Apreciables lectores de Pädi

Como siempre, es un gusto darles una cordial bienvenida a nuestro número regular, el cual semestre a semestre recopila y publica los avances/investigaciones más importantes sometidas durante cada periodo. Hoy más que nunca, el orgullo me invade al dar fin a este periodo de selección lleno de retos y por eso a nombre del comité editorial, remarcar un profundo reconocimiento y agradecimiento, en primer lugar al grupo de revisores que con un criterio amplio, objetivo y desinteresado nos ayudaron a seleccionar de manera anónima, los dieciocho revisores que con un criterio amplio, objetivo y desinteresado que sometieron sus trabajos de investigación a Pädi, duplicando el número de manuscritos envidos y rebasando la cantidad de autores/coautores de universidades, institutos y/o centros de investigación ajenos a nuestra universidad, de entre estudiantes, académicos e investigadores, de universidades, institutos y/o centros de investigación ajenos a nuestra universidad, de convocatorias anteriores.

Con la publicación de este número de Pädi, también finaliza el primer semestre del 2020, quizá el periodo más difícil que la humanidad haya vivido en los últimos 100 años, hablando de salud pública. Durante casi la mitad de este periodo, la mayoría de la población afectada, permanecimos confinados en nuestras hogares, mientras tanto tuvimos que acoplarlos a constantes cambios en nuestra manera de pensar, socializar, educar, investigar, sentir y hasta respirar. Lastimosamente, hemos sufrimos pérdidas, económicas, sociales, culturales, pero sobre todo y más lamentables, humanas. En contraste, durante este lapso de tiempo y gracias a nuestra ausencia “obligatoria”, varios reportes globales haciendo referencia al posicionamiento natural, ajeno al ser humano y con más derecho por origen, de muchas especies. Lo cual, es un excelente pretexto para reformular nuestro quehacer para la coexistencia con nuestro entorno.

Sin duda, este primer semestre del 2020, será una etapa que cambiará el pensamiento y el sentir de todos nosotros. Es por eso que en esta ocasión, la presente editorial viene acompañada de un escrito aludiendo a “Los retos de la actual pandemia”. En este, el Dr. Roberto Ávila Pozos nos relata un panorama objetivo y sintetizado sobre cómo se ha vivido y afrontado a nivel mundial, nacional y estatal el coronavirus SARS-CoV-2 (Coronavirus Disease 19 COVID-19). Lo anterior, mediante una búsqueda bibliográfica rigurosa y actual, así como una representación matemática que describe la dinámica del brote epidémico usando un sistema de ecuaciones diferenciales.

Para el presente Vol. 8 No. 15 del Pädi, se encuentran manuscritos de estudante, académicos e investigados, de entre los cuales, convergen contribuciones/proposiciones de diferentes institutos y escuelas superiores de la UAEH; de dos Centros Públicos de Investigación del CONACYT: el Instituto Potosino de Investigación Científica y Tecnológica IPICYT y el Centro de Tecnología Avanzada CIATEQ; de tres Centros Públicos de Investigación del CONACYT: el Instituto de la Universidad de Sonora; de la Universidad Panamericana; de la Escuela Normal Superior Pública del Estado de Hidalgo; del Instituto Politécnico Nacional y de la Universidad de Texas.

Sin más preámbulo y esperando que el lector se sienta interesado, a continuación se describen de manera breve los manuscritos que se podrán encontrar en la presente edición de Pädi:

Comenzamos con el manuscrito titulado “Aplicación del Algoritmo de Búsqueda Gravitacional para Optimizar un Problema de Planeación Agregada de la Producción” se propone un solucion al problema de planeación agregada de la producción (APP, siglas en inglés), mediante algoritmo de búsqueda gravitacional (GSA, siglas en inglés), demostrando que los GSA puede ser aplicado a APP con una gran cantidad de variables y restricciones.

En “Cálculo de la resistencia del suelo al interpolarlo con el MEF” se presenta una interpolación para calcular la resistencia de suelos mediante el método de elementos finitos.
(MEF), para validar los resultados se realiza una comparación entre el método propuesto y un método tradicional, obteniendo una congruencia del 98% entre ambos métodos.

