Antidepressive Mechanisms of Probiotics and Their Therapeutic Potential

Shin Jie Yong, Tommy Tong, Jactty Chew and Wei Ling Lim*

Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia

The accumulating knowledge of the host-microbiota interplay gives rise to the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom communication between the gut microbiota and the brain. This communication process involves the endocrine, immune and neurotransmitters systems. Dysfunction of these systems, along with the presence of gut dysbiosis, have been detected among clinically depressed patients. This implicates the involvement of a maladaptive MGB axis in the pathophysiology of depression. Depression refers to symptoms that characterize major depressive disorder (MDD), a mood disorder with a disease burden that rivals that of heart diseases. The use of probiotics to treat depression has gained attention in recent years, as evidenced by increasing numbers of animal and human studies that have supported the antidepressive efficacy of probiotics. Physiological changes observed in these studies allow for the elucidation of probiotics antidepressive mechanisms, which ultimately aim to restore proper functioning of the MGB axis. However, the understanding of mechanisms does not yet complete the endeavor in applying probiotics to treat MDD. Other challenges remain which include the heterogeneous nature of both the gut microbiota composition and depressive symptoms in the clinical setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical antidepressants, in terms of residual symptoms, side effects and stigma involved. This review outlines antidepressive mechanisms of probiotics based on the currently available literature and discusses therapeutic potentials of probiotics for depression.

Keywords: microbiota-gut-brain axis, gut microbiota, major depressive disorder, probiotics, inflammation

Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine (serotonin); 5-HP, 5-hydroxytryptamine; BBB, blood-brain barrier; BDNF, brain-derived neurotropic factor; CgA, salivary chromogranin A; CORT, corticosterone; CREB, cAMP response element binding protein; CRP, C-reactive protein; CUMS, chronic unpredictable mild stress; DA, dopamine; DC, dihydroxyphenylacetic acid; EIF2, eukaryotic initiation factor 2; GABA, gamma-aminobutyric acid; GLP-1, glucagon-like peptide-1; GPs, glutathione peroxidase; GR, glucocorticoid; H2O2, hydrogen peroxide; HPC, hippocampus; HVA, homovanillic acid; IBS, irritable bowel syndrome; IDO, indolamine 2,3-dioxygenase; IFN, interferon; IgA, immunoglobin A; IL, interleukin; KA, kynurenic acid; KYN, kynurenine; LPS, lipopolysaccharides; MAOA, monoamine oxygenase A; MCP-1, monocyte chemotactic protein-1; MDD, major depressive disorder; MR, mineralocorticoid; MS, maternal separation model; NE, norepinephrine; PFC, prefrontal cortex; PGE2, prostaglandin E2; REM, rapid eye movement; SCFA, short-chain fatty acids; SNRI, serotonin-noradrenaline reuptake inhibitor; SOD, superoxide dismutase; SSRI, selective serotonin reuptake inhibitor; TLR, toll-like receptor; TNF-α, tumor necrosis factor-α; Tph1, tryptophan hydroxylase 1; TRANCE, TNF-related activation-induced cytokine; TRP, tryptophan.
INTRODUCTION

Approximately 10^{14} microbes, also known as gut microbiota, reside in the human gastrointestinal tract. The majority of these microbes belong to the Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria phyla. The gut microbiota flourishes in a symbiotic alliance with the host and, as such, has eminent regulatory effects on the host physiology. The gut microbiota actively engages with the proper development and functioning of both the immune system and brain. This is mediated by the microbiota–gut–brain (MGB) axis that lays the foundation for the intricate communicative pathways between gut microbiota and the nervous, immune and endocrine systems. However, the diversity and richness of gut microbiota are susceptible to change based on the host’s lifestyle. An adverse change induces a gut dysbiosis which disrupts the symbiosis maintained by the MGB axis. Indeed, a gut dysbiosis has been linked to various health conditions, such as obesity, IBS, schizophrenia, Parkinson’s disease and MDD (Sherwin et al., 2016; Thursby and Juge, 2017; van de Guchte et al., 2018).

Major depressive disorder is currently the leading cause of disability worldwide and is expected to outrank heart diseases as the number one disease burden by 2030 (Reddy, 2010; Tucci and Moukaddam, 2017). According to the Diagnostic and Statistical Manual of Mental Disorders-5, MDD is diagnosed when a person experiences most of the following symptoms for at least 2 weeks: depressed mood, anhedonia, excessive guilt, suicidal ideation, changes in appetite and sleep, psychomotor retardation, poor concentration and fatigue. Among these criteria, either depressed mood or anhedonia (or both) must be present for a diagnosis of MDD (American Psychiatric Association, 2013). In this review, the term “depression” would be used to refer to symptoms that characterize MDD.

A causal relationship potentially exists between the gut microbiota and MDD. Germ-free (GF) rodents developed depressive-like behaviors following fecal microbiota transplantation from MDD patients, but not from healthy people (Kelly et al., 2016; Zheng et al., 2016). As compared to healthy individuals, MDD patients have a different gut microbiota profile. The decrease in Faecalibacterium, Bifidobacterium, Lactobacillus (Aizawa et al., 2016), and Dialister (Kelly et al., 2016), and increase in Clostridium, Streptococcus, Klebsiella, Oscillibacter, Allistipes (Naseribafrouei et al., 2014; Jiang et al., 2015; Lin et al., 2017; Rong et al., 2019), Eggerthella, Holdemania, Gelria, Turicibacter, Paraprevotella, and Anaerofilum (Kelly et al., 2016) genera have been found among MDD patients. This shift in the gut microbiota composition may contribute to a shift in the regulation of the host physiology (Luan et al., 2017). It is, thus, worthwhile to tackle MDD from the MGB axis standpoint, with an emphasis on the gut microbiota.

Probiotics are microbes (usually lactic acid bacteria such as Lactobacilli and Bifidobacteria) that benefit the host physiology upon ingestion. Probiotics are marketed in the form of capsules, powder or fermented products. The global market size of probiotics amount to billions and is increasing annually due to consumers’ interest in optimizing their health with functional foods (Di Cerbo and Palmieri, 2015). Probiotics have been utilized to modulate the MGB axis in an attempt to treat diseases, including MDD. Meta-analyses and systematic reviews have already supported the efficacy of probiotics in reducing clinical depression and depressive-like symptoms in MDD patients and healthy individuals, respectively (Huang et al., 2016; Pirbaglou et al., 2016; Wang et al., 2016; McKeon et al., 2017; Wallace and Milev, 2017).

To what extent are probiotics viable tools to treat MDD/depression? This review addresses this question by first outlining the workings of MGB axis and process by which this axis becomes maladaptive, leading to the development of depression. Antidepressive mechanisms of probiotics are further elucidated by drawing parallels between the physiological outcomes that accompanied the behavioral changes to the MGB axis from animal and human research. Lastly, in light of the heterogeneous nature of both the gut microbiota composition and depression subtypes in the clinical setting, challenges and potentials in translating probiotics for clinical use are discussed.

THE MGB AXIS AND DEPRESSION

Signaling Pathways of the MGB Axis: Neural and Humoral Routes

The first point of contact between the gut microbiota and host nervous system is likely via the enteric nervous system (ENS). The ENS has been described as “the second brain” due to its neuronal complexity on par with the brain and its ability to function as an independent, discrete unit to regulate gut-related activities and the immune system (Furness, 2012; Breit et al., 2018). Without gut microbiota, the excitability of enteric neurons would likely be attenuated, based on data observed in GF mice (McVey Neufeld et al., 2013). Through the ENS, gut microbiota and the brain communicate bidirectionally through neural and humoral (systemic circulation) pathways (Luan et al., 2017). Parasympathetic vagus afferents carry neural information from internal organs, including the gut, to the brain (Breit et al., 2018). The vagus nerve also consists of motor neurons that innervate nearly all enteric neurons (Powley, 2000). This enables the brain to influence the activity of ENS to some extent, particularly the state of intestinal permeability and gut inflammation. Sympathetic spinal nerves also connect enteric neurons to the brain, albeit to a lesser extent than vagal nerves (Lomax et al., 2010; Breit et al., 2018). Additionally, the humoral route allows microbial metabolites to enter the systemic circulation and exert its effects elsewhere, including the brain. Likewise, the brain also sends chemical messengers, such as cytokines and glucocorticoids, via the humoral route to regulate the gut physiology (Luan et al., 2017).

Signaling Mechanisms of the MGB Axis: Immune, Endocrine, and Neurotransmitter Systems

The gastrointestinal tract contains approximately 70% of the immune system (Vighi et al., 2008). Immune cells express TLRs
that respond to foreign antigens, such as LPS, as they penetrate the intestinal mucosal barrier. This promptly triggers production of inflammatory cytokines, mainly ILs, tumor necrosis factor (TNF)-α and IFN-γ (Sherwin et al., 2016). These cytokines enter the brain through various pathways. The humoral pathway enables cytokines to enter circumventricular organs or permeable regions of the BBB or bind to carrier proteins that cross the BBB. The neural pathway allows gut cytokines to stimulate specific brain areas such as the brainstem, hypothalamus and limbic structures via vagus and spinal afferents. The cellular pathway allows cytokines to be transported into the brain by the action of monocytes or macrophages. These cytokines could also bind to receptors on astrocytes and microglia, and subsequently trigger cytokine production within the brain (Schiepers et al., 2005; Miller and Raison, 2016).

When proinflammatory signals reach the brain, the hypothalamic-pituitary-adrenal (HPA) axis, a sympathetic-neuroendocrine system, is activated to restore homeostasis. In response to stress, the hypothalamic paraventricular nucleus (PVN) synthesizes and releases corticotropin-releasing factor (CRF) to stimulate the anterior pituitary gland to release adrenocorticotropic hormone (ACTH) into the systemic circulation. ACTH stimulates the adrenal cortex to release glucocorticoids (cortisol in humans and corticosterone in rodents) which inhibit the release of CRF, establishing a negative feedback loop. Glucocorticoids are core effectors of the HPA axis that travel by the humoral route to exert its adaptive effects elsewhere; for instance, to reduce gut inflammation (Tsigos and Chrousos, 2002; Schiepers et al., 2005).

Furthermore, neurotransmitters in the brain serve indispensable roles in maintaining proper brain functions. Neurotransmitters such as GABA, glutamate (Glu), serotonin (5-HT), DA, NE, histamine and acetylcholine (ACh) are known to be synthesized by the gut microbiota (Oleskin et al., 2016). Notably, Lactobacillus, a prominent probiotic genus, produces multiple neurotransmitters in a species-dependent manner in vitro (Table 1). It should be noted that gut-derived neurotransmitters are functionally different from brain-derived neurotransmitters (Mittal et al., 2017). The bioavailability of precursors for these neurotransmitters is also regulated by the gut microbiota. For example, carbohydrate-fermenting microbes secrete butyrate (a SCFA) that stimulates 5-HT synthesis from intestinal enterochromaffin cells (ECs) (Reigstad et al., 2015; Yano et al., 2015; Lund et al., 2018). In contrast, Clostridia metabolites, such as 4-creol and 4-hydroxyphenylacetate (4-HPA), inhibit dopamine-β-hydroxylase (an enzyme that converts DA to NE in the brain) (Shaw, 2017). These microbial neuroactive molecules likely modulate local ENS signaling, which ultimately influence the MGB axis (Karl et al., 2018).

Dysregulated MGB Axis in Depression: Chronic Stress Response Loop

Acute psychological stress increases the release of ACh from cholinergic nerves (Saunders et al., 1997; Kiliaan et al., 1998) and glucocorticoids from the HPA axis (Alonso et al., 2012; Zheng et al., 2013; Vanuytsel et al., 2014), both of which loosen tight junctions of the intestinal barrier (Figure 1). Other stressors such as poor diet, sleep deprivation, antibiotics, environmental pollutants and excessive exercise also increase the intestinal permeability (Karl et al., 2018). Additionally, exposure to stress stimulates sympathetic spinal nerves to release NE into the gut which expedites quorum sensing systems and iron uptake of bacteria, leading to increased virulence and growth of pathogenic bacteria (e.g., *Escherichia coli*, *Salmonella*, *Campylobacter*, etc.) (Lomax et al., 2010; Freestone, 2013). These factors facilitate penetration of bacteria and their toxins, such as LPS, through the weakened intestinal barrier. Administration of LPS increased proinflammatory cytokines and caused anxiety and depression in healthy males in a dose-dependent manner (Grigoleit et al., 2011). This phenomenon is only transient due to the adaptive response of the immune system and HPA axis. However, chronic stress prevents this homeostatic restoration and causes prolonged inflammation and HPA axis overactivity, both of which aggravate the disrupted intestinal barrier. During this process, chronic inflammation renders the immune system insensitive to inhibitory signals from glucocorticoids (de Punder and Pruimboom, 2015). Excess proinflammatory cytokines, in turn, disrupt the negative feedback inhibition of circulating glucocorticoids of the HPA axis (Schiepers et al., 2005; Miller et al., 2009). Indeed, MDD patients often show increased intestinal barrier permeability (Stevens et al., 2018; Calarge et al., 2019; Ohlsson et al., 2019) and elevated serum antibodies against LPS (Maes et al., 2008).

Excessive glucocorticoids hyperactivate monoamine oxidases (MAOs; enzymes that degrade 5-HT, NE, and DA) (Grunewald et al., 2012). An overactive HPA axis can also induce gut dysbiosis (Murakami et al., 2017) and impairment of brain neurotransmitter systems (Pacak et al., 1993; Smith et al., 1995; Lopez et al., 1998; Hewitt et al., 2009). Higher baseline levels of cortisol, an indicator of an overactive HPA axis, were detected in more than 70% of MDD patients (Vreeburg et al., 2009; Lok et al., 2012). Proinflammatory cytokines and glucocorticoids upregulate indoleamine 2,3-dioxigenase (IDO) and tryptophan-2,3-dioxigenase (TDO) enzymes, respectively (Schimke et al., 1965; Young, 1981). Both enzymes metabolize TRP into KYN and quinolinic acid, which reduce the bioavailability of TRP to cross the BBB, thereby lowering 5-HT synthesis (Reus et al., 2015). This is evidenced by low plasma TRP levels that were also correlated to a heightened proinflammatory state found in MDD patients (Maes et al., 1993, 1994). Furthermore, proinflammatory cytokines can decrease levels of DA, 5-HT and NE in the brain by upregulating their reuptake via presynaptic transporters and downregulating enzymatic cofactors required for their synthesis (Miller and Raison, 2016). Indeed, administration of cytokines consistently induced neurotransmitter imbalances in the brain and behavioral changes that are reminiscent of depression in animals and humans (Miller et al., 2009). Similarly, higher levels of proinflammatory cytokines were observed in depressed individuals as reported using meta-analyses of the data available in the literature (Howren et al., 2009; Dowlati et al., 2010).

A stress-induced inflamed gut adversely alters the relative abundances of preexisting bacteria in the gut (Figure 1). Acute psychological stress stimulated the release of inflammatory
TABLE 1 | The neurotransmitters produced by probiotics and their regulatory functions.

Neurotransmitter	Regulatory functions	Probiotics	References
Gamma-aminobutyric acid (GABA)	Hippocampal neurogenesis, HPA axis regulation, Mood	L. brevis, L. rhamnosus, L. reuteri, L. paracasei, L. plantarum, L. bulgaricus, L. helveticus, L. casei	Komatsuzaki et al. (2005), Luscher et al. (2011), Stromeck et al. (2011), Barrett et al. (2012), Liao et al. (2013), Lin (2013), Oleskin et al. (2014), Yunes et al. (2016)
Serotonin (5-HT)	Impulsivity, Aggression, Appetite, Circadian rhythm, Learning, HPA axis regulation, Mood	L. plantarum, L. helveticus	Özogul (2011), Özogul et al. (2012), Oleskin et al. (2014), Carhart-Harris and Nutt (2017)
Dopamine (DA)	Motivation, Concentration, Psychomotor speed, Ability to experience pleasure, Mood	L. plantarum, L. helveticus, L. casei	Leonard (2001), Montgomery and Briley (2011), Oleskin et al. (2014)
Norepinephrine (NE)	Aggression, Cognitive function, Sleep, Sympathetic activity, HPA axis regulation, Mood	L. helveticus, L. casei, L. bulgaricus	Leonard (2001), Montgomery and Briley (2011), Oleskin et al. (2014)
Glutamate (Glu)	Gastrointestinal reflexes, Intestinal motility, HPA axis regulation, Mood	L. rhamnosus, L. reuteri, L. plantarum, L. paracasei, L. helveticus, L. casei, L. bulgaricus	Weingand-Ziadé et al. (2003), Zalán et al. (2009), Stromeck et al. (2011), Zareian et al. (2012), Julio-Pieper et al. (2013), Oleskin et al. (2014)
Histamine	Motivation, Learning, Memory, Appetite, Sleep, Sympathetic activity, Mood	L. plantarum, L. reuteri	Kano et al. (2004), Özogul et al. (2012), Thomas et al. (2012), Tomealba et al. (2012), Hemarajata et al. (2013)
Acetylcholine (ACh)	Cognition, Synaptic plasticity, Analgesia, Sleep, HPA axis regulation, Mood	L. plantarum	Rowatt (1948), Girvin and Stevenson (1954), Pytka et al. (2016)

Mediators that were correlated with the lowered abundance of *Coprococcus*, *Pseudobutyryrivibrio*, *Dorea*, and *Lactobacillus* in mice. This, in turn, allowed the proliferation of *Clostridium* species in the gut (Bailey et al., 2011). The gut microbiota of chronic-stressed mice also deviated from the baseline, whereby an increase in proinflammatory bacteria, such as *Helicobacter* and *Streptococcus*, and a decrease in butyrate-producing bacteria, such as *Roseburia* and *Lachnospiraceae* species, were observed (Gao et al., 2018). Altered gut microbiota composition consequently exacerbates gut inflammation and further increases intestinal permeability and production of proinflammatory cytokines (van de Guchte et al., 2018). The precise mechanism underlying vulnerability of certain bacteria to inflammation remains poorly understood. It is hypothesized that inflammation disrupts β-oxidation of intestinal epithelial cells (IECs, both enterocytes and colonocytes) to increase oxygen content in the gut lumen. This promotes formate oxidation that favors the growth of facultative anaerobes, such as *E. coli*, that are pathogenic and inflammatory at the cost of obligate anaerobes, such as Bacteroides and Firmicutes (Hughes et al., 2017).

