ORIGINAL RESEARCH

S-Nitrosoglutathione Reductase Deficiency Causes Aberrant Placental S-Nitrosylation and Preeclampsia

Shathiyah Kulandavelu, PhD; Raul A. Dulce, PhD; Christopher I. Murray, PhD; Michael A. Bellio, PhD; Julia Fritsch, PhD; Rosemeire Kanashiro-Takeuchi, DVM, PhD; Himanshu Arora, PhD; Ellena Paulino, PhD; Daniel Soetkamp, PhD; Wayne Balkan, PhD; Jenny E. Van Eyk, MD; Joshua M. Hare, MD

BACKGROUND: Preeclampsia, a leading cause of maternal and fetal mortality and morbidity, is characterized by an increase in S-nitrosylated proteins and reactive oxygen species, suggesting a pathophysiologic role for dysregulation in nitrosylation and nitrosative stress.

METHODS AND RESULTS: Here, we show that mice lacking S-nitrosoglutathione reductase (GSNOR−⁄−), a denitrosylase regulating protein S-nitrosylation, exhibit a preeclampsia phenotype, including hypertension, proteinuria, renal pathology, cardiac concentric hypertrophy, decreased placental vascularization, and fetal growth retardation. Reactive oxygen species, NO, and peroxynitrite levels are elevated. Importantly, mass spectrometry reveals elevated placental S-nitrosylated amino acid residues in GSNOR−⁄− mice. Ascorbate reverses the phenotype except for fetal weight, reduces the difference in the S-nitrosoproteome, and identifies a unique set of S-nitrosylated proteins in GSNOR−⁄− mice. Importantly, human preeclamptic placentas exhibit decreased GSNOR activity and increased nitrosative stress.

CONCLUSIONS: Therefore, deficiency of GSNOR creates dysregulation of placental S-nitrosylation and preeclampsia in mice, which can be rescued by ascorbate. Coupled with similar findings in human placentas, these findings offer valuable insights and therapeutic implications for preeclampsia.

Key Words: mouse model ▪ NO ▪ preeclampsia ▪ pregnancy ▪ S-nitrosylation

Preeclampsia is a life-threatening disorder of pregnancy, characterized by new-onset hypertension, proteinuria, abnormal maternal cardiovascular and renal adaptations, poor placental vascularization, and fetal growth restriction. Preeclampsia affects up to 10% of pregnancies and is a leading cause of maternal and fetal/neonatal mortality and morbidity worldwide, and maternal mortality rates have been steadily rising over the past 30 years in large part attributable to cardiovascular complications. The pathogenesis of preeclampsia is incompletely understood, but emerging data support a role for impaired protein S-nitrosylation, nitration, and increased reactive oxidative stress (ROS), contributing to alterations in NO bioavailability and nitroso-redox imbalance. A paradoxical finding in preeclampsia is the elevation in circulating S-nitrosylated albumin in human pregnancy because elevated S-nitrosylated albumin would traditionally be considered a vasorelaxant and an antioxidant. Furthermore, cellular S-nitrosylation level is elevated despite factors that are assumed to abrogate the formation of nitroso-thiols, including oxidative stress and defects in NO bioavailability. These findings raise 2 alternative pathogenic possibilities: Either...
CLINICAL PERSPECTIVE

What Is New?
- Preeclampsia is a major unmet need in maternal fetal medicine engendering substantial mortality and morbidity in both mothers and infants.
- While nitroso-redox imbalance is an implicated pathogenetic process, the full extent to which it plays a role in preeclampsia has remained controversial; in this study, we demonstrated that mice lacking the gene for S-nitrosoglutathione reductase, a denitrosylase that regulates protein S-nitrosylation, recapitulate the majority of preeclampsia maternal and fetal phenotypes.
- Antioxidant treatment rescued preeclampsia phenotypes by reducing dysregulation of nitrosylation and nitrosative stress; importantly, placentas from women with preeclampsia exhibited S-nitrosoglutathione reductase deficiency, suggesting that this enzyme plays a potentially key role in normal human pregnancy.

What Are the Clinical Implications?
- Our findings support the idea that S-nitrosoglutathione reductase is a central regulator of physiologic nitrosylation and is crucial to governing normal pregnancy.
- These findings have important implications for understanding the pathogenesis of preeclampsia, developing novel preeclampsia therapies, and identifying clinically useful biomarkers for this unaddressed need in maternal-fetal medicine.
- Moreover, the S-nitrosoglutathione reductase homozygous knockout mouse represents a valuable animal model for ongoing study of the numerous processes operative in preeclampsia.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
eNOS	endothelial nitric oxide synthase
GSNOR	S-nitrosoglutathione reductase
HPDP	N-[6-(biotinamido)hexyl]-3′-(2′-pyridylthio) propionamide
ROS	reactive oxidative stress
SOD	superoxide dismutase

S-nitrosylation increases to compensate for the increased ROS levels or elevated S-nitrosylation directly reflects abnormal regulation of S-nitrosylation in preeclampsia (nitrosative stress). To differentiate between these 2 possible roles, we studied the impact of the loss of an important denitrosylase, S-nitrosoglutathione reductase (GSNOR−/−), in pregnant mice.

Protein S-nitrosylation participates in numerous pregnancy-related processes including placental trophoblast cell migration, apoptosis, angiogenesis, immunomodulation, and oxygen delivery.13,14 Protein S-nitrosylation is enhanced in a transnitrosylation reaction using S-nitrosoglutathione, which thus acts as a second messenger to transduce NO bioactivity.15 This process is tightly regulated by GSNOR, which selectively metabolizes S-nitrosoglutathione, thereby depleting the levels of S-nitrosylated proteins in equilibrium with S-nitrosoglutathione. Ascorbate, with its dual roles as an antioxidant and a reductant, is required for the release of biologically active NO from these nitrosylated thiols. Although GSNOR−/− mice have increased numbers of S-nitrosylated proteins,16,17 which can in some circumstances lead to favorable outcomes (eg, recovery from myocardial infarction),16 deficiency of this enzyme can also disrupt physiological nitrosylation-denitrosylation dynamic cycles, leading to unfavorable outcomes (eg, increase in oxidative stress).17,19-21 Thus, to assess the role of S-nitrosylation and GSNOR in pregnancy outcome, we examined multiple organ systems, including the heart, kidney, and placenta, and the offspring during pregnancy in GSNOR−/− mice. Initially, we anticipated that GSNOR−/− mice would exhibit favorable maternal and fetal adaptations to pregnancy and were surprised to discover that pregnant GSNOR−/− mice recapitulate many of the features of preeclampsia. As a result, we subsequently tested the predictions that placental nitrosylation would exhibit widespread derangement in the knockout compared with control mice and that ascorbate would restore the intact animal and nitroso-proteome phenotypes toward normal.

METHODS

All data are available in the main text or the supplemental materials.

Study Approval

All animal care was carried out in accordance with approval by the Institutional Animal Care and Use Committee. For the human study, tissue collection was approved by the University of Miami Institutional Review Board, and the patient and family privacy were assured under the conditions of the Health Insurance Portability and Accountability Act. Written informed consent was received from participants before inclusion in the study.

Breeding

C57Bl/6J (wild type [B6]) controls (stock No. 000664) were purchased from Jackson Laboratories (Bar Harbor, ME). GSNOR−/− mice were raised in house. GSNOR−/− mouse line was created from ES clones after 10 consecutive backcrosses with C57Bl/6J.16
Females were bred at 3 to 4 months of age and were studied in their first pregnancies. The presence of a sperm plug was defined as day 0.5 of gestation. Experimental time points included before breeding (nonpregnant), and day 17.5 (late gestation, 2 days before normal-term delivery). Fetal, placental, and maternal organ weights were also recorded at time of euthanasia. For breeding, B6 females were bred with B6 males and GSNOR−/− females were bred with GSNOR−/− males.

Blood Pressure Determination
Mice were anesthetized with isoflurane. A 1.4-F micromanometer-tipped catheter (SPR-839; Millar Instruments, Houston, TX) was inserted into the right carotid artery and advanced retrograde into the aorta. All analyses were performed using LabChart Pro 7 software (Millar Instruments).

Urinary Protein Measurements
Urine samples were collected from nonpregnant and pregnant mice (17.5 days of gestation). Urinary protein levels were measured using dipstick. A score of 0 to 3 was given on the basis of the color change on the dipstick following urine analysis. Twenty-four-hour urine was collected using metabolic cages (Tecniplast). Urine samples were analyzed for macroglobulin levels using Coomassie blue staining (Fisher).

Echocardiography
Echocardiographic assessments were performed in anesthetized mice (1% isoflurane in oxygen) using a Vevo-770 micro-ultrasound (VisualSonics, Toronto, Ontario, Canada) equipped with a 30-MHz transducer. Cardiac dimensions including left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and anterior and posterior wall thickness at systole and diastole were recorded from M-mode images; cardiac output and stroke volume were calculated from bidimensional long-axis parasternal views from 3 consecutive cardiac cycles. Doppler waveforms in the umbilical vein and artery were obtained near the placental end of the umbilical cord. Area under the peak velocity–time curve and R-R interval were measured from 3 consecutive cardiac cycles, and the results were averaged. Umbilical venous and arterial diameters were measured from B-mode images. Mean velocity over the cardiac cycle was calculated by dividing the area under the peak velocity–time curve by the R-R interval. A parabolic blood velocity distribution was assumed so that umbilical venous and arterial blood flows were determined by the formula:

\[F = \frac{1}{2} \pi MV \left(\frac{D}{2} \right)^2 \]

(where MV=mean peak velocity (cm/s); D=diameter [cm]; F=blood flow [mL/min]).

Cardiomyocyte Isolation
The isolation of cardiomyocytes was performed as previously described. Briefly, hearts were perfused with Ca2+-free bicarbonate buffer containing 120 mmol/L NaCl, 5.4 mmol/L KCl, 1.2 mmol/L MgSO4, 1.2 mmol/L NaH2PO4, 5.6 mmol/L glucose, 20 mmol/L NaHCO3, 20 mmol/L 2,3 butanedione monoxime (Sigma-Aldrich, St. Louis, MO), and 5 mmol/L taurine (Sigma-Aldrich), gassed with 95%O2/5% CO2, followed by enzymatic digestion with collagenase type II (1 mg/mL) (Worthington, Lakewood, NJ) and protease type XIV (0.1 mg/mL; Sigma-Aldrich). Cardiomyocytes were obtained from digested hearts followed by mechanical disruption, filtration, centrifugation, and resuspension in a Tyrode solution containing 0.125 mmol/L CaCl2, Tyrode buffer containing 144 mmol/L NaCl, 1 mmol/L MgCl2, 10 mmol/L HEPES, 1.2 mmol/L NaH2PO4, 5.6 mmol/L glucose, and 5 mmol/L KCl, adjusted to pH 7.4 with NaOH.

ROS by DCF, NO by DAF, Peroxynitrite by DHR 123
ROS, intracellular NO, and peroxynitrite were measured by epifluorescence using 2′,7′-dichlorodihydrofluorescein (10 μmol/L; Molecular Probes), 4,5-diaminofluorescein (10 mmol/L; Cayman Chemical Co., Ann Arbor, MI) and dihydrorhodamine 123 (DHR 123, 25 mmol/L; Sigma-Aldrich), respectively. These dyes have been well validated. Briefly, isolated mouse cardiomyocytes were placed in the chamber of an IonOptix spectrophotometer and the background fluorescence (F0) was acquired with an excitation wavelength of 488 nm and emission fluorescence collected at 510±15 nm. Cardiomyocytes were incubated for 40 minutes at room temperature (23 °C) with 2′,7′-dichlorodihydrofluorescein or 4,5-diaminofluorescein or 20 minutes with DHR 123 and washed by superfusing fresh Tyrode (1.8 mmol/L CaCl2) solution for 10 minutes. Fluorescence (F) was acquired at 37 °C every 1 minute for 10 minutes. Myocytes were stimulated at 1 Hz during the 10-minute experiment. ROS, NO or peroxynitrite levels were expressed as:

\[\frac{\Delta F}{F_0} = \frac{F - F_0}{F_0} \]

Superoxide Dismutase Measurement
Sample preparation: frozen placentas were ground up in a Dounce homogenizer on liquid nitrogen. Then, pulverized tissue was homogenized in ice-cold PBS (10 μL per mg of tissue). The suspension was strained through a 250 μm-pore mesh. Then, samples were assessed for protein content by BCA (Pierce, Thermo Scientific) and diluted 1:10 in PBS for superoxide measurement. Superoxide was assessed by lucigenin-enhanced chemiluminescence.
For superoxide dismutase (SOD) assay, superoxide was assessed with the Superoxide Anion Assay Kit CS1000 (Sigma-Aldrich). Briefly, a superoxide-generator system (xanthine–xanthine oxidase [XO]) was used as a source of superoxide. Xanthine–xanthine oxidase (25 μM/mL final activity) plus 5 μL of [SOD-containing] samples and 94.5 μL of PBS were added to the multiwell plate (in duplicate). Then, the luminol plus the enhancer salutation and xanthine were added. For positive control, a mix of 1 μL of 4 U/μL SOD (Sigma-Aldrich) with 99 μL of PBS was used. As negative control for SOD, the superoxide generation system alone (without the sample) was used.

Luminescence was acquired for 10 minutes every 30 seconds and the integrated luminescence units were used for calculations.

Ascorbate Treatment

Ascorbate (sodium L-ascorbate, 3.3 g/L, Sigma, St. Louis, MO) was given in the drinking water starting from day 0.5 (time of plug detection). The water was changed every 2 days. In isolated cardiomyocytes, ascorbate (0.1 mmol/L, 0.5 mmol/L, or 1 mmol/L) was incubated for 30 minutes before the start of the epifluorescence experiments.

Tissue Preparation and Histology and Immunohistochemistry

At the end of the study, maternal organs (heart, kidney) and placenta were harvested, weighed, and processed for further analysis. Tissues were either flash-frozen in liquid nitrogen for total RNA isolation and protein analysis, while some tissues were fixed with 10% formalin for histology. Slides were stained with hematoxylin and eosin and Masson's trichrome staining for heart and kidney and periodic acid–Schiff staining for kidney. Glomerular size was quantified using Image J (National Institutes of Health).

Scanning Electron Microscopy of the Kidney

Tissue was fixed in 2% glutaraldehyde in 0.05 M phosphate buffer and 100mM sucrose, post-fixed overnight in 1% osmium tetroxide in 0.1 M phosphate buffer, dehydrated through a series of cold graded ethanols, and embedded in a mixture of EM-bed/Araldite (Electron Microscopy Sciences). 1 μm thick sections were stained with Richardson’s stain for observation under a light microscope. 100 nmol/L sections were cut on a Leica Ultracut-R ultramicrotome and stained with uranyl acetate and lead citrate. The grids were viewed at 80 kV in a Philips cardiomycypte-10 transmission electron microscope and images captured by a Gatan ES1000W digital camera.

N=2 samples were examined per each group at 17.5 d of gestation.

Isolectin Immunofluorescence for Paraffin-Embedded Tissues and Analysis of Placental Capillary Density

Paraffin-embedded placental sections were deparaffinized and rehydrated by immersion in xylene followed by a graded series of ethanol. Antigen retrieval was performed by a heat-induced method with citrate buffer (Dako, Carpinteria, CA). The slides were then blocked for 1 hour in 10% normal donkey serum to reduce background. Sections were then incubated with DyLight 594-GSL I-isolectin B4 (Vector Laboratories, Burlingame, CA) primary antibody for 1 hour. at 37 °C. After washing with PBS, nuclei were counterstained with DAPI (Invitrogen, Carlsbad, CA). A stereological grid consisting of crosses was superimposed on images of placental sections stained with isolectin. The relative capillary density in the tissue was calculated on each section by dividing the number of crosses falling on capillary structure by the total number of points falling on the sampling area using Image J. For each placenta, 4 sections were analyzed.

Human Placental Tissue Collection

Placentas were collected immediately after delivery from normotensive (N=8) and preeclamptic (N=6) pregnancies at Jackson Memorial Hospital and Jackson North (Miami, FL). Tissue collection was approved by the University of Miami Institutional Review Board, and patient and family privacy were assured under conditions of the Health Insurance Portability and Accountability Act. Written informed consent was received from participants before inclusion in the study. Placental tissue was isolated by sterile dissection. The tissue was washed with cold PBS to remove blood from the intervillous spaces and then snap frozen in liquid nitrogen for storage at −80 °C. The demographic data are summarized in Table 2. Preeclampsia was defined as maternal systolic blood pressure at least 140 mm Hg or higher or diastolic blood pressure at least 90 mm Hg or higher and 1 additional factor such as proteinuria, impaired liver function, or thrombocytopenia was also observed.

GSNOR Activity in the Mouse Heart and Mouse and Human Placenta

Heart and placental homogenate (100 μg/mL) were incubated with Tris-HCl (2 mmol/L, pH 8.0), EDTA (0.5 mmol/L) and NADH (200 μmol/L). The reaction was started by adding S-nitrosoglutathione (400 μmol/L) and activity was measured as S-nitrosoglutathione–dependent NADH consumption at absorbance of
methyl methanethiosulfonate and labeled with N- [6-340 nm for 5 minutes in the mouse tissue and area under the curve for 8 minutes in the human placenta.

Protein Immunoanalysis

Samples were electrophoresed using a NuPAGE 10% Bis-Tris gel (Invitrogen) and transferred to polyvinylidene membranes (Bio-Rad Laboratories). Immunoblot detection was performed for vascular endothelial growth factor (VEGF) (ab46154, 1:1000; Abcam, Cambridge, MA), VEGFR2 (55B11, 1:1000; Cell Signaling, Danvers, MA), eNOS (1:1000; BD Bioscience, BD Bioscience, San Jose, CA) in mouse tissue, GSNOR in (1:1000, 11051-1-AP, Proteintech, Rosemont, IL) in human tissue, β-actin (4957S, 1:1000, Cell Signaling, Danvers, MA), GAPDH (G8795, 1:1000, Sigma, St Louis, MO) and subsequent reaction with goat anti-rabbit horse-radish peroxidase–conjugated antibody (1:1000; Cell Signaling). Then, membranes were developed by enhanced chemiluminescence (Super Signal West Pico, Thermo Scientific, Hampton, NH) and analyzed by the QuantityOne software (Bio-Rad, Hercules, CA).

VEGF Nitrosylation

To assess S-nitrosylation, biotin-switch assay was used following methods described. Hearts were homogenized in HEN buffer (250 mmol/L Hepes (pH 7.7), 1 mmol/L EDTA, and 0.1 mmol/L neocuproine). Free cysteine (Cys) residues were blocked with S-methyl methanethiosulfonate and labeled with N-[6-(biotinamido)hexyl]-3′-(2′-pyridyldithio) propionamide (HPDP-biotin) with or without sodium ascorbate. Biotinylated VEGF was individually immunoprecipitated with protein G-Sepharose beads, electrophoretically resolved, and immunoblotted with anti-biotin antibody. Blotted membranes were re-probed with related antibody for detection of protein load.

RNA Preparation and Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted from tissues using the TRIzol method, and then reverse transcribed to complementary DNA using High-Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Foster City, CA) according to the manufacturer’s protocol. The quantitative reverse transcriptase polymerase chain reaction for indicated genes was performed in TaqMan Universal PCR Master Mix (Applied Biosystems). Quantitation of mRNAs was performed using Applied Biosystems TaqMan Gene Expression Assays according to the manufacturer’s protocol. Samples were analyzed using the BIORAD sequence detection system. All polymerase chain reactions were performed in triplicate, and the specificity of the reaction was determined by melting curve analysis at the dissociation stage. The relative quantitative method was used for the quantitative analysis. The calibrator was the averaged ΔCt from the untreated cells. The endogenous control was GAPDH.

Mass Spectrometry Sample Preparation

All blocking and labeling steps were performed protected from light. Frozen placentas were individual minced in 0.9 mL of cold homogenization buffer (PEN: PBS pH 8.0, 1mM ETDA, 0.1 mmol/L Neocuprine; supplemented with 20 mmol/L n-ethylmaleimide). The tissue was then disrupted in 1ml mixer mill (Mixer Mill MM 400, retsch.com) for 5 minutes and then subjected to probe sonication. Samples were adjusted to 2.5% SDS and clarified by centrifugation for 5 minutes at 2000g. The resulting supernatant was incubated for 10 minutes at 50 °C to completing the blocking step. The unreacted n-ethylmaleimide was removed using a Zeba spin column (Thermo Fisher Scientific, Waltham, MA) equilibrated with PEN buffer supplemented with 0.5% SDS. Each sample was divided and labeled with either 1 mmol/L biotin-HPDP (Thermo Fisher Scientific) or 0.3 mmol/L iodoTMT® (Thermo Fisher Scientific) in the presence of 5 mmol/L sodium ascorbate. As a labeling control, five pooled samples consisting of one replicate from each of the biological samples were prepared and reacted with each label in the absence of ascorbate. Samples were incubated for 1 hour. (HPDP) or 2 hour. (iodoTMT®) at 37 °C. Excess label was removed from the HPDP-treated samples by adding 2 volumes of cold acetone and incubating for 20 minutes at −20 °C. Precipitated protein was pelleted by centrifugation and washed with 2 additional volumes of cold acetone. The pellets were resuspended 200 µL of PBS containing 1% (w/v) SDS aided by sonication. The excess iodoTMT® label was removed by adding 5 volumes of cold acetone and precipitating as above. Samples were resuspended in 600 µL of PBS containing 1% (w/v) SDS aided by sonication. IodoTMT® samples were then further reduced and alkylated using DTT and iodoacetamide. Residual reagents were removed by Zeba spin column equilibrated with PBS. The protein concentration of each labeled sample was determined by BCA assay.

For HPDP-labeled samples, 500 µg was digested overnight using 0.02 µg trypsin/µg of protein (Promega). IodoTMT® labeled samples were combined according to the label’s isotope. Five-plexes were prepared containing 350 µg of each of the different biological samples and the pooled control. An additional set of 6-plexes was prepared containing 250 µg of each biological replicates and a pooled control. The mixtures were digested overnight with 0.02 µg trypsin/µg of protein. Digestions were halted with 0.25 mmol/L PMSF. The resulting peptides were captured using either...
streptavidin (HPDP) or TMT affinity resin (idoTMT). Peptides were enriched, washed, and eluted according to the manufacture’s protocol or as described here (PMID: 21036925). In the case of HPDP, eluted peptides were further alkylated with iodoacetamide.

Mass Spectrometry Analysis

The resulting peptides were desalted using Oasis HLB μ-elution plates (Waters, Milford, MA). Samples were eluted with 300 μL of 50% ACN, 0.1% FA dried in speedvac, then resuspended in 0.1% FA for liquid chromatography–tandem mass spectrometry analysis. Liquid chromatography–tandem mass spectrometry analysis was performed using an Ultimate 3000 nano LC (Thermo Scientific) connected to an Orbitrap LUMOS mass spectrometer (Thermo Scientific) equipped with an EasySpray ion source. Peptides were loaded onto a PepMap RSLC C18 column (2 μm, 100 Å, 75 μm i.d. ×250 mm, Thermo Scientific) using a flow rate of 300 nL/min for 15 minutes at 1% B (mobile phase A was 0.1% formic acid in water and mobile phase B was 0.1% formic acid in acetonitrile) after which point they were separated with a linear gradient of 2% to 20%B for 90 minutes, 20% to 32%B for 20 minutes, 32% to 95%B for 2 minutes, holding at 95%B for 8 minutes and reequilibrating at 1%B for 5 minutes. Each sample was followed by a blank injection to both clean the column and reequilibrated at 1%B. MS1 scans were acquired at a resolution of 240 000 Hz from mass range 400 to 1600 m/z. For MS1 isolation width of 1.6 Da in the quadrapole. Precursor ions were fragmented using higher-energy C-trap dissociation with normalized collision energy of 30% and analyzed using rapid scan rates in the ion trap. Monoisotopic precursor selection was enabled and only MS1 signals exceeding 5000 counts triggered the MS2 scans, with +1 and unassigned charge states not being selected for MS2 analysis. Dynamic exclusion was enabled with a repeat count of 1 and exclusion duration of 15 seconds.

Mass Spectrometry Data Analysis

Raw data were searched using a uniprot reviewed mouse database (09/18) with the X!Tandem (PMID: 14976030) algorithm version 2013.06.15.1 and Comet (PMID:23148064) algorithm version 2014.02 rev.2 search engines with the following parameters: full trypsin cleavage allowing for up to 2 missed cleavages, variable modifications +16 Da on methionine (oxidation), +57 Da, +125 Da and, in the case of iodoTMT6 labeled samples, +329 on cysteine (carbamidomethylation, n-ethylmaleimide, TMT). Mass tolerance of MS1 error of 10 ppm, MS2 error of 1 Da were used. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (PMID: 30395289) partner repository with the data set identifier PXD012706 (reviewer account details: Username: reviewer52954@ebi.ac.uk; Password: MkOzBjKi).

