ORIGINAL ARTICLE

Characteristics of in situ stress and its influence on coal seam permeability in the Liupanshui Coalfield, Western Guizhou

Xiaojie Fang1,2 | Caifang Wu1,2 | Xiuming Jiang1,2 | Ningning Liu1,2 | Dan Zhou1,2 | Yiwen Ju3

1Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process, Ministry of Education, Xuzhou, China
2School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China
3Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Correspondence
Caifang Wu, Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou, 221008, China; School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
Email: caifangwu@126.com

Funding information
(1) National Natural Science Foundation of China (41572140, 41872170); (2) National Major Science and Technology Projects of China (2016ZX05044); (3) Fundamental Research Funds for the Central Universities (2020CXNL11); (4) Assistance Program for Future Outstanding Talents of China University of Mining and Technology (2020WLJRCZL090)

Abstract
The current in situ stress regime is of great significance to the exploration and development of coalbed methane (CBM). In this study, the vertical stress (σ_v), maximum horizontal principal stress (σ_h), and minimum horizontal principal stress (σ_h) in the Liupanshui Coalfield were studied. Variations of the maximum and minimum envelopes and trend lines of the lateral pressure coefficient (λ) with depth were obtained, and the non-monotonic decrease of permeability with burial depth was determined. On this basis, the effect of in situ stress on the coal reservoir permeability was evaluated. The results show that the average vertical stress gradient of the main coal seam in the Liupanshui Coalfield is 0.024 MPa/m. Generally, there are two stress regimes of $\sigma_h > \sigma_v > \sigma_h$ (44.23%) and $\sigma_v > \sigma_h > \sigma_h$ (46.15%); $\sigma_h > \sigma_h > \sigma_v$ accounts for a smaller proportion (9.62%), and only occurs in relatively shallow coal seams (<622.85 m). In the range of the tested burial depths, for <600 m, $\sigma_h > \sigma_v > \sigma_h$ is dominant; $\sigma_v > \sigma_h > \sigma_h$ is dominant between 600 and 800 m; and between 800 and 980 m, the coal reservoir is affected by both $\sigma_h > \sigma_v > \sigma_h$ and $\sigma_v > \sigma_h > \sigma_h$, representing a transition zone between the two stress states. With the increase of burial depth, the permeability of the coal reservoir shows a complex non-monotonic decline, and the variation of the permeability of the coal reservoir differs under the influence of different stress regimes. Further analysis shows that under the background of stress regime transformation, permeability is mainly affected by the stress value, horizontal principal stress difference, stress regime, and coal cleat, indicating that in situ stress is the main controlling factor of coal reservoir permeability in the Liupanshui Coalfield.

KEYWORDS
coalbed methane, in situ stress, Liupanshui Coalfield, permeability, synthetic density logging
1 | INTRODUCTION

China is rich in coalbed methane (CBM) resources. According to the available statistics, the amount of CBM resources at shallow depths up to 2000 m is 3.681×10^4 billion m3. However, most coal seams experience multistage superposition and transformation, as well as tectonic stresses of different properties and intensities, and thus show the characteristics of strong heterogeneity and strong stress sensitivity. The exploration and development of CBM is greatly affected by the current in situ stress changes of coal reservoirs.

Generally, in situ stress refers to the internal stress that exists in the crust, which is mainly formed by the combination of gravity stress, tectonic stress, pore pressure, thermal stress, and residual stress, among which tectonic stress and gravity stress are the main sources of in situ stress. Tectonic stress is mainly controlled by tectonic movement and rock geological structure, with high complexity and uneven spatial distribution, and its planar and vertical distributions are difficult to describe by mathematical functions. According to the relative relationship between vertical stress (σ_V) and tectonic stress (including maximum horizontal principal stress (σ_H) and minimum horizontal principal stress (σ_h)), Anderson (1951) divided in situ stress into the normal faulting stress regime ($\sigma_V > \sigma_H > \sigma_h$), strike-slip faulting stress regime ($\sigma_H > \sigma_V > \sigma_h$), and reverse faulting stress regime ($\sigma_H > \sigma_h > \sigma_V$). The current in situ stress regime is not only one of the main parameters affecting the construction effect of hydraulic fracturing, but also an important factor affecting reservoir fluid migration and accumulation. Therefore, in the initial stage of CBM development in China, using various methods to better understand in situ stress is an effective means of CBM exploration and development. At present, the commonly used methods for in situ stress measurement include mechanical methods, geophysical methods, and geological methods.

For this paper, based on 25 CBM vertical wells in the Liupanshui Coalfield, the average vertical stress gradient of strata at depths <980 m in this area was estimated using density logging data, and the horizontal principal stress components were calculated using injection/fall-off and in situ stress measurement data. The three components of the stress tensor (σ_V, σ_H, and σ_h) and the main stress regimes of coal-bearing strata were determined. Based on the above research, combined with the variation of coal reservoir permeability with burial depth in this area, the control mechanism of permeability was explored, including different stress values, horizontal principal stress differences, and the stress regime.

2 | GEOLOGICAL SETTING

Located in the passive margin fold belt of the upper Yangtze Block of the southern Yangtze Plate, the western Guizhou area is an important part of the upper Yangtze coal-accumulating sedimentary basin in the Upper Permian of western Guizhou, eastern Yunnan, and southern Sichuan. Tectonic activities during the Yanshanian and Himalayan led to the disintegration of the prototype basin, and formed a large number of synclines and synclinoria, which became important coal-controlling structures in this area. These coal-bearing synclines are ideal for the commercial development of CBM in southwestern China.

