SPANNING TREES IN A CLAW-FREE GRAPH WHOSE STEMS HAVE AT MOST k BRANCH VERTECIES

PHAM HOANG HA

Abstract. Let T be a tree, a vertex of degree one and a vertex of degree at least three is called a leaf and a branch vertex, respectively. The set of leaves of T is denoted by $Leaf(T)$. The subtree $T - Leaf(T)$ of T is called the stem of T and denoted by $Stem(T)$. In this paper, we give two sufficient conditions for a connected claw-free graph to have a spanning tree whose stem has a bounded number of branch vertices, and those conditions are best possible. As corollaries of main results we also give some conditions to show that a connected claw-free graph has a spanning tree whose stem is a spider.

1. Introduction

In this paper, we always consider simple graphs, which have neither loops nor multiple edges. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of G, respectively. We write $|G|$ for the order of G (i.e., $|G| = |V(G)|$). For a vertex v of G, we denote by $\text{deg}_G(v)$ the degree of v in G. For two vertices u and v of G, the distance between u and v in G is denoted by $d_G(u, v)$.

For an integer $l \geq 2$, let $\alpha^l(G)$ denote the number defined by

$$\alpha^l(G) = \max\{|S| : S \subset V(G), d_G(x, y) \geq l \text{ for all distinct vertices } x, y \in S\}.$$

For an integer $k \geq 2$, we define

$$\sigma^l_k(G) = \min \left\{ \sum_{a \in S} \text{deg}_G(a) : S \subset V(G), |S| = k, d_G(x, y) \geq l \text{ for all distinct vertices } x, y \in S \right\}.$$

For convenience, we define $\sigma^l_k = +\infty$ if $\alpha^l(G) < k$. We note that, $\alpha^2(G)$ is often written $\alpha(G)$, which is the independent number of G, and $\sigma^2_k(G)$ is often written $\sigma_k(G)$, which is the minimum degree sum of k independent vertices.

For a tree T, a vertex of degree at least three is called a branch vertex, and a tree having at most one branch vertex is called a spider. Many researchers have investigated the independent number conditions and the degree sum conditions for the existence of a spanning tree with bounded number of branch vertices or it is a spider (see [2], [3], [1] and [9] for examples). A vertex of T, which has degree one, is often called a leaf of T, and the set of leaves of T is denoted by $Leaf(T)$. Many results were studied on the independent

2010 Mathematics Subject Classification. Primary 05C05, 05C70. Secondary 05C07, 05C69.

Key words and phrases. spanning tree, stem, branch vertex, claw-free graph.
number conditions and the degree sum conditions for the existence of a spanning tree with bounded number of leaves (also see [1] and [9] for examples). Moreover, many analogue results for the claw-free graph are studied (see [4] and [8] for examples).

The subtree $T - \text{Leaf}(T)$ of T is called the stem of T and is denoted by $\text{Stem}(T)$. Recently, M. Kano and his collaborations gave an innovation by studying a spanning tree in a graph with specified stem. We introduce here some of them. Their first result is the following.

Theorem 1.1 ([5] Kano, Tsugaki and Yan). Let $k \geq 2$ be an integer, and G be a connected graph. If $\sigma_{k+1}(G) \geq |G| - k - 1$, then G has a spanning tree whose stem has maximum degree at most k.

After that, the sufficient conditions for a connected graph to have a spanning tree whose stem has a few number of leaves were introduced as the following theorems.

Theorem 1.2 ([10] Tsugaki and Zhang). Let G be a connected graph and $k \geq 2$ be an integer. If $\sigma_3(G) \geq |G| - 2k + 1$, then G have a spanning tree whose stem has at most k leaves.

Theorem 1.3 ([6] Kano and Yan). Let G be a connected graph and $k \geq 2$ be an integer. If $\sigma_{k+1}(G) \geq |G| - k - 1$, then G have a spanning tree whose stem has at most k leaves.

Theorem 1.4 ([6] Kano and Yan). Let G be a connected claw-free graph and $k \geq 2$ be an integer. If $\sigma_{k+1}(G) \geq |G| - 2k - 1$, then G have a spanning tree whose stem has at most k leaves.

