Chronic allograft injury (CAI) is the major cause for renal allograft dysfunction and characterized by vasculopathies, tubular atrophy, and fibrosis. We demonstrated that numerous leukocytes interact with vascular endothelial cells of allografts and produce acetylcholine, which contributes to vascular remodeling. The cholinergic system might be a promising target for the development of novel therapies. However, neither the cellular mechanisms nor the acetylcholine receptors involved in CAI are known. Kidney transplantation was performed in the Lewis to Lewis and in the Fischer-334 to Lewis rat strain combination, which is an established experimental model for CAI. Expression of nicotinic and muscarinic acetylcholine receptors mRNA was quantified in renal tissue by real-time RT-PCR on days 9 and 42 after surgery. We detected CHRNA2–7, CHRNA10, CHRNB2, CHRNB4, and CHRM1–3 mRNA in normal kidneys and in renal transplants. In contrast, CHRNA9, CHRM4, and CHRM5 mRNA remained below the threshold of detection. In renal allografts, CHRNA3 and CHRNB4 mRNA expression were dramatically reduced compared to isografts. In conclusion, we demonstrated that most acetylcholine receptor subtypes are expressed by normal and transplanted kidneys. Allograft rejection downmodulates CHRNA3 and CHRNB4 mRNA. The role of different acetylcholine receptor subtypes in the development of CAI remains to be established.

1. Introduction

Chronic allograft injury (CAI) is the major cause for renal allograft dysfunction and characterized by vasculopathies, tubular atrophy, and fibrosis. We demonstrated that numerous leukocytes interact with vascular endothelial cells of allografts and produce acetylcholine, which contributes to vascular remodeling. The cholinergic system might be a promising target for the development of novel therapies. However, neither the cellular mechanisms nor the acetylcholine receptors involved in CAI are known. Kidney transplantation was performed in the Lewis to Lewis and in the Fischer-334 to Lewis rat strain combination, which is an established experimental model for CAI. Expression of nicotinic and muscarinic acetylcholine receptors mRNA was quantified in renal tissue by real-time RT-PCR on days 9 and 42 after surgery. We detected CHRNA2–7, CHRNA10, CHRNB2, CHRNB4, and CHRM1–3 mRNA in normal kidneys and in renal transplants. In contrast, CHRNA9, CHRM4, and CHRM5 mRNA remained below the threshold of detection. In renal allografts, CHRNA3 and CHRNB4 mRNA expression were dramatically reduced compared to isografts. In conclusion, we demonstrated that most acetylcholine receptor subtypes are expressed by normal and transplanted kidneys. Allograft rejection downmodulates CHRNA3 and CHRNB4 mRNA. The role of different acetylcholine receptor subtypes in the development of CAI remains to be established.
of endogenous ACh. Indeed, intimal hyperplasia was exacerbated in allograft recipients treated with rivastigmine [8]. Specific inhibition of cholinergic signaling between inflammatory blood leukocytes and graft blood vessels seems to be a promising approach for the development of novel therapies preventing CAI. In this context, detailed knowledge on the expression of CHR subtypes by healthy kidneys and renal grafts is needed.

Traditionally, CHR have been found in neurons and muscle cells, but over the last two decades it became evident that various nonneuronal cells express the CHR, among them are leukocytes and endothelial cells [22, 23]. Two classes of CHR have been described, nicotinic (CHRN) and muscarinic CHR (CHRM), named according to their prototypical agonists nicotine or muscarine. CHRN are ligand-gated ion channels, consisting of five subunits forming a cation selective ion channel, whereas CHRM are G protein coupled metabotropic receptors [24, 25]. In mammals, 16 nicotinic subunits (CHRNA1–7, CHRNA9-10, CHRNA11–13, CHRNB1–4, CHRND, CHRNE, and CHRG), which form either heteromers or homomers, as well as five CHRM (CHRM1–5) have been identified [26–29].

