A Type-II Positive Allosteric Modulator of α7 nAChRs Reduces Brain Injury and Improves Neurological Function after Focal Cerebral Ischemia in Rats

Fen Sun, Kunlin Jin, Victor V. Uteshev

University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX, United States of America

Abstract

In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.

Introduction

Clinical management of neuronal damage resulting from ischemic stroke generally involves only palliative treatments. Currently, the only FDA-approved drug therapy for ischemic stroke involves the intravenous use of tissue plasminogen activator (tPA) to dissolve clots [1]. This strategy appears to be effective in ischemic stroke, but only within the first 3 hours after the onset of ischemic stroke [2,3]. This strict limitation reduces the percent of stroke patients eligible for tPA to as low as ~2% [4]. Although in the last two decades substantial efforts have been invested in developing anti-ischemic medicine, these efforts have not resulted in clinically-efficacious therapies for ischemic stroke [5]. These failures highlight the need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to ischemia. Among possible strategies, effective post-stroke treatments with broad therapeutic windows are likely to be the most valuable because of the unexpected nature of stroke. In this search, treatments that are based on recruiting and activating endogenous pathways receive special attention as these approaches are expected to be highly efficacious and cause fewer adverse effects than approaches that utilize exogenous agents [6–8]. To complement these needs, this study evaluates neurological benefits of enhanced activation of α7 nicotinic acetylcholine receptors (nAChRs) by endogenous nicotinic agonists 6 hours after ischemic insult induced by middle cerebral artery occlusion (MCAO) in young adult rats.

There is a substantial body of supportive evidence linking age-, disease- and trauma-related reduction in the expression and function of α7 nAChRs to neurodegenerative, sensorimotor and psychiatric disorders associated with cognitive decline and attention deficits [9–24]. By contrast, activation of α7 nAChRs has been demonstrated to enhance neuronal resistance to ischemia and other insults in in vivo, ex vivo and in vitro experimental models [6,25–39], as well as improved cognitive performance in patients and animal models of neurodegenerative conditions including dementia, schizophrenia, brain trauma and aging [14,26,31,39–61]. An important rationale for the therapeutic use of α7 nAChR agents arises from the fact that α7 nAChRs are ubiquitously expressed throughout the brain [62] including brain regions that are highly...
vulnerable to ischemia, such as cortex, striatum and hippocampus [63–66]. However, endogenous α7 nAChR agonists (i.e., choline and ACh) have not been regarded as potent therapeutic agents because physiological levels of choline/ACh do not appear to produce therapeutic levels of α7 activation [6]. This limitation has been recently resolved by the use of Type-II positive allosteric modulators (PAMs-II) of α7 nAChRs [6,8,48,67–73]. PAMs-II do not activate α7 nAChRs, but they inhibit desensitization and enhance α7 activation by nicotinic agonists, including endogenous choline and ACh [48,67,68]. Thus, PAMs-II only amplify activation of α7 nAChRs by endogenous nicotinic agonists released naturally as needed [8]. Accordingly, we have recently introduced a novel therapeutic paradigm [6] that converts endogenous choline/ACh into potent therapeutic agents for cerebral ischemia by enhancing activation of α7 nAChRs using PNU-120596, a PAM-II. In our previous proof-of-concept study [6], we have reported that a 3 hour pre-treatment with choline +PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons in the complete oxygen/glucose deprivation model of ischemic stroke in acute hippocampal slices and activation of α7 nAChRs was required; while intravenous administration of PNU-120596 30 min post-ischemia in the MCAO model of ischemic stroke significantly reduced cerebral infarct volume [6]. The present study extends our previous findings and the therapeutic promise of PAMs-II by revealing that PNU-120596 reduces both the focal ischemia-induced cerebral infarct volume and neurological deficits even when administered as long as 6 hours after the ischemic onset. The results of this study further support the potential therapeutic utility of PAMs-II as effective recruiters and activators of endogenous α7-dependent cholinergic pathways to reduce brain injury and improve neurological function secondary to focal cerebral ischemia.

Materials and Methods

Ethics Statement

Young adult male Sprague-Dawley (S.-D.) rats (~280 g) were used in experiments. The animal use was in accordance with the Guide for the Care and Use of Laboratory Animals (NIH 85-23, Bethesda, MD), and all experimental protocols were approved by the Institutional Animal Care and Use Committee of University of North Texas Health Science Center at Fort Worth, TX.

