Spiders (Arachnida: Araneae) feeding on snakes (Reptilia: Squamata)

Authors: Nyffeler, Martin, and Gibbons, J. Whitfield

Source: The Journal of Arachnology, 49(1) : 1-27

Published By: American Arachnological Society

URL: https://doi.org/10.1636/JoA-S-20-050
INVITED REVIEW

Spiders (Arachnida: Araneae) feeding on snakes (Reptilia: Squamata)

Martin Nyffeler1 and J. Whitfield Gibbons2: 1Section of Conservation Biology, Department of Environmental Sciences, University of Basel, CH-4056 Basel, Switzerland. Email: martin.nyffeler@unibas.ch 2Odum School of Ecology, University of Georgia, Athens, GA 30602, USA

Abstract. In this paper, 319 incidents of snake predation by spiders are reported based on a comprehensive global literature and social media survey. Snake-catching spiders have been documented from all continents except Antarctica. Snake predation by spiders has been most frequently documented in USA (51% of all incidents) and Australia (29%). The captured snakes are predominantly small-sized with an average body length of 25.9 ± 1.3 cm (median = 27 cm; range: 5.8–100 cm). Altogether >90 snake species from seven families have been documented to be captured by >40 spider species from 11 families. About 60% of the reported incidents were attributable to theridiids (~0.6–1.1 cm body length), a spider family that uses strong tangle webs for prey capture. Especially the Australian redback spider (Latrodectus hasselti Thorell, 1870), the African button spider (Latrodectus indistinctus O. Pickard-Cambridge, 1904), an Israeli widow spider (Latrodectus revivens) Shulov, 1948), and four species of North American widow spiders (Latrodectus geometricus C.L. Koch, 1841, Latrodectus hesperus Chamberlin & Ivie, 1935, Latrodectus mactans (Fabricius, 1775), and Latrodectus variolus Walckenaer, 1837) – equipped with a very potent vertebrate-specific toxin (x-latrotoxin) – have proven to be expert snake catchers. The use of vertebrates as a supplementary food source by spiders represents an opportunity to enlarge their food base, resulting in enhanced survival capability. Interestingly, the snakes captured by spiders also encompasses some species from the families Elapidae and Viperidae known to be highly toxic to humans and other vertebrates. Not only do spiders sometimes capture and kill snakes, quite often the tables are turned – that is, a larger number of arthropod-eating snake species (in particular nonvenomous species in the family Colubridae) include spiders in their diets.

Keywords: Araneae, Serpentes, black widow, Latrodectus, Theraphosidae, predation, intraguild predation, venomous spiders, venomous snakes

https://doi.org/10.1636/JoA-S-20-050

TABLE OF CONTENTS

1. Introduction .. 1
2. Methods .. 2
 2.1 Data collection .. 2
 2.2 Identification of unidentified spiders and snakes depicted in photos....................... 2
 2.3 Definition of the term “venomous spiders” ... 3
 2.4 Definition of the terms “venomous snakes” and “nonvenomous snakes” 3
 2.5 Definition of the term “poisonous snakes” .. 3
 2.6 Statistical methods ... 3
3. Results .. 3
 3.1 Which spider species are engaged in snake predation? .. 3
 3.2 Which snake species are captured by spiders? .. 4
 3.3 Global distribution of snake predation by spiders .. 5
 3.4 How do spiders kill snakes? .. 5
 3.5 Clash of the venomous: Black widow spiders vs. venomous snakes 9
 3.6 Predator-prey size ratio .. 9
4. Discussion .. 11
 4.1 Are the reported incidents of ophiophagy real predation events? 11
 4.2 What percentage of snakes was rescued by humans? ... 12
 4.3 Nonpredation causes by which snakes are seriously harmed by spiders. 12
 4.4 How important are reptiles as spider diet?.. 13
 4.5 Do spiders capture predominantly venomous or nonvenomous snakes? 15
 4.6 How important are spiders as mortality agents of snakes? 15
 4.7 Spiders and snakes as intraguild predators .. 15
5. Concluding remarks .. 17

1. INTRODUCTION

Spiders are among the most common and abundant predators in terrestrial ecosystems (Coddington & Levi 1991; Nyffeler & Sunderland 2003). With >49,000 described species, these animals exhibit an enormous diversity of lifestyles and foraging strategies (Nyffeler & Birkhofer 2017; World Spider...
2. METHODS

2.1 Data collection.—We searched published reports on snake predation by spiders with Thomson-Reuters database, Elsevier’s Scopus database, Google Search, Google Scholar, Google Books, and Google Pictures as well as ProQuest Dissertations and Theses (compare Nyffeler et al. 2017c). Social media sites were also searched as well. We made a library search of books and scientific journals not included in the large databases. A total of 319 reports of predation (or predation attempts) on snakes by spiders were found, about 1/3 of which had previously been published in the scientific literature (see Supplementary Table S1, online at https://doi.org/10.1636/JoA-S-20-050.s1). The remaining 2/3 were found on social media sites (e.g., Scientific American, National Geographic, Australian Geographic, BBC, YouTube, Project Noah, and Panama Birds & Wildlife; see Supplementary Table S1) or provided to us as personal communication by scientists/photographers. Of the 319 records, 297 (93%) refer to naturally occurring incidents witnessed in the field or in buildings; the remaining 22 records (%) are based on laboratory feeding trials or staged field experiments. In one case where it was stated that a certain type of predation event had been witnessed several dozen times (without providing an exact number; Peters 2016), we hypothetically estimated that this type of predation event had occurred two dozen times (as a proxy to the unknown true number). In this paper, the Neotropical realm is understood as the combined area of Mexico, Central America, South America, and the Caribbean, whereas all information referring to Florida is included in the USA.

2.2 Identification of unidentified spiders and snakes depicted in photos.—Almost 80% of the 319 reported predation events were documented with photos or videos. Some photos or videos depicted unidentified spiders and/or snakes which were identified to the lowest taxon possible on our behalf by established spider and snake taxonomists. Spiders were identified by R. Bennett, A. Dippenaar-Schoeman, G.B. Edwards, H. Höfer, P. Jäger, K. Kissane, Y. Lubin, R. Raven, B. Thaler-Knofflach, and R. West. Snake identifications were carried out by W. Gibbons, W. Lamar, R. Shine, S. Spawls, G. Vogel, and R. Whitaker. Some snakes unable to be unambiguously identified (based on only photos) are indicated in Appendix 2 by a question mark behind the snake’s name, but the cumulative data provide an estimate of the number of snake morphospecies preyed on by spiders.

Several reports from the northeastern part of USA (Vermont, Connecticut, Maryland, Pennsylvania, and New York) or the southeastern part of Canada (Ontario) of unidentified theridiids killing snakes in a manner typical of black widows are from a geographic area that coincides with the geographic range of Latrodectus variolus Walckenaer, 1837 (see https://usaspiders.com/latrodectus-variolus-northern-black-widow/) suggesting that in some of these cases, the predator in question was most likely the northern black widow Latrodectus variolus.

Snake and spider nomenclatures are based on Uetz et al.’s “The Reptile Database – update from 2020” and the “World Spider Catalog 2020”, respectively. In 89% cases, at least a family-level identification of the reported snake victims could be conducted, whereas 11% remain unidentified. Contrary to the “World Spider Catalog 2020”, we placed the genera Nephila Leach, 1815 and Trichonephila Dahl, 1911 in the family Nephilidae (sensu Kuntner et al. 2019).

Body length of spiders is understood as the length of cephalothorax + abdomen (without legs). Snake body length is defined as total length (= snout-vent length + tail length). In cases where information of spider body length was missing in published reports, average spider body length values representative of those species, extracted from arachnology books, were added to the data set in the Supplementary Table S1. So, for instance, an average spider body length value of 1.0 cm was assumed for adult female black widows (Latrodectus spp.). Spider body length data used in this paper are biased towards the araneomorph spiders (i.e., in particular the small-sized theridiids) due to the fact that in many reports referring to the much larger-sized mygaleomorphs body length data were unavailable. Furthermore, because mygaleomorph species show wide intraspecific variation in body size, it was usually not possible for this spider group to operate with an assumed species-specific body length value based on arachnology books. In very few cases, where exclusively snout-vent length data for snakes were available, those were converted to total length data, using conversion factors taken from the literature (Boada et al. 2005; Brust 2013; Mirtschin et al. 2017; Murphy et al. 2019).

Based on snake body length information, corresponding snake body mass values have been roughly estimated based on published snake length/body mass ratios (see Nyffeler et al. 2017a) if snake body mass was not provided in the published predation accounts.
2.3 Definition of the term “venomous spiders”.—All spider species except for the uloborids and the holarchaeids possess a pair of venom glands and are therefore capable of producing venoms used for prey capture and in some cases also for defense (Coddington & Levi 1991; Foelix 2011). A limited number of notoriously dangerous spiders are referred to as “venomous spiders” (Bücherl & Buckley 1971). This group of spiders includes in particular widow spiders (Latrodectus spp.), wandering spiders (Phoneutria spp.), funnel-web-spiders (Atrax spp.), and recluse spiders (Loxosceles spp.). The very potent venoms produced by spiders from this group are potentially dangerous not only to humans, they can also be lethal to other mammals, birds, snakes, lizards, anurans, etc. (Nyffeler & Vetter 2018; Nyffeler & Alttig 2020).

2.4 Definition of the terms “venomous snakes” vs. “nonvenomous snakes”.—Venomous snakes include species of snakes that use their fangs to inject toxins into their victims (Encyclopedia Britannica 2020a). In this paper, the term venomous snakes is used for species known to be potentially lethal to humans; included in this category are the families Elapidae and Viperidae. The toxicity of various snake species is compared based on LD50 values of snake venom injected in mice. In contrast, nonvenomous snakes are species that do not produce a toxin that is clinically significant to humans. Nonvenomous snakes are represented by the families Colubridae, Dipsadidae, Lamprophiidae, Leptotyphlopidae, and Typhlopidae.

2.5 Definition of the term “poisonous snakes”.—By definition the term “venomous snakes” implies that these snakes produce a toxin that is potentially lethal to humans; included in this category are the families Elapidae and Viperidae. Poisonous snakes are potentially dangerous not only to humans, they can also be lethal to other mammals, birds, snakes, lizards, anurans, etc. (Nyffeler & Vetter 2018; Nyffeler & Alttig 2020).

2.6 Statistical methods.—In this paper, neither spider body length data nor snake body length data are normally distributed (tested with the Shapiro-Wilk test software, online at http://www.statskingdom.com/320ShapiroWilk.html). Likewise, LD50 data for spiders and snakes are not normally distributed (Shapiro-Wilk test). Accordingly, the median must be used as a measure of central tendency. Despite the fact that data from field collections and observations are often not normally distributed, many authors still use the mean as central tendency. In order to make our data comparable to those from the literature, we calculated a mean (± SE) in addition to the median (while at the same time acknowledging that this is not the ideal measure). The two-tailed Mann-Whitney U test was used to compare mean snake lengths in USA vs. Australia, and the same test was also used to compare mean LD50 values (mg/kg mouse) for venomous spiders vs. venomous snakes. These analyses were performed at https://www.socscistatistics.com/tests/mannwhitney/default2.aspx. To test whether the percentages of rescued snakes vs. rescued birds differed statistically significantly, a chi-square calculator test (without Yates’s correction) was performed; this was accomplished using MedCalc statistical software (online at https://www.medcalc.org/calc/comparison_of_proportions.php). This same statistical test was also performed to test whether there was a significant difference between the percentages of venomous snakes killed on different continents. Based on 86 available data pairs, snake body lengths and spider body lengths were tested for a relationship using the Pearson Correlation Coefficient Calculator (online at https://www.socscistatistics.com/tests/pearson/).

3. RESULTS

3.1 Which spider species are engaged in snake predation?—More than 30 spider species have been reported to prey on snakes under natural conditions, and 11 additional species have been documented to capture and eat snakes in captivity or in staged field experiments (Table 1 and Appendix 1). The following ten families have been documented to be engaged in snake predation under natural conditions: Agelenidae, Araneidae, Ctenidae, Idiopidae, Nephilidae, Plectreuridae, Plegadidae, Sparassidae, Theraphosidae, and Theridiidae (Table 1 and Appendix 1). Additionally, a large-sized species of the wolf spider family (Lycosidae) has been witnessed attacking a snake in captivity (Anonymous 2014). Based on available data, snake-eating spiders had an average body length of 1.69 ± 0.19 cm (median = 1.00 cm, n = 86).

Approximately 60% of the 319 incidents of snake predation were attributable to theridiids (∼0.6–1.1 cm body length), a spider family that uses strong tangle webs to capture prey (Table 1; Figs. 1–5). Roughly half of all incidents were attributable to widow spiders (Latrodectus spp.; Table 1). Several species of widow spiders (Latrodectus spp.) have proven to be expert snake catchers (Figs. 1A, 2B, 3–5), including four species of North American widow spiders (Latrodectus geometricus C.L. Koch, 1841, Latrodectus hesperus Chamberlin & Ivie, 1935, Latrodectus mactans Fabricius, 1775, Latrodectus variolus Walckenaer, 1837), the Australian redback spider (Latrodectus hasselti Thorell, 1870), the African button spider (Latrodectus indistinctus O. Pickard-Cambridge, 1904), an Israeli widow spider (Latrodectus revivensis Shulov, 1948), and a white colored, not uniquely identifiable Iranian widow spider (possibly Latrodectus pallidus O. Pickard-Cambridge, 1872). The seven widow species reported in our study are of similar size (usually weighing ∼0.35–0.50 g as adult females) with maximum weights of up to ∼1 g (Canadian Geographic 2006; Nel et al. 2014; Nyffeler & Vetter 2018). Snakes are killed exclusively by adult female widow spiders (see Nyffeler & Vetter (2018) for an explanation).

