The asymmetries of the biopsychosocial model of depression in lay discourses - Topic modelling online depression forums

Renáta Németh *, Domonkos Sik, Eszter Katona

ELTE Eötvös Loránd University of Budapest, Faculty of Social Sciences, Research Center for Computational Social Science, Budapest, Pázmány Péter Sétány 1/a, 1117, Hungary

ARTICLE INFO

Keywords: Depression Online forum Natural language processing Topic model Latent dirichlet allocation Biopsychosocial model

ABSTRACT

Background: One of the most comprehensive approaches to depression is the biopsychosocial model. From this wider perspective, social sciences have criticized the reductionist biomedical discourse, which has been dominating expert discourses for a long time. As these discourses determine the horizon of attributions and interventions, their lay interpretation plays a central role in the coping with depression.

Methods: In order to map these patterns, online depression forums are analyzed with natural language processing methods, where computational tools are complemented with a qualitative approach. Latent Dirichlet Allocation topic model of depression-related posts from the most popular English-speaking online health discussion forums (N = ~70 000) reveals the monolog (attributions and self-disclosures) and interactive (consultations and quasi-therapeutic interactions) patterns.

Results: Following the evaluation of various models 18 topics were differentiated: attributions referring to health, family, partnership and work issues; self-disclosures referring to contemplations, introducing the experience of suffering and well-being, along with diaries of everyday activities and hardships; consultations about psychotherapies, classifications, drugs and the experience; and quasi-therapeutic interactions relying on unconditional positive regards, recovery helpers experience or spirituality. These topics were evaluated from the perspective of the biopsychosocial model: the weight of each dimension was measured along with the discursive function.

Conclusions: Biomedical discourse is underrepresented in lay discussions, while psychological discourse plays an overall dominant role. Even if actors are initially aware of the social mechanisms contributing to depression, they neglect these factors when it comes to considering the countermeasures.

1. Introduction

Depression is considered to be one of the most common mental disorders, also a leading cause of disability worldwide (WHO, 2020). Despite the ongoing debates (Garcia-Toro & Aguire, 2007; Lehman, David & Grube, 2017), it may be argued that one of the most comprehensive approaches to depression is the biopsychosocial model (Bolton & Gillett, 2019; Engel, 1980). However, the awareness of these various causes does not automatically imply the same level of attention paid to biological, psychological, and social explanations. The dominant discourse of depression is the biomedical (Rose & Abi-Rached, 2013), which is also expressed in the dominant forms of intervention: most Western health care systems rely primarily on pharmaceutical treatment (e.g. OECD, 2017; Pratt et al., 2017); complemented with psychotherapy (e.g. Delgadillo et al., 2018; Epping et al., 2017).

Of course, that does not mean the social factor is completely missing from the expert discourses. Many psychological models include the social element as an indicator of depression (Dambi et al., 2018). Also, several therapies focus on close social networks (Cottrell, 2003; Gupta et al., 2003). Large scale surveys explore several structural factors related to depression, such as lower socio-economic status (Hoebel et al., 2017; Lorant et al., 2003; Patel et al., 2018); being a women (Abate, 2013); being a member of ethnic or racial minorities (Bailey et al., 2019; Simpson et al., 2007); cultural transformations (Horowitz & Wakefield, 2007). However, these conclusions hardly represent a mainstream approach: even if they are acknowledged on theoretical level, they seldom find a way to the level of interventions. In this sense, the social component of depression remains in the background of therapeutic discourses (Fuchs, 2014).

Due to the asymmetry between the expert biopsychosocial consensus...
and the mostly biomedical and psychological therapies, the sufferers’
discursive framing of depression becomes a crucial one. The importance
of ‘illness narratives’ is well-known (Frank, 2013; Kleinmann 1988).
Especially in case of mental disorders the ‘recovery narratives’ are
essential for constructing a renewed, coherent identity (Llewellyn-Beardsley
et al., 2019). In this process peer support is indispensable: it is the relevant
others, who provide platform for identity-construction interactions (Pfeiffer
et al., 2011). These evidence highlights the general theoretical stakes of our research: by
analyzing lay depression narratives, an attempt is made to map the
support potential and limitations of the ongoing peer discussions.

From the perspective of the discourse theories of mental disorders, each
dimension of the biopsychosocial model has specific connotations. If
depression is predominantly interpreted according to a biological
framing, then the patients understand themselves primarily as bodily
entities relying on medical expertise (Rose, 1999). If a psychological
framing, then the patients understand themselves primarily as bodily
meanings of each topic were partly elaborated by a hermeneutic analysis
of the posts. Two research questions were analyzed:

2. Material and methods

2.1. Data

Although the users of online depression forums constitute a
heterogeneous population, previous research have mapped several at-
tributes: they are mostly used by people characterized by social and
geographical isolation, also in need of practical information and advice
(Smith-Merry et al., 2019). Although the majority of the users is
currently or formerly suffered from depressed mood (Powell et al.,
2003), some users are not involved personally, rather curious seekers of
information (Nimrod, 2013). These attributes indicate the generalizability
and the limitations of our study: it does not represent people
living with clinical depression, rather the discursive processes facilitated
by people directly or indirectly affected by depression.

