Manganese(II) Complexes with Schiff Bases Immobilized on Nanosilica as Catalysts of the Reaction of Ozone Decomposition

Tetyana Rakytska1*, Alla Truba1, Evgen Radchenko2 and Alexander Golub2,3

Abstract

In this article, we submit the description of synthesis and identification of manganese(II) complexes with pyrogenic nanosilica-immobilized ($d_{av}=10 \text{ nm}; S_{sp}=290 \text{ m}^2/\text{g}$) hydroxyaldimine ligands ($\text{Mn(L)}_2/\text{Si}$): salicilaldiminopropyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphaldiminopropyl (L3); 2-hydroxy-3-methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophenoniminopropyl (L5); and 4-hydroxy-3-methoxybenzaldiminopropyl (L6). The ligands and complexes were characterized by UV-VIS and IR spectrometry. Nanocomposites consisting of complexes Mn(L)$_2$/Si showed a high catalytic activity in low-temperature ozone decomposition in the range of concentrations between 2.1×10^{-6} and $8.4 \times 10^{-6} \text{ mol/l}$. The number of catalytic cycles increased for isostructural pseudotetrahedral complexes Mn(L)$_2$/Si (L1–L5) in the following order: Mn(L3)$_2$ > Mn(L4)$_2$ > Mn(L1)$_2$ > Mn(L2)$_2$ > Mn(L5)$_2$. In the case of pseudooctahedral complexes with L6, the change of coordination polyhedral does not influence the kinetics and stoichiometric parameters of the reaction.

Keywords: Nanosilica, Manganese(II) complexes, Schiff bases, Catalytic ozone decomposition

Background

Dissolved complexes of 3d metals with Schiff bases, especially Mn(II, III) and Co(II) complexes, are used successfully as catalysts of many oxidation reactions of organic compounds [1]. Manganese-Schiff base complexes like square planar Mn(salen) (where salen is N,N'-bis(salicilald)ethylenediminiato(2-)anion) have shown considerable promise in superoxide dismutase (SOD) and catalase-like activity which could be a perspective for the creation of new medicines with wide applications [2]. However, difficulties of complex dimerization and extraction of the product and catalyst from solution, as well as the endeavor of modeling natural enzymatic systems, stimulated the research of synthesis of immobilized homogeneous catalysts of oxidation including complexes with Schiff bases [3]. At the beginning, synthetic polymeric materials based on styrene were widely used as carriers of the complexes [4–8]. There are efforts to use, instead of synthetic polymers, natural polymers as carriers for Schiff base complexes with, for example, chitosan that is easily degraded and well combined with human blood, which makes them promising in biomedical practice [9, 10]. Although anchored complexes demonstrated positive properties compared with homogeneous analogs (the raise in catalytic activity and the number of catalytic cycles, selectivity) [6, 7], however, they had lower stability after increasing the temperature of the reaction. Due to this, other avail-

* Correspondence: tlr@onu.edu.ua
1 Odesa I.I. Mechnikov National University, 2 Dvoryanska str., Odesa 65082, Ukraine
Full list of author information is available at the end of the article

© 2015 Rakytska et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
able carriers characterized by chemical, thermal, and mechanical stability can be widely applied. As such carriers, different forms of activated carbon [11–14], dispersed silica of various origins [15–18], zeolites [19–23], and ordered mesoporous molecular sieves, for example, MCM-41 and MCM-48 [24], can be used.

These carriers are characterized by a high internal surface; therefore, immobilization of complexes takes place on both the outer and inner surfaces. In the latter case, an access of reagents to the immobilized complexes and, consequently, the kinetics of the reaction are determined by internal diffusion factors. Intradi- fusional inhibition of the reaction with metal-Schiff base complexes can be avoided if non-porous pyrogenic nanosilica (aerosil) with developed outer surface is used as a carrier [25]. It should be noted that manganese(II) becomes manganese(III, IV) in the course of the synthesis of immobilized complexes with Schiff bases on the noted carriers, except nanosilica [25] and aminated silica [17].

Analysis of data obtained as a result of the study of catalytic properties of 3d metal complexes with Schiff bases in the oxidation of organic compounds [15, 17, 18, 20–22, 24, 26–28] and decomposition of ozone [29, 30] leads to the conclusion that the catalytic activity of the immobilized metal complexes in redox reactions can be controlled by the following: (i) optimization of the structural characteristics of the carrier and the method of synthesis for obtaining the homogeneous structure and composition of immobilized complexes, (ii) changes in the geometric configuration of an immobilized complex, and (iii) redistribution of the electron density at the central atom and the ligand leading to a significant change in redox potential of M^{n+1}/M^{n+} pair and, hence, to the reactivity and catalytic activity of the complexes.

