Hyperparathyroidism – Jaw Tumor Syndrome

Katsuhiko YOSHIMOTO, Noriko MIZUSAWA, Takeo IWATA, Shinji ONO

Abstract: The hyperparathyroidism-jaw tumor (HPT-JT) syndrome is an autosomal dominant disorder characterized by the occurrence of parathyroid tumors in association with ossifying fibromas of the maxilla and/or mandible. HPT-JT-associated primary hyperparathyroidism is usually caused by a single parathyroid adenoma. Ossifying fibroma occurs in about 30% of individuals with HPT-JT syndrome. Many patients with HPT-JT syndrome present with a single benign parathyroid tumor; however, the optimal surgical approach to primary hyperparathyroidism has not yet been established. The gene responsible for HPT-JT syndrome on 11q31.2, known as CDC73 (formerly known as HRPT2), was identified and encodes a 531-amino acid protein known as parafibromin. Germline CDC73 mutations are detected in patients with HPT-JT syndrome, and majority (>75%) of mutations predict premature truncation of the parafibromin, and the demonstration of loss of heterozygosity at the CDC73 locus in tumors is consistent with a tumor suppressor role. Approximately 20% of patients with apparently sporadic parathyroid cancer are found to have germline CDC73 mutations, suggesting that such cases may, in fact, represent undiagnosed HPT-JT syndrome. Parafibromin is known to act as a tumor suppressor that inhibits expression of cyclin D1 and c-myc by recruiting histone methyltransferase. On the other hand, parafibromin can act in the opposing direction by binding β-catenin, thereby activating oncogenic Wnt signaling. Furthermore, parafibromin acts as a positive regulator of cell growth similar to an oncoprotein in the presence of SV40 large T antigen. These results suggest the context-dependent oncogenic or tumor-suppressor functions of parafibromin.
4名が囊胞性の副甲状腺腺腫を伴う家系を報告した2）。このうち3名は頸動脈を伴っていた。

その後、我々も同じ症例を示す家系が報告され
た。1994年に、3名の副甲状腺機能亢進症の家族例
のうち、1名が副甲状腺腫で転移を伴い38歳で死亡、
他の1名は副甲状腺腺腫（60歳時に）と脳腫瘍、さらに
他の1名は副甲状腺腺腫（60歳時に）、ウィルス腫瘍
（53歳時に、肺転移あり）および子宮筋腫（25歳時に子宮摘
出）を伴っている家系が報告された3）。Inoue らは、53
歳女性に副甲状腺過形成と頸動脈を、19歳の甥に副甲
状腺腫瘍を有する家系を報告した4）。Fujikawa らは、2
名の姉妹とその弟からなる家系を報告した5）。長姉は左
上頸窩を満ちた腫瘍（骨形成性線維腫）の摘出、副
甲状腺腺腫（右上・右下の2腺）の摘出、24歳時に両
側の下顎腫（骨形成性線維腫）の摘出、30歳時に顔
筋腫瘍リベートにて子宮摘出を受けた。次妹は30歳時、
副甲状腺腺腫（右上・右下の2腺）摘出を受け、子宮の
筋腫瘍リベートが認められている。弟は、17歳時に
右下の副甲状腺腺腫摘出、20歳時に左下の副甲状腺腺
腫摘出を受けている。長姉は22年を経て左下の副甲状腺
腺腫が認められ摘出された。その際、原因遺伝子の変
異が確認された（院内報告からの報告）。

2. HPT-JT の臨床的特徴
詳細は Rich ら6）および Newey ら7）の総説を参照
して頂け。

1）副甲状腺腺腫
原発性副甲状腺機能亢進症における腫瘍の多くは良性
であるのに対し、HPT-JT では副甲状腺腺腫のうち10％
から15％に副甲状腺腫瘍を合併する。また同じ遺伝性を
示す MEN1 でみられる 4 腺の過形成ではなく、1 腺の
腫瘍が多い。腺腫において異型性や囊胞性変化が高頻度
にみられる。

