Indexability of Restless Bandit Problems and Optimality of Whittle’s Index for Dynamic Multichannel Access

Keqin Liu, Qing Zhao
University of California, Davis, CA 95616
kqliu@ucdavis.edu, qzhao@ece.ucdavis.edu

Abstract

We consider a class of restless multi-armed bandit problems (RMBP) that arises in dynamic multichannel access, user/server scheduling, and optimal activation in multi-agent systems. For this class of RMBP, we establish the indexability and obtain Whittle’s index in closed-form for both discounted and average reward criteria. These results lead to a direct implementation of Whittle’s index policy with remarkably low complexity. When these Markov chains are stochastically identical, we show that Whittle’s index policy is optimal under certain conditions. Furthermore, it has a semi-universal structure that obviates the need to know the Markov transition probabilities. The optimality and the semi-universal structure result from the equivalency between Whittle’s index policy and the myopic policy established in this work. For non-identical channels, we develop efficient algorithms for computing a performance upper bound given by Lagrangian relaxation. The tightness of the upper bound and the near-optimal performance of Whittle’s index policy are illustrated with simulation examples.

Index Terms

Opportunistic access, dynamic channel selection, restless multi-armed bandit, Whittle’s index, indexability, myopic policy.

This work was supported by the Army Research Laboratory CTA on Communication and Networks under Grant DAAD19-01-2-0011 and by the National Science Foundation under Grants ECS-0622200 and CCF-0830685.

Part of this work was presented at the 5th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) Workshops (June, 2008) and the IEEE Asilomar Conference on Signals, Systems, and Computers (October, 2008).
I. INTRODUCTION

A. Restless Multi-armed Bandit Problem

Restless Multi-armed Bandit Process (RMBP) is a generalization of the classical Multi-armed Bandit Processes (MBP), which has been studied since 1930’s [1]. In an MBP, a player, with full knowledge of the current state of each arm, chooses one out of N arms to activate at each time and receives a reward determined by the state of the activated arm. Only the activated arm changes its state according to a Markovian rule while the states of passive arms are frozen. The objective is to maximize the long-run reward over the infinite horizon by choosing which arm to activate at each time.

The structure of the optimal policy for the classical MBP was established by Gittins in 1979 [2], who proved that an index policy is optimal. The significance of Gittins’ result is that it reduces the complexity of finding the optimal policy for an MBP from exponential with N to linear with N. Specifically, an index policy assigns an index to each state of each arm and activates the arm whose current state has the largest index. Arms are decoupled when computing the index, thus reducing an N–dimensional problem to N independent 1–dimensional problems.

Whittle generalized MBP to RMBP by allowing multiple ($K \geq 1$) arms to be activated simultaneously and allowing passive arms to also change states [3]. Either of these two generalizations would render Gittins’ index policy suboptimal in general, and finding the optimal solution to a general RMBP has been shown to be PSPACE-hard by Papadimitriou and Tsitsiklis [4]. In fact, merely allowing multiple plays ($K \geq 1$) would have fundamentally changed the problem as shown in the classic work by Anantharam et al. [5] and by Pandelis and Teneketzis [6].

By considering the Lagrangian relaxation of the problem, Whittle proposed a heuristic index policy for RMBP [3]. Whittle’s index policy is the optimal solution to RMBP under a relaxed constraint: the number of activated arms can vary over time provided that its average over the infinite horizon equals to K. This average constraint leads to decoupling among arms, subsequently, the optimality of an index policy. Under the strict constraint that exactly K arms are to be activated at each time, Whittle’s index policy has been shown to be asymptotically optimal under certain conditions ($N \rightarrow \infty$ stochastically identical arms) [7]. In the finite regime, extensive empirical studies have demonstrated its near-optimal performance, see, for example, [8], [9].
The difficulty of Whittle’s index policy lies in the complexity of establishing its existence and computing the index, especially for RMBP with uncountable state space as in our case. Not every RMBP has a well-defined Whittle’s index; those that admit Whittle’s index policy are called indexable [3]. The indexability of an RMBP is often difficult to establish, and computing Whittle’s index can be complex, often relying on numerical approximations.

In this paper, we show that for a significant class of RMBP most relevant to multichannel dynamic access applications, the indexability can be established and Whittle’s index can be obtained in closed form. For stochastically identical arms, we establish the equivalency between Whittle’s index policy and the myopic policy. This result, coupled with recent findings in [10], [11] on the myopic policy for this class of RMBP, shows that Whittle’s index policy achieves the optimal performance under certain conditions and has a semi-universal structure that is robust against model mismatch and variations. This class of RMBP is described next.

B. Dynamic Multichannel Access

Consider the problem of probing N independent Markov chains. Each chain has two states—“good” and “bad”—with different transition probabilities across chains (see Fig. 1). At each time, a player can choose K ($1 \leq K < N$) chains to probe and receives reward determined by the states of the probed chains. The objective is to design an optimal policy that governs the selection of K chains at each time to maximize the long-run reward.

![Fig. 1. The Gilbert-Elliot channel model.](image)

The above general problem arises in a wide range of communication systems, including cognitive radio networks, downlink scheduling in cellular systems, opportunistic transmission over fading channels, and resource-constrained jamming and anti-jamming. In the communications context, the N independent Markov chains corresponds to N communication channels under the
Gilbert-Elliot channel model [12], which has been commonly used to abstract physical channels with memory (see, for example, [13], [14]). The state of a channel models the communication quality of this channel and determines the resultant reward of accessing this channel. For example, in cognitive radio networks where secondary users search in the spectrum for idle channels temporarily unused by primary users [15], the state of a channel models the occupancy of the channel. For downlink scheduling in cellular systems, the user is a base station, and each channel is associated with a downlink mobile receiver. Downlink receiver scheduling is thus equivalent to channel selection.

The application of this problem also goes beyond communication systems. For example, it has applications in target tracking as considered in [16], where \(K \) unmanned aerial vehicles are tracking the states of \(N \) (\(N > K \)) targets in each slot.

C. Main Results

Fundamental questions concerning Whittle’s index policy since the day of its invention have been its existence, its performance, and the complexity in computing the index. What are the necessary and/or sufficient conditions on the state transition and the reward structure that make an RMBP indexable? When can Whittle’s index be obtained in closed-form? For which special classes of RMBP is Whittle’s index policy optimal? When numerical evaluation has to be resorted to in studying its performance, are there easily computable performance benchmarks?

In this paper, we attempt to address these questions for the class of RMBP described above. As will be shown, this class of RMBP has an uncountable state space, making the problem highly nontrivial. The underlying two-state Markov chain that governs the state transition of each arm, however, brings rich structures into the problem, leading to positive and surprising answers to the above questions. The wide range of applications of this class of RMBP makes the results obtained in this paper generally applicable.

Under both discounted and average reward criteria, we establish the indexability of this class of RMBP. The basic technique of our proof is to bound the total amount of time that an arm is made passive under the optimal policy. The general approach of using the total passive time in proving indexability was considered by Whittle in [3] when showing that a classic MBP is always indexable. Applying this approach to a nontrivial RMBP is, however, much more involved, and our proof appears to be the first that extends this approach to RMBP. We hope that this work
contributes to the set of possible techniques for establishing indexability of RMBP.

Based on the indexability, we show that Whittle’s index can be obtained in closed-form for both discounted and average reward criteria. This result reduces the complexity of implementing Whittle’s index policy to simple evaluations of these closed-form expressions. This result is particularly significant considering the uncountable state space which would render numerical approaches impractical. The monotonically increasing and piecewise concave (for arms with $p_{11} \geq p_{01}$) or piecewise convex (for arms with $p_{11} < p_{01}$) properties of Whittle’s index are also established. The monotonicity of Whittle’s index leads to an interesting equivalency with the myopic policy — the simplest nontrivial index policy — when arms are stochastically identical. This equivalency allows us to work on the myopic index, which has a much simpler form, when establishing the structure and optimality of Whittle’s index policy for stochastically identical arms.

As to the performance of Whittle’s index policy for this class of RMBP, we show that under certain conditions, Whittle’s index policy is optimal for stochastically identical arms. This result provides examples for the optimality of Whittle’s index policy in the finite regime. The approximation factor of Whittle’s index policy (the ratio of the performance of Whittle’s index policy to that of the optimal policy) is analyzed when the optimality conditions do not hold. Specifically, we show that when arms are stochastically identical, the approximation factor of Whittle’s index policy is at least $\frac{K}{N}$ when $p_{11} \geq p_{01}$ and at least $\max\{\frac{1}{2}, \frac{K}{N}\}$ when $p_{11} < p_{01}$.

When arms are non-identical, we develop an efficient algorithm to compute a performance upper bound based on Lagrangian relaxation. We show that this algorithm runs in at most $O(N(\log N)^2)$ time to compute the performance upper bound within ϵ-accuracy for any $\epsilon > 0$. Furthermore, when every channel satisfies $p_{11} < p_{01}$, we can compute the upper bound without error with complexity $O(N^2 \log N)$.

Another interesting finding is that when arms are stochastically identical, Whittle’s index policy has a semi-universal structure that obviates the need to know the Markov transition probabilities. The only required knowledge about the Markovian model is the order of p_{11} and p_{01}. This semi-universal structure reveals the robustness of Whittle’s index policy against model mismatch and variations.
D. Related Work

Multichannel opportunistic access in the context of cognitive radio systems has been studied in [17], [18] where the problem is formulated as a Partially Observable Markov Decision Process (POMDP) to take into account potential correlations among channels. For stochastically identical and independent channels and under the assumption of single-channel sensing ($K = 1$), the structure, optimality, and performance of the myopic policy have been investigated in [10], where the semi-universal structure of the myopic policy was established for all N and the optimality of the myopic policy proved for $N = 2$. In a recent work [11], the optimality of the myopic policy was extended to $N > 2$ under the condition of $p_{11} \geq p_{01}$. These results have also been extended to cases with probing errors in [19]. In this paper, we establish the equivalence relationship between the myopic policy and Whittle's index policy when channels are stochastically identical. This equivalency shows that the results obtained in [10], [11] for the myopic policy are directly applicable to Whittle’s index policy. Furthermore, we extend these results to multichannel sensing ($K > 1$).

Other examples of applying the general RMBP framework to communication systems include the work by Lott and Teneketzis [20] and the work by Raghunathan et al. [21]. In [20], the problem of multichannel allocation for single-hop mobile networks with multiple service classes was formulated as an RMBP, and sufficient conditions for the optimality of a myopic-type index policy were established. In [21], multicast scheduling in wireless broadcast systems with strict deadlines was formulated as an RMBP with a finite state space. The indexability was established and Whittle’s index was obtained in closed-form. Recent work by Kleinberg gives interesting applications of bandit processes to Internet search and web advertisement placement [22].

In the general context of RMBP, there is a rich literature on indexability. See [23] for the linear programming representation of conditions for indexability and [9] for examples of specific indexable restless bandit processes. Constant-factor approximation algorithms for RMBP have also been explored in the literature. For the same class of RMBP as considered in this paper, Guha and Munagala [24] have developed a constant-factor (1/68) approximation via LP relaxation under the condition of $p_{11} > \frac{1}{2} > p_{01}$ for each channel. In [25], Guha et al. have developed a factor-2 approximation policy via LP relaxation for the so-called monotone bandit processes.

In [16], Le Ny et al. have considered the same class of RMBP motivated by the applications
of target tracking. They have independently established the indexability and obtained the closed-form expressions for Whittle’s index under the discounted reward criterion\(^1\). Our approach to establishing indexability and obtaining Whittle’s index is, however, different from that used in [16], and the two approaches complement each other. Indeed, the fact that two completely different applications lead to the same class of RMBP lends support for a detailed investigation of this particular type of RMBP. We also include several results that were not considered in [16]. In particular, we consider both discounted and average reward criterion, develop algorithms for and analyze the complexity of computing the optimal performance under the Lagrangian relaxation, and establish the semi-universal structure and the optimality of Whittle’s index policy for stochastically identical arms.

E. Organization

The rest of the paper is organized as follows. In Sec. II, the RMBP formulation is presented. In Sec. III, we introduce the basic concepts of indexability and Whittle’s index. In Sec. IV, we address the total discounted reward criterion, where we establish the indexability, obtain Whittle’s index in closed-form, and develop efficient algorithms for computing an upper bound on the performance of the optimal policy. Simulation examples are provided to illustrate the tightness of the upper bound and the near-optimal performance of Whittle’s index policy. In Sec. V we consider the average reward criterion and obtain results parallel to those obtained under the discounted reward criterion. In Sec. VI we consider the special case when channels are stochastically identical. We show that Whittle’s index policy is optimal under certain conditions and has a simple and robust structure. The approximation factor of Whittle’s index policy is also analyzed. Sec. VII concludes this paper.

II. PROBLEM STATEMENT AND RESTLESS BANDIT FORMULATION

A. Multi-channel Opportunistic Access

Consider \(N\) independent Gilbert-Elliot channels, each with transmission rate \(B_i (i = 1, \cdots, N)\). Without loss of generality, we normalize the maximum data rate: \(\max_{i \in \{1, 2, \cdots, N\}} B_i = 1\). The

\(^1\)A conference version of our result was published in June, 2008, the same time as [16].
state of channel \(i \)—“good”(1) or “bad”(0)— evolves from slot to slot as a Markov chain with transition matrix \(P_i = \{p_{j,k}^{(i)}\}_{j,k \in \{0,1\}} \) as shown in Fig. [I]

At the beginning of slot \(t \), the user selects \(K \) out of \(N \) channels to sense. If the state \(S_i(t) \) of the sensed channel \(i \) is 1, the user transmits and collects \(B_i \) units of reward in this channel. Otherwise, the user collects no reward in this channel. Let \(U(t) \) denote the set of \(k \) channels chosen in slot \(t \). The reward obtained in slot \(t \) is thus given by

\[
R_{U(t)}(t) = \sum_{i \in U(t)} S_i(t) B_i.
\]

Our objective is to maximize the expected long-run reward by designing a sensing policy that sequentially selects \(K \) channels to sense in each slot.