The following theorem gives two sufficient conditions for a connected graph to have a spanning tree whose stem has a bounded number of branch vertices.

Theorem 1.5 ([11] Yan). Let G be a connected graph and k be a non-negative integer. If one of the following conditions holds, then G have a spanning tree whose stem has at most k branch vertices.

(i) $\alpha_4(G) \leq k + 2$.
(ii) $\sigma_{k+3}^3(G) \geq |G| - 2k - 3$.

When $k = 1$, Theorem 1.5 gives a previous result as the following.

Theorem 1.6 ([11] Kano and Yan). Let G be a connected graph. If $\sigma_4^3(G) \geq |G| - 5$, then G have a spanning tree whose stem is a spider.

Remark 1.7. We remark that all conditions which were mentioned above are best possible.

We are very interested in this topic. So, we would like to study the spanning tree in a graph with specified stem. The purpose of this paper is to give some sufficient conditions
for a connected claw-free graph to have a spanning tree whose stem has at most k branch vertices. In particular, our main theorems are the followings.

Theorem 1.8. Let G be a connected claw-free graph and k be a non-negative integer. If $\sigma_{k+3}^4(G) \geq |G| - 2k - 5$, then G has a spanning tree whose stem has at most k branch vertices.

Theorem 1.9. Let G be a connected claw-free graph and k be a non-negative integer. If $\sigma_{k+3}^5(G) \geq |G| - 3k - 6$, then G has a spanning tree whose stem has at most k branch vertices.

Applying the main theorems with $k = 1$, we give the following.

Theorem 1.10. Let G be a connected claw-free graph. If $\sigma_{k+3}^4(G) \geq |G| - 7$ or $\sigma_{k+3}^5(G) \geq |G| - 9$, then G has a spanning tree whose stem is a spider.

2. Sharpness of Theorem 1.8 and Theorem 1.9

We first show that the condition of Theorem 1.8 is best possible. Let $m, k \geq 1$ be integers, and let D_1, \ldots, D_{k+3} be disjoint copies of K_m and $D = K_{k+3}$ with distinct vertices z_1, \ldots, z_{k+3}. Let v_1, \ldots, v_{k+3} be vertices not contained in $D \cup D_1 \cup \cdots \cup D_{k+3}$. Join z_i, v_i to all vertices of $D_i (1 \leq i \leq k+3)$ by edges, respectively. Let G denote the resulting graph. Then G is a connected claw-free graph. Setting $V = \{v_1, \ldots, v_{k+3}\}$. We are easy to see that for each set S such that $S \subset V(G)$, $|S| = k+3$ and $d_G(x, y) \geq 4$ for all distinct vertices $x, y \in S$, then $S = V$ or $S = (V \setminus \{v_j\}) \cup \{y_j\}$, where $y_j \in D_j$. Then we can compute that $\sum_{a \in S} \deg_G(a) = |G| - 2k - 6$ for the first case and $\sum_{a \in S} \deg_G(a) = |G| - 2k - 5$ for the last case. So we get $\sigma_{k+3}^4(G) = |G| - 2k - 6$. On the other hand, since for any spanning tree T of G, then there are at least $k+1$ points in the set $\{z_1, z_2, \ldots, z_{k+3}\}$ must be the branch vertices of $\text{Stem}(T)$. So G has no spanning tree who stem has at most k branch vertices. Therefore, the condition of Theorem 1.8 is best possible.

Now we also consider graph G above with $m = 1$. So we may see that $\sigma_{k+3}^5(G) = 2 = |G| - 3k - 7$. Moreover, for every spanning tree T of G, then there are at least $k+1$ points in the set $\{z_1, z_2, \ldots, z_{k+3}\}$ must be the branch vertices of $\text{Stem}(T)$. This shows that the condition of Theorem 1.9 is best possible.

3. Proofs of Theorem 1.8 and Theorem 1.9

Beside of giving some refinements of the proofs in [6] and [11], we will use some analogue arguments of them to prove Theorem 1.8 and Theorem 1.9.

