot’s joints forces.

I. INTRODUCTION

The optimizing of the force variation vs. time in Robotics is one of the most important problem to be solved. Without the assisted research isn’t possible to study the dynamic behavior because will be necessary to show the variation of the forces and moments vs. time to identify and establishing the better solution of the movements, or dimensions of the bodies and the relative velocities. In the paper authors [1]-[17] by using the special software RoboAnalyzer, Robotech, V-Rep, RoKiSim, Ros,show some characteristics and solve direct and inverse kinematics problem and also the direct and inverse dynamic problem, but without show the mathematical matrix model and how could be influenced the force variation by different velocity characteristics or to obtain the minimum variation of the forces. Robotect [5] and V-REP [6] are robotics learning and simulation software. A user could simulate robot manipulators and mobile robots in various environments by introducing virtual sensors and actuators. RoKiSim [7] and RoboDK, Webots [8] are a development environment which focuses on modeling, programming, and simulation of robots. In the papers [18]-[37] are shown some applications, simulation, and visualization based on the Gazebo [15] simulator. The proper assisted research was made by using the proper virtual LabVIEW instrumentation.

In the literature about the research of the robot’s forces don’t show the mathematical matrix model, don’t show how will be the variation of these forces when will be changed the successive or simultaneously movements of the robot’s bodies. In the last research [38]-[47] we solved some problem from the dynamic behavior of the robots.

II. THE FORCES MATHEMATICAL MATRIX MODEL

The mathematical model of the robot’s forces analyze contents the following matrix equations, see Fig.1:

\[(P)^0 = [z_u](F)^0 - [m_u](a_{gi,0})^0 \]
\[[z_u] = \begin{bmatrix} z_{i,1} & \cdots & z_{i,j} \end{bmatrix} \] \[z_{i,j} = \begin{cases} 1 & \text{same sens graph} \\ 0 & \text{do’t touch graph} \end{cases} \]
\[(F)^0 = \begin{bmatrix} D_1^2(F_1^2) \\ D_2^2(F_2^2) \\ D_3^2(F_3^2) \\ D_4^2(F_4^2) \end{bmatrix} \]
\[[D_i^2] = [D_1^2][D_2^2][D_3^2][D_4^2] \]

\[[F_1^2] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \]
\[[m_{i,1,2}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Fig. 1. Arm type studied robot.

Manuscript received September 20, 2019; revised March 1, 2020. This work was realized together with University Politehnica of Bucharest, Romania, ACTTM national agency, Romania, Techno Accord Quebec, Canada and Kosice University of Technology, Slovakia.

A. D. Olaru is with the University Politehnica of Bucharest, Romania (e-mail: aolaru_51@yahoo.com).
S. A. Olaru was with ACTTM agency, Bucharest, Romania (e-mail: serban1978@yahoo.com).
N. C. Mihai is with the Techno Accord SA, Quebec, Canada (e-mail: mniculce@gmail.ca).
N. M. Smidova is with Kosice University of Technology, Slovakia.

DOI: 10.7763/IJMO.2020.V10.748
\[(a_{g1,0})^0 = \begin{bmatrix}
[D_1^0(a_{g1,0})] \\
[D_2^0(a_{g2,0})] \\
[D_3^0(a_{g3,0})] \\
[D_4^0(a_{g4,0})] \\
\vdots
\end{bmatrix}
\] \quad (6)

where: \((P)^0\) - is the active force matrix reduced to the base;
\([z_u]\) - unitary joints-bodies matrix; \((F)^0\) - resistive force matrix reduced to the base;
\((F_i)\) - resistive force matrix reduced to the proper cartesian system;
\([D_{ij}]\) - transfer matrix from the \(i\) cartesian system to \(j\) cartesian system;
\([m_u]\) - mass matrix, or where \(m_i\) was multiply by unitary matrix for the space.

III. THE VIRTUAL USED LABVIEW INSTRUMENTATION

The VI-s to determine the active forces of one arm type robot contents the followings, Figs. 2-9: joint’s velocity for the trapezoidal velocity characteristics; the time from the origin time, acceleration time, time of a cycle, time after begin the deceleration, joint’s mass, table with position vectors of each robot’s joints and weight centre of mass. The module of output data contents the characteristics of forces in all joints by \(ax, ay\) and \(az\) axes and also the force module of vector in the space with the angle variation to the base plane. All these characteristics are versus time. Virtual LabVIEW instrument for the active force was constructed by using the mathematical matrix model of the forces, relation