A dysregulated gut microbiota translates to a shift in the production of neuroactive metabolites and alters host neurotransmitter circuitry. This corresponds with disrupted levels of neurotransmitters in the brain of GF mice (Diaz Heijtz et al., 2011; Neufeld et al., 2011; Clarke et al., 2013; Pan et al., 2019). Altered neurotransmitter profile (e.g., GABA, Glu, 5-HT,
DA, and NE) has been associated with the pathophysiology of depression. Therefore, pharmaceutical antidepressants function to restore synaptic levels of neurotransmitters (Harald and Gordon, 2012). In addition, impaired neurotransmitter systems within the ENS may alter gut motor function. This has direct implications as gut motility is a determining factor in the size and diversity of gut microbiota (Quigley, 2011). Therefore, chronic stress sets up a vicious cycle of increased intestinal permeability, chronic inflammation, hyperactive HPA axis, altered gut microbiota profile and neurotransmitter imbalances – forming a maladaptive MGB axis (Figure 1). Furthermore, MDD patients perceive stress as more threatening and challenging to cope with compared to healthy individuals (Farabaugh et al., 2004; Salomon et al., 2009). These negative emotions can increase their sensitivity to stressors, such as an elevated cortisol response (Mendonca-de-Souza et al., 2007). To restore this malfunctioned axis, probiotics have been demonstrated by meta-analyses and systematic reviews as a potential treatment for MDD/depression (Huang et al., 2016; Pirbaglou et al., 2016; Wang et al., 2016; McKeen et al., 2017; Wallace and Milev, 2017). Potential antidepressive mechanisms of probiotics are elucidated in the following section.

DELINEATING THE ANTIDEPRESSIVE MECHANISMS OF PROBIOTICS

Probiotics secrete a wide range of signaling molecules that operate via distinct pathways to exert their effects, be it antidepressive, immunomodulatory or modulation of neurotransmission (Luan et al., 2017). This review classifies probiotic-associated signaling molecules into four types: neurotransmitters, bacterial secreted proteins, butyrate and other bioactive molecules (Figure 2). Some probiotics can secrete signaling molecules of different types. In this regard, the mechanisms of individual probiotics will be presented in the order of pertinence and similarity to each other.

Lactobacillus rhamnosus

Lactobacillus rhamnosus JB-1, the typical experimental strain of *L. rhamnosus*, was formerly referred to as *Lactobacillus reuteri*. Orally administered *L. rhamnosus* reduced depressive-like behaviors in normal, healthy mice (Bravo et al., 2011) and chronic-stressed mice (McVey Neufeld et al., 2018). Postpartum women (Slykerman et al., 2017) and obese individuals (McVey Neufeld et al., 2018) that were supplemented with *L. rhamnosus* reported lower depressive thoughts compared to the control group. In vagotomized rats, behavioral and physiological benefits of *L. rhamnosus* were abolished (Bravo et al., 2011). This substantiates the vagus nerve as an essential conduit in the signaling pathway of *L. rhamnosus*. Introduction of *L. rhamnosus* into the gut lumen heightened the firing rate of vagus nerve and enteric neurons in mice (Perez-Burgos et al., 2013, 2014). These findings suggest that *L. rhamnosus* signals to the brain via the neural route, which may influence the central GABAergic system and HPA axis to manifest an antidepressive effect (Figure 2A). However, it is unclear whether neurotransmitters, cytokines or other molecules are involved in the neural signaling of *L. rhamnosus*.
FIGURE 2 | Signaling mechanisms underlying antidepressive effects of probiotics mediated through secretion of (A) Neurotransmitters: *L. rhamnosus* and *L. casei* secrete GABA that may signal central GABAergic system and HPA axis via the neural route. *L. brevis* secretes GABA that enhances sleep. *L. helveticus* secretes 5-HT that may signal the central 5-HT system via the neural route. *L. helveticus* also secretes NE that may affect the central NE system. *L. reuteri* secretes histamine that decreases secretion of proinflammatory cytokines by IECs. This may reduce circulating inflammatory markers, such as LPS, IL-6 and corticosterone, and subsequently prevent the inflammation-induced decrease in hippocampal BDNF. (B) Butyrate: *L. plantarum* produces butyrate that strengthens intestinal barrier and diffuses through the circulation to regulate BDNF expression and reduce inflammation in the brain. The latter consequently regulates the HPA axis and its regulator, the DA system. *C. butyricum* produces butyrate that influences central 5-HT and BDNF systems and stimulates L cell to secrete GLP-1 into the bloodstream which increases expression of GLP-1 receptors. *F. prausnitzii* produces butyrate that strengthens the intestinal barrier. *B. infantis* and *L. paracasei* promote growth of butyrate-producing bacteria. Through butyrate, *B. infantis* upregulates Tph1 activity of EC which increases circulating 5-HT and BDNF expression. Through butyrate, *L. paracasei* may influence the central 5-HT system and BDNF expression. (C) Bacterial secreted proteins: *L. gasseri* secretes gassericins that increase parasympathetic activity to facilitate sleep and improves gut microbiota composition. *B. longum* secretes serpins that alter neural activities in the brain via the neural route. *L. paracasei* secretes lactocepins that decrease proinflammatory chemokines in IECs. This lowers IDO activity which, in turn, affects the central 5-HT system and BDNF expression. (D) Other bioactive molecules: *B. infantis* secretes bioactive factors (likely polysaccharides) that decrease circulating IL-6 which affects the central NE system. *L. reuteri* secretes H$_2$O$_2$ that decreases IDO activity and circulating KYN, and dgk that inhibits the initiation of proinflammatory pathways. *B. breve* converts albiflorin into BZA which affects the Glu system via the humoral route. *L. kefiranaofaciens* secretes exopolysaccharides that have immunomodulatory and antibacterial properties, which may potentially prevent HPA axis overactivity, 5-HT, 5-hydroxytryptamine or serotonin; BDNF, brain-derived neurotrophic factor; DA, dopamine; BZA, benzoic acids; dgk, diacylglycerol kinase; ECs, enterochromaffin cells; EPS, exopolysaccharide; GABA, gamma-Aminobutyric acid; GLP-1, glucagon-like peptide-1; Glu, glutamate or glutaminergic; H$_2$O$_2$, hydrogen peroxide; HPA, hypothalamic-pituitary-adrenal; IECs, intestinal epithelial cells; IDO, indoleamine 2,3-dioxygenase; IL-6, interleukin-6; KYN, kynurenine; NE, norepinephrine; LPS, lipopolysaccharides; Tph1, tryptophan hydroxylase 1; TRP, tryptophan.
Microbial GABA, Central GABAergic System, and HPA Axis

Glutamine is a precursor to Glu while Glu is a precursor to GABA. Reduced levels of GABA and Glx (Glu + glutamine) have been consistently reported in cortical regions of MDD patients (Sanacora et al., 1999; Hasler et al., 2007; Bhagwagar et al., 2008; Moriguchi et al., 2018; Godlewsk et al., 2019). A dysfunctional glutaminergic system, that partly responsible by a decreased GABAergic tone, is also implicated in MDD (Murrough et al., 2017). N-acetyl aspartate (NAA) is regarded as a marker for neuronal vitality. In MDD patients, decreased NAA levels in the PFC and hippocampus have been detected (Gonul et al., 2006; Olvera et al., 2010; Lefebvre et al., 2017). These neurochemical (i.e., Glx, NAA, and GABA) levels in the PFC and hippocampus of mice increased when administered with L. rhamnosus (Janik et al., 2016), implicating its antidepressive potential.

Intake of L. rhamnosus altered the central mRNA expression of GABA and GABA receptors while reducing depressive- and anxiety-like behaviors in mice. These effects were also dependent on an intact vagus nerve (Bravo et al., 2011). With prebiotics, L. rhamnosus intake decreased hippocampal GABA_A2 mRNA expression in stressed mice (McVey Neufeld et al., 2017). L. rhamnosus produced GABA and Glu efficiently from microbial glutamate decarboxylase and glutaminase, respectively, in vitro (Stromeck et al., 2011; Liao et al., 2013). These biosynthetic machineries utilized by microbes to synthesize Glu and GABA are mutual in neurons (Mathews and Diamond, 2003), which support the interkingdom communication of microbial GABA (Lyte, 2011). It was demonstrated in vitro that gut microbial GABA can cross the intestinal barrier via H^+/GABA symporter (Thwaites et al., 2006; Nielsen et al., 2012). The microbial GABA may subsequently interact with GABA receptors and transporters that are widely expressed on enteric neurons and vagus afferents (Hyland and Cryan, 2010).

Administration of L. rhamnosus reduced stress-induced plasma corticosterone levels in mice that averted depression (Bravo et al., 2011; McVey Neufeld et al., 2018). This could be due to the innervation of PVN neurons by GABAergic synapses that can be desensitized by acute stress (Hewitt et al., 2009). Inhibited GABA signals allow continuous release of CRF by PVN neurons, which ultimately leads to cortisol overproduction and HPA axis overactivity (Cullinan et al., 2008). Impairment of GABA receptors also inhibits hippocampal neurogenesis, which has been shown to activate the HPA axis and induce depression in mice (Earnheart et al., 2007; Schloesser et al., 2009). Such effects may be possibly prevented by the production of GABA by L. rhamnosus.

Lactobacillus casei Strain Shirotta

Individuals with low mood reported feeling happier after consuming milk containing L. casei, but not the placebo (Benton et al., 2007). Intake of mixed-species probiotics that included L. casei also reduced clinical depression and depressive-like symptoms in MDD patients (Akkasheh et al., 2016) and healthy individuals (Steenbergen et al., 2015; Mohammadi et al., 2016), respectively. Similar to L. rhamnosus, evidence suggests that L. casei may also regulate the HPA axis via the neural route (Figure 2A).

Microbial GABA and HPA Axis

Intake of L. casei stimulated vagus afferents and decreased both the activity and quantity of CRF-expressing cells in PVN of rats (Takada et al., 2016). Intragastric injection of L. casei downregulated the activity of sympathetic efferents to adrenal glands and liver, and this effect ceased upon vagotomy (Tanida et al., 2014). In clinical trials, L. casei supplementation lowered salivary cortisol levels, feelings of stress and frequency of abdominal- and flu-related symptoms in stressed individuals (Kato-Kataoka et al., 2016; Takada et al., 2016). These studies imply that L. casei prevents HPA axis overactivity via the vagus nerve, which may consequently lower stress-related feelings and illnesses. L. casei produced GABA in vitro (Olesen et al., 2014), indicating a possibility that it may share an antidepressive mechanism of L. rhamnosus. Stressed individuals that consumed L. casei showed improvements in mental health and gut microbiota composition, characterized by increased Lactobacillus and Bifidobacterium populations (Rao et al., 2009; Kato-Kataoka et al., 2016). As most of the antidepressive probiotics belong to Lactobacillus and Bifidobacterium genera, the potential antidepressive capacity of L. casei is highly supported.

Lactobacillus brevis

Similar to L. rhamnosus and L. casei, L. brevis produces GABA via glutamate decarboxylase in substantial amounts (Yokoyama et al., 2002; Siragusa et al., 2007; Barrett et al., 2012; Ko et al., 2013; Yunes et al., 2016). This indicates that L. brevis may share a mutual mechanism of action with L. rhamnosus and L. casei (Figure 2A). Although L. brevis has been shown to influence neither the central GABAergic system nor the HPA axis, L. brevis appears to promote sleep.

Microbial GABA and Sleep

Milk fermented with L. brevis had increased GABA content. This L. brevis-fermented milk demonstrated an antidepressive potency on pair with fluoxetine, a SSRI, in depressed rats (Ko et al., 2013). Intriguingly, intake of L. brevis-produced GABA improved sleep duration in mice (Han et al., 2017). Another study also showed that dietary L. brevis enhanced sleep quality and voluntary physical activity in mice (Miyazaki et al., 2014). GABA is the main inhibitory neurotransmitter that is widely associated with sleep, and GABA receptors are frequent targets for pharmaceutical drugs, such as benzodiazepine, to treat insomnia (Gottesmann, 2002). GABA-enriched foods and GABA extract have also been shown to improve sleep quality in insomniacs (Byun et al., 2018) and healthy individuals (Yamatsu et al., 2015). Therefore, L. brevis has therapeutic value for insomnia, which reflects one of the diagnostic criteria for MDD (American Psychiatric Association, 2013).
Lactobacillus reuteri

Treatment of *L. reuteri* ameliorated depressive-like behaviors in chronic-stressed (Marin et al., 2017) and immobilization-stressed mice (Jang et al., 2019). The former study further elucidated the mechanism of *L. reuteri* which involves regulation of IDO, a rate-limiting enzyme of immune cells that catabolizes TRP to KYN (Reus et al., 2015). It is well documented that *L. reuteri* exhibits anti-inflammatory activities (Thomas et al., 2012; Gao et al., 2015; Ganesh et al., 2018). It is, thus, conceivable that *L. reuteri* may also prevent activation of IDO by proinflammatory cytokines (Reus et al., 2015).

Microbial Hydrogen Peroxide and Kynurenine Pathway

The etiology of depression is partly attributed to a dysregulated KYN/TRP pathway (Reus et al., 2015). An elevated ratio of plasma KYN/TRP often correlates positively with the depression severity in human (Maes et al., 2002; Gabbay et al., 2010; Baranyi et al., 2013; Zhou et al., 2019). It was demonstrated that *L. reuteri* intake improved behaviors of depressed mice by reversing the stress-induced (1) decrease in fecal H$_2$O$_2$ levels and *Lactobacillus* populations, and (2) increase in intestinal IDO1 expression and plasma KYN levels (Marin et al., 2017). KYN administration attenuated this antidepressive effect, which indicates that *L. reuteri* ameliorates depression by reducing plasma KYN levels. This study also showed that *L. reuteri* generated high amounts of H$_2$O$_2$ in vitro, and the author proposed that H$_2$O$_2$ is the key metabolite in mediating antidepressive effect of *L. reuteri* (Marin et al., 2017). This is because H$_2$O$_2$ catalyzes peroxidase-mediated reactions that inhibit IDO activity (Freewan et al., 2013). H$_2$O$_2$ is transported by aquaporin-3 transporters that are expressed on IECs (Thiagarajah et al., 2017) and immune cells (Moon et al., 2004). These findings suggest that microbial H$_2$O$_2$ can potentially cross the intestinal barrier to suppress IDO activity in immune cells, which would lower circulating KYN levels (Figure 2D).

Microbial Histamine, Diacylglycerol Kinase, and Brain-Derived Neurotrophic Factor (BDNF) Expression

Lactobacillus reuteri possesses histidine decarboxylase that converts dietary L-histidine to histamine, which inhibits the production of TNF-α *in vitro* (Thomas et al., 2012; Hemarajata et al., 2013). The microbial histamine suppressed proinflammatory cytokine activities in IECs via the histamine-2 receptor signaling pathway in mice. This effect disappeared when the histidine decarboxylase gene of *L. reuteri* was inactivated by mutagenesis (Gao et al., 2015). Intriguingly, microbial histamine also activated histamine-1 receptors to initiate downstream proinflammatory pathways in mice (Ganesh et al., 2018). However, the substrate for this pathway, diacylglycerol, is metabolized to phosphatidic acid by diacylglycerol kinase produced by *L. reuteri*. Thus, *L. reuteri* secretes both histamine and diacylglycerol kinase that act on histamine receptors to produce an anti-inflammatory effect (Ganesh et al., 2018). Orally administered *L. reuteri* simultaneously alleviated colitis and behaviors indicative of anxiety and depression in stressed mice. These effects were also accompanied by a decrease in colon inflammation and blood levels of LPS, interleukin-6 (IL-6) and corticosterone. In the same study, this reduction in peripheral inflammation prevented the infiltration of activated microglia into the hippocampus and increased hippocampal BDNF expression (Jang et al., 2019; Figure 2A). BDNF has been extensively studied for its vital role in neuronal function and its causal link to depression. Antidepressants such as SSRI and ketamine also increase hippocampal BDNF expression as part of their mechanism of action (Bjorkholm and Monteggia, 2016). Furthermore, this anti-inflammatory effect of *L. reuteri* may prevent IDO activation by proinflammatory cytokines (Reus et al., 2015).

Lactobacillus plantarum

Lactobacillus plantarum supplementation decreased depressive-like symptoms in chronic-stressed mice (Liu Y.W. et al., 2016; Dhaliwal et al., 2018) and stressed adults with mild depression (Lew et al., 2018), though the latter study did not reach statistical significance. Following *L. plantarum* intake, reduction in plasma corticosterone levels and inflammation were seen in mice with reduced depressive-like behaviors (Liu Y.W. et al., 2016). Another study reported that mice fed with *L. plantarum* displayed an increase in cecum SCFAs levels (acetic and butyric), and a decrease in intestinal permeability and level of MAOs in the brain (Dhaliwal et al., 2018). These physiological changes can be unified into a mutual mechanism that *L. plantarum* likely mitigates systemic inflammation (Figure 2B).

