Antimicrobial Activity and Phytochemical Analysis of Medicinal Plant *Cassia tora*

Mithilesh P. Pandya¹, Krunal D. Sameja¹, Dixita N. Patel¹, Keyur D. Bhatt², *¹

¹Department of Chemistry, C. U. Shah University, Wadhwan, India
²Department of Chemistry, Ganpat University, Kherva, India

Email address:
drkdibhatt@outlook.com (K. D. Bhatt)
*Corresponding author

To cite this article:
Mithilesh P. Pandya, Krunal D. Sameja, Dixita N. Patel, Keyur D. Bhatt. Antimicrobial Activity and Phytochemical Analysis of Medicinal Plant *Cassia tora*. International Journal of Pharmacy and Chemistry. Vol. 3, No. 4, 2017, pp. 56-61. doi: 10.11648/j.ijpc.20170304.12

Abstract: Present study was carried out to investigate in vitro anti-bacterial and anti-fungal activity from the seeds of an Indian traditional medicinal plant *Cassia tora*. Plant material was separated and successively extracted with various organic solvents. Extracts was evaluated for solubility, moisture content, melting point, FTIR and other qualitative analysis for Photo constituents. In vitro antibacterial and antifungal studies were carried out by disc diffusion method. Two test samples were prepared in concentrations of 100mg/ml. Extract was found efficacious against various strains of bacteria and fungal species. 100mg/ml test sample shows better zone of inhibitions in bacterial strains. It was obtained in the range of 16.67 to 23.00 among them maximum inhibition was observed in *Pseudomonas aeruginosa* (gram positive bacteria) and last inhibition was observed in *E. coli* (gram negative). It has also shown satisfactory inhibition in fungal species like *Candida albicans* and *Candida glabrata*. Thus, cassia tora can be considered as a safer and efficacious herbal candidate for antimicrobial formulation.

Keywords: Cassia-tora, Vitro Study, Anti-bacterial, Anti-fungal, Isolation

1. Introduction

Cassia tora is a small shrub that grows widely as a weed in almost all the Asian countries [1-5]. The leguminosae [6, 7] commonly known as the legume, pea or bean family, are a large and economically important family of flowering plants. Legumes are a type of species in which the seeds grow to develop in to pods [8, 9]. Legumes are a good source of starch, dietary fiber, protein, minerals; legumes are a valuable part of a healthy diet [10-14]. As a group, nutrient composition of legumes makes them ideal Animal foods [15] to meet dietary recommendation. Legumes have been recognized as functional food that promote good health and have therapeutic properties [16, 17]. Cassia tora is legume in the sub-family Casual pinioideae[18]. Its name has been derived from Sinhala languages, in which it is called Tora an annual herb, 30-90 cm high which occurs as wasteland rainy season wild plant in India. Cassia tora are wild crop that grows in most parts of India as a weed [19]. The main useful parts of Cassia tora are leaves, roots and seeds. Gaur gum, also called guaran, is a gelling agent. Gaur gum is extracted from a legume, the gaur been. Gaur gum is widely used in food industry- in baked goods to increase dough yield and improve texture and shelf life, in dairy industry as a stabilizer, in meats as a lubricant, in desserts, frozen food items etc. It has also been considered of interest with regards to both weight loss and diabetic diets [20, 21]. Cassia tora has been reported to contain many active substances, including Anthraquinone, Quarcetine, chrysophenol, emodin, rhein, etc. Cassia tora has been reported to exhibit significant antimutagenic activity [1, 2, 22]. Anthraquinone act as a fluorescence sensor [23-26] or fluorophores therefore this plant also shown sensing properties. It constitutes an Ayurvedic preparation “Dadhughnavati” which is one of the successful antifungal formulations [27].

India has rich heritage of Ayurveda and other alternative systems of medicines. The knowledge is medicinal plant was already other alternative already implied by prehistoric people since times immemorial. Various ancient Indian literature like Ayurveda, Shushrutsamhita and charakasamhita have variety of details regarding herbs, extracts, surgery and transplant. Discovery of various antibiotics like Penicillin, Cafalosporins,
2. Experimental Section

2.1. Collection and Identification

The plant material was collected in the month of September from Surendranagar district. It was identified by department of Pharmacognosy, C. U. Shah University and herbarium specimen was stored. Soil particles were removed and it was subjected for shade drying for 15-20 days. After drying, legumes and it was washed thoroughly. Seeds were again subjected for drying in tray dryer legumes and it was washed thoroughly. Seeds were again subjected for drying in tray dryer at 60°C for 4-5 hours. After drying, seeds were collected in a tray and it was inspected visibly for solid impurities. After shifting in a sieve, grinding was done and seeds were converted to fine dry powder. The powder was stored in a air tight container for further use.

