Immunohistofluorescent staining.

Four-µm thick tissue sections fixed in formaldehyde, and embedded in paraffin (FFPE), collected on glass slides (SuperFrost® Plus, Menzel-Gläser, Illkirch, France) were dewaxed and rehydrated. Unmasking of the antigens was carried out by pressure cooking the sections for 15 minutes in 0.01M buffered sodium citrate solution (pH 6) or for 20 minutes in 1mM EDTA/10mM Tris Buffer (pH 9). Sections were then rinsed with PBS.

Eight-µm thick cryosections were collected on glass slides (SuperFrost® Plus), air dried overnight, fixed with 100% acetone for 10 minutes at room temperature (RT), air dried for 4 hours then stored at -80°C until use. Before immunostaining, frozen sections were fixed for 5 minutes at RT in 50/50 acetone/methanol and rinsed with PBS, excepted for chemokine staining.

Both types of sections were incubated for 30 minutes with blocking buffer (2% normal goat serum and 5% BSA in PBS or 5% BSA in PBS when using primary goat antibodies), incubated overnight with primary antibodies at 4°C, washed in PBS/0.5%Tween20 (Sigma-Aldrich) at RT, incubated with secondary antibodies in the dark for 30 minutes at RT and washed in PBS/0.5%Tween20. Finally, sections were washed in PBS alone, counterstained with 4,6-diamidino-2-phenylindol/DAPI (Molecular Probes, Cergy Pontoise, France) and mounted in Fluoromount-G (Southern Biotechnology, Birmingham, England). The antibodies used for immunohistofluorescence labeling are listed in Supplementary Table 2. For staining on FFPE sections, a supplemental 10 minutes incubation in 10mM CuSO4/50mM NH4Cl (pH 5) at RT was added after the DAPI step to reduce autofluorescence. For CD127 staining on FFPE sections, a 30 minutes incubation step in 2% normal goat serum, 5% BSA, 10% FcR Blocking Reagent (Miltenyi Biotec, Paris, France) in PBS was added followed by an amplification step with a biotin-conjugated secondary antibody and a streptavidin conjugated to Alexa Fluor® 488, 546 or 633 (Molecular Probes) after having used a Streptavidin/Biotin Kit according to manufacturer’s recommendations (Vector Laboratories, Nanterre, France). OPAL™ kit was used according to manufacturer’s recommendations (PerkinElmer®, Courtaboeuf, France), to detect anti-CD127 in combination with CD3 and MHC-II MamuLa-DR. Of note, anti-CD127 was incubated before anti-CD3 and MHC-II MamuLa-DR, which were then detected with Alexa Fluor®-conjugated secondary antibodies (Molecular Probes).

Quantification of total and DT-specific IgGs and IgAs by enzyme-linked immunosorbent assay.