The Liupanshui Coalfield is located along the middle-north segment of the Liupanshui fault in southern Guizhou, Yangtze Block. The coalfield is bounded and controlled by the Yadu-Ziyun fault, NW-trending folds and faults are formed in the northeast, the syncline is open, and the anticline is closed. The south of the coalfield is bounded by the Huangnihe-Panjiazhuang fault and is affected by it, characterized by a NE-trending fold and fault structure. The central part of the coalfield is compressed from the north and blocked to the south, forming a mountain-shaped structure, which is dominated by NW-trending effective folds. The main strata exposed in the study area cover a large time span, including Carboniferous, Permian, Triassic, Jurassic, Paleogene, and Quaternary deposits, among which the Permian and Triassic are the most widely distributed. In the Late Permian, the area was characterized by continental, continental-marine transitional, and shallow marine sedimentary environments. During this interval, because of frequent transgression and regression, multiple coal-bearing strata were formed, represented by the Longtan and Changxing formations.

3 | METHODS AND MATERIALS

3.1 | Data

In most CBM wells in the study area, density logging, injection/fall-off tests, and in situ stress measurement were used to test reservoir physical properties after completion and before production. For this paper, the data of 54 levels of coal seams in 25 CBM wells were collected and collated; of these wells, density logging data were available for 11 wells, and the density logging sections covered 32 layers. Prior to the calculation phase, the quality of the collected data was checked and corrected.

Figure 2 shows the workflow of calculating stress parameters using density logging data, injection/fall-off tests, and in situ stress measurements in this work. The vertical stress of the tested coal seam in each well was calculated using the density logging data, the vertical stress gradient of the shallow layers up to 980 m depth in the study area was then estimated, and the horizontal principal stress of the main coal seams was calculated using the well test and in situ stress measurement data.
FIGURE 1 Tectonic framework and distribution of coal-bearing synclines in western Guizhou Province, China

FIGURE 2 Workflow for calculating stress parameters using injection/fall-off tests, in situ stress measurements, and density logging data
3.2 | Density logging

Density logging data are typically used to estimate overburden pressure or σ_v.21,22 The calculation equation is as follows:

$$\sigma_v = \int_0^H \rho(H) \cdot g dH$$ \hspace{1cm} (1)

where σ_v is the vertical stress (MPa), $\rho(H)$ is the density of the formation at the depth H (g/cm3), and g is the gravitational acceleration (m/s2).

The necessary curve depth correction and environmental impact correction for density logging were carried out. Some vertical well density logging data in the study area were not recorded from the surface (e.g., Well 4 had a depth of 887 m and the starting point of density logging was 250 m), resulting in a lack of shallow density logging data. Thus, an exponential equation was used to fit the formation density of the missing sections of shallow logging data to fill the data gaps between the surface and the starting points of logging.23,24

The equation is as follows:

$$\rho(H)_{\text{syn}} = R_S + (\text{TVD} - \text{AG})/3125a$$ \hspace{1cm} (2)

where $\rho(H)_{\text{syn}}$ is the fitting density for the shallow section, R_S is the surface sediment density (with a default value of 1.90 g/cm3, based on the Gulf of Mexico), TVD is the true vertical depth, AG is air gas, a is the exponent coefficient (default value: 0.6, for Gulf of Mexico), and all depths in the equation are in feet.25

3.3 | Injection/fall-off tests and in situ stress measurement

Injection/fall-off is a single transient test of well pressure, which is suitable for high- and low-pressure reservoirs, and is the most commonly used well testing method in CBM wells (Figure 3). In this test, water is injected into the wellbore for a period of time with a relatively stable displacement and an injection pressure lower than the fracture pressure of the coal seam, and then the well is closed, such that the pressure and the original reservoir pressure tend to gradually become balanced.26 Pressure gauges are used to record the variation of bottom hole pressure with time in the injection and shut-in stages. The semilogarithmic curve and double logarithmic curve fitting methods are used to analyze the data, and fall-off curve fitting is used to test the analysis results. The parameters of the target coal seam permeability, investigation radius, skin factor, formation coefficient, and reservoir pressure of each CBM well are thus obtained. In addition, combined with the burial depth of the coal seams, the reservoir pressure gradient can be calculated.

3.4 | In situ stress magnitude calculation

After the end of the fall-off test, in situ stress measurement is carried out. During this measurement, fluid is injected into the wellbore at a high injection rate over a very short time. When the bottom hole pressure is higher than the coal seam fracture pressure (P_f), the target layer is opened under the action of the minimum horizontal principal stress. At the moment of the rupture of the coal seam, the pressure is greatly reduced because the liquid cannot be replenished in time; thus, the critical pressure recorded by the digital pressure gauge represents the P_f of the coal seam. Then, the well is shut and the pressure fall-off data are obtained through the digital pressure gauge. According to the hydraulic fracturing method of onshore vertical wells, when the fracture is closed, the fracture closure pressure (P_C) is considered equal to σ_h.27 Therefore, the P_f of the coal seam can be obtained from the water injection curve, and the P_C can be determined according to the pressure fall-off curve. To ensure the accuracy of the measured data, four periods of in situ stress measurements are carried out, and the periods with good fracture and closure effects are selected and analyzed by the time square root method. Then, parameters such as the fracture pressure, and closure pressure of the target coal seam of each CBM well are obtained. Combined with the burial depth of coal seams, the fracture pressure gradient, and closure pressure gradient can be calculated.

