Research Paper

Effect of a Lower Limb Restless Period on Expression of Mir-1 and Mir-206 Neural Muscle Genes in Endurance Training Rats

Mahboubeh Sheikhan1, *Mohammad Reza Kordi2, Hamid Rajabi3

1. Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, Kish Campus, University of Tehran, Kish, Iran.
2. Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
3. Department of Sport Physiology, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran.

Citation:
Sheikhan M, Kordi MR, Rajabi H. [Effect of a Lower Limb Restless Period on Expression of Mir-1 and Mir-206 Neural Muscle Genes in Endurance Training Rats (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 23(4): 570-579. https://doi.org/10.32598/JAMS.23.4.5947.1

ABSTRACT

Background and Aim: Several microRNAs are involved in regulating muscle mass, which plays an essential role in hypertrophy and atrophy of skeletal muscle. The present study examined the expression of some genes as regulators of muscular atrophy following a period of inertia in rats.

Methods & Materials: For this purpose, 18 male Sprague-Dawley rats were divided into three groups (Control, Exercise+inactivity, and Inactivity). The exercise+inactivity group run on the treadmill for 18 weeks and five times per week. The hindlimb of the animal was immobilized for seven days with the casting method. Soleus muscle was extracted and the expression of the genes was measured by the RT-PCR method. Univariate ANOVA and Tukey post hoc test was used to determine the differences (α=0.05).

Ethical Considerations: The Ethics Committee of the Tehran University of Medical Sciences Research approved this study (Code: IR.SUMS.REC.1396.S 463).

Results: Results showed that immobilization in both Exercise+ inactivity and inactivity groups, compared to the control group, increased expression of miR-1 genes (P<0.10), FOXO3a (P<0.001) and decreased expression of miR-206 (P<0.007) and IGF-1 (P<0.001). This difference was statistically significant.

Conclusion: According to the results of this study, it can be said that changes in the expression of RNAs by chromatography cause changes in the expression of muscle regulating genes, and although endurance exercises have protective effects, they cannot prevent these changes.

Key words: Muscular atrophy, MicroRNAs, miR-1, miR-206

Extended Abstract

1. Introduction

Muscle atrophy is caused by the aging, inactive lifestyle, suspension, and a variety of pathological conditions [1]. Exercise can cause hypertrophy by inhibiting atrophic factors such as FOXO by developing the AKT pathway [3]. FOXO is inhibited by AKT and PGC-1α and decreased expression of PGC-1α has also been observed in inactivity [4]. Little information is known about the role of miRNAs and their effects in the sedentary period after a training period [11]. miR-1 and miR-206 because they play an important role in increasing and inhibiting and on the other hand miR-1 is directly regulated by FOXO3a and inhibits IGF-1 and in contrast miR-206 through MyoD degradation was able to reduce FOXO3a. The result is a lack of reduction in IGF-1 and ultimately maintenance of protein synthesis in inactivity [13]. This study aimed to
investigate the expression of miR-1, miR-206, IGF-1, and FoxO3a genes following a short period of inactivity in trained and untrained rats.

2. Materials and Methods

The present study was fundamental and experimental. A total of 18 male Sprague-Dawley rats at the age of eight weeks with an average weight of 200±20 g were randomly divided into control groups (n=6) and endurance training groups (n=12). The rats in the endurance training group performed endurance training for 6 weeks and five days a week. Training started at 17.5 meters per minute for 15 minutes and reached 30 meters per minute for 60 minutes. The control group experienced walking on a treadmill at a speed of five meters per minute for 15 minutes [15]. The rats were anesthetized 48 hours after the last training session.

Table 1. Mean±SD of weight and food intake of groups and results of statistical test of analysis of variance

Index	Control	Exercise + Inactivity	Inactivity	One-way Analysis of Variance
Body weight (g)	363.6±14	341.4±14	337.6±08	F=0.606
Soleus muscle (mg)	220.6±11	231.2±9	189.2±12†	F=30.614 Sig:0.002
Soleus muscle / body weight (mg / kg)	638.8±34	690.8±35	500.2±35†	F=162.050 Sig:0.016
Food intake (g / daily)	23.8±3	30.6±3	14.4±5†	F=151.964 Sig:0.001

† Significant changes compared to the trained group; ‡ Significant changes compared to the sedentary group.

