Unitary thermodynamics from thermodynamic geometry II: Fit to a local density approximation

George Ruppeiner*
Division of Natural Sciences
New College of Florida
5800 Bay Shore Road
Sarasota, Florida 34243-2109

December 30, 2014

Abstract

Strongly interacting Fermi gases at low density possess universal thermodynamic properties which have recently seen very precise PVT measurements by a group at MIT. This group determined local thermodynamic properties of a system of ultra cold 6Li atoms tuned to Feshbach resonance. In this paper, I analyze the MIT data with a thermodynamic theory of unitary thermodynamics based on ideas from critical phenomena. This theory was introduced in the first paper of this sequence, and characterizes the scaled thermodynamics by the entropy per particle $z = S/Nk_B$, and energy per particle $Y(z)$, in units of the Fermi energy. $Y(z)$ is in two segments, separated by a second-order phase transition at $z = z_c$: a “normal” segment for $z > z_c$, and a “superfluid” segment for $z < z_c$. For small z, the theory obeys a series $Y(z) = y_0 + y_1 z^\alpha + y_2 z^{2\alpha} + \cdots$, where α is a constant exponent, and $y_i (i \geq 0)$ are constant series coefficients. For large z, the theory obeys a perturbation of the ideal gas $Y(z) = \tilde{y}_0 \exp[2\gamma z/3] + \tilde{y}_1 \exp[(2\gamma/3 - 1)z] + \tilde{y}_2 \exp[(2\gamma/3 - 2)z] + \cdots$ where γ is a constant exponent, and $\tilde{y}_i (i \geq 0)$ are constant series coefficients. This limiting form for large z differs from the series used in the

*ruppeiner@ncf.edu
first paper, and was necessary to fit the MIT data. I fit the MIT data by adjusting four free independent theory parameters: \((\alpha, \gamma, \bar{y}_0, \bar{y}_1)\). This fit process was augmented by trap integration and comparison with earlier thermal data taken at Duke University. The overall match to both the data sets was good, and had \(\alpha = 1.21(3), \gamma = 1.21(3), z_c = 0.69(2)\), scaled critical temperature \(T_c/T_F = 0.161(3)\), where \(T_F\) is the Fermi temperature, and Bertsch parameter \(\xi_B = 0.368(5)\).

Keywords: unitary thermodynamics; thermodynamic curvature; strongly interacting Fermi systems; Feshbach resonance; ultracold quantum gases

1 Introduction

Systems of degenerate, strongly interacting fermions at low density have been of much recent interest as possible models for quark-gluon plasmas, neutron star matter, and high temperature superconductors \[1, 2\]. Model systems of this type are readily prepared in low temperature optical traps, with magnetic fields tuned to produce states near Feshbach resonance \[3\]. The expectation is universal thermodynamic properties, identical for all systems belonging to such a class of systems \[4\].

In a recent paper \[5\], I proposed that this unitary thermodynamics is a good candidate for evaluation by thermodynamic metric geometry, related to ideas from critical phenomena. The result is a full thermodynamic fundamental equation for all of the thermodynamic properties. This Local Density Approximation (LDA) contains a few undetermined parameters, which may be determined from fits to available experimental data. Previously \[5\], I analyzed thermodynamic data for the total entropy and the total energy taken at Duke University in a nonhomogeneous trapped system \[1, 6\]. A complication in analyzing this data was that trap integration of the theoretical LDA was required to compare with experiment.

In this paper, I fit a somewhat modified version of this thermodynamic geometric LDA to a more recent experiment, at MIT \[7\], which measured local thermodynamic properties, and which required no trap integration of the theory for comparison. In addition, I trap integrated my resulting fit to the MIT data to compare with the earlier Duke experiment \[1, 6\], and this comparison has led to a recommendation for the best overall fit. This best overall fit agrees with the MIT data sets with a value of \(\chi^2\) of about 1.7, and the Duke data with \(\chi^2\) of about 0.5.
2 Thermodynamic theory

In this section, I summarize the general theory, omitting some details found in the first paper [5].

2.1 General considerations

The application of statistical mechanics to unitary thermodynamics runs into difficulties on three points. First, the interparticle interaction potential is usually complicated, and differs substantially from such familiar fluid interactions such as Lennard-Jones. Second, even if the interactions were exactly known, the calculation of the partition function Z would be very difficult. Strong, long-range, interactions typically produce substantial organized fluctuating structures containing many particles. These mesoscopic structures, of size the correlation length ξ, do not lend themselves to familiar approximation schemes such as mean field theory. Third, even if we could somehow overcome these obstacles for some given system, establishing universality is awkward, since the calculation would have to be repeated for a set of systems, all presumably in the same universality class, to demonstrate equivalence.

