Characteristic Mode Examination on Various form of Antenna for MIMO

Sundaramoorthy A, M.C. John Wiselin,

Abstract—The main plan to create one of a kind modified sorts of reception apparatus with the ideal radiation qualities reasonable for MIMO applications. It is utilized to get scientific methodology for reception apparatus proposition and anticipating transmitting execution of radio wire by examination of trademark modes. The Examination of attributes mode is utilized to create wanted current conveyance and transmitting execution of a receiving wire. Among various current which is disseminated over surface of reception apparatus. Required mode is distinguished at Finest Feeding Point (FFP) for structured radio wire. The planned receiving wire work at various benchmarks so it might give multiband or broadband activity. It might be encourage symmetrical radiation designs at a given recurrence of numerous trademark modes, which has the viable element of Multiple Input and Multiple Output (MIMO) Antenna.

Keywords—Examination of characteristic modes (ECM), Finest Feeding Point (FFP), microstrip antenna, reflection coefficient, current distribution, radiation pattern.

I. INTRODUCTION

In Present and future remote correspondence. Proficient usage of radio wire are significant part. Single radio wire taking care of numerous recurrence than single recurrence is testing one. Such capacity reception apparatus must have one of a kind shape, best Finest Feeding point (FFP), and capacity to deal with wanted radiation out of numerous recurrence. A few difficulties are Interference and requirements is primary issue here. The issue with radio wire is that the physical precision is less, so the working standards of the reception apparatus are lost. The Examination of trademark modes (ECM) gives the quantity of current conveyance and radiation design concerning the various methods of recurrence. The Examination of trademark modes was initially facilitated by Garbacz [1] and regularly built by Harrington and Mautz [2]. A course for steering edges of irregular shape is created [3]. At that point the plan of radiation mode is improved to appropriate for current applications [4].The modular examination is proposed for Multiple Input and Multiple Output (MIMO) applications [5-7]. Utilizing this strategy, both multiband reverberation and data transmission is accomplished [8]. This examination is additionally utilized for execution improvement of circularly captivated opened fix radio wire [9].Characteristic mode examination (CME) might be connected to upgrade reception apparatus size and shape, alters antenna topology, fixing devoted putting reception apparatus and make appropriate radio wire design for ultra wideband

(UWB) transverse electromagnetic (TEM) horn and long term development (LTE) reception apparatus utilizing FEKO [10].

The examination of Eigen current dispersion gives new sustaining strategies. This Finest Feeding Technique make simplicity to plan ultra wideband reception apparatus which coordinated in chip displayed handsets [11]. The trademark mode is identical to the method of moments (MoM) conditions [12]. Another strategy for following methods is presented for hypothesis of trademark mode [13]. The MoM receiving wire is recreated with MATLAB utilizing Rao-Wilton-Glisson (RWG) premise capacities [14] and [15]. The modular strategies are additionally used to configuration convoluted shapes like fractal fix antenna [16]. The impacts of ground plane size, impacts of space on the scored recurrence attributes and impacts of scaling down of single post radio wire is analyzed with utilize various methods of reception apparatus [17].

The remainder of the bit is composed as given underneath: Segment II briefly outlines the assessment of utilitarian mode and stream diagram of ECM. In Section III and IV, the structure of antenna, reflection coefficient, and current stream over surface and radiation design at different mode analyzed for rectangular and hexagonal state of radio wires are clarified. At a last point, accomplished comprehension is given in Section V.