All the abovementioned aspects of the synthesis and catalytic activity of nanosilica-immobilized manganese(II)-Schiff base complexes in the reaction of ozone decomposition have not been studied.

The aim of this work is to study the influence of the nature of pyrogenic nanosilica-immobilized Schiff bases on the structure and catalytic activity of manganese(II) complexes in the reaction of ozone decomposition.

Methods

Pyrogenic nanosilica (model A-300, $d_{av} = 10$ nm, $S_{sp} = 290$ m2/g) was purchased from VAT Oriana (Kalush, Ukraine) and was used for synthesis of γ-aminopropylsilica (APS) (the concentration of aminopropyl groups, $[H_2NC_3H_6]$, is 0.7 mmol/g SiO$_2$) by routine procedure [31, 32] used for the synthesis of ligands. Immobilized Schiff bases (L1–L6) salicilaldiminopro-pyl (L1); 5-bromosalicilaldiminopropyl (L2); 2-hydroxynaphtaldiminopropyl (L3); 2-hydroxy-3-methoxybenzaldiminopropyl (L4); 2-hydroxy-3,5-dichloroacetophoniminopropyl (L5); and 4-hydroxy-3-methoxybenzaldiminopropyl (L6) were obtained from APS by known methods by the following scheme [31].

\[
\text{L1} = \text{R1} - \text{OH}; \ \text{R2}, \text{R3}, \text{R4}, \text{R5}, \text{R6} - \text{H}; \\
\text{L2} = \text{R1} - \text{OH}; \ \text{R2}, \text{R3}, \text{R4}, \text{R6} - \text{H}; \ \text{R5} - \text{Br}; \\
\text{L3} = \text{R1} - \text{OH}; \ \text{R2}, \text{R5}, \text{R6} - \text{H}; \ \text{R3} + \text{R4} - (-\text{CH}=\text{CH}-\text{CH}=\text{CH}-); \\
\text{L4} = \text{R1} - \text{OH}; \ \text{R2} - \text{OCH}_3; \ \text{R3}, \text{R4}, \text{R5}, \text{R6} - \text{H}; \\
\text{L5} = \text{R1} - \text{OH}; \ \text{R2}, \text{R4} - \text{Cl}; \ \text{R3}, \text{R5} - \text{H}, \text{R6} - \text{CH}_3; \\
\text{L6} = \text{R1}, \text{R4}, \text{R5}, \text{R6} - \text{H}; \ \text{R2} - \text{OCH}_3; \ \text{R3} - \text{OH}.
\]
Complexes Mn(L)$_2$/Si (L = L1–L6) were obtained by sorption on modified nanosilica from the absolute alcohol solution of dehydrated MnCl$_2$; the concentration before sorption was 10^{-2} mol/l, and Mn$^{2+}$ (solution): L(surface) ratio was 1:2. Concentrations of the immobilized ligands and chemical compositions of the obtained complexes are shown in Table 1.

IR spectra were recorded by a Fourier transform Perkin Elmer Spectrum BX FT-IR instrument (400–4000 cm$^{-1}$) from transparent tablets obtained by the pressing of bare samples and the addition of KBr as well.

Diffuse reflectance spectra were recorded at room temperature in the wave number range of 30,000–11,000 cm$^{-1}$ by a Specord M-40 in stainless steel cells where the samples were pressed in.

The catalyst samples ($m = 0.2$ g) were tested using a gas flow setup with a fixed-bed reactor at 20 °C, relative humidity of 65 %, and ozone-air mixture (OAM) linear velocity of 6.2 cm/s. Ozone decomposition was monitored by measuring the final ozone concentration ($C_{O_3}^f$). The initial ozone concentrations ($C_{O_3}^{in}$) of ozone were measured either by a Tsylon-Reverse optical gas analyzer (detection limit of 1 mg/m3).

The reaction rate (W) was calculated based on the data of ozone concentration change after passing the OAM through the static bed of the catalyst using the following equation:

$$W = \frac{\omega}{m_{cat}} \left(\frac{C_{O_3}^{in} - C_{O_3}^f}{m_{cat}} \right), \text{mol/(g·s)},$$

where $\omega = 1.67 \times 10^{-2}$ is the OAM volume flow rate, l/s; $C_{O_3}^{in}$ and $C_{O_3}^f$ are the initial and final ozone concentrations, respectively; m_{cat} is the weight of a catalyst sample, g.

The initial reaction rate, W_{in}, was defined as W after 1 min of experiment.

The kinetic constants (k_i) at the beginning of the experiment (after 5–10 min) and at 50 % conversion of ozone ($k_{1/2}$) were found from the first-order rate equations:

$$k_1 = \frac{1}{\tau} \ln \frac{C_{O_3}^{in}}{C_{O_3}^f} \text{, s}^{-1},$$

$$k_{1/2} = \frac{0.69}{\tau_{1/2}}, \text{ s}^{-1}.$$

where $\tau_{1/2}$ is the ozone half-conversion time.