B. Restless Multi-armed Bandit Formulation

The channel states \([S_1(t), \ldots, S_N(t)] \in \{0,1\}^N \) are not directly observable before the sensing action is made. The user can, however, infer the channel states from its decision and observation history. It has been shown that a sufficient statistic for optimal decision making is given by the conditional probability that each channel is in state 1 given all past decisions and observations [26]. Referred to as the belief vector or information state, this sufficient statistic is denoted by \(\Omega(t) \triangleq [\omega_1(t), \ldots, \omega_N(t)] \), where \(\omega_i(t) \) is the conditional probability that \(S_i(t) = 1 \). Given the sensing action \(U(t) \) and the observation in slot \(t \), the belief state in slot \(t + 1 \) can be obtained recursively as follows:

\[
\omega_i(t + 1) = \begin{cases}
 p_{11}^{(i)}, & i \in U(t), S_i(t) = 1 \\
 p_{01}^{(i)}, & i \in U(t), S_i(t) = 0 \\
 T(\omega_i(t)), & i \notin U(t)
\end{cases}, \tag{1}
\]

where

\[
T(\omega_i(t)) \triangleq \omega_i(t)p_{11}^{(i)} + (1 - \omega_i(t))p_{01}^{(i)}
\]

denotes the operator for the one-step belief update for unobserved channels.

If no information on the initial system state is available, the \(i \)-th entry of the initial belief vector \(\Omega(1) \) can be set to the stationary distribution \(\omega_0^{(i)} \) of the underlying Markov chain:

\[
\omega_0^{(i)} = \frac{p_{01}^{(i)}}{p_{01}^{(i)} + p_{10}^{(i)}}, \tag{2}
\]
It is now easy to see that we have an RMBP, where each channel is considered as an arm and the state of arm i in slot t is the belief state $\omega_i(t)$. The user chooses an action $U(t)$ consisting of K arms to activate (sense) in each slot, while other arms are made passive (unobserved). The states of both active and passive arms change as given in (1).

A policy $\pi : \Omega(t) \rightarrow U(t)$ is a function that maps from the belief vector $\Omega(t)$ to the action $U(t)$ in slot t. Our objective is to design the optimal policy π^* to maximize the expected long-term reward.

There are two commonly used performance measures. One is the expected total discounted reward over the infinite horizon:

$$\mathbb{E}_\pi [\sum_{t=1}^{\infty} \beta^{t-1} R_{\pi(\Omega(t))}(t) | \Omega(1)],$$

(3)

where $0 \leq \beta < 1$ is the discount factor and $R_{\pi(\Omega(t))}(t)$ is the reward obtained in slot t under action $U(t) = \pi(\Omega(t))$ determined by the policy π. This performance measure applies when rewards in the future are less valuable, for example, in delay sensitive communication systems. It also applies when the horizon length is a geometrically distributed random variable with parameter β. For example, a communication session may end at a random time, and the user aims to maximize the number of packets delivered before the session ends.

The other performance measure is the expected average reward over the infinite horizon [27]:

$$\mathbb{E}_\pi [\lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} R_{\pi(\Omega(t))}(t) | \Omega(1)].$$

(4)

This is the common measure of throughput in the context of communications.

For notation convenience, let $(\Omega(1), \{P_i\}_{i=1}^{N}, \{B_i\}_{i=1}^{N}, \beta)$ denote the RMBP with the discounted reward criterion, and $(\Omega(1), \{P_i\}_{i=1}^{N}, \{B_i\}_{i=1}^{N}, 1)$ the RMBP with the average reward criterion.

III. INDEXABILITY AND INDEX POLICIES

In this section, we introduce the basic concepts of indexability and Whittle’s index policy.

A. Index Policy

An index policy assigns an index for each state of each arm to measure how rewarding it is to activate an arm at a particular state. In each slot, the policy activates those K arms whose current states have the largest indices.
For a strongly decomposable index policy, the index of an arm only depends on the characteristics (transition probabilities, reward structure, etc.) of this arm. Arms are thus decoupled when computing the index, reducing an N–dimensional problem to N independent 1–dimensional problems.

A myopic policy is a simple example of strongly decomposable index policies. This policy ignores the impact of the current action on the future reward, focusing solely on maximizing the expected immediate reward. The index is thus the expected immediate reward of activating an arm at a particular state. For the problem at hand, the myopic index of each state $\omega_i(t)$ of arm i is simply $\omega_i(t)B_i$. The myopic action $\hat{U}(t)$ under the belief state $\Omega(t) = [\omega_1(t), \cdots, \omega_N(t)]$ is given by

$$\hat{U}(t) = \arg\max_{u(t)} \sum_{i \in U(t)} \omega_i(t)B_i. \quad (5)$$

B. Indexability and Whittle’s Index Policy

To introduce indexability and Whittle’s index, it suffices to consider a single arm due to the strong decomposability of Whittle’s index. Consider a single-armed bandit process (a single channel) with transition probabilities $\{p_{j,k}\}_{j,k \in \{0,1\}}$ and bandwidth B (here we drop the channel index for notation simplicity). In each slot, the user chooses one of two possible actions—$u \in \{0 \ (\text{passive}), \ 1 \ (\text{active})\}$—to make the arm passive or active. An expected reward of ωB is obtained when the arm is activated at belief state ω, and the belief state transits according to (1). The objective is to decide whether to active the arm in each slot to maximize the total discounted or average reward. The optimal policy is essentially given by an optimal partition of the state space $[0,1]$ into a passive set $\{\omega : u^*(\omega) = 0\}$ and an active set $\{\omega : u^*(\omega) = 1\}$, where $u^*(\omega)$ denotes the optimal action under belief state ω.

Whittle’s index measures how attractive it is to activate an arm based on the concept of *subsidy for passivity*. Specifically, we construct a single-armed bandit process that is identical to the above specified bandit process except that a constant subsidy m is obtained whenever the arm is made passive. Obviously, this subsidy m will change the optimal partition of the passive and active sets, and states that remain in the active set under a larger subsidy m are more attractive to the user. The minimum subsidy m that is needed to move a state from the active set to the passive set under the optimal partition thus measures how attractive this state is.
We now present the formal definition of indexability and Whittle’s index. We consider the discounted reward criterion. Their definitions under the average reward criterion can be similarly obtained.

Denoted by \(V_{\beta,m}(\omega) \), the value function represents the maximum expected total discounted reward that can be accrued from a single-armed bandit process with subsidy \(m \) when the initial belief state is \(\omega \). Considering the two possible actions in the first slot, we have

\[
V_{\beta,m}(\omega) = \max\{V_{\beta,m}(\omega; u = 0), V_{\beta,m}(\omega; u = 1)\},
\]

where \(V_{\beta,m}(\omega; u) \) denotes the expected total discounted reward obtained by taking action \(u \) in the first slot followed by the optimal policy in future slots. Consider \(V_{\beta,m}(\omega; u = 0) \). It is given by the sum of the subsidy \(m \) obtained in the first slot under the passive action and the total discounted future reward \(\beta V_{\beta,m}(T(\omega)) \) which is determined by the updated belief state \(T(\omega) \) (see (1)). \(V_{\beta,m}(\omega; u = 1) \) can be similarly obtained, and we arrive at the following dynamic programming.

\[
V_{\beta,m}(\omega; u = 0) = m + \beta V_{\beta,m}(T(\omega)),
\]

\[
V_{\beta,m}(\omega; u = 1) = \omega + \beta(\omega V_{\beta,m}(p_{11}) + (1 - \omega)V_{\beta,m}(p_{01})).
\]

The optimal action \(u^*_m(\omega) \) for belief state \(\omega \) under subsidy \(m \) is given by

\[
u^*_m(\omega) = \begin{cases}
1, & \text{if } V_{\beta,m}(\omega; u = 1) > V_{\beta,m}(\omega; u = 0) \\
0, & \text{otherwise}
\end{cases}
\]

The passive set \(P(m) \) under subsidy \(m \) is given by

\[
P(m) = \{\omega : u^*_m(\omega) = 0\} = \{\omega : V_{\beta,m}(\omega; u = 0) \geq V_{\beta,m}(\omega; u = 1)\}
\]

Definition 1: An arm is indexable if the passive set \(P(m) \) of the corresponding single-armed bandit process with subsidy \(m \) monotonically increases from \(\emptyset \) to the whole state space \([0, 1]\) as \(m \) increases from \(-\infty \) to \(+\infty \). An RMBP is indexable if every arm is indexable.

Under the indexability condition, Whittle’s index is defined as follows.

Definition 2: If an arm is indexable, its Whittle’s index \(W(\omega) \) of the state \(\omega \) is the infimum subsidy \(m \) such that it is optimal to make the arm passive at \(\omega \). Equivalently, Whittle’s index
\(W(\omega) \) is the infimum subsidy \(m \) that makes the passive and active actions equally rewarding.

\[
W(\omega) = \inf_m \{ m : u^*_m(\omega) = 0 \} \tag{12}
\]

\[
= \inf_m \{ m : V_{\beta,m}(\omega; u = 0) = V_{\beta,m}(\omega; u = 1) \}. \tag{13}
\]

In Fig. 2 we compare the performance (throughput) of the myopic policy, Whittle’s index policy, and the optimal policy for the RMBP formulated in Sec. III. We observe that Whittle’s index policy achieves a near-optimal performance while the myopic policy suffers from a significant performance loss.

![Graph showing performance comparison](image)

Fig. 2. The performance by Whittle’s index policy \((K = 1, N = 7, \{p_{0i}^{(1)}\}_{i=1}^7 = \{0.8, 0.6, 0.4, 0.9, 0.8, 0.6, 0.7\}, \{p_{1i}^{(1)}\}_{i=1}^7 = \{0.6, 0.4, 0.2, 0.4, 0.1, 0.3\}, \text{ and } B_i = \{0.4998, 0.6668, 1.0000, 0.6296, 0.5830, 0.8334, 0.6668\}).

IV. WHITTLE’S INDEX UNDER DISCOUNTED REWARD CRITERION

In this section, we focus on the discounted reward criterion. We establish the indexability, obtain Whittle’s index in closed-form, and develop efficient algorithms for computing an upper bound of the optimal performance to provide a benchmark for evaluating the performance of Whittle’s index policy.
A. Properties of Belief State Transition

To establish indexability and obtain Whittle’s index, it suffices to consider the single-armed bandit process with subsidy m. Again, we drop the channel index from all notations and set $B = 1$.

![Graph showing the k-step belief update of an unobserved arm ($p_{11} \geq p_{01}$).](image1)

![Graph showing the k-step belief update of an unobserved arm ($p_{11} < p_{01}$).](image2)

The following lemma establishes properties of belief state transition that reveal the basic structure of the RMBP considered in this paper. We resort often to these properties when deriving the main results.

Lemma 1: Let $T^k(\omega(t)) \triangleq \Pr[S(t + k) = 1|\omega(t)]$ $(k = 0, 1, 2, \ldots)$ denote the k-step belief update of $\omega(t)$ when the arm is unobserved for k consecutive slots. We have

$$T^k(\omega) = \frac{p_{01} - (p_{11} - p_{01})^k(p_{01} - (1 + p_{01} - p_{11})\omega)}{1 + p_{01} - p_{11}},$$

$$\min\{p_{01}, p_{11}\} \leq T^k(\omega) \leq \max\{p_{01}, p_{11}\}, \quad \forall \omega \in [0, 1], \forall k \geq 1.$$ \hfill (14)

Furthermore, the convergence of $T^k(\omega)$ to the stationary distribution $\omega_o = \frac{p_{01}}{p_{01} + p_{10}}$ has the following property.
Case 1: Positively correlated channel $(p_{11} \geq p_{01})$.
For any $\omega \in [0, 1]$, $T^k(\omega)$ monotonically converges to ω_o as $k \to \infty$ (see Fig. 3).

Case 2: Negatively correlated channel $(p_{11} < p_{01})$.
For any $\omega \in [0, 1]$, $T^{2k}(\omega)$ and $T^{2k+1}(\omega)$ converge, from opposite directions, to ω_o as $k \to \infty$ (see Fig. 4).

Proof: $T^k(\omega) = \omega T^k(1) + (1-\omega)T^k(0)$, where $T^k(1) = \Pr[S(t+k) = 1|S(t) = 1]$ is the k-step transition probability from 1 to 1, and $T^k(0) = \Pr[S(t+k) = 1|S(t) = 0]$ is the k-step transition probability from 0 to 1. From the eigen-decomposition of the transition matrix P (see [28]), we have $T^k(1) = \frac{p_{01} + (1-p_{11})(p_{11}-p_{01})^k}{1+p_{01}-p_{11}}$ and $T^k(0) = \frac{p_{01}(1-(p_{11}-p_{01})^k)}{1+p_{01}-p_{11}}$, which leads to (14). Other properties follow directly from (14).

Next, we define an important quantity $L(\omega, \omega')$. Referred to as the crossing time, $L(\omega, \omega')$ is the minimum amount of time required for a passive arm to transit across ω' starting from ω.

$$L(\omega, \omega') = \min\{k : T^k(\omega) > \omega'\}. \tag{16}$$

For a positively correlated arm, we have, from Lemma 1,

$$L(\omega, \omega') = \begin{cases} 0, & \text{if } \omega > \omega' \\ \frac{p_{01} - \omega'(1-p_{11}+p_{01})}{p_{01} - \omega(1-p_{11}+p_{01})} + 1, & \text{if } \omega \leq \omega' < \omega_o \\ \infty, & \text{if } \omega \leq \omega' \text{ and } \omega' \geq \omega_o \end{cases}. \tag{16}$$

For a negatively correlated arm, we have

$$L(\omega, \omega') = \begin{cases} 0, & \text{if } \omega > \omega' \\ 1, & \text{if } \omega \leq \omega' \text{ and } T(\omega) > \omega' \\ \infty, & \text{if } \omega \leq \omega' \text{ and } T(\omega) \leq \omega' \end{cases}. \tag{17}$$

2 It is easy to show that $p_{11} > p_{01}$ corresponds to the case where the channel states in two consecutive slots are positively correlated, i.e., for any distribution of $S(t)$, we have $E[(S(t) - E[S(t)])(S(t+1) - E[S(t+1)])] > 0$, where $S(t)$ is the state of the Gilbert-Elliot channel in slot t. Similar, $p_{11} < p_{01}$ corresponds to the case where $S(t)$ and $S(t+1)$ are negatively correlated, and $p_{11} = p_{01}$ the case where $S(t)$ and $S(t+1)$ are independent.
B. The Optimal Policy

In this subsection, we show that the optimal policy for the single-armed bandit process with subsidy m is a threshold policy. This threshold structure provides the key to establishing the indexability and solving for Whittle’s index policy in closed-form as shown in Sec. IV-E.

