Structural implications of agonist efficiency estimated from concentration-response curves

Running title: agonist efficiency

D. C. Indurthi and A. Auerbach

Key words: nicotinic, acetylcholine receptor, dose-response, pharmacology
Abstract

Agonists are evaluated by concentration-response curves (CRCs) with midpoints (EC$_{50}$) that indicate potency and high-concentration asymptotes (P$_{0}^{\text{max}}$ or I$_{\text{max}}$) that indicate efficacy. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that in skeletal muscle nicotinic receptors, if the unliganded gating constant is known η can be estimated from EC$_{50}$ and P$_{0}^{\text{max}}$ of a CRC derived from either single-channel or whole-cell response. For 20 nicotinic agonists, the distribution of η values is bimodal with population means at 51% (including ACh, nornicotine and DMPP) and 40% (including epibatidine, varenicline and cytisine). The value of η is related inversely to the size of the agonist’s head-group, with high- versus low-efficiency ligands having an average volume of 70 Å3 versus 102 Å3. Most binding site mutations have only a small effect on ACh efficiency except for αY190A (35%), αW149A (60%) and those at αG153 (42%). If η is known, EC$_{50}$ and I$_{\text{max}}$ can be calculated from each other, so that EC$_{50}$ can be estimated from the response to a single agonist concentration and I$_{\text{max}}$ can be estimated from the midpoint of a normalized CRC. Given η, the level of constitutive activity can be estimated from a single CRC.
Introduction

Nicotinic acetylcholine receptors (AChRs) are members of the cys-loop, ligand-gated receptor family that in mammals also comprise GABA_A, glycine, 5-HT_3 and zinc-activated receptors (1). They are 5-subunit, liganded-gated ion channels with agonist binding sites in the extracellular domain, far from a narrow region of the pore in the transmembrane domain that regulates ion conductance (2, 3).

AChRs switch between global C(losed-channel) and O(pen-channel) conformations (‘gating’) to produce transient membrane currents. Agonists promote channel opening because they bind more strongly to the O conformation. The energy (structure) of the binding site at the gating transition state resembles O (4). When a receptor begins its journey from C to O, the extra (favorable) binding energy eases the pathway, thereby increasing the probability of reaching and residing in O (Po) (5, 6).

AChRs are the primary receptors at vertebrate neuromuscular synapses where they initiate muscle membrane depolarization and contraction. Neuromuscular AChRs have two α1 subunits and one each of β, δ and either ε (adult) or γ (fetal). There are two neurotransmitter binding-sites located at α₁δ and α₁ε/γ subunit interfaces (7) that are approximately equivalent for ACh in adult-type AChRs (5). AChRs switch conformation spontaneously (only under the influence of temperature), with the presence of neurotransmitters at both adult sites increasing the opening rate constant by a factor of ~5 million and the lifetime of the O conformation by a factor of ~5.

Agonists are typically characterized by a potency (proportional to affinity) and an efficacy. Affinity is a measure of how strongly the ligand binds to its target site and is the inverse of an equilibrium dissociation constant. The constants K_dC and K_dO correspond to low-affinity (weak) binding to the C conformation and high-affinity (strong) binding to
the O conformation. (The logarithm of an equilibrium dissociation constant is proportional to binding energy.)

The high-concentration asymptote of a CRC, or the maximum response elicited by the ligand, is called P_0^{max} in single-channel or I^{max} in whole-cell currents. This limit gives the agonist’s efficacy and depends only on the fully-liganded gating equilibrium constant. The midpoint of a CRC, or the agonist concentration that produces a half-maximal response, is called EC$_{50}$ or potency. EC$_{50}$ is proportional to K_d but also depends on the gating equilibrium constant.

The low-concentration asymptote of a CRC, or the level of constitutive activity in the absence of agonists (P_0^{min} or I^{min}), depends on the unliganded gating equilibrium constant that is typically extremely small and difficult to measure. However, it is important to know the exact value of this constant because it multiplies the fully-liganded gating equilibrium constant to influence potency, efficacy and synaptic current profiles. Allosteric modulators and AChR mutations (8), including some that cause slow-channel myasthenic syndromes (9), alter EC$_{50}$, efficacy, and the time course of synaptic currents by increasing or decreasing the unliganded gating equilibrium constant without making a noticeable change in baseline activity.

Recently, efficiency (η; eta) was defined as the fraction of an agonist’s chemical binding energy that is converted into the mechanical (kinetic) energy for gating (10). As shown previously (and again below by using a different approach), η is a function of the resting/active binding energy ratio, $\log K_{dc}/\log K_{d0}$. Direct, independent measurements of these two equilibrium dissociation constants obtained by detailed kinetic modeling of single-channel currents indicated that at adult-type human AChR neurotransmitter binding sites, ACh and 3 related agonists on average apply ~50% of their binding energy.
to gating whereas at the α1–δ binding site the frog toxin epibatidine and 3 related agonists on average apply only ~40% (10).

Here, we show that agonist efficiency can be estimated from the asymptotes and EC$_{50}$ of a CRC constructed from either single-channel or whole-cell currents. Given two agonists with the same EC$_{50}$, the one with the larger efficacy has the greater η. We provide separate efficiency estimates for 20 agonists of mouse adult AChRs and show that knowledge of agonist efficiency broadens our understanding of drug action.
Materials and Methods

Experimental design

Expression. Human embryonic kidney (HEK) 293 cells were maintained in Dulbecco’s minimal essential medium supplemented with 10% fetal bovine serum and 1% penicillin–streptomycin, pH 7.4. For single-channel experiments, AChRs were expressed by transient transfection of 3 μg mouse α1, β, δ and ε subunits in the ratio 2:1:1:1 (TransIT® 293 transfection reagent; Mirus Bio, Madison, WI). Electrophysiological experiments started ~48 hours post-transfection. For whole cell recording, HEK-293 cells were transiently transfected with adult-type mouse AChRs using calcium phosphate precipitation. 20 μg of cDNA was added in the ratio of 2:1:1:1 (α1-GFP encoded between M3-M4, β, δ and ε) to a T75 flask at ~60% confluence. Cells were incubated for ~16 hr at 37°C, replenished with fresh medium and harvested after ~20 hrs of washing. GFP positive cells were sorted by using a ABD FACS Fusion 4 laser Cell Sorter (Becton Dickinson, Franklin Lakes, NJ). Cells were excited with laser at 488 nm and the GFP signal was collected in the green channel through a 530/40 filter. A light scatter gate was drawn in the SSC versus FS plot to exclude debris and to include viable single cells. No animals were used in this study.

Electrophysiology. Single-channel currents were recorded in the cell-attached patch configuration at 23°C. The bath solution was (in mM): 142 KCl, 5.4 NaCl, 1.8 CaCl2, 1.7 MgCl2, 10 HEPES/KOH (pH 7.4). Patch pipettes were fabricated from borosilicate glass and fire polished to a resistance of ~10 MΩ when filled with the pipette solution that was Dulbecco’s phosphate-buffered saline (in mM): 137 NaCl, 0.9 CaCl2, 2.7 KCl, 1.5 KH2PO4, 0.5 MgCl2, and 8.1 Na2HPO4 (pH 7.3/NaOH). Currents were recorded using a PC505
amplifier (Warner instruments, Hamden, CT), low-pass filtered at 20 kHz and digitized at a sampling frequency of 50 kHz using a data acquisition board (SCB-68, National instruments, Austin, TX). Agonists were added to the pipette solution at the desired concentration.

