An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators

By Alexandru D. Ionescu*

Abstract

One of the purposes of this paper is to prove that if G is a noncompact connected semisimple Lie group of real rank one with finite center, then

$$L^{2,1}(G) * L^{2,1}(G) \subseteq L^{2,\infty}(G).$$

Let K be a maximal compact subgroup of G and $X = G/K$ a symmetric space of real rank one. We will also prove that the noncentered maximal operator

$$\mathcal{M}_2 f(z) = \sup_{z \in B} \frac{1}{|B|} \int_B |f(z')| dz'$$

is bounded from $L^{2,1}(X)$ to $L^{2,\infty}(X)$ and from $L^p(X)$ to $L^p(X)$ in the sharp range of exponents $p \in (2, \infty]$. The supremum in the definition of $\mathcal{M}_2 f(z)$ is taken over all balls containing the point z.

1. Introduction

A central result in the theory of convolution operators on semisimple Lie groups is the Kunze-Stein phenomenon which, in its classical form, states that if G is a connected semisimple Lie group with finite center and $p \in [1, 2)$, then

$$L^2(G) * L^p(G) \subseteq L^2(G).$$

The usual convention, which will be used throughout this paper, is that if \mathcal{U}, \mathcal{V}, and \mathcal{W} are Banach spaces of functions on G then the notation $\mathcal{U} * \mathcal{V} \subseteq \mathcal{W}$ indicates both the set inclusion and the associated norm inequality. The inclusion (1.1) was established by Kunze and Stein [10] in the case when the group G is $\text{SL}(2, \mathbb{R})$ (and, later on, for a number of other particular groups) and by Cowling [3] in the general case stated above. For a more complete account of the development of ideas leading to (1.1) we refer the reader to [3] and [4].

*The author was supported by an Alfred P. Sloan graduate fellowship.
More recently, Cowling, Meda and Setti noticed that if the group \(G \) has real rank one then the inclusion (1.1) can be strengthened. Following earlier work of Lohoué and Rychener [9], the key ingredient in their approach is the use of Lorentz spaces \(L^{p,q}(G) \); they prove in [4] that if \(G \) is a connected semisimple Lie group of real rank one with finite center, \(p \in (1,2) \) and \((u,v,w) \in [1,\infty]^3\) has the property that \(1 + 1/w \leq 1/u + 1/v \), then

\[
L^{p,u}(G) * L^{p,v}(G) \subseteq L^{p,w}(G).
\]

In particular, \(L^{p,1} \) convolves \(L^p \) into \(L^p \) for any \(p \in [1,2) \). Our first theorem is an endpoint estimate for (1.2) showing what happens when \(p = 2 \).

Theorem A. If \(G \) is a noncompact connected semisimple Lie group of real rank one with finite center then

\[
L^{2,1}(G) * L^{2,1}(G) \subseteq L^{2,\infty}(G).
\]

Notice that (1.2) follows from Theorem A and a bilinear interpolation theorem ([4, Theorem 1.2]). Unlike the classical proofs of the Kunze-Stein phenomenon, our proof of Theorem A will be based on real-variable techniques only: the inclusion (1.3) is equivalent to an inequality involving a triple integral on \(G \) and we use certain nonincreasing rearrangements to control this triple integral. Easy examples, involving only \(K \)-bi-invariant functions, show that the inclusion (1.3) is sharp in the sense that neither of the \(L^{2,1} \) spaces nor the \(L^{2,\infty} \) space can be replaced with some \(L^{2,u} \) space for any \(u \in (1,\infty) \).

Let \(K \) be a maximal compact subgroup of the group \(G \) and \(X = G/K \) the associated symmetric space. Assume from now on that the group \(G \) satisfies the hypothesis stated in Theorem A and let \(d \) be the distance function on \(X \times X \) induced by the Killing form on the Lie algebra of the group \(G \). Let \(B(x,r) \) denote the ball in \(X \) centered at the point \(x \) of radius \(r \) (with respect to the distance function \(d \)) and let \(|A| \) denote the measure of the set \(A \subset X \). For any locally integrable function \(f \) on \(X \), let

\[
\mathcal{M}_2f(z) = \sup_{z \in B} \frac{1}{|B|} \int_B |f(z')| \, dz',
\]

where the supremum in the definition of \(\mathcal{M}_2f(z) \) is taken over all balls \(B \) containing \(z \). We will prove the following:

Theorem B. The operator \(\mathcal{M}_2 \) is bounded from \(L^{2,1}(X) \) to \(L^{2,\infty}(X) \) and from \(L^p(X) \) to \(L^p(X) \) in the sharp range of exponents \(p \in (2,\infty] \).

We recall that the more standard centered maximal operator

\[
\mathcal{M}_1f(z) = \sup_{r > 0} \frac{1}{|B(z,r)|} \int_{B(z,r)} |f(z')| \, dz'
\]
is bounded from \(L^1(X) \) to \(L^{1,\infty}(X) \) and from \(L^p(X) \) to \(L^p(X) \) for any \(p > 1 \), as shown in [5] and [12] (without the assumption that \(G \) has real rank one). Notice however that, unlike in the case of Euclidean spaces, balls on symmetric spaces do not have the basic doubling property (i.e. \(|B(z, 2r)| \) is not proportional to \(|B(z, r)| \) if \(r \) is large), thus the maximal operators \(M_1 \) and \(M_2 \) are not comparable. Easy examples (see [7, Section 4]) show that Theorem B is sharp in the sense that the maximal operator \(M_2 \) is not bounded from \(L^{2,u}(X) \) to \(L^{2,v}(X) \) unless \(u = 1 \) and \(v = \infty \).

This paper is organized as follows: in the next section we recall most of the notation related to semisimple Lie groups and symmetric spaces and prove a proposition that explains the role of the Lorentz space \(L^{2,1}(G/K) \) – the subspace of \(K \)-bi-invariant functions in \(L^{2,1}(G) \). In Section 3 we prove Theorem B. As a consequence of Theorem B we obtain in Section 4 a covering lemma on noncompact symmetric spaces of real rank one. In Section 5 we give a complete proof of Theorem A, which is divided into four steps. The main estimate in the proof of Theorem A uses the technique of nonincreasing rearrangements; we return to this technique in the last section and prove a general rearrangement inequality.

We conclude this section with some remarks on semisimple Lie groups of higher real rank. If the group \(G \) has real rank different from 1, then (1.2) fails (the estimate in Lemma 6 and the discussion following Proposition 7 in [1] show that the appropriate spherical function \(\Phi_p \) fails to belong to \(L^{p',\infty}(G) \), where \(p' \) is the conjugate exponent of \(p \)); therefore Theorem A fails to hold. On the other hand, the author has recently proved by a different method in [7] that the \(L^p \) estimate in Theorem B holds on symmetric spaces of arbitrary real rank. In the general case it is not known however whether the maximal operator \(M_2 \) is bounded from \(L^{2,1}(X) \) to \(L^{2,\infty}(X) \).