Our knowledge on CHR expression by rodent kidneys is scarce. In normal rat kidney tissue, CHRNA2, CHRNA3, CHRNA5, CHRNA7, CHRNA9, CHRNA10, CHRN2b, and CHRN4 mRNA are detected [30]. Rat tubular epithelial cells express CHRNA2–7, CHRNA9, CHRNA10, and CHRN2–4 mRNA. Among them, CHRNA2, CHRNA3, and CHRNA7 mRNA are most abundant [31]. In response to ischemia-reperfusion injury, which cannot be avoided during transplantation, tubular expression of CHRNA7 is quickly downregulated [30]. In mice renal interlobar arteries express the mRNA of CHRM1–5, with highest expression levels of CHRM3 [32]. However, data on CHR expression by renal transplant tissue are missing. Only for leukocytes isolated from the blood vessels of rat renal allografts undergoing fatal acute rejection, mRNA expression of CHRNA5, CHRNA9, CHRNA10, and CHRN2b was described by our laboratory; expression of CHRM was not investigated [33].

In this study, we analyze the mRNA expression of a comprehensive set of CHR by normal Lewis kidneys, renal Lewis to Lewis isografts, and F344 to Lewis allografts on days 9 and 42 posttransplantation. Only receptors restricted to the neuromuscular end-plate were omitted from this study. We demonstrate that most CHRN and CHRM are expressed by all kidneys investigated and that the expression levels of some CHRN change in response to transplantation and/or rejection.

2. Material and Methods

2.1. Animal Experiments. Lewis and F344 male rats were purchased from Harlan Winkelmann (Borchen, Germany) and Janvier Labs (Le Genest Saint Isle Saint Berthevin, France). Animals were kept under conventional conditions until transplantation was performed at a weight of 270–300 g. Animal care and animal experiments were performed in accordance with current German animal protection laws as well as the NIH “principles of laboratory animal care.” Normal control kidneys were harvested from healthy untreated Lewis rats. Isogenic transplantation was performed in Lewis rats, whereas F334 rats served as donors and Lewis rats as recipients of allografts. Before transplantation, rats were anesthetized with 60 mg/kg sodium pentobarbital (Narcoren, Merial, Hallbergmoos, Germany) intraperitoneally and donors were intravenously injected with 1000 U/kg heparin (Ratiopharm, Ulm, Germany) before removing the kidney. Kidney transplantation was performed as described before with minor modifications [34]. Shortly, kidneys were transplanted orthotopically to nephrectomized recipients and the ureter was anastomosed end-to-end. Warm ischemic times remained below 30 min. After surgery, recipients were treated with 150 mg ampicillin (Ratiopharm) intraperitoneally; no immunosuppression was applied. Nine and 42 days after transplantation, rats were anesthetized with sodium pentobarbital. Kidneys were removed immediately and cut into small pieces, which were snap-frozen and stored in liquid nitrogen until use.

To control the technical success of renal transplantation as well as allograft rejection, one slice of each transplant was embedded in paraffin. Sections of 5 μm were stained with hemalum and eosin, azocarmine/aniline blue (Azan), or acidic orcein. Sections were evaluated with an Olympus BX51 (Hamburg, Germany) microscope.

2.2. Real-Time RT-PCR. Total RNA was extracted from 300 to 400 mg renal tissue (n = 4 for normal kidneys, isografts and allografts) at day 9 and day 42 after transplantation, using the RNeasy Miniprep Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions. Reverse transcription (RT) was performed using 1 μg RNA, MLV-RT, and random hexamer Primers (Promega, Mannheim, Germany). Alternatively, Superscripts II and III reverse transcriptases (Life Technologies, Darmstadt, Germany) were used. Thereafter, cDNA was analyzed in duplicate by quantitative real-time PCR with Platinum SYBR Green qPCR Super-Mix-UDG (Invitrogen, Karlsruhe, Germany) in an ABI 7700 Sequence Detection System (Applied Biosystems, Foster City, Canada). Negative controls were included in each experiment, where the template cDNA was replaced by water. Tongue and skin samples from healthy Lewis rats were used as positive controls. The program used for PCR included initial denaturation for 5 min at 95°C, followed by 45 cycles of 20 sec at 95°C, 20 s at 60°C, and 10 sec at 72°C, and a final extension step for 7 min at 72°C. Primers (MWG Biotech, Ebersberg, Germany) were designed to amplify intron-spanning sequences (Table 1) and were used at a concentration of 0.6 μM. Melting curves of the PCR products were assessed; PCR products were analyzed by agarose gel electrophoresis and further verified by sequencing (Seqlab, Göttingen, Germany). Gene expression of CHRN and CHRM was normalized to the house-keeping gene phosphohibinogen deaminase (PBGD) and calculated as arbitrary units by the delta delta CT method.

