The article discusses the methods of using the AutoCad graphic editor for creating three-dimensional objects. The possibilities of three-dimensional modeling in the AutoCad graphic editor for optimizing the educational process of bachelors of technical specialties are also considered. The article analyzes the best ways to create mechanical engineering drawings. The most developed software tool for the production of design documentation is AutoCAD - a universal graphic design system. Creating models of any complexity in space by using this graphic editor, the user will be able to see their relative position, estimate the distance between them. The model can be freely moved in space, viewing many options. The ability to control the point of view allows to conveniently select the view of the 3D model that is being developed. Zooming, panning in real time with the ability to freely rotate the camera around the model provide the ability to quickly view objects from any point of view. The article provides examples of choosing the most optimal option for creating a three-dimensional model. The traditional way to create a 3D model drawing is to make 2D views of the model. When creating a flat drawing, there is a possibility of error when making projections, since they are created independently from each other and consist of several images. It is rather difficult to represent an object in space from a flat drawing. At present, modern software graphic editors are aimed at creating three-dimensional models that allow to create realistic models and, on their basis, get two-dimensional projections. Graphic editor AutoCad allows you to create three-dimensional objects based on standard commands, in the form of a cylinder, cone, box, torus, etc., when editing which you can get the desired shapes. The method of three-dimensional modeling allows you to create a complex drawing with any number of images based on a three-dimensional model [1–5].

Introduction. The traditional way to create a 3D model drawing is to make 2D views of the model. When creating a flat drawing, there is a possibility of error when making projections, since they are created independently from each other and consist of several images.

It is rather difficult to represent an object in space from a flat drawing. At present, modern software graphic editors are aimed at creating three-dimensional models that allow to create realistic models and, on their basis, get two-dimensional projections. Graphic editor AutoCad allows you to create three-dimensional objects based on standard commands, in the form of a cylinder, cone, box, torus, etc., when editing which you can get the desired shapes. The method of three-dimensional modeling allows you to create a complex drawing with any number of images based on a three-dimensional model [1–5].

Purpose of the study. It is necessary to consider methods of using the AutoCad graphics editor to create three-dimensional objects. Taking into account the initial training of students, knowledge of engineering graphics, the ability to apply it in practice. This ensures fast work, flexibility and adaptability to various modeling methods and develops motivation for independent and cognitive activity of the student.

Presentation of the main material. We use the AutoCad graphics editor to build three-dimensional objects. AutoCad supports three ways to draw 3D objects: solid, wireframe, and surface. Each of them has its own characteristics. Each type of model has its own palette of drawing and editing commands. Since there are several types of modeling and editing, you shouldn't mix them up. It is rational to use one method. Creation of three-dimensional models can be carried out in a set of model shapes from graphic primitives such as cylinders, cones, boxes, spheres, tori, etc. and applying editing commands such as subtract, join, and intersect. There are also alternative commands for creating models - these are "rotation" and "extrusion".

Keywords: model, modeling, commands, complex drawing, computer graphics, AutoCad
Results. In fig. 1 shows the use of the commands "rotate" and "extrude". These commands greatly speed up the creation of solid models. To do this, you need to create a model profile. But keep in mind that you only need to create a flat profile with a command called "polyline". This command allows us to create a closed contour from which we can get a solid part. You should also observe the absence of intersections of contour or profile lines. If there are such intersections, the command will fail. Then we draw the axis of rotation and select the “rotation” command to create the model:

1) Select the object for rotation.
2) Select the axis of rotation and to obtain a complete model, select the angle of rotation 360.
3) Having received a three-dimensional model of the body, we need to make four holes in this model.

To do this, we will use the cylinder primitive. Let's build it so that it intersects our model in a certain place. Next, using the "array" command (select a circular array), we get the four cylinders we need. Using the subtract command we get the holes. To do this, select the model itself, press "Enter", then select the cylinders, press "Enter".
4) We get the result (fig. 1).