3.4 | In situ stress magnitude calculation

There are three main methods to determine the current in situ stress:5,10,28-30 (1) actual stress measurement, (2) calculation based on the logging curve and an empirical model, and (3) numerical simulation. In this study, σ_H and σ_h were
calculated using the actual stress measurement data, and the \(\sigma_v \) values of some wells were calculated using density logging data. Based on the vertical stress gradient (\(\gamma \)) of the optimized synthetic density logging, the \(\sigma_v \) values of the target coal seams of the CBM wells with non-density logging data were calculated.

Generally, in case of no fluid flow in vertical wells, \(\sigma_h \) is considered to be equal to \(P_C \), and its equation is as follows:

\[
\sigma_h = P_C
\]

(3)

According to the theory of elasticity, \(\sigma_H \) can be expressed as:

\[
\sigma_H = 3P_C - P_f - P_0 + T
\]

(4)

where \(P_f \) is the fracture pressure of the target layer (MPa), \(P_0 \) is the reservoir pressure (MPa), and \(T \) is the tensile strength of the coal and rock.

The in situ stress measurement goes through four cycles. For the second to fourth cycles, the fracture is reopened after the water is injected into the wellbore from the wellhead, and the repeated fracture pressure is determined. Because the crack has been produced in the first injection/fall-off cycle, the \(T \) of the rock is 0. Therefore, the above equation can be rewritten as follows:

\[
\sigma_H = 3P_C - P_f - P_0
\]

(5)

For CBM wells without density logging data, \(\sigma_V \) can be estimated from the stress gradient of the overlying strata and the depth of the target layer \(^{31,32}\):

\[
\sigma_V = \gamma H
\]

(6)

where \(\gamma \) is the stress gradient (MPa/m), and \(H \) is the burial depth (m).

3.5 | In situ stress anisotropy

The lateral pressure coefficient (\(\lambda \)) refers to the ratio of the average horizontal principal stress to \(\sigma_V \), which is an effective parameter to characterize the in situ stress distribution. Its calculation equation is shown in Equation \(^{7,32} \). In addition, \(\lambda \) is generally considered to be proportional to the reciprocal of burial depth, as indicated in Equation \(^{10,33} \):

\[
\lambda = (\sigma_H + \sigma_h)/2\sigma_V
\]

(7)

\[
\lambda = a/h + b
\]

(8)

In this equation, both \(a \) and \(b \) are coefficients.

In order to quantitatively evaluate the difference of stress in different directions of coal reservoir, the concept of in situ stress anisotropy is introduced \(^{34,35} \) and the formula is as follows:

\[
AI_{I_s} = \sqrt{(\sigma_H - \bar{\sigma})^2 + (\sigma_h - \bar{\sigma})^2 + (\sigma_V - \bar{\sigma})^2} \bar{\sigma}
\]

(9)

where \(AI_{I_s} \) is the anisotropy parameter of in situ stress, \(\bar{\sigma} \) is the average value of \(\sigma_H \), \(\sigma_h \), and \(\sigma_V \). The increase in \(AI_{I_s} \) means that the anisotropy increases, and the decrease of \(AI_{I_s} \) means that \(\sigma_H \), \(\sigma_h \), and \(\sigma_V \) tend to be the same.

4 | RESULTS AND DISCUSSION

4.1 | Magnitude of vertical stress (\(\sigma_V \))

As a key step in the workflow, the lack of shallow density logging data is considered to be a challenge for this study. Therefore, in the absence of shallow logging data, synthetic density logging data were used for five CBM wells (Wells 4, 7, 9, 10, and 11). The vertical stress profiles of the above wells were generated by combining the shallow exponential equation fitting density and logging measured density for the whole formation. The calculation equation for shallow synthetic density is shown in Equation 2. Because the density calculated based on the default fitting parameters is not consistent with the actual density, \(R_S \) and \(\alpha \) are modified, and the fitting effect of the modified curve is better. Taking Well 4 as an example, two density profiles were simulated. The values of \(\alpha \) were 0.6 and 0.1, and values of \(R_S \) were 1.9 g/cm\(^3\) and 1.72 g/cm\(^3\), respectively. As shown in Figure 4, when the vertical depth was 886 m, \(\sigma_V \) was 21.95 MPa, and the stress gradient was 0.025 MPa/m.

The density logging data of 11 wells in the study area were collected. Among them, six wells were in the Panguan syncline, which had an average stress gradient of \(-0.024\) MPa/m; two wells were in the Faer syncline, which had an average stress gradient of \(-0.023\) MPa/m; two wells were in the Tucheng syncline, which had an average stress gradient of \(-0.025\) MPa/m; and one well was in the Dahebian syncline, which had an average stress gradient of \(-0.025\) MPa/m. It was determined that the average stress gradient of the 11 wells was \(-0.024\) MPa/m, and that the stress gradient of different coal-bearing synclines in the study area was stable (0.024 ± 0.001 MPa/m). The density logging section covered 30 well testing levels, accounting for 57.69% of the total well testing levels. This value is considered to be relatively representative (Table 1).

The above average stress gradient (0.024 MPa/m) was taken as the average value of the drilled strata in the study area, and the vertical stress of the main coal seams in other wells was then calculated (Table 2).
4.2 Test parameters of injection/fall-off tests and in situ stress measurements

In this study, the injection/fall-off and in situ stress measurement data of 52 well test levels in the study area were collected, and the burial depth of coal seams was between 236.295 and 978.66 m. The coal seam P_f, P_C, and P_0 all increased linearly with increasing depth, and the correlations are as follows (Figure 5). This law of change is consistent with the southern Qinshui Basin, the southeastern margin of the Ordos Basin, the southern margin of the Junggar Basin, and eastern Yunnan.

