Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells

Johann Bauera, Markus Bussenb, Petra Wisec, Markus Wehlandd, Sabine Schneidere and Daniela Grimmd,e

aInformationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany; bLifescience, Elsevier Information System GmbH, Frankfurt am Main, Germany; cHematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA; dClinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; eInstitute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark

\textbf{ABSTRACT}

\textbf{Background:} More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions.

\textbf{Methods:} We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions.

\textbf{Results:} The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed.

\textbf{Conclusion:} Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.

\section{1. Introduction}

Since more than 30 years, various types of human cells have been exposed to real or simulated microgravity conditions [1]. A number of observations on these cells clearly indicated that the lack of gravity, i.e. sedimentation, causes alterations of cells and their behavior [2–4]. An outstanding change of behavior is the switch from a two-dimensional to a three-dimensional (3D) growth [5]. This means that cells from human tissues, growing as monolayers under static 1-g conditions \textit{in vitro}, detach at least partially from the bottom of a culture flask and form 3D cell aggregates, suspended in the culture medium, when they are exposed to simulated or real microgravity. Endothelial cells (EA.hy926 cell line) [6], for example, may be cultured as monolayer under normal gravity for 3 weeks (Figure 1(a)). When cultured on a ground-based facility like the random positioning machine (RPM) [1], the cell population separates in cells which remain adherent, but show elongated fibers and stress fibers (Figure1(b)) and in cells which detach from the bottom of the culture dish and assemble to tube-like structures (Figure 1(c)). As a rule, these 3D cell aggregates become visible after 1–7 days of sedimentation prevention [7–10]. Afterward, they continue to grow up to 4 weeks.

The appearance of the aggregates varies depending on the type of cells studied. When cancer cells are cultured under microgravity, spheres or spheroids can very often be seen floating in the culture medium [7,9], while MCF-7 breast cancer cells may also form duct-like structures [11]. But when cells from healthy tissues are grown after annulling gravity, the shape of the aggregates resembles the structures of the organs from which the cells have been derived [9,10,12].

Although alternative methods of challenging single cells to form tumor or tissue-like aggregates are known, the microgravity-dependent method becomes more and more interesting, because it does not require scaffolds, which would influence the application of the tissue-engineered cell aggregates [5]. Currently, two options of application are discussed. In case the spheroids consist of cancer cells, they may be used as \textit{in vitro} systems to test antitumor strategies [13]. This is an advantage because these systems resemble the \textit{in vivo} situation much more than cancer cells grown in monolayers, but they are not as complex as natural tumors. If the spheroids consist of cells from healthy tissue like endothelial cells or chondrocytes, they appear to be suitable to engineer small vessels or pieces of cartilage [9,10]. Currently, \textit{in vitro} engineered 3D cell aggregates are used for research purposes only, but it is expected that cell structures suitable for transplantation purposes will be obtained in the future. It is still a problem that a number of genes and proteins, which are not directly involved in the
formation of 3D aggregates, are differently expressed [2,14]. These alterations may generate cell types that could be inapt for drug tests or transplantation. Therefore, the emphasis here is on alterations of cells in result to microgravity-dependent upregulation or downregulation of genes and their corresponding proteins.

During the last two decades, a number of scientists investigated changes in gene expression and amounts of proteins in various cell types exposed to microgravity. For this purpose, various methods of annulling gravity were applied. Cells were sent into orbit and cultured either on the International Space Station or on unmanned spaceships circuiting the Earth for a week or two [15–17]. In addition, cells were taken along on parabola-flying planes [18]. As these methods of generating weightless environments are extremely expensive, the researchers exposed the cells to devices preventing cell sedimentation under normal 1-g laboratory conditions. These instruments are called ground-based facilities. They include the RPM, the rotating-wall vessel, or the 2D clinostat (CN) [1]. After exposure to the RPM, cellular proteins were investigated by Western blotting and/or mass spectrometry [19], while the gene expression was determined by qPCR [20]. This way, substantial knowledge about the respective role of a number of proteins or genes was accumulated. However, little is known right now about their interactions or involvement in pathways of different biological processes.

In order to examine the interplay of single proteins, we collected publications about the research explained above and pooled the manuscripts according to the cell types described therein. Four different groups were defined, which included studies on cancer cells [5,7,8,15,17,21–46], on stem cells [2,47–71], on endothelial cells, [9,20,72–94] or on other healthy tissue cells [10,18,95–119], respectively. The characteristics of these cell groups were described in several publications referenced by [1,120–123].

The four groups of manuscripts were analyzed extracting proteins and genes described in the manuscripts of each group together, in order to obtain more information from recent publications about the influence that microgravity-dependent cellular alterations of gene expression patterns and protein contents has on the behavior and differentiation status of cells. Using the new methods of data mining and Pathway Studio analysis, we identified biological processes, which we expected to be involved in the signaling during cell migration, proliferation, or in organizing the protein structures of the extracellular space [124,125]. But to our surprise, the method revealed unexpected biological processes, such as responses to organic cyclic compounds or drugs. Hence, this review may draw attention to microgravity-dependent mechanisms not previously noticed.

