Deep transcriptome sequencing of subgenual anterior cingulate cortex reveals disorder-specific expression changes in major psychiatric disorders

Nirmala Akula1*, Stefano Marenco2, Kory Johnson3, Ningping Feng2, Joanna Cross1, Bryce England1, Sevilla Detera-Wadleigh1, Qing Xu2, Pavan K. Auluck2, Kwangmi Ahn1, Robin Kramer2, Jose Apud2, Brent T. Harris2,4, C. Harker Rhodes2, Barbara K. Lipska2, Francis J. McMahon1

1Human Genetics Branch, and 2Human Brain Collection Core, National Institute of Mental Health Intramural Research Program, 3Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, DHHS, Bethesda, MD USA, 4Georgetown Brain Bank, Histopathology and Tissue Shared Resource, Georgetown University Medical Center, Washington, DC, USA

*Correspondence: Dr. Nirmala Akula
National Institute of Mental Health Intramural Research Program
National Institutes of Health
35 Convent Drive, Rm 1A100
Bethesda, MD 20892-3719
Phone number: 301-451-4258
ABSTRACT

How do differences in onset, symptoms, and treatment response arise between various mental illnesses despite substantial overlap of genetic risk factors? To address this question, we carried out deep RNA sequencing of human postmortem subgenual anterior cingulate cortex, a key component of limbic circuits linked to mental illness. Samples were obtained from 200 individuals diagnosed with bipolar disorder, schizophrenia, or major depression, and controls. Differential expression analysis in cases versus controls detected modest differences that were similar across disorders, although transcript-level differences were more pronounced. Case-case comparisons revealed greater expression differences between disorders, including many genes and transcripts that were expressed in opposite directions in each diagnostic group, compared to controls. Relative transcript abundances were associated with common genetic variants that accounted for disproportionate fractions of diagnosis-specific heritability. Inherited genetic risk factors shape the brain transcriptome and contribute to diagnostic differences between broad classes of mental illness.
INTRODUCTION

Genome-wide association studies (GWAS) have revealed that major psychiatric disorders share many common alleles with small additive effects on risk\(^1,2\). Similarly, gene expression studies in post-mortem brain tissue have found that expression changes in mental illnesses tend to be small and correlated across diagnoses. One large post-mortem study\(^3\) found small changes in gene expression in schizophrenia (SCZ) versus controls that seemed to reflect the small frequency differences of common alleles associated with SCZ by GWAS\(^4\). A meta-analysis of microarray expression data drawn from several post-mortem studies found that many differentially-expressed (DE) genes were shared across major psychiatric disorders such as SCZ, autism, and bipolar disorder (BD)\(^5\). A large follow-up study that used RNA sequencing confirmed substantial overlap in DE genes in SCZ, BD, and autism spectrum disorder, versus controls, although transcript (isoform) level expression was more variable\(^6\).

If genetic risk factors and gene expression changes in brain are as similar across different mental illnesses as these studies seem to suggest, then how do diagnostic differences in onset, symptoms, and treatment response arise at all? One possibility is that diagnostically distinct genetic risk factors account for some of these differences. For example, genetic correlations as high as the 70% reported between SCZ and BD\(^1\) are consistent with \(~50\%\) of risk alleles differing between disorders. It is also possible that published gene expression studies have overestimated the degree to which gene expression changes in post-mortem brain are similar across disorders. Even the largest sample sizes have been underpowered to detect subtle gene expression differences\(^3\), and those differences that have been detected may not be representative. Case-control study designs limit opportunities to detect true differences between case groups, and few published post-mortem gene expression studies have focused on direct, case-case comparisons between disorders. Moreover, few if any human post-mortem studies have used methods that reveal most of the transcriptional complexity of the brain, where numerous gene isoforms are generated by alternative splicing and other mechanisms. How much of the apparent resemblance in gene expression reported among clinically distinct mental illnesses can be explained by these methodological limitations?

To address this question, we performed deep sequencing of the brain transcriptome followed by case-control and case-case comparisons of both gene and isoform expression in tissue obtained post-mortem from 200
individuals diagnosed with BD, SCZ, major depressive disorder (MDD), or no known psychiatric illness. Tissue was dissected from subgenual anterior cingulate cortex (sgACC), a key component of limbic circuits that have been implicated in major mood disorders and other mental illnesses. Total RNA was sequenced at an average depth of ~270 million reads per sample, generating high-quality expression data for ~21,000 genes and ~85,000 transcripts in 185 samples. We believe these data represent the most complete sampling of the human brain transcriptome published to date.

The results demonstrate that subtle differences in gene expression observed between broad diagnostic classes of mental illness actually reflect more pronounced and diagnosis-specific changes at the transcript level, and that these changes are shaped by inherited genetic risk factors.

RESULTS

Transcriptome Profile of the Subgenual anterior cingulate cortex (sgACC)

Total RNA from 200 postmortem brain samples (Controls=61, SCZ=46, BD=39, MDD=54) was captured using the Ribo-zero protocol (see Methods) followed by stranded, paired-end sequencing. The samples, along with demographic information and known covariates are presented in Supplementary Table 1. After quality control, 185 samples were retained for analysis (see Methods). The analysis pipeline is presented in Supplementary Figure 1.

In an effort to detect a more complete set of genes and transcripts than previous studies, RNA sequencing was performed at very high depth, generating ~50 billion reads at an average of ~270M reads/sample. Of these, 167M reads/sample mapped to ~21,000 Ensembl genes and ~85,000 Ensembl transcripts; identifying ~50% more transcripts than those used in previous studies. The mapping summaries are presented in Supplementary Table 2. Very highly expressed transcripts with >10,000 reads/transcript comprised 1% of the total reads, while transcripts with <100 reads comprised 56% (Supplementary Figure 2). We detected an average of 5 isoforms/gene. The greatest number of isoforms (49 each) were detected for the genes MUC20-OT1 (a non-coding RNA) and TCF4, which has been associated with SCZ, autism, and intellectual disability.
Gene-level Analyses

Case-Control comparisons: To explore case-control differences in gene expression, all 21,000 genes were quantile normalized for library size, gene GC-content and gene length. Differential expression analysis was performed for each diagnosis group versus controls using DESeq2, with covariates for RNA integrity number (RIN), reported race, and sample GC content – the only measured variables that were significantly associated, after Bonferroni-correction, with one or more principal components of gene expression (Supplementary Table 3). Sensitivity analyses carried out with surrogate variables for high-dimensional data sets (SVA) and with additional covariates found similar results, but the chosen 3-covariate model produced the smallest genome-wide inflation in test statistics (Supplementary Figure 3).

