Achieving the composite end-point of glycated hemoglobin <7.0% without weight gain or hypoglycemia with once-weekly dulaglutide in Chinese patients with type 2 diabetes: A post-hoc analysis

Xinhua Xiao1, Changjiang Wang2, Xiaoyang Lai3, Bin Zhang4, Liqun Gu4, Jianing Hou5*, Zhiguang Zhou6*

1Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Chinese Academy of Medical Science, Peking Union Medical College Hospital, Beijing, China, 2The First Hospital of Anhui Medical University, Hefei, China, 3The Second Affiliated Hospital of Nanchang University, Nanchang, China, 4Lilly Suzhou Pharmaceutical Co. Ltd, Shanghai, China, 5Clinical Research Physician, Diabetes Therapeutic Area, Eli Lilly and Company, Lilly Suzhou Pharmaceutical Co. Ltd, Shanghai, China, and 6Institute of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China

Keywords
Composite end-point, Dulaglutide, Type 2 diabetes

*Correspondence
Jianing Hou
Tel: +86-21-2302-1068
Fax: +86-21-2302-0949
E-mail addresses: hou_jia_ning@hotmail.com; hou_jia_ning@lilly.com

Zhiguang Zhou
Tel: +86-138-7310-4348
E-mail address: zhouzg@hotmail.com

J Diabetes Investig 2020; 11: 647–652
doi: 10.1111/jdi.13187

Clinical Trial Registry
ClinicalTrials.gov
NCT01644500 and NCT01648582

INTRODUCTION
Globally, type 2 diabetes is the predominant form of diabetes,1 characterized by reduced function of β-cells2. The incidence of type 2 diabetes in China was 10.9% in 20133. An examination comprising 6,043 Chinese patients showed that just 32.1% reached the glycated hemoglobin (HbA1c) target goal of <7.0%.4,5 Effective patient-centered strategies for the treatment of type 2 diabetes should balance the benefits of glycemic control, and the threat of weight gain (WG) and hypoglycemia.6,7 Composite end-point (CE) measures are commonly used in several therapeutic areas, the use of clinically important CEs
that include glycemic control with WG and hypoglycemia allows a more patient-centered approach in the treatment of type 2 diabetes. Glucagon-like peptide-1 receptor agonist (GLP-1RAs) is known to trigger insulin secretion based on blood glucose level, and offer glycemic control with the relatively reduced threat of WG and hypoglycemia. Dulaglutide (DU) is a long-acting GLP-1RA that is administered once a week, and has been approved for clinical use in the management of type 2 diabetes. In the global Assessment of Weekly AdministRation of LY2189265 in Diabetes (AWARD) program, the efficacy and safety of DU were evaluated in Caucasian type 2 diabetes patients, and a considerably greater number of patients that attained the CE of HbA1c < 7.0%, with no risk of adverse events, such as weight gain or hypoglycemia, as compared with standard antidiabetic therapies were reported. However, it is not known whether DU has a similar effect on the CE among Chinese type 2 diabetes patients. Thus, the present post-hoc analysis of two-phase III randomized trials aimed to assess the effect of DU (1.5/0.75 mg) in comparison with glimepiride (GLIM) or insulin glargine (GLAR) on the CE of HbA1c < 7.0%, without WG (< 0 kg), and hypoglycemia (< 3.9 mmol/L) in Chinese type 2 diabetes patients after 26 or 52 weeks of treatment.

METHODS
Design and patients
Data from two randomized, multinational, parallel-arm, non-inferiority, phase III trials (AWARD-CHN1 study [NCT01644500] and AWARD-CHN2 study [NCT01648582]) of DU in type 2 diabetes patients were analyzed. Both studies enrolled adult type 2 diabetes patients, and were intended to assess the non-inferiority and superiority of DU with active comparators. Institutional ethics committee approval was obtained for both studies, and written informed consent was obtained from each patient before enrollment. Both the AWARD trials were carried out as per the ethical principles described in the Declaration of Helsinki and other applicable regulatory guidelines.

RESULTS
Disposition and patient characteristics
A total of 1147 Chinese type 2 diabetes patients were included in this post-hoc analysis (NCT01644500 = 556; NCT01648582 = 591). The patient characteristics are presented in Table 1. Apart from the duration of diabetes, patient characteristics in each study were comparable across the study treatments. The average daily doses (standard deviation) of GLIM and GLAR were 2.51 (0.86) mg and 21.0 (12.39) IU at week 26, respectively.

