Domesticated animals in the prehispanic American Southwest/Mexican Northwest functioned in many roles, but these roles seem to have varied across time and space. In this study, we use bone collagen and apatite carbon ($\delta^{13}C_{\text{col/ap}}$) and nitrogen ($\delta^{15}N$) stable isotopes to investigate the role(s) of seven canids from Arroyo Hondo Pueblo (LA 12), a 14th century site in the northern Rio Grande, New Mexico. Results indicate that in some cases, coyotes seem to have been treated like dogs; in others, dogs seem to have been treated like their wild relatives. In all cases, canids were treated differently than domestic turkeys. We conclude that ethnographic, genetic, geochemical and site-specific contextual data are required to understand the roles of dogs and wild canids in Ancestral Puebloan contexts.

We know that animals played a variety of roles within Ancestral Puebloan societies in the prehispanic American Southwest (e.g., Ainsworth et al. 2018, Jones et al. 2015, Tyler 1975, Tyler 1979), making the consideration of disjunctures in domestication definitions particularly important in this region. Two clearly domestic species were present in the prehispanic Southwest: turkeys (Melagris gallopavo) and dogs. Studies of these two taxa have been used to support arguments for larger population movements within the greater Southwest (Kemp et al. 2017). Both dogs and turkeys were recovered at Arroyo Hondo Pueblo (LA 12), a 14th century pueblo in northern New Mexico (Lang and Harris 1984). While the turkeys of Arroyo Hondo are well-studied (Conrad et al. 2016), the role of domestic dogs at this site is less clear. Dogs can be difficult to distinguish from coyotes (Canis latrans) based on skeletal morphology alone (Calaway 2001; Howard 1949; Krantz 1959). While 71 bones from canid specimens were recovered at Arroyo Hondo Pueblo, most were }

Keywords
Canids; domestic dogs; stable isotopes; Ancestral Puebloan; Southwestern archaeology; New Mexico

* Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, US
† Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, New Mexico, US
Corresponding author: Victoria Monagle (vbowler@unm.edu)
not identifiable to species and only 22 could be positively identified as dog (Lang and Harris 1984). However, many of these canids were recovered from within architectural deposits (including from within kivas) – a method of deposition often associated with species that served a function after life, which in the Southwest is more commonly associated with domestic dogs than with coyotes (Hill 2000). This suggests some of the Arroyo Hondo canids may be domestic dogs. Conversely, a recent genetic analysis found that some of the specimens originally identified as dogs at Arroyo Hondo are genetically coyotes (Kemp et al. 2017). The status of dogs and other canids at Arroyo Hondo is clearly in need of investigation.

Stable isotopes can be used to assess human-canid relationships in the past, particularly the degree of human influence on canid diets (Guiry 2012; 2013), making this one potential way to address the seeming contradiction between the zooarchaeological analysis and the deposition of canids at Arroyo Hondo Pueblo. In this paper, we use new stable isotope data in conjunction with previously-published data on burial treatment and context to explore how the prehistoric inhabitants of Arroyo Hondo saw these individual canids. Partway through our study, a publication on the mtDNA of some of these specimens was released (e.g., Kemp et al. 2017); we incorporate these published data into our analysis as well. While Kemp and colleagues also published some isotope data on the Arroyo Hondo canids, we do not consider those results here; rather, as our study was designed and completed completely independently, we present our data as an additional line of evidence into canid feeding ecology at Arroyo Hondo Pueblo.

The Canids of Arroyo Hondo Pueblo

Arroyo Hondo Pueblo (Figure 1), an Ancestral Puebloan archaeological site located 5 miles southeast of Santa Fe and dated between A.D. 1300 and 1420, was extensively excavated by the School of American Research (currently School for Advanced Research) in the early 1970s (Lang and Harris 1984; Wetterstrom 1986). Diets of Arroyo Hondoans seem to have consisted of a mix of maize (Zea mays), beans (Phaseolus vulgaris L.), squash (Cucurbita pepo L.), and wild plants, as well as mule deer (Odocoileus hemionus), pronghorn (Antilocapra americana), lagomorphs (both jackrabbits, Lepus sp., and cottontails, Sylvilagus sp.), and domestic turkeys (Lang and Harris 1984; Wetterstrom 1986). Other animal taxa recovered at Arroyo Hondo included elk (Cervus elaphus), bison (Bison bison), hawks (family Accipitridae), bear (Ursus sp.), squirrels (family Sciuridae), geese (family Anatidae), turtles (order Testudines) and scarlet macaws (Ara macao).

Relevant to this study, 22 domestic dog (Canis familiaris) specimens and 49 specimens identified as Canis spp. (which may include wolves as well as coyotes and domestic dogs) were also identified at Arroyo Hondo Pueblo (Lang and Harris 1984:87). The incompleteness of these specimens and their relatively low number led the original analysts to suggest domestic dogs were rare at the Pueblo, perhaps due to the risk these animals might pose to turkeys (Lang and Harris 1984:88). While these canid

Figure 1: Arroyo Hondo Pueblo and provenience of canids analyzed in this study.
specimens were recovered from a number of different contexts at Arroyo Hondo, some were associated with architectural features, and thus may have been simple interments or dedicatory offerings (Hill 2000). Canids treated this way are, we argue, more likely to have been domestic dogs than coyotes. Through the process of domestication, dogs developed behaviors that allowed for them to exist alongside humans, occupying a social role that wild canids, such as wolves and coyotes, could not fill (Morey 2010). Ethnographic and ethnohistoric sources discuss Southwest dogs filling social roles such as guardians, trash-eaters, and pets (e.g., Bolton 2003; Bourke 1884; Frisbie 1967; Lomatuway’ma, et al. 2001; Parsons 1939; Stephen 1929; Winship 1904). Dog burials in the Southwest are relatively common, and are typically interpreted as reflecting social relationships and roles filled within communities during and after life (Hill 2000). In contrast, in ethnographic sources wild canids are depicted as sorcerers, predators, competition for humans, and tricksters (e.g., Flores 2016; Lomatuway’ma, et al. 2001; Mills and Walker 2008; Parsons 1939; Walker 1998) – unlikely candidates for burials in kivas or domestic spaces.