1. We can see inside of the block diagram of the virtual instrument some other subVI-s (subroutine) to calculate the absolute velocities and accelerations, the matrix of the resistive forces (fig.), the matrices of mass, the matrix of incidences bodies-joints \((G)\) and joints- bodies \((Z)\), relation (2), the matrix to transfer all vectors between Cartesian systems to the base, relations (3),(4), the 6x6 matrix with three dimensions to generate all needed transfer.
IV. ALGORITHM FOR OPTIMIZATION OF THE ROBOT’S FORCES BY USING THE ASSISTED RESULTS

One way to optimize the active robot joint’s forces were determined by using one multi objective optimization function. The used algorithm contents the following steps: (i) establish the constructive and functional parameters of the robot that could be studied; (ii) determine some force characteristics by changed some of the constructive or functional parameters, or type of movements; (iii) construct the table with the maximal variation of all these forces; (iv) impose for each type of force one maximal pounder (if all forces are the same impact to the global dynamic behavior of the robot- the values of all pounders will be the same); (v) calculate for each force and cases the pounder values by using the proportion between the minimum value of each force variation and the current variation from minimum to maximum forces and multiply with the maximum pounder values (using the neutrosophic theory) [16], [17]; (vi) calculate separately for up and down movements of the robot’s arm and determine the case what the sum of these total pounders have maximal value.

Mathematic we can write this multi objective function (MOF) like in relation (7):

\[
MOF(t_i, t_{ti}, t_{ai}, t_{di}, l_i, \phi_i) = \min (\text{range}P_{ix,y,z}) \cap \min (\text{range}|P|_1) \\
\cap \min (\text{range}P_{2x,y,z}) \cap \min (\text{range}|P|_2) \\
\cap \min (\text{range}P_{3x,y,z}) \cap \min (\text{range}|P|_3) \\
\cap \min (\text{range}P_{4x,y,z}) \cap \min (\text{range}|P|_4) \\
\cap \min (\text{range} < P_i)
\]

where: \(t_i\) is the time to origin of time [s]; \(t_{ti}\) - the cycle time [s]; \(t_{ai}\) - the acceleration time [s]; \(t_{di}\) - the when begin the deceleration [s]; \(l_i\) - the length of each body [m]; \(\phi_i\) - angle position of each body [rad]; \(P_{ix,y,z}\) - active forces in each joints [N]; \(|P|_i\) - module of the active force in each joints, [N]; \(|P| < P_i\) - angle in a space of each active force vector, [N].

This MOF function have 20 conditions to be simultaneously touch that will be possible by using neutrosophic theory [16], [17], all these conditions will be touch between T (true) and F (false) = \(p_i(T)p_i(F)\) where \(p_i\) are the ponders for each criteria and for each cases, otherwise the MOF result will be null, because it is impossible that all 20 forces components for each of studied cases to be in the same time minimum.

\[
MOF = \max (\sum_{i=1}^{20} p_i P_{ix,y,z,cmin,i})_{cases}
\]

where: \(p_i\) is the maximal pounder; \(P_{ix,y,z,cmin}\) - the minimum value of each of these forces and angles; \(P_{ix,y,z,crt}\) - the current value of the forces for each of the studied cases.

The cases that were studied are: 0-0-0-0 all movements are simultaneously; 0-4-4-0 the first and four movements are simultaneously and the second and third will simultaneously, but successive after 4s after the first and fourth; 0-4-8-12 all movements are successive; 0-0.1-0.2-0.3 the movements are successive after the acceleration time of each of them; 0-3-9-
7.9-11.9 the movements are successive after the constant velocity time from the velocity characteristics; 0-0-0-0-1=0.8, \(\phi_1=1.4 \); all movements are simultaneously, but were changed the length of the first body and the angular position of the first body.

TABLE I: THE MAXIMAL VARIATION OF THE FORCES

Case	\(F_1 \)	\(F_2 \)	\(P_1 \)	\(P_2 \)	\(\phi_3 \)	\(\phi_4 \)	\(\phi_5 \)	\(\phi_6 \)	\(\phi_7 \)		
0-0-0-0	9.125	1.2	2.1	0.025	8	1.3	3	0.01			
0-0-0-1	8.6	1.25	2	0.025	8.2	0.65	3.6	2.5	0.01		
0-0-1-0	8.2	1.5	3.1	2.1	0.025	8.2	1.5	3.1	2.2	2.6	0.01
0-0-1-2	8.2	1.2	1.2	2.1	0.025	8.2	1.2	1.2	2.2	2.4	0.01
0-4-1-0	8.2	1.15	4.2	2.2	0.025	8.2	1.2	3.3	2.5	0.01	
0-4-1-2	8.2	1.1	1.4	2.3	0.025	8.2	1.2	1.3	2.8	0.01	
0-4-1-2	1.2	3	9	5.4	0.047	9	1.25	9.2	4	0.08	
0-4-1-2	1.2	3	9	5.4	0.047	9	1.25	9.2	4	0.08	
0-4-1-2	35	1.8	7.25	22	0.005	35	2.7	2	5	0.00	
0-3-7-9-2-0	24.5	2.5	2.2	5	0.04	14.5	2.3	2	5	0.00	