Total and DT-specific immunoglobulins (IgGs or IgAs) were quantified in CVLs using an in house ELISA. For total Ig quantifications, Nunc™ MaxiSorp™ ELISA plates were coated with dilutions of samples and several dilutions of Human IgA (Jackson ImmunoResearch, West Grove, USA; 400 to 0.8 ng/mL) or Monkey IgG (Rockland Immunochemicals, Gilbertsville, USA; 400 to 0.8 ng/mL) standards and incubated overnight at 4°C, washed in PBS/0.1%Tween20, blocked with 2% BSA in PBS/0.1%Tween20 for 2 hours at 37°C, washed in PBS/0.1%Tween20, then incubated with horseradish peroxidase (HRP) conjugated goat anti-monkey IgA (Abnova, 0.1ug/mL) or IgG antibodies (Rockland Immunochemicals;
0.07ug/mL for 1 hour at 37°C. After several washes in PBS/0.1%Tween20, 3,3’,5,5’-Tetramethylbenzidine/TMB peroxidase substrate solution was added (KPL, Maryland, USA) and incubated for 10 minutes at RT, then the reaction was stopped with 1M of H₃PO₄. Plates were read at 450nm (SpectraMaxTM384 PLUS ELISA Microplate Reader, Molecular Devices) and duplicate experiments were performed for each sample. Data were analyzed using SoftMax Pro software (5.0.1 version, Molecular Devices). Total IgA or IgG concentrations were determined by interpolation, using the calibration line of IgA or IgG standards, respectively. For quantification of specific IgAs, ELISA plates were coated with DT (1µg/mL) and incubated overnight at 4°C, washed in PBS/0.1%Tween20, blocked with 2% BSA in PBS/0.1%Tween20 for 2 hours at 37°C, incubated with dilutions of each samples overnight at 4°C, washed in PBS/0.1%Tween20, then goat anti-monkey IgA- (Abnova) or IgG-HRP conjugated antibodies (Rockland Immunochemicals) were added for 1 hour at 37°C. Finally, after several washes in PBS/0.1%Tween20, peroxidase substrate was added (TMB from KPL) and incubated for 30 minutes at 37°C and the reaction was stopped with 1M of H₃PO₄. Plates were read and analyzed as mentioned above. Samples with a signal at least twice above the background were considered positive.

Preparation of cells for ELISPOT assay.

Iliac LN and vagina were samples at necropsy from macaques of the IL-7+DT and PBS+DT groups. LN cells were isolated by crushing the organs through a 40 µm cell strainer to obtain a single cell suspension. The cells were then washed in RPMI 1640 medium containing 100 U/mL penicillin, 100 µg/mL streptomycin and 10% fetal calf serum (RPMI/PS/10% FCS), centrifuged, and cell numbers and viability were determined by trypan blue exclusion. Vaginal cells were prepared from the upper region of the vaginal walls and from the fornix. Small pieces of tissues (<10mm³) were incubated in RPMI/PS/Hepes 20mM supplemented with dispase II (2.6 U/ml, Sigma) 2h at 37°C, then washed in RPMI/PS/Hepes 20mM supplemented with 5mM EDTA, then in RPMI/PS/Hepes 20mM and each time the supernatant was removed through a 100µm cell strainer. The tissue pieces were then digested in RPMI/PS supplemented with collagenase VIII (2 mg/mL, Sigma) and DNase (20 U/mL, ROCHE) for 1h30 on a magnetic stirrer at 37°C, the supernatant decanted through a 100µm cell strainer was saved, and the collagenase/DNase treatment was repeated once with fresh medium. The cells were washed in RPMI/PS/10% FCS, passed through 70µm then 40µm cell strainers, centrifuged, and the numbers and viability of cells were determined by trypan blue exclusion.

Quantification of antibody secreting cells by B-cells ELISPOT.

Antibody secreting cells (ASCs) were assayed in Multiscreen HA plates (Merck Milipore, Molsheim, France) coated with DT (10µg/mL), overnight at 4°C. After washes with PBS, the
reactive sites were blocked by incubation with RPMI/PS/10% FCS for 2 hours at 37°C. After washes, PBMCs or cell suspensions recovered from tissue were transferred into plates at 1.10^6, 4.10^5, 1.10^5 cells per well in RPMI/PS/10% FCS and incubated for 40 hours at 37°C in 5% CO₂. After removal of the cells, the plates were washed again and the DT-specific antibodies were detected with either goat anti-monkey IgG-HRP (Rockland Immunochemicals) or goat anti-monkey IgA-HRP (Abnova) and incubated 4 hours at 37°C. Plates were washed and spots were detected by addition of AEC (ImmPACT AEC, VECTOR Laboratories). Spots were counted in an ELISPOT Reader (BIOREADER®-5000-F, BioSys GmbH, Serlabo, Entraigues, France). Spot numbers were reported as DT-specific ASCs per million of PBMCs.
Supplementary Figure 1. Topical rs-IL-7gly administration induces local chemokine transcription in the vaginal mucosa.

