POSITIVE CROSSRATIOS, BARYCENTERS, TREES AND APPLICATIONS TO MAXIMAL REPRESENTATIONS

M. BURGER, A. IOZZI, A. PARREAU, AND M. B. POZZETTI

Abstract. We study metric properties of maximal framed representations of fundamental groups of surfaces in symplectic groups over real closed fields, interpreted as actions on Bruhat–Tits buildings endowed with adapted Finsler norms. We prove that the translation length can be computed as intersection with a geodesic current, give sufficient conditions guaranteeing that such a current is a multicurve, and, if the current is a measured lamination, construct an isometric embedding of the associated tree in the building. These results are obtained as application of more general results of independent interest on positive crossratios and actions with compatible barycenters.

1. Introduction

Maximal framed representations in real closed fields. Let $\Sigma := \Gamma \backslash \mathcal{H}^2$ be the quotient of the Poincaré upper half plane \mathcal{H}^2 by a torsion-free lattice $\Gamma < \text{PSL}(2, \mathbb{R})$ and let G be a simple real algebraic group. The aim of Higher Teichmüller Theory is to single out and study special components or specific semialgebraic subsets of the representation variety $\text{Hom}(\Gamma, G)$ that consist of injective homomorphisms with discrete image; such components thus generalize
the Teichmüller space. Prominent examples are Hitchin components for real split groups \(G \) (for example \(G = \text{PSL}(n, \mathbb{R}) \) or \(\text{PSp}(2n, \mathbb{R}) \)), maximal representations for Hermitian groups \(G \) (for example \(G = \text{PU}(p, q) \) or \(\text{PSp}(2n, \mathbb{R}) \)) and \(\Theta \)-positive representations for \(G = \text{PO}(p, q) \). The goal of this paper is to study asymptotic properties of maximal representations into \(\text{PSp}(2n, \mathbb{R}) \) with the aid of geodesic currents. This applies in particular to the \(\text{PSp}(2n, \mathbb{R}) \)-Hitchin component if \(\Sigma \) is compact.

In the study of appropriate compactifications of character varieties, representations of \(\Gamma \) into algebraic groups over non-Archimedean real closed fields play an important role [Bru88, Ale08, Par12, BP17, BIPP21c]: for example, ultralimits of representations in \(\text{PSp}(2n, \mathbb{R}) \) can be understood as representations \(\rho_{\omega, \sigma} : \Gamma \to \text{PSp}(2n, \mathbb{R}_{\omega, \sigma}) \), where \(\mathbb{R}_{\omega, \sigma} \) is a Robinson field (see §8.1 and [Par12]). However, the viewpoint of the real spectrum compactification of character varieties leads typically to the study of representations into real closed fields \(\mathbb{F} \) that are small when compared to Robinson fields, for example \(\mathbb{F} \) is often of finite transcendence degree over the field of real algebraic numbers.

Given a representation \(\rho : \Gamma \to \text{PSp}(2n, \mathbb{F}) \) where \(\mathbb{F} \) is a general real closed field, having a maximal Toledo invariant as defined in [BIPP21c, Definition 18], admitting a maximal framing defined on a \(\Gamma \)-invariant non-empty subset of \(\partial \mathcal{H}^2 \), or admitting a maximal framing defined on the set of fixed points of hyperbolic elements are all equivalent conditions [BIPP21b] (see [BIPP21c, Theorem 20] for a precise statement). This paper solely relies upon the third definition, which we now recall. If \(\mathbb{F}^{2n} \) is endowed with the standard symplectic form, let \(\mathcal{L}(\mathbb{F}^{2n}) \) be the space of Lagrangians in \(\mathbb{F}^{2n} \). The Maslov cocycle (see §6.4 and [LV80]) classifies the orbits of \(\text{PSp}(2n, \mathbb{F}) \) on triples of pairwise transverse Lagrangians. Such a triple is maximal if the cocycle takes its maximal value \(n \). Let \(\partial \mathcal{H}^2 \) be the boundary of the hyperbolic plane, which we endow with the cyclic ordering on triples of points induced by the orientation of \(\mathcal{H}^2 \).

Definition 1.1. Let \(\mathcal{H}_{\Gamma} \subset \partial \mathcal{H}^2 \) be the set of fixed points of hyperbolic elements of \(\Gamma \). A representation \(\rho : \Gamma \to \text{PSp}(2n, \mathbb{F}) \) is maximal framed if there is a \(\rho \)-equivariant map \(\varphi : \mathcal{H}_{\Gamma} \to \mathcal{L}(\mathbb{F}^{2n}) \) sending positively oriented triples in \(\mathcal{H}_{\Gamma} \) to maximal triples of Lagrangians.
We assume that the real closed field F admits an order compatible \mathbb{R}-valued valuation v with value group $\Lambda = v(F^\times) < \mathbb{R}$. Then the group $\text{PSp}(2n, F)$ acts by isometries on a Λ-metric space \mathcal{B}_n^F obtained as quotient of the Siegel upper half space \mathbb{H}_n^F associated to $\text{PSp}(2n, F)$ (see §6.2 and [BIPP21c, § 3.4]). If $F = \mathbb{R}$, $\mathcal{B}_n^\mathbb{R}$ coincides with $\mathbb{H}_n^\mathbb{R}$, while if F is non-Archimedean this metric space \mathcal{B}_n^F sits naturally inside the Bruhat-Tits building associated to $\text{PSp}(2n, F)$ as a dense subset. The latter relationship will play no role in this paper, but will be discussed in detail in [BIPP21a] (see also [BIPP21c, §2.1] and [KT04]).

The translation length of an element $g \in \text{PSp}(2n, F)$ acting on \mathcal{B}_n^F induces then the length function

$$L(g) := -2 \sum_{i=1}^{n} v(|\lambda_i|),$$

where $\lambda_1, \ldots, \lambda_n, \lambda_1^{-1}, \ldots, \lambda_1^{-1} \in F(\sqrt{-1})$ are the eigenvalues of a representative $\overline{g} \in \text{Sp}(2n, F)$ of $g \in \text{PSp}(2n, F)$ counted with multiplicity and ordered in such a way that $|\lambda_1| \geq \cdots \geq |\lambda_n| \geq 1$. Here we denote by $|\cdot|: F(\sqrt{-1}) \to F_+$ the absolute value, that is the square root of the norm function on the quadratic extension $F(\sqrt{-1})$ of F.

In our first result we construct a geodesic current on Σ encoding the length function $\gamma \mapsto L(\rho(\gamma))$ of a maximal framed representation. Recall that a geodesic current is a Γ-invariant positive Radon measure on the space $(\partial \mathcal{H}^2)^{(2)}$ of pairs of distinct points in $\partial \mathcal{H}^2$. The Bonahon intersection $i(\mu, \lambda)$ of two geodesic currents μ and λ extends the topological intersection number of homotopy classes of curves on Σ: in fact a (non-oriented) closed geodesic $c \subset \Sigma$ gives rise to the current $\delta_c := \frac{1}{2} \sum_{(a, b)} \delta_{(a, b)}$, where we sum on the set of oriented geodesics $(a, b) \in (\partial \mathcal{H}^2)^{(2)}$ lifting c. For such currents $i(\delta_c, \delta_{c'})$ is the topological intersection number of $[c]$ and $[c']$.

Theorem 1.2. Let F be a real closed field with an order compatible valuation v and let $\rho: \Gamma \to \text{PSp}(2n, F)$ be maximal framed. Then there is a geodesic current μ_ρ such that,

1In [BIPP21c] denoted with $\mathcal{B}_{\text{PSp}(2n, F)}$.

2Note, however, that the metric that we consider here is only biLipschitz to the restriction of the CAT(0) metric on the Bruhat-Tits building. See §6.2 for the Finsler metric relevant to our purposes.
for any closed geodesic $c \subset \Sigma$ and for every $\gamma \in \Gamma$ representing c,

\[(1) \quad i(\mu_\rho, \delta_c) = L(\rho(\gamma)).\]

The current μ_ρ is non-zero if and only if there exists $\gamma \in \Gamma$ with $\nu(\text{tr}(\rho(\gamma))) < 0$.

If $n = 1$, $F = \mathbb{R}$ and $\rho : \Gamma \to \text{PSL}(2, \mathbb{R})$ is the lattice embedding, then μ_ρ is the Liouville current [Bon88], that is the unique $\text{PSL}(2, \mathbb{R})$-invariant geodesic current. If Σ is compact and $F = \mathbb{R}$, Theorem [1,2] was proven by Martone–Zhang [MZ19, Theorem 1.1]. Notice that in the case of $\text{SL}(2, F)$ μ_ρ is always a measured lamination (see § 8.2).

For the next result we will need the notion of systole of a maximal framed representation ρ (following [BIPP19])

\[\text{Syst}(\rho) := \inf \{L(\rho(\gamma)) : \gamma \in \Gamma, \gamma \text{ hyperbolic}\}.\]

The systole of any real maximal framed representation $\rho : \Gamma \to \text{PSp}(2n, \mathbb{R})$ is positive (see § 7.3). On the other hand, for non-Archimedean real closed fields F, many different possibilities can happen: if Σ is compact, all maximal framed representations $\rho : \Gamma \to \text{SL}(2, F)$ have vanishing systole (since μ_ρ is a measured lamination), while, in higher rank, there are many examples of non-Archimedean maximal framed representations with positive systole (see [BIPP19, Corollary 1.11]). For these representations we have:

Corollary 1.3. Assume that Σ is compact, and F is non-Archimedean. Let $\rho : \Gamma \to \text{PSp}(2n, F)$ be a maximal framed representation. If $\text{Syst}_\Sigma(\rho) > 0$, then for every $x \in \mathcal{B}_n^F$ the orbit map

\[\Gamma \to \mathcal{B}_n^F,\]

\[x \mapsto \rho(\gamma)x\]

is a quasi-isometric embedding.

We now give a robust criterion guaranteeing that the current μ_ρ is atomic. We say that a geodesic current is a **multicurve** if it is a finite sum of Γ-orbits of Dirac masses on (lifts of) closed geodesics and geodesics with endpoints in cusps.
Theorem 1.4. Let $\rho: \Gamma \to \text{Sp}(2n, F)$ be maximal framed and let $Q(\rho) < F$ be the field generated over Q by matrix coefficients of ρ. If the restriction of $v: F^\times \to \mathbb{R}$ to $Q(\rho)$ is discrete, then, up to rescaling, the associated current μ_ρ is a multicurve.

Using Strubel coordinates we construct examples of representations to which Theorem 1.4 applies (see §8.3). Moreover we prove in [BIPP21b] that a maximal framed representation $\rho: \Gamma \to \text{Sp}(2n, F)$ is always conjugate to a representation $\rho': \Gamma \to \text{Sp}(2n, F_1)$ for a finite extension F_1 of the field $Q(\text{tr}(\rho))$ generated by the traces of the representation ρ. As a result, Theorem 1.4 applies as soon as the field $Q(\text{tr}(\rho))$ generated by the traces of the representation ρ has discrete valuation; using this we show in [BIPP21b] that multicurves are dense in both the real spectrum and Weyl chamber length compactifications of character varieties of maximal representations.

We turn now to the case in which the current μ_ρ in Theorem 1.2 is a measured lamination. In this case we denote by $\mathcal{T}(\mu_\rho)$ the associated \mathbb{R}-tree, and by $\mathcal{V}(\mu_\rho)$ its vertex set (see §2.3 for the definition). We have then

Theorem 1.5. Let F be non-Archimedean real closed and let $\rho: \Gamma \to \text{Sp}(2n, F)$ be a maximal framed representation. If the associated current μ_ρ is a measured lamination, then there is a Γ-equivariant isometric embedding

$$\mathcal{V}(\mu_\rho) \hookrightarrow \mathcal{B}_n^F.$$

We will see that if $Q(\rho)$ has discrete valuation, then $\mathcal{V}(\mu_\rho)$ is the vertex set of a simplicial tree (see §7.3 for a general statement).

Currents associated to positive crossratios. The proof of Theorem 1.2 relies on an abstract framework that is applicable to more general situations and that we shortly describe here. Let $X \subset \partial \mathbb{H}^2$ be a Γ-invariant non-empty subset, such as, for example the set \mathcal{H}_Γ of fixed points of hyperbolic elements in Γ and let $X^{[4]}$ denote the set of positively ordered quadruples in X. A positive crossratio is a Γ-invariant function

$$[\cdot, \cdot, \cdot, \cdot]: X^{[4]} \to [0, \infty),$$

that is flip-invariant

$$[x_1, x_2, x_3, x_4] = [x_3, x_4, x_1, x_2].$$
and satisfies the property
\[[x_1, x_2, x_4, x_5] = [x_1, x_2, x_3, x_5] + [x_1, x_3, x_4, x_5] \]
whenever defined. Our definition is considerably more general than others existing in the literature (see Remark 3.2 for a comparison). First we only require our crossratio to be defined on a dense subset X of the boundary of the hyperbolic plane: this is important for some of the applications. For example, if the field F is countable, also $\mathcal{L}(F^n)$ is countable, and thus a maximal framing associated to a representation $\rho: \Gamma \to \text{Sp}(2n, F)$, as well as the induced crossratio, can only be defined on a countable set. Furthermore some representations, as for example those defined via Fock–Goncharov or shear coordinates, only have a framing defined on a countable set not including the fixed points of hyperbolic elements. Second we do not require any continuity on our crossratio. In many interesting examples, the crossratios arising from representations over non-Archimedean real closed fields are integer valued, and thus cannot be continuous. Dropping the continuity assumption on the crossratio also allows us to encompass the theory of crossratios arising from actions on trees (see Example 3.5).

If $\gamma \in \Gamma$ is hyperbolic and $\{\gamma_-, \gamma_+\} \subset X$, the period\footnote{See §3.3 for a more general definition of the period without the restriction that $\{\gamma_-, \gamma_+\} \subset X$.} $\text{per}(\gamma)$ of γ with respect to $[\cdot, \cdot, \cdot, \cdot]$ is defined by
\[\text{per}(\gamma) = [\gamma_-, x, \gamma x, \gamma_+], \]
where $x \in X$ is any point such that $(\gamma_-, x, \gamma x, \gamma_+) \in X^4$. We show:

Theorem 1.6. Let $X \subset \partial \mathbb{H}^2$ be a Γ-invariant non-empty subset and $[\cdot, \cdot, \cdot, \cdot]$ a positive crossratio on X. Then there is a geodesic current μ on Σ such that for all hyperbolic $\gamma \in \Gamma$
\[\text{per}(\gamma) = i(\mu, \delta_c). \]
The geodesic current μ depends continuously on the crossratio $[\cdot, \cdot, \cdot, \cdot]$. The theorem has been previously shown by Martone–Zhang under the hypothesis that $X = \partial \mathbb{H}^2$ and the crossratio is continuous \[\text{[MZ19]}\]. For the last statement we consider the space $\text{CR}^+(X)$ of positive crossratios as a closed
convex cone in the topological vector space of crossratios on X with the topology of pointwise convergence. This last property will be used in the proof of the continuity of the map which to a point in the real spectrum compactification of maximal representations associates a geodesic current [BIPP21a]; see also [BIPP21c, Theorem 36].

The proof of Theorem 1.6 bypasses the possible discontinuities of the crossratio $[\cdot, \cdot, \cdot, \cdot]$ by forcing inner and outer regularity of the current μ and using its σ-additivity. As an application of the explicit construction we obtain:

Corollary 1.7. If the crossratio $[\cdot, \cdot, \cdot, \cdot]$ is integral valued, then the current μ is a multicurve.

To deduce Theorems 1.2 and 1.4 from Theorem 1.6 and Corollary 1.7, we use the maximal framing to construct a positive crossratio $[\cdot, \cdot, \cdot, \cdot]_p$ on \mathcal{H}_Γ whose periods satisfy the equality $\text{per}(\gamma) = L(\rho(\gamma))$. Then Theorem 1.6 provides a geodesic current with the required properties.

Maximal representations are not the only class of representations whose length function is given by the periods of a positive crossratio: this is the case for all positively ratioed representations [MZ19] — a class that also includes Hitchin representations [Lab07], representations satisfying property H_k [BP20] and Θ-positive representations [BP21]. Corollary 1.7 can be used to study asymptotic properties of these representations as well.

Our approach using σ-additivity of geodesic currents has interesting applications even for representations in $\text{PSp}(2n, \mathbb{R})$, for which we cannot always assume that the crossratio is continuous. The simplest instance is for $\text{PSL}(2, \mathbb{R})$ if ρ sends an element representing a cusp of Γ to a hyperbolic element.

Corollary 1.8. Let $\rho: \Gamma \to \text{PSp}(2n, \mathbb{R})$ be a maximal representation and let $\mathcal{K} \subset \Sigma = \Gamma \backslash \mathcal{H}^2$ be a compact subset. Then there are constants $0 < c_1 \leq c_2$ such that for every $\gamma \in \Gamma$ representing a closed geodesic c contained in \mathcal{K}

$$c_1 \ell(c) \leq L(\rho(\gamma)) \leq c_2 \ell(c).$$

In particular this holds uniformly for all γ representing simple closed geodesics.
This corollary is well known for Anosov representations. However if Σ is not compact, a maximal representation is not necessarily Anosov since the images of parabolic elements can be unipotent (see for instance §8.3).

Actions with compatible barycenters. The proof of Theorem 1.5 is carried out in the framework of actions with compatible barycenters that we now define. Given an isometric Γ-action on a metric space (X, d), we say that a map $\beta: X^{(3)} \rightarrow X$ from the set $X^{(3)}$ of distinct triples in X to X is a *barycenter compatible with the crossratio* $[\cdot, \cdot, \cdot, \cdot]$ if β is S_3-invariant, Γ-equivariant and for every $(a, b, c, d) \in X^{(4)}$, we have

$$[a, b, c, d] = d(\beta(a, b, d), \beta(a, c, d)).$$

We show then:

Theorem 1.9. Let $X \subset \partial H^2$ be a Γ-invariant non-empty subset and $[\cdot, \cdot, \cdot, \cdot]$ a positive crossratio on X. Assume that the geodesic current μ associated by Theorem 1.6 to the positive crossratio $[\cdot, \cdot, \cdot, \cdot]$ corresponds to a measured lamination. Then for every isometric Γ-action on a metric space X admitting a barycenter compatible with the crossratio $[\cdot, \cdot, \cdot, \cdot]$, there is an isometric Γ-equivariant map

$$\mathcal{V}(\mu) : X \rightarrow X.$$

We will see that Theorem 1.9 always applies to a framed action of Γ on an \mathbb{R}-tree T if the crossratio $[\cdot, \cdot, \cdot, \cdot]$ induced by the action is positive (Proposition 5.8). This crossratio is always positive in the case of the action on B^F_1 induced by a maximal framed representation in $\text{SL}(2, F)$ (Theorem 8.1).

