Equivariant Higher Analytic Torsion and Equivariant Euler Characteristic

Ulrich Bunke*

November 7, 2018

Abstract

We show that J. Lott’s equivariant higher analytic torsion for compact group actions depends only on the equivariant Euler characteristic.

Contents

1 Introduction 1

2 Additivity of equivariant torsion 4

3 Products and coverings 10

4 Manifolds with corner singularities 12

5 Restriction to subgroups 14

6 The map T_G 16

*Mathematisches Institut, Universität Göttingen, Bunsenstr. 3-5, 37073 Göttingen, Germany, bunke@uni-math.gwdg.de
1 Introduction

Let G be a compact connected Lie group with Lie algebra g. Let $I(G)$ denote the ring of $\text{Ad}(G)$-invariant polynomials on g. Then $I(G)^1 := \{ f \in I(G) \mid f(0) = 0 \}$ is a maximal ideal of $I(G)$. By $\hat{I}(G)$ we denote the $I(G)^1$-adic completion of $I(G)$. We define $\tilde{I}(G) := \hat{I}(G)/\mathcal{C}1$.

Let M be a closed oriented G-manifold. Then Lott $[5]$ defined equivariant higher analytic torsion $T(M)$ of M (see Def. 2.1). To be precise, in $[5]$, Def. 2, he defined an element $T(M, g^M, F) \in \hat{I}(g)$, where g^M is a G-equivariant Riemannian metric and F is an equivariant flat hermitean vector bundle with trivial momentum $[5]$ (14). In our case for F we take the trivial flat hermitean bundle $F := M \times \mathbb{C}$, where G acts on the first factor. By $[5]$, Cor. 1, the class $T(M) := [T(M, g^M, M \times \mathbb{C})] \in \hat{I}(g)$ is independent of g^M. By definition $T(M)$ is a differential topological invariant of the G-manifold M. If M is even-dimensional, then by $[5]$, Prop. 9, we have $T(M) = 0$.

Let $\text{Or}(G)$ denote the orbit category of G (see Lück $[7]$, Def. 8.16), and let $U(G)$ be the Euler ring of G ($[7]$, Def. 5.10). By $[7]$, Prop. 5.13, we can identify

$$U(G) = \prod_{[G/H] \in \text{Or}(G)} \mathbb{Z}[G/H],$$

where the product runs over all isomorphism classes of objects of $\text{Or}(G)$. If X is a G-space of the G-homotopy type of a finite G-CW complex, then we can define its equivariant Euler characteristic $\chi_G(X) \in U(G)$. If E_α is the finite collection of G-cells of X, then

$$\chi_G(X) := \sum_\alpha (-1)^{\dim(E_\alpha)}[G/t(E_\alpha)],$$

where $t(E) = H$ is the type of the cell $E = G/H \times D^{\dim(E_\alpha)}$ (see $[7]$, Lemma 5.6). Any compact G-manifold has the G-homotopy type of a finite G-CW complex ($[7]$, 4.36), and thus $\chi_G(M) \in U(G)$ is well defined.

In the present note we define a homomorphism $T_G : U(G) \to \hat{I}(G)$ (Lemma 6.3), such that our main result can be formulated as follows.

Theorem 1.1 Let G be a compact connected Lie group. If M is a closed oriented G-manifold, then

$$T(M) = T_G \chi_G(M).$$

This theorem answers essentially the question posed by Lott $[3]$, Note 4. As we will see below it can be employed to compute $T(M)$ effectively.

Let $H \subset G$ be a closed subgroup. Then by $[7]$, 7.25 and 7.27, there is a restriction map $\text{res}_H^G : U(G) \to U(H)$ such that $\text{res}_H^G \chi_G(M) = \chi_H(\text{res}_H^G M)$ for any compact G-manifold, where $\text{res}_H^G(M)$ denotes M with the induced action of H.

The inclusion $h \hookrightarrow g$ induces a map $\text{res}^G_H : \tilde{I}(G) \to \tilde{I}(H)$. It is an immediate consequence of the Definition 2.1 of $T(M)$, that

$$\text{res}^G_H T(M) := T(\text{res}^G_H M). \tag{1}$$

This is compatible with

$$\text{res}^G_H \circ T_G = T_H \circ \text{res}^G_H. \tag{2}$$

Let $S(G) \subset \text{Or}(G)$ be the full subcategory with objects G/H, where H is isomorphic to S^1. By Corollary 5.2 the collection $\text{res}^G_H T(M), G/H \in S(G)$, determines $T(M)$. In order to compute $T(M)$ it is thus sufficient to define $T_{S^1} : U(S^1) \to \tilde{I}(S^1)$. If $H \subset G$ is isomorphic to S^1, then T_H is defined, and we have

$$\text{res}^G_H T(M) = T(\text{res}^G_H M) = T_H \chi_H \text{res}^G_H(M) = T_H \text{res}^G_H \chi_G(M).$$

In order to give an explicit formula for $T(M)$ in terms of the G-homotopy type of M it remains to give the formula for T_{S^1}.

Since T_{S^1} has to satisfy Theorem 1.1, we are forced to put

$$T_{S^1}([S^1/S^1]) = T(*) = 0$$
$$T_{S^1}([S^1/H]) = T(S^1/H), \quad H \neq S^1. \tag{3}$$

For $n \in \mathbb{N}$ let $F_n : S^1 \to S^1$ be the n-fold covering. The derivative F_{n*} of F_n at $1 \in S^1$ is multiplication by n. By $\tilde{F}_n : \tilde{I}(S^1) \to \tilde{I}(S^1)$ we denote the induced map. If $H \subset S^1$ is different from S^1, then it is a cyclic subgroup of finite order $|H|$. It is again an easy consequence of the Definition 2.1 of $T(M)$, that

$$T(S^1/H) = \tilde{F}_{|H}|T(S^1). \tag{4}$$

Let $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$. We identify $s^1 \cong \mathbb{R}$ such that the exponential map is given by $\exp(y) := e^{iy}$. Then $I(S^1) = \mathbb{C}[y]$, and we identify $\tilde{I}(S^1) \cong y \mathbb{C}(y)$. By [3], Prop. 11, we then have

$$T(S^1) = 2 \sum_{k=1}^{\infty} \left(\frac{4k}{2k} \right) \text{Li}_{2k+1}(1) \left(\frac{y}{8\pi} \right)^{2k},$$

where

$$\text{Li}_j(z) := \sum_{m=1}^{\infty} \frac{z^m}{m^j}. \quad \text{It follows that}$$

$$T(S^1/H) = 2 \sum_{k=1}^{\infty} \left(\frac{4k}{2k} \right) \text{Li}_{2k+1}(1) \left(\frac{y|H|}{8\pi} \right)^{2k}.$$
Lemma 1.3 Let T be a k-dimensional torus and $H \subset T$ be a closed subgroup. If $\dim(T/H) \geq 2$, then $T(T/H) = 0$, and if $\dim(T/H) = 1$, then $T(T/H) = \tilde{P}(T(S^1))$, where $\tilde{P} : \tilde{I}(S^1) \to \tilde{I}(T)$ is induced by the projection $P : T \to T/H \cong S^1$.

