A Note on Maass-Jacobi Forms

JAE-HYUN YANG
Department of Mathematics, Inha University, Incheon 402-751, Korea
e-mail: jhyang@inha.ac.kr

Abstract. In this paper, we introduce the notion of Maass-Jacobi forms and investigate some properties of these new automorphic forms. We also characterize these automorphic forms in several ways.

1. Introduction

We let $SL_{2,1} (\mathbb{R}) = SL(2, \mathbb{R}) \rtimes \mathbb{R}^{(1,2)}$ be the semi-direct product of the special linear group $SL(2, \mathbb{R})$ of degree 2 and the commutative group $\mathbb{R}^{(1,2)}$ equipped with the following multiplication law

\[(g, \alpha) \ast (h, \beta) = (gh, \alpha^t h^{-1} + \beta), \quad g, h \in SL(2, \mathbb{R}), \quad \alpha, \beta \in \mathbb{R}^{(1,2)},\]

where $\mathbb{R}^{(1,2)}$ denotes the set of all 1×2 real matrices. We let

$SL_{2,1} (\mathbb{Z}) = SL(2, \mathbb{Z}) \rtimes \mathbb{Z}^{(1,2)}$

be the discrete subgroup of $SL_{2,1} (\mathbb{R})$ and $K = SO(2)$ the special orthogonal group of degree 2.

Throughout this paper, for brevity we put

$G = SL_{2,1} (\mathbb{R})$, \quad $\Gamma_1 = SL(2, \mathbb{Z})$ \quad and \quad $\Gamma = SL_{2,1} (\mathbb{Z})$.

Let \mathbb{H} be the Poincaré upper half plane. Then G acts on $\mathbb{H} \times \mathbb{C}$ transitively by

\[(g, \alpha) \circ (\tau, z) = ((d \tau - c)(-b \tau + a)^{-1}, (z + \alpha_1 \tau + \alpha_2)(-b \tau + a)^{-1}),\]

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$, $\alpha = (\alpha_1, \alpha_2) \in \mathbb{R}^{(1,2)}$ and $(\tau, z) \in \mathbb{H} \times \mathbb{C}$. We observe that K is the stabilizer of this action (1.2) at the origin $(i, 0)$. $\mathbb{H} \times \mathbb{C}$ may be identified with the homogeneous space G/K in a natural way.

Received October 21, 2002.
2000 Mathematics Subject Classification: Primary 11F55, 32M10, 32N10, 43A85.
Key words and phrases: Maass forms, invariant differential operators, automorphic forms.
This work was supported by Korea Research Foundation Grant(KRF-2000-041-D00005).
The aim of this paper is to define the notion of Maass-Jacobi forms generalizing that of Maass wave forms and study some properties of these new automorphic forms. For the convenience of the reader, we review Maass wave forms. For \(s \in \mathbb{C} \), we denote by \(W_s(\Gamma_1) \) the vector space of all smooth bounded functions \(f : SL(2, \mathbb{R}) \rightarrow \mathbb{C} \) satisfying the following conditions (a) and (b):

(a) \(f(\gamma g k) = f(g) \) for all \(\gamma \in \Gamma_1, \ g \in SL(2, \mathbb{R}) \) and \(k \in K \).

(b) \(\Delta_0 f = \frac{1 - s^2}{4} f \),

where \(\Delta_0 = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) - y \frac{\partial^2}{\partial x \partial \theta} + \frac{5}{4} \frac{\partial^2}{\partial \theta^2} \) is the Laplace-Beltrami operator associated to the \(SL(2, \mathbb{R}) \)-invariant Riemannian metric

\[
d s_0^2 = \frac{1}{y^2} (dx^2 + dy^2) + \left(d\theta + \frac{dx}{2y} \right)^2
\]

on \(SL(2, \mathbb{R}) \) whose coordinates \(x, y, \theta \) (\(x \in \mathbb{R}, \ y > 0, \ 0 \leq \theta < 2\pi \)) are given by

\[
g = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \ g \in SL(2, \mathbb{R})
\]

by means of the Iwasawa decomposition of \(SL(2, \mathbb{R}) \). The elements in \(W_s(\Gamma_1) \) are called Maass wave forms. It is well known that \(W_s(\Gamma_1) \) is nontrivial for infinitely many values of \(s \). For more detail, we refer to [6], [9], [13], [17] and [20].

The paper is organized as follows. In Section 2, we calculate the algebra of all invariant differential operators under the action (1.2) of \(G \) on \(\mathbb{H} \times \mathbb{C} \) completely. In addition, we provide a \(G \)-invariant Riemannian metric on \(\mathbb{H} \times \mathbb{C} \) and compute its Laplace-Beltrami operator. In Section 3, using the above Laplace-Beltrami operator, we introduce a concept of Maass-Jacobi forms generalizing that of Maass wave forms. We characterize Maass-Jacobi forms as smooth functions on \(G \) or \(SP_2 \times \mathbb{R}^{(1,2)} \) satisfying a certain invariance property, where \(SP_2 \) denotes the symmetric space consisting of all \(2 \times 2 \) positive symmetric real matrices \(Y \) with \(\det Y = 1 \). In Section 4, we find the unitary dual of \(G \) and present some properties of \(G \). In Section 5, we describe the decomposition of the Hilbert space \(L^2(\Gamma \backslash G) \). In the final section, we make some comments on the Fourier expansion of Maass-Jacobi forms.

Notations. We denote by \(\mathbb{Z}, \mathbb{R} \) and \(\mathbb{C} \) the ring of integers, the field of real numbers and the field of complex numbers respectively. \(\mathbb{Z}^+ \) denotes the set of all positive integers. \(F^{(k,l)} \) denotes the set of all \(k \times l \) matrices with entries in a commutative ring \(F \). For a square matrix \(A \), \(\sigma(A) \) denotes the trace of \(A \). For any \(M \in F^{(k,l)} \), \(tM \) denotes the transpose of \(M \). For \(A \in F^{(k,l)} \) and \(B \in F^{(k,k)} \), we set \(B[A] = tABA \).

We denote the identity matrix of degree \(n \) by \(E_n \). \(\mathbb{H} \) denotes the Poincaré upper-half plane.

2. Invariant Differential Operators on \(\mathbb{H} \times \mathbb{C} \)
We recall that SP_2 is the symmetric space consisting of all 2×2 positive symmetric real matrices Y with $\det Y = 1$. Then G acts on $SP_2 \times \mathbb{R}^{(1,2)}$ transitively by

$$(g, \alpha) \cdot (Y, V) = (gY^t g, (V + \alpha)^t g),$$

where $g \in SL(2, \mathbb{R})$, $\alpha \in \mathbb{R}^{(1,2)}$, $Y \in SP_2$ and $V \in \mathbb{R}^{(1,2)}$. It is easy to see that K is a maximal compact subgroup of G stabilizing the origin $(E_2, 0)$. Thus $SP_n \times \mathbb{R}^{(m,n)}$ may be identified with the homogeneous space G/K as follows:

$$G/K \ni (g, \alpha)K \mapsto (g, \alpha) \cdot (E_2, 0) \in SP_2 \times \mathbb{R}^{(1,2)},$$

where $g \in SL(2, \mathbb{R})$ and $\alpha \in \mathbb{R}^{(1,2)}$.