2. Methods

2.1. Visualization of F-actin

F-actin was visualized by rhodamine-phalloidin staining (Molecular Probes, Eugene, OR, USA), and the nuclei were stained with Hoechst 33342 (Molecular Probes). The method was published previously in detail [7,33,95].

2.2. Collection of publications

Literature citations, which pointed to molecular biological studies on human tissue cells exposed to real or simulated microgravity were retrieved from the Web of Science (Thompson Reuters, Philadelphia, PA, USA), Scopus (Elsevier, Amsterdam, The Netherlands), and from recent papers listed in PubMed (https://www.ncbi.nlm.nih.gov/pubmed). After de-duplication, the full manuscripts were purchased from the various publishers and divided into four groups according to the cell type described therein.

2.3. Extraction and analysis of described proteins

MedScan Reader v6 and Pathway Studio v11 were purchased from Elsevier Research Solutions, Amsterdam, the Netherlands [126,127]. Using the Elsevier MedScan Reader, sentences were identified in the manuscripts of each group separately. The sentences were selected when proteins were mentioned within in context of cellular exposure to real or simulated microgravity. Then, the gene names were downloaded and transferred to SwissProt numbers, which in turn were entered in the Elsevier Pathway Studio. With the help of this program, biological processes, in which the collected proteins were enriched, were searched. It was also used to design the interaction network of the proteins that positively regulate cell migration (Figure 2).

3. Results and discussion

Our literature searches revealed 109 manuscripts listed in WoS or Scopus, which indicated that several cell types from various
tissues were investigated in recent years in regard to their molecular reactions on microgravity exposure. We divided the manuscripts into four groups (Table 1). One group (31 manuscripts) included studies on cancer cells [5,7,8,15,17,21–46]; a second one (26 manuscripts) studies on stem cells [2,47–71]. The third group (25 manuscripts) consisted of studies on endothelial cells [9,20,72–94] and the fourth group (27 manuscripts) of studies on other healthy tissue cells [10,18,95–119], like chondrocytes or hepatocytes (Table 1). The manuscripts in each group were analyzed using the MedScan Reader. The program detected 360 (#1), 247 (#2), 293 (#3), and 237 (#4) proteins named in at least one relevant sentence or 154 (#1), 111 (#2), 104 (#3), and 110 (#4) proteins named at least in three sentences (Table 1). The total number of proteins counted over all four groups was 1137. A great number of proteins were identified as not only part of one group; therefore, 769 different proteins were ultimately identified.

After the gene names coding for each identified protein were exported into Excel sheets, the accompanying SwissProt numbers were determined via a search at http://www.expasy.org and added to each respective protein. These numbers were uploaded into the Pathway Studio program in groups of 360 (#1), 247 (#2), 293 (#3), and 237 (#4) SwissProt numbers. Then, the Pathway Studio program was utilized to find ‘Pathways/Groups Enriched with Selected Entities’.

Table 2 shows a summary of the results obtained by the Pathway Studio analyses on the four protein groups mentioned above. In total, 66 types of biological processes were indicated in which proteins, found in the 109 analyzed manuscripts, were enriched. Proteins found in each group of the manuscripts contribute in 19 of these biological processes. Proteins described in three groups of the manuscripts were enriched in six biological processes. While proteins described in two groups of the manuscripts participated in 14 biological processes, 27 biological processes appear to be rather cell type specific, because each of them was found analyzing the proteins described in only one group of manuscripts, respectively.

Microgravity-dependent gene and protein alterations as well as the formation of 3D cell aggregates during exposure to real or simulated microgravity are common features of the cell types described in the four groups of manuscripts. Therefore, it appears reasonable to assume that at least some of the 19 biological processes, which emerge each time when proteins of one group are analyzed (Table 2), may be important in tissue formation or adaptation to the
microgravity environment. On the other hand, cell processes in which proteins participate, which attracted attention when one of the cell types was investigated, appear to be characteristic for the respective kind of cells. For example, both organ morphogenesis and organ regeneration are capabilities of stem cells [128,129], while ossification can be

Table 2. Overview on biological processes of which member proteins were described in the manuscripts selected. The percentages are indicated, at which the proteins found in the different groups of manuscripts cover all proteins involved in the respective biological processes.