II. EXAMINATION OF CHARACTERISTIC MODES

The Examination of characteristic modes (ECM) gives the quantity of current dispersion and radiation design as for the various methods of recurrence. The present dissemination which is reliant upon eigen values and eigen vector. The numerical detailing of trademark modes that relates the current on directing body as clarified in [2],

\[
|L(C) - E|^\tan = 0
\]

(1)

In which "\(\tan\)" is tangential segments over the radio wire surface S. The character L written in (1) is linear and it is expressed by

\[
L(C) = j\omega A(C) + \nabla \Phi(C)
\]

(2)

Where A(C) and \(\Phi(C)\) are vector and scalar possibilities individually. Physically, the term – L (C) can be considered as the electric power anytime in space. This implies the administrator L in (1) has the component of impedance.

\[
Z(C) = |L(C)|\tan
\]

(3)

As drawn from [1], the impedance administrator Z is perplexing, and it tends to be composed as,

\[
Z(C) = R(C) + jX(C)
\]

(4)
The Characteristic current modes are gotten from the Eigen value linear equation which is given as

\[\mathbf{X} (J_n) = \lambda_n \mathbf{R} (J_n) \]

(5)

where R and X are Real and imaginary pieces of impedance administrator Z=R+jX, , \(\lambda_n \) is Eigen value, \(J_n \) is Eigen function. It is characterized as the genuine flows on the outside of a directing body that relies upon shape and size. Accordingly structure of radio wire utilizing examination of trademark modes can be performed in method for:

- Characteristic current and associated characteristic fields are calculated.
- By the eigen values, determine the resonance frequency of the modes.
- The shape and size is adjusted until the ideal recurrence is acquired.
- At last, studying the current distribution of modes and obtain specific radiating field.

Fig.1. represents the flow chart of Examination of characteristic modes (ECM).

III. RECTANGULAR PATCH

Microstrip radio wire is utilized for the advanced applications, for example, flying machine, car vehicles and remote applications. Microstrip radio wire comprises of dielectric substrate, a transmitting patch on one side and a ground plane on the opposite side. Microstrip radio wires are likewise alluded to as fix reception apparatuses. The recurrence of activity of the fix receiving wire is dictated by the length L. The width W of the microstrip radio wire controls the impedance on anetna feed. The radiation in microstrip fix reception apparatus is along the width and not along the length of the fix. The electric field is zero at the center of the fix, most extreme at one side, and least on the contrary side.

A. Design of Rectangular Patch

The rectangular fix is intended for 2.4 GHZ. The component of the rectangular fix relies upon the length and width of the fix. The width of the microstrip fix reception apparatus controls the impedance over the info. Bigger width can likewise build the data transmission. Fig.1. illustrates the geometry of rectangular patch. Table I represents the dimensions of rectangular patch. The design calculation is given as follows:

- Frequency, \(f = 2.4 \text{ GHz} \)
- Permittivity of FR4 substrate, \(\varepsilon_r = 4.3 \)
- Height of FR4 substrate, \(h=1.6 \text{mm} \)

a) Width of the Patch, \(W = \frac{c}{2f\sqrt{\varepsilon_r+1}} \)

\[= 3 \times 10^{11} \times 0.6142 / 4.8 \times 10^9 \]

\[= 38.38 \text{mm} \]

b) Length of the Patch, \(L = L_{eff} - 2\Delta L \)

\[= 125 \text{mm} \]

Effective dielectric constant, \(\varepsilon_{eff} \)

\[= \frac{\varepsilon_r+1}{2} + \frac{\varepsilon_r-1}{2} [1+12 \frac{h}{w}]^{1/2} \]

\[= 2.65+1.65(0.8164) \]

\[= 3.99706 \]

Length Extension, \(\Delta L \)

\[= 0.412h \]

\[= 0.7412 \text{mm} \]

Effective length, \(L_{eff} = \frac{c}{2f\sqrt{\varepsilon_r}} \)

\[= 31.2613 \text{mm} \]

Length of the patch, \(L = L_{eff} - 2\Delta L \)

\[L = 31.2614 - 2(0.7412) \]

\[= 29.778 \text{ mm} \]

(7)

c) Feed length = \(\frac{\lambda}{4\sqrt{\varepsilon_r}} \)

\[= 31.25/4.3 \]

Feed length = 14mm

(8)

d) Feed width = 3 mm (For Characteristic impedance \(Z_0 = 50\Omega \))

Fig.2. Rectangular Patch Antenna
TABLE I. Dimensions of Rectangular patch

Parameter	L₁	L₂	W₁	W₂	W₃
Dimension (in mm)	59.557	76.76	29.769	38.38	3

B. Simulated Result

Fig.3. demonstrates the present schematics of the six Eigen modes. Fig.4. demonstrates the return loss of the rectangular fix. The return loss is gotten at -15 dB around 2.4 GHz. It covers uses of Bluetooth (2.4 - 2.484 GHz) and S band (2 – 4GHz).

