Scale-invariant Majorana dark matter in leptoquark-Higgs portals

Ahmad Mohamadnejad∗

1Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr 3314767653, Iran

April 9, 2019

Abstract

We study a classically scale-invariant extension of the Standard Model (SM) containing three additional fields, a vector leptoquark ($V_μ$), a real scalar ($φ$), and a neutral Majorana fermion ($χ$) as a dark matter (DM) candidate. The scalar $φ$ (scalon) and Majorana fermion $χ$ are both singlets under the SM gauge group, while $V_μ$ has (3, 1, 2/3) quantum numbers under the $SU(3)_c \times SU(2)_L \times U(1)_Y$. The Majorana DM couples to the SM sector via both Higgs and leptoquark portals. We perform a scan over the independent parameters to determine the viable parameter space consistent with the Planck data for DM relic density, and with the PandaX-II and LUX direct detection limits for the spin-independent (SI) and spin-dependent (SD) DM-nucleon cross section. The model generally evades indirect detection constraints while being consistent with collider data.

1 Introduction

Cosmological observations implies that DM is the majority of matter in the Universe. It is not made of SM particles and understanding its nature is one of the most important issues at the frontier of particle physics [1].

On the other hand, SM is expected to be valid up to energies of the order of the Planck scale where vacuum stability problem arises. One solution to this problem is the supersymmetric extensions of SM where the Higgs mass is radiatively stable down to the scale of supersymmetry breaking. However, the results from LHC have been negative for supersymmetry so far. Another solution is scale-invariant extensions of SM with no dimensionful parameter [2]. In scale-invariant extensions of SM, all physical masses arise via Coleman-Weinberg mechanism [3]. This mechanism works only if extra bosonic degrees of freedom are added to SM with sizable couplings. Scale-invariant extensions of SM are also a generic feature of many DM models with bosonic [4–18] and fermionic [19–25] DM candidates.

∗a.mohamadnejad@ut.ac.ir
In this paper, we study a scale-invariant extension of SM with vector leptoquarks as extra bosonic degrees of freedom mediating lepton-quark interactions. Leptoquarks are a natural result of unification of quarks and leptons [26] initially proposed in the Pati-Salam model [27]. Leptoquarks would turn leptons into quarks generating new physical effects. Leptoquarks also appear in SUSY models with R-parity violation [28–30], and in composite models of leptons and quarks [31]. Besides vector leptoquarks, we also introduce a Majorana DM candidate and a real scalar field which is needed in order to get mass term for Majorana DM after symmetry breaking. In this model, DM mediates with SM via Higgs and leptoquark portals.

Leptoquarks can explain some deviations from the SM such as anomalous B decays observed in BaBar [32, 33], Belle [34] and LHCb [35–37], a violation in lepton universality [38] and a deviation from the SM prediction of \((g - 2)_\mu\) [39]. It is also shown that all three anomalies could be interpreted via the addition of a single scalar leptoquark [40]. DM models with scalar leptoquark portal can be found in [41–44]. Vector leptoquark portal is also studied in [45]. In our scenario, vector leptoquark is not a gauge field, however, it gets mass via its coupling to scalar fields. Particularly, we study the case in which vector leptoquark couples to scalon and the spontaneous symmetry breaking makes it massive. Some attempts to write a model with gauge leptoquarks can be found in [46, 47]. Lately, the vector leptoquark has also been considered as a possible explanation of the anomalies observed in charged-current and neutral current transitions of B mesons [48–52].

Majorana DM can leave detectable signals at direct detection experiments. Both spin-independent (SI) and spin-dependent (SD) DM-nucleon scattering occur in our model. It is because Majorana DM interacts with SM via Higgs portal (with SI DM-nucleon scattering) as well as vector leptoquark portal (with SD DM-nucleon scattering). Hence, our model provides more opportunity to be probed compared to a Majorana fermion DM with one portal either Higgs or vector leptoquark. The PICO [53] and LUX [54] data for DM-nucleon SD cross section allows the region compatible with relic density and does not constrain the model. However, the direct detection experiments such as XENON1T [55, 56], LUX [57], and PandaX-II [58] impose bounds on the SI DM-nuclei cross section. We also show that indirect detection experiments such as Fermi Large Area Telescope (Fermi-LAT) [59] and Alpha Magnetic Spectrometer (AMS) [60] do not constrain our model. Finally, our model is compatible with collider physics.

The paper is organized as follows. In section 2, we introduce the model. Section 3 contains the calculation of DM relic density. In section 4, the SI and SD DM-nucleon cross section for direct detection experiments as well as DM indirect detection are studied. Finally, our conclusion including a discussion on recent collider bounds comes in section 5.
2 The model

We begin with constructing a model in which all couplings are dimensionless. The fields gain mass via radiative Coleman-Weinberg symmetry breaking at one-loop level \[3\]. Therefore, the model is a scale-invariant extension of SM without Higgs mass term.