Statistical Analysis

The results are expressed as mean±SEM. Differences between groups were examined for statistical significance using Student’s t test or 1-way or 2-way ANOVA, with Newman-Keuls for multiple comparisons for post hoc analysis where appropriate. Results with P<0.05 were considered significant. All analysis were performed using SPSS and Prism Statistical software.

RESULTS

Pregnant GSNOR−/− Mice Exhibit Hallmark Features of Preeclampsia, Hypertension, and Proteinuria

Development of hypertension and proteinuria are hallmarks of preeclampsia, and GSNOR−/− mice are hypertensive compared with wild-type mice before pregnancy, consistent with GSNOR regulation of endothelium-dependent vasodilation (Figure 1A). At day 17.5 of pregnancy, GSNOR−/− mice develop hypertension (Figure 1A, Figure S1) and proteinuria (Figure 1B), characterized by elevated urine macroglobulin levels, associated with renal pathology including enlarged glomeruli, swelling of the endothelial cells and loss of...
Figure 1. Pregnant GSNOR^{−/−} mice exhibit hallmark features of preeclampsia including hypertension, proteinuria, and concentric hypertrophy in the heart. Nonpregnant and pregnant (17.5 d) (N=4–12 mothers per group) C57Bl/6J (B6) and GSNOR^{−/−} (KO) mice were examined. At late gestation, knockout (KO) mothers exhibited (A) hypertension, (B) proteinuria, and elevated (C) urine macroglobulin levels. D, E, Kidney sections at late gestation stained with periodic acid–Schiff showed enlarged glomeruli and focal and sclerosis with collapsed glomerular capillaries. F, Electron microscopy on renal tissues showed that GSNOR^{−/−} kidneys exhibited glomerular endotheliosis comprised of endothelial cell swelling, along with loss in fenestration and corrugation of the glomerular basement membrane (N=2 was examined per group). G, H, Heart weight and (I) relative wall thickness were significantly bigger in KO mice as compared with controls, indicating the presence of concentric hypertrophy. J, The normal increase in cardiac output was absent in KO mice at late gestation. For systolic blood pressure, proteinuria, heart weight, relative wall thickness, and cardiac output, a 2-way ANOVA with Newman-Keuls for post hoc analysis was performed. For the other variables, Student’s t test was performed. Results are shown as mean±SEM. ***P<0.001, **P<0.01, *P<0.05. B6 indicates C57Bl/6J mice; KO, GSNOR^{−/−} mice; and NP, non-pregnant.
fenestration and corrugation of the glomerular basement membrane (Figures 1C through 1F), changes that recapitulate human preeclampsia.27,28

GSNOR−⁄− Hearts Exhibit Concentric Hypertrophy During Pregnancy

We next studied cardiac responses to pregnancy in the GSNOR−⁄− mouse. The heart responds to sustained hypertension by an increase in wall thickness leading to concentric hypertrophy, and concentric hypertrophy independently predicts adverse outcome in preeclamptic pregnancies.29 At late gestation, left ventricular end-diastolic dimension was lower, whereas the anterior wall at diastole (Table 1) was thicker, contributing to higher relative wall thicknesses in pregnant GSNOR−⁄− mice as compared with controls (Figures 1G through 1I, Table 1). Using isolated cardiomyocytes we observed that width was greater in GSNOR−⁄− mice, whereas length was not different between the 2 strains at late gestation (Table 1). These factors likely contributed to the enlarged GSNOR−⁄− hearts at late gestation, even when normalized to tibia length (Figure 1G and 1H, Table 1). Furthermore, the normal physiologic increases in maternal cardiac output and stroke volume were completely abrogated at late gestation in GSNOR−⁄− mice (Figure 1J, Table 1), consistent with the phenotype of lower cardiac output and stroke volume in preeclamptic patients with concentric heart geometry.29 Heart rate remained unchanged between groups (Table 1). These data suggest that S-nitrosylation homeostasis plays an important role in limiting pathological hypertrophy.30

GSNOR−⁄− Mice Exhibited Placental Insufficiency During Pregnancy

Placental insufficiency (fetal weight to placental weight ratio) is believed to contribute directly to the development of preeclampsia. The placentas of preeclamptic pregnancies often exhibit fetoplacental hypovascularity and decreased fetoplacental perfusion,31 both of which decrease transfer of oxygen and nutrients to the placenta, thereby limiting fetal growth. Fetal litter size was significantly lower in GSNOR−⁄− mice at 17.5 d of gestation (Figure 2A). Fetal body weights were significantly lower in GSNOR−⁄− mice at 17.5 d of gestation (Figure 2B). To evaluate the role of GSNOR on placental vascularization and fetoplacental perfusion, we examined the placentas at late gestation. GSNOR activity was present in the control placentas, and as anticipated was absent in the knockout mice (Figure 2C). Placental weight (Figure 2D) and umbilical arterial blood flow (Figure S2) were not significantly different between the 2 strains. However, placental efficiency and umbilical venous blood flow were significantly lower in GSNOR−⁄− placentas as compared with controls at late gestation (Figures 2E, Figure S2). In addition, placental vascularization was decreased in GSNOR−⁄− placentas (Figures 2F and 2G). These findings suggest that GSNOR plays an essential role in placental development and function during pregnancy.

VEGF Pathway Was Blunted in GSNOR−⁄− Placentas at Late Gestation

We next examined the VEGF pathway as a potential mechanism for the impaired placental vascularization as VEGFR2 levels are decreased in human preeclamptic pregnancies.32 Whereas VEGF protein abundance in the placentas was not different between the 2 strains at late gestation (Figure 2H), nitrosylation of VEGF protein was significantly lower in GSNOR−⁄− placentas (Figures 2H and 2I). VEGF binds to its receptor VEGFR2 and signals through the endothelial nitric oxide synthase (eNOS) pathway.33 Similar to human preeclampsia,10,32 we found that total VEGFR2 (P<0.05) and eNOS (P<0.01) protein quantities were lower in the GSNOR−⁄− placentas as compared with controls (Figures 2J and 2K). Thus, alterations in VEGF signaling may represent a contributory mechanism for impaired placental development in GSNOR−⁄− mice.

GSNOR−⁄− Mice Exhibit Nitroso-Redox Imbalance and Nitrosative Stress During Pregnancy

Aberrant ROS and NO signaling has been implicated in the pathogenesis of preeclampsia.34,35 To address this issue, we measured the cellular ROS levels in GSNOR−⁄− mice. Before pregnancy, cellular ROS generation was higher in cardiomyocytes isolated from GSNOR−⁄− mice as compared with control mice (Figure 3A), yet ROS levels were not significantly different between the 2 groups (Figure 3B), suggesting increased involvement of antioxidant scavengers. During pregnancy, ROS generation and levels were significantly higher in GSNOR−⁄− cardiomyocyte as compared with controls (Figures 3A and 3B) confirming the presence of oxidative stress. Increased oxidative stress can lead to alterations in NO/S-nitrosylation signaling; therefore, we next measured NO levels. As expected, there was a significant increase in NO levels in isolated cardiomyocytes of control mice during pregnancy (Figure 3C). This increase likely plays a critical role in vasodilation leading to the normal adaptations to pregnancy. NO levels were also significantly higher in cardiomyocytes isolated from pregnant as compared with nonpregnant GSNOR−⁄− mice. With the presence of elevated ROS and NO/S-nitrosylation levels in GSNOR−⁄− mice, we predicted an increase production of the potent prooxidant peroxynitrite. Before pregnancy, peroxynitrite levels were significantly higher in GSNOR−⁄− cardiomyocytes as compared with controls (Figure 3D). This
preexisting elevation in peroxynitrite levels suggests that the GSNOR−/− mice were less able to respond to the stress of pregnancy. At late gestation, peroxynitrite levels were, indeed, significantly higher in isolated cardiomyocytes of GSNOR−/− mice (Figure 3D), suggesting the presence of nitrosative stress. Furthermore, superoxide dismutase (SOD) levels were significantly lower in GSNOR−/− placentas as compared with controls, suggesting decreased antioxidant capacities (Figure 3E). NO signaling via S-nitrosylated proteins may exert a protective role against an oxidative environment by competing with other posttranslational modifications and shielding critical cysteine residues from the damaging effects of irreversible oxidation as shown in ischemic preconditioning.36,37 These findings suggests that S-nitrosylation–based mechanisms that protect physiologic signaling may be impaired in pregnant GSNOR−/− mice, contributing to the preeclampsia phenotype. Alternatively, increased levels of NO and ROS can form peroxynitrite, which can irreversibly lead to protein nitration.8 Protein nitration plays a relevant role in posttranslational modification of protein and increased nitration of proteins has been implicated in human preeclampsia pregnancies.8 Thus, protein nitration may be another mechanism involved in the development of preeclampsia-like conditions in GSNOR−/− animals.

Antioxidant Treatment Rescued the Preeclampsia Phenotype in GSNOR−/− Mice During Pregnancy

To test whether antioxidant treatment can rescue the preeclampsia phenotype, we treated animals or isolated cardiomyocytes with ascorbate. In addition to being an antioxidant, ascorbate also functions as a reductant, promoting the release of biologically active NO from nitrosylated thiols, and plasma ascorbate levels are commonly diminished in preeclamptic patients.38 Importantly, ascorbate treatment rescued the onset of hypertension, proteinuria, and urinary macroglobulin levels (Figures 4A through 4C). The enlarged anterior wall thickness, relative wall thickness and cardiomyocyte width, all indicative of concentric hypertrophy, returned to normal levels in ascorbate treated pregnant GSNOR−/− mice (Table 1). Ascorbate also significantly improved cardiac output and stroke volume in pregnant B6 controls (Figure 4D, Table 1). Ascorbate treatment significantly improved placental vascularization along with placental VEGFR2 and eNOS protein levels (Figures 4G, 4J and 4K). In addition, ascorbate improved umbilical venous blood flow and litter size but did not improve placental efficiency, which may account for the failure of fetal weights to improve at late gestation in the GSNOR−/− mice (Figure 4E through 4I, Figure S2). Acute and chronic treatment of ascorbate similarly reduced ROS, NO, and peroxynitrite levels in isolated cardiomyocytes from pregnant GSNOR−/− mice (Figure 3A through 3D). Thus, ascorbate may work as a potent scavenger of free radicals as seen in experimental models of hypertension39,40 and in rat models of nephrotoxicity41 to balance the nitroso-redox system and in turn rescue the preeclampsia-like phenotype in pregnant GSNOR−/− mice.

Mass Spectrometry Revealed Elevated Placental S-Nitrosylated Amino Acid Residues in GSNOR−/− Mice

To directly test the prediction that S-nitrosylation is dysregulated in GSNOR−/− placentas, we performed
mass spectrometry using both thiol reactive biotin–HPDP and cysTMT labeling to maximize coverage. Consistent with our prediction, this analysis revealed a marked increased number of S-nitrosylated residues in GSNOR−/− placentas (459 corresponding to 351 proteins) compared with controls (264 S-nitrosylated residues corresponding to 198 proteins) (Figure 5A through 5C, Table S1 through S3). Importantly, placentas from ascorbate-treated mice exhibited an increased net number of S-nitrosylated proteins in both control and GSNOR−/− placentas (consistent with the transnitrosylation properties of

Figure 2. GSNOR−/− mice exhibited placental insufficiency during pregnancy and showed alteration of VEGF pathway. Nonpregnant and pregnant (17.5 d) (N=4–12 mothers per group) C57Bl/6J (B6) and GSNOR−/− (knockout [KO]) mice were examined. A, Fetal number and (B) weight were significantly lower in KO mice. C, NADH-dependent GSNOR enzymatic activity was determined in placental tissue at 17.5 days of gestation. GSNOR activity is enriched in B6 placentas, whereas it is completely absent in the KO placentas. D, E, Placental weight was not significantly different between the 2 strains, whereas placental efficiency was significantly lower in KO mice as compared with control. F, G, Placental vascularization determined using isolectin immunostaining, was significantly lower in KO as compared with B6 at late gestation. SNO-VEGF was measured using Biotin-switch assay. H, Representative blots shown for S-nitrosylated and total VEGF in the placenta. Omission of ascorbate was used as the negative control. I, Nitrosylation of VEGF was significantly lower in KO placentas as compared with B6 at late gestation. J, K, VEGFR2 and eNOS protein levels were determined in the placentas at 17.5 d of gestation. Both VEGFR2 and eNOS protein levels were significantly lower in in GSNOR−/− placentas as compared with B6 placentas at 17.5 days of gestation. For statistical significance, 2-way ANOVA with Newman-Keuls for post hoc analysis or Student’s t test were performed. Results are shown as mean±SEM. ***P<0.001, **P<0.01, *P<0.05. B6 indicates C57Bl/6J mice; GSNOR, S-nitrosoglutathione reductase; KO, GSNOR−/− mice; and NP, nonpregnant.
chronic ascorbate43, but this increase was less in the GSNOR−/− mice (Figure 5D) decreasing the difference in number of S-nitrosylated proteins between the 2 groups. Furthermore, we examined subcellular compartmentalization of the total proteins detected in the 4 groups. Similar to our previous study,44 we found majority of the nitrosylated proteins were located in the cytoplasm and the nucleus (Figure 5E). To gain insights into the most important signaling pathways affected by excess S-nitrosylation, we examined the subset of S-nitrosylated proteins found exclusively in GSNOR versus B6, and which exhibited denitrosylation with ascorbate. Of all the detected peptides, there were 50 S-nitrosylation residues unique to the GSNOR−/− placentas, but only 16 residues unique to the B6 placentas (Figures 5C and 5F, Table S1 through S3). All 50 S-nitrosylation residues were reversed by ascorbate (Table S2). From these 50 proteins, 14 have been linked to important roles in processes essential in pregnancy, including angiogenesis, inflammation, cell migration, and apoptosis (Figure 5F), supporting the pathophysiological relevance of these proteins.

GSNOR Activity Is Reduced in Human Preeclampsia Placentas

To examine the potential relevance of this pathway in human preeclampsia, we measured GSNOR mRNA, protein, and activity levels in the placenta of patients with pregnancies complicated with preeclampsia (Figure 6, Table 2). Whereas GSNOR mRNA and protein abundance were similar (data not shown), GSNOR activity was significantly lower in placentas of human pregnancies complicated with preeclampsia compared with placentas from normal pregnancies (Figure 6). Furthermore, affected placentas also had increased nitrosative stress as indicated by increased protein expression of nitrotyrosine and decreased antioxidant capacity as shown by decreased SOD levels (Figure 6).
Figure 4. Preeclampsia phenotype in the mother and litter size is rescued with ascorbate.
Late pregnant (17.5 d) C57Bl/6J (B6) and GSNOR−/− (knockout [KO]) mice were examined. N=4–10 mothers per group. A, Hypertension, (B) proteinuria, and (C) urine macroglobulin levels were rescued with ascorbate treatment. Ascorbate treatment increased (D) cardiac output in knockout (KO) mice at late gestation. E, Pup number was improved, whereas (F) fetal weight remained significantly lower in KO mice treated with ascorbate. G, Impaired placental vascularization was rescued with ascorbate treatment in KO placentas. With ascorbate treatment, (H) placental weight was significantly higher in the KO treated animals as compared with B6-treated animals. Whereas (I) placental efficiency remained significantly lower in treated KO mice as compared with controls. J, K, VEGFR2 and endothelial nitric oxide synthase placental protein levels were significantly increased in KO (Asc) treated animals as compared with nontreated KO animals. Results are shown as mean±SEM. ***P<0.001, **P<0.01, *P<0.05. One-way or 2-way ANOVA with Newman Keuls post hoc test and Student’s t test were performed. Asc, ascorbate; B6, C57Bl/6J mice; KO, GSNOR−/− mice; and VEGF, vascular endothelial growth factor.
findings support the physiologic importance of GSNOR in regulating human placental homeostasis and that the GSNOR−/− mouse represents a model of preeclampsia.
DISCUSSION
We have identified that mice lacking S-nitrosoglutathione reductase (GSNOR−/−), a denitrosylase regulating S-nitrosylation, exhibit most of the clinical features of preeclampsia including hypertension, proteinuria, renal pathology, cardiac concentric hypertrophy, decreased placental vascularization and fetal growth restriction. The primary mechanisms involved in this preeclampsia phenotype appears to be nitrosative stress attributable to aberrant S-nitrosylation leading to the presence of nitro-redox imbalance. In addition, we showed that antioxidant, ascorbate, rescued the nitrosative stress and preeclampsia phenotype in the mother (Figure 7). Our findings demonstrate that the absence of a single gene, GSNOR, alters large numbers of downstream signaling pathway. Ascorbate, which creates a net increase in the number of S-nitrosylated proteins, decreases the differences between the GSNOR−/− and B6 mice. As such, these results suggest that the regulation of the S-nitrosylation–integrated posttranslational modification system may account in large part for the phenotype of preeclampsia in the GSNOR−/− mice. Together, these results suggest that this system-wide alteration in S-nitrosylated proteins has a detrimental effect on the function of these pathways and, as such, could be a key mechanism involved in the pathological phenotype seen in multiple organ systems, including the heart, kidney, and placenta, and the offspring of the knockout animals with preeclampsia. Furthermore, our data revealed that GSNOR plays an essential role in normal human pregnancies, as human placentas from pregnancies complicated with preeclampsia showed a significant decrease in GSNOR activity with the presence of nitrosative stress and decrease in antioxidant capacities.

Figure 6. GSNOR activity is reduced and contributes to nitroso-redox balance in the human preeclamptic placenta.
Human preeclamptic placentas exhibited decreased GSNOR activity, decreased antioxidant capacity (determined by superoxide dismutase levels), and increased nitrosative stress (determined by increased protein expression of nitrotyrosine). Significance for relative absorbance of GSNOR activity was determined by 2-way ANOVA with Newman-Keuls post hoc test. For other variables, Student’s t test was used. Results are shown as mean±SEM. *P<0.05, N=6–8 mothers. GSNOR indicates S-nitrosoglutathione reductase; and SOD, superoxide dismutase.
One of the primary clinical features of preeclampsia is an elevation in blood pressure and number of different mechanisms may account for the alterations in blood pressure in GSNOR−⁄− animals. Elevated plasma S-nitrosylation can lead to adverse cardiovascular outcomes in patients with end-stage renal disease, which correlates with elevated blood pressure.45 Gandley et al7 postulated that the buffering function of S-nitrosylated albumin was impaired in patients with preeclampsia, where the thiol of albumin acts as a sink for NO, therefore lowering NO bioavailability and thus raising blood pressure. Alternatively, denitrosylation of S-nitrosylated albumin may be regulated by glutathione. In preeclampsia, plasma glutathione levels are low,46 most likely attributable to oxidative stress, and this decrease may effect NO-dependent vasodilation of red blood cells, as glutathione may facilitate their export of S-nitrosylations.47 In addition, ROS which is increased in preeclampsia, potentiates protein S-nitrosylation.48

Statistical significance between the 2 groups was determined by Student’s t-test; Mean±SEM.

Table 2. Demographic Data of the Pregnant Study Human Subjects Used in the Study

Variables	Normotensive	Preeclampsia	P value
Maternal age, y	33±2	32±3	...
Race or ethnicity			
Non-Hispanic Black	8	5	...
Hispanic	0	1	...
Gestational age, wk	38±1	36±2	...
Mode of delivery			
Vaginal	5	3	...
Cesarean section	3	3	...
Blood pressure, mm Hg			
Systolic	116±6	166±5	<0.001
Diastolic	67±3	89±4	<0.01

It is well established that VEGF mediates endothelium-dependent vasodilation and angiogenesis, in part via the NO pathway. Furthermore, our laboratory previously showed that mesenchymal stem cells isolated from GSNOR−⁄− mice exhibited markedly enhanced vasodilation.

Figure 7. Dysregulation in nitrosylation contributes to nitroso-redox imbalance and nitrosative stress contributing to clinical features of preeclampsia including hypertension, proteinuria, concentric hypertrophy in the heart, decrease placental vascularization, and fetal growth restriction. Antioxidant treatment rescued the preeclampsia-like phenotype in the mother.
diminished capacity for vasculogenesis, suggesting that GSNOR plays a role in part working through the VEGF/NO pathway. VEGF binds to its receptor VEGFR2 and signals through the eNOS pathway, and a decrease in VEGFR2 and eNOS levels are reported in human preeclamptic pregnancies. During preeclampsia, impaired placental vascularization contributes to chronic ischemia and increases oxidative stress causing the placental release of factors such as soluble Flt1 (sFlt1). In turn, sFlt1 acts as a decoy receptor for VEGF, and also antagonizes autocrine VEGF signaling, rendering endothelial cells more sensitive to proinflammatory factors released by the placenta and decreasing the bioavailability of VEGF. Accordingly, our current data suggest that the decrease in VEGF nitrosylation could further contribute to the downregulation of VEGF function, decreased eNOS protein levels, in turn affecting both vasodilation and angiogenesis during pregnancy. VEGF has not been previously reported to be nitrosylated, although it bears 4 potential cysteine sites; future experiments will be conducted to identify the exact nitrosylation posttranslational sites.

Several clinical trials have examined the effectiveness of antioxidants (ascorbate) in preventing preeclampsia. Small, randomized placebo-controlled trials showed reduced preeclampsia with ascorbate treatment, whereas all large multicenter randomized trials have yielded disappointing results. These large trials showed that ascorbate did not decrease the risk of preeclampsia in either high-risk (women with type 1 diabetes, nutritionally deficient, poor social economic status) or low-risk populations. In turn, increased incidence of low birthweight, gestational hypertension, fetal loss, stillbirth, or premature rupture of membranes have been reported in some trials, but these findings were not confirmed across all studies; therefore, their significance remains uncertain. The dosage and/or timing of the antioxidant treatment (8–22 weeks) may have played a role in the unsuccessful outcomes in these large clinical trials. Alternatively, oxidative stress may be relevant to the pathogenesis in only a subgroup of women, with no appreciable benefit of antioxidant therapy for the overall population. Preeclampsia is a multisystemic/multifactorial disease, and based on the heterogeneity of the clinical presentation, there may be different “subtypes” of preeclampsia, which may explain, in part, why many of the clinical trials using ascorbate have yet to show favorable outcomes. Therefore, identifying women showing dysregulation in nitrosylation and/or altered GSNOR activity levels may be the ideal target subpopulation for treatment with ascorbate, permitting a precision medicine approach for future clinical trials.

This study has several limitations. All the features of the murine phenotype may not translate into human pathophysiology given its heterogenous nature and involvement of multiple organ systems. We did not examine some of the clinical features of preeclampsia such as thrombocytopenia, abnormal liver enzymes or abnormal spiral artery remodeling in the placenta. Furthermore, blood pressure was measured in unconscious animals.

Development of effective therapies for preeclampsia is hampered by a failure to understand the causative mechanisms involved and the absence of robust animal models that exhibit essentially all the clinical features of preeclampsia. Therefore, the identification of the GSNOR−/− mice as such a model with the causative role of dysregulation in nitrosylation contributing to nitrosative stress and dysregulation of physiologic posttranslational modification in a large number of signaling pathways as one of the primary mechanisms contributing to this disorder, has important implications for developing novel therapies and identifying clinically useful biomarkers for this difficult to treat maternal-fetal syndrome.

ARTICLE INFORMATION

Received September 16, 2021; accepted November 22, 2021.

Affiliations

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL (D.K., R.A.D., M.A.B., J.F., R.K., H.A., E.P., W.B., J.M.H.); Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL (S.K.); Medicine and Health Institute, Cedars Sinai Medical Center, Los Angeles, CA (C.I.M., D.S., J.E.V.E.); Department of Molecular and Cellular Pharmacology (R.K.); Department of Urology (H.A.) and Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.).

Acknowledgments

We acknowledge Vania Almeida and the UM Transmission Electron Microscopy Core, Dr Wen Ding for urine collection and Infant Kidney Project for collection of human placentas.

Dr Kulandavelu conceived, designed, and executed the experiments and wrote the manuscript. Drs Dulce, Bello, Fritsch, Kanashiro-Takeuchi, Paulino, and Arora performed experiments. Drs Murray, Soetkamp, and Van Eyk performed mass spectrometry experiment and analysis. Dr Balkan assisted in manuscript writing. Dr Hare conceived of and designed experiments, cowrote the manuscript, and provided funding.

Sources of Funding

This study was funded by R01 HL09489 and R01 HL137355 to Dr Hare and by Canadian Institute of Health Research postdoctoral fellowship and American Heart Association Career Development Award (19CDA34660102) to SK. Dr Hare is also supported by National Institutes of Health grants R01 HL134558, R01 HL101110, and 5UM1HL113460 and by the Starr and Soffer Family Foundations.

Disclosures

Dr Hare reported having a patent for cardiac cell-based therapy. He holds equity in Veston Inc. and maintains a professional relationship with Veston Inc. as a consultant and member of the Board of Directors and Scientific Advisory Board. Dr Hare is the chief scientific officer, a compensated consultant and advisory board member for Longeveron, and equity holder in Longeveron. He is also the coinventor of intellectual property licensed to Longeveron. Longeveron LLC and Veston Inc. did not participate in funding this work. Dr Hare’s relationships are disclosed to the University of Miami, and a management plan is in place. The remaining authors have no disclosures to report.

