Loss of adiabaticity with increasing tunneling gap in non-integrable multistate Landau-Zener models

Rajesh K. Malla and M. E. Raikh
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112

We consider the simplest non-integrable model of multistate Landau-Zener transition. In this model two pairs of levels in two tunnel coupled quantum dots are swept passed each other by the gate voltage. Although this 2×2 model is non-integrable, it can be solved analytically in the limit when the inter-level energy distance is much smaller than their tunnel splitting. The result is contrasted to the similar 2×1 model, in which one of the dots contains only one level. The latter model does not allow interference of the virtual transition amplitudes, and it is exactly solvable. In 2×1 model, the probability for a particle, residing at time $t \rightarrow -\infty$ in one dot, to remain in the same dot at $t \rightarrow \infty$ falls off exponentially with tunnel coupling. By contrast, in 2×2 model, this probability grows exponentially with tunnel coupling. The physical origin of this growth is the formation of the tunneling-induced collective states in the system of two dots. This can be viewed as manifestation of the Dicke effect.

PACS numbers:

I. INTRODUCTION

Motivations for the study of the transition probabilities between multiple intersecting levels (multistate Landau-Zener transitions) were different over different periods of time. Pioneering result for the full scattering matrix was obtained by Demkov and Osherov in Ref. 1 for a certain particular variant of level crossings. The paper Ref. 1 was motivated by the research on inelastic atomic collisions. Multilevel description of the electron transfer in the course of the collision is required when the crossing levels are dense, so that the tunnel splitting exceeds the level spacing. In this situation, the conventional Landau-Zener (LZ) theory developed for a single crossing is inapplicable.

Later, the physics of multiple level crossings had emerged in quantum optics, in particular, in the problem of two optical transitions, having a common level, in an atom driven by two laser beams. Theoretical works of this period had broadened the class of exactly solvable models. Also, for general multistate models, the exact results for certain elements of the scattering matrix had been established.

Finally, the motivation for the very recent studies of the multilevel LZ transition was the ongoing experimental research on qubits manipulation by time-dependent fields in relation to the information processing. In these studies, a number of new exactly solvable models were identified, although the conclusion about their solvability was drawn on the basis of numerics.

The simplification, which allowed the authors of Ref. 1 to find the scattering matrix exactly, stemmed from the assumption about the time evolution of the energy levels. Namely, it was assumed that $N-1$ out of N levels evolved with the same velocity, and only one level evolved with different velocity. Thus, the number of crossings was $N-1$. The behavior of the amplitudes to stay on a given level...
at $t \to -\infty$, i.e. far away from all crossings, can be found semiclassically. The contour integral method employed in Ref. [1] allows to establish the relations between these amplitudes at $t \to -\infty$ and $t \to \infty$. With $N-1$ crossings, these conditions are sufficient to fix all $\frac{1}{2} \left(N^2 + 5N - 10 \right)$ nonzero transition probabilities. The above approach has been employed in all subsequent theoretical works with the exception of Refs. [15] and [28]. In these two papers the transition probabilities were derived upon summation of the perturbation expansion in powers of the inter-level coupling strengths.

The fact that a given multistate LZ problem can be solved exactly implies that the elements of scattering matrix can be constructed from the partial LZ probabilities, P_{LZ}, for individual pairs of intersecting levels. In other words, the time intervals between the successive intersections do not enter in the result even when these intervals are much smaller than the characteristic time of LZ transition. Yet another way to express this remarkable fact is that the independent crossing approximation, valid for small tunneling gaps, remains applicable even when the gaps are much bigger than the energy separation of the neighboring crossings.

Note that, for sufficiently slow drive velocities or for big enough LZ gaps, when the individual P_{LZ}-values approach 1, the “survival” probability for a particle to stay on the initial level is exponentially small. This immediately suggests that, for exactly solvable (integrable) models, the survival probabilities fall off exponentially with increasing the gaps. Then the question arises as to whether the above conclusion is valid for non-integrable models. This question is addressed in the present paper.

