An updated checklist of chondrichthians of Calabria (Central Mediterranean, southern Italy), with emphasis on rare species

LEONETTI FRANCESCO
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

GIGLIO GIANNI
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

LEONE AGOSTINO
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

COPPOLA FABRIZIO
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

ROMANO CHIARA
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

BOTTARO MASSIMILIANO
Stazione Zoologica "A. Dohrn" - Napoli, Italy

REINERO FRANCESCA
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

MILAZZO CONCETTA
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

MICARELLI PRIMO
Centro Studi Squali, Via della Cava, Massa Marittima (GR), Italy

TRIPEPI SANDRO
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

SPERONE EMILIO
Department of Biology, Ecology and Earth Sciences, University of Calabria, Italy

https://doi.org/10.12681/mms.23321

Copyright © 2020 Mediterranean Marine Science
LEONETTI, F., GIgLIO, G., LEONE, A., COPPOLA, F., ROMANO, C., BOTTARO, M., REINERO, F., MILAZZO, C., MICARELLI, P., TRIPEPI, S., & SPERONE, E. (2020). An updated checklist of chondrichthyans of Calabria (Central Mediterranean, southern Italy), with emphasis on rare species. Mediterranean Marine Science, 21(3), 794-807. doi:https://doi.org/10.12681/mms.23321
An updated checklist of chondrichthyans of Calabria (Central Mediterranean, southern Italy), with emphasis on rare species

Francesco L. LEONETTI1,2, Gianni GIGLIO1, Agostino LEONE1, Fabrizio COPPOLA1, Chiara ROMANO1, Massimiliano BOTTARO1, Francesca R. REINERO1,3, Concetta MILAZZO1, Primo MICARELLI1, Sandro TRIPEPI1 and Emilio SPERONE1

1 Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende (CS), Italy
2 Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn – Italian National Institute for Marine Biology, Ecology and Biotechnology, Napoli, Italy
3 Centro Studi Squali, Via della Cava, Massa Marittima (GR), Italy

Corresponding author: emilio.sperone@unical.it

Handling Editor: Fabrizio SERENA

Received: 29 May 2020; Accepted: 27 October 2020; Published online: 10 December 2020

Abstract

In this contribution the checklist of chondrichthyans of Calabria (Central Mediterranean, southern Italy) is reported. Data presented is derived from twenty years of opportunistic and active surveys from 2000 to 2020. A total of 55 species of chondrichthyans is present in Calabrian seas: 33 sharks, 20 rays, and 2 chimaeras. These species represent approximately 62% of the total reported for the Mediterranean. Approximately 71% of Calabrian species have been reported in the Tyrrhenian Sea, 49% in the Ionian Sea, and 33% in the Strait of Messina. According to IUCN criteria, new records of Endangered and Critically Endangered species (i.e., Carcahrodon carcharias [Linnaeus, 1758], Lamna nasus [Bonnaterre, 1788], Cetorhinus maximus [Gunnerus, 1765], Mobula mobular [Bonnaterre, 1788], Sphyrna zygaena [Linnaeus, 1758]) are reported, together with the first record of Raya brachyura Lafont, 1873 for the Ionian coasts and probably third confirmed record of the rare chimaera Hydrolagus mirabilis (Collett, 1904) for the Mediterranean.

Keywords: Cartilaginous fish; distribution; nursery area; conservation.

Introduction

The Mediterranean Sea is an area of high biodiversity for the cartilaginous fishes, and it is home to 88 chondrichthyan species (sharks, skates, rays, and chimaeras), which corresponds to ca. 7% of the global species diversity of the group (Cariani et al., 2017; Serena et al., 2020). However, the Mediterranean basin is one of the most threatened marine basins on the planet (Coll et al., 2012), and Mediterranean chondrichthyan populations are affected by different direct and indirect anthropogenic pressures like, above all, direct and indirect fisheries pressures (Colloca et al., 2017; Bradai et al., 2018; Cashon et al., 2019; Panayiota et al., 2020) and pollution (Bernardini et al., 2019; Valente et al., 2019). Despite this scenario, knowledge on distribution, biology and ecology for most Mediterranean cartilaginous fishes is limited (Leonetti et al., 2020): few data are known for the Eastern Mediterranean (Murat et al., 2002; Megalofonou et al., 2005), the Adriatic Sea (Soldo & Jardas, 2002), North Tyrrhenian and Ligurian seas (Garibaldi & Orsi Relini, 2000; Vacchi et al., 2002), Algerian Basin (Hemida & Labidi, 2000), Spanish waters (Mejuto et al., 2002), Strait of Gibraltar (Buencuerpo et al., 1998), and Gulf of Taranto (Filanti et al., 1986). No data are available for Southern Tyrrhenian, South-western Ionian, or Strait of Messina, even if these areas are of high biogeographical and ecological value due to their central positions in the Mediterranean. Finally, as for many species in the Mediterranean, the IUCN conservation status has been classified as “Data Deficient” (Dulvy et al., 2016), and data collection is the crucial base to overcome these information gaps. Management efforts from local to regional domains thus require an ocean observation system that monitors marine life in key areas (Costello et al., 2017). Calabria lies in the centre of the Mediterranean, between the Tyrrhenian and the Ionian seas and, together with Sicily and the Tunisian coast, divides the Mediterranean Sea into western and eastern parts (Sperone et al., 2012). Within the region, the Strait of Messina is very important because together with the Sicily-Tunisian Ridge it is one of the two conjunction points between the western and the eastern basins of the Mediterranean.
Mediterranean Sea for both native and non-native species (Sperone et al., 2015). For these reasons, the position of Calabria is strategic to collect data about chondrichthians that historically occurred in the entire Mediterranean Sea, and a monitoring program of the University of Calabria has been collecting data on occurrence of the cartilaginous fishes in this important biogeographic area since 2000 (Sperone et al., 2012; Sperone & Milazzo, 2018; Sperone et al., 2018). Distribution, ecology, and biology of these fishes are little known for this region, especially for some charismatic and endangered species, such as the white shark (Huveneers et al., 2018; Leone et al., 2020; Mancusi et al., 2020). The aim of this study is to provide a first complete species composition list of the Calabrian chondrichthyan fauna in order to improve the knowledge of the spatial distribution of these species in the Central Mediterranean.

Materials and Methods

Distributional data come from ca. twenty years of opportunistic surveys, performed from 2000 to 2020 in the Calabrian region in the Central Mediterranean. As for other research of this type, data detection sources are composed of: a) direct observations in the wild; b) observations of specimens landed in fishmongers and fish markets; c) photographic evidence of divers and citizen scientists depicting animals in the wild or stranded. All cases have been subject to cross-feedback (bibliographical verifications, documentary investigations, direct contact with observers involved in signalling, inspections, and cartographic audits). The outcome of this evidence has determined the degree of reliability attributed to individual sightings. In general, the reliability of the signals coming from sources a), b), and c) is to be considered to be very high. Chondrichthyes taxa were verified using published references from field guides (Soto & Vooren, 2004; Compagno et al., 2005; Serena, 2005; Ebert & Stehmann, 2013; FAO 2018a; FAO 2018b). Online resources such as the Catalog of Fishes of the California Academy of Sciences (Fricke et al., 2020a) were used to assess the scientific nomenclature at the species level. The checklist is arranged by order and family following Fricke et al. (2020b) and World Register of Marine Species (WoRMS Editorial Board, 2020). Genera and species within a family are arranged in alphabetical order. The number in parenthesis after each most inclusive taxon indicates the number of species. The number in brackets on categories higher than genera represents the number of genera. In those taxa higher than family the number preceding genera is the number of families. Authority and year of description of each species and genera follow Fricke et al. (2020a). After the authority name, the common English name is provided following FAO-AS-FIS (2002), and finally the conservation status, referring to Dulvy et al. (2016). For each record, when available, we provided number of specimens, sex, biometric data (total length TL in cm and weight W in kg), locality and district (in brackets using IS for the Ionian Sea, TS for the Tyrrenian Sea and MS for the Strait of Messina, as in Fig. 1), coordinates, date of the sighting, and type of sighting.

