PAXX and its paralogs synergistically direct DNA polymerase λ activity in DNA repair

Andrew Craxton1, Deeksha Munnur1,2, Rebekah Jukes-Jones1, George Skalka1, Claudia Langlais1, Kelvin Cain1 & Michal Malewicz1

PAXX is a recently identified component of the nonhomologous end joining (NHEJ) DNA repair pathway. The molecular mechanisms of PAXX action remain largely unclear. Here we characterise the interactomes of PAXX and its paralogs, XLF and XRCC4, to show that these factors share the ability to interact with DNA polymerase λ (Pol λ), stimulate its activity and are required for recruitment of Pol λ to laser-induced DNA damage sites. Stimulation of Pol λ activity by XRCC4 paralogs requires a direct interaction between the SP/8 kDa domain of Pol λ and their N-terminal head domains to facilitate recognition of the 5′ end of substrate gaps. Furthermore, PAXX and XLF collaborate with Pol λ to promote joining of incompatible DNA ends and are redundant in supporting Pol λ function in vivo. Our findings identify Pol λ as a novel downstream effector of PAXX function and show XRCC4 paralogs act in synergy to regulate polymerase activity in NHEJ.
NA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA damage in mammalian cells. Pathological DSBs can occur endogenously as a consequence of oxidative DNA damage, abortive action of nuclear enzymes involved in DNA metabolism or due to exogenous DNA damaging agents including ionising radiation (IR). Interestingly DSBs are also required for normal development such as RAG-dependent breaks occurring during V(D)J recombination. Unrepaired or misrepaired DSBs cause genomic instability resulting in cell death, senescence and predisposition to cancers. Mammalian cells engage two major pathways to resolve DSBs, homologous recombination (HR) and NHEJ. HR utilises an intact sister chromatid as template to guide repair, which limits HR to the S and G2/M phases of the cell cycle. In contrast, NHEJ directly rejoins DSBs and crucially does not require extensive homology. NHEJ occurs during all phases of the cell cycle, including the G1 phase when cells are uniquely dependent on NHEJ. NHEJ occurs in a series of stages and requires coordinated involvement of a repertoire of key proteins. Initially, the DSB is sensed by Ku70/80 heterodimers leading to recruitment of DNA-PKcs (known together as the DNA-PK holoenzyme complex), activation of its protein kinase activity and tethering of the DNA termini. DNA-bound Ku serves as a platform for recruitment of various proteins including some with enzymatic activities required to process complex damaged DNA ends. These include the nuclease Artemis, polynucleotide kinase-phosphatase (PNKP), Werner (WRN) helicase and the family X DNA polymerases λ (Pol λ) and μ (Pol μ). DNA-bound Ku also recruits two structurally related proteins, XRCC4- and XRCC4-like factor (XLF/Cernunnos/NHEJ1), which independently from Ku can form long filaments facilitating alignment of DNA ends prior to ligation, the final step of NHEJ mediated by DNA Ligase IV (Lig IV) in NHEJ reactions proceed via a variety of so-called “subpathways”, which utilise various subsets of NHEJ proteins and differ in the way distinct DNA ends are processed prior to ligation. Recently, an additional XRCC4-like protein, PAXX (Paralog of XRCC4 and XLF; also known as XLS or c9orf142) was identified. XRCC4 and its paralogs consist of highly conserved N-terminal globular head domains, a centrally located coiled-coil and a C-terminal region. PAXX is required for resistance to IR-induced DNA damage and interacts with DNA-PK holoenzyme via protein–protein interactions with DNA-bound Ku heterodimers. Studies using PAXX and XLF-deficient mice showed that PAXX and XLF share redundant functions, as unlike single knockouts most PAXX/XLF double knockout mice exhibit embryonic lethality associated with major defects in growth, lymphogenesis and increased neuronal cell death. Importantly, PAXX also stimulated ligation of noncohesive DNA ends in a XLF-dependent manner. These findings led us to hypothesise that PAXX may play a specific role in processing of non-compatible DNA ends. Such processing requires various factors including DNA polymerases. NHEJ specifically employs Pol λ and Pol μ, whose structures are characterised by a common protein fold with similar secondary structure. While loss of either Pol λ or Pol μ alone resulted in a mild increase in IR sensitivity, cells deficient in both DNA polymerases were highly radiosensitive, consistent with the notion that these two DNA polymerases together are essential for efficient NHEJ.

To gain broader insight into interactions mediated by PAXX and its paralogs and to further investigate a role for PAXX in processing of non-compatible DNA ends, we characterise the interactome of PAXX, XLF and XRCC4. Our studies identify Pol λ as an abundant PAXX-interacting protein, which also interacts with XLF and XRCC4. PAXX and XLF form a complex with Pol λ via DNA-bound Ku heterodimers. This interaction requires the C-terminal region of PAXX or XLF. In addition, each XRCC4 family protein stimulates Pol λ-dependent gap-filling activity in vitro via direct interaction between the head domains and the Ser-Pro/8 kDa region respectively. Cell extracts depleted in PAXX, XLF or XRCC4 exhibit reduced Pol λ-dependent gap filling activity. Significantly, recruitment and retention of Pol λ at DNA damage sites in cells is also strongly reduced in PAXX, XLF or XRCC4-deficient cells. Thus, PAXX, XLF and XRCC4 synergise in the efficient DSB recruitment, substrate recognition and stimulation of Pol λ enzymatic activity during NHEJ.

Results

Analysis of the interactomes of PAXX and its paralogs. First we performed comparative proteomic analysis of PAXX, XLF and XRCC4 interactomes using DNA-PKcs as a reference bait and utilising cell lines stably overexpressing N-terminal FLAG-PAXX, -XLF or -XRCC4 proteins. We found bait proteins to be present in both nuclear soluble and insoluble fractions and used a nuclease (benzonase) to facilitate the release from the insoluble compartment (Supplementary Fig. 1b). Next, we isolated proteins associated with PAXX, XLF, XRCC4 and DNA-PKcs from nucleoplasmic and benzoate-treated (soluble chromatin) fractions by anti-FLAG immunoprecipitation followed by elution with FLAG peptide (Figs. 1, 2, Supplementary Fig. 1a, c-f). Immunoblotting showed that PAXX and XLF associated with other NHEJ factors (DNA-PK holoenzyme, Lig IV) and PAXX preferentially associated with these NHEJ proteins in the soluble chromatin fraction (Supplementary Fig. 1e, f). In contrast, XRCC4 preferentially associated with Lig IV (Supplementary Fig. 1e-f). These results were also confirmed by mass spectrometry by revealing a preferential association of PAXX with key

Fig. 1 Comparative Analysis of the Proteomes of XRCC4 Family Proteins isolated from Soluble Chromatin. Interactome analysis using FLAG-tagged PAXX, -XLF, -XRCC4 and -DNA-PKcs as bait from the benzoate-treated soluble chromatin fraction of HEK293F cells was performed using Cytoscape. Proteins highlighted by shaded yellow boxes indicate proteins which interact with the indicated bait protein e.g. PAXX, XLF, XRCC4 or DNA-PKcs. Shaded grey boxes depict proteins identified in combined proteomes of XRCC4 family proteins and DNA-PKcs (PRKDC)
NHEJ factors in the soluble chromatin fraction (Supplementary Tables 6, 7 and Supplementary Data 1).