A thermodynamic approach offers another way to address such problems. Thermodynamics requires no specific input of an interparticle interaction potential. In addition, large organized fluctuating mesoscopic structures are conceptually an advantage, since thermodynamics improves with the addition of particles. However, to exploit such possible thermodynamic advantages requires special thermodynamic tools for dealing with mesoscopic fluctuating structures. The first such tool is the thermodynamic curvature R, which in cases where ξ encompasses a number of particles, is the correlation volume: $|R| \sim \xi^3$. (For review, see [8, 9]). The second tool is hyperscaling from the theory of critical phenomena [10], which has free energy per volume $\phi \sim \xi^{-3}$. Eliminating the common ξ^3 yields the geometric equation

$$R = -\frac{\kappa}{\phi},$$

(1)

where κ is a dimensionless constant of order unity.

This geometric equation constitutes a third-order partial differential equation for ϕ. In applications so far, however, a scaling assumption of some
Figure 1: Statistical mechanics builds up from the microscopic to the macroscopic by calculating the partition function \(Z \) from the quantum energy levels \(E_i \) and the temperature \(T \). But this direct calculation method is difficult to implement in the presence of strong interparticle interactions. Instead, I suggest a thermodynamic calculation method based on the interplay with mesoscopic structures of characteristic size \(\xi \), and employing the thermodynamic curvature \(R \) and the free energy per volume \(\phi \). This calculation method highlights universal properties.

The basic calculation scheme is shown in Figure 1. In contrast to statistical mechanics, which builds up from the microscopic level to the macroscopic level by calculating \(Z \), the thermodynamic approach is based on the interplay between the macroscopic and the mesoscopic levels. The thermodynamic method thus lacks full microscopic information, and certainly cannot hope to encompass all the problems accessible to statistical mechanics. However, in cases with strong interactions, characterized by universal behavior, the thermodynamic method may offer significant advantages.
2.2 The scaled form of the internal energy

Callen [11] showed that the thermodynamic formalism may be applied in several forms, all corresponding to the same physical results. In the previous paper [5] I started from the fundamental equation for the internal energy:

\[E = E(S, N, V), \]

(2)

where \(S, N, \) and \(V \) are the entropy, particle number, and volume, respectively. Also, let \(T = E_{s}, \mu = E_{n}, \) and \(p = -E_{V} \) denote the temperature, chemical potential, and pressure, respectively. Here, the comma notation indicates differentiation. In unitary thermodynamics, we use the scaled form:

\[E = N \left(\frac{N}{V}\right)^{a} Y \left[\left(\frac{S}{V}\right) \left(\frac{N}{V}\right)^{-b} \right], \]

(3)

where \(a \) and \(b \) are constants, and \(Y(\cdot) \) is a function of a single variable. For the three-dimensional problem, the literature sets \(\{a, b\} = \{2/3, 1\} \), values corresponding to the ideal Fermi gas [12]. In this case Eq. (3) becomes

\[E = N\epsilon_{F}(\rho)Y(z), \]

(4)

where [12]

\[\epsilon_{F}(\rho) = \left(\frac{3^{2/3}\pi^{4/3}}{2m} \right) \rho^{2/3} \]

(5)

is the Fermi energy, \(\rho = N/V \) is the particle density,

\[z = \frac{S}{Nk_{B}}, \]

(6)

is the entropy per particle, \(\hbar \) is Planck’s constant divided by \(2\pi \), and \(m \) is the particle mass.

This scaled form for the energy considerably simplifies the solution of the geometric equation Eq. (1).
2.3 Solutions about $z = 0$ and $z \to \infty$

The theory is based around two singular points, $z \to 0$, where $R \to \infty$, and $z \to \infty$, where $R \to 0$ [5]. I solved for $Y(z)$ about both singular points, and joined the solutions at $z = z_c$. This joining cannot be continuous in all the thermodynamic quantities, and I joined to get a second-order phase transition at z_c. A joining corresponding to a first-order phase transition was also possible, but since the MIT group [7] featured a second-order phase transition in their analysis, I did likewise. The result was two functional branches $Y_S(z)$ for $z < z_c$, and $Y_H(z)$ for $z > z_c$.

