THE COMPLETE LIST OF GENERA OF QUOTIENTS OF THE \mathbb{F}_{q^2}-MAXIMAL HERMITIAN CURVE FOR $q \equiv 1 \pmod{4}$

MARIA MONTANUCCI AND GIOVANNI ZINI

Abstract. Let \mathbb{F}_{q^2} be the finite field with q^2 elements. Most of the known \mathbb{F}_{q^2}-maximal curves arise as quotient curves of the \mathbb{F}_{q^2}-maximal Hermitian curve \mathcal{H}_q. After a seminal paper by Garcia, Stichtenoth and Xing [15], many papers have provided genera of quotients of \mathcal{H}_q, but their complete determination is a challenging open problem. In this paper we determine completely the spectrum of genera of quotients of \mathcal{H}_q for any $q \equiv 1 \pmod{4}$.

Keywords: Hermitian curve, unitary groups, quotient curves, maximal curves

2000 MSC: 11G20

1. Introduction

Let $q = p^n$ be a prime power, \mathbb{F}_{q^2} the finite field with q^2 elements, and \mathcal{X} be a projective, absolutely irreducible, non-singular algebraic curve of genus g defined over \mathbb{F}_{q^2}. The curve \mathcal{X} is called \mathbb{F}_{q^2}-maximal if the number $|\mathcal{X}(\mathbb{F}_{q^2})|$ of its \mathbb{F}_{q^2}-rational points attains the Hasse-Weil upper bound $q^2 + 1 + 2gq$. Maximal curves have been investigated for their applications in Coding Theory. Surveys on maximal curves are found in [12, 13, 14, 16, 37, 38] and [24, Chapter 10].

A well-known and important example of an \mathbb{F}_{q^2}-maximal curve is the Hermitian curve \mathcal{H}_q. It is defined as any \mathbb{F}_{q^2}-rational curve which is projectively equivalent to the plane curve $Y^{q+1} - X^{q+1} + Z^{q+1} = 0$. For fixed q, the curve \mathcal{H}_q has the largest genus $g(\mathcal{H}_q) = q(q - 1)/2$ that an \mathbb{F}_{q^2}-maximal curve can have. The full automorphism group $\text{Aut}(\mathcal{H}_q)$ is isomorphic to $PGU(3,q)$, the group of projectivities of $PG(2,q^2)$ commuting with the unitary polarity associated with \mathcal{H}_q. The automorphism group $\text{Aut}(\mathcal{H}_q)$ is extremely large with respect to the value $g(\mathcal{H}_q)$. Indeed it is known that the Hermitian curve is the unique curve of genus $g \geq 2$ up to isomorphisms admitting an automorphism group of order at least equal to $16g^4$.

By a result commonly referred to as the Kleiman-Serre covering result, see [28] and [29, Proposition 6], a curve \mathcal{X} defined over \mathbb{F}_{q^2} which is \mathbb{F}_{q^2}-covered by an \mathbb{F}_{q^2}-maximal curve is \mathbb{F}_{q^2}-maximal as well. In particular, \mathbb{F}_{q^2}-maximal curves can be obtained as Galois \mathbb{F}_{q^2}-subcovers of an \mathbb{F}_{q^2}-maximal curve \mathcal{X}, that is, as quotient curves \mathcal{X}/G where G is a finite automorphism group of \mathcal{X}. Most of the known maximal curves are Galois covered by the Hermitian curve; see for instance [15, 17, 18, 19, 22, 30, 32, 33] and the references therein.

The first example of a maximal curve not Galois covered by the Hermitian curve is due to Garcia and Stichtenoth [17]. This curve is \mathbb{F}_{q^2}-maximal and it is not Galois covered by \mathcal{H}_{17}. It is a special case of the \mathbb{F}_{q^2}-maximal GS curve, which was later shown not to be Galois covered by \mathcal{H}_{q^2} for any $q > 3$, [22, 30]. Giulietti and Korchmáros [21] provided an \mathbb{F}_{q^2}-maximal curve, nowadays referred to as the GK curve, which is not covered by the Hermitian curve \mathcal{H}_{q^2} for any $q > 2$. Two generalizations of the GK curve were introduced by Garcia, Güneri and Stichtenoth [17] and by Beelen and Montanucci [3]. Both these generalizations are \mathbb{F}_{q^n}-maximal curves, for any q and odd $n \geq 3$. Also, they are not Galois covered by the Hermitian curve \mathcal{H}_{q^2}.
for \(q > 2 \) and \(n \geq 5 \), see [11] [3]; the Garcia-Güneri-Stichtenoth’s generalization is also not Galois covered by \(\mathcal{H}_2 \) for \(q = 2 \), see [22].

A challenging open problem is the determination of the spectrum \(\Gamma(q^2) \) of genera of \(\mathbb{F}_{q^2} \)-maximal curves, for given \(q \). Apart from the examples listed above, most of the known values in \(\Gamma(q^2) \) have been obtained from quotient curves \(\mathcal{H}_q / G \) of the Hermitian curve, which have been investigated in many papers. The most significant cases are the following:

- \(G \) fixes an \(\mathbb{F}_{q^2} \)-rational point of \(\mathcal{H}_q \); see [2] [18] [1].
- \(G \) fixes a self-polar triangle in \(\text{PG}(2, q^2) \ \backslash \ \mathcal{H}_q \); see [8].
- \(G \) normalizes a Singer subgroup of \(\mathcal{H}_q \) acting on three \(\mathbb{F}_{q^6} \)-rational points of \(\mathcal{H}_q \); see [18] [7].
- \(G \) has prime order; see [6].
- \(G \) fixes neither points nor triangles in \(\text{PG}(2, q^6) \); see [33].

From the results already obtained in the literature (see [8] [33] and the references therein), in order to obtain the complete list of genera of quotients \(\mathcal{H}_q / G, G \leq \text{Aut}(\mathcal{H}_q) \), only the following cases still have to be analyzed:

1. \(G \) fixes an \(\mathbb{F}_{q^2} \)-rational point \(P \notin \mathcal{H}_q, p > 2 \).
2. \(G \) fixes a point \(P \in \mathcal{H}_q(\mathbb{F}_{q^2}), p = 2 \) and \(|G| = p^d \) where \(p^d \leq q \) and \(d \mid (q - 1) \).

In this paper a complete analysis of Case 1 is given provided that \(q \) is congruent to 1 modulo 4. This provides the complete list of genera of quotient of the Hermitian curve under this assumption.

More precisely, this paper is organized as follows. Section 2 provides a collection of necessary preliminary results on the Hermitian curve and its automorphism group. In Section 3 a complete analysis of Case 1 is given for \(q \equiv 1 \) (mod 4). Section 4 contains the complete list of genera of quotients of the Hermitian curve for \(q \equiv 1 \) (mod 4) joining our results with the ones already obtained in the literature.

2. Preliminary results

Throughout this paper \(q = p^n \), where \(p \) is a prime number and \(n \) is a positive integer. The Deligne-Lusztig curves defined over a finite field \(\mathbb{F}_q \) were originally introduced in [9]. Other than the projective line, there are three families of Deligne-Lusztig curves, named Hermitian curves, Suzuki curves and Ree curves. The Hermitian curve \(\mathcal{H}_q \) arises from the algebraic group \(^2A_2(q) = \text{PGU}(3, q) \) of order \(q^3 + 1 \). It has genus \((q-1)/2 \) and is \(\mathbb{F}_{q^2} \)-maximal. This curve is \(\mathbb{F}_{q^2} \)-isomorphic to the following curves:

\[
X^{q+1} - Y^{q+1} - Z^{q+1} = 0;
\]

\[(1)\]

\[
X^qZ + XZ^q - Y^{q+1} = 0.
\]

(2)

The automorphism group \(\text{Aut}(\mathcal{H}_q) \) is isomorphic to the projective unitary group \(\text{PGU}(3, q) \), and it acts on the set \(\mathcal{H}_q(\mathbb{F}_{q^2}) \) of all \(\mathbb{F}_{q^2} \)-rational points of \(\mathcal{H}_q \) as \(\text{PGU}(3, q) \) in its usual 2-transitive permutation representation. The combinatorial properties of \(\mathcal{H}_q(\mathbb{F}_{q^2}) \) can be found in [22]. The size of \(\mathcal{H}_q(\mathbb{F}_{q^2}) \) is equal to \(q^3 + 1 \), and a line of \(\text{PG}(2, q^2) \) has either 1 or \(q + 1 \) common points with \(\mathcal{H}_q(\mathbb{F}_{q^2}) \), that is, it is either a tangent line or a chord of \(\mathcal{H}_q(\mathbb{F}_{q^2}) \). Furthermore, a unitary polarity is associated with \(\mathcal{H}_q(\mathbb{F}_{q^2}) \) whose isotropic points are those of \(\mathcal{H}_q(\mathbb{F}_{q^2}) \) and isotropic lines are the tangent lines to \(\mathcal{H}_q(\mathbb{F}_{q^2}) \), that is, the tangents to \(\mathcal{H}_q \) at the points of \(\mathcal{H}_q(\mathbb{F}_{q^2}) \).

The following classification of subgroups of \(\text{PGU}(3, q) \) goes back to Mitchell [31] and Hartley [23]; see also [33].

Theorem 2.1. Let \(G \) be a nontrivial subgroup of \(\text{PGU}(3, q) \). Then one of the following cases holds.

(i) \(G \) is contained in the maximal subgroup of \(\text{PGU}(3, q) \) of order \(q^3(q^2 - 1) \) which stabilizes an \(\mathbb{F}_{q^2} \)-rational point of \(\mathcal{H}_q \).

(ii) \(G \) is contained in the maximal subgroup \(M_q \) of \(\text{PGU}(3, q) \) of order \(q(q - 1)(q + 1)^2 \) which stabilizes an \(\mathbb{F}_{q^2} \)-rational point of \(\text{PG}(2, q^2) \ \backslash \ \mathcal{H}_q \); equivalently, \(M_q \) stabilizes a chord of \(\mathcal{H}_q(\mathbb{F}_{q^2}) \).
Theorem 2.2. \(\bullet \) Following. In particular, a linear collineation \(\Phi_{\mathbb{F}_q} : (X,Y,Z) \mapsto (X^q,Y^q,Z^q) \) of \(\mathrm{PG}(2,\mathbb{F}_q) \).

Theorem 2.3. (see [10, Chapt. XII, Par. 260], [26, Kap. II, Hauptsatz 8.27], [24, Thm. A.8]) Non-tame subgroups:

(i) The cyclic group \(C_d \) of order \(d \), where \(d \mid (q \pm 1) \).

(2) The dihedral group \(D_{2m} = \langle \delta, \epsilon \mid \delta^{2m} = 1, \epsilon^2 = \delta^m, \epsilon^{-1} \delta \epsilon = \delta^{-1} \rangle \cong C_{2m} \circ C_4 \) of order \(4m \), where \(1 < m \mid \frac{q-1}{2} \).

Non-tame subgroups:

(1) \(E_{p^k} \rtimes C_d \), where \(d \mid \gcd(p^k - 1, q - 1) \), \(k \leq n \), and \(E_{p^k} \) is elementary abelian of order \(p^k \).

(2) \(\mathrm{SL}(2,5) \), when \(p = 3 \) and \(q^2 \equiv 1 \pmod{5} \);

(3) \(\mathrm{SL}(2,3) \), when \(p \geq 5 \);

(4) \(\mathrm{TL}(2,p^k) \cong \langle \mathrm{SL}(2,p^k), d_\pi \rangle \), where \(k \mid n \), \(n/k \) is even,

\[
d_\pi = \begin{pmatrix} w & 0 & 0 \\ 0 & w^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

\(w = \xi^{\frac{k+1}{2}} \), and \(\mathbb{F}_q^{*} = \langle \xi \rangle \).

Theorem 2.3. (see [10] Chapt. XII, Par. 260], [26] Kap. II, Hauptsatz 8.27], [24] Thm. A.8]) The following is the complete list of subgroups of \(\mathrm{PGL}(2,q) \) up to conjugacy:

(i) the cyclic group of order \(h \) with \(h \mid (q \pm 1) \);

(ii) the elementary abelian \(p \)-group of order \(p^f \) with \(f \leq n \);

(iii) the dihedral group of order \(2h \) with \(h \mid (q \pm 1) \);

(iv) the alternating group \(A_4 \) for \(p > 2 \), or \(p = 2 \) and \(n \) even;

(v) the symmetric group \(S_4 \) for \(16 \mid (q^2 - 1) \);

(vi) the alternating group \(A_5 \) for \(p = 5 \) or \(5 \mid (q^2 - 1) \);

(vii) the semidirect product of an elementary abelian \(p \)-group of order \(p^k \) by a cyclic group of order \(h \), with \(h \leq n \) and \(h \mid \gcd(p^f - 1, q - 1) \);

(viii) \(\mathrm{PSL}(2,p^f) \) for \(f \mid n \);

(ix) \(\mathrm{PGL}(2,p^f) \) for \(f \mid n \).

In our investigation it is useful to know how an element of \(\mathrm{PGU}(3,q) \) of a given order acts on \(\mathrm{PG}(2,\mathbb{F}_q) \), and in particular on \(\mathcal{H}_q(\mathbb{F}_q) \). This can be obtained as a corollary of Theorem 2.1 and is stated in Lemma 2.2 with the usual terminology of collineations of projective planes; see [25]. In particular, a linear collineation \(\sigma \) of \(\mathrm{PG}(2,\mathbb{F}_q) \) is a \((P,\ell)\)-perspectivity, if \(\sigma \) preserves each line through the point \(P \) (the center of \(\sigma \)), and fixes each point on the line \(\ell \) (the axis of \(\sigma \)). A \((P,\ell)\)-perspectivity is either an elation or a homology according to \(P \in \ell \) or \(P \notin \ell \). This classification result was obtained in [34].
Lemma 2.4. For a nontrivial element \(\sigma \in \text{PGU}(3,q) \), one of the following cases holds.

(A) \(\text{ord}(\sigma) \mid (q+1) \) and \(\sigma \) is a homology, with center \(P \in \text{PG}(2,q^2) \setminus \mathcal{H}_q \) and axis \(\ell \) which is a chord of \(\mathcal{H}_q(\mathbb{F}_{q^2}) \); \((P,\ell) \) is a pole-polar pair with respect to the unitary polarity associated to \(\mathcal{H}_q(\mathbb{F}_{q^2}) \).

(B) \(p \not\mid \text{ord}(\sigma) \) and \(\sigma \) fixes the vertices \(P_1, P_2, P_3 \) of a non-degenerate triangle \(T \subset \text{PG}(2,q^2) \).

(B1) \(\text{ord}(\sigma) \mid (q+1) \); \(P_1, P_2, P_3 \in \text{PG}(2,q^2) \setminus \mathcal{H}_q \), and the triangle \(T \) is self-polar with respect to the unitary polarity associated to \(\mathcal{H}_q(\mathbb{F}_{q^2}) \).

