Alternative models of cancer stem cells: The stemness phenotype model, 10 years later

Vivek Kaushik, Yogesh Kulkarni, Kumar Felix, Neelam Azad, Anand Krishnan V Iyer, Juan Sebastian Yakisich

ORCID number: Vivek Kaushik 0000-0001-9892-564X; Yogesh Kulkarni 0000-0001-6972-630X; Kumar Felix 0000-0002-0723-6409; Neelam Azad 0000-0001-6970-5867; Anand Krishnan V Iyer 0000-0002-2090-5590; Juan Sebastian Yakisich 0000-0002-8754-2667.

Author contributions: Kaushik V and Yakisich JS collected the supportive literature and drafted the manuscript; Yakisich JS conceived the manuscript; Kulkarni Y, Felix K, Azad N and Iyer AKV reviewed the literature, revised and proofread the manuscript; all authors have read and approved the final manuscript.

Supported by The Hampton University Regional Transdisciplinary Collaborative Center National Institute of Health (NIH), No. HU-180004 (to Iyer AKV, Azad N and Yakisich JS); and NIH-NIGMS, No. GM121287 and No. GM122655 (to Azad N and Kulkarni Y, respectively).

Conflict-of-interest statement: The authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative

Abstract

The classical cancer stem cell (CSCs) theory proposed the existence of a rare but constant subpopulation of CSCs. In this model cancer cells are organized hierarchically and are responsible for tumor resistance and tumor relapse. Thus, eliminating CSCs will eventually lead to cure of cancer. This simplistic model has been challenged by experimental data. In 2010 we proposed a novel and controversial alternative model of CSC biology (the Stemness Phenotype Model, SPM). The SPM proposed a non-hierarchical model of cancer biology in which there is no specific subpopulation of CSCs in tumors. Instead, cancer cells are highly plastic in term of stemness and CSCs and non-CSCs can interconvert into each other depending on the microenvironment. This model predicts the existence of cancer cells ranging from a pure CSC phenotype to pure non-CSC phenotype and that survival of a single cell can originate a new tumor. During the past 10 years, a plethora of experimental evidence in a variety of cancer types has shown that cancer cells are indeed extremely plastic and able to interconvert into cells with different stemness phenotype. In this review we will (1) briefly describe the cumulative evidence from our laboratory and others supporting the SPM; (2) the implications of the SPM in translational oncology; and (3) discuss potential strategies to develop more effective therapeutic regimens for cancer treatment.

Key Words: Cancer; Stem cells; Stemness; Plasticity; Chemotherapy; Interconversion

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The classical cancer stem cell theory proposed the existence of a rare but constant subpopulation of cancer stem cells. This review article briefly describes the cumulative evidence supporting alternative models of cancer stem cells, their implie-
The biological properties of cancer cells have profound implications for all areas of oncology research ranging from preclinical studies to advanced clinical trials. It is not a surprise that numerous conceptual models of cancer cell biology have been proposed with the ultimate goal to develop effective therapies that not only extend survival but lead to a definitive cure. In the past decades the discovery of the potential abilities in self-renewal and differentiation of normal stem cells has opened a new horizon in medicine and important concepts were extrapolated to neoplastic cells. Although the concept of cancer stem cell (CSC) is not new since the general idea of tumors driven by a subset of cells endowed with stem-like properties was postulated by Rudolf Virchow in 1855[1] it has gained tremendous momentum after the isolation of putative cancer stem-like cells (CS-LCs) in a variety of cancer types including brain tumors[2-5], breast cancer[6-9], colon[10], hepatic[11], pancreatic[12], thyroid[13,14], bladder[15,16], cervical[17-20], ovarian[21-24], urothelial[25-28], renal[29-31] and chordoma[32,33].

In general, putative CS-LCs were isolated from every type of fresh tumor specimens and cancer cell lines. These discoveries quickly led to a new paradigm, the so called “Cancer Stem Cell Theory” (CSCT), that is fundamentally not completely different from the original models proposed by Virchow and his contemporaries[1]. In this model there is a hierarchical organization where a subset of CSCs can irreversibly differentiate into all types of non-CSCs. Prior to the modern CSCT, that started with the first isolation of putative CS-LCs in 1997[34] the clonal stochastic model (cSM) postulated in 1976[35] was popular among oncologists. The cSM proposed that all transformed cells in the tumor have carcinogenic potential and are able to proliferate and produce the same cells. The cSM is a non-hierarchical model. From the clinical point of view, according to the cSM, to cure cancer all cancer cells should be eliminated since any cancer cell is potentially tumorigenic. On the contrary, according to the modern CSCT, to cure cancer or at least to obtain a significant outcome, it should be enough to eliminate only the rare subpopulation of CSCs. The idea of a rare subpopulation of CSCs as driving element in cancer development, evolution and heterogeneity, has overridden the previous cSM model[7] and catapulted research of therapeutic strategies based on CSCs targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria and, metabolism[7,36-38].