For gathering the online forum posts, we used SentiOne, a web-based
social listening and text analytics platform. We chose the most popular
English-speaking online health forums (see Fig. 1), which were selected
via Google search using the search terms “depression forum” and
“depression online.” Beside the practical reasons, this search strategy
was further justified by the stakes of our research: as lay discourses were
targeted, it seemed ideal to simulate the search processes of an ideal-
typical lay actor seeking online answers to depression related concerns.
As Google search defines not only the largest, but also the most acces-
sible sites, its results are also considered to be the most widely used ones
as well. Searching was restricted to those forums which were active in
the last three years and were public and accessible without registration,
in order to follow data protection and ethical regulations.

We aimed at collecting only posts explicitly discussing depression;
for this purpose, (1) we selected threads which contained the word
“depression” or “depressed” in their title or at least in one of their posts,
then (2) we selected posts whose link, topic, or content contained a
depression-related term, like “unipolar depression,” “mood disorder,” or
“depressant.” The data set, collected by SentiOne in compliance with
GDPR regulations, contained 79 889 articles posted between February
15, 2016 and February 15, 2019 covering only publicly available posts,
which were shared willingly by their authors. After removing duplicate
and too short (less than 20 words) posts, our final corpus contained 67
857 posts. The posts were written by ~20.000 users identified by their
nickname. The corpus in its raw form needs further preprocessing (a
term coming from the data science community) to be usable for ana-
alyses. We used Python’s NLTK package (Bird et al., 2009) for this pur-
pose. Similarly to most text mining approaches, our analysis relied on a
word-based representation of texts (e.g., Aggarwal & Zhai, 2012),
assuming that texts are ‘bags of words’, while ignoring word order and
syntactic relations etc. Also, the simplifying language model itself makes
it highly important to validate the results, in our case, to qualitatively
assess the coherence of the resulting topics.

We employed lemmatization to standardize different forms of the
same word, discarded punctuation and capitalization, deleted URLs, e-
mail addresses, repost part of the posts and very common words (‘stop
words’). We treated most relevant two-word collocations as single
words, like “frontal lobe” or “ epsom salt” (the latter is believed to relieve
anxiety). We also treated the name of the most common mental disor-
ders (e.g. “major depression” or “chronic fatigue syndrome”) and proper
nouns as single terms. The proper nouns successfully detected in our
corpus were Chris Cornell, Stephen Fry (famous persons coming out with
their depression) or John Grohol (a well-known online mental health
expert).

After all, distribution of words within texts formed the numeric input
data for the quantitative analysis, that is, the corpus was transformed
into a numerical database. At some points of the analysis, we turned back into certain texts and analyzed them in a qualitative way. We can say
that we followed an intra-method mixing (Johnson & Turner, 2003), as
we used a single method of data collection to obtain a mixture of qualitative and quantitative data.

2.2. Analytical strategy: topic models

Natural language processing (NLP) concerns the development of
algorithm-based analytical tools, with which large-scale text analysis
becomes possible. Topic modelling in the context of NLP may be considered as a method of uncovering hidden topics in the corpus. Intuitively, the model assumes the existence of a finite set of topics, where a topic is statistically defined as a multinomial distribution over the terms of the given corpus. The model allows posts to relate to more than one topic. Latent Dirichlet Allocation (LDA, see Blei et al., 2003) is the first and widely used example of topic models. It assumes a Dirichlet distribution to determine per document topic distributions, this distribution is typically set to minimize the number of topics any particular post in the corpus is related to. Latent topics generate posts following their probability distribution over terms. Similarly to cluster analysis, the number of topics is an input parameter of the model.

We used LDA via the MALLET program (Mc Callum, 2002), which is available in Python using the “gensim” toolkit (Rehurek, Sojka, 2010). The algorithm was configured with an optimization interval of 10, but otherwise we used the default parameters. We ran topic models by varying numbers of topics from 5 to 20, trying to get not too broad but still not over-clustered topics. The algorithm's implementation relies on stochastic elements in its initialization, which can lead to somewhat different results (Belford et al., 2018). We tested this (rarely considered) instability by running each model with five different random number initializations.

There is no standardized procedure to determine the optimal number of topics. We combined quantitative and qualitative approaches for this task. First, we assessed interpretability of the models by calculating a coherence score for each of our models. Such scores try to quantify the semantic similarity between most relevant words in the topic. We chose the C_v measure that was proven to outperform all other coherence scores, where performance was measured by correlation with human ratings (Röder et al., 2015). Fig. 2 presents the coherence score for each model. Different initializations (denoted by different colors on the figure) led to models with quite different coherence. We choose models with 7, 13, 14, 18 and 19 topics that performed the best among the five initializations (denoted by five red circles on the figure) and that also
marked the end of a rapid growth of coherence. As our aim was to qualitatively evaluate the chosen models, we selected models that represent a broader range of topic numbers, from 7 to 19, while keeping the number of selected models to be manageable to avoid over-detailing. The selected models are indicated later as T7, T13, T14, T18 and T19.

