Clinical Actinomycosis: Misdiagnosis of Cranial Bone Tumor – A Case Report

Maria F. De la Cerda-Vargas¹, José Antonio Candelas Rangel¹, Elizabeth Meza Mata², Araceli Ramírez-Cárdenas³, Bayron A. Sandoval-Bonilla⁴

Departments of ¹Neurosurgery and ²Pathology, Hospital de Especialidades No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, México, ³Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany, ⁴Department of Neurosurgery, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.

E-mail: María F. De la Cerda-Vargas - phabie02069@gmail.com; José A. Candelas-Rangel - candelas_59@hotmail.com; Elizabeth Meza-Mata -elizabeth.meza@imss.gob.mx; Araceli Ramírez-Cárdenas -araceli.ramirez-cardenas@student.uni-tuebingen.de; Bayron A. Sandoval-Bonilla - coccicns@gmail.com

*Corresponding author: Bayron A. Sandoval-Bonilla, Department of Neurosurgery, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtemoc 330, Mexico City - 06720, Mexico.

coccicns@gmail.com

ABSTRACT

Background: Actinomycosis is a rare infection, frequently misdiagnosed as a neoplasia. This chronic and granulomatous disease is caused by Actinomyces israelii species. Cervicofacial actinomycosis occurs in 60% of cases and the diagnosis is commonly made by histopathology study.

Case Description: We report a case of fronto-orbital osteomyelitis initially misdiagnosed as a cranial bone meningioma, but later proved to be a case of actinomycosis. ⁹⁹m⁹⁹m Technetium (⁹⁹m⁹⁹m Tc) three-phase bone single-photon emission computed tomography/computed tomography (SPECT/CT) and ⁹⁹m⁹⁹m Tc-ubiquicidin (UBI) 29-41 bone SPECT/CT scans were performed to corroborate the control of the infection.

Conclusion: Craniofacial actinomycosis is the most common presentation of actinomycosis. However, it continues to be a rare and difficult disease to diagnose and is often confused with a neoplastic process. The ⁹⁹m⁹⁹m Tc-UBI 29-41 bone SPECT/CT scan could be an auxiliary noninvasive diagnostic alternative and a follow-up method for these patients.

Keywords: Actinomyces, Craniofacial, Osteomyelitis

INTRODUCTION

Actinomycosis is a rare invasive bacterial disease that causes a chronic, suppurative, granulomatous infection. Actinomyces israelii are Gram-positive, anaerobic, filamentous bacilli that have low pathogenicity and normally colonize the mouth and gastrointestinal tract.[10] This disease can affect multiple anatomical sites, being the cervicofacial presentation (60%) the most frequent[17,22,25] followed by the thoracic pulmonary (30%) and abdominopelvic (20%). Central nervous system (CNS) involvement is less common.[10,11,20] This disease can mimic neoplastic processes, tuberculosis, nocardiosis,[12,29] and even fibrous dysplasia.[11] In consequence, the diagnosis of actinomycosis is challenging and the disease is frequently overlooked.

Given that actinomycosis is a purulent bacterial infection, radiotracers which detect bacteria colonization have diagnosis potential. Recent reports have showed that ⁹⁹m⁹⁹m technetium-ubiquicidin...
(99mTc-UBI) 29-41 bone single-photon emission computed tomography/computed tomography (SPECT/CT) scan can be a useful diagnostic study for pyogenic vertebral osteomyelitis. This radiotracer can differentiate inflammatory from infectious processes.

The diagnosis of actinomycosis is made by a positive culture or the visualization of necrosis with sulfur granules and Gram-positive filamentous bacteria in the histopathology study. Therapy consists in high doses of penicillin's G or amoxicillin for long periods of time (6–12 months).

CASE DESCRIPTION

A 57-year-old woman from Torreon Coahuila was referred in November 2015 for sudden increase in volume of the right fronto-orbital region. The patient reported a contusion in the right frontal region 1 month before and was underwent treatment with metronidazole but not improvement was observed [Figure 1a-c].

Relevant antecedents included cardiothoracic surgery at 4 years old to treat an unspecified cyanotic heart condition and in 1992 plastic surgery established the diagnosis of "craniofacial dysostosis" and a fronto-orbital advancement, including osteotomies and bone cranial remodeling with methyl methacrylate.