Firstly, we recall the following useful lemma.
Lemma 3.1. Let T be a tree, and let X be the set of vertices of degree at least 3. Then the number of leaves in T is counted as follow:

$$|\text{Leaf}(T)| = \sum_{x \in X} (\deg_T(x) - 2) + 2.$$

Assume that G satisfies the condition in Theorem 1.8 and does not have spanning tree whose stem has at most k branch vertices. We choose a tree T whose stem has k branch vertices in G so that

(C1) $|T|$ is as large as possible.
(C2) $|\text{Leaf}(\text{Stem}(T))|$ is as small as possible subject to (C1).
(C3) $|\text{Stem}(T)|$ is as small as possible subject to (C1), (C2).

By the choice (C1), we have the following claim.

Claim 3.2. For every $v \in V(G) - V(T), N_G(v) \subseteq \text{Leaf}(T) \cup (V(G) - V(T))$.

$\text{Stem}(T)$ has k branch vertices. Denote the number of leaves of $\text{Stem}(T)$ by l. By Lemma 3.1, $\text{Leaf}(\text{Stem}(T)) = l \geq k + 2$. Let x_1, x_2, \ldots, x_l be the leaves of $\text{Stem}(T)$. Since T is not a spanning tree of G, there exist two vertices $v \in V(G) - V(T)$ and $u \in \text{Leaf}(T)$ which are adjacent in G. Thus, we have the following claim.

Claim 3.3. If u is adjacent with a vertex w of $\text{Stem}(T)$ then $\deg_{\text{Stem}(T)}(w) = 2$.

Proof. Suppose that u is adjacent with a vertex w but $\deg_{\text{Stem}(T)}(w) \neq 2$.
If $\deg_{\text{Stem}(T)}(w) = 1$ then z is a leaf of $\text{stem}(T)$. We consider a new tree $T_1 = T + uv$ then $\text{stem}(T_1)$ have k branch vertices and $|T_1| > |T|$. This contradicts the condition (C1).
If $\deg_{\text{Stem}(T)}(w) \geq 3$ than w is a branch vertex of $\text{stem}(T)$. We also consider a new tree $T_1 = T + uv$ then $\text{stem}(T_1)$ also have k branch vertices and $|T_1| > |T|$. This contradicts the condition (C1). Claim 3.3 is proved. \square

Now, we use the properties of the claw-free graph to give the following claim.

Claim 3.4. Set $M = \{ w \in \text{Stem}(T) | \deg_{\text{Stem}(T)}(w) = 2 \}$. Then $|M| \geq 3$.

Proof. Otherwise, by Claim 3.3 we have two following cases.

Case 1. $|M| = 1$. We call $w \in M$ then u is adjacent with w by Claim 3.3. Let y, t be two adjacent vertices of w in $\text{Stem}(T)$. Here y and t are branch vertices, leaves or one leaf and one branch vertex. By definition of the claw-free graph, then either uy or ut or yt is an edge in G. We consider a new tree T_2:

$$T_2 = \begin{cases} T - wu + uy + uv & \text{if } uy \in E(G), \\ T - tw + ut + uv & \text{if } ut \in E(G), \\ T - tw + ty + uv & \text{if } yt \in E(G). \end{cases}$$
Then, by y is a branch vertex or a leaf of T, the resulting tree T_2 of G is a tree whose stem has k branch vertices and the order of the resulting tree is greater than $|T|$, which contradicts the condition (C1).

Case 2. $|M| = 2$. We call $w_1, w_2 \in M$. Without loss of generality we may assume that u is adjacent with w_1 by Claim [3.3]. If w_1 is not adjacent with w_2 in $Stem(T)$ then by using the same arguments in case 1 we get a contradiction. On the other hand, if w_1 is adjacent with w_2 then let y be another adjacent vertex of w_1 in $Stem(T)$. By definition of the claw-free graph, then either uy or uw_2 or yw_2 is an edge in G. We consider a new tree

$$T_2 = \begin{cases}
T - yw_1 + uy + uv & \text{if } uy \in E(G), \\
T - w_1 w_2 + uw_2 + uv & \text{if } uw_2 \in E(G), \\
T - w_1 w_2 + yw_2 + uv & \text{if } yw_2 \in E(G).
\end{cases}$$

Then, by y is a branch vertex or a leaf of T, resulting tree T_2 of G is a tree whose stem has k branch vertices and the order of the resulting tree is greater than $|T|$, which contradicts the condition (C1).