In addition to their interaction with core NHEJ proteins, PAXX or its paralogs also associated with a variety of NHEJ accessory factors including PNKP, APTX, WRN, PARP1 and Pol λ (Figs 1, 2, Supplementary Tables 6 and 7). Notably, PAXX bound Pol λ in the soluble chromatin fraction, which plays an important role during NHEJ to fill DNA gaps (Supplementary Tables 6 and 7 and Supplementary Data 1). PAXX also associated with multiple subunits of the trimeric protein phosphatase 6 holoenzyme, which directly interacts with and regulate DNA-PK function (Fig. 1 and Supplementary Fig. 9). In addition, multiple dynamin members (DYN1, 2 and 3), TRF2/TERF2 and its interacting protein TERF2IP/RAP1, also co-purified with PAXX, XLF and DNA-PKcs but not XRCC4 (Fig. 1 and Supplementary Data 1). In contrast, relatively few proteins were shared between PAXX or XLF and XRCC4 in the soluble chromatin nuclear fraction (Fig. 1). We also identified a small cohort of proteins which appeared to selectively interact with PAXX or XLF (Supplementary Table 8). Consistent with the notion that DNA-PKcs is involved in regulating other cellular pathways independent from its role in DNA repair, DNA-PKcs interacted with a large cohort of additional proteins specific to this bait (Figs 1, 2, Supplementary Data 1).

Interactions with DNA Polymerase λ. As we identified Pol λ as an abundant PAXX-associated protein and PAXX has been reported to stimulate joining of noncomplementary DNA ends in a XLF-dependent manner in vitro, we investigated the interaction between PAXX and Pol λ co-purified with overexpressed FLAG-PAXX in HEK293 and U2OS cells (Supplementary Fig. 2a, b). Reciprocal immunoprecipitation with FLAG-tagged Pol λ demonstrated interaction of PAXX and its paralogs (and other NHEJ factors) with Pol λ (Supplementary Fig. 2c, d). Furthermore, the Pol λ interactome included PAXX and its paralogs (Supplementary Table 9 and Supplementary Data 2). Importantly, immunoprecipitation of endogenous Pol λ showed that PAXX, XLF and XRCC4 co-purified with Pol λ in untreated cells or after ionising irradiation (Fig. 3a). Association of these endogenous proteins was further confirmed by reciprocal IPs of PAXX, XLF and XRCC4 with Pol λ (Fig. 3b). We also examined the effect of ethidium bromide (EtBr), which specifically disrupts interaction of proteins with DNA, on interaction of PAXX and its paralogs with Pol λ. EtBr blocked interaction of Pol λ with PAXX (Fig. 3c). Association of Pol λ with XLF or XRCC4 was less affected by EtBr, suggesting possible direct protein–protein contact (Fig. 3c).

The N-terminal BRCT domain of Pol λ and key conserved residues in α-helix 1 (Arg57, Leu60) of its BRCT domain are required for its DNA-dependent association with Ku/XRCC4/Lig IV in vitro. To examine whether the Pol λ BRCT domain and its α-helix 1 were required for its interaction with PAXX in cells, we examined interaction of Pol λ WT, ΔBRCT and Δ-R57A/L60A (RL) with DNA-bound Ku in vitro and also in cells (Fig. 3d, e). Arg57/Leu60 within α-helix 1 of the Pol λ BRCT domain was required for its interaction with DNA-bound Ku in vitro (Fig. 3d). Moreover, association of Pol λ with PAXX and its paralogs, and Ku heterodimers required the BRCT domain-containing N-terminal region of Pol λ and its conserved BRCT α-helix 1 residues (Fig. 3e).

Ku-dependence of DNA Polymerase λ interaction. Our observation that the BRCT domain of Pol λ is required for its interaction with PAXX raised the possibility that DNA-bound Ku heterodimers facilitate interaction between PAXX and Pol λ. We explored this possibility using 30- or 90 bp dsDNA oligonucleotide Pol λ substrates containing 5nt gaps by EMSA. PAXX exhibited no binding activity towards these DNA substrates (Fig. 4a, lanes 2 and 9; Supplementary Fig. 3a, lane 2). However, Pol λ formed a complex with a 5nt-gapped dsDNA substrate (Fig. 4a, lanes 3 and 10; Supplementary Fig. 3a, lane 3). Although PAXX did not supershift Pol λ-DNA complexes (Fig. 4a, lanes 4 and 11; Supplementary Fig. 3a, lanes 6–7), detectable association between PAXX and Pol λ was observed in GST pull downs, although reduced compared to XLF-Pol λ interaction (Supplementary Fig. 3b). Consistent with these results, a minor fraction of DNA-bound Pol λ was supershifted by XLF (Supplementary Fig. 3c). PAXX or Pol λ supershifted DNA-bound Ku70/80 complexes (Fig. 4a, lanes 5–7 and 12–14; Supplementary Fig. 3a, lanes 4, 5 and 8). Importantly, PAXX supershifted Pol λ-Ku70/80-DNA complexes with formation of a further retarded PAXX-Pol λ-Ku70/80-DNA complex (Fig. 4a, lanes 8 and 15; Supplementary Fig. 3a, lanes 9–10). To assess a role for PAXX-Ku interaction(s) in formation of PAXX-Pol λ-Ku70/80-DNA quaternary complexes, we generated a PAXX C-terminal Ku-binding mutant (PAXX-V199A/F201A (PAXX-VF)), Supplementary Fig. 3d). PAXX-VF, in contrast to PAXX-WT, did not form a complex with DNA-bound Ku70/80 as shown (Fig. 4b). Consistent with a Ku-dependent interaction between PAXX and Pol λ, PAXX-WT but not PAXX-VF supershifted the Pol λ-Ku70/80-DNA complex (Fig. 4c).

As endogenous XLF also associated with Pol λ in cells (Fig. 3a, b), we also tested whether Ku mediates its interaction with Pol λ in vitro. Ku-dependent binding of XLF-WT to DNA was observed (Fig. 4d) as reported. XLF-WT supershifted the Pol λ-Ku70/80-DNA complex but not the Pol λ-DNA complex, suggesting that Ku principally mediates association between XLF and Pol λ.

Fig. 2 Comparative Analysis of the Nucleoplasmic Proteomes of XRCC4 Family Proteins. As described in Fig. 1, except the nucleoplasmic fraction was analysed.
Fig. 3 Pol λ interacts with XRCC4 family proteins via its BRCT domain in cells. a HEK293F cells were irradiated with 10 Gy X-ray or left untreated. Soluble nuclear extracts were isolated following 0–60 min post-irradiation recovery time at 37 °C. Following IP with anti-Pol λ or rabbit IgG (rglg), Pol λ and associated proteins were resolved by SDS-PAGE and immunoblotted for the indicated NHEJ factors. b HEK293F cell nucleoplasmic (NP) or soluble chromatin (sol. Chr) extracts were immunoprecipitated with rIgG, anti-PAXX or -XLF or mouse IgG (mIgG) or anti-XRCC4. Immunoprecipitated proteins were resolved by SDS-PAGE and immunoblotted for the indicated NHEJ factors. c As described in Panel A, except that soluble nuclear extracts were incubated with 0–200 µg/ml EtBr for 1 h prior to IP with anti-Pol λ or rglg. d EMSA showing that interaction of Pol λ with DNA-bound Ku requires R57 and L60 in the BRCT domain of Pol λ. Reactions were performed with IRDye® 700-labelled 5nt-gapped dsDNA (33-mer) in the presence or absence of FLAG-Ku70/80 (20 nM) and either FLAG-Pol λ-WT or a R57A/L60A mutant (50 nM). e HEK293F cells were transiently transfected with either pCMX-LacZ (control) or pCMX-FLAG-Pol λ-WT, -ΔBRCT or a R57A/L60A mutant and anti-FLAG IPs performed.

and Pol λ (Fig. 4d). Deletion of the XLF C-terminal 66 residues resulted in loss of supershifted XLF-Ku-DNA and Pol λ-Ku70/80-DNA-XLF complexes (Fig. 4d), demonstrating that XLF interaction with Pol λ also shows Ku-dependency.

