A New Mechanism for Fat-Induced Impairment of β-Cell Function

Melkam Kebede,1 Jenny Favaloro,1 Jenny E. Gunton,2,3 D. Ross Laybutt,2 Margaret Shaw,1 Nicole Wong,1 Barbara C. Fam,1 Kathryn Aston-Mourney,1 Christian Rantzau,1 Anthony Zulli,1 Joseph Proietto,1 and Sofianos Andrikopoulos1

OBJECTIVE—Fructose-1,6-bisphosphatase (FBPase) is a gluconeogenic enzyme that is upregulated in islets or pancreatic β-cell lines exposed to high fat. However, whether specific β-cell upregulation of FBPase can impair insulin secretory function is not known. The objective of this study therefore is to determine whether a specific increase in islet β-cell FBPase can result in reduced glucose-mediated insulin secretion.

RESEARCH DESIGN AND METHODS—To test this hypothesis, we have generated three transgenic mouse lines overexpressing the human FBPase (huFBPase) gene specifically in pancreatic islet β-cells. In addition, to investigate the biochemical mechanism by which elevated FBPase affects insulin secretion, we made two pancreatic β-cell lines (MIN6) stably overexpressing huFBPase.

RESULTS—FBPase transgenic mice showed reduced insulin secretion in response to an intravenous glucose bolus. Compared with the untransfected parental MIN6, FBPase-overexpressing cells showed a decreased cell proliferation rate and significantly depressed glucose-induced insulin secretion. These defects were associated with a decrease in the rate of glucose utilization, resulting in reduced cellular ATP levels.

CONCLUSIONS—Taken together, these results suggest that upregulation of FBPase in pancreatic islet β-cells, as occurs in states of lipid oversupply and type 2 diabetes, contributes to insulin secretory dysfunction. Diabetes 57:1887–1895, 2008

Type 2 diabetes is characterized by a chronic elevation of plasma glucose concentration, causing complications such as retinopathy, neuropathy, and nephropathy and increasing the risk of cardiovascular disease and stroke. Although insulin resistance may be the initiating defect, hyperglycemia in type 2 diabetes results from a relative deficiency of circulating insulin (1). Progressive deterioration in β-cell function is likely to result from exposure to the diabetic milieu (i.e., hyperglycemia and hyperlipidemia), thus setting up a positive feedback loop in which hyperglycemia and/or hyperlipidemia impairs β-cell function, leading to further hyperglycemia (2–7).

Chronic high fatty acid exposure results in increased basal and blunted glucose-mediated insulin secretion and reduced β-cell mass (2,5,8,9). This is associated with the pancreatic β-cells undergoing adaptive changes such that genes that are highly expressed under normal conditions, for example, insulin, PDX-1, and GLUT2, are underexpressed and genes that are poorly expressed in the pancreatic β-cells, such as hexokinase I, glucose-6-phosphatase, c-Myc, and acetate dehydrogenase, are shown to be upregulated (10,11).

One of the genes that is upregulated in β-cell lines under conditions of high fatty acid exposure is fructose-1,6-bisphosphatase (FBPase) (10–12), a regulated enzyme in the gluconeogenic pathway that catalyzes the dephosphorylation of fructose-1,6-bisphosphate to fructose-6-phosphate. FBPase is abundant in the liver and the kidneys but is poorly expressed in the pancreatic β-cells under normal conditions. In addition, FBPase was upregulated fivefold in islets from the diabetes-susceptible obese BTBR mouse compared with the diabetes-resistant C57BL/6 mouse (13). We have previously shown that FBPase is upregulated in the liver of mice or rats fed a high-fat diet (14,15) and in the New Zealand Obese (NZO) mouse, an obese model of type 2 diabetes (14,16). We have recently demonstrated that transgenic mice with specific overexpression of FBPase in the liver displayed increased glycerol gluconeogenesis (17).

From the abovementioned studies, it is evident that upregulation of FBPase is induced by fatty acids. However, whether an increase in FBPase alone can be detrimental to cellular function and in particular to β-cell insulin secretory rates has not been investigated.

To determine whether an increase in FBPase impairs insulin secretion, we generated both transgenic mice and stably transfected pancreatic β-cell lines (MIN6) overexpressing the human FBPase (huFBPase) gene. We demonstrated that overexpression of FBPase in β-cells results in impaired glucose-stimulated insulin secretion, which is associated with decreased glucose metabolism, resulting in reduced cellular ATP levels and cell proliferation.
ELEVATED ISLET FBPase IMPAIRS INSULIN SECRETION

RESEARCH DESIGN AND METHODS

MIN6 cells were obtained from Prof. Jun-ichi Miyazaki (Osaka University, Osaka, Japan). The RIP7 expression vector was provided by Prof. Thomas Kay (St. Vincent’s Institute of Medical Research, Victoria, Australia). The FBPase primary antibody was a gift from Dr. Hideo Mizunuma (Akita University, Akita, Japan). Oligonucleotide primers were synthesized by Gene Works (Hindmarsh, South Australia, Australia). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum, glutamine, and penicillin/streptomycin were from Invitrogen Australia (Mount Waverley, Victoria, Australia).

