ABSTRACT
In this paper, a new series of isatin-sulphonamide based derivatives were designed, synthesised and evaluated as caspase inhibitors. The compounds containing 1-(pyrrolidinyl)sulphonyl and 2-(phenoxy)methyl-pyrrolidin-1-yl)sulphonyl substitution at C5 position of isatin core exhibited better results compared to unsubstituted derivatives. According to the results of caspase inhibitory activity, compound 20d showed moderate inhibitory activity against caspase-3 and -7 in vitro compared to Ac-DEVD-CHO (IC_{50} = 0.016 ± 0.002 μM). Among the studied compounds, some active inhibitors with IC_{50}s in the range of 2.33–116.91 μM were identified. The activity of compound 20d was rationalised by the molecular modelling studies exhibiting the additional van der Waals interaction of N-phenylacetamide substitution along with efficacious T-shaped π–π and π–cation interactions. The introduction of compound 20d with good caspase inhibitory activity will help researchers to find more potent agents.

Introduction
Caspases, cysteinyl aspartate-specific proteases, are a family of signalling molecules playing a key role in apoptosis. Apoptosis is a physiological suicide process which gives an opportunity to dismantle unwanted cells population during animal development and tissue homeostasis. Morphological changes such as DNA strand breaks along with nuclear membrane damage occur as a result of some biochemical events during apoptosis. Two intrinsic and extrinsic pathways are responsible for initiating the apoptosis process. Binding of certain protein to the death receptor activates caspase-8 and subsequently triggers apoptosis by promoting effector caspases (-3, -6, -7). It should be noted that caspase enzymes are classified as initiator (caspase-2, caspase-8, caspase-9, and caspase-10) and effector (caspase-3, caspase-6, and caspase-7) which are exploited in response to proapoptotic signals. The side-chains, attached to pyrrolidine meaning methoxymethyl or phenoxymethyl groups, occupy the S3 pocket. In this regard, many studies have been focussed on the synthesis of several modified isatin derivatives (1), relying on the structure-activity relationship (SAR) studies (Figure 1). Interestingly, it was observed that good IC_{50} values in nanomolar ranges are obtained when hydrophobic groups are attached to the N-1 position of structure 1 (Figure 1). Furthermore, the amide moiety is also found necessary in producing various potent inhibitors. Considering the above mentioned findings about the importance of isatin sulphonamide derivatives, especially as caspase-3 inhibitors and following our ongoing projects on the design and synthesis of biologically active agents, we synthesised isatin based compounds.
containing N-aryl acetamide and N-prop-2-yn-1-yl as caspase-3 and -7 inhibitors through the structural modification of compound 1.

Results and discussion

Chemistry

First of all, the N-alkylated isatin derivatives (11a–k) were obtained in 60–85% yields from the alkylation reaction of isatin 10 with propargyl bromide or 2-chloro-N-arylacetamide derivatives 38–40, synthesised from the reaction of chloroacetyl chloride and aromatic amines (Part A, Scheme 1)41.

The synthesis of N-alkylated substituted 5-[1-(pyrrolidinyl)sulphonyl] isatin derivatives was started from heating isatin 10 in chlorosulfonic acid at 60°C which is followed by amination with pyrrolidine or 2-phenoxymethyl pyrrolidine in dimethyl formamide (DMF)42. The subsequent hydrolysis in acetic acid and addition of 2-chloro-N-arylacetamides 9 or propargyl bromide led to compounds 19a–k (64–85%) and 20a–k (47–65%) in good yields (Part B, Scheme 1).

In this paper, 33 compounds are synthesised and their structures are deduced by IR, 1H, 13C NMR, mass spectroscopy, and elemental analysis. For example, the IR spectrum of these three series showed the stretching bands, related to C=O bonds of ketone and amide functional groups at nearly 1700 and 1670 cm⁻¹, respectively. The mass spectrum of each compound displayed the molecular ion (M⁺) peak, which is consistent with a 1:1 adduct, formed by the substitution at NH of isatin and loss of chlorine and bromine atom of propargyl bromide or 2-chloro-N-arylacetamide derivatives. The 1H-NMR spectrum of compounds exhibited the characteristic signals at δ 4.3–4.6 and 8.2–8.8 ppm related to NCH₂ and NH, respectively. The characteristic signals related to pyrrolidine and isatin moiety at aliphatic and aromatic region confirmed the structures of final compounds. The 13C-NMR spectrum of compounds showed characteristic signals at related aliphatic and aromatic regions which are in agreement with the proposed structure.