The Arroyo Hondo canid specimens considered here (NISP = 7, MNI = 6; see Table 1) were recovered from kivas, plazas, and roomblocks (Figure 1), suggesting these animals had social roles within the Arroyo Hondo community. One cluster of canid remains (specimens AH4 and AH5) were recovered from a kiva, and identified as having possibly received “preferential treatment upon death”, as they were represented not just by a single element but included a tibia, femur, vertebra, and skull fragment (Lang and Harris 1984:89). Although the other Arroyo Hondo canids are represented by specimens in a variety of locations, this does not weaken the argument that these specimens filled a special role before and/or after death. Canid burials in the Southwest are highly variable and while many interments and dedicatory offerings contain complete canid skeletons and/or skulls, a majority are defined simply by their associations with an architectural feature such as kiva, plaza, or room block floor (Hill 2000).

In this context, the Arroyo Hondo canids present a puzzle: while the original analysis indicated they were likely predominantly coyotes, the burial locations of the seven individuals considered here suggest these canids had a role within the Arroyo Hondo community that would more likely have been filled by domestic dogs than coyotes. Ancient mtDNA from these canids further complicates the picture: three of the seven specimens analyzed in this paper, including the canid identified as having been given “preferential treatment”, have mtDNA suggesting that their maternal line, at least, was coyote (Table 1); an additional three canid specimens recovered from architectural features at Arroyo Hondo also had coyote mtDNA (Kemp, et al. 2017).

The contradiction between the burial context and mtDNA data at Arroyo Hondo requires explanation. Are the four still-unidentified canids in our sample dogs or coyotes? Do the specimens that are genetically coyotes represent wild canids with a social role within the Pueblo, or does their recovery location represent something more prosaic such as trash disposal?

Isotopes and human-animal relationships

Isotopic analysis, particularly carbon and nitrogen isotope data and carbon apatite-collagen spacing, can provide information on dietary patterns during life and help determine lifetime proximity to humans through subsistence sourcing and levels of human management (e.g., Rick, et al. 2011). These techniques may help to resolve the questions of canid roles at Arroyo Hondo Pueblo.

Carbon isotopes

The analysis of stable carbon isotopes (δ13C = 13C/12C) in animal tissues provides the ability to understand the types of plants and/or animals that individuals consumed during their lifetime (DeNiro and Epstein 1978). Plants assimilate stable carbon isotopes in carbon dioxide during photosynthesis; some plants (including many shrubs common in New Mexico) follow a C3 photosynthetic pathway, while others (including maize but also many grasses native to the Western US) use C4 photosynthetic pathway.

Herbivorous animals are primary consumers and omnivorous animals are both primary and secondary consumers; as the isotopic signature of the consumed resource is incorporated into the tissue of the consuming animal, it is often possible to identify what types of plants formed the basis of the animal diet. In the prehispanic Southwest, domesticated maize (a C4 plant) formed the basis of most Puebloan diets (e.g., Coltrain, et al. 2007, Cordell and Mcbrinn, 2012, Geib 2011, Matson and Chisholm 1991, Swarts et al. 2017), but many Southwest mammalian and

Table 1: Canids from Arroyo Hondo analyzed in this study. “Taxon (ZA)” indicates our identification, which was based on morphological characteristics alone. *After Kemp et al. (2017).*

Sample ID	Taxon (ZA)	Taxon (mtDNA)*	Recovery Location
AH1	Canis sp.	*Canis latrans*	Plaza G or Kiva (12-G-ST1-1)
AH2	Canis sp.	*Canis latrans*	Plaza G or Kiva (12-G-ST1-1)
AH3	Canis sp.	*Canis latrans*	Plaza G or Kiva (12-G-ST1-1)
AH4	Canis sp.	*Canis latrans*	Kiva J (12-J-1)
AH5	Canis sp.	*Canis sp.*	Kiva J (12-J-1)
AH6	Canis sp.	*Canis sp.*	Plaza H (12-H-3-8)
AH7	Canis sp.	*Canis sp.*	Roomblock 11 (12-11-3-6)
avian fauna consumed C₄ resources (Cormie and Schwarcz 1994; 1996; Fair and Heikoop 2006). In this context, δ¹³C values can provide a window into the degree to which an animal had access to maize.

Nitrogen isotopes

Nitrogen isotope ratios (δ¹⁵N = ¹⁵N/¹⁴N) provide a means to understand trophic scale relationships between producers and consumers (DeNiro and Epstein 1981). Due to enrichment of nitrogen isotopes in consumers relative to the resource being consumed, animals have more positive nitrogen isotope ratios than their diets. Analysis of nitrogen stable isotopes in prehistoric societies is useful for determining various levels of anthropogenic dietary influence in animals since humans often influence δ¹⁵N values in their immediate landscape (Bogaard et al. 2007; Finucane 2007; Szpak 2014). However, it is important to note that δ¹⁵N values may be impacted by variables including animal age, weaning status, prey body size, environmental conditions, and the presence of nitrogen fixing plants (Handley and Raven 1992; Minagawa and Wada 1984; Steele and Daniel 1978; Ugan and Coltrain 2011).

δ¹³C Apatite–Collagen spacing

Stable carbon isotope spacing between bone apatite and collagen can be used to identify how organisms consume macronutrients (e.g., Bartelink 2009; Eerkens et al. 2013), as bone collagen records dietary protein components (Ambrose et al. 1993) and bone apatite represents bulk dietary components (protein, carbohydrates, and fats; Krueger and Sullivan 1984). Spacing values therefore provide a proxy for whether individual animals consumed the same types of resources for their protein, carbohydrate and fat dietary components (see, for example, Lee-Thorp et al. 1989). Variable spacing, or differences in the carbon isotope composition of protein relative to bulk protein, carbohydrates and fats, suggests specific types of resources were consumed for certain macronutrients versus others. For example, identification of variable spacing in domesticated turkeys from Tijeras Pueblo (LA 581) suggested that while turkeys consumed C₃ plants (likely maize), wild C₄ resources (likely insects in maize fields) comprised the bulk of the protein component of their diet (Jones et al. 2016).

