CRYSTAL STRUCTURE OF LEVEL ZERO
EXTREMAL WEIGHT MODULES

JONATHAN BECK

ABSTRACT. We consider the crystal structure of the level zero extremal weight modules $V(\lambda)$, using the crystal base of the quantum affine algebra constructed in [K4]. This approach yields an explicit form for extremal weight vectors in the U^- part of each connected component of the crystal, which are given as Schur functions in the imaginary root vectors. We show the map Φ_λ (K4, §13) induces a correspondence between the global crystal base of $V(\lambda)$ and elements $s_{c_0}(z^{-1})G(b), b \in B_0(U_q[z^\pm 1]W')$.

0. INTRODUCTION.

This paper arises from the study of the modified quantum algebra $\tilde{U}_q(\mathfrak{g}) = \oplus_{\lambda \in P} U_q(\mathfrak{g})a_\lambda$ and its associated crystal structure. For \mathfrak{g} a simple Lie algebra the crystal of $\tilde{U}_q(\mathfrak{g})$ has a Peter-Weyl type decomposition and is isomorphic to the crystal of the quantum coordinate ring $\oplus_{\lambda \in P^+} V(\lambda) \otimes V(-\lambda)$, where P^+ is the set of dominant weights of \mathfrak{g}, and $V(\lambda)$ denotes the irreducible highest weight module of weight λ.

This decomposition fails when $\tilde{\mathfrak{g}}$ is the affine Lie algebra associated to \mathfrak{g}. In fact, the crystal of $\tilde{U}_q(\tilde{\mathfrak{g}})$ naturally decomposes into pieces according to the level of $\lambda \in P, B(\tilde{U}_q(\tilde{\mathfrak{g}})) = B(\tilde{U}_q(\tilde{\mathfrak{g}}))_0 \oplus B(\tilde{U}_q(\tilde{\mathfrak{g}}))_\pm$, and $B(\tilde{U}_q(\tilde{\mathfrak{g}}))_\pm$ again have Peter–Weyl type decompositions. However, as level zero weights are not Weyl group conjugates of dominant weights, a similar analysis is impossible for $B(\tilde{U}_q(\tilde{\mathfrak{g}}))_0$.

In studying the level zero part of the crystal, Kashiwara introduced (K4) the extremal weight modules $V(\lambda)$. These are a natural variation on highest weight modules, since when $\lambda \in P^+, V(\lambda)$ is the usual irreducible highest weight module generated by v_λ. For each $\lambda = \sum_i \lambda_i A_i \in P$, $V(\lambda)$ has a basis given by a subset of “*-extremal” elements of the global crystal base of $U_q(\mathfrak{g})a_\lambda$. The term extremal refers to the fact that the usual highest weight relations, $E_i v_\lambda = 0$, $F_i^{(\lambda_i + 1)} v_\lambda = 0$, are replaced by the more general condition that $E_i v_\lambda = 0$, $F_i^{(\lambda_i + 1)} v_\lambda = 0$, if $\lambda_i \geq 0$, and $F_i v_\lambda = 0$, $E_i^{(-\lambda_i + 1)} v_\lambda = 0$, if $\lambda_i \leq 0$, as well as new relations determined by the Weyl group.

We study the crystal structure of $V(\lambda)$ for $\lambda = \sum_i \lambda_i \varpi_i$, $\lambda_i \geq 0$, where $\varpi_i \in P_0^+$ are the fundamental level zero weights. Kashiwara proves (K4) that the $V(\varpi_i)$ are affinizations of certain finite dimensional U_q^{ℓ}–modules which have global crystal bases. In [K4, §13], Kashiwara conjectures a description of the crystal structure of $V(\lambda)$ for arbitrary $\lambda \in P_0^+$ in terms of an m–fold tensor product of the crystal
of $V(\varpi_i)$ and Schur functions. These conjectures also imply a Peter–Weyl type decomposition of $B(\hat{U}_q(\mathfrak{g}))$, which will appear in forthcoming work.

The purpose of this note is to verify these conjectures in the symmetric untwisted case using the crystal base of $B(\hat{U}_q(\mathfrak{g}))$ constructed in [BCP]. The key property of this basis is that it too contains Schur functions naturally, and each component of the crystal of $V(\lambda)$ contains an extremal element corresponding to one of these Schur functions.