Having considered an example of building a three-dimensional model, it should be noted that the created model gives a complete picture of its geometric shape (Fig. 2). The next step will be the design of a complex drawing based on a three-dimensional model. To do this, load the ready-made A3 format, and using the “sheet” tab in the ribbon, select the command “create a base model from model space”. Based on this, all other views of the drawing are formed. With the help of a projection connection, we build three views, and, if necessary, add a fourth (isometric) view.

After constructing the necessary views, we proceed to further design the drawing. The resulting views display all visible and invisible lines and require editing. To do this, select the view in the drawing and use the "edit view" command, here we can change the scale, hide invisible lines, shade with visible lines, etc. Projections without editing are shown in Fig. 3. The result of editing is shown in fig. 4.
Fig. 5. Automatic conversion of views

Conclusions. Exploring and analyzing the methods and options for the commands used when creating three-dimensional models and flat drawings, we come to the conclusion that choosing the simplest and fastest modeling option results in an optimization of the educational process. By completing an individual assignment, students have the opportunity to make corrections to an already finished flat, complex drawing.

At the design stage, working with a three-dimensional model, making corrections and receiving changes in automatic mode on view projections, we get:
1) saving time for error correction;
2) the ability to use several modeling options;
3) create an unlimited number of views from one 3D model.

References
1. T. Yu. Sokolova AutoCAD 2012 на 100%. Sokolova T. Yu. Spravochnik. Prakticheskoje ruko-vodstvo Izdatel stvo: Piter, 2012. — 576 s.
2. Nikolaj Polesshuk. AutoCAD 2010. Naibolee polnoe rukovodstvo / Nikolaj Polesshuk — BKхV-Peterburg, 2009. — 800 s.
3. Ivanov A. Yu. Formirovanie poverkhnosti vrashheniya s ispol'zovaniem 3D modelirovaniya // Sovremennaya pedagogika. 2015. # 4 [E'lektronnyj resurs]
4. Proektvannya trivimi`nnykh ob`ektiv zasobami AutoCAD-2008: Navchal`nij posib`ник. — K: ІПДО НУХТ, 2010. — 64 c.
5. Інженерна і комп`ютерна графіка : Навчальний посібник / В. Є. Клімінок. — Х.: Вид. ХНЕУ, 2013. — 92 с.

Карпюк Л.В., Давіденко Н.О. Моделювання в AUTOCAD для бакалаврів

У статті розглядаються методи використання графічного редактора AutoCad для створення тривимірних об'єктів, а також можливості тривимірного моделювання в графічному редакторі AutoCad для оптимізації навчального процесу бакалаврів технічних спеціальностей і аналізуються оптимальні способи створення машинобудівних креслень. Найбільш розповсюдженим програмним засобом використання конструкторської документації є AutoCAD - універсальна графічна система проєктування. Створюючи моделі будь-якої складності в просторі за допомогою цього графічного редактора, користувач зможе побачити їх взаємне розташування, оцінити відстань між ними. Модель можна вільно переміщувати у просторі, переодягаючи безліч варіантів. Можливість управління точкою зору дозволяє зручно вибрати вид на тривимірну модель, яка розробляється. Зумовлює, наванурання в режимі реального часу з можливістю вільного повороту камери навколо моделі надає можливість швидкого перегляду об'єктів з будь-якого погляду. У статті наведено приклади вибору найоптимальнішого варіанта створення тривимірної моделі. Традиційний спосіб створення креслення обсяжної моделі складається з виконання двовимірних видів цієї моделі. При створенні плоского креслення, є ймовірність помилки виконавця проекції, так як одна від одної створюються вони незалежно і складаються з декількох зображень. За плоским кресленням досить складно уявити предмет в просторі. В даний час сучасні графічні редактори спрямовані на створення тривимірних моделей, що дозволяють створювати реалістичні моделі і на їх основі отримувати двовимірні проекції. Графічний редактор AutoCad дозволяє створювати тривимірні об'єкти на основі стандартних команд, у вигляді циліндра, конуса, щириці, тора і т.д., при редагуванні яких можна отримувати потрібні форми. Після створення тривимірної моделі, користувач може отримати її двовимірні проекції не тільки на основні плоскості, а й на будь-яку площу за своїм бажанням. Метод тривимірного моделювання дозволяє створювати комплексне креслення з будь-якою кількістю зображень на основі тривимірної моделі. Існують способи створення на основі тривимірної моделі двовимірних плоских креслень і можливості редагування вже готових проектів, встановлених з простору моделі у просторі листа. Редагування проходить шляхом зміни параметрів тривимірного об'єкту в просторі моделі, і ці зміни автоматично відображаються в просторі листа. Такі способи дозволяють нам використовувати засоби швидкого створення системи з 3-4 пов'язаних видів для тривимірної моделі AutoCad.

