Simplified trans-axillary aortic valve replacement under local anesthesia – A single center early experience

Joris F. Ooms a, Maarten P. Van Wiechen a, Thijmen W. Hokken a, Jeannette Goudzwaard b, Marijo J. De Ronde-Tillmans a, Joost Daemen a, Francesco Mattace-Raso b, Peter P. De Jaeger e, Nicolas M. Van Mieghem a,*

a Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
b Section of Geriatrics, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands

A R T I C L E I N F O
Article history:
Received 2 November 2020
Accepted 23 November 2020
Available online xxxx

Keywords:
Transcatheter aortic valve replacement
Axillary artery
Alternative access

A B S T R A C T
Background: The axillary artery is an alternative route for patients with comorbidities and unfavorable femoral arteries who need transcatheter aortic valve replacement (TAVR). Simplified trans-axillary transcatheter aortic valve replacement (TAx-TAVR) implies a completely percutaneous approach under local anesthesia and arteriotomy closure with vascular closure techniques. Herein, we report on early experience with simplified TAx-TAVR under local anesthesia.

Methods: We enrolled all consecutive patients who underwent simplified TAx-TAVR in our center. Main study parameter was the incidence of axillary access related major vascular complications within 30 days. Secondary parameters included a composite early safety endpoint, axillary access-site related vascular/bleeding complications and short-term mortality. Post TAVR axillary stent patency was evaluated during follow-up by CT-analysis.

Results: Between July 2018 and April 2020, TAx-TAVR was attempted in 35 patients with a mean age of 79 years. Local anesthesia and conscious sedation were used in 91.4% (n = 32) and 8.6% (n = 3) respectively. A covered stent was needed for complete axillary hemostasis in 44.1% (n = 15). Device success was achieved in 91.2% (n = 31/34). The 30-day axillary artery major vascular and major bleeding complication rates were 14% (n = 5) and 11% (n = 4). The early safety endpoint was reached in 22.9% (n = 8). Mortality rates at 30 days and six months were 2.9% and 11.6%. Computed tomography (CT) confirmed axillary stent patency during follow-up in 82% (n = 9/11).

Conclusions: In patients with high/prohibitive surgical risk and unsuitable femoral access, simplified TAx-TAVR under local anesthesia offers a valuable alternative for transfemoral TAVR but requires advanced access site management techniques including covered stents. Our data suggest an unmet clinical need for dedicated TAx closure devices.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Transfemoral transcatheter aortic valve replacement (TAVR) is now a valid alternative to surgical aortic valve replacement for symptomatic severe aortic stenosis (AS) in elderly patients [1–4]. With unsuitable femoral arteries, thoracic (apex and direct aorta) and upper body arterial (carotid and axillary) routes are possible but may come at increased procedural risk and less favorable outcome [5–9]. TAVR registries in the United States and Europe reported non-transfemoral access strategies in approximately 15% of TAVR patients [7].

Alternative access typically requires surgical involvement and general anesthesia. General anesthesia prolongs procedure time and in-hospital stay [10]. Previous reports described the feasibility of a completely percutaneous trans-axillary approach [11,12]. We further simplified trans-axillary TAVR (TAx-TAVR) using (in principle) only local anesthesia, ultrasound guided axillary artery access and arteriotomy closure with vascular closure devices and covered stents in case of incomplete closure [13].

Herein, we report on our early experience with simplified TAx-TAVR in patients at high or prohibitive operative risk and no suitable femoral...
artery access including computed tomography (CT) follow up of patients in whom covered stents were required for closure device failure.

2. Methods

We enrolled all patients with an attempted TAx-TAVR in the Erasmus University Medical Center (EMC).

Eligibility for TAx-TAVR was by heart team consensus involving imaging specialists, interventional cardiologists, cardiac surgeons and geriatricians. All patients were deemed at high or prohibitive operative risk. CT evaluation ruled out safe femoral artery accessibility (for large-bore sheaths) and confirmed axillary artery suitability to accommodate large bore access for TAVR. This included an axillary diameter of >5 mm.