Fig. 1: Study area indicating the three main marine districts: IS (Ionian Sea), MS (Strait of Messina), TS (Tyrrenian Sea).
Results

The chondrichthyan fauna of Calabria is composed of 55 species included in 36 genera, 25 families, and 9 orders. Figures 2-4 illustrate some of the observed species in the study area.

Annotated Checklist of the Chondrichthyes of Calabria 25[36]/(55)

Class: Elasmobranchii 23[34] (53)

Infraclass: Selachii 17[23] (34)

Order: Hexanchiformes 12

Family: Hexanchidae Gray, 1851 2

Genus: Heptranchias Rafinesque, 1810 (1)

1. *Heptranchias perlo* (Bonnaterre, 1788).

 Sharpnose sevengill shark. Data Deficient

 Records • 6 specimens; Villa San Giovanni (MS); 38.22956°N, 15.61619°E; 18 Nov. 2011; photographic evidence. (Fig. 3E). • 1 ♀, 150 cm; Bovalino (IS), 38.12037°N, 16.21999°E; Aug. 2004; landed specimen.

Genus: Hexanchus Rafinesque, 1810 (1)

2. *Hexanchus griseus* (Bonnaterre, 1788). Blunt-nose sixgill shark. Least Concern

 Records • 1 specimen; Bova (IS); 38.13777°N, 16.19164°E; 1 Sept. 2002; fish market. • 1 specimen; Tortora (TS); 39.90866°N, 15.73912°E; Nov. 2004; photographic evidence. • 1 specimen; Brancaleone (IS); 37.95860°N, 16.16350°E; 1 July 2006; landed specimen. • 1 ♂, 220 cm; Pizzo (TS); 38.75798°N, 16.17114°E; 1 June 2005; photographic evidence (Fig. 2C). • 1 ♀, 240 cm; Cirò Marina (IS); 39.36336°N, 17.15802°E; Aug. 2007; landed specimen. • 1 specimen; Rossano (IS); 39.64220°N, 16.64495°E; 1 June 2006; landed specimen. • 1 ♂; Vibo Marina (TS); 38.72361°N, 16.10887°E; 1 May 2005; fish market. • 1 ♂, 1 ♀; Catanzaro Lido

Fig. 2: Photographs of chondrichthyans obtained during our surveys. A. *Alopias vulpinus*. B. *Alopias superciliosus*. C. *Hexanchus griseus*. D. *Hydrolagus cf. mirabilis*. E. *Heptranchias perlo*. F. *Lamna nasus*. G. *Galeus melastomus*. H. *Carcharodon carcharias*. I. *Carcharhinus obscurus*.

796 Medit. Mar. Sci., 21/3 2020, 794-807
Order: Lamniformes 4[7](8)Family: Odontaspidae Müller & Henle, 1839 2
Genus: Carcharias Rafinesque, 1810 (1)

3. Carcharias taurus Rafinesque, 1810. Sand tiger shark. Critically Endangered

Records • 1 specimen; Stretto di Messina (MS);
Genus: *Odontaspis* Agassiz, 1838 (1)

4. *Odontaspis ferox* (Risso, 1810). Smalltooth sand tiger. Critically Endangered

Records
- 1 specimen, 350 cm; Briatico (TS); 38.72967°N, 16.03299°E; 1 May 2000; photographic evidence.
- 1 specimen, 460 cm, 500 kg; Stretto di Messina (MS); 38.22483°N, 15.61245°E; 20 Apr. 2013; photographic evidence.

Family: Lamnidae Bonaparte, 1835 3

Genus: *Carcharodon* Smith, 1838 (1)

5. *Carcharodon carcharias* (Linnaeus, 1758). Great white shark. Critically Endangered

Records
- 1 ♀, 450 cm; Fiumefreddo Bruzio (TS); 39.23582°N, 16.03928°E; Summer 1930; photographic evidence (Fig. 2H).
- 1 ♂, 250 cm; Pizzo (TS); 38.77711°N, 16.13904°E; 1 June 2007; fish market.
- 1 specimen; Falconara Albanese (TS); 39.27618°N, 16.01781°E; Summer 1989; bycatch.
- 1 specimen; Soverato (IS); 38.25959°N, 15.71165°E; 30 May 2018; field observation.
- 1 ♀, 200 cm; Scilla (TS); 38.25959°N, 15.71165°E; 30 May 2018; field observation.
- 1 specimen; Cetraro (TS); 39.51413°N, 15.92824°E; 14 May 2017; field observation.

Fig. 4: Photographs of chondrichthyans obtained during our surveys. A. *Etmopterus spinax*. B. *Pteroplatytrygon violacea*. C. *Torpedo torpedo*. D. *Galeorhinus galeus*. E. *Dasyatis pastinaca*. F. *Scyliorhinus canicula*. G. *Centrophorus cf. granulosus*. H. *Mustelus mustelus*. I. *Torpedo marmorata.*
Salvo (IS); 37.90091°N, 15.73348°E; 16 Aug. 2009; photographic evidence.

Genus: Isurus Rafinesque, 1810 (1)

6. Isurus oxyrinchus Rafinesque, 1810. Shortfin mako. Critically Endangered

Records • 1 ♂, 80 cm; Guardia Piemontese (TS); 39.46194°N, 15.92254°E; 1 July 2002; photographic evidence. • 1 ♂, 150 cm; Catananzo Lido (IS); 38.82254°N, 16.63334°E; 24 June 2014; photographic evidence. • 1 ♂, 118 cm, 14 kg; Isola Capo Rizzuto (IS); 38.87618°N, 17.13871°E; 1 June 2014; fish market. • 1 specimen, 100 cm; Soverato (IS); 38.69255°N, 16.56555°E; 24 Aug. 2018; photographic evidence. • 1 ♂, 240 cm; Palizzi (IS); 37.90798°N, 15.97994°E; 17 Aug. 2016; bycatch. • 1 specimen, 310 cm; Copanello (IS); 38.76385°N, 16.57560°E; 16 June 2019; field observation. • 1 ♂, 230 cm, 130 kg; Crotone (IS); 39.08520°N, 17.15300°E; 14 May 2010; photographic evidence. • 1 specimen, 150 cm; Capo Colonna (IS); 39.02576°N, 17.21102°E; 20 June 2017; landed specimen. • 1 specimen, 200 cm; Cetraro (TS); 39.51398°N, 15.92860°E; 1 Apr. 2007; fish market. • 3 specimens; Cetraro (TS); 39.51398°N, 15.92860°E; 17 Mar. 2007; fish market (Fig. 4X). • 1 ♂; Diamante (TS); 39.70008°N, 15.78381°E; 19 July 2014; photographic evidence. • 1 ♂; Falconara albanese (TS); 39.27381°N, 16.01577°E; 1 Sept. 2006; photographic evidence.