Although the modern CSCT was an attractive concept it was found soon to be insufficient to reconcile experimental findings with a hierarchical rigid model. As a consequence several alternative plasticity models of CSCs such as “Stemness Phenotype Model”[39], the “complex system model”[40], the “Dynamic CSC model” [41], and the “Dedifferentiation model”[42] were proposed as early as 2010. These models share some similarities, but a detailed comparison is beyond the scope of this article. For review see Cruz et al.[43]. The aim of this short review is to update and highlight key predictions of the Stemness Phenotype Model (SPM).

THE SPM

In short, the SPM was originally proposed as a “One compartment model” where there is only one cancer cell type. These cells are cells with different stemness phenotype due to random biological variation. The stemness depends on the microenvironment where the cells grow and can range from a phenotype resembling a non-CSC to a pure CSC. In other words, the SPM proposed that there are no true different
subpopulations of CSCs and non-CSCs but a single cell type that can interconvert into each other depending on the microenvironmental conditions. An immediate prediction of this model is that there are cells having “intermediate phenotypes” between both extreme phenotypes[39]. Other key prediction of the SPM is that the survival of a single cell might induce tumor relapse and therefore any effective therapy will must be able to eliminate 100% of cancer cells at once in order to prevent regrowth[43].

MICROENVIRONMENTALLY-DRIVEN INTERCONVERSION BETWEEN CSCS AND NON-CSCS

In the SPM microenvironmentally-driven interconversion between CSCs and non-CSCs is a key process that explains the characteristic found in tumors such as the existence of intratumoral heterogeneity and chemoresistance. Evidence of intratumoral heterogeneity due to interconversion between cancer cell phenotypes was likely observed long before the first isolation of putative CSCs. For instance, in 1987 it was reported that several different cell phenotypes coexist in the human breast cancer cell line MCF7[44]. Similarly, it was known by 1998 that the human lung carcinoma cell line DLKP contains 3 distinct subpopulations and that two of them can interconvert to the third one[45]. At present, the findings of these two examples can easily be explained by interconversion but at that time the concept of stemness was not common in the literature. Definitive evidence of microenvironmentally-driven interconversion between CSCs and non-CSCs phenotypes were already available after the isolation of putative CSCs (characterized by stemness markers) when it was found that cells that were considered non-CSCs could interconvert into CSCs. For instance, (1) some CD44+/CD133− non-SP, SP, and ALDH+ pancreatic cancer cells (100% purity) could give rise to CD44+ cells in culture[46]; and (2) non-SP MCF7 breast cancer cells when recultured after being sorted contained SP cells indicating that the non-SP fraction gave rise to a new SP subpopulation[47]. A direct conversion from a non-CSC phenotype to a CSC phenotype was demonstrated in breast and prostate cancer cells when it was observed that exposure to conditioned media stimulated non-CSCs to become CSCs and that IL6 was enough to drive this conversion[48]. Other examples include the ability of some mature leukemia cells to de-differentiate and reacquire clonogenic and leukemogenic properties[49] and the de-differentiation of glioma cells to glioma stem-like cells by therapeutic stress[50]. Additional evidence of non-CSC conversion into CSCs were found in osteosarcoma[51], lung[52], pancreatic[53], colon[54] and breast cancers[55]. In vitro data from our lab and others demonstrated that phenotypic changes due to changes in culture conditions are rapid and reversible[56,57]. For instance, cancer cells can become (within three days) highly resistant to conventional anticancer drugs when switched from anchorage-dependent (adherent cells) culture conditions into anchorage-independent (floating cells) culture conditions. Chemosensitivity was quickly restored (within three days) when floating cells were cultured back as adherent cells. Under these conditions, a reversible change in the expression of proteins from multiple pathways was observed demonstrating complex and quick phenotypic adaptations to changing environment[56,57].

THE EXISTENCE OF MULTIPLE SUBPOPULATIONS OF CANCER CELLS

The SPM predicts the existence of multiple subpopulations of cancer cells ranging from a “pure non-CSC phenotype” to a “pure CSC phenotype”. This prediction was confirmed in the non-small cell lung adenocarcinoma (NSCLA) cell lines A549 and H441. It was found that NSCLA cells contain multiple, interconvertible, phenotypically distinct subpopulations (e.g., non-SP, SP, CD133pos and ALDH1pos) that exhibit distinct self-renewal and metastatic gene expression patterns[52]. These findings clearly demonstrated that cancer cells are actually extremely plastic and that microenvironmental conditions can influence and drive the bidirectional interconversion between CSCs and non-CSCs phenotypes. Recently several theoretical multi-phenotypic models that include, interconversion and cellular plasticity has been useful in predicting and validating this new paradigm[58-60].
THE ABILITY OF A SINGLE CANCER CELL TO REPOPULATE A TUMOR

The ability of any given cancer cell regardless of its phenotype to reconstitute in vivo the complex intratumoral heterogeneity of any cancer is the ultimate prediction of the SPM. In vivo evidence suggesting that any cancer cell is potentially tumorigenic were available long before any alternative model of CSCs were published. Perhaps the most convincing data was published in 2007 demonstrating that each of the 67 single C6 glioma (including CD133) cells plated per minicell was able to generate a clone and subclones, which subsequently gave rise to a xenograft glioma in the BALB/C-nude mouse[61]. Recently, it has been reported that all 16 subpopulations of highly heterogeneous GBM cultures carry stem cell properties in vitro. These cells undergo stochastic state transitions, they showed reversible phenotypic adaptation in vivo and they all formed tumors. More importantly, the authors showed that the phenotypic heterogeneity could also be recreated by single cells of different phenotypic profiles [62].

