Genetic influences on viral-induced cytokine responses in the lung

Jessica L. Forbester 1,2 and Ian R. Humphreys 1

Infection with respiratory viruses such as influenza, respiratory syncytial virus and coronavirus provides a difficult immunological challenge for the host, where a balance must be established between controlling viral replication and limiting damage to the delicate lung structure. Although the genetic architecture of host responses to respiratory viral infections is not yet understood, it is clear there is underlying heritability that influences pathogenesis. Immune control of virus replication is essential in respiratory infections, but overt activation can enhance inflammation and disease severity. Cytokines initiate antiviral immune responses but are implicated in viral pathogenesis. Here, we discuss how host genetic variation may influence cytokine responses to respiratory viral infections and, based on our current understanding of the role that cytokines play in viral pathogenesis, how this may influence disease severity. We also discuss how induced pluripotent stem cells may be utilised to probe the mechanistic implications of allelic variation in genes in virus-induced inflammatory responses. Ultimately, this could help to design better immune modulators, stratify high risk patients and tailor anti-inflammatory treatments, potentially expanding the ability to treat respiratory virus outbreaks in the future.

Mucosal Immunology (2021) 14:14–25; https://doi.org/10.1038/s41385-020-00355-6

Impact of inflammation on pulmonary viral infections

The primary role of the lung is gas exchange and oxygen delivery, which are fundamental processes for host survival, but also leave the lung vulnerable to pathogens due to constant exposure to the external environment. Therefore, the lung provides a difficult immunological challenge for the host, where a balance must be maintained between defending against any would-be microbial invaders, whilst limiting damage to lung cells and the delicate structure. Infection with respiratory pathogens can lead to obstruction of the airways, loss of alveolar structure and degradation of the critical extracellular matrix; this damage can result in severely compromised lung function, potentially resulting in death of the host.

To respond to respiratory pathogens, the host must initiate an immune response. Rapidly after infection, pathogens associated molecular patterns (PAMPs) are detected by pattern recognition receptors (PRRs), activating transcription factors (TFs), such as interferon regulatory factors (IRFs) and NFkB, which subsequently induce the upregulation of sets of genes including cytokines and interferons (IFNs). IFNs induce the upregulation of IFN-stimulated genes, ISGs, whose products can directly restrict pathogens. Cytokines and chemokines regulate the second arm of defence, recruiting and coordinating specific subsets of leucocytes. Increasing innate resistance to a pathogen and increasing tolerance to the resultant infection are two strategies of host defence; the severe lung inflammation associated with some respiratory infections is a difficult challenge for the immune system. Susceptibility occurs if a host is unable to reduce the pathogen burden or tolerate the negative consequences of the immune response.

Viral respiratory pathogens

The predominant viral pathogens causing lower respiratory tract infections (LRTI) in humans are respiratory syncytial virus (RSV), enteroviruses such as human rhinoviruses, adenoviruses, human metapneumovirus, influenza and paraflu influenza virus. In addition, novel coronaviruses (CoVs) derived from animal populations have infected humans in recent years, including SARS-CoV-2, which also target the lower respiratory tract. Furthermore, seasonal CoVs can cause acute LRTI in infants and immunocompromised patients. Herein, we will briefly focus on the inflammatory responses induced by the more severe respiratory viral infections influenza, RSV and coronavirus, which are currently the respiratory viral pathogens that pose the most significant challenge to global public health. We acknowledge the importance of bacterial co-infection, particularly with respect to influenza infection. However, due to space restrictions, we will focus on primary viral infections.

