Plasma p-tau181/Aβ1-42 ratio predicts Aβ-PET status and correlates with CSF-p-tau181/Aβ1-42 and future cognitive decline

Christopher J. Fowler1 | Erik Stoops2 | Stephanie R. Rainey-Smith3
Eugeen Vanmechelen2 | Jeroen Vanbrabant2 | Nele Dewit2 | Kimberley Mauroo2 | Paul Maruff4 | Christopher C. Rowe1,5 | Jurgen Fripp6 | Qiao-Xin Li1
Pierrick Bourgeat6 | Steven J. Collins7 | Ralph N. Martins3,8 | Colin L. Masters1 | James D. Doecke6

1The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
2ADx NeuroSciences, Ghent, Belgium
3School of Medical and Health Sciences, Centre of Excellence for Alzheimer’s Disease Research & Care, Edith Cowan University, Joondalup, Western Australia, Australia
4Cogstate Ltd, Melbourne, Victoria, Australia
5Austin Health, Molecular Imaging Research, and The Florey Department of Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
6Australian E-Health Research Centre, CSIRO, Herston, Queensland, Australia
7Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia
8Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia

Correspondence
James Doecke, Level 7, Surgical Treatment and Rehabilitation Service–STARS, 296 Herston Road, Herston Qld 4029, Australia.
E-mail: james.doecke@csiro.au

Abstract

Background: In Alzheimer’s disease (AD), plasma amyloid beta (Aβ)1-42 and phosphorylated tau (p-tau) predict high amyloid status from Aβ positron emission tomography (PET); however, the extent to which combination of these plasma assays can predict remains unknown.

Methods: Prototype Simoa assays were used to measure plasma samples from participants who were either cognitively normal (CN) or had mild cognitive impairment (MCI)/AD in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study.

Results: The p-tau181/Aβ1-42 ratio showed the best prediction of Aβ-PET across all participants (area under the curve [AUC] = 0.905, 95% confidence interval [CI]: 0.86–0.95) and in CN (AUC = 0.873; 0.80–0.94), and symptomatic (AUC = 0.908; 0.82–1.00) adults. Plasma p-tau181/Aβ1-42 ratio correlated with cerebrospinal fluid (CSF) p-tau181 (Elecsys, Spearman’s ρ = 0.74, P < 0.0001) and predicted abnormal CSF Aβ (AUC = 0.816; 0.74–0.89). The p-tau181/Aβ1-42 ratio also predicted future rates of cognitive decline assessed by AIBL Preclinical Alzheimer Cognitive Composite or Clinical Dementia Rating Sum of Boxes (P < 0.0001).

Discussion: Plasma p-tau181/Aβ1-42 ratio predicted both Aβ-PET status and cognitive decline, demonstrating potential as both a diagnostic aid and as a screening and prognostic assay for preclinical AD trials.

KEYWORDS
Alzheimer’s disease, amyloid beta amyloid imaging, blood biomarkers, blood diagnostic for Alzheimer’s disease, cerebrospinal fluid, phosphorylated tau, plasma phosphorylated tau181, plasma amyloid beta, positron emission tomography

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer’s Association.
1 | INTRODUCTION

Alzheimer’s disease (AD), the most common neurodegenerative dementia, is characterized by a preclinical and prodromal phase of >20 years, during which amyloid beta (Aβ) accumulates as plaques in the brain extracellular environment, and with aggregation of tau in neurofibrillary tangles, drives neurodegeneration that gives rise to cognitive decline and ultimately dementia.\(^1\) Aβ fragments exist in a number of distinct bioavailable pools, with the most insoluble load measurable by positron emission tomography (Aβ-PET) and soluble Aβ detectable in the cerebrospinal fluid (CSF).\(^2\)–\(^5\) Soluble phosphorylated tau (p-tau) can be detected in CSF, and PET can image insoluble aggregates of tau, all of which can aid AD diagnosis in research settings.\(^6\)–\(^8\) However, the use of PET and CSF to detect Aβ and tau in clinical or community settings is limited by the cost, requirements for specific expertise and equipment, and risk of adverse events. This restricts their use in programs seeking to identify individuals at risk for AD.

