Effect of marigold (*Tagetes erecta* L.) on soil microbial communities in continuously cropped tobacco fields

Feiyan Huang1, Xiaopeng Deng2, Lingling Gao3, Xianjie Cai4, Ding Yan4, Yongzhan Cai5, Xiaolong Chen6, Min Yang1, Wenjie Tong2* & Lei Yu1*

Root-knot nematode disease is a catastrophic soil-borne disease in tobacco production. The regulation of natural microbial communities is considered a good disease management approach to suppress the incidence of soilborne diseases. In this study, the effects of tobacco (*Nicotiana tabacum* L.)-marigold (*Tagetes erecta* L.) rotation on the diversity and structure of soil microbial communities in continuously cropped tobacco fields were analyzed to manage this devastating pathogen. The results showed that the soil bacterial OTUs increased after marigold rotation and that the bacterial Shannon, ACE, Chao1 index, and fungal Shannon index were higher in the tobacco-marigold rotation fields than in the continuously cropped tobacco fields by 3.98%, 10.37%, 5.46%, and 3.43%, respectively. After marigold rotation, the relative abundances of Actinobacteria, Acidobacteria, and Ascomycota increased by 28.62%, 107.50%, and 57.44%, respectively, and the proportion of beneficial bacterial genera such as *Nocardioides*, *Gemmatimonas*, and *Bradyrhizobium* increased. In addition, our results also showed that rotation of marigold could effectively reduce the incidence of root-knot nematodes in the next crop of tobacco. These results indicate that marigold rotation had a positive effect on the soil microecological environment of continuously cropped tobacco fields, reducing the obstacles to continuous cropping of tobacco.

Root-knot nematode (RKN) disease caused by *Meloidogyne* spp. is a serious threat to tobacco, affecting production worldwide, including China. This disease is very common in tobacco-producing areas of China. The affected area in Yunnan Province alone is more than 26,000 hectares, causing yield losses of 30 ~ 50%1. Due to the area of arable land, topography, and landforms in Yunnan, continuous cropping is the main planting pattern for tobacco in this province, which will undoubtedly aggravate the occurrence of tobacco soil-borne diseases such as root-knot nematode disease2. In recent years, plant rhizosphere has attracted much attention as a hot spot ecological environment for plant-microorganisms interaction3. The regulation of natural microbial communities is considered to be one of the most promising strategies for improving soil health to achieve integrated and sustainable disease management4. For example, the diversity of plant species in the ecosystem is maintained through crop rotation and intercropping, so as to prevent plants from biological stress by improving the diversity and structure of rhizosphere microorganisms5,6. Moreover, biological control protects plants from soil-borne pathogens through potent antagonistic microbes, inducing host resistance, niche exclusion and direct antagonism7.

Marigold (*Tagetes erecta* L.) is a species in the family Asteraceae. It is commonly grown as an ornamental plant in many regions of the world, and is famous for its medicinal and antibacterial properties8. *Tagetes* species can produce allelopathy compounds with antimicrobial activity, which exhibit cytotoxicity to plant nematodes9,10, and can antagonist 14 genera of plant-parasitic nematodes11. Xu et al. identified 126 substances in *Tagetes* plants12. Among them, the thiophenes (including 3-buten-1-ynyl-2,2′-bithienyl [BBT, I] and α-terthienyl [a-T, II]) in the roots of marigold are considered the main active substances that are cytotoxic to nematodes13,14. Although the ecological functions of these compounds have not been clarified, past studies have reported that they have
biological activities against plant pathogens and nematodes15,16. There are many reports on the successful control of crop diseases by marigold. For example, rotating or intercropping marigold with crops susceptible to nematodes can effectively reduce the number of nematodes in the soil and increase the diversity index of nematodes, which is conducive to the balance of nematode community structure17,18. Marigold rotation, intercropping and mulching could effectively inhibit nematodes infection in eggplant, tomato and soybean19,20. The rotation of Chinese cabbage and marigold can significantly reduce the incidence of clubfoot disease in the next crop21. In addition, marigold can also impact soil microbial communities: intercropping marigold with tobacco can increase the diversity of rhizosphere soil bacterial communities22. A marigold-angelica rotation had a substantial impact on the composition of soil fungal communities23.

