SUPPLEMENTARY MATERIAL

Multicomponent crystals of anti-Tuberculosis drugs: A mini-review

Eustina Batisai

University of Venda, Department of Chemistry, P. Bag X5050, Thohoyandou, 0920, South Africa

Eustina.Batisai@univen.ac.za

Table S1 Co-crystal formers, CCDC ref codes, common synths and physical properties addressed for multicomponent crystals of isoniazid.

Co-crystal former	CCDC ref code	Physical property addressed
4-cyanobenzoic acid	ACUDAG	-
p-aminobenzoic acid	ACUDEK	-
p-aminobenzoic acid	ACUDEK01	-
4-nitrobenzoic acid	ACUDIO	-
Nicotinamide		Solubility and dissolution rate
Succinic acid	BICQAH	-
Nicotinamide	BICQEL	Solubility and dissolution rate
Succinic acid	BICQUB	Solubility and dissolution rate
4-hydroxybenzoic acid	BICQUB01	Solubility and dissolution rate
2,2'-dithiodibenzoic acid	BIZMAZ	-
18-crown-6	BIZMUU	-
2,3-dihydroxybenzoic acid	BOMBOW	-
3,5-dihydroxybenzoic acid	BOMBUC	-
3-hydroxybenzoic acid	BOMCA	-
DL Tartaric acid	BOPHOG	-
4-hydroxy-3,5-dimethoxybenzoic acid	COSKUT	Solubility and dissolution rate
6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide	DADLUS	Solubility and dissolution rate
3-,4-hydroxybenzoic acid	EJOYE	Solubility and stability
Malonic acid	FADGEY	-
Succinic acid	FADGIC	-
Succinic acid	FADGIC01	Solubility, stability and dissolution rate
Glutaric acid	FADGO	-
Adipic acid	FADGUO	-
Adipic acid	FADGUO01	-
Adipic acid	FADGUO02	Solubility
Pimelic acid	FADHAY	-
4-hydroxybenzoic acid	FADHEZ	-
4-hydroxybenzoic acid	FADHEZ01	-
2,4-hydroxybenzoic acid	FADHID	-
Ferulic acid	FOSFIE	Stability
Resorcinol	FOSFOK	Stability
Vanillic acid	FOSFUQ	Stability
Chemical Name	Designation	Properties
-------------------------------------	-------------------	------------------------------
Vanillic acid	FOSFUQ01	Stability
Caffeic acid	FOSMIL14	Stability
Caffeic acid	FOSMIL01	Stability
4-t-butylbenzoic acid	GIYLUY15	-
Salicylic acid	LATKUO17	Stability
2-chloro-4-nitrobenzoic acid	LATLEZ11	-
Fumaric acid	LATSUW12	Solubility and dissolution rate
Fumaric acid	LATTAD12	Solubility and dissolution rate
Fumaric acid	LATTAD01	Stability, solubility and dissolution rate
Fumaric acid	LATTAD02	Stability, solubility and dissolution rate
3,4,5-trihydroxybenzoic acid	LODHIX16	-
3,4,5-trihydroxybenzoic acid	LODHIX01	-
3,4,5-trihydroxybenzoic acid	LODHOD16	-
3,4,5-trihydroxybenzoic acid	LODHOD01	-
3,4,5-trihydroxybenzoic acid	LODHOD02	-
2,6-dihydroxybenzoic acid	NAKZEH18	-
2,6-dihydroxybenzoic acid	NAKZEH01	-
Phthalic acid	NAKZOR23	-
Terephthalic acid	ORAWIQ19	-
3-(4-hydroxyphenyl)acrylic acid	PEHFUF20	-
2,4,6-trinitrophenol	PEZVAU	-
5-fluorocytosine	PINJII21	Stability and solubility
Oxalic acid	QICJIY22	Solubility
Maleic acid	QICJOE22	Solubility
Methane sulfonic acid	QICJUK22	Solubility
Benzoic acid	SETRIU23	Stability and solubility
Suberic acid	SETROA23	Stability and solubility
Cinnamic acid	SETRUC23	Stability and solubility
Cinnamic acid	SETSAN23	Stability and solubility
Cinnamic acid	SESTAN02	Stability and solubility
5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3dihydro-4H-1-benzopyran-4-one	UDUJIP17,c	Stability and solubility
4-aminosalicylic acid	URUDER24	-
4-aminosalicylic acid	URUDER01	-
4-aminosalicylic acid	URUDER02	-
4-aminosalicylic acid	URUDER03	-
4-aminosalicylic acid	URUDER04	-
