Investigating the role of fuzzy as confirmatory tool for service quality assessment (Case study: comparison of fuzzy servqual and servqual in hotel service evaluation)

R D Wahyudi 1
1) Industrial Engineering, Universitas Surabaya
Email: Rahman.dwi.wahyudi@staff.ubaya.ac.id

Abstract. The problem because of some indicators qualitatively assessed has been discussed in engineering field. Whereas, qualitative assessment is presently used in certain occasion including in engineering field, for instance, the assessment of service satisfaction. Probably, understanding of satisfaction definition causes bias if between customers have their own definition of satisfaction level of service. Therefore, the use of fuzzy logic in SERVQUAL as service satisfaction measurement tool will be probably useful. This paper aims to investigate the role of fuzzy in SERVQUAL by comparing result measurement of SERVQUAL and fuzzy SERVQUAL for study case of hotel service evaluation. Based on data processing, initial result shows that there is no significant different between them. Thus, either implementation of fuzzy SERVQUAL in different case or study about the role of fuzzy logic in servqual will be interesting further discussed topic.

Key words: Fuzzy logic, SERVQUAL, Fuzzy SERVQUAL, Service Evaluation

1. Introduction

Presently, it is already known that service is increasingly important, even it is blended with product. Therefore, company pays attention in service improvement strategy as much as in product development strategy. The difference is that product tends to be tangible stuff and conversely service tends to be intangible stuff. Consequently, assessing the service performance for customer satisfaction is increasingly difficult because it is linguistic variable and relatively subjective. Meanwhile, assessing the product performance is relatively easier than the service performance because it is able to be conducted by using measurable variable, for an instance, durability of product is used for product performance.

In term of measuring service performance, customer satisfaction is able to be used as indicator which every customer may have different either standard or definition of satisfaction. Therefore, many strategies should be formulated by company to avoid the misleading because of interpreting the customer satisfaction. For an instance, company define that assessing service performance is conducted by using likert scale of 1-5 which the higher the value is, the higher the satisfaction is. However, the number of 3 may have different interpretation among customers. Some customers interprete that 3 is satisfy, but may be some other customers interprete that 3 is mostly satisfy. Probably, company anticipates aforementioned condition by defining that 3 is used for satisfaction situation. However, every customer still has different standard of satisfaction. Certainly, it would be very important in determining poor service needed to be improved. Misleading in interpretation of customer assessment for service performance causes mistake in decision making. Furthermore, it raise some cost to improve probably wrong service.

In many cases, evaluating service performance is conducted by using SERVQUAL as a tool. By using SERVQUAL, company understands the gap derived from the difference between expected service and perceived service. Based on the gap value, company arranges the service improvement priority. The raised problem is that assessment of expected and perceived service are linguistic and subjective variable, so that aforementioned problem probably occurs. In term of solving that problem, integrating fuzzy logic into interpretation of expected and perceived service assessment is initiated. Lately, aforementioned idea is called as Fuzzy SERVQUAL.
Fuzzy logic set is commonly used for helping customer giving more objective value by analyzing the ambiguous value. In Fuzzy logic, the ambiguous value is solved by calculating Triangular Fuzzy Numbers (TFN) using centroid method. By its application, Fuzzy has been used for many cases asserting the linguistics variable such as satisfaction assessment, temperature setting, patient recovery assessment in hospital, obsolescence assessment, and so forth. Based on this benefit, investigation about the role of fuzzy in determining SERVQUAL gap is indeed needed. Thus, the purpose of this paper is to compare Fuzzy SERVQUAL and common SERVQUAL in detail.

2. Methodology

In accordance with aforementioned background and purpose, a few steps are conducted. First of all, generating service attribute is needed by doing initial survey to customer and reviewing previous research. Then, questionnaire regarding expected and perceived service is arranged based on customer experiences. In this paper, the raw data used is obtained from previous research held by Gondowidjaja, et al [1]. Based on this raw data, gap between expected and perceived service for common SERVQUAL can be calculated. Meanwhile, gap for fuzzy SERVQUAL is calculated by integrating fuzzy logic set into expected and perceived service. Commonly, fuzzy methodology is sequentially conducted as linguistic input, fuzzification, fuzzy output, defuzzification and crisp output. All of sequence is implemented for every linguistic input of expected and perceived service data. Thus, there will be two types of gap which is further compared each other. Comparison result is used for investigating the role of Fuzzy in SERVQUAL. In flowchart, methodology of this research is described as follows:

3. Literature Review

SERVQUAL is common tool used for measuring the service performance whether service satisfy customer successfully. At first, SERVQUAL is initiated from definition of quality in service itself which many notions defining the definition of quality. One of those notions mentions that quality is a condition when output of process conforms with certain specification. Likewise quality in service,
service is qualified when given service conforms with customer satisfaction as certain specification. Then, SERVQUAL as tool measuring service performance understands that customer satisfaction can be achieved if expected service equals to perceived service. The difference coming from expected service and perceived service is called as Gap 5. Meanwhile, Gap 1-Gap 4 occurs associated with company’s internal process in order to provide excellent service. On the whole process, the occurrence of gaps is presented in figure below.

