Converting a Bilingual Dictionary into a Bilingual Knowledge Bank based on the Synchronous SSTC

Tang Enya Kong, Mosleh H. Al-Adhaileh

Computer Aided Translation Unit
School of Computer Sciences
Universiti Sains Malaysia
11800 PENANG, MALAYSIA
{enyakong, mosleh}@cs.usm.my

Abstract
In this paper, we would like to present an approach to construct a huge Bilingual Knowledge Bank (BKB) from an English Malay bilingual dictionary based on the idea of synchronous Structured String-Tree Correspondence (SSTC). The SSTC is a general structure that can associate an arbitrary tree structure to string in a language as desired by the annotator to be the interpretation structure of the string, and more importantly is the facility to specify the correspondence between the string and the associated tree which can be non-projective. With this structure, we are able to match linguistic units at different inter levels of the structure (i.e. define the correspondence between substrings in the sentence, nodes in the tree, subtrees in the tree and sub-correspondences in the SSTC). This flexibility makes synchronous SSTC very well suited for the construction of a Bilingual Knowledge Bank we need for the English-Malay MT application.

Keywords
Structured String-Tree Correspondence (SSTC), Synchronous SSTC, Bilingual Knowledge Bank (BKB), EBMT.

Introduction
Recently, much effort was devoted to the compilation of the bilingual corpora for the purpose of machine translation. There is a strong argument that a bilingual corpus, when appropriately structured, can largely replace conventional dictionaries and grammar rules in machine translation. With this objective in mind, we propose, in this paper, an approach to construct a Bilingual Knowledge Bank (BKB) from a bilingual corpora consisting of translation pairs extracted from a given bilingual dictionary. In our approach, we introduce a flexible annotation schema called synchronous Structured String-Tree Correspondence (SSTC), which will be used as the basic structure to annotate translation pairs in the bilingual knowledge bank. The SSTC is a general structure that can associate an arbitrary tree structure to string in a language as desired by the annotator to be the interpretation structure of the string, and more importantly is the facility to specify the correspondence between the string and the associated tree which can be non-projective (Boitet & Zaharin, 1988). The flexibility in the mapping from source to target languages, using synchronous SSTC, makes possible to state direct correspondences without a mediating interlingual representation. By doing this, we are able to match linguistic units at different inter levels of the structure (i.e. define the correspondence between substrings in the sentence, nodes in the tree, subtrees in the tree and sub-correspondences in the SSTC). This flexibility makes synchronous SSTC very well suited for the construction of a Bilingual Knowledge Bank we need for the English-Malay MT application.

In this paper, we will propose an approach to construct a huge BKB by incorporating some of the existing tools in the annotation process. First, word alignment tools that have been proven their efficiency on other pairs of languages such as Melamed (1997; 1999; 2000) will be adapted to perform English-Malay word alignment. Each English sentence in the aligned translation pairs will then be annotated with part of speech (POS) and phrase structure tree produced by the Apple Pie Parser (APP) for English. The annotated English sentences will then be compiled into an SSTC structure. Next, the Malay SSTC structure of each Malay sentence will be generated based on the corresponding English SSTC structure and the alignment mapping. Finally, the resultant pair of English and Malay SSTCs will be edited semi-automatically to obtain a synchronous SSTC, which is the basic element of BKB.

Bitext Mapping and Word Alignment
In our proposed approach, English-Malay translation pairs, which are extracted from a bilingual dictionary, are the main source of data. The first step in establishing useful information from these translation pairs is to find corresponding words and terms in them (i.e. bitext mapping and word alignment). To achieve this, bitext alignment tools that have been proven their efficiency on other pairs of languages will be adapted to perform English-Malay language pair.