The advent of ultra–high-sensitivity detection methods, including immunoprecipitation-mass spectrometry and single molecule array detection (including Simoa and other platforms) has enabled Aβ and p-tau species to be measured in blood plasma with increased dynamic range. When analyzed with specific detector and capture antibodies, plasma Aβ and p-tau levels are associated strongly with levels of the same biomarkers measured from CSF and with PET. For example plasma Aβ\(_{1-42}\) and the Aβ\(_{1-42}/1-40\) ratio predict brain Aβ burden, and tau measured at different phosphorylation sites (threonine\(_{181}\) [p-tau181], threonine\(_{217}\) [p-tau217], threonine\(_{231}\) [p-tau231]) shows concordance with CSF p-tau levels (concordance = 0.8) and can predict Aβ-PET burden (area under the curve [AUC] values ranging from 0.8 through 0.9).\(^9\)–\(^14\) Clinical–pathological models show that understanding about the presence and severity of AD is improved when markers of amyloid and tau levels are considered simultaneously,\(^15\)–\(^18\) with one study demonstrating how combinations of plasma levels of Aβ and p-tau relate to Aβ-PET burden.\(^19\) The first aim of this study was to investigate whether two different plasma p-tau markers (p-tau181 and p-tau231), incorporated into a ratio with Aβ\(_{42}\), can improve predictions of Aβ burden over single analytes compared to PET or CSF sampling. Additionally, these analytes were investigated for an association with future cognitive decline. The second aim was to explore how ratios of plasma tau and amyloid were associated with disease progression. Both aims are tested in the complete cohort, as well as cognitively normal (CN) and cognitively impaired (CI: mild cognitive impairment [MCI] and AD) groups to gain a better understanding of the results.

2 | METHODS

2.1 | Study participants

The Australian Imaging, Biomarkers and Lifestyle (AIBL) study is a prospective longitudinal cohort of adults over the age of 60 designed to understand the natural history of AD, with recruitment and testing procedures described in detail previously.\(^20\) Participants undergo 18 monthly neuropsychological and clinical assessments and blood donations, with AIBL clinical classification confirmed by an expert clinical panel consisting of a neurologist, geriatrician, and neuropsychologist (all blinded to biomarker status). All participants from the AIBL study, who had been classified clinically as being CN, with mild cognitive impairment (MCI) or dementia, and who had both CSF samples and Aβ-PET scans, were used in this study. Participants with either MCI or AD were classed in a CI subgroup for statistical comparisons separate from the CN group. Ethical approval was provided through St. Vincent’s Health and Hollywood Private Hospital, and all participants provided written informed consent.

2.2 | Biospecimen collection

Blood collection was conducted on overnight fasting participants between 9:00 am and 10:30 am in K3-ethylendiaminetetraacetic acid tubes (7.5 ml S-monovette 01.1605.008) containing pre-added prostaglandin E1 (33 ng/ml of whole blood, Sapphire Biosciences) to prevent platelet activation, a potential source of peripheral Aβ. To generate plasma, blood was centrifuged at room temperature at 200 \(\times g\) for 10 minutes to collect platelet-rich plasma, which was then spun at 800 \(\times g\) for 10 minutes, aliquoted into 0.5 ml aliquots (2D cryobankIT, NUN374088), snap frozen within 2 hours of collection and then stored in vapor phase liquid nitrogen (LN\(_2\)).
CSF was collected in the morning after overnight fasting via lumbar puncture using a Temena (Polymedic) spinal needle micro-tip (22/27G x 103 mm; CAT 21922-27). CSF was collected by aspiration or gravity drip into 15 ml polypropylene tubes (Greiner Bio-One188271) on wet ice, centrifuged within 1 hour at 2000 x g for 10 minutes at 4°C, transferred to a new 15 ml tube to remove any gradient effect, and aliquoted into 2D NUNC cryovials and stored in vapor phase LN2.

Within AIBL, CSF collection is non-compulsory and can have intermittent follow-up collections. In this article Assessment 1 refers to the plasma matching the first CSF collection, and Assessment 2 refers to plasma collected matching a second CSF collection, either at 18-month or longer follow-up intervals.

2.3 Clinical cognitive measures

Calculation of the Alzheimer’s Disease Cooperative Study Preclinical Alzheimer Cognitive Composite in AIBL (AIBL-PACC) has been described previously. For each assessment, an individual’s AIBL-PACC is computed by averaging the baseline-standardized scores of the Mini-Mental State Examination (MMSE), California Verbal Learning Test-II (CVLT-II), Logical Memory II, and Digit Symbol Coding. The Mini-Mental State Examination (MMSE), California Verbal Learning Test-II (CVLT-II), Logical Memory II, and Digit Symbol Coding are used in the AIBL-PACC.

2.4 Aβ-PET imaging

Aβ-PET imaging was performed with four different radiotracers: 11C-Pittsburgh compound B (PiB), 18F-NAV4694 (NAV), 18F-flutemetamol (FLUTE) or 18F-florbetapir (FBP). Aβ-PET scans were spatially normalized using CapAIBL and the Centiloid (CL) method was applied. In the plasma p-tau protocol the phospho-specific mAbs ADx252 and ADx253 were conjugated to paramagnetic beads. mAb ADx101 was used as detection antibody in biotinylated form, with an antibody/biotin ratio of 32. Samples were diluted respectively 4 and 20 times for ADx204 and ADx203. Both assays were performed on the automated Quanterix Simoa HD-X platform using a two-step protocol (80-7 cadences).