While this paper was in preparation, Nakajima [N] released a preprint where the same results are obtained. The primary difference in the proofs is that here we avoid using an explicit description of Lusztig’s braid group action on extremal weight modules. We obtain the key property of connected components of the crystal of $V(\lambda)$ using the basis [BCP] directly, and this requires less calculation.

Acknowledgements. I would like to thank M. Kashiwara for helpful conversations and hospitality at RIMS.

1. The algebra $U_q(\mathfrak{g})$ and background.

In this section, we review very briefly the relevant material on quantum affine algebras and crystal bases.

Let $\hat{\mathfrak{g}}$ be a symmetric untwisted affine Lie algebra over \mathbb{Q} with Cartan datum (\tilde{I}, \cdot). Choose a Cartan subalgebra $\mathfrak{t} \subset \hat{\mathfrak{g}}$ such that simple roots $\{\alpha_i\}_{i \in \tilde{I}}$ and the simple coroots $\{h_i\}_{i \in \tilde{I}}$ are linearly independent and $\dim \mathfrak{t} = |\tilde{I}| + 1 = \text{rank } \hat{\mathfrak{g}} + 1$. Denote by $\langle \cdot, \cdot \rangle: \mathfrak{t}^* \times \mathfrak{t} \to \mathbb{Q}$ the canonical pairing.

Fix the root lattice and coroot lattice by

$$Q = \oplus_i \mathbb{Z} \alpha_i \subset \mathfrak{t}^*$$

and

$$Q^\vee = \oplus_i \mathbb{Z} h_i \subset \mathfrak{t}.$$

We assume that $\tilde{I} = \{0, 1, \ldots, n\}$ and that the index $0 \in \tilde{I}$ is such that $(I = \tilde{I} \setminus \{0\}, \cdot)$ is the Cartan datum of the underlying finite type algebra \mathfrak{g}.

Set $Q_{\pm} = \pm \sum_i \mathbb{Z}_{\geq 0} \alpha_i$ and $Q^\vee_\pm = \pm \sum_i \mathbb{Z}_{\geq 0} h_i$. Let $\delta \in Q_+$ be the unique element satisfying $\{\lambda \in Q; (h_i, \lambda) = 0 \text{ for every } i\} = \mathbb{Z} \delta$. Similarly we define $c \in Q^\vee_+$ by $\{h \in Q^\vee; (h, \alpha_i) = 0 \text{ for every } i\} = \mathbb{Z} c$. We write

$$\delta = \sum_i a_i \alpha_i \quad \text{and} \quad c = \sum_i a_i^\vee h_i.$$

We choose a weight lattice $P \subset \mathfrak{t}^*$, and $\Lambda_i \in P, i \in \tilde{I}$, satisfying

$$\alpha_i \in P \quad \text{and} \quad h_i \in P^* \quad \text{for any } i \in \tilde{I}.$$

(1.2)

$$\text{For every } i \in \tilde{I}, \langle h_j, \Lambda_i \rangle = \delta_{ji}.$$

(1.3)

We set $P^0 = \{\lambda \in P; \langle c, \lambda \rangle = 0\}$. For $i = 1, \ldots, n$, let $\varpi_i = \Lambda_i - a_i^\vee \Lambda_0$. We denote by P^+_\uparrow the dominant level zero weights of the form $\lambda = \sum_{i=1}^n m_i \varpi_i, m_i \geq 0$.

Denote by \mathcal{R}^+ the set of positive roots for $\hat{\mathfrak{g}}$. Let $\mathcal{R}_{>}$ (resp. $\mathcal{R}_{<}$) denote the set of $\alpha \in \mathcal{R}^+$ for which the real part of α is positive (resp. negative). We identify the set of positive imaginary roots (with multiplicity) by defining $\mathcal{R}_0 = \{k \delta \mid k > 0\} \times \{1, \ldots, n\} = \{k \delta^{(i)} \mid k > 0, i = 1, \ldots, n\}$. Then define the set of positive roots with multiplicity as

$$\mathcal{R}^+ = \mathcal{R}_> \cup \mathcal{R}_0 \cup \mathcal{R}_<.$$

(1.4)
1.1. Quantum affine algebras and crystals. We denote by $U_q = U_q(\widehat{g})$ the quantum affine algebra on generators F_i's, the E_i's and K_h ($h \in P^*$), see [BCP] for details. Let us denote by $U_q^-(\widehat{g})$ (resp. $U_q^+(\widehat{g})$) the subalgebra of U_q generated by the F_i's (resp. by the E_i's). Introduce the divided powers $F_i^{(n)} = F_i^n/[n]_q!$, $E_i^{(n)} = E_i^n/[n]_q!$, where $[n]_q = (q^n - q^{-n})/(q - q^{-1})$. We denote by $(U_q)_Q$ the subalgebra of U_q generated by the $F_i^{(n)}$'s, the $E_i^{(n)}$'s ($i \in \bar{I}$) and K_h ($h \in P^*$) over $Q[q,q^{-1}]$.

