Differentially Expressed Gene Profile of Acanthamoeba castellanii Induced by an Endosymbiont Legionella pneumophila

Eun-Kyung Moon1, So-Min Park2, Ki-Back Chu2, Fu-Shi Quan1,3, Hyun-Hee Kong1,4,5

1Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea, 2Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea, 3Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea, 4Department of Parasitology, Dong-A University College of Medicine, Busan 49201, Korea

Abstract: Legionella pneumophila is an opportunistic pathogen that survives and proliferates within protists such as Acanthamoeba spp. in environment. However, intracellular pathogenic endosymbiosis and its implications within Acanthamoeba spp. remain poorly understood. In this study, RNA sequencing analysis was used to investigate transcriptional changes in A. castellanii in response to L. pneumophila infection. Based on RNA sequencing data, we identified 1,211 upregulated genes and 1,131 downregulated genes in A. castellanii infected with L. pneumophila for 12 hr. After 24 hr, 1,321 upregulated genes and 1,379 downregulated genes were identified. Gene ontology (GO) analysis revealed that L. pneumophila endosymbiosis enhanced hydrolase activity, catalytic activity, and DNA binding while reducing oxidoreductase activity in the molecular function (MF) domain. In particular, multiple genes associated with the GO term ‘integral component of membrane’ were downregulated during endosymbiosis. The endosymbiont also induced differential expression of various methyltransferases and acetyltransferases in A. castellanii. Findings herein are may significantly contribute to understanding endosymbiosis of L. pneumophila within A. castellanii.

Key words: Acanthamoeba, Legionella, endosymbiosis, differential gene expression

Acanthamoeba spp. is one of the most abundant protozoan in the environment and commonly isolated from soil and water. Acanthamoeba spp. trophozoite usually feeds on bacteria, fungi, algae or small organic particles by phagocytosis [1]. However, some bacteria have developed strategies to resist phagocytosis, survive intracellularly and exploit Acanthamoeba spp. for multiplication [2]. These bacteria are able to survive in encysted Acanthamoeba spp. which protects the endosymbionts from adverse environmental conditions [3]. Acanthamoeba spp. not only enables the endosymbionts to persist in the environment but also enhances its pathogenicity [4]. Moreover, since mammalian macrophages and amoebae show similar interactions with endosymbionts, investigating the endosymbiotic relationship between intracellular pathogens and Acanthamoeba spp. would contribute to understanding how these organisms behave in the mammalian cells and its evasion of the human immune system.

Acanthamoeba spp. can be a host for a wide range of pathogenic microorganisms such as Legionella pneumophila, Chlamydia pneumoniae, Cryptococcus neoformans, Mycobacterium avium, Listeria monocytogenes, and Pseudomonas aeruginosa, etc [3,5-7]. Among these microorganisms, the interaction between Acanthamoeba spp. and Legionella spp. is one of the most investigated. After uptake of Legionella spp. by Acanthamoeba spp., Legionella spp. forms a specialized compartment called Legionella-containing vacuole (LCV). LCV avoids fusion with lysosomes to deter lysosomal digestion and also inhibits phagosomal maturation, thereby enabling L. pneumophila to actively replicate inside the LCV [8].

To date, LCV and a large number of effectors transferred by the intracellular multiplication/defective organelle transport (Icm/Dot) type IV system of Legionella spp. have been identified [9-12]. Although the roles of these genes from Legionella spp. have been evaluated, little research has been done on genes of Acanthamoeba spp. during endosymbiosis with Legionella spp. To understand the intracellular survival strategy of
Legionella spp., inhibition of phagosome lysis in Acanthamoeba spp. needs to be studied. In this study, total transcriptional changes of A. castellanii in response to survival and replication of L. pneumophila during 12 hr and 24 hr were investigated by RNA sequencing analysis.

The LCV in the Legionella-infected A. polyphaga has been reported to remain intact for up to 8 hr post-infection (hr pi), disrupted by 12 hr pi, and eventually lysed to release the intracellular pathogens into the cytoplasm of the amoeba by 18 to 24 hr pi [13]. L. pneumophila infection incurred the lysis of more than 80% of A. polyphaga at 24 hr pi, and it has also been suggested that the intracellular condition may significantly differ between 12-18 hr pi and 24 hr pi [13]. Contrary to the previous findings, L. pneumophila-infected A. castellanii in the present study remained intact even at 24 hr pi. Therefore, gene expression patterns at 12 hr pi and 24 hr pi were compared to confirm whether drastic differences were present in L. pneumophila-infected A. castellanii at these 2 time points.