2.3. Statistical Analyses. Data were analyzed first by the nonparametric Kruskal-Wallis test and thereafter by the
Mann-Whitney rank sum test using the SPSS software (Munich, Germany). Differences with P values below 0.05 were considered as significant. Two hypotheses were tested. (a) Transplantation changes CHR mRNA expression. To test this hypothesis, renal isografts were compared to normal healthy kidneys. (b) Rejection changes CHR mRNA expression. To test this hypothesis, renal allografts were compared to isografts at days 9 and 42 posttransplantation.

Results

Histopathological changes caused by renal transplantation and acute allograft rejection were evaluated on paraffin sections of renal isografts and allografts on days 9 and 42 posttransplantation (Figures 1(a)-(d)) and resemble previous data on the same experimental model [9]. The histomorphology of renal isografts was almost normal and only small mononuclear infiltrates were visible (Figures 1(a), 1(c), I(e), and I(g)). In contrast, day 9 allografts were strongly infiltrated by mononuclear leukocytes, which formed dense cuffs surrounding blood vessels and a diffuse infiltrate in the renal interstitium (Figure 1(b)). In the lumina of blood vessels numerous leukocytes were detected (Figure 1(b)). The renal parenchyma was largely unimpaired, and shedding of the tubular brush border was only observed in a minority of renal tubules. On day 42 after allogeneic transplantation, both the infiltrate and the number of intravascular leukocytes were markedly reduced, but discrete fibrotic changes were seen in perivascular regions (Figures 1(d) and 1(f)). Intimal hyperplasia typical for CAI, however, was not yet detected 42 days after surgery (Figure 1(h)). As described before, histopathological hallmarks of CAI such as vascular remodeling, interstitial fibrosis, and tubular atrophy develop in allografts within the following months [9].

We analyzed mRNA expression of CHRN and CHRM in normal kidneys, isografts, and allografts by real-time

Gene	Accession number	Direction	5' - 3' sequence	Product (bp)
CHRM1	NM_080773	Forward	tgtggccagcaacgcctcctg	106
		Reverse	cttgagggagtagctgg	
CHRM2	NM_031016	Forward	gccaaaccaccaagcaccc	102
		Reverse	agttgtgccccgctgg	
CHRM3	NM_012527	Forward	gtccctggacagacggcctg	116
		Reverse	aaccccgagagggtgctgg	
CHRM4	NM_031547	Forward	gacgctgaggagccctgg	117
		Reverse	gcgtggaatttcgccagatcgtg	
CHRM5	NM_017362	Forward	ccacagaaatcagagcagcc	102
		Reverse	ttgcccctccctctgtcg	
CHRNA2	NM_133420	Forward	cacggccatgcccccaact	119
		Reverse	ctgctttagcagacattggtgtg	
CHRNA3	NM_052805	Forward	tgggttgggtgctgtcgg	124
		Reverse	acggaaccagccggtctga	
CHRNA4	NM_024354	Forward	agggcagccctctgctgg	113
		Reverse	tgcctactggccagacac	
CHRNA5	NM_017078	Forward	acacgctgtgacagcagac	117
		Reverse	acagaggagttccagaggaaacgt	
CHRNA6	NM_057184	Forward	cttgagttggccctagccg	116
		Reverse	ccggtttgctcccaacacac	
CHRNA7	NM_000746.4	Forward	agatggccagatgtaagggacct	142
		Reverse	gcaggaacttgcattgct	
CHRNA9	NM_022930	Forward	atcgggtgggctgaggccgagc	119
		Reverse	ggcggctgtgagttcgaaccd	
CHRNA10	NM_022639	Forward	accagtggcagatatcagacagacag	124
		Reverse	tgcactctgctggctgacc	
CHRB2	NM_019297	Forward	gtccggctccctcctaaacac	114
		Reverse	gctggccatcagagccagaacagc	
CHRB4	NM_052806	Forward	ccgcccttggatcatactgtgcc	110
		Reverse	tccaggccaggccgttagctca	
PBGD	NM_03168	Forward	gccgagctatacagagaaagt	115
		Reverse	ageccaggataatggccactga	
Figure 1: Histopathology of renal isografts and allografts. Hemalum and eosin-stained paraffin sections of renal isografts (a), (c) and allografts (b), (d) on days 9 (a), (b) and 42 (c), (d) posttransplantation are depicted, as well as sections of day 42 isografts (e), (g) and allografts (f), (h) stained with azocarmine/aniline blue (e), (f) and acidic orcein (g), (h). Arrows are pointing to perivascular infiltrates, arrowheads to intravascular leukocytes.
increased in renal isografts. Box plots indicate median and percentiles 0, 25, 75, and 100; \(n = 4 \). The transient increase in CHRNA3 mRNA is in isografts but not 42 days (d) after transplantation. Associated changes might influence CHR expression. Already taking place on day 42. All these transplantation remodeling, which eventually leads to CAI, is probably in infiltration of graft tissue, and organ damage on days 9 and accumulation of leukocytes in graft blood vessels, leukocytic allograft rejection. Acute allograft rejection is associated with accumulation of leukocytes in graft blood vessels, leukocytic infiltration of graft tissue, and organ damage on days 9 and 42 posttransplantation. In addition, the process of tissue remodeling, which eventually leads to CAI, is probably already taking place on day 42. All these transplantation associated changes might influence CHR expression.