PAXX and paralogs facilitate recruitment of Pol λ to DSBs. Pol λ has been shown to localise to DSβ sites, but the NHEJ factors required for Pol λ recruitment to DSBs in live cells have not been identified. Therefore, we stably expressed EGFP or mCherry fused to the N-termini of Pol λ as a 100 kDa nuclear-localised protein in cells (Fig. 5a, Supplementary Fig. 4a). N-EGFP-Pol λ fusion protein rapidly relocated to microirradiation-induced DSB sites following UV laser-induced DNA damage (Fig. 5b, c). To examine the role of XRCC4 family members in recruitment/retention of Pol λ at microirradiation-induced DSBs, PAXX, XLF and XRCC4 KO U2OS cells were generated (Fig. 5d, Supplementary Table 5). We noted that XRCC4 KO cells did not express Lig IV (Fig. 5d). Loss of PAXX or its paralogs had no effect on nuclear localisation of N-terminal mCherry-Pol λ (Fig. 5e). However, in contrast to rapid relocation of Pol λ to laser-induced DSB sites observed in WT cells, Pol λ recruitment to laser-induced DSBs was substantially diminished in PAXX KO cells (Fig. 5f). Pol λ recruitment to DNA lesions was also ablated in both XLF- and XRCC4-deficient cells with defective initial recruitment similar to PAXX KO cells (Fig. 5f, Supplementary Fig. 4b). As PAXX has been shown to promote maximal Ku70 recruitment to DSBs in live murine cells, we tested whether the defect in Pol λ recruitment to laser-induced DSBs in human PAXX KO cells correlated with a similar defect in Ku70 relocalisation. N-terminal EGFP-FLAG-Ku70 relocated to sites of laser-induced DSBs in WT and PAXX KO cells, with no significant difference in Ku70 recruitment observed following laser-induced DSBs (Fig. 5g, Supplementary Fig. 4c). These results suggest PAXX is critically important for recruitment of Pol λ to laser-induced DSBs without exerting a broader effect on Ku retention at DSBs in human cells.

XRCC4 family proteins stimulate Pol λ gap-filling activity. As XRCC4 family proteins interact with Pol λ, we next tested whether these NHEJ proteins stimulate Pol λ activity. An assay was developed to measure template-dependent Pol λ activity on a 5nt gapped 33 bp dsDNA substrate in vitro (Supplementary Table 1). Pol λ-WT catalysed gap filling synthesis in a concentration-dependent manner, whereas a catalytically inactive Pol λ mutant (D427A/D429A/D490A; 3D) did not (Fig. 6a, Supplementary Fig. 5a). In addition, Pol λ-WT showed reduced activity towards substrate lacking a 5'-phosphate moiety, consistent with its reported lower binding affinity towards non-phosphorylated...
Fig. 4 Interaction of PAXX and XLF with Pol λ requires C-terminal Ku-binding regions. a EMSA showing that interaction of PAXX with Pol λ requires DNA-bound Ku. Reactions were performed with 10 or 20 nM IRDye® 700-labelled 5nt-gapped dsDNA (90-mer) and the following concentrations of FLAG-Ku70/80 (20 nM), FLAG-Pol λ (40 nM) or cleaved PAXX (100 nM). b Binding of PAXX to DNA-bound Ku requires C-terminal residues V199 and F201 of PAXX. Reactions were performed with 20 nM IRDye® 700-labelled 5nt-gapped dsDNA (90-mer) and the indicated concentrations of FLAG-PAXX-WT or a FLAG-PAXX-V199A/F201A mutant and FLAG-Ku70/80 (20 nM). c As described in Panel A, except that reactions contained FLAG-Ku (20 nM), FLAG-Pol λ (100 nM), FLAG-PAXX-WT (2.5 μM, left panel) or a V199A/F201A mutant (2.5 μM, right panel). d As described in Panel A, except that reactions contained FLAG-Ku (20 nM), FLAG-Pol λ (200 nM), FLAG-XLF-WT (2.5 μM, left panel) or a C-terminal FLAG-XLF (aa1-233) deletion mutant (2.5 μM, right panel)
Fig. 5 Role of XRCC4 family members in the recruitment of Pol λ to laser microirradiation-induced DNA damage sites.

a Upper, Schematic figure showing N-terminal EGFP- and mCherry-Pol λ fusion proteins; Lower, Representative immunofluorescence images showing that N-terminal EGFP- and mCherry-Pol λ fusion proteins are localised to nuclei in U2OS cells.

b Recruitment of N-terminal EGFP-Pol λ to laser-induced DNA damage sites in U2OS cells.

c Time course of N-EGFP-Pol λ recruitment to laser-induced DNA damage sites in U2OS cells. Data shown are the mean and SEM from 16 individual cells.

d Immunoblot analysis of N-EGFP-Pol λ expressing U2OS cells deficient in PAXX, XLF or XRCC4 generated by CRISPR-Cas9. WCL were resolved by SDS-PAGE and the indicated proteins detected by immunoblotting.

e Localisation of N-mCherry-Pol λ in U2OS WT, PAXX−/−, XLF−/− or XRCC4−/− cells. Representative immunofluorescence images showing that N-terminal mCherry-Pol λ fusion protein localises to nuclei in PAXX−, XLF− or XRCC4−/− deficient U2OS cells. Cells were co-stained with DAPI or dynamin-2, a perinuclear-enriched protein.

f Time course of N-EGFP-Pol λ recruitment to laser-induced DNA damage sites in U2OS-WT cells and cells deficient in PAXX, XLF or XRCC4. Data shown are the mean and SEM from WT, PAXX, XLF and XRCC4 knockout cells. Graphs shown are for the following cell numbers: WT: 8 cells; PAXX KO, 10 cells; XLF KO 17 cells; XRCC4 KO 18 cells.

g Time course of N-EGFP-FLAG-Ku70 recruitment to laser-induced DNA damage sites in U2OS-WT cells and PAXX KO cells. Data shown are the mean and SEM from WT and PAXX knockout cells. Graphs shown are for the following cell numbers: WT: 17 cells; PAXX KO, 19 cells.
substrates (Supplementary Fig. 5b). Importantly, addition of PAXX or its paralogs strongly enhanced Pol λ-dependent gap filling synthesis in a concentration-dependent manner up to 10-fold (Fig. 6b, c). Addition of PAXX and XLF together did not further stimulate Pol λ-dependent gap filling activity, suggesting that these proteins perform the same function (Fig. 6c). Neither PAXX nor XLF exhibited detectable gap filling activity themselves, excluding the possibility these purified proteins contained residual Pol λ activity (Fig. 6c). Next, we evaluated the effect of Ku on PAXX-stimulated Pol λ-mediated gap filling synthesis. Ku had a minor effect on Pol λ gap filling activity. Importantly, PAXX-dependent Pol λ stimulation was observed in the presence of Ku (Supplementary Fig. 5c). Next, we examined a role for XRCC4 family proteins in regulating Pol λ-dependent gap filling activity derived from cell extracts in vitro. Pol λ was immunoprecipitated from RPE-1-WT or PAXX KO cells following depletion of XLF and/or XRCC4 and immunoprecipitates incubated with gapped dsDNA substrate to assess Pol λ activity. Loss of PAXX or depletion of either XLF or XRCC4 resulted in reduced gap filling activity in Pol λ IPs, demonstrating a role for PAXX paralogs in promoting Pol λ activity (Fig. 6d).