Human islet preparation. Human islets were prepared as previously described (18). Briefly, pancreata were removed from heart-beating deceased donors and disaggregated by infusing the ducts with cold Liberase enzyme (Liberase Human Islet; Roche Applied Science, Indianapolis, IN). Dissociated islets and acinar tissue was separated on a continuous Biocoll (Biochrom, Berlin) density gradient (poly sucrose 400 and amidotrizolic acid).

Generation of transgenic construct. Standard molecular biology techniques were used to generate the transgenic construct (19) (Fig. 1A). Pancreatic β-cell specificity of transgene expression was directed by a segment of the rat insulin II gene promoter (RIP), generated by PCR amplification of the RIP7 expression vector (20). The amplified fragment included a 659-bp promoter/enhancer region, the first exon and intron of the rat insulin II gene, a 650 bp were included as an internal control for the PCR analysis. PCR reagents were obtained from New England Biolabs (Beverly, MA). The amplified DNA products were resolved on a 2% agarose gel.

Primers amplifying a glyceraldehyde-3-phosphate dehydrogenase fragment of the chicken Hyper-Sensitive-4 (HS4) insulator sequence (21). The intron-intron boundary of the genomic DNA. Each sample was run in triplicate for each set of primers (i.e., FBPase and β-actin). Gene expression was determined using ABI PRISM 7900 HT system (Applied Biosystems). The relative quantification comparative Ct, also known as the ΔΔCt method using the ABI sequence detection software (SDS), was used.

Western blot analysis. FBPase protein levels were determined by immunoblotting as previously described (25). Protein lysates were resolved by SDS-PAGE under reducing conditions, transferred to polyvinylidene difluoride membranes (PolyScreen PVDF membrane; Perkins Elmer), and probed with the appropriate secondary antibody by standard protocols. Immunoreactive proteins were visualized with ECL Western blotting detection reagents (Amersham Bioscience).

Intravenous glucose tolerance test. The intravenous glucose tolerance test (IVGTT) was performed as previously described (26). A bolus of glucose (1 g/kg) was injected via a carotid artery catheter and blood was sampled at 0, 2, 5, 10, 15, and 30 min after the injection. Plasma was stored at −20°C for future glucose and insulin analysis.

Intraperitoneal glucose tolerance test. The intraperitoneal glucose tolerance test was performed as previously described (26). A bolus of glucose (2 g/kg) was injected intraperitoneally and blood was sampled at 0, 15, 30, 60, and 120 min after the injection. Plasma was stored at −20°C for future glucose and insulin analysis.

![FIG. 1. Generation and testing of the transgenic construct. A: The complete 7,645-bp linear-insulated RIP-huFBPase construct, which consists of 695 bp of RIPII, the first intron of the insulin gene, a cdNA encoding huFBPase, and a downstream polyadenylation site (Pol A) flanked by two sets of the chs4 insulator sequences. B: Transient transfection of FBPase in βTC-3 cells with the construct depicted in A, showing its capacity to produce the expected 37-kDa protein immunoreactive with the FBPase antibody in tissue culture. Lane 1, untransfected βTC-3 cells; lanes 2 and 3, transiently transfected βTC-3 cells, compared with a mouse liver sample.](https://doi.org/10.4302/diabetes_2008_57_6888_6888_diabetes_vol_57_july_2008)

![FIG. 2. Inlet FBPase expression in patients with type 2 diabetes. FBPase mRNA levels in islets isolated from patients with type 2 diabetes (n = 6) was determined using real-time PCR. Results are presented as means ± SE. *P < 0.05.](https://doi.org/10.4302/diabetes_2008_57_6888_6888_diabetes_vol_57_july_2008)
Islet isolation and culture. Islets were isolated from the pancreas by collagenase digestion as previously described (27,28). After islets were freed from exocrine tissue, they were hand-picked under a stereomicroscope (Olympus, Tokyo, Japan) and transferred for overnight culture in RPMI 1640 with 10% (vol/vol) heat-inactivated fetal calf serum (FCS), in a 37°C humidified atmosphere of 95% air:5% CO₂. After overnight culture, batches of islets were preincubated for 90 min in Krebs-Ringer bicarbonate buffer (KRBB) with 2.8 mmol/l glucose. Triplicate batches of five islets were then transferred to tubes containing 1 ml KRBB supplemented with 2.8 mmol/l in the absence or presence of 10 mmol/l L-arginine or 20 mmol/l glucose. After a 60-min incubation of the islets at 37°C, tubes were centrifuged at 2,000 rpm for 5 min, and 0.5-ml supernatant was removed for insulin analysis. The remaining 0.5 ml containing the islets was treated with 0.18 mol/l HCl/95% ethanol followed by sonication to determine insulin content.

Table 1: FBPase upregulation in mouse models of obesity and diabetes

Model	n	FBPase levels (fold increase of corresponding control)
NZO	3	1.9 ± 0.2*
High-fat–fed C57BL/6	3	2.1 ± 0.3*
C57BL/KsJ-db/db	5	3.5 ± 1.0†

Data are means ± SE for the number of mice indicated. Pancreatic FBPase was measured by immunoblotting in NZO and high-fat-fed (60% [wt/wt] for 16 weeks) C57BL/6 mice, and islet FBPase mRNA levels were determined in C57BL/KsJ-db/db mice using real-time PCR. *P < 0.05, †P < 0.01.

