Highly Heterogeneous Pore Fluid Pressure Enabled Rupture of Orthogonal Faults During the 2019 Ridgecrest Mw7.0 Earthquake

Qibin Shi1,2 and Shengji Wei1,2

1Earth Observatory of Singapore, Nanyang Technological University, Singapore, 2Asian School of the Environment, Nanyang Technological University, Singapore

Abstract Here, we show that the 2019 Mw7.0 Ridgecrest mainshock as well as its Mw6.5 foreshock ruptured orthogonal conjugate faults. We invert the waveforms recorded by the dense strong motion network at relatively high frequencies (up to 1 Hz for P; 0.25 Hz for S) to derive multiple-point source models for both events, aided by path calibrations from a Mw5.4 and a Mw5.5 earthquake. We demonstrate that the mainshock started from a shallow (3 km) depth with a Mw5.2 event and ruptured the main fault system. Subevents and seismicity demonstrate the highly complex fault geometry, and the orthogonal fault coseismic rupture is most likely the result of high pore fluid pressure.

1. Introduction Imaging the rupture initiation and propagation of an earthquake provides critical information to understand its fundamental physics. However, gaining further insights into physical processes can be challenging, because earthquakes usually both start and develop in a fairly complicated manner. One such example is the 2019 Ridgecrest earthquake sequence, which ruptured unmapped fault segments within the Eastern California Shear Zone between the Garlock fault and the Wilson Canyon fault (Figure 1a, inset, and Figure S1 in the supporting information). The earthquake sequence produced very complex surface ruptures (Brandenberg et al., 2019) and numerous aftershocks on tens of fault segments (Ross et al., 2019; Shelly, 2020). Surface deformation was very well recorded by geodetic observations including GPS and satellite images (Fielding et al., 2020; Floyd et al., 2020; Mattioli et al., 2020; Melgar et al., 2019; Wang & Bürgmann, 2020; Xu et al., 2020). All these observations have clearly shown that the sequence ruptured conjugate faults. In addition, foreshock seismicity (Ross et al., 2019; Shelly, 2020) and rupture process studies (Chen et al., 2020; Feng et al., 2020; Liu et al., 2019) indicate that conjugate fault segments ruptured during the Mw6.5 foreshock. As for the mainshock coseismic rupture processes, so far only the main fault segments, oriented in near NW-SE direction, have been investigated (Barnhart et al., 2019; Bilham & Castillo, 2020; Chen et al., 2020; Feng et al., 2020; Goldberg et al., 2020; Li et al., 2020; Liu et al., 2019; Lozos & Harris, 2020; Qiu et al., 2020; Yang et al., 2020; Zhang et al., 2020), and it is not clear whether the SW oriented conjugate fault segments ruptured as well. It is difficult to use InSAR/SAR data to resolve the mainshock coseismic rupture on the conjugate fault, because most geodetic observations (i.e., InSAR/SAR) have recorded surface deformation from both the mainshock and foreshock. The Planet Lab Satellite Imageies (Milliner & Donnellan, 2020) might have better recorded the surface deformation of the foreshock and mainshock separately, but attentions have not been paid to the coseismic orthogonal fault rupture of the...
The high-rate GPS observations have a better temporal resolution but are too sparse to provide a sufficient spatial resolution (Melgar et al., 2019). The local strong motion network, on the other hand, has a much better spatial and temporal coverage (Figure S1). This network provides a unique data set to resolve the coseismic rupture process of the largest event in the sequence, including the initiation and propagation of the rupture. Compared with finite fault models (FFMs) (Hartzell & Heaton, 1983; Kikuchi & Kanamori, 1982; Wei, Helmberger, & Avouac, 2013; Yoshida et al., 1996), the multiple-point source (MPS) inversion approach we use (Shi et al., 2018) does not assume a specific fault geometry and focuses more on first-order complexity of the rupture. Furthermore, MPS inversion requires much fewer parameters than FFM and is therefore much less prone to data overfitting. The robustness of MPS inversion was confirmed by a path calibration technique, which has been demonstrated as very powerful.

