Prenatal alcohol exposure and childhood atopic disease: A Mendelian randomization approach

Seif O. Shaheen, PhD,a Clare Rutterford, MSc,a Luisa Zuccolo, PhD,b,c Susan M. Ring, PhD,b George Davey Smith, MD,b,c John W. Holloway, PhD,d and A. John Henderson, MDb

London, Bristol, and Southampton, United Kingdom

Background: Alcohol consumption in western pregnant women is not uncommon and could be a risk factor for childhood atopic disease. However, reported alcohol intake may be unreliable, and associations are likely to be confounded.

Objective: We aimed to study the relation between prenatal alcohol exposure and atopic phenotypes in a large population-based birth cohort with the use of a Mendelian randomization approach to minimize bias and confounding.

Methods: In white mothers and children in the Avon Longitudinal Study of Parents and Children (ALSPAC) we first analyzed associations between reported maternal alcohol consumption during pregnancy and atopic outcomes in the offspring measured at 7 years of age (asthma, wheezing, hay fever, eczema, atopy, and total IgE). We then analyzed the relation of maternal alcohol dehydrogenase (ADH1B) genotype (rs1229984) with these outcomes (the A allele is associated with faster metabolism and reduced alcohol consumption and, among drinkers, would be expected to reduce fetal exposure to ethanol).

Results: After controlling for confounders, reported maternal drinking in late pregnancy was negatively associated with childhood asthma and hay fever (adjusted odds ratio [OR] per category increase in intake: 0.91 [95% CI, 0.82-1.01] and 0.87 [95% CI, 0.78-0.98], respectively). However, maternal ADH1B genotype was not associated with asthma comparing carriers of the A allele with persons homozygous for G allele (OR, 0.98 [95% CI, 0.78-0.98], respectively). In the case of alcohol, a nonsynonymous variant in the alcohol dehydrogenase (ADH1B) gene is thought to associate with alcohol consumption in pregnancy which have evaluated childhood atopic outcomes. However, causal inference can be strengthened in observational studies with the use of Mendelian randomization to reduce measurement error and to minimize bias and confounding.
Abbreviations used
ADH: Alcohol dehydrogenase
ALSPAC: Avon Longitudinal Study of Parents and Children (ALSPAC)
GWAS: Genome Wide Association Study
PCA: Principal Components Analysis

Longitudinal Study of Parents and Children (ALSPAC), a United Kingdom population-based birth cohort, the maternal ADH1B gene variant was strongly associated with alcohol use before and during pregnancy, suggesting that it could be used as a reliable instrument to study the consequences of prenatal (and periconceptional) alcohol exposure. Indeed, to study the relation between fetal alcohol exposure and cognitive development, we recently used a Mendelian randomization approach in ALSPAC to determine whether genetic variants in alcohol metabolizing genes were associated with childhood IQ.

In ALSPAC, we have first analyzed whether reported alcohol intake by mothers in pregnancy is associated with risk of atopic disease in the offspring and then examined the relation between the maternal ADH1B gene variant and these outcomes.

METHODS
Subjects
ALSPAC is a population-based birth cohort that recruited 14,541 predominantly white pregnant women resident in the Bristol area of the United Kingdom during 1990 to 1992. There were 14,062 live born children, and 13,988 of these children were alive at 1 year of age and subsequently were followed up. The cohort has been followed since birth with annual questionnaires and, since 7 years of age, with objective measures in annual research clinics. The study protocol has been described previously, and further information can be found at http://www.alspac.bris.ac.uk. Ethics approval for all aspects of data collection was obtained from the ALSPAC Ethics and Law Committee (IRB 00003312) and the Local Research Ethics Committees.

Exposures
Mothers were asked 8 weeks into their pregnancy to report their current alcohol consumption (how many measures of beer, wine, spirit, or other alcoholic drinks per day on weekdays and weekends), from which the total units/week were derived and then grouped to avoid categories with small numbers (never, 1-2 units/week, 3-4 units/week, ≥5 units/week). At 18 weeks of gestation mothers were asked to recall their alcohol consumption just before the current pregnancy (derived categories: never, <1 unit/week, 1-6 units/week, >7 units/week) and in the first 3 months of pregnancy (never, <1 unit/week, >1 unit/week). (Asking about drinking habits just before pregnancy is likely to capture intake in week 12 months. Atopy at 7 years was defined as a positive reaction (any detectable well) to Dermatophagoides pteronyssinus, cat, or grass (after subtracting positive saline reactions from histamine and allergen wheals, and excluding children unreactive to 1% histamine). (Atopy defined in this way identified 96% of children sensitized to 26 other allergens in this cohort.) Serum total IgE (in kU/L) was measured by fluoroluminun assay with the Pharmacia UNICAP system (Pharmacia & Upjohn Diagnostics AB, Uppsala, Sweden).

Confounders
In multivariate analyses we controlled for the following potential confounders: maternal factors during pregnancy (smoking, infections, anxiety score, antibiotic use, and paracetamol use); other maternal factors (educational level; housing tenure; financial difficulties; body mass index; age; parity; history of asthma, eczema, rhinoconjunctivitis, migraine); sex of child, season of birth, multiple pregnancy, gestational age, birth weight, head circumference, birth length; postnatal factors (breast-feeding, day care, pets, damp/mold, environmental tobacco smoke exposure, antibiotic and paracetamol use in infancy, number of younger siblings, body mass index at age 7).

Genotyping
The majority of maternal DNA samples were extracted from whole blood and white cells taken during pregnancy, and a minority were buccal DNA extracted from mouthwash samples. A single nucleotide polymorphism (rs1229984 in ADH1B) was typed by KBiosciences Ltd (Hoddesdon, Herts, United Kingdom; www.kbioscience.co.uk) with a competitive allele-specific PCR system (KASPar). The genotype distribution was compatible with no departure from Hardy-Weinberg equilibrium, and the genotyping success rate was >93.3% and error rate <0.25%.