The amount of ozone that entered the reaction over the course of the experiment (Q_{exp} moles of O$_3$) was calculated as the area under the corresponding ozonogram plotted as a ΔC_{O_3} vs. r function. This magnitude was used for the calculation of the following stoichiometric coefficients: $n_1 = Q_{exp}/Q_L$ characterizing the number of moles of ozone per mole of an immobilized ligand (Q$_L$); $n_{Mn} = Q_{exp}/Q_{Mn}$ giving the number of moles of ozone per mole of manganese(II) in the complex; and $n_{CH} = Q_{exp}/Q_{CH}$ showing the extent of mineralization of the hydrocarbon part of a ligand (Q$_{CH}$) is the number of moles of ozone required for complete oxidation of the hydrocarbon part of a molecule calculated relying on the stoichiometry of reactions (4)–(8).

$$L_1/Si \quad 3C_7H_8 + 17O_3 = 21CO_2 + 9H_2O \quad (4)$$

$$L_2/Si \quad 6C_2H_6 + 33O_3 = 42CO_2 + 15H_2O \quad (5)$$

$$L_3/Si \quad 3C_11H_8 + 26O_3 = 33CO_2 + 12H_2O \quad (6)$$

$$L_4/Si \quad 3C_8H_8 + 20O_3 = 24CO_2 + 12H_2O \quad (7)$$

$$L_5/Si \quad 3C_9H_6 + 19O_3 = 24CO_2 + 9H_2O. \quad (8)$$

Results

Composition and Structure of Mn(II) Complexes

The spectral characteristics of Schiff bases immobilized on nanosilica, L/Si (L = L1–L6), and their complexes with manganese(II), Mn(L)$_2$/Si, are summarized in Table 2. In the IR spectra of all complexes except Mn (L5)$_2$/Si was observed a low-frequency shift of a peak (5–15 cm$^{-1}$) characterizing stretching vibrations of the imino group (C=N) compared with free ligands that indicates an electron density transfer in Mn–N=C bond. Furthermore, in the Mn(L4)$_2$/Si complex, alongside with a low-frequency shift of a $\nu_{C=N}$ band at 1650 cm$^{-1}$, a peak with lower energy appears at 1620 cm$^{-1}$ which can indicate the finding of ligand L4 in two different configurations. In the case of ligand L6 characterized by two absorption peaks at 1650 and 1600 cm$^{-1}$, a complex formation results in the high-frequency shift of the first of them whereas the second one remains without alteration.

Sample	C_L 103 mol/g	Concentration of Mn(II) C_{MnL_2} 103 mol/g	C_{MnL_2} wt%
Mn(L1)$_2$	7.0	0.60	0.30
Mn(L2)$_2$	7.0	0.80	0.44
Mn(L3)$_2$	7.0	0.17	0.09
Mn(L4)$_2$	7.0	0.80	0.46
Mn(L5)$_2$	7.0	1.60	0.66
Mn(L6)$_2$	7.0	0.70	0.38
In UV-VIS spectra after complexation, the high-frequency shift occurs for the peaks characterizing the electron density transfer in ligand ν_{π^*}, compared with a free immobilized Schiff base. Furthermore, in some cases, additional bands appear. Similar changes were observed in the spectra of complexes $\text{Co}(L)_2/\text{Si}$ and $\text{Cu}(L)_2/\text{Si}$ ($L = L1-L6$) [29, 30].

Sometimes, oxidation of manganese(II) to manganese(III) was observed, which was evidenced by the appearance of an asymmetrical low-intensity shoulder in the visible part of spectrum at 18,500 cm$^{-1}$ (510 nm) that can be relied to a d-d electron transfer in complexes of the square-pyramidal geometry [33–35].

The results of our research have shown that in the visible part of spectrum for all synthesized Mn(II) complexes, a d-d electron transfer is not detected which can be one of the proofs of a stable oxidation state of the complexing ion. A similar example is the synthesis of Mn(II)(salen) complexes on porous amino silica gel (Si-NH$_2$) [17]. A comparison of the spectral data for similar Cu(II) and Co(II) [29, 30] complexes and Mn(L)$_2$/Si complexes permits to conclude that, for manganese(II), polyhedron N_2O_2 also realizes in the ligand field of L1–L5 (Scheme 1).

Compared with a square planar structure for individual crystalline Schiff base complexes, complexes immobilized on a silica surface suffer a tetrahedral distortion due to the anchoring of a ligand foot to the nanoparticle surface, and that can be one of the causes of a raise in their reaction activity. The tetrahedral distortion of immobilized bis-ligand complexes (except the pseudo octahedral complex with L6) is confirmed by modeling the surface clusters by molecular-mechanical methods (MM2) and by semi-empirical quantum chemistry methods (PM3) as well.