Supplemental Material

Tables S1–S3

Figures S1–S3
REFERENCES

1. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365:785–799. doi: 10.1016/S0140-6736(05)17987-2

2. Ivus CW, Sinkey R, Rajaprepar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76:1690–1702. doi: 10.1016/j.jacc.2020.08.014

3. Creanga AA, Syverson C, Seed K, Callaghan WM. Pregnancy-related mortality in the United States, 2011–2013. Obstet Gynecol. 2017;130:366–373. doi: 10.1097/AOG.0000000000002014

4. Molina RL, Pace LE. A renewed focus on maternal health in the United States. N Engl J Med. 2017;377:1705–1707. doi: 10.1056/NEJMz1709473

5. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–1650. doi: 10.1016/j.biocel.2010.06.001

6. Tyurin VA, Liu SX, Tyurina YY, Sussman NB, Hubel CA, Roberts JM, Yu K, Kagan VE. Altered endothelial nitric oxide signaling as a paradigm for maternal vascular maladaptation in preeclampsia. Circ Res. 2008;103:1992–2002. doi: 10.1161/01.RES.0000301568.42682.3e

7. Reppert VH, Magan J, Kimura S, Yamada Y, Wang X, Hubel CA, et al. S-nitrosomethylated proteins are increased in pregnant and preeclampsia plasma. J Hypertension. 2005;23:1165–1173. doi: 10.1081/JHV-200058316

8. Foster MW, Pawloski JR, Singel DJ, Stamler JS. Role of circulating S-nitrosoalbumin in preeclampsia. Circ Res. 2010;106:633–646. doi: 10.1161/CIRCRESAHA.109.207381

9. Harris LK, McCormick J, Cartwright JE, Whitley GS, Dash PR. S-nitrosothiols in control of blood pressure. Hypertension. 2005;45:15–17. doi: 10.1161/01.HYP.0000190160.41992.71

10. Harris LK, McCormick J, Cartwright JE, Whitley GS, Dash PR. S-nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion. Exp Cell Res. 2008;344:1765–1778. doi: 10.1016/j.yexcr.2008.02.010

11. Kojima K, Arakawa Y, Azad N. Nitrosation and protein nitrosation in cell death. Nitric Oxide. 2014;42:9–18. doi: 10.1016/j.niox.2014.07.002

12. Foster MW, Pawloski JR, Singel DJ, Stamler JS. Role of circulating S-nitrosothiols in control of blood pressure. Hypertension. 2005;45:15–17. doi: 10.1161/01.HYP.0000190160.41992.71

13. Lima B, Forrester MT, Hess DT, Stamler JS. S-nitrosylation in cardiovascular signaling. Circ Res. 2010;106:633–646. doi: 10.1161/CIRCRESAHA.109.207381

14. Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ko NL, et al. Expression of S-nitrosothiols in vascular homeostasis and endo toxic shock. Cell. 2004;116:617–628. doi: 10.1016/S0092-8674(04)00131-X

15. Beigl F, Gonzalez DR, Minhas KM, Sun Q-A, Foster MW, Khan SA, Teurer AV, Dulce RA, Harrison RW, Saravia RM, et al. Dynamic densitometry via S-nitrosoglutathione reductase regulates cardiovascular function. Proc Natl Acad Sci USA. 2012;109:4314–4319. doi: 10.1073/pnas.1113319109

16. Hatzistergos KE, Paulino EC, Dulce RA, Takeuchi LM, Bellio MA, Hare JM. S-nitrosoglutathione reductase deficiency enhances the proliferation of human umbilical vein endothelial cells. Science. 2004;304:589–592. doi: 10.1126/science.1099427

17. Baronchelli F, Fioretti M, Zocchi R, Vicario L, Capasso D, Mingozzi M, et al. S-nitrosylation of EF-2 by reactive oxygen species. Proc Natl Acad Sci USA. 2004;101:12731–12736. doi: 10.1073/pnas.0402258101

18. Rangel-Silva F, Rojas-Nunez J, Canales-Rodríguez R, Jiménez-Pérez M, Aguirre-Gutiérrez D, Rodriguez-Campos F, et al. S-nitrosylation of eNOS in the heart: roles of nitric oxide synthase 1 and 2. Free Radic Biol Med. 2013;60:281–294. doi: 10.1016/j.freeradbiomed.2013.03.017

19. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappella TP, Koebeleza, ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002;416:337–339. doi: 10.1038/416337a

20. Wei W, Li B, Hanes MA, Kakar S, Chen X, Liu L. S-nitrosylation from GSNO deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci Transl Med. 2010;2:19ra3.
39. Xu A, Vita JA, Keaney JF Jr. Ascorbic acid and glutathione modulate the biological activity of S-nitrosogluthathione. Hypertension. 2000;36:291–295.

40. Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 2001;38:606–611. doi: 10.1161/hy09t1.094005

41. Groebler LK, Wang XS, Kim HB, Shanu A, Hossain F, McMahon AC, Witting PK. Cosupplementation with a synthetic, lipid-soluble polyphenol and vitamin C inhibits oxidative damage and improves vascular function yet does not inhibit acute renal injury in an animal model of rhabdomyolysis. Free Radic Biol Med. 2012;52:1918–1928. doi: 10.1016/j.freeradbiomed.2012.02.011

42. Chung HS, Murray CI, Van Eyk JE. A proteomics workflow for dual labeling biotin switch assay to detect and quantify protein S-nitrosylation. Methods Mol Biol. 2018;1747:89–101. doi: 10.1007/978-1-4939-7695-9_8

43. Forrester MT, Foster MW, Stamler JS. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem. 2007;282:13977–13983. doi: 10.1074/jbc.M609684200

44. Chung HS, Murray CI, Venkatraman V, Crowgey EL, Rainer PP, Cole RN, Borngarden RD, Rogers JC, Balkan W, Hare JM, et al. Dual labeling biotin switch assay to reduce bias derived from different cysteine subpopulations: a method to maximize S-nitrosylation detection. Circ Res. 2015;117:646–657. doi: 10.1161/CIRCRESAHA.115.307336

45. Massy ZA, Fumeron C, Borderie D, Tuppin P, Nguyen-Khoa T, Benoit MO, Buisson C, Drueke TB, Ekindjian OG, et al. Increased plasma S-nitrosothiol concentrations predict cardiovascular outcomes among patients with end-stage renal disease: a prospective study. J Am Soc Nephrol. JASN. 2004;15:470–476. doi: 10.1097/01asn.00000106716.22153.b

46. Rajmakers MT, Zusterzeel PL, Steegers EA, Hectors MP, Demacker PN, Peters WH. Plasma thiol status in preeclampsia. Obstet Gynecol. 2000;95:180–184.

47. Pawlowski JR, Hess DT, Stamler JS. Export by red blood cells of nitric oxide bioactivity. Nature. 2001;409:622–626. doi: 10.1038/35054560

48. Hlaing KH, Clement MV. Formation of protein S-nitrosylation by reactive oxygen species. Free Radical Res. 2014;48:996–1010. doi: 10.3109/10715762.2014.942842

49. Gomes SA, Rangel EB, Premer C, Dulce RA, Cao Y, Florea V, Balkan W, Rodrigues CO, Schally AV, Hare JM. S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc Natl Acad Sci USA. 2013;110:2834–2839. doi: 10.1073/pnas.1220185110

50. Eddy AC, Bidwell GL III, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ. 2018;9:36. doi: 10.1186/s13293-018-0196-5

51. Cindrova-Davies T, Sanders DA, Burton GJ, Charnock-Jones DS. Soluble FLT1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling. Cardiovasc Res. 2011;89:671–679. doi: 10.1093/cvr/cvq346

52. McCance DR, Holmes VA, Maresh MJ, Patterson CC, Walker JD, Pearson DW, Young IS, Diabetes and Pre-eclampsia Intervention Trial Study G. Vitamins C and E for prevention of pre-eclampsia in women with type 1 diabetes (DAPIT): a randomised placebo-controlled trial. Lancet. 2010;376:259–266. doi: 10.1016/S0140-6736(10)60630-7

53. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH, and Vitamins in Pre-eclampsia Trial C. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet. 2006;367:1145–1154. doi: 10.1016/S0140-6736(06)68439-X

54. Roberts JM, Myatt L, Spong CY, Thom EA, Hauth JC, Leveno KJ, Pearson GD, Wapner RJ, Varner MW, Thorp JM, et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. New Engl J Med. 2010;362:1282–1291. doi: 10.1056/NEJMoa0908056

55. Roberts JM. The perplexing pregnancy disorder preeclampsia: what next? Physiol Genomics. 2018;50:459–467. doi: 10.1152/physiolgenomics.00017.2018
Supplemental Material
Table S1. List of proteins nitrosylated in GSNOR\(^{-/-}\) placentas as compared to B6 placentas determined using dual-labelling mass spectrometry analysis. All SNOylated proteins were detected in at least 2 of 5 placentas/group. The number in the observation column is the number of placentas that showed expression of that particular SNOylated protein for that particular group.

