Hepatocellular carcinoma-associated antigen 59 of *Haemonchus contortus* modulates the functions of PBMCs and the differentiation and maturation of monocyte-derived dendritic cells of goats *in vitro*

QiangQiang Wang†, LingYan Wu†, Muhammad Waqqas Hasan, MingMin Lu, WenJuan Wang, Ruofeng Yan, Lixin Xu, Xiaokai Song and XiangRui Li*

Abstract

Background: Hepatocellular carcinoma-associated antigen 59 (HCA59), which is one of the most important excretory/secretory products of *Haemonchus contortus* (HcESPs), is known to have antigenic functions. However, its immunomodulatory effects on host cells are poorly understood.

Methods: Here, we cloned the HCA59 gene and expressed the recombinant protein of HCA59 (rHCA59). Binding activities of rHCA59 to goat peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) were checked by immunofluorescence assay (IFA) and the immunoregulatory effects of rHCA59 on cytokine secretions, cell migration, cell proliferation, nitric oxide production, and changes in expression of genes in related pathways were observed by co-incubation of rHCA59 with goat PBMCs and DCs. Monocyte phagocytosis and characterization of goat blood DC subsets were detected by flow cytometry.

Results: The IFA results revealed that rHCA59 could bind to PBMCs and DCs. Treatment of PBMCs with rHCA59 significantly increased cellular proliferation and NO production in a dose-dependent manner, while cell migration was vigorously blocked. Treatment with rHCA59 significantly suppressed monocytes phagocytosis. The quantity of surface marker CD80 on DCs increased significantly after rHCA59 treatment. In addition, the expression of genes included in the WNT pathway was related to the differentiation and maturation of DCs, and the production of IL-10 and IL-17 produced by PBMCs was altered.

Conclusions: Our findings illustrated that rHCA59 could enhance host immune responses by regulating the functions of goat PBMCs and DCs, which would benefit our understanding of HCA59 from parasitic nematodes contributing to the mechanism of parasitic immune evasion.

Keywords: HCA59, *Haemonchus contortus*, Dendritic cells, PBMCs, Immunomodulatory effects
Background

Haemonchus species are the most important blood-sucking nematodes of domestic animals in sub-tropical and tropical areas worldwide. Infections of these parasites usually appear in young animals and resistance to infections develops with exposure in adult hosts [1]. As blood-feeders, adult Haemonchus contortus can lead to severe hemorrhagic gastritis, a low level of proteins in blood, lethargy, edema and lack of red blood cells, and even death in acute infections of the animal [2–4]. Current methods of controlling H. contortus primarily depend on the use of anthelmintics. However, extensive resistance to frequently used drugs has led to an urgent need for development of new chemotherapeutics and different control approaches, such as vaccination [5–9].

Hepatocellular carcinoma-associated antigen 59 (HCA59), which is a component of the excretory/secretory products of H. contortus (HcESPs), can be isolated from different larval stages of this nematode [10]. In NCBI, HCA59 had 1111 blast hits to 862 proteins in 155 species including archaea, bacteria, metazoa, fungi, plants and viruses. This protein belongs to the TLS1 family, is associated with the spliceosome, and is overexpressed in multiple cancer cell lines in humans [11]. Hepatocellular carcinoma-associated antigen 587 (HCA587) has been found to be the protein most similar to HCA59, and its peptides could bind specifically to DCs [12].

In nematode infections, the parasites regulate the host immune system by affecting the functions of the immune cells, through interactions of ESPs with the cells [13]. PBMCs refer to cells with a single nucleus, including various immune cells, such as lymphocytes (B cells, T cells), monocytes, DCs and NK cells, which play key roles in the host’s immune system. DCs are the only multiple-function cells that can both initiate primary immune responses and manage adaptive and innate immunities through antigen uptake and processing, stimulation of lymphocytes and release of cytokines [14–16]. Earlier studies indicated that DCs maturation processes were predominantly based on the non-canonical and canonical WNTs that stimulate DCs to produce anti-inflammatory cytokines [17]. Therefore, WNT proteins and their signaling pathways play significant roles in DCs function and maturation.

We previously recognized that HCA59 from H. contortus interacted with goat PBMCs in vivo [10]. However, molecular cloning was not conducted and functional descriptions of H. contortus HCA59 were not provided in that study. Therefore, in the present study, recombinant protein of HCA59 was generated and its modulatory effects on the functions of goat PBMCs and the differentiation and maturation of DCs were evaluated.

Methods

Animals and parasites

Local crossbred goats (3- to 6-months-old) were housed indoors and provided with whole shelled corn, hay and water ad libitum. All goats were dewormed with levamisole (8 mg/kg body weight) to eliminate the naturally attained infection with helminths at 2-week intervals. Fecal samples were analyzed microscopically for helminth eggs twice per week, utilizing standard parasitological techniques. Goats presenting no helminth eggs were used in later experiments.

Female SD rats (body weight ~150 g) were bought from the Experimental Animal Center of Jiangsu, PR China (Certified: SCXK 2008-0004). Rats were housed in a sterilized room and supplied with sterilized water and food.

Third-stage (L3) larvae were obtained from the Laboratory of Veterinary Parasitic Diseases of Nanjing Agricultural University, for use in the challenge and the HcESPs were kept in the same laboratory.

Cloning and sequence analysis of H. contortus HCA59

Total RNA was extracted from adult H. contortus parasites (mixture of females and males) isolated from the abomasum of donor goats. RNA was extracted using Trizol reagent (Invitrogen, Shanghai, China) as previously described [18]. Reverse transcription was conducted using a cDNA Kit (Takara Biotechnology, Dalian, China) to synthesize cDNA according to the manufacturer's instructions, after which the cDNA was stored at -20 °C until use. The open reading frame (ORF) of HCA59 was amplified by PCR using specific primers designed from conserved domain sequences (CDS) of the H. contortus HCA59 gene (GenBank: CDI80864.1). For subsequent cloning, the enzyme restriction site BamH I was added to the 5’-end of the sense primer and the enzyme restriction site Hind III was added to the 5’-end of the antisense primer. The sequences of sense and antisense primers were as follows: sense: (5’-AAG GAT CCA TGA CGG AAT TCT TCT CGC G-3′) and antisense: (5’-CCA AGC TTC CTC GAG AAG TAT TCG ATG AGC TTC-3′). The total 50 µl PCR reaction consisted of 1.0 U Taq DNA polymerase (Takara Biotechnology), 2 µl of cDNA, 400 µM dNTP mixtures, 3.0 mM MgCl₂, 50 µM 10× LA PCR buffer (Mg²⁺ free) and 400 nM of each primer. The loop conditions of PCR were as follows: 94 °C for 5 min, followed by 35 cycles of 94 °C (30 s), 55 °C (30 s) and 72 °C (1 min), after which samples were subjected to final extension at 72 °C for 10 min, and preserved at 16 °C until further use. The amplified fragment of PCR was identified by 1% agarose gel electrophoresis, cleansed using an E.Z.N.A. Gel Extraction Kit (Omega Biotech, Norcross, GA, USA), according to manufacturer’s guidelines, then ligated into pMD19-T cloning vector (Takara).
The recombinant plasmid pMD-19T/HCA59 was transformed into E. coli strain DH5α (Invitrogen Biotechnology, Shanghai, China) and cultured in Luria Bertini medium (LB) containing ampicillin (100 µg/ml). The assured recombinant clones were sequenced (Invitrogen Biotechnology), then validated by sequence analysis utilizing the Blast program online (http://www.blast.ncbi.nlm.nih.gov/blast.cgi).