Animals

In total 22 animals were used in this study. Animals were housed 2 per tub in a Tecniplast Green Line IVC Sealsafe PLUS Rat rack on 1/8” corn cob bedding, with Envirodri shredded paper for enrichment. Animals were fed Purina Lab Diet 5LL2, and received filtered water via water bottles. Room lighting was kept below 50 Foot Candles (range of 30-40), and with a timer controlled 12:12 light dark cycle. Room temperature was maintained between 68–72 degrees, with humidity range of 30-70%. Cages were cleaned or changed at least once per week. The housing room contained only rats. The UNTHSC animal facility is AAALAC accredited and follows or exceeds all of the requirements of the Guide for the Care and Use of Laboratory Animals.

Middle cerebral artery occlusion (MCAO)

Transient (90 min) focal cerebral ischemia was induced using the suture occlusion technique as previously described [74]. Animals (n=22; Charles River, Wilmington, MA) were anesthetized with 4% isoflurane mixed with 67% N2O and 29% O2 and delivered by a mask. After a midline incision in the neck, the left external carotid artery (ECA) was carefully exposed and dissected. A 19-mm, 4-0 monofilament nylon suture was inserted from the ECA into the left internal carotid artery to occlude the origin of left middle cerebral artery. After 90 min of occlusion, the thread was removed to allow reperfusion. The ECA was ligated, and the wound was closed. Rectal temperature was maintained at ~37°C using a heating pad.

A total of 22 animals were used in this study of which 1 animal from the control group died during the first hours of post-MCAO recovery prior to vehicle injections and another animal from the same control group died after vehicle injection, but prior to behavioral tests. Thus, the mortality rate was ~16.7% in the control group and 0% in the treatment group.

Drugs

PNU-120596 was obtained from the National Institute of Drug Addiction through the Research Resources Drug Supply Program as well as purchased from Selleck Chemicals (Houston, TX). Other chemicals were purchased from Sigma-Aldrich (St. Louis, MO).

Infarct Volume Measurements

Rats (n=10 per group) were anesthetized and euthanized by decapitation 24 hrs after MCAO. Brains were removed and coronal sections (2 mm thickness) immersed in 2% 2,3,5-triphenyltetrazolium chloride (TTC) in saline for 20 min at 37° C, then fixed for 2 hrs in 4% paraformaldehyde [75]. Infarct area, left hemisphere area, and total brain area were measured by a blinded observer using the ImageJ software, and areas were multiplied by the distance between sections to obtain the respective volumes. Infarct volume was calculated as a percentage of the volume of the contralateral hemisphere, as described previously [76].

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e73581
Neurobehavioral testing
Rats (n=10 per group) underwent neurobehavioral tests to evaluate functional outcome of treatments with PNU-120596. Animals were trained prior to MCAO (training period: 3 days, 3 trials per day) and deficits were assessed 24 hrs thereafter. The order of testing (Bederson ➔ cylinder ➔ ladder rung walking) was always the same to keep the testing conditions identical for all animals. Although it is unlikely that subjecting animals to early tests in the sequence facilitated or inhibited the animal performance in the later tests, we cannot completely rule out a possibility of inter-test interactions.

Bederson test
Bederson score was used to assess the neurological deficit using a four-level scale [77]: 0, normal; 1, forelimb flexion; 2, decreased resistance to lateral push; 3, circling.

Cylinder Test
Forelimb use bias was analyzed by observing the rat's movements over 3-minute intervals in a transparent, 18-cm-wide, 30-cm-high poly(methyl methacrylate) cylinder. A mirror behind the cylinder made it possible to observe and record forelimb movements when the rat was facing away from the examiner. After an episode of rearing and wall exploration, a landing was scored for the first limb to contact the wall or for both limbs if they made simultaneous contact. Percentage use of the impaired limb was calculated.

Ladder rung walking test
The ladder rung walking test is sensitive for quantifying skilled locomotion. The degree of motor dysfunction after MCAO was measured by counting the number of foot-faults of the impaired limbs per round, as described previously [78]. Baseline and post-operative testing sessions consisted of three traverses across the ladder. An error was scored for any foot slip or misstep. The number of errors of the affected forelimb and hindlimb in each trial was counted. The mean number of errors in three traverses was calculated.

Statistical Analysis
Statistical significance of differences among groups was defined by the p-value (i.e., * p<0.05; *** p<0.001) using the two-tailed Mann–Whitney U-test. A non-parametric Mann–Whitney U-test was used because this study did not assume any specific underlying distribution (i.e., Gaussian) of data and had a relatively small sample size (n=5-10). We recognize that non-parametric statistics are often less powerful than parametric statistics and thus, more prone to Type-II error (i.e., missing significance when it is present) [79]. However, in this particular study, differences among groups have been found significant in all experiments further supporting our conclusions. The results are presented as mean±S.E.M.