The small z, or “superfluid”, function $Y_S(z)$ was found in the first paper [5], and for z near zero takes the form of a Puiseux series:

$$Y_S(z) = y_0 + y_1 z^\alpha + y_2 z^{2\alpha} + \cdots.$$ (7)

Here, α is a constant exponent, and y_0, y_1, \cdots, are series coefficients. Thermodynamic stability for $z \to 0$ requires $\alpha > 1$, $y_0 > 0$, and $y_1 > 0$. $Y_S(z)$ satisfies a third-order differential equation, with three free constants (α, y_0, y_1) determined by data fitting, and with the remaining series coefficients y_i ($i \geq 2$) determined uniquely by series solution of the differential equation for $Y_S(z)$.

In the first paper [5], I tried a Puiseux series solution for $Y_H(z)$ for large z, and this proved effective for trap integrating to fit the Duke experiment [1, 6]. However, the MIT experiment [7] has smaller error bars and considerably more data for higher z, and a Puiseux series for $Y_H(z)$ will not produce an acceptable fit. A fundamentally new solution for $Y_H(z)$ is required.

In the Appendix, I demonstrate that a series of the form of a perturbation around the ideal gas solves the geometric equation for large z:

$$Y_H(z) = \tilde{y}_0 \exp[2\gamma z/3] + \tilde{y}_1 \exp[(2\gamma/3 - 1)z] + \tilde{y}_2 \exp[(2\gamma/3 - 2)z] + \cdots.$$ (8)

where $\gamma (> 0)$ is a free constant, determined by data fitting. The series coefficients \tilde{y}_0 (> 0) and \tilde{y}_1 are also free constants. The remaining series coefficients \tilde{y}_i ($i \geq 2$) are determined in terms of ($\gamma, \tilde{y}_0, \tilde{y}_1$) from the series solution of the differential equation for $Y_H(z)$. $\gamma = 1$ corresponds to a limiting ideal gas solution (the Sackur-Tetrode equation [11]) as z gets large.
2.4 Joining of the curves at $z = z_c$

For a phase transition of any order, we require continuous $\{T, \mu, p\}$. A second-order phase transition requires, in addition, continuous ρ and z. As was shown in the first paper [5], these continuity conditions lead to:

$$Y_S(z_c) = Y_H(z_c),$$ (9)

and

$$Y'_S(z_c) = Y'_H(z_c).$$ (10)

In my approach, neither $Y_S(z)$ nor $Y_H(z)$ show any singular behavior at z_c. Hence, this second-order phase transition corresponds to a pure Ehrenfest phase transition, with discontinuities but no infinities in the second derivative of $Y(z)$. The MIT experiment [7] also does not show clear singular behavior, but general theoretical opinion seems to be that such singular behavior exists: “The expected singularity of the compressibility at the transition is rounded off by the finite resolution of our imaging system [7].”

3 Fitting theory to experiment

In this section, I discuss the fitting of theory to experiment. The idea of fitting data in unitary thermodynamics to functions with undetermined parameters was featured by Luo and Thomas [6].

3.1 The MIT experiment

The MIT group [7] directly measured the local number density $\rho(\vec{r})$ at position \vec{r}, where the trap potential is $U(\vec{r})$. Resulting density profiles enabled these researchers to determine (theory free) a curve for the reduced compressibility $\tilde{\kappa} = \kappa/\kappa_0$ in terms of the reduced pressure $\tilde{p} = p/p_0$. Here, the compressibility is

$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T,$$ (11)

and (κ_0, p_0) denote the compressibility and the pressure, respectively, of the corresponding zero-temperature noninteracting Fermi gas. Also define the reduced temperature $\tilde{T} = T/T_F$, where the Fermi temperature $T_F = \epsilon_F(\rho)/k_B$.

7
The scaled fundamental equation Eq. (4) leads to

\[\tilde{T} = Y', \quad (12) \]
\[\tilde{\rho} = \frac{5}{3} Y, \quad (13) \]

and

\[\tilde{\kappa}^{-1} = \frac{5}{3} Y - \frac{2 Y'^2}{3 Y''}. \quad (14) \]

Clearly, if we know \(Y(z) \), then we may construct a unique curve \((\tilde{\rho}, \tilde{\kappa})\) (parameterized by \(z \)) from Eqs. (13) and (14). The MIT group [7] determined this curve not from any \(Y(z) \), but from repeated density profile measurements, varying the trapping potential, the total number of atoms, and the temperature. The precisely measured \((\tilde{\rho}, \tilde{\kappa})\) curve is shown in the MIT group’s Figure 1 [7], and directly displays a phase transition from a normal phase to a superfluid phase. I refer to this curve as MIT1.

