UNIQUE MIXING OF THE SHIFT ON THE C*-ALGEBRAS GENERATED BY THE q-CANONICAL COMMUTATION RELATIONS

KENNETH DYKEMA* AND FRANCESCO FIDALEO†

Abstract. The shift on the C*-algebras generated by the Fock representation of the q-commutation relations has the strong ergodic property of unique mixing, when |q| < 1.

1. INTRODUCTION

The q-commutation relations have been studied in the physics literature, see e.g. [8]. These are the relations

\[a_i a_j^+ - qa_j^+ a_i = \delta_{ij} 1, \quad i, j \in \mathbb{Z} \]

where \(-1 \leq q \leq 1\). This gives an interpolation between the canonical commutation relations (Bosons) when \(q = 1\) and the canonical anticommutation relations (Fermions) when \(q = -1\), while when \(q = 0\) we have freeness (cf. [16]). In [3], (see also [9] and [7]) a Fock representation of these relations was found, giving annihilators \(a_i\) and their adjoints, the creators \(a_i^+\), acting on a Hilbert space with a vacuum vector \(\Omega\). The C*-algebras and von Neumann algebras generated by sets of these operators or by their real parts \(a_i + a_i^+\) have been much studied. The reader is referred to [11, 5, 12, 14, 15, 13] for results, applications and further details.

In the present note, we show that the shift \(\alpha_q\) on the C*-algebras generated by these \(a_i\), or by their self-adjoint parts, has the strong ergodic property of unique mixing, which was introduced in the companion paper [6], whenever \(|q| < 1\). The case of free shifts was treated in [6], but when \(q \neq 0\), this shift \(\alpha_q\) cannot be a free shift, so these results provide new noncommutative examples of unique mixing. We also observe that the examples provided by the \(a_i\) and by the \(a_i + a_i^+\) are nonconjugate. It was shown in [6] that there is no classical counterpart to this situation.

2. TERMINOLOGY AND BASIC NOTATIONS

For a (discrete) C*-dynamical system we mean a triplet \((\mathfrak{A}, \alpha, \omega)\) consisting of a unital C*-algebra \(\mathfrak{A}\), an automorphism \(\alpha\) of \(\mathfrak{A}\), and a state \(\omega \in \mathcal{S}(\mathfrak{A})\) invariant under the action of \(\alpha\). The pair \((\mathfrak{A}, \alpha)\) consisting of C*-algebra

*Research supported in part by NSF grant DMS-0600814.
†Permanent address: Dipartimento di Matematica, II Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy. e-mail: fidaleo@mat.uniroma2.it.
and an automorphism as before, is called a C^*–dynamical system as well. A classical C^*–dynamical system is simply a dynamical system such that $\mathfrak{A} \sim C(X)$, $C(X)$ being the Abelian C^*–algebra of all the continuous functions on the compact Hausdorff space X. In this situation, $\alpha(f) = f \circ T$ for some homeomorphism $T : X \to X$.

Consider for $j = 1, 2$, the C^*–dynamical systems $(\mathfrak{A}_j, \alpha_j, \omega_j)$ together with the canonically associated W^*–dynamical systems $(M_j, \hat{\alpha}_j, \hat{\omega}_j)$. Here, $M_j := \pi_{\omega_j}(\mathfrak{A}_j)^{\pi}$ and $\hat{\alpha}_j$, $\hat{\omega}_j$ are the canonical extensions of α_j and ω_j to M_j, respectively. The C^*–dynamical system $(\mathfrak{A}_j, \alpha_j, \omega_j)$ is said to be conjugate if there exists an automorphism $\beta : M_1 \to M_2$ intertwining the dynamics ($\beta \hat{\alpha}_1 = \hat{\alpha}_2 \beta$), and the states ($\hat{\omega}_2 \circ \beta = \hat{\omega}_1$). Suppose that $\mathfrak{A}_j \sim C(X_j)$, X_j being compact spaces. Then there exist probability measures μ_j on X_j, and measure–preserving homeomorphisms T_j of the compact spaces X_j such that