Both legs were then fixed at the hip, knee (in extension), and ankle (in plantar flexion) [16] for seven days. Immobilization of the lower extremities and the ability to freely consume water and food was confirmed by observation. In the end, all rats were anesthetized and soleus muscle was extracted and the expression of the desired genes was measured by the RT-PCR method and the ratio of the target gene to reference gene was calculated using CT-2 formula. To determine the differences, the one-way ANOVA method and Tukey post hoc test were used at a significant level (α≥0.05).

3. Results

Soleus muscle weight The ratio of horseshoe muscle weight to body weight and food intake of the exercise group compared to the sedentary-exercise+sedentary group were statistically significant (Table 1).

Figure 1. Changes in gene expression levels of groups and results of one-way analysis of variance with significant level (α≥0.05)

★ The sign indicates significant changes in the exercise+sedentary group compared to the control group;

+ The sign indicates significant changes in the sedentary group compared to the exercise+sedentary group.
Increased expression of miR-1 \((P=0.012)\), FOXO3 \((P=0.001)\) genes and decreased expression of miR-206 \((P=0.007)\) and IGF-1 \((P=0.003)\) in the exercise+inactivity group and the inactivity group compared to the control group, these differences were statistically significant. Also, the in-group results showed a non-significant increase in miR-1 gene expression \((P=0.068)\) in the inactive group compared to the exercise+inactivity group, but an increase in FOXO3 \((P=0.004)\) in the inactive group compared to the exercise + group. Inactivity was significant. Also, the inactive group showed a significant decrease in the expression of miR-206 \((P=0.030)\) and IGF-1 \((P=0.002)\) genes compared to the exercise + inactivity group (Figure 1).

4. Discussion and Conclusion

The most important findings of this study were the increase in the expression of atrophy stimulus genes (miR-1 and FOXO3) and the decrease in the expression of muscle hypertrophy stimulus genes (miR-206 and IGF-1) in the exercise+inactivity group and the inactivity group compared to the control group, which confirms the principle of training reversibility. Endurance exercise activities with increased aerobic performance and development of antioxidant capacity create favorable conditions for hypertrophy.

By decreasing reactive oxygen species and increasing PGC-1\(\alpha\) expression, the FOXO3\(\alpha\)-associated atrophy signal pathways associated with miR-1 are reduced. Exercise appears to increase IGF-1, which is associated with miR-206. With inactivity, the first thing that happens in the muscles is a decrease in aerobic power, which has been shown to decrease PGC-1\(\alpha\) expression. This reduction reduces the intracellular content of muscle, especially intracellular water, which in turn reduces antioxidant defenses, and ultimately allows atrophic pathways to grow due to the absence of hypertrophic agents.

Despite the protective effects of exercise activities against atrophy due to inactivity, the effect of complete inactivity will be greater due to high levels of fitness. This process is achieved by reducing the stimulants of hypertrophy and increasing the inhibitory factors by reducing the antioxidant defense and will play a very important role in the development of growth hormones. In addition, very important cellular markers called miR-206 are reduced, which causes the atrophy process to continue. In spite of the importance of preventing this regressive process and reducing ideal bodily function, there is still no clear way to deal with this inactive condition and the need for further studies and training (nutrition training) and nutritional interventions (polyphenols such as quercetin and curcumin) is felt.

Ethical Considerations

Compliance with ethical guidelines

This paper ethically approved by the research ethics committee of Tehran University of Medical Sciences (Code: IR.SUMS.REC.2017.S444).

Funding

The paper was extracted from the PhD. dissertation of the first author, the Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, Kish Campus, University of Tehran.

Authors’ contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

The authors would like to thank Dr. Mohammad Reza Kordi and Dr. Hamid Rajabi.
مقدمه
آتروفی عضلانی در شرایطی مثل پیری، عدم استفاده از اندام، تعلیق و انواعی از شرایط پاتولوژیک ایجاد می‌شود. در همه این وضعیت‌ها فعالیت‌های انقباضی و در نتیجه فشار مکانیکی و کشش داخل و خارج سلولی میوپیترها کم می‌شود. بی‌وزنی عضلات از طریق تعلیق اندام، یک مدل عدم استفاده از عضله است که باعث آتروفی قابل توجهی عضله اسکلتی می‌شود.

تغییرات سایز عضله اثر خالص تغییرات در میزان سنتز و تجزیه پروتئین است و قطعه انسولینی، عامل کلیدی هر دو فرآیند را تحت تأثیر قرار می‌دهد. فعالیت های ورزشی از طریق تحریک ترشح هورمون رشد IGF-1 به ویژه آمینواسیدها می‌توانند موجب افزایش عوامل تحریکی به ویژه AKT- mTOR از طریق مسیر IGF-1-Six5-FOXO3a گردد، که این نتیجه برای مردان هنرمند گزارش شده است.

