Association of Foxp3 promoter polymorphisms with susceptibility to endometrial cancer in the Chinese Han women

Di You, MDa,b, Yanyun Wang, PhDb,c, Yan Zhang, MSa,d, Qin Li, MSa, Xiuzhang Yu, MDb,b, Mingwei Yuan, MSa,b, Zhu Lan, MDb,a, Xi Zeng, MDb,b, Bin Zhou, PhDb,c, Yaping Song, Msb,c, Min Su, Msb,c, Lin Zhang, PhDb,c,e,*, Minrong Xi, MD, PhDb,b,*

Abstract
To evaluate the association between Foxp3 gene polymorphisms (rs3761548 and rs5902434) and susceptibility to endometrial cancer (EC), we report a hospital case–control study involving 602 women, consisting of 269 patients with EC and 333 healthy controls. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism. Our results suggest that the frequency of the A allele in rs3761548 in patients with EC was significantly lower than that in healthy controls (20.3% vs 26.4%, odds ratio [OR] 0.71, 95% confidence interval [CI]: 0.54–0.93, P = .012), while the heterozygous AC genotype showed a significant protective effect on EC in codominant, dominant, and overdominant models (adjusted OR 0.64, 95% CI: 0.45–0.89, P = .011; OR 0.67, 95% CI: 0.47–0.94, P = .02, respectively). Moreover, ATT/ATT genotype (rs5902434) was conferred a lower risk of EC in the recessive model (adjusted OR 0.58, 95% CI: 0.35–0.93, P = .039; OR 0.65, 95% CI: 0.47–0.91, P = .011; OR 0.67, 95% CI: 0.47–0.94, P = .02, respectively). The present study showed a significant protective effect of the A allele in rs3761548 and ATT/ATT genotype (rs5902434) in EC patients.

Abbreviations: ACS = acute coronary syndrome, BMI = body mass index, CI = confidence interval, CRC = colorectal cancer, DTC = differentiated thyroid carcinoma, EC = endometrial cancer, FIGO = International Federation of Gynecology and Obstetrics, Foxp3 = transcription factor forkhead box protein 3, NSCLC = non-small cell lung cancer, OR = odds ratio, PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism, RRP = recurrent respiratory papillomatosis, Treg cell/Tregs = regulatory T cell.

Keywords: endometrial cancer, Foxp3, polymorphisms, Treg cells

1. Introduction
Endometrial cancer (EC) is one of the 3 major malignant female genital tumors, ranking on top of the list of gynecologic malignant tumors in developed countries and some developed cities in China.[1] In recent years, with the changes of lifestyle and increase in metabolic diseases, the incidence of EC has increased, with a younger age of onset.[2] According to the data from Beijing Tumor Registry Office, EC overtook cervical cancer to become the highest incidence of female reproductive system cancers in Beijing since 2008.[2]

Regulatory T cells (Treg cells or Tregs) act as indispensable inhibitors to immune responses and participate in maintaining peripheral immune tolerance while suppressing anti-tumor immunity.[3] As early as 2001, Woo et al.[4] reported for the first time that there was an increase in the number of Treg cells found in non-small cell lung cancer (NSCLC) and patients with ovarian cancer compared to healthy controls. Recent studies also revealed that a significant increase of Treg cells was observed in peripheral blood of patients with EC,[5] and high Treg counts in EC tissue implied a worse prognosis.[6]
ly the putative functional ones located in the promoter region of Foxp3, which may influence expression of Foxp3.[6,10] rs3761548 (C/A) and rs5902434 (del/ATT)[10] are both located in the promoter region of Foxp3.

We hypothesize that the promoter gene polymorphisms of Foxp3 would be associated with the risk of developing EC. To test our hypothesis, we performed the following study to evaluate the role of rs3761548 (C/A) and rs5902434 (del/ATT). As far as we are aware, this study would be the first to evaluate the association between Foxp3 promoter gene polymorphisms and susceptibility to EC.