As expected, differential expression between cases and controls was modest. Absolute log2 fold change (FC) differences were ≤0.5 in all diagnostic groups. At FDR <5%, a total of 23, 42, and 7 genes were DE in SCZ, BD and MDD, respectively (Figure 1a). Genes that were DE at FDR<5% in more than 1 diagnostic group are shown in Table 1. Many of the same genes were DE in multiple disorders, with a mean overlap of 42% (Figure 2a.). All DE genes with nominal p<0.05 are shown in Supplementary Tables 4, 5 and 6.

Among genes DE within any one diagnostic group, there was a strong positive correlation in FC values across diagnoses (linear regression R^2 0.61 to 0.72) (Figure 3a). When we compared the DE genes detected at FDR<5% in sgACC to those identified in a published study of DLPFC, we found significant overlap for SCZ (hypergeometric p-value=8.0x10^−6) and BD (hypergeometric p-value=6.8x10^−5) (Supplementary Table 4 & 5).

To confirm these results, the data were normalized, corrected for covariates, and analyzed using analysis of variance (ANOVA). Over 80% of the DE genes detected by DESeq2 were supported (data not shown).

Case-Case comparisons: In order to directly interrogate differential expression between diagnostic groups, we carried out analyses in all possible case-case comparisons (BD-SCZ, MDD-SCZ and MDD-BD). This approach revealed a greater diversity of DE genes and larger FC values than the case-control comparisons (Figure 1b). Seventy-three genes were DE in BD vs SCZ at FDR<5%, one of which, HBG2, was expressed in opposite directions in BD vs SCZ, compared to controls. At the same FDR 5% threshold, there were 9 genes that were DE
in MDD vs SCZ and 5 genes that were DE in MDD vs. BD. The gene \textit{IDUA} was expressed in opposite directions in each of these disorders, relative to controls. Supplementary tables 7, 8 and 9 show all genes DE at p<0.05 in each of the case-case comparisons.

Expression Quantitative Trait (eQTL) analyses. Genome wide association studies (GWAS) have identified numerous common variants associated with SCZ, BD, or MDD. In order to assess the effects of these variants on gene expression, we carried out an eQTL analysis with Matrix eQTL (see Methods). All samples were genotyped, imputed and filtered for common markers. This produced \(\sim 6M\) single nucleotide polymorphisms (SNPs) that were tested against expression of \(\sim 21K\) genes, resulting in \(\sim 92M\) eQTLs in cis (within 1MB upstream or downstream of a gene). Of these, \(\sim 290K\) eQTLs were associated with expression of 6,272 genes at FDR<5\% (designated “eGenes,” Supplementary Table 10). We performed a similar analysis only in the Caucasian samples, resulting in \(\sim 99K\) cis-eQTLs for 4K genes at FDR<5\%.

eGenes from sgACC were compared to the \(\sim 9K\) eGenes reported in DLPFC by the Common Mind Consortium\(^9\) (CMC-DLPFC) and to the \(\sim 4K\) eGenes reported by GTEx\(^{10}\) in anterior cingulate cortex (GTex-ACC). About 50\% of eGenes detected in sgACC overlapped with either CMC-DLPFC or GTEx-ACC (Supplementary Figure 5). eGene overlap with GTEx-ACC and CMC-DLPFC is presented in Supplementary Table 11. A total of 2,741 eGenes were detected only in sgACC, 881 of which were not found in the largest postmortem brain study to date\(^6\). Of these putative sgACC-specific eGenes, 521 had low expression in sgACC, with base mean < 100 counts (Supplementary Table 11), suggesting that they may have been missed by less deep RNA sequencing.

Summary-data-based Mendelian Randomization (SMR) analyses. In order to identify SNPs that were pleiotropically associated with both clinical diagnosis and gene expression in brain, we integrated published GWAS with brain eQTLs using SMR\(^{17}\). To increase power, we combined our eQTL results (Caucasian-only) with those detected in GTEx-ACC (\(~100\) samples) and those found in CMC-DLPFC (\(~500\) samples), thus boosting the total sample size to \(~800\).
As reported previously18, sample size was strongly predictive of the number of significant SMR “hits.” In SCZ, we detected 20 pleiotropic variants in sgACC at FDR<5%. This number increased to 36 in the combined sgACC and GTEx-ACC samples, and increased further to 133 when the CMC-DLPFC samples were added (Supplementary Table 12). Some of the genes reported here for the first time in association with a psychiatric GWAS locus include: \textit{CORO7}, an F-actin regulator thought to play an essential role in maintenance of Golgi apparatus morphology; \textit{TSHR}, which codes for the thyroid stimulating hormone receptor, previously reported to harbor rare, loss-of-function mutations in ADHD19; and \textit{ORMDL3}, which plays a role in sphingolipid synthesis and regulation of Ca2+ levels in the endoplasmic reticulum20.

Integration of our eGene data with the latest BD GWAS results detected 4 pleiotropic variants, increasing to 16 when all brain samples were considered (Supplementary Table 13). This SMR analysis replicated 4 genes reported in previous SMR studies of BD6,21,22: \textit{DDHD2}, \textit{MCHR1}, \textit{FADS1}, and \textit{PACS1}. The present study detected 5 novel BD eGenes, including: \textit{ORMDL3}, noted above in relation to SCZ; \textit{XPNPEP3}, an enzyme involved in glomerular filtration, protein processing, and alternative splicing; \textit{PDF}, a mitochondrial protein involved in cell proliferation; and 2 non-coding RNA genes.

Similar analyses in MDD yielded 4 significant hits, but only in the combined dataset. (Supplementary Table 14). Exemplary genes include \textit{DLST}, implicated in a recent anxiety GWAS23; and \textit{B3GALTL}, mutations in which causes Peters-plus syndrome, characterized by developmental delay24.

\textbf{Transcript-level Analyses}

\textbf{Case-Control comparisons.} RNAseq was carried out at high read depth in order to capture the highest number of detectable transcripts from the sgACC. Transcript-level comparisons between cases and controls showed 2-3 times more significant differences than the gene-level comparisons, despite a greater multiple-testing burden. At FDR<5% the number of DE transcripts was: 470 in SCZ, 380 in BD, and 286 in MDD, a gradient that is consistent with typical clinical severity across disorders (Figure 1c). Most (>90%) of the DE transcripts were predicted to be protein-coding (Supplementary Table 15). Many of the DE transcripts showed read counts <100,
and were detected as DE in mental illness for the first time in this study (Supplementary Figure 6). All DE transcripts in SCZ, BD and MDD with p<0.05 are presented in Supplementary Tables 16-18.