Having the five most coherent models, we qualitatively ranked them based on their interpretability. As it will be introduced in detail in the Discussion, the topic number of 18 proved to be the best for meaningful interpretation.

2.3. Supporting interpretation with visualization

To support the interpretation, we applied the interactive visualization tool LDAvis. We used the Python package pLDAvis of Ben Mabey (2020), a Python port of the original R implementation of Sievert and Shirley (2014). Fig. 3 presents a global view of the topics (an interactive version of the figure can be found in Supplementary Material). The map on the left panel answers the questions regarding the prevalence of each topic and the relation between the topics. The areas of the circles are proportional to their relative prevalence in the corpus. Prevalence is measured by percentage of corpus words pertaining to the given topic.

The centers of the topics are laid out in two dimensions (see the left panel in Fig. 3), where original inter-topic distances are computed by Jensen-Shannon divergence and multidimensional scaling is used to get their two-dimensional representation. When interpreting such a map, there is ambiguity in the labeling of axes (Garson, 2013). A subjective approach is to take very distant objects and try to find an interpretation for the dimensions. It is important to note that the two-dimensional map inevitably simplifies the picture and its interpretation should be completed with a qualitative evaluation to get a more valid insight.

The right panel of Fig. 3 shows a horizontal bar chart whose bars represent the individual terms that are the most informative for understanding the topic model. The indicator of informativeness is saliency (Chuang et al., 2012), that measures how much information a term conveys about the topics. Saliency of a word is given as the multiplication of its relative frequency and distinctiveness. Even if a word occurs (Chuang et al., 2012), that measures how much information a term conveys about the topics. Saliency of a word is given as the multiplication of its relative frequency and distinctiveness. Even if a word occurs (Chuang et al., 2012), that measures how much information a term conveys about the topics. Saliency of a word is given as the multiplication of its relative frequency and distinctiveness. Even if a word occurs (Chuang et al., 2012), that measures how much information a term conveys about the topics. Saliency of a word is given as the multiplication of its relative frequency and distinctiveness. Even if a word occurs

Fig. 3. Distance map of topics of T18 with the most salient terms.
frequencies. “Girl” is specific to this topic, but “time” is also frequent in other topics, particularly those that are monologues, which thematize various aspects of the world and the self (see Discussion section).

2.4. Interpreting topics: combining quantitative and qualitative approach

While the statistical analysis enables the processing of large-scale textual data, when it comes to interpretation, it is rarely sufficient on its own. As our research questions aim at complex discursive patterns, a deeper understanding of the sense and the communicative functionality of the forum posts was required. Texts express structures of meaning, transcending the sum of the words: in order to give sense to the statistically identified patterns, a hermeneutic analysis was also called upon for supporting the interpretation. We inspected the 30 most relevant words (see later definition of relevance) and 10 most relevant posts (along with their context) in each topic with the method of ‘deep reading’ (Lee, 2017). Thus, in the qualitative study, we selected 180 posts, almost all of which were written by different authors. ‘Most relevant’ posts were defined as those having a contribution of minimum 90%, that is, these posts were almost exclusively about the given topic. The aim of these textual analysis was to interpret not only the content of the posts, but also their communicative purpose. This conceptual perspective is particularly important as forum posts are considered to be virtual ‘speech acts’: they are not only expressing something about the world or the self (that is the locutionary aspect); but also do something by expressing it (that is the illocutionary aspect); and also attempt to affect the other by doing something (that is the perlocutionary aspect – Austin, 1962).
Even though attempts of automatizing the interpretation of the performative aspects of online posts are not completely unknown (e.g. Carretero et al., 2015; Rus et al., 2012), we did not choose to proceed this way, since every automatized element of the interpretive process implies the loss of complexity of meanings. As depression forum posts are complex speech acts, constituted of varying locutionary, illocutionary and perlocutionary components, keeping as much from their complexity as possible was crucial. This way, the performative elements of the posts could have been interpreted more appropriately, therefore a richer understanding became possible, which would have been impossible while relying solely on automatized language processing.

