Liver sinusoidal endothelial cell injury by neutrophils in rats with acute obstructive cholangitis

Jian-Ping Gong, Chuan-Xin Wu, Chang-An Liu, Sheng-Wei Li, Yu-Jun Shi, Xu-Hong Li, Yong Peng

AIM: The objective of this study is to elucidate the potential role of polymorphonuclear neutrophils (PMN) in the development of such a sinusoidal endothelial cell (SEC) injury during early acute obstructive cholangitis (AOC) in rats.

METHODS: Twenty one Wistar rats were divided into three groups: the AOC group, the bile duct ligated group (BDL group), and the sham operation group (SO group). The common bile duct (CBD) of rats in AOC group was dually ligated and 0.2ml of the E. coli O111: B4 (5×10^10cfu/ml) suspension was injected into the upper segment, in BDL group, only the CBD was ligated and in SO group, neither injection of E. coli suspension nor CBD ligation was done, but the same operative procedure. Such group consisted of seven rats, all animals were killed 6h after the operation. Morphological changes of the liver were observed under light and electron microscope. Expression of intercellular adhesion molecule-1 (ICAM-1) mRNA in hepatic tissue was determined with reverse transcription polymerase chain reaction (RT-PCR). The serum levels of alanine aminotransferase (ALT) which was performed with autoanalyger. Hepatic injury was assessed by measuring the serum alanine aminotransferase (ALT) were performed with autoanalyger.

RESULTS: Neutrophils was accumulated in the hepatic sinusoids and sinusoidal endothelial cell injury existed in AOC group. In contrast, in rats of BDL group, all the features of SEC damage were greatly reduced. Expression of ICAM-1 mRNA in hepatic tissue in three groups were 7.54±0.82, 2.87±0.34, and 1.01±0.12, respectively. There were also significant differences among the three groups (P<0.05). Activity of the serum ALT was 917±167nkat·L⁻¹, 901±171nkat·L⁻¹, and 908±164nkat·L⁻¹, respectively, (P>0.05).

CONCLUSION: Hepatic SEC injury occurs earlier than hepatic parenchymal cells during AOC. Recruitment of circulating neutrophils in the hepatic sinusoidal space might mediate the SEC injury, and ICAM-1 in the liver may modulate the PMN of accumulation.

INTRODUCTION

Biliary tract infection, especially acute obstructive cholangitis (AOC) is common[5-9]. Despite a multitude of advances in treatment of surgical infection, this remains a significant cause of morbidity and mortality[5-9], where sepsis and endotoxemia from AOC are important causes of multiple organ failure (MOF) and death[10,11]. Ohtsuka et al[10] reported that polymorphonuclear neutrophils (PMN) accumulated in the hepatic sinusoidal space increased obviously in rats with obstructive jaundice and there were interaction between PMN and sinusoidal endothelial cells (SEC) causing injury during AOC. This study was study the potential role of PMN in the development of SEC injury and the mechanism of accumulation of PMN during early period of AOC.

MATERIALS AND METHODS

Animal Experiment

Male Wistar rats weighing 200-230g were purchased from Laboratory Animal Center of Chongqing University of Medical Science. These animals were divided into three groups: the AOC group, bile duct ligated group of (BDL group), and sham operation group (SO group). All the animals were killed 6h after operation, the surgical procedures were carried out under light diethyl ether anaesthesia. The animal models were performed as follows. In AOC group, a 1.5cm medium incision was made over the upper abdomen, the common bile duct (CBD) was mobilized and dually ligated, and 0.2ml of the E. coli O111: B4 (5×10^10cfu·L⁻¹) (Sigma, USA) suspension was injected into the upper segment. In BDL group, the CBD was doubly ligated but without injection of E. coli O111: B4 suspension. In SO group, neither E. coli injection of suspension nor CBD ligation was done, but only routine operative procedure was performed. Seven rats constituted each group.

Serum ALT & CINC

Hepatic injury was assessed by measuring the serum alanine aminotransferase (ALT) which was performed with autoanalyger. The serum cytokine-induced neutrophil chemoattractant (CINC) concentration was measured by enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s direction with a lower limit of 10ng·L⁻¹. For CINC, microtitre plates were coated with anti CINC mAb overnight at room temperature on a plate shaker, after the blockage, samples were then added. The detected antibody was biotinylated anti-CINC. Standard curves were made with a natural CINC calibrated against the WHO interim International Standard.

