Expression of the fr Protooncogene Product as a Function of Myelomonocytic Cell Maturation

Vicente Notario, J. Silvio Gutkind, Masue Imaizumi, Shigeru Katamine, and Keith C. Robbins

Laboratory of Cellular Development and Oncology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892

Abstract. The fr protooncogene is a member of the src family of protein tyrosine kinases. Recent studies have shown that normal myelomonocytic cells and tissue macrophages are the major sites of fr mRNA expression. In the present study, we have identified the fr protooncogene product in HL60 cells and have examined its expression as a function of HL60 cell maturation. Whether induced toward monocytic or granulocytic lineages, p55fr accumulated in HL60 cells during maturation. In differentiated cells, the protein was active as a protein tyrosine kinase and was localized to peripheral cell membranes. Demonstration that a myristyl group was covalently bound to the protein probably accounted for its subcellular distribution. These findings establish developmental regulation of p55fr in a lineage that represents its natural site of expression.

Nearly half of the retrovirus oncogenes described to date either encode protein tyrosine kinases or share structural homology with genes specifying such enzymes. Discoveries identifying a small number of these oncogenic tyrosine kinases as altered versions of growth factor receptors provided impetus for the idea that dysregulation of pathways normally controlled by growth factors—such as platelet-derived growth factor (10, 33), colony-stimulating factor 1 (28), and epidermal growth factor (11)—can be important steps in the oncogenic process. It would appear, however, that not all oncogenic protein tyrosine kinases represent transmembrane growth factor receptors. Tyrosine kinases specified by the src protooncogene (31) as well as the closely related products of cellular fr (c-fr) (15, 17) and yes (30) genes do not possess hydrophobic domains able to span the plasma membrane and therefore lack extracellular ligand-binding domains.

Although the src family of oncogenic proteins exhibits known enzymatic and transforming activities (for a recent review see 16), functions for their normal cellular counterparts have been elusive. The ubiquitous expression of cellular src (c-src) has implied the importance of this protooncogene for a variety of cell types but has provided little information concerning its possible function. In contrast, expression of fr protooncogene mRNA is limited in humans to normal circulating granulocytes, monocytes, and tissue macrophages (19). Thus, restricted c-fr expression suggests that its function may represent a feature common to those cell types comprising the myelomonocytic lineage. Previous findings have shown that fr mRNA accumulates during differentiation of a monocytic cell line (19). In the present study, using HL60 cells as a model for myelomonocytic cell maturation, we have detected p55fr in maturing cells and have observed its accumulation during the HL60 differentiation process. Our findings establish developmental regulation of p55fr in a lineage that represents its natural site of expression.

Materials and Methods

Cells

HL60 cells (6) were maintained in RPMI 1640 medium containing 10% FBS. For differentiation experiments, exponentially growing cells were subcultured at a density of 2.5 × 10⁴ cells/ml, and inducers were added to the medium at the following concentrations: 10⁻⁶ M retinoic acid (Sigma Chemical Co., St. Louis, MO) (1), 1.25% DMSO (Sigma Chemical Co.) (7), and 20 nM 12-O-tetradecanoyl-phorbol-13-acetate (TPA; Sigma Chemical Co.) (24). After induction, cells were washed twice with PBS before use. NIH 3T3 cells expressing chicken p60src (27) or p21nu (29) have been described. Mononuclear cells isolated from normal human donors were also used.

RNA Preparation and Analysis

RNA was purified from cellular extracts prepared by homogenization in guanidinium thiocyanate as described (5). A genomic fragment from the human c-fr gene (32), encompassing exon 2 and portions of introns 1 and...
fgr mRNA levels were shown to increase upon induction of

\[\text{mRNA levels} \text{ increase upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]

\[\text{fgr mRNA levels were shown to increase upon induction of } \]

\[\text{upon induction of } \]
cytotoxic differentiation. As determined by nitroblue tetrazolium reduction assays for DMSO or by morphologic criteria (2) for TPA, exposed cultures followed a maturation time course nearly identical to that observed with retinoic acid (see above). Thus, after 4 d of exposure, 91, 83, or 81%, respectively, of cells treated with retinoic acid, DMSO, or TPA were fully differentiated and viable. Lysates of treated cultures were evaluated for p55c-fgr expression by immunoblotting. As shown in Fig. 3, levels of p55c-fgr increased during differentiation induced by each of these agents. However, maximum induction by DMSO or TPA was ~40% of the p55c-fgr abundance observed in retinoic acid–treated cells. These findings demonstrated that the fgr protooncogene product accumulated in HL60 cells that were induced to differentiate toward either monocytic or myelocytic lineages.