![Graph showing human islet FBPase mRNA levels relative to Low](A)

![Immunoblotting showing high, medium, and low levels of the FBPase protein](B)

![Immunohistochemistry showing insulin and FBPase staining](C)

FIG. 3. Expression of the FBPase gene in transgenic mice. A: huFBPase mRNA levels in three transgenic mouse lines (1, 32, and 44), showing high, medium, and low expression levels of the transgene, relative to the lowest expressing transgenic line 44. As expected, the transgene was not detected (ND) in negative littermate mice. B: Immunoblotting of pancreatic samples from transgenic lines 1, 32, and 44, showing high, medium, and low levels of the 37-kDa FBPase protein, in accordance with the mRNA data shown in A above. C: Immunohistochemistry of pancreata from the three FBPase transgenic mouse lines (1, 32, and 44) and a negative littermate, showing insulin immunostaining in all sections, whereas FBPase immunostaining was only seen in the transgenic pancreata, localized to the insulin staining.
H2O was then measured by liquid scintillation counting. Glucose oxidation (MO) as previously described (30).

Measurement of cellular ATP content. Before (34,35).

Fructose 6-phosphate assays were performed on the supernatant as described.

Cells were seeded into six-well plates at 2 × 10⁶ cells/well 2 days before transfection. Lipofectamine 2000 (Invitrogen) was used to cotransfect cells with 1–2 μg supercoiled insulin RIP-huF2B-Pase plasmid (Fig. 1A) and 0.1–0.2 μg pEGFP-C1 (Clontech Laboratories) reporter plasmid per well according to the manufacturer’s protocol. Cells were harvested 48 h posttransfection, and cell pellets were stored at −80°C for subsequent analysis.

Stable transfection. Cells were transfected with the linear-insulated RIP-huF2B-Pase fragment (Fig. 1A) using Lipofectamine 2000 as above, but the cotransferring plasmid was pPGK-puro to enable selection with the antibiotic puromycin. Forty-eight hours after transfection, the cell medium was supplemented with 6 μg/ml puromycin, and resistant cells started to form colonies after ~7 days. Colonies were picked, amplified, and screened for F2B-Pase expression by RNA and protein analysis.

Cell proliferation assay. Cell proliferation was assessed over a 7-day period using trypan blue dye exclusion. At day 0, cells were seeded at 1 × 10⁶ cells/well in 0.5 ml DMEM in 24-well plates. Cells were then counted manually at days 1, 3, 5, and 7.

F2B-Pase enzyme activity assay. Proteins were extracted by homogenizing 1 × 10⁶ cells in 0.5 ml homogenization buffer (50 mmol/l triethanolamine, pH 7.2, 1 mmol/l dithiothreitol, and 10 mmol/l EDTA) followed by centrifugation at 40,000g for 40 min at 4°C. F2B-Pase enzyme activity was determined using a spectrophotometric-coupled enzyme assay as previously described (16,25).

Insulin secretion and content in MIN6 cells. Cells were seeded at 3 × 10⁶ cells/well in 0.5 ml DMEM in 24-well plates. After 24 h, cultured cells were washed in modified KRBB containing 2.8 mmol/l glucose and preincubated for 30 min in 0.5 ml of the same medium at 37°C. This medium was then replaced with 0.5 ml prewarmed KRBB containing 2.8 mmol/l glucose, 2.8 mmol/l glucose plus 10 mmol/l methyl-pyruvate, 16.8 mmol/l glucose, or 16.8 mmol/l glucose plus a nonglucose secretagogue cocktail. The secretagogue cocktail contained 15 mmol/l L-arginine, 0.5 mmol/l isobutyl-methylxanthine (IBMX), 10 mmol/l arginine, and 5 mmol/l carbamylcholine chloride (carbachol) (29,30). The cells were incubated for 60 min at 37°C, and an aliquot of medium was removed for analysis of insulin. To measure the total insulin content, the cell monolayers were removed by trypsinization, and the cell lysates were centrifuged at 10,000 rpm for 10 min, and the supernatants were removed and stored at −20°C until analysis. Insulin levels were determined with a double-antibody radioimmunoassay using rat-specific insulin antibody and rat insulin as a standard (Linco Research, St. Charles, MO).

Measurement of glucose utilization and glucose oxidation. Glucose utilization of cells was measured using the production of tritiated water from the metabolism of [U-14C]glucose as previously described (31,32). Tritiated H2O was then measured by liquid scintillation counting. Glucose oxidation was estimated by assessing the formation of 14CO2 from the metabolism of [U-14C]glucose (33). The amount of 14CO2 was determined by liquid scintillation counting.

Measurement of glycolytic intermediates. Fructose 1,6-bisphosphate and fructose 6-phosphate assays were performed on the supernatant as described before (34,35).

Measurement of cellular ATP content. The amount of ATP was measured fluorometrically using the ATP bioluminescent assay kit from Sigma (St. Louis, MO) as previously described (30).