In January 2016, a magnetic resonance imaging study reported heterogeneous enhancement mass in the bilateral fronto-orbital region [Figure 2a-c] Pre-surgical MRI and [Figure 2d-f] post-surgical CT scan, control 6 months after surgery, causing significant craniofacial deformation a malignant neoplastic process was suspected. Bone meningioma (an atypical location) [Table 1], bone metastasis, and monostotic fibrous neoplasm were considered into the differential diagnoses. During screening for a primary tumor, a thoracic abdominal CT scan was performed. In May 2016, a highly vascularized hyperostotic lesion was partially resected. This procedure was aborted as consequence of an important intraoperative hemorrhage. Pathology reported fibroconnective tissue with hemorrhage, fibrin, and unspecified polymorphonuclear inflammatory infiltrate. As the craniofacial bone deformity worsened with bilateral ocular extension, a second partial resection was performed in September 2016. Histopathological findings included a multifocal foreign body-type granulomatous lesion and granulation tissue [Figure 3].

The culture was reported negative, but tissue staining with hematoxylin and eosin revealed bacilli compatible with A. israelii was isolated in the tumor tissue by histopathological study by staining for hematoxylin and eosin [Figure 3]. Amoxicillin-clavulanic acid 3 times a day was initially indicated and followed by intramuscular benzathine penicillin's every 2 weeks for 6 months. At the end of the treatment, infectious remission had been achieved. In 2017, the supraorbital methyl methacrylate bar was surgically removed [Figure 4a and b]. No recurrence of the deformity was identified in the follow-up visits. In February 2020, 99mTc three-phase bone SPECT/CT scan and 99mTc-UBI 29-41 bone SPECT/CT scan was performed, and a negative infection result was reported [Figure 4c and d].

DISCUSSION

Cervicofacial or craniofacial Actinomyces is the most common presentation of actinomycosis, accounting for 60% of cases [Tables 1 and 2]. Brain abscesses are the rarest and most serious presentation of the infection by A. israelii. Bonnefond et al.[4] reported a series of 28 patients with A. israelii, including five cases with orocervicofacial presentation (17%) and one patient with intracranial involvement. In 92% of cases, the diagnosis was not suspected at admission. This infection frequently misdiagnosed with neoplastic processes, such as meningioma, granulomas, and osteomyelitis secondary to tuberculosis or nocardiosis. In the present case, we did not consider actinomycosis in the initial differential diagnosis. However, it is important to suspect this entity in cases with recurrent craniofacial deformations and a history.

Figure 1: (a) Presurgical images, significant bilateral fronto-orbital defect, predominantly right side. (b and c) control 3 years after surgery, significant remission of bone deformity.
of dental extractions with alveolar abscesses,[16,26] otological surgeries, and reconstructive surgeries with prosthetics as methyl methacrylate.

A positive uptake with 18F-fluorodeoxyglucose positron emission tomography/CT,[14] technetium-99m-methoxyisobutylisonitrile and Thalio-201[15] has been reported in cases of actinomycosis infection with a previous misdiagnosis of neoplastic disease. However, UBI 29-41 is an antimicrobial peptide with greater effectiveness against

Figure 2: (a-c) (Upper quadrants) Presurgical gadolinium-enhanced T1-weighted magnetic resonance imaging showing heterogeneous enhancement mass in the bilateral fronto-orbital region predominantly on the right side, we can see a hypodensity in relation to methyl methacrylate. (d-f) (Lower quadrants) Computed tomography scan control 6 months after the medical treatment with resolution of the deformity.

Figure 3: Hematoxylin and eosin staining. Basophilic structure, granular, and peripheral-pseudopalisading, hemorrhagic background, and peripheral lymphocytic and polymorphonuclear infiltrate.

Figure 4: (a and b) 3D computed tomography (CT) scan showing silicone implants in the chin and zygomatic bone, a supraorbital methyl methacrylate bar and plates in the bilateral parietal region (upper quadrants). (c and d) (Lower quadrants): 99mtechnetium-Ubiquicidin (29–41)/three-phase bone single-photon emission computed tomography/CT scan control 3 years after the last surgical intervention showing diffuse uptake of the radiotracer, suggestive of an inflammatory process, an active infectious process is ruled out.
Table 1: Published cases of craniofacial *Actinomyces* with misdiagnosis of meningioma.

