Finite Element Analysis to Predict Temperature and Velocity Distribution in Radiator Tubes

J.A. Akpobi¹, SMG Akele², Ikielu V. I.¹, Eyefia A. O.³, Ikechukwu D.³ and Adeyemi O. J.⁶
¹Professor, Production Engineering Department, University of Benin, Benin City, NIGERIA
²Ph.D Holder, Mechanical Engineering Department, Auchi Polytechnic, Auchi, NIGERIA
³Students, Mechanical Engineering Department, Auchi Polytechnic, Auchi, NIGERIA
⁴Students, Mechanical Engineering Department, Auchi Polytechnic, Auchi, NIGERIA
⁵Students, Mechanical Engineering Department, Auchi Polytechnic, Auchi, NIGERIA
⁶Students, Mechanical Engineering Department, Auchi Polytechnic, Auchi, NIGERIA
²Corresponding Author: smg_sam2009@yahoo.com

ABSTRACT
Automobile radiators are heat exchangers that are used to transfer thermal energy from automobile engine to the surrounding atmosphere for the purpose of cooling the engine. Over 33% of heat energy generated by the engine through combustion is loss as heat dissipated in the atmosphere. The method of solution employed in this project work to solve the governing equations is the Galerkin-integral weighted-residual method, which is achieved following the steps of transforming the governing equations into Galerkin-integral weighted residual weak form, determination of interpolations functions, determination of element properties, assemblage of elements equations into domain equations and imposition of boundary conditions and solving of the assembled domain equations.

The results showed that for temperature and velocity distributions in the radiator tubes and inlet hose to radiator as the number of elements is increased the more the finite element solution approximates the analytical solutions. Temperature values are observed to decrease, with increase in length, from 150°C to 80°C in the radiator tubes for finite element analysis, analytical, and ANSYS software used; and the finite element solutions exactly approximate analytical solutions at the nodes and agree with the ANSYS result. For velocity distribution in the radiator tube diameter, at the tube walls the no-slip boundary conditions are satisfied with velocity increasing from the wall at velocity of 0 to the midsection at velocity of 50.195m/s; while for the inlet hose diameter, velocity increases from wall at velocity 0 to the maximum at the midsection velocity 669.269m/s. Finally, the finite element analysis method can be used to determine how temperature will be distributed during radiator design stage in order to improve on its efficiency.

Keywords: Radiator Tube, Finite Element, Temperature Distribution, Velocity Distribution

I. INTRODUCTION
Automobile engines are internal combustion engines that generate huge amount of heat when air-fuel mixture is combusted in the combustion chamber. Temperatures of metal components such valves, cylinder, piston and cylinder head around the combustion chamber can exceed 538°C(Pathade et al., 2017). Therefore, automobile radiators, which are heat exchangers that are used to transfer thermal energy from automobile engine to the surrounding atmosphere for the purpose of cooling the engine. Over 33% of heat energy generated by the engine through combustion is loss as heat dissipated in the atmosphere (Sathyan, 2016). According to Gangireddy and Kishore (2017), to increase the surface area available for a radiator with its surroundings, multiple fins are usually attached in contact with the radiator tubes through which pumped liquid flow through. Air or other exterior fluid in contact with the fins carries off heat. More so that radiators used for vehicle engine cooling are either down-flow in which the direction of coolant flow is vertical or cross-flow with horizontal flow. In their review, Patel and Dinesan (2014) in their parametric study used CFD to compare heat transfer and pressure drop of radiators with different parameters for optimum performance. The results showed that CFD results have high correlation level with the actual experimental results. In the work of Priyadharshini (2016), Pro-E 3-D modeling and finite element analysis were used in analyzing a radiator. The result showed Alalloy temperature of variation above 145°C and heat flux value of 0.142W/m²:for increasing length of fins, heat transfer value will be in the range of 740 watts while for copper alloy temperature was in the range of 145°C with heat transfer range above 1000 watts. And 150°C for brass with heat transfer in the range above 635watts.