Given a function \(Y(z) \), Eqs. (12) and (14) show that we may construct a single curve \((\tilde{T}, \tilde{\kappa})\) (parameterized by \(z \)). The MIT group [7] found \(\tilde{T} \) by integration over their \((\tilde{\rho}, \tilde{\kappa})\) curve:

\[\frac{T}{T_F} = \left(\frac{T}{T_F} \right)_i \exp \left[\frac{2}{5} \int_{\tilde{\rho}_i}^{\tilde{\rho}} \frac{d\tilde{\rho}}{\tilde{\rho} - \frac{1}{3}} \right], \quad (15) \]

where \((T/T_F)_i \) is the normalized temperature calculated theoretically at an initial normalized pressure \(\tilde{\rho}_i \) chosen to lie in the virial regime [13]. The resulting \((\tilde{T}, \tilde{\kappa})\) curve, including error bars, is shown in the MIT group’s Figure 2a [7]. I refer to this curve as MIT2a.

\(^1\)The converse need not apply, however. Given a curve \((\tilde{\rho}, \tilde{\kappa})\) there is not necessarily a unique function \(Y(z) \) from which the curve is constructed. For example, consider two functions \(f(Y^{(n)}(z), Y^{(n-1)}(z), \cdots, Y(z), z) \) and \(g(Y^{(m)}(z), Y^{(m-1)}(z), \cdots, Y(z), z) \), where \(n \) and \(m \) are non negative integers \((n \geq m) \), and \(Y^{(i)}(z) \) denotes the \(i \)th derivative of \(Y(z) \). Consider a curve \((f, g)\) obeying \(g = H(f) \), where \(H(f) \) is an algebraic function of \(f \). \(g = H(f) \) constitutes an \(n \)'th-order ordinary differential equation for \(Y(z) \), whose solution will contain \(n \) initial conditions, pointing to more than one possible solution function \(Y(z) \) if \(n > 1 \). I will not address this problem of analysis here. Instead, I will just proceed with a straightforward fitting method to find the solution of the geometric equation best matching the experimental data, mindful, however, that there may be deeper mathematical issues in the background.
3.2 The Duke experiment

I also tested my fits against the DUKE1 data set [11, 6], a comparison which required trap integration of the theory curve. Trap integration was discussed in detail in [5]. Define the trap integrated energy, entropy, and particle number \((E_t, S_t, N_t) \), respectively, by

\[
E_t = \int [e(\vec{r}) + \rho(\vec{r})U(\vec{r})] \, d^3r, \tag{16}
\]

\[
S_t = \int s(\vec{r}) \, d^3r, \tag{17}
\]

and

\[
N_t = \int \rho(\vec{r}) \, d^3r, \tag{18}
\]

where \(e(\vec{r}) = E/N \) denotes the energy per volume, \(s(\vec{r}) = k_B z \rho \) denotes the entropy per volume, and \(U(\vec{r}) \) is the trapping energy per particle. The trap integration is carried out at constant \(T \) and constant total chemical potential \(\mu_0 = \mu + U(\vec{r}) \).

Cao et al. [14] found that to make a successful temperature calibration with the Duke data, it was necessary to use the entropy data labeled \"S_{1200}/k_B\," [6] which was corrected for the finite interaction strength in the weakly interacting gas. This data column was argued to be the best measure of \(S_t \), and I used it here.

3.3 The fitting workflow

Six free parameters, \((\alpha, y_0, y_1) \) and \((\gamma, \bar{y}_0, \bar{y}_1) \), define \(Y_S(z) \) and \(Y_H(z) \), respectively. A seventh free parameter is \(z_c \). However, the two joining conditions Eqs. (9) and (10) leave a total of five independent free parameters. Generally, a key measure of the quality of the fit of a function \(w = w(x) \) to a set of \(n \) data pairs \((x_i, w_i) \) is

\[
\chi^2 = \frac{1}{n} \sum_i \left[\frac{(y - w_i)}{\sigma_i} \right]^2, \tag{19}
\]

where \(\sigma_i \) is the standard deviation of the data pair \((x_i, w_i) \). \(\sigma_i \) reflects the uncertainty in both \(x_i \) and \(w_i \). \(\chi^2 \sim 1 \) corresponds to a high quality fit.
The approximate value of z_c is easily discerned from the MIT data. With the exception of five data points corresponding to the intermediate “critical rounding” zone in which z_c must lie, it is obvious which side of z_c any data point lies on. I found that moving z_c within this intermediate zone did not cause substantial variation in the overall quality of the fits, so I simply kept z_c roughly centered in the intermediate zone for each fit.