Influenza

Influenza is one of the most well-studied respiratory viruses. It occurs in two forms: seasonal (epidemic) influenza caused by Influenza A and B viruses (IAV), and sporadic pandemics caused by IAV 1. In the majority of seasonal influenza infections, inflammation is usually limited to the upper respiratory tract, and symptoms are fairly mild. However, during severe IAV infections, often associated with pandemic strains, the virus can reach the alveolar epithelium in the lower respiratory tract, potentially causing severe tissue damage, affecting gas exchange and sometimes leading to respiratory dysfunction or acute respiratory distress syndrome (ARDS).
In IAV-induced ARDS most of the lung pathology is associated with the release of cytokines and other pro-inflammatory mediators. Elevated serum levels of pro-inflammatory cytokines and chemokines, including IL-1β, IL-6, TNF-α, IL-8, MCP-1, MIP-1β and IP-10, have been identified as markers of severity in acute lung injury during infection with IAV pandemic H1N1/09. Furthermore, in humans, observations in H5N1-infected individuals suggest that high viral loads and the resulting intense inflammatory responses are central to influenza H5N1 pathogenesis, and that the focus of clinical management of this virus should consider preventing this intense cytokine response. In young ‘healthy’ adults, IAV pH1N1/09 induces a TNF-α M1-like monocyte response that correlated with disease severity. In vivo models have been used to dissect roles for cytokines in IAV-associated pathogenesis. Despite the lack of susceptibility to many human IAV strains, mice are often used as an IAV model due to their practicality and versatility as an experimental system. Most research uses inbred C57BL/6 or BALB/c mice in conjunction with lab adapted A/Puerto Rico/8/1934 (H1N1) [PR/8] or A/WSN/1933 (H1N1) [WSN] influenza viruses. These tend to be more pathogenic in mice than humans; replicating and causing damage predominantly in the lower respiratory tract, causing rapid mortality, with severe lung inflammation associated with an influx of neutrophils and macrophages. Highly pathogenic viruses of the H5N1 subtype, certain H7 subtype viruses and 2009 H1N1 pandemic strains do not need to be adapted for murine infection. X31, a reassortment virus with HA and NA genes of A/Hong Kong/1/1968 (H3N2) in the PR8 background, generates a milder infection in mice, and does not result in the rapid mortality observed with PR/8 and WSN.

The type I IFNs, IFN-α and IFN-β, are expressed early in IAV infection and establish feedback loops through IFN α/β receptor signalling, sustaining the production of other pro-inflammatory cytokines such as IL-6, TNF-α and IL-1β. Type I IFNs also induce factors that limit virus replication, such as members of the interferon-induced transmembrane (IFITM) and tripartite motif families. Although type I IFN production is important for initiating antiviral responses, high type I IFN production during infection can drive exacerbated pathology by amplifying pro-inflammatory responses. It has been shown that different strains of IAV that can replicate solely with the polymerase complex can exhibit high viral titres in the liver, spleen and brain, in contrast to WT mice. However, with viruses that replicate solely with the respiratory tract, IFN-α appears sufficient for viral control.

Glucocorticoids, which suppress production of cytokines, are not protective in IAV infection in mice, suggesting that targeting the host inflammatory response may be ineffective. Indeed, aside from data from dexamethasone treatment of COVID-19 (see below), little evidence from clinical studies suggests that glucocorticoids ameliorate symptoms of respiratory viral infections. Importantly, however, cytokines such as IL-6 and TNF-α have pleiotropic roles in IAV infection; IL-6 is required for neutrophil survival in the lung, and antiviral T-cell development. One study reported that TNF-α induces RIG-I expression, which enhances antiviral cytokine production, and another demonstrated direct inhibition of viral replication in lung epithelial cells, both of these studies were carried out in vitro using cell lines. In vivo, TNF-α neutralisation ameliorates IAV-induced pulmonary inflammation and illness severity without impacting host control of IAV replication and TNF-α deficient mice exhibit reduced IAV-induced lung pathology. Triple mutant mice deficient in TNF-R1, TNF-R2 and IL-1-R1 display reduced lung inflammation and delayed onset of death when challenged with highly virulent H5N1 IAV (but not less virulent IAV), and this correlated with reduced pulmonary macrophage and neutrophil infiltrates. IAV-induced TNF-α can induce monocyte migration. TNF-α also exhibits pleiotropic functions from induction of cellular survival, proliferation and cellular suicide, demonstrating a broad array of mechanisms through which TNF-α may drive IAV-induced lung damage.

