Optimizing over Serial Dictatorships

Nidhi Rathi
Max-Planck-Insitut für Informatik

Ioannis Caragiannis
Aarhus University, Denmark
Serial Dictatorship: an *action sequence* \((\sigma_1, \sigma_2, \ldots, \sigma_n)\) of *n* agents, where each agent picks the best available option at her turn
Complete weighted bipartite graph

Goal: *Maximum-weight matching*

Serial Dictatorship: an action sequence \((\sigma_1, \sigma_2, \ldots, \sigma_n)\) of \(n\) agents, where each agent picks the best available option at her turn.
Motivation

Serial Dictatorship: an action sequence $(\sigma_1, \sigma_2, \ldots, \sigma_n)$ of n agents, where each agent picks the best available option at her turn.

Complete weighted bipartite graph

Goal: Maximum-weight matching

Remaining edge weights = 0
Motivation

Action sequence: 1 4 3 2 produces the maximum-weight matching

Serial Dictatorship: an action sequence \((\sigma_1, \sigma_2, \ldots, \sigma_n)\) of \(n\) agents, where each agent picks the best available option at her turn.
Motivation

Serial Dictatorship: an *action sequence* $(\sigma_1, \sigma_2, \ldots, \sigma_n)$ of n agents, where each agent picks the best available option at her turn.

Action sequence: $1, 4, 3, 2$ produces the maximum-weight matching.
Motivation

Serial Dictatorship: an action sequence \((\sigma_1, \sigma_2, \ldots, \sigma_n)\) of \(n\) agents, where each agent picks the best available option at her turn.

Action sequence: \(1 \ 4 \ 3 \ 2\) produces the maximum-weight matching.
Motivation

Serial Dictatorship: an action sequence $(\sigma_1, \sigma_2, \ldots, \sigma_n)$ of n agents, where each agent picks the best available option at her turn.

Action sequence: $1\ 4\ 3\ 2$ produces the maximum-weight matching.
Motivation

Serial Dictatorship: an action sequence \((\sigma_1, \sigma_2, \ldots, \sigma_n)\) of \(n\) agents, where each agent picks the best available option at her turn.

Action sequence: \(1\ 4\ 3\ 2\) produces the maximum-weight matching.

Remaining edge weights = 0
Theorem: Any max-weight matching in a complete weighted bipartite graph, can always be induced by an action sequence of n agents.

Serial Dictatorship: an action sequence $(\sigma_1, \sigma_2, \ldots, \sigma_n)$ of n agents, where each agent picks the best available option at her turn.
General Query model

- A set \(\{1, 2, \ldots, n\} \) of \(n \) entities
- \textit{Monotone} valuation functions, \(v_i : S \rightarrow \mathbb{R}_+ \) for all \(i \in [n] \)

 \(S \) is the set of all ordered subsets of \([n] \setminus \{i\} \)
A set \(\{1, 2, \ldots, n\} \) of \(n \) entities

Monotone valuation functions, \(v_i : S \rightarrow \mathbb{R}_+ \) for all \(i \in [n] \)

\((S \) is the set of all ordered subsets of \([n] \setminus \{i\}\))

Value Queries: \(v_i(S) \) = value of agent \(i \) when she gets to pick after agents in the ordered set \(S \in S \) have come
General Query model

• A set \(\{1, 2, \ldots, n\} \) of \(n \) entities
• Monotone valuation functions, \(v_i : S \rightarrow \mathbb{R}_+ \) for all \(i \in [n] \)
 \((S \text{ is the set of all ordered subsets of } [n] \setminus \{i\})\)

Value Queries: \(v_i(S') = \text{value of agent } i \text{ when she gets to pick after agents in the ordered set } S' \in S \text{ have come} \)

Monotonicity: \(v_i(S') \geq v_i(S) \) for all ordered subsets \(S' \text{ of } S \)

Eg: \(v_2(\phi) \geq v_2(61) \geq v_2(641) \)
General Query model

• A set \(\{1, 2, \ldots, n\} \) of \(n \) entities
• *Monotone* valuation functions, \(v_i : S \rightarrow \mathbb{R}_+ \) for all \(i \in [n] \)
 (\(S \) is the set of all ordered subsets of \([n] \setminus \{i\} \))