Using mixed method approach is not unique in the text mining literature. Ignatow and Mihalcea (2017, pp. 67–68) take the view that social science text mining researches are usually performed as a pragmatic combination of quantitative and interpretative elements. One of the reasons for combining approaches is the fact that, as in our case, the interpretation of the output makes sense out of the whole modelling process, and complex NLP models are difficult to interpret without going into the reasons for combining approaches is the fact that, as in our case, the interpretation of the output makes sense out of the whole modelling process, and complex NLP models are difficult to interpret without going into

Table 1

Monologues	Attributions	Health-related attribution				
		Partnership-related attribution				
		Family-related attribution				
		Work-related attribution				
		Monologues	Monologues	Monologues	Monologues	Monologues
		Everyday diary				
		Self-disclosures	Self-disclosures	Self-disclosures	Self-disclosures	Self-disclosures
		Suffering-monologues	Suffering-monologues	Suffering-monologues	Suffering-monologues	Suffering-monologues
		Well-being monologue				
		Interactions	Interactions	Interactions	Interactions	Interactions
		Making sense of drugs				
		Making sense of the experience				
		Making sense of psy-discourses				
		Making sense of life-style intervention				
		Quasi-therapeutic engagements				
		Spiritual support				
		Recovery helpers counselling				
		Unconditional recognition				
		Misc	Misc	Misc	Misc	Misc
		Media representation of ...				
		... mental disorders				
		Mixture of ...				
		... school and work related attributions				

3. Results

As discussed above, we conducted a comprehensive analysis before selecting the 18-topic model (T18). As illustrated in Table 1, this analysis included systematic comparisons of topic contents pertaining to models T7, T13, T14, T18 and T19. The first dividing line was not drawn according to semantic differences (that is the substantive content of the post, a ‘locutionary’ dimension of the speech act), but according to performative ones (that is the communicative function of the posts, illocutionary and perlocutionary dimension of the speech act). Those posts were interpreted as monologues, which thematized various aspects of the world and the self without aiming at involving the others as partners in a mutual process of interpretation; those posts were interpreted as interactions, which were not oriented to the mere description of the world or the self, but to the exchanges with the others. Within these categories two-two subtypes were differentiated: monologues included more objective attributions (dominated by locutionary content) and different from examining words. Users of topic models also often refer explicitly to mixing methods, see eg. Jacobs and Tschötschel (2019) or Chakrabarti and Frye (2017).
emotionally charged self-disclosures (dominated by illocutionary intent); interactions included more pragmatic consultations (dominated by locutionary content) and quasi-therapeutic engagements (dominated by perlocutionary intent).

Evolution of the topics can be clearly followed in Table 1. Most of the topics manifest firmly in these models, while others can be traced back to a former, broader theme that split into more sub-themes. Although T7 does not include any uninterpretable topics, it misses many key dimensions of the online discourses. T14 and T19 provide detailed classifications, however both of them include uninterpretable, mixed topics along the comprehensible ones. Based on interpretability, T13 and T18 are the best models, as they are both free from incoherent topics. Being more detailed T18 is chosen as the final model: it is not burdened with inconsistencies, while providing a differentiated list. The coherent picture of topics evolution confirms the robustness of the final, T18 model.

Table 2 presents the topics of the “best” model, T18. Their thematic label, prevalence, most relevant terms, and a short citation from one of their representative posts are given. The 10 most relevant terms were selected from the 30 most relevant terms of the topic (see the visualization in the supplement) based on their interpretative power; they are ranked according to their relevance.

To link this table with Fig. 3, we gave the topics’ identity number as well. When trying to find a direct interpretation for the dimensions of the map on Fig. 3, we took very distant topics along the two axes. Topics 12, 18, 13 (monologues – self-disclosures) are on the top of the y-axis, while topics 2, 6 (interactions) are at the bottom, thus we may infer a locutionary dimension (performative function). However, the picture is not clear, see the position of topic 8, 10 and 5. Considering the x-axis, topics 1, 8, 7, 3 are on the left end and topics 11, 13, 17, 15, 4, 2 on the right end, thus we may infer a locutionary dimension (substantive content), which primarily distinguishes between biomedical/psychological attributions and social/private life aspects.

4. Discussion

From a methodological perspective, our research demonstrated how NLP can effectively enrich our existing knowledge, if being connected to substantiative theoretical questions and if the computational methods are
combined with qualitative understandings. It can be also concluded that in large-scale quantitative research like ours, data visualization not only illustrates the results but is an inherent part of the study. It supports processing and interpretation both during analysis and in publication. Furthermore, as opposed to static figures, interactive visualization tools encourage the users’ engagement by providing a platform for answering research questions. The interactive visualization tool in the Supplementary Material provides new discoveries even for the reader.

4.1. RQ1

The answer to our first research question (RQ1) is summarized by Table 2. Within the category of attributions five different topics were differentiated. Health-related attribution describes several physical hardships in an objective narrative style, while explaining depression as an illness. In case of partnership- and family-related attribution the central words express those hardships of everyday private life, which could become entrance points for interpersonal suffering: as the closest relationships are also the most important references in the shaping of the self, the disturbances of interactivity and intersubjectivity could lead to an unbearable existence (Fuchs, 2013). Despite the obvious emotional burden, these narratives maintain a remote perspective, their authors try to reconstruct the factors contributing to their suffering. In case of work-related attribution, the key terms refer to the hardships of the workplace as a potentially unbearable social environment (Battams et al., 2014). What sets attributions apart from other types of topics is on the one hand the lack of self-referential expressions (they address various aspects of the world); the lack of emotionally charged adjectives (they apply an objective semantic code) and the lack of intersubjective references (they do not expect deliberation).