I used four fit parameters: $(\alpha, \gamma, \tilde{y}_0, \tilde{y}_1)$. For each quadruple of fit values, and the centralized z_c, I determined (y_0, y_1) algebraically with the joining conditions Eqs. (5) and (10), leading to the determination of the full function $Y(z)$. The fitting made primary use of MIT1, which was based on directly measured quantities. In contrast, MIT2a contains the theoretically calculated $(T/T_F)_i$. I picked a grid of (α, γ) values, and for each grid point I varied $(\tilde{y}_0, \tilde{y}_1)$ to minimize χ^2 for MIT1. A contour diagram then visually reveals information about the best fits.

The best overall primary fits must be consistent with the other two data sets. For each fit in the primary MIT1 grid, I calculated χ^2 when that fit is applied to DUKE1 and MIT2a [with no further variation in $(\tilde{y}_0, \tilde{y}_1)$]. Using results for all three data sets in selecting the best overall fit considerably narrows the uncertainty in the fit parameters.

4 Results

In this section, I present the results, starting with a presentation of the best overall fit. This is followed by a discussion of how this fit was obtained, and its uncertainties. I used the full spread of data points in MIT1 for the fitting, with some exceptions. I omitted the five intermediate data points to the right of the peaks shown in Figure 2(b). I also omitted the five data points with the smallest values of \tilde{p}, since for these some trial theory curves had minimum \tilde{p} larger than the experimental values.

4.1 The best overall fit

Figure 2 shows the best overall fit, which has $\alpha = 1.19$, $\gamma = 1.21$, and $z_c = 0.652$. The green dots in Fig. 2 denote the zero-temperature points on the theory curves. These points yield the value of the Bertsch parameter $\xi_B = 0.373$, calculated from

$$\xi_B = \tilde{p} = \tilde{\kappa}^{-1}$$

(20)
Figure 2: The best overall fit, shown with MIT1 ($\chi^2 = 1.79$) and MIT2a ($\chi^2 = 1.63$). The green dots correspond to $T = 0$ on the theory curves, and yield the Bertsch parameter $\xi_B = 0.373$. This best overall fit has $z_c = 0.652$. The MIT group [7] reported $\xi_B = 0.376(4)$, and $z_c = 0.73(14)$.
Figure 3: The trap integrated best overall fit shown with DUKE1. Trap
integrating to compare with DUKE1 was an important element in selecting
the best overall fit. In this graph, E_F denotes the Fermi energy of an ideal
Fermi gas in a harmonic potential.

at zero temperature. ξ_B gives the zero-temperature ratio of the energy per
particle for the strongly interacting Fermi gas to that of the corresponding
ideal Fermi gas [6].

Trap integrating this best overall fit curve to compare with DUKE1 yields
Figure 3. As I discuss in the next subsection, DUKE1 offered major guidance
for selecting the best overall fit.

Figure 4 compares curves derived from the best overall fit with the cor-
responding quantities of the MIT group [7]. These quantities are the heat
capacity at constant volume per particle,

$$
\frac{C_V}{k_B N} = \frac{1}{k_B N} \left(\frac{\partial E}{\partial T} \right)_{V,N},
$$

the scaled internal energy E/E_0, where $E_0 = 3N\epsilon_F(\rho)/5$, the scaled chemical
potential μ/E_F, where $E_F = \epsilon_F(\rho)$, the scaled Helmholtz free energy
F/E_0, where $F = E - TS$, and the scaled entropy $S/k_B N = z$. The overall
agreement is good.
Figure 4: Several functions of the temperature: (a) and (b) the heat capacity per particle, (c) the internal energy, the chemical potential, the Helmholtz free energy, and (d) the entropy per particle.
4.2 The fit analysis

Figure 5(a) shows the contour diagram for the primary \((\alpha, \gamma, \chi^2)\) MIT1 grid. The best fit has \(\{\alpha, \gamma, \chi^2\} = \{1.22, 1.03, 1.66\}\), and is indicated by a red dot. Fig. 5(a) shows that a broad range of values of \((\alpha, \gamma)\) produce reasonable fits \((\chi^2\) less than about 2).

To narrow the choice of best overall fit, I constructed secondary fit grids for DUKE1 and MIT2a, shown in Figs. 5(b) and (c), respectively. An acceptable fit has to match well all three data sets. Inspection of the \(\chi^2\) values in all the three fit grids revealed that nine fits performed well overall. Table 1 shows six of these nine acceptable fits. These nine fits are enclosed by the oval in Fig. 5, indicating the rough uncertainty in \((\alpha, \gamma)\). The best overall fit in the previous section is indicated by a white dot. Statistics for the nine overall acceptable fits lead me to conclude that
\[
\alpha = 1.21(3), \quad \gamma = 1.21(3), \\
z_c = 0.69(2), \quad \xi_B = 0.368(5), \quad T_c/T_F = 0.161(3).
\]

The MIT group reported
\[
z_c = 0.73(13), \quad \xi_B = 0.376(4), \quad T_c/T_F = 0.167(13),
\]
in good agreement with what was found here.