HbA1c < 7.0%
A considerably larger number of patients attained an HbA1c target of < 7.0% for both the doses of DU versus GLIM.
Table 2 | Glycated hemoglobin, weight, hypoglycemia and composite endpoint

Treatment	ΔHbA1c (%)	HbA1c <7%† (% of patients)	Δ Weight (kg)	No weight gain (% of patients)	No hypoglycemia‡ (% of patients)	Achieving composite end-point (% of patients)
AWARD-CHN1 study 26 weeks						
DU 1.5 mg	-1.46***	71.7**	-1.51***	66.8***	96.7***	47.8***
DU 0.75 mg	-1.25**	63.4	-0.95***	62.4***	98.4***	39.2***
Glimepiride	-0.92	57.5	0.92	41.9	83.3	19.9
AWARD-CHN2 study 26 weeks						
DU 1.5 mg	-1.67***	66.0***	-1.30***	66.0***	86.0***	39.5***
DU 0.75 mg	-1.31*	54.1	-0.85***	65.3***	87.2***	30.1***
Insulin glargine	-1.11	39.0	1.00	35.4	77.9	14.9
AWARD-CHN2 study 52 weeks						
DU 1.5 mg	-1.38*	52.0***	-0.82***	59.0***	83.0***	26.0***
DU 0.75 mg	-1.00	46.4***	-0.66***	60.7***	84.2***	23.0***
Insulin glargine	-0.79	29.2	1.34	31.3		

Data are least-squares means, change (Δ) in glycated hemoglobin (HbA1c) and Δ weight (mixed-effect model for repeated measures), HbA1c <7% (mixed-effect model for repeated measures, last observation carried forward, Fisher’s exact test), no weight gain, no hypoglycemia, composite endpoints (mixed-effect model for repeated measures, Fisher’s exact test) versus active comparator: *P < 0.05 **P < 0.01 ***P < 0.001. †53 mmol/mol. ‡Hypoglycemia with blood glucose ≤3.9 mmol/L or any report of severe hypoglycemia. AWARD-CHN1, Assessment of Weekly Administration of LY2189265 in Diabetes (AWARD) Chinese 1 (CHN1); AWARD-CHN2, Assessment of Weekly Administration of LY2189265 in Diabetes (AWARD) Chinese 2 (CHN2); DU, dulaglutide.

Figure 1 | Proportion of patients achieving the composite endpoint of glycated hemoglobin <7.0%, without weight gain and no hypoglycemia. At week 26, in each analyzed trial, 49%–50% of patients received DU (1.5 mg), 37%–40% of patients treated with active comparators attained a target HbA1c <7.0% without WTG (Figure 2A). A significantly greater number of patients that received DU (1.5 mg) versus GLIM (P < 0.001) and P = 0.0022, respectively), as well as versus GLAR (both P < 0.001). At 52 weeks, 37% of patients that received DU (1.5 mg), 30% of patients that received DU (0.75 mg) and GLAR or GLIM, were lower after 52 weeks of treatment compared to week 26. DU and GLIM were modified intention-to-treat and Fisher’s exact test versus active comparator. **P < 0.01. DU, dulaglutide; GLAR, insulin glargine; GLIM, glimepiride; OAD, oral antihyperglycemic drug; OAD (+ OADs), oral antihyperglycemic drug and antihyperglycemic-related medicine; OAD (+ OADs), oral antihyperglycemic drug and antihyperglycemic-related medicine; MD, monotherapy; MD (+ OADs), monotherapy and oral antihyperglycemic drug.
DU 0.75 mg and 11% of patients that received GLAR attained the CE (Figure 2a). A considerably greater number of patients attained the CE with DU (1.5/0.75 mg) versus GLAR (both P < 0.001). At 52 weeks, the numbers of patients who attained the CE with DU (1.5/0.75 mg) and GLAR were lower, as compared with 26 weeks.

HbA1c <7.0% and no hypoglycemia

In each analyzed trial, 54–69% of patients that received DU 1.5 mg, 43–62% of patients that received DU 0.75 mg and 27–43% of patients treated with active comparators attained a target HbA1c of <7.0% without hypoglycemia at week 26 (Figure 2b). A considerably larger number of patients attained the CE with DU (1.5/0.75 mg) versus GLIM, as well as versus GLAR (all P < 0.001). At 52 weeks, 40% of patients that received DU 1.5 mg, 35% of patients that received DU 0.75 mg and 17% of patients that received GLAR attained the CE (Figure 2b). A considerably larger number of patients attained the CE with DU (1.5/0.75 mg) versus GLAR (both P < 0.001). Compared with 26 weeks, the proportions of patients who attained the CE with DU (1.5/0.75 mg) and GLAR were lower at 52 weeks.