CLINICAL IMPLICATIONS

Mathematical models of cancer biology are providing insight of strategies for cancer elimination. Simple mathematical models considering two populations of cells: CSCs, which can divide indefinitely, and differentiated cancer cells, which do not divide and have a limited lifespan predict that neither inhibition of CSCs proliferation alone nor stimulation of CSCs differentiation is sufficient for cancer cure[63].

Mathematical modelling of in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to CSCs also demonstrated that by targeting only the CSCs subpopulation will not be enough to eradicate cancer and that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells will be effective only if it targets all cancer cell types[64]. From the clinical point of view, the SPM seems to bring back the field of cancer treatment research to the early days of the cSM. The overall clinical implications of both the SPM and the cSM are essentially the same: they both predict that to cure cancer all cancer cells should be eliminated. However, these two models are conceptually very different and, it can be predicted that to achieve complete elimination of all cancer cells (if we ever achieve that goal) it will require a different approach. It is likely then that a successful chemotherapy regime will require numerous anticancer therapies, each of them targeting a “spectrum” of cancer cell subpopulations that in turn can create serious toxicity issues. The next big challenge in the oncotherapy field will be to develop a safe (low or non-toxic) therapeutic regime that can be administered simultaneously to deplete all cancer cells at once.

REDUCING SYSTEMIC TOXICITY BY SEQUENTIAL CHEMOTHERAPY

In complex, highly heterogeneous tumors the eradication of all cancer cells at once will likely require high doses of anticancer agents +/- radiation/immunotherapy that will severely limit its practical application due to toxicity issues. One alternative to circumvent this problem is to administer them sequentially. Sequential cancer treatment with chemotherapy followed by radiotherapy + high dose chemotherapy followed by autologous peripheral blood stem cell transplantation (APBSCT) has been employed with relatively good outcomes in several cancers such as mantle cell lymphoma[65] and relapsed/refractory acute myeloid leukemia[66]. Sequential multimodality regimes are being increasingly utilized to treat patients carrying different types of cancers such as gastric cancer[67], pancreatic cancer[68], leukemia[69], non-small cell lung cancer[70] and, breast cancer[71]. Sequential anthracycline-and taxane-based neoadjuvant chemotherapy represents the standard therapeutic approach for the majority of patients with early-stage triple negative breast cancer[72]. Novel sequential treatment are also currently investigated at the preclinical level[73]. We have demonstrated that a first step treatment with Hydroxyurea left few DBTRG.05MG glioma cells arrested in a senescent-like state. In the second step, salinomycin at low concentration eliminated 100% of these senescent-like cells[74]. These cells can grow in suspension as neurospheres, in which the Hedgehog pathway is activated[75]. This in vitro example of sequential chemotherapy suggests that it would be possible to eliminate all cancer cells at once with lower, and therefore less, toxic concentrations.
According to the clonal stochastic model a complex heterogeneous tumor may contain at a certain time, different subpopulations growing in different micromenvironments. Clonal proliferation of single primordial cancer cell originates the original subpopulation (S_1). During tumor grow random mutations (represented by red lightning bolts) originates all different subpopulations (S_1-S_6). M_1-M_6 represent different micromvironments. Since this model is unidirectional repeated cycles of chemotherapy with no gap can gradually deplete specific cell subpopulations, reducing the tumor size and eventually, if all cancer cells are eliminated, lead to a cure.

In the cSM, tumor heterogeneity appears as consequence of random genetic changes concomitant with clonal selection. At some point during its development a tumor may have different genetically defined subpopulations growing in specific micromenvironments. Due to the irreversible nature of genetic mutations, specific subpopulations can be permanently eliminated with specific anticancer treatments. For instance, sequential chemotherapy steps with different anticancer drugs can potentially eliminate one or few subpopulations per step which will eventually lead to a cure when the last subpopulation is eliminated (Figure 1). It is important to point out that, due to the high genetic instability of cancer cells, any time gap between steps increases the chances of generating new genetic clones (new cancer cell subpopulations) and thus increases the chances of tumor relapse. According to the SPM any time gap between steps increases the chances of regenerating the cancer cell subpopulation(s) eliminated in previous steps by interconversion. We have demonstrated in vitro that cancer cells are extremely plastic and they can undergo cycles of phenotypic changes within few days [57]. According to the SPM, multistep treatment regimes may only work if there is no time gap or just gap between steps or if the interconversion process is inhibited (Figure 2).