The second most important snake catchers among the spiders were members of the tarantula family (Theraphosidae) which made up 10% of all instances of snake predation by spiders (Table 1; Figs. 6, 7A). These are large-sized vagrant spiders which do not spin a catching web. Some members of this family hunt prey in trees, while others catch prey on the ground. Tarantulas are among the largest and most powerful spiders, whose largest species reach a leg-span of >20 cm and a weight of up to >100 g (Nyffeler & Knörrnschild 2013). Other nonweb-building spiders (e.g., Pisauridae) were less significant snake catchers (Table 1; Fig. 7B).

Large orb-weavers of the families Araneidae and Nephilidae reached third place in terms of importance as snake catchers (8.5% of all incidents, Table 1; Fig. 8). Especially species in the genera Argiope Audouin, 1826, Nephila, and Trichonephila...
have been witnessed preying on snakes that got trapped in their strong orb-webs (Wilder 1865; Hedinger 1931; Pinkus 1932; Burt 1949; Zippel & Kirkland 1998; Tanaka & Mori 2000; Jantos 2012). The spiders in the genera Nephila and Trichonephila placed in Nephilidae (sensu Kuntner et al. 2019) have been witnessed preying on snakes that got trapped in their strong orb-webs (Wilder 1865; Zippel & Kirkland 1998; Tanaka & Mori 2000; Jantos 2012).

3.2 Which snake species are captured by spiders?—The snakes known as prey of spiders had an average body length of 25.9 ± 1.3 cm (median = 27 cm; range: 5.8–100 cm; n = 104). The vast majority of snake victims were either neonates or juveniles (e.g., Burt 1949; Owens 1949; Klemens 1993; Durigo 2010; Peters 2016) with a rather low body weight (see snake body weights in Table 2 for a comparison). The smallest snakes captured by spiders (i.e., juvenile typhlopids) are known to weigh only 0.2–0.7 g (Table 2). Younger snake individuals are probably more vulnerable to predators than adults due to their small size (Jorge et al. 2016). But on the other hand, in rare cases larger colubrids and vipers captured by spiders were fairly heavy, reaching an estimated body weight of up to 40–60 g (see subsection 3.6). The vast majority of snakes killed by spiders are terrestrial, with some exceptions. For example, there are several reports of juveniles of the northern water snake Nerodia sipedon having been killed by web-building spiders (Anonymous 1946; online at https://www.youtube.com/watch?v=g3wKiVwrlNxs Accessed 5 June 2020; https://www.recordchina.co.jp/b7342-s0-c30-d0000.html Accessed 6 June 2020 Emerton 1926; Owens 1949; Punzo & Henderson 1999; Avila & Porfirio 2008; Sasa et al. 2009; Nunes 2010; Borges et al. 2016; Jorge et al. 2016; Pinto et al. 2017; Almeida et al. 2019; Da Silva et al. 2019; Brown 1895; Swanson 1952; Hutchins 1968; Myers 1974; Groves & Groves 1978; Sanders 1982; Moehn 1984; Bush 1989, Klemens 1993; Faraone et al. 2017; Stevenson & Crook 2018; Branch 1998; Linsey & Clifford 2002; Gibbons 2017; and others).

The group of snakes killed and eaten by spiders in the wild encompasses 86 species, representing seven families (i.e., Colubridae, Dipsadidae, Elapidae, Lamprophiidae, Leptotyphlopidae, Typhlopidae, and Viperidae; Table 3, Appendix 2). In addition, 5 more snake species (i.e., Chironius carinatus, Drymobius margaritiferus, Imantodes cenchoa, Bothrops jararaca, and Crotalus durissus) were killed and consumed by spiders in captivity or during staged field experiments. Two families (Colubridae and Elapidae) accounted for 84% of all 284 identified snake victims, with colubrids being the most representative family (162 incidents, Table 3). The predominance of Colubridae in the total of captured snakes reflects the fact that colubrids are by far the largest and most abundant snake family on all continents except Australia (Degenhardt et al. 2005). The list of North American colubrid snakes known as prey of spiders includes the following species: black-headed and flat-headed snakes (Tantilla gracilis and Tantilla hobartmithi), brown snakes (Storeria dekayi and Storeria occipito-maculata), clayfish snakes (Regina septemvittata), earth snakes (Virginia valeriae), garter snakes (Thamnophis cyrtosius and Thamnophis sirtalis), glossy snakes (Arizona elegans), green snakes (Opheodrys aestivus and Opheodrys vernalis), hog-
nosed snakes (*Heterodon platirhinos*), king snakes (*Lampropeltis calligaster* and *Lampropeltis triangulum*), lined snakes (*Tropidoclonion lineatum*), night snakes (*Hypsiglena chlorophaea*), racers (*Coluber constrictor*), rat snakes (*Pantherophis guttatus*), ringneck snakes (*Diadophis punctatus*), sand snakes (*Sonora straminea*), scarlet snakes (*Cemophora coccinea*), and watersnakes (*Nerodia sipedon* and *Nerodia rhombifer*) (Appendix 2). Among these North American colubrids, ringneck snakes and garter snakes have been reported to be trapped in spider webs particularly frequently (e.g., Burt 1949; Groves & Groves 1978; Klemens 1993).

That Elapidae are the snake group second most frequently killed by spiders can be explained by the numerical predominance of this snake family in Australia (Shine 1977). Brown snakes (*Pseudonaja* spp.) are particularly frequently killed by Australian spiders (Fig. 5A; also see De Rebeira 1981; Bush 1989; Peters 2016; Australian Museum 2020).

3.3 Global distribution of snake predation by spiders.

Predation on snakes by spiders has been witnessed so far in 25 countries (see Supplementary Table S1). Predation on snakes by spiders is a global pattern occurring on all continents except Antarctica. The vast majority of reports of snake predation by spiders originates from the USA (51% of all naturally occurring incidents) and Australia (29%). In USA, snake predation by spiders is known from 29 states and all parts of the country except Alaska (Supplementary Table S1).

To a lower extent, incidents of snake predation were reported from the Neotropics (8%), Asia (6%), Africa (3%), Canada (1%), and Europe (<1%). The two European reports both refer to incidents of predation upon tiny blind snakes (*Indotyphlops braminus* and *Xerodytus vermicularis*; Petrov & Lazarov 2000; Faraone et al. 2019), whereas the Canadian reports deal with neonate ringneck snakes (*Diadophis punctatus*) and presumably a juvenile wandering gartersnake (*Thamnophis elegans*) trapped in spider webs (The Spider Club of SA 2018; Algonquin Wildlife Research Station 2020; Malgonquin Photography 2020).

3.4 How spiders kill snakes.

Eighty-seven percent of the snakes captured by spiders got killed, 1.5% could escape on their own, and 11% were rescued by humans (see Supplementary Table S1). The different groups of snake-eating spiders employ different methods to capture and kill their prey. In the following, we explain the killing behavior of the three dominant groups of ophiophagous spiders (black widows, tarantulas, and large orb-weavers).

Black widows build an irregular tangle of threads at a height of 10–100 cm above the substrate. From there, vertical sticky gumfooted threads extend to the substrate (Blackledge et al. 2005; Blackledge & Zevenbergen 2007). The webs are very strong and tough, enabling the spiders to capture prey many times larger and heavier than themselves (see Shao & Vollrath 1999; Blackledge et al. 2005; Swanson et al. 2006; Nyffeler & Vetter 2018). When a small snake slides into such a web, it sticks to the vertical viscid threads. The spider approaches the snake, throws sticky silk masses over it, and bites it one or more times (Vollrath 2000). The neurotoxin thereby injected is a very potent, vertebrate-specific toxin (α-latrotoxin) that has proven to be highly lethal to small vertebrates (Gendreau et al. 2017; Nyffeler & Vetter 2018). Subsequently the spider pulls its victim off the ground, raising it between 10 and 120 cm above the floor, a process which may last several hours (Figs. 1A, 2B, 3–5; Anonymous 1932a; Ervin & Carroll 2007; Jones et al. 2011; Stevenson & Crook 2018).

The time it took a theridiid to kill a snake varied greatly. In some instances, the snake was paralyzed a few minutes after the venomous bite had been administered by the spider (e.g., Krumm-Heller 1910). In other instances, it took a spider several days to kill a snake (Gudger 1925; Anonymous 1932b; Anonymous 1946). Unfortunately, in quite a number of reports of theridiid predation upon snakes, the spiders remained unidentified. Nevertheless, based on the specific behavior of lifting the snake off the ground, it can be assumed that in such cases the spiders in question must have been...
Figure 2.—Theridiid spiders capturing colubrid snakes. A. Southern Ringneck Snake, *Diadophis punctatus punctatus* (Colubridae), caught in a spider web in a garage in Virginia, USA (Photo by Erika Packard). The spider in question was a non-widow theridiid (most likely *Parasteatoda tepidariorum* (C. L. Koch, 1841)). B. Juvenile Eastern garter snake, *Thamnophis sirtalis*, trapped in a brown widow web (*Latrodectus geometricus*) observed in Douglas, Georgia, USA (Photo by Julia Safer).

Figure 3.—Black widow spiders killing colubrid snakes. A. Lined snake, *Tropidoclonion lineatum* (Colubridae), killed in web of black widow spider (*Latrodectus* sp.) in a building in Tulsa, Oklahoma, USA (Photo by Jeff Lewis). B. Juvenile scarlet snake (*Cemophora coccinea*, Colubridae) entrapped on web of *Latrodectus geometricus*, observed in a private residence in Georgia, USA (Photo by Daniel R. Crook).
theridiids (see Nyffeler & Vetter 2018); but it remained open whether the predator in question was a species in the genus *Latrodectus* Walckenaer, 1805, *Parasteatoda* Archer, 1946 or *Steatoda* Sundevall, 1833. Reports according to which snakes were killed fairly rapidly seem to refer exclusively to widow spiders (*Latrodectus* spp.) (Krumm-Heller 1910; Bush 1961; Sweeney 2009; Anonymous 2016). This makes sense when taking into account that the very potent α-latrotoxin present in the *Latrodectus* venom is expected to reduce the time it takes to kill a snake. On the contrary, it seems likely that several instances in which it took a long time to kill a snake can be attributed to non-widow theridiids (e.g., *Parasteatoda* or *Steatoda*) which lack the potent α-latrotoxin in their venom and which produce a lower quantity of toxin due to their smaller body size (≈0.02–0.07 g) compared to the *Latrodectus* spp.. However, instances in which it took widow spiders several hours to kill a snake have been reported as well (e.g., De Rebeira 1981).

Tarantulas are equipped with powerful orthognath chelicerae and produce neurotoxins effectively targeting the snake nervous system (Figs. 6, 7A; Emerton 1926; Borges et al. 2016;...
Almeida et al. 2019). Based on laboratory feeding trials, the toxicologists Brazil & Vellard investigated the snake-catching behavior of Grammostola actaeon (Pocock, 1903), a large Brazilian tarantula (Emerton 1926). Emerton (1926) summarizes their observations as follows: “...the spider tries to catch the snake by the head and will hold on in spite of all efforts of the snake to shake him off. After a minute or two the spider’s poison takes effect, and the snake becomes quiet. Beginning at the head, the spider crushes the snake with its chelicerae and feeds upon its soft parts, sometimes taking 24 hours or more to suck the whole animal, leaving the remains in a shapeless mass....” Theraphosa blondi (Latreille, 1804), another huge Neotropical tarantula, was seen feeding on a snake prey for 18 hours (Rick West, pers. comm.).

Tree snakes and other colubrids occasionally get trapped in the sticky webs of large araneid and nephilid orb-weaving...
spiders (genera *Argiope*, *Nephila*, and *Trichonephila*) while moving across vegetation. Once a snake is entangled in a web, the spider wraps it tightly in silk, followed by one or more venomous bites (Fig. 8A; Anonymous 1911; Pinkus 1932). After the snake’s death, the spider extracts the dissolved tissue from its victim by the process of extraintestinal digestion.

3.5 Clash of the venomous: black widow spiders vs. venomous snakes.—About half of all spiders engaged in snake predation belong to spider taxa that produce neurotoxins of high toxicity. Included among these highly toxic spider species are at least seven species of widows (*Latrodectus* spp.; Figs. 1A, 2B, 3–5) in addition to wandering spiders (*Phoneutria* sp.), whereas the neurotoxins of most theraphosids are somewhat less toxic and usually harmless to humans (Foelix 2011).

By comparison, ~30% of all snakes captured by spiders belong to species known as venomous snakes (according to the definition presented in the Methods section). Among those, a large number of species are considered highly toxic, such as New World coral snakes, Australian brown snakes (*Pseudonaja* spp.), rattlesnakes (*Crotalus* spp.), and Neotropical lanceheads (*Bothrops* spp.) (Figs. 4B, 5, 6A, 7A, 8B). One Australian species killed by spiders – the Eastern brown snake *Pseudonaja textilis* – is even considered to be one of the world’s most toxic snakes to humans (Hoy 2012; Fig. 5A).

Toxicity values (expressed as LD₅₀ in mice) of venomous snakes and spiders are compared in Table 4. It follows that the LD₅₀ values of venomous spiders do not differ statistically significantly from those of venomous snakes (Mann-Whitney *U* test, *n₁* = 13 [for spiders], *n₂* = 16 [for snakes], *Z* = 0.3947, *P* > 0.05). In other words, spiders equipped with very potent venoms are at times attacking, killing, and consuming some highly lethal snakes, whereby the high toxicity of these snakes has so far only been proven in primates, some other mammals, birds, fish, lizards, and snakes. We know of no documented record in which a venomous snake captured by a spider has envenomated the spider. Thus, we don’t know whether spiders might be vulnerable or immune to snake venoms. We know, however, that the venomous snakes from the families Elapidae and Viperidae (Table 4) feed more or less exclusively on vertebrate prey (e.g., Mao 1970; Klauber 1997; Goodyear & Pianka 2008). This indicates that it is less likely that spiders are vulnerable to snake venom because there was no need for this type of snake to evolve a specific toxin aimed to target the spider nervous system to facilitate the capture of spider prey. In spite of that, a snake bite could become lethal to a spider if the snake would succeed to puncture the spider’s body with its fangs (Rick Vetter, pers. comm.).