Proof. Let $R \in S(T)$. Then $\chi_R(\res^T_R T/H) = \chi((T/H)/R)[R/R \cap H]$. If $\dim(T/H) \geq 2$, then $(T/H)/R$ is a torus and $\chi((T/H)/R) = 0$. If $\dim(T/H) = 1$, then $\chi((T/H)/R) \neq 0$ iff $(T/H)/R$ is a point. Thus $\chi_R(\res^T_R T/H) = [R/R \cap H]$. The Lemma now follows from (2) and (4). \qed

Let G/K be a compact symmetric space associated to the Cartan involution θ of G. We fix a θ-stable maximal torus $T \subset G$. Then $T \cap K =: S$ is a maximal compact torus of K. The rank of G/K is by definition $\rank(G/K) := \dim(T) - \dim(S)$. Let $W_G(T)$, and $W_K(T)$ be the Weyl groups of (G, T) and (K, T). If $\rank(G/K) = 1$, then for $w \in W_G(T)$ we have a projection $P_w : T \to T/S^w \cong S^1$, where $S^w = wSw^{-1}$. It induces a map $\tilde{P}_w : \tilde{I}(S^1) \to \tilde{I}(T)$. Since $\res^G_T : \tilde{I}(G) \to \tilde{I}(T)$ is injective, the following Lemma gives an explicit computation of $T(G/K)$.

Lemma 1.4 If $\rank(G/K) \geq 2$, then $T(G/K) = 0$, and if $\rank(G/K) = 1$, then $\res^G_T T(M) = \sum_{W_G(T)/W_K(T)} P_w(T(S^1))$.

Proof. Fix $S^1 \cong R \subset T$. If $H \subset T$ is a closed subgroup, then $\chi_R(\res^T_R T/H) = 0$ except if $\dim(T/H) = 1$. In [3] we have shown that

$$\chi_T(\res^G_T G/K) = \sum_{W_G(T)/W_K(T)} [T/S^w] + \text{higher dimensional staff}. $$

Hence if $\rank(G/K) \geq 2$, then by Lemma 1.3 $\res^G_T T(M) = 0$, and if $\rank(G/K) = 1$, then

$$\res^G_T T(G/K) = \sum_{W_G(T)/W_K(T)} T[T/S^w].$$

Applying 1.3 we obtain the desired result. \qed

We now briefly describe the contents of the remainder of the paper. In Section 3 we prove our main analytic result Theorem 2.2 saying that $T(M)$ is essentially additive. In Section 3
we study the behaviour of $T(M)$ under coverings and with respect to cartesian products. In Section 3 we extend the analytic results to manifolds with corner singularities using certain formal considerations. In Section 3 we show that $T(M)$ is determined by its restrictions to all subgroups $H \cong S^1$. In Section 4 we first prove Theorem 1.1 for $G = S^1$, and then we construct T_G and finish the proof of Theorem 1.1 for general G.

2 Additivity of equivariant torsion

We first recall the definition of higher equivariant torsion [5], Def. 2. Let G be a connected Lie group with Lie algebra g. Let M be a closed oriented G-manifold. We write $\Omega(M) := C^\infty(M, \Lambda^\ast T^\ast M)$ and $d : \Omega(M) \to \Omega(M)$ for the differential of the de Rham complex.

For $X \in g$ let $X^* \in C^\infty(M, T^\ast M)$ denote the corresponding fundamental vector field. We set

$$I := \sum_\alpha X^\alpha \otimes i_{X^\alpha} \in S(g^\ast) \otimes \text{End}(\Omega(M)) ,$$

where $X^\alpha \in g$, $X^\ast \in g^\ast$ run over a base of g or dual base of g^\ast, respectively, and i_Y denotes interior multiplication by the vector field Y. We choose a G-invariant Riemannian metric g_M. It induces a pre Hilbert space structure on $\Omega(M)$, and we let e_Y be the adjoint of i_Y. We set $E := \sum_\alpha X^\alpha \otimes e_{X^\ast}^\alpha$.

For $t > 0$ we define

$$d_t := \sqrt{t}d - \frac{1}{4\sqrt{t}}I, \quad \delta_t := \sqrt{t}d^\ast + \frac{1}{4\sqrt{t}}E .$$

Then we put

$$D_t := \delta_t - d_t \in S(g^\ast) \otimes \text{End}(\Omega(M)) .$$

Let $S(g^\ast)^1 := \{ f \in S(g^\ast) \mid f(0) = 0 \}$, and let $\hat{S}(g^\ast)$ be the $S(g^\ast)^1$-adic completion. Since

$$D_t^2 = -t\Delta \pmod{S^1(g^\ast) \otimes \text{End}(\Omega(M))}$$

we can form

$$e^{D_t^2} \in \hat{S}(g^\ast) \otimes \text{End}(\Omega(M)) .$$

Moreover we have

$$\text{Tr}_\ast N e^{D_t^2} \in \hat{I}(G) ,$$

where N is the \mathbb{Z}-grading operator on $\Omega(M)$, and Tr_\ast is the \mathbb{Z}_2-graded trace on $\text{End}(\Omega(M))$. Define $\chi'(M) := \sum_{p=0}^{\infty} p(-1)^p \dim H^s(M, \mathbb{R})$. Then the function

$$s \mapsto -\frac{1}{\Gamma(s)} \int_0^{\infty} (\text{Tr}_\ast N e^{D_t^2} - \chi'(M)) t^{s-1} dt$$

is holomorphic for $\text{Re}(s) >> 0$, and it has a meromorphic continuation to all of \mathbb{C} which is regular at $s = 0$.

Definition 2.1 The equivariant higher torsion $T(M) \in \tilde{I}(G)$ of the G-manifold M is represented by

$$
-\frac{d}{ds|_{s=0}} \frac{1}{\Gamma(s)} \int_0^\infty (\text{Tr}_sNe^{D_2^2} - \chi'(M)) t^{s-1} dt .
$$

If M is odd-dimensional, then by [5], Cor. 1, $T(M)$ is independent of the choice of the G-invariant Riemannian metric g^M. If M is even-dimensional, the by [5], Prop 9, we have $T(M) = 0$.

Let M be a closed oriented G-manifold, and let N be a G-invariant oriented hypersurface such that $M \setminus N$ has two components, i.e. there are compact manifolds M_1, M_2 with boundary $\partial M_i = N$, $i = 1, 2$ such that $M = M_1 \cup_N M_2$. We form the closed oriented G-manifolds $\tilde{M}_i := M_i \cup_N M_i$, the doubles of M_i.

Theorem 2.2

$$2T(M) = T(\tilde{M}_1) + T(\tilde{M}_2) .$$

Proof. We choose Riemannian metrics on M and \tilde{M}_i, $i = 1, 2$. Then let D_t and $D_{t,i}$, $i = 1, 2$ denote the operators (5) for M and \tilde{M}_i, respectively. We define $\delta(t) \in \tilde{I}(G)$ by

$$\delta(t) := 2\text{Tr}_sNe^{D_2^2} - \text{Tr}_sNe^{D_{2,1}^2} - \text{Tr}_sNe^{D_{2,2}^2} - (2\chi'(M) - \chi'(\tilde{M}_1) - \chi'(\tilde{M}_2)) .$$

We have to show that

$$0 = \left[-\frac{d}{ds|_{s=0}} \frac{1}{\Gamma(s)} \int_0^\infty \delta(t)t^{s-1} dt \right] ,$$

where [-] denotes the class of "." in $\tilde{I}(G)$.