DISCUSSION

The use of CE to concurrently evaluate clinical benefits (glycemic control) along with the treatment-related risk (weight gain and hypoglycemia) is a patient-centered approach in managing type 2 diabetes, and is also a commonly used assessment tool to assess treatment choices for the management of type 2 diabetes. The International Association of Diabetes (the USA and Europe) recommend glucose-dropping agents based on the efficacy (HbA1c reduction) and safety (lower risk of weight gain and hypoglycemia). The efficacy and safety of treatment modalities can be defined more systematically using the clinically important CE, especially when more than one desired therapeutic response of treatment is essential. The present post-hoc analysis is the first analysis to compare the effect of DU (1.5/0.75 mg) with GLIM or GLAR on the CE of HbA1c <7.0%, without WG and hypoglycemia in Chinese type 2 diabetes patients. This analysis showed that, compared with GLIM or GLAR, a significantly larger number of patients treated with DU attained the CE. In both included studies at 26 or 52 weeks, 26–47.8% of patients attained the CE with DU (1.5 mg), with a significantly larger number compared with GLIM (19.9%) or GLAR (6.7–14.9%). Also, 23–39.2% of patients attained the CE with DU (0.75 mg), with a considerably larger number than GLIM or GLAR. Furthermore, the numbers of patients who attained the CE with DU (1.5/0.75 mg) and GLAR were lower after 52 weeks of treatment as compared with 26 weeks. This was due to the tail-raising of HbA1c reduction and weight reduction at week 26, with a continuing low hypoglycemic rate at weeks 26 and 52, associated with DU.

Post-hoc analyses of the global AWARD program (AWARD-1 to 3, 5 and 6), which comprised mainly Caucasian type 2 diabetes patients, showed that 37–58% of patients that received DU 1.5 mg attained the CE, with considerably larger proportions compared with active comparators. Furthermore, a considerably larger number of patients attained the CE with DU (0.75 mg), as compared with sitagliptin or GLAR. A clinical trial program of liрагlutide showed that 40% of patients treated with liрагlutide 1.8 mg, 32% of patients treated with liрагlutide 1.2 mg and 6–25% of patients treated with active comparators attained the CE of HbA1c <7.0% without WG and hypoglycemia. As there were considerable alterations in background treatments and hypoglycemia definitions in the previous and present analysis, head-to-head comparisons between previous results and the present results are not
appropriate because of differences in background therapies and in definitions of hypoglycemia. In AWARD-2, background therapies comprised of metformin and GLIM, which is similar in AWARD-CHN2 with metformin and/or a sulfonylurea. At 26 weeks, the type 2 diabetes patients receiving DU in AWARD-2 were similar to those who attained the CE of HbA1c <7.0%, without WG and hypoglycemia in AWARD-CHN2.

In both Chinese studies11,12, DU (1.5/0.75 mg) has an acceptable safety and tolerability profile, which is similar to the GLP-1RA class of drugs11,12,19–21, suggesting a satisfactory risk-to-benefit ratio for DU. The findings of the present post-hoc analysis are similar to the findings from global studies (AWARD trials) with DU and with published studies of other GLP-1RAs20,21.

The present post-hoc analysis had some limitations. The pooling of data or integrated meta-analysis was not possible because of the confounding effect that background medications can have on weight change and the incidence of hypoglycemia. In addition, this analysis was not designed to assess the relative weighting of the components of the CE or the role of composite measures in determining long-term outcomes. Thus, the present CE might be more appropriate for conveying prompt treatment decisions.

Dulaglutide is an effective therapeutic alternative for Chinese type 2 diabetes patients. Compared with GLIM or GLAR, significantly greater proportions of patients on DU attained the HbA1c target of <7.0% without WG or hypoglycemia. These outcomes are similar to global studies with DU and studies with the other GLP-1RA class.