Apart from feeding on venomous snakes, spiders at times also feed on poisonous snakes (i.e., snakes which became poisonous after feeding on toxic prey). As pointed out in the Methods section, the common garter snake (*Thamnophis sirtalis*) can be poisonous to a natural enemy after being consumed by it (Williams et al. 2004). The common garter snake is among the snakes most frequently captured by spiders in USA (Fig. 2B; Supplementary Table S1). But as far as known to us, spiders which consumed garter snakes survived such incidents without apparent harm.

3.6 Predator-prey size ratio.—Black widow spiders can overcome snakes 15–30 times their own size (Sutton 2016; Rocha et al. 2017; Fig. 12). For comparison, it is known that black widows can overcome mice of up to 14.4 times the spider’s body mass (Nyffeler & Vetter 2018). An even more extreme example was reported in 1933 in the National Geographic Magazine (Anonymous 1933). In this particular case, a 15 cm long garter snake (weighing 8 g) was found trapped in the web of a triangulate cobweb spider, *Steatoda triangulosa* (Walckenaer, 1802), of only 0.0225 g body mass. Hence, this snake was 355 times heavier than the spider.
Based on our survey, the largest snakes caught by spiders under natural conditions were those that became entangled in webs of *Nephila pilipes* (Fabricius, 1793) and *Trichonephila clavipes*. These are spiders with a weight of 1–7 g that spin orb-webs with a diameter of 0.5–1.5 m (Nyffeler & Knörnschild 2013). Snakes of 40–100 cm total length are captured in the strong webs of *Trichonephila clavipes* (Zippel & Kirkland 1998; Sequeira 2011), which would correspond to an estimated maximum snake weight of 10–45 g (Table 2).

Spiders in the genera *Nephila* and *Trichonephila* have previously been reported trapping birds and bats many times heavier than themselves in their exceedingly strong webs (Brooks 2012; Nyffeler & Knörnschild 2013). In Taiwan, a Kikuchi Habu, *Trimeresurus gracilis* (Viperidae), weighing an estimated 60 g (Table 2), became entangled in a *Nephila pilipes* web. After the snake was fighting for its life for many hours, the web finally broke and the snake fell to the floor in a near dead state (Shanghaiist 2014). Another interesting

Table 2.—Total lengths and body weights of selected snake species based on literature data.

Snake species	Stage	Total length (cm)	Body mass (g)	Reference
Colubridae				
Adelphicos newmanorum	Neonate	32*	8.4	Rojas-González & Zamora-Abrego 2016
Boiga irregularis	Neonate	45*	11	Mathies & Miller 2003
Coluber constrictor	Neonate	30	6.3	https://www.virginiaherpetologicalsociety.com/
Contia tenax	Neonate	11	0.8	Leonard et al. 1996; Govindarajulu et al. 2011
Dendrelaphis pictus	Neonate	13–32	2.1–5.6	Yudhana et al. 2019
Diacidophis punctatus	Neonate	11–16	0.6–1.1	https://www.virginiaherpetologicalsociety.com/
Heterodon platirhinus	Neonate	17–25	5.3	https://www.virginiaherpetologicalsociety.com/; Palmer & Braswell 1995
Lamproplitis triangulosa	Neonate	20–23	4.1	https://www.virginiaherpetologicalsociety.com/
Nerodia sipedon	Neonate	19.5–25.5	3.5	Palmer & Braswell 1995
Pantherophis guttatus	Neonate	23–33	8	https://www.virginiaherpetologicalsociety.com/
Opheodrys aestivalis	Adult female	100 ≤	45 ≤	Maryan & Bush 1996
Opheodrys aestivalis	Neonate	10.5–24.5	1.4–2.0	https://www.virginiaherpetologicalsociety.com/
Opheodrys vernalis	Neonate	13	1.1	https://www.virginiaherpetologicalsociety.com/
Oxyrhopus sp.	N/A	56	37	Crnobrna et al. 2017
Oxyrhopus sp.	Juvenile	30	6	Crnobrna et al. 2017
Sorrellia dekayi	Neonate	9.1	0.3	https://www.virginiaherpetologicalsociety.com/
Thamnophis sirtalis	Neonate	16–19	1.35	Palmer & Braswell 1995
Tropidoclonium lineatum	Neonate	10–11	0.45–1	Funk & Tucker 1978
Elapidae				
Hemiaspis signata	Juvenile	N/A	31	http://www.reptilerescue.com.au/short-tails/marsh-snake/; no longer
Micruroides euryxanthus	Neonate	19–20	1.5	Lowe & al. 1986
Micruroides tener	Neonate	18–20	N/A	Quinn 1979
Pseudonaja affinis	Neonate	25.5*	4.7–6.8	Bush 1994; https://www.qm.qld.gov.au/Find+out+about/Animals+of+Queensland+Reptiles/Snakes/Common+and+dangerous+species/Western+Brown+Snake#X5NabmP6Uk
Pseudonaja nuchalis	Neonate	25*	4.5–5.4	Bush 1994; https://www.qm.qld.gov.au/Find+out+about/Animals+of+Queensland+Reptiles/Snakes/Common+and+dangerous+species/Western+Brown+Snake#X5NabmP6Uk
Pseudonaja textilis	Neonate	27*	3.5–10.4	https://australianmuseum.net.au/learn/animals/reptiles/eastern-brown-snake/
Lamprophiidae				
Boaedon fuliginosus	Neonate	23	4.5	Boback et al. 2012.
Typhlopidae				
Indotyphlops braminus	Juvenile	5.8	0.23	https://indiabiodiversity.org/species/show/278705
Indotyphlops braminus	Adult	6.3–16.5	0.74	https://indiabiodiversity.org/species/show/278705; https://www.floridamuseum.ufl.edu/herpetology/fl-snakes/list/indotyphlops-braminus/
Viperidae				
Bothriechis schlegelii	Subadult female	42	19	Lindey & Sorrell 2004
Bothrops asper	Neonate	27–35	6–20	Solórzano & Cerdas 1989; Savage 2002
Bothrops jararaca	Neonate	28–32*	6–9	Furtado et al. 2006
Crotalus atrox	Neonate	20.5–37	11–25	Ernst & Ernst 2011
Crotalus durissus	Neonate	35	23	Furtado et al. 2003
Crotalus durissus	?	45	40	Klauber 1997
Sistrurus miliarius	Neonate	15–21	1.8–5.5	DeFrancesco 1987; Palmer & Braswell 1995; https://animaldiversity.org/accounts/Sistrurus_miliarius/
Trimeresurus gratilis	Adult	50	64	Lin & Tu 2008

* Roughly estimated by converting snout-vent length data to total length
Australian spiders more often prey on heavier built elapids (*Pseudonaja* spp.), green snakes (*Opheodrys* spp.), Dekay’s brownsnake (*Storeria dekayi*), etc., with a neonate body length of 50–60 cm. The largest tarantula species are those in the genera *Grammostola* Simon, 1892, *Lasiodora* C. L. Koch, 1850, and *Theraphosa* Thorell, 1870 occurring in South America. Such spiders reach body weights of 50 g and have been observed killing pit vipers with a total length of 30–53 cm, which corresponds to a prey weight of 9–26.9 g (Table 2).

A comparison between USA and Australia shows that the snakes captured by Australian spiders were, on average, larger (mean = 26.9 ± 0.8 cm; median = 27.0 cm; range = 14–50 cm) compared to those captured by North American spiders (mean = 21.5 ± 2.4 cm; median = 17.9 cm; range = 6.5–100 cm). The difference is statistically significant (Mann-Whitney *U* test, *n*1 = 38, *n*2 = 41, *Z* = 4.0622, *P* < 0.0001). This difference might be explained by the fact that predominantly small, lightweight colubrids such as ringneck snakes (*Diadophis punctatus*), garter snakes (*Thamnophis* spp.), Dekay’s brownsnake (*Storeria dekayi*), green snakes (*Opheodrys* spp.), etc., with a neonate weight of 0.3–2 g are caught by U.S. spiders, whereas Australian spiders more often prey on heavier built elapids from the *Pseudonaja*-complex weighing as neonates ≈3.5–10 g (Table 2).

Based on pooled data from all over the world, snake total body length was weakly positively correlated with spider body length (r = 0.4136; *P* < 0.01; Fig. 12). An apparent accumulation of dots around 1.0 on the x-axis can be explained by the fact that snake-eating spiders are made up to a large extent by adult female black widows with an estimated average body length around 1 cm.

4. DISCUSSION

4.1 Are the reported incidents real predation events?

It is arguable whether all incidents reported in this paper were real predation events or whether some were just cases of scavenging. Predation requires that a prey item has been killed and eaten by the predator (Begon et al. 2005). Under natural conditions web-building spiders (i.e., theridiids, araneids, nephilids, agelenids, and pholcids) feed more or less exclusively on prey killed in their webs. Multiple YouTube videos show snakes suspended in spider webs, often fighting for extended periods of time for their life prior to their death. In addition, numerous anecdotal reports on this have been published (e.g., Jantos 2012; Anonymous 2016; Brown 2017). Most cases of this type end with the spider feeding on the dead snake.

In vagrant hunters (theraphosids, pisaurids, and ctenids) the situation is somewhat different. These are voracious, highly opportunistic feeders which feed not only on freshly killed prey, but occasionally also on carcasses of animals that had not been killed by themselves (“scavenging”: Schmidt 1957; Nyffeler & Altig 2020). Notwithstanding this, many well documented cases of predation on snakes by vagrant hunters observed in the field and in captivity have been reported in the literature (e.g., Rick West, pers. comm.; Emerton 1926; Pinto et al. 2017). A very special case of scavenging has been observed in Singapore. There, a tiny, red colored theridiid kleptoparasite (possibly genus *Argyrodes*) was observed feeding on tissue of a
painted bronzeback snake carcass which had apparently been killed in a *Nephila pilipes* web (Lim 2009).

4.2 *What percentage of captured snakes was rescued by humans?*—Of the captured snakes, only 11% were rescued by humans and 1.5% could escape on their own, whereas 87% were killed by spiders (see Results section). By comparison, Brooks (2012) analyzing 69 incidents of bird captures by web-building spiders found that 50% were rescued by humans, a little over 10% could escape on their own, and a little over 30% were killed by spiders. The percentages of rescued snakes vs. rescued birds differed statistically significantly (Chi-square test, $\chi^2 = 50.03, df = 1, P < 0.001$). In conclusion, the willingness to rescue a snake is lower than the willingness to free a bird. Considering that some of the snakes caught in spider webs are highly toxic to humans and that in addition to this a high percentage of the snake-catching spiders are highly toxic, it is understandable that only a small percentage of observers is willing to get involved in a snake rescue operation. This might be especially true in countries like Australia dominated by venomous elapids (e.g., brown snakes) where even a juvenile snake can administer a deadly bite to a human (Sutherland & Tibballs 2001).

4.3 *Nonpredation causes by which snakes are seriously harmed by spiders.*—Predation is not the only way snakes can be harmed by spiders, as the following examples demonstrate. Murphy (2014) reports tail amputation in a reticulated python (*Malayopython reticulatus*) at the Dallas Zoo due to necrosis from a brown recluse spider bite (*Loxosceles reclusa* Gertsch & Mulaik, 1940) (Sicariidae). Although no evidence of spider involvement is provided in the aforementioned case, it cannot be ruled out that the necrosis in the python was indeed caused by a recluse spider bite, since sicariid venom has been reported to produce dermonecrotic

Spider / snake species	LD$_{50}$ (mg/kg)	Injection method	Source
SPIDERS			
Theridiidae:			
Latrodectus geometricus	0.22	IM	Reyes-Lugo et al. 2009
Latrodectus hasselti	0.43–0.50	IV	Matsumura et al. 2018
Latrodectus hesperus	0.64	IP	Daly et al. 2001
Latrodectus indistinctus	0.08	IP	Muller et al. 1989
Latrodectus mactans	0.26	IP	Daly et al. 2001
Latrodectus teneimaculatus	0.90	IV	Maretei 1987
Latrodectus variolus	1.80	N/A	McCrone 1964
Ctenidae:			
Phoneutria nigriventer	0.34	IV	Maretei 1987
THERAPHOSIDAE			
Acanthoscurria musculosa	7.50	IV	Maretei 1967
Aphonopelma sp.	14.14	N/A	Stahinke & Johnson 1967
Pterinochilus sp.	9.00	IV	Maretei 1967
Cyriopagopus hainanus	0.20	IP	Liu et al. 2003
Theraphosa blondi	1.80	N/A	Fontana et al. 2002
SNAKES			
Elapidae:			
Mecruroides euryxanthus	N/A	N/A	N/A
Micrurus ibiboca	3.35	IP	http://snakedatabase.org/pages/ld50.php
Micrurus tener	0.64	IV	http://snakedatabase.org/pages/ld50.php
Pseudechis porphyriacus	2.52	SI	Broad et al. 1979
Pseudonaja affinis	0.66	SI	Broad et al. 1979
Pseudonaja mitchelli	0.47	SI	Broad et al. 1979
Pseudonaja textilis	0.05	SI	Broad et al. 1979
Viperidae–Vipertinae:			
Causus rhombeatus	10.28	IV	http://snakedatabase.org/pages/ld50.php
Viperidae–Crotalinae:			
Bothriechis schlegelli	1.60	IV	http://snakedatabase.org/pages/ld50.php
Bothrops asper	1.17	IV	http://snakedatabase.org/pages/ld50.php
Bothrops atrox	1.40	IV	http://snakedatabase.org/pages/ld50.php
Bothrops jararaca	0.83	IV	http://snakedatabase.org/pages/ld50.php
Bothrops moojeni	0.39	IV	http://snakedatabase.org/pages/ld50.php
Crotalus atrox	0.92	IV	http://snakedatabase.org/pages/ld50.php
Crotalus durissus	0.05	IV	http://snakedatabase.org/pages/ld50.php
Sistrurus miliarus	2.80	IV	http://snakedatabase.org/pages/ld50.php
Trimeresurus spp.	0.37–1.64	IV	http://snakedatabase.org/pages/ld50.php
Median			

Table 4.—Toxicity of spider and snake venoms injected in mice (LD$_{50}$ values based on literature). Route of injection: IM = intramuscular injections; IP = intraperitoneal injection; IV = intravenous injection; SI = subcutaneous injection. Low LD$_{50}$ values indicate high toxicity. Available online at http://snakedatabase.org/pages/ld50.php Accessed 5 June 2020.
effects on reptile tissue and reptile fatality (Ramires & Fraguas 2004; Taucare-Rios & Piel 2020).