2.5 CSF analysis

CSF analysis in AIBL has been described previously using the Roche Elecsys electrochemiluminescence immunoassays for Aβ1-42. Elecsys Total (t)-tau and Elecsys p-tau181, run on cobas e 601, cobas e 602, and MODULAR ANALYTICS E170 analyzers. A total of 155 participants had Elecsys measurements at the same time as the plasma (CN: N = 106, MCI: N = 28, AD: N = 21). AIBL participant CSF and plasma samples were selected given biospecimen availability.

2.6 Assays and analytics

The set-up of the Amyblood (Simoa) assay was essentially as described in Thijssen et al. In short, C-terminal monoclonal antibodies (mAb), ADx102 and ADx103, are coupled to the paramagnetic carboxylated beads. mAb ADx101 was used as detection antibody in biotinylated form, with an antibody/biotin ratio of 32. Samples were diluted respectively 4 and 20 times for ADx204 and ADx203. Both assays were performed on the automated Quanterix Simoa HD-X platform using a two-step protocol (80-7 cadences).

2.7 Plasma p-tau assay

In the plasma p-tau protocol the phospho-specific mAbs ADx252 and ADx253 were conjugated to paramagnetic beads. ADx252 is specific to p-tau181 and non-reactive toward p-threonine175 (p-tau175) or p-tau231/p-serine235 (p-S235). ADx253 has a specificity toward p-tau231 and absence of reactivity toward p-S235 or p-tau181/175. In addition, the phosphorylation of additional phospho-sites did not affect the reactivity (Figures S1 and S2 in supporting information). Detection of p-tau was done using a N-terminal-specific tau mAb ADx204 in biotinylated form, that recognizes all tau forms except those phosphorylated at tyrosine1830 (ADx204 biotin/ratio of 32 for p-tau181 assay and 80-7 cadences). After 8 minutes of centrifugation at 10,000 x g, plasma samples were diluted five-fold and were run on the Quanterix Simoa HD-X platform using a two-step protocol of 80-14 cadences for the p-tau181 assay and 80-7 cadences for p-tau231. Calibration of both p-tau assays was done with a single synthetic peptide covering the relevant antibody epitopes. The seven calibrator points ranged between 50 pg/ml and 0.78 pg/ml, and 50 pg/ml and 0.39 pg/ml respectively, for p-tau181 and p-tau231. A five-parameter curve-fit algorithm with 1/Y2 weighting was used to convert average enzymes per bead into p-tau concentrations. Details of the assay specifications are described in Table S2 in supporting information.
TABLE 1 Study demographic characteristics

	Total sample	Aβ−	Aβ+	P-value
N (%)	233	142 (61%)	91 (39%)	
Sex male, N (%)	124 (53%)	72 (51%)	52 (57%)	0.34
Mean age, years (SD)	72.9 (6.1)	72.4 (6.3)	73.5 (5.8)	0.18
APOE ε4 carriage, N (%)	74 (32%)	26 (18%)	48 (53%)	<0.0001
Tracer florbetapir N %	60 (26%)	44 (26%)	16 (26%)	
Tracer flutemetamol N %	73 (31%)	42 (31%)	31 (31%)	
Tracer NAV/PiB N %	100 (43%)	56 (43%)	44 (43%)	0.069
Mean CL (SD)	34.2 (45.2)	1.8 (9.6)	80 (34.9)	<0.0001
Diagnosis CN N %	168 (72%)	124 (53%)	44 (19%)	
Diagnosis MCI N %	34 (15%)	16 (7%)	18 (8%)	
Diagnosis AD N %	31 (13%)	2 (1%)	29 (12%)	<0.0001
Median MMSE, (MAD)	28 (1.5)	29 (1.5)	28 (3)	<0.0001
Mean AIBL PACC (SD)	−0.62 (1.25)	−0.19 (0.73)	−1.31 (1.58)	<0.0001
Plasma p-tau181/Aβ1-42 matching Aβ-PET N (%)	92 (93%)	57 (81%)		
Plasma p-tau181/Aβ1-42 discordant to Aβ-PET N (%)	7 (7%)	13 (19%)		