We focus on a simple example of the electron transfer between two multilevel quantum dots. Our main finding is that the survival probability can, actually, increase with increasing the tunneling gap. We relate this finding to the Dicke effect. The reason why the non-integrable model can be solved analytically is that, for a very slow drive, the semiclassical approach for the time-dependent amplitudes applies even in the vicinity of the LZ transition.

II. THE MODEL

We start by illustrating the difference between integrable and non-integrable models using the simplest example of two quantum dots depicted in Fig. 1. In Fig. 1(a) there are two levels in the left dot separated by 2Δ and one level in the right dot. The left-dot levels are driven, say, by the gate voltage, with velocity $v/2$, while the right-dot level is driven in the opposite direction with the same velocity. Both left-dot levels are coupled to the right-dot level by the same coupling constant, J. The matrix form of the Hamiltonian is the following:

$$\hat{H}_{2,1} = \begin{pmatrix} -\Delta - \frac{v^2}{2} & 0 & J \\ 0 & \Delta - \frac{v^2}{2} & J \\ J & J & \frac{v^2}{2} \end{pmatrix}. \tag{1}$$

The evolution of the amplitudes, $a_1(t)$, $a_2(t)$, and $b_1(t)$, see Fig. 1, is governed by the Schrödinger equation

$$i \begin{pmatrix} a_1 \\ a_2 \\ b_1 \end{pmatrix} = \hat{H}_{2,1} \begin{pmatrix} a_1 \\ a_2 \\ b_1 \end{pmatrix}. \tag{2}$$

To find the semiclassical eigenvalues we substitute, $a_1(t), a_2(t), b_1(t) \propto \exp \left(i \int_0^t dt' \Lambda(t') \right)$, and arrive to the following cubic equation for $\Lambda(t)$

$$\Lambda^3 + vt\Delta^2 - \left(\Delta^2 + v^2t^2 + 2J^2 \right) \Lambda = vt \left(-\Delta^2 + v^2t^2 + 2J^2 \right). \tag{3}$$

It is easy to see that the behavior of $\Lambda(t)$ (in the units of J) as a function of the dimensionless time, vt/J, is governed by a single dimensionless parameter Δ/J. Upon changing this parameter, the semiclassical levels evolve as shown in Fig. 1. For small gap, $\Delta \ll \Delta$, the levels exhibit two LZ transitions. At critical $\Delta = 2^{1/2}J$ the slope of the middle level changes the sign. Finally, for large coupling, $\Delta \gg \Delta$, the asymptotic solutions of Eq. 3 are

$$\Lambda \approx vt, \quad \Lambda \approx \pm \left(v^2t^2 + 2J^2 \right)^{1/2}. \tag{4}$$

Eq. 4 implies that in the limit, $\Delta \ll J$, the middle semiclassical level decouples from the upper and lower levels, which are given by the conventional LZ expressions with J replaced by $2^{1/2}J$.

The power of the integrability can be now illustrated as follows. Suppose that at $t = -\infty$ the electron is in the right dot. For large Δ, in order to remain in the right dot at $t \to \infty$, it should survive two LZ transitions. Then the survival probability of each transition is given by

$$Q_{LZ}^{(1)} |_{\Delta \gg J} = \exp \left(-2\pi \frac{J^2}{v} \right). \tag{5}$$

In the opposite limit of strong coupling the electron undergoes a single LZ transition. Integrability suggests that the survival probability in this limit is given by the same formula as for the weak coupling, i.e. one should have

$$Q_{LZ}^{(1)} |_{\Delta \ll J} = \left(Q_{LZ}^{(1)} |_{\Delta \gg J} \right)^2. \tag{6}$$

Indeed, substituting $2^{1/2}J$, into Eq. 5, we realize that the relation Eq. 6 holds.