CHRM1–3 are readily detected in all kidneys investigated. The transient increase in CHRNA3 mRNA in isografts but not in allografts probably reflects regeneration of perioperative damage, which might be less efficient in renal allografts. CHRM are expected to be expressed by smooth muscle cells of blood vessels and are involved in cholinergic vasorelaxation [35–40]. Gericke et al. [32] demonstrated that CHRM1–5 are expressed by rat renal interlobar arteries but only CHRM3 mediates the cholinergic vasodilation in rat kidneys [32, 41]. In our analysis, however, CHRM4 and CHRM5 mRNA remained below the threshold of detection, which might be explained by the fact that we worked on total renal tissue, whereas Gericke et al. [32] isolated renal interlobar arteries, where the expression of CHRM is probably higher compared to other parts of the kidney.

Among the CHRN investigated, only CHRNA9 was not detected in rat renal tissue. It is known that the detection of CHRNA9 is difficult and seems to require a specific reverse transcriptase [42]. Even though we performed the experiments with different reverse transcriptases (see Section 2.2), we were unable to detect renal CHRNA9 mRNA, whereas it was readily detected in rat tongue and skin, which served as positive controls. Previously, we reported expression of CHRNA9 by leukocytes residing in the blood vessels of renal allografts [33]. In addition, Yeboah et al. [30] described CHRNA9 mRNA expression by normal healthy rat tissue. We cannot explain the discrepancy between our finding and previous reports.

The mRNA of CHRNA5 and CHRNA10 was slightly increased in isografts and allografts in response to transplantation. This increase might reflect regeneration, graft infiltration by leukocytes, or induction of gene expression by inflammatory mediators. Concerning CHRNA10, it is most likely that the observed surgery- and rejection-associated increase in expression is due to leukocytic graft infiltration. CHRNA10 is typically expressed by monocytes and macrophages [23, 33], which accumulate in renal isografts and even more in allografts [7–10]. To the best of our knowledge, CHRNA10 does not form functional homomers but rather heteromers with CHRNA9 [43–46]. CHRNA9 mRNA can be expressed by mononuclear leukocytes, which accumulate in renal graft blood vessels during acute rejection [33] but remained below the threshold of detection in this study where total renal tissue was investigated. We conclude
that CHRNA10 might form some functional heteromers with CHRNA9 but additional, possibly metabotropic, functions of CHRNA10 cannot be excluded. A slight and transient increase in CHRNA3 mRNA expression was seen only in isografts, which probably reflects graft regeneration rather than leukocyte infiltration.

In contrast, CHRNA3 and CHRNB4 were expressed at markedly lower levels in renal allografts compared to isografts. CHRNA3 and CHRNB4 are coexpressed and form functional receptor heteromers, which may also contain CHRNA5 [47–51]. Besides renal tubular cells, CHRNA3–5 were found in the immune system [23, 30, 52] and in the vascular endothelium [53, 54]. The allograft specific reduced expression of CHRNA3 and CHRNB4 mRNA might reflect damage of CHRNA3- or CHRNB4-positive cell populations, such as endothelial or tubular epithelial cells, caused by acute rejection or a downregulation induced by rejection-associated mediators.

