Integration building information modeling (BIM) to track the time for controlling of budget and labor productivity (case study: warehouse project)

Rifqi Waladi Wicaksono, Juliastuti* , Putri Arumsari
Civil Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480

*Corresponding author: juliastuti@binus.ac.id

Abstract. The rapidly growing world of construction in Indonesia will require more effective support technology. Technological developments in construction are under construction called as Building Information Modeling (BIM). Before Developing Modeling Information (BIM), AutoCAD, SAP2000, Ms. Project is often used for design and project planning. The use of the applications cannot be integrated. It can be implemented as needed. Building Information Models (BIM) encourages the flow of 3D models across different disciplines, so that the process is faster and more direct. Currently, many actors have never adopted in the construction in Indonesia, even not yet understand about Building Information Modeling (BIM). The result of this study is the steel weight for the column is 1,151,596.35 kg. The duration of project with acceleration is 475 days. The labor productivity divided based on the experience, age and education.

Keyword: Building Information Modeling, duration, productivity

1. Introduction
The project by adopting available resources is organized to accomplish a specific purpose. The success of a development project implementation is affected by the selection of the proper method of execution plan as well as the ability to make decisions. In the era of free markets, the construction company should improve its performance to be able to compete with businesses in other construction services. One of the benchmarks that reflect good performance from businessmen in the field of construction services is the accuracy of the cost and time of completion of the project in accordance with the plan [1].

Up to now, Building Information Modeling (BIM) development in Indonesia is still limited. This is due to the limitations of information and lack of knowledge about how the use of BIM among engineers. BIM can help engineers to design a smart building. In addition, BIM can be used to design a building, controlling a project, and calculate plan as well as cost [1]. Application of BIM in building design and its cost is very beneficial because it can provide early notifications about things that may occur in the future. In the building design, A good planning is needed, so that the building can be built as per specifications. It can be achieved as well as the budget plan costs are accurate. By considering these things, to streamline the planning and precision in calculating the cost of a budget plan of construction of the building, then use programs Autodesk Revit Structure 2019. Autodesk Revit is one
piece of software that implement BIM, system software consists of three components, namely structure, the architect, and MEP [2].

BIM is one of the most promising developments in the engineering and construction industry. BIM technology can be created by a virtual model of meticulous with the 3D view [3]. Basic principles of BIM can use 3D three-dimensional building model to get all the necessary project descriptions, including detailed drawing for construction, as well as the calculation of quantity and estimation of the price. A change in one element of the model will automatically update drawing, quantity, and price estimation [4].

However, the application of BIM in the planning stages in Indonesia is still very limited as previously mentioned. Thus, the authors try to analyze the use of BIM application on construction projects in the planning costs.

2. Research Methodology

Figure 1 shows flow diagram for this study. The collecting data is divided into 3 stages: revit modelling, scheduling and labor effectiveness.

![Research Flow Diagram](image)

Figure 1. Research Flow Diagram
3. Results and Discussion

3.1. The results of Modeling Revit Structure 2019
The results of the modeling project warehouse 8 with Revit Structure 2019 can be seen in Figure 1 to Figure 4.

Figure 2. 3D Structure View on Warehouse 8

Figure 3. Column Structure View on Warehouse 8

Figure 4. Trusses Structure View on Warehouse 8

3.2. Weight Calculation Results with Revit Structure 2019
The total length obtained from Revit Structure 2019 can be used to determine the volume by multiplying the length of steel profile with each coefficient of steel profiles (Figures 5-6).