We now turn to non-integrable four-level model with the Hamiltonian
The time evolution of the semiclassical levels in 2×1 model (a), (b) and in 2×2 model (c), (d) upon increasing the tunnel coupling. In 2×1 model the two individual LZ transitions evolve into a single transition at big J, while the middle branch (red) gets decoupled. In 2×2 model the four individual LZ transitions evolve into the fast transition (red) and slow transition (blue). The levels are plotted in the units vt/J, and $J/J_0 = 0.5$ (b, d). Vertical scale is set by the gap at $t = 0$: $2\sqrt{\Delta^2/J^2}$ in (a, b), and $2(1 + \sqrt{1 + \Delta^2/J^2})$ in (c, d).

$$\hat{H}_{2,2} = \begin{pmatrix} -\Delta - \frac{vt}{2} & 0 & J & J \\ 0 & \Delta - \frac{vt}{2} & J & J \\ J & J & -\Delta + \frac{vt}{2} & 0 \\ J & J & 0 & \Delta + \frac{vt}{2} \end{pmatrix}. \quad (7)$$

In this model, there are two levels in the right dot, which are also split by 2Δ, see Fig. 3d. Instead of the amplitudes a_1, b_1, b_2, it is convenient to introduce the combinations

$$A_1 = a_1 + a_2, \quad A_2 = a_1 - a_2, \quad (8)$$

$$B_1 = b_1 + b_2, \quad B_2 = b_1 - b_2. \quad (9)$$

The time evolution of A_1, A_2, B_1, B_2 is governed by the system

$$i\dot{A_2} - \frac{vt}{2} A_2 - \Delta A_1 = 0, \quad (10)$$

$$i\dot{B_2} + \frac{vt}{2} B_2 - \Delta B_1 = 0, \quad (11)$$

$$i\dot{A_1} - \frac{vt}{2} A_1 - 2J B_1 = \Delta A_2, \quad (12)$$

$$i\dot{B_1} + \frac{vt}{2} B_1 - 2J A_1 = \Delta B_2. \quad (13)$$

The equation for the semiclassical levels similar to Eq. (3) takes the form

$$\left[\left(\Lambda - \frac{vt}{2} \right)^2 - \Delta^2 \right] \left[\left(\Lambda + \frac{vt}{2} \right)^2 - \Delta^2 \right] = 4J^2 \left[\Lambda^2 - \left(\frac{vt}{2} \right)^2 \right]. \quad (14)$$

The solutions of this equation are given by

$$\Lambda_f \approx \pm \left[4J^2 + \left(\frac{vt}{2} \right)^2 \right]^{1/2}, \quad (16)$$

$$\Lambda_s \approx \pm \left[\frac{\Delta^2}{4J^2} + \left(\frac{vt}{2} \right)^2 \right]^{1/2}. \quad (17)$$

We see that, while the characteristic time for the slow solution is the conventional LZ time, $t_s \sim J/v$, the characteristic time for the fast solutions is $t_f \sim J^2/Jv$, i.e. it is much shorter (see also Fig. 1d). This is in striking contrast with the integrable model. Unlike integrable model, the splitting enters the result even if this splitting is very small. Such a sensitivity to the times of the level crossings can be viewed as an indication that it is interference of the scattering paths which makes the model non-integrable. This interference is illustrated in Fig. 4.

It is believed that in non-integrable models the two-level description is not applicable. In fact, Eq. (17) suggests that the scattering process decouples into two two-level LZ transitions with modified gaps. From Eqs. (16) and (17) we can readily infer the survival probabilities of the slow and fast transitions:

$$Q_{LZ}^{slow} = \exp \left[-2\pi \left(\frac{\Lambda_s^2}{v^2} \right) \right], \quad (18)$$

$$Q_{LZ}^{fast} = \exp \left[-2\pi \left(\frac{\Lambda_f^2}{v^2} \right) \right]. \quad (19)$$

We see that, due to smallness of the “fast” gap, Q_{LZ}^{fast} is much bigger than Q_{LZ}^{slow}, i.e. there is an anomalous survival of electron in a given dot. In other words, due to the interference, the adiabaticity of the transition between the two dots is lifted.