Figure 1. The Mw7.0 Ridgecrest mainshock MPS inversion result and aftershocks. (a) A map view of the mainshock subevents M1–M6 and aftershock seismicity. Subevent focal mechanisms are the red beachballs with sizes proportional to moment magnitudes, connected with circles representing their centroid locations (color coded by depth). The cumulative moment tensor of the six subevents and the global CMT solution are almost identical (left inset). Two precursory events (stars) are illustrated in the dashed box. Aftershocks (Shelly, 2020) are the dots colored by depths and scaled with magnitudes. Surface ruptures (Brandenberg et al., 2019) and previously mapped faults are plotted with red and gray lines, respectively. The triangles mark the nearest stations. The upper-right inset shows the source time function of each subevent, with areas proportional to their moments. The bottom-left inset shows the earthquake region within the Eastern California Shear Zone (ECSZ), the San Andreas Fault (SAF), and the Garlock Fault (GF). The blue beachballs are the Mw6.5 foreshock subevents. The purple beachballs are Mw5+ events. (b) Seismicity projected to Profiles A–D (shown in a). The red circles are aftershocks of the mainshock along profiles (within 1 km), while the blue circles are aftershocks of the Mw6.5 foreshock that happened before the mainshock (Figure 2a). The circle sizes are proportional to the events’ magnitudes.
The abundant aftershocks of the 2019 Ridgecrest sequence allow us to select two appropriate calibration events to identify the most reliable paths and components for inversion and invert waveforms of the target event at much higher frequencies.

Another issue that has not yet been well addressed is the initial rupture of the mainshock. Various hypocenter estimations have been suggested. The Southern California Earthquake Data Center (SCEDC) reported a hypocenter depth of 8.0 km, which is used by most kinematic rupture models of the event (e.g., Liu et al., 2019). Meanwhile, Ross et al. (2019) reported an extremely shallow hypocenter depth of 1.0 km, and Lomax (2020) reported a hypocenter of 4.2 km. The recordings of the CLC strong motion station (Figure 1a), only 5.2 km away from the mainshock hypocenter, along with other nearby stations allow us to further refine the initial rupture process of the earthquake, thus providing critical observations to understand the implication of the initial rupture for this very complicated event.

In this study, we start from introducing the MPS inversion and waveform analysis of the calibration event. We then show the MPS inversion results for the mainshock and foreshock, along with the modeling of the beginning waveform recorded by the CLC station for the initial rupture of the mainshock. We then discuss the implication of our MPS models and the mainshock dynamic triggering and initiation.

2. MPS Inversion Strategy and Path Calibration

To study the rupture processes of the Mw7.0 mainshock and the Mw6.5 foreshock, we download the strong motion waveform data from SCEDC (SCEDC, 2013) and Center for Engineering Strong Motion Data. We select the stations within 200 km for both earthquakes (Figure S1). Waveforms on farther stations are not used, as they are too complicated to be modeled at the frequency that is meaningful for resolving the detailed rupture. We carefully handpick the first P wave arrivals, which are used to align data and synthetics in the inversion. Interestingly, for the mainshock we identify a weak pulse arriving few seconds (<2 s) before the strong P wave onsets on the 14 closest stations (Figure 3c), which is also captured by Lomax (2020). We later relocate the mainshock hypocenter and the source of the weak pulse (next section).

For MPS inversion using the strong motion data, we apply the Markov chain Monte Carlo sampling algorithm proposed by Shi et al. (2018) and conduct the inversion in an iterative fashion. We start the inversion using two point sources and gradually increase the number of sources until no dramatic reduction in misfit. We run the inversions with little prior information, only using the earthquake magnitude and rupture area to constrain the searching ranges of the parameters.

As demonstrated in previous analyses (Shi et al., 2018; Wei et al., 2015, 2018; Wei, Helmberger, Zhan, et al., 2013), path calibration from smaller events in the source region is critical for robust rupture process inversion. A good calibration event would allow us to determine the frequency range and the components that should be used for larger events. We identify a Mw5.4 event (2019/07/05/11:07:53, 35.761°N/117.570°W/8.0 km in SCEDC catalog) near the mainshock hypocenter and a Mw5.5 event (2020/06/04/01:32:11, 35.615°N/117.428°W/8.0 km in SCEDC catalog) located on the southern segment of the main fault as calibration events, as they are not only small enough to be considered as a point source at the frequency range we use, but also big enough to be well recorded by all the nearby strong motion stations.