Reference	Year	Sex, Age	Localization of Meningioma	Risk factors	Onset of symptoms	Clinical findings	Diagnosis of actinomycosis	Surgery	Medical treatment	Recovery
Khosla[12]	1984	71, M	Parasagittal (right frontal)	NE	5 years	Forgetfulness	Histology	Bifrontal craniotomy	Crystalline penicillin's and erythromycin for 3 months	Remission
Chopra[3]	1995	65, M	Right occipital extending to the tentorium.	TBI, retroauricular injury	30 years	Headache, Vertigo, unsteady gait, nystagmus, papilledema	Histology	Craniotomy and partial resection	Chloramphenicol 500 mg/day + Ceftriaxone 1 g IM for 6–12 months	Not specified
Deora[8]	2018	47, F	Meningioma en plaque in maxilla, temporal base, sphenoid, and zygoma	NE	1 year	Restriction of mouth opening and right NC III palsy.	Histology	Surgical decompression	Antitubercular therapy	No recovery. Dead
Kobayashi[13]	2020	67, F	Left superior orbital	COPD	1 year	Recurrent swelling and erythema around in the left eye, Orbital mass	Histology, PCR	Anterior orbitotomy with excision biopsy of the mass + debridement of left orbital roof	TMP/SMX for 12 days + Ceftriaxone for 2 weeks	Remission

TBI: Trauma brain injury, COPD: Chronic obstructive pulmonary disease, TMP/SMX: Trimethoprim/sulfamethoxazole.
Reference	Year	Age	Sex	Location of infection	Risk factors	Diagnosis	Medical treatment	Surgical procedures	Neutrophil imaging studies	Spect/CT scan	Clinical findings	Recovery	
Bolano et al. [10]	1993	M	57	Temporal lobe	Arterial occlusion	Bone osteomyelitis	Gram stain, culture, PCR	Biopsy	CT scan	Could not be determined	Asymptomatic	Remission, no recurrence	
Yoneda et al. [11]	1999	M	28	Paranasal sinus	Chronic sinusitis	Paranasal sinusitis	Culture, CT scan	Biopsy	CT scan and MRI	No	No	Recovery	
Solarz et al. [12]	2000	M	60	Neck	Hypothyroidism	Thyroiditis	Culture, CT scan	Biopsy	CT scan	No	No	Asymptomatic	
Chatterjee et al. [13]	2001	M	56	Temporal lobe	Malignant hypertension	Brain abscess	Culture, CT scan	Biopsy	CT scan	No	No	Remission, no recurrence	
Hwang et al. [14]	2002	M	55	Temporal lobe	Congenital heart disease	Temporal lobe abscess	Culture, CT scan	Biopsy	CT scan	MRI, USG, CT scan	No	No	Remission, no recurrence
Nomura et al. [15]	2003	M	72	Parotid gland	Diabetes mellitus	Parotid abscess	Culture, CT scan	Biopsy	CT scan	No	No	Remission, no recurrence	
Apil et al. [16]	2004	M	65	Temporal lobe	Epilepsy	Temporal lobe abscess	Culture, CT scan	Biopsy	CT scan	MRI, USG, CT scan	No	No	Remission, no recurrence
Pant et al. [17]	2005	M	45	Mandible	History of trauma	Mandible abscess	Culture, CT scan	Biopsy	CT scan	MRI, USG, CT scan	No	No	Remission, no recurrence
Saras et al. [18]	2006	M	50	Temporal lobe	Prior surgery	Temporal lobe abscess	Culture, CT scan	Biopsy	CT scan	MRI, USG, CT scan	No	No	Remission, no recurrence
Chaterjee et al. [19]	2007	M	60	Temporal lobe	Prior surgery	Temporal lobe abscess	Culture, CT scan	Biopsy	CT scan	MRI, USG, CT scan	No	No	Remission, no recurrence
Ohkawara et al. [20]	2008	M	30	Temporal lobe	History of trauma	Temporal lobe abscess	Culture, CT scan	Biopsy	CT scan	MRI, USG, CT scan	No	No	Remission, no recurrence
Hwang et al. [21]	2009	M	65	Temporal lobe	Prior surgery	Temporal lobe abscess	Culture, CT scan	Biopsy	CT scan	MRI, USG, CT scan	No	No	Remission, no recurrence

