The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis

Makoto T. Fujiwara1,2*, Mana Yasuzawa1, Kei H. Kojo1, Yasuo Niwa3, Tomoko Abe5, Shigeo Yoshida2, Takeshi Nakano4,5, Ryuuichi D. Itoh6*

1 Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan, 2 Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan, 3 Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga, Shizuoka, Japan, 4 Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan, 5 CREST, JST (Japan Science and Technology Agency), Kawaguchi, Saitama, Japan, 6 Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan

* mtf1@mac.com (MTF); ryuitoh@sci.u-ryukyu.ac.jp (RDI)

Abstract

Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1).

During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PCs were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PCs were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division of epidermal plastids, and indicate that dysfunctions in ARC5 and ARC6...
differentially affect plastid replication among mesophyll cells, PCs, and GCs within a single leaf.

Introduction

Chloroplasts are double membrane-bound organelles that form a homogeneous population with respect to shape (round or ellipsoidal) and size (usually 3–10 μm in diameter) in photosynthetic cells. Such homogeneity in chloroplast shape and size is attained via several cycles of symmetric binary fission of the organelle, which eventually generate up to several hundred chloroplasts per cell. The most popular model for studying chloroplast division in higher plants is leaf mesophyll cells [1–3]. The discovery of Arabidopsis thaliana chloroplast number mutants (accumulation and replication of chloroplasts; arc), which was the first successful example of mutant screening to identify subcellular structure mutants in plants, was achieved through the observation of leaf mesophyll cells [4]. Among the arc mutants, the recessive arc5 and arc6 mutants are the most well characterized. The arc5 mutant has a reduced number of chloroplasts, all of which are arrested at a late stage of division, in mature mesophyll cells [5,6]. The arc6 mutant exhibits a more extreme phenotype, with each mesophyll cell containing only one or two expanded chloroplasts [7]. ARC5 encodes a cytoplasmic dynamin-related protein (DRP5B), while ARC6 encodes an inner envelope-spanning protein that anchors the prokaryotic tubulin-like GTPase FtsZ to promote its self-assembly into a stromal division ring (FtsZ ring) [8,9]. Ferns and seed plants encode two subfamilies of FtsZ proteins, FtsZ1 and FtsZ2 [10]. FtsZ1 and FtsZ2 can form heteropolymers (protofilaments), resembling those assembled from α- and β-tubulins within microtubules, which further bundle into a contractile ring [11]. ARC6 interacts specifically with FtsZ2 [12] and could have a role in tethering the FtsZ ring to the inner envelope. ARC5/DRP5B and FtsZ form distinct concentric rings at the chloroplast division site and on the cytoplasmic and stromal surface of the envelope, respectively. Spatial coordination of those two rings across two membranes (the outer and inner envelopes) is achieved by a chain of protein interactions, namely ARC5–PDV1/PDV2 (PLASTID DIVISION1/2; bitopic outer envelope membrane proteins homologous to each other) in the cytosol [13], PDV2–ARC6 in the intermembrane space [14,15], and ARC6–FtsZ2 in the stroma [12]. In addition to these protein-protein interactions, the chloroplast phenotypes of arc5 and arc6 and the properties of ARC5 and ARC6 proteins provide valuable insights into the molecular components of the division machinery on both sides of the envelope, the evolutionary process by which such machinery was established, and the orderly progression of events that occurs during division: division initiation (involving ARC6), membrane constriction (FtsZ), and final separation of the daughter chloroplasts (ARC5).

Leaf epidermal cells provide another model for studying chloroplast (plastid) division. The epidermal system of Arabidopsis leaves comprises pavement cells (PCs), stomatal guard cells (GCs) containing immature, chlorophyll-bearing chloroplasts, and unicellular trichomes containing achlorophyllous leucoplasts, as demonstrated by microscopy analysis and explored in a recent review [16,17]. In arc5 and arc6, a significant reduction in chloroplast number and a concomitant increase in chloroplast size were observed in PCs and stomatal GCs, in addition to mesophyll cells [5–7,18]. Furthermore, in arc6, some stomata completely lack chloroplasts and some contain one or two chloroplasts exclusively in one of the paired GCs [18]. Moreover, analysis of stroma-targeted fluorescent proteins revealed that the chloroplast-deficient GCs in arc6 contain non-green plastids and that approximately 20% of GCs lack any type of plastid in the cotyledons of the A. thaliana crumpled leaf (crl) mutant [19], which displays abnormal
plastid division and overall plant development [20]. These phenotypes could not be explained by the known properties of CRL protein. These observations, together with studies investigating leaf epidermal chloroplasts in the tomato suffulta mutant [21], epidermal plastids in the hypocotyls, petals, and stamen filaments of arc3, arc5, and arc6 [22], and chloroplasts in the embryos, cotyledon epidermis, and leaf epidermis of arc6 and crl [19], prompted us to investigate the tissue-dependent patterns of plastid (chloroplast) division.

In this context, we previously reported the plastid phenotypes in cotyledons, floral organs, and roots of the A. thaliana atminE1 mutant [23], in which the expression of the gene for a prokaryote-derived, chloroplast division site-determining factor, MinE [24–26], is severely knocked down, and thus mesophyll chloroplasts appear unable to initiate the division process [27]. Whereas atminE1 mesophyll cells uniformly contain one or a few expanded chloroplasts per cell, like those of arc6, the size distribution of plastids in mature root tissues (except for the columella) of atminE1 does not significantly differ from that in the wild type (WT), indicating that MinE contributes relatively little to plastid division in roots. In addition, we recently found that atminE1 PCs exhibit some distinct phenotypes [28]: (1) heterogeneous patterns of plastid size and shape, which vary on a cell-by-cell basis; (2) prominent induction of stromule formation and elongation, similar to that reported for several types of non-mesophyll plastids in arc3, arc5, and arc6 [22,29]; and (3) the formation of a grape-like plastid cluster, a plastid morphology that was described for the first time. Although it remains unclear how these grape-like plastid clusters are generated in atminE1 PCs, we hypothesized that they might actually be derived from a single plastid (or a few plastids) with many stromule-derived subcompartments (or "bulges") [28]. These bulges might undergo fission, possibly via an alternative mode of plastid replication involving budding and stromule breakage [21,30], but they might fail to separate from one another for an unknown reason. Since the alternative replication mode is assumed to operate only when "conventional" plastid division dependent on the FtsZ/dynamin system is perturbed [21,31], it would be useful to examine the plastid phenotypes in the leaf epidermis of the well-studied chloroplast division mutants, arc5 and arc6, in order to obtain further insight into the alternative (and perhaps non-mesophyll-specific) mode of plastid division. Therefore, in the current study, we investigated plastid morphology in the epidermis of mature leaves from arc5 and arc6 and compared it with that of atminE1.

Materials and methods

Plant materials and growth conditions

Seeds from arc5 (stock number CS1633; arc5-1 allele [5]) and arc6 (stock number CS288; arc6-3 allele [9]) and from atminE1 (stock number DLFTV7T3; FLAG_056G07 T-DNA insertion line [32]) were obtained from the Arabidopsis Biological Resource Center (ABRC, Ohio State University, USA) and Institut National de la Recherche Agronomique (INRA, Versailles, France), respectively. The plastid stroma was fluorescently labeled in the living tissues of three transgenic lines in the WT background, ptA5-3 (genotype CaMV35S promoter::TP_RBCS3A-GFP::NOS terminator [33]), FL6-4 (genotype CaMV35S promoter::TP_FtsZ1-1-YFP::NOS terminator and CaMV35S promoter::NLS_Cry2-CFP::NOS terminator [19]), and FL6-5 (genotype identical to FL6-4; this study); the abbreviations are as follows: CaMV35S, cauliflower mosaic virus 35S gene; TP, transit peptide; GFP, green fluorescent protein; NOS, nopaline synthase; CFP, cyan fluorescent protein; NLS, nuclear localization signal. FL6-5, a sister line to FL6-4 obtained in a previous transformation experiment [19], was used to produce atminE1 plants homozygous for T-DNAs carrying fluorescent protein genes. Successful crossing and seed amplification of arc5 × ptA5-3/FL6-4, arc6 × ptA5-3, and atminE1 × FL6-5, as well as arc6 × FL6-4 [19], were confirmed by observing seedlings or leaves by stereofluorescence microscopy.
(model FLIII, Leica Microsystems, Heidelberg, Germany) and light microscopy (model IX70, Olympus, Tokyo, Japan). These stable lines were employed for subsequent microscopy analyses. Besides the above transgenic lines, *A. thaliana* ecotypes Columbia (Col), Landsberg erecta (Ler) and Wassilewskija (Ws) were employed as controls to examine chloroplast number per GC. Plants were germinated and grown as previously described [34], except that MS medium containing 2–3% (w/v) sucrose was used in this study. All *Arabidopsis* lines exhibited healthy growth and were fertile throughout the experiments.