2. Materials and methods

2.1. Study subjects

A total of 602 women (269 patients with EC and 333 matched healthy women) were recruited from the West China Second University Hospital of Sichuan University between June 2008 and June 2014. Diagnosis of EC was based on histopathologic biopsies. To prevent compounding factors, patients with autoimmune diseases or other cancers were excluded from this study. Clinical staging was performed using the guidelines from the International Federation of Obstetrics and Gynecology (FIGO) standards. Control group consisted of cancer-free women from routine gynecologic examination recruited from the outpatient department. Clinical and demographical characteristics (age, body mass index [BMI], menopausal status, family history of cancer, history of pregnancy, etc) were collected from medical records, and the details are depicted in Table 1. Our Hospital Ethics Committee approved the study and all patients signed informed consent forms.

2.2. DNA extraction and genotyping

DNA, stored at -20°C until analysis, was extracted using a whole-blood DNA isolation kit from BioTeke (Beijing, China) according to the manufacturer’s instructions. Genotyping of rs3761548 (C/A) and rs5902434 (del/ATT) was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Primers used were: F: 5’-GAAGGGCA-AATTTGGAACACCA-3’ and R: 5’-GCTGGTGAGGCTAAGTGAAGTGA-3’ for rs3761548 (C/A); F: 5’-CCCTGCCCCATGCAAT-3’ and R: 5’TACCACGCTACCGTGATTCC-3’ for rs5902434 (del/ATT). PCR-RFLP analysis was performed using the following conditions; 100ng of DNA was amplified in a total volume of 10mL reaction mixture using 2x Power Taq PCR MasterMix (BioTeke). PCR conditions for amplification were 4°C for 4 minutes, 32 cycles at 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds, and a final elongation step at 72°C for 10 minutes. For rs3761548, 0.5mL of PCR products was digested with 0.5uL of PstI (New England Biolabs, Beijing, China) in a 20mL reaction mixture for 2 hours at 37°C, then separated by 6% polyacrylamide gel and stained with 1.5g/L argent nitrate: a 99-bp band for ATT-type. Furthermore, 10% of the samples were randomly selected for retesting with the results being 100% concordant.

2.3. Statistical analysis

Statistical analysis was performed using SPSS 22.0 (SPSS, Inc., Chicago, IL) and SNPstats online software (www.snpstats.net/start.htm). Student t test or chi-square test was used to compare the clinical and demographic characteristics of the 2 groups. The genotype frequencies were counted directly and the Hardy-Weinberg equilibrium was tested by a chi-square test. SNPstats analyzed genotype-related associations by constructing codominant, dominant, recessive, or overdominant genetic models.[11] Logistic regression was used to detect the association of Foxp3 polymorphisms and EC by the odds ratio (OR) for risk at 95% confidence interval (95% CI). $P<.05$ was considered statistically significant.

3. Results

3.1. Clinical and demographical characteristics of patients with EC and healthy controls

Table 1 depicts the characteristics of 269 patients and 333 healthy controls with age matched between the 2 groups. In addition, the 2 groups were similar in terms of BMI, menopausal status, family history of cancer, and pregnancy history ($P>.05$).
Genotype and allele distribution of two Foxp3 promoter gene polymorphisms in patients with EC and health controls.