B. Simulated Result

Fig.3. demonstrates the present schematics of the six Eigen modes. Fig.4. demonstrates the return loss of the rectangular fix. The return loss is gotten at -15 dB around 2.4 GHz. It covers uses of Bluetooth (2.4 - 2.484 GHz) and S band (2 – 4GHz).

C. Modal Analysis

The modular examination which depicts the current distribution and radiation pattern of various methods of resonant frequency. The Surface current of various methods of radio wire is acquired by Eigen mode solver. It ascertains the Eigen values (resonant frequencies) and Eigen modes (field patterns).

TABLE II. Modal analysis of Rectangular patch

Modes	Frequency (GHz)	Current distribution and Radiation Pattern (XY Plane, theta = 90, Phi/degree vs. dBi)
1	0.3471	![Image](image1)
2	2.441	![Image](image2)
Characteristic Mode Examination on Various form of Antenna for MIMO

3 2.902

4 3.491

5 3.944
Table II represents the modal analysis of rectangular patch. The first mode I_1 has current distribution near the feed point. It has a reduced amount of radiating behaviour. So this resonant frequency is not considered for antenna design. The second mode I_2 has vertical currents. It has omnidirectional radiating pattern. The third mode I_3 has high current distribution along z axis. It has omnidirectional example. I_4, I_5 and I_6 reverberate at higher frequencies and the radiation is changed concerning the resonant frequency.

IV. HEXAGONAL PATCH

The setup of the hexagonal patch antenna is appeared in Fig.7. With $W_2=12\text{mm}$, $L_s=35\text{mm}$, $W_s=34\text{mm}$, substrate thickness $h=1.6\text{mm}$, dielectric constant $\varepsilon_r=4.3$. Table V speaks to the components of hexagonal patch.

A. Simulated Result

Fig.8. demonstrates the return loss of the hexagonal patch. The 10dB return loss bandwidth is from 3.3 GHz to 10.7 GHz. It gives ultra wide data transmission. It covers uses of WiMaX (3.3 – 4GHz) and C band (4 - 8 GHz).

B. Modal Analysis

Table VI represents the modal investigation of hexagonal patch. The first mode I_1 has current distribution near the feed point. It has less radiating behaviour. So this resonant frequency is not considered for antenna design. The second mode I_2 has vertical currents. It has omnidirectional emanating design. The third mode I_3 has high current conveyance along z pivot. It has omnidirectional example. I_4, I_5 and I_6 resound at higher frequencies and the radiation is changed as for the resonant frequency. The radiation pattern of all higher frequencies is directional and current distribution is better so it has return loss of less than 10dB. The spectrum gives ultra wide bandwidth.
TABLE VI. Modal analysis of Hexagonal patch

Mode	Frequency (GHz)
1	0.9028
2	3.7763
3	4.0061
4	5.4942
5	6.2385
6	7.5925

![Mode 1 Plot](image1)

![Mode 2 Plot](image2)

![Mode 3 Plot](image3)

![Mode 4 Plot](image4)

![Mode 5 Plot](image5)

![Mode 6 Plot](image6)
V. CONCLUSION

The different sorts of antenna have been displayed, with the point of survey the examination of attributes mode and speaking to the examination of trademark mode. As opposed to other customary plan strategies, trademark modes carry physical understanding into the present dispersion and transmitting conduct of the antenna. It is utilized to identify new state of the antenna and gives an ideal reception antenna design. This procedure is utilized for multi band, ultra wide band and MIMO applications.