PAXX family proteins stimulate Pol λ via their head domains. XRCC4 family proteins consist of similarly arranged structural domains with a N-terminal globular head domain followed by a coiled-coil (CC) domain and less conserved C-terminal regions (CTR) (Fig. 7a). The head domain of PAXX more strongly stimulated gap filling activity of Pol λ relative to full length PAXX (Fig. 7b). Conversely, the CC-CTR region inhibited Pol λ-dependent gap filling activity in a concentration-dependent manner (Fig. 7b). Similar to the PAXX head domain, XLF and XRCC4 head domains also enhanced Pol λ-dependent gap filling activity (Fig. 7c, d). Based on these results we hypothesised that XRCC4 family proteins may also interact via a weak protein–protein interaction with Pol λ via their N-terminal head domains. Far-western blotting using purified proteins showed that the head domains of PAXX, XLF and XRCC4 interact with FLAG-tagged Pol λ (Fig. 7e).

Previous results with the N- and C-terminal regions of PAXX infer that XRCC4 family proteins are not required to bind Ku in order to promote Pol λ-directed gap filling synthesis (Fig. 7b). Indeed, a full-length mutant PAXX protein defective in interaction with DNA-bound Ku, PAXX-VF, enhanced Pol λ-dependent gap filling synthesis comparable to PAXX-WT (Figs 4b, 7f). Deletion of the C-terminal 91 amino acids of GST-tagged PAXX or the C-terminal 59 amino acids from FLAG-PAXX also had little effect on its ability to promote Pol λ-dependent gap filling activity (Supplementary Fig. 6a, b). Similarly, a C-terminal XLF deletion mutant lacking its CTR (XLF (1-233)), including the Ku binding motif, also maintained its ability to enhance gap filling synthesis (Supplementary Fig. 6c). To further exclude a role for Ku binding to either Pol λ or PAXX in stimulating Pol λ-directed gap filling synthesis by PAXX, we compared the ability of PAXX head domain to stimulate gap filling synthesis by either Pol λ-WT or a −RL mutant, which does not interact with Ku in vitro or in cells (Fig. 3d, e). Pol λ-WT and a −RL mutant were similarly

Fig. 6 XRCC4 family proteins stimulate gap filling synthesis activity of Pol λ. **a** Gap filling activity of Pol λ-WT and a catalytically inactive Pol λ-D429A/D490A mutant. **b** PAXX, XLF and XRCC4 stimulate gap-filling synthesis activity of Pol λ with an IRDye® 700-labelled 5nt-gapped dsDNA (33-mer) substrate. **c** As described in Panel B, except that some reactions also contained either FLAG-PAXX or -XLF alone. **d** Gap filling synthesis assays were performed as described in Panel B with Pol λ immunoprecipitated from RPE-1 PAXX+/− or PAXX KO cells incubated with or without XLF or XRCC4 siRNA.
stimulated by PAXX (1-113), further excluding a role for Ku binding in stimulation of Pol λ-directed gap filling by PAXX (Fig. 7g).

To identify functional domains of Pol λ which mediate the stimulatory effect of XRCC4 family proteins on Pol λ-mediated gap filling synthesis, we generated a panel of N-terminal Pol λ deletion mutants lacking functional domains (BRCT, Serine-Proline-rich (Ser-Pro) and 8 kDa domains; (Fig. 8a, Supplementary Fig. 7a). First, we assessed the effect of deleting successive N-terminal domains on Pol λ-dependent gap filling synthesis activity. Deletion of the BRCT domain had no effect on Pol λ-dependent gap filling synthesis activity, whereas combined loss of BRCT and Ser-Pro domains moderately enhanced Pol λ-dependent gap filling activity compared to Pol λ-WT (Supplementary Fig. 7b)29. Further deletion of the Pol λ 8 kDa domain severely limited its gap filling activity, consistent with its known
role in binding 5′ phosphate ends of the DNA gap (Supplementary Fig. 7b)30,31. Loss of the BRCT domain had no effect on the ability of XRCC4 family proteins to stimulate Pol λ-dependent gap filling activity, whereas additional deletion of the Ser-Pro domain surprisingly further increased the stimulatory effects of PAXX, XLF and XRCC4 (Fig. 8b). Importantly, removal of the 8 kDa domain resulted in severe loss of responsiveness of Pol λ to XRCC4 family proteins (Fig. 8b, bottom panel). Next, we tested the effect of the PAXX head domain on the N-terminal Pol λ deletion mutants. Similar to full length PAXX, its head domain strongly stimulated gap filling synthesis by Pol λ-WT, -ΔBRCT- and -ΔBRCT-Ser/Pro but not -ΔBRCT-SP-8 kDa, comparable to full length PAXX (Fig. 8c). Consistent with these results, the head domain of PAXX, XLF and XRCC4 interacted with FLAG-Pol λ-WT and -ΔBRCT but not -ΔBRCT-SP-8 kDa (Fig. 8d). Taken together, our results indicate that PAXX, XLF and XRCC4 share a common ability to enhance Pol λ-mediated gap filling activity. This stimulatory effect appears to be mediated via protein–protein interaction of their structurally conserved head domains and the 8 kDa domain of Pol λ, a region critically involved in binding the 5′ phosphate end of DNA gaps and stabilising scrunched template intermediates (see below)31.

Pol μ is a related family X DNA polymerase, which plays an overlapping role in NHEJ DSB repair yet, in contrast to Pol λ, has both template-dependent and -independent polymerase activities16. A recent study showed that combined loss of both Pol λ and Pol μ resulted in severe hypersensitivity to IR, whereas loss of single polymerases caused a mild radiosensitive phenotype17. Therefore, we also tested the effect of PAXX and its paralogs on Pol μ activity using template-dependent gap filling or NHEJ
PAXX and XLF function with Pol λ to ligate noncohesive ends. Previous studies have demonstrated that PAXX enhances ligation of cohesive or noncohesive DNA ends in a XLF-dependent or -independent manner11,12,33. Since PAXX and XLF interact with Pol λ and stimulate its gap filling activity (Figs 1–8), we decided to examine the effects of PAXX and XLF together with Pol λ on the ligation of DNA substrates with distinct DNA ends using a qPCR ligation assay34,35. In contrast to gap filling reactions that measure Pol λ enzymatic activity, joining of all combinations of DNA ends was highly dependent upon Ku70/80 heterodimers (Fig. 9a–e, lanes 10 and 12). In the absence of Pol λ, XLF stimulated joining of blunt ends or 3′ overhangs with blunt DNA ends (Fig. 9a–c, lanes 4 and 8)36. In contrast, PAXX in the absence of Pol λ moderately enhanced ligation of only blunt DNA ends (Fig. 9c, lanes 4 and 5)11,33,37. XLF and Pol λ together promoted ligation of all combinations of DNA ends tested (Fig. 9a–e, lanes 7–8 and 11). On the other hand, PAXX only moderately increased ligation in the presence of Pol λ (Fig. 9a–e, lanes 5–7). Interestingly, PAXX, and XLF together with Pol λ promoted joining of blunt ends with 2–4 bp 3′ overhangs in a manner dependent upon either PAXX or XLF concentrations (Fig. 9a, b, Supplementary Fig. 8a). Finally, we tested involvement of the catalytic activity of Pol λ in stimulation by PAXX and Pol λ of ligation of 5′ overhangs with blunt DNA ends using Pol λ-WT or a catalytically inactive Pol λ mutant (Pol λ-3D). Pol λ-WT, but not Pol λ-3D, co-operated with PAXX to enhance ligation of blunt and 5′ overhang DNA ends (Fig. 9f, lanes 7 and 9). These results show that catalytic activity of Pol λ is required for cooperative effects of PAXX and Pol λ in stimulating ligation of non-compatible DNA ends.