TABLE II: THE POUNDERS CALCULATED USING THE TABLE I

Case	\(F_1 \)	\(F_2 \)	\(P_1 \)	\(P_2 \)	\(\phi_3 \)	\(\phi_4 \)	\(\phi_5 \)	\(\phi_6 \)	\(\phi_7 \)			
0-0-0-0	88.8889	48	10	4	100	100	50	100	83.3300			
0-0-0-1	100	100	100	100	100	100	100	100	100			
0-0-1-0	97.6969	40	19.7070	51.1700	97.6969	40	19.7070	51.1700	97.6969	40	19.7070	
0-0-1-2	96.8854	60	10.6579	100	96.8854	60	10.6579	100	96.8854	60	10.6579	
0-4-1-2	97.6969	50	34.0680	54.1495	97.6969	50	34.0680	54.1495	97.6969	50	34.0680	
0-4-1-2	97.6969	40	19.7070	40	19.7070	40	19.7070	51.1700	97.6969	40	19.7070	
0-4-1-2	88.8889	40	20	22.2222	53.5353	88.8889	40	22.2222	53.5353	88.8889	40	22.2222
0-4-1-2	97.6969	30	40.0000	40.9091	97.6969	30	40.0000	40.9091	97.6969	30	40.0000	
0-4-1-2	50	30	30	30	50	30	30	30	50	30	30	
0-4-1-2	35.3330	33.3333	0.8434	3.7	6.6667	14.3750	35.3333	2.5	15.7050	50	50	
0-4-1-2	55.5555	24	54.5455	24	65.6250	55.5555	26.3090	65	50	35.7143		

V. ANALYZE OF THE MULTI OBJECTIVE FUNCTION

This paper tries to develop one general assisted methodology of the dynamic behavior in the real domain of the articulated didactical arm type robot by analyze the active forces in each robot’s joints, Figs. 10(a)-(k).
VI. CONCLUSION

The results shown in the paper, the researched active forces in some different cases of the robot’s joints movements, the applied method, algorithm, multi objective function (MOF) and the proper LabVIEW VI-s can be used in many other research in the robotics field and will be used in the next research to optimize the moments.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

AO conducted the research and all mathematical model, algorithm and wrote the paper; SO analyzed the data and the English grammar; NM assured the experimental stand; NS work in the research of actual stage. All authors had approved the final version.

ACKNOWLEDGMENT

The authors thank to University Politehnica of Bucharest, Faculty of Industrial Engineering and Robotics, Department of Robotics and Production System, Romania, to ACTTM Agency, Romania, to Techno Accord Private Company, Canada and to Kocise University of Technology, Slovakia for technical support to be possible developing this research.