The above consideration were purely semiclassical. Thus, it applies when the probability Q_{LZ}^{fast} is small. This requires that the splitting, 2Δ, while smaller than J, exceeds $J\left(v/J^2 \right)^{1/4}$, as follows from Eq. (19). In the next section we go beyond the semiclassics and demonstrate that the condition of strong coupling, $J \gg \Delta$, is sufficient for Eq. (19) to apply.
III. ANOMALOUS SURVIVAL PROBABILITY

It is seen from the system Eqs. (10)-(13) that the amplitudes A_2 and B_2, which are responsible for the fast LZ transition, are coupled indirectly via A_1 and B_1. Respectively, the amplitudes A_1 and B_1, responsible for the slow LZ transition, are coupled indirectly, via A_2 and B_2. The corresponding coupling constants are proportional to Δ. On the other hand, the amplitudes A_1 and B_1 are coupled to each other directly with a coupling constant, $2J$, and this coupling is much stronger. For this reason, we start with Eqs. (12), (13) and express A_1, B_1 via A_2 and B_2 in the following way

\[
\begin{pmatrix}
A_1(t) \\
B_1(t)
\end{pmatrix} = c_s^+(t) \begin{pmatrix}
X_s^+(t) \\
Y_s^+(t)
\end{pmatrix} + c_s^-(t) \begin{pmatrix}
X_s^-(t) \\
Y_s^-(t)
\end{pmatrix},
\]

where $X_s^\pm(t)$ and $Y_s^\pm(t)$ are the pairs of the linear-independent solutions of Eqs. (12), (13) without the right-hand sides. In the presence of the right-hand side, in order to satisfy the system, the functions c_s^+, c_s^- should obey the following conditions

\[
i\dot{c}_s^+ X_s^+ + i\dot{c}_s^- X_s^- = \Delta A_2, \\
i\dot{c}_s^+ Y_s^+ + i\dot{c}_s^- Y_s^- = \Delta B_2.
\]

Solving the system Eqs. (21), (22), we find

\[
i\dot{c}_s^+ = \frac{i\Delta}{2J} \left(A_2 Y_s^- - B_2 X_s^- \right), \\
i\dot{c}_s^- = \frac{i\Delta}{2J} \left(B_2 X_s^+ - A_2 Y_s^+ \right),
\]

where we have introduced the notation

\[
JW_s = X_s^+ Y_s^- - Y_s^+ X_s^-,
\]

so that W_s has a meaning of the Wronskian, which is time-independent. Substituting Eqs. (23), (24) into Eq. (20), and then Eq. (20) into Eqs. (10), (11), we arrive to the closed system of integral-differential equations for $A_2(t), B_2(t)$

\[
i\dot{A}_2 - \frac{\nu t}{2} A_2 + i \frac{\Delta^2}{JW_s} \int_{-\infty}^{t} dt' K_{xx}(t, t') A_2(t') = i \frac{\Delta^2}{JW_s} \int_{-\infty}^{t} dt' K_{xy}(t, t') B_2(t'),
\]

\[
i\dot{B}_2 - \frac{\nu t}{2} B_2 - i \frac{\Delta^2}{JW_s} \int_{-\infty}^{t} dt' K_{xy}(t', t) B_2(t') = i \frac{\Delta^2}{JW_s} \int_{-\infty}^{t} dt' K_{yy}(t', t) A_2(t'),
\]

where the three kernels are defined as

\[
K_{xx}(t, t') = X_s^+(t) X_s^-(t') - X_s^-(t) X_s^+(t'), \\
K_{yy}(t, t') = Y_s^+(t) Y_s^-(t') - Y_s^-(t) Y_s^+(t'), \\
K_{xy}(t, t') = X_s^+(t) Y_s^-(t') - X_s^-(t) Y_s^+(t').
\]