Biological process	Cancer cells	Stem cells	Endothelial cells	Other tissue cells
Cell adhesion	8	6	7	5
Negative regulation of apoptotic process	11	7	8	7
Negative regulation of cell proliferation	10	8	9	8
Blood coagulation	10	8	9	10
Positive regulation of cell proliferation	12	8	11	8
Positive regulation of gene expression	13	11	11	9
Response to drug	14	9	11	10
Angiogenesis	13	9	17	12
Response to lipopolysaccharide	15	3	19	10
Extracellular matrix organization	14	12	15	14
Response to organic cyclic compound	15	12	16	13
Aging	17	11	17	12
Platelet activation	19	11	15	14
Response to hypoxia	19	11	17	13
Positive regulation of cell migration	18	13	19	14
Response to estradiol	19	15	19	13
Wound healing	21	16	22	16
Cellular response to mechanical stimulus	25	18	22	23
Positive regulation of apoptotic process	10	10	9	9
Positive regulation of transcription from RNA polymerase II promoter	10	6	5	5
Positive regulation of transcription, DNA-templated	7	8	7	7
Response to organic substance	16	13	20	17
Response to ethanol	18	13	17	17
Cellular response to interleukin-1	29	31	18	18
Cellular response to organic cyclic compound	26	18	22	18
Extracellular matrix disassembly	6	6	18	18
Innate immune response	6	6	18	18
Ossification	22	19	18	18
Platelet degranulation	26	19	18	18
Positive regulation of angio genesis	18	18	22	20
Positive regulation of peptidyl-serine phosphorylation	22	22	20	20
Positive regulation of smooth muscle cell proliferation	28	35	35	35
Response to cytokine	26	29		29
Response to estrogen	17	21	18	16
Response to glucocorticoid	37	35		35
Vascular endothelial growth factor receptor signaling pathway	16	35	35	35
Positive regulation of angiogenesis	10	10	9	9
Axon guidance	8		18	18
Cartilage development	12	20		20
Cell-matrix adhesion	18			18
Epidermal growth factor receptor signaling pathway	14			14
In utero embryonic development	8			8
Integron-mediated signaling pathway	18			18
Leukocyte migration	17			17
Lipopolysaccharide-mediated signaling pathway	48			48
Multicellular organism development	4			4
Negative regulation of transcription from RNA polymerase II promoter	5			5
Neurotrophin TRK receptor signaling pathway	12			12
Notch signaling pathway	18			18
Organ morphogenesis	13			13
Organ regeneration	19			19
Osteoblast differentiation	16			16
Positive regulation of blood vessel endothelial cell migration	61			61
Positive regulation of epithelial cell proliferation	21			21
Positive regulation of epithelial to mesenchymal transition	40			40
Positive regulation of ERK1 and ERK2 cascade	14			14
Positive regulation of MAPK cascade	18			18
Regulation of cell proliferation	14			14
Signal transduction	4			4
Skeletal system development	14			14
Transforming growth factor beta receptor signaling pathway	13			13
The described new method of reviewing literature by advanced techniques of data collection and subsequent pathway analysis may draw attention to new research targets and help to promote specific projects. Of course, similar results as shown here could possibly be achieved by collecting the genes and proteins manually from the considered number of manuscripts. However, the time required would be enormous. In addition, it appears virtually impossible to retrieve biological processes, in which proteins of interest are taking part, from the literature without programs like the Pathway Studio and their underlying databases. Unfortunately, the programs available nowadays do not allow for the extraction of the given information in a paper about a protein together with the protein’s name, so that phenomena such as the time-dependent variation of proteins can be extracted from the publications in a direct and automated way.

5. Expert commentary

Research on the behavior of cells generated a tremendous number of reports. All these manuscripts contain a huge amount of detail information. Summaries of the manuscripts may be found in many traditional literature databases. But these only show titles, abstracts, and a few keywords of each manuscript. Therefore, up to now, personal reading of the underlying full papers has been necessary. This process is time-consuming. In addition, human insufficiencies often prevent a complete extract of the information given by the authors. Hence, computer programs suitable to extract the detailed information of whole manuscripts can help to gain a better overview on the results described by the community performing research on a topic such as gravitational biology or space medicine. This could contribute to avoid expensive and useless research on already known results. In addition, it facilitates a direct comparison of a high number of manuscripts and reveals information mentioned in a single publication only along the way. If such a by-the-way-information is found in many manuscripts, it could challenge researchers to take a closer look at the described phenomenon. Thus, it will be avoided that an important aspect of a scientific question is overlooked.

Furthermore, the assignment of proteins found in an experiment to biological processes needs the knowledge of all or a high number of proteins taking part in a defined biological process or signaling pathway. This knowledge cannot be gathered by a single team of researchers after each relevant experiment, because a comprehensive list for all entities of each process would have to be generated. Therefore, databases containing information about the interactions of proteins or genes were built up by companies or organizations [127,140]. Matching genes and proteins detected by a researcher in experiments [15,79] or by extracting literature against such databases adds tremendous value to each experiment or literature search.

The field of space research has expanded in recent years and will surely further increase in the near future. Therefore,
the knowledge about the behavior of cells under microgravity will continue to accumulate. In order to keep up with the increasing amount of information gathered in microgravity research, the application of computer programs, which help to extract and analyze proteins and genes detected in the various experiments, will become more and more necessary.

