Supporting Information for
Reactivity of a dinuclear Pd\(^{1}\) complex \([\text{Pd}_2(\mu-\text{PPh}_2)(\mu_2-\text{OAc})(\text{PPh}_3)_2]\) with \text{PPh}_3:
Implications for cross-coupling catalysis using the ubiquitous \text{Pd(OAc)}_2/n\text{PPh}_3
catalyst system

Neil W. J. Scott,\(^a\) Mark J. Ford,\(^b\) David R. Husbands,\(^a\) Adrian C. Whitwood\(^a\) and Ian J. S. Fairlamb\(^a\)*

\(^a\) Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK

* ian.fairlamb@york.ac.uk

\(^b\) Bayer AG, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany.

Contents

1. General information 2
 1.1. Compound acquisition and purification details 2
 1.2. Instruments and methods for compound characterisation 3

2. Experimental procedures and details 4
 2.1. Reaction of \([\text{Pd}_2(\mu_2-\text{OAc})(\mu-\text{PPh}_2)(\text{PPh}_3)_2]\) (1) with \text{nPPh}_3 4
 2.1.1. Procedure: reaction between complex 1 and one equivalent of \text{PPh}_3 4
 2.1.2. Procedure: reaction between complex 1 and two Equivalents of \text{PPh}_3 4
 2.1.3. Reaction of \([\text{Pd}_2(\mu-\text{PPh}_2)(\mu_2-\text{OAc})(\text{PPh}_3)_2]\) (1) with 10 equivalents of \text{PPh}_3 10
 2.2. Reaction of \([\text{Pd}_2(\mu_2-\text{OAc})(\mu-\text{PPh}_2)(\text{PPh}_3)_2]\) (1), two equivalents of \text{PPh}_3 and 2-bromopyridine 11
 2.2.1. Reaction of complex 2 and \([\text{Pd}_0(\text{PPh}_3)_3]\) and 2-bromopyridine 11
 2.2.2. Analysis of background reaction of \([\text{Pd}_0(\text{PPh}_3)_4]\) with 2-bromopyridine. 14

3. X-Ray Diffraction Details 16
 3.1. \([\text{Pd}_2(\mu-\text{PPh}_2)(\kappa_2-\text{P},\text{O}-\mu-\text{P(O)}\text{Ph}_2)(\kappa-\text{PPh}_3)_2]\) (2) 16
 3.2. \([\text{Pd}_2(\mu-\text{PPh}_2)(\kappa_2-\text{O},\text{O}-\mu-\text{P(O)}_2\text{Ph}_2)(\kappa-\text{PPh}_3)_2]\) (3) 18

4.0. Computational studies: collated energies for complex 2 21
4.1. NBO and Wiberg indices for complex (2) 22

5. References 25
1. General information

1.1. Compound acquisition and purification details

Pd$_3$(OAc)$_6$ (>99% purity) was obtained from Precious Metals Online (PMO) and used as received. Triphenylphosphine (PPh$_3$, Fisher) was purified by recrystallization from hot ethanol and dried under high vacuum, before being stored over P$_2$O$_5$ for ca. 7 days. 2-Bromopyridine (Merck) was degassed by the freeze-pump-thaw method and stored under N$_2$. THF was dried by refluxing over sodium metal pieces (2 × 8 hours) before being distilled, transferred to an ampoule and subsequently deoxygenated by bubbling with argon for ca. 30 min. THF-d_8 was dried over freshly sliced K metal pieces for 2 days, at room temperature before freeze-pump-thaw degassing and distilling into an ampoule and stored under Ar. Hexane and pentane were dried by refluxing over freshly sliced sodium metal pieces, before distilling and subsequent storage in an ampoule under N$_2$.

The Pd1-dinuclear complex; [Pd$_2$(µ-PPh$_2$)(µ-OAc)(PPh$_3$)$_2$] 1 and authentic [Pd$_3$(µ-Br)(µ-PPh$_2$)(PPh$_3$)$_3$]Br were synthesised using previously published literature procedures.1 [Pd0(PPh$_3$)$_4$] was prepared using a literature procedure, published by Coulson and stored in an Ar-filled glovebox at –30 °C.2

All reactions were carried out either using an Ar-atmosphere glovebox or using Schlenk techniques (high vacuum, liquid nitrogen trap on a standard in-house built dual line manifold {vacuum and N$_2$}), to eliminate atmospheric air or moisture from the reaction systems. NMR-based experiments were carried out in J. Youngs NMR tubes. Unless otherwise stated, all operations were carried out at room temperature, for which 21-23 °C was recorded.
1.2. Instruments and methods for compound characterisation