Of note, we did not observe changes in CHRNA7 expression, which might have been expected since this receptor is downregulated by tubular epithelial cells in response to ischemia/reperfusion injury [31]. However, in contrast to the study of Yeboah et al. [31], which investigated changes in CHRNA7 expression within the first 24 hours after ischemia/reperfusion, our analysis was performed 9 days after surgery and tubular CHRNA7 expression might have been restored in between.

Our study has numerous limitations. The functional implications of the observed differences in CHR expression between allografts and isografts are difficult to predict. CHR are probably involved in vascular remodeling and graft fibrosis [11–21]. Considering the eminent role of ACh in immunity, changes in CHR expression might modulate the production of immune mediators and leukocyte migration [55–59]. Furthermore, we only investigated CHR expression on the mRNA level in total tissue samples and hence we ignored
protein expression, cellular localization, and functionality of graft CHR. Analyses of CHR protein are still limited due to the lack of specific antibodies to CHRM and CHRN [60–63]. We made an attempt to detect CHRN7, CHRN9, and CHRN10 with labeled α-bungarotoxin and failed, probably due to low receptor expression by nonneuronal cells. In future studies, single-cell RT-PCR as well as in situ hybridization should be performed to identify cell specific changes in CHR expression. This knowledge is needed to design future therapies aiming at the prevention of CAI.

In conclusion, we demonstrated that most CHRN and CHRM are expressed by normal and transplanted kidneys and that a lack in receptors composed of CHRNA3 and CHRNA4 as well as an increase in receptors containing CHRNA10 might be involved in the pathogenesis of CAI. More studies are needed to define CHR expression in renal transplants on the cellular level.

Conflict of Interests

The authors declare no conflict of interests.

Acknowledgments

This study was supported by the LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz) Research Program “Non-Neuronal Cholinergic Systems” of the State of Hesse. The authors like to thank K. Petri, G. Fuchs-Moll, and A. Fischer for expert technical assistance.

References

[1] B. J. Nankivell and J. R. Chapman, “Chronic allograft nephropathy: current concepts and future directions,” *Transplantation*, vol. 81, no. 5, pp. 643–654, 2006.

[2] E. White, W. H. Hildemann, and Y. Mullen, “Chronic kidney allograft reactions in rats,” *Transplantation*, vol. 8, no. 5, pp. 602–617, 1969.

[3] E. Andriambeloson, C. Cannet, C. Pally et al., “Transplantation-induced functional/morphological changes in rat aorta allografts differ from those in arteries of rat kidney allografts,” *American Journal of Transplantation*, vol. 4, no. 2, pp. 188–195, 2004.

[4] N. Beckmann, C. Cannet, M. Fringeli-Tanner et al., “Macrophase labeling by SPIO as an early marker of allograft chronic rejection in a rat model of kidney transplantation,” *Magnetic Resonance in Medicine*, vol. 49, no. 3, pp. 459–467, 2004.

[5] M. L. Marco, “The Fischer-Lewis model of chronic allograft rejection—a summary,” *Nephrology Dialysis Transplantation*, vol. 21, no. 11, pp. 3082–3086, 2006.

[6] J. Bedke, E. Kiss, L. Schaefer et al., “Beneficial effects of CCR1 blockade on the progression of chronic renal allograft damage,” *American Journal of Transplantation*, vol. 7, no. 3, pp. 527–537, 2007.

[7] J. Holler, A. Zakrzewicz, A. Kaufmann et al., “Neuropeptide Y is expressed by rat monocellular blood leukocytes and strongly down-regulated during inflammation,” *Journal of Immunology*, vol. 181, no. 10, pp. 6906–6912, 2008.

[8] J. Wilczynska, U. Pfeil, A. Zakrzewicz et al., “Acetylcholine and chronic vasculopathy in rat renal allografts,” *Transplantation*, vol. 91, no. 3, pp. 263–270, 2011.

[9] A. Zakrzewicz, J. Wilhelm, S. Blöcher et al., “Leukocyte accumulation in graft blood vessels during self-limiting acute rejection of rat kidneys,” *Immunobiology*, vol. 216, no. 5, pp. 613–624, 2011.