We conduct calibration by point-source waveform inversions on the two events using the cut-and-paste method (Helmberger, 1996; Zhao & Helmberger, 1994), which cuts three-component waveform at each station into P and S wave segments and fit them with different time shifts. Because path and site conditions vary among stations, we apply different filtering frequencies to P and S waves on different stations. The 1-D SoCal model (Kanamori & Hadley, 1975) is used to compute the Green’s functions by the FK method (Zhu & Rivera, 2002), which are also used later in the MPS inversions. The waveform cross correlation between data and synthetics is very efficient and straightforward to eliminate the complicated paths that cannot be modeled by the synthetics. As this process is frequency dependent, here we push the frequency range as high as possible, while keeping the number of stations at a decent value (tens of stations). Furthermore, we discard some stations that are deployed in the area with too dense station distributions, to avoid the coverage of the observations being dominated in certain azimuthal range. We finally pick out 55 stations for the MPS inversions (see Table S2 for frequency ranges). The focal mechanism and waveform fits of the calibration events are shown in Figures S2 and S3. The P and S time shifts derived from the calibration waveform fitting are
later utilized to correct the travel time in the MPS inversions of the large events. Through this way, we validate the reliability of the Green’s functions at the selected frequency ranges.

3. Inversion and Modeling Results

We first present the inversion result for the foreshock (see Figure S4 for the statistics of the cross-correlation coefficients, Figure S5 for the waveform fits, and Figure S6 for the uncertainties of parameters) and then the mainshock (see Figure S4 for the statistics of the cross-correlation coefficients, Figure S7 for the waveform fits, and Figure S8 for the uncertainties of parameters), followed by the hypocenter relocation and modeling of CLC station waveform for the mainshock.

Our inversion result shows that the Mw6.5 foreshock is well represented by three point sources (Figure 2a). The first subevent (F1, Mw6.12) is located near the hypocenter, at the depth of 11 km. The seismicity of the foreshock sequence (Shelly, 2020) shows a NW-SE lineation that is consistent with one of the fault-plane solutions (strike = 315°/dip = 82°) of F1. Therefore, we consider it as the ruptured fault. However, the following subevents, F2 (Mw6.12) and F3 (Mw6.16) with centroid time at 6 and 9 s, are most likely located on the SW-NE oriented fault, as one of the fault plane solutions of F2 and F3 (strike = 225–228°/dip = 84–89°) is in remarkable agreement with the lineation of the seismicity. Note that F2 (depth = 6 km) and F3 (depth = 4 km) are much shallower than F1. All three subevents have similar moment and source duration, approximately aligning in NE-SW direction and showing rupture directivity toward SW. The rupture directivity is verified by the waveforms from different azimuths (Figure 2b). The LRL station (azimuth = 213°), located toward the rupture direction, shows a single-pulse waveform, in contrast with CLC (azimuth = 326°) station, located away from the rupture, showing clear three pulses in the waveform. The waveform decompositions at nearby stations present different sensitivities to the rupture process. For instance, F3 makes the largest contribution to almost all stations due to its slightly larger moment, except for MPM (azimuth = 2°) where F1 contribute the most, as F1 is closest to MPM. The robustness of the result is later discussed with the mainshock analysis.