Results
PNU-120596 significantly reduces cerebral infarct volume
In the group of animals defined as treated, PNU-120596 (1 mg/kg) was administered intravenously (i.v.) 6 hrs post-MCAO and the effects of PNU-120596 on cerebral infarct volume were evaluated 24 hrs post-MCAO using the TTC staining (see Methods). In the matching control group of animals only vehicle (i.e., DMSO) was administered via i.v. injections. Only the left MCA was occluded in each experiment. The results of these experiments demonstrated significant reduction in the infarct volume of treated vs. untreated animals (two-tailed, Mann–Whitney U-test): p=0.0147 (n=10; Figure 1).

PNU-120596 significantly improves neurological performance post-MCAO
The same treated and untreated animals that were used for histological measurements (Figure 1) were used in behavioral experiments 15 min prior to the animal anesthesia/euthanasia and brain tissue collection for histology (i.e., ~24 hrs post-MCAO). PNU-120596 significantly improved neurological function of treated (n=10) vs. untreated (n=10) animals as evidenced by the results of the following behavioral tests (two-tailed, Mann–Whitney U-test): Bederson (p=0.0385; Figure 2A), rolling cylinder (p=0.0124; Figure 2B), ladder rung walking (forelimb) (p=0.0486; Figure 2C) and ladder rung walking (hindlimb) (p=0.0007; Figure 2D). Therefore, the results of these experiments convincingly demonstrate that PNU-120596 produces significant neurological benefits even when it is administered as long as 6 hrs post-MCAO.

Discussion
The key finding of this study is that PNU-120596, a previously reported highly selective PAM-II of α7 nAChRs, significantly reduces cerebral infarct volume and neurological deficits in the MCAO model of ischemic stroke in rats when the drug is administered as long as 6 hrs post-MCAO. Such a remarkable persistent post-MCAO effectiveness of PNU-120596 invites more comprehensive pre-clinical studies of the PAM-II class of compounds aiming at giving health care providers an effective tool to reducing brain injury and improving neurological function secondary to cerebral ischemic stroke hours after the initial ischemic event. The therapeutic benefits produced by PNU-120596 originate from its ability to convert endogenous agonists of α7 nAChRs (i.e., choline and ACh) into highly potent therapeutic agents [6,48,67,68]. Thus, PAMs-II may create a conceptually novel family of treatments that are based on a novel and substantively different mechanism, i.e., recruiting and activating endogenous α7-dependent cholinergic pathways. Treatments that incorporate endogenous compounds and mechanisms are expected to be highly efficacious and cause fewer adverse effects than treatments that utilize exogenous agents.

These results extend our previous findings that demonstrated a high therapeutic efficacy of PNU-120596 administered intravenously 30 min after focal cerebral ischemia.
Figure 1. PNU-120596 significantly reduces the size of brain injury induced by focal cerebral ischemia. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Then, 6 hrs post-MCAO, animals were given i.v. injections of either 1 mg/kg PNU-120596 dissolved in DMSO at 50 mM (i.e., treated group; n=10) or the matched amount of DMSO only (i.e., untreated group; n=10). Typical examples of injured whole-brain coronal sections (2 mm thick) obtained from untreated (i.e., DMSO only) (A) and treated (1 mg/kg PNU-120596) (B) animals. Treated and untreated animals were anesthetized and euthanized 24 hrs after MCAO (i.e., 18 hrs after PNU-120596 or DMSO injections) and brain sections were prepared for histological analysis. C) A summary: MCAO-induced infarct volumes were significantly smaller in treated vs. untreated animals: p=0.0147 (n=10; two-tailed, the Mann–Whitney U-test). The results are presented as mean±S.E.M.