Figure 1. Accumulation of fgr mRNA during differentiation of HL60 cells. RNA was harvested from HL60 cells before (lane 3) or after treatment with retinoic acid for 6 or 12 h (lanes 4 and 6, respectively) or 1, 2, 3, or 4 d (lanes 7-10, respectively). Samples were used to hybridize radiolabeled c-fgr probe as described in Materials and Methods. Control samples consisted of probe alone (lane 1) or probe plus tRNA (lane 2) or RNA from normal human mononuclear cells (lane 5). Sizes of molecules surviving S1 nuclease treatment are indicated on the right in nucleotides. M, molecular size standards. (B) Schematic representation of probe used to detect c-fgr mRNA. Closed box indicates location of c-fgr exon 2 within labeled DNA fragment. Sizes of probe molecules that would be protected by various forms of c-fgr RNA are shown in nucleotides. IVS, intron.
Figure 3. Detection of p55^{c-fgr} during exposure of HL60 cells to various differentiation agents. HL60 cell extracts were prepared at varying times after treatment with inducing agents. Cells seeded at a concentration of 2.5 x 10⁵ ml⁻¹ on day 0 were incubated in the presence of retinoic acid, DMSO, or TPA (A-C, respectively) for up to 4 d. Samples were analyzed by immunoblotting using anti-fgr C serum as described in Materials and Methods. Immune complexes were labeled using iodinated protein A and visualized by autoradiography. The location of p55^{c-fgr} is indicated.

Figure 2. Expression of p55^{c-fgr} during HL60 differentiation. Protein extracts were prepared from HL60 cells before (lanes 1) or after treatment with retinoic acid for 6 or 12 h (lanes 2 and 3, respectively) or 1, 2, 3, or 4 d (lanes 4–7, respectively). Samples were fractionated by SDS-PAGE and transferred to nitrocellulose filters. Filters were incubated with anti-fgr C (A and B) or anti-fgr N (C and D). In some cases, antibodies were preincubated with homologous peptide (B and D). Immune complexes were labeled using iodinated protein A and visualized by autoradiography. The location of p55^{c-fgr} is indicated.

p55^{c-fgr} Is Active as a Protein Tyrosine Kinase

Genes of the src protooncogene family encode enzymes with protein tyrosine kinase activity (for review see 14). To examine whether p55^{c-fgr} also possessed this enzymatic activity, lysates of HL60 cells treated with retinoic acid were tested in immune complex kinase assays. As shown in Fig. 4, p55^{c-fgr} was autophosphorylated in the assay, and phosphate was transferred to enolase, an exogenous substrate that was included in the reaction mixture. In contrast, antibody preincubated with fgr C peptide did not precipitate kinase activity. By phosphoamino acid analysis of labeled p55^{c-fgr}, only phosphotyrosine was detected, establishing p55^{c-fgr} as a protein tyrosine kinase (data not shown). When examined as a function of HL60 cell differentiation, the abundance of fgr kinase increased with time of exposure to retinoic acid (Fig. 4). Thus, p55^{c-fgr} accumulates as an active protein tyrosine kinase during the maturation of HL60 cells.

Localization of p55^{c-fgr} in Induced HL60 Cells

In an effort to define possible cellular locations where the tyrosine kinase activity of p55^{c-fgr} might be exerted, we fractionated retinoic acid–induced HL60 cells into cytosol and particulate membrane compartments and assayed each for the presence of the fgr protooncogene product by immunoprecipitation. As shown in Fig. 5, no p55^{c-fgr} was detected in the cytosolic fraction, but the protein was abundant in crude membranes. By comparison of signal intensities observed in cytosolic and membrane fractions, we concluded that at least 95% of p55^{c-fgr} was membrane associated.

To confirm the localization of p55^{c-fgr} and to visualize its distribution among cellular membranes, we attempted to detect the protein using an indirect immunofluorescence staining approach. As shown in Fig. 6, staining was readily observed in HL60 cells fixed after 2 d of retinoic acid exposure but not in uninduced cells. The specificity of the signal was further demonstrated when identically prepared cells were treated with anti-fgr C in the presence of homologous peptide (Fig. 6 B). As shown in Fig. 6 C, bright fluorescence appeared toward the cell periphery with diffuse staining of the cytoplasm. Little if any perinuclear or nuclear signal was observed. The pattern of staining was consistent with the lo-
localization of p55c-fgr to the plasma membrane. Taken together, our findings revealed that the fgr protooncogene product is distributed toward the periphery of mature HL60 cells in association with membrane components.