This threshold structure is obtained by examining the value functions $V_{\beta,m}(\omega; u = 0)$ and $V_{\beta,m}(\omega; u = 1)$ given in (7) and (8). From (8), we observe that $V_{\beta,m}(\omega; u = 1)$ is a linear function of ω. Following the general result on the convexity of the value function of a POMDP [29], we conclude that $V_{\beta,m}(\omega; u = 0)$ given in (7) is convex in ω. These properties of $V_{\beta,m}(\omega; u = 1)$ and $V_{\beta,m}(\omega; u = 0)$ lead to the lemma below.

Lemma 2: The optimal policy for the single-armed bandit process with subsidy m is a threshold policy, i.e., there exists an $\omega^*_\beta(m) \in \mathbb{R}$ such that

$$
W^*_m(\omega) = \begin{cases}
1 & \text{if } \omega > \omega^*_\beta(m) \\
0 & \text{if } \omega \leq \omega^*_\beta(m)
\end{cases},
$$

and $V_{\beta,m}(\omega^*_\beta(m); u = 0) = V_{\beta,m}(\omega^*_\beta(m); u = 1)$.

Proof: Consider first $0 \leq m < 1$. We have the following inequality regarding the end points of $V_{\beta,m}(0; u = 1)$ and $V_{\beta,m}(0; u = 0)$ (see Fig. 5).

$$
V_{\beta,m}(0; u = 1) = \beta V_{\beta,m}(p_{01}) \leq m + \beta V_{\beta,m}(p_{10}) = V_{\beta,m}(0; u = 0),
$$

$$
V_{\beta,m}(1; u = 1) = 1 + \beta V_{\beta,m}(p_{11}) > m + \beta V_{\beta,m}(p_{10}) = V_{\beta,m}(1; u = 0).
$$

Fig. 5. The optimality of a threshold policy ($0 \leq m < 1$).
Since $V_{\beta,m}(\omega; u = 1)$ is linear in ω and $V_{\beta,m}(\omega; u = 0)$ is convex in ω, $V_{\beta,m}(\omega; u = 1)$ and $V_{\beta,m}(\omega; u = 0)$ must have one unique intersection at some point $\omega^*_\beta(m)$ as shown in Fig. 5.

When $m \geq 1$, it is optimal to make the arm passive all the time since the expected immediate reward ω by activating the arm is uniformly upper bounded by 1 (see Fig. 6). We can thus choose $\omega^*_\beta(m) = c$ for any $c > 1$.

When $m < 0$, we have (see Fig. 7)

\begin{align*}
V_{\beta,m}(0; u = 1) &= \beta V_{\beta,m}(p_{01}) + m = V_{\beta,m}(0; u = 0), \\
V_{\beta,m}(1; u = 1) &= 1 + \beta V_{\beta,m}(p_{11}) > m + \beta V_{\beta,m}(p_{11}) = V_{\beta,m}(0; u = 0).
\end{align*}

(20) (21)

Based on the convexity of $V_{\beta,m}(\omega; u = 0)$ in ω, we have $V_{\beta,m}(\omega; u = 1) > V_{\beta,m}(\omega; u = 0)$ for any $\omega \in [0, 1]$. It is thus optimal to always activate the arm, and we can choose $\omega^*_\beta(m) = b$ for any $b < 0$. Lemma 2 thus follows. The expressions of $V_{\beta,m}(0; u = 1)$ and $V_{\beta,m}(0; u = 0)$ given in Fig. 6 and Fig. 7 are obtained from the closed-form expression of the value function, which will be shown in the next subsection.

C. Closed-form Expression of The Value Function

In this subsection, we obtain closed-form expressions for the value function $V_{\beta,m}(\omega)$. This result is fundamental to calculating Whittle’s index in closed-form and analyzing the performance of Whittle’s index policy.
Based on the threshold structure of the optimal policy, the value function \(V_{\beta,m}(\omega) \) can be expressed in terms of \(V_{\beta,m}(T^k(\omega); u = 1) \) for some \(t_0 \in \mathbb{Z}^+ \cup \{\infty\} \), where \(t_0 = L(\omega, \omega^*_\beta(m)) + 1 \) is the index of the slot when the belief \(\omega \) transits across the threshold \(\omega^*_\beta(m) \) for the first time (recall that \(L(\omega, \omega^*_\beta(m)) \) is the crossing time given in (16) and (17)). Specifically, in the first \(L(\omega, \omega^*_\beta(m)) \) slots, the subsidy \(m \) is obtained in each slot. In slot \(t_0 = L(\omega, \omega^*_\beta(m)) + 1 \), the belief state transits across the threshold \(\omega^*_\beta(m) \) and the arm is activated. The total reward thereafter is \(V_{\beta,m}(T^{L(\omega, \omega^*_\beta(m))}(\omega); u = 1) \). We thus have, considering the discount factor,

\[
V_{\beta,m}(\omega) = \frac{1 - \beta^{L(\omega, \omega^*_\beta(m))}}{1 - \beta} m + \beta^{L(\omega, \omega^*_\beta(m))} V_{\beta,m}(T^{L(\omega, \omega^*_\beta(m))}(\omega); u = 1).
\]

Since \(V_{\beta,m}(T^k(\omega); u = 1) \) is a function of \(V_{\beta,m}(p_{01}) \) and \(V_{\beta,m}(p_{11}) \) as shown in (7), we only need to solve for \(V_{\beta,m}(p_{01}) \) and \(V_{\beta,m}(p_{11}) \). Note that \(p_{01} \) and \(p_{11} \) are simply two specific values of \(\omega \); both \(V_{\beta,m}(p_{01}) \) and \(V_{\beta,m}(p_{11}) \) can be written as functions of themselves through (22). We can thus solve for \(V_{\beta,m}(p_{01}) \) and \(V_{\beta,m}(p_{11}) \) as given in Lemma 3.

Lemma 3: Let \(\omega^*_\beta(m) \) denote the threshold of the optimal policy for the single-armed bandit process with subsidy \(m \). The value functions \(V_{\beta,m}(p_{01}) \) and \(V_{\beta,m}(p_{11}) \) can be obtained in closed-form as given below.

- **Case 1: Positively correlated channel (\(p_{11} \geq p_{01} \))**

\[
V_{\beta,m}(p_{01}) = \begin{cases}
\frac{p_{01}}{(1 - \beta)(1 - \beta p_{11} + \beta p_{01})}, & \text{if } \omega^*_\beta(m) < p_{01} \\
\frac{(1 - \beta)(1 - \beta p_{11} + \beta p_{01}) m + (1 - \beta) \beta^L(p_{01} - \omega^*_\beta(m)) T^{L(p_{01} - \omega^*_\beta(m))(p_{01})}}{(1 - \beta p_{11})(1 - \beta)(1 - \beta^L(p_{01} - \omega^*_\beta(m))) + 1}, & \text{if } p_{01} \leq \omega^*_\beta(m) < \omega_o \\
m \frac{1 - \beta}{1 - \beta}, & \text{if } \omega^*_\beta(m) \geq \omega_o
\end{cases}
\]

\[
V_{\beta,m}(p_{11}) = \begin{cases}
p_{11} + \beta (1 - p_{11}) V_{\beta,m}(p_{01}) \frac{1 - \beta p_{11}}{1 - \beta p_{11}}, & \text{if } \omega^*_\beta(m) < p_{11} \\
m \frac{1 - \beta}{1 - \beta}, & \text{if } \omega^*_\beta(m) \geq p_{11}
\end{cases}
\]

Note that \(V_{\beta,m}(p_{01}) \) is given explicitly in (23) while \(V_{\beta,m}(p_{11}) \) is given in terms of \(V_{\beta,m}(p_{01}) \) for the ease of presentation.
Case 2: Negatively correlated channel \((p_{11} < p_{01})\)

\[
V_{\beta,m}(p_{11}) = \begin{cases}
 p_{11}(1-\beta)+\beta p_{01} & \text{if } \omega^*_\beta(m) < p_{11} \\
 m(1-\beta)\left(1-p_{01}\right) + \beta T(p_{11})(1-\beta)+\beta^2 p_{01} & \text{if } p_{11} < \omega^*_\beta(m) < T(p_{11}) \\
 1-\beta & \text{if } \omega^*_\beta(m) \geq T(p_{11})
\end{cases}
\]

\[
V_{\beta,m}(p_{01}) = \begin{cases}
 p_{01} + \beta p_{01} V_{\beta,m}(p_{11}) & \text{if } \omega^*_\beta(m) < p_{01} \\
 \frac{m}{1-\beta} & \text{if } \omega^*_\beta(m) \geq p_{01}
\end{cases}
\]

Note that \(V_{\beta,m}(p_{11})\) is given explicitly in (25) while \(V_{\beta,m}(p_{01})\) is given in terms of \(V_{\beta,m}(p_{11})\) for the ease of presentation.

Proof: The key to the closed-form expressions for \(V_{\beta,m}(p_{01})\) and \(V_{\beta,m}(p_{11})\) is finding the first slot that the optimal action is to activate the arm (i.e., the belief state transits across the threshold \(\omega^*_\beta(m)\)). This can be done by applying the transition properties of the belief state given in Lemma 1. See Appendix A for the complete proof.

\[D_{\beta,m}(\omega) = \frac{d}{dm}V_{\beta,m}(\omega)\]

This result is intuitive: when the subsidy for passivity \(m\) increases, the rate at which the total discounted reward \(V_{\beta,m}(\omega)\) increases is determined by how often the arm is made passive.

D. The Total Discounted Time of Being Passive

In this subsection, we study the total discounted time that the single-armed bandit process with subsidy \(m\) is made passive. This quantity plays the central role in our proof of indexability and in the algorithms of computing an upper bound of the optimal performance as shown in Sec. [IV-E] and Sec. [IV-F].

Let \(D_{\beta,m}(\omega)\) denote the total discounted time that the single-armed bandit process with subsidy \(m\) is made passive when the initial belief state is \(\omega\). It has been shown by Whittle that \(D_{\beta,m}(\omega)\) is the derivative of the value function \(V_{\beta,m}(\omega)\) with respect to \(m\) [3]:

\[
D_{\beta,m}(\omega) = \frac{d(V_{\beta,m}(\omega))}{dm}.
\]

Specifically, the first term in (27) is the total discounted time of the first \(L(\omega, \omega^*_\beta(m))\) slots when the arm is made passive. In slot \(L(\omega, \omega^*_\beta(m)) + 1\), the arm is activated. With probability
can be shown that the left derivative at taking the derivatives of included in the passive set. In this paper, we include the threshold in the passive set (see (11)), \(L \), may not equal to the right derivative. Suppose that is included in the active set while the right derivative corresponds to the case when \(\omega \) is in this slot, and the total future discounted passive time is \(D_{\beta,m}(p_{11}) \).

By considering \(\omega = p_{01} \) and \(\omega = p_{11} \), both \(D_{\beta,m}(p_{01}) \) and \(D_{\beta,m}(p_{11}) \) can be written as functions of themselves through (27). We can thus solve for \(D_{\beta,m}(p_{01}) \) and \(D_{\beta,m}(p_{11}) \) as given in Lemma 4.

Lemma 4: Let \(\omega_{\beta}^*(m) \) denote the threshold of the optimal policy for the single-armed bandit process with subsidy \(m \). The total discounted passive times \(D_{\beta,m}(p_{01}) \) and \(D_{\beta,m}(p_{11}) \) are given as follows.

- **Case 1:** Positively correlated channel \((p_{11} \geq p_{01})\)

\[
D_{\beta,m}(p_{01}) = \begin{cases} 0, & \text{if } \omega_{\beta}^*(m) < p_{01} \\ \frac{(1-\beta)(1-\beta^L(p_{01} - \omega_{\beta}^*(m)))}{(1-\beta)(1-\beta)(1-\beta^L(p_{01} - \omega_{\beta}^*(m)))} + (1-\beta)^2 \beta^L(p_{01} - \omega_{\beta}^*(m)) + 1, & \text{if } p_{01} \leq \omega_{\beta}^*(m) < \omega_o \end{cases}
\]

\[
D_{\beta,m}(p_{11}) = \begin{cases} \beta(1-p_{11})D_{\beta,m}(p_{01}), & \text{if } \omega_{\beta}^*(m) < p_{11} \\ \frac{1}{1-\beta}, & \text{if } \omega_{\beta}^*(m) \geq p_{11} \\ \end{cases}
\]

- **Case 2:** Negatively correlated channel \((p_{11} < p_{01})\)

\[
D_{\beta,m}(p_{11}) = \begin{cases} 0, & \text{if } \omega_{\beta}^*(m) < p_{11} \\ \frac{1-(1-p_{11})}{1-\beta(1-p_{01})} + \beta^L(p_{11}) - \beta^L(p_{01}), & \text{if } p_{11} \leq \omega_{\beta}^*(m) < \omega_{\beta}^*(m) \end{cases}
\]

\[
D_{\beta,m}(p_{01}) = \begin{cases} \frac{1}{1-\beta}, & \text{if } \omega_{\beta}^*(m) \geq p_{01} \\ \beta(1-p_{01})D_{\beta,m}(p_{11}), & \text{if } \omega_{\beta}^*(m) < p_{01} \\ \end{cases}
\]

Proof: The process of solving for \(D_{\beta,m}(p_{01}) \) and \(D_{\beta,m}(p_{11}) \) is similar to that of solving for \(V_{\beta,m}(p_{01}) \) and \(V_{\beta,m}(p_{11}) \). Details are omitted. \(D_{\beta,m}(p_{01}) \) and \(D_{\beta,m}(p_{11}) \) can also be obtained by taking the derivatives of \(V_{\beta,m}(p_{01}) \) and \(V_{\beta,m}(p_{11}) \) with respect to \(m \).

