Nanofluid with nonlinear Rosseland thermal radiation and mixed convection

Nazish Iftikhar\(^a\), Muhammad Bilal Riaz\(^b\), Azhar Ali Zafar\(^c\), Syed Muhammad Husnine\(^a\)

\(^a\)Department of Sciences & Humanities, National University of Computer & Emerging Sciences, Lahore Campus, Lahore, Pakistan.  
\(^b\)Department of Mathematics, University of Management and Technology, Lahore, Pakistan.  
\(^c\)Institute of Groundwater Studies, University of the Free State, South Africa.  

Abstract

Two dimensional flow of mixed convection nanofluid on horizontal plate with the effect of nonlinear Rosseland thermal radiation has been investigated. Mathematical model of the problem is based on partial differential equations and optimal homotopy analysis method (OHAM) is applied to sort out solutions. Moreover, comprehensive study of influence of emerging parameters is carried out via graphical interpretation and tables.

Keywords: Nanofluid, Mixed Convection, Nonlinear Rosseland Thermal Radiation

1. Introduction

Nanofluids have a lot of applications in medical industry, engine cooling, detergency, pharmaceutical processes, heat exchanger and space technology. Nanofluids contain nanometer sized particles called nanoparticles. Nanofluids consist of base fluid which is usually water or oil with nanoparticles like metals, oxides, carbides and carbon. Some commonly used nanofluids are TiO\(_2\) (Titanium dioxide) in water, CuO (Copper oxide) in water, Al\(_2\)O\(_3\) (Aluminium oxide) in water, ZnO (Zinc oxide) in ethylene glycol. Choi \[1\] established the concept of nanofluids. Nanotechnology gain attention in the heat transfer process due to its characteristics of thermal conductivity.

---

Email addresses: nazish.iftikhar289@gmail.com (Nazish Iftikhar), Bilalsehole@gmail.com (Muhammad Bilal Riaz), Azharalizafar@gmail.com (Azhar Ali Zafar), syed.husnine@nu.edu.pk (Syed Muhammad Husnine)

Received June 14, 2020; Accepted: May 29, 2021; Online: June 1, 2021.
Mixed convection is a phenomenon occurred due to free convection and forced convection. Flow problems having mixed convection has great importance in applied perspective especially in industrial, technical processes. Pal and Mandal studied three types of nanofluids along with the thermal radiation and mixed convection. Hayat et al. investigated coupled stress nanofluid flow with nonlinear thermal radiation past a stretching surface. Thermal radiation effect in fluid flow problems with mixed convection and convective condition are discussed in Hayat et al. [4]-[6].

Nonlinear thermal radiation effect has great importance in engineering, nuclear reactors, missiles, and satellites. Hayat et al. [7] studied nonlinear thermal radiation effect in viscoelastic nanofluid. Shehzad et al. [8] studied thermophoresis effect and brownian motion in Jeffrey nanofluid with thermal radiation. Pantokratoras [9] investigated natural convection on isothermal plate with the impact of linear or nonlinear Rosseland radiation convection along with radiation parameter. Work has been done in this area by researchers [10]-[14]. Farooq et al. investigated heat transfer phenomena in viscoelastic nanofluid with nonlinear radiative effects [15]. Hayat et al. [16] analyze heat transfer in nanofluid with nonlinear thermal radiation and inclined magnetic field. Many researchers pay attention towards nonlinear thermal radiation [17]-[24]. Pantokratoras and Fang [25] studies Blasius flow in the presence of nonlinear Rosseland thermal radiation. Some important phenomenons regarding nonlinear thermal radiations considered by researchers [26]-[29].

In this article, nanofluid with nonlinear Rosseland thermal radiation and mixed convection has been investigated. Mathematical model involve partial differential equations. OHAM is used to investigate solutions. In addition, results are highlighted by tables and graphs.