When $\rho: \Gamma \rightarrow \text{Sp}(2n, F)$ is a maximal framed representation, we will use the geometry of the Siegel space to define a barycenter map associating to every maximal triple (ℓ_1, ℓ_2, ℓ_3) of Lagrangians a point $B(\ell_1, \ell_2, \ell_3) \in B^F_n$. Given a representation $\rho: \Gamma \rightarrow \text{Sp}(2n, F)$ with maximal framing $\varphi: X \rightarrow \mathcal{L}(F^{2n})$, we will show that the map

$$\beta(a, b, c) = B(\varphi(a), \varphi(b), \varphi(c))$$

defines a barycenter compatible with the crossratio $[\cdot, \cdot, \cdot, \cdot]_\rho$ previously defined. Thus Theorem 1.9 applies whenever μ_ρ corresponds to a measured...
lamination. Using [BIPP19 Corollary 1.9] we can find a collection of maximal subsurfaces \(\Sigma' \subset \Sigma \) such that Theorem 1.9 holds for the restriction of \(\rho \) to \(\Sigma' \).

Structure of the paper. In §2 we discuss preliminaries on geodesic currents and measured laminations. The new result is Proposition 2.1 that gives an useful 4-point characterization of measured laminations among geodesic currents that only involves a dense subset of \(\partial \mathcal{H}^2 \). In §3 we introduce positive crossratios and the associated periods. In §4 we construct the geodesic current associated to such a crossratio. Theorem 1.6 follows directly combining Propositions 4.3, 4.8 and 4.10 which are proven in this section. Corollary 1.7 follows from Proposition 4.12. In §5 we discuss barycenter maps, and prove Theorem 1.9. In §6 we review the geometry of the Siegel space over real closed fields from [BP17], using this we associate to a maximal framed action on the \(\Lambda \)-metric space \(B^F_n \) a positive crossratio (Proposition 6.5), as well as a compatible barycenter map (§6.7). In §7 we prove the results on maximal framed representations: Theorems 1.2, 1.4, 1.5 and Corollaries 1.3 and 1.8. §8 collects interesting examples of maximal framed representations, illustrating various phenomena.

2. On geodesic currents and measured laminations

In this section we recall the notions of geodesic currents and their Bonahon intersection (§2.1); then we establish a criterion for the support of a geodesic current to be a geodesic lamination (§2.2); we end by recalling the definition of the tree \(T(\mu) \) associated to a current \(\mu \) of lamination type in terms of the straight pseudodistance (see [BIPP19 Section 4]) on \(\mathcal{H}^2 \) associated to a general current.

Let \(\Sigma := \Gamma \backslash \mathcal{H}^2 \) be a hyperbolic surface of finite area and denote by \(\text{pr} : \mathcal{H}^2 \rightarrow \Sigma \) the covering map. The boundary \(\partial \mathcal{H}^2 \) of \(\mathcal{H}^2 \) is endowed with the natural cyclic order. For \((a, b) \in (\partial \mathcal{H}^2)^2 \) with \(a \neq b \), we will denote the associated open interval in \(\partial \mathcal{H}^2 \) by

\[
I_{(a,b)} := \{ x \in \partial \mathcal{H}^2 : (a, x, b) \text{ is positively oriented} \},
\]

and the left half open interval \(I_{(a,b)} \), right half open interval \(I_{(a,b)} \) and closed interval \(I_{[a,b]} \) accordingly, so for example

\[
I_{[a,b]} = \{ a \} \cup I_{(a,b)}.
\]
Given a subset $A \subset \partial \mathbb{H}^2$, we will denote:

$$A^{[4]} := \{ (x, y, z, t) \in A^4 : (x, y, z, t) \text{ is positively oriented} \}.$$

2.1. Geodesic currents. A geodesic current is a flip-invariant Γ-invariant positive Radon measure on the set of (oriented) geodesics in \mathbb{H}^2, which we identify with

$$(\partial \mathbb{H}^2)^{(2)} := \{ (x, y) \in (\partial \mathbb{H}^2)^2 : x \neq y \}.$$

Given a (non-oriented) geodesic $c \subset \Sigma$ that is either closed or joining two cusps, δ_c will be the geodesic current given by

$$\delta_c := \frac{1}{2} \sum_{(a, b)} \delta_{(a, b)}$$

where we sum on the set of oriented geodesics $(a, b) \in (\partial \mathbb{H}^2)^{(2)}$ lifting c.

Two geodesics $(a, b), (a', b') \in (\partial \mathbb{H}^2)^{(2)}$ are transverse if they intersect in a point. The group $\text{PSL}(2, \mathbb{R})$, hence Γ, acts properly on the open subset $G \subset (\partial \mathbb{H}^2)^{(2)} \times (\partial \mathbb{H}^2)^{(2)}$ of transverse pairs of geodesics. The Bonahon intersection $i(\mu, \nu)$ of two geodesic currents μ and ν is the (possibly infinite) $\mu \times \nu$-measure of any Borel fundamental domain for Γ in G. Note that, when ν has compact carrier4, $i(\mu, \nu)$ is finite. In order to simplify notations, we set

$$i(\mu, c) := i(\mu, \delta_c)$$

for all closed geodesic $c \subset \Sigma$.

2.2. Measured laminations and μ-short geodesics. We refer to [Mar, §8.3.4] for preliminaries on measured laminations. The equivalence between (1) and (2) in the next proposition is classical; we establish that the two conditions are also equivalent to (4), an additional 4-point characterization that uses only a dense subset of $\partial \mathbb{H}^2$.

Proposition 2.1. Let μ be a geodesic current and X a dense subset of $\partial \mathbb{H}^2$. The following are equivalent.

1. $\text{supp}(\mu)$ is a lamination;

We recall that the carrier of a geodesic current μ is the closed subset $\text{pr}(\bigcup_{g \in \text{supp}(\mu)} g) \subset \Sigma$. The hypothesis that ν has compact carrier ensures that $i(\mu, \nu) < \infty$ and is needed in the proofs of the continuity of the Bonahon intersection.
(2) \(i(\mu, \mu) = 0 \);

(3) \(\mu(I_{(d,a]} \times I_{(b,c]} : \mu(I_{(a,b]} \times I_{(c,d]}) = 0 \) for all \((a, b, c, d) \) in \((\partial \mathbb{H}^2)^2 \);

(4) \(\mu(I_{(d,a]} \times I_{(b,c]} : \mu(I_{(a,b]} \times I_{(c,d]}) = 0 \) for all \((a, b, c, d) \) in \(X^4 \).

Such a current will be called of lamination type

Proof: We first show (1) implies (2): if \(i(\mu, \mu) > 0 \) then there exist open subsets \(A, B \) of \((\partial \mathbb{H}^2)^2 \) with \(A \times B \subset \mathcal{G} \) and

\[(\mu \times \mu)(A \times B) = \mu(A) \mu(B) > 0, \]
hence \(\mu(A), \mu(B) > 0 \). Then there exists \(g \in A \cap \text{supp}(\mu) \) and \(g' \in B \cap \text{supp}(\mu) \). Since \(A \times B \subset \mathcal{G} \), in particular \(g \) and \(g' \) intersect in a point, hence \(\text{supp}(\mu) \) is not a lamination.

We now prove that (2) implies (3): since \(i(\mu, \mu) = 0 \), we have \((\mu \times \mu)(A \times B) = 0 \) for all transverse Borel subsets \(A, B \) of \((\partial \mathbb{H}^2)^2 \) (namely every pair of geodesics \((a, b) \in A \), \((a', b') \in B \) intersect in one point). The claim follows as \(A = I_{(d,a]} \times I_{(b,c]} \) and \(B = I_{(a,b]} \times I_{(c,d]} \) are transverse.

It is clear that (3) implies (4).

Suppose now (4). Let \(g, g' \) be two geodesics in \(\text{supp}(\mu) \). If they are transverse, then \(g = (x, y), g' = (x', y') \) with \((x, x', y, y') \) positively oriented. Then by density of \(X \) there exists \((a, b, c, d) \) in \(X^4 \) such that \((x, a, x', b, y, c, y', d) \) is positively oriented. Then \(g \in I_{(d,a]} \times I_{(b,c]} \) and \(g' \in I_{(a,b]} \times I_{(c,d)}, \) and as \(g, g' \) are in the support of \(\mu \), we have \(\mu(I_{(d,a]} \times I_{(b,c]})) > 0 \) and \(\mu(I_{(a,b]} \times I_{(c,d]}) > 0 \), a contradiction. Hence \(\text{supp}(\mu) \) is a lamination, proving (1).

An important concept in [BIPP19] was that of \(\mu \)-short geodesic, namely a geodesic not intersecting in a point any geodesic in the support of \(\mu \); observe that a geodesic \((a, b) \) is \(\mu \)-short if and only if

\[\mu(I_{(a,b]} \times I_{(b,a]}) = 0. \]

It follows from Proposition 2.1 that if the current \(\mu \) is of lamination type, its support consists of \(\mu \)-short geodesics.

5While in the introduction we identified with a slight abuse of notation measured laminations with currents with zero self intersection, we prefer to keep the objects distinct for the rest of the paper.
2.3. **The tree associated to a current of lamination type.** We now recall the construction of the tree $\mathcal{T}(\mu)$ associated to a current μ of lamination type. We chose here a description adapted to our purposes, but this agrees with the standard construction described, for example, in [MS91] and [Kap09, §11.12].

Given a geodesic current μ, we consider the straight pseudodistance on \mathcal{H}^2 [BIPP19, § 4]

$$d_\mu(x, y) = \frac{1}{2} \left\{ \mu(G_{(x,y)}^\circ) + \mu(G_{(x,y)}^\circ) \right\}$$

where for a possibly empty geodesic segment $I \subset \mathcal{H}^2$ we define

$$G_{I}^\circ = \{(g_-, g_+) \in (\partial \mathcal{H}^2)^2 : |g \cap I| = 1\}$$

as the set of geodesics g that intersect transversely the geodesic segment I.

If μ is of lamination type, then the quotient metric space $X_\mu = \mathcal{H}^2 / \sim$, obtained by identifying points at d_μ-distance zero, is 0-hyperbolic in the sense of Gromov and can therefore be canonically embedded in a minimal \mathbb{R}-tree $T(\mu)$. We will denote by $V(\mu)$ the image in $T(\mu)$ of the complementary regions R of supp(μ). It corresponds to the set of branching points of $T(\mu)$.

Since μ is Γ-invariant, the group Γ acts on $T(\mu)$ and therefore on $V(\mu)$ by isometries. A direct consequence of the definition of Bonahon intersection is that, for this action,

$$\ell_{\mathcal{T}(\mu)}(\gamma) = \iota(\mu, \delta_c)$$

for hyperbolic γ representing a closed geodesic c.

3. Positive crossratios

In this section we introduce the notion of positive crossratio $[\cdot, \cdot, \cdot, \cdot]$, prove that its periods are well defined, and discuss examples.

3.1. Positive crossratios

Let $\Sigma = \Gamma \backslash \mathcal{H}^2$ be a finite area hyperbolic surface and let $\Gamma < \text{PSL}(2, \mathbb{R})$ be its fundamental group realized as a torsion-free lattice in $\text{PSL}(2, \mathbb{R})$.

Definition 3.1. Let $X \subset \partial \mathcal{H}^2$ be a Γ-invariant non-empty subset. A *crossratio* on X is a real valued function $[\cdot, \cdot, \cdot, \cdot]$ defined on X^4 satisfying the following properties:

- (CR1) it is Γ-invariant;
(CR2) \([x, y, z, t] = [z, t, x, y]\) for all \((x, y, z, t) \in X^4\);

(CR3) \([x, y, z, t] + [x, z, w, t] = [x, y, w, t]\) whenever \((x, y, z, w, t)\) is positively oriented.

The crossratio is in addition positive if

(CR4) \([x, y, z, t] \geq 0\) for all \((x, y, z, t) \in X^4\).

Remark 3.2. There are many different non-equivalent notions of crossratio available in the literature, and there is no standard choice of the order of the arguments of the function \([\cdot, \cdot, \cdot, \cdot]\). More specifically

- if \(B(\cdot, \cdot, \cdot, \cdot)\) is a crossratio according to [MZ19, Definition 2.4] (which agrees with [Led95, Definition 1.f]), then

\([a, b, c, d] = B(a, d, c, b)\)

is a crossratio according to Definition 3.1. However, we do not require continuity, and our crossratio is defined only on a smaller set.

- if \(Cr(\cdot, \cdot, \cdot, \cdot)\) is a crossratio according to [Ham97, p. 1], then

\([a, b, c, d] = \log Cr(b, c, d, a)\)

is a crossratio according to Definition 3.1. However, in [Ham97, p. 1] the crossratio is Hölder continuous.

- if \(B(\cdot, \cdot, \cdot, \cdot)\) is a crossratio according to [Lab07, p. 1], then

\([a, b, c, d] = \log B(a, c, d, b)\)

is a crossratio according to Definition 3.1. However, the definition in [Lab07, p. 1] requires Hölder continuity and a much stronger positivity than what we impose, namely the strict inequality in (CR4).

As a direct consequence of (CR3), positive crossratios have the following monotonicity property

Lemma 3.3. For all \((x_1, x_2, x_3, x_4)\) and \((x'_1, x'_2, x'_3, x'_4)\) in \(X^4\) such that

\[I(x_4, x_1) \subset I(x'_4, x'_1)\quad \text{and} \quad I(x_2, x_3) \subset I(x'_2, x'_3),\]

we have

\[[x_1, x_2, x_3, x_4] \leq [x'_1, x'_2, x'_3, x'_4].\]
To gain some intuition on the properties (CR2) and (CR3), we recall that if \(x, y, z, t \in \partial H^2 = \mathbb{R} \cup \{\infty\} \) and
\[
[x, y, z, t] = \ln \frac{(x - z)(y - t)}{(x - y)(z - t)}
\]
is the logarithm of the usual crossratio, the Liouville measure \(\mathcal{L} \) has the property that
\[
(3) \quad \mathcal{L}(I_{[t, x]} \times I_{[y, z]}) = [x, y, z, t].
\]
Thus (CR2) corresponds to the flip-invariance of \(\mathcal{L} \)
\[
\mathcal{L}(I_{[t, x]} \times I_{[y, z]}) = \mathcal{L}(I_{[y, z]} \times I_{[t, x]})
\]
and (CR3) to additivity
\[
\mathcal{L}(I_{[t, x]} \times I_{[y, w]}) = \mathcal{L}(I_{[t, x]} \times I_{[y, z]}) + \mathcal{L}(I_{[t, x]} \times I_{[z, w]})
\]
since
\[
\mathcal{L}(I_{[t, x]} \times \{z\}) = 0.
\]

3.2. Examples

There are two natural crossratios associated to a geodesic current:

Example 3.4. If \(\mu \) is a current, it is easily checked that
\[
[a, b, c, d]_\mu^+: = \mu(I_{[d, a]} \times I_{[b, c]})
\]
defines a positive crossratio on \(\partial H^2 \). Similarly,
\[
[a, b, c, d]_\mu^- := \mu(I_{[d, a]} \times I_{[b, c]})
\]
defines a positive crossratio on \(\partial H^2 \). Note that these two crossratios may be different (for example this is the case if \(\mu = \delta_c \) for some closed geodesic \(c \)).

Framed actions on trees give other fundamental examples of crossratios:

Example 3.5. If \(T \) is a real tree, we denote by \([\cdot, \cdot, \cdot, \cdot]_T \) the usual crossratio on the boundary \(\partial_{\infty} T \) of the tree \(T \): for every pairwise distinct \((a, b, c, d) \in \partial_{\infty} T^4\), \([a, b, c, d]_T \) is the signed distance, on the oriented geodesic from \(a \) to \(d \), from the
orthogonal projection $\beta_T(a, b, d)$ of b to the orthogonal projection $\beta_T(a, c, d)$ of c. Note that

$$|[a, b, c, d]_T| = d(\beta_T(a, b, d), \beta_T(a, c, d))$$

where d denotes the distance in T.

A framed action of Γ on T is an action by isometries $\rho: \Gamma \to \text{Isom}(T)$ admitting an injective equivariant map (a framing) $\phi: X \to \partial_\infty T$ where X is some Γ-invariant non-empty subset of $\partial_\infty \mathcal{H}^2$. Then the crossratio $[\cdot, \cdot, \cdot, \cdot]_T$ on $\partial_\infty T$ induces a crossratio $[\cdot, \cdot, \cdot, \cdot]_{\phi}$ on X defined by

$$[x_1, x_2, x_3, x_4]_{\phi} := [\phi(x_1), \phi(x_2), \phi(x_3), \phi(x_4)]_T$$

for every $(x_1, x_2, x_3, x_4) \in X^4$.

Example 3.6. An example of such situation is given by the Γ-action on the \mathbb{R}-tree $T(\mu)$ associated to a current of lamination type. Let $X \subset \partial_\infty \mathcal{H}^2$ be the set of fixed point of hyperbolic elements whose axis are transverse to the geodesic lamination $\text{supp}(\mu)$. Then for every such $\gamma \in \Gamma$ with $\{\gamma_-, \gamma_+\} \subset X$, the element γ acts on $T(\mu)$ with strictly positive translation length $\ell_{T(\mu)}(\gamma) = i(\mu, \delta_c)$ (see §2.3) and has thus an attractive fixed point $\phi(\gamma_+)$ and a repulsive one $\phi(\gamma_-)$ in $\partial_\infty T(\mu)$. Then $\phi: X \to \partial_\infty T(\mu)$ is a framing and it follows from the definition of the distance on $T(\mu)$ that

$$\mu(I_{[x_4, x_1]} \times I_{[x_2, x_3]}) = [\phi(x_1), \phi(x_2), \phi(x_3), \phi(x_4)]_T.$$

It follows from the discussion recalled in §2.2 that the crossratio is positive.

Example 3.5 inspires the following definition:

Definition 3.7. We say that a crossratio is ultrametric if it satisfies :

$$(\text{CRU}) [a, b, c, d] \times [b, c, d, a] = 0 \text{ for all } (a, b, c, d) \text{ in } X^4.$$

The following is clear.

Proposition 3.8. The crossratio induced by a framed action on a \mathbb{R}-tree is ultrametric.