We point out that \(V_{\beta,m}(\omega) \) is not differentiable in \(m \) at every point (i.e., the left derivative may not equal to the right derivative). Suppose that \(V_{\beta,m}(\omega) \) is not differentiable at \(m_0 \). Then it can be shown that the left derivative at \(m_0 \) corresponds to the case when the threshold \(\omega_{\beta}^*(m_0) \) is included in the active set while the right derivative corresponds to the case when \(\omega_{\beta}^*(m_0) \) is included in the passive set. In this paper, we include the threshold in the passive set (see (11)).
i.e., we choose the passive action when both actions are optimal. As a consequence, we consider the right derivative of \(V_{\beta,m}(\omega) \) when it is not differentiable.

The following lemma shows the piecewise constant (a stair function) and monotonically increasing properties of \(D_{\beta,m}(\omega) \) as a function of \(m \). These properties allow us to develop an efficient algorithm for computing a performance upper bound as shown in Sec. IV-F.

Lemma 5: The total discounted passive time \(D_{\beta,m}(\omega) \) as a function of \(m \) is monotonically increasing and piecewise constant (with countable pieces for \(p_{11} \geq p_{01} \) and finite pieces for \(p_{11} < p_{01} \)). Equivalently, the value function \(V_{\beta,m}(\omega) \) is piecewise linear and convex in \(m \).

Proof: The piecewise constant property follows directly from (27) and Lemma 4 and is illustrated in Fig. 10 and Fig. 11. The monotonicity of \(D_{\beta,m}(\omega) \) applies to a general restless bandit and has been stated without proof by Whittle [3]. We provide a proof below for completeness.

We show that \(V_{\beta,m}(\omega) \) is convex in \(m \), i.e., for any \(0 \leq \alpha \leq 1, m_1, m_2 \in \mathbb{R} \),

\[
\alpha V_{\beta,m_1}(\omega) + (1 - \alpha)V_{\beta,m_2}(\omega) \geq V_{\beta,\alpha m_1+(1-\alpha)m_2}(\omega).
\]
(32)

Consider the optimal policy \(\pi \) under subsidy \(\alpha m_1 + (1 - \alpha)m_2 \). If we apply \(\pi \) to the system with subsidy \(m_1 \), the total discounted reward will be

\[
V_{\beta,\alpha m_1+(1-\alpha)m_2}(\omega) + D_{\beta,\alpha m_1+(1-\alpha)m_2}(\omega)((1 - \alpha)(m_1 - m_2)).
\]

Since \(\pi \) may not be the optimal policy under subsidy \(m_1 \), we have

\[
V_{\beta,m_1}(\omega) \geq V_{\beta,\alpha m_1+(1-\alpha)m_2}(\omega) + D_{\beta,\alpha m_1+(1-\alpha)m_2}(\omega)((1 - \alpha)(m_1 - m_2)).
\]
(33)

Similarly,

\[
V_{\beta,m_2}(\omega) \geq V_{\beta,\alpha m_1+(1-\alpha)m_2}(\omega) + D_{\beta,\alpha m_1+(1-\alpha)m_2}(\omega)(\alpha(m_2 - m_1)).
\]
(34)

(32) thus follows from (33) and (34).

E. Indexability and Whittle’s Index Policy

With the threshold structure of the optimal policy and the closed-form expressions of the value function and discounted passive time, we are ready to establish the indexability and solve for Whittle’s index.

Theorem 1: The restless multi-armed bandit process \((\Omega(1), \{P_i\}_{i=1}^N, \{B_i\}_{i=1}^N, \beta)\) is indexable.

Proof: The proof is based on Lemma 2 and Lemma 4. Details are given in Appendix B.
Theorem 2: Whittle’s index $W_\beta(\omega) \in \mathbb{R}$ for arm i of the RMBP $(\Omega(1), \{P_i\}_{i=1}^N, \{B_i\}_{i=1}^N, \beta)$ is given as follows.

- **Case 1:** Positively correlated channel $(p_{11}^{(i)} \geq p_{01}^{(i)})$.

$$W_\beta(\omega) = \begin{cases}
\omega B_i, & \text{if } \omega \leq p_{01}^{(i)} \text{ or } \omega \geq p_{11}^{(i)} \\
\frac{\omega}{1-\beta p_{11}^{(i)}+\beta \omega} B_i, & \text{if } \omega_o^{(i)} \leq \omega < p_{11}^{(i)} \\
\frac{\omega-\beta T^1(\omega)+C_2(1-\beta)(1-\omega)}{1-\beta p_{11}^{(i)}-C_2(1-\beta p_{11}^{(i)})} B_i, & \text{if } p_{01}^{(i)} < \omega < \omega_o^{(i)}
\end{cases}$$

where $C_1 = \frac{(1-\beta p_{11}^{(i)})(1-\beta L(p_{01}^{(i)}))}{(1-\beta p_{11}^{(i)})(1-\beta L(p_{01}^{(i)}))},$

$$C_2 = \frac{\beta L(p_{01}^{(i)})(1-\omega)}{(1-\beta p_{11}^{(i)})(1-\beta L(p_{01}^{(i)}))},$$

- **Case 2:** Negatively correlated channel $(p_{11}^{(i)} < p_{01}^{(i)})$.

$$W_\beta(\omega) = \begin{cases}
\omega B_i, & \text{if } \omega \leq p_{11}^{(i)} \text{ or } \omega \geq p_{01}^{(i)} \\
\frac{\beta p_{01}^{(i)}}{1+\beta(p_{01}^{(i)}-\omega)} B_i, & \text{if } T^1(p_{11}^{(i)}) \leq \omega < p_{01}^{(i)} \\
\frac{(1-\beta+\beta C_4)(\beta p_{01}^{(i)}+\omega(1-\beta))}{1-\beta(1-p_{01}^{(i)})-C_3(\beta p_{01}^{(i)}+\beta\omega-\beta^2\omega)} B_i, & \text{if } \omega_o^{(i)} \leq \omega < T^1(p_{11}^{(i)}) \\
\frac{(1-\beta)(\beta p_{11}^{(i)}+\beta T^1(\omega)-\beta p_{01}^{(i)}-\omega)}{1-\beta(1-p_{01}^{(i)})+C_3(\beta T^1(\omega)-\beta p_{01}^{(i)}-\omega)} B_i, & \text{if } p_{01}^{(i)} < \omega < \omega_o^{(i)}
\end{cases}$$

where $C_3 = \frac{1-\beta p_{11}^{(i)}}{1+\beta p_{01}^{(i)}-\beta T^1(p_{11}^{(i)})}$ and $C_4 = \frac{\beta T^1(p_{11}^{(i)})(1-\beta+\beta p_{01}^{(i)})}{1+\beta p_{01}^{(i)}-\beta T^1(p_{11}^{(i)})}$.

Proof: By the definition of Whittle’s index, for a given belief state ω, its Whittle’s index is the subsidy m that is the solution to the following equation of m:

$$\omega + \beta(\omega V_{\beta,m}(p_{11}) + (1-\omega) V_{\beta,m}(p_{01})) = m + \beta V_{\beta,m}(T^1(\omega)).$$

From the closed-form expressions for $V_{\beta,m}(p_{11})$, $V_{\beta,m}(p_{01})$ and $V_{\beta,m}(T^1(\omega))$ given in Lemma 3, we can solve (37) and obtain Whittle’s index.

The following properties of Whittle’s index $W_\beta(\omega)$ follow from Theorem [1] and Theorem [2].

Corollary 1: Properties of Whittle’s Index

- $W_\beta(\omega)$ is a monotonically increasing function of ω. As a consequence, Whittle’s index policy is equivalent to the myopic policy for stochastically identical arms.
• For a positively correlated channel \((p_{11} \geq p_{01})\), \(W_\beta(\omega)\) is piecewise concave with countable pieces. More specifically, \(W_\beta(\omega)\) is linear in \([0, p_{01}]\) and \([p_{11}, 1]\), concave in \([\omega_o, p_{11}]\), and piecewise concave with countable pieces in \((p_{01}, \omega_0)\) (see Fig. 8-left).

• For a negatively correlated channel \((p_{11} < p_{01})\), \(W_\beta(\omega)\) is piecewise convex with finite pieces. More specifically, \(W_\beta(\omega)\) is linear in \([0, p_{11}]\) and \([p_{01}, 1]\), concave in \((p_{11}, \omega_o)\), \([\omega_o, T(p_{11})]\), and \([T(p_{11}), p_{01}]\) (see Fig. 8-right).

The equivalency between Whittle’s index policy and the myopic policy is particularly important. It allows us to establish the structure and optimality of Whittle’s index policy by examining the myopic policy which has a very simple index form.

Note that the region of \([p_{01}, \omega_o)\) for a positively correlated arm is the most complex. The infinite but countable concave pieces of Whittle’s index in this region correspond to each possible value of the crossing time \(L(p_{01}, \omega) \in \{1, 2, \cdots\}\). This region presents most of the difficulties in analyzing the performance of Whittle’s index policy as shown in the next subsection.

Fig. 8. Whittle’s index (left: \(p_{11} = 0.8, \ p_{01} = 0.2, \ \beta = 0.9\); right: \(p_{11} = 0.4, \ p_{01} = 0.8, \ \beta = 0.9\)).

F. Performance of Whittle’s Index Policy

1) The optimality of Whittle’s Index Policy under a Relaxed Constraint: Whittle’s index policy is the optimal solution to a Lagrangian relaxation of RMBP [3]. Specifically, the number of
activated arms can vary over time provided that its discounted average over the infinite horizon equals to \(K \). Let \(K(t) \) denote the number of arms activated in slot \(t \). The relaxed constraint is given by

\[
\mathbb{E}_\pi[(1 - \beta)\sum_{t=1}^{\infty}\beta^{t-1}K(t)] = K.
\] (38)

Let \(\bar{V}_\beta(\Omega(1)) \) denote the maximum expected total discounted reward that can be obtained under this relaxed constraint when the initial belief vector is \(\Omega(1) \). Based on the Lagrangian multiplier theorem, we have [3]

\[
\bar{V}_\beta(\Omega(1)) = \inf_m \{\sum_{i=1}^{N} V_{\beta,m}^{(i)}(\omega_i(1)) - m\frac{(N - K)}{1 - \beta}\},
\] (39)

where \(V_{\beta,m}^{(i)}(\omega) \) is the value function of the single-armed bandit process with subsidy \(m \) that corresponds to the \(i \)-th channel.

The above equation reveals the role of the subsidy \(m \) as the Lagrangian multiplier and the optimality of Whittle’s index policy for RMBP under the relaxed constraint given in (38). Specifically, under the relaxed constraint, Whittle’s index policy is implemented by activating, in each slot, those arms whose current states have a Whittle’s index greater than a constant \(m^* \). This constant \(m^* \) is the Lagrangian multiplier that makes the relaxed constraint given in (38) satisfied, or equivalently, the Lagrangian multiplier that achieves the infimum in (39). It is not difficult to see that Whittle’s index policy implemented by comparing to a constant \(m^* \) is the optimal policy (i.e., achieves \(\bar{V}_\beta(\Omega(1)) \)) for RMBP under the relaxed constraint.

2) An Upper Bound of The Optimal Performance: Under the strict constraint of \(K(t) = K \) for all \(t \), Whittle’s index policy is implemented by activating those \(K \) arms with the largest indices in each slot. Its optimality is lost in general.

Let \(V_\beta(\Omega(1)) \) denote the maximum expected total discounted reward of the RMBP under the strict constraint that \(K(t) = K \) for all \(t \). It is obvious that

\[
V_\beta(\Omega(1)) \leq \bar{V}_\beta(\Omega(1)).
\]

\(\bar{V}_\beta(\Omega(1)) \) thus provides a performance benchmark for all RMBP policies, including Whittle’s index policy. Unfortunately, \(\bar{V}_\beta(\Omega(1)) \) as given in (39) is, in general, difficult to obtain due to the complexity of calculating the value functions of all arms and searching for the infimum over an uncountable space. For the problem at hand, however, we have obtained \(V_{\beta,m}^{(i)}(\omega_i(1)) \) in closed-form as given in Lemma [3]. Furthermore, the piecewise constant structure of the discounted
passive time $D_{i,m}^{(i)}(\omega_i(1))$ given in Lemma 5 leads to efficient algorithms for searching for the infimum of the value functions over m as shown below.

Let

$$G_{\beta,m}(\Omega(1)) = \sum_{i=1}^{N} V_{i}^{(i)}(\omega_i(1)) - m \frac{(N - K)}{1 - \beta}.$$

We then have $\bar{V}_\beta(\Omega(1)) = \inf_m G_{\beta,m}(\Omega(1), m)$. From Lemma 5 it is easy to see that $G_{\beta,m}(\Omega(1))$ is convex in m as illustrated in Fig. 9. The infimum of $G_{\beta,m}(\Omega(1))$ is achieved at m^* at which the derivative of $G_{\beta,m}(\Omega(1))$ with respect to m becomes nonnegative for the first time (note that $G_{\beta,m}(\Omega(1))$ is not differentiable at every m, and we consider the right derivative when it is not differentiable). Equivalently,

$$m^* = \sup \{ m : \frac{d(G_{\beta,m}(\Omega(1)))}{dm} = \sum_{i=1}^{N} D_{i,m}^{(i)}(\omega_i(1)) - \frac{(N - K)}{1 - \beta} \leq 0 \}.$$

From Lemma 5 $D_{i,m}^{(i)}(\omega_i(1))$ is piecewise constant for each channel (see Fig. 10 and Fig. 11). We can thus partition the range of m into disjoint regions such that $\frac{d(G_{\beta,m}(\Omega(1)))}{dm}$ is constant in each region. To obtain m^*, we only need to check each region successively until $\frac{d(G_{\beta,m}(\Omega(1)))}{dm}$ becomes nonnegative for the first time (due to the monotonically increasing property of $D_{i,m}^{(i)}(\omega_i(1))$ in m). The difficulty is that for a positively correlated channel, there are infinite constant regions of
\[D_{\beta,m}(\omega(1)) \]

Fig. 10. The passive time for different regions \((p_{11} < p_{01})\).

\[D_{\beta,m}(\omega(1)) \]

Gray Area (infinite pieces)

Fig. 11. The passive time for different regions \((p_{11} \geq p_{01})\).

\[D_{\beta,m}^{(i)}(\omega_i(1)) \] (see Fig. 11). However, we can find an arbitrarily small interval \((W_\beta(\bar{\omega}), W_\beta(\omega)]\)—referred to as the gray area—outside which there are only finite number of constant regions of \(D_{\beta,m}^{(i)}(\omega_i(1))\). By setting the gray area for each positively correlated channel small enough, we can find an \(m'\) that is arbitrarily close to \(m^*\) so that \(G_{\beta,m'}(\Omega(1)) - G_{\beta,m^*}(\Omega(1)) \leq \epsilon\) for any \(\epsilon > 0\). Specifically, we set the length of the gray area for each positively correlated channel to \(\frac{\delta}{N}\) (i.e., \(W_\beta(\omega_o) - W_\beta(\bar{\omega}) \leq \frac{\delta}{N}\)) where \(\delta = \frac{\epsilon(1-\beta)}{K}\). The total length of the gray area over all channels is thus at most \(\delta\), i.e., \(m' - m^* \leq \delta\). Based on the convexity of \(G_{\beta,m}(\Omega(1))\), the maximum derivative of \(G_{\beta,m}(\Omega(1))\) for \(m^* \leq m \leq 1\) is achieved at \(m = 1\), which is equal to
Thus, we have
\[
\| G_{\beta,m'}(\Omega(1)) - G_{\beta,m}(\Omega(1)) \| \leq \frac{K}{1-\beta}(m' - m) \leq \frac{\delta K}{1-\beta} = \epsilon.
\]

We point out that if \(m^* \) does not fall into the gray area, the algorithm will obtain \(m^* \) and \(\tilde{V}_\beta(\Omega(1)) \) without error. In the special case when every channel is negatively correlated, the algorithm will always output the exact value of \(m^* \) and \(\tilde{V}_\beta(\Omega(1)) \). The detailed algorithm is given in Fig. 12. The complexity of this algorithm is given in the following theorem.

\[\begin{array}{l}
\hspace{1cm}
\textbf{Computing the Performance Upper Bound within } \epsilon\text{-Accuracy}
\end{array}\]

Input an \(\epsilon > 0 \). Set \(\delta = \frac{\epsilon(1-\beta)}{K} \) and \(j = 0 \).