REFERENCES

1. R.J. Garbacz and R.H. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transaction on Antennas and Propagation, Vol. AP-19, May 1971, pp. 348-358.
2. R.F. Harrington and J.R. Mautz, "Theory of Characteristic Modes for Conducting Bodies," IEEE Transactions on Antennas and Propagation, AP-19, 5, September 1971, pp. 622-628.
3. R.F. Harrington and J.R. Mautz, "Computation of Characteristic Modes for Conducting Bodies," IEEE Transactions on Antennas and Propagation, AP-19, 5, September 1971, pp. 629-639.
4. Marta Cabedo Fabres, Eva Antonino-Daviu, Alejandro Valero Nogueira and Miguel Ferrando Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, pp. 52.68, October 2007.
5. Ali Araghi and Gholamreza Dadashzadeh, "Oriented design of an antenna for MIMO applications using theory of characteristic modes," IEEE Antennas And Wireless Propagation, Vol. 11, pp. 1040, 1043, 2012.
6. Hui Li, Yi Tan, Buon Kiong Lau, Zhinong Ying and Sailing He, "Characteristic mode based trade off analysis of antenna chassis interactions for multiple antenna terminals," IEEE Transactions On Antennas And Propagation, Vol. 60, No. 2, pp. 490, 502, February 2012.
7. Martens, R.; Manteuffel, D., "Systematic design method of a mobile multiple antenna system using the theory of characteristic modes," in Microwaves, Antennas & Propagation, IET , vol.8, no.12, pp. 887-893, Sept. 16, 2014.
8. Zachary Miers, Hui Li and Buon Kiong Lau, "Design of bandwidth-enhanced and multiband MIMO antennas using characteristic modes," IEEE Antennas And Wireless Propagation, Vol. 12, No.2, pp. 1696, 1699, 2013.
9. Y. Chen and C.-F. Wang, "Characteristic-mode-based improvement of circularly polarized U-slot and E-shaped patch antennas," IEEE Antennas Wireless Propag. Lett, Vol. 11, pp. 1474-1477, Dec. 2012.
10. Martin Vogel, Gopinath Gampa, Daniel Ludick, Ulrich Jakobus and C. J. Reddy, “Characteristics mode analysis: putting physics back into simulation ”, IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, pp. 307, 317, April 2015.
11. Ahme Toaha Mobadisher and Amin Abboosh, “Utilizing Symmetry of Planar Ultrawideband Antennas for Size Reduction and Enhanced Performance”, IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, pp. 153, 156 April 2015.
12. Pavel Hazdra, Pavel Hamouz, “On The Modal Superposition Lying Under The MoM Matrix Equations”, Radioengineering, Vol. 17, No. 3, September 2008.
13. M. Capek, P. Hazdra, P. Hamouz, and J. Eichler, “A method for tracking characteristic numbers and vectors,” Progr. Electromagn . Res. B, vol. 53, pp. 115–134, 2011.
14. Makarov, S., “MoM antenna simulations, with Matlab: RWG basis functions,” IEEE Antennas and Propagation Magazine, IEEE , vol.43, no.5, pp.100-107, Oct 2001.
15. Capek, M.; Hamouz, P.; Hazdra, P.; Eichler, J., “Implementation of the Theory of Characteristic Modes in MATLAB." IEEE Antennas and Propagation Magazine, IEEE , vol.55, no.2, pp.176-189, April 2013.
16. J. Eichler, P. Hazdra, M. Capek, T. Korinek, and P. Hamouz, “Design of a dual-band orthogonally polarized L-probe-fed fractal patch antenna using modal methods,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1389–1392, Dec. 2011.
17. W. Wu and Y. P. Zhang, “Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes,” IEEE Antennas Propag. Mag., vol. 52, no. 6, pp. 67–77, Dec. 2010.