(B2) \(\text{ord}(\sigma) \mid (q^2-1) \) and \(\text{ord}(\sigma) \mid (q+1) \); \(P_1 \in \text{PG}(2,q^2) \setminus \mathcal{H}_q \) and \(P_2, P_3 \in \mathcal{H}_q(\mathbb{F}_{q^2}) \).

(C) \(\text{ord}(\sigma) = p \) and \(\sigma \) is an elastion with center \(P \in \mathcal{H}_q(\mathbb{F}_{q^2}) \) and axis \(\ell \) which is tangent to \(\mathcal{H}_q \) at \(P \), such that \((P,\ell) \) is a pole-polar pair with respect to the unitary polarity associated to \(\mathcal{H}_q(\mathbb{F}_{q^2}) \).

(D) \(\text{ord}(\sigma) = p \) with \(p \not= 2 \), or \(\text{ord}(\sigma) = 4 \) and \(p = 2 \); \(\sigma \) fixes a point \(P \in \mathcal{H}_q(\mathbb{F}_{q^2}) \) and a line \(\ell \) which is tangent to \(\mathcal{H}_q \) at \(P \), such that \((P,\ell) \) is a pole-polar pair with respect to the unitary polarity associated to \(\mathcal{H}_q(\mathbb{F}_{q^2}) \).

(E) \(\text{ord}(\sigma) = p \cdot d \) where \(d \) is a nontrivial divisor of \(q+1 \); \(\sigma \) fixes two points \(P \in \mathcal{H}_q(\mathbb{F}_{q^2}) \) and \(Q \in \text{PG}(2,q^2) \setminus \mathcal{H}_q \), the polar line \(PQ \) of \(P \), and the polar line of \(Q \) which is another line through \(P \).

Throughout the paper, a nontrivial element of \(\text{PGU}(3,q) \) is said to be of type (A), (B), (B1), (B2), (B3), (C), (D), or (E), as given in Lemma 2.4.

To compute the genus of a quotient curve we make use of the Riemann-Hurwitz formula; see [35, Theorem 3.4.13]. For any subgroup \(G \) of \(\text{PGU}(3,q) \), the cover \(\mathcal{H}_q \to \mathcal{H}_q/G \) is a Galois cover defined over \(\mathbb{F}_{q^2} \) and the degree \(\Delta \) of the different divisor is given by the Riemann-Hurwitz formula, namely \(\Delta = (2g(\mathcal{H}_q) - 2) - |G(2\mathcal{H}_q/G) - 2) \). On the other hand, \(\Delta = \sum_{\sigma \in G \setminus \{ id \}} i(\sigma) \), where \(i(\sigma) \geq 0 \) is given by the Hilbert’s different formula [35, Thm. 3.8.7], namely \(i(\sigma) = \sum_{P \in \mathcal{H}_q \setminus \{P\}} \psi_P(\sigma(t) - t) \), where \(t \) is a local parameter at \(P \).

By analyzing the geometric properties of the elements \(\sigma \in \text{PGU}(3,q) \), it turns out that: there are only a few possibilities for \(i(\sigma) \). This is obtained as a corollary of Lemma 2.4 and stated in the following theorem, which is proved in 334.

Theorem 2.5. For a nontrivial element \(\sigma \in \text{PGU}(3,q) \) one of the following cases occurs.

1. If \(\text{ord}(\sigma) = 2 \) and \(2 \mid (q+1) \), then \(\sigma \) is of type (A) and \(i(\sigma) = q+1 \).
2. If \(\text{ord}(\sigma) = 3 \) and \(3 \mid (q+1) \) and \(\sigma \) is of type (B3), then \(i(\sigma) = 3 \).
3. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B1), then \(i(\sigma) = 0 \).
4. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B1), then \(i(\sigma) = 0 \).
5. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B2), then \(i(\sigma) = 2 \).
6. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B3), then \(i(\sigma) = 3 \).
7. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B3), then \(i(\sigma) = 3 \).
8. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B3), then \(i(\sigma) = 3 \).
9. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B3), then \(i(\sigma) = 3 \).
10. If \(\text{ord}(\sigma) = 2 \) and \(\sigma \) is of type (B3), then \(i(\sigma) = 3 \).

In order to characterize the genera of \(\mathcal{H}_q/G \) for any subgroup \(G \) of \(\text{PGU}(3,q) \) under the assumption \(q \equiv 1 \) (mod 4), it is sufficient to consider the case \(G \leq \mathcal{M}_q \), where \(\mathcal{M}_q \) is the maximal subgroup (ii) in Theorem 2.4. In fact, if \(G \not\leq \mathcal{M}_q \):

- the genera \(g(\mathcal{H}_q/G) \) for the subgroups \(G \leq \text{PGU}(3,q) \) stabilizing an \(\mathbb{F}_{q^2} \)-rational point of \(\mathcal{H}_q \) are characterized in [4, Theorem 1.1];
- the genera \(g(\mathcal{H}_q/G) \) for the subgroups \(G \leq \text{PGU}(3,q) \) stabilizing a self-polar triangle of \(\text{PG}(2,q^2) \) are characterized in [8, Section 3];
- the genera \(g(\mathcal{H}_q/G) \) for the subgroups \(G \leq \text{PGU}(3,q) \) stabilizing a Frobenius-invariant triangle in \(\mathcal{H}_q(\mathbb{F}_{q^2}) \setminus \mathcal{H}_q(\mathbb{F}_{q^2}) \) are characterized in [4, Proposition 4.2];
- the genera \(g(\mathcal{H}_q/G) \) for the subgroups \(G \leq \text{PGU}(3,q) \) which do not stabilize any point or triangle are characterized in [33].
3. The maximal subgroup \mathcal{M}_q for $q \equiv 1 \pmod{4}$

Let \mathcal{M}_q be the maximal subgroup of $\text{PGU}(3, q)$ stabilizing a point $P \in \text{PG}(2, q^2) \setminus \mathcal{H}_r$ and its polar line ℓ, which is a chord of $\mathcal{H}_r(F_{q^2})$. For any odd q, the structure of \mathcal{M}_q was already given in [5, Section 3] and [32, Section 3] as a semidirect product $\mathcal{M}_q = \Gamma \rtimes C$, where Γ is the commutator subgroup of \mathcal{M}_q and is isomorphic to $\text{SL}(2, q)$, while C is a cyclic group of order $q+1$; this description was used to compute the genera $q(\mathcal{H}_r/G)$ for some $G \leq \mathcal{M}_q$, namely when G is a tame subgroup of Γ in [5], and when $G = (G \cap \Gamma) \rtimes (G \cap C)$ in [32].

Henceforth, we assume $q \equiv 1 \pmod{4}$ and use a different description of \mathcal{M}_q. Let \mathcal{H}_r be given by the model $[1]$. Up to conjugation in $\text{PGU}(3, q)$, we can assume that $P = (0, 0, 1)$ and ℓ has equation $Z = 0$. As pointed out in the proof of Theorem 2.5 in [3],

$$\mathcal{M}_q = \left\{ \begin{pmatrix} a & \zeta c^q & 0 \\ c & \zeta c^q & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a, c \in F_{q^2}, a^{q+1} - c^{q+1} = 1, \zeta^{q+1} = 1 \right\}$$

and the commutator subgroup of \mathcal{M}_q is

$$H = \left\{ \begin{pmatrix} a & c^q & 0 \\ c & a^q & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a, c \in F_{q^2}, a^{q+1} - c^{q+1} = 1 \right\} \cong \text{SL}(2, q).$$

The center Z of \mathcal{M}_q is cyclic of order $q+1$ and is made by the elements of type (A) with center P; see [32, Section 3]. Hence,

$$Z = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

The intersection of $I = H \cap Z$ has order 2 and is generated by the unique involution $\iota = \text{diag}(-1, -1, 1)$ of H. Since $\frac{q+1}{2}$ is odd, the group generated by H and Z is a direct product $HZ = H \times \Omega$, where $\Omega \cong C_{\frac{q+1}{2}}$ is the subgroup of Z of order $\frac{q+1}{2}$.

The group HZ has index 2 in \mathcal{M}_q, and contains exactly one involution ι. Let β be any involution of \mathcal{M}_q different from ι, for instance $\beta = \text{diag}(-1, 1, 1)$; obviously, β normalizes both $H = \mathcal{M}_q$ and $Z = Z(\mathcal{M}_q)$. Then

$$\mathcal{M}_q = (H \rtimes \langle \beta \rangle) \rtimes \Omega \cong (\text{SL}(2, q) \rtimes C_2) \rtimes C_{\frac{q+1}{2}}.$$

With the notation of [24, Section 9] we also denote $H \rtimes \langle \beta \rangle$ by $\text{SU}^\pm(2, q)$, meaning that $H \rtimes \langle \beta \rangle$ consists of the elements of \mathcal{M}_q with determinant 1 or -1; here, the determinant of an element $\alpha \in \mathcal{M}_q$ is the determinant of the representative matrix of α having entry 1 in the third row and column. Note that $H \rtimes \langle \beta \rangle$ is conjugated to $H \rtimes \langle \gamma \rangle$ in \mathcal{M}_q for any involution $\gamma \in \mathcal{M}_q \setminus \{\iota\}$, because γ and β are conjugated in \mathcal{M}_q (see [27, Lemma 2.2]) and H is normal in \mathcal{M}_q. Note also that \mathcal{M}_q contains no elements of type $(B3)$ or (D).

For any $G \leq \mathcal{M}_q$, we will use the following notation:

$$G_\pm = G \cap \text{SU}^\pm(2, q), \quad G_H = G \cap H, \quad G_\Omega = G \cap \Omega, \quad \omega = |G_\Omega|.$$

We determine in the following proposition the subgroups of $\text{SU}^\pm(2, q)$.

Proposition 3.1. The following is the complete list of subgroups of $\text{SU}^\pm(2, q) \leq \mathcal{M}_q$ for $q \equiv 1 \pmod{4}$.

- The subgroups of H, listed in Theorem 2.2.
- Cyclic groups of order 2.
- Groups $\text{SL}(2, 3) \rtimes C_2 \cong \text{SmallGroup}(48, 29)$ when $p \geq 5$ and $8 \nmid (q - 1)$.
- Cyclic groups of order $2d > 2$, where either $d \mid (q - 1)$ and $d \nmid \frac{q-1}{2}$, or $d \mid (q + 1)$.
- Abelian groups $C_d \rtimes C_2$, where $d \mid (q + 1)$ and d is even.
• Dihedral groups of order $2d$, where $d \mid (q \pm 1)$.
• Groups $\text{Dic}_m = \langle \alpha, \epsilon \mid \alpha^{4m} = 1, \epsilon^2 = \alpha^{2m}, \epsilon^{-1}\alpha = \alpha^{2m-1}\rangle$ of order $8m$ extending a subgroup Dic_m of H, when $m \mid \frac{q-1}{2}$ and $m \nmid \frac{q+1}{2}$.
• Groups $\text{Dic}_m \rtimes C_2$ of order $8m$ extending a subgroup Dic_m of H, when $1 < m \mid \frac{q+1}{2}$.
• Groups $E_{p^k} \rtimes C_{2d}$, where $k \leq n$, $d \mid \gcd(p^k-1,q-1)$, d is even, E_{p^k} is elementary abelian of order p^k, and C_{2d} is cyclic of order $2d$.
• Groups $\text{SU}^\pm(2,p^k) \cong SL(2,p^k) \rtimes C_2$, where $k \mid n$ and n/k is odd.

Proof. Let $G \leq H \rtimes \langle \beta \rangle$ and assume $G \nleq H$, so that $G_H = G \cap H$ has index 2 in G. We may assume that G has order greater than 2, that is G_H is a nontrivial subgroup of H. If ι is the unique involution of H, we denote by \bar{G} and \bar{G}_H the images of G and G_H under the canonical epimorphism $\text{SU}^\pm(2,q) \to \text{SU}^\pm(2,q)/\langle \iota \rangle$. Since ι is the kernel of the action of $\text{SU}^\pm(2,q)$ on the line ℓ, the action of $\text{SU}^\pm(2,q)/\langle \iota \rangle$ on the $q+1$ points of $\mathcal{H}_q \cap \ell$ is equivalent to the action of a subgroup of $\text{PGL}(2,q)$, as they have the same order, $\text{SU}^\pm(2,q)/\langle \iota \rangle = \text{PGL}(2,q)$. Note that $|\bar{G}| = |G_H|$ or $|\bar{G}| = 2|\bar{G}|$ according to $|G_H|$ being even or odd, respectively. We classify G_H according to Theorem 2.2.

• Suppose $G_H = \text{SL}(2,5)$. Then $\text{PGL}(2,q)$ has a subgroup \bar{G} of order 120 and \bar{G} contains $\bar{G}_H \cong A_5$, a contradiction to Theorem 2.4.

• Suppose $G_H = \Sigma_4$. As in the previous point, $\text{PGL}(2,q)$ has a subgroup of order 48 containing a subgroup isomorphic to S_4, a contradiction to Theorem 2.3.

• Suppose $G_H = E_{p^k} \rtimes C_{2d}$ with $k \leq n$ and $d \mid \gcd(p^k-1,q-1)$. The unique Sylow p-subgroup E_{p^k} of G is normal in G, and hence G fixes the unique fixed point $Q \in \ell$ of E_{p^k} on \mathcal{H}_q; see [24] Lemma 11.129). If d is odd, then $|G| = 2|G_H|$ and $G \setminus G_H$ contains an involution ω, which is of type (A) and has center on ℓ: this contradicts, since ω cannot fix any point on $\ell \cap \mathcal{H}_q$ by Lemma 2.3. Then d is even. By [24] Lemma 11.44), $G = E_{p^k} \rtimes C_{2d}$. Such a group $G = E_{p^k} \rtimes C_{2d}$ actually exists in \mathcal{M}_q; for instance, as in [18], use the model (2) for \mathcal{H}_q, assume up to conjugacy that $P = (0,1,0)$, and define

$$G = \left\{ \begin{pmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid c^{q^k} + c = 0 \right\} \rtimes \left\{ \begin{pmatrix} 0 & p^k+1 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a^{2d} = 1 \right\} \cong E_{p^k} \rtimes C_{2d}. $$

Then $G \geq M_q$. Since $M_q = \text{SU}^\pm(2,q) \rtimes C_{2q^2}$ and $\gcd(|G|, \frac{q+1}{2}) = 1$, this implies $G \leq \text{SU}^\pm(2,q)$.

