Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease

Medici, M.; Porcu, E.; Pistis, G.; Teumer, A.; Brown, S.J.; Jensen, R.A.; Rawal, R.; Roef, G.L.; Plantinga, T.S.; Vermeulen, S.H.; Lahti, J.; Simmonds, M.J.; Husemoen, L.L.N.; Freathy, R.M.; Shields, B.M.; Pietzner, D.; Nagy, R.; Broer, L.; Chaker, L.; Korevaar, T.I.M.

DOI: 10.1371/journal.pgen.1004123

License: Creative Commons: Attribution (CC BY)

Citation for published version (Harvard):
Medici, M, Porcu, E, Pistis, G, Teumer, A, Brown, SJ, Jensen, RA, Rawal, R, Roef, GL, Plantinga, TS, Vermulpen, SH, Lahti, J, Simmonds, MJ, Husemoen, LLN, Freathy, RM, Shields, BM, Pietzner, D, Nagy, R, Broer, L, Chaker, L, Korevaar, TIM, Plia, MG, Sala, C, Völker, U, Richards, JB, Sweep, FC, Gieger, C, Corre, T, Kajantie, E, Thuesen, B, Taes, YE, Visser, WE, Hattersley, AT, Kitzsch, J, Hamilton, A, Li, W, Homuth, G, Lobina, M, Mariotti, S, Soranzo, N, Cucca, M, Nauck, M, Spielhagen, C, Ross, A, Arnold, A, van de Bunt, M, Liyanarachchi, S, Heier, M, Grabe, HJ, Masciullo, C, Galesloot, TE, Lim, EM, Reischl, E, Leedman, PJ, Lai, S, Delitala, A, Bremmer, AP, Philips, DIW, Beilby, JP, Mulas, A, Vocale, M, Abecasis, G, Fòrsen, T, James, A, Widen, E, Hui, J, Prokisch, H, Rietzschel, EE, Palotie, A, Feddema, P, Fletcher, SJ, Schramm, K, Rotter, JI, Kluttig, A, Radke, D, Traglia, M, Surdulescu, GL, He, H, Franklyn, JA, Tiller, D, Vaidya, B, de Meyer, T, Jorgensen, T, Eriksson, JG, O’Leary, FC, Wichmann, E, Hermus, AR, Psaty, BM, Iltermann, T, Hofman, A, Bosi, E, Schlessinger, D, Wallachsofski, H, Pirastu, N, Aulchenko, YS, de la Chapelle, A, Netea-Maier, RT, Gough, SCL, Meyer zu Schwabedissen, H, Frayling, TM, Kaufman, J-M, Linneberg, A, Räikkönen, K, Smit, JWA, Kiemeney, LA, Rivadeneira, F, Uitterlinden, AG, Walsh, JP, Meisinger, C, den Heijer, M, Visser, TJ, Spector, TD, Wilson, SG, Völzke, H, Cappola, A, Toniolo, D, Sanna, S, Naitza, S & Peeters, RP 2014, ‘Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease’, PLoS Genetics, vol. 10, no. 2, e1004123. https://doi.org/10.1371/journal.pgen.1004123

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 17/06/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

Users may freely distribute the URL that is used to identify this publication.
Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (1958)
Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

Marco Medici1,*, Eleonora Porcu2,3,*, Giorgio Pistis4, Alexander Teumer5, Suzanne J. Brown6, Richard A. Jensen7, Rajesh Rawal8, Greet L. Roef9, Theo S. Plantinga10, Sita H. Vermeulen11, Jari Lahti12, Matthew J. Simmonds13, Lise Lotte N. Husemøn14, Rachel M. Freathy15, Beverley M. Shields16, Diana Pietzner17, Rebecca Nagy18, Linda Broer19, Layal Chaker1, Tim I. M. Korevaar1, Maria Grazia Plia2, Cinzia Sala4, Uwe Völker5, J. Brent Richards20,21, Fred C. Sweep11, Christian Gieger6, Tanguy Corre4, Eero Kajanti22,23, Betina Thuesen14, Youl E. Taes5, W. Edward Visser1, Andrew T. Hattersley16, Jürgen Kratczsch24, Alexander Hamilton13, Wei Li18, Georg Homuth5, Monia Lobina5, Stefano Mariotti3, Nicole Soranzo25, Massimiliano Coca4, Matthias Nauck26, Christin Spielhagen26, Alec Ross11, Alice Arnold27, Martijn van de Bunt13, Sandya Liyanarachchi18, Margit Heier28, Hans Jörgen Grabe29, Corrado Mascillo6, Tessel E. Galesloot11, Ee M. Lim30, Eva Reischl91, Peter J. Leedman32,33, Sandra Lai2, Alessandro Delitala3, Alexandra P. Bremner34, David I. W. Philips35, John P. Beilby30,36, Antonella Mulas2, Matteo Vocale37, Goncalo Abecasis38, Tom Forsen39,40, Alan James32,41, Elisabeth Widen42, Jennie Hui30, Holger Prokis43,44, Ernst E. Rietzschel45, Aarno Palotie46,47, Peter Feddema48, Stephen J. Fletcher30, Katharina Schramm43, Jerome I. Rotter49,50, Alexander Kluttig17, Dörte Radke51, Michela Traglia4, Gabriela L. Scurduescu52, Huiling He18, Jayne A. Franklyn53, Daniel Tiller17, Bijay Vaidya54, Tim de Meyer55, Torben Jørgensen14,56, Johan G. Eriksson52,57,58,59,60, Peter C. O’Leary36,61, Eric Wichmann62, Ad R. Hermus10, Bruce M. Psaty7,63, Till Ittermann51, Albert Hofman19, Emanuele Bosi64, David Schlessinger65, Henri Wallaschofski24, Nicola Pirastu66,67, Yurii S. Aulchenko19, Albert de la Chapelle18, Romana T. Netea-Maier10, Stephen C. L. Gough13, Henriette Meyer zu Schwabedissen68, Timothy M. Frayling15, Jean-Marc Kaufman9, Allan Linneberg14, Katri Räikkönen12, Johannes W. A. Smit10, Lambertus A. Kiemeney11, Fernando Rivadeneira1,19,69, André G. Uitterlinden1,19,69, John P. Walsh6,32, Christa Meisinger28, Martin den Heijer70, Theo J. Visser1, Timothy D. Spector52, Scott G. Wilson6,32,52, Henry Völzke51, Anne Cappolla71, Daniela Tioniolo4,72, Serena Sanna73, Silvia Naitza74, Robin P. Peeters11