Purification of recombinant HCA59 protein

The recognized recombinant plasmid pMD-19T/HCA59 was digested with the double restriction enzymes BamHI and HindIII, after which the HCA59 gene was purified and ligated into the pET-32a (+) expression vector (Novagen, Shanghai, China) digested with the same enzymes. Finally, to confirm its location in the accurate reading frame, the successfully cloned HCA59 gene in a recombinant expression vector was sequenced. The recombinant plasmid pET-32a (+) with HCA59 was then transferred into E. coli BL21 (DE3) and cultured in Luria Bertini (LB) medium containing ampicillin (100 µg/ml). Next, the protein expression was induced with 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG; Sigma-Aldrich, Shanghai, China) until the OD600 of the culture reached 37 °C. The cells were subsequently harvested by centrifugation, after which they were lysed using lysozyme (10 µg/ml) (Sigma-Aldrich) and then sonicated. The sonication products were subsequently examined by SDS-PAGE and stained by Coomassie blue and quantitatively analyzed by 12% (w/v) sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, recombinant protein was purified using a Ni²⁺-nitrilotriacetic acid (Ni-NTA) column (GE Healthcare, Piscataway, USA) according to the manufacturer’s methods. The histidine-tagged protein (pET-32a protein) from BL21 transferred with vector used as a negative control protein in this study was also expressed and purified using the same procedures. The purity of the rHCA59 protein was determined by 12% SDS-PAGE with staining by Coomassie blue and quantified by the Bradford method [19]. A ToxinEraserTM Endotoxin Removal Kit (GeneScript, Piscataway, USA) was used to remove the endotoxins from the recombinant protein.

Immunoblot analysis of rHCA59

Polyclonal antibodies against the rHCA59 protein were collected from SD rats by subcutaneous injection using 300 µg of rHCA59 protein mixed equally with Freund’s complete adjuvant. Rats were then injected three times with the same protein and Freund’s incomplete adjuvant at 1-week intervals 2 weeks after the first immunization. At 7 days after the last injection, the sera were collected and stored at -80 °C for use in later experiments. The sera from normal rats were also isolated as negative control.

The anti-sera against H. contortus were harvested from experimentally infected goats and sera from normal goats were collected as a negative control. The recombinant HCA59 protein was separated on 12% SDS-PAGE and subsequently transferred to polyvinylidene difluoride (PVDF) membrane (Immobilon-PSQ, Millipore, Billerica, MA, USA) using a semi-dry system (Novablot, Hoefer, USA) in transfer buffer (39 mM glycine, 48 mM Tris, 20% methanol, 0.0375% SDS) at 1.5 mA/cm² for 25 min. Next, the membrane was blocked with 5% (w/v) skim milk powder in TBST with 0.5% Tween-20 at 37 °C for 2 h, washed three times with TBST and incubated with anti-H. contortus sera from goats (1:300 dilutions) as the first antibody in the treatment group or normal goat sera in the negative control group (1:300 dilutions) for one night at 4 °C. The membranes were then washed and incubated with the secondary antibody, horseradish peroxidase (HRP)-conjugated rabbit anti-goat IgG (Santa Cruz Biotechnology, Dallas, TX, USA) in TBST (1:3000 dilutions), for 2 h at 37 °C. Next, the membranes were washed and immunoreactions were visualized within 3–5 min using a 3, 3-diaminobenzidine tetrahydrochloride kit (DAB; Sigma-Aldrich) according to the manufacturer’s instructions. Western blot analysis of HcESPs was conducted using the same procedures as for the rHCA59 protein above. During the process, the rat anti-sera against rHCA59 and normal rat sera were used as the first antibodies in the treatment group and the negative control group, respectively. The HRP-goat anti rat IgG (Beyotime, Jiangsu, China) was used as the secondary antibody.

Preparation of goat PBMCs

Peripheral blood was collected from healthy donor male goats and PBMCs were isolated from the blood using the standard Ficoll-Hypaque (GE Healthcare, Munich, Germany) gradient centrifugation technique [20]. The fresh PBMCs were collected for the later cell proliferation, migration and nitric oxide production assays.

Generation of goat monocyte-derived DCs

Monocyte-derived DCs (md-DCs) were isolated from PBMCs of native goats blood and identified as previously described [21, 22] with some modifications. Briefly, freshly collected PBMCs were incubated in 6-well cell culture plates (Corning Costar, Rochester, NY, USA) at 1.0 × 10⁶ cells/ml in 1640 RPMI medium (Gibco, Grand Island, NY, USA) with 10% fetal calf serum (Wisent, Jiangsu, China), 100 mg/ml streptomycin and 100 U/ml penicillin. After 12 h, the attached cells were separated by removing the supernatant and the non-attached cells [23], after which they were washed with phosphate-buffered saline (PBS). Next, the cells of the positive control
group were stimulated using caprine granulocyte-macrophage colony-stimulating factor (20 ng/ml) (GM-CSF; Kingfisher, Washington, USA) and interleukin 4 (20 ng/ml) (IL-4; Kingfisher) for 3 days. Half of the cytokines were then added and cultured for another 3 days. Next, *E. coli* lipopolysaccharides (LPS; Sigma-Aldrich) were added at 1 μg/ml and incubated at 37 °C under 5% CO2 for 12 h. The cells of the experimental group were subsequently incubated with rHCA59 protein (20 μg/ml) for 3 days, after which half the quantity of the protein initially used was added and samples were cultured for 4 days as described earlier [24]. The cells in the control groups of pET-32a protein (20 μg/ml) and PBS (blank control) were also cultured using the same procedures as for the experimental group. During the experiment, cells were categorized by microscopy observation (Olympus, Shibuya, Japan) on days 1, 4 and 7 of the incubation period. On day 7, md-DCs from all groups were collected by gentle pipetting and centrifugation and used for further detection, while the md-DCs used for the binding experiment were generated from the positive group.

