Dedicated diffusion phantoms for the investigation of free water elimination and mapping: insights into the influence of T_2 relaxation properties

Ezequiel Farrher1 | Farida Grinberg1 | Li-Wei Kuo2,3 | Kuan-Hung Cho2 | Richard P. Buschbeck1 | Ming-Jye Chen2 | Husan-Han Chiang2 | Chang-Hoon Choi1 | N. Jon Shah1,4,5,6

1Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
2Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
3Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
4Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
5JARA BRAIN Translational Medicine, RWTH Aachen University, Aachen, Germany
6Institute of Neuroscience and Medicine 11, JARA, Forschungszentrum Jülich, Jülich, Germany

Correspondence
Ezequiel Farrher, Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany. Email: e.farrher@fz-juelich.de
Li-Wei Kuo, Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan. Email: lwkuo@nhri.org.tw

Funding information
Deutscher Akademischer Austauschdienst, Grant/Award Number: 57334221; Ministry of Science and Technology, Taiwan, Grant/Award Numbers: 108-2221-E-400-002, 108-2911-I-400-502; National Health Research Institutes, Grant/Award Number: BN-108-PP-06; Central Government S & T grant of Taiwan, Grant/Award Number: 108-1901-01-19-08

Conventional diffusion-weighted (DW) MRI suffers from free water contamination due to the finite voxel size. The most common case of free water contamination occurs with cerebrospinal fluid (CSF) in voxels located at the CSF-tissue interface, such as at the ventricles in the human brain. Another case refers to intra-tissue free water as in vasogenic oedema. In order to avoid the bias in diffusion metrics, several multi-compartment methods have been introduced, which explicitly model the presence of a free water compartment. However, fitting multi-compartment models in DW MRI represents a well known ill conditioned problem. Although during the last decade great effort has been devoted to mitigating this estimation problem, the research field remains active.

The aim of this work is to introduce the design, characterise the NMR properties and demonstrate the use of two dedicated anisotropic diffusion fibre phantoms, useful for the study of free water elimination (FWE) and mapping models. In particular, we investigate the recently proposed FWE diffusion tensor imaging approach, which takes explicit account of differences in the transverse relaxation times between the free water and tissue compartments.

KEYWORDS
anisotropic diffusion fibre phantom, diffusion tensor imaging, free water elimination, free water mapping, multidimensional MRI, partial volume effect, transverse relaxation, variability
1 | INTRODUCTION

Diffusion-weighted (DW) MRI is a widely used, non-invasive technique for measuring water molecular diffusion in biological tissue. The most common use of DW MRI in clinical practice is based on the observation of DW images without further processing. Due to its simplicity, diffusion tensor imaging (DTI) currently remains the most frequent method used for clinical analysis of DW MRI data. During the last two decades, DTI metrics have been extensively used in the study of several neurodegenerative diseases, brain neoplasms and stroke, as well as in studies relating to brain development and ageing. DTI metrics can only be considered to be tissue specific if the voxel under analysis contains a single type of tissue. In cases when voxels contain more than one tissue type, DTI metrics integrate the microstructural characteristics of all tissue types within the voxel. This phenomenon is normally referred to as the partial volume effect (PVE), which is ubiquitous in DW MRI at conventional resolutions on clinical scanners. In particular, the PVE with cerebrospinal fluid (CSF) represents a serious limitation for DTI.

From the point of view of particle diffusion, CSF behaves as free water. That is, as water molecules do not experience restrictions, the apparent diffusion coefficient (ADC) is approximately equal to 3 μm2/ms at 37°C, i.e., almost four times larger than the mean ADC observed in human brain tissue. As a consequence, even small amounts of CSF within the voxel can strongly bias the tissue-specific DTI parameters. In particular, the ADC becomes elevated, whereas the corresponding fractional anisotropy (FA) is reduced.

Free water contamination in DW MRI can happen in two ways. CSF surrounds the brain parenchyma and is also confined inside the ventricles. Therefore, DTI parameters for voxels located at the CSF-tissue interface will be affected. In this case, the PVE depends on the positioning of the imaging grid and also on the size of the structure under investigation. Thus, small structures (e.g., the fornix) will be more affected by CSF contamination compared with larger structures. Another type of free water contamination refers to the presence of intra-tissue water compartments sufficiently large to reflect free diffusivity, which has been observed, for example, in the case of vasogenic oedema.

There are two kinds of approach for the reduction of free water contamination in DW MRI, namely, sequence based and model based. The most common sequence-based approach is FLAIR DW MRI. This sequence makes use of the fact that the T_2 attenuation term to each of the compartments and the use of different T_E values leads to a more accurate, precise and robust estimation of the model parameters. However, it has been recently shown that such regularization does not fully cancel the degeneracy of the problem. Another method using subject-based constraints in the mean (MD) or axial diffusivities showed some advantages for the investigation of small structures, such as the fornix, due to the lack of spatial regularization of the diffusion tensor. So far, free water elimination (FWE) DTI models have been shown to reduce bias in DTI metrics and fibre tractography, and the FWE model with explicit account of T_2 attenuation ($FWET_2$), in which the number of physical compartments is defined a priori, in particular, it has been demonstrated that, due to the difference in the T_2 of free water and tissue, the addition of a T_2 attenuation term to each of the compartments and the use of different T_E values leads to a more accurate, precise and robust estimation of the model parameters. The underlying idea of this approach is inspired by the broadly studied multidimensional NMR methods used in the investigation of porous media and tissue. However, there is a fundamental difference between the aforementioned correlation methods, which are based on the inversion of the Laplace transform, and the FWE model with explicit account of T_2 attenuation ($FWET_2$), in which the number of physical compartments is defined a priori. Moreover, the difference in T_2 of the different compartments leads to a T_E dependence of the relative free water fraction if the difference in T_2 is not explicitly modelled.
Diffusion phantoms have become an indispensable tool for a broad set of applications, including the calibration of diffusion pulse sequences, the optimization of tractography algorithms and the validation of theoretical diffusion models, data post-processing techniques and numerical simulations. Existing phantoms with independently known diffusion properties are based on simple liquids or liquid solutions/mixtures that are useful for the calibration of field gradients, for quality assurance of various scanner conditions, for inter-scanner reproducibility etc. However, these phantoms are too simplistic and do not reflect most features of diffusion in brain tissue. On the other hand, when the complexity of a phantom microstructure is increased in order to match it to the enormous complexity of in vivo brain tissue, the possibility of deriving its diffusion and relaxation properties based on the microstructural properties decreases. Thus, although the terms “gold standard” or “ground truth” are often used in the jargon, they refer rather to the possibility of verifying specific features of interest addressed by the suggested models/methods under investigation, while the lack of “true” gold standard phantoms is generally recognized by the community. The requirements of physical phantoms, therefore, mostly relate to the needs of a specific problem and should fulfill the following criteria:

a. exhibits the microstructural property of interest affecting the measured signal;
b. is well characterised in terms of its microstructural properties;
c. is easy to assemble and reproducible;
d. is stable and non-toxic.

An excellent discussion on this topic can be found in a recent review by Fieremans and Lee.

Given the great attention that FWE has gained during recent years, here we aim to introduce the design of two artificial, anisotropic diffusion fibre phantoms and to characterise their NMR properties in the framework of FWE models. In particular, we investigate the recently introduced FWET. One of the phantoms is designed to mimic the first case of free water contamination described here, i.e. voxels at the CSF-tissue interface. This phantom contains sections of different thicknesses of parallel fibre bundles, separated by compartments of free water of different sizes. The second phantom is based on our previously published prototype and is intended to mimic the situation of PVE with intra-tissue free water compartments. The phantoms were constructed using Dyneema polyethylene fibres (SK75 dtex1760, DSM, Geleen, The Netherlands), which have been shown to be useful in mimicking some features of water diffusion in brain white matter. Given the highly complex process of deriving ground truth parameters based on microstructural features, we instead construct “reference truth” maps of the model parameters using the median of each parameter of interest, taken over several scan sessions acquired at two different sites. Therefore, in order to ensure the stability of the phantoms, we first investigate the variability of both intra-site (several experiments at a single site) and inter-site (experiments at two sites) model parameters.

We expect our prototypes to benefit the design and optimization of experimental protocols for DW MRI, as well as the development of data pre- and post-processing methodologies.

2 | THEORY

Within the diffusion tensor distribution (DTD) framework, the MRI signal can be regarded as the result of the contribution of several domains characterised by a transverse relaxation time \(T_2 \) and a diffusion tensor \(\mathbf{D} \) (we neglect longitudinal relaxation effects throughout this work). The total MRI signal is thus expressed in terms of the distribution \(P(T_2, \mathbf{D}) \) and the response kernel \(K(T_E, \mathbf{b}, T_2, \mathbf{D}) \), according to

\[
S(T_E, \mathbf{b}) = S_0 \int_0^\infty \int_{\Omega} P(T_2, \mathbf{D}) K(T_E, \mathbf{b}, T_2, \mathbf{D}) d\mathbf{D} dT_2,
\]

where \(S_0 \) is the proton signal, \(\mathbf{b} \) is the diffusion encoding tensor and \(\Omega \) is the integration domain for \(\mathbf{D} \). For the case of anisotropic, Gaussian diffusion, the response kernel is given by \(K(T_E, \mathbf{b}, T_2, \mathbf{D}) = \exp(-T_E/T_2)\exp(-\mathbf{b} \cdot \mathbf{D}) \), where \(\mathbf{b} \cdot \mathbf{D} = \sum_i b_i D_{ij} \) denotes the generalized scalar product.

