THE LIMITS OF MATHEMATICS
(Extended Abstract)

G. J. Chaitin
IBM Research Division
chaitin@watson.ibm.com

In June 1994 I gave a five-day course on the limits of mathematics at the University of Maine in Orono. This course featured a new approach to algorithmic information theory (AIT). Four versions [1]–[4] of the course notes for this course, each using a somewhat different approach, are available. To automatically obtain any one of them in \TeX, for example \texttt{chao-dyn/9407003}, send e-mail to “chao-dyn \texttt{@ xyz.lanl.gov}” with “Subject: get 9407003”.

AIT deals with program-size complexity. I define the complexity \(H(X) \) of an object \(X \) to be the size in bits of the smallest program that can calculate \(X \). Up to now, to get elegant mathematical properties for this complexity measure \(H(X) \), I had to measure the size of programs for an abstract universal Turing machine. This gave the right mathematical properties, but it was not a programming language that anyone could actually use. Now I have found a way to obtain the correct program-size complexity measure of AIT by measuring the
size of programs in a series of powerful and easy to use programming languages. These programming languages are versions of LISP that I have invented expressly for this purpose. Which of these programming languages one considers most natural is to a certain extent a matter of personal taste.

What does AIT have to say concerning the limits of mathematics? My theory yields two fundamental information-theoretic incompleteness theorems. First of all, my theorem, originally going back to 1970, that an \(N \)-bit formal axiomatic system cannot enable one to exhibit any specific object \(X \) with program-size complexity \(H(X) \) greater than \(N + c \). Secondly, my theorem, originally going back to 1986, that an \(N \)-bit formal axiomatic system cannot enable one to determine more than \(N + c' \) scattered bits of the halting probability \(\Omega \). In chao-dyn/9407003, \(c = 2359 \) bits and \(c' = 7581 \) bits. In chao-dyn/9407005, \(c = 1127 \) bits and \(c' = 3689 \) bits. In chao-dyn/9407006, \(c = 994 \) bits and \(c' = 3192 \) bits. And in chao-dyn/9407009, \(c = 735 \) bits and \(c' = 2933 \) bits.

I think I prefer the “aggressive” formulation in chao-dyn/9407009. I can also make a case for the “conservative” formulation in chao-dyn/9407003. chao-dyn/9407005 and chao-dyn/9407006 are the intermediate steps between chao-dyn/9407003 and chao-dyn/9407009.

After the references we summarize chao-dyn/9407003 in a four-page appendix. The first page is a table summarizing the version of LISP that is used. The second page is an example of a program written in this LISP. The third page summarizes the definitions, and the fourth page summarizes the results.

References

[1] G. J. Chaitin, “The Limits of Mathematics,” IBM Research Report RC 19646, e-print chao-dyn/9407003, July 1994, 270 pp.

[2] G. J. Chaitin, “The Limits of Mathematics II,” IBM Research Report RC 19660, e-print chao-dyn/9407003, July 1994, 255 pp.

[3] G. J. Chaitin, “The Limits of Mathematics III,” IBM Research Report RC 19663, e-print chao-dyn/9407006, July 1994, 239 pp.
[4] G. J. Chaitin, “The Limits of Mathematics IV,” IBM Research Report RC 19671, e-print chao-dyn/9407009, July 1994, 231 pp.
Symbol	Description	Arguments	Result
`'`	quote	1 arg	`(abc) → (abc)`
`+`	head	1 arg	`+(abc) → a`
`-`	tail	1 arg	`-a → a`
`*`	join	2 args	`*a(bc) → (abc)`
`. `	atom	1 arg	`.a → 1`
`=`	equal	2 args	`=aa → 1`
`/`	if	3 args	`/0ab → b`
`&`	function	2 args	`(&xy)y ab → b`
`,`	display	1 arg	`,x → x and displays x`
`!`	eval	1 arg	`!e → evaluate e`
`?`	try	3 args	`?teb → evaluate e time t with bits b`
`@`	read bit	0 args	`@ → 0 or 1`
`%`	read exp	0 args	`% → any s-expression`
`#`	bits for	1 arg	`#x → bit string for x`
`^`	append	2 args	`^‘(ab)(cd) → (abcd)`
`~`	show	1 arg	`~x → x and may show x`
`:`	let	3 args	`:xv e → (^&(x)e v)`
`^&`	define	2 args	`^&xv → x is v`
`” `	literally	1 arg	`”+ → +`
`{ } `	unary	1 arg	`{3} → (111)`
`[] `	comment	0	[ignored]
`()`	empty	0	
`0 `	false	0	
`1 `	true	1	
lisp.c