A. castellanii was infected with L. pneumophila [14], and the Legionella-infected Acanthamoeba (L+A) was incubated for 12 hr and 24 hr at 25°C incubator. mRNA-Seq reads were mapped using TopHat software [15], and differentially expressed genes were determined based on BEDtools and EdgeR [16-18]. And we used the FPKM (fragments per kilobase of exon per million fragments) as the method of determining the expression level of the gene regions. Gene classification was based on searches done by DAVID (http://david.abcc.ncifcrf.gov/).

RNA samples from different experimental conditions were sequenced to investigate the endosymbiosis-induced gene expression changes in A. castellanii (Fig. 1). A total of 7,108 genes whose expressions changed 12 hr pi and 24 hr pi were displayed using a heat map (Fig. 1A). Genes from each group were colorized based on their expression level. Strongly upregulated/downregulated genes associated with the GO terms ‘regulation of transcription’ (domain: BP), 30 genes in the ‘nucleus’ (domain: CC), and 37 genes in ‘DNA binding’ (domain: MF) were determined to be the most upregulated genes. Within the CC domain, 200 downregulated genes were involved in the GO term ‘integral component of the membrane’. In the 24 hr pi group, DEGs were subdivided into 29, 13, and 41 GO terms under BP, CC, and MF domains, each respectively (Fig. 3). In the BP domain, 26, 39, and 32 genes from the GO terms ‘regulation of transcription’, ‘intracellular signal transduction’, and ‘cyclical nucleotide biosynthetic process’ were drastically downregulated, each respectively. In the CC domain, similar to the 12 hr pi A. castellanii, 270 downregulated genes were involved in the GO term ‘integral component of membrane’. In the MF domains, downregulated genes associated with the GO terms ‘zinc ion binding’ and ‘protein kinase activity’ were 57 and 42, respectively. From each of the domains, 26 genes from ‘carbohydrate metabolic process’ (domain: BP), 30 genes from the ‘nucleus’ (domain: CC), and 40 genes from ‘DNA binding’ (domain: MF) were mainly upregulated.

DEGs from A. castellanii, which were upregulated or downregulated more than 10 fold post-infection with L. pneumophila, were listed in Tables 1 and 2. In the 12 hr pi A. castellanii, 47 out of 1,211 DEGs were upregulated (Table 1) and 90 out of 1,131 DEGs were downregulated more than 10 fold (Table 2). Identities for several most upregulated proteins in this group were 2 hypothetical proteins (1,100 fold and 345 fold), S-adenosylmethionine-dependent methyltransferases (173 fold), and GDPD-mannose-3’, 5’-epimerase (87 fold) (Table 1). GO analysis of the assigned Entrez Gene IDs revealed that the DEG which underwent 1,100 fold increase was a hypothetical protein that belonged to the DNA binding (GO: 0003677) category. Similarly, the GDPD-mannose-3’,5’-epimerase which was increased 87 fold, was associated with catalyt-
ic activity (GO: 0003824). Based on these findings, it can be speculated that these DEGs may be of importance during the initial phase of infection. While xylosyltransferase 1 was downregulated more than 700 fold, sulfiredoxin 1 was downregulated more than 500 fold, and vacuolar sorting-associated protein 13 were downregulated more than 12 fold. (Table 2).

GO analysis results revealed that the DEGs downregulated 10 fold or more were predominantly associated with the integral component of membrane (GO: 0016021). Findings are consistent with the changes in DEGs categorized under CC as illustrated in Fig. 3.