Biological activity

The inhibitory activities of newly synthesised 2-[(2,3-dioxoindolin-1-yl)-N-substituted phenyl acetamide, 1-(prop-2-yn-1-yl)indoline-2,3-dione and two series of compounds containing 1-(pyrrolidinyl)-sulphonyl and 2-(phenoxymethyl)pyrrolidin-1-yl)sulphonyl substitution at C5 position of isatin core (B, C, Table 1) against caspase-3 and -7 were evaluated by using the acetyl-DEVD-AMC fluorogenic substrate assay. The results are expressed as inhibition percentage and IC₅₀ values in Table 1. We used Ac-DEVD-CHO as the positive control.

As can be seen in Table 1, those compounds containing no substituent at C5 position of isatin core (R₂ = H) are weak inhibitors compared to the positive control. All amounts are provided as inhibition percentage at 20µg/ml. Among this series, the best and weakest activity was observed in 11c and 11f with inhibition percentage of 71% and 5%, respectively. The presence of 2-(phenoxymethyl)pyrrolidine functionality on isatin core led to the more active compounds against caspase-3 and -7 than that of substituted ones with pyrrolidin-1-yl sulphonyl moiety.

In compounds 20a–k, the comparison between the para substituted derivatives revealed that the electron-donating substituents (20j, 20k) exhibited the lowest enzymatic inhibition. The most active compound was the 4-chlorophenylacetamide containing derivative, meaning 20d against caspase-3 and -7. Compounds 20a–c and 20f have also appreciable IC₅₀ values and can be regarded as moderated caspase-3 and -7 inhibitors in comparison to Ac-DEVD-CHO (IC₅₀ = 0.016 ± 0.002 µM). In compounds 19a–k and 20a–k, the least electronegative and more bulky atom, bromine, had clear negative effect on inhibitory
potency of the compound compared to fluorine and chlorine containing derivatives. As previously reported, compounds with a selectivity index greater than 1.5 are considered as selective inhibitors of caspase-3, so, compounds \(19a\), \(19d\), \(19e\), \(20c\), \(20d\), and \(20e\) exhibited this selectivity. Regarding the significant activity and selectivity of compound \(20d\), this compound could be studied for further modification to develop novel hit compounds.

Docking study

To investigate the binding mode of these potent inhibitors, molecular docking computations were performed using Autodock Tools (ver.1.5.6) programme\(^{43}\). Compound \(20d\) was docked into the active site of caspase-3 crystallographic structure (PDB ID: 1GFW), retrieved from protein data bank (http://www.rcsb.org/pdb/home/home.do) (Figure 2). The phenyl ring of phenoxymethyl group formed pi-cation interaction with HIS:121. The isatin core formed T-shaped \(\pi-\pi\) interactions with His 121 and Tyr 204. His 121 formed a carbon hydrogen bond in isatin sulphonamide crystall ligand. A Pi-alkyl interaction is formed between the oxygen of sulphonyl group and Trp 206 and Tyr 204. The carbonyl moieties interacted through \(\pi\)-sulfur with Cys 163 in compound \(20d\) and through \(\pi\)-hydrogen bond in isatin sulphonamide. The \(\pi-\pi\) stacked interaction is formed between isatin core and Phe 256 in isatin sulphonamide and compound \(20d\). Moreover, N-phenylacetamide substitution provided enough length for more efficient interactions, like an additional van der Waals interaction between LeuA 168 and ThrA 166 and phenyl moiety. Table 2, presented the comparison between the type of interaction and involved amino acid residues of the most active compound, \(20d\), and isatin sulphonamide. These interactions along with distances are schematically presented in Figure 3. Superimposition of the binding pose of \(20d\) and natural ligand at the 1GFW active site is shown in Figure 4. The binding interaction energy of compound \(20d\) is \(-4.04\) kcal/mol, which stated that this compound is less potent than statin sulphonamide (\(-5.44\) kcal/mol) towards caspase-3.