Pol λ functions with PAXX and XLF in a common pathway. To understand how Pol λ interacts genetically with PAXX and XLF, we generated a PAXX/XLF DKO cell line in addition to PAXX and XLF KO cell lines (Fig. 10a, Supplementary Table 5) and subsequently depleted Pol λ by siRNA-mediated knockdown (Fig. 10a). Pol λ depletion in WT cells resulted in weak IR sensitivity, consistent with the ability of Pol λ to compensate for loss of Pol λ17. PAXX KO cells showed moderate sensitivity to IR, whereas XLF KO cells exhibited stronger IR sensitivity, which was further increased in PAXX/XLF DKO cells (Fig. 10b). These results suggest that PAXX and XLF function in parallel pathways. Pol λ depletion from PAXX KO and to a lesser extent XLF KO cells resulted in increased sensitivity to higher IR doses compared to control cells, suggesting that once one XRCC4 paralog is lost, the NHEJ process becomes more reliant on Pol λ. Of note, no significant difference in radiosensitivity was observed following Pol λ depletion in PAXX/XLF DKO cells (Fig. 10b), suggesting that removal of both PAXX and XLF compromises Pol λ activity to a degree that it cannot support effective NHEJ. In summary, PAXX and XLF non-redundant functions in DSB repair mask a Pol λ-dependent subpathway of NHEJ, in which they operate redundantly.

Discussion

PAXX is the most recently identified member of the XRCC4 family of proteins involved in NHEJ DSB repair10–12. In this study, we identified DNA-PK holoenzyme as the most abundant PAXX-interacting protein in agreement with another report37. Intriguingly, the stoichiometry of individual DNA-PK holoenzyme subunits to PAXX in the soluble chromatin fraction approximated to 1–1.5:1, which underscored direct interaction between PAXX and DNA-bound Ku heterodimers and more specifically, the Ku70 subunit11,12,37. Another abundant PAXX-interacting protein which we identified was Pol λ, a member of the family X DNA polymerases. Interaction of Pol λ with both XLF and XRCC4 was also observed. Pol λ together with related Pol μ play important roles to direct DNA synthesis across DSB during NHEJ37. Interestingly, interaction of Pol λ with PAXX was largely DNA-dependent suggesting possible “bridging” by other DNA-binding factors (Fig. 3e). Indeed, we found DNA-bound complexes of Pol λ−Ku-PAXX and Pol λ−Ku-XLF in vitro (Fig. 4a, c, d). Two related, functionally different Ku-binding motifs were recently identified in multiple DNA damage response proteins including APLF and WRN (APLF-like-Ku binding motif) and XLF, WRN (XL-like motif)38. We showed that R57 and L60 located within α-helix 1 of the BRCT domain were required for Pol λ to interact with DNA-bound Ku in vitro (Fig. 3d) and to associate with either PAXX, XLF, XRCC4 or Ku in cells (Fig. 3e). Of note, inspection of the sequence surrounding these residues identified a basic patch followed by a phenylalanine (RxRxxxF), more similar to the newly characterised XL-like Ku-binding motif38.

These results led us to hypothesise that PAXX may regulate Pol λ function. Accordingly, PAXX and its paralogs, were required for recruitment of Pol λ to sites of laser-induced DNA damage in live cells. We noticed that Pol λ recruitment to DNA damage sites was defective to a very similar extent in XLF and XRCC4 KO cell lines. As higher-order filament formation is the main common function of these proteins in NHEJ, we hypothesise that defects in such filament accumulation lead to partially impaired Pol λ translocation to DNA lesions. In contrast to this, PAXX KO cells show more profound defects in Pol λ recruitment than XLF or XRCC4 KO cells, which may result from the recently identified ability of PAXX to promote DNA end synopsis together with DNA-PK holoenzyme39. Thus, efficient Pol λ recruitment to DNA lesions requires the concerted action of all XRCC4 paralogs. We observed no defect in Ku70 recruitment to DNA damage sites in our PAXX-deficient human cells. These findings suggest that the effect of PAXX on localisation of Pol λ to DSBs is unlikely to be an indirect effect resulting from defective Ku recruitment. In contrast, in murine cells loss of PAXX led to a moderate defect in Ku recruitment to DSB sites, suggesting that in some contexts PAXX may contribute to Ku stability at DNA ends14. Of note, human cells express much higher protein levels of Ku heterodimer than rodent cells40. This difference might translate into differences in mechanisms of Ku retention at DNA lesions in vivo.

Notably, we show that all XRCC4 members stimulated gap filling activity of Pol λ. Previous studies reported that the yeast XLF homolog (Nej1) stimulated gap filling synthesis activity of the yeast family X DNA polymerase Pol441 and linked XLF to alignment-based DNA gap filling42. Our data extend these findings to show that all human XRCC4 family proteins including PAXX, share a common ability to stimulate Pol λ−dependent gap
Fig. 9 PAXX and XLF together with Pol λ to promote ligation of noncohesive DNA ends which requires gap filling activity of Pol λ. a–e Linear DNA substrates as shown were incubated with the indicated combinations of XRCC4/Lig IV, Ku70/80, PAXX, XLF and Pol λ and the joining efficiency quantified by qPCR with a TaqMan probe using a standard curve of log10 % joining efficiency versus Ct value generated using prejoined DNA fragments. DNA substrates were as follows: (a) EcoRV-PvuI blunt-2nt 3’ overhang; (b) EcoRV-KpnI blunt-4nt 3’ overhang; (c) EcoRV-EcoRV blunt-blunt ends; (d) EcoRI-KpnI 4nt 5’ overhang-4nt 3’ overhang; (e) EcoRV-BstEII blunt-5nt 5’ overhang; (f) As described in Panel (e), except that ligation assays contained either Pol λ-WT or a catalytically inactive Pol λ-3D mutant. Results shown are the mean ± SEM from 2-3 experiments performed in triplicate.
filling synthesis activity. We showed that the structurally conserved N-terminal head domain of PAXX, XLF and XRCC4 are sufficient to promote Pol λ-dependent gap filling activity via direct protein-protein interactions. PAXX, XLF and XRCC4 stimulated enzymatic activity of Pol λ by facilitating recognition of the 5′ termini of the substrate gap, as Pol λ lacking the 8 kDa domain responsible for 5′ recognition lost its responsiveness to XRCC4 family proteins. Furthermore, detectable protein-protein interaction of XRCC4 family proteins occurred between their head domains and the SP-8kDa region of Pol λ. Intriguingly, we observed that PAXX and XLF mutant proteins, which did not bind Ku, retained their ability to fully stimulate Pol λ-dependent gap filling synthesis activity. These findings show that their interaction with Ku is dispensable for stimulating the gap filling enzymatic activity of Pol λ, in contrast to the head domains of XRCC4 family proteins. These results are summarised in a cartoon (Fig. 10c) and suggest that XRCC4 family proteins localise on DSBs in the immediate proximity to the gap predominantly via a Ku-dependent mechanism. Weak direct interaction of Pol λ 8 kDa domain with the head domain of XRCC4 family proteins promotes enzymatic activity of Pol λ to fill DNA gaps. We acknowledge further experiments are required in order to establish the relative contributions of direct and indirect (via binding to Ku) interaction of PAXX (and indeed XLF and XRCC4) with Pol λ to NHEJ in vivo.