Supported by the National Natural Science Foundation of China, No. 39970719, 30170919
Correspondence to: Dr. Jian-Ping Gong, Department of General Surgery, The Second College of Clinical Medicine & the Second Affiliated Hospital of Chongqing University of Medical Science, 74 Linjiang Road, Chongqing 400010, China. gongjiaping11@hotmail.com
Telephone: +86-28-5541610
Received 2001-09-26 Accepted 2001-11-08

Abstract

AIM: The objective of this study is to elucidate the potential role of polymorphonuclear neutrophils (PMN) in the development of such a sinusoidal endothelial cell (SEC) injury during early acute obstructive cholangitis (AOC) in rats.
Expression of ICAM-1 mRNA in Hepatic Tissue

Total RNA was isolated from rat liver tissue by using the Trizol Reagent (Life Technologies, USA). The quality of RNA was controlled by the intactness of ribosomal RNA bands. A total of 0.5mg of each intact total RNA sample was reverse-transcribed to complementary DNA (cDNA) by using reverse transcription polymerase chain reaction (RT-PCR) kit (Roche, USA). cDNA was stored at -70°C until PCR analysis. The PCR primers used were ICAM-1: sense (5'-CTTCTCTGTCTGCAACCC-3'), antisense (5'-GGGAGACATTCAGGTC-3'); β-actin: sense (5'-ACCACAGCTGAGAGGGAAATCG-3'), antisense(5'-AGAGGTCTTTACGGATGTCAACG-3'). The sizes of the amplified PCR products were 326 bp for ICAM-1 and 281 bp for β-actin. The procedure was as follows: denaturation at 95°C for 30sec, annealing at 55°C for 1min, and extension at 71°C for 1min for 28 cycles. The PCR products were electrophoresed in 20g·L⁻¹ agarose gels, and the gels were ethidium bromide stained and video photographed on an ultraviolet transilluminator. The bands representing reactive product were scanned by densitometer of a Bio-Image Analysis System (Doc Gel 2000). The relative optical density (ROD) values were expressed as the level of ICAM-1 mRNA in hepatic tissue.

Morphologic Observations of Hepatic Tissue

Liver samples from different liver lobes were fixed with 100mL·L⁻¹ buffered formalin or 25g·L⁻¹ glutaraldehyde immediately. For light microscopy, the tissue blocks were embedded in paraffin, and the sections were stained with hematoxylin and eosin (H&E). For transmission electron microscopy (TEM), the tissue blocks were embedded in Epon 618 resin and ultrathin sections were stained with uranyl acetate and lead citrate. A H-2000 transmission electron microscope was used.

Statistical Analysis

Results were presented as x±s. Statistical difference was analysed by means of the analysis of Variance (ANOVA). P<0.05 is considered significant.

RESULTS

Accumulation of PMN in hepatic sinusoidal space

Accumulation of PMN in the hepatic sinusoidal space was found, under light microscopy, PMN counts in hepatic sinusoidal space increased significantly after 6h in AOC group in comparison with BDL group or SO group. Under electron microscopy, PMN were seen easily in hepatic sinusoidal space in AOC group (Figure 1A).

Sinusoidal endothelial cell injury

Under light microscopy, no distinct change in SEC could be shown in any of the above groups. Electron microscopically, however, focal detachment, decreased electron density of cytoplasm, and swollen or even vacuolated mitochondria in SEC could often be observed in the AOC group (Figure 1B). In this group, the Kupffer cells were enlarged, but normal surface structures were retained and no degenerative changes of the nucleus or cytoplasm were shown (Figure 1-C). In contrast such changes could be occasionally seen in the SEC of BDL group. No evident morphological changes of SEC could be observed in SO group.

Expression of ICAM-1 mRNA in hepatic tissue

Expression of ICAM-1 mRNA in hepatic tissues was distinctly enhanced after 6h in AOC group when compared to other two groups (P<0.05). There was less expression of ICAM-1 gene in BDL group and no expression of ICAM-1 gene in SO group (Figure 2).
The serum ALT level and CINC concentration

The serum ALT level and CINC concentration were shown in Table 1. The serum ALT activity in the three groups was evidently unchanged in the same period (P<0.05). but, the serum CINC concentration in the AOC group was significantly higher than that in the BDL group or the SO group (P<0.05).

Table 1	The changes of serum ALT level and CINC concentration in the three groups (Tas, n=7)		
Serum parameters	AOC	BDL	SO
ALT (nkat-L⁻¹)	917±167	901±171	908±164
CINC (ng·L⁻¹)	188±24	94±11	57±8

P<0.05, vs other two groups. P<0.05, vs SO group.