4-aminosalicylic acid	URUDER05	-
4-aminosalicylic acid	URUDER06	-
4-aminosalicylic acid	URUDER07	-
4-aminosalicylic acid	URUDER08	-
4-aminosalicylic acid	URUDER10	-
But-2-ynoic acid	VAXROD25	-
But-2-ynoic acid	VAXRUJ25	-
Benzeno-1,2,4,5-tetra-carboxylic acid	VEGHOH26	-
Naphthalene-1,5-disulfonic acid	VEGHUN26	-
Resveratrol	VOPQEZ27	Solubility
Tartaric acid	WETZAZ	-
Tartaric acid	WETZAZ01	-
D-tartaric acid	WETZAZ02	-
D-tartaric acid	WETZAZ03	-
Benzene 1,3,5 triol	WIWNAU17	-
Fumaric acid	YEVBAP28	Solubility, dissolution and membrane permeability
Pyrazinamide		Solubility, dissolution and membrane permeability
3-carboxy-4-hydroxybenzenesulfonic acid	YIFXOB29	-
3,4-dihydroxycinnamic acid	FOSMIL02	-
3,4-dihydroxycinnamic acid	FOSMIL03	-
4-hydroxycinnamic acid	PEHFUF01	-
2-hydroxycinnamic acid	PUMFOY30	-
2,4-dihydroxycinnamic acid	PUMGAI30	-
Co-crystal former	CCDC ref code	Physical property addressed
-------------------	--------------	-----------------------------
3,5-dihydroxybenzoic acid	ACOPOA31,j	Solubility
3-(4-hydroxy-3-methoxyphenyl)prop-2-enoid acid	ACOPUG31,j	Solubility
p-toluene sulfonic acid	ACOAN31	Solubility
4-nitrobenzamide	ASAYIC32,j	-
2-Aminobenzoic acid	EBOUG33,j,k	-
6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide	EGENIP34,k	Solubility and dissolution
Hydrochlorothiazide	EGENIP01,8,k	Solubility and dissolution rate
Hydrochlorothiazide	EGENIP02,33,k	Solubility
benzene-1,2,3-triol	HEDRAL38	Solubility and dissolution rate
Hexanedioic acid	KOVSAR38,9,h,j	Solubility and dissolution rate
Decanedioic acid	KOVSAR38,9,g,h,i	Solubility and dissolution rate
2-hydroxypropane-1,2,3-tricarboxylic acid	KOVSIZ38,9	Solubility and dissolution rate
succinic acid	LATTIL1,2,g,h,i	Solubility and dissolution rate
succinic acid	LATTOR2,3,g,h,i	Solubility and dissolution rate
4-nitrobenzoic acid	MUVDUE0,9,g,i	Solubility
2,4-dihydroxybenzoic acid	NEFFEM41,j	-
2,4-dihydroxybenzoic acid	NEFFEM0131,j	Solubility
2,6-dihydroxybenzoic acid	NEFGEN41	-
2,6-dihydroxybenzoic acid	NEFGEN0131,g	Solubility
β-Cyclodextrin	NUFVEQ42	-
3,4-dihydroxybenzoic acid	NUSMIZ42	-
4-hydroxybenzoic acid	NUVFIV43,9	-
4-hydroxybenzoic acid	NUVFIV01,44,9	-
3-hydroxybenzoic acid	NUFQOB44	-
3,4-dihydroxycyclobut-3-ene-1,2-dione	PAQORM45,9,g,h	-
theophylline	RACFIN46,9	-
theophylline	RACFIN0146,1,g	-
4-Hydroxy-3-methoxybenzoic acid	REBXED47,9	Solubility
3,4,5-Trihydroxybenzoic acid	REBXH47,9	Solubility
1-Hydroxy-2-naphthoic acid	REBXO47,9,g,h,i	Solubility
1H-Indole-2-carboxylic acid	REBXUT47	Solubility
Hydrochloric acid	SAGBEJ48	-
glutaric acid	SIHQOR38,9,g,h	Solubility and dissolution rate
malonic acid	SIHRAE38,9	Solubility and dissolution rate
malonic acid	SIHRAE0149,9	-
Sinapic acid	TIIHSAH44,9	-
4-aminosalicylic acid	URUGIY24,g,h,i	-
oxalic acid	UZODUK0,9,g,h,i	-
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzenopyran-4-one	VIHHI31,9	Solubility and dissolution
Glutaric acid	VOLROG42,9,g,h,i	-
4-aminobenzoic acid	VUTNAB35,k	-
1,4-dibromo-2,3,5,6-tetrafluorobenzene	WEDX0V34,9	-
1,2,4,5-tetrafluoro-3,6-diodobenzene	WEDXUB34,9	-
2,5-dihydroxybenzoic acid	XAQQOW55	-
(E)-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide	XIPPAQ56	Solubility, dissolution rate and stability
4-carboxyhydrazide bis(but-2-enedioic acid) YEVBAF