Characteristics measured at Assessment 1 and compared between Aβ-PET groups using a CL threshold at 20CL.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; AIBL, Australian Imaging, Biomarkers and Lifestyle study; APOE, apolipoprotein E; CDR-SB, Clinical Dementia Rating Sum of Boxes; CL, Centiloid; CN, cognitively normal; MAD, maximum absolute deviation; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NAV, 18F-NAV4694; PACC, Preclinical Alzheimer Cognitive Composite; PET, positron emission tomography; PiB, Pittsburgh compound B; p-tau, phosphorylated tau; SD, standard deviation.

p-tau assay phospho-specificity was assessed by checking sandwich assay reactivity using synthetic peptides containing the (non-)phosphorylated epitopes for each respective phospho-site threonine181 and/or threonine231 up to a concentration of 1000 pg/ml. Reactivity dependency of phosphorylation at other phospho-sites was also checked by using peptides with non-phosphorylation on threonine175 and serine235 up to a concentration of 1000 pg/ml (Figures S1 and 2).

Further information on sample analysis, quality control panel testing, run-to-run variability, accuracy, and intra-run precision can be found in the supporting information.

2.8 Statistical analyses

Statistical analyses were performed to test four main hypotheses: (1) determine which of the biomarkers and their ratios have the largest mean difference between Aβ-PET groups; (2) investigate the capability of each of the biomarkers and their ratios to predict Aβ-PET groups; (3) investigate how well plasma biomarkers correlate with their corresponding CSF biomarkers, and compare how well plasma biomarkers predict CSF Aβ1-42 compared to predicting Aβ-PET; and (4) using the best performing plasma biomarker, assess its ability to predict cognitive decline using both a late and early parameter of cognitive change (linear mixed effects models). Full details for the statistical analyses are in the supporting information. Only tables/plots for Assessment 1 are shown in the main text, while results from Assessment 2 are shown in supporting information.

3 RESULTS

3.1 Study demographic characteristics

Of the 233 participants with plasma collected at their first assessment, and the 100 participants with plasma taken at their second, 39% in Assessment 1 (Table 1), and 38% at Assessment 2 (Table S3 in supporting information) were Aβ-PET+. There was no difference in age or sex between the Aβ-PET groups (P>0.05); however, Aβ-PET+ participants were more likely to carry at least one apolipoprotein E (APOE) ε4 allele (P<0.0001); have higher CL values (P<0.0001); and perform worse on MMSE, the AIBL PACC score, and Clinical Dementia Rating Sum of Boxes (CDR-SB; P<0.0001). Comparisons of sample demographics for Assessment 1 are shown in Table 1, and for Assessment 2 in Table S3. Comparison of group mean biomarker levels showed large differences between Aβ-PET groups for the p-tau181 (Cohen’s D: 1.19) and
p-tau181/Aβ1-42 ratio (Cohen’s D: 1.29) at both assessments ($P<0.0001$; Table S4 in supporting information; Figure 1). Other markers such as body mass index and education were assessed; however, they were not significantly associated with Aβ-PET and as such were not considered further.

3.2 Plasma biomarkers to predict Aβ-PET

Receiver operating characteristic (ROC) analyses of plasma data to predict Aβ-PET groups at both assessments and across three CL thresholds demonstrated strong predictive capability for both the p-tau181 marker alone and its ratio with Aβ1-42 (Table 2; Tables S5, 6, and 7 in supporting information; Figure S1). Using the ratio to predict Aβ-PET groups (CL threshold at 20 CL) performed significantly better than both the p-tau181 marker alone and any combination of markers as tested via multivariate modelling. p-tau231 alone did not significantly differ from the base model and further information on the predictive capability comparisons is presented in Table S9 in supporting information. Concentrating on the p-tau181/Aβ1-42 ratio and restricting the sample set to the CN adults only (Assessment 1), predictive performance was reduced slightly (AUC complete group 0.88, CN 0.83), while in the CI subgroup it increased to 0.91. Predictive performance was similar at Assessment 2, with higher AUC values despite the smaller sample size (Table S5). Assessing the predictive capability in models using confounders age, sex, APOE ε4 allele status, and tracer showed only small improvements in AUC values (AUC [95% confidence interval] unadjusted: 0.883 [0.83–0.93], adjusted: 0.889 [0.84–0.94]). All models including plasma p-tau181 out-performed the base model ($P<0.0001$, Table S7, Figure S2 and Figure S3 in supporting information). Positive and negative predictive values for the p-tau181/Aβ1-42 ratio remained similar whether...
TABLE 2 AUC values across complete and stratified groups using CL threshold at 20