Whole-cell currents were recorded using an IonFlux 16 automated patch-clamp system (Fluxion, California, USA) on 96-well IonFlux microfluidic ensemble plates that give a cumulative whole-cell current from up to 20 cells. GFP-positive cells were re-suspended in extracellular solution containing (in mM): 138 NaCl, 4 KCl, 1.8 CaCl$_2$, 1 MgCl$_2$, 5.6 glucose and 10 HEPES, pH adjusted to 7.4 with NaOH. Cells were captured in the trapping wells with intracellular solution containing 60 KCl, 70 KF, 15 NaCl, 5 HEPES and 5 EGTA, pH adjusted to 7.2 using KOH. Cells clamped at -80 mV were exposed to a 2 s agonist application followed by 90 s wash between applications to allow recovery from desensitization. IonFlux software (ver.4.5) was used for cell capture, seal formation, compound application and data acquisition.

Analysis. Scheme 1 (Fig. 1) shows the main states of AChR activation/de-activation. When agonist-binding and channel-opening rate constants are sufficiently large, single-channel openings occur in clusters (11) (Fig. 2A, Fig. S1-S4). Shut intervals within clusters represent mainly agonist binding to C and channel opening (bold in Fig. 1), whereas shut intervals between clusters represent mainly long-lived desensitization (not shown in Fig. 1; for connections see (6)). We selected for analysis clusters that appeared by eye to arise from a homogeneous Po population and, in order to exclude sojourns in desensitized states, limited our analyses to intra-cluster interval durations.
Figure 1. Cyclic activation of AChRs (Scheme 1). Receptors switch between C(losed-channel) and O(pen-channel) conformations spontaneously (influenced only by temperature) with or without agonists (A). Equilibrium constants: E_n, gating with n bound agonists; K_{dC} and K_{dO}, dissociation constants to C (low affinity) and to O (high affinity). The adult-type, endplate AChR binding sites are approximately equivalent and independent with regards to the agonists used in this study. From experiments and microscopic reversibility, $E_2/E_0 = (K_{dC}/K_{dO})^2$. Agonists increase activity above the baseline level because they bind more-strongly to O, with the extra binding energy serving mainly to increase the channel-opening rate constant (red arrows). Thick arrows mark the main physiological activation–deactivation pathway.
Because of the high extracellular [K\(^+\)], the cell membrane potential (V\(_m\)) was 0 mV. The AChR agonists we examined also are channel-blockers. To both generate measurable currents and reduce the effect of channel block on P\(_o\), the membrane was depolarized to +70 mV by holding the pipette at -70 mV. This effectively eliminated agonist binding to the channel-block site in the transmembrane domain but did not affect agonist binding to the neurotransmitter sites in the extracellular domain.

Analyses of the single-channel (outward) currents were performed by using QUB software (12). A cluster was defined as a group of openings flanked by shut intervals longer than a duration that depended on the agonist concentration (range, 7-20 ms). Open and shut currents within clusters were idealized into noise-free intervals by using the segmental k-means algorithm after digitally low-pass filtering the data at 10 kHz (13). Idealized interval durations were fitted by multiple exponential components using a maximum interval likelihood algorithm (14). Cluster P\(_o\) at each agonist concentration was calculated from the time constants of the predominant components of the shut- (\(\tau_s\)) and open-time distributions (\(\tau_o\)): \(\tau_o/ (\tau_s + \tau_o)\) (Fig. 2B). The single-channel CRC was a plot of the absolute P\(_o\) (not normalized) versus the agonist concentration.

Whole-cell currents were digitized using a sampling frequency of 10 kHz and were analyzed using IonFlux Data Analyzer v5.0. Peak currents were normalized to a maximum response (I/I\(^{\text{max}}\)), where I\(^{\text{max}}\) was either the response to 300 \(\mu\)M ACh or 1. The 20-80% rise time to a step to 300 \(\mu\)M ACh was \(~400\) ms, a time we attribute to solution exchange.

The rate of entering a long-lived desensitized state is proportional to cluster P\(_o\) and occurs with a rate constant of \(~5\) s\(^{-1}\) (15). Hence, when P\(_o\) is 1 the whole-cell current
declines with a time constant of ~200 ms. As a consequence, the peaks of currents elicited by high-concentrations of high-efficacy agonists are truncated because of the solution exchange time. This has the effect of shifting EC$_{50}$ to lower concentrations. Responses at lower agonist concentrations or from lower-efficacy agonists were unaffected by desensitization.

The midpoint, maximum and slope of each CRC (EC$_{50}$, $P_{O_{\max}}$ or I_{\max}, and n_H) were estimated by fitting by Eq. 1 using GraphPad Prism 6. Eq. 9 was solved numerically for E_2 by using the symbolic math program Wolfram Alpha.

Voltage, E_o and background mutations. Depolarization to V_m=+70 mV reduces channel block by the agonist but has the undesired consequence of shortening τ_0 to make single-channel current detection and idealization difficult. To compensate, we added the background mutation εS450W (in the M4 transmembrane segment of the ε subunit) that has the equal-but-opposite effect on the unliganded gating equilibrium constant E_0 as does depolarization by +140 mV but has no effect on agonist binding (16). With this mutation, τ_0 and E_0 at +70 mV were the same as in wild-type (wt), adult AChRs at V_m=-70 mV. E_0 at -100 mV is 7.4 x 10$^{-7}$ and is reduced e-fold by a 60 mV depolarization (17). Hence, we estimate that in our experiments at V_m=+70 mV and with εS450W, E_0 was 5.2 x 10$^{-7}$. In the whole-cell experiments, V_m=-80 mV and we estimate E_0 was 5.9x10$^{-7}$.

With the low-efficacy agonists varenicline, tetraethylammonium and tetramethylphosphonium, current clusters generated by wt AChRs were poorly defined because the channel-opening rate constant was small. For these ligands, P_{O} could not be estimated accurately using wt AChRs. To increase the diliganded opening rate constant
and generate better-defined, higher-P₀ clusters, we added two background mutations in the ε subunit, εL269F (in the M2 helix) and εE181W (in strand β9), without εS450W. Together, these two substitutions increase E₀ by 1084-fold (making it 4.9x10⁻⁴) without affecting agonist binding (18, 19). From the uncorrected CRC, we estimated an E₂ value from the P₀max (Eq. 4) and KᵩC from ECₛₒ. We divided this E₂ by 1084 to arrive at a corrected E₂ from which we calculated corrected P₀max and ECₛₒ values that pertain to wt AChRs (Table 1).

Equations. Single-channel CRCs were constructed from Po values after eliminating extraneous events arising from channel block, desensitization and modal activity (20). Whole-cell CRCs were constructed from peak currents. ECₛₒ and P₀max (or Iₘ₉) were estimating by fitting the CRC,

\[P_0 = \frac{P_0^{max}}{1 + (\frac{EC_{50}}{[\text{agonist}]} \right)^{\eta H}} \quad \text{Eq. 1} \]

Scheme 1 (Fig. 1) was used to estimate η from ECₛₒ and P₀max (Iₘ₉). Because microscopic reversibility is satisfied,

\[\frac{E_2}{E_0} = \left(\frac{K_{dC}}{K_{dO}} \right)^2 \quad \text{Eq. 2} \]

E₂ and E₀ are the diliganded and unliganded gating equilibrium constants and KᵩC and KᵩO are the equilibrium dissociation constants for binding to C and O. The exponent reflects the fact that in adult-type AChRs there are 2 neurotransmitter sites that are approximately equivalent and independent with regards to the agonists used in this study. Eq. 2 has been confirmed by experiment (5).
Constitutive and mono-liganded activity are both rare, so in wt AChRs the only significant pathway that generates current is the clockwise, linear activation route highlighted in Fig. 1. Transitions between these 4 states determine P_O and, hence, the experimental values of EC_{50} and $P_{\text{O}}^{\text{max}}$ (or I_{max}).