We now specialize the choice of Riemannian metrics. We choose a G-invariant collar neighbourhood $(-1, 1) \times N \hookrightarrow M$ such that $\{0\} \times N$ is mapped to N. Then we assume that g^M is a product metric $dr^2 + g^N$ on the collar. The metric g^M induces natural Riemannian metrics $g^{\bar{M}_i}$ on \tilde{M}_i.

For $R > 1$ let $g^M(R)$ be the Riemannian metric which coincides with g^M outside the collar, and which is such that the collar is isometric to $(-R, R) \times N$. Similarly we obtain metrics $g^{\bar{M}_i}(R)$ on \bar{M}_i.

Let $\delta(t, R)$ be defined with respect to these choices of metrics. While $\delta(t, R)$ may depend on R, it is known that

$$\left[-\frac{d}{ds|_{s=0}} \frac{1}{\Gamma(s)} \int_0^\infty \delta(t, R)t^{s-1} dt \right] \in \tilde{I}(G)$$

is independent of R. The proof of the theorem is obtained by studying the behaviour of $\delta(t, R)$ as R tends to infinity.

Note that $\tilde{I}(G)$ is a locally convex topological vector space.
Proposition 2.3 For any seminorm $\|\cdot\|$ on $\hat{I}(G)$ there are constants $C < \infty, c > 0$ such that for all $t > 0$, $R > 1$

$$|\delta(t, R)| < Ce^{-\frac{cR^2}{t}}.$$

Proof. This follows from a standard argument using the finite propagation speed method [4]. We leave the details to the interested reader.

Let $I(G)_1 \subset \hat{I}(G)$ be the closed subspace of at most linear invariant polynomials on g and put $\hat{I}(G) := \hat{I}(G)/I(G)_1$. By [[[]]] we denote classes in this topological quotient space.

Proposition 2.4 For any seminorm $\|\cdot\|$ on $\hat{I}(G)$ there is a constant $C < \infty$ such that for all $R > 1$, $t > 1$

$$\|[\delta(t, R)]\| < Ct^{-1}R.$$

Proof. This is a consequence of the more general estimate

$$\|[\text{Tr}_s \text{Ne}^{D_t(R)^2}]\| < Ct^{-1}R \tag{6}$$

which also holds for M replaced by \hat{M}_t. Here $D_t(R)$ denotes the operator \hat{M}_t associated to $g^M(R)$.

We can assume that $\|\cdot\|$ is the restriction to $\hat{I}(G)$ of a seminorm of $\hat{S}(g^*)/S_1(g^*)$, where $S_1(g^*)$ denotes the subspace $C \oplus g^*$. There is an $m > 0$ depending on $\|\cdot\|$ such that $\|[U]\| = 0$ for all $U \in \hat{S}(g^*)^m$. Let $\Delta(R)$ denote the Laplace operator on differential forms associated to the Riemannian metric $g^M(R)$. We have

$$D_t^2(R) = -t\Delta(R) + \mathcal{N} + \frac{1}{t}\mathcal{N}_1,$$

(to be precise we should write $\mathcal{N}(R), \mathcal{N}_1(R)$) where

$$\mathcal{N} := \frac{1}{4}[d^*(R) - d, E + I]$$

$$\mathcal{N}_1 := Q$$

$$Q := \frac{1}{16}[I, E],$$

(the commutators are understood in the graded sense) belong to $S(g^*)^1 \otimes \text{End}(\Omega(M))$.

As in [1], 9.46, we write

$$\text{Tr}_s \text{Ne}^{D_t(R)^2} = \sum_{k=0}^{\infty} \int_{\Delta_k} U_k(\sigma, R) d\sigma \tag{7},$$

$$U_k(\sigma, R) := \text{Tr}_s \text{Ne}^{-\frac{1}{t}\sigma_k D_t(R)^2} (\mathcal{N} + \frac{1}{t}\mathcal{N}_1) \ldots (\mathcal{N} + \frac{1}{t}\mathcal{N}_1)e^{-\frac{1}{t}\sigma_k D_t(R)^2},$$
We consider the first estimate. Note that \(\Delta_k \subset \mathbb{R}^{k+1} \) denotes the standard simplex such that \(\Delta_k \ni \sigma = (\sigma_0, \ldots, \sigma_k) \) satisfies \(\sum_{i=0}^{k} \sigma_i = 1 \).

The Riemannian metric \(g^M(R) \) induces a pre Hilbert space structure on \(\Omega(M) \). The trace (operator) norm \(\| \cdot \|_1 (\| \cdot \|) \) on \(\text{End}(\Omega(M)) \) and \(\| \cdot \| \) together induce norms on \(\mathcal{S}(g)/S_1(g) \otimes \text{End}(\Omega(M)) \) which we also denote by \(\| \cdot \|_1 (\| \cdot \|) \).

Lemma 2.5 There is a constant \(C < \infty \) such that for all \(t > 1 \) and \(R > 1 \) we have
\[
\| e^{-t\Delta(R)} \|_1 < CR.
\]

Proof. The operator \(e^{-t\Delta(R)} \) is positive. Thus \(\| e^{-t\Delta(R)} \|_1 = \text{Tr} e^{-t\Delta(R)} \). Let \(W(t, x, y)(R) \) be the integral kernel of \(e^{-t\Delta(R)} \). The family \((M, g^M(R))\) of Riemannian manifolds has uniformly bounded geometry as \(R \) varies in \([1, \infty)\), i.e. there are uniform curvature bounds, and the injectivity radius is uniformly bounded from below. Standard heat kernel estimates (see e.g. [1]) imply that there is a constant \(C_1 < \infty \) such that for all \(x \in M, t > 1, R > 1 \) we have \(|W(t, x, x)(R)| < C_1 \). In particular, for some \(C, C_2 < \infty \) independent of \(R > 1, t > 1 \) we have
\[
\text{Tr} e^{-t\Delta(R)} = \int_M \text{Tr} W(t, x, x)(R) \text{vol}_{g^M(R)}(x) < C_2 \text{vol}_{g^M(R)}(M) < CR.
\]
This finishes the proof of the lemma. \(\square \)

Lemma 2.6 There is a \(C < \infty \) such that for all \(R > 1 \) and \(t, s > 0 \) we have
\[
\| \left[[e^{-t\Delta(R)} \mathcal{N} e^{-s\Delta(R)}] \right] \| < C(t^{-1/2} + s^{-1/2}) .
\]