Statistical analyses
Although the ALSPAC population is largely white, we adopted 2 strategies to reduce the possibility of confounding by population substructure, because the rs1229984 variant is highly ethnically stratified. First, mother-child pairs were excluded from all analyses if the mother’s reported ethnicity was non-white or unknown. Second, to address possible residual confounding by population substructure, we controlled for 10 variables derived by principal components analysis (PCA) from ALSPAC genome-wide association study (GWAS) data.

We used logistic regression to analyze relations of maternal ADH1B genotype with binary outcomes and linear regression to analyze associations with log-transformed total IgE. Analyses of reported alcohol intake in pregnancy were performed before and after controlling for confounders; tests for trend were performed by analyzing reported alcohol exposure associations as linear per category effects. In view of the rarity of the homozygous mutant genotype (A:A), persons with this genotype were grouped together with heterozygotes (G:A), and we assumed a dominant effect for analysis. Previous analyses of this single nucleotide polymorphism in ALSPAC mothers in relation to alcohol intake suggested that this was appropriate. We also performed a priori stratified analyses to explore potential interactions between maternal ADH1B genotype and reported alcohol intake in pregnancy. All analyses were performed with Stata version 10.1 (Stata Corporation, College Station, Tex).

RESULTS
Table I shows the association between reported alcohol intake in the last 2 months of pregnancy and other maternal characteristics among mothers for whom data were complete for at least 1 childhood atopic outcome. Mothers who reported drinking alcohol were more likely than mothers who reported never drinking to be older, better educated, financially better off, and to have taken paracetamol in pregnancy. In contrast, Table II shows that the distribution of maternal ADH1B genotype broadly does not vary according to maternal or offspring characteristics.
Alcohol consumption (units/wk)	Never, no. (%) (N = 3780)	<1, no. (%) (N = 2947)	≥1, no. (%) (N = 1475)
Mother’s age			
<20 y	108 (3)	40 (1)	9 (1)
20-24 y	684 (18)	338 (11)	81 (5)
25-29 y	1564 (41)	1258 (43)	466 (32)
30-34 y	1077 (28)	983 (33)	630 (43)
≥35 y	347 (9)	328 (11)	289 (20)
Parity			
0	1727 (46)	1284 (44)	619 (42)
1	1255 (33)	1095 (37)	527 (36)
≥2	716 (19)	510 (17)	299 (20)
Unknown	82 (2)	58 (2)	30 (2)
Maternal body mass index (kg/m²)			
<18.5	171 (5)	109 (4)	54 (4)
18.5-24.99	2527 (67)	2108 (72)	1083 (73)
25-29.99	549 (15)	403 (14)	188 (13)
≥30	217 (6)	116 (4)	53 (4)
Unknown	316 (8)	211 (7)	97 (7)
Mother’s education level			
<Ordinary level	1098 (29)	558 (19)	225 (15)
Ordinary level	1468 (39)	1089 (37)	387 (26)
≥Advanced level	1198 (32)	1292 (44)	861 (58)
Unknown	16 (<1)	8 (<1)	2 (<1)
Housing tenure			
Owned/mortgaged	2915 (77)	2477 (84)	1261 (85)
Rented (public housing)	436 (12)	194 (7)	64 (4)
Rented (nonpublic housing)	257 (7)	152 (5)	99 (7)
Unknown	172 (5)	124 (4)	51 (3)
Financial difficulties			
None	1425 (38)	1111 (38)	657 (45)
Some	1337 (35)	1144 (39)	499 (34)
Many	904 (24)	627 (21)	279 (19)
Unknown	114 (3)	65 (2)	40 (3)
Maternal asthma			
246 (7)	175 (6)	81 (5)	
Maternal eczema			
426 (11)	358 (12)	179 (12)	
Maternal rhinoconjunctivitis			
665 (18)	585 (20)	292 (20)	
Maternal migraine			
577 (15)	398 (14)	188 (13)	
Maternal anxiety score in pregnancy			
0-4	1920 (51)	1514 (51)	757 (51)
5-9	1218 (32)	951 (32)	468 (32)
≥10	335 (9)	269 (9)	145 (10)
Unknown	307 (8)	213 (7)	105 (7)
Prenatal tobacco exposure (maximum in pregnancy)			
Not exposed	1659 (44)	1436 (49)	695 (47)
Passive only	1267 (34)	967 (33)	472 (32)
Mother 1-9/d	283 (7)	225 (8)	145 (10)
Mother 10-19/d	395 (10)	211 (7)	101 (7)
Mother ≥20/d	158 (4)	97 (3)	54 (4)
Unknown	18 (<1)	11 (<1)	8 (1)
Maternal paracetamol use in early pregnancy			
Nonuser	1873 (50)	1260 (43)	600 (41)
User	1850 (49)	1654 (56)	857 (58)
Unknown	57 (2)	33 (1)	18 (1)
Maternal paracetamol use in late pregnancy			
Nonuser	2219 (59)	1580 (54)	774 (52)
User	1447 (38)	1296 (44)	662 (45)
Unknown	114 (3)	71 (2)	39 (3)
Antibiotic use in late pregnancy			
Not exposed	203 (5)	209 (7)	93 (6)
Maternal cold/flu in pregnancy	1478 (39)	1230 (42)	659 (45)
Maternal urinary infection in pregnancy	198 (5)	157 (5)	79 (5)
Maternal other infections in pregnancy	185 (5)	191 (6)	97 (7)

Includes all women with complete data for at least 1 childhood outcome (wheeze, eczema, hay fever, asthma, atopy, IgE) and self-reported alcohol consumption in the last 2 months of pregnancy.
TABLE II. Maternal characteristics by maternal ADH1B genotype