We know that $SL(2, \mathbb{R})$ acts on H transitively by

$$(g, \alpha) \cdot (\tau, z) = (a\tau + b)(c\tau + d)^{-1}, \quad \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL(2, \mathbb{R}), \quad \tau \in H.$$
\[\alpha_{Y,V} = V^t g_Y^{-1}. \]

Then we have
\[T(Y, V) = (g_Y, \alpha_{Y,V}) \circ (i, 0). \]

Proof. It is easy to prove the lemma. So we leave the proof to the reader. \(\square \)

Now we give a complete description of the algebra \(D(H \times \mathbb{C}) \) of all differential operators on \(H \times \mathbb{C} \) invariant under the action (1.2) of \(G \). First we note that the Lie algebra \(g \) of \(G \) is given by \(g = \{ (X, Z) \mid X \in \mathbb{R}^{(2,2)}, \sigma(X) = 0, Z \in \mathbb{R}^{(1,2)} \} \)

equipped with the following Lie bracket
\[
\left[X_1, X_2\right] = \left[\begin{array}{cc} X_1^t & 0 \\ 0 & X_2 \end{array}\right], \quad \left[Z_1, Z_2\right] = \left[\begin{array}{cc} 0 & Z_1^t \\ -Z_2 & 0 \end{array}\right],
\]

where \([X_1, X_2]_0 = X_1X_2 - X_2X_1 \) denotes the usual matrix bracket and \((X_1, Z_1), (X_2, Z_2) \in g \). And \(g \) has the following decomposition
\[g = \mathfrak{k} \oplus \mathfrak{p} \] (direct sum),

where \(\mathfrak{k} = \left\{ (X, 0) \in g \mid X = \left[\begin{array}{cc} 0 & x \\ -x & 0 \end{array}\right], \ x \in \mathbb{R} \right\} \) and \(\mathfrak{p} = \left\{ (X, Z) \in g \mid X = \left[\begin{array}{cc} 0 & x \\ -x & 0 \end{array}\right], \sigma(X) = 0, Z \in \mathbb{R}^{(1,2)} \right\} \).

We observe that \(\mathfrak{k} \) is the Lie algebra of \(K \) and that we have the following relations
\[[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k} \quad \text{and} \quad [\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}. \]

Thus the coset space \(G/K \cong H \times \mathbb{C} \) is a reductive homogeneous space in the sense of [12], p. 284. It is easy to see that the adjoint action \(\text{Ad} \) of \(K \) on \(\mathfrak{p} \) is given by
\[\text{Ad}(k)((X, Z)) = (kX^t k, Z^t k), \]

where \(k \in K \) and \((X, Z) \in \mathfrak{p} \) with \(X = X^t, \sigma(X) = 0 \). The action (2.9) extends uniquely to the action \(\rho \) of \(K \) on the polynomial algebra \(\text{Pol}(\mathfrak{p}) \) of \(\mathfrak{p} \) given by
\[\rho : K \rightarrow \text{Aut}(\text{Pol}(\mathfrak{p})). \]

Let \(\text{Pol}(\mathfrak{p})^K \) be the subalgebra of \(\text{Pol}(\mathfrak{p}) \) consisting of all invariants of the action \(\rho \) of \(K \). Then according to [12], Theorem 4.9, p. 287, there exists a canonical linear bijection \(\lambda : (P \rightarrow D_{\lambda(P)}) \) of \(\text{Pol}(\mathfrak{p})^K \) onto \(\mathbb{D}(H \times \mathbb{C}) \). Indeed, if \(\{\xi_k\} (1 \leq k \leq 4) \) is any basis of \(\mathfrak{p} \) and \(P \in \text{Pol}(\mathfrak{p})^K \), then
\[(D_{\lambda(P)}f)(\hat{g} \circ (i, 0)) = \left[P \left(\frac{\partial}{\partial t_k} \right) f((\hat{g} \ast \exp(\sum_{k=1}^{4} t_k \xi_k)) \circ (i, 0)) \right]_{(t_k) = 0}, \]

where \(\hat{g} = \exp(\sum_{k=1}^{4} t_k \xi_k) \).
where \(\tilde{g} \in G \) and \(f \in C^\infty(\mathbb{R} \times \mathbb{C}) \).

We put
\[
e_1 = \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, (0,0) \right), \quad e_2 = \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, (0,0) \right)
\]
and
\[
f_1 = \left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, (1,0) \right), \quad f_2 = \left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, (0,1) \right).
\]
Then \(e_1, e_2, f_1, f_2 \) form a basis of \(\mathfrak{p} \). We write for coordinates \((X, Z)\) by
\[
X = \begin{pmatrix} x \\ y \\ -x \end{pmatrix} \quad \text{and} \quad Z = (z_1, z_2)
\]
with real variables \(x, y, z_1 \) and \(z_2 \).

Lemma 2.2. The following polynomials
\[
P(X, Z) = \frac{1}{8} \sigma(X^2) = \frac{1}{4} (x^2 + y^2),
\]
\[
\xi(X, Z) = Z^t \tilde{Z} = z_1^2 + z_2^2,
\]
\[
P_1(X, Z) = -\frac{1}{2} ZX^t \tilde{Z} = \frac{1}{2} (z_2^2 - z_1^2) x - z_1 z_2 y \quad \text{and}
\]
\[
P_2(X, Z) = \frac{1}{2} (z_2^2 - z_1^2) y + z_1 z_2 x
\]
are algebraically independent generators of \(\text{Pol} (\mathfrak{p})^K \).

Proof. We leave the proof of the above lemma to the reader. \(\square \)

Now we are ready to compute the \(G \)-invariant differential operators \(D, \Psi, D_1 \) and \(D_2 \) corresponding to the \(K \)-invariants \(P, \xi, P_1 \) and \(P_2 \) respectively under the canonical linear bijection (2.11). For real variables \(t = (t_1, t_2) \) and \(s = (s_1, s_2) \), we have
\[
\exp (t_1 e_1 + t_2 e_2 + s_1 f_1 + s_2 f_2) = \left(\begin{pmatrix} a_1(t, s) & a_3(t, s) \\ a_3(t, s) & a_2(t, s) \end{pmatrix}, (b_1(t, s), b_2(t, s)) \right),
\]
where
\[
a_1(t, s) = 1 + t_1 + \frac{1}{2!} (t_1^2 + t_2^2) + \frac{1}{3!} t_1(t_1^2 + t_2^2) + \frac{1}{4!} (t_1^3 + t_2^3)^2 + \cdots
\]
\[
a_2(t, s) = 1 - t_1 + \frac{1}{2!} (t_1^2 + t_2^2) - \frac{1}{3!} t_1(t_1^2 + t_2^2) + \frac{1}{4!} (t_1^3 + t_2^3)^2 - \cdots,
\]
\[
a_3(t, s) = t_2 + \frac{1}{3!} t_2(t_1^2 + t_2^2) + \frac{1}{5!} t_2(t_1^2 + t_2^2)^2 + \cdots,
\]
\[
b_1(t, s) = s_1 - \frac{1}{2!} (s_1 t_1 + s_2 t_2) + \frac{1}{3!} s_1(t_1^2 + t_2^2) - \frac{1}{4!} (s_1 t_1 + s_2 t_2)(t_1^2 + t_2^2) + \cdots,
\]
\[
b_2(t, s) = s_2 - \frac{1}{2!} (s_1 t_2 - s_2 t_1) + \frac{1}{3!} s_2(t_1^2 + t_2^2) - \frac{1}{4!} (s_1 t_2 - s_2 t_1)(t_1^2 + t_2^2) + \cdots.
\]
For brevity, we write a_j, b_k for $a_j(t, s), b_k(t, s)$ ($j = 1, 2, 3, k = 1, 2$) respectively. We now fix an element $(g, \alpha) \in G$ and write

$$
g = \begin{pmatrix} g_1 & g_{12} \\ g_{21} & g_2 \end{pmatrix} \in SL(2, \mathbb{R}) \quad \text{and} \quad \alpha = (\alpha_1, \alpha_2) \in \mathbb{R}^{(1, 2)}.
$$