Regulatory cytokines can dampen IAV-induced inflammation. For example, T cell-derived IL-10 ameliorates pulmonary inflammation, lethal lung injury and accelerated death, without impacting viral clearance, although an antagonistic role for IL-10 in protective anti-IAV immunity has also been described. The IL-12 family cytokine member IL-27 restricts IAV-induced weight loss, T cell, and neutrophil accumulation and promotes the development of IAV-induced IL-10− CDb T cells. IL-37, a member of the IL-1 family of ligands, acts as a negative feedback inhibitor of inflammatory cytokines, independently of anti-inflammatory cytokines such as IL-10. Treatment of mice with IL-37 after influenza infection decreases lung injury and production of pro-inflammatory cytokines.

Murine models of IAV infection have also revealed that myeloid cells can play both protective and immunopathogenic roles during IAV infection, with inflammatory monocytes and monocyte-derived DCs identified as driving inflammation and lung pathology, with IAV-induced IFNs important in modulating homeostatic versus inflammatory functions of monocyctic cells. In pathogenic IAV (PR8, H1N1) infection, partial amelioration of TNF-α/NO production (Tip)-DC responses, which were elevated in lethal infections, exhibited protective activity, whereas complete ablation failed to ameliorate disease as tipDCs were essential for the development of protective CD8+ T-cell responses. Modulation of inflammatory versus regulatory function of myeloid cells is important in determining outcome of IAV-associated disease. For example, CD200+ expressed by lung epithelial cells, interacts with CD200R on alveolar macrophages (AMs), suppressing their inflammatory function and reducing amplitude and duration of inflammation post-IAV infection.

RSV
RSV is an important aetiologic agent of respiratory infections, particularly in children. Infections can be limited to the upper respiratory tract, but in cases associated with greater morbidity and mortality, RSV can cause LRTI, including pneumonia and...
Immune responses to RSV have been summarised in detail elsewhere, with age a major determinant in RSV-related disease. Briefly, in some cases poorly controlled RSV replication occurs due to a delayed and/or ineffective immune response, resulting in a high viral load, and has been attributed to disease development. However, in other cases, an overexuberant immune response to the virus is observed, resulting in severe lung inflammation. As observed with IAV, levels of inflammatory cytokines such as IL-6 and TNF-α, as well as chemoattractants such as CCL2, recruit inflammatory innate immune cells, have been found to be elevated in patients, correlating with disease severity, and are also induced after RSV-challenge in animal models. Increased cellular infiltrate comprising increased monocytes, T cells and neutrophils has been described in children with severe and fatal bronchiolitis.

The balance of different T-cell subsets is known to correlate with different disease outcomes in RSV-infected infants. Initially, an imbalance in Th1/Th2 subsets was thought to explain some of the differences in clinical severity in RSV-infected individuals. However, more recently the balance between Treg and Th17 subsets, and their roles in regulating Th1/Th2 skew and altering RSV disease pathogenesis, has begun to be elucidated. Treg cells have been shown to play important anti-inflammatory roles during RSV infection via suppression of pathogenic activated CD4+ and CD8+ T cells and IL-13/GATA3-expressing Th2-type CD4+ T cells, inhibiting lung eosinophilia. Furthermore, IL-10 production by Tregs dampens T-cell inflammation in the lung, and therapeutic induction of Tregs reduces RSV-induced pulmonary inflammation without affecting viral clearance. T cells promote RSV-induced inflammation and disease severity in mice and these T cells produce IL-17, which plays an important role in neutrophil recruitment and activation and is increased in children with severe RSV. IL-33, a member of the IL-1 family of cytokines, acts as an alarmin at barrier sites, and can promote inflammatory diseases including allergic asthma, rheumatoid arthritis and chronic inflammation of the gut. Age-dependent, rapid IL-33 production, which correlates with an increase in lung ILC2s, drives Th2 biased RSV-induced immunopathogenesis. Thus, alterations in cytokine profiles impacts RSV-associated disease outcome.