Up to now, we did not make use of the smallness of Δ. As we had found above, see Eq. (17), the characteristic time of the fast LZ transition is $t_f \sim \Delta^2/J \nu$, so that $t_f \ll J$. This allows to neglect the terms $\pm \nu t/2$ in the equations for X_s, Y_s, which, in turn, leads to the following solutions

\[
X_s^+(t) = \exp(2iJt), \quad Y_s^+(t) = -\exp(2iJt), \\
X_s^-(t) = \exp(-2iJt), \quad Y_s^-(t) = -\exp(-2iJt).
\]

In fact, the true asymptotic behavior of the solutions Eqs. (31), (32) contains corrections originating from the $\nu t/2$ terms. For example, the asymptote for X_s^+ has the form

\[
X_s^+(t) = \exp(2iJt) + \exp\left(-\frac{4J^2}{v}t\right) \exp(-2iJt).
\]

The second term can be neglected due to the condition that the slow (not fast) LZ transition is adiabatic. Under this condition, the kernels also get greatly simplified, and acquire the form

\[
K_{xx}(t, t') = 2 \sin \left[2J(t - t') \right], \\
K_{yy}(t, t') = -2 \sin \left[2J(t - t') \right], \\
K_{xy}(t, t') = 2 \cos \left[2J(t - t') \right].
\]

while the Wronskian assumes the value $JW_s = 2$. The above expressions for X and Y apply at short times $t \ll t_s \sim J/v$, i.e. at times shorter than the time of slow LZ transition. Still, t_s is much bigger than t_f, which allows to use the kernels Eqs. (28)-(30) in the system Eqs. (26), (27). The substitution yields
As a next step, we argue that the kernels are rapidly oscillating functions, while $A_2(t')$ and $B_2(t')$ are slow functions of time. If we take them out of the integrals at $t' = t$, then the integral in the left-hand side will turn to zero, while the integral in the right-hand side will assume the value $1/2J$. As a result the system Eqs. (26), (27) will simplify to

\[
\begin{align*}
i \dot{A}_2 - \frac{\nu t}{2} A_2 + i \Delta \int_{-\infty}^{t} dt' \cos \left[2J(t-t')\right] A_2(t') &= \Delta^2 \int_{-\infty}^{t} dt' \sin \left[2J(t-t')\right] B_2(t'), \\
i \dot{B}_2 + \frac{\nu t}{2} B_2 - i \Delta \int_{-\infty}^{t} dt' \cos \left[2J(t-t')\right] B_2(t') &= \Delta^2 \int_{-\infty}^{t} dt' \sin \left[2J(t-t')\right] A_2(t').
\end{align*}
\] (37) (38)

The above system describes the conventional LZ transition with coupling Δ^2, so that the corresponding survival probability will be given by Eq. (19).

In our derivation we did not assume that the fast LZ transition is adiabatic. In fact, Q_{LZ}^{fast} can be comparable to 1. Certainly, the simplification of the integrals in Eqs. (37), (38) requires justification. In the Appendix we consider this simplification in detail.

IV. DISCUSSION

In order to illuminate our main message, let us compare the theoretical predictions for 2×2 model in two limits: $\Delta \gg J$ and $\Delta \ll J$. In the first limit the smallness of the LZ gap allows to obtain the transition probabilities from simple reasoning. Suppose that at $t = -\infty$ the electron is in the state 1 in the left dot, see Fig. 1. In this situation, the survival implies that at $t \to -\infty$ the electron remains in the state 1, i.e. it survives two LZ transitions. The probability for this is $Q_{1 \to 1} = Q_{LZ}^2$. If at $t = -\infty$ the electron is in the state 2, then the survival probability is the sum of probabilities to remain either in the state 2 or in the state 1. The first probability is $Q_{2 \to 2} = Q_{LZ}^2$. With regard to the second probability, it should be taken into account that there are two paths from 2 to 1, as illustrated in Fig. 1. Corresponding amplitudes interfere with each other. If the phase difference accumulated during the time $2\Delta/\nu$ is random, one can add the corresponding probabilities, so that $Q_{2 \to 1} = 2Q(1-Q)^2$. The average (with respect to the initial states) survival probability reads

\[
Q_L = \frac{Q_{1 \to 1} + Q_{2 \to 2} + Q_{2 \to 1}}{2} = Q_{LZ} \left(Q_{LZ}^2 - Q_{LZ} + 1\right).
\] (41)