A second case where a snake was put in danger by a nonpredation cause was witnessed in a residential area in Oregon. In that case, a juvenile Sonoran gopher snake (*Pituophis catenifer*) about 20–25 cm in length, whose head and much of its body was wrapped up in spider webbing with other detritus (i.e., gum, small bits of paper, and pebbles) attached to it, was found in a building (Tim Akimoff, pers. comm.; Fig. 9). This snake’s view was strongly obstructed by the amount of webbing engulfing its head. The person who reported this incident does not believe the snake would have been able to free itself from the web. He states with regard to the webbing “...It was extremely sticky when I removed it, and I had to hold the snake’s head firmly in order to get all of the webbing pulled off of it” (Tim Akimoff, pers. comm.). There are two possibilities how this snake’s head got engulfed by the webbing: 1. The snake broke loose from a spider web after having gotten temporarily entangled in it; 2. The snake picked up the pocket of webbing along with the detritus while passing under a door from the building to inside (Tim Akimoff, pers. comm.). Be that as it may, due to the impaired vision this snake’s chance of survival would have been severely diminished if the bag of webbing on its head had not been removed by the human who found it in the building.

4.4 How important are reptiles as spider diet?—Most spiders reported in this review (i.e., Agelenidae, Araneidae, Ctenidae, Idiopidae, Lycosidae, Nephilidae, Pholcidae, Pisauridae, Sparassidae, Theraphosidae, and Theridiidae) feed to a large extent on arthropod prey, and under most circumstances snakes are probably only marginal food for them. However, there are a few exceptions to this.

In laboratory feeding experiments conducted in Brazil, the large tarantula *Grammostola actaeon* refused to eat insects offered to it (Emerton 1926). Thereafter, small snakes and frogs were offered to the spiders, and those were readily consumed (Emerton 1926). As a result of Emerton’s report,
this tarantula species has been implied in several books to be a specialized predator of snakes and frogs (Berland 1932; Millot 1949; Gertsch 1979; Hillyard 1994). In light of newer information, the characterization of this tarantula species as a specialized snake- and frog-eater must be somewhat relativized. Contrary to Emerton’s experiences, Ibler et al. (2013) were able to rear Grammostola actaeon on a diet of crickets, which shows that this species apparently has a broader diet than previously assumed. Apart from Grammostola actaeon, still other large tarantula species (e.g., Theraphosa blondi) kill snakes (Punzo & Henderson 1999; Aguilar-Lopez et al. 2014; Jorge et al. 2016; Pinto et al. 2017). It took large tarantulas 18–24 hours to devour snakes of 30–55 cm total length (Emerton 1926; Rick West, pers. comm.). The long feeding times reported in these cases indicate that a snake of that size is a “big, profitable meal” for a large tarantula. Tarantulas are capable of ingesting large amounts of food (thereby storing surplus energy in their body’s interstitial

Figure 11.—Snake attack on Trichonephila clavipes spider photographed in West Ashley, South Carolina, USA (Photos by Max Roberts/iNaturalist CC BY-NC). A. Rough green snake, Ophiophryx aestivus (Colubridae), approaches webs of Trichonephila clavipes with the attempt to catch a spider. B. Rough green snake, Ophiophryx aestivus, has captured a Trichonephila clavipes spider and is swallowing it.
tissue as lipid or glycogen) and in time periods of starvation the spiders can access these stored energy reserves (Foelix 2011). Viewed this way, feeding on snakes might have long-term nutritional value, especially in environments with irregular food availability where food can become scarce at times. Most reports of large tarantulas feeding on snakes originate from the Neotropics (Emerton 1926; Nunes et al. 2010; Aguilar-Lopez et al. 2014; Jorge et al. 2016; Pinto et al. 2017).

Not only for large tarantulas, but also for smaller sized web-building spiders, a snake prey might be a big catch. After a neonate red-bellied snake (*Storeria occipitomaculata*) fell prey to an unspecified, small web-building spider in a building in Pennsylvania, USA, the spider ate at the snake carcass for several days (Swanson 1952). A similar account was reported by Yael Lubin from the Negev desert, where a widow spider, *Latrodectus revivensis*, was seen feeding on a dead sand viper (*Cerastes vipera*) for several days (Yael Lubin & Ori Segev, 2017). Similarly, Greene (1997) states in his comprehensive book on “Snakes in question: The Smithsonian answer book” the herpetologists Zug & Ernst (2015) hypothesized that “…spiders are probably the main invertebrate predators of snakes”. Similarly, Greene (1997) states in his comprehensive book on snakes “…small, tropical forest snakes may be especially vulnerable to the centipedes, spiders, and other large invertebrates common in such habitats.” Based on our review, it can be assumed that snake predation by certain spiders does indeed occur quite frequently. However, due to the fact that those spider species which are capable of killing snakes rely to a large extent on arthropods as a primary food source (Thierry Gasnier, pers. comm.; Lapinski & Tschapka 2013), spiders should be expected to play a subordinate role as mortality agents of snakes compared to the carnivorous vertebrates.

4.5 Do spiders capture predominantly venomous or nonvenomous snakes? — In USA, 6 of 161 snake specimens (3.7%) captured by spiders belong to the venomous snakes (i.e., Elapidae and Viperidae). By contrast, in Australia, 77 of 87 snakes (88.5%) captured by spiders were venomous snakes (i.e., Elapidae, but also including the colubrid *Boiga irregularis*). This difference between the percentages is statistically highly significant (Chi-square test, $\chi^2 = 181.72$, df = 1; $P < 0.0001$) and can be explained by the fact that the vast majority of the snakes occurring in USA are nonvenomous colubrids (Nellis 1997), whereas the Australian snake fauna is dominated by venomous elapids (Fig. 5A; Mirtschin et al. 2002). The few North American venomous snake taxa preyed upon by spiders include coral snakes (*Micrurus, Micruridae*), pygmy rattlesnakes (*Sistrurus*), and rattlesnakes (*Crotalus*) (Fig. 4B; Krumm-Heller 1910; Punzo & Henderson 1999; Jones et al. 2011). The situation in the Neotropics may be somewhere in between; here 13 of 33 snake victims of spiders (39.4%) were venomous (i.e., Elapidae and Viperidae; Figs. 6A, 7A, 8B). The percentage of venomous snakes is significantly higher in the Neotropics than in USA (Chi-square test, $\chi^2 = 39.38$, df = 1, $P < 0.0001$) and significantly lower than in Australia (Chi-square test, $\chi^2 = 30.50$, df = 1, $P < 0.0001$). The Neotropical venomous snake taxa preyed upon by spiders include coral snakes, rattlesnakes, palm-pitvipers (*Bothriechis*), and lanceheads (*Bothrops*; Emerton 1926; Avila & Porfirio 2008; Sasa et al. 2009; Nunes et al. 2010; Sequeira 2011).

4.6 How important are spiders as mortality agents of snakes? — Birds of prey, some carnivorous mammals (e.g., mongooses, opossums, and raccoons) as well as other snakes are generally considered to be the major predators of snakes (Fitch 1949; Greene 1997; Linzey & Clifford 2002; Gibbons 2017). Apart from carnivorous vertebrates, several groups of large invertebrate predators such as spiders, scorpions, praying mantises, giant water bugs, centipedes, and driver ants have been reported killing small snakes (McCormick & Polis 1982; Greene 1997; Nyffeler et al. 2017c). In their book “Snakes in question: The Smithsonian answer book” the percentage of nonvenomous snakes? — In USA, 6 of 161 snake specimens (3.7%) captured by spiders belong to the venomous snakes (i.e., Elapidae and Viperidae). By contrast, in Australia, 77 of 87 snakes (88.5%) captured by spiders were venomous snakes (i.e., Elapidae, but also including the colubrid *Boiga irregularis*). This difference between the percentages is statistically highly significant (Chi-square test, $\chi^2 = 181.72$, df = 1; $P < 0.0001$) and can be explained by the fact that the vast majority of the snakes occurring in USA are nonvenomous colubrids (Nellis 1997), whereas the Australian snake fauna is dominated by venomous elapids (Fig. 5A; Mirtschin et al. 2002). The few North American venomous snake taxa preyed upon by spiders include coral snakes (*Micrurus, Micruridae*), pygmy rattlesnakes (*Sistrurus*), and rattlesnakes (*Crotalus*) (Fig. 4B; Krumm-Heller 1910; Punzo & Henderson 1999; Jones et al. 2011). The situation in the Neotropics may be somewhere in between; here 13 of 33 snake victims of spiders (39.4%) were venomous (i.e., Elapidae and Viperidae; Figs. 6A, 7A, 8B). The percentage of venomous snakes is significantly higher in the Neotropics than in USA (Chi-square test, $\chi^2 = 39.38$, df = 1, $P < 0.0001$) and significantly lower than in Australia (Chi-square test, $\chi^2 = 30.50$, df = 1, $P < 0.0001$). The Neotropical venomous snake taxa preyed upon by spiders include coral snakes, rattlesnakes, palm-pitvipers (*Bothriechis*), and lanceheads (*Bothrops*; Emerton 1926; Avila & Porfirio 2008; Sasa et al. 2009; Nunes et al. 2010; Sequeira 2011).

4.6 How important are spiders as mortality agents of snakes? — Birds of prey, some carnivorous mammals (e.g., mongooses, opossums, and raccoons) as well as other snakes are generally considered to be the major predators of snakes (Fitch 1949; Greene 1997; Linzey & Clifford 2002; Gibbons 2017). Apart from carnivorous vertebrates, several groups of large invertebrate predators such as spiders, scorpions, praying mantises, giant water bugs, centipedes, and driver ants have been reported killing small snakes (McCormick & Polis 1982; Greene 1997; Nyffeler et al. 2017c). In their book “Snakes in question: The Smithsonian answer book” the percentage of nonvenomous snakes? — In USA, 6 of 161 snake specimens (3.7%) captured by spiders belong to the venomous snakes (i.e., Elapidae and Viperidae). By contrast, in Australia, 77 of 87 snakes (88.5%) captured by spiders were venomous snakes (i.e., Elapidae, but also including the colubrid *Boiga irregularis*). This difference between the percentages is statistically highly significant (Chi-square test, $\chi^2 = 181.72$, df = 1; $P < 0.0001$) and can be explained by the fact that the vast majority of the snakes occurring in USA are nonvenomous colubrids (Nellis 1997), whereas the Australian snake fauna is dominated by venomous elapids (Fig. 5A; Mirtschin et al. 2002). The few North American venomous snake taxa preyed upon by spiders include coral snakes (*Micrurus, Micruridae*), pygmy rattlesnakes (*Sistrurus*), and rattlesnakes (*Crotalus*) (Fig. 4B; Krumm-Heller 1910; Punzo & Henderson 1999; Jones et al. 2011). The situation in the Neotropics may be somewhere in between; here 13 of 33 snake victims of spiders (39.4%) were venomous (i.e., Elapidae and Viperidae; Figs. 6A, 7A, 8B). The percentage of venomous snakes is significantly higher in the Neotropics than in USA (Chi-square test, $\chi^2 = 39.38$, df = 1, $P < 0.0001$) and significantly lower than in Australia (Chi-square test, $\chi^2 = 30.50$, df = 1, $P < 0.0001$). The Neotropical venomous snake taxa preyed upon by spiders include coral snakes, rattlesnakes, palm-pitvipers (*Bothriechis*), and lanceheads (*Bothrops*; Emerton 1926; Avila & Porfirio 2008; Sasa et al. 2009; Nunes et al. 2010; Sequeira 2011).

4.7 Spiders and snakes as intraguild predators. — Not only are spiders sometimes capturing and killing snakes, quite often the tables are turned—that is, a larger number of arthropod-eating snake species include spiders in their diets (Table 6; Figs. 10, 11). With few exceptions, spider-eating snakes belong to nonvenomous species in the family Colubridae (especially subfamily Colubrinae) and these snakes usually range between approx. 25 and 30 cm total length in most cases. Although

![Figure 12.—Relationship between spider body length and snake body length based on 86 available data pairs. Snake body length refers to total length (snout-vent length + tail length), whereas spider body length refers to cephalothorax plus abdomen. A low positive correlation ($r = 0.4136$; $P < 0.01$) between snake body length and spider body length was found.](image-url)
spider-eating snakes feed for the most part on small, defenseless spiders (Plummer 1981, 1991; Degenhardt et al. 2005; Marques et al. 2006), there are exceptional cases in which large and/or highly toxic spiders considered dangerous prey are swallowed by snakes (Campbell 1999; Branch 2016; Holly Chapman, pers. comm.; Max Roberts, pers. comm.). In such instances, a captured spider may try to bite its captor in the mouth which might be a risky venture for the snake (Marques et al. 2006). In the following, we will present a few examples of risky snake/spider encounters.

Two snakes endemic to Mexico and Central America – the Degenhardt’s Scorpion-eating Snake (Stenorrhina degenhardti) and the Blood Snake (Stenorrhina freminvillei) – are expert arachnid hunters that feed more or less exclusively on theraphosids and scorpions (Censky & McCoy 1988; Campbell 1999; Holm 2008; Köhler et al. 2017). These snakes appear to be immune to the stings of scorpions (Alvarez del Toro 1972).