1 Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands, 2Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Scuola Universitaria di Monserato, Monserrato, Cagliari, Italy, 3Department of Biostatistics, Lady Davis Institute, McGill University, Montreal, Canada, 4Department of Biostatistics, University of Washington, Seattle, Washington, United States of America, 5Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom, 6School of Population Health, University of Western Australia, Nedlands, Western Australia, Australia, 7Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands, 8Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany, 9Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia, 10Department of Endocrinology and Internal Medicine, University Hospital Ghent and Faculty of Medicine, Ghent University, Ghent, Belgium, 11Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, 12Institute for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands, 13Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland, 14Oxford Centre for Diabetes, Endocrinology and Metabolism and NIHR Oxford Biomedical Research Centre, Oxford, UK, Churchill Hospital, Headington, Oxford, United Kingdom, 15Research Centre for Prevention and Health, Glostrup University Hospital, the Capital Region of Denmark, Glostrup, Denmark, 16Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany, 17Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany, 18Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America, 19Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands, 20Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Lady Davis Institute, McGill University, Montreal, Canada, 21Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom, 22National Institute for Health and Welfare, Helsinki, Finland, 23Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland, 24Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany, 25Wellcome Trust Sanger Institute, Hinxton, United Kingdom, 26Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany, 27Department of Biostatistics, University of Washington, Seattle, Washington, United States of America, 28Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany, 29Department of Psychiatry and Psychotherapy, University Medicine Greifswald, HELIOS Hospital Stralsund, Greifswald, Germany, 30Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia, 31Research Unit of Molecular Epidemiology Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany, 32School of Medicine and Pharmacology, the University of Western Australia, Crawley, Western Australia, Australia, 33UWA Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Western Australia, Australia, 34School of Population Health, University of Western Australia, Nedlands, Western Australia, Australia, 35MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, United Kingdom, 36School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia, 37High Performance Computing and Network, CRS4, Parco Tecnologico della Sardegna, Pula, Italy, 38Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America, 39Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, 40Vaasa Health Care Centre, Diabetes Unit, Vaasa, Finland, 41Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia,

*Corresponding author.

E-mail: marco.medici@med.uni-saarland.de (M.M.); eleonora.porcu@med.uni-saarland.de (E.P.)
Autimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto’s thyroiditis), as well as autoimmune hyperthyroidism (Graves’ disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10^{-8}) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P=8.1×10^{-7}), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P=2.9×10^{-6}), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P=6.5×10^{-4}). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves’ disease (OR: 1.37, 95% CI 1.22–1.54, P=1.2×10^{-3}) and OR: 1.25, 95% CI 1.12–1.39, P=6.2×10^{-5}). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P=1.9×10^{-3}). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAbs-positives are particularly at risk of developing clinical thyroid dysfunction.
Environmental Health, by the German Federal Ministry of Education and Research and by the State of Bavaria. The work of KORA is supported by the German Federal Ministry of Education and Research (BMBF), in the context of the German National Genome Research Network (NGFN-2 and NGFN-plus). The present research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovat. Thyroid autoimmunity in the framework of the Papillon Initiative. Collection and genotyping of the NBS samples was funded in part by the European Commission (POLYGENE: LSHC-CT-2005-018882) and a research investment grant of the Radboud University Nijmegen Medical Care. This work was supported by the National Computing Facilities Foundation (NCF) for the use of supercomputer facilities, with financial support from the NWO. The Thyroid Cancer Program (P.L. Matthew Ringel) at the Ohio State University is supported by grants P30 CA16058 and P01 CA124570 from the National Cancer Institute, USA. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (no. 175.010.2005.011, 911.03-042). This study is funded by the Research Institute for Diseases in the Elderly (G XI, RIDE2, the Netherlands Genomics Initiative (NIGI)/Netherlands Organisation for Scientific Research (NWO) project no. 050-060-810. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Advancement of Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry of Health, Welfare and Sports, and the Municipality of Rotterdam. The SardiNIA study is supported by the Intramural Research Program of the National Institute on Aging (NIA), National Institutes of Health (NIH). The SardiNIA (“Pregenia”) team was supported by Contract N01-AG-1–2109 from the National Institute on Aging (NIA) and was supported in part by contract 263-MA-41093 from the NIA to the University of Michigan and by research grant HGO02651. SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403). The Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania and, in cooperation with the network ‘Greifswald Approach to Individualized Medicine (GAIN-MED)’ funded by the Federal Ministry of Education and Research and Education (grant 03152016A). Genome-wide data have been supported by the Federal Ministry of Education and Research and Education (grant no. 0332012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg-West Pomerania. Data analyses were further supported by the German Research Foundation (DFG Vo 955/10-2; SPP 1629: THYROID TRANS ACT WA 1328/5-1) and the Federal Ministry of Nutrition, Agriculture and Consumer’s Safety (BMELV 07 HS 003). SHIP-Trend is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to Individualized Medicine (GAIN-MED)’ funded by the Federal Ministry of Education and Research and Education (grant 03152016A). Genome-wide data have been supported by the Federal Ministry of Education and Research and Education (grant no. 0332012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg-West Pomerania. Whole-body MR imaging was supported by a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. TwinsUK received funding from the Wellcome Trust; the Chronic Disease Research Foundation; the European Community’s Seventh Framework Program grant agreement (FP7/2007-2013); ENGAGE project grant agreement (HEALTH-F4-2007-201413); the Department of Health via the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London; the Canadian Institutes of Health Research, Canadian Foundation for Innovation, Fonds de la Recherche en Santé Québec, Ministère du Développement Économique, de l’Innovation et de l’Exportation Québec and the Lady Davis Institute of the Jewish General Hospital and the Australian National Health and Medical Research Council (Project Grant 462349, 1031422) and the Sir Charles Gardiner Hospital Research Fund. Val Borbera was supported by funds from Compagnia di San Paolo, Turin, Italy; Fondazione Cariplo, Italy and Ministry of Health, Ricerca Finalizzata 2008. The UK Graves’ disease cohort was funded by the Wellcome Trust grant 068181. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests
We have read the journal’s policy and have the following conflicts: Dr. Bruce M Psaty reported serving on a DSMB for a clinical trial of a device funded by the manufacturer (Zoll LifeCor) and on the Yale Open Data Access Project funded by Medtronic. All other authors have declared that no competing interests exist.

E-mail: m.medici@erasmusmc.nl

These authors contributed equally to this work.

SS, SN and RPP also contributed equally to this work.

Introduction

Autoimmune thyroid disease (AITD), including Hashimoto’s thyroiditis and Graves’ disease, is one of the most common autoimmune diseases, affecting 2–5% of the general population [1,2,3]. Thyroid dysfunction has been associated with osteoporosis, depression, atrial fibrillation, heart failure, metabolic syndrome, and mortality [4,5,6,7,8,9,10,11]. High serum antibodies against the enzyme thyroid peroxidase (TPO), which is located in the thyroid and plays a key role in thyroid hormone synthesis, are present in 90% of patients with Hashimoto’s thyroiditis [12,13], the most frequent cause of hypothyroidism and goiter. Although TPO antibodies (TPOAbs) are a useful clinical marker for the detection of early thyroid autoimmunity during pregnancy and thyroid cancer risk.