2.1 | FWE DTI

Conventional FWE DTI is based on a two-compartment model in the slow-exchange limit. The signal for the free water compartment is modelled as an isotropic, Gaussian diffusion signal, whereas the signal for the tissue compartment is described by an anisotropic, DTI-like signal. The total signal within the voxel is written as follows:

\[
S(\mathbf{b}, n) = S_0 \left[e^{-b_0 n} + (1-f) e^{-b_0^T \mathbf{D}_n} \right],
\]
where \(S_0 = S_0 \exp(-T_E/T_2) \) is the \(T_2 \)-weighted \(T_2W \) proton signal, \(f \) and \(D_w \) are the relative fraction and diffusion coefficient for the free water compartment and \(D_t \) is the second-rank symmetric, positive-definite diffusion tensor for the tissue compartment. The fraction \(f \) in the case of compartments with different transverse relaxation times depends on the echo-time, \(T_E \) (see below). Within the DTD framework, this model is equivalent to having a distribution \(P(T_2, D) = \delta(T_2 - T_{2,w}) \delta(D - D_w) + (1 - f) \delta(D - D_t) \) in Equation 1, where \(\delta(\cdots) \) is the Dirac delta function and \(I \) is the identity matrix. The experimentally controlled parameters are the strength and direction of the diffusion weightings, \(b = \text{Tr}(b) \) and \(n = (n_x, n_y, n_z)^T \), respectively.

2.2 | DTI with explicit \(T_2 \) attenuation

Assuming a voxel containing a single tissue type, the simplest representation of the DW and \(T_2W \) MRI signal is written as follows:

\[
S(T_E, b, n) = S_0 e^{-T_E/T_2} e^{-b n^T D n},
\]

where \(T_2 \) is the transverse relaxation time.\(^{12} \) Notice that Equation 3 merely represents the DTI signal with an explicit \(T_2 \) exponential attenuation.

We shall refer to this approach through this work as DTIT\(^{2} \).

2.3 | FWE DTI with explicit \(T_2 \) attenuation

The FWET\(^{2} \) model assumes that the DW and \(T_2W \) MRI signal originates from two compartments with different transverse relaxation times and diffusion properties, in the slow-exchange regime.\(^{36} \) In this case, the signal is written as follows:

\[
S(T_E, b, n) = S_0 \left[f_w e^{-T_E/T_{2,w}} + (1 - f_w) e^{-T_E/T_{2,t}} \right],
\]

where \(T_{2,w} \) and \(T_{2,t} \) denote the transverse relaxation times for the free water and tissue compartments, respectively, and \(f_w \) is the true, \(T_E \)-independent relative water fraction, which is related to the \(T_E \)-dependent relative free water fraction, \(f(T_E) \), according to\(^{16,36,43,60} \)

\[
f(T_E) = \frac{f_w e^{-T_E/T_{2,w}}}{f_w e^{-T_E/T_{2,w}} + (1 - f_w) e^{-T_E/T_{2,t}}},
\]

Note that, within the DTD framework, the FWET\(^{2} \) model is equivalent to having a distribution \(P(T_2, D) = f_w \delta(T_2 - T_{2,w}) \delta(D - D_w) + (1 - f_w) \delta(T_2 - T_{2,t}) \delta(D - D_t) \) in Equation 1.

3 | MATERIALS AND METHODS

3.1 | Anisotropic diffusion phantoms

Both phantoms utilized in this work were constructed using Dyneema polyethylene fibres (solid fibres—ie not hollow—\(\sim 8 \mu m \) in radius) wound on Perspex platforms, and were submerged in a cylindrical container with distilled water.\(^{50,51} \) Dyneema can be found in bundles of approximately 700 single fibre strands. The bulk water contained 15 mg of NaN\(_3\) as a preservative (0.001\% w/v). Both phantoms were positioned together inside the container so that they could be measured simultaneously.

3.1.1 | Phantom 1

This phantom contains five sections of parallel fibre bundles of different thicknesses \(d = 2, 4, 6, 8 \) and 10 mm and a height of 10 mm, separated by alternating compartments of free water and Perspex material (see Figure 1A). Based on the construction characteristics, the
fibre volume fraction on the length-scale of a typical voxel size is expected to be homogeneous. Thus, depending on the position of the imaging grid and voxel size, one can generate data sets with different degrees of PVE. A similar phantom has been published in the literature, ie containing sections of fibre bundles of different thicknesses. In contrast to the cylindrical design of the phantom in Reference 11, the sections of fibre bundles in our design are straight and can, therefore, be positioned at a given angle with respect to the external magnetic field. This, in turn, enables the susceptibility-induced, background gradients to be controlled.

3.1.2 | Phantom 2

This is a multi-section phantom, similar to the one published in our previous work (Figure 1B). This phantom was constructed by stacking layers of fibres in alternating directions, crossing at right angles. The thickness of each layer lies in the range from approximately 180 μm to 220 μm. As a result of this configuration, a free water compartment of planar structure between the layers with increasing volume is formed (from left to right in Figure 1B). Therefore, several compartments will be present within a voxel, thus producing the desired intra-tract PVE free water contamination.

3.2 | MRI experiments

Experiments were performed with a 3 T Siemens Prisma scanner (Siemens, Erlangen, Germany) and a 64-channel receive coil provided by the manufacturer. A 2D DW spin-echo pulse sequence with monopolar pulse field gradients and EPI readout was used. Two types of experiment were performed: DW and T2W, both using coronal slices. The protocol parameters for the DW experiment were TE = 70 ms, repetition time, TR = 6.9 s, b = 0 (eight repetitions), 0.4 (21 gradient directions) and 1.0 (35 gradient directions) ms/μm². The T2W experiment was performed for 10 values of TE = 70, 90, 110, 130, 150, 200, 250, 300, 350 and 400 ms and TR = 22 s (and b = 0 ms/μm²). Other parameters were voxel size = 2³ mm³, matrix size = 96 x 96 x 50, number of averages 5 and bandwidth 1580 Hz/pixel.
For the analysis of intra- and inter-site variability, the former protocol was performed on the same phantom three times at “Site 1” and three times at “Site 2”. Both sites were equipped with a 3 T Siemens Prisma scanner. The Syngo software version at Site 1 was VD13, whereas at Site 2 it was VE11. The time difference of each measurement, as referenced to the first measurement at Site 1, was 435 days (Site 1, Time Point 2), 495 days (Site 1, Time Point 3), 526 days (Site 2, Time Point 1), 540 days (Site 2, Time Point 2) and 564 days (Site 2, Time Point 3).

3.3 Model parameter estimation

All images were processed using in-house MATLAB scripts (MATLAB 2015a, MathWorks, Natick, MA, USA). In order to avoid a T_1 modulation of the signal due to different T_R values between the two experiments, we normalized the signal of the T_2W experiment, $S_{T_2W}(T_2) = S_{T_2W}(T_2)S_{DW}(b = 0)/S_{T_1W}(T_1)$, for $70 \text{ ms} \leq T_2 \leq 400 \text{ ms}$, where $T_{E,1} = 70 \text{ ms}$ and $S_{DW}(b)$ is the signal of the DW experiment. FWET$_2$ model (Equation 4) parameter estimation was performed using the whole experimental data set simultaneously. Additionally, estimation of FWE model parameters (Equation 2), using only the DW experiment, was performed for the sake of comparison (see Section 4.4).