Confocal laser scanning microscopy and epifluorescence microscopy

The basal parts of the leaf including the petiole were excised from seedlings with tweezers. The samples were mounted in water under glass coverslips and analyzed by confocal laser scanning microscopy (CLSM) or epifluorescence microscopy. PCs and GCs on the adaxial side of the upper petiole region were observed.

CLSM was performed using an LSM700 system (Carl Zeiss, Jena, Germany) equipped with 63× (N.A. 1.40 oil immersion) and 100× (N.A. 1.46 oil immersion) objective lenses and an Ar laser (488 nm) as an excitation source. Maximum intensity projection images (512 × 512 pixels) were taken with LSM700 software. For segmentation and reconstruction of fluorescent protein-labeled plastid structures, individual CLSM images were automatically segmented using the ImageJ plug-in packages “LPixel ImageJ plugins”. Noise was removed using the denoise mode “gradInvWeightedOp” with the “denoiseFilters…” of Lpx Filter2d. The LPixel ImageJ plugins are available from https://lpixel.net/en/services/lpixel-imagej-plugins. Three-dimensional reconstruction movies were generated using the ImageJ plug-in “Volume Viewer”. Epifluorescence microscopy was performed using an inverted microscope (model IX71, Olympus, Tokyo, Japan) equipped with 60× (N.A. 1.20 water immersion) and 40× (N.A. 0.95 dry) objective lenses and a mercury lamp (model USH-1030L, Ushio, Tokyo, Japan) as an excitation source. Fluorescent signals from GFP, YFP, and chlorophyll were obtained using optical filters and a CMOS digital camera (model ORCA-flash2.8, Hamamatsu Photonics, Hamamatsu, Japan) as previously described [28]. In both CLSM and epifluorescence microscopy, bright-field images were taken with differential interference contrast (DIC) optics.

Measurement of stomatal GCs and plastids in leaves

For quantitative analyses of GCs and their plastids (chloroplasts), the adaxial sides of the upper petiole and blade/petiole junction regions from fully expanded leaves were used. All experiments were performed using samples under the same conditions: the basal parts of third-fourth leaves containing petioles were excised from 4-week-old WT, arc5, arc6, and atminE1 seedlings, which were grown on 2% (w/v) sucrose-containing MS plates under daily irradiation from 5:00 to 21:00. Measurements of chloroplast (body) length were performed using leaves sampled from 14:00 to 17:00 via epifluorescence microscopy as described above. The frequency of GCs with giant chloroplasts, with normal-sized chloroplasts, or lacking chloroplasts was also counted. GC chloroplasts were identified using DIC and epifluorescence microscopy, and their sizes were defined as follows: giant chloroplasts, >6 μm; normal-sized chloroplasts, 2–6 μm; and mini-chloroplasts, <2 μm.

Results

Plastid morphology in leaf PCs of arc5 and arc6

To investigate the morphology of leaf epidermal plastids in the *Arabidopsis* arc5 and arc6 mutants, we introduced expression cassettes encoding stroma-targeted YFP or GFP under the
control of the CaMV35S promoter into both mutants via crossing (for details, see the Materials and Methods). All offspring exhibited healthy growth and development under laboratory conditions and gave consistent results with regard to plastid morphology (data not shown). Unless otherwise specified, plastid image data were obtained from WT, arc5, and arc6 plants in which stroma were labeled with YFP and detected by CLSM.

In the cortex cells of leaf petioles from arc5 and arc6, plastids were greatly enlarged compared with the WT (Fig 1). In particular, the cortex cells of arc6 contained only one or a few extremely large plastids resembling those of atminE1 [27], implying severe inhibition of cortex plastid division in both mutants. The phenotypes of plastids in arc5 and arc6 leaf petioles were essentially the same as those in leaf blade mesophyll cells observed with DIC optics [5,6] and with GFP fused to a transit peptide [19,22]. Therefore, the introduction of the stroma-targeted YFP or GFP gene did not appear to affect the phenotypes of either arc mutant. In the current study, we evaluated plastid morphology in the epidermis of leaf petioles from the above transgenic lines, focusing on four aspects of plastid morphology.

Giant plastid formation. Enlarged plastid size is a primary index used to assess defects in plastid division [35]. Using CLSM, we found that WT plastids in Arabidopsis leaf petiole PCs were round to ellipsoidal, or occasionally dumbbell-shaped, and were approximately 2–5 μm long (Fig 2A). This result is in agreement with previous observations of PCs in leaf blades and petioles obtained by fluorescence, confocal, and electron microscopy [6,16,28,34,36]. Based on this information, we defined “giant plastids” as enlarged plastid bodies >6 μm long. Whereas we did not detect giant plastids in the WT (Fig 2A), we observed them in arc5, although at very low frequency (Fig 2B). On the other hand, we detected giant plastids in most PCs of arc6 (Fig 2C). In both mutants, giant plastids assumed a non-fixed shape, developed extended stromules, and did not exhibit obvious constrictions, although an array of giant plastid bodies inter-connected by this tubular structure, which locally resembled stromules, were rarely observed in arc6. Nevertheless, the mutant plastid bodies appeared mostly spherical, a modest phenotype relative to mesophyll plastids, which exhibited extensive, irregular expansion in three dimensions [7,18]. We never detected PCs without plastids in either mutant during our microscopic observations.

These results strongly suggest that ARC5 and ARC6 are involved in epidermal plastid morphogenesis in leaf PCs. The rare but actual occurrence of giant plastids in arc5 PCs was never before observed in the shoot epidermis of this mutant. Its frequent occurrence in arc6 PCs is comparable to that in other epidermal and leaf mesophyll cells of the mutant [7,18,22,29]. These results suggest that, in leaf PCs, ARC6 is critical for normal plastid division, while ARC5 is less important in these cells than in mesophyll cells or ARC6.
Size homogeneity/heterogeneity of plastids. Next, we focused on the plastid populations in PCs. As described above, the WT cells showed slight variation in plastid size (Fig 2A). On the other hand, arc5 displayed a moderate level of plastid size polymorphism, ranging from a slightly reduced size to a relatively large size, although many arc5 plastids were slightly larger than those in the WT (Fig 2E). By contrast, arc6 exhibited marked polymorphism in plastid size, ranging from mini-plastids (defined as plastids <2 μm in length) to giant plastids (Fig 2F). In both mutants, plastids of different sizes coexisted within the respective PCs, although their distribution patterns varied between PCs.

The size heterogeneity of arc6 PC plastids was more or less associated with their varied shapes. A majority of mini-plastids were vesicular (Fig 2I), although some were elongated (data not shown). Extensive structural variations in arc6 plastids were observed in the larger-sized plastid group. These plastids were polymorphic in shape, including spherical, elongated, wavy, multi-lobed, or amoeboid shapes (Fig 2I). Also, arc6 PCs contained poorly developed

Fig 2. Plastid phenotypes in leaf PCs of Arabidopsis WT, arc5, arc6, and atminE1. (A–J) Images of plastid-targeted YFP in the third-fourth leaf petioles of 4-week-old WT (A), arc5 (B, E, H), arc6 (C, F, I), and atminE1 (D, G, J) seedlings. CLSM images of maximal intensity projection are shown. Giant plastids (arrows), putative dividing plastids (arrowheads), stomata (double arrowheads), and mini-plastids (asterisks) are indicated. Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0192380.g002
plastids that were capable of forming isthmi (Fig 2I), whereas WT and arc5 cells contained dumbbell-shaped plastids that were likely undergoing symmetric binary fission (Fig 2A and 2H).