• Suppose $G_H = \text{SL}(2,p^k)$ with $k \mid n$. Then $|\bar{G}| = |\text{PGL}(2,p^k)|$ and \bar{G} contains $G_H \cong \text{PSL}(2,p^k)$, so that $\bar{G} = \text{PGL}(2,p^k)$ by Theorem 2.4. Let G_1 be a subgroup of $\text{SU}^\pm(2,q)$ with $G_H \leq G_1$ and $[G_1 : G_H] = 2$. Clearly, $\bar{G}_1 = \bar{G} = \text{PGL}(2,p^k)$: we show that $G_1 = G$. Choose $\delta \in \bar{G}$ of order $o(\delta) = p^k - 1$ if $4 \mid (p^k - 1)$, or $o(\delta) = p^k + 1$ if $4 \nmid (p^k + 1)$. Let $\alpha \in G$ and $\bar{G}_1 \in G_1$ be preimages of δ, that is $\bar{\alpha} = \bar{\alpha}_1 = \delta$; their order is $o(\alpha) = o(\alpha_1) = 2 \cdot o(\delta)$ and divides $2(q - 1)$. This implies in particular $\alpha, \alpha_1 \notin G_H$, so that $\bar{G} = \langle \bar{G}_H, \alpha \rangle$ and $\bar{G}_1 = \langle \bar{G}_1, \alpha_1 \rangle$. The group $\text{PGU}(3,q)$ contains a unique cyclic subgroup C such that $\delta \in C$ and $[C : \langle \delta \rangle] = 2$; see Lemma 2.3; hence, $\langle \alpha \rangle = \langle \alpha_1 \rangle$. Thus, $G_1 = G$: there is at most one subgroup of $\text{SU}^\pm(2,q)$ containing G_H with index 2.

If n/k is even, then $G = \text{TL}(2,p^k)$ by Theorem 2.4. Assume that n/k is odd. Then the group

$$G = \left\{ \begin{pmatrix} a & c^q & 0 \\ c & a^q & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a, c \in \mathbb{F}_{p^{2k}}, a^{p^k+1} - c^{p^k+1} = 1 \right\} \rtimes \left\{ \begin{pmatrix} \zeta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid \zeta = \pm 1 \right\} $$

is a subgroup of $\text{SU}^\pm(2,q)$; this can be proved in analogy to the proof of [33] Lemma 3.10], i.e. showing by induction on n/k that the condition $a^{p^k+1} - c^{p^k+1} = 1$ is equivalent to $a^{q^1} - c^{q^1} = 1$ for any $a, c \in \mathbb{F}_{p^{2k}}$. Clearly, $G \cong \text{SU}^\pm(2,p^k) = \text{SL}(2,p^k) \rtimes C_2$.

• Suppose $G_H = TL(2, p^k)$. Then $\text{PGL}(2, q)$ has a subgroup \hat{G} such that $|\hat{G}| = p^k(p^{2k} - 1)$ and $\text{PGL}(2, p^k) = \hat{G} \leq G$, a contradiction to Theorem 2.3.

• Suppose $G_H = C_d = \langle \alpha \rangle$ cyclic of order $d \mid (q \pm 1)$, so that $|G| = 2d$. Firstly, we prove that the conditions in the statement when G is abelian or dihedral are necessary for the existence of G; secondly, we show that such conditions are also sufficient.

Note that, if $\alpha \in SU^\pm(2, q) \setminus H$ and $o(\alpha) > 2$, then $o(\alpha) \mid (q - 1)$. In fact, if $2 < o(\alpha) \mid (q - 1)$, then α is of type (B2) and fixes exactly two points other than P, say $Q, R \in \ell \cap \mathcal{H}_q$; but the pointwise stabilizer S of $\{Q, R\}$ in $\text{PGU}(3, q)$ is cyclic of order $q^2 - 1$ (see Lemma 2.4), and $|S \cap H| = q - 1$, which implies $\alpha \in H$. Hence, if $d \mid (q - 1)$ and G is cyclic, then $d = \frac{q - 1}{2}$.

We can assume that $d > 2$. A generator δ of G_H is either of type (B1) or of type (B2) and has three fixed points P, Q, R, where $Q, R \in \ell$; since G_H is normal in G, G acts on $\{Q, R\}$. Let $\gamma \in G \setminus G_H$. If $\gamma(Q) = Q, \gamma(R) = R$, and $d \mid (q - 1)$, then G is cyclic because the pointwise stabilizer of $\{P, Q, R\}$ in $\text{PGU}(3, q)$ is cyclic. If $\gamma(Q) = Q, \gamma(R) = R$, and $d \mid (q + 1)$, then G is contained in the pointwise stabilizer $C_{q+1} \times C_{q+1}$ of $\{P, Q, R\} \subset \text{PG}(2, q^2) \setminus H_q$, see Section 3; hence, $G = C_d \times C_2$ (which is C_{2d} when d is odd). Assume that γ interchanges Q and R. Then γ^2 fixes ℓ pointwise, so that either γ is an involution or $\gamma^2 = \iota$, the unique element of type (A) in H. If $\gamma^2 = \iota$, then γ has order $4 \mid (q - 1)$, and hence $\gamma \in G_H$, a contradiction. Then γ is an involution, and G is a semidirect (eventually direct) product $G_H \ltimes \langle \gamma \rangle$; do so by $Q, R \in \text{PG}(2, q^2) \setminus H_q$ the two points of ℓ fixed by γ (which are the center of γ and the intersection between ℓ and the axis of γ; see Lemma 2.4). Since $d > 2$ and δ acts with orbits of length d on $\ell \setminus \{Q, R\}$, δ cannot commute with γ unless $\{Q, R\} = \{\tilde{Q}, \tilde{R}\}$, which implies δ being of type (B1) and hence $d \mid (q + 1)$. If δ and γ do not commute, then G induces a dihedral group $G \leq \text{PGL}(2, q)$ of order $\frac{d \cdot q}{\gcd(2d, i)} \cdot 2$, and G is dihedral itself.

Conversely, we show that abelian and dihedral groups G as in the statement actually exist in $SU^\pm(2, q) \setminus H$. To this aim, we make use of other models of \mathcal{H}_q and provide groups G which fix P whose order is coprime to $\frac{q - 1}{2}$; this assures that $G \leq SU^\pm(2, q)$.

A cyclic group G of order $2d$ with $d \mid (q - 1)$ and $d \nmid \frac{q - 1}{2}$ is provided as follows: \mathcal{H}_q has equation (2), $P = (0, 1, 0)$, and G is generated by $\text{diag}(a^{\sigma+1}, a, 1)$, where $0(a) = 2d$; if $G \leq H$, multiply its generator with $\text{diag}(-1, 1, 1) \in SU^\pm(2, q) \setminus H$.

A dihedral group G of order $2d$ with $d \mid (q - 1)$ is provided as follows: \mathcal{H}_q has equation (2), $P = (0, 1, 0)$, and G is generated by $\text{diag}(a^{\sigma+1}, a, 1)$ and

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

where $o(a) = d$.

A cyclic group G of order $2d$ with $2 < d \mid (q + 1)$ is provided as follows: \mathcal{H}_q has equation (11), $P = (0, 0, 1)$, and G is generated by $\text{diag}(\lambda, \lambda^i, 1)$, where $o(\lambda) = 2d$ and $\gcd(2d, i) = 1$. After λ is chosen, there exists only one value $i \in \{2, \ldots, 2d - 1\}$ such that $\text{diag}(\lambda, \lambda^i, 1) \in H$; hence we can choose i such that $G \not\leq H$.

An abelian group $G = C_d \times C_2$ with $d \mid (q + 1)$ is provided as follows: \mathcal{H}_q has equation (11), $P = (0, 0, 1)$, G_H is generated by $\text{diag}(\lambda, \lambda^i, 1)$ as in the previous point, and G is generated by G_H together with $\text{diag}(-1, 1, 1) \in SU^\pm(2, q) \setminus H$.

A dihedral group of order $2d$ with $d \mid (q + 1)$ is provided as follows: \mathcal{H}_q has equation (11), $P = (0, 0, 1)$, G_H is generated by $\text{diag}(\lambda, \lambda^i, 1)$ as in the previous point, and G is generated by G_H together
with
\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

• Suppose \(G_H = \text{Dic}_m = \langle \delta, \epsilon \rangle \) with \(m \mid \frac{2m}{q-1} \), \(o(\delta) = 2m \), and \(o(\epsilon) = 4 \). Note that both \(\delta \) and \(\epsilon \) are of type (B2); let \(Q \) and \(R \) be the points on \(\ell \cap \mathcal{H}_q \) fixed by \(\delta \). Let \(\alpha \in G \setminus G_H \). Since \(\langle \delta \rangle \) is normal in \(G \), \(\alpha \) acts on \(\{Q, R\} \). Up to replacing \(\alpha \) with \(\alpha \epsilon \), we can assume that \(\alpha(Q) = Q \) and \(\alpha(R) = R \). Since the pointwise stabilizer \(S \) of \(\{Q, R\} \) in \(\text{PGU}(3, q) \) is cyclic, \(\langle \delta, \alpha \rangle \) is cyclic of order \(4m \); up to replacing \(\alpha \) with a generator of \(\langle \delta, \alpha \rangle \), we can assume that \(\alpha \) is of type (B2) and has order \(4m \). Therefore \(G = \langle \alpha, \epsilon \rangle \) with \(\alpha^{2m} = \epsilon^2 \). Since \(G \not\subseteq H \) and \(|S \cap H| = q - 1 \), we have \(o(\alpha) = 4m \mid (q - 1) \).

Such a subgroup \(G \) actually exists in \(\text{SU}^\pm(2, q) \) and is determined uniquely up to conjugation, as follows. Let \(\mathcal{H}_q \) have equation \(x^2 + y^2 + z^2 = 0 \), up to conjugation we have \(P = (0, 1, 0), Q = (1, 0, 0), R = (0, 0, 1) \). The only element of order \(4m \) in \(\text{PGU}(3, q) \) fixing \(\{P, Q, R\} \) pointwise is \(\alpha = \text{diag}(\alpha^{q+1}, a, 1) \), where \(a \) is a primitive \(4m \)-th root of unity. Any element of order 4 in \(\text{PGU}(3, q) \) fixing \(P \) and interchanging \(Q \) and \(R \) has the form
\[
\epsilon = \begin{pmatrix}
0 & 0 & \gamma \\
0 & 1 & 0 \\
-\gamma^{-1} & 0 & 0
\end{pmatrix},
\]
where \(\gamma^{q+1} = 1 \). By direct checking, \(\epsilon^{-1} \alpha \epsilon = \alpha^{2m-1} \) and \(G = \langle \alpha, \epsilon \rangle \) has order \(8m \). Since \(G \leq \mathcal{M}_q \) and \(\gcd(|G|, \frac{2m}{q-1}) = 1 \) we have \(G \leq \text{SU}^\pm(2, q) \). Also, the assumptions \(m \mid \frac{2m}{q-1} \) and \(m \mid \frac{2m}{q-1} \) imply \(\alpha \notin H \) and \(\alpha^2 \in H \), so that \(G_H = \langle \alpha^2, \epsilon \rangle \cong \text{Dic}_m \). The elements of \(G \) are \(\alpha^i \) and \(\alpha^i \epsilon \), with \(i = 0, \ldots, 4m - 1 \). By direct checking, \(\alpha^{2m} \) and \(\alpha^i \epsilon \) with odd \(i \) are involutions and hence of type (A), while \(\alpha^i \) with \(j \neq 0, 2m \) and \(\alpha^i \epsilon \) with even \(k \) are of type (B2).

• Suppose \(G_H = \text{Dic}_m = \langle \delta, \epsilon \rangle \) with \(m \mid \frac{2m}{q-1} \), \(o(\delta) = 2m \), and \(o(\epsilon) = 4 \). Denote by \(Q \) and \(R \) the points other than \(P \) fixed by \(\delta \); we have \(Q, R \in \ell \setminus \mathcal{H}_q \). Let \(\alpha \in G \setminus G_H \). If \(o(\alpha) = 4m \), then \(o(\alpha) \mid (q^2 - 1) \) and \(o(\alpha) \mid (q + 1) \), so that \(\alpha \) is of type (B2) and \(\alpha^2 \) is of type (A), a contradiction to the fact that \(\ell \) is the only element of type (A) in \(H \); hence, \(o(\alpha) \neq 4m \). Since \(\langle \delta \rangle \) is normal in \(G \), the subgroup \(K = \langle \delta, \alpha \rangle \) has order \(4m \). As \(K \) is not cyclic, we have shown above that either \(K \) is a direct product \(C_{2m} \times C_2 \), or \(K \) is a dihedral group \(C_{2m} \rtimes C_2 \). We can then assume that \(\alpha \) is an involution.

We show that we can also assume \(K = \langle \delta \rangle \times \langle \alpha \rangle \cong C_{2m} \times C_2 \). The number of subgroups of order 4 generated elements of \(G_H \setminus \langle \delta \rangle \) is equal to \(m \) and hence is odd. This implies that \(\alpha \) normalizes \(\langle \zeta \rangle \) for some \(\zeta \in G_H \setminus \langle \delta \rangle \) with \(o(\zeta) = 4 \); up to conjugation, \(\zeta = \epsilon \). Let \(\mathcal{H}_q \) have equation \((x, y, z) \) and assume up to conjugation that \(P = (0, 0, 1), Q = (1, 0, 0), \) and \(R = (0, 0, 1) \). If \(o(\alpha(Q) = Q \) and \(o(R) = R \), then \(\alpha \) is represented by a diagonal matrix and commutes with \(\delta \). Suppose that \(\alpha \) and \(\delta \) do not commute, so that \(\alpha \) interchanges \(Q \) and \(R \). Then
\[
\delta = \begin{pmatrix}
\lambda & 0 & 0 \\
0 & \lambda^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \alpha = \begin{pmatrix}
0 & a & 0 \\
a^{-1} & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \epsilon = \begin{pmatrix}
1 & 0 & 0 \\
0 & -\epsilon^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix},
\]
for some \((q + 1)\)-th roots of unity \(\lambda, a, \epsilon \) with \(o(\lambda) = 2m \). Since \(\alpha \) normalizes \(\epsilon \), either \(a^2 = -\epsilon^2 \) if \(\alpha \epsilon = \epsilon \), or \(a^2 = e^2 \) if \(o(\alpha \epsilon = \epsilon^{-1} \). In the former case, \(\alpha \epsilon \) is a diagonal matrix, so that \(\alpha \epsilon \) fixes \(\{Q, R\} \) pointwise; but \(o(\alpha \epsilon) = 4 \), so that \(\alpha \) is of type (B2): a contradiction. Hence, \(o(\alpha \epsilon = \epsilon^{-1} \); this implies \(o(\alpha \epsilon = 2 \); and either \(\alpha \epsilon = \text{diag}(1, -1, 1) \) or \(\alpha \epsilon = \text{diag}(-1, 1, 1) \). We can then replace \(\alpha \) with \(\alpha \epsilon \), so that \(K = \langle \delta \rangle \times \langle \alpha \rangle \) and \(G \) is a product \(K \langle \epsilon \rangle \cong (C_{2m} \times C_2)C_4 \), with \(|K \cap \langle \epsilon \rangle| = 2 \).