2.2. Qualitative Analysis of Plant Material

Solubility Study:
Solubility study was performed using solvent like water, methanol, ethanol, Chloroform, NaOH (0.1), & HCl (0.1). The procedure was followed as per IP (Indian pharmacopeia).

Moisture Content:
Take 1 gm extract in a bottle. Keep it for drying in hot air oven at 100°C for 6 hours. Take initial weight and final weight and calculate the Loss on Drying.

Melting point:
Melting point of the drug was determined by taking small amount of the drug in a capillary tube closed at one end and was placed in a melting point apparatus and the temperature at which the drug melts was noted. Average of triplicate reading was taken.

2.3. Collections and Identifications

The plant material was collected in the month of September from Surendranagar district. It was identified by department of Pharmacognosy, C. U. Shah University and herbarium specimen was stored. Soil particles were removed and it was subjected for shade drying for 15-20 days. After drying, legumes and it was washed thoroughly. Seeds were again subjected for drying in tray dryer legumes and it was washed thoroughly. Seeds were again subjected for drying in tray dryer at 60°C for 4-5 hours. After drying, seeds were collected in a tray and it was inspected visibly for solid impurities. After shifting in a sieve, grinding was done and seeds were converted to fine dry powder. The powder was stored in a air tight container for further use.

2.4. Method for Extraction

There are various methods of extraction for crude drug like infusion, decoction, digestion, percolation, maceration and hot continuous percolation (Soxhlet). Among all these methods, Hot continuous percolation i.e. Soxhlet method is most reliable and it gives maximum yield of extract. Drug is suitably comminuted. 150gm of powdered drug was packed in a thimble which was placed into extractor. In first stage, 150ml Petroleum ether 60:80 was added into a round bottom flask. By this step, fatty materials and oils were removed. The continuous cycles were carried out for 5 hours a day for 3 days. After that, it was further extracted with methanol until the clear white solutions from the siphon tube were obtained. After the Soxhlet extraction, a thick dark solvent with extracted material is accumulated in the round bottom flask. Extra solvent was removed by suction pump. Extract was collected and dried in a porcelain dish and placed into desiccators. This extract was further used for experimental purpose.

3. In-Vitro Antimicrobial Activity

Preparation of test Sample
For antimicrobial studies of the leaves, the concentration in range of 1-4 mg/ml was prepared by dissolving solid extract in suitable solvent.

Dilutions and inoculums preparations
The dried extract was weighed and dissolved in sterile distilled water to prepare appropriate dilution to get required concentration of 50, 100mg/ml. The antibiotic Ciprofloxacin was weighed and dissolved in DMSO to prepare appropriate dilution to get required concentration of 1mg/ml. The inoculums of bacteria were prepared in nutrient broth medium and were incubated at 37°C for 8 hours.

Procedure for performing the disc Diffusion test
The required amount of petri plates is prepared and autoclaved at 121°C for minutes. And they were allowed to cool under laminar air flow. Aseptically transfer about 20 ml of media into each sterile Petri dish and allowed to solidify. 1 ml inoculums suspension was spread uniformly over the agar medium using sterile glass rod to get uniform distribution of bacteria. The sterile discs were loaded with different concentrations of about 50, 100mg/ml of plant extract of Cassia tora and antibiotic (ciprofloxacin for antibacterial) into each separate disc of about 100µL. The paper discus were incubated at 37°C for 24 hours. The antibacterial activity was recorded by measuring the width of the clear inhibition zone around the disc using zone reader (mm) [30, 31].

Antifungal activity

Dextrose medium was used. The required amount of Petri plates and autoclave at 121°C for 15 minutes and they were allowed to cool under laminar air flow. Aseptically transfer...
about 20 ml of media into each sterile Petri dish and allowed to solidify. 1 ml inoculums suspension was spread uniformly over the agar medium using sterile glass to get uniform distribution of the fungi. The sterile discs were loaded with different concentrations about 50, 100mg/ml of plant extract of Cassia tora and antifungal (Fluconazole for antifungal activity) into each separate disc of about 100µl. The paper diffuse discs were placed on the medium suitably apart and the plates were incubated at 37° for 24 hours. The antifungal activity was recorded by measuring the width of the clear inhibition zone around the disc using zone reader (mm) [32-34].