Our findings about plastid size distribution in the leaf petiole PCs of arc5 and arc6 complement those obtained in leaf blades [5–7], and reveal an unexpectedly large amount of size heterogeneity of PC plastids in arc5 and arc6. In addition, the phenotypes of arc5 and arc6 leaf PCs strongly resembled those of stamen filaments, among previously examined tissues of the mutants [22].

Stromule development. Stromules are subplastidic structures that exhibit a tubular form and extend into the cytoplasm. These structures comprise double-envelope membranes and the stroma, and can emanate from, or retract back to, the plastid surface on the order of seconds. Stromule formation is generally active in non-photosynthetic tissue cells, and in shoots, stromules preferentially occur in the PCs of hypocotyls and leaves [37–39].

In the WT, stromules were detected at low frequency (not shown). In arc5, the frequency of stromule formation was similar to that in the WT, except for the prominent stromule formation from giant plastids (Fig 2H). In both lines, we often failed to detect plastids with stromules in certain PCs, whereas they were readily detected in other cases. Nevertheless, arc5 cells occasionally contained long, stable stromules, which were never detected in the WT. In arc6, stromules formed frequently and grew extensively (Fig 2I). Some of these stromules assumed a “beads-on-a-string” structure, which has been reported for several types of non-green plastids [40,41], and others formed intricate networks (S1 Fig). These plastid body and stromule configurations in arc6 resembled those reported in the epidermal tissues of this mutant other than leaves [22] and in those of atminE1 [28] (see below). Furthermore, in all plants, the stromules exhibited highly dynamic transformation activities, such as emergence, extension, retraction, and branching, during our microscopic observations (data not shown).

Grape-like plastid clusters. We previously reported a novel plastid morphological phenotype: the grape-like clustering of leaf PC plastids in atminE1 [28]. To date, this phenotype has been reported only for atminE1. In the present study, we investigated whether the PCs in arc5 and arc6 also possess grape-like plastid clusters, finding that this type of structure was present in arc6, but not in arc5 (Fig 3). The grape-like plastid clusters in arc6 (Fig 3A) were structurally similar to those in atminE1 [28]. Taking advantage of CLSM, we obtained optical sectioning images of this plastid structure (Fig 3B). In the serial z-stack images, we did not observe any node-like structures at the center (or the bulge-gathering site) of the plastid clusters. Therefore, the absence of such a “central node” in the grape-like plastid clusters was observed in both arc6 (this study) and atminE1 [28].

In characterizing arc5 and arc6, we employed the atminE1 mutant, a resource for studying tissue-dependent plastid morphogenesis, as a reference [23,27,28,34,42]. In all aspects of plastid morphology examined in this study, i.e., giant plastid formation (Fig 2D), the size distribution of plastids (Fig 2D and 2G), stromule formation (Fig 2D, 2G and 2I), and grape-like plastid clustering (data not shown), atminE1 strongly resembled arc6. This result is in accordance with the plastid morphology observed in leaf mesophyll cells, cotyledons, petals, stamen filaments, stem endodermis, and roots [7,18,19,22,23,27,42–44]. In addition, FtsZ proteins (FtsZ1 and FtsZ2) exhibit similar localization patterns in the giant chloroplasts of arc6 and atminE1 (and arc12, another mutant allele of AtMinE1 [45,46]) [9,27,34,46–49]. Thus, ARC6 and AtMinE1 may play equally important roles in plastid morphogenesis in leaf PCs as they do in mesophyll cells. By contrast, we failed to detect obvious similarity in plastid phenotypes in PCs (or in cells in other tissues) between atminE1 and arc5, except at the individual plastid level.
Epidermal plastids in Arabidopsis arc5 and arc6 mutants

A
arc6

B
Top

Bottom
Plastid morphology in leaf stomatal GCs of arc5 and arc6

Extending the analysis of epidermal plastids in leaf PCs, we examined those in stomatal GCs. GCs are specialized epidermal cells that control gas flux between the plant body and the atmosphere [50]. They contain photosynthetic plastids (chloroplasts), whose morphogenesis is an important subject of study; the generation of chloroplast-deficient GCs in arc6 leaves was the first experimental demonstration that the inhibition of correct chloroplast division affects the photosynthetic ability of plant cells [18].

In general, in all WT and mutant lines (arc5, arc6, and atminE1) examined, we failed to detect GCs devoid of plastids. Meanwhile, we observed previously unreported plastid phenotypes in the GCs of the above mutants; the morphological patterns of the GC plastids strongly varied on a cell-by-cell basis, and thus it was difficult to define a “typical” plastid phenotype for each mutant. Instead, we defined these phenotypes in terms of multiple morphological patterns as follows.

WT. GC plastids in the rosette leaves and cotyledons of WT Arabidopsis plants were described in earlier studies [5,7,16,19,51]. In accordance with these reports, we found that leaf petiole GCs in the WT contained round or ellipsoidal plastids, which were generally equal in size (average length of ~4 μm) and uniformly dispersed in the cytoplasm (Fig 4A).

arc5. In arc5, the morphological patterns of plastids in GCs were roughly grouped into three classes: homogeneous population of normally sized and shaped plastids like the WT (class I; Fig 4A and 4B); abnormal plastid population, often represented by the presence of giant or minute plastids (class II; Fig 4C, in the left GC pair); and populations of numerous minute plastids, which were colorless (chlorophyll-less), as confirmed by bright-field microscopy (class III; Fig 4C, in the right GC pair; Fig 4D and S2 Fig). Class III GCs usually contained more plastids per cell than WT GCs, although individual class III plastids were more difficult to discriminate (S2 Fig). The occurrence of class III GCs was occasionally accompanied by surrounding PCs with poorly developed plastids (compare Fig 4D with Fig 4B).

arc6. In arc6, GCs containing WT-like normal plastids only (i.e., class I) were absent, while class II and III GCs were observed (Fig 4E and 4F and S3 Fig). Importantly, in contrast to the previous observation that most GCs of arc6 leaves and cotyledons contain a single enlarged plastid [18,19], a majority of class II GCs in our samples contained several plastids of various sizes. In addition, whereas class III-like GCs in arc6 were previously reported [19], we found that, among class III GCs, the plastid number per cell varied more widely than previously reported, ranging from a few to many, highly proliferated plastids. Furthermore, in some arc6 GCs, we observed web-like structures consisting of chlorophyll-less plastids (class IV) (Fig 4G and S3 Fig). By definition, class IV plastids had a more severe phenotype than class III plastids, but we were often unable to discriminate between these classes. Remarkably, in class IV GCs, plastids appeared to lose the recognizable “main body” and become entirely tubulate.

atminE1. The plastid morphological patterns in the atminE1 GCs resembled those in arc6; whereas WT-like plastids (class I) were never observed, class II, III, and IV GCs were observed (Fig 4H and 4I, Fig 5A–5D, and S4 Fig). This result supports the observation that the plastid phenotype of atminE1 is similar to that of arc6, in GCs as well as in PCs.
Fig 4. Plastid phenotypes in leaf stomatal GCs in *Arabidopsis* WT, *arc5*, *arc6*, and *atminE1* plants. (A–I) Images of plastid-targeted YFP in the third-fourth leaf petioles of 4-week-old seedlings from the WT (A), *arc5* (B–D), *arc6* (E–G), and *atminE1* (H, I). CLSM images of maximal intensity projection (top panels) and merged with DIC (bottom panels) are shown. (J, K) Images of YFP-labeled plastids in GCs reconstructed from a series of optical sections generated by CLSM, taken at 0.3 or 0.6 µm intervals. The GC pairs in panels (J) and (K) are identical to those in panels (D) and (G), respectively. (L) Epifluorescence microscopy images of GCs in the third-fourth leaf petioles of 4-week-old seedlings from *arc6*. Images of YFP (top panels) and DIC (bottom panels) are shown. Bar = 10 µm.