The transcription of CXCL12 (top panels), CCL7 (middle panels) or CXCL10 (bottom panels) was quantified in vaginal biopsies sampled from macaques (n=9) one month before (PRE) and 48 hours after (POST) administration, by vaginal spray, of 1µg (light gray symbols), 5µg (dark gray symbols), 10µg (red symbols) or 15µg (black symbols) of rs-IL-7gly. Each point represents the median of 4 vaginal biopsies. For each sample, the data were normalized to HPRT mRNAs simultaneously quantified with the chemokines.
Supplementary Figure 2. Topical administration of rs-IL-7gly induces local transcription of cytokines in the vaginal mucosa.

The transcription of IL-17A and TSLP (Thymic stromal lymphopoietin) was quantified in vaginal biopsies (n=4 per macaque and time point) taken from macaques (n=5) one month before (Ctrl, white bars) and 48 hours after (IL-7 48H, black bars) the administration of 10µg (n=3 macaques) or 15µg (n=2 macaques) of rs-IL-7gly, by vaginal spray, and normalized to HPRT mRNAs quantified simultaneously with the cytokines (mRNA copies/HPRT mRNA copy). Means and SEM of the data obtained for each of the 5 macaques are presented. Statistical differences are shown (Wilcoxon Signed-Rank Test).
Supplementary Figure 3. CD127-expressing cells in the vaginal mucosa.

Sections of vaginal mucosa sampled from healthy monkeys were stained with anti-CD127 antibodies (A-E; green) in combination with anti-CD3 (A; red), anti-MamuLa-DR (A, B; blue), anti-CD11c (B, C, D; red), anti-CD163 (C; blue), anti-CD68 (D; blue), anti-CD31 (E; red) and/or anti-αSMA (E; blue) antibodies. Nuclei were stained with DAPI (grey). Green arrows identify CD127$^+$CD3$^-$MamuLa-DR$^-$ cells; Yellow arrows identify triple positive cells: (B) CD127$^+$CD11c$^+$MamuLa-DR$^-$, or (C) CD127$^+$CD11c$^+$CD163$^+$, or (D) CD127$^+$CD11c$^+$CD68$^+$; Red arrows identify CD127$^+$CD11c$^+$MamuLa-DR$^-$ cells; EP: Pluristratified Epithelium; LP: Lamina Propria. DR: MHC-II MamuLa-DR.
Supplementary Figure 4. IL-7R and Vaginal Epithelial Cells.

(A) mRNAs coding for CD132 (γc chain) and CD127 (IL-7Rα chain) were quantified in primary vaginal epithelial cells (Vag EC) obtained after Dispase/EDTA treatment of the vaginal epithelial layer, circulating T-cells, T-cells and B-cells purified from secondary lymphoid organ (SLO: spleen and lymph node) gathered from 3 healthy macaques and were normalized to HPRT mRNAs simultaneously quantified together with IL-7R mRNAs (IL-7R mRNA copies/HPRT mRNA copy). Bars and error bars represent means and SEM, respectively. Statistically significant differences are shown (Mann-Whitney U test).

(B) Example of primary simian vaginal epithelial cells cultured for 2 weeks after isolation, on flask coated with collagen I in SmGM2 medium (Lonza).
Supplementary Figure 5. Preferential localization of DT-specific IgAs plasma cells in the vaginal mucosa following rs-IL-7gly-adjuvanted mucosal immunization.

IgG- and IgA-producing DT-specific plasma cells (ASC) were quantified by B-cell ELISPOT on isolated cells from the vaginal upper part and the vaginal fornx of macaques immunized with PBS+DT (White bars, n=2 macaques) or IL-7+DT (Black bars, n=2 macaques), sampled at necropsy. Results are expressed as IgG or IgA anti-DT-specific plasma cells per 10^6 cells. Bars and error bars represent means and SD, respectively (4 replicates for Mac#1 and Mac#6, one replicate for Mac#2 and Mac#5). ASC: antibody secreting cells.
Supplementary Figure 6. More B-cells proliferate in ectopic lymphoid follicles in the vaginal mucosa of IL-7-treated DT-immunized macaques.