Detection of rHCA59 binding to goat PBMCs and md-DCs

Immunofluorescence assays were conducted as previously described [25] to confirm the ability of rHCA59 to bind to goat PBMCs and md-DCs. Briefly, collected cells (1 × 10⁶) of PBMCs and md-DCs as described above were inoculated with rHCA59 for 1.5 h. Cells were then washed and permitted to settle onto poly-L-lysine treated glass slides for 30 min, after which they were fixed with 4% paraformaldehyde in PBS for 30 min at room temperature (RT). Next, cells were blocked with PBS containing 5% (w/v) BSA at 37 °C for 1 h. Subsequently, cells were cultured with primary antibodies (1:100 dilution), rat anti-rHCA59 sera or normal rat IgG (control) for 2 h and then incubated with secondary antibody goat anti-rat IgG (Beyotime) labeled with Cy3 (1:500 dilution) in the dark for 1 h. DAPI (Sigma, St. Louis, MO, USA) was subsequently added and samples were incubated for 5 min. Finally, the cells were washed, covered with a coverslip and dipped in Antifade Mounting Media (Beyotime). PBMCs and DCs were examined using two different confocal microscopes with laser scanners (PerkinElmer, Waltham, MA, USA; Nikon, Tokyo, Japan) and digital pictures were taken using the PerkinElmer or Nikon microscope software packages.

Analysis of cell phenotypic markers of DCs by flow cytometry

Identification of DCs was conducted by flow cytometry (FACS) as previously described [24]. Briefly, DCs collected on day 7 were washed three times with PBS and then stained with antibodies. To detect the expression of CD14, cells were incubated with anti-bovine CD14 (Kingfisher, Washington, USA) and then APC-anti-mouse IgM (Biolegend, San Diego, CA, USA). To examine the quantity of CD172a, cells were cultured with anti-bovine CD172a (Kingfisher) and then FITC-anti-mouse IgG1 (Biolegend). To check the expression of CD11c, cells were incubated with anti-bovine CD11c (Kingfisher) and then RPE-anti-rat IgG1 (R&D Biotech, Minneapolis, CA, USA). To identify the quantity of CD80, cells were stained with RPE-mouse-anti-bovine co-stimulatory molecules CD80 (clone: IL159) (Bio-Rad, Hercules, CA, USA). Finally, cells stained with antibodies were analyzed using a FACS Caliber system (BD Bioscience, Franklin Lakes, NJ, USA).

Detection of key genes in WNT pathway related to md-DCs’ differentiation and maturation

Total DNA-free RNA of md-DCs was isolated from cells (2.5 × 10⁶) of rHCA59-treated and control groups and harvested on day 7 using Trizol reagent (Invitrogen) and the previously described method [13]. The quantity and reliability of extracted RNA were checked by spectrophotometry using a biophotometer (Eppendorf, Berlin, Germany). The absorption ratios (OD260/OD280) of all samples were between 1.8 and 2.0. The cDNA was then prepared in a 20 μl reaction mixture using 1 μg of total RNA per reaction. Thermo-Script RT and Oligo (dT) (Invitrogen, Foster, CA, USA) were used to synthesize cDNA according to the manufacturer’s specifications. The cDNA of rHCA59-treated and control groups were used for examination of the key genes of β-catenin, CK2, DVL and APC for the WNT pathway by quantitative real-time reverse transcriptase polymerase chain reaction (qPCR). The reaction for the detection of key genes was conducted in a total volume of 20 μl containing 2 μl of 2× SYBR qPCR Master Mix, 0.4 μl of each primer (10 μM), 0.4 μl of 50× ROX Reference Dye1, 2 μl of cDNA and 6.8 μl of ddH2O. The primers used for amplification of the key genes investigated are listed in Additional file 1: Table S1. Data are representative of three independent experiments.

Detection of cytokines level

The IL-2, IL-4, IL-10, IL-17, IFN-γ and TGF-β1 secretion levels of PBMCs were detected by qPCR. Briefly, PBMCs freshly isolated as above were stimulated with ConA (10 μg/ml) and serial concentrations of rHCA59 (10, 20 and 40 μg/ml), pET-32a protein and the same volume of PBS for 48 h at 37 °C under 5% CO2. Subsequently, cells were collected and the total RNA was extracted using an RNeasy Mini Kit (Qiagen, Hilden, Germany) as previously described [13]. The primers used for qPCR are shown in
Additional file 2: Table S2. The data are representative of
three independent experiments.

Cell proliferation assay
The cell proliferation assay was conducted as previously
described [26]. Briefly, suspensions of fresh PBMCs iso-
lated as above (1 × 10^6 cells/ml) were activated with
ConA (10 µg/ml), serial concentrations of rHCA59 (10, 20
and 40 µg/ml), pET-32a protein, and the same vol-
ume of control buffer (PBS), then cultured under 5% CO₂
at 37 °C for 72 h. Next, 10 µl of CCK-8 reagents (Beyo-
time) were added to each well of the plates for 4 h before
measuring the absorbance values at 450 nm (OD450) in a
microplate reader (Thermo Scientific, Minneapolis, MN,
USA). Data are representative of one of three independ-
ent experiments.

Cell migration assay
The cell migration experiment was conducted utilizing a
Transwell system (Merck-Millipore, Boston, MA, USA),
which allowed PBMCs to migrate through the polycar-
bonate membrane with an 8 µm pore size [27]. Cells were
cultured with different concentrations of rHCA59 (10, 20
and 40 µg/ml), pET-32a protein, and an equal volume of
PBS (control buffer). Each experiment was performed in
triplicate.

Nitric oxide production assay
Fresh PBMCs (1 × 10^6 cells/ml) isolated as above were
washed two times with PBS and incubated in 96-well
plates in DMEM. The production of nitric oxide (NO)
was then examined as intracellular nitrite in PBMCs by
a Griess assay [28] using a Total Nitric Oxide Assay Kit
(Beyotime). Absorbance values at 540 nm (OD540) of
the colored solution were measured using a plate reader
(Bio-Rad), then transformed to micromoles per liter
(µmol/l) using a standard curve that had been produced
by the addition of 0–80 µmol/l sodium nitrite to fresh
culture media. The individual experiment was performed
three times.