Proof. Since \(\mathcal{N} = [d^*(R) - d, E + I] \) and \(\| E + I \| \) is uniformly bounded w.r.t. \(R \) it suffices to show that there exists \(C_1 < \infty \) such that for all \(R > 1 \) and \(t > 0 \) we have
\[
\| e^{-t\Delta(R)} d \| < C_1 t^{-1/2}, \quad \| e^{-t\Delta(R)} d^*(R) \| < C_1 t^{-1/2} .
\]
We consider the first estimate. Note that \(dd^*(R) + d^*(R) d = \Delta(R) \), and the ranges of \(dd^*(R) \) and \(d^*(R)d = \) are perpendicular. Thus
\[
\| e^{-t\Delta(R)} d \| = \| e^{-t\Delta(R)} dd^*(R)e^{-t\Delta(R)} \|^{1/2} \\
\leq \| e^{-t\Delta(R)} \Delta(R)e^{-t\Delta(R)} \|^{1/2} \\
= t^{-1/2} \| e^{-t\Delta(R)} t\Delta(R)e^{-t\Delta(R)} \|^{1/2} \\
\leq t^{-1/2} \sup_{x \geq 0} x e^{-x} \\
\leq C_1 t^{-1/2} .
\]
If A is of trace class and B is bounded, then we have $|\text{Tr} \ AB| \leq \|B\|\|A\|_1$. Note that $\|N_1\|$ is uniformly bounded w.r.t. R. Applying this and Lemmas 2.6 and 2.5 to U_k we obtain $C, C_1 < \infty$ such that for all $R > 1$ and $t > 1$ we have

$$|[[U_k(\sigma, R)]]| < C_1 R t^{-k/2} \sum_{i=0}^{k} \sigma_i^{-1/2}$$

$$|[[\int_{\Delta_k} U_k(\sigma, R)d\sigma]]| < C t^{-k/2} R .$$

Note that $|[U_k]| = 0$ for $k > m$. In order to obtain (8) from (7) and (8) it remains to discuss U_1. Since $N \in S(g)^1$ there exists $C, C_1 < \infty$ such that for all $R > 1$ and $t > 1$

$$|[[U_1(\sigma, R)]]| = |[[\text{Tr}_s N e^{-t\sigma_0 \Delta(R)} 1^t N_1 e^{-t\sigma_1 \Delta(R)}]]|$$

$$= |[[\text{Tr}_s 1^t N_1 e^{-t\Delta(R)}]]|$$

$$< C_1 R t^{-1}$$

$$|[[\int_{\Delta_1} U_1(\sigma, R)d\sigma]]| < C R t^{-1}$$

This finishes the proof of the proposition. \qed

We now continue with the proof of the theorem. Let $|.|$ any seminorm on $\hat{I}(G)$ as in the proof of Proposition 2.4. By Propositions 2.3 and 2.4 we can write

$$\sigma(R) := - \frac{d}{ds}|_{s=0} \frac{1}{\Gamma(s)} \int_0^\infty |[\delta(t, R)]|^s t^{s-1} dt ,$$

and the integral converges at $t = 0$ and $t = \infty$ uniformly in $s \in (-1/2, 1/2)$. We can perform the derivative and obtain

$$\sigma(R) = - \int_0^\infty |[\delta(t, R)]| t^{-1} dt$$

$$= - \int_0^R |[\delta(t, R)]| t^{-1} dt + \int_R^\infty |[\delta(t, R)]| t^{-1} dt .$$

By Proposition 2.3 there are $C_1 < \infty, c_1 > 0$ such that for all $R > 1$ we have

$$|[\int_0^{R^3/2} \delta(t, R) t^{-1} dt]| \leq \int_0^{R^3/2} C e^{-c_1 R^3 t^{-1}} dt$$

$$\leq C_1 e^{-c_1 R^1/2} .$$

Moreover by Proposition 2.4 there is a $C < \infty$ such that for all $R > 1$

$$|[\int_{R^3/2}^{\infty} \delta(t, R) t^{-1} dt]| \leq \int_{R^3/2}^{\infty} C R t^{-2} dt$$

$$= CR^{-1/2} .$$
We now let R tend to infinity and take into account that $\sigma(R)$ is independent of R in order to conclude that

$$\sigma(R) = 0.$$

(9)

We have shown that $[[T(M)]] = [[T(\tilde{M}_1)]] + [[T(\tilde{M}_2)]]$.

We now consider the remaining component $T_1(M) \in I_1(G)/C1$. Note that $\mathcal{N} = -\frac{1}{2}L + [d, E] + [d^*, I]$, where $L := \sum \alpha X^\alpha \otimes L_{X^\alpha}$ and L_Y denotes the Lie derivative with respect to the vector field Y. Since $[d, E]$, and $[d^*, I]$ shift the form degree by ± 2 we obtain

$$\text{Tr}_s NL^e_{-t\Delta} = -\frac{1}{2}\text{Tr}_s NL^e_{-t\Delta}.$$

Let $\rho_{an}(M, g^M) : G \to \mathbb{C}$ denote the equivariant analytic torsion defined by

$$\rho_{an}(M, g^M)(g) := -\frac{d}{ds}_{|s=0} \frac{1}{\Gamma(s)} \int_0^\infty (\text{Tr}_s NL^e_{-t\Delta} - \chi'(M)) t^{s-1} dt.$$

If we define

$$\delta(t, g) := 2\text{Tr}_s NL^e_{t\Delta} - \text{Tr}_s NL^e_{t\Delta_1} - \text{Tr}_s NL^e_{t\Delta_2} - (2\chi'(M) - \chi'(\tilde{M}_1) - \chi'(\tilde{M}_2)),$$

then there are $C < \infty$, $c > 0$ such that for all $g \in G$

$$|\delta(t, g)| \leq Ce^{-\frac{t}{2}} \quad \forall t \in (0, 1]$$

$$|\delta(t, g)| \leq Ce^{-ct} \quad \forall t \in [1, \infty).$$

The first estimate is again a consequence of the finite propagation speed method. Similar estimates hold for the derivative of $\delta(t, g)$ w.r.t. g. We have

$$\sigma_1(g) := -\int_0^\infty \delta(t, g)t^{-1} dt = 2\rho_{an}(M, g^M) - \rho_{an}(\tilde{M}_1, g^{\tilde{M}_1}) - \rho_{an}(\tilde{M}_2, g^{\tilde{M}_2}).$$

On the one hand in we have shown that on the dense subset of G consisting of elements of finite order

$$2\rho_{an}(M, g^M) - \rho_{an}(\tilde{M}_1, g^{\tilde{M}_1}) - \rho_{an}(\tilde{M}_2, g^{\tilde{M}_2}) = \text{const}.$$

On the other hand σ_1 is differentiable. We conclude

$$0 = d_{|g=1}\sigma_1$$

$$= -\int_0^\infty d_{|g=1}\delta(t, .)t^{-1} dt$$

$$= -\int_0^\infty (2\text{Tr}_s NL^e_{-t\Delta} - \text{Tr}_s NL^e_{-t\Delta_1} - \text{Tr}_s NL^e_{-t\Delta_2}) dt$$

$$= -2(T_1(M) - T_1(\tilde{M}_1) - T_1(\tilde{M}_2)).$$

This finishes the proof of the theorem. \qed
3 Products and coverings

Let G be a compact connected Lie group and Γ be a finite group. Let $C(\Gamma)$ denote the algebra of C-valued functions on Γ. We need the generalization of higher equivariant analytic torsion $T^\Gamma(M) \in \tilde{I}(G) \otimes C(\Gamma)$ mentioned in [5], Note 3. Let M be a closed oriented $G \times \Gamma$-manifold equipped with a $G \times \Gamma$-invariant Riemannian metric g^M. Set

$$\chi'(M)(\gamma) := \sum_{p=0}^{\infty} p(-1)^p \text{Tr} H^p(\gamma) ,$$

where $H^p(\gamma)$ is the induced action of $\gamma \in \Gamma$ on $H^p(M, \mathbb{R})$. Then we define $T^\Gamma(M) \in \tilde{I}(G) \otimes C(\Gamma)$ to be the element represented by the function

$$\gamma \mapsto \frac{d}{ds}|_{s=0} \frac{1}{\Gamma(s)} \int_0^\infty (\text{Tr}_s N \gamma e^{D_t^2} t^{s-1} - \chi'(M)(\gamma)) dt .$$

Let M be a closed oriented $G \times \Gamma$-manifold and N be a closed oriented Γ-manifold. Then we form the closed oriented $G \times \Gamma$-manifold $M \times N$, where Γ acts diagonally. We choose a $G \times \Gamma$-invariant Riemannian metric g^M, a Γ-invariant Riemannian metric g^N, and we let $g^{M \times N}$ be the product metric.