Although 132 out of 1,321 DEGs were upregulated and 54 out of 1,379 DEGs were downregulated more than 10 fold in A. castellanii 24 hr pi, approximately 60% of these DEGs (78 DEGs and 30 DEGs) were identified as hypothetical proteins. Strong inhibition of DEGs were observed in both 12 hr pi A. castellanii (90 DEGs) and 24 hr pi A. castellanii (53 DEGs). Among the DEGs demonstrating 10 fold or greater changes, 47 genes were upregulated while 90 genes were downregulated within the initial 12 hr pi (Tables 1, 2). Conversely, by 24 hr pi, 132 upregulated and 54 downregulated DEGs were observed. From these results, we supposed that L. pneumophila infection facilitated reduced A. castellanii gene expression during the early stage of infection to inhibit phagocytic digestion, while enhancing the expression of specialized A. castellanii genes during the late infection stage for LCV lysis and access to host cell machinery for intracellular replication.

Interestingly, L. pneumophila-infected A. castellanii showed differential expressions of methyltransferase-associated proteins. In addition to the S-adenosylmethionine-dependent
methyltransferases and lysine methyltransferase enzyme domain-containing protein (Table 1), 11 DEGs associated with methyltransferase were upregulated, and 19 DEGs were downregulated upon infection with *L. pneumophila* for 12 hr. Furthermore, *L. pneumophila*-infected *A. castellanii* also demonstrated differential expressions of acetyltransferase-associated
Fig. 3. Distribution of gene ontology (GO) functional classifications. GO analysis of downregulated (left-hand direction) and upregulated (right-hand direction) genes in *A. castellanii* infected with *L. pneumophila* after 24 hr.
Table 1. Genes upregulated more than 10 fold in A. castellanii 12 hr pi

Gene symbol	Fold change	Annotation	GO analysis
ACA1_328910	1099.734	hypothetical protein	MF (GO:0003677)
ACA1_183610	345.332	hypothetical protein	-
ACA1_183700	173.774	S-adenosylmethionine-dependent methyltransferases	CC (GO:0016021)
ACA1_140050	116.896	hypothetical protein	-
ACA1_183570	87.745	GDPD-mannose-3′,5′-epimerase	MF (GO:0003824)
ACA1_324870	66.918	hypothetical protein	-
ACA1_183700	51.100	hypothetical protein	-
ACA1_139940	41.374	hypothetical protein	-
ACA1_183570	34.532	hypothetical protein	-
ACA1_140050	25.965	hypothetical protein	-
ACA1_183700	25.733	hypothetical protein	-
ACA1_264780	17.942	lysine methyltransferase enzyme domain containing protein	-
ACA1_159010	17.875	BNR/Aspbox repeat domain containing protein	-
ACA1_183700	17.602	S-adenosylmethionine-dependent methyltransferases	-
ACA1_183700	17.507	von Willebrand factor type A domain containing protein	-
ACA1_140540	17.373	MORN repeat containing protein	-
ACA1_184710	17.266	Phospholipid methyltransferase domain containing protein	CC (GO:0016021)
ACA1_068540	17.124	Prokumamolisin, activation domain containing protein	-
ACA1_217750	13.172	phosphoenolpyruvate carboxykinase (GTP), putative	MF (GO:0016301)
ACA1_116700	13.149	hypothetical protein	-
ACA1_279740	12.960	hydrogenase assembly factor, putative	MF (GO:0051536)
ACA1_116690	12.553	hypothetical protein	CC (GO:0016021)
ACA1_285180	12.470	DNA breaking-rejoining enzyme domain containing protein	MF (GO:0003677)
ACA1_217590	12.170	copper/zinc superoxide dismutase	-
ACA1_275740	12.094	glyceraldehyde-3-phosphate dehydrogenase (soluble)	MF (GO:0051287)
ACA1_068320	12.094	GPR1/FUN34/yaah family protein	CC (GO:0016021)
ACA1_358270	11.433	pyridine nucleotidedisulfide oxidoreductase domain containing protein	MF (GO:0016491)
ACA1_067720	11.300	hypothetical protein	-
ACA1_153710	11.001	RFX DNA binding	BP (GO:0006355)
ACA1_091110	10.950	hypothetical protein	-
ACA1_256560	10.936	hypothetical protein	-
ACA1_275730	10.900	phosphoglycerate mutase family domain containing protein	-
ACA1_165640	10.762	hypothetical protein	-
ACA1_060580	10.631	phosphatase	-
ACA1_245710	10.555	hypothetical protein	-
ACA1_325450	10.443	CBS domain containing protein	-
ACA1_187310	10.274	heme NO binding domain containing protein	-
ACA1_238590	10.109	CBS domain containing protein	-

proteins. Histone acetyltransferase-associated protein was upregulated and 8 other acetyltransferases were downregulated 12 hr pi with L. pneumophila. Icm/Dot type IV secretion system and its effectors of L. pneumophila modulate host gene expression by altering the chromatin structure or by affecting the activities of transcription factors [19]. Post-translational modifi-
Table 2. Genes downregulated more than 10 fold in A. castellanii 12 hr pi