doi: 10.1371/journal.pone.0073581.g001
Figure 2. PNU-120596 significantly improves neurological function after focal cerebral ischemia. The same treated (n=10) and untreated (n=10) animals that were used for histological analysis (Figure 1) were subjected to neurological tests 15 min prior to anesthesia/euthanasia and collection of brain sections for histological analysis. PNU-120596 significantly improved neurological function post-MCAO in treated (n=10) vs. untreated (n=10) groups of animals as evidenced by the results of the following tests (two-tailed, the Mann–Whitney U-test): A) Bederson, (p=0.0385); B) Rolling cylinder, (p=0.0124); C) Ladder rung walk, (forelimb), (p=0.0486); and D) Ladder rung walk, (hindlimb), (p=0.0007). The results are presented as mean±S.E.M.
mediated Ca\(^{2+}\)-dependent activation of JAK2/AKT-dependent pathways are likely candidates [82,93–95]. These likely mechanisms would be expected to delay mitochondrial dysfunction and thus, PNU-120596-treated neurons may be able to better meet the energy demand of ischemic/hypoglycemic conditions and significantly delay the ultimate failure of the Na\(^{+}/K\(^{-}\)-ATPase pumps. Such a failure would cause a rapid loss of the neuronal trans-membrane electrochemical gradient leading to transient or terminal anoxic depolarization [6]. It may seem counterintuitive that excitatory currents (i.e., \(\alpha_7\) nAChR-mediated) could delay anoxic depolarization and reduce brain injury [6]. However, this concept reflects a common motif in how central neurons respond to insults, i.e., the existence of optimal neuroprotective levels and spatiotemporal patterns of cytosolic Ca\(^{2+}\) elevations [8,14,27,32,96–101]. While sub-optimal levels of cytosolic Ca\(^{2+}\) are ineffective, excessive Ca\(^{2+}\) influx is toxic. By contrast, moderate elevations in cytosolic Ca\(^{2+}\) levels, for example, via a K\(^{-}\)-induced depolarization or weak persistent activation of highly Ca\(^{2+}\)-permeable \(\alpha_7\) nACHRs [102–104] have been shown to protect neurons from injury in a variety of toxicity/insult models [6,27,28,32,33,38,98,105,106]. These therapeutic levels of \(\alpha_7\) nAChR activation are consistent with the weak persistent modality of \(\alpha_7\) nAChR activation generated by physiological concentrations of choline in the presence of PNU-120596 [67–69].

Moreover, the reported therapeutic efficacy of PNU-120596 may have resulted, at least in part, from enhanced activation of \(\alpha_7\) nACHRs expressed in the autonomic neuronal circuitry which may have provided a neurogenic (e.g., adrenergic, nitrogentic [107,108]) control over vascular tone and collateral blood circulation. In addition, functional \(\alpha_7\) nACHRs are expressed in numerous non-neuronal tissues including glial [109–111] and immune cells [112–114]. Thus, several therapeutic components of \(\alpha_7\) nAChR activation in multiple neuronal and non-neuronal tissues may have contributed to the significant therapeutic efficacy of PNU-120596 reported in this and previous in vivo studies [6,70–73,114,115]. These potential individual sources of brain protection and their relative contributions to the therapeutic effects of PNU-120596 are not known and present great interest.

One potential limitation of this study is that it does not include experiments with \(\alpha_7\) nAChR antagonists (e.g., methyllycaconitine; MLA). Although PNU-120596 is highly selective for \(\alpha_7\) nACHRs and to-date non-\(\alpha_7\)-mediated effects of PNU-120596 have not been reported, there is a slight chance that PNU-120596 activates both \(\alpha_7\)-dependent and yet unknown, \(\alpha_7\)-independent pathways. In that unlikely event, the use of highly selective \(\alpha_7\) nAChR antagonists would be critical for distinguishing among \(\alpha_7\)-dependent and \(\alpha_7\)-independent components of the effects of PNU-120596. However, experiments using MLA in vivo may not be straightforward as evidenced from a previous report where the effects of MLA on certain behavioral functions were bell-shaped [116]. Thus, a series of positive and negative controls will need to be conducted using selective \(\alpha_7\) agonists (e.g., DMXBA; 3-(2,4-dimethoxybenzylidene)-anabaseine, also known as GTS-21) to determine the effective regimens of MLA as applicable to MCAO. This work has not yet been done in this laboratory.

Another possible limitation is that we have not tested the effects of PNU-120596 on neurological performance of control (sham) animals (i.e., in the absence of MCAO-induced injury). This is because control animals perform these tests nearly flawlessly leaving no room for significant improvement by PNU-120596. However, because of this limitation we cannot exclude the possibility that PNU-120596 is a performance enhancing drug which is also effective in the absence of MCAO-induced injury and thus, the therapeutic efficacy of PNU-120596 post-MCAO may not be directly related to MCAO-induced injury, but extends the performance-enhancing potential of PNU-120596 in the absence of injury.

Certain genetic, age- and trauma-related neurodegenerative, sensorimotor, and psychiatric disorders characterized by cognitive decline and attention deficits (e.g., schizophrenia, dementia and traumatic brain injury) are directly associated with decreased cholinergic tone and a decrease, but not disappearance, of functional \(\alpha_7\) nACHRs [10,49,117]. By increasing and partially restoring \(\alpha_7\)-dependent cholinergic tone, PAMs-II would be expected to improve cognitive function and attention impairments in these patients and animal models [39,49,53,56,61,84]. In this regard, treatments with PNU-120596 or functionally-similar PAMs-II compounds may benefit individuals with ischemic stroke and certain age- and trauma-related cognitive deficits via multiple mechanisms and routes of action.