REFERENCES

1 Huang ZQ. New development of biliary surgery in China. World J Gastroenterol 2000; 6:187-192

2 Kimmings AN, van Deventer SJH, Rauws EAJ, Huibregtse K, Gouma DJ. Systemic inflammatory response in acute cholangitis and after subsequent treatment. Eur J Surg 2000; 166: 700-705

3 Lillemoe KD. Surgical treatment of biliary tract infections. Am Surg 2001; 66: 138-144

4 Gong JP, Liu CA, Wu CX, Li SW, Shi YJ, Li XH. Nuclear factor kβ activity in patients with acute severe cholangitis. World J Gastroenterol 2002;8:346-349

5 Ling YL, Meng AH, Zhao XY, Shan BE, Zhang JL, Zhang X. Effect of cholecytokinin on cytokines during endotoxic shock in rats. World J Gastroenterol 2001; 7: 667-671

6 Tomioka M, Inuma H, Okinaka K. Impaired Kupffer cell function and effect of immunotherapy in obstructive jaundice. J Surg Res 2000; 99: 253-258

7 Kordzaya DJ, Godezdshvili VT. Bacterial translocation in obstructive jaundice in rats: role of mucosal lacteals. Eur J Surg 2000; 166: 367-374

8 Kimmings AN, van Deventer SJH, Obertop H, Rauws EAJ, Houbregtse K, Gouma DJ. Endotoxin, cytokines, and endotoxin binding protein in obstructive jaundice and after preoperative biliary drainage. Gut 1999; 23:723-731

9 Gil LT, Rosello AM, Torres AC, Moreno RL, Orihuela JAF. Modulation of soluble phases of endothelial/leukocyte adhesion molecule 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 with interleukin-1β after experimental endotoxic challenge. Crit Care Med 2001; 29: 727-731

10 Ohtsuka M, Miyazaki M, Kubosawa H, Kondo Y, Ito H, Shimizu H, Shimizu Y, Nozawa S, Furuya S, Nakajima N. Role of neutrophils in sinusoidal endothelial cell injury after extensive hepatectomy in cholestatic rats. J Gastroenterol Hepatol 2000; 15: 153-156

11 Xu MQ, Gong JP, Xue L, Han BL, Xu F. Effects of Kupffer cell NF-κB activation on liver regeneration after partial hepatectomy in biliary obstructive rats. Di-San Junji Daxue Xuebao 2001; 23: 1134-1143

12 Ito Y, Machen NW, Ursbachek R, Macuskey RS. Biliary obstruction exacerbates the hepatic microvascular inflammatory response to endotoxin. Shock 2000; 14: 599-604

13 Braet F, Zanger RD, Spector I, Wisse E. Structure and dynamics of hepatic endothelial fenestrations. World J Gastroenterol 2000; 6(Suppl): 1

14 Bone-Larson CL, Simpson KJ, Colletti LM, Lukacs NW, Chen SC, Lira S, Kunkel SL, Hoganbaum CM. The role chernotoxins in the immune pathology of the liver. Immuno Rev 2000; 177: 8-20

15 Han DW. The clinical sine of subsequent liver injury induced by gut derived endotoxin. Shiji Huaren Xinhua Zazhi 1999; 7:1055-1058

16 Liu BH, Chen HS, Zhou JH, Xiao N. Effects of endotoxin on endothelin receptor in hepatic and intestinal tissues after endotoxin in rats. World J Gastroenterol 2000; 6:298-300

17 Zhang SC, Dai Q, Wang JY, He BM, Zhou K. Gut-derived endotoxia: one of the factors leading to production of cytokines in liver diseases. World J Gastroenterol 2000; 6(Suppl): 16

18 Lin E, Calvano SE, Lemanske RF. Inflammatory cytokines and cell response in surgery. Surgery 2000; 127:117-126

19 Gong JP, Xu MQ, Zhu J, Han BL, Li K. Expression of CD14 in Kupffer cells induced by lipopolysaccharide. Di-San Junji Daxue Xuebao 2001; 23: 235-242

20 Kao DJ, Chaudry IH, Wang P. Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis. J Surg Res 1999; 83: 151-157

21 Hardaway RM. A review of septic shock. Am Surg 2000; 66: 22-27

22 Roggin KK, Papa EF, Kurfchubasche AG, Tracy TF. Kupffer cell inactivation delays repair in a rat model of reversible biliary obstruction. J Surg Res 2000; 90: 166-173

23 Bautista AP. Impact of alcohol on the ability of Kupffer cells to produce chemokines and its role in alcoholic liver disease. J Gastroenterol Hepatol 2000; 15: 349-356