THE SPM AND BEYOND

The SPM does not exclude the coexistence of other mechanisms contributing to intratumoral heterogeneity. For instance, in addition to microenvironmentally-driven interconversion between CSCs and non-CSCs, genetic mutations due to genomic instability of cancer cells may create new subpopulations of CSCs in the same tumor [43]. Key concepts from other models not only expand our knowledge of cancer biology but can be useful in designing a curative treatment. For instance, in addition to blocking interconversion, it could be helpful to prevent the generation of new clones originated by stochastic genetic mutations. One of the hallmark of cancer cells is “avoidance of apoptosis” following, for instance, DNA damage[76]. In this context, drugs that promote apoptosis induced by DNA-damage such as PARP alone or in combination with ATR inhibitors[77,78], can potentially reduce the generation of new genetic clones.
Figure 2 The stemness phenotype model and effect of treatment with sequential chemotherapy cycles (or steps) on tumor progression.

According to the stemness phenotype model a complex heterogeneous tumor may contain at a certain time, different subpopulations growing in different microenvironments. Clonal proliferation of a single primordial cancer cell originates the original subpopulation (S_1). During tumor growth the original subpopulation can interconvert (represented by red arrows) in other phenotypes originating all different subpopulations (S_1-S_6). M_1-M_6 represent different microenvironments. Since this model is bidirectional, repeated cycles of chemotherapy can gradually deplete specific cell subpopulations, reducing the tumor size and eventually, if all cancer cells are eliminated, lead to a cure. This scenario (shown inside the grey box) can only occur if interconversion is prevented (e.g., when there is no gap between chemotherapy cycles). Any gap between cycles would allow by interconversion the regeneration of cells sensitive to the previous cycle and eventually, lead to tumor relapse.

CONCLUSION

During the last decade the SPM and similar alternative models of cancer biology have expanded our understanding of cancer biology and new therapeutic targets and biological processes have been identified. For instance, targeting key factors involved in the process of interconversion opens the opportunity to block the conversion of a non-CSCs phenotype into a CSC phenotype and thus reducing chemoresistance and tumor relapse. The SPM, initially proposed for gliomas in a conceptual review article in 2010[39] was quickly extrapolated to other types of tumors[43]. During the last ten years, extensive experimental evidence was published supporting the notion that microenvironmentally-driven interconversion between CSCs and non-CSCs is a key process leading to intratumoral heterogeneity, that in turn is responsible for chemoresistance and tumor relapse. Additionally, key predictions of the SPM – the ability of any given cancer cell to reconstitute in vivo the complex intratumoral heterogeneity has been demonstrated experimentally in gliomas. The SPM has been demonstrated to be a useful working model of cancer biology that should be taken in consideration when developing new cancer treatment modalities. In addition, the SPM is a model of cancer biology (at the cellular level) that does not necessarily exclude key concepts.
REFERENCES

1. Raggi C, Mousa HS, Correnti M, Sica A, Invemizzi P. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 2016; 35: 671-682 [PMID: 25961921 DOI: 10.1038/onc.2015.132]

2. Guan R, Zhang X, Guo M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chin Neurosurg J 2020; 6: 25 [PMID: 32922954 DOI: 10.1186/s41016-020-00207-z]

3. Liu HL, Wang YN, Feng SY. Brain tumors: Cancer stem-like cells interact with tumor microenvironment. World J Stem Cells 2020; 12: 1439-1454 [PMID: 33505594 DOI: 10.4252/wjsc.v12.i12.1439]

4. Ryskalin L, Gaglione A, Limanaqi F, Biagioni F, Familiari P, Frati A, Esposito V, Fornai F. The Apatohagy Status of Cancer Stem Cells in Glioblastoma Multiforme: From Cancer Promotion to Therapeutic Strategies. Int J Mol Sci 2019; 20 [PMID: 31387280 DOI: 10.3390/jmms20153824]

5. Suvá ML, Tirosso I. The Glioma Stem Cell Model in the Era of Single-Cell Genomics. Cancer Cell 2020; 37: 630-636 [PMID: 32396858 DOI: 10.1016/j.ccell.2020.04.001]

6. Dahn ML, Marcato P. Targeting the Roots of Recurrence: New Strategies for Eliminating Therapy-Resistant Breast Cancer Stem Cells. Cancers (Basel) 2020; 13 [PMID: 33379132 DOI: 10.3390/cancers13010054]

7. Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60: 73-100 [PMID: 33428807 DOI: 10.1002/mc.23277]

8. Zhang X, Powell K, Li L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel) 2020; 12 [PMID: 33327542 DOI: 10.3390/cancers12123765]

9. Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2020; 11: 599965 [PMID: 33584277 DOI: 10.3389/fphar.2020.599965]

10. Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R. Colon cancer stem cells. J Mol Med (Berl) 2009; 87: 1097-1104 [PMID: 19727638 DOI: 10.1007/s00109-009-0518-4]

