MINIMAL PIECEWISE LINEAR CONES IN \mathbb{R}^4

ASGEIR VALFELLS

Abstract. We consider three dimensional piecewise linear cones in \mathbb{R}^4 that are mass minimal w.r.t. Lipschitz maps in the sense of [1] as in [8]. There are three that arise naturally by taking products of \mathbb{R} with lower dimensional cases and earlier literature has demonstrated the existence of two with 0-dimensional singularities. We classify all possible candidates and demonstrate that there are no p.l. minimizers outside these five.

1. Introduction

Note that after this work was essentially completed we learned that the main result was known and communicated by K. Brakke in 1993. While we have seen a reference to this manuscript we have not found it anywhere in the available literature or through personal correspondence.

In her 1976 analysis of the singularities of of two-dimensional $M(\epsilon, \delta)$ sets in \mathbb{R}^3 Jean Taylor classified all possible tangent cones at these singularities. These minimal cones were \mathbb{R}^2, the cartesian product of \mathbb{R} and three half-lines meeting at 120° angles (the Y-singularity), and the cone over the 1-skeleton of a regular tetrahedron (the T-singularity).

An ambitious goal, one that lies beyond our grasp, would be a similar complete analysis for three-dimensional minimal sets in \mathbb{R}^4, specifically classifying the minimal cones. The analogous strategy to that used to classify candidates in lower dimensions is to consider their intersections with S^3. From either the monotonicity lemma for minimal sets [8] or direct calculation we can see that the tangent cones at each point of this intersection must be minimal. The classification of the minimal two dimensional cones tells us the singular points of this intersection are either the Y-singularity or the T-singularity. An argument of from [5] then tells us that the regular points must be locally minimal w.r.t. S^3 away from the singular set.

Considering all candidates in this usual manner would call for classifying all minimal surfaces in S^3 admitting Y-type and T-type singularities. This is too tall an order since even regular minimal surfaces in S^3 are as of yet unclassified. Restricting ourselves to piecewise linear cones in \mathbb{R}^4 we have a much more tenable problem. Note that this restriction arises for free in \mathbb{R}^3 since sections of great circles in S^2 correspond to sections of planes.

Throughout this paper we will show (culminating in theorem 3.4) that the only minimal piecewise linear cones in \mathbb{R}^4, up to rotation, are: $\mathbb{R}^3 \times 0$, $\mathbb{R}^2 \times Y$, $\mathbb{R} \times T$, the cone over the 2-skeleton of the 4-simplex, and the cone over the 2-skeleton of the hypercube.
2. Classifying the candidates

The three dimensional cones are determined by their intersections with S^3 so for now we can restrict our focus to this intersection. Furthermore we are only considering p.l. cones so this intersection will be comprised of spherical polygons that partition S^3 into 3-cells. If we call the zero-dimensional singularities in the intersection vertices and the one-dimensional singularities be edges we are able to say that on the boundary of these 3-cells the vertices must have precisely 3 adjacent edges meeting at $\arccos(-1/3)$ (hereafter α) and the faces meet at dihedral angle $2\pi/3$. For the rest of this section all polygons will be isogonal spherical polygons with angle α. Following the strategy of Heppes almost exactly [6] see that up to rotation and translation there are at most 11 types of 3-cells that can occur. Call these the admissible 3-cells.