Immunohistochemistry. For immunohistochemical detection of F2B-Pase and insulin, pancreata from control and transgenic mice were fixed in freshly made 4% paraformaldehyde, processed for paraffin, embedded, and sectioned at 5 μm. Slides were incubated with either a guinea-pig anti-porcine insulin antibody (Dako, Carpentaria, CA) diluted 1:100 or rabbit-anti-rat F2B-Pase antibody diluted 1:100. The sections were then washed with Tris hydrochloride (10 mmol/l, pH 7.4) for 10 min and then incubated with the DAB (3,3’-diaminobenzidine) chromagen for 1 min. Sections were counterstained with hematoxylin and mounted with diastrene plasticizer and xylene mounting media and observed under a microscope.

Ethics approval. All of the animal studies were approved by the Austin Health Animal Ethics committee. Consent for collection of the human tissue samples was obtained by the Red Cross Transplantation Service, and St. Vincent’s Sydney Hospital Human Research Ethics Committee gave approval for the human studies.

Statistical analysis. Area under the curve was calculated using the trapezoidal rule. Results are presented as means ± SE. Statistical significance was assessed using the Student’s t test. Differences were considered statistically significant at P ≤ 0.05.

RESULTS

To confirm the literature reports that F2B-Pase is upregulated by lipid oversupply, we first assessed the pancreatic F2B-Pase levels in a naturally occurring obese animal model, the NZO mouse; in a diet-induced obesity animal model, the C57BL/6 mouse fed a 60% fat diet for 16 weeks; and in the diabetic C57BL/KsJ-db/db mouse. We found that both the NZO and high-fat–fed C57BL/6 mice had a twofold increase in pancreatic F2B-Pase protein levels, whereas there was a 3.5-fold increase in F2B-Pase mRNA levels in db/db mice compared with their respective controls (Table 1).

To determine whether patients with type 2 diabetes have elevated F2B-Pase, pancreatic islets were isolated from three diabetic and six age-matched (50.6 ± 3.4 vs. 51 ± 4.4 years) and BMI-matched (26.5 ± 0.5 vs. 27.8 ± 4.0 kg/m²) control subjects as previously described (18). F2B-Pase mRNA levels were measured by real-time PCR and were corrected for expression using the housekeeping gene TATA-box binding protein. F2B-Pase levels were increased by twofold in the human diabetic islets (P < 0.05; Fig. 2). Taken together, these data support previous experimental evidence that F2B-Pase is upregulated by lipid oversupply/diabetes in animal models and suggests for the first time that islet F2B-Pase may also be increased in patients with type 2 diabetes.

To determine whether a specific upregulation of F2B-Pase in islet β-cells can result in defective insulin secretion, transgenic mice were generated. A construct was generated with the human liver F2B-Pase cDNA, driven by the minimal (654 bp) RIP and flanked by the chicken HS4 (cHS4) insulator sequences (Fig. 1A). To test whether this construct expressed protein, it was transiently transfected into the immortalized pancreatic β-TC3 cell line. Immunoblotting of transiently transfected cells showed a band immunoreactive with the anti-F2B-Pase antibody at the expected size of 37 kDa (Fig. 1B), confirming that the construct was capable of producing F2B-Pase. The RIP1980 DIABETES, VOL. 57, JULY 2008
huFBPase chimeric gene was microinjected into mouse embryos, and four founder mice (on the C57BL/6 genetic background) were obtained. One of the lines did not express the transgene and was therefore excluded from further analysis. The studies presented here were performed using three transgenic mouse lines denoted 1, 32, and 44. The three lines expressed the transgene at different levels. The highest expresser (line 1) exhibited an ~9 times higher transgene mRNA level than the lowest expresser (line 44), as estimated by real-time PCR (Fig. 3A).

No expression of the transgene was detected in the liver, muscle, and brain of the transgenic mice (data not shown). Immunoblotting confirmed line 1 as the highest expresser of FBPase, followed by lines 32 and 44, whereas very low levels of FBPase protein were detected in the pancreata of the negative littermate mice (Fig. 3B). Although it is not quantitative, immunohistochemistry of FBPase transgenic and negative littermate pancreata showed islet FBPase staining in the same region as insulin immunostaining, suggesting β-cell–specific expression of the transgene in the transgenic mice, whereas the negative littermate mice showed no islet FBPase staining (Fig. 3C).

Body weight of the three FBPase transgenic lines was not different to the negative littermates (Table 2). Fasting plasma glucose levels were not different, except for a slight increase in line 44 compared with the negative littermate mice (Table 2). However, fasting plasma insulin concentrations were significantly lower in all three FBPase transgenic lines compared with negative littermates (Table 2). Pancreatic insulin content was comparable between transgenic mice and that of the negative littermate mice (Table 2).

When subjected to an IVGTT, all three lines showed a significant impairment in insulin secretion (Fig. 4A). Consequently, the area under the insulin curve was reduced in all three transgenic lines compared with the negative littermates (Fig. 4B). Glucose tolerance was significantly impaired only in line 1 (Table 2), which had the highest expression of FBPase and most significant defect in insulin secretion compared with the negative littermates.