Isotopes and canid roles

Previous research on δ¹³C and δ¹⁵N in canids suggests coyotes and domestic dogs should have distinct isotopic signatures. Coyotes are generalist omnivores and consume a wide diversity of resources depending on regional population density, prey abundance, competition, and anthropogenic influence (Ames, et al. 2015; Coltrain et al. 2004; Murray, et al. 2015; Rose and Polis 1998; Schoeninger 1985; Schwarz 1991; Warsen, et al. 2014). Three modern coyotes recovered from sites in California and Mexico exhibited δ¹³C values of −19.3‰, −18.6‰, and −11.7‰ with similarly diverse δ¹⁵N values of 8.0‰, 5.7‰, and 18.8‰ (Schoeninger 1985). In contrast, previously identified domesticated dog stable isotope values (n = 5) in the American Southwest and Mexican Northwest have δ¹³C values ranging between −7.6‰ and −11.0‰ and δ¹⁵N between 6.7‰ and 9.0‰ (Katzenberg 1991; Kellner, et al. 2010; Martin 1999; Spielmann, et al. 1990; Webster and Katzenberg 2008; personal communication R. Tykot, 2017).

This previous research provides clear predictions for the Arroyo Hondo canids. We expect canids excavated from burial contexts within architectural features to exhibit δ¹³C and δ¹⁵N stable isotope data that reflects diets consistent with human management. Canids that fulfilled a community role at Arroyo Hondo Pueblo could be expected to have had diets similar to those of domesticated dogs, turkeys, and Ancestral Pueblan populations from the Northern Rio Grande (see Conrad, et al. 2016; Kellner et al. 2010; Spielmann, et al. 1990), all of which show enriched δ¹³C reflecting a diet focused on C₃ plants (likely maize), as well as close clustering of δ¹³C and δ¹⁵N values (see Rawlings and Driver 2010). Conversely, if the coyotes and unidentified canids in our sample represent trash disposal and were not treated as members of the Arroyo Hondo community, we would expect them to exhibit δ¹³C values suggesting C₄-based diets and variable δ¹⁵N values.

Methods

We sampled seven canid specimens from Arroyo Hondo (Table 1), analyzing bone collagen (δ¹³Cᵥ and δ¹⁵N), bone apatite (δ¹³Cₐ), and δ¹³C collagen-apatite spacing. Our sample consisted of specimens identified as canids by Lang and Harris and located by Robin Lyle (Lang and Harris 1984; Robin Lyle, personal communication). It included both adult and juvenile canids, a fact important to note as juveniles may have elevated δ¹⁵N values due to trophic level enrichment via nursing (e.g., Fuller, et al. 2005; Guiry 2012; Schurr 1998).

Collagen sample preparation and analysis

Using a Dremel saw, we cut a non-diagnostic 50–100 mg bone fragment from each specimen for collagen analysis. These samples were i) demineralized in 0.5 N hydrochloric acid for 24 hours at 5°C, ii) rinsed to neutrality and lipid-extracted using a solution of 2:1 chloroform/methanol for 24 hours (repeated three times), and iii) rinsed to neutrality and lyophilized for 24 hours. After lyophilization 0.5–0.6 mg of sample was weighed into tin capsules for stable carbon (δ¹³Cᵥ) and nitrogen (δ¹⁵N) analysis at the University of New Mexico Center for Stable Isotopes (UNM-CSI). Carbon and nitrogen values were measured using a Costech (4010) elemental analyzer coupled to a Thermo Scientific Delta V isotope ratio mass spectrometer. Isotope data are expressed in delta (δ) notation as: [(Rsample/Rstandard) – 1] × 1000, where Rsample and Rstandard are the ratios of ¹³C/¹²C and ¹⁵N/¹⁴N in the sample and standard. Isotope samples were analyzed using the internationally accepted standards of Vienna Pee Dee Belemnite (V-PDB) limestone and atmospheric N₂ for δ¹³C and δ¹⁵N. All δ values are reported as parts per thousand (%). Atomic weight carbon to nitrogen concentrations ranged between 3.1 and 3.3 (Table 3), indicating unaltered and preserved collagen (Ambrose 1990). Analysis of internal reference standards provided analytical precision (SD) of <0.22‰ for δ¹³C and δ¹⁵N.
Apatite sample preparation and analysis

We used a Dremel drill to homogenize 50–100 mg of bone for apatite carbon isotope (Δ³¹⁰C) analysis. Each sample was washed with 3% hydrogen peroxide for 24 hours to remove organics, then rinsed to neutrality two times using deionized water. To remove labile diagenetic carbonate, we treated the samples in 0.1 M buffered acetic acid for 30 minutes (Coltrain and Janetski 2013), then rinsed the samples to neutrality three times using deionized water. Treated bone apatite was dried for 24 hours under a fume hood and then 5–10 mg of bone powder was weighed into glass extainer vials and treated with phosphoric acid at 50°C for 6 hours to produce CO₂ prior to isotope analysis. Apatite analysis occurred on a Thermo Scientific GasBench coupled to a Delta V isotope ratio mass spectrometer at UNM-CSI. Isotope values and delta calculations match bone collagen techniques described above. Analysis of internal reference standards provided analytical precision (SD) of <0.11‰ for δ¹³C.