Apart from SM fields, the model contains three new fields which two of them are singlets under SM gauge transformation. These two fields are the real scalar ϕ and the Majorana spinor χ. The other field, V_μ, is a vector leptoquark which has $(3, 1, 2/3)$ quantum numbers under the $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge group. This vector leptoquark does not lead to proton decay and it is also a part of the gauge sector of the Pati-Salam model \[27\].

Putting together these fields, and regarding scale invariance, gauge invariance, and renormalization conditions, we get

\[
\mathcal{L} \supset \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} i \chi \gamma_\mu \partial_\mu \chi - \frac{1}{2} V^{\mu \nu} V_{\mu \nu} - \frac{1}{6} \lambda_H (H^\dagger H)^2 - \frac{1}{4!} \lambda_\phi \phi^4 - \lambda_H \phi^2 H\dagger H
\]

\[- \lambda_{HV} H^\dagger H V^\mu V_\mu - \lambda_\phi V^2 V_\mu V^\mu - \frac{1}{2} g_\phi \phi \chi \chi
\]

\[- \sum_{\text{generations}} (g_L \bar{\chi}_L \gamma_\mu V_\mu l_L + g_R \bar{d}_R \gamma_\mu V_\mu d_R + g_\chi \bar{u}_R \gamma_\mu V_\mu \chi + \text{h.c.}), \quad (2.1)
\]

where

\[
V_{\mu \nu} = D_\mu V_\nu - D_\nu V_\mu,
\]

\[
D_\mu = \partial_\mu - ig_\mu \frac{\lambda_u}{2} G^u_\mu - ig_Y Y B_\mu. \quad (2.2)
\]

Note that in DM models with leptoquark portal, we do not necessarily need the real scalar field, however in our scenario, because of scale invariance condition, we need this field in order to get mass term for Majorana spinor after symmetry breaking. Therefore, DM interacts with SM particles via both Higgs and vector leptoquark portals.

The fields of (2.1) and their symmetry properties has been listed in table 1. In the summation of (2.1), for simplicity, we have avoided mixing terms between generations. To keep it simple, we have also assumed the couplings g_L, g_R, and g_χ is independent of generations.

In our model Majorana spinor can be a DM candidate if $M_\chi < M_V$, otherwise the two-body decay of χ to vector leptoquark V and up-type anti-quarks occurs at tree level and Majorana particle will be unstable. Even if $M_\chi < M_V$, in the case of non-zero couplings g_L and g_R, still tree level three-body decay and one-loop induced decay of χ can occur (see figure 1). To evade such decays, g_L and g_R in (2.1) should be zero or highly suppressed \[61–63\]. Here, we introduce a Z_2 discrete symmetry under which only vector leptoquark and Majorana spinor are odd. Therefore, g_L and g_R should be zero and Majorana particle can serve as a cosmological stable DM candidate.
Field	Symbol	\((SU(3)_{c}, SU(2)_{L}, U(1)_{Y})\)
Scalon	\(\phi\)	\((1, 1, 0)\)
Higgs doublet	\(H\)	\((1, 2, \frac{1}{2})\)
Left-handed leptons	\(l_{L}\)	\((1, 2, -\frac{1}{2})\)
Right-handed leptons	\(l_{R}\)	\((1, 1, -1)\)
Left-handed quarks	\(q_{L}\)	\((3, 2, \frac{1}{2})\)
Right-handed quarks (up-type)	\(u_{R}\)	\((3, 1, \frac{2}{3})\)
Right-handed quarks (down-type)	\(d_{R}\)	\((3, 1, -\frac{2}{3})\)
Majorana DM	\(\chi\)	\((1, 1, 0)\)
Vector leptoquark	\(V_{\mu}\)	\((3, 1, \frac{2}{3})\)
\(U(1)_{Y}\) electroweak boson field	\(B_{\mu}\)	\((1, 1, 0)\)
Gluon	\(G_{\mu}^{a}\)	\((8, 1, 0)\)

Table 1: List of fields in (2.1) and their symmetry properties.

In unitary gauge, we have \(H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ h \end{pmatrix}\), and the potential terms (line 2 in (2.1)) become:

\[- V(h, \phi) = -\frac{1}{4!} \lambda_{H} h^{4} - \frac{1}{4!} \lambda_{\phi} \phi^{4} - \frac{1}{2} \lambda_{\phi H} h^{2} \phi^{2}. \tag{2.3}\]

Vacuum expectation values, \(\langle h \rangle = \nu_{h}\) and \(\langle \phi \rangle = \nu_{\phi}\), correspond to local minimum of \(V(h, \phi)\).