Insulin secretion was also determined in vitro in isolated islets from line 32 and the data presented in Fig. 4C. In
ELEVATED ISLET FBPase IMPAIRS INSULIN SECRETION

Figure 6. Glucose- and non–glucose-induced insulin secretion in FBPase transgenic MIN6 cells. A: The cells were incubated in KRBB containing 2.8 mmol/l glucose, 16.8 mmol/l glucose, or 16.8 mmol/l glucose plus a cocktail of secretagogues, including 10 mmol/l arginine, 0.1 mmol/l IBMX, and 5 mmol/l carbachol for 1 h. Medium was taken to determine levels of insulin secretion. B: Total cellular insulin content was determined by lysing the cells with 0.18 mol/l HCl/95% ethanol, followed by sonication. Insulin secretion was then expressed as relative to total cellular insulin content of cells. Results are presented as means ± SE of three independent experiments. *P < 0.05 compared with parental MIN6 cells.

To investigate the biochemical mechanism by which FBPase upregulation resulted in significantly reduced glucose-mediated insulin secretion, transgenic cell lines (MIN6) overexpressing the huFBPase gene were generated and characterized as follows. The FBPase and pPGK-puro constructs were stably transfected into MIN6 cells. Eighteen colonies, which grew in puromycin, were selected and checked for FBPase expression and protein levels. From this screen, three colonies were chosen to be more extensively studied: a colony that had no FBPase expression but grew in puromycin as a result of the pPGK-puro transgene, a colony with relatively low expression, and a colony with relatively high expression of FBPase (Fig. 5A). FBPase enzyme activity was also assayed and shown to be elevated in the high-expressing cells compared with the low-expressing cells (Fig. 5B). Furthermore, the parental and pPGK-puro cells had undetectable activity, concurring with the immunoblotting data (Fig. 5A).

To determine whether the overexpression of FBPase affected insulin secretory function, the parental MIN6, pPGK-puro, and the two overexpressing cell lines were incubated with basal glucose (2.8 mmol/l), high glucose (16.8 mmol/l), or high glucose plus a cocktail of secretagogues (arginine, IBMX, and carbachol), and insulin release was determined. All cell lines released similar levels of insulin under basal conditions, although there was a trend for insulin secretion to be lower in the FBPase-transfected cells (Fig. 6A), reflecting the lower basal plasma insulin levels in the transgenic mice (Table 2). Both the parental MIN6 and pPGK-puro cells showed increases in insulin secretion in response to high glucose and high glucose plus the secretagogue cocktail, respectively (Fig. 6A). In contrast, FBPase-overexpressing cells did not increase insulin release in response to 16.8 mmol/l glucose and showed a much-blunted response to glucose plus the cocktail secretagogue compared with the parental cell line (Fig. 6A). Insulin content was determined and found to be not significantly different in the transfected cells compared with the parental MIN6 (Fig. 6B). Therefore, overexpression of FBPase significantly reduced glucose-mediated insulin secretion, reproducing and confirming what was found in vivo in the transgenic mice overexpressing FBPase in β-cells.

A mechanism by which increased FBPase may reduce insulin secretion is by decreasing glucose utilization and energy production. Because islets from patients with type 2 diabetes have markedly decreased expression of phosphofructokinase-1 (PFK-1) (18), increased FBPase would be expected to further impair glycolysis. Therefore, glucose utilization and glycolytic intermediates were measured. All cell lines had comparable glucose utilization when cultured at basal (2.8 mmol/l) glucose concentrations (Fig. 7A, left). However, in response to high (16.8 mmol/l) glucose, glucose utilization (assessed using 5-3H-glucose) was significantly lower in cells overexpressing FBPase compared with the parental and pPGK-puro controls (Fig. 7A, right). Furthermore glucose oxidation (measured using [U-14C]glucose) was reduced in the high-overexpressing FBPase compared with the parental MIN6 cells when incubated with both 2.8 and 20 mmol/l glucose (Fig. 7B). FBPase catalyzes the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate and is opposed by PFK-1 in the glycolytic pathway. Overactivity of FBPase would be expected to result in overabundance of the product and a reduction of the substrate. Figure 7C shows that the substrate (fructose-1,6-bisphosphate) was lower and the product (fructose-6-phosphate) was higher in the FBPase-overexpressing cell lines compared with the parental MIN6 cells.

To determine whether the decrease in glucose utilization caused a reduction in energy levels, cellular ATP levels were measured and found to be comparable among the four cell lines at basal (2.8 mmol/l) glucose (Fig. 7D). However, with high (16.8 mmol/l) glucose culture, the FBPase-overexpressing cell lines showed decreased ATP levels compared with the parental and control cell lines (Fig. 7D). Together, these data suggest that decreased glucose utilization and energy production may be responsible for the reduced insulin secretion, in β-cells overexpressing the human liver FBPase gene.

A reduction in energy availability may affect cell growth. To study this, the proliferation rate of the four cell lines was determined over 7 days. There was an increase in cell number in all cell lines over the 7-day test period (Fig. 8A). However, the cell lines overexpressing FBPase showed a slower rate of cell proliferation compared with the paren-
A conversion of \([U-14C]\) glucose into \(14\text{CO}_2\) as described in RESEARCH DESIGN AND METHODS. Results are expressed as means compared with control MIN6 cells.