最も若年での発症は 7 歳である。また、副甲状腺腺腫で
は 20 歳が、転移を伴う副甲状腺腺腫は 26 歳が最も早く発
症である。また 60 歳代での発症例も認められている。

ほとんどの腺腫変性であることから病変の腺のみを摘
出し、確定的に経過観察することが多い。副甲状腺腺腫が
強く疑われる場合には、同側の甲状腺腺を含めて摘出す。

2）骨形成性線維腫
30％の患者の上顎あるいは下顎に骨形成性線維腫を合
併し、10歳代の発症が多い。骨形成性線維腫を有する
HPT-JT 症例の 33％が複数の骨形成性線維腫を有する8）。

本病変は、骨やセメント質骨硬組織の形成を伴う線維
性結合組織の増生からなる良性腫瘍である。以前はセメ
ント質形成線維腫（cementifying fibroma）またはセメ
ント質骨形成線維腫（cemento-ossifying fibroma）と呼ばれ
ていたが、最近は骨形成性線維腫（ossifying fibroma）の
名称が汎用される。

本腫瘍は組織発生学的に、セメント質骨組織に骨芽前
腫に分化する骨あらし細胞から発生するため、骨の
ある部位にしか発症しないとされる。X 線所見では腫瘍
は境界明瞭で骨芽前骨増生像を呈し、その周りには線維
組織形成像を伴って種々の骨の不透過像が見られる。境界
が明瞭であり、外科的治療が可能である。

3）腎病変
約 20％の症例で、腎病変が認められる。ほとんどは
囊胞であるが、透析腫やウィルス腫瘍の合併がある。
ウィルス腫瘍は、これまでに 3 例報告されている。

4）子宮病変
子宮筋腫、腺線維腫、子宮内膜増殖症、平滑筋腫、
腺肉腫、腺線維腫リベートが報告されている。

3. HPT-JT の原因遺伝子
Jackson は自己の報告家系と Mallets らの報告家
系を用いて連鎖解析を行い、本疾患の原因遺伝子が
MEN1, MEN2A, MEN2B の原因遺伝子とは異なること
を示した9）。その後、Szabo ら10）および Teh ら11）は原因遺
伝子が 1q21-q32 に位置することを明らかにした。

2002年、Carptens らは、さらに変異を 12.2 CM 以内に狭め、
その領域の 67 種の遺伝子の塩基配列を決定した。その
うち 1q31.2 に位置する Clorf2 遺伝子に桴ふ特異的な遺
伝子変異があることを示した（遺伝子名は HRPT2,
最近は CDC73 と呼ばれる）11）。

CDC73 遺伝子は、17 個のエクソンで構成され、531
残基のアミノ酸からなる核蛋白質パラフィプロミン（
parathyroid と fibroin より命名）をコードする。CDC73
は、どの細胞にも遺伝子発現が認められる。パラフィプロ
ミンは既知の蛋白と相関性が認められないと、C 腺の
200 アミノ酸は酵母の Cdc73 蛋白と 27％の一致率を有
する。この C 腺部分は Ras 種ドメインを有する。核移行
シグナルが 1 か所で、核体移行シグナルと推定される
塩基配列が 3 か所に認められる。

HPT-JT 家系では、CDC73 の不活化変異（ほとんどが
frame shift 変異（約50％）やナシセンス変異（約25％）
など短縮型パラフィプロミンを生じる変異）は約半数
に認められる8,11）。変異はエクソン 1、2 および 7 に頻度
高く認められるが、各変異と表現型に明らかに相関
はない。HPT-JT の副甲状腺腺腫での CDC73 領域のヘ
テロ接合性の消失（loss of heterozygosity, LOH）の頻度
は、MEN1 に伴う副甲状腺腺腫における MEN1 遺伝子
の LOH に比べて低い。また、直接塩基配列決定法によ
り変異が検出されなかった症例の 7％に、1つのエクソ
ン以上の大きなヘテロ欠失が報告されている。またモ
ーモーター部分の変異や CpG 部分における高メチル化は
認められていない。
浸透率は80％－90％と推定されている。両親に胚細胞変異を認めず、発病者から胚細胞変異が認められるde novo変異（精子あるいは卵子に変異が生じた結果）を認める。親の年齢が高いほど、頻度は高くなる）はHPT-JTにおいて3例報告されている。