In contrast to the gene level analyses, transcript-level analyses detected substantial diversity in DE transcripts across disorders. The mean overlap of DE transcripts across disorders was 18% (Figure 2b), and the correlation of FC values across diagnoses (linear regression R²) was 0.43-0.44% (Figure 3b). For some genes, the same transcript was DE in all 3 disorders (e.g., *NR4A1*-213, Figure 4), but there were several instances of alternative isoform usage, where distinct transcripts of the same gene were DE in different disorders (e.g., *HDAC11*, *NR4A1*; Figure 4).

A comparison of DE transcripts (FDR<5%) in SCZ and BD to those reported in the PsychENCODE sample⁶ showed small but significant overlaps (SCZ: hypergeometric p-value = 0.018; BD: hypergeometric p-value = 0.039), despite methodologic differences. Among transcripts previously reported as DE in PsychENCODE⁶, the present study replicated 22 transcripts in SCZ and two in BD (Supplementary Tables 16 and 17, respectively).

Case-Case comparisons. To further investigate the degree to which diagnoses could be differentiated at the transcript level, a series of case-case comparisons was performed, in which each psychiatric case group was compared to all the others. At FDR<5% we detected 466 transcripts that were DE between SCZ vs BD, 284 between SCZ vs MDD, and 264 between BD vs MDD (Figure 1d). DE transcripts with p<0.05 in any of the case-case comparisons are presented in Supplementary Tables 19-21.

While comparable to the case-control comparisons in number of detected DE transcripts, the case-case comparisons detected largely distinct sets of DE transcripts. For example, in the SCZ vs BD comparisons, DE transcripts included transcripts of: *TCF4, MBP*, and *LRRC4*. The SCZ vs MDD analysis detected DE transcripts in *CDK18, GNAS*, and *GRIK5*, among others (Supplementary Table 20). Transcripts DE in BD vs MDD included those within *SNAP91, MEF2C*, and transcripts of genes within established GWAS loci, including *SYNE1, MBP*, and *PBRM1*, among others (Supplementary Table 21).
Most of the DE transcripts detected in the case-case comparisons were expressed in opposite directions, in each case group, compared to controls. Opposing expression was found in 77% (SCZ vs BD), 83% (SCZ vs MDD), and 77% (BD vs MDD) of DE transcripts in the case-case comparisons (Figure 5a-5c; Supplementary Table 22-24). Since the absolute difference between case groups is larger for opposing transcripts (Figure 5d-5e), when power is limited such transcripts should be more easily detected in case-case than in case-control comparisons.

Comparisons of major mood disorders (BD and MDD) compared to SCZ found additional transcripts that were regulated in the same direction in the mood disorders and in the opposite direction in SCZ (Supplementary Table 25). Examples include transcripts of HDAC10, SYNE1, MEF2C, SETD5, and TMEM132. All of these genes have been implicated in mood disorders and/or SCZ by previous GWAS.

eQTL analyses. At the transcript-level we detected ~200K eQTLs affecting expression of ~6K transcripts (FDR<5%) (Supplementary Table 26). These eQTLs significantly overlapped with transcripts that were DE in SCZ (hypergeometric p-value<10^{-5}) or in BD (hypergeometric p-value<0.01), but not in MDD, suggesting that common alleles contribute to disorder-specific differential expression at the transcript level.

SMR analyses. To quantify the degree to which risk alleles contribute to transcript-level differences between disorders, SMR analysis was carried out with the transcript-eQTLs and summary results from recent GWAS. SNPs pleiotropically associated with both transcript expression and disease (FRD<5%) included 18 associated with SCZ and 4 associated with BD. Some of the significant SCZ loci include transcripts of FAM134, KATNAL2, and ZNF738. Significant BD loci include transcripts of FADS1, XPNPEP3, MAP1LC3A, and ARPC3 (Supplementary Table 27).

Validation of DE genes and transcripts

Validation of the RNAseq analyses was carried out in the same 185 samples using real time quantitative PCR (RT-qPCR) using 6 genes and transcripts with read counts over 500 (see Methods). All tested genes and
transcripts showed the same direction of effect with respect to diagnosis as was detected in the RNAseq analyses. This result was significantly different from chance (binomial p-value of 0.016).

Functional enrichment of DE genes and transcripts

Functional enrichment of analysis was carried out with DAVID.\(^27\) No significant functional enrichment was detected for any gene-level results, but DE transcripts did reveal some significant enrichment, consistent with the improved resolution reported above for transcript-level comparisons. Genes harboring transcripts that were DE at FDR<5% in any of the case-control comparisons were significantly enriched for functional annotations related to synapse and antigen processing (Supplementary Table 28), largely mirroring the enrichment detected in the SCZ vsCtrls comparison (Supplementary Table 29). In case-case comparisons (Supplementary Tables 30), SCZ vs BD revealed significant enrichment for functional annotations related to muscle or motor proteins, while SCZ vs MDD highlighted spectrin repeats and cell membrane. No significant enrichment was found for the small number of DE transcripts detected in the BD vs MDD comparison.

Effects of Common Variants on Transcript Abundance

In addition to changes in gene or transcript-level expression, SNPs can modify the transcriptome by driving shifts in the relative abundance of transcripts within a gene\(^28\). Such SNPs are known as sQTLs, due to their putative effect on alternative splicing\(^29\). Accordingly, we assessed the relationship between common variants and relative abundances of all detected transcripts in each of the ~21K genes included this study. This analysis detected ~90K sQTLs associated with transcript abundance of ~5K genes at p-value<0.05 (Supplementary Table 31).

