Laser Flare Photometry: An Under-Utilised Investigative Tool For Anterior Segment Inflammation

Devesh Kumawat, Pranita Sahay, Pradeep Kumar, Vinod Kumar
Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India

Slit lamp examination is an important clinical method for microscopic evaluation of anterior segment inflammation. However, it is observer dependent and existing grading systems are subjective with limited reproducibility. Laser flare photometry is an objective quantitative tool to analyze aqueous flare non-invasively and accurately. It allows precise monitoring of clinical activity in uveitic disorders, prediction of recurrence, detection of persistent subclinical disease and comparison of effects of different surgical techniques and anti-inflammatory agents despite such advantages, it remains an underutilised investigative tool in day to day clinical practice. Clinicians should explore this potential instrument and identify its appropriate use in diagnosis, management and follow-up of ocular disorders.

Keywords: anterior segment inflammation, laser flare photometry

Abstract

Aqueous flare and cells are the two key parameters for grading anterior segment inflammation. Standardization of Uveitis Nomenclature (SUN) working group classification for aqueous cells and flare is subjective with considerable intra-and inter observer variability. Newer accurate and more reproducible technologies for anterior segment inflammation quantification include laser flare photometry (LFP) and ocular flare analysis meter (OFAM). LFP is an objective method that allows measurement of aqueous flare with high accuracy and reproducibility. Though introduced in 1988 in Japan, LFP has not been integrated into clinical practice worldwide till date.

Introduction

Healthy adults have aqueous flare intensity in the range of 2.9–3.9 ph/ms. Laser flare intensity is known to correlate significantly with protein concentration both in vitro and in vivo. Flare counts also correlate with clinical grades of flare at the slit lamp. LFP measurement may be influenced by many physiological factors that alter aqueous protein levels or influence amounts of reflected light. Factors that are known to affect LFP measurements are given in Table 1.

Principle

LFP is based on the principle of light scatter detection. The laser flare photometers use helium-neon or diode laser to scan a given volume of anterior chamber. Back-scattered light from small molecules such as aqueous proteins (flare) is detected by a photomultiplier which generates an electrical signal. This is then digitized, processed and displayed by a computer. The intensity of the scattered light is proportional to the amount and size of proteins in the aqueous humour. It is calculated as ‘flare counts’ or ‘photon (ph) count’ per millisecond.

Models

Laser flare photometers were initially based on slit-lamp construction principle. The Kowa FM-500 (Kowa Optimed, Tokyo, Japan) was the first commercially available flare-meter. FM-600 flare-meter is an FDA approved advanced model which uses a 635nm semiconductor laser diode. It has a 0.5 second measuring time with a measuring field of vertical 0.3 mm x horizontal 0.5 mm. The latest model in the series, FM-700 has a slit-lamp design-type of binocular stereoscopic microscope attached with it. It provides magnification up to 40X and a continuously variable slit width from 0 to 11 mm and slit length from 1 to 9 mm. Slit-lamp-based model allow manual adjustment in eyes with suboptimal measurement conditions such as corneal opacity, posterior synechiae or high-grade inflammation.

Procedure

After initial chin adjustment and anterior segment alignment (working distance and measuring point adjustment), measuring window is displayed on LCD screen. On confirming the colour and form of measuring window, machine takes seven measurements of flare. The highest and lowest values are discarded and the mean and standard deviation of the remaining five readings are automatically calculated and displayed.

Clinical uses

Healthy adults have aqueous flare intensity in the range of 2.9–3.9 ph/ms. Laser flare intensity is known to correlate significantly with protein concentration both in vitro and in vivo. Flare counts also correlate with clinical grades of flare at the slit lamp. LFP measurement may be influenced by many physiological factors that alter aqueous protein levels or influence amounts of reflected light. Factors that are known to affect LFP measurements are given in Table 1.
Table 1: Physiological parameters affecting laser flare photometry measurement.

Parameter	Effect on LFP Measurement	Mechanism
Mydriasis	Decrease with pupillary dilatation	Decrease backscatter from iris, pharmacological effect of mydriatic agent
Aging	Increase with aging	Breakdown of blood aqueous barrier leading to true increase in protein concentration, increased light scatter caused by cataract
Diurnal variation	Increase in daytime	Increase in protein-free aqueous humour flow rate during day
Protein composition	Increase if high molecular weight proteins increase (albumin and immunoglobulin)	Rayleigh law (scattering is dependent on molecular weight and concentration of protein)
Drugs	Variable, Pilocarpine, timolol, acetazolamide, mannitol increase; tropicamide, phenylephrine decrease	Alterations of the blood–aqueous barrier, altered aqueous humour production

Footnote: LFP* laser flare photometry

LFP is useful in follow-up observation and management of inflammation in uveitis and post surgery. The key domains where LFP may find its use are mentioned in Table 2.