Biomarker	Complete sample	CN (95% CI)	CI (95% CI)
N(Aβ42/Aβ40)	142/91	124/44	18/47
Aβ1-42	0.705 (0.64–0.77)	0.705 (0.62–0.79)	0.741 (0.6–0.88)
Aβ1-42/1-40	0.731 (0.69–0.81)	0.728 (0.64–0.81)	0.852 (0.74–0.96)
p-tau181	0.862 (0.81–0.92)	0.808 (0.72–0.89)	0.868 (0.75–0.98)
p-tau231	0.66 (0.59–0.73)	0.646 (0.55–0.74)	0.636 (0.47–0.8)
p-tau181/Aβ1-42	0.883 (0.83–0.93)	0.832 (0.75–0.91)	0.908 (0.82–1)
p-tau231/Aβ1-42	0.713 (0.65–0.78)	0.692 (0.6–0.78)	0.696 (0.54–0.85)

Abbreviations: 95% CI: 95% confidence interval; Aβ, amyloid beta; AUC, area under the curve; CI, cognitively impaired (contains participants with either mild cognitive impairment or Alzheimer’s disease); CL, Centiloid; CN, cognitively normal; p-tau, phosphorylated tau.

using ROC models from the individual biomarkers, or from models including both biomarker and confounders age, sex, tracer, and APOE ε4 allele status at both assessments (Table S8 in supporting information).

3.3 Biomarker correlation and agreement among plasma, CSF, and PET

Associations between markers of tau and amyloid measured from plasma and CSF (Figure 2) were strongest for the p-tau181/Aβ1-42 ratio, with a Spearman’s rho value of 0.75 (P<0.0001). p-tau181 and the Aβ1-42/1-40 ratio were the next strongest with rho values of 0.53 and 0.45 (P<0.0001), while Aβ1-42 showed more variation between plasma and CSF rho = 0.32 (P<0.0001). Assessing agreement between the plotted CL values and p-tau181/Aβ1-42 ratio values binned into quadrants (Figure 3 and Figure S2) demonstrated strong agreement between the two markers. Of the 99 participants at Assessment 1 with a CL value less than 20, 92 participants (93%) were both Aβ-PET− and p-tau181/Aβ1-42 negative, while only 7 participants (7%) were Aβ-PET− and p-tau181/Aβ1-42 positive. Of the 70 participants who were Aβ-PET+; 57 participants (81%) were also p-tau181/Aβ1-42 positive, while 13 participants (19%) were Aβ-PET+ and p-tau181/Aβ1-42 negative.

3.4 Plasma versus CSF biomarkers to predict Aβ-PET status

Comparing the performance of Aβ1-42, p-tau181, and p-tau181/Aβ1-42 to predict the Aβ-PET status at each of the three thresholds (Figure S3) in plasma (measured using Simoa assays) and CSF (measured using Elecsys assays), it was clear that the Aβ1-42 assay for CSF outperformed the plasma assay (@CL15 P = 0.012, @CL20 P = 0.0003, @CL25 P = 0.0003), while the CSF p-tau181 assay performed no differently than the plasma assay (@CL15 P = 0.887, @CL20 P = 0.822, @CL25 P = 0.856). For the ratio, however, there was no difference in AUC values between the plasma and CSF assay at 15 CL (P = 0.409), with a weak but significant difference using the CL threshold at 20 (P = 0.033) but not at 25 (P = 0.051). As for Aβ-PET, ROC analyses were performed using CSF Aβ1-42 as the outcome variable (Table 5; Figure S1E and 1F). AUC values were lower for plasma biomarkers to predict CSF-Aβ compared to predicting Aβ-PET status; however, the p-tau181/Aβ1-42 ratio still had the highest AUC (0.82 [95% confidence interval: 0.71–0.89]). Differences in p-tau181 values may be attributed to the different antibodies used in the pT171 tau assays. While the Simoa assay detects an N terminal fragment the Elecsys assay detects a fragment within the a170-205 of the tau441 protein when phosphorylated at threonine 181.31

3.5 Plasma p-tau181/Aβ1-42 predicts change in cognition at both early and late stages of AD

Analyses of associations between levels of the plasma p-tau181/Aβ1-42 ratio with change in cognition over time and adjusting for age, sex, tracer, and APOE ε4 allele status showed a significant increase in CDR-SB (Figure 4D, P<0.0001) in the CI group, a significant increase in CDR-SB (Figure 4C, P = 0.015) in the CN group and a significant decrease in the AIBL PACC score in the CN group over time (Figure 4A, P = 0.0002). While there was a significant change for the PACC score over time in the CI group, there was no difference between the slopes for low/high p-tau181/Aβ1-42 ratio groups (Figure 4B). Repeating these analyses using the CSF p-tau181/Aβ1-42 ratio showed only the CDR-SB to have a significant difference in the change in cognition for those with a higher p-tau181/Aβ1-42 ratio compared to a low p-tau181/Aβ1-42 ratio in the CI group (Figure S4D, P = 0.003).