In conclusion, this study demonstrates a remarkable reduction in the size of cerebral injury and significant improvements in neurological function upon intravenous administration of PNU-120596 as long as 6 hours after the onset of transient focal cerebral ischemia. These results further support the potential therapeutic utility of PAMs-II as effective recruiters and activators of endogenous \(\alpha_7\)-dependent cholinergic pathways and extend the therapeutic promise of this novel class of compounds.

Acknowledgements

We thank the National Institute on Drug Abuse Research Resources Drug Supply Program for PNU-120596.

Author Contributions

Conceived and designed the experiments: FS KJ VU. Performed the experiments: FS. Analyzed the data: FS KJ VU. Contributed reagents/materials/analysis tools: KJ VU. Wrote the manuscript: VU. Interpreted results: FS KJ VU. Edited and revised manuscript: KJ VU. Prepared figures: FS VU.
References

1. Furian AJ (2002) Acute stroke therapy: beyond i.v. IPA. Cleve Clin J Med 69: 730-734. doi: 10.1016/S0009-9289(07)72237-8. PubMed: 12229378.

2. Adams HP Jr., del Zoppo G, Alberts MJ, Bhatt DL, Brass L et al. (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Care Study Group, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups; the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38: 1655-1711. doi: 10.1161/STROKEAHA.107.181486. PubMed: 17431204.

3. Brott T, Bogousslavsky J (2000) Acute ischemic stroke. N Engl J Med 343: 710-722. doi: 10.1056/NEJM200009073431007. PubMed: 10974136.

4. Katzan IL, Furian AJ, Lloyd LE, Frank J, Harper DL et al. (2002) Use of tissue-type plasminogen activator for acute ischemic stroke: the Cleveland area experience. JAMA 283: 1151-1158. doi:10.1001/jama.283.11.1151. PubMed: 12054094.

5. Richard Green A, Odergren T, Ashwood T (2012) Alpha 7 Nicotinic ACh Receptors as a Ligand-Gated Source of Ca(2+) Ions: The Search for a Ca(2+) Optimum. Adv Exp Med Biol 740: 603-638.

6. Uteshev VV (2012). Alpha 7 Nicotinic ACh Receptors as a Ligand-Gated Source of Ca(2+) Ions: The Search for a Ca(2+) Optimum. Eur J Pharmacol 693: 237-249. doi: 10.1016/j.ejphar.2012.06.019. PubMed: 22626351.

7. Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38: 22-33. doi: 10.1016/0006-3223(94)00252-X. PubMed: 7548469.

8. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF et al. (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64: 385-395. doi: 10.1016/0306-4522(94)00410-7. PubMed: 7700528.

9. Nordberg A, Hnilica B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72: 115-119. doi: 10.1016/0340-6090(86)90629-4. PubMed: 3808458.

10. Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1986) Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem 46: 288-293. doi: 10.1111/j.1471-4159.1986.tb12960.x. PubMed: 3940287.

11. London ED, Ball MJ, Waller SB (1999) Nicotinic binding sites in cerebral cortex and hippocampus of Alzheimer’s disease. J Neurosci Res 14: 745-750. doi: 10.1002/1050-9261(1994)14:4<745::AID-JNR2>3.0.CO;2-7. PubMed: 2812250.

12. Ren K, King MA, Liu J, Siemann J, Altman M et al. (2007) Alpha 7 nicotinic receptor agonist 4OH-GTS-21 protects axotomized septohippocampal cholinergic neurons in wild type but not amyloid-overexpressing transgenic mice. Neuroscience 148: 230-237.

13. Takeuchi H, Yanagida T, Inden M, Takata K, Kitamura Y, et al. (2009) Nicotinic receptor stimulation protects nigral dopaminergic neurons in rodent-induced Parkinson’s disease models. J Neurosci 39: 576-585.

14. Shimohama S, Greenwald DL, Shafon DH, Akaia K, Maeda T et al. (1998) Nicotinic alpha 7 receptors protect against glutamate neurotoxicity and neurofibrillary damage. Brain Res 779: 359-363. doi:10.1016/S0006-8993(97)01194-7. PubMed: 9473725.

15. Akaike A, Tamura Y, Yokota T, Shimohama S, Kimura J (1994) Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate-mediated glutamate cytotoxicity. Brain Res 644: 181-187. doi:10.1016/0006-8993(94)91678-0. PubMed: 7519524.

16. Kaneko S, Maeda T, Kume T, Kochiyama H, Akaia et al. (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res 765: 135-140. doi:10.1016/0006-8993(97)00565-8. PubMed: 9310404.