A similar analysis restricted to the Caucasian samples detected ~75K sQTLs in ~4K genes at p-value<0.05 (Supplementary Table 32). As expected, most (63%) transcripts associated with one or more sQTLs were predicted to result from classical alternative splicing events, including exon skipping, intron retention, alternative donor, or alternative acceptor sites (Supplementary Figure 7). These genes overlapped significantly (hypergeometric p < 1.11e-16) with those identified by different methods in the CMC data\(^30\). About 20% of these sQTLs are intronic variants located within 1 KB of a known splice site (Supplementary Table 33).
Genes harboring one or more sQTLs significantly overlapped with genes harboring DE transcripts from the case-control (n=368; OR=2.2, hypergeom p<10^{-16}) and the case-case (n=335; OR=2.5, hypergeom p<10^{-16}) comparisons. No significant functional enrichment was detected for the overlapping genes from the case-control analyses, but case-case overlaps were significantly (FDR<5%) enriched for synapse, post-synaptic density, cell junction, and spectrins. Box plots of genes harboring sQTLs and DE transcripts are shown in Supplementary Figure 9.

sQTL enrichment in regulatory regions. Regulatory annotation of sQTLs was performed with the Encode regulatory database as implemented in SNPnexus31. The most common annotations included the histone marks H3K36me3, H3K4me1, and H3K79me2, DNAse1 hypersensitive sites, and predicted binding sites for the transcription factor, CTCF (Figure 6; Supplementary Table 34). These results are consistent with a role for sQTLs in alternative splicing32.

sQTLs within GWAS loci. As observed with eQTLs, some sQTLs may be pleiotropically associated with disease risk. To investigate this, we searched for SNPs that were identified as risk alleles by GWAS and as sQTLs in the present study. We used only those sQTLs that were detected in sgACC from self-reported Caucasian brain donors, since existing GWAS are mainly based on samples of European ancestry.

Overall, about 10-25% of GWAS loci we investigated harbored one or more significant sQTLs. In SCZ, of 430 genome-wide significant GWAS SNPs25, 56 were identified as an sQTL in the present study, implicating 44 genes. Of these, 15 different genes are linked here for the first time to functional variation within a SCZ GWAS locus (Supplementary Table 35). In BD, of 329 genome-wide significant GWAS SNPs21, 47 were identified as sQTLs (Supplementary Table 36. Some of the novel implicated genes include \textit{ATP11B}, \textit{NCAM1}, \textit{SLC12A9}, and \textit{SLC4A10}. In MDD, 10 out of 44 GWAS loci26 were found to harbor sQTLs, implicating the genes \textit{BAG6}, \textit{KCNQ5} and \textit{ERBB4}, among others (Supplementary Table 37).

Relative contributions of eQTLs and sQTLs to disease heritability. Previous studies have demonstrated a substantial contribution of eQTLs to heritability for a variety of common disorders33, but few studies have investigated the specific contribution of sQTLs. Thus we estimated the proportion of heritability that could be explained by sQTLs, relative to eQTLs, in some major mental illnesses.
Both eQTLs and sQTLs accounted for disproportionate fractions of heritability in SCZ, BD, and MDD (Table 3). However, sQTLs, which comprised only 1% of all SNPs, explained 16-21% of the heritability, a 14-18 fold enrichment (p<0.01). sQTLs showed even greater enrichment of heritability for some other major psychiatric disorders, but not all. sQTLs explained 29% of the heritability of autism spectrum disorders (25-fold enrichment, p<0.001) and 41% of the heritability of attention deficit hyperactivity disorder (36.6-fold enrichment, p<0.001), but showed no significant enrichment for Alzheimer Disease or anxiety disorders.

DISCUSSION

We have employed deep transcriptome sequencing in post-mortem brain tissue to address a central question in the pathophysiology of mental illness: How do diagnostic differences in onset, symptoms, and treatment response arise despite substantial overlaps of genetic risk factors across disorders? The findings show that subtle differences in gene expression observed between broad diagnostic classes of mental illness actually reflect more pronounced and diagnosis-specific changes at the transcript level. These changes often involve alternative isoform usage, are most evident in case-case comparisons, and are influenced by common genetic variants that also play a disproportionately large role in the inherited risk of mental illness.

These findings should be considered in light of several limitations. While this was one of the larger RNA sequencing studies performed to date in human brain tissue, sample size was limited, with less than 100 individuals in each diagnostic category. This limits power to detect small changes in expression. This limitation was offset by complementing the typical case-control comparisons with case-case comparisons between distinct psychiatric diagnoses. This approach should be more powerful in the face of opposing expression changes between case groups, which we detected for hundreds of genes and transcripts. As in all human post-mortem studies, diverse factors effect post-mortem expression, not all of which can be measured or controlled, increasing noise and introducing the risk for bias. We attempted to address this by stringent quality control, careful adjustment for key covariates, and confirmation of top findings by use of alternative approaches. Also inherent in human post-mortem samples is the inability to draw confident distinctions between expression changes that cause
disease and those that result from disease or its treatment. The kind of integrative genomic approaches we employed, which draw causal inferences on the basis of published GWAS17, partially address this issue but still lack power to distinguish between correlated causal and non-causal events. This study focused on a single brain region, albeit one that has been little studied, so cannot shed light on transcriptional differences between brain regions that may be important in disease. While we employed very deep RNA-sequencing to detect rare transcripts and better identify alternative splicing, the data still contain relatively few sequencing reads that uniquely map to splice junctions, limiting the confidence with which transcript-level differences can be ascribed to differences in alternative splicing rates and mechanisms. Finally, the sequencing was performed on bulk tissue. This means that the results lack cellular resolution, but also that they comprise a much larger portion of the brain transcriptome than can usually be achieved with current single cell technologies.

Several large postmortem brain gene expression studies of mental illness have been published recently, some with larger samples than were employed here6,9,34. The present study complements those larger studies in several ways. None of those studies evaluated the subgenual anterior cingulate cortex (sgACC), a key component of limbic circuits that has been implicated in reward, impulse control, and emotion regulation5, as well as in major mood disorders7,8,35–37. To date, genome-wide expression studies in ACC or sgACC have been carried out in fewer than 50 samples38–40. Some of the genes and transcripts whose expression we found to be associated with GWAS hits were detected only in ACC, consistent with the idea that common risk alleles may regulate expression in a tissue-specific manner41. None of the previous studies employed RNA-sequencing at a depth comparable to the 270 million reads per sample used here, which enabled us to capture at least 10 reads per sample in more than 21,000 genes and 85,000 transcripts. This was particularly beneficial in transcript-level analyses, which found numerous DE transcripts, shifts in relative transcript abundance that were associated with numerous common variants (sQTLs), and strong evidence that such variants play a disproportionately large role in the heritability of SCZ, BD, and MDD. The present study was also unique in its use of case-case comparisons, which revealed unexpectedly large numbers of genes and transcripts that were DE between case groups. Many DE genes and transcripts showed opposite directions of expression between cases, when compared to controls, suggesting one
important way in which genetically correlated disorders can express contrasting transcriptomes that could reflect diagnostic differences in onset, symptoms, or treatment response.