Solubility, dissolution and membrane permeability

g = synthon type VII, h = synthon type VIII, i = synthon type IX, j = synthon type X, k = synthon type XI

References

1. L. F. Diniz, M. S. Souza, P. S. Carvalho, C. C. P. da Silva, R. F. D’Vries and J. Ellena, *J. Mol. Struct.*, 2018, **1153**, 58–68.
2. S. Aitipamula, A. B. H. Wong, P. S. Chow and R. B. H. Tan, *CrystEngComm*, 2013, **15**, 5877–5887.
3. X. G. Meng, Y. L. Xiao, H. Zhang and C. S. Zhou, *Acta Crystallogr. Sect. C Cryst. Struct. Commun.*, 2008, **64**, 261–263.
4. Y. Luo, D. Wu, W. Song, S. Ge and B. Sun, 2014, 5319–5330.
5. S. M. A. Mashhadi, U. Yunus, M. H. Bhatti and M. N. Tahir, *J. Mol. Struct.*, 2014, **1076**, 446–452.
6. K. K. Sarmah, T. Rajbongshi, A. Bhuyan and R. Thakuria, *Chem. Commun.*, 2019, **55**, 10900–10903.
7. B. Yadav, A. Gunnam, R. Thipparaboina, A. K. Nangia and N. R. Shastri, *Cryst. Growth Des.*, 2019, **19**, 5161–5172.
8. S. P. Gopi, M. Banik and G. R. Desiraju, *Cryst. Growth Des.*, 2017, **17**, 308–316.
9. S. M. A. Mashhadi, U. Yunus, M. H. Bhatti, I. Ahmed and M. N. Tahir, *J. Mol. Struct.*, 2016, **1117**, 17–21.
10. A. Lemmerer, J. Bernstein and V. Kahlenberg, *CrystEngComm*, 2010, **12**, 2856–2864.
11. A. Lemmerer, *CrystEngComm*, 2012, **14**, 2465–2478.
12. S. Cherukuvada and A. Nangia, *CrystEngComm*, 2012, **14**, 2579–2588.
13. I. Sarceviča, A. Kons and L. Orola, *CrystEngComm*, 2016, **18**, 1625–1635.
14. B. Swapna, D. Maddileti and A. Nangia, *Cryst. Growth Des.*, 2014, **14**, 5991–6005.
15. L. G. Madeley, D. C. Levendis and A. Lemmerer, *Acta Crystallogr. Sect. C Struct. Chem.*, 2019, **75**, 200–207.
16. R. Kaur, S. S. R. R. Perumal, A. J. Bhattacharyya, S. Yashonath and T. N. Guru Row, *Cryst. Growth Des.*, 2014, **14**, 423–426.
17. A. S. Kamalakaran, *J. Struct. Chem.*, 2018, **59**, 1518–1533.
18. M. Oruganti, P. Khade, U. K. Das and D. R. Trivedi, *RSC Adv.*, 2016, **6**, 15868–15876.
19. A. Lemmerer, J. Bernstein and V. Kahlenberg, *J. Chem. Crystallogr.*, 2011, **41**, 991–997.
20. N. Ravikumar, G. Gaddamanugu and K. Anand Solomon, *J. Mol. Struct.*, 2013, **1033**, 272–279.
21. M. S. Souza, L. F. Diniz, L. Vogt, P. S. Carvalho, R. F. D’Vries and J. Ellena, *Cryst.*
22 L. F. Diniz, M. S. Souza, P. S. Carvalho, C. C. Correa and J. Ellena, *J. Mol. Struct.*, 2018, **1171**, 223–232.

23 I. Sarcevica, L. Orola, M. V. Veidis, A. Podjava and S. Belyakov, *Cryst. Growth Des.*, 2013, **13**, 1082–1090.

24 P. Grobelny, A. Mukherjee and G. R. Desiraju, *CrystEngComm*, 2011, **13**, 4358–4364.

25 T. J. Chiya and A. Lemmerer, *CrystEngComm*, 2012, **14**, 5124–5127.

26 M. S. Cunha, C. E. P. Ribeiro, C. C. Corrêa and R. Diniz, *J. Mol. Struct.*, 2017, **1150**, 586–594.

27 J. Rosa, T. C. Machado, A. K. Da Silva, G. Kuminek, A. J. Bortolluzzi, T. Caon and S. G. Cardoso, *Cryst. Growth Des.*, 2019, **19**, 5029–5036.