FWET$_2$ parameter estimation was performed in two steps.

i. In the first step, DTIT$_2$ model parameters were estimated by fitting Equation 3 to the whole experimental data set (DW and T_2W), in order to generate an initial guess for $T_{2,w}$ and D_w. Additionally, DTIT$_2$ parameters in the bulk area of the phantom were used to assess $T_{2,w}$ and D_w. The estimation of DTIT$_2$ parameters was performed via weighted least squares (WLLS). The WLLS estimator for the DTIT$_2$ model parameters, $\theta_{DTIT_2} = [\ln S_0, D_{12}, D_{13}, D_{22}, D_{23}, 1/T_2] ^T$, is written as follows:

$$\theta_{DTIT_2} = (X^T w X)^{-1} X^T w y,$$

where y ($N \times 1$) is a column vector whose elements are given by the natural logarithm of the N measured signals, ie $y_i = \ln S_i$ ($i = 1,...,N$), and the weighting matrix w ($N \times N$), is a diagonal matrix whose elements are given by $w_{ii} = S_i^2$. The ith row of the design matrix, X ($N \times 8$), is written as $X_i = [1, -b n_i n_w, -2 b n_i n_w, -2 b n_i n_w^2, -b n_i n_w - b n_i n_w^2, -b n_i n_w - b n_i n_w^2, -T_{E_i}]$.

ii. In the second step, FWET$_2$ model parameters, $\theta_{FWET_2} = [S, f_w, D_{12}, D_{13}, D_{22}, D_{23}, 1/T_2] ^T$, were estimated via constrained non-linear minimization of the least-squares estimator, which is written as follows:

$$\theta_{FWET_2} = \arg \min_{\theta_{FWET_2}} \sum_{i=1}^{N} [S_i - \hat{S}(\theta_{FWET_2})]^2,$$

where $\hat{S}(\theta_{FWET_2})$ is the signal model. The minimization of Equation 7 was performed using the function `fmincon` available in MATLAB using the interior-point algorithm, subject to the following linear and non-linear constraints:

a. linear constraints, $0 \leq f_w \leq 1$ and $T_{2,1} \leq T_{2,w}$
b. non-linear constraints, $0 < \lambda_k \leq D_w$ ($k = 1,2,3$), where λ_k denotes the eigenvalues of the tissue diffusion tensor D ($\lambda_1 \geq \lambda_2 \geq \lambda_3$).

The minimization process in this step was initialized using the values of T_2 and D generated in Step (i) and $f_w = 0.1$. The free water parameters, D_w and $T_{2,w}$ estimated in Step (i) in the bulk of the phantoms were fixed during minimization.

FWE model parameter estimation was also carried out following Steps (i) and (ii), with the exception that, in this case, the parameters were estimated using only the DW data set.

DTI parameters FA, MD and radial diffusivity (RD) were evaluated for each case based on the corresponding diffusion tensor as described elsewhere. In the case of voxels containing only free water ($f_w = 1$), the tissue diffusion tensor can erroneously fit the signal from the free water compartment. In this case, given that both the free water and the tissue compartment can fit the total signal equally well, the free water fraction can take any value between 0 and 1, as explained in References 21 and 22. Therefore, the analysis of voxels for which $f_w \geq 0.95$, $\lambda_{2,3} \geq 2.0 \mu m^2/ms$ or $T_{2,1} \geq 2.4 s$ was skipped.
3.4 | Proton density and fibre volume fraction

In order to assess the relative proton density, PD, we first computed the intensity bias field from the parameter S_0 in Equation 4 following the method in Reference 65. Then S_0 was normalized using the calculated intensity bias field (so that $PD = 1$ in the bulk). The fibre volume fraction, ϕ, in the case of a voxel containing a single compartment is simply given by $\phi = 1 - PD$. However, if the voxel contains a free water compartment with a relative fraction f_w, as described by Equation 4, the true fibre volume fraction at the fibre compartment can be shown to be

$$\phi = \frac{1 - PD}{1 - f_w PD}$$

(8)

provided that $f_w < 1$ (Figure 4E).

3.5 | Reference truth maps and intra- and inter-site variability

Reference truth DTIT$_2$ and FWET$_2$ model parameter maps were constructed by taking the voxel-wise median of all time points and sites. On the other hand, voxel-wise deviation maps were assessed via the interquartile range, ie the distance between the first and the third quartile. The main underlying assumption of this approach for constructing reference truth maps, which integrates information from experiments from different sites, is that the inter-site variability is negligible and the main contribution to between-sessions variations is of intra-site nature. In other words, there is no site bias. This will be discussed in detail in Subsection 5.3 in the context of the current results.

Variability of DTIT$_2$ and FWET$_2$ model parameters, both intra- and inter-site, was investigated following the framework proposed by Walker et al. It assumes that experiments have been performed at $p = 1, \ldots, P$ sites and $q = 1, \ldots, Q_p$ time points (here $P = 2$ and $Q_p = 3$ for $p = 1, 2$; see Appendix A for details) and includes the following steps.

i. Outlier identification for all DTIT$_2$ and FWET$_2$ parameter maps by subtracting a given map at site p and time point q, from the corresponding median taken over all sites and scan sessions. Significant deviations from the median are considered to be outliers.

ii. Evaluation of intra- and inter-site variability maps, σ_{intra} and σ_{inter} (Equations A1, A2), as well as the intra- and inter-class correlation coefficients, ICC$_{\text{intra}}$ and ICC$_{\text{inter}}$ (Equations A3, A4), for all model parameters.

Before the analysis of variability was performed, all FA$_{p,q}$ maps from DTIT$_2$ were coregistered to FA$_{1,1}$ (Site 1, Scan Session 1) with the help of the toolkit FLIRT available in FSL using the rigid body model. The resulting transformation matrix was subsequently applied to the remaining parameter maps.

It should be noted that, in order to avoid any site and/or scan session bias in MD and T_2 maps due to possible differences in the room temperature, we normalized each of these maps by the corresponding bulk value of each scan session, before the variability analysis and the construction of reference truth maps.

4 | RESULTS

4.1 | Phantom 1

Figure 2 summarizes the results for Phantom 1 for both the single scan (Figure 2A-C) and reference truth (Figure 2D-F) cases. The maps of MD, FA and T_2 from DTIT$_2$ (Figure 2A and 2D) are compared with the corresponding maps from FWET$_2$ (Figure 2B and 2E). A first glance at the maps suggests that DTIT$_2$ parameters in voxels located at the edge of the sections of fibre bundles, where the f_w values are higher, are affected by PVE. In particular, the leftmost section, which is 2 mm thick, is hardly visible in the DTIT$_2$ FA map (yellow arrows in Figure 2A and 2D). However, the PVE with free water in the parameters can be reduced when the FWET$_2$ model is used. See, for instance, the yellow arrow in Figure 2B and 2E, where the diffusion properties for the same section appear more similar to those voxels unaffected by PVE. Note that voxels containing only free water were not analysed with FWET$_2$ and are displayed in black (see Subsection 3.3).

The profiles of MD, FA, T_2 and f_w taken along the blue, horizontal line indicated in Figure 2B are shown in Figure 2C (single session) and 2F (reference truth), for the DTIT$_2$ (green line) and FWET$_2$ (orange line) parameters. Grey zones represent voxels located at the
FIGURE 2 A, D, maps of MD, FA and T_2 from DTIT2; B, E, maps of MD, FA, $T_{2,t}$ and f_w from FWET2; C, F, profiles of MD, FA, T_2 and f_w taken along the blue line. Both single scan (A-C) and reference truth (D-F) are shown. Grey areas denote voxels located at the bulk-fibre interface. Bulk diffusivity and transverse relaxation time were $D_w = (2.30 \pm 0.02) \mu m^2/ms$ and $T_{2,w} = (2.42 \pm 0.16) s$, respectively. For the construction of reference truth maps (D, E), MD and T_2 maps were normalized to the corresponding bulk value of each scan session, so as to avoid any bias due to possible differences in the room temperature. Voxels where $f_w \geq 0.95$, $\lambda_{2,3} \geq 2.0 \mu m^2/ms$ or $T_{2,t} \geq 2.4 s$ (ie bulk water) were not considered in the analysis and are therefore not displayed for FWET2.
interface between the section of fibres and the bulk water. The presence of a relative fraction of free water strongly affects the estimated diffusion and relaxation properties of the section of fibres. However, FWET2 allows the PVE in these parameters to be reduced, given that a more constant profile is expected, based on the homogeneity of the fibre volume fraction in the length-scale of the sections of fibre bundles. Therefore, any major change in the diffusion or relaxation characteristics is expected to be due to free water contamination.

It is worth mentioning that, in the construction of the reference truth maps and the corresponding profiles, those voxels located at the interface between the bulk water and sections of fibre bundles reflect not only variations due to the intrinsic noise of the imaging protocol and the phantom itself, but also variations introduced by the position of the imaging grid, which changes from session to session in a random manner and therefore increases the parameters’ variability.

4.2 | Phantom 2

Figure 3 summarizes the results for the multi-section phantom for both single scan (Figure 3A-C) and reference truth (Figure 3D-F) cases. The maps of MD, FA and T_2 from DTIT2 (Figure 3A and 3D) are compared with the corresponding maps from FWET2 (Figure 3B and 3E). All maps from DTIT2 show an intensity change from left to right in the region of interest (ROI) demarked by the blue rectangle in Figure 3A. That is, MD and T_2 increase, whereas FA decreases. However, these changes become less pronounced in the corresponding maps from FWET2. In particular, the transverse relaxation time in the fibre compartment is visually constant, within the large standard deviation of this parameter (see grey shaded areas in Figure 3C).