1. Fracture pressure (Figure 5A):

$$P_f = 0.0694h + 2.6378$$ \hspace{1cm} \text{(10)}

2. Shut-in pressure (Figure 5B):

$$P_C = 0.0157h + 1.6978$$ \hspace{1cm} \text{(11)}

3. Reservoir pressure (Figure 5C):

$$P_0 = 0.0110h - 0.7052$$ \hspace{1cm} \text{(12)}

In addition, there is an obvious positive correlation between P_f and P_C (Figure 5D), and the fitting equation is as follows:

$$P_f = 1.0903P_C + 0.6876$$ \hspace{1cm} \text{(13)}

The injection/fall-off test results show that the permeability was between 0.0018 and 1.46 mD, with an average value of 0.26 mD, which is consistent with a typical low permeability reservoir (Figure 6).
4.3 Magnitude of horizontal in situ stress components

The value of σ_h is calculated by Equation 3, and σ_H is calculated by Equation 4. Combined with the calculation results of σ_V in Section 4.1, the variations of σ_H, σ_h, and σ_V with burial depth are shown in Figure 7. The value of σ_H was between 4.63 and 25.42 MPa (average: 15.46 MPa). The maximum horizontal principal stress gradient was between 1.21 and 4.56 MPa/100 m (average: 2.47 MPa/100 m); σ_h was between 3.55 and 21.01 MPa (average: 11.70 MPa). The minimum horizontal principal stress gradient was between 1.12 and 2.99 MPa/100 m (average: 1.86 MPa/100 m); σ_V was between 4.65 and 22.36 MPa (average: 15.37 MPa). Overall, 73.08% of the σ_h values were >10 MPa. The ground stress in this area was higher than that in other CBM-producing areas around the world, such as the Black Warrior Basin in

| TABLE 1 Vertical stress and stress gradient of main coal seams in CBM wells with density logging curves |
Wells	Coal seam number	Depth (m)	Vertical stress (MPa)	Stress gradient (MPa/m)	Average stress gradient (MPa/m)
Well 1	No.3	558.05	14.20	0.025	0.024
	No.10	611.10	15.44	0.025	
	No.13	641.58	16.17	0.025	
	No.22	706.93	17.65	0.025	
Well 2	No.3	314.97	7.97	0.025	
	No.22	483.91	12.00	0.025	
	No.26	508.54	12.56	0.025	
	No.29	527.61	13.00	0.025	
Well 3	No.12	871.78	20.09	0.023	
	No.22	948.44	21.72	0.023	
	No.27	978.66	22.36	0.023	
Well 4	No.6	674.45	16.95	0.025	
	No.12	722.09	18.08	0.025	
	No.18	774.39	19.31	0.025	
	No.24	832.89	20.68	0.025	
Well 5	No.12	744.81	18.80	0.025	
	No.16	771.86	19.41	0.025	
Well 6	No.3	518.17	11.15	0.022	
	No.10	558.61	12.01	0.021	
	No.12	575.28	12.35	0.021	
	No.18	622.85	13.33	0.021	
Well 7	No.13	236.30	4.65	0.020	
	No.15	264.56	5.18	0.020	
	No.16	285.57	5.56	0.019	
Well 8	No.5	599.00	14.83	0.025	
	No.7	637.70	15.77	0.025	
	No.13-1	652.49	16.12	0.025	
	No.13-2	659.00	16.26	0.025	
Well 9	No.29	864.90	20.82	0.024	
Well 10	No.9	609.00	15.16	0.025	
Well 11	No.C409	849.36	21.23	0.025	
	No.C406	868.33	21.63	0.025	

| TABLE 2 Vertical stress of main coal seams in non-density logging curve wells in the study area |
Wells	Coal seam number	Depth (m)	Vertical stress (MPa)
Well 12	No.17	569.17	13.66
	No.18	605.19	13.42
	No.22	639.25	15.34
	No.24	650.89	15.62
Well 13	No.1	648.81	15.57
	No.7	697.90	16.75
	No.9	713.67	17.13
	No.10	725.90	17.42
Well 14	No.5	319.40	7.67
	No.6	363.63	8.73
	No.9	384.41	9.23
	No.12	442.33	10.62
Well 15	No.3 + 4	671.07	16.11
	No.10 + 11	746.33	17.91
	No.15	785.82	18.86
	No.17	815.26	19.57
Well 16	No.1 + 3	619.26	14.86
	No.9	661.23	15.87
	No.16	738.90	17.73
	No.27	920.03	22.08
Well 17	No.3	645.53	15.49
	No.5	689.63	16.55
	No.12	721.50	17.32
	No.19 + 20	781.07	18.75
	No.27	876.02	21.02
Well 18	No.5	580.00	13.92
	No.7	630.00	15.12
	No.23	806.00	19.34
Well 19	No.6	671.80	16.12
Well 20	No.6	647.00	15.53
Well 21	No.6	644.10	15.46
Well 22	No.6	612.00	14.69
Well 23	No.3	624.00	14.98
Well 24	No.3	635.10	15.24
Well 25	No.13	621.24	14.91
Within the total dataset, 23 sets of data belong to a strike-slip faulting stress regime ($\sigma_H > \sigma_V > \sigma_h$), accounting for 44.23%; 24 sets of data belong to a normal faulting stress regime ($\sigma_V > \sigma_H > \sigma_h$), accounting for 46.15%; and five sets of data belong to a reverse faulting stress regime ($\sigma_V > \sigma_h > \sigma_H$), accounting for 9.62% (Figure 5). These results are consistent with the understanding obtained from the statistics of several major CBM fields in China by Chen et al.37

Liupanshui Coalfield has experienced multiperiod tectonic stresses, thus leading to a complex stress regime. As shown in Figures 8 and 9, there are three types of stress fields in the study area, which may be caused by complex local structures. With an increase in depth, the probability of the occurrence of a reverse faulting stress regime decreases to 0, indicating that the growth rate of σ_h is less than those of σ_H and σ_V.