In addition, there is a heat capacity jump \((c_v^- - c_v^+)/c_v^+ = 1.14(4)\), where \(c_v^-\) and \(c_v^+\) denote the heat capacity at \(z_c^-\) and \(z_c^+\), respectively. The BCS theory of superconductivity predicts a finite heat capacity jump of the type found here, with jump value 1.43 [15]. The MIT group reports a lower bound jump value of 1.01 ± 0.1 [7].

For each fit in the \((\alpha, \gamma)\) grid, I calculated a value for the Bertsch parameter \(\xi_B\). A contour diagram is shown in Fig. 5(d). Clearly, \(\xi_B\) depends significantly on the value of \(\alpha\), which is reasonable since \(\alpha\) governs the low-\(z\) behavior. By contrast, effects of \(\gamma\) on \(\xi_B\) do not show up at all on the scale of the graph.

Let me make one more observation. If we multiply \(T/T_F\) for MIT2a and \(S_t\) for DUKE1 by the common factor 0.88, then the best fits for MIT2a and DUKE1 are brought close to that for MIT1, the red dot in Fig. 5 which corresponds closely to the ideal gas limiting state with \(\gamma = 1\). Logically, such a multiplicative factor might correspond to a temperature rescaling. However, the temperature scale in this regime is known experimentally to within about 2%, much less than the roughly 12% deviation connected with my observation. Nor is the improvement in statistics resulting from this observation, as measured by a reduction in \(\chi^2\), significant. So I do not claim any strong support for a temperature rescaling, and point out only this logical possibility.
Figure 5: Contour diagrams for the (α, γ, χ^2) fit grid: (a) the primary MIT1 fit, (b) the secondary DUKE1 fit, (c) the secondary MIT2a fit, and (d) the Bertsch parameter grid. The white dot in each diagram shows the best overall fit $(\alpha, \gamma) = (1.19, 1.21)$, the red dot shows the best fit to MIT1 $(\alpha, \gamma) = (1.22, 1.03)$, and the black oval shows the regime of the best overall fits.
	A	B	C	D	E	F
\(\alpha\)	1.22	1.20	1.20	1.21	1.19	1.21
\(y_0\)	0.21878	0.22294	0.22240	0.22164	0.22394	0.22086
\(y_1\)	0.13162	0.13359	0.12912	0.13400	0.13372	0.13261
\(\gamma\)	1.23	1.21	1.19	1.21	1.21	1.20
\(\bar{y}_0\)	0.12371	0.12966	0.12882	0.12953	0.13065	0.12928
\(\bar{y}_1\)	0.09690	0.09572	0.09642	0.09436	0.09557	0.09450
\(z_c\)	0.689	0.671	0.684	0.681	0.652	0.699
\(\xi_B\)	0.365	0.372	0.371	0.369	0.373	0.368
\(T_c/T_F\)	0.161	0.161	0.156	0.163	0.159	0.162
\(\chi^2\) (a)	1.802	1.789	1.759	1.798	1.791	1.774
\(\chi^2\) (b)	0.544	0.455	0.436	0.453	0.499	0.369
\(\chi^2\) (c)	1.605	1.625	1.788	1.759	1.629	1.719

Table 1: Parameters for six acceptable fits. \(\chi^2\) (a) corresponds to the primary MIT1 fits, \(\chi^2\) (b) corresponds to the secondary DUKE1 fits, and \(\chi^2\) (c) corresponds to the MIT2a fits. Fit E was judged to be the best overall fit.

5 Conclusions

Unitary thermodynamics challenges experimentalists and theorists alike. In this paper, I did a statistical analysis of two experimental efforts, one made at MIT, which collected \(PVT\) data, and the other at Duke, which collected thermal data. My fit function for the LDA was in two segments, reflecting fundamental physical differences above and below the phase transition at \(z_c\).

I used a small set of independent fitting parameters: three parameters for the segment with entropy per particle \(z\) above \(z_c\), and one parameter for the segment with \(z\) below \(z_c\).

A number of microscopic theories have been applied to this problem. Examples are the viral series \[13, 16\], the T-matrix approach \[17\], and quantum Monte Carlo \[18\]. However, a statistical analysis with the thermodynamic fit function here has advantages over comparisons with more fundamental microscopic theories. First, microscopic theories rarely yield exact results, and their error can be difficult to assess. Thus the \(\chi^2\) minimization analysis used here is not usually available for microscopic theories, and it is such analysis which allows clear comparison between various data sets. Second, no single microscopic theory can capture the full range of unitary thermodynamics,
and it is necessary to mix and match theories for the complete picture.