ADH1B genotype	GG, no. (%)	AA/GA, no. (%)
(N = 5033)	(N = 268)	

- **Mother’s age**
 - <20 y: 86 (2) 3 (1)
 - 20-24 y: 671 (13) 37 (14)
 - 25-29 y: 2056 (41) 105 (39)
 - 30-34 y: 1657 (33) 93 (35)
 - ≥35 y: 563 (11) 30 (11)

- **Parity**
 - 0: 2275 (45) 118 (44)
 - 1: 1750 (35) 92 (34)
 - ≥2: 909 (18) 52 (19)
 - Unknown: 99 (2) 6 (2)

- **Maternal body mass index (kg/m²)**
 - <18.5: 208 (4) 14 (5)
 - 18.5-24.99: 3460 (69) 192 (72)
 - 25-29.99: 726 (14) 35 (13)
 - ≥30: 248 (5) 9 (3)
 - Unknown: 391 (8) 18 (7)

- **Mother’s education level**
 - <Ordinary level: 1186 (24) 47 (18)
 - Ordinary level: 1811 (36) 108 (40)
 - ≥Advanced level: 2023 (40) 113 (42)
 - Unknown: 13 (<1) 0 (0)

- **Housing tenure**
 - Owned/mortgaged: 4093 (81) 222 (83)
 - Rented (public housing): 439 (9) 23 (9)
 - Rented (nonpublic housing): 297 (6) 16 (6)
 - Unknown/other: 204 (4) 7 (3)

- **Financial difficulties**
 - None: 1957 (39) 104 (39)
 - Some: 1816 (36) 93 (35)
 - Many: 1127 (22) 66 (25)
 - Unknown: 133 (3) 5 (2)

- **Maternal other infections in pregnancy**
 - None: 314 (6) 16 (6)
 - Maternal cold/flu in pregnancy: 2060 (41) 105 (39)
 - Maternal urinary infection in pregnancy: 274 (5) 10 (4)
 - Maternal other infections in pregnancy: 292 (6) 12 (4)

- **Antibiotic use in early pregnancy**
 - Non user: 2275 (45) 118 (44)
 - User: 2691 (53) 133 (50)
 - Unknown: 75 (1) 3 (1)

(Continued)
TABLE III. Associations between self-reported alcohol consumption before and during pregnancy and childhood asthma

Mother’s alcohol intake before pregnancy (units/wk)	Univariate analysis, OR (95% CI)	Multivariate analysis, OR (95% CI)
Never (n = 446)	1.0	1.0
<1 (n = 2860)	0.88 (0.66-1.18)	0.93 (0.69-1.26)
1-6 (n = 3410)	0.85 (0.64-1.14)	0.92 (0.68-1.25)
≥7 (n = 890)	0.81 (0.57-1.14)	0.84 (0.59-1.21)
Test for trend (N = 7606)	0.95 (0.86-1.04)*	0.96 (0.87-1.05)*
P value	.229	.383

Mother’s current alcohol intake at 8 wk of pregnancy (units/wk)

Never (n = 4728)	1.0	1.0
1-2 (n = 973)	0.97 (0.78-1.20)	0.96 (0.77-1.20)
3-4 (n = 524)	1.06 (0.81-1.39)	1.03 (0.78-1.37)
≥5 (n = 659)	1.02 (0.79-1.30)	0.93 (0.71-1.20)
Test for trend (N = 6884)	1.00 (0.94-1.09)*	0.98 (0.91-1.06)*
P value	.808	.667

Mother’s alcohol intake in first 3 mo of pregnancy (units/wk)

Never (n = 3356)	1.0	1.0
<1 (n = 3088)	0.96 (0.82-1.11)	0.91 (0.78-1.06)
≥1 (n = 1148)	0.89 (0.72-1.09)	0.81 (0.65-1.00)
Test for trend (N = 7592)	0.95 (0.86-1.04)*	0.90 (0.81-0.99)*
P value	.262	.047

Mother’s alcohol intake during last 2 mo of pregnancy (units/wk)

Never (n = 3410)	1.0	1.0
<1 (n = 2668)	0.92 (0.79-1.08)	0.92 (0.78-1.08)
≥1 (n = 1327)	0.83 (0.68-1.02)	0.83 (0.67-1.02)
Test for trend (N = 7405)	0.91 (0.83-1.00)*	0.91 (0.82-1.01)*
P value	.062	.074

Mother’s binge drinking (days in previous month at 18 wk of pregnancy)

Never (n = 6358)	1.0	1.0
1-2 (n = 630)	1.11 (0.87-1.42)	0.95 (0.74-1.23)
≥3 (n = 516)	0.98 (0.75-1.30)	0.84 (0.63-1.12)
Test for trend (N = 7504)	1.02 (0.90-1.15)*	0.92 (0.81-1.05)*
P value	.783	.235

OR, Odds ratio.
*OR per category increase in exposure. Multivariate analysis of maternal alcohol intake adjusts for all confounders listed in Methods section.

maternal ADH1B and reported intake of alcohol in pregnancy; such an interaction, with a weaker or absent effect of the gene in mothers reporting no alcohol intake, would have been expected if there was a causal effect of prenatal alcohol exposure.33 The lack of evidence of association between maternal ADH1B genotype and atopic outcomes in the offspring also suggests that maternal consumption of alcohol before, or periconception, is unlikely to influence childhood asthma and allergies; in ALSPAC the same nonsynonymous variant of ADH1B is strongly associated with alcohol use just before, as well as during, pregnancy.28