Genotype or allele	Genotype	Patients	Control	Logistic regression (crude)	Logistic regression (adjusted)		
		N = 269 (%)	N = 333 (%)	OR (95% CI)	P value	OR (95% CI)	P value
rs3761548							
Genetic model							
Codominant	C/C	173 (64.3)	178 (53.5)	1.00	.027†	1.00	.039†
	A/C	83 (30.9)	134 (40.2)	0.64 (0.45–0.90)	0.64 (0.45–0.91)	0.64 (0.31–1.31)	0.68 (0.33–1.42)
	A/A	13 (4.8)	21 (6.3)	1.00	.043†	1.00	.56
Dominant	C/C	173 (64.3)	178 (53.5)	1.00	.071†	1.00	.11†
	A/C-A/A	96 (35.7)	155 (46.5)	0.64 (0.46–0.89)	0.65 (0.47–0.91)	0.75 (0.57–1.54)	0.81 (0.39–1.66)
Recessive	C/C-A/C	256 (95.2)	312 (93.7)	1.00	.43	1.00	.56
	A/A	13 (4.8)	21 (6.3)	0.66 (0.47–0.93)	0.67 (0.47–0.94)	0.71 (0.54–0.93)	0.72 (0.55–0.95)
Overdominant	C/C-A/A	186 (69.1)	199 (59.8)	1.00	.17†	1.00	.02†
	A/C	83 (30.9)	134 (40.2)	0.66 (0.47–0.93)	0.67 (0.47–0.94)	0.71 (0.54–0.93)	0.72 (0.55–0.95)
Log-additive	–	–	–	0.71 (0.54–0.93)	0.72 (0.55–0.95)	0.71 (0.54–0.93)	0.72 (0.55–0.95)
Allele	C	429 (79.7)	490 (73.6)	1.00	.077		
	A	109 (20.3)	176 (26.4)	0.71 (0.54–0.93)	0.72 (0.55–0.95)	0.71 (0.54–0.93)	0.72 (0.55–0.95)
rs5902434							
Genetic model							
Codominant	D/D	113 (42.0)	139 (41.7)	1.00	.082	1.00	.077
	I/D	129 (48.0)	141 (42.3)	1.13 (0.80–1.59)	1.13 (0.80–1.60)	0.63 (0.37–1.06)	0.62 (0.36–1.05)
	I	27 (10.0)	53 (15.9)	1.00	.95	1.00	.94
Dominant	D/D	113 (42.0)	139 (41.7)	1.00	.033†	1.00	.031†
	I/D	129 (48.0)	141 (42.3)	0.99 (0.71–1.37)	0.99 (0.71–1.37)	1.00	.033†
	I	27 (10.0)	53 (15.9)	0.59 (0.36–0.97)	0.58 (0.35–0.96)	1.00	.17
Recessive	D/D-D/D	140 (62.0)	192 (57.7)	1.00	.17	1.00	.17
	I/D	129 (48.0)	141 (42.3)	1.25 (0.91–1.73)	1.26 (0.91–1.75)	0.88 (0.69–1.11)	0.87 (0.69–1.11)
	I	27 (10.0)	53 (15.9)	1.00	.031†	1.00	.031†
Log-additive	–	–	–	0.88 (0.69–1.11)	0.87 (0.69–1.11)	0.88 (0.69–1.11)	0.87 (0.69–1.11)
Allele	D	355 (66.0)	419 (63.0)	0.87 (0.69–1.11)	0.87 (0.69–1.11)		
	I	183 (34.0)	247 (37.1)	0.87 (0.69–1.11)	0.87 (0.69–1.11)		

CI = confidence interval. EC = endometrial cancer. OR = odds ratio.
† Adjusted for age, body mass index, family history of cancer, menopausal status, and history of pregnancy using the logistic regression model.

3.2. Association of Foxp3 polymorphisms with genetic susceptibility to EC

Table 2 lists the genotype and allele composition of Foxp3 polymorphisms in 269 EC patients and 333 healthy women. The frequencies of the allele distribution of rs3761548 and rs5902434 in both groups were in keeping with the Hardy Weinberg equilibrium ($P > .05$), which means random distribution. The P values (case group, control group) of rs3761548 and rs5902434 are ($P = .45$, $P = .58$) and ($P = .34$, $P = .10$), respectively.

For rs3761548, the frequency of A allele in patients with EC was significantly lower than that in healthy controls (20.3% vs 26.4%, OR 0.71, 95% CI: 0.54–0.93, $P = .012$). A larger percentage of AC, the heterozygous genotype, was found in controls compared with that in patients with EC (40.2% vs 30.9%). By genetic model analysis, AC showed a statistically significant protective effect from EC in codominant, dominant, and overdominant models (adjusted OR 0.64, 95% CI: 0.45–0.91, $P = .039$; OR 0.65, 95% CI: 0.47–0.91, $P = .011$; OR 0.67, 95% CI: 0.47–0.94, $P = .02$, respectively). For rs5902434, no significant difference was observed in allele frequency in any genetic models except for the ATT/ATT homozygote genotype frequency in the recessive model (adjusted OR 0.58, 95% CI: 0.35–0.96, $P = .031$). Thus, the A allele, the AC heterozygous genotype of rs3761548, and the ATT/ATT homozygote genotype of rs5902434 indicate a relatively reduced risk of EC.