### Table 1: Nomenclature

| Symbol | Quantity |
|--------|----------|
| $U_w$  | Plate velocity |
| $T$    | Fluid temperature |
| $T_w$  | Plate temperature |
| $T_\infty$ | Ambient temperature |
| $C$    | Nanoparticle volume fraction |
| $C_w$  | Nanoparticle volume fraction at plate |
| $C_\infty$ | Nanoparticle volume fraction away from the plate |
| $g$    | Gravitational acceleration |
| $\lambda$ | Local buoyancy parameter |
| $N_t$  | Thermophoresis parameter |
| $Nb$   | Parameter of Brownian motion |
| $N_T$  | Radiation parameter |
| $N_t$  | Concentration buoyancy parameter |
| $\beta_T$ | Coefficient of thermal expansion |
| $\beta_C$ | Coefficient concentration expansion |
| $D_T$  | Coefficient of Thermophoretic diffusion |
| $\lambda$ | Retardation time |
| $Pr$   | Prandtl number |
| $Sc$   | Schmidt number |
| $D_B$  | Coefficient of Brownian diffusion |
| $\theta_r$ | Temperature parameter |
| $\alpha_R$ | Rosseland mean spectral absorption coefficient |
| $\sigma_{SB}$ | Stefan-Boltzmann constant |
| $C_p$  | Specific heat |
| $Gr_x$ | Local Grashof number |
| $u, v$ | Velocity along $x$-axis and $y$-axis |
2. Mathematical model

Let nanofluid flow with nonlinear Rosseland thermal radiation and mixed convection moving in the direction of a horizontal plate with components of velocity \( u \) and \( v \). Velocity of the plate is \( U_w \) (see figure 1). Mathematical model is given below:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{1}
\]

\[
u u_x + vv_y = \nu u_{yy} + g[\beta_T(T - T_\infty) + \beta_C(C - C_\infty)], \tag{2}
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\alpha}{\nu} \frac{\partial^2 T}{\partial y^2} + \kappa D_B \frac{\partial T}{\partial y} \frac{\partial C}{\partial y} + \kappa D_C D_T \frac{\partial T}{\partial y}^2 + \frac{4 \sigma_S B \rho C_p R}{3 \nu^2} \left( \frac{\partial^2 T}{\partial y^2} \right), \tag{3}
\]

\[
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = \frac{D_B}{\nu} \frac{\partial^2 C}{\partial y^2} + \frac{D_C}{D_T} \frac{\partial T}{\partial y} \frac{\partial^2 T}{\partial y^2}. \tag{4}
\]

The boundary conditions are considered as:

\[
u = U_w, \ v = 0, \ T = T_w, \ C = C_w, \ \text{at} \ y = 0, \tag{5}\]

\[
u \to 0, \ \tau \to T_\infty, \ C \to C_\infty, \ \text{as} \ y \to \infty. \tag{6}\]

Introducing similarity transformations:

\[
u = U_w g'(\eta), \ \tau = \frac{1}{2} \sqrt{\frac{U_w \nu}{x}} [\eta g' - g(\eta)], \tag{7}\]

\[	heta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}, \ \eta = \sqrt{\frac{U_w \nu}{x \nu}}, \ \phi(\eta) = \frac{C - C_\infty}{C_w - C_\infty}. \tag{8}\]

By putting values of \( u \) and \( v \) in equation (1), it satisfied. Moreover substituting equations (7) and (8) into equations (2), (3) and (4), we get

\[
u'' + \frac{1}{2} \nu u'' + \lambda (\theta + N_1 \phi) = 0, \tag{9}\]
Table 2: Values of errors according to Optimal convergence control parameters via BVPh2.0

| $m$  | $c_0^m$ | $c_0^p$ | $e_0^p$ | $e_0^m$ | CPU Time |
|------|---------|---------|---------|---------|----------|
| 2.0  | -1.27   | -0.51   | -0.49   | $6.3 \times 10^{-3}$ | 19.277   |
| 4.0  | -1.28   | -0.57   | -0.59   | $3.2 \times 10^{-3}$ | 182.615  |
| 6.0  | -1.03   | -0.43   | -1.05   | $3.5 \times 10^{-4}$ | 1348.11  |

\[
Nr\theta'' + NbPrNr\theta' + NtPrNr(\theta')^2 + \frac{1}{2} NrPr\theta'' = 0,
\]

\[
\phi'' + \frac{1}{2} Scg\phi' + \frac{Nt}{Nb} \theta'' = 0,
\]

\[
\phi(0) = 1, \quad \phi(\infty) = 0,
\]

\[
\theta(0) = 1, \quad \theta(\infty) = 0,
\]

\[
g(0) = 0, \quad g'(0) = 1, \quad g'(\infty) = 0.
\]