In the Sonoran Desert (North America), numerous species of small, fossorial snakes occur that feed heavily on small spiders (Babb et al. 2005; Holm 2008; Smith et al. 2008). In stomach and fecal samples of the ground snake (Sonora semiannulata), the remains of black widow spiders and small scorpions are commonly detected, implying that these types of venomous arachnids are habitually consumed by these snakes, apparently without harming them (Funk 1967; Degenhardt et al. 2005). Black widow spiders were fed to the western shovel nose snake (Sonora occipitalis) in captivity – without any negative implications for the snakes (Funk 1967).

Last but not least, we wish to mention the example of the North American green snakes, the rough green snake (Opheodrys aestivus), which is frequently arboreal and commonly reaches a length of 80 cm, and the smooth green snake (Opheodrys vernalis), a ground dwelling species, which is smaller with an adult length of ~50 cm. These snakes are known to feed heavily on spiders (Plummer 1981, 1991; Redder et al. 2006; Baldwin 2007). The vast majority of spiders captured by the green snakes are small and defenseless; however, occasionally rough green snakes snatch large orb-weaving spiders from large orb-webs (genera Argiope and Trichonephila) (Fig. 11; Anonymous 2020; Max Roberts, pers. comm.). To approach large orb-webs with the purpose of catching their inhabitants (Fig. 11A) can be a risky endeavor for these snakes which can get entangled irreversibly in the spiders’ strong sticky webs (Gudger 1931; Zippel & Kirkland 1998).
Table 6.—Examples of colubrid snake species reported to feed on spiders, with percent spiders in the snakes’ total diet (based on literature data).

Scientific name	Common name	Geographic region	percent spiders in the total of prey items	Source
Colubridae				
Coronella girondica	Southern Smooth Snake	Italy	5	Luiselli et al. 2001
Eirenis collaris	Collared Dwarf Racer	Turkmenistan	67–75	Dotsenko 1987
Eirenis modestus	N/A	Turkmenistan	52	Dotsenko 2000
Ficinia streckeri	Mexican Hognose Snake	Texas	High percent spiders	Werler & Dixon 2000
Gyalopion camum	Western Hognose Snake	Sonoran desert	85	Hardy 1975; Holm 2008
Gyalopion quadrangulare	Thorns Hognose Snake	Mostly USA?	31	Babb et al. 2005
Opheodrys aestivalis	Rough greensnake	Arkansas	25–69	Plummer 1981, 1991
Opheodrys vernalis	Smooth Green Snake	Michigan	38	Baldwin 2007
Philodryas agassizii	Burrowing Night Snake	Brazil	72	Marques et al. 2006
Sonora aemula	Filetail Ground Snake	Mexico	20	Smith et al. 2008
Sonora fasciata	Variable Sand Snake	Sonoran desert	13	Holm 2008
Sonora occipitalis	Western Shovelose Snake	Sonoran desert	16	Holm 2008
Sonora palmaris	Sonoran Shovelose Snake	Sonoran desert	47	Holm 2008
Sonora semiannulata	Ground Snake	Sonoran desert	38	Holm 2008
Stenorrhina degenhardtii	Degenhardt’s Scorpion-eating Snake	Central America	high percent spiders	Campbell 1999; Holm 2008
Stenorrhina freminvillei	Blood Snake	Central America, Mexico	high percent spiders	Censky & McCoy 1988; Campbell 1999; Holm 2008
Natrixinae				
Natriciteres sylvatica	Forest Marsh Snake	Southern Africa	high percent spiders	Branch 2016
Incertae sedis				
Gongyllosoma balioidea	Striped Ringneck	Southeast Asia	high percent spiders	Fig. 10 (this paper); Stuebing & Inger 1999; Robert Inger, pers. comm.
Gongyllosoma longicaudum	Long-tailed Ringneck	Southeast Asia	high percent spiders	Das 2015

5. CONCLUDING REMARKS

The global spider community, that weighs an estimated 25 million tons, is assumed to consume about 400–800 million tons of prey per year (Nyffeler & Birkhofer 2017). To satisfy this enormous appetite, the spiders must acquire enough food from a broad variety of food sources (see Nyffeler & Symondson 2001; Nyffeler & Knörschild 2013; Nyffeler & Pusey 2014; Nyffeler et al. 2016, 2017a,b; Nyffeler & Vetter 2018). To this effect, the use of vertebrates as a supplementary food source by spiders represents an opportunity to enlarge their food base, resulting in enhanced chance of survival. Interestingly the snakes captured by spiders also encompasses some species from the families Elapidae and Viperidae known to be highly toxic to humans and other vertebrates, however, there is so far no evidence in the literature that a venomous snake has envenomated the spider.

ACKNOWLEDGMENTS

Thanks to Robb Bennett (Royal British Columbia Museum), Ansie Dippenaar-Schoeman (University of Pretoria), G.B. Edwards (Curator Emeritus, Florida State Collection of Arthropods, Gainesville), Hubert Höfer (State Museum of Natural History, Karlsruhe), Peter Jäger (Senckenberg Research Institute, Frankfurt), Kelly Kissane (Trinidad State Junior College), Yael Lubin (Ben-Gurion University), Robert Raven (Queensland Museum), Barbara Thaler-Knollach (University of Innsbruck), and Rick West (Sooke, British Columbia) for identifying spiders in photos. We also thank William Lamar (formerly University of Texas), Rick Shine (University of Sidney and Macquarie University), Stephen Spawls (City College Norwich), Gernot Vogel (Society for Southeast Asian Herpetology), and Romulus Whitaker (Global Snakebite Initiative, Mamallapuram, India) for identifying snakes based on photos. We are very much indebted to Yael Lubin & Ori Segev (Technion, Haifa) and to Tim Akimoff (Oregon Department of Fish and Wildlife) for providing us with unpublished information. We thank Dirk Stevenson (Altamaha Environmental Consulting, Hinesville) and Larry Jones (formerly Coronado National Forest, Supervisor’s Office, Tucson) for their support. We also wish to acknowledge Jonathan Campbell (University of Texas), Ellen Censky (formerly University of Oklahoma), Holly Chapman (WWF Singapore), the late Robert Inger (Field Museum of Natural History), and Michael Plummer (Harding University) for unpublished information on spider-eating snakes. Comments of two anonymous reviewers helped improve the manuscript. Furthermore, we greatly thank the managing editor Rick Vetter (University of California at Riverside) and the editor-in-chief Deborah Smith (University of Kansas) for encouraging us to submit this paper as an invited review. Finally, we are very grateful to the Australian Museum in Sydney for photo courtesy and to all the photographers who gave permission to use their photos (see figure legends).
SUPPLEMENTARY FILE

Supplementary Table S1 - List of snake species reported captured by spiders. Online at https://doi.org/10.1636/JoA-S-20-050.s1

LITERATURE CITED

Ackermann G. 2012. Lepidodactylus lagubris (Squamata: gekkonidae) als Beute von Pholcus phalangioides (Araneae: Pholcidae). Arachnologische Mitteilungen (Basel) 44:14–16.

Aguilar-López JL, Pineda E, Luría-Manzano R. 2014. Depredación de tres especies de herpetófagos por arañas en la región tropical de Veracruz, México. Revista Mexicana de Biodiversidad 85:966–968.

Algonquin Wildlife Research Station. 2020. This neonate ring-necked snake was caught in an itsy-bitsy spider web when found! Online at https://twitter.com/AlgonquinWRS/status/848256380251377665 Accessed 4 June 2020

Almeida MQ, Sobral R, Da Silva-Neto AM, Mendes DMM, Hidalgo RM. 2019. Bothrops atrox (Common Lancehead) predation. Herpetological Review 50:586.

Alvarez del Toro M. 1972. Los Reptiles de Chiapas. 2nd ed. Gobierno del Estado de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico.

Anonymous. 1991. Spider kills snake. The Technical World Magazine 16(1):120.

Anonymous. 1932a. St. Charles Scoop: The Great Spider-Snake Fight. Online at http://www.stmuseum.org/blog/2018/7/20/st-charles-scoop-the-great-spider-scare-fight Accessed 5 June 2020

Anonymous. 1932b. Spider traps snake in web in Elgin, Illinois [Universal Newspaper Newsrel – Sept. 26, 1932] online at https://www.youtube.com/watch?v=3UfEs-d1v9A Accessed 5 June 2020.

Anonymous. 1933. [An observer reports seeing a 6-inch garter snake caught in the web of Teutana triangulosa.] National Geographic Magazine 64:179.

Anonymous. 1946. Spider versus snake. The Classical Weekly 39(17):133.

Anonymous. 2014. Carolina wolf spider pounces on snake. Online at https://www.youtube.com/watch?v=N6ZH3oz76dw Accessed 5 June 2020

Anonymous. 2016. Online at https://fieldherping.eu/Forum/download/file.php?id=19166&sid=caee12d74c5fd262d222000c1a1973e2&page=view Accessed 5 June 2020

Anonymous. 2020. Australian Museum. 2020. Juvenile Eastern brown snake with redback spider bite lesion. Online at https://australianmuseum.net.au/learn/animals/insects/predators-parasites-and-parasitoids/ Accessed 5 June 2020

Ávila RW, Porfírio GEO. 2008. Bothrops moojenii (Brazilian Lancehead) predation. Herpetological Review 4:467.

Awford J. 2016. The astonishing moment a tiny daddy long-legs spider takes on a deadly brown snake caught in its web - and wins. Online at https://www.dailymail.co.uk/news/article-3441686/Daddy-long-legs-spider-catches-deadly-brown-snake-web.html Accessed 5 June 2020

Baba YG, Watari Y, Nishi M, Sasaki T. 2019. Notes on the feeding habits of the Okinawan fishing spider, Dolomedes orion (Araneae: Pisauridae), in the southwestern islands of Japan. Journal of Arachnology 47:154–158.

Babb RD, Bradley GL, Brennan TC, Holycross AT. 2005. Preliminary assessment of the diet of Gyalopion quadrangulare (Serpentes: Colubridae). Southwestern Naturalist 50:390–392.

Baerg WJ. 1938. Tarantula studies. Journal of the New York Entomological Society 46:31–43.

Baldwin TE. 2007. Ecology and morphological comparison between rough greensnakes (Opheodrys a. aestivus) and Eastern smooth greensnakes (Opheodrys v. vernalis) in West Virginia. M.Sc. thesis, Marshall University, Huntington, West Virginia, USA.

Bayliss PS. 2001. Life history note: Lampropilus fuliginosus (Brown House Snake) predation. Herpetological Review 32:48–49.

Beaman KR, Tucker NG. 2014. Contia tenuis (sharp-tailed snake) predation. Herpetological Review 45:514

Begen M, Townsend CR, Harper JL. 2005. Ecology: From Individuals to Ecosystems. 4th edition. Blackwell Publishing, Oxford.

Berland L. 1932. Les Arachnides (Scorpions, Araignées, etc.); Biologie Systématique. Lechevalier, Paris.

Blackledge TA, Zevenbergen JM. 2007. Condition-dependent spider web architecture in the western black widow, Latrodecus hesperus. Animal Behaviour 73:855–864.

Blackledge TA, Swindeman JE, Hayashi CY. 2005. Quasi-static and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. Journal of Experimental Biology 208:1937–1949.

Boada C, Salazar D, Lascano AF, Kuch U. 2005. The diet of Bothrops asper (Garman, 1884) in the Pacific lowlands of Ecuador. Herpetozooa 18:77–79.

Boback SM, Dichter EK, Mistry HL. 2012. A developmental staging series for the African house snake, Boaedon (Lampropilus) fuliginosus. Zoology 115:38–46.

Borges LM, da Rosa CM, Dri GF, Bertani R. 2016. Predation of the snake Erythrolamprus aladensis (Wagler, 1824) by the tarantula Grammostola quirogai Montes De Oca, D’Elia & Pérez-Miles, 2016. Herpetology Notes 9:321–322.

Branch B. 1998. Field Guide to Snakes and Other Reptiles of Southern Africa. Struik Publishers, Cape Town.

Branch B. 2016. Pocket Guide Snakes and Other Reptiles of Southern Africa. Penguin Random House South Africa, Cape Town.

Broad AJ, Sutherland SK, Coulter AR. 1979. The lethality in mice of dangerous Australian and other snake venom. Toxicon 17:661–664.

Brooks DM. 2012. Birds caught in spider webs. A synthesis of patterns. Wilson Journal of Ornithology 124:345–353.

Brown HYL. 1895. Report on Northern Territory Explorations, Government Printer, Adelaide.

Brown R. 2017. Spider kills snake. Online at https://www.nationalgeographic.com/news/2017/02/video-redback-spider-kills-brown-snake/ Accessed 27 April 2020

Brust TJ. 2013. Dietary preference of the queensnake (Regina septemtincta). Master’s thesis, Marshall University, Huntington, West Virginia, USA.

Bücherl W, Buckley EE. 1971. Venomous Animals and Their Venoms: Venomous Invertebrates. Academic Press, New York.

Burt CE. 1949. Baby gartersnake victim of garden spider. Herpetologica 5:127.

Bush B. 1989. Ontogenetic colour change in the Gwardar, Pseudonaja mchalis. Western Australian Naturalist 18:25–29.

Bush B. 1994. Problems with successful double clutching in captive gwardars, Pseudonaja mchalis (Serpentes, Elapidae). Herpetofauna (Sydney) 24:2–5.

Bush J. 1961.[Report on an incident where a young night adder got killed by a black widow spider, Latrodecus indistinctus]. Central African Examiner, 24 June, 1961.

Cagle NL. 2008. A multiscale investigation of snake habitat relationships and snake conservation in Illinois. Ph.D. dissertation, Duke University, Durham, North Carolina, USA.

Campbell JA. 1999. Amphibians and Reptiles of Northern Guatemala. University of Oklahoma Press, Norman, Oklahoma.

Canadian Geographic. 2006. Animal Facts: Black widow spider. Online at https://www.canadiangeographic.ca/article/animal-facts-black-wide-spider Accessed on 17 March 2020

Censky EJ, McCoy CJ. 1988. Female reproductive cycles of five
species of snakes (Reptilia: Colubridae) from the Yucatan Peninsula, Mexico. Biotropica 20:326–333.