This work is part of the author’s doctoral thesis at Princeton University under the guidance of Prof. Elias M. Stein. I would like to thank him for many clarifying discussions on the subject and for his time, interest and steady support. I would also like to thank Jean-Philippe Anker for several corrections on a preliminary version of this paper and the referee of the paper for a careful and detailed report.

2. Preliminaries

Let \(G \) be a noncompact connected semisimple Lie group with finite center, and let \(\mathfrak{g} \) be its Lie algebra. Most of our notation related to semisimple Lie groups and symmetric spaces is standard and can be found for example in [6]. Fix a Cartan involution \(\theta \) of \(\mathfrak{g} \) and let \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \) be the associated Cartan decomposition. Let \(\mathfrak{a} \) be a maximal abelian subspace of \(\mathfrak{p} \); we will assume from
now on that the group G has real rank one, i.e., $\dim a = 1$. Let a^* denote the real dual of a, let $\Sigma \subset a^*$ be the set of nonzero roots of the pair (g, a) and let W be the Weyl group associated to Σ. It is well-known that $W = \{ 1, -1 \}$ and Σ is either of the form $\{-\alpha, \alpha\}$ or of the form $\{-2\alpha, -\alpha, \alpha, 2\alpha\}$. Let $m_1 = \dim g_{-\alpha}$, $m_2 = \dim g_{-2\alpha}$, $\rho = \frac{1}{2}(m_1 + 2m_2)\alpha$ and $a_+ = \{ H \in a : \alpha(H) > 0 \}$. Finally let $\pi = g_{-\alpha} + g_{-2\alpha}$, $\bar{\pi} = \exp \pi$, $K = \exp \mathfrak{t}$, $A = \exp \mathfrak{a}$ and $A_+ = \exp \mathfrak{a}_+$ and let $X = G/K$ be a symmetric space of real rank one.

The group G has an Iwasawa decomposition $G = \bar{\pi}AK$ and a Cartan decomposition $G = K\bar{A}_+K$. Our proofs are based on relating these two decompositions, and for real rank one groups one has the explicit formula in [6, Ch.2, Theorem 6.1]. A similar idea was used by Strömberg [12] for groups of arbitrary real rank. Let $H_0 \in a$ be the unique element of a for which $\alpha(H_0) = 1$ and let $a(s) = \exp(sH_0)$ for $s \in \mathbb{R}$ be a parametrization of the subgroup A. By [6, Ch.2, Theorem 6.1] one can identify the group π with $\mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ using a diffeomorphism $\pi : \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \to \pi$. This diffeomorphism has the property that if $t \geq 0$ then $\pi(v,w)a(s) \in Ka(t)K$ if and only if

\begin{equation}
(cosh t)^2 = \left[\cosh s + e^s|v|^2 \right]^2 + e^{2s}|w|^2.
\end{equation}

In addition,

\begin{equation}
a(s)\pi(v,w)a(-s) = \pi(e^{-s}v, e^{-2s}w).
\end{equation}

Let $|\rho| = \rho(H_0) = \frac{1}{2}(m_1 + 2m_2)$ and let dg, $d\pi$ and dk denote Haar measures on G, π and K, the last one normalized such that $\int_K 1 \, dk = 1$. Then the following integral formulae hold for any continuous function f with compact support:

\begin{equation}
\int_G f(g) \, dg = C_1 \int_K \int_{\mathbb{R}_+} \int_K \int_{\mathbb{R}} f(k_1a(t)k_2)(\sinh t)^{m_1}(\sinh 2t)^{m_2} \, dk_2 \, dt \, dk_1,
\end{equation}

and

\begin{equation}
\int_G f(g) \, dg = C_2 \int_K \int_{\mathbb{R}} \int_{\pi} f(\pi a(s)k)e^{2|\rho|s} \, d\pi \, ds \, dk
= C_2' \int_K \int_{\mathbb{R}} \int_{\mathbb{R}^{m_1} \times \mathbb{R}^{m_2}} f(\pi(v,w)a(s)k)e^{2|\rho|s} \, dv \, dw \, ds \, dk.
\end{equation}

The measures dv and dw are the usual Lebesgue measures on \mathbb{R}^{m_1} and \mathbb{R}^{m_2}, and the constants C_1, C_2 and C_2' depend on the normalizations of the various Haar measures. We will need a new integration formula, which is the subject of the following lemma.

Lemma 1. Suppose that $f : G \to \mathbb{C}$ is a K-bi-invariant (i.e., $f(k_1gk_2) = f(g)$ for any $k_1, k_2 \in K$) continuous function with compact support and $F(t) = f(a(t))$ for any $t \in [0, \infty)$. Then for any $s \in \mathbb{R}$

\[e^{s|\rho|} \int_\pi f(\pi a(s)) \, d\pi = \int_{|s|}^\infty F(t)\psi(t,s) \, dt, \]
where the kernel $\psi : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+$ has the property that $\psi(t, s) = 0$ if $t < |s|$ and
\begin{equation}
\psi(t, s) \approx \sinh t (\cosh t)^{m_2/2} (\cosh t - \cosh s)^{(m_1 + m_2 - 2)/2}
\end{equation}
if $t \geq |s|$.

As usual, the notation $U \approx V$ means that there is a constant $C \geq 1$ depending only on the group G such that $C^{-1} U \leq V \leq C U$. This lemma is essentially proved in [8, Section 5]. For later reference we reproduce its proof.

Proof of Lemma 1. For any $t \geq |s|$, let
\begin{equation}
T_{t,s} = \{(v, w) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} : (\cosh t)^2 = \left[\cosh s + e^s|v|^2 \right]^2 + e^{2s}|w|^2 \}
\end{equation}
be the set of points $P = P(v, w) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ with the property that $\overline{\mathcal{P}(P)} a(s) \in K a(t) K$ (these surfaces will play a key role in the proof of Theorem A). Let $d\omega_{t,s}$ be the induced measure on $T_{t,s}$ such that
\[
\int_{\mathbb{R}^{m_1} \times \mathbb{R}^{m_2}} \phi(v, w) \, dv \, dw = \int_{t \geq |s|} \left[\int_{T_{t,s}} \phi(P) \, d\omega_{t,s}(P) \right] \, dt
\]
for any continuous compactly supported function ϕ. Then, since the function f is K-bi-invariant,
\[
e^{\rho |s|} \int_{\mathbb{R}^N} f(\overline{\mathcal{P}(s)}) \, d\overline{\mathcal{P}} = C e^{\rho |s|} \int_{\mathbb{R}^{m_1} \times \mathbb{R}^{m_2}} f(\overline{\mathcal{P}(v, w)} a(s)) \, dv \, dw = C e^{\rho |s|} \int_{t \geq |s|} F(t) \left[\int_{T_{t,s}} 1 \, d\omega_{t,s} \right] \, dt.
\]
Let $\psi(t, s) = e^{\rho |s|} \int_{T_{t,s}} 1 \, d\omega_{t,s}$ and assume that $m_2 \geq 1$. We make the change of variables $v = [e^{-s}(u \cosh t - \cosh s)]^{1/2} \omega_1$ and $w = e^{-s} \cosh t (1 - u^2)^{1/2} \omega_2$, where $\omega_1 \in S^{m_1 - 1}$ (the $m_1 - 1$ dimensional sphere in \mathbb{R}^{m_1}), $\omega_2 \in S^{m_2 - 1}$ and $u \in \left(\frac{\cosh s}{\cosh t} , 1 \right)$. We have
\[
\psi(t, s) = C \sinh t (\cosh t)^{m_2} \int_{\frac{\cosh s}{\cosh t}}^1 (u \cosh t - \cosh s)^{(m_1 - 2)/2} (1 - u^2)^{(m_2 - 2)/2} \, du,
\]
which easily proves (2.5). The computation of the function ψ is slightly easier if $m_2 = 0$ and the result is also given by (2.5).