The following is a corollary of Proposition 2.1.
Proposition 3.9. The crossratio

\[[a, b, c, d] := \mu(I_{d,a} \times I_{b,c}) \]

associated to a lamination type current \(\mu \) is ultrametric.

3.3. The periods of the crossratio. Let now \([\cdot, \cdot, \cdot, \cdot]\) be a positive crossratio defined on \(X \subset \partial \mathbb{H}^2 \), and let \(\gamma \in \Gamma \) be hyperbolic such that \(\{\gamma_-, \gamma_+\} \subset X \). The additivity property (CR3) of the crossratio implies that the value \([\gamma-, x, \gamma x, \gamma_+]\) is independent of \(x \in I_{(\gamma-, \gamma_+)} \cap X \). This justifies the following:

Definition 3.10. If \([\cdot, \cdot, \cdot, \cdot]\) is a positive crossratio on \(X \) and \(\gamma \in \Gamma \) is hyperbolic such that \(\{\gamma-, \gamma_+\} \subset X \), the period of \(\gamma \) is defined as

\[\text{per}(\gamma) := [\gamma-, x, \gamma x, \gamma_+] \]

for one (any) \(x \in I_{(\gamma-, \gamma_+)} \cap X \).

The purpose of this section is to extend the definition of the period of a crossratio defined on a \(\Gamma \)-invariant set \(X \subset \partial \mathbb{H}^2 \) to hyperbolic elements \(\gamma \in \Gamma \) whose endpoints do not necessarily belong to the set \(X \).

This is achieved by the following:

Proposition 3.11. Let \([\cdot, \cdot, \cdot, \cdot]\) be a positive crossratio on \(X \), and \(\gamma \in \Gamma \) be a hyperbolic element. Choose monotone sequences \((x_n), (x'_n) \subset X \) with limit \(\gamma_- \) and \((y_n), (y'_n) \subset X \) with limit \(\gamma_+ \). Assume furthermore that \((x'_n, \gamma-, x_n, y_n, \gamma_+, y'_n)\) is positively oriented. Then, for all \(x \in X \),

\[\lim_{n \to \infty} [x_n, x, \gamma x, y_n] = \lim_{n \to \infty} [x'_n, x, \gamma x, y'_n]. \]

Figure 1. Proposition 3.11
Proof. Up to passing to a subsequence we can and will assume that \((x_0, x, γx, y_0)\) is positive (see Figure I). Since by (CR2) and (CR3) we have
\[
[x_n, x, γx, y_n] = [x_n, x, γx, x_n'] + [x_n', x, γx, y_n'] + [y_n', x, γx, y_n],
\]
it is enough to show that
\[
\lim_{n \to \infty} [x_n, x, γx, x_n'] = 0
\]
and the analogous statement for \([y_n', x, γx, y_n]\).

Since, by (CR4), the crossratio is positive, and \(γ - n x_0 \to γ -\), it is in turn enough to show that
\[
\lim_{n \to \infty} [γ - n x_0, x, γx, γ - n x_0'] = 0.
\]
This follows since, for every \(N\),
\[
\begin{align*}
\infty > [x_0, x, y_0', x_0'] & \geq [x_0, x, γ^N x_0] \\
& \geq \sum_{j=0}^{N-1} [x_0, γ^j x, γ^{j+1} x, x_0'] \\
& = \sum_{j=0}^{N-1} [γ^{-j} x_0, x, γ x, γ^{-j} x_0'].
\end{align*}
\]
Here in the last equality we used that the crossratio is \(Γ\)-invariant. The claim for \([y_n', x, γx, y_n]\) follows analogously. □

Thanks to Proposition 3.11 we can extend Definition 3.10 to

Definition 3.12. If \([·, ·, ·, ·]\) is a positive crossratio on \(X\) and \(γ \in Γ\) is hyperbolic, the period of \(γ\) is
\[
\text{per}(γ) := \lim_{s, t \in X} [s, x, γx, t]
\]
for one (any) \(x \in I(γ - γ^+) \cap X\).

4. The geodesic current associated to a positive crossratio

In this section we prove Theorem 1.6 and Corollary 1.7. The proof of Theorem 1.6 is carried out in three steps: in §4.1 we use a crossratio to construct a geodesic current \(µ_{[·, ·, ·, ·]}\); in §4.2 we relate the periods of the crossratio \([·, ·, ·, ·]\) and the intersection of curves with \(µ_{[·, ·, ·, ·]}\); in §4.3 we conclude
the proof of Theorem 1.6 by showing that $\mu(\cdot, \cdot, \cdot, \cdot)$ depends continuously on the crossratio $[\cdot, \cdot, \cdot, \cdot]$. The fact that an integer valued crossratio leads to a multicurve (Corollary 1.7) is shown in §4.4. We conclude the section discussing in §4.5 how crossratios and geodesic currents can be restricted to subsurfaces; this is for future reference and will be used in the study of the real spectrum compactification of maximal representations.

4.1. Construction of the current. The aim of this section is to show that a positive crossratio always leads to a geodesic current. This is done in Proposition 4.3. The strategy of the proof is first to associate to the crossratio a finitely additive set function r defined on the family of proper rectangles with vertices in $X[4]$ (Proposition 4.1), and then to build a canonical Radon measure μ out of r.

Fix a Γ-invariant non-empty subset $X \subset \partial H^2$, and a positive crossratio $[\cdot, \cdot, \cdot, \cdot]: X[4] \to [0, \infty)$.

A rectangle in $(\partial H^2)^{(2)}$ is the product $R = I \times J$ of two disjoint intervals $I, J \subset \partial H^2$. It is called proper if its closure in $(\partial H^2)^{(2)}$ is compact, that is $\overline{I} \cap \overline{J} = \emptyset$, and I and J have non-empty interior. The vertices of R are then the unique positively oriented 4-tuple (a, b, c, d) in $(\partial H^2)[4]$ such that d, a are the endpoints of I and b, c are the endpoints of J, equivalently

$I_{(d,a)} \times I_{(b,c)} \subset R \subset I_{[d,a]} \times I_{[b,c]}$.

For $A \subset \partial H^2$, we denote $\mathcal{R}(A)$ the family of all proper rectangles with vertices in $A[4]$.

If R is a proper rectangle with vertices (a, b, c, d) in $X[4]$ we define

$r(R) = [a, b, c, d]$

the crossratio of the rectangle R. It follows directly from the additivity property (CR3) of the crossratio that this defines a finitely additive positive function on the family $\mathcal{R}(X)$ of all proper rectangles with vertices in $X[4]$:

Proposition 4.1. The function $r: \mathcal{R}(X) \to \mathbb{R}$ satisfies the following.

1. If a rectangle $R \in \mathcal{R}(X)$ is the union $R = R_1 \sqcup R_2$ of two rectangles with disjoint interior in $\mathcal{R}(X)$, then

 $r(R) = r(R_1) + r(R_2)$.

(2) For all $R, R' \in \mathcal{R}(X)$, if $R \subset R'$ then $r(R) \leq r(R')$.

Remark 4.2. The function $r : \mathcal{R}(X) \to \mathbb{R}$ may not be σ-additive, even restricting to the family of left half open rectangles $I_{(d,a]} \times I_{[b,c]}$ with $(a, b, c, d) \in X^4$. For example setting $[a, b, c, d] := \delta_e(I_{(d,a]} \times I_{[b,c]})$

for a closed curve e corresponding to some hyperbolic $\gamma \in \Gamma$, we get a positive crossratio $[\cdot, \cdot, \cdot, \cdot]$ on $X^4 = \partial \mathcal{H}^2$ whose associated function r is not σ-additive on $\mathcal{R}(X)$. Take a, c such that $(a, \gamma_+, c, \gamma_-) \in X^4$ and $I_{[\gamma_-,a]} \times I_{[\gamma_+,c]}$ contains no other point of the orbit of (γ_-, γ_+). Let $d_n \downarrow \gamma_-$ in $I_{(\gamma_-,a]}$ and $b_n \downarrow \gamma_+$ in $I_{(\gamma_+,c]}$. Let $R_n = I_{(d_n,a]} \times I_{[b_n,c]}$. Then $R = I_{[\gamma_-,a]} \times I_{[\gamma_+,c]}$ is the increasing union of the R_n, and $r(R_n) = [a, b_n, c, d_n] = 0$ for all n whereas $r(R) = [a, \gamma_+, c, \gamma_-] = 1$, contradicting σ-additivity. The problem is due to the fact that this crossratio is not continuous at $(a, \gamma_+, c, \gamma_-)$.

We now construct the measure μ. Recall that for a rectangle $R \in \mathcal{R}(X)$ with vertices (a, b, c, d) we set $r(R) = [a, b, c, d]$. Furthermore we denote by $\overset{\circ}{R}$ (resp. \overline{R}) the open (resp. closed) rectangle with the same vertices as R.

Proposition 4.3. There exists a unique positive Radon measure μ on $(\partial \mathcal{H}^2)^2$ satisfying one of the following equivalent conditions.

1. $\mu(\overset{\circ}{R}) \leq r(R) \leq \mu(R)$ for any (proper) rectangle $R \in \mathcal{R}(X)$.
2. For any (proper) rectangles $R, R' \in \mathcal{R}(X)$ with $\overline{R'} \subset \overline{R}$, we have $\mu(R') \leq r(R)$ and $r(R') \leq \mu(R)$.
3. For all (proper) open rectangles $R \in \mathcal{R}(\partial \mathcal{H}^2)$

$$\mu(R) = \sup \{r(R') : R' \in \mathcal{R}(X) \text{ and } \overline{R'} \subset R\}.$$

4. For all (proper) closed rectangles $R \in \mathcal{R}(\partial \mathcal{H}^2)$

$$\mu(R) = \inf \{r(R') : R' \in \mathcal{R}(X) \text{ and } R \subset \overline{R}'\}.$$

Definition 4.4. We call the measure μ in Proposition 4.3 the geodesic current associated to the positive crossratio $[\cdot, \cdot, \cdot, \cdot] : X^4 \to \mathbb{R}$, and denote it by $\mu_{[\cdot, \cdot, \cdot, \cdot]}$ if we want to emphasize the dependence on $[\cdot, \cdot, \cdot, \cdot]$.

Proposition 4.3 implies the following “outer and inner” continuity properties of the current.
Proposition 4.5. Let \((a, b, c, d)\) be a positively oriented quadruple in \(\partial H^2\). Let
\((a_n, b_n, c_n, d_n)_{n \geq 1}\) be a sequence in \(X^{[4]}\) converging to \((a, b, c, d)\). Then

1. If \(d_n, a_n \in I_{(d, a)}\) and \(b_n, c_n \in I_{(b, c)}\) for all \(n \geq 1\),
 then \(\mu(I_{(d, a)} \times I_{(b, c)}) = \lim_n [a_n, b_n, c_n, d_n];\)
2. If \(a_n, b_n \in I_{(a, b)}\) and \(c_n, d_n \in I_{(c, d)}\) for all \(n \geq 1\),
 then \(\mu(I_{(d, a)} \times I_{(b, c)}) = \lim_n [a_n, b_n, c_n, d_n].\)

Proof. We prove the first assertion (the second is similar). We have by (3)

\[
\mu(I_{(d, a)} \times I_{(b, c)}) = \sup \left\{ [a', b', c', d'] : a', d' \in I_{(d, a)}, b', c' \in I_{(b, c)} \right\}.
\]

Let \((a', b', c', d') \in X^{[4]}\) with \(a', d' \in I_{(d, a)}\) and \(b', c' \in I_{(b, c)}\). For \(n\) large enough we have

\[
I_{[d', a']} \subset I_{[a_n, a_n]} \quad \text{and} \quad I_{[b', c']} \subset I_{[b_n, c_n]},
\]

and hence

\[
[a', b', c', d'] \subseteq [a_n, b_n, c_n, d_n],
\]

which by (5) implies (1). \(\square\)

Proof of Proposition \(4.3\) We begin by proving that the conditions are equivalent. Let \(\mu\) be any positive Radon measure on \((\partial H^2)^{[2]}\).

It is clear that (1) implies (2).

We now prove that (2) implies (3). Consider a open rectangle \(R\) in \(\mathcal{R}(\partial H^2)\).

First observe that for every \(R'\) in \(\mathcal{R}(X)\) such that \(\overline{R'} \subset R\), we have by (2) that

\[
\sup \left\{ r(R') : R' \in \mathcal{R}(X) \text{ and } \overline{R'} \subset R \right\} \leq \mu(R).
\]

By density of \(X\) in \(\partial H^2\) we can now take an increasing sequence of rectangles \(R_n\) in \(\mathcal{R}(X)\) with union \(R\) such that \(\overline{R_n} \subset R_{n+1}\). We have by (2) that

\[
\mu(R_{n-1}) \leq r(R_n) \leq \mu(R_{n+1})
\]

in particular by \(\sigma\)-additivity of \(\mu\) we have \(\mu(R) = \lim_n \mu(R_n) = \lim_n r(R_n)\).
We now prove that (3) implies (4). Consider a proper closed rectangle \(R \) in \(\partial \mathcal{H}^2 \). For every \(R'' \) in \(\mathcal{R}(X) \) such that \(R \subset \hat{R}'' \), there is an open \(R' \) in \(\mathcal{R}(X) \) such that \(R \subset R' \) and \(\overline{R'} \subset \hat{R}'' \). Then we have \(\mu(R) \leq \mu(R') \leq r(R'') \) by (3). Hence
\[
\mu(R) \leq \inf \left \{ r(R'') : R'' \in \mathcal{R}(X) \text{ and } R \subset \hat{R}'' \right \}.
\]
Let now \(R_n \) be a decreasing sequence of open rectangles in \(\mathcal{R}(X) \) with intersection \(R \), such that \(R_{n+1} \subset R_n \). Then \(\mu(R) = \lim_n \mu(R_n) \), and by (3) we have
\[
r(R_n) \leq \mu(R_{n-1}) \text{ and }
\]
\[
\mu(R_n) = \sup \left \{ r(R') : R' \in \mathcal{R}(X) \text{ and } \overline{R'} \subset R_n \right \} \leq r(R_n)
\]
hence \(\mu(R) = \lim_n r(R_n) \).

We finally check that (4) implies (1). Consider any rectangle \(R \) in \(\mathcal{R}(X) \). As \(r(R) \leq r(R') \) for all \(R' \) containing \(R \), taking infimum on \(R' \) containing \(\overline{R} \) in their interior we get by (4) that \(r(R) \leq \mu(\overline{R}) \). Now write the open rectangle \(\hat{R} \) as an increasing union \(\hat{R} = \bigcup \uparrow R_n \) of closed rectangles \(R_n \) in \(\mathcal{R}(X) \) with \(R_n \subset \hat{R}_{n+1} \). Then by (4) we have \(\mu(R_n) \leq r(R_{n+1}) \leq r(R) \). As \(\mu(R_n) \to \mu(\hat{R}) \) by \(\sigma \)-additivity, we deduce \(\mu(\hat{R}) \leq r(R) \).

We now prove the existence of \(\mu \) satisfying (2). The strategy of the construction of \(\mu \) is to use the finitely additive function \(r \) to define the integral of compactly supported continuous functions. This leads by the Riesz representation theorem to a Radon measure \(\mu \).

A simple function is a linear combination \(g = \sum_{i=1}^{n} \alpha_i \chi_{R_i} \) of characteristic functions of rectangles \(R_i \) in \(\mathcal{R}(X) \). Define \(E(g) \) by
\[
E(g) := \sum_{i=1}^{n} \alpha_i r(R_i).
\]
The additivity property of \(r \) on \(\mathcal{R}(X) \) (Proposition 4.1) shows that \(E(g) \) is independent of the representation of \(g \) as linear combination of characteristic functions of proper rectangles in \(\mathcal{R}(X) \). It implies that if \(g_1 \) and \(g_2 \) are simple functions, then
\[
E(g_1 + g_2) = E(g_1) + E(g_2).
\]
This property also shows that if \(g_1, g_2 \) are simple and \(g_1 \leq g_2 \), then \(E(g_1) \leq E(g_2) \).
If now \(f \geq 0 \) is a continuous function on \((\partial \Omega^2)^{(2)}\) with compact support, define

\[
I_+(f) := \sup \{ E(g) : 0 \leq g \leq f, \ g \text{ is simple} \}
\]

and

\[
I_-(f) := \inf \{ E(g) : f \leq g, \ g \text{ is simple} \}.
\]

Then by uniform continuity of \(f \) and density of \(X \), we have

\[
I_-(f) = I_+(f) =: I(f).
\]

The additivity of \(I \) on positive continuous functions with compact support then follows from the fact that \(I_+ \) is super-additive, and \(I_- \) is subadditive. Then \(I \) extends to all continuous functions with compact support as a positive linear functional on the space of continuous functions with compact support, hence corresponds to a Radon measure \(\mu \).

We now prove that \(\mu \) satisfies (2). Let \(R, R' \) be rectangles with \(\overline{R'} \subset \overline{R} \). As there is a continuous function \(f \) with compact support such that \(\chi_{R'} \leq f \leq \chi_R \), we have \(\mu(R') \leq I(f) \leq E(\chi_R) = r(R) \) whenever \(R \in \mathcal{R}(X) \), and \(r(R') = E(\chi_{R'}) \leq I(f) \leq \mu(R) \) whenever \(R' \in \mathcal{R}(X) \).

Uniqueness comes from (3), as the class of proper open rectangles in \((\partial \Omega^2)^{(2)}\) is stable under finite intersection and generates the Borel \(\sigma \)-algebra. \(\square \)

Remark 4.6. It follows from Proposition 4.3(4) that also for all pencils \(P = \{a\} \times I_{[b,c]} \),

\[
\mu(P) = \inf \{ r(R') : R' \in \mathcal{R}(X) \text{ and } P \subset \overline{R'} \}.
\]

Proposition 4.7. If a positive crossratio is ultrametric, then the associated current \(\mu \) is of lamination type.