Family: Cetorhinidae Blainville, 1816 (1)

7. Lamna Cuvier, 1816 (1)

Lamna nasus (Bonaparte, 1878). Porbeagle. Critically Endangered

Records • 1 ♀, 110 cm; Falerna (TS); 38.96674°N, 16.12190°E; 12 Dec. 2008; photographic evidence (Fig. 2F).

Family: Cetorhinidae Gill, 1862 1
Genus: Cetorhinus Blainville, 1816 (1)

8. Cetorhinus maximus (Gunnerus, 1765). Basking shark. Endangered

Records • 1 specimen; Scilla (TS); 38.26349°N, 15.71133°E; 18 May 2004; field observation. • 1 specimen; Spropoli (IS); 37.89911°N, 15.98230°E; 6 June 2008; field observation. • 1 specimen; Catananzo Lido (IS); 38.82124°N, 16.63687°E; 23 July 2014; field observation. • 1 specimen, 400 cm; Briatico (TS); 38.73226°N, 16.02801°E; 30 May 2015; field observation. • 1 specimen; Palizzi (IS); 37.90041°N, 15.97994°E; 15 Aug. 2016; field observation. • 1 specimen, 600 cm; Schiavonea (IS); 39.65889°N, 16.54550°E; 17 Jan. 2016; field observation. • 1 specimen; Scilla (TS); 38.26105°N, 15.71301°E; 18 May 1994; photographic evidence. • 1 specimen, 300 cm; Villa San Giovanni (MS); 38.23347°N, 15.62233°E; 29 Aug. 2013; field observation. • 1 J, 205 cm; Le Castella (IS); 38.90558°N, 17.01729°E; 27 Feb. 2014; bycatch.

Family: Alopiidae Bonaparte, 1835 [1](2)
Genus: Alopias Rafinesque, 1810 (2)

9. Alopias superciliosus Lowe, 1841. Bigeye thresher. Endangered

Records • 1 ♂, 370 cm; Pellaro (MS); 38.01666°N, 15.63333°E; 16 Aug. 2011; landed specimen (Fig. 2B). • 1 specimen; Corigliano Calabro (IS); 39.68881°N, 16.57941°E; 2 Oct. 2019; bycatch.

10. Alopias vulpinus (Bonnaterre, 1788). Thresher. Endangered

Records • 1 specimen; Falconara albanese (TS); 39.27381°N, 16.01577°E; 1 Sept. 2006; photographic evidence. ITALY • 1 ♂, 350 cm, 200 kg; Strongoli Marina (IS); 39.23444°N, 17.13693°E; 16 Aug. 2017; bycatch (Fig. 2A). • 1 ♂, 280 cm; Roccelletta di Borgia (IS); 38.80529°N, 16.61374°E; 18 Mar. 2017; photographic evidence. • 1 ♂; Diamante (TS); 39.70008°N, 15.78381°E; 19 July 2014; photographic evidence. • 1 ♂; Schiavonea (IS); 39.65841°N, 16.54877°E; 20 Nov. 2013; fish market. • 1 specimen; Soverato (IS); 38.69121°N, 16.56629°E; 1 May 2008; photographic evidence.

Order: Carcharhiniformes S[7][16]
Family: Pentanchidae Smith, 1912 [1]
Genus: Galeus Rafinesque, 1810 (1)

11. Galeus melastomus Rafinesque, 1810. Blackmouth catshark. Least Concern

Records • 8 specimens; Bovalino (IS); 39.13067°N, 16.21576°E; 1 July 2001; fish market. • 11 specimens; Falerna (TS); 38.99782°N, 16.11284°E; 21 Nov. 2013; fish market (Fig. 2G). • 3 specimens; Cetraro (TS); 39.50858°N, 15.91368°E; 10 Sept. 2008; bycatch. • 1 ♂; Crotone (IS); 39.07396°N, 17.165038°E; June 2011; fish market.

Family: Scyliorhinidae Gill, 1862 [1](2)
Genus: Scyliorhinus Blainville, 1816 (2)

12. Scyliorhinus canicula (Linnaeus, 1758). Small-spotted catshark. Least Concern

Records • 1 specimen; Palmi (TS); 38.39418°N, 15.82461°E; 17 Mar. 2007; fish market (Fig. 4X). • 1 specimen; Vibo Marina (TS); 38.72361°N, 16.10887°E; 1 Feb. 2009; fish market. • 3 specimens; Crotone (IS); 39.09534°N, 17.15851°E; 1 Sept. 2010; fish market. • 2 specimens; Scilla (TS); 38.25754°N, 15.71956°E; 1 Aug. 2019; field observation. • 2 specimens; Cetraro (TS); 39.51398°N, 15.92660°E; 1 Apr. 2007; fish market.

13. Scyliorhinus stellaris (Linnaeus, 1758). Nursehound. Near Threatened

Records • 1 specimen; Cetraro (TS); 39.51398°N,
Family: Triakidae Gray, 1851 [2][4]
Genus: Mustelus Linck, 1790 (3)

14. Mustelus asterias Cloquet, 1819. Starry smooth-hound. Vulnerable

Records • 2 specimens; Crotone (IS); 39.10147°N, 17.17121°E; 12 Feb. 2016; fish market.

15. Mustelus mustelus (Linnaeus, 1758). Smooth-hound. Vulnerable

Records • 1 ♀, 130 cm; Cirò Marina (IS); 39.36732°N, 17.15429°E; 31 Jan. 2020; fish market (Fig. 4H). • 4 specimens; Reggio Calabria (MS); 38.11280°N, 15.61950°E; 13 Apr. 2020; fish market.

16. Mustelus punctulatus Risso, 1827. Blackspot-ted smooth-hound. Vulnerable

Genus: Galeorhinus Blainville, 1816 (1)

17. Galeorhinus galeus (Linnaeus, 1758). Tope shark. Vulnerable

Records • 1 specimen; Pellaro (MS); 38.02279°N, 15.62949°E; 26 Oct. 2016; photographic evidence (Fig. 4V).

Family: Carcharhinidae Jordan & Evermann, 1896 [2][7]
Genus: Carcharhinus Blainville, 1816 (6)

18. Carcharhinus brachyurus (Günther, 1870). Copper shark. Data Deficient

Records • 1 specimen; Stretto di Messina (MS); 38.23917°N, 15.62243°E; Spring 1999; bycatch.

19. Carcharhinus brevipinna (Valenciennes, 1839). Spinner shark. Not Applicable

Records • 1 specimen; Stretto di Messina (MS); 38.22645°N, 15.60572°E; 1 Jan. 2001; photographic evidence.

20. Carcharhinus falciformis (Bibron, 1839). Silky shark. Not Evaluated

Records • 4 specimens; Corigliano Calabro (IS); 39.67712°N, 16.57036°E; 17 Nov. 2011; photographic evidence (Fig. 3R).