When the burial depth is <600 m, the strike-slip faulting stress regime is dominant, and the normal faulting and
reverse faulting stress regimes each account for certain proportions, which indicates that there are differences in the stress states of shallow coal seams in different parts of the study area. Shallow coal seams are greatly affected by the structure. When the burial depth is between 600 and 800 m, the proportion of the normal faulting stress regime increases greatly. In this depth range, σ_V increases linearly with increasing burial depth, and the growth rate of σ_H is less than that of σ_V and tends to first decrease and then increase. The growth rate of σ_H is the smallest. When the burial depth is between 800 and 980 m, the main coal-bearing strata are affected by both the normal faulting and strike-slip faulting stress regimes. In the depth range of 600-980 m, the main coal-bearing strata are affected by both the normal faulting and strike-slip faulting stress regimes. The deep (>1,000 m) well data collected by Kang, et al. in the Bide-Santang Basin in an adjacent area show that the stress regime was of the normal fault type. Based on this, it is inferred that with the further increase in drilling depth in the future, the deep coal seams in the study area will mainly be controlled by the stress regime of the normal fault type.

4.4 Principal stress ratio variation with depth

For the Liupanshui Coalfield, λ is between 0.49 and 1.57, with an average of 0.91. In the Panguan syncline, this value ranges from 0.49 to 1.34, with an average of 0.91; in the Tucheng syncline, it ranges from 0.70 to 1.57, with an average of 0.95; and in the Faer syncline, it ranges from 0.63 to 0.99, with an average of 0.87 (Figure 10A).

According to an analysis of 3,586 data points collected by Yang et al., the λ values of Chinese mainland strata are within the range defined by Equation 14. The trend line of λ for the Liupanshui Coalfield satisfies Equation 15, and the inner and outer envelopes satisfy Equation 16. These two curves can be regarded as the upper and lower limits of λ in
the Liupanshui Coalfield. As shown in Figure 10A, all the lateral pressure coefficients of the Liupanshui Coalfield are in the area bounded by the inner and outer envelopes of the Chinese mainland. These equations are expressed as follows:

\[
\frac{8.57}{h} + 0.32 \leq \lambda \leq \frac{350.16}{h} + 1.00 \quad (14)
\]

\[
\lambda = \frac{135.00}{h} + 0.68 \quad (15)
\]

\[
100.26/h + 0.31 \leq \lambda \leq \frac{220.96}{h} + 1.03 \quad (16)
\]

The value of \(\lambda \) can characterize the relative magnitude between the horizontal principal stress and \(\sigma_V \). With the increase in burial depth, \(\lambda \) decreases slowly, indicating that gravity stress has progressively more influence on in situ stress. Meanwhile, \(AI_\sigma \) and \(\sigma_H - \sigma_h \) show similar characteristics of change. Both of them take 700 m as the limit, and gradually increase when the burial depth is <700 m and decrease when the burial depth is more than 700 m. It shows that under the background that \(\sigma_V \) increases steadily with the burial depth, \(AI_\sigma \) is mainly controlled by \(\sigma_H - \sigma_h \) (Figure 10B,C).

When the burial depth is more than 800 m, \(AI_\sigma \) and \(\sigma_H - \sigma_h \) are significantly reduced. Most values of \(\lambda \) are <1, indicating that at 800 m, gravity stress begins to become dominant in the overlying strata of the deep coal seams (Figure 10A). This finding is consistent with the analysis results in Section 4.3. \(\lambda \) also shows a small increase in the depth, which is consistent with the reversal of the stress regime.

4.5 Implication for coal permeability

Coal reservoir permeability is one of the key factors determining CBM productivity,\(^{40,41}\) which is mainly affected by effective stress, matrix shrinkage, and gas slippage in the process of CBM development.\(^{42-44}\) Previous studies generally suggested that the permeability of a coal reservoir decreases exponentially with the increase of effective stress. In the initial stage of CBM development or in an undeveloped coal reservoir, the coal reservoir is in a state of stress equilibrium, and the permeability is mainly affected by in situ stress and the coal cleat system. The increase of burial depth and stress concentration caused by local structure will lead to the exponential decrease of permeability.\(^{45-48}\)

Under the background of a high-pressure compression structure, the permeability of a coal reservoir changes regularly with burial depth, but its trend is not monotonous.\(^{49}\) Li, Tang, Xu, and Yu\(^{50}\) revealed that the permeability of coal decreased to a depth of about 700 m and then increased from a depth of 700 m to about 1050 m in the Liulin area, eastern Ordos Basin. Sun et al\(^{50}\) found that the coal seam permeability of the Shizhuang CBM block decreased to a depth of...
about 950 m, increased at depths of more than 1100 m. Chen, Tang, Tao, Xu, Li, Zhao, Ren, and Fu also found a similar non-monotonic change in permeability in the south of the Qinshui Basin and at the eastern margin of the Ordos Basin.\(^3\)

It was also noted that in the vertical direction, the permeability-depth profile in the study area had the characteristics of high permeability (<400 m)-low permeability (400-600 m)-high permeability (600-800 m)-low permeability (800-980 m) (Figure 11).