17. Kihara T, Shimohama S, Sawada H, Kimura J, Kume T et al. (1997) Nicotine receptor stimulation protects neurons against beta-amyloid-induced cytotoxicity via alpha7-neuronal receptors in wild type and amyloid-overexpressing transgenic mice. J Pharmacol Exp Ther 284: 1026-1032.

18. Li Y, Papke RL, He YJ, Millard WJ, Meyer EM (1999) Characterization of the neuroprotective and toxic effects of alpha7 nicotinic receptor activation in PC12 cells. Brain Res 830: 218-225. doi:10.1016/S0006-8993(97)00565-8. PubMed: 10366678.

19. Meyer EM, Tay ET, Zoltewicz JA, Papke RL, Meyers C et al. (1998) Neuroprotective and memory-related actions of novel α7 nicotinic agonists and antagonists in vivo. J Pharmacol Exp Ther 284: 1026-1032.

20. Li Y, Papke RL, He YJ, Millard WJ, Meyer EM (1999) Characterization of the neuroprotective and toxic effects of alpha7 nicotinic receptor activation in PC12 cells. Brain Res 830: 218-225. doi:10.1016/S0006-8993(97)00565-8. PubMed: 10366678.

21. Büchaczko J (2004) Neuronal Nicotinic Receptor Subtypes: DEFINING THERAPEUTIC TARGETS. Mol Interv 4: 285-295. doi: 10.1124/mi.4.5.8. PubMed: 15471913.

22. Fuciile S, Renzi M, Lauro C, Limatola C, Ciotti T et al. (2004) Nicotinic cholinergic stimulation promotes survival and reduces motility of cultured rat cerebellar granule cells. Neuroscience 127: 53-61. doi: 10.1016/j.neuroscience.2004.04.017. PubMed: 15219668.

23. Ross AO, Egea J, Gandía L, López MG, García AG (2006) Neuroprotection by nicotine in hippocampal slices subjected to oxygen-glucose deprivation: involvement of the alpha7 nAChR subtype. J Mol Neurosci 30: 61-62. doi:10.1383/jmn.30.1.61. PubMed: 17192628.

24. Yeung E, Rosa AO, Sobrado M, Gandía L, López MG et al. (2007) Neuroprotection afforded by nicotine against oxygen and glucose deprivation in hippocampal slices is lost in alpha7 nicotinic receptor knockout mice. Neuroscience 145: 866-872. doi:10.1016/j.neuroscience.2006.12.036. PubMed: 17269735.

25. Guseva MV, Hopkins DM, Scheff SW, Pauly JR (2008) Dietary choline supplementation improves behavioral, histological, and neurochemical outcomes in a rat model of traumatic brain injury. Neurotrauma 25: 975-983. doi:10.1089/neu.2008.0516.
Differentiated PC12 cells and septal cholinergic cells. Drug Dev Res 31:

Cytoprotective actions of 2,4-dimethoxybenzylidene anabaseine in alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: Biochem Behav 57: 231-241. doi: 10.1016/S0091-3057(96)00354-1.

A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 25: 4396-4405.

Olincy A, Hapris JG, Johnson LL, Pender V, Kongs S et al. (2006) Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 63: 630-638. doi: 10.1001/archpsyc.63.6.638.

Woodruff-Pak DS, Rajagopalan M, Hagopian W, Holtyn NR et al. (2005) A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 25: 4396-4405.

Woodruff-Pak DS, Li YT, Kern WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic agonist GT1. Brain Res 674: 252-259. doi: 10.1016/0006-8993(94)01449-R. PubMed: 7796104.

Meyer EM, Huang L, Parsekian A, Huang GL et al. (1997) Effects of 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) on rat nicotinic receptors and memory-related behaviors. Brain Res 768: 49-56. doi: 10.1016/S0006-8993(97)00536-2. PubMed: 9393000.

Ross RG, Stevens KE, Proctor WR, Leonard S, Kislay MA et al. (2010) Research review: Cholinergic mechanisms, early brain development, and risk for schizophrenia. J Child Psychol Psychiatry 51: 535-549. doi: 10.1111/j.1469-7610.2009.02187.x. PubMed: 19925602.

Hunt RS, Hajcak G, Ragan P, DeSantis W, Stawarczyk BM et al. (2005) Alpha7 nicotinic acetylcholine receptor mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain. J Comp Neurol 496: 1192-1201. doi:10.1002/jcb.20179.

Nicotinic receptor gene delivery into mouse hippocampal neurons leads to functional receptor expression, improved spatial memory-related performance, and tau hyperphosphorylation. Neuroscience 145: 42-52.