3.3. Association of Foxp3 polymorphisms with clinical characteristics of patients with EC

We conducted a stratified analysis to explore the relationship between the Foxp3 polymorphisms and certain clinical features (FIGO stage, FIGO grade, pathologic type, myometrial invasion, cervical invasion, parametrial invasion, lymph node status, peritumor intravascular cancer emboli). For rs3761548 (Table 3), the AA homozygous genotype was considered to be a high-risk factor for cervical invasion in EC (recessive model: OR 3.55, 95% CI: 1.10–11.44, $P = .046$). For rs5902434 (Table 4), no genotype or allele was significantly associated with clinical features.

4. Discussion

In this study, we examined the association of Foxp3 promoter polymorphisms with susceptibility to EC and its clinical characteristics in Chinese Han women. To the best of our knowledge, this is the first study to report the association between Foxp3 polymorphisms and risk of EC. Our results suggested that both Foxp3 polymorphisms (rs3761548 and rs5902434) were associated with the risk of EC, whereas the AA genotype
Table 3

Association between the genotype distribution of rs3761548 polymorphism of Foxp3 gene and clinical features.

Clinical features	Genotype	Codominant (C/C vs A/C vs A/A)	Dominant (C/C vs A/C-A/A)	Recessive (C/C-A/C vs A/A)	Overdominant (C/C-A/A vs A/A)		
RCG stage		OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value
I							
II–IV							
G1							
G2–G3							
Histology							
Endometrioid adenocarcinoma	I						
Non-endometrioid adenocarcinoma	II						
Myometrial invasion	<1/2						
Cervical invasion	Negative						
Parametral invasion	Negative						
Lymph node status	Negative						
Peritoneal intravascular cancer embolization	Negative						
	Positive						

For rs3761548, the A allele and AC heterozygous genotype showed a statistically significant protective effect on EC, indicating a lower risk. Although there were no other EC-related data reported, similar results have been observed in other disease studies. In a study of triple negative breast cancer in Brazil, interestingly, it showed AC genotype was a protective factor while AA was a risk one. Genotype analysis of acute coronary syndrome (ACS) among Chinese population implied the C allele was a risk factor for ACS, but detailed data analysis by us revealed a larger percentage of AC genotype and A allele in

Table 4

Association between the genotype distribution of rs5902434 polymorphism of Foxp3 gene and clinical features.

Clinical features	Genotype	Codominant (C/D vs I/D vs I/I)	Dominant (C/C vs I/D-A/D)	Recessive (C/C-I/D vs A/D)	Overdominant (C/C-A/D vs A/D)		
RCG stage		OR (95% CI)	P value	OR (95% CI)	P value	OR (95% CI)	P value
I							
II–IV							
G1							
G2–G3							
Histology							
Endometrioid adenocarcinoma	I						
Non-endometrioid adenocarcinoma	II						
Myometrial invasion	<1/2						
Cervical invasion	Negative						
Parametral invasion	Negative						
Lymph node status	Negative						
Peritoneal intravascular cancer embolization	Negative						
	Positive						

C = confidence interval, RCG = International Federation of Gynecology and Obstetrics, OR = odds ratio.
healthy controls compared to patients, suggesting a concordance with our findings. Shen et al study of patients with psoriasis suggested that the AA genotype may abolished E47c-Myb binding, leading to transcriptional defects in Foxp3 gene. Wildin et al demonstrated that Foxp3 gene polymorphisms might modulate CD4+CD25+Treg cell function, resulting in the manifestation of some autoimmune diseases. These findings may provide possible explanations to our results, that is, decreasing functional Tregs might enhance immune surveillance, making EC risk relatively reduced.