EC_{50} depends on both binding and gating equilibrium constants,

$$EC_{50} = \frac{K_{dC}\sqrt{E_2+2}}{E_2+1}.$$ \hspace{1cm} \text{Eq. 3}

$P_{\text{O}}^{\text{max}}$ (I_{max}) depends only on the gating equilibrium constant,

$$P_{\text{O}}^{\text{max}} = \frac{E_2}{E_2+1}.$$ \hspace{1cm} \text{Eq. 4}

Agonist efficacy depends on the gating equilibrium constant that from Eq. 2 is a function of the affinity ratio, K_{dC}/K_{dO}. Taking the log of Eq. 2, we see that efficacy is determined by the \textit{difference} between the binding energies, $\log(K_{dC})-\log(K_{dO})$. Partial agonists experience smaller increases in O versus C binding energy compared to full agonists, antagonists experience no change in binding energy, and inverse agonists experience a decrease in favorable binding energy upon receptor activation.

In contrast, η depends on the \textit{ratio} of these binding energies, $\log(K_{dC})/\log(K_{dO})$, as shown previously (10) and as follows. Agonist activation of a resting, unliganded AChR entails connecting the resting-unliganded state C to the diligated-active state $A_\omega O$ (Fig. 1). The product of the equilibrium constants (or sum of the energy changes) for steps linking these states in the clockwise direction (the highlighted, physiological activation route) is the same as in the rarely-taken, counter-clockwise direction. The product of the counter-clockwise constants is E_0/K_{dO}^2, the negative log of which is proportional to the \textit{total} energy required for constitutive gating and binding to O at 2 sites, $2\log(K_{dO})-\log E_0$.

The product of the equilibrium dissociation constants connecting C with A_2C is $1/K_{dc}$, the negative log of which is proportional to the energy for just the *binding* part of clockwise activation, $2\log(K_{dc})$. We are interested only in the agonist component of the total energy and, because E_0 is agonist-independent, it can be ignored. Hence, the fraction of the *total* agonist energy that is used in *binding* is $2\log K_{dc}/2\log K_{do}$, so efficiency, or the fraction of this total that is applied to *gating*, is

$$\eta = 1 - \frac{\log K_{dc}}{\log K_{do}}$$ \hspace{1cm} \text{Eq. 5}$$

Efficacy and efficiency are distinct, but related, agonist attributes. In terms of energy, efficiency is equal to efficacy ($\log K_{do}-\log K_{dc}$) divided by $\log K_{do}$ (Eq. 5). An agonist can be high efficacy and low efficiency (epibatidine) or low efficacy and high efficiency (choline), but within limits. If an agonist had $P_{O_{\max}}=0.75$ (the same as TMA) and $\eta=30\%$ it would have unreasonably small equilibrium dissociation constants, $K_{dc}=27$ nM and $K_{do}=15$ pM. In practice, high-efficacy agonists will also have high efficiencies.

Agonist efficiency was calculated from EC_{50} and $P_{O_{\max}}$ by using Eqs. 2-4, as follows. First, E_2 was calculated from $P_{O_{\max}}$ (Eq. 4). Second, K_{dc} was calculated from E_2 and EC_{50} (Eq. 3). Third, K_{do} was calculated from E_2 and K_{dc} using a known value of E_0 (Eq. 2). Finally, efficiency was calculated from the two equilibrium dissociation constants (Eq. 5).

Four prior results enabled us to estimate η from a CRC. First, adult AChR binding sites have approximately the same affinity, so only single values of the equilibrium dissociation constants needed to be estimated for each ligand. Second, Scheme 1 and microscopic reversibility have been proved experimentally, so K_{ac} could be calculated using Eqs. 3 and 4. Third, the unliganded gating equilibrium constant E_0 has been
measured so K_{d0} could be calculated by using Eq. 2. In an ‘efficiency’ plot for a group of ligands (10), E_0 is estimated from the y-intercept (see Eq. 8, below). However, prior knowledge of E_0 is required to estimate efficiency from a single CRC. E_0 needs to be estimated only once each receptor at a given membrane potential.

Statistical analyses. The goodness of fit for the efficiency frequency distribution (Fig. 5A) was estimated using Prism software (GraphPad Inc., San Diego, CA). The F-test rejects the null hypothesis (Gaussian fit) over sum of two Gaussian with an F-value ($F=3.9$) and significance (P-value, <0.05). A k-means cluster analysis algorithm (MATLAB®, MathWorks, Natick, MA) was used to define agonist groups for 2D cluster analysis, both efficiency and head-group volume (Fig. 5B). Correlation significance between log EC$_{50}$ or log P$_{G_{max}}$, measured from CRCs or calculated from each other (Fig. 8A) was by Pearson’s correlation test, using Prism software. The P-value (two-tail) <0.0001 and $r^2=0.78$ or 0.74 imply that there is a significant correlation.

Agonists. Agonist structures are shown in Fig. 3, Fig. 4 and Fig. S5. Agonist head-group volumes (Fig. 5B) were calculated using Chimera (21). Acetylcholine (ACh), nornicotine (Nor), nicotinc (Nic), carbamylcholine (CCh), anabasine (Ana), tetramethylammonium (TMA), dimethylthiazolidinium (DMT), dimethylpyrrolidium (DMP), choline (Cho), 3-hydroxypropyltrimethylammonium (3OH-PTMA), 4-hydroxybutyltrimethylammonium (4OH-BTMA), anatoxin (Atx), azabicycloheptane (Aza), tetraethylammonium (TEA), epibatidine (Ebt), epiboxide (Ebx), varenicline (Var), cytisine (Cyt), dimethylphenylpiperazinium (DMPP), tetramethylphosphonium (TMP). Cyt, Var, TEA
and TMP were from Sigma® (St. Louis, MO). The sources for other agonists are given in previous publications (10, 22).
Results

Figure 2. Single-channel current CRCs. A. Low-resolution view of cell-attached, single-channel currents activated by epibatidine (Ebt; open is down). Clusters of open/shut intervals from one AChR separated by silent periods in which all AChRs in the patch are desensitized. B. Left, high-resolution views of example clusters at different Ebt concentrations. Right, corresponding intra-cluster interval-duration histograms. τ_s and τ_o, predominant shut- and open-interval time constants in ms. Open-channel probability (P_o) at each agonist concentration is $\tau_o/(\tau_s+\tau_o)$. C. Each CRC was fitted by Eq. 1 to estimate EC$_{50}$ and P_o^{\max} (symbols, mean±s.e.m.). Efficiency (η) was calculated by using Eqs. 2-5. ACh is more efficient than Ebt because the same EC$_{50}$ is associated with a greater P_o^{\max}.
ACh efficiency

Fig. 2 shows example single-channel currents and CRCs. For the neurotransmitter ACh, $P_{O\text{max}}$ and EC_{50} estimated by fitting the CRC by Eq. 1 are 0.96 and 43 μM (Table 1). From $P_{O\text{max}}$ we calculate the diliganded gating equilibrium constant, $E_2=23.4$ (Eq. 4). From this value and EC_{50} we calculate the low-affinity equilibrium dissociation constant, $K_{dC}=174$ μM (Eq. 3). The unliganded gating equilibrium constant at +70 mV is 5.2x10^{-7} (see Methods) so we calculate the high-affinity equilibrium dissociation constant is $K_{dO}=26$ nM (Eq. 2). Finally, from the ratio of the logs of the two equilibrium dissociation constants we calculate the efficiency of the neurotransmitter, $\eta_{ACh}=50\%$ (Eq. 5).

We also calculated η_{ACh} from published values of K_{dC} and K_{dO} obtained either from wild-type mouse AChRs (23) or from individual $\alpha-\delta$ and $\alpha-\varepsilon$ human AChR binding sites (5), in both instances estimated by kinetic modeling of single-channel currents. The efficiencies calculated from these independent datasets are both 50\% (Table 1).