La programación de un controlador PID empleando bloques en Simulink-Matlab™ para el control de los servomotores del CNC mediante una tarjeta de desarrollo del microcontrolador Atmel 256 es presentado en “Diseño e Implementación de una Plataforma de Control Simplificada para la retroalimentación de un Plotter CNC”.

En “Tendencias en el Manejo Inteligente de Energía en Micro Redes” se presenta un estudio sobre el manejo inteligente de la energía basado en big data, describiendo una micro red, se discuten los problemas y las tendencias para controlarlas.

El manuscrito titulado “Necesidad de un marco de referencia para caracterizar el pensamiento físico: algunas reflexiones” se presentan una serie de reflexiones con la intención de contribuir a consolidar un marco de referencia que puede permitir caracterizar algunos aspectos del pensamiento físico.

En “Uso de herramientas digitales en un estudio de tendencias de movilidad en bicicleta en Ciudad del Conocimiento de la UAEH” los autores proponen el uso de tecnología digital como herramienta para medir la tendencia del uso de la bicicleta en entornos académicos, tomando como caso de estudio a la Ciudad del Conocimiento de la Universidad Autónoma del Estado de Hidalgo.

Mientras que en “Modelo matemático de la Teoría de la Inexistencia del Mercado de Trabajo: Aproximaciones a la Economía Feminista” se presenta una prueba de diferencia de medias para analizar las diferencias entre hombres y mujeres en cuanto a ingreso monetario y uso del tiempo, con datos para México en 2018.

En “Alternativas para contrarrestar los efectos del sellado antropogénico del suelo” se describe la aplicación de tecnologías y materiales funcionales, respetuosos con el medio ambiente, que contrarresten el impacto negativo generado por el sellado del suelo, para recuperar parcialmente algunas de las funciones naturales del mismo.

Continuando con “Métodos y modelos para abordar problemas logísticos en la cadena de suministro agroalimentaria” donde se presentan procesos y actividades logísticas, para identificar técnicas y herramientas propuestas específicamente para la cadena de suministro agroalimentaria, que cubre aspectos desde las operaciones de apoyo a la producción hasta las implicaciones ambientales.

En “Sobre un criterio de divisibilidad entre once” se propone un criterio sencillo y novedoso sobre la divisibilidad entre 11, también se incluyen algunas aplicaciones y notas históricas.

En “¿Qué le pasa a mi auto?” se describe el proceso de reformación catalítica, con el cual se incrementa el número de octano de la gasolina para cuidar del motor y el medio ambiente.

Por otro lado, en “Implementación de Controladores por Modos Deslizantes en un Convertidor Boost” se presenta la implementación de dos estrategias de control por modos deslizantes en un convertidor de potencia tipo Boost para asegurar la regulación de la corriente en los convertidores.

En “Geología Superficial de la Zona Mineralizada Dos Carlos, Pachuca, Hidalgo” se sugiere la existencia de un régimen transtensional, asociado con la Falla Santa Gertrudis, constituyendo un sistema de fallas lateral izquierdo, muy probablemente de escala regional.

Un modelo de campo neural que modela la actividad sináptica media de una población de neuronas granulares del hipocampo de tipo excitatorio e inhibitorio es considerado en “Modelo de campo neural con acción dual neuronal glutamatérgica-GABAérgica”.

En “Estructura y caracterización de recubrimientos de galvanizado por inmersión en caliente de aceros de bajo carbono sumergidos en medio ácido” se realizó el análisis estructural y de propiedades mecánicas (microdureza) en recubrimientos de galvanizado por inmersión continua en caliente sobre láminas de acero de bajo C, sometiendo a diferentes temperaturas en un baño líquido de Zn previamente inmersas en una solución de 1M de HCl para determinar las condiciones ideales en el proceso de galvanizado, obteniendo un nivel de dureza adecuada.

