Recent Developments in Production and Biotechnological Applications of C-Phycocyanin

M. Kuddus, P. Singh, G. Thomas, and Awdah Al-Hazimi

1 Department of Biochemistry, College of Medicine, University of Hail, Hail 2440, Saudi Arabia
2 Department of Molecular and Cellular Engineering, SHIATS, Allahabad 211007, India

Correspondence should be addressed to M. Kuddus; kuddus_biotech@yahoo.com

Received 24 April 2013; Accepted 21 July 2013

1. Introduction

In the quest of revealing nature's secrets during the past centuries, science has explored many concealed natural resources, thus opening a big market to the chemical industries. The chemicals used in the early ages were much expensive and caused biohazards. Thus, researches in finding safe, less-expensive, and easy-to-get natural bioactive compounds have been started. Since the advent of the analytical fields new assays and methods have been on the rise, thereby making the diagnostic industry a source of in-depth information.

In the early period, the immunodiffusion assays provide information of remarkable magnitude followed by radio-immunoassays and enzyme-linked immunoassays. In these assays, different fluorochromes were exploited, and today it forms a separate field of interest as fluorescent immunoassay [1]. However, the synthetic fluorochromes cause biohazards and are carcinogenic in nature such as synthetic dye ethidium bromide. Thus a new approach of research was needed to find out novel chemicals which are not that expensive and are safe to handle. Phycobiliproteins are a group of colored proteins commonly present in cyanobacteria and red algae possessing a spectrum of applications. They are extensively commercialized for fluorescent application in clinical and immunological analysis. They are also used as colorant, and their therapeutic value has also been positively demonstrated [2]. Phycobiliproteins are brilliantly colored, highly fluorescent, water-soluble protein components of the photosynthetic light-harvesting antenna complexes of cyanobacteria (blue-green algae), red algae, and cryptomonads. These proteins are classified into two large groups based on their colors, the phycoerythrin (red), and the phycocyanin (blue). The phycocyanins include C-phycoerythrin (C-PC), R-phycoerythrin (R-PC), and allophycocyanin. Phycobiliproteins are assembled into an organized cellular structure, namely, the phycobilisomes that are attached in regular arrays to the external surface of the thylakoid membrane and act as major light-harvesting pigments in cyanobacteria and red algae. The term "phycobilisome" was first coined by Gantt and Conti [3] on the basis of their size and shape as visualized by electron microscope. The electron micrographs showed a series of large granules aligned regularly on the thylakoid membranes of different cyanobacteria and red algae, which were about twice the size and of similar shape to that of ribosomes; and attracted the attention of early biologists due to their brilliant colors. Phycobilisomes consist of allophycocyanin cores...
surrounded by phycocyanin on the periphery. Phycocyanin is the major constituent while allophycocyanin functions as the bridging pigment between phycobilisomes and the photosynthetic lamella [4]. The phycobilisomes allow the pigments to be arranged geometrically in a manner which helps to optimize the capture of light and transfer of energy. All the phycobiliproteins absorb incident light directly, but in addition they participate in an energy transfer chain within the phycobilisome in a sequence: phycoerythrin to phycoerythrocyanin to allophycocyanin to chlorophyll-a.

The phycobiliproteins were introduced as a novel class of fluorescent dyes in 1982 [5]. These naturally occurring fluorescent phycobiliproteins was used instantly in diagnostic assays and in diverse research applications [6, 7]. The phycobiliproteins serve as valuable fluorescent tags with numerous applications in flow cytometry, fluorescence activated cell sorting, histochemistry, and to a limited degree in immunoassay and detection of reactive oxygen species. These applications exploit the unique physical and spectroscopic properties of phycobiliproteins [8]. In addition, because of the high molecular absorptivity of these proteins at visible wavelengths, they are convenient markers in such applications as gel electrophoresis, isoelectric focusing, and gel exclusion chromatography [9, 10].

C-phycocyanin belongs to a family of phycobiliproteins that are well suited as a fluorescent reagent for immunological analysis, because they have a broad excitation spectrum and large stokes shift and fluorescence with a high quantum yield. C-PC is an antenna pigment used by mainly cyanobacteria and eukaryotic algae to increase efficiency of photosynthesis by collecting light energy at wavelength over which chlorophyll absorbs poorly. Phycobiliproteins are easily isolated as pigment complex, which is soluble in water and is very fluorescent [11]. It is a stable protein and contains multiple chromophore prosthetic groups, which are responsible for the fluorescent properties of this protein. They are attached to the surrounding protein structure via thioether linkage involving cystein residues. Chromophore prosthetic groups are constructed from linear or open tetrapyrrole ring and are structurally related to the bile pigment biliverdin. The four main chromophore types present in algal and cyanobacterial species are phycocyanobilin (PCB), phycoerythrobilin (PEB), phycourlobilin (PUB), and cryptoviolin, whereas C-PC has only phycocyanobilin. The principal phycobiliproteins present in Spirulina platensis are phycocyanin and allophycocyanin which are made up of dissimilar \(\alpha \) and \(\beta \) polypeptide subunits.

2. Sources of C-Phycocyanin and Its Production

The cyanobacteria, namely, Spirulina (renamed as Arthrospira), has been commercialized in several countries for its use as health food and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins [12, 13]. It is also a rich and inexpensive source of the pigment like phycocyanin [14, 15]. The purification procedures for phycocyanin from crude algae extracts are usually obtained by a combination of different techniques such as ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration chromatography to get pure phycocyanin. The cyanobacteria are potential source of C-PC pigments along with rhodophyta (Table 1). Their cultivation without organic substrates can be an economical advantage over the other microorganisms, and an optimized production of relevant compounds under controlled conditions is conceivable [16].