At adult AChR binding sites, half of the neurotransmitter binding energy is applied to the gating conformational change. That is, at each of the 2 binding sites the energy change when ACh binds to the C conformation is approximately equal to the increase in binding energy that happens within C-to-O.
Figure 3. Efficiencies from single-channel CRCs. A. CRCs of 7 agonists in adult-type mouse AChRs (re-plotted from (23)). There is an inverse correlation between EC$_{50}$ and P$_{O_{max}}$ (Table 1). B. Agonist efficiencies calculated from EC$_{50}$ and P$_{O_{max}}$. All agonists have a similar efficiency (average, 52%; dashed line). C. Agonist structures (see Materials and Methods for abbreviations). Red, key nitrogen atom in the agonist's head-group.
Efficiency of other agonists

We fitted other previously-published, single-channel CRCs (23) to estimate EC_{50} and $P_{O_{\text{max}}}$, and from these calculated agonist η values as described above (Fig. 3 and Table 1). Despite the wide ranges in both EC_{50} (43 μM to 6.7 mM) and $P_{O_{\text{max}}}$ (0.26 to 0.96), all 8 of these agonists (including ACh) have a similar efficiency, $\eta=52\pm2\%$ (mean+s.d.) (Fig. 3B). The efficiency of the lowest-efficacy agonist in this group, DMP, was greater than that of the highest-efficacy agonist, ACh. This highlights the distinction between efficiency (that depends on the binding energy ratio) and efficacy (that depends on the binding energy difference).

Next, we measured efficiencies for agonists that were not studied previously by CRCs (Fig. 4). Choline (Cho) has 2 methylenes between its quaternary nitrogen and hydroxyl (OH) group versus 3 and 4 for 3OH-BTMA and 4OH-PTMA. Cho is a low-affinity, low-efficacy agonist (24) that K_{dC} and K_{dO} values estimated by modeling single-channel kinetics at the human α–ε site indicate has a similar efficiency as does ACh (10). Simulations of binding site structures suggest that an H-bond between the terminal OH and the backbone carbonyl of αW149 serves to position the charged nitrogen of choline away from the aromatic rings that line the cavity, to reduce favorable binding energy (25, 26). Inserting additional methylenes reduces the probability of this H-bond and allows a more-optimal position that increases binding energy relative to Cho.

The CRCs and associated $P_{O_{\text{max}}}$ and EC_{50} values for 3OH-BTMA and 4OH-PTMA are shown in Fig. 4A left. From the calculated equilibrium dissociation constants, we estimate η is 50% for both agonists (Table 1). Despite the substantial range in affinity and efficacy afforded by the different H-bond propensities, all three of the choline agonists
have the same efficiency that is similar to the efficiencies of the agonists shown in Fig. 3. The similarity in the C versus O binding energy ratio (but not the difference) for these 3 ligands suggests that the effect of the H-bond on the position of the nitrogen atom applies equally to C and O binding cavities.

Fig. 4A left also shows the CRC of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that is selective for the α3β4 (ganglionic) subtype (27). The result was η_{DMPP}=52% (Table 1).

Overall, the mean±s.d efficiency calculated from CRCs for the 11 agonists described so far (ACh, Nor, CCh, Ana, TMA, DMP, DMT, Cho, 4OH-BTMA, 4OH-PTMA, DMPP) is 52±2%. For this entire group of ligands, that covers a huge range in potency and efficacy, the binding energy ratio logK_{dC}/logK_{dO} is 0.48. Hence, for all of these agonists binding energy increases by a factor of 2.1 (the inverse of this ratio) when the liganded sites switch from low- to high-affinity at the beginning of the global, channel-opening transition.
Figure 4. Efficiencies from more single-channel CRCs. A. Single-channel CRCs of 9 agonists in adult-type mouse AChRs (symbols, mean±s.e.m.). In some cases background mutations were used to increase constitutive gating and, hence, increase $P_{o_{\text{max}}}$ and left-shift EC$_{50}$ (εS450W, left and middle; εL269F+εE181W, right). EC$_{50}$ and $P_{o_{\text{max}}}$ values in Table 1 have been corrected for these backgrounds and pertain to wt AChRs. B. Efficiencies calculated from the CRCs (open bars) or from previously reported measurements of K$_{dC}$ and K$_{dO}$ obtained by kinetic modeling (gray bars; (5, 28)). There are 2 populations with average efficiencies of 50% and 41% (dashed lines). C. Agonist structures. Red, key nitrogen or phosphorous atom in the agonist’s head-group.
Fig. 4A middle shows CRCs for 3 agonists that have a bridge-bond in their head-group. The efficiency values for epibatidine, epiboxidine and cytisine calculated from P_{O}^{max} and EC$_{50}$ were $\eta_{\text{ebt}}=41\%$, $\eta_{\text{ebx}}=46\%$ and $\eta_{\text{cyt}}=40\%$. The first two values are similar to those estimated previously by kinetic modeling at the human $\alpha_{1}-\delta$ binding site (10).

Fig. 4A right shows CRCs for 3 agonists that have extraordinarily low efficacies and affinities. To study these, we added background mutations that did nothing more than increase E_{0} and, hence, increase P_{O}^{max} and left-shift EC$_{50}$ (Eqs. 2-4). After correcting for the effects of the background mutations, from the CRC parameters we estimate that in wt AChRs $\eta_{\text{TEA}}=40\%$, $\eta_{\text{TMP}}=41\%$ and $\eta_{\text{var}}=35\%$.

For the group of 6 ligands shown in Fig. 4A middle and right (Ebt, Ebx, Cyt, Var, TEA, TMP) the average efficiency was $41\pm4\%$ (Fig. 4B). For all these ligands, the binding energy ratio ($\log K_{dC}/\log K_{dO}$) is ~0.60, indicating that binding energy increases by a factor of ~1.7 when the sites switch from C to O.

Fig. 5A shows a histogram of efficiency values for 17 agonists estimated from single-channel CRCs plus 3 agonists estimated from single-channel kinetic modeling (Atx, Aza, nicotine; Fig. 4C) (10, 28). A goodness of fit test indicates that a bimodal (sum of two Gaussians) frequency distribution is a better fit than a single Gaussian ($F(3,16)=3.37, P=0.044$). The two populations have efficiencies of $51\pm0.02\%$ and $40\pm0.01\%$ (mean\pms.d), which is comparable to the mean efficiencies discussed above.

We also estimated the volumes of the head-group of the agonists (Fig. S5 and Table 1) and plotted these versus efficiency (Fig. 5B). A 2D cluster analysis again shows 2 populations with efficiencies of $\eta_{1}=52\%$ (n=12) and $\eta_{2}=41\%$ (n=8) with corresponding
volumes of $v_1=70.4\pm8.8$ and $v_2=102.2\pm17.8\ \text{Å}^3$ (centroid+s.d). There is an inverse relationship between agonist efficiency and head-group volume.

Figure 5. Distribution of agonist efficiency. A. Distribution of efficiencies for 20 agonists, fitted by the sum of two Gaussians. There are 2 populations at $\eta=51 \pm 2 \%$ and $40 \pm 4 \%$ (mean ± s.d.). B. 2-D scatter plot of efficiency versus head-group volume (v). Cluster analysis (k-means) shows that there are 2 populations with η/v centroids at $52%/70.4 \text{Å}^3$ (red) and $41%/102.2 \text{Å}^3$ (blue).
CRCs from whole-cell currents

Single-channel CRCs offer the most accurate method for estimating K_{dC} and E_2, but CRCs constructed from whole-cell responses are far more common. In order to ascertain the extent to which η estimated from whole-cell CRCs might be influenced by slow perfusion (that allows desensitization to reduce current amplitudes in high-P_0 conditions) and heterogeneous receptor properties, we measured whole-cell current amplitude as a function of concentration using 4 agonists, 3 from the high-efficiency group (ACh, CCh and TMA) and 1 from the low-efficiency group (Ebt).