11. Shen Y, Cao D. Hepatocellular carcinoma stem cells: origins and roles in hepatocarcinogenesis and disease progression. Front Biosci (Elite Ed) 2012; 4: 1157-1169 [PMID: 22201943 DOI: 10.2741/A48]

12. Wang Z, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res 2011; 31: 1105-1113 [PMID: 21508353]

13. Thomas D, Friedman S, Lin RY. Thyroid stem cells: lessons from normal development and thyroid cancer. Endocr Relat Cancer 2008; 15: 51-58 [PMID: 18310275 DOI: 10.1677/ERC-07-0210]

14. Zhang P, Zuo H, Ozaki T, Nakagomi N, Kakudo K. Cancer stem cell hypothesis in thyroid cancer. Pathol Int 2006; 56: 485-489 [PMID: 16930327 DOI: 10.1111/j.1440-1827.2006.01995.x]

15. Abuogama A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cancers 2020; 9 [PMID: 31965556 DOI: 10.3390/cancers9010235]

16. Tran MN, Goodwin Jinesh G, McConkey DJ, Katam AM. Bladder cancer stem cells. Curr Stem Cell Res Ther 2010; 5: 387-395 [PMID: 20955163 DOI: 10.2174/157488810793351640]

17. Huang R, Rofstad EK. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 2017; 8: 35351-35367 [PMID: 27343550 DOI: 10.18632/oncotarget.10169]

18. López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioreistance. BMC Cancer 2012; 12: 48 [PMID: 22284662 DOI: 10.1186/1471-2407-12-48]

19. Mendoza-Almanza G, Ortiz-Sánchez E, Rocha-Zaavaleta L, Rivas-Santiago C, Esparza-Ibarra E, Olmos J. Cervical cancer stem cells and other leading factors associated with cervical cancer development. Oncol Lett 2019; 18: 3423-3432 [PMID: 31516560 DOI: 10.3892/ol.2019.10718]

20. Organista-Nava J, Gómez-Gómez Y, Garibay-Cedenares OL, Leyva-Vázquez MA, Illades-Aguiar L. Cervical cancer stem cell-associated genes: Prognostic implications in cervical cancer. Oncol Lett 2019; 18: 7-14 [PMID: 31289465 DOI: 10.3892/ol.2019.10307]

21. Aguilar-Gallardo C, Rutledge EC, Martinez-Arroyo AM, Hidalgo JJ, Domingo S, Simón C. Overcoming challenges of ovarian cancer stem cells: novel therapeutic approaches. Stem Cell Rev Rep 2012; 8: 994-1010 [PMID: 22278130 DOI: 10.1007/s12015-011-9344-5]

22. Ahmed N, Kadife E, Raza A, Short M, Jubinsky PT, Kannourakis G. Ovarian Cancer, Stem Cells and Current Treatment Strategies: A Potential Role of Magmas in the Current Treatment Methods. Cells 2020; 9 [PMID: 32183385 DOI: 10.3390/cells9030179]

23. Howard CM, Zgheib NB, Bush S 2nd, DeEulis T, Cortese A, Mollo A, Lirette ST, Deming K, Valluri J, Claudio PP. Clinical relevance of cancer stem cell chemotherapeutic assay for recurrent ovarian cancer. Transl Oncol 2020; 13: 100860 [PMID: 32862103 DOI: 10.1016/j.transo.2020.100860]

from other cancer models and therefore has the potential to integrate them into more complex tumoral (at the tissue level) models that can be experimentally tested for developing novel treatments.
Ahmed N, Erlichster M, Witkowski MT, Liu GJ, Chopin M, Dakic A, Simankowicz E, Pomilio G, Vu
McKenzie MD, Iliopoulos D.

diminishes the side population and inhibits the expression of Z
Zhang Y, Claypool K, Coghlan L, Tang DG. Highly purified CD44+ prostate cancer cells from 1998; contains 3 distinct subpopulations with different growth and attachment properties.

McBride S, Resnicoff M, Nowell PC. Distinctive role of dysregulated miRNAs in chordoma cancer stem-like cell maintenance.

Khan MI, Thakur LR, Parmar HS, Mehra R, Dhillon SS, Kripnerova M, Ho PL, Parmar HS, Pesta M, Kohoutova M, Kuncova J, Drbal K, Rajtmajerova M, Hatina J. Urothelial Cancer Stem Cell Heterogeneity. Adv Exp Med Biol 2019; 1139: 127-151 [PMID: 31134499 DOI: 10.1007/978-3-030-14366-4_8]

Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26: 1964-1978 [PMID: 32188377 DOI: 10.2174/138161282666200318153106]

Khan MI, Czarniecka AM, Hellebrecht I, Bartnik E, Lian F, Szczylak C. Current approaches in identification and isolation of human renal cell carcinoma cancer stem cells. Stem Cell Res Ther 2015; 6: 178 [PMID: 26377541 DOI: 10.1186/s13287-015-0177-z]