NMR spectra were obtained in the solvent indicated, using a Bruker AVIIIHD 500 instrument (500 MHz 1H), 470 MHz 19F, 203 MHz 31P 125 MHz 13C) or JEOL ECX400 or JEOL ECS400 spectrometer (400 MHz 1H, 101 MHz 13C and 377 MHz 19F). 1H and 13C NMR chemical shifts are reported in parts per million (ppm) and were referenced to the residual non-deuterated solvent of the deuterated solvent used: CHCl$_3$: δ$_H$ = 7.26 and δ$_C$ = 77.16 (CDCl$_3$), CD$_2$Cl$_2$: δ$_H$ = 5.31 (CDHCl$_2$) and δ$_C$ = 54.0, THF-d$_8$ δ$_H$ = 3.59 (OCH$_2$CH$_2$), δ$_C$ = 67.57 OCH$_2$CH$_2$), δ$_H$ = 1.73 (OCH$_2$CH$_2$) δ$_C$ = 25.37 (OCH$_2$CH$_2$). Spectra were typically run at a temperature of 298 K (25 °C). 31P NMR spectra were generally recorded with proton decoupling unless otherwise stated. 31P NMR spectra were typically recorded using 128 scans and a spectral window of 300 ppm (δP +250 to –50 ppm). Chemical shifts (δP) for 31P resonances were calibrated by externally referencing to an 85% H$_3$PO$_4$ in H$_2$O (w/w) solution. This was practically carried out by inserting a sealed, vacuum dried capillary tube containing 85% H$_3$PO$_4$ in H$_2$O (w/w) into an NMR tube containing the sample of interest, collecting a 31P NMR spectrum and setting the H$_3$PO$_4$ resonance to 0 ppm.

HRMS ESI-MS spectra were measured using a Bruker Daltronics micrOTOF MS, Agilent series 1200LC with electrospray ionisation (ESI) or on a Thermo LCQ using electrospray ionisation, with <5 ppm error recorded for all HRMS samples. LIFDI mass spectrometry was carried out using an JEOL AccuTOF GCx-plus instrument (JMS-T200GC), fitted with a probe produced by Linden CMS. The probe was equipped with 13 µm emitters on an AccuTOF. Alternatively, LIFDI-MS was carried out using a Waters GCT Premier MS Agilent 7890A GC instrument. Mass spectral data is quoted as the m/z ratio along with the relative peak height in brackets (base peak = 100). Mass to charge ratios (m/z) are reported in Daltons. High resolution mass spectra (HRMS) are reported with <5 ppm error (ESI and LIFDI). For clarity, LIFDI data are reported for 106Pd, the most abundant natural isotope of Pd: the ‘exact mass’ is given for this isotope.

X-ray crystallography: Diffraction data were collected at 110 K on an Oxford Diffraction SuperNova diffractometer with Cu-K$_\alpha$ radiation (λ = 1.54184 Å using a EOS CCD camera. The crystal was cooled with an Oxford Instruments Cryojet. Diffractometer control, data collection, initial unit cell determination, frame integration and unit-cell refinement were carried out with CrysAlisPro. Face-indexed absorption corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm within CrysAlisPro. OLEX2 was used for overall structure solution, refinement and preparation of computer graphics and publication data. Within OLEX2, the algorithm used for structure solution was ShelXT dual-spaced. Refinement by full-matrix least-squares used the SHELXL algorithm.
within OLEX2. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using a "riding model" and included in the refinement at calculated positions. For the single crystal X-ray structures shown in the main paper, CrystalMarker® X (version 10.4.6) was used and images output as appropriate graphics files.

a CrysalisPro, Oxford Diffraction Ltd.
b Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm within CrysalisPro software, Oxford Diffraction Ltd.
c "Olex2" crystallography software, J. Appl. Cryst., 2009, 42, 339–341.
d SHELXT – Integrated space-group and crystal-structure determination
G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8
e "Crystal structure refinement with SHELXL"
G.M. Sheldrick, Acta Cryst. 2015, C71, 3-8.

2. Experimental procedures and details

2.1. Reaction of [Pd₂(μ₂-OAc)(μ-PPh₂)(PPh₃)₂] (1) with nPPh₃

2.1.1. Procedure: reaction between complex 1 and one equivalent of PPh₃

Figure 2(b), main paper. In an Ar-filled glovebox, [Pd₂(μ₂-OAc)(μ-PPh₂)(PPh₃)₂] 1 (5.0 ± 0.05 mg, 5.1 μmol) was weighed into a vial and a solution of PPh₃ (1.4 ± 0.05 mg, 5.3 μmol; 1.04 equiv.) in THF-δ₈ (0.5 mL) was added dropwise. The entire solution was transferred into a J. Youngs NMR tube. A colour change from dark red to bright red-orange was immediately observed upon shaking the NMR tube at room temperature. The NMR sample was swiftly introduced to an NMR spectrometer for 3¹P spectroscopic analysis, where data was collected.

