Surgical Care Improvement Program and surgical site infections: initiatives to improve outcome in patients with joint replacements in a tertiary care center in Pakistan

Muhammad A. Usmani, MBBS, Marij Zahid, MBBS*, Tashfeen Ahmad, MBBS, FCPS, Masood Umer, MBBS, FCPS, Haroon ur Rashid, MBBS, FCPS, Pervaiz M. Hashmi, MBBS, FCPS, Riaz H. Lakdawala, MBBS, FCPS, Shahryar Noordin, MBBS, FCPS

Introduction: The Surgical Care Improvement Programme (SCIP) was initiated in 2002 with the vision of reducing the morbidity and mortality associated with postoperative surgical site infection by addressing the antibiotics use and early discontinuation, catheter removal within 48 hours postoperatively, use of clipper for hair removal, controlled blood sugars on preop, first and second postop days and maintenance of normothermia.

Objective: To assess the relationship between SCIP-infection prevention care measures and postoperative infection rates in patients undergoing total knee replacement (TKR) or total hip replacement (THR).

Materials and Methods: A retrospective chart review was conducted including all patients who underwent primary total knee arthroplasty or total hip arthroplasty between January 2, 2013 and December 31, 2014 at our institute. Patients’ demographics and SCIP parameters were recorded in a preformed structured proforma. Outcome variable was recorded as presence of surgical site wound infection and compared.

Results: A total of 307 patients (242 knee replacements and 65 hip replacements) were included in the study. Wound infection was observed in 2/242 patients (1%) in the TKR group while 3/65 (5%) showed infection in the THR group. Clipper was used after induction for operative site hair removal in 206 TKR patients and in 39 THR patients, none of them had wound infection which was significant ($P < 0.002$ and 0.046).

Conclusions: SCIP parameters ensure reduced surgical site infection rates, lesser duration of hospital stay, decreased incidence of deep venous thrombosis and reduced postop morbidity and mortality.

Keywords: Surgical wound infection, Incidence, Arthroplasty, Hair removal, Knee joint

Introduction

Wound infection is a serious and an not uncommon problem in total knee replacement (TKR) and total hip replacement (THR) rendering a high morbidity, increased hospital stay and a cost burden to the patients[1]. The incidence of deep infection has declined since the early years of joint replacement surgery. Currently, the infection rates are low: around 1% in primary knee replacements and 0.3%–0.6% in hip replacements[2-4]. However, even prospective surveillance programs may underestimate the infection rates; thus, the true incidence is probably higher[5]. Deep infection can also account for up to one quarter of early revisions[6,7]. Approximately one third of deep infections occur within 3 months and two-thirds within 2 years after the index operation[8]. Hematogenous infection may occur at any time after the operation, but its proportion increases with time after surgery. Overall, hematogenous infections account for up to almost one third of infected joint replacements[9].

Deep postoperative infection is traditionally classified into early infection (<3 mo postoperatively), delayed infection (3–24 mo), and late infection, that is >2 years postoperatively[9,10]. Most of the relevant literature deals with early and delayed postoperative infections where the infecting pathogen is thought to contaminate the joint during surgery[9]. These infections are potentially preventable by minimizing the possibility of perioperative and early postoperative contamination of the prosthesis. In knee replacements, there is good evidence of higher risk of deep infection in patients with rheumatoid arthritis (RA), American Society of Anesthesiologists (ASA) risk score >2, diabetes, or morbid obesity[2]. Most risk factors are shared for knee and hip replacements[8].

The Surgical Infection Prevention Project (SIPP) or Surgical Care Improvement Programme (SCIP) was initiated in 2002 as a joint venture between the centers for Medicare and Medic aid Services and the centers for Disease Control and Prevention, with the vision of reducing the morbidity and mortality associated
with postoperative surgical site infection by appropriate selection and timing of prophylactic antimicrobials. At the commencement of the project, published guidelines for surgical antimicrobial prophylaxis were analyzed, and a team of surgical infection prevention specialists developed 3 core rules which include:

1. Giving parenteral antimicrobial prophylaxis within 1 hour before incision (within 2 h for Vancomycin or Fluoroquinolones),
2. Prophylactic antibiotics should be in concordance with published guidelines, and
3. Prophylactic antibiotics should be discontinued within 24 hours after end of surgery.