In order to better visualize these changes, we evaluated spatial profiles for each map, shown in Figure 3C (single session) and 3F (reference truth), for the DTIT2 (green) and FWET2 (orange) parameters. The abscissas refer to the horizontal position in the blue ROI. Solid lines and grey, shaded areas in Figure 3C denote the mean and standard deviation of a given parameter taken along a vertical stripe in the blue ROI (where f_w was observed to be approximately constant). Thus the grey, shaded areas in Figure 3C show the variations of a given parameter along each vertical stripe in the blue ROI. In contrast, solid lines and coloured, shaded areas in Figure 3F correspond to the mean along a vertical stripe in the blue ROI of the first quartile map (lower line of the coloured, shaded area), median map (central line) and third quartile map (upper line). Therefore, in this case, the colour-shaded areas in Figure 3F denote the variations of the phantom parameters across the six scan sessions. A comparison of the profiles of DTIT2 versus FWET2 parameters demonstrates that a change in f_w is accompanied by changes in DTIT2 metrics. However, these changes are less pronounced when FWET2 is used. The change in MD and FA from FWET2 (Figure 3B and 3E), which allows one to more accurately assess the diffusion and relaxation properties of the fibre compartment, suggests that there is a decrease in the fibre volume fraction of the fibre compartment (from left to right). However, this change in the fibre volume fraction does not produce a significant change in T_2, (Figure 3C and 3F). Therefore, the observed change in T_2 from DTIT2 is mainly due to the increase in the size of the free water compartment. This feature is further analysed in the following subsection.

4.3 | Proton density and fibre volume fraction

Figure 4 illustrates the maps of PD and ϕ (calculated following Equation 8), for Phantom 1 (Figure 4A) and Phantom 2 (Figure 4C) and both single scan (top) and reference truth cases (bottom).

In the case of Phantom 1, voxels at the interface between the bulk and sections of fibre bundles show increased values of PD compared with voxels unaffected by PVE. Conversely, the maps of ϕ are more spatially homogeneous across the sections of fibres. This is demonstrated by the profiles of PD (orange line), f_w (blue line) and ϕ (grey line) shown in Figure 4B for the single scan (top) and reference truth (bottom). All voxels located at the edge of the sections of fibres show higher PD and f_w values, compared with voxels unaffected by PVE. Moreover, the profiles of ϕ have a rather flat appearance, corresponding to the expected spatial homogeneity of the fibre volume fraction.

In Phantom 2, the spatial change in the size of the free water compartment corresponds to an increase of PD (from left to right in the blue ROI in Figure 4C) and a slight decrease of ϕ. This is clearly shown in the profiles plotted in Figure 4D for PD (orange), f_w (blue) and ϕ (grey). The increase in f_w is accompanied by an increase in the total PD, whereas a decrease of approximately 7% (0.78 to 0.73) is observed in ϕ. Although the change in ϕ is rather small, it is seemingly enough to induce changes in the diffusion properties, as shown in Figure 3C and 3F, but not observable changes in T_2. For a quantitative comparison, RD/Dw and FA from FWET2 (in the fibre compartment) are plotted against ϕ in Figure 5A and 5B. Additionally, the theoretical predictions for the RD in a system of parallel cylinders in the long-time limit (Equations B1-B3) under different conditions of fibre volume fractions and packing geometries (square and hexagonal lattices, see Appendix B for details) are also plotted. One can see that, although the arrangement of the fibres in the phantom follows neither the square nor the hexagonal lattices but is rather random, the
FIGURE 3 A, D, maps of MD, FA and T_2 from DTIT2; B, E, maps of MD, FA, $T_{2,1}$ and f_w from FWET2; C, F, spatial profiles for MD, FA, T_2 and f_w from DTIT2 and FWET2. Both single scan (A-C) and reference truth (D-F) are shown. In the profiles (C, F), the abscissas refer to a horizontal position in the blue ROI (A). Solid lines and grey, shaded areas in C denote the mean and standard deviation of a given parameter taken along a vertical stripe in the blue ROI. Solid lines and coloured, shaded areas in F denote the mean along a vertical stripe in the blue ROI of the first quartile map (lower line of the coloured, shaded area), median map (central line) and third quartile map (upper line). Bulk water diffusivity and transverse relaxation time were $D_w = (2.30 \pm 0.02) \mu m^2/ms$ and $T_{2,w} = (2.60 \pm 0.15)$ s, respectively. For the construction of reference truth maps (D, E), MD and T_2 maps were normalized to the corresponding bulk value of each scan session, so as to avoid any bias due to possible differences in the room temperature. Voxels where $f_w \geq 0.95$, $\lambda_{2,3} \geq 2.0 \mu m^2/ms$ or $T_{2,t} \geq 2.4$ s (ie bulk water) were not considered in the analysis and are therefore not displayed (see Subsection 3.3). The artefact observed in the left-hand side of the blue ROI is the result of a field distortion due to a remaining air bubble trapped between the fibres.
In order to evaluate the effects of accounting for differences in the transverse relaxation times between the water and fibre compartments on the estimation of the free water fraction, we exploit the fact that we have access to a range of free water volume fractions in Phantom 2 and plot \(f \) from FWE (Equation 2) versus \(f_w \) from FWET\(_2\) (Equation 4). The map of \(f_w \) was used to cluster the voxels in the blue ROI (Figure 3A) into eight equally spaced bins in the range \([0.05, 0.7]\). The mean and standard deviation of \(f \) and \(f_w \) were calculated within these bins and plotted in Figure 6 (orange circles). Equation 5 is also plotted for comparison (orange line) using \(T_E = 70 \text{ ms} \) and the estimated mean transverse relaxation times for the bulk compartment, \(T_{2,w} = (2.53 \pm 0.15) \text{ s} \), and fibre compartment, \(T_{2,t} = (0.77 \pm 0.08) \text{ s} \). One can see that \(f \) is slightly larger than \(f_w \) in the whole range (see the dashed, black line denoting the identity line). For the sake of comparison, Equation 5 was plotted using the same values of \(T_{2,w} \) and \(T_{2,t} \) and \(T_E = 500 \text{ ms} \) (blue curve). The difference in this case becomes larger. Finally, Equation 5 was plotted using literature values for the
transverse relaxation times for in vivo brain CSF, $T_{2w} = 500 \text{ ms}$, and tissue, $T_{2t} = 60 \text{ ms}$ at $T_r = 69$ and $T_E = 80 \text{ ms}$. In this case, f can be up to 75% larger than f_w.

4.5 | Inter-site and intra-site variability

The outlier identification step did not reveal outliers in any of the six scans (see Supplementary Figure S1). Figure 7 summarizes the intra- and inter-site variability maps, σ_{intra} and σ_{inter} (Equations A1 and A2), as well as ICC$_{\text{intra}}$ and ICC$_{\text{inter}}$ maps (Equations A3 and A4), for all DTIT$_2$ and FWET$_2$ parameters. All intra-site variability maps show significantly higher intensity values than the inter-site ones. This behaviour is more pronounced in the ICC parameters, where ICC$_{\text{intra}}$ shows much higher values than ICC$_{\text{inter}}$. In the case of Phantom 1, one can also observe that both variability values are higher in voxels located at the edge of the sections of fibre (red arrows) compared with those voxels unaffected by PVE. This is not the case in Phantom 2, where both variability and ICC parameters show a fairly homogeneous distribution in the blue ROI.

5 | DISCUSSION

In this work, we introduced the design, and demonstrated the use, of two anisotropic, diffusion fibre phantoms for the investigation of FWE models. In particular, we investigated the recently introduced FWE DTI model, which explicitly takes into account differences in the transverse relaxation times between compartments (FWET$_2$). Our phantoms fulfil the four criteria described in Section 1, as follows.

a. ‘Exhibit the microstructural property of interest affecting the measured signal’. The effect of both types of free water contamination on the DW and T$_2$W signal described in Section 1 was successfully mimicked. The diffusion-resolution phantom (Phantom 1, Figure 1A) was designed to mimic the PVE occurring in voxels at the CSF-tissue interface. The multi-section phantom (Phantom 2, Figure 1B), on the other hand, was
used to reproduce the situation of free water contamination encountered in the intra-tissue case. In the following subsections we discuss each of these features in the context of each phantom.

b. 'Is well characterised in terms of its microstructural properties'. Both phantoms were constructed with polyethylene fibres, which have been successfully used for the construction of several phantoms for DW MRI applications and have well known physical properties regarding water diffusion and relaxation.50,51,54,55,61

c. 'Is easy to assemble and reproducible'. Although the fibres were manually wound around the Perspex platforms, given the design and dimensions of the platforms (Figure 1) the assembly and reproducibility of both phantoms is relatively easy. However, higher levels of reproducibility, especially regarding fibre packing density, could potentially be achieved using a winding machine as in References 11 and 70.

d. 'Is stable and non-toxic'. One of the advantages of artificial fibres such as polyethylene is that, given its hydrophobic properties, they are more stable than biological tissue or hydrophilic materials.52,71 The phantoms presented in this work are constructed using only polyethylene fibres, Perspex platforms and distilled water. Therefore, the absence of any biological contamination can be guaranteed with the help of a preservative (e.g. NaN3). In particular, our experiments span a time line of 564 days, and during this period our variability study did not show significant bias in the model parameter maps.