Define the Γ-equivariant Euler characteristic $\chi^\Gamma(N) \in C(\Gamma)$ of a closed Γ-manifold N by

$$\chi^\Gamma(N)(\gamma) := \sum_{p=0}^{\infty} (-1)^p \text{Tr} H^p(\gamma) .$$

Lemma 3.1 If $\chi^\Gamma(M) = 0$, then

$$T^\Gamma(M \times N) = T^\Gamma(M) \chi^\Gamma(N) .$$

Proof. We write $D_t(M), D_t(N), D_t(M \times N)$ for the operators on $M, N, M \times N$. Let $\Delta(N)$ be the Laplace operator on $\Omega(N)$. On the level of Hilbert space closures we have

$$\text{clo}_{L^2}\Omega(M \times N) = \text{clo}_{L^2}\Omega(M) \otimes \text{clo}_{L^2}\Omega(N) .$$

With respect to this splitting we can write

$$D_t(M \times N)^2 = D_t(M)^2 \otimes 1 - 1 \otimes t\Delta(N) .$$

If $\gamma \in \Gamma$, then

$$\begin{align*}
\text{Tr}_s N \gamma e^{D_t(M \times N)^2} &= \text{Tr}_s (N \otimes 1 + 1 \otimes N)(\gamma \otimes \gamma)(e^{D_t(M)^2} \otimes e^{-t\Delta(N)}) \\
&= \text{Tr}_s N \gamma e^{D_t(M)^2} \text{Tr}_s e^{-t\Delta(N)} + \text{Tr}_s N \gamma e^{D_t(M)^2} \text{Tr}_s N \gamma e^{-t\Delta(N)} .
\end{align*}$$
By the equivariant McKean-Singer formula [1], Thm. 6.3, we have $\text{Tr}_s \gamma e^{-t\Delta(N)} = \chi^\Gamma(N)(\gamma)$. Moreover we have

$$\frac{d}{dt} \text{Tr}_s \gamma e^{D_t(M)^2} = \text{Tr}_s \gamma \frac{d}{dt} D_t^2 e^{D_t(M)^2} = \text{Tr}_s \left[\frac{d}{dt} D_t, \gamma D_t e^{D_t(M)^2} \right] = 0$$

$$\lim_{t \to \infty} \text{Tr}_s \gamma e^{D_t(M)^2} = \lim_{t \to \infty} \text{Tr}_s \gamma e^{-t\Delta(M)} = \chi^\Gamma(M)(\gamma) = 0.$$

It follows

$$\text{Tr}_s N \gamma e^{D_t(M \times N)^2} = \chi^\Gamma(N)(\gamma) \text{Tr}_s N \gamma e^{D_t(M)^2}.$$

This implies the assertion of the Lemma. \(\square\)

Let N be a closed oriented $G \times \Gamma$-manifold such that Γ acts freely on N. Let $M := \Gamma \setminus N$. Then M is a closed oriented G-manifold. We equip N with a $G \times \Gamma$-invariant Riemannian metric and define g^M such that the projection $\pi : N \to M$ becomes a local isometry.

Let $\int_\Gamma : C(\Gamma) \to \mathcal{C}$ be the integral over Γ with respect to the normalized Haar measure. We denote the induced map $\tilde{I}(G) \otimes C(\Gamma) \to \tilde{I}(G)$ by the same symbol.

Lemma 3.2

$$T(M) = \int_\Gamma T^\Gamma(N).$$

Proof. Note that $\Pi := \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \gamma$ acts on $\Omega(N)$ as projection onto the subspace of Γ-invariant forms which can be identified with $\Omega(M)$ using the pull-back π^*. Moreover, $D_t(M)$ coincides with the restriction of $D_t(N)$ to the range of Π. We have

$$\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \text{Tr}_s N \gamma e^{D_t(N)^2} = \text{Tr}_s N \Pi e^{D_t(N)^2} = \text{Tr}_s N e^{D_t(M)^2}.$$

This implies the assertion of the Lemma. \(\square\)
4 Manifolds with corner singularities

In this section we extend the definition of $T(M)$, $T^\Gamma(M)$, and the results of Section 3 to manifolds with corner singularities.

A compact manifold with a corner singularity of codimension one is just a manifold with boundary. Corner singularities of codimension two arise if we admit that boundaries have itself boundaries. In general a corner singularity of codimension m of a n-dimensional manifold is modelled on $(\mathbb{R}^+)^m \times \mathbb{R}^{n-m}$, where $\mathbb{R}^+ = [0, \infty)$.

Let M be a compact manifold with corner singularities. Then the boundary of M can be decomposed into pieces $\partial_1 M \cup \ldots \cup \partial_l M$. We do not require that the pieces $\partial_i M$ are connected.

For $i \in \{1, \ldots, l\}$ we can form the double $\tilde{M}_i := M \cup \partial_i M$ of M along the piece $\partial_i M$. Then \tilde{M}_i is again a compact manifold with corner singularities. In particular it has $l-1$ boundary pieces $\partial_j \tilde{M}_i = \partial_j M \cup \partial_j \partial_i M \partial_j M$, $j \neq i$.

The notion corner singularities and the construction of the double extends to compact oriented G-manifolds in the obvious way. We define $T(M)$ for compact oriented G-manifolds inductively with respect to the number $l(M)$ of boundary pieces.

If $l(M) = 0$, then $T(M)$ is already defined. Assume now that $l(M)$ is defined for all M with $l(M) < l$. If M is now a compact oriented G-manifold with $l(M) = l$. Then we set

$$T(M) := \frac{1}{2} T(\tilde{M}_1).$$

If $l > 1$, then we have to check that this definition is independent of the numbering of boundary components. It suffices to show that $T(\tilde{M}_1) = T(\tilde{M}_2)$. Note that \tilde{M}_{12} and \tilde{M}_{21} are G-diffeomorphic. Using the induction hypothesis

$$2T(\tilde{M}_1) = T(\tilde{M}_{12}) = T(\tilde{M}_{21}) = 2T(\tilde{M}_2).$$

Thus $T(M)$ is well defined.

The doubling trick was introduced by [6], Ch. IX. Instead of the formal definition above one could also employ absolute and relative boundary boundary conditions in order to define higher equivariant analytic torsion $T(M, \text{abs})$, $T(M, \text{rel})$ for G-manifolds with boundary. If the Riemannian metric is choosen to be product near the boundary, then $T(M) = \frac{1}{2} T(M, \text{abs}) + T(M, \text{rel})$.