Butyrate, Intestinal Barrier, and BDNF Expression

Chronic-stressed mice fed with *L. plantarum* exhibited reduced depressive-like behaviors, coupled with an increase in butyrate and butyrate-producing bacteria, such as *Lactobacillus, Bacteroidetes,* and *Roseburia* (Dhaliwal et al., 2018). *L. plantarum* synthesizes butyrate via fatty acid synthase II–thioesterase, a glutamine-mediated butyrogenic pathway (Botta et al., 2017). Butyrate can enter IECs through cholesterol-rich microdomains and/or monocarboxylate transporter 1 protein (Suzuki et al., 2008; Goncalves et al., 2011; Nedjadi et al., 2014), and promote synthesis and assembly of tight junction proteins of IECs (Bordin et al., 2004; Ohata et al., 2005; Peng et al., 2009; Wang et al., 2012; Yan and Ajuwon, 2017). Butyrate also has anti-inflammatory properties; for instance, butyrate inhibited proinflammatory activities of IECs *in vitro* (Elce et al., 2017) and interacted with IECs to regulate host T cell responses (Lew et al., 2018; Xu et al., 2018). Butyrate may also diffuse into the systemic circulation to exert anti-inflammatory effects on various organs and tissues, including the brain (McNabney and Henagan, 2017; Matt et al., 2018). Indeed, butyrate has been shown to normalize behavior of depressed rodents through epigenetic regulations of hippocampal BDNF expression (Han et al., 2014; Wei et al., 2014; Sun et al., 2016). These outcomes are consistent with the finding that *L. plantarum* intake increased hippocampal BDNF expression and cecum butyrate levels in chronic stress-induced depressed mice (Dhaliwal et al., 2018).
Faecalibacterium prausnitzii (Previously Known as *Fusobacterium prausnitzii*)

Recently, it was discovered that oral gavage of *F. prausnitzii* exerted antidepressive and anxiolytic effects in chronic-stressed mice (Hao et al., 2019). *F. prausnitzii*, as the sole species of *Faecalibacterium* genera (Duncan, 2002), represents around 5% of the total human gut microbiota (Hold et al., 2003). Low populations of *F. prausnitzii* correlated with the disease severity of those with MDD (Jiang et al., 2015) and bipolar depression (Evans et al., 2017). In a recent large cohort study, fecal levels of *F. prausnitzii* correlated negatively with depressed mood and positively with quality of life (Valles-Colomer et al., 2019). Therefore, *F. prausnitzii* seems to have pertinent contributions to mental health.

Butyrate, Microbial Anti-inflammatory Molecules, and Peripheral Inflammation

Faecalibacterium prausnitzii produces butyrate in large quantities from fermenting glucose and fiber (Duncan, 2002; Hold et al., 2003). *F. prausnitzii* also secretes microbial anti-inflammatory molecules that suppress the proinflammatory nuclear factor (NF)-κB pathway in IECs (Sokol et al., 2008; Quevrain et al., 2016a,b). These immunomodulatory effects are consistent with neurochemical changes observed in *fausnitzii*-treated depressed mice, whereby cecum SCFAs and plasma IL-10 levels increased, while corticosterone and IL-6 levels decreased (Hao et al., 2019). Moreover, intragastric administration of *F. prausnitzii* decreased colonic cytokine levels and intestinal permeability in mice with colitis (Laval et al., 2015; Martin et al., 2015). Thus, butyrate produced by *F. prausnitzii* potentially strengthens the intestinal barrier (similar to *L. plantarum*; Figure 2B). However, whether local immunomodulatory effects of *F. prausnitzii* extend to the brain remains unknown. Nevertheless, the ability of *F. prausnitzii* to attenuate gut inflammation is sufficient to reduce depressive- and anxiety-like behaviors in mice (Hao et al., 2019).

Lactobacillus helveticus

Lactobacillus helveticus intake enabled the recovery of chronic- and subchronic-stressed rodents from their state of depression (Liang et al., 2015; Maehata et al., 2019). Probiotic sticks containing *L. helveticus*, in addition to *Bifidobacterium longum*, reduced clinical depression and depressive-like symptoms in MDD patients (Kazemi et al., 2019) and healthy individuals (Messiaoudi et al., 2011), respectively. Most of the animal and human studies also showed that *L. helveticus* intake enhanced memory and, sometimes, attention and learning (Ohland et al., 2013; Chung et al., 2014; Luo et al., 2014; Liang et al., 2015; Ohsawa et al., 2018). Cognitive impairments, such as poor memory and concentration, represent one major cluster of MDD symptoms (Sharpley and Bitsika, 2014). Evidence suggests that *L. helveticus* may modulate the central NE system and HPA axis to improve cognition, and the central 5-HT system and BDNF expression to reduce depression (Liang et al., 2015) (Figure 2A).

Microbial NE, Central NE System, and HPA Axis

Supplementation of *L. helveticus* improved memory and cognitive performance in chronic-stressed rats, comparable to the SSRI citalopram-treated rats. This memory improvement correlated with increased plasma IL-10 and hippocampal NE levels, and reduced plasma corticosterone and ACTH levels (Liang et al., 2015). A previous study also showed that ingestion of *L. helveticus* enhanced memory and mitigated gut inflammation in neuroinflammation-induced rats (Luo et al., 2014). However, another study reported that memory improvement in *L. helveticus*-treated mice did not correlate with the state of gut inflammation (Ohland et al., 2013). Despite this discrepancy, it is well established that the hippocampal NE system and HPA axis both interact to regulate hippocampal glucose metabolism for memory consolidation (Osborne et al., 2015). This mechanism may be affected by microbial NE as *L. helveticus* produced NE in *vitro* in amounts that exceed the human bloodstream (Oleskin et al., 2014). It was also shown *in vivo* that gut bacteria are responsible for converting conjugated NE into its biologically active form (Asano et al., 2012). This neuroactive NE likely influences the MGB axis, but the exact mechanism remains unknown (Lyte, 2011).

Microbial 5-HT and Central 5-HT-BDNF System

Liang et al. (2015) showed that elevated hippocampal 5-HT levels correlated with reduced depression severity in *L. helveticus*-fed rats. The same study also demonstrated that treatment with SSRI citalopram alleviated depression and increased hippocampal BDNF expression and 5-HT levels (Liang et al., 2015). Hence, the antidepressive mechanism appears similar between *L. helveticus* and citalopram. Cultures of *L. helveticus* produced 5-HT at concentrations close to that in the human bloodstream (Oleskin et al., 2014). As shown *in vivo*, the gut microbiota has an indispensable function in deconjugating glucuronide-conjugated 5-HT to generate their free, biologically active counterparts in...
considerable amounts (Hata et al., 2017). It is hypothesized that gut luminal 5-HT may sensitize 5-HT 3A receptors of enteric neurons by stimulating the glial cell-derived neurotrophic factor of IECs (Hata et al., 2017). 5-HT3 receptors are also expressed on IECs (Hasler, 2009) and vagal afferents (Hillsley and Grundy, 1998). Therefore, it can be speculated that L. helveticus influences the central 5-HT circuitry via the neural route. This is supported by a recent study showing that L. helveticus intake increased expression of 5-HT 1A receptors in the nucleus accumbens while restoring behaviors of depressed mice (Maehata et al., 2019).

Chronic-stressed mice that ingested L. helveticus displayed an increase in hippocampal BDNF levels (Liang et al., 2015) and neurogenesis in the nucleus accumbens (Maehata et al., 2019). Nucleus accumbens is a brain region implicated in reward behavior. The central BDNF and 5-HT systems are synergistic, whereby 5-HT upregulates hippocampal BDNF–TrkB signaling to increase expression and synthesis of BDNF. The elevated BDNF, in turn, facilitates neurogenesis of 5-HT neurons (Martinowich and Lu, 2008; Bjorkholm and Monteggia, 2016). Therefore, L. helveticus likely increases hippocampal BDNF levels via modulation of 5-HT circuitry, in a similar manner to SSRIs (Liang et al., 2015).

Lactobacillus paracasei

Dietary intervention of heat-killed L. paracasei prevented mood deterioration in times of stress in healthy individuals (Murata et al., 2018). In corticosterone-induced depressed mice, oral gavage of either live or heat-killed L. paracasei exhibited antidepressive efficacy equivalent to or better than fluoxetine. The same study also showed that live and heat-killed L. paracasei operated via different mechanisms. Live L. paracasei increased 5-HT levels whereas heat-killed L. paracasei increased DA levels in the brain (Wei et al., 2019). The signaling mechanism of L. paracasei appears independent of the HPA axis (Wei et al., 2019) or vagus afferents (Tanida and Nagai, 2011). The remaining evidence suggests that L. paracasei potentially functions via an immune-mediated humoral pathway.

Lactocepin, Butyrate, and Central 5-HT-BDNF System

Lactobacillus paracasei secretes lactocepin, a ProtP-encoded serine protease, that selectively degrades proinflammatory chemokines in inflamed ileal tissue of mice (von Schillde et al., 2012). Lactocepin is most likely a heat-labile cell surface protein unique to L. paracasei (Hoermannsperger et al., 2009; von Schillde et al., 2012). Mice fed with live L. paracasei exhibited lower inflammatory markers in serum, such as increased IL-10 and glutathione peroxidase and decreased TNF-α and MCP-1 (Huang et al., 2018). Another study showed that oral gavage of live L. paracasei with its bacterial products prevented adverse effect of stress on intestinal permeability in rats (Eutamene et al., 2007). This can be linked to a suppressed IDO activity, resulting in higher TRP bioavailability for 5-HT synthesis in the brain (Reus et al., 2015). Following this, it was shown that live L. paracasei delivered via gavage increased 5-HT and 5-HIAA (the main metabolite of 5-HT) levels in the hippocampus and striatum of mice (Huang et al., 2018; Wei et al., 2019). As 5-HT facilitates BDNF synthesis (Martinowich and Lu, 2008), the upregulated central 5-HT expression presumably explains the accompanying increase in hippocampal BDNF expression of mice alleviated of depression from *L. paracasei* intake (Wei et al., 2019). Therefore, L. paracasei may upregulate the central 5-HT-BDNF system (similar to L. helveticus; Figure 2C).

Bifidobacterium infantis

In naïve rats, intake of *B. infantis* was shown to alter depression-related biomarkers (Desbonnet et al., 2008). The same group later showed that chronic-stressed mice no longer displayed depressive-like behaviors after *B. infantis* intake (Desbonnet et al., 2010). In flood victims with IBS, *B. infantis* consumption did not affect their IBS symptoms but improved their mental health instead (Murata et al., 2018). *B. infantis* did not influence corticosterone levels in mice (Desbonnet et al., 2008, 2010), implying that the effect of *B. infantis* is likely to be independent of the HPA axis. Evidence suggests that *B. infantis* has immunomodulatory effects that regulate the central NE system (Desbonnet et al., 2010). A recent study also provided support for the antidepressive mechanism of *B. infantis* that involves the hippocampal 5-HT system (Tian et al., 2019).

Bioactive Factors, IL-6, and Central NE System

Bifidobacterium infantis treatment manifested two physiological changes *in vivo*. First, *B. infantis* decreased plasma IL-6 levels in mice (Desbonnet et al., 2008, 2010) and patients with inflammatory conditions (Groeger et al., 2013). In depressed mice, the IL-6 release also correlated positively with the severity of depression (Desbonnet et al., 2010). Second, *B. infantis* increased NE levels in the murine brainstem (Desbonnet et al., 2010) containing the majority of NE neurons (Schwarz and Luo, 2015). Therefore, *B. infantis* likely regulates plasma IL-6 and central NE system to exert an antidepressive effect.

Bifidobacterium infantis secretes bioactive factors (probably polysaccharides) that enhance transepithelial resistance of IECs (Ewaschuk et al., 2008). Other studies involving rodents also showed that *B. infantis* treatment enhanced the intestinal barrier by strengthening the formation of tight junction proteins and anti-inflammatory activities of immune cells (Lomasney et al., 2014; Zuo et al., 2014; Javed et al., 2016). Indeed, bacterial DNA translocation from the gut lumen into the circulation was reduced in *B. infantis*-fed rodents (Osman et al., 2006; Gómez-Hurtado et al., 2012).
Bacterial DNA is a potent inducer of TLRs which facilitate the release of proinflammatory cytokines, including IL-6 (Gutierrez et al., 2016). Administration of IL-6 induced depression in mice, and this outcome was prevented by pharmaceutical blockage of NE neurons in the brainstem (Kurosawa et al., 2016). Hence, B. infantis potentially modulates the NE system via an immune-mediated humoral route to reduce depression (Figure 2D). This mechanism appears to be independent of the vagus nerve as oral gavage of B. infantis also decreased proinflammatory cytokine (including IL-6) levels in vagotomized mice with an inflamed colon (van der Kleij et al., 2008).

Butyrate, TRP, and Central 5-HT-BDNF System

Treatment of B. infantis upregulated mRNA expression of Tph1 in RIN14B cells, a cell line that mimics ECs (Tian et al., 2019). Tph1 converts TRP to 5-hydroxytryptophan (5-HTP) and aromatic amino acid decarboxylase subsequently converts 5-HTP to 5-HT. B. infantis-fed mice displayed reduced depressive-like behaviors, along with an increase in TRP biosynthesis and hippocampal 5-HT and 5-HTP levels. In the same study, B. infantis increased cecum butyrate levels and the abundance of butyrate-producing *Bifidobacterium*. The elevated butyrate levels also correlated with increased hippocampal 5-HTP and PFC BDNF levels (Tian et al., 2019). This could be due to the ability of butyrate and other SCFAs to increase Tph1 activity of ECs, thereby promoting 5-HTP and 5-HT secretions (Reigstad et al., 2015; Yano et al., 2015; Lund et al., 2018). This is consequential as ECs contribute about 95% of the bodily 5-HT (El-Merahbi et al., 2015), and that mice with a gut microbiota had 2.8-fold higher plasma 5-HT levels than GF mice (Wikoff et al., 2009). The evidence for the ability of 5-HT to cross the BBB is conflicting (Brust et al., 2000; Wakayama et al., 2002; Nakatani et al., 2008; El-Merahbi et al., 2015). In contrast, 5-HTP readily crosses the BBB and can be converted into 5-HT. Therapeutic 5-HTP has also been shown to treat clinical depression with a potency equivalent to or better than SSRIs (Birdsall, 1998; Jangid et al., 2013; Jacobsen et al., 2016).

Furthermore, B. infantis intake increased plasma TRP levels in healthy rats (Desbonnet et al., 2008), but another study with chronic-stressed rats reported otherwise (Desbonnet et al., 2010). The author then suggested that B. infantis regulates TRP metabolism differently, depending on the rat strain (Desbonnet et al., 2010). Therapeutic TRP can improve symptoms of mood, sleep and cognitive disorders as TRP readily passes through BBB to regulate numerous brain functions, such as 5-HT synthesis (Richard et al., 2009). The elevated plasma TRP levels from B. infantis intake is most likely a result of reduced proinflammatory cytokines (Desbonnet et al., 2008, 2010), which reduces IDO activity and prevents over-catabolism of TRP (Reus et al., 2015). Thus, B. infantis may upregulate the hippocampal 5-HT system via modulation of peripheral 5-HTP, 5-HT and/or TRP levels. As 5-HT promotes BDNF synthesis (Martinovich and Lu, 2008), this presumably explains the concomitant increase in BDNF levels in PFC of rats ameliorated of depression with B. infantis treatment (Tian et al., 2019). Taken together, *L. helveticus*, *L. paracasei* and *B. infantis* upregulate the central 5-HT-BDNF system as their mutual antidepressive mechanism, although via different pathways (Figure 2B).

Clostridium butyricum

Treatment of *C. butyricum* improved depressive-like behaviors in chronic-stressed mice. These treated mice also showed upregulated central 5-HT, BDNF and GLP-1 receptors in the brain (Sun et al., 2018). Remarkably, the combination of *C. butyricum* with antidepressants reduced depression in about 70% of treatment-resistant MDD patients, of which 30% achieved remission (Miyaoka et al., 2018). These studies support the antidepressive efficacy of non-pathogenic *C. butyricum*. It should be noted that certain strains of *C. butyricum* are pathogenic which may cause botulism and necrotizing enterocolitis (Cassir et al., 2016).

Butyrate, Central 5-HT-BDNF System, and GLP-1

Clostridium butyricum, as a resident of healthy gut microbiota, produces butyrate from carbohydrate fermentation (Araki et al., 2002; He et al., 2005; Liu J. et al., 2015). Treatment of *C. butyricum* increased central 5-HT levels and BDNF expression in mice with reduced depression (Sun et al., 2018). Another study also reported that *C. butyricum* intake upregulated neurogenesis-related pathways, such as BDNF, via butyrate production in mice (Liu J. et al., 2015). Additionally, intragastric inoculation of *C. butyricum* increased intestinal secretion of GLP-1 and the central expression of GLP-1 receptors in mice alleviated from depression (Sun et al., 2018). This effect may also be mediated by butyrate as SCFAs can bind to receptors expressed on intestinal L cells to stimulate GLP-1 secretion into the bloodstream (Tolhurst et al., 2012). GLP-1 is known for appetite and glucose control, but the activation of central GLP-1 receptors has been shown to regulate the central 5-HT system and reduce anxiety- and depressive-like behaviors in rats (Anderberg et al., 2016). Therefore, antidepressive mechanism of *C. butyricum* potentially involves a butyrate-mediated upregulation of central BDNF-5-HT system (similar to *L. paracasei* and *B. infantis*) and GLP-1 receptor expression (Figure 2B).