Cell phagocytosis assay
Fresh monocytes (1 × 10^6 cells/ml) were separated from
PBMCs by their adherence to the cell plate as described
above, then cultured with serial concentrations of
rHCA59 (10, 20 and 40 µg/ml), pET-32a protein, and
same volume of control buffer (PBS) and cultured with
5% CO₂ for 48 h at 37 °C. Next, cells were collected,
washed and transferred to a 1.5-ml tube in 100 µl PBS
and then mixed with 100 µl FITC-dextran in the dark
for 1 h at 37 °C before testing using flow cytometry (BD
Bioscience). The ratio of the mean fluorescence intensity
(MFI) of each group to the PBS group was utilized as the
phagocytic index. Three independent experiments were
performed.

Statistical data analysis
Statistical analyses were conducted using the GraphPad
6.0 software (GraphPad Prism, San Diego, CA, USA). All
of the data obtained from the above experiments were
reported as the means ± SD. Differences between groups
were identified by ANOVA followed by Tukey’s post-hoc
test, with \(P < 0.05 \), \(P < 0.01 \) and \(P < 0.001 \). The FACS data
were analyzed using FlowJo (version 10, Franklin Lakes,
NJ, USA) software.

Results
Molecular cloning of HCA59 gene
The fragments of HCA59 genes (426 bp) cloned into vec-
tors pMD-19T and pET-32a were confirmed by restric-
tion enzyme digestion with \(\text{BamH}I \) and \(\text{Hind}III \) and
sequence analysis. The results indicated that the gene
was successfully cloned into the vectors (Additional file 3:
Figure S1).

Expression, purification and western blot analysis
of rHCA59
The recombinant protein of HCA59 was expressed and
purified as His tagged fusion protein. The purified recom-
binant protein was resolved on 12% SDS-PAGE and had
a molecular weight of about 33 kDa (Fig. 1a). The calcu-
lated molecular mass of the HCA59 protein was its origi-
nal size of 16 kDa after reduction of the His tagged fusion
protein of the pET-32a vector (17 kDa). Western blot
analysis showed that the recombinant HCA59 could be
recognized by sera from goats infected with \(\text{H}	ext{.contortus} \),
while native HCA59 protein from HcESPs could be rec-
ognized by antibodies generated against rHCA59 pro-
tein (Fig. 1b, c, Lane 1). The molecular mass of the native
HCA59 protein was 16 kDa, which was the same molec-
ular weight as that of the rHCA59 after reduction from
pET-32a protein. However, no protein was detected with
normal goat sera or normal rat sera (Fig. 1b, c, Lane 2).
These findings suggest that protein rHCA59 had good
antigenic characteristics and could be recognized by the
host immune system.

Validation of rHCA59 binding with PBMCs and md-DCs
The bindings of rHCA59 to goat PBMCs and md-DCs
are shown in Additional file 4: Figure S2a (PBMCs) and
Additional file 4: Figure S2b (DCs). The cells subjected
to secondary antibody labelled with Cy3 are presented in
red, the nuclei of the cells are shown in blue, and com-
bined pictures of protein binding show merged red and
blue. However, the cells of the control group did not show any fluorescence (Additional file 4: Figure S2a2, a4, a6; Additional file 4: Figure S2b2, b4, b6). The dense concentration of red around the PBMCs and md-DCs indicated that rHCA59 could bind strongly to the PBMCs and md-DCs surfaces.

Effect of rHCA59 on maturation of md-DCs

Mature md-DCs were semi-suspended or suspended in the medium with a round appearance and had one or more dendritic processes. On day 7 of the experiment, microscope observation revealed that cells incubated with GM-CSF + IL-4 + LPS (positive group) were large and irregularly shaped, and that they occurred as single cells or clusters of cells with pseudopodia of noticeable length, all of which were characteristics expected for md-DCs (Additional file 5: Figure S3a). Cells incubated with rHCA59 presented the same features as the positive group, while only a few of the cells cultured with pET-32a protein or PBS presented the characteristics of the positive group (Additional file 5: Figure S3b–d).

Cell phenotypes were also evaluated by flow cytometry on day 7. The results showed that the percentages of CD80 were significantly increased in the rHCA59 protein group (ANOVA: $F_{(3,8)}=344.0$, $P<0.0001$) when compared with PBS and pET-32a protein groups (Fig. 2). These findings showed that rHCA59 could greatly increase the expression of CD80 and enhance the percentages of DC cells. To further confirm these findings, the expressions of CD14, CD11c and CD172a were also tested. The positive cells displayed a relatively lower expression level of CD14, CD11c and CD172a relative to the PBS group (ANOVA: CD14: $F_{(3,8)}=37.11$, $P<0.0001$; CD11c: $F_{(3,8)}=15.15$, $P<0.0001$; CD172a: $F_{(3,8)}=10.00$, $P<0.01$). The rHCA59 protein group presented a similar trend as the positive group (ANOVA: CD14: $F_{(3,8)}=37.11$, $P<0.0001$; CD11c: $F_{(3,8)}=15.15$, $P<0.01$; CD172a: $F_{(3,8)}=10.00$, $P<0.05$) (Fig. 3). However, the pET-32a protein group did not decrease the expression of CD172a when compared with the PBS group (ANOVA: CD172a: $F_{(3,8)}=10.00$, $P=0.9486$) (Fig. 3d). These findings also indicated that rHCA59 could increase the percentages of DC cells.

rHCA59 activated the WNT pathway related to md-DCs differentiation and maturation