My statistical analysis offers a clear comparison of data sets. For example, the MIT group \[7\] demonstrated that their PVT data yields all of the thermodynamics, including the thermal properties. The basis for their derivation is the fact that unitary thermodynamics follows a scaled equation of state. Not as clear in their derivation, however, is the effect of error bars. Although the error bars in the MIT data \[7\] are mostly very small, particularly in the normal phase, they enlarge on calculating thermal properties. Taken to the thermal regime, and trap integrated, these error bars do not appear to be significantly smaller than those found in the Duke experiment. My analysis clearly brings this point out.

My approach also offers straightforward trap integration. Although there is considerable advantage to measuring the LDA directly, data averaged over a trap may be readily analyzed. In the analysis of this paper, the MIT and the Duke experiments were complementary, and together revealed the complete thermodynamic picture.

My analysis suggests some ideas for future experiment and analysis: 1) For large entropy per particle z, does unitary thermodynamics approach ideal gas thermodynamics? Although the ideal gas limit will always be approached at the edge of the trap, where the particle density is small, and z is large, it is not clear that this limit corresponds to unitary thermodynamics. Experiments in larger traps, containing more atoms, would address this point. 2) For small z, does unitary thermodynamics follow a power law characterized by an exponent α. More and better data below T_c would lend insight into this question. 3) Near the phase transition from normal to superfluid, is the heat capacity finite, as in a pure Ehrenfest phase transition, or as in BCS theory? Is this phase transition second-order, or is it actually first-order? The MIT experiment was analyzed in the context of a second-order phase transition, but was this required? 4) Could unitary thermodynamics be measured in spatial dimensions other than three, for example, in two dimensions? Different dimensions correspond to different values of the exponents a and b in Eq. (3). The approach in this paper could assist in addressing all of these questions.

The main product of this paper was a good fit to the data sets of the MIT and Duke experimental groups, in the context of a theory which is arguably correct. All of the thermodynamic properties result.
6 Acknowledgements

I thank G. Skestos for research support. I also thank M. Zwierlein and M. Ku for sending their data tabulation, and for useful correspondence. I thank J. Thomas and J. Joseph for useful correspondence, and for sending their computer code.

7 Appendix

In this Appendix, I discuss the solution of the geometric equation about the singular point \(P_0 \) at \(z \to \infty \), where we expect \(R \to 0 \), since this is the diffuse gas limit where interactions become weak. Such singular points are discussed in detail in Appendix 1 of the first paper \[5\], where it was argued that the appropriate form of the geometric equation and background subtraction is

\[
R = -\kappa \left[\frac{k_B T}{p} - \left(\frac{k_B T}{p} \right)_0 \right].
\]

(22)

Here the parentheses (\()_0 \) on the right-hand side of this equation mean evaluation at \(P_0 \).

The solution of Eq. (22) starts with a physically motivated series solution about \(P_0 \). In the first paper \[5\], I used a critical phenomena style Puissieux series, and obtained a good fit to DUKE1. However, it was not possible to fit MIT1 at high \(z \) with such a solution. MIT1 has tighter error bars and more high \(z \) points than DUKE1, and thus poses a greater fitting challenge. I tried another solution to Eq. (22) in the form of a perturbation about the ideal gas:

\[
Y_H(z) = \tilde{y}_0 \exp[2\gamma z/3] + \tilde{y}_1 \exp[(2\gamma/3-1)z] + \tilde{y}_2 \exp[(2\gamma/3-2)z] + \cdots .
\]

(23)

where \(\gamma \) and the first two series coefficients \(\tilde{y}_0 \) and \(\tilde{y}_1 \) may be picked freely. The remaining series coefficients \(\tilde{y}_i \) (\(i \geq 2 \)) are determined in terms of \((\gamma, \tilde{y}_0, \tilde{y}_1) \) from the series solution of the differential equation for \(Y_H(z) \), described below. \(\gamma = 1 \) corresponds to a limiting \((z \to \infty) \) ideal gas solution (the Sackur-Tetrode equation).