label	Uniprot Accession	SNO site	Protein name	Log2 fold change vs background GSNOR\(^{-/-}\)	observations	
HPDP	Q99L04	C10	Dehydrogenase/reductase SDR family member 1	23.05415	2	
HPDP	Q99MN1	C432	Lysine--tRNA ligase	22.7331744	2	
HPDP	Q8C7R4	C298	Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6)	22.10295762	2	
HPDP	Q8VC70	C217	RNA-binding motif, single-stranded-interacting	21.71700633	2	
HPDP	Q9D1I5	C168	Methylmalonyl-CoA epimerase, mitochondrial	21.24558726	2	
HPDP	Q9JIG4	C419	Protein phosphatase 1 regulatory subunit 3F (R3F)	20.95864848	2	
HPDP	Q9EPK7	C43	Exportin-7 (Exp7) (Ran-binding protein 16)	20.94875308	2	
HPDP	Q9QUI0	C164	Transforming protein RhoA	20.91330254	2	
HPDP	Q64514	C967	Tripeptidyl-peptidase 2 (TPP-2)	20.80956501	2	
HPDP	O70400	C73	PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-domain protein 1) (Elfin)	20.77362179	2	
HPDP	P24270	C232	Catalase	20.71680767	2	
HPDP	Q8BY89	C401	Choline transporter-like protein 2 (Solute carrier family 44 member 2)	20.70444271	2	
HPDP	P61982	C112	14-3-3 protein gamma [Cleaved into: 14-3-3 protein gamma, N-terminally processed]	20.6712323	2	
HPDP	Q8VDD5	C740	Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA)	20.40955957	2	
HPDP	P23198	C177	Chromobox protein homolog 3 (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (M32) (Modifier 2 protein)	20.32635422	2	
HPDP	Accession	C	Description	Score	Ratio	
---------	-----------	-----	---	---------	-------	
HPDP	Q88844	C73	Isocitrate dehydrogenase [NADP] cytoplasmic (IDH)	20.2866	2	
HPDP	Q7TSI1	C464	Pleckstrin homology domain-containing family M member 1 (PH domain-containing family M member)	20.2743	2	
HPDP	Q62419	C277	Endophilin-A2 (Endophilin-2) (SH3 domain protein 2B) (SH3 domain-containing GRB2-like protein 1)	20.1597	2	
HPDP	Q9Z2W0	C411	Aspartyl aminopeptidase	20.0842	2	
HPDP	Q9JJL8	C425	Serine--tRNA ligase, mitochondrial	20.0443	2	
HPDP	P21981	C553	Protein-glutamine gamma-glutamyltransferase 2	19.9844	2	
HPDP	Q91Y97	C158	Fructose-bisphosphate aldolase B	19.8718	2	
HPDP	Q9DBN5	C405	Lon protease homolog 2, peroxisomal	19.8485	2	
HPDP	Q8VC03	C421	Echinoderm microtubule-associated protein-like 3 (EMAP-3)	19.8318	2	
HPDP	P62242	C100	40S ribosomal protein S8	19.8134	2	
HPDP	A2ASS6	C29432	Titin	19.7946	2	
HPDP	Q63ZW7	C1406	InaD-like protein (Inadl protein) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight)	19.7093	2	
HPDP	Q9CPV4	C45	Glyoxalase domain-containing protein 4	19.7062	2	
HPDP	Q68FD5	C1266	Clathrin heavy chain 1	19.6926	2	
HPDP	P54823	C390	Probable ATP-dependent RNA helicase DDX6	19.4967	2	
HPDP	Q91YL2	C32	E3 ubiquitin-protein ligase RNF126	19.4836	2	
HPDP	A6H8H2	C1083	DENN domain-containing protein 4C	19.4197	2	
HPDP	Q01853	C69,C77	Transitional endoplasmic reticulum ATPase (TER ATPase)	19.4078	2	
HPDP	B7ZMP1	C491	Xaa-Pro aminopeptidase 3 (X-Pro aminopeptidase 3)	19.2997	2	
HPDP	A2ASS6	C21780	Titin	19.1229	2	
HPDP	Q9ES28	C427	Rho guanine nucleotide exchange factor 7 (Beta-Pix) (PAK-interacting exchange factor beta) (p85SPR)	19.1216	2	
HPDP	A2ARV4	C2518	Low-density lipoprotein receptor-related protein 2 (LRP-2) (Glycoprotein 330 (gp330) (Megalin)	19.0368	2	
Database	Accession	Description	Log2FoldChange	ID		
----------	-----------	---	----------------	------		
HPDP	Q6ZPJ3	(E3-independent) E2 ubiquitin-conjugating enzyme UBE2O	18.97268389	3		
HPDP	Q61655	ATP-dependent RNA helicase DDX19A	18.88880189	2		
HPDP	P14824	Annexin A6 (67 kDa calelectrin) (Annexin VI) (Annexin-6) (Calphobindin-II) (CPB-II) (Chromobindin-20) (Lipocortin VI) (Protein III) (p68) (p70)	18.8218629	2		
HPDP	Q5HZI1	Microtubule-associated tumor suppressor 1 homolog (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Coiled-coiled tumor suppressor gene 1 protein) (Mitochondrial tumor suppressor 1 homolog)	18.76396509	2		
HPDP	P53996	Cellular nucleic acid-binding protein (CNBP) (Zinc finger protein 9)	18.75122145	2		
HPDP	Q921G6	Leucine-rich repeat and calponin homology domain-containing protein 4	18.5656726	4		
HPDP	P82343	N-acylglucosamine 2-epimerase (AGE)	16.42343934	2		
HPDP	Q91W50	Cold shock domain-containing protein E1	16.0168855	2		
TMT	Q7TNJ0	Dendritic cell-specific transmembrane protein (DC-STAMP) (mDC-STAMP) (Dendrocyte-expressed seven transmembrane protein) (Transmembrane 7 superfamily member 4)	13.72900332	4		
TMT	Q8R418	Endoribonuclease Dicer	13.02362462	5		
TMT	Q5FW85	Extracellular matrix protein 2 (Tenonectin)	13.00944639	4		
TMT	Q8BV57	Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D (Scavenger receptor cysteine-rich domain-containing protein LOC284297)	12.76398811	5		
TMT	P70277	Alpha-N-acetylglactosaminide alpha-2,6-sialyltransferase 2	12.6184686	5		
TMT	Q3UAW9	Transcription factor III B 50 kDa subunit (B-related factor 2) (BRF-2)	12.585631	5		
TMT	Q8BLR9	Hypoxia-inducible factor 1-alpha inhibitor	12.5665622	5		
TMT	Accession	C17	Description	Log2FoldChange	TMT	
------	-----------	------	---	---------------	------	
TMT	Q9JMG4	C8,C14	Sodium/potassium-transporting ATPase subunit beta-1-interacting protein 4 (Na(+)/K(+) -transporting ATPase subunit beta-1-interacting protein 4) (Protein FAM77A)	12.39302865	5	
TMT	A1Z198	C330	NACHT, LRR and PYD domains-containing protein 1b allele 2	12.36513178	5	
TMT	Q9DB60	C44,C47	Prostamide/prostaglandin F synthase (Prostamide/PG F synthase) (Prostamide/PGF synthase)	12.33380021	5	
TMT	P57110	C677	A disintegrin and metalloproteinase with thrombospondin motifs 8 (ADAM-TS 8) (ADAM-TS8) (ADAMTS-8)	12.30280006	5	
TMT	Q571F5	C271	SPRY domain-containing SOCS box protein 3 (SSB-3)	12.24478409	5	
TMT	O09118	C17	Netrin-1	12.21630324	5	
TMT	Q8C0W1	C818	Ankyrin repeat and MYND domain-containing protein	12.20108475	5	
TMT	Q9DBP5	C20	UMP-CMP kinase	12.14459788	5	
TMT	O35963	C48	Ras-related protein Rab-33B	12.08737651	5	
TMT	A1L0T3	C138	Scavenger receptor cysteine-rich domain-containing group B protein (Four scavenger receptor cysteine-rich domains-containing protein) (S4D-SRCRB)	11.90176048	5	
TMT	Q8CGM1	C1034	Adhesion G protein-coupled receptor B2 (Brain-specific angiogenesis inhibitor 2)	11.8771311	5	
TMT	Q9WTN3	C738,C753	Sterol regulatory element-binding protein 1 (SREBP-1) (Sterol regulatory element-binding transcription factor 1) [Cleaved into: Processed sterol regulatory element-binding protein 1]	11.804481	5	
TMT	Q8CJ70	C5,C18	Interleukin-19 (IL-19)	11.69925873	5	
TMT	Q6DFV8	C217	von Willebrand factor D and EGF domain-containing protein	11.67417859	4	
TMT	Accession	C	Description	Value	Rank	
------	-----------	----	---	---------	------	
TMT	Q8CGK5	C81	Interferon lambda receptor 1 (IFN-lambda R1) (Cytokine receptor class-II member 12) (Cytokine receptor family 2 member 12) (CRF2-12) (Interleukin-28 receptor subunit alpha) (IL-28 receptor subunit alpha) (IL-28R-alpha) (IL-28RA)	11.61269071	5	
TMT	Q4VAE3	C31	Transmembrane protein 65	11.41109714	5	
TMT	Q9JLL3	C25	Tumor necrosis factor receptor superfamily member 19 (TRADE) (Toxicity and JNK inducer)	11.35771618	5	
TMT	Q8K400	C293	Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomsyn-1)	11.21114736	5	
TMT	Q9DC22	C200,C211	DDB1- and CUL4-associated factor 6 (IQ motif and WD repeat-containing protein 1) (Nuclear receptor interaction protein) (NRIP)	11.00286202	5	
HPDP	Q9WUM3	C25	Coro-1B (Coro-2)	7.079871538	2	
HPDP	Q8K274	C11	Ketosamine-3-kinase	5.271225169	2	
HPDP	P46471	C389	26S proteasome regulatory subunit 7 (26S proteasome AAA-ATPase subunit RPT1) (Proteasome 26S subunit ATPase 2) (Protein MSS1)	5.062936789	2	
HPDP	P62754	C12	40S ribosomal protein S6 (Phosphoprotein NP33)	4.714241907	2	
HPDP	Q8R5H1	C264	Ubiquitin carboxyl-terminal hydrolase 15	4.569012373	2	
HPDP	Q9J28	C1069	Protein flightless-1 homolog	4.407051634	2	
HPDP	Q60992	C196,C197	Guanine nucleotide exchange factor VAV2 (VAV-2)	4.179681175	2	
HPDP	Q9D662	C425	Protein transport protein Sec23B (SEC23-related protein B)	3.985939588	2	
HPDP	O70439	C28	Syntaxin-7	3.955148625	3	
HPDP	Q61768	C632	Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC)	3.760958689	2	
HPDP	Q99JY3	C61	GTPase IMAP family member 4 (Immunity-associated nucleotide 1 protein) (IAN-1) (Immunity-associated protein 4)	3.614276688	2	
HPDP	P99029	C200	Peroxiredoxin-5, mitochondrial	3.604855607	3	
Accession	Symbol	Gene Name	Description	iTRAQ Ratio	iTRAQ Count	
-----------	--------	-----------	-------------	-------------	-------------	
HPDP Q8BZB2	C7	Phosphopantothenoylcysteine decarboxylase (PPC-DC)	3.603461526	2		
TMT Q80VD1	C52	Protein FAM98B	3.259995258	5		
TMT Q80XD8	C9	Proline-rich acidic protein 1 (Pregnancy-specific uterine protein) (Uterine-specific proline-rich acidic protein)	3.172829061	5		
TMT Q9ESD6	C54	CKLF-like MARVEL transmembrane domain-containing protein 7 (Chemokine-like factor superfamily member 7) (LNV)	2.984893682	5		
HPDP Q9CYN2	C26	Signal peptidase complex subunit 2	2.967611159	2		
HPDP P14131	C25	40S ribosomal protein S16	2.96535426	2		
TMT Q9JIP3	C12	Interleukin-17 receptor B (IL-17 receptor B) (IL-17RB) (IL-17 receptor homolog 1) (IL-17ER) (IL-17Rh1) (IL17Rh1) (Interleukin-17B receptor) (IL-17B receptor)	2.927411041	5		
TMT Q8BKK5	C263	Zinc finger protein 689	2.920765805	5		
HPDP Q99LG0	C24	Ubiquitin carboxyl-terminal hydrolase 16	2.800809396	2		
HPDP Q9Z1Z0	C802	General vesicular transport factor p115 (Protein USO1 homolog) (Transcytosis-associated protein) (TAP) (Vesicle-docking protein)	2.748838009	2		
TMT O08738	C259	Caspase-6 (CASP-6)	2.742606331	5		
TMT O88282	C381,C384	B-cell CLL/lymphoma 6 member B protein (Bcl6-associated zinc finger protein)	2.722924669	5		
TMT Q9Z0L3	C371	Otoconin-90 (Oc90) (Otoconin-95) (Oc95)	2.71298463	5		
TMT E9PZZ1	C653	PR domain zinc finger protein 13	2.547554782	4		
HPDP Q8VHX6	C2661	Filamin-C (FLN-C) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin)	2.489804487	2		
TMT Q8BYA0	C665	Tubulin-specific chaperone D (Beta-tubulin cofactor D) (Tubulin-folding cofactor D)	2.48712789	5		
HPDP P53996	C120	Cellular nucleic acid-binding protein (CNBP) (Zinc finger protein 9)	2.455112234	2		
HPDP Q8CGB6	C548	Tensin-2	2.399443288	3		
HPDP P15105	C183	Glutamine synthetase (GS)	2.388341937	2		
Accession	Protein Name	Description	Value	Intensity		
-----------	--------------	-------------	-------	-----------		
HPDP Q9CQ58	Prolactin-8A9 (Placental prolactin-like protein C2) (PLP-C2) (PRL-like protein C2) (Prolactin-like protein C-beta) (PLP C-beta)	2.373532499	3			
TMT Q60676	Serine/threonine-protein phosphatase 5 (PP5)	2.35208233	5			
HPDP Q80XN0	D-beta-hydroxybutyrate dehydrogenase, mitochondrial	2.33471439	3			
HPDP Q93092	Transaldolase	2.325417107	2			
TMT Q5F2L2	Alpha-(1,3)-fucosyltransferase 10	2.317276958	5			
TMT O09008	Beta-1,3-N-acetylglucosaminyltransferase manic fringe	2.305226515	4			
HPDP P17742	Peptidyl-prolyl cis-trans isomerase A (PPIase A)	2.291684824	2			
HPDP A2ASS6	Titin	2.248744617	2			
HPDP O08573	Galectin-9 (Gal-9)	2.210136624	2			
HPDP Q9D1Q6	Endoplasmic reticulum resident protein 44 (ER protein 44) (ERp44) (Thioredoxin domain-containing protein 4)	2.147055114	2			
HPDP P53995	Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein)	2.039981245	2			
HPDP P70441	Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (NHERF-1) (Ezrin-radixin-moesin-binding phosphoprotein 50) (EBP50) (Regulatory cofactor of Na(+)/H(+) exchanger) (Sodium-hydrogen exchanger regulatory factor 1) (Solute carrier family 9 isoform A3 regulatory factor 1)	1.988263764	2			
TMT Q9QXW9	Large neutral amino acids transporter small subunit 2 (L-type amino acid transporter 2) (mLAT2) (Solute carrier family 7 member 8)	1.963679629	5			
HPDP P60766	Cell division control protein 42 homolog (G25K GTP-binding protein)	1.950445964	2			
TMT Q66X22	NACHT, LRR and PYD domains-containing protein 9B (NALP-delta)	1.935676951	4			
Accession	Description	Description Details	Fold Change	replicate		
-----------	-------------	---------------------	-------------	-----------		
P01027	Complement C3 (HSE-MSF)	Cleaved into: Complement C3 beta chain; C3-beta-c (C3bc); Complement C3 alpha chain; C3a anaphylatoxin; Acylation stimulating protein (ASP) (C3adesArg); Complement C3b alpha' chain; Complement C3c alpha' chain fragment 1; Complement C3dg fragment; Complement C3g fragment; Complement C3f fragment; Complement C3c alpha' chain fragment 2	1.93095258	2		
O88986	2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial (AKB ligase)		1.921218785	2		
P35979	60S ribosomal protein L12		1.912774567	2		
P63017	Heat shock cognate 71 kDa protein (Heat shock 70 kDa protein 8)		1.900311126	2		
Q8BLY7	Hermansky-Pudlak syndrome 6 protein homolog (Ruby-eye protein) (Ru)		1.878707928	5		
Q7TMW6	Cytosolic iron-sulfur assembly component 3 (Cytosolic Fe-S cluster assembly factor NARFL) (Iron-only hydrogenase-like protein 1) (IOP1) (Nuclear prelamin A recognition factor-like protein)		1.847995032	2		
Q60864	Stress-induced-phosphoprotein 1 (STI1) (mSTI1) (Hsc70/Hsp90-organizing protein) (Hop)		1.832341765	2		
A2ASS6	Titin		1.794763146	2		
Q8K4G1	Latent-transforming growth factor beta-binding protein 4 (LTBP-4)		1.71923574	5		
O89053	Coronin-1A (Coronin-like protein A) (Clipin-A) (Coronin-like protein p57) (Tryptophan aspartate-containing coat protein) (TACO)		1.710727777	2		
Q7TPG7	Protein FAM19A2 (Chemokine-like protein TATA-2)		1.706388912	5		
Q9QUM9	Proteasome subunit alpha type-6		1.69698107	2		
Q80X90	Filamin-B (FLN-B) (ABP-280-like protein) (Actin-binding-like protein) (Beta-filamin)		1.668503957	2		
ID	Accession	SwissProt	Name	Fold Change	n	
--------	-----------	-------------	--	-------------	---	
HPDP	A2ASS6	C33458	Titin	1.640392354	2	
HPDP	Q61553	C481	Fascin (Singed-like protein)	1.636609875	2	
HPDP	P61514	C48	60S ribosomal protein L37a	1.593487828	2	
HPDP	P61161	C221	Actin-related protein 2 (Actin-like protein 2)	1.554988721	2	
TMT	P46097	C91	Synaptotagmin-2 (Inositol polyphosphate-binding protein) (IP4-binding protein) (IP4BP) (Synaptotagmin II) (SytII)	1.554328226	5	
HPDP	Q8VDF3	C347	Death-associated protein kinase 2 (DAP kinase 2)	1.52416734	2	
HPDP	Q78PY7	C152	Staphylococcal nuclease domain-containing protein 1	1.520546542	2	
HPDP	Q8BTM8	C2582	Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin)	1.416572906	2	
HPDP	Q64514	C150	Tripeptidyl-peptidase 2 (TPP-2)	1.399757173	2	
HPDP	Q09324	C100	Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase	1.397345074	2	
HPDP	Q9CY97	C12	RNA polymerase II subunit A C-terminal domain phosphatase SSU72 (CTD phosphatase SSU72)	1.39424147	2	
HPDP	P39054	C607	Dynamin-2	1.374247771	2	
HPDP	P68040	C153	Receptor of activated protein C kinase 1 (12-3) (Guanine nucleotide-binding protein subunit beta-2-like 1) (Receptor for activated C kinase) (Receptor of activated protein kinase C 1) (p205) [Cleaved into: Receptor of activated protein C kinase 1, N-terminally processed (Guanine nucleotide-binding protein subunit beta-2-like 1, N-terminally processed)]	1.359971038	3	
HPDP	P26039	C956	Talin-1	1.354647422	2	
HPDP	O70133	C440	ATP-dependent RNA helicase A	1.344512262	2	
HPDP	Q80X90	C991	Filamin-B (FLN-B) (ABP-280-like protein) (Actin-binding-like protein) (Beta-filamin)	1.337916373	2	
ID	Accession	Position	Description	Value	Rank	
--------	-----------	----------	--	----------	------	
HPDP	Q99K30	C546	Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2)	1.332404247	2	
HPDP	P62908	C134	40S ribosomal protein S3	1.319576402	2	
HPDP	E9Q394	C609	A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc)	1.277028431	3	
TMT	P02798	C33	Metallothionein-2 (MT-2) (Metallothionein-II) (MT-I)	1.266697299	4	
HPDP	P62908	C119	40S ribosomal protein S3	1.254357417	2	
HPDP	Q99LR1	C40	Monoacylglycerol lipase ABHD12	1.23650774	2	
HPDP	P46471	C377	26S proteasome regulatory subunit 7 (26S proteasome AAA-ATPase subunit RPT1)	1.228249064	2	
HPDP	P28653	C77	Biglycan (Bone/cartilage proteoglycan I) (PG-S1)	1.222294589	2	