We refer to [K2] for a comprehensive introduction to crystals. We mention the details relevant to this paper. A crystal B is graded by a weight lattice P_B containing simple roots α_i, $i \in I'$, for some Cartan datum (I',\cdot). For each $b \in B$ we denote its weight by $wt(b) \in P_B$. B also comes with operators $\hat{\epsilon}_i, \hat{\imath}_i : B \to B \sqcup \{0\}, i \in I'$ such that if $\hat{\epsilon}_i(b) \neq 0$ (resp. $\hat{\imath}_i(b) \neq 0$), $wt(\hat{\epsilon}_i(b)) = wt(b) + \alpha_i$ (resp. $wt(\hat{\imath}_i(b)) = wt(b) - \alpha_i$). Given two crystals B_1, B_2, their tensor product, $B_1 \otimes B_2$ denotes the crystal $\{b_1 \otimes b_2 | b_1 \in B_1, b_2 \in B_2\}$ with crystal operators defined in [ip.cit., §7.3].

The algebra $U_q^-(\widehat{g})$ (resp. $U_q^+(\widehat{g})$) has a crystal base (see [K1]) denoted by $(L(\infty), B(\infty))$ (resp. $(L(-\infty), B(-\infty))$). The term crystal base refers to the following additional requirements: $L(\infty)$ is a $Q[q]$ subalgebra of $U_q^-(\widehat{g})$ which is invariant under crystal operators $\hat{\epsilon}_i, \hat{\imath}_i, i \in I$, such that $B(\infty)$ is a basis of $L(\infty)/qL(\infty)$ and forms a crystal under the operators induced from $\hat{\epsilon}_i$ and $\hat{\imath}_i$. A similar description holds for $(L(-\infty), B(-\infty))$. We denote by u_∞ (resp. $u_{-\infty}$) the unique element of $B(\infty)$ (resp. $B(-\infty)$) of weight 0.

Let $-\iota$ be the Q-algebra automorphism of U_q sending q to q^{-1}, K_h to K_{-h}, and fixing E_i, F_i. Let M be a U_q-module with a crystal base (L, B) (see [K1], §2). Define a bar involution $-\bar{}$ on M to be an involution satisfying $\bar{ab} = \bar{b}\bar{a}$ for $a \in U_q$ and $u \in M$. Let M_Q be a subalgebra of M such that

$$\bar{M_Q} = M_Q, \text{ and } u - \bar{u} \in (q - 1)M_Q \text{ for every } u \in M_Q.$$

Let $E = L \cap T \cap M_Q$. If the map $f : E \to L/qL$ is an isomorphism of $Q[q]$ modules then we say M has a global base. If $b \in B$, we set $G(b) = f^{-1}(b)$. In this case $\bar{G}(b) = G(b)$ and $G(b)$ is called the globalization of b.

Let us denote by $U_q(\widehat{g})$ the modified quantum universal enveloping algebra $\oplus_{a \in P} U_q A_a$ (see [L2, K3]). Then $U_q(\widehat{g})$ has a crystal base $(L, B(U_q(\widehat{g})))$. Let T_λ be the crystal consisting of a single element t_λ of weight $wt(t_\lambda) = \lambda$, with $\hat{\epsilon}_i(t_\lambda) = \hat{\iota}_i(t_\lambda) = 0$. As a crystal, $B(U_q(\widehat{g}))$ is regular and isomorphic to

$$\bigsqcup_{\lambda \in P} B(\infty) \otimes T_\lambda \otimes B(-\infty).$$

The property of being regular allows one to define a Weyl group W action on the crystal. For each $i \in \bar{I}$, define

$$S_i \cdot b = \begin{cases} \hat{\iota}_i^{(h_i,wt(b))} b & \text{ if } \langle h_i, wt(b) \rangle \geq 0, \\ \hat{\epsilon}_i^{(h_i,wt(b))} b & \text{ if } \langle h_i, wt(b) \rangle \leq 0. \end{cases}$$

Then by [K3] the S_i satisfy the defining relations of the Weyl group.