4. Results and Discussion

Table 1. Solubility of drug in solvents.

Sr. No.	Name of solvents	Solubility in grade
1	Water	++++
2	Methanol	++++
3	Ethanol	++++
4	Chloroform	++++
5	HCL (0.1)	+++
6	NaOH (0.1)	+++

Methanolic extract of Cessiatora was found to be highly soluble in Methanol and ethanol. Readily soluble in water and sparingly soluble in 0.1N HCL and 0.1N NaOH. Qualitative results of solubility by grade are shown in table 1.

4.1. Phytochemical Screening

The Phytochemical screening [35, 36] of the drug is a very sensitive aspect in the process of standardization and quality control because the constituents vary qualitatively and quantitatively not only from plant to plant but also in different samples of the same species depending upon various atmospheric factors and storage conditions. The results are presents below:

Table 2. Test for Alkaloids.

Sr. No.	Tests	Observation	Inference
1	Mayer’s test	No precipitate	Alkaloid absent
2	Wagner’s test	No precipitate	Alkaloid absent

Table 3. Test for Carbohydrates.

Sr. No.	Tests	Observation	Inference
1	Moisch’s test	A violent ring at the junction	Carbohydrate confirmed
2	Fehling’s test	Brick red precipitate	Carbohydrate confirmed
3	Barfoed’s test	Red precipitate	Carbohydrate confirmed
4	Benedict’s test	Red precipitate	Carbohydrate confirmed

Table 4. Test for Steroids.

Sr. No.	Tests	Observation	Inference
1	Libermann Burchard test	Green colour	Steroid Present

Table 5. Test for Proteins.

Sr. No.	Tests	Observation	Inference
1	Biuret test	Appearance of violet colour	Protein confirmed
2	Millon’s test	Pink colour	Protein confirmed

Table 6. Test for Tannins.

Sr. No.	Tests	Observation	Inference
1	A small quantity of extract were treated with 10% lead acetate solution	No precipitate	Tannins absent

4.2. Antibacterial & Antifungal Activity

Table 7. Antibacterial activity of standard drug Ofloxacin (1mg/ml).

Sr. No.	Strain	Zone of inhibition(mm)(Mean ±SEM)				
		Stda	Stdb	StdC	Ofloxacin Mean	Std.Dev.
1	Escherichia coli	23	25	24.00	1.00	
2	Salmonelltyphi	20	19	19.67	0.58	
3	Pseudomonas aeruginosa	22	21	22.33	1.53	
4	Staphylococcus aureus	23	24	22.67	1.53	
5	Coagulase negative Staphylococci	19	18	19.33	1.53	
6	Klebsiellapneumoniae	21	20	20.33	0.58	

Table 8. Antibacterial activity of Test sample 1 (Cassia tora extract 100mg/ml).

Sr. No.	Strain	Zone of inhibition(mm)(Mean ±SEM)				
		Testa	Testb	Testc	100mg/ml	Std.Dev.
1	Escherichia coli	16	17	17	16.67	0.58
2	Salmonelltyphi	18	19	18	18.33	0.58
3	Pseudomonas aeruginosa	22	23	24	23.00	1.00
4	Staphylococcus aureus	23	23	22	22.67	0.58
5	Coagulase negative Staphylococci	20	21	19	20.00	1.00
6	Klebsiellapneumoniae	22	20	21	21.00	1.00
Table 9. Antibacterial activity of Test sample 1 (Cassia tora extract 100mg/ml).

Sr. No.	Strain	Zone of inhibition (mm) (Mean ±SEM)	TestA	Testb	Testc	100mg/ml	Std.Dev.
1	Escherichia coli		13	14	14	13.67	0.58
2	Salmonella typhi		14	14	15	14.33	0.58
3	Pseudomonas aeruginosa		16	17	16	16.33	0.58
4	Staphylococcus aureus		19	19	21	19.67	1.15
5	Coagulase negative Staphylococci		15	16	15	15.33	0.58
6	Klebsiella pneumoniae		16	16	18	16.67	1.15

Table 10. Antifungal activity of standard drug Fluconazole (1mg/ml).