$$\alpha_j(f) = f \circ T_j, \quad \omega_j(f) = \int_{X_j} f \, d\mu_j.$$

Thanks to a result by J. von Neumann (cf. [1], p. 69), our definition is equivalent to the following one, provided that the X_j are compact metric spaces. There exist μ_j–measurable sets $A_j \subseteq X_j$ of full measure such that $T_j(A_j) = A_j$, and a one–to–one measure–preserving map $S : A_1 \to A_2$ such that $T_2 = S \circ T_1 \circ S^{-1}$. The reader is referred to [10] for further details relative to the classical case.

To recall the definition from [6], a C^*–dynamical system (\mathfrak{A}, α) is said to be uniquely mixing if

$$\lim_{n \to +\infty} \varphi(\alpha^n(x)) = \varphi(1)p(x), \quad x \in \mathfrak{A}, \varphi \in \mathfrak{A}^*$$

for some $\omega \in \mathcal{S}(\mathfrak{A})$.

It can readily seen that ω is invariant under α. In addition, it is unique among the invariant states for α.

Let $\mathcal{H} := \ell^2(\mathbb{Z})$, with $e_i \in \mathcal{H}$ the function taking value 1 at i and zero elsewhere. The q–deformed Fock space \mathcal{F}_q is the completion of the algebraic linear span of the vacuum vector Ω, together with vectors

$$f_1 \otimes \cdots \otimes f_n, \quad f_j \in \mathcal{H}, j = 1, \ldots, n, n = 1, 2, \ldots$$

with respect to the inner product

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_m \rangle_q := \delta_{n,m} \sum_{\pi \in \mathbb{P}_n} q^{i(\pi)} \langle f_1, g_{\pi(1)} \rangle \cdots \langle f_n, g_{\pi(n)} \rangle,$$

\mathbb{P}_n being the symmetric group of n elements, and $i(\pi)$ the number of inversions of $\pi \in \mathbb{P}_n$. We have $\langle f, g \rangle_q = \langle P_q f, g \rangle_0$, where P_q is determined by

$$P_q \Omega = \Omega, \quad P_q f_1 \otimes \cdots \otimes f_n = q^{i(\pi)} f_{\pi(1)} \otimes \cdots \otimes f_{\pi(n)}.$$ \hspace{1cm} (1)

The creator a_i^+ acts on \mathcal{F}_q by

$$a_i^+ \Omega = e_i, \quad a_i^+ (f_1 \otimes \cdots \otimes f_n) = e_i \otimes f_1 \otimes \cdots \otimes f_n,$$
and its adjoint is the annihilator a_i given by
\[a_i \Omega = 0, \]
\[a_i (f_1 \otimes \cdots \otimes f_n) = \sum_{k=1}^{n} q^{k-1} \langle f_k, e_i \rangle f_1 \otimes \cdots \otimes f_{k-1} \otimes f_{k+1} \otimes \cdots \otimes f_n. \]

Denote by R_q the C^*–algebra generated by $\{a_i \mid i \in \mathbb{Z}\}$, and by G_q the C^*–algebra generated by $\{a_i + a_i^+ \mid i \in \mathbb{Z}\}$. The right shift $\alpha = \alpha_q$ acting on R_q is uniquely determined by
\[\alpha(a_i) := a_{i+1}, \quad i \in \mathbb{Z} \]
on the generators. The Fock vacuum expectation $\omega := \langle \cdot \Omega, \Omega \rangle$ is invariant for the shift α. The restriction of the vacuum expectation to G_q is a faithful trace. For further details, we refer to [2, 4] and the literature cited therein.