In whole-cell CRCs with maximums normalized to the response to 300 μM ACh response (Fig. 6A), EC_{50} values were left-shifted compared to those in single-channel CRCs by an amount that increased with agonist efficacy (Table 2). For example, the left-shift was substantial for ACh (12.2 μM versus 43 μM) and small for TMA (0.84 mM versus 1.2 mM). An independent whole-cell CRC measurement, also made using an automated patch clamp and adult-type AChRs, was 22 μM for EC_{50} for ACh (29). We attribute this shift to desensitization (see Materials and Methods). Despite this error, for all 4 agonists the efficiency values estimated from whole-cell CRCs were only slightly smaller than those estimated from single-channel measurements.
Figure 6. Whole-cell current CRCs. A. Each current response was normalized to that of 300 μM ACh (P₀=0.93). Iₘₐₓ and EC₅₀ values in Table 2. B. CRCs normalized to Iₘₐₓ=1. EC₅₀ values in Table 2. C. Example currents.
Because the number of receptors contributing to responses varies from cell to cell and with time, whole-cell CRCs are often normalized so that to the maximum response for each agonist is 1. We did this for the 4 whole-cell CRCs to estimate new values for EC$_{50}$ (Fig. 6B and Table 2). It was not possible to estimate efficiency from these plots because information regarding efficacy was removed, but below we show that with knowledge of efficiency and I$^{\text{min}}$, I$^{\text{max}}$ can be estimated from the EC$_{50}$ of a CRC that has been normalized to a maximum of 1.

Binding site mutations

K$_{dC}$ and K$_{dO}$ have been measured by kinetic modeling of single-channel currents from mouse, adult-type AChRs having a mutation at one of the 5 aromatic residues at each of the 2 binding sites (30). We calculated from these values η_{ACh} for 21 different mutants (Table S1). Fig. 7A shows that the distribution is Gaussian with $\eta_{\text{ACh}}=51\pm4\%$ (mean±s.d.), which is the same as in wt AChRs. The exceptions were αY190A (in loop C) that decreased η_{ACh} to 35%, and mutations of αW149 (in loop B) that increased η_{ACh} by up to 60% in αW149A. Removal of the αY190 side chain results in a ~30% decrease in efficiency, whereas removal of the αW149 side chain results in a ~20% increase in efficiency.

Mutations of a residue on the complementary side of the binding site, εP121, had little effect on ACh efficiency except, perhaps, for the CMS mutation εP121L (31).

Binding and gating equilibrium constants have also been reported for AChRs having a mutation of αG153 (28). This amino acid is in loop B and close to αW149 but does not appear to contact the agonist directly. However, αG153 is interesting because so
far it is the only binding site amino acid known where mutations decrease \(K_{AC} \) (increase binding energy) and increase significantly \(E_0 \). We calculated efficiencies from \(K_{AC} \), \(E_2 \) and \(E_0 \) values for 16 different \(\alpha \)G153 mutant/agonist combinations using agonists from the high-efficiency population (Table S2).

The distribution of these efficiencies is shown in Fig. 7B. With a \(\alpha \)G153 mutation, \(\eta \ 42\pm3\% \) or \(\approx20\% \) smaller than the wt. This is the same efficiency as the low-efficiency agonist population in wt AChRs. \(\alpha \)G153 mutations that increase affinity also decrease efficiency. The extent of the reduction in \(\eta \) was similar for all agonists and side chain substitutions, with the exception of \(\alpha \)G153K+nicotine. In summary, it appears that a glycine at position \(\alpha \)153 allows high efficiency for small-volume agonists that otherwise take on the low efficiency characteristic of large-volume agonists.
Figure 7. Effect of binding-site mutations on agonist efficiency. Mutations were at both adult-type binding sites. A. Mutations of aromatic amino acids and εP121 (agonist, ACh) (Table S1). Arrow marks wt efficiency. The only substitutions to alter efficiency significantly are αY190A and αW149A. Gaussian fit of frequency distribution for 21 mutants (excluding αY190A) gives η=51±4 % (mean±s.d). B. Mutations of αG153 activated by 4 high-efficiency agonists (Table S2 and inset) (28). Gaussian fit of frequency distribution for all 16 mutation/agonist combinations gives η=42 ±3 %.
Putting efficiency to use

In this section we show how knowledge of η can simplify and extend CRC analysis. The same efficiency for a group of agonists means that for all, the $\log K_{dC}/\log K_{dO}$ ratio is the same. Hence, the two equilibrium dissociation constants are related by an exponent,

$$K_{dC}=K_{dO}^{1-\eta}. \quad \text{Eq. 6}$$

With knowledge of η, only one of the equilibrium dissociation constants needs to be measured. The value of the exponent in Eq. 6 in wt AChRs is ~0.5 for the high-efficiency group of agonists and ~0.6 for the low-efficiency group. Accordingly, Eq. 2 becomes

$$(E_2/E_0)=K_{dC}^p \quad \text{Eq. 7}$$

where

$$p=2\eta/(\eta-1).$$

For the higher efficiency group ($\eta=0.5$) $p=-2.00$ and for the lower efficiency group (average $\eta=0.4$) $p=-1.33$.

Taking the log of Eq. 7 and rearranging,

$$\log E_2 = p\log K_{dC}+\log E_0. \quad \text{Eq. 8}$$

This equation describes the ‘efficiency’ plot, with the x-axis being agonist binding energy ($\log K_{dC}$) and the y-axis being gating energy ($\log E_2$). For a group of agonists having the same efficiency, a log-log plot of gating versus binding equilibrium constants is a straight line with a slope (p) that depends on efficiency and a y-intercept that gives the unliganded gating equilibrium constant (Eq. 8). Previously, these constants determined from kinetic modeling were used to estimate average η values for 4 ACh- and Ebt-class agonists at individual AChR binding sites (10). In addition, values of these constants obtained from
the literature were fitted by Eq. 8 to estimate E_0 and average η values for agonists of other receptors, with off-line points reflecting agonists having other efficiencies.

The clustering of AChR efficiency values into 2 populations that correlate with agonist size (Fig. 5) suggests that it may someday be possible to predict approximately an agonist’s efficiency a priori from its structure and that of the binding cavity. For example, it is reasonable to guess that in adult-type AChRs other small choline derivatives or ligands similar to nicotine will have $\eta\sim50\%$, and that congeners of Ebt and TEA will have $\eta\sim40\%$. More experiments are needed to test the hypothesis that head-group volume and binding site structure in combination can be used to estimate η. We again note that E_0 is agonist-independent and needs to be measured only once, so perhaps in the future this important constant will be known for many different receptors.

Given prior knowledge of η and E_0, EC_{50} and I_{max} (the response at a single, high agonist concentration) can be estimated from each other. First, we calculated EC_{50} from I_{max} values obtained by fitting whole-cell CRCs (Table 2, left). The procedure was to solve E_2 from I_{max} (Eq. 4), then solve for K_{dC} (Eq. 7; η equal to the value shown in Table 2) and then EC_{50} (Eq. 3). Fig. 8A (top) shows that calculated and experimental EC_{50} values are correlated (Pearson’s correlation, $r^2=0.78$, $P<0.0001$). Fig. 8A (bottom) shows that there is a good match between experimental current amplitudes normalized to an ACh response (Fig. 6A) and current amplitudes calculated using EC_{50} values obtained by fitting CRCs that were normalized to 1 (Fig. 6B).

E_2 has been measured for many AChR agonists (26). Using the above procedure, we estimated corresponding EC_{50} values assuming $\eta=51\%$ and $E_0=7.4\times10^{-7}$ (Table S3).
CRCs for these agonists have not been measured, but doing so would test further the ability to use \(\eta \) and \(E_0 \) to calculate EC\(_{50}\) from \(P_{O_{\text{max}}} \).