The potential \(V(h, \phi)\) has local minimum if

\[\frac{\partial V(h, \phi)}{\partial h} \bigg|_{\nu_{h}, \nu_{\phi}} = \frac{\partial V(h, \phi)}{\partial \phi} \bigg|_{\nu_{h}, \nu_{\phi}} = 0, \tag{2.4}\]

\[\frac{\partial^{2} V(h, \phi)}{\partial h^{2}} \bigg|_{\nu_{h}, \nu_{\phi}} > 0, \tag{2.5}\]

\[\left(\frac{\partial^{2} V(h, \phi)}{\partial h^{2}} \bigg|_{\nu_{h}, \nu_{\phi}} \right) \left(\frac{\partial^{2} V(h, \phi)}{\partial \phi^{2}} \bigg|_{\nu_{h}, \nu_{\phi}} \right) - \left(\frac{\partial^{2} V(h, \phi)}{\partial h \partial \phi} \bigg|_{\nu_{h}, \nu_{\phi}} \right)^{2} > 0. \tag{2.6}\]

Figure 1: Some decay modes of Majorana particle.
Eq. (2.4) leads to \(\lambda_H \phi = (3! \lambda \phi H)^2 \) and the following constraint

\[
\frac{\nu_h}{\nu_\phi} = \sqrt{\frac{3! \lambda \phi H}{\lambda_H}}. \tag{2.7}
\]

Vacuum stability, constraints (2.4) and (2.5), implies that \(\lambda_H > 0, \lambda_\phi > 0, \) and \(\lambda \phi H < 0. \) Constraint (2.7) defines a stationary line or a local minimum line, known as flat direction, in which \(V(\nu_h, \nu_\phi) = 0. \) Therefore, the one-loop effective potential dominates along the flat direction. In this direction, due to one-loop corrections, a small curvature appears with a minimum as the vacuum expectation value \(\nu^2 = \nu_h^2 + \nu_\phi^2 \) characterized by a RG scale \(\Lambda. \) Therefore, we substitute \(h \rightarrow \nu_h + h \) and \(\phi \rightarrow \nu_\phi + \phi \) as a result of spontaneous symmetry breaking where \(\nu_h = 246 \text{ GeV}. \)

We define the mass eigenstates \(H_1 \) and \(H_2 \) as

\[
\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ \phi \end{pmatrix}. \tag{2.8}
\]

The scalar field \(H_2 \) is along the flat direction, thus \(M_{H_2} = 0 \) at the tree level, while \(H_1 \) is perpendicular to the flat direction and we consider it as the SM-like Higgs observed at the LHC with \(M_{H_1} = 125 \text{ GeV}. \) We have these constraints following the symmetry breaking:

\[
\nu_\phi = \frac{M_\chi}{g_\phi}, \quad \tan \alpha = \frac{\nu_h}{\nu_\phi}, \quad \lambda_H = \frac{3 M_{H_1}^2 h^2}{\nu_h^2} \cos^2 \alpha, \quad \lambda_\phi = \frac{3 M_{H_1}^2 \phi^2}{\nu_\phi^2} \sin^2 \alpha, \quad \lambda_{\phi H} = \frac{M_{H_1}^2}{4 \nu_h \nu_\phi} \sin 2 \alpha, \quad \lambda_{\phi V} = -\frac{1}{2} \lambda_{HV} \frac{\nu_h^2}{\nu_\phi^2} - \frac{M_V^2}{\nu_\phi^2}, \tag{2.9}
\]

where \(M_\chi \) and \(M_V \) are the mass of Majorana DM and vector leptoquark after symmetry breaking. In the next sections, to get a more minimal model, we put \(\lambda_{HV} = 0. \) Note that non-zero \(\lambda_{HV} \) does not add any new vertex to our model. Therefore, according to constraints (2.9), we consider four free parameters in our model:

\(M_\chi, M_V, g_\chi, g_\phi. \)

As we mentioned before, the scalon field \(H_2 \) is massless in tree level. However, using Gildener-Weinberg mechanism \([64]\), the radiative corrections give a mass to \(H_2. \)

The one-loop effective potential, Along the flat direction, takes the form

\[
V_{1-\text{loop}}^{\text{eff}} = a H_2^4 + b H_2^4 \ln \frac{H_2^2}{\Lambda^2}, \tag{2.10}
\]

where \(a \) and \(b \) are dimensionless constants given by

\[
a = \frac{1}{64 \pi^2 (\nu_h^2 + \nu_\phi^2)^2} \sum_{k=1}^{n} g_k M_k^4 \ln \frac{M_k^2}{\nu_h^2},
\]

\[
b = \frac{1}{64 \pi^2 (\nu_h^2 + \nu_\phi^2)^2} \sum_{k=1}^{n} g_k M_k^4. \tag{2.11}
\]
and $M_k (g_k)$ is the tree-level mass (the internal degrees of freedom) of the particle k. Note that g_k is positive (negative) for bosons (fermions).