We put $(\tau(t, s), z(t, s)) = ((g, \alpha) \ast \exp (t_1 e_1 + t_2 e_2 + s_1 f_1 + s_2 f_2)) \circ (i, 0)$ with $\tau(t, s) = x(t, s) + i y(t, s)$ and $z(t, s) = u(t, s) + i v(t, s)$. Here $x(t, s), y(t, s), u(t, s)$ and $v(t, s)$ are real. By an easy calculation, we obtain

$$
x(t, s) = -(\tilde{\alpha} + \tilde{\beta}d)(\tilde{a}^2 + \tilde{b}^2)^{-1},
y(t, s) = (\tilde{a}^2 + \tilde{b}^2)^{-1},
u(t, s) = (\tilde{\alpha} \tilde{\alpha}_2 - \tilde{\beta} \tilde{\alpha}_1)(\tilde{a}^2 + \tilde{b}^2)^{-1},
v(t, s) = (\tilde{\alpha} \tilde{\alpha}_1 + \tilde{\beta} \tilde{\alpha}_2)(\tilde{a}^2 + \tilde{b}^2)^{-1},
$$

where $\tilde{a} = g_1 a_1 + g_{12} a_3, \tilde{b} = g_1 a_3 + g_{12} a_2, \tilde{c} = g_{21} a_1 + g_2 a_3, \tilde{\alpha} = g_1 a_1 + g_{12} a_1 + b_1, \tilde{\alpha}_2 = -a_1 a_3 + a_2 a_1 + b_2$.

By an easy calculation, at $t = s = 0$, we have

$$
\frac{\partial x}{\partial t_1} = 4 g_1 g_{12} (g_1^2 + g_{12}^2)^{-2},
\frac{\partial y}{\partial t_1} = -2 (g_1^2 - g_{12}^2) (g_1^2 + g_{12}^2)^{-2},
\frac{\partial u}{\partial t_1} = 4 g_1 g_{12} (g_1 a_1 + g_{12} a_2) (g_1^2 + g_{12}^2)^{-2},
\frac{\partial v}{\partial t_1} = -2 (g_1 a_1 + g_{12} a_2) (g_1^2 - g_{12}^2) (g_1^2 + g_{12}^2)^2,
\frac{\partial^2 x}{\partial t_1^2} = -16 g_1 g_{12} (g_1^2 - g_{12}^2) (g_1^2 + g_{12}^2)^{-3},
\frac{\partial^2 y}{\partial t_1^2} = 8 (g_1^2 - g_{12}^2)^2 (g_1^2 + g_{12}^2)^{-3} - 4 (g_1^2 + g_{12}^2)^{-1},
\frac{\partial^2 u}{\partial t_1^2} = -16 g_1 g_{12} (g_1 a_1 + g_{12} a_2) (g_1^2 - g_{12}^2) (g_1^2 + g_{12}^2)^{-3},
\frac{\partial^2 v}{\partial t_1^2} = 4 (g_1 a_1 + g_{12} a_2) (g_1^4 + g_{12}^4 - 6 g_1^2 g_{12}^2) (g_1^2 + g_{12}^2)^{-3}
$$

and

$$
\frac{\partial x}{\partial t_2} = -2 (g_1^2 - g_{12}^2) (g_1^2 + g_{12}^2)^{-2},
\frac{\partial y}{\partial t_2} = -4 g_1 g_{12} (g_1^2 + g_{12}^2)^{-2},
\frac{\partial u}{\partial t_2} = -2 (g_1 a_1 + g_{12} a_2) (g_1^2 - g_{12}^2) (g_1^2 + g_{12}^2)^{-2},
$$
\[
\frac{\partial v}{\partial t_2} = -4g_1g_{12}(g_1\alpha_1 + g_{12}\alpha_2)(g_1^2 + g_{12}^2)^{-2},
\]
\[
\frac{\partial^2 x}{\partial t_2^2} = 16g_1g_{12}(g_1^2 - g_{12}^2)(g_1^2 + g_{12}^2)^{-3},
\]
\[
\frac{\partial^2 y}{\partial t_2^2} = 32g_1^2g_{12}^2(g_1^2 + g_{12}^2)^{-3} - 4(g_1^2 + g_{12}^2)^{-1},
\]
\[
\frac{\partial^2 u}{\partial t_2^2} = 16g_1g_{12}(g_1\alpha_1 + g_{12}\alpha_2)(g_1^2 - g_{12}^2)(g_1^2 + g_{12}^2)^{-3},
\]
\[
\frac{\partial^2 v}{\partial t_2^2} = -4(g_1\alpha_1 + g_{12}\alpha_2)(g_4^1 + g_{12}^2 - 6g_1g_{12}^2)(g_1^2 + g_{12}^2)^{-3}.
\]

We note that \(\tilde{a}\tilde{d} - \tilde{b}\tilde{c} = 1\), \(a_1a_2 - a_3^2 = 1\) and \(g_1g_2 - g_{12}g_{21} = 1\).

Using the above facts and applying the chain rule, we can easily compute the differential operators \(D, \Psi, D_1\) and \(D_2\). It is known that the images of generators \(P, \xi, P_1\) and \(P_2\) under \(\lambda\) are generators of \(\mathcal{D}(\mathbb{H} \times \mathbb{C})\) (cf. [11]).

Summarizing, we have the following.

Theorem 2.3. The algebra \(\mathcal{D}(\mathbb{H} \times \mathbb{C})\) is generated by the following differential operators

\begin{align*}
(2.12) & \quad D = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + v^2 \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) + 2yv \left(\frac{\partial^2}{\partial x \partial u} + \frac{\partial^2}{\partial y \partial v} \right), \\
(2.13) & \quad \Psi = y \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right), \\
(2.14) & \quad D_1 = 2y^2 \frac{\partial^3}{\partial x \partial u \partial v} - y^2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial u^2} - \frac{\partial^2}{\partial v^2} \right) + \left(v \frac{\partial}{\partial v} + 1 \right) \Psi \\
\text{and} & \\
(2.15) & \quad D_2 = y^2 \frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial v^2} - \frac{\partial^2}{\partial u^2} \right) - 2y^2 \frac{\partial^3}{\partial y \partial u \partial v} - v \frac{\partial}{\partial u} \Psi,
\end{align*}

where \(\tau = x + iy\) and \(z = u + iv\) with real variables \(x, y, u, v\). Moreover, we have

\[
[D, \Psi] = D\Psi - \Psi D = 2y^2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial u^2} - \frac{\partial^2}{\partial v^2} \right) - 4y^2 \frac{\partial^3}{\partial x \partial u \partial v} - 2 \left(v \frac{\partial}{\partial v} \Psi + \Psi \right).
\]
In particular, the algebra $\mathbb{D}(\mathbb{H} \times \mathbb{C})$ is not commutative. Thus the homogeneous space $\mathbb{H} \times \mathbb{C}$ is not weakly symmetric in the sense of A. Selberg ([19]).

Now we provide a natural G-invariant Kähler metric on $\mathbb{H} \times \mathbb{C}$.

Proposition 2.4. The Riemannian metric ds^2 on $\mathbb{H} \times \mathbb{C}$ defined by

$$ds^2 = \frac{y + v^2}{y^3} (dx^2 + dy^2) + \frac{1}{y} (du^2 + dv^2) - \frac{2v}{y^2} (dx du + dy dv)$$

is invariant under the action (1.2) of G and is a Kähler metric on $\mathbb{H} \times \mathbb{C}$. The Laplace-Beltrami operator Δ of the Riemannian space $(\mathbb{H} \times \mathbb{C}, ds^2)$ is given by

$$\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + (y + v^2) \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) + 2yv \left(\frac{\partial^2}{\partial x \partial u} + \frac{\partial^2}{\partial y \partial v} \right).$$

That is, $\Delta = D + \Psi$.