https://doi.org/10.1371/journal.pone.0192380.g004
To confirm the unusual plastid morphologies in mutant GCs, we acquired three-dimensional images of class III plastids (Fig 4J and S1 Mov, from an arc5 sample) and class IV plastids (Fig 4K and S2 Mov, from an atminE1 sample), which clearly illustrate the structure and distribution of mini-plastids (class III) and web-like plastids (class IV) in GCs. These plastids were dispersed throughout the GC cytoplasm at high density. Further fluorescence microscopy analysis also supported that plastid imaging was not seriously affected by starch granules in

![Image of plastid morphologies and classification](https://doi.org/10.1371/journal.pone.0192380.g005)

Table E

Plant	GC with giant chloroplasts	GC with chloroplasts	GC without chloroplasts	Total number
WT	0	200	0	200
arc5	10	186	4	200
arc6	85	72	43	200
atminE1	142	41	17	200

Table F

Plant	Chloroplastic GC pair	Hybrid GC pair	Chloroplast-less GC pair	Total number
WT	0	0	0	100
arc5	2	6	2	100
arc6	24	33	19	100
atminE1	55	28	6	100

Fig 5. Classification of leaf stomatal GCs in Arabidopsis WT, arc5, arc6, and atminE1. (A–D) Images of stomatal GCs in the third-fourth leaf petioles of 4-week-old atminE1 seedlings. CLSM images of maximal intensity projection for plastid-targeted YFP (top panels) and chlorophyll autofluorescence (Chl; middle panels) and merged images with DIC (bottom panels) are shown. Bar = 10 μm. (E, F) Frequency of GCs with giant or normal-sized chloroplasts or lacking chloroplasts. In (E, F), the frequency of GCs in individuals (E) or paired cells (F) was counted in arbitrarily selected cells in the WT, arc5, arc6, and atminE1.
these cases (Fig 4L). To our knowledge, such distribution patterns of plastids have never been described in epidermal tissues of Arabidopsis shoots, and hence they might represent novel, extreme plastid phenotypes caused by mutations in plastid-division genes.

Quantitative evaluation of plastid morphology, pigmentation, and partitioning in leaf stomatal GCs in arc5 and arc6

We then observed chlorophyll autofluorescence and stromal YFP fluorescence simultaneously in GCs, as exemplified in atminE1 (Fig 5A–5D). The giant plastids (>6 μm in length) observed in class II GCs always emitted intense chlorophyll autofluorescence (Fig 5A and 5B), confirming that they were genuine chloroplasts. Among class II non-giant plastids in the same GCs, some were chloroplasts and others were chlorophyll-less plastids (Fig 5A and 5B). By contrast, all plastids in class III and IV GCs were chlorophyll-less (Fig 5C and 5D). We believe that such chlorophyll-less plastids bore no or only trace amounts of chlorophyll, as in the case of plastids in albino plants. These results reveal the association of the morphological patterns of GC plastids (i.e., classes I–IV) with the status of plastid differentiation (greening).

Based on the above observations, we classified GCs into three types: GCs containing giant chloroplasts, which covers part of class II (type 1); GCs containing normal-sized chloroplasts but no giant chloroplasts, which covers class I and the remainder of class II (type 2); and GCs not containing chloroplasts, which covers classes III and IV (type 3). Note that we never detected GCs containing only mini-chloroplasts in this study. We counted the occurrence of each GC type (Fig 5E and 5F) and the chloroplast number per GC (Fig 6) and measured the sizes of GC chloroplasts (Table 1) in the WT, arc5, arc6, and atminE1. Since a pair of GCs is terminally produced through symmetric division of the guard mother cell (GMC), we counted these chloroplasts in both single GCs and GC pairs to gain insight into plastid partitioning upon cell division. Fig 5B shows an extreme case of asymmetric plastid partitioning between paired GCs: one with a giant chloroplast and the other with a minute, non-colored plastid. Such a situation was never reported for mesophyll cells, and hence might be unique to GC pairs.

WT. Virtually all WT GCs fell into type 2 (Fig 5E and 5F and Table 1) and contained 5 ± 1 chloroplasts (max. 7; min. 3) per cell (Fig 6B). The vast majority of these chloroplasts were approximately 3–5 μm in length (Table 1). At the GC-pair level, the most frequent pattern of plastid partitioning was ‘cell A’:cell B’ = 4:5 (Fig 6A). Under the same experimental condition, non-transgenic plants of three A. thaliana ecotypes, Col, Ler and Ws, exhibited similar results to the WT, with respect to chloroplast number per stomata (for Col, 10 ± 1 on average, max. 15, min. 7 [n = 100]; for Ler, 11 ± 2 on average, max. 16, min. 8 [n = 100]; for Ws, 10 ± 2 on average, max. 16, min. 7 [n = 100]) and GC (for Col, 5 ± 1 on average, max. 8, min. 3 [n = 200]; for Ler, 6 ± 1 on average, max. 8, min. 3 [n = 200]; for Ws, 5 ± 1 on average, max. 8, min. 3 [n = 200]).

arc5. Most arc5 GCs fell into type 2, whereas type 1 and 3 GCs were also rarely observed (Fig 5E and Table 1). The GCs contained 4 ± 1 chloroplasts per cell (Fig 6B). On average, these chloroplasts were only slightly larger than those of the WT, and a large portion of arc5 chloroplasts were comparable to those of the WT in terms of size (Table 1). Nevertheless, the size range for arc5 chloroplasts (1.5–10.2 μm) was markedly higher than that in the WT (2.9–6.8 μm) (Table 1). Interestingly, at the GC-pair level, type 3 (chloroplast-less) GCs formed pairs with other type 3 GCs (Fig 5F).

arc6. A considerable number of arc6 GCs fell into type 1 and 3 (43% and 22%, respectively), in addition to type 2 (36%) (Fig 5E and Table 1). The GCs contained 2 ± 2 chloroplasts per cell (Fig 6B) that were larger than those of the WT, on average (Table 1).
ranged in size from 1.0 to 14.1 μm, although it is possible that tiny chloroplasts below the detection limit of current microscopy might also exist. This size range is even broader than that detected in arc5 (Table 1). At the GC-pair level, type 3 GCs had a tendency to pair with other type 3 GCs and to avoid “hybrid” pairing with types 1 and 2 (Figs 5F and 6A). This pattern of pairing is similar to that in arc5 (Fig 5F). Our results also indicate that GCs in arc5 and arc6 possess more chloroplasts per cell than previously described [7,19].

atminE1. The GCs from atminE1 fell into types 1 and 3 (at a level of 71% and 9%, respectively), in addition to type 2 (21%) (Fig 5E and Table 1). These GCs possessed 3 ± 1 chloroplasts per cell (Fig 6B), which were larger, on average, than those of the WT (Table 1). The chloroplasts ranged from 1.5 to 14.5 μm in size, which is similar to that in arc6 (Table 1). These quantitative data essentially support the similar morphological patterns of GC plastids

Table 1. Chloroplast length in leaf stomatal GCs of the WT, arc5, arc6, and atminE1.

Plant	WT	arc5	arc6	atminE1
Frequency of chloroplasts				
Giant chloroplast	1 (0.5%)	7 (3.5%)	64 (32.0%)	55 (27.5%)
Normal-sized chloroplast	199 (99.5%)	191 (95.5%)	102 (51.0%)	119 (59.5%)
Mini-chloroplast	0 (0.0%)	2 (1.0%)	35 (17.0%)	26 (13.0%)
Chloroplast length (μm)				
Average ± S.D.	4.3 ± 0.8	4.8 ± 1.0	5.2 ± 3.1	5.3 ± 2.7
Max.	6.8	10.2	14.1	14.5
Min.	2.9	1.5	1.0	1.5
Total number of chloroplasts examined	200	200	200	200

1 For experimental details, see the Materials and Methods.

https://doi.org/10.1371/journal.pone.0192380.t001
detected in \textit{arc6} and \textit{atminE1}, as shown in Fig 4. However, there were some differences between these mutants. For example, at the single-GC level, type 1 GCs were 1.7-fold more frequent in \textit{atminE1} than in \textit{arc6}, whereas type 3 was 2.5-fold less frequent in \textit{atminE1} than in \textit{arc6} (Fig 5E). When examined at the GC-pair level, this tendency was further reinforced; type 1/type 1 pairs were 2.3-fold more frequent in \textit{atminE1} than in \textit{arc6}, whereas type 3/type 3 pairs were 3.2-fold less frequent in \textit{atminE1} than in \textit{arc6} (Fig 5F).