(C_1) Half of S^3, with a single face $S^2 \times 0$.
(C_2) Two sections of S^2 meeting at a circle.
(C_3) A trihedron, comprised of 3 bigons.
(C_4) A regular tetrahedron comprised of 4 regular triangles.
(C_5) A triangular prism, comprised of 2 regular triangles and 3 rectangles of appropriate side lengths.
(C_6) A cube, comprised of 6 squares.
(C_7) A pentagonal prism, comprised of 2 regular pentagons and 5 rectangles w. appropriate side lengths.
(C_8) A regular dodecahedron, comprised of 12 regular pentagons.
(C_9) A decahedron comprised of 2 squares and 8 symmetric pentagons with base length equal to that of the square. Each square is adjacent to 4 distinct pentagons, two bands of pentagons separate the squares. The 1-skeleton is illustrated in fig. 10 of [8].
(C_{10}) A nonahedron comprised of 3 squares and 6 symmetric pentagons whose non-adjacent equal sides have length equal to that of the square. Each pentagon is adjacent to squares on all sides of appropriate length. The 1-skeleton is illustrated in fig. 12 of [8].
(C_{11}) An octahedron comprised of 4 rectangles and 4 symmetric pentagons. Each rectangle is adjacent to one other rectangle, the pentagons form a band separating the pairs of rectangles. The 1-skeleton is illustrated in fig. 11 of [8].

When finding all partitions of S^3 into these cells it is useful to note that since any faces must meet at dihedral angle $2\pi/3$ any two cells that are adjacent to one another must share a face. Thankfully the faces on each of these 3-cells is uniquely determined so we will be able to distinguish many faces from one another and thus determine along which faces two admissible 3-cells can be adjacent. Clearly the regular faces are distinct from the non-regular faces, so it remains to show that the non-regular faces are in fact distinct.

Lemma 2.1. The non-regular faces of admissible 3-cells are distinct.

Proof. Throughout this proof we will use helpful spherical geometry facts proved in a paper by Heppes [6]. First we will prove that the rectangles in C_5, C_7, C_{11} (hereafter r.) are distinct from one another. We’ll denote the length of the regular n-gon as a_n.

(i) r_{11} is non-regular|If r_{11} has all sides of length a_4 then the pentagonal faces of C_{11} have three sides of length a_4. However we know that a pentagon with three equal sides must be regular and
cannot have edge length a_4.

(ii) $r_5 \neq r_7$ | Take a spherical rectangle w. angle α edge lengths a_5 and a_3, extending the edges and applying the cosine law to the protruding triangle gives $\cos(\pi - \alpha) = \tan(a_5/2) \tan(a_3/2)$. A direct calculation shows that this does not hold.

(iii) $r_5 \neq r_{11}$ | If r_{11} have a side of length a_5 then C_{11} must have a symmetric pentagonal face with a side of length a_5. We know that a symmetric pentagon is determined uniquely by a single given side-length so the pentagon in question is the regular pentagon. From there we see that all the pentagonal faces in C_{11} are regular pentagons so r_{11} has all sides of length a_5 which cannot hold.

Next we show the pentagons in C_9, C_{10} and C_{11} (hereafter p) are distinct.

(v) $p_9 \neq p_{10}$ | A pentagon with three equal sides is regular and therefore cannot have side-length a_4.

(vi) $p_9 \neq p_{11}$ | We know r_{11} doesn’t have side-length a_4 so p_{11} cannot have a base of length a_4.

(vii) $p_{10} \neq p_{11}$ | The longest sides of p_{10} are the two of length a_4. Were $p_{10} = p_{11}$ then r_{11} would have all sides shorter than a_4, which cannot occur. \[\square\]

We’ve now identified each of the faces on these geometrically rigid admissible 3-cells, so we can continue on to partition S^3. In contrast with the analogous partition of S^2 into 2-cells, where there exist entire families of admissible cells we have few options locally and will follow a straight path in constructing these partitions.

There are three types of 3-cells that can only be adjacent to copies of themselves, C_1, C_2, and C_3. These partition S^3, respectively, into two, three, and four cells and we quickly see that the induced cones (that we get by taking the cone over the boundary of the 3-cells) are products of lower dimensional singularities with Euclidian space. Respectively these cones are, up to rotation, $\mathbb{R}^3 \times 0$, $\mathbb{R}^2 \times Y$, and $\mathbb{R} \times T$. Constructing the other partitions is a slightly more delicate matter since it is not predetermined which 3-cell lay adjacent to another.