Gene symbol	Fold change L+A(12)/A	Fold change L+A(24)/A	Annotation	GO analysis
ACA1_113420	0.001	0.764	hypothetical protein	-
ACA1_112520	0.001	0.493	Cysteine-rich 4 helical bundle widely conserved	-
ACA1_111980	0.003	0.368	EF hand domain containing protein	-
ACA1_112090	0.003	0.454	hypothetical protein	-
ACA1_111740	0.007	0.190	hypothetical protein	-
ACA1_112480	0.007	0.492	FoxO domain containing protein	-
ACA1_376130	0.007	0.386	xylanosyltransferase 1, putative	-
ACA1_058410	0.009	0.019	hypothetical protein	-
ACA1_147740	0.010	0.006	CBS domain containing protein	-
ACA1_113310	0.013	0.765	hypothetical protein	-
ACA1_166550	0.017	0.318	hypothetical protein	-
ACA1_374390	0.018	0.924	hypothetical protein	-
ACA1_101570	0.019	1.673	hypothetical protein	-
ACA1_302590	0.020	0.401	hypothetical protein	-
ACA1_060120	0.021	0.548	hypothetical protein	-
ACA1_400130	0.021	0.021	hypothetical protein	-
ACA1_307550	0.022	0.084	FoxO domain containing protein	-
ACA1_230230	0.022	0.022	hypothetical protein	-
ACA1_060390	0.024	2.233	3-oxoacyl-[acyl-carrier protein] reductase	CC (GO: 0016021)
ACA1_112110	0.024	0.463	glycosyl transferase	CC (GO: 0016021)
ACA1_112490	0.024	0.480	hypothetical protein	-
ACA1_063680	0.026	0.072	Reverse transcriptase	-
ACA1_300590	0.027	0.132	Hsp20/alpha crystallin superfamily protein	-
ACA1_063960	0.029	0.078	hypothetical protein	-
ACA1_112130	0.029	0.457	regulator of g protein signaling domain containing protein	-
ACA1_111970	0.029	0.399	sulfiredoxin 1	-
ACA1_158820	0.029	0.064	hypothetical protein	-
ACA1_064370	0.029	0.029	AT Hook plus PHD finger transcription factor family member (athp1), putative	-
ACA1_064780	0.029	0.029	hypothetical protein	-
ACA1_064790	0.029	0.029	hypothetical protein	-
ACA1_040040	0.030	0.275	zinc finger, zz type domain containing protein	-
ACA1_350050	0.030	0.298	hypothetical protein	-
ACA1_112530	0.031	0.499	NLPC_P60 super family	-
ACA1_112190	0.032	0.527	major facilitator subfamily transporter	CC (GO: 0016021)
ACA1_112590	0.034	0.474	WH2 motif domain containing protein	-
ACA1_050380	0.036	1.885	hypothetical protein	-
ACA1_230220	0.037	0.025	hypothetical protein	-
ACA1_199000	0.038	0.229	Snol-L-like domain containing protein	-
ACA1_077210	0.040	0.376	hypothetical protein	-
ACA1_173000	0.043	0.352	Predicted NAD/FAD-dependent oxidoreductase	-
ACA1_326260	0.043	0.073	hypothetical protein	-
ACA1_060740	0.045	0.310	hypothetical protein	-
ACA1_270160	0.046	0.071	fascin subfamily protein	-
ACA1_200180	0.048	0.428	hypothetical protein	-
ACA1_383480	0.051	0.029	hypothetical protein	-
ACA1_155760	0.052	0.145	phosphoribosyltransferase	-
ACA1_207830	0.052	0.426	myotubulins and other putative membrane-associated proteins	-
ACA1_133180	0.052	0.254	Ser/Thr phosphatase family superfamily protein	-
ACA1_077290	0.053	0.638	5'nucleotidase	CC (GO: 0016021)
ACA1_265080	0.053	0.367	hypothetical protein	-

(Continued to the next page)
cations such as DNA methylation, histone acetylation, and histone methylation have been shown to play a critical role in the epigenetic regulation of eukaryotic gene expression [19,20]. Our results revealed that \textit{L. pneumophila} can alter the gene expression of \textit{A. castellanii} through epigenetic mechanisms.