To numerically evaluate the pairing preferences of GCs in the mutants, we conducted a simulation of random pairing among 200 GCs (resulting in 100 GC pairs), among which the number of each GC type was assumed to be that detected in the mutants by counting, as indicated in Fig 5E. A comparison of actual and simulated counts of each GC-pair type in \textit{arc6} revealed a strong preference for type 3/type 3 pairings and an avoidance of hybrid pairings (type 1/type 3 and type 2/type 3) (S5 Fig; see also Figs 5F and 6A). In \textit{atminE1}, essentially the same tendency of GC pairing was observed, although the difference between the actual and simulated counts was more modest than that observed for \textit{arc6}. Likewise, as for \textit{arc5}, we detected a preference of type 3/type 3 pairing and an avoidance of hybrid pairings. The difference between the actual and simulated counts for \textit{arc5} was generally small compared with those for \textit{arc6} and \textit{atminE1}, probably due to the low actual numbers of type 1 (10/200) and type 3 (4/200) GCs in \textit{arc5} (Fig 5E).

\section*{Discussion}

\subsection*{Exploring differences between PC plastid division and mesophyll chloroplast division}

In this study, we investigated the plastid phenotypes in leaf epidermal cells of the \textit{arc5} and \textit{arc6} mutants, which showed distinct morphological differences compared with the known chloroplast phenotypes reported for mesophyll cells of the corresponding mutants [5–7]. In \textit{arc5} mesophyll cells, the chloroplasts successfully initiate the division process but are unable to complete the daughter-chloroplast separation. As a result, all \textit{arc5} chloroplasts maintain a central constriction [6]. Since the \textit{arc5} mesophyll chloroplasts continue to grow without division, they are 6-fold larger than the WT at maturity. By contrast, in the present study, we found that the proportion of PC plastids with an obvious central constriction in \textit{arc5} was not clearly different from that in the WT and that their average size was only slightly larger than that in the WT (Fig 2). Therefore, despite the known phenotype of the \textit{arc5} mesophyll chloroplasts, a large portion of \textit{arc5} PC plastids are capable of completing their division process. The \textit{ARC5} gene product, DRP5B, assembles into a constriction ring at the central division site on the cytosolic surface of the chloroplast, and its \textit{Cyanidioschyzon} homolog generates the force needed for constriction \textit{via} the chloroplast division machinery [8] (for a review, see [52]). Our results raise new possibilities for the role of DRP5B in plastid division. The first possibility is that DRP5B is only required for the fission of well-expanded or expanding plastids, such as those observed in mesophyll cells, but it is dispensable for poorly sized plastids, such as those observed in PCs. The second possibility (which is not exclusive of the first) is that PCs contain a plastid division machinery that is distinct from that of mesophyll chloroplasts and does not involve DRP5B. The possibility that DRP5B is dispensable for plastid division in certain types (or developmental stages) of cells is supported by an earlier report showing that the expression of DRP5B was too low to detect plastidial DRP5B rings in shoot apical meristems and young emerging leaves of \textit{Arabidopsis} [53]. The possibility that dumbbell-shaped PC plastids of \textit{arc5} contain a normal FtsZ ring at the mid-plastid constriction should be addressed in a future study. This issue is intriguing because the division-arrested mesophyll chloroplasts of \textit{arc5} possess multiple, uncondensed FtsZ rings (or spirals) at or near the constriction site [13,54].
In the mesophyll cells of both arc6 and atminE1 (and another allele, arc12), chloroplasts are unable to initiate the division process but instead continue to expand, resulting in the uniform occurrence of mesophyll cells containing one or a few, extremely large chloroplasts [7,27,30,46], indicating that ARC6 and MinE are critical initiation factors in the conventional chloroplast division system. On the other hand, PC plastids in arc6 and atminE1 assume various morphological features in addition to the formation of giant plastids: size heterogeneity, extensive stromule formation, and the formation of putative division constrictions, although only in small plastids (Fig 2). ARC6 spans the inner envelope and promotes FtsZ ring formation in mesophyll chloroplasts, thereby promoting their division [9], whereas MinE (encoded by AtMinE1 in A. thaliana) is a stromal protein that regulates FtsZ ring positioning in mesophyll chloroplasts and hence assures their symmetric division [27,34]. The distinct roles of ARC6 and MinE in chloroplast division machinery suggest that the aberrant morphologies of epidermal plastids in arc6 and atminE1 cannot be ascribed to a defect in the specific functions of ARC6 or MinE, but rather, they might be due to a common failure to complete an upstream event in the plastid division process (for instance, assembly of the contractile FtsZ ring).

Plastid clustering in arc6 leaf PCs

The finding that grape-like plastid clusters occur in arc6 (Fig 3) and atminE1 [28] provides important insights into the defective control of plastid division in PCs. In a previous study of atminE1 PCs [28], we proposed that such plastid clusters occurred via the formation of stroma-containing “bulges”, derived from plastid bodies, stromules, or other types of plastid subcompartments, but failed to separate from one another. Within the grape-like plastid clusters in atminE1 PCs, FtsZ1 rings were detected in the narrow regions of bulges, but not at their “basal” regions, from which the bulges appeared to arise [28]. This finding, and the absence of node-like structures connecting bulges at the center of the grape-like cluster in arc6 (Fig 3B) and atminE1 [28], support the hypothesis that the cluster is derived from one or a few plastids containing many bulges, at least some of which undergo fission to produce discrete plastidic entities but are incapable of detaching themselves from the site of membrane fission, and which may generally be induced by serious inhibition of PC plastid division. The process by which plastid bulges are formed, maintained, and possibly separated in arc6 and atminE1 PCs should be investigated in more detail to expand our knowledge of the non-mesophyll mode of plastid division.

Plastid biogenesis during stomatal GC differentiation in the leaf epidermis of chloroplast division mutants

Stomatal GCs lacking chloroplasts, but containing chlorophyll-deficient plastids, have been observed in the tomato suffulta mutant [21] and Arabidopsis arc6 and crl mutants [19], leading to a model in which such non-green plastids in GCs arise by budding and fragmentation of giant chloroplasts (model A). This model was originally proposed for plastid replication in the pericarp cells of ripening tomato fruits [3,21,30,55]. In a previous study based on the observation of PC chloroplasts/plastids in the Arabidopsis atminE1 mutant, we proposed an alternative, but not mutually exclusive, model in which giant chloroplasts give rise to daughter chloroplasts or chlorophyll-less plastids through the formation of intermediate “bulge” structures (model B) [28]. We also hypothesized that these normal- or mini-sized daughter chloroplasts/plastids are capable of replicating with the aid of FtsZ1 division ring formation (model C) [28]. Conceivably, the morphological patterns of the leaf epidermal plastids in arc5, arc6, and atminE1 observed in the present study might result from a combination of these three models. In particular, it would be intriguing to investigate whether and how the formation of
class III and IV GCs in \textit{arc6} and \textit{atminE1} (Figs 4 and 5 and S2 and S3 Figs) can be explained by these models.

The general trend that a type 3 GC pairs with another type 3 GC, as observed in \textit{arc6} and \textit{atminE1} (Figs S5F and 6A), suggests that a portion of GMCs exclusively contain chlorophyll-less plastids. As represented by the class IV pattern, plastid biogenesis in GCs is a unique, markedly different process from that of the surrounding PCs, even though both GCs and PCs are present in the same epidermal tissue. Thus, in the future, it would be interesting to examine plastid biogenesis in GMCs to explore how the switching of the plastid biogenesis mode occurs.