However, majority of the literature describes the A allele of rs3761548 as a risk factor for several cancers and autoimmune diseases. A allele was more frequent in patients with differentiationthyroid carcinoma (DTC) than in healthy controls, and individuals with the AC genotype had a higher risk of DTC. Similarly, the AA/AC genotypes and A allele represented a significantly greater risk or a higher susceptibility to colorectal cancer (CRC) and NSCLC. Marson et al observed many Foxp3 genes regulated in FOXP3+ T cells, indicating that Foxp3 functions as a transcriptional activator and repressor. The dual-acting nature of Foxp3 may explain the different results of Foxp3 gene polymorphisms and susceptibility to diverse diseases.

Similar to rs3761548, the ATT/ATT homozygous genotype of rs5902434 was also associated with a relatively low risk of EC. Although rs5902434 has scarcely been associated with cancer, its association with other diseases has been established. Examples of which include reported frequencies of ATT/ATT genotypes being significantly decreased in severe recurrent respiratory papillomatosis (RPR) compared to controls, indicating it may be a protective factor in the risk of severe RPR in a cohort of Korean women. Furthermore, Chu et al suggested that the del/del genotype led to a higher expression of Foxp3 mRNA and may be associated with a reduced risk of chronic obstructive pulmonary disease and lung dysfunction in a cohort of male Chinese. These associations of rs5902434 with other diseases were also evaluated and significant associations were observed in unexplained recurrent pregnancy loss in Indian and Chinese women, pre-eclampsia in Chinese and ACS in Iranian, suggesting that rs5902434 (del/ATT) may confer a significant susceptibility to a number of diseases among the Asian population.

Furthermore, in a stratified analysis, the AA genotype of rs3761548 was considered as a high-risk factor for cervical invasion in EC. Previous studies has demonstrated that there was a significant association between Foxp3+ Treg cells and vascular density in endometrial adenocarcinoma, indicating a correlation between immune function and intratumoral angiogenesis. Moreover, the frequency of AA/AC genotype was higher in patients with DTC with tumor diameter > 1 cm compared with patients with tumor diameter < 1 cm and was observed at higher frequency in patients with stage II NSCLC. AA genotype was found highly significantly associated with advanced breast cancer. However, no significant association between Foxp3 polymorphisms (rs3761548) and CRC was established.

5. Conclusion

From our analysis, we conclude that the Foxp3 promoter polymorphisms (rs3761548, rs5902434) were associated with the susceptibility for EC. The A allele, AC genotype (rs3761548), and ATT/ATT genotype (rs5902434) were associated with a lower risk of EC in Chinese Han women, while the AA genotype of rs3761548 was more frequent in patients with EC with cervical invasion. Larger sample size of patients and other ethnic groups should be considered to confirm our findings. Additionally, the molecular mechanism of Foxp3 in endometrial tumorigenesis is a crucial and need to be investigated further.

Author contributions

Data curation: Di You, Yanyun Wang, Qin Li, Xiuzhang Yu, Mingwei Yuan, Zhu Lan.

Formal analysis: Di You, Yanyun Wang, Qin Li.

Investigation: Yan Zhang, Xiuzhang Yu, Mingwei Yuan.

Methodology: Di You, Yanyun Wang, Yan Zhang, Qin Li, Yaping Song, Min Su.

Software: Di You, Yan Zhang, Qin Li, Zhu Lan, Xi Zeng.

Supervision: Bin Zhou, Lin Zhang, Mingrong Xi.

Validation: Mingrong Xi.

Writing – original draft: Di You, Yanyun Wang.

Writing – review & editing: Zhu Lan, Xi Zeng, Bin Zhou, Lin Zhang, Mingrong Xi.

References

[1] Liao Q, Yang X. Present situation and prospect of screening and early diagnosis of endometrial cancer (Chinese). J Pract Obstet Gynecol 2013;31:481–4.

[2] Wei L. Attention to endometrial cancer screening (Chinese). Chin J Obstet Gynecol 2013;12:881–5.