Conclusion

A series of novel isatin-sulphonamide derivatives were designed, synthesised and evaluated for their caspase-3 and \(-7\) inhibitory activity. The results showed that most of the synthesised compounds exhibited moderate inhibitory activity against caspase-3 and \(-7\). The results revealed that 4-chloro phenylacetamide derivative \(20d\) exhibited the best profile of inhibitory activity on caspase-3 with \(IC_{50}\) value of 2.33 \(\mu\)M. The docking studies showed the perfect binding of compound \(20d\) to the active site of caspase-3 enzyme. The prepared product \(20d\) in the present study may be subjected to further optimisation to find more effective agent as caspase-3 inhibitor.
reaction was continued for 15 min at 0 °C. Corresponding N-phenylacetamides 9 or propargyl bromide (0.25 mmol) was added and the reaction was continued for one hour. TLC was used to find reaction completion time. Water (20 ml) was added to the reaction mixture and extracted with ethyl acetate. Resulted crude product was purified over flash column chromatography (mobile phase: ethyl acetate: hexane 20:80) to yield pure products 11a–k.

1-(Prop-2-yn-1-yl)indoline-2,3-dione (11a)\(^\text{12}\): White solid; Yield: 85%; m.p. 158–160 °C; IR (KBr, cm\(^{-1}\)): 1718 (C=O, ketone); 1\(^H\)-NMR (500 MHz, DMSO-d\(_6\)): 2.90 (s, 1H, CHAcetylene), 4.36 (s, 2H, CH\(_2\)), 7.22 (d, J = 8.5 Hz, 1H, H\(_8\)), 7.35 (d, J = 8.5 Hz, 1H, H\(_7\)), 7.47 (t, J = 7.85 Hz, 1H), 7.52 (t, J = 7.85 Hz, 1H); \(^13\)C NMR (125 MHz, DMSO-d\(_6\)): 37.0, 75.1, 82.0, 126.2, 126.6, 128.3, 135.1, 135.1, 145.6, 150.1, 163.3, 181.1. Anal. Calcd. For C\(_{16}\)H\(_{11}\)NO: C, 68.56; H, 4.32; N, 9.99; Found: C, 68.27; H, 4.04; N, 7.57.

Experimental

Chemistry

5-[(1-Pyrrolidinyl)sulphonyl] isatin derivatives 18 were prepared by the reaction of isatin 7, chlorosulfonic acid, pyrrolidine or 2-phenoxymethyl pyrrolidine 16\(^\text{10}\) used in the synthesis of target products were conveniently prepared based on the previously reported procedure.

Other starting materials, chemical reagents, and solvents used in this study were commercially available (from Merck and Aldrich Chemicals) and were used without further purification. TLC was conducted on silica gel 250 micron. Melting points were determined on a Kofler hot stage apparatus and were uncorrected. The IR spectra were run on a Shimadzu 470 spectrophotometer (potassium bromide disks). Mass spectra were recorded on an Agilent Technologies (HP) 5973 mass spectrometer operating at an ionisation potential of 70 eV. The NMR spectra were recorded on a Varian unity 500 spectrometer, and the chemical shifts (\(\delta\)) are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard.

General procedure for the N-alkylation of isatin, 5-[(1-pyrrolidinyl)sulphonyl] isatins, 5-[(2-phenoxymethyl)pyrrolidin-1-yl)sulphonyl]isatin

Sodium hydride (0.25 mmol) was added to the stirred solution of isatin 10 or intermediate 18 (0.25 mmole) in DMF (3 ml), and the

Figure 2. 2D and 3D representations of 20d interactions with caspase-3 active site.
Table 1. Structures of compounds 11a–k, 19a–k, and 20a–k displaying inhibitory effects on caspase-3 and -7.