In terms of the one-loop VEV ν, effective potential along the flat direction is given by

$$V_{\text{eff}}^{1-\text{loop}} = b H^4 \left(\ln \frac{H^2}{\nu^2} - \frac{1}{2} \right),$$

and the scalon mass will be

$$M_{H_2}^2 = \frac{d^2 V_{\text{eff}}^{1-\text{loop}}}{dH^2} \bigg|_{\nu} = 8b\nu^2. \tag{2.13}$$

According to (2.11) and (2.13), the mass of scalon can be expressed as

$$M_{H_2}^2 = \frac{1}{8\pi^2(\nu_h^2 + \nu_\phi^2)} \left(M_{H_1}^4 + 6M_W^4 + 3M_Z^4 + 18M_V^4 - 12M_t^4 - 2M_\chi^4 \right), \tag{2.14}$$

where M_W, M_Z are the masses of W and Z gauge bosons, respectively, and M_t is the mass of top quark.

To get spontaneous symmetry breaking, the minimum of the one-loop potential $V_{\text{eff}}^{1-\text{loop}}$ should be negative, thus, b should be positive. Note that the presence of vector leptoquark is essential to get positive b. Indeed, to get a positive b we should have $M_V \gtrsim 150$ GeV (see figure 2). According to figure 2, for $M_\chi \lesssim 150$ GeV, the constraint $M_\chi < M_V$, which avoids DM decay, is automatically satisfied due to symmetry breaking condition, i.e., $b > 0$. For $M_\chi \gtrsim 150$ GeV we put aside a part of mass parameter space by hand in order to avoid DM decay.

3 Relic density

If DM does not interact sufficiently in the early Universe, it will fall out of local thermodynamic equilibrium and it is said to be decoupled. This happens when DM interaction rate drops below
the expansion rate of the Universe. To calculate DM relic density one should use Boltzmann equation in which DM annihilation cross sections is needed. Feynman diagrams for all possible DM annihilation channels is depicted in figure 3 (a). DM annihilates through s-channel in Higgs portal and t-channel in leptoquark portal. Since Majorana particle is its own antiparticle, for every t-channel annihilation there is also a u-channel diagram. In our model, coannihilation channels also exist (see figure 3 (b)).

\[\frac{dn_\chi}{dt} + 3Hn_\chi = -\left< \sigma_{\text{eff}}|v_{\text{rel}}| \right>(n_\chi^2 - n_{\chi,\text{eq}}^2), \]

where \(n_\chi \) is the number density of Majorana DM, \(H \) is the Hubble parameter, and \(< \sigma_{\text{eff}}|v_{\text{rel}}| > \) is the thermally averaged of effective annihilation cross section (multiplied by relative velocity). Effective annihilation \(\sigma_{\text{eff}} \) is given by [65]

\[\sigma_{\text{eff}} = \sum_{i,j} \sigma_{i,j} \frac{g_i g_j}{g_{\text{eff}}^2} (1 + \Delta_i)^{3/2} (1 + \Delta_j)^{3/2} e^{-\frac{M_\chi}{T} \Delta_i \Delta_j}, \]

where the double sum is over all particle species with \(\sigma_{1,1} \) being Majorana DM annihilation cross section and \(\sigma_{i,j} \) is the cross section for the coannihilation of species \(i \) and \(j \) (or self-annihilation in the case of \(i = j \)) into Standard Model particles. The quantities \(\Delta_i = (M_i - M_\chi)/M_\chi \) is the fractional mass splittings between the species \(i \) and the Majorana DM and \(g_{\text{eff}} = \sum_i g_i (1 + \Delta_i)^{3/2} e^{-\frac{M_\chi}{T} \Delta_i} \). In order to calculate Majorana DM relic density including coannihilations channels, we use the public numerical code micrOMEGAs [66]. The Lagrangian (2.1) has been implemented through LanHEP [67] package. We use DM relic density \(\Omega_{DM} h^2 = \)
0.120±0.001) reported by Planck [68] as a constraint in scanning the four dimensional parameter space of the model. The result is depicted in figure 4.

![Figure 4: The parameter space of the model constrained by DM relic density as reported by Planck collaboration [68].](image)

4 Direct and indirect detection

Majorana DM can elastically scatter off the nucleus. The momentum transfer gives rise to a nuclear recoil which might produce a signal in direct detection experiments. In our model, this signal can arise from the Feynman diagrams shown in figure 5.