The sum formula 2.2 has now the nice reformulation

$$T(M) = T(M_1) + T(M_2).$$

(10)

It has the following generalization:
Corollary 4.1 Let M_i, $i = 1, 2$, be compact oriented G-manifolds with corner singularities. If we are given a G-diffeomorphism $\partial_1 M_1 \cong \partial_1 M_2$, then we form the manifold with corner singularities $M := M_1 \cup_{\partial_1} M_2$, and we have

$$T(M) = T(M_1) + T(M_2).$$

Proof. We employ induction by the number of boundary pieces. The assertion is true if M is closed. Assume that the corollary holds true for all M with $l(M) < l$. Let $M := M_1 \cup_{\partial_1} M_2$ now be a manifold with $l(M) = l$ and $l \geq 1$. Then we can assume that $l(M_1) \geq 2$. Let $\partial_1 M$ be the piece corresponding to $\partial_2 M_1$. We distinguish the cases (a): $\partial_2 M_1 \cap \partial_1 M_1 = \emptyset$ and (b): $\partial_2 M_1 \cap \partial_1 M_1 \neq \emptyset$. In case (a) let $\partial_1 M$ be the piece corresponding to $\partial_2 M_1$. Then using the induction hypothesis

$$T(M) = \frac{1}{2} T(\tilde{M}_1) = \frac{1}{2} T(\tilde{M}_{12}) + T(M_2) = T(M_1) + T(M_2).$$

In case (b) there is a boundary piece $\partial_2 M_2$ meeting $\partial_1 M_2$. Then M has a boundary piece $\partial_1 M := \partial_2 M_1 \cup_{\partial_1} \partial_1 M_1 \cap \partial_2 M_2$. Again using the induction hypothesis we have

$$T(M) = \frac{1}{2} T(\tilde{M}_1) = \frac{1}{2} T(\tilde{M}_{12}) + \frac{1}{2} T(\tilde{M}_{22}) = T(M_1) + T(M_2).$$

This proves the corollary. \qed

Let Γ be an additional finite group. For a $G \times \Gamma$-manifold with corner singularities we require that the pieces $\partial_i M$ are compact $G \times \Gamma$-manifolds with corner singularities as well.

A Riemannian metric on a manifold with corner singularities is compatible if it is a product metric $g^{(R_+)^m} + g^{R_i - m}$ at a corner of codimension m. Then we can form the doubles \tilde{M}_i metrically.

Let M be a compact oriented $G \times \Gamma$-manifold with corner singularities equipped with a compatible $G \times \Gamma$-invariant Riemannian metric. Then we define $T^\Gamma(M)$ for $G \times \Gamma$-manifolds with corner singularities using the same formal procedure as for trivial Γ. We can generalize Lemma 3.2 to this case. Let N be a compact oriented $G \times \Gamma$-manifold with corner singularities such that Γ acts freely and form $M := \Gamma \backslash N$.

Corollary 4.2

$$T(M) = \int_\Gamma T^\Gamma(N).$$

Proof. We argue by induction with respect to the number of boundary pieces. If $l(N) = 0$, then this is just Lemma 3.2. Assume now that the corollary holds true for all N with $l(N) < l$. Let now N be a compact oriented $G \times \Gamma$-manifold with corner singularities such that Γ acts freely
and \(l(N) = l \geq 1 \). Then consider the covering \(\tilde{N}_1 \rightarrow \tilde{M}_1 \). Applying the induction hypothesis we obtain
\[
T(M) = \frac{1}{2} T(\tilde{M}_1) = \frac{1}{2} \int_{\Gamma} T^\Gamma(\tilde{N}_1) = \int_{\Gamma} T^\Gamma(N).
\]
This proves the corollary.

Let \(M \) be a closed oriented \(G \times \Gamma \)-manifold and \(N \) be a compact oriented \(\Gamma \)-manifold with corner singularities. Then we form the compact oriented \(G \times \Gamma \)-manifold \(M \times N \) with corner singularities, where \(\Gamma \) acts diagonally. We choose a \(G \times \Gamma \)-invariant Riemannian metric \(g^M \), a \(\Gamma \)-invariant compatible Riemannian metric \(g^N \), and we let \(g^{M \times N} \) be the product metric which is again invariant and compatible.

We define the \(\Gamma \)-equivariant Euler characteristic \(\chi^\Gamma(N) \in C(\Gamma) \) of a \(\Gamma \)-manifold \(N \) with corner singularities with \(l(N) \geq 1 \) inductively with respect to the number of boundary pieces by
\[
\chi^\Gamma(N) := \frac{1}{2} \chi^\Gamma(\tilde{N}_1).
\]
We leave it to the interested reader to express \(\chi^\Gamma(N) \) in terms of equivariant Euler characteristics of the components of the filtration of \(N \). The main feature of this definition is that the equivariant Euler characteristic is additive under glueing along boundary pieces.

We have the following generalization of Lemma 3.1.

Corollary 4.3 If \(\chi^\Gamma(M) = 0 \), then
\[
T^\Gamma(M \times N) = T^\Gamma(M) \chi^\Gamma(N).
\]

Proof. We argue by induction over the number of boundary pieces \(l(N) \). If \(l(N) = 0 \), then this is just Lemma 3.1. Assume that the corollary holds true if \(l(N) < l \). Let now \(N \) be such that \(l(N) = l \geq 1 \). Let \(\partial_1(M \times N) := M \times \partial_1 N \). Then using the induction hypothesis and the additivity of \(\chi^\Gamma \) we obtain
\[
T^\Gamma(M \times N) = \frac{1}{2} T^\Gamma((M \times N)_1) = \frac{1}{2} T^\Gamma(M) \chi^\Gamma(\tilde{N}_1) = T^\Gamma(M) \chi^\Gamma(N).
\]
This proves the corollary.

5 Restriction to subgroups

Let \(G, H \) be a connected compact Lie groups with Lie algebras \(g, h \). If \(f : H \rightarrow G \) is a homomorphism, then \(f_* : h \rightarrow g \) induces a map \(\tilde{f} : I(G) \rightarrow I(H) \). If \(H \subset G \) is a closed subgroup
and i denotes the inclusion, then we set $\tilde{i} := \text{res}_H^G$. If $g \in G$, then we put $H^g := gHg^{-1}$. Let $\alpha_g : H \to H^g$ be given by $\alpha_g(h) := ghg^{-1}$.

Let M be a closed oriented G-manifold with corner singularities. If $f : H \to G$ is a homomorphism, then we denote by $f^* M$ the H-manifold M with action induced by f. If $H \subset G$ is a closed subgroup, then we put $\text{res}^G_H M := i^* M$. The following Lemma is an immediate consequence of the definition of $T(M)$.

Lemma 5.1 (1) : If $f : H \to G$ is a homomorphism, then $\tilde{f} T(M) = T(f^* M)$. In particular, if $H \subset G$ is closed, then $\text{res}^G_H T(M) = T(\text{res}^G_H M)$.

(2) : If $H \subset G$ is closed, then for all $g \in G$ we have $\bar{\alpha}_g \text{res}^G_H T(M) = \text{res}^G_H T(M)$ for all $g \in G$.