4 DISCUSSION

In the current study we have used the Amyblood assay on the ultra-sensitive Simoa platform to measure, in the AIBL cohort, plasma Aβ1-40 and Aβ1-42, and a prototype assay for measuring p-tau181 and p-tau231, to determine that p-tau181/Aβ1-42 ratio is the highest
FIGURE 2 Correlation between plasma and CSF biomarkers. Sample size for correlation plots at Assessment 1 was N = 155. Linear fit lines are drawn irrespective of Aβ-PET status. Red points represent participants who were Aβ-PET⁺; blue points represent participants who were Aβ-PET⁻. Circle points represent those participants who were CN, square points represent those participants with MCI, triangle points represent those participants with AD. A, Plasma versus CSF Aβ₁₋₄₂. B, Plasma versus CSF Aβ₁₋₄₂/₁₋₄₀. C, Plasma versus CSF pTau181. D, Plasma versus CSF pTau181/Aβ₁₋₄₂. Aβ, amyloid beta; AD, Alzheimer’s disease; CN, cognitively normal; CSF, cerebrospinal fluid; MCI, mild cognitive impairment; PET, positron emission tomography; p-tau, phosphorylated tau.

performing test compared to individual measurements in predicting amyloid-positive status. Moreover, we observed that only the plasma p-tau181/Aβ₁₋₄₂ ratio was correlated strongly with the CSF p-tau181/Aβ₁₋₄₂ ratio, and that this plasma ratio predicted future cognitive decline within the CN subgroup for PACC, and the CI subgroup for CDR-SB.

In a cohort of 233 participants, comprising CN, MCI, and AD participants, the p-tau181/Aβ₁₋₄₂ ratio yielded an AUC of 0.91 for determining amyloid positivity when analyzed against a PET amyloid threshold of 25 CL. When separated into CN and CI cohorts, the AUCs remained very high (CN = 0.87, CI = 0.91). The AUCs improved as the CL threshold was increased. This compares favorably with other Simoa Aβ and p-tau analyses whose AUCs range between 0.66 to 0.88, and is similar to AUCs for the only current US Food and Drug Administration (FDA)-approved plasma test for determining amyloid positivity, which in a cohort of predominately CDR-SB 0 had an AUC of 0.88 and 0.94 when run without and with other covariates of age and APOE ε4 on a mass spectrometry platform. In the AIBL study cohort, addition of APOE ε4, sex, age, and PET tracer only marginally improved the performance of the plasma test, potentially reducing the need for measuring other parameters when used as a trial-screening tool. Analyses incorporating p-tau181 improved significantly, although mildly, to the addition of covariates, possibly related to the age-dependent accumulation that CSF tau is known to display. To our knowledge, only one other study investigated the ratio of p-tau181/Aβ₁₋₄₂ in plasma in relation to Aβ-PET, which produced an AUC of 0.89 in both CN and MCI participants. The current work, conducted in a larger cohort and in a different ethnic group, supports the utility of this measurement.
mulation pathway. This accumulation pathway, which is non-linear in accumulation over the initial 20-year preclinical phase, and is independent of the individual’s starting age, requires biomarkers that can detect concurrent pathological hallmarks, including accumulation of p-tau, to aid understanding of the near-term risk of phenotypic cognitive decline. Analyses here into longitudinal cognitive outcomes with up to 10 years follow-up, showed that the ratio was able to identify those with early cognitive change as demonstrated via the AIBL PACC, and showed a clear separation in the CDR-SB in both CN and CI groups. The ability to detect cognitive change in those classed as CN further demonstrates the ratio’s capacity to detect the minority of this population with amyloid, thus acting as an alternative to PET imaging. For CDR-SB, those with the high ratio performed significantly worse compared to those with a low ratio, suggesting that even once impaired, participants’ cognitive performance can be staged as per their ratio level; a very useful trait for clinical trial recruitment. These data suggest that the ratio may assist in the determination of disease chronicity and should be investigated across more longitudinal plasma collection points. The p-tau181 analyte alone was the next best performing measurement, while the p-tau231 analyte did not perform better than the Aβ measurements, nor add anything when in ratio with the Aβ for correlating with Aβ-PET or CSF-Aβ levels. Further longitudinal analysis, and incorporation of tau-PET measurements into the analysis may reveal temporal specificities for changes in p-tau231 more subtle than what can be detected in this work.

A limitation of the current study is that some of the subgroup analyses were performed on small groups of individuals. At Assessment 1, there were very few participants in the CI group that were Aβ-PET negative, reflecting the AIBL study design. Furthermore, subgroup analyses for participants with samples at Assessment 2 were small in size and results should be taken with caution.