28 F. Liu, Y. Song, Y. N. Liu, Y. T. Li, Z. Y. Wu and C. W. Yan, *Cryst. Growth Des.*, 2018, **18**, 1283–1286.

29 Z. Y. Xie, *Acta Crystallogr. Sect. E Struct. Reports Online*, 2007, **63**, 7–13.

30 S. M. A. Mashhadi, D. Yufit, H. Liu, P. Hodgkinson and U. Yunus, *J. Mol. Struct.*, 2020, **1219**, 1–8.

31 K. K. Sarmah, T. Rajbongshi, S. Bhowmick and R. Thakuria, *Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.*, 2017, **73**, 1007–1016.

32 C. B. Aakeröy, J. Desper and B. A. Helfrich, *CrystEngComm*, 2004, **6**, 19–24.

33 H. Abourahma, D. S. Cocuzza, J. Melendez and J. M. Urban, *CrystEngComm*, 2011, **13**, 6442–6450.

34 J. R. Wang, C. Ye and X. Mei, *CrystEngComm*, 2014, **16**, 6996–7003.

35 S. Ranjan, R. Devarapalli, S. Kundu, V. R. Vangala, A. Ghosh and C. M. Reddy, *J. Mol. Struct.*, 2017, **1133**, 405–410.

36 R. Thakuria, S. Cherukuvada and A. Nangia, *Cryst. Growth Des.*, 2012, **12**, 3944–3953.

37 P. Sanphui, N. J. Babu and A. Nangia, *Cryst. Growth Des.*, 2013, **13**, 2208–2219.

38 J. R. Wang, C. Ye, B. Zhu, C. Zhou and X. Mei, *CrystEngComm*, 2015, **17**, 747–752.

39 Y. H. Luo and B. W. Sun, *Cryst. Growth Des.*, 2013, **13**, 2098–2106.

40 H. Abourahma, D. D. Shah, J. Melendez, E. J. Johnson and K. T. Holman, *Cryst. Growth Des.*, 2015, **15**, 3101–3104.

41 K. N. Jarzembska, A. A. Hoser, S. Varughese, R. Kamiński, M. Malinska, M. Stachowicz, V. R. Pedireddi and K. Woźniak, *Cryst. Growth Des.*, 2017, **17**, 4918–4931.

42 T. Aree and N. Chaichit, *Supramol. Chem.*, 2009, **21**, 384–393.

43 M. Lou, S. H. Mao, Y. H. Luo, P. Zhao and B. W. Sun, *Res. Chem. Intermed.*, 2015, **41**, 2939–2951.

44 T. Rajbongshi, K. K. Sarmah, A. Sarkar, R. Ganduri, S. Cherukuvada, T. S. Thakur and R. Thakuria, *Cryst. Growth Des.*, 2018, **18**, 6640–6651.
45 U. Korkmaz, I. Uçar, A. Bulut and O. Büyükgüngör, *Struct. Chem.*, 2011, **22**, 1249–1259.

46 M. D. Eddleston, M. Arhangelskis, L. Fábián, G. J. Tizzard, S. J. Coles and W. Jones, *Cryst. Growth Des.*, 2016, **16**, 51–58.

47 T. K. Adalder, R. Sankolli and P. Dastidar, *Cryst. Growth Des.*, 2012, **12**, 2533–2542.

48 J. K. Harper, G. Strobel and A. M. Arif, *Acta Crystallogr. Sect. E Struct. Reports Online*, DOI:10.1107/S1600536811052457.

49 H. Kulla, S. Greiser, S. Benemann, K. Rademann and F. Emmerling, *Cryst. Growth Des.*, 2017, **17**, 1190–1196.

50 H. Kulla, S. Greiser, S. Benemann, K. Rademann and F. Emmerling, *Molecules*, 2016, **21**, 16–18.

51 F. Liu, L. Y. Wang, Y. T. Li, Z. Y. Wu and C. W. Yan, *Cryst. Growth Des.*, 2018, **18**, 3729–3733.

52 H. Kulla, A. A. L. Michalchuk and F. Emmerling, *Chem. Commun.*, 2019, **55**, 9793–9796.

53 S. H. Thorat, S. K. Sahu and R. G. Gonnade, *Acta Crystallogr. Sect. C Struct. Chem.*, 2015, **71**, 1010–1016.

54 D. Choquesillo-Lazarte, V. Nemec and D. Cincic, *CrystEngComm*, 2017, **19**, 5293–5299.

55 J. A. McMahon, J. A. Bis, P. Vishweshwar, T. R. Shattock, O. L. McLaughlin and M. J. Zaworotko, *Zeitschrift fur Krist.*, 2005, **220**, 340–350.

56 M. K. Bommaka, M. K. Chaitanya Mannava, K. Suresh, A. Gunnam and A. Nangia, *Cryst. Growth Des.*, 2018, **18**, 6061–6069.