Value Queries: \(v_i(S) \) = value of agent \(i \) when she gets to pick after agents in the ordered set \(S \in S \) have come

Monotonicity: \(v_i(S') \geq v_i(S) \) for all ordered subsets \(S' \) of \(S \)

Eg: \(v_2(\phi) \geq v_2(61) \geq v_2(641) \)

Goal: Understand the query complexity (# value queries required) of finding an action sequence \(\sigma \) that optimizes \(\sum_{i \in [n]} v_i(\sigma^i) \), where \(\sigma^i : \text{prefix of } i \text{ in } \sigma \)

For \(\sigma = (1432) \), the sum is \(v_1(\phi) + v_4(1) + v_3(14) + v_2(143) \)
General Query model

- Monotone valuation functions, \(v_i : S \rightarrow \mathbb{R}_+ \) for all \(i \in [n] \)
- Access via value queries of the form \(v_i(S) \)

Theorem:
For instances with binary valuations and a given parameter \(\varepsilon > 0 \)

Goal: Understand the query complexity (\# value queries required) of finding an action sequence \(\sigma \) that optimizes \(\sum_{i \in [n]} v_i(\sigma^i) \), where \(\sigma^i \) : prefix of \(i \) in \(\sigma \)
• *Monotone* valuation functions, \(v_i : S \rightarrow \mathbb{R}_+ \) for all \(i \in [n] \)

• Access via *value queries* of the form \(v_i(S) \)

Theorem:

For instances with *binary* valuations and a given parameter \(\varepsilon > 0 \)

• any *deterministic* algorithm that makes at most \(n^{1/\varepsilon} \) value queries has an *approximation ratio* of at least \(n\varepsilon \).

Goal: Understand the *query complexity* (# value queries required) of finding an action sequence \(\sigma \) that optimizes \(\sum_{i \in [n]} v_i(\sigma^i) \), where \(\sigma^i : \text{prefix of } i \text{ in } \sigma \)
General Query model

- **Monotone** valuation functions, \(v_i : S \rightarrow \mathbb{R}_+ \) for all \(i \in [n] \)
- Access via value queries of the form \(v_i(S) \)

Theorem:
For instances with binary valuations and a given parameter \(\varepsilon > 0 \)
- any deterministic algorithm that makes at most \(n^{1/\varepsilon} \) value queries has an approximation ratio of at least \(n\varepsilon \).
- any randomized algorithm that makes at most \(\mathcal{O}(\text{poly}(n)) \) value queries has an approximation ratio of at least \(n\left(\frac{\log \log n}{\log n}\right) \).

Goal: Understand the query complexity (\# value queries required) of finding an action sequence \(\sigma \) that optimizes \(\sum_{i \in [n]} v_i(\sigma^i) \), where \(\sigma^i : \text{prefix of } i \text{ in } \sigma \)
Specific Problems

Maximum weight matching:

\[v_i(S) = \text{value of maximum-valued item available for } i, \text{ after agents in } S \text{ have picked their items.} \]

Goal: Find an action sequence \(\sigma \) that maximizes the social welfare,
\[SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i) \]
and understand its relation with the overall maximum social welfare.
Specific Problems

Maximum weight matching:

\[v_i(S) = \text{value of maximum-valued item available for } i, \text{ after agents in } S \text{ have picked their items.} \]

Our results:

- Any max-weight matching \textbf{has} a corresponding \textit{action sequence} of \(n \) agents that induces it.

Goal: Find an action sequence \(\sigma \) that maximizes the social welfare, \(SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i) \) and understand its relation with the overall maximum social welfare.
Specific Problems

Maximum weight matching:

\[v_i(S) = \text{value of maximum-valued item available for } i, \text{ after agents in } S \text{ have picked their items.} \]

Our results:

- Any max-weight matching has a corresponding action sequence of \(n \) agents that induces it.
- 2-approximation polynomial-time algorithm.
 Can we do better?