L6, unlike the isomeric L4, cannot form chelate cycles, and coordination with the Mn(II) ion is carried out only by an azomethine group (Scheme 2), which leads to the high-frequency shift of the peak assigned to C=N group vibrations and the ligand charge transfer ($\pi - \pi^*$).

Thus, all synthesized Mn(L)$_2$/Si complexes differ by both the nature of the Schiff base immobilized on nano-silica and the structure of a coordination polyhedron. It is of interest to test the influence of the distinctive factors on the activity of manganese(II) complexes in the reaction of ozone decomposition.

Table 2: Spectral characteristics of nanosilica-immobilized Schiff bases and Mn(L)$_2$/Si complexes

Ligand complex	Wave numbers of peak maximums, cm$^{-1}$	
	$\nu_{\text{C=N}}$	$\nu_{\pi - \pi^*}$
L1	1635	24,600
Mn(L1)$_2$/Si	1630	24,900
L2	1642	29,700; 23,900; 19,400
Mn(L2)$_2$/Si	1630	29,800; 24,000; 19,600
L3	1640	23,600; 25,400
Mn(L3)$_2$/Si	1630	23,600; 25,400
L4	1650	23,600
Mn(L4)$_2$/Si	1645; 1620	24,800; 25,000
L5	1650	23,960
Mn(L5)$_2$/Si	1630	24,300
L6	1650; 1600	25,000
Mn(L6)$_2$/Si	1665; 1600	27,200; 25,600

Scheme 1 Structure of the manganese(II) complexes with ligands L1-L5

Scheme 2 Structure of the manganese(II) complex with ligands L6
Testing L/Si Nanocompositions in the Reaction of Ozone Decomposition

Ozone can interact practically with all organic compounds at low temperature. Hence, at the beginning, the kinetics of ozone decomposition by nanosilica-immobilized Schiff bases, L/Si (L = L1–L6), would be studied. Time (τ) dependences of the reaction rate (W) for ozone decomposition by the nanocompositions under study (Fig. 1) show that, regardless of the ligand nature, the type of kinetic curves is the same, i.e., the reaction rate decreases in time. In the case of L5 (curve 4), the reaction rate for the first 20 min decreases more drastically. The results of the kinetic and stoichiometric analysis of the obtained data will be discussed hereafter.

Testing Mn(L2)_2/Si Nanocompositions in the Reaction of Ozone Decomposition

Time dependences of the reaction rate in the case of ozone decomposition by Mn(L2)_2/Si complexes (L = L1–L6) are presented in Fig. 2. It can be seen that the duration of runs varies from 50 min for the L1 ligand up to 1000 min for the L4 ligand (that run was interrupted before the final reaction rate drop). A portion of the kinetic curves for the first 100 min (Fig. 2b) allows to make the differences between the activities of the manganese(II) complexes more clear. The data of Fig. 2b show that the Mn(L2)_2/Si complex demonstrates the lowest activity in the reaction: the reaction rate decreases to 0 \(\left(\frac{C_{O_3}}{C_{O_3}^0} \right) \) in 50 min. A high activity is demonstrated by the Mn(L3)_2/Si complex: the reaction rate decreases from 3.6 × 10^{-7} to 2.5 × 10^{-7} mol/(g·s) in 100 min; in other words, the ozone concentration at the reactor outlet decreases only by 50 mg/m³.

Manganese(II) complexes with L1, L4, L5, and L6 ligands occupy an intermediate position. A trend of ozone decomposition by manganese(II) complexes to occur in a steady-state mode can be seen in Fig. 2a. It is especially apparent for complexes containing L4 and L6 ligands. The duration of the stationary portion for Mn(L4)_2/Si exceeds 600 min.

During the reaction with ozone, the Mn(II) complexes, except for inactive Mn(L2)_2/Si, became brown or brownish black (Table 1). Such a color change indicates that Mn(II) turns into Mn(IV) in its oxide form which is a secondary catalyst of ozone decomposition less active than Mn(II) complexes: the reaction rate of ozone decomposition in the steady-state mode is low.

As an example, Fig. 3 demonstrates how the reaction rate for ozone decomposition by Mn(L1)_2/Si changes with increasing the initial ozone concentration in OAM from 2.1 × 10^{-6} to 8.4 × 10^{-6} mol/l (100–400 mg/m³). It is obvious that the initial reaction rate (\(W_{in} \)) measured after
1 min of OAM passing increases in proportion to $C_{O_3}^{\infty}$. It is evidence of the first-order reaction with respect to ozone.