![Figure 5: Feynman diagrams responsible for DM-nucleon scattering.](image)

Both spin-dependent (SD) and spin-independent (SI) DM-nucleon scattering exist in our model. The left (right) diagram of figure 5 leads to SD (SI) scattering which can be described by effective axial-vector (scalar) Lagrangian $L_A = c_A \bar{\chi} \gamma_\mu \gamma^5 \chi \gamma^\mu \gamma^5 u$ ($L_S = c_{S,q} \bar{\chi} \gamma \chi \bar{q} q$). To obtain c_A and $c_{S,q}$ we should integrate out the intermediate particles shown in Feynman diagrams 5. The result is

$$c_A = -\frac{g_\chi^2}{4(M_V^2 - M_\chi^2)} \quad c_{S,q} = -\frac{m_q}{4\nu_h} g_\phi \sin 2\alpha \left(\frac{1}{M_{H_1}} - \frac{1}{M_{H_2}}\right), \quad (4.1)$$
Having coefficients c_A and $c_{S,q}$, SD and SI DM-nucleon cross sections become [69]

$$
\sigma^{SD} = \frac{16\mu_{N\chi}^2}{\pi} c_A^2 (\Delta_N^N)^2 J_N(J_N + 1),
$$
(4.2)

$$
\sigma^{SI} = \frac{4\mu_{N\chi}^2 M_N^2 c_{S,q}^2}{\pi m_q^2} f_N^2,
$$
(4.3)

where $\mu_{N\chi} = M_\chi M_N/(M_\chi + M_N)$ is the reduced mass of DM and nucleon, $J_N = \frac{1}{2}$ is the angular momentum of the nucleon, $\Delta_N^N = 0.78 \pm 0.02$ ($\Delta_N^N = -0.48 \pm 0.02$) is the u-quark spin fraction in the proton (neutron) [70,71], and $f_N \simeq 0.3$ parametrizes the Higgs-nucleon coupling.

Figure 6: The direct detection SD cross section vs DM mass for (a) DM-neutron and (b) DM-proton scattering.

Figure 7: (a) SI DM-nucleon cross section and (b) DM total velocity-averaged annihilation cross section vs DM mass.

Direct detection experiments put upper limits on SD and SI DM-nucleon cross sections. We calculate these cross sections using micrOMEGAs package. In order to constrain the model, we use PandaX-II [58] and LUX [54] experiments for SI and SD DM-nucleon scattering, respectively. In figure 6 we have depicted SD DM-nucleon cross section for the parameter space compatible
with DM relic density. As it is seen in this figure, the model can evade the upper limit of SD DM-nucleon cross section. However, a small part of the parameter space can be probed by future LZ experiment \[72\]. Unlike the upper limit of SD DM-nucleon cross section, as it is depicted in \(7\) (a), PandaX-II upper limit of SI DM-nucleon scattering excludes some part of the parameter space already constrained by DM relic density. In this figure, we have also shown the neutrino floor \[73\] which limits the parameter space from below from the irreducible background of coherent neutrino-nucleus scattering.

Using \texttt{micrOMEGAs}, we have also calculated DM total annihilation cross section for the parameters which are already constrained by DM relic density. The result is depicted in figure \(7\) (b). According to the measured DM relic density, DM particle should have a total pair annihilation cross section of \(\langle \sigma v \rangle \sim \mathcal{O}(10^{-26})\) cm\(^3\)/s. Indirect detection experiments put constraint on DM annihilation cross section for different channels which excludes \(\langle \sigma v \rangle \gtrsim 10^{-26}\) cm\(^3\)/s. Our model generally evades this constraint. This is because, the s-wave annihilation of Majorana DM to SM products via Higgs portal is absent. Therefore, the DM annihilation cross section in our model is only large for DM annihilation via vector leptoquark portal with large \(g_\chi\).

5 Conclusion

In this paper we discussed a classical scale-invariant extension of SM containing a Majorana DM candidate. DM interacts with SM via two portals, namely, Higgs and vector leptoquark portals. In the leptoquark sector, we have assumed the DM couples to all generations of up-type quarks with equal coupling. We have also avoid interactions which lead to DM decay by constraining \(M_\chi < M_V\) and \(g_L = g_R = 0\). To get a minimal theory, we further assume \(\lambda_{HV} = 0\). Therefore, we left with four independent parameters which we choose \(M_\chi, M_V, g_\chi\), and \(g_\phi\). To put a constraint on these parameters we used Planck data for DM relic density, and LUX and PandaX-II upper bounds for SD and SI DM-nucleon cross sections, respectively. The parameter space constrained by DM relic density evade SD DM-nucleon cross section upper limit, however SI DM-nucleon cross section excludes some part of the parameter space. We have also shown that our model generally can evade indirect detection constraints because of domination of p-wave DM annihilation cross section in Higgs portal. Therefore, for the parameter space which is already constrained by DM relic density, the annihilation cross section is not large enough to give a signal in indirect detection experiments.

Finally, collider searches for vector leptoquarks via pair and/or single production also impose bound on the leptoquark mass. CMS 13 TeV data \[74\] excludes \(M_V \lesssim 1\) TeV \[49\]. Furthermore, SM Higgs have admixtures of the scalon which can also bound the parameter space. LHC constraint on the mixing angle between SM Higgs and scalon is \(\sin \alpha \lesssim 0.44\) \[75, 76\]. This bound is compatible with parameter space satisfying DM relic density.
Acknowledgment

This work is supported financially by the Young Researchers and Elite Club of Islamshahr Branch of Islamic Azad University.