Here, SIMR (Smooth Injective Map Recognizer), a generic pattern recognition algorithm is used to identify word alignment between a translation pair. SIMR exploits the correlation between the lengths of mutual translations. Like the char-align (Church, 1993), SIMR infers bitext maps from likely points of correspondence between the two texts, points that are plotted in a two-dimensional space of possibilities. Unlike other methods, SIMR greedily searches for only a small chain of correspondence points at a time. For more details on SIMR algorithm, see (Melamed, 1997; 1999). Melamed (2000) presented some models of translation equivalence among words, which can automatically produce dictionary-sized translation lexicons with over 99% accuracy. These models can be used to perform word alignment on our translation pairs. Figure 1 gives an example to illustrate the output from the word alignment process.
The Construction of BKB based on Synchronous SSTC

In Example-Based Machine Translation system (Sato, 1991), the use of Bilingual Knowledge Bank (BKB) containing the bilingual parallel texts encoded with correspondences between the source and the target sentences is quite popular in implementing such EBMT systems. Sentences in the BKB are normally annotated with their constituency or dependency structures (Sadler & Vendelmans, 1990); which in turn allow the correspondences to be established at the structural level. Here, to facilitate such structural annotation, we use the Structured String-Tree Correspondence (SSTC) to annotate the examples in our BKB. Furthermore, the SSTC structure can easily be extended to keep multiple levels of linguistic information, if they are considered important to enhance the performance of the machine translation system. For instance, in our case here, each node representing a word in the annotated tree structure is tagged with part of speech (POS).

In this section, we shall first introduce the concept of SSTC. It followed by the description of a bitext synchronous parsing technique used to generate both the English and Malay SSTCs for a given aligned translation pair. Finally, we show how the resultant pair of English and Malay SSTCs can be edited semi-automatically to obtain a synchronous SSTC which is the basic element of BKB.

Structured String-Tree Correspondence (SSTC)

The SSTC is a general structure that can associate an arbitrary tree structure to string in a language as desired by the annotator to be the interpretation structure of the string, and more importantly is the facility to specify the correspondence between the string and the associated tree which can be non-projective (Boitet & Zaharin, 1988). These features are very much desired in the design of an annotation scheme, in particular for the treatment of linguistic phenomena, which are non-standard, e.g. crossed dependencies (Tang & Zaharin, 1995).

Figure 1: Example outputs of the Alignment processes.

Figure 2: An SSTC recording the sentence “John picks the ball up” and its dependency tree together with the correspondences between substrings of the sentence and subtrees of the tree.
In the SSTC, the correspondence between the sentence on one hand, and its representation tree on the other hand, is defined in terms of finer sub-correspondences between substrings of the sentence and subtrees of the tree. Such correspondence is made of two interrelated correspondences, one between nodes and substrings, and the other between subtrees and substrings, (the substrings being possibly discontinuous in both cases). It can be treated as an extended chart structure (Kay, 1973; 1980), which is capable of handling non-projective correspondences between the string and its representation tree.

The notation used in SSTC to denote a correspondence consists of a pair of intervals X/Y attached to each node in the tree, where X(SNODE) denotes the interval containing the substring that corresponds to the node, and Y(STREE) denotes the interval containing the substring that corresponds to the subtree having the node as root (Boitet & Zaharin, 1988).

Figure 2 illustrates the sentence “John picks the ball up” with its corresponding SSTC. It contains a non-projective correspondence. An interval is assigned to each word in the sentence, i.e. (0-1) for “John”, (1-2) for “picks”; (2-3) for “the”, (3-4) for “ball” and (4-5) for “up”. A substring in the sentence that corresponds to a node in the representation tree is denoted by assigning the interval of the substring to SNODE of the node, e.g. the node “picks up” with SNODE intervals (1-2+4-5) corresponds to the words “picks” and “up” in the string with the similar intervals, the node “ball” with SNODE interval (3-4) corresponds to the word “ball” in the string with the similar interval. The correspondence between subtrees and substrings are denoted by the interval assigned to the STREE of each node, e.g. the subtree rooted at node “picks up” with STREE interval (0-5) corresponds to the whole sentence “John picks the ball up”, the subtree rooted at node “ball” with STREE interval (2-4) corresponds to the phrase “the ball” in the string.