We therefore performed a genome-wide association study (GWAS) meta-analysis for TPOAbs in the general population in 18,297 individuals from 11 populations. Newly identified genetic variants were studied in relation to subclinical and overt hyperthyroidism, goiter, thyroid autoimmunity during pregnancy and thyroid cancer risk.

Results

Characteristics of the studied populations are shown in Table 1 and the Supplementary Material S1. Heritability estimates in the family-based cohorts SardiNIA, TwinsUK and Val Borbera were, respectively, 0.65, 0.66, and 0.54 for TPOAb-positivity, and 0.43, 0.66, and 0.30 for TPOAb levels.

Loci associated with TPOAb-positivity and TPOAb levels

See Table 1 and Supplementary Figure S1 for TPOAb measurements and Supplementary Table S1 for genotyping procedures. In most autoimmune diseases, both the presence and the level of autoantibodies are relevant for the disease onset [18,30,31]. Furthermore, different pathophysiological processes may be involved in the initiation and severity of the autoimmune response. We therefore performed a GWAS on TPOAb-positivity (including 1769 TPOAb-positives and 16,328 TPOAb-negatives), as well as a GWAS on continuous TPOAb levels (including 12,353 individuals) in stage 1. See Supplementary Figures S2 and S3 for QQ (quantile-quantile) and Manhattan plots.

In stage 2, we followed up 20 stage 1 SNPs (P<5×10⁻⁶; 13 TPOAb-positivity and 10 TPOAb level SNPs, with 3 SNPs overlapping) in 5 populations, including up to 8,990 individuals for TPOAb-positivity (922 TPOAb-positives and 8068 TPOAb-negatives) and 8,159 individuals for TPOAb level analyses (see Supplementary Material S1). Results of the combined stage 1 and 2

PLOS Genetics | www.plosgenetics.org
Author Summary

Individuals with thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune thyroid diseases (AITD), which are common in the general population and associated with increased cardiovascular, metabolic and psychiatric morbidity and mortality. As the causative genes of TPOAbs and AITD remain largely unknown, we performed a genome-wide scan for TPOAbs in 18,297 individuals, with replication in 8,990 individuals. Significant associations were detected with variants at TPO, ATXN2, BACH2, MAGI3, and KALRN. Individuals carrying multiple risk variants also had a higher risk of increased thyroid-stimulating hormone levels (including subclinical and overt hypothyroidism), and a decreased risk of goiter. The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, and the MAGI3 variant was also associated with an increased risk of hypothyroidism. This first genome-wide scan for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. These results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which individuals are particularly at risk of developing clinical thyroid dysfunction.

meta-analyses, including heterogeneity analyses, are shown in Supplementary Tables S2 and S3. Regional association plots are shown in Supplementary Figures S4 and S5. In the combined stage 1 and 2 meta-analyses GWAS significant associations (P<5×10⁻⁶) were observed near TPO (Chr 2p23; rs11675434), at ATXN2 (Chr 12q24.1; rs653178), and BACH2 (Chr 6q15; rs10944479) for TPOAb-positivity, and near TPO (rs11675434), at MAGI3 (Chr 6q15; rs1230666), and KALRN (Chr 3q21; rs2010099) for TPOAb levels (Table 2 and Figure 1). The TPOAb level meta-analysis P-values for the 3 GWAS significant TPOAb-positivity loci were: TPO-rs11675434: P=7.4×10⁻¹⁴; ATXN2-rs653178: P=1.3×10⁻¹⁰ and BACH2-rs10944479: P=2.0×10⁻⁶.

As the 3 GWAS significant loci for TPOAb levels also showed associations with TPOAb-positivity (TPO-rs11675434: OR, 1.21 [95% CI, 1.15–1.28]; P=1.5×10⁻¹⁰; MAGI3-rs1230666: OR, 1.23 [95% CI, 1.14–1.33]; P=1.5×10⁻¹⁰; KALRN-rs2010099: OR, 1.24 [95% CI, 1.12–1.37]; P=7.4×10⁻⁶), we subsequently studied the (combined) effects of these 5 SNPs on clinical thyroid disease. Genetic risk scores were calculated as described in the Supplementary Material. The variance explained by these 5 SNPs was 3.1% for TPOAb-positivity and 3.2% for TPOAb levels. Subjects with a high genetic risk score had a 2.2 times increased risk of TPOAb-positivity compared to subjects with a low genetic risk score (P=8.1×10⁻⁶) (Table 3).

Table S4 shows the stage 1 TPOAb-positivity and TPOAb level meta-analyses results for GWAS significant SNPs reported in previous GWAS on thyroid related phenotypes.

Associations with hypo- and hyperthyroidism

The associations between the 5 GWAS significant SNPs and the risk of abnormal thyroid function tests are shown in Table 4. MAGI3- rs1230666 was associated with an increased risk of overt hypothyroidism and increased TSH levels below the Bonferroni threshold (i.e., P=0.05/5 = 0.01). Borderline significant signals were observed at BACH2- rs10944479 with a higher risk of increased TSH levels as well as overt hyperthyroidism (P=0.011 and P=0.012), and at the KALRN-rs2010099 SNP with a lower risk of decreased TSH levels (P=0.010).

Furthermore, a higher genetic risk score was associated with a higher risk of increased TSH levels (Supplementary Table S5). No effects of the genetic risk score on the risk of overt hypothyroidism, hyperthyroidism or decreased TSH levels were observed.

Associations with goiter

Individuals with a high genetic risk score had a 30.4% risk of sonographically-proven goiter, compared to 35.2% in subjects with a low score (P=6.5×10⁻⁵) (Table 5). None of the individual SNPs was significantly associated with goiter risk.

Thyroid autoimmunity during pregnancy

As autoimmunity significantly changes during pregnancy [25], we additionally studied these effects in an independent pregnant population. Pregnant women with a high genetic risk score had a 2.4 times increased risk of TPOAb-positivity compared to women with a low score (10.3% vs 4.8%, P=0.03). These women did not have a higher risk of increased TSH levels. However, a borderline significant signal with a lower risk of increased TSH levels was observed at ATXN2- rs653178 (OR, 0.54 [95% CI, 0.34–0.87], P=0.012).

Associations with thyroid disease in independent populations

- **a) Graves’ disease.** As MAGI3- rs1230666 and BACH2- rs10944479 showed promising associations (i.e., P≤0.05) with hyperthyroidism in our meta-analyses, we tested these SNPs in an independent population of 2478 patients with Graves’ disease and 2682 controls (see Supplementary Material for further details). Both were associated with an increased risk of Graves’ disease (MAGI3- rs1230666: OR, 1.37 [95% CI, 1.22–1.54]; P=1.2×10⁻⁷; BACH2-rs10944479: OR, 1.25 [1.12–1.39]; P=6.2×10⁻⁵).

- **b) Thyroid cancer.** Supplementary Table S6 shows the associations of the 5 GWAS significant SNPs with thyroid cancer. No statistically significant associations were detected, but a borderline significant signal with an increased risk of thyroid cancer was observed at ATXN2- rs653178 (OR, 1.32 [95% CI, 1.02–1.70], P=0.03).