2.1.2. Procedure: reaction between complex 1 and two equivalents of PPh₃

Figure 2(c), main paper. In an Ar-filled glovebox, [Pd₂(μ₂-OAc)(μ-PPh₂)(PPh₃)₂] 1 (10.0 ± 0.05 mg, 10.2 μmol) was weighed into a vial and a solution of PPh₃ (5.4 ± 0.05 mg, 20.6 μmol; 2.08 equiv.) in THF-δ₈ (0.5 mL) was added dropwise the resulting solution was transferred into a J. Youngs NMR tube. A colour change from dark red to bright red-orange was again immediately observed upon shaking the tube at room temperature. This post-reaction solution was sampled for LIFDI- and ESI-mass spectral analysis by removing a liquid sample in an Ar-glovebox and transferring into a crimp-sealed vial (1 mL capacity). For LIFDI-MS-sampling,
ca. 0.2 mL of the THF-d$_8$ was extracted with a syringe and needle and the vial was quickly sealed under Ar. For ESI-MS-sampling, a small sample (ca. 5 μL) of the THF solution was diluted in toluene 1 mL before being injected directly into the mass spectrometer.

Crystals of [Pd$_2$(μ-PPh$_2$){κ$_2$-P,O-μ-P(O)Ph$_3$}(κ-PPh$_3$)$_2$] (2) were grown from this THF-d$_8$ solution by layering with pentane (THF-d$_8$/pentane = 1:4 v/v) and subsequent storage over ca. 2 days at -18 °C, under an atmosphere of argon. Red crystals formed alongside a yellow precipitate most likely [Pd0(PPh$_3$)$_3$], which was observed as a major solution species. Red crystals were purposely selected and subjected to X-ray crystallographic analysis.

Red crystals of [Pd$_2$(μ-PPh$_2$){κ-2,O,μ-O(P)Ph$_3$}(κ-PPh$_3$)$_2$] (3) were grown from a similar solution by layering with dry hexane (THF-d$_8$/hexane = 1:4 v/v) and subsequent storage over 7 days at -18 °C.

Bright red crystals, isolated by filtration, from the same batch of crystals from which the X-ray structure of 2 was obtained, were picked, combined manually (using tweezers) under air. These selected crystals were confirmed by XRD to be compound 2 (selected and collected as detailed above). The crystals were subsequently taken into a glovebox and dissolved in THF-d$_8$ under an atmosphere of argon. A 31P NMR spectrum is shown in Figure S1 (see overleaf).
2.1.2.1. 31P NMR spectrum of XRD verified crystals of complex 2

Figure S1 31P NMR spectrum (203 MHz, 1024 scans, THF-d_8) of crystals of $[\text{Pd}_2(\mu-\text{PPh}_2)(\kappa_2-\text{P},\text{O}-\mu-\text{P(O)Ph}_2)(\kappa-\text{PPh}_3)_2]$ (2), as verified by X-ray diffraction analysis.

In the above case, with the handpicked crystals (Figure S1), there was a small amount of contamination with other 31P-containing species – with one species identified as $\text{O}=\text{PPh}_3(\delta_\text{P} 24.2$ ppm), a likely breakdown product of the system on short exposure to air.
2.1.2.2. 31P COSY Spectrum of the Solution Generated from 1 & two Equivalents of PPh$_3$ (Figure 4)

Shown in smaller format in Figure 4(ii), main paper.

Figure S2 31P COSY NMR spectrum (202.5 MHz, recorded at 173 K, THF-d_8) of the mixture of 2 and [Pd0(PPh$_3$)$_3$], generated from reaction of complex 1 with two equivalents of PPh$_3$.
2.1.2.3. Evidence for the formation of Ac$_2$O accompanying complex 2

1H and 13C NMR spectroscopic evidence was gained for the formation of acetic anhydride (Ac$_2$O) from the reaction of 1 with two equivalents of PPh$_3$ (Figure S3). Ac$_2$O was identified by 1H NMR analysis as a singlet at δ_H 2.15 ppm (externally referenced to residual 1H signal of THF-d_8 {3.57 ppm}) and by 13C NMR as two singlets at δ_C 21.99 and 167.21 ppm (externally referenced to 13C signal of THF-d_8 {67.57 ppm}).