24 Deacuc IV, D’Souza NB, Sarphas TG, Schmidt J, Hill DB, McClain CJ. Effects of exogenous superoxide anion and nitric oxide on scavenging function and electron microscopic appearance of the sinusoidal endothelium in the isolated, perfused rat liver. J Hepatol 1999;30:213-221

25 Fan K. Regulatory effects of lipopolysaccharide in murine macrophage proliferation. J Gastroenterol 1998; 4:137-139

26 Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303-1317

27 Roy DL, Padova FD, Adachi Y, Glauser MP, Calandra T, Heumann D. Critical role of lipopolysaccharide-binding protein and CD14 in immune responses against gram-negative bacteria. J Immunol 2001; 167: 2769-2776

28 Wu RX, Xu XQ, Song XH, Chen LJ, Meng XJ. Adhesion molecule and proinflammatory cytokine gene expression in hepatic sinusoidal endothelial cells following cecal ligation and puncture. World J Gastroenterol 2001;
J Immunol 2000; 164: 2674-2683

38 Neubauer O, Ritzel J, Saile B, Ramadori G. Decrease of platelet-endothelial cell adhesion molecule-1 gene-expression in inflammatory cells and in endothelial cells in the rat liver following CCl(4)-administration and in vitro after treatment with TNFalpha. J Immunol 2000; 164: 2674-2683

39 Madorn OS, Cepinskas G, Kvetys PR. Peritonitis induces rat cardiac myocytes to promote polymorphonuclear leukocyte emigration and activate endothelial cells: Effect of lipopolysaccharide pretreatment. Crit Care Med 2001; 29: 1774-1779

40 Emmanuilidis K, Weighardt H, Gerken G. Local control of the immune response in the liver. Immunol Rev 2000; 174: 21-34

41 Gong JP, Han BL. Effects of CD14 in LPS mediating activation of Kupffer cells. Shijie Huaren Xiaohua Zazhi 1999; 7: 875-877

42 Bai XY, Jia XH, Cheng LZ, Gu YD. Influence of IFNa-2b and BCG on the release of TNF and IL-1 by Kupffer cells in rats with hepaticoma. World J Gastroenterol 2001; 7: 419-421

43 Zuo GQ, Gong JP, Liu CA, Li SW, Wu XC, Yang K, Li Y. Expression of lipopolysaccharide binding protein and its receptor CD14 in experimental alcoholic disease. World J Gastroenterol 2001; 7: 836-840

44 Seki S, Habu Y, Kawamura T, Takeda K, Dobaishi H, Ohkawa T, Hiraide H. The liver as a crucial organ in the first line of host defense: the role of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol Rev 2000; 174: 35-46

45 Araki M, Peng XX, Currin RT, Thurman RG, Lemasters JJ. Protection of sinusoidal endothelial cells against storage/reperfusion injury by prostaglandin E2, derived from Kupffer cells. Transplantation 1999; 68: 440-445

46 Watanabe M, Chijiwa K, Kameshita H, Yamaguchi K, Kuroki S, Tanaka M. Gadolinium pretreatment decreases survival and impairs liver regeneration after partial hepatectomy under ischemia/reperfusion in rats. Surgery 2000; 127: 456-463

47 Enomoto N, Ikekima K, Yamashina S. Kupffer cell-derived prostaglandin E2 is involved in alcohol-induced fat accumulation in rat liver. Am J Physiol Gastrointest Liver Physiol 2000; 74: G100-G106

48 Wang LS, Zhu HM, Zhou DY, Wang YL, Zhang WD. Influence of whole peptidoglycan of bifidobacterium on cytotoxic effectors produced by mouse peritoneal macrophages. World J Gastroenterol 2001; 7: 440-443

49 Islam AFMW, Moss ND, Dai Y, Smith MSR, Collins A, Jackson GDF. Lipopolysaccharide-induced biliary factors enhance invasion of Salmonella enteritidis in a rat model. Infect Immun 2000; 68: 1-5

50 Gong JP, Wu CX, Liu CA, Li SW, Shi YJ, Yang K, Li Y, Li XH. Intestinal damage mediated by Kupffer cells in rats with endotoxemia. World J Gastroenterol 2002; 8: press

51 Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Synergism between platelets and leukocytes in inducing endothelial cell apoptosis in the cold ischemic rat liver: A Kupffer cell mediated injury. FASEB J 2001; 15: 1230-1232

52 Li SW, Gong JP, Wu CX, Shi YJ, Liu CA. Lipopolysaccharide induced synthesis of CD14 proteins and its gene expression in hepatocytes during endotoxemia. World J Gastroenterol 2002; 8: 124-127

Edited by Wu XN