One of the main results of [BCP] is an explicit construction of a crystal base for $U_q^\pm(\widehat{g})$, and by [L6] one of $B(U_q(\widehat{g}))$. We denote by T_i ($= T_{i,1}$ in [L2, Chapter 37]) the automorphism of U_q corresponding to the simple reflection s_i, $i = 0, \ldots, n$.

For each \(w \in W \), the \(T_i \)'s define an automorphism \(T_w \) of \(U_q \). Using these automorphisms, for each \(\alpha \in \mathcal{R}_+ \cup \mathcal{R}_- \), \(i = 1 \ldots n, k > 0 \), we define root vectors \(E_\alpha \), \(\hat{P}_{\alpha,k} \in U_q^+ (\hat{\mathfrak{g}}) \) as in \(\text{BCP} \).

The \(\hat{P}_{\alpha,k} (1 \leq i \leq n, k > 0) \) are used to construct a basis of the imaginary parts of \((U_q)^+_Q \) as follows. Let \(c_0 \) be an \(n \)-tuple of partitions \((\rho^{(1)}, \rho^{(2)}, \ldots, \rho^{(n)}) \) where each \(\rho^{(i)} = (\rho^{(i)}_1 \geq \rho^{(i)}_2 \geq \ldots) \). For a partition \(\rho \), denote by \(\rho' \) its transpose. For each \(i \), define Schur functions in the \(\hat{P}_{i,k} \) by

\[
S_{\rho^{(i)}} = \det(\hat{P}_{i,\rho'^{(i)}-k+m})_{1 \leq k,m \leq t},
\]

where \(t \geq l(\rho'^{(i)}) \). This puts the \(\hat{P}_{i,k} \) in the role of elementary symmetric functions.

Denote the product over \(i = 1, \ldots, n \) of \(S_{\rho^{(i)}} \) by

\[
S_{c_0}^+ = \prod_{i=1}^n S_{\rho^{(i)}}.
\]

Definition 1.1. Let \(c_+ \in \mathbb{N}^{R_>} \) (resp. \(c_- \in \mathbb{N}^{R_-} \)) and \(c_0 \) as above. Denote by \(c = (c_+, c_0, c_-) \). Each \(c \) indexes a basis element of \((U_q)^+_Q \).

\[
B^+_{c} = (E_{c_+}) \cdot S_{c_0}^+ \cdot (E_{c_-}),
\]

which when specialized at \(q = 1 \) becomes an element of the Kostant \(\mathbb{Z} \)-form of \(U_{q=1}^+ (\hat{\mathfrak{g}}) \). When we refer to an element of this type, we will call \(B^+_{c} \) purely imaginary if \(c_+ = c_- = 0 \).

Proposition 1.1. \(\text{BCP} \) \((L(-\infty), \overline{B^+_c} u_{-\infty} \mod qL(-\infty)) \) forms a crystal base of \(U^+_q \).

There are two more involutions of \(U_q \) which we refer to: Let \(\psi \) be the automorphism of \(U_q \) which sends \(E_i \) to \(F_i \), \(F_i \) to \(E_i \), and \(K_h \) to \(K_{-h} \). It gives a bijection \(B(\infty) \simeq B(-\infty) \). Let \(* \) be the anti-automorphism of \(U_q \) which fixes \(E_i \) and \(F_i \), and sends \(K_h \) to \(K_{-h} \). Restricted to \(U^+_q \), \(* \) gives an bijection \(B(\infty) \simeq B(\infty) \). For the calculations in this paper we use the crystal bases \((L(-\infty), \overline{(B^+_c)}^* \mod qL(-\infty)) \) of \(U_q^+ \) and \((L(\infty), \psi(\overline{B^+_c}) \mod qL(\infty)) \) of \(U^-_q \). In what follows, we replace the definitions of root vectors in \(\text{BCP} \) by those obtained by applying the involutions \(*, - \), and \(\psi \) as described. So \(E_{\alpha} \) actually refers to \(\overline{(E_{\alpha})}^* \), \(F_{\alpha} \) actually refers to \(\psi(E_{\alpha}) \), \(\hat{P}_{i,-k} \) refers to \(\psi(\hat{P}_{i,k}) \), \(B^+_{c} = \psi(\overline{B^+_c}) \), etc. The purpose of applying these involutions is to arrange the root ordering of the crystal bases to aid the calculations.

