Association between History of Pregnancy and Liver Fibrosis Using Fibrosis-4 Index in Korean Postmenopausal Women: A Nationwide Population-Based Study

Jae-Joon Ahn¹, Joo-Hyun Park¹*, Do-Hoon Kim¹*, Hyun-Jin Kim¹, Hyung-Seok Ko¹, Jun-Yeon Kwon¹, Young-Sang Koh¹, Jin-Hyung Jung², Gyu-Na Lee², Kyungdo Han³

¹Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
²Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
³Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea

Background: The association between a history of pregnancy and liver fibrosis remains unclear. Herein, we investigated the association between reproductive factors, including a history of pregnancy and liver fibrosis, in post-menopausal Korean women.

Methods: This study used nationally representative, population-based data collected from the Korea National Health and Nutrition Examination Survey 2008–2017. Of 14,624 women with natural menopause, 11,085 with no previous history of any type of cancer, hepatitis, or chronic heavy alcohol consumption were enrolled. We investigated the reproductive factors, including a history of pregnancy, total reproductive years, age at menarche and menopause, and oral contraceptive use. Liver fibrosis was defined as a Fibrosis-4 index score ≥2.67 kg/m².

Results: Of the study participants, 372 (3.3%) had advanced liver fibrosis. Multivariable logistic regression analysis showed that women with a history of more than one pregnancy were associated with a lower risk of liver fibrosis compared to women who had never been pregnant, after adjusting for potential confounders (adjusted odds ratio, 0.30; 95% confidence interval, 0.15–0.59). The risk of liver fibrosis did not increase significantly with an increasing number of pregnancies (P for trend=0.135). Other reproductive factors, including total reproductive years, age at menopause and menarche, and oral contraceptive use, were not significantly associated with liver fibrosis.

Conclusion: Postmenopausal women who had experienced one or more pregnancies had a reduced risk of liver fibrosis. Our findings reveal a potential protective role of pregnancy against liver fibrosis.

Keywords: Pregnancy; Liver Cirrhosis; Post-Menopause; Women; Reproductive History
INTRODUCTION

Liver fibrosis resulting from chronic liver injury progressively evolves into liver cirrhosis, which is a major cause of mortality worldwide.1) The primary causes of liver fibrosis are viral infections (hepatitis B and C), alcohol abuse, non-alcoholic steatohepatitis, autoimmune hepatitis, and systemic diseases.2,3) Recent studies have suggested that reproductive factors, including hormone therapy and menopause, may also be risk factors for liver fibrosis.4-11) However, the association between a history of pregnancy, which is an important reproductive factor, and liver fibrosis remains unclear.

To the best of our knowledge, only two previous studies have investigated the association between pregnancy and liver fibrosis in women infected with hepatitis C virus and have reported inconsistent results. Furthermore, data on the association between a history of pregnancy and liver fibrosis in the general population are limited.

Methods for assessing liver fibrosis include liver biopsy, transient elastography, magnetic resonance elastography, and non-invasive scores.12) Non-invasive and inexpensive methods may be feasible in general population settings. The Fibrosis-4 index (FIB-4) has been validated as a surrogate marker of advanced fibrosis (bridging fibrosis or cirrhosis) and is suggested to be superior to multiple non-invasive markers of liver fibrosis.13,14)

Therefore, this nationwide, population-based study aimed to elucidate the association between a history of pregnancy and liver fibrosis using FIB-4 in postmenopausal Korean women. We further investigated the association between liver fibrosis and other female reproductive factors, including total reproductive years, age at menarche and menopause, and the use of oral contraceptives.

METHODS

1. Data Source

This study was based on data from the Korea National Health and Nutrition Examination Survey (KNHANES) conducted in South Korea since 1998 by the Division of Chronic Disease Surveillance of the Korea Centers for Disease Control and Prevention (currently Korea Disease Control and Prevention Agency) and the Korean Ministry of Health and Welfare. This population-based, cross-sectional survey included a nationally representative sample of the non-institutionalized civilian population selected via a complex, stratified, multistage, probability-cluster rolling sampling design to assess the nutritional and health status of the Korean population. The survey consisted of health interviews, health examinations, and nutrition questionnaires for individuals in Korea. The study was conducted in accordance with the Declaration of Helsinki. Before the survey was performed, all participants were provided with information regarding the survey, and written consent was obtained from each participant.