Our next proposition explains the role of the Lorentz space $L^{2,1}(G//K)$ which, by definition, is the subspace of K-bi-invariant functions in $L^{2,1}(G)$:

Proposition 2. The Abel transform
\[
Af(a) = e^{\rho (\log a)} \int_{\mathbb{R}^N} f(\overline{\mathcal{P}(a)}) \, d\overline{\mathcal{P}}
\]
is bounded from $L^{2,1}(G/K)$ to $L^{\infty}(A/W)$. In other words, if f is a locally integrable K-bi-invariant function on G and $a \in A$ then:

\begin{equation}
(2.7) \quad e^{\rho(\log a)} \int_{\mathbb{N}} f(\tau a) \, d\tau \leq C \|f\|_{L^{2,1}(G)}.
\end{equation}

Proof of Proposition 2. The usual theory of Lorentz spaces (see, for example, [11, Chapter V]) shows that it suffices to prove the inequality (2.7) under the additional assumption that f is the characteristic function of an open K-bi-invariant set of finite measure. For any $t \geq 0$, let $F(t) = f(a(t))$, so

\begin{equation}
(2.8) \quad \|f\|_{L^{2,1}(G)} = C \left[\int_{\mathbb{R}^+} F(t) (\sinh t)^{m_1} (\sinh 2t)^{m_2} \, dt \right]^{1/2}.
\end{equation}

In view of Lemma 1 and (2.8), it suffices to prove that for any $s \in \mathbb{R}$

\begin{equation}
(2.9) \quad \int_{t \geq |s|} F(t) \psi(t, s) \, dt \leq C \left[\int_{\mathbb{R}^+} F(t) (\sinh t)^{m_1} (\sinh 2t)^{m_2} \, dt \right]^{1/2}
\end{equation}

for any measurable function $F : \mathbb{R}^+ \to \{0, 1\}$. Notice that if $t \geq 1 + |s|$ then

\begin{equation}
\psi(t, s) \approx e^{\rho t}, \quad (\sinh t)^{m_1} (\sinh 2t)^{m_2} \approx e^{2|\rho| t} \quad \text{and it follows from Lemma 3 below that}
\end{equation}

\begin{equation}
(2.10) \quad \int_{t \geq |s| + 1} F(t) \psi(t, s) \, dt \leq C \left[\int_{t \geq |s| + 1} F(t) (\sinh t)^{m_1} (\sinh 2t)^{m_2} \, dt \right]^{1/2}.
\end{equation}

In order to deal with the integral in t over the interval $[|s|, |s| + 1]$ we consider two cases: $|s| \geq 1$ and $|s| \leq 1$. If $|s| \geq 1$ and $t \in [|s|, |s| + 1]$, then

\begin{equation}
\psi(t, s) \approx e^{\rho |s| (t - |s|)} (\sinh t)^{m_1} (\sinh 2t)^{m_2} \approx e^{2|\rho| |s|} \quad \text{and, since} \quad (m_1 + m_2 - 2)/2 \geq -1/2,
\end{equation}

it follows that

\begin{equation}
\int_{|s|}^{|s| + 1} F(t) \psi(t, s) \, dt \leq C e^{\rho |s|} \int_{|s|}^{|s| + 1} F(t - |s|)^{-1/2} \, dt
\end{equation}

\begin{equation}
= C e^{\rho |s|} \int_{0}^{1} F(|s| + u^2) \, du \leq C \left[e^{2|\rho| |s|} \int_{0}^{1} F(|s| + u^2) \, du \right]^{1/2}
\end{equation}

\begin{equation}
\leq C \left[\int_{|s|}^{|s| + 1} F(t) (\sinh t)^{m_1} (\sinh 2t)^{m_2} \, dt \right]^{1/2}.
\end{equation}

One of the inequalities in the sequence above follows from the estimate (2.11) below. This, together with (2.10), completes the proof of the proposition in the case $|s| \geq 1$. The estimation of the integrals over the interval $[|s|, |s| + 1]$ is similar in the case $|s| \leq 1$.

Lemma 3. If $\delta \neq 0$ and $d\mu_1(t) = e^{\delta t} \, dt$, $d\mu_2(t) = e^{2\delta t} \, dt$ are two measures on \mathbb{R} then

\begin{equation}
\|f\|_{L^1(\mathbb{R}, d\mu_1)} \leq C_\delta \|f\|_{L^{2,1}(\mathbb{R}, d\mu_2)}.
\end{equation}
Proof of Lemma 3. One can assume that f is the characteristic function of a set. The change of variable $t = (\log s)/\delta$ and the substitution $g(s) = f((\log s)/\delta)$ show that it suffices to prove that

$$
(2.11) \quad \frac{1}{|\delta|} \int_{\mathbb{R}^+} g(s) \, ds \leq C_\delta \left[\frac{1}{|\delta|} \int_{\mathbb{R}^+} g(s) s \, ds \right]^{1/2}
$$

for any measurable function $g : \mathbb{R}^+ \to \{0, 1\}$, which follows by a rearrangement argument.

3. Proof of the maximal theorem

For any locally integrable function $f : X \to \mathbb{C}$ let

$$
\widetilde{M}_2 f(z) = \sup_{r \geq 1} \frac{1}{|B(z,r)|^{1/2}} \int_{B(z,r)} |f(z')| \, dz'.
$$

Most of this section will be devoted to the proof of the following theorem:

Theorem 4. The operator \widetilde{M}_2 is bounded from $L^{2,1}(X)$ to $L^{2,\infty}(X)$.