\textbf{Insights from the varied plastid morphologies in the epidermal cells of chloroplast division mutants}

Variability in chloroplast size in a mesophyll cell is an important hallmark of "division site placement" mutants, whose responsible loci encode division site positioning factors [56–62]. The current results indicate that size heterogeneity in plastids can occur in PCs and GCs of \textit{arc5} and \textit{arc6} (Figs 2 and 4), both with responsible loci that encode the key components of the division ring complex in mesophyll chloroplasts. Furthermore, plastid size heterogeneity was also observed in PCs and GCs of \textit{atminE1} (Figs 2 and 4), in which mesophyll chloroplasts fail to initiate their division [27]. These phenotypes were exactly the same as those observed in \textit{arc6} [7]. We cannot rule out the possibility that both ARC5/DRP5B and ARC6 act as plastid division site regulators in PCs and GCs and that, in these non-mesophyll cells, the role of MinE is opposite that in mesophyll cells (\textit{i.e.}, a MinD-like function). Nevertheless, a more plausible explanation is that correct division site positioning in plastids is more vulnerable to malfunctioning of the division ring machinery in non-mesophyll tissues than in the mesophyll. Perhaps such increased vulnerability is associated with the higher fluidity (or lower rigidity) of the plastid envelope membranes, as indicated by the more frequent formation of stromules compared with that of mesophyll chloroplasts. Under this scenario, the timing or extent of bulge and stromule development may contribute to the plastid heterogeneity detected in PCs. Our current and recent observations [28,63] strengthen the notion that leaf epidermal plastids tend to display high morphological variability on a cell-by-cell or even plastid-by-plastid basis, as induced by mutations in chloroplast division genes.

Concerning the developmental regulation of plastid morphology in the division mutants, we previously proposed that development-associated chloroplast expansion prevents the constriction events of the plastid envelope in leaf mesophylls of an \textit{AtMinE1} overexpressor and \textit{arc11}, a chloroplast division site positioning mutant [56,64]. Based on this, thylakoid development may be a critical index for distinguishing the plastid phenotypes of leaf epidermis and mesophylls. The thylakoid system itself has mechanical strength, which enables it to retain well-preserved forms following isolation from chloroplasts. Upon defects in the plastid division apparatus, epidermal plastids that are poor in thylakoid membranes might undergo division \textit{via} a rudimentary PtsZ1 ring [28], whereas mesophyll chloroplasts tend to continuously grow because of restrictions caused by the presence or growth of their thylakoids. In support of this idea, a majority of PtsZ1 rings in epidermal plastids of \textit{arc11} achieved plastid fission, unlike mesophyll chloroplasts [65]. Furthermore, it has been recently shown that thylakoid division in \textit{Arabidopsis} mesophyll chloroplasts requires the plastid division machinery [66]. The relationship between thylakoid organization and plastid division is almost unknown and will require substantial investigation in the future [54].

The differences in phenotypes reported for epidermal plastids in \textit{arc5}, \textit{arc6} or \textit{atminE1} are an important consideration. In particular, in \textit{arc6}, despite well-conserved GC structures, there
have been some differences in the literature concerning the size, shape, and number of GC plastids (chloroplasts) [5,7,18,19]. As a whole, the GC plastids observed in the current study were more highly developed, and more chloroplasts were produced in the plant samples examined than in other studies. Differences in the study materials, such as the use of rosette leaves ([5,7,18] and this study) or cotyledons [19], the adaxial (this study) or abaxial [5,7,18] side of leaves, and soil [5,7,18] or solid medium (this study) for plant cultivation, may explain the variations in GC phenotypes among studies. As recently reported for the hypocotyl and root epidermal cells [67], differences in the distance from key proliferative zones for leaf development, such as the shoot apical meristem and the leaf blade–petiole junction [68,69], could also affect GC phenotypes. Furthermore, differences in organelle states could affect the physiological functions or activities of the GCs. The plastid morphology reported in this study should be of help in future studies investigating the roles of GCs in the control of stomatal opening and closing [70,71]. This would also be the case for studies designed to examine the roles of PCs.

Supporting information

S1 Fig. Plastid phenotype of arc6 leaf PCs. A CLSM image of maximal intensity projection is shown. The arrowhead indicates two stromules that appear to align or wind together. See also Fig 2. Bar = 10 μm. (TIF)

S2 Fig. Distribution of YFP-labeled plastids in a GC pair in arc5. Serial optical sections of Fig 4D are shown. Bar = 10 μm. (TIF)

S3 Fig. Distribution of YFP-labeled plastids in GC pairs in arc6. (A, B) Serial optical sections of Fig 4F (A) and 4G (B) are shown. Bar = 10 μm. (TIF)

S4 Fig. Distribution of YFP-labeled plastids in a GC pair in atminE1. Serial optical sections of Fig 4I are shown. Bar = 10 μm. (TIF)

S5 Fig. Simulation of random GC pairing in arc5, arc6, and atminE1. For all 200 GCs, the number of each GC type is the same as the actual count in the mutant (Fig 5E). The GCs were randomly shuffled to create 100 GC pairs, and the number of each GC-pair type was counted in each simulation trial. The average counts from 1,000 trials for each mutant are shown (gray boxes), along with standard deviation (error bars). The actual counts of each GC-pair type in 100 GC pairs (Fig 5F) are also shown for each mutant (black boxes) for comparison. For arc5, bar plots for the low-count pairs are also shown, with a 9× magnified y-axis. The simulation program was written in Python 3.6 and is available upon request. (TIF)

S1 Mov. Three-dimensional image of YFP-labeled plastids in a GC pair in arc5. A three-dimensionally reconstructed image of the GC plastids in Fig 4J is shown with rotation around two axes. (MOV)

S2 Mov. Three-dimensional image of YFP-labeled plastids in a GC pair in atminE1. A three-dimensionally reconstructed image of the GC plastids in Fig 4K is shown with rotation around two axes. (MOV)
Acknowledgments

The authors are grateful to the Arabidopsis Biological Resource Center (ABRC, USA) and the Institut National de la Recherche Agronomique (INRA, France) for maintaining and distributing the Arabidopsis seeds and to Dr. Kevin Pyke and Dr. Rachel Leech (UK) for their donation of arc mutant seeds. The authors also thank Y. Kazama and H. Ishikawa for helpful discussions and T. Motoyama, I. Yamaguchi, H. Ichikawa, N. Suzuki, S. Shimada, A. Yamagami, S. Ohbu, and the staff at RIKEN BOCC for experimental support. This work was supported by the RIKEN Special Postdoctoral Researcher Program and a Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science.

Author Contributions

Conceptualization: Makoto T. Fujiwara, Yasuo Niwa, Ryuuichi D. Itoh.

Data curation: Makoto T. Fujiwara, Mana Yasuzawa, Kei H. Kojo, Ryuuichi D. Itoh.

Formal analysis: Makoto T. Fujiwara, Kei H. Kojo, Takeshi Nakano, Ryuuichi D. Itoh.

Funding acquisition: Makoto T. Fujiwara, Tomoko Abe, Shigeo Yoshida, Ryuuichi D. Itoh.

Investigation: Makoto T. Fujiwara, Mana Yasuzawa, Ryuuichi D. Itoh.

Methodology: Kei H. Kojo, Yasuo Niwa, Takeshi Nakano.

Resources: Yasuo Niwa.

Supervision: Tomoko Abe, Shigeo Yoshida.

Writing – original draft: Makoto T. Fujiwara, Ryuuichi D. Itoh.