Sections of vaginal walls (left panels; vaginal upper part) and vaginal fornix (right panels) gathered from PBS+DT (A) and IL-7+DT (B) -immunized macaques at necropsy were labeled with anti-Ki-67 (yellow), anti-CD3 (red) and anti-CD20 (cyan) antibodies. Nuclei were stained with DAPI (blue). Arrows identify all B-cells expressing Ki-67.
SUPPLEMENTARY TABLES

Supplementary Table 1. Oligonucleotides used for real-time PCR quantification of chemokines, cytokines and IL-7R mRNA.

Outer 3'/5' primer pairs for first amplification	Inner 3'/5' primer pairs for qPCR			
Name	Sequence	Name	Sequence	
HPRT-Out5	CTGAAAGTCTTGCTGAGAT	HPRT-In5	CACATTGTAGCCTCCCTGTGAT	
HPRT-Out3	CGACCTTGACCATCTTTGGGA	HPRT-In3	CTGACCAAGGAAAGCAAAAGT	
CCL2-Out5	AACTCCAGTGCCTCAACTGAA	CCL2-In5	CTGCTCATAGCAGCCACTCTTCA	
CCL2-Out3	TCCAGGTGTCATCATGGAA	CCL2-In3	TCCTGAACCCACTCTTGCTT	
CCL3-Out5	CATTCATCATGTCCTCAGAA	CCL3-In5	CAAACCGATCTCAGCAACAT	
CCL3-Out3	TCCAGGTGTCATGACTGATTT	CCL3-In3	GCCGCGCTCCTTGGTGA	
CCL4-Out5	CTCATGAGCTCAGCAGTTA	CCL4-In5	CCCACCTCTGGCTGCTT	
CCL4-Out3	CTGACCTGATGGCTCAGGGA	CCL4-In3	CGACATTGCTCTCCCTCTTT	
CCL5-Out5	GTCTGCTATCCTCCTGTTGA	CCL5-In5	ATGACCTCATAGCAGCAACACAC	
CCL5-Out3	CTCATCTGCAAAGGATTTGATGA	CCL5-In3	TACTCCGAAACCCCATTTTCTT	
CCL7-Out5	CATGCCTCCTACCTCTCA	CCL7-In5	CATGCCCTACCTCTCA	
CCL7-Out3	CTCTGAGAAAGGACAGGGTA	CCL7-In3	ATTTGGTTCATCAAGCTAGGCTT	
CCL8-Out5	GGAAGTTGCTCAGCAGATTAA	CCL8-In5	TGCTCAGCCAGATTAGT	
CCL8-Out3	GCCGCTAGTCTCATGCTGGA	CCL8-In5	CCTGACCATCTCTCTCTT	
CCL11-Out5	TGAAAGGTCTCCAAAACAC	CCL11-In5	TGCAACACCTGCTCAGGTTA	
CCL11-Out3	TGGCTTTGCTGATTTTTGAA	CCL11-In3	TTGGACATTTTCTGGTCTCAGAGA	
CCL15-Out5	GCACCTGAGGAGGCA	CCL15-In5	GCACCTGAGGAGGCA	
CCL15-Out3	TCAGGCTTTTCTGCTGATTA	CCL15-In3	GTCGCTGTCAGTCTAGGCTT	
CCL17-Out5	ACCTGGGGCTGCTGCTGTT	CCL17-In5	ATGGCTAGCTAGCAGGCTT	
CCL17-Out5	CCTCAGCTCAGTCTGCTGGT	CCL17-In5	ATGGCTAGCTAGCAGGCTT	