5.1 Phantom 1

The diffusion-resolution phantom (Figure 1A) was conceived to investigate the CSF contamination and the elimination of the bias in diffusion models in voxels located at the CSF-tissue interface. The causes can be on the one hand random processes, such as the positioning of the imaging grid, and on the other hand characteristics relating to the dimensions of the object being imaged relative to the voxel size. The geometrical configuration of the phantom includes five sections of fibre bundles of different thicknesses separated by water and Perspex (noise) compartments of different sizes. We observed that DTI T2 parameters were heavily affected by free water contamination in voxels located at the bulk-fibre interface, whereas FWET2 parameters showed a more constant behaviour within each section of fibre bundles. This is clearly seen in the grey areas in the plotted profiles in Figure 2C and 2F. In particular, the leftmost section (2 mm thickness), which was almost invisible in the conventional FA, was completely recovered in FWET2 FA. Moreover, a comparison of DTI T2 and FWET2 demonstrates that not only diffusion properties are affected by free water contamination, but also relaxation properties can be significantly altered. It should be noted that voxels presumed to be unaffected by PVE with free water, ie not positioned at the edge between the section of fibres and the bulk water, still show f_w values between ~0.25 and ~0.35. This is most likely due to the presence of free water pockets formed by the imperfect packing of the fibre bundles. This, in turn, is a result of the fact that the fibre bundles (~700 single fibre strands) do not have a square cross-section (which would be required to have a perfect bundle packing), but rather have amorphous cross-sections. This feature can be seen in both single scan and reference truth maps.

These observations have important implications for in vivo DW MRI, given that CSF contamination is particularly crucial for some brain structures, such as the fornix, due to its small size and proximity to the ventricles.13,14 In such cases CSF, contamination induces bias in DTI metrics that becomes a confounding macroscopic effect entangled with changes in the tissue microstructure, such as white matter atrophy.13 Hence, the elimination of this bias becomes paramount. In this regard, our Phantom 1 could be utilized to optimize, among other things, the voxel size in order to minimize or eliminate CSF contamination in small structures.

The presence of thin sections of fibre bundles and small water compartments allows one to investigate more subtle processes leading to free water contamination. For instance, image distortions induced by eddy-currents depend on the direction of the field gradient. Therefore, a failure
to fully correct these distortions will induce a small contamination dependent on the direction of the field gradient. Another case for which Phantom 1 is potentially useful is in the investigation of Gibbs ringing artefacts in DWI, which have been shown to strongly bias diffusion metrics in other models. However, the study of such effects is beyond the aim of this work.

5.2 | Phantom 2

The previously introduced multi-section fibre phantom includes a section that consists of parallel fibre bundles, conforming layers (Figure 1B), stacked in alternating directions. As a result, a free water compartment of variable volume is generated between the layers of fibres (volume increasing from left to right in Figure 1B). This feature results from the fact that each fibre bundle is made out of...
approximately 700 single fibre strands, and therefore the thickness of each layer lies in the range from approximately 180 µm to 220 µm. This intra-bundle free water compartment mimics, although in a simplified manner, the situation encountered in intra-tissue free water contamination, in the sense that there are several free water compartments within a single voxel. We have assessed this feature using the FWET2 model, which indeed shows that the relative free water fraction contamination, in the sense that there are several free water compartments within a single voxel. For a given voxel in this phantom, \(f_w \) is determined by the thickness of the fibre layers, the distance between the layers and their relation to the voxel dimensions (Figure 1B). The thickness of the layers and their separation are spatially variable and, as a consequence of this variation, \(f_w \) is also spatially dependent. However, as the positioning of the imaging grid is random in nature and also influences the free water fraction, the values of \(f_w \) cannot be a priori determined.

In Figure 3 we showed that MD, FA and \(T_2 \) from DTIT2 show a spatial change that correlates with the estimated increase in the free water fraction. Yet the actual diffusion properties at the fibre compartment (ie estimated with FWET2) also show a spatial change. Therefore, one can conclude that there is indeed a change in the fibre volume fraction at the fibre compartment, \(\phi \), which directly affects the diffusion properties. Conversely, the transverse relaxation time of the fibre compartment did not show an observable change, which may be a consequence of the higher variance of this parameter compared with the diffusion parameters. This high variance is a result of the relatively short range of echo-times used in our experiments in relation to the long relaxation times.

We have taken advantage of the fact that we have also access to the PD in order to quantify the change in actual fibre volume fraction (Equation 8). Thus, analytical expressions for the diffusion properties in the fibre compartment, such as Equations B1-B3 (Appendix B), can be employed. Known theoretical models for the diffusion coefficient in binary systems are based on one of three approaches: obstruction effects,74 free volume theory75 and the hydrodynamic approach.76 The applicability of these models was previously tested in binary solvent-polymer solutions and gels,77 and was shown to hold in dilute systems or, in some experiments, at moderate concentrations. However, they were shown to break down for concentrated solutions. In the case of diffusion in the space between parallel cylinders, the Maxwell Garnett equation (Equation B1), which is independent of the fibre arrangement, only works well in the dilute regime. However, in our phantoms, the range of fibre volume fractions we observe falls into the concentrated regime, ie high packing density regime, observed in Figures 4 and 5. In such a range, the Maxwell Garnett equation fails to predict the observed behaviour (Figure 5). On the other hand, exact solutions for the whole range of fibre volume packing, based on the recursion relation proposed by Rayleigh,78 can only be derived for regular arrays of cylinders, such as square (Equation B2) or hexagonal (Equation B3) arrangements.79 However, Dyneema fibres are arranged in a random packing geometry, as previously observed using micro-CT.51 This fact restrains an a priori derivation of the diffusion properties based on the geometrical configuration of the fibres.

Regarding the validity of the long-time approximation (Equations B1-B3), we observed that the root mean square (rms) displacement during the experiment, \(l_s \), for the fibre compartment ranges from \(l_s \approx 8 \mu m \) (high \(\phi \)) to \(l_s \approx 11 \mu m \) (low \(\phi \)), calculated using an observation time of 70 ms. Similarly, one can calculate the structural length scale, \(l_s \), based on the values of \(\phi \) to be of the order of \(l_s \approx 5 \mu m \) (high \(\phi \)) to \(l_s \approx 6 \mu m \) (low \(\phi \)). This means that molecules travel a distance of the same order as \(l_s \) in both cases, and therefore the long-time limit is not fully developed. However, one can observe the expected trend. The transverse relaxation time at the fibre compartment, in contrast, showed almost no change across the phantom, which means that the change in \(\phi \) is still not sufficiently large so as to induce significant changes.

The fact that the phantom shows different transverse relaxation times between the bulk and the fibre compartments \(T_{2,w} \approx 2.6 \ s \) and \(T_{2,t} \approx 0.7 \ s \) allowed us to investigate the \(\phi \) dependence of the free water volume fraction as predicted by Equation 5. Thus, we exploited another of the benefits of FWET2 by showing that, in that case, the free water fraction can be overestimated compared with the \(T_{2,w} \) independent free water fraction. This overestimation was fairly small in our experiments due to the fact that \(T_{2,w} \) in our DW experiments (70 ms) is small compared with the values of \(T_{2,w} \) and \(T_{2,t} \). However, the green line in Figure 6 demonstrates that the overestimation can potentially be much greater in vivo experiments. Therefore, accounting for this effect becomes of paramount importance given the fact that several works in the literature have already shown \(f \) to be a useful biomarker in the assessment of different brain conditions, such as Parkinson’s disease,30-32 Alzheimer’s disease29 or vasogenic oedema.16 In all of these works, the difference in transverse relaxation was not taken into account. Another condition that could be assessed a priori using FWET2 is traumatic brain injury, which has been shown to involve the formation of vasogenic oedema.81,82

5.3 | Reference truth maps and intra- and inter-site variability

With the purpose of constructing the reference truth maps, we first studied the variability of all DTIT2 and FWET2 maps in six scan sessions acquired at two different sites and with a time span of 564 days between the first and the last scan session. For the analysis of variability, we followed the framework published by Walker et al.1 The first step of this framework consists in the detection of outliers using the distance from each scan session to the corresponding median calculated using all scan sessions. The median is a measure that, in contrast to the mean, is robust to outliers. Thus, in the case of a systematic difference, the presence of outliers produces only a small shift in the median value, allowing for easier
identification of outliers when looking at the difference between the median and each single map. We did not observe significant outliers in our results (Figure S1).

The analysis indicated that intra-site variability values were larger than inter-site ones for all model parameters. In an ideal situation, inter-site and intra-site variability values should be similar, indicating that there is no site bias and that the amount of variance is similar within each site and through all sites. As a consequence, in an ideal case, ICC_{intra} \approx ICC_{inter} \approx 0.5. Conversely, one would expect greater ICC_{inter} in cases where the mean value between sites differs, whereas ICC_{intra} would be larger in those situations where the within-site variance differs between sites. The latter was the observed situation in our results for all ICC maps, ie ICC_{intra} > ICC_{inter}. Therefore, we conclude that the mean values between sites were rather similar (ie no site bias), which validates the framework we proposed for the construction of reference truth maps described previously.