The key genes of β-catenin, CK2, DVL and APC of the WNT pathway, were evaluated by qPCR. The results showed that β-catenin and DVL presented significantly elevated expression when cells were incubated with GM-CSF+IL-4+LPS (ANOVA: β-catenin: $F_{(3,8)}=344.0$, $P<0.0001$) when compared with PBS and pET-32a protein groups (Fig. 2). These findings showed that rHCA59 could greatly increase the expression of CD80 and enhance the percentages of DC cells. To further confirm these findings, the expressions of CD14, CD11c and CD172a were also tested. The positive cells displayed a relatively lower expression level of CD14, CD11c and CD172a relative to the PBS group (ANOVA: CD14: $F_{(3,8)}=37.11$, $P<0.0001$; CD11c: $F_{(3,8)}=15.15$, $P<0.0001$; CD172a: $F_{(3,8)}=10.00$, $P<0.01$). The rHCA59 protein group presented a similar trend as the positive group (ANOVA: CD14: $F_{(3,8)}=37.11$, $P<0.0001$; CD11c: $F_{(3,8)}=15.15$, $P<0.01$; CD172a: $F_{(3,8)}=10.00$, $P<0.05$) (Fig. 3). However, the pET-32a protein group did not decrease the expression of CD172a when compared with the PBS group (ANOVA: CD172a: $F_{(3,8)}=10.00$, $P=0.9486$) (Fig. 3d). These findings also indicated that rHCA59 could increase the percentages of DC cells.
Protein rHCA59 modulated cytokine secretion by PBMCs
A qPCR assay was conducted to assess the cytokine production by PBMCs that had been treated with rHCA59. As shown in Fig. 5, the expression of IL-10 and IL-17 increased significantly when PBMCs were cultured with 40 µg/ml rHCA59, while the expression of IL-2, IL-4, IFN-γ and TGF-β1 did not show obvious changes when compared with the pET-32a protein and PBS groups. However, the expression of CK2 and APC in the GM-CSF+IL-4+LPS group (ANOVA: CK2: F(9,32) = 10.42, P = 0.0554; 40 µg/ml: F(20,60) = 7.249, P = 0.0559; 20 µg/ml: F(20,60) = 7.249, P = 0.5059; 40 µg/ml: F(20,60) = 7.249, P = 0.6939), IL-4 (10 µg/ml: F(20,60) = 7.249, P = 0.8084; 20 µg/ml: F(20,60) = 7.249, P = 0.0554; 40 µg/ml: F(20,60) = 7.249, P = 0.2875), IL-10 (10 µg/ml: F(20,60) = 7.249, P = 0.3555; 20 µg/ml: F(20,60) = 7.249, P = 0.0589; 40 µg/ml: F(20,60) = 7.249, P < 0.0001), IL-17 (10 µg/ml: F(20,60) = 7.249, P = 0.4729; 20 µg/ml: F(20,60) = 7.249, P = 0.0574; 40 µg/ml: F(20,60) = 7.249, P < 0.0001), IFN-γ (10 µg/ml: F(20,60) = 7.249, P = 0.6148; 20 µg/ml: F(20,60) = 7.249, P = 0.2518; 40 µg/ml: F(20,60) = 7.249, P = 0.2010) and TGF-β1 (10 µg/ml: F(20,60) = 7.249, P = 0.9338; 20 µg/ml: F(20,60) = 7.249, P = 0.9089; 40 µg/ml: F(20,60) = 7.249, P = 0.7540].

rHCA59 increased cell proliferation of goat PMBCs
A cell proliferation assay was conducted to assess the effects of rHCA59 on cell proliferation using a CCK-8 reagent kit. The results illustrated that cell proliferation was obviously increased in cells cultured with 20 µg/ml of rHCA59 when compared with the pET-32a protein and PBS groups (ANOVA: 10 µg/ml: F(5,13) = 7.645, P < 0.01; 40 µg/ml: F(5,13) = 7.645, P < 0.01; 40 µg/ml: F(5,13) = 7.645, P = 0.0810; ConA: F(5,13) = 7.645, P < 0.001) (Fig. 6).

rHCA59 decreased cell migration of goat PMBCs
In the present study, a cell migration assay was conducted using a Transwell system to evaluate the effects of rHCA59 on cell migration. The results demonstrated that cell migration decreased obviously in response to treatment with 20 and 40 µg/ml of rHCA59 when compared with the pET-32a protein and PBS groups (ANOVA: 10 µg/ml: F(4,15) = 14.34, P = 0.1038; 20 µg/ml: F(4,15) = 14.34, P < 0.01; 40 µg/ml: F(4,15) = 14.34, P < 0.001) (Fig. 7).

rHCA59 increased the production of nitric oxide generated by goat PMBCs
A nitric oxide (NO) assay was conducted to measure the NO production by PBMCs cultured with serial concentrations of rHCA59 using a total nitric oxide assay kit. The results showed that treatment with rHCA59 at 20 and 40 µg/ml significantly prompted the NO production by PBMCs when compared with the pET-32a protein and PBS groups (ANOVA: 10 µg/ml: F(4,10) = 7.794, P = 0.1953; 20 µg/ml: F(4,10) = 7.794, P < 0.01; 40 µg/ml: F(4,10) = 7.794, P < 0.05) (Fig. 8).

Monocyte phagocytosis assay
In this study, a monocyte phagocytosis assay was conducted to test the phagocytosis abilities of monocytes...
treated with serial concentrations of rHCA59 and the phagocytic ability of monocytes was checked by evaluation of FITC-dextran uptake. The results confirmed that the ability of monocytes treated with rHCA59 to swallow FITC-dextran decreased, but not significantly (ANOVA: 10 μg/ml: \(F_{(4,10)} = 2.500, P = 0.2142\); 20 μg/ml: \(F_{(4,10)} = 2.500, P = 0.4763\); 40 μg/ml: \(F_{(4,10)} = 2.500, P = 0.0580\)) (Fig. 9).

Discussion

Many molecules of ESps of *H. contortus* have been recognized and shown to play vital roles in host-parasite interactions by adjusting host immune responses against parasitic infections [29]. HCA59 belongs to the TLS1 family found in nucleoplasm and cytosol and has already been examined in human and drosophila germlines [11, 30]. During *H. contortus* infection, HCA59 of the parasite was first found to bind to the PBMCs of goats at larval stages 4 and 5 (L4 and L5) of the nematode in vitro [10]. These findings suggested that HCA59 of *H. contortus* participated in interactions between the nematode and the host and might regulate the host immune responses to parasite infection. Thus, in this study, the immunomodulatory effects of HCA59 of *H. contortus* on dendritic cells and PBMCs of goats were investigated in vitro.

DCs are professional antigen sensing and presenting cells that serve as the key linkage between innate and adaptive immunities. The pathogen components recognized by immature DCs promote DCs maturation and activation and initiate T cell immune responses during infection. Mature DCs present antigen to antigen-specific T cells and modulate T cells differentiation toward Th1, Th2, Th17 or regulatory T (Treg) cells [15, 31]. The high expression of CD80 is usually considered a key sign of DC maturity [32]. In the present study, the results indicated that rHCA59 protein enhanced the expression of CD80 of md-DCs dramatically (Fig. 2b), suggesting that rHCA59 of *H. contortus* could promote the mature DCs of the host. The expressions of CD14, CD11c and CD172a in md-DCs has also been reported to be lower than in monocytes [22, 33, 34]. In this study, cells cultured with rHCA59 expressed relatively lower levels of CD14, CD11c and CD172a than monocytes, similar to the results observed in cells treated with GM-CSF+IL-4+LPS (positive group) (Fig. 3). However, cells cultured with pET-32a protein did not show similar changes. These findings indicated that rHCA59 could induce monocytes to develop into mature DCs.