Chatfield MWH, Vance M, Thomas A, Lee JR. 2014. Pleistiodon fasciatus (five-lined skink) spider web entrapment. Herpetological Review 45:331

Cocroft RB, Hambler K. 1989. Observations on a commensal relationship of the microhylid frog Chiromoeis ventrimaculata and the burrowing theraphosid spider Xenesthis immannis in southeastern Peru. Biotropica 21:2–8.

Coddington JA, Levi HW. 1991. Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22:565–592.

Corey DT. 1988. Comments on a wolf spider feeding on a green anole lizard. Journal of Arachnology 16:391–392.

Cnoburn B, Armes M, Fonseca WH. 2017. Observations of feeding behaviour of an Oxyrhopus melanogenys (Serpentes: Dipsideidae): description of a novel prey-processing manoeuvre. Salamandra 53:126–130.

Daly FF, Daly F, Hill RE, Bogdan GM, Dart RC. 2001. Neutralization of Latrodectus mactans and L. hesperus venom by redback spider (L. hasseltii) antivenom. Journal of Toxicology: Clinical Toxicology 39:119–123.

Das I. 2015. A Field Guide to the Reptiles of South-East Asia. Bloomsbury Publishing, London.

Da Silva FD, Bastos R, Loreno de Almeida Cerqueira V, Almeida Das I. 2015. A Field Guide to the Reptiles of South-East Asia. University of California Press, Berkeley, California.

Daves DR, Farkas JK, Kerby JL, Dahlhoff MW. 2017. Coluber constrictor (North American racer) predation. Herpetological Review 48:446–447.

De Francesco TC. 1987. Life history and reproductive ecology of Sistrurus miliarius barbouri: the dusky pygmy rattlesnake in Long Pine Key, Everglades National Park. M.Sc. thesis, Florida International University, Miami, Florida, USA.

Degenhardt, WG, Painter CW, Price AH. 2005. Amphibians and Reptiles of New Mexico. University of New Mexico Press, Albuquerque, New Mexico.

De Rebeira P. 1981. A redback spider attacking an immature dugite. Western Australian Naturalist 15:33–34.

De Sousa L, Manzanilla J, Cornejo-Escobar P. 2007. Depredación sobre serpiente colubrida por Latrodectus cf. geometricus Koch, 1841 (Araneae: Theridiidae). Ciencia 15:410–412.

Dotsenko IB. 1987. Comparative study of the diet of three Transcaucasian snake species of the genus Eirenis (Colubridae). U.S.S.R. Academy of Sciences., Proceedings of the Zoological Institute, Leningrad 158:84–88 (in Russian).

Dotsenko IB. 2000. Activity and food preferences of the Eirenis medus in the Central Copetdag. Modern Herpetology 1:5–6.

Durigo B. 2010. This snake’s prey became the predator. The Daily Advertiser [Wagga Wagga, N.S.W., Australia], Thursday 1 April 2010, p. 2.

Emerton JH. 1926. Spiders eating snakes. Psyche (Camb Mass) 33:60.

Encyclopedia Britannica. 2020a. Snake. Online at https://www.britannica.com/animal/snake Accessed 28 September 2020.

Encyclopedia Britannica. 2020b. What’s the difference between venomous and poisonous? Online at https://www.britannica.com/story/whats-the-difference-between-venomous-and-poisonous Accessed 28 September 2020.

Ernst CH, Ernst EM. 2011. Venomous Reptiles of the United States, Canada, and Northern Mexico: Crotalus (Vol. 2). Johns Hopkins University Press, Baltimore, Maryland.

Ervin E, Carroll S. 2007. Hypsiglena torquata chlorophaea (Northern Desert Nightsnake) predation. [by Latroductus hesperus, western black widow spider]. Herpetological Review 38:468.

Faraone FP, Barraco L, Giacalone G, Muscarella C, Schifani E, Vecchioni L. 2019. First records of the Brahminy blind snake, Indotyphlops braminus (Daudin, 1803)(Squamata: Typhlopidae), in Italy. Herpetology Notes 12:1225–1229.

Filipiak D, Lewis T. 2012. Gonatodes albogularis (yellow-headed dwarf gecko) predation. Herpetological Review 43:486.

Fitch HS. 1949. Study of snake populations in central California. American Midland Naturalist 41: 513–579.

Foelix RF. 2011. Biology of Spiders. 3rd edition. Oxford University Press, New York.

Folt B, Lapinski W. 2017. New observations of frog and lizard predation by wandering and orb-weaver spiders in Costa Rica. Phyllomedusa 16:269–277.

Fontana MD, Lucas HSM, Vital Brazil O. 2002. Neuromuscular blocking action of the Theraphosa blondi spider venom. Journal of Venomous Animals and Toxins 8:316–323.

Funk RS. 1967. A new colubrid snake of the genus Chionactis from Arizona. Southwestern Naturalist 12:180–188.

Funk RS, Tucker JK. 1978. Variation in a large broid of lined snakes, Tropidolonion lineatum (Reptilia, Serpentes, Colubridae). Journal of Herpetology 12:115–117.

Furtado MFD, Santos MC, Kamiguti AS. 2003. Age-related biological activity of South American rattlesnake (Crotalus durissus terrificus) venom. Journal of Venomous Animals and Toxins including Tropical Diseases 9:186–201.

Furtado MFD, Travaglia-Cardoso SR, Rocha MMTD. 2006. Sexual dimorphism in venom of Bothrops jararaca (Serpentes: Viperidae). Toxicon 48:401–410.

Gendreau K, Haney R, Schwager EE, Wierschin T, Stanke M, Richards S, et al. 2017. House spider genome uncovers evolution-ary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity. BMC Genomics 18:178.

Gerald GW. 2006. Regina septemvittata (Queen Snake) predation. Herpetological Review 37:480.

Gertsch WJ. 1979. American Spiders. 2nd edition. Van Nostrand Reinhold, New York.

Gibbons W. 2017. Snakes of the Eastern United States. University of Georgia Press, Athens, Georgia.

Goodyear SE, Pianka ER. 2008. Sympatric ecology of five species of fossorial snakes (Elapidae) in Western Australia. Journal of Herpetology 42:279–285.

Govindarajulu P, Isaac LA, Engelstoft C, Ovaska K. 2011. Relevance of life-history parameter estimation to conservation listing: Case of the Sharp-Tailed snake (Contia tenuis). Journal of Herpetology 45:300–307.

Greene HW. 1997. Snakes: The Evolution of Mystery in Nature. University of California Press, Berkeley, California.

Groves JD, Groves F. 1978. Spider predation on amphibians and reptiles. Bulletin of the Maryland Herpetological Society 14:44–46.

Gudger EW. 1925. Spiders as fishermen and hunters. Journal of the American Museum of Natural History 25:261–275.

Gudger EW. 1931. More spider hunters accounts of arachnids which attack and devour vertebrates other than fishes. Scientific Monthly 32:422–433.

Hall M, Johnson PJ. 2007. A red-bellied snake entangled in a brown spider web in South Dakota. Prairie Naturalist 39:157–158.

Hardy LM. 1975. A systematic revision of the colubrid snake genus Gyalopion. Journal of Herpetology 9:107–132.

Henao-Duque AM, Ceballos CP. 2013. Sex-related head size and shape dimorphism in Mapana´ snakes (Serpentes: Dipsadidae): description of a new prey-processing manoeuvre. Salamandra 53:126–130.

Hess W, de Rebeira P. 1982. The cobaltous black widow spider [Latrodectus mactans]. Herpetological Review 13:212–213.

Holm P. 2008. Phylogenetic biology of the burrowing snake tribe
Mirtschin P, Rasmussen A, Weinstein S. 2017. Australia's Dangerous Snakes: Identification, Biology and Envenoming. CSIRO Publishing, Clayton, Victoria.

Moehn LD. 1984. Tropidoleiobolus lineatus (Lined Snake). Herpetological Review 15:115.

Muller PP, Krieger HM, van der Walt AB. 1989. The relative toxicity and polypeptide composition of the venom of two Southern African widow spider species: Latrodectus indistinctus and Latrodectus geometricus. South African Journal of Science 85:44–46.

Murphy JB. 2014. Studies on pythons, boa and anacondas, dwarf boa, and Round Island splitjaw snakes in zoos and aquariums. Herpetological Review 45:535–556.

Murphy JC, Braswell AL, Charles SP, Auguste RJ, Rivas GA. 2019. Spider eats snake. Online at https://www.redbubble.com/people/carle/work/5493555-spider-eats-snake?p=poster Accessed 4 June 2020

Paz N. 1988. Ecología y aspectos del comportamiento en Linothela sp. (Araneae, Dipluridae). Journal of Arachnology 16:5–22.

Peters D. 2016. Creepy video shows how deadly redback spiders capture baby snakes in their webs before feasting on them. Online at https://www.dailymail.co.uk/news/article-3438929/The-bizarre-moment-couple-dozens-baby-snakes-thrashing-trapped-redbacks-spider-s-webs-inside-shed.html Accessed 5 June 2020.

Petrov BP, Lazarov S. 2000. Steatoda triangulosa (Walekenaer, 1802) feeding on a European Blind Snake. Newsletter of the British Arachnological Society 88:9–10.

Phillips SJ, Comus PW. 2000. A Natural History of the Sonoran Desert. Arizona-Sonora Desert Museum Press, Tucson, Arizona.

Pinkus LF. 1932. How a spider caught and dined upon a six-inch snake. Scientific Monthly 34:80–83.

Pinto KC, Wranski L, Xavier J, Penhaeck M, Oliveira RM, de Oliveira EA. 2017. Natural history notes: Oxyrhynus species (False Coral snake) predation. Herpetological Review 48:457.

Plummer MV. 1981. Habitat utilization, diet and movements of a temperate arboreal snake (Opheodrys aestivus). Journal of Herpetology 15:425–432.

Plummer MV. 1991. Patterns of feces production in free-living green snakes, Opheodrys aestivus. Journal of Herpetology 25:222–226.

Poposki C. 2019. ‘They are killing machines, they will kill anything’: Deadly redback spider catches and kills eight lizards by luring them into its web. Online at https://www.dailymail.co.uk/news/article-6994027/Deadly-red-spider-catches-kills-SEVEN-lizards-trapping-web.html Accessed 23 March 2020.

Pruett JA, Jadin RC. 2010. Tanilla gracilis (Flat-headed Snake). Arachnid predation. Herpetological Review 41:99.

Punzo F, Henderson L. 1999. Aspects of the natural history and behavioural ecology of the tarantula spider Aphonopelma hentzi (Girard, 1854)(Orthognatha, Theraphosidae). Bulletin of the British Arachnological Society 11:121–128.

Quinn HR. 1979. Reproduction and growth of the Texas coral snake (Micrurus fulvius tenere). Copeia 1979:9–10.

Quintero-Angel A, Carr JL. 2010. Lepidotophus xanthostigma (Orange-tailed Gecko) predation. Herpetological Review 41:80.

Ramires EN, Fraguas GM. 2004. Tropical house gecko (Hemidactylus mabouia) predation on brown spiders (Loxoceles intermedia). Journal of Venomous Animals and Toxins including Tropical Diseases 10:185–190.

Raven R, Gallon J. 1987. The redback spider. Pp. 307–311. In Toxic Plants and Animals: A Guide for Australia. (Covacevich J, Davie P, Pearse J, eds.). Queensland Museum, Brisbane.

Redder AJ, Smith BE, Keinath DA. 2006. Smooth green snake (Opheodrys vernalis): a technical conservation assessment.[Online]. USDA Forest Service, Rocky Mountain Region, Conservation Project. Online at https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5182074.pdf Accessed 2 June 2020.

Reyes-Lugo M, Sánchez T, Finol HJ, Sánchez EE, Suárez JA, Guerreiro B, et al. 2009. Neurotoxic activity and ultrastructural changes in muscles caused by the brown widow spider Latrodectus mustelinus)(Squamata: Scincidae: Lygosominae) by a redback spider (Latrodectus hasseltii)(Araneae: Araneomorpha: Theridiidae), with a review of other Latrodectus predation events involving squamates. Herpetofauna (Sydney) 44:49–55.

Orange P. 1990. Predation on Rhinolophus monachus (Serpentes: Elapidae) by the redback spider, Latrodectus mactans. Herpetofauna (Sydney) 20:34.

Owens V. 1949. Snakes eaten by the tarantula, Eurytemera californica. Herpetologica 5:148.

Palmer WM, Braswell AL. 1995. Reptiles of North Carolina. University of North Carolina Press, Chapel Hill, North Carolina.

Parkhill C. 2020. Spider eats snake. Online at https://www.redbubble.com/people/carle/works/5493555-spider-eats-snake?p=poster Accessed 4 June 2020

Nel E, Kelly J, Dippenaar-Schoeman A. 2014. Notes on the biology of the wasp, Chalybion spinosum (Hymenoptera: Sphecidae), an obligatory predator of Latrodectus (Araneae: Theridiidae) spiders in South Africa. Journal of Natural History 48:1585–1593.

Nellis DW. 1997. Poisonous Plants and Animals of Florida and the Caribbean. Pineapple Press Inc., Sarasota, Florida.

Newlands G. 1978. Arachnida (except Acari). Pp. 685–702. In Newlands G. 1978. Arachnida (except Acari). Pp. 685–702. In In Newlands G. 1978. Arachnida (except Acari). Pp. 685–702. In In Newlands G. 1978. Arachnida (except Acari). Pp. 685–702. In In Newlands G. 1978. Arachnida (except Acari). Pp. 685–702. In Newlands G. 1978. Arachnida (except Acari). Pp. 685–702.

Nunes, GSS, De-Carvalho CB, De Matos Dias D, Teixeira Magina GC, De Carvalho CM. 2010. Micrurus ibiboboca (Caatinga Coral Snake) predation. Herpetological Review 41:368–369.