The association $H \subset G \mapsto \tilde{I}(H) := \tilde{I}_G(H)$ assembles to give a contravariant functor $\tilde{I}_G : \text{Or}(G) \to \mathbf{C} - \text{vect}$. If $f : H \to G$ is a homomorphism, then it induces a natural functor $f_* : \text{Or}(H) \to \text{Or}(G)$ sending H/K to $G/f(K)$. For $K \subset H$ let $f_K : K \to f(K)$ be the restriction of f to K. The collection $\{f_K\}$, $K \subset H$, provides a natural transformation $\tilde{f} : \tilde{I}_G \circ f_* \to \tilde{I}_H$. Let $f^* : \lim_{\text{Or}(G)} \tilde{I}_G \to \lim_{\text{Or}(H)} \tilde{I}_H$ denote the induced map.

Lemma 5.1 says that $G/H \mapsto T(\text{res}^G_H M)$ is a section of \tilde{I}_G. Since $\text{Or}(G)$ has a final object G/G, we have an isomorphism

$$\lim_{\text{Or}(G)} \tilde{I}_G \cong \tilde{I}(G) \quad (11)$$

given by restriction to the final object.

By $S(G)$ we denote the full subcategory of $\text{Or}(G)$ of those objects G/H with $H \cong S^1$. We denote the space of sections of $\tilde{I}_{G|S(G)}$ by $V(G)$, i.e.

$$V(G) := \lim_{S(G)} \tilde{I}_G .$$

There is a natural restriction map

$$R_G : \tilde{I}(G) \cong \lim_{\text{Or}(G)} \tilde{I} \to V(G) .$$

Lemma 5.2 R_G is injective.

Proof. Let $T \subset G$ be a maximal torus and denote by j its inclusion. There is a functor $j_{*|S(T)} : S(T) \to S(G)$. Let $J^* : \lim_{S(G)} \tilde{I}_G \to \lim_{S(T)} \tilde{I}_T$ be induced by the natural transformation $j_{*|S(T)} : \tilde{I}_{G|S(G)} \circ j_{*|S(T)} \to \tilde{I}_{T|S(T)}$. Then $R_T \circ j^* = J^* \circ R_G$. In order to prove that R_G is injective it is therefore sufficient to show that j^* and R_T are injective.

Now j^* is injective since it coincides with $\text{res}^G_T : \tilde{I}(G) \to \tilde{I}(T)$ under the identification (11), and the latter map well known to be injective. Let t be the Lie algebra of T. The kernel of
exp : t → T defines a \mathbb{Z} structure on t. The set of subspaces $h \subset t$ corresponding to objects $T/H \in S(T)$ with $H \cong S^1$ is just the set of integral points of the projective space $P(t \otimes \mathbb{C})$. Injectivity of R_T follows easily from the fact that the set of integral points of $P(t \otimes \mathbb{C})$ is Zariski dense. □

Corollary 5.3 $T(M)$ is uniquely determined by the values of $T(\text{res}_H^G M)$ for all $H \subset G$ with $H \cong S^1$.

6 The map T_G

We need the following technical result.

Lemma 6.1 Let M be a closed manifold. Then there exists a Riemannian metric g^M and a decomposition $M = \bigcup_i B_i$ of M into manifolds with corner singularities such that the B_i are contractible and the restriction of g^M to B_i is compatible for all i.

Proof. We choose a smooth triangulation of M. Then there is another smooth triangulation \mathcal{T} which is dual to the first one. We choose small closed tubular neighbourhoods U_σ of the simplices σ of \mathcal{T}. We now proceed inductively. Assume that in the steps $0, \ldots, l - 1$ we have already defined $B_i, i = 1, \ldots r$. In the l'th step we let B_{r+1}, \ldots be the intersections of $U_\sigma \cap (M \setminus \text{int}(\bigcup_{i=1}^r B_i))$, where σ runs over all simplices of \mathcal{T} of dimension j. By choosing the tubular neighbourhoods appropriately, this construction gives manifolds B_i with corner singularities. Now one can construct an appropriate Riemannian metric. □

Recall that if M is a manifold with corner singularities and M has at least one boundary piece, then we define inductively $\chi(M) := \frac{1}{2} \chi(M_1)$. In particular, if $M = \bigcup_i B_i$ is a decomposition as in Lemma 6.1, then

$$\chi(M) = \sum_i \chi(B_i).$$

Proposition 6.2 (1) : Let M be a closed oriented S^1-manifold. Then $T(M) = T_{S^1} \chi_{S^1}(M)$. (2) : If in addition M is even-dimensional, then $\chi_{S^1}(M) = a[S^1/S^1]$ for some $a \in \mathbb{Z}$.
Proof. A compact S^1-manifold has a finite number of orbit types H_1, \ldots, H_l. We employ induction by the number of orbit types $l(M)$. We first assume that $l(M) = 1$. If $H_1 = S^1$, then $T(M) = 0$ and $\chi_{S^1}(M) = \chi(M)[S^1/S^1]$. Thus $T_{S^1} \chi_{S^1}(M) = \chi(M)T_{S^1}[S^1/S^1] = 0$, too.

We now consider the case that $H_1 \neq S^1$. Then by [2], II.5.2., we have a smooth locally trivial fibre bundle $M \to M/S^1$ with fibre S^1/H_1. Let $M/S^1 = \bigcup_i B_i$ be a decomposition of M/S^1 into manifolds with corner singularities given by Lemma 6.1. Then $M/B_i \cong S^1/H_1 \times B_i$. Using Corollaries 4.1 and 4.3, (3), (12), and $\chi_{S^1}(M) = \chi(M/S^1)[S^1/H_1]$ we obtain

$$T(M) = \sum_i T(M|B_i)$$
$$= \sum_i T(S^1/H_1 \times B_i)$$
$$= T(S^1/H_1) \sum_i \chi(B_i)$$
$$= T_{S^1}[S^1/H_1]\chi(M/S^1)$$
$$= T_{S^1} \chi_{S^1}(M).$$

This proves assertion (1) for $l(M) = 1$. If M is even-dimensional closed, then M/S^1 is odd-dimensional, and $\chi(M/S^1) = 0$ by Poincaré duality. Assertion (2) follows.

Now assume that the proposition holds true for all M with $l(M) < l$. Let M be a closed oriented S^1-manifold with $l(M) = l$. Without loss of generality we can assume that $H := H_1 \neq S^1$. By [2], VI 2.5., the fixed point set M_H of H is a smooth submanifold of M with normal bundle NM_H, which we identify with an equivariant tubular neighbourhood of M_H using the exponential map provided by a S^1-invariant Riemannian metric g^M.