As described for IAV, some cytokines play pleiotropic roles in RSV infection. In a case report for two young children who died suddenly after contracting RSV, early IL-6 was elevated >200-fold above normal levels. However, IL-6 has anti-inflammatory properties during RSV infection in a murine model via early induction of IL-27, which promotes regulatory T cell maturation, and restricts Th1-mediated immunopathology in this model and can suppress IL-17 production and associated mucous responses. Type I IFN associates with severe RSV-associated lung inflammatory disease, amplifying pro-inflammatory cytokine production and inducing recruitment of inflammatory monocytes to the lung, which can limit virus replication but, in excess, also contribute to damage. AMs are also responsible for the recruitment and activation of NK cells after RSV infection, with NK cells playing an important antiviral role, killing infected cells but also promoting Th1 responses by production of IFN-γ.

Coronaviruses

Newly emerging CoVs are becoming one of the greatest global health challenges of the twenty-first century. In the last 20 years, there have been three zoonotic outbreaks of beta-CoVs, causing a range of severe respiratory syndromes in humans. In 2002–2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from bat and palm civet populations and infected over 8000 people causing over 800 deaths; in 2012, Middle East respiratory syndrome coronavirus emerged from dromedary camel populations and is still endemic in the Middle East; and at the end of 2019, SARS-CoV-2 emerged from a currently unknown animal reservoir, although it is thought to be of probable bat origin, in Wuhan, China, initiating a global pandemic resulting in hundreds of thousands of deaths at time of writing.

During the SARS-CoV outbreak, cytokine dysregulation was associated with disease severity in patients, and was accompanied by pronounced macrophage infiltration into lungs, with Th1-related cytokine storms observed in some severe clinical manifestations, accompanied by the accumulation of monocytes, macrophages and neutrophils. Fatal SARS also associated with exacerbated IFN production and persistent expression of ISGs. In a mouse model for SARS-CoV, pulmonary inflammation associated with complement-mediated lung disease, and elevated chemokines and cytokines driven by inflammatory monocyte-macrophages resulted in vascular leakage, impaired virus-specific T cell responses, and ultimately reduced survival. This was demonstrated to be orchestrated by delayed type I IFN signalling. Ifnari−/− mice were protected from lethal infection, interestingly without exhibiting increased viral load, suggesting that in SARS type I IFN drives immunopathology. Conversely, in humans, the importance of the type I IFN pathway in protection against SARS-CoV-2 has been recently highlighted in a study demonstrating that individuals with loss-of-function variants in the TLR3- and IRF7-dependent type I IFN signalling pathway are pre-disposed to life-threatening pneumonia after infection with SARS-CoV-2. Further highlighting the crucial role of type I IFN in COVID-19 immunity in humans, auto-antibodies against type I IFN, which were capable of neutralising the ability of type I IFNs to block SARS-CoV-2 infection in vitro, were associated with severe life-threatening COVID-19 infection.

Symptoms in most SARS-CoV-2-infected patients are relatively mild to moderate, but in ~15% of patients there is progression to severe pneumonia, and about 5% eventually develop ARDS, septic shock and/or multiple organ failure. The importance of inflammation in COVID-19 is highlighted by recent data demonstrating that dexamethasone, a corticosteroid, has been used in the randomised evaluation of COVID-19 therapy trial, reducing 28-day mortality among those receiving invasive mechanical ventilation or oxygen at randomisation. Cytokines associated with secondary haemophagocytic lymphohistiocytosis, a hyperinflammatory syndrome characterised by fulminant and fatal hypercytokinaemia with multiorgan failure, have been found to be elevated in COVID-19 fatalities. Indeed, high IL-6 and TNF-α, and IL-6, IP-10 and IL-10 have been demonstrated to predict disease severity in clinical studies. Furthermore, in cell and animal models of SARS-CoV-2, in conjunction with transcriptional and serum profiling of COVID-19 patients, monocyte-associated chemokines such as CCL2 and CCL8 were shown to be elevated, along with neutrophil chemoattractants CXCL2 and CXCL8. As elevated levels of circulating neutrophils have been observed among COVID-19 patients, although transcriptomics of BAL fluid from COVID-19 patients has revealed high ISG expression, together with chemokine-dominated hypercytokinaemia. In a mouse model of SARS-CoV-2, type I IFNs are significant drivers of pathological responses, enhancing expression of monocyte-recruiting chemokines and recruitment of pro-inflammatory cell types to the lung. With no drugs or vaccines currently available for SARS-CoV-2, and the evidence from both SARS-CoV and SARS-CoV-2 patients that elevated cytokine expression correlates with pathology, there is increasing interest in the use of neutralising monoclonal antibodies targeting inflammatory cytokines and receptors. Tocilizumab, which targets the IL-6 receptor, has recently been used in a small clinical trial, where it was reported to reduce fever and improve respiratory function in 21 patients. Other potential targets considered include IL-1 and IL-17, as well as small-molecule inhibitors of signalling components downstream of these cytokines.
INFLUENCE OF GENETIC VARIATION ON VIRAL-INDUCED INFLAMMATION