In contrast to Pol λ, in vitro gap filling activity of Pol μ was not stimulated by PAXX or XLF. One important distinction between Pol λ and Pol μ which explains their relative abilities to fill longer gaps is that Pol μ includes only two of the three highly conserved residues necessary to form the binding pocket for extra-helical template nucleotides. We hypothesise that XRCC4 family proteins may further stabilise this scrunching pocket within Pol λ. Activity of Pol λ derived from cellular extracts was strongly dependent on each of the XRCC4 paralogs, suggesting that concerted activity of all these proteins is necessary to maintain Pol λ activation under physiological expression levels.

Another finding presented in this report is the demonstration that PAXX, XLF and Pol λ co-operated to efficiently join non-cohesive DNA ends. Interestingly, we found that enhanced joining activity between PAXX, XLF and Pol λ was most effective

Fig. 10 Pol λ, PAXX and XLF function in common and parallel pathways. a Immunoblot analysis of control- or Pol λ siRNA-depleted U2OS PAXX KO, XLF KO and PAXX/XLF DKO cells. WCL were resolved by SDS-PAGE and indicated proteins detected by immunoblotting. b Clonogenic survival assays following IR (0-4 Gy) for U2OS WT, -PAXX KO, -XLF KO and -PAXX/XLF DKO cells with or without depletion of Pol λ. Mean and SD from three independent experiments are shown. Statistical analysis was performed using a two-tailed paired t-test to compare cells incubated with Pol λ siRNA with control siRNA: 1 Gy - WT = 0.91, PAXX KO = 0.36, PAXX/XLF DKO = 0.82; 2 Gy - WT = 0.0003, PAXX KO = 0.0007, XLF KO = 0.36, PAXX/XLF DKO = 0.82; 4 Gy - WT = 0.02, PAXX KO = 0.002, XLF KO p not determined, PAXX/XLF DKO p not determined. c Cartoon showing a model for regulation of Pol λ by XRCC4 family proteins. At DSBs that are positioned proximal to a Pol λ substrate gap XRCC4 family proteins strongly interact with Ku heterodimers via their C-terminal regions; their head domains promote gap filling synthesis activity via comparatively weakly binding to the 8 kDa domain of Pol λ, which interacts with the 5′ end of the gap. Pol λ strongly interacts with Ku heterodimers via its N-terminal BRCT domain.
on small 2–4 bp gaps. On the other hand, XLF co-operated with Pol λ to promote ligation of all combinations of DNA tested. This difference might be a consequence of the smaller size of PAXX in relation to XLF. Furthermore, although PAXX in concert with Pol λ was able to stimulate ligation of substrates with a 5 bp gap, its activity was relatively minor when XLF was added to reactions bearing this substrate. In summary, PAXX collaborated with XLF in gap filling/ligation of gapped DNA substrates in vitro in a manner dependent on the DNA end configuration. Of note, a DNA end-related differential dependence for NHEJ factors was previously observed using an in vitro NHEJ direct ligation system dependent on Artemis33.

Taken together our study provides novel insights into how XRCC4 family proteins promote joining of noncohesive DNA ends and support the notion that PAXX and XLF have both redundant and non-redundant roles during DNA repair13,43.

Our study identifies the stimulation of gap synthesis Pol λ activity as a prominent redundant function of these proteins. Given that a recent report found a synergistic contribution of all NHEJ factors to the stability of NHEJ repair complexes45, it remains possible that Pol λ is redundant. PAXX/XLF activities provide their unique ability to enhance repair complex formation. In summary, our study identifies the accessory NHEJ factor Pol λ as a key functional mediator of the recently identified NHEJ protein, PAXX and its paralog, XLF.

Methods

Cells. Adherent HEK293H (obtained from Invitrogen) and U2OS (obtained from ATCC) cells were cultured in Dulbecco’s Modified Eagle’s (DMEM) medium containing 4.5 g/l D-glucose and Glutamax (Life Technologies) supplemented with 10% foetal bovine serum. HEK293 cell culture medium also contained pyruvate. Suspension-adapted HEK293 (HEK293F) cells were cultured in FreestyleTM 293 medium (Life Technologies). RPE-1 cells were grown in DMEM/F-12 (1:1) medium containing L-glutamine and 15 mM Hepes supplemented with 10% fetal bovine serum.

Antibodies. Antibodies were purchased from the indicated commercial sources: mouse anti-FLAG (M2, F3165, 1:1000-1:10000) and tubulin (Sigma-Aldrich, T6074, 1:1000-1:10000); mouse anti-Ku70 (sc-17789, 1:500), -Pol λ (sc-35820, 1:500), -DNA-PKcs (sc-1832, 1:1000), -Phospho Pol λ T6074, 1:1000-1:10000); mouse anti-Ku70 (sc-17789, 1:500), -Ku80 (sc-5280, 1:500), -XRCC4, -DNA-PKcs or empty vector (negative control) or transiently expressing FLAG-Pol λ or pGEX-6P-1-PAXX, -XLF, -XRCC4 or Pol λ as templates. pEGFP-C1- and pmCherry-C1-Pol λ constructs were purchased from Invitrogen. U2OS cells were grown on coverslips in 6-well plates. Following centrifugation at 15000 × g for 30 min and reconstitution with saline of 0.9%, cells were fixed with 4% paraformaldehyde for 15 min at 4 °C.

Transfection of cells. HEK293F cells were transiently transfected using Freestyle Max (Life Technologies) according to the manufacturer’s instructions or PEI (1.5 μg/ml). Stable HEK293F cell lines expressing FLAG-tagged PAXX, XLF and XRCC4 were generated by co-transfecting mammalian expression vector encoding N-terminal FLAG-tagged proteins with pTKHyg plasmid in 293 H cells (Life Technologies) and selecting individual clones with hygromycin B (0.2 μg/ml). Individual hygromycin B-resistant clones were screened for expression of full length FLAG-tagged proteins by immunoblotting. A stable clonal HEK293 cell line expressing FLAG-tagged DNA-PKcs was used as described10. HEK293F cells were cultured in FreestyleTM 293 medium supplemented with hygromycin B (0.1 μg/ml) between densities of (0.3–5) × 10⁹ cells/ml in conical flasks on a shaking platform (160 rpm) in a humidified 37 °C incubator. RPE-1 cells were transiently transfected using PolyJet 2000 according to the manufacturer’s instructions (Life Technologies). Stable U2OS cell lines expressing N-terminal tagged EGFP- or mCherry-Pol λ or N-terminal tagged EGFP-FLAG-Ku70 fusion proteins were generated by transfection with PEI (2 μg/ml).