References

1. Possingham JV, Lawrence ME. Controls to plastid division. Int Rev Cytol. 1983; 84: 1–56. https://doi.org/10.1016/s0074-7696(08)61014-1
2. Leech RM, Thomson WW, Platt-Aloia KA. Observations on the mechanism of chloroplast division in higher plants. New Phytol. 1981; 87: 1–9. https://doi.org/10.1111/j.1469-8137.1981.tb01696.x
3. Osteryoung KW, Pyke KA. Division and dynamic morphology of plastids. Annu Rev Plant Biol. 2014; 65: 443–472. https://doi.org/10.1146/annurev-arplant-050213-035748 PMID: 24471836
4. Pyke KA, Leech RM. Rapid image analysis screening procedure for identifying chloroplast number mutants in mesophyll cells of Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1991; 96: 1193–1195. https://doi.org/10.1104/pp.96.4.1193 PMID: 16668319
5. Pyke KA, Leech RM. A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol. 1994; 104: 201–207. https://doi.org/10.1104/pp.104.1.201 PMID: 12232072
6. Robertson EJ, Rutherford SM, Leech RM. Characterization of chloroplast division using the Arabidopsis mutant arc5. Plant Physiol. 1996; 112: 149–159. https://doi.org/10.1104/pp.112.1.149 PMID: 8819323
7. Pyke KA, Rutherford SM, Robertson EJ, Leech RM. arc6, a fertile Arabidopsis mutant with only two mesophyll cell chloroplasts. Plant Physiol. 1994; 106: 1169–1177. https://doi.org/10.1104/pp.106.3.1169 PMID: 12232400
8. Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW. ARCS, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci USA. 2003; 100: 4328–4333. https://doi.org/10.1073/pnas.0530208100 PMID: 12642673
9. Vitha S, Froehlich JE, Koksharova O, Pyke KA. ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein FtsZ. Plant Cell. 2003; 15: 1918–1933. https://doi.org/10.1105/tpc.013292 PMID: 12897262
10. Grosche C, Rensing SA. Three rings for the evolution of plastid shape: a tale of land plant FtsZ. Protoplasma. 2017; 254: 1879–1885. https://doi.org/10.1007/s00709-017-1096-x PMID: 28258494
11. Yoshida Y, Mogi Y, TerBush AD, Osteryoung KW. Chloroplast FtsZ assemblies into a contractile ring via tubulin-like heteropolymerization. Nat Plants. 2016; 2: 1–10. https://doi.org/10.1038/nplants.2016.95 PMID: 27322858
12. Maple J, Aldridge C, Meller SG. Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J. 2005; 43: 811–823. https://doi.org/10.1111/j.1365-313X.2005.02493.x PMID: 16146521

13. Miyagishima SY, Froehlich JE, Osteryoung KW. PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. Plant Cell. 2006; 18: 2517–2530. https://doi.org/10.1105/tpc.106.045484 PMID: 16998069

14. Glynn JM, Froehlich JE, Osteryoung KW. Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell. 2008; 20: 2460–2470. https://doi.org/10.1105/tpc.108.061440 PMID: 18812496

15. Wang W, Li J, Sun Q, Yu X, Zhang W, Jia N, et al. Structural insights into the coordination of plastid division by the ARC6-PDV2 complex. Nat. Plants. 2017; 3: 1–9. https://doi.org/10.1038/nplants.2017.11 PMID: 28248291

16. Barton KA, Schattat MH, Jakob T, Hause G, Wilhelm C, Mckenna JF, et al. Epidermal pavement cells of Arabidopsis have chloroplasts. Plant Physiol. 2016; 171: 723–726. https://doi.org/10.1104/pp.16.00608 PMID: 27288524

17. Barton KA, Wozny MR, Mathur N, Jaipargas E-A, Mathur J. Chloroplast behavior and interactions with other organelles in Arabidopsis thaliana pavement cells. J Cell Sci. 2017; jcs.202275. https://doi.org/10.1242/jcs.202275 PMID: 28320821

18. Robertson EJ, Pyke KA, Leech RM. arc6, an extreme plastid division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices. J Cell Sci. 1995; 108: 2937–2944. PMID: 8537433

19. Chen Y, Asano T, Fujiwara MT, Yoshida S, Machida Y, Yoshioa Y. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana. Plant Cell Physiol. 2009; 50: 956–969. https://doi.org/10.1093/pcp/pcp047 PMID: 19318374

20. Asano T, Yoshioa Y, Kurei S, Sakamoto W, Sodmereg, Machida Y. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. Plant J. 2004; 38: 448–459. https://doi.org/10.1111/j.1365-313X.2004.02057.x PMID: 15086805

21. Forth D, Pyke KA. The suffulta mutation in tomato reveals a novel method of plastid replication during fruit ripening. J Exp Bot. 2006; 57: 1971–1979. https://doi.org/10.1038/jxb.144 PMID: 16595980

22. Holzinger A, Kwok EY, Hanson MR. Effects of arc3, arc5 and arc6 mutations on plastid morphology and stromule formation in green and non-green tissues of Arabidopsis thaliana. Photochem Photobiol. 2008; 84: 1324–1335. https://doi.org/10.1111/j.1751-1087.2008.00437.x PMID: 18764989

23. Kojo KH, Fujiwara MT, Itoh RD. Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana. Biosci Biotechnol Biochem. 2009; 73: 2632–2639. https://doi.org/10.1271/bbb.90473 PMID: 19966487

24. Itoh R, Fujiwara M, Negata N, Yoshida S. A chloroplast protein homologous to the eubacterial topological specificity factor MinE plays a role in chloroplast division. Plant Physiol. 2001; 127: 1644–1655. https://doi.org/10.1104/pp.010386 PMID: 11743109

25. Maple J, Chua NH, Meller SG. The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J. 2002; 31: 269–277. https://doi.org/10.1046/j.1365-313X.2002.01358.x PMID: 12164807

26. Reddy MSS, Dinkins R, Collins G. Overexpression of the Arabidopsis thaliana MinE1 bacterial division inhibitor homologue gene alters chloroplast size and morphology in transgenic Arabidopsis and tobacco plants. Planta. 2002; 215: 167–176. https://doi.org/10.1007/s00042-001-0728-7 PMID: 12029464

27. Fujiwara MT, Hashimoto H, Kazama Y, Abe T, Yoshida S, Sato N, et al. The assembly of the FtsZ ring at the mid-chloroplast division site depends on a balance between the activities of AtMinE1 and ARC11/AtMinD1. Plant Cell Physiol. 2008; 49: 345–361. https://doi.org/10.1093/pch/pcn012 PMID: 18204083

28. Fujiwara MT, Kojo KH, Kazama Y, Sasaki S, Abe T, Itoh RD. The Arabidopsis minE1 mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis. Front Plant Sci. 2015; 6: 389–15. https://doi.org/10.1038/nplants.2017.11 PMID: 28248291

29. Schattat MH, Griffiths S, Mathur N, Barton KA, Wozny MR, Dunn N, et al. Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell. 2012; 24: 1465–1477. https://doi.org/10.1105/tpc.111.095398 PMID: 22474180

30. Pyke KA. Plastid division. AoB Plants. 2010; 2010: plq016. https://doi.org/10.1093/aobpla/plq016 PMID: 22476074

31. Pyke KA. Plastid Division. In: Rose R, editor. Molecular Cell Biology of the Growth and Differentiation of Plant Cells. Florida: CRC Press; 2016. pp. 37–50.

32. Samson F, Brunaud V, Balzergue S, Dubreucq B, Lepiniec L, Pelletier G, et al. FLAGdb/FST: a database of mapped flanking insertion sites (FSTs) of Arabidopsis thaliana T-DNA transformants. Nucleic Acids Res. 2002; 30: 94–97. https://doi.org/10.1093/nar/30.1.94 PMID: 11782264
33. Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H. Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J. 1999; 18: 455–463. https://doi.org/10.1046/j.1365-313X.1999.00464.x PMID: 10406127

34. Fujiwara MT, Sekine K, Yamamoto YY, Abe T, Sato N, Itoh RD. Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana. Plant Cell Physiol. 2009; 50: 1116–1126. https://doi.org/10.1039/ppc0063 PMID: 19403522

35. Pyke K. The genetic control of plastid division in higher plants. Am J Bot. 1997; 84: 1017. https://doi.org/10.2307/2446145 PMID: 21708657

36. Schattat M, Barton K, Baudisch B, Klosgen RB, Mathur J. Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol. 2011; 155: 1667–1677. https://doi.org/10.1104/pp.110.170480 PMID: 21273446

37. Kwok EY, Hanson MR. Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep. 2004; 23: 188–195. https://doi.org/10.1007/s00299-004-0824-9 PMID: 15252692

38. Waters MT, Fray RG, Pyke KA. Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J. 2004; 39: 655–667. https://doi.org/10.1111/j.1365-313X.2004.02164.x PMID: 15272881

39. Schattat MH, Klosgen RB. Induction of stromule formation by extracellular sucrose and glucose in epidermal leaf tissue of Arabidopsis thaliana. BMC Plant Biol. 2011; 11: 115. https://doi.org/10.1186/1471-2229-11-115 PMID: 21846357