1. Insulin Receptors (IRS)
بیشتر دو فاکتور
تحریکی این فرایند یعنی
از رونویسی از طریق مهار ترجمه
مطالعه دیگری نشان داد
ماهیچه های
و یکی از
روند رو به افزایشی داشتند
و درجه حرارت
ساعت روشنایی و
سطح
انتهای
نشد
به دلیل افزایش
در عضلات اسکلتی موش ها فقط بیان
یک فاکتور نسبتاً جدید از این عوامل متعدد.
در مقابل یک تا دو هفته پس از
ساعت تاریکی) و رطوبت
افزایش داشت، اما بیان
. اگرچه تغییرات
و درنهایت
و افزایش
را کاهش دهد
به طور مستقیم توسط
به دلیل اینکه نقش مهمی در افزایش
گرم از مرکز آزمایشگاه حیوانات دانشگاه علوم پزشکی
نحوی است؛ از این رو در این پژوهش هدف، بررسی بیان
ژن های
بدانیم ارتباط این عوامل با دو فاکتور مهم تأثیرگذار اتروفی به چه
بی تحریکی پس از سازگاری ورزشی بررسی شود. همچنین باید
نیازمندی تغییرات
عضلانی در اثر بی تحریکی اندام ها و نقش بارز عوامل مهاری و
شود. هرچند با وجود سازوکارهای پیچیده مربوط به آتروفی
خاصی نداشته است توانایی حفظ توده خود و شرایط مطلوب
به ویژه در افزایش عوامل رشدی و توسعه وضعیت هایپرتروفی
. به نظر
12
TWEAK
درجه سانتی گراد تحت چرخه خواب و بیداری
miR-133a
miR-133b
miR-1
miR-206
miR-23
miR-1
miR-206
miR-133a
miR-133b
miR-1
miR-206
مراجع دانشگاه علوم پزشکی اردکان
مه و آبان 1399، شماره 4
574
تمرین اصلی بعد از دو روز استراحت با سرعت دستگاه (کل نمونه با دستگاه پیکودراپ اکستنشن) و مچ پا (در حالت پلانتار فلکشن پروتکل دمایی به صورت دناتوراسیون اولیه در دمای 280/50°C و به دنبال آن (جدول شماره دقیقه شروع شد و به صورت دناتوراسیون در دمای میکرو لیتر مسترمیکس، شست وشوی آن از اتانول و نمونه‌های کنترل محاسبه و با استفاده از فرمول کنترل پیاده روی روی تردمیل را با سرعت دقیقه تجربه کردند و بر اساس پروتکل سنتز به شماره سانتی گراد به مدت تیرتانی برای هفت هفته. تمرین افزایش پیدا کرد تا میزان اصل اضافه با توجه به پیوند افزایش در طول دوره مراجعه همه مورد های قرار داده می‌شد که پس از فرآیند تشخیص جدید هر دو با استفاده از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی Nasa-BLAST (NCBI) 50 میکروگرم‌بردی (Beta 2 Microglobulin (B2M) 28 همبستگی از 0.70 Hinx (picodrop limited, Hinx) кол مهم‌ها با DNA RNase-DNase-free درgf (ton, United Kingdom) 15 و 280/50°C و به دنبال آن (جدول شماره دقیقه شروع شد و به صورت دناتوراسیون در دمای میکرو لیتر مسترمیکس، شست وشوی آن از اتانول و نمونه‌های کنترل محاسبه و با استفاده از فرمول کنترل پیاده روی روی تردمیل را با سرعت دقیقه تجربه کردند و بر اساس پروتکل سنتز به شماره سانتی گراد به مدت تیرتانی برای هفت هفته. تمرین افزایش پیدا کرد تا میزان اصل اضافه با توجه به پیوند افزایش در طول دوره مراجعه همه مورد های قرار داده می‌شد که پس از فرآیند تشخیص جدید هر دو با استفاده از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی نسبت 30/5 درجه قبل از کشت روش و نمونه‌های کنترل محاسبه شد. از بدن برای میکروسکوپی نامتایی از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی Nasa-BLAST (NCBI) 50 میکروگرم‌بردی (Beta 2 Microglobulin (B2M) 28 همبستگی از 0.70 همبستگی از 0.70 همبستگی از 0.70 Hinx (picodrop limited, Hinx) 25 میکرولیتر از 27/15°C و به دنبال آن (جدول شماره دقیقه شروع شد و به صورت دناتوراسیون در دمای میکرو لیتر مسترمیکس، شست وشوی آن از اتانول و نمونه‌های کنترل محاسبه و با استفاده از فرمول کنترل پیاده روی روی تردمیل را با سرعت دقیقه تجربه کردند و بر اساس پروتکل سنتز به شماره سانتی گراد به مدت تیرتانی برای هفت هفته. تمرین افزایش پیدا کرد تا میزان اصل اضافه با توجه به پیوند افزایش در طول دوره مراجعه همه مورد های قرار داده می‌شد که پس از فرآیند تشخیص جدید هر دو با استفاده از ژن‌های مرجع محاسبه شد. از آب به عنوان کنترل منفی Nasa-BLAST (NCBI) 50 میکروگرم‌بردی (Beta 2 Microglobulin (B2M) 28 همبستگی از 0.70 همبستگی از 0.70 Hinx (picodrop limited, Hinx) 25 میکرولیتر از 27/15°C و به دنبال آن (جدول شماره دقیقه شروع شد و به صورت دناتوراسیون در دمای Masa-Samandra Danish applied Bio systems Step One™ ماسکه بر اساس ژن‌های سطح پیش‌گفته و بدون سوخت آماده هد 2X PCR Kit داده شد. ژن‌های سطح پیش‌گفته و بدون سوخت آماده هد 2X PCR Kit داده شد. ژن‌های سطح پیش‌گفته و بدون سوخت آماده هد 2X PCR Kit داده شد. ژن‌های سطح پیش‌گفته و بدون سوخت آماده هد 2X PCR Kit داده شد. ژن‌های سطح پیش‌گفته و بدون سوخت آماده هد 2X PCR Kit داده شد. ژن‌های سطح پیش‌گفته و بدون سوخت آماده هد 2X PCR Kit داده شد. ژن‌های سطح پیش‌گفته و بدون سوخت آماده Hinx (picodrop limited, Hinx) 25 میکرولیتر از 27/15°C و به دنبال آن (جدول شماره دقیقه شروع شد و به صورت Dna-RNA دنیای بی‌سنتزیکی (نت، United Kingdom)
محیطی شبکه‌ای و هماهنگی، تأثیر ترکیبی آنزیمی، و میکروریزونهای هدف‌گذاری نقش مهمی در پاسخ‌گویی می‌کنند.