Unlike attributions, various forms of self-disclosures are defined by their expressive function. Well-being monologues seem to serve no other purpose than to channel positive energies to the discussions: the author’s main purpose is to gather as many positive events as possible, without any further reference, thus neutralizing negative recurring thoughts (Fitzpatrick & Stallkas, 2008). The counterpoints of these posts are the suffering-monologues defined by emotionally charged (mostly negative) words. They usually lack coherent argumentation, rather resemble a desperate call for help. Constituting the biggest topic, these posts express a central function of depression forums: the opportunity of ventilating negative automatic thoughts (Michikyan, 2020; Pietromonaco & Markus, 1985). Expressive speech acts do not seek actual response, they are rather demonstrations of agony or the actual or attempted overcoming of it. In this sense they are traces of intuitively applied cognitive self-therapies: while the expression of well-being directly denies negative thoughts; the expression of suffering provides opportunity for reflection and self-distancing from them (Spinhoff et al., 2018).

Besides these emotionally charged self-disclosures, there are several variants of more passionate, practical self-referential posts. Contemplative self-analysis refers to the inner life: it is constituted of narratives exploring distressing events in a self-reflective manner. Unlike the untargeted, non-argumentative suffering-monologues, contemplative self-analysis aims at resolving the mysteries of the damaged self by analyzing experiences in a detached, neutral way (Lou et al., 2019).

Two types of reports of the personal life were also detected: the everyday diary expresses a detailed documentation of the banal everyday life; the struggle diary introduces the grappling with depression. The first type consists of raw descriptions of daily routines serving the primary purpose of systematic time management (Wang & Wang, 2018). Struggle diary aims at documenting the daily struggles of the self in a more reflected manner. A third type of topic was also distinguished, cultural consumption reports introducing the cultural consumption habits. Despite their lack of interactivity, self-disclosures serve an important functionality: they enable experimenting in a secure environment, while also providing platforms for various attempts of self-therapy (Naslund et al., 2016).

The main difference between monologues and interactions is that the latter does not consist of mere statements or self-reports, but rather communicative speech acts aiming at mutual understanding. Accordingly, they bear the mark of a discussion or dialogue, which could either be argumentative or emphatic. The first group of interactions aim at discussing various aspects of depression with peers, who are going through similar experiences, thus face similar challenges: they are mutual attempts of making sense of the depressive condition including its phenomenological and discursive contingencies. The pattern of making sense of the experience is defined by key words referring to the generalized other and the phenomenological patterns. These discussions try to make sense of the mental hardships by contrasting the depressed condition with various constructions of normalcy (Kangas, 2001).

The patterns of making sense of drugs, -psy-discourses and - psychotherapies belong to the smaller topics. These threads help to reinterpret expert knowledge, thus granting personal agency and a better-informed decision about the praxes of taking medications or therapy. Despite the biomedical paradigm views patients as automatons following the expert directives, the actual practice of consuming medications is always embedded in a social context, implying personal decisions, which are elaborated in these topics. The topic focusing on psycho-discourses fulfills similar purpose: in this case however not the drugs, but rather the classifications and interventions of psychology and psychiatry are at the center. Within this topic the participants try to make sense of the category attributed to them, therefore reclaim an identity, which is taken away from them due to the reifying biomedical gaze (Schreiber & Hartrick, 2002).

The second group of interactions differ from these various interpretations due to their alternative pragmatic functionality. Quasi-therapeutic engagements do not focus either on the content of the posts, or their intention; rather they are centered on the presumed impact on the other. Recovery helpers counselling is related to seemingly long-time users of the forum talking from the position of someone who has already experienced and overcame the hardships of depressions (McCosker, 2018; Smith et al., 2015). Their goal is similar to the strategy of cognitive therapy: the moments of reflection do not simply provide comfort for the sufferer; rather they enable the distancing from the negative recurring thoughts (Seabrook et al., 2016). A smaller, but similarly functioning topic is unconditional recognition. The related speech acts outline a double role: on the one hand, the contribution to a secure intersubjective atmosphere re-establishes trust; on the other hand, they provide support by including and integrating the newcomers to the forum community. The content of these posts has secondary importance compared to the inclusive and reassuring consequences: unconditional recognition is mainly about empathy and care, not providing advice or information. Within their own limited framework these speech acts, but they serve a function similar to the ‘positive regard’ in therapeutic practice (Rogers, 1956), they attempt to supplement the accepting social feedback, which are missing from many participants’ lives. In this sense they serve as secular ‘healing rituals’ (Sik, 2020).

Spiritual support outlines an alternative discursive framework unrelated to either psychological or biomedical discourses, which promotes a spiritual lifestyle as a way out from depression. While this topic seems to be distant from the mainstream discussion, it could be the indicator of the presence of a biopsychosocial-spiritual model in lay discussions (Hatala, 2015; Saad et al., 2017). Besides the monologues and interactions, a few miscellaneous topics were also detected. However, they do not contribute substantially to the understanding of lay depression discourses.