![Acetic Anhydride Structure](image)

Figure S3 (a.) 1H NMR (500 MHz) and (b.) 13C NMR (126 MHz) stacks of (i.) crude, post reaction mixture following treatment of complex 1 and two equivalents of PPh$_3$ and (ii.) a solution containing authentic Ac$_2$O. All samples run in THF-d_8.
2.1.2.4. Further 1H NMR analysis showing 1:1 ratio of complex 2 with acetic anhydride

Due to overlap of peaks of 2 and [Pd0(PPh$_3$)$_3$] it was challenging to ascertain the comparative stoichiometry with acetic anhydride (Ac$_2$O) from the 1H NMR spectrum of the crude reaction mixture. The peak at $\delta_H 6.92$ ppm has been assigned as PCCH of the bridging diphenylphosphido ligand of 2, due to 1H chemical shift similarities with the bridging diphenylphosphido ligand of 1. If the Ac$_2$O peak is set as 6H, an integration of 6.44 H is measured for the peak at $\delta_H 6.92$ ppm, which is higher than the 4H expected. This is a result of an overlap with phenyl resonances derived from [Pd0(PPh$_3$)$_3$]. What can be reasoned from this observation is that the amount of Ac$_2$O is, to a close approximation, 1:1. See Figure S4.

Figure S4 1H NMR (500 MHz) spectrum of complex 1 / two equivalents of PPh$_3$ post-reaction solution. Expansion of the aromatic region (6.8 – 7.45 ppm) showing acetic anhydride (Ac$_2$O). Integrations of the peak assigned as the four ortho-protons of the μ-phosphido ligand of 2 and the Ac$_2$O (CH$_3$) peaks were compared.
2.1.3. Reaction of [Pd₂(µ-PPh₂)(µ₂-OAc)(PPh₃)₂] (1) with 10 equivalents of PPh₃

In an Ar-filled glovebox, complex 1 (5.0 ± 0.05 mg, 5.1 µmol) was weighed into a vial and a solution of PPh₃ (13.4 ± 0.05 mg, 0.050 µmol; 10 equiv.) in THF (0.5 mL) was added dropwise. The solution was transferred to a J. Youngs NMR tube. A colour change from dark red to bright red-orange was again immediately observed upon shaking the NMR tube at room temperature. The reaction was analysed then analysed by ³¹P NMR spectroscopy (Figure S5).

Figure S5 ³¹P NMR spectrum (203 MHz, 1024 scans, THF, unlocked, (externally referenced to H₃PO₄ (aq) 85% (w/w)).

The peak representative of [Pd⁰(PPh₃)₃], in exchange with nPPh₃ (excess), has migrated upfield, in line with previous observations. In addition, a loss of resolution of the PPh₃ resonances of 2 was observed, most likely due to intermolecular exchange of PPh₃ ligands between complex 2, the Pd⁰ complex and its free form.
2.2. Reaction of $[\text{Pd}_2(\mu_2-\text{OAc})(\mu-\text{PPh}_2)(\text{PPh}_3)_2]$ (1), with two equivalents of PPh$_3$ and 2-bromopyridine

2.2.1. Reaction of complex 2 and $[\text{Pd}^0(\text{PPh}_3)_3]$ and 2-bromopyridine

The reaction between complex 1 and two equivalents of PPh$_3$ was carried out as above. In an Ar-filled glovebox, the solution was treated with bromopyridine (5 μL, 8.25 mg, 0.052 mmol => 5 equivalents) via a microsyringe within 24 hours of generation of the stable solution of complex 2 and $[\text{Pd}^0(\text{PPh}_3)_3]$. The evolution of the resulting red solution was monitored over the course of 13 hours by 31P NMR spectroscopic analysis. The 31P NMR spectral evidence for the formation of $[\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]X$ (6) is given through comparison of the crude reaction solution against an authentic standard of $[\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]\text{Br}$, as shown in Figure S6. The $[\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]\text{Br}$ authentic standard was synthesized according to an adapted method as previously reported.¹

Figure S6 31P NMR evidence for the formation of $[\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]X$ (6), from the reaction of the solution generated from 1 and two equivalents of PPh$_3$ with 2-bromopyridine. A stack of 31P NMR spectra from the reaction between 2-bromopyridine (above) and an authentic sample of $[\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]\text{Br}$, indicating that that $[\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]\text{Br}$ is present in the former solution. Inset. An expansion of the same stacked spectra, with excised regions from ~35 to 205 ppm, for clarity.
The presence of the tripalladium cluster cation \([\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]^+\) was evident via ESI-mass spectral analysis (Figure S7). Further evidence of the product of the oxidative addition reaction of \([\text{Pd}^0(\text{PPh}_3)_3]\) with 2-bromopyridine, forming \([\text{Pd}^{II}(\text{Br})(\text{N},\text{C}_2\text{-pyridyl})(\text{PPh}_3)_2]\) 4 was obtained via ESI-MS (detected as the \([M–\text{Br}]^+\) ion 708.12 Da \((m/z)\); \([\text{Pd}(\text{N},\text{C}_2\text{-pyridyl})(\text{PPh}_3)_2]^+\) (Figure S7).