By gradually increasing the number of subevents, we find that six sources are required to adequately model the mainshock waveforms. In Figure 1, the results of six subevents (M1–M6) are plotted with the relocated aftershocks (Shelly, 2020), along with representative seismicity profiles. Note that the summed moment tensor of six subevents is almost identical with the Global CMT solution (Figure 1, left inset). In the map view, the first subevent M1 (Mw6.38) is located ~3 km to the southeast of the intersection of the surface ruptures and the seismicity near the epicenter, where the subvertical faults reverse their dipping direction from SW to the north to NE to the south (Ross et al., 2019; Wang & Zhan, 2020). The NW striking fault plane solution of M1 is dipping to NE, consistent with the fault geometry reconciling surface rupture and underground seismicity. M1 has longer duration (~10 s) than the other subevents, particularly M2 (6 s), which is located 7 km to the NE of M1 and has the largest moment (Mw6.75). The following rupture, represented by M3 (Mw6.45), is located slightly to the SW of M1, started at 7 s and centroid at 10 s (duration 6 s). M3 represents a near-vertical right-lateral fault segment, indicating the rupture of different fault branch compared with M1. This is matching the double surface rupture traces near M1 and M3. Note the first three subevents release ~74% of the total moment, dominating the radiated seismic energy. The next two subevents (M4 and M5), which have almost the same moment (Mw6.26 and Mw6.19) and centroid time (~14 s), are located to the SE and S of M3, respectively. Careful inspection of the seismicity around M4, both in map view and vertical profile (Figure 1b), reveals that aftershocks clearly align in NE-SW direction, conjugating to the main seismicity lineation and surface rupture. The NE-SW seismicity lineation is consistent with one of the fault plane solutions of M4 with strike of 58°. We therefore consider M4 is located on the conjugate fault rather than on the NW-SE trending main fault. Note that although M4 is very close to F1 in horizontal location, it is much shallower (3 km vs. 11 km). The lineation of the seismicity (Figure 1b, B) indicates that M4 probably took place on a fault that is subparallel with the fault segment ruptured in F2 and F3. M5 is another subevent that we consider to have re ruptured the conjugate fault that had already been ruptured during the foreshock. M5 is located only 2 km to the west of F3 and slightly deeper (5 km vs. 4 km). Interestingly, the SW-NE trending fault plane solution of M5 has a dip angle of 60°, ~20° shallower than F3. The seismicity lineation in depth Profile A (Figure 1b) also shows a shallower dipping fault geometry at depth greater than 5 km, in remarkable agreement with dip angle of M5. At about 16 s, the last subevent M6 (Mw6.35) took
place on the southern portion of the NW-SE trending fault, possibly involved with two parallel branches as shown in the surface rupture, although we cannot distinguish them in our subevent solution.

To better understand the robustness of the six-point-source solution, in particular the subevent on the conjugate faults (M4 and M5), we decompose the synthetics into the contribution from each subevent at the nearby stations (Figure 3a). Because the mainshock has much larger dimension than the foreshock, these nearby stations show stronger variation of sensitivities to different parts of the rupture. In general,
they are dominated by the rupture closest to them, which is not necessarily the largest subevent (as highlighted by circles in Figure 3a). For example, the downgoing pulse of the N-S displacement component of the CLC station is primarily from M1, and later from M3. In contrast, the largest subevent M2 generated weak N-S component, as it sampled the nodal direction of SH radiation of M2. Similarly,
the E-W component of LRL station is clearly contributed more from M3, M4, and M6, rather than M2. The conjugate fault rupture M5 is clearly evidenced on the E-W component at the S419 station that is closest to the subevent. If we force the inversion to exclude the rupture on this conjugate fault, the waveform fits to this component is dramatically reduced (94% vs. 86%; Figure 3b). Similar situation happens to LRL and Q0072, two stations to the south that are closer to M4 and M5 than other subevents (see Figure S9 for three-component waveform decomposition). The statistics of waveform cross-correlation coefficients (Figure S4) also shows that the solution including the conjugate fault rupture indeed systematically fits the data better.

The robustness of the solution is further verified in waveform comparisons between the calibration events, foreshock and the mainshock (Figure S10). The calibration events’ recordings at all representative stations show simple, single-pulse waveform and can be very well fitted by the 1-D synthetics up to 1 Hz for P and 0.25 Hz for S waves (Figures S2 and S3). Similar degrees of fitting are obtained for the larger events, which show various complexities among stations. For instance, at LRL station, the foreshock waveform is simple, but the mainshock waveform is very complex. But the situation reverses at CLC station that is located to the NE of the rupture zone. To simultaneously fit ~50 calibrated stations well actually places very strong constraints to the subevent solutions, in particular considering their much fewer parameters compared with FFMs. This is further strengthened in the synthetic test (Figure S11). Since both calibration and large events waveforms can be fitted well, the uncertainty of source location could be estimated by comparing the time shifts from large event inversions with those from the calibration event inversions (Figure S12), where time shift differences on most stations are smaller than 1 s. If we assume a shear-wave velocity of 3.0 km/s (dominating the inversion), this time difference is equivalent to ~3 km horizontal location uncertainty. It should also be noted that M1 has the longest duration but smaller magnitude than the following, M2; therefore, its source parameter uncertainties are larger than the other subevents (Figure S8). Since the CLC station is very close to the fault, we also conducted a synthetics test (Figure S13) on the finite rupture process to show that our inversion setup can reliably recover the focal mechanism, moment, source duration, and the centroid location of the rupture.