Dimensionless numbers with parameters are given below:

\[
NT = \frac{DT(T_w - T_\infty)}{\nu T_\infty}, \quad Nb = \frac{\kappa DB(C_w - C_\infty)}{\nu}, \quad \alpha = \frac{k}{\rho C_p},
\]

\[
Sc = \frac{\nu}{DB}, \quad \lambda = \frac{Gr_x}{Re_x^2}, \quad \theta_r = \frac{T_w}{T_\infty}, \quad Nr = \frac{1}{4\sigma SB T_\infty^3}, \quad Re = \frac{U_w x}{\nu},
\]

\[
Gr_x = \frac{(T_f - T_\infty)x^3 g \beta_T}{\nu^2}, \quad N_1 = \frac{(C_w - C_\infty) \beta C}{(T_f - T_\infty) \beta T}.
\]

Local Sherwood number is given below

\[
Sh/Re_x^{\frac{1}{2}} = -\phi'(0),
\]

and local Reynold is given by

\[
Re_x = \frac{x U_w}{\nu}.
\]

Assume initial approximations are

\[
\phi_0(\eta) = e^{-\eta},
\]

\[
\theta_0(\eta) = e^{-\eta},
\]

\[
g_0(\eta) = 1 - e^{-\eta}.
\]

Let auxiliary operators are

\[
L_\phi = \phi'' - \phi,
\]

\[
L_\theta = \theta'' - \theta,
\]

\[
L_g = g''' - g'.
\]
Table 3: Error analysis from Table 2 at 6th iteration

| $m$ | $\varepsilon_m^0$ | $\varepsilon_m^0$ | $\varepsilon_m^0$ | CPU Time |
|-----|-------------------|-------------------|-------------------|----------|
| 6.0 | $8.72 \times 10^{-6}$ | $1.08 \times 10^{-4}$ | $2.41 \times 10^{-4}$ | 12.7061 |
| 12.0 | $1.68 \times 10^{-7}$ | $2.82 \times 10^{-6}$ | $3.79 \times 10^{-5}$ | 74.1165 |
| 18.0 | $5.75 \times 10^{-8}$ | $2.30 \times 10^{-6}$ | $7.26 \times 10^{-5}$ | 270.534 |

3. Convergence control parameters

Convergence of solution can be control in homotopy analysis method by using different parameters denoted by $c_0^g$, $c_0^\theta$ and $c_0^\phi$. Values of these parameters can be obtained by minimizing error. BVPh2.0 is applied in order to get minimum error. Three arrays are selected. First array is selected at 2nd iteration, second array is selected at 4th iteration and third array is selected at 6th iteration. Table 2 shows error analysis at 6th iteration.

4. Results and discussion

Analysis of graphs for different parameters are examined in this section. Figure 2 depicts that there is an increase in velocity as $\lambda$ increases. Thermal buoyancy force enhances when $\lambda$ increases due to which velocity is enhanced. Effect of $Nb$ on $\theta(\eta)$ and $\phi(\eta)$ presents in figures 3 and 4. By increasing $Nb$, temperature increases on the other hand concentration decreases. Figure 5 demonstrated that an increase in $Nt$, enhances temperature. Thermal conductivity enhances as $Nt$ increases due to which temperature increases. Figure 6 displayed that $\phi(\eta)$ increases as $Nt$ increases. There is reduction in $\theta(\eta)$ with the increasing value of $Nr$ (see figure 7). Physically it is because of production of heat in moving fluid which is generated to increase in radiation as a result temperature raises. Figure 8 interprets the influence of $\phi(\eta)$ for $Sc$. As $Sc$ increases there is a decrease in concentration. Physically by increasing Schmidt number there is mass diffusivity become less and hence $\phi(\eta)$ decreases. Figure 9 shows that temperature decreases as $N_1$ increases. As $\theta_r$ increases there is an increase in temperature (see figure 10). Further, Table 2 shows values of parameters which are responsible for convergence. Table 3 depicts error for 6th iteration. Table 4 presents values of Sherwood number corresponding to the parameters.

5. Conclusion

Nanofluid is considered over horizontal moving plate under the influence of nonlinear Rosseland thermal radiation with mixed convection. Fundamental observations are given below.