A dedicated database captured relevant patient demographics, comorbidities, clinical status, ECG, echocardiography, CT and procedure data. Adverse events were classified according to the Valve Academic Research Consortium II consensus document (VARC-II) [14]. All patients were followed up in the outpatient clinic at 30 days post-TAVR. Patients in whom a covered stent was required to achieve complete hemostasis after closure device failure underwent follow up CT evaluation of the stented artery. All patients provided written informed consent for the TAVR procedure and subsequent data analysis for research purposes. The study complied to the principles of the Declaration of Helsinki and did not fall under the scope of the Medical Research Involving Human Subjects Act per EMC Institutional Review Board.

2.1. Simplified transaxillary aortic valve replacement under local anesthesia

Our completely percutaneous trans-axillary aortic valve replacement technique under local anesthesia has been described elsewhere [13]. In brief, ultrasound guided lidocaine administration and large bore access to the axillary artery was obtained in the deltopectoral groove, to avoid entry into the thoracic space (Fig. 1A-B). Left side access was preferred unless the left internal thoracic artery had been used for coronary bypass surgery or in case of unattractive left axillary/subclavian artery appearance (tortuosity, atherosclerotic disease, calcium). A 7F Slender sheath (Terumo Corp., Somerset NJ) was inserted in the ipsilateral radial or ulnar artery to accommodate bail out stent delivery when needed (Fig. 1C). Additional 6F access was obtained to a common femoral artery or (in the later experience) contralateral radial artery to advance a pigtail catheter for contrast injections (Fig. 2).

The TAVR procedure evolved with contemporary self-expanding supra-annularly functioning transcatheter heart valves (14F Evolut R or 16F Evolut Pro or 16F Evolut XL, Medtronic Inc. Minneapolis, MN). Percutaneous large bore arteriotomy closure was attempted with either a plug-based MANTA (Teleflex, Wayne, PA) or double suture-based ProGlide (Abbott Laboratories, Chicago, IL) technique (Fig. 1D-E). A 6F diagnostic catheter was advanced through the ipsilateral radial/ulnar artery and parked distal to the arteriotomy site for selective angiography after sheath removal and arteriotomy closure to confirm hemostasis and/or advance an 0.035” wire for ballooning or (covered) stenting (Figs. 1F-H, 2).

2.2. Study parameters

The main study endpoint was the incidence of axillary access major vascular complications within 30 days. Secondary endpoints included a composite of mortality, stroke, acute kidney injury stage II-III, coronary obstruction and valve related dysfunction requiring a repeat procedure at 30 days (VARC-II early safety endpoint), all major and minor vascular complications and VARC-II specified bleeding complications related to the axillary access and need for new permanent pacemaker implantation at 30 days [14]. Additionally, incidence of an in-hospital delirium as evaluated by a geriatrician was recorded.

Contemporary vascular closure devices were originally designed for femoral use but were applied for axillary arteriotomy closure in this study. Because of its extra-thoracic location, the axillary artery could be manually compressed in case of closure device failure and additional bail out maneuvers could be applied to achieve hemostasis. Adjunctive covered stenting was considered part of the procedure and was therefore not deemed a vascular complication. We opted for balloon expandable Advanta V12 covered stents (Maquet, Rastatt, Germany) that are 7F compatible and could be delivered through the 7F slender sheath that was inserted in the radial/ulnar artery downstream from the large bore axillary artery. Successful arteriotomy closure was defined by

![Fig. 1. Aspects of axillary access and arteriotomy closure. (A) Ultrasound guided access of the right axillary artery. (B) Echocardiographic view of the advancing needle (within red circle) towards the axillary artery. (C) Overview of right axillary (lower red arrow) and radial (upper red arrow) access. (D) Deployment of MANTA vascular closure device at the right axillary artery. (E) Position of the operator during deployment of closure device. (F) Angiographic check after closure with evident blush at the arteriotomy site (red arrow). The radio-opaque marker of the VCD does not make contact with the vessel wall. (G) Deployment of a 6 mm covered stent in the right axillary artery. (H) Angiographic control after stent placement shows complete hemostasis. Adequate stent expansion was confirmed (red box). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)
complete hemostasis through use of a closure device and a covered stent if needed.

2.3. Follow-up of covered stent patency

All patients who received a covered stent in the axillary artery for hemostasis underwent CT angiography during follow up to assess stent patency, deformation or fracture. Patency was defined as the absence of >50% narrowing of the stent lumen relative to the distal reference vessel diameter (i.e. no stenosis), deformation was defined as stent bending leading to a significant stenosis [15]. Stent fracture was scored according to standardized fracture grading [16]. Patients were clinically assessed for signs and symptoms of ipsilateral distal ischemia during in-hospital stay and at the 30-days follow up visit.