It has been reported that the WNT/β-catenin pathway might regulate functions of DCs and that the WNT/β-catenin pathway was activated the maturation of DCs [17, 21]. A previous study demonstrated that during the WNT/β-catenin pathway activation processes, the DVL (the receptor of membrane protein Frizzled) is activated first. The increased DVL protein then results in the destruction of the complex consisting of scaffolding proteins, including APC, CK proteins and GSK3β, leading to GSK3β phosphorylation. The phosphorylated GSK3β activates the β-catenin, then the increases entry of the β-catenin protein into the nucleus to participate in the process of transcription. During the process, the quantities of APC and CK molecules do not change after separation from the scaffolding protein complex because they do not partake in the following reactions [35–37]. In this investigation, the expression of DVL, CK2, APC and β-catenin in the WNT pathway was examined. The results showed that, when compared to the PBS and pET-32a protein groups, the mRNA expression of DVL, β-catenin in rHCA59 and the GM-CSF+IL-4+LPS groups were upregulated, but the CK2 and APC did not change (Fig. 4). The change profiles of the key genes were in accordance with those that in the activation processes of the WNT/β-catenin pathway. These findings indicated that rHCA59 could activate the WNT pathway and promote the differentiation and maturation of md-DCs. However, during the maturation of DCs, some other important pathways, such as MAPK and NFκB [38, 39], as well as some complex mechanisms, such as the interactions between the MAPK and WNT pathways, were also involved [21]. The effects of rHCA59 on these complex mechanisms should be explored in future studies.

Cytokines play significant roles in immune responses [40, 41]. The Th2 immunity related to the secretion of IL-4 is usually considered to be the major immune mechanism against helminthes, including *H. contortus* [42]. In this study, the effects of rHCA59 on the levels of the typical cytokines Th1 (IL-2, IFN-γ), Th2 (IL-4), pro-inflammatory IL-17 and Treg cytokines (TGF-β1, IL-10) were checked. The results showed that rHCA59 significantly increased the secretions of IL-17 and IL-10 of goat PBMCs, but had no effect on the other cytokine...
secretions (Fig. 5). The IL-17 cytokine is produced by Th17 effector cells and has been shown to be associated with pathogenesis and inflammatory responses of many parasites [43, 44]. The enhanced level of IL-17 indicated that rHCA59 might play roles in the pathogenesis of *H. contortus*. IL-10 and TGF-β1 are produced by Treg cells and are usually considered to function in immune suppression [45, 46]. The increase of IL-10 in the present study suggested that HCA59 of *H. contortus* might function in the immune evasion of this nematode. In previous studies, rHcES-24, rHcFTT-2 and rHcARF1, ESP components of *H. contortus* and the total ESP of this nematode were shown to increase the production of IL-17 or IL-10 [26, 47–49]. These results, together with those of the present study, suggest that more molecules of the ESP of *H. contortus* are involved in the pathogenesis and immune evasions of this parasite. However, in the present study, rHCA59 only enhanced the production of IL-10, but not both TGF-β1 and IL-10. Future studies should be conducted to further investigate the mechanisms involved.

Hook worm crude antigen has been reported to harm cell proliferation and reduce the number of Treg cells [50] and that the immune responses caused by helminths infection could be changed by adjusting the proliferation of immune cells [51]. In previous studies, suppressive regulation of rHcES-24 and rHcFTT-2 was found during cell proliferation experiments *in vitro* [47, 48]. Contrary to the former results, promotional activity of rHCA59 at a concentration of 20 μg/ml was observed on PBMC proliferation (Fig. 6). These mechanisms involved in these promoting effects should be further researched.

Helminths could actively stimulate immunocyte (lymphocytes; eosinophil) migrations to the sites of infection and caused tissue damage to worms found inside the host [52]. Previous studies suggested that HcESPs and rHcES-24 could significantly increase the migration of PBMCs [26, 48]. Conversely, in this study, cell migration declined as the level of HCA59 protein increased (Fig. 7). The actual mechanisms involved in this suppressive adjustment of cell trafficking requires further study.

Nitric oxide has been examined for its roles in immunity and inflammation in many cell lines [53]. The enhancement of NO production could help host cells kill pathogens and might also increase the inflammatory responses [54, 55]. In this study, a significant increase in...
NO production at 20 and 40 μg/ml of rHCA59 (Fig. 8) was observed, suggesting that rHCA59 participated in the immune regulation of NO in goat PBMCs.

Monocytes in the blood are a source of macrophages in tissues, and it has been reported that macrophages could directly kill certain intracellular parasites, such as *Leishmania* and *Toxoplasma* [56, 57], via phagocytosis after activation by some cytokines such as IFN-γ [58]. In this study, rHCA59 exerted certain inhibitory effects on the phagocytosis of monocytes, but these were not obvious (Fig. 9). These findings indicated that rHCA59 did not affect the phagocytosis of PBMCs of goats, in accordance with the finding that it did not increase the secretion of IFN-γ.

Proteins in eukaryotic cells are commonly modified for their mature and biological functions. The most common protein modifications in eukaryotes include glycosylation and phosphorylation [59–61]. In this study, the phosphorylation and glycosylation of HCA59 of *Haemonchus contortus* were analyzed using the NetPhos 3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/), big-PI Predictor (http://mendel.imp.ac.at/sat/gpi/gpi_server.html) and YinOYang 1.2 Server (http://www.cbs.dtu.dk/services/YinOYang/). The results showed that the protein had 12 phosphorylation sites, four O-GlcNAc sites and no GPI modification sites. In general, the molecular mass of protein might increase after modification. In the present study, the molecular weight of native HCA59 from ESP was 16 kDa, which was identical to that of rHCA59 after reduction from pET-32a protein (Fig. 1c). Further studies are needed to determine the mechanisms responsible for changes in protein molecular mass.

Generally, the functions of the recombinant proteins expressed by the prokaryotic system might be modified when compared to native proteins because of its lack of glycosylation and phosphorylation. However, it has been reported that *Escherichia coli*-expressed proteins shared the same biological functions as the native proteins [62, 63]. In this study, the recombinant protein of HCA59 was obtained by the expression in *Escherichia coli* and rHCA59 protein showed good biological functions with respect to modulating the functions of PBMCs and the differentiation and maturation of monocyte-derived dendritic cells of goats in vitro. Future studies should investigate whether functional differences exist between rHCA59 and native HCA59 protein.
Conclusions
This study showed that HCA59 is an important and active protein of HcESPs that significantly promoted the differentiation and maturation of DCs, increased IL-10 and IL-17 levels and cell proliferation, and decreased PBMCs migration. The results suggest that the promotion of differentiation and maturation of DCs results in T cells differentiation toward Th17 and Treg, but not Th1 and Th2. The increased IL-10 and IL-17 levels and decreased PBMCs migration suggest that HCA59 mainly functions in the pathogenesis and immune evasions of this parasite. These results not only improve our understanding of the functions of HCA59 and ESP of this parasite, but also help clarify the mechanisms involved in immune evasion by *H. contortus* during host-parasite interactions. Our results also suggest that HCA59 might be a candidate molecule for development of a vaccine against *H. contortus* infection.