3. Unique Mixing of the q–Shifts

In the present section we prove the announced result on the unique mixing of the shift on the q–canonical commutation relations. We start with the following

Lemma 1. Let $\{\xi_j\}_{j=1}^{n} \subset \mathcal{H}^{\otimes n}$, and $\{f_j\}_{j=1}^{n} \subset \mathcal{H}$ be an orthonormal set. Then
\[\left\| \sum_{j=1}^{n} a^+(f_j) \xi_j \right\| \leq \sqrt{\frac{n}{1-|q|}} \max_{1 \leq j \leq n} \| \xi_j \|. \]

Proof. Denote as in [4], $P_q^{(n)} := P_q[\mathcal{H}^{\otimes n}]$, where P_q is given in (1). By taking into account Section 3 of [4] (see also [2], Section 1), we get
\[\left\langle \sum_{j=1}^{n} a^+(f_j) \xi_j, \sum_{j=1}^{n} a^+(f_j) \xi_j \right\rangle \]
\[\leq \frac{1}{1-|q|} \left\langle 1 \otimes P_q^{(k+1)} \sum_{j=1}^{n} f_j \otimes \xi_j, \sum_{j=1}^{n} f_j \otimes \xi_j \right\rangle_0 \]
\[\leq \frac{1}{1-|q|} \sum_{i,j=1}^{n} \left\langle f_i \otimes P_q^{(k)} \xi_i, f_j \otimes \xi_j \right\rangle_0 \]
\[= \frac{1}{1-|q|} \sum_{i,j=1}^{n} \left\langle f_i, f_j \right\rangle \left\langle P_q^{(k)} \xi_i, \xi_j \right\rangle_0 \]
\[= \frac{1}{1-|q|} \sum_{i,j=1}^{n} \left\langle f_i, f_j \right\rangle \left\langle \xi_i, \xi_j \right\rangle_0 \]
\[= \frac{1}{1-|q|} \sum_{i,j=1}^{n} \left\langle \xi_i, \xi_i \right\rangle_0 \]
\[\leq \frac{n}{1-|q|} \max_{1 \leq j \leq n} \| \xi_j \|^2. \]
Proposition 2. Let \(0 \leq k_1 < k_2 < \cdots < k_n < \cdots\) be a sequence of increasing natural numbers, and \(e_{\sigma_1}, \ldots, e_{\sigma_i}, e_{\rho_1}, \ldots, e_{\rho_j}\) elements of the canonical basis of \(\ell^2(\mathbb{Z})\). We have
\[
\left\| \sum_{l=1}^{n} \alpha^{k_l} (a^+(e_{\sigma_1}) \cdots a^+(e_{\sigma_i})a(e_{\rho_1}) \cdots a(e_{\rho_j})) \right\| \leq \frac{n}{\sqrt{(1 - |q|)^{i+j}}}
\]
if at least either \(i\) or \(j\) is nonnull.

Proof. Suppose first \(i > 0\). It is enough consider unit vectors \(\xi \in \mathcal{H}^\otimes m, m = j, j + 1, \ldots\). Put
\[
\xi_l := a^+(e_{\sigma_{2+k_l}}) \cdots a^+(e_{\sigma_{t+k_l}})a(e_{\rho_{1+k_l}}) \cdots a(e_{\rho_{j+k_l}})\xi.
\]
Notice that, by Theorem 3.1 of [2], \(\|\xi_l\| \leq 1/\sqrt{(1 - |q|)^{i+j-1}}\). In addition, \(\langle e_{\sigma_{1+k_l}}, e_{\sigma_{1+k_l}} \rangle = \delta_{l,t}\). By applying Lemma 1, we get
\[
\left\| \sum_{l=1}^{n} \alpha^{k_l} (a^+(e_{\sigma_1}) \cdots a^+(e_{\sigma_i})a(e_{\rho_1}) \cdots a(e_{\rho_j}))\xi \right\|^2
= \left\langle \sum_{l=1}^{n} a^+(e_{\sigma_{1+k_l}})\xi_l, \sum_{l=1}^{n} a^+(e_{\sigma_{1+k_l}})\xi_l \right\rangle \leq \frac{n}{(1 - |q|)^{i+j}}.
\]
If \(i = 0\) and then \(j \neq 0\) (i.e. we have only annihilators), the assertion follows by the first part as
\[
\sum_{l=1}^{n} \alpha^{k_l} (a(e_{\rho_1}) \cdots a^+(e_{\rho_j})) = \left(\sum_{l=1}^{n} a^+(e_{\rho_{j+k_l}}) \cdots a^+(e_{\rho_{j+k_l}}) \right)^*.
\]

The following theorem is the announced result on the strong ergodic property enjoined by the \(q\)-shift.