2. Study Population

This study analyzed the KNHANES data obtained from a representative sample between 2008 and 2017, including surveys from the second and third years of KNHANES IV (2008–2009), V (2010–2012), VI (2013–2015), and VII (2015–2017). The study population included postmenopausal women who completed the health examination survey, which included their entire female reproductive history. Among 46,365 women who participated in the 2008–2017 KNHANES, 14,624 women with natural menopause were initially selected. Women with extremely early menarche (age <5 years) or extremely late menopause (age >70 years) were excluded (n=544). In addition, participants with hepatitis B, hepatitis C, liver cirrhosis (n=246), heavy alcohol consumption (>140 g/wk) (n=198), or cancer (n=649) were excluded. After excluding those with missing values for any other variables (n=544), 302 women were finally selected (Figure 1).

3. Definition of Liver Fibrosis

The risk of liver fibrosis was assessed using the following non-invasive equation: FIB-4=age (years)×aspartate aminotransferase (AST, IU/L)/[platelet count (10^9/L)×√alanine aminotransferase (ALT, IU/L)].

A previously published cutoff was used to exclude and diagnose advanced liver fibrosis. FIB-4 score ≥2.67 is considered a high-risk cutoff for advanced liver fibrosis in women with a high predictive value.13,15) In addition, FIB-4 has proven to be useful in detecting liver fibrosis in Korea.16) Many studies on liver fibrosis in Korea have successfully conducted using FIB-4.17-22)

4. Covariates

The participants in the KNHANES were asked about their demograph-
Table 1. Baseline characteristics of the study population

Characteristic	Fibrosis-4 index score	P-value	
	<2.67	≥2.67	
No. of participants	10,713	372	
Demographics			
Age (y)			
<50	3.62 (0.3)	1.38 (0.9)	<0.0001
50–59	40.3 (0.6)	13.7 (2.2)	<0.0001
60–69	31.2 (0.5)	18.4 (2.2)	<0.0001
70–79	20.5 (0.5)	51.0 (2.9)	<0.0001
≥80	4.4 (0.2)	15.7 (2.1)	<0.0001
Alcohol consumption*	26.9 (0.5)	18 (2.4)	0.001
Current smoking	3.69 (0.3)	2.8 (1.0)	0.410
Education (≥ high school graduates)	30.9 (0.7)	18.0 (2.5)	<0.0001
Low income	30.1 (0.6)	47.2 (3.0)	<0.0001
Height (cm)	153.9±0.1	151.7±0.4	<0.0001
Weight (kg)	57.4±0.1	55.2±0.51	<0.0001
Waist circumference (cm)	81.9±0.1	82.3±0.6	0.546
BMI (kg/m²)	24.2±0.04	24.0±0.2	0.206
BMI (kg/m²) <18.5	1.9 (0.2)	4.5 (1.2)	<0.0001
18.5–22.9	35.9 (0.6)	35.6 (2.9)	<0.0001
23.0–24.9	25.6 (0.5)	23 (2.6)	<0.0001
>25.0	36.5 (0.6)	36.9 (2.9)	<0.0001
Urban residence†	23.9 (1.1)	26.1 (3.0)	0.429
Past medical history			
Diabetes mellitus	12.2 (0.4)	16.8 (2.4)	0.030
Hypertension	35.7 (0.6)	46.0 (3.1)	0.001
Dyslipidemia	18.7 (0.5)	18.5 (2.4)	0.951
Cardiovascular disease	3.2 (0.2)	7.0 (1.6)	0.001
Chronic kidney disease	0.3 (0.1)	0.6 (0.5)	0.035
Stroke	1.8 (0.1)	4.0 (1.0)	0.003
Thyroid disease	3.8 (0.2)	2.6 (0.9)	0.256
Laboratory findings			
Fasting blood glucose (mg/dL)	101.8±0.3	103.0±1.6	0.441
Systolic blood pressure (mm Hg)	124.5±0.2	128.7±1.0	<0.0001
Diastolic blood pressure (mm Hg)	75.7±0.1	73.4±0.7	0.002
Total cholesterol (mg/dL)	201.6±0.4	183.3±2.3	<0.0001
Triglyceride (mg/dL)	116 (115–118)	104 (98–110)	0.0003
High-density lipoprotein cholesterol (mg/dL)	51±1	49.2±0.9	0.077
Aspartate transaminase (IU/L)	21.5 (21.3–21.6)	34.0 (31.7–36.4)	<0.0001
Alanine aminotransferase (IU/L)	17.9 (17.7–18.1)	21.6 (19.8–23.7)	<0.0001
Creatinine (mg/dL)	0.74±0.0	0.8±0.01	0.015
Reproductive factors			
Age at menarche (y)	15.5±0.03	15.9±0.1	0.003
Age at menarche (y) <12	1.2 (0.1)	0.4 (0.3)	0.033
12–13	15.2 (0.5)	12.4 (2.0)	<0.0001
14–15	33.7 (0.6)	29.3 (2.7)	<0.0001
≥16	49.9 (0.6)	57.8 (3.0)	<0.0001
Age at menopause (y)	49.7±0.1	49.2±0.3	0.045
Age at menopause (y) <45	10.1 (0.3)	13.9 (1.9)	0.0003
45–49	32.7 (0.5)	39.0 (2.9)	<0.0001
50–54	47.1 (0.6)	34.4 (2.9)	<0.0001
≥55	10.1 (0.3)	12.7 (2.1)	<0.0001