Apatite-collagen spacing

We use δ¹³C apatite-collagen spacing to identify anthropogenic feeding versus foraging in the Arroyo Hondo canids. If the Arroyo Hondo canids were fed by the human inhabitants of Arroyo Hondo Pueblo, their diets should have been heavy in C₃ (likely maize), as human diets were (Palkovich 1980). In this case both the apatite (protein/carbohydrates/fats) and collagen (protein) fraction of bone should indicate the presence of a C₃-heavy diet and, correspondingly, enriched δ¹³C. In contrast, we expect canids without access to maize to have depleted δ¹³C bone apatite and collagen C values, reflecting a diet comprised of C₃ plants and herbivores, as has been recorded for other omnivorous canids; previous research on such canids suggests apatite-collagen spacing of approximately +5.2‰ (Krueger and Sullivan 1984; Lee-Thorp et al. 1989). Finally, canids with varied diets, as might be expected in the case of animals with access to maize or maize-fed resources via scavenging, should exhibit more variable spacing with enriched bone apatite and depleted bone collagen (as in Jones et al. 2016). In short, following identified regression models (i.e., Keller and Schoeninger 2007) we expect canids with C₃-based protein (suggesting they were fed C₃-fed meat sources) to fit the line y = 1.71x + 10.6 (r² = 0.95) and canids with C₃-based protein (suggesting foraging) to fit the line y = 1.74x + 21.4 (r² = 0.95).

Results

Collagen analysis

The seven samples produced distinct and varied δ¹³C and δ₁⁵N values (Table 2, Figure 2). The δ¹³C values for Canis sp. range between −11.3‰ and −18.0‰, and between −14.3‰ and −17.6‰ for canids identified as Canis latrans. The δ₁⁵N values for Canis sp. range between 6.3‰ and 13.4‰, and between 6.3‰ and 9.3‰ for Canis latrans. The Canis sp. sample from Plaza H (sample AH6) is enriched in bone collagen δ¹³C, and the Canis sp. sample from Roomblock 11 is enriched in δ₁⁵N (sample AH7). Samples from Kiva J (samples AH 4 and 5), possibly representing a burial context, are virtually identical to each other in δ¹³C and δ₁⁵N (Table 2) suggesting they may indeed derive from the same individual.

Apatite analysis

The seven canids produced similar δ¹³C values (Table 2). Samples identified as Canis latrans range between −7.9‰ and −9.5‰, whereas the canids with no species identification range between −7.3‰ and −10.7‰ in δ¹³C. The sample AH6 from Plaza H is enriched in δ¹³C (as it is in bone collagen). There is greater variation (0.8‰) in δ¹³C than in bone collagen from samples AH4 and AH5 in Kiva J (Table 2).

Collagen-apatite spacing

The samples are variable in bone apatite-collagen spacing values (Table 2; Figure 3). The average spacing is +6.7‰, but this encompasses a maximum value of +9.4‰ for the Canis latrans sample AH1 and a minimum value of +4.0‰ for the Canis sp. sample AH6. Samples AH1, AH2, and AH3, two coyotes and one Canis sp. specimen, have spacing values suggesting a diet with C₃ protein, while sample AH6 (Canis sp.) indicates a diet with a substantial contribution of C₃ protein. Samples AH4, AH5 and AH7 (a coyote and two Canis sp.) have intermediate values, suggesting mixed C₃/C₃ diets.

Discussion

These results have numerous implications for our understanding of human interactions with domesticated dogs and wild canids in the prehispanic Southwest. In the following discussion, we focus on three of these: 1) the use of stable isotopes to distinguish domesticated dogs from other canids; 2) the roles of canids in the Ances-

Table 2: Isotopic values of the Arroyo Hondo canid sample.

Sample ID	δ¹³C col	δ₁⁵N	δ¹³C ap	%C	%N	Weight% C:N	Atomic C:N
AH1	−17.3	9.3	−7.9	41.9	15.3	2.7	3.1
AH2	−17.6	9.3	−9.5	41.7	15.4	2.7	3.2
AH3	−18.0	8.5	−10.7	41.9	15.1	2.8	3.2
AH4	−14.3	6.3	−8.1	41.8	15.3	2.7	3.2
AH5	−14.4	6.3	−8.9	42.1	15.1	2.8	3.3
AH6	−11.3	11.2	−7.3	42.5	15.2	2.8	3.3
AH7	−16.0	13.4	−9.3	42.1	14.7	2.9	3.3
Art. 6, page 6 of 13

Monagle et al: What Makes a Dog? Stable Isotope Analysis and Human-canid Relationships at Arroyo Hondo Pueblo

Dogs, wild canids, and stable isotopes
Our results, combined with those from other studies (Table 3), suggest that bone collagen and apatite stable isotopes are insufficient to distinguish between genetically domestic and wild canids. This is most clear in samples AH4 and AH5. These specimens likely derive from the same individual; isotopically, they are relatively enriched in δ^{13}C and depleted in δ^{15}N (suggesting a maize or other C_4 plant-focused diet). However, sample AH4 is, according to its mtDNA, genetically a coyote (Kemp et al. 2017).

Arroyo Hondo is not the only site at which isotopic signatures for canids are unclear. Specimens identified as dogs through ancient DNA analysis from Albert Porter Pueblo and from Yellow Jacket Pueblo in southwestern Colorado have δ^{13}C (-18.6% and -15.9%) and δ^{15}N (7.6% and 9.0%) values matching those of wild canids (Kemp et al. 2017: Table 6). Conversely, a modern coyote specimen collected from a site in Mexico had δ^{13}C (-11.7%) and δ^{15}N (18.8%) values matching those of genetically domesticated dogs (Schoeninger 1985). This suggests that the use of isotopic

Figure 2: Collagen-derived δ^{13}C and δ^{15}N values of the specimens analyzed in this study.

Figure 3: Collagen and apatite δ^{13}C values of the specimens analyzed in this study. The solid line represents C_3 protein sources and the dashed line represents C_4 protein sources (after Kellner and Shoeninger 2007).
values as a proxy for genetic identity in archaeological canids may, in at least some situations, be problematic. If in this case we had assumed that Canis sp. specimens with C3 stable isotope dietary signatures were domesticated dogs, we would have misclassified samples AH4 and AH5 from Kiva J.

This does not, however, indicate that stable isotope studies on archaeological canids are not worthwhile. On the contrary, the overlap in prehistoric and modern dog, coyote and wolf diets suggests stable isotopes reflect variability in human-canid relationships – and that these relationships do not necessarily directly correspond with genetic patterns.