Given the principles underpinning Mendelian randomization,34,35 our genetic findings are much less likely to be confounded by lifestyle or environmental factors than the weak negative associations we observed between reported maternal alcohol intake in late pregnancy and risk of asthma and hay fever in the offspring. Mothers who drank alcohol in pregnancy tended to be older, better educated, and financially better off than mothers who abstained. Although we controlled for a large number of socioeconomic and other background characteristics in the analyses of reported maternal drinking, the possibility of residual or uncontrolled confounding remains. Furthermore, the negative associations between reported maternal intake and childhood asthma and hay fever conflict with the few previous epidemiologic studies that have suggested a positive relation between prenatal

TABLE IV. Associations between self-reported alcohol consumption before and during pregnancy and childhood hay fever

Mother’s alcohol intake before pregnancy (units/wk)	Univariate analysis, OR (95% CI)	Multivariate analysis, OR (95% CI)
Never (n = 449)	1.0	1.0
<1 (n = 2875)	1.28 (0.87-1.87)	1.27 (0.86-1.89)
1-6 (n = 3428)	1.26 (0.87-1.84)	1.17 (0.79-1.73)
≥7 (n = 903)	1.15 (0.74-1.77)	1.03 (0.66-1.62)
Test for trend (N = 7655)	1.0 (0.90-1.11)*	0.96 (0.86-1.07)*
P value	.944	.437

Mother’s current alcohol intake at 8 wk of pregnancy (units/wk)

Never (n = 4753)	1.0	1.0
1-2 (n = 977)	1.02 (0.81-1.30)	0.95 (0.74-1.22)
3-4 (n = 530)	1.02 (0.74-1.39)	1.04 (0.75-1.44)
≥5 (n = 670)	0.70 (0.51-0.97)	0.71 (0.50-0.99)
Test for trend (N = 6930)	0.93 (0.85-1.01)*	0.93 (0.84-1.02)*
P value	.095	.109

Mother’s alcohol intake in first 3 mo of pregnancy (units/wk)

Never (n = 3370)	1.0	1.0
<1 (n = 3100)	0.83 (0.70-0.99)	0.84 (0.70-1.01)
≥1 (n = 1172)	0.88 (0.70-1.11)	0.91 (0.71-1.17)
Test for trend (N = 7642)	0.91 (0.81-1.02)*	0.93 (0.82-1.04)*
P value	.103	.203

Mother’s alcohol intake during last 2 mo of pregnancy (units/wk)

Never (n = 3434)	1.0	1.0
<1 (n = 2678)	0.92 (0.77-1.09)	0.85 (0.71-1.03)
≥1 (n = 1346)	0.83 (0.66-1.05)	0.77 (0.60-0.99)
Test for trend (N = 7458)	0.91 (0.82-1.02)*	0.87 (0.78-0.98)*
P value	.101	.024

Mother’s binge drinking (days in previous month at 18 wk of pregnancy)

None (n = 6396)	1.0	1.0
1-2 (n = 633)	0.91 (0.68-1.23)	0.96 (0.71-1.31)
≥3 (n = 523)	0.73 (0.51-1.04)	0.78 (0.54-1.33)
Test for trend (N = 7552)	0.87 (0.74-1.02)*	0.90 (0.77-1.06)*
P value	.079	.219

OR, Odds ratio.
*OR per category increase in exposure. Multivariate analysis of maternal alcohol intake adjusts for all confounders listed in Methods section.
alcohol exposure and atopic outcomes. Although there is some evidence for a protective effect of alcohol on allergic airway inflammation and airway hyperresponsiveness in an adult mouse model of allergic asthma, the mechanisms underlying such an effect and the relevance of these observations to the inception of asthma after prenatal exposure in humans are unclear. In addition, other animal data indicate detrimental effects of prenatal exposure on fetal lung growth and development. The findings for hay fever, if real, would be expected to be mediated through an effect on atopy, yet we did not find similar negative associations between reported intake and atopy or IgE. We therefore think it is unlikely that prenatal alcohol exposure in pregnancy protects against asthma and other atopic disease.

In ALSPAC, mothers carrying the minor A allele consumed less alcohol during pregnancy. Previous in vitro data suggested that carriers of this allele metabolize alcohol up to 100 times faster than persons homozygous for the G allele and consequently consume less alcohol to avoid the negative effects of high acetaldehyde concentrations; this in turn would reduce exposure of the fetus to alcohol, which readily crosses the placenta. Although a more recent study has suggested that this variant makes a minor contribution to the variation in alcohol metabolism in vivo, lack of power because of the variant’s low frequency in European populations is the most likely explanation for this.

The utility of ADH1B genotype as a Mendelian randomization instrument has been clearly demonstrated in relation to alcohol-induced cancer.

Strengths and limitations

Our study has a number of strengths, including ALSPAC’s population-based prospective design and rich data on maternal reported alcohol use in pregnancy, potential confounders and detailed phenotypic outcome measurements. In addition, few other birth cohorts have maternal DNA available. Measurement of maternal ADH1B genotype enabled us to use a Mendelian randomization approach to investigate the relation between prenatal alcohol exposure and atopic outcomes. In contrast, most previous epidemiologic studies of the effects of maternal alcohol use in pregnancy on offspring health have relied on reported consumption, an approach which is highly susceptible to bias and confounding. Although there was potential for associations with ADH1B genotype to be confounded by population substructure, we reduced this possibility by excluding those with reported non-white ethnicity and by performing sensitivity analyses in which we controlled for PCA variables derived from GWAS data.