With the above remarks, these imaginary root vectors satisfy an important property following from \(\text{BCP} \) Proposition 2.2 and eq. (4.9) :

Proposition 1.2.

(i) \(\hat{P}_{i,-k} = F^{(k)}_{\delta_{-\alpha_i}} E^{(k)}_{\alpha_i} + qx \),

(ii) \(\hat{P}_{i,k} = E^{(k)}_{\alpha_i} F^{(k)}_{\delta_{-\alpha_i}} + qx \),

where in (i), \(x \) is a sum of terms \(B^-_{c} \) with coefficients in \(\mathbb{Z}[q] \) where for each term \(c_- \neq 0 \). In (ii), \(x \) is a sum of terms \(B^+_c \) with coefficients in \(\mathbb{Z}[q] \) where for each term \(c_+ \neq 0 \).
2. Extremal weight modules

2.1. Extremal vectors. Let M be an integrable U_q-module. A vector $u \in M$ of weight $\lambda \in P$ is called extremal (see [3]) if we can find vectors $\{u_w\}_{w \in W}$ satisfying the following properties:

(2.1) $u_w = u$ for $w = e$,

(2.2) if $\langle h_i, w\lambda \rangle \geq 0$ then $\delta_i u_w = 0$ and $\delta_i'(h_i, w\lambda) u_w = u_{s_i w}$,

(2.3) if $\langle h_i, w\lambda \rangle \leq 0$, then $\delta_i u_w = 0$ and $\delta_i'(h_i, w\lambda) u_w = u_{s_i w}$.

If such $\{u_w\}$ exists, it is unique and u_w has weight $w\lambda$. We denote u_w by $S_w u$.

Similarly, for a vector b of a regular crystal B with weight λ, we say that b is an extremal vector if it satisfies the following similar conditions: we can find vectors $\{b_w\}_{w \in W}$ such that

(2.4) $b_w = b$ for $w = e$,

(2.5) if $\langle h_i, w\lambda \rangle \geq 0$ then $\delta_i b_w = 0$ and $\delta_i'(h_i, w\lambda) b_w = b_{s_i w}$,

(2.6) if $\langle h_i, w\lambda \rangle \leq 0$ then $\delta_i b_w = 0$ and $\delta_i'(h_i, w\lambda) b_w = b_{s_i w}$.

Then b_w must be $S_w b$.

For $\lambda \in P$, we denote by $V(\lambda)$ the U_q-module generated by u_λ with the defining relation that u_λ is an extremal vector of weight λ (see [3] for details). It is proved in [3] that $V(\lambda)$ has a global crystal base $(L(\lambda), B(\lambda))$. Moreover, if M is any integrable U_q module with extremal weight vector u of weight λ, there is a unique U_q homomorphism $\Phi : V(\lambda) \to M$, such that $\Phi(u_\lambda) = u$. On an integral $\hat{U}_q (\mathfrak{g})$ module M, we use the regularized crystal operators $\delta_i, \delta_i' : M \to M$ as defined in ([4], §6). In this context, Φ_λ commutes with the crystal operators δ_i, δ_i'.

2.2. Extremal weight modules $V(\lambda)$ for $\lambda \in P_+^0$. Denote by $c_0(\lambda)$ the set of $c_0 = (\rho^{(1)}, \rho^{(2)}, \ldots, \rho^{(n)})$ such that for each i, $i(\rho^{(i)}) \leq \lambda_i = \langle h_i, \lambda \rangle$. The following is an important corollary to [4], Theorem 5.1].

Proposition 2.1. (i) For any $\lambda \in P_+^0$, any vector in $B(\lambda)$ is connected to an extremal weight vector of the form $b_1 \otimes t_\lambda \otimes u_{-\infty}$, where b_1 is purely imaginary with respect to the crystal base.
(ii) Furthermore, all such possible $b_1 \in B(\infty)$ are given by $S_{c_0}^{-1} u_{-\infty} \mod qL(\infty)$ where $c_0 \in c_0(\lambda)$.