The various aspects of C-PC production have been reported by Eriksen [17]. According to the above report, production of C-PC includes four different options, namely, photoautotrophic, mixotrophic, heterotrophic, and recombinant production. The important features of these methods are presented in Table 2.

2.1. Photoautotrophic Production. This is an outdoor method of C-PC production by photoautotrophic cultures of cyanobacterium grown in open ponds predominantly at tropical and subtropical locations [56–58]. Spirulina platensis (Arthrospira platensis) has been commonly chosen as a host for C-PC production because of its availability rather than due to particular qualities of C-PC. It is among a few photoautotrophic microorganisms that can be grown in open ponds without being outcompeted by contaminating organisms, although contaminants do appear in open A. platensis cultures [59, 60]. The worldwide production of A. platensis has been increasing since 1980 [61, 62]. The majority of A. platensis dry weight (>3000 metric ton) that are produced worldwide annually are used for health products and animal feed additives [62, 63].
2.2. Mixotrophic Production. The mixotrophic cultivation of blue-green alga along with *A. platensis* is to be carried out in an enclosed reactor. Marquez et al. [64] found that the specific growth rate of mixotrophic cultures grown on glucose corresponds to the sum of the photoautotrophic and heterotrophic specific growth rates. The mixotrophic cultivation results in faster growth and increased maximal biomass concentrations compared to photoautotrophic indoor cultures than in the photoautotrophic outdoor cultures of *A. platensis*.

2.3. Heterotrophic Production. The heterotrophic microbial processes are not limited by incident light intensities and have much higher production potentials than light-dependent processes. They are easier to scale up with regards to reactor size, mixing, gas transfer, productivity, and axenicity since high surface-to-volume ratios are not mandatory. The unicellular rhodophyte, *Galdieria sulphuraria*, is a candidate for heterotrophic production of C-PC. *G. sulphuraria* contains a major amount of C-PC and minor amount of allophycocyanin. Its natural habitat is hot, acidic springs, so the optimal growth conditions are found at temperatures above 40°C, and it is able to utilize a variety of carbon sources [67]. The properties of C-PC from heterotrophic *G. sulphuraria* resemble those of C-PC from other cyanobacterial sources. Schmidt et al. [68] and Graverholt and Eriksen [69] investigated the growth and C-PC production by *G. sulphuraria* 074G strains. The *Arthrospira* strains can also grow heterotrophically on glucose and fructose in darkness. However, the heterotrophic production of C-PC in *A. platensis* is not a viable option since the reported specific growth rates and pigment contents in heterotrophic *Arthrospira* strains are very low [66, 70].

2.4. Recombinant Production. Recombinant protein production is an option for heterotrophic synthesis of C-PC. Production of this multichain holoprotein phycobiliprotein is more challenging than production of other recombinant proteins. Complete synthesis of recombinant phycobiliprotein depends on coexpression of α- and β-chains as well as parallel synthesis and insertion of the correct phycobilin chromophores. Recombinant C-PC, in which *cpcA* and *cpcB* genes were fused to His₆ tags for affinity chromatographic purification, has been produced in photoautotrophic *Anabaena* species, which naturally synthesize and insert phycocyanobilin into C-PC [71]. These fusion proteins were expressed as stable C-PC complexes. Coding sequences for different biospecific recognition domains were also fused to stabilized C-PC fusion constructs, and the expressed multidomain fusion proteins were used as fluorescent probes [17]. The gene engineering has resulted in the production of recombinant C-PC with novel functions. In heteromorphic hosts, recombinant holo-C-PC α-subunit has been expressed in *Escherichia coli*. The His₆ tags have allowed purification by affinity chromatography, and domains with affinities for specific biological structures have been incorporated [72, 73].

3. Isolation of C-Phycocyanin

The methods of C-PC isolation are reported by various authors and summarized in a review on the subject [2]. The process of isolation involves various steps, namely, breakage of cell wall and cell disruption, primary isolation, purification, drying, and characterization of the end products. According to the nature of organisms, a variety of physical and chemical methods are encountered for cell disruption. Physical methods like sonication, cavitation, osmotic shock, and repeated freeze thawing are commonly encountered. In chemical methods, usage of acids, alkali, detergents, enzymes, and their combination thereof are reported. In general, combinations of a variety of physical and chemical methods are exploited for cell breakage. After cell breakage, clarification by centrifugation was performed, and the product is primarily isolated from the supernatant. It comprises fractionation using ammonium sulphate, dialysis, and polyethylene glycol precipitation. Further purification is usually achieved by column chromatographic methods using adsorbents, molecular sieves, anion exchangers, or their combinations. According to the nature of organisms, a combination of physical and chemical methods with primary isolation and purification of the product is adapted. For drying the pigment, only freeze drying was found to be suitable. It is up to the technologist to choose any of these methods and their combination to achieve maximum recovery of the product. The characterization of phycobiliproteins including C-PC is required for the molecular understanding on various structures of phycobilisomes, and this provides a basis for the
modeled reconstruction of the pigment complex. In order to exploit these natural colored substances, the C-PC is to be extracted from the phycobilisome and purified. Extraction of the phycobiliprotein from cyanobacteria and microalgae is very difficult because of the extremely resistant cell wall and the small size of the bacteria [74, 75]. However, various methods can be employed for extraction of phycobiliproteins, but no standard technique to quantitatively extract the C-PC pigment from microalgae exists [76]. A method that works well in one organism may not be the method of choice for another organism [77].