Ng et al. (2005) noted that for the purposes of increasing the boiling point of the coolant and preventing corrosion in the cooling systems, coolants are generally a mixture of water, ethylene glycol (anti-freezing agent), and possibly various corrosion inhibitors. It is noted that the use of glycol mixture generally reduces the heat transfer performance compared with pure water. Oliet et al. (2007)
observed that the heat transfer and the performance of a radiator are parameters that strongly affected by air and coolant mass flow rate; that as air and coolant flow increases cooling capacity also increases; and that when air inlet temperature increases, heat transfer and cooling capacity decreases. According to Romanov and Khozeniuk (2016), thermal load on an engine can be reduced by controlling the convective component of heat flows using the changing flow pattern of the coolant in the cooling system.

The dynamics of flow in a radiator are known to be governed by sets of partial differential equations (PDEs) along with boundary conditions which are usually formulated to simplify the PDEs. By similarity transformations, the PDEs are transformed into ordinary differential equations (ODEs) which can then be solved numerically when the boundary conditions are applied (Reddy, 1998).

One major problem of radiator is low rate of heat transfer which usually results in low efficiency challenges. This low heat flow rate depends on the distribution of temperature and the manner of velocity distributions in the radiator. These have prompted a lot of numerical models being developed to predict the cooling air flow, either in 2D or 3D using off-the-shelf commercial Computational Fluid Dynamics (CFD) software like Fluent, Vectis, StarCD and StarCCM+. In all the literature reviewed mathematical model for temperature and velocity distributions were not developed using finite element analysis (FEA) method (Pang et al., 2012; Pathade et al., 2017; Gangireddy and Kishore, 2017; Ng et al., 2005). Therefore in this study, finite element analysis method is used to develop mathematical models that will predict temperature and velocity distributions in a car radiator.

II. MODEL GEOMETRY

In this study 1-dimensional flow at inlet and outlet hoses of the radiator as well as through the radiator tubes from top to bottom, down-flow radiator are considered (Fig. 1).

The fluid is assumed to enter the tube at inlet (x, y_i) with uniform inlet velocity (u_i = 0), where it comes in contact with the inlet tube surface with viscous reaction between fluid and the tube thus assumed to set up a one dimensional (1-D), steady, uniform inward flow. The viscous force between the tube surface and the adjacent fluid layer tends to slow down the fluid velocity, which results in developing velocity gradient in the flow field. As the fluid is set in motion, pressure differential (drop) is also set up in the direction of flow.

![Fig. 1: Radiator tube geometry](https://ssrn.com/abstract=3479588)
Fig. 2 shows the flow characteristic of an ideal fully-developed viscous flow profile in the flexible hose tubes and radiator tubes. As the fluid enters at inlet x_i or y_i as the case may be, it sustains a uniform flow at this point but becomes laminar and fully-developed significant distance from the inlet with parabolic flow profile.

![Flow Characteristic Diagram](image)

Fig. 2: radiator tube and flexible tube domain flow

2.1 Domain Discretization

In this study, uniform and linear elements were chosen for the domain discretization. The radiator tube domain Ω_1 ($-1 \leq x \leq 1$) is subdivided into N number of linear elements mesh along the y axis; while the flexible tube domain Ω_2 ($-1 \leq x \leq 1$) is also subdivided into N number of linear elements mesh along the y axis. The radiator tube flow field and wall are subdivided into $N = 4$, linear and uniform elements mesh as in Fig. 3(a) and (b).

![Domain Discretization Diagram](image)

Fig. 3: (a) Radiator tube flow field (b) Radiator thickness meshes

III. MATHEMATICAL FORMULATIONS

For this study, flow of fluid in the flexible tube and radiator tube cores are governed by the continuity, Navier-Stokes and energy partial differential equations.