A helpful tool we’ll use in this next lemma is the dual graph to a partition. This will be a graph where each 3-cell will be represented by a colored (depending on type) vertex with an edge between vertices that correspond to 3-cells that are adjacent along an edge. There is a richer structure available by taking a true dual polytope to the convex hull of the vertices, but we do not need it.

Lemma 2.2. There are at most 9 partitions of S^3 into admissible 3-cells.

Proof. We’ll consider all the partitions in order of highest C_n used. If $n \leq 3$ then as discussed only one type of 3-cells is used. Call the corresponding cones T_1, T_2, T_3.

(i)$n = 4$ | The partition must be made up of only tetrahedrons. The ego-graph at any vertex of the dual graph is therefore K_4 so the dual graph is K_5. The partition is therefore into 5 copies of C_4. The boundaries of the 3-cells in this partition are the two-skeleton of the regular 4-simplex. Call the induced cone T_4.
(ii) $n = 5$ | A cell of type C_5 must be adjacent to another along the rectangular face, but cannot be adjacent to another along the triangular face since no admissible cell has two faces of type r_5 adjacent along the long edge. Letting red vertices correspond to copies of C_5 and blue to copies of C_4 we see that the ego graph at red vertices is a triangular bipyramid with a red base and blue vertices away from the base. This in turn induces a dual graph with a red K_4 and two blue vertices adjacent to every vertex but each other. Geometrically this partition corresponds to a the 2-skeleton of a simplicial prism. Call the corresponding cone T_5.

(iii) $n = 6$ | The only 3-cells with square faces are C_6. The ego graph at every vertex is $3K_2$ and direct inspection gives us the dual graph T_6. Geometrically this partition corresponds to the 2-skeleton of a hypercube. Call the corresponding cone T_6.

(iv) $n = 7$ | C_7 is the only 3-cell with pentagonal faces and having two copies adjacent to one another leads to an immediate geometric obstruction, no 3-cell has two faces of type r_7 adjacent to one another along the short edge. There are no partitions added here. (v) $n = 8$ | If there is at least one 3-cell of type C_7 then a similar argument to case (ii) induces partition with two copies of C_8 and twelve of C_7, the 2-skeleton of a dodecahedral prism. Call the corresponding cone T_7.

(vi) $n = 8$ | If there are no 3-cells of type C_7 then all cells are of type C_8 and the ego graph at each vertex is the icosahedral graph. This tells us that there are three candidates for the dual graph $[2]$, the point graph of the 600-cell or quotients of it with 40 or 60 vertices. From (v) we can discern an upper bound $Vol(C_8)$.

First we take the isogonal pentagon w. angle α. The spherical cosine rule gives us that $a_5 = \arccos(\frac{3\cos(2\pi/5)+1}{2}) \approx 0.27092$. We can then calculate the long side of the rectangle in C_7, b, by applying the spherical cosine law to a protruding triangle, as in 2.1.ii, giving $b = 2\arctan(\frac{\cos(\pi-\alpha)}{\tan(a_5/2)}) \approx 2.3653$. Partition T_7 tells us that the diameter of C_8 is $\pi - b \approx 0.77631$. We can bound the volume of C_8 from above by $\frac{4}{3}\pi(\frac{\pi-b}{2})^3$. Taken with the surface volume of S^4 we get:

$$Vol(C_8) < \frac{4}{3}\pi(\frac{\pi-b}{2})^3 \approx 0.2447 < \frac{2\pi^2}{60} = \frac{Vol(S^3)}{60}$$

From here we can conclude that the only possible partition is into 120 cells of type C_8. Call the corresponding cone T_8.

(vii) $n = 9$ | First we notice that if two 3-cells of type C_6 are adjacent along a face then at each edge of that face they must both be adjacent to another cell of type C_6. Inductively we see the only partition with copies of C_6 adjacent along a face is T_6. If two copies of C_9, M_1 and M_2 are adjacent along a square face then they must both be adjacent to some M_3 along a face of type p_9 which shares an edge with the respective square faces. From here we see Q_3 must have two faces of type f_9 which share an edge along their bases, but no such admissible 3-cell exists. Therefore we know that C_9 must be adjacent to C_6 along the square faces.