However, the MPS solution cannot explain the signals preceding the large P wave onset identified at 14 stations (Figure 3c), simply because these signals are too weak (Figure 3d). We term the first source (marked by blue dots) as a precursory event of the mainshock. The azimuth-dependent relative arrival times between the precursory event and the P wave onset indicate a different location of the precursor. Using these arrival times, we relocated the precursor to lat = 117.564°W, lon = 35.746°N and depth = 5 km (green star in Figure 1a) relative to the Mw5.4 calibration event (see Figures S14a-S14c for more details). Based on the P wave amplitude comparison with other nearby small events, we estimate the magnitude of the precursor to be M0.25. We also relocate the P wave onset (35.769°N/117.593°W/3 km; Figures S14d-S14f) relative to the Mw5.4 calibration event (red star in Figure 1a). This epicenter location is similar to the most, if not all, of the mainshock epicenter reports (e.g., SCEDC; Lin, 2020; Ross et al., 2019). Moreover, to model the very beginning part after the P wave onset of the displacement waveform recorded by CLC station (Figures 3e and S15), we need a Mw5.2 event at the hypocenter, which is considered as the initial major rupture of the mainshock (P wave onset).

4. Discussion and Conclusions

4.1. Interpretation of Orthogonal Fault Ruptures

The two subevents (M5 and F3) on the conjugate fault are very close in space (Figure 4). For this conjugate fault segment, we do not see clear asperity separation in the published slip models (e.g., Li et al., 2020; Liu et al., 2019). The seismicity (Profile A in Figure 1b) associated with M5 and F3 also highly overlaps. Hence, we suggest the mainshock (M5) reruptured a portion of the fault that had ruptured in the foreshock (F3), similar to the October 2016 Mw6.5 earthquake sequence in central Italy (Ferrario & Livio, 2018). This repeated rupture of Ridgecrest earthquakes was likely enabled by the strong rupture dynamic weakening or triggering. Although the conjugate fault had just ruptured during the foreshock, the fault must have been quite sensitive to stress perturbation caused by the mainshock, implying a weak fault. The maximum principle stress axis (σ1, compressional) from earthquake focal mechanism (Wang & Zhan, 2020) and GPS data (Savage et al., 2001) is oriented practically in the N-S direction (Figure 4). The angles between σ1 and the
Based on Mohr-Coulomb rupture criteria, this angle would require a very small friction coefficient (weak faults) (e.g., Meng et al., 2012). On the other hand, slow rupture speed, high aftershock productivity (Liu et al., 2019), and very complex fault geometry (Wang & Zhan, 2020) all indicate an immature fault system, implying rougher and stronger faults in comparison with the neighboring plate boundary type fault (SAF). Recent rock experiments also show that conjugate fault ruptures tend to occur in rock samples with rougher fault friction (Renard et al., 2020). In addition, near-fault plastic deformation and encountering of rupture barriers (Xu & Ben-Zion, 2013) were invoked.

Figure 4. Schematics of the coseismic rupture initiation and propagation. (a and b) From N and SW perspectives. Seismicity (Shelly, 2020) between 4 and 16 July 2019 is colored based on the day of occurrence. The precursory events (stars) near the intersections of the NE dipping and the vertical faults precede the large mainshock subevents M1–M6 (centroid locations denoted by the green circles) at different fault branches. The white arrows show the rupture propagation direction, while the gray wavy arrows indicate that the shear waves of M1–M3, which triggered M4–M6. The Mw6.5 foreshock subevents (blue circles) propagated from the deep to the shallow portions (blue arrows) of the two conjugate faults.