3.1 Governing Equations
Continuity equation:
\[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0 \]
(1)

x-momentum equation:
\[\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \rho g_x \]
(2)

y-momentum equation:
\[\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \rho g_y \]
(3)

z-momentum equation:
\[\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + \rho g_z \]
(4)

Energy equation
\[\rho C_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right) = k \left[\frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right] + \phi \]
(5)

3.2 Relevant Assumptions

The following assumptions are applied to simplify continuity, Navier-Stokes and equations:

(i) One dimensional in the hose and radiator (the flow in the radiator is in y-direction with the flow in x-axis direction assumed insignificantly negligible),

(ii) Incompressible (i.e. density is assumed constant),

(iii) Steady,

(iv) Laminar and fully-developed,

(v) Newtonian and isotropic fluid flow,

(vi) Body forces (gravitational and inertia) are negligible,

(vii) No-slip condition exists at tube inner surfaces,

(viii) Elements are linear and uniformly spaced between nodes.

Boundary conditions at flexible hose tube inlet
\[v(y = 1) = v(y = -1) = 0; V_{ave} = 0.20 \frac{m}{s}; p_a = 18 \frac{N}{m^2} \]

Boundary conditions at flexible hose tube outlet
\[V(x, y) = 0.018 \frac{m}{s}; p_a = 23 \frac{N}{m^2} \]
Boundary conditions at radiator tube inlet and outlet

\[u(x = 1) = u(x = -1) = 0; \]
\[T_o = 80^\circ C; T_L = 150^\circ C; \]
\[T_o = 30^\circ C; T_S = 150^\circ C \]

By applying the assumptions and boundary conditions to equations (1), (2), (3), (4) and (5) reduce them to the followings governing equations (6), (7) and (8):

x-momentum equation applicable to tubes:

\[0 = -\frac{1}{\rho} \frac{dp}{dx} + \mu \left(\frac{d^2 u}{dy^2} \right) \quad (6) \]

y-momentum equation applicable to radiator:

\[0 = -\frac{dp}{dy} + \mu \left(\frac{d^2 v}{dx^2} \right) \quad (7) \]

Energy equation

\[0 = Aq + k \left[\frac{d^2 T}{dy^2} \right] \quad (8) \]

IV. METHOD OF SOLUTION

The method of solution employed to solve the close-formed governing equations (6), (7) and (8) is Galerkin-integral weighted-residual method.

\[\frac{d}{dy} \left(kA \frac{dT}{dy} \right) + qA = 0 \quad (9) \]

Subject to the following boundary conditions:

\[T \left(y = 0 \right) = 150^\circ C; T \left(y = L \right) = 80^\circ C; Vx = 0.20 \frac{m}{s}; p_y = 18 \frac{N}{m^2} \quad (10) \]

Finite element models for 3, 4 and 6 elements mesh are (see Appendix A):

For 3 elements mesh:

\[T_1 = 150^\circ C; T_2 = 127^\circ C; T_3 = 103^\circ C; T_4 = 80^\circ C \]

4.1 Heat transfer in Wall of Length L

For steady, 1-dimensional heat conduction along wall, length L (y-direction), the above equation reduces to:

\[\frac{d}{dy} \left(kA \frac{dT}{dy} \right) + qA = 0 \quad (9) \]
For 4 elements mesh:
\[T_1 = 150° C; T_2 = 134° C; T_3 = 117° C; T_4 = 99° C; T_5 = 80° C \]

For 5 elements mesh:
\[T_1 = 150° C; T_2 = 138° C; T_3 = 126° C; T_4 = 112° C; T_5 = 96° C; T_6 = 80° C \]

4.2 Heat Transfer in Wall of Thickness S
For steady, one-dimensional heat conduction across the wall thickness S, in x-direction, the governing equation (3.13) becomes:

\[
\frac{d}{dx} \left(kA \frac{dT}{dx} \right) + qA = 0 \tag{12}
\]

Subject to the following boundary conditions:

\[T(x = 0) = 150° C; T(x = S) = 30° C; V_y = 0.018 \frac{m}{s}; p_x = 23 \frac{N}{m^2} \]

Finite element models for 3, 4 and 5 elements mesh are (see Appendix A):

For 3 elements mesh:
\[T_1 = 150° C; T_2 = 110° C; T_3 = 70° C; T_4 = 30° C \]

For 4 elements mesh:
\[T_1 = 150° C; T_2 = 121° C; T_3 = 92° C; T_4 = 61° C; T_5 = 30° C \]