6. Five-year-view

Scientific literature is currently doubling in growth [141]. Therefore, computer programs like the ones described in this review will become more and more important in the next 5 years. Their dissemination will increase, as well as the numbers of fields of application. Under these conditions, more effort will be invested to improve the programs and their underlying databases. Hence, interaction databases of proteins and genes of more species than human, mouse, rat, and Arabidopsis thaliana may be available soon, each containing a reasonable number of entities. Also, the number of automatically analyzable substances and topics will expand.

Regarding the automatic detail extraction from manuscripts, improvements can also be expected. One can assume that not only proteins and genes will be extractable in 5 years, but also many other entities either alone or in combination. Therefore, these new techniques will become essential in many research fields, but also in microgravity research, which surely will continue to grow in the next few years.

Key issues

- OMICS investigations (Proteomics, Metabolomics, Genomics) are important in the field of Gravitational Biology and Space Research in order to understand the effects of microgravity on biological processes.
- Value may be added to the results of individual experiments, when the detected proteins, genes or metabolites are further analyzed using programs like the described Pathway Studio.
- A fast assigning of detected proteins to known biological processes appears advantageous for subsequent research.
- Like in many other research fields the knowledge accumulated in the field of Gravitational Biology and Space Research is tremendously increasing.
- It is difficult and time consuming to gather all detail information, which are described in single manuscripts, manually.
- Computer programs for mining literature will become more and more necessary for a scientist to keep up with the accumulating knowledge.
- If by-the-way results are found in many manuscripts, their importance could be recognized.
- If the biological process is known to which a detected protein belongs, it can better be decided whether it plays a role in cellular adaptation to microgravity.

Declaration of interest

Daniela Grimm gratefully acknowledges support from the German Space Agency DLR (grant 50WB1524). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

References

Papers of special note have been highlighted as:
- of interest
- of considerable interest.

1. Pietsch J, Bauer J, Egli M, et al. The effects of weightlessness on the human organism and mammalian cells. Curr Mol Med. 2011;11(5):350–364.
2. Blaber E, Sato K, Almeida EA. Stem cell health and tissue regeneration in microgravity. Stem Cells Dev. 2014;23(Suppl 1):73–78.
3. Corydon TJ, Kopp S, Wehland M, et al. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep. 2016 Jan 28(6):20043.
4. Grimm D, Pietsch J, Wehland M, et al. The impact of microgravity-based proteomics research. Expert Rev Proteomics. 2014;11(4):465–476.
5. Grimm D, Wehland M, Pietsch J, et al. Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B Rev. 2014;20(6):555–566.
6. Edgell CJS, McDonald CC, Graham JB. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA. 1983;80:3734–3737.
7. Svejgaard B, Wehland M, Ma X, et al. Common effects on cancer cells exerted by a random positioning machine and a 2D clinostat. PLoS One. 2015;10(8):e0135157.
8. Grimm D, Bauer J, Kissmehl P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J. 2002;16(6):604–606.
9. Grimm D, Infanger M, Westphal K, et al. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A. 2009;15(8):2267–2275.
10. Ulbrich C, Westphal K, Pietsch J, et al. Characterization of human chondrocytes exposed to simulated microgravity. Cell Physiol Biochem. 2010;254(5):551–560.
11. Kopp S, Slumstrup, S., Corydon, T. J. et al. Identifications of novel mechanisms in human breast cancer cells involving duct-like multicellular spheroid formation under simulated microgravity. Sci Rep. 2016;6:26887.
12. Penolazzi L, Lolli A, Sardelli L, et al. Establishment of a 3D-dynamic osteoblasts-osteoblasts co-culture model to simulate the jawbone microenvironment in vitro. Life Science. 2016;152:82–93.
13. Becker JL, Souza GR. Using space-based investigations to inform cancer research on Earth. Nat Rev Cancer. 2013;13(5):315–327.

This paper summarizes possibilities to transfer results from microgravity research to cancer research.

Abdelmoaty H, Hammond TG, Wilson BL, et al. Identification of putative major space genes using genome-wide literature data. 2015. doi:10.5772/60412

This book chapter gives an overview on genes affected by removal of gravity.

15. Riwaldt S, Pietsch J, Sickmann A, et al. Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics. 2015;15(17):2945–2952.
16. Gridley DS, Mao XW, Stodieck LS, et al. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One. 2013;8(9):e75097.
17. Pietsch J, Ma X, Wehland M, et al. Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 space mission. Biomaterials. 2013;34(31):7694–7705.
18. Aleshcheva G, Wehland M, Sahana J, et al. Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9. FASEB J. 2015;29(6):2303–2314.
19. Pietsch J, Bauer J, Weber G, et al. Proteome analysis of thyroid cancer cells after long-term exposure to a random positioning machine. Microgravity Sci Technol. 2011;23(4):381–390.