In general, different marigold utilization methods can play a demonstrably positive role in regulating soil microecology. However, due to the broad-spectrum biological activity of marigold root exudates, the work on the impact of different utilization methods of marigold on soil microbes is still limited8,24. Therefore, we hypothesized that tobacco-marigold rotation could effectively control the incidence of tobacco root-knot nematodes and alleviate the obstacles of tobacco continuous cropping. In order to explore the microbiological mechanism that occurred under tobacco-marigold rotation, the diversity and community composition of rhizosphere bacteria and fungi were analyzed by high-throughput sequencing. The results of this study will assist in developing an effective and sustainable agricultural rotation pattern to mitigate the incidence of tobacco root-knot nematodes.

Materials and methods

Field experiment design and description. The field test was conducted from March 2018 to September 2020. The experimental plot was located at Gaocang Street (24°30′ N, 103°32′ E), Hongta District, Yuxi City, Yunnan Province, at an altitude of 1760 m. The soil was red loam. Tobacco had been planted continuously in this plot for 5 years, and the tobacco variety was K326. In 2018, we did not carry out any treatment, and the whole experimental site continued to grow tobacco. According to the observation of typical root-knot nematodes symptoms, the incidence of root knot nematode disease in this experimental site was 63.3%. In 2019, we divided the experimental site into four plots. Marigold was planted in plots A and D, and tobacco continued to be planted in plots B and C (Fig. 1a,b). In 2020, tobacco was planted in four plots A, B, C and D (Fig. 1c,d). Conventional single-ridge
were sequenced on the Illumina MiSeq PE300 platform in Shanghai Majorbio Bio-Pharm Technology Co., Ltd. Extraction Kit (Axygen Biosciences, CA, USA) according to the manufacturer's instructions. The PCR amplicons. The PCR products were recovered from 2% agarose gel and were further purified using the AxyPrep DNA Gel. as those of the 18S rRNA PCR amplification except that only 27 cycles of thermal cycling were performed. -3') were used to amplify the V3-V4 region of the 16S rDNA. All the conditions of this PCR step were the same. dissimilarities among treatment T and C were 1.14 times the number unique to treatment T. However, the fungal OTU abundance was not. bacterial OTU abundance was higher in treatment C than in treatment T, and the number of OTUs unique to treatment C was 1.14 times the number unique to treatment T. However, the fungal OTU abundance was not significantly different between the two treatments (Fig. 2).

Table 1. Bacterial and fungal Alpha-diversity index of different treatments.

Treatments	OTU abundance	Shannon	Simpson	ACE	Chao1	Coverage/%
Bacteria						
C	4843	6.53	0.0054	4861.10	4691.56	97.47%
T	4641	6.28	0.0105	4404.23	4448.55	97.50%
Fungal						
C	1545	4.82	0.0195	1079.03	1070.55	99.71%
T	1580	4.66	0.0260	1166.22	1167.60	99.62%

Significance was determined at the P < 0.05 level and at the 95% confidence level by Duncan's test.

The differences in the microbial diversity index were compared using Analysis of Variance (ANOVA, IBM SPSS 22.0). Significance was determined at the P < 0.05 level and at the 95% confidence level by Duncan's test.

Results and analysis

Alpha diversity analysis and comparison of differences in OTUs. Table 1 shows the OTU abundance and alpha diversity index of bacterial and fungal communities in the rhizosphere soil samples of different treatments. A total of 6265 bacterial OTUs and 2174 fungal OTUs were obtained from the two treatments. The bacterial OTU abundance was higher in treatment C than in treatment T, and the number of OTUs unique to treatment C was 1.14 times the number unique to treatment T. However, the fungal OTU abundance was not significantly different between the two treatments (Fig. 2).