Figure 2. Gaps in SERVQUAL [2]

Certainly, measured gap relates to identified service attributes. Facilitating the data analysis, service attributes are categorized into certain dimension, for instance, there are 5 service dimensions for hotel industry such as tangibles, adequacy in service supply, understanding in service supply, understanding and caring, assurance, convenience[3].

In practice, expected and perceived service assessment is expressed in linguistic variable. Conventionally designed questionnaire frequently use likert scale to describe the feeling of respondents. Owing to the fuzziness of human thinking, this approach is inadequate and too simple to rule subject's way and measure complex human thinking and cognition [4]. Thus, integration of Fuzzy logic and SERVQUAL will give much benefits. That fuzzy logic is integrated by doing fuzzification and defuzzification into expected and perceived service. Fuzzification of data is carried out on the transformed data by selecting input parameters into the horizontal axis and projecting vertically to the upper boundary of membership function to determine the degree of membership [5].

The efforts to use fuzzy for evaluating customers’ satisfaction have been conducted in previous research [6]. It provides a new method of measuring perceived service quality based on triangular fuzzy numbers by replacing perceptions with satisfaction degree as well as expectations with importance degree. Then, inducing general solutions by computing the intersection area between two triangular fuzzy numbers is conducted to determine the worst service attribute. However, inducing general solutions by computing the intersection area between is based on possibility theory so it needs to reinterprets voice of customer. Other studies tried to fuse fuzzy into several tools to evaluate service such as grey-fuzzy to model the customer expectation [7], fuzzy-AHP [8], fuzzy-AHP-TOPSIS to model the voice of customer [9], and fuzzy linguistics SERVQUAL to recognize the service quality assessment verbally [4]. However, discussion regarding the use of fuzzy in SERVQUAL by comparing common SERVQUAL and fuzzy SERVQUAL directly is important.

4. Data processing
Accordance with research flowchart, firstly service attributes are generated by doing survey and reviewing the previous researches. Based on the obtained raw data from Gondowidjaja, et al [1], there are 24 service attributes are generated. Then, data is processed and Gap 5 is obtained. Gap 5 for SERVQUAL is calculated by subtracting the weighted average of every perceived and expected
service attributes. Meanwhile, Gap 5 calculation for Fuzzy SERVQUAL is started by doing fuzzification. In this stage, linguistic variable represented by likert scale is converted to Triangular Fuzzy Number (TFN). Determining membership set will affect to scalar value in defuzzification stage which is calculated by using its geometric mean.

In this research, membership set are dissatisfied, quite satisfied, and satisfied. The value for dissatisfied is 1, 2 and 3; satisfied is 2, 3, and 4; strongly satisfied is 3, 4, and 5. Based on the membership set, TFN for every service attribute is obtained. Furthermore, Gap 5 is calculated by subtracting the defuzzification TFN of perceived service and the defuzzification TFN of expected service. The result of Gap 5 calculation is presented as follow:

No	Service Attributes	SERQUAL	Fuzzy SERQUAL										
		Expected Service	Perceived Service	Gap 5	Expected Service	Triangular Number	Perceived Service	Gap 5					
1	Provided facilities (such as gym, center, spa, restaurant, etc) are clean, comfortable and reliable	4.38	3.44	-0.94	3	3.9	4.4	3.7	2.6	3.1	3.8	3.14	-0.56
2	Parking area is large enough	4.48	3.33	-1.03	3	3.9	4.5	3.78	2.7	3.3	3.8	3.22	-0.54
3	Employee apparel is clean and tidy	4.56	4.27	0.16	3	4	4.6	3.79	2.4	3.2	4.8	3.5	-0.29
4	Food presentation in restaurant is satisfied	4.6	4.46	-0.14	3	4	4.6	3.79	2.9	3.2	4.5	3.42	-0.02
5	Material related to service (such as soap, shampoo, towel, etc) are proper	4.67	4.7	0.03	3	3.9	4.7	3.81	3	3.7	4.7	3.75	-0.07
6	Room is clean and tidy	4.59	3.74	-0.85	3	4	4.6	3.79	2.7	3.3	4	3.29	-0.05
7	Toilet (both in lobby and room) is clean, quite large and comfortable	4.49	3.76	-0.73	3	3.9	4.5	3.74	2.7	3.2	4.1	3.25	-0.49
8	Employee is helpful and available	4.41	4.68	0.27	3	3.9	4.4	3.71	2.9	3.5	4.7	3.62	-0.09
9	Employee is perceptive and deft	4.43	4.42	-0.01	3	3.9	4.4	3.72	2	3.4	4.4	3.57	-0.15
10	WiFi connection is proper and easy to access	4.47	4.55	0.08	3	3.9	4.5	3.72	2.8	3.5	4.6	3.56	-0.16
11	Provided services are conform with promises	4.43	4.54	0.11	3	3.9	4.4	3.73	3	3.6	4.5	3.66	-0.07
12	Hotel provides flexible service as suitable as customer order	4.36	4.43	0.07	3	3.8	4.4	3.66	2.9	3.8	4.5	3.48	-0.17
13	Employee treats customer kindly	4.41	4.55	0.14	3	3.9	4.4	3.71	2.8	3.6	4.6	3.59	-0.12
14	Employee gives special empathy to customer (such as greets the by name)	4.61	3.81	-0.8	3	3.9	4.6	3.8	2.7	3.3	4	3.31	-0.49
15	Employee has knowledge and information regarding to potential nearby tourism object (shopping mall, museum)	4.4	3.57	-0.83	3	3.8	4.4	3.68	2.8	3.8	4.5	3.24	-0.44
16	Employee asks for apology is any inconvenience	4.53	4.62	0.09	3	3.9	4.5	3.77	3	3.9	4.6	3.79	0.02
17	Food menu in restaurant is various	4.56	3.81	-0.75	3	3.9	4.6	3.79	2.6	3.3	4.1	3.29	-0.46
18	Hotel provides secure and comfortable environment for customer	4.59	4.68	0.09	3	4	4.6	3.8	3	3.6	4.7	3.7	-0.11
19	Employee has good working knowledge (such as foreign language, professionalism, communication skill)	4.41	3.5	-0.91	3	3.8	4.4	3.7	2.5	3.2	4.3	3	-0.55
20	Hotel provides 24 hours of service	4.51	4.63	0.12	3	4	4.5	3.77	2.6	3.2	4.8	3.38	-0.39
21	Reservation is easily done	4.62	3.76	-0.86	3	3.9	4.6	3.79	2.8	3.4	5	3	-0.44
22	Hotel can be easily accessed	4.6	3.81	-0.79	3	4	4.6	3.79	2.7	3.2	4	3	-0.49
23	Information regarding facilities and services is easily gotten	4.66	4.6	0	0	4	4.7	4.32	2.8	3.6	4.7	3.59	-0.73
24	Hotel is able to handle and solve the complaint	4.61	4.68	0.07	3	4	4.6	3.8	2.8	3.4	4.7	3.56	-0.24

Briefly, it is presented that there is different value of Gap 5 between SERVQUAL and FUZZY SERVQUAL. In addition, descending sorting for gap data above results different priority for service improvement. For SERQUAL, the top 5 of the biggest gap needing to be improved are as follows:
1. Provided facilities (such as: gym center, spa, restaurant, etc) are clean, comfortable and reliable
2. Parking area is large enough
3. Employee has good working knowledge (such as foreign language, professionalism, communication skill)
4. Reservation is easily done
5. Room is clean and tidy

Whereas, for Fuzzy SERQUAL, the top 5 of the biggest gap needing to be improved are as follows:
1. Information regarding facilities and services is easily gotten
2. Provided facilities (such as: gym center, spa, restaurant, etc) are clean, comfortable and reliable
3. Employee has good working knowledge (such as foreign language, professionalism, communication skill)
4. Parking area is large enough
5. Room is clean and tidy

Based on the information above, it is known that there are the same four service attributes with different value of gap. However, the aforementioned difference is not necessarily considered as something statistically significant different. Therefore, statistical testing is conducted to state whether there is significant difference among the value of gaps. If the result shows that they are the same, then the difference of priority is not significant. Furthermore, if the improving service is conducted with different priority, then the final result is probably not significant different. ANOVA is tool used for learning whether any significant difference among gaps. Thus, the hypothesis for testing are built as follows:

H0: There is no significant different for gap 5
H1: At least there is significant different for a pair of gap 5