Modification of p55c-fgr by Posttranslational Addition of Fatty Acid

The posttranslational addition of a myristyl group to cytoplasmic p60c-fgr has been shown essential for its accumulation at the inner surface of the plasma membrane (9, 23). To determine whether similar modifications affected p55c-fgr and thereby contributed to its subcellular location, we attempted to label the c-fgr translational product by incubation of induced HL60 cells with tritiated fatty acids. By immunoprecipitation with anti-fgr C, p55c-fgr was detected in lysates of myristic acid-labeled cells but was barely observed in cells exposed to [3H]palmitic acid (Fig. 7). Control experiments showed, as expected, that p60c-fgr (3) was more readily detectable in lysates of myristic acid–labeled cells, whereas the intensity of the p21c-fgr (26) band was greater when cells were labeled with palmitic acid. These findings demonstrate that p55c-fgr is modified by the posttranslational addition of fatty acid, most likely a myristyl group, and suggest that p55c-fgr associates with membrane components by virtue of this modification.

Discussion

The present study has examined expression of the fgr protooncogene product, p55c-fgr in maturing HL60 cells. The choice of this model was based upon previous studies showing the presence of fgr mRNA only in granulocytes, monocytes, and macrophages (19). Demonstration that p55c-fgr accumulated during maturation of HL60 cells has established that expression of the fgr-encoded protein is developmentally regulated in HL60 cells. These findings are consistent with previous studies that have shown increasing fgr mRNA abundance during maturation of U937 cells (19). More rapid induction of c-fgr mRNA during U937 cell maturation as compared with that of p55c-fgr in HL60 cells probably reflects the relatively advanced state of U937 cell differentiation. Furthermore, the time course of p55c-fgr induction in HL60 cells in response to TPA is nearly identical to that previously described for p60c-fgr (13). Abundant c-fgr mRNA is present in fully mature human (19) and murine (34) monocytes, and p55c-fgr is expressed at high levels in normal granulocytes purified from human blood (13a). Taken together, the evi...
Figure 6. Localization of p55c-fgr by indirect immunofluorescence. Untreated HL60 cells (A) or cultures treated with retinoic acid for 48 h (B and C) were fixed and incubated with anti-fgr C. In one case, antibody was preincubated with fgr C peptide (B). Immune complexes were visualized by staining with fluorescein-conjugated goat anti-rabbit IgG.

dence strongly suggests that accumulation of p55c-fgr in HL60 cells maturing toward monocytes or granulocytes reflects its normal pattern of expression.

The extent of p55c-fgr induction was greatest when HL60 cells were exposed to retinoic acid as compared with TPA or DMSO. Although preliminary studies using lower-titered antibodies did not detect p55c-fgr in HL60 cells exposed to TPA (19), p55c-fgr clearly accumulated during differentiation by TPA. Similar low levels of p55c-fgr were also observed in DMSO-treated cells, suggesting no relationship between the extent of p55c-fgr induction and maturation toward either monocytic or myelocytic lineages. The time course of differentiation induced by all of the agents tested, including retinoic acid, were nearly identical. Thus, the higher levels of p55c-fgr observed in retinoic acid-treated cells appear to relate specifically to retinoic acid. Preliminary experiments addressing this issue have taken advantage of an earlier observation that Epstein-Barr virus-infected B cells (Ramos-AW), but not uninfected Ramos cells, expressed c-fgr mRNA (4). When exposed to retinoic acid, c-fgr mRNA levels increased two- to threefold in Ramos-AW cells but remained undetectable in Ramos cells (our unpublished observations). These data would suggest that retinoic acid not only induces c-fgr mRNA as a function of HL60 maturation but also has an additional enhancing effect on the fgr locus in cells already expressing c-fgr mRNA.

Several recent studies have documented the involvement of protein tyrosine kinases in the program of myelomonocytic cell differentiation. Expression of the colony-stimulating factor 1 receptor is induced when HL60 cells differentiate toward monocytes but not granulocytes (25). This receptor is known to play an important role in both proliferation and maturation of monocytes (22). Furthermore, colony-stimulating factor 1 stimulation of bone marrow-derived monocyctic cells induces the expression of c-fgr mRNA (34), a finding consistent with the presence of c-fgr mRNA in resting peripheral blood monocytes (19). Circulating monocytes also express hck mRNA, and even higher expression of hck is achieved upon activation of these cells (35). The c-src-specified kinase accumulates in HL60 cells during differentiation into monocytic or granulocytic cells (1, 13). All of these findings suggest that regulation of tyrosine phosphorylation is of critical importance for the development of myelomonocytic cells.