To confirm that the reduction in growth rate was due to a deficiency in energy availability secondary to reduced rate of glycolysis, cells were supplemented with sodium pyruvate to a final concentration of 2.5 mmol/l. As can be seen in Fig. 8B, pyruvate supplementation normalized growth rates at 5 and 7 days in the low-expressing and at 5 days in the high-expressing FBPase-MIN6 cells. These data further support the assertion that increased expression of FBPase results in impaired cellular function by reducing energy availability.

To investigate whether pyruvate stimulation improves the insulin secretory function of FBPase-overexpressing MIN6 cells, the parental and low-expressing cells were pretreated with pyruvate (to a final concentration of 2.5 mmol/l), and insulin secretory function was determined at basal glucose (2.8 mmol/l) concentrations. We chose the low-expressing cell line because we have shown in Fig. 8 that in this cell line, 2.5 mmol/l pyruvate supplementation rescued the cell proliferation defects in FBPase-overexpressing cells. In concordance with these data, pyruvate stimulation also resulted in significantly higher insulin secretory rates in the FBPase-transfected cells, compared with control cells transfected with the puromycin gene only (insulin content 68.3 ± 2.6 vs. 16.4 ± 1.5%, \(n = 4, P < 0.05\)).

DISCUSSION

Islet \(\beta\)-cell dysfunction is a key characteristic of patients with type 2 diabetes that results in hyperglycemia. Hyperglycemia, in conjunction with the dyslipidemia, which is often present in patients with type 2 diabetes, can further exacerbate the defects in insulin secretion. A number of studies have shown that FBPase is upregulated in response to high glucose or fatty acid conditions (10–12,36). Importantly, direct evidence for the stimulatory effect of fat on FBPase expression has been provided in vitro using pancreatic \(\beta\)-cell lines incubated with palmitate (10,11). Although the mechanism for this induction is not known, we speculate that fatty acids increase the transcription of the FBPase gene. We have extended these results and have shown here that in obese (NZO) or diabetic (C57BL/KsJ-db-db) mice and in a high-fat–fed mouse model, there is a two- to threefold increase in pancreatic/islet FBPase levels. Furthermore, we show for the first time that increased FBPase expression has direct relevance to human disease because its expression was increased twofold in islets from patients with type 2 diabetes that results in hyperglycemia. Hyperglycemia, in conjunction with the dyslipidemia, which is often present in patients with type 2 diabetes, can further exacerbate the defects in insulin secretion. A number of studies have shown that FBPase is upregulated in response to high glucose or fatty acid conditions (10–12,36). Importantly, direct evidence for the stimulatory effect of fat on FBPase expression has been provided in vitro using pancreatic \(\beta\)-cell lines incubated with palmitate (10,11).

Furthermore, we show for the first time that increased FBPase expression has direct relevance to human disease because its expression was increased twofold in islets from patients with type 2 diabetes. These studies, however, do not provide any information on whether this increase in FBPase has functional consequences in islet \(\beta\)-cells. To determine whether overexpression of FBPase impairs insulin secretion, we generated three lines of transgenic mice with different levels of islet FBPase overexpression.
expression. We demonstrated that insulin secretion in response to glucose was reduced in a dose-dependent manner with greater overexpression, causing more severe impairment of secretion. Interestingly, despite a reduction in insulin secretion in all three transgenic lines tested, glucose tolerance was impaired only in line 1 with the highest FBPase overexpression and the greatest reduction in secretion. This probably reflects the robust nature of the mouse and that a severe reduction in insulin secretion is required before it affects glucose tolerance. All of this suggests that upregulation of islet FBPase by high glucose/lipid levels can result in reduced glucose-mediated insulin secretion in vivo. Using MIN6 cells, an in vitro β-cell model, we went on to show that the most likely mechanism by which FBPase overexpression impairs insulin secretion is a reduction in glycolytic flux resulting in reduced energy production. Arginine-induced secretion was not impaired in the transgenic islets. Because arginine acts by directly depolarizing the plasma membrane, this result suggests that the secretory machinery is functioning appropriately and supports the notion of decreased glycolytic flux as the cause of reduced insulin secretion in the transgenic mice.

Many mechanisms for β-cell dysfunction and death have been proposed, including high glucose–induced oxidative stress (8), fatty acid–induced defects in secretion and activation of apoptotic pathways (30,37), islet amyloid–mediated β-cell death (38,39), and others (40). Some of these may be inherent defects that are exposed when the islet is stressed with obesity and excess nutrients. It is clear from our own data and that of other researchers that the upregulation of FBPase is a consequence of the diabetic milieu. The question then arises: What role does this particular abnormality play in the pathogenesis of type 2 diabetes? We show in this study that FBPase is not normally expressed at high levels in the islet. Furthermore, we and others have shown that this enzyme is upregulated by fat. Noting this, together with the data in this report that a specific upregulation of FBPase causes impaired insulin secretion, we suggest that the obese/diabetic milieu of increasing lipidemia stimulates the expression of islet FBPase, which contributes to the deteriorating function of the β-cell, resulting in further diminution of insulin release.