Entry	R1	Caspase-3 IC₅₀ (μM)ᵃ	Caspase-3 IC₅₀ (μM)ᵇ	Caspase-3 IC₅₀ (μM)ᶜ	Caspase-3 IC₅₀ (μM)ᵈ	Selectivity Index (SI)	Caspase-7 IC₅₀ (μM)ᵃ	Caspase-7 IC₅₀ (μM)ᵇ	Caspase-7 IC₅₀ (μM)ᶜ	Caspase-7 IC₅₀ (μM)ᵈ	Selectivity Index (SI)
a		33.21±7.13	N.D.	24.97±0.95	61.38±10.11	2.46	5.67±0.62	6.62±0.74	1.16		
b		65.0±3.22	N.D.	23.97±0.91	20.05±4.65	0.83	3.98±0.41	5.25±0.14	1.32		
c		71.4±10.63	N.D.	19.05±1.88	14.18±2.47	0.74	4.87±0.63	12.17±4.12	2.49		
d		55.19±1.21	N.D.	27.30±3.29	102.48±6.94	3.75	2.33±0.33	3.77±1.69	1.62		
e		13.90±4.22	N.D.	38.69±4.20	116.91±13.01	7.01	7.15±0.47	14.70±1.84	2.05		
f		5.11±1.50	N.D.	>20	27.40±5.14	<1.37	3.98±0.45	5.67±0.41	1.42		
g		27.77±6.12	N.D.	22.72±1.48	13.11±4.37	0.58	11.92±0.99	7.19±0.65	0.60		
h		26.70±1.05	N.D.	24.45±4.33	14.53±3.27	0.59	8.25±1.22	3.72±0.71	0.45		
i		11.01±4.45	N.D.	39.70±2.84	21.31±2.78	0.54	7.17±0.58	6.13±1.65	0.85		
j		53.61±3.27	N.D.	36.50±3.47	36.50±5.51	1.04	32.63±4.33	30.36±6.21	0.93		
k		55.50±6.25	N.D.	31.91±2.34	27.64±4.65	0.87	30.66±4.41	22.56±2.47	0.73		

ᵃIC₅₀ values are expressed as Mean ± SD of three experiments. ᵇN.D. = Not determined. ᶜIC₅₀ amount for Ac-DEVD-CHO is 0.016 ± 0.002 μM. ᵈThe values given in bracket are percentage inhibition. ⁵Selectivity Index (SI) was calculated as IC₅₀ caspase-7/IC₅₀ caspase-3.
Figure 3. Superimposition of the binding pose for 20d and natural ligand at the 1GFW active site.

Figure 4. 2D representations of 20d (A) and isatin sulphonamide (B) interactions with caspase-3 active site.

Table 2. The interactions of compound 20d and natural ligand in 1GFW at the active site.

Interaction type	20d	Isatin Sulphonamide
Van der waals	–	–
Conventional hydrogen bond	– Arg 207, Gly 122	
Carbon hydrogen bond	–	His 121
Pi-pi stacked	Phe 256	Phe 256
Pi-pi T-shaped	His 121	Tyr 204
Pi-alkyl	Trp 206	Trp 206
Pi-cation	His 121	–
Pi-hydrogen bond	Tyr 204	Cys 163
Pi-sulfur	Cys 163	–

2-(2,3-Dioxoindolin-1-yl)-N-(3-nitrophenyl)acetamide (11g):
White solid; Yield: 75%; m.p. 191–192 °C; IR (KBr, cm⁻¹): 3348 (NH), 1725 (C=O Keton), 1680 (C=O Amid), 1658 (C=O Amid); ¹H-NMR (500 MHz, CDCl₃): 4.49 (s, 2H, CH₂), 7.13 (d, J = 7.2 Hz, 1H), 7.19–7.24 (m, 1H), 7.38–7.41 (m, 2H), 7.66–7.69 (m, 1H), 7.85–7.88 (m, 1H), 8.00–8.04 (m, 2H), 8.37 (s, 1H, NH). ¹³C-NMR (125 MHz, CDCl₃): 45.60, 124.1, 127.8, 127.9, 130.0, 130.2, 132.2, 135.4, 135.9, 139.4, 140.3, 146.0, 146.9, 160.4, 168.4, 179.6. Anal. Calcd. For C₁₇H₁₂N₂O₅: C, 59.08; H, 3.41; N, 12.92; Found: C, 59.35; H, 3.73; N, 13.19.

2-(2,3-Dioxoindolin-1-yl)-N-(4-(trifluoromethyl)phenyl)acetamide (11h):
White solid; Yield: 69%; m.p. 179–181 °C; IR (KBr, cm⁻¹): 3338 (NH), 1718 (C=O Keton), 1680 (C=O Amid), 1665 (C=O Amid); ¹H-NMR (500 MHz, DMSO-d₆): 4.49 (s, 2H, CH₂), 7.13 (d, J = 7.2 Hz, 1H), 7.19–7.24 (m, 1H), 7.38–7.41 (m, 2H), 7.66–7.69 (m, 1H), 7.85–7.88 (m, 1H), 8.00–8.04 (m, 2H), 8.37 (s, 1H, NH). ¹³C-NMR (125 MHz, DMSO-d₆): 46.1, 124.6, 127.3, 128.1, 129.1, 131.5, 135.6, 139.1, 145.4, 145.7, 150.4, 161.6, 167.0, 178.4. Anal. Calcd. For C₁₇H₁₁F₃N₂O₄: C, 59.08; H, 3.41; N, 12.92; Found: C, 59.31; H, 3.79; N, 13.11.