Such a group \(G = \langle \langle \delta \rangle \times \langle \alpha \rangle \rangle \langle \epsilon \rangle \cong (C_{2m} \times C_2)C_4 \) actually exists in \(\text{SU}^\pm(2, q) \), as the choice in \((4) \) shows. The elements in \(\langle \delta \rangle \times \langle \alpha \rangle \rangle of order greater than 2 are of type (B1); the three involutions in \(\langle \delta \rangle \times \langle \alpha \rangle \rangle are of type (A); the elements \(\delta \epsilon \) of \(G_H \setminus \langle \delta \rangle \) have order 4 and are of type (B2); the remaining elements have the form \(\delta \epsilon \alpha \epsilon \), are involutions, and are of type (A).
Suppose $G_H = \text{SL}(2,3)$ with $p \geq 5$. Then G is a subgroup of order 24 with a subgroup $\bar{G}_H \cong A_4$; from Theorem 2.3. \bar{G} isomorphic to S_4. By direct checking with MAGMA [1], the unique groups L admitting a normal subgroup isomorphic to $\text{SL}(2,3)$ and such that the factor group of L over the unique involution of $\text{SL}(2,3)$ is isomorphic to $\text{SmallGroup}(48,28) \cong \bar{S}_4$ and $\text{SmallGroup}(48,29)$.

We show that, if L_1 and L_2 are subgroups of $\text{SU}^\pm(2,q)$ containing G_H with index $[L_1 : G_H] = [L_2 : G_H] = 2$, then $L_1 = L_2$. By direct inspection on $\text{SmallGroup}(48,28)$ and $\text{SmallGroup}(48,29)$, both L_1 and L_2 are generated by G_H together with any element of order 8, whose square lies in G_H. Also, any cyclic subgroup C_4 of order 4 of G_H is contained is contained both in a cyclic subgroup C_8 of order 4 of L_1 and in a cyclic subgroup C_8 of order 8 of L_2. The group C_4 is generated by an element of type (B2) with two fixed points $Q, R \in \ell \cap H_q$; thus, C_8^q and C_8^q act on $\{Q, R\}$. If a generator α_i of $C_8^q (i \in \{1, 2\})$ interchanges Q and R, then α_i^2 is of type (A), a contradiction to Lemma 2.3. Thus, both C_8^q and C_8^q fix $\{Q, R\}$ pointwise. Since the pointwise stabilizer of $\{Q, R\}$ in $\text{PGU}(3, q)$ is cyclic, this implies $C_8^q = C_8^q$ and hence $L_1 = L_2$.

If $8 \mid (q - 1)$, then by Theorem 2.3 there H already contains a subgroup $\bar{S}_4 \cong \text{SmallGroup}(48,28)$ having a subgroup isomorphic to $\text{SL}(2,3)$. Hence, there exists no subgroup G of $\text{SU}^\pm(2,q)$ with $G_H \cong \text{SL}(2,3)$.

If $8 \nmid (q - 1)$, then $G \leq \text{SU}^\pm(2,q)$ with $G_H \cong \text{SL}(2,3)$ does exist, and can be constructed as follows. Let H_q be given by Equation (2); up to conjugation, $P = (0,1,0)$ and $\ell : Y = 0$. Choose $\lambda, \mu \in F_q$ and $c, e \in F_q^2$ such that $\lambda^2 = -1$, $\mu^2 = \lambda, c^2 = \frac{\lambda + 1}{2}$, and $e = \mu c$. Define
\[
\begin{align*}
\alpha_1 &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\
\alpha_2 &= \begin{pmatrix} 0 & 0 & -\lambda c \\ 0 & 1 & 0 \\ -\frac{\lambda}{c} & 0 & 0 \end{pmatrix}, \\
\alpha_3 &= \begin{pmatrix} 0 & 0 & c \\ 0 & 1 & 0 \\ -\frac{1}{c} & 0 & 0 \end{pmatrix}, \\
\xi &= \begin{pmatrix} \frac{\lambda + 1}{2} & 0 & \frac{\lambda - 1}{2}c \\ 0 & 1 & 0 \\ c & 0 & \frac{1 - \lambda}{2} \end{pmatrix}, \\
\gamma &= \begin{pmatrix} 0 & 0 & c \\ 0 & 1 & 0 \\ e^{-1} & 0 & 0 \end{pmatrix}.
\end{align*}
\]

By direct checking, the following holds.
- $\alpha_1, \alpha_2, \alpha_3$ have order 4; $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = \iota = \text{diag}(1, -1, 1)$; $\alpha_1 \alpha_2 \alpha_3 = \text{id}$. Hence, $Q_8 = \langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is a quaternion group.
- $\alpha_1, \alpha_2, \alpha_3 \in M_q$ since they preserve the equation (2) of H_q and fix P; $\alpha_1, \alpha_2, \alpha_3$ are of type (B2). The fixed points other than P are $P_1 = (1,0,0)$ and $P_3 = (0,0,1)$ for α_1; $Q_1 = (-c, 0, 1)$ and $Q_3 = (c, 0, 1)$ for α_2; $R_1 = (-\lambda c, 0, 1)$ and $R_3 = (\lambda c, 0, 1)$ for α_3.
- ξ has order 3 and $\xi \in M_q$. For $i = \{1, 3\}$, we have $\xi(Q_i) = Q_i, \xi(Q_i) = R_i$; and $\xi(Q_i) = R_i$; since the pointwise stabilizer of two points in $\ell \cap H_q$ is cyclic, this implies that ξ normalizes Q_8.
- ξ does not commute with α_j. Then $\langle \alpha_1, \alpha_2, \alpha_3, \xi \rangle = Q_8 \rtimes C_3$ is isomorphic to $\text{SL}(2,3)$.
- ξ has no fixed points in $\text{PG}(2, F_q^2) \setminus \ell$; this implies by Lemma 2.3 that ξ is of type (B1).
- γ is an involution of M_q satisfying $\gamma(P_1) = P_3, \gamma(Q_1) = R_1$, and $\gamma(Q_3) = R_3$: this implies that γ normalizes Q_8. Also, $\gamma \xi \gamma = \alpha_2 \xi \in Q_8 \rtimes C_3$: this implies that γ normalizes $Q_8 \rtimes C_3 \cong \text{SL}(2,3)$.
- Therefore, $G = \langle \alpha_1, \alpha_2, \alpha_3, \xi, \gamma \rangle$ is a subgroup of M_q of order 48, with a subgroup of index 2 isomorphic to $\text{SL}(2,3)$. Since G contains a Klein four-group $\langle i, \gamma \rangle$, we have $G \cong \text{SmallGroup}(48,29)$. We have $\gcd(|G|, \frac{24}{2}) \in \{1, 3\}$; recall that $M_q \rtimes C_3 \rtimes \mathbb{Z}_2$. If $\gcd(|G|, \frac{24}{2}) = 1$, then $G \leq \text{SU}^\pm(2,q)$.

If $\gcd(|G|, \frac{24}{2}) = 3$, then all elements of order 3 in G are of type (B1) as they are conjugated to ξ; this implies again $G \leq \text{SU}^\pm(2,q)$, because any element ψ of order 3 in $M_q \setminus \text{SU}^\pm(2,q)$ is of type (A).

In fact, let H_q have equation (1); up to conjugation, $P = (0,0,1)$ and ψ fixes $Q = (1,0,0)$ and $R = (0,1,0)$. This implies $\psi = \text{diag}(u, v, 1)$ with $u^3 = v^3 = 1$. If ψ is not of type (A), then $u \neq 1, v \neq 1, u \neq v$; hence, $v = u^{-1}$ and $\psi \in \text{SU}^\pm(2,q)$.
We will make use of the following remark, which can be easily proved in analogy to [3] Remark 4.1.

Remark 3.2. Let \(G \leq M_q \) be such that \(G/G_\Omega \) is generated by elements whose order is coprime to \(|G_\Omega| \). Then \(G = G_k \times G_\Omega \). If in addition \(G/G_\Omega \) is generated by elements of odd order, then \(G = G_H \times G_\Omega \).

Now we compute the genera of quotient curves \(H_q/G \) for all subgroups \(G \) of \(M_q = SU^\pm(2,q) \times \Omega \). The factor group \(G/G_\Omega \) is isomorphic to a subgroup of \(SU^\pm(2,q) \). Hence, we will consider the different possibilities for \(G/G_\Omega \) given by Proposition 3.1 and Theorem 2.2.

Lemma 3.3. Let \(G \leq M_q \) be such that one of the following cases holds:

1. \(G/G_\Omega \) is cyclic of order a divisor of \(q + 1 \) different from 2.
2. \(G/G_\Omega \) is dihedral of order 4m with \(1 < m \leq \frac{q-1}{2} \).
3. \(G/G_\Omega \cong C_d \times C_2 \) where \(d \mid (q+1) \) and \(d \) is even.
4. \(G/G_\Omega \) is dihedral of order 2d with \(1 < d \mid (q+1) \).
5. \(G/G_\Omega \cong Dic_m \times C_2 \) with \(1 < m \leq \frac{q-1}{2} \).

Then \(G \) is contained in the maximal subgroup of \(PGU(3,q) \) stabilizing a self-polar triangle \(T \subset PG(2,q^2) \setminus H_q \).

If \(G \leq M_q \) is such that \(G/G_\Omega \cong E_{p^k} \rtimes C \), where \(E_{p^k} \) is elementary abelian of order \(p^k \) and \(C \) is cyclic, then \(G \) is contained in the maximal subgroup of \(PGU(3,q) \) stabilizing a point of \(H_q(F_{q^2}) \).

Proof. If \(\langle \alpha_1 G_\Omega, \ldots, \alpha_r G_\Omega \rangle \) is a normal subgroup of \(G/G_\Omega \), then \(\langle \alpha_1, \ldots, \alpha_r \rangle \) is a normal subgroup of \(G \), because \(G_\Omega \) is central in \(G \).

- Let \(G/G_\Omega \cong E_{p^k} \rtimes C \). Then \(E_{p^k} \) has a unique fixed point on \(H_q(F_{q^2}) \); see [24] Lemma 11.129. As \(E_{p^k} \) is normal in \(G \), \(G \) fixes this point.

- Let \(G/G_\Omega = \langle \alpha G_\Omega \rangle \times \langle \gamma G_\Omega \rangle \) satisfy assumption (3), with \(\alpha^d, \gamma^2 \in G_\Omega \). We show that \(o(\alpha), o(\gamma) \mid (q+1) \); this implies that \(\alpha \) and \(\gamma \) are of type (A) or (B1), \(\langle \alpha, \gamma \rangle \) fixes pointwise a triangle \(T = \{ P, Q, R \} \) with \(Q, R \in \ell(F_{q^2}) \setminus H_q \), and hence \(G \) fixes \(T \) pointwise, the claim.

Suppose by contradiction that \(o(\alpha)
\mid (q+1) \). By Lemma 2.4 \(o(\alpha)
2(q+1) \), \(\alpha \) is of type (B2), and \(\alpha^2 \) is of type (A) with center \(P \). Let \(Q, R \in \ell \cap H_q \) be the fixed points of \(\alpha \) other than \(P \). Since the pointwise stabilizer of \(\{ Q, R \} \) is cyclic unlike \(G/G_\Omega \), \(\gamma \) interchanges \(Q \) and \(R \). Let \(H_q \) have equation \(\overline{2} \); up to conjugation, \(P = (0,1,0), Q = (1,0,0), R = (0,0,1) \); hence,

\[
\alpha = \begin{pmatrix}
-1 & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \gamma = \begin{pmatrix}
0 & 0 & c \\
0 & 1 & 0 \\
d & 0 & 0
\end{pmatrix},
\]

where \(c^{q+1} = d^{q+1} = a^{2(q+1)} = 1 \neq q^{q+1} \). Then \(\alpha \gamma \neq \gamma \alpha \), a contradiction. Suppose that \(o(\gamma)
(q+1) \). Then swap the roles of \(\alpha \) and \(\gamma \) in the argument above to obtain a contradiction.

- Let \(G/G_\Omega = \langle \alpha G_\Omega \rangle \) satisfy assumption (1), with \(|G/G_\Omega| = d \). By Lemma 2.4 \(o(\alpha) \mid (q^2 - 1) \). Together with \(o(\alpha) \mid d(q+1) \), this yields \(o(\alpha) \mid 2(q+1) \). If \(o(\alpha)
(q+1) \), then \(\alpha \) is of type (B2) and \(\alpha^2 \in G_\Omega \), a contradiction. Hence, \(o(\alpha) \mid (q+1) \), and \(\alpha \) is of type (A) or (B1). Since \(\langle \alpha \rangle \) is normal in \(G \), \(G \) acts on the points fixed by \(\alpha \); as \(G \) fixes \(P \), this implies that \(G \) stabilizes a self-polar triangle \(\{ P, Q, R \} \subset PG(2,q^2) \setminus H_q \).

- Let \(G/G_\Omega = \langle \alpha G_\Omega, \xi G_\Omega \rangle \cong Dic_n \) or \(G/G_\Omega = \langle \alpha G_\Omega, \xi G_\Omega, \varepsilon G_\Omega \rangle \cong Dic_n \rtimes C_2 \) satisfy assumption (2) or (5), respectively, with \(6 \leq o(\alpha G_\Omega) = 2n \mid (q+1) \). Using the normality of \(\langle \alpha \rangle \) in \(G \) and arguing as in the previous point, we have that \(\alpha \) is of type (A) or (B1), and \(G \) stabilizes a self-polar triangle \(T \subset PG(2,q^2) \setminus H_q \).

- Let \(G/G_\Omega = \langle \alpha \rangle \times \langle \gamma \rangle \) satisfy assumption (4), with \(\alpha^d, \gamma^2 \in G_\Omega \). If \(d = 2 \), then \(G \) satisfies also assumption (3) and the claim was already proved. If \(d > 2 \), then \(\langle \alpha \rangle \) is normal in \(G \); arguing as in the previous point, \(\alpha \) is of type (A) or (B1), and \(G \) stabilizes a self-polar triangle \(T \subset PG(2,q^2) \setminus H_q \). □
Lemma 3.3 provides cases for G/G_Ω which do not need to be considered in the following, since G is contained in a maximal subgroup of $\text{PGU}(3,q)$ for which $g(H_q/G)$ has already been computed in the literature. Namely, if $G/G_\Omega \cong E_p^s \times C$, then $g(H_q/G)$ is computed in \cite[Theorem 1.1]{2}; if G/G_Ω satisfies one of the assumptions (1) to (5), then $g(H_q/G)$ is computed in \cite[Proposition 3.4]{3}.