Pathway analyses

Ingenuity Pathway Analyses (IPA; Ingenuity Systems, Ca, USA) and GRAIL analyses [32] were performed to identify potential pathways involved in AITD, the results of which are shown in Supplementary Tables S7 and S8, and Figure S6. The identified top pathways involved cell death, survival, movement, and OX40 signalling.

Discussion

This is the first GWAS meta-analysis investigating the genetics of TPOAbs in the normal population in up to 18,297 individuals from 11 populations with replication in up to 8,990 individuals from 5 populations. We identified 5 GWAS significant loci associated with TPOAb-positivity and/or levels.

The most significant hit for both TPOAb-positivity and TPOAb levels was located near the TPO gene itself. TPO is a membrane-bound protein located on the apical membranes of the thyroid follicular cell, catalyzing key reactions in thyroid hormone synthesis [33]. Mutations in TPO have been found in patients with congenital hypothyroidism [34,35]. Although TPOAbs are
Table 1. Population characteristics and serum TPOAb, TSH, and FT4 level measurements specifications.

Study	Ethnic group (origin)	N with TPOAb and GWAS data	N using thyroid medication	N case-control approach (cases/controls)	N continuous approach	Men (%)	Age (yrs) Mean (SD)	TPOAb-positivity (%)	TPOAb-positivity cut off	Assay (Detection range)	TSH Median (IQR)	Assay (normal range)	FT4 Mean (SD)	Assay (normal range)
Stage 1														
BHS	Caucasian (Australia)	1363	47	1316 (197/1119)	1316	43%	53.0 (17.2)	15.0%	35	Immulite 2000	1.3 (0.9;1.9) mU/L	Immulite 2000	16.9 (2.5) pmol/L	Immulite 2000
CHS	Caucasian (USA)	2024	0	2024 (281/1743)	1817	41%	74.8 (5.1)	13.9%	34	Chemiluminescent immunoassay	2.3 (1.5;3.5) mU/L	Chemiluminescent immunoassay	1.2 (0.2) ng/dL	Chemiluminescent immunoassay
HBCS	Caucasian (Finland)	526	29	497 (75/422)	497	50%	61.0 (2.8)	15.1%	12	Chemiluminescent immunoassay	2.0 (1.2;2.4) mU/L	Chemiluminescent immunoassay	14.1 (1.6) ng/dL	Chemiluminescent immunoassay
KORA	Caucasian (Germany)	1765	49	1475 (74/1401)	1475	45%	60.5 (8.9)	5.0%	200	Chemiluminescent immunoassay	1.5 (0.6;2.5) mU/L	Chemiluminescent immunoassay	18.9 (2.6) pmol/L	Chemiluminescent immunoassay
NBS	Caucasian (Netherlands)	1829	26	1829 (287/1542)	1829	50%	61.5 (10.3)	15.7%	12	Fluoro-immunometric assay	1.3 (0.9;2.0) mU/L	Fluoro-immunometric assay	13.5 (2.4) pmol/L	Fluoro-immunometric assay
RS	Caucasian (Netherlands)	1627	50	1577 (137/1440)	210	40%	70.2 (5.6)	8.7%	35	Chemiluminescent immunoassay	1.2 (0.6;2.5) mU/L	Chemiluminescent immunoassay	18.4 (2.4) pmol/L	Chemiluminescent immunoassay
SardiNIA	Caucasian (Italy)	4686	154	972 (108/864)	1257	49%	56.9 (12.5)	11.1%	35	Chemiluminescent immunoassay	1.3 (0.8;2.0) mU/L	Chemiluminescent immunoassay	1.3 (0.2) ng/dL	Chemiluminescent immunoassay
SHIP	Caucasian (Germany)	4096	293	3803 (265/3538)	1818	52%	49.3 (16.3)	7.0%	60	Chemiluminescent immunoassay	0.7 (0.4;1.0) mU/L	Chemiluminescent immunoassay	12.8 (3.8) pmol/L	Chemiluminescent immunoassay
SHIP-Trend	Caucasian (Germany)	986	99	887 (36/851)	887	46%	49.5 (13.7)	4.1%	200	Chemiluminescent immunoassay	1.2 (0.8;1.6) mU/L	Chemiluminescent immunoassay	-	-
TwinsUK	Caucasian (UK)	2455	86	2369 (461/1893)	774	0%	46.9 (12.5)	19.5%	6	Chemiluminescent immunoassay	1.3 (0.9;1.8) mU/L	Chemiluminescent immunoassay	13.6 (1.9) pmol/L	Chemiluminescent immunoassay
ValBorbera	Caucasian (Italy)	1661	90	1571 (161/1410)	452	46%	54.3 (18.4)	10.2%	60 and 50	Two chemiluminescent immunoassays	1.4 (0.9;2.0) mU/L	Chemiluminescent immunoassay	-	-
Study	Ethnic group (origin)	N with TPOAb and GWAS data	N using thyroid medication	N case-control approach (cases/controls)	N continuous approach	N case-control approach	Age (yrs) Mean (SD)	TPOAb-positivity (%)	TPOAb-positivity cut-off	Assay (Detection range)	TSH Median (IQR)	Assay (normal range)	FT4 Mean (SD)	Assay (normal range)
------------------	-----------------------	-----------------------------	---------------------------	--	-----------------------	------------------------	----------------------	---------------------	----------------------	-----------------------------	-----------------	-------------------	---------------	-------------------
Stage 2														
Asklepios	Caucasian (Belgium)	2418	109	2309 (245/2064)	2185	50%	45.9 (5.9)	10.6%	35	Chemiluminescent immunooassay (5–600)	1.5 (1.1;2.1) mU/L	Chemiluminescent immunooassay (0.3–4.2 mU/L)	1.31 (0.2) ng/dL	Chemiluminescent immunooassay (0.9–1.7 ng/dL)
CARLA	Caucasian (Germany)	1753	270	1483 (186/1297)	1190	60%	64.2 (10.2)	12.5%	28	Chemiluminescent immunooassay (5–600)	0.9 (0.6;1.2) mU/L	Chemiluminescent immunooassay (0.4–3.8 mU/L)	16.3 (2.5) pmol/L	Chemiluminescent immunooassay (12.8–20.4 pmol/L)
EFSOCH	Caucasian (UK)	1289		1289 (97/1192)	1233	64%	34.2 (5.9)	7.5%	34	Chemiluminescent immunooassay (5–600)	1.9 (1.3;2.6) mU/L	Chemiluminescent immunooassay (0.4–4.5 mU/L)	16.0 (2.4) pmol/L	Chemiluminescent immunooassay (11–24 pmol/L)
Health2006 Study	Caucasian (Danish)	3287		3287 (204/3083)	3285	45%	49.3 (13.0)	6.2%	100	Chemiluminescent immunooassay (1–3000)	1.7 (1.0;2.0) mU/L	Chemiluminescent immunooassay (0.4–3.7 mU/L)	12.4 (1.8) pmol/L	Chemiluminescent immunooassay (9.8–18.8 pmol/L)
SardiNIA2	Caucasian (Italy)	1387	30	765 (104/661)	375	41%	46.6 (17.4)	13.6%	35	Chemiluminescent immunooassay (5–1000)	1.6 (1.0;2.2) mU/ml	Chemiluminescent immunooassay (0.4–4.0 mU/L)	1.3 (0.2) ng/dL	Chemiluminescent immunooassay (0.3–2.4 ng/dL)
valid clinical biomarkers of AITD, they are generally considered to be secondary to the thyroid damage inflicted by T-cells.