4. 散発性副甲状腺腫瘍および散発性頸腫瘍における
\textit{CDC73}変異

散発性の副甲状腺腫瘍と診断されているものの約20％に、\textit{CDC73}の胚細胞変異が認められる。これは浸透率が低いために家族性があらかじめ見逃されていたものと考えられている。副甲状腺腫瘍では\textit{CDC73}体細胞変異が高頻度に認められ、2つのアレルがともに不活性化されている例がある。しかし、散発性副甲状腺腫瘍では体細胞変異は認められない。骨形成性線維腫においては1例に細胞変異が認められているのみである。

5. 副甲状腺腫瘍におけるパラフィプロミン免疫組織化学

免疫組織化学を副甲状腺腫瘍の診断補助に用いる試みがなされている。福でのパラフィプロミンが陰性の場合に、副甲状腺腫瘍と診断できる感度は67％－96％、特異度82％－99％と、報告により差がある。このため副甲状腺腫瘍の診断補助において、\textit{CDC73}変異検出法が免疫組織化学法より優れている。

6. HPT-JTの外科治療

MEN1の場合のような全副甲状腺摘出（一部を移植）は勧められていない。これは1ないし2腺摘出後、長期にわたって再発を認めない例がある点を考慮している。しかし19歳時に1腺の腫瘍を切除後、27年後にはもう1腺の腫瘍が認められた症例が報告されているので長期にわたる経過観察が必要である。骨形成性線維腫については可及的早急に摘出術を行う。

7. HPT-JTの遺伝子診断

家族性が認められない原発性副甲状腺機能亢進症では頸腫瘍、副甲状腺腫瘍を伴う場合や副甲状腺機能亢進症の家族歴があり腺腫の囊腫性変化や異型腺腫を伴う場合には遺伝子診断を施行すべきである。

家系別の遺伝子検査については、最年少で認められた副甲状腺機能亢進症は7歳時であることから、5歳から10歳頃から開始すべきとする報告がある。

8. 我が国におけるHPT-JT症例

我々はこれまでに4家系において\textit{CDC73}変異を認め、うちのうち1家系（図1, 2）とde novo変異を生じた症例を示す（図3A）

図1 家系1の家系図

黒塗り、患者；
白抜き、原発性副甲状腺機能亢進症および頸腫瘍を認めない

図2 家系1のⅡ-1の副甲状腺腫瘍

A. 左側胸膜への転移
B. 右側胸膜への転移（矢印部分）
C. 細胞への転移（ループ像）
D. 肺への転移（HE像）

図3 家系1の家系図

1）家系1の家系図を図1に示す。発端者（Ⅰ-1）：27歳時に多飲、多尿、頸部腫瘍で来院。高カルシウム血症（15.2－17.1 mg/dl）および左側甲状腺部分に腫瘍が認められた。左の副甲状腺腫瘍（9 g）を摘出したが、高カルシウム血症は改善しなかった。その後、2回の手術を経て初回手術から約3日間呼吸不全のため死亡した。剖検にて肺、胸膜への副甲状腺腫瘍の転移が認められた（図2）。