A plethora of DEGs induced in \textit{A. castellanii} by the endosymbiont \textit{L. pneumophila} were revealed in this study. However, 38.3% (1,930 of the 5,042) of \textit{A. castellanii} genes were identified to be hypothetical proteins. Proportions of these hypothetical proteins in the 12 and 24 hr pi groups can be ascribed to the lack of \textit{Acanthamoeba} spp. database. Our investigation of

Table 2. Continued

Gene symbol	Fold change	Annotation	GO analysis	
L+A(12)/A	L+A(24)/A	Product	Category (Term)	
ACA1_383650	0.055	0.349	Human glyoxalase domain-containing protein 5 and similar proteins	-
ACA1_048480	0.056	0.616	hypothetical protein	-
ACA1_055330	0.059	0.292	N-terminal region of Chorein or VPS13	-
ACA1_346470	0.060	0.450	RUN domain containing protein	-
ACA1_298420	0.062	0.056	hypothetical protein	-
ACA1_197730	0.064	0.823	hypothetical protein	-
ACA1_378930	0.064	0.329	hypothetical protein	-
ACA1_214630	0.067	0.147	hypothetical protein	-
ACA1_128200	0.068	0.051	CBS domain containing protein	-
ACA1_052800	0.071	0.571	O-methyltransferase family 3 protein	-
ACA1_112560	0.071	0.499	hypothetical protein	-
ACA1_322750	0.072	0.552	Glycosyl hydrolases family 2, TIM barrel domain	-
ACA1_383400	0.072	1.376	hypothetical protein	-
ACA1_253630	0.073	0.947	hypothetical protein	-
ACA1_391470	0.074	0.821	Hsp20/alpha crystallin superfamily protein	-
ACA1_066110	0.074	0.05	SCP-like extracellular protein domain containing protein	-
ACA1_131790	0.075	0.133	protein from patent family protein	-
ACA1_111930	0.075	0.311	carbonsulfur lyase, putative	BP (GO: 0008152)
ACA1_064380	0.077	0.052	hypothetical protein	-
ACA1_064940	0.077	0.029	Fbox domain containing protein	-
ACA1_323370	0.077	0.011	Hsp20/alpha crystallin superfamily protein	-
ACA1_383750	0.078	0.236	Ubiquitin-conjugating enzyme subfamily protein	-
ACA1_006080	0.079	0.210	hypothetical protein	-
ACA1_180590	0.082	0.546	TRRAP family protein	-
ACA1_112980	0.083	0.755	protein kinase	-
ACA1_177300	0.083	0.247	serine/threonine kinase	CC (GO: 0016021)
ACA1_111880	0.084	0.225	Small acidic protein family	-
ACA1_372720	0.084	0.148	obtusifoliol 14 alpha demethylase, putative	CC (GO: 0016021)
ACA1_046720	0.086	0.076	Glycosyl hydrolase families	-
ACA1_324050	0.088	0.646	Vacular sorting-associated protein 13 [Intracellular trafficking and secretion]	-
ACA1_400540	0.088	0.076	sphingosine hydroxylase	CC (GO: 0016021)
ACA1_290200	0.089	0.329	hypothetical protein	-
ACA1_389110	0.09	0.016	hypothetical protein	-
ACA1_112500	0.094	0.535	TBC domain containing protein	-
ACA1_311650	0.095	0.096	hypothetical protein	-
ACA1_112060	0.096	0.429	O-methyltransferase, putative	-
ACA1_178260	0.097	0.118	cytochrome P450, putative	MF (GO: 0005506)
ACA1_066960	0.098	1.036	hypothetical protein	-
ACA1_046710	0.099	0.126	cytoplasmic protein, putative	-
ACA1_112640	0.100	0.498	MBOAT family protein	CC (GO: 0016021)
the DEGs in A. castellanii by an endosymbiont provides important information to understanding the survival strategy utilized by notable intracellular pathogen L. pneumophila in A. castellanii. Future studies investigating the presence of an endosymbiosis-specific gene may help elucidate the underlying mechanism involved in L. pneumophila pathogenesis, which would contribute to understanding the inhibition of phagocytosis within A. castellanii or even immune evasion mechanism in human macrophages.