2.4. Statistics

Continuous variables were presented as mean with standard deviation (SD) if normally distributed. Median with interquartile range [IQR] was provided if not normally distributed. Pre and post TAVR invasive measurements were analyzed using paired t-tests or Wilcoxon signed-rank test depending on normality. Nominal data are presented as frequencies and compared using either Pearson’s Chi-square or Fishers exact test for unpaired data if applicable. A Kaplan-Meier estimate was used to estimate 6-month survival probability. A two-sided P value of <0.05 was considered to indicate statistical significance. All statistical analyses were performed with SPSS 25.0 (IBM, Armonk, NY).

3. Results

A total of 35 patients underwent an attempted TAx-TAVR. The indication was a severe symptomatic native aortic stenosis in 34 (97.1%) patients and a failing surgical bioprosthesis with severe regurgitation in 1 patient. All patients were treated between July 2018 and April 2020 and our Tax-TAVR cohort represented 7.4% (n = 35/473) of the total TAVR cohort in that time window. Tax-TAVR was the only non-transfemoral approach after transapical access was no longer applied since early 2018.

3.1. Baseline and procedural characteristics

Baseline demographics are displayed in Table 1. Mean age was 78.7 years (SD ± 6.3) and all patients were suffering from peripheral arterial disease that precluded transfemoral TAVR. Mean Society of Fig. 2. Access sites in simplified trans-axillary TAVR - a schematic overview. The left axillary artery is the primary access site. Should the procedure be performed with the right axillary artery as the primary access site, the function of the right and left radial artery accesses are interchanged. (*) Rapid pacing during implantation is done over the left ventricular guidewire.

Baseline characteristics	n = 35
Age - years	78.7 ± 6.3
Male	20 (57.1)
Hypertension	26 (74.3)
Diabetes mellitus	15 (42.9)
Stroke/TIA	6 (17.1)
Peripheral vascular disease	35 (100.0)
COPD	14 (40.0)
Chronic kidney disease (GFR <35 ml/min)	7 (20.0)
Previous myocardial infarction	8 (22.9)
Previous percutaneous coronary intervention	14 (40.0)
Previous coronary-artery bypass grafting	8 (22.9)
Previous TAVR	1 (2.9)
Previous aortic valve surgery	1 (2.9)
Previous non-aortic valve surgery	2 (5.7)
Atrial fibrillation	14 (40.0)
Permanent pacemaker or ICD	5 (14.3)
NYHA functional class	
I	2 (5.7)
II	12 (34.3)
III	18 (51.4)
IV	3 (8.6)
STS-PROM score	4.3 ± 1.8
HAS-BLED scoreα	5.8 [4.1–5.8]
Baseline anticoagulation and anti-platelet therapy	
Vitamin K antagonist or NOAC	14 (40.0)
Aspirin	17 (48.6)
Clopidogrel or Ticagrelor	13 (37.1)
Baseline echocardiogram	
LVEF (%)	52.2 ± 10.6
LVEF ≤52%	2 (5.7)
Aortic stenosis - severe	34 (97.1)
Aortic regurgitation 2moderate	5 (14.3)
Mitral regurgitation 2moderate	5 (14.3)
Tricuspid regurgitation 2moderate	4 (11.4)
Thoracic Surgeons Predicted Risk of Mortality (STS-PROM) score was 4.3% (SD ± 1.8). All patients were deemed at high or prohibitive operative risk by heart team consensus. Reasons were: advanced frailty (n = 17), hostile chest and previous thoracic surgery (n = 8), advanced lung disease (n = 4), active malignancy (n = 3), poor LVF with advanced age (n = 2) and patient refusal (n = 1).

Procedural characteristics are tabulated in Table 2. Thirty-two patients (91.4%) received local anesthesia only and 3 patients (8.6%) conscious sedation. Access was obtained via the left axillary artery in 25 (71.4%) and via the right axillary artery in 10 (28.6%) patients. Femoral arteries were left untouched in 12 (34.3%) patients (i.e. pigtail or safety wire via radial arteries). One patient suffered a stroke while advancing the delivery catheter and the procedure was aborted with no transcatheter valve implant. The 14F Evolut R was the preferred transcatheter heart valve (THV) because of its lowest profile and was used in 91.2% of patients. Two patients needed >1 THV implant. Device success was achieved in 31 (91.2%) patients. One procedural death resulted from aortic root rupture after TAVR and postdilatation.

