Efficient Decoder-free Object Detection with Transformers

Peixian Chen1†, Mengdan Zhang1†, Yunhang Shen1, Kekai Sheng1, Yuting Gao1, Xing Sun1, Ke Li1,*, and Chunhua Shen2

1Tencent Youtu Lab, 2Zhejiang University
{peixian.chen, david.zhang, saul.sheng, yuting.gao, tristan.li}@tencent.com
{shenyunhang01, winfred.sun, chh.shen}@gmail.com

1 Supplementary Figures

Figures 1 and 2 illustrate more detection results in addition to Figure 6 in the main paper. As we can observe, our proposed TAE makes the best anchors for

* Corresponding author
† Equal Contribution.

1 Supplementary Figures

Fig. 1: Supplementary figures for Figure 6 in the main paper.
classification (red) and localization (orange) closer than YOLOF (blue boxes and centers indicate the ground truth). It shows that TAE can handle task conflicts in a coupled head and further generates task-aligned predictions in a single pass.

Fig. 2: Supplementary figures for Figure 6 in the main paper.

Table 1: The performance of different GCA position in DOT Block. We report the accuracy of the pretrained backbone on ImageNet and the detection AP with YOLOF after training on the MS COCO dataset.

Position	Results (%)	
	Accuracy	AP
w/o GCA	80.0	32.0
Top	80.5	33.8
Middle	80.7	30.0
Bottom	81.2	34.1

2 Supplementary Experiments

We provide a supplementary experiment for our detection-oriented transformer (DOT) backbone. In this experiment, we conduct ablation studies of the position of global channel-wise attention (GCA) within the DOT block. For this purpose, we use the YOLOF framework and replace the backbone network. The results are shown in Table 1. The results show that placing GCA at the bottom achieves
the best performance. This observation indicates GCA's strong capability of aggregating local features. As a result, placing GCA at the end of DOT blocks can aggregate local features from previous layers and extract corresponding global semantic information.

Fig. 3: The detailed architecture of DFFT, including how the feature shape changes during the forward propagation.