1) For each negatively correlated channel \(i \), calculate \(W_\beta(p_{1i}^{(i)}), W_\beta(p_{0i}^{(i)}), \) and \(W_\beta(T(p_{1i}^{(i)})) \). If \(\omega_i(1) < \omega_o^{(i)} \), calculate \(W_\beta(\omega_i(1)) \) and \(W_\beta(T^1(\omega_i(1))) \); otherwise only calculate \(W_\beta(\omega_i(1)) \).

2) For each positively correlated channel \(i \), calculate \(W_\beta(p_{0i}^{(i)}), W_\beta(p_{1i}^{(i)}), \) and \(W_\beta(\omega_o^{(i)}) \).

Search for an \(\bar{\omega}^{(i)} \in [\omega_o^{(i)} - \frac{\delta}{N}, \omega_o^{(i)}] \) such that \(W_\beta(\omega_o^{(i)}) \geq W_\beta(\bar{\omega}^{(i)}) \). Let \(l_i \) be the smallest integer such that \(T^{l_i}(p_{0i}^{(i)}) > \bar{\omega}^{(i)} \). Calculate \(W_\beta(T^{l_i}(p_{0i}^{(i)})) \) for all \(1 \leq k \leq l_i \). If \(\omega_i(1) < \omega_o^{(i)} \), then let \(d_i \) be the smallest integer such that \(T^{d_i}(\omega_i(1)) > \bar{\omega}^{(i)} \) and calculate \(W_\beta(T^{d_i}(\omega_i(1))) \) for all \(1 \leq k \leq d_i \); otherwise only calculate \(W_\beta(\omega_i(1)) \). Set the gray area \(V = \cup_i[\min\{W_\beta(T^{l_i}(p_{0i}^{(i)})), W_\beta(T^{d_i}(\omega_i(1)))\}, W_\beta(\omega_o^{(i)})] \).

3) Order all Whittle’s indices calculated in Step 1 and 2 by the ascending order. Let \([a_1, \ldots, a_h] \) denote the ordered Whittle’s indices. Set \(a_0 = 0 \) and \(a_{h+1} = 1 \).

4) If \([a_j, a_{j+1}] \notin V \), calculate \(D = \sum_{k=1}^{h} D_{\beta,m}^{(k)}(\omega_k(1)) - \frac{(N-K)}{1-\beta} \) for \(m \in [a_j, a_{j+1}] \) according to (27) (note that every \(D_{\beta,m}^{(k)}(\omega_k(1)) \) is constant for \(m \in [a_j, a_{j+1}] \)). If \(D \) is nonnegative, go to Step 5; otherwise set \(j = j + 1 \) and repeat Step 4.

5) Calculate \(G = G_{\beta,m}(\Omega(1)) \) when \(m \in [a_j, a_{j+1}] \) according to (22). Output \(m' = a_j \) and \(G \).

For any \(\epsilon > 0 \), the algorithm given in Fig. 12 runs in at most \(O(N^2 \log N) \) time to output a value \(G \) that is within \(\epsilon \) of \(V_\beta(\Omega(1)) \) for any \(\epsilon > 0 \).

\textbf{Proof:} See Appendix C.
To find the infimum of $G_\beta(\Omega(1), m)$, we can also carry out a binary search on subsidy m. It can be shown that this algorithm runs in $O(N\log N^2)$ time. However, it cannot output the exact value of m^* and $\bar{V}_\beta(\Omega(1))$.

Fig. 13 shows an example of the performance of Whittle’s index policy. It demonstrates the near optimal performance of Whittle’s index policy and the tightness of the performance upper bound.

Fig. 13. The Performance of Whittle’s index policy ($N = 8$, $\{p_{0i}^{(i)}\}_{i=1}^8 = \{0.2, 0.5, 0.8, 0.1, 0.6, 0.2, 0.3, 0.8\}$, $\{p_{11}^{(i)}\}_{i=1}^8 = \{0.4, 0.1, 0.3, 0.6, 0.2, 0.8, 0.7, 0.6\}$, $B_i = 1$ for $i = 1, \ldots, 8$, and $\beta = 0.8$).

V. WHITTLE’S INDEX UNDER AVERAGE REWARD CRITERION

In this section, we investigate Whittle’s index policy under the average reward criterion and establish results parallel to those obtained under the discounted reward criterion in Sec. IV.

A. The Value Function and The Optimal Policy

First, we present a general result by Dutta [30] on the relationship between the value function and the optimal policy under the total discounted reward criterion and those under the average reward criterion. This result allows us to study Whittle’s index policy under the average reward criterion by examining its limiting behavior as the discount factor $\beta \to 1$.
Dutta’s Theorem [30]. Let \mathcal{F} be the belief space of a POMDP and $V_\beta(\Omega)$ the value function with discount factor β for belief $\Omega \in \mathcal{F}$. The POMDP satisfies the value boundedness condition if there exist a belief Ω', a real-valued function $c_1(\Omega) : \mathcal{F} \to \mathbb{R}$, and a constant $c_2 < \infty$ such that

$$c_1(\Omega) \leq V_\beta(\Omega) - V_\beta(\Omega') \leq c_2,$$

for any $\Omega \in \mathcal{F}$ and $\beta \in [0, 1)$. Under the value-boundedness condition, if a series of optimal policies π_{β_k} for a POMDP with discount factor β_k pointwise converges to a limit π^* as $\beta_k \to 1$, then π^* is the optimal policy for the POMDP under the average reward criterion. Furthermore, let $J(\Omega)$ denote the maximum expected average reward over the infinite horizon starting from the initial belief Ω. We have

$$J(\Omega) = \lim_{\beta_k \to 1} (1 - \beta_k) V_{\beta_k}(\Omega)$$

and $J(\Omega) = J$ is independent of the initial belief Ω.

Next, we will show that the single-armed bandit process with subsidy m under the discounted reward criterion (see Sec. [II-B]) satisfies the value boundedness condition.

Lemma 6: The single-armed bandit process with subsidy under the discounted reward criterion satisfies the value-boundedness condition. More specifically, we have

$$|V_{\beta,m}(\omega) - V_{\beta,m}(\omega')| \leq c + 1,$$

for all $\omega, \omega' \in [0, 1]$, (40)

where $c = \max\{\frac{2}{1-p_{11}}, \frac{2}{p_{01}}\}$.

Proof: See Appendix D.

Under the value boundedness condition, the optimal policy for the single-armed bandit process with subsidy under the average reward criterion can be obtained from the limit of any pointwise convergent series of the optimal policies under the discounted reward criterion. The following Lemma shows that the optimal policy for the single-armed bandit process with subsidy under the average reward criterion is also a threshold policy.

Lemma 7: Let $\omega^*_\beta(m)$ denote the threshold of the optimal policy for the single-armed bandit process with subsidy m under the discounted reward criterion. Then $\lim_{\beta \to 1} \omega^*_\beta(m)$ exists for any m. Furthermore, the optimal policy for the single-armed bandit process with subsidy m under the average reward criterion is also a threshold policy with threshold $\omega^*(m) = \lim_{\beta \to 1} \omega^*_\beta(m)$.

\[^3 \text{Here we do not consider the trivial case that the arm has absorbing states.} \]
Proof: See Appendix E.

B. Indexability and Whittle’s index policy

Based on Lemma 7, the restless multi-armed bandit process \((\Omega, \{P_i\}_{i=1}^N, \{B_i\}_{i=1}^N, 1)\) is indexable if the threshold \(\omega^*(m)\) of the optimal policy is monotonically increasing with subsidy \(m\). Next, we show that the monotonicity holds and the restless multi-armed bandit process \((\Omega, \{P_i\}_{i=1}^N, \{B_i\}_{i=1}^N, 1)\) is indexable. Moreover, we obtain Whittle’s index in closed-form as shown below.

Theorem 4: The restless multi-armed bandit process \((\Omega(1), \{P_i\}_{i=1}^N, \{B_i\}_{i=1}^N, 1)\) is indexable with Whittle’s index \(W(\omega)\) given below.

- **Case 1: Positively correlated channel \((p_{11}^{(i)} \geq p_{01}^{(i)})\).**

\[
W(\omega) = \begin{cases}
\omega B_i, & \text{if } \omega \leq p_{01}^{(i)} \text{ or } \omega \geq p_{11}^{(i)} \\
\frac{\omega - T^1(\omega)(L(p_{01}^{(i)}, \omega) + 1) + T^L(p_{01}^{(i)}, \omega)(p_{01}^{(i)})}{1 - p_{11}^{(i)} + (\omega - T^1(\omega)L(p_{01}^{(i)}, \omega) + T^L(p_{01}^{(i)}, \omega)(p_{01}^{(i)}))} B_i, & \text{if } p_{01}^{(i)} < \omega < \omega_{0}^{(i)} \end{cases} \tag{41}
\]

- **Case 2: Negatively correlated channel \((p_{11}^{(i)} < p_{01}^{(i)})\).**

\[
W(\omega) = \begin{cases}
\omega B_i, & \text{if } \omega \leq p_{11}^{(i)} \text{ or } \omega \geq p_{01}^{(i)} \\
\frac{\omega + p_{01}^{(i)} - T^1(\omega)}{1 + p_{01}^{(i)} - T^1(p_{11}^{(i)}) + T^1(\omega) - \omega} B_i, & \text{if } p_{11}^{(i)} < \omega < \omega_0^{(i)} \end{cases} \tag{42}
\]

Proof: See Appendix F.

The monotonicity and piecewise concave/convex properties of Whittle’s index under the discounted reward criterion given in Corollary 1 are preserved under the average reward criterion.
The only difference is that Whittle’s index under the discounted reward criterion is always strictly increasing with the belief state while Whittle’s index \(W(\omega) \) under the average reward criterion is a constant function of \(\omega \) when \(\omega_o \leq \omega < T^1(p_{11}) \) for a negatively correlated channel (see (42)).

C. The Performance of Whittle’s Index Policy

Similar to the case under the discounted reward criterion, Whittle’s index policy is optimal under the average reward criterion when the constraint on the number of activated arms \(K(t) \) \((t \geq 1) \) is relaxed to the following.

\[
E_n \left[\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} K(t) \right] = K.
\]

Let \(\bar{J}(\Omega(1)) \) denote the maximum expected average reward that can be obtained under this relaxed constraint when the initial belief vector is \(\Omega(1) \). Based on the Lagrangian multiplier theorem, we have \([3]\)

\[
\bar{J} = \inf_m \{ \sum_{i=1}^{N} J_{m}(i) - m(N - K) \}, \tag{43}
\]

where \(J_{m}(i) \) is the value function of the single-armed bandit process with subsidy \(m \) that corresponds to the \(i \)-th channel.

Let \(J(\Omega(1)) \) denote the maximum expected average reward of the RMBP under the strict constraint that \(K(t) = K \) for all \(t \). Obviously,

\[
J(\Omega(1)) \leq \bar{J}.
\]

\(\bar{J} \) thus provides a performance benchmark for Whittle’s index policy under the strict constraint. To evaluate \(\bar{J} \), we consider the single-armed bandit with subsidy \(m \) under the average reward criterion. The value function \(J_{m} \) and the average passive time \(D_m = \frac{d(J_{m})}{dm} \) can be obtained in closed-form as shown in Lemma 8 below.

Lemma 8: The value function \(J_{m} \) and \(D_m \) can be obtained in closed-form as given below, where \(\omega^*(m) \) is the threshold of the optimal policy. Furthermore, \(D_m \) is piecewise constant and increasing with \(m \).

\[
J_{m} = \begin{cases}
\omega_o, & \text{if } \omega^*(m) < \min \{p_{01}, p_{11} \} \\
\frac{(1-p_{11})L(p_{01}, \omega^*(m))m + T^1(p_{01} - \omega^*(m))}{1 - p_{01} + p_{11} - T^1(p_{11})}, & \text{if } p_{01} \leq \omega^*(m) < \omega_o \\
\frac{p_{01} m + p_{01} + p_{11} - T^1(p_{11})}{1 + 2p_{01} - T^1(p_{11})}, & \text{if } p_{11} \leq \omega^*(m) < T^1(p_{11}) \\
m, & \text{other cases}
\end{cases}
\tag{44}
\]
and

\[
D_m = \begin{cases}
0, & \text{if } \omega^*(m) < \min\{p_{01}, p_{11}\} \\
\frac{(1-p_{11})L(p_{01}, \omega^*(m))}{(1-p_{11})(L(p_{01}, \omega^*(m)) + 1 + T L(p_{11}, \omega^*(m)) (p_{01})^2)}, & \text{if } p_{01} \leq \omega^*(m) < \omega_o \\
\frac{p_{01}}{1 + 2p_{01} - T^1(p_{11})}, & \text{if } p_{11} \leq \omega^*(m) < T^1(p_{11}) \\
1, & \text{other cases}
\end{cases}
\]
(45)

Proof: Under the value-boundedness condition as shown in Sec. V-A, we have, according to Dutta’s theorem,

\[
J_m = \lim_{\beta_k \to 1} (1 - \beta_k) V_{\beta_k} (\omega, m),
\]

which leads to (44) directly. The closed-form expression for \(D_m\) can be obtained from the derivative of \(J_m\) with respect to \(m\). The proof that \(D_m\) is increasing with \(m\) is similar to that given in Lemma 5.