Lactobacillus kefiranofaciens

Lactobacillus kefiranofaciens is isolated from kefir, a type of fermented milk. Oral gavage of *L. kefiranofaciens* improved behaviors of chronic-stressed, depressed mice. These treated mice also showed several physiological alterations. Levels of circulating TRP, splenic IL-10 and beneficial gut bacteria (e.g., Lachnospiraceae, Bifidobacteriaceae, and Akkermansia) increased, and KYN/TRP ratio, splenic IL-6 and IFN-γ levels and Proteobacteria abundance decreased (Sun et al., 2019). What factors mediate such broad effects of *L. kefiranofaciens* on the TRP/KYN pathway, immune system, HPA axis and gut microbiota remain unclear, but exopolysaccharide is potentially a candidate (Figure 2D).
Exopolysaccharide, Peripheral Inflammation, and Gut Microbiota

The only known metabolite of *L. kefiranofaciens* is an exopolysaccharide called kefiran (Maeda et al., 2004; Xing et al., 2017). The intake of kefiran modulated the gut mucosal immune system of mice (Vinderola et al., 2006), which could potentially account for changes in splenic cytokines seen in depressed mice (Sun et al., 2019). Kefiran was also shown to protect human enterocyte cell lines from adhesion and damage inflicted by toxins of pathogenic bacteria (Santos et al., 2003; Medrano et al., 2008). A further study discovered that *L. kefiranofaciens* produces a novel exopolysaccharide (not kefiran) that is bactericidal toward enteropathogens *Listeria monocytogenes* and *Salmonella enteritidis* (Jeong et al., 2017a). It may be possible that the antibacterial effects of this exopolysaccharide extend to other species in the gut microbiota. This supports the finding that *L. kefiranofaciens* supplementation ameliorated depressive-like behaviors in chronic-stressed mice by regulating gut microbiota content, which included the decreased abundance of Proteobacteria, a phylum that includes pathogens such as *Salmonella* (Sun et al., 2019). Other mice studies also supported the role of *L. kefiranofaciens* in modulating gut microbiota composition (Jeong et al., 2017b; Xing et al., 2018). Collectively, these changes in gut microbiota profile prevent gut dysbiosis that could lead to chronic inflammation, HPA axis overactivity and depression (Jeong et al., 2017b).

Bifidobacterium breve

Bifidobacterium breve treatment improved symptoms of depression in innately anxious mice (Savignac et al., 2014), chronic-stressed mice (Tian et al., 2019) and schizophrenic patients with depression (Okubo et al., 2019). *B. breve* supplementation also improved mood and cognition in elderly people with mild cognitive impairment (Kobayashi et al., 2019). However, none of the accompanying physiological changes among these studies overlapped, making it difficult to identify an exact mechanism of *B. breve*. In spite of this, one study demonstrated that antidepressive mechanism of *B. breve* involves the generation of benzoic acid (Zhao et al., 2018; Figure 2D).

Benzoic Acid and Central Glu System

Among the 18 bacterial strains isolated from gut microbiota, *B. breve* was the most efficient converter of alfiblorin to benzoic acid via microbial carboxylesterase, at the rate of 75% as compared to *L. casei*, *Lactobacillus acidophilus* and *B. longum* at about 5%. The same study further showed that orally administered benzoic acid alleviated depression in mice (Zhao et al., 2018). Benzoic acid readily crosses the intestinal barrier and BB to inhibit D-amino acid oxidase that catabolizes D-serine, a co-agonist of N-methyl-D-aspartate receptor (NMDAR, a type of Glu receptor) (Zhao et al., 2018). Both D-serine and NMDARs are therapeutic targets in neuropsychiatric disorders, such as depression, schizophrenia and cognitive impairment (Durrant and Heresco-Levy, 2014). Indeed, a dysfunctional Glu system is linked to the pathophysiology of depression (Pytko et al., 2016). In line with this, *B. breve* intake increased Glu synapses in chronic-stressed mice while treating its depressive-like behaviors (Tian et al., 2019).

Bifidobacterium longum

Bifidobacterium longum treatment decreased depressive-like symptoms in innately anxious mice (Savignac et al., 2014) and IBS patients with mild to moderate depression and/or anxiety (Pinto-Sanchez et al., 2017). *B. longum* supplementation also presented anxiolytic efficacy in numerous human and animal studies (Bercik et al., 2010, 2011; Allen et al., 2016; Orikasa et al., 2016). However, *B. longum* did not affect the gut inflammatory state in animals and humans, indicating a lack of immunomodulatory function (Bercik et al., 2010, 2011; Pinto-Sanchez et al., 2017). Other physiological changes, such as BDNF expression and plasma KYN/TRP ratio, seen in *B. longum*-treated mice and humans were inconsistent (Bercik et al., 2010, 2011; Orikasa et al., 2016; Pinto-Sanchez et al., 2017). Collectively, these data suggest that brain neural activity and HPA axis are possible targets of *B. longum* signaling mechanisms (Figure 2C).

Serpin, Central Neural Activity, and HPA Axis

Both *in vitro* and *in vivo* studies showed that *B. longum* weakened the excitability of murine myenteric neurons (Bercik et al., 2011; Khosdol et al., 2013). Mice with inflamed intestines that were fed with *B. longum* demonstrated reduced anxiety-like behaviors, and this effect ceased upon vagotomy (Bercik et al., 2011). Intriguingly, *B. longum* intake also alleviated anxiety in colon-inflamed mice that were vagotomized before treatment (Bercik et al., 2010). The author postulated that vagus afferents are an essential conduit when *B. longum* signals enterocytes, but not colonocytes (Bercik et al., 2011). The genome of *B. longum* encodes serpin, a serine protease inhibitor (Ivanov et al., 2006; Mkaouar et al., 2016). Serpin can inhibit the activation of enteric neurons by suppressing the secretion of elastase-like proteases from IECs (Ivanov et al., 2006; Buhner et al., 2018). These studies support the premise that *B. longum* interacts with the host via the neural pathway (similar to *L. rhamnosus*). Following this, the neural activity and HPA axis of the brain may be altered. Individuals consuming *B. longum* had increased neural activity in the PFC and decreased neural activity in the amygdala and fronto-limbic regions (Allen et al., 2016; Pinto-Sanchez et al., 2017). Anomalies in the anatomy and activity of the amygdala and PFC are also commonly observed among depressed patients (Liu W. et al., 2017). Furthermore, *B. longum* intake exerted simultaneous glucocorticoids-lowering and anxiolytic effects in humans and mice (Allen et al., 2016; Orikasa et al., 2016), suggesting that *B. longum* potentially modulates the HPA axis.

Lactobacillus gasseri

Supplementation of *L. gasseri* improved mood (Sashihara et al., 2013) and depressive-like symptoms (Sawada et al., 2017) in stressed individuals. However, no studies have evaluated the effect of *L. gasseri* on clinically depressed individuals. Interestingly, *L. gasseri* is the only dietary probiotic which showed consistent sleep-enhancing effects in humans (Nishida et al., 2017a,b; Sawada et al., 2017). Irregular sleeping patterns are frequently associated with MDD (American Psychiatric Association, 2013;
Moreover, heat-killed L. gasseri confers protection against detrimental effects of stress. L. gasseri patients (Nobutani et al., 2017). These studies suggest that also prevented downregulation of EIF2-related genes in IBS populations (Nishida et al., 2017a), whereas live L. gasseri decreased growth of inflammatory Enterobacteriaceae and Veillonella (Sawada et al., 2017). Both studies also showed that L. gasseri enhanced sleep quality of participants. Another study reported that heat-killed L. gasseri (in milk) increased the population of Clostridium cluster IV group and SCFAs levels in individuals with altered bowel movements (Sawada et al., 2016). Using a similar methodology, decreased Clostridium cluster IV and increased Bifidobacterium populations were found in another group of participants (Sugawara et al., 2016). Taken together, these results suggest that heat-killed L. gasseri does not have a specific microbial target, but rather modiﬁes the preexisting gut microbiota that is unique to each individual. Nevertheless, these changes in the gut microbiota composition favor an anti-inﬂammatory state (Sawada et al., 2016; Sugawara et al., 2016; Nishida et al., 2017a). L. gasseri likely alters the gut microbiota proﬁle through its unique, heat-resistant gassericins A and T with potent antibacterial properties against enteric pathogens (Pandey et al., 2013).

Heat-killed L. gasseri decreased expression of leukocytic stress-responsive microRNAs and salivary cortisol levels in stressed individuals (Nishida et al., 2017b). L. gasseri intake also prevented downregulation of EIF2-related genes in IBS patients (Nobutani et al., 2017). These studies suggest that L. gasseri confers protection against detrimental effects of stress. Moreover, heat-killed L. gasseri intake promoted parasympathetic nerve activity while improving sleep quality of stressed individuals (Nishida et al., 2017b). In healthy individuals, administration of either live or heat-killed L. gasseri increased their parasympathetic activity (Otomii et al., 2015; Sugawara et al., 2016). Therefore, L. gasseri may modify the gut microbiota profile in such a way that lowers gut inflammation and stress response, which may consequently promote parasympathetic activity to facilitate sleep (Figure 2C).

Heterogeneity of Gut Microbiota Composition

Several factors are known to influence the gut microbiota composition, such as diet, medications, genetics, age, geographical location and smoking (Thursby and Juge, 2017). Recently, approximately 1000 gut-derived putative bacterial species that do not belong to any existing genus were discovered in humans (Almeida et al., 2019). Such tremendous diversity complicates the understanding of how introduced probiotics affect the overall gut microbiota. One study showed that tolerability of individuals’ gut microbiota toward the colonization of probiotics ranges from permissive to resistant (Zmora et al., 2018). This appears to depend on the baseline abundance of probiotic species in the host gut microbiota. For instance, those who were permissive toward the colonization of Lactobacillus had prior low levels of Lactobacillus populations before treatment (Zmora et al., 2018). Similarly, B. longum colonized the gut for a longer period in 30% of users who initially had low levels of B. longum (Maldonado-Gomez et al., 2016). Another study showed that the antidepressive effect of multi-species probiotics (MSP) only manifests when the administered MSP successfully colonized the gut of rats (Abildgaard et al., 2019). This is consistent with the observation that lower levels of two main probiotic genera, Lactobacillus and Bifidobacterium, are commonly found in individuals with MDD (Aizawa et al., 2016).

Despite most studies supported the effectiveness of probiotic supplements in reducing depression, not all randomized controlled trials reported the same outcome (Table 2). For instance, L. rhamnosus did not affect scores of anxiety, depressions, sleep, cognition, inflammatory and stress responses among healthy adults (Kelly et al., 2017). L. rhamnosus also did not affect perceptions of wellbeing, anxiety and stress among healthy older adults (Ostlund-Lagerstrom et al., 2016). In healthy individuals, L. helveticus exhibited no antidepressive effect (Chung et al., 2014; Ohsawa et al., 2018). These results imply that probiotics are less efficacious among the healthy population, which agree with a meta-analysis that reported an insignificant effect of probiotics on mood, particularly in healthy individuals (Ng et al., 2018). Therefore, probiotics could be generally more effective in colonizing gut microbiota of depressed individuals that are different from healthy people (Jiang et al., 2015; Zheng et al., 2016). In some cases, probiotic colonization may be optional for their effects to manifest. For instance, heat-killed L. paracasei benefited the human and animal host, in terms of neurochemical and behavioral changes (Corpuz et al., 2018; Murata et al., 2018; Wei et al., 2019). Some probiotics, such as L. reuteri, L. paracasei, L. plantarum, L. gasseri, L. kefiranolactis, B. breve, and B. infantis, promoted the colonization of other beneficial microbes that contributed to the reduction of depressive-like symptoms in animals (Marin et al., 2017; Dhalwal et al., 2018; Jang et al., 2019; Sun et al., 2019; Tian et al., 2019; Wei et al., 2019).
TABLE 2 | Selected preclinical and clinical studies on the behavioral and physiological effects of single-species probiotics.

Probiotic species	Model	Behavioral changes	Physiological changes	References
Lactobacillus				
rhamnosus	Normal, healthy BALB/c male mice	↓ Anxiety	↓ in plasma CORT levels	Bravo et al. (2011)
		↓ Depression	↓ GABA_{A2} mRNA expression in the PFC and amygdala	
		↑ Memory	↓ GABA_{B1b} mRNA expression in the HPC, amygdala and locus coeruleus	
		No effect on locomotion	↑ GABA_{A2} mRNA expression in the HPC	
			↑ GABA_{B1b} mRNA expression in cortical regions (cingulate and prelimbic)	
	BALB/c male mice subjected to MS	↓ Depression	↓ Stress-induced ↑ in plasma CORT levels	McVey Neufeld et al. (2018)
	Healthy human males (aged 22–33, mean ≈ 23–25 years)	No effect on mood and anxiety	↑ Recovery toward basal corticosterone levels	Kelly et al. (2017)
	Pregnant women (14–16 weeks gestation)	↓ Anxiety, ↓ Depression	N/A	Slykerman et al. (2017)
	Obese individuals (aged 18–55, mean ≈ 35–58 years)	↓ Food cravings	↑ GABA_{A2} mRNA expression in the HPC	Sanchez et al. (2017)
	Healthy middle-age human adults (aged 48–79, mean ≈ 62 years)	↓ Depression in those with low mood	N/A	Benton et al. (2007)
	Individuals with chronic fatigue syndrome (aged 18–65 years)	↓ Anxiety	↑ Fecal *Lactobacillus* and *Bifidobacteria* populations	Rao et al. (2009)
	Healthy students under stressful examination (aged < 40, mean ≈ 23 years)	↓ Stressful feelings, No effect on anxiety	N/A	Kato-Kataoka et al. (2016)
Lactobacillus				
brevis	Sprague–Dawley male depressed rats	↓ Depression	↑ Fecal *Lactobacillus* and *Bifidobacteria* populations	Ko et al. (2013)
ICR male mice		↑ Sleep duration	N/A	Han et al. (2017)
C3H-HeN male mice		↑ Sleep duration	N/A	Miyazaki et al. (2014)
Lactobacillus				
reuteri	C57BL/6J, C57BL/6N, and BALB/cJ male mice subjected to CUMS	↓ Depression	↓ Stress-induced ↑ in intestinal IDO1 expression	Marin et al. (2017)
	C57BL/6 male mice subjected to immobilization stress	↓ Anxiety, ↓ Depression	↓ Stress-induced ↑ in intestinal IDO1 expression	Jang et al. (2019)
	MS vs. naïve male C57BL/6J mice	↑ Locomotion	↓ Stress-induced in blood CORT, IL-6, and LPS levels	Liu Y.W. et al. (2016)
	In naïve mice:	↑ Anxiety	↓ Stress-induced in activated microglia infiltration into the HPC	
	In MS mice:	↓ Depression	↓ Stress-induced in colon shortening, myeloperoxidase activity and IL-6 expression in the colon	
	↓ Depression	↑ Stress-induced ↑ in blood CORT, IL-6, and LPS levels		
	↑ Stress-induced ↑ in Activated microglia infiltration into the HPC			
	↑ Stress-induced ↑ in Proteobacteria populations			
	↑ Stress-induced ↑ in Bacteroidetes, Firmicutes, and Actinobacteria populations			
	↓ Stress-induced in Bacteroidetes, Firmicutes, and Actinobacteria populations			
Lactobacillus				
plantarum				
Probiotic species	Model	Behavioral changes	Physiological changes	References
-------------------	-------	-------------------	-----------------------	------------
Germ-free C57BL/6J male mice	↓ Anxiety	↓ 5-HT and DA levels in the striatum, but not the PFC or HPC	Liu W.H. et al. (2016)	
	↑ Locomotion			
	No effect on depression	No effects on serum CRH levels		
Swiss albino male mice subjected to CUMS or sleep-deprivation stress	↓ Anxiety	↓ Stress-induced ↑ in malonaldehyde, MAOs and nitrate levels in the brain	Dhaliwal et al. (2018)	
	↓ Depression	↓ Stress-induced ↑ in levels of TNF-α, CORT, and LPS		
	↑ Memory	↑ Stress-induced ↓ in glutathione and HPC BDNF levels		
	↑ Learning	↑ Abundance of Lactobacillus		
	↑ Locomotion	↓ Stress-induced ↓ abundance of Bacteroidetes and Roseburia		
		↑ Fecal acetic and butyric acid levels		
		Prevented stress-induced ↑ in permeability of BBB and intestinal barrier, and Enterobacteriaceae levels		
MDO patients undergoing SSRI medications (mean age ≈ 39 years)	↑ Memory	↓ Plasma KYN levels	Rudzki et al. (2019)	
	↑ Attention	↑ 3-hydroxykynurenine/KYN ratio		
	↑ Learning	No changes in plasma levels of TNF-α, IL-6, IL-1β, and cortisol		
	No effect on depression and stress			
Stressed human adults with mild levels of depression (aged 18–60, mean ≈ 31 years)	↓ Anxiety	↓ Plasma IFN-γ and TNF-α levels	Lew et al. (2018)	
	↓ Stress			
	↑ Memory			
	↑ Learning			
	↓ Depression (not stat. sig.)			
Faecalibacterium prausnitzii	Sprague–Dawley male rats subjected to CUMS	↓ Anxiety	↓ Stress-induced ↓ in plasma levels of CORT, CRP, and IL-6	Hao et al. (2019)
		↓ Depression	↑ SCFAs levels in the cecum	
			↑ Stress-induced ↓ in plasma IL-10 levels	
Lactobacillus helveticus	Sprague–Dawley male rats subjected to chronic restraint stress	↓ Anhedonia	↓ Stress-induced ↑ in CORT and adrenocorticotropic hormone levels	Liang et al. (2015)
		↓ Anxiety	↑ Stress-induced ↓ in plasma IL-10 levels	
		↑ Locomotion	↑ Stress-induced ↓ in HPC BDNF expression	
		↑ Memory	↑ Stress-induced ↓ in 5-HT and NE levels in the HPC	
		No changes in stress-induced ↓ in plasma IFN-γ and TNF-α levels		
Sprague–Dawley male rats with hyperammonemia-induced neuroinflammation	↓ Anxiety	↓ Stress-induced ↑ in KA/KYN ratio	Luo et al. (2014)	
	↑ Memory	↓ Stress-induced ↑ in PGE2 levels in the cerebellum and HPC		
	↑ Learning	↓ Stress-induced ↑ in IL-1β levels in the cerebellum, HPC, and PFC		
		↓ 5-HT levels in the cerebellum and HPC		
		↑ Stress-induced ↓ in KYN/TRP ratio		
		No effect in stress-induced ↑ in 5-HIAA levels in the HPC, cerebellum, and PFC		
C57BL/6J male mice subjected to sub-chronic social defeat stress	↓ Anhedonia	↑ Stress-induced ↓ in dopamine D3 and serotonin 1A receptors expression	Maehata et al. (2019)	
	↓ Anxiety	Restore stress-induced changes in gene expression in the nucleus accumbens		
Healthy elderly humans (aged 60–75, mean ≈ 68 years)	↑ Memory	No effects on serum CORT levels and gut microbiota composition	Chung et al. (2014)	
	↑ Attention	No effects on plasma levels of BDNF and whole blood viscosity		
	↑ Learning			
	No effects on stress levels and depression			
Healthy middle-aged humans (aged 50–70, mean ≈ 58 years)	↑ Memory	N/A	Ohsawa et al. (2018)	
	↑ Attention			
	No effects on depression			