Additional files

Additional file 1: Table S1. Primer sequences of target genes related to WNT pathway.

Additional file 2: Table S2. Primer sequences of cytokines secreted by PBMCs.

Additional file 3: Figure S1. Double digestion analysis of HCA59. Lane M: DNA marker; a HCA59-19T plasmid digested by BamHI and HindIII. Lane 1: double digestion products with pMD19-T vector (2692 bp) and HCA59 (426 bp); b HCA59-pET32a plasmid digested by BamHI and HindIII. Lane 1: double digestion products with pET-32a vector (5900 bp) and HCA59 (426 bp).

Additional file 4: Figure S2. An immunofluorescence assay was conducted to determine if HCA59 could bind to goat PBMCs. (a) and md-DCs (b). Localization was performed by incubating DCs or PBMCs with rat anti-HCA59 IgG or negative rat IgG (control). a1, a2, b1, b2 Staining of the target proteins (red) was visualized by Cy3-conjugated secondary antibody. a3, a4, b3, b4 Nuclei of the corresponding cells were visualized by DAPI (blue) staining. a5, a6, b5, b6 Merged, overlap of the red and blue channels. No red fluorescence was observed in the control group. Scale bars: a, 10 μm; b, 5 μm.

Additional file 5: Figure S3. Generation of monocyte-derived dendritic cells from goat PBMCs. Morphology of cells was viewed by optical microscopy at 400× magnification. a Cells supplemented with GM-CSF+IL-4+LPS (positive group); b Cells treated with HCA59 (tested group); c Cells treated with pET-32a protein (negative control); d Cells treated with PBS (blank control).

Abbreviations
HCA59: hepatocellular carcinoma-associated antigen 59; HcESPs: excretory/secretory products of *Haemonchus contortus*; DCs: dendritic cells; IFA: immunofluorescence assay; NO: nitric oxide; PBMC: peripheral blood mononuclear cells; HCA587: hepatocellular carcinoma-associated antigen 587; MAPKs: mitogen-activated protein kinases; CDS: conserved domain sequences; ORF: open reading frame; LBP: lipopolysaccharide; LPS: lipopolysaccharide; real-time reverse transcriptase polymerase chain reaction; IL-2: interleukin 2; IL-10: interleukin 10; IL-17: interleukin 17; TGF-β1: transforming growth factor-β1; IFN-γ: interferon-γ; ConA: concanavalin A; PBS: phosphate-buffered saline; RT: room temperature; DAPI: 4-(6-amidinoophenyl)-β-d-indolyl carbaminomethyldihydrochloride; BSA: Bovine Serum Albumin; CCK-8: Cell Counting Kit-8; MFI: mean fluorescence intensity.

Acknowledgements
We gratefully thank JianMei Huang for valuable suggestions.

Funding
This work was funded by grants from The National Key Research and Development Program of China (grant no. 2017YFD0501000) and the National Key Basic Research Program (973 Program) of P. R. China (grant no. 2015CB150300).

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and its additional files.

Authors’ contributions
LXR directed the project and participated in the coordination and management of the study. WQW performed the laboratory tests on DCs and the data analysis and wrote the manuscript. WWI performed the laboratory tests on PBMCs. MWH provided some ideas for the experimental design. WWI and LWM obtained blood samples and isolated the cells. YRF, SXK and XLX provided new analytical reagents and tools. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The treatments of animals in our research were in conformity with the guidelines of the Animal Ethics Committee, Nanjing Agricultural University, China. All animal experiments abided by the guidelines of the Animal Welfare Council of China. The protocols of our experiments were all approved by the Science and Technology Agency of Jiangsu Province. The approval ID is SYXK (SU) 2010-0005.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 October 2018 Accepted: 5 March 2019
Published online: 14 March 2019