Based on the closed-form \(D_m\) given in Lemma 8 we can obtain the subsidy \(m^*\) that achieves the infimum in (43). Specifically, the subsidy \(m^*\) that achieves the infimum in (43) is the supremum value of \(m \in [0, 1]\) satisfying \(\Sigma^N_{i=1} D_m^i \leq N - K\). After obtaining \(m^*\), it is easy to calculate the infimum according to the closed-form \(J_m\) given in Lemma 8.

With minor changes, the algorithm in Sec. IV-F can be applied to evaluate the upper bound \(\bar{J}\). We notice that the initial belief will not be considered in the algorithm, which leads to a shorter running time.

Simulation results similarly to Fig. 9 have been observed, demonstrating the near-optimal performance of Whittle’s index policy under the average reward criterion.

VI. WHITTLE’S INDEX POLICY FOR STOCHASTICALLY IDENTICAL CHANNELS

Based on the equivalency between Whittle’s index policy and the myopic policy for stochastically identical arms, we can analyze Whittle’s index policy by focusing on the myopic policy which has a much simpler index form. In this section, we establish the semi-universal structure and study the optimality of Whittle’s index policy for stochastically identical arms.

A. The Structure of Whittle’s Index Policy

The implementation of Whittle’s index policy can be described with a queue structure. Specifically, all \(N\) channels are ordered in a queue, and in each slot, those \(K\) channels at the head of the queue are sensed. Based on the observations, channels are reordered at the end of each slot according to the following simple rules.
When \(p_{11} \geq p_{01} \), the channels observed in state 1 will stay at the head of the queue while the channels observed in state 0 will be moved to the end of the queue (see Fig. 14).

When \(p_{11} < p_{01} \), the channels observed in state 0 will stay at the head of the queue while the channels observed in state 1 will be moved to the end of the queue. The order of the unobserved channels are reversed (see Fig. 15).

The initial channel ordering \(\mathcal{K}(1) \) is determined by the initial belief vector as given below.

\[
\omega_{n_1}(1) \geq \omega_{n_2}(1) \geq \cdots \geq \omega_{n_N}(1) \implies \mathcal{K}(1) = (n_1, n_2, \cdots, n_N). \tag{46}
\]

See Appendix G for the proof of the structure of Whittle’s index policy.

The advantage of this structure of Whittle’s index policy is twofold. First, it demonstrates the simplicity of Whittle’s index policy: channel selection is reduced to maintaining a simple queue structure that requires no computation and little memory. Second, it shows that Whittle’s index policy has a semi-universal structure; it can be implemented without knowing the channel transition probabilities except the order of \(p_{11} \) and \(p_{01} \). As a result, Whittle’s index policy is robust against model mismatch and automatically tracks variations in the channel model provided that the order of \(p_{11} \) and \(p_{01} \) remains unchanged. As show in Fig. 16, the transition probabilities change abruptly in the fifth slot, which corresponds to an increase in the occurrence of good channel state in the system. From this figure, we can observe, from the change in the throughput increasing rate, that Whittle’s index policy effectively tracks the model variations.
B. Optimality and Approximation Factor of Whittle’s Index Policy

Based on the simple structure of Whittle’s index policy for stochastically identical channels, we can obtain a lower bound of its performance. Combining this lower bound and the upper bound shown in Sec. V-C, we further obtain the approximation factor of the performance by Whittle’s index policy, which are independent of channel parameters. Recall that \(J \) denote the average reward achieved by the optimal policy. Let \(J_w \) denote the average reward achieved by Whittle’s index policy.

Theorem 5: Lower and Upper Bounds of The Performance of Whittle’s Index Policy

\[
\frac{KT^{-1}(p_{01})}{1 - p_{11} + T^{-1}(p_{01})} \leq J_w \leq J \leq \min\{\frac{K\omega_o}{1 - p_{11} + \omega_o}, \omega_o N\} \quad \text{if} \quad p_{11} \geq p_{01} \quad (47)
\]

\[
\frac{KP_{01}}{1 - T^{-2}(p_{11}) + p_{01}} \leq J_w \leq J \leq \min\{\frac{KP_{01}}{1 - T^{-1}(p_{11}) + p_{01}}, \omega_o N\} \quad \text{if} \quad p_{11} < p_{01} \quad (48)
\]

Proof: The upper bound of \(J \) is obtained from the upper bound of the optimal performance for generally non-identical channels as given in (43). The lower bound of \(J_w \) is obtained from the structure of Whittle’s index policy. See Appendix H for the complete proof.

Corollary 2: Let \(\eta = \frac{J_w}{J} \) be the approximation factor defined as the ratio of the performance by Whittle’s index policy to the optimal performance. We have
Positively correlated channels
\[
\eta = \begin{cases}
1, & \text{for } K = 1, N - 1, N \\
\frac{K}{N}, & \text{o.w.}
\end{cases}
\]

Negatively correlated channels
\[
\eta = \begin{cases}
1, & \text{for } K = N - 1, N \\
\max\left\{ \frac{1}{2}, \frac{K}{N} \right\}, & \text{o.w.}
\end{cases}
\]

Proof: See Appendix I.

Fig. 17 illustrates the approximation factors of Whittle’s index policy for both positively correlated and negatively correlated channels. We notice that the approximation factor approaches to 1 as \(K \) increases. For negatively correlated channels, Whittle’s index policy achieves at least half the optimal performance. For positively correlated channels, the approximation factor can be further improved under certain conditions on the transition probabilities. Specifically, we have \(\eta \geq 1 - p_{11} + \omega_0 \).

From Corollary (2) Whittle’s index policy is optimal when \(K = 1 \) (for positively correlated channels) and \(K = N - 1 \). The optimality for \(K = N \) is trivial. We point out that for a general \(K \), numerical examples have shown that actions given by Whittle’s index policy match with the optimal actions for randomly generated sample paths, suggesting the optimality of Whittle’s index policy.

VII. CONCLUSION

In this paper, we have formulated the multi-channel opportunistic access problem as a restless multi-armed bandit process. We established the indexability and obtained Whittle’s index in
closed-form under both discounted and average reward criteria. We developed efficient algorithms for computing an upper bound of the optimal policy, which is the optimal performance under the relaxed constraint on the average number of channels that can be sensed simultaneously. When channels are stochastically identical, we have shown that Whittle’s index policy coincides with the myopic policy. Based on this equivalency, we have established the semi-universal structure and the optimality of Whittle index policy under certain conditions.

APPENDIX A: PROOF OF LEMMA 3

From (22), we have

$$V_{\beta,m}(p_{01}) = \frac{1 - \beta^{L(p_{01}, \omega^*_\beta(m))}}{1 - \beta} m + \beta^{L(p_{01}, \omega^*_\beta(m))} V_{\beta,m}(TL(p_{01}, \omega^*_\beta(m))(p_{01}); u = 1),$$

(49)

$$V_{\beta,m}(p_{11}) = \frac{1 - \beta^{L(p_{11}, \omega^*_\beta(m))}}{1 - \beta} m + \beta^{L(p_{11}, \omega^*_\beta(m))} V_{\beta,m}(TL(p_{11}, \omega^*_\beta(m))(p_{11}); u = 1).$$

(50)

As shown in (7), $V_{\beta,m}(TL(\omega, \omega^*_\beta(m))(\omega); u = 1)$ is a function of $V_{\beta,m}(p_{01})$ and $V_{\beta,m}(p_{11})$ for any $\omega \in [0, 1]$. We thus have two equations (49) and (50) for two unknowns $V_{\beta,m}(p_{01})$ and $V_{\beta,m}(p_{11})$ provided that we can obtain the two crossing times $L(p_{01}, \omega^*_\beta(m))$ and $L(p_{11}, \omega^*_\beta(m))$.

From (16) and (17), we can obtain these crossing times by considering different regions that the threshold $\omega^*_\beta(m)$ may lie in (see Fig. 18 and Fig. 19). We can thus solve for $V_{\beta,m}(p_{01})$ and $V_{\beta,m}(p_{11})$ from (49) and (50) by considering each region within which both crossing times $L(p_{01}, \omega^*_\beta(m))$ and $L(p_{11}, \omega^*_\beta(m))$ are constant.

APPENDIX B: PROOF OF THEOREM 1

It suffices to prove that an arm with an arbitrary transition matrix P is indexable. Based on the threshold structure of the optimal policy for the single-armed bandit with subsidy m given
in Lemma 2, indexability is reduced to the monotonicity of the threshold $\omega^*_\beta(m)$, i.e., $\omega^*_\beta(m)$ is monotonically increasing with the subsidy m for $m \in [0, 1)$. To prove the monotonicity of $\omega^*_\beta(m)$, we first give the following lemma.

Lemma 9: Suppose that for any $m \in [0, 1)$ we have

$$
\frac{dV_{\beta,m}(\omega; u = 1)}{dm} \bigg|_{\omega = \omega^*_\beta(m)} < \frac{dV_{\beta,m}(\omega; u = 0)}{dm} \bigg|_{\omega = \omega^*_\beta(m)}.
$$

Then $\omega^*_\beta(m)$ is monotonically increasing with m.

We prove Lemma 9 by contradiction. Assume that there exists an $m_0 \in [0, 1)$ such that $\omega^*_\beta(m)$ is decreasing at m_0. Then, there exists an $\epsilon > 0$ such that for any $\Delta m \in [0, \epsilon]$, we have

$$
V_{\beta,m_0+\Delta m}(\omega^*_\beta(m_0); u = 1) \geq V_{\beta,m_0+\Delta m}(\omega^*_\beta(m_0); u = 0).
$$

(52)

Since $\omega^*_\beta(m_0)$ is the threshold of the optimal policy under subsidy m_0, we have

$$
V_{\beta,m_0}(\omega^*_\beta(m_0); u = 1) = V_{\beta,m_0}(\omega^*_\beta(m_0); u = 0).
$$

(53)

From (52) and (53), we have

$$
\frac{dV_{\beta,m}(\omega; u = 1)}{dm} \bigg|_{\omega = \omega^*_\beta(m_0)} \geq \frac{dV_{\beta,m}(\omega; u = 0)}{dm} \bigg|_{\omega = \omega^*_\beta(m_0)},
$$

which contradicts with (51). Lemma 9 thus holds.

According to Lemma 9, it is sufficient to prove (51). Recall that $D_{\beta,m}(\omega) = \frac{d(V_{\beta,m}(\omega))}{dm}$. From (7) and (8), we can write (51) as

$$
\beta(\omega^*_\beta(m)D_{\beta,m}(p_{11}) + (1 - \omega^*_\beta(m))D_{\beta,m}(p_{01})) < 1 + \beta D_{\beta,m}(T^1(\omega^*_\beta(m))).
$$

(54)

To prove (54), we consider the following three regions of $\omega^*_\beta(m)$.

Region 1: $0 \leq \omega^*_\beta(m) < \min\{p_{01}, p_{11}\}$.

Fig. 19. The threshold crossing time for different regions of $\omega^*_\beta(m)$ when $p_{11} < p_{01}$ (the top partition is for $L(p_{11}, \omega^*_\beta(m))$, the bottom for $L(p_{01}, \omega^*_\beta(m))$).
Based on the lower bound of the updated belief given in Lemma 1, the arm will be activated in every slot when the initial belief $\omega > \omega^*_\beta(m)$. Thus, $D_{\beta,m}(p_{11}) = D_{\beta,m}(p_{01}) = D_{\beta,m}(T^1(\omega^*_\beta(m))) = 0$; (54) holds trivially.

Region 2: $\omega_o \leq \omega^*_\beta(m) \leq 1$.

In this region, the arm is made passive in every slot when the initial belief state is $T^1(\omega^*_\beta(m))$. This is because $T^k(\omega^*_\beta(m)) \leq \omega^*_\beta(m)$ for any $k \geq 1$ (see Lemma 1, Fig. 3 and Fig. 4). Therefore, $D_{\beta,m}(T^1(\omega^*_\beta(m))) = \frac{1}{1-\beta}$. Since both $D_{\beta,m}(p_{11})$ and $D_{\beta,m}(p_{01})$ are upper bounded by $\frac{1}{1-\beta}$, it is easy to see that (54) holds.

Region 3: $\min\{p_{01}, p_{11}\} \leq \omega^*_\beta(m) < \omega_o$.

In this region, $T^1(\omega^*_\beta(m)) > \omega^*_\beta(m)$ (see Fig. 3 and Fig. 4). Thus, $T^1(\omega^*_\beta(m))$ is in the active set, which gives us

$$D_{\beta,m}(T^1(\omega^*_\beta(m))) = \beta(T^1(\omega^*_\beta(m)))D_{\beta,m}(p_{11}) + (1 - T^1(\omega^*_\beta(m)))D_{\beta,m}(p_{01})$$

(55)

To prove (54), we consider the positively correlated and negatively correlated cases separately.

- **Case 1: Negatively correlated channel** ($p_{11} < p_{01}$).