جدول ۳: پریمرهای Real-time PCR استفاده کرده در سطح مولکولی

Genes	Primer Sequences
Mir-1	Forward: 5'-ATGAAAAGGTGGACTTTTCA-3' Reverse: 5'-GCCAGTGGCGACAATGT-3'
Mir-206	Forward: 5'-CCCAACAGCTTCCTGCGTG-3' Reverse: 5'-GGGAGCATGTTGACCTGAAC-3'
IGF-1	Forward: 5'-CTCTAACCTCCATCTCCTC-3' Reverse: 5'-TTCAAGAGCCATGCAAGCA-3'
FOXD3	Forward: 5'-TTCGCAAGGACCAAATGA-3' Reverse: 5'-TCCAAGCTCCCATTGAACT-3'
B2m	Forward: 5'-CGTGCTGCGCTGAA-3' Reverse: 5'-ATGATACGCGTCTCCGTTG-3'

ACT

آزمایش و غیر آزمایش کنترل مورد بررسی قرار گرفتند. تجزیه و تحلیل داده‌ها به صورت یک طرفه (آنووا) و آزمون تعقیبی تکنیک (آنووا) در مرحله آخر کار مورد استفاده قرار گرفت.

اول که متوجه به پیکرهای فردی، مولکول‌های cDNA هد به صورت گروه سطحی در حدود ۵۰ تا ۷۰ درصد توجه نشان دادند. این به یکی از بهترین نمونه‌های تکنیک cDNA می‌باشد که نشان دهنده مطالعه درون گروه آماری مشترک است. در این سطح، CT است.

کتولین‌های

گروه تمرین + بی‌تحرک نسبت به گروه کنترل است.

1 نمودار ۴. تغییرات سطح بین گروه‌ها و نتایج آزمون آماری محاسبه و با استفاده از نرم‌افزار SPSS، نشان دهنده تغییرات سطح بین گروه‌ها در سطح CT است.