REFERENCES

[1] R. S. Othayoth, R. G. Chittawadigi, R. P. Joshi, and S. K. Saha, “Robot kinematics made easy using RoboAnalyzer software,” Comput Eng Educ, 2017.
[2] F. A. Candelas, S. T. Puente, F. Torres, F. G. Ortiz, P. Gil, and J. Pomares, “A virtual laboratory for teaching robotics,” Int J. Eng. Educ., vol. 19, 2003, pp. 363–370.
[3] C. A. Jara, F. A. Candelas, J. Pomares, and F. Torres, “Java software platform for the development for advanced robotic virtual laboratories,” Comput. Appl. Eng. Educ., vol. 21, 2013, pp. 14–30.
[4] N. Navaraja, J. D. Sengupta, and C. S. Kumar, “Web based simulation and remote triggered laboratory for robots,” in Proc. 28th International Conference on CAD/CAM, Robotics and Factories of the Future, 2016, pp. 665–677.
[5] H. D. Nayar, “Robotect: Serial-link manipulator design software for modeling, visualization and performance analysis,” in Proc.7th Int. Conf. Control, Autom., Robot. and Vision, 2002, pp. 1360–1364.
[6] M. Freese, S. Singh, F. Oraki, and N. Matsuhira, “Virtual robot experimentation platform V-REP: A versatile 3D robot simulator,” in Pro Int. Conf. Simulation, Modeling, and Programming for Autonomous Robots, 2010, pp. 51–62.
[7] RoKiSim. [Online]. Available: http://www.parallel-mc.org/RoKiSim.html
[8] O. Michel, “Webots: Professional mobile robot simulation,” Int J. Adv. Robot. Syst., vol. 1, 2004, pp. 39–42.
[9] A. Gil, O. Reinoso, J. M. Marin, L. Paya, and J. Ruiz, “Development and deployment of a new robotics toolbox for education,” Comput. Appl. Eng. Educ., vol. 23, 2015, pp. 443–454.
[10] M. Flanders and R. Kavanagh, “Build-a-robot: Using virtual reality to visualize the denavit-hartenberg parameters,” Comput. Appl. Eng. Educ., vol. 23, 2015, pp. 846–853.
[11] S. Kucuk and Z. Bingul, “An off-line robot simulation toolbox,” Comput. Appl. Eng. Educ., vol. 18, 2010, pp. 41–52.
[12] M. A. Gonzalez-Palacios, “Advanced engineering platform for industrial development,” J. Appl. Res. Tech., vol. 10, 2012, pp. 309–326.
[13] M. A. Gonzalez-Palacios, E. A. Gonzalez-Barbosa, and L. A. Aguilera-Cortes, “SnAM: A simulation software on serial manipulators,” Eng. Comput., vol. 29, 2013, pp. 87–94.
[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,” In ICRA Workshop on Open Source Software, vol. 3, no. 3, 2009.
[15] ROS – Gazebo Plugin. [Online]. Available: http://wiki.ros.org/gazebo

The best solution to be assured the minimum variation of the forces and also the position of vector in the space was the case 4-0-0-4 that mince the successive movements of first and fourth robot’s body, 4s after the movements of the second and third bodies.

In the paper were solved the following problems: the theoretical and the experimental assisted research of the active forces in robot’s joints by using the matrix form of the mathematical model; the research was made by using the proper theoretical LabVIEW VI-s; the optimization of the dynamic behavior with the virtual proper VI-s was made by applying the proper algorithm and the neutrosophic theory; the choice of the optimal case between the studied cases open the way to choose the optimal movements of the robot’s arm, simultaneously, successive or combine between them.

The actual research in the world does not approach the assisted virtual instrumentation for the optimization of the dynamic behavior parameters that were studied in this research.
International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

[16] F. Smarandache, “A unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability,” 2000.

[17] F. Smarandache, ‘Neutrosophic set a generalization of the intuitionistic fuzzy set,” International Journal of Pure and Applied Mathematics, vol. 24, no. 3, 2005, pp. 287-297.

[18] I. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 3rd Edition, Springer & Verlag, ISBN-10: 0387945407, New York, 2006.

[19] M. Hajduk, J. Semjon, and M. Vagáš, “Design of the welding fixture for the robotic station for spot welding based on the modular concept,” In: Acta Mechanica Slovaca, No. 3/2009, vol. 13, pp. 30-35.

[20] M. Hajdúk, M. Sukop, V. Baláž, J. Semjon, and M. Vagáš, “Improving the performance of manufacturing systems based reconfiguring and computer integration,” Proceed. of Robtep, Košice, 2006.

[21] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Pock, J. Rembisz, and H. Choset, “Parameterized and scripted gaits for modular snake robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131–1158, Jun. 2009.

[22] T. Yoshikawa, “Manipulability of robotic mechanisms,” International Journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.

[23] H. Asada, “A geometrical representation of manipulator dynamics and its application to arm design,” Transactions of ASME, Journal of Dynamic Systems, Meas. and Control, vol. 105, pp. 131–135, 1983.

[24] T. Graettinger and B. H. Krogh, “The acceleration radius: a global performance measure for robotics manipulators,” Journal of Robotics and Automation, vol. 4, no. 1, Feb 1988.

[25] A. Bowling, “Analysis of robotic manipulator dynamic performance: Acceleration and force capabilities,” PhD-thesis, Stanford University, 1998.

[26] M. Ou and I. Angeles, “Optimum design of manipulators under dynamic isotropy conditions,” in Proc. IEEE International Conference on Robotics and Automation, vol. 1, pp. 470 – 475, 1993.