Sr. No.	Strain	Zone of inhibition (mm) (Mean ±SEM)	TestA	Testb	Testc	Fluconazole Mean	Std.Dev.
1	Candida albicans		17	18	17	13.67	0.58
2	Candida glabrata		19	19	18	18.33	0.58

Table 11. Antifungal activity of Test sample 1 (Cassia tora extract 100mg/ml).

Sr. No.	Strain	Zone of inhibition (mm) (Mean ±SEM)	TestA	Testb	Testc	Fluconazole Mean	Std.Dev.
1	Candida albicans		14	13	14	13.67	0.58
2	Candida glabrata		18	19	18	18.33	0.58

Table 12. Antifungal activity of Test sample 2 (Cassia tora extract 50mg/ml).

Sr. No.	Strain	Zone of inhibition (mm) (Mean ±SEM)	TestA	Testb	Testc	Fluconazole Mean	Std.Dev.
1	Candida albicans		12	11	11	11.33	0.58
2	Candida glabrata		13	11	12	12.00	1.00

Table 13. Antibacterial & antifungal activity of methanolic extract of seeds of cassia tora.

Sr. No.	Strain	Ofloxacin	100mg/ml	50mg/ml
1	Escherichia coli	24.00±1.00	16.67±0.58	13.67±0.58
2	Salmonella typhi	19.67±0.58	18.33±0.58	14.33±0.58
3	Pseudomonas aeruginosa	22.33±1.53	22.33±1.53	16.33±0.58
4	Staphylococcus aureus	22.67±1.53	22.67±1.53	19.67±1.15
5	Coagulase negative Staphylococci	19.33±1.53	19.33±1.53	15.33±0.58
6	Klebsiella pneumoniae	20.33±0.58	20.33±0.58	16.67±1.15

From the above data, it is observed that Cassia tora seed methanolic extract showed significant anti-bacterial and anti-fungal activity against various negative bacteria like Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Coagulase negative Staphylococci, Klebsiella pneumoniae etc. It has also inhibited gram positive bacteria like Staphylococcus aureus and fungal species like Candida albicans and Candida glabrata. Ofloxacin is the fluoroquinolone derivative that is generally used for urinary tract infection, enteric fever and upper respiratory tract infection. Since it is working as a broad spectrum antibiotic, it is used as standard drug. Two test samples of Cassia tora methanolic extract was taken in two various concentrations of 100mg/ml and 50mg/ml that showed significant activity with 1mg/ml if standard drug Ofloxacin. Among both the test samples, 100mg/ml sample has shown best antifungal and antibacterial activity.

5. Conclusion

It is strongly believed that above detailed information from extensive literature survey, on various activity of Cassia tora might provide detailed evidence for the varied pharmacological and medicinal spectrum. Toxicity of plant leaves also was investigated so there is need of further research in regard; how to expel the toxicity of plant leaf. Thus, Cassia tora seed extract was proved to be efficacious against various bacteria and fungus species. It can be further formulated into a topical formulation to treat common skin disease like itching, rashes eczema and dermatitis. Further in vivo studies are necessary to corroborate the findings.
References

[1] Choi JS, Lee HJ, Park K-Y, Ha J-O, Kang SS. In vitro antimutagenic effects of anthraquinone aglycones and naphthopyrone glycosides from Cassia tora. Planta medica 1997; 63:11-4.

[2] Ma JF, Zheng SJ, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant and Cell Physiology 1997;38:1019-25.

[3] Maity TK, Mandal SC, Mukherjee PK, Saha K, Das J, Pal M, et al. Studies on antiinflammatory effect of Cassia tora leaf extract (fam. Leguminosae). Phytotherapy research 1998; 12:221-3.

[4] Patil UK, Saraf S, Dixit V. Hypolipidemic activity of seeds of Cassia tora Linn. Journal of ethnopharmacology 1994;90:249-52.

[5] Wang Y-S, Yang Z-M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant and Cell Physiology 2005; 46:1915-23.

[6] Kim Y-M, Lee C-H, Kim H-G, Lee H-S. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. Journal of agricultural and food chemistry 2004; 52:6096-100.

[7] Mukherjee PK, Saha K, Saha B, Pal M, Das J. Antifungal activities of the leaf extract of Cassia tora Linn.(Fam. Leguminosae). Phytotherapy Research 1996; 10:521-2.

[8] Hocking P, Pate J. Mobilization of minerals to developing seeds of legumes. Annals of Botany 1977; 41:1259-78.