Kinetic and Stoichiometric Parameters of the Reaction of Ozone Decomposition by L/Si and Mn(L)_{2}/Si Nanocompositions

To analyze the data obtained, kinetic (W, k_1, $r_{1/2}$, $k_{1/2}$) and stoichiometric (Q_{exp}, Q_{O_3}, n_L, n_{CH}, n_{Mn}) parameters of the reaction were considered. Their values in the case of $C_{O_3}^{\infty}$ varying in the presence of Mn(L1)_{2}/Si are summarized in Table 3. As can be seen, all stoichiometric parameters in the series increase with the rise in $C_{O_3}^{\infty}$. The first-order reaction rate constant, k_1, is invariant only at the beginning of the reaction. Then, it decreases, varies within the series, and is not equal to the reaction rate constant, $k_{1/2}$, corresponding to the time of half-conversion of ozone, $r_{1/2}$. The half-conversion time is shortened with $C_{O_3}^{\infty}$ increasing. These results allow the assumption that the reaction of ozone decomposition proceeds by the radical chain mechanism. Similar regularities were obtained for other Mn(L)_{2}/Si complexes (L = L2–L6).

Table 4 summarizes the results of the kinetic study of ozone decomposition by immobilization on nanosilica Schiff bases (Fig. 1) and their Mn(II) complexes (Fig. 2) at $C_{O_3}^{\infty} = 4.2 \times 10^{-6}$mol/l. It can be seen that the immobilized Schiff bases can independently decompose ozone. The values of their kinetic constant k_1 calculated for the first 10–20 min of the runs depend on the ligand nature and change in the order L5 < L2 < L3 < L1 < L6 < L4. To the moment of ozone half-conversion, $k_1 \neq k_{1/2}$. The stoichiometric coefficient, n_L, is less than 1 for L1–L3 ligands and exceeds 1 for L4–L6 ligands. Coefficient n_{CH} characterizing completeness of oxidation of the hydrocarbon part of the ligands does not exceed 30%, i.e., the complete decomposition of the ligands does not occur in one cycle.

The values of k_1 are similar for the free ligands and for their complexes with manganese(II). It can be caused by the fact that, at the beginning of the reaction, an ozone molecule interacts with the same reaction site, i.e., a C=N group. $k_{1/2}$ values do not coincide with k_1 ones indicating a change in the reaction order with respect to ozone due to occurring side chain-radical reactions.

Stoichiometric coefficients n_L increase for the manganese(II) complexes as compared with the corresponding ligands; the fact that $n_{Mn} >> 1$ (the maximum value is observed for Mn(L3)_{2}/Si) suggests a multiple participation of Mn(II) in the reaction of ozone decomposition and a catalytic behavior of the complexes.

A catalytic effect of manganese appears also in the increase of n_{CH} coefficient. The values of n_{CH} exceeding 100% can be due to additional ozone decomposition by manganese in its oxide form.

Judging from the results of kinetic investigations of ozone decomposition by Mn(L)_{2}/Si complexes, the nature of the ligands considerably affects the kinetic and stoichiometric parameters of the reaction. Since the nanocompositions obtained as a result of the synthesis differ in their manganese(II) content, it can be concluded that the immobilized Schiff bases differ in their affinity to metal ions. To compare the activity of complexes, the value of k_1 was calculated for 1 mol of the manganese ion. The catalytic activity of isostructural pseudotetrahedral bis-ligand complexes, Mn(L)_{2}/Si (L = L1–L5), determined in such a way, increases in the order Mn(L3)_{2} > Mn(L4)_{2} > Mn(L1)_{2} > Mn(L2)_{2} > Mn(L5)_{2}. The substitution of L4 for L6 changes the geometry of the Mn(II) coordination polyhedron from pseudotetrahedral (Scheme 1) to pseudoctahedral (Scheme 2). This change in the complex structure results in the more

Table 3 Effect of $C_{O_3}^{\infty}$ on kinetic and stoichiometric parameters of the reaction of ozone decomposition by Mn(L1)_{2}/Si ($C_{Mn(II)} = 6.0 \times 10^{-4}$; $C_{Si} = 7.0 \times 10^{-4}$ mol/g)

$C_{O_3}^{\infty}$, mol/l	W, 10^7, mol/(g·s)	k_1, 10^3, s^{-1}	$r_{1/2}$, s	Q_{exp}, mol	Q_{O_3}, mol	n_L	n_{CH}	n_{Mn}
2.1	1.7	3.6	6600	1.0	30.2	74.7	2.2	40.0
4.2	3.5	3.8	4800	1.4	42.1	74.7	3.0	56.0
8.4	7.0	3.8	3900	1.8	49.7	74.7	3.6	66.5