left-lateral main fault and the conjugate fault are both ~45°. Based on Mohr-Coulomb rupture criteria, this angle would require a very small friction coefficient (weak faults) (e.g., Meng et al., 2012). On the other hand, slow rupture speed, high aftershock productivity (Liu et al., 2019), and very complex fault geometry (Wang & Zhan, 2020) all indicate an immature fault system, implying rougher and stronger faults in comparison with the neighboring plate boundary type fault (SAF). Recent rock experiments also show that conjugate fault ruptures tend to occur in rock samples with rougher fault friction (Renard et al., 2020). In addition, near-fault plastic deformation and encountering of rupture barriers (Xu & Ben-Zion, 2013) were invoked.
to explain conjugate fault seismicity very close to the main rupture (Ross et al., 2019). This explanation requires strong heterogeneous stress or friction on the fault. To reconcile various observations and the friction contrast from different mechanisms of the sequence, we suggest that high pore fluid pressure played a key role in highly heterogeneous effective normal stress on the fault. This high pore fluid pressure effect was likely very strong at least on the conjugate fault that ruptured in both the foreshock and mainshock. The immature fault system could have led to highly heterogeneous permeability on the fault, and hence to the highly variant effect of pore fluid pressure. This mechanism could be generalized to explain conjugate fault ruptures reported for several other events (Hudnut et al., 1989; Meng et al., 2012; Ruppert et al., 2018; Scognamiglio et al., 2018; Wei, Helmberger, & Avouac, 2013), which all took place on faults that are much less mature than the plate boundary type of faults.

The barrier mechanism proposed by Xu and Ben-Zion (2013) cannot be used to explain M5, as M5 occurred too far away from the main fault branch to have been affected by plastic deformation. Instead, M5 could have been triggered by the dynamic shear wavefield from M2, the largest subevent in the sequence. If we assume a shear speed of 3.0 km/s, the times of M5 and M6 ruptures are consistent with M2 shear wave arrival time (wavy lines in Figure 4). The occurrence of M4 on the NE extended conjugate fault relative to the main fault cannot be explained by Xu and Ben-Zion (2013) mechanism either, because M4 occurred in the compressional stress quadrant produced by the dynamic and static stress from preceding subevents. The reverse-fault slip component of M4 highlights the importance of incorporating both anti-plane and in-plane motion and of using a more realistic fault geometry in the dynamic simulations.

4.2. The Mainshock Rupture Initiation and Complex Fault Geometry

The initial rupture (Mw5.2) of the mainshock occurred 0.8 s after and ~5 km to the northeast of a precursor event (Mb2.5) (green stars in Figure 4). If preslip nucleation is used to explain these two subevents, the nucleation size is at least 5 km, which is too large compared with that from dynamic simulations (e.g., Lapusta & Rice, 2003). The distance and timing difference between the two events also exclude the possibility that the Mw5.2 event was triggered by the S wave from the Mb2.5 event. Instead, the mainshock was preceded by multiple shallow seismicity events near the location of the Mb2.5 event (Figure 2). We therefore suggest the Mb2.5 event was more likely an independent earthquake, unrelated to the nucleation of the mainshock.

The initial rupture (Mw5.2) of the mainshock was very shallow, which is less common compared with other large events that start from the lower bound of the seismogenic zone, as stress concentration is more pronounced at the depth of brittle to ductile transition. The very shallow initial rupture of the Ridgecrest mainshock was likely facilitated by stress perturbation from the foreshock (e.g., Qiu et al., 2020). Note that this is in contrast with F1, which was deep (11 km) and probably located at the lower bound of the seismogenic zone defined by historical seismicity, or even slightly deeper (Bonner et al., 2003). In single fault plane dynamic rupture simulations, a shallower hypocenter depth corresponds to a rather large Ru number and small nucleation size h* (Barbot, 2019; Shi et al., 2020), and hence, the entire fault is prone to rupturing during a large earthquake. However, our results show that the geometric complexity and the stress and friction status of the entire fault system, as well as dynamic triggering, played important roles in shaping the size of the earthquake, which clearly poses additional challenges to the dynamic simulations of both single earthquakes and earthquake cycles.