Proposition 3.4. Let $G \leq \mathcal{M}_q$ be such that $G/G_\Omega \cong \text{SL}(2,5)$, with $q^2 \equiv 1 \pmod{5}$. Then

$$g(H_q/G) = \frac{(q+1)(q-1-2\omega) + 180\omega - 20r - 48s}{240\omega},$$

where

$$r = \begin{cases} 4\omega & \text{if } 3 \mid (q-1), \\ q + 1 + 2\omega & \text{if } 3 \mid q, \\ 0 & \text{if } 3 \mid (q+1), \ 3 \nmid \omega, \end{cases} \quad s = \begin{cases} 2\omega & \text{if } 5 \mid (q-1), \\ 0 & \text{if } 5 \mid (q+1), \ 5 \nmid \omega, \\ q + 1 & \text{if } 5 \mid \omega. \end{cases}$$

Proof. By Remark 3.2, $G = G_H \times G_\Omega$ with $G_H \cong \text{SL}(2,5)$. The nontrivial elements of G are as follows.

- 20 elements of order 3 in G_H: they are of type (B2), (C), or (B1), according to $3 \mid (q-1)$, $3 \mid q$, or $3 \mid (q+1)$, respectively.
- $2\omega - 1$ elements in $\langle \iota \rangle \times G_\Omega$: they are of type (A).
- 30ω elements obtained as the product of a nontrivial element of order 4 in G_H by an element of G_Ω: they are of type (B2).
- 20ω elements obtained as the product of an element of order 6 in G_H by an element of G_Ω: they are of type (B2), (E), or (B1), according to $3 \mid (q-1)$, $3 \mid q$, or $3 \mid (q+1)$, respectively.
- 48ω elements obtained as the product of an element $\eta \in G_H$ of order 5 or 10 by an element $\theta \in G_\Omega$. If $5 \mid (q-1)$, they are of type (B2). If $5 \mid (q+1)$ and $5 \nmid \omega$, they are of type (B1).

If $5 \mid \omega$, 48 of them are of type (A), the other ones are of type (B1). Namely, if $o(\eta) = 10$ then $\eta\theta$ is of type (B1); if $o(\eta) = 5$ and $\{P,Q,R\}$ are the fixed points of η, then there are exactly 2 choices for $\theta \in G_\Omega$ such that $\eta\theta$ is of type (A), one with center Q, the other with center R.

- $20(\omega - 1)$ elements obtained as the product of an element of order 3 in G_H by a nontrivial element of G_Ω: they are of type (B2) or (E) if $3 \mid (q-1)$ or $3 \mid q$, respectively. If $3 \not\mid (q+1)$, either they are all of type (B1) or there are 48 of them of type (A), according to $5 \nmid \omega$ or $5 \mid \omega$, arguing as in the previous case.

The claim follows by direct computation using the Riemann-Hurwitz formula and Theorem 2.5.

Proposition 3.5. Let $G \leq \mathcal{M}_q$ be such that $G/G_\Omega \cong \hat{\Sigma}_4 \cong \text{SmallGroup}(48,28)$, with $p \geq 5$ and $8 \mid (q-1)$. Then

$$g(H_q/G) = \frac{(q+1)(q-1-2\omega) + 36\omega - 16r}{96\omega},$$

where

$$r = \begin{cases} 2\omega & \text{if } 3 \mid (q-1), \\ 0 & \text{if } 3 \mid (q+1), \ 3 \nmid \omega, \\ q + 1 & \text{if } 3 \mid \omega. \end{cases}$$

Proof. By Remark 3.2 and Proposition 3.1, $G = G_H \times G_\Omega$ with $G_H \cong \text{SmallGroup}(48,28)$. The nontrivial elements of G are as follows. Since $SU^\pm(2,q)$ has no elements of type (A) with odd order, the type of any element in G_H is uniquely determined by its order. The product of ι by an element of G_Ω has type (A), and the product of an element of type (B2) in G_H by an element of G_Ω has type (B2). The product of an element η of type (B1) in G_H by an element of G_Ω has type (B1), unless $o(\eta) \mid \omega$: if $o(\eta) \mid \omega$, then G_Ω contains exactly 2 elements θ_1, θ_2 such that $\eta\theta_1$ and $\eta\theta_2$ are of type (A); here, this argument applies to the elements of order 3. Now the claim follows by direct computation with the Riemann-Hurwitz formula and Theorem 2.5.
Proposition 3.6. Let $G \leq \mathcal{M}_q$ be such that $G/G_{22} \cong SL(2,3)$ with $p \geq 5$. If $3 | (q - 1)$, then

$$g(H_q/G) = (q + 1)(q - 1 - 2\omega) + 4\omega.$$

If $3 | (q + 1)$, then one of the following cases holds:

$$g(H_q/G) = (q + 1)(q - 1 - 2\omega) + 36\omega - 8(q + 1)(\gcd(3, \omega) - 1).$$

$$g(H_q/G) = (q + 1)(q - 9 - 2\omega) + 36\omega,$$

with $3 \nmid \omega$;

$$g(H_q/G) = (q + 1)(q - 1 - 2\omega) + 36\omega,$$

with $3 \mid \omega$, $3 \nmid (q + 1)$. All cases (5) to (8) actually occur, for some G as in the assumptions.

Proof. Assume $3 | (q - 1)$. By Remark 3.2, $G = G_H \times G_{22}$ with $G_H \cong SL(2,3)$. The nontrivial elements of G are as follows: $2\omega - 1$ elements of type (A) in $\langle i \rangle \times G_{22}$; 22ω elements of order divisible by 3 or 4, which are of type (B2). Equation (5) follows by the Riemann-Hurwitz formula and Theorem 2.5.

For the rest of the proof, assume $3 | (q + 1)$. Let $G/G_{22} = Q_8 \times \langle \xi G_{22} \rangle$, where Q_8 is a quaternion group and $\xi \notin G_{22}$ satisfies $\xi^3 \in G_{22}$. Since Q_8 and G_{22} have coprime orders, Q_8 is induced by a subgroup $\langle \alpha, \omega \rangle$ of G isomorphic to Q_8.

Suppose that there exists $\xi \in G_H$ inducing ξG_{22}; this can be assumed when $3 \nmid \omega$. Then $G = G_H \times G_{22}$, and the nontrivial elements of G are as follows: $2\omega - 1$ elements of type (A) in $\langle i \rangle \times G_{22}$; 6ω elements of order divisible by 4, which are of type (B2). If $3 \mid \omega$, any other element is of type (B1). If $3 \mid \omega$, then there are 8·2 elements of order 3 and type (A); namely, for any element $\eta \in G_H$ of order 3 there are exactly 2 elements $\theta_1, \theta_2 \in G_{22}$ such that $\eta^\theta_1, \eta^\theta_2$ are of type (A); any other element is of type (B1). Equation (6) follows by the Riemann-Hurwitz formula and Theorem 2.5.

For the rest of the proof, we can assume that $\xi \notin G_H$ for any $\xi \in G$ inducing ξG_{22}. As the subgroups of G of order 3 are conjugated by elements of Q_8, no element of G_H induces an element of order 3 in G/G_{22}.

- Suppose that $o(\xi) = 3$. Since $\xi \notin G_H$ and $\xi \notin G_{22}$, this implies that ξ is of type (A) with center on ℓ and axis passing through P. Note that $G_H = Q_8$. Note also that $3 \nmid \omega$; otherwise, G_H has an element ρ of order ρ, and either ρ or ρ^2 is an element of type $(B1)$ and order 3 lying in G_H, a contradiction. The nontrivial elements of G are as follows: $2\omega - 1$ elements of type (A) in $\langle i \rangle \times G_{22}$; 8ω elements of order 3 and type (A); 6ω elements of order a multiple of 4 and type (B2); any other element is of type (B1). Equation (7) follows by the Riemann-Hurwitz formula and Theorem 2.5.

Such a group G actually exists in \mathcal{M}_q. In fact, let $3 \mid \omega$ and $(Q_8 \times C_3) \times C_\omega$ be the subgroup isomorphic to $SL(2,3) \times G_{22}$ constructed above, with $Q_8 \times C_3 \leq H$. Let η be a generator of $C_3 \leq H$ and ρ be an element of order 3 in Ω. Then η^ρ is an element of order 3 and type (A) not in Ω, such that $G := (Q_8 \times \langle \eta^\rho \rangle) \times C_\omega$ is the desired group.

- Now suppose that $o(\xi) > 3$. Up to composing with an element of G_{22}, we can assume that ξ is a 3-element, of order 3^k, $k \geq 2$. As ξ^3 is a nontrivial element of G_{22}, ξ is not of type (A), and hence is of type (B1). As G_{22} is cyclic, $\langle \xi^3 \rangle$ is the Sylow 3-subgroup of G_{22}. Then $G \cong (Q_8 \times C_{3^k}) \times C_{\omega/3^k-1}$, where $C_{3^k} = \langle \xi \rangle$ and $3^k \nmid \omega$. The nontrivial elements of G are as follows:

 - Elements of $Q_8 \times C_{3^k}$. There are $2 \cdot 3^k - 1$ elements of type (A) in $\langle i \rangle \times C_{3^k-1}$; $6 \cdot 3^{k-1}$ elements of type (B2), as the product of an element of order 4 in Q_8 by an element of C_{3^k-1}; $2(3^k - 3^{k-1})$ elements of type (B1) in $\langle i \rangle \times C_{3^k} \setminus (\langle i \rangle \times C_{3^k-1})$.

The $6(3^k - 3^{k-1})$ elements σ obtained as the product of an element α of order 4 in Q_8 by an element γ of order 3^k in C_{3^k} are of type (B1). In fact, $o(\sigma) \in \{3^k, 2 \cdot 3^k, 4 \cdot 3^k\}$. If $o(\sigma) = 4 \cdot 3^k$, then σ is of type (B2) and $o(\sigma^4) \mid (q + 1)$, so that $\sigma^4 \in G_H$ with $o(\sigma^4) = 3^k$, a contradiction. If
Proposition 3.7. Let G be cyclic of order d and G stabilizes pointwise a self-polar triangle $\{P, Q, R\} \subset PG(2, q^2) \setminus H_q$, or

$$g(H_q/G) = \frac{(q-1)(q+1-\omega \cdot \gcd(d, 2))}{2d\omega}.$$

Both cases occur.

Proof. Let αG_Ω be a generator of G/G_Ω. If $d = 1$, the claim is trivial. Suppose $d = 2$. Since $|G_\Omega|$ is odd, G is cyclic of order $2d | (q+1)$ and fixes pointwise a self-polar triangle $\{P, Q, R\} \subset PG(2, q^2) \setminus H_q$. Suppose $d > 2$. Then α is of type (B2) and G is cyclic. The number of elements of type (A) is either $\omega - 1$ or $2\omega - 1$, according to d odd or d even, respectively; any other nontrivial element is of type (B2).

The claim follows by direct computation with Theorem 2.5. □

Proposition 3.8. Let $G \leq M_q$ be such that $G/G_\Omega \cong Dic_n$, with $1 < n | \frac{q^3-1}{2}$. Then

$$g(H_q/G) = \frac{(q-1)(q+1-2\omega)}{8\omega^2}.$$

Proof. By Remark 3.2 and Proposition 3.1, $G = G_H \times G_\Omega$ with $G_H \cong Dic_n$. Any nontrivial element $\sigma \in G$ is of type (A) if $\sigma \in \langle \iota \rangle \times G_\Omega$, and of type (B2) otherwise. The claim follows by Theorem 2.5. □

Proposition 3.9. Let $G \leq M_q$ be such that $G/G_\Omega \cong SL(2, p^k)$ with $k | n, r = n/k$. Then

$$g(H_q/G) = 1 + \frac{q^2 - q - 2 - \Delta}{2p^k(p^k - 1)\omega},$$

where

$$\Delta = (p^{2k} - 1)(q + 2) + p^{2k} - 1 + q + 1 + p^k(p^k + 1)(p^k - 3)\omega + p^k(p^k - 1)^2(\gcd(r, 2) - 1) + 2(p^{2k} - 1)(\omega - 1) + 2(\omega - 1)(q + 1) + p^{2k}(p^k - 1)^2(\omega - 1)(\gcd(r, 2) - 1) + (\gcd(\omega, p^k + 1) - 1)p^k(p^k - 1)(q + 1)(2 - \gcd(r, 2)).$$

Proof. By Remark 3.2, $G = G_H \times G_\Omega$ with $G_H \cong SL(2, p^k)$. Clearly $(p^k - 1) | (q - 1)$, while $(p^k + 1) | (q - 1)$ or $(p^k + 1) | (q + 1)$ according to r even or r odd, respectively. The nontrivial elements in G_H are classified in the proof of [32] Proposition 4.3] as follows:

- $p^{2k} - 1$ elements of order p and type (C);
- $p^{2k} - 1$ elements of order p times a nontrivial divisor of $q + 1$, which are of type (E);
- 1 involution ι, of type (A);
- $p^k(p^k + 1)(p^k - 1)$ elements of order a divisor of $p^k - 1$ different from 2, which are of type (B2);
• $p^k(p^k-1)/2$ elements of order a divisor of $p^k + 1$ different from 2, which are of type (B1) or (B2) according to r odd or r even, respectively.

The product of an element $\sigma \in G_H$ by a nontrivial element $\tau \in G_\Omega$ is as follows. If σ is of type (C) or (E), then $\sigma \tau$ is of type (E). If $\sigma \in \langle \iota \rangle$, then $\sigma \tau$ is of type (A). If σ is of type (B2), then $\sigma \tau$ is of type (B2).

If σ is of type (B1) and $o(\sigma) \mid |G_\Omega|$, then G_Ω contains exactly 2 elements τ_1, τ_2 such that $\sigma \tau_1, \sigma \tau_2$ are of type (A); otherwise, $\sigma \tau$ is of type (B1). If r is even, there are no elements of type (B1). Assume r odd. The elements of type (B1) together with $\langle \iota \rangle$ form $\mathbb{Z}/(p^k-1)$ cyclic groups of order $p^k + 1$ which intersect pairwise in $\langle \iota \rangle$. Then, the number of elements $\sigma \tau$ of type (A) with σ of type (B1) is $\frac{p^k(p^k-1)}{2} \cdot (\gcd(\omega, p^k + 1) - 1) \cdot 2$.

Now the claim follows by direct computation with Theorem 2.5.