Appropriate timing and appropriate antibiotic were included as rules because of an association with reduced surgical site infection incidence. Duration of prophylactic antibiotic was selected, because excessive use promotes bacterial resistance. Surgical Care Intervention Program has been derived from the Previous Surgical Infection Prevention project, which sought to reduce surgical site infections by promoting appropriate timing and selection of prophylactic antibiotics. Key parameters of SCIP are illustrated in Figure 1. Available literature reveals no such study conducted in Pakistan. The rationale behind this study is to assess the relationship between SCIP infection prevention care measures and postoperative infection rates in patients undergoing total knee or total hip arthroplasty.

Materials and methods

A retrospective chart review was conducted including all patients who underwent primary total knee arthroplasty or total hip arthroplasty between January 1, 2013 and December 31, 2014 at our institute. Patients who were labeled as infected prior to surgery and treated during the same hospital stay and then underwent surgery were excluded from the study. Data were collected on a structured proforma. Patients’ age, sex, comorbid conditions, ASA status, duration of surgery and hospital stay, preop hemoglobin levels, blood glucose levels on preop, first postop and second postop days and postop fever was recorded. Outcome variable was recorded as presence of surgical site wound infection. Data were analyzed using SPSS version 20. Continuous variables were expressed as mean with SDs, whereas categorical variables were expressed as frequencies and percentages. Continuous data were compared using independent t test whereas categorical data was compared using χ² test or Fischer exact test. P-value of <0.05 was considered as significant.

Results

A total of 307 patients were included in the study out of which 242 underwent total knee arthroplasty and 65 patients underwent total hip arthroplasty. Mean age of the patients undergoing TKR and THR were 63.38 and 55.38 years, respectively. Majority of the patients were females (79%) in TKR group while males were more (59%) among THR patients. Majority of the patients in both groups were ASA 2 or less. Mean duration of surgery was 205 and 155 minutes for TKR and THR groups, respectively. Wound infection was observed in 2/242 patients (1%) while 3/65 (5%) showed infection in THR group (Table 1). Clipper was used after induction for operative site hair removal.

![Figure 1. Fish bone diagram showing key Surgical Care Improvement Programme parameters. FBS indicates fasting blood sugar, post OP, postoperative; SSI, surgical site infection; VTE, venous thrombo-embolism.](image-url)

Table 1

Variables	TKR	THR
Mean age (y)	63 ± 9	55 ± 16
Mean duration of surgery (min)	205 ± 73	155 ± 53
Sex [n (%)]		
Male	50 (21)	38 (59)
Female	192 (79)	27 (42)
ASA status [n (%)]		
ASA < 2	214 (70)	42 (65)
ASA ≥ 2	93 (30)	23 (35)
Diabetes		
Present	75 (31)	20 (31)
Absent	167 (69)	45 (69)
DVT prophylaxis [n (%)]		
Yes	225 (93)	60 (92)
No	17 (7)	5 (8)
Wound infection [n (%)]		
Present	2 (1)	3 (5)
Absent	240 (99)	62 (95)

ASA indicates American Society of anesthesia; DVT, deep vein thrombosis; THR, total hip replacement; TKR, total knee replacement.
removal in 206 TKR and 39 THR patients, none of them had wound infection which was significant \((P = 0.002 \) and 0.046). All key SCIP parameters were analyzed for any significant association with wound infection and are depicted in Table 2.

Discussion

The incidence of wound infection is decreasing worldwide after total knee and total hip arthroplasties with prophylaxis

Procedure	Wound Infection	Sig (P)	
Compliance with antibiotic guideline [n (%)]			
TKR Yes	1 (1)	146 (99)	0.63
No	1 (1)	94 (99)	
THR Yes	2 (5)	40 (95)	0.94
No	1 (4)	22 (96)	
Discontinuation of prophylactic antibiotics within 24 h [n (%)]			
TKR Yes	0	114 (100)	0.18
No	2 (2)	126 (98)	
THR Yes	0	21 (100)	0.22
No	3 (7)	41 (93)	
Clippers used for hair removal [n (%)]			
TKR Yes	0	206 (100)	0.002*
No	2 (6)	31 (94)	
THR Yes	0	39 (100)	0.046*
No	3 (14)	19 (86)	
Not documented	0	4 (100)	
Urinary catheter removed within 48 h postoperatively [n (%)]			
TKR Yes	1 (1)	84 (99)	0.14
No	1 (1)	156 (99)	
THR Yes	0	27 (100)	0.34
No	3 (8)	35 (92)	
Diabetes [n (%)]			
TKR Yes	0	75 (100)	0.34
No	2 (1)	165 (99)	
THR Yes	1 (5)	19 (95)	0.99
No	2 (4)	43 (95)	
Raised reflex (> 200 mg/dL)			
1st postop day			
THR (62 : 242)	0 (0%)	62 (100%)	0.40
THR (20 : 65)	1 (5%)	19 (95%)	0.92
2nd postop day			
THR (62 : 242)	0 (0%)	63 (100%)	0.40
THR (19 : 65)	1 (5%)	18 (95%)	0.92
Mean postop temperature within 1.5 min (°C)	36.50 ± 0.1	36.29 ± 0.37	0.43
THR	36.60 ± 0.35	36.23 ± 0.35	0.77