Immunoaffinity purification of FLAG-tagged NHEJ factors. For each sample, 250 × 10⁶ HEK293F cells stably expressing FLAG-PAXX, -XLF, -XRCC4, -DNA-PKcs or Pol λ (negative control) or transiently expressing FLAG-Pol λ were pelleted by centrifugation at 300 × g. All subsequent procedures were performed on ice or at 4 °C unless indicated. Cells were washed twice in ice-cold PBS-MS (PB, 1 mM MgCl₂, 1 mM CaCl₂) and gently resuspended in 4.5 ml ice-cold Hypotonic Buffer (10 mM Hepes, pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA supplemented with complete Mini™ protease inhibitor mixture tablets (Roche Diagnostics), 10 mM NaF, 1 mM NaVO₃, 10 μM MG132, 1 mM DTT, 1 mM PMSF). After incubation for 15 min, cells were vortexed for 10 s and centrifuged at 2300 × g for 5 min. Crude nuclei were washed with 1 ml Hypotonic Buffer and centrifuged as above. Pellets were resuspended and mixed by end-to-end rotation with 250 μl Hypotonic Buffer in a 1.5 ml Eppendorf tube. Nuclei were incubated overnight by end-to-end mixing with 25 μl packed low pH glycine-washed anti-FLAG M2 agarose (Sigma Aldrich). Detergent-insoluble pellets were washed twice with 25 μl mCherry-nuclear incubation buffer (20 mM Hepes, pH 7.9, 1 mM MgCl₂, 20% glycerol) and incubated with benzoxane (150 μM) for 2 h at 15 °C with gentle mixing following by addition of 10 ml EDTA. Following centrifugation at 15000 × g for 30 min and reconstitution of 0.5% IgG-cell CA630, samples were incubated overnight by end-to-end mixing with 25 μl packed low pH glycine-washed anti-FLAG M2 agarose (Sigma Aldrich). Beads were washed five times with 20 mM Hepes, pH 7.9, 140 mM NaCl, 0.5 mM MgCl₂, 20% glycerol, 10 mM NaF, 1 mM NaVO₃, 10 μM MG132, 1 mM DTT, 1 mM PMSF and proteins eluted with 50 μl Wash buffer containing 3X FLAG peptide (0.2 mg/ml). In some experiments ethylendiamide was added to incrementally reduce proteolysis. 100 μl eluates were resolved by SDS-PAGE and gels visualised with either silver stain (Pierce) or for mass spectroscopy, stained with colloidal Coomassie (Novasight Diagnostics).

Identification of interacting proteins by mass spectrometry. NHEJ factor-interacting proteins were identified by LC-MS/MS as described previously for DNA-PKcs-associated proteins, except that UniProt Human reviewed database (UniProt KB release 2015-04, 20,204 entries) was used as a ref10. Raw data files were also analysed using PLGS version 3 and IsQuant and the same data used for “top 3 absolute quantification of proteins”44,45. For database searching in PLGS, peptide mass tolerance and fragment mass tolerance were set to auto, one missed cleavage and variable modification for methionine oxidation. False discovery rates (FDRs) were 0.1% for peptides and IsQuant. Only the three most abundant unmodified peptides used for quantification. Data were also analysed using Scaffold version 3.3.1 software (Proteome Software Inc.) as described10.

Purification of FLAG- and HA-tagged NHEJ proteins. HEK293F cells were transiently transfected with FLAG- or HA-tagged constructs for 48–72 h. NHEJ proteins were isolated as described10, except that following preparation of a high salt (0.42 M NaCl) soluble nuclear extract, NaCl (2 M) was added to a final concentration of 0.6 M to disrupt ionic interactions and 0.5% IgG-CA630 also added. Soluble 0.6 M NaCl nuclear extracts were mixed with precleared anti-FLAG M2 agarose or EZ view red anti-HA affinity gel (Sigma) for 3 h at 4 °C prior to depletion with 3X FLAG peptide (0.2 mg/ml) or HA peptide (0.1 mg/ml). Specific proteins (FLAG-Ku70/Ku80, FLAG-Lig IV/XRCC4) were further purified by gel filtration chromatography using a Superdex 200 column. Purified FLAG-tagged NHEJ proteins were dialysed overnight with 20 mM Hepes, pH 7.9, 140 mM NaCl, 0.5 mM MgCl₂, 20% glycerol, 1 mM DTT, divided into aliquots and stored at −80 °C.

Expression and purification of NHEJ proteins in E. Coli. pGEX-6P-1 constructs were transferred into competent Rosetta2 cells and grown in LB media supplemented with Ampicillin (50 μg/ml) and Chloramphenicol (17 μg/ml) at 37 °C. Cultures were induced with 0.1 mM IPTG at 0.8–1.0 OD₆₀₀ and grown overnight at 16 °C. Following centrifugation, bacterial cell pellets were resuspended in lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% 2-mercaptoethanol, 1 mM NaCl, 0.4 mM PMSF, 1X protease inhibitor cocktail (Roche), 1 mM benzo- midine, 1 mM EDTA, 1 mM EGTA) and lysed by sonication. Cell lysates were centrifuged at 20000 × g at 4 °C and supernatants were bound to prewashed
gluthatione Seahorse beads for 1 h at RT or 3 h at 4 °C. Beads were washed in batch mode with Wash buffer (50 mM Tris, 0.5 M NaCl, 1% Triton X-100, 0.1% 2-mercaptoethanol, 0.5X protease inhibitor cocktail, 1 mM benzamidine, 1 mM EDTA, 1 mM EGTA) at 4 °C. Uncleaved GST fusion proteins were eluted in column buffer (20 mM HEPES pH 7.0, 150 mM NaCl, 5% Sucrose, 0.1% CHAPS, 5 mM DTT) supplemented with 20 mM reduced glutathione.

Alternatively, column buffer was supplemented with 15U PreScission Protease (GE Healthcare) and overnight to cleave the GST-tag. Eluted proteins were further purified by size exclusion chromatography using either Superdex 75 or 200 columns, which were selected on the basis of the expected protein size and run on an Äkta protein purification system (GE Healthcare).

Electrophoretic mobility shift (EMSA) assays. dsDNA (33–90 bp) containing either a 1-, 3-, or 5nt gap were generated by annealing the indicated oligonucleotides (Supplementary Table 1), one strand of which was labelled at the 5′ terminus with an IRDye 700 (IDT, Coralville, IA, USA). Binding reactions (10 μl) were performed by incubating 10–20 nM IR700-labelled dsDNA with the indicated concentrations of purified proteins in 50 mM TrisHCl pH7:5, 100 mM KCl, 2.5 mM MgCl2, 1 mM DTT, 4% glycerol, 0.05% Triton X-100, 0.1 mg/ml BSA, 1 μM DNTPs with 5 nM IRDye-700-labelled gapped/NHEJ dsDNA substrates and the indicated concentration of FLAG-tagged Pol α or Pol λ. Assays were performed at 37 °C in the dark and quenched by size exclusion chromatography using either Superdex 75 or 200 columns, which were selected on the basis of the expected protein size and run on an Äkta protein purification system (GE Healthcare).

DNA ligation assays. A QPCR assay was developed to quantify the joining of the specific DNA end in a single assay as described with the following modifications43,44. Briefly, pGEX-6P-1 was used as a template to create two DNA fragments; DNA1, an 800 bp fragment (bases 2000-2799) and DNA2, an 850 bp fragment (bases 2750-3639). DNA1 and DNA2 were amplified with Q5 polymerase at 50 V on a 4-5% native polyacrylamide gels in 0.5 x TBE at 4 °C in the dark. Free and protein-bound IR700-labelled dsDNA were visualised using a LICOR Odyssey CLX imaging system (LICOR, Cambridge, UK).