TABLE V. Associations between maternal ADH1B genotype and childhood atopic outcomes

Outcome by ADH1B genotype	No.	Univariate maternal effect estimate* (95% CI)	No. of reduced data set†	Univariate maternal effect estimate* (95% CI)	Multivariate maternal effect estimate* (95% CI)	
Asthma						
G:G	4524	1.0	3266	1.0	1.0	
A:A/G:A	231	0.98 (0.66-1.47)	171	0.86 (0.53-1.41)	0.90 (0.54-1.51)	
Total	4755		3437			
P value				.937	.571	.699
Wheezing						
G:G	4575	1.0	3280	1.0	1.0	
A:A/G:A	237	1.12 (0.75-1.67)	171	1.04 (0.64-1.68)	1.08 (0.65-1.79)	
Total	4812		3451			
P value				.582	.867	.754
Eczema						
G:G	4567	1.0	3295	1.0	1.0	
A:A/G:A	234	1.01 (0.71-1.43)	170	1.07 (0.72-1.60)	1.14 (0.75-1.73)	
Total	4801		3465			
P value				.961	.730	.539
Hay fever						
G:G	4556	1.0	3248	1.0	1.0	
A:A/G:A	236	1.11 (0.71-1.72)	171	1.12 (0.67-1.87)	1.15 (0.67-1.97)	
Total	4792		3419			
P value				.653	.673	.616
Atopy						
G:G	3571	1.0	2811	1.0	1.0	
A:A/G:A	193	1.09 (0.77-1.55)	152	1.12 (0.76-1.65)	1.23 (0.82-1.84)	
Total	3764		2963			
P value				.610	.571	.327
IgE						
G:G	2852	1.0	2404	1.0	1.0	
A:A/G:A	158	1.07 (0.82-1.40)	133	0.97 (0.72-1.30)	0.96 (0.72-1.30)	
Total	3010		2537			
P value				.606	.815	.806

OR, Odds ratio.

*OR (geometric mean ratio for IgE analysis).
†Data set reduced because of incomplete PCA variables derived from GWAS data.
interactions with reported alcohol intake. We also accept that we have not taken into account the ability of the fetus to metabolize alcohol and hence the potential effect of gene variants in the child on atopic outcomes. Nevertheless, we would argue that the maternal ADH1B gene is likely to have a greater influence on fetal alcohol exposure because it is so strongly associated with maternal drinking behavior. As with any longitudinal study, data were not complete on exposures, outcomes, and confounders for the whole cohort. Therefore, we cannot rule out the possibility that exclusion of children without complete information might have biased our findings for reported alcohol intake; however, importantly, it is unlikely that missing genotype data would bias the main genetic results.

Public health implications

In conclusion, with the use of a Mendelian randomization approach, we have not found evidence to suggest that alcohol consumption in pregnancy increases the risk of childhood atopic outcomes. Nor did associations with reported intake suggest increased risks. Nevertheless, because of other potential risks to the developing fetus of low-level alcohol consumption, pregnant women should still heed current advice to abstain from consuming alcohol.38,39

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses.

Clinical implications: Although pregnant women should be advised to abstain from alcohol, this study has reassuringly found no evidence that alcohol exposure in utero increases the risk of atopic disease in the offspring.

REFERENCES

1. Starkenburg S, Munroe ME, Waltenbaugh C. Early alteration in leukocyte populations and Th1/Th2 function in ethanol-consuming mice. Alcohol Clin Exp Res 2001;25:1221-30.
2. Waltenbaugh C, Vasquez K, Peterson JD. Alcohol consumption alters antigen-specific Th1 responses: mechanisms of deficit and repair. Alcohol Clin Exp Res 1998;22:220S-3S.
3. Oldenburg PJ, Poole JA, Sisson JH. Alcohol reduces airway hyperresponsiveness (AHR) and allergic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2012;302:L308-15.
4. Inselman LS, Fisher SE, Spencer H, Atkinson M. Effect of intrauterine ethanol exposure on fetal lung growth. Pediatr Res 1985;19:12-4.
5. Wang X, Gomutputra P, Wolgemuth DJ, Baxi L. Effects of acute alcohol intoxication in the second trimester of pregnancy on development of the murine fetal lung. Am J Obstet Gynecol 2007;197:269.
6. Sozo F, O’Day L, Maritz G, Kenna K, Stacy V, Brew N, et al. Repeated ethanol exposure during late gestation alters the maturation and innate immune status of the ovine fetal lung. Am J Physiol Lung Cell Mol Physiol 2009;296:L510-8.
7. Gilberth D, Mohan SS, Brown LA, Gauthier TW. Perinatal exposure to alcohol: implications for lung development and disease. Pediatr Respir Rev 2013;14:17-21.

Outcome by ADH1B genotype	Mother’s alcohol intake (units/wk) never	Mother’s alcohol intake (units/wk) ≥1				
	No.	Adjusted estimate* (95% CI)	No.	Adjusted estimate* (95% CI)		
Asthma†						
G:G	2001	1.0	2372	1.0		
G:A/A:A	121	0.94 (0.53-1.68)	103	1.14 (0.62-2.10)		
Total	4597					
Wheezing‡						
G:G	2024	1.0	2400	1.0		
G:A/A:A	124	1.26 (0.72-2.19)	105	0.87 (0.43-1.73)		
Total	4653					
Eczema§						
G:G	2018	1.0	2397	1.0		
G:A/A:A	121	0.89 (0.52-1.52)	105	1.23 (0.75-2.02)		
Total	4641					
Hay fever						
G:G	2017	1.0	2388	1.0		
G:A/A:A	124	0.98 (0.52-1.87)	104	1.23 (0.62-2.46)		
Total	4633					
Hay fever						
G:G	1538	1.0	1894	1.0		
G:A/A:A	102	1.29 (0.80-2.09)	83	1.12 (0.65-1.95)		
Total	3617					
Atopy¶						
G:G	1191	1.0	1557	1.0		
G:A/A:A	85	1.23 (0.85-1.78)	70	0.91 (0.61-1.36)		
Total	2903					

GMR, Geometric mean ratio.
*Estimates (OR [GMR for IgE analysis]) are adjusted for all confounders listed in Methods section.
†P for interaction = .664.
‡P for interaction = .384.
§P for interaction = .636.
∥P for interaction = .710.
¶P for interaction = .288.
8. Linneberg A, Nielsen NH, Madsen F, Frolund L, Dirksen A, Jorgensen T. Factors related to allergic sensitization to aeroallergens in a cross-sectional study in adults: the Copenhagen Allergy Study. Clin Exp Allergy 2003;31:1409-17.