Context and the Arroyo Hondo canids

While all seven canid samples from Arroyo Hondo were recovered from domestic proveniences, these specimens vary in the specifics of their context, with some more suggestive of a close relationship with humans than others. Our isotopic values are similarly varied, but not in ways that one might expect.

AH4 and AH5 were originally identified as belonging to a “dog burial” within Kiva J, yet mtDNA indicates that one might expect. Our isotopic values are similarly varied, but not in ways that one might expect.

AH4 and AH5 fell into ranges expected for a domestic dog, with δ13C values at the lower end of values for the Arroyo Hondo samples (–14.4‰ and –14.3‰) and δ15N values with a much lower trophic level than any of the other samples (both 6.3‰). We do note that, while there was variation in δ13C from these samples (0.8‰), we suspect this indicates either fractionation differences between elements or diagenetic effects, since both contextual evidence and δ13C and δ15N values suggest these bones derive from one individual.

Specimens AH4 and AH5, then, indicate that at least some coyotes may have had a special role for Arroyo Hondoans. There is precedent elsewhere in the Americas for such a situation: in the Great Basin, the Ute were known to keep tamed coyotes (Stewart 1942), as were some groups in the Pacific Northwest Coast (Norton 1985). Prehistoric hybrid wolf-dogs from Teotihuacan may have been fed largely herbivorous diets to suppress aggression (Valadez 2006). If Arroyo Hondoans kept or tamed coyotes then we expect stable isotope values from these animals to match those from domesticated dogs – as is the case for specimens AH4 and AH5 (Table 2).

Table 3: Canid stable isotope values from elsewhere in the Southwestern US/Northwestern Mexico.

Site, State (USA) or Country	Taxon	δ13C_{col}	δ15N	δ13C_{ap}	δ18O	Reference
Albert Porter Pueblo, Colorado	Canis familiaris	–7.7	10.4	–	–	Kemp et al. 2017
Albert Porter Pueblo, Colorado	Canis familiaris	–18.6	7.6	–	–	Kemp et al. 2017
Albert Porter Pueblo, Colorado	Canis familiaris	–8.6	8.2	–	–	Kemp et al. 2017
Albert Porter Pueblo, Colorado	Canis familiaris	–8.1	7.9	–	–	Kemp et al. 2017
Albert Porter Pueblo, Colorado	Canis familiaris	–8.9	10.6	–	–	Kemp et al. 2017
Grass Mesa Village, Colorado	Canis familiaris	–7.39	8.15	–	–	Kemp et al. 2017
Grass Mesa Village, Colorado	Canis familiaris	–7.28	9.32	–	–	Kemp et al. 2017
Grass Mesa Village, Colorado	Canis familiaris	–8.18	7.22	–	–	Kemp et al. 2017
Grass Mesa Village, Colorado	Canis familiaris	–8.03	8.26	–	–	Kemp et al. 2017
Lillian’s Site, Colorado	Canis familiaris	–6.8	7.9	–	–	Kemp et al. 2017
Lillian’s Site, Colorado	Canis familiaris	–8.7	10.2	–	–	Kemp et al. 2017
Lillian’s Site, Colorado	Canis familiaris	–8.7	8.6	–	–	Kemp et al. 2017
Lillian’s Site, Colorado	Canis familiaris	–8.6	8.1	–	–	Kemp et al. 2017
McPhee Pueblo, Colorado	Canis familiaris	–8.54	9.06	–	–	Kemp et al. 2017
McPhee Pueblo, Colorado	Canis familiaris	–7.63	10.21	–	–	Kemp et al. 2017
McPhee Pueblo, Colorado	Canis familiaris	–9.05	10.38	–	–	Kemp et al. 2017
McPhee Pueblo, Colorado	Canis familiaris	–6.96	12.61	–	–	Kemp et al. 2017
Yellow Jacket Pueblo, Colorado	Canis familiaris	–15.9	9	–	–	Kemp et al. 2017
Lone Kiva, New Mexico	“Dog”	–7.7	6.7	–4.4	–7.5	DeBoer and Tykot 2007
Pecos Pueblo, New Mexico	Canis sp.	–10.6	8.8	–	–	Spielmann et al. 1990
Costello-King, Arizona	Canis familiaris	–10.0	–	–	–	Ezzo and Stiner 2000
Sierra Blanca, Mexico	“Dog”	–11	9	–	–	Katzenberg and Kelley 1991¹
CH 254, Mexico	Canis sp.	–7.6	8.9	–	–	Webster and Katzenberg 2008

¹Values approximated based on published graphic.
In addition, AH7, identified as Canis sp. based on genetics and morphology, has a δ13C value that falls within the expected range for Southwest coyotes, but has an enriched δ15N value (13.4‰). Enriched δ15N values in canids typically indicate higher trophic level feeding, either from access to quality meat sources, consuming human feces or scraps, or due to nursing (Guiry 2012); such enrichment may also indicate nutritional stress (see Hobson et al. 1993). The Arroyo Hondo sample did contain three specimens labeled as juveniles, but AH7 was not one of those (the specimens that were identified as juvenile had δ15N values in line with the rest of the samples, ranging from 8.5‰ to 9.3‰). Therefore, it is likely that the diet of AH7 reflects a human-domestic dog relationship during life; this canid likely had access to human hunting and food scraps, or waste. This conclusion is further strengthened by this specimen’s burial treatment within a roomblock, which is a more personal and familial area as compared to a ceremonial kiva or community plaza.

Conversely, two other specimens identified through mtDNA analysis as coyotes (AH1 and AH2; Kemp et al. 2017) have δ13C and δ15N values reflecting a diet similar to other prehistoric coyotes in the Southwest, despite having been recovered from Plaza G and a kiva, respectively. While some coyotes at Arroyo Hondo were treated in special ways, others seem to have been more typical wild canids.