(Continued on next page)
ic, social, lifestyle, and medical conditions, including age, education, urban residence, alcohol or cigarette use, and household income. The participants were classified on the basis of education, based on the highest degree of educational attainment, into those who attained high school or higher degrees (highly educated group=yes). They were further classified based on their monthly household income into quartiles, and those in the lowest quartile were identified as the lower-income group. Regarding alcohol consumption, participants who consumed alcohol at least once a month were categorized as “alcohol consumption=yes.” As for smoking status, participants were categorized into two groups according to whether they were currently smoking at the time of the survey. Participants living in an urban residence were defined as those whose residential area was the “dong,” which implies a Korean urban address. Participants with a history of certain comorbidities were those who provided a “yes” response to the question about the diagnosis of certain diseases, including type 2 diabetes, hypertension, dyslipidemia, cardiovascular disease, chronic kidney disease, stroke, and thyroid disease.

5. Statistical Analysis

Data from KNHANES were obtained from a sample of the Korean population; hence, the analysis required that sampling weights be included to calculate the estimate, taking into consideration the representativeness of the Korean population. P-values were calculated using a two-sample t-test for continuous variables. The chi-square test was used to analyze categorical variables. Multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multiple logistic regression analyses to evaluate the association of the number of pregnancies and other female reproductive factors with liver fibrosis.

The entire population was grouped into quartiles according to the number of pregnancies, total reproductive years, age at menopause, and age at menarche, and the P-values for linear trends of liver fibrosis across the variables were calculated. Pre-specified subgroup analyses were performed, and P-values for interaction according to each covariate were reported. All statistical analyses in this study were performed using the SAS ver. 9.3 (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at P<0.05.

RESULTS

1. Baseline Characteristics

The baseline characteristics of the study population are presented in Table 1. Participants with liver fibrosis were older (P<0.001), drank less alcohol (P=0.011), had lower levels of education (P<0.0001), had lower income (P<0.001), weighed lesser (P<0.001), and were shorter (P<0.001) than those without liver fibrosis.

Individually, those with liver fibrosis had a higher prevalence of hypertension (P=0.001), cardiovascular disease (P=0.001), and stroke (P=0.003) than those without liver fibrosis. Furthermore, individuals with liver fibrosis had higher systolic blood pressure (P<0.001), higher diastolic blood pressure (P=0.002), lower cholesterol levels (P<0.001), lower triglyceride levels (P=0.0003), higher AST levels (P<0.001), higher ALT levels (P<0.001), higher creatinine levels (P=0.015), and lower triglyceride levels (P<0.001) than those without liver fibrosis.