Since $p_{01} > \omega_o > \omega^*_\beta(m)$, p_{01} is in the active set. We thus have

$$D_{\beta,m}(p_{01}) = \beta(p_{01}D_{\beta,m}(p_{11}) + (1 - p_{01})D_{\beta,m}(p_{01}))$$

(56)

Substituting (55) and (56) into (54), we reduce (54) to the following inequality.

$$\frac{\beta}{1 - \beta(1 - p_{01})}D_{\beta,m}(p_{11})(1 - \beta)(\beta p_{01} + \omega^*_\beta(m) - \beta T^1(\omega^*_\beta(m))) < 1.$$

(57)

Notice that the left-hand side of (57) is increasing with $\omega^*_\beta(m)$ and $D_{\beta,m}(p_{11})$. It thus suffices to show the inequality by replacing $\omega^*_\beta(m)$ with its upper bound ω_o and $D_{\beta,m}(p_{11})$ with its upper bound $\frac{1}{1-\beta}$. After some simplifications, it is sufficient to prove

$$f(\beta) = p_{01}(p_{01} - p_{11})\beta^2 + \beta(p_{01} + 1 - p_{11} - p_{01}^2 + p_{01}p_{11}) - 1 - p_{01} + p_{11} < 0.$$

(58)

It is easy to see that $f(\beta)$ is convex in β, $f(0) = -1 - p_{01} + p_{11} < 0$, and $f(1) = 0$. We thus conclude that $f(\beta) < 0$ for any $0 \leq \beta < 1$.

- **Case 2: Positively correlated channel** ($p_{11} > p_{01}$).

Since $p_{11} \geq \omega_o > \omega^*_\beta(m)$, p_{11} is in the active set. We thus have

$$D_{\beta,m}(p_{11}) = \beta(p_{11}D_{\beta,m}(p_{11}) + (1 - p_{11})D_{\beta,m}(p_{01}))$$

(59)
To prove (i), we set p in terms of ω to prove (ii).

Since $\omega_{\beta}^*(m)$ holds. We thus proved (ii).

Substituting the closed-form of $D_{\beta,m}(p_{01})$ given in (28) into (60), we end up with an inequality in terms of $L(p_{01}, \omega_{\beta}^*(m))$ and $\omega_{\beta}^*(m)$. Notice that the left-hand side of (60) is decreasing with $\omega_{\beta}^*(m)$. It thus suffices to show the inequality by replacing $\omega_{\beta}^*(m)$ with its lower bound $T^{L(p_{01}, \omega_{\beta}^*(m))−1}(p_{01})$ (by the definition of $L(p_{01}, \omega_{\beta}^*(m))$). Let $x = p_{11} - p_{01}$. After some simplifications, it is sufficient to show that for any $0 \leq \beta < 1$, $0 \leq p_{01} \leq 1$, $0 \leq x \leq 1 - p_{01}$, $L \in \{0, 1, 2, \ldots\}$,

$$f(\beta) = \beta^{L+2}p_{01}x^{L+1}(1 - x) + \beta^2(p_{01}x^{L+2} + x - x^2 - p_{01}x) + \beta(x^2 + p_{01}x - p_{01}x^{L+1} - 1) + 1 - x > 0.$$

(61)

Since $f(0) = 1 - x > 0$ and $f(1) = 0$, it is sufficient to prove that $f(\beta)$ is strictly decreasing with β for $0 \leq \beta \leq 1$, which follows by showing $\frac{df(\beta)}{d(\beta)} < 0$ for $0 \leq \beta < 1$.

$$\frac{df(\beta)}{d(\beta)} = (L+2)\beta^{L+1}p_{01}x^{L+1}(1 - x) + 2\beta(p_{01}x^{L+2} + x - x^2 - p_{01}x) + (x^2 + p_{01}x - p_{01}x^{L+1} - 1).$$

(62)

To show $\frac{df(\beta)}{d(\beta)} < 0$ for $0 \leq \beta < 1$, we will establish the following two facts:

(i) $\frac{df(\beta)}{d(\beta)}|_{\beta=1} \leq 0$.

(ii) $\frac{df(\beta)}{d(\beta)}$ is strictly increasing with β.

To prove (i), we set $\beta = 1$ in (62). After some simplifications, we need to prove

$$h(p_{01}) \geq -p_{01}Lx^{L+2} + p_{01}(L + 1)x^{L+1} - x^2 - p_{01}x + 2x - 1 \leq 0.$$

(63)

Since $h(0) = -(x-1)^2 \leq 0$, it is sufficient to prove that $h(p_{01})$ is monotonically decreasing with p_{01}, i.e., we need to prove

$$\frac{dh(p_{01})}{dp_{01}} = -Lx^{L+2} + (L + 1)x^{L+1} - x \leq 0.$$

(64)

Since $Lx^{L+1} \leq \sum_{k=1}^{L} x^k = \frac{x-1}{1-x}$, it is easy to see that (64) holds. We thus proved (i).

To prove (ii), it suffices to show that the coefficient of β in (62) is nonnegative, i.e., we need to prove

$$x^{L+2} + x - x^2 - p_{01}x \geq 0.$$

(65)

Since $0 \leq x \leq 1 - p_{01}$, we have $p_{01}x(x^{L+1} - 1) \geq -p_{01}x \geq (x-1)x$. It is easy to see that (65) holds. We thus proved (ii).

From (i) and (ii), it is easy to see that $\frac{df(\beta)}{d(\beta)} < 0$ for any $0 \leq \beta < 1$. We thus proved the indexability.
APPENDIX C: PROOF OF THEOREM \(^3\)

We notice that Step 1 runs in \(O(N)\) time. In Step 2, the number of regions that needs to be calculated for each channel is at most \(O(\log \frac{\delta}{N}) = O(\log N)\). It runs in constant time to find \(l_i\) and \(d_i\) for channel \(i\). So Step 2 runs in at most \(O(N \log N)\) time. In Step 3, the ordering of all those probabilities needs at most \(O(N \log N)(\log(O(N \log N))) = O(N(\log N)^2)\) time. Step 4 runs in \(O(N)\) time for each region that does not belong to \(V\). So Step 4 runs in at most \(O(N^2 \log N)\) time. Finally, Step 5 runs in \(O(N)\) time. Overall, the algorithm runs in at most \(O(N^2 \log N)\) time.

APPENDIX D: PROOF OF LEMMA \(^6\)

From the closed-form \(V_{\beta,m}(p_{01})\) (see Lemma \(^3\)), we have, for any \(\beta \ (0 \leq \beta < 1)\),

\[
|V_{\beta,m}(p_{01}) - V_{\beta,m}(p_{11})| \leq c. \quad (66)
\]

From Fig. \(^6\), Fig. \(^7\) and Fig. \(^5\) we have, for any \(\omega \in [0, 1]\),

\[
\min\{V_{\beta,m}(0; u = 1), V_{\beta,m}(1; u = 1)\} \leq V_{\beta,m}(\omega) \leq \max\{V_{\beta,m}(0; u = 0), V_{\beta,m}(1; u = 1)\}. \quad (67)
\]

Consequently, we have, for any \(\omega, \omega' \in [0, 1]\),

\[
|V_{\beta,m}(\omega) - V_{\beta,m}(\omega')| \\
\leq \max(|V_{\beta,m}(0; u = 1) - V_{\beta,m}(1; u = 1)|, |V_{\beta,m}(0; u = 0) - V_{\beta,m}(0; u = 1)|, |V_{\beta,m}(0; u = 0) - V_{\beta,m}(1; u = 1)|) \\
= \max(|\beta(V_{\beta,m}(p_{01}) - V_{\beta,m}(p_{11})) - 1|, |\beta(V_{\beta,m}(p_{01}) - V_{\beta,m}(p_{11}))|, 1).
\]

Since \(|V_{\beta,m}(p_{01}) - V_{\beta,m}(p_{11})| \leq c\) for any \(\beta \ (0 \leq \beta < 1)\), then \(V_{\beta,m}(\omega) - V_{\beta,m}(\omega')| \leq c + 1\) for any \(\beta \ (0 \leq \beta < 1)\) and \(\omega, \omega' \in [0, 1]\). Thus the value-boundedness condition is satisfied.

APPENDIX E: PROOF OF LEMMA \(^7\)

The convergence of \(\omega^*_\beta(m)\) is trivial for \(m < 0\) and \(m \geq 1\).

For \(0 \leq m < 1\), let \(W(\omega) = \lim_{\beta \to 1} W_{\beta}(\omega)\). This limit exists and is given in Theorem \(^4\) (it is tedious and lengthy to get the limit and we skip the detailed calculation). Define \(\omega^*(m)\) as the inverse function of \(W(\omega)\). We notice that \(W(\omega)\) is a constant function (thus not invertible) when \(\omega_o \leq \omega \leq T^1(p_{11})\) (see \(^42\)). In this case, we set \(\omega^*(m) = T^1(p_{11})\). Formally, we have

\[
\omega^*(m) = \begin{cases}
 c \quad (c < 0) & \text{if } m < 0 \\
 \max\{\omega : W(\omega) = m\} & \text{if } 0 \leq m < 1 \\
 b \quad (b > 1) & \text{if } m \geq 1
\end{cases}. \quad (68)
\]
Next, we prove that $\lim_{\beta \to 1} \omega^*_\beta(m) = \omega^*(m)$ as $\beta \to 1$ by contradiction. Since $W(\omega) = \lim_{\beta \to 1} W_\beta(\omega)$ and $W_\beta(\omega)$ is increasing with ω, $W(\omega)$ is also increasing with ω. Assume first that $W_\beta(\omega)$ is strictly increasing at point $\omega^*_\beta(m)$. We prove $\lim_{\beta \to 1} \omega^*_\beta(m) = \omega^*(m)$ by contradiction as follows.

Assume $\omega^*_\beta(m) \nrightarrow \omega^*(m)$, i.e., there exists an $\epsilon > 0$, a $\beta' \ (0 \leq \beta' < 1)$, and a series $\{\beta_k\} \ (\beta_k \to 1)$ such that $|\omega^*_\beta(m) - \omega^*(m)| > \epsilon$ for any $\beta_k > \beta'$. If $\omega^*(m) - \epsilon > \omega^*_\beta(m)$ for any $\beta_k > \beta'$, then $W_{\beta_k}(\omega^*(m) - \epsilon) \geq W_{\beta_k}(\omega^*_\beta(m))$ for any $\beta_k > \beta'$ by the monotonicity of $W_{\beta_k}(\omega)$. Since $W(\omega)$ is strictly increasing at point $\omega^*(m)$, there exists a $\delta > 0$ such that $W(\omega^*(m)) - W(\omega^*(m) - \epsilon) > \delta$. Then we have, for any $\beta_k > \beta'$,

$$W_{\beta_k}(\omega^*(m) - \epsilon) \geq W_{\beta_k}(\omega^*_\beta(m)) = m = W(\omega^*(m)) > W(\omega^*(m) - \epsilon) + \delta,$$

which contradicts with the fact that $W_{\beta_k}(\omega^*_\beta(m) - \epsilon) \rightarrow W(\omega^*(m) - \epsilon)$ as $\beta_k \rightarrow 1$. The proof for the case when $\omega^*(m) + \epsilon < \omega^*_\beta(m)$ for any $\beta_k > \beta'$ is similar to the above.

Consider next that $W(\omega)$ is not strictly increasing at point $\omega^*(m)$. This case only occurs when $p_{11} < p_{01}$ and $\omega^*(m) = T^1(p_{11})$. We notice that $W_{\beta}(T^1(p_{11}))$ increasingly converges to $W(T^1(p_{11}))$ as $\beta \rightarrow 1$. Thus $\omega^*_\beta(m) \geq T^1(p_{11}) = \omega^*(m)$ by the monotonicity of $W_\beta(\omega)$. Assume $\omega^*_\beta(m) \rightarrow \omega^*(m)$, i.e., there exist an $\epsilon > 0$, a $\beta' \ (0 \leq \beta' < 1)$ and a series $\{\beta_k\} \ (\beta_k \rightarrow 1)$ such that $\omega^*_\beta(m) - \omega^*(m) > \epsilon$ for any $\beta_k > \beta'$. We have $W_{\beta_k}(\omega^*(m) + \epsilon) < W_{\beta_k}(\omega^*_\beta(m))$ for any $\beta_k > \beta'$ by the monotonicity of $W_{\beta_k}(\omega)$. Since $W(\omega)$ is strictly increasing in $[\omega^*(m), \omega^*(m) + \epsilon]$, there exists a $\delta' > 0$ such that $W(\omega^*(m) + \epsilon) - W(\omega^*(m)) > \delta'$. Then we have, for any $\beta_k > \beta'$,

$$W_{\beta_k}(\omega^*(m) + \epsilon) \leq W_{\beta_k}(\omega^*_\beta(m)) = m = W(\omega^*(m)) < W(\omega^*(m) + \epsilon) - \delta',$$

which contradicts with the fact that $W_{\beta_k}(\omega^*_\beta(m) + \epsilon) \rightarrow W(\omega^*(m) + \epsilon)$ as $\beta_k \rightarrow 1$.

Next, we show that the optimal policy π^*_β for the single-armed bandit process with subsidy under the discounted reward criterion pointwise converges to a threshold policy π^* as $\beta_k \rightarrow 1$. To see this, we construct π^* as follows: (1) If $m < 0$, then the arm is made active all the time; (2) If $m \geq 1$, the arm is made passive all the time; (3) If $0 \leq m < 1$, then ω is made passive when current state $\omega \leq \omega^*(m)$, otherwise it is activated. Since $\omega^*_\beta(m)$ converges to $\omega^*(m)$ as $\beta \rightarrow 1$, it is easy to see that π^*_β pointwise converges to π^* for any $\beta_k \rightarrow 1$. Because the single-armed bandit process with subsidy under the discounted reward criterion satisfies the value boundedness condition (see Lemma 6), the threshold policy π^* is optimal for the single-armed bandit process with subsidy under the average reward criterion based on Dutta’s theorem.
APPENDIX F: PROOF OF THEOREM 4

Since $\omega^*(m) = \lim_{\beta \to 1} \omega^*_\beta(m)$ and $\omega^*_\beta(m)$ is monotonically increasing with m (see Theorem 1), it is easy to see that $\omega^*(m)$ is also monotonically increasing with m. Therefore, the bandit is indexable.

Next, we prove that $W(\omega) = \lim_{\beta \to 1} W_\beta(\omega)$ is indeed Whittle’s index under the average reward criterion. For a belief state ω of an arm, its Whittle’s index is the infimum subsidy m such that ω is in the passive set under the optimal policy for the arm, i.e., the infimum subsidy m such that $\omega \leq \omega^*(m)$ (according to Lemma 7). From (68) and the monotonicity of $W(\omega)$ with ω, we have that $W(\omega)$ is the infimum subsidy m such that $\omega \leq \omega^*(m)$.