![Image](S12)

Figure S7 ESI-Mass spectral evidence indicating formation of (a) \([\text{Pd}^{II}\text{Br}(\text{C}_2\text{-pyridyl})(\text{PPh}_3)_2]\) (4): detected as \([M–\text{Br}]^+\); \([\text{Pd}(\text{C}_2\text{-pyridyl})(\text{PPh}_3)_2]^+\). (b) \([\text{Pd}_3(\mu-\text{Br})(\mu-\text{PPh}_2)(\text{PPh}_3)_3]^+\). Isotopic distributions for the measured versus the simulated pattern is given.

Integrated NMR spectra for the reaction mixture in Figure 8 (main paper)

The \(^{31}\text{P}\) NMR spectra of the reaction product of 2 with 2-bromopyridine are shown in figures S8 and S9, below.
Figure S8 Full spectrum from figure 8 (b) (main paper). Recorded 20 minutes after addition of 2-bromopyridine to the reaction solution. Showing identified species and integration values. 31P(1H) NMR, 203 MHz, THF-d_8, 25°C.
Figure S9 Full spectrum from figure 8 (c) (main paper). Inset: expansion of spectral region between –13 - 33 ppm. Recorded 13 hours minutes after addition of 2-bromopyridine to the reaction solution. Showing identified species and integration values. 31P{¹H} NMR, 203 MHz, THF-d_8, 25 °C.

2.2.2. Analysis of background reaction of $\text{[Pd}^0(\text{PPh}_3)_4]\text{] with 2-bromopyridine.}$

A background reaction enabled confirmation and NMR identification of products of the oxidative addition of $\text{[Pd}^0(\text{PPh}_3)_3]\text{] (generated in situ by disproportionation of complex 1 after addition of PPh}_3$. Here, $\text{[Pd}^0(\text{PPh}_3)_4]\text{] was used as a proxy for }\text{[Pd}^0(\text{PPh}_3)_3]\text{] (in solution, }\text{[Pd}^0(\text{PPh}_3)_4]\text{ is known to lose a PPh}_3$ ligand, readily forming $\text{[Pd}^0(\text{PPh}_3)_3]\text{] (as well as, to some extent, }\text{[Pd}^0(\text{PPh}_3)_2]\text{].}\text{^6}$

In an Ar-filled glovebox, $\text{[Pd}^0(\text{PPh}_3)_4]\text{] (10 mg, 8.7 µmol) dissolved in 0.5 mL of THF-d_8. 2-bromopyridine (3.0 mg, 19.1 µmol, 2.2 equivalents) was added dropwise via a microsyringe.
The mixture was transferred into a J. Youngs NMR tube before being sealed and introduced to an NMR spectrometer for *in operando* 31P spectroscopic analysis (25 °C) (Figure S10). Initially, after ca. 20 minutes, two major peaks were identified at δ$_{P}$ 22.5 and −4.5 ppm, which were assigned as trans-[PdII(Br)(N,C$_2$-pyridyl)(PPh$_3$)$_2$] 4 and liberated PPh$_3$ respectively. An initially minor peak (δ$_{P}$ 30.5 ppm) was confirmed as the PdII dinuclear complex trans-[PdII(Br)(N,C$_2$-pyridyl)(PPh$_3$)$_2$] 5, with reference to literature and an authentic sample. The minor peak, representing 5, at δ$_{P}$ 30.5 and that representing PPh$_3$ grew at expense of the peak representing 4, eventually becoming a major species over the course of 24 hours. This supported the notion that trans-[PdII(Br)(N,C$_2$-pyridyl)(PPh$_3$)$_2$] 4 forms initially as the kinetic oxidative addition product, which dimerises to trans-[PdII(Br)(N,C$_2$-pyridyl)(PPh$_3$)$_2$] 5 with release of PPh$_3$. The observation that trans-[PdII(Br)(N,C$_2$-pyridyl)(PPh$_3$)$_2$] 4 converts to [Pd(Br)(N,C$_2$-pyridyl)(PPh$_3$)$_2$] 5 over time at 25 °C, with release of free PPh$_3$ indicates that 5 is more thermodynamically stable than trans-[Pd(Br)(N,C$_2$-pyridyl)(PPh$_3$)$_2$]. This conversion may be due to increased stability of the dimeric which forms a 6-membered ring, known to adopt a boat conformation. There also may be an entropic contribution to this stability due to the increased solution disorder because of two molecules of monomer complex affording one dinuclear complex releasing two equivalents of PPh$_3$ for each dimerization reaction. It is notable that the more thermodynamically stable dimeric complex features substitution of dative bonds from the pyridine donor at expense of the PPh$_3$, the latter of which are known to bond more strongly with PdII than pyridines.