Claim [3.4] is proved.

Claim 3.5. Leaf($Stem(T)$) is an independent set of G.

Assume that there exists two vertices x_i and x_j of Leaf($Stem(T)$) which are adjacent in G. Then add x_i and x_j to T. The resulting subgraph of G includes a unique cycle, which contains an edge e_1 of $Stem(T)$ incident with a branch vertex. By removing the edge e_1, we obtain the resulting tree T_3 such that $Stem(T_3)$ has at most k branch vertices, $|T_3| = |T|$ and $|Leaf(Stem(T_3))| \leq |Leaf(Stem(T))| - 1$. If $Stem(T)$ has $k - 1$ branch vertices, then add uv to T_3; we obtain a tree whose stem has at most k branch vertices and the order of the tree is greater than $|T|$, which contradicts the condition (C1). Otherwise, T_3 contradicts the condition (C2). Hence Leaf($Stem(T)$) is an independent set of G.

Claim 3.6. For every $x_i (1 \leq i \leq l)$, there exists a vertex $y_i \in Leaf(T)$ adjacent to x_i and $N_{G}(y_i) \subset Leaf(T) \cup \{x_i\}$.

Proof. It is easy to see that for each leaf $x \in Leaf(Stem(T))$, there exists at least a vertex y in $Leaf(T)$ adjacent to x. Now, for every leaf y of T adjacent to a leaf of $Stem(T)$ in T, y is not adjacent to any vertex of $V(G) - V(T)$. Indeed, otherwise we can add an edge joining y to a vertex of $V(G) - V(T)$ to T then the resulting tree contradicts the condition (C1).

Suppose that for some $1 \leq i \leq l$, each leave $y_{i,j}$ of T adjacent to x_i, is also adjacent to a vertex $z_{i,j} \in (Stem(T) - \{x_i\})$. Then for every leaf $y_{i,j}$ adjacent to x_i in T, remove the edge $y_{i,j}x_i$ from T and add the edge $y_{i,j}z_{i,j}$. Denote the resulting tree of G by T_4. Then T_4 is a tree which has at most k branch vertices. If x_i is adjacent with a branch of $Stem(T)$,
then $Leaf(Stem(T_4)) = Leaf(Stem(T)) - \{x_i\}$, which contradicts the condition (C2). If x_i is not adjacent with a branch of $Stem(T)$, then $Stem(T_4) = Stem(T) - \{x_i\}$, which contradicts the condition (C3). Therefore, the claim holds. □

Claim 3.7. For any two distinct vertices $y, z \in \{v, y_1, y_2, \ldots, y_l\}$, $d_G (y, z) \geq 4$.

Proof. First, we show that $d_G (v, y_i) \geq 4$ for every $1 \leq i \leq l$. Let P_i be the shortest path connecting v and y_i in G. If all the vertices of P_i between v and y_i are contained in $Leaf(T) \cup (V(G) - V(T)) \cup \{x_i\}$. Then add P_i to T (if P_i passes through x_i, we just add the segment of P_i between v and x_i) and remove the edges of T joining $V(P_i \cap Leaf(T))$ to $V(Stem(T))$ except the edge $y_i x_i$. Then resulting tree of G is a tree whose stem has at most k branch vertices and the order of the resulting tree is greater than $|T|$, which contradicts the condition (C1). Then there exists a vertex $s \in V(P_i)$ with $s \in V(Stem(T)) - \{x_i\}$. Hence, by Claim 3.2 and Claim 3.6, $d_G (v, y_i) = 2$ and $d_G (s, y_i) = 2$. Therefore, $d_G (y_i, y_j) = 4$.