Remarkably, it is also possible to use \(\eta \) and \(E_0 \) to calculate \(I_{\text{max}} \) from EC\(_{50}\) of a CRC that has been normalized to 1 (Fig. 6B, Table 2). Solving Eqs. 7 and 3 for \(K_{ac} \) and setting them equal yields,

\[
\frac{EC_{50}(E_2 + 1)}{\sqrt{(E_2 + 2)}} = \left(\frac{E_2}{E_0} \right) \left(\frac{1}{p} \right).
\]

Eq. 9

Efficiency and \(E_0 \) are known \textit{a priori}, and EC\(_{50}\) is measured. We solved Eq. 9 numerically for \(E_2 \), and then calculated \(I_{\text{max}} \) and the CRC.
Figure 8. Using efficiency to calculate CRC parameters. If \(\eta \) and \(E_0 \) are known, \(EC_{50} \) and \(I_{max} \) can be calculated from each other. A. Top, calculated versus measured \(EC_{50} \) from single-channel CRCs. red and blue, high- and low-efficiency agonists (Fig. 5B). Bottom, CRCs drawn using calculated \(EC_{50} \) and measured \(I_{max} \) (Table 2, left) superimposed on whole-cell current amplitudes (Fig. 6A). \(\eta \) for each agonist given in Table 2. B. Top, calculated versus measured \(P_{O_{max}} \). Bottom, CRCs drawn using calculated \(I_{max} \) and measured \(EC_{50} \) (Table 2, right). \(\eta = 50\% \) for ACh, CCh and TMA and 40\% for Ebt. With TMA, \(\eta = 55\% \) improves the match.
Fig. 8B (top) is a plot calculated versus experimental P_{O}^{max} values from single-channel CRCs with η equal to either 0.50 (ACh, CCh, TMA) or 0.40 (Ebt). Again, there is rough agreement (Pearson’s correlation, $r^2=0.74$, $P<0.0001$). Fig. 8B (bottom) shows whole-cell current CRCs normalized to an ACh response (symbols; Fig. 6A) and CRCs drawn using I_{max} values calculated from EC_{50} values from CRCs normalized to 1 (Fig 6B). The match is good for ACh, CCh and Ebt, but bad for TMA. Increasing η_{TMA} from 0.50 to 0.55 makes the calculated and experimental curves match more closely. The I_{max} value calculated from EC_{50} by using Eq. 9 is sensitive to the value of η (Fig. S6). Nonetheless, agonist efficiency allows efficacy information to be recovered approximately from a CRC that has been normalized to a maximum response of 1.

Finally, knowledge of η allows the estimation of E_{0} from a single CRC. E_{0} is of critical importance because it sets the baseline level from which agonists increase P_{0}, but it is often small and difficult to measure directly (8, 32, 33). However, a fold-change in E_{0} caused by a mutation or a modulator will produce the same fold-change in E_{2} (Eq. 2) and, hence, a change in both EC_{50} and P_{O}^{max} (Eqs. 3 and 4).

The procedure to estimate E_{0} from a CRC of a wt receptor is first to solve for E_{2} and K_{dC} from P_{O}^{max} and EC_{50} as described above, then solve for E_{0} by using Eq. 8. Fig. S7 shows E_{0} values so-calculated from single-channel CRC parameters. The mean result is reasonably close to the experimentally-determined value (17). If agonist efficiency is known, an approximate value of the unliganded gating constant can be estimated from single CRC. Once this value has been learned, it can be applied to all agonists.
Discussion

The notion of agonist efficiency arose from an experimental observation – the binding energy ratio $\log K_{dC}/\log K_{dO}$ is the same for many different nicotinic agonists (23). Later, this ratio was associated with the efficiency at which agonist binding energy is converted into receptor gating energy (10). Here, we have shown that this efficiency can be estimated from CRC parameters. Below, we discuss the nature and distribution of efficiency values obtained from single-channel and whole-cell CRCs, some structural implications of efficiency, and the application of efficiency to CRC analysis.

Efficiency

Agonist efficiencies are the same whether obtained from single-channel or whole-cell currents, and from a CRC or by detailed kinetic modeling. They are the same in wild-type AChRs that have 2 binding sites and in crippled AChRs that have just 1 operational site. Efficiency values are the same in mouse and human AChRs and with many mutations at the binding sites (exceptions discussed below) or in distant regions that do not affect binding. In AChRs, efficiency is a robust agonist attribute. At adult neuromuscular synapses, half of the available neurotransmitter binding energy is converted into kinetic energy of the channel-opening conformational change.

In AChRs there are 2 populations of η-values, at 51±2% and 40±4% (Fig. 5A). Despite the small standard deviations, we suspect that the variance within each group arises from actual, ligand-specific differences rather than from measurement errors, for the following reasons. i) Efficiency is a ratio of logarithms and therefore is not sensitive to errors in the measured values of EC$_{50}$ and P$_{0}^{max}$. For example, changing EC$_{50}$ (Table
1) by ±10% changes the calculated η value by <1%. ii) The order of η-values within the high efficiency group is the same in single-channel and whole-cell experiments (TMA>CCh>ACh). iii) A small difference in efficiency leads to a large difference in efficacy calculated from EC$_{50}$ (Fig. S6). Indeed, using Eq. 9, the single-channel η-value for TMA predicts the experimental, whole-cell CRC more-accurately than the group value (Fig. 8B, bottom). We hypothesize that the efficiency difference between, for example, ACh and TMA is meaningful (Fig. 3B).

The observation that mutations of αG153 shift η for 4 agonists from the high- to the low-efficiency population supports the existence of two discrete η populations. Although the distribution of agonist efficiency appears to be modal rather than continuous, the high accuracy of experimental η estimates must be considered. More experiments might reveal if other η populations exist or if small differences between agonists or mutations are meaningful. For example, the observations that η is modestly lower with εP121 substitutions (Table S1), higher with most non-aromatic substitutions of αY198 (Table S1) and usually lowest with a K substitution at αG143 (Table S2) might prove to be meaningful. Likewise, experiments might show that the 35% efficiency values for varenicline and ACh+αY190A indicate the existence of a third population.

Structural implications

That a group of agonists have the same efficiency means that all members have the same binding energy ratio, logK$_{aC}$/logK$_{aO}$ (Eq. 5). Below, we discuss implications of this result with regards to i) rearrangements at the binding site, ii) agonist volume, iii) the bimodal efficiency distribution and iv) binding-site mutations.
The energy of low-affinity binding is proportional to \(\log K_{\text{ac}} \) and is determined mainly by a local rearrangement at the binding site called ‘catch’. The energy of the switch from low- to high-affinity is proportional to \((\log K_{\text{ad0}} - \log K_{\text{ac}})\), occurs at the beginning of the global, channel-opening isomerization and is called ‘hold’ (30, 34). As discussed elsewhere (34), ‘hold’ is related to, and possibly the same as, an intermediate (pre-opening) gating state called ‘flip’ that has been detected directly (35, 36). ‘Flip’ refers to a brief shut state that is high affinity, and ‘hold’ refers to the rearrangement of the binding site that generates such a state (37). Regardless, the energy change in hold is \(1/(1-\eta) \) times that of catch, or a factor of \(~2\) for high- and \(~1.7\) for low-efficiency agonists.

This linear relationship between catch and hold energies suggests that the associated conformational changes, too, are related. Accordingly, the observation that many agonists have the same efficiency suggests that these two binding-site rearrangements are stages of a single conformational sweep. Although ‘binding’ and ‘gating’ have long been considered to be distinct processes (38), a group efficiency implies that they should be considered as components of a single structural cascade. In AChRs, this cascade begins with a ‘touch’ by the agonist that takes place after the ligand has diffused to its target but before rearrangements that form the low-affinity complex, and ends when ions begin to cross the membrane. The ‘catch-and-hold’ sweep at the binding sites is the first part of the ‘binding-gating’ cascade (‘wave’) of the receptor.

It remains to be determined whether or not a shared binding energy ratio for a group of related agonists is a general feature of receptor activation. It appears that in some receptors other than neuromuscular AChRs there is a linear relationship between log gating and log binding equilibrium constants for related ligands, and that association to C is slower than diffusion. These results raise the possibility that a shared
logK_{dC}/logK_{dO} ratio and a correlation between structural changes in low- and high-affinity complex formation are not exclusive to AChRs (10).