2-(2,3-Dioxoindolin-1-yl)-N-(p-tolyl)acetamide (11i):
White solid; Yield: 75%; m.p. 209–211 °C; IR (KBr, cm⁻¹): 3348 (NH), 1721 (C=O Keton), 1680 (C=O Amid), 1665 (C=O Amid); ¹H-NMR (500 MHz, DMSO-d₆): 4.52 (s, 2H, CH₂), 7.23–7.27 (m, 3H), 7.11 (d, J = 7.5 Hz, 1H), 7.38 (d, J = 8.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.93 (d, J = 7.5 Hz, 1H), 8.35 (s, 1H, NH). ¹³C-NMR (125 MHz, DMSO-d₆): 45.2, 116.0, 121.6, 124.5, 126.5, 128.3, 128.6, 131.7, 134.2, 135.4, 138.9, 149.2, 161.9, 166.7, 178.9. Anal. Calcd. For C₁₇H₁₄N₂O₂: C, 69.38; H, 4.79; N, 9.52; Found: C,
(11k): 3354 (NH), 1728 (C=O), 1688 (C=O), 1659 (C=O).

(19f): 3354 (NH), 1725 (C=O), 1685 (C=O), 1656 (C=O).

1H-NMR (500 MHz, DMSO-d6): 1.62–1.66 (m, 4H, CH2-Ph). 0.30–0.37 (m, 4H, CH2-Ph), 4.49 (s, 2H, CH2).

(19h): 3340 (NH), 1728 (C=O), 1680 (C=O), 1656 (C=O).

1H-NMR (500 MHz, DMSO-d6): 1.64–1.67 (m, 4H, CH2-Ph).

(19i): 3345 (NH), 1711 (C=O), 1670 (C=O).

1H-NMR (500 MHz, DMSO-d6): 1.69–1.77 (m, 4H, CH2-Ph).

(19c): 3345 (NH), 1711 (C=O), 1670 (C=O).

1H-NMR (500 MHz, DMSO-d6): 1.65–1.85 (m, 4H, CH2-Ph).

(19d): 3330 (NH), 1706 (C=O), 1658 (C=O).

1H-NMR (500 MHz, DMSO-d6): 2.18–2.48 (m, 4H, CH2-Ph).
(5)-N-(2-Phenylallyl)-2-(2,3-dioxo-5-((2-(phenoxymethyl)pyrrolidin-1-yl)sulpho-nyl)indolin-1-yl)-N-(2-nitrophenyl)acetamide (20b): White solid; Yield: 47%; m.p. 180–182 °C; IR (KBr, cm⁻¹): 1720 (C=O, ketone), 1685 (C=Oamide), 1614 (C=NO), 1389 (C=N), 1378 (C=N), 1350 (C=N), 1340 (C=N), 1323.5 (C=N), 1290 (C=N), 1278 (C=N), 1269 (C=N), 1260 (C=N), 1251 (C=N), 1240 (C=N), 1234 (C=N), 1225 (C=N), 1216 (C=N), 1208 (C=N), 1202 (C=N), 1190 (C=N), 1182 (C=N), 1170 (C=N), 1160 (C=N), 1150 (C=N), 1140 (C=N), 1130 (C=N), 1120 (C=N), 1110 (C=N), 1100 (C=N), 1090 (C=N), 1080 (C=N), 1070 (C=N), 1060 (C=N), 1050 (C=N), 1040 (C=N), 1030 (C=N), 1020 (C=N), 1010 (C=N), 990 (C=N), 980 (C=N), 970 (C=N), 960 (C=N), 950 (C=N), 940 (C=N), 930 (C=N), 920 (C=N), 910 (C=N), 900 (C=N), 890 (C=N), 880 (C=N), 870 (C=N), 860 (C=N), 850 (C=N), 840 (C=N), 830 (C=N), 820 (C=N), 810 (C=N), 800 (C=N), 790 (C=N), 780 (C=N), 770 (C=N), 760 (C=N), 750 (C=N), 740 (C=N), 730 (C=N), 720 (C=N), 710 (C=N), 700 (C=N), 690 (C=N), 680 (C=N), 670 (C=N), 660 (C=N), 650 (C=N), 640 (C=N), 630 (C=N), 620 (C=N), 610 (C=N), 600 (C=N), 590 (C=N), 580 (C=N), 570 (C=N), 560 (C=N), 550 (C=N), 540 (C=N), 530 (C=N), 520 (C=N), 510 (C=N), 500 (C=N), 490 (C=N), 480 (C=N), 470 (C=N), 460 (C=N), 450 (C=N), 440 (C=N), 430 (C=N), 420 (C=N), 410 (C=N), 400 (C=N), 390 (C=N), 380 (C=N), 370 (C=N), 360 (C=N), 350 (C=N), 340 (C=N), 330 (C=N), 320 (C=N), 310 (C=N), 300 (C=N), 290 (C=N), 280 (C=N), 270 (C=N), 260 (C=N), 250 (C=N), 240 (C=N), 230 (C=N), 220 (C=N), 210 (C=N), 200 (C=N), 190 (C=N), 180 (C=N), 170 (C=N), 160 (C=N), 150 (C=N), 140 (C=N), 130 (C=N), 120 (C=N), 110 (C=N), 100 (C=N), 90 (C=N), 80 (C=N), 70 (C=N), 60 (C=N), 50 (C=N), 40 (C=N), 30 (C=N), 20 (C=N), 10 (C=N), 0 (C=N).