![Fig. 3](image-url) The time dependences of W for ozone decomposition by Mn(L1)_{2}/Si at $C_{O_3}^{\infty} = 10^3$, mol/l: 2.1 (1); 4.2 (2); 8.4 (3) ($C_{Mn(II)} = 6.0 \times 10^{-4}$ mol/g).
smooth decrease in the reaction rate at the beginning of the reaction for Mn(L6)2/Si than for Mn(L4)2/Si (Fig. 2a, b); the $r_{1/2}$ parameter for the first complex is eight times as much as that for the second complex (Table 3), and therefore, the steady-state mode of ozone decomposition is attained sooner for Mn(L4)2/Si (Fig. 2). The mentioned data allow us to conclude that the structure factor has some influence on the kinetics of ozone decomposition and reactivity of the complexes, but its effect is not governing. More likely, a determining factor is the effect of the redox potential of the Mn$^{4+}$/Mn$^{2+}$ pair on the reaction rate constant of ozone decomposition by the Mn(L2)2/Si complexes. Judging from the data obtained for crystalline complexes of manganese(II), this redox potential depends on the nature of ligands and substituents in both the aldehyde [26, 28, 36–39] and imine [40] components of the complexes. Because of some difficulties in the process of measuring redox potentials of nanosilica-immobilized manganese complexes, the influence of electronic effects of substituents on the reaction rate constant at the beginning of the reaction was analyzed using the classic Hammett equation. The catalytic activity of Mn (L)2/Si complexes decreases in the order of ligands L4 > L1 > L2 > L5, and that agrees with the increase in electron-acceptor properties of substituents in their benzene rings. In conformity with the Hammett equation, a linear dependence with the negative ρ value (-0.61) has been obtained. Such a dependence demonstrates the increase in the electron density on the central atom and the decrease in the reactivity of the complexes towards a strong oxidizer, namely, ozone.

Conclusions
The investigations have shown that the oxidation state of manganese(II) does not change upon the synthesis of its complexes with nanosilica-immobilized Schiff bases. L1–L5 ligands form the complexes with the same pseudotetrahedral coordination polyhedron, N$_2$O$_2$. The L6 ligand, because of its steric factors, forms the pseudooctahedral polyhedron, N$_2$Y$_4$ (Y—other ligands, namely, H$_2$O, Cl$^-$), and its bond with the central atom is realized only through nitrogen of imine group.

Nanocomposites represented by the immobilized Schiff bases, L/Si, and manganese(II) complexes, Mn(L)2/Si, demonstrated their activity in the reaction of low-temperature ozone decomposition. The reactivity of the nanosilica-immobilized Schiff bases increases in the order L5 < L2 < L3 < L1 < L6 < L4. Manganese(II), as a part of the complexes, shows its catalytic properties in the reaction of ozone decomposition. In the case of the isostructural Mn (L)2/Si complexes (L = L1–L5), the number of catalytic cycles (n_{Mn}) increases in the order Mn(L3)2 >> Mn(L4)2 > Mn(L1)2 > Mn(L2)2 > Mn(L5)2. The change in the geometry of a coordination polyhedron in the case of L4 and L6 does not considerably affect the kinetic and stoichiometric parameters of the reaction. The effect of a substituent in the initial aldehyde component of Schiff bases on the reaction rate constant in the case of ozone interaction with the complexes consisting of manganese(II) and L1, L2, L4, and L5 ligands can be described by the Hammett equation with $\rho = -0.61$.

Competing Interests
The authors declare that they have no competing interests.

Authors’ contributions
OG and ER performed the synthesis and identification of the nanocomposites consisting of manganese(II) complexes with immobilized Schiff bases. AT studied the ozone decomposition kinetics. TR developed the methodology of...
the analysis of reaction kinetic and stoichiometric parameters and generalized the obtained results. All authors read and approved the final manuscript.

Authors’ information
TR worked as a Head of the Department of Inorganic Chemistry and Chemical Ecology of the Odesa II. Mechnikov National University. Her research interests are nanotechnology, coordination chemistry, and catalysis of redox reactions. AT worked as a docent of the Department of Inorganic Chemistry and Chemical Ecology of the Odesa II. Mechnikov National University. Her research interests are nanomaterials and coordination compounds. OG works as a professor at the Department of Inorganic Chemistry of the Taras Shevchenko National University of Kyiv and as the Dean of the Faculty of Natural Sciences of the National University of Kyiv-Mohyla Academy. His research interests are nanotechnology, nanobiotechnology, and coordination chemistry.

Acknowledgements
The study was carried out with the support of the Ministry of Education and Science of Ukraine.

Author details
1 Odesa II. Mechnikov National University, 2 Dvoryanska str., Odesa 65082, Ukraine. 2 Taras Shevchenko National University of Kyiv, 64 Volodymyrska str., Kyiv 01601, Ukraine. 3 National University of Kyiv-Mohyla Academy, 2 Skovorody str., Kyiv 04655, Ukraine.