Most of the transcripts whose expression was associated with common genetic variants in this study are predicted to arise from classical alternative splicing mechanisms. These findings are consistent with previous results suggesting that alternative splicing plays an important role in differential transcriptome expression in major psychiatric and other disorders and that it is mediated, at least in part, by some of the same genetic variants identified by GWAS32. A secondary analysis of RNA-sequencing data from psychiatrically unaffected individuals drawn from the CMC dataset found evidence of alternative splicing associated with common genetic variants, some of which overlapped with known SCZ risk loci, but did not assess for differential expression in individuals diagnosed with SCZ30. A recent study of post-mortem human cortex at 85 million reads per sample detected shifting isoform usage across pre- and post-natal life and a number of transcripts that were DE in SCZ41. Our results support those previous findings and demonstrate that common genetic variants associated with relative transcript abundance (sQTLs) account for disproportionate fractions of disorder-specific heritability.

Taken together, these findings suggest that inherited genetic risk factors shape the brain transcriptome and contribute to diagnostic differences between broad classes of mental illness. This may be one important mechanism by which diagnostically distinctive patterns of transcript expression arise despite the known correlations in inherited genetic risk factors across major psychiatric disorders. Despite the growing recognition of the importance and complexity of alternative splicing, its role in the development of neuropsychiatric diseases is still poorly understood. Much future work is needed to characterize the functions of alternative transcripts, the timing of alternative isoform usage during disease course, and the potential impact that therapeutic agents may have on the expression or function of particular isoforms in specific brain regions and cell types.
METHODS
See Methods document

Data availability
The raw data can be downloaded from dbGAP at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000979.v2.p2

Tissue availability
Tissue samples are available to qualified scientists upon review by the NIMH Human Brain Collection Core oversight committee. Information is available at https://www.nimh.nih.gov/research/research-conducted-at-nimh/research-areas/research-support-services/hbcc/distribution-of-resources.shtml

SUPPLEMENTARY DATA
Supplementary Figures 1-9
Supplementary Tables 1-26

ACKNOWLEDGEMENTS
This study was supported in part by the NIMH Intramural Research Program (ZIC MH002903-12, ZIAMH002810). We would like to thank the patients and their families for the donation of brain tissue for research. Data was analyzed on the high-performance Biowulf cluster at NIH. Library preparation and RNA sequencing was performed at the NIH Sequencing Center.

Author Contributions
NA, FJM conceived and planned the project. BTH, JA, SM, CHR, and BKL performed neuropathology and case selection. NF, JC, BE, and QX performed the experiments. NA, KJ, KA and RK performed data analyses. NA
and FJM wrote the manuscript and SM, SDW, PKA, and BKL edited the manuscript. All coauthors had the opportunity to review and approve the manuscript before submission.

Competing interests

The authors declare no competing interests.
REFERENCES

1. Brainstorm Consortium et al. Analysis of shared heritability in common disorders of the brain. *Science* **360**, (2018).

2. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. *Lancet* **381**, 1371–1379 (2013).

3. Fromer, M. et al. Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia. *bioRxiv* 052209 (2016).

4. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. *Nat. Genet.* **50**, 381 (2018).

5. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. *Science* **359**, 693–697 (2018).

6. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. *Science* **362**, eaat8127 (2018).

7. Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. *Nature* **386**, 824–827 (1997).

8. Drevets, W. C., Savitz, J. & Trimble, M. The subgenual anterior cingulate cortex in mood disorders. *CNS Spectr.* **13**, 663 (2008).

9. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. *Nat. Neurosci.* **19**, 1442–1453 (2016).

10. Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation and coherence in hippocampus and dorsolateral prefrontal cortex across development and in schizophrenia. *bioRxiv* 426213 (2018). doi:10.1101/426213

11. Brzózka, M. M. & Rossner, M. J. Deficits in trace fear memory in a mouse model of the schizophrenia risk gene TCF4. *Behav. Brain Res.* **237**, 348–356 (2013).
12. Tao, R. et al. Expression of ZNF804A in Human Brain and Alterations in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder: A Novel Transcript Fetally Regulated by the Psychosis Risk Variant rs1344706. *JAMA Psychiatry* **71**, 1112–1120 (2014).

13. Wirgenes, K. V. et al. TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. *Transl. Psychiatry* **2**, e112 (2012).

14. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

15. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics* **28**, 882–883 (2012).

16. Consortium, T. Gte. The Genotype-Tissue Expression (GTEX) pilot analysis: Multitissue gene regulation in humans. *Science* **348**, 648–660 (2015).

17. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nat. Genet.* **48**, 481–487 (2016).

18. Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. *Nat. Commun.* **9**, 2282 (2018).

19. Brucker-Davis, F. Genetic and Clinical Features of 42 Kindreds with Resistance to Thyroid Hormone: The National Institutes of Health Prospective Study. *Ann. Intern. Med.* **123**, 572 (1995).

20. Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. *Nature* **463**, 1048–1053 (2010).

21. Stahl, E. et al. Genomewide association study identifies 30 loci associated with bipolar disorder. *bioRxiv* 173062 (2018). doi:10.1101/173062

22. Huckins, L. et al. Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes reveals 29 novel associated genes. *bioRxiv* 222786 (2017). doi:10.1101/222786

23. Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. & van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. *Nat. Commun.* **9**, (2018).

24. Lesnik Oberstein, S. A. J. et al. Peters Plus Syndrome Is Caused by Mutations in B3GALTL, a Putative Glycosyltransferase. *Am. J. Hum. Genet.* **79**, 562–566 (2006).
25. Schizophrenia Working Group of the Psychiatric Genomics Consortium et al. Biological insights from 108 schizophrenia-associated genetic loci. *Nature* **511**, 421–427 (2014).

26. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. *Nat. Commun.* **9**, 1470 (2018).

27. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* **4**, 44–57 (2009).

28. Gamazon, E. R. & Stranger, B. E. Genomics of alternative splicing: evolution, development and pathophysiology. *Hum. Genet.* **133**, 679–687 (2014).

29. Monlong, J., Calvo, M., Ferreira, P. G. & Guigó, R. Identification of genetic variants associated with alternative splicing using sQTLseekeR. *Nat. Commun.* **5**, 4698 (2014).

30. Takata, A., Matsumoto, N. & Kato, T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci. *Nat. Commun.* **8**, 14519 (2017).