C-phycocyanin has been extracted by resuspending the biomass in 0.1M phosphate buffer, pH 7.0, [39, 78] or 0.5 M (NH₄)₂SO₄ [40]. Doke [39] found that most C-PC could be extracted from biomass dried at low temperatures. At 25°C, 80 mg C-PC per gram dried biomass could be extracted compared to just 16.5 mg g⁻¹ from biomass dried at 50°C. Oliveira and coworkers [78] found that high drying temperatures in two different dryers decreased the amount of extractable C-PC from A. platensis. From wet biomass, C-PC has been extracted by subjecting the biomass to cycles of freezing at –25 to –15°C or in liquid nitrogen and thawing at 4 to 30°C [32, 35, 39, 41, 53]. When compared to alternative methods, freeze-thaw cycles have been the most efficient way to extract C-PC from wet cyanobacterial biomass [39, 53]. C-PC has also been extracted after mechanical cell disruption [42, 68], lysozyme treatment [42], sonication [53, 79], and high pressure exposure [43, 80]. It has also been described that live Klebsiella pneumoniae effectively lyse A. platensis and extracts C-PC in 24 hours [44].

4. Purification and Characterization of C-Phycocyanin

In light of the considerable commercial application particularly as fluorescence tags, purity of the C-PC pigments plays a major role. The purity of C-PC preparations is evaluated based on the ratio between absorbencies from phycocyanobilin at 620 nm (A620) and aromatic amino acids in all proteins in the preparation at 280 nm (A280). C-PC preparations with A620/A280 greater than 0.7 were considered food grade as described by Rito-Palomares et al. [10], while A620/A280 of 3.9 were reactive grade and A620/A280 greater than 4.0 analytical grade. Herrera et al. [36] combined ultrafiltration, charcoal adsorption, and spray drying to obtain C-PC with A620/A280 of 0.74 and a yield of 34%, while additional chromatographic steps were included to purify C-PC to A620/A280 of 3.91 with a yield of 9%. Ammonium sulphate precipitation combined with a variety of chromatographic principles has been employed to obtain C-PC of food, reactive, and analytical grades [21, 22, 32, 35, 40–42, 53]. Also two-phase aqueous extraction was developed into an efficient method for C-PC purification [10] which resulted in highly pure C-PC preparations and high yields [43, 80]. Two-phase aqueous extraction followed by ion-exchange chromatography was recently reported to result in extremely pure C-PC with A620/A280 value of 6.69 [33].

C-phycocyanin is composed of αβ heterodimers, each heterodimer containing three linear tetrapyrrrole chromophores, referred to as phycocyanobilins. Three αβ units oligomerize as disc-shaped trimers (αβ)₃ which in turn form hexamers (αβ)₆, and these hexamers stack one above the other forming the rod-like structure of phycobilisome [81]. The molecular architectures of these photosynthetic complexes are rapidly becoming available through the power of X-ray crystallography. Twelve crystal structures of phycocyanins were determined with an ultimate goal to obtain a physical picture of energy absorption and transfer through the complex to the reaction center. The C-PC structure has been determined by X-ray crystallography at a resolution of 1.45 Å [51]. Adir [82] analyzed the molecular understanding on various structures of phycobilisomes and suggested that the structural information obtained from the components provides the basis for the modeled reconstruction of this pigment complex.

5. Applications of C-Phycocyanin

The growing awareness on the importance of natural colors, especially in food and cosmetics colorants, has placed great demand on biological sources of natural colors. Cyanobacteria possess a wide range of colored components including carotenoids, chlorophyll, and phycocyanin [83]. It has gained importance in the development of phycocyanin probes for immunodiagnostics [84]. C-phycocyanin is commonly used as natural dye in food and cosmetics and replaced the synthetic dyes. Phycocyanin has a significant antioxidant, anti-inflammatory, hepatoprotective, and radical-scavenging properties, it is even used in food coloring and in cosmetics, as it is nontoxic and non-carcinogenic [85]. The main application of phycobiliproteins is as fluorescent markers of cells and macromolecules in biomedical research and highly sensitive fluorescence techniques [8]. Because of their properties, C-PCs have been used in a variety of immunological assays and as fluorescent labels for cell sorting, in addition, because of the high molar absorptivity of C-PC and other phycobiliproteins at visible wavelength, they are convenient markers in such applications as gel electrophoresis, isoelectric focusing, and gel exclusion chromatography. This has further enhanced the scope of the diagnostic industry. C-PC can be used for the detection of multiple myeloma cells. It is used as a potential therapeutic agent in oxidative stress induced disease [86]. The pharmaceutical industry demands highly pure C-PC with absorption ratio (A620/A280) of 4 and food industry a ratio of 2 [87].

5.1. C-Phycocyanin as a Natural Dye. C-phycocyanin is the major phycobiliprotein in many blue-green algae. The intense blue color in blue-green algae is due to the presence of phycocyanin and emits red fluorescence. The pigment has a single visible absorbance maximum between 615 and 620 nm. It has maximum fluorescence emission at around 640 nm with molecular weight in between 70 and 110 kD. The pigment is composed of two subunits of α and β which occur in equal numbers. However, the exact number of αβ pair may vary among different species. Both α and β subunits contain only the phycocyanobilin chromophore. In addition to absorbing light directly, this intensely blue pigment accepts quanta from
phycoerythrin by fluorescent energy transfer in organisms in which phycoerythrin is present. Also the C-PC pigment is widely used as natural dye for various purposes due to its deep and intense blue color. They are well suited as fluorescent reagent without any toxic effect for immunological analysis since they have a broad excitation spectrum and fluorescence with a high quantum yield [88]. They can be used as a valuable fluorescent probe for analysis of cells and molecules [89].

