Degradation of methyl orange using FeVO₄: Cu²⁺ as photocatalyst

Q F Fei¹, C Wang¹ and B H Yang²
¹ Department of Biological and Environmental Engineering, Hefei University, No.99, Jinxiu Road, Economic & Technological Development Zone, Hefei City, Anhui Province, China
² Department of Biological and Environmental Engineering, Hefei University, No.99, Jinxiu Road, Economic & Technological Development Zone, Hefei City, Anhui Province, China
Email: 1731479085@qq.com, yangbh@hfuu.edu.cn

Abstract. Nanosize Cu-doped FeVO₄ was prepared by microwave-assisted method and was used as photocatalyst in the degradation of simulated wastewater like methyl orange. The effects of light intensity, amounts of H₂O₂ and FeVO₄:Cu²⁺ on the degradation efficiency were studied. The result showed that under the optimized conditions, with an 800w xenon lamp, 0.09g of FeVO₄:Cu²⁺ and 0.3mL of 3%H₂O₂, the degradation rate of methyl orange (30mL, 10mg/L) reached 94% after 180 min of viable light irradiation.

1. Introduction
Since 1972 when Fujishima and Honda first used TiO₂ as photocatalyst in the decomposition of water[1], photocatalytic materials and technologies have attracted ever-increasing attention. The most commonly used TiO₂ belongs to invisible UV light catalyst, which only takes advantage of 4% of the solar energy resources, while 43% of the visible light cannot be utilized[2]. Therefore, it is urgent for scientists to search ways to expand the spectral response of photocatalysts. Doping UV-responded catalysts with different metal ions is one of the ways[3]. At the same time, people are taking more efforts in developing visible light catalysts. In recent years, many new narrow band gap catalysts have been studied, including BiVO₄[4],Ag/AgBr[5], BiFeO₃/TiO₂[6], etc. FeVO₄ is a novel photocatalytic semiconductor for visible light response, which can be used for photodegradation of organic pollutants [7]. There are four types of crystal form for FeVO₄[8,9] : triclinic, orthogonal (I), orthogonal (II) and monocline, in which the triclinic type can be prepared under normal pressure, while the other three are prepared under high pressure conditions. The band gap of the triclinic FeVO₄ is about 2.24eV, which is better for visible light response[10], however, its catalytic efficiency is not high enough.

In order to enhance the photocatalysis of FeVO₄, FeVO₄ and Cu₃(VO₄)₂ were prepared by the microwave method, and mixed in certain proportion and calcined in high temperature to get Cu-doped FeVO₄(FeVO₄:Cu²⁺). Through the degradation of methyl orange, the photocatalytic performance of FeVO₄:Cu²⁺ was investigated, and the photocatalytic enhancement mechanism was analyzed.

2. Experimental
2.1. Reagents and Instruments
NH₄VO₃, Fe(NO₃)₃•9H₂O, Cu(NO₃)₃•3H₂O, anhydrous ethanol, methyl orange and all other chemicals were of analytical grade and used without further purification.
The crystalline phases of the sample powders were analyzed by X-ray diffraction (TD-3500X XRD, China) with the diffraction angles ranging from 10° to 70°. The microstructural morphologies of the samples were analyzed by scanning electron microscopy (SU8010 FE-SEM, Hitachi, Japan). Diffuse reflectance spectra were obtained on a UV-Vis spectrophotometer (V-650 Jasco, Japan) equipped with a diffuse reflectance accessory.

2.2. Synthesis of FeVO₄:Cu²⁺ Photocatalysts
The Cu-doped FeVO₄ samples were prepared as follows, 7.5 mmol Fe(NO₃)₃·9H₂O was dissolved in 25 mL deionized water to form solution A; 7.5 mmol NH₄VO₃ was dissolved in 25 mL deionized water at 70 °C to form solution B. Solution A was added slowly into solution B, and the mixture was vigorously stirred for 30 min until all the reagents were homogeneously dispersed. The mixture was transferred to a 100 mL three-necked flask, treated in a 600 Watt microwave oven at 100 °C for 6 min. The precipitates were filtered, and washed repeatedly with deionized water and anhydrous ethanol, and dried at 80 °C for 4h. Based on n(Cu)/n(V)=3:2, Cu₃(VO₄)₂ precursor was prepared according to the same preparation procedure as FeVO₄. Finally, FeVO₄ and Cu₃(VO₄)₂ precursors were mixed at a 10:1 weight ratio and calcined at 550 °C for 2h to give FeVO₄:Cu²⁺.