We show in this report that FBPase expression is increased in patients with type 2 diabetes and that a specific increase in this gene can lead to impaired insulin secretory function. However, this is not the only protein whose expression is altered in diabetes. It has been shown that there are >200 genes upregulated in islets from patients with type 2 diabetes compared with control subjects (18), and Busch et al. (10) have shown that >100 genes are overexpressed >1.9-fold when MIN6 cells are cultured in high-fat conditions (including FBPase). One approach to determine the functional consequences would be to systematically inhibit each of the overexpressed genes in diabetes and to determine whether cellular function is improved. Although for most genes, this would have to be done in vitro using, for example, siRNA technology, for FBPase, this can now be done in vivo because specific inhibitors of this enzyme have been developed as therapeutic targets to treat type 2 diabetes (41,42). MB06322 (CS-917) is one such compound that efficiently inhibits the enzyme and reduces gluconeogenesis in hepatocytes and in vivo in ZDF rats, resulting in a substantial lowering of plasma glucose levels in these diabetic animals (41,42). It would be of interest to determine whether this or other compounds that inhibit islet FBPase can improve insulin secretory function and the diabetic phenotype of animal models, such as the ZDF rat or C57BL/KsJ-db/db mouse, or even in patients with type 2 diabetes.

It is of interest that reduction in glycolytic rate and the ensuing reduction in ATP levels resulted in a slowing of β-cell growth in vitro. It is important to note that the insulin secretory experiments were performed after 24 h of seeding the same amount of cells, a time that there was no difference in cell number regardless of whether FBPase was expressed (Fig. 8). We therefore do not believe that differences in cell number can explain the blunting in glucose-mediated insulin release with FBPase overexpression. As stated above, we provide evidence that the decreased insulin release is due to reduced glycolytic flux.

Taken together, we have demonstrated that obese and hyperglycemic mice and patients with type 2 diabetes display an increase in the expression of pancreatic islet FBPase. We consequently generated transgenic mice and cell lines with a specific increase in islet β-cell FBPase, and these were shown to have reduced insulin secretion associated with impaired glucose metabolism and ATP generation. This study identifies islet FBPase as a possible therapeutic target for the improvement of insulin secretory function in type 2 diabetes.
ACKNOWLEDGMENTS

J.E.G. has received a National Health and Medical Research Council of Australia C.J. Martin Fellowship. S.A. has received a National Health and Medical Research Council of Australia R.D. Wright Biomedical Career Development Award. This study was supported by projects grants from the National Health and Medial Research Council of Australia and Diabe-