Notice that Theorem B is an easy consequence of Theorem 4: let

$$
\mathcal{M}_2^0 f(z) = \sup_{z \in B, r(B) \leq 1} \frac{1}{|B|} \int_B f(z') \, dz',
$$

$$
\mathcal{M}_2^1 f(z) = \sup_{z \in B, r(B) \geq 1} \frac{1}{|B|} \int_B f(z') \, dz',
$$

where $r(B)$ is the radius of the ball B. We can assume that the Killing form on the Lie algebra \mathfrak{g} is normalized such that $|H_0| = 1$. Let $o = \{K\}$ be the origin of the symmetric space X. Then the ball $B(o,r)$ is equal to the set of points $\{ka(t) \cdot o : k \in \mathbb{K}, t \in [0,r]\}$ and one clearly has $|B(o,r)| \approx r^{m_1 + m_2 + 1}$ if $r \leq 1$ and $|B(o,r)| \approx e^{2|\rho| r}$ if $r \geq 1$. The operator \mathcal{M}_2^0, the local part of \mathcal{M}_2, is clearly bounded on $L^p(X)$ for any $p > 1$. On the other hand, if z belongs to a ball B of radius $r \geq 1$, then $B(z,2r)$ contains the ball B and $|B(z,2r)| \approx e^{3|\rho| r} \approx |B|^2$. Therefore

$$
\frac{1}{|B|} \int_B f(z') \, dz' \leq C \int_{B(z,2r)} f(z') \, dz'
$$

which shows that $\mathcal{M}_2^1 f(z) \leq C \mathcal{M}_2 f(z)$, and the conclusion of Theorem B follows by interpolation with the trivial L^∞ estimate.

Proof of Theorem 4. Let χ_r be the characteristic function of the K-bi-invariant set $\{g \in G : d(g \cdot o,o) < r\}$. Since the measure of a ball of
radius \(r \) in \(X \) is proportional to \(e^{2|\rho|r} \) if \(r \geq 1 \), one has

\[
\widetilde{M}_2 f(g \cdot o) \approx \sup_{r \geq 1} \left[e^{-|\rho|r} \int_G f(g' \cdot o) \chi_r(g'^{-1}g) \, dg' \right].
\]

The change of variables \(g = \overline{\pi}a(t)k, \; g' = \overline{\pi}a(t')k' \) and the integral formula (2.4) show that

\[
(3.2) \quad \widetilde{M}_2 f(\overline{\pi}a(t) \cdot o)
\]

\[
\leq C \sup_{r \geq 1} \left[e^{-|\rho|r} \int_{\mathbb{N}} \left| f(\overline{\pi}a(t') \cdot o) \chi_r(a(-t')\overline{\pi}^{-1}\overline{\pi}a(t)) \, d\overline{\pi} \right| e^{2|\rho|r'} \, dt' \right].
\]

We first deal with the integral over the group \(\mathbb{N} \) and dominate the right-hand side of (3.2) using a standard maximal operator on the nilpotent group \(\mathbb{N} \). For any \(u > 0 \) let \(B_u \) be the ball in \(\mathbb{N} \) defined as the set \(\{ \overline{\pi}(v, w) : |v| \leq u \text{ and } |w| \leq u^2 \} \). Clearly, \(f_{B_u} 1_{B_u} = C u^{2|\rho|} \). The group \(\mathbb{N} \) is equipped with non-isotropic dilations \(\delta_u(\overline{\pi}(v, w)) = \overline{\pi}(uv, u^2w) \), which are group automorphisms, therefore the maximal operator

\[
M_3 f(\overline{\pi}a \cdot o) = \sup_{u > 0} \left[\frac{1}{u^{2|\rho|}} \int_{B_u} |f(\overline{\pi}^{-1}a \cdot o)| \, d\overline{\pi} \right].
\]

is bounded from \(L^p(\mathbb{N}) \) to \(L^p(\mathbb{N}) \) for any \(p > 1 \) ([13, Lemma 2.2]). For any locally integrable function \(f : X \to \mathbb{R}^+ \) and any \(\overline{\pi} \in \mathbb{N} \) and \(a \in A \) let

\[
M_3 f(\overline{\pi}a \cdot o) = \sup_{u > 0} \left[\frac{1}{u^{2|\rho|}} \int_{B_u} |f(\overline{\pi}^{-1}a \cdot o)| \, d\overline{\pi} \right].
\]

Since the maximal operator \(\mathcal{N} \) is bounded on \(L^p(\mathbb{N}) \) one has \(||M_3 f||_{L^p(\mathbb{N})} \leq C_p ||f||_{L^p(X)} \) for any \(p > 1 \). We will now use the function \(\mathcal{M}_3 f \) to control the integral over \(\mathbb{N} \) in (3.2). Notice that (2.1) and (2.2), together with the fact that \(d(ka(t) \cdot o, o) = t \) for any \(t \geq 0 \) and \(k \in K \), show that if \(\chi_r(a(-t')\overline{\pi}a(t)) = 1 \) for some \(\overline{\pi} \in \mathbb{N} \) then \(\overline{\pi} \) has to belong to the ball \(B_{e^{(t'-t)/2}} \); therefore

\[
\int_{\mathbb{N}} f(\overline{\pi}a(t') \cdot o) \chi_r(a(-t')\overline{\pi}^{-1}\overline{\pi}a(t)) \, d\overline{\pi} \leq \int_{B_{e^{(t'-t)/2}}} f(\overline{\pi}^{-1}a(t') \cdot o) \, d\overline{\pi} \\
\leq C e^{\rho(r-t')/2} M_3 f(\overline{\pi}a(t') \cdot o).
\]

If we substitute this inequality into (3.2) we conclude that

\[
(3.3) \quad \widetilde{M}_2 f(\overline{\pi}a(t) \cdot o) \leq C e^{-|\rho|t} \int_{\mathbb{R}} M_3 f(\overline{\pi}a(t') \cdot o) e^{\rho|t'|} \, dt'.
\]

We can now estimate the \(L^{2,\infty} \) norm of \(\widetilde{M}_2 f \): for any \(\lambda > 0 \), the set \(E_{\lambda} = \{ z \in X : M_2 f(z) > \lambda \} \) is included in the set

\[
\{ \overline{\pi}a(t) \cdot o : e^{-|\rho|t} \int_{\mathbb{R}} M_3 f(\overline{\pi}a(t') \cdot o) e^{\rho|t'|} \, dt' > \lambda/C \}.
\]
The measure dz in X is proportional to the measure $e^{2|\rho|t} \, d\overline{m} \, dt$ in $\overline{N} \times \mathbb{R}$ under the identification $z = \overline{m} a(t) \cdot o$. Therefore the measure of this last set is less than or equal to

$$
\frac{C \int_{\overline{N}} \int_{\mathbb{R}} |M_3 f(\overline{m} a(t') \cdot o) e^{\rho |t'|} \, dt'|^2 \, d\overline{m}}{\lambda^2};
$$

hence

$$
(3.4) \quad \| \tilde{M}_2 f \|^2_{L^2,\infty} \leq C \int_{\overline{N}} \left[\int_{\mathbb{R}} |M_3 f(\overline{m} a(t') \cdot o) e^{\rho |t'|} \, dt'|^2 \right] \, d\overline{m}.
$$

One can now use the following simple lemma to dominate the right-hand side of (3.4):

Lemma 5. If U and V are two measure spaces with measures du and dv respectively, and $H : U \times V \to \mathbb{R}_+$ is measurable then

$$
\left[\int_U \|H(u, .)\|^2_{L^2,1(V, dv)} \, du \right]^{1/2} \leq C \|H\|_{L^2,1(U \times V, du \, dv)}.
$$

The proof of this lemma is straightforward. Combining Lemma 3 (at the end of the previous section) and Lemma 5, one has

$$
(3.5) \quad \int_{\overline{N}} \left[\int_{\mathbb{R}} |M_3 f(\overline{m} a(t') \cdot o) e^{\rho |t'|} \, dt'|^2 \right] \, d\overline{m} \leq C \|M_3 f\|^2_{L^2,1(X)}.
$$

Finally, since the maximal operator M_3 is bounded on $L^p(X)$ for any $p > 1$, it follows by the general version of Marcinkiewicz interpolation theorem that $\|M_3 f\|_{L^2,1(X)} \leq C \|f\|_{L^2,1(X)}$ and Theorem 4 follows from (3.4) and (3.5).