Clarke PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autodigraphic comparison of [3H] acetylcholine [3H] nicotine and [125I]-alpha-bungarotoxin. J Neurosci 5: 1307-1315.

Qiu M, Huang L, Parsekian A, Huang GL et al. (2004) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78: 677-685. doi: 10.1016/j.bcp.2005.03.003. PubMed: 19433009.

Breese CR, Adams C, Logel J, Drebign C, Rollins Y et al. (1997) Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain. J Comp Neurol 387: 335-398. doi:10.1002/(SICI)1096-9861(19971027)387:3. PubMed: 9335422.

Whitaker P, Davies AR, Morris MJ, Bleagrose IS, Potter BV et al. (1999) An autodigraphic study of the distribution of binding sites for the novel alpha7-selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. Eur J Neurosci 11: 2689-2696. doi: 10.1046/j.1465-2448.1999.00685.x. PubMed: 10574165.

Woodruff TM, Thundiyil J, Tang SC, Soeby CG, Taylor SM et al. (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6: 11. doi:10.1186/1750-1377-6-11. PubMed: 21266064.

Gusev AG, Uteshev VV (2010) Physiological concentrations of choline activate native alpha7-containing nicotinic acetylcholine receptors in the presence of PNU-120596 [1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea]. J Pharmacol Exp Ther 332: 588-596. doi: 10.1111/j.1749-9679.2009.00397.x. PubMed: 19923442.

Kalappa BI, Gusev AG, Uteshev VV (2010) Activation of functional α7 nicotinic acetylcholine receptors in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596. PLOS ONE 5: e13964. doi: 10.1371/journal.pone.0013964. PubMed: 21103043.

Uteshev VV (2012) Somatic integration of single ion channel responses of α7 nicotinic acetylcholine receptors enhanced by PNU-120596. PLOS ONE 7: e39295. doi: 10.1371/journal.pone.0039295. PubMed: 22479351.

Freitas K, Carroll FI, Damaj MI (2013) The antinociceptive effects of nicotinic receptors α7-positive allosteric modulators in murine acute and tonic pain models. J Pharmacol Exp Ther 344: 264-275. doi: 23115222.

Freitas K, Negus SS, Carroll FI, Damaj MI (2013) In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model. Br J Pharmacol 169: 567-579. doi: 10.1111/j.1365-2457.2012.04431.x. PubMed: 23115222.

McLean SL, Grayson B, Idris NF, Lesage AS, Pemberton DJ et al. (2011) Activation of α7 nicotinic receptors improves phencyclidine-induced deficits in cognitive tasks in rats: Implications for therapy of cognitive dysfunction in schizophrenia. Eur Neuropsychopharmacol 21: 333-343. doi:10.1016/j.euroneuro.2010.06.003. PubMed: 20630711.

McLean SL, Idris NF, Grayson B, Gendle DF, Mackie C et al. (2012) PNU-120596, a positive allosteric modulator of α7 nicotinic acetylcholine receptors, reverses a sub-chronic phenylcyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Pharmacol Exp Ther 334: 1265-1270. doi:10.1177/0022353111431747. PubMed: 22192741.

Jin K, Minami M, Lan JQ, Mao XO, Batteur S et al. (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone is increased in the mouse hippocampus by acute nicotine administration. J Neurosci 21: 9058-10587. doi: 10.1523/JNEUROSCI.2444-07.2007. PubMed: 17985222.

Boes GS, De Vry J, Erb C, Flessner T, Hendrix M et al. (2007) The novel alpha7 nicotinic acetylcholine receptor agonist N-(p. 3R)-1-azabicyclo[2.2.2]oct-3-yl-3-[2-(methoxyphenyl)-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 321: 721-725.

Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C et al. (2007) SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimetal models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 32: 17-34. doi: 10.1038/npj.2007.118. PubMed: 16936709.

Tatsumi R, Fujio M, Takanashi S, Numata A, Katayama J et al. (2006) (R)-3-(3-methylbenzthio-phen-5'-isopropyl)- azabicyclo(2.2.2)octane-3,5-oxazolidin-2-one, a novel and potent alpha7 nicotinic acetylcholine receptor partial agonist displays cognitive enhancing properties. J Med Chem 49: 4374-4383. doi: 10.1021/jm060248c. PubMed: 16821795.
Temperature-Dependent Allosteric Modulation of α7 Nicotinic Receptors by PNU-120596. Front Pharmacol 2: 81. PubMed: 22207849.