Proof. (i) By [4], Theorem 5.1] any vector is connected to an extremal weight vector of the form $b_1 \otimes t_\lambda \otimes u_{-\infty}$, where $wt(b_1) = -k \delta$. Using the crystal base to express b_1, we take $B_\delta = b_1 \mod qL(\infty)$, for some c. Assume that B_δ isn’t purely imaginary. Since $wt(B_\delta) = -k \delta$, and B_δ (resp. B_δ^-) consists only of terms in root vectors with positive real part (resp. negative real part), it follows $c_\delta \neq 0$. By [4], Theorem 5.3 (iii)] we have $B_\delta u_\lambda = 0$. However, by assumption $B_\delta u_\lambda \in L(\lambda)$ such that $B_\delta u_\lambda \neq 0 \mod qL(\lambda)$. This is a contradiction. (ii) From Proposition 4.2 we have $\tilde{P}_{k} u_\lambda = F_{k}^{(b)} \delta_{k}^{(b)} u_\lambda$. Since the weights of $V(\lambda)$ are in the convex hull of $W \lambda$ ([4], Corollary 5.2]), this implies that $\tilde{P}_{k} u_\lambda = 0$ for $k > \lambda_i$. Note that for any i, $i(\rho^{(i)}) \leq \lambda_i \iff \rho^{(i)}_{-1} \leq \lambda_i$. Since the \tilde{P}_{k} all commute, considering the top row of the determinant S_{c_0}, we have $S_{c_0}^{-1} u_{-\infty} = 0$ for $c_0 \notin c_0(\lambda)$. □

Let z_1 be the U_q' automorphism of $V(\varpi_i)$ defined in [4], §5.2].
Lemma 2.1. Let $i = 1, \ldots, n$. Then on $V(\varpi_i)$:

\[\tilde{P}_{i,-1} u_{\varpi_i} = \frac{\tilde{P}_{i,-1} u_{\varpi_i} - z_i^{-1} u_{\varpi_i}}{z_i}, \quad \tilde{P}_{i,-k} u_{\varpi_i} = 0, \quad k > 1. \]

Proof. For $k > 1$ the statement follows from Proposition 1.2. Let $k = 1$. $V(\varpi_i)$ has a unique global basis element of weight $\varpi_i - \delta$, which by definition equals $S_w u_{\varpi_i} = z_i^{-1} u_{\varpi_i}$, where $w = t(\alpha_i)$. Since ϖ_i is regularly $t(\alpha_i)$–dominant (see [K4, §3.1]), it follows from the identity (K3, Appendix B)):

\[S_j (b_1 \otimes t_\mu \otimes u_{-\infty}) = \tilde{f}_j^n b_1 \otimes t_\mu \otimes u_{-\infty} \text{ if } a = (h_j, wt(b_1) + \mu) \geq 0, \]

that $z_i^{-1} u_{\varpi_i} \mod qL(\varpi_i) \subset B(\infty) \otimes t_{\varpi_i} \otimes u_{-\infty}$.

Since $B_{c^*} u_{\varpi_i} = 0$ for $c_\cdot \neq 0$, the unique element of the crystal of $B(\varpi_i)$ of weight $\varpi_i - \delta$ must be $\tilde{P}_{i,-1} u_{\varpi_i} \mod qL(\varpi_i)$. Note that the globalization of an element in $B(\infty) \otimes t_{\varpi_i} \otimes u_{-\infty}$ remains in $U_q u_{\varpi_i}$. Since for $1 \leq j \neq i \leq n$, $\tilde{P}_{j,-1} u_{\varpi_i} = 0$, we have immediately that $G(\tilde{P}_{i,-1} u_{\varpi_i} \mod qL(\varpi_i)) = \tilde{P}_{i,-1} u_{\varpi_i}$, which completes the proof. \[\square \]

2.3. The map Φ_λ. Let $\lambda = \sum_{i \in I} m_i \varpi_i \in P^0_\varpi$. The module $V' = \bigotimes_{i \in I} V(\varpi_i)_{\otimes m_i}$ has a crystal base $(L(V'), B(V')) = (L(\varpi_i)_{\otimes m_i}, B(\varpi_i)_{\otimes m_i})$. Let $u' = \bigotimes_{i \in I} u_{\varpi_i}^{\otimes m_i}$.

For each i, and each of the $\nu = 1, \ldots, m_i$ factors of $V(\varpi_i)_{\otimes m_i}$, we let $z_{i,\nu}$ be the commuting automorphisms defined in [K4, §4.2]. By [K4, Theorem 8.5], the submodule

\[W' = U_q(\mathfrak{g}) q[z_i^{\pm 1}]_{1 \leq i \leq n, 1 \leq \nu \leq m_i} u' \subset V' \]

has a global crystal base $(L(W'), B(W'))$ such that $L(W') \subset \bigotimes_{i \in I} L(\varpi_i)_{\otimes m_i}$, $B(W') = \bigotimes_{i \in I} B(\varpi_i)_{\otimes m_i}$. Since W' contains the extremal vector u' of weight λ we have a unique U_q-linear morphism:

\[\Phi_\lambda : V(\lambda) \to W', \]

sending u_λ to u', and which commutes with the crystal operators e_i, f_i.