![Figure S10](image_url)

Figure S10 31P NMR (202.5 MHz, 298 K) tracking of the room temperature reaction between [Pd0(PPh$_3$)$_4$] and 2-bromopyridine in THF-d_8. (a.) [Pd0(PPh$_3$)$_4$] in the absence of 2-bromopyridine. (b.) ca. 20 minutes after addition of 2-bromopyridine (2.2 equivalents) (c.) 48 hours after addition of 2-bromopyridine.
3. X-Ray Diffraction Details

3.1. [Pd$_2$(μ-PPh$_2$){κ$_2$-P,O-μ-P(O)Ph$_2$}(κ-PPh$_3$)$_2$] (2)

![Figure 11 X-ray crystal structure of [Pd$_2$(μ-PPh$_2$){κ$_2$-P,O-μ-P(O)Ph$_2$}(κ-PPh$_3$)$_2$] (2)](image)

Table S1 X-ray diffraction data for 2

Empirical formula	C$_{60}$H$_{50}$OP$_4$Pd$_2$
Formula weight	1123.68
Temperature/K	109.95(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.3916(4)
b/Å	12.1359(5)
c/Å	23.1782(10)
α/°	78.881(4)
β/°	79.050(4)
γ/°	74.384(4)
Volume/Å3	2469.7(2)
Z 2

ρ_{calc} g/cm3 1.511

μ mm$^{-1}$ 7.422

$F(000)$ 1140.0

Crystal size/mm3 $0.171 \times 0.066 \times 0.046$

Radiation CuKα ($\lambda = 1.54184$)

2θ range for data collection/° 7.65 to 134.16

Index ranges -11 \leq h \leq 11, -12 \leq k \leq 14, -21 \leq l \leq 27

Reflections collected 16496

Independent reflections 8824 [R$_{\text{int}}$ = 0.0308, R$_{\text{sigma}}$ = 0.0437]

Data/restraints/parameters 8824/36/793

Goodness-of-fit on F^2 1.228

Final R indexes [I\geq2σ (I)] $R_1 = 0.0556$, $wR_2 = 0.1194$

Final R indexes [all data] $R_1 = 0.0629$, $wR_2 = 0.1226$

Largest diff. peak/hole / e Å$^{-3}$ 0.73/-0.65

CCDC number 2089316

Refinement Special Details

The asymmetric unit contained two half complexes, each of which were disordered about a center of inversion. The first complex had a common site for one palladium and one terminal phosphorus (Pd1 & P1), the rest of this complex was modelled in two positions with equal occupancy in each site.

The second complex was completely disordered about an inversion center located close to the midpoint between the two palladiums Pd2 & Pd3. Several constraints and restraints were applied to the structure as follows: The ADP of C2A, C2B, C9A, C9B, C43 and C73 were restrained to be approximately isotropic. The ADP of the following pairs of atoms which were close in space were constrained to be equal: C1A & C1B, C2A & C2B, C3A & C3B, C4A & C4B, C5A & C5B, C6A & C6B, C7A & C7B, C9A & C9B, C10A & C10B, C11A & C11B, C13A & C13B, C14A & C14B, C16A & C16B, C18A & C18B, C25A & C25B, C27A & C27B, C28A & C28B, C32 & C84, C37 & C85, C39 & C87, C43 & C73, C44 & C74, C54 & C72, C49 & C67, C51 & C69, C55 & C61.

All the phenyl rings were constrained to be regular hexagons with a C-C bond-length of 1.39 angstroms.
3.2. $[\text{Pd}_2(\mu-\text{PPh}_2)\{\kappa_2-\text{O},\text{O}-\mu-\text{P(O)}_2\text{Ph}_2\}\{\kappa-\text{PPh}_3\}_2] \ \ (3)$

Figure 12 X-ray crystal structure of $[\text{Pd}_2(\mu-\text{PPh}_2)\{\kappa_2-\text{P},\text{O}-\mu-\text{P(O)}\text{Ph}_2\}\{\kappa-\text{PPh}_3\}_2] \ \ (3)$
Table S2 X-ray diffraction data for [$\text{Pd}_2(\mu-\text{PPh}_2)(\kappa_2-\text{P},\text{O}-\mu-\text{P(O)Ph}_2)(\kappa-\text{PPh}_3)_2]$ (3)