21. Carcharhinus limbatis (Valenciennes, 1839). Blacktip shark. Data Deficient

Records • 1 specimen; Stretto di Messina (MS); 38.72171°N, 16.10133°E; 7 Nov. 2007; fish market (Fig. 3M). • 1 ♂, 120 cm; Bovalino (IS); 38.13615°N, 16.19040°E; 1 Aug 2004; bycatch. • 1 specimen, 79 cm, 1.5 kg; Montepaone (IS); 38.72322°N, 16.56263°E; 8 June 2012. • 1 specimen, 80 cm, 3 kg; Crotone (IS); 39.36626°N, 17.15308°E; 5 May 2014; bycatch. • 1 specimen, 75 cm; Mandatoriccio (IS); 39.55515°N, 16.90480°E; 4 Sept. 2014; landed specimen. • 1 specimen, 226 cm, 45 kg; Bisinco (IS); 38.09054°N, 16.16281°E; 7 July 2014; landed specimen. • 1 specimen; Le Castella (IS); 38.90418°N, 17.02334°E; 3 Apr. 2014; landed specimen. • 1 specimen, 60 cm; Siracusa (IS); 39.76282°N, 16.52162°E; 6 July 2015; landed specimen. • 1 specimen, 268 cm; Punta Ala (IS); 39.38370°N, 17.14596°E; 13 Aug. 2013; landed specimen. • 1 specimen; San Lucido (TS); 39.30678°N, 16.03778°E; 28 June 2019; field observation. • 1 ♂, 300 cm; Praia a Mare (TS); 39.89265°N, 15.76560°E; 26 Apr. 2020; photographic evidence. • 1 specimen, 100 cm; Corigliano Calabro (IS); 39.68558°N, 16.59096°E; 30 June 2014; photographic evidence. • 1 ♀, 350 cm; Villa Piana Lido (IS); 39.81069°N, 16.50076°E; 16 May 2017; photographic evidence. • 1 ♀, 300 cm; Vibo Marina (TS); 38.72191°N, 16.09910°E; 1 April 2020; photographic evidence. • 1 ♂, 150 cm; Melito Porto Salvo (TS); 37.90893°N, 15.78231°E; 27 July 2016; landed specimen. • 1 ♀, 220 cm; Catona (MS); 38.18688°N, 15.62518°E; 9 July 2018; photographic evidence. • 1 ♀, 240 cm; Sibari (IS); 38.69083°N, 16.55974°E; 28 Apr. 2020; photographic evidence. • 1 ♀; Sant’Andrea Apostolo (IS); 38.62666°N, 16.57274°E; 27 Oct. 2019; photographic evidence. • 1 ♀,
230 cm; Scilla (TS); 38.25899°N, 15.71860°E; 27 Sept. 2014; photographic evidence. • 1 specimen, 50 cm; Siderno (IS); 38.26659°N, 16.31080°E; 10 June 2018; landed specimen. • 1 specimen, 70 cm; Roccella di Borgia (IS); 38.79568°N, 17.13214°E; 11 July 2018; photographic evidence. • 1 specimen, 50 cm; Catanzaro Lido (IS); 38.82273°N, 16.63863°E; 23 Aug. 2018; photographic evidence.

Family: Sphyrnidae Bonaparte, 1840 [1](2)
Genus: Sphyrna Rafinesque, 1810 (2)

25. Sphyrna lewini (Griffith & Smith, 1834). Scalloped hammerhead. Not Applicable

Records • 1 specimen; San Lucido (TS); 39.30811°N, 16.03606°E; 1 June 2009; field observation.

26. Sphyrna zygaena (Linnaeus, 1758). Smooth hammerhead. Critically Endangered

Records • 1 specimen, 200 cm; Palmi (TS); 38.372322°N, 15.832875°E; 1 July 2003; photographic evidence. • 1 specimen, 220 cm; Vibo Marina (TS); 38.746970°N, 16.11125°E; 15 Sept. 2008; fish market. • 1 ♂, 350 cm; Palizzi (IS); 37.894000°N, 15.992085°E; 8 Jan. 2004; field observation. • 1 ♂, 250 cm; Marinella (IS); 37.981746°N, 16.135125°E; 15 Aug. 2002; photographic evidence. • 1 specimen, 250 cm; Brancaleone (IS); 37.94209°N, 16.14027°E; 9 Feb. 2001; photographic evidence (Fig. 3K). • 1 specimen, 90 cm; Soverato (IS); 38.68762°N, 16.55802°E; 7 Jan. 2007; field observation.

Order: Squaliformes 6(7)
Family: Dalatiidae Gray, 1851 1
Genus: Dalatias Rafinesque, 1810 (1)

27. Dalatias licha (Bonnaterre, 1788). Kitefin shark. Vulnerable

Records • 1 specimen; Montauro (IS); 39.73940°N, 15.67045°E; 1 Aug. 2009; photographic evidence. • 1 specimen; Vibo Marina (TS); 38.73679°N, 16.17114°E; 1 Oct. 2011; photographic evidence. • 1 specimen; Vibo Marina (TS); 38.72361°N, 16.10887°E; 1 Oct. 2008; fish market (Fig. 4S).

Family: Centrophoridae Bleeker, 1859 1
Genus: Centrophorus Müller & Henle, 1837 (1)

31. Centrophorus cf. granulosus (Bloch & Schneider, 1801). Gulper shark. Critically Endangered

Records • 1 specimen; Cetraro (TS); 39.51398°N, 15.92860°E; 27 Nov. 2006; photographic evidence (Fig. 4Y). • 1 ♀, 50 cm; Paola (TS); 39.36013°N, 16.01271°E; 16 June 2017; landed specimen.

Family: Squatinidae de Blainville, 1816 [1](2)
Genus: Squatina Duméril, 1805 (1)

32. Squalus acanthias Linnaeus, 1758. Picked dogfish. Endangered

Records • 1 specimen; Cetraro (TS); 39.51398°N, 15.92860°E; 27 Nov. 2006; photographic evidence (Fig. 4Y). • 1 ♂, 160 cm; Cetraro (TS); 39.51398°N, 15.92860°E; 10 Sept. 2008; bycatch. • 1 specimen; Stretto di Messina (MS); 38.22645°N, 15.60572°E; 1 Aug. 2005; bycatch.

Family: Squalidae de Blainville, 1816 1
Genus: Squalus Linnaeus, 1758 (2)

33. Squalus blainville (Risso, 1827). Longnose spurdog. Data Deficient

Records • 1 specimen; Cetraro (TS); 39.51398°N, 15.92860°E; 27 Aug. 2008; fish market.

Family: Etmofteridae Fowler, 1934 1
Genus: Etmopterus Rafinesque, 1810 (1)

28. Etmopterus spinax (Linnaeus, 1758). Velvet belly. Least Concern

Records • 3 specimens; Crotone (IS); 39.08347°N, 17.17975°E; 12 May 2009; fish market. • 2 specimens; Stretto di Messina (MS); 38.22645°N, 15.60572°E; 1 June 2001; bycatch. • 4 specimens; Vibo Marina (TS); 38.72361°N, 16.10887°E; 1 Oct. 2008; fish market (Fig. 4S).