9. Linneberg A, Petersen J, Nielsen NH, Madsen F, Frolund L, Dirksen A, et al. The relationship of alcohol consumption to total immunoglobulin E and the development of immunoglobulin E sensitization: the Copenhagen Allergy Study. Clin Exp Allergy 2003;33:199-205.

10. Goransson M, Magnusson A, Bergman H, Rydberg U, Heilig M. Fetus at risk: maternal alcohol consumption during pregnancy and allergy in the fetus. BMJ 2005;330:375-6.

11. Andersen AMN, Andersen PK, Olsen J, Gronbaek M, Strandberg-Larsen K. Moderate alcohol intake during pregnancy and atopic dermatitis in the offspring. J Allergy Clin Immunol 2009;123:1355-60.

12. Linneberg A, Petersen J, Gronbaek M, Benn CS. Alcohol during pregnancy and atopic dermatitis in the offspring. J Exp Allergy 2004;34:1678-83.

13. Bjerke T, Hedegaard M, Henriksen TB, Nielsen BW, Schiotz PO. Several genetic and environmental factors influence cord blood IgE concentration. Pediatr Allergy Immunol 1994;5:88-94.

14. Yuan W, Sorensen HT, Basso O, Olsen J. Prenatal maternal alcohol consumption and allergic sensitization in an adult population-based survey. Clin Exp Allergy 2003;33:199-205.

15. Kelly YJ, Sacker A, Gray R, Kelly J, Wolke D, Head J, et al. Light drinking during pregnancy: still no increased risk for socioemotional difficulties or cognitive deficits at 5 years of age? J Epidemiol Community Health 2012;66:41-8.

16. Linneberg A, Nielsen NH, Madsen F, Frolund L, Dirksen A, et al. Risk analysis of early childhood eczema. J Allergy Clin Immunol 2009;123:1355-60.

17. Andersen AMN, Andersen PK, Olsen J, Gronbaek M, Strandberg-Larsen K. Moderate alcohol intake during pregnancy and atopic dermatitis in the offspring. J Allergy Clin Immunol 2009;123:1355-60.

18. Linneberg A, Petersen J, Gronbaek M, Benn CS. Alcohol during pregnancy and atopic dermatitis in the offspring. J Exp Allergy 2004;34:1678-83.

19. Bisigaard H, Halljaer LB, Hinge R, Giwercman C, Palmer C, Silveira L, et al. Risk analysis of early childhood eczema. J Allergy Clin Immunol 2009;123:1355-60.

20. Yuan W, Sorensen HT, Basso O, Olsen J. Prenatal maternal alcohol consumption and hospitalization with asthma in childhood: a population-based follow-up study. Alcohol Clin Exp Res 2004;28:765-8.

21. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 1998;351:1225-32.

22. Goransson M, Magnusson A, Bergman H, Rydberg U, Heilig M. Fetus at risk: maternal alcohol consumption during pregnancy and allergy in the fetus. BMJ 2005;330:375-6.

23. Lawlor DA, Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1-22.

24. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1-22.

25. Qi L. Mendelian randomization in nutritional epidemiology. Nutr Rev 2009;67: 439-90.

26. Macgregor S, Lind PA, Bucholz KK, Hansell NK, Madden PAF, Richter MM, et al. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. Hum Mol Genet 2009;18: 580-93.

27. Hashibe M, McKay JD, Curado MP, Oliveira JC, Koifman S, Koifman R, et al. Multiple ADH genes are associated with upper aerodigestive cancers. Nat Genet 2008;40:707-9.

28. Zuccolo L, Fitz-Simon N, Gray R, Ring SM, Sayal K, Smith GD, et al. A non-synonymous variant in ADH1B is strongly associated with prenatal alcohol use in a European sample of pregnant women. Hum Mol Genet 2009;18: 4457-66.

29. Lewis SJ, Zuccolo L, Davey Smith G, Macleod J, Rodriguez S, Draper ES, et al. Fetal alcohol exposure and IQ at age 8: evidence from a population-based birth-cohort study. PLoS One 2012;7:e49407.

30. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort Profile: the ‘Children of the 90s’ - the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 2013;42:111-7.

31. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol 2013;42:97-110.

32. Roberts G, Peckitt C, Northstone K, Strachan D, Lack G, Henderson J, et al. Relationship between aeroallergen and food allergen sensitization in childhood. Clin Exp Allergy 2005;35:933-40.

33. Davey Smith G. Use of genetic markers and gene-diet interactions for interrogating population-level causal influences of diet on health. Genes Nutr 2011;6:27-43.

34. Davey Smith G. Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? Basic Clin Pharmacol Toxicol 2008;102:245-56.

35. Davey Smith G. Mendelian randomization for strengthening causal inference in observational studies: application to gene by environment interaction. Perspect Psychol Sci 2010;5:527-45.

36. Brennan P, Lewis S, Hashibe M, Bell DA, Boffetta P, Bouchardy C, et al. Pooled analysis of alcohol dehydrogenase genotypes and head and neck cancer: a HuGe review. Am J Epidemiol 2004;159:1-16.

37. Birley AJ, James MR, Dickson PA, Montgomery GW, Heath AC, Martin NG, et al. ADH single nucleotide polymorphism associations with alcohol metabolism in vivo. Hum Mol Genet 2009;18:1533-42.