Ключові слова: модель, моделювання, команди, комплексне креслення, комп'ютерна графіка, AutoCad.

Література
1. Т. Ю. Соколова AutoCAD 2012 на 100%. / Соколова Т. Ю. Справочник. Практичное руководство - Издательство: Питер, 2012. — 576 с.
2. Николай Полещук. AutoCAD 2010. Наиболее полное руководство / Николай Полещук — БХВ-Петербург, 2009. — 800 с.
3. Иванов А. Ю. Формирование поверхности вращения с использованием 3D моделирования // Совр...
Карпюк Л.В., Давиденко Н.А. Моделирование в AUTOCAD для бакалавров

В статье рассматриваются методы использования графического редактора AutoCAD для создания трехмерных объектов, а также возможности трехмерного моделирования в графическом редакторе AutoCAD для оптимизации учебного процесса по теме "Управление виртуальной машиной" и анализируются оптимальные способы создания машинностроительных чертежей. Наиболее развитым программным средством изготовления конструктировочной документации является AutoCAD - универсальная графическая система проектирования. Создавая модели любой сложности в пространстве с помощью этого графического редактора, пользователь сможет увидеть их взаимное расположение, оценить расположение между ними. Модель можно свободно перемещать в пространстве, просматривать множество вариантов. Возможность управления точкой зрения позволяет удобно выбирать вид на трехмерную модель, которая разрабатывается. Зумирование, панорамирование в режиме реального времени с возможностью свободного поворота камеры вокруг модели предоставляют возможность быстрого просмотра объектов с любой точки зрения. В статье приведены примеры выбора самого оптимального варианта создания трехмерной модели. Традиционный способ создания чертежа объемной модели состоит в выполнении двухмерных видов этой модели. При создании плоского чертежа, есть вероятность ошибки выполнения проекции, так как друг от друга создаются они независимо и состоят из нескольких изображений. По плоскому чертежу достаточно сложно представить предмет в пространстве. В настоящее время современные программные графические редакторы направлены на создание трехмерных моделей, позволяющих создавать реалистичные модели и на их основе получать двухмерные проекции. Графический редактор AutoCAD позволяет создавать трехмерные объекты на основе стандартных команд, в виде цилиндра, конуса, ящика, тора и т.д., при редактировании которых можно получать нужные формы. После создания трехмерной модели, пользователь может получить ее двухмерные проекции не только на основные плоскости, но и на любую плоскость по своему желанию. Метод трехмерного моделирования позволяет создавать комплексный чертеж с любым количеством изображений на основе трехмерной модели. Существуют способы создания на основе трехмерной модели двухмерных плоских чертежей и возможность редактирование уже готовых проектирований на основе трехмерной модели. Редактирование проходит путем изменения параметров трехмерного объекта в пространстве модели, и эти изменения автоматически отображаются в пространстве листа. Такой способ позволяет нам использовать средства быстрого создания системы из 3–4 связанных видов для трехмерной модели AutoCad.

Ключевые слова: модель, моделирование, команды, комплексный чертеж, компьютерная графика, AutoCad

Карпюк Людмила Вікторівна – старший викладач кафедри машинобудування та прикладної механіки, Східноукраїнський національний університет імені Володимира Даля (м. Сєвєродонецьк) karp224klv@ukr.net

Давіденко Наталія Олександровна – старший викладач кафедри іноземних мов та професійної комунікації, Східноукраїнський національний університет імені Володимира Даля (м. Сєвєродонецьк) davidenko_no@smu.edu.ua

Стаття подана 19.01.2021 р.