A new flavonol glycoside from the aerial parts of *Epimedium koreanum* Nakai

Fubo Han and Ik-Soo Lee*

Affiliation

College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea

Correspondence

Prof. Dr. Ik-Soo Lee, College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju61186, Republic of Korea

E-mail: islee@chonnam.ac.kr; Tel: +82-62-530-2932; Fax: +82-62-530-2911

Acknowledgement

This research was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A4A01009908).

ABSTRACT

A new prenylated flavonol glycoside (1) was isolated from a 95% methanol extract of the dried and powdered aerial parts of *Epimedium koreanum* Nakai (Herba Epimedi), along with seven previously known flavonoids (2-8). The chemical structure of the new compound (1) was established to be 5-hydroxy-4’-methoxy-8-(2-hydroxy-3-methyl-3-butenyl)flavone 3-O-α-L-rhamnopyranosyl-7-O-β-D-glucopyranoside on the basis of spectroscopic methods. The antioxidant activities of these compounds were determined by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical scavenging assay, and kaempferitrin (8) showed a high reactivity with DPPH.

Keywords: *Epimedium koreanum* Nakai; flavonol glycoside; antioxidant activity
Supplemental Figure Legend

Table S1. DPPH radical scavenging activities of compounds 1-8 (n=3).

Figure S1. 1H-NMR spectrum of compound 1 (500MHz, Methanol-d_4).

Figure S2. 13H-NMR spectrum of compound 1 (125MHz, Methanol-d_4).

Figure S3. The HMBC spectrum and its main correlations of compound 1.
Table S1. DPPH radical scavenging activities of compounds 1-8 (n=3).

Compound	IC$_{50}$ (µg/mL)	Compound	IC$_{50}$ (µg/mL)
Vit-C	36.9	5	>1000
1	>1000	6	>1000
2	>1000	7	>1000
3	>1000	8	45.5
4	>1000		

Figure S1.
Figure S2.
Figure S3.