HPDP	O35075	C243	Down syndrome critical region protein 3 homolog (Down syndrome critical region protein A homolog)	1.212332349	2	
HPDP	P61161	C11	Actin-related protein 2 (Actin-like protein 2)	1.199108066	2	
HPDP	P01837	C106	Immunoglobulin kappa constant (Ig kappa chain C region MOPC 21)	1.1905698	2	
TMT	Q61554	C1099	Fibrillin-1 [Cleaved into: Asprosin]	1.179059728	3	
HPDP	Q80X90	C1280	Filamin-B (FLN-B) (ABP-280-like protein) (Actin-binding-like protein) (Beta-filamin)	1.169029965	2	
HPDP	D3YYU8	C149	Obscurin-like protein 1	1.102544141	2	
HPDP	P53996	C159	Cellular nucleic acid-binding protein (CNBP) (Zinc finger protein 9)	1.087825704	2	
TMT	P56546	C18	C-terminal-binding protein 2 (CtBP2)	1.074827722	3	
HPDP	Q9JJ28	C576	Protein flightless-1 homolog	1.067369682	2	
HPDP	Q80X90	C604	Filamin-B (FLN-B) (ABP-280-like protein) (Actin-binding-like protein) (Beta-filamin)	1.066918314	2	
TMT	Q811Q4	C430	Disintegrin and metalloproteinase domain-containing protein 29 (ADAM 29)	1.066068555	3	
HPDP	A2ASS6	C20340	Titin	1.062863942	2	
Gene ID	Entry ID	PDB ID	Description	Ratio	Count	
--------	----------	--------	---	---------	-------	
HPDP	Q9DBF1	C522	Alpha-aminoadipic semialdehyde dehydrogenase (Alpha-AASA dehydrogenase)	1.062682493	2	
HPDP	P52480	C49	Pyruvate kinase PKM	1.060038804	2	
HPDP	Q9D1A2	C300	Cytosolic non-specific dipeptidase	1.044536941	2	
TMT	Q6R5P0	C743	Toll-like receptor 11 (Toll-like receptor 12)	1.020796529	4	
HPDP	Q8K4I3	C563	Rho guanine nucleotide exchange factor 6 (Alpha-PIX) (Rac/Cdc42 guanine nucleotide exchange factor)	1.015633881	2	
HPDP	P31230	C159	Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E (SICE))]	0.995152319	2	
HPDP	Q8VD04	C104	GRIP1-associated protein 1 (GRASP-1) (HCMV-interacting protein) [Cleaved into: GRASP-1 C-terminal chain (30kDa C-terminus form)]	0.963548687	3	
HPDP	Q8R146	C309	Acylamino-acid-releasing enzyme (AARE)	0.921391689	2	
TMT	P15920	C315	V-type proton ATPase 116 kDa subunit a isoform 2 (V-ATPase 116 kDa isoform a2) (Immune suppressor factor J6B7) (ISF) (Lysosomal H(+-)-transporting ATPase V0 subunit a2) (ShIF) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2)	0.912327311	2	
HPDP	P12399	C103	Protein CTLA-2-alpha (Cytotoxic T-lymphocyte-associated protein 2-alpha)	0.908725648	2	
HPDP	P41105	C13	60S ribosomal protein L28	0.866404857	2	
HPDP	Q8BG6F6	C98	ELMO domain-containing protein 2	0.863404858	2	
HPDP	Q9DCM0	C34	Persulfide dioxygenase ETHE1, mitochondrial	0.859102687	2	
HPDP	O54988	C1136	STE20-like serine/threonine-protein kinase (STE20-like kinase) (mSLK)	0.854916117	2	
HPDP	D3Z6Q9	C425	Bridging integrator 2	0.828034499	2	
HPDP	Accession	Database	Name	Value	Count	
-------	-----------	----------	--	-------------	-------	
HPDP	P11983	C357	T-complex protein 1 subunit alpha (TCP-1-alpha) (CCT-alpha) (Tailless complex polypeptide 1A) (TCP-1-A) (Tailless complex polypeptide 1B) (TCP-1-B)	0.815170441	2	
HPDP	P62874	C25	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 (Transducin beta chain 1)	0.777801095	2	
HPDP	Q9JHW9	C164	Aldehyde dehydrogenase family 1 member A3	0.775764306	2	
HPDP	Q64213	C279	Splicing factor 1 (CW17) (Mammalian branch point-binding protein) (BBP) (mBBP) (Transcription factor ZFM1) (mZFM) (Zinc finger gene in MEN1 locus) (Zinc finger protein 162)	0.727433087	2	
HPDP	Q80X90	C450,C455	Filamin-B (FLN-B) (ABP-280-like protein) (Actin-binding-like protein) (Beta-filamin)	0.723299502	2	
HPDP	P21981	C370	Protein-glutamine gamma-glutamyltransferase 2	0.702284056	2	
HPDP	P62983	C144,C155	Ubiquitin-40S ribosomal protein S27a (Ubiquitin carboxyl extension protein 80) [Cleaved into: Ubiquitin; 40S ribosomal protein S27a]	0.697668035	2	
HPDP	Q8VDP3	C82	[F-actin]-monooxygenase MICAL1	0.684887184	2	
HPDP	Q91W34	C12	RUS1 family protein C16orf58 homolog	0.643663222	2	
label	Uniprot Accession	SNO site	Protein name	Log2 fold change vs background GSNOR−/−	observations	
-------	------------------	----------	--	--	--------------	
TMT	Q8R418	C306	Endoribonuclease Dicer	13.0236246	5	
TMT	Q5FW85	C8	Extracellular matrix protein 2 (Tenonectin)	13.0094464	4	
TMT	Q8BV57	C6	Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D (Scavenger receptor cysteine-rich domain-containing protein LOC284297 homolog)	12.7639881	5	
TMT	P70277	C65	Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 2	12.6184686	5	
TMT	Q9JMG4	C8,C14	Sodium/potassium-transporting ATPase subunit beta-1-interacting protein 4 (Na(+)/K(+)-transporting ATPase subunit beta-1-interacting protein 4) (Protein FAM77A)	12.3930287	5	
TMT	A1Z198	C330	NACHT, LRR and PYD domains-containing protein 1b allele 2	12.3651318	5	
TMT	Q9DB60	C44,C47	Prostamide/prostaglandin F synthase (Prostamide/PG F synthase) (Prostamide/PGF synthase)	12.3338002	5	
TMT	P57110	C677	A disintegrin and metalloproteinase with thrombospondin motifs 8 (ADAM-TS 8) (ADAM-TS8) (ADAMTS-8)	12.3028001	5	
TMT	Q571F5	C271	SPRY domain-containing SOCS box protein 3 (SSB-3)	12.2447841	5	
TMT	O09118	C17	Netrin-1	12.2163032	5	
TMT	Q8C0W1	C818	Ankyrin repeat and MYND domain-containing protein 1	12.2010848	5	
TMT	Q9DBP5	C20	UMP-CMP kinase	12.1445979	5	
TMT	O35963	C48	Ras-related protein Rab-33B	12.0873765	5	
TMT	A1L0T3	C138	Scavenger receptor cysteine-rich domain-containing group B protein (Four scavenger receptor cysteine-rich domains-containing protein) (S4D-SRCRB)	11.9017605	5	
TMT	Protein ID	Description	Log2 Ratio	Exp.		
-------	--------------	---	-------------	-------		
TMT	Q8CGM1	Adhesion G protein-coupled receptor B2 (Brain-specific angiogenesis inhibitor 2)	11.8771311	5		
TMT	Q9WTN3	Sterol regulatory element-binding protein 1 (SREBP-1) (Sterol regulatory element-binding transcription factor 1) [Cleaved into: Processed sterol regulatory element-binding protein 1]	11.804481	5		
TMT	Q8CJ70	Interleukin-19 (IL-19)	11.6992587	5		
TMT	Q6DFV8	Von Willebrand factor D and EGF domain-containing protein	11.674176	4		
TMT	Q8CGK5	Interferon lambda receptor 1 (IFN-lambda R1) (Cytokine receptor class-II member 12) (Cytokine receptor family 2 member 12) (CRF2-12) (Interleukin-28 receptor subunit alpha) (IL-28 receptor subunit alpha) (IL-28R-alpha) (IL-28RA)	11.6126907	5		
TMT	Q4VAE3	Transmembrane protein 65	11.4110971	5		
TMT	Q9JLL3	Tumor necrosis factor receptor superfamily member 19 (TRADE) (Toxicity and JNK inducer)	11.3577162	5		
TMT	Q8K400	Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1)	11.2111474	5		
TMT	Q9DC22	DDB1- and CUL4-associated factor 6 (IQ motif and WD repeat-containing protein 1) (Nuclear receptor interaction protein) (NRIP)	11.002862	5		
TMT	Q80VD1	Protein FAM98B	3.25999526	5		
TMT	Q80XD8	Proline-rich acidic protein 1 (Pregnancy-specific uterine protein) (Uterine-specific proline-rich acidic protein)	3.17282906	5		
TMT	Q9ESD6	CKLF-like MARVEL transmembrane domain-containing protein 7 (Chemokine-like factor superfamily member 7) (LNV)	2.98489368	5		
TMT	Q9JIP3	Interleukin-17 receptor B (IL-17 receptor B) (IL-17RB) (IL-17 receptor homolog 1) (IL-17ER) (IL-17Rh1) (IL17Rh1) (Interleukin-17B receptor) (IL-17B receptor)	2.92741104	5		
TMT	Q8BKK5	Zinc finger protein 689	2.9207658	5		
TMT	O08738	Caspase-6 (CASP-6)	2.74260633	5		
TMT	O88282	B-cell CLL/lymphoma 6 member B protein (Bcl6-associated zinc finger protein)	2.72292467	5		
TMT	Accession	C Node	Description	LogFC	P Nodes	
---------	-----------	--------	--	---------	---------	
TMT	Q9Z0L3	C371	Otoconin-90 (Oc90) (Otoconin-95) (Oc95)	2.71	5	
TMT	E9PZZ1	C653	PR domain zinc finger protein 13	2.54	4	
TMT	Q8BYA0	C665	Tubulin-specific chaperone D (Beta-tubulin cofactor D) (Tubulin-folding cofactor D)	2.48	5	
TMT	Q60676	C221	Serine/threonine-protein phosphatase 5 (PP5)	2.35	5	
TMT	Q5F2L2	C13	Alpha-(1,3)-fucosyltransferase 10	2.32	5	
TMT	O09008	C18	Beta-1,3-N-acetylglucosaminyltransferase manic fringe	2.30	4	
HPDP	A2ASS6	C21834	Titin	2.24	2	
TMT	Q9QXW9	C209	Large neutral amino acids transporter small subunit 2 (L-type amino acid transporter 2) (mLAT2) (Solute carrier family 7)	1.96	5	
TMT	Q66X22	C891,C907,C908	NACHT, LRR and PYD domains-containing protein 9B (NALP-delta)	1.94	4	
TMT	Q8BLY7	C180	Hermansky-Pudlak syndrome 6 protein homolog (Ruby-eye protein) (Ru)	1.88	5	
TMT	Q8K4G1	C1393,C1403	Latent-transforming growth factor beta-binding protein 4 (LTBP-4)	1.72	5	
TMT	Q7TPG7	C107	Protein FAM19A2 (Chemokine-like protein TAFA-2)	1.71	5	
TMT	P46097	C91	Synaptotagmin-2 (Inositol polyphosphate-binding protein) (IP4-binding protein) (IP4BP) (Synaptotagmin II) (SytII)	1.55	5	
TMT	P02798	C33	Metallothionein-2 (MT-2) (Metallothionein-II) (MT-II)	1.27	4	
HPDP	P01837	C106	Immunoglobulin kappa constant (Ig kappa chain C region MOPC 21)	1.19	2	
TMT	Q61554	C1099	Fibrillin-1 [Cleaved into: Asprosin]	1.18	3	
TMT	P56546	C18	C-terminal-binding protein 2 (CtBP2)	1.08	3	
TMT	Q811Q4	C430	Disintegrin and metalloproteinase domain-containing protein 29 (ADAM 29)	1.07	3	
TMT	Q6R5P0	C743	Toll-like receptor 11 (Toll-like receptor 12)	1.03	4	
TMT	P15920	C315	V-type proton ATPase 116 kDa subunit a isoform 2 (V-ATPase 116 kDa isoform a2) (Immune suppressor factor J6B7) (ISF) (Lysosomal H(+)‐transporting ATPase V0 subunit a2) (ShIF) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2)	0.91232731	2	
Gene	Protein	SNO site	Peptide Modified Sequence	orginal label		
--------------	---------	----------	--	------------------------		
1433G_MOUSE	P61982	C112	NC[+57]SETQYESK	HPDP		
A16A1_MOUSE	Q57119	C249	VAFC[+57]GAEEGR	HPDP		
AAK1_MOUSE	Q3UHJ0	C319	EC[+57]PVPNQNSIPAK	HPDP		
AATM_MOUSE	P05202	C295	VGAFTVVC[+329]K	IodoTMT6		
ABD12_MOUSE	Q99L1R	C40	C[+125]AASGSSSSGSAAAALDADC[+57]SLK	HPDP		
ABI1_MOUSE	Q8CBW3	C33	VADYC[+57]ENNYIQATDK	HPDP		
ABLM1_MOUSE	Q8K4G5	C146	NGDYLC[+57]TLDYQR	HPDP		
ACINU_MOUSE	Q9JIX8	C513	SSLPEC[+57]STQK	HPDP		
ACOC_MOUSE	P28271	C392	DFESC[+57]LGAK	HPDP		
ACTG_MOUSE	P63260	C17	EEEIAALVIDNGSGMC[+329]K	IodoTMT6		
ACTN1_MOUSE	Q7TPR4	C480	IC[+57]DQWDNLGALTQK	HPDP		
ACTN4_MOUSE	Q7TPR4	C860	ELPPDQAEGC[+329]IAR	IodoTMT6		
ADA29_MOUSE	Q81L0Q4	C430	EQC[+125]DC[+125]GSLRNC[+125]TNDLC[+329]CMSNCTLST	IodoTMT6		
AEDO_MOUSE	Q6PDY2	C225	EASGSAC[+57]DLPR	HPDP		
AGK_MOUSE	Q9ESW4	C72	ATVFLNPAAC[+57]K	HPDP		
AGM1_MOUSE	Q9CVR6	C200	AFVDLTNQVSC[+57]SGDVK	HPDP		
AGM1_MOUSE	Q9CVR6	C348	VPVYC[+57]TK	HPDP		
AGRB2_MOUSE	Q8CGM1	C1034	FLC[+329]LWGWLPAVAVVGVFTRTK	IodoTMT6		
AGRG4_MOUSE	B7ZCC9	C2279,2281	GQGM[+16]DAIFHPYPC[+329]AC[+329]WVIIAKSSLESVEL	IodoTMT6		
AHDC1_MOUSE	Q6PAL7	C788	NC[+57]GFQGTEAR	HPDP		
AIFM1_MOUSE	Q9Z0X1	C440	SNIWVAGDAAC[+57]FYDIK	HPDP		
AIMP1_MOUSE	P31230	C159	IGC[+57]IVTAK	HPDP		
AIMP2_MOUSE	Q8R010	C168	C[+57]FGEQAR	HPDP		
AKA10_MOUSE	Q88845	C110	SC[+57]LDYQTQETK	HPDP		
AKA12_MOUSE	Q9WTQ5	C1113	ATTC[+57]QVIK	HPDP		
AKP13_MOUSE	E9Q394	C1644	QQGFNYC[+57]TSAISSPLTK	HPDP		
AKP13_MOUSE	E9Q394	C417	EGLPSC[+57]GNR	HPDP		
AKP13_MOUSE	E9Q394	C609	VLGQEPDSTAGFC[+57]K	HPDP		
AL1A3_MOUSE	Q8JHW9	C164	TIPTDDNVVC[+57]FTR	HPDP		
AL3A2_MOUSE	P47739	C229	DC[+125]DLDVAC[+329]R	IodoTMT6		
Protein	Accession	CABC Position	Mod Peptide	Treatment		
----------	-----------	---------------	-------------	-----------		
AL7A1_MOUSE	Q9DBF1	C522	STC[+57]TINYSTSLPLAQUALI	HPDP		
ALBU_MOUSE	P07724	C289	YMC[+57]ENQATISSK	HPDP		
ALBU_MOUSE	P07724	C294	YM[+16]C[+57]ENQATISSK	HPDP		
ALBU_MOUSE	P07724	C416	TNC[+57]DLYEK	HPDP		
ALBU_MOUSE	P07724	C58	C[+57]SYDEHAK	HPDP		
ALBU_MOUSE	P07724	C591	DTC[+57]FSTEGERVLVTR	HPDP		
ALBU_MOUSE	P07724	C77, C86	TC[+57]VADESAANC[+57]DK	HPDP		
ALBU_MOUSE	P07724	C289	YMC[+329]ENQATISSK	IodoTMT6		
ALBU_MOUSE	P07724	C591	AADKCTDC[+329]FSTEGPNLVT	IodoTMT6		
ALBU_MOUSE	P07724	C77, C86	TC[+329]VADESAANC[+329]DK	IodoTMT6		
ALBU_MOUSE	P07724	C68	YMC[+329]ENQATISSK	IodoTMT6		
ALBU_MOUSE	P07724	C591	AADKDTDC[+329]FSTEGPNLVT	IodoTMT6		
ALBU_MOUSE	P07724	C77, C86	TC[+329]VADESAANC[+329]DK	IodoTMT6		
ALBU_MOUSE	P07724	C591	DTC[+329]FSTEGPNLVT	IodoTMT6		
AQP1_MOUSE	Q90234	C189	DLGGSAPLAIGLSVALGHLLAIDYTGC[+329]GINPAR	IodoTMT6		
ARFG1_MOUSE	Q9EPJ9	C350	SPSSDSWTC[+57]ADASTGR	HPDP		
ARHG6_MOUSE	Q8K4I3	C25	TVC[+57]DPEEFLK	HPDP		
ARHG6_MOUSE	Q8K4I3	C563	TSSSSC[+57]STHSSFSSTGQPR	HPDP		
Protein	Accession	Start	Full Length	Modification	Mass Tag	
---------------	-----------	-------	-------------	--------------	----------	
ARHG7_MOUSE	Q9ES28	C427	NLSAQC+[+57]QEVR	HPDP		
ARHG7_MOUSE	Q9ES28	C700	VIEAYC+[+57]TSAK	HPDP		
ARHGC_MOUSE	Q8R4H2	C1325	TGTGDIATC+[+57]DSPR	HPDP		
ARP2_MOUSE	P61161	C11	VVVC+[+57]DNGTFGFK	HPDP		
ARP2_MOUSE	P61161	C11	KVVVC+[+57]DNGTFGFK	HPDP		
ARP2_MOUSE	P61161	C221	LC+[+57]YVGYNEQEQQ	HPDP		
ARP3_MOUSE	Q99JY9	C408	DYEIEGPSIC+[+57]R	HPDP		
ARP3_MOUSE	Q99JY9	C8, C12	LPAC+[+57]VVDC+[+57]GTGYTK	HPDP		
ARP3_MOUSE	Q99JY9	C408	KDYEEIGPSIC+[+329]R	IodoTMT6		
ARP3_MOUSE	Q99JY9	C408	DYEIEIGPSIC+[+329]R	IodoTMT6		
ARP3_MOUSE	Q99JY9	C150	AFC+[+57]AENLEEK	HPDP		
AS3MT_MOUSE	Q91WU5	C33	TSADLQTNAC+[+329]VTR	IodoTMT6		
ASAH1_MOUSE	Q9WV54	C291	SGEGC+[+57]VITR	HPDP		
AT131_MOUSE	Q9EPE9	C333	SPQENLVPC+[+57]DVLLLR	HPDP		
AT1A1_MOUSE	Q8VDN2	C211	IISANGC+[+57]K	HPDP		
AT2A2_MOUSE	O55143	C377	VEGDTC+[+57]SLNEFSITGSTYAPIGEOVQK	HPDP		
AT2A2_MOUSE	O55143	C669	DAC+[+57]LNAR	HPDP		
ATS8_MOUSE	P57110	C677	GQC+[+329]VKAGCDHVVSPKK	IodoTMT6		
BAG3_MOUSE	Q9JL1V1	C185	SQSPASASDC+[+57]SSSSSSASLPSSGR	HPDP		
BCL6B_MOUSE	O88282	C381,C384	IHSGEKPKYC+[+329]ETC+[+329]GSRFVQVAHLR	IodoTMT6		
BDH_MOUSE	Q80XN0	C209	SPYC+[+57]ITK	HPDP		
BIN2_MOUSE	D3Z6Q9	C425	ASGSGSC+[+57]NAPSGEPSSQLC+[+125]SPR	HPDP		
BOLA1_MOUSE	Q9D8S9	C126	ENPQLDISPPC+[+57]LGGSK	HPDP		
BRF2_MOUSE	Q3UAW9	C362	RASPTPLLPC+[+329]MLKPPKR	IodoTMT6		
CA123_MOUSE	Q88HG2	C102	TIVEFEC+[+57]R	HPDP		
CACL1_MOUSE	Q8ROX2	C370	AGDELAYNSPSAC+[+57]ASSR	HPDP		
CALR_MOUSE	P14211	C105	HEQNIIDC+[+57]GGGYVK	HPDP		
CALR_MOUSE	P14211	C137	DMHGDSYNYMFGPDIC+[+329]GPGTOKK	IodoTMT6		
CALR_MOUSE	P14211	C137	DMHGDSYNYMFGPDIC+[+329]GPGT	IodoTMT6		
CAND2_MOUSE	Q6ZQ73	C1138	LATLC+[+329]PAPVLQRVDRLIEPLR	IodoTMT6		
Gene Name	Accession	Start	Primary Sequence	Modification	PPA	
-----------------	-----------	-------	------------------	--------------	------	
CAP1_MOUSE	P40124	C426	NSLDC[+57]EIVSAK	HPDP		
CAPZB_MOUSE	P47757	C62	DYLLE[+57]DYNR	HPDP		
CARL1_MOUSE	Q6EDY6	C712	AC[+57]GGDAIQEDLK	HPDP		
CASP6_MOUSE	Q08738	C259	QVPC[+329]FASM[+16]LTKKLHFCPKPSK	IodoTMT6		
CATA_MOUSE	P24270	C232	LVNADGEAVY[+57]K	HPDP		
CATA_MOUSE	P24270	C425	SALEHSVQC[+57]AVDVK	HPDP		
CATA_MOUSE	P24270	C393	DGPMC[+329]MHDNQQGAPNYYPNSFSAPEQQR	IodoTMT6		
CATB_MOUSE	P10605	C211	SC[+57]EAGYPSYK	HPDP		
CATB_MOUSE	P10605	C211	SC[+329]EAGYPSYKEDK	IodoTMT6		
CATB_MOUSE	P10605	C211	SC[+329]EAGYPSYK	IodoTMT6		
CATZ_MOUSE	Q9WUU7	C156	HGIPDET[+329]NNYQAK	IodoTMT6		
CBX3_MOUSE	Q23198	C177	LTWHSC[+57]PEDEAQ	HPDP		
CDC23_MOUSE	Q8BGZ4	C532	LWDEASTC[+57]AQK	HPDP		
CDC42_MOUSE	P60766	C157	YVEC[+57]SALTQK	HPDP		
CEAM5_MOUSE	Q3UKK2	C909	C[+57]QLSIDPVWR	HPDP		
CERU_MOUSE	Q61147	C239	TFC[+57]SEPEK	HPDP		
CERU_MOUSE	Q61147	C694	GTFDVE[+57]LTTDHYTGGM[+16]K	HPDP		
CERU_MOUSE	Q61147	C694	GTFDVE[+57]LTTDHYTGGMK	HPDP		
CERU_MOUSE	Q61147	C713	YTVNQC[+57]QR	HPDP		
CERU_MOUSE	Q61147	C173	ADDKVLPGQQQYVVVLHANEPSPGEGDSNC[+329]VTR	IodoTMT6		
CERU_MOUSE	Q61147	C173	VLPGQQQYVVVLHANEPSPGEGDSNC[+329]VTR	IodoTMT6		
CERU_MOUSE	Q61147	C239	TFC[+329]SEPEK	IodoTMT6		
CERU_MOUSE	Q61147	C239	TFC[+329]SEPEKVDNEDFQESNR	IodoTMT6		
CERU_MOUSE	Q61147	C694	GTFDVE[+329]LTTDHYTGGMK	IodoTMT6		
CERU_MOUSE	Q61147	C713	YTVNQC[+329]QR	IodoTMT6		
CH082_MOUSE	Q8VE95	C132	LSYC[+57]GGGEALAIPEPAR	HPDP		
CHPT1_MOUSE	Q8C025	C386	TSC[+57]QQAPEQVYK	HPDP		
CHRD1_MOUSE	Q9D1P4	C211	RKTSDFNTFLAQEGC[+329]TR	IodoTMT6		
CHRD1_MOUSE	Q9D1P4	C211	KTSDFNTFLAQEGC[+329]TR	IodoTMT6		
CHRD1_MOUSE	Q9D1P4	C211	TSDFNTFLAQEGC[+329]TR	IodoTMT6		
CK5P3_MOUSE	Q99LM2	C136	C[+57]QQLQQEYSR	HPDP		
CKAP4_MOUSE	Q8BMK4	C79	SSAATANASSASC[+57]SR	HPDP		
Protein Name	Accession	Start	End	Modification	Charge	Modification Type
--------------------	-----------	-------	--------	--------------	--------	------------------
CKAP4_MOUSE	Q8BMK4	C79	SSAATANASSASC[+329]	IodoTMT6		
CKLF7_MOUSE	Q9ESD6	C54	VAQMVTLIAFIC[+329]	IodoTMT6		