Regarding reproductive factors, individuals with liver fibrosis were older at menarche (P=0.003), had shorter total reproductive years (P=0.004), and had fewer pregnancies (P=0.0003) than those without liver fibrosis. The use of oral contraceptives showed no statistically significant difference between the two groups.
2. Association of History of Pregnancy and Other Reproductive Factors with Risk of Liver Fibrosis

Participants who had never been pregnant had a higher risk of liver fibrosis than those who had a history of one or more pregnancies (adjusted OR, 0.30; 95% CI, 0.15–0.59) (Table 2). Furthermore, participants with one pregnancy (adjusted OR, 0.15; 95% CI, 0.04–0.51), two pregnancies (adjusted OR, 0.32; 95% CI, 0.14–0.73), and three or more pregnancies (adjusted OR, 0.30; 95% CI, 0.15–0.6) had lower risks of liver fibrosis than those who had never been pregnant (model 4, Table 2). In individuals who had experienced one or more pregnancies, a higher number of pregnancies was not associated with liver fibrosis after adjusting for age, obesity, income level, education level, alcohol consumption, smoking status, urban residence, type 2 diabetes, hypertension, dyslipidemia, cardiovascular disease, chronic kidney disease, stroke, or thyroid disease (P=0.135) (Table 2). Furthermore, other female reproductive factors, including total reproductive years, age at menopause and menarche, and use of oral contraceptives, showed no statistically significant association with the risk of liver fibrosis.

3. Subgroup Analysis

We performed stratified subgroup analyses according to education level, lower income, alcohol consumption, current smoking status, urban residence, type 2 diabetes, hypertension, dyslipidemia, obesity, stroke, cardiovascular disease, chronic kidney disease, and thyroid disease (Table 3). The association between history of pregnancy experience and liver fibrosis did not differ according to the subgroups (P for interactions: education, 0.788; lower income, 0.329; alcohol consumption, 0.775; urban residence, 0.374; hypertension, 0.451; type 2 diabetes, 0.27; dyslipidemia, 0.554; obesity, 0.49; stroke, 0.9; and cardiovascular disease, 0.698). Subgroup analysis of the current smoking status, chronic kidney disease, and thyroid disease could not be performed as none of the participants reported having these conditions.

DISCUSSION

This nationally representative population-based study demonstrated that postmenopausal women with a history of pregnancy had a re-

Table 2. Adjusted odds ratios and 95% confidence intervals of liver fibrosis according to the reproductive factors

	Odds ratio (95% confidence interval)	Model 1	Model 2	Model 3	Model 4
Pregnancy					
No	0.29 (0.15–0.57)	1	0.30 (0.15–0.59)	0.30 (0.15–0.59)	0.30 (0.15–0.59)
Yes		1	0.15 (0.04–0.51)	0.15 (0.04–0.51)	0.15 (0.04–0.51)
No. of pregnancies					
None	1	1	0.15 (0.04–0.50)	0.15 (0.04–0.50)	0.15 (0.04–0.50)
1	0.32 (0.14–0.72)	0.32 (0.14–0.72)	0.32 (0.14–0.72)	0.32 (0.14–0.72)	
≥3	0.29 (0.15–0.58)	0.30 (0.15–0.59)	0.30 (0.15–0.60)	0.30 (0.15–0.60)	
P for trend		0.098	0.125	0.134	0.135
Total reproductive years (y)					
Q1 (≤31)	1	1	0.86 (0.62–1.19)	0.84 (0.60–1.16)	0.84 (0.60–1.17)
Q2 (≤34)	1.03 (0.74–1.44)	0.98 (0.70–1.38)	1.01 (0.71–1.42)	1.01 (0.71–1.42)	
Q3 (≤37)	0.77 (0.54–1.10)	0.73 (0.51–1.04)	0.75 (0.52–1.07)	0.75 (0.52–1.07)	
P for trend		0.309	0.181	0.244	0.244
Age at menopause (y)					
Q1 (≤47)	1	1	1.09 (0.77–1.51)	1.07 (0.77–1.48)	1.07 (0.77–1.49)
Q2 (≤50)	0.83 (0.56–1.23)	0.8 (0.54–1.19)	0.82 (0.55–1.22)	0.82 (0.55–1.22)	
Q3 (≤53)	0.88 (0.63–1.24)	0.85 (0.61–1.20)	0.88 (0.63–1.23)	0.88 (0.63–1.23)	
P for trend		0.280	0.198	0.266	0.266
Age at menarche (y)					
Q1 (≤14)	1	1	0.88 (0.61–1.27)	0.90 (0.62–1.3)	0.90 (0.62–1.3)
Q2 (≤15)	0.84 (0.60–1.17)	0.87 (0.62–1.21)	0.87 (0.62–1.21)	0.87 (0.62–1.21)	
Q3 (≤17)	0.91 (0.63–1.31)	0.96 (0.66–1.39)	0.94 (0.64–1.37)	0.93 (0.64–1.37)	
P for trend		0.51	0.714	0.645	0.641
Oral contraceptive use					
No	1.13 (0.84–1.54)	1.13 (0.83–1.53)	1.12 (0.82–1.51)	1.12 (0.82–1.51)	
Yes		1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)