Substantial variation exists in individual outcomes following exposure to viral pathogens, which in part will be influenced by microbial and environmental factors. Underlying risk factors including obesity, diabetes, chronic lung disease, cardiovascular disease, pregnancy, or old age and being immunocompromised also alter disease susceptibility. However, early familial studies indicated that deaths from infectious diseases had a strong genetic background. Specifically for respiratory virus infections, there has been an increase in evidence of a genetic association between the host and the severity of influenza infection, with contribution of heritability to fatal outcome clear in some cases. Furthermore, in the current SARS-CoV-2 outbreak, recent data from UK twin studies suggest that symptoms of COVID-19 may be heritable.

Life-threatening primary infections often observed in childhood may more likely result from single-gene inborn errors of immunity. Rare, loss-of-function mutations can result in life-threatening susceptibility to common infections and are due to deleterious variants in key genes of the immune system. The contribution of these monogenic disorders to infectious disease susceptibility has been reviewed elsewhere. Identification of these mutations has exposed some of the underlying pathways essential for viral control in human hosts. For example, it is well-characterised that loss-of-function mutations in the type I IFN pathway result in increased susceptibility to various viral infections, although the detrimental effects of loss of type I IFN signalling can be compensated for by type II IFN in some cases. Defective innate cytoplasmic recognition of RNA viruses, preventing activation of an efficient antiviral IFN response, can be caused by loss-of-function variants in IFIH1, leading to extreme susceptibility to common respiratory viruses. Patients with deficiencies in IFN-γ responses, attributed to non-functional or dysfunctional IFN-γ receptors, have been shown to display increased susceptibility to viruses, including RSV and parainfluenza virus. However, it is unlikely that these rare, highly penetrant, deleterious mutations contribute to the majority of infectious disease cases, because there is a lack of mendelian transmission in most cases of infectious disease susceptibility, and severe deleterious mutations should be rapidly eliminated from populations.

Instead, severe infections in adults may result from a more complex combination of factors, with potential contribution of inherited (germline) genetic variation. The genetic architecture of infectious diseases is not yet fully understood. As described by Hill et al., it is possible that either: most genetic variation is encoded by relatively common genetic variants that cumulatively account for most of the genetic variance; that most relevant genetic variation is encoded by very rare mutations that have almost complete penetrance, as observed in primary immunodeficiency disorders; or that there is a predominant role for many individual rare variants with incomplete penetrance, with these three theories not necessarily being mutually exclusive. Dissecting the underlying mechanisms of variable susceptibility to respiratory viruses may help effective targeting of vaccine therapies, reveal new therapeutic approaches and, potentially, help contribute to future clinical risk prediction models.

The introduction of genome-wide association studies (GWAS) revolutionised the field of complex disease genetics, but very few GWAS studies have been performed for infectious diseases. This is partly due to the very large sample sizes of cases and controls required from the same population, alongside well-characterised clinical data sets for each individual. Detection of specific genetic variants predisposing individuals to certain infectious diseases is more likely when these variants are polymorphic and have large effect sizes. Therefore, most studies have relied upon candidate genetic variants based on biological information pertaining to that specific genetic region, using targeted single nucleotide polymorphism (SNP)-genotyping in cases versus controls. As discussed above, disease severity after infection with respiratory viruses can correlate with increased expression of host inflammatory mediators, with evidence of decoupling of viral load and lung damage in some patients, suggesting that specific host predisposition could be responsible for the different magnitudes of inflammatory responses observed in patients. Below, we review the host genetic susceptibility data available for increased susceptibility to respiratory viruses within the framework of inflammation as introduced in the first section of this review, with the current known genetic variants summarised in Fig. 1 and Table 1.