Next, we show that $d_G (y_i, y_j) \geq 4$ for all $1 \leq i < j \leq l$. Let P_{ij} be the shortest path connecting y_i and y_j in G. We note that if P_{ij} passes through x_i (or x_j), then $y_i x_i \in E(P_{ij})$ (or $y_j x_j \in E(P_{ij})$), respectively. If all vertices of P_{ij} between y_i and y_j are contained in $Leaf(T) \cup (V(G) - V(T)) \cup \{x_i, x_j\}$. Then add P_{ij} to T to remove the edges of T joining $V(P_{ij} \cap Leaf(T))$ to $V(Stem(T))$ except the edges $y_i x_i$ and $y_j x_j$. Then the resulting graph of G includes a unique circle, which contains an edge e_2 of $Stem(T)$ incident with a branch vertex. By removing the edge e_2, we obtain a tree T_5 whose stem has at most k branch vertices. If P_{ij} contains a vertex of $V(G) - V(T)$, then the order of T_5 is greater than T, which contradicts the condition (C1). Otherwise, $|T_5| = |T|$ and $|Leaf(Stem(T_5))| = |Leaf(Stem(T))| - 1$. This contradicts the condition (C2). Hence, P_{ij} passes through a vertex $s \in Stem(T) - \{x_i, x_j\}$. Then there exists a vertex $t \in V(P_{ij})$ with $t \in V(Stem(T)) - \{x_i, x_j\}$. Hence, by Claim 3.6, $d_G (y_i, s) \geq 2$ and $d_G (s, y_j) \geq 2$. Therefore, $d_G (y_i, y_j) = d_G (y_i, s) + d_G (s, y_j) \geq 4$ for $1 \leq i < j \leq k$. □

As a corollary of Claim 3.7, we have the following claim.

Claim 3.8. $N_G (v) \cap N_G (y_i) = \emptyset$ and $N_G (y_i) \cap N_G (y_j) = \emptyset$ for $1 \leq i \neq j \leq l$.

Denote $Y = \{y_1, y_2, \ldots, y_l\}$. Since Claim 3.2,3.8, we have

$$N_G (v) \subseteq (V(G) - V(T) - \{v\}) \cup (N_G (v) \cap (Leaf(T) - Y)),$$

$$\bigcup_{i=1}^{k+2} N_G (y_i) \subseteq (Leaf(T) - Y - N_G (v)) \cup \{x_1, \ldots, x_{k+2}\}.$$
Using Claim 3.4, we have $|\text{Stem}(T)| \geq l + k + 3$.
Hence by setting $h = |N_G(v) \cap (\text{Leaf}(T) - Y)|$, we have

$$
\deg_G(v) + \sum_{i=1}^{k+2} \deg_G(y_i) \leq |G| - |T| - 1 + h + |\text{Leaf}(T)| - h - l + k + 2
= |G| - |\text{Stem}(T)| - l + k + 1
\leq |G| - 2l - 2 \leq |G| - 2k - 6 \text{ (by } l \geq k + 2).$$

Which contradicts the condition in Theorem 1.8.

Theorem 1.8 is proved.

Now, since the properties of the claw-free graph we have the following claim.

Claim 3.9. $d_G(v, y_i) \geq 5$ for all $1 \leq i \leq l$.

Proof. Since Claim 3.7 we have $d_G(v, y_i) \geq 4$. Assume that $d_G(v, y_i) = 4$. Let P_i be the shortest path connecting v and y_i in G. Then by the proof of Claim 3.7 there exists a vertex $s \in V(P_i)$ with $s \in V(\text{Stem}(T)) - \{x_i\}$. By Claim 3.2 and 3.6 we have $d_G(v, s) \geq 2$ and $d_G(s, y_i) \geq 2$. Therefore, if $d_G(v, y_i) = d_G(v, s) + d_G(s, y_i) = 4$ then $d_G(v, y_i) = d_G(s, y_i) = 2$ and, moreover, s must be in M by the proof of Claim 3.3. Let $vu's$ and y_iz_is be two paths in P_i. So $u' \in \text{Leaf}(T) \cup (V(G) - V(T))$.

If $u' \in V(G) - V(T)$ then we consider a tree $T_* = T + su'$ then $\text{Stem}(T_*)$ has k branch vertices and $|T_*| > |T|$. This contradicts (C1).