For 5 elements mesh:
\[T_1 = 150° C; T_2 = 128° C; T_3 = 106° C; T_4 = 82° C; T_5 = 56° C; T_6 = 30° C \]

4.3 Governing Equation for Flow in Radiator Tube
The governing equation for inlet tube flow in one-dimension is:

\[
\frac{d^2 v}{dx^2} - \frac{P_y}{\mu} = 0 \tag{13}
\]

subject to the following initial inlet and boundary conditions:

\[v(y = -1) = 0; v(y = +1) = 0; V_x = 0.20 \frac{m}{s}; p_y = 18 \frac{N}{m^2} \]

Finite element models for 3 and 4 elements mesh are (see Appendix A):
For 3 elements:

\[v_1 = 0; v_2 = 2 \left(\frac{P_y h^2}{2 \mu} \right); v_3 = 2 \left(\frac{P_y h^2}{2 \mu} \right); v_4 = 0 \]

For 4 elements:

\[v_1 = 0; v_2 = 3 \left(\frac{P_y h^2}{2 \mu} \right); v_3 = 4 \left(\frac{P_y h^2}{2 \mu} \right); v_4 = 3 \left(\frac{P_y h^2}{2 \mu} \right); v_5 = 0 \]

4.4 Governing Equation for Flexible Hose at Radiator Inlet

The governing equation for radiator inlet tube in one-dimension is:

\[
\frac{d^2 u}{dy^2} - \frac{P_y}{\mu} = 0
\]

subject to the following initial inlet and boundary conditions:

\[u(y = +1) = 0; u(y = -1) = 0; V_s = 0.018 \frac{m}{s}; p_y = 23 \frac{N}{m^2} \]

Finite element models for 3 and 4 elements mesh are (see Appendix A):

For 3 elements

\[u_1 = 0; u_2 = 2 \left(\frac{P_y h^2}{2 \mu} \right); u_3 = 2 \left(\frac{P_y h^2}{2 \mu} \right); u_4 = 0 \]

For 4 elements

\[u_1 = 0; u_2 = 3 \left(\frac{P_y h^2}{2 \mu} \right); u_3 = 4 \left(\frac{P_y h^2}{2 \mu} \right); u_4 = 3 \left(\frac{P_y h^2}{2 \mu} \right); u_5 = 0 \]

V. RESULTS AND DISCUSSION

The results and discussion presented here are for temperature distributions along radiator tube length (L) and thickness (S) as well as velocity distributions along radiator tube length (L) and in the radiator inlet hose.

For temperature distribution in the radiator tube length, Fig. 4 is a graph of temperature against tube length comparing finite element solutions for 3 (diamond), 4 (square) and 5 (triangle) elements with analytical solution (cross); the graph reveals that the more the number of elements is increased the more the finite element solution approximates the analytical solutions. Fig. 5 shows temperature distribution long tube length using ANSYS R16.2 software. Temperature is seen to decrease from 150°C (red portion) to approximately 80°C (blue portion), which agrees with the result obtained by analysis. Fig. 6 is a graph of temperature against tube length comparing finite element temperature distribution pattern (diamond) with heat flow distribution pattern (triangle) along the tube length respectively. In Fig. 6, temperature is seen to decrease with increase in length while heat flow increases with increase in length. For temperature distribution along the tube thickness, Fig. 7 is a graph of temperature against tube thickness comparing finite element solutions for 3 (diamond), 4 (square) and 5 (triangle) elements with analytical solution (cross); the graph reveals that the more the number of elements is increased the more the finite element solution approximates the exact solutions. Fig. 8 is a graph of temperature against tube thickness comparing...
finite element temperature distribution pattern (diamond) with heat flow distribution pattern (triangle) along the tube thickness respectively with temperature shown to decrease with increase in length while heat flow increases with increase in length.