By using minitab, ANOVA testing results is presented as follows:

Source	DF	SS	MS	F	P
Factor	1	0.006	0.006	0.04	0.834
Error	46	6.028	0.131		
Total	47	6.034			

S = 0.3620 R-Sq = 0.10% R-Sq(adj) = 0.00%

Individual 95% CIs For Mean Based on Pooled StDev

Level	N	Mean	StDev
S-Gap	24	-0.3046	0.4690
F-Gap	24	-0.3267	0.2054

5. Result and discussion

Table ANOVA above presents that p-value is 0.834 which is greater than alpha 0.05, so the decision for this test is do not reject H0. Thus, it is concluded that there is no significant different between gap 5 of SERVQUAL and gap 5 of Fuzzy SERVQUAL. Probably, it is caused by the assessment among customer which is relatively indifference. This reason is supported by descriptive statistics above titled individual 95% CIs For Mean Based on Pooled ST Dev in which both of data are relatively in the same position. Other possible influencing the result is definition of fuzzy membership which is not really various and it has large subtraction area, so the conversion value is not strongly bold. However, it is too early to establish hypothesis that the use of fuzzy in SERVQUAL is not significantly powerful. It is necessary to compare and analyze the result for various case studies. Therefore, understanding of nature of faced case study become important.
Insignificant result of ANOVA in this case is influenced by the nature of service in hotel. In this case, satisfaction assessment for hotel is easily done with result which is relatively equal between customers and the data source are domestics customers who have satisfied for service hotel gives. It is supported by survey data showing that customer’s assessment is not significantly various. In addition, hotel offers some facilities which are quite complete, well maintained and reliable, so that definition of satisfaction level between customers is relatively the same because they have the same perception about service standard in hotel. The insignificant result is also probably caused by defined likert scale. Based on obtained data for SERVQUAL, satisfaction level of customer revolves in likert scale of 4 to 5 which belongs to category of satisfied and strongly satisfied in linguistics variable. This range is not significantly wide. One of the consequences is that the value is not significantly sensitive. Likewise, obtained data for fuzzy SERVQUAL revolves in category of strongly satisfied. Thus, the use of fuzzy in SERVQUAL is necessary to be explored based on nature of the case so it will be more powerful. However, the use of fuzzy has already assisted to confirm something ambiguous.

6. Conclusion
In this case, it is obtained that the use of fuzzy in SERVQUAL is not significantly powerful. However, it is not easily stereotyped that the use of fuzzy in SERVQUAL is not significantly powerful for other cases. It is necessary to compare and analyze the result for various case studies. Therefore, understanding of nature of faced case study, data tendency, range of likert scale and kind of linguistic variable are increasingly important to be considered.

7. References
[1] Gondowidjaja, Albert, Hartono, Markus and Wahyudi, Rahman Dwi. Service Quality Improvement by Using SERVQUAL, KANO and QFD in D'Season Hotel, Surabaya. Surabaya : Universitas Surabaya, 2017.
[2] A conceptual model of service quality and its implication. Parasuraman, Zeithaml and Berry. 1985, Journal of Marketing, pp. 41-50.
[3] Measuring service quality in the hotel industry: A study in a business hotel in Turkey. Akbaba, Atilla. Duzce : Hospitality Management, 2006, Hospitality Management, Vol. 25, pp. 170-192.
[4] Adapting fuzzy linguistic SERVQUAL model: a comparative analysis of bank service in Malaysia. Charles, Vincent, Kumar, Mukesh and Suggu, Srinivas. 2012, Centrum Catolica's Working Paper.
[5] Fuzzy Rule-based Framework for Effective Control of Profitability in a Paper Recycling Plant. Umoh, Uduak, Nwachukwu, Enoch and Okure, Obot. 2010, Global Journal of Computer Science and Technology, pp. 56-67.
[6] Using fuzzy numbers to evaluate perceived service quality. Chien, Cheng-Ju and Tsai, Hui-Hua. 2, Taiwan : Elsevier: Fuzzy Set and System, 2000, Fuzzy Set and System Journal, Vol. 116, pp. 289-300.
[7] A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Tseng, Ming-Lang. 2009, Expert Systems with Applications Journal, pp. 7738-7748.
[8] Strategic analysis of healthcare service quality using fuzzy AHP methodology. Büyüközkân, Gülçin, Çifçi, Gizem and Güleyüz, Sezin. 2011, Expert Systems with Applications, pp. 9407-9424.
[9] A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Büyüközkân, Gülçin and Çifçi, Gizem. 2012, Expert Systems with Applications, pp. 2341-2354.