31. Dayem Ullah, A. Z. et al. SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine. *Nucleic Acids Res.* **46**, W109–W113 (2018).

32. Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. *Science* **352**, 600–604 (2016).

33. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. *Nat. Genet.* **47**, 1236–1241 (2015).

34. Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. *Nat. Neurosci.* **21**, 1117 (2018).

35. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. *Biol. Psychiatry* **72**, 595–603 (2012).

36. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. *Am. J. Psychiatry* **156**, 675–682 (1999).
37. Dunlop, K., Hanlon, C. A. & Downar, J. Noninvasive brain stimulation treatments for addiction and major depression. *Ann. N. Y. Acad. Sci.* **1394**, 31–54 (2017).

38. Cruceanu, C. *et al.* Transcriptome sequencing of the anterior cingulate in bipolar disorder: dysregulation of G protein-coupled receptors. *Am. J. Psychiatry* **172**, 1131–1140 (2015).

39. Dracheva, S. *et al.* Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. *Neurobiol. Dis.* **21**, 531–540 (2006).

40. Wang, J.-F., Shao, L., Sun, X. & Young, L. T. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. *Bipolar Disord.* **11**, 523–529 (2009).

41. Nica, A. C. *et al.* The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. *PLoS Genet.* **7**, e1002003 (2011).
Figure Legends

Figure 1. Volcano Plots of Differentially Expressed Genes and Transcripts. Log₂ fold-change values are plotted against the X-axis and -log₁₀ p-values for differential expression are shown on the Y-axis. Genes with FDR<5% are highlighted in red. Gene-level results are shown for a. case-control and b. case-case comparisons; corresponding transcript-level results are shown in panels c. and d., respectively. Note that for case-case comparisons the sign of the log₂ fold-change is arbitrary.
Figure 2. Overlap of differential expression (FDR<5%) across disorders. Gene-level analyses are shown in panel a., with Venn Diagrams of gene name overlaps on the left. Overlaps between diagnostic groups (as a fraction of all differentially-expressed genes) are shown on the right. Corresponding results for the transcript-level analyses are shown in panel b.

a. Gene-level

b. Transcript-level
Figure 3. Correlation in case-control log$_2$ fold-change values across diagnostic groups for a. genes and b. transcripts that were differentially expressed at FDR<5% in any case-control comparison.
Figure 4: Genes with multiple differentially-expressed transcripts in bipolar disorder (BD), schizophrenia (SCZ), or major depressive disorder (MDD). Within each diagnosis column, downregulated transcripts are shown to the left, under “-“, upregulated transcripts are shown to the right, under “+”. Different colors indicate distinct genes; different shapes indicate distinct transcripts. Full gene and transcript names are shown in Supplementary tables 16-18.
Figure 4 continued

Gene Name	BD (-)	SCZ (+)	MDD (+)
MRV1L			
MT1X			
MTFR1L			
NDUFA12			
NR4A1			
NSMCE4A			
OLR1			
PAF1			
PFKM			
PGRMC2			
PPOLLN1			
PPP1R1B			
PTPRD			
PTPRN			
QARS			
RBM39			
RGPD6			
RHOB1B			
ROBO2			
SARAF			
SEPT9			
SHISA5			
SMARCC2			
SORL1			
SPTAN1			
TCF4			
TFCR			
TPD52L1			
TTN			
UBA7			
UBC			
VEGFA			
YBX3			
ZBTB16			
ZEB2			
ZNF382			
ZNF528			
Figure 5. Transcript-level comparisons between case groups. Histograms of absolute log2 fold-change values are shown on the left; direction and magnitude (log2 fold-change) of expression in each case group relative to controls is shown on the right (for clarity, only transcripts expressed in opposite directions are shown, and x-axes are adjusted to the same length in each graph, although the number of transcripts differs). Schizophrenia (SCZ) vs bipolar disorder (BD) comparisons are shown in panels A. and D., SCZ vs major depressive disorder (MDD) comparisons are shown in B. and E., and BD vs MDD comparisons are shown in C. and F.
Figure 6: Regulatory annotation of sQTLs. ENCODE annotation terms are shown on the y-axis, counts of identified sQTLs (p<0.05) are shown on the x-axis.
Table1: Genes Differentially Expressed (FDR <5%) in >1 Diagnostic Group

Diagnostic group	Ensemble gene ID	Gene name	Direction of change	Gene description	Significance of overlap
All 3 groups	ENSG00000064300	NGFR	Down	Nerve Growth Factor Receptor	NA
	ENSG00000171551	ECEL1	Down	Damage Induced Neuronal Endopeptidase	
	ENSG00000179869	ABCA13	Down	ATP Binding Cassette Subfamily A Member 13	
	ENSG00000256861	AC048338.1	Down	paralog of VPS33A	
BD and SCZ	ENSG00000172987	HPSE2	Down	Heparanase 2	2.22x10^{14}
	ENSG00000175793	SFN	Up	Stratifin, epithelial cell marker protein	
BD and MDD	ENSG00000146066	HIGD2A	Down	HIG1 Hypoxia Inducible Domain Family Member 2A	4.44x10^{16}
Table 2: Heritability of psychiatric disorders, partitioned across sQTLs and eQTLs

Diagnosis	N SNPs	Observed h^2 (se)	h^2 using sQTL+eQTL (StdErr)	Proportion sQTLs	sQTL h^2 (se)	Proportion sQTL Enrichment	sQTL Enrichment p	eQTL h^2 (se)	Proportion eQTLs	eQTL Enrichment p			
Schizophrenia	1,065,224	0.4 (0.015)	0.12 (0.009)	0.011	0.20 (0.03)	18	2.8	6.70E-09	0.047	0.80 (0.03)	16	0.66	1.36E-21
Bipolar disorder	962,357	0.3 (0.018)	0.07 (0.008)	0.011	0.16 (0.04)	14.4	3.5	1.23E-04	0.047	0.84 (0.04)	17.6	0.84	2.07E-13
Major depression	1,066,414	0.05 (0.003)	0.008 (0.001)	0.011	0.21 (0.071)	18	6.3	7.57E-03	0.047	0.80 (0.071)	16.7	1.5	4.86E-08
Autism spectrum disorders	1,049,026	0.18 (0.017)	0.03 (0.005)	0.011	0.29 (0.08)	25.3	7	7.62E-04	0.047	0.71 (0.08)	15	1.65	3.19E-05
Attention deficit hyperactivity disorder	996,575	0.21 (0.015)	0.026 (0.006)	0.011	0.41 (0.11)	36.6	10.1	6.83E-04	0.047	0.59 (0.11)	12.3	2.4	1.00E-02
Alzheimer disease	1,035,603	0.046 (0.009)	0.017 (0.003)	0.011	0.13 (0.08)	11.4	7.4	ns	0.047	0.87 (0.08)	18.3	1.8	1.66E-06
Anxiety	897,467	0.06 (0.033)	-	-	-	-	ns	0.047	-	-	-	-	