Theorem 3. The dynamical system \((\mathcal{R}_q, \alpha)\) is uniquely mixing, with the vacuum expectation \(\omega\) as the unique invariant state.

Proof. Let \(X \in \mathcal{R}_q\) have vanishing vacuum expectation. It is norm limit of elements as those treated in Proposition 2. By Proposition 2.3 of [6], and a standard approximation argument, it is enough to prove that
\[
\frac{1}{n} \left\| \sum_{l=1}^{n} \alpha^{k_l}(X) \right\| \longrightarrow 0
\]
for each \(X\) given by
\[
X = a^+(e_{\sigma_1}) \cdots a^+(e_{\sigma_i})a(e_{\rho_1}) \cdots a(e_{\rho_j})
\]
for which either \(i\) or \(j\) is nonnull, and for each sequence \(0 \leq k_1 < k_2 < \cdots < k_n < \cdots\) of increasing natural numbers. The result directly follows by Proposition 2. \(\square\)
Corollary 4. The dynamical system \((G_q, \alpha |_{g_q})\) is uniquely mixing, with the vacuum expectation \(\omega |_{g_q}\) as the unique invariant state.

Remark 5. The dynamical systems \((R_q, \alpha^{-1}), (G_q, (\alpha |_{g_q})^{-1})\) are uniquely mixing as well, with the vacuum expectation as the unique invariant state.

This can be shown by taking into account that
\[
\theta \alpha = \alpha^{-1} \theta, \quad \omega \circ \theta = \omega,
\]
where \(\theta(a(e_k)) := a(e_{-k}), k \in \mathbb{Z}\), is the "time reversal", \(a(e_k)\) being the \(k\)-annihilator.

It is known from [2] that \(G''_q\) is a \(\text{II}_1\)-factor. Moreover, it is well known and easily seen that \(R''_q\) is all of \(B(F_q)\). (A proof in the case of the Fock representation of finitely many \(a_i\) is found in [5]). For convenience, we provide a proof of this fact below. In any case, from this it follows that \((R_q, \alpha)\) is not conjugate to \((G_q, \alpha |_{g_q})\)

Proposition 6. For all \(-1 < q < 1\), the von Neumann algebra \(R''_q\) is all of \(B(F_q)\).

Proof. It will suffice to show that the rank-one projection \(P_\Omega\) onto the span of the vacuum vector belongs to \(R''_q\), because \(\Omega\) is cyclic for the action of \(R_q\) on \(F_q\). In the case of \(q = 0\), let us write \(v_i\) for \(a_i\) acting on \(F_0\). Thus, \(\{v_i^*\}_{i \in \mathbb{Z}}\) is a family of isometries with orthogonal ranges, and the sum \(\sum v_i^* v_i\) converges in strong operator topology to \(I - P_\Omega\). For the general case, we fix \(-1 < q < 1\) and we will refer to Propositions 3.2 and 3.4 and Remark 3.3 of [5]. These show that there is a unitary \(U : F_q \rightarrow F_0\) that sends the \(n\)-particle space to the \(n\)-particle space, and there is a positive operator \(M\) on \(F_q\) given by \(M \Omega = \Omega\) and
\[
M(f_1 \otimes \cdots \otimes f_n) = \sum_{k=1}^{n} q^{k-1} f_k \otimes f_1 \otimes \cdots \otimes f_{k-1} \otimes f_{k+1} \otimes \cdots \otimes f_n.
\]
Proposition 3.2 of [5] shows that \(M\) has range equal to all of \(F_q\). Moreover, we have \(U a_i U^* = v_i^* R\), where \(R = UM^{1/2} U^*\). Thus,
\[
U(\sum_{i \in \mathbb{Z}} a_i^+ a_i) U^* = R(\sum_{i \in \mathbb{Z}} v_i^* v_i) R = R(I - P_\Omega) R,
\]
where the sums converge in strong operator topology. From this, we see that the range projection of \(\sum_{i \in \mathbb{Z}} a_i^+ a_i\) is \(I - P_\Omega\). □