Liu G, Qu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26: 2038-2056 [PMID: 32250210 DOI: 10.2174/13816128266620031331514]

Aydemin E, Bayrak OF, Sahin F, Atalay B, Kose GT, Ozen M, Sevli S, Dalan AB, Yalvac ME, Dogruulk T, Ture U. Characterization of cancer stem-like cells in chordoma. J Neurosurg 2012; 116: 810-820 [PMID: 22823189 DOI: 10.3171/2011.12.JNS11430]

Tuyuz EC, Gulluoglu S, Yaltirik CK, Ozbey U, Kuskucu A, Coban EA, Sahin F, Ture U, Bayrak OF. Distinctive role of dysregulated miRNAs in chordoma cancer stem-like cell maintenance. Exp Cell Res 2019; 380: 9-19 [PMID: 30951707 DOI: 10.1016/j.yexcr.2019.03.059]

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730-737 [PMID: 9212098 DOI: 10.1038/nm0797-730]

Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194: 23-28 [PMID: 959840 DOI: 10.1126/science.959840]

Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11: 55-70 [PMID: 33532180 DOI: 10.1016/j.apsb.2020.09.016]

Gao X, Dong QZ. Advance in metabolism and target therapy in breast cancer stem cells. World J Stem Cells 2020; 12: 1293-1306 [PMID: 33312399 DOI: 10.4252/wjst.v12.i11.1295]

Mukha A, Dubrovska A. Metabolic Targeting of Cancer Stem Cells. Front Oncol 2020; 10: 537930 [PMID: 33415069 DOI: 10.3389/fonc.2020.337930]

Cruz M, Siden Å, Rascher WR, Kirsch I. Are all glioma cells cancer stem cells? J Cancer Sci Ther 2010; 2: 100-106

Laks DR, Visayay K, Korhnlum HH. Brain tumor stem cells as therapeutic targets in models of glioma. Yonsei Med J 2010; 51: 633-640 [PMID: 20635435 DOI: 10.3349/ymj.2010.51.5.633]

Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol 2012; 13: e83-e89 [PMID: 22300863 DOI: 10.1016/s1470-2045(11)70257-1]

Li Y, Laterra J. Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 2012; 72: 576-580 [PMID: 22298594 DOI: 10.1158/0008-5472.CAN-11-3070]

Cruz MH, Siden A, Calaf GM, Delvar ZM, Yakissch JS. The stemness phenotype model. ISRN Oncol 2012; 392647 [PMID: 22928120 DOI: 10.5402/2012/392647]

Resnicoff M, Medrano EE, Podhajcer OL, Bravo AI, Bover L, Mordoh J. Subpopulations of MCF7 cells separated by Percoll gradient centrifugation: a model to analyze the heterogeneity of human breast cancer. Proc Natl Acad Sci USA 1987; 84: 7295-7299 [PMID: 2823256 DOI: 10.1073/pnas.84.20.7295]

McBride S, Melheady P, Baird A, Dinsdale D, Clynes M. Human lung carcinoma cell line DLKP contains 3 distinct subpopulations with different growth and attachment properties. Tumour Biol 1998; 19: 88-103 [PMID: 9486560 DOI: 10.1159/000297979]

Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatte B, Tang S, Reilly LG, Chandra D, Zhou J, Claypool K, Coglan I, Tang DC. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25: 1696-1708 [PMID: 16449977 DOI: 10.1038/sj.onc.1209327]

Zhang Y, Piao B, Zhang Y, Hua B, Hou W, Xu W, Qi X, Zhu X, Pei Y, Lin H. Oxymatrine diminishes the side population and inhibits the expression of β-catenin in MCF-7 breast cancer cells. Med Oncol 2011; 28 Suppl 1: S99-107 [PMID: 21069479 DOI: 10.1007/s12032-010-0972-1]

Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 2011; 108: 1397-1402 [PMID: 21220315 DOI: 10.1073/pnas.1018898108]

Mckenzie MD, Ghisi M, Oxley EP, Ngo S, Cimmino L, Esauiat C, Liu R, Salmon JM, Bell CC, Ahmed N, Erlichster M, Witkowski MT, Liu GJ, Chopin M, Dakic A, Simankowicz E, Pomilio G, Vu
T, Krasonovic P, Su S, Tian L, Baldwin TM, Zaleczenit DA, DiRago L, Wang S, Metcalf D, Johnstone RW, Croker BA, Lancaster GL, Murphy AJ, Naik SH, Nutt SL, Pospisil V, Schroeder T, Wall M, Dawson MA, Wei AH, de Thé H, Ritchie ME, Zuber J, Dickins RA. Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. *Cell Stem Cell* 2019; 25: 258-272.e9 [PMID: 31374198 DOI: 10.1016/j.stem.2019.07.001]