CCL19-Out5	GTCTGCTGTTTTGGCTGTT	CCL19-In5	CTATGATGCCCTTTAGGGGTCT	
CCL19-Out3	CTGACTGCTCATGCTACAG	CCL19-In3	GTGACGCTTCAAGCAACTGA	
CCL20-Out5	GGATGAGGATATCGAGGA	CCL20-In3	CATGAGGATATCGAGGA	
CCL20-Out3	CAGACCAAGGATTTCTTTTTA	CCL20-In5	TTATGACATAGCAGGAGGTA	
CCL21-Out5	GTGCTGATGTCAGGAGAGGA	CCL21-In5	GTGCTGATGTCAGGAGAGGA	
CCL21-Out3	AAGGTCTGTGGAAGAGGTAA	CCL21-In5	GCCGCGCTCCTTGGTGA	
CCL22-Out5	GCTGCTGCTCTCTGTGTA	CCL22-In5	CATGAGGATATCGAGGA	
CCL22-Out3	GAACCATCCTGCTCTGCTGTA	CCL22-In5	CATGAGGATATCGAGGA	
CCL23-Out5	GCCAAGCCGCTGCTGCTGTA	CCL23-In5	TGGGTCAAGCAGACCTTGA	
CCL25-Out5	CATGAGGATATCGAGGA	CCL25-In5	CTGATTTCTGACGCTAGT	
CCL25-Out5	TAGTGCTATGTCAGGAGGTA	CCL25-In5	CTGATTTCTGACGCTAGT	
CCL26-Out5	AGACCTGGCGAGGCGAGGA	CCL26-In5	GCCGCGCTCCTTGGTGA	
CCL28-Out5	GTCTGCTGCTCTGTGTA	CCL28-In5	GTGCTGCTGCTGAGGAGGA	
CCL28-Out3	GTTCTGCTTCTCGTCTGTA	CCL28-In5	GCCGCGCTCCTTGGTGA	
CCL30-Out5	TATGAGGATATCGAGGGA	CCL30-In5	GCCGCGCTCCTTGGTGA	
CCL31-Out5	GCCAAGCCGCTGCTGCTGTA	CCL31-In5	TGGGTCAAGCAGACCTTGA	
CCL31-Out3	CTGACTGCTCATGCTACAG	CCL31-In5	CATGAGGATATCGAGGA	
IL-17A-Out5	GCCATAGTGAAGGCAAGGA	IL-17A-In5	GCCATAGTGAAGGCAAGGA	
IL-17A-Out3	AAGCCTAAGTGGCTTGGGGA	IL-17A-In3	AGTATCTTTCCAGCCGGA	
Gene	Out5	Sequence	In5	Sequence
--------	------	---------------------------	-----	---------------------------
IL-21	CGTCTAGCTCTACTGTTGGT	AGTCTGGCAACATGGAGA		
TSLP	CTTTCAACTTGTAGGGCTGGT	CTTTCAACTTGTAGGGCTGGT		
TSLP	TGTGACACCTTTGTCAGACATTT	CTCTTCTTCATTGCGCTAGTA		
LTb	GATCAGGGAGGACTGGTAA	CAACAAGGACTGGGTTTCA		
LTb	CGACGAGACAGTAGAGGTAA	CGACGAGACAGTAGAGGTAA		
LTa	CGTCAGCACCCCAAGAT	CAGAACTCAGTGCTCGGA		
LTa	ACAGTACTAGGGCTGAGGA	CCATCTGTGTGGTGGTATA		
CD127	TGGCGAAATGGAGACTTTGA	GCCAGTTGGAAGTGAATGGA		
CD127	GTCATTGGCTCCTTCACGAT	TCAAAAGGACCTCAGGTTTAA		
CD132	CAGAAGTGCAGCCACTATCTA	CAGAAGTGCAGCCACTATCTA		
CD132	TTGTTCAGTCAGCTGTTGGT	GTGCTCAAAGCAGGTTTCA		
Supplementary Table 2. Antibodies used for the immunostaining.