20. Ma X, Wehland M, Schulz H, et al. Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PLoS One. 2013;8(5):e64402.

21. Albi E, Curcio F, Lazzarini A, et al. How microgravity changes galectin-3 in thyroid follicles. Biomed Res Int. 2014;2014:652863. doi:10.1155/2014/652863.

22. Bauer J, Wehland M, Pietsch J et al. Annotated gene and proteome data support recognition of interconnections between the results of different experiments in space research. Microgravity Sci Technol. 2016. doi:10.1007/s12217-015-9451-z. [Epub ahead of print]

23. Chang D, Xu H, Guo Y, et al. Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line. Vitro Cell Dev Biol Anim. 2013;49(3):170–177.

24. Chang TT, Hughes-Fulford M. Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A. 2009;15(3):559–567.

25. Chen L, Yang X, Cui X, et al. Adrenomedullin is a key protein mediating rotary cell culture system that induces the effects of simulated microgravity on human breast cancer cells. Microgravity Sci Technol. 2015;27(6):417–426.

26. Clejan S, Oconnor KC, Cowger NL, et al. Effects of simulated microgravity on DU 145 human prostate carcinoma cells. Biotechnol Bioeng. 1996;50(5):587–597.

27. Goodwin T, Prewett T, Wolf DA, et al. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem. 1993;51(3):301–311.

28. Grosse J, Wehland M, Pietsch J, et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J. 2012;26(12):S124–S140.

29. Gron B, Benjamin E, Sinclair J, et al. Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prog. 2009;42(2):219–228.

30. Guo F, Li Y, Liu Y, et al. Identification of genes associated with tumor development in CaSkii cells in the cosmic space. Mol Biol Rep. 2012;39(6):6923–6931.

31. Infanger M, Kossmeier P, Shikabai M, et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 2006;324(2):267–277.

32. Ingram M, Techy GB, Saroufeem R, et al. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. Vitro Cell Dev Biol Anim. 1997;33(6):459–466.

33. Kopp S, Warnke E, Wehland M, et al. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity. Sci Rep. 2015;5:16691.

34. Marrero B, Messina JL, Heller R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. Vitro Cell Dev Biol Anim. 2009;45(9):523–534.

35. Masiello MG, Cucina A, Proietti S, et al. Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells. Biomed Res Int. 2014;2014:652434. doi:10.1155/2014/652434.

36. O’Connor KC, Enmon RM, Dotson RS, et al. Characterization of autocrine growth factors, their receptors and extracellular matrix present in three-dimensional cultures of DU 145 human prostate carcinoma cells grown in simulated microgravity. Tissue Eng. 1997;3(2):161–171.

37. Pietsch J, Sickmann A, Weber G, et al. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics. 2011;11(10):2095–2104.

38. Shi ZX, Rao W, Wang H, et al. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry. Biochem Biophys Res Commun. 2015;457(3):378–384.

39. Takeda M, Magaki T, Okazaki T, et al. Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci Lett. 2009;463(1):54–59.

40. Thielecke H, Mack A, Robitzki A. A multicellular spheroid-based sensor for anti-cancer therapeutics. Biosens Bioelectron. 2001;16(4–5):261–269.

41. Vidyasagar P, Shyamsunder P, Arun R, et al. Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and microma gene networks. PLoS One. 2015;10(8):e0135958.

42. Warnke E, Pietsch J, Wehland M, et al. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Cell Commun Signal. 2014;12:32.

43. Zhou HE, Goodwin TJ, Chang SM, et al. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. Vitro Cell Dev Biol Anim. 1997;33(5):375–380.

44. Zheng H, Tian W, Yan H, et al. Rotary culture promotes the proliferation of MCF-7 cells encapsulated in three-dimensional collagen-alginate hydrogels via activation of the ERK1/2-MAPK pathway. Biomed Mater. 2012;7(1):015003.

45. Zheng H-X, Tian W-M, Yan H-J, et al. Expression of estrogen receptor in human breast cancer cells regulates mitochondrial oxidative stress under simulated microgravity. Adv Space Res. 2012;49(10):1432–1440.

46. Zhou J, Hu L, Cui Z, et al. Interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration in differentiation syndrome. Int J Hematol. 2010;91(2):293–302.

47. Blaber EA, Finkeinstein D, Dvorochkin N, et al. Microgravity reduces the differentiation and regenerative potential of embryonic stem cells. Stem Cells Dev. 2015;24(22):2605–2621.

48. Chen Z, Luo Q, Lin C, et al. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Biochem Biophys Res Commun. 2015;468(1–2):21–26.

49. Consolo F, Bariani C, Mantalaris A, et al. Computational modeling for the optimization of a cardiogenic 3D bioprocess of encapsulated embryonic stem cells. Biomech Model Mechanobiol. 2012;11(1–2):261–277.