The mismatch between seismicity and surface rupture traces indicates that a very complicated fault geometry was involved in the rupture. Seismicity shows many more conjugate fault branches than we can resolve with MPS inversion. We cannot exclude coseismic rupture on other conjugate fault segments. These features could be resolved with a higher-frequency waveform analysis. One possible way of pushing the limit of frequency ranges is back projection of high-frequency radiators. However, as demonstrated by Zeng et al. (2020), careful error analysis, especially testing 3-D source-side velocity structures, would be needed.

4.3. Summary

The orthogonal rupture and rerupture of the SW conjugate fault segment revealed by MPS solutions for both the mainshock and foreshock require weak faults in an immature fault system, suggesting heterogeneously distributed pore fluid pressure. Weak faults resulting from heterogeneously distributed pore fluid pressure could explain other conjugate rupture earthquakes.
Data Availability Statement

Strong motion waveform data were downloaded from Southern California Earthquake Data Center using STP (https://scedc.caltech.edu/research-tools/stp/) on 20 July 2019 and Center for Engineering Strong Motion Data (https://www.strongmotioncenter.org) on 10 June 2020.

References

Barbot, S. (2019). Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics, 768, 228171. https://doi.org/10.1016/j.tecto.2019.228171

Barnhart, W. D., Hayes, G. P., & Gold, R. D. (2019). The July 2019 Ridgecrest, California, earthquake sequence: Kinematics of slip and stress in cross-fault ruptures. Geophysical Research Letters, 46, 11,859–11,867. https://doi.org/10.1029/2019GL084741

Bilham, R., & Castillo, B. (2020). The July 2019 Ridgecrest, California, earthquake sequence recorded by creepmeters: Negligible epicentral afterslip and prolonged triggered slip at teleseismic distances. Seismological Research Letters, 91(2A), 707–720. https://doi.org/10.1785/0220190293

Bonner, J. L., Blackwell, D. D., & Herrin, E. T. (2003). Thermal constraints on earthquake depths in California. Bulletin of the Seismological Society of America, 93(6), 2333–2354. https://doi.org/10.1785/0120030041

Brandenberg, S. J., Wang, P., Nweke, C. C., Hudson, K., Mazzoni, S., Bozorgnia, Y., et al. (2019). Preliminary report on engineering and geological effects of the July 2019 Ridgecrest earthquake sequence, Geotechnical Extreme Event Reconnaissance Association. Chen, K., Avouac, J. P., Aati, S., Milliner, C., Zheng, F., & Shi, C. (2020). Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nature Communications, 11(1), 22. https://doi.org/10.1038/s41467-019-13759-w

Feng, W., Samsonov, S., Qiu, Q., Wang, Y., Zhang, P., Li, T., & Zheng, W. (2020). Orthogonal fault rupture and rapid postseismic deformation following 2019 Ridgecrest, California, earthquake sequence revealed from geodetic observations. Geophysical Research Letters, 47, e2019GL086888. https://doi.org/10.1029/2019GL086888

Ferrario, M. F., & Livio, F. (2018). Characterizing the distributed faulting during the 30 October 2016, Central Italy earthquake: A reference for fault displacement hazard assessment. Tectonics, 37, 1256–1273. https://doi.org/10.1002/2017TC004935

Fielding, E. J., Liu, Z., Stephenson, O. L., Zhong, M., Liang, C., Moore, A., et al. (2020). surface deformation related to the 2019 Mw 7.1 and 6.4 Ridgecrest earthquakes in California from GPS, SAR interferometry, and SAR pixel offsets. Seismological Research Letters, 91(4), 2035–2046. https://doi.org/10.1785/0120190302

Floyd, M., Funning, G., Fialko, Y., Terry, R., & Herring, T. (2020). Survey and continuous GNSS in the vicinity of the July 2019 Ridgecrest earthquakes in California: Rupture on a conjugate fault structure revealed by GPS and InSAR measurements. Geophysical Research Letters, 47, e2019GL086382. https://doi.org/10.1029/2019GL086382

Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6A), 1553–1583.