Proposition 3.10. Let $G \leq M_q$ be such that $G/G_\Omega \cong TL(2, p^k)$, where $k \mid n$ and n/k is even. Then

$$g(H_q/G) = 1 + \frac{q^2 - q - 2 - \Delta}{4p^k(p^2k - 1)\omega},$$

where

$$\Delta = (p^2k - 1)(q + 2) + p^2k - 1 + q + 1 + p^k(p^k - 1)(p^k - 3)\omega + p^k(p^k - 1)^2 + 2(p^{2k} - 1)(\omega - 1)
+ 2(\omega - 1)(q + 1) + p^k(p^k - 1)^2(\omega - 1) + 2p^k(p^{2k} - 1)\omega.$$

Proof. By Remark 3.2 and Proposition 3.1, $G = G_H \times G_\Omega$ with $G_H = \langle L, \delta \rangle \cong TL(2, p^k), L \cong SL(2, p^k)$, $o(\delta) = 2(p^k - 1)$. The nontrivial elements in $L \times G_\Omega$ are already classified according to their type in the proof of Proposition 3.9. Every element in $G_H \setminus L$ is of type (B2); see the proof of [32, Proposition 4.4]. Hence, for every $\sigma \in G_H \setminus L$ and $\tau \in G_\Omega$, $\sigma \tau$ is of type (B2). The claim now follows by direct computation with Theorem 2.5.

The case G/G_Ω isomorphic to a cyclic subgroup of $SU^\pm(2, q)$ of order 2 not in H has already been considered in Proposition 3.7.

Proposition 3.11. Let $G \leq M_q$ be such that $G/G_\Omega \cong SL(2, 3) \rtimes C_2 \cong SmallGroup(48, 29)$, with $p \geq 5$ and $8 \mid (q - 1)$. Then

$$g(H_q/G) = \frac{(q + 1)(q - 2\omega - 13) + 60\omega - 16r}{96\omega},$$

where $r = \begin{cases}
2\omega & \text{if } 3 \mid (q - 1), \\
0 & \text{if } 3 \mid (q + 1), 3 \nmid \omega, \\
q + 1 & \text{if } 3 \nmid \omega.
\end{cases}$

Proof. By Remark 3.2 and Proposition 3.1, $G = G_\pm \times G_\Omega$ with $G_\pm \cong SmallGroup(48, 29)$ and $G_H \cong SL(2, 3)$. By Lemma 2.4, G_\pm contains 13 involutions, of type (A); 18 elements of order 8 or 4, of type (B2); 16 elements of order 6 or 3, which are of type (B2) or (B1) according to $3 \mid (q - 1)$ or $3 \mid (q + 1)$. The element $\sigma \tau$, where $\sigma \in G_\pm$ and $\tau \in G_\Omega \setminus \{id\}$, is as follows. If σ is the unique involution ι of G_H, then $\sigma \tau$ is of type (A). If σ is an involution different from ι, then $\sigma \tau$ is of type (B1). If σ is of type (B2), then $\sigma \tau$ is of type (B2). If σ has order 6 and is of type (B1), then $\sigma \tau$ is of type (B1). If σ has order 3 and is of type (B1), then there are $\gcd(|G_\Omega|, 3) - 1$ elements of G_Ω such that $\sigma \tau$ is of type (A), while for any other $\tau \in G_\Omega \sigma \tau$ is of type (B1); in fact, $\sigma \tau$ is of type (A) if and only if $o(\tau) = 3$.

The claim follows by the Riemann-Hurwitz formula and Theorem 2.5.

Proposition 3.12. Let $G \leq M_q$ be such that G/G_Ω is cyclic of order $2d > 2$, where either $d \mid (q - 1)$ and $d \nmid \frac{q + 1}{2}$, or $d \mid (q + 1)$. Assume also that G does not stabilize any self-polar triangle $T \subset PG(2, q^2) \setminus H_q$. Then either $d \mid (q - 1)$ and $d \nmid \frac{q + 1}{2}$, or $d = 2$; in both cases,

$$g(H_q/G) = \frac{(q - 1)(q + 1 - 2\omega)}{4d\omega}.$$
Whenever \(d \) satisfies the numerical assumptions, a subgroup \(G \leq \mathcal{M}_q \) with \(g(\mathcal{H}_q/G) \) as in Equation (9) exists.

Proof. Let \(\alpha G_\Omega \) be a generator of \(G/G_\Omega \).

Suppose that \(d \mid (q-1) \) and \(d \nmid \frac{q-1}{2} \). Then \(\alpha(\alpha) \mid (q^2 - 1) \) and \(\alpha \) is of type (B2). The group \(G \) fixes pointwise the 2 fixed points \(Q, R \in \ell \cap \mathcal{H}_q \) other than \(P \). Hence, \(G \) is cyclic; we can assume that \(G = \langle \alpha \rangle \). Since \(\gcd(\alpha(\alpha), q + 1) = 2 \), \(G \) contains \(2\omega - 1 \) elements of type (A) and \(2d\omega - 2 \omega \) elements of type (B2); Equation (9) follows. Such a group \(G \) does exist in \(\mathcal{M}_q \), being generated by any element of type (B2) and order \(2d\omega \).

Suppose that \(d \mid (q + 1) \). If \(2d \mid (q + 1) \), then Lemma [3.3] implies that \(G \) stabilizes a self-polar triangle \(T \subset PG(2, q^2) \setminus \mathcal{H}_q \); hence, we can assume that \(2d \nmid (q + 1) \), that is, \(d \) is even and \(d/2 \) is odd. Then \(4 \mid \alpha(\alpha) \) and \(\alpha \) is of type (B2). Also, \(\alpha(\alpha^2) \mid (q + 1) \) implies that \(\alpha^4 \in G_\Omega \), so that \(d = 2 \). As above, \(G \) is cyclic, and we can assume that \(\alpha \) is a generator of \(G \). The group \(G \) has \(2\omega - 1 \) elements of type (A) and \(4\omega - 2 \omega \) elements of type (B2); Equation (9) follows. Such a group \(G \) does exist in \(\mathcal{M}_q \), being generated by any element of type (B2) and order \(4\omega \).

Proposition 3.13. Let \(G \leq \mathcal{M}_q \) be such that \(G/G_\Omega \) is dihedral of order \(2d \), with \(2 < d \mid (q - 1) \). Then

\[
g(\mathcal{H}_q/G) = \frac{(q + 1)(q - 1 - \gcd(d, 2) \cdot \omega - d) + 2\omega(d + \gcd(d, 2))}{4d\omega}.
\]

Proof. By Remark [3.2] \(G = G_\pm \times G_\Omega \), where \(G_\pm = \langle \alpha G_\Omega, \gamma G_\Omega \rangle \) is dihedral; we can assume that \(\alpha(\alpha) = d \) and \(\alpha(\gamma) = 2 \). Such a group \(G \) actually exists in \(\mathcal{M}_q \), as shown in the proof of Proposition [3.1] using the model \([2] \) of \(\mathcal{H}_q \). The nontrivial elements of \(G \) are as follows: \(\gcd(d, 2) \cdot \omega - 1 \) elements of type (A) and center \(P \) in \(G_\Omega \) or \(\langle \iota \rangle \times G_\Omega \), according to \(d \) odd or \(d \) even; \(d \) elements of type (A) with center on \(\ell \), in \(G_\pm \); \((d - \gcd(d, 2))\omega \) elements of type (B2) in \(\langle \alpha \rangle \times G_\Omega ; d\omega - 1 \) elements of type (B1) as the product of an involution in \(G_\pm \setminus \langle \iota \rangle \) by an element of \(G_\Omega \). The claim follows by direct computation with Theorem [2.5].

Proposition 3.14. Let \(G \leq \mathcal{M}_q \) be such that \(G/G_\Omega \cong \text{Dic}_m \), where \(m \mid \frac{q-1}{2} \) and \(m \nmid \frac{q-1}{4} \). Then

\[
g(\mathcal{H}_q/G) = 1 + \frac{q^2 - q - 2 - [(2m + 2\omega - 1)(q + 1) + 4\omega(3m - 1)]}{16m\omega}.
\]

Proof. By Remark [3.2] \(G = G_\pm \times G_\Omega \) with \(G_\pm \cong \text{Dic}_m \). From the proof of Proposition [3.1] the nontrivial elements \(G_\pm \) are exactly: 1 involution \(\iota \); \(2m \) other involutions of type (A) with center on \(\ell \); \(6m - 2 \) elements of type (B2). The nontrivial elements of \(G_\Omega \) are of type (A). The product \(\sigma \tau \) with \(\sigma \in G_\pm \) and \(\tau \in G_\Omega \setminus \{id\} \) is as follows: of type (A), if \(\sigma = \iota \); of type (B1), if \(\sigma \) is an involution different from \(\sigma \); of type (B2), if \(\sigma \) is of type (B2). The claim follows by direct computation with Theorem [2.5].

Proposition 3.15. Let \(G \leq \mathcal{M}_q \) be such that \(G/G_\Omega \cong \text{SU}^\pm(2, p^k) \cong \text{SL}(2, p^k) \rtimes C_2 \), where \(k \mid n \) and \(n/k \) is odd. Then

\[
g(\mathcal{H}_q/G) = 1 + \frac{q^2 - q - 2 - \Delta}{4p^k(p^{2k} - 1)\omega},
\]

where

\[
\Delta = (q + 1) + p^{2k}(p^k + 1)(p^k - 3) + (p^{2k} - 1)(q + 3) + p^{2k}(p^k - 1)(q + 1) + p^{2k}(p^{2k} - 1) + (2\omega - 2)(q + 1)
+ 2(p^{2k} - 1)(\omega - 1) + 2p^{2k}(p^k - 1)(p^{2k} - 2)(\omega - 1) + 2p^{2k}(p^k)(q + 1)(\gcd(p^k + 1, \omega - 1)).
\]

Proof. By Remark [3.2] and Proposition [3.1] \(G = G_\pm \times G_\Omega \) with \(G_\pm \cong \text{SU}^\pm(2, p^k) \) and \(G_\Omega \cong \text{SL}(2, p^k) \).

The nontrivial elements of \(G_\Omega \) are classified according to their type in the proof of [3.2] Proposition [4.3]. Namely, \(G_\Omega \) contains exactly: 1 element \(\iota \) of type (A); \(\frac{p^{2k}(p^k - 1)^2}{2} \) elements of type (B1), forming \(\frac{p^{2k}(p^k - 1)}{2} \) cyclic groups of order \(p^k + 1 \) with pairwise intersection \(\langle \iota \rangle \); \(\frac{p^{2k} + 1}{2} \) elements of type (B2), forming \(\frac{(p^k + 1)}{2} \) cyclic groups of order \(p^k - 1 \) with pairwise intersection \(\langle \iota \rangle ; p^{2k} - 1 \) elements of type (C), forming
$p^k + 1$ elementary abelian groups of order p^k with trivial pairwise intersection; $p^{2k} - 1$ elements of type (E), contained in $p^k + 1$ cyclic groups of order $2p^k$ with pairwise intersection (i). The elements of $G_{\pm} \setminus G_H$ are classified as follows.

- $G_{\pm} \setminus G_H$ contains exactly $p^k(p^k - 1)$ elements of type (A) and $\frac{p^k(p^k - 1)^2}{2}$ elements of type (B1).

In fact, let $\alpha \in M_q \setminus (\langle i \rangle \times \Omega)$ be of type (A) or (B1), and $\{Q, R\} \in \PGU(3, p^{2k}) \setminus H_q$ be the fixed points of α on ℓ. Let H_q have equation (11); up to conjugation, G_{\pm} is made by $\mathbb{F}_{p^{2k}}$-rational elements, as pointed out in Equation (13). Also, up to conjugation, $P = (0, 0, 1)$, $Q = (1, 0, 0)$, and $R = (0, 1, 0)$, so that $\alpha = \text{diag}(\lambda, \mu, 1)$ with $\lambda^{o(\alpha)} = \mu^{o(\alpha)} = 1$. For any $(p^k + 1)$-th root of unity λ, $\alpha \in G_{\pm} \setminus G_H$ if and only if $\det(\alpha) = -1$, i.e., $\mu = -\lambda^{-1}$. Note that $-\lambda^{-1} \neq \lambda$ since $4 \nmid (p^k + 1)$. Hence, after the choice of $\{Q, R\}$, there are exactly 2 elements of type (A) (namely, $\alpha = \text{diag}(1, -1, 1)$ and $\alpha = \text{diag}(-1, 1, 1)$) and $p^k - 1$ elements of type (B1) (namely, $\alpha = \text{diag}(\lambda, -\lambda^{-1}, 1)$ with $\lambda \neq \pm 1$).

Let \mathcal{F} be the free abelian group on r elements, as pointed out in Equation (3). Also, up to conjugation, for any element of type (E) in H_q, $\alpha = \text{diag}(\lambda, -\lambda^{-1}, 1)$ with $\lambda \neq \pm 1$.

There are exactly $\frac{p^{2k} - 1}{2}(p^k - 1)$ choices for $\{Q, R\}$. In fact, Q can be chosen as anyone of the $\mathbb{F}_{p^{2k}}$-rational points of ℓ which are not on H_q; then R is uniquely determined as the pole of the line PQ with respect to the unitary polarity associated to $H_q(\mathbb{F}_{q^2})$.

- As $p \nmid |G : H_q|$, there are no p-elements in $G \setminus G_H$. Also, any element of type (E) in M_q is the product $\sigma \tau$ of a p-element of type (C) by an element τ of type (A) in $\langle i \rangle \times \Omega$ (i.e., τ has center P). Since $G_{\pm} \cap (\langle i \rangle \times \Omega) = \langle i \rangle$, there are no elements of type (E) in $G_{\pm} \setminus G_H$.

- Any other element of $G_{\pm} \setminus G_H$ is of type (B2); their number is

$$p^k(p^{2k} - 1) \cdot \frac{(p^k - 1)^2}{2} = \frac{p^k(p^k - 1)(2p^k + 2 - 2p^k + 1)}{2} = \frac{p^k(p^{2k} - 1)}{2}.$$ The nontrivial elements of G_Ω are of type (A). The elements $\sigma \tau$ with $\sigma \in G_{\pm} \setminus \{id\}$ and $\tau \in G_\Omega \setminus \{id\}$ are classified as follows.

- If σ is of type (C) or (E), then $\sigma \tau$ is of type (E).
- If $\sigma = \iota$, then $\sigma \tau$ is of type (A).
- If σ is an involution different from ι, then $\sigma \tau$ is of type (B1).
- If σ is of type (B2), then $\sigma \tau$ is of type (B2).
- Let σ be of type (B1) and $\{Q, R\}$ be the points fixed by σ on ℓ; we have $\frac{p^k(p^k - 1)}{2}$ choices for $\{Q, R\}$. Arguing as above, we can use the model (11) for H_q, assume that $\{P, Q, R\}$ is the fundamental triangle, and that $\sigma = \text{diag}(\lambda, -\lambda^{-1}, 1)$ or $\sigma = \text{diag}(\lambda, -\lambda^{-1}, 1)$, with $\lambda^{p^{2k} + 1} = 1$, $\lambda \neq \pm 1$. If $o(\lambda) \mid \omega$, then there exists exactly one $\tau \in G_{\Omega} \setminus \{id\}$ such that $\sigma \tau$ is of type (A); otherwise, $\sigma \tau$ is of type (B1). Altogether, when σ ranges over the elements of type (B1), there are exactly $\frac{p^k(p^k - 1)}{2} \cdot (\gcd(\omega, p^k + 1) - 1) \cdot 4$ elements $\sigma \tau$ of type (A); the other ones are of type (B1).