2. Denaturation
بیان نسبی ژن‌های مورد بررسی در تصویر شماره روز بی‌جاذبگی موجب کاهش معنادار (P < 0.05) نیز تأیید شده است. افزایش بیان می‌شود که منجر به آتروفی می‌شوند. این یافته‌ها در راستای یافته‌های بودین و همکاران بود که سه روند رو به افزایشی داشتند.

نظراتی علیه این ادعاهای فعلی از انسان در هنگام استراحت و عضلات و سایر قسمت‌های بدن در مواقع استراحتی می‌شود و توانایی استقامتی به وجود می‌آید. این فعالیت‌ها به نظر می‌رسد تا به‌طور مستقل یا به‌طور مانندی با همکاری فعالیت‌های ورزشی از نوع استقامتی که با مصرف مواد غذایی ثابت گردیده‌است. این افراد مصرف مواد غذایی ثابت گردیده می‌کنند که به‌طور مستقلی به‌طور مانندی با همکاری فعالیت‌های ورزشی از نوع استقامتی که با مصرف مواد غذایی ثابت گردیده می‌کنند. به‌طور مستقلی به‌طور مانندی با همکاری فعالیت‌های ورزشی از نوع استقامتی که با مصرف مواد غذایی ثابت گردیده می‌کنند.

روز بی‌جاذبگی موجب کاهش معنادار miR-206 š 21/21 نیز تأیید شده است. افزایش بیان می‌شود که منجر به آتروفی می‌شوند. این یافته‌ها در راستای یافته‌های بودین و همکاران بود که سه روند رو به افزایشی داشتند.

به‌طور مانندی با همکاری فعالیت‌های ورزشی از نوع استقامتی که با مصرف مواد غذایی ثابت گردیده می‌کنند. به‌طور مانندی با همکاری فعالیت‌های ورزشی از نوع استقامتی که با مصرف مواد غذایی ثابت گردیده می‌کنند.
نتایج پژوهش حاضر نشان می‌دهد با وجود اثرات محافظت‌کننده مربوط به فعالیت‌های ورزشی در مقابل آتروفی ناشی از عدم تحرک، به دلیل سطح بالای توانایی و آمادگی، میزان اثرگذاری بازیابی‌کننده در دوره ورزشی و افزایش بی‌حرکتی از طریق کاهش عوامل تحریکی و افزایش عوامل مهاری از طریق کاهش دفاع آنتی‌ویتامینی به دست آمده و برداشتن نقش هورمون‌های بسیار مهم رشدی این فرآیند ایجاد خواهد شد و حتی یکی از نشانگرهای بسیار مهم نیز کاهش می‌یابد و موجب ادامه روند miR-206 سلولی به نام آتروفی می‌شود. با وجود اهمیت جلوگیری از این فرآیند پس رونده و کاهنده عملکرد ایده آل بدنی، هنوز راه روشنی بر مقابله با این شرایط بی‌تحرکی یافت نشده است و نیاز به مطالعات بیشتر و ایجاد مداخلات تمرینی (تمرین مقاومتی) و تغذیه‌ای (پلی فنول‌های مانند کوئرستین و کورکومین) است.

نتیجه گیری
نتایج پژوهش حاضر نشان می‌دهد با وجود اثرات محافظت‌کننده مربوط به فعالیت‌های ورزشی در مقابل آتروفی ناشی از عدم تحرک، به دلیل سطح بالای توانایی و آمادگی، میزان اثرگذاری بازیابی‌کننده در دوره ورزشی و افزایش بی‌حرکتی از طریق کاهش عوامل تحریکی و افزایش عوامل مهاری از طریق کاهش دفاع آنتی‌ویتامینی به دست آمده و برداشتن نقش هورمون‌های بسیار مهم رشدی این فرآیند ایجاد خواهد شد و حتی یکی از نشانگرهای بسیار مهم نیز کاهش می‌یابد و موجب ادامه روند miR-206 سلولی به نام آتروفی می‌شود. با وجود اهمیت جلوگیری از این فرآیند پس رونده و کاهنده عملکرد ایده آل بدنی، هنوز راه روشنی بر مقابله با این شرایط بی‌تحرکی یافت نشده است و نیاز به مطالعات بیشتر و ایجاد مداخلات تمرینی (تمرین مقاومتی) و تغذیه‌ای (پلی فنول‌های مانند کوئرستین و کورکومین) است.
References