Hudnut, K. W., Seiber, L., & Pacheco, J. (1989). Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California. Geophysical Research Letters, 16(2), 199–202. https://doi.org/10.1029/GL016i002p00199

Kanamori, H., & Hadley, D. (1975). Crustal structure and temporal velocity change in southern California. In edited. In Earthquake Prediction and Rock Mechanics (pp. 257–280). Birkhäuser, Basel: Springer.

Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491–506.

Lapusta, N., & Rice, J. R. (2003). Nucleation and early seismic propagation of small and large events in a crustal earthquake model. Journal of Geophysical Research, 108(B4), 2205. https://doi.org/10.1029/2001JB000793

Li, S., Chen, G., Tao, T., He, F., Ding, K., Zou, R., et al. (2020). The 2019 M6.4 and M7.1 Ridgecrest earthquake sequence in Eastern California: Rupture on a conjugate fault structure revealed by GPS and InSAR measurements. Geophysical Journal International, 221(3), 1651–1666. https://doi.org/10.1093/gji/ggaa099

Lin, G. (2020). Waveform cross-correlation relocation and focal mechanisms for the 2019 Ridgecrest earthquake sequence. Seismological Research Letters, 91(4), 2055–2061. https://doi.org/10.1785/0220190277

Liu, C., Lay, T., Brodsky, E. E., Dascher-Cousineau, K., & Xiong, X. (2019). Co-seismic rupture process of the large 2019 Ridgecrest earthquakes from joint inversion of geodetic and seismological observations. Geophysical Research Letters, 46, 11,820–11,829. https://doi.org/10.1029/2019GL084949

Lomax, A. (2020). Absolute location of 2019 Ridgecrest seismicity reveals a shallow M7.1 hypocenter, migrating and pulsing M7.1 foreshocks, and duplex M6.4 ruptures. Bulletin of the Seismological Society of America, 110(4), 1845–1858. https://doi.org/10.1785/0120200006

Lozes, J. C., & Harris, R. A. (2019). Dynamic rupture simulations of the R6.4 and M7.1 July 2019 Ridgecrest, California, earthquakes. Geophysical Research Letters, 47, e2019GL086020. https://doi.org/10.1029/2019GL086020

Maggio, G., Phillips, D. A., Hodgkinson, K. M., Walls, C., Mencin, D. J., Bartel, R. A., et al. (2020). The GAGE data and field response to the 2019 Ridgecrest earthquake sequence. Seismological Research Letters, 91(4), 2075–2086. https://doi.org/10.1785/0220190283

Melgar, D., Melbourne, T. I., Crowell, B. W., Geng, J., Szeliga, W., Scrivner, C., et al. (2019). Real-time high-rate GNSS displacements: Performance demonstration during the 2019 Ridgecrest, California, earthquakes. Seismological Research Letters, 91, 1943–1951. https://doi.org/10.1785/0220190223

Meng, L., Ampuero, J.-P., Stock, J., Duputel, Z., Luo, Y., & Tsai, V. C. (2012). Earthquake in a maze: Compressional rupture branching during the 2012 M9.3 Sumatra Earthquake. Science, 337(6105), 724–726. https://doi.org/10.1126/science.1224303

Milliner, C., & Donnellan, A. (2020). Using daily observations from planet labs satellite imagery to separate the surface deformation between the 4 July M6.4 foreshock and 5 July M7.1 mainshock during the 2019 Ridgecrest earthquake sequence. Seismological Research Letters, 91(4), 1986–1997. https://doi.org/10.1785/0220190271

Qiu, Q., Barbot, S., Wang, T., & Wei, S. (2020). Slip complementarity and triggering between the foreshock, mainshock, and afterslip of the 2019 Ridgecrest rupture sequence. Bulletin of the Seismological Society of America, 110(4), 1701–1715. https://doi.org/10.1785/0120200037

Acknowledgments

We appreciate Dr. Chengli Liu for providing the baseline-corrected displacement waveform for comparison. Figures were made with GMT-4.5.14 (Wessel et al., 2013) and MATLAB. Seismic Analysis Code (SAC) was used extensively in this analysis. This work was supported by the Earth Observatory of Singapore research grant (04MNS001909A620). The seismic waveform data were downloaded from Southern California Earthquake Data Center (Caltech. Dataset. doi:10.7909/C3WD3xH1) and strongmotioncenter.org.