Although we have no direct evidence for an fgr function, our present studies in combination with earlier findings delimit the biologic framework in which fgr must normally act. Within the myelomonocytic lineage, c-fgr may play a role in signaling the cessation of cell growth in preparation for maturation or may be involved in some aspect of the maturation process itself. Alternatively, in light of its peripheral membrane location, p55c-fgr may function in mature cells in response to extracellular signals. In this regard, it may be useful to consider response functions—such as chemotaxis, phagocytosis, and respiratory burst reactions—that are shared by mature monocytes, macrophages, and neutrophils. In any case, it is now possible to focus upon myelomonocytic cells in the later stages of their development in search of a physiologic role for the fgr protooncogene.

We thank Joan Brugge for making mAb327 available to us and Edward Stephens for excellent technical assistance.

Received for publication 12 May 1989 and in revised form 1 August 1989.

References

1. Barnekow, A., and M. Gessler. 1986. Activation of the pp60c-src kinase during differentiation of monomyelocytic cells in vitro. *EMBO (Eur. Mol. Biol. Organ.) J.* 5:701–705.

2. Breitman, T. R., S. E. Selonick, and S. J. Collins. 1980. Induction of differentiation of the human promyelocytic leukemia cell line (HL 60) by retinoic acid. *Proc. Natl. Acad. Sci. USA.* 77:2936–2940.

3. Bass, J. E., and B. M. Sefton. 1985. Myristic acid, a rare fatty acid, is the lipid attached to the transforming protein of Rous sarcoma virus and its cellular homolog. *J. Virol.* 53:7–12.