5.2. C-Phycocyanin as Food Additives and Health Foods. The deep blue colored phyocyanin and other extractable pigments including myxoxanthophyll and zeaxanthin extracted from microalgae Spirulina have been used as naturally occurring colorant for food additive purposes [14, 90]. A few studies have addressed the functionality of C-PC in foods with regards to color stability [91, 92] and rheological properties [93]. C-PC from A. platensis is marketed as a food and cosmetics in Japan [94], whereas this has not been approved as such in the European Union. Limited customer preference in consuming blue foods might have probably minimized the industries interest in coloring the food with C-PC [17]. More attention has been paid on the use of C-PC as a nutraceutical particularly in health foods in which dried A. platensis is the functional component.

5.3. Diagnostic Applications of C-Phycocyanin. When phycobilisomes are extracted into aqueous buffers, they disintegrate and the phycobiliproteins lose their natural acceptors of excitation energy and become highly fluorescent. Compared to other fluorophores, phycobiliproteins have high molar extinction coefficient and fluorescence quantum yield and large stoke shifts. The apoprotein chain contains amino and carboxyl groups that can form bonds to other molecules [8, 95, 96]. Phycobiliproteins conjugated to immunoglobulins, protein A, and avidin have been developed into fluorescent probes and have obtained wide usage in histochmstry, fluorescence microscopy, flow cytometry, fluorescence-activated cell sorting, and fluorescence immunoassays [2, 95, 96]. The high molar extinction coefficients are the result of many chromophores per phycobiliprotein complex and are therefore higher for $αβ_6$ hexamers and $αβ_3$ trimers than $αβ$ monomers. Also the extinction coefficients of individual phycobilins decrease when hexamers disintegrate into trimers, and monomers [97]. The fluorescence quantum yield decreases when phycobiliprotein complexes dissociate and the chromophores gain increased conformational freedom. Finally, the extinction coefficients are diminished and fluorescence is almost lost when the phycobiliproteins are getting denatured [98].

The C-PC is isolated as mixtures of hexamers, trimers and monomers and has a quantum yield of 50% [5]. When C-PC is dissolved in dilute phosphate buffer at concentrations below 1 M or 30 mM, the monomers will be dominant and the fluorescence yield low [96, 98]. The use of C-PC in fluorescent probes is dependent on chemical cross linking of peptides to form stable trimers [99]. Absorbance and fluorescence emission spectra of the chemically stabilized C-PC trimers are very similar to native C-PC trimers, except that their coefficients are actually increased. These chemically stabilized C-PC trimers can be used as fluorescent probes with spectral properties different from other phycobiliproteins. Also complete phycobilisomes from A. platensis composed of C-PC have been chemically stabilized, combined to streptavidin, and used as fluorescent probes in cytometry [100]. As described previously, also genetically stabilized C-PC fusion proteins fused to biospecific recognition domains have been used directly as biospecific fluorescent probes [17, 71].

5.4. Nutraceutical and Pharmaceutical Applications. Purified C-PC has nutraceutical and pharmaceutical potentials [12, 105]. A variety of impaired physiological conditions are reported to be relieved by C-PC administration [106–108]. It has also been observed that C-PC can inhibit cell proliferation [106], induce apoptosis in cancerogenic cell lines [109], and affect gene regulation in mammalian cell lines [107]. The antioxidant and radical-scavenging activities of C-PC from different cyanobacteria are well documented [33, 85, 86, 109–111]. Enhanced radical-scavenging activities have been reported in selenium-enriched C-PC obtained from A. platensis grown in Se-enriched medium [45, 112]. However, intact C-PC may not be the dominant functional antioxidants in vivo. McCarty [113] proposed that it is phycocyanorubin, a reduced form of phycocyanobilin, which is an important antioxidant species in vivo based on its similarity to bilirubin. Bilirubin is a natural antioxidant in plasma [15, 113] which inhibits formation of superoxide radicals by NADPH oxidase and may therefore play additional protective roles by reducing the generation of reactive oxygen species in the body. These observations have launched a further interest in C-PC as a nutraceutical or pharmaceutical with anticarcinogenic and other possible health effects. Also recombinant apo-C-PC $β$-subunit has been observed to inhibit cell proliferation and cause apoptosis in carcinoma cells [114]. One of the recent findings indicates that CPC could be potentially useful for treatment of LPS-related acute lung injury by inhibiting inflammatory responses and apoptosis in lung tissues [115].

6. Future Scenario

Cyanobacterial biomass has been considered as source of protein besides its nutritional value. The cyanobacteria are also a potential source of C-PC. Their cultivation under controlled conditions and low-cost downstream processing would be an economical advantage to fulfill their current
requirement. Among the various factors affecting productivity and composition of pigment, light intensity and quality have high significant value. For the extraction of proteins from algal cells, a specific procedure should be followed depending on the nature of cells. The commercial potential of C-PC has some major obstacles such as widespread utilization and increasing the product yield. These problems may be solved through linkages between laboratory researchers and industrial technologists. The various approaches directed towards low-cost production and harvesting technologies along with evaluation of novel environmental conditions for algal production may be useful. This review brings out recent developments in production and applications of C-PC. However, efforts have to be made in order to achieve economical overproduction of C-PC by recombinant DNA technology and increase its nutritional and pharmacological values by protein engineering.

Conflict of Interests

There is no conflict of interests.