Proof. By Proposition 2.7 it is enough to prove that, for all \((a, b, c, d) \in X[4] \),

\[
\mu(I_{(d,a)} \times I_{(b,c)}) \cdot \mu(I_{(a,b)} \times I_{(c,d)}) = 0.
\]

Let \((a, b, c, d) \) in \(X[4] \). As the crossratio is ultrametric, we have either \([a, b, c, d] = 0 \) or \([b, c, d, a] = 0 \). As \(\mu(I_{(d,a)} \times I_{(b,c)}) \leq [a, b, c, d] \) and \(\mu(I_{(a,b)} \times I_{(c,d)}) \leq [b, c, d, a] \) (see Proposition 4.3(1)), this implies that \(\mu(I_{(d,a)} \times I_{(b,c)}) = 0 \) or \(\mu(I_{(a,b)} \times I_{(c,d)}) = 0 \). \(\square \)
4.2. Periods and intersections. We now turn to the problem of identifying the periods of a positive crossratio with the intersections of the corresponding current. Let then \([\cdot, \cdot, \cdot, \cdot]\) be a positive crossratio defined on \(X\), and let \(\gamma \in \Gamma\) be hyperbolic. Recall from §3.3 the definition of the period of \(\gamma\) with respect to the crossratio \([\cdot, \cdot, \cdot, \cdot]\).

In the following proposition we will use the well known fact that if \(\gamma\) is a hyperbolic element representing a closed geodesic \(c \subset \Sigma\), and \(\mu\) is a geodesic current, since \(I(\gamma^+,\gamma^-) \times I(x,\gamma x)\) is a Borel fundamental domain for the \(\langle \gamma \rangle\)-action on \(I(\gamma^+,\gamma^-) \times I(\gamma^-)\), the intersection \(i(\mu, \delta c)\) can be computed as

\[
i(\mu, \delta c) = \mu(I(\gamma^+,\gamma^-) \times I(x,\gamma x)).
\]

Proposition 4.8. Let \(\mu\) be the geodesic current associated to a positive crossratio \([\cdot, \cdot, \cdot, \cdot]\) and let \(c\) be a closed geodesic represented by an hyperbolic element \(\gamma \in \Gamma\).

Then

\[
\text{per}(\gamma) = i(\mu, \delta c).
\]

Proof. In the notation of Proposition 3.11 (see also Figure 1) we have that

\[
\text{per}(\gamma) = \lim_{n \to \infty} [x_n, x, \gamma x, y_n]
\]

and also

\[
\text{per}(\gamma) = \lim_{n \to \infty} [x'_n, x, \gamma x, y'_n],
\]

where \(x \in I(\gamma^-) \cap X\) is arbitrary.

For any \(x \in I(\gamma^-) \cap X\) and \(n \in \mathbb{N}\) we have

\[
i(\mu, \delta c) = \mu(I(\gamma^+,\gamma^-) \times I(x,\gamma x)) = \mu(I(\gamma^+,\gamma^-) \times I(x,\gamma x)) + \mu(I(\gamma+,\gamma-) \times \{x\})
\]

\[
\leq [x_n, x, \gamma x, y_n] + \mu(I(\gamma^+,\gamma-) \times \{x\}),
\]

where the inequality follows from Proposition 4.3 (1). By (6) this implies that

\[
i(\mu, \delta c) \leq \text{per}(\gamma) + \mu(I(\gamma^+,\gamma-) \times \{x\}).
\]

Next we have:

\[
i(\mu, \delta c) = \mu(I(\gamma^+,\gamma-) \times I(x,\gamma x)) = \mu(I(\gamma^+,\gamma-) \times I(x,\gamma x)) - \mu(I(\gamma^+,\gamma-) \times \{x\})
\]
Using Lemma 4.9 below this equals
\[
\mu(I_{[\gamma_+, \gamma_-]} \times I_{[x, y, x']}) - \mu(I_{[\gamma_+, \gamma_-]} \times \{x\})
\]
which, again by Proposition 4.3 (1), implies
\[
i(\mu, \delta_c) = \mu(I_{[\gamma_+, \gamma_-]} \times I_{[x, y, x']}) - \mu(I_{[\gamma_+, \gamma_-]} \times \{x\})
\geq [x'_n, x, y, y'_n] - \mu(I_{[\gamma_+, \gamma_-]} \times \{x\}).
\]
Then it follows from (7) that
\[
i(\mu, \delta_c) \geq \per(\gamma) - \mu(I_{[\gamma_+, \gamma_-]} \times \{x\})
\]
and thus
\[
|i(\mu, \delta_c) - \per(\gamma)| \leq \mu(I_{[\gamma_+, \gamma_-]} \times \{x\})
\]
for any \(x \in I_{[\gamma_+, \gamma_-]} \cap X\).

Now fix a closed interval \(I_{[a, b]} \subset I_{[\gamma_+, \gamma_-]}\) with non-empty interior. Then
\[
\sum_{x \in X \cap [a, b]} \mu(I_{[\gamma_+, \gamma_-]} \times \{x\}) \leq \mu(I_{[\gamma_+, \gamma_-]} \times I_{[a, b]}) < \infty
\]
and since \(X \cap [a, b]\) is infinite, this implies the existence of a sequence \((x_n)_{n \geq 1}\) in \(X \cap [a, b]\) with
\[
\lim_{n \to \infty} \mu(I_{[\gamma_+, \gamma_-]} \times \{x_n\}) = 0,
\]
which implies that \(i(\mu, \delta_c) = \per(\gamma)\). \(\square\)

4.3. The current depends continuously on the crossratio. The vector space \(\mathcal{CR}(X)\) of crossratios on \(X\) is a topological vector space for the topology of pointwise convergence and the space \(\mathcal{CR}^+(X)\) of positive crossratios is a closed convex cone in it. We observe moreover that the map
\[
\mathcal{CR}^+(X) \to \mathcal{C}(\Sigma)
\]
\[
[\cdot, \cdot, \cdot, \cdot] \mapsto \mu[\cdot, \cdot, \cdot, \cdot]
\]
from positive crossratios to the space \(\mathcal{C}(\Sigma)\) of geodesic currents is surjective. In fact, if \(\mu\) is a geodesic current, one verifies using the regularity of \(\mu\) that \(\mu[\cdot, \cdot, \cdot, \cdot]_\mu = \mu\) for the crossratio \([\cdot, \cdot, \cdot, \cdot]_\mu\) of Example 3.4.

Let \(H_\Gamma\) denote the subset of \(\partial \mathcal{H}^2\) consisting of the fixed points of hyperbolic elements in \(\Gamma\). Recall that if \(\gamma \in \Gamma\) is hyperbolic we let \(\gamma_+\) and \(\gamma_-\) denote
respectively the attractive and the repulsive fixed point of \(\gamma \). For every \(a \in H_\Gamma \), we choose \(\gamma \) such that \(a = \gamma_- \) and we denote by \(\mathcal{T} \) the point \(\gamma_+ \).

The following simple lemma is crucial:

Lemma 4.9 ([Mar, Proposition 8.2.8]). Let \(\mu \) be a geodesic current, \(a \in H_\Gamma \) and \(I \subset \partial H^2 \) be a closed interval with \(\{a, \mathcal{T}\} \cap I = \emptyset \). Then \(\mu(\{a\} \times I) = 0 \).

We call a \(\Gamma \)-invariant subset \(S_\Gamma \subset H_\Gamma \) symmetric if \(\xi \in S_\Gamma \) whenever \(\xi \in S_\Gamma \).

Proposition 4.10. Let \(S_\Gamma \subset H_\Gamma \) be a \(\Gamma \)-invariant symmetric subset such that \(\{(\xi, \xi) : \xi \in S_\Gamma\} \) is dense in \((\partial H^2)^2 \). Then the map

\[
\mathcal{CR}^+(S_\Gamma) \longrightarrow \mathcal{C}(\Sigma)
\]

\[
[\cdot, \cdot, \cdot, \cdot] \mapsto \mu[\cdot, \cdot, \cdot, \cdot]
\]

is continuous.

Observe that Proposition 4.10 applies to \(S_\Gamma = H_\Gamma \) in particular. In the proof of Proposition 4.10 we will focus on a special subset of \(S_\Gamma^{[4]} \): we say that a quadruple \((a, b, c, d) \in S_\Gamma^{[4]} \) is good if \(\{\overline{a}, \overline{d}\} \cap I_{[b, c]} = \emptyset \) and \(\{\overline{b}, \overline{c}\} \cap I_{[d, a]} = \emptyset \).

Lemma 4.11. Let \([\cdot, \cdot, \cdot, \cdot] \in \mathcal{CR}^+(S_\Gamma)\) and let \(\mu \) be the associated current. For every good quadruple \((a, b, c, d) \in S_\Gamma^{[4]}\) we have

\[
\mu(I_{[d, a]} \times I_{[b, c]}) = \mu(I_{[d, a]} \times I_{[b, c]}) = [a, b, c, d].
\]

Proof. This follows immediately from the inequalities in Proposition 4.3 (1) and Lemma 4.9 applied to \(\{d\} \times I_{[b, c]}, \{a\} \times I_{[b, c]}, I_{[d, a]} \times \{b\} \) and \(I_{[d, a]} \times \{c\} \).

Proof of Proposition 4.10. Let \([\cdot, \cdot, \cdot, \cdot]_n \) and \([\cdot, \cdot, \cdot, \cdot] \) be positive crossratios on \(S_\Gamma \) and \(\mu_n, \mu \) the associated geodesic currents. Assume that

\[
\lim_n[\cdot, \cdot, \cdot, \cdot]_n = [\cdot, \cdot, \cdot, \cdot].
\]

We have to show that for every positive continuous function \(f \) on \((\partial H^2)^2 \) with compact support, \(\lim_{n \to \infty} \mu_n(f) = \mu(f) \). Using a finite partition of unity we may assume that the support \(\text{supp}(f) \) is contained in some rectangle \(I_{[d, a]} \times I_{[b, c]} \) with \((a, b, c, d) \) positive.
Fix an interval $I_{[a_0,b_0]} \subset I_{[a,b)}$ and observe that for every open set $J \subset I_{(b_0,a_0)}$ the set
$$S_J := \{ x \in J \cap S_{\Gamma} : \xi \in I_{[a_0,b_0]} \}$$
is dense in J. Choose then $a' \in S_{(a,a_0)}$, $b' \in S_{(b_0,b)}$, $\{ c', d' \} \subset S_{(c_0,d_0)}$ with (a', b', c', d') positive and observe that the quadruple (a', b', c', d') is good.

Fix some distance inducing the topology on $(\partial \mathcal{H}^2)^2$, fix $\epsilon > 0$ and let $\delta > 0$ be such that if $R \subset (\partial \mathcal{H}^2)^2$ is any closed rectangle of diameter $\text{diam}(R) < \delta$, then
$$\max_R f - \min_R f < \epsilon.$$

Fix now a cover of $\text{supp}(f)$ by closed rectangles $R_i = I_{[x_i,y_i]} \times I_{[z_i,w_i]}$, for $i = 1, 2, \ldots, N$, such that

1. $\text{diam}(R_i) < \delta$;
2. the interiors of the rectangles are pairwise disjoint;
3. $R_i \subset I_{[d'_i,a'_i]} \times I_{[b'_i,c'_i]}$;
4. $\{ x_i, y_i \} \subset S_{[d'_i,a'_i]}$ and $\{ z_i, w_i \} \subset S_{[b'_i,c'_i]}$.

Observe that for every $1 \leq i \leq N$, the quadruple (x_i, z_i, w_i, y_i) is good. As a result, we have (see Lemma [4.11])

5. $\mu(R_i) = [x_i, z_i, w_i, y_i]$, $\mu_n(R_i) = [x_i, z_i, w_i, y_i]_n$, and
6. $\mu(R_i \cap R_j) = 0$, $\mu_n(R_i \cap R_j) = 0$ for all $i \neq j$.

It follows then that
$$\left| \int f \, d\mu - \sum_{i=1}^N (\min_{R_i} f) \mu_n(R_i) \right| \leq \sum_{i=1}^N \epsilon \mu_n(R_i) \leq \epsilon \mu_n(I_{[d'_i,a'_i]} \times I_{[b'_i,c'_i]}) = \epsilon [a', b', c', d']_n$$
and similarly
$$\left| \int f \, d\mu - \sum_{i=1}^N (\min_{R_i} f) \mu(R_i) \right| \leq \epsilon [a', b', c', d'].$$
From these inequalities, the assumption that \(\lim_{n \to \infty} [\cdot, \cdot, \cdot, \cdot]_n = [\cdot, \cdot, \cdot, \cdot] \) and (5), we deduce that
\[
\lim_{n \to \infty} \left| \int f \, d\mu - \int f \, d\mu_n \right| \leq 2\epsilon [a', b', c', d']
\]
and hence
\[
\lim_{n \to \infty} \int f \, d\mu_n = \int f \, d\mu.
\]

4.4. Integral crossratios. The goal of the section is to prove the following

Proposition 4.12. If the positive crossratio
\[
[\cdot, \cdot, \cdot, \cdot]: X^4 \to \mathbb{N}
\]
takes values in the integers \(\mathbb{N} = \{0, 1, 2, \ldots\} \), then the associated current corresponds to an integral geodesic multicurve.

Proof. We first show that \(\mu \) is purely atomic. It follows from Proposition 4.3 (3) and (4) that \(\mu(R) \in \mathbb{N} \) for all proper open and proper closed rectangles. Let \(g \in \text{supp}(\mu) \subset (\partial \mathcal{H}^2)^{(2)} \) and let \(R_n \) be a decreasing sequence of open rectangles with \(\bigcap R_n = \{g\} \). Since \(\mu(R_n) \in \mathbb{N} \) we have either
(1) \(\mu(R_n) \geq 1 \) for all \(n \geq 1 \) and \(\mu(\{g\}) \geq 1 \)

or
(2) there exists \(n_0 \) such that \(\mu(R_n) = 0 \) for all \(n \geq n_0 \).

The second case cannot happen since \(g \) is in the support of \(\mu \). As a result \(\mu \) is purely atomic with \(\mathbb{N} \)-valued atoms.

We now show that all geodesics in the support of \(\mu \) are either closed or connect two cusps. Let \((a, b) \in (\partial \mathcal{H}^2)^{(2)} \) be such an atom. Then \(\Gamma \cdot (a, b) \) meets every compact subset of \((\partial \mathcal{H}^2)^{(2)} \) in only finitely many points. As a result, if \(g \subset \mathcal{H}^2 \) is the geodesic connecting \((a, b) \), \(\text{pr}(g) \subset \Sigma \) is a closed subset where, as always, \(\text{pr}: \mathcal{H}^2 \to \Sigma \) denotes the universal covering map. Thus either \(g \) corresponds to a periodic geodesic, or \(\text{pr}(g) \) is a geodesic connecting two cusps.

There is a compact subset \(K \subset \Sigma \) such that every biinfinite geodesic, as well as every closed geodesic, meets \(K \). Thus if \(\mathcal{A} \) denotes the set of atoms of \(\mu \) there
is a compact subset \(C \subset (\partial H^2)^2 \) such that for all \(a \in \mathcal{A} \), \(\Gamma \cdot a \cap C \neq \emptyset \). This implies that
\[
\mu = \sum_{c \in F} n_c \delta_c
\]
where \(F \) is a finite set of geodesics either periodic or connecting to cusps, \(\delta_c \) is the geodesic current corresponding to \(c \), and \(n_c \in \mathbb{N}^* \).

4.5. **Restriction to a subsurface.** We conclude the section discussing how the construction of the geodesic current associated to a positive crossratio behaves with respect to restriction to subsurfaces. This will be useful in the study of maximal representations.

Let \(\Sigma' \subset \Sigma \) be a subsurface with geodesic boundary. Let \(\mathcal{G}(\Sigma') \subset (\partial H^2)^2 \) be the set of geodesics whose projection lies in the interior \(\hat{\Sigma}' \) of \(\Sigma' \). If \(\mu \) is a current on \(\Sigma \), we define \(\mu|_{\Sigma'} \in \mathcal{C}(\Sigma) \) by
\[
\mu|_{\Sigma'} := \chi_{\mathcal{G}(\Sigma')} \mu,
\]
where \(\chi_{\mathcal{G}(\Sigma')} \) is the characteristic function of \(\mathcal{G}(\Sigma') \).

We write \(i(\mu, \partial \Sigma') = 0 \) when \(i(\mu, c) = 0 \) for every boundary component \(c \) of \(\Sigma' \). This is the case precisely when no geodesic in the support of \(\mu \) intersects \(\partial \Sigma' \); thus in that case we have
\[
i(\mu, c) = i(\mu|_{\Sigma'}, c)
\]
for every closed geodesic \(c \) contained in \(\Sigma' \).

We now choose a finite area hyperbolization \(\Sigma_0 = \Gamma_0 \backslash H^2 \) of \(\hat{\Sigma}' \) and a corresponding identification \(h: \Gamma_0 \to \pi_1(\Sigma') \subset \Gamma \). We denote by \(\phi: \partial H^2 \to \partial H^2 \) an injective, monotone \(h \)-equivariant map. This is a quasi-conjugacy that opens all the cusps corresponding to geodesic boundary components of \(\Sigma' \). It follows from this discussion that:

Proposition 4.13. Let \(\mu \) be a current on \(\Sigma \). Then
\[
\mu_0(\mathcal{A}) := \mu((\phi \times \phi)(\mathcal{A}))
\]
defines a current \(\mu_0 = \phi^* \mu \) on \(\Sigma_0 \), that we will call the current induced by \(\mu \) on \(\Sigma_0 \).

We have the following properties:

1. \(\phi^* \mu = \phi^* \mu|_{\Sigma'} \).
(2) If $\mu_{\Sigma'}$ has compact carrier included in $\hat{\Sigma}'$, then μ_0 has compact carrier in Σ_0.

(3) Let μ, ν be currents on Σ. Assume that $\mu_{|\Sigma'}$ and $\nu_{|\Sigma'}$ have compact carrier included in $\hat{\Sigma}'$. Then

$$i(\mu_{|\Sigma'}, \nu_{|\Sigma'}) = i(\mu_0, \nu_0).$$

(4) We have

$$i(\mu_0, \gamma) = i(\mu_{\Sigma'}, h(\gamma))$$

for all hyperbolic $\gamma \in \Gamma_0$. In particular if $i(\mu, \partial \Sigma') = 0$ then $i(\mu_0, \gamma) = i(\mu, h(\gamma))$ for all hyperbolic $\gamma \in \Gamma_0$.

(5) Assume that $i(\mu, \partial \Sigma') = 0$. If μ is the current associated to a positive crossratio $b \in \mathcal{CR}(H_\Gamma)$, then μ_0 is the current associated to the positive crossratio $b_0 = \phi^*b$ in $\mathcal{CR}(H_{\Gamma_0})$.

5. Equivariant tree embeddings

In this section we discuss barycenter maps compatible with positive crossratios and prove Theorem 1.9. In §5.2 we discuss a first class of actions to which Theorem 1.9 applies: framed actions on trees.