NE: Not specified, Cefx: Cefuroxime, Ceft: Ceftriaxone, Met: Metronidazole, Clind: Clindamycin, FNAB: Fine-needle aspiration biopsy, Amox: Amoxicillin, Ampi/Sul: Ampicillin/Sulbactam, Teico: Teicoplanin, Levo: Levofloxacin, Moxi: Moxifloxacin, Cefp: Cefepime, PIV: Intravenous penicillin's, PO: Oral penicillin's, Chlo: Chloramphenicol, Est: Streptomycin, SPECT/CT scan: 3-phase bone SPECT/CT scan, PneumoEnc: Pneumoencephalogram, AngCarot: Carotid angiogram, HIC: Immunohistochemistry, TMP: Temporomandibular joint disorders, PET: Positron emission tomography, FDG: Fluorodeoxyglucose, Cervical lymph node and upper parotid lymph node biopsies.
bacterial diseases.[23] 99mTc-UBI 29-41 bone SPECT/CT scan is an useful radiotracer in the diagnosis of pyogenic vertebral osteomyelitis[9,15,9,15] with a high sensitivity and specificity (96.3% and 94.1%, respectively).[7] Diagnostic accuracy for osteomyelitis is 100% in studies with 99mTc-UBI 29-41 bone SPECT/CT scan versus 90% reported in 99mTc three-phase bone SPECT/CT scan.[23] We performed 99mTc three-phase bone SPECT/CT and 99mTc-UBI 29-41 bone SPECT/CT scans as part of the follow-up protocol in this patient, to screen for signs of active infection. Nevertheless, no reports have been found in literature about the use of radiopharmaceuticals in cranial osteomyelitis diagnosis. However, we consider that they could be a promising auxiliary diagnostic and follow-up method in patients with confirmed craniofacial actinomycosis although more studies are required.

A positive actinomycosis culture occurs in 50% of cases. Therefore, diagnosis is generally made by histology.[24] Bonnefond et al.[4] reported a series with 50% of cultures positive for A. israelii. In contrast, only 42% of histopathological studies were positive, even though 71% of the patients underwent a biopsy. However, most of the cases had an abdominopelvic presentation (9/28) and only five patients had a craniofacial disease. A positive culture in cases with craniofacial or CNS presentation was uncommon[5,21,23] and the diagnosis was made by histopathology sand immunohistochemistry[10] or PCR[16] for A. israelii.

Patients with actinomycosis require high doses of penicillin's G or amoxicillin for long periods of time (6–12 months), but the duration of antimicrobial therapy could be reduced to 3 months in patients with total surgical resection.[24] In Bonnefond et al.[4] study, a treatment with amoxicillin for approximately 120 days (range 60–180) was indicated. Metronidazole has not demonstrated effectiveness in craniofacial A. israelii[24] and therefore should not be used. In the case here presented, penicillin's treatment of 100–200 mg/kg per doses was maintained for 6 months. This patient progression was controlled and resolution was achieved only after targeted antibiotic treatment was established.

CONCLUSION

- Craniofacial actinomycosis is the most common presentation of actinomycosis. However, it continues to be a rare and difficult disease to diagnose and is often confused with a neoplastic process.
- Resective surgery still plays an important role for diagnosis, while chronic treatment with high-dose penicillin's remains the therapeutic pillar to control the disease and prevent recurrence.
- Histology is the cornerstone diagnostic study in patients with craniofacial presentation.
- 99mTc-UBI 29-41 bone SPECT/CT scan is a noninvasive study that identifies bacterial infection and could be play an auxiliary role in the diagnosis and follow-up of these patients.