Proof. For $Y \in SP_2$ of the form (2.4) and $(v_1, v_2) \in \mathbb{R}^{(1,2)}$, it is easy to see that $dY = \left(-y^{-1} dy \begin{array}{c} dy \\ dx \end{array} + x y^{-2} dy \end{array} \right)$ and $dV = (dv_1, dv_2)$. Then we can show that the following metric $d\tilde{s}^2$ on $SP_2 \times \mathbb{R}^{(1,2)}$ defined by

$$d\tilde{s}^2 = \frac{dx^2 + dy^2}{y^2} + \frac{1}{y} \left\{ (x^2 + y^2) dv_1^2 + 2x dv_1 dv_2 + dv_2^2 \right\}$$

is invariant under the action (2.1) of G. Indeed, since

$$Y^{-1} = \begin{pmatrix} y + x^2 y^{-1} & xy^{-1} \\ x y^{-1} & y^{-1} \end{pmatrix},$$

we can easily show that $d\tilde{s}^2 = \frac{1}{2} \sigma(Y^{-1} dY Y^{-1} dY) + dV Y^{-1} t(dV)$. For an element $(g, \alpha) \in G$ with $g \in SL(2, \mathbb{R})$ and $\alpha \in \mathbb{R}^{(1,2)}$, we put

$$(Y^*, V^*) = (g, \alpha) \cdot (Y, V) = (g Y^t g, (V + \alpha)^t g).$$

Since $Y^* = g Y^t g$ and $V^* = (V + \alpha)^t g$, we get $dY^* = g dY^t g$ and $V^* = (V + \alpha)^t g$. Therefore by a simple calculation, we can show that

$$\sigma \left(Y^{*-1} dY^* Y^{*-1} dY^* \right) + dV^* Y^{*-1} t(dV^*) = \sigma(Y^{-1} dY Y^{-1} dY) + dV Y^{-1} t(dV).$$

Hence the metric $d\tilde{s}^2$ is invariant under the action (2.1) of G.
Using this fact and Lemma 2.1, we can prove that the metric ds^2 in the above theorem is invariant under the action (1.2). Since the matrix form (g_{ij}) of the metric ds^2 is given by

$$(g_{ij}) = \begin{pmatrix} (y + v^2) y^{-3} & 0 & -v y^{-2} & 0 \\ 0 & (y + v^2) y^{-3} & 0 & -v y^{-2} \\ -v y^{-2} & 0 & y^{-1} & 0 \\ 0 & -v y^{-2} & 0 & y^{-1} \end{pmatrix}$$

and $\det (g_{ij}) = y^{-6}$, the inverse matrix (g^{ij}) of (g_{ij}) is easily obtained by

$$(g^{ij}) = \begin{pmatrix} y^2 & 0 & y v & 0 \\ 0 & y^2 & 0 & y v \\ y v & 0 & y + v^2 & 0 \\ 0 & y v & 0 & y + v^2 \end{pmatrix}.$$

Now it is easily shown that $D + \Psi$ is the Laplace-Beltrami operator of $(\mathbb{H} \times \mathbb{C}, ds^2)$. □

Remark 2.5. We can show that for any two positive real numbers α and β, the following metric

$$ds^2_{\alpha,\beta} = \alpha \frac{dx^2 + dy^2}{y^2} + \beta \frac{\nu^2(dx^2 + dy^2) + y^2(du^2 + dv^2) - 2 y \nu (dx \, du + dy \, dv)}{y^3}$$

is also a Riemannian metric on $\mathbb{H} \times \mathbb{C}$ which is invariant under the action (1.2) of G. In fact, we can see that the two-parameter family of $ds^2_{\alpha,\beta}$ ($\alpha > 0$, $\beta > 0$) provides a complete family of Riemannian metrics on $\mathbb{H} \times \mathbb{C}$ invariant under the action of (1.2) of G. It can be easily seen that the Laplace-Beltrami operator $\Delta_{\alpha,\beta}$ of $ds^2_{\alpha,\beta}$ is given by

$$\Delta_{\alpha,\beta} = \frac{1}{\alpha} y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \left(\frac{y}{\beta} + \frac{\nu^2}{\alpha} \right) \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) + \frac{2 y \nu}{\alpha} \left(\frac{\partial^2}{\partial x \partial u} + \frac{\partial^2}{\partial y \partial v} \right)$$

$$= \frac{1}{\alpha} D + \frac{1}{\beta} \Psi.$$

Remark 2.6. By a tedious computation, we see that the scalar curvature of $(\mathbb{H} \times \mathbb{C}, ds^2)$ is -3.

We want to propose the following problem to be studied in the future.

Problem 2.7. Find all the eigenfunctions of Δ.

We will give some examples of eigenfunctions of Δ.
(1) \(h(x, y) = y^2 e^{2\pi ia x} (s \in \mathbb{C}, \ a \neq 0) \) with eigenvalue \(s(s - 1) \),
where
\[
K_s(z) := \frac{1}{2} \int_0^\infty \exp \left\{ -\frac{z}{2} (t + t^{-1}) \right\} t^{s-1} dt, \quad Re\ z > 0.
\]

(2) \(y^s, y^s x, y^s u \ (s \in \mathbb{C}) \) with eigenvalue \(s(s - 1) \).

(3) \(y^sv, y^s uv, y^s xv \) with eigenvalue \(s(s + 1) \).

(4) \(x, y, u, v, xv, uv \) with eigenvalue 0.

(5) All Maass wave forms.

3. Maass-Jacobi forms

Let \(\Delta \) be the Laplace-Beltrami operator of the Riemannian metric \(ds^2 \) on \(\mathbb{H} \times \mathbb{C} \) defined in Proposition 2.4. Using this operator, we define the notion of Maass-Jacobi forms.

Definition 3.1. A smooth bounded function \(f : \mathbb{H} \times \mathbb{C} \rightarrow \mathbb{C} \) is called a Maass-Jacobi form if it satisfies the following conditions (MJ1)-(MJ3):

(MJ1) \(f(\bar{\gamma} \circ (\tau, z)) = f(\tau, z) \) for all \(\bar{\gamma} \in \Gamma \) and \((\tau, z) \in \mathbb{H} \times \mathbb{C} \).

(MJ2) \(f \) is an eigenfunction of the Laplace-Beltrami operator \(\Delta \).

(MJ3) \(f \) has a polynomial growth, that is, \(f \) fulfills a boundedness condition.

For a complex number \(\lambda \in \mathbb{C} \), we denote by \(MJ(\Gamma, \lambda) \) the vector space of all Maass-Jacobi forms \(f \) such that \(\Delta f = \lambda f \). We note that, since \(\Delta f = \lambda f \) is an elliptic partial differential equation, Maass-Jacobi forms are real analytic (see [8]).

Professor Berndt kindly informed me that he also considered such automorphic forms in ([1]) (also see [4], p.82).

Let \(f \in MJ(\Gamma, \lambda) \) be a Maass-Jacobi form with eigenvalue \(\lambda \). Then it is easy to see that the function \(\phi_f : G \rightarrow \mathbb{C} \) defined by
\[
\phi_f(g, \alpha) = f((g, \alpha) \circ (i, 0)), \quad (g, \alpha) \in G
\]
satisfies the following conditions (MJ1)-(MJ3):

(MJ1) \(\phi_f(\gamma xk) = \phi_f(x) \) for all \(\gamma \in \Gamma, \ x \in G \) and \(k \in K \).