References

[1] F. H. Kasten, "Introduction to fluorescent probes: properties, history and applications," in Fluorescent and Luminous Probes for Biological Activity, pp. 12–33, Academic Press, 1993.
[2] S. Sekar and M. Chandramohan, "Phycobiliproteins as a commodity: trends in applied research, patents and commercialization," Journal of Applied Phycology, vol. 20, no. 2, pp. 113–136, 2008.
[3] E. Gant and S. F. Conti, "Granules associated with the chloroplast lamellae of Porphyridium cruentum," Journal of Cell Biology, vol. 29, no. 3, pp. 423–434, 1966.
[4] L. E. Eisele, S. H. Balchku, X. Liu, R. MacColl, and M. R. Edwards, "Studies on C-phycocyanin from Cyanidium caldarium, a eukaryote at the extremes of habitat," Biochimica et Biophysica Acta, vol. 1456, no. 2-3, pp. 99–107, 2000.
[5] V. T. Oi, A. N. Glazer, and L. Stryer, "Fluorescent phycobiliprotein conjugates for analyses of cells and molecules," Journal of Cell Biology, vol. 93, no. 3, pp. 981–986, 1982.
[6] M. N. Kronick, "The use of phycobiliproteins as fluorescent labels in immunoassay," Journal of Immunological Methods, vol. 92, no. 1, pp. 1–13, 1986.
[7] A. N. Glazer and L. Stryer, "Phycobiliprotein-avidin and phycobiliprotein-biotin conjugates," Methods in Enzymology, vol. 184, pp. 188–194, 1990.
[8] A. N. Glazer, "Phycobiliproteins—a family of valuable, widely used fluorophores," Journal of Applied Phycology, vol. 6, no. 2, pp. 105–112, 1994.
[9] R. Sarada, M. G. Pillai, and G. A. Ravishankar, "Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin," Process Biochemistry, vol. 34, no. 8, pp. 795–801, 1999.
[10] M. Rito-Palomares, L. Nuez, and D. Amador, "Practical application of aqueous two-phase systems for the development of a prototype process for C-phycocyanin recovery from Spirulina maxima," Journal of Chemical Technology and Biotechnology, vol. 76, no. 12, pp. 1273–1280, 2001.
[11] A. N. Glazer, "Phycobilisomes: structure and dynamics," Annual Review of Microbiology, vol. 36, pp. 173–198, 1982.
[12] A. Belay, Y. Ota, K. Miyakawa, and H. Shimamatsu, "Current knowledge on potential health benefits of Spirulina," Journal of Applied Phycology, vol. 5, no. 2, pp. 235–241, 1993.
[13] J. C. Dillon, A. P. Phuc, and J. P. Dubacq, "Nutritional value of the alga Spirulina," World Review of Nutrition and Dietetics, vol. 77, pp. 32–46, 1995.
[14] T. Kato, "Blue pigment from Spirulina," New Food Industry, vol. 29, pp. 17–21, 1994.
[15] M. F. McCarty, "Clinical potential of Spirulina as a source of phycocyanobilin," Journal of Medicinal Food, vol. 10, no. 4, pp. 566–570, 2007.
[16] S. Kretlow, S. Mundt, and U. Lindequist, "Cyanobacteria— a potential source of new biologically active substances," Journal of Biotechnology, vol. 70, no. 1-3, pp. 61–63, 1999.
[17] N. T. Eriksen, "Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine," Applied Microbiology and Biotechnology, vol. 80, no. 1, pp. 1–14, 2008.
[18] A. Ramos, F. G. Acien, J. M. Fernandez-Sevilla, C. V. Gonzalez, and R. Bermejo, "Large-scale isolation and purification of C-phycocyanin from the cyanobacteria Anabaena marina using expanded bed adsorption chromatography," Journal of Chemical Technology and Biotechnology, vol. 85, no. 6, pp. 783–792, 2010.
[19] J. Moreno, H. Rodriguez, M. A. Vargas, J. Rivas, and M. G. Guerrero, "Nitrogen-fixing cyanobacteria as source of phycobiliprotein pigments. Composition and growth performance of ten filamentous heterocystous strains," Journal of Applied Phycology, vol. 7, no. 1, pp. 17–23, 1995.
[20] S. P. Shukia, J. S. Singh, S. Kashyap, D. D. Giri, and A. K. Kashyap, "Antarctic cyanobacteria as a source of phycocyanin: an assessment," Indian Journal of Marine Sciences, vol. 37, no. 4, pp. 446–449, 2008.
[21] S. Benedetti, S. Rinalducci, F. Benvenuti et al., "Purification and characterization of phycocyanin from the blue-green algae Aphaniizomenon flos-aquae," Journal of Chromatography B, vol. 833, no. 1, pp. 1–18, 2006.
[22] K. Minkova, M. Tchorbadjieva, A. Tchernov, M. Stojanova, L. Gigova, and M. Busheva, "Improved procedure for separation and purification of Arthronema africanum phycobiliproteins," Biotechnology Letters, vol. 29, no. 4, pp. 647–651, 2007.
[23] O. H. W. Kao, D. S. Berns, and W. R. Town, "The characterization of C-phycocyanin from an extremely halotolerant blue-green alga, Coccolithus elabens," Biochemical Journal, vol. 131, no. 1, pp. 39–50, 1973.
[24] O. H. W. Kao, M. R. Edwards, and D. S. Berns, "Physical chemical properties of C-phycocyanin isolated from an acidophilic thermophilic eukaryote, Cyanidium caldarium," Biochemical Journal, vol. 147, no. 1, pp. 63–70, 1975.
[25] R. F. Troxler, M. M. Ehrhardt, A. S. Brown-Mason, and G. D. Offer, "Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. II. Complete amino acid sequence of the beta subunit," Journal of Biological Chemistry, vol. 256, no. 23, pp. 12176–12184, 1981.
[26] B. Stec, R. F. Troxler, and M. M. Teeter, "Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly," Biophysical Journal, vol. 76, no. 6, pp. 2942–2921, 1999.
[27] O. S. Graverholt, Production and characterization of phycocyanin in different isolates of Gallideria sulphuraria [M.S. thesis], Aalborg University, Aalborg, Denmark, 2004.
J.-F. Niu, G.-C. Wang, X.-Z. Lin, and B.-C. Zhou, “Large-scale
collection of Spirulina platensis,” Biotechnology Techniques,
v. 13, no. 9, pp. 601–603, 1999.