40. Pyke K. Plastid Biology. 1st ed. Cambridge: Cambridge University Press; 2009

41. Pyke K. Plastid biogenesis and differentiation. In: Bock R, editor. Cell and Molecular Biology of Plastids (Topics in Current Genetics, Vol. 19). Berlin, Heidelberg: Springer; 2007. pp. 1–28. https://doi.org/10.1007/978-3-540-72291-1 11 PMID: 20088905

42. Itoh RD, Yamasaki A, Septiana A, Yoshida S, Fujiwara MT. Chemical induction of rapid and reversible plastid filamentation in Arabidopsis thaliana roots. Physiol Plant. 2010; 139: 144–158. https://doi.org/10.1111/j.1399-3054.2010.01352.x PMID: 20088905

43. Pyke KA, Page AM. Plastid ontogeny during petal development in Arabidopsis. Plant Physiol. 1998; 116: 797–803. https://doi.org/10.1104/pp.116.2.797 PMID: 9489024

44. Yamamoto K, Pyke KA, Kiss JZ. Reduced gravitropism in inflorescence stems and hypocotyls, but not roots, of Arabidopsis mutants with large plastids. Physiol Plant. 2002; 114: 627–636. https://doi.org/10.1046/j.1399-3054.2002.1140417.x PMID: 11975738

45. Pyke KA. Plastid division and development. Plant Cell 1999; 11: 549–556. https://doi.org/10.1105/tpc.11.4.549 PMID: 10213777

46. Glynn JM, Miyagishima S-Y, Yoder DW, Osteryoung KW, Vitha S. Chloroplast division. Traffic. 2007; 8: 451–461. https://doi.org/10.1111/j.1600-0854.2007.00545.x PMID: 17451550

47. Wang P, Zhang J, Su J, Wang P, Liu J, Liu B, et al. The chloroplast Min system functions differentially in two specific nongreen plastids in Arabidopsis thaliana. PLOS ONE. 2013; 8: e71190. https://doi.org/10.1371/journal.pone.0071190 PMID: 23936263

48. Zhang M, Schmitz AJ, Kadirjan-Kalbach DK, TerBush AD, Osteryoung KW. Chloroplast division protein ARC3 regulates chloroplast FtsZ-ring assembly and positioning in Arabidopsis through Interaction with FtsZ2. Plant Cell. 2013; 25: 1787–1802. https://doi.org/10.1105/tpc.113.111047 PMID: 23715471

49. Johnson CB, Long Z, Luo Z, Shaik RS, Sung MW, Vitha S, et al. In situ structure of FtsZ mini-rings in Arabidopsis chloroplasts. Adv Struct Chem Imag. 2015; 1: 12. https://doi.org/10.1186/s40679-015-0013-7

50. Taiz L, Zeiger E. Plant Physiology. 5th ed. Sunderland: Sinauer Associates; 2010.

51. Tirlapur UK, Dahse I, Reiss B, Meurer J, Oelmüller R. Characterization of the activity of a plastid-targeted green fluorescent protein in Arabidopsis. Eur J Cell Biol. 1999; 78: 233–240. https://doi.org/10.1016/S0171-9335(99)80056-9 PMID: 10350211

52. Yoshida Y, Miyagishima S-Y, Kuroiwa H, Kuroiwa T. The plastid-dividing machinery: formation, constriction and fission. Curr Opin Plant Biol. 2012; 15: 714–721. https://doi.org/10.1016/j.pbi.2012.07.002 PMID: 22824141

53. Okazaki K, Kabeya Y, Suzuki K, Mori T, Ichikawa T, Matsui M, et al. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell. 2009; 21: 1769–1780. https://doi.org/10.1105/tpc.109.067785 PMID: 19567705

54. Chen C, MacCready JS, Ducat DC, Osteryoung KW. The molecular machinery of chloroplast division. Plant Physiol. 2017; https://doi.org/10.1104/pp.17.01272 PMID: 29079653
55. Pyke KA. Divide and shape: an endosymbiont in action. Planta. 2013; 237: 381–387. https://doi.org/10.1007/s00425-012-1739-2 PMID: 22910876

56. Marrison JL, Rutherford SM, Robertson EJ, Dean C, Leech RM. The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J. 1999; 18: 651–662. https://doi.org/10.1046/j.1365-313x.1999.00500.x PMID: 10417716

57. Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Osteryoung KW. A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol. 2000; 10: 507–516. https://doi.org/10.1016/S0960-9822(00)00466-8 PMID: 10801439

58. Maple J, Voja L, Soll J, Møller SG. ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep. 2007; 8: 293–299. https://doi.org/10.1038/sj.embor.7400902 PMID: 17304239

59. Nakashishi H, Suzuki K, Kabeya Y, Miyagishima S-Y. Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD. Curr Biol. 2009; 19: 151–156. https://doi.org/10.1016/j.cub.2008.12.018 PMID: 19135368

60. Glynn JM, Yang Y, Vitha S, Schmitz AJ, Hemmes M, Miyagishima S-Y, et al. PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PVD1 during chloroplast division in Arabidopsis. Plant J. 2009; 59: 700–711. https://doi.org/10.1111/j.1365-313X.2009.03905.x PMID: 19453460

61. Zhang M, Hu Y, Jia J, Li D, Zhang R, Gao H, et al. CDP1, a novel component of chloroplast division site positioning system in Arabidopsis. Cell Res. 2009; 19: 877–886. https://doi.org/10.1038/cr.2009.78 PMID: 19564892

62. Ottesen E, Zhong R, Lamppa GK. Identification of a chloroplast division mutant coding for ARC6H, an ARC6 homolog that plays a nonredundant role. Plant Sci. 2010; 178: 114–122. https://doi.org/10.1016/j.plantsci.2009.10.009

63. Itoh RD, Ishikawa H, Nakajima KP, Moriyama S, Fujiwara MT. Isolation and analysis of a stromule-over-producing Arabidopsis mutant suggest the role of PARC6 in plastid morphology maintenance in the leaf epidermis. Physiol Plant. 2017; https://doi.org/10.1111/ppl.12648 PMID: 28964364

64. Fujiwara MT, Nakamura A, Itoh R, Shimada Y, Yoshida S, Møller SG. Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J Cell Sci. 2004; 117: 2399–2410. https://doi.org/10.1242/jcs.01092 PMID: 15126639

65. Fujiwara MT, Yasuzawa M, Sasaki S, Nakano T, Niwa Y, Yoshida S, et al. The Arabidopsis minD mutation causes aberrant FtsZ1 ring placement and moderate heterogeneity of chloroplasts in the leaf epidermis. Plant Signal Behav. 2017; 12: e1343776. https://doi.org/10.1080/15592324.2017.1343776 PMID: 28647938

66. Ho J, Kwan W, Li V, Theng S. Characterization of thylakoid division using chloroplast dividing mutants in Arabidopsis, 2017. Preprint. Available from: bioRxiv https://doi.org/10.1101/200667 Cited 15 November

67. Bramham L, Pyke K. Changing plastid dynamics within early root and shoot apical meristem-derived tissue of A. thaliana. Bioscience Horizons. 2017; 10: hzx001. https://doi.org/10.1093/biohorizons/hzx001

68. Ichihashi Y, Kawade K, Usami T, Horiguchi G, Takahashi T, Tsukaya H. Key proliferative activity in the junction between the leaf blade and leaf petiole of Arabidopsis. Plant Physiol. 2011; 157: 1151–1162. https://doi.org/10.1104/pp.111.185086 PMID: 21880932

69. Ichihashi Y, Tsukaya H. Behavior of leaf meristems and their modification. Front Plant Sci. 2015; 6: 201515–201118. https://doi.org/10.3389/fpls.2015.01066 PMID: 26648955

70. Wang S-W, Li Y, Zhang X-L, Yang H-Q, Han X-F, Liu Z-H, et al. Lacking chloroplasts in guard cells of crumpled leaf attenuates stomatal opening: both guard cell chloroplasts and mesophyll contribute to guard cell ATP levels. Plant Cell Environ. 2014; 37: 2201–2210. https://doi.org/10.1111/pce.12297 PMID: 24506786

71. Santelia D, Lawson T. Rethinking guard cell metabolism. Plant Physiol. 2016; 172: 1371–1392. https://doi.org/10.1104/pp.16.00767 PMID: 27609861