References
1. Muleke CI, Yan RF, Xu LX, Sun YM, Li XR. Characterization of HCS58cDNA, a putative cysteine protease from the parasite *Haemonchus contortus*. J Vet Sci. 2006;7:249-55.
2. Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, et al. The genome and transcriptome of *Haemonchus contortus*, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14:R88.
3. Zhong RZ, Sun HX, Liu HW, Zhou DW. Effects of tannic acid on *Haemonchus contortus* larvae viability and immune responses of sheep white blood cells in vitro. Parasite Immunol. 2014;36:100-6.
4. Li FC, Gasser RB, Lok JB, Korhonen PK, He L, Di WD, et al. Molecular characterization of the *Haemonchus contortus* phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasit Vectors. 2016;9:65.
5. Biser RB, Love SC. Anthelmintic resistance in sheep nematodes in Australia: the need for new approaches. Aust J Exp Agric. 2003;43:1383.
6. Mederos AE, Ramos Z, Banchero GE. First report of monepantel *Haemonchus contortus* resistance on sheep farms in Uruguay. Parasit Vectors. 2014;7:598.
13. Wang W, Yuan C, Wang S, Song X, Xu L, Yan RF, et al. Transcriptional and
12. Li B, Wang Y, Chen J, Wu H, Chen W. Identification of a new HLA-A*0201-
11. Wang Y, Han KJ, Pang XW, Vaughan HA, Qu W, Dong XY, et al. Large scale
10. Gadahi JA, Wang S, Bo G, Ehsan M, Yan R, Song X, et al. Proteomic analysis
9. Van den Brom R, Moll L, Borgsteede FH, Van Doorn DC, Lievaart-Peterson
8. Papadopoulos E. Anthelmintic resistance in sheep nematodes. Small
7. Almeida FA, Garcia KC, Torgerson PR, Amarante AF. Multiple resistance to
6. Papadopoulos E. Anthelmintic resistance in sheep nematodes. Small
5. Ruminant Res. 2008;76:99–103.
4. Van den Brom R Moll L, Borgsteede FH, Van Doorn DC, Lievaart-Peterson
3. Dercksen DP, et al. Multiple anthelmintic resistance of *Haemonchus contortus*
2. Wang Y, Han KJ, Pang XW, Vaughan HA, Qu W, Dong XY, et al. Large scale
1. Bradford MM. A rapid and sensitive method for the quantitation of micro-
0. Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the
32. Hu J, Winqvist O, Flores-Morales A, Wikstrom AC, Norstedt G. SOCS2 induces
31. Suryawanshi A, Tadagavadi PK, Swafford D, Manicassamy S. Modulation of inflammatory responses by Wnt/β-Catenin signaling in dendritic cells: a novel immunotherapeutic target for autoimmunity and cancer. Front Immunol. 2016;7:460.
30. Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synap-
togenesis. Front Cell Neurosci. 2013;7:103.
29. Ricci ND, Fiuza JA, Bueno LL, Cancado GG, Gazzinelli-Guimaraes PH, Martins VG, et al. Induction of CD4(+)CD25(+)FOXP3(+) regulatory T cells during human hookworm infection modulates antigen-mediated lymphocyte proliferation. PLoS Negl Trop Dis. 2011;5:e1353.
28. Lokke P, MacDonald AS, Robb A, Mazels RM, Allen JE. Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur J Immunol. 2000;30:2669–78.
27. Ricci ND, Fiuza JA, Bueno LL, Cancado GG, Gazzinelli-Guimaraes PH, Martins VG, et al. Induction of CD4(+)CD25(+)FOXP3(+) regulatory T cells during human hookworm infection modulates antigen-mediated lymphocyte proliferation. PLoS Negl Trop Dis. 2011;5:e1383.
26. Loke P, MacDonald AS, Robb A, Mazels RM, Allen JE. Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur J Immunol. 2000;30:2669–78.
25. Schweizer M, Merk E, Spahn D, Klauser P, Grosshans M. Immunoregulatory properties of the excretory and secretory proteins of *Haemonchus contortus* (HcESP) binding to goat PBMCs in vivo revealed stage-specific binding profiles. PLoS One. 2016;11:e159706.
24. Schilzler A, Ginhoux F. Organization of the mouse and human DC net-
23. Kaleab B, Ottenoff T, Converse P, Halapi E, Tadesse G, Rottenberg M, et al. Immune responses to *Toxoplasma gondii* citrate synthase I on the cellular functions of murine macrophages. Oncotarget. 2017;8:1376.
22. Nfon CK, Marszal P, Zhang S, Weinbarg HM. Innate immune response to the Rift Valley fever virus in goats. PLoS Negl Trop Dis. 2012;6:e1623.
21. Xu WD, Wang J, Yuan TL, Li YH, Yang H, Liu Y, et al. Interactions between differentiation, maturation and function of dendritic cells isolated from neonatal and adult ovine lung tissue. J Immunol Immunopathol. 2012;7:e1456612.
20. Gadahi JA, Ehsan M, Wang S, Zhang Z, Wang Y, Yan R, et al. Recombinant protein of *Haemonchus contortus* 14-3-3 isoform 2 (Hc1433-2) decreased the proliferation and increased the apoptosis of goat PBMCs in vitro. Parasit Vectors. 2017;10:311.
19. Bradford MM. A rapid and sensitive method for the quantification of micro-
18. Shakya KP, Miller JE, Horohov DW. A Th2 type of immune response is associated with increased activation of MAPK pathways. J Immunol. 2004;173:7497–505.
17. Oderup C, LaJevic M, Butcher EC. Canonical and noncanonical Wnt signaling regulates the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood. 2000;96:1039–46.
16. Schlitzer A, Ginhoux F. Organization of the mouse and human DC net-
15. Xu WD, Wang J, Yuan TL, Li YH, Yang H, Liu Y, et al. Interactions between differentiation, maturation and function of dendritic cells isolated from neonatal and adult ovine lung tissue. J Immunol Immunopathol. 2012;7:e1456612.
14. Gadahi JA, Ehsan M, Wang S, Zhang Z, Wang Y, Yan R, et al. Recombinant protein of *Haemonchus contortus* 14-3-3 isoform 2 (Hc1433-2) decreased the proliferation and increased the apoptosis of goat PBMCs in vitro. Parasit Vectors. 2017;10:311.
13. Wang W, Yuan C, Wang S, Song X, Xu L, Yan RF, et al. Transcriptional and proteomic analysis reveal recombinant galectins of *Haemonchus contortus* down-regulated functions of goat PBMC and modulation of several signaling cascades in vivo. J Proteomics. 2014;98:123–37.
12. Li B, Wang Y, Chen J, Wu H, Chen W. Identification of a new HLA-A*0201-restricted CD8+ T cell epitope from hepatocellular carcinoma-associated antigen HCA587. Clin Exp Immunol. 2005;140:310–9.
52. Turner DG, Wildblood LA, Inglis N, Jones DG. Characterization of a galectin-like activity from the parasitic nematode, *Haemonchus contortus*, which modulates ovine eosinophil migration in vitro. Vet Immunol Immunopathol. 2008;122:138–45.

53. Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol. 2001;1:1397–406.

54. Brunet LR. Nitric oxide in parasitic infections. Int Immunopharmacol. 2001;1:1457–67.

55. Bian K, Zhong M, Harari Y, Lai M, Weisbrodt N, Murad F, et al. Helminth regulation of host IL-4Ralpha/Stat6 signaling: mechanism underlying NOS-2 inhibition by *Trichinella spiralis*. Proc Natl Acad Sci USA. 2005;102:3936–41.

56. Podinovskaia M, Descoteaux A. *Leishmania* and the macrophage: a multifaceted interaction. Future Microbiol. 2015;10:111–29.

57. Ye YX, Huang XY, Zhang YX, Lai XQ, Wu XP, Zeng XF, et al. Calcium influx blocked by SK&F 96365 modulates the LPS plus IFN-gamma-induced inflammatory response in murine peritoneal macrophages. Int Immunopharmacol. 2012;12:394–93.

58. Jeannin P, Duluc D, Delneste Y. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage regulation by IFN-gamma. Immunotherapy. 2011;3:23–6.

59. Blom N, Sichertz-Pontén TR, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4:1633–49.

60. Delom F, Chevet E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci. 2006;4:15.

61. Kennedy PJ, Potts M. Life among the primitives: protein O-phosphatases in prokaryotes. Front Biosci. 1999;4:d372–85.

62. Das KNP, Banerjee S, Shekhari N, Damodaran K, Nair R, Somani S, et al. Cloning, soluble expression and purification of high yield recombinant hGMCSF in *Escherichia coli*. Int J Mol Sci. 2011;12:2064–76.

63. Zimmermann K, Volkel D, Pable S, Lindner T, Kramberger F, Bahrani S, et al. Native versus recombinant high-mobility group B1 proteins: functional activity in vitro. Inflammation. 2004;28:221–9.