Fujiki M, Kobayashi H, Uchida S, Inoue R, Ishii K (2005) Neuronal nicotinic acetylcholine receptor α7 subunit is an essential regulator of cortical calcium. J Neurosci 25: 9955-9966. PubMed: 15999104.

Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in the mouse brain: dietary and pharmacological manipulations. Neurochem Int 32: 379-385. PubMed: 11408533.

Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T et al. (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10: 290-293. doi:10.1007/bf01611015. PubMed: 21716653.

Castro NG, Albuquerque EX (1995) α7-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. J Neurosci 15: 516-524. PubMed: 7966505.

Uteshev VV (2010) Evaluation of Ca2+ permeability of nicotinic acetylcholine receptors in hypothalamic histaminergic neurons. Acta Biomed Chim Physiogr Sin (Shanghai) 42: 94-101. PubMed: 20340342.

Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35: 1-8. doi:10.1016/j.ceca.2003.08.006. PubMed: 15087396.

Bok J, Wang Q, Huang J, Green SH (2007) CalM1 and CalM/KIV mediate distinct postischemic survival signaling pathways in response to depolarization in neurons. Mol Cell Neurosci 36: 13-26. doi:10.1016/j.mcn.2007.05.008. PubMed: 17651987.

Vaillant AR, Mazzoni I, Tudan C, Boudreau M, Kaplan DR et al. (1999) Depolarization and neurotransphins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J Cell Biol 145: 955-966. doi:10.1083/jcb.145.5.955. PubMed: 10477751.

Söntäkoski H, Bäckström T, Hietanen T, Hietanen M, Jokelainen M et al. (2007) Thrombin activates α7 nicotinic acetylcholine receptors in rat brain astrocytes. J Pharmacol Exp Ther 320: 812-820. doi:10.1124/jpet.106.110216. PubMed: 17456198.

Olincy A, Stevens KE (2007) Treating schizophrenia symptoms with an α7 nicotinic agonist, PNU-120596. Front Pharmacol 2: 81. PubMed: 17414955.

Papke RL, Porter Papke JK (2002) Comparative pharmacology of rat α7 nicotinic receptors. J Neurochem 80: 1222-1228. doi:10.1046/j.1471-4159.2004.02347.x. PubMed: 15016333.

De Rosa MJ, Dionisio L, Agriello E, Bouzat C, Esandi Mdel C (2009) Janus kinase 2, an early gene target of α7 nicotinic acetylcholine receptor-mediated neuroprotection after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 106: 2114-2119. doi:10.1073/pnas.0901901106. PubMed: 19174494.

Wang S, Chai J, Bakalar N, Sladek RF, Tariot PN et al. (2007) Neuronal nicotinic ACh receptor α7 subunit is a target of β-amyloid. J Neurosci 27: 10150-10155. PubMed: 17648942.

Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signaling. Trends Neurosci 26: 81-89. doi:10.1016/S0166-2236(02)00040-1. PubMed: 12536131.

Papadia S, Hardingham GE (2007) The dichotomy of NMDA receptor signaling. Neuroscientist 13: 572-579. doi:10.1177/1073858407350833. PubMed: 18000068.

Collins F, Schmidt MF, Guthrie PB, Kater SB (1991) Sustained increase in intracellular calcium promotes neuronal survival. J Neurosci 11: 2582-2587. PubMed: 1714495.

Kem WR (2000) The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behav Brain Res 108: 211-216. doi:10.1016/S0166-4328(99)00127-7. PubMed: 9676747.

Shaw S, Bencherif M, Marrero MB (2002) Janus kinase 2, an early gene target of α7 nicotinic acetylcholine receptor-mediated neuroprotection against Aβeta(1-42) amyloid. J Biol Chem 277: 44920-44924. doi:10.1074/jbc.M204610200. PubMed: 12244045.

Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T et al. (2001) α7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276: 13541-13546. PubMed: 11278378.

Aikioke A, Takagi-Omata Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and 4OH-GTS-21 through α7 nicotinic receptors, PNU-120596 augments the effects of donepezil on learning and memory in aged rodents and non-human primates. Therapeutic Efficacy of PNU-120596 after Ischemia.
116. Chilton M, Mastropaolo J, Rosse RB, Bellack AS, Deutsch SI (2004) Behavioral consequences of methyllycaconitine in mice: a model of alpha7 nicotinic acetylcholine receptor deficiency. Life Sci 74: 3133-3139. doi:10.1016/j.lfs.2003.11.012. PubMed: 15081578.

117. Kelso ML, Pauly JR (2011) Therapeutic targets for neuroprotection and/or enhancement of functional recovery following traumatic brain injury. Prog Mol Biol. Transl Sci 98: 85-131.