Axillary arteriotomy closure was attempted with a VCD in 34 patients. A MANTA VCD was used in 31 (91.2%) patients and double ProGlides in 3 (8.8%). VCD failure occurred in 15 (44.1%) patients. A MANTA VCD was used in 31 (91.2%) patients and double ProGlides in 3 (8.8%). VCD failure occurred in 15 (44.1%) patients. Two patients needed >1 THV implant. Device success was achieved in 31 (91.2%) patients. One procedural death resulted from aortic root rupture after TAVR and postdilatation.

In-hospital and 30 day complications are reported in Table 3. Overall mortality was restricted to the patient who died per procedure. Stroke occurred in 2 (5.7%) patients, including the patient in whom the TAVR was aborted, while one (2.9%) patient experienced a transient ischemic attack (TIA). Acute kidney injury (AKI) stage II occurred in 1 (2.9%) patient. Five patients (14.3%) required a permanent pacemaker due to a total AV-block.

Table 2

Procedural characteristics	n = 35
Anesthesia	
- Local	32 (91.4)
- Conscious sedation	3 (8.6)
Valve in valve	2 (5.7)
Valve placement attempted	34 (97.1)
Valve type used	
- Evolut R	31 (91.2)
- Evolut Pro	3 (8.8)
More than one valve placed	1 (2.9)
Predilation	4 (11.8)
Postdilation	13 (38.2)
VARC-II device success	31 (91.2)
Immediate procedural mortality	1 (2.9)
Embolization	0
Tamponade	1 (2.9)
Emergency surgery	0
Heparin used (IU)	5000 [5000–6000]
Protamine used (μg)	9 (25.7)
Contrast used (ml)	80 [61–100]
Procedure time (min)	67 [41–134]
Access-site related	
characteristics	
Completely non-femoral	12 (34.3)
Axillary access side	
- Left	25 (71.4)
- Right	10 (28.6)
Closure device	
- MANTA	31 (91.2)
- Double ProGlide	3 (8.8)
VCD failure – VARC-II	15 (44.1)
Covered stent used	15 (44.1)
Successful arteriotomy closure	33 (97.1)

Table 3

Complications	In-hospital (n = 35)	30 daysa (n = 35)
Mortality	1 (2.9)	1 (2.9)
- Cardiovascular cause	1 (2.9)	1 (2.9)
Acute myocardial infarction	0	0
Stroke	2 (5.7)	2 (5.7)
TIA	1 (2.9)	1 (2.9)
New permanent pacemaker	5 (14.3)	5 (14.3)
Acute kidney injury		
- Stage I	2 (5.7)	–
- Stage II	1 (2.9)	
- Stage III	0	
Non-access site		
- Life threatening bleeding	1 (2.9)	1 (2.9)
- Major vascular complication	1 (2.9)	1 (2.9)
Delirium	3 (8.6)	3 (8.6)
Admission time (days)	5 [3–8]	–
Access site related complications		
Access site related vascular complicationb		
- Major	4 (11.4)	5 (14.3)
- Minor	0	0
Reintervention at access site	1 (2.9)	2 (5.7)
Access site related bleeding		
- Life threatening	2 (5.7)	2 (5.7)
- Major	2 (5.7)	2 (5.7)
- Minor	3 (8.6)	3 (8.6)
Freedom from access site related major vascular complication or ≥major bleeding	31 (88.6)	30 (85.7)
Brachial plexus impairment access site arm	2 (5.7)	2 (5.7)
Early safety endpoint and functional class at 30 days		
Composite early safety endpoint – VARC II	–	8 (22.9)
Any NYHA class improvement	–	24 (69.4)
Any access-site related bleedings		(80.0*)

3.2. Vascular and bleeding complications

The main endpoint of axillary access major vascular complications occurred in 5 (14.3%) patients. In one patient a malapposed covered stent resulted in continued bleeding at the arteriotomy site, which was resolved by postdilatation. One patient experienced a major bleeding around the access site requiring multiple transfusions. One patient (in whom the TAVR was aborted as described above) suffered an axillary artery dissection that generated a stroke and life-threatening bleeding with an active blush on CT which was treated with manual compression and multiple transfusions. In another patient, significant procedural blood loss caused a large hematoma and required intermittent vasopressor support (qualified as a life-threatening bleeding).