Presently the FDA has provisionally approved the first immunogenic anti-amyloid therapy for mild AD and there is a need for cheap, non-invasive blood tests to not only predict amyloid burden to assist in identifying participants at risk for developing AD, and to confirm AD diagnosis, but to aid in determining the temporal location along the biomarker accumulation pathway. The plasma p-tau181/Aβ1-42 ratio predicts here Aβ-PET status but also hints at predicting near-term future cognitive decline more accurately than Aβ-PET status alone.

ACKNOWLEDGMENT
This work was supported through AIBL and ADx Neurosciences.

CONFLICTS OF INTEREST
Eugeen Vanmechelen is cofounder and shareholder of ADx NeuroSciences. Erik Stoops is employee and shareholder of ADx NeuroSciences. Jeroen Vanbrabant, Nele Dewit, and Kimberley Mauroo are employees of ADx NeuroSciences. Paul Maruff is a full-time employee of Cogstate Ltd. Christopher C. Rowe has received research grants from NHMRC, Enigma Australia, Biogen, Eisai, and Abbvie; he is on the scientific advisory board for Cereveau Technologies; and
Cognitive decline in CDR-SoB and the AIBL PACC score using the plasma between CN/CI groups and the p-tau181/\(A\beta_{1-42}\) ratio as measured by linear mixed effects models. Time on the x-axis refers to the first AIBL assessment whereby the plasma was collected. Sample sizes for cognitive collection points for the plasma sample set are shown in Table S1. The binary p-tau181/\(A\beta_{1-42}\) ratio was created using the Youden’s Index (1.48) created from the ROC model using plasma p-tau181/\(A\beta_{1-42}\) versus \(A\beta_{PET}\) using a CL threshold at 20 CL. Threshold for the plasma p-tau181/\(A\beta_{1-42}\) ratio was 1.483.

\(A\beta\), amyloid beta; AD, Alzheimer’s disease; AIBL, Australian Imaging, Biomarkers and Lifestyle study; CDR-SoB, Clinical Dementia Rating Sum of Boxes; CL, Centiloid; CN, cognitively normal; CSF, cerebrospinal fluid; MCI, mild cognitive impairment; PACC, Preclinical Alzheimer Cognitive Composite; PET, positron emission tomography; p-tau, phosphorylated tau; ROC, receiver operating characteristic.

consulted for Prothena, Eisai, Roche, and Biogen Australia. The other authors did not report any conflict of interest. Author disclosures are available in the supporting information.

ORCID

James D. Doecke https://orcid.org/0000-0003-2863-0293

REFERENCES

1. Busche MA, Hyman BT. Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat Neurosci. 2020;23:1183-93.
2. Rowe CC, Pejoska S, Mulligan RS, et al. Head-to-head comparison of \(11\)C-PiB and \(18\)F-AZD4694 (NAV4694) for beta-amyloid imaging in aging and dementia. J Nucl Med. 2013;54:880-6.
3. Roberts BR, Lind M, Wagen AZ, et al. Biochemically-defined pools of amyloid-beta in sporadic Alzheimer’s disease: correlation with amyloid PET. Brain. 2017;140:1486-98.
4. Salloway S, Gamez JE, Singh U, et al. Performance of [(18)F]Flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA recommendations for the neuropathologic diagnosis of Alzheimer’s disease. Alzheimers Dement (Amst). 2017;9:25-34.
5. Jack CR, Jr., Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539-47.
6. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol. 2015;14:114-24.
7. Jack CR, Jr., Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535-62.
8. Pascoal TA, Shin M, Kang MS, et al. In vivo quantification of neurofibrillary tangles with [(18)F]MK-6240. Alzheimers Res Ther. 2018;10:74.
9. Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-\(\beta\) biomarkers for Alzheimer’s disease. Nature. 2018;554:249-54.
10. Barthelemy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. 2020;217.
11. Karikari TK, Pascoa TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422-33.

12. Thijssen EH, La Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020;26:387-97.

13. Ashton NJ, Pascoa TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021;141:709-24.

14. Ossenkoppele R, Reimand J, Smith R, et al. Tau PET correlates with different Alzheimer’s disease-related features compared to CSF and plasma p-tau biomarkers. EMBO Mol Med. 2021;13:e14398.

15. Doecke JD, Ward L, Burnham SC, et al. Elecsys CSF biomarker immunoassays demonstrate concordance with amyloid-PET imaging. Alzheimers Res Ther. 2020;12:36.

16. Campbell MR, Ashrafzadeh-Kian S, Petersen RC, et al. P-tau/Abeta42 and Abeta42/40 ratios in CSF are equally predictive of amyloid PET status. Alzheimers Dement (Amst). 2021;13:e12190.