4. A covering lemma

A simple connection between covering lemmas and boundedness of maximal operators is explained in [2]. In our setting we have:

Corollary 6. If a collection of balls $B_i \subset X$, $i \in I$, has the property that $| \bigcup B_i | < \infty$ then one can select a finite subset $J \subset I$ such that

$$
(4.1) \quad (i) \quad \left| \bigcup_{i \in I} B_i \right| \leq C \left| \bigcup_{j \in J} B_j \right|;
$$

$$
(ii) \quad \left\| \sum_{j \in J} \chi_{B_j} \right\|_{L^{2, \infty}(X)} \leq C \left| \bigcup_{i \in I} B_i \right|^{1/2}.
$$
It follows from (4.1) that
\[
\left\| \sum_{j \in J} \chi_{B_j} \right\|_{L^q(X)} \leq C_q \left\| \bigcup_{i \in I} B_i \right\|^{1/q}
\]
for any \(q \in [1, 2) \). Thus, in the terminology of [2], the family of natural balls on symmetric spaces of real rank one has the covering property \(V_q \) if and only if \(q \in [1, 2) \).

5. Proof of the convolution theorem

In this section we will prove Theorem A. In view of the general theory of Lorentz spaces, it suffices to prove that
\[
(5.1) \quad \int \int_{G \times G} f(z)g(z^{-1}z')h(z') \, dz' \, dz \leq C ||f||_{L^{2,1}} ||g||_{L^{2,1}} ||h||_{L^{2,1}}
\]
whenever \(f, g, h : G \to \{0, 1\} \) are characteristic functions of open sets of finite measure. We can also assume that \(g \) is supported away from the origin of the group, for example in the set \(\bigcup_{t > 1} Ka(t)K \). The main part of our argument is devoted to proving that the left-hand side of (5.1) is controlled by an integral involving suitable rearrangements of the functions \(f, g \) and \(h \), as in (5.19). Let \(z = \pi a(t)k \), \(z' = \pi' a(t')k' \) and the left-hand side of (5.1) becomes
\[
(5.2) \quad \int_K \int_K \int_R \int_R I(k, k', t, t') e^{2\rho|t+\bar{t}'|} \, dt \, dt' \, dk \, dk',
\]
where
\[
(5.3) \quad I(k, k', t, t') = \int_{\mathbb{N} \times \mathbb{N}} f(\pi a(t)k)g(k^{-1}a(-t)\pi^{-1}a(t')k')h(\pi' a(t')k') \, d\pi' \, d\pi
\]
We will show how to dominate the expression in (5.2) in four steps.

Step 1. Integration on the subgroup \(\mathbb{N} \). As in the proof of the maximal theorems, we start by integrating on \(\mathbb{N} \). Define \(F_1, H_1 : K \times \mathbb{R} \to \mathbb{R}_+ \) by
\[
F_1(k, t) = \int_{\mathbb{N}} f(\pi a(t)k) \, d\pi
\]
and
\[
H_1(k', t') = \int_{\mathbb{N}} h(\pi' a(t')k') \, d\pi'.
\]
Using the simple inequality
\[
\int_{\mathbb{N} \times \mathbb{N}} a(\pi)b(\pi^{-1}\pi')c(\pi') \, d\pi' \, d\pi \leq \left(\int_{\mathbb{N}} b(\pi) \, d\pi \right) \left[\min \left(\left(\int_{\mathbb{N}} a(\pi) \, d\pi \right), \left(\int_{\mathbb{N}} c(\pi) \, d\pi \right) \right) \right],
\]

which holds for any measurable functions $a, b, c : \mathbb{N} \to [0, 1]$ with compact support, it follows that the integral $I(k, k', t, t')$ in (5.3) is dominated by

$$\min \{ F_1(k, t), H_1(k', t') \} \int_{\mathbb{N}} g(k^{-1}a(-t)\overline{\alpha}(t')k') \, d\overline{\alpha}_1.$$

By (2.2), the map $\overline{\alpha}_1 \to a(-t)\overline{\alpha}_1 a(t) = \overline{\alpha}_2$ is a dilation of $\overline{\alpha}$ with $d\overline{\alpha}_1 = e^{-2|\rho|t} \, d\overline{\alpha}_2$; therefore

$$\int_{\mathbb{N}} g(k^{-1}a(-t)\overline{\alpha}_1 a(t')k') \, d\overline{\alpha}_1 = e^{-2|\rho|t} \int_{\mathbb{N}} g(k^{-1}(1 \overline{\alpha}_2 a(t')k') \, d\overline{\alpha}_2$$

$$= Ce^{-2|\rho|t} \int_{\mathbb{R}^m \times \mathbb{R}^m} g(k^{-1}(1 \overline{\alpha}_2 a(t')k') \, dv \, dw$$

$$= Ce^{-2|\rho|t} \int_{u \geq |t'-t|} \int_{T_{u, u'-t}} g(k^{-1}(P) a(t')k') \, d\omega_{u, u'-t}(P) \, du.$$

The surfaces $T_{u, s}$ defined in (2.6) for $\{(u, s) \in \mathbb{R}_+ \times \mathbb{R} : u \geq |s|\}$ and the associated measures $d\omega_{u, s}$ have the same meaning as in the proof of Lemma 1. Let

$$G_1(k, k', u, s) = \left(\int_{T_{u, s}} 1 \, d\omega_{u, s} \right)^{-1} \left[\int_{T_{u, s}} g(k^{-1}(P) a(u)k') \, d\omega_{u, s}(P) \right]$$

be the average of the function $P \to g(k^{-1}(P) a(s)k')$ on the surface $T_{u, s}$ (the domain of definition of G_1 is $\{(k, k', u, s) \in K \times K \times \mathbb{R}_+ \times \mathbb{R} : u \geq |s|\}$, and $G_1(k, k', u, s) \in [0, 1])$. If we substitute this definition in (5.5), we conclude that

$$\int_{\mathbb{N}} g(k^{-1}a(-t)\overline{\alpha}_1 a(t')k') \, d\overline{\alpha}_1$$

$$= Ce^{-|\rho|t|t'+t|} \int_{u \geq |t'-t|} G_1(k, k', u, t' - t) \psi(u, t' - t) \, du.$$