Lee G, Auffinger B, Guo D, Hasan T, Deheeger M, Tobias AL, Kim JY, Atashi F, Zhang L, Lesniak MS, James CD, Ahmed AU. Dedifferentiation of Glioma Cells to Glioma Stem-like Cells by Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model. *Mol Cancer Ther* 2016; 15: 3064-3076 [PMID: 27765847 DOI: 10.1158/1535-7163.MCT-15-0675]

Zhang H, Wu H, Zheng J, Yu P, Xu L, Jiang P, Gao J, Wang H, Zhang Y. Transforming growth factor β1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells in osteosarcoma. *Stem Cells* 2013; 31: 433-446 [PMID: 23225703 DOI: 10.1002/stem.1298]

Akuuru S, James Zhai Q, Zheng Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. *Cell Death Dis* 2012; 3: e352 [PMID: 22825470 DOI: 10.1038/cddis.2012.93]

Ning X, Du Y, Ben Q, Huang L, He X, Gong Y, Gao J, Wu H, Man X, Jin J, Xu M, Li Z. Bulk pancreatic cancer cells can convert into cancer stem cells (CSCs) in vitro and 2 compounds can target these CSCs. *Cell Cycle* 2016; 15: 403-412 [PMID: 26709750 DOI: 10.1080/15384101.2015.1127471]

Kobayashi S, Yamada-Okabe H, Suzuki M, Natori O, Kato A, Matsuura K, Jau Chen Y, Yamazaki M, Funahashi S, Yoshida K, Hashimoto E, Watanabe Y, Muto H, Ashihara M, Kato C, Watanabe T, Yoshikubo T, Tamaoki N, Ochiya T, Kuroda M, Levine AJ, Yamazaki T. LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution. *Stem Cells* 2012; 30: 2631-2644 [PMID: 23081779 DOI: 10.1002/stem.1257]

Chaffer CL, Brueckmann I, Schell C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polya K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA. Normal and neoplastic non-stem cells can spontaneously convert to a stem-like state. *Proc Natl Acad Sci USA* 2011; 108: 7950-7955 [PMID: 21406087 DOI: 10.1073/pnas.1102454108]

Kaushik V, Yakisch JS, Way LF, Azad N, Iyer AKV. Chemoresistance of cancer floating cells is independent of their ability to form 3D structures: Implications for anticancer drug screening. *J Cell Physiol* 2019; 234: 4445-4453 [PMID: 30191978 DOI: 10.1002/jcp.27239]

Yakirsch JS, Azad N, Kaushik V, Iyer AKV. Cancer Cell Plasticity: Rapid Reversal of Chemosensitivity and Expression of Stemness Markers in Lung and Breast Cancer Tumorspheres. *J Cell Physiol* 2017; 232: 2280-2286 [PMID: 27925198 DOI: 10.1002/jcp.25725]

Chen X, Wang Y, Feng T, Yi M, Zhang X, Zhou D. The overshoot and phenotypic equilibrium in characterizing cancer dynamics of reversible phenotypic plasticity. *J Theor Biol* 2016; 390: 40-49 [PMID: 26626088 DOI: 10.1016/j.jtbi.2015.11.008]

Zhou D, Wang Y, Wu B. A multi-phenotypic cancer model with cell plasticity. *J Theor Biol* 2014; 357: 35-45 [PMID: 24819463 DOI: 10.1016/j.jtbi.2014.04.039]

Zhou D, Wu D, Li Z, Qian M, Zhang MQ. Population dynamics of cancer cells with cell state conversions. *Quant Biol* 2013; 1: 201-208 [PMID: 26085954 DOI: 10.1007/s12358-013-0014-2]

Zheng X, Shen G, Yang X, Liu W. Most C6 cells are cancer stem cells: evidence from clonal and population analyses. *Cancer Res* 2007; 67: 3691-3697 [PMID: 17440081 DOI: 10.1158/0008-5472.CAN-06-3912]

Dirks A, Golebiowska A, Buder T, Nazarov PV, Muller A, Poovathingal S, Brons NH, Leite S, Sauvaget N, Sarkisjan D, Seyfried T, Stieber S, Smit E, Michelacci A, Hertel F, Harold-Mende C, Azuaje F, Skupin A, Bjerkgv R, Deutsch A, Voss-Böhme A, Niclou SP. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. *Nat Commun* 2019; 10: 1787 [PMID: 30992437 DOI: 10.1038/s41467-019-09853-z]

Vainstein V, Kirnasovsky OU, Kogan Y, Agur Z. Strategies for cancer stem cell elimination: insights from mathematical modeling. *J Theor Biol* 2012; 298: 32-41 [PMID: 22210402 DOI: 10.1016/j.jtbi.2011.12.016]

Diálo R. Chemotherapy in heterogeneous cultures of cancer cells with interconversion. *Phys Biol* 2014; 12: 016002 [PMID: 25429401 DOI: 10.1088/1478-3975/12/1/016002]

Lefrère F, Delmer A, Levy V, Delarue R, Vareb A, Hermine O. Sequential chemotherapy regimens followed by high-dose therapy with stem cell transplantation in mantle cell lymphoma: an update of a prospective study. *Haematologica* 2004; 89: 1275-1276 [PMID: 15477221]