17. van Harten AC, Wiste HJ, Weigand SD, et al. Detection of Alzheimer’s disease amyloid beta 1-42, p-tau, and t-tau assays. Alzheimers Dement. 2022;18(4):635-644.

18. Willems EAJ, Tijms BM, van Berckel BNM, et al. Comparing CSF amyloid-beta biomarker ratios for two automated immunoassays, Elecsys and Lumipulse, with amyloid PET status. Alzheimers Dement (Amst). 2021;13:e12182.

19. Chong JR, Ashton NJ, Karikari TK, et al. Plasma P-tau181 to Abeta42 ratio is associated with brain amyloid burden and hippocampal atrophy in an Asian cohort of Alzheimer’s disease patients with concomitant cerebrovascular disease. Alzheimers Dement. 2021;17:1649-62.

20. Fowler CJ, Rainey-Smith SR, Bird S, et al. Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer’s Disease. J Alzheimers Dis Rep. 2021;5:443-68.

21. Bransby L, Lim YY, Ames D, et al. Sensitivity of a Preclinical Alzheimer’s Cognitive Composite (PACC) to amyloid beta load in preclinical Alzheimer’s disease. J Clin Exp Neuropsychol. 2019;41:591-600.

22. Burnham SC, Bourgeat P, Dove V, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 2016;15:1044-53.

23. Bourgeat P, Dore V, Fripp J, et al. Implementing the centiloid transformation for 11c-PiB and β-amyloid 18f-PET tracers using CapAIBL. Neurimage. 2018;183:387-93.

24. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1-15.e1-4.

25. Rowe CC, Jones G, Dove V, et al. Standardized expression of 18F-NAV4694 and 11C-PiB-β-amyloid PET results with the Centiloid Scale. Journal of Nuclear Medicine. 2016;57:1223-7.

26. Krishnasad N, Villemagne VL, Dove V, Rowe CC. Advances in Brain Amyloid Imaging. Semin Nucl Med. 2021;51:241-52.

27. Amadoru S, Dove V, McLean CA, et al. Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer’s disease. Alzheimers Res Ther. 2020;12:22.

28. La Joie R, Ayakta N, Seeley WW, Borys E, et al. Multisite study of the relationships between antemortem [(11)C]PiB-PET Centiloid values and postmortem measures of Alzheimer’s disease neuropathology. Alzheimers Dement. 2019;15:205-16.

29. Thijssen EH, Verberk IMW, Vanbrabant J, et al. Highly specific and ultrasensitive plasma test detects Abeta(1-42) and Abeta(1-40) in Alzheimer’s disease. Sci Rep. 2021;11:9736.

30. Bayoumy S, Verberk IMW, den Dulk B, et al. Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231. Alzheimers Res Ther. 2021;13:198.

31. Lifke V, Kollmorgen G, Manuliova E, et al. Elecsys(R) Total-Tau and Phospho-Tau (181P) CSF assays: Analytical performance of the novel, fully automated immunoassays for quantification of tau proteins in human cerebrospinal fluid. Clin Biochem. 2019;72:30-8.

32. Chong JR, Ashton NJ, Karikari TK, et al. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer’s disease: a focused review on recent advances. J Neurol Neurosurg Psychiatry. 2021;92:1231-41.

33. Verberk IMW, Slot RE, Verfaillie SCJ, et al. Plasma Amyloid as Pre-screener for the Earliest Alzheimer Pathological Changes. Ann Neurol. 2018;84:648-58.

34. De Meyer S, Schaeverbeke JM, Verberk IMW, et al. Comparison of ELISA- and Simoa-based quantification of plasma Abeta ratios for early detection of cerebral amyloidosis. Alzheimers Res Ther. 2020;12:162.

35. Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma beta-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93:e1647-e59.

36. Sjogren M, Vanderstichele H, Agren H, et al. Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clin Chem. 2001;47:1776-81.

37. Wu X, Xiao Z, Yi J, et al. Development of a Plasma Biomarker Diagnostic Model Incorporating Ultrasensitive Digital Immunoassay as a Screening Strategy for Alzheimer Disease in a Chinese Population. Clin Chem. 2021;67:1628-39.

38. Harari O, Cruchaga C, Kauwe JS, et al. Phosphorylated tau-Abeta42 ratio as a continuous trait for biomarker discovery for early-stage Alzheimer’s disease in multiplex immunoassay panels of cerebrospinal fluid. Brain Psychiatry. 2014;75:723-31.

39. Blennow K, Shaw LM, Stomrud E, et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Abeta(1-42), pTau and tTau CSF immunoassays. Sci Rep. 2019;9:19024.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting information section at the end of this article.