Assume that M is odd-dimensional. By Corollary 4.1 we have $T(M) = T(M \setminus NM_H) + T(NM_H)$. Let N be the double of $M \setminus NM_H$. Then $l(N) \leq l-1$, and we can apply the induction hypothesis in order to obtain $T(M \setminus NM_H) = \frac{1}{2}T(N) = \frac{1}{2}T_{S^1} \chi_{S^1} T(N)$. Note that

$$\chi_{S^1}(N) = 2\chi_{S^1}(M \setminus NM_H) - \chi_{S^1}(\partial NM_H).$$

Note that ∂NM_H is even-dimensional, closed and orientable. Since $l(\partial NM_H) < l$ we have by our induction hypothesis $\chi_{S^1}(\partial NM_H) = a[S^1/S^1]$ for some $a \in \mathbb{Z}$. This implies $T_{S^1} \chi_{S^1}(\partial NM_H) = 0$ and

$$T(M \setminus NM_H) = T_{S^1} \chi_{S^1}(M \setminus NM_H).$$

We now compute $T(NM_H)$. Since $l(M_H) = 1$ we have a smooth locally trivial fibre bundle $M_H \to M_H/S^1$ with fibre S^1/H. Let $M_H/S^1 = \bigcup_i B_i$ be a decomposition of M_H/S^1 into manifolds with corner singularities given by Lemma 6.1. Then $M_{H,i} := (M_H)|_{B_i} \cong S^1/H \times B_i$. Since H acts orientation preserving, the bundle NM_H admits an H-invariant complex structure. The restriction $(NM_H)|_{M_{H,i}}$ can be written as $S^1 \times V_i/H$, where $V_i \to B_i$ is a complex vector bundle on which H acts fibrewise linear.

Since a complex linear action of a cyclic group H can always be extended to the connected group S^1, we obtain $\chi^H(V_i)(\gamma) = \chi(V_i)$ for all $\gamma \in H$. Moreover we have $\chi^H(S^1) = 0$. Thus we
can apply Corollaries 4.3 and 4.2 in order to obtain
\[T(S^1 \times V_i/H) = \int \Gamma T^H(S^1) \chi^H(V_i) = \int \Gamma T^H(S^1) \chi(V_i) = T(S^1/H) \chi(V_i). \]

Since \(\overline{NM}_H \) and \(M_H \) are \(S^1 \)-homotopy equivalent, we have \(\chi_{S^1}(\overline{NM}_H) = \chi_{S^1}(M_H) \). Moreover, \(\sum_i \chi(V_i) = \sum_i \chi(B_i) = \chi(M_H/S^1) \) and \(\chi_{S^1}(M_H) = \chi(M_H/S^1)[S^1/H] \). Thus we obtain by Corollary 4.1
\[T(\overline{NM}_H) = \sum_i T(S^1 \times V_i/H) = \sum_i T(S^1/H) \chi(V_i) = T_{S^1}[S^1/H] \chi(M_H/S^1) = T_{S^1} \chi_{S^1}(\overline{NM}_H). \] (14)

We have
\[\chi_{S^1}(M) = \chi_{S^1}(M \setminus NM_H) + \chi_{S^1}(NM_H) - \chi_{S^1}(\partial NM_H). \]

Since \(T_{S^1} \chi_{S^1}(\partial NM_H) = 0 \), combining (13) and (14) we obtain the desired formula
\[T(M) = T_{S^1} \chi_{S^1}(M) \] for \(M \) odd-dimensional.

Assume now that \(M \) is even-dimensional and that \(l(M) = l \). Then \(T(M) = 0 \), and (1) follows from (2). We now show (2). We have
\[\chi_{S^1}(M) = \chi_{S^1}(M \setminus NM_H) + \chi_{S^1}(M_H). \]

We can apply the induction hypothesis to \(M_H \) and the double of \(M \setminus NM_H \). It follows that \(\chi_{S^1}(M \setminus NM_H) = \frac{1}{2} \chi_{S^1}(\partial NM_H) + a[S^1/S^1] \). The restriction \(\partial NM_H|_{M_H,i} \) is isomorphic to \(S^1 \times \partial SV_i/H \), where \(SV_i \) denotes the sphere bundle of \(V_i \).

Let \(U \) be the unit sphere in a fibre of \(NM_H \). Using that \(M_H/S^1 \) is closed, orientable, and odd-dimensional, we obtain
\[\chi_{S^1}(\partial NM_H) = \sum_i \chi_{S^1}(S^1 \times U/H) \chi(B_i) = \chi_{S^1}(S^1 \times U/H) \chi(M_H/S^1) = 0. \]

This finishes the proof of (2). \qed

We now construct \(T_G \). The collection \(T_H : H \in S(G) \), forms a natural transformation from the functor \(H \mapsto U(H) \) to \(H \mapsto \tilde{I}(H) \). Thus we obtain a homomorphism
\[\tilde{T} : \varprojlim_{S(G)} U \to V(G). \]
Let \(\tilde{\text{res}} : U(G) \to \lim S(G) \) be given by the collection \(\text{res}^G_H, \ H \in S(G) \). If \(M \) is a compact \(G \)-manifold, then we let \(\tilde{\chi}(M) \in \lim S(G) U \) be given by the section \(S(G) \ni H \mapsto \chi_H(M) \in U(H) \). Then \(\text{res}_G \chi_G(M) = \tilde{\chi}(M) \).

Lemma 6.3 There is a unique homomorphism \(T_G : U(G) \to \tilde{I}(G) \) such that \(R_G \circ T_G = \tilde{T} \circ \text{res}_G \).

Proof. For \(G/K \in \text{Or}(G) \) we shall have

\[
R_G \circ T_G[G/K] = \tilde{T} \circ \text{res}_G(G/K)
= \tilde{T} \circ \tilde{\chi}(G/K)
= \{S(G) \ni H \mapsto T_H \circ \chi_H \circ \text{res}^G_H(G/K)\}
= \{S(G) \ni H \mapsto T(\text{res}^G_H G/K)\}
= \{S(G) \ni H \mapsto \text{res}^G_H T(G/K)\}
= R_G T(G/K).
\]

Hence by injectivity of \(R_G \) (Lemma 5.2) we are forced to define \(T_G[G/K] := T(G/K) \). \(\square \)

We now finish the proof of Theorem 1.1. Let \(M \) be a closed oriented \(G \)-manifold. Then we have

\[
R_G \circ T_G \chi_G(M) = \tilde{T} \circ \text{res}_G \chi_G(M)
= \tilde{T} \circ \tilde{\chi}(M)
= \{S(G) \ni H \mapsto T_H \circ \chi_H \circ \text{res}^G_H(M)\}
= \{S(G) \ni H \mapsto T(\text{res}^G_H M)\}
= \{S(G) \ni H \mapsto \text{res}^G_H T(M)\}
= R_G T(M).
\]

We conclude that \(T_G \chi_G(M) = T(M) \) by Lemma 5.2. \(\square \)

References

[1] N. Berline, E. Getzler, and M. Vergne. *Heat Kernels and Dirac Operators*. Springer-Verlag Berlin Heidelberg New York, 1992.

[2] G. E. Bredon. *Introduction to transformation groups*. Academic Press, 1972.

[3] U. Bunke. Equivariant torsion and \(G \)-CW complexes. Preprint, 1997.
[4] J. Cheeger, M. Gromov, and M. Taylor. Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds. *J.Diff.Geom.*, 17, 15–53, 1982.

[5] J. Lott. Equivariant analytic torsion for compact Lie group actions. *J. Funct. Anal.*, 125, 438–451, 1994.

[6] J. Lott and M. Rothenberg. Analytic torsion for group actions. *J.Diff.Geom*, 34, 431–481, 1991.

[7] W. Lück. *Transformation groups and algebraic K-theory*. LNM 1408. Springer Verlag, 1989.