For velocity distribution in the radiator tube diameter, Fig. 9 is a graph of velocity against tube length comparing finite element solutions for 3 (square) and 4 (diamond) elements with analytical solution (cross); the graph reveals that more the number of elements is increased the more the finite element solution approximates the exact solutions. From Fig. 9, at the tube walls the no-slip boundary conditions are satisfied with velocity increasing from the wall velocity = 0 to the midsection with velocity = 50.195m/s. While for velocity distribution in inlet hose diameter, in Fig.10 a graph of velocity against inlet hose diameter, 2 elements solutions (triangle), 3 elements solutions (diamond) and 4 elements solutions (circle) are compared with the analytical solution (square).The graph reveals the finite element solution approximates the analytical solution as the number of elements is increased with the no-slip boundary conditions being satisfied at the walls as velocity increases from 0 to the maximum at the midsection with velocity = 669.269m/s.

![Radiator Tube Length Finite element and Analytical Temperature Distribution](image1)

Fig. 4: Finite element and analytical temperature distribution along tube length

![ANSYS Temperature Distribution](image2)

Fig. 5: Finite element ANSYS temperature distribution along tube length

This work is licensed under Creative Commons Attribution 4.0 International License.
Fig. 6: Temperature and heat distribution along tube length

Fig. 7: Finite element and analytical temperature distribution along tube thickness
This work is licensed under Creative Commons Attribution 4.0 International License.
For radiator tube, Table 1 shows temperature distribution at the element nodes for 3 (3E), 4(4E) and 5(5E) elements and the corresponding analytical (AS) values. In Table 1, the 5 elements nodal values approximate with those of the analytical nodal point values. Table 2 shows temperature distribution for 5 (5E) elements, the corresponding analytical (AS) values and the heat flux values. Temperature distribution values are seen to decrease with tube length as the heat flux increases.

For radiator tube, Table 5 shows velocity distribution at the element nodes for 3 (3E) and 4(4E) elements and the corresponding analytical (AS) values. In Table 5, the 4 elements nodal values approximate with those of the analytical nodal point values. For inlet hose, Table 6 shows velocity distribution at the element nodes for 3 (3E) and 4(4E) elements and the corresponding analytical (AS) values. In Table 6, the 4 elements nodal values approximate with those of the analytical nodal point values.

Table 1: Radiator tube length finite element and analytical temperature nodal values

Nodes	3E (°C)	4E (°C)	5E (°C)	AS (°C)
0.00	150.000	150.000	150.000	150.000
0.20	127.000	134.000	138.000	138.488
0.40	103.000	117.000	126.000	125.733
0.60	95.000	99.000	112.000	111.733
0.80	88.000	90.000	96.000	96.488
1.00	80.000	80.000	80.000	80.000

3E: 3 elements solution; 4E: 4 elements solution; 5E: 5 elements solution; AS: analytical solution

Table 2: Finite element and analytical temperature distribution and heat flow values

Nodes	5E (°C)	AS (°C)	Q(J/m°C)
0.00	150.000	150.000	30.545
0.20	138.000	138.488	34.035

For radiator tube, Table 5 shows temperature distribution at the element nodes for 3 (3E), 4(4E) and 5(5E) elements and the corresponding analytical (AS) values. Temperature distribution values are seen to decrease with tube length as the heat flux increases.

For radiator tube, Table 5 shows velocity distribution at the element nodes for 3 (3E) and 4(4E) elements and the corresponding analytical (AS) values. In Table 5, the 4 elements nodal values approximate with those of the analytical nodal point values. For inlet hose, Table 6 shows velocity distribution at the element nodes for 3 (3E) and 4(4E) elements and the corresponding analytical (AS) values. In Table 6, the 4 elements nodal values approximate with those of the analytical nodal point values.
Table 3: Finite element and analytical temperature nodal values

Nodes	3E (°C)	4E (°C)	5E (°C)	AS (°C)
0.00	150.000	150.000	150.000	150.000
0.06	110.000	121.000	128.000	128.48
0.12	70.000	92.000	106.000	105.73
0.18	57.000	61.000	82.000	81.733
0.24	43.000	46.000	56.000	56.488
0.30	30.000	30.000	30.000	30.000

Table 4: Finite element, analytical temperature and heat flow nodal values

Nodes	5E (°C)	AS (°C)	Q(J)
0.00	150.000	150.000	58.595
0.20	128.000	128.488	62.085
0.40	106.000	105.733	65.575
0.60	82.000	81.733	69.056
0.80	56.000	56.488	72.555
1.00	30.000	30.000	76.045