Family: Squatiniformes 1(1)
Family: Squatinidae de Blainville, 1816 1
Genus: Squatina Duméril, 1805 (1)
34. **Squatina squatina** (Linnaeus, 1758). Angelshark. Critically Endangered

Records • 1 specimen; Pizzo (TS); 38.75798°N, 16.17114°E; July 1991; photographic evidence.

Infraclasse: Batoidea [1][19]
Order: Torpediniformes [1][2]
Family: Torpedinidae Henle, 1834 [1][2]
Genus: Torpedo Duméril, 1805 [2]

35. **Torpedo marmorata** Risso, 1810. Marbled electric ray. Least Concern

Records • 1 specimen; Bovalino (IS); 38.13843°N, 16.184726°E; 7 July 2002; landed specimen. • 2 specimens; Vibo Marina (TS); 38.72050°N, 16.10305°E; 1 May 2005; fish market. • 1 specimen; Tropea (TS); 38.68220°N, 15.89163°E, 16 Oct 2016; photographic evidence. • 1 ♀; Briatico (TS); 38.73016°N, 16.0252741°E; 13 Aug. 2012; field observation.

36. **Torpedo torpedo** (Linnaeus, 1758). Common torpedo. Least Concern

Records • 1 ♀, 460 cm; Cetraro (IS); 39.51424°N, 15.93046°E; 5 May 2008; fish market (Fig. 4U). • 1 ♀; Bovalino (IS); 38.13330°N, 16.18334°E; 16 Aug. 2000; landed specimen. • 1 specimen; Brancalione (IS); 39.93952°N, 16.14027°E; 30 May 2014; photographic evidence. • 1 ♀; Palmi (TS); 38.39179°N, 15.83979°E; 1 June 2012; photographic evidence. • 1 specimen; Amantea (TS); 39.12435°N, 16.06007°E; 28 Oct 2018; filed observation. • 5 specimens; Crotone (IS); 39.07913°N, 17.17811°E; 2 June 2011; fish market. • 1 specimen; San Lucido (TS); 39.30618°N, 16.03589°E; 10 Apr. 2017; field observation. • 1 specimen; Paola (TS); 39.36102°N, 16.02023°E; 28 May 2018; field observation. • 1 specimen; Fuscaldo (TS); 39.41146°N, 15.99738°E; 1 June 2019; field observation. • 1 specimen; Longobardi (TS); 39.21086°N, 16.05398°E; 7 July 2019; field observation. • 1 specimen; Belvedere Marittimo (TS); 39.62322°N, 15.81192°E; 21 Aug. 2019; field observation. • 1 specimen; Sidero (IS); 38.25260°N, 16.32459°E; 8 Sept. 2006.

Order: Rajiformes [4][11]
Family: Rajidae de Blainville, 1816 [4][11]
Genus: Dipturus Rafinesque, 1810 [2]

37. **Dipturus cf. batis** (Linnaeus, 1758). Blue skate. Critically Endangered

Records • 1 ♀; Vibo Marina (TS); 38.72486°N, 16.10005°E; 8 Apr. 2007; fish market.

38. **Dipturus oxyrinchus** (Linnaeus, 1758). Longnosed skate. Near Threatened

Records • 1 ♀; Crotone (IS); 39.07396°N, 17.15408°E; 16 June 2001; fish market.

Genus: Leucoraja Malm, 1877 [2]

39. **Leucoraja circularis** (Couch, 1838). Sandy ray. Critically Endangered

Records • 1 specimen; Corigliano Calabro (IS); 39.68009°N, 16.58647°E; 6 May 2011; fish market.

40. **Leucoraja fullonica** (Linnaeus, 1758). Shagreen ray. Critically Endangered

Records • 1 specimen; Gioia Tauro (TS); 38.43780°N, 15.85691°E; 4 Apr. 2015; fish market.

Genus: Raja Linnaeus, 1758 [6]

41. **Raja asterias** Delaroche, 1809. Mediterranean starry ray. Near Threatened

Records • 5 specimens; Vibo Marina (TS); 38.72003°N, 16.09936°E; 16 July 2007; fish market. • 2 specimens; Crotone (IS); 39.09796°N, 17.15408°E; 14 June 2011; fish market. • 3 specimens; Cetraro (TS); 39.51402°N, 15.92820°E; 9 June 2008; fish market. • 2 specimens; Bovalino (IS); 38.13898°N, 16.18755°E; 17 July 2004; photographic evidence.

42. **Raja brachyura** Lafont, 1873. Blonde ray. Near Threatened

Records • 2 specimens and egg cases; Catanzaro Lido (IS); 38.82205°N, 16.63808°E; 6 Sept. 2011; field observation (Fig. 3P).

43. **Raja clavata** Linnaeus, 1758. Thornback ray. Near Threatened

Records • 1 specimen; Vibo Marina (TS); 38.72043°N, 16.10339°E; 7 Nov. 2007; photographic evidence. • 2 specimens; Cetraro (TS); 39.51442°N, 15.93123°E; 9 July 2007; photographic evidence.

44. **Raja miraletus** Linnaeus, 1758. Brown ray. Least Concern

Records • 11 specimens; Cetraro (TS); 39.51381°N, 15.93158°E; 9 July 2007; photographic evidence.

45. **Raja montagui** Fowler, 1910. Spotted ray. Least Concern

Records • 1 specimen; Cetraro (TS); 39.51296°N, 15.93087°E; 11 Oct. 2000; fish market.
46. *Raja polystigma* Regan, 1923. Speckled ray. Least Concern

Records • 1 specimen; Cetraro (TS); 39.51421°N, 15.93158°E; 16 Feb. 2001; fish market.

Genus: *Rostroraja* Hulley, 1972 (1)

47. *Rostroraja alba* (Lacépède, 1803). White skate. Endangered

Records • 1 specimen; Cetraro (TS); 39.51498°N, 15.92913°E; 4 Mar. 2000; fish market.

Order: Myliobatiformes 5 (6)

Family: Dasyatidae Jordan & Gilbert, 1879 (2)

48. *Dasyatis pastinaca* (Linnaeus, 1758). Common stingray. Vulnerable

Records • 1 specimen; Paola (TS); 39.36035°N, 16.01285°E; 16 June 2018; field observation. • 1 specimen; Fuscaldo (TS); 39.40993°N, 15.99205°E; 1 Sept. 2019; field observation. • 1 specimen; Tropea (TS); 38.68046°N, 15.86543°E; 7 July 2016; field observation (Fig. 4W). • 1 ♀; Gizzeria Marina (TS); 38.95132°N, 16.14581°E; photographic evidence. • 2 specimens; Reggio Calabria (MS); 38.10128°N, 15.60564°E; 30 Aug. 2010; photographic evidence. • 1 specimen; Bria
tico (TS); 38.73040°N, 16.02349°E; 13 Aug. 2012; field observation.

Genus: *Pteroplatytrygon* Fowler, 1910 (1)

49. *Pteroplatytrygon violacea* (Bonaparte, 1832). Pelagic stingray. Least Concern

Records • 1 ♀; Falerna (TS); 38.99680°N, 16.11367°E; 6 June 2000; photographic evidence. • 1 specimen; Ciró Marina (IS); 38.36610°N, 17.16510°E; 29 July 2013; bycatch. • 1 specimen; Tropea (TS); 38.67949°N, 15.88749°E; 27 Aug. 2019; photographic evidence.