Tao S, Song L, Deng Y, Chen Y, Gan Y, Li Y, Ding Y, Zhang Z, Ding B, He Z, Wang C, Yu L. Successful treatment of two relapsed patients with t(11;19)(q23;p13) acute myeloid leukemia by CLAE chemotherapy sequential with allelogeic hematopoietic stem cell transplantation: Case reports. *OncoLat* 2021; 21: 178 [PMID: 33579417 DOI: 10.3892/ol.2021.12439]

Liu Z, Wang Y, Shao H, Feng X, Zhang Y, Li S, Jia Y, Li Z, Li J. 5-Fluorouracil and Doublet Regimen in Patients Receiving Perioperative or Postoperative Chemotherapy for Locally Advanced Gastric Cancer: When to Start and How Long Should the Regimen Last? *Cancer Manag Res* 2021; 13: 147-161 [PMID: 33463955 DOI: 10.2147/CMAR.S285361]

Kunzmann V, Siveke JT, Algül H, Goekkurt E, Siegler G, Martens U, Waldschmidt D, Siegler G, Martens U, Waldschmidt D, Pelzer U. Cancer Stemness Phenotype Model. *Cell Stem Cell* 2019; 25: 68-67 [PMID: 31743198 DOI: 10.1016/j.stem.2019.07.001]
cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial. *Lancet Gastroenterol Hepatol* 2021; 6: 128-138 [PMID: 3338442 DOI: 10.1016/S2468-1253(20)30330-7]

69 **Nakamura A**, Yamaguchi T, Ito R, Kawakami K. [Successful disease control of plasma cell leukemia by the treatment comprising proteasome inhibitors, followed by daratumumab, lenalidomide, and dexamethasone therapy]. *Rinsho Ketsueki* 2020; 61: 1600-1604 [PMID: 33298683 DOI: 10.11406/rinketsu.61.1600]

70 **Yu R**, Bai H, Gao B, Li T, He X, Zhang P, Wang J. Rare case of apatinib acquired resistance induced by point mutation of WRN p.V697F through activation of the PI3K/AKT apoptosis-inhibiting pathway. *Thorac Cancer* 2021; 12: 128-132 [PMID: 33225619 DOI: 10.1111/1759-7714.13726]

71 **Lim B**, Song J, Ibrahim NK, Chavez-MacGregor M, Ensor JE Jr, Gornez JS, Krishnanurthy S, Caudle AS, Shaitelman SF, Whitman GJ, Valero V. A Randomized Phase II Study of Sequential Eribulin Versus Paclitaxel Followed by FAC/FEC in Neoadjuvant Therapy in Patients with Operable HER2-Negative Breast Cancer. *Oncologist* 2021; 26: e230-e240 [PMID: 33140515 DOI: 10.1002/onco.13581]

72 **Marra A**, Carigliano G. Adjuvant and Neoadjuvant Treatment of Triple-Negative Breast Cancer With Chemotherapy. *Cancer J* 2021; 27: 41–49 [PMID: 33475292 DOI: 10.1097/PPO.0000000000000498]

73 **Huang Y**, Wu H, Li X. Novel sequential treatment with palbociclib enhances the effect of cisplatin in RB-proficient triple-negative breast cancer. *Cancer Cell Int* 2020; 20: 501 [PMID: 33061853 DOI: 10.1186/s12935-020-01597-x]

74 **Delwar ZM**, Avramidis D, Siden Å, Cruz M, Yakisich JS. Depletion of drug-surviving glioma cells by a second phase treatment with low concentration of salinomycin. *Drug Ther Stud* 2011; 1: e7

75 **Ferruzzi P**, Meninillo F, De Rosa A, Giordano C, Rossi M, Benedetti G, Magrini R, Pericot Mohr GJ, Miragliotta V, Magnoni L, Mori E, Thomas R, Tuncic P, Bakker A. In vitro and in vivo characterization of a novel Hedgehog signaling antagonist in human glioblastoma cell lines. *Int J Cancer* 2012; 131: E33-E44 [PMID: 22072503 DOI: 10.1002/ijc.27349]

76 **Hanahan D**, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* 2011; 144: 646-674 [PMID: 21376230 DOI: 10.1016/j.cell.2011.02.013]

77 **Dale Rein I**, Solberg Landsverk K, Micci F, Patzke S, Stokke T. Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation. *Cell Cycle* 2015; 14: 3248-3260 [PMID: 26312527 DOI: 10.1080/15384101.2015.1085137]

78 **Lloyd RL**, Wijnhoven PWG, Ramos-Montoya A, Wilson Z, Illuzzi G, Falenta K, Jones GN, James N, Chabbert CD, Stott J, Dean E, Lau A, Young LA. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. *Oncogene* 2020; 39: 4869-4883 [PMID: 32444694 DOI: 10.1038/s41388-020-1328-y]