The FOXE1 gene has been previously associated with hypothyroidism [36,37] and is known to regulate transcription of TPO [38]. In this context it is interesting to note that we did not find any associations of the variant near TPO with hypothyroidism. Most genes that have been associated with AITD (predominantly Graves’ disease) by candidate gene and GWAS studies so far are located in the HLA class I and II regions, or in genes involved in T-cell (i.e., CTLA-4, PTPN22) or other autoimmune responses [28,39]. Until now, the TPO gene itself had not been associated with AITD, except in one recent candidate gene analysis in a small cohort (n = 188) without replication [40]. A variant near TPO (rs11674732), which is in LD with rs11675434 (r² = 0.97 in HapMap2), has previously been associated with TSH levels by Porcu et al [42].

Furthermore, the identified SNP in MAGI3 locus with TPOAb-positivity and Graves’ disease [50]. Of note, the association signal at rs2476601 (r² = 0.873), a variant causing a Trp262Arg substitution in the MAGI3 gene, has been previously associated with TSH levels by Porcu et al [42]. However, this SNP is in high LD with rs1230666, which has previously been associated with renal function, serum urate levels and blood pressure [62,63,64].

Table 2. Newly identified loci associated with TPOAb-positivity and/or serum TPOAb levels reaching genome wide significance.

TPOAb-positivity	Alleles	OR (95% CI)	P value
rs11675434	T	1.21 (1.15−1.28)	1.5 × 10⁻¹⁶
rs653178	C	1.14 (1.08−1.19)	9.9 × 10⁻¹⁰
rs10944479	A	1.25 (1.14−1.37)	4.0 × 10⁻⁶

TPOAb levels	Alleles	OR (95% CI)	P value
rs11675434	T	0.0202 (0.0046)	7.4 × 10⁻¹³
rs1230666	A	0.0269 (0.0064)	1.8 × 10⁻⁸
rs2010099	C	0.0240 (0.0076)	3.1 × 10⁻⁸

Chr., chromosome

*Risk allele frequency: Weighted mean frequency of the risk allele across all included cohorts.

Adjusted for age and gender

Expressed in sd of natural logarithm transformed serum TPOAb level, adjusted for age and gender

Novel Thyroid Antibody and Disease Loci

Whereas the above four loci are located in genes involved in the immune response or the autoantigen, the KALRN (Kalirin) gene encodes a multi-domain guanine nucleotide exchange factor for GTP-binding proteins of the Rho family. The relation of KALRN with levels of TPOAbs is unclear. This gene has recently been found to be associated with megakaryopoiesis and platelet formation [67], which may suggest a function in the immune system [68]. We furthermore performed pathway analyses on the stage 1 TPOAb-positivity and TPOAb level lead SNPs, and identified the cell death, survival and movement pathway as an important pathway for TPOAbs. This finding is supported by previous studies, which show an important role for apoptosis in the...
Another top pathway involved was the OX40 signalling pathway, and it is of interest to note that OX40 is a T-cell activator promoting the survival of CD4+ T-cells at sites of inflammation [69].

Our results have potential clinical relevance for several reasons. Genetic risk scores based on these novel common (risk allele frequencies: 9–40%) TPOAb-associated SNPs enabled us to identify a large subgroup in the general population with a two-fold increase in risk for developingAITD [44,45].
increased risk of TPOAb-positivity (10.4% vs 5.4%). These individuals also have a higher risk of increased TSH levels and a lower risk of goiter, suggesting an advanced stage of destruction of the thyroid due to autoimmune processes. Furthermore, pregnant women with high genetic risk scores had a 2.4 times increased risk of TPOAb-positivity during pregnancy. In this context it is interesting to note that TPOAb-positive pregnant women have an increased risk of miscarriages and preterm births independent of thyroid function [70].

Associations with thyroid disease were also found on an individual SNP level. The MAGI3 SNP was associated with a substantially increased risk of hypothyroidism, and the BACH2 SNP showed a borderline significant association (P=0.011) with a higher risk of increased TSH levels, which includes subjects with subclinical and overt hypothyroidism. Furthermore, both loci were significantly associated with an increased risk of Graves’ hyperthyroidism in an independent population. To predict which patients with first or second degree relatives with documented Hashimoto’s or Graves’ disease will develop clinical thyroid disease, a clinical algorithm has been developed (i.e., the THEA score) [18]. Future studies should analyze if these genetic markers increase the sensitivity of the THEA score.

The prevalence of TPOAb-positivity in the general population is high (5–24%), but it is currently unknown why part of the individuals with thyroid autoimmunity develop clinical thyroid disease whereas others do not [27,28]. In this context it is interesting to note that the TPOAb-associated SNPs located in TPO and ATXN2 were not associated with clinical thyroid disease. This suggests that the TPOAbs in these individuals may be of less clinical relevance, providing insight into why TPOAb-positive individuals do or do not eventually develop clinical thyroid disease.

Our study has some limitations. The validity of the results is restricted to individuals from populations of European ancestry. Future GWASs in populations from non-European descent will be required to determine to which extent our results can be generalized to other ethnic groups. Secondly, we did not perform conditional analyses to further identify secondary association signals within the identified loci, nor did we perform functional studies for the identified variants. Further research is therefore needed to unravel the exact biological mechanism behind the observed associations. The fact that various TPOAbs assays were used across the participating cohorts could lead to bias. We
Phenotype definitions

underlines the clinical importance of our findings. We furthermore show that carriage of multiple risk alleles is associated with other autoimmune diseases. However, AITD is not based on meta-analysis. Finally, as AITD coincides with other autoimmune diseases, our results could be driven by indirect geneity in our results, supporting the fact that results obtained with the assay manufacturer. Furthermore, we did not detect heterogeneity in our results, supporting the fact that results obtained with different assays can be combined across cohorts using the z-score based meta-analysis. Finally, as AITD coincides with other autoimmune diseases, our results could be driven by indirect associations with other autoimmune diseases. However, AITD is the most common autoimmune disease in the general population. We furthermore show that carriage of multiple risk alleles is associated with an increased risk of thyroid dysfunction, which underlines the clinical importance of our findings.