* Excludes eQTLs that are also sQTLs
METHODS

Samples: All the 200 post-mortem brain samples (61 controls; 39 bipolar disorder; 46 schizophrenia; 54 major depression) were collected by the Section on Neuropathology of the Clinical Brain Disorders Branch at the National Institute of Mental Health (NIMH) under protocol# 90-M-0142. All samples were dissected from frozen coronal slabs cut at autopsy. The portion of anterior cingulate cortex underlying the genu of the corpus callosum (generally including Brodmann areas 25, 32 and 24) was targeted. Dissections were done by dental drill cleaned between specimens (H2O/Bleach/H2O). Specimens were laid out on a cutting board placed on dry ice and kept frozen during dissections. Following dissection, total RNA was extracted (extraction batch in Supplementary Table 1) from 50mg of pulverized subgenual anterior cingulate cortex region. Samples with RIN <6 were excluded from sequencing.

RNA sequencing: Stranded RNA-Seq libraries were constructed from 1 µg total RNA after rRNA depletion using Ribo-Zero GOLD (Illumina Inc, San Diego, CA, USA). The library batch per sample is presented in Supplementary Table 1. The Illumina TruSeq Stranded Total RNA Sample Prep Kit was used according to manufacturer’s instructions except where noted. Amplification was performed using 10 cycles which was optimized for the input amount and to minimize the chance of over-amplification. Libraries were pooled together for sequencing in equimolar amounts. The pooled libraries were sequenced on a HiSeq 2500 using version 4 chemistry. The data was processed using RTA version 1.18.64 and Casava 1.8.2. RNA sequencing was performed at National Institute of Health Intramural Sequencing Center (NISC). Stranded paired-end sequencing with read length of 125bp were generated. We had an average of 137 million reads per sample totaling to ~54 billion reads for all samples.

Mapping and counting: The reads were trimmed using Trimmomatic with default parameters (http://www.usadellab.org/cms/?page=trimmomatic). The trimmed reads were then mapped to the human genome (Ensembl GRCh38.87) using Hisat2 (https://ccb.jhu.edu/software/hisat2/index.shtml) with default parameters. Known genes and transcripts belonging to autosomes and pseudo-autosomal regions (PAR) were included in the
analysis. Gene and transcript counts were obtained using StringTie3 software
(http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual).

Sample and Gene selection: Pre-noise filtered quantile (Log\textsubscript{2}(FPKM+2)) expression values for all 200 samples were used to calculate Pearson correlations between each possible pair of samples within a diagnostic category. The average correlation for each sample within a diagnostic category was obtained, providing a single estimate of relatedness of that sample to all others in its diagnostic category. We then tested for deviance of each sample to the rest of their diagnostic group by a z-score test, choosing a conservative threshold of p<0.1 to define individual samples as outliers. By this approach, 15 samples were identified and removed as outliers (Supplementary Figure 10). Lowess modeling was performed by disease class to remove noise-biased expression, thus resulting in ~21K genes (Supplementary Figure 11).

Covariates: We tested for a total of 23 known covariates: RIN, age, gender, reported race, pH, RNA extraction batch, library batch, postmortem interval (PMI), PMI confidence, GC percent, manner of death, smoking status, source location, height, and weight, along with available data on alcohol, anti-depressants, mood stabilizers, benzodiazepines, nicotine, THC, cocaine, and opiates. Univariate and step-wise AIC regression analysis was performed on all the covariates. Any covariates that were significant after the multiple testing were included in the downstream analysis.

Gene- and transcript-level analysis: We normalized the raw counts using conditional quantile normalization4 (CQN) (https://bioconductor.org/packages/release/bioc/html/cqn.html) which corrects for library size, gene length and GC content. These normalized counts were then imported to DESeq25 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html) and transformed to variance stabilized data (VSD). Principal component analysis (PCA) using VSD data resulted in 10 PCAs all of which together explain >97\% of variance (each PCA >= 0.3\%). Each of the 10 PCAs were linearly regressed against the 23 known covariates. Only 3 covariates – RIN, race and GC percent were significant after correcting for multiple tests.
so these were included in the downstream analysis. A total of 185 samples (55 controls, 35 bipolar disorder, 44 schizophrenia, 51 major depression) were included in the analysis after removing 15 outliers. A total of 21,228 genes and 85,295 transcripts were included in the analysis. DESeq2 along with lfcShrink option was used for differential expression analysis between each diagnostic group versus the controls. The p-values were corrected using FDRtool6 software in R.

Analysis of variance (ANOVA) analysis: DE genes (p<0.05) in each of the disorder were validated by ANOVA after correcting for the covariates. Dunnet’s multiple comparisons tests were used as follow up tests to ANOVA.

DAVID Functional annotation: Functional annotation was performed in DAVID which is a database of annotation, visualization and integrated discovery7 (https://david.ncifcrf.gov/content.jsp?file=citation.htm). All 85,295 transcripts that met criteria for inclusion in the DE analysis were used as background genes.

Genotype data and Imputation: Samples were genotyped on Illumina HumanHap650Y, Omni1-quad, Omni5v1.0 and Omni5v1.1 arrays (Illumina Inc, San Diego, CA, USA). Markers that have minor allele frequency (MAF) <1%, genotype missing rate >5% and Hardy-Weingberg Equilibrium (HWE) p<10-4 were excluded. All individuals had >95% genotype rate (--mind 0.05). Common markers across the multiple arrays were extracted and files were merged using PLINK2.0 (https://www.cog-genomics.org/plink/2.0/). All the samples were imputed against the Haplotype Reference Consortium (HRC release 1.1 panel) and pre-phasing was done using EAGLE2 on Sanger imputation server8 (https://imputation.sanger.ac.uk). After imputation any markers with R2 < 50%, MAF < 5%, and multi-allelic variants were excluded. All the markers were converted from hg19 to GRCh38 positions.