38. Safe, Sensible, Social. The next steps for the Government’s national alcohol strategy 2007. Home Office and Department of Health. Available from: http://webarchive.nationalarchives.gov.uk/+/www.dh.gov.uk/en/PublicHealth/Healthimprove ment/Alcoholmisuse/DH_085386. Accessed May 20, 2013.

39. Mukherjee RA, Hollins S, Abou-Saleh MT, Turk J. Low level alcohol consumption and the fetus. BMJ 2005;330:375-6.
TABLE E1. Association between maternal \(\text{ADH1B}\) genotype and reported maternal alcohol intake before and during pregnancy

ADH1B genotype	GG, No. (%) (N = 5033)	GA/AA, No. (%) (N = 268)
Mother’s alcohol intake before pregnancy (units/wk)		
Never	275 (5)	18 (7)
<1	1820 (36)	126 (47)
1-6	2273 (45)	102 (38)
≥7	599 (12)	20 (7)
Unknown	66 (1)	2 (1)
Mother’s current alcohol intake at 8 wk of pregnancy (units/wk)		
Never	3074 (61)	197 (74)
1-2	686 (14)	30 (11)
3-4	342 (7)	17 (6)
≥5	454 (9)	9 (3)
Unknown	477 (9)	15 (6)
Mother’s alcohol intake in first 3 mo of pregnancy (units/wk)		
Never	2130 (42)	138 (51)
<1	2035 (40)	99 (37)
≥1	795 (16)	27 (10)
Unknown	73 (1)	4 (1)
Mother’s alcohol intake during last 2 mo of pregnancy (units/wk)		
Never	2211 (44)	143 (53)
<1	1722 (34)	81 (30)
≥1	898 (18)	34 (13)
Unknown	202 (4)	10 (4)
Mother’s binge drinking (days in previous month at 18 wk of pregnancy)		
None	4164 (83)	237 (88)
1-2	441 (9)	14 (5)
≥3	351 (7)	13 (5)
Unknown	77 (2)	4 (1)

Includes all women with complete data for at least 1 childhood outcome and ADH1B genotype.
Table E2. Associations between self-reported alcohol consumption before and during pregnancy and childhood wheezing
Mother’s alcohol intake before pregnancy (units/wk)
Never (n = 452)
<1 (n = 2888)
≥1-6 (n = 3443)
≥7 (n = 904)
Test for trend (N = 7687)
P value
Mother’s current alcohol intake at 8 wk of pregnancy (units/wk)
Never (n = 4779)
1-2 (n = 981)
3-4 (n = 530)
≥5 (n = 671)
Test for trend (N = 6961)
P value
Mother’s alcohol intake in first 3 mo of pregnancy (units/wk)
Never (n = 3386)
<1 (n = 3113)
≥1 (n = 1174)
Test for trend (N = 7673)
P value
Mother’s alcohol intake during last 2 mo of pregnancy (units/wk)
Never (n = 3445)
<1 (n = 2696)
≥1 (n = 1346)
Test for trend (N = 7487)
P value
Mother’s binge drinking (days in previous month at 18 wk of pregnancy)
None (n = 6423)
1-2 (n = 637)
≥3 (n = 523)
Test for trend (N = 7583)
P value

OR: Odds ratio.

*OR per category increase in exposure. Multivariate analysis of maternal alcohol intake adjusts for all confounders listed in Methods section.
TABLE E3. Associations between self-reported alcohol consumption before and during pregnancy and childhood eczema

	Univariate analysis, OR (95% CI)	Multivariate analysis, OR (95% CI)
Mother’s alcohol intake before pregnancy (units/wk)		
Never (n = 451)	1.0	1.0
<1 (n = 2880)	1.08 (0.82-1.43)	1.03 (0.77-1.36)
1-6 (n = 3438)	1.11 (0.85-1.46)	1.03 (0.78-1.37)
≥7 (n = 904)	1.13 (0.83-1.54)	0.99 (0.72-1.38)
Test for trend (N = 7673)	1.03 (0.95-1.12)	0.99 (0.92-1.09)
P value	.438	.970
Mother’s current alcohol intake at 8 wk of pregnancy (units/wk)		
Never (n = 4766)	1.0	1.0
1-2 (n = 980)	1.07 (0.89-1.29)	1.04 (0.86-1.26)
3-4 (n = 530)	1.00 (0.79-1.28)	1.02 (0.79-1.32)
≥5 (n = 670)	1.13 (0.91-1.40)	1.12 (0.90-1.40)
Test for trend (N = 6946)	1.03 (0.97-1.10)*	1.03 (0.97-1.10)*
P value	.303	.343
Mother’s alcohol intake in first 3 mo of pregnancy (units/wk)		
Never (n = 3379)	1.0	1.0
<1 (n = 3107)	0.99 (0.87-1.13)	0.98 (0.86-1.13)
≥1 (n = 1174)	1.06 (0.89-1.26)	1.08 (0.90-1.31)
Test for trend (N = 7660)	1.02 (0.94-1.11)*	1.03 (0.94-1.12)*
P value	.649	.554
Mother’s alcohol intake during last 2 mo of pregnancy (units/wk)		
Never (n = 3436)	1.0	1.0
<1 (n = 2692)	1.03 (0.90-1.18)	0.98 (0.85-1.13)
≥1 (n = 1346)	1.18 (0.99-1.39)	1.11 (0.93-1.33)
Test for trend (N = 7474)	1.08 (0.99-1.17)*	1.04 (0.95-1.14)*
P value	.077	.356
Mother’s binge drinking (days in previous month at 18 wk of pregnancy)		
None (n = 6411)	1.0	1.0
1-2 (n = 637)	0.84 (0.66-1.05)	0.84 (0.66-1.07)
≥3 (n = 522)	0.92 (0.72-1.18)	0.93 (0.72-1.20)
Test for trend (N = 7570)	0.93 (0.83-1.04)*	0.94 (0.83-1.06)*
P value	.227	.297

OR, Odds ratio.