Continuando con el manuscrito titulado “Estudios preliminares del transporte de rojo 40 a través de una membrana híbrida” se desarrolla una membrana híbrida para el proceso de transporte del colorante rojo 40 utilizado en la industria textil, mostrando su utilidad para la recuperación del colorante.

En “Propuestas de análisis de la dispersión urbana” se analizan cinco propuestas sobre cómo medir la dispersión territorial en distintas tipologías de ciudades, con el fin de aportar elementos para la construcción de una metodología propia que pueda aplicarse al caso mexicano.

Finalmente, en “Modelo difuso de calidad de servicios en un hotel de cuatro estrellas” se desarrolla un modelo de medición de la calidad de servicios en los departamentos esenciales de un hotel categoría cuatro estrellas de la ciudad de México.

Dedicado a la memoria de mi hermano y gran amigo
“Oscar Villafuerte-Segura”
06/11/81 – †13/03/2020
Espero te concedan lo que tanto anhelabas…te amo.
Descansa en paz.

Raúl Villafuerte-Segura
Editor en Jefe de Pädi
Los retos de la actual pandemia
The challenges of the current pandemic

Roberto Ávila-Pozosa,*

aÁrea Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, 42184, Pachuca, Hidalgo, México.

Resumen
El nuevo coronavirus SARS-CoV-2 (Coronavirus Disease 19 COVID-19), surgió a finales del 2019 en la ciudad de Wuhan en la provincia de Hubei en la República Popular de China. Su propagación al mundo entero ha sido muy rápida y en muy poco tiempo. Esta epidemia constituye un enorme reto para la comunidad científica en todo el mundo, puesto que se requiere de información sobre la dinámica epidemiológica a distintos niveles, a fin de establecer las políticas de salud pública que permitan reducir el número de contagios en el menor tiempo posible, a falta de tratamientos aprobados o vacunas desarrolladas. También nos enfrentamos a una gran cantidad de información falsa, que se propaga más rápido que la pandemia, y que sumada al aislamiento, se ha convertido ya en un problema de salud pública. Estamos ante un fenómeno complejo que está poniendo a prueba nuestra capacidad para el trabajo multidisciplinario eficiente.

Palabras Clave:
Pandemia, Investigación científica, Divulgación científica, Modelación matemática.

Abstract
The new SARS-CoV-2 coronavirus (Coronavirus Disease 19 COVID-19), emerged in late 2019 in the city of Wuhan in the province of Hubei in the People’s Republic of China. Its spread to the whole world has been very fast and in a very short time. This epidemic constitutes a huge challenge for the scientific community worldwide, since information on epidemiological dynamics is required at different levels, in order to establish public health policies that allow reducing the number of infections in the shortest possible time, in the absence of approved treatments or developed vaccines. We are also faced with a large amount of false information, which spreads faster than the pandemic, and which, added to the isolation, has already become a public health problem. We are facing a complex phenomenon that is testing our capacity for efficient multidisciplinary work.

Keywords:
Pandemic, Scientific Research, Popular Science, Mathematical Modeling.
modelación matemática de la transmisión en distintos escenarios, es el método más rápido y eficiente para generar información para la toma de decisiones. Koo adaptó un modelo usado para la simulación de la propagación de influencia con datos granulares de la composición y comportamiento de la población de Singapur, para evaluar las consecuencias de intervenciones específicas de distanciamiento social en la dinámica de transmisión del SARS-CoV-2 Lewnard and Lo (2020). Consideraron tres escenarios de infectividad: $R_0 = 1.5, 2, 2.5$, y supusieron que entre el 7.5 % y el 50 % de los infecciosos son asintomáticos. Las intervenciones fueron cuarentena con y sin cierre de escuelas y distanciamiento en los centros de trabajo. La intervención combinada en donde la cuarentena, el cierre de escuelas y el distanciamiento en los centros de trabajo se implementó, resultó ser la más efectiva. Comparada con el escenario de no intervención, la intervención combinada redujo la estimación de la mediana promedio de infecciones en 99.3 % con $R_0 = 1.5$, en 93.3 % con $R_0 = 2$ y en 78.2 % cuando $R_0 = 2.5$