[10] D. Zakrzewicz, A. Zakrzewicz, S. Wilker et al., “Dimethylarginine metabolism during acute and chronic rejection of rat renal allografts,” *Nephrology Dialysis Transplantation*, vol. 26, no. 1, pp. 124–135, 2011.

[11] C. Heesschen, M. Weis, A. Aicher, S. Dimmeler, and J. P. Cooke, “A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors,” *Journal of Clinical Investigation*, vol. 110, no. 4, pp. 527–536, 2002.

[12] X. W. Li and H. Wang, “Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization,” *Life Sciences*, vol. 78, no. 16, pp. 1863–1870, 2006.

[13] K. C. Brown, J. K. Lau, A. M. Dom et al., “MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway,” *Angiogenesis*, vol. 15, no. 1, pp. 99–114, 2012.

[14] Z. Gu, V. Fonseca, and C.-M. Hai, “Nicotinic acetylcholine receptor mediates nicotine-induced actin cytoskeletal remodeling and extracellular matrix degradation by vascular smooth muscle cells,” *Vascular Pharmacology*, vol. 58, no. 1-2, pp. 87–97, 2013.

[15] A. Wesołowska, A. Kwiatkowska, L. Slomnicki et al., “Microglia-derived TGF-β as an important regulator of glioblastoma invasion—an inhibition of TGF-β-dependent effects by shRNA against human TGF-β type II receptor,” *Oncogene*, vol. 27, no. 7, pp. 918–930, 2008.

[16] A. Masamune, K. Kikutaka, T. Watanabe, K. Satoh, M. Hirotake, and T. Shimosegawa, “Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer,” *The American Journal of Physiology—Gastrointestinal and Liver Physiology*, vol. 295, no. 4, pp. G709–G717, 2008.

[17] A. Masamune, T. Watanabe, K. Kikutaka, and T. Shimosegawa, “Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis,” *Clinical Gastroenterology and Hepatology*, vol. 7, no. 11, pp. S48–S54, 2009.

[18] O. Rosmorduc and C. Housset, “Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease,” *Seminars in Liver Disease*, vol. 30, no. 3, pp. 258–270, 2010.

[19] T. Pera, A. Zuidhof, J. Valadas et al., “Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD,” *European Respiratory Journal*, vol. 38, no. 4, pp. 789–796, 2011.

[20] S. Kolahian and R. Gosens, “Cholinergic regulation of airway inflammation and remodeling,” *Journal of Allergy (Cairo)*, vol. 2012, Article ID 681258, 9 pages, 2012.

[21] H. Meurs, B. G. J. Dekkers, H. Maarsingh, A. J. Halayko, J. Zaagsma, and R. Gosens, “Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target,” *Pulmonary Pharmacology and Therapeutics*, vol. 26, no. 1, pp. 145–155, 2013.

[22] N. Le Nov`ere, P. J. Corringer, and J. P. Changeux, “The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences,” *Journal of Neurobiology*, vol. 53, no. 4, pp. 447–456, 2002.

[23] I. Wessler and C. J. Kirkpatrick, “Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans,” *British Journal of Pharmacology*, vol. 154, no. 8, pp. 1558–1571, 2008.
[24] J. Wess, "Molecular biology of muscarinic acetylcholine receptors," Critical Reviews in Neurobiology, vol. 10, no. 1, pp. 69–99, 1996.

[25] M. P. Caulfield and N. J. M. Birdsall, "International Union of Pharmacology—17. Classification of muscarinic acetylcholine receptors," Pharmacological Reviews, vol. 50, no. 2, pp. 279–290, 1998.

[26] J. Lindstrom, "Neuronal nicotinic acetylcholine receptors," Ion Channels, vol. 4, pp. 377–450, 1996.

[27] M. Verbitsky, C. V. Rothlin, E. Katz, and A. Belen Elgoyhen, "Mixed nicotinic-muscarinic properties of the α9 nicotinic cholinergic receptor," Neuropharmacology, vol. 39, no. 13, pp. 2515–2524, 2000.

[28] P. V. Plazas, E. Katz, M. E. Gomez-Casati, C. Bouzat, and A. B. Elgoyhen, "Stoichiometry of the α9α10 nicotinic cholinergic receptor," Journal of Neuroscience, vol. 25, no. 47, pp. 10905–10912, 2005.

[29] J. A. Dani and D. Bertrand, "Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system," Annual Review of Pharmacology and Toxicology, vol. 47, pp. 699–729, 2007.