Lastly, one patient experienced a major vascular complication after hospital discharge with bilateral upper extremity paresthesia and pain. The right axillary covered stent appeared underexpanded and the left radial artery (that had received a 6F radial sheath) showed a total occlusion. The stent was postdilated and a PTA was performed in the left radial artery. The total number of access site reinterventions by day 30 was 2 (5.7%) (both featured a postdilatation). Major and life-threatening access–site related bleeding complications occurred in 2 (5.7%) and 2 (5.7%) patients respectively. Three patients (8.6%) experienced minor access–site related bleedings.

Median hospital stay was 5 days [IQR 3–8] and included admission time in referring hospitals. Delirium, diagnosed by a geriatrician, occurred in 3 (8.6%) patients. At 30 days, 30 (85.7%) patients were free of access-site related major vascular or ≥major bleeding complications.

The VARC-II defined early safety endpoint at 30 days was reached in 8 (22.9%) patients (Table 3 and Supplementary Table 2). The incidence of the primary endpoint, major bleeding and the early safety endpoint
remained stable throughout the experience (no initial learning curve effect) (Supplementary Table 3). NYHA functional class at 30 days was improved by ≥1 grade in 80% of patients. Median follow-up duration was 56 days [IQR 39–198] with a 30 day and 6 month mortality of 1 (2.9%) and 3 (8.6%) respectively with a Kaplan-Meier estimated survival at 6 months of 88.4%.

Two patients developed post-procedural brachial plexus neuropathy of the access-site arm. One patient (who had received a covered stent) experienced subtle limitations of fine motor skills of the ipsilateral hand that persisted at 1-year clinical follow up while the other patient (who had an otherwise uneventful course) reported transient sensory impairment of the ipsilateral fingers.

Of the 15 patients who received a covered stent 11 (73%) had a follow-up CT of the axillary artery at a mean follow-up of 205 days (Table 4). Two patients (18%) showed stent deformation and significant stenosis of which details are described in Fig. 3. No vessel occlusions or strut fractures were observed. CT-confirmed stent patency was 82% (n = 9/11).

4. Discussion

This case series describes our initial experience with a completely percutaneous simplified TAx-TAVR technique. Main observations are: 1) simplified TAx-TAVR was feasible and relatively safe. 2) Axillary artery major vascular and ≥major bleeding complication rates were 14% and 11% respectively. 3) Contemporary vascular closure device technology (originally designed for femoral arterial access closure) had important flaws and therefore covered stents should be considered an essential part of simplified TAx-TAVR. 4) Ball-out covered stent placement to secure complete hemostasis requires meticulous implantation and may include low-threshold postdilatation to achieve complete expansion, apposition and secure stent patency.

Percutaneous axillary access was applied in 7.2% of the overall TAVR population, which is consistent with recent European and American registries and underscores the importance of alternative non-transfemoral routes [7,17,18]. Alternative access patients typically have extensive peripheral arterial disease and other comorbidities. Still, we demonstrated device implantation success in 91.2% with the simplified TAx approach under local anesthesia which mimics the results of other TAx-TAVR and alternative access routes that predominantly required general anesthesia and/or surgical techniques. Surgical cut-down as typically applied in a transapical, direct aortic, transcarotid or subclavian approach increases patient morbidity [19]. Ball-out covered stent placement to secure complete hemostasis requires meticulous implantation and may include low-threshold postdilatation to achieve complete expansion, apposition and secure stent patency.

Post procedural CT assessment of axillary stent No. (%) (n = 11)

Days to follow-up CT-scan	205 (2–440)
Stent stenosis	2 (18.2)
- Due to deformation	0
- Due to thrombus	0
Stent occlusion	0
Strut fracture (any)	0
Stent patency	9 (81.8)

Post procedural CT-assessment of axillary stent.