Consider now the limit $J \gg \Delta$. In 50 percent of realizations the electron at $t \to -\infty$ is in the state a_1 and in 50 percent of realizations it is in the state a_2. The slow and fast LZ transitions take place within the states $A_1 = \frac{1}{\sqrt{2}}(a_1 + a_2)$ and $A_2 = \frac{1}{\sqrt{2}}(a_1 - a_2)$, respectively. Averaging over the initial states suggests that the $t \to -\infty$ probabilities to be in the states A_1 and A_2 are equal. This means that the average survival probability is given by

\[
Q_L = \frac{1}{2} \left\{ \exp \left[-\frac{2\pi}{v} \frac{\Delta^4}{4J^2} \right] + \exp \left[-\frac{2\pi}{v} \frac{4J^2}{v} \right] \right\}.
\] (42)

We see that for $J \gg \Delta$, the probability Eq. (42) is much bigger than Eq. (41), which seems counterintuitive. Moreover, for $J \gg \Delta$, Q_L increases with increasing the tunneling, i.e. the adiabaticity of the multilevel LZ transition gets suppressed.

In this paper we have focused on a simplest example of non-integrable model, crossing of two pairs of levels in the left and in the right dots. It would be certainly interesting to establish how general is our conclusion about the anomalous survival of electron in a given dot. We can go one step further and generalize the model to the case when two groups of N levels in the left and in the right dot cross each other. Two assumptions are made. (i) all N^2 couplings are the same, and (ii) the levels are aligned at $t = 0$, greatly simplify the analysis. Namely, instead of Eq. (14) we get the following generalized equation

\[
\left[\sum_{k=1}^{N} \frac{1}{\Lambda + \varepsilon_k - \frac{\nu t}{2}} \right] \left[\sum_{p=1}^{N} \frac{1}{\Lambda + \varepsilon_p + \frac{\nu t}{2}} \right] = \frac{1}{J^2}.
\] (43)

In the limit $J \gg \varepsilon_k$, which we assumed throughout the paper, the structure of the solutions is the following. One solution describes the fast transition. Neglecting ε_k in the denominators, we find

\[
\Lambda_N^{slow} = \pm \left(\frac{\nu t}{2} \right)^2 + N^2 J^2 \right]^{1/2}.
\] (44)

The fact that Λ_N^{slow} is much bigger than ε_k justifies neglecting ε_k in the denominators. The corresponding survival probability is

\[
Q_{LZ}^{slow}(N) = \exp \left[-\frac{2\pi N^2 J^2}{v} \right] = (Q_{LZ}^{slow})^{N^2}.
\] (45)
This result should be contrasted to

\[Q^{\text{slow}}_{LZ}(N) = \exp \left\{ -\frac{2\pi NJ^2}{v} \right\} = (Q^{\text{slow}}_{LZ})^N, \tag{46} \]

which emerges within the independent crossing approach and also applies to the integrable models. Indeed, to enforce integrability in a multilevel model, see e.g. Ref. 27 a portion of tunnel couplings should be set to be zero.

