Wave propagation in pantographic 2D lattices with internal discontinuities

Angela Madeo\textsuperscript{a,b}, Alessandro Della Corte\textsuperscript{c}, Leopoldo Greco\textsuperscript{b,d}, Patrizio Neff\textsuperscript{e}

\textsuperscript{a} Université de Lyon-INSA (Institut National des Sciences Appliquées), Laboratoire de Génie Civil et Ingénierie Environnementale (LGCIE) Bâtiment Coulomb, 69100 Villeurbanne, France
\textsuperscript{b} Dep. of Mechanical and Aerospace Engineering, Università di Roma La Sapienza, 18 Via Eudossiana, Roma
\textsuperscript{c} MeMoCS, International Research Center for the Mathematics & Mechanics of Complex Systems, Università dell’Aquila
\textsuperscript{d} Department of Civil, Building-Architecture and Environmental Engineering, DICEA, University of L’Aquila
\textsuperscript{e} University of Duisburg-Essen, Faculty of Mathematics, Mathematik-Carrée Thea-Leymann-Strasse 9 45127 Essen

E-mail: angela.madeo@insa-lyon.fr, alessandro.dellacorte@uniroma1.it, leopoldo.greco@virgilio.it, patrizio.neff@uni-due.de

Abstract. In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular ‘long’ waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.

Key words: Pantographic structures, wave propagation, homogenization, solitons.

1. Introduction

In the present paper, we employed the concept, suggested by prof. dell’Isola, of pantographic lattices, whose technological importance is rapidly increasing and, especially in nano-technology, could be very relevant. Pantographic structures are mechanical systems in which array of beams or rods are connected by internal kinematic pivots. Actually, a very wide class of objects can be effectively described and studied by means of suitably chosen pantographic models (see e.g. \cite{16}). In this work, a numerical analysis of wave propagation is performed on the basis of the discrete mechanical model presented in \cite{15}.

Let us briefly recall the model considered therein. In Fig. 1 (left), the reference configuration $C^*$ is shown. Lines indicate beams, which are divided in two families of parallel and equally spaced beams (with distance $d$), reciprocally orthogonal in $C^*$. The beams are arranged in a rectangle (sized $\sqrt{2}Ld \times \sqrt{2}Wd$ in $C^*$) whose sides are crossed by the beams at 45 degrees in $C^*$. Each beam has a standard linearized Euler strain energy given by:

$$\varepsilon = \frac{1}{2} \int_{\Lambda} k_M (u'')^2 + k_N (w')^2. \quad (1)$$

Here $u$ and $w$ are respectively the values of transverse and axial displacements $u$ and $w$ with respect to $C^*$, and $k_M$, $k_N$ are respectively bending and axial stiffness coefficients, which in the real object depend on course of the diameter of beams, while the integral is extended over the entire length $\Lambda$ of the beam.

Dots in Fig. 1 (left) represent hinges which allow free rotations and do not interrupt the continuity of the beams. The configuration at a given time $t$ can be thought as characterized by a ‘large’ displacement (with respect to $C^*$) due to the contribution of the rigid rotations, and a ‘small’ displacement due to axial and bending elastic deformations.

2. Numerical results

Wave propagation in non-trivial structures are of course widely studied in literature (see e.g. \cite{40, 33, 35}), and in particular several numerical and experimental results on woven fabrics are found in literature (see e.g. \cite{7}). For our numerical analysis we used a length $l$ of 0.1 m for the lower and upper sides, while
the height \( h \) of the rectangle is 2 m in simulations plotted in Figs 4 and 5 and 2.5 m in those plotted in Figs. 2, 3 and 6.

We chose the values \( 1.96 \times 10^{-2} \) N m\(^2\) and \( 7.85 \times 10^4 \) N for \( k_M \) and \( k_N \) respectively, which can be thought as relative to a beam with an elliptic section of semiaxes \( a = 0.001 \) m and \( b = 0.00025 \) m (area \( A = 7.85 \times 10^{-7} \) m\(^2\), inertia moment of the cross section around its minor axis \( J = 1.96 \times 10^{-13} \) m\(^4\) rotating around the minor one. We set \( d = 0.0(1) \) m for the simulations shown in Figs 3-4 and \( d = 0.00(5) \) m for the other ones.

As for mechanical parameters, we chose the mass density \( \rho = 1450 \text{ kg/m}^3 \), \( Y = 100 \text{ GPa} \) for the Young’s Modulus and \( \nu = 0.2 \) for Poisson’s ratio. The material was assumed to be linearly elastic.