(Continued)
Probiotic species	Model	Behavioral changes	Physiological changes	References
Lactobacillus paracasei	CORT-induced depressed male C57BL/6J mice (live or heat-killed *L. paracasei*)	↓ Depression	↑ Stress-induced ↓ abundance of *Bifidobacterium* (live)	Wei et al. (2019)
Senescence-accelerated female SAMP8 mice (heat-killed *L. paracasei*)	Prevented age-related cognitive decline	↓ 5-HT levels in brain tissues and serum	Corpuz et al. (2018)	
Senescence-accelerated male and female SAMP8 mice (live *L. paracasei*)	Prevented age-related cognitive decline and anxiety	↑ Levels of DA, DC, 5-HT and 5-HIAA levels in the striatum and HPC	Huang et al. (2018)	
Healthy females under examination stress (heat-killed *L. paracasei*) (aged > 18, mean ≈ 21 years)	Prevented decline in mood and immunity	↓ Frequency of common cold in those susceptible	Murata et al. (2018)	
Bifidobacterium infantis	Naïve Sprague–Dawley male rats	No effect on depression	↓ Plasma IFN-γ, TNF-α, IL-10, and IL-6 levels	Desbonnet et al. (2008)
Sprague Dawley male rats subjected to MS	↓ Depression	↑ Stress-induced ↑ in plasma IL-6 and corticotrophin-releasing factor mRNA expression in the amygdala	Desbonnet et al. (2010)	
Male adult C57BL/6J mice subjected to CUMS	↓ Depression	↑ Stress-induced ↑ in NE levels in the brainstem	Tian et al. (2019)	
Clostridium butyricum	C57BL/6 male mice subjected to CUMS (With SSRIs or SNRIs) Treatment-resistant MDD patients (mean age ≈ 42–44 years)	↓ Depression	↑ Stress-induced ↓ in brain levels of 5-HT and BDNF	Sun et al. (2018)
Lactobacillus kefirnacofaciens	Kunming male mice subjected to CUMS	↓ Depression	↑ Stress-induced ↑ in serum CORT levels and KYN/TRP ratio	Sun et al. (2019)
Probiotic species	Model	Behavioral changes	Physiological changes	References
------------------	-------	--------------------	----------------------	------------
Bifidobacterium breve	Innately anxious BALB/c male mice	↓ Depression	No effect on CORT levels, both baseline and in response to stress	Savignac et al. (2014)
	Male adult C57BL/6J mice subjected to CUMS	↓ Depression, ↓ Anhedonia, ↓ Anxiety	↓ Chronic stress-induced CORT release, ↑ Stress-induced Veillonellaceae populations, ↑ Expression of Tph1 mRNA in RIN14B cells ([in vitro]), ↑ BDNF levels in the PFC, ↑ Stress-induced ↓ in alpha diversity of the gut microbiota, ↑ Glutamatergic synapse, ↑ Phenylalanine/tyrosine/Trp biosynthesis	Tian et al. (2019)
	Schizophrenic individuals with anxiety and depression (aged > 20, mean ≈ 41–46)	↓ Depression, ↓ Anxiety	↑ Relative abundance of Parabacteroides, ↑ Serum IL-22 and TRANCE expression, No effects on *Bifidobacterium* populations and serum levels of IL-6 and TNF-α	Okubo et al. (2019)
	Elderly humans with mild cognitive impairment (mean age ≈ 83 years)	↑ Mood, ↑ Memory, ↑ Attention, ↑ Learning	N/A	Kobayashi et al. (2019)
Bifidobacterium longum	Innately anxious BALB/c male mice	↓ Depression, ↓ Anxiety	No effect on CORT levels, both baseline and in response to stress	Savignac et al. (2014)
	Healthy human males (aged 18–40, mean ≈ 25 years)	↓ Stress, ↓ Anxiety, ↓ Memory, ↓ Attention, ↑ Learning	↓ Salivary cortisol output and anxiety scores in response to stressor, ↑ Neural activity of the PFC	Allen et al. (2016)
	IBS patients with mild to moderate depression and/or anxiety (median age = 40 and 46.5 years)	↑ Depression, ↑ Life quality	↓ Responses to negative emotional stimuli in the amygdala and fronto–limbic regions, ↓ Urine levels of melamines and aromatic amino acids metabolites, No effect on fecal microbiota profiles, serum inflammatory markers (CRP, TNF-α, IFN-γ, IL-1β, IL-6, IL-8, IL-10, IL12), BDNF, substance P and 5-HT levels	Pinto-Sanchez et al. (2017)
Lactobacillus gasseri	University male students with daily strenuous exercise (aged < 30, mean ≈ 20 years)	↑ Mood in depressed individuals	Prevent stress-induced ↓ in natural killer cell activity	Sashihara et al. (2013)
	Medical (cadaver dissection course) male students (aged 24)	↓ Depression, ↓ Anxiety, ↑ Sleep quality	↓ Salivary cortisol release, ↓ Growth of inflammatory Enterobacteriaceae and Veillonella, Prevented the downregulation of EIF2-related genes of peripheral leukocytes	Sawada et al. (2017)
	Medical (cadaver dissection course) students (heat killed *L. gasseri*) (aged 18–54, mean ≈ 21 years)	↑ Sleep latency, ↑ Sleep duration	↓ Diarrhoea-like symptoms (in men), ↑ Fecal Bacteroides vulgatus levels, ↑ Fecal Dorea longicatena levels	Nishida et al. (2017a)
	Medical students in pre-examination (heat-killed *L. gasseri*) (mean age ≈ 25 years)	↓ Sleep latency, ↓ Sleep awakenings	↑ Ratio of parasympathetic/sympathetic nerve activity, ↑ Stage N3 in the non-REM sleep period, ↓ Stress-induced ↑ in salivary cortisol levels, ↓ Stress-induced ↑ expression of stress-responsive microRNAs	Nishida et al. (2017b)
changes in appetite and sleep, psychomotor retardation, poor concentration and fatigue (American Psychiatric Association, 2013). From these diagnostic criteria, approximately a thousand combinations of symptoms (Ostergaard et al., 2011) and 19 depression subtypes (Harald and Gordon, 2012; Sharpley and Bitsika, 2014) can be derived. These subtypes of depression are often grouped as a single term, namely depression, which should not be the case when evaluating therapeutic potential of probiotics.

Some associations can be drawn by matching behavioral benefits of probiotics to the characteristics of depression subtypes (Table 2). For instance, the sucrose preference test in rodents reflects the anhedonia subtype (Dedic et al., 2011). Probiotics that have been shown to improve the outcome of this test include *L. helveticus* (Liang et al., 2015), *L. plantarum* (Liu W.H. et al., 2016), *L. paracasei* (Wei et al., 2019), *L. kefiranofaciens* (Sun et al., 2019), *B. infantis* (Tian et al., 2019), and *B. breve* (Tian et al., 2019). Among these probiotics, *L. plantarum* (Liu Y.W. et al., 2016) and *L. paracasei* (Wei et al., 2019) also modulated the central DA system, whereas *B. infantis* and *B. breve* upregulated tyrosine (precursor to DA) biosynthesis (Tian et al., 2019). An impaired DA system represents the hallmark pathophysiology of anhedonia (Dunlop and Nemeroff, 2007). This provides a proof of concept that these probiotics may be effective in treating anhedonia.

Somatic depression subtype is characterized by psychomotor agitation/retardation (i.e., locomotion), changes in weight/appetite, insomnia/hypersomnia and fatigue without physical exertion (Sharpley and Bitsika, 2014). Probiotics that improved locomotor activity of rodents include *L. plantarum* (Liu W.H. et al., 2016; Dhaliwal et al., 2018), *L. helveticus* (Liang et al., 2015) and *L. brevis* (Miyazaki et al., 2014). Intake of *L. brevis* increased sleep duration in healthy mice (Miyazaki et al., 2014; Han et al., 2017), and *L. gasseri* enhanced sleep quality in medical students with mild depression (Nishida et al., 2017a,b). *L. rhamnosus* supplementation modulated appetite-associated genes and attenuated appetite in zebrafish (Falcinelli et al., 2016, 2017). In combination with prebiotics, *L. rhamnosus* exerted antidepressive effect and appetite control in obese individuals (Sanchez et al., 2017). Hence, symptoms of somatic depression are rather distinct and may be improved differently with different probiotics.

Cognitive depression subtype is distinguished by poor concentration and memory function as well as indecisiveness (Sharpley and Bitsika, 2014). Behavioral assessments for memory function in mice include the Morris water maze, Barnes maze and other behavioral tests (Dedic et al., 2011). Administration of probiotics including *L. helveticus* (Ohland et al., 2013; Luo et al., 2014; Liang et al., 2015), *L. plantarum* (Dhaliwal et al., 2018), and *L. paracasei* (Corpuz et al., 2018; Huang et al., 2018) enabled animals to perform these memory test more effectively. Attention, memory and learning behaviors in humans are assessed by cognitive tests, such as the Stroop, verbal-learning and digit-symbol tests. Improvements in these tests have been shown with the intake of (1) *L. helveticus* (Chung et al., 2014; Ohsawa et al., 2018) and *B. longum* (Allen et al., 2016) in healthy adults; (2) *L. plantarum* in MDD patients (Rudzki et al., 2019) and stressed adults with mild depression (Lew et al., 2018); and (3) *B. breve* in elderly with mild cognitive impairment (Kobayashi et al., 2019). Thus, some probiotics appear to improve cognition regardless of depression.

Anxious depression subtype refers to major depression that comorbid with high levels of anxiety (Harald and Gordon, 2012). In mice, anxiety can be measured by behavioral tests, such as the elevated plus maze and open field tests (Dedic et al., 2011). In humans, anxiety is generally assessed with questionnaires. Probiotics that exhibit anxiolytic effect include *L. rhamnosus* (Bravo et al., 2011; Bharwani et al., 2017; McVey Neufeld et al., 2017; Slykerman et al., 2017), *L. helveticus* (Ohland et al., 2013; Luo et al., 2014; Liang et al., 2015), *L. plantarum* (Liu W.H. et al., 2016; Liu Y.W. et al., 2016; Dhaliwal et al., 2018; Lew et al., 2018), *B. longum* (Bercik et al., 2010, 2011; Savignac et al., 2014; Allen et al., 2016) and *B. breve* (Savignac et al., 2014; Okubo et al., 2019; Tian et al., 2019). Moreover, MSPs intake often decreased depression and anxiety simultaneously in randomized controlled trials (Mohammadi et al., 2016; Kouchaki et al., 2017; Jamilian et al., 2018; Raygan et al., 2018; Ostadmohammadi et al., 2019; Salami et al., 2019).

Conventional SSRIs that target the 5-HT system often fail to treat anhedonic patients and, in some cases, worsen their symptoms (Dunlop and Nemeroff, 2007). Antidepressant drugs (e.g., SSRIs and SNRIs) are also ineffective against other depression subtypes, namely the somatic (Tylee and Gandhi, 2005), cognitive (Shilyansky et al., 2016) and anxious depression (Ionescu et al., 2014). Therefore, certain probiotics may serve as an adjuvant or alternative treatment for MDD and its subtypes. A pilot study showed that MSP, together with a magnesium supplement, decreased depression in SSRI treatment-resistant patients (Bambling et al., 2017). A clinical trial also reported that the combination of *B. longum* and *L. helveticus* decreased depression in MDD patients with prior use of standard antidepressants (Kazemi et al., 2019).

Single-Species and Multi-Species Probiotic

In studies that investigated behavioral effects of probiotics, about 60% of animal studies and 50% of human studies used single-species probiotics (SSPs) (Joseph and Law, 2019). Studies with SSPs promote a better understanding of the function and contribution of individual probiotic, which is difficult to measure in MSPs. However, MSPs may have higher potency in humans. In MDD patients, SSP (*L. plantarum*) did not reduce depression but improved cognition (Lew et al., 2018), whereas MSPs had repeatedly shown antidepressive efficacy (Akkasheh et al., 2016; Bambling et al., 2017; Ghorbani et al., 2018; Kazemi et al., 2019). MSPs often gave better therapeutic efficacy compared to that of SSPs in gut-related disorders and pathogen infections, which could be explained by an overall higher dosage (Chapman et al., 2011, 2012). Indeed, MSPs with a higher dosage improved symptoms of depression and anxiety in healthy individuals compared to that of a lower dosage (Tran et al., 2019). MSPs are also hypothesized to exhibit synergistic effects that would have an
expanded effect on the host physiology (Chapman et al., 2012). In contrast, SSPs are speculated to promote better colonization as it does not have to compete for nutrient or adhesion sites in the host (Chapman et al., 2011). This highlights the need for more studies to understand how probiotics in MSPs interact with each other and with existing gut microbiota, and which probiotic(s) is suitable in formulation of MSPs for antidepressive efficacy.

Advantages of Probiotics as Antidepressive Treatment

Probiotics are generally safe for consumption, except for immune-compromised and critically sick individuals wherein probiotics may cause sepsis, pneumonia, endocarditis and allergies (Didari et al., 2014). Still, it has been viewed by some that more human trials are required to establish the dosage efficacy and long-term safety profile of probiotics (Kothari et al., 2018). For antidepressant drugs such as SSRIs, side effects occur in 40-60% of users which include sexual dysfunction, suicidality, emotional numbness and addiction (Read and Williams, 2018). A meta-analysis data showed that users of antidepressant drugs were associated with a 33% increased risk of mortality (Maslej et al., 2017). On the other hand, probiotics possess fewer side effects than antidepressant drugs. For instance, rats fed with *L. brevis*-fermented milk exhibited comparable antidepressive efficacy to fluoxetine-treated rats, but without side effects of fluoxetine (decreased appetite and weight loss) (Ko et al., 2013).

Antidepressant usage is also associated with stigma, such as being perceived as emotionally weak and dependent on drugs, which contributes to the disease severity and poor adherence to treatment (Castaldelli-Maia et al., 2011). In a survey study, 77% of depressed patients prefer to hide their use of antidepressant medication from others (Martinez et al., 2018). However, the prevalence of perceived stigma against antidepressants differs based on the population studied (Castaldelli-Maia et al., 2011). To this end, probiotics may help as an alternative treatment for depression, given that probiotics have not been associated with any perceived social stigma (Wallace and Milev, 2017).

Candidate Probiotics With Potential Antidepressive Effect

Bifidobacterium pseudocatenulatum is known for its regulation of obesity-related changes in metabolism and the immune system (Cano et al., 2013; Moya-Perez et al., 2014, 2015; Sanchis-Chorda et al., 2018). *B. pseudocatenulatum* intake reversed diet-induced obesity, depression, high corticosterone and low hippocampal 5-HT levels in mice (Agusti et al., 2018). However, a high-fat diet model is meant to study the pathophysiology of obesity and type 2 diabetes (Winzell and Ahren, 2004; Wang and Liao, 2012). It is, thus, unclear if *B. pseudocatenulatum* would decrease depression in mice without obesity. Another study showed that anxiety-like behaviors diminished in chronic-stressed mice fed with *B. pseudocatenulatum*, but depressive-like behaviors were unevaluated (Moya-Perez et al., 2017). Therefore, further studies are required to determine whether *B. pseudocatenulatum* has an independent antidepressive effect.

Bacillus coagulans supplementation relieved symptoms of both IBS and depression in patients diagnosed with IBS and MDD. This clinical recovery is accompanied by a decrease in serum myeloperoxidase, an inflammatory marker (Majeed et al., 2018). However, patients might have experienced less depression as a result of reduced IBS symptoms. Interestingly, *B. coagulans* intake increased levels of circulating IL-10, fecal *F. prausnitzii* and SCFAs in older adults (Nyangale et al., 2014, 2015). As *F. prausnitzii* and butyrate are associated with antidepressive properties (Hao et al., 2019), *B. coagulans* may also indirectly reduce depression and improve gut health.

Bifidobacterium bifidum and *L. acidophilus* were often included in the formulation of MSPs to treat depressive symptoms in patients with MDD (Akkasheh et al., 2016; Bambling et al., 2017; Ghorbani et al., 2018) and other health conditions, such as polycystic ovarian syndrome, multiple sclerosis and IBS (Kouchaki et al., 2017; Ostadmohammadi et al., 2019; Zhang et al., 2019). Surprisingly, *B. bifidum* and *L. acidophilus* have not been tested independently for its antidepressive effect. *B. bifidum* intake improved mood and reduced symptoms of abdominal pain, diarrhea and constipation in patients with gastrointestinal disorders (Urita et al., 2015). However, the mood elevation could be due to recovery of gastrointestinal symptoms rather than effect of probiotics solely. Both *in vitro* and *in vivo* models showed that *L. acidophilus* protects the intestinal barrier integrity by preventing pathogen adherence and release of proinflammatory cytokines (Chen et al., 2009; Justino et al., 2015; Alamdary et al., 2018; Lepine et al., 2018; Najarian et al., 2019). Taken together, *B. bifidum* and *L. acidophilus* potentially exhibit antidepressive effect and their direct influence on depression warrants further investigation.