ACKNOWLEDGMENTS

This study was sponsored by Eli Lilly and Company. The authors thank Rakesh Ojha, PhD, and Teri Tucker, ELS, from Syneos Health, funded by Eli Lilly and Company, for medical writing and editorial support in the preparation of this manuscript. The authors also thank Ying Lou (Lilly Suzhou Pharmaceutical Co. Ltd) for statistical review, Yi Ping Zou (Lilly Suzhou Pharmaceutical Co. Ltd) for project management and all study participants.

DISCLOSURE

BZ and JNH are employees of Eli Lilly and Company. LQG was an employee of Eli Lilly and Company at the time of manuscript preparation. The other authors declare no conflict if interest.

REFERENCES

1. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 2012; 27: 269–273.
2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009; 32: S62–S67.
3. Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 2017; 317: 2515–2523.
4. Yang S, Kong W, Hsue C, et al. Knowledge of A1c predicts diabetes self-management and A1c level among Chinese patients with type 2 diabetes. PLoS ONE 2016; 11: e0150753.
5. Guo XH, Yuan L, Lou QQ, et al. A nationwide survey of diabetes education, self-management and glycemic control in patients with type 2 diabetes in China. Chin Med J (Engl) 2012; 125: 4175–4180.
6. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012; 35: 1364–1379.
7. Schwartz SS. Optimizing glycemic control and minimizing the risk of hypoglycemia in patients with type 2 diabetes. Drugs Context 2013; 2013: 212255.
8. Unnikrishnan AG, Bhattacharyya A, Baruah MP, et al. Importance of achieving the composite endpoints in diabetes. Indian J Endocrinol Metab 2013; 17: 835–843.
9. Dungan KM, Raz I, Skrivanek Z, et al. Achieving the composite endpoint of glycated haemoglobin <7.0%, no weight gain and no hypoglycaemia in the once-weekly dulaglutide AWARD programme. Diabetes Obes Metab 2016; 18: 49–55.
10. Unger JR, Parkin CG. Glucagon-like peptide-1 (GLP-1) receptor agonists: differentiating the new medications. Diabetes Ther 2011; 2: 29–39.
11. Chen YH, Huang CN, Cho YM, et al. Efficacy and safety of dulaglutide monotherapy compared with glimepiride in East-Asian patients with type 2 diabetes in a multicentre, double-blind, randomized, parallel-arm, active comparator, phase III trial. Diabetes Obes Metab 2018; 20: 2121–2130.
12. Wang W, Nevárez L, Filippova E, et al. Efficacy and safety of once-weekly dulaglutide versus insulin glargine in mainly Asian patients with type 2 diabetes mellitus on metformin and/or a sulphonylurea: a 52-week open-label, randomized phase III trial. Diabetes Obes Metab 2019; 21: 234–243.
13. Garber AJ. Hypoglycaemia: a therapeutic concern in type 2 diabetes. Lancet 2012; 379: 2215–2216.
14. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2015; 58: 429–442.
15. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). [published erratum. In: Diabetologia 2019; 62: 873] Diabetologia 2018; 61: 2461–2498.
16. Einarson TR, Garg M, Kaur V, et al. Composite endpoints in trials of type-2 diabetes. *Diabetes Obes Metab* 2014; 16: 492–499.

17. Shi LX, Liu XM, Shi YQ, et al. Award-Chn1 China subgroup: Efficacy and safety of dulaglutide monotherapy compared with glimepiride in Chinese patients with type 2 diabetes: post-hoc analyses of a randomized, double-blind, phase III study. *J Diabetes Invest* 2020; 11: 142–150.

18. Li Y, Li L, De Peng Y, et al. Award-Chn2 China subgroup efficacy and safety of dulaglutide versus insulin glargine in Chinese T2DM patients: a subgroup analysis of a randomized trial (Award-Chn2). *Diabetes Ther* 2019; 10: 1435–1452.

19. Zinman B, Schmidt WE, Moses A, et al. Achieving a clinically relevant composite outcome of an HbA1c of <7% without weight gain or hypoglycaemia in type 2 diabetes: a meta-analysis of the liraglutide clinical trial programme. *Diabetes Obes Metab* 2012; 14: 77–82.

20. Bennett WL, Maruthur NM, Singh S, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. *Ann Intern Med* 2011; 154: 602–613.

21. Ostawal A, Mocevic E, Kragh N, et al. Clinical effectiveness of liraglutide in type 2 diabetes treatment in the real-world setting: a systematic literature review. *Diabetes Ther* 2016; 7: 411–438.