From the methods of the first paper \[5\], we may write:

\[
R(z) = \frac{1}{\rho} \left[\frac{-10Y(z)Y''(z)^2 + 5Y(z)Y'(z) + 5Y'(z)^2Y''(z)}{4Y'(z)^3 - 10Y(z)Y'(z)Y''(z)} \right].
\]

(24)
Define the series expansion parameter

$$x = e^{-z}. \quad (25)$$

Eqs. (23) and (24) yield

$$R = \left(\frac{15\tilde{y}_1}{8\rho\gamma^2\tilde{y}_0}\right)x + \left(\frac{15[-15\tilde{y}_1^2 + 24\gamma\tilde{y}_1^2 - 16\gamma^2\tilde{y}_1^2 + 32\gamma^2\tilde{y}_0\tilde{y}_2]}{32\rho\gamma^4\tilde{y}_0^2}\right) x^2 + O(x^3). \quad (26)$$

The definitions of T and p yield

$$\frac{k_BT}{p} = \frac{\gamma}{\rho} - \left(\frac{3\tilde{y}_1}{2\rho\tilde{y}_0}\right)x - \left(\frac{3[-\tilde{y}_1^2 + 2\tilde{y}_0\tilde{y}_2]}{2\rho\tilde{y}_0^2}\right)x^2 + O(x^3). \quad (27)$$

The series Eqs. (26) and (27) are related by the geometric equation Eq. (22). Matching the zero'th order terms shows that the subtracter in Eq. (22) must be

$$\left(\frac{k_BT}{p}\right)_0 = \frac{\gamma}{\rho}. \quad (28)$$

The first-order terms in x match, no matter what the values of the constants \tilde{y}_0 and \tilde{y}_1, provided that

$$\kappa = \frac{5}{4\gamma^2}. \quad (29)$$

Matching second-order terms yields a linear algebraic equation for \tilde{y}_2, yielding its value uniquely in terms of $(\gamma, \tilde{y}_0, \tilde{y}_1)$. Matching successively higher-order series terms now yields unique values for all of the remaining series coefficients $\tilde{y}_i (i \geq 3)$.

Eq. (22) may be written as a third-order differential equation, which may be solved for any z, using the series for $Y_H(z)$ in Eq. (23) to generate initial conditions. In practice, however, there was no need to solve the full differential equation because the series Eq. (23) converges very rapidly for all values $z > z_c \sim 0.7$. Table 2 shows the series to increasing order for a solution corresponding closely to the best overall fit to MIT1.
Table 2: Tabulation of results for the series for $Y_H(z)$, Eq. (23). The series terminates with the n’th term, having coefficient \tilde{y}_n. The parameter values $(\gamma, \tilde{y}_0, \tilde{y}_1) = (1.2, 0.1, 0.1)$. These parameter values are close to the ones corresponding to the best fit. Convergence to a value is rapid with increasing n, even for z considerably less than $z_c \sim 0.7$.

n	$z = 0.1$	$z = 0.3$	$z = 0.6$	$z = 1.0$
0	0.108329	0.127125	0.161607	0.222554
1	0.206349	0.221301	0.250299	0.304427
2	0.215279	0.228327	0.255201	0.307460
3	0.210579	0.225299	0.253636	0.306811
4	0.211694	0.225887	0.253861	0.306874
5	0.211670	0.225877	0.253858	0.306873
6	0.211588	0.225848	0.253852	0.306872

References

[1] L. Luo, B. Clancy, J. Joseph, J. Kinast, and J. E. Thomas, Phys. Rev. Lett 98, 080402 (2007).
[2] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama, Science 327, 442 (2010).
[3] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[4] T-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
[5] G. Ruppeiner, J. Low Temp. Phys. 174, 13 (2014).
[6] L. Luo and J. E. Thomas, J. Low Temp. Phys. 154, 1 (2009).
[7] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Science 335, 563 (2012).
[8] G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995); 68, 313(E) (1996).
[9] G. Ruppeiner, Springer Proceedings in Physics 153, 179 (2014).
[10] B. Widom, Physica 73, 107 (1974).
[11] H. B. Callen, *Thermodynamics and an Introduction to Thermostatistics* (Wiley, New York, 1985).

[12] R. K. Pathria, *Statistical Mechanics* (Butterworth-Heinemann, Oxford, 1996).

[13] X.-J. Liu, H. Hu, P. D. Drummond, Phys. Rev. Lett. **102**, 160401 (2009).

[14] C. Cao, E. Elliott, H. Wu, and J. E. Thomas, New Journal of Physics **13**, 075007 (2011).

[15] M. Tinkham, *Introduction to Superconductivity* (Dover, Mineola, New York, ed. 2, 2004).

[16] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon, Nature **463**, 1057 (2010).

[17] R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A **75**, 023610 (2007).

[18] K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B. Svistunov, M. J. H. Ku, A. T. Sommer, L.W. Cheuk, A. Schirotzek, and M.W. Zwierlein, Nature Physics **8**, 366 (2012).