- $Nt$ and $Nb$ have the same and opposite effect on $\phi(\eta)$ and $\theta(\eta)$ respectively.
- Increasing value of $Nr$ accelerates the $\theta_r$.
- Enhancement in $Sc$ leads to increase in $\phi(\eta)$.

![Figure 4: Influence of Nb on $\phi(\eta)$ with $Nt=Pr=1.0$, $Nr=Sc=\theta_r=1.5$ and $\lambda=N_1=0.1$](image)
Table 4: Local Sherwood numbers for existing parameters

| $\lambda$ | $N_1$ | $Sc$ | $\theta_r$ | $Nt$ | $Nr$ | $Sh/Re_x^{\frac{1}{2}}$ |
|----------|-------|------|------------|------|------|------------------------|
| 0.2      | 0.98640 |
| 0.4      | 0.98833 |
| 0.6      | 0.99025 |
| 0.2      | 0.98553 |
| 0.4      | 0.98570 |
| 0.6      | 0.98588 |
| 0.1      | 0.85950 |
| 0.3      | 0.87708 |
| 0.5      | 0.89180 |
| 0.1      | 0.79807 |
| 0.3      | 0.78990 |
| 0.5      | 0.79765 |
| 0.0      | 0.62183 |
| 0.2      | 0.67277 |
| 0.4      | 0.73461 |
| 0.0      | 0.43759 |
| 0.2      | 0.51064 |
| 0.4      | 0.58368 |

Figure 2: Influence of $\lambda$ on $g'(\eta)$ with $Nt=Pr=1.0$, $Nr=Nb=Sc=\theta_r=1.5$ and $N_1=0.1$

Figure 3: Influence of $Nb$ on $\theta(\eta)$ with $Nt=Pr=1.0$, $Nr=Sc=\theta_r=1.5$ and $\lambda=N_1=0.1$
Figure 5: Influence of $Nt$ on $\theta(\eta)$ with $Pr=1.0$, $N_{r}=N_{b}=S_{c}=\theta_{r}=1.5$ and $\lambda=N_{1}=0.1$

Figure 6: Influence of $Nt$ on $\phi(\eta)$ with $Pr=1.0$, $N_{r}=N_{b}=S_{c}=\theta_{r}=1.5$ and $\lambda=N_{1}=0.1$

Figure 7: Influence of $Nr$ on $\theta(\eta)$ with $Nt=Pr=1.0$, $N_{b}=S_{c}=\theta_{r}=1.5$ and $\lambda=N_{1}=0.1$
Figure 8: Influence of $Sc$ on $\phi(\eta)$ with $Nt=Pr=1.0$, $Nr=Nb=\theta_r=1.5$ and $\lambda=N_1=0.1$

Figure 9: Influence of $N1$ on $\theta(\eta)$ with $Nt=Pr=1.0$, $Nr=Nb=Sc=\theta_r=1.5$ and $\lambda=0.1$

Figure 10: Influence of $\theta_r$ on $\theta(\eta)$ with $Nt=Pr=1.0$, $Nr=Nb=Sc=1.5$ and $\lambda=N_1=0.1$

References

[1] S.U.S. Choi, J.A. Estman, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed. 231 (1995) 99-106.
[2] D. Pal, G. Mandal, Influence of thermal radiation on mixed convection heat and mass transfer stagnation-point flow in nanofluids over stretching/shrinking sheet in a porous medium with chemical reaction, Nuclear Eng. and Design. 273 (2014) 644-652.
[3] T. Hayat, M.B. Ashraf, H.H. Alsulami, M.S Alluthali, Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions, Plos One. 9 (2014) e90038.
[4] F.M. Abbasi, S.A. Shehzad, T. Hayat, M.S. Alluthali, Mixed convection flow of jeffrey nanofluid with thermal radiation and double stratification, J. of Hydrodynamics. 28 (2016) 840-849.
[5] M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi, Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model, J. of Magnetism and Magnetic Materials. 374 (2015) 36-43.

[6] M.B. Ashraf, T. Hayat, S.A. Shehzad, A. Alsaedi, Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition. AIP Advances. 5 (2015) 027134.

[7] T. Hayat, T. Muhammad, M. Shehzad, A. Alsaedi, Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation, J. of Magnetism and Magnetic Materials. 385 (2015) 222-229.