Received: 26 October 2015 Accepted: 26 November 2015
Published online: 08 December 2015

References
1. McGarrigle EM, Gilheany DG (2005) Chromium- and manganese-salen promoted epoxidation of alkenes. Chem Rev 105(3):1563–1602
2. Weiss R, Riley D (1999) Therapeutic aspects of manganese(II)-based superoxide dismutase mimics; in uses of inorganic chemistry in medicine. In: Furrell N (ed). The Royal Society of Chemistry, Cambridge, pp 77–99
3. Vos DE, Sels BF, Jacobs PA (2001) Immobilization of homogeneous oxidation catalysts. Adv Catal 46:1–67
4. Padmanabhan M, Varghese A (1999) Structural modification of copper(II) complexes with the use of polymer supports. Oriental J of Chemistry 15(1): 79–84
5. Suja NR, Yusuf KKM (2004) Cobalt(II), nickel(II), and copper(II) complexes of polystyrene-supported Schiff bases. J Appl Polymer Sci 91(6):3710–3719
6. Gupta KC, Abdulakhdar HK, Chand S (2004) Synthesis, characterization and catalytic activity of N, N-Di(3-allyl salicylidene)ethylene diamine cobalt(II) Schiff base complex anchored on a new polymer support. Chinese J Polymer Sci 22(1):31–42
7. Gupta KC, Abdulakhdar HK, Chand S (2003) Polymer-immobilized N,N′-bis(acetylamidene)ethylene diamine cobalt(II) Schiff base complex and its catalytic activity in comparison with that of its homogenized analogue. J Appl Polymer Sci 90(5):1398–1411
8. Santwana G, Beena S (2003) Synthesis of a polystyrene anchored Schiff base and its complexes with some 3d-transition metals. J Ind Chem Soc 80(9): 841–842
9. Hu DD, Shi QZ, Tang ZX, Fang Y, Kennedy JF (2001) CoSalen immobilized to chitosan and its electrochemical behavior. Carbohydr Polym 45(6):385–393
10. Chang Y, Wang Y, Zhu F, Wang R (2004) Preparation and catalytic properties of chitosan bound Schiff base complexes. Polym Adv Technol 15(2):384–386
11. Silva AR, Vital J, Figueiredo JL, Freire C, Castro B (2003) Activated carbons with immobilised manganese(III) salen complexes as heterogeneous catalysts in the epoxidation of olefins: influence of support and ligand functionalisation on selectivity and reusability. New J Chem 27(10):1511–1517
12. Silva AR, Martins M, Freitas MMA, Valente A, Freire C, Castro B et al (2002) Immobilisation of amino-functionalised nickel(II) Schiff base complexes onto activated carbon treated with triethanolamine. Micropor Mesop Mater 55(3):275–284
13. Silva AR, Freire C, Castro B, Freitas MMA, Valente A, Figueiredo JL (2001) Anchoring of a nickel(II) Schiff base complex onto activated carbon. Mediated by cyanamic chloride. Micropor Mesop Mat 46(2–3):211–221
14. Silva AR, Freitas MMA, Freire C, Castro B, Figueiredo JL (2002) Heterogenization of a functionalized copper(II) Schiff base complex by direct immobilization on an oxidized activated carbon. Langmuir 18(21):8017–8024
15. Murphy EF, Ferri D, Baker A (2003) Novel routes to Cu(salicylaldimine) covalently bound to silica: combined pulse EPR and site attenuated total reflection–IR studies of the immobilization. Inorg Chem 42(8):2559–2571
16. Chisem IC, Raftert J, Sheikh MT, Chisem J, Clark JH, Plucknett R et al (1998) Catalytic oxidation of alky aromatics using a novel silica supported Schiff base complex. Chem Commun 18:1949–1950
17. Feng HX, Wang RM, He YF, Lei ZQ, Wang YP, Xia CG et al (2000) Preparation and catalysis of porous silica supported metal Schiff-base complex. J Mol Catal A: Chemical 159:25–29
18. Murphy EF, Schmitt L, Burg T, Maciejewski M, Baker A, Gunther D et al (2001) Nondestructive sol-gel immobilization of metals(salen) catalysts in silica aerogels and xerogels. Chem Mater 13(4):1296–1304
19. De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chem Rev 102(8):3615–3640
20. Saha PK, Banerjee S, Saha S, Mukherjee AK, Sivasanker S, Koner S (2001) Immobilization of a metal complex in Y-zeolite matrix: synthesis, X-ray single-crystal, and catalytic activities of a copper (Schiff-base)-Y zeolite based hybrid catalyst. Bull Chem Soc Jpn 74(7):709–714
21. Deshpande S, Srinivas D, Ratnasamy P (1999) EPR and catalytic investigation of Cu(salen) complexes encapsulated in zeolites. J Catalysis 188(2):261–269