Dogs vs. turkeys
The other domestic animal at Arroyo Hondo – turkeys – appear to have been managed in very different ways than the Arroyo Hondo canids. The Arroyo Hondo turkeys belonging to the Southwestern domesticate lineage (aHap1) exhibit low-variance δ13C values in the range of C₄ plants (Figure 4; see Conrad et al. 2016; Kemp et al. 2017). In addition, osteometric evidence for broken and healed bones among the turkeys and the presence of turkey pens indicate that turkeys at Arroyo Hondo had restricted mobility, controlled diets, and extensive care by the humans with whom they lived (Fothergill 2016; Lang and Harris 1984).

This record contrasts with that of the Arroyo Hondo canids. Stable isotope values show that most of these had access to a range of C₃ and C₄ resources both for protein and carbohydrates/lipids. In one case (specimen AH6), an individual canid appears to have primarily accessed its protein from a C₄-dominant source. This source could have been turkey meat. Dogs eating meat from turkeys that consumed C₄ plant foods would exhibit enriched C₄ bone collagen protein stable isotope values, as AH6 does.

Conclusions
The Arroyo Hondo canids suggest a disjuncture between archaeological definitions of domestication and how Ancestral Puebloans considered dogs. In some of the specimens we tested, dogs match archaeological expectations for dogs, but in others coyotes seem to have been treated like dogs, and in yet others genetically domestic dogs seem to have eaten more like coyotes or wolves. In addition, the burial locations of the canids examined here suggest an after-life role for all of these individuals. Their proximity to architecture, despite the variability in genetics and lifetime dietary patterns, is key to understanding the relationships they had with humans, both before and after life.

These data, taken together, provide a cautionary tale about over-reliance on any one line of evidence in

![Figure 4](image-url): Collagen-derived δ13C and δ15N values of the canid specimens analyzed in this study and turkeys from Conrad et al. (2016).
identifying domestic animals. More importantly, they suggest that Arroyo Hondoans may have defined “dog” differently than present-day domestication researchers do – and that the use of multiple lines of evidence, including zooarchaeological, genetic, isotopic, contextual, and ethnographic, can provide a rich and more accurate understanding of past human-canid relationships.

Acknowledgements
This project would not have been possible without support from our colleagues, including Robin Lyle, Jennifer Day, Dave Phillips, Sherry Nelson, Seth Newsome, Laura Burkemper, and Viorel Atudorei. We thank the School for Advanced Research, particularly Jennifer Day, for access to the Arroyo Hondo faunal materials. We also thank Deanna Grimstead, Barnet Pavao-Zuckerman, and an anonymous reviewer for comments that substantially improved this paper. The research presented here was supported by funding from the Archaeological Society of New Mexico (to V.M.) and the National Science Foundation, Graduate Research Fellowship (#227866, to V.M.).

Competing Interests
The authors have no competing interests to declare.

References
Ainsworth, CS, Crown, PL, Jones, EL and Franklin, SE. 2018. Ritual Deposition of Avifauna in the Northern Burial Cluster at Pueblo Bonito, Chaco Canyon. KIVA, 84: 110–135. DOI: https://doi.org/10.1080/0231940.2017.1420615

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science, 17(4): 431–451. DOI:https://doi.org/10.1016/0305-4403(90)90007-R

Ambrose, SH and Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate In: Prehistoric Human Bone, 1–37. Springer. DOI: https://doi.org/10.1007/978-3-662-08294-0_1

Ames, KM, Richards, MP, Speller, CF, Yang, DY, Lyman, RL and Butler, VL. 2015. Stable isotope and ancient DNA analysis of dog remains from Cathlapotle (45C1), a contact-era site on the Lower Columbia River. Journal of Archaeological Science, 57: 268–282. DOI: https://doi.org/10.1016/j.jas.2015.02.038

Bartelink, E. 2009. Late Holocene Dietary Change in the San Francisco Bay Area. California Archaeology, 1(2): 227–251. DOI: https://doi.org/10.1179/cal.2009.12.227

Bogaard, A, Heaton, THE, Poulton, P and Merbach, I. 2007. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implication for reconstruction of diet and crop management practices. Journal of Archaeological Science, 34(3): 335–343. DOI:https://doi.org/10.1016/j.jas.2006.04.009

Bolton, HE. 2003. Spanish Borderlands: Chronicles of America V23. Chronicles of America series. Kessinger Publishing.
DeNiro, MJ and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42: 495–506. DOI: https://doi.org/10.1016/0016-7037(78)90199-0

DeNiro, MJ and Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45: 341–351. DOI: https://doi.org/10.1016/0016-7037(81)90244-1

Driscoll, CA, Macdonald, DW and O’Brien, SJ. 2009. From wild animals to domestic pets, an evolutionary view of domestication. Proceedings of the National Academy of Sciences, 106(1): 9971–9978. DOI: https://doi.org/10.1073/pnas.0901586106

Eerkens, JW, Mackie, M and Bartelink, EJ. 2013. Brackish water foraging: Isotopic landscapes and dietary reconstruction in Suisun Marsh, Central California. Journal of Archaeological Science, 40: 3270–3281. DOI: https://doi.org/10.1016/j.jas.2013.03.023

Ezzo, JA and Stiner, MC. 2000. A Late Archaic Period Dog Burial from the Tucson Basin, Arizona. KIVA, 66(2): 291–205. DOI: https://doi.org/10.1080/00231940.2000.11758433

Fair, JM and Heikoop, JM. 2006. Stable isotope dynamics of nitrogen sewage effluent uptake in a semi-arid wetland. Environmental Pollution, 140(3): 500–505. DOI: https://doi.org/10.1016/j.envpol.2005.08.005

Finucane, BC. 2007. Mummies, maize, and manure: Multi-tissue stable isotope analysis of late prehistoric human remains from the Ayacucho Valley, Peru. Journal of Archaeological Science, 34(12): 2115–2124. DOI: https://doi.org/10.1016/j.jas.2007.02.006

Flores, D. 2016. Coyote America: A Natural and Supernatural History. New York, Basic Books.