For each n–tuple of partition $c_0 = (\rho(1), \rho(2), \ldots, \rho(n))$ we consider the product of Schur functions in the variables $z_i^{-\nu}$ (see [M]):

\[s_{c_0}(z_i^{-\nu}) = \prod_{i=1}^n s_{\rho(i)}(z_i^{-1}, \ldots, z_i^{-n}). \]

Note that for each i, $s_{\rho(i)}(z_i^{-1})$ acts as the 0 map if $m_i < \ell(\rho(i))$. We will omit the indices i, ν and write $s_{c_0}(z_i^{-1})$.

Using Lemma 2.1 we have:

\[\Phi_\lambda(S_{c_0} u_\lambda) = s_{c_0}(z_i^{-1}) u'. \]

Proposition 2.2. Let $c_0 = (\rho(1), \rho(2), \ldots, \rho(n))$ be an n–tuple of partitions:

\[\Phi_\lambda(S_{c_0} u_\lambda) = s_{c_0}(z_i^{-1}) u'. \]

Proof. Note that $\sigma \circ (\psi \times \psi) \circ \Delta(a) = \Delta(\psi(a))$ for $a \in U_q$. Since our $\tilde{P}_{i,-k}$ are those given in [BCF] after applying $- \circ \psi$ we have by [BCF, Proposition 3.4] and [3]

\[\Delta(\tilde{P}_{i,-k}) = \sum_{s=0}^k \tilde{P}_{i,-s} \otimes \tilde{P}_{i,-s-k} + \text{terms acting as 0 on } v_{\varpi_j} \otimes v_{\varpi_j} \text{ for all } j_1, j_2 \in I. \]

This implies that $\Delta^{m_i}(\tilde{P}_{i,-k})$ acts as $e_k(z_i, \ldots, z_i, m_i)$ on V' where e_k is the k–th elementary symmetric function. Since polynomials in the $\tilde{P}_{i,-k}$ (resp. elementary
symmetric functions) generate the Schur functions $\overline{S_{c_0}}$ (resp. $s_{c_0}(z^{-1})$) we have $\Phi_\lambda(\overline{S_{c_0}} u_\lambda) = s_{c_0}(z^{-1}) u'$. Since Φ_λ is uniquely defined as a U_q homomorphism, it commutes with the respective π actions, where $-\pi$ on $L(W')$ is $c_{n_{\text{norm}}}$ as defined in [K4, §8]. Now since the $z_{i,\nu}$ commute with the bar action on W' the proposition follows. □

Next we consider the image of $B(\lambda)$ under Φ_λ. By [K4, Theorem 5.1] every element of $B(\lambda)$ is connected to an extremal vector of the form $b_1 \otimes t_\lambda \otimes u_{-\infty}$, which by Proposition 2.3 equals $S^{-}_{c_0} u_{\infty} \otimes t_\lambda \otimes u_{-\infty}$ mod $qL(\lambda)$. Therefore we have,

\begin{equation}
B(\lambda) = \{x_1 x_2 \ldots x_n | x_i \in \{\bar{e}_i, 0, \bar{f}_i\}, c_0 \in c_0(\lambda)\} \setminus \{0\}.
\end{equation}

Since Φ_λ commutes with crystal operators, and the $z_{i,\nu}$ induce automorphisms of the U_q-crystal of $V(\varpi_i)$, we have that $\Phi_\lambda(L(\lambda)) \subset L(W')$. Denote by $\Phi_{\lambda|q=0}$ the induced map $L(\lambda)/qL(\lambda) \rightarrow L(W')/qL(W')$.

Proposition 2.3. Let $B_0(W')$ be the connected component of $B(W')$ containing u'. Then

$$\Phi_{\lambda|q=0} : \{b \mid b \in B(\lambda)\} \rightarrow \{s_{c_0}(z^{-1})b' \mid c_0 \in c_0(\lambda), b' \in B_0(W')\}$$

is a bijection.