Property	Value
Empirical formula	$\text{C}_{54}\text{H}_{51}\text{O}_3\text{P}_3\text{Pd}_2$
Formula weight	1053.66
Temperature/K	110.00(10)
Crystal system	monoclinic
Space group	P2$_1$/c
a/Å	11.8269(2)
b/Å	29.4867(5)
c/Å	14.1794(2)
α/°	90
β/°	108.7289(19)
γ/°	90
Volume/Å3	4683.01(14)
Z	4
ρ_{calc} g/cm3	1.494
μ/mm$^{-1}$	7.503
F(000)	2144.0
Crystal size/mm3	0.258 x 0.093 x 0.018
Radiation	CuKα ($\lambda = 1.54184$)
2Θ range for data collection/°	7.234 to 134.156
Index ranges	-14 ≤ h ≤ 12, -19 ≤ k ≤ 35, -16 ≤ l ≤ 15
Reflections collected	17077
Independent reflections	8345 [R$_{int} = 0.0266$, R$_{sigma} = 0.0369$]
Data/restraints/parameters	8345/20/577
Goodness-of-fit on F2	1.019
Final R indexes [I>=2σ (I)]	$R_1 = 0.0271$, wR$_2 = 0.0620$
Final R indexes [all data]	$R_1 = 0.0345$, wR$_2 = 0.0658$
Largest diff. peak/hole / e Å$^{-3}$	0.49/-0.52
CCDC number	1894929
Refinement Special Details
The THF of crystallization was disordered about the center of inversion with 0.5 molecules per asymmetric unit. C-C distances were restrained to be 1.50 angstroms and the C-O distances to 1.42 angstroms. The ADP of C61 and C64 were restrained to be approximately isotropic.
4.0. Computational studies: collated energies for complex 2

Density functional theory (DFT) methods were used to probe the structure of complex 2. All calculations were performed at the DFT level using the B3LYP functional6-10 in the Gaussian16(revision A.03) suite of programs.11 The def2-SVP basis set was used for all atoms,12,13 along with the SMD continuum model for tetrahydrofuran (\(\varepsilon=7.4257\)) as an implicit solvent.14 A superfine integration grid for all atoms was used throughout. The D3 version of Grimme’s dispersion corrections with Becke-Johnson damping15 were used throughout. The nature of stationary points was verified by frequency calculations, with minima having zero imaginary frequencies.

Zero-point correction= 0.923255\,(Hartree/Particle)
Thermal correction to Energy= 0.985919
Thermal correction to Enthalpy= 0.986863
Thermal correction to Gibbs Free Energy= 0.812272
Sum of electronic and zero-point Energies= -4010.389753
Sum of electronic and thermal Energies= -4010.327089
Sum of electronic and thermal Enthalpies= -4010.326145
Sum of electronic and thermal Free Energies= -4010.500736
4.1. NBO and Wiberg indices for complex (2)

Table S3 Natural charges of central Pd and P motif

Atom	Number	Natural charge	Natural Population (Valence)	Natural Population (Total)
O	111	-1.03692	7.02823	9.03692
P	112	0.95885	3.98255	14.04115
P	113	0.65119	4.28775	14.34881
P	114	1.33250	3.57306	13.66750
P	115	0.98384	3.95715	14.01616
Pd	116	-0.29871	10.29913	46.29871
Pd	117	-0.04577	10.04472	46.04577

The O 111 atom has a formal -1 charge, and there is no negative charge allocated to the P 113, as would be expected for this complex.

Table S4 Calculated electron configuration of the atoms in the central motif

Atom	Number	Electron Configuration
O	111	[core] 2S(1.77) 2p(5.26) 3p(0.01)
P	112	[core] 3S(1.20) 3p(2.78) 4S(0.01) 3d(0.03) 4p(0.02)
P	113	[core] 3S(1.28) 3p(3.01) 4S(0.01) 3d(0.03) 4p(0.02)
P	114	[core] 3S(1.13) 3p(2.44) 4S(0.01) 3d(0.06) 4p(0.03)
P	115	[core] 3S(1.19) 3p(2.77) 4S(0.01) 3d(0.03) 4p(0.02)
Pd	116	[core] 5S(0.48) 4d(9.47) 5p(0.35) 5d(0.01)
Pd	117	[core] 5S(0.42) 4d(9.34) 5p(0.29) 5d(0.01) 6p (0.01)

Table S5 Calculated Wiberg bond indices for atoms in the central motif

	111	112	113	114	115	116	117
O	0	0.005	0.1018	0.9477	0.0186	0.0644	0.2697
P	0.005	0	0.059	0.0286	0.0303	0.4581	0.0613
P	0.1018	0.059	0	0.106	0.0721	0.5573	0.6542
P	0.9477	0.0286	0.106	0	0.0284	0.4697	0.1624
P	0.0186	0.0303	0.0721	0.0284	0	0.072	0.4498
Pd	0.0644	0.4581	0.5573	0.4697	0.072	0	0.3167
Pd	0.2697	0.0613	0.6542	0.1624	0.4498	0.3167	0
The relevant bonds for the central motif have been colored red. There is a significant bond calculated to be between P 113 and the two Pd atoms, but only a small interaction between O 111 and Pd 117.

