Pasadakis, Dimosthenis; Alappat, Christie Louis; Schenk, Olaf; Wellein, Gerhard
Multiway \(p\)-spectral graph cuts on Grassmann manifolds. (English) Zbl 07510328
Mach. Learn. 111, No. 2, 791-829 (2022)

Summary: Nonlinear reformulations of the spectral clustering method have gained a lot of recent attention due to their increased numerical benefits and their solid mathematical background. We present a novel direct multiway spectral clustering algorithm in the \(p\)-norm, for \(p \in (1,2]\). The problem of computing multiple eigenvectors of the graph \(p\)-Laplacian, a nonlinear generalization of the standard graph Laplacian, is recasted as an unconstrained minimization problem on a Grassmann manifold. The value of \(p\) is reduced in a pseudocontinuous manner, promoting sparser solution vectors that correspond to optimal graph cuts as \(p\) approaches one. Monitoring the monotonic decrease of the balanced graph cuts guarantees that we obtain the best available solution from the \(p\)-levels considered. We demonstrate the effectiveness and accuracy of our algorithm in various artificial test-cases. Our numerical examples and comparative results with various state-of-the-art clustering methods indicate that the proposed method obtains high quality clusters both in terms of balanced graph cut metrics and in terms of the accuracy of the labelling assignment. Furthermore, we conduct studies for the classification of facial images and handwritten characters to demonstrate the applicability in real-world datasets.

MSC:
68T05 Learning and adaptive systems in artificial intelligence

Keywords:
graph \(p\)-Laplacian; manifold optimization; graph clustering; direct multiway cuts

Software:
ROPTLIB

Full Text: DOI

References:
[1] Abisil, PA; Sepulchre, R.; Van Dooren, P.; Mahony, R., Cubically convergent iterations for invariant subspace computation, SIAM Journal on Matrix Analysis and Applications, 26, 1, 70-96 (2004) - Zbl 1075.65049 · doi:10.1137/S0895479803422002
[2] Absil, PA; Mahony, R.; Sepulchre, R., Optimization algorithms on matrix manifolds (2007), Princeton University Press - Zbl 1147.65043
[3] Aggarwal, CC; Zhai, C.; Aggarwal, C.; Zhai, C., A survey of text clustering algorithms, Mining text data, 77-128 (2012), Springer · doi:10.1007/978-1-4614-3223-4_4
[4] Amghibech, S., Eigenvalues of the discrete \(p\)-Laplacian for graphs, Ars Combinatoria, 67, 283-302 (2003) - Zbl 1080.31005
[5] Amghibech, S., Bounds for the largest \(p\)-Laplacian eigenvalue for graphs, Discrete Mathematics, 306, 21, 2762-2771 (2006) - Zbl 1103.05047 · doi:10.1016/j.disc.2006.05.012
[6] Antoniou, A.; Wu-Sheng, L., Practical optimisation: Algorithms and engineering applications (2017), ISTE, Springer - Zbl 1128.90001
[7] Bhatia, R., Matrix analysis (1997), Springer - Zbl 0863.15001 · doi:10.1007/978-1-4612-0653-8
[8] Bichot, CE; Siarry, P., Graph partitioning (2013), ISTE, Wiley - Zbl 1242.05002 · doi:10.1002/9781118601181
[9] Bollobás, B., Graphs, groups and matrices, 253-293 (1998), Springer- · doi:10.1007/978-1-4612-0619-4
[10] Bresson, X.; Laurent, T.; Uminsky, D.; Brecht, J.; Pereira, F.; Burges, CJC; Botton, L.; Weinberger, KQ, Convergence and energy landscape for Cheeger cut clustering, Advances in neural information processing systems (2012), Curran Associates, Inc.
[11] Bresson, X.; Laurent, T.; Uminsky, D.; von Brecht, J.; Burges, CJC; Botton, L.; Welling, M.; Ghahramani, Z.; Weinberger, KQ, Multiclass total variation clustering, Advances in neural information processing systems (2013), Curran Associates, Inc.
[12] Bresson, X., Laurent, T., Uminsky, D., &amp;#34;An adaptive total variation algorithm for computing the balanced cut of a graph. arXiv:1302.2717.
[13] Bresson, X.; Tai, XC; Chan, TF; Szlam, A., Multi-class transductive learning based on \(\ell 1\) relaxations of Cheeger cut and Mumford-Shah-Potts model, Journal of Mathematical Imaging and Vision, 49, 1, 191-201 (2014) - Zbl 1366.68230
Verma, D., & Meila, M. (2005). A comparison of spectral clustering algorithms. Technical report, Department of CSE University of Washington, Seattle, WA98195-2350.

Wagner, D.; Wagner, F.; Borzyszkowski, AM; Sokolowski, S., Between min cut and graph bisection, Mathematical foundations of computer science, 744-750 (1993), Springer - Zbl 0925.05053

Wang, Q., Gao, J., & Li, H. (2017). Grassmannian manifold optimization assisted sparse spectral clustering. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3145-3153). doi:10.1109/CVPR.2017.335.

Wierzchoń, ST; Kłopotek, MA, Spectral clustering, 181-259 (2018), Springer - doi:10.1007/978-3-319-69308-8

Yu, S. X., & Shi, J. (2003). Multiclass spectral clustering. In Proceedings ninth IEEE international conference on computer vision (Vol.1, pp. 313-319). doi:10.1109/ICCV.2003.1238361.

Zelnik-Manor, L.; Perona, P.; Saul, LK; Weiss, Y.; Bottou, L., Self-tuning spectral clustering, Advances in neural information processing systems, 1601-1608 (2005), MIT Press

Zhu, X.; Zhu, Y.; Zheng, W., Spectral rotation for deep one-step clustering, Pattern Recognition, 105, 107175 (2020). doi:10.1016/j.patcog.2019.107175

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.