Synchronous Parsing Technique

Here we describe how to construct the SSTC for the Malay sentence by mean of a synchronous parsing technique. The basic idea is to automatically generate the SSTC for the English sentence through the use of existing English parser. As no parser is currently available for Malay, we propose a synchronous parsing technique to parse the Malay sentence based on the English sentence parse tree together with the alignment result obtained from the alignment algorithms as described earlier. The merit of this proposed technique is to use the output of the parser in one language (e.g. English), which can achieve a good result to parse another language (e.g. Malay).

The following steps describe the synchronous parsing process:

1. The basic idea of example-based parsing is very simple.
2. Idea asas bagi penghuraian berasaskan-cari contoh adalah mudah.

(The alignment between a pair of English and Malay sentences obtained from the alignment step)

- **English sentence parsing**: After the text is being aligned at different levels (i.e. phrase, word), each English sentence is passed to a parser. Any available English parser may be used to parse the English sentence. In our case, we choose the Apple Pie Parser (APP) (Sekine, 1996) according to the availability. The parsing result of APP is a partial phrase structure tree with simple noun phrases being treated as a single node in the parse tree. The parse tree of the example English sentence is as given below.

- **English sentence SSTC construction**: In order to obtain the English sentence SSTC structure, we need to compute the string-tree correspondences (Tang, 1994) between the sentence and the parse tree as represented by the SSTC structure illustrated in Figure 3 below.

- **Lexical transfer**: In this process, a duplicate copy of the English SSTC created above is generated to be the basic structure for Malay SSTC. First, the English sentence is replaced by the Malay sentence. It followed by the replacement of all English word in the SSTC structure by its corresponding Malay word obtained from the alignment step. In the case of a node containing more than one word, the words will be rearranged according to their order in the Malay sentence. Note that the node represented by an English word which has no Malay equivalent will be deleted. Similarly, English word in the node representing a phrase which has no Malay equivalent will also be deleted. Figure 4 illustrates the SSTC structure for the Malay sentence after lexical transfer.
Synchronization of SSTC

In this process, the resultant pair of English and Malay SSTCs will be edited semi-automatically to obtain a synchronous SSTC which is the basic element of BKB. Based on the notations used in the SSTC, the translation units between the English and the Malay SSTCs can be constructed in terms of STREE pairs (for phrases) and SNODE pairs (for words) (Tang, 1996).

For instance, as illustrated by the synchronous SSTC given in Figure 5, the fact that "very simple" is translated to "mudah" is expressed by (9-11,8-9) under the index SNODE of the translation units. Whereas, the fact that "is very simple" is translated to "adalah mudah" is expressed by (8-11,7-9) under the index STREE of the translation units. Note that this approach is quite similar to the synchronous Tree-Adjoining Grammar presented in (Shieber & Schabes, 1990). The main difference between our approach and the synchronous TAG is the flexibility provided by the SSTC in the treatment of some linguistic phenomena, which are non-standard (Tang & Zaharin, 1995). This flexibility provided by the SSTC is very much desired in establishing translation units between source and target substrings, which is possibly discontinuous in both cases. In case the representation of synchronous SSTCs generated need further editing, a synchronous SSTC editor as illustrated in Figure 6 can be used to perform the necessary amendment. Figure 7 gives an overall picture of the processes involved in the construction of a BKB from a given bilingual dictionary.

Figure 4: An SSTC construction for the Malay sentence “idea asas bagi penghuraian berasaskan-contoh adalah mudah” after lexical transfer.

Figure 5: Example synchronous SSTC for the English sentence “the basic idea of example-based parsing is very simple” and the Malay sentence “idea asas bagi penghuraian berasaskan-contoh adalah mudah” together with their translation units.
The basic idea of example-based parsing is very simple.

Example-based parsing

Idea asas bagi penghuraian berasaskan-contoh adalah mudah.

The synchronous SSTC editor.