*OR per category increase in exposure. Multivariate analysis of maternal alcohol intake adjusts for all confounders listed in Methods section.
TABLE E4. Associations between self-reported alcohol consumption before and during pregnancy and childhood atopy

	Univariate analysis, OR (95% CI)	Multivariate analysis, OR (95% CI)
Mothers alcohol intake before pregnancy (units/wk)		
Never (n = 330)	1.0	1.0
<1 (n = 2287)	1.12 (0.83-1.51)	1.09 (0.80-1.48)
1-6 (n = 2717)	1.21 (0.90-1.62)	1.08 (0.80-1.47)
≥7 (n = 725)	1.40 (1.01-1.94)	1.22 (0.87-1.73)
Test of trend (N = 6059)	1.11 (1.02-1.20)*	1.05 (0.96-1.14)*
P value	.014	.304
Mother’s current alcohol intake at 8 wk of pregnancy (units/wk)		
Never (n = 3713)	1.0	1.0
1-2 (n = 780)	1.07 (0.89-1.29)	1.05 (0.86-1.27)
3-4 (n = 427)	0.99 (0.78-1.27)	1.01 (0.78-1.30)
≥5 (n = 525)	0.80 (0.63-1.01)	0.80 (0.63-1.03)
Test for trend (N = 5445)	0.95 (0.89-1.02)*	0.95 (0.89-1.02)*
P value	.167	.198
Mother’s alcohol intake in first 3 mo of pregnancy (units/wk)		
Never (n = 2614)	1.0	1.0
<1 (n = 2502)	0.98 (0.86-1.12)	1.00 (0.87-1.15)
≥1 (n = 939)	0.96 (0.80-1.15)	0.96 (0.79-1.17)
Test for trend (N = 6055)	0.98 (0.90-1.07)*	0.99 (0.90-1.08)*
P value	.639	.776
Mother’s alcohol intake during last 2 mo of pregnancy (units/wk)		
Never (n = 2615)	1.0	1.0
<1 (n = 2133)	1.04 (0.90-1.19)	1.01 (0.87-1.16)
≥1 (n = 1098)	0.99 (0.83-1.18)	0.92 (0.76-1.10)
Test for trend (N = 5846)	1.0 (0.92-1.09)*	0.96 (0.88-1.15)*
P value	.965	.429
Mother’s binge drinking (days in previous month at 18 wk of pregnancy)		
None (n = 5021)	1.0	1.0
1-2 (n = 527)	0.96 (0.77-1.20)	0.99 (0.78-1.24)
≥3 (n = 419)	0.80 (0.61-1.03)	0.86 (0.66-1.13)
Test for trend (N = 5967)	0.91 (0.81-1.02)*	0.94 (0.83-1.06)*
P value	.101	.319

OR, Odds ratio.

*OR per category increase in exposure. Multivariate analysis of maternal alcohol intake adjusts for all confounders listed in Methods section.
TABLE E5. Associations between self-reported alcohol consumption before and during pregnancy and childhood IgE

	Univariate analysis, GMR (95% CI)	Multivariate analysis, GMR (95% CI)
Mother’s alcohol intake before pregnancy (units/wk)		
Never (n = 254)	1.0	1.0
<1 (n = 1816)	1.07 (0.86-1.34)	1.11 (0.89-1.38)
1-6 (n = 2179)	1.09 (0.88-1.35)	1.16 (0.93-1.44)
≥7 (n = 554)	0.96 (0.75-1.23)	1.04 (0.81-1.34)
Test for trend (N = 4803)	0.98 (0.92-1.05)	1.01 (0.95-1.08)
P value	.602	.715
Mother’s current alcohol intake at 8 wk of pregnancy (units/wk)		
Never (n = 2920)	1.0	1.0
1-2 (n = 649)	1.0 (0.87-1.16)	1.01 (0.87-1.16)
3-4 (n = 345)	1.10 (0.91-1.32)	1.08 (0.90-1.30)
≥5 (n = 436)	1.08 (0.91-1.27)	1.06 (0.89-1.25)
Test for trend (N = 4350)	1.03 (0.98-1.08)*	1.02 (0.97-1.08)*
P value	.268	.390
Mother’s alcohol intake in first 3 mo of pregnancy (units/wk)		
Never (n = 2066)	1.0	1.0
<1 (n = 2002)	1.10 (0.99-1.22)	1.06 (0.96-1.18)
≥1 (n = 731)	1.09 (0.95-1.26)	1.06 (0.92-1.22)
Test for trend (N = 4799)	1.06 (0.99-1.13)*	1.04 (0.97-1.11)*
P value	.095	.306
Mother’s alcohol intake during last 2 mo of pregnancy (units/wk)		
Never (n = 2033)	1.0	1.0
<1 (n = 1730)	1.00 (0.90-1.12)	0.98 (0.88-1.10)
≥1 (n = 897)	1.08 (0.95-1.23)	1.05 (0.92-1.20)
Test for trend (N = 4660)	1.04 (0.97-1.10)*	1.02 (0.95-1.09)*
P value	.283	.584
Mother’s binge drinking (days in previous month at 18 wk of pregnancy)		
None (n = 3980)	1.0	1.0
1-2 (n = 426)	0.97 (0.82-1.15)	0.93 (0.79-1.10)
≥3 (n = 323)	0.93 (0.77-1.12)	0.89 (0.73-1.07)
Test for trend (N = 4729)	0.96 (0.89-1.05)*	0.94 (0.86-1.02)*
P value	.403	.158

GMR, Geometric mean ratio.
*GMR per category increase in exposure. Multivariate analysis of maternal alcohol intake adjusts for all confounders listed in Methods section.