CLCB_MOUSE	Q6IRU5	C199	VAQLC[+57]DFNPK	HPDP		
CLH1_MOUSE	Q68FD5	C1266	EVC[+125]FAC[+57]VDGK	HPDP		
CLH1_MOUSE	Q68FD5	C1102	C[+329]NEPAVWSQLAK	IodoTMT6		
CLIC1_MOUSE	Q9Z1Q5	C223	EEFASTC[+57]PDDEEIELAYEQVAR	HPDP		
CMTR1_MOUSE	Q9DBC3	C503	SNESYC[+57]SLQIK	HPDP		
CMTR1_MOUSE	Q9DBC3	C534	EC[+57]LQLWK	HPDP		
CNBP_MOUSE	P53996	C120	C[+57]YSC[+125]GEFGHIQK	HPDP		
CNBP_MOUSE	P53996	C141	C[+57]GETGHVAINC[+125]SK	HPDP		
CNBP_MOUSE	P53996	C141, C151	C[+57]GETGHVAINC[+57]SK	HPDP		
CNBP_MOUSE	P53996	C157	C[+125]GETGHVAINC[+57]SK	HPDP		
CNBP_MOUSE	P53996	C159	TSEVNC[+57]YR	HPDP		
CNBP_MOUSE	P53996	C162	C[+57]GESGHLAR	HPDP		
CNDP2_MOUSE	Q9D1A2	C300	DVGAEETLHSC[+57]KK	HPDP		
CNDP2_MOUSE	Q9D1A2	C300	DVGAEETLHSC[+57]KK	HPDP		
CNN2_MOUSE	Q08093	C164	AGQC[+57]VIGLM[+16]GTNK	HPDP		
CNN2_MOUSE	Q08093	C164	AGQC[+57]VIGLMGNTNK	HPDP		
CNN2_MOUSE	Q08093	C215	C[+57]ASQVGM[+16]TAPGTR	HPDP		
CO3_MOUSE	P01027	C559	DSC[+57]IGTLVVK	HPDP		
CO4A1_MOUSE	P02463	C1460	HSQTDTDPLC[+329]PPTGTK	IodoTMT6		
CO4A1_MOUSE	P02463	C1493	AHGQDGLTAGSC[+329]LR	IodoTMT6		
CO4A2_MOUSE	P08122	C1532	AHNQDLGLAGSC[+329]LAR	IodoTMT6		
COAC_MOUSE	Q8BZB2	C7	APC[+57]PAAVPSEER	HPDP		
COF1_MOUSE	P18760	C39	AVLFC[+57]LSEDK	HPDP		
COF1_MOUSE	P18760	C39	AVLFC[+57]LSEDKK	HPDP		
COPB2_MOUSE	O55029	C56	TFEVC[+57]DLPPVR	HPDP		
COPB2_MOUSE	O55029	C351	DMGSC[+329]EIYPQTIQHNPNGR	IodoTMT6		
COR1A_MOUSE	O89O53	C24	ADQC[+57]YEDVR	HPDP		
COR1B_MOUSE	Q9WUM3	C25	NDQC[+57]YEDIR	HPDP		
COR1C_MOUSE	Q9WUM4	C190	NGSLIC[+57]TASK	HPDP		
COR1C_MOUSE	Q9WUM4	C424	KSELSC[+57]APK	HPDP		
Gene	Accession	Start	Residues			
--------	-----------	-------	-----------------------------------			
CPNE1_MOUSE	Q8C166	C52	NC[+57]SSPEFSK			
CPNS1_MOUSE	O88456	C145	TDGFGIIDTC[+57]R			
CPSF1_MOUSE	Q9EPU4	C1042	VYAVATSTNTPC[+57]TR			
CPSM_MOUSE	Q8C196	C225	VVAVDC[+57]GIK			
CPZIP_MOUSE	Q3UZA1	C244	NTC[+57]NSTEMKPEELVR			
CRIP2_MOUSE	Q9DCT8	C126	ASSVTTFGEPNMC[+329]PR			
CSDE1_MOUSE	Q91W50	C129	SPAAPQGSPGTGSVC[+57]YER			
CSK2_MOUSE	O54833	C336	EQSQPC[+57]AENTVSSLSSGLTAAR			
CSRP1_MOUSE	P97315	C122	C[+57]SQAAYAAEK			
CSRP2_MOUSE	P97314	C167	GLESTTLADKDGEIYC[+329]K			
CSRP1_MOUSE	P97315	C167	C[+125]GKGLESTTLADKDGEIYC[+329]K			
CSRP1_MOUSE	P97315	C58	KNLDSTTVAVHGEIYC[+329]K			
CSRP2_MOUSE	P97314	C167	SLESTTLTEKEGEIYC[+57]K			
CSRP2_MOUSE	P97314	C167	SLESTTLTEKEGEIYC[+329]K			
CSRP2_MOUSE	P97314	C58	NLDSTTVAVHGEIYC[+329]K			
CTBP2_MOUSE	P56546	C18	LDRIC[+329]EGIRPQIM[+16]NGPLHRPLVALLDGRDC[+125]			
CTCF_MOUSE	Q61164	C472	YC[+329]DAVHER			
CTL2_MOUSE	Q8BY89	C401	VVDDTAC[+57]PLLR			
CTL2A_MOUSE	P12399	C103	TNC[+57]YGNSLNR			
CTNA1_MOUSE	P26231	C116	SAAGEFADDPC[+57]SSVK			
CTNA1_MOUSE	P26231	C116	SAAGEFADDPC[+329]SSVK			
CTNA1_MOUSE	P26231	C116	SAAGEFADDPC[+329]SSVKR			
CUBN_MOUSE	Q9JLB4	C1466	IAQLC[+57]SR			
CUBN_MOUSE	Q9JLB4	C1510	AVPGGCC[+57]GGIFQVSR			
CUBN_MOUSE	Q9JLB4	C1927	LIGTYC[+57]GTQR			
CUBN_MOUSE	Q9JLB4	C2054	LSQQLAVL[+57]GR			
CUBN_MOUSE	Q9JLB4	C817	ADYQVAC[+57]GGEELR			
CUL4B_MOUSE	A2A432	C74	SVC[+57]PGTSGFSSPNPAAASAAAQEVRR			
CXA1_MOUSE	P23242	C260	SDPYHATTGPLPSKDC[+329]GSPK			
CY24B_MOUSE	Q61093	C126	NLTGHMK[+16]VAWMIALHTAIHTIAHFLNVEWC[+329]VNAR			
Gene Symbol	Accession	Start	End	Sequence	Modification	Tag
-------------	-----------	-------	-----	----------	--------------	-----
CYFP1_MOUSE	Q7TMB8	C428		DC[+57]PDNAEEYER	HPDP	
D19L4_MOUSE	A2AJQ3	C355		VFEFYLLC[+329]TLPVTNLIVK	IodoTMT6	
DAPK2_MOUSE	Q8VDF3	C347		NC[+57]ESDTEENIAR	HPDP	
DCAF6_MOUSE	Q9DC22	C200,C211		DDILINC[+125]RRAATSVAIC[+329]PPVPYYLAVGC[+329]SDS	IodoTMT6	
DCSTP_MOUSE	Q7TNJ0	C89		RARC[+57]FILLAVLSC[+329]GLR	IodoTMT6	
DD19A_MOUSE	Q61655	C392		VLVTTNVC[+57]AR	HPDP	
DDX1_MOUSE	Q91VR5	C571		FLIC[+57]TDVAAR	HPDP	
DDX6_MOUSE	P54823	C390		NLVC[+57]TDLFT	HPDP	
DEN4C_MOUSE	A6H8H2	C1083		ILTAALTC[+57]PK	HPDP	
DESM_MOUSE	P31001	C332		HQIQSYTC[+329]EIDALK	IodoTMT6	
DESM_MOUSE	P31001	C332		HQIQSYTC[+329]EIDALKGTNSLMR	IodoTMT6	
DHE3_MOUSE	P26443	C327		C[+329]VGVGESDGSIWNPDGIDPK	IodoTMT6	
DHPR_MOUSE	Q8BVI4	C82		VDALIC[+57]VAGGWAGGNAK	HPDP	
DHR51_MOUSE	Q99L04	C10		GQVC[+57]VVTGASR	HPDP	
DHO1_MOUSE	Q64442	C106		EVDEYC[+57]K	HPDP	
DHX36_MOUSE	Q8VHK9	C277		AESC[+57]GNGNSTGYQIR	HPDP	
DHX9_MOUSE	Q70133	C440		AAEC[+57]NIVVTQPR	HPDP	
DIX3L2_MOUSE	Q8CI75	C376		DC[+57]IFTIDPSTAR	HPDP	
DIAC_MOUSE	Q8R242	C342		GIGMWNANC[+329]LDYSDDALAR	IodoTMT6	
DIAP1_MOUSE	Q08808	C1210		AGC[+57]AVTSLLASELT	HPDP	
DICER_MOUSE	Q8R418	C306		QILSDC[+329]RAVLVVLPGWC[+57]ADKVAGM[+16]M[+16]V	IodoTMT6	
DLGP4_MOUSE	B1AZP2	C726		DTSDTDQDANDSSC[+329]K	IodoTMT6	
DNJA2_MOUSE	Q9QYJ0	C308		VIEPGC[+57]VR	HPDP	
DNJB6_MOUSE	O54946	C243		SLTINGVADENAEC[+329]QR	IodoTMT6	
DNPEP_MOUSE	Q9Z2W0	C411		NDSPC[+57]GTTIGSILA	HPDP	
DOPD_MOUSE	O35215	C57		STEPC[+329]AHLLVSSIGVGTAEQNR	IodoTMT6	
DP13A_MOUSE	Q8K3H0	C615		IC[+57]DSVGLAK	HPDP	
DPM3_MOUSE	Q9D1Q4	C67		VATFHDIC[+57]EDAAR	HPDP	
DPYL2_MOUSE	O08553	C248		SITIANQTNC[+57]PLYVTK	HPDP	
DPYL2_MOUSE	O08553	C248		SITIANQTNC[+329]PLYVTK	IodoTMT6	
DPYL2_MOUSE	O08553	C248		SITIANQTNC[+329]PLYVTKVMSK	IodoTMT6	
DPYL2_MOUSE	O08553	C439		THNSALEYNIFEGM[+16]EC[+329]R	IodoTMT6	
Gene	Accession	UniProt Code	Description	Modification		
------------	-----------	--------------	--------------------------------------	--------------		
DPYL2_MOUSE	O08553	C439	THNSALEYNIFEGMEC[+329]R	IodoTMT6		
DSCR3_MOUSE	O35075	C243	DATEIQNIQIADGDIC[+57]R	HPDP		
DYHC1_MOUSE	Q9JHU4	C631	VQYPQSQAC[+57]K	HPDP		
DYN2_MOUSE	P39054	C607	QIELAC[+57]DSQEDVDWSWK	HPDP		
ECM2_MOUSE	Q5FW85	C8	LAVLFC[+329]FILLIVLQTDC[+125]ERGTR	IodoTMT6		
EDC3_MOUSE	Q8K2D3	C137	SQDVAISPQQQQC[+57]SK	HPDP		
EF1D_MOUSE	P57776	C217	SSILLDVKPWDTEDMAQLET[+329]VR	IodoTMT6		
EF2_MOUSE	P58252	C369	C[+57]ELLYEGPPDEAAMGIK	HPDP		
EF2_MOUSE	P58252	C591	ETVSEESNL[+57]LSK	HPDP		
EF2_MOUSE	P58252	C693	EGALC[+57]EENMR	HPDP		
EF2_MOUSE	P58252	C591	ETVSEESNL[+57]LSK	IodoTMT6		
EF2_MOUSE	P58252	C728	C[+329]LYASVLTAQPR	IodoTMT6		
EFTU_MOUSE	Q8BFR5	C290	KGDEC[+57]ELLGHNK	HPDP		
EIF3A_MOUSE	P23116	C478	HC[+57]DLQVR	HPDP		
EIF3F_MOUSE	Q9DCH4	C260	TC[+57]FSPNR	HPDP		
ELMD2_MOUSE	Q8BGF6	C98	TC[+57]LLQITGYK	HPDP		
EMAL3_MOUSE	Q8VC03	C421	DSSC[+57]IVTSGK	HPDP		
ENOA_MOUSE	P17182	C337/C339	SC[+57]NC[+57]LLLK	HPDP		
ENOA_MOUSE	P17182	C357	VNOQIGSVTESLQAC[+57]K	HPDP		
EPN3_MOUSE	Q91W69	C461	SPSTVELDPPFDSSPSC[+329]K	IodoTMT6		
ERP44_MOUSE	Q9D1Q6	C92	VDC[+57]DQHSDIAQR	HPDP		
ES8L2_MOUSE	Q99K30	C546	SGQAGYVPC[+57]NLAEAR	HPDP		
ESTD_MOUSE	Q9R0P3	C206	AYDATC[+57]LVK	HPDP		
ETHE1_MOUSE	Q9DCM0	C170	TDFQQGC[+57]AK	HPDP		
ETHE1_MOUSE	Q9DCM0	C34	SC[+57]TYTYLLGDR	HPDP		
EVI5_MOUSE	P97366	C479	LSEAESQ[+57]ALK	HPDP		
EXOC8_MOUSE	Q6PGF7	C419	AC[+57]ELFLR	HPDP		
F16P1_MOUSE	Q9QXD6	C93	SSYATC[+57]VLVSEENTNAIIEPEK	HPDP		
F19A2_MOUSE	Q7TPG7	C107	WWCHMQPC[+57]LEGEEC[+329]KVLVDR	IodoTMT6		
F19A2_MOUSE	Q7TPG7	C96	WW[+329]HMQPC[+57]LEGEECKVLVDR	IodoTMT6		
FA98B_MOUSE	Q80VD1	C52	AAEGGLSSPEFSEL[+329]IWLGSQIK	IodoTMT6		
Protein	Accession	Start	Sequence	Modification	Tag	
----------------	-----------	-------	-------------------------------	--------------	--------------	
FABP4_MOUSE	P04117	C118	LVVEC(+57)VMK		HPDP	
FABP4_MOUSE	P04117	C118	DGDKLNVVEC(+57)VMK		HPDP	
FABP4_MOUSE	P04117	C118	LVVEC(+329)VMK		IodoTMT6	
FABPL_MOUSE	P12710	C69	NEFTLGEEC(+57)ELETMTGEK		HPDP	
FABPL_MOUSE	P12710	C69	DGDKLNVVEC(+329)VMK		HPDP	
FAK1_MOUSE	P34152	C597	NVLVSSNDC(+57)VK		HPDP	
FARPI_MOUSE	F8VPU2	C524	QASPLISPLLNDQAC(+57)PR		HPDP	
FAS_MOUSE	P19096	C1181	LLAAAC(+57)QLQLNGNLELGALAAQR		HPDP	
FAS_MOUSE	P19096	C223	SFDDSGSGYC(+57)R		HPDP	
FBN1_MOUSE	Q61554	C1960	C(+57)NEGYEVAPDGRC		IodoTMT6	
FBN1_MOUSE	Q61554	C1960	C(+57)NEGYEVAPDGRC		IodoTMT6	
FERM2_MOUSE	Q8CIB5	C426	GC(+57)EVTDPVNISSGQK		HPDP	
FETA_MOUSE	P02772	C144	TAPASVPPFQFPFPAESC(+329)K		IodoTMT6	
FETUA_MOUSE	P29699	C336	VGOPGAAGPVSPMC(+329)PGR		IodoTMT6	
FG5_MOUSE	P15656	C200	GC(+329)SPVQPQHVSTHFLPR		IodoTMT6	
FH1L1_MOUSE	P97447	C255	C(+57)SVNLANKR		HPDP	
FH1L2_MOUSE	Q70433	C71	C(+57)GSSLVDKPAVK		HPDP	
FH1L5_MOUSE	Q9WTX7	C222	KC(+329)AAC(+329)TKPITGLRGAK		IodoTMT6	
FHOD1_MOUSE	Q6P9Q4	C539	AEPIQEPPTC(+57)VPK		HPDP	
FINC_MOUSE	P11276	C136	ISC(+57)TIANR		HPDP	
FINC_MOUSE	P11276	C232	C(+57)NDQDTR		HPDP	
FKBP5_MOUSE	Q64378	C215	EEQC(+57)ILYLGPR		HPDP	
FL2_MOUSE	Q9JJ28	C1069	TNGSALC(+57)TR		HPDP	
FL2_MOUSE	Q9JJ28	C560	AC(+57)SAIHAVNLR		HPDP	
FL2_MOUSE	Q9JJ28	C576	NYLGAEC(+57)R		HPDP	
FLNA_MOUSE	Q8BTM8	C1157	AHPVAPC(+57)FDAK		HPDP	
FLNA_MOUSE	Q8BTM8	C1453	C(+57)SGPGLSPGMVR		HPDP	
FLNA_MOUSE	Q8BTM8	C2102	VDINTLEDGTC(+57)R		HPDP	
FLNA_MOUSE	Q8BTM8	C2582	SNFTVDC(+57)SK		HPDP	
FLNA_MOUSE	Q8BTM8	C2601	TPC[+57]EEILVK	HPDP		
FLNA_MOUSE	Q8BTM8	C8	C[+57]GQSAAVASPGGSIDSR	HPDP		
FLNA_MOUSE	Q8BTM8	C1312	VANPSGNLTDTYQDC[+329]GDGTYK	IodoTMT6		
FLNA_MOUSE	Q8BTM8	C2102	VDIQTEDLEDGT[+329]C[+57]E	IodoTMT6		
FLNA_MOUSE	Q8BTM8	C2102	DASYGGGLSLIEGPKVIDIQTEDLEDGT[+329]C[+57]E	IodoTMT6		
FLNA_MOUSE	Q8BTM8	C2293	DGSC[+329]GVAYVQEPGDYEVSVK	IodoTMT6		
FLNA_MOUSE	Q8BTM8	C2476	MDC[+329]QEC[+125]PEGYR	IodoTMT6		
FLNA_MOUSE	Q8BTM8	C3	C[+329]GQSAAVASPGGSIDSR	IodoTMT6		
FLNB_MOUSE	Q80X90	C1280	AQITNPSGASTEC[+57]FVK	HPDP		
FLNB_MOUSE	Q80X90	C1326	VAQTEGC[+57]QPSR	HPDP		
FLNB_MOUSE	Q80X90	C1434	IAGPGHSSC[+57]VR	HPDP		
FLNB_MOUSE	Q80X90	C1868	AEISC[+57]IDNK	HPDP		
FLNB_MOUSE	Q80X90	C1876	DGSTC[+57]TVTYLPTLPGDYSILVK	HPDP		
FLNB_MOUSE	Q80X90	C2057	VDIQTEDLEDGT[+57]K	HPDP		
FLNB_MOUSE	Q80X90	C2057	SSFLVDC[+57]SK	HPDP		
FLNB_MOUSE	Q80X90	C2537	SPPGVIQEAC[+57]NPNA[+125]C	HPDP		
FLNB_MOUSE	Q80X90	C2537	IEYDQNDGSC[+57]DVK	HPDP		
FLNB_MOUSE	Q80X90	C2537	SGCT[+57]TINPAEFIVDPK	HPDP		
FLNB_MOUSE	Q80X90	C991	VVPC[+57]LVAPVAGR	HPDP		
FLNB_MOUSE	Q80X90	C991	KVVPC[+57]LVAPVAGR	HPDP		
FLNB_MOUSE	Q80X90	C2057	VDIQTEDLEDGT[+329]K	IodoTMT6		
FLNB_MOUSE	Q80X90	C2057	DGSC[+329]GVAYVQEPGDYEVSVK	IodoTMT6		
FLNB_MOUSE	Q80X90	C2248	NSSFLVDC[+57]SK	IodoTMT6		
FLNB_MOUSE	Q80X90	C2431	MDC[+329]QEC[+125]PEGYR	IodoTMT6		
FLNB_MOUSE	Q80X90	C2537	SPPGVIQEAC[+329]NPNA[+125]C	IodoTMT6		
FLNB_MOUSE	Q80X90	C2537	IEYDQNDGSC[+329]DVK	IodoTMT6		
FLNB_MOUSE	Q80X90	C2537	SGCT[+329]TINPAEFIVDPK	IodoTMT6		
FLNB_MOUSE	Q80X90	C769	ANEPTHFTVDC[+329]TEAGEGVDVSGIK	IodoTMT6		
FLNB_MOUSE	Q80X90	C769	SGLKANEPTHFTVDC[+329]TEAGEGVDVSGIK	IodoTMT6		
FLNB_MOUSE	Q80X90	C769	GAGTGGQLGLTVEG[+329]EAK	IodoTMT6		
Protein	Accession	C-terminus	Modification	Tag		
--------------	-----------	------------	--------------	------------		
FLNC_MOUSE	Q8VHX6	C2661	NSFTVDC[+57]SK	HPDP		
FLNC_MOUSE	Q8VHX6	C2680	TPC[+329]EEVYVK	IodoTMT6		
FN3C1_MOUSE	Q6DFV6	C1112	TKPLPPEPPQLNC[+329]VYGHQLR	IodoTMT6		
FRPD1_MOUSE	A2AKB4	C1360	AYSC[+57]TTPLSR	HPDP		
FSCN1_MOUSE	Q61553	C481	AC[+57]AETIDPASLWEY	HPDP		
FSCN1_MOUSE	Q61553	C89	EVPDGDC[+57]R	HPDP		
FUMH_MOUSE	P97807	C431	LLGDASVSFTDNC[+57]VQGQANER	HPDP		
FUT10_MOUSE	Q5FL2L	C13	LLASC[+329]LCVTATVFLM[+16]VTQVVEGKFR	IodoTMT6		
FXL20_MOUSE	Q9CZV8	C283	C[+57]SQLTDVGFTTLAR	HPDP		
FXR1_MOUSE	Q61584	C77	ANDQEPC[+57]GWVLAK	HPDP		
FXR2_MOUSE	Q9WVR4	C282	IYGETPEAC[+57]R	HPDP		
G3P_MOUSE	P16858	C150	IVSNASC[+57]TTNC[+125]LAPLAK	HPDP		
G3P_MOUSE	P16858	C150, C154	IVSNASC[+57]TTNC[+57]LAPLAK	HPDP		
G3P_MOUSE	P16858	C160	IVSNASC[+125]TTNC[+57]LAPLAK	HPDP		
GAB1_MOUSE	Q9QYY0	C406	DASSQDC[+57]YDIPR	HPDP		
GALK1_MOUSE	Q9R0N0	C243	QC[+57]EEVAGLAK	HPDP		
GALT_MOUSE	Q03249	C75	HDPLNPLC[+57]PGATR	HPDP		
GATM_MOUSE	Q9D964	C87	AENAC[+57]VPPTVEVK	HPDP		
GATM_MOUSE	Q9D964	C64	DC[+329]PVSSYNPDLEEVGR	IodoTMT6		
GBB1_MOUSE	P62874	C25	AC[+57]ADATLSQITNNIDPVGR	HPDP		
GBB1_MOUSE	P62874	C25	KAC[+57]ADATLSQITNNIDPVGR	HPDP		
GCNT1_MOUSE	Q09324	C100	DC[+57]ASFIR	HPDP		
GFPT1_MOUSE	P47856	C262	VDSTTC[+57]LFPVEEK	HPDP		
GFPT1_MOUSE	Q9ZZZ9	C461	ETDC[+329]GVHINAPGVEGASTK	IodoTMT6		
GIMA4_MOUSE	Q99JY3	C61	VFNSGIC[+57]AK	HPDP		
GLNA_MOUSE	P15105	C183	AC[+57]LYAGVK	HPDP		
GLNA_MOUSE	P15105	C49	TLDC[+57]EPK	HPDP		
GLOD4_MOUSE	Q9CPV4	C45	AAC[+57]NPGYDGK	HPDP		
GMPR1_MOUSE	Q9DCZ1	C186	VGVPGSVC[+57]TTR	HPDP		
GON7_MOUSE	P0CBB4	C21	VSC[+57]EASGDADPLQSLAGVVR	HPDP		
GORS2_MOUSE	Q99JX3	C434	VSDC[+57]TPAVEPKVSDADASEPS	HPDP		
Protein	Accession	Species	Cutoff	Description	Modification	
-----------	-----------	---------	--------	--------------------------------------	----------------	
GP126_MOUSE	Q6F3F9	C38		C+[125]C+[57]PWRLKPSALLFLFVLC+[57]VTCVPLSVC+[125]C	IodoTMT6	
GP142_MOUSE	Q7TQN9	C233		LLKWAHLIVYFIPC+[329]NVFLVTNSAILR	IodoTMT6	
GPDI1_MOUSE	Q3ULJ0	C216		NIVAVGAGFC+[57]DGLR	HPDP	
GPRX41_MOUSE	O70325	C195		YGPMEEPQVIEKDLPC+[329]YL	IodoTMT6	
GRAP1_MOUSE	Q8VD04	C104		LC+[57]SQUELELEER	HPDP	
GRB10_MOUSE	Q60760	C173		NQC+[329]PTDTPVNPVAR	IodoTMT6	
GRM1B_MOUSE	Q80TI0	C20		STPAC+[57]SPILR	HPDP	
GRP75_MOUSE	P38647	C66		GAVVGIIDLGTNSC+[57]VAVMEGK	HPDP	
GRP78_MOUSE	P20029	C42		KEDVGTVGIDGLGTYSC+[57]VGVFK	HPDP	
GRP78_MOUSE	P20029	C42		EDVGTVGIDGLGTYSC+[57]VGVFK	HPDP	
GSHR_MOUSE	P47791	C256		NFDSLASSNC+[57]TEELENAGVEVLK	HPDP	
GSHR_MOUSE	P47791	C85		AAVVESHLGGLGTSC+[125]VNVGC+[329]VPK	IodoTMT6	
GSHR_MOUSE	P47791	C85		LGGTC+[125]VNVGC+[329]VPK	IodoTMT6	
GSTK1_MOUSE	Q9DCM2	C176		LIENRTDAAC+[57]K	HPDP	
H8K_MOUSE	P14428	C317		GGDYALAPGQSQTSDLSPDC+[329]K	IodoTMT6	
HDAC1_MOUSE	O09106	C408		ISIC+[57]SSDKR	HPDP	
HEMO_MOUSE	Q91X72	C458		SLPPQKVKNSILGC+[57]SQ	HPDP	
HEMO_MOUSE	Q91X72	C458		VNSILGC+[57]SQ	HPDP	
HEMO_MOUSE	Q91X72	C364		ELGSPGSGSLETIDAFSC+[329]PGSSR	IodoTMT6	
HEMO_MOUSE	Q91X72	C458		SLPPQKVKNSILGC+[329]SQ	IodoTMT6	
HIF1N_MOUSE	Q8BLR9	C236		RC+[125]ILDPDQFEC+[57]LYPVVPHHPC+[329]DR	IodoTMT6	
HIF1N_MOUSE	Q8BLR9	C236		RC+[125]ILDPDQFEC+[57]LYPVVPHHPC+[329]DR	IodoTMT6	
HMCS2_MOUSE	P54869	C96, C106		MGF+[57]SVQEDINSLC+[57]LTVVQR	HPDP	
HNR1L1_MOUSE	Q8VDM6	C533		KAIIVC+[329]PTDTEKLKD	IodoTMT6	
HNR1L1_MOUSE	Q8VDM6	C533		AIVC+[329]PTDTEKLKD	IodoTMT6	
HNRPD_MOUSE	Q60668	C126		FGEVVVC+[57]TLK	HPDP	
HNRPL_MOUSE	Q8R081	C578		LC+[57]FSTQHAS	HPDP	
HNRQP_MOUSE	Q7TMK9	C289		GFC+[57]FLEYEDHK	HPDP	
HNRPU_MOUSE	Q8VEK3	C583		KAVVVC+[57]PK	HPDP	
HNRPU_MOUSE	Q8VEK3	C583		AVVVC+[57]PKDEDYK	HPDP	
HPRT_MOUSE	P00493	C106		SYC+[57]NDQSTGDIK	HPDP	
Protein	Accession	Position	Sequence	Modification	Modification	
----------	-----------	----------	----------	--------------	--------------	
HPRT_MOUSE	P00493	C206	DLNHVC[+57]VISETGK	HPDP		
HPS6_MOUSE	Q8BLY7	C180	TLETSGEAGTKLGC[+329]THILLHHCPLFGLIASR	IodoTMT6		
HPS6_MOUSE	Q8BLY7	C692	LLLAEFAQHRRLDHALPLLCLC[+329]R	IodoTMT6		
HSP72_MOUSE	P17156	C606	VC[+57]NPIISK	HPDP		
HSP74_MOUSE	Q61316	C167	SVMDATQIAGLN[+329]LR	IodoTMT6		
HSP7C_MOUSE	P63017	C17	GPAVGIDLGTYSC[+57]VGVFQHGK	HPDP		
HSP7C_MOUSE	P63017	C603	VC[+57]NPIITK	HPDP		
HXK2_MOUSE	O08528	C375	IC[+57]QIVSTR	HPDP		
I17RB_MOUSE	Q9JIP3	C12	MLLVLLLILAC[+329]RSALPR	IodoTMT6		
ICAL_MOUSE	P51125	C408	C[+329]GEDEDTVPAEYR	IodoTMT6		
IDHC_MOUSE	O88844	C73	C[+57]ATITPDEK	HPDP		
IF2G_MOUSE	Q9Z0N1	C105	SC[+57]GSSTPDEFPTDPGTK	HPDP		
IF2G_MOUSE	Q9Z0N1	C105	SC[+329]GSSTPDEFPTDPGTK	IodoTMT6		
IF4B_MOUSE	Q8BGD9	C543	VDVVGATQGGAGSC[+57]SR	HPDP		
IF4B_MOUSE	Q8BGD9	C543	VDVVGATQGGAGSC[+329]SR	IodoTMT6		
IF5_MOUSE	P59325	C122	KQTIGNSC[+329]K	IodoTMT6		
IGHM_MOUSE	P01872	C453	STGKPTLYNVS[+16]SDTGGTC[+329]Y	IodoTMT6		
IGHM_MOUSE	P01872	C453	STGKPTLYNVS[329]SDTGGTC[+329]Y	IodoTMT6		
IGHM_MOUSE	P01872	C88	SILEGSDEYLV[+329]K	IodoTMT6		
IGKC_MOUSE	P01837	C106	SFNRNEC[+57]	HPDP		
IGKC_MOUSE	P01837	C86	HNSYT[+57]EATHK	HPDP		
IL19_MOUSE	Q8CJ70	C5,C18	KTQC[+329]ASTWLLGM[+16]TLILC[+329]SVHIYSLRR	IodoTMT6		
INADL_MOUSE	Q63ZW7	C1406	ESESPDAAC[+57]QIK	HPDP		
INL1_MOUSE	Q8CGK5	C81	TGWRPVEHCAGI[329]ALVC[+329]PLMCLKK	IodoTMT6		
INSL1_MOUSE	Q63ZV0	C482	GAQERHLRLLHAQQVFPC[+329]K	IodoTMT6		
IRGQ_MOUSE	Q8VIM9	C370	AGIGSDGC[+57]TAAR	HPDP		
KBL_MOUSE	O88986	C26	C[+57]IDLSELEGIR	HPDP		
KBTBD_MOUSE	Q8C828	C337	GRLFVCLWRP[329]ADITAVVEYVQMDKWL[329]VAELC[+329]R	IodoTMT6		
KCY_MOUSE	Q9DBP5	C20	KPLVVFVLGPGAGKGTQC[+329]AR	IodoTMT6		
KINH_MOUSE	Q61768	C632	ELAAC[+57]QLR	HPDP		
KNG1_MOUSE	O08677	C339	ESNT[57]LEAED[+57]EIK	HPDP		
KNG1_MOUSE	O08677	C125	ENEFFIVTQTC[+329]K	IodoTMT6		
Gene Name	Accession	Position	Modification	Tag		
-----------------	-----------	----------	--------------	--------------		
KNG1_MOUSE	O08677	C369	C(+329)QALDMTEMAR	IodoTMT6		
KPCI_MOUSE	Q62074	C190	LVTIEC(+57)GR	HPDP		