Bacteroides fragilis has been proposed as a potential probiotic, although its pathogenicity needs to be taken into consideration. *B. fragilis* secretes polysaccharide A and expresses sphingolipids that benefit the host gut health and immune system (Troy and Kasper, 2010; Tan et al., 2019). *Bacteroides* genus is likely to be the largest GABA producer amongst human gut microbiota, with *B. fragilis* produces GABA at low pH. The same study also found that neural patterns of a typical MDD patient correlated with low fecal levels of *Bacteroides* (Strandwitz et al., 2019). Hence, antidepressive potential of *B. pseudocatenulatum*, *B. coagulans*, *B. bifidum*, *L. acidophilus*, and *B. fragilis* warrants further investigation. It is also worth noting that *Bifidobacterium adolescentis*’ antidepressive capability may be a new probiotic candidate (Jang et al., 2019). Evidently, an increasing number of probiotics are being presented as a potential treatment for depression. This provides a wide repository of available probiotics, with different species combinations, that can be assessed for clinical efficacy against depression.

CONCLUSION

The MGB axis enables the bidirectional communication between the gut microbiota and the brain. When this axis becomes
maladaptive, the host physiology is adversely affected which may lead to the development of depression. Probiotics have shown clinical efficacy in the treatment of depression by modulating the MGB axis. Yet, the complexity of gut microbiota and heterogeneity of depression presents a challenge to explain the underlying mechanisms that contribute to this clinical efficacy. Nonetheless, cumulative evidence suggests the therapeutic potential of probiotics for certain depression subtypes, with fewer side effects and less stigma compared to standard antidepressants.

Limitations of this review include: (1) inferences of probiotic mechanisms were derived from preclinical and in vitro data; (2) interactions of probiotics with other members of gut microbiota were unexplored, therefore the mechanisms of MSFs was unable to be explored; (3) strain-specific effects of bacterial species were neglected; (4) potential applications for probiotics for depression subtypes are hypothesized, however, clinical evidence is limited; (5) effect sizes of probiotics as antidepressants was not evaluated. Notwithstanding these caveats, this review adds to the intellectual input and critical revision of the manuscript.

AUTHOR CONTRIBUTIONS

SY wrote and edited the manuscript. TT, JC, and WL conceptualized and edited the manuscript. All authors contributed to the intellectual input and critical revision of the manuscript.

FUNDING

This work was supported by the Sunway University Research Internal Grants (INT-2018-SST-DBS-05).

ACKNOWLEDGMENTS

The authors would like to thank Tong Xin Leong and Bahaa Abdella for providing their initial input to the work.

REFERENCES

Abildgaard, A., Kern, T., Pedersen, O., Hansen, T., Wegener, G., and Lund, S. (2019). The antidepressant-like effect of probiotics and their faecal abundance may be modulated by the cohabiting gut microbiota in rats. Eur. Neuropsychopharmacol. 29, 98–110. doi: 10.1016/j.eunp.2018.1.011

Agusti, A., Moya-Perez, A., Campillo, I., Montserrat-de la Paz, S., Cerrudo, V., Perez-Villalba, A., et al. (2018). Bifidobacterium pseudocatenulatum CECT 7765 ameliorates neuroendocrine alterations associated with an exaggerated stressor response and anhedonia in obese mice. Mol. Neurobiol. 55, 5337–5352. doi: 10.1007/s12035-017-0768-z

Aizawa, E., Tsuji, H., Asahara, T., Teraishi, T., Yoshida, S., et al. (2016). Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 202, 254–257. doi: 10.1016/j.jad.2016.03.038

Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., Jafari, P., Akbari, H., Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., et al. (2016). Oral administration of a product derived from Clostridium butyricum in rats. Int. J. Mol. Med. 2015.09.003

Alamdary, S. Z., Bakshi, B., and Soudi, S. (2018). The anti-apoptotic and anti-inflammatory effect of Lactobacillus acidophilus on Shigella sonnei and Vibrio cholerae interaction with intestinal epithelial cells: a comparison between invasive and non-invasive bacteria. PLoS One 13:e0196941. doi: 10.1371/journal.pone.0196941

Allen, A. P., Hutch, W., Borre, Y. E., Kennedy, P. J., Temko, A., Boylan, G., et al. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 6:e939. doi: 10.1038/tp.2016.191

Almeida, A., Mitchell, A. L., Boland, M., Forster, S. C., Gloor, G. B., Tarkowska, A., et al. (2019). A new genomic blueprint of the human gut microbiota. Nature 568, 499–504. doi: 10.1038/s41586-019-0965-1

Alonso, C., Guillaume, M., Vicario, M., Ramos, L., Rezzi, S., Martinez, C., et al. (2012). Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol. Motil. 24, 740–746, e348–e349. doi: 10.1111/j.1365-2982.2012.01928.x

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, the Edition: DSM-5. Washington, DC: American Psychiatric Publishing.

Anderberg, R. H., Richard, J. E., Hansson, C., Nissbrandt, H., Bergquist, F., and Skibicka, K. P. (2016). GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 65, 54–66. doi: 10.1016/j.psyneuen.2015.11.021

Anderberg, R. H., Richard, J. E., Hansson, C., Nissbrandt, H., Bergquist, F., and Skibicka, K. P. (2016). GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 65, 54–66. doi: 10.1016/j.psyneuen.2015.11.021

Araki, Y., Andoh, A., Fujiyama, Y., Takizawa, J., Takizawa, W., and Bamba, T. (2002). Oral administration of a product derived from C. butyricum in rats. Int. J. Mol. Med. 9, 53–57.

Asano, Y., Hiramoto, T., Nishino, R., Aiba, Y., Kimura, T., Yoshihara, K., et al. (2012). Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1288–G1295. doi: 10.1152/ajpgi.00341.2012

Bailey, M. T., Dowd, S. E., Galley, J. D., Hafnagle, A. R., Allen, R. G., and Lyte, M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407. doi: 10.1016/j.bbi.2010.11.023

Bambling, M., Edwards, S. C., Hall, S., and Vitetta, L. (2017). A combination of probiotics and magnesium orotate attenuate depression in a small SSRI resistant cohort: an intestinal anti-inflammatory response is suggested. Inflammopharmacology 25, 271–274. doi: 10.1007/sj.10787-017-0311-x

Barany, A., Meinitzer, A., Staub, R. J., Stauber, R., et al. (2013). A biopsychosocial model of interferon-alpha-induced depression in patients with chronic hepatitis C infection. Psychother. Psychosom. 82, 332–340. doi: 10.1159/000348587

Barrett, E., Ross, R. P., O’Toole, P. W., Fitzgerald, G. F., and Stanton, C. (2012). gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417. doi: 10.1111/j.1365-2672.2012.0 344.x

Benton, D., Williams, C., and Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61, 355–361. doi: 10.1038/sj.ejn.1602546

Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., et al. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139. doi: 10.1111/j.1365-2982.2011.01796.x

Bercik, P., Verdu, E. F., Foster, J. A., Macri, J., Potter, M., Huang, X., et al. (2010). Chronic gastrointestinal inflammation induces anxiety-like behavior.
prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52, 2141–2146. doi: 10.1099/ijs.0.02241-0

Dunlop, B. W., and Nemeroff, C. B. (2007). The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 64, 327–337. doi: 10.1001/ archpsyc.64.3.327

Ewaschuk, J. B., Diaz, H., Meddings, L., Diederichs, B., Dmytrash, A., Backer, J., Earnheart, J. C., Schweizer, C., Crestani, F., Iwasato, T., Itohara, S., Mohler, H., et al. (2007). The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 64, 327–337. doi: 10.1001/ archpsyc.64.3.327

Gao, C., Major, A., Rendon, D., Lugo, M., Jackson, V., Shi, Z., et al. (2015). Lactobacillus rhamnosus G1025–G1034. doi: 10.1152/ajpgi.90227.2008

Grigorieff, N., Mullmann, J. S., Wolf, O. T., Hammer, F., Weger, A., Jablonowski, S., et al. (2011). Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 6:e28330. doi: 10.1371/journal.pone.0028330

Groeger, A. D., O’Mahony, L., Murphy, E. F., Bourke, J. F., Dinan, T. G., Kilby, B., et al. (2013). Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 4, 325–339. doi: 10.4161/gmic.25487

Grunewald, M., Johnson, S., Lu, D., Wang, Z., Lomberk, G., Albert, P. R., et al. (2012). Mechanistic role for a novel glucosocorticoid-KLF11 (TG2) protein pathway in stress-induced monoamine oxidase A expression. J. Biol. Chem. 287, 24195–24206. doi: 10.1074/jbc.M112.373936

Gutierrez, A., Zapater, P., Juanola, O., Sempere, L., Garcia, M., Laveda, R., et al. (2016). Gut bacterial DNA translocation is an independent risk factor of flare at short term in patients with Crohn’s disease. Am. J. Gastroenterol. 111, 529–540. doi: 10.1038/ajg.2016.8

Han, A., Sung, Y. B., Chung, S. Y., and Kwon, M. S. (2014). Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus. Neuropharmacology 81, 292–302. doi: 10.1016/j.neuropharm.2014.02.017

Han, S. H., Hong, K. B., and Sue, H. J. (2017). Biotransformation of monosodium glutamate to gamma-aminobutyric acid by isolated strain Lactobacillus brevis L-32 for potentiation of pentobarbital-induced sleep in mice. Food Biotechnol. 31, 80–93. doi: 10.3920/BM2016.8418.847. doi: 10.3920/BM2016.00334-9

Hao, Z., Wang, W., Guo, R., and Liu, H. (2019). Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology 104, 132–142. doi: 10.1016/j.psyneuen.2019.02.025

Harald, B., and Gordon, P. (2012). Meta-review of depressive subtyping models. J. Affect. Disord. 139, 126–140. doi: 10.1016/j.jad.2011.07.015

Hasler, G., van der Veen, J., Tumonis, T., Meyers, N., Shen, J., and Drevets, W. C. (2009). Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 66, 193–200. doi: 10.1001/archpsyc.66.2.193

Hasler, W. L. (2009). Serotonin and the GI tract. Curr. Gastroenterol. Rep. 11, 380–391. doi: 10.1007/s11894-009-0058-7

Hata, T., Asano, Y., Yoshihara, K., Kimura-Todani, T., Miyata, N., Zhang, X. T., et al. (2017). Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS One 12:e0180745. doi: 10.1371/journal.pone.0180745

He, G. Q., Kong, Q., Chen, Q. H., and Ruan, H. (2005). Batch and fed-batch production of butyric acid by clostridium butyricum ZJUCB. J. Zhejiang Univ. Sci. B. 6, 1076–1080. doi: 10.1016/j.jzsbs.2005.81076

Hirshon, D. L., et al. (2016). Probiotic treatment reduces appetite and glucose level in the zebrafish. Front. Behav. Neurosci. 10:324. doi: 10.3389/fnbeh.2016.00324

Hoch, C. M., Such, J., et al. (2012). Oral administration of B. infantis favors a reduction in mesenteric lymph node bacterial DNA translocation episodes in mice with carbon tetrachloride-induced cirrhosis. J. Hepatol. 56(Suppl. 2), S229. doi: 10.1016/s0168-8272(12)60589-3

Gallozzi, L. rhamnosus subtypes of major depressive disorder (MDD). M. Gallozzi, L. rhamnosus NC35624. doi: 10.1002/jb.11227.2008

Falkinelli, S., Rodiles, A., Hatef, A., Picchietti, S., Cossignani, L., Merrifield, D. L., et al. (2017). Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catalytic hormonal milieu in zebrafish. Sci. Rep. 7:5512. doi: 10.1038/s41598-017-05147-w

Falkinelli, S., Rodiles, A., Unniapan, S., Picchietti, S., Gioacchini, G., Merrifield, D. L., et al. (2016). Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci. Rep. 6:18061. doi: 10.1038/rep.18061

Farabang, A. H., Mischoloun, D., Fava, M., Green, C., Guyker, W., and Alpert, J. (2004). The potential relationship between levels of perceived stress and subtypes of major depressive disorder (MDD). Acta Psychiatria Scand. 110, 465–470. doi: 10.1111/j.1600-0447.2004.00377.x

Feenstra, M. G., Kalsbeek, A., and van Galen, H. (1992). Neonatal lesions of the ventral tegmental area affect monoaminergic responses to stress in the medial prefrontal cortex and other dopamine projection areas in adulthood. Brain Res. 596, 169–182. doi: 10.1016/0006-8993(92)91545-p

Freedone, P. (2013). Communication between bacteria and their hosts. Sciencia 33, 2015-16730. doi: 10.1115/1.6000447.2004.00377x

Freenan, M., Rees, M. D., Plaza, T. S., Glaros, E., Lim, Y. J., Wang, X. S., et al. (2010). The possible role of the kynurenine pathway in adolescent depression with melancholic features. J. Child Psychol. Psychiatry 51, 935–943. doi: 10.1111/j.1469-7610.2010.02245.x

Ganesh, B. P., Hall, A., Ayyaswamy, S., Nelson, J. W., Fultz, R., Major, A., et al. (2018). Dicyclopyrrolinol kinase synthesized by commensal Lactobacillus reuteri diminishes protein kinase C phosphorylation and histamine-mediated signaling in the mammalian intestinal epithelium. Microsomal Immunol. 11, 380–393. doi: 10.1038/mi.2017.58

Gao, X., Cao, Q., Cheng, Y., Zhao, D., Wang, Z., Yang, H., et al. (2018). Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune
Hemarajata, P., Gao, C., Pflughoeft, K. J., Thomas, C. M., Saulnier, D. M., Spinler, J. K., et al. (2013). *Lactobacillus reuteri*-specific immunoregulatory gene rsIR modulates histamine production and immunomodulation by *Lactobacillus reuteri*. *J. Bacteriol.*, 195, 5567–5576. doi: 10.1128/JB.00261-13

Hewitt, S. A., Wamsteeker, J. L., Kurz, E. U., and Bains, J. S. (2009). Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. *Nat. Neurosci.*, 12, 438–443. doi: 10.1038/nn.2274

Hillsley, K., and Grundy, D. (1998). Serotonin and cholecystokinin activate different populations of rat mesenteric vasa adherent. *Neurosci. Lett.*, 255, 63–66. doi: 10.1016/s0304-3908(98)00890-9

Hoermannsperger, G., Clavel, T., Hoffmann, M., Reiff, C., Kelly, D., Loh, G., et al. (2009). Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. *PLoS One* 4:e4365. doi: 10.1371/journal.pone.0004365

Hold, G. L., Schwieritz, A., Aminov, R. I., Blaut, M., and Flint, H. J. (2003). Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. *Appl. Environ. Microbiol.*, 69, 4320–4324. doi: 10.1128/aem.69.7.4320-4324.2003

Howren, M. B., Lamkin, D. M., and Suls, J. (2009). Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. *Psychosom. Med.*, 71, 171–186. doi: 10.1097/PSY.0b013e3181907c1b

Huang, R., Wang, K., and Hu, J. (2016). Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. *Nutrients* 8:E483. doi: 10.3390/nu8080483

Huang, S. Y., Chen, L. H., Wang, M. F., Hsu, C. C., Chan, C. H., Li, J. X., et al. (2018). *Lactobacillus panacasei* P323 delays progression of age-related cognitive decline in senescence accelerated mouse prone 8 (SAMP8) mice. *Nutrients* 10:894. doi: 10.3390/nu10070894

Hughes, E. R., Winter, M. G., Duerkop, B. A., Spiga, L., Furtado de Carvalho, T., Zhu, W., et al. (2017). Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. *Cell Host Microbe* 21, 208–219. doi: 10.1016/j.chom.2017.01.005

Hyland, N. P., and Cryan, J. F. (2010). A gut feeling about GABA: focus on GABA(B) receptors. *Front. Pharmacol.*, 1:124. doi: 10.3389/fphar.2010.00124

Ionescu, D. F., Nicu, M. J., Richards, E. M., and Zarate, C. A. Jr. (2014). Pharmacologic treatment of dimensional anxious depression: a review. *Prim Care Companion CNS Disord.* 16:C13r01621. doi: 10.4088/PCC.13r01621

Ivanov, D., Emonet, C., Foata, F., Allofer, M., Delley, M., Fisheha, M., et al. (2006). A serpin from the gut bacterium *Bifidobacterium longum* inhibits eukaryotic elastase-like serine proteases. *J. Biol. Chem.*, 281, 17246–17252. doi: 10.1074/jbc.M601678200

Jacobsen, J. P., Ruddicher, M. L., Roberts, W., Royer, L., Robinson, T. J., Oh, A., et al. (2016). SSSI augmentation by 5-Hydroxytryptophan slow release: mouse pharmacodynamic proof of concept. *Neuropsychopharmacology* 41, 2324–2334. doi: 10.1038/npp.2016.018

Jamilian, M., Mansury, S., Bahmani, F., Heidar, Z., Amirani, E., and Jacobsen, J. P., Rudder, M. L., Roberts, W., Royer, E. L., Robinson, T. J., Oh, A., Jang, H. M., Lee, K. E., and Kim, D. H. (2019). The preventive and curative effects of *Bifidobacterium breve* NK33 and *Bifidobacterium adolescentis* NK98 on immobilization stress-induced anxiety/depression and colitis in mice. *Nutrients* 11:E819. doi: 10.3390/nu11040819

Jangid, P., Malik, P., Singh, P., Sharma, M., and Gulia, A. K. (2013). Comparative study of efficacy of of-3-hydroxytroptophan and fluoxetine in patients presenting with first depressive episode. *Asian J. Psychiatr.* 6, 29–34. doi: 10.1016/j.ajp.2012.05.011

Januk, R., Thomason, L. A. M., Stanisz, A. M., Forsythe, P., Bienenstock, J., and Stanisz, G. J. (2016). Magnetic resonance spectroscopy reveals oral *Lactobacillus* promotion of increases in brain GABA, N-acetyl aspartate and glutamate. *Neuroimage* 125, 988–995. doi: 10.1016/j.neuroimage.2015.1.018

Jaw, N. N., Ashaly, M. B., and Khushchandani, J. (2016). Oral feeding of probiotic *Bifidobacterium infantis* colonic morphological changes in rat model of TNBS-Induced Colitis. *Scientifica* 2016, 9572596. doi: 10.1155/2016/9572596
Kothari, D., Patel, S., and Kim, S. K. (2018). Probiotic supplements might not be universally-effective and safe: a review. *Biomed. Pharmacother.* 111, 537–547. doi: 10.1016/j.biopharm.2018.12.104

Kouchaki, E., Tamtaji, O. R., Salami, M., Bahmani, F., Daneshvar Kakhaki, R., Akbari, E., et al. (2017). Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. *Clin. Nutr.* 36, 1245–1249. doi: 10.1016/j.clnu.2016.08.015

Kurosawa, N., Shimizu, K., and Seki, K. (2016). The development of depression-like behavior is consolidated by IL-6-induced activation of locus coeruleus neurons and IL-1beta-induced elevated leptin levels in mice. *Psychopharmacology* 233, 1725–1737. doi: 10.1007/s00213-015-4084-x

Laval, L., Martin, R., Natividad, J. N., Chain, F., Miquel, S., Desclée de Maredsous, C., et al. (2015). *Lactobacillus rhamnosus* CNCM I-3690 and the commensal bacterium *Eggerthella lenta* strain 2A-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. *Gut Microbes* 6, 1–9. doi: 10.4161/19499076.2014.990784

Lefebvre, D., Langevin, L. M., Jaworska, N., Harris, A. D., Lebel, R. M., Jasaui, et al. (2016). Alteration of behavior and monoamine levels attributable to *Psyneuen*2011.10.005 *PS128* in germ-free mice. *Gut Microbes* 7, 892–902. doi: 10.1002/guth.201500024

Leonard, B. E. (2001). Stress, norepinephrine and depression. *J. Psychiatry Neurosci.* 26(Suppl.), S11–S16.