The other $N-1$ solutions of Eq. (43) describe the fast LZ transitions. The values of Λ for these solutions are close to the values, $\tilde{\Lambda}_N$, for which the sum, $\sum_{k=1}^N (\Lambda + \varepsilon_k)^{-1}$, passes through zero. This emphasizes the role of interference in the formation of the fast transitions. Indeed, the eigenvector, corresponding to a given Λ_n, is composed of many levels. If all ε_k reside in the interval Δ, then the estimate for $\tilde{\Lambda}_n$ is also Δ, which is much smaller than J. To find corresponding survival probabilities we expand Eq. (43) near $\tilde{\Lambda}_n$. The linear terms proportional to $vt/2$ get canceled out and we obtain

\[\left(\Lambda - \tilde{\Lambda}_n \right)^2 - \left(\frac{vt}{2} \right)^2 = \frac{1}{J^2} \left[\sum_{k=1}^N \left(\frac{1}{(\Lambda_n + \varepsilon_k)^2} \right) \right]. \tag{47} \]

From here we find that the survival probability corresponding to a given Λ_n

\[Q^{\text{fast}}_{LZ}(N) = \exp \left\{ -\frac{2\pi}{v} \frac{\Delta^4}{J^2 N^4} \right\}. \tag{48} \]

All the terms in the sum, $\sum_k (\Lambda_n + \varepsilon_k)^{-2}$, are positive, and the value of the sum is determined only by the levels ε_k closest to $-\Lambda_n$. The distance between these levels is $\sim (\Delta/N)$. Thus, the sum can be estimated as $\left(\frac{\Delta}{N} \right)^2$.

Finally, within a numerical factor in the exponent, we have

\[Q^{\text{fast}}_{LZ}(N) = \exp \left\{ -\frac{2\pi}{v} \frac{\Delta^4}{J^2 N^4} \right\}. \tag{49} \]

We conclude that, for the fast transitions, the survival probability grows rapidly with N.

To explain qualitatively the loss of adiabaticity with increasing the tunneling gap we draw the analogy between this effect and the Dicke effect well known in optics. If two emitters are separated by the distance much smaller than the emitted wavelength, the radiation lifetime of the pair increases drastically. This is because the two eigenmodes of the oscillating emitters are the symmetric and antisymmetric combinations of the individual oscillations. The antisymmetric mode weakly overlaps with the emission field. Hence the long lifetime. In the model we considered, due to tunneling, the correct eigenstates of, say, the left dot are also $A_1 = \frac{1}{\sqrt{2}} (a_1 + a_2)$ and $A_2 = \frac{1}{\sqrt{2}} (a_1 - a_2)$. The gap for A_1 is twice the gap in the individual LZ transition, while the gap for A_2 is suppressed and decreases with J. This is the origin of the anomalous survival. The bigger is the number of levels in each dot, the less strict is the requirement that all tunnel couplings are the same.

V. CONCLUDING REMARKS

(i) It is common to judge on whether or not the system with many degrees of freedom is integrable basing on numerically generated level statistics in a limited spectral interval, see e.g. Ref. 23. If the statistics is Poissonian, the system can be decoupled into individual “blocks” which do not interact with each other. This is an indication that the system is integrable. If, alternatively, the level statistics is Wigner-Dyson, different energy levels repel each other, suggesting that the corresponding eigenstates “know” about the entire system. Such a system is non-integrable. With regard to multistate LZ models, similar approach has been employed in Refs. 26,27.

(ii) Although the integrable models in Refs. 22,23 contain interfering paths, the parameters of these models are fine-tuned in such a way that interference drops out from the final results.

(iii) We would like to emphasize that there is no smooth transition between the integrable model I(a) and non-integrable model I(b). Even if we introduce asymmetry between the two dots by assuming that the levels in the right dot are separated by $2\Delta_2 \ll 2\Delta$, we will not emulate the 2×1 situation by taking the limit $\Delta_2 \to 0$. The formal reason for this is that the level degeneracy in the right dot will be lifted due to coupling of the degenerate levels via the left dot. The width of the gap corresponding to the fast LZ transition, with asymmetric spacings, takes the value $\Delta \Delta_1/2J$.