For all our simulations, we imposed a displacement on the points of the system belonging to the upper side of \( C^* \), oriented along the height of the rectangle. The displacement is analytically represented by an impulse function \( I(t) = u_0 \times \text{sech}\left[\tau(t - t_0)\right] \), where \( u_0 = 0.05 \) m and \( t_0 = 0.005 \) s, while \( \tau \) is a parameter affecting the duration of the impulse; in Fig. 1 (right) the impulse is plotted with \( \tau = 4000 \) s\(^{-1}\). In all the figures, times (in s) are given on the horizontal axis. If not otherwise specified, the lower side is built in, and the absolute values of the rotations of the cross sections are represented by a color map.

The numerical problems that may arise when considering such kind of structures with peculiar geometric characteristics can be very complex, and moreover the behavior of the system can very easily display instabilities of the type of those discussed in, e.g., [25, 26, 27, 5, 31]. A set of numerical tools has been elaborated to take care of this kind of problems (the reader is referred e.g. to [30, 21, 9, 10, 12]), also in direction of extending the model to the case of inextensible fibers, which can be numerically addressed by means of Lagrangian Multipliers Methods, as performed in ([13, 11]).

Of course, our numerical results are intended as a first step towards a general homogenized theory of this kind of systems. Homogenization problems of this kind can in fact be very difficult, but a series of related problems have already been attacked in the literature (see e.g. [42, 43, 39, 24, 3]). These homogenization methods are of course at the basis of many nowadays active lines of investigations, such as mechanical phase transition ([18, 44, 32, 19]), dissipation in particular structures ([8]) and anisotropy problems ([34]).

Considering our pantographic system, it is reasonable to describe its homogenized limit as a metamaterial (see e.g. [14, 4, 2, 29, 22]), and since, as we will numerically show, the system responds to solicitations
like double forces, higher-gradient theories are also called for (see e.g. [1, 17, 23, 36]).

All numerical simulations are performed with COMSOL Multiphysics®.

2.1. Basic wave propagation and double impulse

In Fig. 2 a basic case of wave propagation after an impulse of the type of Fig. 1 (right) is shown ($\tau = 4000$ s$^{-1}$, height $h = 2.5$ m). This results in quite ordinary (continuous-like) wave propagation. Dispersion is clearly observable, as the length of the perturbed zone is clearly increasing in time, and a reflection on the lower side is also visible in the last snapshots.

In Fig. 3, the effect of a double impulse applied in the middle height of the structure is shown ($\tau = 4000$ s$^{-1}$, height $h = 2.5$ m). By double impulse we mean a displacement oriented in the beam direction and imposed on two points belonging to the opposite ends of two adjacent beams - i.e. the ends are almost in line with one of the two families of beams. Both the upper and lower sides are built in. The idea is to show that such a structure can respond to a stimulus that, in the continuous homogenized limit case, is a double force (i.e. a pair of forces with null resultant and moment). Indeed, the onset of standard traveling waves is visible.

2.2. Internal discontinuities

In Fig. 4 ($h = 2$ m), the structure is provided with an horizontal set of hinges at the middle height. In the plot the local bending moment is represented by means of a color map (in N m). The hinges, in this case, do interrupt the continuity of the beams, allowing energy-free angular displacements between the upper and lower part of each beam. As it is observable, however, due to the kind of internal connections between the whole system of beams, this do not change the overall character of wave propagation.

In Fig. 5 ($h = 2$ m), the upper and lower half of the system are connected by an array of vertical beams ($k_M = 1.96 \times 10^{-2}$ N m$^2$ and $k_N = 7.85 \times 10^4$ N). In this case, the imposed displacement is parallel to one
of the two families of beams, and what is interesting is that the energy of the system remains more or less confined in the upper half, and waves practically do not propagate beyond the discontinuity, which therefore results in a simplified but potentially useful model for damping filters in the considered kind of structures.

2.3. Waves traveling in opposite directions

Finally, in Fig. 6 \((h = 2.5 \text{ m})\), the initial impulse (parallel to one of the two families of beams) is imposed on both upper and lower sides. Two waves traveling in opposite directions originate and their interaction is shown. As one can see, the velocity of both wave fronts remains more or less unchanged after the crossing over. Moreover, in every snapshot a rather well-circumscribed traveling region displaying maximum perturbation is observable. These characteristics are shared by the well known self-supporting, localized traveling perturbations - called ‘solitons’ - originating in particular non-linear systems.