The alpha diversities of bacteria and fungi shows a certain difference between the two treatments. The Shannon, ACE and Chao1 index of bacteria in treatment C were 3.98%, 10.37%, and 5.46% higher, respectively, than those in treatment T, indicating that the diversity and richness of rhizosphere bacterial communities were higher.
in treatment C than in treatment T. The fungal Shannon index of treatment C was also 3.43% higher than that of treatment T, but the ACE and Chao1 index of treatment C were 7.48% and 8.31% lower, respectively, than those of treatment T.

Community species and relative abundance of bacterial and fungal. Figures 3, 4 and 5 show the relative abundances of bacterial and fungal phylum and genus at the 97% clustering level based on the species annotation results of the representative sequences in each OTU. The bacterial flora composition at the phylum level was different between the two treatments (Fig. 3a). The bacterial of treatment C at the phylum level was mainly composed of Actinobacteria (35.37%), Proteobacteria (21.17%), and Chloroflexi (14.75%). The bacterial of treatment T at the phylum level was mainly composed of Actinobacteria (27.50%), Proteobacteria (23.59%), and Firmicutes (18.40%). The relative abundances of Actinobacteria and Acidobacteria were higher in treatment C than in treatment T by 28.62% and 107.50%, respectively, whereas the relative abundances of Proteobacteria and Firmicutes were lower in treatment C than in treatment T by 10.26% and 86.74%, respectively. At the genus level (Fig. 4), the relative abundances of Arthrobacter, Sphingomonas, Nocardioides, Gemmatimonas, and Bradyrhizobium were higher in treatment C than in treatment T by 88.16%, 20.13%, 22.96%, 23.67%, and 16.07%, respectively, whereas the relative abundance of Streptomyces was 29.87% lower in treatment C than in treatment T.

The fungal of the two treatments at the phylum level were both mainly composed of Ascomycota and Mortierellomycota, which accounted for more than 85% of the total microbiota (Fig. 3b). The relative abundance of Mortierellomycota was lower in treatment C than in treatment T, whereas the relative abundances of Ascomycota, Basidiomycota, and Chytridomycota were all higher in treatment C than in treatment T. At the genus level (Fig. 5), the relative abundances of Fusarium, Chaetomium, and Penicillium were all notably higher in treatment C than in treatment T by 57.44%, 52.84%, and 24.79%, respectively, whereas the relative abundance of Mortierella was 35.40% lower in treatment C than in treatment T.

Principal coordinates analysis (PCoA) clustering and hierarchical clustering of bacterial and fungal community compositions. Hierarchical clustering was performed on each sample at the species level (Fig. 6). The abundances of bacterial and fungal species from treatments C and T each clustered into two
branches, indicating that the abundances of bacterial and fungal species changed significantly after marigold rotation.

A PCoA was performed using the Bray–Curtis distance algorithm (Fig. 7). The results showed that the bacterial and fungal community compositions at the OTU level were significantly different between treatments C and T. The bacterial community of treatment C was mainly distributed on the left side of the PC1 axis, whereas the bacterial community of treatment T was mainly distributed on the right side of the PC1 axis; the distance between the two treatments was relatively large, indicating that the bacterial community compositions of the two treatments were considerably different (Fig. 7a). In contrast, the fungal community showed that treatment C was distributed on the right side of the PC1 axis, and treatment T was distributed on the left side of the PC1 axis (Fig. 7b), but the fungal community compositions of treatments C and T were markedly different. The above results indicate that marigold rotation greatly affects the distribution and composition of soil microbial communities in continuously cropped tobacco fields.