Table S6 Calculated Wiberg total bonds by atoms

Atom	Number	Wiberg total bonds
O	111	1.6054
P	112	3.5574
P	113	3.6341
P	114	3.5826
P	115	3.5886
Pd	116	2.2837
Pd	117	2.2325

The Wiberg total bond of 1.6 for O 111 implies a partial bond between O 111 and Pd 117. All P atoms are calculated to have partial (0.5) bonds to the Pd atoms.

Table S7 Natural Atomic Orbital (NAO) bond orders (idealised Lewis structure)

	111	112	113	114	115	116	117	
O								
111	O	0	0	-0.0047	0.8277	0.0057	0.0321	0.2308
112	P	0	0	0.0311	0.013	0	0.5526	0.0206
113	P	-0.005	0.0311	0	0.0015	0.0518	0.6142	0.6216
114	P	0.8277	0.013	0.0015	0	-0.0045	0.5684	0.2454
115	P	0.0057	0	0.0518	-0.005	0	0.0149	0.5337
116	Pd	0.0321	0.5526	0.6142	0.5684	0.0149	0	0.4737
117	Pd	0.2308	0.0206	0.6216	0.2454	0.5337	0.4737	0

Table S8 NAO bond order totals

Atom	Number	Bond order total
O	111	1.0640
P	112	3.1444
P	113	3.0233
P	114	3.2643
P	115	3.1312
Pd	116	2.6779
Pd	117	2.5728
Table S9 Natural Bond Orbitals information (bonding only)

Atom 1	Atom 2	Occupancy	Energy
O 111	P 114	1.98193	-0.82058
P 113	Pd 116	1.74116	-0.37201
P 113	Pd 117	1.77444	-0.24137
P 114	Pd 116	1.71374	-0.35895
P 115	Pd 117	1.88656	-0.40875

O 111 is calculated to have 3 lone pairs (occupancy 1.85500, 1.73775, 1.97655), indicating that there are only weak NBO bonding interactions between Pd 117 and O 111.
5. References

1. Scott, N. W. J.; Ford, M. J.; Schotes, C.; Parker, R. R.; Whitwood, A. C.; Fairlamb, I. J. S. The ubiquitous cross-coupling catalyst system ‘Pd(OAc)$_2$/2PPh$_3$ forms a unique dinuclear PdI complex: an important entry point into catalytically competent cyclic Pd$_3$ clusters. Chem. Sci. 2019, 10, 7898-7906.

2. Coulson, D. R. Ready cleavage of triphenylphosphine. Chem. Commun. 1968, 1530-1531.

3. Amatore, C.; Jutand, A.; M'Barki, M. A. Evidence of the Formation of Zerovalent Palladium from Pd(OAc)$_2$, and Triphenylphosphine. Organometallics 1992, 11, 3009-3013.

4. Berenblyum, A. S.; Aeeva, A. P.; Lakhman, L. I.; Moiseev, I. I. Mechanism of the formation of palladium complexes serving as catalysts in hydrogenation reactions. J. Organomet. Chem. 1982, 234, 237-248.

5. Dixon, K. R.; Rattray, A. D. Trinuclear palladium clusters: synthesis and phosphorus-31 nuclear magnetic resonance spectra of [Pd$_3$Cl$_2$(PPh$_3$)$_2$][BF$_4$] and related complexes. Inorg. Chem. 1978, 17, 1099-1103.

6. Fitton, P.; Rick, E. A. The addition of aryl halides to tetrakis(triphenylphosphine)palladium(0). J. Organomet. Chem. 1971, 28, 287-291.

7. Beeby, A.; Bettington, S.; Fairlamb, I. J. S.; Goeta, A. E.; Kapdi, A. R.; Niemelä, E. H.; Thompson, A. L. A new precatalyst for the Suzuki reaction—a pyridyl-bridged dinuclear palladium complex as a source of mono-ligated palladium(0). New J. Chem. 2004, 28, 600-605.

8. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785-789.

9. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

10. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.

11. Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

12. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

13. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

14. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009, 113, 6378–6396.

15. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.