2. La investigación científica

El brote de síndrome respiratorio agudo severo (SARS) en 2003, arrojó mas de 8000 casos y 800 muertes. Ese brote fue contenido por medio de vigilancia sindrómica, rápido aislamiento de los pacientes, estricta cuarentena para todos los contactos, y en algunas áreas la imposición de cuarentena a toda la comunidad. Al interrumpir la transmisión entre humanos, el SARS fue erradicado efectivamente. En contraste, para febrero de 2020, dos meses después desde el inicio del brote de COVID-19 (SARS-CoV-2), habían más de 82000 casos confirmados, con más de 2800 muertes. Aunque existen similitudes entre el SARS y el COVID-19, las diferencias en las características del virus determinarán qué medidas usadas en el caso del SARS son también exitosas en la contención de la pandemia de COVID-19 (Wilder-Smith et al., 2020). El COVID-19 difiere del SARS en el periodo infeccioso, transmisibilidad, severidad clínica y grado de propagación en la comunidad. Para el 25 de abril, ya se registraban 2790986 casos confirmados y 195920 defunciones.

El SARS-CoV-2 es el séptimo miembro de la familia de los coronavirus, de los cuales el beta-coV comparte el 70 % de similitud en la secuencia genética (Wu et al., 2020). Así como el SARS-CoV, el MERS-CoV y otros coronavirus, el SARS-CoV-2 parece estar originado en los murciélagos, pero se requiere confirmación adicional. Se ha encontrado que este virus es 96 % idéntico al genoma completo del coronavirus en murciélagos, lo que significa que los murciélagos son los hospederos más probables del SARS-CoV-2.

Se han observado diversas manifestaciones clínica en pacientes con SARS-CoV-2. Se han registrado casos leves, moderados, severos y de muy rápido progreso y enfermedad fulminante. La mayoría de los pacientes se clasifican en casos leves y la mortalidad ha sido menor que en el caso del SARS-CoV y del MERS-CoV (Wu et al., 2020).

El equipo encabezado por Quan Li estudió los primeros 425 primeros casos confirmados en Wuhan, provincia de Hubei, China, para determinar las características epidemiológicas del COVID-19 (Li et al., 2020). La edad promedio fue de 59 años y el 56 % eran hombres. El 55 % de los casos con inicio antes del primero de enero de 2020 estaban relacionados con el Mercado de Huanan. El periodo de incubación promedio fue de 5.2 días. En las primeras semanas, la epidemia se duplicaba cada 7.4 días. El número reproductivo básico R_0 se estimó en 2.2, con un intervalo serial promedio de 7.5 días (Li et al., 2020).

Usando las bases de datos de los hospitales Jin Yin-tan y Tongji, Ruan y sus colaboradores (Ruan et al., 2020) realizaron un estudio retrospectivo. Sus casos incluyeron información demográfica, de características clínicas, resultados de laboratorio y opciones de tratamiento. Para el análisis estadístico usaron pruebas t de Student o pruebas de Mann-Whitney-Wilcoxon; las variables categóricas se compararon con pruebas χ^2 o pruebas F. Ellos alertaron sobre la importancia de poner atención no sólo en los síntomas de disfunción respiratoria sino también en el daño cardiaco. Sus resultados sugieren que un desenlace fatal en casos de COVID-19 incluye la edad (mayores de 65 años), la presencia de enfermedades subyacentes, la presencia de infecciones secundarias y elevados indicadores inflamatorios en la sangre.

Yang Liu y su equipo realizaron un análisis de la dinámica viral en casos severos y leves de COVID-19 (Liu et al., 2020b). Ellos encontraron que la carga viral promedio en los casos severos fue aproximadamente 60 veces mas grande que la encontrada en los casos leves, lo que sugiere que la carga viral puede estar asociada con los resultados clínicos severos. Ellos analizaron 76 casos de pacientes del First Affiliated Hospital de Nan- chang University, entre el 21 de enero y el 4 de abril. Ninguno de los casos leves requirió de la unidad de cuidados intensivos. Sugieren que los pacientes con condición severa tienden a registrar una carga viral mayor y un periodo de dispersión de virus más largo.