(MJ2) \(\phi_f \) is an eigenfunction of the Laplace-Beltrami operator \(\Delta_0 \) of \((G, ds_0^2) \), where \(ds_0^2 \) is a \(G \)-invariant Riemannian metric on \(G \) induced by \((\mathbb{H} \times \mathbb{C}, ds^2) \).

(MJ3) \(\phi_f \) has a suitable polynomial growth (cf. [5]).
For any right K-invariant function $\phi : G \to \mathbb{C}$ on G, we define the function $f_\phi : \mathbb{H} \times \mathbb{C} \to \mathbb{C}$ by

\[
(3.2) \quad f_\phi(\tau, z) = \phi(g, \alpha), \quad (\tau, z) \in \mathbb{H} \times \mathbb{C},
\]

where (g, α) is an element of G such that $(g, \alpha) \circ (i, 0) = (\tau, z)$. Obviously it is well defined because (3.2) is independent of the choice of $(g, \alpha) \in G$ such that $(g, \alpha) \circ (i, 0) = (\tau, z)$. It is easy to see that if ϕ is a smooth bounded function on G satisfying the conditions (MJ1)\(^0\)-(MJ3)\(^0\), then the function f_ϕ defined by (3.2) is a Maass-Jacobi form.

Now we characterize Maass-Jacobi forms as smooth eigenfunctions on $SP_n \times \mathbb{R}^{(m,n)}$ satisfying a certain invariance property.

Proposition 3.2. Let $f : \mathbb{H} \times \mathbb{C} \to \mathbb{C}$ be a nonzero Maass-Jacobi form in $MJ(\Gamma, \lambda)$. Then the function $h_f : SP_2 \times \mathbb{R}^{(1,2)} \to \mathbb{C}$ defined by

\[
(3.3) \quad h_f(Y, V) = f((g, V^tg^{-1}) \circ (i, 0)) \quad \text{for some } g \in SL(2, \mathbb{R}) \text{ with } Y = g^t g
\]

satisfies the following conditions:

(MJ1)* $h_f(\gamma Y^t \gamma, (V + \delta)^t \gamma) = h_f(Y, V)$ for all $(\gamma, \delta) \in \Gamma$ with $\gamma \in SL(2, \mathbb{Z})$ and $\delta \in \mathbb{Z}^{(1,2)}$.

(MJ2)* h_f is an eigenfunction of the Laplace-Beltrami operator $\tilde{\Delta}$ on the homogeneous space $(SP_2 \times \mathbb{R}^{(1,2)}, d\tilde{s}^2)$, where $d\tilde{s}^2$ is the G-invariant Riemannian metric on $SP_2 \times \mathbb{R}^{(1,2)}$ induced from $d\tilde{s}^2$.

(MJ3)* h_f has a suitable polynomial growth.

Here if (Y, V) is a coordinate of $SP_2 \times \mathbb{R}^{(1,2)}$ given in Lemma 2.1, then the G-invariant Riemannian metric $d\tilde{s}^2$ and its Laplace-Beltrami operator $\tilde{\Delta}$ on $SP_2 \times \mathbb{R}^{(1,2)}$ are given by

\[
d\tilde{s}^2 = \frac{1}{y^2} (dx^2 + dy^2) + \frac{1}{y} \left\{ (x^2 + y^2) dv_1^2 + 2x dv_1 dv_2 + dv_2^2 \right\}
\]

and

\[
\tilde{\Delta} = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{1}{y} \left\{ \frac{\partial^2}{\partial v_1^2} - 2x \frac{\partial^2}{\partial v_1 \partial v_2} + (x^2 + y^2) \frac{\partial^2}{\partial v_2^2} \right\}.
\]

Conversely, if h is a smooth bounded function on $SP_2 \times \mathbb{R}^{(1,2)}$ satisfying the above conditions (MJ1)*-(MJ3)*, then the function $f_h : \mathbb{H} \times \mathbb{C} \to \mathbb{C}$ defined by

\[
(3.4) \quad f_h(\tau, z) = h(g^t g, \alpha^t g)
\]

for some $(g, \alpha) \in G$ with $(g, \alpha) \circ (i, 0) = (\tau, z)$ is a Maass-Jacobi form on $\mathbb{H} \times \mathbb{C}$.

Proof. First of all, we note that h_f is well defined because (3.3) is independent
of the choice of \(g \) with \(Y = g^t g \). If \((\gamma, \delta) \in \Gamma \) with \(\gamma \in \Gamma_1 \), \(\delta \in \mathbb{Z}^{(1,2)} \) and \((Y, V) \in \mathcal{SP}_2 \times \mathbb{R}^{(1,2)} \) with \(Y = g^t g \) for some \(g \in SL(2, \mathbb{R}) \), then the element \(g_\gamma := \gamma g \) satisfies \(\gamma Y^t \gamma = \gamma g^t (\gamma g) \).

Thus according to the definition of \(h_f \), for all \((\gamma, \delta) \in \Gamma \) and \((Y, V) \in \mathcal{SP}_2 \times \mathbb{R}^{(1,2)} \) with \(Y = g^t g \) for some \(g \in SL(2, \mathbb{R}) \), we have

\[
h_f(\gamma Y^t \gamma, (V + \delta)^t \gamma) = f((\gamma g, (V + \delta)^t g^{-1}) \circ (i, 0)) = f((\gamma g, (V + \delta)^t g^{-1}) \circ (i, 0)) = f((g, V^t g^{-1}) \circ (i, 0)) \quad \text{because } f \text{ is } \Gamma^-\text{-invariant) = h_f(Y, V) \).
\]

Therefore this proves the condition \((\text{MJ}1)^*\). \(d\tilde{s}^2 \) and \(\tilde{\Delta} \) are obtained from Lemma 2.1 and Proposition 2.3. Hence \(h_f \) is an eigenfunction of \(\tilde{\Delta} \). Clearly \(h_f \) satisfies the condition \((\text{MJ}3)^*\).

Conversely we note that \(f_h \) is well defined because \((3.4) \) is independent of the choice of \((g, \alpha) \in G \) with \((g, \alpha) \circ (i, 0) = (\tau, z) \). If \(\tilde{\gamma} = (\gamma, \delta) \in \Gamma \) and \((\tau, z) \in \mathbb{H} \times \mathbb{C} \) with \((g, \alpha) \circ (i, 0) = (\tau, z) \), then we have

\[
f_h(\tilde{\gamma} \circ (\tau, z)) = f_h(\tilde{\gamma} \circ ((g, \alpha) \circ (i, 0))) = f_h((\tilde{\gamma} \circ (g, \alpha)) \circ (i, 0)) = f_h((\gamma g, (V + \delta)^t g^{-1} + \alpha) \circ (i, 0)) = h((\gamma g)^t (\gamma g), (\delta^t g^{-1} + \alpha)^t (\gamma g)) = h((\gamma g)^t \gamma, (\delta + \alpha^t g)^t \gamma) = h(g^t g, \alpha^t g)
\]
\[
= f_h((g, \alpha) \circ (i, 0)) = f_h(\tau, z).
\]

Thus \(f_h \) satisfies the condition \((\text{MJ}1) \). It is easy to see that \(f_h \) satisfies the conditions \((\text{MJ}2) \) and \((\text{MJ}3) \).

\[\square\]

Definition 3.3. A smooth bounded function on \(G \) or \(\mathcal{SP}_2 \times \mathbb{R}^{(1,2)} \) is also called a **Maass-Jacobi form** if it satisfies the conditions \((\text{MJ}1)^0 - (\text{MJ}3)^0 \) or \((\text{MJ}1)^* - (\text{MJ}3)^* \).

Remark 3.4. We note that Maass wave forms are special ones of Maass-Jacobi forms. Thus the number of \(\lambda \)'s with \(MJ(\Gamma, \lambda) \neq 0 \) is infinite.