(5)-N-(2-Phenylallyl)-2-(2,3-dioxo-5-((2-(phenoxymethyl)pyrrolidin-1-yl)sulpho-nyl)indolin-1-yl)-N-(4-fluorophenyl)acetamide (20c): White solid; Yield: 52%; m.p. 181–183 °C; IR (KBr, cm⁻¹): 1725 (C=O, ketone), 1686 (C=Oamide), 1615 (C=NO), 1389 (C=N), 1378 (C=N), 1350 (C=N), 1340 (C=N), 1323.5 (C=N), 1290 (C=N), 1278 (C=N), 1269 (C=N), 1260 (C=N), 1251 (C=N), 1240 (C=N), 1234 (C=N), 1225 (C=N), 1216 (C=N), 1208 (C=N), 1202 (C=N), 1190 (C=N), 1182 (C=N), 1170 (C=N), 1160 (C=N), 1150 (C=N), 1140 (C=N), 1130 (C=N), 1120 (C=N), 1110 (C=N), 1100 (C=N), 1090 (C=N), 1080 (C=N), 1070 (C=N), 1060 (C=N), 1050 (C=N), 1040 (C=N), 1030 (C=N), 1020 (C=N), 1010 (C=N), 990 (C=N), 980 (C=N), 970 (C=N), 960 (C=N), 950 (C=N), 940 (C=N), 930 (C=N), 920 (C=N), 910 (C=N), 900 (C=N), 890 (C=N), 880 (C=N), 870 (C=N), 860 (C=N), 850 (C=N), 840 (C=N), 830 (C=N), 820 (C=N), 810 (C=N), 800 (C=N), 790 (C=N), 780 (C=N), 770 (C=N), 760 (C=N), 750 (C=N), 740 (C=N), 730 (C=N), 720 (C=N), 710 (C=N), 700 (C=N), 690 (C=N), 680 (C=N), 670 (C=N), 660 (C=N), 650 (C=N), 640 (C=N), 630 (C=N), 620 (C=N), 610 (C=N), 600 (C=N), 590 (C=N), 580 (C=N), 570 (C=N), 560 (C=N), 550 (C=N), 540 (C=N), 530 (C=N), 520 (C=N), 510 (C=N), 500 (C=N), 490 (C=N), 480 (C=N), 470 (C=N), 460 (C=N), 450 (C=N), 440 (C=N), 430 (C=N), 420 (C=N), 410 (C=N), 400 (C=N), 390 (C=N), 380 (C=N), 370 (C=N), 360 (C=N), 350 (C=N), 340 (C=N), 330 (C=N), 320 (C=N), 310 (C=N), 300 (C=N), 290 (C=N), 280 (C=N), 270 (C=N), 260 (C=N), 250 (C=N), 240 (C=N), 230 (C=N), 220 (C=N), 210 (C=N), 200 (C=N), 190 (C=N), 180 (C=N), 170 (C=N), 160 (C=N), 150 (C=N), 140 (C=N), 130 (C=N), 120 (C=N), 110 (C=N), 100 (C=N), 90 (C=N), 80 (C=N), 70 (C=N), 60 (C=N), 50 (C=N), 40 (C=N), 30 (C=N), 20 (C=N), 10 (C=N), 0 (C=N).
(s, 1H), 8.62 (s, 1H, NH); 13C-NMR (125 MHz, DMSO-d_6): 22.5, 27.8, 44.8, 57.2, 61.4, 117.5, 117.8, 127.2, 128.2, 129.9, 130.9, 131.7, 131.9, 135.1, 135.7, 139.9, 142.5, 144.1, 150.7, 161.9, 166.8, 180.0; Anal. Calcd. For C_{27}H_{24}N_{4}O_{8}S: C, 57.44; H, 4.28; N, 9.92; Found: C, 57.77; H, 4.52; N, 9.66.