References

[1] G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405, 279 (2005) [hep-ph/0404175].

[2] W. A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391-T.

[3] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7, 1888 (1973).

[4] R. Foot, A. Kobakhidze and R. R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82, 035005 (2010) [arXiv:1006.0131 [hep-ph]].

[5] K. Ishiwata, Dark Matter in Classically Scale-Invariant Two Singlets Standard Model, Phys. Lett. B 710, 134 (2012) [arXiv:1112.2696 [hep-ph]].

[6] E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev. D 89, no. 1, 015017 (2014) [arXiv:1309.6632 [hep-ph]].

[7] T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88, 055022 (2013) [arXiv:1306.2329 [hep-ph]].

[8] C. D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88, 055020 (2013) [arXiv:1307.8428 [hep-ph]].

[9] V. V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 1408, 026 (2014) [arXiv:1403.4953 [hep-ph]].

[10] J. Guo and Z. Kang, Higgs Naturalness and Dark Matter Stability by Scale Invariance, Nucl. Phys. B 898, 415 (2015) [arXiv:1401.5609 [hep-ph]].

[11] K. Endo and K. Ishiwata, Direct detection of singlet dark matter in classically scale-invariant standard model, Phys. Lett. B 749, 583 (2015) [arXiv:1507.01739 [hep-ph]].

[12] Z. W. Wang, T. G. Steele, T. Hanif and R. B. Mann, Conformal Complex Singlet Extension of the Standard Model: Scenario for Dark Matter and a Second Higgs Boson, JHEP 1608, 065 (2016) [arXiv:1510.04321 [hep-ph]].
[13] K. Ghorbani and H. Ghorbani, Scalar Dark Matter in Scale Invariant Standard Model, JHEP 1604, 024 (2016) [arXiv:1511.08432 [hep-ph]].

[14] A. D. Plascencia, Classical scale invariance in the inert doublet model, JHEP 1509, 026 (2015) [arXiv:1507.04996 [hep-ph]].

[15] A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92, no. 7, 075010 (2015) [arXiv:1508.03031 [hep-ph]].

[16] A. Karam and K. Tamvakis, Dark Matter from a Classically Scale-Invariant $SU(3)_X$, Phys. Rev. D 94, no. 5, 055004 (2016) [arXiv:1607.01001 [hep-ph]].

[17] V. V. Khoze and A. D. Plascencia, Dark Matter and Leptogenesis Linked by Classical Scale Invariance, JHEP 1611, 025 (2016) [arXiv:1605.06834 [hep-ph]].

[18] S. Yaser Ayazi and A. Mohamadnejad, Conformal vector dark matter and strongly first-order electroweak phase transition, JHEP 1903, 181 (2019) [arXiv:1901.04168 [hep-ph]].

[19] S. Benic and B. Radovcic, Electroweak breaking and Dark Matter from the common scale, Phys. Lett. B 732, 91 (2014) [arXiv:1401.8183 [hep-ph]].

[20] W. Altmannshofer, W. A. Bardeen, M. Bauer, M. Carena and J. D. Lykken, Light Dark Matter, Naturalness, and the Radiative Origin of the Electroweak Scale, JHEP 1501, 032 (2015) [arXiv:1408.3429 [hep-ph]].

[21] S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP 1501, 143 (2015) [arXiv:1409.5776 [hep-ph]].

[22] A. Ahriche, K. L. McDonald and S. Nasri, A Radiative Model for the Weak Scale and Neutrino Mass via Dark Matter, JHEP 1602, 038 (2016) [arXiv:1508.02607 [hep-ph]].

[23] A. Ahriche, A. Manning, K. L. McDonald and S. Nasri, Scale-Invariant Models with One-Loop Neutrino Mass and Dark Matter Candidates, Phys. Rev. D 94, no. 5, 053005 (2016) [arXiv:1604.05995 [hep-ph]].

[24] S. Oda, N. Okada and D. s. Takahashi, Right-handed neutrino dark matter in the classically conformal U(1) extended standard model, Phys. Rev. D 96, no. 9, 095032 (2017) [arXiv:1704.05023 [hep-ph]].

[25] S. Yaser Ayazi and A. Mohamadnejad, Scale-Invariant Two Component Dark Matter, Eur. Phys. J. C 79, no. 2, 140 (2019) [arXiv:1808.08706 [hep-ph]].
[26] I. Dorner, S. Fajfer, A. Greljo, J. F. Kamenik and N. Konik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641, 1 (2016) [arXiv:1603.04993 [hep-ph]].

[27] J. C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10, 275 (1974) Erratum: [Phys. Rev. D 11, 703 (1975)].

[28] H. K. Dreiner and G. G. Ross, R-parity violation at hadron colliders, Nucl. Phys. B 365, 597 (1991).