Proof. We have

$$\Phi_{\lambda|q=0}(B(\lambda)) \setminus \{0\} = \{s_{c_0}(z^{-1})B_0(W')\}.$$

Arguing using (2.11), we check that $\Phi_{\lambda|q=0}(B(\lambda))$ is injective. Let $b \in B(\lambda)$ such that $\Phi_{\lambda|q=0}(b) = 0$. Since b is connected by crystal operators to $b_1 \otimes t_\lambda \otimes u_{-\infty}$, where $b_1 = S^{-}_{c_0} u_{\infty}$ mod $qL(\infty)$, $c_0 \in c_0(\lambda)$, this implies $\Phi_{\lambda|q=0}(S^{-}_{c_0} u_\lambda$ mod $qL(\lambda)) = 0$. This contradicts Proposition 2.2. □

Corollary 2.1. The map Φ_λ is injective.

Proof. Since $\Phi_{\lambda|q=0} : L(\lambda)/qL(\lambda) \rightarrow L(W')/qL(W')$ maps the crystal base $B(\lambda)$ bijectively, it follows $\{s_{c_0}(z^{-1})B_0(W')\}$ is linearly independent in $L(W')/qL(W')$. Write an element $v \in \ker \Phi_\lambda, v \neq 0$, in terms of the global base $\{G(b) \mid b \in B(\lambda)\}$ as $v = \sum b c_0(q) G(b)$. Multiplying by a power of q we may assume that each $c_0(q)$ is regular at $q = 0$, so that $v \mod qL(\lambda) \neq 0$. This implies $\Phi_{\lambda|q=0}(v \mod qL(\lambda)) \neq 0$, which is a contradiction. □

By Proposition 2.3 for each $b \in B(\lambda)$ there exist $b' \in B_0(W')$ and $s_{c_0}(z^{-1})$ such that $\Phi_\lambda(b) = s_{c_0}(z^{-1})b' \mod qL(W')$. Let $G(b), G(b')$ be the respective globalizations of b and b'. Then $\Phi_\lambda(G(b)) = s_{c_0}(z^{-1})G(b') \mod qL(W')$. Since Φ_λ commutes with the $-\pi$ involutions, $\Phi_\lambda(G(b)) = s_{c_0}(z^{-1})G(b') \mod q^{-1}L(W')$. We conclude:

Theorem 1. Φ_λ induces a bijection between the sets

$$\Phi_\lambda : \{G(b) \mid b \in B(\lambda)\} \rightarrow \{s_{c_0}(z^{-1})G(b) \mid c_0 \in c_0(\lambda), b \in B_0(W')\}.$$

Remark. Taken together the results of this section give the conjectures [K4, 13.1, 13.2]. To obtain 13.1 (iii) consider that the crystal $\bigotimes_{i \in I} B(m_i \varpi_i)$ is by Proposition 2.3 in bijective correspondence with $\{s_{c_0}(z^{-1})B_0(W')\}$, and note that Φ_λ factors through $\bigotimes_{i \in I} V(m_i \varpi_i)$.

References

[AK] T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. RIMS, Kyoto Univ., 33 (1997), 839–867.

[B1] J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), 555-568.

[B2] J. Beck, Convex PBW bases of quantum affine algebras, Comm. Math. Phys. 165 (1994), 193-200.

[BCP] J. Beck, V. Chari, A. Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), no.3, 455–487.

[CP1] V. Chari, A. Pressley, Quantum affine algebras at roots of unity, Representation Theory 1 (1997), 280-328.

[CP2] V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represenation Theory 5 (2001), 191-223.

[D] I. Damiani, La R-matrice pour les algèbres quantiques de type affine non tordu, Ann. scient. ENS 31 (1998), 493-523.

[K1] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

[K2] M. Kashiwara, On crystal bases, Representations of Groups, Proceedings of the 1994 Annual Seminar of the Canadian Math. Soc., 16 (1995) 155–197.

[K3] M. Kashiwara, Crystal bases of modified quantized enveloping algebras, Duke Mathematical Journal 73 (1994), 383-413.

[K4] M. Kashiwara, On Level Zero Representations of Quantized Affine Algebras, to appear.

[L1] G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. 89 (1992), 8177–8179.

[L2] G. Lusztig, Introduction to Quantum Groups, Birkhäuser, Boston (1993).

[N] H. Nakajima, Extremal weight modules of quantum affine algebras, QA/0204183.

[M] I. Macdonald, Symmetric Functions and Hall Polynomials, Second Edition, Oxford Math. Monographs, Oxford University Press (1995).

Department of Mathematics, Bar Ilan University, 52900 Ramat Gan, Israel
E-mail address: beck@macs.biu.ac.il