(5)-2-(2,3-Dioxo-5-((2-phenoxymethyl)pyrrolidin-1-yl)sulphonyl)indolin-1-yl)-N-(4-(trifluoromethoxy)phenyl)acetamide (20i): White solid; Yield: 56%; m.p. 218–220 ºC; IR (KBr, cm\(^{-1}\)): 1724 (C=O ketone), 1690 (C=O amide), 1668 (C=O amide); 1H-NMR (500 MHz, DMSO-d_6): 1.80–1.84 (m, 4H, CH_2-Pyrrole), 2.60–2.68 (m, 2H, CH_2-Pyrrole), 3.70–3.73 (m, 1H, CH-chiral), 3.90 (d, J = 13.0 Hz, 1H, O-CH_2-Diastropic), 4.14 (d, J = 13.0 Hz, 1H, O-CH_2-Diastropic), 4.57 (s, 2H, N-CH_2), 7.03 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.43–7.47 (m, 3H), 7.53 (d, J = 7.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 7.0 Hz, 1H), 8.10 (s, 1H), 8.90 (s, 1H, NH); 13C-NMR (125 MHz, DMSO-d_6): 22.5, 28.5, 46.6, 55.1, 58.3, 62.6, 109.5, 110.1, 117.5, 117.8, 127.2, 128.2, 129.4, 130.8, 131.5, 135.1, 137.0, 139.9, 140.0, 142.6, 150.7; Anal. Calcd. For C_{27}H_{24}N_{4}O_{8}S: C, 57.44; H, 4.28; N, 9.92; Found: C, 57.77; H, 4.52; N, 9.66.

Computer studies

Docking procedure was performed via Autodock Tools (1.5.6). The crystallographic structure of human caspase-3 complexed with isatin sulphonamide (PDB ID: 1GFW) were retrieved from the Protein Data Bank. The co-crystallized ligand and water molecules were eliminated and the protein was converted to the pdbqt format using Autodock Tools (1.5.6). Compounds structures were drawn and 3D-optimized using Marvin Sketch 15.8.10, 2015, ChemAxon (http://www.chemaxon.com), then converted to pdbqt by Autodock Tools. Each docking system were completed by 50 runs and the grid box parameters were set as follows: size_x = 50; size_y = 50; size_z = 50; centred on co-ligand’s position in PDB complex. Other parameters of Autodock search by the Lamarckian genetic algorithm (LGA) were left as default except population size and maximum number of evaluations which were changed to 100 and 100000, respectively. Finally, interactions of the compounds were illustrated by discovery studio visualiser ver.4.5 to investigate their binding mode. Docking validation were confirmed through re-docking of 1GFW co-ligand into the receptor with the same docking parameters of the compounds.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was partially supported by the National Health and Family Planning Commission of China [2012ZX09304-011, 2013ZX09401003-005, 2013ZX09507001 and 2013ZX09507-002], Shanghai Science and Technology Development Fund [15DZ2291600] and the Thousand Talents Program in China. This work was also partially supported by a grant from Iran National Science Foundation (INSF); Grant no: 96011863.

ORCID

Massoud Amanlou http://orcid.org/0000-0002-8559-1668

References

1. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 2005;258:479–517.
2. Kemnitzer W, Kasibhatla S, Jiang S, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg Med Chem Lett 2005;15:4745–51.
3. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383–424.