Nyffeler M, Altit R. 2020. Spiders as frog-eaters: a global perspective. Journal of Arachnology 48:26–42.

Nyffeler M, Birkhofer K. 2017. An estimated 400–800 million tons of prey are annually killed by the global spider community. Science of Nature 104:30.

Nyffeler M, Knörnschild M. 2013. Bat predation by spiders. PLoS One 8:e58120.

Nyffeler M, Pusey BJ. 2014. Fish predation by semi-aquatic spiders: a global pattern. PLoS One 9:e99459.

Nyffeler M, Sunderland KD. 2003. Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agriculture, Ecosystems & Environment 95:579–612.

Nyffeler M, Symondson WOC. 2001. Spiders and harvestmen as gastropod predators. Ecological Entomology 26:617–628.

Nyffeler M, Vetter RS. 2018. Black widow spiders, Latrodectus spp., (Araneae: Theridiidae) and other spiders feeding on mammals. Journal of Arachnology 46:541–549.

Nyffeler M, Edwards GB, Krysko KL. 2017a. A vertebrate-eating jumping spider (Araneae: Salticidae) from Florida, USA. Journal of Arachnology 45:238–241.

Nyffeler M, Lapinski W, Snyder A, Birkhofer K. 2017b. Spiders feeding on earthworms revisited: consumption of giant earthworms in the tropics. Journal of Arachnology 45:242–247.

Nyffeler M, Maxwell MR, Remsen JV Jr. 2017a. Bird predation by praying mantises: A global perspective. Wilson Journal of Ornithology 129:331–344.

Nyffeler M, Moor HR, Foelix RF. 2001. Spiders feeding on earthworms. Journal of Arachnology 29:119–124.

Nyffeler M, Olson EJ, Symondson WOC. 2016. Plant-eating by spiders. Journal of Arachnology 44:15–27.

O’Shea M, Kelly K. 2017. Predation on a weasel skink (Saprosccinus mustelinus)(Squamata: Scincidae: Lygosominae) by a redback spider (Latrodectus hasseltii)(Araneae: Araneomorpha: Theridiidae), with a review of other Latrodectus predation events involving squamates. Herpetofauna (Sydney) 44:49–55.
geometricum venom. Revista do Instituto de Medicina Tropical de São Paulo 51:95–101.

Reyes-Velasco J, Adams RH, Boissinot S, Parkinson CL, Campbell JA, Castoe TA, et al. 2020. Genome-wide SNPs clarify lineage diversity confounded by coloration in coralsnakes of the Micrurus diastema species complex (Serpentes: Elapidae). Molecular Phylogenetics and Evolution 147:106770.

Rocha CR, Motta PC, de Souza Portella A, Saboya M, Brandão R. 2017. Predation of the snake Tantilla melanomelanecephala (Squamata: Colubridae) by the spider Latrodectus geometricus (Araneae: Theridiidae) in Central Brazil. Herpetology Notes 10:647–650.

Rojas-González RI, Zamora-Abrego JG. 2016. Reptilia: Squamata (snakes). Mesoamerican Herpetology 3:1014–1015.

Sanders D. 1982. Strung along. [Jason Griffith of Chandler found spider and snake at Armstrong Park] Arizona Republic Newspaper June 13, 1982.

Sarmiento MJR, Emerson Y. 2018. Predation of variable paradise tree snake (Chrysosopeia paradisi variabilis) by a giant golden orb weaver on Catanduanes Island, Philippines. Southeast Asia Vertebrate Records 2018:54–55.

Sasa M, Wasko DK, Lamar WW. 2009. Natural history of the terciopelo Bothrops asper (Serpentes: Viperidae) in Costa Rica. Toxicon 54:904–922.

Savage JM. 2002. The amphibians and reptiles of Costa Rica: A Natural History Publications Borneo, Kota Kinabalu, Borneo.

Sternberg DJ, Crook CW. 2018. Natural history notes: Snake (Chelydra serpentina) predation. Herpetological Notes 35–39.

Stuebing RB, Inger RF. 1999. Field Guide to the Snakes of Borneo. Natural History Publications Borneo, Kota Kinabalui, Borneo.

Sutherland SK, Tibballs J. 2001. Australian Animal Toxins: The Creatures, Their Toxins and Care of the Poisoned Patient. Oxford University Press, Melbourne.

Sutton C. 2016. The truth behind those David and Goliath spider battles revealed: How redbacks ‘cast webs like Spiderman’ to catch deadly brown snakes 50 times their size before ‘liquefying’ them with poison and DRINKING them. Online at https://www.dailymail.co.uk/news/article-3513237/Another-deadly-brown-snake-loses-duel-female-redback-spider-liquefies-DRINKS-prey.html Accessed 11 June 2020.

Swanson BO, Blackledge TA, Beltrán J, Hayashi CY. 2006. Variation in the material properties of spider dragline silk across species. Applied Physics A 82:213–218.

Swanson PL. 1952. The reptiles of Venango County, Pennsylvania. American Midland Naturalist 47:161–182.

Sweeney J. 2009. Battle of the fangs. Online at https://www.dailyexaminer.com.au/news/battle-of-the-fangs/437169/ Accessed 12 June 2020

Tanaka K, Mori A. 2000. Literature survey of predators of snakes in Japan. Current Herpetology 19:97–111.

Taucare-Rios A, Piel WH. 2020. Predation on the gecko Phyllodactylus gerrhopygus (Wiegmann)(Squamata: Gekkonidae) by the six-eyed sand spider Sicarius thomisoides (Walckenaer) (Araneae: Sicariidae). Revista de la Sociedad Entomologica Argentina 79:48–51.

Telford SR. 1966. Variation among the southeastern crowned snakes, genus Tantilla. Bulletin of the Florida State Museum, Biological Services 10:261–304.

The Spider Club of SA. 2017. Flattie eating a gecko – photo by Marieke de Swart, Pretoria. The Spider Club News 33(1):1. The Spider Club of SA. 2018. Snake-eating knopiespinnekop in Canada? The Spider Club News 34(3):6.

Uetz P, Freed P, Hošek J. (eds.) 2020. The Reptile Database. Online at http://www.reptile-database.org Accessed 10 June 2020.

Vollrath F. 2000. Strength and structure of spiders’ silks. Reviews in Molecular Biotechnology 74:67–83.

Werler JE, Dixon JR. 2010. Texas Snakes: Identification, Distribution, and Natural history. University of Texas Press, Austin, Texas.

Wildor BG. 1865. On the Nephila plumipes: Or silk spider of South Carolina. Proceedings of the Boston Society of Natural History 10:200–210.

Williams BL, Brodie, ED Jr., Brodie ED III. 2004. A resistant predator and its toxic prey: persistence of newt toxin leads to poisonous (not venomous) snakes. Journal of Chemical Ecology 30:1901–1919.

Wood M. 2017. Crab spider (Thomisus sp.) consuming a baby gecko. The Spider Club News (South Africa) 33(1):6.

World Spider Catalog. 2020. World Spider Catalog, version 21.5. Natural History Museum Bern, Switzerland. Online at http://wsc.mmbe.ch doi: 10.24436/2 Accessed 11 September 2020.

Yudhana A, Praja RN, Supriyanto A. 2019. The medical relevance of Spiloter matawiro worm infection in Indonesian Bronzeback snakes (Dendrelaphis pictus): A neglected zoonotic disease. Veterinary World 12:844.

Zippel KC, Kirkland L. 1998. Opheodrys aestivus (Rough Green Snake). Spiderweb entrapment. Herpetological Review 29:46.

Zug GR, Ernst CH. 2015. Snakes in Question, Second Edition: The Smithsonian Answer Book. Smithsonian Institution Press, Washington, DC.

Manuscript received 13 June 2020, revised 3 October 2020.
Appendix 1.—List of spider species engaged in predation (or predation attempts) on snakes. * In captivity or in staged field experiments; ** Presumably a staged event; *** Staged field experiment.

Species #	Spider species	Spider family	Type of evidence	Source
01	Ancylometes rufus (Walckenaer, 1837)	Ctenidae	Photo	Sorokin & Stuckert 2017
02	Phoneutria sp.	Ctenidae	Observation	Sasa et al. 2009
03	Hogna carolinensis (Walckenaer, 1805)*	Lycosidae	Video	Anonymous 2014; https://www.youtube.com/watch?v=N6ZH3oz76dw Accessed 6 June 2020
04	Dolomedes okefinokensis Bishop, 1924	Pisauridae	Photo	https://www.shutterstock.com/de/image-photo/spider-dolomedes-okefinokensis-eating-venomous-ringneck-519035221 Accessed 6 June 2020
05	Dolomedes tenebrosus Hentz, 1844	Pisauridae	Photo	Lazcano et al. 2005; Gerald 2006
06	Dolomedes vittatus Walckenaer, 1837	Pisauridae	Photo	https://www.youtube.com/watch?v=eashknfe7_4 Accessed 24 June 2020
07	N/A	Sparassidae	Photo/Video	https://www.recordchina.co.jp/b7342-s0-c30-d000.html Accessed 6 June 2020; https://www.redbubble.com/people/carle/works/5493555-spider-eats-snake?p=poster Accessed 6 June 2020; https://www.youtube.com/watch?v=g3wKiVwfNxs Accessed 6 June 2020
08	Acanthoscurria sp.	Theraphosidae	Observation	Avila & Porfirio 2008
	Same species as #08? Acanthoscurria goniculata (C. L. Koch, 1841)	Theraphosidae	Photo	Acanthoscurria goniculate eating Miami corn snake http://www.flickr.com/photos/choobaine/4075439652/ Accessed 27 March 2010 / No longer accessible on 6 June 2020
09	Aphonopelma californicum (Ausserer, 1871)* [Nomen dubia]	Theraphosidae	Observation	Owens 1949
10	Aphonopelma chalodes Chamberlin, 1940	Theraphosidae	Video	Baerg 1938
11	Aphonopelma crinitum (Pocock, 1901)*	Theraphosidae	Observation	Punzo & Henderson 1999
12	Aphonopelma hentzi (Girard, 1852)	Theraphosidae	Observation	https://www.youtube.com/watch?v=K7X6GZeDjiA Accessed 6 June 2020
13	Brachypelma smithi (F. O. Pickard-Cambridge, 1897)*	Theraphosidae	Video	https://www.sciencephoto.com/media/85804/view/tarantula-eating-snake Accessed 6 June 2020
14	Avicularia [= Eurypelma] sp.**	Theraphosidae	Photo	Emerton 1926
15	Grammostola actaeon (Pocock, 1903)*	Theraphosidae	Observation	Gudger 1931
16	Grammostola (longimana) anthracina (C. L. Koch, 1842)*	Theraphosidae	Photo	Borges et al. 2016
17	Grammostola quirogai Montes de Oca, D'Elia & Pérez-Miles, 2016	Theraphosidae	Photo	https://www.shutterstock.com/es/image-photo/rose-tarantula-eat-snake-1201892035 Accessed 6 June 2020
18	Grammostola rosea (Walckenaer, 1837)*	Theraphosidae	Photo	Rick West, pers. comm.
19	Lasiodora parahybana Mello-Leitão, 1917***	Theraphosidae	Video	Nunes et al. 2010
20	Megaphobema velvetosoma Schmidt, 1995*	Theraphosidae	Video	Aguilar-López et al. 2014
21	Pachistopelma rufonigrum Pocock, 1901	Theraphosidae	Photo	Jorge et al. 2016; Rick West, pers. comm.
22	Schizopelma sp.	Theraphosidae	Photo	Almeida et al. 2019
23	Theraphosa blondi (Latreille, 1804)	Theraphosidae	Observation; Video	https://www.youtube.com/watch?v=boZebIFn0P0 Accessed 6 June 2020
24	Theraphosa stirmi Rudloff & Weinmann, 2010	Theraphosidae	Photo	Rick West, pers. comm.
25	Tilpotal sp.	Theraphosidae	Video	https://www.youtube.com/watch?v=byUtSaMRRgo Accessed 20 May 2020 Spider 1D Rick West
26	Xenesthis immanis (Ausserer, 1875)*	Theraphosidae	Observation	Cocroft & Hambler 1989
Species #	Spider species	Spider family	Type of evidence	Source
-----------	----------------	---------------	------------------	--------
27	Argiope aurantia Lucas, 1833	Araneidae	Photo	Anonymous 1911; Gudger 1931; Pinkus 1932; Burt 1949
28	Argiope sp. (cf. A. flavescens O. Pickard-Cambridge, 1880)	Araneidae	Video	https://www.youtube.com/watch?v=2qHqUvWvdA Accessed 6 June 2020
29	Eriophora sp.? or Neoscona sp. ? (a genus different from #27-28)	Araneidae	Video	https://www.youtube.com/watch?v=jRViiYLKvPE Accessed 6 June 2020
30	Trichonephila clavipes (Linnaeus, 1767)	Nephilidae	Observation	Wilder 1865; Zippel & Kirkland 1998
31	Nephiila pilipes (Fabricius, 1793)	Nephilidae	Photo	Tanaka & Mori 2000; Jantos 2012; Sarmiento & Emerson 2018
32	Anelosimus sp.	Theridiidae	Observation	Fritz Vollrath (pers. obs.) cited in McGuinness 2013
33	Argyrodes sp. (cf. A. flavescens O. Pickard-Cambridge, 1880)	Theridiidae	Photo	Micky Lim - https://www.flickr.com/photos/mickylim/3284721053 Accessed 6 June 2020
34	Latrodectus geometricus C. L. Koch, 1841	Theridiidae	Photo	Bayliss 2001; De Sousa et al. 2007; Rocha et al. 2017; Martínez-Coronel & Navarrete-Jiménez 2018; Stevenson & Crook 2018
35	Latrodectus hasselti Thorell, 1870	Theridiidae	Photo	De Rebeira 1981; Bush 1989; Peters 2016; and others
36	Latrodectus hesperus Chamberlin & Ivie, 1935	Theridiidae	Photo	Jones et al. 2011; Beaman & Tucker 2014; and others
37	Latrodectus indistinctus O. Pickard-Cambridge, 1904	Theridiidae	Photo	Bush 1961
38	Latrodectus mactans (Fabricius, 1775)	Theridiidae	Photo	Neill 1948; Stratton 2002
39	Latrodectus revivensis Walckenaer, 1837	Theridiidae	Photo	Yeal Lubin, pers. comm.
40	Latrodectus variolus Walckenaer, 1837	Theridiidae	Video	Malcolm Robertson –https://www.facebook.com/ malgonquinphotography/ Accessed 6 June 2020
41	Parasteatoda tepidariorum (C. L. Koch, 1841)	Theridiidae	Photo	Hopkins 1878; Tanaka & Mori 2000; Davis et al. 2017
42	Steatoda triangulosa (Walckenaer, 1802)	Theridiidae	Photo	Petrov & Lazarov 2000; and others
43	N/A	Pholcidae	Photo	Pruett & Jadin 2010

| Same species as #42? | Steatoda sp. | Theridiidae | Photo | Pruett & Jadin 2010 |

AERIAL-WEB WEAVERS

FUNNEL-WEB WEAVERS

Coras medicinalis (Hentz, 1821) | Agelenidae | Observation | McCormick & Polis 1982 |

TRAPDOOR-BUILDERS

Gaius villosus Rainbow, 1914 | Idiopidae | Observation | Main 1996 |
Appendix 2.—List of snake species reported having been captured by spiders. * Staged feeding experiment; ** Species name based on the revision of Reyes-Velasco et al. (2020).