KPYM_MOUSE	P52480	C423, C424	C(+57)C(+57)SGAIIVLTK	HPDP		
KPYM_MOUSE	P52480	C49	NTGIIC(+57)TIGPASR	HPDP		
KPYM_MOUSE	P52480	C423	C(+329)C(+125)SGAIIVLTK	IodoTMT6		
KPYM_MOUSE	P52480	C424	C(+125)C(+329)SGAIIVLTK	IodoTMT6		
KPYM_MOUSE	P52480	C49	NTGIIC(+329)TIGPASR	IodoTMT6		
KPYR_MOUSE	P53657	C360, C369	VFLAQKMMIMRGC(+329)NLAGKPVVC(+329)ATQMLESMITK	IodoTMT6		
KT3K_MOUSE	Q8K274	C11	ELGC(+57)SSVK	HPDP		
LAC3_MOUSE	P01844	C103	SLSPAEC(+329)L	IodoTMT6		
LAMA5_MOUSE	Q61001	C69	ITASATC(+57)GEEAPTR	HPDP		
LAMA5_MOUSE	Q61001	C69	ITASATC(+329)GEEAPTR	IodoTMT6		
LAMB1_MOUSE	P02469	C643	C(+329)GNTVPDDNQVVSGLPSGR	IodoTMT6		
LAMC1_MOUSE	P02468	C349	SQEC(+329)YFDPELYR	IodoTMT6		
LAS1L_MOUSE	A2BE28	C488	VC(+57)SIYTNENGGLAK	HPDP		
LAT2_MOUSE	Q9QXW9	C209	LLALALIIIM(+16)GIVQIC(+329)K	IodoTMT6		
LAT4_MOUSE	Q8CGA3	C295	LC(+57)LSTVDEVK	HPDP		
LCAP_MOUSE	Q8C129	C305	SAFPC(+57)FDEPAFK	HPDP		
LDHA_MOUSE	P06151	C35	ITVVGVGAVGMAC(+57)AISILMK	HPDP		
LDHB_MOUSE	P16125	C36	ITVVGVGQVGMAC(+57)AISILGK	HPDP		
LEG2_MOUSE	Q9CQW5	C57	FDESTIVC(+57)NTSEGGR	HPDP		
LEG9_MOUSE	O08573	C258	C(+57)GGDIAFLHPR	HPDP		
LIPB2_MOUSE	O35711	C398	C(+57)VDGNQLSPVGEPK	HPDP		
LKHA4_MOUSE	P24527	C147	AILPC(+57)QDTPSVK	HPDP		
LKHA4_MOUSE	P24527	C147	AILPC(+329)QDTPSVK	IodoTMT6		
LKHA4_MOUSE	P24527	C17	PEVADTC(+125)SLASPASVC(+329)R	IodoTMT6		
LMCD1_MOUSE	Q8VEE1	C246	EVEYVC(+125)ELC(+329)K	IodoTMT6		
LMNA_MOUSE	P48678	C522	AQNTWGC(+57)GSSLR	HPDP		
LMNA_MOUSE	P48678	C590, C593	TVLC(+57)GTC(+57)GQPADK	HPDP		
LMNB2_MOUSE	P21619	C190	C(+57)QSLQEELAFSK	HPDP		
LONP2_MOUSE	Q9DBN5	C405	IALGGVC(+57)DQSDIR	HPDP		
Protein Name	Accession	Start	Stop	Description	Modification	
--------------	-----------	-------	------	-------------	--------------	
LR16A_MOUSE	Q6EDY6	C1360	C1360	C[+329]SDSGEEAEKEFIFV	IodoTMT6	
LRC47_MOUSE	Q505F5	C544	C544	DGQC[+57]PLVVEQVR	HPDP	
LRC59_MOUSE	Q922Q8	C131	C131	VAGDC[+57]LDEK	HPDP	
LRCH4_MOUSE	Q921G6	C454	C454	AAGAGASAPSTQATC[+57]NGPPK	HPDP	
LRP1B_MOUSE	Q9JI18	C1540	C1540	GPC[+329]SHLCLINHNSAACAC[+125]PHLM[+16]KLSSDK	IodoTMT6	
LRP2_MOUSE	A2ARV4	C2518	C2518	AIVLDPC[+57]R	HPDP	
LRP2_MOUSE	A2ARV4	C2713	C2713	C[+57]ISQDWK	HPDP	
LRP2_MOUSE	A2ARV4	C2830	C2830	C[+329]QTTTNIC[+57]VPR	IodoTMT6	
LSM7_MOUSE	Q9CQQ8	C76	C76	QLGLVVC[+329]R	IodoTMT6	
LSM7_MOUSE	Q9CQQ8	C76	C76	LTEDTRQLGLVVC[+329]R	IodoTMT6	
LTBP4_MOUSE	Q8K4G1	C1393	C1393	RC[+125]VSNESQSLDDNLGVC[+329]WQEVPDLVC[+329]SR	IodoTMT6	
LY6C2_MOUSE	P0CW02	C53	C53	ASDGFC[+329]IAQNIIEQDERSQR	IodoTMT6	
MA7D1_MOUSE	A2AJI0	C363	C363	THPSAAVPVC[+57]PR	HPDP	
MAGI3_MOUSE	Q9EQJ9	C1439	C1439	AGC[+57]TPQSSSLVK	HPDP	
MFOX_MOUSE	P06801	C415	C415	AEC[+57]SAYQC[+125]YK	HPDP	
MFOX_MOUSE	P06801	C415	C420	AEC[+57]SAYQC[+57]YK	HPDP	
MFOX_MOUSE	P06801	C415	C415	AEC[+329]SAYQC[+125]YK	IodoTMT6	
MAP1B_MOUSE	P14873	C1913	C1913	SPC[+329]DSGYSETIIEK	IodoTMT6	
MAP2_MOUSE	O08663	C121	C121	VQTDPPSVPIC[+57]DLYPNGVFPK	HPDP	
MAP4_MOUSE	P27546	C636	C636	ETPGSQPSEPC[+57]SGVSR	HPDP	
MARC2_MOUSE	Q922Q1	C301	C301	LC[+57]DPSVK	HPDP	
MCEE_MOUSE	Q9DI15	C168	C168	DC[+57]GGVLVELEQA	HPDP	
MD1L1_MOUSE	Q9WTX8	C233	C233	LC[+57]LQEQDAAVVK	HPDP	
MDFC_MOUSE	P14152	C137	C137	KSVKIVVGNPANTNC[+329]LTASK	IodoTMT6	
MDFC_MOUSE	P14152	C137	C137	SVKIVVGNPANTNC[+329]LTASK	IodoTMT6	
MDFC_MOUSE	P14152	C137	C137	VIVVGNPANTNC[+329]LTASK	IodoTMT6	
MDR1A_MOUSE	P21447	C638	C638	LVMTQTAGNEIEGNEA[+329]K	IodoTMT6	
MET7B_MOUSE	Q9DI20	C96	C96	VTC[+57]VDPNPNFKE	HPDP	
MFAP3_MOUSE	Q922T2	C241	C241	SVPLPPLINCN[+329]RAFVEEMFEAVR	IodoTMT6	
MFN1_MOUSE	Q8IU15	C681	C681	LC[+57]QQVDVTRK	HPDP	
Protein	Accession	Position	Modifications	Tag		
--------------	-----------	----------	---	----------		
MFNG_MOUSE	O09008	C18	HC+[57]RLFRGM+[+16]AGALFTLLC+[+329]VGLLSLR	IodoTMT6		
MICA1_MOUSE	Q8VDP3	C82	ASQPVYQQGQAC+[+57]TNTK	HPDP		
MPR1_MOUSE	Q07113	C1910	SYDEC+[+329]VLEGR	IodoTMT6		
MPRIP_MOUSE	P97434	C723	EGYVLQATC+[+57]ER	HPDP		
MT1_MOUSE	P02802	C44	C+[+329]AQGC+[+125]VC+[+125]K	IodoTMT6		
MT1_MOUSE	P02802	C44	C+[+329]AQGC+[+57]VC+[+57]K	IodoTMT6		
MT1_MOUSE	P02802	C50	C+[+125]AQGC+[+125]VC+[+329]K	IodoTMT6		
MT1_MOUSE	P02802	C50	C+[+125]AQGC+[+57]VC+[+329]K	IodoTMT6		
MT2_MOUSE	P02798	C44, C48, C50	C+[+57]SQGC+[+57]IC+[+57]K	HPDP		
MT2_MOUSE	P02798	C54, C56	C+[+125]SQGC+[+57]IC+[+57]K	HPDP		
MT2_MOUSE	P02798	C33	SC+[+329]C+[+57]SC+[+125]C+[+57]PVGC+[+57]AK	IodoTMT6		
MT2_MOUSE	P02798	C33, C41	SC+[+329]C+[+57]SC+[+125]C+[+57]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C33, C41	SC+[+329]C+[+125]SC+[+125]C+[+57]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C34, C41	SC+[+125]C+[+329]SC+[+125]C+[+125]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C36, C41	SC+[+57]C+[+125]SC+[+329]C+[+57]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C37, C41	SC+[+57]C+[+57]SC+[+125]C+[+329]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C41	SC+[+57]C+[+57]SC+[+125]C+[+57]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C41	SC+[+57]C+[+125]SC+[+329]C+[+57]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C41	SC+[+125]C+[+57]SC+[+329]C+[+57]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C41	SC+[+57]C+[+57]SC+[+125]C+[+57]PVGC+[+329]AK	IodoTMT6		
MT2_MOUSE	P02798	C44	C+[+329]SQGC+[+125]IC+[+125]K	IodoTMT6		
MT2_MOUSE	P02798	C44	C+[+329]SQGC+[+57]IC+[+125]K	IodoTMT6		
MT2_MOUSE	P02798	C50	C+[+125]SQGC+[+125]IC+[+329]K	IodoTMT6		
MT2_MOUSE	P02798	C50	C+[+125]SQGC+[+57]IC+[+329]K	IodoTMT6		
MTCH2_MOUSE	Q791V5	C79	LC+[+57]SGVLGTIVHGK	HPDP		
MTMR2_MOUSE	Q9Z2D1	C95	DVTYIC+[+57]PFTGAVR	HPDP		
MTMR7_MOUSE	Q9Z2C9	C158	VC+[+57]DSYPTELYVPR	HPDP		
MTMR7_MOUSE	Q9Z2C9	C68	QATTATGC+[+57]PLLIR	HPDP		
MTMR9_MOUSE	Q9Z2D0	C392	C+[+125]AQSAYC+[+57]SSK	HPDP		
MTMRA_MOUSE	Q7TPM9	C703	SGPLEAC+[+57]YAELDQSR	HPDP		
Species	Accession	SwissProt	Modification	Tag		
-------------	-----------	-----------	---------------	------		
MTNB_MOUSE	Q9WVQ5	C187	MAHAMNEYPDSC[+329]AVLVR	IodoTMT6		
MTNB_MOUSE	Q9WVQ5	C187	MAHAMNEYPDSC[+329]AVLVR	IodoTMT6		
MTR1L_MOUSE	O88495	C363	AC[+57]VAVEGTPR	HPDP		
MTUS1_MOUSE	Q5HZI1	C823	SLC[+57]IQTQTAPDVLSSER	HPDP		
MYG_MOUSE	P04247	C67	HGC[+57]TVLTAULGTILK	HPDP		
MYH9_MOUSE	Q8VDD5	C740	QAC[+57]VLMIK	HPDP		
MYH9_MOUSE	Q8VDD5	C816	NC[+57]AAYLR	HPDP		
MYH9_MOUSE	Q8VDD5	C896	LQLQEQQLQAETELC[+57]AEAEELR	HPDP		
MYH9_MOUSE	Q8VDD5	C988	KLEEDQIIM[+16]EDQNC[+329]K	IodoTMT6		
MYH9_MOUSE	Q8VDD5	C988	LKKLEEDQIIMEDQNC[+329]K	IodoTMT6		
MYH9_MOUSE	Q8VDD5	C988	KLEEDQIIMEDQNC[+329]K	IodoTMT6		
MYH9_MOUSE	Q8VDD5	C988	LEEDQIIM[+16]EDQNC[+329]K	IodoTMT6		
MYH9_MOUSE	Q8VDD5	C988	LEEDQIIMEDQNC[+329]K	IodoTMT6		
MYL3_MOUSE	P09542	C191	LMAQGEDSNGC[+57]INYEAFVK	HPDP		
MYL6_MOUSE	Q60605	C32	ILYSQC[+57]GDVM[+16]R	HPDP		
MYL6_MOUSE	Q60605	C32	ILYSQC[+57]GDVMR	HPDP		
MYO1E_MOUSE	E9Q634	C960	AAPAPPGC[+57]HQNGVIR	HPDP		
MYOF_MOUSE	Q69ZN7	C1540	ELPDSVPQEC[+57]TVR	HPDP		
MYOF_MOUSE	Q69ZN7	C409	VC[+57]TNIIER	HPDP		
MYOF_MOUSE	Q69ZN7	C409	KVC[+57]TNIIER	HPDP		
MYOM1_MOUSE	Q62234	C656	C[+57]DVGAENWQR	HPDP		
MYOTI_MOUSE	Q9JIF9	C321	ASDAGPYAC[+57]VAR	HPDP		
MYPC3_MOUSE	O70468	C1204	SIIAGYNAILC[+125]C[+57]AVR	HPDP		
NAL9B_MOUSE	Q66X22	C891,C907,C90	QLC[+57]EALSHPNC[+329]NLEC[+57]LGLDLCEFTSDC[+329]C	IodoTMT6		
NARFL_MOUSE	Q7TMW6	C270	DVDC[+57]VLTTGEVFR	HPDP		
NDKA_MOUSE	P15532	C145	SC[+329]AQNWYE	IodoTMT6		
NDKB_MOUSE	Q01768	C145	SC[+329]AHDWVYE	IodoTMT6		
NDUV1_MOUSE	Q91YT0	C125	YLVVVNADEGEPTGC[+329]K	IodoTMT6		
NET1_MOUSE	O09118	C17	M[+16]MRAVWEALAAAVAC[+329]LVGAVR	IodoTMT6		
NEXN_MOUSE	Q7TPW1	C585	GETYC[+125]LYLPETFPEDGGEYMC[+329]K	IodoTMT6		
NHRF1_MOUSE	P70441	C201	IVEVNGVC[+57]M[+16]EGK	HPDP		
NHRF1_MOUSE	P70441	C201	IVEVNGVC[+57]MEGK	HPDP		
Protein	Accession	Start	End	Sequence	Modification	Tag
------------	-----------	-------	------	------------------------------------	--------------	--------
NID1 MOUSE	P10493	C1232	C[+329]PDNTLGVDC[+57]IER	IodoTMT6		
NIPA MOUSE	Q80YV2	C405	LC[+57]SSSSSDTSPR	HPDP		
NIT1 MOUSE	Q8VDK1	C247, C255	AIESQC[+57]YVIAAAQC[+57]GR	HPDP		
NKA14 MOUSE	Q9JM4G	C8,C14	C[+329]TLLALC[+329]ALQLVTALER	IodoTMT6		
NL1B2 MOUSE	A1Z198	C330	QIFGIKALMMVESNPVLTLCCEVPWVCWLVC[+329]NC[+125]	IodoTMT6		
NMDZ1 MOUSE	P35438	C459	KVIC[+125]TPGNDTSQGSPRHTVPQC[+125]C[+125]YGFC[+329]	IodoTMT6		
NOP58 MOUSE	Q6DFW4	C439	TYDPKGDSLPTC[+57]SK	HPDP		
NPAR4 MOUSE	Q8BGD7	C149	QQLTM[+16]PSALADRLFRC[+329]R	IodoTMT6		
NRDC MOUSE	Q8BH61	C685	AFDC[+57]PETEYPAK	HPDP		
NSF MOUSE	P46460	C11	C[+57]PTDELSLSNC[+125]AVNKEK	HPDP		
NSF MOUSE	P46460	C11, C21	C[+57]PTDELSLSNC[+57]AVVNEK	HPDP		
NTKL MOUSE	Q9EQC5	C241	SLVTHY[+329]ELVGANPKVRPNPARFLQNCR	IodoTMT6		
NUMA1 MOUSE	E9Q7G0	C728	AADALKEQQC[+57]R	HPDP		
NUMB MOUSE	Q9QZS3	C176	EC[+57]GVTATFDASR	HPDP		
OBSCN MOUSE	A2AAJ9	C3100	GTLTLQC[+57]EVSDPEAR	HPDP		
OBSCN MOUSE	A2AAJ9	C3864	SLTIADAGEYLC[+57]TC[+125]GQEK	HPDP		
OBSCN MOUSE	A2AAJ9	C4816	DLTVETDGEYSC[+57]TC[+125]GQER	HPDP		
OBL1 MOUSE	D3YYU8	C149	GEEVVLTC[+57]QVGGLEPPK	HPDP		
OC90 MOUSE	Q9Z0L3	C371	QVG[+329]LHGRRSQSSSVCEDHAMAK	IodoTMT6		
OSBL1 MOUSE	Q91XL9	C520	DC[+57]GGGDALNSGIK	HPDP		
OBP1 MOUSE	Q3B7Z2	C222	VEDLSTC[+57]NDLIAK	HPDP		
OESM MOUSE	Q9D404	C86	NIPC[+57]SVAAAVPR	HPDP		
P3H1 MOUSE	Q3V1T4	C648	TVTAEVQPOQC[+57]GR	HPDP		
PA2G4 MOUSE	P50580	C49	SLVEASSSGVSVLSLC[+57]EK	HPDP		
PACN2 MOUSE	Q9WVE8	C465	IEEDEEQGWC[+329]K	IodoTMT6		
PACN2 MOUSE	Q9WVE8	C465	AGDELTKIEDEEQGWC[+329]K	IodoTMT6		
PAFA MOUSE	Q60963	C290	C[+329]GVALDPWMYPVNEELYSR	IodoTMT6		
PAFA MOUSE	Q60963	C290	C[+329]GVALDPWM[+16]YPVNEELYSR	IodoTMT6		
PAFA MOUSE	Q60963	C290	C[+329]GVALDPWMYPVNEELYSR	IodoTMT6		
PARK7 MOUSE	Q99LX0	C53	DVMIC[+57]PDTSLEDAD	HPDP		
PARK7 MOUSE	Q99LX0	C58	DVM[+16]IC[+57]PDTSLEDAD	HPDP		
PARK7_MOUSE	Q99LX0	C53	DVMIC[+329]PDTSLEDAD	IodoTMT6		
Gene Symbol	Accession	Start	End	Sequence	Modification	Modification Type
-------------	-----------	-------	-------	-----------------------------------	-------------	-------------------
PAXL_MOUSE	Q8VI36	C108		NSSASNTQDGVGSLCL+[329]SR		IodoTMT6
PCBP1_MOUSE	P60335	C109		LVVPATQC+[57]GSLIGK		HPDP
PCCB_MOUSE	Q99MN9	C271		AFDNVDVDALC+[57]NLR		HPDP
PDC6L_MOUSE	Q9WU78	C40		FIQQTYPGGEEQAQYC+[57]R		HPDP
PDI A5_MOUSE	Q921X9	C449	C454	IAC+[57]AAVDC+[57]VK		HPDP
PDI A5_MOUSE	Q921X9	C449	C454	KIAC+[57]AAVDC+[57]VK		HPDP
PDI A5_MOUSE	Q921X9	C463		DKNQDLC+[57]QQEAVK		HPDP
PDLI1_MOUSE	O70400	C73		GC+[57]ADNM+[16]TLTVSR		HPDP
PDLI1_MOUSE	O70400	C73		GC+[57]ADNMTLTVSR		HPDP
PDLI5_MOUSE	Q8CI51	C73		AC+[57]TGSLNMTLQR		HPDP
PDLI5_MOUSE	Q8CI51	C73		AC+[57]TGSLNM+[16]TLQR		HPDP
PEA15_MOUSE	Q62048	C27		SAC+[57]KEDIPSEK		HPDP
PEG10_MOUSE	Q7TN75	C521		SIVFNSDYC+[57]R		HPDP
PEG10_MOUSE	Q7TN75	C521		SIVFNSDYC+[329]R		HPDP
PEG3_MOUSE	Q3URU2	C383		EC+[57]GETFSR		HPDP
PELP1_MOUSE	Q9DBD5	C202		AC+[57]VTYFPR		HPDP
PELP1_MOUSE	Q9DBD5	C523		NaNSDVC+[57]AAALR		HPDP
PEPD_MOUSE	Q11136	C183		FNVNNTILHPEIVEC+[329]R		IodoTMT6
PEPD_MOUSE	Q11136	C183		EASFEGISKFNVNNTILHPEIVEC+[329]R		IodoTMT6
PEPD_MOUSE	Q11136	C482		TVEEEEAC+[125]MAGC+[329]DK		IodoTMT6
PEPD_MOUSE	Q11136	C58		YC+[329]TDTSIIFR		IodoTMT6
PEPL1_MOUSE	Q6NSR8	C357		LVLADGVSYAC+[57]K		HPDP
PFD3_MOUSE	P61759	C8		DGC+[57]GLETAAGNGR		HPDP
PFKAP_MOUSE	Q9WUA3	C410		SNC+[57]NVAVINVGAAPAGMNAAVR		HPDP
PFKAP_MOUSE	Q9WUA3	C410		SNC+[329]NVAVINVGAAPAGMNAAVR		IodoTMT6
PGBM_MOUSE	Q05793	C1628		TC+[57]ESLGAAGYR		HPDP
PGBM_MOUSE	Q05793	C2456		DITLEC+[57]ISSGEPR		HPDP
PGBM_MOUSE	Q05793	C1530		ALEVVEC+[329]R		IodoTMT6
PGBM_MOUSE	Q05793	C2456		DITLEC+[329]ISSGEPR		IodoTMT6
PGBM_MOUSE	Q05793	C479		EADQGAYTC+[329]EAMNSR		IodoTMT6
PGBM_MOUSE	Q05793	C892		GSLGTSGETC+[329]R		IodoTMT6
PGFS_MOUSE	Q9DB60	C44,C47		AC+[57]VVAGLRRFGC+[329]MVC+[329]R		IodoTMT6
Protein	Accession	C terminus	Modifications	Tags		
----------	-----------	------------	---------------	----------		
PGS1_MOUSE	P28653	C77	VVQC[+57]SDLGLK	HPDP		
PHAG1_MOUSE	Q3U1F9	C423	ESDYESIGDLQQC[+57]R	HPDP		
PHAG1_MOUSE	Q3U1F9	C423	ESDYESIGDLQQC[+329]R	IodoTMT6		
PIPNB_MOUSE	P53811	C187	ELANTPDC[+57]PR	HPDP		
PKHA7_MOUSE	Q3UIL6	C969	DREQGQC[+57]VNGDLK	HPDP		
PKHM1_MOUSE	Q7TSI1	C464	SAAGLC[+57]TSPVQDTPESR	HPDP		
PKP3_MOUSE	Q9QY23	C129	SAVDLTC[+57]SR	HPDP		
PLEC_MOUSE	Q9QXS1	C1386	QEIQIQAQVPIANC[+57]QAAR	HPDP		
PLEC_MOUSE	Q9QXS1	C4267	C[+125]ITDPQTGLC[+57]LLPLKEK	HPDP		
PLEC_MOUSE	Q9QXS1	C4267	C[+125]ITDPQTGLC[+57]LLPLK	HPDP		
PLRG1_MOUSE	Q922V4	C208	C[+57]IAVEPGNQWFTGSADR	HPDP		
PLRG1_MOUSE	Q922V4	C263	SPYLFSC[+329]GEDK	IodoTMT6		
PMGE_MOUSE	P15327	C145	VC[+57]DVPLDQLPR	HPDP		
PP2AB_MOUSE	P63330	C269	C[+329]GNQAAIMELDDTLK	IodoTMT6		
PP4P1_MOUSE	Q3TWL2	C94	VC[+57]QSPINVEGK	HPDP		
PP4R1_MOUSE	Q8K2V1	C385	LESLEGIC[+57]AAK	HPDP		
PP6R3_MOUSE	Q922D4	C815	C[+329]TAPLTPSSSPEQR	HPDP		
PPBT_MOUSE	P09242	C119	TYNTNAQVPDSAGTATAYLC[+329]GVK	IodoTMT6		
PPIA_MOUSE	P17742	C161	KITISDC[+57]GQL	HPDP		
PPIA_MOUSE	P17742	C161	ITISDC[+57]GQL	HPDP		
PPIA_MOUSE	P17742	C161	TSKKITISDC[+57]GQL	HPDP		
PPIA_MOUSE	P17742	C67	IIIPGFMC[+16]C[+57]QGGDFTR	HPDP		
PPIA_MOUSE	P17742	C161	KITISDC[+329]GQL	IodoTMT6		
PPIA_MOUSE	P17742	C62	IIIPGFMC[+329]QGGDFTR	IodoTMT6		
PPIG_MOUSE	A2AR02	C174	ILSC[+57]GELIPK	HPDP		
PPIG_MOUSE	A2AR02	C308	EC[+57]NPPNSQPASYQR	HPDP		
PPME1_MOUSE	Q8BVQ5	C238	QC[+57]EGITSPEGSK	HPDP		
PPP5_MOUSE	Q60676	C404	GVSC[+57]QFGPDVTK	HPDP		
PPP5_MOUSE	Q60676	C221	EVLC[+329]KLSTLVENTTLK	IodoTMT6		
PPR3F_MOUSE	Q9JIG4	C419	ILPATC[+57]GLGGPPR	HPDP		
Protein Name	Accession	C Feature	Description	Tag	Notes	
--------------	-----------	-----------	-------------	-----	-------	
PR8A9_MOUSE	Q9CQ58	C101	AGTYC[+57]HSTLSNPPDR	HPDP		
PRAP1_MOUSE	Q80XD8	C9	RFLLATC[+329]LVAALLWEAGAAPAHQPVK	IodoTMT6		
PRD13_MOUSE	E9PZZ1	C653	THTGYKPLKC[+125]KVC[+329]LRPGDPSNLNK	IodoTMT6		
PRDX4_MOUSE	O08807	C54	ENEC[+329]HYAGGQVYPGEASR	IodoTMT6		
PRDX5_MOUSE	P99029	C200	ALNVEPDGTGLTC[+57]SLAPNILSQL	HPDP		
PRDX5_MOUSE	P99029	C96	GVLFGVPGAFTPVC[+57]SK	HPDP		
PRDX6_MOUSE	O08709	C47	DFTPVC[+329]TTTELGR	HPDP		
PRDX6_MOUSE	O08709	C47	DFTPVC[+329]TTTELGR	HPDP		
PRP19_MOUSE	Q99KP6	C298	IWSVPNTSC[+57]VQVVR	HPDP		
PRS40_MOUSE	A6H6T1	C60	STLSLSEVC[+57]GK	HPDP		
PRS6A_MOUSE	O88685	C399	C[+125]TDDFNGAQC[+329]K	IodoTMT6		
PRS7_MOUSE	P46471	C377	LC[+57]PNSTGAEIR	HPDP		
PRS7_MOUSE	P46471	C389	SVC[+57]TEAGMFAIR	HPDP		
PRS7_MOUSE	P46471	C389	SVC[+57]TEAGM[+16]FAIR	HPDP		
PSA6_MOUSE	Q9QUM9	C154, C161	SVC[+57]DPAGYYC[+57]GFK	HPDP		
PSA6_MOUSE	Q9QUM9	C154, C161	SVC[+57]DPAGYYC[+57]GFK	HPDP		
PSA6_MOUSE	Q9QUM9	C167	SVC[+57]DPAGYYC[+57]GFK	HPDP		
PSD13_MOUSE	Q9WVJ2	C114	SSDEAVILC[+329]KTAIGALK	IodoTMT6		
PTGR1_MOUSE	Q91YR9	C251	TGPC[+57]PQGPAEVPVIIQQLR	HPDP		
PTN1_MOUSE	P35821	C32	HEASDFPC[+57]K	HPDP		
PUR2_MOUSE	Q64737	C41	QVVLVAPGNAGTC[+57]AGK	HPDP		
PUR4_MOUSE	Q5SUR0	C270	FC[+57]DNSSAIQGK	HPDP		
PUR9_MOUSE	Q9CWJ9	C434	YTQSNVSC[+57]YAK	HPDP		
PURA2_MOUSE	P46664	C58	VVDLLAQDADV[+57]R	HPDP		
PZP_MOUSE	Q61838	C933	EQTYNITLLC[+329]PQDTELQDNWSLELPVVEGSA	IodoTMT6		
QCR1_MOUSE	Q9CZ13	C268	VYEEDAVPGLTCP[+329]R	IodoTMT6		
RABL6_MOUSE	Q5U3K5	C501	VAPQQC[+57]SEPETK	HPDP		
RACK1_MOUSE	P68040	C153	YTVQDESHEVSVC[+57]VR	HPDP		
RAEI1_MOUSE	Q8C570	C106	VFTASC[+57]DK	HPDP		
RB33B_MOUSE	O35963	C48	IIIVGDSNVGKTC[+329]LTYRFCA	IodoTMT6		
RB6I2_MOUSE	Q99M11	C258	TGEPC[+57]VAELTEENFQR	HPDP		
RBMS2_MOUSE	Q8VC70	C217	TPGVAAPSDLPLL[+57]K	HPDP		
Protein Name	Accession	Cysteine	Modulation	Mass Tag	Notes	
--------------	-----------	----------	------------	----------	---------	
RBX1_MOUSE	P62878	C94	QVC[+57]PLDNR		HPDP	
RENBP_MOUSE	P82343	C250	DGQVVLENVSEDGKELPGC[+57]LGR		HPDP	
RFLB_MOUSE	Q5SVDO	C88	LC[+57]PLSFEGEVFDPLPPK		HPDP	
RHG01_MOUSE	Q5FWK3	C91	IIVFSAC[+57]R		HPDP	
RHG10_MOUSE	Q6Y5D8	C587	TSPDITFAEPTC[+57]LSASPPNAPP		HPDP	
RHG29_MOUSE	Q8CGF1	C1152	SSDSC[+57]PATAVR		HPDP	
RHOA_MOUSE	Q9QU10	C164	IGAFGYM[+16]EC[+57]SAK		HPDP	
RL12_MOUSE	P35979	C141	EILGTAQSVGC[+57]NVDGR		HPDP	
RL12_MOUSE	P35979	C17	C[+57]TGGEVGATSALAPK		HPDP	
RL12_MOUSE	P35979	C17	C[+329]TGGEVGATSALAPK	IodoTMT6	HPDP	
RL13A_MOUSE	P19253	C38	C[+57]EGNISGNFYR		HPDP	
RL18A_MOUSE	P62717	C64	SSGEIVYC[+57]GQVF		HPDP	
RL18A_MOUSE	P62717	C64	SSGEIVYC[+329]GQVFESPLR	IodoTMT6	HPDP	
RL23_MOUSE	P62830	C125	EC[+57]ADLWPR		HPDP	
RL27A_MOUSE	P14115	C144	GVGGAC[+57]VLVA		HPDP	