Family: Gymnuridae Fowler, 1934 1

50. *Gymnura altavela* (Linnaeus, 1758). Spiny butterfly ray. Critically Endangered

Records • 1 specimen; Stretto di Messina (MS); 38.22408°N, 15.61596°E; 15 July 2000; field observation.

Family: Aetobatidae Agassiz, 1858 1

51. *Aetomylaus bovinus* (Geoffroy St. Hilaire, 1817). Bull ray. Critically Endangered

Records • 1 specimen, 30 kg; Amantea (TS); 39.12529°N, 16.04600°E; 3 July 2019; photographic evidence. • 1 ♀, 12 kg; Cetraro (TS); 39.51412°N, 15.93241°E; 26 Oct. 2017; photographic evidence.

Family: Myliobatidae Bonaparte, 1835 1

52. *Myliobatis aquila* (Linnaeus, 1758). Common eagle ray. Vulnerable

Records • 1 ♀; Vibo Marina (TS); 38.77104°N, 16.10056°E; 23 July 2007; field observation. • 1 specimen; Paola (TS); 39.35637°N, 16.01963°E; 7 June 2019; field observation. • 1 specimen; San Nicola Arcella (TS); 39.84553°N, 15.76757°E; 4 Aug. 2019; field observation. • 1 specimen; Catanzaro Lido (IS); 38.82202°N, 16.63695°E; 17 Aug. 2015; field observation.

Family: Mobulinae Gill, 1893 1

53. *Mobula mobular* (Bonnaterre, 1788). Devil fish. Endangered

Records • 1 ♀; Vibo Marina (TS); 38.77815°N, 16.14920°E; 27 Aug. 2014; field observation. • 1 specimen; Paola (TS); 39.35637°N, 16.01963°E; 7 June 2019; field observation. • 4 specimens; Palma (TS); 38.70500°N, 15.81383°E; 24 Aug. 2011; field observation. • 5 specimens; Bagnara Calabra (TS); 39.29191°N, 15.79322°E; 15 June 2017; field observation (Fig. 3N). • 1 specimen; Scilla (TS); 38.26026°N, 15.71929°E; 30 May 2018; field observation. • 1 specimen; Paola (TS); 38.35757°N, 16.01963°E; 12 Sept. 2017; field observation.

Class: Holocephali 1(2)

Order: Chimaeriformes 1(2)

Family: Chimaeridae Rafinesque, 1815 (1)

54. *Chimaera monstrosa* Linnaeus, 1758. Rabbit fish. Near Threatened

Records • 1 specimen; Pizzo (TS); 38.77815°N, 16.14920°E; 27 Aug. 2014; field observation. • 1 specimen; Reggio Calabria (MS); 38.66156°N, 15.61646°E; 13 May 2020; field observation. • 4 specimens; Palma (TS); 38.70500°N, 15.81383°E; 24 Aug. 2011; field observation. • 5 specimens; Bagnara Calabra (TS); 39.29191°N, 15.79322°E; 15 June 2017; field observation (Fig. 3N). • 1 specimen; Scilla (TS); 38.26026°N, 15.71929°E; 30 May 2018; field observation. • 1 specimen; Paola (TS); 38.35757°N, 16.01963°E; 12 Sept. 2017; field observation.
Discussion

A total of 55 marine chondrichthyans were confirmed in this study, 34 sharks and 19 rays and 2 chimaeras. The order Carcharhiniformes with 16 species in 5 families was the most diverse, followed by Rajiformes (11 species in 1 family) and Lamniformes (8 species in 4 families). Among families, Rajidae (11 species) and Carcharhinidae (7 species) had the most specimens. The species observed during our survey represent ca. 62% of the total species reported in the Mediterranean Sea and ca. 5% of the total species reported for the world (Compagno et al., 2005; Serena, 2005). Compared with other countries of the Mediterranean, Calabria had more shark and chimaera species than Turkey (26 sharks and 1 chimaera, Tunka Bengil & Başusta, 2018), Algeria (13 sharks, Ordines et al., 2011) and the north coast of the Mediterranean (Spain, France and Italy; 18 sharks and 1 chimaera, Follesa et al., 2019), but less ray species than these countries (Turkey 29, North Mediterranean 22, Algeria 9). Comparing the number of species of chondrichthyans with that of Greece (37 sharks, 29 rays, Giovos et al., 2020), in Calabria it was lower. The more widely encountered species in Calabria were P. glauca, H. griseus, T. torpedo, and I. oxyrhincus: in fact, these species have been reported along all the regional coasts and are the ones that have been found most frequently. Abundance data are summarised in Table 1. Regarding the spatial distribution of species, 71% of them have been reported for the Tyrrhenian Sea, 49% for the Ionian Sea and 33% for the Strait of Messina. The presence of large endangered and critically endangered pelagic species (according to IUCN categories) in

Table 1. Species list of chondrichthyans detected in Calabria and their conservation status in the Mediterranean Sea. The conservation status referring to Dulvy et al. (2016). IUCN Red List code: DD = Data Deficient, LC = Least Concern, NT = Near Threatened, VU = Vulnerable, EN = Endangered, CR = Critically Endangered, NA= Not Applicable, NE= Not evaluated. For “District”: IS = Ionian Sea, TS = Tyrrhenian Sea, MS = Strait of Messina.