50. Espinosa-Jeffrey A, Paez PM, Cheli VT, et al. Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair. PLoS One. 2013;8(12):e76963.

51. Gorshevich PM, Gorshevich JG, Zhambalova AP, et al. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity. Acta Astronaut. 2012;70:36–42.

52. He L, Pan S, Li Y, et al. Increased proliferation and adhesion properties of human dental pulp stem cells in PLGA scaffolds via simulated microgravity. Int Endod J. 2016;49(2):161–173.

53. Huang Y, Dai ZQ, Ling SK, et al. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci. 2009;16:687.

54. Hwang YS, Cho J, Tay F, et al. The use of murine embryonic stem cells, allogeneic encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials. 2009;30(4):499–507.

55. Jin F, Zhang Y, Xuan K, et al. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions. Artif Organs. 2010;34(2):118–125.

56. Lei XH, Ning LN, Cao YJ, et al. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One. 2011;6(11):e26603.

57. Li H, Dai Y, Shu J, et al. Spheroid cultures promote the stemness of corneal stromal cells. Tissue Cell. 2015;47(1):39–48.

58. Li S, Ma Z, Niu Z, et al. NASA-approved rotary bioreactor enhances proliferation and osteogenesis of human periodontal ligament stem cells. Stem Cells Dev. 2009;18(9):1273–1282.
59. Long M, Wang Y, Zheng H, et al. Mechanobiological coupling of cellular responses to microgravity. Microgravity Sci Technol. 2015;27(6):505–514.

60. Luo H, Zhu B, Zhang Y, et al. Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration. Tissue Eng Part A. 2015;21(1–2):267–276.

61. Luo W, Xiong W, Qiu M, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro. J Huazhong Univ Sci Technol Med Sci. 2011;31(2):199–203.

62. Pisanu ME, Noto A, De Vitis C, et al. Lung cancer stem cell lose their stemness default state after exposure to microgravity. Biomed Res Int. 2014;2014:928507. doi:10.1155/2014/928507.

63. Sheyn D, Pelled G, Netanely D, et al. The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study. Tissue Eng Part A. 2010;16(11):3403–3412.

64. Ulbrich C, Wehland M, Pietsch J, et al. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed Res Int. 2014;2014:928507. doi:10.1155/2014/928507.

65. Wu X, Li SH, Lou LM, et al. The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Mol Biotechnol. 2013;54(2):331–336.

66. Yan M, Wang Y, Yang M, et al. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2015;460(2):327–332.

67. Zayafofon M, Gathings WE, McDonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology. 2004;145(5):2421–2432.

68. Zhang C, Li L, Chen J, et al. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation. Cell Biol Int. 2015;39(6):647–656.

69. Zhang S, Liu P, Chen L, et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials. 2015;41:15–25.

70. Zhang X, Nan Y, Wang H, et al. Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Naturwissenschaften. 2013;100(2):125–133.

71. Zhang ZY, Teeh SH, Teo EY, et al. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials. 2010;31(33):8684–8695.

72. Balsamo M, Baravcevica I, Mariotti S, et al. Molecular and cellular characterization of space flight effects on microvascular endothelial cell function – preparatory work for the SFEF project. Microgravity Sci Technol. 2014;26(6):351–363.

73. Cazzaniga A, Castiglioni S, Maier JA. Conditioned media from microvascular endothelial cells cultured in simulated microgravity inhibit osteoblast activity. Biomed Res Int. 2014;2014:857934. doi:10.1155/2014/857934.

74. Chakraborty N, Gautam A, Muhie S, et al. An integrated omics analysis: impact of microgravity on host response to lipopolysaccharide in vitro. BMC Genomics. 2014;15:659–59.

75. Dai Y, Guo Y, Wang C, et al. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS One. 2014;9(10):e109856.

76. Griffoni C, Di Molfetta S, Fantozzi L, et al. Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J Cell Biochem. 2011;112(1):265–272.

77. Kang CY, Zou L, Yuan M, et al. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur J Appl Physiol. 2011;111(9):2131–2138.

78. Kaplanova MY, Mud S, Froemming GRA, et al. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC. Malays J Pathol. 2012;34(2):103–113.

79. Ma X, Sickmann A, Pietsch J, et al. Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures. Proteomics. 2014;14(6):689–698.

80. Maier JA, Cialdai F, Monici M, et al. The impact of microgravity and hypergravity on endothelial cells. Biomed Res Int. 2015;2015:434803. doi:10.1155/2015/434803.

81. Mariotti M, Maier JA. Gravitational unloading induces an angiogenic phenotype in primary human microvascular endothelial cells. J Cell Biochem. 2008;104(1):129–135.

82. Mariotti M, Maier JA. Human micro- and macrovascular endothelial cells exposed to simulated microgravity upregulate hsp70. Microgravity Sci Technol. 2006;21(1–2):141–144.