In conclusion, this first GWAS for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. Furthermore, we show that carriage of multiple risk variants is not only associated with a substantial increased risk of TPOAb-positivity, but also with a higher risk of increased TSH levels (including subclinical and overt hypothyroidism) and a lower risk of goiter. These genetic markers not only help to identify large groups in the general population with an increased risk of TPOAb-positivity, but may also predict which TPOAb-positive persons are particularly at risk of developing clinical thyroid disease.

Materials and Methods

Study cohorts

For the TPOAb GWAS stage 1 and 2 analyses, and the hypothyroidism, hyperthyroidism and goiter analyses, individuals were recruited from 16 independent community-based and family studies. For the Graves’ disease analyses, cases were recruited from the United Kingdom Graves’ disease cohort and controls from the British 1958 Birth Cohort. Thyroid cancer cases and controls were recruited from the Nijmegen and Ohio thyroid cancer cohorts. A detailed description of the original cohorts contributing samples is provided in Table 1 and in the Supplementary Material. All participants provided written informed consent and protocols were approved by the institutional review boards or research ethics committees at the respective institutions, and conducted according to the Declaration of Helsinki.

Phenotype definitions

Serum TPOAb levels were determined with a range of assays. TPOAb-positives were defined as subjects with TPOAb levels above the assay-specific TPOAb-positivity cut-off, as defined by the manufacturer (Table 1). Serum TSH and free thyroxine (FT4) levels were determined using a range of assays (Table 1). Assay-specific TSH and FT4 reference ranges were used, as provided by the manufacturer (Table 1). Overt hypothyroidism was defined as a high TSH (i.e., a TSH level above the TSH reference range) and a low FT4. Increased TSH was defined as a high TSH, including persons with overt hypothyroidism or subclinical hypothyroidism (i.e., high TSH with a normal FT4). Overt hyperthyroidism was defined as a low TSH and a high FT4. Decreased TSH was defined as a low TSH, including persons with subclinical or overt hyperthyroidism.

The diagnosis of goiter is described in the Supplementary Material, and the diagnosis of Graves’ disease and thyroid cancer in the respective cohorts have been described previously [41].

Genotyping

Samples were genotyped with a range of GWAS genotyping arrays (Supplementary Table S1). Sample and SNP quality control procedures were undertaken within each study. For each GWAS, over 2.5 million SNPs were imputed using CEU samples from Phase 2 of the International HapMap project (www.hapmap.org). Genotyping procedures in the stage 2, Graves’ disease and thyroid cancer populations are described in the Supplementary Material.

Association analyses

The heritabilities of TPOAb-positivity and serum TPOAb levels were estimated, as described in the Supplementary Material.

In stage 1, we performed a GWAS on TPOAb-positivity as well as a GWAS on continuous TPOAb levels. Persons taking thyroid medication were excluded. Each SNP was tested for association with TPOAb-positivity using logistic regression analyses, adjusting for age and sex. For cohorts with family structure, we approximated the probability of being affected with a linear mixed model adjusting for age and sex. The produced model was used to predict the expected proportion of “risk” (effective) alleles in cases and controls, hence giving the means to estimate odds ratios. Only unrelated individuals were considered for the SardiNIA cohort. For the GWAS of continuous TPOAb levels, samples with a TPOAb level lower than the minimum TPOAb assay detection limit (Table 1) were excluded. TPOAb levels were natural log-transformed, and sex-specific, age adjusted standardized residuals were calculated. Each SNP was tested for association with these TPOAb level residuals using linear regression analyses (additive model),

Nearby gene	SNP	Risk allele	Other allele	OR (95% CI)	P value	GRS Quartile	% Goiter (N cases/total)	OR (95% CI)	P value
TPO	rs11675434	T	C	0.95 (0.88–1.02)	0.17	1 (reference)	35.2% (588/1669)	-	-
ATXN2	rs653178	C	T	0.95 (0.88–1.03)	0.22	2	33.7% (570/1691)	0.92 (0.79–1.06)	0.21
BACH2	rs10944479	A	G	0.94 (0.85–1.05)	0.28	3	31.6% (530/1675)	0.84 (0.72–0.98)	0.03
MAGI3	rs1230666	A	G	0.90 (0.81–1.00)	0.05	4	30.4% (517/1702)	0.77 (0.66–0.89)	6.5×10^-4
KALRN	rs2010099	C	T	0.93 (0.81–1.05)	0.23	-	-	-	-

GRS, genetic risk score (based on rs11675434, rs653178, rs10944479, rs1230666, rs2010099).

*Adjusted for age, gender, and body surface area.

ATXN2-rs653178 is in high LD with SNJZ2-rs3184504.

MAGI3-rs1230666 is in high LD with PTPTN2-rs24756601.

doi:10.1371/journal.pgen.1004123.t005

Therefore used TPOAb-positivity cut-off values as provided by the respective assay manufacturer, instead of using one fixed cut-off value. This is also of clinical importance as in clinical practice most institutions rely on the TPOAb-positivity cut-off as provided by the assay manufacturer. Furthermore, we did not detect heterogeneity in our results, supporting the fact that results obtained with different assays can be combined across cohorts using the z-score based meta-analysis. Finally, as AITD coincides with other autoimmune diseases, our results could be driven by indirect associations with other autoimmune diseases. However, AITD is the most common autoimmune disease in the general population. We furthermore show that carriage of multiple risk alleles is associated with an increased risk of thyroid dysfunction, which underlines the clinical importance of our findings.

In conclusion, this first GWAS for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. Furthermore, we show that carriage of multiple risk variants is not only associated with a substantial increased risk of TPOAb-positivity, but also with a higher risk of increased TSH levels (including subclinical and overt hypothyroidism) and a lower risk of goiter. These genetic markers not only help to identify large groups in the general population with an increased risk of TPOAb-positivity, but may also predict which TPOAb-positive persons are particularly at risk of developing clinical thyroid disease.

Table 5. Newly identified TPOAb associated loci, genetic risk scores and the risk of goiter.
correcting for relatedness in studies with family structure. See Supplementary Table S1 for the software used for these analyses.

Before meta-analysis, SNPs with a minor allele frequency (MAF) <1% or a low imputation quality were excluded (Supplementary Material). Results from stage 1 and 2 were combined in a population size weighted z-score meta-analysis using METAL [71]. Genomic control was applied to individual studies if \(\lambda > 1.0 \).