REFERENCES

1. Porte D Jr: beta-Cells in type II diabetes mellitus. Diabetes 40:166–180, 1991
2. Unger RH: Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 44:863–870, 1995
3. Unger RH, Zhou YT, Orci L: Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci U S A 96:2327–2332, 1999
4. Boden G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10, 1997
5. Grill V, Bjorklund A: Dysfunctional insulin secretion in type 2 diabetes: role of metabolic abnormalities. Cell Mol Life Sci 57:529–440, 2000
6. Milburn JL, Hirose H, Lee YH, Nagasawa Y, Ogawa A, Ohneda M, Beltran del Rio H, Newgard CB, Johnson JH, Unger RH: Pancreatic beta-cells in obesity: evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J Biol Chem 270:1296–1299, 1995
7. McGarry JD, Dobbins RL: Fatty acids, lipotoxicity and insulin secretion. Diabetologia 42:128–138, 1999
8. Zraika S, Dunlop M, Proietto J, Andrikopoulos S: Effects of free fatty acids on insulin secretion in obesity. Obes Res 3:103–112, 2002
9. Zhou Y-P, Grill VE: Long-term exposure of rat pancreatic islets to fatty acids inhibits insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 95:870–876, 1994
10. Busch AK, Cordery D, Denyer GS, Biden TJ: Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic beta-cell function. Diabetes 51:977–987, 2002
11. Xiao J, Gregeresen S, Krhuoffler M, Pedersen SB, Orntoft TF, Hermansen K: The effect of chronic exposure to fatty acids on gene expression in clonal insulin-producing cells: studies using high density oligonucleotide microarrays. Endocrinology 142:4777–4784, 2001
12. Webb GC, Akbar MS, Zhao C, Steiner DF: Expression profiling of pancreatic beta cells: glucose regulation of secretory and metabolic pathway genes. Proc Natl Acad Sci U S A 97:5773–5778, 2000
13. Lan H, Bahagila ME, Stoehr JP, Nadler TT, Schuler KL, Zou F, Yandell BS, Attie AD: Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes 52:688–700, 2003
14. Andrikopoulos S, Proietto J: The biochemical basis of increased hepatic glucose production in a mouse model of type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 38:1389–1396, 1995
15. Song S, Andrikopoulos S, Filippis C, Thorburn AW, Khan D, Proietto J: Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. Am J Physiol Endocrinol Metab 281:E275–E282, 2001
16. Andrikopoulos S, Rosella G, Gaskin E, Thorburn A, Kaczmarczyk S, Zajac JD, Proietto J: Impaired regulation of hepatic fructose-1,6-bisphosphatase in the New Zealand obese mouse model of NIDDM. Diabetes 42:1713–1736, 1993
17. Lamont BJ, Vissoni S, Fam BC, Kebede M, Weinrich B, Papapostolou S, Massinet H, Proietto J, Favaloro J, Andrikopoulos S: Expression of human fructose-1,6-bisphosphatase in the liver of transgenic mice results in increased glycerol gluconeogenesis. Endocrinology 147:2704–2712, 2006
18. Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne WJ, Tseng YH, Roberson RS, Ricordi C, O’Connell PJ, Gonzalez FJ, Kahn CR: Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-β-cell dysfunction in human type 2 diabetes. Cell 122:337–349, 2005
19. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1989
20. Naik P, Karrim J, Hanahan D: The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev 10:2105–2116, 1996
21. Pettis W, Tucker D, Wood H, Martin C: Chicken beta-globin 5'HS4 insulators function to reduce variability in transgenic founder mice. Biochem Biophys Res Commun 273:1015–1018, 2000
22. Efart S, Linde S, Kofod H, Spector D, Delannoy M, Grant S, Hanahan D, Baekkeskov S: Beta-cell lines are derived from transgenic mice expressing a hybrid insulin gene- oncogene. Proc Natl Acad Sci U S A 85:9057–9061, 1988
23. Nagy A, Gertsenstein M, Vintersten K, Behringer R: Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 2003
24. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159, 1987
25. Andrikopoulos S, Rosella G, Kaczmarczyk SJ, Zajac JD, Proietto J: Impaired regulation of hepatic fructose-1,6-bisphosphatase in the New Zealand Obese mouse: an acquired defect. Metabolism 45:622–626, 1996
26. Andrikopoulos S, Massa CM, Aston-Mourney K, Funkat A, Fam BC, Hull RL, Kahn SE, Proietto J: Differential effect of inbred mouse strain (C57BL/6, DBA/2, 129/T2) on insulin secretory function in response to a high fat diet. J Endocrinol 187:45–53, 2005
27. Zraika S, Dunlop M, Proietto J, Andrikopoulos S: The hexosamine biosynthesis pathway regulates insulin secretion via protein glycosylation in mouse islets. Arch Biochem Biophys 405:275, 2002
28. Zraika S, Aston-Mourney K, Laybutt DR, Kebede M, Dunlop ME, Proietto J, Andrikopoulos S: The influence of genetic background on the induction of oxidative stress and impaired insulin secretion in mouse islets. Diabetologia 49:1254–1263, 2006
29. Andrikopoulos S, Verchere CB, Teague JC, Howell WM, Fujimoto WY, Wight TN, Kahn SE: Two novel immortal pancreatic β-cell lines expressing aminoglycosidase human islet amyloid polyptide do not spontaneously develop islet amyloid. Diabetes 48:1982–1970, 1999
30. Zraika S, Dunlop ME, Proietto J, Andrikopoulos S: Elevated SNAP-25 is associated with fatty acid-induced impairment of mouse islet function. Biochim Biophys Acta 1731:472–477, 2004
31. Koottivuwut S, Zraika S, Thorburn AW, Dunlop ME, Darwiche R, Kay TW, Proietto J, Andrikopoulos S: Comparison of insulin secretory function in two mouse models with different susceptibility to beta-cell failure. Endo-
32. Trus MD, Zawalich WS, Burch PT, Berner DK, Weill VA, Matschinsky FM: Regulation of glucose metabolism in pancreatic islets. Diabetes 30:911–922, 1981
33. Grenlich S, Nolan C, Roduit R, Burcelin R, Peyot ML, Delghinaro-Augusto V, Desvergne B, Michalik L, Perreti M, Wahli W: Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation. Endocrinology 146:375–382, 2005
34. Michal G: D-glucose 6-phosphate and D-fructose 6-phosphate. In Methods of Enzymatic Analysis. Bergmeyer HU, Ed. New York, Academic Press, 1986, p. 191–195
35. Michal G: D-fructose-1,6-bisphosphate, dihydroxyacetone phosphate and D-glyceroldehyde 3-phosphate. In Methods of Enzymatic Analysis. Berg-
36. Laybutt DR, Sharma A, Sgroi DC, Gaudet J, Bonner-Weir S, Weir GC: Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem 277:10012–10021, 2002
37. Shimabukuro M, Zhou YT, Levi M, Unger RH: Fatty acid-induced β cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A 95:2498–2502, 1998
38. Kahn SE, Andrikopoulos S, Verchere CB: Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 54:241–253, 1999
39. Matveenko AV, Butler PC: β-Cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (HIP) rat recapitulates the metabolic defects present in type 2 diabetes. Diabetes 55:2106–2114, 2006
40. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC: β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110, 2003
41. Erion MD, van Poelje PD, Pang Q, Kasibhatla SR, Potter SC, Reddy MR, Reddy KR, Jiang T, Lipscomb WN: MB06322 (CS-917): a potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluco-
42. van Poelje PD, Potter SC, Chandramouli VC, Landau BR, Dan Q, Erion MD: Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in Zucker diabetic fatty rats. Diabetes 55:1747–1754, 2006

M. KEBEDE AND ASSOCIATES

DIABETES, VOL. 57, JULY 2008