2.3. Degradation of Methyl Orange
The photocatalytic activities of the FeVO₄:Cu²⁺ catalysts for methyl orange were evaluated under visible light irradiation using a 1000 W Xe lamp as the light source. The photocatalytic reaction were conducted as follows: 30 mL of 10 mg/L methyl orange was placed in a quartz tube, and mixed with 90 mg of FeVO₄:Cu²⁺ and 0.3 mL of 3% H₂O₂. Before Xe lamp irradiation, the suspension was stirred in dark for 20 min to achieve the adsorption-desorption equilibrium between the catalyst and dye. 5 mL of the suspension was removed and centrifuged to remove the photocatalyst for analysis every 20min. The concentration of the remaining dye was determined by UV-Vis spectroscopy at 462 nm.

3. Results and Discussion
3.1. XRD Characterization
Figure 1 shows XRD patterns of FeVO₄ and FeVO₄:Cu²⁺ photocatalysts. As is seen, the strongest peaks of the as-prepared FeVO₄ fully accord with JCPDS card No.38-1372, which is the characteristic XRD pattern of triclinic FeVO₄, and no other impurity peaks are found. The XRD pattern of FeVO₄:Cu²⁺ is similar to that of FeVO₄, meaning the successful doping of Cu into the crystal of FeVO₄. Some new XRD peaks ascribe to Cu₃Fe₄(VO₄)₆, accounting for some impurity existed. Based on the calculation of Jade software, the average grain size of FeVO₄:Cu²⁺ is 80.6 nm, which is larger than that of pure FeVO₄.

![Figure 1. XRD patterns of pure FeVO₄ and FeVO₄: Cu²⁺](image)
3.2. SEM Characterization
Figure 2a shows the SEM image of FeVO₄ photocatalyst. The FeVO₄ particles are much uniform and compact, with an irregular shape and 50-100 nm of particle sizes. Figure 2b shows the SEM image of FeVO₄:Cu²⁺. As is seen, the morphology of FeVO₄:Cu²⁺ is also irregular, but quite different from that of FeVO₄. The particles are accumulated into a kind of fluffy and honeycomb state. The grain size of FeVO₄:Cu²⁺ varies from 200 nm to 300 nm, larger than that of pure FeVO₄.

![SEM images of FeVO₄ and FeVO₄: Cu²⁺](image)

Figure 2. SEM images of FeVO₄ and FeVO₄: Cu²⁺

(a)FeVO₄ (b)FeVO₄:Cu²⁺

The band gaps (E_g) of FeVO₄ and FeVO₄:Cu²⁺ were obtained based on UV-Vis DRS spectra. The E_g of FeVO₄ is about 2.24 eV, while the E_g of FeVO₄:Cu²⁺ is 2.01 eV, which is smaller than that of FeVO₄. Theoretically, FeVO₄:Cu²⁺ will absorb more visible light energy and produce more electron-hole pairs, which will probably improve the photocatalytic performance of FeVO₄:Cu²⁺.

3.3. Degradation of Methyl Orange

3.3.1. Light intensity effect. Figure 3 shows the effect of Xenon lamp power on the degradation rate of methyl orange. As can be seen that the increase of Xe lamp power is beneficial to the improvement of the degradation efficiency of methyl orange. When the power of Xe lamp was set at 800 W, the degradation rate raised to 80%. With the light intensity increasing, more light quantum would reach the surface of the photocatalyst, making the stimulated semiconductor produce more electronic-hole pairs, which may be the main reason for the improvement of the degradation rate. Considering the power limit of the xenon lamp and energy consumption, the power of the xenon lamp will be set to
800 watts later.

3.3.2. \(\text{H}_2\text{O}_2 \) addition effect. As an auxiliary agent, the addition amount of \(\text{H}_2\text{O}_2 \) may affect the degradation of methyl orange. Therefore, a separate test was performed to determine the effect of \(\text{H}_2\text{O}_2 \) on the degradation without addition of \(\text{FeVO}_4\cdot\text{Cu}^{2+} \) photocatalyst. The figure 4 shows that without photocatalyst, light does not affect the degradation of methyl orange itself with only addition of \(\text{H}_2\text{O}_2 \). However, due to the oxidation of \(\text{H}_2\text{O}_2 \), there is a little degradation. In our case, the maximum degradation is about 14\% within 80 min, which proves that \(\text{H}_2\text{O}_2 \) does not degrade methyl orange significantly.