Figure 5. Structural Column Weight

Structural Column	1.151,596,35	1.401,489,52
Kilogram (kg)	Revit Structure 2019	Contractor
3.3. Analysis Results of The Network Using Critical Path Method (CPM)

Jobs with an independent activity is the Erection of the steel column of axle 1-15, axle 16-27 Column steel fabrication, Steel Erection of the roof of the axle 1-15, axle steel roof and fabrication 16-27 so on the work of the network can be done at the same time. After doing the job continued with steel manufacturing, steel erection job. When work is being carried out erection, fabrication jobs vacant so that there is no work being done. Due to this, then steel fabrication and erection of steel jobs were done simultaneously. Steel erection job is running, the job of fabricating also continues to run so that no jobs are vacant. These networks can be seen in Figure 7.

Thus, the normal duration of a total of 570 days, with network analysis, duration is 475 days with time savings as much as 95 days. At the start, because the calculation activities A2 (Erection of steel Columns of the US 1-15) and activities A3 (steel manufacturing axle Column 16-27) worked together then selected the greatest day. Because activities A3 (steel manufacturing Columns of the US 16-27) has the largest day of activities then A2 (Erection of steel Columns of the US 1-15) is not calculated because it has the smallest day and later became dummy. As well as on the activities of B2 (axle steel roof Erection 1-15) and B3 (U.S. steel roof Manufacturing 16-27), B3 activities (fabrication of steel roof of the US 16-27) has a larger number of days so that the activities of B2 (axle steel roof Erection 1-15) is not calculated because it has today the smallest and then into a dummy. Then determine the critical path, a critical path is determined from the work that has started today and finished the same day. Then the critical path namely: A1-A3-Dummy-A4-B1-B3-B4-Dummy-C1. The intent of the critical path is an earned job belonging to this critical path should not pass from the duration of which has been made on the network, so there is no tolerance for late on a work goes into this critical path.

3.4. Results of the Effectiveness of Each Working Group

Table 1 shows the result of the Effectiveness of Each Working Group based on working time.
Table 1. The Effectiveness of Each Worker Group

No	Worker Group	Result Time Measured (Minutes/Day)	Working Time Theory (Minutes/Day)	Difference (Minutes/Day)	Effectiveness %	Theory %
1	Cut, Drilling & Finishing Labor	378	418	40	9.57	90.43
	Skilled Labor					
	Un-Skilled Labor					
2	Fit Up Labor	360	418	58	13.88	86.12
	Skilled Labor					
	Un-Skilled Labor					
3	Welding Labor	300	418	118	28.23	71.77
4	Finishing Labor					
5	Painting Labor					
6	Packing Labor					

| | MEAN | 564 | 627 | 63 | 15.07 | 134.93 |

3.5. Result of Worker Effectiveness based on Age, Work Experience and Education

Table 2. The Effectiveness of Each Worker Group Based on Age

No	Worker Group	Age (Years)	Effectiveness %	Average Effectiveness %
1	Fit Up Labor	<20	86.12	94.74
	Un-Skilled Labor			
2	Packing Labor		99.04	
	Skilled Labor			
	Un-Skilled Labor		99.04	
3	Cut, Drilling & Finishing Labor		90.43	
	Skilled Labor			
	Un-Skilled Labor		90.43	
4	Fit Up Labor	20 - <30	91.87	
	Skilled Labor		86.12	
	Finishing Labor			
	Un-Skilled Labor		99.04	
	Painting Labor			
	Un-Skilled Labor		93.30	
Table 3. The Effectiveness of Each Worker Group Based on Age

No	Worker Group	Work Experience	Effectiveness	Average Effectiveness
1	Cut, Drilling & Finishing Labor			
	Skilled Labor	30 - <40	71.77	82.54
	Painting Labor			
	Skilled Labor		93.30	

Table 4. The Effectiveness of Each Worker Group Based on Age

No	Worker Group	Education	Effectiveness	Average Effectiveness
1	Cut, Drilling & Finishing Labor			
	Un-Skilled Labor		90.43	
	Fit Up Labor			
	Un-Skilled Labor		86.12	
	Finishing Labor		99.04	
	Skilled Labor		99.04	
	Elementary		94.50	

6
3.6. Cost and Time Relationship

Result of cost and time relationship can be seen in Figure 8.