S. Boussiba and A. E. Richmond, “Isolation and characterization
of phycocyanin from the blue-green alga Spirulina platensis,”
Archives of Microbiology, vol. 120, no. 2, pp. 155–159, 1979.

G. Patil, S. Chethana, A. S. Srivadi, and K. S. M. S. Raghavarao,
“Method to obtain C-phycocyanin of high purity,” Journal of
Chromatography A, vol. 1127, no. 1-2, pp. 76–81, 2006.

Y. Zhu, X. B. Chen, K. B. Wang et al., “A simple method for
extracting C-phycocyanin from Spirulina platensis using Kleb-
siella pneumoniae,” Applied Microbiology and Biotechnology,
v. 74, no. 1, pp. 244–248, 2007.

T. Chen, W. Zheng, F. Yang, Y. Bai, and Y.-S. Wong,
“Mixotrophic culture of high selenium-enriched Spirulina
platensis on acetate and the enhanced production of photosyn-
thetic pigments,” Enzyme and Microbial Technology, vol. 39, no.
1, pp. 103–107, 2006.

R. Duangsee, N. Phoopat, and S. Ningsanond, “Phycocyanin
extraction from Spirulina platensis and extract stability under
various pH and temperature,” Asian Journal of Food and Agro-
Industry, v. 2, no. 4, pp. 819–826, 2009.

A. Walter, J. de Carvalho, V. T. Soccol, A. B. de Faria, V.
Ghiggii, and C. R. Soccol, “Study of phycocyanin production
from Spirulina platensis under different light spectra,” Brazilian
Archives of Biology and Technology, vol. 54, no. 4, pp. 675–682,
2011.

Y. S. Mohite and P. S. Wakte, “Assessment of factors influencing
growth and C-phycocyanin production of Arthrospira platensis
from meteoritic Crater Lake,” Journal of Algal Biomass Utiliza-
tion, v. 2, no. 2, pp. 53–68, 2011.

P. Singh, M. Kuddus, and G. Thomas, “An efficient method for
extration of C-phycocyanin from Spirulina sp. and its binding
affinity to blood cells, nuclei and genomic DNA,” International
Research Journal of Biotechnology, v. 1, no. 5, pp. 080–085,
2010.

M. Rogner, P. J. Nixon, and B. A. Diner, “Purification and charac-
terization of photosystem I and photosystem II core complexes
from wild-type and phycocyanin-deficient strains of the
Cyanobacterium synechocystis PCC 6803,” Journal of Biological
Chemistry, vol. 265, no. 11, pp. 6198–6206, 1990.

J. Nield, P. J. Rizkallah, J. Barber, and N. E. Chayen, “The
1.45 Å three-dimensional structure of C-phycocyanin from the
thermophilic cyanobacterium Synechococcus elongatus,” Journal of
Structural Biology, vol. 141, no. 2, pp. 149–155, 2003.

R. MacColl, M. R. Edwards, M. H. Mulks, and D. S. Berns,
“Comparison of the biliproteins from two strains of the
thermophilic cyanophyte Synechococcus lividus,” Biochemical
Journal, vol. 141, no. 2, pp. 419–425, 1974.

J. Abalde, L. Betancourt, E. Torres, A. Cid, and C. Barwell,
“Purification and characterization of phycocyanin from the
marine cyanobacterium Synechococcus sp. IO9201,” Plant Sci-
cence, vol. 136, no. 1, pp. 109–120, 1998.

N. Adir, Y. Dobrovetsky, and N. Lerner, “Structure of C-
phycocyanin from the thermophilic cyanobacterium Syne-
chococcus vulcanus at 2.5 Å: structural implications for thermal
stability in phycobilisome assembly,” Journal of Molecular
Biology, vol. 313, no. 1, pp. 71–81, 2001.

A. Gupta and J. K. Sainis, “Isolation of C-phycocyanin from
Synechococcus sp. (Anacystis nidulans BD1),” Journal of Applied
Phycology, vol. 22, no. 3, pp. 231–233, 2010.

O. Pulz, “Photobioreactors: production systems for
phototrophic microorganisms,” Applied Microbiology and Biotech-
nology, vol. 57, no. 3, pp. 287–293, 2001.
[57] P. Carlozzi, "Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south-north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis)," Biotechnology and Bioengineering, vol. 81, no. 3, pp. 305–315, 2003.

[58] C. Jiménez, B. R. Cossio, D. Labella, and F. X. Niell, “The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain,” Aquaculture, vol. 217, no. 1–4, pp. 179–190, 2003.

[59] A. Richmond and J. U. Grobbelaar, “Factors affecting the output rate of Spirulina platensis with reference to mass cultivation,” Biomass, vol. 10, no. 4, pp. 253–264, 1986.

[60] A. Richmond, E. Lichtenberg, B. Stahl, and A. Vonshak, “Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways,” Journal of Applied Phycology, vol. 2, no. 3, pp. 195–206, 1990.

[61] M. A. Borowitzka, “Commercial production of microalgae: ponds, tanks, tubes and fermenters,” Journal of Biotechnology, vol. 70, no. 1–3, pp. 313–321, 1999.

[62] O. Pulz and W. Gross, "Valuable products from biotechnology of microalgae," Applied Microbiology and Biotechnology, vol. 65, no. 6, pp. 635–648, 2004.