If $u' \in \text{Leaf}(T)$, remove the edge of T joining u' and add $u's$ to T. Then resulting tree T_* of G whose stem has k branch vertices, $|T_*| = |T|$, $|\text{Leaf}(\text{Stem}(T_*))| = |\text{Leaf}(\text{Stem}(T))|$ and $|\text{Stem}(T_*)| = |\text{Stem}(T)|$. Using the same arguments in the proofs of Claim 3.3 and 3.4 we can show that $\deg_{\text{Stem}(T_*)}(s) = 2$ and if s is adjacent with two vertices y, t in $\text{Stem}(T_*)$ then $\deg_{\text{Stem}(T_*)}(y) = \deg_{\text{Stem}(T_*)}(t) = 2$. Now, by definition of the claw-free graph G, then either $u't$ or $u'y$ or ty is an edge in G. Let p be a vertex of $\text{Stem}(T)$ such that z_ip is in $E(T)$. We consider a new tree

$$
T_6 = \begin{cases}
T_* - ys + u'y + u'v & \text{if } u'y \in E(G), \\
T_* - ts + u't + u'v & \text{if } u't \in E(G), \\
T_* - ts - ys - z_ip + ty + sz_i + z_iy_i + su' + u'v & \text{if } ty \in E(G),
\end{cases}
$$

Then resulting tree T_6 of G is a tree whose stem has k branch vertices and the order of T_6 is greater than $|T_*| = |T|$, which contradicts the condition (C1). So $d_G(v, y_i) \geq 5$.

Fix an index i. Since Claim 3.2, 3.9 we have

$$
N_G(v) \subseteq (V(G) - V(T) - \{v\}) \cup (N_G(v) \cap (\text{Leaf}(T) - Y)),
N_G(y_i) \subseteq (\text{Leaf}(T) - Y - N_G(v)) \cup \{x_i\}
$$
Using Claim 3.4, we have $|\text{Stem}(T)| \geq l + k + 3$.
Hence, we have
\[
\deg_G(v) + \deg_G(y_i) \leq |G| - |T| - 1 + |\text{Leaf}(T)| - l + 1
\]
\[
= |G| - |\text{Stem}(T)| - l
\]
\[
\leq |G| - 2l - k - 3 \leq |G| - 3k - 7 \text{ (by } l \geq k + 2\text{)}.
\]
Which contradicts the condition in Theorem 1.9.

Theorem 1.9 is proved.

References

[1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs, Lecture Note in Mathematics (LNM 2031), Springer (2011).
[2] L. Gargano and M. Hammar, There are spanning spiders in dense graphs (and we know how to find them), Lect. Notes Comput. Sci., 2719 (2003), 802-816.
[3] L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro, Spanning spiders and light-splitting switches, Discrete Math., 285 (2004), 83-95.
[4] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito and T. Yamashita, Spanning trees with a bounded number of leaves in a claw-free graph, Ars Combin., Vol. CIII (2012), 137-154.
[5] M. Kano, M. Tsugaki, G. Yan, Spanning trees whose stems have bounded degrees, Preprint.
[6] M. Kano and Z. Yan, Spanning trees whose stems have at most k leaves, Ars Combin., CXIV (2014), 417-424.
[7] M. Kano and Z. Yan, Spanning trees whose stems are spiders, Graphs Combin., 31 (2015), no. 6, 1883-1887.
[8] H. Matsuda, K. Ozeki and T. Yamashita, Spanning trees with a bounded number of branch vertices in a claw-free graph, Graphs Combin., 30 (2014), 429-437.
[9] K. Ozeki and T. Yamashita, Spanning trees: A survey, Graphs Combin., 22 (2011), 1-26.
[10] M. Tsugaki and Y. Zhang, Spanning trees whose stems have a few leaves, Ars Combin., CXIV (2014), 245-256.
[11] Z. Yan, Spanning trees whose stems have a bounded number of branch vertices, Discuss. Math. Graph Theory, 36 (2016), 773-778.

Department of Mathematics, Hanoi National University of Education, 136, XuanThuy str., Hanoi, Vietnam

E-mail address: ha.ph@hnue.edu.vn