Further analysis shows that the variation of coal reservoir permeability with burial depth differs under different stress regimes. A relative high permeability zone under the control of a normal faulting stress regime mainly appears in the burial depth interval of 600-800 m (Figure 11A), a relatively high permeability area under the control of a strike-slip faulting stress regime mainly appears in the burial depth ranges of <400 m and 600-800 m (Figure 11B), and the reverse faulting stress regime mainly appears at depths shallower than 650 m; in addition, the permeability decreases with the increase of burial depth (Figure 11C). The results of the comparison show that when the burial depth of the coal seam is more than 600 m, the coal permeability in a normal faulting stress regime is higher than that in a strike-slip faulting stress regime, which is due to the low compressive stress under normal faulting stress regime.\(^5^1\),\(^5^2\)

With the increase in burial depth, the principal stress increases linearly (Figure 7), but the permeability does not simply decrease exponentially with the increase of principal stress, which is worthy of further exploration. The appearance of the shallow hyperpermeability zone (0-400 m) is essentially attributed to the opening of cracks caused by stress relaxation under near-surface conditions (Figures 10C, 11B, and 12). The smaller \(\sigma_H - \sigma_h\) shown in Figure 10C provides evidence for horizontal stress relaxation. The decrease of permeability in the range of 400 to 600 m reflects that the permeability is very sensitive to stress, which is affected by strong structural compression; the horizontal principal stress increases, and the stress regime is mainly of the strike-slip faulting type, which is affected by horizontal compressive stress. The vertical fractures are closed, and the permeability decreases greatly. In the range of 600 to 800 m, \(\sigma_H - \sigma_h\) and \(AI_p\) reach their peak and then begin to decrease. Between this zone, \(\sigma_H - \sigma_h\) and \(AI_p\) reach their highest. The high \(\sigma_H - \sigma_h\) and \(AI_p\) may enhance the initial friction failure state of coal,\(^3\)\(^8\) and its positive effect on permeability is greater than the negative effect of stress increase, which leads to the increase of permeability in this zone. For the points under the control of the normal faulting and strike-slip faulting stress regimes (Figure 11A and 11B), the permeability of coal increases with the increase of the principal stress difference. In the range of 800 to 980 m, the principal stress values reach 14.50 MPa, 18.45 MPa, and 22.75 MPa, respectively (Figure 7). Coupled with the decrease of \(\sigma_H - \sigma_h\), the coal reservoir is strongly squeezed by three-dimensional stress, and the coal permeability decreases with the increase of stress. The permeability of coal is also controlled by the natural fracture structure and its degree of opening. The structure of the study area is complex, and there are two structural types of coal\(^5^3\): the fold genetic type and fault genetic type. The complexity of the coal reservoir cleat system and strong stress sensitivity may be the main reasons for the discrepancy between the permeability variation in the study area and the conventional understanding that permeability decreases exponentially with the increase in burial depth/stress.

Generally, the vertical change of permeability is affected by vertical stress, local tectonic stress, and the coal cleat

FIGURE 11 Permeability varies with burial depth under different stress regimes. Coal reservoir permeability variation with burial depth under a normal faulting stress regime (A), coal reservoir permeability variation with burial depth under a strike-slip faulting stress regime (B), and coal reservoir permeability variation with burial depth under a reverse faulting stress regime (C)
system. The data collected in this study are relatively few, and the above judgment is preliminarily. It needs to be verified and improved after more data are obtained, and the non-monotonic decline characteristics of increasing permeability with burial depth need to be studied further.

5 | CONCLUSIONS

In this paper, the in situ stress characteristics of coal seams in Liupanshui Coalfield were studied, the non-monotonic decrease of permeability with burial depth was revealed, and the effect of in situ stress on the coal reservoir permeability was evaluated. The main conclusions are as follows:

1. The average stress gradient of different coal seams in Liupanshui Coalfield is about 0.024 MPa/m. There are mainly two stress regimes: normal faulting type (46.15%) and strike-slip faulting type (44.23%). The proportion of reverse faulting type is only 9.62%.

2. In the ranges of different depths, there is a phenomenon of mutual transformation of the stress regime. The stress regime of the shallower than 600 m is mainly of the strike-slip type, the stress regime of 600-800 m is dominated by the normal faulting type, and the 800-980 m interval is influenced roughly equally by both the normal faulting type and strike-slip faulting type. With the increase of burial depth, \(\lambda \) gradually decreases to a fixed value, and that value is generally <1, indicating that the vertical stress of the deep formation becomes the principal stress.

3. The variation of coal reservoir permeability with burial depth is different under different stress regimes. With the increase in burial depth, the permeability decreases non-monotonously, and its value is controlled by the relative magnitude of in situ stress.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (41572140, 41872170), the National Major Science and Technology Projects of China (2016ZX05044), the Fundamental Research Funds for the Central Universities (2020CXNL11), the Assistance Program for Future Outstanding Talents of China University of Mining and Technology (2020WLJCRCL090).

CONFLICTS OF INTEREST

The authors declare no competing financial interest.

ORCID

Xiaojie Fang https://orcid.org/0000-0003-1639-246X
Caifang Wu https://orcid.org/0000-0001-6357-0236
Xiuming Jiang https://orcid.org/0000-0003-1006-5070
Ningning Liu https://orcid.org/0000-0002-7594-7616
Dan Zhou https://orcid.org/0000-0001-8238-5810
Yiwen Ju https://orcid.org/0000-0001-5534-7392

REFERENCES

1. Qin Y, Moore TA, Shen J, et al. Resources and geology of coalbed methane in China: a review. Int Geol Rev. 2017;60(5–6):777-812.