Our research confirms and refines several findings from previous analyses: depression narratives are embedded in the broader complex of the life story (Hajela, 2012; Issakainen & Hänninen, 2015; Kangas, 2001; Ridge & Ziebland, 2012); social distortions play an important, but often latent role in reflective attributions (Pan, 2018); peer support
exchanges with the others. Within these categories further subtypes (making sense of psychotherapies, the experience and psy-discourses). content); interactions included more pragmatic and emotionally charged measures and peer support, mostly psychological interventions the dysfunctions of private and institutional social relationships. How reflections - constituting a significant part of the corpus - mostly refer to dominating the attributions. This means that the more objective re

term measures and peer support, mostly psychological ones were present (recovery helpers, uncondi
tions); between topics were drawn according to their substantive content and performative structure of topics may be revealed.

Regarding the final model (T18), the two major dividing lines between topics were drawn according to their substantive content and communicative functions. This picture based on our thorough interpretation is consistent with the layout of topics across the two dimensions in Fig. 3, which demonstrates the robustness of our results.

The various performative functionalities of T18 outlined a balanced picture. Within the category of attributions, beside a biomedical topic (health-related) mostly social topics appeared (partner-, family-, work-related). Within the category of self-disclosures, beside two social topics (cultural consumption, everyday diary) mostly psychological ones were identified (suffering and well-being monologues, struggle diaries, self-contemplation). Within the category of consultations, beside a biomedical topic (drugs) mostly psychological ones were detected (making sense of psychotherapies, the experience and psy-discourses).

Within the category of peer support beside a social topic (spiritual), mostly psychological ones were present (recovery helpers, unconditional positive regard).

From a substantive perspective a more asymmetrical picture appears. Biomedical (topic 7, 8), psychological (topic 1, 3, 6, 9, 11, 12, 13, 16, 18) and social (topic 1, 2, 5, 10, 14, 15, 17) discursive elements are represented with different weight and functionality. The majority (62%) of online forum discussions is related to psychological discourse, which serves as a dominant framework of most self-disclosing monologues, consultations, and quasi-therapeutic interactions. The majority of users turn to online depression forums for various psy-related reasons: venting about their distress; asking for advice about their psychologically framed suffering; seeking or giving emotional support. Only a minority of the discussions (10%) is embedded in a biomedical framework. These include health related attributions and drug related advice. These questions are not considered to belong to lay competences: only a few users expect adequate advice or explanation from the peers. The biomedical and psychological discourses seem to play contrasting roles, as the latter is applied as the primary language of elaborating depression narratives.

The topics related to social discourses (27%) play an ambivalent role: while these almost exclusively appear in monologues, they are pre-dominating the attributions. This means that the more objective reflections - constituting a significant part of the corpus - mostly refer to the dysfunctions of private and institutional social relationships. However, the social elements almost completely disappear from both the consultative and supporting interactions. This asymmetry has serious consequences: while on the level of explaining depression, most actors mention ‘social suffering’, on the level of envisaged professional countermeasures and peer support, mostly psychological interventions appear targeting the individual.

Our analysis also has its limitations. Our target population is defined as people directly or indirectly affected by depression. Those who actively seek support through an online forum may not be representative of the entire target population. Additionally, as internet use is related to socioeconomic status, those with higher educational level may be over-represented in our study. Finally, due to data protection and ethical regulations, our searching was restricted to those forums which were public and accessible without registration. Password-protected support groups (see e.g. support. therapytribe.com) may be felt to be safer places to share experiences. However, from a different perspective, a study by Gulliver et al. (2015) showed that participants believed that the forums should be accessible to view content without registration because “people don’t want to join forums unless they’ve seen what’s in them first.” Presumably lower-threshold forums have greater reach, but less likely include those struggling with most serious problems.

We collected only posts including specific keywords, a decision justified by methodological reasoning. This criterion ensures that only posts which explicitly discuss depression are selected, however, the procedure may lead to the over-representation of conversations which consider depression as a pathological mood disorder, while under-representing cultural or social references.

We analyzed posts as individual expressions, while they are parts of conversations with dynamic and interactive patterns. To overcome this limitation, our future plan is to investigate networks of posts from the perspective of the topics detected in this study.

As there are no standardized procedures for determining the optimal number of topics, we conducted robustness tests and combined quantitative and qualitative approaches before selecting a 18-topic model. We do not state that 18 is the “right” number of topics, but this model contains all the important themes that emerged in the other models and does not contain any incoherent topic. Overall, it produces useful insights without being over-clustered.