[29] J. Butterworth and H. K. Dreiner, R-parity violation at HERA, Nucl. Phys. B 397, 3 (1993) [hep-ph/9211204].

[30] J. C. Romao, C. A. Santos and J. W. F. Valle, How to spontaneously break R-parity, Phys. Lett. B 288, 311 (1992).

[31] B. Schrempp and F. Schrempp, Light Leptoquarks, Phys. Lett. 153B, 101 (1985).

[32] J. P. Lees et al. [BaBar Collaboration], Evidence for an excess of $\bar{B} \rightarrow D^{(*)}\tau^-\bar{\nu}_\tau$ decays, Phys. Rev. Lett. 109, 101802 (2012) [arXiv:1205.5442 [hep-ex]].

[33] J. P. Lees et al. [BaBar Collaboration], Measurement of an Excess of $\bar{B} \rightarrow D^{(*)}\tau^-\bar{\nu}_\tau$ Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88, no. 7, 072012 (2013) [arXiv:1303.0571 [hep-ex]].

[34] M. Huschle et al. [Belle Collaboration], Measurement of the branching ratio of $\bar{B} \rightarrow D^+\tau^-\bar{\nu}_\tau$ relative to $\bar{B} \rightarrow D^{(*)}\ell^-\bar{\nu}_\ell$ decays with hadronic tagging at Belle, Phys. Rev. D 92, no. 7, 072014 (2015) [arXiv:1507.03233 [hep-ex]].

[35] R. Aaij et al. [LHCb Collaboration], Measurement of the ratio of branching fractions $B(\bar{B}^0 \rightarrow D^{(*)}\tau^-\bar{\nu}_\tau, B(\bar{B}^0 \rightarrow D^{(*)}\mu^-\bar{\nu}_\mu)$, Phys. Rev. Lett. 115, no. 11, 111803 (2015) Erratum: [Phys. Rev. Lett. 115, no. 15, 159901 (2015)] [arXiv:1506.08614 [hep-ex]].

[36] B. Aubert et al. [BaBar Collaboration], Observation of the semileptonic decays $B \rightarrow D^+\tau^-\bar{\nu}_\tau(\tau)$ and evidence for $B \rightarrow D\tau^-\bar{\nu}(\tau)$, Phys. Rev. Lett. 100, 021801 (2008) [arXiv:0709.1698 [hep-ex]].

[37] A. Bozek et al. [Belle Collaboration], Observation of $B^+ \rightarrow D^{0}\tau^+\nu_\tau$ and Evidence for $B^+ \rightarrow D^{0}\tau^+\nu_\tau$ at Belle, Phys. Rev. D 82, 072005 (2010) [arXiv:1005.2302 [hep-ex]].

[38] R. Aaij et al. [LHCb Collaboration], Test of lepton universality using $B^+ \rightarrow K^+\ell^+\ell^-$ decays, Phys. Rev. Lett. 113, 151601 (2014) [arXiv:1406.6482 [hep-ex]].

13
[39] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ), Eur. Phys. J. C 71, 1515 (2011) Erratum: [Eur. Phys. J. C 72, 1874 (2012)] [arXiv:1010.4180 [hep-ph]].

[40] M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the $R_{D^{(*)}}, R_K$, and $(g-2)_g$ Anomalies, Phys. Rev. Lett. 116, no. 14, 141802 (2016) [arXiv:1511.01900 [hep-ph]].

[41] P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter, and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86, 055002 (2012) [arXiv:1109.3516 [hep-ph]].

[42] R. Allahverdi, P. S. B. Dev and B. Dutta, A simple testable model of baryon number violation: Baryogenesis, dark matter, neutronantineutron oscillation and collider signals, Phys. Lett. B 779, 262 (2018) [arXiv:1712.02713 [hep-ph]].

[43] B. Fornal and B. Grinstein, Dark Matter Interpretation of the Neutron Decay Anomaly, Phys. Rev. Lett. 120, no. 19, 191801 (2018) [arXiv:1801.011124 [hep-ph]].

[44] M. Garny, J. Heisig, M. Hufnagel and B. Lin, Top-philic dark matter within and beyond the WIMP paradigm, Phys. Rev. D 97, no. 7, 075002 (2018) [arXiv:1802.00814 [hep-ph]].

[45] R. Mandal, Fermionic dark matter in leptoquark portal, Eur. Phys. J. C 78, no. 9, 726 (2018) [arXiv:1808.07844 [hep-ph]].

[46] N. Assad, B. Fornal and B. Grinstein, Baryon Number and Lepton Universality Violation in Leptoquark and Diquark Models, Phys. Lett. B 777, 324 (2018) [arXiv:1708.06350 [hep-ph]].

[47] L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D 96, no. 11, 115011 (2017) [arXiv:1708.08450 [hep-ph]].