The function $\psi(u, s)$ was computed in the proof of Lemma 1 and is given by (2.5). Finally, if we substitute this last formula in (5.4), we find that the integral $I(k, k', t, t')$ is dominated by

$$Ce^{-|\rho|t|t'+t|} \min \{ F_1(k, t), H_1(k', t') \} \int_{u \geq |t'-t|} G_1(k, k', u, t' - t) \psi(u, t' - t) \, du,$$

which shows that the left-hand side of (5.1) is dominated by

$$C \int_K \int_K \int_{\mathbb{R}} \int_{|t'-t|} \min \{ F_1(k, t), H_1(k', t') \}$$

$$G_1(k, k', u, t' - t) \psi(u, t' - t) e^{\rho|t|t'} \, du \, dt' \, dt' \, dk.$$

For later use, we record the following properties of the functions F_1 and H_1:

$$||f||_{L^2,1(G)} = \left[C_2 \int_K \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} F_1(k, t) e^{2|\rho|t} \, dt \, dk \right]^{1/2},$$

$$||h||_{L^2,1(G)} = \left[C_2 \int_K \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} H_1(k', t') e^{2|\rho|t'} \, dt' \, dk' \right]^{1/2}.$$
Step 2. Integration on the subgroup A. Let χ_1 and χ_2, be the characteristic functions of the sets \(\{ k, k', t, t' \} : F_1(k, t) \leq H_1(k', t') \} \) and \(\{ (k, k', t, t') : H_1(k', t') \leq F_1(k, t) \} \) respectively. For any k, k', t, t' one has

\[
\left\{ \begin{array}{l}
F_1(k, t)\chi_1(k, k', t, t') \leq H_1(k', t'), \\
H_1(k', t')\chi_2(k, k', t, t') \leq F_1(k, t),
\end{array} \right.
\tag{5.9}
\]

Since $\chi_1 + \chi_2 \geq 1$, the expression (5.7) is less than or equal to the sum of two similar expressions of the form

\[
C \int_K \int_K \int_{\mathbb{R}^2} \int_{u \geq |t' - t|} F_1(k, t)\chi_1(k, k', t, t') G_1(k, k', u, t' - t) e^{\rho(t + t')} du dt' dt dk' dk.
\]

The change of variable $t' = t + s$ in the expression above shows that it is equal to

\[
C \int_K \int_K \int_{\mathbb{R}^2} \int_{u \geq |s|} F_1(k, t)\chi_1(k, k', t + s) G_1(k, k', u, s) e^{2\rho t} e^{\rho s} du dt ds dk' dk,
\tag{5.10}
\]

and the first of the inequalities in (5.9) becomes

\[
F_1(k, t)\chi_1(k, k', t + s) e^{2\rho t} \leq H_1(k', t + s) e^{2\rho t}.
\tag{5.11}
\]

Let $F(k) = \left[\int_{\mathbb{R}} F_1(k, t) e^{2\rho t} dt \right]^{1/2}$, $H(k') = \left[\int_{\mathbb{R}} H_1(k', t') e^{2\rho t'} dt' \right]^{1/2}$ and

\[
A(k, k', s) = \int_{\mathbb{R}} F_1(k, t)\chi_1(k, k', t + s) e^{2\rho t} dt.
\]

The expression (5.10) becomes

\[
C \int_K \int_K \int_{\mathbb{R}} \int_{u \geq |s|} A(k, k', s) G_1(k, k', u, s) e^{\rho s} du ds dk' dk.
\tag{5.12}
\]

Clearly, $A(k, k', s) \leq F(k)^2$ (since $\chi_1 \leq 1$) and $A(k, k', s) \leq e^{-2\rho s} H(k')^2$ by (5.11); therefore

\[
e^{\rho s} A(k, k', s) \leq \left\{ \begin{array}{ll}
e^{\rho s} F(k)^2 & \text{if } e^{\rho s} \leq H(k') / F(k), \\
e^{-\rho s} H(k')^2 & \text{if } e^{\rho s} \geq H(k') / F(k).
\end{array} \right.
\]

If we substitute this inequality in (5.12) we find that the left-hand side of (5.1) is dominated by

\[
C \int_K \int_K \int_{e^{\rho s} \leq H(k') / F(k)} \int_{u \geq |s|} F(k)^2 G_1(k, k', u, s) e^{\rho s} du ds dk' dk
\]

\[
+ C \int_K \int_K \int_{e^{\rho s} \geq H(k') / F(k)} \int_{u \geq |s|} H(k')^2 G_1(k, k', u, s) e^{-\rho s} du ds dk' dk.
\tag{5.13}
\]
We pause for a moment to note that our estimates so far, together with the proof of Lemma 1 in the second section, suffice to prove that $L^{2,1}(G) \ast L^{2,1}(G//K) \subseteq L^{2,\infty}(G)$: if g is a K-bi-invariant function, then $G_1(k,k',u,s)$ depends only on u, and (2.9) shows that

$$\int_{u \geq |s|} G_1(k,k',u,s) \psi(u,s) \, du \leq C \|g\|_{L^{2,1}}.$$

As a consequence, both terms in (5.13) are dominated by

$$C \|g\|_{L^{2,1}} \int_K \int_K F(k) H(k') \, dk' \, dk;$$

therefore

$$\int_{G \times G} f(z) g(z^{-1}z') h(z') \, dz' \, dz \leq C \|g\|_{L^{2,1}} \int_K \int_K F(k) H(k') \, dk' \, dk \leq C \|f\|_{L^{2,1}} \|g\|_{L^{2,1}} \|h\|_{L^{2,1}}.$$

Here we used the fact that, as a consequence of (5.8),

\begin{equation}
\|f\|_{L^{2,1}(G)} = \left[C_2 \int_K F(k)^2 \, dk \right]^{1/2},
\end{equation}

\begin{equation}
\|h\|_{L^{2,1}(G)} = \left[C_2 \int_K H(k')^2 \, dk' \right]^{1/2}.
\end{equation}

Step 3. A rearrangement inequality. In the general case (if g is not assumed to be K-bi-invariant) we will show that both terms in (5.13) are dominated by some expression of the form

$$C \int_0^1 \int_0^1 \int_{\mathbb{R}^+} F^*(x) H^*(y) G^{**}(x,y,u) e^{\rho |u|} \, du \, dy \, dx$$

where $F^*, H^* : (0,1] \to \mathbb{R}^+$ are the usual nonincreasing rearrangements of the functions F and H (recall that the measure of K is equal to 1) and $G^{**} : (0,1] \times (0,1] \times \mathbb{R}^+ \to \{0,1\}$ is a suitable "double" rearrangement of g. The precise definitions are the following: if $a : K \to \mathbb{R}^+$ is a measurable function then the nonincreasing rearrangement $a^* : (0,1] \to \mathbb{R}^+$ is the right semicontinuous nonincreasing function with the property that

$$|\{k \in K : a(k) > \lambda\}| = |\{x \in (0,1] : a^*(x) > \lambda\}| \text{ for any } \lambda \in [0, \infty).$$