5. Conclusions

All in all it seems that the majority of the ongoing discussions rely on the biopsychosocial model in an asymmetrical way: the psychological framings are at the center of attention; the biomedical ones appear only to a limited extent; the social attributions appear in a limited role. While these discrepancies were identified in the special setting of online forums, they might have a general relevance. Addressing the social element of suffering might be useful not only for practitioners when engaging their clients, but also the social policies aiming at preventing depression on a general level. These findings may help to refine online mental health forums. According to our experiences online depression forums hold many potentials: beside providing information to those, who have otherwise difficulties of seeking advice; they also play a much needed intermediary role by translating expert knowledge to lay language, which is particularly important in the process of establishing acceptable ‘illness narratives’; finally, they provide peer support, which has the potential of establishing missing intersubjectivities. On the other hand, online forums are burdened with a special challenge: while the traces of these potentials are detectable, they seem to function in a contingent manner. In order to actually profit from the immense potential of online depression forums, algorithmic mechanisms would be needed, which could direct the users of differing problems to appropriate segments of the platform. This conclusion highlights the health policy stakes of mapping the asymmetries and blind spots of online depression forums: with the help of a refined discursive map, the inherent contingency of forum discussion may be reduced.

Funding

This work was supported by the Higher Education Excellence Program of the Ministry of Human Capacities (ELTE-FKIP).
The funding sources had no involvement in conducting the research or in preparation of the article.

Ethics approval and consent to participate

All the data were collected by SentiOne social listening platform from public online sources by fully complying with all EU regulations. No identifiable information was collected.

Availability of data and materials

Data used in this study is collected by SentiOne social listening platform and are not publicly available due to confidentiality reasons but the preprocessed data are available from the corresponding author on reasonable request.

CRediT authorship contribution statement

Renata Németh: Methodology, Writing – original draft, Writing – review & editing, Supervision. Domonkos Sik: Conceptualization, Writing – original draft, Writing – review & editing. Eszter Katona: Formal analysis, Methodology, Software, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank Fanni Máté for her contribution to data collection.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ssmph.2021.100785. Web-based interactive visualization of the model with 18 topics