N° records	Species	District	IUCN
25	Prionace glauca	IS-TS-MS	CR
21	Hexanchus griseus	IS-TS-MS	LC
12	Torpedo torpedo	IS-TS	LC
11	Isurus oxyrinchus	IS-TS	CR
9	Cetorhinus maximus	IS-TS-MS	EN
8	Carcharodon carcharias	IS-TS	CR
6	Alopias vulpinus	IS-TS	EN
6	Sphyra zygaena	IS-TS	CR
6	Torpedo marmorata	IS-TS	LC
6	Dasyatis pastinaca	TS-MS	VU
5	Mobula mobular	TS-MS	EN
5	Scyliorhinus canicula	IS-TS	LC
4	Dalatias lica	IS-TS	VU
4	Galeus melastomus	IS-TS	LC
4	Raja astera	IS-TS	NT
4	Pteroplatytrygon violacea	IS-TS	LC
3	Etmopterus spinax	IS-TS-MS	LC
3	Myliobatis aquila	IS-TS	VU
2	Heptranchias perlo	IS-MS	DD
2	Centrophorus cf granulosus	TS	CR
2	Squallus blainville	TS-MS	DD
2	Oxygnus centrina	TS-MS	CR
2	Odontaspis ferox	TS-MS	CR
2	Alopias superciliosus	IS-MS	EN
2	Scyliorhinus stellaris	IS-MS	NT
2	Mustelus mustelus	IS-MS	VU
2	Carcharhinus obscurus	IS-TS	DD
2	Raja clavata	TS	NT
2	Aetomyrleus bovinus	TS	CR
1	Centroscymnus coelelepis	IS	LC
1	Squalus acanthias	TS	EN
1	Carcharias taurus	MS	CR
1	Lanna nasus	TS	CR
1	Galeorhinus galeus	MS	VU
1	Mustelus asterias	IS	VU
1	Mustelus punctulatus	IS	VU
1	Carcharhinus brachyurus	MS	DD
1	Carcharhinus brevipinna	MS	NA
1	Carcharhinus falciformis	IS	NE
1	Carcharhinus limbatus	IS	DD
1	Carcharhinus plumbeus	IS	EN
1	Sphyra lewini	TS	NA
1	Squatina squatina	TS	CR
1	Dipitus cf. batis	TS	CR
1	Dipitus oxyrinchus	IS	NT
1	Leucoraja circularis	IS	CR
1	Leucoraja fallonica	TS	CR
1	Raja brachyura	IS	NT
1	Raja miruleus	TS	LC
1	Raja montagui	TS	LC
1	Raja polystigma	TS	LC
1	Rostroraja alba	TS	EN
1	Gymnura alavela	MS	CR
1	Chimaera monstrosa	TS	NT
1	Hydrolagus mirabilis	TS	NE
the study area, such as *C. maximus*, *C. carcharias*, *I. oxyrhincus*, *S. zygaena*, and *M. mobular* is of high interest given the reduction of abundance in many of these species especially in the north-western Mediterranean Sea (Ferretti et al., 2008). Considering our sightings and the complexity of trophic structures of the marine ecosystem of the region (Ricci et al., 2019), Calabria could represent a refugium for some locally and globally threatened species (IUCN Med 2016 according to Dulvy et al., 2016). In fact, according to Shephard et al. (2012), a “de facto refugia” is a naturally occurring areas where low fishing intensity overlaps with high elasmobranch density and where the demersal fish assemblage has approximately equal importance in explaining elasmobranch biomass. The higher flows of consumption of the benthic system observed in the Calabria food web could be influenced by a widespread presence of canyons along the continental edge which increase the benthic productivity. During the collection of data, the presence of pups and new-borns of some Endangered, Critically Endangered, and Data-Deficient species has been confirmed (Fig. 5). In particular, our observations refer to *S. zygaena*, *P. glauca*, *C. plumbeus*, *C. obscurus*, *C. falciformis*, *L. nasus*, and *I. oxyrhincus*. In details, sightings on new-borns of *S. zygaena*, *C. plumbeus*, *C. obscurus*, *C. falciformis*, and *L. nasus* were isolated cases both geographically and temporally. Instead, data for *P. glauca* and *I. oxyrhincus* showed a different trend, especially along the Ionian coast. In fact, these two species were more commonly encountered in this area than in other areas, they tended to remain or return for extended periods, and in the area, new-borns have been repeatedly observed across years from 2002 to 2018. So, according to Heupel et al., 2007 the Ionian coast of the region could be considered as a nursery area for *P. glauca* and *I. oxyrhincus*. In the same area, records of new-borns of other species were also reported (Fig. 5). Due to these observations, the Calabrian Ionian coast is characterised as an area of relevance for the presence of elasmobranchs. From a biogeographical point of view, the presence of *R. brachyura* along the Ionian coast of the Region should be remarkable. The presence of this species has been confirmed only for the western Mediterranean Sea with only one doubtful record for the Northern Aegean Sea (Relini et al., 2000; Serena, 2005; Catalano et al., 2007). For this reason, to our knowledge, our record would confirm the presence of the species also in the eastern Mediterranean basin. Moreover, we report the presence of the rare chimaera *H. mirabilis*. This species has been reported only recently for the Mediterranean with two confirmed records: the first one in Syrian waters (Hassan, 2013) and the second one off Egyptian coast (Farrag, 2016). Genetic analysis of the Calabrian specimen is currently underway in order to definitively confirm its specific identity. Finally, according to Serena et al. (2020), some taxonomic clarifications are necessary for the following species:

Centrophorus cf. *granulosus*: the validity of this species vs. *Centrophorus uyato* (Rafinesque, 1810) is still debated among taxonomists. Recently, Verissimo et al. (2014), demonstrated the presence of a unique mitochon-

![Fig. 5: Records of pups and/or new-borns of some endangered, critically endangered, or data-deficient elasmobranchs in the study area.](http://epublishing.ekt.gr)
drial clade within the Mediterranean Sea, so a revision of the genus taxonomy in the area is needed (Serena et al., 2020).

Dipturus cf. batis: the current status and taxonomy of this species is actually under debate: some authors (Iglésias et al. 2010) separate *Dipturus batis* species-complex into two nominal species, the blue skate (temporarily called *Dipturus cf. flossada* [Risso, 1826]) and the flapper skate (*Dipturus cf. intermedia* [Parnell, 1837]); others did not consider the species present in the Mediterranean (Last et al., 2016).

Leucoraja fallonica: this species has been rarely found in the Mediterranean and its presence needs to be confirmed (Serena et al., 2020).

Raja montagui: this species can be easily confused with *Raja polystigma*. Recently, Frodella et al. (2016) clarified that *Raja montagui* is limited to the north African coasts of Algeria and Tunisia, while *Raja polystigma* is endemic and distributed along the whole Mediterranean coasts. Further investigations of genetic and morphological aspects concerning these two species are needed.

Data collected during this research provide useful information about the distribution and presence of chondrichthys for the Central Mediterranean in general, and along the Calabrian coasts in particular. They represent the starting point for improved management of these areas and for further research and monitoring.

References

Bernardinini, I., Garibaldi, F., Canesi, L., Fossi, M.C., Baini, M., 2018. First data on plastic ingestion by blue sharks (*Prionace glauca*) from the Ligurian Sea (North-Western Mediterranean Sea). Marine Pollution Bulletin, 135, 303-310.

Bradai, M. N., Saidi, B., Enajjar, S., 2018. Overview on Mediterranean Shark’s Fisheries: Impact on the Biodiversity. Marine Ecology-Biotic and Abiotic Interactions, 211-230.

Buencuerpo, V., Rios, S., Moron, J., 1998. Pelagic sharks associated with the swordfish, *Xiphias gladius*, fishery in the eastern North Atlantic Ocean and the Strait of Gibraltar. Fishery Bulletin, 96, 667-685.

Cariani, A., Messinetti, S., Ferrari, A., Arculeo, M., Bonello, J.J. et al., 2017. Improving the Conservation of Mediterranean Chondrichthyes: The ELASMOMED DNA Barcode Reference Library, PLoS one, 12(1), e0170244.

Cashon, M. S., Bailly, N., Pauly, D., 2019. Official catch data on Mediterranean sharks, rays and chimaeras, by Monica Barone, Fabrizio Serena and Mark Di Mech. Rome, Italy.

FAO, 2010a. sharks, rays and chimaeras in the Mediterranean Sea. FAO, Rome, Italy.

FAO-AFSIS. 2002. AFSIS list of species for fishery statistics purposes/Lista AFSIS des espèces pour les besoins des statistiques des pêches/Lista ASFIS de especies para los fines de estadisticas de pesca. AFSIS Reference Series/ Série de références AFSIS/Serie de Referencias AFSIS. No. 15. Rome/Roma, FAO. 258 pp.

Farrag, M.M.S., 2016. Deep-sea ichthyofauna from Eastern Mediterranean Sea, Egypt: Update and new Records Egyptian Journal of Aquatic Research, 42, 479–489.

Ferratti, F., Myers, R.A., Serena, F., Lotze, H.K., 2008. Loss of large predator sharks from the Mediterranean Sea. Conservation Biology, 22 (4), 952-964.