5.1. Actions with compatible crossratio and barycenter. Let $\rho: \Gamma \to \text{Isom}(X)$ be an action by isometries on a metric space (X, d_X) and $X \subset \partial \mathbb{H}^2$ be a non-empty Γ-invariant subset.

Definition 5.1. (1) A X-valued barycenter map on X (or just a barycenter map if the context is clear) is a map

$$\beta: X^{(3)} \to X$$

defined on the set $X^{(3)}$ of triples of distinct points in X that verifies:

(a) β is S_3-invariant;

(b) β is Γ-equivariant.

(2) A barycenter map is compatible with a positive crossratio $[\cdot, \cdot, \cdot, \cdot]$ defined on X if, whenever $(a, b, c, d) \in X^{(4)}$,

$$[a, b, c, d] = d_X(\beta(a, b, d), \beta(a, c, d)).$$

Condition (2) is inspired by the construction of a crossratio induced by a framed action on a tree, as in Example 3.5. Indeed we have:
Example 5.2. Let $\rho: \Gamma \to \text{Isom}(\mathcal{T})$ be a framed action of Γ on a real tree \mathcal{T} with framing $\phi: X \to \partial_{\infty} \mathcal{T}$. Then the usual barycenter $B: \partial_{\infty} \mathcal{T} \to \mathcal{T}$ induces a barycenter map on X compatible with the positive crossratio $[\cdot, \cdot, \cdot, \cdot]_\phi$.

The goal of the section is to prove the following:

Theorem 5.3. Let $\rho: \Gamma \to \text{Isom}(X)$ be an isometric action. Assume that there is a positive crossratio on X and a compatible barycenter map, that the geodesic current μ associated to the positive crossratio is of lamination type and let $\mathcal{V}(\mu)$ be the set of vertices of the \mathbb{R}-tree $\mathcal{T}(\mu)$ associated to μ. Then there is an equivariant isometric embedding $\mathcal{V}(\mu) \hookrightarrow X$.

In order to define the embedding, we will show that each complementary region of the geodesic lamination $\tilde{\mathcal{L}} := \text{supp}(\mu)$ leads to a well-defined barycenter. More precisely, given a complementary region \mathcal{R} of $\tilde{\mathcal{L}}$, we will show in Proposition 5.5 that the map that to three points $a, b, c \in (\partial \mathcal{H}^2 \setminus \mathcal{R}(\infty)) \cap X$ associates their barycenter is constant if the points are in different connected components of $\partial \mathcal{H}^2 \setminus \mathcal{R}(\infty)$. Here $\mathcal{R}(\infty)$ is the intersection of $\partial \mathcal{H}^2$ with the closure of \mathcal{R} in $\overline{\mathcal{H}^2}$. In Lemma 5.7 we show that the obtained map is isometric.

As a first step in the proof of Proposition 5.5, we show that the crossratio of 4-tuples separated by the lamination vanishes:

Lemma 5.4. Let \mathcal{R} be a complementary region of $\tilde{\mathcal{L}}$ and let (a, b, c, d) be positively oriented such that $\{a, b, c, d\} \subset \partial \mathcal{H}^2 \setminus \mathcal{R}(\infty)$ and $\{a, b\}$, as well as $\{c, d\}$, are in different connected components of $\partial \mathcal{H}^2 \setminus \mathcal{R}(\infty)$. Then

$$\mu(I_{[d, a]} \times I_{[b, c]}) = 0.$$

In particular, if in addition $(a, b, c, d) \in X^{[4]}$

$$[a, b, c, d] = 0.$$

Proof. Since $\text{supp}(\mu) = \tilde{\mathcal{L}}$, we have that $\mu((\partial \mathcal{H}^2)^{(2)} \setminus \tilde{\mathcal{L}}) = 0$. Thus it suffices to show that under the hypotheses of the lemma

$$I_{[d, a]} \times I_{[b, c]} \subset (\partial \mathcal{H}^2)^{(2)} \setminus \tilde{\mathcal{L}}.$$

Assume there is a geodesic $g \in \tilde{\mathcal{L}}$ connecting $I_{[d, a]}$ to $I_{[b, c]}$. Then \mathcal{R} must be contained in one of the half planes determined by g and hence either $\{a, b\}$
or \{c, d\} are contained in the same connected component of \((\partial \mathcal{H}^2)_{\{2\}} \setminus \mathcal{R}(\infty)\), contradicting the hypothesis. The second statement follows directly from Proposition 4.3 (1).

With the use of Lemma 5.4 we proceed to define the barycenter of a complementary region of \(\tilde{\mathcal{L}}\).

Proposition 5.5. Let \(\mathcal{R}\) be a complementary region of \(\tilde{\mathcal{L}}\). Then \(\beta(a, b, c)\) is independent of the choice of \(\{a, b, c\} \subset X\), provided \(a, b, c\) lie in three distinct connected components of \(\partial \mathcal{H}^2 \setminus \mathcal{R}(\infty)\).

Proof. We split the proof in three easy steps.

1. Given three connected components \(I_1, I_2, I_3\) of \(\partial \mathcal{H}^2 \setminus \mathcal{R}(\infty)\), \(\beta(a, b, c)\) is independent of the choices \(a \in I_1 \cap X, b \in I_2 \cap X\) and \(c \in I_3 \cap X\).

 Indeed, given \(\{a, a'\} \subset I_1 \cap X\), we may assume, modulo exchanging \(b\) and \(c\), and also \(a\) and \(a'\), that \((c, a, a', b) \in X^4\). By Lemma 5.4 we have then that
 \[d_X(\beta(c, a, b), \beta(c, a', b)) = [c, a, a', b] = 0.\]
 Thus \(\beta(a, b, c) = \beta(a', b, c)\).

 Given now \(b' \in I_2 \cap X\) and \(c' \in I_3 \cap X\), we conclude, using the \(S_3\)-invariance of \(\beta\), that
 \[\beta(a', b', c') = \beta(a', b', c) = \beta(a', b, c) = \beta(a, b, c).\]

2. Let \(I_1, I_2, I_3, I_4\) be distinct components of \(\partial \mathcal{H}^2 \setminus \mathcal{R}(\infty)\), \(\{a, b, c, c'\} \subset X\) with \(a \in I_1, b \in I_2, c \in I_3\) and \(c' \in I_4\). Then \(\beta(a, b, c) = \beta(a, b, c')\).

 We distinguish two cases.

 (2.a) If \(c, c'\) are in the same connected component of \(\partial \mathcal{H}^2 \setminus \{a, b\}\), then possibly upon permuting \(a, b\) and \(c, c'\), we may assume that \((b, c, c', a) \in X^4\). By Lemma 5.4 this implies that
 \[d_X(\beta(b, c, a), \beta(b, c', a)) = [b, c, c', a] = 0.\]
 Thus \(\beta(b, c, a) = \beta(b, c', a)\).

 (2.b) If instead \(c, c'\) are in distinct connected components of \(\partial \mathcal{H}^2 \setminus \{a, b\}\), we may assume, possibly permuting \(a, b\) and \(c, c'\), that \((a, c', b, c)\) is positively oriented. Using (2.a) in the second and fourth equality we obtain
 \[\beta(a, b, c') = \beta(a, c', b) = \beta(a, c', c) = \beta(c, a, c') = \beta(c, a, b) = \beta(a, b, c),\]
which shows the assertion.

(3) We finish now the proof of the proposition. Let \(\{a, b, c, a', b', c'\} \subset X \) with \(a \in I_1, \ b \in I_2, \ c \in I_3, \ a' \in I'_1, \ b' \in I'_2 \) and \(c \in I'_3 \), where \(I_1, I_2, I_3 \) and \(I'_1, I'_2, I'_3 \) are distinct connected components of \(\partial H^2 \setminus R(\infty) \). We can assume, up to reordering the indices that \(I_j \neq I_k \) for \(j \neq k \). Then it follows from (1) and (2) that

\[
\beta(a, b, c) = \beta(a', b, c) = \beta(a', b', c) = \beta(a', b', c').
\]

\[\square\]

Definition 5.6. The **barycenter** \(\beta(R) \) of a complementary region \(R \) of \(\tilde{\mathcal{L}} \) is the point \(\beta(a, b, c) \) for any choice \(\{a, b, c\} \subset X \) of points lying in distinct components of \(\partial H^2 \setminus R(\infty) \).

Taking into account the discussion in §2.3, the following lemma concludes the proof of Theorem 5.3.

Lemma 5.7. For the distance \(d_\mu \) on the set \(\mathcal{V}(\mu) \) of complementary regions of \(\tilde{\mathcal{L}} \), we have

\[
d_X(\beta(R_1), \beta(R_2)) = d_\mu(R_1, R_2)
\]

for all \(R_1, R_2 \in \mathcal{V}(\mu) \).

Proof. Let \((x_1, y_1)\) be the endpoints of the geodesic in \(\partial R_1 \) separating \(R_1 \) from \(R_2 \) and \((x_2, y_2)\) the endpoints of the geodesic in \(\partial R_2 \) separating \(R_2 \) from \(R_1 \), ordered so that \((x_1, y_1, x_2, y_2) \in X^4\). Choose \(a, b \in I_{(x_1, y_1)} \) in different connected components of \(\partial H^2 \setminus R_1(\infty) \) and \(c, d \in I_{(x_2, y_2)} \) in different connected components of \(\partial H^2 \setminus R_2(\infty) \) in such a way that \((a, b, c, d) \in X^4\).
Then
\[d_X(\beta(R_1), \beta(R_2)) = d_X(\beta(a, b, d), \beta(a, c, d)) = [a, b, c, d]. \]
Since the geodesics bounding \(R_1\) and \(R_2\) are all \(\mu\)-short, we have
\[\mu(\{a\} \times I_{[b,c]}) \leq \mu(I_{[l_1,l_2]} \times I_{[l_2,l_1]}) = 0, \]
where \(\{l_1, l_2\}\) is the geodesic in \(\partial R_1\) separating \(a\) from \(R_1\), and similarly \(\mu(\{d\} \times I_{[b,c]}) = 0\). As a result, from Proposition 4.3 (1) we have the equality
\[\mu(I_{[d,a]} \times I_{[b,c]}) = [a, b, c, d] = \mu(I_{[d,a]} \times I_{[b,c]}). \]

If now \(p_i \in R_i\), the set of leaves in \(\tilde{L}\) that intersect the segment \((p_1, p_2)\) is exactly the set of leaves in \(\tilde{L}\) that separate \(R_1\) from \(R_2\). This is also the same as the set of leaves in \(\tilde{L}\) that connect \(I_{[d,a]}\) to \(I_{[b,c]}\). The assertion then follows from the above considerations, recalling that \(d_\mu(R_1, R_2)\) is the measure of this set,
\[d_X(\beta(R_1), \beta(R_2)) = [a, b, c, d] = \mu(I_{[d,a]} \times I_{[b,c]}) = d_\mu(R_1, R_2). \]

\[\square \]

5.2. Framed actions on trees. Theorem 5.3 applies to framed actions on trees:

Proposition 5.8. Let \(\rho: \Gamma \to \text{Isom}(\mathcal{T})\) be an action by isometries on an real tree \(\mathcal{T}\) with a framing \(\phi: X \to \partial_\infty \mathcal{T}\). Suppose that the associated crossratio \(\cdot, \cdot, \cdot, \cdot\) is positive, and denote by \(\mu_\phi\) the associated geodesic current. Then \(\mu_\phi\) corresponds to a measured lamination, and there is a \(\Gamma\)-equivariant isometric embedding
\[\mathcal{T}(\mu_\phi) \hookrightarrow \mathcal{T}. \]
In particular, for all hyperbolic $\gamma \in \Gamma$,

$$\ell_{\mathcal{T}}(\rho(\gamma)) = i(\mu_\rho, \gamma).$$

Proof. By Proposition 3.8, the crossratio $[\cdot, \cdot, \cdot, \cdot]$ is ultrametric, hence by Proposition 4.7, the current μ_ρ is of lamination type.

Now define the barycenter $\beta(x, y, z)$ of $(x, y, z) \in X^3$ as the barycenter $\beta_{\mathcal{T}}(\varphi(x), \varphi(y), \varphi(z))$ in the tree \mathcal{T} of $(\varphi(x), \varphi(y), \varphi(z))$. Then β is by construction a equivariant barycenter map compatible with the crossratio (by (4) in Example 3.5 and S_3-invariance of $\beta_{\mathcal{T}}$), hence induces an equivariant isometry

$$\Psi: V(\mu_\rho) \hookrightarrow \mathcal{T}$$

of the vertices of the dual tree $\mathcal{T}(\mu_\rho)$ by Theorem 5.3. Since \mathcal{T} is uniquely geodesic, we can extend Ψ to $\mathcal{T}(\mu_\rho)$. Then for all $\gamma \in \Gamma$ we have $\ell_{\mathcal{T}}(\rho(\gamma)) = \ell_{\mathcal{T}(\mu_\rho)}(\gamma)$ as $\mathcal{T}(\mu_\rho)$ is a convex subset of \mathcal{T}, and $\ell_{\mathcal{T}(\mu_\rho)}(\gamma) = \ell_{\mathcal{T}(\mu_\rho)}(\gamma)$ as Ψ is isometric. Now for hyperbolic γ representing a closed geodesic c we have $\ell_{\mathcal{T}(\mu_\rho)}(\gamma) = i(\mu_\rho, \delta_c)$, hence $\ell_{\mathcal{T}}(\rho(\gamma)) = i(\mu_\rho, \gamma)$. \qed

6. The geometry of the Siegel spaces over real closed fields

The goal of this section is to recall facts about the geometry of Siegel spaces over real closed fields needed to show that maximal framed actions give rise to a positive crossratio and admit a compatible barycenter (Lemma 6.6 and Proposition 6.7).

6.1. **Real closed fields.** Recall that an ordered field is a field F endowed with a total order relation \leq satisfying:

(1) if $x \leq y$ then $x + z \leq y + z$ for all $z \in F$;

(2) if $0 \leq x$ and $0 \leq y$, then $0 \leq xy$.

The fields \mathbb{Q} and \mathbb{R} with their usual order are examples; while some fields admit no ordering, like \mathbb{C}, others admit many, like $\mathbb{R}(X)$.

Example 6.1. The orders on $\mathbb{R}(X)$ admit the following description for $\epsilon \in \{-, +\}$:

1. $\cdot >_{\epsilon \infty}$: if $f \in \mathbb{R}(X)$, $f >_{\epsilon \infty} 0$ if $f(t) > 0$ for $t \to \epsilon \infty$.

(2) $>_{ac}$ for $a \in \mathbb{R}$: we say that $f >_{a+} 0$ if there exists $\eta = \eta(f) \in \mathbb{R}$, $\eta > 0$, with $f(t) > 0$ on the interval $(a, a + \eta)$, and $f >_{a-} 0$ if $f(t) > 0$ on the interval $(a - \eta, a)$.

A basic fact is that every ordered field F admits a real closure F^r, that is a maximal algebraic extension of F to which the order extends. Such a real closure is then unique up to a unique F-isomorphism. An ordered field F is then real closed if the ordering does not extend to any proper algebraic extension. Two useful characterizations are the following:

(1) the field F is ordered and $F(\mathbb{i})$ is algebraically closed, with $\mathbb{i} = \sqrt{-1}$;

(2) the field F is ordered, every positive element is a square and any odd degree polynomial has a root.

Real closed fields have the same first order logic as the field \mathbb{R} of the reals. An important consequence that is implicit in most of the geometric properties of the Siegel space we use, is that any symmetric matrix with coefficient in a real closed field is orthogonally similar to a diagonal one.

An \mathbb{R}-valued valuation is a map

$$v: F \to \mathbb{R} \cup \{\infty\},$$

where $v: (F^*, \cdot) \to (\mathbb{R}, +)$ is a group homomorphism, $v(0) = \infty$, and, if we define the norm of $x \in F$ by $\|x\|_v := e^{-v(x)}$ if $x \neq 0$ and $\|0\|_v := 0$, then

$$\|x + y\|_v \leq \|x\|_v + \|y\|_v.$$

An important valuation to keep in mind is $-\ln(|\cdot|): \mathbb{R} \to \mathbb{R} \cup \{\infty\}$. Indeed valuations offer a replacement for the logarithm in more general real closed fields. The valuation is order compatible if $|x| \leq |y|$ implies that $v(x) \geq v(y)$, and it is non-Archimedean if $v(x + y) \geq \min\{v(x), v(y)\}$, that is if $\|x + y\|_v \leq \max\{\|x\|_v, \|y\|_v\}$.

Example 6.2. The following are examples of ordered fields:

(1) The field \mathbb{R} of real numbers and the field \mathbb{Q}^r of real algebraic numbers; both are real closed.

(2) Let ω be a non-principal ultrafilter on \mathbb{N}. The quotient \mathbb{R}_ω of the ring $\mathbb{R}^\mathbb{N}$ by the equivalence relation $(x_n) \sim (y_n)$ if $\omega(\{n : x_n = y_n\}) = 1$, ordered
in such a way that positive elements are the classes of the sequences \((x_n)\) such that \(\omega([n : x_n > 0]) = 1\), is a real closed field called the field of the hyperreals. It does not admit any order compatible \(\mathbb{R}\)-valued valuation.

(3) Let \(\sigma \in \mathbb{R}_\omega\) be a positive infinitesimal, that is \(\sigma\) can be represented by a sequence \((\sigma_n)_{n \geq 0}\) with \(\lim \sigma_n = 0\) and \(\sigma_n > 0\). Then
\[
\mathfrak{O}_\sigma := \left\{ x \in \mathbb{R}_\omega : |x| < \sigma^{-k} \text{ for some } k \in \mathbb{Z} \right\}
\]
is a valuation ring with maximal ideal
\[
\mathfrak{I}_\sigma = \left\{ x \in \mathbb{R}_\omega : |x| < \sigma^k \text{ for all } k \in \mathbb{Z} \right\}.
\]
The quotient \(\mathbb{R}_{\omega,\sigma} := \mathfrak{O}_\sigma/\mathfrak{I}_\sigma\) is a real closed field, called the Robinson field. It admits an order compatible valuation
\[
v(x) = \lim_{\omega} \frac{\ln |x_n|}{\ln \sigma_n},
\]
where \((x_n)_{n \geq 0}\) represents \(x\), that leads to a non-Archimedean norm
\[
||x||_v := e^{-v(x)}.
\]

(4) Let \(G\) be a totally ordered Abelian group and let
\[
\mathcal{H}(G) := \left\{ f = \sum_{\sigma \in G} a_\sigma X^\sigma : a_\sigma \in \mathbb{R} \text{ and } \text{supp}(f) \subset G \text{ is well ordered} \right\}
\]
be the set of formal power series with exponents in \(G\) and coefficients in \(\mathbb{R}\), where \(\text{supp}(f) := \{ \sigma \in G : a_\sigma \neq 0 \}\). This is an \(\mathbb{R}\)-vector space and the restriction on supports allows one to define a ring structure that extends the ordinary multiplication on the group ring \(\mathbb{R}[G]\) of \(G\). In fact \(\mathcal{H}(G)\) turns out to be a field, called the Hahn field with exponents \(G\). It is ordered by setting \(f > 0\) if \(a_{\sigma_0} > 0\), where \(\sigma_0 = \min(\text{supp}(f))\) and it admits a \(G\)-valued compatible valuation \(v(f) = \sigma_0\). Moreover \(\mathcal{H}(G)\) is real closed if \(G\) is divisible. For all of the above statements, see [DW96, Theorem 2.15].