References

Abate, K. H. (2013). Gender disparity in prevalence of depression among patient population: A systematic review. Ethiopian journal of health sciences, 23(3), 283-288.
Aggarwal, C. C., & Zhai, C. (2012). Mining text data. Boston: Springer.
Austin, J. L. (1962). How to do things with words. London: Oxford University Press.
Bailey, R. K., Mokonogho, J., & Kumar, A. (2019). Racial and ethnic differences in depression in primary care: Recent developments. Current Psychiatry Reports, 21, 129.
Battams, S., Roche, A. M., Fischer, J. A., Lee, N. K., Cameron, J., & Kostadinov, V. (2014). Workplace risk factors for anxiety and depression in male-dominated industries: A systematic review. Health Psychology and Behavioral Medicine, 2(1), 983-1008.
Bauer, M. W., Bicquelet, A., & Suerdem, A. K. (2014). Text analysis: An introductory manifesto. In M. W. Bauer, A. Bicquelet, & A. K. Suerdem (Eds.), Textual analysis (pp. Xxi-xxvii). SAGE benchmark in social research methods, 1(1), 200-215.
Belford, M., Mac Namee, B., & Greene, D. (2018). Stability of topic modeling via matrix factorization. Expert Systems with Applications, 91, 159-169.
Benzon, K. (2008). A dark web. In H. A. Clark (Ed.), Depression and narrative: Telling the dark (pp. 145-156). Albany: State University of New York Press.
Bird, S., Edward, L., & Ewan, K. (2009). Natural language processing with Python. Sebastopol: O'Reilly Media Inc.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
Bolton, D., & Gillett, G. (2019). The biopsychosocial model of health and disease: New philosophical and scientific developments. Palgrave Pivot.
Carretero, M., Maíz-Arévalo, C., & Martínez, M.Á. (2015). An analysis of expressive speech acts in online task-oriented interaction by university students. Procedia Social and Behavioral Sciences, 173, 186-190.
Chalabrari, P., & Frye, M. (2017). A mixed-methods framework for analyzing text data: Integrating computational techniques with qualitative methods in demography. Demographic Research, 37, 1351-1380.
Chuang, J., Manning, C. D., & Heer, J. (2012). Termite: Visualization techniques for assessing textual topic models. Proceedings of the International Working Conference on Advanced Visual Interfaces, ACM, 74-77.
Cottrell, D. (2003). Outcome studies of family therapy in child and adolescent depression. Journal of Family Therapy, 25, 406-416.
Guilpés, P., Quero, S., Dowrick, C., & Arroll, B. (2019). Psychological treatment of depression in primary care: Recent developments. Current Psychiatry Reports, 21, 129.
Dambli, J. M., Corten, L., Chiwizarid, M., Jack, H., Mlambo, T., & Jhema, J. (2018). A systematic review of the psychometric properties of the cross-cultural translations and adaptations of the Multidimensional Perceived Social Support Scale (MSFSS). Health and Quality of Life Outcomes, 16(1), 80.
Delgadillo, J., Farnfield, A., & North, A. (2018). Social inequalities in the demand, supply and utilisation of psychological treatment. Counselling and Psychotherapy Research, 18, 114-121.
Engel, G. L. (1980). The clinical application of the biopsychosocial model. American Journal of Psychiatry, 137(5), 535-544.
Epping, J., Muchlik, D., & Geyer, S. (2017). Social inequalities in the utilization of outpatient psychotherapy: Analyses of registry data from German statutory health insurance. International Journal for Equity in Health, 16(1), 147.
Feldhege, J., Moessner, M., & Bauer, S. (2020). Who says what? Content and participation characteristics in an online depression community. Journal of Affective Disorders, 263, 521-527.
Fitzpatrick, M. R., & Stalikas, A. (2008). Positive emotions as generators of therapeutic change. Journal of Psychotherapy Integration, 18, 137.
Frank, A. W. (2013). The wounded storyteller: Body, illness, and ethics. Chicago: University of Chicago Press.
Fuchs, T. (2013). Depression, intercorporeality and interaffectivity. Journal of Consciousness Studies, 20(7-8), 219-238.
Fuchs, T. (2014). Psychopathology of depression and mania: Symptoms, phenomena and syndromes. Journal of Psychopathology, 20, 404-413.
Galegher, J., Sproull, L., & Kiesler, S. (1998). Legitimacy, authority, and community in electronic support groups. Written Communication, 15(4), 493-530.
Garcia-Toro, M., & Aguirre, I. (2007). Biopsychosocial model in Depression revisited. Medical Hypotheses, 68(3), 683-691.
Garson, G. D. (2013). Multidimensional scaling. Asheboro, NC: Statistical Associates Publishers.
Gulliver, A., Bennett, K., Bennett, A., Farrer, L. M., Reynolds, J., & Griffiths, K. M. (2015). Privacy issues in the development of a virtual mental health clinic for university students: A qualitative study. JMIR Mental Health, 2(1), e9.
Gupta, M., Coyne, J. C., & Beach, S. R. H. (2003). Couples treatment for major depression: Critique of the literature and suggestions for some different directions. Journal of Family Therapy, 25, 317-346.
Hajela, S. (2012). The monster within: Understanding the narratives of depression. Psychological Studies, 58(1), 10-19.
Hataja, A. R. (2013). Towards a biopsychosocial-spiritual approach in health psychology: Exploring theoretical orientations and future directions. Journal of Spirituality in Mental Health, 15(4), 256-276.
Hoebel, J., Maske, U. E., Zeeb, H., & Lampert, T. (2017). Social inequalities and depressive symptoms in adults: The role of objective and subjective socioeconomic status. PloS One, 12(1).
Horwitz, A. V., & Wakefield, J. C. (2007). The loss of sadness: How psychiatry transformed normal sorrow into depressive disorder. Oxford: Oxford University.
Ignatov, G., & Milhacés, R. F. (2017). An introduction to text mining: Research design, data collection, and analysis. Los Angeles: SAGE Publications, Inc.
Issakainen, M., & Hänninen, V. (2015). Young people’s narratives of depression. Journal of Youth Studies, 19(2), 237-250.
Jacobs, T., & Tschötschobel, R. (2019). Topic models meet discourse analysis: A quantitative tool for a qualitative approach. International Journal of Social Research Methodology, 22(5), 469-485.
Johnson, B., & Turner, L. A. (2003). Data collection strategies in mixed methods research. In A. Tashakkori & C. Teddlie (Eds.), Handbook of mixed methods in social and behavioral research (pp. 297-320). Thousand Oaks, CA: Sage.
Kangas, I. (2001). Making sense of depression: Perceptions of melancholia in lay narratives. Health: An Interdisciplinary Journal for the Social Study of Health, Illness and Medicine, 5(1), 76-92.
Kleiman, A. M. (1988). The illness narratives: Suffering, healing, and the human condition. New York: Basic Books.
Kotliar, D. M. (2015). Depression narratives in blogs: A collaborative quest for coherence. Qualitative Health Research, 25(4), 417-431.
Lee, M. (2017). Don’t give up! A cyber-ethnography and discourse analysis of an online infertility patient forum. Culture Medicine and Psychiatry, 41(3), 341-367.
Lehman, B. J., David, D. M., & Gruber, J. A. (2017). Rethinking the biopsychosocial model of health: Understanding health as a dynamic system. Social and Personality Psychology Compass, 11(18).
Li, A., Jiao, D., & Zhu, T. (2018). Detecting depression stigma on social media: A linguistic analysis. Journal of Affective Disorders, 232, 358-362.
Llewellyn-Beardsley, J., Rennick-Eggleston, S., Callard, F., Crawford, P., Parkas, M., Hui, A., Manley, D., McGrail, R., Pollock, K., Ramsay, A., Seher, K. T., Wright, N., & Slade, M. (2019). Characteristics of mental health recovery narratives: Systematic review and narrative synthesis. PloS One, 14(3), Article e0216678.
Lorant, V., Delpierre, D., Eaton, W., Robert, A., Philippot, P., & Ansseau, M. (2003). Socioeconomic inequalities in depression: A meta-analysis. American Journal of Epidemiology, 157(2), 98-112.