[9] Garcia-Martinez J-L., Sponsel V, Gaskin P. Gibberellins in developing fruits of Pismum sativum cv. Alaska: studies on their role in pod growth and seed development. Planta 1987; 170:130-7.

[10] Lee YP, Puddey IB, Hodgson JM. Protein, fibre and blood pressure: potential benefit of legumes. Clinical and Experimental Pharmacology and Physiology 2008; 35:473-6.

[11] Messina MJ. Legumes and soybeans: overview of their nutritional profiles and health effects. The American journal of clinical nutrition 1999; 70:439s-50s.

[12] de Almeida Costa GE, da Silva Queiroz-Monci K, Reis SPM, de Oliveira AC. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food chemistry 2006; 94:327-30.

[13] Jezierny D, Mosenthin R, Bauer E. The use of grain legumes as a protein source in pig nutrition: A review. Animal Feed Science and Technology 2010; 157:111-28.

[14] Hargrove W. Winter legumes as a nitrogen source for no-till grain sorghum. Agronomy Journal 1986; 78:70-4.

[15] Popkin BM, Du S. Dynamics of the nutrition transition toward the animal foods sector in China and its implications: a worried perspective. The Journal of nutrition 2003;133:3898S-906S.

[16] Madar Z, Stark AH. New legume sources as therapeutic agents. British Journal of Nutrition 2002; 88:287-92.

[17] Clemente A, Domoney C. Therapeutic properties of legume protease inhibitors from the Bowman–Birk class. Recent progress in medicinal plants 2007; 20:397-417.

[18] Bruneau A, Forest F, Herendeen PS, Klitgaard BB, Lewis GP. Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnL intron sequences. Systematic Botany 2001; 26:487-514.

[19] Sharma S, Dangi MS, Wadhwa S, Daniel V, Tiwari A. Antibacterial activity of Cassia tora leaves. Int J Pharmaceutical and Biological Archives 2010; 1:84-6.

[20] Jenkins D, Wolfe T, Bacon S, Nineham R, Lees R, Rowden R, et al. Diabetic diets: high carbohydrate combined with high fiber. The American journal of clinical nutrition 1980; 33:1729-33.

[21] Lean M, James W. Prescription of diabetic diets in the 1980s. The Lancet 1986; 327:723-5.

[22] Roopashree T, Dang R, Rani RS, Narendara C. Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. International Journal of Applied research in Natural products 2008; 1:20-8.

[23] Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK. Highly stable water dispersible calix [4] pyrrole octahydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co (II) ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 121:94-100.

[24] Bhatt KD, Gupte HS, Makwana BA, Vyas DJ, Maity D, Jain VK. Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe (III), Co (II) and Cu (II). Journal of fluorescence 2012; 22:1493-500.

[25] Bhatt KD, Makwana BA, Vyas DJ, Mishra DR, Jain VK. Selective recognition by novel calix system: ICT based chemosensor for metal ions. Journal of Luminescence 2014; 146:450-7.

[26] Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK, Shah H. Turn-on fluorescence probe for selective detection of Hg (II) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample: Chinese Chemical Letters 2016; 27:731-7.

[27] Albasarah YY, Somavarapu S, Stapleton P, Taylor KM. Chitosan-coated antifungal formulations for nebulisation. Journal of Pharmacy and Pharmacology 2010; 62:821-8.

[28] Porter R. The Greatest Benefit to Mankind: A Medical History of Humanity (The Norton History of Science): WW Norton & Company; 1999.

[29] Organization WH. European status report on road safety: towards safer roads and healthier transport choices.2009.

[30] Anand K, Agrawal P, Kumar S, Kapila K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian journal of medical microbiology 2009; 27:27.

[31] Ho P, Chow K, Yuen K, Ng W, Chau P. Comparison of a novel, inhibitor-potentiated disc-diffusion test with other methods for the detection of extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy 1998; 42:49-54.
[32] Nascimento GG, Locatelli J, Freitas PC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology 2000; 31:247-56.

[33] Ali-Shtayeh M, Abu Ghdeib SI. Antifungal activity of plant extracts against dermatophytes. Mycoses 1999; 42:665-72.

[34] Hammer KA, Carson C, Riley T. Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology 1999; 86:985-90.

[35] Ayoola G, Coker H, Adesegun S, Adepoju-Bello A, Obaweya K, Ezennia E, et al. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research 2008; 7:1019-24.

[36] Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: a review. Internationale pharmaceutica sciencia 2011; 1:98-106.