LISP Interpreter Run

[[[(Fx) = flatten x by removing all interior parentheses]]]
[Define F of x as follows: if x is empty then return empty, if x is an atom then join x to the empty list, otherwise split x into its head and tail, flatten each, and append the results.]
& (Fx) /=x() / .x*x() ^(F+x)(F-x)

F: (&(x)(/=x())()/.x*x() (^F+x)(F-x))

(F,F) [use F to flatten itself]

expression (F,F)
display (&(x)(/=x())()/.x*x() (^F+x)(F-x))
value (&x/=x/.x*x^F+x-F-x)

[[[(Gx) = size of x in unary]]]
[Let G of x be [if x is empty, then unary two, if x is an atom, then unary one, otherwise split x into its head and tail, size each, and add the results] in ...]
: (Gx) /=x()’{2} / .x’{1} ~ (G+x)(G-x)
[Let G of x be [...] in:]
(G,G) [apply G to itself]

expression (((’(&G)(G,G))))’(’(x)(/=x())’(11)’/.x’(1) ’)(~(G+x)(G-x)))))

display (’(x)(/=x())’(11)’/.x’(1)’(G+x)(G-x)))

value (111)

End of LISP Run

Elapsed time is 0 seconds.
DEFINITIONS

• An S-expression x is elegant if no smaller S-expression has the same output. (Here “output” may be either its value or what it displays.)

• Let x be an S-expression. The LISP complexity $H_L(x)$ of x is the size in characters $|p|$ of the smallest S-expression p whose value is x.

• Let X be an infinite set of S-expressions. The LISP complexity $H_L(X)$ of the infinite set X is the size in characters $|p|$ of the smallest S-expression p that displays the elements of X.

• $[\text{U}(p) = \text{output of universal machine U}]
\quad \left[\text{given binary program p.} \right]
\& (\text{Up}) ++?0'!%p$

• Let x be an S-expression. The complexity $H(x)$ of x is the smallest possible value of $7 \times$ (the size in characters $|p|$ of an S-expression p whose value is x if it is given the binary data d) plus (the size in bits $|d|$ of the binary data d given to p).

• Equivalently $H(x) \equiv H_U(x)$ is the size in bits $|p|$ of the smallest bit string p such that $U(p) = x$.

• The halting probability Ω of U is the limit as $t \to \infty$ of (the number of t-bit programs p such that $U(p)$ halts within time t) divided by 2^t.

• Let X be an infinite set of S-expressions. The complexity $H(X)$ of the infinite set X is the smallest possible value of $7 \times$ (the size in characters $|p|$ of an S-expression p that displays the elements of X if it is given the binary data d) plus (the size in bits $|d|$ of the binary data d given to p).

• Equivalently $H(X) \equiv H_U(X)$ is the size in bits $|p|$ of the smallest bit string p such that $X = \text{lim}_{t \to \infty} -?t'!%p$.
RESULTS

- Lowcase variables x, y, n are individual S-expressions.

 Uppercase variables X, Y, T are infinite sets of S-expressions.

- $H_L(x, y) \leq H_L(x) + H_L(y) + 8$.

- If $x \in T \implies x$ is elegant, then
 \[x \in T \implies |x| \leq H_L(T) + 378. \]

- If $(x, n) \in T \implies H_L(x) \geq n$, then
 \[(x, n) \in T \implies n \leq H_L(T) + 381. \]

- $H(x, y) \leq H(x) + H(y) + 140$.

- Let x be a string of $|x|$ bits.
 \[H(x) \leq 2|x| + 469, \text{ and } H(x) \leq |x| + H(|x|) + 1148. \]

- Let Ω_n be the first n bits of Ω.
 \[H(\Omega_n) > n - 4431. \]

- $H(X \cap Y) \leq H(X) + H(Y) + 4193$.

- $H(X \cup Y) \leq H(X) + H(Y) + 4193$.

- If $(x, n) \in T \implies H(x) \geq n$, then
 \[(x, n) \in T \implies n \leq H(T) + 2359. \]

- T cannot determine more than $H(T) + 7581$ bits of Ω.