APPENDIX G: PROOF OF THE STRUCTURE OF WHITTLE’S INDEX POLICY

The proof is an extension of the proof given in [10] under single-channel sensing ($K = 1$). Consider the belief update of unobserved channels (see (1)).

$$T^1(\omega) = p_{01} + \omega(p_{11} - p_{01}). \quad (69)$$

We notice that $T^1(\omega)$ is an increasing function of ω for $p_{11} > p_{01}$ and a decreasing function of ω for $p_{11} < p_{01}$. Furthermore, the belief value $\omega_i(t)$ of channel i in slot t is bounded between p_{01} and p_{11} for any i and $t > 1$ (see (1)).

Consider first $p_{11} \geq p_{01}$. The channels observed to be in state 1 in slot $t - 1$ will achieve the upper bound p_{11} of the belief value in slot t while the channels observed to be in state 0 the lower bound p_{01}. Whittle’s index policy, which is equivalent to the myopic policy, will stay in channels observed to be in state 1 and recognize channels observed to be in state 0 as the least favorite in the next slot. The unobserved channels maintains the ordering of belief values in every slot due to the monotonically increasing property of $T^1(\omega)$. The structure of Whittle index policy for $p_{11} < p_{01}$ can be similarly obtained by noticing that reversing the order of unobserved channels in every slot maintains the ordering of belief values due to the monotonically decreasing property of $T^1(\omega)$.

APPENDIX H: PROOF OF THEOREM 5

The proof for the lower bound of J_w is an extension of that with single-channel sensing ($K = 1$) given in [10]. It is, however, much more complex to analyze the performance of
Whittle’s index policy when $K \geq 1$. The lower bound obtained here is looser than that in [10] when applied to the case of $K = 1$.

Define a transmission period on a channel as the number of consecutive slots in which the channel has been sensed. Based on the structure of Whittle index policy, it is easy to show that

$$J_w = \begin{cases} K(1 - \frac{1}{\mathbb{E}[\tau]}); & \text{if } p_{11} \geq p_{01}; \\ K \frac{1}{\mathbb{E}[\tau]}; & \text{if } p_{11} < p_{01}, \end{cases} \tag{70}$$

where $\mathbb{E}[\tau]$ is the average length of the transmission period over the infinite time horizon.

To bound the throughput J_w, it is equivalent to bound the average length of the transmission period $\mathbb{E}[\tau]$ as shown in equation (70). We consider the following two cases.

- **Case 1**: $p_{11} \geq p_{01}$

 Let ω denote the belief value of the chosen channel in the first slot of a transmission period. The length $\tau(\omega)$ of this transmission period has the following distribution.

 $$\Pr[\tau(\omega) = l] = \begin{cases} 1 - \omega, & l = 1 \\ \omega p_{11}^{l-2} p_{10}, & l > 1 \end{cases}. \tag{71}$$

 It is easy to see that if $\omega' \geq \omega$, then $\tau(\omega')$ stochastically dominates $\tau(\omega)$.

 From the structure of Whittle index policy, $\omega = T^k(p_{01})$, where k is the number of consecutive slots in which the channel has been unobserved since the last visit to this channel. When the user leaves one channel, this channel has the lowest priority. It will take at least $\lfloor \frac{N-K}{K} \rfloor$ slots before the user returns to the same channel, i.e., $k \geq \lfloor \frac{N}{K} \rfloor - 1$. Based on the monotonically increasing property of the k-step transition probability $T^k(p_{01})$ (see Fig. 3), we have $\omega = T^k(p_{01}) \geq T^{\lfloor \frac{N}{K} \rfloor - 1}(p_{01})$. Thus $\tau(T^{\lfloor \frac{N}{K} \rfloor - 1}(p_{01}))$ is stochastically dominated by $\tau(\omega)$, and the expectation of the former leads to the lower bound of J_w given in (47).

- **Case 2**: $p_{11} < p_{01}$

 In this case, $\tau(\omega)$ has the following distribution:

 $$\Pr[\tau(\omega) = l] = \begin{cases} \omega, & l = 1 \\ (1 - \omega)p_{00}^{l-2} p_{01}, & l > 1 \end{cases}. \tag{72}$$

 Opposite to case 1, $\tau(\omega')$ stochastically dominates $\tau(\omega)$ if $\omega' \leq \omega$.

From the structure of Whittle’s index policy, $\omega = T^k(p_{11})$, where k is the number of consecutive slots in which the channel has been unobserved since the last visit to this channel. If k is odd, then $T^k(p_{11}) \geq T^{2\lfloor \frac{N-K}{K} \rfloor - 2}(p_{11})$ since $2\lfloor \frac{N-K}{K} \rfloor - 2$ is an even number (see Fig. 4). If k is even, then k is at least $2\lfloor \frac{N-K}{K} \rfloor$. we have $\omega = T^k(p_{11}) \geq T^{2\lfloor \frac{N-K}{K} \rfloor - 2}(p_{11})$. Thus $\tau(\omega)$ is stochastically dominated by $\tau(T^{2\lfloor \frac{N-K}{K} \rfloor - 2}(p_{11}))$, and the expectation of the latter leads to the lower bound of J_w as given in (48).

Next, we show the upper bound of J. From (43), we have $J \leq \inf_m \{NJ_m - m(N - K)\}$ since channels are stochastically identical.

When $p_{11} \geq p_{01}$, we have

$$J \leq \min_{m \in \{\frac{p_{01}}{1 - T(p_{11}) + p_{01}}, 0\}} NJ_m - m(N - K) = \min\{\frac{K \omega_o}{1 - p_{11} + \omega_o}, N \omega_o\}. \tag{73}$$

When $p_{11} > p_{01}$, we have

$$J \leq \min_{m \in \{\frac{p_{01}}{1 - T(p_{11}) + p_{01}}, 0\}} NJ_m - m(N - K) = \min\{\frac{K p_{01}}{1 - T(p_{11}) + p_{01}}, N \omega_o\}. \tag{74}$$

APPENDIX I: PROOF OF COROLLARY 2

It has been shown that the myopic policy is optimal when $K = 1$ and $p_{11} \geq p_{01}$ [10], [11] (note that for $N = 2, 3$ negatively correlated channels, the optimality of the myopic policy has also been established). Based on the equivalency between Whittle’s index policy and the myopic policy, we conclude that Whittle index policy is optimal for $K = 1$ and $p_{11} \geq p_{01}$.

We now prove that Whittle’s index policy is optimal when $K = N - 1$. We construct a genie-aided system where the user knows the states $S_i(t)$ of all channels at the end of each slot t. In this system, Whittle’s index policy is clearly optimal, and the optimal performance is the upper bound of the original one. For the original system where the user only knows the states of the sensed $N - 1$ channels, we notice that the channel ordering by Whittle’s index policy in each slot is the same as that in the genie-aided system. Whittle’s index policy thus achieves the same performance as in the genie-aided system. It is thus optimal.

According to Theorem 5 we arrive at the following inequalities (notice that $J_w \geq K \omega_o$).

$$\eta \geq \begin{cases} \max\{1 - p_{11} + \omega_o, \frac{K}{N}\}, & \text{if } p_{11} \geq p_{01} \\ \max\{\frac{1 - T(p_{11}) + p_{01}}{1 - p_{11} + p_{01}}, \frac{K}{N}\}, & \text{if } p_{11} < p_{01} \end{cases}. \tag{75}$$

From (75), we have $\eta \geq \frac{K}{N}$.
Next, we show that Whittle’s index policy achieves at least half the optimal performance for negatively correlated channels ($p_{11} < p_{01}$). In this case, we have

$$\eta \geq \frac{1 - T^{-1}(p_{11}) + p_{01}}{1 - p_{11} + p_{01}} = 1 + \frac{(p_{11} - p_{01})(1 - p_{11})}{1 - (p_{11} - p_{01})} \geq 1 - \frac{(1 - p_{11})^2}{2 - p_{11}} \geq 0.5.$$

REFERENCES

[1] A. Mahajan and D. Teneketzis, “Multi-armed Bandit Problems,” in Foundations and Applications of Sensor Management, A. O. Hero III, D. A. Castanon, D. Cochran and K. Kastella (Editors), Springer-Verlag, 2007.

[2] J. C. Gittins, “Bandit Processes and Dynamic Allocation Indices,” in Journal of the Royal Statistical Society, Vol.41, No.2., pp.148-177, 1979.

[3] P. Whittle, "Restless bandits: Activity allocation in a changing world", in Journal of Applied Probability, Vol. 25, 1988.

[4] C. H. Papadimitriou and J. N. Tsitsiklis, “The Complexity of Optimal Queuing Network Control,” in Mathematics of Operations Research, Vol. 24, No. 2, May 1999, pp. 293-305.

[5] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient adaptive allocation rules for the multi-armed bandit problem with multiple plays (Part I : I.I.D. rewards. Part II : Markovian rewards.),” in IEEE Transactions on Automatic Control, Vol. AC-32, No. 11, pp. 968 -982, Nov. 1987.

[6] D. G. Pandelis and D. Teneketzis, “On the Optimality of the Gittins Index Rule in Multi-armed Bandits with Multiple Plays,” in Mathematical Methods of Operations Research, Vol. 50, pp. 449-461, 1999.

[7] R. R. Weber and G. Weiss, “On an Index Policy for Restless Bandits,” in Journal of Applied Probability, Vol.27, No.3, pp. 637-648, Sep 1990.

[8] P. S. Ansell, K. D. Glazebrook, J.E. Nio-Mora, and M. O’Keeffe, “Whittle’s index policy for a multi-class queueing system with convex holding costs,” in Math. Meth. Operat. Res. 57, 21–39, 2003.

[9] K. D. Glazebrook, D. Ruiz-Hernandez, and C. Kirkbride, “Some Indexable Families of Restless Bandit Problems ,” in Advances in Applied Probability, 38:643-672, 2006.

[10] Q. Zhao, B. Krishnamachari, and K. Liu, “On Myopic Sensing for Multi-Channel Opportunistic Access: Structure, Optimality, and Performance,” to appear in IEEE Trans. Wireless Communications, Dec., 2008, available at http://arxiv.org/abs/0712.0035v3

[11] S. H. Ahmad, M. Liu, T. Javadi, Q. Zhao and B. Krishnamachari, “Optimality of Myopic Sensing in Multi-Channel Opportunistic Access,” submitted to IEEE Transactions on Information Theory, May, 2008, available at http://arxiv.org/abs/0811.0637

[12] E. N. Gilbert, “Capacity of burst-noise channels,” Bell Syst. Tech. J., vol. 39, pp. 1253-1265, Sept. 1960.

[13] M. Zorzi, R. Rao, and L. Milstein, “Error statistics in data transmission over fading channels,” in IEEE Trans. Commun., vol. 46, pp. 1468-1477, Nov. 1998.

[14] L.A. Johnston and V. Krishnamurthy, “Opportunistic File Transfer over a Fading Channel: A POMDP Search Theory Formulation with Optimal Threshold Policies,” in IEEE Trans. Wireless Communications, vol. 5, no. 2, 2006.

[15] Q. Zhao and B. Sadler, “A Survey of Dynamic Spectrum Access,” in IEEE Signal Processing magazine, vol. 24, no. 3, pp. 79-89, May 2007.

[16] J. Le Ny, M. Dahleh, E. Feron, “Multi-UAV Dynamic Routing with Partial Observations using Restless Bandit Allocation Indices,” in Proceedings of the 2008 American Control Conference, Seattle, WA, June 2008.
[17] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework,” in IEEE Journal on Selected Areas in Communications (JSAC): Special Issue on Adaptive, Spectrum Agile and Cognitive Wireless Networks, April 2007.

[18] Y. Chen, Q. Zhao, and A. Swami, “Joint design and separation principle for opportunistic spectrum access in the presence of sensing errors,” in IEEE Transactions on Information Theory, vol. 54, no. 5, pp. 2053-2071, May, 2008.

[19] Q. Zhao and B. Krishnamachari, “Structure and Optimality of Myopic Policy in Opportunistic Access with Noisy Observations,” submitted to IEEE Transactions on Automatic Control, Feb., 2008, available at http://arxiv.org/abs/0802.1379v2.

[20] C. Lott and D. Teneketzis, “On the Optimality of an Index Rule in Multi-Channel Allocation for Single-Hop Mobile Networks with Multiple Service Classes,” in Probability in the Engineering and Informational Sciences, Vol. 14, pp. 259-297, 2000.

[21] V. Raghunathan, V. Borkar, M. Cao and P. R. Kumar, “Index policies for real-time multicast scheduling for wireless broadcast systems,” in IEEE INFOCOM, 2008.

[22] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandit problems in metric spaces,” in Proc. of the 40th ACM Symposium on Theory of Computing (STOC), 2008.

[23] J. E. Nio-Mora, “Restless bandits, partial conservation laws and indexability,” in Advances in Applied Probability, 33:7698, 2001.

[24] S. Guha and K. Munagala, “Approximation algorithms for partial-information based stochastic control with Markovian rewards,” in Proc. 48th IEEE Symposium on Foundations of Computer Science (FOCS), 2007.

[25] S. Guha, K. Munagala, “Approximation Algorithms for Restless Bandit Problems,” http://arxiv.org/abs/0711.3861.

[26] R. Smallwood and E. Sondik, “The optimal control of partially observable Markov processes over a finite horizon,” in Operations Research, pp. 1071-1088, 1971.

[27] A. Arapostathis, V. S. Borkar, E. Fernández-gaucherand, M. K. Ghosh, and S. I. Marcus, “Discrete-time controlled markov processes with average cost criterion: a survey,” in SIAM J. Control and Optimization, Vol. 31, No. 2, pp. 282-344, 1993.

[28] R. G. Gallager, Discrete Stochastic Processes. Kluwer Academic Publishers, 1995.

[29] E. J. Sondik, “The Optimal Control at Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs,” in Operations Research, Vol.26, No.2 (Mar. - Apr., 1978), 282 - 304.

[30] P. K. Dutta, “What do discounted optima converge to? A theory of discount rate asymptotics in economic models,” in Journal of Economic Theory 55, pp. 6494, 1991.