Effect of marigold rotation on the incidence of root-knot nematodes. In order to further evaluate the impact of marigold rotation on soil health of continuous cropping tobacco fields, we calculated the incidence of root-knot nematodes in marigold rotation plots and continuous tobacco cropping plots respectively. As shown in Fig. 8, the incidence of the whole experimental site in 2018 was 63.3%. In 2019, the incidence of two tobacco continuous cropping areas (plots B and C) was 85.7%. In 2020, the incidence of two tobacco con-
Continuous cropping areas (plots B and C) rose to 96.7%, which was 33.4% and 11.0% higher than that in 2018 and 2019 respectively. But it is worth noting that the incidence in areas A and D decreased to 31.6% after rotation of marigold for one year, which was 65.1% lower than that in areas B and C (96.7%) after continuous cropping for 3 years. The results suggest that marigold rotation could effectively reduce the incidence of root-knot nematodes in the next crop of tobacco.

Discussion

Among the many factors that cause obstacles to continuous cropping of flue-cured tobacco, the imbalance of rhizosphere microecology is the main factor. Soil microbes are the most biologically active component of the soil microecosystem and play an important role in the occurrence of soil-borne diseases. The loss of soil
microbial diversity can easily lead to an increase in plant soil-borne diseases. High microbial diversity and activity are conducive to promoting plant growth, enhancing plant defenses, and inhibiting the occurrence of soil-borne diseases. In this study, the soil bacterial OTU abundance increased after marigold rotation, and the bacterial Shannon, ACE, Chao1 index, and fungal Shannon index were all higher in the tobacco-marigold rotation fields than in the continuously cropped tobacco fields, indicating that tobacco-marigold rotation improved soil microbial diversity and richness. In general, the higher the alpha diversity index of the community, the more complex and stable the microbial community structure. There may be two reasons for this phenomenon: first, crop rotation is conducive to the reproduction of soil microbes, which increases the number of microbes, enhances metabolic capacity, and maintains high microbial activity and diversity in the soil; second, the root exudates greatly affect soil chemical properties, and changes in soil chemical properties indirectly impact the distribution of soil microbial communities.

Past research has shown that soil microbes respond quickly to changes in the external environment such as planting patterns, resulting in dynamic changes in microbial abundance and composition. In this study, the different microbial distributions between samples of the two treatments indicate significant differences in the soil bacterial and fungal communities of the tobacco-marigold rotation fields and the continuously cropped tobacco fields. First, the relative abundances of Actinobacteria and Acidobacteria in the soil were significantly higher in the tobacco-marigold rotation fields than in the continuously cropped tobacco fields. Acidobacteria are mainly involved in the iron cycle and single-carbon compound metabolism and play an important role in the degradation of plant residues. Actinobacteria can degrade cellulose, lignin, and lignocellulose by secreting hydrolase enzymes such as β-glucosidase and xylanase, thereby utilizing refractory carbon sources, and their relative abundance often increases with increasing dissolved organic carbon. In addition, the relative abundances of Nocardioides (which is related to plant growth and biological protection), Gemmatimonas (which is involved in phosphorus metabolism), and Bradyrhizobium (which can decompose organic matter and promote the soil carbon cycle and nitrogen fixation) showed increasing trends after marigold rotation.

Compared with the continuous cropping of tobacco, the relative abundance of Ascomycota in the soil was significantly higher after marigold rotation. Previous studies have shown that an increase in ascomycetes in the soil is conducive to the decomposition of plant residues. In fact, saprophytic ascomycetes are considered the main fungal group involved in the initial step of plant litter decomposition, i.e., the decomposition of soluble components and total cellulose. Their growth rate is positively correlated with the addition of fresh litter and available nitrogen. We also found that the relative abundance of Penicillium significantly increased after marigold rotation. The increase in the abundance of Penicillium in the soil is conducive to the health of the soil environment because Penicillium plays an important role in the secretion of cellulase and antibiotics. The increases in the relative abundances of these beneficial bacteria and fungi in the soil after marigold rotation has a positive effect on the soil micro-ecological environment. Most notably, our results also showed that rotation of marigold could effectively reduce the incidence of root-knot nematodes in the next crop of tobacco (decreased 65.1%). However, there are still significant limitations to explore the changes of microbial community only through 16S and 18S high-throughput sequencing. In the future, we will combine the traditional isolation and culture, metagenomics methods to comprehensively analyze the microbial community function after marigold-tobacco rotation.