Assume now that $a : K \times K \to \mathbb{R}^+$ is a measurable function. For almost every $k \in K$ let $a^*(k,y), y \in (0,1]$, be the nonincreasing rearrangement of the function $k' \to a(k,k')$ and let $a^{**}(x,y)$ be the nonincreasing rearrangement of the function $k \to a(k,y)$ (clearly $a^{**} : (0,1] \times (0,1] \to \mathbb{R}^+$). The following lemma summarizes some of the well-known properties of nonincreasing rearrangements (see for example [11, Chapter V]):
LEMMA 7. (a) If \(a : K \to \mathbb{R}_+ \) is a measurable function then
\[
\left[\int_K a(k)^2 \, dk \right]^{1/2} = \left[\int_{(0,1]} a^*(x)^2 \, dx \right]^{1/2}.
\]

(b) If \(a : K \times K \to \mathbb{R}_+ \) is a measurable function then
\[
\begin{align*}
(i) & \quad \int_K \int_K a(k,k') \, dk \, dk' = \int_0^1 \int_0^1 a^*(x,y) \, dy \, dx. \\
(ii) & \quad \text{The function } a^* \text{ is nonincreasing: } a^*(x,y) \leq a^*(x',y') \text{ whenever } x \geq x' \text{ and } y \geq y'. \\
(iii) & \quad \text{For any measurable sets } D, E \subset K \text{ with measures } |D| \text{ and } |E| \\
& \quad \int_D \int_E a(k,k') \, dk \, dk' \leq \int_0^{|D|} \int_0^{|E|} a^*(x,y) \, dy \, dx.
\end{align*}
\]

Returning to our setting, let \(F^* \) and \(H^* \) be the nonincreasing rearrangements of \(F \) and \(H \), let \(\tilde{g} : K \times K \times \mathbb{R}_+ \to (0,1) \) be given by \(\tilde{g}(k,k',u) = g^{-1}(a(u)k') \) and let \(G^* : (0,1] \times (0,1] \times \mathbb{R}_+ \to (0,1] \) be the double rearrangement of the function \(\tilde{g} \) (i.e., \(G^* (.,.,u) \) is the double rearrangement of \(\tilde{g}(.,.,u) \) for all \(u \geq 0 \)). Recall that we assumed that the function \(g \) is the characteristic function of a set included in \(\bigcup_{a>1} Ka(u)K \); therefore
\[
(5.15) \quad \|g\|_{L^2,1(G)} \approx \left[\int_{\mathbb{R}_+} \int_0^1 \int_0^1 G^*(x,y,u) e^{2|\rho|u} \, dy \, dx \, du \right]^{1/2}.
\]

We will now show how to use these rearrangements to dominate the two expressions in (5.13). For any integers \(m, n \) let \(D_m = \{ k \in K : F(k) \in [e^{\rho|m|}, e^{\rho(m+1)}] \} \), \(E_n = \{ k' \in K : H(k') \in [e^{\rho|n|}, e^{\rho(n+1)}] \} \) and let \(D_{-\infty} = \{ k \in K : F(k) = 0 \} \), \(E_{-\infty} = \{ k' \in K : H(k') = 0 \} \) such that \(K = \bigcup_m D_m = \bigcup_n E_n \). Let \(\delta_m \), respectively \(\epsilon_n \), be the measures of the sets \(D_m \), respectively \(E_n \), as subsets of \(K \). The first of the two expressions in (5.13) is dominated by
\[
(5.16) \quad C \sum_{m,n} \int_{D_m} \int_{E_n} \int_{s \leq (n-m+1)} \int_{u \geq |s|} e^{2|\rho|(m+1)} G_1(k,k',u,s) \psi(u,s) e^{|\rho|s} \, du \, ds \, dk' \, dk.
\]

Combining the definition (5.6) of the function \(G_1 \) (recall that the surfaces \(T_{u,s} \) are defined as the set of points \(P \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \) with the property that \(\pi(P) u(s) \in Ka(u)K \)), the fact that \(dk \) is a Haar measure on \(K \) and the last statement of Lemma 7, we conclude that
\[
\int_{D_m} \int_{E_n} G_1(k,k',u,s) \, dk' \, dk \leq \int_0^{\delta_m} \int_0^{\epsilon_n} G^*(x,y,u) \, dy \, dx.
\]
for any \(s \) with the property that \(|s| \leq u \). Substituting this inequality in (5.16), we find that the expression in (5.16) is dominated by

\[
C \sum_{m,n} \int_{\mathbb{R}^+} e^{2|\rho|m} \left[\int_0^{\delta_m} \int_0^{\varepsilon_n} G^{**}(x, y, u) \, dy \, dx \right]
\]

\[
\left[\int_{s \leq (n-m+1), |s| \leq u} \psi(u, s) e^{|\rho|s} \, ds \right] \, du.
\]

The formula (2.5) shows that the last of the integrals in the expression above is dominated by \(Ce^{|\rho|u} e^{|\rho|(n-m)} \); therefore the first of the two expressions in (5.13) is dominated by

\[
C \int_{\mathbb{R}^+} \sum_{m,n} \left[e^{|\rho|(m+n)} \int_0^{\delta_m} \int_0^{\varepsilon_n} G^{**}(x, y, u) \, dy \, dx \right] e^{|\rho|u} \, du.
\]

Let

\[
S(x, y) = \sum_{m,n} \left[e^{|\rho|(m+n)} \chi_{\delta_m}(x) \chi_{\varepsilon_n}(y) \right],
\]

where \(\chi_{\delta_m}, \chi_{\varepsilon_n} \) are the characteristic functions of sets \((0, \delta_m), (0, \varepsilon_n)\). If \(m_x = \max\{m : \delta_m > x\} \) and \(n_y = \max\{n : \varepsilon_n > y\} \) then \(S(x, y) \leq Ce^{|\rho|(m_x+n_y)} \). Clearly \(F^*(x) \geq e^{|\rho|m_x}, H^*(y) \geq e^{|\rho|n_y} \); therefore the expression (5.18) is dominated by

\[
C \int_{\mathbb{R}^+} \int_0^1 \int_0^1 F^*(x)H^*(y)G^{**}(x, y, u)e^{|\rho|u} \, dy \, dx \, du.
\]

One can deal with the second of the two expressions in (5.13) in a similar way; therefore

\[
\int \int_{G \times G} f(z)g(z^{-1}z')h(z') \, dz' \, dz
\]

\[
\leq C \int_{\mathbb{R}^1} \int_0^1 \int_0^1 F^*(x)H^*(y)G^{**}(x, y, u)e^{|\rho|u} \, dy \, dx \, du.
\]