Cytokines and chemokines
Variants in genes encoding cytokines or chemokines, their receptors, or their promoter regions, have been associated with more severe infection outcomes for different respiratory viruses. In IAV infections, the most severe responses are associated with ‘cytokine storms’ or hypercytokinemia. As reviewed previously, SNPs in TNF, CCR5, IL1A and IL1B are associated with susceptibility and severity of influenza infections, although the mechanism by which these SNPs may increase disease susceptibility remains to be fully elucidated. In accordance with possible anti-inflammatory functions of TNF-α, the TNF −238 A allele, which has been demonstrated to correlate with lower TNF transcripts, was overrepresented in IAV pH1N1/09 infected patients in comparison to healthy controls in a Caucasian population. The T allele of rs17561 in IL1A is associated with a twofold increase in influenza infection risk, suggesting functional variation in the IL-1A protein in individuals with this genotype, although this has not been functionally validated. CCR5 encodes the receptor CCR5, which mediates leucocyte chemotaxis in response to ligands such as RANTES, MIP-1α and MIP-1b. Individuals who are heterozygotic for the CCR5–Δ32 mutation, which results in a 32 bp deletion in the coding region of the CCR5 gene and partially reduced receptor expression, exhibit more severe IAV disease, although this was not replicated in subsequent studies in different populations.

As reviewed by Kenney et al. and Miyari and DeVincenzo, there are several common human genetic variants associated with the development of a more severe RSV infection phenotype, including in genes encoding cytokines (IL4, IL8, IL10 and IL13) and their receptors (IL4RA). In a study in Korean children, the IL4 common haplotype −589T was shown to be overrepresented in patients with severe disease. This SNP has been demonstrated to associate with increased transcriptional activity of IL4, suggesting that the increased T4 response observed in these patients could be mediated by IL4 overexpression. Similarly, an IL8 haplotype comprising six SNPs (−251A/+ 396G/−781T/+1238delA/+1633T/+2767T) results in increased IL8 transcripts in respiratory epithelial cells, with this haplotype shown to associate with the severity of RSV-induced bronchiolitis. Despite the observation that very high levels of IL-6 can act as a biomarker for severe RSV in young children, the IL-6 – 174 CC genotype (low-production phenotype) is associated with a more severe illness after RSV infection. In mice, early IL-6 production is required for IL-27 production by macrophages and monocytes, driving the local maturation of Tregs. Haplotypes within the IL13–IL4 locus have been associated with more severe RSV-related disease in infants. IL-4 and IL-13 are two cytokines involved in the type II inflammatory response, and excess TH2 responses are observed in severe RSV disease.

In accordance with a role for type I IFN in RSV pathogenesis in mice, a SNP in IFN5 was strongly associated with the development of bronchiolitis, although the specific function of this SNP is currently undefined. In a study genotyping children hospitalised with RSV infection, children who were heterozygous at position −592 (CA; rs1800872) in the IL10 gene, which alters IL-
18

10 protein level were under-represented in the hospitalised group, suggesting that altered IL-10 mediated regulation of RSV-induced immune responses may alter outcome, as implied by data from the murine models. Moreover, genetic interactions between the IL-10 −/− and IL-4RS −/− polymorphisms were observed in this human study, suggesting these alleles may interact, although the mechanism is currently unclear.

There were few genetic susceptibility studies performed during the SARS-CoV 2003 outbreak, although in two Chinese cohorts from Hong Kong and Beijing, RANTES −/−28 G allele was associated with disease susceptibility and severity. This genotype has previously been associated with enhanced promotor activity. Interestingly, in a recent study in ten terminal ill, critical COVID-19 patients, blocking of CCR5, the receptor for RANTES, rapidly reduced plasma IL-6, restored CD4/CD8 T-cell ratios and significantly decreased SARS-CoV-2 viraemia, suggesting increased RANTES could contribute to SARS-CoV-2 disease severity by driving unchecked inflammation.