[30] M. M. Yeboah, X. Xue, B. Duan et al., "Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats," Kidney International, vol. 74, no. 1, pp. 62–69, 2008.

[31] M. M. Yeboah, X. Xue, M. Javdan, M. Susin, and C. N. Metz, "Nicotinic acetylcholine receptor expression and regulation in the rat kidney after ischemia-reperfusion injury," American Journal of Physiology—Renal Physiology, vol. 295, no. 3, pp. F654–F661, 2008.

[32] A. Gericke, J. J. Sniatecki, V. G. A. Mayer et al., "Role of m1, m3, and m5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice," The American Journal of Physiology—Heart and Circulatory Physiology, vol. 300, no. 5, pp. H1602–H1608, 2011.

[33] A. Hecker, Z. Mikulski, K. S. Lips et al., "Pivotal advance: up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts," Journal of Leukocyte Biology, vol. 86, no. 1, pp. 13–22, 2009.

[34] J. Fabre, S. H. Lim, and P. J. Morris, "Renal transplantation in the rat: details of a technique," Australian and New Zealand Journal of Surgery, vol. 41, no. 1, pp. 69–75, 1971.

[35] J. Wess, R. M. Eglen, and D. Gautam, "Muscarnic acetylcholine receptors: mutant mice provide new insights for drug development," Nature Reviews Drug Discovery, vol. 6, no. 9, pp. 721–733, 2007.

[36] S. Pesić, A. Jovanović, and L. Grbović, "Muscarnic receptor subtypes mediating vasorelaxation of the perforating branch of the human internal mammary artery," Pharmacology, vol. 63, no. 3, pp. 185–190, 2001.

[37] M. Yamada, K. G. Lamping, A. Duttaroy et al., "Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice," Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 14096–14101, 2001.

[38] J. Bény, M. N. Nguyen, M. Marino, and M. Matsui, "Muscarnic receptor knockout mice confirm involvement of M3 receptor in endothelium-dependent vasodilatation in mouse arteries," Journal of Cardiovascular Pharmacology, vol. 51, no. 5, pp. 505–512, 2008.

[39] A. T. Ryberg, H. Selberg, O. Soukup, K. Gradin, and G. Tobin, "Cholinergic submandibular effects and muscarinic receptor expression in blood vessels of the rat," Archives of Oral Biology, vol. 53, no. 7, pp. 605–616, 2008.

[40] A. Gericke, V. G. A. Mayer, A. Steege et al., "Cholinergic responses of ophthalmic arteries in M3 and M5 muscarinic acetylcholine receptor knockout mice," Investigative Ophthalmology and Visual Science, vol. 50, no. 10, pp. 4822–4827, 2009.

[41] M. Eltze, B. Ullrich, E. Mutschler et al., "Characterization of muscarinic receptors mediating vasodilation in rat perfused kidney," European Journal of Pharmacology, vol. 238, no. 2-3, pp. 343–355, 1993.

[42] Z. Mikulski, P. Hartmann, G. Jositsch et al., "Nicotinic receptors on rat alveolar macrophages dampen ATP-induced increase in cytosolic calcium concentration," Respiratory Research, vol. 11, article no. 133, 2010.

[43] L. R. Lustig, H. Peng, H. Hiel, T. Yamamoto, and P. A. Fuchs, "Molecular cloning and mapping of the human nicotinic acetylcholine receptor α10 (CHRNA10)," Genomics, vol. 73, no. 3, pp. 272–283, 2001.

[44] A. I. Chernavsky, J. Arredondo, D. E. Vetter, and S. A. Grando, "Central role of α9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization," Experimental Cell Research, vol. 313, no. 16, pp. 3542–3555, 2007.

[45] V. T. Nguyen, A. Ndoye, and S. A. Grando, "Novel human α9 acetylcholine receptor regulating keratinocyte adhesion is targeted by pemphigus vulgaris autoimmunity," The American Journal of Pathology, vol. 157, no. 4, pp. 1377–1391, 2000.

[46] A. B. Elgoyhen, D. E. Vetter, E. Katz, C. V. Rothlin, S. F. Heinemann, and J. Boulté, "α10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells," Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3501–3506, 2001.

[47] D. S. McGehee and L. W. Role, "Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons," Annual Review of Physiology, vol. 57, pp. 521–46, 1995.