2. Tao S, Pan Z, Tang S, et al. Current status and geographical conditions for the applicability of CBM drilling technologies in China: A review. Int J Coal Geol. 2019;202:95-108.

3. Liu Z, Liu D, Cai Y, et al. Experimental study of the effective stress coefficient for coal anisotropic permeability. Energy Fuels. 2020;34(5):5856-5867.

4. Schmitt DR, Currie CA, Zhang L, et al. Crustal stress determination from boreholes and rock cores: Fundamental principles. Tectonophysics. 2012;580:1-26.

5. Tao S, Chen S, Pan Z. Current status, challenges, and policy suggestions for coalbed methane industry development in China: A review. Energy Sci Eng. 2019;7(4):1059-1074.

6. Anderson EM. The dynamics of faulting and dyke formation with applications to Britain, second ed. Edinburgh, Scotland: Oliver; 1951:206–206.

7. Ali M, Paul S, Chatterjee R. Cleat orientation from ground mapping and image log studies for in situ stress analysis: Coal bed methane exploration in south Karanpura Coalfield, India. Energy Fuels. 2017;31(7):6812-6824.

8. Kingdon A, Fellgett MW, Williams JDO. Use of borehole imaging to improve understanding of the in-situ stress orientation of Central and Northern England and its implications for unconventional hydrocarbon resources. Mar Pet Geol. 2016;73:1-20.

9. Bai X, Wu C, Liu X, et al. Analysis of the tempo-spatial effects of hydraulic fracturing by drilling through underground
coal mine strata on desorption characteristics. *Energy Sci Eng.* 2019;7:170-178.

10. Ju W, Jiang B, Qin Y, et al. The present-day in-situ stress field within coalbed methane reservoirs, Yuwang Block, Laochang Basin, south China. *Mar Pet Geol.* 2019;102:61-73.

11. Lau HC, Li H, Huang S. Challenges and opportunities of coalbed methane development in China. *Energy Fuels.* 2017;31(5):4588-4602.

12. Bell JS, Bacch S. In situ stress magnitude and orientation estimates for Cretaceous coal-bearing strata beneath the plains area of central and southern Alberta. *Bull Can Petrol Geol.* 2003;51(1):1-28.

13. Chatterjee R, Pal PK. Estimation of stress magnitude and physical properties for coal seam of Rangamati area, Rangiganj coalfield, India. *Int J Coal Geol.* 2010;81(1):25-36.

14. Liu Q, Cheng Y, Yuan L, et al. CMM capture engineering challenges and characteristics of in-situ stress distribution in deep level of Huainan Coalfield. *J Nat Gas Sci Eng.* 2014;20:328-336.

15. Chen S, Tang D, Tao S, et al. Implications of the in situ stress distribution for coalbed methane zonation and hydraulic fracturing in multiple seams, western Guizhou, China. *J Pet Sci Eng.* 2021;204:108755.

16. Yang Z, Qin Y, Yi T, et al. Analysis of multi-coalbed CBM development methods in western Guizhou, China. *Geosci J.* 2018;23(2):315-325.

17. Guo C, Qin Y, Wu C, et al. Hydrogeological control and productivity modes of coalbed methane commingled production in multi-seam areas: A case study of the Bide-Santang Basin, western Guizhou, South China. *J Pet Geol Eng.* 2020;189:107039.

18. Guo C, Lu L. Spatial distribution and variation of coalbed methane reservoir characteristics and its significance for CBM development in western Guizhou. *J China Coal Soc.* 2016;41(8):2006-2016.

19. Xu H, Sang S, Yi T, et al. Control mechanism of buried depth and in-situ stress for coal reservoir permeability in western Guizhou. *Earth Sci: J China U Geosci.* 2014;39(11):1607-1616.

20. Yi T, Gao W. Reservoir formation characteristics as well as co-exploration and co-mining orientation of Upper Permian coalbearing gas in Liupanshui Coalfield. *J China Coal Soc.* 2018;43(6):1553-1564.

21. Plumb RA, Evans KF, Engelder T. Geophysical log responses and their correlation with bed-to-bed stress contrasts in Paleozoic rocks, Appalachian Plateau, New York. *J Geophys Res Solid Earth.* 1991;96(B9):14509-14528.

22. Rafik B, Sen S, Boutaleb K. Present day In-situ stress magnitude and orientation of horizontal stress components in the eastern Illizi basin, Algeria: A geomechanical modeling. *J Struct Geol.* 2020;132:103975.

23. Sen S, Dasgupta S, Maxwell C, et al. In issues faced while calculating overburden gradient and picking shale zones to predict pore pressure, First EAGE Workshop on Pore Pressure Prediction. 19–21 Mar, 2017, Pau, France.

24. Sen S, Kundan A, Kalpande V, et al. The present-day state of tectonic stress in the offshore Kutch-Saurashtra Basin, India. *Mar Pet Geol.* 2019;102:751-758.

25. Radwan AE, Abudeif AM, Attia MM, et al. Pore and fracture pressure modeling using direct and indirect methods in Badri Field, Gulf of Suez, Egypt. *J Afr Earth Sci.* 2019;156:133-143.

26. Xu H, Sang S, Yang J, et al. In-situ stress measurements by hydraulic fracturing and its implication on coalbed methane development in Western Guizhou, SW China. *J Unconv Oil Gas Resour.* 2016;15:1-10.

27. Haimson BC, Cornet FH. ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). *Int J Rock Mech Min Sci.* 2003;40(7-8):1011-1020.