Figure 7: The construction of the BKB from a bilingual dictionary based on the synchronous SSTC.
Conclusion

In this paper, we described an approach to construct a Bilingual Knowledge bank (BKB) from a given bilingual dictionary. We introduced a flexible annotation schema called synchronous String-Tree Correspondence (SSTC), which has been used to annotate translation examples in the BKB. The flexibility in the mapping from English to Malay sentences, using synchronous SSTC, makes possible to state direct correspondences without a mediating interlingual representation. By doing this, we are able to match linguistic units at different inter levels of the structure (i.e. define the correspondence between substrings in the sentence, nodes in the tree, subtrees in the tree and sub-correspondences in the SSTC). We also have proposed a synchronous parsing technique to parse the Malay sentence based on the English sentence parse tree together with the alignment result obtained from the alignment algorithms. A graphic editor for the synchronous SSTC (complete with syntax verification) has been implemented. So far the BKB constructed from the bilingual dictionary (i.e. Kamus Inggeris Melayu Dewan (KIMD)) contains 30,000 translation pairs. Finally the constructed BKB (see Figure 7) can be used as an example-base for the EBMT (Al-Adhaileh & Tang, 1999). From the BKB, we can also derive an example-base parser for Malay which is very much needed for Malay language processing (Al-Adhaileh & Tang, 1998).

References

Al-Adhaileh, M.H. and Tang, E.K. (1998). A Flexible Example-Based Parser Based on the SSTC. In Proceedings of COLING-ACL’98, Vol. I, Montreal, Canada.

Al-Adhaileh, M.H. and Tang, E.K. (1999). Example-Based Machine Translation Based on the Synchronous SSTC Annotation Schema. In Proceedings of MTS-VII (Machine Translation SUMMIT VII). Singapore.

Boitet, C. and Zaharin, Y. (1988). Representation trees and string-tree correspondences. In Proceedings of COLING-88, Budapest. Hungary.

Church, K. (1993). Char_align: a program for aligning parallel texts at the character level. In Proceedings of ACL93, Ohio.

Kay, M. (1973). The MIND system. In R. Rustin (Eds), Natural Language Processing. New York: Algorithmics Press.

Kay, M. (1980). Algorithm schemata and data structures in syntactic processing. CSL-80-12, Xerox Corporation. Reprinted in RNLP.

Melamed, I.D. (1997). A portable algorithm for mapping bitext correspondence. In Proceedings of ACL35/EACL8.

Melamed I.D. (1999), Bitext Maps and Alignment via Pattern Recognition, Computational Linguistics 25(1), 107-130, March.

Melamed, I.D. (2000). Models of Translational Equivalence among Words, Computational Linguistics 26(2), 221-249, June.

Sadler, V. and Vendelmans, R. (1990). Pilot implementation of a bilingual knowledge bank. In Proceedings of COLING-90, 3, Helsinki, Finland.

Sato, S. (1991). Example-Based Machine Translation. Ph.D. thesis, Kyoto University, Japan.

Sekine, S. (1996). Apple Pie Parser. http://cs.nyu.edu/cs/projects/proteus/app/.

Shieber, S.M. and Schabes, Y. (1990). Synchronous Tree-Adjoining Grammars. In Proceedings of COLING-90, 3, Helsinki, Finland.

Tang E.K. (1994). Natural Language Analysis In Machine Translation (MT) Based On The String-Tree Correspondence Grammar (STCG). Dissertation submitted in fulfillment of the Ph.D., Universiti Sains Malaysia, Penang, Malaysia.

Tang, E.K. (1996). Interactive Disambiguation in Multilevel Parallel Texts Alignment towards the construction of a Bilingual Knowledge Bank. In Proceedings of MIDDIM-96, Post-COLING seminar on Interactive Disambiguation, Ch. Boitet (ed), pp. 101-106.

Tang, E.K. and Zaharin, Y. (1995). Handling Crossed Dependencies with the STCG. In Proceedings of NLPRS’95, Seoul, Korea.