Table 5: Radiator tube FE and exact solutions velocity nodal values

b	3E	4E	AS
1.00	0	0	0
0.875	0.056	0.113	0.113
0.750	0.105	0.210	0.210
0.625	0.146	0.293	0.293
0.500	0.180	0.361	0.361
0.375	0.207	0.413	0.413
0.250	0.225	0.451	0.451
0.125	0.237	0.473	0.473
0.000	0.240	0.481	0.481

Table 6: Radiator flexible hose FE and Exact velocity nodal values

b	3E	4E	AS
1.00	0	0	0
0.875	0.056	0.113	0.113
0.750	0.105	0.210	0.210
0.625	0.146	0.293	0.293
0.500	0.180	0.361	0.361
0.375	0.207	0.413	0.413

This work is licensed under Creative Commons Attribution 4.0 International License.
This work is licensed under Creative Commons Attribution 4.0 International License.
Appendix A

(1) Transformation of governing equation into Weak form

The derivation of element equations for typical element e in the mesh follows these steps (Reddy, 1995):

\[
\frac{d}{dy} \left(kA \frac{dT}{dy} \right) + qA = 0
\]

(A1)

subject to the following boundary conditions:

\[
T(y = 0) = 150^\circ C; T(y = H) = 80^\circ C
\]

(A2)

The residual, R, of the governing equation (A1) is:

\[
\frac{d}{dy} \left(kA \frac{dT}{dy} \right) + qA = 0
\]

(A3)

The Galerkin-weighted residual integral equation (A4) is:

\[
0 = \int w \left[-kA \left(\frac{d^2 T}{dy^2} \right) + Aq(y) \right] d\Omega
\]

(A4)

The Weak form of the Galerkin-weighted residual integral equation (A5) is:

\[
0 = \int \left[kA \frac{d\psi_i}{dy} \frac{dT}{dy} + wAq \right] d\Omega - wkA \left(\frac{dT}{dy} \right) _{\Omega}
\]

(A5)

The finite element equation is:

\[
0 = \int \left(kA \frac{d\psi_i}{dy} \sum_{j=1}^{n} T^e_j \frac{d\psi_j}{dy} + Aq\psi_i \right) dy - \left[kA\psi_i \frac{dT}{dy} \right]^L_0
\]

(A6)

In matrix form the finite element model is written as:

\[
\begin{bmatrix} K^e \end{bmatrix} \{T^e\} = \{f^e\} - \{Q^e\}
\]

(A7)

(2) The analytical solution are:

\[
T(y) = -\frac{qL^2}{2k} + \left[\frac{y}{L} - \left(\frac{y}{L} \right)^2 \right] \frac{y}{L} \left(T_L - T_0 \right) \frac{y}{L} + T_o
\]

(A)

\[
Q(y) = kA \frac{dT(y)}{dy} = -\frac{qLA}{2} \left[1 - 2 \left(\frac{y}{L} \right) \frac{y}{L} - \left(T_L - T_0 \right) \frac{y}{L} \right] + T_o
\]

(A9)
Appendix B

Problem data

Empirical values	Observed parameters	Symbols	Quantity	Unit
Tube material	-	aluminium		
Inlet temperature	T_L	150	°C	
Outlet temperature	T_O	80.30	°C	
Specific heat	c_p	4.187	kJ/kgK	
Thermal conductivity	k	0.66	W/mK	
Density	ρ	1000	kg/m3	
Dynamic viscosity	μ	1.793×10^{-3}	kg/ms	

Finite element analysis parameters

Observed parameters	Symbols	Quantity	Unit
Specified pressure at tube	p_y	0.018	N/m2
Specified pressure at hose	p_x	0.23	N/m2
Inlet diameter of tube	D_1	10	Mm
Outlet diameter of tube	D_2	11.25	Mm
Tube thickness	S	0.0625	Mm
Element length, tube	h_y	0.5	Mm
Element length, hose	h_x	0.005	Mm