Assume we have a partition with a 3-cell of type C_9 and pick a cell of type of C_6 as M_1. We pick three faces of M_1 that share a vertex V and affix three copies of C_9, $M_2 - M_4$, to those faces. We know that $M_2 - M_4$ are pairwise adjacent on pentagonal faces that all share an edge E with endpoints V and V'. As four 3-cells meet at each vertex we know some M_5 has a vertex at V'. M_5
must meet each of $M_2 - M_4$ along a pentagonal face of type p_9, with the top vertex of each pentagon at V'. That is to say M_5 must be a polyhedron with three pentagonal faces of type p_9 meeting at their top points. No such admissible polyhedron exists and thus no partitions with 3-cells of type C_9.

(viii) $n = 10$ By the same argument as (vii) any partition with 3-cells of type C_{10} must be composed with only them and 3-cells of type C_6, and no two cells of the same type adjacent along a square face. Letting red vertices represent 3-cells of type C_6 and blue vertices represent copies of C_{10} the ego graph at a red vertex is an all blue $3K_2$ while the ego graph at a blue vertex is as illustrated in figure 1.

To find the possible dual graph of such a partition we will construct a graph with the prescribed ego graphs. Start by taking the ego graph at one blue vertex. Label the vertices as illustrated and the implicit blue vertex as B_0. From figure 1 we note that all blue vertices must have three red neighbors and any two blue vertices must share precisely two red neighbors. We conclude that there are two red vertices, R_4 and R_5 that are adjacent to B_1-3 and B_4-6 respectively. We also know that R_4 must be adjacent to two distinct blue 3-cliques and cannot be adjacent to B_4-6 so the graph must include three other blue vertices, B_7-9 all adjacent to one another and R_4. Since the ego graph at a red vertex (specifically at R_4) is $3K_2$ we find B_7 must be adjacent to B_2 and B_3, B_8 adjacent to B_1 and B_3, and B_9 adjacent to B_1 and B_2.

Next we take into account that adjacent blue vertices must share three blue neighbors and all edges of B_1 are accounted for so B_4 must also be adjacent to B_8 and B_9. This argument can then be applied to B_5 and B_6. Considering the ego graph of R_5 we then see that R_5 must be adjacent to B_7-9. This induced graph is therefore the only one with the local structure prescribed.

Geometrically this corresponds to five equidistributed 3-cells of type C_6 and ten of type C_{10}, with four of the latter meeting at points opposite the centers of the former. Call the corresponding
cone T_9.

(ix) $n = 11$ Consider the edge two rectangular faces of C_{11} for any three copies of C_{11} that meet at that edge three pentagonal faces meet at either vertex, but no 3-cell has 3 copies of p_{11} meeting at one vertex so no tiling including C_{11} exists. \hfill \Box

3. Eliminating candidates

With our candidates classified we can move onto the final step of discerning whether they are indeed minimal sets. We can show the cones T_1, T_2, and T_3 to be minimizers either by direct computation or by paired calibrations. The cone T_4 was shown to be a minimizer by Lawlor and Morgan \cite{7} using a paired calibration and the cone T_6 was shown to be a minimizer by Brakke \cite{3} using more delicate, yet similar, methods. By direct comparison we will show that the other four candidates are not minimizers.

The operation we will make most use of is what is described as a pop in Brakke’s surface evolver. Restricting ourselves to the convex hull, H, of the vertices of a partition corresponding to cone T. Take a point p in $\frac{1}{2}H$ away from T and define $\phi: \mathbb{R}^4 \to \mathbb{R}^4$ s.t. if $x \in \frac{1}{2}H$, then $\phi(x)$ is the intersection of $\delta \frac{1}{2}H$ with the half-line from p to x and the identity otherwise. Clearly for fixed T, H, p then ϕ is Lipschitz.