In stage 2, we followed-up stage 1 GWAS significant SNPs, as well as promising SNPs not reaching GWAS significance, in an attempt to reach GWAS significant associations by increasing sample size (Supplementary Material). Results from stage 1 and 2 were combined in a population size weighted z-score based meta-analysis using METAL [71]. A z-score based meta-analysis was used to reduce bias that might be induced by different assays. As this method does not provide betas, and we wanted to provide a rough estimate of the actual effect sizes for convenience, we calculated betas using the fixed effects (inverse variance based) meta-analysis method. Heterogeneity was tested, applying bonferroni based \(P \)-value thresholds of \(P = 0.004 \) for the TPOAb-positivity analyses and \(P = 0.005 \) for the TPOAb level analyses. All studies assessed and, if present, corrected for population stratification using principal-component analysis (PCA) and/or multidimensional-scaling (MDS), with the exception of SardiNIA and VaIBorbera where the high isolation substantiates a lack of stratification (Table S1) [72,73]. Lambda values were all \(\sim 1 \), indicating that population stratification was overall properly accounted for (Table S1). To fully remove residual effects, we applied genomic correction to studies were lambda was >1. The final meta-analyses reported a lambda of 1.01 for both the TPOAb-positivity and the TPOAb level GWAS, thus no genomic correction was applied.

The variances explained by the GWAS significant SNPs were calculated. We subsequently studied the individual as well as the combined effects of the GWAS significant SNPs on the risk of clinical thyroid disease, as specified in the Supplementary Material. In short, to study combined effects, a genetic risk score was calculated for every person as the weighted sum of TPOAb risk alleles. The associations between the individual SNPs, genetic risk scores and the risk of abnormal thyroid function tests were studied using logistic regression analyses. Logistic regression analyses were used to study the associations with goiter, Graves’ disease and thyroid cancer (Supplementary Material). The results of each study were combined in a population size weighted z-score based meta-analysis using METAL [71].

Various bioinformatic tools were searched for evidence for functional relevance of the GWAS significant SNPs and pathway analyses were performed on the Stage 1 lead SNPs (see Supplementary Material).

Supporting Information

Figure S1 TPOAb level distributions in persons with detectable TPOAb levels in stage 1 and 2 populations. (PPTX)

Figure S2 Quantile-quantile (QQ) plots for the TPOAb-positivity and TPOAb level stage 1 meta-analyses. (PPTX)

Figure S3 Manhattan plots for stage 1 meta-analyses for TPOAb-positivity (a) and TPOAb levels (b). SNPs are plotted on the x-axis according to their chromosomal position against TPOAb-positivity (a) or TPOAb levels (b) (shown as – log\(_{10} \) P value) on the y-axis. The horizontal grey line indicates the threshold for genome-wide statistical significance (\(P < 5 \times 10^{-8} \)). Genome-wide significant associations were observed near \(TPO \) (Chr 2p25; \(P = 1.5 \times 10^{-12} \)), \(ATXN2 \) (Chr 12q24.1; \(P = 1.6 \times 10^{-8} \)) and near \(HCP5 \) (Chr 6p21.3; \(P = 4.1 \times 10^{-6} \)) for TPOAb-positivity, and near \(TPO \) (Chr 2p25; \(P = 5.4 \times 10^{-13} \)) and at \(ATXN2 \) (Chr 12q24.1; \(P = 1.1 \times 10^{-8} \)) for TPOAbs levels. (PPTX)

Figure S4 Regional association plots of stage 1 lead loci for TPOAb-positivity (panels a-m). The y-axis on the left indicates the \(– \log_{10} P \) value for the association with TPOAb-positivity. SNPs are plotted on the x-axis according to their chromosomal position. The most significant stage 1 SNP is indicated in purple. The combined stage 1 and 2 result of this SNP is indicated in yellow. The SNPs surrounding the most significant SNP are color-coded to reflect their LD with this SNP. Symbols reflect functional genomic annotation, as indicated in the legend. The blue y-axes on the right of each plot indicate the estimated recombination rates (based on HapMap Phase II); the bottom of each panel shows the respective annotated genes at the locus and their transcriptional direction. Mb, megabases. (PPTX)

Figure S5 Regional association plots of stage 1 lead loci for TPOAb levels (panels a-j). The y-axis on the left indicates the \(– \log_{10} P \) value for the association with TPOAb levels. SNPs are plotted on the x-axis according to their chromosomal position. The most significant stage 1 SNP is indicated in purple. The combined stage 1 and 2 result of this SNP is indicated in yellow. The SNPs surrounding the most significant SNP are color-coded to reflect their LD with this SNP. Symbols reflect functional genomic annotation, as indicated in the legend. The blue y-axes on the right of each plot indicate the estimated recombination rates (based on HapMap Phase II); the bottom of each panel shows the respective annotated genes at the locus and their transcriptional direction. Mb, megabases. (PPTX)

Figure S6 GRAIL results for the stage 1 TPOAb-positivity and TPOAb level lead SNPs. GRAIL circle plot of locus connectivity where each locus is plotted in a circle, where significant connections (\(P < 0.05 \)) based on PubMed abstracts are drawn spanning the circle. Analyses were based on the 20 stage 1 TPOAb-positivity and TPOAb level lead SNPs. (PPTX)

Table S1 Study sample genotyping, quality control and association analyses for stage 1 populations. (DOCX)

Table S2 Associations of stage 1 lead SNPs with TPOAb-positivity in stage 1 and 2. (DOCX)

Table S3 Associations of stage 1 lead SNPs with serum TPOAb levels in stage 1 and 2. (DOCX)

Table S4 Stage 1 TPOAb-positivity and TPOAb level meta-analyses results for GWAS significant SNPs reported in previous GWAS on thyroid related phenotypes. (XLSX)

Table S5 Genetic risk score and the risk of increased TSH levels. (DOCX)

Table S6 Newly identified TPOAb associated loci and the risk of thyroid cancer. (DOCX)
The SHIP-Trend study is grateful to Mario Stance for the opportunity to use his Server Cluster for the SNP imputation as well as to Holger Prokisch and Thomas Meitinger (Helmholz Zentrum München) for the genotyping of the SHIP-TREND cohort.

TwinsUK thanks the staff from the Genotyping Facilities at the Wellcome Trust Sanger Institute, UK, for sample preparation, quality control, and genotyping; Le Centre National de Génotypage, France, for genotyping; Duke University, NC, USA, for genotyping; and the Finnish Institute of Molecular Medicine, Finnish Genome Center, University of Helsinki. We thank the volunteer twins who made available their time.

The United Kingdom (UK) Graves’ disease cohort would like to thank all principle investigators (Ahmedhabibadd, Northern General Hospital; Sheffield, UK; Mary Armitage Royal Bournemouh Hospital, Bournemouth, UK; Kristina V. Chatterjee, University of Cambridge, Addenbrookes Hospital, Cambridge, UK; John H. Lazarus Centre for Endocrine and Diabetes Sciences, Cardiff University, Cardiff, UK; Simon H. Pearce, Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, Newcastle, UK and Bajaj Vaidya, Royal Devon and Exeter Hospital, Exeter, UK), doctors and nurses for recruiting AITD subjects into the AITD National Collection.

Val Borbera thanks the inhabitants of the Val Borbera for participating in the study, the local administrations and the ASL-Novì Ligure for support and Fiammetta Vigano for technical help. We also thank Prof. Clara Camaschella, Prof Federico Caligaris-Cappio and the Mds of the Medicine Dept. of the San Raffaele Hospital for help with clinical data collection.