[3] Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002;2:389–400.

[4] Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61:4766–72.

[5] Zhang W, Hou F, Zhang Y, et al. Changes of Th17/Tc17 and Th17/Treg cells in endometrial carcinoma. Gynecol Oncol 2014;132:599–605.

[6] Yamagami W, Susumu N, Tanaka H, et al. Immunofluorescence-detected infiltration of CD4+FOXP3+ regulatory T cells is relevant to the prognosis of patients with endometrial cancer. Int J Gynecol Cancer 2011;21:1628–34.

[7] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330–6.

[8] Oda JM, Hirata BK, Guembarovski RL, et al. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. J Genet 2013;92:163–71.

[9] Hoogendoorn B, Coleman SL, Guy CA, et al. Functional analysis of human promoter polymorphisms. Hum Mol Genet 2003;12:2249–54.

[10] Bassuuni WM, Ibara K, Sasaki Y, et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scribble gene associated with type 1 diabetes. Immunogenetics 2003;55:149–56.

[11] Sole X, Guino E, Valls J, et al. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006;22:1928–9.

[12] Lopes LF, Guembarovski RL, Guembarovski AL, et al. FOXP3 transcription factor: a candidate marker for susceptibility and prognosis in triple negative breast cancer. BioMed Res Int 2014;2014:341654.

[13] Yang Q, Chen Y, Yong W. FOX3 gene variant and risk of acute coronary syndrome in Chinese Han population. Cell Biochem Funct 2013;31:599–602.

[14] Shen Z, Chen L, Hao F, et al. Intron-1 rs3761548 is related to the defective transcription of Foxp3 in psoriasis through abrogating E47c-Myb binding. J Cell Mol Med 2010;14:226–41.

[15] Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2002;39:537–45.

[16] Jiang W, Zheng L, Xu L, et al. Association between FOX3 gene polymorphisms and risk of differentiated thyroid cancer in Chinese Han population. J Clin Lab Anal 2016.

[17] Chen L, Yu Q, Liu B, et al. Association of Foxp3 rs3761548 polymorphism with susceptibility to colorectal cancer in the Chinese population. Med Oncol 2014;31:374.

[18] He YQ, Bo Q, Yong W, et al. Foxp3 genetic variants and risk of non-small cell lung cancer in the Chinese Han population. Gene 2013;531:422–5.
[19] Marson A, Kretschmer K, Frampton GM, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007;445:931–5.

[20] Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007;445:936–40.

[21] Kwon TK, Chung EJ, Lee N, et al. Associations of FoxP3 gene polymorphisms with severe recurrent respiratory papillomatosis in Korean patients. J Otolaryngol Head Neck Surg 2017;46:21.

[22] Chu S, Zhong X, Zhang J, et al. Four SNPs and systemic level of FOXP3 in smokers and patients with chronic obstructive pulmonary disease. COPD 2016;13:760–6.

[23] Saxena D, Misra MK, Parveen F, et al. The transcription factor Forkhead Box P3 gene variants affect idiopathic recurrent pregnancy loss. Placenta 2015;36:226–30.

[24] Wu Z, You Z, Zhang C, et al. Association between functional polymorphisms of Foxp3 gene and the occurrence of unexplained recurrent spontaneous abortion in a Chinese Han population. Clin Dev Immunol 2012;2012:896458.

[25] Chen X, Gan T, Liao Z, et al. Foxp3 (-/ATT) polymorphism contributes to the susceptibility of preeclampsia. PLoS One 2013;8:e59696.

[26] Gholami M, Esfandiary A, Vatanparast M, et al. Genetic variants and expression study of FOXP3 gene in acute coronary syndrome in Iranian patients. Cell Biochem Funct 2016;34:158–62.

[27] Giatromanolaki A, Bates GJ, Koukourakis MI, et al. The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol Oncol 2008;110:216–21.

[28] Jahan P, Ramachander VR, Maruthi G, et al. Foxp3 promoter polymorphism (rs3761548) in breast cancer progression: a study from India. Tumour Biol 2014;35:3785–91.