Acknowledgments

None.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Ajal M, Turner J, Fagan P, Walker P. Actinomycosis oto-mastoiditis. J Laryngol Otol 1997;111:1069-71.
2. Aktolun C, Demirel D, Kir M, Bayhan H, Maden HA. Technetium-99m-MIBI and thallium-201 uptake in pulmonary actinomycosis. J Nucl Med 1991;32:1429-31.
3. Bolton CF, Ashenhurst EM. Actinomycosis of the brain; case report and review of the literature. Can Med Assoc J 1964;90:922-8.
4. Bonnefond S, Catroux M, Melenotte C, Karkowski L, Rolland L, Trouiller S, et al. Clinical features of actinomycosis: A retrospective, multicenter study of 28 cases of miscellaneous presentations. Medicine (Baltimore) 2016;95:e3923.
5. Chatterjee RP, Shah N, Kundu S, Mahmoud SA, Bhandari S. Cervicofacial actinomycosis mimicking osseous neoplasm: A rare case. J Clin Diag Res 2015;9:ZD29-31.
6. Chopra S, Christie M, Felimban H. Intracranial actinomycosis mimicking meningioma. Ann Saudi Med 1995;15:515-8.
7. de Murphy CA, Gemmel F, Balter J. Clinical trial of specific imaging of infections. Nucl Med Commun 2010;31:726-33.
8. Deora H, Beniwal M, Rao S, Rao K, Vikas V, Somanna S. Wolf in Sheep's clothing: Intracranial actinomycosis masquerading as en-plaque meningioma. Surg Neurol Int 2018;9:39.
9. Dillmann-Arroyo C, Cantu-Leal R, Campa-Nunez H, Lopez-Cavazos C, Bermudez-Arguelles M, Mejia-Herrera JC. Application of the ubiquicidin 29-41 scan in the diagnosis of pyogenic vertebral osteomyelitis. Acta Ortop Mex 2011;25:27-31.
10. Ham HY, Jung S, Jung TY, Heo SH. Cerebral actinomycosis: Unusual clinical and radiological findings of an abscess. J Korean Neurosurg Soc 2011;50:147-50.
11. Hwang CS, Lee H, Hong MP, Kim JH, Kim KS. Brain abscess caused by chronic invasive actinomycosis in the nasopharynx: A case report and literature review. Medicine (Baltimore) 2018;97:e0406.
12. Khosla VK, Banerjee AK, Chopra JS. Intracranial
actinomycosis with osteomyelitis simulating meningioma. Case report. J Neurosurg 1984;60:204-7.
13. Kobayashi T, Ford B, Fujita N, Appenheimer AB. Ocular actinomycosis mimicking meningioma. Open Forum Infect Dis 2020;7:ofaa170.
14. Liu Y. Actinomycosis-induced adnexal and uterine masses mimicking malignancy on FDG PET/CT. Am J Obstet Gynecol 2019;220:281.
15. Love C, Palestro CJ. Nuclear medicine imaging of bone infections. Clin Radiol 2016;71:632-46.
16. Nomura M, Shin M, Ohta M, Nukui Y, Ohkusu K, Saito N. Atypical osteomyelitis of the skull base and craniovertebral junction caused by Actinomyces infection-case report. Neurol Med Chir (Tokyo) 2011;51:64-6.
17. Oostman O, Smego RA. Cervicofacial actinomycosis: Diagnosis and management. Curr Infect Dis Rep 2005;7:170-4.
18. Oukessou Y, Elkerdoudi MA, Abada RL, Mahtar M. Complicated actinomycosis of the temporal bone: A historical case report. Eur Ann Otorhinolaryngol Head Neck Dis 2015;132:227-9.
19. Pant R, Marshall TL, Crosher RF. Facial actinomycosis mimicking a desmoid tumour: Case report. Br J Oral Maxillofac Surg 2008;46:391-3.
20. Pulverer G, Schutt-Gerowitt H, Schaal KP. Human cervicofacial actinomycoses: Microbiological data for 1997 cases. Clin Infect Dis 2003;37:490-7.
21. Shah KM, Karagir A, Kanitkar S, Koppikar R. An atypical form of cervicofacial actinomycosis treated with short but intensive antibiotic regimen. BMJ Case Rep 2013;2013:bcrr2013008733.
22. Smego RA Jr., Foglia G. Actinomycosis. Clin Infect Dis 1998;26:1255-61; quiz 1262-53.
23. Soto-Hernandez JL, Morales VA, Giron JC, Banares JB. Cranial epidural empyema with osteomyelitis caused by actinomyces, CT, and MRI appearance. Clin Imaging 1999;23:209-14.
24. Valour F, Senechalc A, Dupieux C, Karsenty J, Lustig S, Breton P, et al. Actinomycosis: Etiology, clinical features, diagnosis, treatment, and management. Infect Drug Resist 2014;7:183-97.
25. Wong VK, Turnerzei TD, Weston VC. Actinomycosis. BMJ 2011;343:d6099.
26. Yenson A, deFries HO, Deeb ZE. Actinomycotic osteomyelitis of the facial bones and mandible. Otolaryngol Head Neck Surg 1983;91:173-6.

How to cite this article: De la Cerda Vargas MF, Rangel JA, Mata EM, Ramírez-Cárdenas A, Sandoval-Bonilla BA. 99m Tc-UBI 29-41 bone SPECT/CT scan in craniofacial actinomycosis: Misdiagnosis of cranial bone tumor – A case report. Surg Neurol Int 2020;11:442.