Lemma 3.1. T_5 is not a minimal set.

Proof. First we note that $Vol(T_5 \cap H_5) \approx 2.062$. We choose p s.t. the half-line from 0 to p intersects with a cell of type C_4 and we apply the pop function ϕ. Choosing coordinates s.t. the two 3-cells of type C_4 are centred at $(0, 0, 0, \pm 1)$ we enter $\phi(T_5) \cap H_5$ into the surface evolver \cite{4} and to determine its volume is circa 2.133, applying the ‘go’ function in the surface evolver 250 times gives us a smaller candidate with volume circa 1.98. By direct comparison T_5 is not minimal. \hfill \Box

Lemma 3.2. T_7 is not a minimal set.

Proof. First we note that $Vol(T_7 \cap H_7) \approx 2.745$. We choose p s.t. the half-line from 0 to p intersects with a cell of type C_7 and we apply the pop function ϕ. Choosing coordinates s.t. the two 3-cells of type C_7 are centred at $(0, 0, 0, \pm 1)$ we enter $\phi(T_7) \cap H_7$ into the surface evolver \cite{4} and to determine its volume is circa 2.759, applying the ‘go’ function in the surface evolver 200 times gives us a smaller candidate with volume circa 2.671. By direct comparison T_7 is not minimal. \hfill \Box

Lemma 3.3. T_8 is not a minimal set.

Proof. Again we will construct a direct competitor, but in a slightly different manner. Instead of defining H_8 in the usual manner, let it be $2B^4$. Pick any appropriate p and apply the pop map ϕ.

On B^4 we replaced 720 cones over solid spherical pentagons with S^3, less one cell of type C_8. On net we decreased the volume of the set by

$$240(5\alpha - 3\pi) - \frac{119}{60} \pi^2 > 11$$

\hfill \Box
Finally a direct calculation in the surface evolver \cite{4} shows T_9 is not minimal. Since no maneuvers were needed beyond refining and iterating 'go' it cannot be that T_9 has local the minimal structure we wanted. We suspect that there is a geometric obstruction either to constructing C_{10} or partition T_9.

Theorem 3.4. There are precisely five piecewise linear three-dimensional minimal cones in \mathbb{R}^4. They are the three induced by taking the product of \mathbb{R} with minimal cones in \mathbb{R}^3 and two with zero-dimensional singularity. They are the following:

1. The cone over the 2-skeleton of the 4-simplex.
2. The cone over the 2-skeleton of the hypercube.

Proof. In the last section we classified all possible candidates and in this section we eliminated all but five candidates, which have been demonstrated to be minimal by earlier results. \cite{3,7} □

References

1. F.J. Almgren, *Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints*, American Mathematical Society: Memoirs of the American Mathematical Society, American Mathematical Society, 1976.
2. A. Blokhuis, A.E. Brouwer, A.M. Cohen, and D. Buset, *The locally icosahedral graphs*, Finite Geometries (United States) (C.A. Baker and L.M. Batten, eds.), Lecture Notes in Pure and Applied Mathematics, Marcel Dekker Inc., 1985, pp. 19–22 (English).
3. Kenneth A. Brakke, *Minimal cones on hypercubes*, The Journal of Geometric Analysis 1 (1991), no. 4, 329–338.
4. Wendell H. Fleming, *On the oriented plateau problem*, Rendiconti del Circolo Matematico di Palermo 11 (1962), no. 1, 69–90.
5. Aladar Heppes, *Isogonale sphärische netze*, Ann. Univ. Sci. Budapest Eötvös Setc. Math. 7 (1964), 41–48.
6. Gary Lawlor and Frank Morgan, *Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms.*, Pacific Journal of Mathematics 166 (1994), no. 1, 55 – 83.
7. Jean E. Taylor, *The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces*, Annals of Mathematics 103 (1976), no. 3, 489–539.

Department of Mathematics, Rice University, Houston, TX 77005, USA

Email address: angeir@rice.edu