*Two-tailed significance using \(\chi^2 \) test. THR indicates total hip replacement; TKR, total knee replacement.

antibiotics and early discontinuation to prevent resistance. SCIP parameters ensure reduced surgical site infection rates, lesser duration of hospital stay, decreased incidence of deep venous thrombosis and reduced postop morbidity and mortality. Individual factors may not be associated significantly but as a whole, they improve postop wound infection and complications.

According to the National Healthcare Safety Network (NHSN) report 2006–2008\(^{[17]} \), postoperative infection rates in knee replacement patients ranged from 0.7% to 1.6%, depending on patient risk, and hip replacement infection rates ranged from 0.7% to 2.4% while in our study incidence of infections in TKR patients is 0.8% which is comparable while incidence of infection in hip replacement is high, that is 4.6%. Kleven et al\(^{[16]} \) reported, surgical site infections made up ~20% of hospital acquired infections, making this the second most common hospital acquired infections in US hospitals.

Wilson et al\(^{[19]} \) analyzed infection rates in 125 British hospitals and concurred an infection rate of 1.26% following THR. He also discovered that surgical site infection risk was higher in revision surgeries than after a primary operation. Our study showed an infection incidence of 4.6% among primary THR patients. Stulberg et al\(^{[20]} \) reported a retrospective cohort including 405,720 patients from 398 US hospitals and recorded a decrease in infection incidence in accordance with SCIP infection prevention parameters from 14.6 to 6.8 per 1000 which is very minimal.

Morkatos et al\(^{[21]} \) reported the use of electrical clippers as standard for preop skin preparation and hair removal. In our study clipper use for hair removal was significantly associated with lesser incidence of infection. None of the patient in THR and TKR groups had infection when clipper was used for hair removal. Lee et al\(^{[22]} \) studied the outcomes for a variety of orthopedic procedures, including hip and knee replacement. His study showed a higher 1-year postoperative mortality (17% vs. 4%), prolonged stay, readmission within 90 days of surgery (13 vs. 4 d), and ~9.31 days of hospitalization due to infection. In 2008, Kuper and Rosenstein\(^{[1]} \) reviewed the published researches related to total knee and hip replacement surgical site infections and deduced that revision of a total joint due to infection costed 2.8 times more than cost of revision for aseptic loosening, and 4.8 times more than costs associated with primary total hip arthroplasty. A revision surgery of total hip arthroplasty because of infection increases the frequency of hospitalizations, lengthens hospital stay, revision surgeries, follow-up visits, and charges. Lentino\(^{[23]} \) reported the mortality rate of infected arthroplasty to be twice the rate of uninfected patients during the first three months following the procedure.

Furthermore, studies investigated the effect of SCIP adherence on the incidence of SSI and concluded that there was no decline in the number of cases\(^{[24,25]} \) instead they reported an increase in the superficial SSI. Limitation of our study was reduced sample size in THR group and factors that included considering the body mass index of the patient, the operating room traffic, whether any previous surgery had taken place in the same operating room where our procedure was performed, and if any postoperative rehabilitation devices had been used or not.

Conclusion

SCIP ensures reduced surgical site infection rates, lesser duration of hospital stay, decreased incidence of deep venous thrombosis
and reduced postop morbidity and mortality. We conclude that SCIP should be implemented upon every surgical patient, and large volume, multicenter randomized control trials and comparative studies should be done to strengthen the association of SCIP parameters with prevention of wound infection and for any further improvement in the program.

Ethical approval

None.

Sources of funding

None.

Author contribution

None.