22. Koner S (1998) Novel color isomerism and catalytic activities of Cu(salen) complex encapsulated in a zeolitic matrix. Chem Commun 5:599–604
23. Połtowicz J, Parnon K, Tabor E, Haber J, Adamski A, Szoka Z (2006) Metallosalen complexes immobilized in zeolite NaX as catalysts of aerobic oxidation of cyclooctane. Appl Catal Gen 299:235–242
24. Kim GJ, Shin JH (1999) The synthesis of new chiral salen complexes immobilized on MCM-41 by grafting and their catalytic activity in the asymmetric borohydride reduction of ketones. Catal Lett 63:205–212
25. Rakitskaya TL, Truba AS, Raskola LA, Radchenko EA, Strizhak AV, Golub AA (2013) Antiozonant activity of the silica modified with 3d metal complexes. Rus J Gen Chem 83(2):360–367
26. Bhadbidhe MW, Srinivas D (1993) Effects on molecular association, chelate conformation, and reactivity toward substitution in copper Cu(5-x)salen complexes, salen= N,N′-ethylenebis(salicylaldiminato), X = H, CH3O, and Cl: synthesis, X-ray structures, and EPR investigations. Inorg Chem 32(28): 6122–6130
27. Tas E, Aslanoglu M, Güler M, Ulusoy M (2004) Synthesis, characterization and electrochemical properties of copper(II) complexes with novel bidentate salicylaldimines derived from 3,5-Di-t-butyl-2-hydroxybenzaldehyde. J Coord Chem 57(7):583–589
28. Chellamani A, Kulanthaipandi S, Rajagopal S (1999) Oxidation of aryl methyl sulfoxides by oxo(salen)manganese(V) complexes and the reactivity-selectivity principle. J Org Chem 64(7):2232–2239
29. Rakitskaya TL, Truba AS, Raskola LA, Bandurko AY, Golub AA (2006) Effect of the structure of copper(II) complexes adsorbed on the surface of SiO2 on their catalytic activity in ozone decomposition. Theoret Experim Chem 42(1):660–666
30. Rakitskaya TL, Truba AS, Golub AA, Kisse TA, Radchenko EA (2011) Effect of composition and structure of cobalt(II) complexes with oxo and imino-propyloxoalaoils on their catalytic activity in the decomposition of ozone. Theor Experim Chem 47(5):337–341
31. Tertyh VA, Chuklko VA, Khrenovski VA, Neimark IE (1968) Investigation of adsorption properties of amino organic silica by IR spectroscopy. Zh Fiz Khim 42(7):1758–1761
32. Yatsimirski KB, Chuklko AA, Filipov AP (1977) Copper, molybdenum, and palladium complexes with nitrogen-containing ligands anchored on a silica surface. The Proceedings of the USSR Academy of Sciences 237(5):1137–1139
33. Donovan A, Formentin P, Garcia H, Sabater MJ (2000) Combined electrochemical and EPR studies of manganese Schiff base complexes encapsulated within the cavities of zeolite Y. Eur J Inorg Chem 2000(6):1399–1404
34. Kureishi R, Ahmad I, Khan NH, Abdi SHP, Pathik K, Jasa RV (2006) Chiral Mit(III) salen complexes covalently bonded on modified MCM-41 and SBA-15 as efficient catalysts for enantioselective epoxidation of nonfunctionalized alkenes. J Catal 238(1):134–141
35. Silva AR, Wilson K, Clark JH, Freire C (2006) Covalent attachment of chiral manganese(II) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Micropor Mesop Mater 91(1–3):126–138
36. Boggess RK, Heghes W, Coleman WM, Taylor LT (1980) Preparation and electrochemical studies of tetradentate manganese(III) Schiff base complexes. Inorg Chem Acta 38(2):183–189
37. Venkataramanan NS, Prem Singh S, Rajagopal S, Pitchumani K (2003) Electronic and steric effects on the oxygenation of organic sulfides and sulfoxides with oxo(salen)chromium(V) complexes. J Org Chem 68(19): 7460–7470
38. Palucki M, Finney NS, Pospisil PJ, Güler ML, Ishida T, Jacobsen EN (1998) The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction. J Am Chem Soc 120(5):948–954
39. Yıldırım LT, Emreğül KC, Kurtaran R, Atakol O (2002) Structure and electrochemical behaviour of bis[N-(4-methylphenyl)salicylaldimine]copper(II) N,N-dimethylformamide solvate. Cryst Res Technol 37(12):1344–1351
40. Samide MJ, Peters DG (1998) Electrochemical reduction of copper(II) salen at carbon cathodes in dimethylformamide. J Electroanal Chem 443(1):95–102

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com