83. Monici M, Cialdai F, Romano G, et al. An in vitro study on tissue repair: impact of unloading on cells involved in the remodelling phase. Microgravity Sci Technol. 2011;23(4):391–401.

84. Rudimov EG, Buravkov SV, Andreeva EP, et al. Effect of proinflammatory activation on F-actin distribution in cultured human endothelial cells under conditions of experimental microgravity. Bull Exp Biol Med. 2015;158(4):573–580.

85. Shi F, Wang YC, Zhao TZ, et al. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the Pi3K-Akt-eNOS signal pathway. PLoS One. 2012;7(7):e40365.

86. Shi F, Zhao TZ, Wang YC, et al. The impact of simulated weightlessness on endothelium-dependent angiogenesis and the role of caveolae/caveolin-1. Cell Physiol Biochem. 2016;38(2):502–513.

87. Siamwala JH, Majumder S, Tamlarasap KN, et al. Simulated microgravity promotes nitric oxide-supported angiogenesis via the iNOS-cGMP-PKG pathway in microvascular endothelial cells. FEBS Lett. 2010;584(15):3415–3423.

88. Siamwala JH, Reddy SH, Majumder S, et al. Simulated microgravity perturbs actin polymerization to promote nitric oxide-associated migration in human immortalized Eahy926 cells. Proteoplasma. 2010;242(1–4):3–12.

89. Sokolovskaya AA, Ignashkova TI, Bochenkov AV, et al. Effects of simulated microgravity on cell cycle in human endothelial cells. Acta Astronaut. 2014;99:24–33.

90. Versari S, Longinotti G, Barenghi L, et al. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J. 2013;27(11):4466–4475.

91. Wang YC, Zhang S, Du TY, et al. Clinorotation upregulates inducible nitric oxide synthase by inhibiting AP-1 activation in human umbilical vein endothelial cells. J Cell Biochem. 2009;107(2):357–363.

92. Zhang X, Nan Y, Wang H, et al. Model microgravity enhances endothelium differentiation of mesenchymal stem cells. Naturwissenschaften. 2013;100(2):125–133.

93. Zheng Z, Lau P, Pansky A, et al. The influence of simulated microgravity on purinergic signaling is different between individual culture and endothelial and smooth muscle cell co-culture. Biomed Res Int. 2014;2014:413708. doi:10.1155/2014/413708.

94. Zhang Y, Sang C, Paulsen K, et al. iCAM-1 expression and organization in human endothelial cells is sensitive to gravity. Acta Astronaut. 2010;67(9–10):1073–1080.

95. Aleshcheva G, Sahana J, Ma X, et al. Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PLoS One. 2013;8(11):e79057.

96. Brown LA, Arterburn LM, Miller AP, et al. Maintenance of liver function in rats during simulated microgravity. J Cell Biochem. 2003;89(1):13.

97. Canciani B, Ruggiu A, Giuliani A, et al. Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture. J Mech Behav Biomed Mater. 2015;51:1–12.

98. Chen J, Chen R, Gao S. Morphological characteristics and proliferation of keratoocytes cultured under simulated microgravity. Artif Organs. 2007;31(9):722–731.

99. Freed LE, Langer R, Martin I, et al. Tissue engineering of cartilage in space. Proc Natl Acad Sci USA. 1997;94(25):13885–13890.

• Pioneering paper in the field of tissue engineering under microgravity.

100. Freed LE, Yunjak-Novakovic G. Microgravity tissue engineering. Vitro Cell Dev Biol Anim. 1997;33(5):381–385.
101. Granet C, Laroche N, Vico L, et al. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med Biol Eng Comput. 1998;36(4):513–519.

102. Guignandon A, Faure C, Neutelings T, et al. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 2014;28(9):4077–4087.

103. Hu L, Li R, Su P, et al. Response and adaptation of bone cells to simulated microgravity. Acta Astronaut. 2014;104(1):396–408.

104. Luo H, Zhu B, Zhang Y, et al. Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration. Tissue Eng Part A. 2015;21(1–2):267–276.

105. Manley P, Leikes P. A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors. J Biotechnol. 2006;125(3):416–424.

106. Montani C, Steinberg N, Boniotti J, et al. Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens. Toxicol Appl Pharmacol. 2014;280(3):421–433.

107. Nelson LJ, Walker SW, Hayes PC, et al. Low-shear modelled microgravity environment maintains morphology and differentiated functionality of primary porcine hepatocyte cultures. Cells Tissues Organs. 2010;192(2):125–140.

108. Ranieri D, Cucina A, Bizzarri M, et al. Microgravity influences circadian clock oscillation in human keratinocytes. FEBS Open Bio. 2015;5:717–723.

109. Saini S, Wick TM. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog. 2003;19(2):510–521.

110. Schrader S, Kremling M, Klinger M, et al. Cultivation of lacrimal gland acinar cells in a microgravity environment. Br J Ophthalmol. 2009;93(8):1121–1125.