II-1：骨端と右側胸膜への転移、34歳時に頸部腫瘍と高カルシウム血症（15.5－16.0 mg/dl）で来院。原発性副甲状腺機能亢進症と診断し、2腺の腫瘍を摘出した。摘出した右上（5 g）および左上（0.4 g）の腫瘍は、それぞれ異型腺腫、腺腫と診断された。そこで家系1の原発性副甲状腺機能亢進症の有無についてのスクリーニングを行った。
II-3：スクリーニング時（36歳時）に、原発性副甲状腺機能亢進症であることが判明し、左下の腺腫（8.5 g）が摘出された。
II-5：スクリーニング時（29歳時）に、原発性副甲状腺機能亢進症であることが判明した。また、腸管上皮細胞管内皮の合併が認められた。左下の囊胞を伴う異型腺腫（1.1 g）を摘出した。
III-3：III-4（母親）の手術後10年を経てして、尿路結石を主訴に来院（17歳時）。原発性副甲状腺機能亢進症と診断され、右上の腺腫を摘出された。
本家系のどの症状も顕著なものと認められなかった。本家系において、frame shiftにより短縮型のパラフィロミンが生じる CDC73 の c.518_521del （p.Ser174LysfsTer27）の胚細胞変異を認めた。1-2は保因者であるが、原発性副甲状腺機能亢進症および顕腺腫の発症は認められていない。

2）家族性発症が認められないHPT-JT症例
発端者20歳頃（図3A）（骨形成性線維症）の手術前検査で副甲状腺機能亢進症が発見され、CDC73 に c.393delC（p.Ile13ArgfsTer7）の胚細胞変異を検出した。両親には変異は認めなかったが、CDC73 近傍のプロモーター解析により、親由来のde novo 変異であることを確認した11）。

9．パラフィロミンおよびPafl1複合体の機能
パラフィロミンはC末端に酵母Cdc73蛋白と同様性を有する。パラフィロミンはCdc73のヒト同様で、Pafl1、Ctf9、Leo1のヒト同様の複合体（Pafl1複合体）を形成する14）。ヒトPafl1複合体はRNAポリメラーゼIIのC末端領域の2番目あるいは5番目のSerがリン酸化される部位に結合し、転写開始と転写伸長に関与する。また、Pafl1複合体はヒト生2B-K120のモノユピピキ酸化およびヒストンH3-K4およびK7のメチル化によりHOX遺伝子などの発現を制御する。

10．癌抑制蛋白質としてのパラフィロミン
パラフィロミンはヒストンH3-K9メチル基転移酵素であるSUV39H1をリクルートすることにより、cyclin D1やc-myc遺伝子などの転写の不活化を行い、細胞増殖抑制作用を示す。

11．癌蛋白質としてのパラフィロミン
我々はsv40 large T抗原（LT）存在下でパラフィロミンを過剰発現させると細胞増殖が促進されることより、パラフィロミンはLT存在下では癌蛋白質として作用することを示した15）。
また、パラフィロミンはβ-カテニンと相互作用し、Wntシグナルを増強することが明らかにされた16）。さらにチロシン脱リン酸化酵素SHP2により脱リン酸化されたパラフィロミンはβ-カテニンと安定的結合し、cyclin D1やc-mycなどのWntの標的遺伝子発現を高めることが報告されている17）。
これらの報告はパラフィロミンが癌発症質としての性質を有する強力な証拠となりうるが、癌発症質・癌抑制蛋白質としての機能がどのように使い分かれているのかは不明である。

わりに
HPT-JTは稀な遺伝性疾患で、内分泌領域と歯科領域にもまたがる疾患であることから、的確な診断が行われていないことがある。このため家族性副甲状腺機能亢進症家系において、副甲状腺腫を併発しやすいHPT-JTを遺伝子解析により鑑別することが望ましい。