RL28_MOUSE	P41105	C13	NC[+57]SSFLIK		HPDP	
RL28_MOUSE	P41105	C13	NC[+57]SSFLIKR		HPDP	
RL30_MOUSE	P62889	C92	VC[+57]TLAIDPGDSDIIR		HPDP	
RL30_MOUSE	P62889	C52	LVILANNC[+329]PALR	IodoTMT6	HPDP	
RL30_MOUSE	P62889	C92	VC[+329]TLAIDPGDSDIIR	IodoTMT6	HPDP	
RL36A_MOUSE	P47964	C48	EVC[+57]GFAPYER		HPDP	
RL36A_MOUSE	P83882	C72, C77	LEC[+57]VEPNC[+57]R		HPDP	
RL37A_MOUSE	P61514	C48	YTC[+125]SFC[+57]GK		HPDP	
RL37A_MOUSE	P61514	C42	YTC[+125]SFC[+329]GK	IodoTMT6	HPDP	
RL4_MOUSE	Q9D8E6	C101	SGQGAFGM[+16]C[+57]R		HPDP	
RL4_MOUSE	Q9D8E6	C208	GPC[+57]IIYNEDNGI		HPDP	
RL7A_MOUSE	P12970	C182	MGVPYC[+57]IIK		HPDP	
RL9_MOUSE	P51410	C134	TGVAC[+57]SVSQAQK		HPDP	
RLA0_MOUSE	P14869	C119	AGAIAP[+57]EVTVPQAQTGLGPEK		HPDP	
RLA0_MOUSE	P14869	C119	AGAIAP[+329]EVTVPQAQTGLGPEK	IodoTMT6	HPDP	
RLA0_MOUSE	P14869	C119	AGAIAP[+329]EVTVPQAQTGLGPEKTSFFQALGITT	IodoTMT6	HPDP	
Gene	Protein ID	Length	Sequence	Label		
----------	------------	--------	----------	-------		
RLA0_MOUSE	P14869	C119	AGAIAP+[329]EVTVPAQNTGLGPEKTSFFQALGITT K	IodoTMT6		
RN126_MOUSE	Q91YL2	C32	C+[+57]ESGFIEELPEETR	HPDP		
RPAP3_MOUSE	Q9D706	C341	DC+[+57]TQAIVLDGSYSK	HPDP		
RPB2_MOUSE	Q8CF17	C221	YAYTGE[C+[57]R	HPDP		
RPB2_MOUSE	Q8CF17	C892	DC+[+57]STFLR	HPDP		
RRAGC_MOUSE	Q99K70	C376	SC+[+57]SHQTSAPSLK	HPDP		
RRAS2_MOUSE	P62071	C55	QC+[+57]VIDDR	HPDP		
RRBP1_MOUSE	Q99PL5	C1327	EAEETQNSLQAEC+[+57]DQYR	HPDP		
RRBP1_MOUSE	Q99PL5	C1327	LREAETQNSLQAEC+[57]DQYR	HPDP		
RRBP1_MOUSE	Q99PL5	C1198	LKELESQVSC+[329]ILEK	IodoTMT6		
RRBP1_MOUSE	Q99PL5	C1327	LREAETQNSLQAEC+[329]DQYR	IodoTMT6		
RRBP1_MOUSE	Q99PL5	C1327	EAEETQNSLQAEC+[329]DQYR	IodoTMT6		
RS11_MOUSE	P62281	C131	DVQIGDIVTVGEC+[57]RPLSK	HPDP		
RS11_MOUSE	P62281	C60	C+[329]PFTGNVSIR	IodoTMT6		
RS16_MOUSE	P14131	C25	TATAVAHC+[57]K	HPDP		
RS17_MOUSE	P63276	C35	VC+[57]EEIAIPSK	HPDP		
RS17_MOUSE	P63276	C35	VC+[57]EEIAIPSKK	HPDP		
RS27A_MOUSE	P62983	C144, C155	C+[57]C+[125]LTYC+[57]FNKPEDK	HPDP		
RS3_MOUSE	P62908	C119	AC+[57]YGVLR	HPDP		
RS3_MOUSE	P62908	C134	GC+[57]EVVVSNGK	HPDP		
RS5_MOUSE	P97461	C66	AQC+[57]PIVER	HPDP		
RS6_MOUSE	P62754	C12	LNISFPATG[C+[57]QK	HPDP		
RS8_MOUSE	P62242	C100	NC+[57]IVLIDSTPYR	HPDP		
RSSA_MOUSE	P14206	C163	YVDIAIPC+[57]NNK	HPDP		
RTCB_MOUSE	Q99LF4	C193	EGYAWAEDEKEHC+[329]EEYGR	IodoTMT6		
RUS1_MOUSE	Q91W34	C12	APLC+[57]TEQFGSGAPR	HPDP		
RUVB2_MOUSE	Q9WTM5	C227	FVQC+[57]PDGELQK	HPDP		
RUXF_MOUSE	P62307	C66	C+[57]NNVLYIR	IodoTMT6		
S2533_MOUSE	Q3TZX3	C30	ATGTQQKENTHIIHLFAAGC+[125]GGTVAIFTC+[329]PLEVHP	IodoTMT6		
S27A1_MOUSE	Q60714	C80	AGDTIPC+[57]IFQAVAR	HPDP		
S7A60_MOUSE	Q7TPE5	C27	NAEPAEALVLAC+[57]K	HPDP		
SAC1_MOUSE	Q9EP69	C445	NAWADNANAC+[57]AK	HPDP		
Gene Symbol	Protein Accession	Start	End	Description	Modification	
-------------	------------------	-------	-----	-------------	--------------	
SAFB1_MOUSE	P50247	C278	C219	ILDILGETC[+329]K	IodoTMT6	
SAHH_MOUSE	Q68FL4	C189	C192	GSSDFC[+57]VK	HPDP	
SAMH1_MOUSE	Q60710	C342	C342	IC[+57]EVEYK	HPDP	
SBP1_MOUSE	Q63836	C31	C31	GPREEIVYLPC[+329]IYR	IodoTMT6	
SC23A_MOUSE	Q63836	C31	C31	EEIVYLPC[+329]IYR	IodoTMT6	
SC23B_MOUSE	Q9D662	C434	C434	GPC[+57]VSENELGVGGTSQWK	HPDP	
SC23B_MOUSE	Q9D662	C74	C74	AILNPLC[+57]QVDYR	HPDP	
SC31A_MOUSE	Q3UPL0	C60	C60	SC[+57]ATFSSSHR	HPDP	
SEC62_MOUSE	Q8BU14	C82	C82	ESVVDYC[+57]NR	HPDP	
SF01_MOUSE	Q64213	C279	C279	SITNTTVC[+57]TK	HPDP	
SG7_MOUSE	Q9CX34	C79	C79	SLELNPNNC[+57]TALLR	HPDP	
SH3G1_MOUSE	Q62419	C277	C277	EPFELGELEQPNGGFP[+57]APAPK	HPDP	
SH3G1_MOUSE	Q62419	C311	C311	SMPPLDQPC[+329]K	IodoTMT6	
SHRM2_MOUSE	A2ALU4	C886	C886	SLATSC[+57]GEILSDR	HPDP	
SI1L1_MOUSE	Q8COT5	C585	C585	HSTARGLPLKEVLEHVIPELNVQC[+329]LR	IodoTMT6	
SIA7B_MOUSE	P70277	C65	C65	KSRLC[+329]QHSLSLAIQK	IodoTMT6	
SIDT2_MOUSE	Q8CIF6	C430	C430	QYLC[+57]VADLAR	HPDP	
SLK_MOUSE	Q54988	C1136	C1136	DLQLQC[+57]EANVR	HPDP	
SMD2_MOUSE	P62317	C46	C46	NNTQVLINC[+329]R	IodoTMT6	
SMD2_MOUSE	P62317	C46	C46	EEEEFNTGPLSVLTQSVKNNTQVLINC[+329]R	IodoTMT6	
SMD3_MOUSE	P62320	C20	C20	VLHEAEGHVT[+329]ETNTGEYR	IodoTMT6	
SMU1_MOUSE	Q3UKJ7	C383	C383	TTEC[+57]SNTFK	HPDP	
SND1_MOUSE	Q78PY7	C152	C152	LSEC[+57]EEQAK	HPDP	
SODC_MOUSE	P08228	C147	C147	LAC[+57]GVIGIAQ	HPDP	
Gene Symbol	Accession	AA Start	Amino Acid Change	Protein Name	Modification	
--------------	-----------	----------	-------------------	--------------	---------------	
SODC_MOUSE	P08228	C147	TGNAGSRLAC[+57]GVIGIAQ	HPDP		
SODC_MOUSE	P08228	C7	AVC[+329]VLKGDGPVQGTIHFEQK	IodoTMT6		
SPAS2_MOUSE	Q8K1N4	C356	FTC[+57]DVETLK	HPDP		
SPCS2_MOUSE	Q9CYN2	C26	SGGGGGSSAGGGGPSC[+57]GTSSSR	HPDP		
SPEG_MOUSE	Q62407	C2710	APC[+57]TYTLER	HPDP		
SPNS1_MOUSE	Q8R0G7	C44	SGELEVPD[+57]EGLQR	HPDP		
SPSB3_MOUSE	Q571F5	C271	VIRSC[+329]ASSTSLQYLCYRLR	IodoTMT6		
SPTN1_MOUSE	P16546	C1930	VNDVC[+57]TNGQDLIK	HPDP		
SRB4D_MOUSE	A1L0T3	C138	QLGCCGLALPVPRPLAFGQGRGPIFLDNVEC[+329]R	IodoTMT6		
SRBP1_MOUSE	Q9WTN3	C738	QAC[+329]LATQSGSVPLAMQWLC[+329]HPVGHR	IodoTMT6		
SRC_MOUSE	P05480	C408	AANILVGENLV[+329]K	IodoTMT6		
SRCRL_MOUSE	Q8BV57	C6	MRGLAC[+329]LLAM[+16]LVGIAIER	IodoTMT6		
SRP09_MOUSE	P49962	C48	VTDDLVC[+57]LVVR	HPDP		
SRRT_MOUSE	Q99MR6	C489	EC[+57]ELSPGVNR	HPDP		
SRSF1_MOUSE	Q6PDM2	C148	EAGDVC[+57]YADVYR	HPDP		
SRSF3_MOUSE	P84104	C6, C10	DSC[+57]PLDC[+57]K	HPDP		
SSU72_MOUSE	Q9CY97	C12	VAVVC[+57]SSNQNR	HPDP		
STA5B_MOUSE	P42232	C688	YYTPVPC[+57]EPATAK	HPDP		
STIM1_MOUSE	P70302	C49	NTGASSGATSEESTEAEC[+329]R	IodoTMT6		
STIP1_MOUSE	Q60864	C461	ALDLDSSC[+57]K	HPDP		
STIP1_MOUSE	Q60864	C461	ALDLDSSC[+57]KEAADGYQR	HPDP		
STK39_MOUSE	Q9Z1W9	C461	EGPC[+57]AVNLVLR	HPDP		
STRN4_MOUSE	P58404	C569	LASC[+57]SADGTVR	HPDP		
STX7_MOUSE	O70439	C28	ITQC[+57]SVEIQR	HPDP		
STXB5_MOUSE	Q8K400	C293	KPEPC[+329]KPILKVELKTTR	IodoTMT6		
SUCB1_MOUSE	Q9Z2I9	C164	IC[+125]NQVLVLC[+57]ER	HPDP		
SUCB1_MOUSE	Q9Z2I9	C430	ILAC[+57]DDLEAAK	HPDP		
SYDC_MOUSE	Q922B2	C76	QC[+57]FLVLVR	HPDP		
SYEP_MOUSE	Q8CGC7	C697	EAPC[+57]ILYIYPDHTK	HPDP		
SYEP_MOUSE	Q8CGC7	C910	VAC[+57]QGEVVR	HPDP		
SYK_MOUSE	Q99MN1	C432	AVEC[+57]PPPR	HPDP		
SYNPO_MOUSE	Q8CC35	C686	ASPAAAEAVPEWASC[+57]LK	HPDP		
Protein	Accession	Position	Sequence	Modification	Tag	
-------------	-----------	----------	-------------------------------	--------------	--------------	
SYSM_MOUSE	Q9JJL8	C425	YGEVTSASNC[+57]TDFQSR		HPDP	
SYT2_MOUSE	P46097	C91	IPLPPWALIAM[+16]AVVAGLLLLLTCC [+57]FCIC[+57]KKCC[+3]		IodoTMT6	
SYTC_MOUSE	Q9D0R2	C266	C[+125]GPLIDLCC[+57]R		HPDP	
TALDO_MOUSE	Q93092	C250	ALAGC[+57]DFLTISPK		HPDP	
TARA_MOUSE	Q99KW3	C1491	SC[+57]TDVTEYAVQR		HPDP	
TARA_MOUSE	Q99KW3	C1921	SFIASQGTGNSC[+57]GR		HPDP	
TARA_MOUSE	Q99KW3	C1930	SSC[+57]ELEVLLR		HPDP	
TARA_MOUSE	Q99KW3	C1491	SC[+329]TDVTEYAVQR		IodoTMT6	
TB182_MOUSE	P58871	C259	LAC[+57]SEAPTDVSK		HPDP	
TBA1B_MOUSE	P68368	C295	AYHEQLSVAEITNAC[+329]FEPAQMVK		IodoTMT6	
TBA1B_MOUSE	P68368	C295	AYHEQLSVAEITNAC[+329]FEPAQMVK		IodoTMT6	
TBCD_MOUSE	Q8BYA0	C665	AVQSLKIQHQQLC[+329]DRHLHR		IodoTMT6	
TBPL1_MOUSE	P62340	C68	IIC[+57]TGATSEEEAK		HPDP	
TCPA_MOUSE	P11983	C147	DC[+57]LINAAK		HPDP	
TCPA_MOUSE	P11983	C357	IC[+57]DDELILIK		HPDP	
TCPA_MOUSE	P11983	C357	IC[+57]DDELILIKNTK		HPDP	
TCPD_MOUSE	P80315	C295	TGC[+57]NVLLIQK		HPDP	
TCPG_MOUSE	P80318	C403	NLQDAM[+16]QVC[+57]R		HPDP	
TCHP_MOUSE	P80313	C370	TC[+57]TIILR		HPDP	
TERA_MOUSE	Q01853	C105	LGTDVISIQPC[+57]PDVK		HPDP	
TERA_MOUSE	Q01853	C69, C77	EAVC[+57]IVLSDDTC[+57]SDEK		HPDP	
TERA_MOUSE	Q01853	C184	VVETDPSPYC[+125]IVAPDTVIHC[+329]EGEPIKR		IodoTMT6	
TERA_MOUSE	Q01853	C69	EAVC[+329]IVLSDDTC[+125]SDEKIR		IodoTMT6	
TERA_MOUSE	Q01853	C69	EAVC[+329]IVLSDDTC[+125]SDEK		IodoTMT6	
TERA_MOUSE	Q01853	C77	EAVC[+125]IVLSDDTC[+329]SDEKIR		IodoTMT6	
TERA_MOUSE	Q01853	C77	EAVC[+125]IVLSDDTC[+329]SDEK		IodoTMT6	
TGM2_MOUSE	P21981	C27	DHHTADLC[+57]QEK		HPDP	
TGM2_MOUSE	P21981	C370	SEGTYC[+57]C[+125]GPVSVR		HPDP	
TGM2_MOUSE	P21981	C370, C371	SEGTYC[+57]C[+57]GPVSVR		HPDP	
TGM2_MOUSE	P21981	C553	YSGC[+57]LTESNLK		HPDP	
TGM2_MOUSE	P21981	C10	C[+329]DLEIQANGR		IodoTMT6	
THIM_MOUSE	Q8BWT1	C382	YAVGSAC[+57]JGGQGIALIQAINTA		HPDP	
THIM_MOUSE	Q8BWT1	C92, C103, C10LC[+57]GSGFQSVSCG[+57]QEIC[+57]SK	HPDP			
------------	---------	---	------			
TIF1B_MOUSE	Q62318	C628 LASPAGSTSSGVEVVVEPTSAPVSGPGILDDSATIC[+329]R	IodoTMT6			
TINAL_MOUSE	Q99JR5	C445 GTNEC[+57]IETFVLGWVWR	HPDP			
TINAL_MOUSE	Q99JR5	C326 C[+329]PNGQVDSDNIIYQVTPAYR	IodoTMT6			
TIPRL_MOUSE	Q8BH58	C87 VAC[+57]AEWQESR	HPDP			
TITIN_MOUSE	A2ASS6	C13473 C[+57]EVSKDVPSV	HPDP			
TITIN_MOUSE	A2ASS6	C14323 ILIQNAQLEDAGSYNC[+57]R	HPDP			
TITIN_MOUSE	A2ASS6	C16418 C[+57]NEHLVPGTYTAK	HPDP			
TITIN_MOUSE	A2ASS6	C18063 EC[+57]MYTIPK	HPDP			
TITIN_MOUSE	A2ASS6	C18869 VPDLEGPCR[+57]YEF	HPDP			
TITIN_MOUSE	A2ASS6	C20340 C[+57]NAAAQLR	HPDP			
TITIN_MOUSE	A2ASS6	C2115 VVGKPDPEC[+57]EWYK	HPDP			
TITIN_MOUSE	A2ASS6	C21280 C[+57]DPPVSNITK	HPDP			
TITIN_MOUSE	A2ASS6	C21561 YILTLENSE[+57]GKF	HPDP			
TITIN_MOUSE	A2ASS6	C21561 YILTLENSE[+57]GK	HPDP			
TITIN_MOUSE	A2ASS6	C21780 DLPDC[+57]YLAK	HPDP			
TITIN_MOUSE	A2ASS6	C21834 VSVSTAVNNTLVVYDC[+57]VK	HPDP			
TITIN_MOUSE	A2ASS6	C24876 SYAAVVTNC[+57]HK	HPDP			
TITIN_MOUSE	A2ASS6	C24969 NTDKWSCE[+57]AR	HPDP			
TITIN_MOUSE	A2ASS6	C26841 AAAAAWTC[+57]TPPSGLGQK	HPDP			
TITIN_MOUSE	A2ASS6	C28709 ELQTNALVC[+57]VENSTDLASILK	HPDP			
TITIN_MOUSE	A2ASS6	C29432 YTVLDNAV[+57]R	HPDP			
TITIN_MOUSE	A2ASS6	C33458 EVYDYYC[+57]R	HPDP			
TITIN_MOUSE	A2ASS6	C34371 FSC[+57]DTDGEVPTVTVLR	HPDP			
TITIN_MOUSE	A2ASS6	C6675 SSC[+57]TAVVDVSDR	HPDP			
TITIN_MOUSE	A2ASS6	C9704 AEDQGQUTC[+57]K	HPDP			
TJAP1_MOUSE	Q9DCD5	C335 NSPLPN[+57]TYATR	HPDP			
TKT_MOUSE	P40142	C468 AVELAANTGIC[+329]FIR	IodoTMT6			
TLN1_MOUSE	P26039	C1087 C[+57]TDQLGNSTK	HPDP			
TLN1_MOUSE	P26039	C956 ASAGQPPLLQSC[+57]K	HPDP			
TLR11_MOUSE	Q6R5P0	C743 TLLFSFLATNCphHTGTFWFLSFLTMSLLLIPLSC[+329]PK	IodoTMT6			
TMM65_MOUSE	Q4VAE3	C31 SLRPGPAAAAAPLPSWC[+329]CGRGGLALGVPPGPR	IodoTMT6			
Protein	Accession	Site	Peptide	Modification	Label	
-------------	-----------	-------	--	--------------	--------	
TNNC1_MOUSE	P19123	C35	AAFDIFVLGAEDGC[+57]JISTK		HPDP	
TNR19_MOUSE	Q9JLL3	C189	DTALAAVCSALATVLLALLILC[+329]VIYCK		IodoTMT6	
TNR19_MOUSE	Q9JLL3	C25	MALKVLPLHRTVLFAAIFLFLHAC[+329]K		IodoTMT6	
TNS2_MOUSE	Q8CGB6	C548	LLGGC[+57]GVASAGR		HPDP	
TOM34_MOUSE	Q9CYG7	C222	YSESLLC[+57]SSLESATYSNR		HPDP	
TPIS_MOUSE	P17751	C177	VSHALAELGVIAC[+57]IGEK		HPDP	
TPIS_MOUSE	P17751	C268	IYYGSVTGATC[+57]K		HPDP	
TPIS_MOUSE	P17751	C268	SNVNDGVAQSTRIIYYGGSVTGATC[+57]K		IodoTMT6	
TPM1_MOUSE	P58771	C190	C[+329]AELEEELK		IodoTMT6	
TPM1_MOUSE	P58771	C190	C[+329]AELEEELKTVTNNLK		IodoTMT6	
TPM2_MOUSE	P58774	C190	C[+329]GDLEEELKIVTNNLK		IodoTMT6	
TPM2_MOUSE	P58774	C190	C[+329]GDLEEELK		IodoTMT6	
TPM3_MOUSE	Q6RU2	C247	EENVGLHQTLDQTLNELNC[+329]I		IodoTMT6	
TPP2_MOUSE	Q64514	C150	VALAEAC[+57]R		HPDP	
TPP2_MOUSE	Q64514	C209	AC[+57]VDSNENGDSLK		HPDP	
TPP2_MOUSE	Q64514	C967	GAGPGC[+57]YLAGSLTSLK		HPDP	
TPSN_MOUSE	Q9R233	C118	SLSPEQNC[+57]PR		HPDP	
TRFE_MOUSE	Q9211I	C373	TKC[+57]DEWSIISEGK		HPDP	
TRFE_MOUSE	Q9211I	C260	KPVDQYEDC[+329]YLAR		IodoTMT6	
TRFE_MOUSE	Q9211I	C350	NQQEGVC[+329]PEGSIDNSPVK		IodoTMT6	
TRFE_MOUSE	Q9211I	C373	TKC[+329]DEWSIISEGK		IodoTMT6	
TRFE_MOUSE	Q9211I	C373	C[+329]DEWSIISEGK		IodoTMT6	
TRFE_MOUSE	Q9211I	C386	IEC[+329]ESAETTEDC[+329]IEK		IodoTMT6	
TRFE_MOUSE	Q9211I	C395	IEC[+57]ESAETTEDC[+329]IEK		IodoTMT6	
TRFE_MOUSE	Q9211I	C395	IEC[+57]ESAETTEDC[+329]IEK		IodoTMT6	
TRFE_MOUSE	Q9211I	C395	TKC[+57]DEWSIISEGKIEC[+57]ESAETTEDC[+329]IEK		IodoTMT6	
TRFE_MOUSE	Q9211I	C472	SC[+329]HTGVDR		IodoTMT6	
TRFE_MOUSE	Q9211I	C67	KTSYPDC[+329]IK		IodoTMT6	
TRFE_MOUSE	Q9211I	C67	TSYPDC[+329]IK		IodoTMT6	
TRI42_MOUSE	Q9D2H5	C18,C27	ETAMCVC[+57]SPCC[+57]TWQRC[+125]C[+329]PRLFSCLCC		IodoTMT6	
TXND5_MOUSE	Q91W90	C107,C114	VDC[+329]TADSDVC[+329]SAQGVR		IodoTMT6	
TXND5_MOUSE	Q91W90	C114	VDC[+57]TADSDVC[+329]SAQGVR		IodoTMT6	
Protein	Accession	Start	Stop	Description	Function	
-------------	-----------	-------	------	----------------------	----------	
U3IP2_MOUSE	Q91WM3	C460		NSVC[+57]IIPLR	HPDP	
UBA6_MOUSE	Q8C7R4	C298		TFC[+57]FEPELSQIK	HPDP	
UBA6_MOUSE	Q8C7R4	C347		C[+57]QQSDSDELLK	HPDP	
UBA6_MOUSE	Q8C7R4	C546		VC[+57]PATESIYSDEFYTK	HPDP	
UBA1_MOUSE	Q8VDI7	C134		ATANLPAC[+57]STDR	HPDP	
UBE2O_MOUSE	Q6ZPJ3	C309		SFC[+57]PGGTDSVPPSIITQENLGR	HPDP	
UBE20_MOUSE	Q8ZP37	C365		IAWEC[+57]PEK	HPDP	
UBP15_MOUSE	Q8R5H1	C264		NSNYC[+57]LPSYTAJK	HPDP	
UBP16_MOUSE	Q99LG0	C24		SAPDTVASESAEPVC[+57]R	HPDP	
UBP4_MOUSE	P35123	C758		SLYFDEQESEAC[+329]EK	IodoTMT6	
UBP47_MOUSE	Q8BY87	C856		AGGDGNNVDDDC[+57]ER	HPDP	
UBR1_MOUSE	O70481	C279		AGVYATC[+57]QEAK	HPDP	
UBR1_MOUSE	O70481	C996		SC[+57]LVVATTSGLEC[+125]VK	HPDP	
UBR2_MOUSE	Q6WKZ8	C112		VGEPTYSC[+57]R	HPDP	
UPP1_MOUSE	P52624	C132		C[+57]SNITIIR	HPDP	
USO1_MOUSE	Q9Z1Z0	C802		SQLC[+57]SQSLEITR	HPDP	
UTP20_MOUSE	Q5XG71	C2058		KPAAPVDPDLPPQSC[+329]LLLLPATPVRRGPK	IodoTMT6	
VAT1_MOUSE	Q62465	C99		AC[+57]GLNFADLM[+16]GR	HPDP	
VAT1_MOUSE	Q62465	C99		AC[+57]GLNFADLM[+16]GR	HPDP	
VATG1_MOUSE	Q9CR51	C69		EAAALGSHGSC[+57]SSEVEK	HPDP	
VAV2_MOUSE	Q60992	C196, C197	SC[+57]C[+57]LLEIQETEAK	HPDP		
VDAC1_MOUSE	Q60932	C245		YQVDPDAC[+329]FSAK	IodoTMT6	
VDAC2_MOUSE	Q60930	C48		SC[+329]SGVEFSTSGSSNTDTGK	IodoTMT6	
VDAC3_MOUSE	Q60931	C36		SC[+329]SGVEFSTSGHAYTDTGK	IodoTMT6	
VIGLN_MOUSE	Q8VDI3	C53		AAC[+57]LESAQEPAGAWSNK	HPDP	
VIME_MOUSE	P20152	C328		QVQSLTC[+329]EVDALK	IodoTMT6	
VIME_MOUSE	P20152	C328		QVQSLTC[+329]EVDALKGKT NESLER	IodoTMT6	
VPP2_MOUSE	P15920	C315		KMKAICYHMLNMC[+329]SFDVTNK	IodoTMT6	
VPS8_MOUSE	Q0P5W1	C1293		EC[+57]TLEVEGQTR	HPDP	
VTNC_MOUSE	P29788	C179		GQY[+329]YELDEAVRPGYPK	IodoTMT6	
VTNC_MOUSE	P29788	C473		SIAQYWLGQ[+329]PTSEK	IodoTMT6	
VWDE_MOUSE	Q6DFV8	C217		ISVELLGLVF[+125]RC[+329]TDFVSPTNTSVGFLIAWSR	IodoTMT6	
WASF2_MOUSE	Q8BH43	C27		QTLPSDTSELECV[+329]R	IodoTMT6	
Protein ID	Accession	Species	Description	Modification	Destination	
------------	-----------	---------	-------------	-------------	-------------	
WDR1_MOUSE	O88342	C225	VC[+57]ALGESK	HPDP	IodoTMT6	
WDR1_MOUSE	O88342	C382	M[+16]TVNESEQLVSC[+329]SMDDTVR			
WDR1_MOUSE	O88342	C382	MTVESEQLVSC[+329]SMDDTVR		IodoTMT6	
WDR5_MOUSE	P61965	C195	DGSLIVSSSYDGLC[+57]R	HPDP		
WDR5_MOUSE	P61965	C195	DGSLIVSSSYDGLC[+329]R		IodoTMT6	
WFD11_MOUSE	A2A5H7	C8	KPSWFPC[+329]LVFLC[+125]M[+16]LLLSALGGRK	IodoTMT6		
XDH_MOUSE	Q00519	C970, C974	C[+57]WDEC[+57]IASSQYQAR	HPDP		
XIRP1_MOUSE	O70373	C997	ISGSTPC[+57]PPPSR	HPDP		
XPO7_MOUSE	Q9EPK7	C43	ALVEFTNSPDC[+57]LSK	HPDP		
XPP3_MOUSE	B7ZMP1	C491	IEDDVVVTQDSPLSADC[+57]PK	HPDP		
XRN2_MOUSE	Q9DBR1	C276	DC[+57]EGLPR	HPDP		
YAP1_MOUSE	P46938	C328	C[+57]QELALR	HPDP		
YIPF5_MOUSE	Q9EQQ2	C42	QYAGC[+57]DYSQQGR	HPDP		
Z354C_MOUSE	Q571J5	C248	LHTGEKPYKC[+329]SECGKSFSHR	IodoTMT6		
ZFPL1_MOUSE	Q9DB43	C56	LC[+57]NTPLASR	HPDP		
ZN106_MOUSE	O88466	C7,C10	KC[+329]ILC[+329]HIVYGSK	IodoTMT6		
ZN363_MOUSE	Q9CR50	C243	LC[+57]DSYNTAQAGGR	HPDP		
ZN689_MOUSE	Q8BKK5	C263	TTHTGEKPHQC[+329]PSCGRRFAYPSLLAHIQR	IodoTMT6		
ZYX_MOUSE	Q62523	C376	QSVAVNES[+57]GK	HPDP		
ZYX_MOUSE	Q62523	C379	C[+57]NQPLAR	HPDP		
Systolic, diastolic and mean arterial pressure were significantly lower in KO mice prior to pregnancy. During pregnancy, blood pressure increased in KO mice. Ascorbate treatment prevented the onset of systolic blood pressure in KO mice at 17.5 d of gestation. Results are shown as mean ± SEM. *P<0.05, ***P<0.001. Two-way ANOVA with Newman-Keuls for post hoc analysis.
Umbilical venous blood flow was significantly lower in KO fetuses at 17.5 d of gestation and was rescued with Asc treatment. Results are shown as mean ± SEM. *P<0.05, **P<0.01. Two-way ANOVA with Newman-Keuls for post hoc analysis.

Figure S2. Umbilical arterial and venous blood flow (A, C) and blood flow normalized to fetal weight (B, D) were determined using micro-ultrasound in isoflurane-anesthetized embryos on day 17.5 of gestation in C57Bl/6J (B6), GSNOR−/− (KO), and in mice treated with ascorbate (Asc).
All SNO-proteins were detected in at least 2 of 5 placentas/group. The number in the observation column is the number of placentas that showed expression of that particular SNO-protein for that group. These proteins correlate to data shown in Table S2.