Members of both efficiency populations can have a quaternary amine (TMA, TEA) or a secondary amine (DMPP, Eb). Hence, it does not appear that the bimodal distribution in efficiency reflects this aspect of the agonist’s head group. The inverse correlation between agonist head-group volume and efficiency is more relevant (Fig. 5B). Simulations of AChR structures suggest that the agonist binding cavity is smaller in O compared to in C and, hence, that binding site contraction is a structural correlate of ‘hold’ (25). In addition, kinetic analyses of AChR gating indicate that in the channel-opening isomerization, ‘hold’ is followed by a rearrangement of the extracellular domain (4, 34, 39, 40).

These results lead to hypothesize that large-volume, low-efficiency agonists encounter steric hindrance when the binding cavity contracts in ‘hold’, to limit the shrinkage and, hence, the mechanical force applied to the next element in the gating sequence, the extracellular domain. We imagine that small, high-efficiency ligands fit comfortably into both C and O pockets but that large, low-efficiency agonists do not fit easily into the smaller O cavity and so support a smaller contraction. According to this hypothesis, large ligands transfer less energy to the next step in the conformational cascade and thus have low efficiencies.

In support of this idea, the smallest agonists we tested, DMP, DMT and TMA, have the largest efficiencies (Fig. 3B). Further, simulations show that compared to ACh, the binding cavity is smaller with TMA and the extent of cavity contraction is smaller with the low-efficiency agonist Eb (25). However, the relationship between agonist volume and
efficiency is not simple because Ebt and TEA have similar efficiencies despite a substantial difference in volume (Table 1).

There are 2 efficiency populations (Fig. 5A). One possible explanation is that each efficiency group reflects a different ‘hold’ binding site conformation. In this view, the high-affinity cavity can adopt only a limited number (so far, 2) of ‘preset’ structures and is not malleable or able to adapt its shape to each agonist. Perhaps small versus large agonists allow the pocket to adopt alternative contracted shapes, with all agonists larger than some threshold forcing the less efficient shape. Another hypothesis for the bimodal distribution of η is that there are two discrete energy transfer pathways that supply energy for activating the extracellular domain. Both paths are activated with smaller agonists but one (or both) is compromised when the pocket is ‘stretched’ by a large ligand. Both of these hypotheses are speculations that can be tested experimentally.

Aromatic side chains at the binding site govern agonist affinity. While most mutations of these have little or no effect on η, another clue regarding the structural basis of efficiency is that the efficiency of ACh is reduced by 30% by the mutation αY190A (in loop C) and increased by 20% by the mutation αW149A (in loop B). αY190 appears to be the most-important aromatic side chain with regards to the propagation of structural changes from the binding site in channel opening (22, 41). That the mutations αY190F and αY190W have little effect on ACh efficiency suggests that the key interaction here is with the aromatic ring rather than with the OH group.

All 4 mutations of αG153 (in loop B) reduced the efficiency of all 4 tested agonists. Again, the drop appeared to be modal, reducing the average efficiency from 51% to 42%. At this juncture we do not have a hypothesis for the structural basis for this decrease in
efficiency. Perhaps flexibility of the loop B backbone promotes high efficiency. It will be worthwhile to ascertain the extent to which the αW149A and αG153 mutations are correlated.

Efficiency estimates for the two populations are the same whether measured in whole receptors (that have α−δ and α−ε binding sites) or in receptors having only one functional site (10). This indicates that the energy changes that contribute to efficiency are determined mainly by local ligand-protein interactions at each binding site, with little or no energy transfer between sites. The efficiency of Ebx is somewhat higher in whole receptors compared to at α−δ alone so it is possible that the efficiency of this agonist is modestly greater at one site (α−ε) compared to the other. Agonist affinity is greatest at the fetal (α1−γ) neurotransmitter binding sites (56% for ACh) and it is possible that some of the small, agonist-dependent differences in η between adult sites are meaningful.

Utility of efficiency in CRC analysis

Knowing agonist efficiency is useful because it allows EC_{50} and I_{max} to be estimated from each other. With knowledge of η, an entire CRC can be calculated knowing only the responses at the low- and high-concentration asymptotes (Fig. 8A, bottom). Given η and E_0, the response at just one agonist concentration, that which produces I_{max}, needs to be measured in order to estimate EC_{50}. Having this ability could facilitate drug screening.

It is common practice in CRCs to normalize I_{max} to 1 and lose information regarding agonist efficacy. We have shown that given prior knowledge of η and E_0, and an experimental estimate of EC_{50}, Eq. 9 can be solved numerically for E_2 and, hence, I_{max}.
The ability to compute an absolute CRC from a normalized one could be useful once the values of agonist η and receptor E_0 are established. The main caveat is that the calculated efficacy is very sensitive to the value of η.

Author contributions:
Dinesh C. Indurthi: designed and performed research; analyzed data.
Anthony Auerbach: conceptualized and designed research; analyzed data and wrote the manuscript.

Acknowledgements: We thank Mary Teeling, Marlene Shero and Janet Jordan for technical assistance and Pablo M. Paez for allowing access to his IonFlux. Supported by NS-064969 and GM-121463

Competing interests: The authors declare no competing financial or non-financial interests.
s.no	Agonist	EC$_{50}$±sem (µM)	P$_{O_{\text{max}}}$±sem	n	E$_2$	K$_{dc}$ (µM)	K$_{do}$ (nM)	log K$_{dc}$	log K$_{do}$	η	volume (Å3)
1	AChl	43	0.96	-	23.4	174	24	-3.76	-7.62	0.50	77
	AChp										
	AChw	22	0.96	-	24	90	12	-4.04	-7.91	0.49	
2	Norz	72	0.92	-	12	200	38	-3.70	-7.41	0.50	69
3	CChl	320	0.84	-	5.25	542	159	-3.27	-6.80	0.52	77
4	Anaz	524	0.78	-	3.63	719	253	-3.14	-6.60	0.52	70
5	TMAl	1200	0.75	-	3	1480	574	-2.83	-6.24	0.54	77
6	DMTl	4200	0.42	-	0.72	2730	2150	-2.56	-5.67	0.54	58
7	DMPl	6700	0.26	-	0.35	3570	4040	-2.45	-5.39	0.54	56
8	Cho	4013	0.05	-	0.05	4100	15100	-2.39	-4.82	0.50	77
9	DMPPg	246±81	0.87±0.09	3	6.69	480	134	-3.32	-6.87	0.52	59
10	4OH-Bg	2171±77	0.29±0.04	3	0.41	1270	1350	-2.92	-5.87	0.50	77
11	3OH-Pg	3485±10	0.15±0.02	4	0.18	1660	2840	-2.78	-5.55	0.50	77
12	Ebtg	32±2	0.60±0.6	4	1.50	28	16	-4.55	-7.78	0.41	88
13	Ebxg	90±4	0.74±0.02	3	2.85	108	46	-3.96	-7.33	0.46	88
14	Cytg	137±5	0.18±0.01	4	0.22	67	104	-4.17	-6.99	0.40	114
15	Var*	135±12	0.015±0.002	3	0.02	57	331	-4.25	-6.48	0.35	102
16	TEA*	4200±130	0.002±0.0007	3	0.002	174	26800	-2.76	-4.57	0.40	136
17	TMP*	844±32	0.03±0.002	3	0.031	360	1473	-3.44	-5.83	0.41	87
18	Atx*				115	247	115	-3.94	-6.61	0.40	114
19	Aza*				934	6053	934	-5.02	-6.22	0.42	88
20	Nicz				0.87	1000	920	-3.00	-6.04	0.50	84