Con la información de China, Baud y su grupo estimaron las tasas de mortalidad al dividir el número de muertos en un determinado día entre el número de pacientes confirmados con COVID-19 catorce días antes (Baud et al., 2020). Con los datos del número acumulado de muertos reportados a la Organización Mundial de Salud al primero de marzo, la tasa de mortalidad sería de 5.6 % para China y 15.2 % fuera de China. El valor de las estimaciones en la tasa de mortalidad aumentará si se considera un retardo mayor entre el inicio de la enfermedad y la muerte.

Se ha encontrado que el COVID-19 tiene características epidemiológicas diferentes a las del SARS-CoV. El COVID-19 se replica eficientemente en el tracto respiratorio superior, y parece que el inicio de los síntomas no es abrupto, como ocurre los coronavirus humanos convencionales (Heymann and Shindo, 2020).

Durante los primeros meses de 2020, la única opción disponible para el tratamiento es el uso antivirales de amplio espectro como analgésicos de Nucleosida y también inhibidores de la proteasa que puede atenuar la infección del virus, hasta que se disponga de un antiviral específico (Rothan and Byrareddy, 2020). Actualmente, diversos grupos de científicos trabajan en el desarrollo de un modelo no humano para estudiar la infección por COVID-19, a fin de encontrar tratamientos y para probar potenciales vacunas, además de recopilar mayor información para nuestro entendimiento de las interacciones entre el virus y su hospedero.
3. La Modelación matemática

Un caso muy interesante constituye el reportado por Zhang y cols. (Zhang et al., 2020). Analizaron el caso del crucero Diamond Princess, en el cual, para el día 16 de febrero se tenían registrados 355 casos de COVID-19. Ellos ajustaron el intervalo serial reportado con una distribución gamma y utilizaron el paquete earlyR de R, para estimar el número reproductivo básico en la etapas tempranas del brote. Después, aplicaron el paquete projections de R para simular las posibles trayectorias de la epidemia y la incidencia futura, la distribución del intervalo serial y la estimación de R_0 en un modelo basado en la suposición de que la incidencia diaria tiene una distribución aproximadamente Poisson. Este trabajo es el modelo ideal, puesto que se tiene una población confinada, de manera que no hay efectos demográficos que se sumen a la dinámica de la transmisión.

Fanneli y Piazza realizaron proyecciones para China, Italia y Francia (Fanelli and Piazza, 2020). Ellos usaron los datos disponibles entre el 22 de enero y el 15 de marzo de este año. Ellos corroboraron que para los tres países, el número de casos confirmados se puede representar como una ecuación en diferencias, no lineal de orden uno de la forma

$$C_{n+1} = aC_n^d$$

(1)

que es una ley de potencias. Para cada uno de estos países, el comportamiento en el incremento en el número de casos confirmados, de recuperados y de muertos es el mismo, lo que sugiere que hay cierta universalidad en la propagación de una epidemia en cada país.

Un brote epidémico se puede modelar dividiendo a la población en clases. Fanneli y Piazza usan una variante del modelo de Kermack y McKendrick (Brauer and Kribs, 2016; Kretzschmar, 2010; Murray, 2002; Nishiura, 2016); consideran la clase de susceptibles (S), infecciosos (I), recuperados (R) y muertos (D). En la clase de muertos, es importante destacar que sólo están incluidos los sujetos cuyo deceso está asociado al coronavirus. El sistema de ecuaciones que describe la dinámica de la población clasificada de esta manera es:

$$\frac{dS}{dt} = -aSI$$

(2)

$$\frac{dI}{dt} = aSI - (b + c)I$$

(3)

$$\frac{dR}{dt} = bI$$

(4)

$$\frac{dD}{dt} = cI$$

(5)

Con los datos de estos tres países, Fanneli y Piazza estimaron los parámetros del modelo descrito mediante el sistema 2.