Lepine, A. F. P., de Wit, N., Oosterink, E., Wichers, H., Mes, J., and de Vos, M. W. (2011). Probiotic function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. *Bioessays* 33, 574–581. doi: 10.1002/bies.201100024

Luo, J., Wang, T., Liang, S., Hu, X., Li, W., and Jin, F. (2014). Ingestion of *Lactobacillus* strain reduces anxiety and improves cognitive function in the hyperammonemia rat. *Sci. China Life Sci.* 57, 327–335. doi: 10.1007/s11427-014-4615-4

Luscher, B., Shen, Q., and Sahir, N. (2011). The GABAergic deficit hypothesis of major depressive disorder. *Mol. Psychiatry* 16, 383–406. doi: 10.1038/mp.2010.150

Lyte, M. (2011). Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. *Bioessays* 33, 574–581. doi: 10.1002/bies.201100024

Maeda, H., Zhu, X., Suzuki, S., Suzuki, K., and Kitamura, S. (2004). Structural characterization and biological activities of an exopolysaccharide kefiran produced by *Lactobacillus kefiranofaciens* WT-2B(T). *J. Agric. Food Chem.* 52, 5533–5538. doi: 10.1021/jf040617g

Maehata, H., Kobayashi, Y., Mitsuyama, E., Kawase, T., Kuhara, T., Xiao, J. Z., et al. (2019). Heat-killed *Lactobacillus helveticus* strain MCC1848 confers resilience to anxiety or depression-like symptoms caused by subchronic social defeat stress in mice. *Biosci. Biotechnol. Biochem.* 83, 1239–1247. doi: 10.1080/09168541.2019.1591263

Maes, M., Kubera, M., and Leunis, J. C. (2008). The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. *Neuro Endocrinol. Lett.* 29, 117–124.

Maes, M., Meltzer, H. Y., Scharpé, S., Bosmans, E., Suy, E., De Meester, I., et al. (1993). Relationships between lower plasma L-tryptophan levels and immune-inflammatory variables in depression. *Psychiatry Res.* 49, 151–165. doi: 10.1016/0165-1781(93)90102-M

Maes, M., Scharpe, S., Meltzer, H. Y., Ouyali, G., Bosmans, E., D’ Hondt, P., et al. (1994). Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an inflammatory response. *Psychiatry Res.* 54, 143–160. doi: 10.1016/0165-1781(94)90003-5

Maes, M., Verkerk, R., Bonaccorso, S., Ombelet, W., Bosmans, E., and Scharpe, S. (2002). Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. *Life Sci.* 71, 1837–1848. doi: 10.1016/S0024-3205(01)00853-2

Maldonado-Gomez, M. X., Martinez, I., Bottacini, F., O’Callaghan, A., Ventura, M., et al. (2017). Microbiota alteration is associated with the development of stress-induced despair behavior. *Sci. Rep.* 7:43859. doi: 10.1038/srep43859
Martin, R., Miquel, S., Chain, F., Natividad, J. M., Jury, J., Lu, J., et al. (2015). *Fusobacterium prausnitzii* prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 15:67. doi: 10.1186/s12866-015-0400-1

Martinez, L. R., Xu, S., and Hebl, M. (2018). Utilizing education and perspective taking to reduce the stigma of taking antidepressants. Comm. Ment. Health J. 54, 450–459. doi: 10.1007/s10597-017-0174-z

Martinowich, K., and Lu, B. (2008). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33, 73–83. doi: 10.1038/sj.npp.1301571

Masej, M. M., Bolker, B. M., Russell, M. J., Eaton, K., Durisko, Z., Hollon, S. D., et al. (2017). The mortality and myocardial effects of antidepressants are moderated by preexisting cardiovascular disease: a meta-analysis. Psychother. Psychosom. 86, 268–282. doi: 10.1159/000477940

Mathews, G. C., and Diamond, J. S. (2003). Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J. Neurosci. 23, 2040–2048. doi: 10.1523/jneurosci.23-06-2040.2003

MATT, S. M., Allen, J. M., Lawson, M. A., Malling, L. J., Woods, J. A., and Johnson, R. W. (2018). Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol. 9:1832. doi: 10.3389/fimmu.2018.01832

McKean, J., Naug, H., Nibakhht, E., Amiet, B., and Colson, N. (2017). Probiotics and subclinical psychological symptoms in healthy participants: a systematic review and meta-analysis. J. Altern. Complement. Med. 23, 249–258. doi: 10.1089/acm.2016.0023

McNabney, S. M., and Henagan, T. M. (2017). Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9:E1348. doi: 10.3390/nu9121348

McVey Neufeld, K. A., Kay, S., and Bienenstock, J. (2018). Mouse Strain affects neuroendocrine and behavioral stress responses following administration of probiotic *Lactobacillus rhamnosus* BB-1 or traditional antidepressant fluoxetine. Front. Neurosci. 12:294. doi: 10.3389/fnins.2018.00294

McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A., and Kunze, W. A. (2013). The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25:183-e88. doi: 10.1111/nmo.12049

McVey Neufeld, K. A., O’Mahony, S. M., Hoban, A. E., Waworuntu, R. V., Berg, B. M., Dinan, T. G., et al. (2017). Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion 95, 55–60. doi: 10.1159/000452364

Meyna, M., Kondo, J., Iwabuchi, N., Katada, K., Uchiyama, K., et al. (2017). Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion 95, 55–60. doi: 10.1159/000452364

Moca, C., Rousseau, S., Soria, J. C., Hoque, M. O., Lee, J., Jang, S. J., et al. (2004). Aquaporin expression in human lymphocytes and dendritic cells. Am. J. Hematol. 75, 128–133. doi: 10.1002/ajh.10476

Moriuchi, S., Takamia, A., Noda, Y., Horita, N., Wada, M., Tsugawa, S., et al. (2018). Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol. Psychiatry 24, 952–964. doi: 10.1038/s41380-018-0252-9

Neyi-Perez, A., Neef, A., and Sanz, Y. (2015). *Bifidobacterium pseudocatenulatum* CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One 10:e0126976. doi: 10.1371/journal.pone.0126976

Neyi-Perez, A., Perez-Villalba, A., Benitez-Paez, A., Campillo, I., and Sanz, Y. (2017). *Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav. Immun. 65, 43–56. doi: 10.1016/j.bbi.2017.05.011

Neyi-Perez, A., Romo-Vaquero, M., Tomas-Barberan, F., Sanz, Y., and Garcia-Conesa, M. T. (2014). Hepatic molecular responses to *Bifidobacterium pseudocatenulatum* CECT 7785 in a mouse model of diet-induced obesity. Nutr. Metab. Cardiovasc. Dis. 24, 57–64. doi: 10.1016/j.numecd.2013.04.011

Murakami, T., Kamada, K., Mizushima, K., Higashimura, Y., Katada, K., Uchiyama, K., et al. (2017). Effects of paraprobiotic *Lactobacillus paracasei* MCCI1849 supplementation on symptoms of the common cold and mood states in healthy adults. Benef. Microbes 8, 855–864. doi: 10.1007/BF0320/M2017.0197

Murrough, J. W., Abdallah, C. G., and Mathew, S. J. (2017). Targeting glutamate signaling in depression: progress and prospects. Nat. Rev. Drug Discov. 16, 472–486. doi: 10.1038/nrd.2017.16

Najarian, A., Sharif, S., and Griffiths, M. W. (2019). Evaluation of protective effect of *Lactobacillus acidophilus* La-5 on toxicity and colonization of Clostridium difficile in human epithelial cells in vitro. Anaerobe 55, 142–151. doi: 10.1016/j.anae.2018.12.004

Nakatani, Y., Sato-Suzuki, I., Tsuchino, N., Nakasato, A., Seki, Y., Fumoto, M., et al. (2008). Augmented brain 5-HT cross the blood-brain barrier through the 5-HT transporter in rat. Eur. J. Neurosci. 27, 2466–2472. doi: 10.1111/j.1460-9568.2008.06201.x

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linlokken, A., Wilson, R., et al. (2015). Evaluation of protective effect of *Bifidobacterium pseudocatenulatum* CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One 10:e0126976. doi: 10.1371/journal.pone.0126976

Nedjadi, T., Moran, A. W., Al-Rammahi, M. A., and Shirazi-Bechley, S. P. (2014). Characterization of butyrate transport across the luminal membranes of equine large intestine. Exp. Physiol. 99, 1335–1347. doi: 10.1113/expphysiol.2014.077982

Neufeld, K. M., Kang, N., Bienstock, J., and Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 26, 1155–1162. doi: 10.1111/j.1365-2982.2010.01278

Ng, Q. X., Peters, C., Ho, C. Y. X., Lim, D. Y., and Yeo, W. S. (2018). A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord. 228, 13–19. doi: 10.1016/j.jad.2017.11.063

Nielsen, C. U., Cartensen, M., and Brodin, B. (2012). Carrier-mediated gamma-amino butyric acid transport across the basolateral membrane of human
intestinal Caco-2 cell monolayers. *Eur. J. Pharm. Biopharm.* 81, 458–462. doi: 10.1016/j.ejpb.2012.03.007

Nishida, K., Sawada, D., Kawai, T., Kuwano, Y., Fujiwara, S., and Rokutan, K. (2017a). Para-psychotherapeutic *Lactobacillus gasseri* CP2305 ameliorates stress-related symptoms and sleep quality. *J. Appl. Microbiol.* 126, 1561–1570. doi: 10.1111/jam.13329

Nishida, K., Sawada, D., Kawai, T., Aoki, Y., et al. (2017b). Daily administration of paraprobiotic *Lactobacillus gasseri* CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students. *J. Funct. Foods* 36, 112–121. doi: 10.1016/j.jff.2017.06.031

Nobutani, K., Sawada, D., Fujiwara, S., Nishida, K., Nakayama, J., and Rokutan, K. (2018). *Ohlsson, L., Gustafsson, A., Lavant, E., Suneson, K., Brundin, L., Westrin, A., et al.* Frontiers in Neuroscience | www.frontiersin.org 26

Orikasa, S., Nabeshima, K., Iwabuchi, N., and Xiao, J. Z. (2016). Effect of repeated *Bifidobacterium* and *Lactobacillus* administration on the gut microbiota of elderly volunteers after dietary supplementation of *Bacillus coagulans* GBI-30, 6086 modulates *Faecalibacterium prausnitzii* in older men and women. *J. Nutr.* 145, 1446–1452. doi: 10.3945/jn.114.199802

Orikasa, S., Nabeshima, K., Iwabuchi, N., and Xiao, J. Z. (2016). Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of *Bacillus coagulans* GBI-30, 6086. *Anaerobe* 30, 75–81. doi: 10.1016/j.anaerobe.2014.09.002

Ohsawa, K., Nakamura, F., Uchida, N., Mizuno, S., and Yokogoshi, H. (2018). Absence of gut microbiota during early life affects anxiety behaviors and monoamine neurotransmitters in the hippocampal of mice. *J. Neurosci.* 40, 160–168. doi: 10.1523/JNEUROSCI.0302-19.2019

Pandey, N., Malik, R., Kaushik, J. K., and Singroha, G. (2013). Gasseriin A: a circular bacteriocin produced by lactic acid bacteria *Lactobacillus gasseri*. *World J. Microbiol. Biotechnol.* 29, 1977–1987. doi: 10.1007/s11274-013-1368-3

Pariyadath, V., Govin, J., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015

Pan, J. X., Deng, F. L., Zeng, B. H., Zheng, P., Liang, W. W., Yin, B. M., et al. (2019). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. *J. Nutr.* 139, 1619–1625. doi: 10.1093/jn/njz046.104638

Peres-Burgos, A., Mao, Y. K., Bienia, Noemar, G., Falb, K. D., and King, A. D. (2015). The prevention of dietary stress in women with polycystic ovary syndrome. *J. Ovarian Res.* 8:125. doi: 10.1186/s13048-019-0940-x

Ostergaard, S. D., Jensen, S. O., and Bech, P. (2011). The heterogeneity of the depressive syndrome: when numbers get serious. *Acta Psychiatric Scand.* 124, 495–496. doi: 10.1111/j.1600-0447.2011.01744.x

Ostlund-Lagerstrom, L., Kihlgren, A., Repsilber, D., Bjorksten, B., Brummer, R. J., and Schoultz, I. (2016). Probiotic administration among free-living older adults: a double blinded, randomized, placebo-controlled clinical trial. *Nutr. J.* 15:80. doi: 10.1186/s12937-016-0198-1

Otimi, K., Yamaguchi, T., Watanabe, S., Kobayashi, A., Kobayashi, H., and Hashiguchi, N. (2015). Effects of yogurt containing *Lactobacillus gasseri* OLL2716 on autonomic nerve activities and physiological functions. *Health* 67, 397–405. doi: 10.4236/health.2015.73045

Ozogul, F. (2011). Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogens. *Int. J. Food Sci. Technol.* 46, 478–484. doi: 10.1111/j.1365-2621.2010.02511.x

Ozogul, F., Kuley, E., Ozogul, Y., and Ozoul, I. (2012). The function of lactic acid bacteria on biogenic amine productions by food-borne pathogens in arginine decarboxylase broth. *Food Sci. Technol. Res.* 18, 795–804. doi: 10.3136/fstr.1.8.795

Pan, J., Xia, S., Zhou, S., Ma, X., and Meng, J. (2016). Probiotic *Lactobacillus gasseri* M1353 ameliorates chronic stress-associated symptoms in Japanese medical students. *J. Affect. Disord.* 21, 838–847. doi: 10.1016/j.jafdis.2014.12.004

Park, M., Huh, Y., Choi, H., and Koh, J. H. (2017). Probiotic *Bifidobacterium* infantis strain in a trial involving elderly adults: a randomized, double-blind, placebo-controlled trial. *J. Microbiol Biotechnol.* 27, 573–580. doi: 10.14221/jmbt.2017.043

Park, M., Huh, Y., Choi, H., and Koh, J. H. (2017). Probiotic *Bifidobacterium* infantis strain in a trial involving elderly adults: a randomized, double-blind, placebo-controlled trial. *J. Appl. Microbiol.* 126, 1561–1570. doi: 10.1111/jam.13329

Pirayadath, V., Gowing, J. L., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015

Pirtblad, G., Levesque, S., Sirois, M., Chen, C. H., and Labelle, C. (2017). Probiotic *Bifidobacterium* infantis strain in a trial involving elderly adults: a randomized, double-blind, placebo-controlled trial. *J. Affect. Disord.* 21, 838–847. doi: 10.1016/j.jafdis.2014.12.004

Pirayadath, V., Gowing, J. L., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015

Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., Nardelli, A., Bolino, C., Lau, J. T., et al. (2017). Probiotic *Bifidobacterium longum* NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. *Gastroenterology* 153, 448.e8–459.e8. doi: 10.1053/j.gastro.2017.05.003

Pirayadath, V., Gowing, J. L., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015

Pirayadath, V., Gowing, J. L., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015

Pirayadath, V., Gowing, J. L., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015

Pirayadath, V., Gowing, J. L., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015

Pirayadath, V., Gowing, J. L., and Stein, E. A. (2016). Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. *Prog. Brain Res.* 224, 155–173. doi: 10.1016/bs.prbr.2015.07.015
Quigley, E. M. (2011). Microflora modulation of motility. *J. Neurogastroenterol. Motil.* 17, 140–147. doi: 10.5056/jnm.2011.17.2.140

Rao, A. V., Bested, A. C., Beaulne, T. M., Katzman, M. A., Iorio, C., Berardi, J. M., et al. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. *Gut Pathog.* 1:6. doi: 10.1186/1757-4749-1-6

Raygan, F., Ostadodinmohammadi, V., Bahmani, F., and Asemi, Z. (2018). The effects of vitamin D and probiotic co-supplementation on mental health parameters and metabolic status in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. *Prog. Neuropsychopharmacol. Biol. Psychiatry* 84(Pt A), 50–55. doi: 10.1016/j.pnpbp.2018.02.007

Read, J., and Williams, J. (2018). Adverse effects of antidepressants reported by a large international cohort: emotional blunting, suicidality, and withdrawal effects. *Curr. Drug Saf.* 13, 176–186. doi: 10.2174/157486313666180605095130

Reddy, M. S. (2010). Depression: the disorder and the burden. *Indian J. Psychol. Med.* 32, 1–2. doi: 10.4103/0253-7167.705510

Reigstad, C. S., Salmonson, C. E., Rainey, J. F. III, Szurszewski, J. H., Linden, D. R., Sonnenburg, J. L., et al. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. *FASEB J.* 29, 1395–1403. doi: 10.1096/fj.2014-259598

Reus, G. Z., Jansen, K., Titus, S., Carvalho, A. F., Gabbay, V., and Quevedo, J. (2015). Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: evidences from animal and human studies. *J. Psychiatr. Res.* 68, 316–328. doi: 10.1016/j.jpsychires.2015.05.007

Richard, D. M., Dawes, M. A., Mathias, C. W., Acheson, A., Hill-Kapturczak, N., and Dougherty, D. M. (2009). L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. *Int. J. Tryptophan Res.* 2, 45–60.