(5) (Compare with § 8.3) If \(\alpha \in \mathbb{R} \setminus \mathbb{Q}\), then the ring morphism
\[
\mathbb{R}[x, y] \longrightarrow \mathcal{H}(\mathbb{R})
\]
\[
P \longmapsto P(x, x^\alpha)
\]
extends to $R(x, y)$. In this way we obtain an order on $R(x, y)$ for which $P \in R(x, y)$ is positive if and only if for some $\epsilon > 0$, $P(t, t^x) > 0$ for all $t \in (0, \epsilon)$.

6.2. The Siegel upper half space and the space B^F_n. Let F be a real closed field, and i be a square root of -1. Endow $V = F^{2n}$ with the standard symplectic form

$$
\langle \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \rangle := t x_1 y_2 - t y_1 x_2,
$$

where $x_i, y_i \in F^n$. The vector space $\text{Sym}_n(F)$ of symmetric matrices admits a partial order defined by setting

$$X \ll Y \quad \text{if } Y - X \text{ is positive definite.}
$$

The *Siegel upper half space* is the semialgebraic set

$$S^n_F := \{Z = X + iY : X, Y \in \text{Sym}_n(F) \text{ and } Y \gg 0\}
$$
on which

$$\text{Sp}(2n, F) := \left\{ g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : t AD - t CB = \text{Id}, \quad t AC = t CA, \quad t BD = t DB \right\}
$$
acts by fractional linear transformations

$$(8) \quad g_* Z := (AZ + B)(CZ + D)^{-1},$$
transitively. Of course this action descends to an action of $\text{PSp}(2n, F)$. The stabilizer of $i\text{Id}_n \in S^n_F$ in $\text{Sp}(2n, F)$ is

$$K = \text{Sp}(2n, F) \cap \text{O}(2n) = \left\{ \begin{pmatrix} A & B \\ -B & A \end{pmatrix} : t AA + t BB = \text{Id}_n, \quad t AB \text{ is symmetric} \right\}.
$$

If $F = R$, then S^n_R is the symmetric space associated to $\text{PSp}(2n, R)$. If, instead, the real closed field F is endowed with an order compatible non-Archimedean valuation v, then $\text{PSp}(2n, F)$ acts by isometries on a $v(F)$-metric space B^F_n: a metric quotient of S^n_F whose construction we now recall. See [BIPP21c, BIPP21a] for generalizations of this construction.
On S^n_F we define an multiplicative F-valued distance function as follows. Since F is real closed, any pair (Z_1, Z_2) with $Z_i \in S^n_F$, for $i = 1, 2$, is $\text{PSp}(2n, F)$-congruent to a unique pair $(\iota \text{Id}_n, \iota \text{D})$, where $D = \text{diag}(d_1, \ldots, d_n)$, $d_1 \geq \cdots \geq d_n \geq 1$ in F. We then set

$$D(Z_1, Z_2) := \prod_{i=1}^{n} d_i.$$

Proposition 6.3. D is a $\text{PSp}(2n, F)$-invariant multiplicative distance function on S^n_F, namely, for all $Z_1, Z_2, Z_3 \in S^n_F$,

(MD1): $D(Z_1, Z_2) \in F_{\geq 1}$, with equality of and only if $Z_1 = Z_2$;
(MD2): $D(Z_1, Z_2) = D(Z_2, Z_1)$;
(MD3): $D(Z_1, Z_2) \leq D(Z_1, Z_3)D(Z_3, Z_2)$.

Proof. (MD1) and (MD2) are clear. We consider the standard action of $\text{Sp}(2n, F)$ on $W = \wedge^n (F^{2n})$, endowed with the standard scalar product, which is K-invariant as $K \subset O(2n)$. For $a = \text{diag}(a_1, \ldots, a_n, a^{-1}_1, \ldots, a^{-1}_n)$ with $a_1 \geq \cdots \geq a_n \geq 1$ in F, we easily see that

$$\max_{w \in W, w \neq 0} \frac{||aw||}{||w||} = \prod_{i=1}^{n} a_i$$

(the biggest eigenvalue of a in W). For $g \in \text{Sp}(2n, F)$ the operator norm of g on W is given by

$$||g|| := \max_{w \in W, w \neq 0} \frac{||gw||}{||w||}.$$

Since $g = kak'$ for some k, k' in K and a as before (by the Cartan decomposition), and

$$D(\iota \text{Id}_n, g, \iota \text{Id}_n) = D(\iota \text{Id}_n, a, \iota \text{Id}_n) = 2||a|| = 2||g||,$$

(MD3) follows from submultiplicativity of the operator norm and transitivity of the action of $\text{Sp}(2n, F)$.

On S^n_F we define an associated pseudo-distance d^1 as follows.

$$d^1(Z_1, Z_2) := -\nu(D(Z_1, Z_2)) = -\sum_{i=1}^{n} \nu(d_i).$$

The triangle inequality for d^1 comes from (MD3). We denote by \mathcal{B}_n^F the metric quotient of S^n_F with respect to the pseudo-distance d^1. We will not
need it, but note in passing that B^F_n can be identified with the quotient $\text{PSp}(2n,F)/\text{PSp}(2n,U)$, where $U := \{x \in F : \|x\|_v \leq 1\}$.

6.3. **Embedding in K-Lagrangians.** In the classical case, the Borel embedding of S^n_R into the complex Grassmannian provides a way to endow S^n_R with structures defined on the Grassmannian, such as, for example, a crossratio. We recall from [BP17] the analogous picture in the case of a general real closed field.

Let $K = F(ı)$ be the algebraic closure of F and let us also denote by \langle , \rangle the K-linear extension of the standard symplectic form to K^{2n} and by $\sigma : K^{2n} \to K^{2n}$ the complex conjugation. Given matrices $Z_1, Z_2 \in M_n(K)$, we will denote by $\left\langle \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} \right\rangle$ the subspace of K^{2n} generated by the column vectors. We denote by $\mathcal{L}(K^{2n})$ the submanifold of $\text{Gr}_n(K^{2n})$ consisting of subspaces that are isotropic for the form \langle , \rangle. The map

$$\text{Sym}_n(K) \longrightarrow \mathcal{L}(K^{2n})$$

$$Z \quad \mapsto \quad \left\langle \begin{pmatrix} Z \\ \text{Id}_n \end{pmatrix} \right\rangle$$

gives a bijection between $\text{Sym}_n(K)$ and the subset of $\mathcal{L}(K^{2n})$ of all Lagrangians transverse to $\ell_\infty := \left\langle \begin{pmatrix} \text{Id}_n \\ 0 \end{pmatrix} \right\rangle$. This map intertwines the action of $\text{PSp}(2n,K)$ on $\text{Sym}_n(K)$ by fractional linear transformations (8) and the standard action on $\mathcal{L}(K^{2n})$. This bijection maps S^n_F to the projective model

$$\mathcal{D}_F := \{L \in \mathcal{L}(K^{2n}) : -1(\cdot, \sigma(\cdot))|_{L \times L} \gg 0\}$$

and sends $\text{Sym}_n(F)$ to

$$\{\ell \otimes K : \ell \in \mathcal{L}(F^{2n}), \ell \text{ is transverse to } \ell_\infty\}.$$

6.4. **Maximal triples and intervals.** We associate to a triple (ℓ_1, ℓ_2, ℓ_3) of pairwise transverse Lagrangians in $\mathcal{L}(F^{2n})$ the quadratic form $Q_{(\ell_1, \ell_2, \ell_3)}$ on ℓ_1 defined by

$$Q_{(\ell_1, \ell_2, \ell_3)}(v) := \langle v, v' \rangle,$$
where \(v' \in \ell_3 \) is the unique vector such that \(v + v' \in \ell_2 \). If \(\ell = \left(\begin{pmatrix} X \\ \text{Id}_n \end{pmatrix} \right) \) and \(\ell' = \left(\begin{pmatrix} X' \\ \text{Id}_n \end{pmatrix} \right) \) are pairwise transverse, then in the coordinates
\[
\begin{align*}
\mathbb{F}^n & \to \ell \\
 w & \mapsto \left(\begin{pmatrix} X \\ \text{Id}_n \end{pmatrix} \right) w
\end{align*}
\]
the quadratic form \(Q_{(\ell,\ell',\ell_\infty)} \) is represented by \(X' - X \).

Two triples of pairwise transverse Lagrangians \((\ell_1, \ell_2, \ell_3)\) and \((m_1, m_2, m_3)\) are \(\text{PSp}(2n,F) \)-congruent if and only if the quadratic spaces \((\ell_1, Q_{(\ell_1,\ell_2,\ell_3)})\) and \((m_1, Q_{(m_1,m_2,m_3)})\) are isomorphic or equivalently if and only if \(Q_{(\ell_1,\ell_2,\ell_3)} \) and \(Q_{(m_1,m_2,m_3)} \) have the same signature \([BP17, \text{Proposition 2.5}]\). The value of the \textit{Maslov cocycle} on \((\ell_1, \ell_2, \ell_3)\) is the signature of \(Q_{(\ell_1,\ell_2,\ell_3)} \)
\[
\tau(\ell_1, \ell_2, \ell_3) := \text{sign} \, Q_{(\ell_1,\ell_2,\ell_3)}.
\]

The triple \((\ell_1, \ell_2, \ell_3)\) is \textit{maximal} if \(\tau(\ell_1, \ell_2, \ell_3) = n \), the maximal value the Maslov cocycle can take. Similarly we say that a triple \((\ell_1, \ell_2, \ell_3)\) is \textit{minimal} if \(\tau(\ell_1, \ell_2, \ell_3) = -n \); it is easy to verify that \((\ell_1, \ell_2, \ell_3)\) is maximal if and only if \((\ell_2, \ell_1, \ell_3)\) is minimal. The group \(\text{PSp}(2n,F) \) acts transitively on pairs of transverse Lagrangians in \(\mathcal{L}(F^{2n}) \) and on maximal triples.

Given \(\ell, \ell' \in \mathcal{L}(F^{2n}) \), we define the \textit{interval}
\[
I_{(\ell,\ell')} := \{ m \in \mathcal{L}(F^{2n}) : (\ell, m, \ell') \text{ is maximal} \}.
\]

\textbf{Lemma 6.4} ([BP17, Lemma 2.10]). Let \(\ell = \left(\begin{pmatrix} X \\ \text{Id}_n \end{pmatrix} \right) \) and \(\ell' = \left(\begin{pmatrix} X' \\ \text{Id}_n \end{pmatrix} \right) \). If the triple \((\ell, \ell', \ell_\infty)\) is maximal, then
\[
I_{(\ell,\ell')} = \left\{ \left(\begin{pmatrix} Y \\ \text{Id}_n \end{pmatrix} \right) : X \ll Y \ll X' \right\}.
\]

For \(X, X' \in \text{Sym}_n(F) \) with \(X \ll X' \), we will also denote by \(I_{(X,X')} \) the set
\[
I_{(X,X')} := \{ Y \in \text{Sym}_n(F) : X \ll Y \ll X' \}
\]
and set
\[I_{(X, \infty)} := \{ Y \in \text{Sym}_n(F) : X \ll Y \}. \]

6.5. **Crossratios.** In this subsection we recall the endomorphism valued cross-ratio from [BP17, § 4.1] on quadruples of Lagrangians. This, together with a maximal framing, will allow us in § 7.1 to associate to any maximal framed representation \(\rho\) a positive crossratio as in § 3.

Given a quadruple of Lagrangians \((\ell_1, \ell_2, \ell_3, \ell_4)\) in \(\mathcal{L}(F^{2n})\) with \(\ell_1 \cap \ell_2 = \ell_3 \cap \ell_4 = \{0\}\), their crossratio is the endomorphism of \(\ell_1\) given by
\[
R(\ell_1, \ell_2, \ell_3, \ell_4) = p_{\ell_1}^{\parallel \ell_2} \circ p_{\ell_4}^{\parallel \ell_3},
\]
where \(p_{\ell_j}^{\parallel \ell_i}\) denotes the projection of \(F^{2n}\) to \(\ell_j\) parallel to the complementary space \(\ell_i\). One verifies that for all \(g \in \text{Sp}(2n, F)\)
\[
R(g\ell_1, g\ell_2, g\ell_3, g\ell_4) = gR(\ell_1, \ell_2, \ell_3, \ell_4)g^{-1}
\]
and hence
\[
\det R(\ell_1, \ell_2, \ell_3, \ell_4)
\]
is \(\text{PSp}(2n, F)\)-invariant. If, for \(j \in \{1, 2, 3, 4\}\), \(\ell_j \cap \ell_\infty = \{0\}\), then \(\ell_j = \left\langle \begin{pmatrix} X_j \\ \text{Id}_n \end{pmatrix} \right\rangle\)
for some \(X_j \in \text{Sym}_n(F)\). By [BP17, Lemma 4.2], the matrix representing \(R(\ell_1, \ell_2, \ell_3, \ell_4)\) in the basis of \(\ell_1\) given by (10) is
\[
(11) \quad (X_1 - X_2)^{-1}(X_2 - X_4)(X_3 - X_4)^{-1}(X_1 - X_3).
\]
We will denote such matrix \(R(\ell_1, \ell_2, \ell_3, \ell_4)\), with an abuse of notation.

Proposition 6.5 ([BP17, Lemma 4.4]). Let \(\ell_1, \ell_2, \ell_3, \ell_4, \ell_5\) be pairwise transverse Lagrangians. Then:

1. \(R(\ell_1, \ell_2, \ell_4, \ell_5) = R(\ell_1, \ell_2, \ell_3, \ell_5)R(\ell_1, \ell_3, \ell_4, \ell_5)\).
2. \(R(\ell_1, \ell_2, \ell_3, \ell_4)\) is conjugate to \(R(\ell_3, \ell_4, \ell_1, \ell_2)\).
3. \(\det R(\ell_1, \ell_2, \ell_4, \ell_5) = \det R(\ell_1, \ell_2, \ell_3, \ell_5)\det R(\ell_1, \ell_3, \ell_4, \ell_5)\) and \(\det R(\ell_1, \ell_2, \ell_3, \ell_4) = \det R(\ell_3, \ell_4, \ell_1, \ell_2)\).
4. If \((\ell_1, \ell_2, \ell_3, \ell_4)\) is a maximal quadruple, then all eigenvalues of \(R(\ell_1, \ell_2, \ell_3, \ell_4)\) belong to \(F\) and are strictly larger than one. In particular \(\det R(\ell_1, \ell_2, \ell_3, \ell_4) > 1\).
6.6. F-tubes and orthogonal projections. If $\ell, \ell' \in \mathcal{L}(\mathbb{F}^{2n})$, the F-tube determined by ℓ, ℓ' is the semi-algebraic subset of $\mathbb{S}_\mathbb{F}^n$ given by the equation

$$ Y_{\ell, \ell'} := \left\{ Z \in \mathbb{S}_\mathbb{F}^n : \mathcal{R} \left(\ell, \left\langle \begin{pmatrix} Z \\ \text{Id}_n \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} \overline{Z} \\ \text{Id}_n \end{pmatrix} \right\rangle, \ell' \right) = -\text{Id}_n \right\}, $$

where \overline{Z} is the complex conjugate of Z, [BP17, § 4.2].

If $\mathbb{F} = \mathbb{R}$ and $n = 1$, the R-tube $Y_{\ell, \ell'}$ is the geodesic between ℓ and ℓ' while, for $n \geq 1$, $Y_{\ell, \ell'}$ is a symmetric subspace of $\mathbb{S}_\mathbb{R}^n$ that is a Lagrangian submanifold and is isometric to the symmetric space associated to $\text{GL}(n, \mathbb{R})$. In general, for all $g \in \text{PSp}(2n, \mathbb{F})$,

$$(12) \quad Y_{g\ell, g\ell'} = g(Y_{\ell, \ell'})$$

and if we denote

$$ \ell_0 := \left\langle \begin{pmatrix} 0 \\ \text{Id}_n \end{pmatrix} \right\rangle,$$

then

$$ Y_{\ell_0, \ell_\infty} := \{ tY : Y \in \text{Sym}_n(\mathbb{F}), Y \gg 0 \}. $$

We will often write $Y_{0, \infty}$ for Y_{ℓ_0, ℓ_∞}.

If $(\ell_1, \ell_2, \ell_3, \ell_4)$ is a maximal quadruple, then Y_{ℓ_1, ℓ_3} and Y_{ℓ_2, ℓ_4} meet exactly in one point. Such F-tubes are called orthogonal if

$$ \mathcal{R}(\ell_1, \ell_2, \ell_3, \ell_4) = 2\text{Id}_n $$

(see [BP17, Proposition 4.7 and Definition 4.14]). If $\mathbb{F} = \mathbb{R}$, the tubes are orthogonal if and only if they are orthogonal as submanifolds of the Riemannian manifold $\mathbb{S}_\mathbb{R}^n$. Given any point $p \in I(\ell_1, \ell_3) \cup I(\ell_3, \ell_1)$, there exists a unique F-tube Y_{ℓ_2, ℓ_4} orthogonal to Y_{ℓ_1, ℓ_3} “with endpoint p” in the following sense

$$ \begin{cases}
\ell_2 := p & \text{if } p \in I(\ell_1, \ell_3) \\
\ell_4 := p & \text{if } p \in I(\ell_3, \ell_1)
\end{cases} $$

In this way we obtain a map

$$ \text{pr}_{Y_{\ell_1, \ell_3}} : I(\ell_1, \ell_3) \cup I(\ell_3, \ell_1) \to Y_{\ell_1, \ell_3} $$

called the orthogonal projection.
In the case of $\ell_{0,\infty}$ the map $\text{pr}_{\ell_{0,\infty}}$ is given by

$$\text{pr}_{\ell_{0,\infty}}(Y) = \begin{cases} \text{i}Y & \text{if } Y \in I_{(\ell_{0,\infty})} \\ -\text{i}Y & \text{if } Y \in I_{(\ell_{\infty,\ell_{0}})} \end{cases}.$$

In view of (12), this implies in particular that the restrictions of $\text{pr}_{\ell_{1,\ell_{3}}}$ to $I_{(\ell_{1,\ell_{3}})}$ and $I_{(\ell_{3,\ell_{1}})}$ are both bijective.