Table 1. Efficiencies from single-channel CRCs. EC$_{50}$ and P$_{O_{\text{max}}}$ obtained by fitting by Eq. 1. n, number of CRCs; sem, standard error of the mean. E$_2$, diliganded gating equilibrium constant; K$_{dc}$, equilibrium dissociation constant to C; K$_{do}$, equilibrium dissociation constant to O (see Fig. 1). η, efficiency (Eq. 5); head-group volume (Å3). Previously published values from l(23), $^\circ$(28), $^\Phi$(5), $^\Psi$(29), i(10). All entries pertain to wt adult AChRs.
Table 2. Whole cell CRC parameters and efficiency (η) estimates. Left, EC_{50} and I_{max} from CRCs normalized by the response to 300 μM ACh (Fig. 6A; I_{max} for ACh determined from single-channel currents). Right, EC_{50} from CRCs internally normalized to I_{max}=1 (Fig. 6B). n= number of trials (with up to 20 cells each).
References:

1. Cederholm, J. M., P. R. Schofield, and T. M. Lewis. 2009. Gating mechanisms in Cys-loop receptors. Eur Biophys J 39(1):37-49.
2. Gharpure, A., C. M. Noviello, and R. E. Hibbs. 2020. Progress in nicotinic receptor structural biology. Neuropharmacology 171:108086.
3. Cetin, H., D. Beeson, A. Vincent, and R. Webster. 2020. The Structure, Function, and Physiology of the Fetal and Adult Acetylcholine Receptor in Muscle. Front Mol Neurosci 13:581097.
4. Grosman, C., M. Zhou, and A. Auerbach. 2000. Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403(6771):773-776.
5. Nayak, T. K., and A. Auerbach. 2017. Cyclic activation of endplate acetylcholine receptors. Proc Natl Acad Sci U S A 114(45):11914-11919.
6. Auerbach, A. 2020. Pathways for nicotinic receptor desensitization. J Gen Physiol 152(10).
7. Rahman, M. M., J. Teng, B. T. Worrell, C. M. Noviello, M. Lee, A. Karlin, M. H. B. Stowell, and R. E. Hibbs. 2020. Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Neuron 106(6):952-962 e955.
8. Purohit, P., and A. Auerbach. 2009. Unliganded gating of acetylcholine receptor channels. Proc Natl Acad Sci U S A 106(1):115-120.
9. Zhou, M., A. G. Engel, and A. Auerbach. 1999. Serum choline activates mutant acetylcholine receptors that cause slow channel congenital myasthenic syndromes. Proc Natl Acad Sci U S A 96(18):10466-10471.
10. Nayak, T. K., R. Vij, I. Bruhova, J. Shandilya, and A. Auerbach. 2019. Efficiency measures the conversion of agonist binding energy into receptor conformational change. J Gen Physiol 151(4):465-477.
11. Sakmann, B., J. Patlak, and E. Neher. 1980. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286(5768):71-73.
12. Nicolai, C., and F. Sachs. 2013. Solving ion channel kinetics with the QuB software. Biophysical Reviews and Letters 8(03n04):191-211.
13. Qin, F. 2004. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys J 86(3):1488-1501.
14. Qin, F., A. Auerbach, and F. Sachs. 1997. Maximum likelihood estimation of aggregated Markov processes. Proc Biol Sci 264(1380):375-383.
15. Elenes, S., and A. Auerbach. 2002. Desensitization of diliganded mouse muscle nicotinic acetylcholine receptor channels. J Physiol 541(Pt 2):367-383.
16. Jadey, S. V., P. Purohit, I. Bruhova, T. M. Gregg, and A. Auerbach. 2011. Design and control of acetylcholine receptor conformational change. Proc Natl Acad Sci U S A 108(11):4328-4333.
17. Nayak, T. K., P. G. Purohit, and A. Auerbach. 2012. The intrinsic energy of the gating isomerization of a neuromuscular acetylcholine receptor channel. J Gen Physiol 139(5):349-358.
18. Jha, A., P. Purohit, and A. Auerbach. 2009. Energy and structure of the M2 helix in acetylcholine receptor-channel gating. Biophys J 96(10):4075-4084.
19. Purohit, P., S. Gupta, S. Jadey, and A. Auerbach. 2013. Functional anatomy of an allosteric protein. Nat Commun 4:2984.

20. Vij, R., P. Purohit, and A. Auerbach. 2015. Modal affinities of endplate acetylcholine receptors caused by loop C mutations. J Gen Physiol 146(5):375-386.

21. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605-1612.

22. Bruhova, I., and A. Auerbach. 2017. Molecular recognition at cholinergic synapses: acetylcholine versus choline. J Physiol 595(4):1253-1261.

23. Jadey, S., and A. Auerbach. 2012. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors. J Gen Physiol 140(1):17-28.

24. Purohit, Y., and C. Grosman. 2006. Estimating binding affinities of the nicotinic receptor for low-efficacy ligands using mixtures of agonists and two-dimensional concentration-response relationships. J Gen Physiol 127(6):719-735.

25. Tripathy, S., W. Zheng, and A. Auerbach. 2019. A single molecular distance predicts agonist binding energy in nicotinic receptors. J Gen Physiol 151(4):452-464.

26. Bruhova, I., T. Gregg, and A. Auerbach. 2013. Energy for wild-type acetylcholine receptor channel gating from different choline derivatives. Biophys J 104(3):565-574.

27. Ling, H. W. 1959. Actions of dimethylphenylpiperazinium. Br J Pharmacol Chemother 14:505-511.

28. Jadey, S., P. Purohit, and A. Auerbach. 2013. Action of nicotine and analogs on acetylcholine receptors having mutations of transmitter-binding site residue alphaG153. J Gen Physiol 141(1):95-104.

29. Yehia, A., and H. Wei. 2020. Studying Nicotinic Acetylcholine Receptors Using the IonFlux Microfluidic-Based Automated Patch-Clamp System with Continuous Perfusion and Fast Solution Exchange. Curr Protoc Pharmacol 88(1):e73.

30. Purohit, P., I. Bruhova, S. Gupta, and A. Auerbach. 2014. Catch-and-Hold Activation of Muscle Acetylcholine Receptors Having Transmitter Binding Site Mutations. Biophysical Journal 107(1):88-99.

31. Ohno, K., H. L. Wang, M. Milone, N. Bren, J. M. Brengman, S. Nakano, P. Quiram, J. N. Pruitt, S. M. Sine, and A. G. Engel. 1996. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor epsilon subunit. Neuron 17(1):157-170.

32. Jackson, M. B. 1986. Kinetics of unliganded acetylcholine receptor channel gating. Biophys J 49(3):663-672.

33. Jha, A., and A. Auerbach. 2010. Acetylcholine receptor channels activated by a single agonist molecule. Biophys J 98(9):1840-1846.

34. Gupta, S., S. Chakraborty, R. Vij, and A. Auerbach. 2017. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip. J Gen Physiol 149(1):85-103.

35. Lape, R., D. Colquhoun, and L. G. Sivilotti. 2008. On the nature of partial agonism in the nicotinic receptor superfamly. Nature 454(7205):722-727.

36. Mukhtasimova, N., W. Y. Lee, H. L. Wang, and S. M. Sine. 2009. Detection and trapping of intermediate states priming nicotinic receptor channel opening. Nature 459(7245):451-454.
37. Auerbach, A. 2005. Gating of acetylcholine receptor channels: brownian motion across a broad transition state. Proc Natl Acad Sci U S A 102(5):1408-1412.

38. Colquhoun, D. 1998. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125(5):924-947.

39. Purohit, P., A. Mitra, and A. Auerbach. 2007. A stepwise mechanism for acetylcholine receptor channel gating. Nature 446(7138):930-933.

40. Sauguet, L., A. Shahsavar, F. Poitevin, C. Huon, A. Menny, A. Nemecz, A. Haouz, J. P. Changeux, P. J. Corringer, and M. Delarue. 2014. Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc Natl Acad Sci U S A 111(3):966-971.

41. Mukhtasimova, N., C. Free, and S. M. Sine. 2005. Initial coupling of binding to gating mediated by conserved residues in the muscle nicotinic receptor. J Gen Physiol 126(1):23-39.