Theorem 3.5. For any complex number \(\lambda \in \mathbb{C} \), the vector space \(MJ(\Gamma, \lambda) \) is finite dimensional.

Proof. The proof follows from \[10\], Theorem 1, p. 8 and \[5\], p. 191. \[\square\]

4. **On the group** \(SL_{2,1}(\mathbb{R}) \)
For brevity, we set $H = \mathbb{R}^{(1,2)}$. Then we have the split exact sequence

$$0 \rightarrow H \rightarrow G \rightarrow SL(2, \mathbb{R}) \rightarrow 1.$$

We see that the unitary dual \hat{H} of H is isomorphic to \mathbb{R}^2. The unitary character $\chi(\lambda, \mu)$ of H corresponding to $(\lambda, \mu) \in \mathbb{R}^2$ is given by

$$\chi(\lambda, \mu)(x, y) = e^{2\pi i(\lambda x + \mu y)}, \quad (x, y) \in H.$$

G acts on H by conjugation and hence this action induces the action of G on \hat{H} as follows.

$$G \times \hat{H} \rightarrow \hat{H}, \quad (g, \chi) \mapsto \chi^g, \quad g \in G, \chi \in \hat{H},$$

where the character χ^g is defined by $\chi^g(a) = \chi(gag^{-1}), \quad a \in H.$

If $g = (g_0, \alpha) \in G$ with $g_0 \in SL(2, \mathbb{R})$ and $\alpha \in H$, it is easy to check that for each $(\lambda, \mu) \in \mathbb{R}^2$,

$$\chi^g_{(\lambda, \mu)} = \chi_{(\lambda, \mu)g_0}.$$

We see easily from (4.2) that the G-orbits in $\hat{H} \cong \mathbb{R}^2$ consist of two orbits Ω_0, Ω_1 given by

$$\Omega_0 = \{(0, 0)\}, \quad \Omega_1 = \mathbb{R}^2 - \{(0, 0)\}.$$

We observe that Ω_0 is the G-orbit of $(0, 0)$ and Ω_1 is the G-orbit of any element $(\lambda, \mu) \neq 0$.

Now we choose the element $\delta = \chi_{(1, 0)}$ of \hat{H}. That is, $\delta(x, y) = e^{2\pi i x}$ for all $(x, y) \in \mathbb{R}^2$. It is easy to check that the stabilizer of $\chi_{(0, 0)}$ is G and the stabilizer G_{δ} of δ is given by

$$G_{\delta} = \left\{ \left(\begin{array}{cc} 1 & 0 \\ c & 1 \end{array} \right), \alpha \mid c \in \mathbb{R}, \alpha \in \mathbb{R}^{(1,2)} \right\}.$$

We see that H is regularly embedded. This means that for every G-orbit Ω in \hat{H} and for every $\sigma \in \Omega$ with stabilizer G_σ of σ, the canonical bijection $G_\sigma \backslash G \rightarrow \Omega$ is a homeomorphism.

According to G. Mackey ([18]), we obtain

Theorem 4.1. The irreducible unitary representations of G are the following:

(a) The irreducible unitary representations π, where the restriction of π to H is trivial and the restriction of π to $SL(2, \mathbb{R})$ is an irreducible unitary representation of $SL(2, \mathbb{R})$. For the unitary dual of $SL(2, \mathbb{R})$, we refer to [7] or [15], p. 123.
(b) The representations $\pi_r = \text{Ind}_{G_\delta}^{G} \sigma_r$ ($r \in \mathbb{R}$) induced from the unitary character σ_r of G_δ defined by

$$\sigma_r \left(\left(\begin{array}{cc} 1 & 0 \\ c & 1 \end{array} \right), (\lambda, \mu) \right) = \delta(rc + \lambda) = e^{2\pi i (rc + \lambda)}, \quad c, \lambda, \mu \in \mathbb{R}.$$

Proof. The proof of the above theorem can be found in [22], p. 850.

We put

$$W_1 = \left(\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), (0,0) \right), \quad W_2 = \left(\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), (0,0) \right), \quad W_3 = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), (0,0) \right)$$

and

$$W_4 = \left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), (1,0) \right), \quad W_5 = \left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), (0,1) \right).$$

Clearly W_1, \cdots, W_5 form a basis of \mathfrak{g}.

Lemma 4.2. We have the following relations.

$$[W_1, W_2] = W_3, \quad [W_3, W_1] = 2W_1, \quad [W_3, W_2] = -2W_2,$$

$$[W_1, W_4] = 0, \quad [W_3, W_5] = -W_4, \quad [W_2, W_4] = W_5, \quad [W_2, W_5] = 0,$$

$$[W_3, W_4] = W_4, \quad [W_3, W_5] = -W_5, \quad [W_4, W_5] = 0.$$

Proof. The proof follows from an easy computation. \hfill \Box

Let $\mathfrak{g}_\mathbb{C} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ be the complexification of \mathfrak{g}. We put

$$\mathfrak{k}_\mathbb{C} = \mathbb{C}(W_1 - W_2), \quad \mathfrak{p}_\pm = \mathbb{C}(W_3 \pm i(W_1 + W_2)).$$

Then we have

$$\mathfrak{g}_\mathbb{C} = \mathfrak{k}_\mathbb{C} + \mathfrak{p}_+ + \mathfrak{p}_-, \quad [\mathfrak{k}_\mathbb{C}, \mathfrak{p}_\pm] \subset \mathfrak{p}_\pm, \quad \mathfrak{p}_- = \overline{\mathfrak{p}_+}.$$

We note that $\mathfrak{k}_\mathbb{C}$ is the complexification of the Lie algebra \mathfrak{k} of K.

We set $\mathfrak{a} = \mathbb{R} W_3$. By Lemma 4.2, the roots of \mathfrak{g} relative to \mathfrak{a} are given by $\pm e, \pm 2e$, where e is the linear functional $e : \mathfrak{a} \rightarrow \mathbb{C}$ defined by $e(W_3) = 1$. The set $\Sigma^+ = \{e, 2e\}$ is the set of positive roots of \mathfrak{g} relative to \mathfrak{a}. We recall that for a root α, the root space \mathfrak{g}_α is defined by

$$\mathfrak{g}_\alpha = \{X \in \mathfrak{g} \mid [H, X] = \alpha(H)X \text{ for all } H \in \mathfrak{a}\}.$$

Then we see easily that

$$\mathfrak{g}_e = \mathbb{R} W_3, \quad \mathfrak{g}_{-e} = \mathbb{R} W_5, \quad \mathfrak{g}_{2e} = \mathbb{R} W_1, \quad \mathfrak{g}_{-2e} = \mathbb{R} W_2.$$
and
\[
\mathfrak{g} = \mathfrak{g}_{-2e} \oplus \mathfrak{g}_{-e} \oplus \mathfrak{a} \oplus \mathfrak{g}_e \oplus \mathfrak{g}_{2e}.
\]

Proposition 4.3. The Killing form B of \mathfrak{g} is given by
\[
B((X_1, Z_1), (X_2, Z_2)) = 5 \sigma(X_1 X_2),
\]
where $(X_1, Z_1), (X_2, Z_2) \in \mathfrak{g}$ with $X_1, X_2 \in \mathfrak{sl}(2, \mathbb{R})$ and $Z_1, Z_2 \in \mathbb{R}^{(1,2)}$. Hence the Killing form is highly nondegenerate. The adjoint representation Ad of G is given by
\[
\text{Ad}((g, \alpha))(X, Z) = (gXg^{-1}, (Z - \alpha^t X)^t g),
\]
where $(g, \alpha) \in G$ with $g \in \text{SL}(2, \mathbb{R}), \alpha \in \mathbb{R}^{(1,2)}$ and $(X, Z) \in \mathfrak{g}$ with $X \in \mathfrak{sl}(2, \mathbb{R}), Z \in \mathbb{R}^{(1,2)}$.