![Figure 8. Cost and Time Relationship](image)

From the chart above, in the time of completion of the project accelerated from normal time, then the fee will be increased from the normal cost. Where normal time project is 570 days with a normal cost of Rp 48,104,441,461.84. The accelerated duration is 475 days, and it is obtained from the addition of 4 hours per day and that carries the additional cost per worker. The total cost of the project becomes Rp 48,311,600,386.68, Rp 207,158,924.8 cost difference.

4. Conclusion

It brings 3D modeling with Revit Structure 2019 which can provide information on each of their material and can be seen from all the looks. From calculations using the assistance software Revit Structure 2019 obtained the result total volume of Revit Structure 2019 for structural column amounted to 1,151,596.35 kg than structural truss of 344,768.32 kg. Obtained results the installation cost and Assembly with the approach of the regulation of the Ministry of PUPR 2016 Year of Rp 31,875.13/kg. The duration of the normal time was 570 days, after a simulation acceleration generated by the approach of the Critical Path Method (CPM) time duration be 475 today with the addition of acceleration time 4 hours/day. By the time the effectiveness of work in the field, it brings the cost of wages based on age, work experience, and education on each group of workers. Based on the age of 20 years: < 94.74%, 20-30 years of < 91.87%, 30-40 years of < 82.54%, based on work experience of 2 years: < 95.45%, 2-5 years of 90.43% <, 5-10 years of 85.17% <, based on education: Elementary School, Junior High School of 94.50% of 89.95%, and Senior High School of 71.77%. Of the cost of wages based on the effectiveness of workers and increased hours accelerated, it brings the total cost of the project amounted to Rp 48,311,600,386.68.
References

[1] Anton, Budi, & Endang. (2014). Efektifitas Tenaga Kerja Pada Proyek Bangunan. *Efektifitas Kerja*

[2] Beta. (n.d.). Rencana Anggaran Biaya Dalam Efisiensi Dan Efektivitas Proyek. *Prosiding.*

[3] Cheng, Tarek, Wissam, & Sabah. (2016). Quantitative Assessment of Building Information Construction Using BIM and 4D Simulation. *Scientific Research,* 442-461

[4] Dooyong, & Heesung. (2014). Integration of Building Information Maintenance Data in Application of Building Information Modeling (BIM). *Scientific Research,* 166-172

[5] Faulidatul, & Sugeng. (2016). Building Cost Analysis of ASteel Construction Work Using SNI Method and HSPK. *Civilla*

[6] Ganesstri, & Nia. (2017). Perencanaan Manajemen Proyek Dalam Meningkatkan Efisiensi Dan Efektifitas Sumber Daya Perusahaan (Studi Kasus : Qiscus Pte Ltd).

[7] Jevri, & Syahrizal. (2013). Analisis Percepatan Waktu Proyek Dengan Tambahan Biaya Yang Optimum

[8] KiBeom, & Myoung. (2013). BIM Promotion Plan in Civil Engineering through the Analysis of the User Recognition Changes. *Scientific Research,* 15-18.

[9] Kristen, & Kenneth. (2012). How to measure the benefits of BIM - A case study approach. *Elsevier,* 149-199

[10] Pricillia, Sompie, Taroreh, & Walangitan. (2013). Pendayagunaan Tenaga Kerja Pada Proyek Konstruksi (Studi Kasus : PT Trakindo Utama Manado). *Sipil Statik,* 459-465

[11] Robert, Mike, Henry, Clare, & Sean. (2013). BIM implementation throughout the UK construction project lifecycle: An analysis. *Elsevier,* 145-151

[12] Sijie, Jin, Charles, & Manu. (2013). Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules. *Automatic in Construction,* 183-195

[13] Youngsoo, & Mihee. (2011). Building Information Modeling (BIM) framework for practical implementation. *Elsevier,* 126-133.