The reference truth maps for all model parameters were constructed based on the former premise, using the median of all six scan sessions for each map. All reference truth maps were comparable to the corresponding single scan sessions (Figures 2–4). Moreover, we used the inter-quartile range (difference between the first and the third quartiles), which is also more robust to the presence of outliers than the standard deviation, to assess the voxel-wise uncertainty of the reference truth maps. As depicted in the corresponding profiles (Figures 2C, 2F, 3C, 3F, 4B and 4D), the uncertainty range for all parameters was within reasonable ranges.

5.4 | Other considerations

Regarding the pulse sequence, in this work we have used the paradigm of linear diffusion encoding originally proposed by Stejskal and Tanner. However, more advanced diffusion encodings, such as double or triple diffusion encodings or arbitrary q-trajectory encoding, have been recently suggested and could potentially prove useful tools in the quest for free-water elimination and mapping.

Concerning the fibre material for the construction of phantoms, an important issue requiring consideration is its magnetic susceptibility. Differences between the magnetic susceptibility of the fibres and the surrounding bulk liquid generate field gradients, which in turn produce image distortions due to the bias in the phase accumulated towards the end of the EPI readout. In the case of Dyneema fibres, the difference in magnetic susceptibility between the fibres and distilled water is ~1 ppm. Yet, as observed in our results, this difference does not lead to appreciable image distortions, compared with the distortions that one normally observes in vivo induced by the presence of air, which has a difference in the magnetic susceptibility of nearly 8.5 ppm compared with tissue.

5.5 | A brief, qualitative digression about exchange

One of the assumptions of FWE models is that water exchange between compartments is negligible. In this subsection we make some geometrical considerations of this situation.

In the case of Phantom 1, the rms displacement during the experiment for molecules in the bulk and fibre compartments is \(l_w \approx 17 \mu m \) and \(l_t \approx 9 \mu m \) (in the radial direction), respectively (using an observation time of 70 ms). During this time, only water molecules predominantly within distances \(l_w \) (in the bulk compartment) and \(l_t \) (in the fibre compartment) can reach the interface and exchange. A schematic representation of this

![Figure 8](image-url)
situation is shown in Figure 8. Green and yellow areas represent the layers with thicknesses \(l_w \) and \(l_f \), respectively. One can approximate the fractions of water molecules that have the possibility to exchange as the fractions located within these layers. For a voxel side length of 2 mm and assuming that the bulk-fibre interface is parallel to the voxel side, for example, one can demonstrate that these fractions are 14% (green area, Figure 8A) and 2% (green area, Figure 8B) for the bulk compartment with \(f_w = 0.2 \) and \(f_w = 0.8 \), respectively. In contrast, for the fibre compartment, these fractions are equal to 2% (yellow area, Figure 8A) and 4% (yellow area, Figure 8B) for \(f_w = 0.2 \) and \(f_w = 0.8 \), respectively. These estimates justify the slow-exchange limit in Phantom 1.

The situation with Phantom 2 is more complex since each voxel contains alternating layers of fibres and bulk water (Figure 8C and 8D). In this phantom, the rms displacement in the bulk compartments is \(l_w \approx 18 \mu m \), whereas for the fibre compartment it ranges from \(l_f \approx 8 \mu m \) (high \(\phi \), Figure 8C) to \(l_f \approx 11 \mu m \) (low \(\phi \), Figure 8D). Conversely, the thickness of each layer of fibres was estimated to range from approximately 180 \(\mu m \) (high \(\phi \)) to 220 \(\mu m \) (low \(\phi \)), whereas the thicknesses of the bulk compartments ranged from approximately 80 \(\mu m \) (low \(f_w \)) to 200 \(\mu m \) (high \(f_w \)). Thus the fraction of water molecules that have the possibility of exchanging within the fibre compartments is 9% (yellow areas, Figure 8C) and 10% (yellow areas, Figure 8D), respectively. These fractions for the bulk compartments are 45% (green areas, Figure 8C) and 18% (green areas, Figure 8D), respectively. Therefore, based on this simplistic description, one can conclude that the effect of water exchange in Phantom 2 is a priori not negligible, especially in the region of high \(\phi \) (low \(f_w \)).

For conventional DTI, an increase in the amount of exchange will cause an increase in bulk diffusivity and a decrease in FA. In the case of FWE models, it is expected to induce a bias in the estimation of \(f_w \) and therefore in the tissue-specific diffusion tensor parameters. Although water exchange has been extensively studied in the field of NMR, open questions remain in relation to the exchange rate in the in vivo brain and its effect on the DW MRI metrics. In particular, special care has to be taken with vasogenic oedema, given that tissue permeability plays an important role. Thus we expect our Phantom 2 to become a useful tool for the design, validation and optimization of experimental techniques for the assessment of exchange.

6 | LIMITATIONS

A limitation of the current experimental setup of the phantoms is the long transverse relaxation times observed in the bulk and fibre compartments (2.53 s and 0.76 s, respectively), which are much larger than the values observed in the brain tissue (500 ms for CSF and an average of 60 ms for brain tissue at 3 T). Therefore, in order to observe a clear difference between the \(T_E \)-dependent and \(T_E \)-independent free water fraction, one needs large \(T_E \) values. Doping the water with MgCl\(_2\)-6H\(_2\)O (as in Reference 61 or with CuSO\(_4\) in order to manipulate, among other things, \(T_2 \), needs further investigation and is in our future plans. Another possibility is to use agarose gel, which has been shown to drastically reduce \(T_2 \). However the construction process is challenging given that, due to the size of the agar chains, the solution barely fills the interstitial space via capillary force. One possibility requiring further investigation is the construction of the phantom while submerged in an agar bath. Regarding the fibre material, one possibility is to use hydrophilic materials, such as rayon, which induce strong transverse relaxation as a result of surface interactions.

Although our Phantom 2 spans nearly 40% of the whole range of \(f_w \), it still lacks the range [0,0.2], which is particularly important given that the free water fraction in the healthy, in vivo interstitial space is known to lie in this range. This represents a limitation to our Phantom 2.

A limitation related to Dyneema fibres is that they are not hollow. Therefore, one can only mimic the water diffusion in the extra-cellular space. Other new materials though, which are able to reproduce both intra- and extra-cellular spaces, could be used to construct phantoms with the same macroscopic characteristics as ours.

Regarding the estimation of the PD, a more exhaustive analysis should correct for the transmit field inhomogeneity and the receiver inhomogeneity separately, as demonstrated in several works in the field of quantitative water content mapping.

7 | CONCLUSIONS

We have introduced the design and characterised the NMR properties of two artificial, anisotropic diffusion fibre phantoms useful for the investigation of FWE models. The first phantom was designed to mimic the case of free water contamination occurring via PVE in voxels at the CSF-tissue interface. The second phantom was used to reproduce the situation of free water contamination encountered in the intra-tissue case. Thus, investigation of FWE methods with such phantoms can be done on the basis of real experimental data. Moreover, the phantoms can be measured using clinical MRI scanners fitted with conventional receive coils.

We demonstrated the use of our phantoms to investigate the recently introduced FWE DTI model with explicit account of differences in the transverse relaxation times between compartments. Important diffusion and relaxation features, as well as the size of the free water compartment space, were captured by the FWET\(_2\) model. Furthermore, we investigated the variability of different diffusion and transverse relaxation times in...
six scan sessions at two different sites, which indicated a negligible site bias. Based on this, we constructed reference truth maps for each of the model parameters using the median of all six scan sessions.

Our phantoms are expected to be useful tools for the design and optimization of experimental protocols for FWE models as well as for the development and improvement of different data post-processing pipelines. Moreover, our phantoms represent useful systems for the validation and optimization of sequence-based approaches for FWE.

ACKNOWLEDGEMENTS
EF thanks Dr Z. Abbas for his help in data analysis and helpful discussions, and A.A. Celik for his technical assistance in the construction of the phantoms. L-WK would like to thank the Ministry of Science and Technology of Taiwan (108-2221-E-400-002 and 108-2911-I-400-502), the National Health Research Institutes of Taiwan (BN-108-PP-06), and the Central Government S & T grant of Taiwan (108-1901-01-19-08) for their funding support. C-HC would like to acknowledge Deutscher Akademischer Austauschdienst (57334221) for their support in this joint research. We thank Mrs Claire Rick for proof-reading the manuscript.