Now the claim follows by direct computation with Theorem 2.5. □

4. The complete list of genera of quotients of H_q for $q \equiv 1 \pmod{4}$

This section provides the explicit complete list of genera of quotients $H_q[G, G \leq \PGU(3, q)]$ for $q = p^n \equiv 1 \pmod{4}$, and hence it gives a collection of the results obtained in this paper together with the results already obtained in the literature. It will be divided into subsections corresponding to the maximal subgroup of $\PGU(3, q)$ containing G. The case in which $G \leq \PGU(3, q)Q, Q \in \PGU(2, q^2) \setminus H_q$ will not be repeated here as it was already described in the previous sections.

4.1. $G \leq \PGU(3, q)P, P \in H_q(\mathbb{F}_{q^2})$.

Let $P \in H_q(\mathbb{F}_{q^2})$ and suppose that $G \leq \PGU(3, q)P$, the stabilizer of P in $\text{Aut}(H_q) = \PGU(3, q)$. Since $\PGU(3, q)$ acts transitively on $H_q(\mathbb{F}_{q^2})$, we can assume that $P = P_{\infty}$, that is, the unique point at infinity of
the model $y^{q+1} = x^q + x$ of \mathcal{H}_q. The complete list for odd values of q of genera of quotients \mathcal{H}_q / G where $G \leq \text{PGU}(3, q)_{\infty}$ was determined in [2] and partially in [13].

In these papers, an element $\sigma \in \text{PGU}(3, q)_{\infty}$ is uniquely described as a triple of elements in F_{q^2}, $\sigma = [a, b, c]$. The authors associate to G three sets, namely

$$G_1 = \{a \mid [a, b, c] \in G\}, \quad G_2 = \{b \mid [1, b, c] \in G\}, \quad G_3 = \{c \mid [1, 0, c] \in G\}$$

with $|G_1| = g_1$, $|G_2| = p^{g_2}$, and $|G_3| = p^{g_3}$.

In [15] it is proved that the genus of the quotient \mathcal{H}_q / G depends just on the values g_i. Namely, the following theorem is proved.

Theorem 4.1. (see [15] and [2] Lemma 4.1) Let $G \leq \text{PGU}(3, q)_{\infty}$, G_i, and g_i be defined as above, and let $d = \gcd(g_1, q + 1)$. Then

$$g(\mathcal{H}_q / G) = \frac{q - p^{g_3}}{2|G|} (q - (d - 1)p^{g_2}).$$

Defining r and u to be the smallest integers such that $p^r \equiv 1 \pmod{g_1}$ and $p^u \equiv 1 \pmod{g_1/d}$ respectively, then $|G| = h_1p^{g_2r + g_3u}$.

At this point the authors provide necessary and sufficient conditions to the triple (g_1, g_2, g_3) to be associated with an existing subgroup G of $\text{PGU}(3, q)_{\infty}$, so that Theorem [11] gives the complete list of genera when G is in $\mathcal{H}_q(\mathbb{F}_{q^2})$. The authors observed that when $g_1 | (q^2 - 1)$ is fixed it is sufficient to consider the cases $0 \leq g_2 \leq 2n/r$ and $0 \leq g_3 < n/u$ as otherwise \mathcal{H}_q / G would be rational.

Theorem 4.2. ([2] Theorems 4.3 and 5.8) Define r and u as above. Let $M_G(p, n) = \{(g_1, g_2, g_3) : g_1 | (q^2 - 1), 0 \leq g_2 \leq 2n/r, \text{ and } 0 \leq g_3 < n/u \text{ for some } G \leq \text{PGU}(3, q)_{\infty}\}$. Then

- If $g_1 | (q - 1)$ then for every $0 \leq g_2 \leq 2n/r$ and $0 \leq g_3 < n/u$ $(g_1, g_2, g_3) \in M_G(p, n)$.
- If $g_1 | (q^2 - 1)$ but $g_1 \nmid (q - 1)$ then for every $0 \leq g_2 \leq 2n/r$ and $0 \leq g_3 < n/u$ $(g_1, g_2, g_3) \in M_G(p, n)$.

Moreover, this is the complete list of elements in $M_G(p, n)$.

4.2. $G \leq \text{PGU}(3, q)_{T}$, T a self-polar triangle in $\text{PG}(2, q^2) \setminus \mathcal{H}_q$.

Let $T = \{P_1, P_2, P_3\}$ be a self-polar triangle in $\text{PG}(2, q^2) \setminus \mathcal{H}_q$ and $\text{PGU}(3, q)_{T}$ be the maximal subgroup of $\text{PGU}(3, q)$ stabilizing T. We have $\text{PGU}(3, q)_{T} = (C_{q+1} \times C_{q+1}) \rtimes S_3$, where $C_{q+1} \times C_{q+1}$ stabilizes T pointwise and S_3 acts faithfully on T.

The genera of quotients \mathcal{H}_q / G where $G \leq \text{PGU}(3, q)_{T}$ are completely classified in [8] as follows according to the action of G in T. We define $G_T = G \cap (C_{q+1} \times C_{q+1})$.

Theorem 4.3. ([8] Theorem 3.1) Let $q + 1 = \prod_{i=1}^{\ell} p_i^{r_i}$ be the prime factorization of $q + 1$.

(i) For any divisors $a = \prod_{i=1}^{\ell} p_i^{u_i}$ and $b = \prod_{i=1}^{\ell} p_i^{v_i}$ of $q + 1$ $(0 \leq s_i, t_i \leq r_i)$, let $c = \prod_{i=1}^{\ell} p_i^{u_i}$ be such that, for all $i = 1, \ldots, \ell$, we have $u_i = \min\{s_i, t_i\}$ if $s_i \neq t_i$, and $s_i \leq u_i \leq r_i$ if $s_i = t_i$. Define $d = a + b + c - 3$. Let $e = \frac{abc}{\gcd(a, b)} \prod_{i=1}^{\ell} p_i^{r_i}$, where for all i’s v_i satisfies $0 \leq v_i \leq r_i - \max\{s_i, t_i, u_i\}$. We also require that, if $p_i = 2$ and either $2 \mid abc$ or $2 \mid \gcd(a, b, c)$, then $v_i = 0$. Then there exists a subgroup G of $C_{q+1} \times C_{q+1}$ such that

$$g(\mathcal{H}_q / G) = \frac{(q + 1)(q - 2 - d) + 2e}{2e}.\]
Proposition 4.4. (Proposition 3.4) Let q be odd.

(i) Let $\ell, a, c,$ and e be positive integers satisfying $e \mid (q + 1)^2, c \mid (q + 1), \ell \mid c, d \mid a, ac \mid e, \frac{a}{c} \mid (q + 1),$ and $\gcd\left(\frac{a}{ac}, \frac{a}{c}\right) = 1$. If $2 \mid a$ or $2 \nmid c,$ we also require that $2 \nmid \frac{a}{c}$. Then there exists a subgroup $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$ of order $2e$ such that $|G \cap (C_{q+1} \times C_{q+1})| = e$ and

\[
g(H_q/G) = \frac{(q + 1)(q - 2a - c + 1 - h) - 2k + 4e}{4e},
\]

where

\[
(h,k) = \begin{cases}
(\frac{5}{2}, \frac{3}{2}) & \text{if } 2a \mid (q + 1); \\
(\frac{1}{2}, 0) & \text{if } 2a \mid (q + 1), 2a \nmid c; \\
(0, e) & \text{if } 2a \mid c, 2\ell \mid (q + 1); \\
(0, 0) & \text{if } 2a \mid c, 2\ell \mid (q + 1), 2\ell \nmid c; \\
(\frac{1}{2}, 0) & \text{if } 2a \mid c, 2\ell \mid c.
\end{cases}
\]

(ii) Conversely, if $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$ and $G \cap (C_{q+1} \times C_{q+1})$ has index 2 in G, then the genus of H_q/G is given by Equation (12), where $e = |G|/2$; without loss of generality, $a - 1$ is the number of homologies in G with center P_1 which is equal to the number of homologies in G with center P_2, and $c - 1$ is the number of homologies in G with center P_3; $\ell = \frac{a(3)}{2}$ for some $\beta \in G \setminus G_T$; ℓ, a, c, e satisfy the numerical assumptions in point (i).

Proposition 4.5. (Proposition 3.5) Let q be such that $3 \nmid (q + 1)$.

(i) Let a and e be positive integers satisfying $e \mid (q + 1)^2, a^2 \mid e, \frac{a}{a} \mid (q + 1), 2 \nmid \frac{a}{a}$, and $\gcd\left(\frac{a}{a}, a\right) = 1$. We also require that there exists a positive integer $m \leq \frac{a}{a}$ such that $\frac{a}{a} \mid (m^2 - m + 1)$. Then there exists a subgroup $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$ of order $3e$ such that $|G \cap (C_{q+1} \times C_{q+1})| = e$ and

\[
g(H_q/G) = \frac{(q + 1)(q - 3a + 1) + 2e}{6e}.
\]

(ii) Conversely, if $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$ and $G \cap (C_{q+1} \times C_{q+1})$ has index 3 in G, then the genus of H_q/G is given by Equation (13), where $e = |G|/3$; the number of homologies in G with center P_i is $a - 1$ for $i = 1, 2, 3$; there exist ℓ and m such that a, c, ℓ, m satisfy the numerical assumptions in point (i).

Proposition 4.6. (Proposition 3.6) Let q be such that $3 \mid (q + 1)$.

(i) Let $a, e,$ and ℓ be positive integers satisfying $e \mid (q + 1)^2, a^2 \mid e, \frac{a}{a} \mid (q + 1), 2 \nmid \frac{a}{a}$, $\gcd\left(\frac{a}{a}, a\right) = 1$, and $\ell \mid (q + 1)$. We also require that there exists a positive integer $m \leq \frac{a}{a}$ such that $\frac{a}{a} \mid (m^2 - m + 1)$. Then there exists a subgroup $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$ of order $3e$ such that $|G \cap (C_{q+1} \times C_{q+1})| = e$ and

\[
g(H_q/G) = \frac{(q + 1)(q - 3a + 1) + h \cdot e}{6e},
\]

with

\[
h = \begin{cases}
2 & \text{if } a \nmid \frac{a}{a} + 1; \\
0 & \text{if } a \nmid \frac{a}{a} + 1, \ell \mid \frac{a}{a} + 1; \\
6 & \text{if } a \mid \frac{a}{a} + 1, \ell \mid \frac{a}{a} + 1.
\end{cases}
\]

(ii) Conversely, if $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$ and $G \cap (C_{q+1} \times C_{q+1})$ has index 3 in G, then the genus of H_q/G is given by Equation (14), where $e = |G|/3$; the number of homologies in G with center P_i is $a - 1$ for $i = 1, 2, 3$; there exist ℓ and m such that a, c, ℓ, m satisfy the numerical assumptions in point (i).

Proposition 4.7. (Proposition 3.7)
(i) Let a be a divisor of $q+1$. We choose $e = a^2$ if $3 \mid (q+1)$ or $3 \mid a$; else $e \in \{a^2, 3a^2\}$. Then there exists a subgroup $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$ of order $6e$ such that $|G \cap (C_{q+1} \times C_{q+1})| = e$ and

$$g(H_q/G) = \frac{(q+1)(q - 3a + 1 - \frac{3e}{2}) - 2r - 3s + 12e}{12e},$$

where

$$r = \begin{cases} \frac{2e}{3} & \text{if } q \equiv 0 \text{ or } 1 \text{ (mod 3) and } a \nmid \frac{q+1}{2}, \\ 2e & \text{if } q \equiv 2 \text{ (mod 3) and } a \nmid \frac{q+1}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

and $s = \begin{cases} \frac{4e}{3} & \text{if } q \equiv 2 \text{ (mod 3) and } a \nmid \frac{q+1}{2}, \\ 0 & \text{otherwise.} \end{cases}$

(ii) Conversely, if $G \leq (C_{q+1} \times C_{q+1}) \rtimes S_3$, then one of the following holds:

$$g(H_q/G) = \begin{cases} \frac{1}{2} \left(\frac{q^2-q+1}{\nu} - 1 \right); & q \equiv 2 \text{ (mod 3) and } 3 \nmid \nu; \\ \frac{q^2-q+1}{6\nu}, & q \equiv 2 \text{ (mod 3) and } 3 \mid \nu; \\ \frac{q^2-q+1-3\nu}{6\nu}, & q \equiv 2 \text{ (mod 3) and } 3 \nmid \nu. \end{cases}$$

When $q \equiv 2$ (mod 3) and $3 \nmid \nu$, then both the third and the fourth line in Equation (16) are obtained for some $G \leq \PGU(3,q)$.

4.3. $G \leq \PGU(3,q)$, T a triangle in $H_q(F_{q^2}) \setminus H_q(F_{q^2})$.

Let $T = \{P_i, P_2, P_3\}$ be a triangle in $H_q(F_{q^2}) \setminus H_q(F_{q^2})$ which is invariant under the Frobenius collineation Φ_{q^2} of $\PG(2,q^6)$, and $\PGU(3,q)_T$ be the maximal subgroup of $\PGU(3,q)$ stabilizing T. We have $\PGU(3,q)_T = S \times C_3$, where $S \cong C_{q^2-q+1}$ is a Singer subgroup stabilizing T pointwise and acting semiregularly on $\PG(2,q^2)$; C_3 acts faithfully on T.

The genera of quotients H_q/G where $G \leq \PGU(3,q)_T$ are completely classified in [6] whenever $p \nmid |G|$. The case $p \mid |G|$ happens only if $p = 3$. This case was not considered in [6], and can be dealt with using Theorem 2.5 and the fact that each element in $G \setminus G_T$ has order 3.

Theorem 4.8. (6 Proposition 4.2)

(i) Let $\nu \mid (q^2 - q + 1)$. Then there exists $G \leq \PGU(3,q)_T$ such that $|G_T| = \nu$ and one of the following holds:

$$g(H_q/G) = \begin{cases} \frac{1}{2} \left(\frac{q^2-q+1}{\nu} - 1 \right); & q \equiv 2 \text{ (mod 3) and } 3 \nmid \nu; \\ \frac{q^2-q+1}{6\nu}, & q \equiv 2 \text{ (mod 3) and } 3 \mid \nu; \\ \frac{q^2-q+1-3\nu}{6\nu}, & q \equiv 2 \text{ (mod 3) and } 3 \nmid \nu. \end{cases}$$

When $q \equiv 2$ (mod 3) and $3 \mid \nu$, then both the third and the fourth line in Equation (16) are obtained for some $G \leq \PGU(3,q)$.