Proof. The proof follows immediately from a direct computation. \[\square\]

An Iwasawa decomposition of the group G is given by
\[
G = NAK,
\]
where
\[
N = \left\{ \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right), a \right\} \in G \mid x \in \mathbb{R}, a \in \mathbb{R}^{(1,2)} \right\}
\]
and
\[
A = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right), 0 \right\} \in G \mid a > 0 \right\}.
\]

An Iwasawa decomposition of the Lie algebra \mathfrak{g} of G is given by
\[
\mathfrak{g} = \mathfrak{n} + \mathfrak{a} + \mathfrak{k},
\]
where
\[
\mathfrak{n} = \left\{ \left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array} \right), Z \right\} \in \mathfrak{g} \mid x \in \mathbb{R}, Z \in \mathbb{R}^{(1,2)} \right\}
\]
and
\[
\mathfrak{a} = \left\{ \left(\begin{array}{cc} x & 0 \\ 0 & -x \end{array} \right), 0 \right\} \in \mathfrak{g} \mid x \in \mathbb{R} \right\}.
\]
In fact, \mathfrak{a} is the Lie algebra of A and \mathfrak{n} is the Lie algebra of N.

Now we compute the Lie derivatives for functions on G explicitly. We define the differential operators L_k, R_k $(1 \leq k \leq 5)$ on G by
\[
L_k f(\tilde{g}) = \frac{d}{dt} \bigg|_{t=0} f(\tilde{g} \ast \exp tW_k)
\]
and
\[
R_k f(\tilde{g}) = \left. \frac{d}{dt} \right|_{t=0} f(\exp tW_k \ast \tilde{g}),
\]
where \(f \in C^\infty(G) \) and \(\tilde{g} \in G \).

By an easy calculation, we get
\[
\begin{align*}
\exp tW_1 &= \left(\begin{array}{cc}
1 & t \\
0 & 1 \\
\end{array} \right), \\
\exp tW_2 &= \left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array} \right), \\
\exp tW_3 &= \left(\begin{array}{cc}
\exp t & 0 \\
0 & \exp -t \\
\end{array} \right), \\
\exp tW_4 &= \left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\end{array} \right), \\
\exp tW_5 &= \left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\end{array} \right).
\end{align*}
\]

Now we use the following coordinates \((g, \alpha)\) in \(G\) given by
\[
(4.6) \quad g = \begin{pmatrix}
1 & x \\
0 & 1 \\
\end{pmatrix} \begin{pmatrix}
y^{1/2} & 0 \\
0 & y^{-1/2} \\
\end{pmatrix} \begin{pmatrix}
\cos \theta & 0 \\
0 & \sin \theta \\
\end{pmatrix}
\]
and
\[
(4.7) \quad \alpha = (\alpha_1, \alpha_2),
\]
where \(x, \alpha_1, \alpha_2 \in \mathbb{R}, \ y > 0 \) and \(0 \leq \theta < 2\pi \). By an easy computation, we have
\[
\begin{align*}
L_1 &= y \cos 2\theta \frac{\partial}{\partial x} + y \sin 2\theta \frac{\partial}{\partial y} + \sin^2 \theta \frac{\partial}{\partial \theta} - \alpha_2 \frac{\partial}{\partial \alpha_1}, \\
L_2 &= y \cos 2\theta \frac{\partial}{\partial x} + y \sin 2\theta \frac{\partial}{\partial y} - \cos^2 \theta \frac{\partial}{\partial \theta} - \alpha_1 \frac{\partial}{\partial \alpha_2}, \\
L_3 &= -2y \sin 2\theta \frac{\partial}{\partial x} + 2y \cos 2\theta \frac{\partial}{\partial y} + \sin 2\theta \frac{\partial}{\partial \theta} - \alpha_1 \frac{\partial}{\partial \alpha_1} + \alpha_2 \frac{\partial}{\partial \alpha_2}, \\
L_4 &= \frac{\partial}{\partial \alpha_1}, \\
L_5 &= \frac{\partial}{\partial \alpha_2}, \\
R_1 &= \frac{\partial}{\partial x}, \\
R_2 &= (y^2 - x^2) \frac{\partial}{\partial x} - 2xy \frac{\partial}{\partial y} - y \frac{\partial}{\partial \theta}, \\
R_3 &= 2x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}, \\
R_4 &= y^{-1/2} \cos \theta \frac{\partial}{\partial \alpha_1} + y^{-1/2} \sin \theta \frac{\partial}{\partial \alpha_2}, \\
R_5 &= -y^{-1/2} (x \cos \theta + y \sin \theta) \frac{\partial}{\partial \alpha_1} + y^{-1/2} (y \cos \theta - x \sin \theta) \frac{\partial}{\partial \alpha_2}.
\end{align*}
\]
In fact, the calculation for L_3 and R_5 can be found in [22], p. 837-839.

We define the differential operators \mathbb{L}_j ($1 \leq j \leq 5$) on $\mathbb{H} \times \mathbb{C}$ by

$$\mathbb{L}_j f(\tau, z) = \frac{d}{dt} \bigg|_{t=0} f(\exp tW_j \circ (\tau, z)), \quad 1 \leq j \leq 5,$$

where $f \in C^\infty(\mathbb{H} \times \mathbb{C})$. Using the coordinates $\tau = x + iy$ and $z = u + iv$ with x, y, u, v real and $y > 0$, we can easily compute the explicit formulas for \mathbb{L}_j’s. They are given by

$L_1 = (x^2 - y^2) \frac{\partial}{\partial x} + 2xy \frac{\partial}{\partial y} + (xu - yv) \frac{\partial}{\partial u} + (yu + xv) \frac{\partial}{\partial v},$

$L_2 = -\frac{\partial}{\partial x},$

$L_3 = -2x \frac{\partial}{\partial x} - 2y \frac{\partial}{\partial y} - u \frac{\partial}{\partial u} - v \frac{\partial}{\partial v},$

$L_4 = x \frac{\partial}{\partial u} + y \frac{\partial}{\partial v},$

$L_5 = \frac{\partial}{\partial u}.$

5. The decomposition of $L^2(\Gamma \backslash G)$

Let R be the right regular representation of G on the Hilbert space $L^2(\Gamma \backslash G)$. We set $G_1 = SL(2, \mathbb{R})$. Then the decomposition of R is given by

$$(5.1) \quad L^2(\Gamma \backslash G) = L^2_{\text{disc}}(\Gamma_1 \backslash G_1) \bigoplus L^2_{\text{cont}}(\Gamma_1 \backslash G_1) \bigoplus \int_{-\infty}^{\infty} \mathcal{H}(\tau) d\tau,$$

where $L^2_{\text{disc}}(\Gamma_1 \backslash G_1)$ (resp. $L^2_{\text{cont}}(\Gamma_1 \backslash G_1)$) is the discrete (resp. continuous) part of $L^2(\Gamma_1 \backslash G_1)$ (cf. [14], [15]) and $\mathcal{H}(\tau)$ is the representation space of $\pi(\tau)$ (cf. Theorem 4.1. (b)).