ABBREVIATIONS
ADC apparent diffusion coefficient
CSF cerebrospinal fluid
DTD diffusion tensor distribution
DTI diffusion tensor imaging
DTI_T2 DTI with explicit T2 attenuation
DW diffusion weighted
FA fractional anisotropy
FWE free water elimination
FWET2 FWE model with explicit account of T2 attenuation
ICC_inter inter-class correlation coefficient
ICC_intra intra-class correlation coefficient
MD mean diffusivity
PD proton density
PVE partial volume effect
RD radial diffusivity
rms root mean square
ROI region of interest
T2W T2 weighted
WLLS weighted linear least squares

ORCID
Ezequiel Farrher https://orcid.org/0000-0003-2902-8667
Farida Grinberg https://orcid.org/0000-0001-8486-3126
Li-Wei Kuo https://orcid.org/0000-0002-0306-7329
Kuan-Hung Cho https://orcid.org/0000-0001-9267-8342
Richard P. Buschbeck https://orcid.org/0000-0001-8201-3937
Ming-Jye Chen https://orcid.org/0000-0003-0716-7156
Husan-Han Chiang https://orcid.org/0000-0003-3569-0905
Chang-Hoon Choi https://orcid.org/0000-0003-8569-0905
N. Jon Shah https://orcid.org/0000-0002-8151-6169

REFERENCES
1. Walker L, Curry M, Nayak A, Lange N, Pierpaoli C. A framework for the analysis of phantom data in multicenter diffusion tensor imaging studies. Hum Brain Mapp. 2013; 34(10):2439-2454. https://doi.org/10.1002/hbm.22081
2. Johansen-Berg H, Behrens TEJ (Eds). Diffusion MRI. From Quantitative Measurement to In-Vivo Neuroanatomy. 2nd ed. Cambridge, Massachusetts, USA: Elsevier; 2014.
3. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M. Clinical applications of diffusion tensor imaging. World Neurosurg. 2014;82(1):96-109. https://doi.org/10.1016/j.wneu.2013.07.083
4. Assaf Y. Can we use diffusion MRI as a bio-marker of neurodegenerative processes? Bioessays. 2008;30(11–12):1235-1245. https://doi.org/10.1002/bies.20851
37. van Dusschoten D, Dejager PA, Vanas H. Extracting diffusion constants from echo-time-dependent PFG NMR data using relaxation-time information. J Magn Reson a. 1995;116(1):22-28. https://doi.org/10.1006/jmra.1995.1185
38. van Dusschoten D. Unraveling diffusion constants in biological tissue by combining Carr-Purcell-Meiboom-gill imaging and pulsed field gradient NMR. Magn Reson Med. 1996;36(6):907-913. https://doi.org/10.1002/mrm.1910360613
39. Peled S, Cory DG, Raymond SA, Kirscher DA, Jolesz FA. Water diffusion, T2, and compartmentation in frog sciatic nerve. Magn Reson Med. 1999; 42(5):911-918. https://doi.org/10.1002/(SICI)1522-2594(19991142.5::AID-MRM113.0.CO;2-J
40. Galvosas P, Callaghan PT. Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media. C R Phys. 2010;11(2):172-180. https://doi.org/10.1016/j.crhy.2010.06.014
41. Bernin D, Topgaard D. NMR diffusion and relaxation correlation methods: new insights in heterogeneous materials. Curr Opin Colloid Interface Sci. 2013;18(3):166-172. https://doi.org/10.1016/j.cocis.2013.03.007
42. Song Y-Q, Venkataramanan L, Kausik R, Heaton N. Chapter 4 Two-dimensional NMR of diffusion and relaxation. In: Jerome NP, d'Arcy JA, Feiweier T, et al. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging. Phys Med Biol. 2016;61(24):N667. https://stacks.iop.org/0031-9155/i=24/a=N667
43. Holz M, Heil SR, Sacco A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys. 2000;2(20):4740-4742. https://doi.org/10.1039/b005319h
44. Wagner F, Laun FB, Kuder TA, et al. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms. PLoS One. 2012;7(6):e179276. https://doi.org/10.1371/journal.pone.0179276
45. Fieremans E, Lee HH. Physical and numerical phantoms for the validation of brain microstructural MRI: a cookbook. Neuroimage. 2018;182:39-61.
46. Komlosh ME, Benjamini D, Barnett AS, et al. Anisotropic phantom to calibrate high-q diffusion MRI methods. J Magn Reson. 2017;275:19-28. https://doi.org/10.1016/j.jmr.2016.11.017
47. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Imaging. 2012;34(4):518-526. https://doi.org/10.1002/jmri.21120
48. Grinberg F, Farrher E, Kaffanke J, Oros-Peusquens AM, Shah NJ. Novel multi-directional design of anisotropic diffusion phantoms. Magn Reson Imaging. 2012;30(4):518-526. https://doi.org/10.1002/mrm.21120
49. Fieremans E, De Deene Y, Delputte S, et al. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson. 2008;190(2):189-199. https://doi.org/10.1016/j.jmr.2007.10.014
50. Fieremans E, De Deene Y, Delputte S, Özdemir MS, Achten E, Lemahieu I. The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging. Phys Med Biol. 2008;53(19):5405. http://stacks.iop.org/0031-9155/53/i=19/a=009
51. Grunberg F, Farrher E, Maximov II, Shah NJ. Complex patterns of non-Gaussian diffusion in artificial anisotropic tissue models. Microporous Mesoporous Mater. 2013;178:44-47. https://doi.org/10.1016/j.micromeso.2013.02.046
52. Reischauer C, Stampafl P, Jaermann T, Boesiger P. Construction of a temperature-controlled diffusion phantom for quality control of diffusion measurements. J Magn Reson Imaging. 2008;29(3):692-698. https://doi.org/10.1002/jmri.21665
53. Lorenz R, Bellemann EM, Hennig J, Ilyasov AK. Anisotropic phantoms for quantitative diffusion tensor imaging and fiber-tracking validation. Appl Magn Reson. 2008;33(4):419-429. https://doi.org/10.1007/s00723-008-0087-7
54. Nilsson M, Larsson J, Lundberg D, et al. Liquid crystal phantom for validation of microscopic diffusion anisotropy measurements on clinical MRI systems. Magn Reson Med. 2018;79(3):1817-1828. https://doi.org/10.1002/mrm.26814
55. Topgaard D, Multidimensional diffusion MRI. J Magn Reson. 2017;275:98-113. https://doi.org/10.1016/j.jmr.2016.12.007
56. De Almeida Martins JP, Topgaard D. Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials. Sci Rep. 2018;8:2488. https://doi.org/10.1038/s41598-018-19826-9
57. Westin C-F, Knutsson H, Hastersk, O, et al. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage. 2016; 135:345-362. https://doi.org/10.1016/j.neuroimage.2016.02.039
58. Vemuri B, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996; 111(3):209-219.
59. Abbas Z, Gras V, Möllenhoff K, Keil F, Oros-Peusquens A-M, Shah NJ. Analysis of proton-density bias corrections based on T2 relaxation for robust quantification of water content in the brain at 3 tesla. Magn Reson Med. 2014;72(6):1735-1745. https://doi.org/10.1002/mrm.25086
60. Jenkinson M, Smith A. A general optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143-156. https://doi. org/10.1016/S1361-8415(01)00036-6
61. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825-841. https://doi.org/10.1002/1052-2974(20021130). 111:209-219
62. Piechnik SK, Evans J, Bary LH, Wise RG, Jezzard P. Functional changes in CSF volume estimated using measurement of water T2 relaxation. Magn Reson Med. 2009;61(3):579-586. https://doi.org/10.1002/mrm.21897
63. Gras V, Farrher E, Grinberg F, Shah NJ. Diffusion-weighted DESS protocol optimization for simultaneous mapping of the mean diffusivity, proton density and relaxation times at 3 tesla. Magn Reson Med. 2017;78(1):130-141. https://doi.org/10.1002/mrm.26353
70. Laun FB, Huff S, Stieltjes B. On the effects of dephasing due to local gradients in diffusion tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms. Magn Reson Imaging. 2009;27(4):541-548. https://doi.org/10.1016/j.mri.2008.08.011

71. Poupon C, Rieu B, Kezele I, Perrin M, Poupon F, Mangin J-F. New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion (HARDI) models. Magn Reson Med. 2008;60(6):1276-1283. https://doi.org/10.1002/mrm.21789

72. Perrone D, Aelterman J, Pižurica A, Jeurissen B, Phillips W, Leemans A. The effect of Gibbs ringing artifacts on measures derived from diffusion MRI. Neuroimage. 2015;120:441-455. https://doi.org/10.1016/j.neuroimage.2015.06.068

73. Hubbard PL, Parker GJM. Validation of tractography. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. 2nd ed. San Diego, CA: Academic; 2014: 453–480. https://doi.org/10.1016/B978-0-12-396460-1.00020-2.

74. Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev. 1987;87(5):901-927. https://doi.org/10.1021/cr00081a003

75. Vrentas JS, Duda JL, Ling H-C. Free-volume theories for self-diffusion in polymer-solvent systems. I. Conceptual differences in theories. J Polym Sci Polym Phys Ed. 1985;23(2):275-288. https://doi.org/10.1002/pol.1985.180230204

76. Masaro L, Zhu XX. Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci. 1999;24(5):731-775. https://doi.org/10.1016/S0007-600X(99)00016-7

77. Walderhaug H, Söderman O, Topgaard D. Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc. 2010;56(4):406-425. https://doi.org/10.1016/j.pnmrs.2010.04.002

78. Lord Rayleigh SRS. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil Mag. 1892;34(211):481-502. https://doi.org/10.1080/14786449208620364

79. Perrins WT, McKenzie DR, McPhedran RC. Transport properties of regular arrays of cylinders. Proc R Soc a. 1979;369(1737):207-225. https://doi.org/10.1098/rspa.1979.0160

80. Ziegler LJ, Sen PN. Effects of finite-width pulses in the pulsed-field gradient measurement of the diffusion coefficient in connected porous media. J Magn Reson. 2003;165(1):153-161. https://doi.org/10.1016/S1090-7803(03)00248-9

81. Lu H, Lei X. The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury. Neural Regen Res. 2014;9(9):973-977. https://doi.org/10.4103/1673-5374.133150

82. Hergan K, Schaefer P, Sorensen A, Gonzalez R, Huisman T. Diffusion-weighted MRI in diffuse axonal injury of the brain. Magn Reson Med. 2011;66(2):356-365. https://doi.org/10.1002/mrm.22782

83. Grinberg FA, Scirda VD, Fatkullin NF, Maklakov AI, Rogovina LZ, Storogyk IP. Diffusion spin echo decay by pulsed magnetic field gradient NMR and magnetic field-gradient spin-echo NMR methods. Adv Polym Bull. 2003;165(1):153-161. https://doi.org/10.1016/S1090-7807(03)00248-9

84. Shemesh N, Jespersen SN, Alexander DC, et al. Conventions and nomenclature for double diffusion encoding NMR and MRI. Magn Reson Med. 2011;66(2):356-365. https://doi.org/10.1002/mrm.22782

85. NMR quantification of diffusional exchange in cell suspensions with some structure features in blockcopolymers. J Magn Reson. 2006;56(4):356-365. https://doi.org/10.1016/j.mrm.2010.04.002

86. Shemesh N, Özarslan E, Bar-Shir A, Basser PJ, Cohen Y. Observation of restricted diffusion in the presence of a free diffusion compartment: single- and double-PFG experiments. J Magn Reson. 2009;200(2):214-225. https://doi.org/10.1016/j.jmr.2009.07.005

87. Bakker CJG, de Roos R. Concerning the preparation and use of substances with a magnetic susceptibility equal to the magnetic susceptibility of air. Magn Reson Med. 2006;56(5):1107-1113. https://doi.org/10.1002/mrm.21069

88. Eriksson S, Elbing K, Söderman O, Lindkvist-Petersson K, Topgaard D, Lasic D. On the effects of dephasing due to local gradients in diffusion tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms. Magn Reson Imaging. 2010;28(8):1169-1177. https://doi.org/10.1016/j.mri.2009.10.005

89. Grinberg FA, Scirda VD, Fatkullin NF, Maklakov AI, Rogovina LZ, Storogyk IP. Diffusion spin echo decay by pulsed magnetic field gradient NMR and magnetic field-gradient spin-echo NMR methods. Adv Polym Bull. 2003;165(1):153-161. https://doi.org/10.1016/S1090-7807(03)00248-9

90. Zielinski LJ, Sen PN. Effects of finite-width pulses in the pulsed-field gradient measurement of the diffusion coefficient in connected porous media. J Magn Reson. 2003;165(1):153-161. https://doi.org/10.1016/S1090-7803(03)00248-9

91. Hergan K, Schaefer P, Sorensen A, Gonzalez R, Huisman T. Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur Radiol. 2002;12(10):2536-2541. https://doi.org/10.1038/sj.spectrace2.13333-2

92. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288.

93. Shemesh N, Özarslan E, Bar-Shir A, Basser PJ, Cohen Y. Observation of restricted diffusion in the presence of a free diffusion compartment: single- and double-PFG experiments. J Magn Reson. 2009;200(2):214-225. https://doi.org/10.1016/j.jmr.2009.07.005

94. Bakker CJG, de Roos R. Concerning the preparation and use of substances with a magnetic susceptibility equal to the magnetic susceptibility of air. Magn Reson Med. 2006;56(5):1107-1113. https://doi.org/10.1002/mrm.21069

95. Grinberg FA, Scirda VD, Fatkullin NF, Maklakov AI, Rogovina LZ, Storogyk IP. Diffusion spin echo decay by pulsed magnetic field gradient NMR and magnetic field-gradient spin-echo NMR methods. Adv Polym Bull. 2003;165(1):153-161. https://doi.org/10.1016/S1090-7807(03)00248-9

96. Nilsson M, Van Westen D, Ståhlberg F, Sundgren PC, Lätt J. Apparent exchange rate mapping with diffusion MRI. Magn Reson Med. 2011;66(2):356-365. https://doi.org/10.1002/mrm.22782
APPENDIX A: 7.1 | INTRA- AND INTER-SITE VARIABILITY

The framework proposed by Walker et al.\(^1\) assumes that the experiments have been performed at \(p = 1, \ldots, P\) sites and \(q = 1, \ldots, Q_p\) time points. The first step of the analysis is based on the evaluation of the median of each model parameter \(A\) through all time points at all sites. Outliers are then identified by subtracting the map at site \(p\) and time point \(q\), \(A_{p,q}\), from the evaluated median. Significant deviations from the median are considered to be outliers.

The second step in the analysis consists in the evaluation of the intra-site and inter-site variances. Intra-site variance is assessed by first calculating the variance across all time points for each site and then calculating the mean of the variances. The intra-site variability is then given by the square root of the intra-site variance, ie

\[
\sigma_{\text{intra}} = \left(\frac{1}{P} \sum_{q} \frac{1}{Q_p} \left(A_{p,q} - \langle A \rangle_p \right)^2 \right)^{1/2}.
\]

Inter-site variance is obtained by first evaluating the mean across all time points for each site and then evaluating the variance of the individual site means. The inter-site variability is written as

\[
\sigma_{\text{inter}} = \left(\frac{1}{P-1} \sum_{p} \left(\langle A \rangle_p - \langle A \rangle \right)^2 \right)^{1/2},
\]

where \(\langle A \rangle_p = \sum_{q} A_{p,q}/Q_p\) is the site mean and \(\langle A \rangle = \sum_{p} \langle A \rangle_p/P\) is the mean over all sites and time points.

We further evaluated the ICCs, defined as

\[
\text{ICC}_{\text{intra}} = \frac{\sigma_{\text{intra}}^2}{\sigma_{\text{intra}}^2 + \sigma_{\text{inter}}^2}
\]

and

\[
\text{ICC}_{\text{inter}} = \frac{\sigma_{\text{inter}}^2}{\sigma_{\text{intra}}^2 + \sigma_{\text{inter}}^2}
\]

respectively. These coefficients give the fraction of variance attributed to intra- and inter-site variability.
Assuming a homogeneous distribution of perfectly aligned fibres within the fibre compartment and idealising the fibres as cylinders, the influence of the fibre volume fraction, ϕ, on the radial diffusion coefficient in the long-time limit can be estimated analytically. In the dilute regime case, one can use the well known Maxwell Garnett equation,102,103 which is valid for an arbitrary array of cylinders. The RD in this case can be written as the following:

$$D_{\perp}(\phi) = \frac{D_w}{1-\phi} \left(1 - \frac{2\phi}{1+\phi} \right). \quad (B1)$$

This approximation works well for fibre volume fractions up to $\phi \approx 0.4$. For higher packing densities, there are analytical solutions for the transport properties in regular arrays of cylinders, based on the recursion relation found by Lord Rayleigh for a square lattice78 and later by Perrins et al79 for a hexagonal lattice. These solutions were previously used in the formulation of an analytical model for the long-time diffusion coefficient in white matter by Sen and Basser.104,105 We have adapted the solutions in References 104-106 for the case of solid fibres, which to third order are written as

$$D_{\perp}^{(s)}(\phi) = \frac{D_w}{1-\phi} \left[1 - 2\phi \left(1 + \phi - \frac{0.30583\phi^6}{1-1.40296\phi}\right)^{-1} \right] \quad (B2)$$

and

$$D_{\perp}^{(h)}(\phi) = \frac{D_w}{1-\phi} \left[1 - 2\phi \left(1 + \phi - \frac{0.07542\phi^6}{1-1.06028\phi}\right)^{-1} \right] \quad (B3)$$

for square (s) and hexagonal (h) lattices, respectively. Furthermore, FA can be written as $FA(\phi) = (1 - D_{\perp}(\phi)/D_w)/\sqrt{2D_w^2(\phi)/D_w^2 + 1}$, assuming that the eigenvalues of the diffusion tensor follow $D_w = \lambda_1 \geq \lambda_2 = \lambda_3$. Note that Equations B1-B3 are valid in the long-time limit.