Expression quantitative trait loci (eQTL) analysis: Matrix eQTL software9 was used to identify the eQTLs that affect the gene/transcript expression (http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/).
Variants within 1MB of a gene were classified as “cis”. All default parameters were used. In the transcript-level analysis, transcripts with base Mean<100 were excluded due to computational problems.

eQTL comparison with CMC and GTExACC: SNPs in sgACC were mapped to hg38 while the Common Mind Consortium (CMC) and GTExACC were mapped to hg19. For comparison purposes we used SNPs with rs numbers rather than position. The Common Mind Consortium eQTL data was obtained through Synapse (https://www.synapse.org) and the GTExACC data was downloaded from the GTEx website (https://gtexportal.org/home/datasets)

Splicing quantitative trait loci (sQTL) analysis: Variants associated with alternative splicing were identified by sQTLseekeR\(^1\)^, a R package, with default parameters (https://www.nature.com/articles/ncomms5698). The sQTLs were characterized using ASTalavista\(^1\) software (http://genome.crg.es/astalavista/). Functional annotation of the sQTLs was performed using SNPnexus\(^1\) (http://www.snp-nexus.org)

Publicly available datasets: The genome-wide association study (GWAS) results were obtained from PGC for Schizophrenia (http://www.med.unc.edu/pgc/results-and-downloads), Bipolar Disorder GWAS dataset and Major Depression GWAS dataset were obtained from PGC\(^1\) and UKbiobank\(^1\) (early access upon request). GWAS data for Autism Spectrum Disorders (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD) and Anxiety were downloaded from PGC (https://www.med.unc.edu/pgc/results-and-downloads). The Alzheimers GWAS data was download from IGAP (http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php). The Common Mind Consortium (CMC) eQTL dataset for dorso-lateral prefrontal cortex region (DFPLC) was downloaded via synapse after data access agreement was approved (https://www.synapse.org). The GTEx eQTL data for anterior cingulate region (ACC) was obtained from GTEx portal (https://GTExportal.org/home/datasets).

SMR analysis: The pleiotrophic variants and their corresponding genes were identified by analyzing the eQTL data and GWAS data in SMR software\(^1\) (https://cnsgenomics.com/software/smr/#Overview).
complexity of the MHC region on chr6 (26MB-34MB), this region was excluded in the SMR analysis. All default parameters were used.

Enrichment analysis: For Schizophrenia, GWAS summary results, including index and credible SNPs, were downloaded from the PGC website (https://www.med.unc.edu/pgc/results-and-downloads). For Bipolar disorder and Major depression we took GWAS hits (SNPs with trait association p-values<10^{-6}) from the public summary statistics noted above and used PLINK16 (http://zzz.bwh.harvard.edu/plink/) to extract all SNPs in linkage disequilibrium (r^2>0.6) with the GWAS hits (“LD friends”). We also used PLINK to calculate linkage disequilibrium values among the index SNPs, LD friends, and sQTLs (p<0.05). We then extracted sQTL-GWAS SNP pairs with r^2>0.6. The pairs were then pruned to get independent loci using the “indep-pairwise” option in PLINK (--indep-pairwise 50 5 0.5). The 1000Genomes European data17 was used as reference (http://www.internationalgenome.org/data).

Heritability estimates: Heritability estimates were performed with LDSC software18 (https://github.com/bulik/ldsc), using the GWAS summary statistics for each disorder. To perform the partitioned heritability analysis for sQTLs and eQTLs we created a custom annotation file according to the instructions given in LDSC software (https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial), designating each SNP as an sQTL or an eQTL that was not also an sQTL. This annotation file was then used to partition the heritability between sQTLs and eQTLs in each disorder.

qPCR validation

Some genes and transcripts with expression that was high enough to produce reliable results by qPCR (baseMean > 500) and that were identified as DE in the DESeq2 analysis of the RNA-seq data were selected for validation. At the gene-level, we selected *DUSP1* and *NR4A2*, both of which were DE in BD, and *HIGD2A*, which was DE in BD and MDD. At the transcript level, we selected transcripts of *ARID5B* (ENST00000279873), *NT5DC3* (ENST00000392876) and *SF3A1* (ENST00000215793) that were DE in SCZ. Taqman probes were ordered from
Applied Biosystems (Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA, USA). Catalog numbers are Hs00610256_g1, Hs00431157_g1, Hs01117527_g1, Hs01381961_m1, Hs00213132_m1 and Hs01066327_m1. Raw cycle counts were normalized against Actin, B2M, and GUSB, and delta CT values were regressed against diagnosis, with RIN, race, and GC percent as covariates.

Methods References

1. Lipska, B. K. *et al.* Critical Factors in Gene Expression in Postmortem Human Brain: Focus on Studies in Schizophrenia. *Biol. Psychiatry* 60, 650–658 (2006).
2. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114–2120 (2014).
3. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat. Protoc.* 11, 1650–1667 (2016).
4. Hansen, K. D., Irizarry, R. A. & WU, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. *Biostat. Oxf. Engl.* 13, 204–216 (2012).
5. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 550 (2014).
6. Strimmer, K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. *Bioinformatics* 24, 1461–1462 (2008).
7. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* 4, 44–57 (2009).
8. McCarthy, S. *et al.* A reference panel of 64,976 haplotypes for genotype imputation. *Nat. Genet.* 48, 1279–1283 (2016).
9. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. *Bioinformatics* 28, 1353–1358 (2012).
10. Monlong, J., Calvo, M., Ferreira, P. G. & Guigó, R. Identification of genetic variants associated with alternative splicing using sQTLseekeR. *Nat. Commun.* 5, 4698 (2014).
11. Foissac, S. & Sammeth, M. ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. *Nucleic Acids Res.* **35**, W297–W299 (2007).

12. Dayem Ullah, A. Z. *et al.* SNPnexus: assessing the functional relevance of genetic variation to facilitate the promise of precision medicine. *Nucleic Acids Res.* **46**, W109–W113 (2018).

13. Stahl, E. *et al.* Genomewide association study identifies 30 loci associated with bipolar disorder. *bioRxiv* 173062 (2018). doi:10.1101/173062

14. Howard, D. M. *et al.* Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. *Nat. Commun.* **9**, 1470 (2018).

15. Zhu, Z. *et al.* Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nat. Genet.* **48**, 481–487 (2016).

16. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

17. The 1000 Genomes Project Consortium. A global reference for human genetic variation. *Nature* **526**, 68–74 (2015).

18. Zheng, J. *et al.* LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. *Bioinforma. Oxf. Engl.* **33**, 272–279 (2017).