Fothergill, BT. 2016. Reconstructing animal husbandry: Trauma in Meleagris gallopavo (domestic turkey) ulnae from the American Southwest (c. 900–1678 CE). Journal of Archaeological Science: Reports, 10: 557–565. DOI: https://doi.org/10.1016/j.jasrep.2016.05.048

Frantz, LA, Mullin, VE, Pionnier-Capitan, M, Lebrasseur, O, Ollivier, M, Perri, A, Linderholm, A, MATTiAngeli, V, Teasdale, MD, Dimopoulos, EA, Tresset, A, Duffraisse, M, McCormick, F, Bartosiewicz, L, Gai, E, Nyerges, S, Sablin, MV, Brehard, S, Maashkour, M, Balasescu, A, Gillet, B, Hughes, S, Chassaign, O, Hitte, C, Vigne, J-D, Dobney, K, Hanni, C, Bradley, DG and Larson, G 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science, 352(6290): 1228–1231. DOI: https://doi.org/10.1126/science.aaf3161

Frisbie, TR. 1967. The Excavation and Interpretation of the Artificial Leg Basketmaker III-Pueblo I Sites Near Corrales, New Mexico, 1967. Master of Arts thesis, Department of Anthropology, University of New Mexico.

Fuller, BT, Fuller, JL, Sage, NE, Harris, DA, O’Connell, TC and Hedges, REM. 2005. Nitrogen balance and δ15N: Why you’re not what you eat during nutritional stress. Rapid Communications in Mass Spectrometry, 19(18): 2497–2506. DOI: https://doi.org/10.1002/rcm.2090

Geib, PR. 2011. Foragers and farmers of the northern Kayenta region. Salt Lake City: University of Utah Press.

Guiry, EJ. 2012. Dogs as Analogs in Stable Isotope-Based Human Paleodietary Reconstructions: A Review and Considerations for Future Use. Journal of Archaeological Method and Theory, 19(3): 351–376. DOI: https://doi.org/10.1007/s10816-011-9118-z

Guiry, EJ. 2013. A canine surrogacy approach to human paleodietary bone chemistry: Past development and future directions. Archaeological and Anthropological Sciences, 5(3): 275–286. DOI: https://doi.org/10.1007/s12520-013-0133-8

Handley, LL and Raven, JA. 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell & Environment, 15(9): 965–985. DOI: https://doi.org/10.1111/j.1365-3040.1992.tb01650.x

Hill, E. 2000. The Contextual Analysis of Animal Intermers and Ritual Practice in Southwestern North America. KIVA, 65(4): 361–398. DOI: https://doi.org/10.1080/00231940.2000.11758417

Hobson, KA, Alisauskas, RT and Clark, RG. 1993. Stable-Nitrogen Isotope Enrichment in Avian Tissues Due to Fasting and Nutritional Stress: Implications for Isotopic Analyses of Diet. The Condor, 95: 388–394. DOI: https://doi.org/10.2307/1369361

Howard, WE. 1949. A Means to Distinguish Skulls of Coyotes and Domestic Dogs. Journal of Mammalogy, 30(2): 169–171. DOI: https://doi.org/10.2307/1375266

Hu, Y, Hu, S, Wang, W, Wu, X, Marshall, FB, Chen, X, Hou, L and Wang, C. 2014. Earliest evidence for communal processes of cat domestication. Proceedings of the National Academy of Sciences, 111(1): 116–120. DOI: https://doi.org/10.1073/pnas.1311439110

Jones, EL, Conrad, C, Newsome, SD, Kemp, BM and Kocer, JM. 2016. Turkeys on the fringe: Variable husbandry in “marginal” areas of the prehistoric American Southwest. Journal of Archaeological Science: Reports, 10: 575–583. DOI: https://doi.org/10.1016/j.jasrep.2016.05.051

Katzenberg, A and Kelley, JH. 1991. Stable Isotope Analysis of Prehistoric Bone from the Serra Blanca Region of New Mexico. In: Beckett, PH (ed.), Mogollon V: Proceedings of the 1988 Mogollon Conference, 207–209. Las Cruces, N.M.

Kellner, CM and Schoeninger, MJ. 2007. A simple carbon isotope model for reconstructing prehistoric human diet. American Journal of Physical Anthropology, 133(4): 1112–1127. DOI: https://doi.org/10.1002/ajpa.20618

Kellner, CM, Spielmann, K, Moore, KM and Schoeninger, MJ. 2010. Stable isotope data show temporal stability in diet at Pecos Pueblo and diet variation among Southwest pueblos In: Morgan, ME (ed.), Pecos Pueblo Revisited: The Biological and Social Context, 79–91. Cambridge, Harvard University Press.
H, Searle, JB, Krause, J, Larson, G and Boivin, NL. 2017. Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets. PLOS ONE, 12: e0182565. DOI: https://doi.org/10.1371/journal.pone.0182565

Price, EO. 1984. Behavioral Aspects of Animal Domestication. The Quarterly Review of Biology, 59(1): 1–32. DOI: https://doi.org/10.1086/413673

Rawlings, TA and Driver, JC. 2010. Paleo diet of domestic turkey. Shields Pueblo (5MT3007), Colorado: Isotopic analysis and its implications for care of a household domesticate. Journal of Archaeological Science, 37(10): 2433–2441. DOI: https://doi.org/10.1016/j.jas.2010.05.004

Rick, TC, Culleton, BJ, Smith, CB, Johnson, JR and Kennett, DJ. 2011. Stable isotope analysis of dog, fox, and human diets at a Late Holocene Chumash village (CA-SRI-2) on Santa Rosa Island, California. Journal of Archaeological Science, 38(6): 1385–1393. DOI: https://doi.org/10.1016/j.jas.2010.05.004

Rose, MD and Polis, GA. 1998. The Distribution and Abundance of Coyotes: The Effects of Allochthonous Food Subsidies from the Sea. Ecology, 79(3): 998–1007. DOI: https://doi.org/10.1890/0012-9658(1998)079[0998:TDAAOC]2.0.CO;2

Russell, N. 2002. The Wild Side of Animal Domestication. Society & Animals, 10(3): 285–302. DOI: https://doi.org/10.1006/saai.2002.1003

Schoeninger, MJ. 1985. Trophic Level Effects on $^{15}N/^{14}N$ and $^{13}C/^{12}C$ Ratios in Bone Collagen and Strontium Levels in Bone Mineral. Journal of Human Evolution, 14(5): 515–525. DOI: https://doi.org/10.1016/S0047-2484(85)80030-0

Schurr, MR. 1998. Using stable nitrogen-isotopes to study weaning behavior in past populations. World Archaeology, 30(2): 327–342. DOI: https://doi.org/10.1080/00438243.1998.9980413

Schwarz, HP. 1991. Some Theoretical Aspects of Isotope Paleo diet Studies. Journal of Archaeological Science, 18: 261–275. DOI: https://doi.org/10.1016/0305-4403(91)90065-W

Serrell, J. 1995. The Domestic Dog: Its Evolution, Behaviour and Interactions with People. Cambridge, Cambridge University Press.