Primary antibodies	Isotype	Clone	Supplier	Supplier details
Target epitope, cell type, chemokine				
CD3^{a,b,c}	Rabbit IgG (polyclonal)		DAKO	Trappes, France
CD4^a	Mouse IgG1	L200	BD Biosciences	Le Pont de Claix, France
CD8^a	Mouse IgG1	RPA-T8	BD Biosciences	Le Pont de Claix, France
CD20^{a,b,c}	Mouse IgG2a	L26	DAKO	Trappes, France
CD31^{a,b,c}	Mouse IgG1	JC70A	DAKO	Trappes, France
PNA_{d,c}	Rat IgM	MECA-79	Biolegend	St-Quentin en Yvelines, France
GL-7^{b,c}	Rat IgM	GL-7	Biolegend	St-Quentin en Yvelines, France
HLA-DR^{a,b}	Mouse IgG1	TAL.1B5	DAKO	Trappes, France
Tissue macrophages^a	Mouse IgG1	PM-2K	AbD Serotec	Düsseldorf, Germany
DC-SIGN^a	Mouse IgG2b	120507	R&D systems	Lille, France
CD11c^a	Mouse IgG1	3.9	BioLegend	St-Quentin en Yvelines, France
CD11c^b	Mouse IgG2a	5D11	LeicaBiosystems	Nanterre, France
CD68^b	Mouse IgG1	KP1	DAKO	Trappes, France
CD163^b	Mouse IgG1	10D6	Novacastra	Nanterre, France
αSMA^{b,c}	Mouse IgG2a	1A4	ThermoFischer	Villebon sur Yvette, France
CD83^a	Mouse IgG2b	HB15A	Beckman Coulter	Marseille, France
CD127 (C-ter)^b	Rabbit (polyclonal)		Abcam	Paris, France
Ki-67^b	Mouse IgG1	B56	BD Biosciences	Le Pont de Claix, France
CCL2^a	Rabbit (polyclonal)		Aviva Systems Biology	San Diego, USA
CCL5^a	Rabbit (polyclonal)		Aviva Systems Biology	San Diego, USA
CCL7^a	Rabbit (polyclonal)		Aviva Systems Biology	San Diego, USA
CCL19^a	Mouse IgG2b	54909	R&D systems	Lille, France
CXCL13^a	Goat (polyclonal)		R&D systems	Lille, France
CXCL12^a	Mouse IgG1	79018	R&D systems	Lille, France
IgG^a	Rabbit (polyclonal)		DAKO	Trappes, France
IgA^a	Rabbit (polyclonal)		DAKO	Trappes, France
Anti-DT-FITC^a	Goat IgG (polyclonal)		Abcam	Paris, France

Secondary antibodies	Host species	Conjugate	Supplier	Supplier details
Target species				
Mouse (IgG1, 2a or 2b)	Goat	Alexa Fluor® 546, 488 or 633	Molecular Probes	Cergy Pontoise, France
Rabbit	Goat	Alexa Fluor® 546, 488 or 633	Molecular Probes	Cergy Pontoise, France
Goat	Chicken	Alexa Fluor® 488	Molecular Probes	Cergy Pontoise, France
Rabbit	Donkey	Alexa Fluor® 546	Molecular Probes	Cergy Pontoise, France
Rabbit	Goat	Biotin	DAKO	Trappes, France
Goat	Donkey	Biotin	Abcam	Paris, France

The tissue sections used for immunohistofluorescence labeling were^a cryopreserved, ^b formaldehyde-fixed paraffin-embedded (FFPE) with acidic antigen retrieval (0.01M sodium citrate buffer, pH 6.0) or^d FFPE with basic antigen retrieval (1mM EDTA/10mM Tris Buffer, pH 9.0).³ Cell staining was much better and reproducible with basic antigen retrieval as compare as acidic antigen retrieval.