Author Contributions
Conceived and designed the experiments: MM SJBJ RAJ RR AA HJG ER JH JH LC DTB VT M T JGE BMP AHO DS HW AdlC TMF AL ARK LAK AGU JPW KS EWAIC MeM MtHJ TJD TDS SGW HV AC DTo SS SN RPP. Performed the experiments: MM EP GP AT LC SJBJ RAJ RR GLR TSP SHV JL MJS LLNH RMF BMS CGY ASA ALJ TJSV JH SS SN RPP. Analyzed the data: MM EP GP AT SJBJ RAJ RR GLR TSP SHV JL MJS LLNH RMF SLS BMS DP LC LB CG TC TE BTYET AA MvD CLMa TEG MT NP YSA AdlC RTN M SCLG JMK AL JINAS FR MtHSS RPP. Contributed reagents/materials/analysis tools: MM RR GLR TSP SHV JL MJS LLNH BMS RN M GP CSA UV JBR FCS TIKM WE VATHEK ATH MM LC AHA WH GH ML SM NS MC MN CSbp AR MH EMR EPL SJL A MV GA EWAD AP AD APB DBWP JBM AB TAF AJHHP EER EF SFJ JRJ AK DR GLS EB HH JA TBFV M TJD JGE POCO ARHB M BTP MP AHo HW Adic RTN M SCLG HMAS TMF AL FR AGU JPW CM MeT JVD TDS SGY HV AC DTo RPP. Wrote the paper: MM AT LCJ TDV SG A CS AC SS SN RPP.

References
1. Gough SC (2000) The genetics of Graves’ disease. Endocrinol Metab Clin North Am 29: 255–266.
2. Simmonds MJ, Gough SC (2004) Unravelling the genetic complexity of autoimmune thyroid disease: HLA, CTLA4 and beyond. Clin Exp Immunol 136: 1–10.
3. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, et al. (1977) The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) 7: 481–493.
4. Biondi B (2012) Mechanisms in endocrinology: Heart failure and thyroid dysfunction. Eur J Endocrinol 167: 609–618.
5. Goud ST, Gourley TA, Bauer DC, den Elzen WP, Cappola AR, et al. (2012) Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med 172: 799–809.
6. Davis JD, Tremont G (2007) Neuropsychiatric aspects of hypothyroidism and treatment reversibility. Minerva Endocrinol 32: 49–63.
7. Rocuzzo P, Collet VT, Virginio V, Bauer DC, Cappola AR, et al. (2012) Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. JAMA 304: 1365–1374.
8. Kohli S, Weickert MO, Arafat AM, Osterhoff M, Iken F, et al. (2010) A high normal TSH is associated with the metabolic syndrome. Clin Endocrinol (Oxf) 72: 606–701.
45. Wang SH, Baker JR (2007) The role of apoptosis in thyroid autoimmunity. Ann Endocrinol (Paris) 72: 103–107.

43. Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, et al. (2000) Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 275: 21477–21485.

40. Faam B, Daneshpour MS, Azizi F, Salehi M, Hedayati M (2012) Association of thyroid peroxidase with occurrence of hypothyroidism and cerebellar ataxia. Funct Neurol 6: 171–175.

39. Simmonds MJ (2013) GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol 9: 277–287.

38. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al. (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41: 703–707.

37. Orru V, Tsai SJ, Rueda B, Fiorillo E, Stanford SM, et al. (2009) A loss-of-function variant in PTEN22 is associated with reduced risk of systemic lupus erythematosus. Hum Mol Genet 18: 569–579.

36. Denny JC, Crawford DC, Ritchie MD, Bielinski SJ, Basford MA, et al. (2011) Gene-mutation in total iodide organification defects (an update). J Clin Endocrinol Metab 96: 5802–5805.

35. Plagnol V, Howson JM, Smyth DJ, Walker N, Hafler JP, et al. (2011) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 43: 508–511.

34. Bakker B, Bikker H, Vulsma T, de Randamie JS, Wiedijk BM, et al. (2000) Two novel genes in the regulation of thyroid function. PLoS Genet 9: e1003266.

33. Ruf J, Carayon P (2006) Structural and functional aspects of thyroid peroxidase. Thyroid 17: 975–979.

32. 2003 Searching for the autoimmune thyroid disease gene mutations in total iodide organification defects (an update). J Biol Chem 275: 21477–21485.

31. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association studies. Bioinformatics 26: 2190–2191.

30. Linnik MD, Hu JZ, Heilbrunn KR, Strand V, Hurley FL, et al. (2005) Relationship between anti-double-stranded DNA antibodies and exacerbation of renal disease in patients with systemic lupus erythematosus. Arthritis Rheum 52: 3200–3208.

29. Liu X, Lu M, Tang I, Zhang N, Chui D, et al. (2013) ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 34: 2236.e5–8.

28. Weetman AP (2011) Diseases associated with thyroid autoimmunity: explanation for the expanding spectrum. Clin Endocrinol (Oxf) 74: 411–418.

27. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, et al. (2008) Identification of apoptotic proteins in thyroid gland from patients with Graves' disease. J Biol Chem 283: 18118–18126.

26. Vanderpump MP, Tunbridge WM, French JM, Appleton D, Bates D, et al. (1991) The incidence of thyroid disorders in the United Kingdom: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf) 34: 55–68.

25. Poppe K, Kolvnen B, Groen D (2008) The role of thyroid autoimmunity in fertility and pregnancy. Nat Clin Pract Endocrinol Metab 4: 394–405.

24. Nakamura T, Tsuda M, Komatsu K, Saito N, Takeuchi H, et al. (2003) Demonstration of efficacy in rheumatoid arthritis. Genes Immun 4: 57–63.

23. Medici M, de Rijke YB, Peeters RP, Visser W, de Muinck Keizer-Schrama SM, et al. (2012) Maternal early pregnancy and newborn thyroid hormone parameters: the Generation R study. J Clin Endocrinol Metab 97: 646–652.

22. Steer S, Alkuech V, Gutin A, Cordell HJ, Gendall KL, et al. (2007) Genomic DNA pooling for whole-genome association scans in complex disease: empirical demonstration of efficacy in rheumatoid arthritis. Genes Immun 8: 57–66.

21. Nakamura T, Tsuda M, Komatsu K, Saito N, Takeuchi H, et al. (2003) Demonstration of efficacy in rheumatoid arthritis. Genes Immun 4: 57–63.

20. Molteni F, Maestrelli G, Sinopoli F, Botti E, Zoli M, et al. (2002) Association of thyroid autoantibodies with development of thyroid disorders in children and adolescents with chronic kidney disease. Nat Genet 34: 346–350.

19. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, et al. (2008) Identification of apoptotic proteins in thyroid gland from patients with Graves' disease. J Biol Chem 283: 18118–18126.