Acknowledgements

Illuminating discussion with V. L. Pokrovsky and E. G. Mishchenko are gratefully acknowledged. The work was supported by the Department of Energy, Office of Basic Energy Sciences, Grant No. DE-FG02-06ER46313.

VI. APPENDIX

In this Appendix we explore the assumptions leading from the system Eqs. (37), (38) to the system Eqs. (39),
If the system Eqs. (39), (40) applies, the term containing second derivative in the right-hand side can be cast in the form

\[
\int_{-\infty}^{t} dt' \sin \left[2J(t - t') \right] A_2(t') = -\frac{1}{2J} A_2(t) - \frac{1}{4J^2} \int_{-\infty}^{t} dt' \sin \left[2J(t - t') \right] \frac{\partial^2 A_2(t')}{\partial t'^2}.
\]

It is now convenient to combine the left-hand side with the term containing second derivative in the right-hand side

\[
\int_{-\infty}^{t} dt' \sin \left[2J(t - t') \right] \left[A_2(t') + \frac{1}{4J^2} \frac{\partial^2 A_2(t')}{\partial t'^2} \right] = -\frac{1}{2J} A_2(t).
\]

If the system Eqs. (39), (40) applies, the \(\partial^2 A_2/\partial t'^2 \) can be expressed through \(A_2 \). Substituting this expression into Eq. (51), we get

\[
\int_{-\infty}^{t} dt' \sin \left[2J(t-t') \right] \left\{ A_2(t') \left[1 - \frac{\Delta^4}{16J^4} + i \frac{v}{4J^2} - \frac{v^2t^2}{16J^2} \right] \right\} = \frac{1}{2J} A_2(t).
\]

Now we see that taking \(A_2(t) \) out of the integral amounts to keeping only the first term in the square brackets. Indeed, the second term is much smaller than 1 by virtue of the condition \(\Delta \ll J \). The third term is much smaller than 1, since the slow transition is adiabatic. With regard to the fourth term, the characteristic \(t' \) is of the order of time of the fast LZ transition. If the fast transition is adiabatic, then \(t' \) is of the order of \(\Delta^2/Jv \), so that the fourth term is of order of the second term. If the fast transition is non-adiabatic, then \(t' \) is of the order of \(v^{-1/2} \). In this limit the fourth term is of the order of the third term. In both cases the terms which we neglected are small. Similar consideration justifies the simplification of the other integrals.
24 A. Patra and E. Yuzbashyan, “Quantum integrability in the multistate Landau-Zener problem,” J. Phys. A 48, 245303 (2015).
25 S. Ashhab, “Landau-Zener transitions in an open multi-level quantum system,” Phys. Rev. A 94, 042109 (2016).
26 N. A. Sinitsyn, J. Lin, and V. Y. Chernyak, “Constraints on scattering amplitudes in multistate Landau-Zener theory,” Phys. Rev. A 95, 012140 (2017).
27 N. A. Sinitsyn and V. Y. Chernyak, “The Quest for Solvable Multistate Landau-Zener Models,” [arXiv:1701.01870]
28 Y. Kayanuma and S. Fukuchi, “On the probability of non-adiabatic transitions in multiple level crossings,” J. Phys. B 18, 4089 (1985).
29 R. H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93, 99 (1954).
30 Zhu-Xi Luo and M. E. Raikh, “Landau-Zener transition driven by slow noise,” Phys. Rev. B 95, 064305 (2017).
31 R. K. Malla, E. G. Mishchenko, and M. E. Raikh, “Suppression of the Landau-Zener transition probability by a weak classical noise,” [arXiv:1705.05968]
32 T. V. Shahbazyan, M. E. Raikh, and Z. V. Vardeny, “Mesoscopic cooperative emission from a disordered system,” Phys. Rev. B 61, 13266 (2000).
33 D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, and G. Montambaux, “Poisson vs. GOE Statistics in Integrable and Non-Integrable Quantum Hamiltonians,” Europhys. Lett., 22, 537 (1993).