4. Cheah, M. S. C., T. J. Ley, S. R. Tronick, and K. C. Robbins. 1986. fgr proto-oncogene mRNA induced in B lymphocytes by Epstein-Barr virus.
infection. Nature (Lond.). 319:238-240.
5. Chirgwin, J. M., A. E. Prybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonuclease from sources enriched in ribonuclease. Biochemistry. 18:5294-5299.
6. Collins, S. J., R. C. Gallo, and R. E. Gallagher. 1977. Continuous growth and differentiation of human myeloid leukemia cells in suspension culture. Nature (Lond.). 270:347-349.
7. Collins, S. J., R. W. Russcetti, R. E. Gallagher, and R. C. Gallo. 1978. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl. Acad. Sci. USA 75:2458-2462.
8. Cooper, J. A., F. S. Esch, S. S. Taylor, and T. Hunter. 1984. Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J. Biol. Chem. 259:7835-7841.
9. Cross, F. R., E. A. Garber, D. Pelleman, and H. Hanafusa. 1984. A short sequence in the \(p60^{c-.src} \) N terminus is required for \(p60^{c-src} \) myristilation and membrane association and for cell transformation. Mol. Cell. Biol. 4:1834-1842.
10. Dollittle, R. F., M. W. Hunkapiller, E. H. Hood, S. G. Devare, K. C. Robbins, S. A. Aaronson, and H. N. Antoniades. 1983. Simian sarcoma virus oncogene product, \(v-fgr \), is derived from the gene (or genes) encoding a platelet-derived growth factor. Science (Wash. DC). 221:275-277.
11. Downward, J., Y. Yarden, E. Mayes, J. G. Scrace, N. Totty, P. Stockwell, A. Ullrich, J. Schlessinger, and M. D. Welterfield. 1984. Close similarity of epidermal growth factor receptor and \(v-erb-B \) oncogene protein sequences. Nature (Lond.). 307:521-527.
12. Furth, M. E., L. J. Davis, B. Fleurdelys, and E. M. Scolnick. 1982. Monoclonal antibodies to the \(p21 \) products of the transforming gene of Harvey murine sarcoma virus and of the cellular \(ras \) gene family. J. Virol. 43:294-304.
13. Gee, C. E., J. Griffin, L. Sastre, J. L. Miller, T. A. Springer, H. Pinwinc-Worms, and T. M. Roberts. 1986. Differentiation of myeloid cells is accompanied by increased levels of \(p60^{c- src} \) protein and kinase activity. Proc. Natl. Acad. Sci. USA. 83:5131-5135.
14. Gutkind, J. S., and K. C. Robbins. 1989. Translocation of a \(c-fgr \) protein-tyrosine kinase as a consequence of neutrophil activation. Proc. Natl. Acad. Sci. USA. In press.
15. Hunter, T., and J. A. Cooper. 1985. Protein-tyrosine kinases. Annu. Rev. Biochem. 54:897-930.
16. Jove, R., and H. Hanafusa. 1987. Cell transformation by the viral \(src \) oncogene. Annu. Rev. Cell Biol. 3:31-56.
17. Katamine, S., V. Notario, C. R. Rao, T. Miki, M. S. C. Cheah, S. R. Tronick, and K. C. Robbins. 1988. Primary structure of the human \(fgr \) proto-oncogene product \(p55^{c-fgr} \). Mol. Cell. Biol. 8:259-266.
18. Kawakami, T., Y. Kawakami, S. A. Aaronson, and K. C. Robbins. 1988. Acquisition of transforming properties by \(FV \), a normal \(src \)-related human gene. Proc. Natl. Acad. Sci. USA. 85:3870-3874.
19. Ley, T. J., N. L. Connelly, S. Katamine, M. S. C. Cheah, R. M. Senior, and K. C. Robbins. 1989. Tissue-specific expression and developmental regulation of the human \(fgr \) proto-oncogene. Mol. Cell. Biol. 9:92-99.
20. Lipsch, L. A., A. J. Lewis, and J. S. Brugge. 1983. Isolation of monoclonal antibodies that recognize the transforming proteins of avian sarcoma viruses. J. Virol. 48:352-360.
21. Lutton, J. K., R. C. Frederich, and J. P. Perkins. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Proc. Natl. Acad. Sci. USA. 76:2458-2462.
22. Metcalf, D. 1985. The granulocyte-macrophage colony-stimulating factors. Science (Wash. DC). 229:16-22.
23. Notario et al. Developmental Regulation of \(p55^{c-fgr} \) Expression 3135
24. Sherr, C. J., C. W. Rettenmier, R. Sacca, M. F. Roussel, A. T. Look, and E. R. Stanley. 1985. the \(c-fms \) proto-oncogene product is related to the \(c-fms \) proto-oncogene during human monocytic differentiation. Proc. Natl. Acad. Sci. USA. 82:1623-1627.
25. Sherr, C. J., C. W. Rettenmier, R. Sacca, M. F. Roussel, A. T. Look, and E. R. Stanley. 1985. The \(c-fms \) proto-oncogene product is related to the \(c-fms \) proto-oncogene during human monocytic differentiation. Nature (Lond.). 316:64-66.
26. Sefton, B. M., I. S. Trowbridge, J. A. Cooper, and E. M. Scolnick. 1982. The transforming proteins of \(Rous \) sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid. Cell. 31:465-474.
27. Shalloway, D. P., P. J. Johnson, E. O. Freed, D. Coulter, and W. A. Flood. 1987. Transformation of NIH 3T3 cells by cotransfection with \(src \)-src and \(src \)-src oncogenes. Mol. Cell. Biol. 7:3582-3591.
28. Sherr, C. J., C. W. Rettenmier, R. Sacca, M. F. Roussel, A. T. Look, and E. R. Stanley. 1985. The \(c-fms \) proto-oncogene product is related to the \(c-fms \) proto-oncogene during human monocytic differentiation. CSF-1. Cell. 41:665-676.
29. Srivastava, S. K., Y. Yusa, S. H. Reynolds, and S. A. Aaronson. 1985. Effects of two major activating lesions on the structure and conformation of human \(ras \) oncogene products. Proc. Natl. Acad. Sci. USA. 82:38-42.
30. Takeya, T., and H. Hanafusa. 1983. Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating...
32. Tronick, S. R., N. C. Popescu, M. S. C. Cheah, D. C. Swan, S. C. Amsbaugh, C. R. Lengel, J. A. DiPaolo, and K. C. Robbins. 1985. Isolation and chromosomal localization of the human fgr protooncogene, a distinct member of the tyrosine kinase gene family. Proc. Natl. Acad. Sci. USA. 82:6595–6599.
33. Waterfield, M. D., G. T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wasteson, B. Westermark, C. H. Heldin, J. S. Huang, and T. F. Deuel. 1983. Platelet-derived growth factor is structurally related to the putative transforming protein p28^{fr} of simian sarcoma virus. Nature (Lond.). 304:35–39.
34. Willman, C. L., C. C. Stewart, J. K. Griffith, S. J. Stewart, and T. B. Tomasi. 1987. Differential expression and regulation of the c-fgr protooncogene in myelomonocytic cells. Proc. Natl. Acad. Sci. USA. 84:4480–4484.
35. Ziegler, S. F., C. B. Wilson, and R. M. Perlmutter. 1988. Augmented expression of a myeloid-specific protein tyrosine kinase gene (hck) after macrophage activation. J. Exp. Med. 168:1801–1810.