[48] M. E. Nelson and J. Lindstrom, "Single channel properties of human α3 αChRs: impact of β2, β4 and α5 subunits," Journal of Physiology, vol. 516, no. 3, pp. 657–678, 1999.

[49] F. Wang, V. Gerzanich, G. B. Wellst et al., "Assembly of human neuronal nicotinic receptor α5 subunits with α3, β2, and β4 subunits," The Journal of Biological Chemistry, vol. 271, no. 30, pp. 17656–17665, 1996.

[50] V. Gerzanich, F. Wang, A. Kuryatov, and J. Lindstrom, "α5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal α3 nicotinic receptors," Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 311–320, 1998.

[51] P. J. Groot-Kormelink, J. P. Boorman, and L. G. Sivilotti, "Formation of functional α3β4δ5 human neuronal nicotinic receptors in Xenopus oocytes: a reporter mutation approach," British Journal of Pharmacology, vol. 134, no. 4, pp. 789–796, 2001.

[52] K. Benhammou, M. Lee, M. A. Strook et al., "[3H]Nicotine binding in peripheral blood cells of smokers is correlated with the number of cigarettes smoked per day," Neuropsychopharmacology, vol. 39, no. 13, pp. 2818–2829, 2000.

[53] K. D. Macklin, A. D. J. Maus, E. F. Pereira, E. X. Albuquerque, and B. M. Conti-Fine, "Human vascular endothelial cells express functional nicotinic acetylcholine receptors," Journal of Pharmacology and Experimental Therapeutics, vol. 287, no. 1, pp. 435–439, 1998.
[54] Y. Wang, E. F. R. Pereira, A. D. J. Maus et al., “Human bronchial epithelial and endothelial cells express α_7 nicotinic acetylcholine receptors,” Molecular Pharmacology, vol. 60, no. 6, pp. 1201–1209, 2001.

[55] L. Sikora, S. P. Rao, and P. Sriramaraio, “Selectin-dependent rolling and adhesion of leukocytes in nicotine-exposed microvessels of lung allografts,” The American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 285, no. 3, pp. L654–L663, 2003.

[56] S. Neumann, M. Raen, P. Habermehl et al., “The non-neuronal cholinergic system in peripheral blood cells: effects of nicotinic and muscarinic receptor antagonists on phagocytosis, respiratory burst and migration,” Life Sciences, vol. 80, no. 24-25, pp. 2361–2364, 2007.

[57] T. Fujii, Y. Takada-Takatori, and K. Kawashima, “Roles played by lymphocyte function-associated antigen-1 in the regulation of lymphocytic cholinergic activity,” Life Sciences, vol. 80, no. 24-25, pp. 2320–2324, 2007.

[58] O. Lykhmus, L. Koval, S. Pavlovych et al., “Functional effects of antibodies against non-neuronal nicotinic acetylcholine receptors,” Immunology Letters, vol. 128, no. 1, pp. 68–73, 2010.

[59] I. Wessler, S. Neumann, M. Raen, F. Zepp, and C. J. Kirkpatrick, “Blockade of nicotinic and muscarinic receptors facilitates spontaneous migration of human peripheral granulocytes: failure in cystic fibrosis,” Life sciences, vol. 91, no. 21-22, pp. 1119–1121, 2012.

[60] D. L. Herber, E. G. Severance, J. Cuevas, D. Morgan, and M. N. Gordon, “Biochemical and histocellular evidence of nonspecific binding of α_7nAChR antibodies to mouse brain tissue,” Journal of Histochemistry and Cytochemistry, vol. 52, no. 10, pp. 1367–1375, 2004.

[61] N. Moser, N. Mechawar, I. Jones et al., “Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures,” Journal of Neurochemistry, vol. 102, no. 2, pp. 479–492, 2007.

[62] G. Jositsch, T. Papadakis, R. V. Haberberger, M. Wolff, J. Wess, and W. Kummer, “Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 379, no. 4, pp. 389–395, 2009.

[63] I. V. Shelukhina, E. V. Kryukova, K. S. Lips, V. I. Tsetlin, and W. Kummer, “Presence of α_7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective α-neurotoxins in histochemistry,” Journal of Neurochemistry, vol. 109, no. 4, pp. 1087–1095, 2009.