XROOTD
POPULARITY ON
HADOOP CLUSTERS

Marco MEONI
Luca MENICHETTI
Domenico GIORDANO
Nicolò MAGINI
Tommaso BOCCALI

10/13/2016 – CHEP 2016 – San Francisco
In a Nutshell

- Dataset (DS) popularity is very important to CMS operations
- Current implementation in Oracle has scalability issue
 - Throughput limits in RDBMS clusters, relational constraints
- Migration to Hadoop, in harmony with CERN IT strategy
 - Grid monitoring and dashboard infrastructures
 - Hadoop parallelism optimized for Big Data
- DS popularity on Hadoop scales with data volume
CMS DS Popularity

- CMS data files are grouped in DS with common physics content
 - Average DS size: 350 GB, 100..1000+ files
 - ~500k DS containing 60M files from detector and simulations recorded since the beginning of CMS operations
 - Distributed among 70 PB of disk storages on WLCG computing centres
- Data distribution is based on popularity of the datasets
 - need to make optimal choice of replication to maximize data availability for processing and analysis
- Definition of “popularity” from several perspectives:
 - Data management: a DS “attracts” many accesses
 - Computing facility: lots of CPU hours spent processing a DS
 - User community: many users interested in analyzing a DS
- In this work, a DS is popular when used “often” in analysis jobs
CMS Xrootd Popularity Service

- Based on the monitoring infrastructure for the Xrootd servers
- File access on storage at WLCG sites for local and remote processing
- In production since 2012 to monitor DS popularity on EOS storage at CERN
- O(Billions) raw data rows recorded in Oracle: scaling limitations, impractical reprocess to get new statistics
Migrating from Oracle to Hadoop

- CERN IT Hadoop Service
 - 2 clusters, 52 nodes, Intel(R) Xeon(R) 4*8 cores
 - 416 total cores, 4.5PB SATA3 HDD, 3.4TB RAM

- Common strategy for Popularity
 - Implementing new version of Popularity aggregation service using Big Data tools to process RAW data on HDFS
 - AWG@CERN-IT and INFN/CMS@Pisa collaboration

- 2 orthogonal aspects
 - Big Data Analytics (handle massive data volumes)
 - Machine Learning (learn insights from data)
DATA INGESTION AND VALIDATION
Xrootd Popularity Service on Hadoop

- Streaming raw file access data into HDFS since March 2015
- Present work: implement popularity statistics aggregation with Spark jobs reproducing the old Oracle Materialized Views
Hadoop Aggregation

- Hadoop: re-processing of any time interval is fast
- Oracle: continuous running of incremental MV update, 5x speedup
Oracle vs Hadoop Deltas

- Example: aggregation by DS-name
- 3 metrics: numAccesses, readBytes, procTime
Pig vs Spark

- Spark offers better performance than MapReduce-based toolkits
- Resilient Distributed Dataset, Shared Memory, Persist(), etc…
Mobile Dashboard

- Site-driven UI for popularity data
PREDICTION OF DATASET POPULARITY
Mining DS Popularity On Hadoop

- What is the problem?
 - *Predict* the Dataset popularity

- Why is it important?
 - *reactive*: monitor historical info of DS usage (post-factum)
 - *proactive*: predict DS popularity using a model trained on metadata

- What is the contribution?
 - DS popularity prediction models based on Big Data technology
 - Evaluation on a large scale system (+ efficiency, - cost)
 - … work in progress ….
Raw Data and Feature Selection

- Collect 2015’s raw data from heterogeneous sources (O(billions))
- Extract training features

Source	#records	Type	Note
EOS	786,934,116	structured	Disk storage system at CERN
AAA	1,682,509,226	structured	CMS XrootD federation for Grid data
CRAB	1,177,951	structured	Grid infrastructure for job submission
DBS3 Block-Replicas	5,193,522	structured	Global DS/fileblocks catalogue
PhEDEx	58,227,786	structured	Fileblock locator and export service
CADI	1,791	semi-struct	CMS Analysis database

Metric	Physics	Extra
week	campaign	country
size	sub-campaign	conferenceID
nFiles	version	protocol
nBlocks	process	
nSites	generator	
nEvents	energy	
luminosity	datatier	
	software	
	acquisitionEra	
Popularity Cutoffs

• Train several classifiers with different cutoffs
 • Use threshold that splits popular and non-popular DSs with 1:10 ratio
Classifier Performance

- Rolling Forecast
 - Get new week, score the model, test accuracy, improve the model...
- Entirely developed in Spark with MLlib

Classifier	auROC	Accuracy	Precision	Recall	F1
Decision Tree	0.647	0.603	0.641	0.716	0.753
SVM	0.660	0.694	0.643	0.716	0.733
Logistic Regression	0.750	0.761	0.858	0.743	0.850
Random Forest	0.773	0.749	0.855	0.922	0.866
GBT	0.779	0.757	0.861	0.991	0.816
Conclusions

• XrootD DS popularity is very important to CMS operations
 • Current Oracle implementation has performance issues

• Implementation in Hadoop
 • Fast re-processing of any time interval, 5x speedup, scalable

• Prediction of DS popularity
 • First attempt on Big Data architecture
 • Train several models, compare performance, calculate accuracy