ACKNOWLEDGMENT

This work was supported by the National Research Foundation of Korea (NRF) grant funded by Korea government (MIST) (No. 2020R1F1A1068719).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

1. Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 2007; 50: 1-26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
2. Schmitz-Esser S, Toenshoff ER, Haider S, Heinz E, Hoenninger M, Wagner M, Horn M. Diversity of bacterial endosymbionts of environmental Acanthamoeba isolates. Appl Environ Microbiol 2008; 74: 5822-5831. https://doi.org/10.1128/AEM.01093-08
3. Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 2004; 17: 413-433. https://doi.org/10.1128/cmr.17.2.413-433.2004
4. Richards AM, Von Dwingleo JE, Price CI, Abu Kwaik Y. Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 2013; 4: 307-314. https://doi.org/10.4161/viru.24290
5. Barker J, Brown MR. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 1994; 140: 1253-1259. https://doi.org/10.1099/00221287-140-6-1253
6. Essig A, Heinemann M, Sinnacher U, Marre R. Infection of Acanthamoeba castellanii by Chlamydia pneumosiae. Appl Environ Microbiol 1997; 63: 1396-1399. https://doi.org/10.1128/AEM.63.4.1396-1399.1997
7. Guimaraes AJ, Gomes KX, Cortines JR, Peralta JM, Peralta RH. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol Res 2016; 193: 30-38. https://doi.org/10.1016/j.micres.2016.08.001
8. Isberg RR, O’Connor TL, Heidtman M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 2009; 7: 13-24. https://doi.org/10.1038/nrmicro1967
9. Vogel JP, Andrews HL, Wong SK, Isberg RR. Conjugative transfer by the virulence system of Legionella pneumophila. Science 1998; 279: 873-876. https://doi.org/10.1126/science.279.5352.873
10. Steiner B, Weber S, Hilibi H. Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol 2018; 308: 49-57. https://doi.org/10.1016/j.ijmm.2017.08.004
11. Cazalet C, Rusniok C, Brüggemann H, Zidane N, Magnier A, Ma L, Tichit M, Jarrard S, Bouchier C, Vandenesch F, Kunst F, Etienne J, Glaser P, Buchrieser C. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 2004; 36: 1165-1173. https://doi.org/10.1038/ng1447
12. Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Devins-Ravauld D, Newton HJ, Sansom FM, Jarrard S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet 2010; 6: e1000851. https://doi.org/10.1371/journal.pgen.1000851
13. Molmeret M, Bitar DM, Han L, Kwaik YA. Disruption of the phagosomal membrane and egress of Legionella pneumophila into the cytoplasm during the last stages of intracellular infection of macrophages and Acanthamoeba polyphaga. Infect Immun 2004; 72: 4040-4051. https://doi.org/10.1128/IAI.72.7.4040-4051.2004
14. Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2018; 9: 185-196. https://doi.org/10.1080/21505594.2017.1373925
15. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
16. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26: 841-842. https://doi.org/10.1093/bioinformatics/btp033
17. Trapnell C, Brillet-Guéguen L, Coppée JY, Dillies MA. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS One 2016; 11: e0157022. https://doi.org/10.1371/journal.pone.0157022
18. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Duval JT, Irizarry R, Kuonen S, Lund C, Series DJ, Yang JY, Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80. https://doi.org/10.1186/gb-2004-5-10-r80
19. Qu J, Luo QZ. Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol 2017; 15: 591-605. https://doi.org/10.1038/nrmicro.2017.67
20. Yen CY, Huang HW, Shu CW, Hou MF, Yuan SS, Wang HR,
Chang YT, Farooqi AA, Tang IV, Chang HW. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett 2016; 373: 185-192. https://doi.org/10.1016/j.canlet.2016.01.036