Advantages

LFP is objective, precise, reproducible and reliable. It is simple, quick, non-contact and non-invasive alternative to slit lamp examination for aqueous flare. Slit-lamp examination allows only a subjective and arbitrary non-linear grading of cells and flare in the anterior chamber. On the other hand, LFP is a quantitative method to reliably measure intraocular inflammation.

Limitations

LFP is unreliable in eyes with extensive posterior synechiae or advanced cataract due to increased background scattering of light. FLP may not be performed in eyes with corneal opacity or very shallow anterior chamber.

Conclusion

LFP is an objective and accurate technique of intraocular inflammation assessment. It supplements slit lamp examination in diagnosis, management and monitoring of various ocular disorders (inflammatory or non-inflammatory). Its research applications and utility needs to be explored further.
Table 2: Clinical Uses of Laser Flare Photometry

Domain	Clinical use	Comment
Anterior Uveitis	Monitoring of acute uveitis	Higher sensitivity than clinical slit lamp grading
	Prediction of exacerbation	Rising values predict recurrence well before clinical signs
	Prediction of complications	High flare (in the absence of cells) acts as a risk factor for development of macular edema
Treatment of uveitis	Treatment indicated in sub-clinically elevated flare after resolution of acute inflammation, high flare without cells in JIA associated uveitis	
Cessation of steroid treatment	Evolutionary pattern of LFP helps in early tapering of steroid treatment, thereby avoiding side effects	
Predicting recurrence	If baseline anterior chamber inflammation is minimal	
Posterior uveitis	Alternative to FFA	In cases with poor visualization of fundus, as LFP values correlate well with FA leakage
	Effect of anti-inflammatory agents	Compare efficacy of NSAIDS and steroids
	Cessation of steroid treatment	Early tapering of steroid treatment to prevent IOP rise and ocular surface disorder
	Biocompatibility of various IOLs	Variable effect of IOL material
	Effect of heparin coating on IOLs	Heparinised IOL cause less postoperative inflammation
Post cataract surgery	Monitoring of graft rejection	LFP could monitor effects of steroid therapy on rejection
inflammation	Comparison of trabeculectomy and nonpenetrating surgeries	Lesser inflammation with deep sclerectomy
	Comparison of argon laser trabecuoplasty with diode laser trabecuoplasty	Lesser inflammation with diode laser
Glaucoma	Predictor of DR	Diabetic iridopathy can predict later development of DR
	Effect of PRP or cataract surgery	Breakdown of blood aqueous barrier with surgery
Diabetic retinopathy	Progression of disease	Deterioration of blood aqueous barrier occurs with progressive chorioretinal disease
(DR)	Role of Inflammation	Steroids play a role in management due to associated inflammation
Retinitis pigmentosa		
Retinal vascular		
occlusions		

Footnote: LFP Laser flare photometry, FFA Fundus fluorescein angiography, DR Diabetic retinopathy, IOP Intraocular pressure, IOL Intraocular lens, PRP Pan-retinal photocoagulation.
References

1. Ladas JG, Wheeler NC, Morhun PJ, Rimmer SO, Holland GN. Laser flare-cell photometry: methodology and clinical applications. *Surv Ophthalmol* 2005;50:27–47.
2. Tugal-Tutkun I, Herborg CP. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation. *Int Ophthalmol* 2010;30:453–64.
3. Lam DL, Axtelle J, Rath S, Dyer A, Harrison B, Rogers C, et al. A Rayleigh Scatter-Based Ocular Flare Analysis Meter for Flare Photometry of the Anterior Segment. *Transl Vis Sci Technol* 2015;4:7.
4. Herborg CP, Tugal-Tutkun I. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed. *Int Ophthalmol* 2017;37:469–73.
5. Sawa M, Tsurimaki Y, Tsuru T, Shimizu H. New quantitative method to determine protein concentration and cell number in aqueous in vivo. *Jpn J Ophthalmol* 1988;32:132–42.
6. Guillén-Monterrubío OM, Hartikainen J, Taskinen K, Saari KM. Quantitative determination of aqueous flare and cells in healthy eyes. *Acta Ophthalmol Scand* 1997;75:58–62.
7. Krüger H, Busch T. [Correlation between laser tyndallometry and protein concentration in the anterior eye chamber]. *Ophthalmologe Z Dtsch Ophthalmol Ges* 1995;92:26–30.
8. Wakefield D, Herborg CP, Tugal-Tutkun I, Zierhut M. Controversies in ocular inflammation and immunology laser flare photometry. *Ocul Immunol Inflamm* 2010;18:334–40.

Cite This Article as: Kumawat D, Sahay P, Kumar P, Kumar V. Laser Flare Photometry: An Under-Utilised Investigative Tool For Anterior Segment Inflammation.

Acknowledgements: Nil

Conflict of interest: None declared

Source of Funding: Nil

Address for correspondence

Devesh Kumawat MD
Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India
Email id: deveshkumawat21@gmail.com