Filanti, T., Megalofonou, P., Petrosino, G., De Metrio, G., 2016. Population connectivity and phylogeography of the Mediterranean endemic skate *Raja polystigma* and evidence of its hybridization with the parapatric sibling *R. montagui*. Marine Ecology Progress Series, 554, 99-113.

Garibaldi, F., Eschmeyer, W.N., Van der Laan, R., 2020a. *Eschmeyer’s catalog of fishes: genera, species, references* http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. (Accessed 16 April 2020).

Fricke, R., Eschmeyer, W.N., Van der Laan, R., 2020b. *Eschmeyer’s catalog of fishes: species by family/subfamily* http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. (Accessed 16 April 2020).

Frodella, N., Cannas, R., Velonà, A., Carbonara, P., Farrell, E.D. et al., 2016. Population connectivity and phylogeography of the Mediterranean endemic skate *Raja polystigma* and evidence of its hybridization with the parapatric sibling *R. montagui*. Marine Ecology Progress Series, 554, 99-113.

Garibaldi, F., Orsi Relini, L., 2000. Summer abundance size and feeding habits of the blue shark, *Prionace glauca*, in the pelagic sanctuary of the Ligurian Sea. *Biologia Marina Mediterranea*, 7 (1), 324-333.

Giovos, I., Arculeo, M., Doumpas, N., Katsada, D., Maximidi, 2018a. First data on plastic ingestion by blue sharks (*Prionace glauca*)) from the Ligurian Sea (North-Western Mediterranean). *Scientia Marina*, 83S1, 81-100.

Fricke, R., Eschmeyer, W.N., Van der Laan, R., 2020a. *Eschmeyer’s catalog of fishes: genera, species, references* http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. (Accessed 16 April 2020).

Fricke, R., Eschmeyer, W.N., Van der Laan, R., 2020b. *Eschmeyer’s catalog of fishes: species by family/subfamily* http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. (Accessed 16 April 2020).

Frodella, N., Cannas, R., Velonà, A., Carbonara, P., Farrell, E.D. et al., 2016. Population connectivity and phylogeography of the Mediterranean endemic skate *Raja polystigma* and evidence of its hybridization with the parapatric sibling *R. montagui*. Marine Ecology Progress Series, 554, 99-113.

Garibaldi, F., Orsi Relini, L., 2000. Summer abundance size and feeding habits of the blue shark, *Prionace glauca*, in the pelagic sanctuary of the Ligurian Sea. *Biologia Marina Mediterranea*, 7 (1), 324-333.

Giovos, I., Arculeo, M., Doumpas, N., Katsada, D., Maximidi, 2018a. First data on plastic ingestion by blue sharks (*Prionace glauca*)) from the Ligurian Sea (North-Western Mediterranean). *Scientia Marina*, 83S1, 81-100.

Fricke, R., Eschmeyer, W.N., Van der Laan, R., 2020a. *Eschmeyer’s catalog of fishes: genera, species, references* http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. (Accessed 16 April 2020).

Fricke, R., Eschmeyer, W.N., Van der Laan, R., 2020b. *Eschmeyer’s catalog of fishes: species by family/subfamily* http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. (Accessed 16 April 2020).

Frodella, N., Cannas, R., Velonà, A., Carbonara, P., Farrell, E.D. et al., 2016. Population connectivity and phylogeography of the Mediterranean endemic skate *Raja polystigma* and evidence of its hybridization with the parapatric sibling *R. montagui*. Marine Ecology Progress Series, 554, 99-113.

Garibaldi, F., Orsi Relini, L., 2000. Summer abundance size and feeding habits of the blue shark, *Prionace glauca*, in the pelagic sanctuary of the Ligurian Sea. *Biologia Marina Mediterranea*, 7 (1), 324-333.

Giovos, I., Arculeo, M., Doumpas, N., Katsada, D., Maximidi,
M. et al., 2020. Assessing multiple sources of data to detect illegal fishing, trade and mislabelling of elasmobranchs in Greek markets. Marine Policy, 112, 103730.

Hassan, M., 2013. Occurrence of large-eyed rabbitfish Hydrologus mirabilis, Chimaeridae, in Syrian waters (eastern Mediterranean). Marine Biodiversity Records, 6: e7.

Hemida, F., Labidi, N., 2000. Note on the Carcharinids of the Algerian Basin. In: Vacchi M. et al., (Ed.) Proceedings of the 4th European Elasmobranch Association Meeting. Livorno: ICRAM, ARPAT &SFI, 192 pp.

Huveneers, C., Apps, K., Becerril-García, E. E., Bruce, B., Butcher, P. A. et al., 2018. Future research directions on the ‘elusive’ white shark. Frontiers in Marine Science, 5, 455.

Iglésias, S.P., Toulhoat, L., Sellos, D.Y., 2010. Taxonomic confusion and market mislabeling of threatened skates: Important consequences for their conservation status. Aquatic Conservation: Marine and Freshwater Ecosystems, 20(3), 319-333.

Last, P.R., White, W.T., de Carvalho, M.R., Serè, B., Stehmann, M.F.W. et al., 2016. Rays of the World. Melbourne: CSIRO Publishing & Cornell University Press, pp. 790.

Leone, A., Punther, G.N., Ferretti, F., Sperone, E., Trippepi, S. et al., 2020. Pliocene Colonization of the Mediterranean by Great White Shark Inferred from Fossil Records, Historical Jaws, Phylogeographic and Divergence Time Analyses. Journal of Biogeography, 47 (5), 11196-1129.

Leonetti, I.F., Sperone, E., Travaglini, A., Morey, G., Mancusi, C., Baino, R., Fortuna, C., Gil De Sola, L., 2020. MEDLEM database, a data collection on large predatory sharks in Calabria (central Mediterranean, southern Italy). Biologia Marina Mediterranea, 21 (2), 276-288.

Megalofonou, P., Damalas, D., Yannopoulos, C., 2005. Composition and abundance of pelagic shark by-catch in the eastern Mediterranean Sea. Cythium, 29 (2), 135-140.

Mejuto, J.B., García-Cortes, B., De La Serna, J.M., 2002. Preliminary scientific estimations of by-catches landed by the Spanish surface longline fleet in 1999 in the Atlantic Ocean and Mediterranean Sea. Collective Volume of Scientific Papers ICCAT, 54 (4), 1105-1163.

Murat, B., Ertan, T., Navas, M., Murat, K., 2002. Checklist of the marine fishes of Turkey. Zootaxa, 113, 1-194.

Ordines, F., Massuti, E., 2001. Baleaeric Islands vs Algeria: two nearby western Mediterranean elasmobranch assemblages with different oceanographic scenarios and fishing histories. Scientia Marina, 75 (4), 707-717.

Panayiotou, N., Biton Porsmoguer, S., Moutopoulos, D., Lloret, J., 2020. Offshore recreational fisheries of large vulnerable sharks and teleost fish in the Mediterranean Sea: first information on the species caught. Mediterranean Marine Science, 21 (1), 222-227.

Relini, G., Biagi, F., Serena, F., Belluscio, A., Specidato, M. T. et al., 2000. I selaci pescati con lo strascico nei mari italiani.