Lemma 6.6. Assume $(\ell, \ell_{1}, \ell_{2}, \ell')$ is maximal. Then for the pseudodistance d^{1} on S^{n}_{F} (see (9) in §6.2) we have,

$$d^{1}\left(\text{pr}_{\ell,\ell'}(\ell_{1}), \text{pr}_{\ell,\ell'}(\ell_{2})\right) = -v(\text{det} R(\ell, \ell_{1}, \ell_{2}, \ell')).$$

Proof. We may assume that $\ell = \ell_{0}$ and $\ell' = \ell_{\infty}$, and set $\ell_{j} := \left(\begin{array}{c} Y_{j} \\ \text{Id}_{n} \end{array}\right)$, for $j = 1, 2$. Then we have $0 \ll Y_{1} \ll Y_{2}$ and in particular the eigenvalues r_{1}, \ldots, r_{n} of the symmetric matrix $Y_{1}^{-1/2}Y_{2}Y_{1}^{-1/2}$ are all greater than 1. By invariance of the distance d^{1} we have

$$d^{1}(\text{i}Y_{1}, \text{i}Y_{2}) = d^{1}\left(\text{i}\text{Id}_{n}, \text{i}Y_{1}^{-1/2}Y_{2}Y_{1}^{-1/2}\right) = \sum_{j=1}^{n} -v(r_{j})$$

$$= -v\left(\prod_{j=1}^{n} r_{j}\right) = -v\left(\text{det}(Y_{1}^{-1}Y_{2})\right)$$

$$= -v(\text{det} R(\ell, \ell_{1}, \ell_{2}, \ell')),$$

where the last equality uses (11). This proves the lemma. \qed

6.7. Barycenters. Assume that F is non-Archimedean. If the triple of Lagrangians $(\ell_{1}, \ell_{2}, \ell_{3})$ is either maximal or minimal, then $\ell_{2} \in I_{(\ell_{1,\ell_{3}})} \cup I_{(\ell_{3,\ell_{1}})}$. We define

$$b(\ell_{1}, \ell_{2}, \ell_{3}) := \text{pr}_{\ell_{1,\ell_{3}}}(\ell_{2}) \in S^{n}_{F}.$$

The **barycenter** of the triple $(\ell_{1}, \ell_{2}, \ell_{3})$ is the point

$$B(\ell_{1}, \ell_{2}, \ell_{3}) = \pi(b(\ell_{1}, \ell_{2}, \ell_{3})),$$

where $\pi: S^{n}_{F} \to B^{n}_{F}$ is the metric quotient introduced in §6.2. Our goal is to show the following (cfr. [BP17] Lemma 7.5):

Proposition 6.7. $B(\ell_{1}, \ell_{2}, \ell_{3})$ is invariant under permutation of the arguments.
First we need to establish a formula for the (pseudo-)distance in S^F_1:

Lemma 6.8. If $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2 \in S^F_1$, then

$$d(z_1, z_2) = \max \left\{ -v \left(\frac{(x_1 - x_2)^2}{y_1y_2} \right), -v \left(\frac{y_1}{y_2} \right), -v \left(\frac{y_2}{y_1} \right) \right\},$$

Proof. Recall that for a general real closed field F, if $z_1, z_2 \in S^F_1$,

$$d(z_1, z_2) = \ln \| T + \sqrt{T^2 - 1} \|_v,$$

where $T = 1 + \frac{|z_1 - z_2|^2}{2y_1y_2}$. Since F is non-Archimedean, then for $a, b \in F$, $a \geq 0$, $b \geq 0$, we have

$$\| a + b \|_v = \| \max \{a, b\} \|_v.$$

Hence

$$\| T + \sqrt{T^2 - 1} \|_v = \| T \|_v$$

and

$$d(z_1, z_2) = \ln \| T \|_v.$$

Since

$$T = 1 + \frac{|z_1 - z_2|^2}{2y_1y_2} = \frac{(x_1 - x_2)^2}{2y_1y_2} + \frac{y_1}{2y_2} + \frac{y_2}{2y_2},$$

then

$$\| T \|_v = \max \left\{ \left\| \frac{(x_1 - x_2)^2}{y_1y_2} \right\|_v, \left\| \frac{y_1}{y_2} \right\|_v, \left\| \frac{y_2}{y_1} \right\|_v \right\},$$

where we took into account that $\| n \|_v = 1$ for any $n \in Z \setminus \{0\}$.

Proof of Proposition 6.7. Since $\text{PSp}(2n, F)$ acts transitively on maximal and minimal triples, we may assume that $(\ell_1, \ell_2, \ell_3) := (\ell_0, \left(\begin{array}{c} Y \\ \text{Id}_n \end{array} \right), \ell_\infty)$, where $Y = \pm \text{Id}_n$, depending on whether (ℓ_1, ℓ_2, ℓ_3) is maximal or minimal. A computation then gives:

$$\text{pr}_{y_{\ell_0, \infty}}(\pm \text{Id}_n) = \pm \text{Id}_n$$

$$\text{pr}_{y_{\ell_\infty, \ell_2}}(t) = (\pm 1 + t)\text{Id}_n$$

$$\text{pr}_{y_{\ell_2, \ell_0}}(\infty) = \pm \frac{1 + t}{2}\text{Id}_n.$$

Observe that if $Z = \text{diag}(z_1, \ldots, z_n), W = \text{diag}(w_1, \ldots, w_n) \in S^F_n$, then

$$d^1(Z, W) = \sum_{i=1}^n d(z_i, w_i).$$
Thus in order to compute the distances between various projections we just have to compute the following in S_F^1:

\[
\begin{align*}
 d(ı, ı \pm 1) &= \ln \max \{\|ı\|, \|ı\|, \|ı\|\} = 0, \\
 d(ı, \left(\frac{ı + ı}{2}\right)) &= \ln \max \left\{\left\|\frac{ı}{2}\right\|, \left\|\frac{ı}{2}\right\|, \left\|2ı\right\|\right\} = 0.
\end{align*}
\]

This concludes the proof. \hfill \square

7. Applications to maximal framed representations

In this section we prove Theorem 1.2, Corollary 1.3, Corollary 1.8, and Theorem 1.5 in the introduction.

7.1. The geodesic current μ_ρ and Theorem 1.2. Let $\rho: \Gamma \to \mathrm{PSp}(2n, F)$ be a maximal framed representation with maximal framing $\varphi: H_\Gamma \to \mathcal{L}(\mathbb{F}^{2n})$. Define

\[
[x_1, x_2, x_3, x_4]_\rho := -v(\det R(\varphi(x_1), \varphi(x_2), \varphi(x_3), \varphi(x_4))).
\]

It follows from Proposition 6.5 that $[\cdot, \cdot, \cdot, \cdot]_\rho$ is a positive crossratio on H_Γ, and hence (Proposition 4.3 and 4.8) there is a geodesic current μ_ρ such that

\[
\per(\gamma) = i(\mu_\rho, \delta_c)
\]

for every closed geodesic c represented by a hyperbolic element $\gamma \in \Gamma$.

Next, for the computation of $\per(\gamma)$, recall that $g \in \mathrm{Sp}(2n, F)$ is called Shilov hyperbolic if there is a g-invariant decomposition $\mathbb{F}^{2n} = \ell_+ \oplus \ell_-$ into Lagrangians such that all eigenvalues of $g|_{\ell_-}$ have absolute value strictly smaller than one (and thus all eigenvalues of $g|_{\ell_+}$ have absolute value strictly larger than one), \cite[Definition 2.12]{BP17}. An element $g \in \mathrm{PSp}(2n, F)$ is Shilov hyperbolic if any of its lifts to $\mathrm{Sp}(2n, F)$ is. Of course the decomposition is uniquely determined by g and doesn’t depend on the lift. We will need the following:

Lemma 7.1 \cite[Lemma 7.9]{BP17}. Let $g \in \mathrm{Sp}(2n, F)$ be Shilov hyperbolic and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $g|_{\ell_+}$. Then for any $\ell \in I(\ell_-, \ell_+)$ we have

\[
\det R(\ell_-, \ell, \ell_+) = \left(\prod_{i=1}^n \lambda_i\right)^2.
\]
Proof. We may assume by transitivity of the action of $\text{Sp}(2n, F)$ on pairs of transverse Lagrangians, that $(\ell_-, \ell_+) = (\ell_0, \ell_\infty)$. Furthermore $g = \begin{pmatrix} A & 0 \\ 0 & tA^{-1} \end{pmatrix}$, where A is the matrix of $g|_{\ell_+}$. Then ℓ corresponds to a matrix $X \in \text{Sym}_n(F)$ with $X \gg 0$ and (11) gives

$$R(\ell_-, \ell, g\ell, \ell_+) = X^{-1}AXA^t.$$

This implies that

$$\det R(\ell_-, \ell, g\ell, \ell_+) = (\det A)^2,$$

hence the lemma. \square

Let $\gamma \in \Gamma$ be hyperbolic with attractive and repulsive fixed points γ_+ and γ_-. It follows from [BP17, Theorem 1.9] that $\rho(\gamma)$ is Shilov hyperbolic with corresponding decomposition $F^{2n} = \varphi(\gamma_-) \oplus \varphi(\gamma_+)$. In particular the framing is uniquely determined by the representation ρ. Furthermore, if $\lambda_1(\gamma), \ldots, \lambda_n(\gamma)$ are the eigenvalues of $\rho(\gamma)$ with $|\lambda_1(\gamma)| \geq \ldots \geq |\lambda_n(\gamma)| \geq 1$, then Lemma 7.1 implies that if $x \in I_{(\gamma_, \gamma_+)}$,

$$\text{per}(\gamma) = -v(\det R(\varphi(\gamma_-), \varphi(x), \rho(\gamma)\varphi(x), \varphi(\gamma_+)))$$

$$= 2\sum_{i=1}^n -v(\lambda_i(\gamma)) = L(\rho(\gamma)).$$

If there is an element $\gamma \in \Gamma$ with $-v(\text{tr}(\rho(\gamma))) > 0$, then necessarily $\rho(\gamma)$ has an eigenvalue with the same property and thus $\text{per}(\gamma) > 0$. Viceversa if μ_ρ is non-zero, there exists a proper closed rectangle $R = I_{[a,b]} \times I_{[c,d]}$ with $\mu_\rho(R) > 0$. Since Γ is a lattice, we find $\gamma \in \Gamma$ with $\gamma_+ \in I_{[b,c], \gamma_- \in I_{[d,a]}$. For such γ, the intersection $i(\mu_\rho, \delta_\gamma) > 0$, and thus $\text{per}(\gamma) > 0$, which implies that $||\lambda_1(\gamma) \ldots \lambda_n(\gamma)||_v > 1$. Now assume by contradiction that $-v(\text{tr}(\rho(\gamma^s))) \leq 0$ for all $s \in \mathbf{N}$. Then the coefficients of the characteristic polynomial of $\wedge^n \rho(\gamma)$ belong to the ring $\mathcal{O} := \{x \in F||x||_v \leq 1\}$ as well. But $\lambda_1(\gamma) \ldots \lambda_n(\gamma) \in F$ is a root of this monic polynomial, and since $\mathcal{O} \subset F$ is a valuation ring, it is integrally closed in F (see [EP05, Theorem 3.1.3.(1)]). This implies $||\lambda_1(\gamma) \ldots \lambda_n(\gamma)||_v \leq 1$, a contradiction, that concludes the proof of Theorem 1.2.
7.2. Displacing representations and Corollary 1.3. Assume that Σ is compact and let $\rho: \Gamma \to \text{PSp}(2n, F)$ be a maximal framed representation. If

$$\text{Syst}(\rho) := \inf_{\gamma \neq e} L(\rho(\gamma)) > 0,$$

it follows from Theorem 1.2 that the associated geodesic current μ_ρ has $\text{Syst}(\mu_\rho) > 0$; hence there exist c_1, c_2 such that, for every $\gamma \in \Gamma$,

$$c_1 \ell(\gamma) \leq L(\rho(\gamma)) \leq c_2 \ell(\gamma),$$

where $\ell(\gamma)$ is the hyperbolic length of γ [BIPP19 Theorem 1.3]. It follows then from [DGLM11] that the Γ-action on B^F_n induced by ρ is displacing and hence, for every $x \in B^F_n$, the map $\gamma \mapsto \rho(\gamma)x$ is a quasi-isometric embedding. This proves Corollary 1.3.

7.3. Maximal representations in $\text{PSp}(2n, R)$ and Corollary 1.8. If Σ is not necessarily compact, the inequalities in (13) do not necessarily hold. However, applying [BIPP19, Corollary 1.5 (2)] to the current μ_ρ, we deduce following

Corollary 7.2. Let $\rho: \Gamma \to \text{PSp}(2n, F)$ be a representation admitting a maximal framing defined on H_Γ. Assume that $\text{Syst}_\Sigma(\rho) > 0$. Then for every compact subset $K \subset \Sigma$, there are constants $0 < c_1 \leq c_2$ such that

$$c_1 \ell(c) \leq L(\rho(c)) \leq c_2 \ell(c)$$

for every $\gamma \in \Gamma$ representing a closed geodesic c contained in K. In particular there exist constants c_1, c_2 such that this holds for all γ representing simple closed geodesics.

Assume now that $F = R$ and let $\rho: \Gamma \to \text{PSp}(2n, R)$ be a maximal representation. Then there is a maximal framing φ defined on ∂H^2 [BIW10, Theorem 8] and hence, by Theorem 1.2, a geodesic current μ_ρ with

$$i(\mu_\rho, \delta_c) = L(\rho(\gamma)),$$

for every closed geodesic c represented by a hyperbolic element $\gamma \in \Gamma$. The Collar Lemma, [BPT17, Theorem 1.9], then implies that if γ, η are intersecting hyperbolic elements,

$$\left(e^{\frac{L(\rho(\gamma))}{n}} - 1 \right) \left(e^{\frac{L(\rho(\eta))}{n}} - 1 \right) \geq 1.$$
This implies that, if γ is self-intersecting,
\[L(\rho(\gamma)) \geq n(\ln 2), \]
and that there are at most $3g - 3 + p$ conjugacy classes of hyperbolic elements γ with $L(\rho(\gamma)) \leq n(\ln 2)$. In particular $\text{Syst}(\mu_\rho) > 0$. Corollary 1.8 then follows from Corollary 7.2.

7.4. **Lamination type currents and Theorem 1.5** Let F be non-Archimedean. Given a maximal framed representation, as above, and with the notation of §6.7, define the **barycenter** of $(x, y, z) \in H_\Gamma^{(3)}$
\[\beta_\rho(x, y, z) := B(\varphi(x), \varphi(y), \varphi(z)) \in B_n^F. \]

It follows from Proposition 6.7 that β is indeed a barycenter according to Definition 5.1 and from Lemma 6.6 that it is compatible with the crossratio $[\cdot, \cdot, \cdot, \cdot]_\rho$ defined in §7.1.

If now μ_ρ is of lamination type, we deduce from Theorem 5.3 that there is a well defined equivariant isometric embedding
\[V(\mu_\rho) \hookrightarrow B_n^F \]
from the set of vertices $V(\mu_\rho)$ of the R-tree $T(\mu_\rho)$ associated to μ_ρ into the metric space B_n^F.

7.5. **The value group of $[\cdot, \cdot, \cdot, \cdot]_\rho$ and Theorem 1.4** Let $\rho: \Gamma \to \text{Sp}(2n, F)$ be maximal framed with framing $\varphi: H_\Gamma \to \mathcal{L}(F^{2n})$, and set as always
\[[x_1, x_2, x_3, x_4]_\rho := -v(\det R(\varphi(x_1), \varphi(x_2), \varphi(x_3), \varphi(x_4))). \]

Theorem 7.3. Let $\Lambda := v(Q(\rho))$ be the value group of the field $Q(\rho)$ generated over Q by the matrix coefficients of ρ. Then
\[[x_1, x_2, x_3, x_4]_\rho \in \frac{1}{(8n)!} \Lambda \]
for all $(x_1, x_2, x_3, x_4) \in H_\Gamma^{[4]}$.

Proof. We might assume that F is the real closure of $Q(\rho)$. Let $(x_1, x_2, x_3, x_4) \in H_\Gamma^{[4]}$ and γ_i hyperbolic with $(\gamma_i)_- = x_i$. If c_{γ_1}, c_{γ_2}, c_{γ_3}, c_{γ_4} are the characteristic polynomials of $\rho(\gamma_1)$, $\rho(\gamma_2)$, $\rho(\gamma_3)$, $\rho(\gamma_4)$ then $c_{\gamma_i} \in Q(\rho)[X]$. Since $F[i]$ is
algebraically closed, $\rho(\gamma_1)$ splits in $F[i]$. If L is the splitting field in $F[i]$ of $c_{\gamma_1}c_{\gamma_2}c_{\gamma_3}c_{\gamma_4} \in \mathbb{Q}(\rho)[X]$ then

$$[L : \mathbb{Q}(\rho)] \leq (8n)!.$$

Observe that the field L depends on $\rho(\gamma_1)$, $\rho(\gamma_2)$, $\rho(\gamma_3)$, $\rho(\gamma_4)$.

It is now easy to see that the Lagrangians $\varphi(x_i) \subset F^{2n}$ are defined over $L \cap F$, as a result we can represent them by $\left\langle \begin{pmatrix} X_i \\ \text{Id}_n \end{pmatrix} \right\rangle$ with $X_i \in \text{Sym}_n(L \cap F)$, which implies that $\det R(\varphi(x_1), \varphi(x_2), \varphi(x_3), \varphi(x_4)) \in (L \cap F)^\times$. We conclude using [Lan02, XII §4 Proposition 12] which says that the index of Λ in $\nu((L \cap F)^\times)$ is at most $(8n)!$. This concludes the proof. □

In particular, if $\mathbb{Q}(\rho)$ has discrete valuation, we can assume, up to rescaling the valuation, that the crossratio $[x_1, x_2, x_3, x_4]_{\rho}$ is integer valued. Theorem 1.4 is therefore a direct application of Proposition 4.12.