3. Conclusions

A conjecture that can be validly proposed in this context is the possibility of emerging of solitons, i.e., solitary waves propagating without changing their shape and speed due to the balance of all physical effects (e.g. between dispersion and nonlinearity [38]). Solitons were first observed in numerical simulations while studying the well-known Korteweg - de Vries (KdV) equation,

\[
u_t = Kuv_x - u_{xxx}
\]

first appeared in hydrodynamics problems. The solutions of equations of this kind can be decomposed in localized perturbations with well defined shape which propagate at different velocities and preserve shape
Fig. 4. Bending moment in two lattices connected by hinges

Fig. 5. Wave propagation in two lattices connected by an array of vertical beams
and velocity when interacting with other waves. A short but very clear historical review on solitons in elastic solids is presented by Maugin [28]. Zabusky and Kruskal [45] have demonstrated the emergence of a train of solitons from a harmonic initial condition for a given dispersion constant in the case of the KdV equation. The KdV equation is solved numerically using the pseudospectral method (see [20, 37] for details). Soliton solutions are also appearing in nonlinear Cosserat models with a special coupling between rotations and deformations [6].

In fact, the study of the propagation of a pulse along the fabric can be made using a discrete model consisting of two linear orders of one-dimensional beams of identical geometrical and mechanical characteristics, interacting each other through constraints which impose the continuity of the displacement in a finite number of pivot points. The intensity of the coupling can be adjusted by varying the value of the elastic constants and the mass density of the beams. In a one dimensional context, a beam discretized by means of concentrated masses and linear springs is studied e.g. in [41]. A case with dispersion is obtained by suitably adjusting the parameters that characterize the system. If we reduce the pulse duration and increase the value of the coupling constant, what happens is that the width of the wave packet (train) begins to be comparable with the pitch of the two rows of beams. The dispersion effects, as observed, are already visible in the simulations. Furthermore, the structure exhibits large rotations and hence the problem can be modeled taking into account the deformation of the structure when formulating the dynamic equations. On the whole, the structure and the model appear to be rich enough to allow the onset of true solitons if suitable non-linearities are considered. The soliton-like character of the perturbations shown in Fig. 6 suggest that further investigation in this direction would indeed be very interesting.
REFERENCES

1. Alibert, J. and Seppacher, P. and dell’Isola F. Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids, 2003, 8(1), 51–73.

2. Andreaus, U. and dell’Isola, F. and Porfiri, M. Piezoelectric Passive Distributed Controllers for Beam Flexural Vibrations. J. Vib. Control, 2004, 10(5), 625–659.

3. Andreaus, U. and Giorgio, I. and Lekszyczyk, T. A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Z. angew. Math. Mech., 2014, 94(12), 978–1000.

4. Börsan, M. and Altenbach, H. and Sadowski, T. and Eremeyev, V. A. and Pietras, D. Deformation analysis of functionally graded beams by the direct approach. Composites Part B, 2012, 43(3), 1315–1328.

5. Bersani, M. A. and Giorgio I. and Tomassetti G. Buckling of an Elastic Hemispherical Shell with an Obstacle. Contin. Mech. Thermodyn., 2013, 25(2), 443–467.

6. Boehler, C. G. and Neff, P. and Seymenoglu, B. Soliton-like solutions based on geometrically nonlinear Cosserat micropolar elasticity (in preparation, 2015).

7. Cao, J. and Akkerman, R. and Boisse, P. and Chen, J. and Cheng, H.S. and de Graaf, E.F. and Gorczyca, J.L. and Harrison, P. and Hivet, G. and Launay, J. and Lee, W. and Liu, L. and Lomov, S.V. and Long, A. and de Luycker, E. and Morestin, F. and Padoviskis, J. and Peng, X.Q. and Sherwood, J. and Stoilova, Tz. and Tao, X.M. and Verpoest, I. and Willems, A. and Wiggers, J. and Yu T.X. and Zhu, B. Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Composites Part A, 2008, 39(6), 1037–1053.

8. Carcaterra, A. and Akay, A. Dissipation in a finite-size bath. Phys. Rev. E (84), 2011, 011121.

9. Cazzani, A. and Malagù, M. and Turco, E. Isogeometric analysis of plane-curved beams. Math. Mech. Solids, 2014. doi: 10.1177/1081286514531265.

10. Cazzani, A. and Ruge, P. Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng., 2012, 37, 56–72.

11. Cuomo, M. and Contrafatto, L. and Greco, L. A variational model based on isogeometric interpolation for the analysis of cracked bodies. Internat. J. Engrg. Sci., 2014, 80, 173–188.

12. Cuomo, M. and Contrafatto, L. Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation. International Journal of Solids and Structures 2000; 37 (29): 3935-3964.

13. Cuomo, M. and Ventura, G. Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation. Mathematical and Computer Modelling 1998; 28(4): 185-204.

14. Del Vescovo, D. and Giorgio, I. Dynamic problems for metamaterials: review of existing models and ideas for further research. Internat. J. Engrg. Sci., 2014, 80, 153–172.

15. dell’Isola, F. and Giorgio, I. and Andreaus, U. Elastic pantographic 2D lattices: a numerical analysis on static response and wave propagation. Proc. Est. Acad. Sci. Eng., 2015.