Conclusions
This study analyzed the role of tobacco-marigold rotation in regulating the soil microbial community structure under continuous cropping and provides a new idea for sustainable agriculture for successful prevention control of tobacco root-knot nematodes disease. Marigold rotation can increase the diversity and abundance of soil microbial communities, and increase the proportion of beneficial microbes such as Nocardiia, Blastomonas, Bradyrhizobium, and Penicillium. It suggests that marigold rotation has a positive effect on the soil microecological environment. However, the impact of tobacco-marigold rotation on soil physicochemical properties, enzymatic activity, and functional potential of soil microbial communities is unclear and needs further study.
Data availability
All data generated or analysed during this study are included in this published article [and its supplementary information files].

Received: 27 December 2021; Accepted: 1 November 2022
Published online: 16 November 2022

References
1. Chen, X. L. et al. Effects of Meloidogyne incognita on the fungal community in tobbacchorizosphere. Rev. Bras. Cienc. Solo. 46, e0210127 (2022).
2. Zhang, S. X. et al. Research progresses on continuous cropping obstacles of tobacco. Soils 47(5), 823–829 (2015).
3. Luo, J. Y. et al. Effects of soil salinity onolsosphere soil microbes in transgenic Bt cotton fields. J. Integr. Agric. 16, 1624–1633 (2017).
4. Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
5. Newton, A., Begg, G. & Swanton, J. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).
6. Li, X. G. et al. Effects of intercropping with Atractylodes lancea and application of bio-organic fertiliser on soil invertebrates, disease control and peanut productivity in continuouspeanut cropping field in subtropical China. Agrofor. Syst. 88, 41–52 (2014).
7. Ahmed, W. et al. Effects of soil salinity onrhizosphere soil microbes in transgenic Bt cotton fields. Plant Prot. 8, 330–340 (2016).
8. Gómez-Rodrıguez, O., Zavaleta-Mejıa, E., Gonzalez-Hernandez, V., Livera-Munoz, M. & Cárdenas-Soriano, E. Allelopathy and rhizosphere chemistry: Does marigold root exudate composition respond to intra-and interspecific competition? J. Chem. Ecol. 35(5–6), 525–533 (2019).
9. Ploeg, A. T. Effects of selected marigold varieties on root-knot nematodes and tomato and melon yields. Plant Dis. 86(5), 505–508 (2002).
10. Weidenhamer, J. D., Montgomery, T. M., Cipollini, D. F., Weston, P. A. & Mohney, B. K. Plandensity and rhizosphere chemistry: Effects of marigold root exudate composition respond to intra-and interspecific competition? J. Chem. Ecol. 45(5–6), 136983 (2020).
11. Luo, J. Y. et al. Effects of soil salinity onrhizosphere soil microbes in transgenic Bt cotton fields. Plant Prot. 8, 330–340 (2016).
12. Li, W., Xu, J., Chen, H. & Qi, Y. Phytochemicals and their biological activities of plants in tagetes l.-sciencedirect. J. Chem. Ecol. 40(8), 940–952 (2014).
13. Marotti, I. et al. Thiophene occurrence in different tagetes species: Agricultural biomass as sources obiobiocidal substances. J. Sci. Food Agric. 90(7), 1210–1217 (2010).
14. Barto, E. K. et al. The fungal fastlane: Common mycorrhizal networks extendbioactive zones of allelochemicals in soils. PLoS ONE 6, e27195 (2011).
15. Evenhuis, A., Korthals, G. & Molendijk, L. Tagetes patula as an effective catch crop forlon-term control of Pratylenchus penetrans. Nematology 6, 877–881 (2004).
16. Wu, W. T. et al. Effects of marigold-to-bacoca rotation on soil nematode community composition. Southwest China J. Agric. Sci. 32(2), 342–348 (2019).
17. Reynolds, L. B., Potter, J. W. & Ball-Coelho, B. R. Crop rotation with sp. is an alternative to chemical fumigation for control of root-lesion nematodes. Agron. J. 92(5), 957–966 (2000).
18. El-Hamawi, M., Youssef, M. & Zawam, H. S. Management of Meloidogyne incognita, the root-knot nematode, on soybean asaffected by marigold and seaambrosia (damsisa) plants. J. Pest Sci. 77, 95–98 (2004).