111. Skardal A, Sarker SF, Crabbe A, et al. The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials. 2010;31(32):8426–8435.

112. Stamenkovic V, Keller G, Nesic D, et al. Neocartilage formation in 1 day: a proteomics approach. J Cell Biol. 2003;151(4):931–943.

113. Takechi K, Takimoto Y, Tsutsui H, et al. Effects of short-term microgravity exposure on focal adhesion kinase and phospho-paxillin expression in the human osteoblastic ATDC5 cell line. J Orthop Sci. 2009;14(4):347–353.

114. Vyas P, Vyas A, Deshpande P, et al. A novel approach to induce osteogenesis in human mesenchymal stem cells using a bioreactor system. Cell Tissue Res. 2015;361(1):159–172.

115. Wang Y, Iqbal J, Liu Y, et al. Effects of microgravity on the expression of presynaptic proteins distorting the GABA/glutamate equilibrium – a proteomics approach. Proteomics. 2015;15(22):3883–3891.

116. Wehland M, Aleshcheva G, Schulz H, et al. Differential gene expression of human chondrocytes cultured under short-term altered gravity conditions during parabolic flight maneuvers. Cell Commun Signal. 2015;13:18.

117. Zhang J, Li J, Xu H, et al. Responds of bone cells to microgravity: ground-based research. Microgravity Sci Technol. 2015;27(6):455–464.

118. Zhang S, Zhang B, Chen X, et al. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice. J Mater Sci Mater Med. 2014;25(12):2699–2709.

119. Grimm D, Wise P, Lebert M, et al. How and why does the proteome respond to microgravity. Expert Rev Proteomics. 2011;8(1):13–27.

120. Cazzaniga A, Maier JA, Castiglioni S. Impact of simulated microgravity on human bone stem cells: new hints for space medicine. Biochim Biophys Acta. 2016;1864(4):181–186.

121. Shinde V, Brungs S, Henry M, et al. Simulated microgravity modulates differentiation processes of embryonic stem cells. Cell Physiol Biochem. 2016;38(4):1483–1499.

122. Fuentes TL, Appleby N, Raya M, et al. Simulated microgravity exerts an age-dependent effect on the differentiation of cardiovascular progenitors isolated from the human heart. PLoS One. 2015 Jul 10;10(7):e0132378.

123. Rea G, Cristofaro F, Pani G, et al. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics. 2016;137:3–18.

124. Kwon WS, Rahman MS, Pang MG. Diagnosis and prognosis of male infertility in mammal: the focusing of tyrosine phosphorylation and phosphoeytosine proteins. J Proteome Res. 2014;13(11):4505–4517.

125. This paper describes an alternative application of the MedScan Reader.

126. Thomas S, Bonchev D. A survey of current software for network analysis in molecular biology. Hum Genomics. 2010;4(5):353–360.

127. This paper indicates and compares different computer programs of advanced protein and genes analysis.

128. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):877–883.

129. Russo J, Balogh GA, Chen JQ, et al. The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci. 2006;11:151–172.

130. Tortelli F, Tasso R, Loiacono F, et al. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials. 2010;31(2):242–249.

131. Ursin S, Warlow PM, Sheikh S, et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151(4):931–943.

132. Aleshcheva G, Bauer J, Hemmersbach R, et al. Scaffold-free tissue formation under real and simulated microgravity conditions. Basic Clin Pharmacol Toxicol. 2016. [Epub ahead of print]. doi:10.1111/bcpt.12561.

133. Infanger M, Kossmehl P, Shakibaei M, et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis. 2006;11(5):749–764.

134. Pietsch J, Russian R, Sickmann A, et al. Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics. 2010;10(5):904–913.

135. Kanaan Z, Qadan M, Eichenberger MR, et al. The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer. Genet Test Mol Biomarkers. 2010;14(3):347–353.

136. Du Y, Meng J, Huang Y, et al. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein. Biochem Biophys Res Commun. 2014;445(1):58–63.

137. Zhou H, Zhang Y, Fu Y, et al. Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78). J Biol Chem. 2011;286(29):25687–25696.

138. Qian Y, Zheng Y, Weber D, et al. A 78-kDa glucose-regulated protein is involved in the decrease of interleukin-6 secretion by lead treatment from astocytes. Am J Physiol Cell Physiol. 2007;293(3):C987–C990.

139. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by JNK and p38. J Biol Chem. 2000;275(21):15897–15900.

140. Snel B, Lehmann G, Bork B, et al. String: a web-server retrieve and display the repeatedly occurring neighbourhood of a gene. Nucl Acids Res. 2000;28(18):4342–4344.

141. Bornmann L, Mutz R. Growth rates of modern sciences: abibliometric analysis based on the number of publications and cited references. J Assoc Information Sci Technol. 2015;66(11):2215–2222.