[63] P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, “Commercial applications of microalgae,” Journal of Bioscience and Bioengineering, vol. 101, no. 2, pp. 87–96, 2006.

[64] F. J. Marquez, K. Sasaki, T. Kakizono, N. Nishio, and S. Nagai, “Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions,” Journal of Fermentation and Bioengineering, vol. 76, no. 5, pp. 408–410, 1993.

[65] A. Vonshak, S. M. Cheung, and F. Chen, “Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light,” Journal of Phycology, vol. 36, no. 4, pp. 675–679, 2000.

[66] K. Chojnacka and A. Noworyta, “Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures,” Enzyme and Microbial Technology, vol. 34, no. 5, pp. 461–465, 2004.

[67] W. Gross and C. Schnarrenberger, “Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria,” Plant and Cell Physiology, vol. 36, no. 4, pp. 633–638, 1995.

[68] R. A. Schmidt, M. G. Wiebe, and N. T. Eriksen, “Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria,” Biotechnology and Bioengineering, vol. 90, no. 1, pp. 77–84, 2005.

[69] O. S. Graverholt and N. T. Eriksen, “Heterotrophic high-cell-density fed-batch and flow cultures of Galdieria sulphuraria and production of phycocyanin,” Applied Microbiology and Biotechnology, vol. 77, no. 1, pp. 69–75, 2007.

[70] M. Mühling, A. Belay, and B. A. Whitton, “Screening Arthrospira (Spirulina) strains for heterotrophy,” Journal of Applied Phycology, vol. 17, no. 2, pp. 129–135, 2005.

[71] Y. A. Cai, J. T. Murphy, G. I. Wedemayer, and A. N. Glazer, “Recombinant phycobiliproteins: recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains,” Analytical Biochemistry, vol. 290, no. 2, pp. 186–204, 2001.

[72] A. J. Tooley, Y. A. Cai, and A. N. Glazer, "Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-a subunit in a heterologous host," Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10560–10565, 2001.

[73] X. Guan, S. Qin, F. Zhao, X. Zhang, and X. Tang, "Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution," International Journal of Biological Sciences, vol. 3, no. 7, pp. 434–445, 2007.

[74] D. E. Stewart and F. H. Farmer, "Extraction, identification and quantitation of phycobiliprotein pigments from phototrophic plankton," Limnology & Oceanography, vol. 29, no. 2, pp. 392–397, 1984.

[75] M. Wyman, "An in vivo method for the estimation of phycocyanin concentration in marine cyanobacteria (Synechococcus spp.)," Limnology & Oceanography, vol. 37, pp. 1300–1306, 1992.

[76] K. H. Wiltshire, M. Boersma, A. Möller, and H. Buhtz, "Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae)," Aquatic Ecology, vol. 34, no. 2, pp. 119–126, 2000.

[77] K. Ranjitha and B. D. Kaushik, "Purification of phycobiliproteins from Nostoc muscorum," Journal of Scientific and Industrial Research, vol. 64, no. 5, pp. 372–375, 2005.

[78] E. G. Oliveira, G. S. Rosa, M. A. Moraes, and L. A. A. Pinto, "Phycocyanin content of Spirulina platensis dried in spouted bed and thin layer," Journal of Food Process Engineering, vol. 31, no. 1, pp. 34–50, 2008.

[79] T. Furuki, S. Maeda, S. Imajo et al., "Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption," Journal of Applied Phycology, vol. 15, no. 4, pp. 319–324, 2003.

[80] G. Patil and K. S. M. S. Raghavarao, "Aqueous two phase extraction for purification of C-phycocyanin," Biochemical Engineering Journal, vol. 34, no. 2, pp. 156–164, 2007.

[81] A. N. Glazer, "Light guides. Directional energy transfer in a photosynthetic antenna," Journal of Biological Chemistry, vol. 264, no. 1, pp. 1–4, 1989.

[82] N. Adir, "Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant," Photosynthesis Research, vol. 85, no. 1, pp. 15–32, 2005.

[83] E. Gantt, "Phycobilisomes: light harvesting pigment complexes," BioScience, vol. 25, no. 12, pp. 781–788, 1975.

[84] M. N. Kronick and P. D. Grossman, "Imunoassay techniques with fluorescent phycobiliprotein conjugates," Clinical Chemistry, vol. 29, no. 9, pp. 1582–1586, 1983.

[85] C. Romay and R. González, "Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals," Journal of Pharmacy and Pharmacology, vol. 52, no. 4, pp. 367–368, 2000.

[86] V. B. Bhat and K. M. Madayastha, "C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro," Biochemical and Biophysical Research Communications, vol. 275, no. 1, pp. 20–25, 2000.

[87] S. Uday Bhaskar, G. Gopalaswamy, and R. Raghu, "A simple method for efficient extraction and purification of C-phycocyanin from Spirulina platensis Geitler," Indian Journal of Experimental Biology, vol. 43, no. 3, pp. 277–279, 2005.

[88] R. R. Hardy, "Purification and coupling of fluorescent proteins for use in flow cytometry," in Handbook of Experimental Immunology, D. M. Weir, Ed., Blackwell Scientific Publication, Oxford, UK, 4th edition, 1986.

[89] S. U. Kulkarni, S. S. Badakere, J. Oswald, and M. Y. Kamat, "Fluorescent phycocyanin from Spirulina platensis. Application for diagnosis," Biotech Lab International, pp. 14–16, 1996.

[90] T. Hirata, M. Tanaka, M. Ooike, T. Tsunomura, and M. Sakaguchi, "Antioxidant activities of phycocyanobilin prepared..."
from Spirulina platensis,” Journal of Applied Phycology, vol. 12, no. 3–5, pp. 435–439, 2000.