Liu y sus colaboradores, reunieron las estimaciones sobre el número reproductivo básico R_0, y afirman que éste es mayor que el reportado para SARS (Liu et al., 2020a). Con información comprendida entre el primero de enero y el 7 de febrero encontraron que el número reproductivo básico, reportado por distintos autores, variaba entre 1.4 y 6.49. Los primeros valores reportados eran bajos, mientras que conforme pasaron los días, el valor de R_0 comenzó a incrementarse. Estimaciones posteriores volvieron a producir valores como los reportados inicialmente. Ellos encontraron que dos estudios que emplearon métodos estocásticos estimaron $R_0 \in (2.2, 2.68)$; seis estudios que emplearon sistemas de ecuaciones diferenciales estimaron $R_0 \in (1.5, 6.49)$, mientras que los tres trabajos donde usaron métodos estadísticos encontraron $R_0 \in (2.2, 3.58)$.

La figura 1 muestra el número de casos confirmados y tres proyecciones realizadas con un modelo como el descrito en la ecuación 1. En negro se grafica la proyección empleando los datos de los primeros 16 días después del primer caso confirmado; en azul la proyección con la información de los primeros 32 días posteriores al primer caso, y en rojo la proyección con los datos hasta el día 16 de abril.

La figura 2 muestra el número de casos confirmados y dos proyecciones para la fase 2: en azul la proyección se realizó con los datos de los primeros 17 días posteriores a los primeros casos reportados en el Estado y en rojo la proyección se calculó con los datos de los primeros 34 días desde el inicio de casos en Hidalgo. Note que dependiendo de la cantidad de información, la dinámica de la curva irá cambiando.

En un estudio de simulación de la trayectoria del brote de COVID-19 (Prem et al., 2020) Prem y su grupo emplearon un modelo SEIR considerando a la población con cierta estructura de edad. Como individuos, los patrones de contactos no son aleatorios, por lo que esa situación se consideró en esta simulación. Los modelos que aseguran la efectividad de las medidas de distanciamiento social, tales como el cierre de escuelas, requieren tener en cuenta la estructura social y la heterogeneidad en las relaciones sociales. Estos autores consideran que la edad y la localidad son factores de los patrones de contacto, lo que se refleja en la manera en la que el brote se propaga.
El grupo de trabajo de Chowell realizó proyecciones empleando tres modelos: el modelo de crecimiento logístico generalizado (GLM), el modelo de Richards y un modelo para trayectorias epidemiológicas complejas (Roosa et al., 2020). La proyección generada para el 14 de febrero estimó un promedio acumulado de 34509 a 34596 para la provincia de Hubei. Para otras provincias, los modelos predicen un promedio de 11317 a 12118 casos acumulados. Este trabajo hace distinción entre provincias, por la forma en la que se definen los agentes y sus interacciones.

La figura 3 muestra una simulación, empleando el modelo SIR, para diferentes valores de R_0, lo que significa que la infeccividad es distinta en cada caso. Note cómo va disminuyendo el número de casos confirmados conforme disminuye el valor de R_0.

La figura 4 presenta una simulación, usando el modelo SIR, para distintos valores de población susceptible. En este caso, se disminuye el número de personas sanas circulando, lo que representa a las medidas de distanciamiento social. Note que además de disminuir el número de casos confirmados, hay un retardo en el crecimiento de la curva de casos confirmados conforme disminuye el número de susceptibles. Esta simulación da una idea muy clara de la importancia de las medidas de aislamiento social.

Se debe insistir en que el propósito de medidas de aislamiento social es que el número de casos que requieran hospitalización, aumente en la manera más lenta posible. Ese efecto es el mostrado en la simulación, y es el comportamiento que puede observarse si se comparan los casos en México con los ocurridos en Europa.

En un modelo para explicar la dinámica del número de pacientes hospitalizados, Cakir (Cakir and Savas, 2020) concluye que en el caso de que no se tomen precauciones o que no sean suficientes, el curso de la pandemia mostrará cambios rápidos. Por esta razón, toda precaución individual o social será importante en términos de la propagación de la pandemia de COVID-19.