Ref, reference; Q1, the lowest quartile; Q4, the highest quartile.

Liver fibrosis was defined as Fibrosis-4 index score more than 2.67 kg/m² in women. Model 1: adjusted for age; model 2: additionally adjusted for income, education, alcohol consumption, smoking, and urban residence; model 3: additionally adjusted for comorbidities (diabetes, hypertension, dyslipidemia, cardiovascular disease, stroke, chronic kidney disease, and thyroid disease); and model 4: additionally adjusted for body mass index.
Liver fibrosis was defined as Fibrosis-4 index score ≥2.67 kg/m² in women. OR, odds ratio; CI, confidence interval.

Table 3. Subgroup analysis of the association between experience of pregnancy and liver fibrosis*

Subgroup	OR (95% CI)	P for interaction
Education (≤high school graduates)		
No	0.28 (0.12–0.65)	0.788
Yes	0.36 (0.11–1.13)	
Lower income		
No	0.46 (0.14–1.49)	0.329
Yes	0.25 (0.10–0.63)	
Alcohol consumption		
No	0.30 (0.14–0.63)	0.775
Yes	0.36 (0.07–1.83)	
Urban residence		
No	0.35 (0.17–0.74)	0.374
Yes	0.16 (0.04–0.72)	
Hypertension		
No	0.39 (0.12–1.24)	0.451
Yes	0.23 (0.09–0.54)	
Diabetes mellitus		
No	0.26 (0.13–0.54)	0.270
Yes	0.63 (0.14–2.8)	
Dyslipidemia		
No	0.35 (0.16–0.77)	0.554
Yes	0.24 (0.07–0.81)	
Obesity		
No	0.27 (0.12–0.63)	0.490
Yes	0.42 (0.13–1.33)	
Stroke		
No	0.31 (0.15–0.63)	0.900
Yes	0.34 (0.03–4.51)	
Cardiovascular disease		
No	0.30 (0.15–0.60)	0.698
Yes	0.83 (0.08–9.14)	

OR, odds ratio; CI, confidence interval.
Liver fibrosis was defined as Fibrosis-4 index score ≥2.67 kg/m² in women.
*Adjusted for education, income, alcohol consumption, urban residence, comorbidities (hypertension, diabetes, dyslipidemia, stroke, cardiovascular disease), and obesity.

A high estrogen surge during pregnancy may play a protective role against liver fibrosis. In addition, the amount of estrogen during the gestational period is much higher than the amount excreted during the entire non-pregnancy period. These findings indicate that sufficient endogenous estrogen exposure in women with a history of pregnancy may prevent the development of liver fibrosis during the postmenopausal period. Further studies are needed to elucidate the other mechanisms underlying the association between pregnancy and liver fibrosis.

Our study had several strengths. First, this was the first study to demonstrate an association between a history of pregnancy and liver fibrosis in the general population. Second, this was a large-scale, nationwide study that used stratified, multistage probability sampling data, and sampling weights for the analysis. The results of our study can therefore be generalized to the entire Korean population. Third, we adjusted the data for multiple confounding variables including income level, education level, urban residence, alcohol consumption, smoking status, and major comorbidities.