Sharpe, AE, Emery, KF, Inomata, T, Triadan, D, Kamenov, GD and Krigbaum, J. 2018. Earliest isotopic evidence in the Maya region for animal management and long-distance trade at the site of Ceibal, Guatemala. Proceedings of the National Academy of Sciences, 115: 3605–3610. DOI: https://doi.org/10.1073/pnas.1713880115

Spielmann, KA, Schoeninger, MJ and Moore, K. 1990. Plains-Pueblo interdependence and human diet at Pecos Pueblo, New Mexico. American Antiquity, 55: 745–765. DOI: https://doi.org/10.2307/281248

Steele, KW and Daniel, RM. 1978. Fractionation of nitrogen isotopes by animals: A further complication to the use of variations in the natural abundance of ^{15}N for tracer studies. Journal of Agricultural Science, 90: 7–9. DOI: https://doi.org/10.1017/S002185960004853X

Stephen, AM. 1929. Hopi tales. The American Journal of Folklore, 42(163): 1–72. DOI: https://doi.org/10.2307/535088

Stewart, OC. 1942. Culture Element Distributions: XVIII Ute-Southern Paiute. Berkeley, University of California Press.

Swarts, K, Gutaker, RM, Benz, B, Blake, M, Bukowski, R, Holland, J, Kruse-Peeples, M, Lepak, N, Prim, L, Romay, MC, Ross-Ibarra, J, Sanchez-Gonzalez, JJ, Schmidt, C, Schuenemann, VJ, Krause, J, Matson, RG, Weigel, D, Buckley, ES and Burbano, HA. 2017. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 357(6350): 512–515. DOI: https://doi.org/10.1126/science.aam9425

Szpak, P. 2014. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: Implications for the study of ancient agricultural and animal management practices. Frontiers in Plant Science, 5: 288. DOI: https://doi.org/10.3389/fpls.2014.00288

Thornton, EK, Emery, KF, Steadman, DW, Speller, C, Matheny, R and Yang, D. 2012. Earliest Mexican Turkeys (Meleagris gallopavo) in the Maya Region: Implications for Pre-Hispanic Animal Trade and the Timing of Turkey Domestication. PLoS ONE, 7: e42630. DOI: https://doi.org/10.1371/journal.pone.0042630

Tyler, HA. 1975. Pueblo animals and myths. Norman, OK: University of Oklahoma Press.

Tyler, HA. 1979. Pueblo birds and myths. Norman, OK: University of Oklahoma Press.

Ugan, A and Coltrain, J. 2011. Variation in collagen stable nitrogen values in black-tailed jackrabbits (Lepus californicus) in relation to small-scale differences in climate, soil, and topography. Journal of Archaeological Science, 38: 1417–1429. DOI: https://doi.org/10.1016/j.jas.2011.01.015

Valadez, R, Rodriguez, B, Manzanilla LR and Tejeda, S. 2006. 13. Dog-wolf Hybrid Biotype Reconstruction from the Archaeological City of Teotihuacan in Prehispanic Central Mexico In: Snyder, L and Moore, EA (eds.), Dogs and People in Social, Working, Economic or Symbolic Interaction, 121–131. Oxbow Books.

Vijayakumar, S, Prabhuv, S, Morvin Yabesh, JE and Pragashraj, R. 2015. A quantitative ethnozoological study of traditionally used animals in Pachamalai hills of Tamil Nadu, India. Journal of Ethnopharmacology, 171: 51–63. DOI: https://doi.org/10.1016/j.jep.2015.05.023

Walker, WH. 1998. Where Are the Witches of Prehistory? Journal of Archaeological Method and Theory, 5(3): 245–308. DOI: https://doi.org/10.1007/BF02428071

Warsen, SA, Frair, JL and Teece, MA. 2014. Isotopic investigation of niche partitioning among native carnivores and the non-native coyote (Canis latrans).
Isotopes in environmental and health studies, 50(3): 414–424. DOI: https://doi.org/10.1080/10256016.2014.897946

Webster, M and Katzenberg, A. 2008. Dietary Reconstruction and Human Adaptation in West Central Chihuahua In: Kemrer, MF (ed.), Celebrating Jane Holden Kelley and Her Work. Albuquerque, New Mexico Archaeological Council Special Publication 5. 71–102.

Wetterstrom, W. 1986. Food, diet, and population at prehistoric Arroyo Hondo Pueblo, New Mexico. Santa Fe, School of American Research Press.

Winship, GP. 1904. The Journey of Coronado 1540–1542. New York, Barnes & Company.

Zeder, MA. 2006. Chapter 13. Archaeological Approaches to Documenting Animal Domestication. In: Zeder, MA, Bradley, DG, Emshwiller, E, Smith, BD and Bradley, D (eds.), Documenting Domestication: New Genetic and Archaeological Paradigms. Berkeley, CA: University of California Press.

Zeder, MA. 2012. The Domestication of Animals. Journal of Anthropological Research, 68: 161–190. DOI: https://doi.org/10.3998/jar.0521004.0068.201

Zeder, MA, Bradley, DG, Emshwiller, E, Smith, BD and Bradley, D. 2006. Documenting Domestication: New Genetic and Archaeological Paradigms. Berkeley, CA: University of California Press.