Notice that \((R_q, \alpha, \omega)\) is not conjugate to \((G_q, \alpha |_{g_q}, \omega |_{g_q})\). Indeed, \(\pi_\omega(R_q)'' \equiv R_q''\) is not isomorphic to \(\pi_\omega(G_q)'' \equiv G_q''\) as we have shown. Thus, we provide nontrivial examples of uniquely mixing \(C^*\)-dynamical systems for which the unique invariant state is faithful (case of the \(C^*\)-algebra \(G_q\) generated by the self-adjoint part for which the restriction of vacuum state is a faithful trace),
or when it is not faithful (case of the C^*--algebra \mathcal{R}_q). However, for all cases the associated GNS covariant representation is faithful. It was shown in [6] that there is no classical counterpart to this situation.

References

[1] Billingsley P. *Ergodic theory and informations*, John Wiley & Sons, New York, 1965.
[2] Bożejko M., Kummerer B., Speicher R. *q–gaussian processes: non–commutative and classical aspects*, Commun. Math. Phys. **185** (1997), 129–154.
[3] Bożejko M., Speicher R. *An example if a generalized Brownian motion*, Commun. Math. Phys. **137** (1991), 519–531.
[4] Bożejko M., Speicher R. *Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces*, Math. Ann. **300** (1994), 97–120.
[5] Dykema K., Nica A. *On the Fock representation of the q–commutation realtions*, J. Reine Angew. Math. **440** (1993), 201–212.
[6] Fidaleo F. *On strong ergodic properties of quantum dynamical systems*, preprint 2008 (arXiv:0802.2076).
[7] Fivel D. I. *Interpolation between Fermi and Bose statistics using generalized commutators*, Phys. Rev. Lett. **65** (1990), 3361–3364, Erratum **69** (1992), 2020.
[8] Frisch U., Borret R., *Parastochastics*, J. Math. Phys. **11** (1970), 364–390.
[9] Greenberg O. W. *Particles with small violations of Fermi or Bose statistics*, Phys. Rev. D **43** (1991), 4111–4120.
[10] Jewett R. I. *The prevalence of uniquely ergodic systems*, J. Math. Mec. **19** (1970), 717–729.
[11] Jørgensen P. E. T., Schmitt L. M., Werner R. F. *q–canonical commutation realtions and stability of the Cuntz algebra*, Pacific J. Math. **155** (1994), 131–151.
[12] Nou A. *Non injectivity of the q–defomed von Neumann algebras*, Math. Ann. **300** (2004), 17–38.
[13] Ricard É. *Factoriality of q–Gaussian von Neumann algebras*, Commun. Math. Phys. **257** (2005), 659–665.
[14] Shlyakhtenko D. *Some estimates for non–microstates free entropy dimension with applications to q–semicircular families*, Internat. Math. Res. Not. **2004**(51), 2757–2772.
[15] Śniady P., *Factoriality of the Bożejko–Speicher von Neumann algebras*, Commun. Math. Phys. **246** (2004), 561–567.
[16] Voiculescu D.V., Dykema K., Nica A., *Free Random Variables*, American Mathematical Society, 1992.

Kenneth Dykema, Department of Mathematics, Texas A&M University, College Station TX 77843–3368, USA
E-mail address: kdykema@math.tamu.edu

Francesco Fidaleo, Department of Mathematics, Texas A&M University, College Station TX 77843–3368, USA