This study had some limitations. First, the FIB-4 index is not the gold standard for detecting liver fibrosis, and a liver biopsy is necessary for a precise diagnosis of liver fibrosis. However, in the general population, non-invasive diagnostic methods, including the FIB-4 score, have been widely applied while considering the complications and costs. The FIB-4 score is reliable for diagnosing liver fibrosis,6,26,27 has been validated in several studies on the etiologies of liver disease, and has been shown to be superior to other non-invasive markers of liver fibrosis.5,25 Second, recall bias might have existed. Age at menopause or menarche was not analyzed based on the responses to the questionnaires. Third, we did not perform a subgroup analysis on the participants’ current smoking status, chronic kidney disease, and thyroid disease status because no relevant data were reported for the subgroup analysis.

In conclusion, we reported that a history of pregnancy demonstrated a protective role against liver fibrosis in postmenopausal women. Our findings indicate the protective role of pregnancy against liver fibrosis in postmenopausal women. Therefore, women who have never been pregnant should be aware of the risk of liver fibrosis and the need for early prevention.

https://doi.org/10.4082/kjfm.21.0177
CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

FUNDING

This research was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Korean government, Ministry of Science, and ICT (2020R1A2C1099826), as well as a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Republic of Korea (2022R1I1A1A01054327).

ORCID

Jae-Joon Ahn: https://orcid.org/0000-0001-9413-2327
Joo-Hyun Park: https://orcid.org/0000-0002-4338-4208
Do-Hoon Kim: https://orcid.org/0000-0001-7421-4501
Hyun-Jin Kim: https://orcid.org/0000-0002-6566-310X
Hyung-Seok Ko: https://orcid.org/0000-0002-2539-1453
Joon-Yeon Kwon: https://orcid.org/0000-0003-2090-8940
Young-Sang Koh: https://orcid.org/0000-0003-3493-5704
Jin-Hyung Jung: https://orcid.org/0000-0002-8920-8777
Gyu-Na Lee: https://orcid.org/0000-0003-3011-8010
Kyunglo Han: https://orcid.org/0000-0002-9622-0643