16. dell’Isola, F. and Steigmann, D. A Two-Dimensional gradient-elasticity theory for woven fabrics. J. Elasticity, 2014. DOI: 10.1007/s10659-014-9478-1.

17. dell’Isola, F. and Andreaus, U. and Placidi, L. At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids, February 2, 2014, DOI: 10.1177/1081286513509811.

18. Eremeyev, V. A. and Zubov, L. M. On the stability of equilibrium of nonlinear elastic bodies with phase transformations. Proc. USSR Academy of Science. Mech. solids, 1991, 2, 56–65.

19. Eremeyev, V. A. and Pietraszkiewicz, W. Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech., 2009, 61(1), 41–67.

20. Fornberg, B. A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge, 1998.

21. Garusi, E. and Tralli, A. and Cazzani, A. An unsymmetric stress formulation for Reissner-Mindlin plates: A simple and locking-free rectangular element. International Journal of Computational Engineering Science, 2004, 5(3), 589–618.

22. Giorgio I., Culla A. and Del Vescovo D. Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech., 2009, 79, 859–879.

23. Javili, A. and dell’Isola, F. and Steinmann, P. Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids, 2013, 61(12), 2381–2401.

24. Lekszycki, T. and dell’Isola, F. A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Z. angew. Math. Mech., 2012, 92(6), 426–444.

25. Luongo, A. and Paolone, A. and Piccardo, G. Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica, 1998, 33(3), 229–242.

26. Luongo, A. and Zulli, D. and Piccardo, G. A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct., 2007, 2(4), 675–694.

27. Luongo, A. and Piccardo, G. Linear instability mechanisms for coupled translational galloping. J. Sound Vibration, 2005, 288(4), 1027–1047.
28. Maugin, G. A. Solitons in elastic solids (1938–2010). Mech. Res. Commun., 2011, 38(5), 341–349.
29. Maurini, C. and Pouget, J. and dell’Isola, F. On a model of layered piezoelectric beams including transverse stress effect. Internat. J. Solids Structures, 2004, 41(16-17), 4473–4502.
30. Nahine, H. and P. Boisse. Tension locking in finite-element analyses of textile composite reinforcement deformation. C.R. Acad. Sci., Ser. IIb: Mech., Phys., 2013, 341(6), 508–519.
31. Piccardo, G. and Pagnini, L. C. and Tubino, F. Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin. Mech. Thermodyn., 2014, 1–25.
32. Pietraszkiewicz, W. and Ermentrout, V. and Konopinska, V. Extended non-linear relations of elastic shells undergoing phase transitions. Z. angew. Math. Mech., 2007, 87(2), 150–159.
33. Placidi, L. and dell’Isola, F. and Ianiro, N. and Sciarra, G. Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids, 2008, 27(4), 582–606.
34. Placidi, L. and Hutter, K. An anisotropic flow law for incompressible polycrystalline materials. Z. Angew. Math. Phys., 2005, 57(1), 160–181.
35. Quiligotti, S. and Maugin, G.A. and dell’Isola, F. Wave motions in unbounded poroelastic solids infused with compressible fluids. Z. Angew. Math. Phys., 2002, 53(6), 1110–1113.
36. Rinaldi, A. and Placidi, L. A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. Z. angew. Math. Mech., 2014, 94(10), 862–877.
37. Salupere, A. The pseudospectral method and discrete spectral analysis. In Ewald Quak and Tarmo Soomere, editors, Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods, Springer, Berlin, 2009, 301–333.
38. Salupere, A. and Engelbrecht, J. Hidden and driven solitons in microstructured media, XXI ICTAM, 15–21 August 2004, Warsaw, Poland.
39. Seppecher, P. and Alibert, J.-J. and dell’Isola, F. Linear elastic trusses leading to continua with exotic mechanical interactions. Journal of Physics: Conference Series, 2011, 319(1), 012018.
40. Sestieri, A. and Carcaterra, A. Space average and wave interference in vibration conductivity, J. Sound Vibration, 2003, 263(3), 475–491.
41. Tarantino, G. Esempi di utilizzo di differenti ambienti di modellizzazione per lo studio delle onde meccaniche. Quaderni di Ricerca in Didattica (Science), 2010, 1.
42. Yang, Y. and Misra, A. Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput Model Eng Sci., 2010, 64, 1–36.
43. Yang, Y. and Ching, W.Y. and Misra, A. Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. Journal of Nanomechanics and Micromechanics, 2011, 1, 60–71.
44. Yeremeyev, V. A. and Freidin, A. B. and Sharipova, L. L. Non-uniqueness and stability in problems of the equilibrium of elastic two-phase solids. In Dokl Ross Akad Nauk, 2003, 391(2), 189–93.
45. Zabusky, N. J. and Kruskal, M. D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 1965, 15, 240–243.