[48] R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and $U(2)$ flavour symmetry, Eur. Phys. J. C 76, no. 2, 67 (2016) [arXiv:1512.01560 [hep-ph]].

[49] L. Di Luzio and M. Nardecchia, What is the scale of new physics behind the B-flavour anomalies?, Eur. Phys. J. C 77, no. 8, 536 (2017) [arXiv:1706.01868 [hep-ph]].

[50] D. Choudhury, A. Kundu, R. Mandal and R. Sinha, Minimal unified resolution to $R_{K^{(*)}}$ and $R(D^{(*)})$ anomalies with lepton mixing, Phys. Rev. Lett. 119, no. 15, 151801 (2017) [arXiv:1706.08437 [hep-ph]].

[51] M. Blanke and A. Crivellin, B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121, no. 1, 011801 (2018) [arXiv:1801.07256 [hep-ph]].
[52] A. Crivellin, C. Greub, D. Müller and F. Saturnino, Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark, Phys. Rev. Lett. **122**, no. 1, 011805 (2019) [arXiv:1807.02068 [hep-ph]].

[53] C. Amole *et al.* [PICO Collaboration], Dark Matter Search Results from the Complete Exposure of the PICO-60 C$_3$F$_8$ Bubble Chamber, arXiv:1902.04031 [astro-ph.CO].

[54] D. S. Akerib *et al.* [LUX Collaboration], Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment, Phys. Rev. Lett. **116**, no. 16, 161302 (2016) [arXiv:1602.03489 [hep-ex]].

[55] E. Aprile *et al.* [XENON Collaboration], First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. **119**, no. 18, 181301 (2017) [arXiv:1705.06655 [astro-ph.CO]].

[56] E. Aprile *et al.* [XENON Collaboration], Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. **121**, no. 11, 111302 (2018) [arXiv:1805.12562 [astro-ph.CO]].

[57] D. S. Akerib *et al.* [LUX Collaboration], Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. **118**, no. 2, 021303 (2017) [arXiv:1608.07648 [astro-ph.CO]].

[58] X. Cui *et al.* [PandaX-II Collaboration], Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. **119**, no. 18, 181302 (2017) [arXiv:1708.06917 [astro-ph.CO]].

[59] M. Ackermann *et al.* [Fermi-LAT Collaboration], Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. **115**, no. 23, 231301 (2015) [arXiv:1503.02641 [astro-ph.HE]].

[60] M. Aguilar *et al.* [AMS Collaboration], Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. **117**, no. 9, 091103 (2016).

[61] M. Garny, A. Ibarra and D. Tran, Constraints on Hadronically Decaying Dark Matter, JCAP **1208**, 025 (2012) [arXiv:1205.6783 [hep-ph]].

[62] G. Arcadi and L. Covi, Minimal Decaying Dark Matter and the LHC, JCAP **1308**, 005 (2013) [arXiv:1305.6587 [hep-ph]].
[63] G. Arcadi, L. Covi and F. Dradi, 3.55 keV line in Minimal Decaying Dark Matter scenarios, JCAP 1507, no. 07, 023 (2015) [arXiv:1412.6351 [hep-ph]].

[64] E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13, 3333 (1976).

[65] D. Hooper, Particle Dark Matter, arXiv:0901.4090 [hep-ph].

[66] D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J. Da Silva, S. Kraml, U. Laa and A. Pukhov, Collider limits on new physics within micrOMEGAs-4.3, Comput. Phys. Commun. 222, 327 (2018) [arXiv:1606.03834 [hep-ph]].

[67] A. Semenov, LanHEP A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun. 201, 167 (2016) [arXiv:1412.5016 [physics.comp-ph]].

[68] N. Aghanim et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [astro-ph.CO].

[69] P. Agrawal, Z. Chacko, C. Kilic and R. K. Mishra, A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter, arXiv:1003.1912 [hep-ph].

[70] G. K. Mallot, The Spin structure of the nucleon, Int. J. Mod. Phys. A 15S1, 521 (2000) [eConf C 990809, 521 (2000)] [hep-ex/9912040].

[71] J. R. Ellis, A. Ferstl and K. A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481, 304 (2000) [hep-ph/0001005].

[72] D. S. Akerib et al. [LZ Collaboration], LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [physics.ins-det].

[73] J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89, no. 2, 023524 (2014) [arXiv:1307.5458 [hep-ph]].

[74] A. M. Sirunyan et al. [CMS Collaboration], Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV, JHEP 1707, 121 (2017) [arXiv:1703.03995 [hep-ex]].

[75] A. Farzinnia, H. J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett. B 727, 141 (2013) [arXiv:1308.0295 [hep-ph]].
[76] A. Farzinnia and J. Ren, Higgs Partner Searches and Dark Matter Phenomenology in a Classically Scale Invariant Higgs Boson Sector, Phys. Rev. D 90, no. 1, 015019 (2014) [arXiv:1405.0498 [hep-ph]].