Pattern recognition receptors (PRRs)

PRRs recognise viral PAMPs during respiratory viral infections and induce pro-inflammatory cytokines and IFNs. Thus, genetic variation in PRRs and downstream signalling molecules that alter their abundance or activity may influence viral pathogenesis. Polymorphisms in TLR3 associate with increased incidence of influenza-related pneumonia in children infected with IAV pH1N1/09, specifically the rs5743313 CT genotype. The CC genotype of this SNP was also associated with higher death outcomes in influenza-infected Chinese individuals. The exact mechanism of this SNP is undefined, however it is located in the intronic region of TLR3 near exon 4, which is the region that encodes the transmembrane signal transduction domain, so it is potentially linked to impaired signalling and weakened host immune response. The cytoplasmic sensor RIG-I, encoded by the gene DDX58, recognises dsRNA and 5′-triposphates of the negative ssRNA IAV genome. Two heterozygous variants were identified in DDX58 in a male Caucasian patient with severe IAV pH1N1/09 infection; SNP rs72710678 in the caspase activation and recruitment (CARD) domain and SNP rs138425677 in the RNA binding domain. These variants were associated with decreased recognition function of RIG-I, impaired antiviral responses and increased pro-inflammatory responses, corresponding with increased immunopathology.

In infants hospitalised with RSV, disease severity associated with a p53-responsive TLR8 SNP. After induction of p53 and incubation with single-stranded RNA ligands in human primary lymphocytes, SNP-dependent IL-6 expression, TLR8 expression and p53 binding were all increased. Variation in TLR4 also associates with severe RSV disease, although this has not been replicated in all cohorts. Two SNPs encoding Asp299Gly and Thr399Ile substitutions in the TLR4 transmembrane signal transduction domain. These variants were associated with decreased recognition of viral ssRNA, impaired antiviral responses and increased immunopathology.
Table 1. Genetics variants contributing to respiratory disease.