8. Examples of maximal framed representations

In this section we collect several interesting examples of maximal framed representations over non-Archimedean real closed fields.

8.1. Ultralimits of representations and asymptotic cones. Let $(\rho_k)_{k \geq 1}$ be a sequence of maximal representations into $\text{Sp}(2n, \mathbb{R})$ and ω a non-principal ultrafilter on \mathbb{N}. This gives rise to a representation $\rho_\omega : \Gamma \to \text{Sp}(2n, R_\omega)$, where R_ω is the field of hyperreals and $\rho_\omega(\Gamma) \subset \text{Sp}(2n, O_\sigma)$, where the infinitesimal σ is defined below. Denoting by $R_{\omega, \sigma}$ the Robinson field, the representation $\rho_{\omega, \sigma}$ obtained by composing ρ_ω with the projection

$$\text{Sp}(2n, R_\omega) \to \text{Sp}(2n, R_{\omega, \sigma}),$$

is a maximal framed representation of Γ into $\text{Sp}(2n, R_{\omega, \sigma})$, [BP17, Corollary 10.4]; its framing is defined on $\partial \mathbb{H}^2$, and Theorem 1.4 applies.

This construction is closely related to asymptotic cones, as we now recall. Denoting by d the $\text{Sp}(2n, \mathbb{R})$-invariant Riemannian distance on the Siegel n-space, we say that a sequence of scales $(\lambda_k)_{k \in \mathbb{N}} \in (\mathbb{R}_{>0})^\mathbb{N}$ is adapted (to the
sequence \((\rho_k)_{k \in \mathbb{N}}\) if for one, and hence every, finite generating set \(S \subset \Gamma\)

\[
\lim_{\omega} \max_{\gamma \in S} d(\rho_k(\gamma) \cdot \text{Id}_n, \text{Id}_n) < +\infty.
\]

We obtain then an action

\[
\omega \rho_\lambda : \Gamma \to \text{Isom}(\omega \ell_\lambda),
\]
on the asymptotic cone \(\omega S_\lambda\) of the sequence of pointed metric spaces given by

\((\mathbb{S}_R^n, \text{Id}_n, d_{\lambda_k})\).

If we set \(\sigma := (e^{-\lambda_k})_{k \geq 1} \in \mathbb{R}_w\), then the asymptotic cone \(\omega X_\lambda\) can be identified with the metric space \(\mathbb{B}_{\mathbb{R}^w, \sigma}\) and, under this identification, \(\omega \rho_\lambda\) corresponds to \(\rho_{w, \sigma}\) (see for example [Par12]).

8.2. **Maximal representations in** \(\text{SL}(2, \mathbb{F})\). Let \(\mathbb{F}\) be a real closed field with an order compatible non-Archimedean valuation, and let \(T^\mathbb{F} \supset \mathbb{B}^\mathbb{F}_1\) be the \(\mathbb{R}\)-tree associated to \(\text{SL}(2, \mathbb{F})\). Then \(\mathbb{P}^1(\mathbb{F})\) identifies with a subset of \(\partial_\infty T^\mathbb{F}\) and the restriction to \(\mathbb{P}^1(\mathbb{F})\) of the crossratio of \(\partial_\infty T^\mathbb{F}\) is the standard crossratio \([\cdot, \cdot, \cdot, \cdot]\) in \(\mathbb{P}^1(\mathbb{F})\).

Hence any representation \(\rho : \Gamma \to \text{SL}(2, \mathbb{F})\) with framing \(\varphi : H_\Gamma \to \mathbb{P}^1(\mathbb{F})\),
gives a framed action on \(T^\mathbb{F}\). Note that the associated crossratio \([x_1, x_2, x_3, x_4]_\varphi = [\varphi(x_1), \varphi(x_2), \varphi(x_3), \varphi(x_4)]_\mathbb{F}\) is positive if the framing \(\varphi\) is maximal.

Proposition [5.8] implies the following.

Theorem 8.1. Let \(\mathbb{F}\) be a real closed field with an order compatible non-Archimedean valuation. Let \(\rho : \Gamma \to \text{SL}(2, \mathbb{F})\) be a representation with a maximal framing \(\varphi : H_\Gamma \to \mathbb{P}^1(\mathbb{F})\). Denote by \(\mu_\rho\) the geodesic current associated to the positive crossratio induced by \(\varphi\) on \(X\). Then \(\mu_\rho\) corresponds to a measured lamination, and there is a \(\Gamma\)-equivariant isometric embedding

\[
\mathcal{V}(\mu_\rho) \hookrightarrow T^\mathbb{F}.
\]

In particular, for all hyperbolic \(\gamma \in \Gamma\), \(t(\rho(\gamma)) = i(\mu_\rho, \gamma)\).

8.3. **Unipotent representations of the thrice punctured sphere.** Let \(\Gamma < \text{PSL}(2, \mathbb{R})\) be the (unique up to conjugation) lattice such that \(\Gamma \backslash \mathbb{H}^2\) is the thrice punctured sphere. Then \(\Gamma\) admits a presentation

\[
\Gamma = \langle c_1, c_2, c_3 : c_3 c_2 c_1 \rangle,
\]
where c_1, c_2, c_3 are parabolic elements representing the three inequivalent cusps of Γ. Already in this elementary example we are able to illustrate interesting features. For every $\alpha \in \mathbb{R}$ we construct maximal framed representations $\rho_\alpha: \Gamma \to \text{Sp}(4, \mathcal{H}(\mathbb{R}))$, where $\mathcal{H}(\mathbb{R})$ is the Hahn field with exponents \mathbb{R} (see Example 6.2(4)), that have the following properties:

1) for $\alpha \leq 1/2$ the corresponding length functions $\gamma \mapsto L(\rho_\alpha(\gamma))$ are not proportional and hence the corresponding currents μ_{ρ_α} are distinct in the space of projectivized currents;

2) for $\alpha \in \mathbb{Q}$ the associated geodesic current μ_{ρ_α} is a multicurve.

To this end we use the explicit coordinates obtained by Strubel on the set of $\text{Sp}(2n, \mathbb{R})$-conjugacy classes of maximal representations of Γ into $\text{Sp}(2n, \mathbb{R})$. Namely, let

$$B := \{ A \in \text{GL}(n, \mathbb{R}) : \text{spec}(A) \subset \{ z \in \mathbb{C} : |z| \leq 1 \} \}$$

and

$$R = \{ (X_1, X_2, X_3) \in B^3 : X_3 X_2^{-1} X_1 \text{ is symmetric positive definite} \}.$$

Then, given $X := (X_1, X_2, X_3) \in R$, the formulas

$$\rho_X(c_1) = \begin{pmatrix} X_1 & 0 \\ X_1 + X_2^{-1} X_3 & X_3^{-1} \end{pmatrix}$$

$$\rho_X(c_3) = \begin{pmatrix} X_3^{-1} & -X_3^{-1} - X_2^{-1} X_1 \\ 0 & X_3 \end{pmatrix}$$

determine a representation $\Gamma \to \text{Sp}(2n, \mathbb{R})$ that is maximal [Str15, Theorem 2]. Moreover every maximal representation of Γ into $\text{Sp}(2n, \mathbb{R})$ is conjugate to a ρ_X for $X \in R$ and $\text{Sp}(2n, \mathbb{R})$-conjugacy classes of maximal representations correspond to $O(n)$-conjugacy classes in R for the diagonal conjugation action of $O(n)$.

If now \mathbb{F} is a real closed field and

$$\overline{B}_\mathbb{F} = \{ A \in \text{GL}(n, \mathbb{F}) : \text{spec}(A) \subset \{ z \in \mathbb{F}(\sqrt{-1}) : |z| \leq 1 \} \}$$

and

$$R_\mathbb{F} := \{ (X_1, X_2, X_3) \in \overline{B}_\mathbb{F}^3 : X_3 X_2^{-1} X_1 \text{ is symmetric positive definite} \},$$
the following gives a source of maximal framed representations over any real closed field F:

Proposition 8.2. For every $X := (X_1, X_2, X_3) \in R_F$ the formulas for $\rho_X(c_1)$ and $\rho_X(c_3)$ define a maximal framed representation $\rho_X : \Gamma \rightarrow \text{Sp}(2n, F)$.

The proof is beyond the scope of this paper. Let us just mention that it is an easy application of the Tarski–Seidenberg principle (see [BCR98, Proposition 5.1.3]) and the fact that R parametrizes a semi-algebraic subset of $\text{Hom}(\Gamma, \text{Sp}(2n, R))$.

We are interested in the case in which $\rho_X(c_1)$, $\rho_X(c_2)$ and $\rho_X(c_3)$ are all unipotent, which is equivalent to $X_1, -X_2, X_3$ being unipotent. This is never the case if $n = 1$ as one can see from the above formulas, while already for $\text{Sp}(4, R)$ there are interesting examples with unipotent boundary holonomy. We restrict here to the subset of R consisting of triple (X_1, X_2, X_3) such that $X_1, -X_2, X_3$ are unipotent and $X_3^t X_2^{-1} X_1 = \text{Id}$. The quotient by $O(2)$-conjugation of such triples can be parametrized by

$$
\left\{ \begin{pmatrix}
1 & \frac{4}{x} & 0 \\
\frac{-3 + y}{x} & -x & 1 - y \\
0 & 1 - y
\end{pmatrix},
\begin{pmatrix}
1 + y & \frac{y^2}{x} \\
-x & 1 - y
\end{pmatrix},
\left\{ x > 0, y \in R \right\}.
\right.
$$

The corresponding matrices are then

$$
\rho_X(c_1) = \begin{pmatrix}
X_1 & 0 \\
X_1 + X_2^{-1} t X_3 & t X_1^{-1}
\end{pmatrix} = \begin{pmatrix}
1 & \frac{4}{x} & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & \frac{4}{x} & 1 & 0 \\
-\frac{4}{x} & 2 & -\frac{4}{x} & 1
\end{pmatrix},
$$

$$
\rho_X(c_3) = \begin{pmatrix}
(t X_3^{-1} & -t X_3^{-1} - X_1^{-1} X_2 \\
0 & X_3
\end{pmatrix} = \begin{pmatrix}
1 - y & x & -2 & -x - \frac{y^2}{x} \\
-\frac{y^2}{x} & 1 + y & x + \frac{y^2}{x} & -2 \\
0 & 0 & 1 + y & \frac{y^2}{x} \\
0 & 0 & -x & 1 - y
\end{pmatrix}.
$$

The above formulas allow us to consider ρ_X as a representation of Γ with coefficients in the ring $R[x, \frac{1}{x}, y]$. Now for every $\alpha \in R$ we consider the ring morphism of $R[x, \frac{1}{x}, y]$ into the Hahn field $\mathcal{H}(R)$ defined by sending x to x and y to x^α. In this way we obtain for every $\alpha \in R$ a representation
\(\rho_\alpha: \Gamma \to \text{Sp}(4, \mathcal{H}(\mathbb{R})) \). It is easy to verify that the triple \(X = (X_1, X_2, X_3) \) with \(y = x^\alpha \) is in \(R_{\mathcal{H}}(\mathbb{R}) \) and it follows from Proposition 8.2 that \(\rho_\alpha \) is maximal framed. For the computation of the length function \(L \) it is not difficult to see that if \(g \in \text{Sp}(4, F) \), where \(F \) is real closed non-Archimedean with an order compatible valuation, then

\[
L(g) = -v(T(g)).
\]

where \(T(g) = (\text{tr}g)^2 - \text{tr}g^2 - 4 \). In our case we obtain

\[
T(\rho_\alpha(c_1^{-1}c_3)) = 4(4x^2 + 32x^{-4+4\alpha} + (18 + 8x^{2\alpha}) + 4x^{-2}(16 + 12x^{2\alpha} + x^{4\alpha}))
\]

and

\[
T(\rho_\alpha(c_1^{-1}c_2)) = 4(50 + 4x^2 + 8x^{2\alpha} + 4x^{-2}(16 + 12x^{2\alpha} + x^{4\alpha}))
\]

so

\[
v(T(\rho_\alpha(c_1^{-1}c_3))) = \min(-2, -4 + 4\alpha, -2 + 2\alpha) = \begin{cases}
-2 & \alpha \geq \frac{1}{2} \\
-4 + 4\alpha & \alpha \leq \frac{1}{2}
\end{cases}
\]

and

\[
v(T(\rho_\alpha(c_1^{-1}c_2))) = \min(-2, -2 + 4\alpha, -2 + 2\alpha) = \begin{cases}
-2 & \alpha \geq 0 \\
-2 + 4\alpha & \alpha \leq 0.
\end{cases}
\]

We deduce that for \(\alpha \leq 1/2 \) the length functions \(\gamma \mapsto L(\rho_\alpha(\gamma)) \) are distinct even when considered up to positive scaling. It is easy to verify that

\[
Q(\rho_\alpha) = \begin{cases}
Q(x^\alpha) & \text{if } \alpha \in \mathbb{Q} \setminus \{0\} \\
Q(x) & \text{if } \alpha = 0 \\
Q(x, x^\alpha) & \text{if } \alpha \notin \mathbb{Q}.
\end{cases}
\]

As a result, the image of the valuation is

\[
v(Q(\rho_\alpha)) = \begin{cases}
\alpha Z & \text{if } \alpha \in \mathbb{Q} \setminus \{0\} \\
Z & \text{if } \alpha = 0 \\
Z + \alpha Z & \text{if } \alpha \notin \mathbb{Q},
\end{cases}
\]

which implies by Theorem 14.4 that the geodesic current corresponding to \(\rho_\alpha \) is a multicurve if \(\alpha \in \mathbb{Q} \).
References

[Ale08] D. Alessandrini. Tropicalization of group representations. *Algebr. Geom. Topol.*, 8(1):279–307, 2008.

[BCR98] J. Bochnak, M. Coste, and M.-F. Roy. *Real algebraic geometry*, volume 36 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by the authors.

[BIPP19] M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti. Currents, systoles, and compactifications of character varieties, 2019.[arXiv:1902.07680](https://arxiv.org/abs/1902.07680) to appear *Proc. London Math. Soc*.

[BIPP21a] M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti. The real spectrum compactification of character varieties, 2021.

[BIPP21b] M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti. Real spectrum of maximal character varieties., 2021.

[BIPP21c] Marc Burger, Alessandra Iozzi, Anne Parreau, and Maria Beatrice Pozzetti. The real spectrum compactification of character varieties: characterizations and applications. *Comptes Rendus. Mathématique*, 359(4):439–463, 2021.

[BIW10] M. Burger, A. Iozzi, and A. Wienhard. Surface group representations with maximal Toledo invariant. *Ann. of Math. (2)*, 172(1):517–566, 2010.

[Bon88] F. Bonahon. The geometry of Teichmüller space via geodesic currents. *Invent. Math.*, 92(1):139–162, 1988.

[BP17] M. Burger and M. B. Pozzetti. Maximal representations, non-Archimedean Siegel spaces, and buildings. *Geom. Topol.*, 21(6):3539–3599, 2017.

[BP20] J. Beyrer and M. B. Pozzetti. A collar lemma for partially hyperconvex surface group representations. *Trans. Amer. Math. Soc.*, 2020. https://arxiv.org/abs/2004.03559.

[BP21] Jonas Beyrer and Beatrice Pozzetti. Positive surface group representations in PO(p,q). 2021. https://arxiv.org/abs/2106.14725.

[Bru88] G. W. Brumfiel. The tree of a non-Archimedean hyperbolic plane. In *Geometry of group representations (Boulder, CO, 1987)*, volume 74 of *Contemp. Math.*, pages 83–106. Amer. Math. Soc., Providence, RI, 1988.

[DGLM11] Th. Delzant, O. Guichard, F. Labourie, and S. Mozes. Displacing representations and orbit maps. In *Geometry, rigidity, and group actions*, Chicago Lectures in Math., pages 494–514. Univ. Chicago Press, Chicago, IL, 2011.

[DW96] H. G. Dales and W. H. Woodin. *Super-real fields*, volume 14 of *London Mathematical Society Monographs. New Series*. The Clarendon Press, Oxford University Press, New York, 1996. Totally ordered fields with additional structure, Oxford Science Publications.
[EP05] Antonio J. Engler and Alexander Prestel. \textit{Valued fields}. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

[Ham97] U. Hamenstädt. Cocycles, Hausdorff measures and cross ratios. \textit{Ergodic Theory Dynam. Systems}, 17(5):1061–1081, 1997.

[Kap09] M. Kapovich. \textit{Hyperbolic manifolds and discrete groups}. Modern Birkhäuser Classics. Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 2001 edition.

[KT04] L. Kramer and K. Tent. Asymptotic cones and ultrapowers of Lie groups. \textit{Bull. Symbolic Logic}, 10(2):175–185, 2004.

[Lab07] F. Labourie. Cross ratios, surface groups, $\text{PSL}(n, \mathbb{R})$ and diffeomorphisms of the circle. \textit{Publ. Math. Inst. Hautes Études Sci.}, (106):139–213, 2007.

[Lan02] S. Lang. \textit{Algebra}, volume 211 of \textit{Graduate Texts in Mathematics}. Springer-Verlag, New York, third edition, 2002.

[Led95] F. Ledrappier. Structure au bord des variétés à courbure négative. In \textit{Séminaire de Théorie Spectrale et Géométrique, No. 13, Année 1994–1995}, volume 13 of Sémin. Théor. Spectr. Géom., pages 97–122. Univ. Grenoble I, Saint-Martin-d’Hères, 1995.

[LV80] G. Lion and M. Vergne. \textit{The Weil representation, Maslov index and theta series}, volume 6 of \textit{Progress in Mathematics}. Birkhäuser, Boston, Mass., 1980.

[Mar] B. Martelli. An introduction to geometric topology. https://arxiv.org/abs/1610.02592.

[MS91] J. W. Morgan and P. B. Shalen. Free actions of surface groups on \mathbb{R}-trees. \textit{Topology}, 30(2):143–154, 1991.

[MZ19] G. Martone and T. Zhang. Positively ratioed representations. \textit{Comment. Math. Helv.}, 94(2):273–345, 2019.

[Par12] A. Parreau. Compactification d’espaces de représentations de groupes de type fini. \textit{Math. Z.}, 272(1-2):51–86, 2012.

[Str15] T. Strubel. Fenchel-Nielsen coordinates for maximal representations. \textit{Geom. Dedicata}, 176:45–86, 2015.