28. Rajabi M, Tingay M, Heidbach O. The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production. *Mar Pet Geol.* 2016;77:776-790.

29. Ju W, Shen J, Qin Y, et al. In-situ stress state in the Linxing region, eastern Ordos Basin, China: Implications for unconventional gas exploration and production. *Mar Pet Geol.* 2017;86:66-78.

30. Brooke-Barrett S, Flottmann T, Paul PK, et al. Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland. *J Geophys Res Solid Earth.* 2015;120(7):4946-4965.

31. Meng Z, Zhang J, Wang R. In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin. *Int J Rock Mech Min Sci.* 2011;48(1):122-131.

32. Brown ET, Hoek E. Trends in relationships between measured in-situ stresses and depth. *Int J Rock Mech Min.* 1978;15(4):211-215.

33. Fu H, Yan D, Yang S, et al. Characteristics of in situ stress and its influence on coalbed methane development: A case study in the eastern part of the southern Junggar Basin, NW China. *Energy Sci Eng.* 2020;8:515-529.

34. Wang R, Pan J, Wang Z, et al. Influence of in situ stress on well test permeability and hydraulic fracturing of the Fanzhuang Block, Qinshui Basin. *Energy Fuels.* 2021;35:2121-2133.

35. Mou P, Pan J, Wang K, et al. Influences of hydraulic fracturing on microfractures of high-rank coal under different in-situ stress conditions. *Fuel.* 2021;287:119566.

36. Mckee CR, Bumb AC, Koenig RA. Stress-dependent permeability and porosity of coal and other geologic formations. *SPE Form. Eval.* 1988;3(1):81-91.

37. Chen S, Tang D, Tao S, et al. In-situ stress measurements and stress distribution characteristics of coal reservoirs in major coalfields in China: Implication for coalbed methane (CBM) development. *Int J Coal Geol.* 2017;182:66-84.

38. Kang Y, Jiang S, Deng Z, et al. Non-monotonic decrease of coal permeability with depth in highly compressional tectonic settings: A case study in the Bide-Santang Basin, SW China. *Mar Pet Geol.* 2020;116:104321.

39. Yang S, Yao R, Cui X, et al. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt. *Chin J Geophys.* 2012;55(12):4207-4217.

40. Li Y, Tang D, Xu H, et al. In-situ stress distribution and its implication on coalbed methane development in Liulin area, eastern Ordos basin, China. *J Pet Sci Eng.* 2014;122:488-496.

41. Wang Z, Pan J, Hou Q, et al. Anisotropic characteristics of low-rank coal fractures in the Fukang mining area. *China. Fuel.* 2018;211:182-193.

42. Wang S, Elsworth D, Liu J. Permeability evolution in fractured coal: The roles of fracture geometry and water-content. *Int J Coal Geol.* 2011;87(1):13-25.

43. Wu Y, Tao S, Tian W, et al. Advantageous seepage channel in coal seam and its effects on the distribution of high-yield areas in the Fanzhuang CBM Block, southern Qinshui Basin, China. *Nat Resour Res.* 2021;30(3):2361-2376.

44. Liu T, Liu S, Lin B, et al. Stress response during in-situ gas depletion and its impact on permeability and stability of CBM reservoir. *Fuel.* 2020;266:117083.

45. Chen S, Tang D, Tao S, et al. Characteristics of in-situ stress distribution and its significance on the coalbed methane (CBM)
development in Fanzhuang-Zhengzhuang Block, Southern Qinshui Basin, China. *J. Pet. Sci. Eng.* 2018;161:108-120.

46. Bottomley W, Furniss JP, Raza SS, et al. Characterizing the dependence of coal permeability to methane adsorption, pore pressure and stress; laboratory testing of Walloon coals from the Surat basin. *Soc Pet Eng.* 2017;SPE-186875-MS:1-16.

47. Zhou J, Zhang L, Li X, et al. Experimental and modeling study of the stress-dependent permeability of a single fracture in shale under high effective stress. *Fuel.* 2019;257:116078.

48. Wang Z, Pan J, Hou Q, et al. Changes in the anisotropic permeability of low-rank coal under varying effective stress in Fukang mining area, China. *Fuel.* 2018;234:1481-1497.

49. Zhao J, Tang D, Xu H, et al. Characteristic of in situ stress and its control on the coalbed methane reservoir permeability in the eastern margin of the Ordos Basin, China. *Rock Mech Rock Eng.* 2016;49(8):3307-3322.

50. Sun L, Kang Y, Wang J, et al. Vertical transformation of in-situ stress types and its control on coalbed reservoir permeability. *Geo J China U.* 2017;23(1):148-156.

51. Li G, Yan D, Zhuang X, et al. Implications of the pore pressure and in situ stress for the coalbed methane exploration in the southern Junggar Basin. *Eng Geol.* 2019;262:105305.

52. Zhang P, Meng Z, Jiang S, et al. Characteristics of in-situ stress distribution in Zhengzhuang Region, southern Qinshui Basin, China and its stress path during depletion. *Eng Geol.* 2020;264:105413.

53. Lv S, Wang S, Liu H, et al. Analysis of the influence of natural fracture system on hydraulic fracture propagation morphology in coal reservoir. *J China Coal Soc.* 2020;45(7):2590-2601.

How to cite this article: Fang X, Wu C, Jiang X, Liu N, Zhou D, Ju Y. Characteristics of in situ stress and its influence on coal seam permeability in the Liupanshui Coalfield, Western Guizhou. *Energy Sci Eng.* 2021;9:1773–1786. https://doi.org/10.1002/ese3.950