The VARC-II defined early safety endpoint was reached in 8 (22.9%) patients and is mainly driven by the number of major vascular complications. An explanation for these numbers can be found in the substantial baseline morbidity of our cohort. All patients suffered from peripheral vascular disease, hypertension was common and comorbidities associated with bleeding risk were extensive (i.e. elevated HASBLED-score at baseline). The reported numbers are in line with the previously reported high-risk cohorts and lead to similar rates of vascular complications [1,25].

Studies on completely percutaneous TAx-TAVR are scarce. The Hamburg experience on 100 consecutive patients reported a remarkably low complication rate [11]. The Hamburg technique included general anesthesia (in 72% of cases), the creation of an arterial femoral-radial rail, and suture-based closure with balloon occlusion. Procedure time was 85 min and mean amount of contrast used was 167 ml (vs. medians of 67 min and 80 ml in our cohort). Closure device success appeared higher with an 11% covered stent use vs. 44% in our series. We introduced the plug based MANTA VCD for its relatively rapid time to hemostasis, single device use and marking of the arteriotomy site on angiography. Arguably, this technology was not developed for axillary access, precludes the use of additional closure devices in case of failure and cannot be applied using the balloon occlusion technique because adequate blood pressure is required for optimal deployment of the intravascular device component. Mortality at 30 days follow-up was decreased compared to the incidence reported by the Hamburg group (2.9% vs. 6%).

Persistent brachial plexus injury with the axillary approach at the deltopectoral groove was rare in our series and seemed no major clinical issue as previously suggested [26]. Of note, the two reported cases in this series both followed a bleeding event with prolonged manual compression.

To our knowledge, this is the first study to report on CT-assessed axillary stent patency post TAx-TAVR. CT analysis of patients who received a covered stent confirmed two cases (18% of scanned patients) of significant stent deformation and stenosis with only 1 being symptomatic. These scans provide important information on the mechanism of stent deformation in post TAx-TAVR patients. In both patients, stent deformation and stenosis was evidently located next to an osseous structure (rib, humeral head) (Fig. 3B-C) and in both patients post-procedural and post-stent deployment manual compression was required. Conceivably, the relatively superficial location of the axillary artery close to bone structures (humeral head and 1st rib) allows complete hemostatic control through manual compression but may come at the price...
of brachial plexus injury and stent deformation. This underscores the importance of appropriate covered stent apposition and expansion including postdilatation if needed to obtain immediate complete hemostasis and avoid the need for additional manual compression.

5. Limitations

This single center study has several limitations. First, most patients qualify for transfemoral TAVR. Therefore the sample size is relatively
limited. Second, multiple patients did not present at the outpatient clinic at one year follow-up, resulting in an inability to report on VARC-II defined adverse events beyond 30 days. Third, not all patients with a covered stent had a follow-up CT available which might have led to underreporting of asymptomatic stent deformation. Fourth, timing of follow-up CT varied, precluding a comparison of axillary stent performance over time.

6. Conclusion

In patients with high or prohibitive surgical risk and no suitable femoral access site, simplified TAx-TAVR under local anesthesia offers a valuable alternative for transfemoral TAVR but requires advanced access site management techniques including covered stents. Our data suggest an unmet clinical need for dedicated TAx closure devices.

Declaration of competing interest

Professor Van Mieghem has received a research grant support from Boston Scientific, Edwards Lifesciences, Abbott Vascular and PulseCath B.V. which were received for activities outside the submitted work. Dr. Daemen received institutional grant/research support from Astra Zeneca, Abbott Vascular, Boston Scientific, ACIST Medical, Medtronic, Pie Medical, ReCor Medical and PulseCath, and consultancy and speaker fees from ACIST Medical, Boston Scientific, ReCor Medical, Pie Medical, Medtronic and PulseCath. The other authors have no conflict of interest to declare.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.carrev.2020.11.025.