(ii) Conversely, let $G \leq \PGU(3,q)_T$. If $G = G_T$, then $g(H_q/G)$ is given by the first line in Equation (16) with $\nu = |G|$. If $G \neq G_T$, then $g(H_q/G)$ is given by the second or third or fourth line in Equation (16) with $\nu = |G|/3$.

4.4. $G \leq \PGU(3,q)$ has no fixed points or triangles.

The genus of quotient H_q/G with $G \leq \PGU(3,q)$ was computed in [33] whenever G has no fixed points or triangles. The equations of this section describe the genera of such quotients H_q/G.

Theorem 4.9. (33) For any integer \bar{q} provided by one of the Equations (17) to (27), there exists $G \leq \PGU(3,q)$ such that $g(H_q/G) = \bar{q}$ and G has no fixed points or triangle.

Conversely, if $G \leq \PGU(3,q)$ has no fixed points or triangles, then $g(H_q/G)$ is given by one of the Equations (17) to (27).
(17) \[\frac{q^2 - 34q + 289}{432}, \quad \frac{q^2 - 10q + 25}{144}, \quad \frac{q^2 - 10q + 25}{72}, \]

where \(G \cong \text{PGU}(3, 2), G \cong \text{PSU}(3, 2), G \cong \text{SmallGroup}(36, 9), \) respectively.

(18) \[\frac{q^2 - 16q + 103 - 24\gamma - 20\delta}{120}, \quad \text{when} \quad p = 5 \quad \text{or} \quad 5 \mid (q^2 - 1), \quad G \cong A_5, \]

\[\delta = \begin{cases} 2, & \text{if either } p = 3 \text{ or } 3 \mid (q - 1), \\ 0, & \text{if } 3 \mid (q + 1), \end{cases} \quad \text{and} \quad \gamma = \begin{cases} 0, & \text{if } 5 \mid (q + 1), \\ 2, & \text{if } p = 5 \text{ or } 5 \mid (q - 1). \end{cases} \]

(19) \[\frac{q^2 - q - 2 - \Delta}{q(q + 1)(q - 1)} + 1, \]

where \(q = q^h, \bar{q} \neq 3, G \cong \text{PSL}(2, q), \) and

- \[\Delta = 2(q - 2)(\bar{q} + 1) + 2\bar{q}(\bar{q} + 1) \left(\frac{\bar{q} - 1}{2} \right)^2 + \bar{q}(\bar{q} + 1)(q + 1) + \delta \bar{q}(\bar{q} + 1) \left(\frac{q + 1}{2} - 1 \right), \quad \text{if } \bar{q} \equiv 1 \pmod{4}, \]

- \[\Delta = 2(\bar{q} - 1)(q + 1) + 2\bar{q}(\bar{q} + 1) \left(\frac{\bar{q} - 1}{2} \right)^2 + \bar{q}(q + 1) + \delta \bar{q}(\bar{q} + 1) \left(\frac{\bar{q} + 1}{2} - 2 \right), \quad \text{if } \bar{q} \equiv 3 \pmod{4}, \]

with \(\delta = \begin{cases} 2, & \text{if } h \text{ is even}, \\ 0, & \text{otherwise}; \end{cases} \)

(20) \[\frac{q^2 - q - 2 - \Delta}{2q(q + 1)(q - 1)} + 1, \]

where \(q = q^h, \bar{q} \neq 3, G \cong \text{PGL}(2, q), \) and

\[\Delta = 2(\bar{q} - 1)(\bar{q} + 1) + \frac{\bar{q}(\bar{q} + 1)}{2} (q + 1) + \frac{\bar{q}(\bar{q} - 1)}{2} (q + 1) + 2\frac{\bar{q}(\bar{q} + 1)}{2} (\bar{q} - 1 - 2) + \frac{\bar{q}(\bar{q} - 1)}{2} (\bar{q} + 1 - 2) \]

and

\[\delta = \begin{cases} 2, & \text{if } h \text{ is even}, \\ 0, & \text{otherwise}. \end{cases} \]

(21) \[\frac{q^2 - 22q + 229 - 56\alpha - 48\beta}{336}, \quad \text{when} \quad p = 7 \quad \text{or} \quad \sqrt{-7} \notin \mathbb{F}_q \]

where

\[\alpha = \begin{cases} 0, & \text{if } 3 \mid (q + 1), \\ 2, & \text{otherwise}; \end{cases} \quad \beta = \begin{cases} 0, & \text{if } 7 \mid (q + 1), \\ 3, & \text{if } 7 \mid (q^2 - q + 1), \\ 2, & \text{otherwise}. \end{cases} \]

(22) \[\frac{q^2 - 10q + 25}{72}, \quad \frac{q^2 - 16q + 55}{120}, \quad \frac{q^2 - 10q + 25}{144}, \]

\[\frac{q^2 - 46q + 205}{720}, \quad \frac{q^2 - 46q + 205}{1440}, \quad \text{when} \quad q = 5^n, \quad n \text{ is odd}, \]

where \(G \cong \text{SmallGroup}(36, 9), G \cong A_5, G \cong \text{PSU}(3, 2), G \cong A_6, G \cong \text{SmallGroup}(720, 765), \) respectively.

(23) \[\frac{q^2 - 46q + 493 - 80\alpha - 144\gamma}{720}, \quad \frac{q^2 - 16q + 103 - 20\alpha - 24\gamma}{120}, \quad \frac{q^2 - 10q + 25}{72}, \]
THE COMPLETE LIST OF GENERA OF QUOTIENTS OF THE \mathbb{F}_{q^2}-MAXIMAL HERMITIAN CURVE FOR $q \equiv 1 \pmod{4}$

when either $p = 3$ and n is even, or $\sqrt{5} \in \mathbb{F}_q$ and \mathbb{F}_q contains no primitive cube roots of unity, with

$$\alpha = \begin{cases} 2, & \text{if } p = 3, \\ 0, & \text{otherwise} \end{cases}$$

and $G \cong A_6$, $G \cong A_5$, $G \cong \text{SmallGroup}(36,9)$, respectively.

\begin{equation}
\frac{q^2 - 106q + 2665 - 720\beta}{5040}, \quad \frac{q^2 - 46q + 205}{720}, \quad \frac{q^2 - 22q + 229 - 48\beta}{336},
\end{equation}

\begin{equation}
\frac{q^2 - 26q + 105}{240}, \quad \frac{q^2 - 16q + 55}{120}, \quad \frac{q^2 - 10q + 25}{72},
\end{equation}

where

$q = 5^n$, n is odd,

$\beta = \begin{cases} 0, & \text{if } 7 \mid (q + 1), \\ 3, & \text{otherwise}, \end{cases}$

and $G \cong A_7$, $G \cong A_6$, $G \cong \text{PSL}(2,7)$, $G \cong A_5 \rtimes C_2$, $G \cong A_5$, $G \cong \text{SmallGroup}(36,9)$, respectively.

\begin{equation}
1 + \frac{q^2 - q - 2 - \Delta}{2q^3(q^3 + 1)(q^2 - 1)}, \quad \text{when } \bar{q} = p^k, \ k \mid n, \ n/k \text{ is odd}, \ G \cong \text{PGU}(3,p^k),
\end{equation}

where

$$\Delta = (\bar{q} - 1)(q^3 + 1) \cdot (q + 2) + (q^3 - \bar{q})(q^3 + 1) \cdot 2 + \bar{q}(q^4 - \bar{q}^3 + q^2) \cdot (q + 1)$$

$$+ (q^2 - \bar{q} - 2) \frac{(q^3 + 1)q^2}{2} \cdot 2 + (\bar{q} - 1)\bar{q}(q^3 + 1)q^2 \cdot 1 + (q^2 - \bar{q})\frac{\bar{q}^6 + \bar{q}^5 - \bar{q}^4 - \bar{q}^3}{3} \cdot \gamma,$$

with

$\gamma = \begin{cases} 3, & \text{if } (\bar{q}^2 - \bar{q} + 1) \mid (q^2 - q + 1), \\ 0, & \text{if } (\bar{q}^2 - \bar{q} + 1) \mid (q + 1). \end{cases}$

\begin{equation}
\frac{3(q^2 - q - 2 - \Delta)}{2q^3(q^2 - 1)(q^3 + 1)} + 1, \quad \text{when } \bar{q} = p^k, \ k \mid n, \ n/k \text{ is odd}, \ 3 \mid (q + 1), \ G \cong \text{PSU}(3,p^k),
\end{equation}

where

$$\Delta = (\bar{q} - 1)(q^3 + 1) \cdot (q + 2) + (q^3 - \bar{q})(q^3 + 1) \cdot 2 + ((\bar{q} + 1)/3 - 1)(q^4 - q^3 + q^2) \cdot (q + 1)$$

$$+ ((q^2 - 1)/3 - (\bar{q} + 1)/3) \frac{(q^3 + 1)q^2}{2} \cdot 2 + (\bar{q} - 1)((\bar{q} + 1)/3 - 1)(q^3 + 1)q^2 \cdot 1 + ((\bar{q}^2 - \bar{q} + 1)/3 - 1)\frac{\bar{q}^6 + \bar{q}^5 - \bar{q}^4 - \bar{q}^3}{3} \cdot \delta,$$

with

$\delta = \begin{cases} 3, & \text{if } (\bar{q}^2 - \bar{q} + 1)/3 \mid (q^2 - q + 1), \\ 0, & \text{if } (\bar{q}^2 - \bar{q} + 1)/3 \mid (q + 1). \end{cases}$

REFERENCES

[1] Abdón, M., Quoos, L.: On the genera of subfields of the Hermitian function field, Finite Fields Appl. 10 (3), 271–284 (2004).
[2] Bassa, A., Ma, L., Xing, C., Yeo, S.L.: Toward a characterization of subfields of the Deligne-Lusztig function fields, J. Combin. Theory Ser. A 120 (7), 1351–1371 (2013).
[3] Beelen, P., Montanucci, M.: A new family of maximal curves. Arxiv: 1711.02894.
[4] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (3–4), 235–365 (1997).
[5] Cossidente, A., Ebert, G.L.: Permutable polarities and a class of ovoids of the Hermitian surface, European J. Combin. 25 (7), 1059–1066 (2004).
[6] Cossidente, A., Korchmáros, G., Torres, F.: Curves of large genus covered by the Hermitian curve, Comm. Algebra 28 (10), 4767–478 (2000).
Montanucci, M., Zini, G.: Quotients of the Hermitian curve from subgroups of PGU(3). Bull. Braz. Math. Soc. (N.S.) 43 (3), 453–465 (2012).

Fuhrmann, R., Torres, F.: On Weierstrass points and optimal curves, Rend. Circ. Mat. Palermo Suppl. 51 (Recent Progress in Geometry, Ballico E, Korchmáros G, (Eds.)), 25–46 (1998).

Garcia, A.: Curves over finite fields attaining the Hasse-Weil upper bound, in: European Congress of Mathematics, vol. II (Barcellona 2000), Progr. Math. 202, Birkhäuser, Basel, 199–205 (2001).

Garcia, A.: On curves with many rational points over finite fields, in: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, Springer, Berlin, 152–163 (2002).

Garcia, A., Güneri, C., Stichtenoth, H.: A generalization of the Giulietti-Korchmáros maximal curve, Adv. Geom. 10 (3), 427–434 (2010).

Garcia, A., Stichtenoth, H.: Algebraic function fields with many rational places, IEEE Trans. Inf. Theory 41, 1548–1563 (1995).

Garcia, A., Stichtenoth, H.: A maximal curve which is not a Galois subcover of the Hermitian curve, Bull. Braz. Math. Soc. (n.s.) 37, 139–152 (2006).

Garcia, A., Stichtenoth, H., Xing, C.: On subfields of the Hermitian function field, Compositio Math. 120 (2), 137–170 (2000).

Giulietti, M., Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: A family of curves covered by the Hermitian curve, Sémin. Congr. 21, 63–78 (2010).

Giulietti, M., Korchmáros, G.: Algebraic curves with many automorphisms, arXiv:1702.08812.

Giulietti, M., Korchmáros, G.: A new family of maximal curves over a finite field, Math. Ann. 343, 229–245 (2009).

Giulietti, M., Montanucci, M., Zini, G.: On maximal curves that are not quotients of the Hermitian curve, Finite Fields Appl. 41, 72–88 (2016).

Hartley, R.W.: Determination of the ternary collineation groups whose coefficients lie in the GF(2^n), Ann. of Math. Second Series 27 (2), 140–158 (1925).

Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008).

Hughes, D.R., Piper, F.C.: Projective Planes. Graduate Text in Mathematics 6, Springer, Berlin (1973).

Huppert, B.: Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin (1967).

Kantor, W.M., O’Nan, M.E., Seitz, G.M.: 2-transitive groups in which the stabilizer of two points is cyclic, J. Algebra 21, 17–50 (1972).

Kleiman, S.L.: Algebraic cycles and the Weil conjectures, in Dixexposés sur la cohomologie des schémas, Adv. Stud. Pure Math. 3, 359–386 (1968).

Lachaud, G.: Sommes d’Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305, Série I, 729–732 (1987).

Mak, K.H.: On Congruence Function Fields with many rational places, PhD Thesis, www.ideals.illinois.edu/bitstream/handle/2142/34193/Mak_KHo.pdf?sequence=1.

Mitchell, H.H.: Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (2), 207–242 (1911).

Montanucci, M., Zini, G.: On the spectrum of genera of quotients of the Hermitian curve, Comm. Algebra (2018), DOI 10.1080/00927872.2018.1455100.

Montanucci, M., Zini, G.: Quotients of the Hermitian curve from subgroups of PGU(3, q) without fixed points or triangles. Arxiv: 1804.03398.

Montanucci, M., Zini, G.: Some Ree and Suzuki curves are not Galois covered by the Hermitian curve, Finite Fields Appl. 48, 175–195 (2017).

Stichtenoth, H.: Algebraic function fields and codes, 2nd edn. Graduate Texts in Mathematics 254, Springer, Berlin (2009).

Suzuki, M.: Group Theory I, Berlin: Springer-Verlag (1982).

van der Geer, G.: Curves over finite fields and codes, in: European Congress of Mathematics, vol. II (Barcellona 2000), Progr. Math. 202, Birkhäuser, Basel, 225–238 (2001).

van der Geer, G.: Counting theory and algebraic curves over finite fields: a survey and questions, in: Applications of Algebraic Geometry in Coding Theory, Physics and Computation, NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer, Dordrecht, 139–159 (2001).

Wall, C.T.C.: On the structure of finite groups with periodic cohomology. Lie groups: structure, actions, and representations, 381–413, Progr. Math. 306, Birkhäuser/Springer, New York, (2013).