[8] S.A. Shehzad, T. Hayat, A. Alsaedi, M.A. Obid, Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Appl. Math. and Comp. 248 (2014) 273-286.

[9] A. Pantokratoras, Natural convection along a vertical isothermal plate with linear and non-linear Rosseland thermal radiation. Int. J. of Thermal Sci. 84 (2014) 151-157.

[10] A. Pantokratoras, T. Fang, Sakiadis flow with nonlinear Rosseland thermal radiation, Physica Scripta. 87 (2012) 015703.

[11] M. Khan, R. Malik, M. Hussain, Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder, AIP Advances. 6 (2016) 055315.

[12] M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, Significance of nonlinear radiation in mixed convection flow of magnetohydrodynamic nano fluid, Int. J. of Heat and Mass Trans. 103 (2016) 26408-26416.

[13] R. Cortell, Fluid flow and radiative nonlinear heat transfer over a stretching sheet, J. of King Saud Uni. Sci. 26 (2014) 161-167.

[14] S.K. Parida, S. Panda, B.R. Rout, MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis, Alex. Eng. J. 54 (2015) 941-953.

[15] M. Farooq, M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects, J. of Molec. Liq. 221 (2016) 1097-1103.

[16] T. Hayat, S. Qayyum, A. Alsaedi, A. Shafiq, Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation, Int. J. of Heat and Mass Trans. 103 (2016) 99-107.

[17] T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation, Int. J. of Heat and Mass Trans. 102 (2016) 729-732.

[18] B.C. Prasannakumara, B.J. Gireesha, R.S. Gorla, M.R. Krishnamurthy, Effects of chemical reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium, J. of Aerosp. Eng. 29 (2016) 04016019.

[19] N.S. Shashikumar, M. Archana, B.C. Prasannakumara, B.J. Gireesha, O.D. Makinde, Effects of nonlinear thermal radiation and second order slip on Casson nanofluid flow between parallel plates, in Defect and Diffusion Forum. 377 (2017) 84-94.

[20] M. Awais, T. Hayat, N. Muqaddas, A. Ali, S.E. Awan, Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material, Results in Phys. 8 (2018) 1038-1045.

[21] K.G. Kumar, N.G. Rudraswamy, B.J. Gireesha, M.R. Krishnamurthy, Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating, Nonlinear Eng. 6 (2017) 207-219.

[22] K.G. Kumar, B.J. Gireesha, S. Manjunatha, N.G. Rudraswamy, Effect of nonlinear thermal radiation on double-diffusive mixed convection boundary layer flow of viscoelastic nanofluid over a stretching sheet, Int. J. of Mech. and Materials Eng. 12 (2017) 18.

[23] B.C. Prasannakumara, B.J. Gireesha, M.R. Krishnamurthy, K.G. Kumar, MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet, Inf. in Medi. Unlocked. 9 (2017) 123-132.

[24] M. Archana, M.G. Reddy, B.J. Gireesha, B.C. Prasannakumara, S.A. Shehzad, Triple diffusive flow of nanofluid with buoyancy forces and nonlinear thermal radiation over a horizontal plate, Heat Trans. Asian Research. 47 (2018) 957-973.

[25] A. Pantokratoras, T. Fang, Blasius flow with non-linear Rosseland thermal radiation, Meccanica. 49 (2014) 1399-1545.

[26] I.L. Animasaun, C.S.K. Raju, N. Sundarapandian, Unequal diffusivities case of homogeneous-heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation, Alex. Eng. J. 55 (2016) 1395-1406.

[27] T.V. Laxmi, B. Shankar, Effect of nonlinear thermal radiation on boundary layer flow of viscous fluid over nonlinear stretching sheet with injection/suction, J. of Appl. Math. and Phys. 4 (2016) 307.

[28] A.M. Ramiahreddy, J.V. Reddy, N. Sundarapandian, V. Sugumamma, Effect of Nonlinear Thermal Radiation on MHD Chemically Reacting Maxwell Fluid Flow past a Linearly Stretching Sheet, Appl. and Applied Math. 12 (2017).

[29] M. Waqas, M.I. Khan, T. Hayat, A. Alsaedi, M.I. Khan, Nonlinear thermal radiation in flow induced by a slendering surface accounting thermophoresis and Brownian diffusion, The Eur. Phys. J. Plus, 132 (2017) 280.