Goal: Find an action sequence \(\sigma \) that maximizes the social welfare, \(SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i) \) and understand its relation with the overall maximum social welfare.
Specific Problems

Maximum Satisfiability (weighted version):

\[v_i(S) = \text{Maximum weight of new clauses satisfied by variable } x_i \]

after the variables in ordered set S have been set as T or F.

Goal: Find an action sequence \(\sigma \) that maximizes the social welfare,

\[SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i) \]

and understand its relation with the overall maximum social welfare.
Specific Problems

Maximum Satisfiability (weighted version):

\[v_i(S) = \text{Maximum weight of } \textit{new} \text{ clauses satisfied by variable } x_i \]

after the variables in ordered set S have been set as T or F.

Our results:

- An optimal assignment for MAX-SAT may \textit{not} be produced from \textit{any} action sequence of \(n \) variables!
Specific Problems

Maximum Satisfiability (weighted version):

$v_i(S) = \text{Maximum weight of } new \text{ clauses satisfied by variable } x_i \text{ after the variables in ordered set } S \text{ have been set as T or F.}$

Our results:

- An optimal assignment for MAX-SAT may **not** be produced from *any* action sequence of n variables!

Conjecture: For any instance of MAX-SAT, there exists an action sequence that achieves $2/3$ of the optimal value.
 (2-approximation is doable)
Specific Problems

Maximum Satisfiability (weighted version):

\[v_i(S) = \text{Maximum weight of new clauses satisfied by variable } x_i \]

after the variables in ordered set S have been set as T or F.

Our results:

- An optimal assignment for MAX-SAT may *not* be produced from *any* action sequence of \(n \) variables!
- *Given an instance of MAX-SAT, does there exist an action sequence for all 1’s assignment?*

Conjecture: For any instance of MAX-SAT, there exists an action sequence that achieves \(\frac{2}{3} \) of the optimal value. *(2-approximation is doable)*
The Big Picture

- Introduce a *query model for understanding serial dictatorship* in the abstract setting.
- *Upper and Lower bounds* for the query complexity of optimizing serial dictatorship (the action sequence that maximizes the social welfare)
• Introduce a *query model for understanding serial dictatorship* in the abstract setting.

• *Upper and Lower bounds* for the query complexity of optimizing serial dictatorship (the action sequence that maximizes the social welfare)

• *Revisit* some of the celebrated problems in theoretical computer science and inspect the connection between their optimal solutions and *serial dictatorships*.

The Big Picture

- Maximum-weight Matching in bipartite graph
- Maximum-weight Matching in non-bipartite graph
- Maximum Satisfiability (weighted version)
- Longest path with maximum-weight
- Maximum-weight Arborescence
- Maximum-weight Cut
• Introduce a *query model for understanding serial dictatorship* in the abstract setting.

• *Upper and Lower bounds* for the query complexity of optimizing serial dictatorship (the action sequence that maximizes the social welfare)

• *Revisit* some of the celebrated problems in theoretical computer science and inspect the connection between their optimal solutions and *serial dictatorships*.

The Big Picture

- Maximum-weight Matching in bipartite graph
- Maximum-weight Matching in non-bipartite graph
- Maximum Satisfiability (weighted version)
- Longest path with maximum-weight
- Maximum-weight Arborescence
- Maximum-weight Cut

Thank you!
Specific Problems

Longest path with maximum weight:

\[v_i(S) = \text{Maximum weight that node } i \text{ can achieve such that the underlying structure is a union of paths} \]

Our results:

- An optimal assignment for Longest-Path may not be produced from any action sequence of \(n \) nodes.

- For any instance of Longest-Path, there always exists an action sequence that recovers \(\frac{1}{2} \) of the optimal value.

Conjecture: The above factor is \(\frac{2}{3} \).

Goal: Find an action sequence \(\sigma \) that maximizes the social welfare, \(SW(\sigma) = \sum_{i \in [n]} v_i(\sigma^i) \) and understand its relation with the overall maximum social welfare.