![Degradation curve with \(\text{H}_2\text{O}_2 \) but without catalyst](image1)

Figure 4. Degradation curve with \(\text{H}_2\text{O}_2 \) but without catalyst

(A) light on (B) light off

![Degradation curves at different \(\text{H}_2\text{O}_2 \) dosages](image2)

Figure 5. Degradation curves at different \(\text{H}_2\text{O}_2 \) dosages

Under the same irradiation of 800 W Xe lamp, the same amount of catalyst was added in the same volume of methyl orange solution with different dosages of \(\text{H}_2\text{O}_2 \). Figure 5 shows the degradation curves of methyl orange at different \(\text{H}_2\text{O}_2 \) dosages. It can be seen in figure 5 that with the addition of \(\text{H}_2\text{O}_2 \) from 0mL to 0.2 mL, the degradation rate increases from 58\% to 90\%. The possible reason is that \(\text{H}_2\text{O}_2 \) can be decomposed to form a large number of hydroxyl radicals with oxidative capacity,
improving the electron-hole active sites in the catalyst, and thus increasing the photocatalytic performance. When the amount of H$_2$O$_2$ continued to increase, there was no further increase in degradation efficiency. Instead, the excessive H$_2$O$_2$ would absorb the generated light quantum and reduce the degradation efficiency. So the addition of H$_2$O$_2$ should be appropriate in the process of photodegradation.

3.3.3. $FeVO_4:Cu^{2+}$ dosage effect. In photocatalytic reaction, the amount of catalyst has a significant effect on the efficiency of the degradation of organic matter. Figure 6 shows the degradation curves for different $FeVO_4:Cu^{2+}$ dosages. As shown in figure 6, with the increase of the amount of catalyst, the rate of photocatalytic degradation accelerated, from the 78% with 0.03 g catalyst to 89.9% with 0.09 g catalyst. However, when the amount of catalyst is too much, the catalyst particles will scatter light beams, which may weaken the effective light intensity and reduce the absorption of light.

![Figure 6. Degradation curves for different dosages of FeVO$_4$: Cu$^{2+}$](image)

3.4. Degradation of Methyl Orange under Optimized Conditions

The photocatalytic degradation curves of methyl orange under optimized condition are shown in figure 7. When exposed to 800 W Xe lamp for 180 min, with 0.09 g of FeVO$_4$ and 0.3 mL of H$_2$O$_2$ addition, the degradation efficiency of methyl orange was 51%. Under the same conditions, however, with $FeVO_4:Cu^{2+}$ as the photocatalyst, the degradation rate reached 94%, indicating that doping of metal ions is a good way to improve photocatalytic efficiency. Figure 7 also shows that without any photocatalyst, degradation rate was only 3.6%, which may be owing to the adsorption only.

![Figure 7. Degradation curves of methyl orange under optimized condition](image)
4. Conclusion
The nanosize FeVO₄:Cu²⁺ was prepared by a microwave method and was used as photocatalyst to
degrade methyl orange in aqueous solution. After doping with Cu²⁺, the band gap of FeVO₄:Cu²⁺ was
reduced to 2.01 eV from the original 2.24 eV for FeVO₄, which increased the absorption of visible
light. The photocatalytic degradation of methyl orange shows that with the 0.09 g of FeVO₄:Cu²⁺ and
0.3 mL of H₂O₂ addition, and exposed to 800 W Xe lamp for 180 min, the degradation rate of methyl
orange reached as high as 94%, indicating that photocatalytic degradation may be a good way to treat
organic wastewater.

References
[1] Fujishima A and Honda K 1972 Nature 238 37-38
[2] Huang J F, Meng Y, Cao L Y and Wu J P 2012 J. Shanxi Univ. Sci. & Tech. 30 38-40
[3] And S K and Raffery D 2016 J. Phys. Chem. B 105 2815-19
[4] Zhao H, Tian F, Wang R and Chen R 2014 Rev. Adv. Sci. & Eng. 3 3-27
[5] Wu C 2015 J. Mater. Res. 30 677-85
[6] Liu Y, Ding S, Xu J, Zhang H, Yang S, Duan X, Sun H and Wang S 2017 Chin. J. Cata. 38 1052-62
[7] Wang M, Wang L A, Zhou L N and Zhang W J 2009 J. Chin. Ceram. Soc. 37 27-32
[8] Oka Y, Yao T, Yamamoto N, Ueda Y, Kawasaki S, Azuma M and Takano M 1996 J. Solid State
Chem. 123 54-9
[9] Hayashibara M, Eguchi M, Miura T and Kishi T 1997 Solid State Ionics 98 119-25
[10] Wang M, Wang L A, Zhang W J, Bao L and Yang L L 2009 J. Funct. Mater. 40 201-03+07