4. Conclusiones

Mientras la Organización Mundial de la Salud dedica sus esfuerzos en aminorar la propagación del COVID-19, hay una epidemia global de desinformación que se propaga rápidamente a través de las redes sociales, generando otros problemas serios de salud pública Zaracostas (2020). “Luchamos también contra una infodemia”, declaró Tedros Adhanom Ghebreyesus, director general de la WHO. La misma WHO declaró este problema de salud pública, pues circula una gran cantidad de información, verdadera y falsa, sobre la presente pandemia. La información falsa es más tuiteada que la información basada en evidencia, mientras que la información sustentada en el trabajo científico tiende a ser más retuiteada (Pulido et al., 2020).

La sociedad en su conjunto es presa fácil de la desinformación, en buena medida por el uso indiscriminado de las redes sociales. La falta de cultura matemática en particular, y de información científica en general, ha provocado desde compras de pánico, hasta el llamado a la desobediencia en un noticiero de cobertura nacional.

4. Conclusiones

Mientras la Organización Mundial de la Salud dedica sus esfuerzos en aminorar la propagación del COVID-19, hay una epidemia global de desinformación que se propaga rápidamente a través de las redes sociales, generando otros problemas serios de salud pública Zaracostas (2020). “Luchamos también contra una infodemia”, declaró Tedros Adhanom Ghebreyesus, director general de la WHO. La misma WHO declaró este problema de salud pública, pues circula una gran cantidad de información, verdadera y falsa, sobre la presente pandemia. La información falsa es más tuiteada que la información basada en evidencia, mientras que la información sustentada en el trabajo científico tiende a ser más retuiteada (Pulido et al., 2020).

La sociedad en su conjunto es presa fácil de la desinformación, en buena medida por el uso indiscriminado de las redes sociales. La falta de cultura matemática en particular, y de información científica en general, ha provocado desde compras de pánico, hasta el llamado a la desobediencia en un noticiero de cobertura nacional.

Desde el inicio de la Jornada Nacional de Sana Distancia, la autoridad sanitaria ha hecho énfasis en la importancia de aplana la curva. Lamentablemente, a pesar de los esfuerzos cotidianos de la autoridad para explicar que el propósito es evitar la saturación del sistema hospitalario, muchos comunicadores, desconociendo lo que significa aplanar la curva, provocan el pánico al hablar del aumento en el número de casos confirmados. En la figura 5 se muestra la tasa de casos confirmados por cada 100 000 habitantes, como suele usarse en dinámica de poblaciones. Como puede observarse, la tasa de casos confirmados en México en menor que en Canadá y en Estados Unidos. El incremento diario no ha llegado a 4000, con lo cual se ha podido mantener en operación el sistema de salud nacional, con las conversiones realizadas a muchos hospitales para la atención a pacientes sospechosos de COVID-19.

En la figura 6 se muestra la tasa de muertes reportadas por COVID-19 en el mundo. Note nuevamente que se reportan tasas, para poder comparar con lo que ocurre en diferentes países.
Se puede corroborar que en muchos medios se difunden datos sin contexto adecuado, debido a la ausencia de un pensamiento matemático estructurado, que permita ver la información cruda y no a través de la opinión de los comunicadores. La transmisión matemática, que permita ver la información sin contexto adecuado, debido a la ausencia de un pensamiento crítico, tiene que ser entendida por la comunidad. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación. Desinforman quienes publican que las proyecciones falsas no tienen en cuenta el número de casos en México se duplique. En su desconocimiento, desinforman. Los modelos matemáticos son una aproximación a la realidad, no son la realidad. La inferencia presentada por la autoridad sanitaria, respaldada por el trabajo de científicos serios, tiene que ser entendida por la comunidad. La información de nuevos casos y recuperados se está actualizando diariamente. Además, el comportamiento social es una componente adicional que ha de ser considerada en la modelación.