We recall the result of Rolf Berndt (cf. [2], [3], [4]). Let $H_{\mathbb{R}}^{(1,1)}$ denote the Heisenberg group which is \mathbb{R}^3 as a set and is equipped with the following multiplication

$$(\lambda, \mu, \kappa)(\lambda', \mu', \kappa') = (\lambda + \lambda', \mu + \mu', \kappa + \kappa' + \lambda\mu' - \mu\lambda').$$

We let $G^J = SL(2, \mathbb{R}) \ltimes H_{\mathbb{R}}^{(1,1)}$ be the semidirect product of $SL(2, \mathbb{R})$ and $H_{\mathbb{R}}^{(1,1)}$, called the Jacobi group whose multiplication law is given by

$$(M, (\lambda, \mu, \kappa)) \cdot (M', (\lambda', \mu', \kappa')) = (MM', (\lambda + \lambda', \mu + \mu', \kappa + \kappa' + \lambda\mu' - \mu\lambda')).$$
Jae-Hyun Yang

with $M, M' \in SL(2, \mathbb{R}), (\lambda, \mu, \kappa), (\lambda', \mu', \kappa') \in H^{(1,1)}_{\mathbb{R}}$ and $(\tilde{\lambda}, \tilde{\mu}) = (\lambda, \mu) M'$. Obviously the center $Z(G^J)$ of G^J is given by \{$(0, 0, \kappa) \mid \kappa \in \mathbb{R}$\}. We denote

$$H^{(1,1)}_{\mathbb{Z}} = \{ (\lambda, \mu, \kappa) \in H^{(1,1)}_{\mathbb{R}} \mid \lambda, \mu, \kappa \text{ integral} \}.$$

We set

$$\Gamma^J = SL(2, \mathbb{Z}) \ltimes H^{(1,1)}_{\mathbb{Z}}, \quad K^J = K \times Z(G^J).$$

R. Berndt proved that the decomposition of the right regular representation R^J of G^J in $L^2(\Gamma^J \backslash G^J)$ is given by

$$L^2(\Gamma^J \backslash G^J) = \bigoplus_{m,n \in \mathbb{Z}} H_{m,n} \bigoplus \left(\bigoplus_{\nu = \pm \frac{1}{2}} \int_{\text{Re} s = 0} \text{Im} s > 0 \mathcal{H}_{m,s,\nu} ds \right),$$

where the $H_{m,n}$ is the irreducible unitary representation isomorphic to the discrete series $\pi_{n,k}$ or the principal series $\pi_{m,s,\nu}$, and the $\mathcal{H}_{m,s,\nu}$ is the representation space of $\pi_{m,s,\nu}$ (cf. [4], p. 47-48). For more detail on the decomposition of $L^2(\Gamma^J \backslash G^J)$, we refer to [4], p. 75-103.

Since $\mathbb{H} \times \mathbb{C} = K^J \backslash G^J = K \times G$, the space of the Hilbert space $L^2(\Gamma \backslash (\mathbb{H} \times \mathbb{C}))$ consists of K^J-fixed elements in $L^2(\Gamma^J \backslash G^J)$ or K-fixed elements in $L^2(\Gamma \backslash G)$. Hence we obtain the spectral decomposition of $L^2(\Gamma \backslash (\mathbb{H} \times \mathbb{C}))$ for the Laplacian Δ or $\Delta_{\alpha,\beta}$ (cf. Proposition 2.4 or Remark 2.5).

6. Remarks on Fourier expansions of Maass-Jacobi forms

We let $f : \mathbb{H} \times \mathbb{C} \rightarrow \mathbb{C}$ be a Maass-Jacobi form with $\Delta f = \lambda f$. Then f satisfies the following invariance relations

$$f(\tau + n, z) = f(\tau, z) \quad \text{for all } n \in \mathbb{Z}$$

and

$$f(\tau, z + n_1 \tau + n_2) = f(\tau, z) \quad \text{for all } n_1, n_2 \in \mathbb{Z}.$$

Therefore f is a smooth function on $\mathbb{H} \times \mathbb{C}$ which is periodic in x and u with period 1. So f has the following Fourier series

$$f(\tau, z) = \sum_{n \in \mathbb{Z}} \sum_{r \in \mathbb{Z}} c_{n,r}(y, v) e^{2\pi i (nx + ru)}.$$

For two fixed integers n and r, we have to calculate the function $c_{n,r}(y, v)$. For brevity, we put $F(y, v) = c_{n,r}(y, v)$. Then F satisfies the following differential equation

$$\left[y^2 \frac{\partial^2}{\partial y^2} + (y + v^2) \frac{\partial^2}{\partial v^2} + 2yv \frac{\partial}{\partial v} - \{ (ay + bv)^2 + b^2 y + \lambda \} \right] F = 0.$$
Here $a = 2\pi n$ and $b = 2\pi r$ are constant. We note that the function $u(y) = y^s K_{s-\frac{1}{2}}(2\pi |n|y)$ satisfies the differential equation (6.4) with $\lambda = s(s - 1)$. Here $K_s(z)$ is the K-Bessel function defined by (2.16) (see Lebedev [16] or Watson [21]). The problem is that if there exist solutions of the differential equation (6.4), we have to find their solutions explicitly.

Acknowledgement. This work started while I was staying at Department of Mathematics, Harvard University during the fall semester in 1996. I would like to give my hearty thanks to Professor Don Zagier for his kind advice on this work and for pointing out some errors in the first version. I also want to my deep thanks to Professor Rolf Berndt for his interest on this work and for letting me know his works.

References

[1] R. Berndt, Some Differential Operators in the Theory of Jacobi Forms, IHES/M/84/10.
[2] R. Berndt, The Continuous Part of $L^2(\Gamma_0 \backslash G^J)$ for the Jacobi Group G^J, Abh. Math. Sem. Univ. Hamburg, 60(1990), 225-248.
[3] R. Berndt and S. Böcherer, Jacobi Forms and Discrete Series Representations of the Jacobi Group, Math. Z., 204(1990), 13-44.
[4] R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Birkhäuser, 163(1998).
[5] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Symposia in Pure Math., XXXIII(Part 1)(1979), 189-202.
[6] D. Bump, Automorphic Forms and Representations, Cambridge University Press, (1997).
[7] R. W. Donley, Irreducible Representations of $SL(2, \mathbb{R})$, Proceedings of Symposia in Pure Mathematics on Representation Theory and Automorphic Forms, American Math. Soc., 61(1997), 51-59.
[8] P. R. Garabedian, Partial Differential Equations, Wiley, New York, (1964).
[9] S. Gelbart, Automorphic forms on adele groups, Annals of Math. Studies, Princeton Univ. Press, 83(1975).
[10] Harish-Chandra, Automorphic forms on semi-simple Lie groups, Notes by J.G.M. Mars, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg-New York, 62(1968).
[11] S. Helgason, Differential operators on homogeneous spaces, Acta Math., 102(1959), 239-299.
[12] S. Helgason, Groups and geometric analysis, Academic Press, (1984).
[13] H. Iwaniec, Introduction to the spectral theory of automorphic forms, Biblioteca de la Revista Matemática Iberoamericana, Madrid, (1995).
[14] T. Kubota, Elementary Theory of Eisenstein Series, John Wiley and Sons, New York, (1973).
[15] S. Lang, $SL_2(\mathbb{R})$, Springer-Verlag, (1985).
[16] N. N. Lebedev, Special Functions and their Applications, Dover, New York, (1972).
[17] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichung, Math. Ann., 121(1949), 141-183.
[18] G. Mackey, Unitary Representations of Group Extensions I, Acta Math., 99(1958), 265-311.
[19] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20(1956), 47-87.
[20] A. Terras, Harmonic analysis on symmetric spaces and applications I, Springer-Verlag, (1985).
[21] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London, (1962).
[22] J.-H. Yang, On the group $SL(2,\mathbb{R}) \ltimes \mathbb{R}^{m,2}$, J. Korean Math. Soc., 40(5), 831-867.