REFERENCES

1. Mokdad AA, Lopez AD, Shahnaz S, Lozano R, Mokdad AH, Stanaway J, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med 2014;12:145.
2. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-18.
3. Altamirano-Barreto A, Barranco-Fragoso B, Mendez-Sanchez N. Management strategies for liver fibrosis. Ann Hepatol 2017;16:48-56.
4. Yang JD, Abdelmalek ME, Pang H, Guy CD, Smith AD, Diehl AM, et al. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 2014;59:1406-14.
5. Di Martino V, Lebray P, Myers RP, Pannier E, Charlotte F, et al. Progression of liver fibrosis in women infected with hepatitis C: long-term benefit of estrogen exposure. Hepatology 2004;40:1426-33.
6. Cotes L, Matos L, Paraña R. Chronic hepatitis C and fibrosis: evidences for possible estrogen benefits. Braz J Infect Dis 2007;11:371-4.
7. Villa E, Yuwoki T, Camma C, Petta S, Di Leo A, Giotto S, et al. Reproductive status is associated with the severity of fibrosis in women with hepatitis C. PLoS One 2012;7:e44624.
8. Pfleischfer J, Koditz R, Pfuhl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev 2002;23:90-119.
9. Belli LS, Burroughs AK, Burra P, Alberti AB, Samonakis D, Camma C, et al. Liver transplantation for HCV cirrhosis: improved survival in recent years and increased severity of recurrent disease in female recipients: results of a long term retrospective study. Liver Transpl 2007;13: 733-40.
10. Lai JC, Verna EC, Brown RS, O’Leary JG, Trotter JF, Forman LM, et al. Hepatitis C virus-infected women have a higher risk of advanced fibrosis and graft loss after liver transplantation than men. Hepatology 2011;54:418-24.
11. Brady CW. Liver disease in menopause. World J Gastroenterol 2015;21:7613-20.
12. Pinzani M, Vizzutti F, Arena U, Marra F. Technology Insight: noninvasive assessment of liver fibrosis by biochemical scores and elastography. Nat Clin Pract Gastroenterol Hepatol 2008;5:95-106.
13. Shah AG, Lydeacker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2009;7:1104-12.
14. Kaswala DH, Lai M, Afdhal NH. Fibrosis assessment in Nonalcoholic Fatty Liver Disease (NAFLD) in 2016. Dig Dis Sci 2016;61:1356-64.
15. Hafid P, Ansaidi C, Penaranda G, Chiche L, Dukan P, Stavris C, et al. Prospective screening of liver fibrosis in a primary care cohort using systematic calculation of FIB-4 in routine results. PLoS One 2021;16: e0254939.
16. Ahn K, Kim J, Kim Y, Uh Y, Yoon KJ. FIB-4 score as a useful screening test for diagnosing liver fibrosis. J Lab Med Qual Assur 2017;39:16-22.
17. Lee YH, Kim SJ, Song K, Park JY, Kim DY, Ahn SH, et al. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: nationwide surveys (KHNANES 2008-2011). Hepatology 2016;63:776-86.
18. Jung JY, Shim JH, Park SK, Ryoo JH, Choi JM, Oh IH, et al. Serum ferritin level is associated with liver steatosis and fibrosis in Korean general population. Hepatol Int 2016;11:222-33.
19. Chung SM, Moon JS, Yoon JS, Won KC, Lee HW. The sex-specific effects of blood lead, mercury, and cadmium levels on hepatic steatosis and fibrosis: Korean nationwide cross-sectional study. J Trace Elem Med Biol 2020;62:126601.
20. Park SH, Plank LD, Suk KT, Park YE, Lee J, Choi JH, et al. Trends in the prevalence of chronic liver disease in the Korean adult population, 1998-2017. Clin Mol Hepatol 2020;26:209-15.
21. Park SH, Park YE, Lee J, Choi JH, Heo NY, Park J, et al. Lack of association between early menopause and non-alcoholic fatty liver disease in postmenopausal women. Climacteric 2020;23:173-7.
22. Han E, Cho Y, Kim KW, Lee YH, Kang ES, Cha BS, et al. Hepatic fibrosis is associated with total proteinuria in Korean patients with type 2 diabetes. Medicine (Baltimore) 2020;99:e21038.
23. Fontaine H, Nalpas B, Carnot R, Brechot C, Pol S. Effect of pregnancy on chronic hepatitis C: a case-control study. Lancet 2000;356:1328-9.
24. Nah EH, Cho S, Kim S, Chu J, Kwon E, Cho HI. Prevalence of liver fibrosis and associated risk factors in the Korean general population: a retrospective cross-sectional study. BMJ Open 2021;11:e046529.
25. Imajo K, Kessoku T, Honda Y, Tomeno W, Ogawa Y, Mavatari H, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 2016;150:626-37.e7.
26. Klarl JS, Yang JD, Abdelmalek ME, Guy CD, Gill RM, Yates K, et al. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease. Hepatology 2016;64:85-91.
27. Shimizu I, Kohno N, Tamaki K, Shono M, Huang HW, He JH, et al. Female hepatology: favorable role of estrogen in chronic liver disease with hepatitis B virus infection. World J Gastroenterol 2007;13:4295-305.
28. Yasuda M, Shimizu I, Shiba M, Ito S. Suppressive effects of estradiol on dimethylnitrosamine-induced fibrosis of the liver in rats. Hepatology 1999;29:719-27.
29. Schock H, Zeleniuch-Jacquotte A, Lundin E, Granqvist K, Lakso HA, Idahl A, et al. Hormone concentrations throughout uncomplicated pregnancies: a longitudinal study. BMC Pregnancy Childbirth 2016;16:146.
30. Kuijper EA, Ket JC, Caanen MR, Lambalk CB. Reproductive hormone concentrations in pregnancy and neonates: a systematic review. Reprod Biomed Online 2013;27:33-63.
31. O’Leary P, Boyne P, Flett P, Beilby J, James I. Longitudinal assessment of changes in reproductive hormones during normal pregnancy. Clin Chem 1991;37:667-72.
32. Kim BK, Kim DY, Park JY, Ahn SH, Chon CY, Kim JK, et al. Validation of FIB-4 and comparison with other simple noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B virus-infected patients. Liver Int 2010;30:546-53.
33. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006;43:1317-25.