[27] W. A. Kahn and I. Angeles, “The kinetostatic optimization of robotic manipulators: The inverse and the direct problems,” Transactions of the ASME Journal of Mechanical Design, vol. 128, no. 1, pp. 168–178, 2006.

[28] J. K. Salisbury and J. J. Craig, “Articulated hands: Force control and kinematic issues,” International Journal of Robotics Research, vol. 1, no. 1, pp. 4–17, 1982.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[30] V. Coverstone-Carroll, “Optimal multi-objective low-thrust spacecraft trajectories,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2-4, pp. 387–402, Jun. 2000.

[31] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multi objective optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50–66, Feb. 2006.

[32] L. Dixon and G. Szego, “The global optimization problem: An introduction,” Towards Global Optimization, pp. 1 – 15, 1978.

[33] Z. Zilinskas, “Are view of statistical models for global optimization,” Journal of Global Optimization, vol. 2, no. 2, pp. 145–153, Jun. 1992.

[34] Y. P. Papalambros and J. D. Wilde, Principles of Optimal Design – Modeling and Computation, Cambridge University Press, 1988.

[35] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower pair mechanisms based on matrices,” Trans. of ASME, Journal of Applied Mechanics, vol. 23, pp. 215–221.

[36] J. T. Feddema, “Kinematically optimal placement for minimum time coordinated motion, robotics and automation,” in Proc. OPTIROB 2010 International Conference, Calimanesti, Romania, 2010.

[37] A. Olaru et al., “Optimizing the global dynamic compliance by using the smart damper and LabVIEW instrumentation,” Applied Mechanics and Materials, vol. 186, pp. 26-34, 2012.

[38] A. Olaru, S. Olaru, “Research of the industrial robots viscose global dynamic damper coefficient with LabVIEW instrumentation,” in Proc. CAX’2006, Akademia Techniczno-Rolnicza, Bydgoszcz, 2006.

[39] L. Ciupitu, “Complex analytic curves for industrial robot trajectories,” in Proc. 3-rd Asian Conference on Robotics and Its Application, Tokyo, Japan, pp. 211–218.

[40] L. Ciupitu and I. Simionescu, “Optimal location of robot base with respect to the application positions,” in Proc. 2-nnd International Conference on “Optimization of the Robots and Manipulators” OPTIROB 2007, Predeal, Romania, 27-29 May 2006, ISBN 978-973-648-656-2, pp. 57-62.

Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Adrian Olaru finished the University Politehnica of Bucharest, the Faculty of Machine-Tools, Machine and Manufacturing Systems Department. Now, from 1998, he is a university full professor, and he teach the following courses: Industrial Robots Dynamics Behavior, LabVIEW application in modeling and simulation of the dynamic behavior of robots, Personal and social robots and Neurorehabilitation robots. I am a doctor from 1989. In the last ten years he have been leading the following research projects: computer aided research and design for the hydraulic amplifiers of pneumatic and hydraulic screwdrivers; computer aided research over the dynamic behavior of the forging manipulator orientation modulus; computer aided research over dynamic behavior of the charging manipulators tipping modulus; computer aided research over dynamic behavior of the charging manipulators translation modulus; experimental validation for mathematical models of hydraulic elements and servo system; methodological guide for dimensioning and optimizing electrohydraulic elements; design of the mobile robots; assisted research of the magneto rheological dampers; assisted research of the intelligent dampers; assisted research of the neural networks; optimizing of the robots dynamic behavior by using the Fourier proper analyzer; optimizing the dynamic compliance and global transmissibility by using the assisted research and proper LabVIEW instrumentation; optimize the dynamic behavior and the space trajectory by using the proper neural network.

Serban Olaru finished the University Politehnica of Bucharest, Faculty of Machines and Manufacturing Systems, Romania. From 2008 he become the Ph.D.Eng.in the field of mechatronics. Now, he works in a private company, from Bucharest, Romania, in the department of mechatronics. He writes more than 50 research papers in the fields of intelligent damper systems, mechatronic systems, simulation and modeling with LabVIEW instrumentation.

NicuIae MihaI finished the University Politehnica of Bucharest, Faculty of Machines and Manufacturing Systems, Romania. From 2006 he become Ph.D.Eng. in the field of robotics. Now, he is the manager of the private company in mechatronics systems, Techno Accord, Quebec, Canada.

Natalia Smidova was graduated from Faculty of Mathematics and Physics, Charles University in Prague in 2005. She works at Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Kosice. She oriented on investigation of material properties by spectroscopic (nuclear magnetic resonance (NMR) and Raman) methods; She is interested in polymers a polymer nanocomposites made from renewable resources.