[91] L. Jespersen, L. D. Stromdahl, K. Olsen, and L. H. Skibsted, “Heat and light stability of three natural blue colorants for use in confectionery and beverages,” European Food Research and Technology, vol. 220, no. 3-4, pp. 261–266, 2005.

[92] S. K. Mishra, A. Shrivastav, and S. Mishra, “Effect of preservatives for food grade C-PC from Spirulina platensis,” Process Biochemistry, vol. 43, no. 4, pp. 339–345, 2008.

[93] A. P. Batista, A. Raymundo, I. Sousa, and J. Empis, “Rheological characterization of coloured oil-in-water food emulsions with lutein and phycocyanin added to the oil and aqueous phases,” Food Hydrocolloids, vol. 20, no. 1, pp. 44–52, 2006.

[94] R. Prasanna, A. Sood, A. Suresh, S. Nayak, and B. D. Kaushik, “Potentials and applications of algal pigments in biology and industry,” Acta Botanica Hungarica, vol. 49, no. 1-2, pp. 131–156, 2007.

[95] A. N. Glazer and L. Stryer, “Phyc fluor probes,” Trends in Biochemical Sciences, vol. 9, no. 10, pp. 423–427, 1984.

[96] L. Sun, S. Wang, L. Chen, and X. Gong, “Promising fluorescent probes from phycobiliproteins,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 9, no. 2, pp. 177–188, 2003.

[97] K. L. Thoren, K. B. Connell, T. E. Robinson, D. D. Shellhammer, M. S. Tammaro, and Y. M. Gindt, “The free energy of dissociation of oligomeric structure in phycocyanin is not linear with denaturant,” Biochemistry, vol. 45, no. 39, pp. 12050–12059, 2006.

[98] M. Kupka and H. Scheer, “Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions. I. Equilibrium experiments,” Biochimica et Biophysica Acta, vol. 1777, no. 1, pp. 94–103, 2008.

[99] L. Sun, S. Wang, and Z. Qiao, “Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis,” Journal of Biotechnology, vol. 121, no. 4, pp. 563–569, 2006.

[100] W. G. Telford, M. W. Moss, J. P. Morseman, and F. C. T. Allnutt, “Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry,” Cytometry, vol. 44, pp. 16–23, 2001.

[101] K. Sode, K. Horikoshi, H. Takeyama, N. Nakamura, and T. Matsunaga, “On-line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence,” Journal of Biotechnology, vol. 21, no. 3, pp. 209–217, 1991.

[102] K. Izydorczyk, M. Tarczynska, T. Jurczak, J. Mrowczynski, and L. Sun, S. Wang, L. Chen, and X. Gong, “Promising fluorescent probes from phycobiliproteins,” Acta Botanica Hungarica, vol. 49, no. 1-2, pp. 131–156, 2007.

[103] A. N. Glazer and L. Stryer, “Phyc fluor probes,” Trends in Biochemical Sciences, vol. 9, no. 10, pp. 423–427, 1984.

[104] L. Sun, S. Wang, L. Chen, and X. Gong, “Promising fluorescent probes from phycobiliproteins,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 9, no. 2, pp. 177–188, 2003.

[105] K. L. Thoren, K. B. Connell, T. E. Robinson, D. D. Shellhammer, M. S. Tammaro, and Y. M. Gindt, “The free energy of dissociation of oligomeric structure in phycocyanin is not linear with denaturant,” Biochemistry, vol. 45, no. 39, pp. 12050–12059, 2006.

[106] M. Kupka and H. Scheer, “Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions. I. Equilibrium experiments,” Biochimica et Biophysica Acta, vol. 1777, no. 1, pp. 94–103, 2008.

[107] S.-C. Cherng, S.-N. Cheng, A. Tarn, and T.-C. Chou, “Antinflammatory activity of C-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages,” Life Sciences, vol. 81, no. 19-20, pp. 1431–1435, 2007.

[108] K. V. Sathyasaikumar, I. Swapna, P. V. B. Reddy et al., “Co-administration of C-phycocyanin ameliorates thioacetamide-induced hepatic encephalopathy in Wistar rats,” Journal of the Neurological Sciences, vol. 252, no. 1, pp. 67–75, 2007.

[109] T. Dasgupta, S. Banerjee, P. K. Yadav, and A. R. Rao, “Chemo-modulation of carcinogen metabolising enzymes, antioxidant profiles and skin and stomach papillomagenesis by Spirulina platensis,” Molecular and Cellular Biochemistry, vol. 226, no. 1-2, pp. 27–38, 2011.

[110] C. D. Upasani and R. Balaraman, “Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats,” Phytotherapy Research, vol. 17, no. 4, pp. 330–334, 2003.

[111] P. Bermejo, E. Piñero, and Á. M. Villar, “Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protein extract of Spirulina platensis,” Food Chemistry, vol. 110, no. 2, pp. 436–445, 2008.

[112] Z. Huang, B. J. Guo, R. N. S. Wong, and Y. Jiang, “Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis,” Food Chemistry, vol. 100, no. 3, pp. 1137–1143, 2007.

[113] M. F. McCarty, “Iatrogenic Gilbert syndrome—a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin,” Medical Hypotheses, vol. 69, no. 5, pp. 974–994, 2007.

[114] H. Wang, Y. Liu, X. Gao, C. L. Carter, and Z.-R. Liu, “The recombinant β subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis,” Cancer Letters, vol. 247, no. 1-2, pp. 150–158, 2007.

[115] P. Leung, H. Lee, Y. Kung, M. Tsai, and T. Chou, “Therapeutic effect of C-phycocyanin extracted from blue green algae in a rat model of acute lung injury induced by lipopolysaccharide,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 916590, 11 pages, 2013.