DNA polymerase-mediated gap filling and NHEJ assays. PAGE-purified DNA oligonucleotides were purchased from IDT (Coralville, IA, USA). Gapped and NHEJ substrates were synthesised and annealed as described, except that 5′-termini of specific oligonucleotides to be extended were labelled with IRDye 70025. DNA polymerase reactions (20 μl) were performed at 30 °C for 30 min in 50 mM Tris pH 7.5, 4% Glycerol, 2.5 mM MgCl2, 1 mM DTT, 4% glycerol, 0.05% Triton X-100, 0.1 mg/ml BSA, 1 μM DNTPs with 5 nM Pol λ and incubated at 37 °C for 2 weeks. DNA ligation and NHEJ were quantified using qPCR analysis to estimate relative gRNA targeting efficiency and cell transfection efficiency for any gRNA target sequences was performed by amplification of 0.4–1 kb genomic DNA regions spanning gRNA target sequences using Q5 high fidelity DNA polymerase (Supplementary Tables 4-5). PCR products were ligated into pET12 and DNA sequencing performed on at least six colonies for each independent clonal knockout cell line.
Data availability
All data supporting the findings of this study are available from the corresponding author on reasonable request. Unropped western blots are shown in Supplementary Fig. 9A-G. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD010891 and 10.6019/PXD010891. All other data are available from the authors upon reasonable request.

Received: 11 August 2017 Accepted: 9 August 2018
Published online: 24 September 2018

References
1. Radhakrishnan, S. K., Jette, N. & Lees-Miller, S. P. Non-homologous end joining: emerging themes and unanswered questions. DNA Repair (Amst.). 17, 2–8 (2014).
2. Waters, C. A., Strande, N. T., Wyatt, D. W., Pryor, J. M. & Rasmussen, D. A. Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst.). 17, 39–51 (2014).
3. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol. Cell 66, 801–817 (2017).
4. Liang, S. et al. Achieving selectivity in space and time with DNA double-strand-break response and repair: molecular stages and scaffolds come with strings attached. Struct. Chem. 28, 161–171 (2017).
5. Ruiten, S. L. & Grundy, G. J. Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process. Bioessays 39, https://doi.org/10.1002/bies.201600209 (2017).
6. Chang, H. H. Y., Panunzi, N. R., Adachi, N. & Lieber, M. R. Nonhomologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).
7. Hammel, M., Yu, Y., Fang, S., Lees-Miller, S. P. & Tainer, J. A. XLF regulates filament architecture of the XRCC4:ligase IV complex. Structure 18, 1431–1442 (2010).
8. Ropers, V. et al. Structural characterization of filament forms by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end乔ing. Proc. Natl Acad. Sci. USA 108, 12663–12668 (2011).
9. Brouwer, I. et al. Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA. Nature 535, 566–569 (2016).
10. Craxton, A. et al. XLS (cstorf142) is a new component of mammalian DNA double-stranded break repair. Cell Death Differ. 36, 4673–4681 (2015).
11. Ochi, T. et al. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science 347, 185–188 (2015).
12. Xing, M. et al. Interactome analysis identifies a new parologue of XRCC4 in non-homologous end joining DNA repair pathway. Nat. Commun. 6, 6233 (2015).
13. Balmus, G. et al. Synthetic lethality between PAXX and XLF in mammalian cells. Genes 9, 2152–2157 (2016).
14. Liu, X., Shao, Z., Jiang, W., Lee, B. J. & Zha, S. PAXX, XLF promote Ku70 and Has overlapping functions with XLF. EMBO J. 37, 541–555 (2016).
15. Grundy, G. J. et al. The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins. Nat. Commun. 7, 11242 (2016).
16. Wang, J. L. et al. Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nat. Struct. Mol. Biol. 25, 482–487 (2018).
17. Aygun, O., Svejstrup, J. & Liu, Y. A RECS5 RNAsome II association identified by targeted proteomic analysis of human chromatin. Proc. Natl Acad. Sci. USA 105, 8580–8584 (2008).
18. Douglas, P. et al. Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol. Cell. Biol. 30, 1368–1341 (2010).
19. Goodwin, J. F. & Knudsen, K. E. Beyond DNA repair: DNA-PK function in cancer. Cancer Discov. 4, 1126–1139 (2014).
20. Muller, G. A. et al. A comparison of BRCT domain of polymerase lambda. DNA Repair (Amst.). 7, 1340–1351 (2008).
21. Ma, Y. et al. A biochemically defined system for mammalian nonhomologous DNA end joining. Mol. Cell 16, 701–713 (2004).
22. McElhinney, S. A. et al. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining. Mol. Cell 19, 357–366 (2005).
23. Armstrong, M. J. et al. A specific N-terminal extension of the 8 kDa domain is required for DNA end-bridging by human Polmu and Pollambda. Nucleic Acids Res. 41, 9105–9116 (2013).
24. Yano, K. et al. Ku recruits XLF to DNA double-strand breaks. EMBO Rep. 9, 91–96 (2008).
25. Balthenwe, E. K. et al. DNA polymerase lambda protects mouse fibroblasts against oxidative DNA damage and is recruited to sites of DNA damage/repair. J. Biol. Chem. 280, 31641–31647 (2005).
26. Bryans, M., Valenzano, M. C. & Stamato, T. D. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat. Res. 433, 53–58 (1999).
27. Shimazaki, N. et al. Over-expression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme. Genes Cells 7, 639–651 (2002).
28. Garcia-Diaz, M. et al. A structural solution for the DNA polymerase lambda-dependant repair of DNA gaps with minimal homology. Mol. Cell 13, 561–572 (2004).
29. Garcia-Diaz, M. et al. Template strand scrunching during DNA gap repair synthesis by human polymerase lambda. Nat. Struct. Mol. Biol. 16, 972–977 (2009).
30. Davis, B. J., Havenner, J. M. & Rasmussen, D. A. End-bridging is required for pol μ to efficiently repair end of noncomplementary ends by nonhomologous end joining. Nucleic Acids Res. 36, 5085–5094 (2008).
31. Chang, H. H. et al. Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. J. Biol. Chem. 291, 24377–24389 (2016).
32. Budman, J. & Chu, G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J. 24, 849–860 (2005).
33. Budman, J. & Chu, G. Assays for nonhomologous end joining in extracts. Methods Enzymol. 408, 430–444 (2006).
34. Tsai, C. J., Kim, S. A. & Chu, G. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends. Proc. Natl Acad. Sci. USA 104, 7851–7856 (2007).
35. Tadi, S. K. et al. PAXX is an Accessory c-NHEJ factor that associates with Ku70 and Has overlapping functions with XLF. Cell Rep. 17, 541–555 (2016).
36. Bebenek, K., Pedersen, L. G. & Kunkel, T. A. Structure-function studies of DNA polymerase lambda. Biochemistry 53, 2781–2792 (2014).
37. Moon, A. F. et al. The X family portrait: structural insights into distinct biological roles for family X polymerases in nonhomologous end joining. DNA Repair (Amst.) 16, 2725–2730 (2017).
38. Solyakov for help with protein purification.

Acknowledgements
This work was supported by the Medical Research Council (MRC) UK. We would like to thank Prof. Steve Jackson for providing the RPE-1 PAXX knockout cell line and Dr. Dik Van Gent for the rabbit polyclonal XRCC4 antibody. We would like to thank Dr. Lev Solyakov for help with protein purifications.
Author contributions
A.C., D.M., R.J-J., G.S., C.L. and M.M. performed experiments; A.C., D.M. and R.J-J. analysed data; A.C., D.M. and M.M. wrote the manuscript with input and editing from all authors; K.C. and M.M. supervised the project.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-06127-y.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.