文 献
1）Jackson CE: Hereditary hyperparathyroidism associated with recurrent pancreatitis. Ann Intern Med 49, 829-836 (1958)
2）Mallette LE, Malini S, Rappaport MP and Kirkland JL: Familial cystic parathyroid adenomatosis. Ann Intern Med 107, 54-60 (1987)
3）Kakinuma A, Morimoto I, Nakano Y, Fujimoto R, Ishida O, Okada Y, Inokuchi N, Fujihira T and Eto S: Familial primary hyperparathyroidism complicated with Wilms' tumor. Intern Med 33, 123-126 (1994)
4）Inoue H, Miki H, Oshima K, Tanaka K, Monden Y, Yamamoto A, Kagawa S, Sano N, Hayashi E, Nagayama M and Hayashi Y: Familial hyperparathyroidism associated with jaw fibroma: case report and literature review. Clin Endocrinol (Oxf) 43, 225-229 (1995)
5）Fujikawa M, Okamura K, Sato K, Mizokami T, Tamaki
K, Yanagida T and Fujishima M: Familial isolated hyperparathyroidism due to multiple adenomas associated with ossifying jaw fibroma and multiple uterine adenomyomatous polyps. Eur J Endocrinol 138, 557-561 (1998)

6) Rich TA, Hu MI, Martin JW, Perrier ND and Waguespack SG: CDC73-Related Disorders. GeneReviews™ [Internet]. Pagon RA, Adam MP, Bird TD, et al., editors. Seattle (WA): University of Washington, Seattle; 1993-2014. (http://www.ncbi.nlm.nih.gov/books/NBK3789/)

7) Newey PJ, Bowl MR, Cranston T and Thakker RV: Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 31, 295-307 (2010)

8) Wang TT, Zhang R, Wang L, Chen Y, Dong Q and Li TJ: Two cases of multiple ossifying fibromas in the jaws. Diagn Pathol 9,75 (2014)

9) Jackson CE, Norum RA, Boyd SB, Talpos GB, Wilson SD, Taggert RT and Mallett LE: Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery 108, 1006-1013 (1990)

10) Szabo J, Heath B, Hill VM, Jackson CE, Zarbo R J, Mallett L E, Chew S L, Besser GM, Thakker RV, Huff V, Leppert MF and Heath H III: Hereditary hyperparathyroidism-jaw tumor syndrome: the endocrine tumor gene HRPT2 maps to chromosome 1q21-q31. Am J Hum Genet 56, 944-950 (1995)

11) Teh BT, Farnebo F, Kristoffersson U, Sundelin B, Cardinal J, Axelsson R, Yap A, Epstein M, Heath H III, Cameron D and Larsson C: Autosomal dominant primary hyperparathyroidism and jaw tumor syndrome associated with renal hamartomas and cystic kidney disease: linkage to 1q21-q32 and loss of the wild type allele in renal hamartomas. J Clin Endocr Metab 81, 4204-4211 (1996)

12) Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciutti S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotleda PD, Harding B, Cameron D, Pannett AA, Hög A, Heath H III, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C and Hobbs MR: HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32, 676-680 (2002)

13) Mizusawa N, Uchino S, Iwata T, Tsuyuguchi M, Suzuki Y, Mizukoshi T, Yamashita Y, Sakurai A, Suzuki S, Beniko M, Tahara H, Fujisawa M, Kamata N, Fujisawa K, Yoshihisa T, Nagao D, Golam HM, Sano T, Noguchi S and Yoshimoto K: Genetic analyses in patients with familial isolated hyperparathyroidism and hyperparathyroidism-jaw tumour syndrome. Clin Endocrinol (Oxf) 65, 9-16 (2006)

14) Tomson BN and Arndt KM: The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. Biochim Biophys Acta 1829, 116-126 (2013)

15) Iwata T, Mizusawa N, Takekani Y, Itakura M and Yoshimoto K: Parafibromin tumor suppressor enhances cell growth in the cells expressing SV40 large T antigen. Oncogene 26, 6176-6183 (2007)

16) Mosimann C, Hausmann G and Basler K: Parafibromin/ Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell 125, 327-341 (2006)

17) Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, Karisch R, Fernandez M, Cho T, Ohnishi N, Rozenblatt-Rosen O, Meyerson M, Neel BG and Hatakeyama M: SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell 43, 45-56 (2011)