4. Becker JW, Rotonda J, Soisson SM, et al. Reducing the peptidyl features of caspase-3 inhibitors: a structural analysis. J Med Chem 2004;47:2466–74.

5. Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999;6:99–104.

6. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997;22:299–306.

7. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312–6.

8. Lee D, Long SA, Adams JL, et al. Potent and selective non-peptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J Biol Chem 2000;275:16007–14.

9. Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure of apoptain/CPP32, a key mediator of apoptosis. Nat Struct Biol 1996;3:619–25.

10. Mittl PRE, Di Marco S, Krebs JF, et al. Structure of recombinant apopain/CPP32, a key mediator of apoptosis. J Biol Chem 1997;272:6539–47.

11. Ahmed FF, El-Hafeez AA, Abbas SH, et al. New 1,2,4-triazole- and 1,2,3-triazole-1,2,4-triazole-4-triazoles as potent inhibitors of caspases-3 and -7 and inhibitors of caspase-3 and -7 inhibit apoptosis and maintain cell functionality. J Biol Chem 2000;275:16007–14.

12. Wu Z-R, Liu J, Li J-Y, et al. Synthesis and biological evaluation of hydroxyxamic acid hydrazide derivatives as inducer of caspase-3. Eur J Med Chem 2014;85:778–83.

13. Glória PMC, Coutinho I, Gonçalves LM, et al. Aspartic vinyl sulfonamides: inhibitors of caspase-3-dependent pathway. Eur J Med Chem 2018;151:705–22.

14. Patel S, Modi P, Ranjan V, Chhabria M. Structure-based design, synthesis and evaluation of 2,4-diaminopyrimidine derivatives as novel caspase-1 inhibitors. Bioorg Chem 2018;78:258.

15. Kassab AE, Hassan RA. Novel benzotriazolo N-acetylhydrazide hybrids: design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorg Chem 2018;80:531–544.

16. Brethon A, Chantalat L, Christin O, et al. New caspase-1 inhibitor by scaffold hopping into bio-inspired 3D-fragment space. Bioorg Med Chem Lett 2017;27:5373–5377.

17. Patel S, Modi P, Chhabria M. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies. J Mol Graph Model 2018;81:106–115.

18. Trond YJ, Hansen V. Isatin 1,2,3-triazoles as potent inhibitors against caspase-3. Bioorg Med Chem Lett 2011;21:1626–1629.

19. Mou J, Wu S, Luo Z, et al. Structure-activity relationship study of a series of caspase inhibitors containing γ-amino acid moiety for treatment of cholesterol liver disease. Bioorg Med Chem Lett 2018;28:1874–1878.

20. Ayoup MS, Wahby Y, Abdel-Hamid H, et al. Design, synthesis and biological evaluation of novel α-acetoxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur J Med Chem 2019;168:340–356.

21. Chu W, Zhang J, Zeng C, et al. N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. J Med Chem 2005;48:7637–7647.
39. Jin Y, Zhou Z-Y, Tian W, et al. 4′-Alkoxyl substitution enhancing the anti-mitotic effect of 5-(3′,4′,5′-substituted)anilino-4-hydroxy-8-nitroquinazolines as a novel class of anti-microtubule agents. Bioorg Med Chem Lett 2006;16:5864–5869.

40. Yang S-K, Kang JS, Oelschlaeger P, Yang K-W. Azolylthioacetamide: a highly promising scaffold for the development of metallo-β-lactamase inhibitors. ACS Med Chem Lett 2015;6:455–460.

41. Chiou CT, Lee W-C, Liao J-H, et al. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents. Eur J Med Chem 2015;98:1–12.

42. Guo X, Ma X, Yang Q, et al. Discovery of 1-aryloxyethyl piperazine derivatives as Kv1.5 potassium channel inhibitors (part I). Eur J Med Chem 2014;81:89–94.

43. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release 2017. San Diego: Dassault Systèmes; 2016.

44. Limpachayaporn P, Schäfers M, Schober O, et al. Synthesis of new fluorinated, 2-substituted 5-pyrrolidinylsulfonyl isatin derivatives as caspase-3 and caspase-7 inhibitors: nonradioactive counterparts of putative PET-compatible apoptosis imaging agents. Bioorg Med Chem 2013;21:2025–2036.