Conflict of interest disclosures

The authors declare that they have no financial conflict of interest with regard to the content of this report.

Research registration unique identifying number (UIN)

None.

Guarantor

None.

References

[1] Kuper M, Rosenstein A. Infection prevention in total knee and total hip arthroplasties. Am J Orthop (Belle Mead, NJ) 2008;37:E2–5.

[2] Jamsen E, Huhntala H, Puolakka T, et al. Risk factors for infection after knee arthroplasty. J Bone Joint Surg Am 2009;91:38–47.

[3] Pedersen AB, Svendssoe JE, Johnsen SP, et al. Risk factors for revision due to infection after primary total hip arthroplasty: a population-based study of 80,756 primary procedures in the Danish Hip Arthroplasty Registry. Acta Orthop 2010;81:542–7.

[4] Pulido L, Ghanem E, Joshi A, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 2008;466:1710–5.

[5] Jamsen E, Huotari K, Huhntala H, et al. Low rate of infected knee replacements in a nationwide series—is it an underestimate? Review of the Finnish Arthroplasty Register on 38,676 operations performed in 1997 through 2003. Acta Orthop 2009;80:205–12.

[6] Dobzyniak M, Fehring TK, Odam S. Early failure in total hip arthroplasty. Clin Orthop Relat Res 2006;447:76–8.

[7] Mulhall KJ, Ghomrawi HM, Scully S, et al. Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res 2006;446:45–50.

[8] Stefaandottir A, Johansson D, Knutsen K, et al. Microbiology of the infected knee arthroplasty: report from the Swedish Knee Arthroplasty Register on 426 surgically revised cases. Scand J Infect Dis 2009;41:831–40.

[9] Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004;351:1645–54.

[10] Salkind AR, Rao KC. Antibiotic prophylaxis to prevent surgical site infections. Am Fam Physician 2011;83:585.

[11] Dale WB, Peter MH. Workgroup SIPGW. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Clin Infect Dis 2004;38:1706–5.

[12] Ponce B, Raines BT, Reed RD, et al. Surgical site infection after arthroplasty: comparative effectiveness of prophylactic antibiotics: do surgical care improvement project guidelines need to be updated? J Bone Joint Surg Am 2014;96:970–7.

[13] Page CP, Bohnen JM, Fletcher JR, et al. Antimicrobial prophylaxis for surgical wounds: guidelines for clinical care. Arch Surg 1993;128:79–88.

[14] Bratzler DW, Hunt DR. The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery. Clin Infect Dis 2006;43:322–30.

[15] Cataifa G, Weinberg DA, Wong H-H, et al. The Effect of Surgical Care Improvement Project (SCIP) on surgical site infections (SSI). Med Care 2014;52:S66–73.

[16] Munday GS, Deveaux P, Roberts H, et al. Impact of implementation of the Surgical Care Improvement Project and future strategies for improving quality in surgery. Am J Surg 2014;208:835–40.

[17] Edwards JR, Peterson KD, Mu Y, et al. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control 2009;37:783–805.

[18] Klevens RM, Edwards JR, Richards CL Jr, et al. Estimating healthcare-associated infections and deaths in us hospitals, 2002. Public Health Rep 2007;122:160–6.

[19] Wilson J, Charlett A, Leong G, et al. Rates of surgical site infection after hip replacement as a hospital performance indicator: analysis of data from the English mandatory surveillance system. Infect Control Hosp Epidemiol 2008;29:219–6.

[20] Stulberg JJ, Delaney CP, Neuhauser DV, et al. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA 2010;303:2479–85.

[21] Markatos K, Kasetta M, Nikolau VS. Perioperative skin preparation and draping in modern total joint arthroplasty: current evidence. Surg Infect 2015;16:221–5.

[22] Lee J, Singletary R, Schmader K, et al. Surgical site infection in the elderly following orthopaedic surgery. J Bone Joint Surg Am 2006;88:1705–2.

[23] Lentino JR. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 2003;36:1157–61.

[24] Rasouli MR, Jaberi MM, Hozack WJ, et al. Surgical care improvement project (SCIP): has its mission succeeded? J Arthroplasty 2013;28:1072–5.

[25] Edmiston CE Jr, Spencer M, Lewis BD, et al. Reducing the risk of surgical site infections: did we really think SCIP was going to lead us to the promised land? Surg Infect 2011;12:169–77.