19. Kumar, N., Krishnappa, K., Reddy, B., Ravichandra, N. & Karuna, K. Intercropping for the management of root-knot nematode, Meloidogyne incognitain vegetable-based cropping systems. Indian J. Nematol. 35, 46–49 (2005).
20. Zhang, J. et al. Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot Incidence in Chinese Cabbage. Plants 11(17), 2295 (2022).
21. Xia, T. X. et al. Microbial diversity of tobacco rhizosphere in different growth stages of marigold-to-bacoca intercropping system. Southwest China J. Agric. Sci. 31(4), 680–686 (2018).
22. Wei, H. Y. et al. Effects of marigold diversified cropping with angelfish on fungal community in soils. Plant Prot. 41(5), 69–74 (2015).
23. Li, Y. et al. Intercropping with marigold promotes soil health and microbialstructure to assist in mitigating tobacco bacterial wilt. J. Plant Pathol. 102, 731–742 (2020).
24. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
25. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
26. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of RNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).
27. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
28. Irikii, I. et al. Rhizobacterial community-level, sole carbon source utilization pattern aff ects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl. Soil Ecol. 34(1), 27–32 (2006).
29. Wu, M. N. et al. Soil fungistasis and its relations to soil microbial composition and diversity: A case study of a series of soils with different fungistasis. J. Environ. Sci. 20(7), 871–877 (2008).
30. Mendes, L. W. et al. Soil-Borne microbiome: Linking diversity to function. Microb. Ecol. 70(1), 255–265 (2015).
31. Jaiswal, A. K. et al. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 7, 44382 (2017).
32. Raaijmakers, J. M. & Mazzola, M. Soil immune responses soil microorganisms may be harnessed for plant health. Science 352, 1392–1393 (2016).
33. Kulliine, G., Rasmussen, J., Kuzyakov, Y. & Eriksen, J. M. Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biol. Biochem. 76, 22–33 (2014).
34. Mohammadi, K. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. Am. Eurasian J. Agric. Environ. Sci. 10, 330–337 (2011).
35. Wang, G. H. et al. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32(2), 14–20 (2016).
36. Wei, H., Wang, L., Hassan, M. & Xie, B. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256, 333–341 (2018).
37. Wang, Y., Liu, L., Yang, J., Duan, Y. & Zhao, Z. The diversity of microbial community and function varied in response to different agricultural residues composting. Soil. Total Environ. 715, 136983 (2020).
39. Glass, N. L., Schmoll, M., Cate, J. H. & Coradetti, S. Plant cell wall deconstruction by ascomycete fungi. *Annu. Rev. Microbiol.* **67**, 477–498 (2013).

40. Li, Y. *et al.* Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. *Soil Biol. Biochem.* **107**, 19–31 (2017).

41. Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. & Ramos, L. P. Comparison of *Penicillium echinulatum* and *Trichoderma reesei* cellulases in relation to their activity against various cellulosic substrates. *Bioresour. Technol.* **99**, 1417–1424 (2008).

Acknowledgements

This study was supported by the Project of Yunnan Branch Company of China Tobacco Corporation (No. 2018530000241016, 2019530000241011, 2018530000241020, 2020530000242010).

Author contributions

Y.L. and T.W. conceived and designed the experiments; C.X. wrote the paper; H.F. revised the manuscript; G.L., D.X. and C.X. performed the experiments and collected the samples; Y.D. collected the data and consulted the literature; Y.M. analyzed the data; C.Y. contributed experimental materials.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-23517-x.

Correspondence and requests for materials should be addressed to W.T. or L.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022