Species #	Snake species	Snake family	Type of evidence	Source
01	*Adelphicos newmanorum*	Colubridae	Photo	Lazcano et al. 2005
02	Arizona elegans	Colubridae	Photo	https://i.imgur.com/2v2Sucj.jpg Accessed 8 June 2020
03	Atractus torquatus	Colubridae	Observation	Jorge et al. 2016
04	Boiga irregularis	Colubridae	Photo	Jantos 2012
05	Cemophora coccinea	Colubridae	Photo	Stevenson & Crook 2018
06	Chironius carinatus*	Colubridae	Video	Rick West, pers. comm.
07	Chrysopelea paradisi	Colubridae	Photo	Sarmiento & Emerson 2018
08	Clelia clelia	Colubridae	Video	https://www.youtube.com/watch?v=jRVvYLyKvPE Accessed 6 June 2020
09	Coluber constrictor	Colubridae	Photo	Davis et al. 2017
10	Crotaphopeltis hotamboeia	Colubridae	Observation	Micky Lim - https://www.flickr.com/photos/mickylim/3284721053 Accessed 6 June 2020
11	Dendrelaphis pictus	Colubridae	Photo	Stevenson & Crook 2018
12	Dendrelaphis punctulatus	Colubridae	Video	https://www.youtube.com/watch?v=0DmxPsRB680 Accessed 20 May 2020 Snake ID Rick Shine
13	*Dendrelaphis sp. (tristis?)*	Colubridae	Photo	Ashwini Kumar Bhat http://sumasuta.blogspot.com/2008/09/tale-of-hanging-unfortunate.html Accessed 20 May 2020 (Snake ID Gernot Vogel + Rom Whitaker)
14	Diadophis punctatus	Colubridae	Observation	Groves & Groves 1978; Clemens 1993; Stratton 2002
15	Drymobius margaritiferus*	Colubridae	Photo	Tanaka & Mori 2000
16	Elaphe climacophora	Colubridae	Photo	Dinesh Rao 2013 https://www.flickr.com/photos/dinrao/9141583949/ Accessed 20 May 2020 Snake ID Gernot Vogel
17	Hebius sauteri ?	Colubridae	Photo	Tanaka & Mori 2000
18	Heterodon platirhinos	Colubridae	Observation; Photo	Owens 1949; https://photobucket.com/photo posted 27 August 2008 / not accessible on 25 January 2021; Snake ID Whit Gibbons & William Lamar
19	Hypsiglena chlorophaeoa	Colubridae	Observation	Ervin & Carroll 2007
20	Imantodes cenchoa	Colubridae	Video	Rick West, pers. comm.
21	Lampropeltis calligaster	Colubridae	Photo	http://imgur.com/JPngVbB Accessed 8 June 2020 Snake ID William Lamar
22	Lampropeltis triangulum	Colubridae	Observation	Hopkins 1878
23	Leptodeira annulata	Colubridae	Photo	Da Silva et al. 2019
24	Lyctodon rufozonatus	Colubridae	Photo	https://www.recordchina.co.jp/b7342-s0-c30-d0000.html Accessed 20 May 2020
25	Lyctodon semicarinatus	Colubridae	Observation	Tanaka & Mori 2000
26	Lytorhynchus diadema	Colubridae	Photo	http://fieldherping.eu/Forum/viewtopic.php?p=25032&sid=8b1bf064c Accessed 20 May 2020
27	Nerodia rhombifer	Colubridae	Video	Black widow spider caught a snake pic.twitter.com/7hrmUFK1Xx — Nature is Lit (@NatureisLit) Accessed August 21, 2020 Snake ID Whit Gibbons & William Lamar
28	Nerodia sipedon	Colubridae	Photo	Shinner 1963 Snake ID Whit Gibbons
29	Ninia sebae	Colubridae	Photo	Aguilar-López et al. 2014
30	Opehodrys aestivus	Colubridae	Observation	Zippel & Kirkland 1998
31	Opehodrys vernalis	Colubridae	Photo	Neill 1948; Gibbons 2017
32	Oxyrhopus petolarius	Colubridae	Photo	Sorokin & Stuckert 2017
33	Oxyrhopus sp.	Colubridae	Photo	Pinto et al. 2017
34	Pantherophis guttatus	Colubridae	Photo	https://www.pinterest.co.uk/pin/434808539024906191/ Accessed 20 May 2020 Snake ID Whit Gibbons
35	Pantherophis obsoletus?	Colubridae	Video	Anonymous 1946; https://www.youtube.com/watch?v=47ig4kA1N4 Accessed 6 June 2020
36	Regina septemvittata	Colubridae	Observation	Gerald 2006
37	Rhadinella kinkelini	Colubridae	Observation	Myers 1974
38	Sonora striatanea	Colubridae	Video	https://www.youtube.com/watch?v=N3pwdj4Uz90 Accessed 20 May 2020
39	Storeria dekayi	Colubridae	Photo	Neill 1948; Cagle 2008
Species #	Species	Snake family	Type of evidence	Source
----------	------------------------------	--------------	------------------	--
39	*Storeria occipitomaculata*	Colubridae	Photo	Swanson 1952; Hall & Johnson 2007; Whit Gibbons, pers. comm.
40	*Tantilla coronata*	Colubridae	Observation	Telford 1966
41	*Tantilla gracilis*	Colubridae	Photo	Pruell & Jadin 2010
42	*Tantilla hobartsmithi*	Colubridae	Photo	Punzo & Henderson 1999; https://www.inaturalist.org/observations/15193547 Accessed 20 May 2020
43	*Tantilla melanocephalus*	Colubridae	Photo	De Sousa et al. 2007; Rocha et al. 2017
44	*Thamnophis couchii*	Colubridae	Photo	http://i351.photobucket.com/albums/q448/Zetsumei001/snakeWithBlackWidow.jpg accessed 28 January 2021 Snake ID William Lamar
45	*Thamnophis cyrtopsis*	Colubridae	Photo	The Spider Club of SA 2018
46	*Thamnophis elegans*	Colubridae	Photo	Gudger 1925; Burt 1949; McCormick & Polis 1982
47	*Tropidoclonion lineatum*	Colubridae	Observation	Pinkus 1932; Davenport 1943; Moehn 1984
48	*Tropidophis mairii*	Colubridae	Video	https://www.youtube.com/watch?v=zhQhUvWpvdA Accessed 20 May 2020 Snake ID William Lamar
49	*Virginia valeriae*	Colubridae	Photo	http://imgur.com/WdmYRsN Accessed 8 June 2020 Snake ID William Lamar
50	N/A, a species different from #1-50	Colubridae	Video	Accessible 8 June 2020 Snake ID William Lamar
51	*Coniophanes cf. fissidens*	Dipsadidae	Video	https://www.youtube.com/watch?v=UJUkxyYmF_Y Accessed 20 May 2020 Snake ID Rick West / Snake ID William Lamar
52	*Erythrolamprus almandensis*	Dipsadidae	Photo	Borges et al. 2016
53	*Cryptophis nigrescens*	Elapidae	Photo	Sweeney 2009 https://www.dailyexaminer.com.au/news/battle-of-the-fangs/4371697?no_longer_available=25 January 2021
54	*Drysdalia rhodogaster*	Elapidae	Photo	https://www.dailymail.co.uk/video/news/video-1163663/Snake-Vs-spider-Redback-traps-Brown-Snake-web.html Accessed 20 May 2020 Snake ID Rick Shine
55	*Farina sp.*	Elapidae	Photo	https://www.youtube.com/watch?v=dEOODYGRAyg Accessed 20 May 2020 Snake ID William Lamar
56	*Hemiaspis signata*	Elapidae	Observation	Malpass 2015 The Sydney Morning Herald https://www.smh.com.au/environment/conservation/spider-v-snake-redback-spider-wins-snake-dies-from-likely-poisoning-20150303-13tgdf.html Accessed 20 May 2020 Snake ID William Lamar
57	*Micruroides euryxanthus*	Elapidae	Photo	Jones et al. 2011
58	*Micrurus apiatus***	Elapidae	Video	https://www.youtube.com/watch?v=bYUtSaMRtGo Accessed 20 May 2020 Snake ID William Lamar
59	*Micrurus ibiboboca*	Elapidae	Photo	Nunes et al. 2010
60	*Micrurus tener*	Elapidae	Video	https://www.youtube.com/watch?v=Udb23XQdqEw Accessed 20 May 2020 Snake ID William Lamar
61	*Parasuta dwyeri*	Elapidae	Photo	Malpass 2015 The Sydney Morning Herald https://www.smi.com.au/environment/conservation/spider-v-snake-redback-spider-wins-snake-dies-from-likely-poisoning-20150303-13tgdf.html Accessed 20 May 2020 Snake ID William Lamar
62	*Parasuta monachus*	Elapidae	N/A	Orange 1990
63	*Parasuta nigriceps*	Elapidae	N/A	O'Shea & Kelly 2017
64	*Pseudochis porphyriacus*	Elapidae	Photo	McKeown 1943
65	*Pseudonaja annulata*	Elapidae	Photo	De Reger 1981
66	*Pseudonaja nuchalis*	Elapidae	Observation	Bush 1989
67	*Pseudonaja textilis*	Elapidae	Photo	https://australianmuseum.net.au/learn/animals/insects/predators-parasites-and-parasitoids/Photo Kevin Moore Accessed 20 May 2020
68	*Simoseslaps*	Elapidae	Photo	https://www.reddit.com/r/WTF/comments/2umpgn/venomous_spider_vs_venomous_snake_only_in/ Accessed 20 May 2020 Snake ID Rick Shine
69	*Suta suta*	Elapidae	Photo	https://twitter.com/dan_rabosky/status/1058141626783329063 Accessed 20 May 2020 Snake ID William Lamar
Species #	Snake species	Snake family	Type of evidence	Source
----------	-----------------------	--------------	------------------	--
71	Boaedon capensis	Lamprophiidae	Photo	http://www.sareptiles.co.za/forum/viewtopic.php?t=7308 Accessed 20 May 2020
72	Boaedon fuliginosus	Lamprophiidae	Observation	Bayliss 2001
73	Contia tenuis	Lamprophiidae	Photo	Beaman & Tucker 2014
74	Lamprophis aurora	Lamprophiidae	Photo	Smith 2004 https://www.news24.com/News24/Spider-snacks-on-snake-20040211 Accessed 11 June 2020
75	Lycophidion capense	Lamprophiidae	Observation	Newlands 1978
76	Leptotyphlops sp.	Leptotyphlopidae	Observation	Branch 1998
77	Rena dulcis	Leptotyphlopidae	Video	https://www.youtube.com/watch?v=1XPtfzSO8A Accessed 1 March 2016 / no longer available 20 May 2020
78	Rena humilis	Leptotyphlopidae	Observation	Klauber 1940; Loomis & Stephens 1967
79	Indotyphlops braminus	Typhlopidae	Photo	Martinez-Coronel & Navarrete-Jiménez 2018; Faraone et al. 2019; Leets-Rodriguez et al. 2019
80	Xerothyphlops vermicularis	Typhlopidae	N/A	Petrov & Lazarov 2000
81	Bothriechis schlegelli	Viperidae	Photo	Jonathan Sequeira https://www.projectnoah.org/spottings/6162278 Accessed 20 May 2020
82	Bothrops asper	Viperidae	Observation	Sasa et al. 2009; Lopez & Sherwood 2019
83	Bothrops atrox	Viperidae	Photo	Almeida et al. 2019
84	Bothrops jararaca*	Viperidae	Observation	Emerton 1926
85	Bothrops moojeni	Viperidae	Observation	Avila & Porfirio 2008
86	Causus sp.	Viperidae	Photo	Bush 1961
87	Cerastes vipera	Viperidae	Photo	Yael Lubin & Ori Segev, pers. comm.
88	Crotalus atrox	Viperidae	Observation	Punzo & Henderson 1999
89	Crotalus durissus*	Viperidae	Photo	Emerton 1926; Gudger 1931
90	Sistrurus miliarius	Viperidae	Observation; Photo	Krumm-Heller 1910; https://www.reddit.com/r/natureismetal/comments/9cyrgo/pygmy_rattle\snake_caught_in_a_black_widows_web/ Accessed 20 May 2020
91	Trimeresurus gracilis	Viperidae	Photo	http://shanghaiist.com/2014/07/05/snake-eating-spider-taiwan/ Accessed 20 May 2020 Snake ID Gernot Vogel + Rom Whitaker