Step 4. Final estimates. Let \(K \) be a suitable constant (to be chosen later) and let \(\mathcal{U} = \{(x, y, u) : F^*(x)H^*(y) \leq Ke^{|\rho|u}\} \) and \(\mathcal{V} = \{(x, y, u) : F^*(x)H^*(y) \geq Ke^{|\rho|u}\} \). By (5.15),

\[
\int_{\mathcal{U}} F^*(x)H^*(y)G^{**}(x, y, u)e^{|\rho|u} \, dy \, dx \, du
\]

\[
\leq \int_{\mathbb{R}^+} \int_0^1 \int_0^1 K G^{**}(x, y, u)e^{2|\rho|u} \, dy \, dx \, du \leq CK\|g\|_{L^2,1}^2.
\]

Using Lemma 7(a), (5.14) and the fact that \(G^{**}(x, y, u) \leq 1 \) one has
\[\int_V F^*(x)H^*(y)G^{**}(x, y, u)e^{\rho|u|} \, dy \, dx \, du \leq C \int_0^1 \int_0^1 \left[\frac{F^*(x)H^*(y)}{K} \right]^2 \, dy \, dx \leq C \|f\|_{L^2,1}^2 \|h\|_{L^2,1}^2. \]

Finally one lets \(K = (\|g\|_{L^2,1})^{-1} (\|f\|_{L^2,1} \|h\|_{L^2,1}) \) and the theorem follows.

6. A general rearrangement inequality

We will now extend the rearrangement inequality (5.19) to the case when \(f, g, h \) are arbitrary measurable functions (not just characteristic functions of sets). For any measurable function \(f : G \to \mathbb{R}_+ \) we define the function \(F^* : [0, 1] \to \mathbb{R}_+ \) by the following procedure: first, let \(\tilde{f} : K \times (0, \infty) \to \mathbb{R}_+ \) be defined, for almost every \(k \in K \), as the usual nonincreasing rearrangement of the function \(f_k : N \times A \to \mathbb{R}_+, f_k(\pi a) = f(\pi ak) \) with respect to the measure \(e^{2\rho(\log a)} \, da \). Using the function \(\tilde{f} \) we define the function \(\tilde{F} : (0, 1] \times (0, \infty) \to \mathbb{R}_+ \): for each \(r > 0 \) fixed, the function \(\tilde{F}(., r) \) is the usual the nonincreasing rearrangement of the function \(k \to \tilde{f}(k, r) \). Finally let

\[(6.1) \quad F^*(x) = \frac{1}{2} \int_0^\infty \tilde{F}(x, r) r^{-1/2} \, dr \]

be the \(L^2,1 \) norm of the function \(r \to \tilde{F}(x, r) \). Notice that this definition of the function \(F^* \) agrees with our earlier definition if \(f \) is a characteristic function.

Theorem 8. If \(f, g, h : G \to \mathbb{R}_+ \) are measurable functions then

\[(6.2) \quad \int \int_{G \times G} f(z)g(z^{-1}z')h(z') \, dz' \, dz \leq C \int_{\mathbb{R}_+} \int_0^1 \int_0^1 F^*(x)H^*(y)G^{**}(x, y, u)\phi(u) \, dy \, dx \, du, \]

where \(G^{**} : (0, 1] \times (0, 1] \times \mathbb{R}_+ \to \mathbb{R}_+ \) is the double rearrangement of the function \((k, k', u) \to g(k^{-1}a(u)k')\) (the same definition as before), \(F^* \) and \(H^* \) are defined in the previous paragraph and \(\phi(u) = u^{m_1 + m_2} \) if \(u \leq 1 \) and \(\phi(u) = e^{\rho|u|} \) if \(u \geq 1 \).

Proof of Theorem 8. Notice that

\[\phi(u) \approx \sup_{r \in [-u, u]} e^{-|\rho|r} \int_{s \leq r, |s| \leq u} \psi(u, s)e^{\rho|s|} \, ds. \]

Notice also that if \(f \) and \(h \) are characteristic functions of sets then (6.2) is equivalent to (5.19). If \(f, h \) are simple positive functions, one can write (uniquely up to sets of measure zero) \(f = \sum c_i f_i, h = \sum d_j h_j \), where \(c_i, d_j > 0 \) and \(f_i \)
and \(h_j\), are characteristic functions of sets \(U_i\) and \(V_j\) with the property that for all \(i\) and \(j\) one has \(U_{i+1} \subset U_i\) and \(V_{j+1} \subset V_j\). Simple manipulations involving rearrangements show that \(F^* = \sum_{i=1}^{M_1} c_i F_i^*\) and \(H^* = \sum_{j=1}^{M_2} d_j H_j^*\) (this explains the reason why we chose the apparently complicated definition of the function \(F^*\) in (6.1)), and (6.2) follows by summation. Finally, a standard argument shows that (6.2) holds for arbitrary measurable functions \(f\), \(g\) and \(h\) for which the right-hand side integral in (6.2) converges.

Princeton University, Princeton, NJ

Current address: Institute for Advanced Study, Princeton, NJ

E-mail address: aionescu@math.ias.edu

References

[1] J.-Ph. Anker, \(L_p\) Fourier multipliers on Riemannian symmetric spaces of the noncompact type, *Ann. of Math.* **132** (1990), 597–628.

[2] A. Cordoba and R. Fefferman, A geometric proof of the strong maximal theorem, *Ann. of Math.* **102** (1975), 95–100.

[3] M. Cowling, The Kunze-Stein phenomenon, *Ann. of Math.* **107** (1978), 209–234.

[4] M. Cowling, Herz’s “principe de majoration” and the Kunze-Stein phenomenon, in *Harmonic Analysis and Number Theory*(Montreal, PQ, 1996), 73–88, *CMS Conf. Proc.* **21**, A.M.S., Providence, RI, 1997.

[5] J.-L. Clerc and E. M. Stein, \(L^p\)-multipliers for noncompact symmetric spaces, *Proc. Natl. Acad. Sci. USA* **71** (1974), 3911–3912.

[6] S. Helgason, *Geometric Analysis on Symmetric Spaces*, A.M.S., Providence, RI, 1994.

[7] A. D. Ionescu, A maximal operator and a covering lemma on non-compact symmetric spaces, *Math. Res. Lett.* **7** (2000), 83–93.

[8] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in *Special Functions: Group Theoretical Aspects and Applications*, 1–85, *Math. Appl.* **8**, Marcel Dekker, New York, 1984.

[9] N. Lohoué and T. Rychener, Some function spaces on symmetric spaces related to convolution operators, *J. Funct. Anal.* **55** (1984), 200–219.

[10] R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the \(2 \times 2\) unimodular group, *Amer. J. Math.* **82** (1960), 1–62.

[11] E. M. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton Math. Series, No. 32, Princeton Univ. Press, Princeton, NJ, 1971.

[12] J.-O. Strömberg, Weak type \(L^1\) estimates for maximal functions on noncompact symmetric spaces, *Ann. of Math.* **114** (1981), 115–126.

[13] N. J. Weiss, Fatou’s theorem for symmetric spaces, in *Symmetric Spaces* (Short Courses, Washington Univ., St. Louis, MO, 1969–1970), 413–441, *Pure and Appl. Math.* **8**, Marcel Dekker, New York, 1972.

(Received December 30, 1998)