Rong, H., Xie, X. H., Zhao, J., Lai, W. T., Wang, M. B., Xu, D., et al. (2019). Similarly in depression, nuances of gut microbiota: evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. *J. Psychiatr. Res.* 113, 90–99. doi: 10.1016/j.jpsychires.2019.03.017

Rowatt, E. (1948). The relation of pantothenic acid to acetylcholine formation. *FASEB J.* 259, 9–15. doi: 10.1016/j.bbr.2013.10.032

Sawada, D., Kawai, T., Nishida, K., Kuwano, Y., Fujiiwara, S., and Rokutan, K. (2017). Daily intake of Lactobacillus gasseri CP2305 improves mental, physical, and sleep quality among Japanese medical students enrolled in a cadaver dissection course. *J. Funct. Foods* 20, 188–197. doi: 10.1016/j.jff.2017.01.042

Schipper, O. J., Wickers, M. C., and Maes, M. (2005). Cytokines and major depression. *Prog. Neuropsychopharmacol. Biol. Psychiatry* 29, 201–217. doi: 10.1016/j.pnpbp.2004.11.003

Schirmer, R. T., Sweeney, E. W., and Berlin, C. M. (1965). The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase. *J. Biol. Chem.* 240, 322–331.

Schöne, R. I., Manji, H. K., and Martinowich, K. (2009). Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. *Neuroreport* 20, 553–557. doi: 10.1097/01.wnr.0b013e328293e959

Schwarz, L. A., and Luo, L. (2015). Organization of the locus coeruleus-norepinephrine system. *Curr. Biol.* 25, R1051–R1056. doi: 10.1016/j.cub.2015.09.039

Sharpley, C. F., and Bitsika, V. (2014). Validity, reliability and prevalence of four ‘clinical content’ subtypes of depression. *Behav. Brain Res.* 259, 9–15. doi: 10.1016/j.bbr.2013.10.032

Shaw, W. (2017). Elevated urinary glycoaldehyde and crociostaphol metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: a case study. *Integr. Med. 16*, 50–57.

Sherwin, E., Sandhu, K. V., Dinan, T. G., and Cryan, J. F. (2016). May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. *CNS Drugs* 30, 1019–1041. doi: 10.1007/s40263-016-0370-3

Shilyansky, C., Williams, L. M., Gyurak, A., Harris, A., Usherwood, T., and Etkin, A. (2016). Effect of antidepressant treatment on cognitive impairments associated with depression: a randomised longitudinal study. *Lancet Psychiatry* 3, 425–435. doi: 10.1016/s2215-0366(16)00012-2

Siragusa, S., Angelis, M., Di Cagno, R., Rizzello, C. G., Coda, R., and Gobbetti, M. (2007). Synthesis of gamma-amino-butyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. *Appl. Environ. Microbiol.* 73, 7283–7290. doi: 10.1128/AEM.01064-07

Slykerman, R. F., Hood, F., Wickens, K., Thompson, J. M. D., Barthow, C., Murphy, J. N., et al. (2017). Effects of probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals. *Nutrients* 9:E284. doi: 10.3390/nu9030284

Sanacora, G., Mason, G. F., Rothman, D. L., Behar, K. L., Hyder, F., Petroff, O. A., et al. (1999). Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. *Arch. Gen. Psychiatry* 56, 1043–1047.

Sánchez, M., Darimont, C., Panahi, S., Drapeau, V., Marette, A., Taylor, V. H., et al. (2017). Effects of a diet-based weight-reducing program with probiotic supplementation on satiety efficiency, eating behaviour traits, and psychosocial behaviours in obese individuals. *Nutrients* 9:E284. doi: 10.3390/nu9030284

Sanchis-Chorda, J., Del Pulgar, E. M. G., Carrasco-Luna, J., Benitez-Paez, A., Sanz, Y., and Codoner-Franch, P. (2018). *Bifidobacterium pseudocatenulatum* CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children. *Eur. J. Nutr.* 58, 2789–2800. doi: 10.1007/s00394-018-1825-5

Santos, A., San Mauro, M., Sanchez, A., Torres, J. M., and Marquina, D. (2003). The antimicrobial properties of different strains of Lactobacillus sp. isolated from kefir. *Syst. Appl. Microbiol.* 26, 434–437. doi: 10.1078/07232020332249746
microbiome in anxiety or depression. Nat. Rev. 67, 1555–1557. doi: 10.1101/gutjnl-2017-314759
Strandwitz, P., Kim, K. H., Terekhova, D., Liu, J. K., Sharma, A., Levering, J., et al. (2019). GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403. doi: 10.1038/s41564-018-0307-3
Stromeck, A., Hu, Y., Chen, L., and Ganzle, M. G. (2011). Proteolysis and bioconversion of cereal proteins to glutamate and gamma-Aminobutyrate (GABA) in Rye malt sourdoughs. J. Agric. Food Chem. 59, 1392–1399. doi: 10.1021/jf103546t
Sugawara, T., Sawada, D., Ishida, Y., Aihara, K., Aoki, Y., Takehara, I., et al. (2016). Regulatory effect of paraprobiotic Lactobacillus gasseri CP2305 on gut environment and function. Microb. Ecol. Health Dis. 27:30259. doi: 10.3402/mehd.v27.30259
Sullivan, R. M., and Dufresne, M. M. (2006). Mesocortical dopamine and HPA axis regulation: role of laterality and early environment. Brain Res. 1076, 49–59. doi: 10.1016/j.brainres.2005.12.100
Sun, J., Wang, F., Hong, G., Pang, M., Xu, H., Li, H., et al. (2016). Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurol. Lett. 618, 159–166. doi: 10.1016/j.neulet.2016.03.003
Sun, J., Wang, F., Hu, X., Yang, C., Xu, H., Yao, Y., et al. (2018). Clostridium butyricum attenuates chronic unpredictable mild stress-induced depressive-like behavior in mice via the gut-brain axis. J. Agric. Food Chem. 66, 8415–8421. doi: 10.1021/acs.jafc.8b02462
Sun, Y., Geng, W., Pan, Y., Wang, J., Xiao, P., and Wang, Y. (2019). Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan Kefir improves depression-like behavior in stressed mice by modulating the gut microbiota. Food Funct. 10, 925–937. doi: 10.1039/c8fo02096e
Suzuki, T., Yoshida, S., and Hara, H. (2008). Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr. 100, 297–305. doi: 10.1017/S0007114508888873
Tanida, M., and Nagai, K. (2011). Electrophysiological analysis of the mechanism of autonomic action by lactobacilli. Br. J. Pharmacol. 66, 43–51. doi: 10.2337/jc.2019.01.007
Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakonanaki, E., et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371. doi: 10.2337/db11-1019
Torrebalba, F., Riveros, M. E., Contreras, M., and Valdes, J. L. (2012). Histamine and motivation. Front. Syst. Neurosci. 6:51. doi: 10.3389/fnsys.2012.0051
Troy, E. B., and Kasper, D. L. (2010). Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front. Biosci. 15:25–34. doi: 10.2741/3603
Tusios, G., and Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871. doi: 10.1016/s0022-3999(02)00429-4
Tucci, V., and Moukaddam, N. (2017). We are the hollow men: the worldwide epidemic of mental illness, psychiatric and behavioral emergencies, and its impact on patients and providers. J. Emerg. Trauma Shock 10, 4–6. doi: 10.4183/0974-2700.199517
Tylee, A., and Gandhi, P. (2005). The importance of somatic symptoms in depression in primary care. Prim Care Companion J. Clin. Psychiatry 7, 167–176. doi: 10.1088/pcc.v7n0405
Urita, Y., Goto, M., Watanabe, T., Matsuaki, M., Gomi, A., Kano, M., et al. (2015). Continuous consumption of fermented milk containing Bifidobacterium bifidum YIT 10347 improves gastrointestinal and psychological symptoms in patients with functional gastrointestinal disorders. Biosci. Microb. Food Health 34, 37–44. doi: 10.1021/acs.jbfh.4b00107
Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E. F., Wang, J., Tito, R. Y., et al. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632. doi: 10.1038/s41564-018-0337-x
von der Kleij, H., O’Mahony, C., Shanahan, F., O’Mahony, L., and Bienenstock, J. (2008). Protective effects of Lactobacillus rhamnosus [corrected] and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1131–R1137. doi: 10.1152/ajpregu.90434.2008
Vanuytsel, T., Defoirdt, T., Verstraete, W., Houben, E., et al. (2014). Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63, 1299–1309. doi: 10.1136/gutjnl-2013-305690
Venema, K. (2017). Foreword - Probiotics and prebiotics - important dietary components for health. Benef. Microbes 8, 1–2. doi: 10.3920/BM2017.0001
Vighi, G., Marcucci, F., Sensi, L., Di Cara, G., and Frati, F. (2008). Allergy and the gastrointestinal system. Clin. Exp. Immunol. 153(Suppl. 1), 3–6. doi: 10.1111/j.1365-2249.2008.03713.x
Vinderola, G., Clavel, M., Duarte, J., Farnsworth, E., and Matar, C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36, 254–260. doi: 10.1016/j.cyto.2007.01.003
von Schillde, M. A., Hormannsperger, G., Amtorp, C., Hahne, H., Bauerl, C., et al. (2012). Lactosecin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 11, 387–396. doi: 10.1016/j.chom.2012.02.006
Vreeburg, S. A., Hoogendijk, W. J., van Pelt, J., Derijck, R. H., Verhagen, J. C., van Dyk, R., et al. (2009). Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch. Gen. Psychiatry 66, 617–626. doi: 10.1001/archgenpsychiatry.2009.50
Wakayama, K., Ohtsuki, S., Takanaga, H., Hosoya, K., and Terasaki, T. (2002). Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci. Res. 44, 173–180. doi: 10.1016/s0168-1702(01)00120-7
Wallace, C. J. K., and Milev, R. (2017). The effects of probiotics on depressive symptoms in humans: a systematic review. Ann. Gen. Psychiatry 16:14. doi: 10.1186/s12991-017-0138-2
Wang, C. Y., and Liao, J. K. (2012). A mouse model of diet-induced obesity and insulin resistance. *Methods Mol. Biol.*, 821, 421–433. doi: 10.1007/978-1-61779-430-8_27

Wang, H., Lee, I. S., Braun, C., and Enck, P. (2016). Effect of probiotics on central nervous system functions in animals and humans: a systematic review. *J. Neurogastroenterol. Motil.*, 22, 589–605. doi: 10.5056/jnm16018

Wang, H. R., Wang, P. Y., Wang, X., Wan, Y. L., and Liu, Y. C. (2012). Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. *Dig. Dis. Sci.*, 57, 3126–3135. doi: 10.1007/s10620-012-2259-4

Wei, C. L., Wang, S., Yen, J. T., Cheng, Y. F., Liao, C. L., Hsu, C. C., et al. (2019). Antidepressant-like activities of live and heat-killed *Lactobacillus paracasei* PS23 in chronic corticosterone-treated mice and possible mechanisms. *Brain Res.*, 1711, 202–213. doi: 10.1016/j.brainres.2019.01.025

Wei, Y., Melas, P. A., Wegener, G., Mathe, A. A., and Lavebratt, C. (2014). Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. *Int. J. Neuropsychopharmacol.* 18:yu032. doi: 10.1093/ijn/pyu032

Weingand-Ziadé, A., Gerber-Décombaz, C., and Affolter, M. (2003). Functional characterization of a salt- and thermostolerant glutaminase from *Lactobacillus rhamnosus*. *Enzyme Microb. Technol.* 32, 862–867. doi: 10.1016/s1014-0229(03)00059-0

Wilcock, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. *Proc. Natl. Acad. Sci. U.S.A.* 106, 3698–3703. doi: 10.1073/pnas.0812874106

Winzell, M. S., and Ahren, B. (2004). The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. *Diabetes* 53(Suppl. 3), S215–S219.

Xing, Z., Geng, W., Li, C., Sun, Y., and Wang, Y. (2017). Comparative genomics of *Lactobacillus kefiranofaciens* ZW3 and related members of *Lactobacillus*. *ppp* reveal adaptations to dairy and gut environments. *Sci. Rep.* 7:12827. doi: 10.1038/s41598-017-12916-0

Xing, Z., Tang, W., Yang, G., Geng, W., Rehman, R. U., and Wang, Y. (2018). Colonization and gut flora modulation of *Lactobacillus kefiranofaciens* ZW3 in the intestinal tract of mice. *Probiot. Antimicrob. Proteins* 10, 374–382. doi: 10.1007/s12602-017-9288-4

Xu, L., Ma, C., Huang, X., Yang, W., Chen, L., Blotta, A. J., et al. (2018). Microbiota metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote development of Treg cells and T cell IL-10 production. *Mol. Psychiatry* 23, 786–796. doi: 10.1038/mp.2016.44

Yamatsu, A., Yamashita, Y., Maru, I., Yang, J., Tatsuzaki, J., and Kim, M. (2015). The improvement of sleep by oral intake of GABA and *Apocynum venetum* leaf extract. *J. Nutr. Sci. Vitaminol.* 61, 182–187. doi: 10.3177/jnv.61.182

Yan, H., and Ayuwon, K. M. (2017). Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. *PLoS One* 12:e0179586. doi: 10.1371/journal.pone.0179586

Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. *Cell* 161, 264–276. doi: 10.1016/j.cell.2015.02.047

Yokoyama, S., Hiramatsu, J., and Hayakawa, K. (2002). Production of gamma-aminobutyric acid from alcohol distillery lees by *Lactobacillus brevis* IFO-12005. *J. Biosci. Bioeng.* 93, 95–97. doi: 10.1263/jbb.93.95

Young, S. N. (1981). Mechanism of decline in rat brain 5-hydroxytryptamine after induction of liver tryptophan pyrrolase by hydrocortisone: roles of tryptophan catabolism and kynurenine synthesis. *Br. J. Pharmacol.* 74, 695–700. doi: 10.1111/j.1476-5381.1981.tb10480.x

Yunes, R. A., Poluektova, E. U., Dzyakchova, M. S., Klimina, K. M., Kortvun, A. S., Averina, O. V., et al. (2016). GABA production and structure of gadB/gadC genes in *Lactobacillus* and *Bifidobacterium* strains from human microbiota. *Anaerobe* 42, 197–204. doi: 10.1016/j.anaerobe.2016.10.011

Zalán, Z., Hudaček, J., Štětina, J., Chumchalová, J., and Halász, A. (2009). Production of organic acids by *Lactobacillus* strains in three different media. *Eur. Food Res. Technol.* 230, 395–404. doi: 10.1007/s00217-009-1179-9

Zareian, M., Ebrahimpour, A., Bakar, F. A., Mohamed, A. K., Forghani, B., Abd-Kadir, M. S., et al. (2012). A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. *Int. J. Mol. Sci.* 13, 5482–5497. doi: 10.3390/ijms13055482

Zhang, L., Liu, Y. X., Wang, Z., Wang, X. Q., Zhang, J. J., Jiang, R. H., et al. (2019). Clinical characteristic and fecal microbiota responses to probiotic or antidepressant in patients with diarrhea-predominant irritable bowel syndrome with depression comorbidity: a pilot study. *Clin. Med. J.* 13, 346–351. doi: 10.1097/CM9.000000000000071

Zhao, Z. X., Fu, J., Ma, S. R., Peng, R., Yu, J. B., Cong, L., et al. (2018). Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. *Theranostics* 8, 5945–5959. doi: 10.7150/thno.28068

Zheng, G., Wu, S. P., Hu, Y., Smith, D. E., Wiley, J. W., and Hong, S. (2013). Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner. *Neurogastroenterol. Motil.* 25, e127–e139. doi: 10.1111/nmo.12066

Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. *Mol. Psychiatry* 21, 786–796. doi: 10.1038/mp.2016.44

Zhou, Y., Zheng, W., Liu, W., Wang, C., Zhan, Y., Li, H., et al. (2019). Cross-sectional relationship between kynurenic pathway metabolites and cognitive function in major depressive disorder. *Psychoneuroendocrinology* 101, 72–79. doi: 10.1016/j.psyneuen.2018.11.001

Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Biasiardi, S., et al. (2018). Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. *Cell* 174, 1405–1419. doi: 10.1016/j.cell.2018.08.041

Zuo, L., Yuan, K. T., Yu, L., Meng, Q. H., Chung, P. C., and Yang, D. H. (2014). *Bifidobacterium infantis* attenuates colitis by regulating T cell subset and Th17 function in major depressive disorder. *Psychoneuroendocrinology* 430-8_27

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Yong, Tong, Chew and Lim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.