References

[1] Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1397–607.
[2] Adams DH, Popma JJ, Reardon MJ, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;370:1790–8.
[3] Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–31.
[4] Popma JJ, Deeb GM, Yalouzov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380:1706–15.
[5] Makkar RR, Thourani VH, Mack MJ, et al. Five-year outcomes of transcatheter or surgical aortic-valve replacement. N Engl J Med. 2020;382:799–809.
[6] Allen KB, Chhatriwalla AK, Cohen D, et al. Transcarotid versus transapical and transaortic access for transcatheter aortic valve replacement. Ann Thorac Surg. 2019;108:715–22.
[7] Lanz J, Greenbaum A, Pilgrim T, Tarantini G, Windecker S. Current state of alternative access for transcatheter aortic valve implantation. EuroIntervention. 2018;14:AB40–52.
[8] Schafer U, Ho Y, Frekker C, et al. Direct percutaneous access technique for transcatheter aortic valve implantation: “the Hamburg Sankt Georg approach”. JACC Cardiovasc Interv. 2012;5:477–86.
[9] Costa G, De Backer O, Pilgrim T, et al. Initial European experience with transapical transcatheter aortic valve implantation. EuroIntervention. 2019. https://doi.org/10.10424/EIJ-D-19-00797.
[10] Ehret C, Rossaint R, Follenius L, et al. Is local anaesthesia a favourable approach for transcatheter aortic valve implantation? A systematic review and meta-analysis comparing local and general anaesthesia. BMJ Open. 2017;7:e016321.
[11] Schafer U, Deuschl F, Schofer N, et al. Safety and efficacy of the percutaneous transapical access for transcatheter aortic valve implantation using various transcatheter heart valves in 100 consecutive patients. Int J Cardiol. 2017;232:247–54.
[12] van Mieghem NM, Lutten C, Oei F, et al. Completely percutaneous transcatheter aortic valve implantation through transapical: an evolving concept. EuroIntervention. 2012;7:1340–2.
[13] Ooms JF, Van Mieghem NM. Completely percutaneous transaortic aortic valve implantation under local anaesthesia: a minimalist alternative access approach. JACC Cardiovasc Interv. 2019;12:e1–2.
[14] Kappetein AP, Head SJ, Genereux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. J Am Coll Cardiol. 2012;60:1438–54.
[15] Aboyans V, Ricci JB, Bartelink MEL, et al. Editor’s choice - 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (EVSYS), Eur J Vasc Endovasc Surg. 2018;55:305–68.
[16] Jaff M, Dake M, Popma J, Ansel G, Yoder T. Standardized evaluation and reporting of stent fractures in clinical trials of noncoronary devices. Catheter Cardiovasc Interv. 2007;70:460–2.
[17] Beurthet S, Karam N, Reseguer N, et al. Femoral versus nonfemoral peripheral access for transcatheter aortic valve replacement. J Am Coll Cardiol. 2015;74:2728–39.
[18] Grover FL, Vemulpalli S, Carroll JD, et al. 2016 Annual Report of The Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. J Am Coll Cardiol. 2017;69:1215–30.
[19] Blackstone EH, Suri RM, Rajeswaran J, et al. Propensity-matched comparisons of clinical outcomes after transapical or transfemoral transcatheter aortic valve replacement: a placement of aortic transcatheter valves (PARTNER)-I trial substudy. Circulation. 2015;131:1989–2000.
[20] Costa G, De Backer O, Pilgrim T, et al. Feasibility and safety of transapical transcatheter aortic valve implantation: a multicentre European registry. EuroIntervention. 2020;15:e1319–24.
[21] Chollet T, Marcheix B, Boudou N, et al. Propensity-matched comparison of clinical outcomes after transapical versus transfemoral aortic valve replacement. EuroIntervention. 2018;14:750–7.
[22] Goudzwaard JA, de Rond-Tillmans M, de Jager TAJ, et al. Incidence, determinants and consequences of delirium in older patients after transcatheter aortic valve implantation. Age Ageing. 2020;49:389–94.
[23] Abawi M, Pagnesi M, Agostoni P, et al. Postoperative delirium in individuals undergoing transcatheter aortic valve replacement: a systematic review and meta-analysis. J Am Geriatr Soc. 2018;66:2417–24.
[24] Moriyama N, Dahlbacka S, Vahasilta T, et al. The efficacy of the ultrasound-navigated MANFA deployment following transfemoral transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2019;12:2564–6.
[25] Rodes-Cabau J, Webb JG, Cheung A, et al. Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk: acute and late outcomes of the multicenter Canadian experience. J Am Coll Cardiol. 2010;55:1080–90.
[26] Modine T, Obadian JF, Choukroun E, et al. Transcatheter aortic valve implantation using the axillary/subclavian access: feasibility and early clinical outcomes. J Thorac Cardiovasc Surg 2011;141:847–91, 91 e1.