[1] Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Vollet L, et al. Identification and characterization of a spiral muscular atrophy-determining gene. Cell. 1995; 80(1):155-65. [DOI:10.1016/0092-8674(95)00460-3] [PMID] [PMCID]

[2] Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol. 2005; 37(10):1974-84. [DOI:10.1016/j.biocel.2005.04.018] [PMID]

[3] Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, et al. Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1. FASEB J. 2002; 16(14):1879-86. [DOI:10.1096/fj.02-0367com] [PMID] [PMCID]

[4] Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, et al. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A. 2006; 103(44):16260-5. [DOI:10.1073/pnas.0607795103] [PMID] [PMCID]

[5] Kyparos A, Feeback DL, Layne CS, Martinez DA, Clarke MSF. Mechanisms of translation and amino acid regulation during protein synthesis. J Cell Sci. 2015; 128(14):2589-603. [DOI:10.1242/jcs.193023] [PMID] [PMCID]

[6] Layne C. The Department of Health and Human Performance. [Phd. dissertation] Houston: College of Education-University of Houston; 2002-2003. [https://uh.edu/class/hbp/...]

[7] Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: Microgravity and skeletal muscle. J Appl Physiol. 2000; 89(2):823-39. [DOI:10.1152/japplphysiol.00260.2000] [PMID]

[8] Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem. 2005; 280(4):2847-56. [DOI:10.1074/jbc.M411346200] [PMID]

[9] Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, et al. Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol Cell Biol. 2009; 29(17):4798-811. [DOI:10.1128/MCB.01347-08] [PMID] [PMCID]

[10] McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol. 2007; 102(1):306-13. [DOI:10.1152/japplphysiol.00932.2006] [PMID]

[11] McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. Evidence of MyoD network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics. 2009; 39(3):219-26. [DOI:10.1152/physiolgenomics.00042.2009] [PMID] [PMCID]

[12] Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 2006; 13(1):13-21. [DOI:10.1038/nsmb1041] [PMID] [PMCID]

[13] Güller I, Russell AP. MicroRNAs in skeletal muscle: Their role and regulation in development, disease and function. J Physiol. 2010; 588(Pt 21):4075-87. [DOI:10.1113/jphysiol.2010.194175] [PMID] [PMCID]

[14] Panguluri SK, Bhatnagar S, Kumar A, McCarthy JJ, Srivastava AK, Cooper NG, et al. Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PLoS One. 2010; 5(1):e8760. [DOI:10.1371/journal.pone.0008760] [PMID] [PMCID]

[15] Allen DL, Bandstra ER, Harrison BC, Thorng S, Stodieck LS, Kostenuk PJ, et al. Effects of spaceflight on murine skeletal muscle gene expression. J Appl Physiol. 2009; 106(2):582-95. [DOI:10.1152/japplphysiol.00780.2008] [PMID] [PMCID]

[16] Kang C, Chung E, Differ E, Ji LL. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: Role of PGC-1α. Exp Gerontol. 2013; 48(11):1343-50. [DOI:10.1016/j.exger.2013.08.004] [PMID]

[17] Frimmel TN, Kapadia F, Gaidosh GS, Li Y, Walter GA, Vandenne K. A model of muscle atrophy using cast immobilization in mice. Muscle Nerve. 2006; 32(5):672-4. [DOI:10.1002/mus.20399] [PMID]

[18] Bodine SC, Latres E, Baumhuetter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001; 294(5547):1704-8. [DOI:10.1126/science.1065874] [PMID]

[19] Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol. 2005; 37(10):1974-84. [DOI:10.1016/j.biocel.2005.04.018] [PMID]

[20] Léger B, Cartoni R, Praz M, Lamon S, Dériaux O, Crettenand A, et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006; 576(Pt 3):523-33. [DOI:10.1113/jphysiol.2006.116715] [PMID] [PMCID]

[21] Doucet M, Russell AP, Léger B, Debégard R, Joannis DR, Caron M-A, et al. Muscle atrophy and hypertrophy signaling in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007; 176(3):261-9. [DOI:10.1164/rccm.200605-704OC] [PMID] [PMCID]

[22] Léger B, Derave W, De Bock K, Hespel P, Russell AP. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res. 2008; 11(1):163-175B. [DOI:10.1089/rej.2007.0588] [PMID]

[23] Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006; 38(2):228-33. [DOI:10.1038/ng1725] [PMID] [PMCID]