Gene	Polymorphism	Effect on protein/function	Disease susceptibility virus association, and related host process presented in Fig. 1 (initiation/disease progression)
Cytokines, chemokines and receptors			
CCR5	CCR5-Δ32	32 bp deletion in CCR5 coding region resulting in partially reduced receptor expression	Influenza A¹²¹ Enhancement of cytokines and ISG induction by recruited cells
IL1A	rs17561 G>T Ser114Ala	Unknown	Influenza A¹¹⁹ Production of cytokines and chemokines
IL1B	rs1143627 T>C	Possible increased IL1B expression associated with T allele; rs1143627 located on TATA box of IL1B promoter region, may affect TF binding	Influenza A¹¹⁹ Production of cytokines and chemokines
TNF	rs361525 (TNF –238 A allele) G>A	Decreased TNF transcripts	Influenza A¹¹⁸ Production of cytokines and chemokines Enhancement of cytokines and ISG induction by recruited cells
IL4	rs2243250 (IL4 –589T allele) C>T	Increased IL4 transcripts	RSV (embedded within common IL4 haplotype defined at five loci)¹²⁷ T-cell activation Effector T-cell response
IL8	IL8 haplotype: (-251A/+396G/+781T/+1238delA/+1633T/+2767T)	Increased IL8 transcripts	RSV¹¹⁶ Production of cytokines and chemokines Enhancement of cytokines and ISG induction by recruited cells
IL10	rs1800872 (–592 C/A allele) C>A	Currently not clear whether the C or A allele is associated with higher IL10 expression	RSV with heterozygosity at this allele¹³⁷ RSV – 592 C allele in children ≤6 months of age¹³⁷ Enhancement of cytokines and ISG induction by recruited cells T-cell activation
IL13	rs1881457 (–1512 C allele) A>C	Altered expression of IL13 and increased binding of nuclear factors to IL13 promoter	RSV with –1512 C allele in the presence of allele 50 Ile in IL4R (rs1801275)²⁸ RSV¹²⁸ T-cell activation Effector T-cell response
IL6	rs1800795 (–174 G/C allele) G>C	–174 CC low producer phenotype	RSV with CC allele¹³² Production of cytokines and chemokines Enhancement of cytokines and ISG induction by recruited cells T-cell activation
IFNAS	rs10757212 C>T	Unknown	RSV¹¹⁵ Production of cytokines and chemokines
RANTES	rs2280788 (–28 G allele) C>G	Possible enhanced promoter activity	1SARS-CoV-1¹³⁸ Production of cytokines and chemokines
IFNGR1	201-2 A>G	Complete absence of IFN-γ responsiveness observed with homozygosity. Mutation in splice site at end of intron 2, in frame deletion of 34 amino acids, generating a truncated protein of assumed non-function.	RSV¹¹² Enhancement of cytokines and ISG induction by recruited cells T-cell activation Effector T-cell response
Pattern recognition receptors			
TLR3	rs5743313 T>C	Located in transmembrane signal transduction domain; potentially linked to reduced signalling	Influenza A with CC and CT genotypes^{144,145} Detection of virus
DOXS8	rs72710678 G>A Arg71His	CARD domain; decreased recognition function of RIG-I, impaired antiviral immune responses	Influenza A¹⁴⁶ Detection of virus
TLR8	rs3761624 A>G	Located in TLR8 promoter region. Increased TLR8 mRNA expression following acute and chronic DNA damage stress in a p53RE SNP-dependent manner. Minor G allele creates a CWG core in the second decamer of the p53RE within the TLR8 promoter. The A allele in the rs3761624 variant disrupts the CWG core, reducing p53 binding	RSV with G allele¹⁴⁸ Detection of virus
Thus, overall, SNPs in IRF7 are known to act downstream of TLR7 and, possibly, RIG-I sensing of IAV to induce subsequent cytokine production. In humans, multiple SNPs have been identified in the IRF5 gene and regulatory regions, with some of these SNPs altering expression levels of IRF5, implying that altered expression of TFs such as IRF5 could influence the magnitude of host inflammatory responses. As IRF5 has been implicated in other inflammatory conditions, such as systemic lupus erythematosus and inflammatory bowel disease, there is already interest in IRF5 as a therapeutic target in individuals with altered IRF5 expression. IRF7 is known to act downstream of various PRRs, initiating transcription of type I IFN genes. Heterozygous null mutations in IRF7 can lead to life-threatening IAV infection associated with significantly reduced type I and type II interferon responses. Interferon regulatory factor 5 (IRF5) acts downstream of TLR7 and, possibly, RIG-I sensing of IAV to induce subsequent cytokine production. In humans, multiple SNPs have been identified in the IRF5 gene and regulatory regions, with some of these SNPs altering expression levels of IRF5, implying that altered expression of TFs such as IRF5 could influence the magnitude of host inflammatory responses. As IRF5 has been implicated in other inflammatory conditions, such as systemic lupus erythematosus and inflammatory bowel disease, there is already interest in IRF5 as a therapeutic target in individuals with altered IRF5 expression. IRF7 is known to act downstream of various PRRs, initiating transcription of type I IFN genes. Heterozygous null mutations in IRF7 can lead to life-threatening IAV infection associated with significantly reduced type I and type II interferon responses.

Table 1. continued

Gene	Polymorphism	Effect on protein/function	Disease susceptibility virus association, and related host process presented in Fig. 1 (initiation/disease progression)
TLR4	rs4986790 A > G/A > T Asp299Gly	Located in ectodomain of TLR4; hyper-responsive LPS phenotype	↓RSV¹⁴⁸ Detection of virus
	rs4986791 C > T	Located in ectodomain of TLR4; hyper-responsive LPS phenotype	
TLR2	rs1898830 C > A	Intron variant	↓Bronchiolitis¹⁴⁹ Detection of virus
	rs7656411 G > T	Downstream variant 500 kB	
TLR9	rs352162 C > T	Unknown	↓Bronchiolitis¹⁴⁹ Detection of virus
	rs187084 C > T	Upstream variant 2 kB	
IFI1	rs35732034 C > T (IFIH1-Δ14)	Minor allele T causes skipping of exon 14, resulting in a frame shift and an early stop codon in exon 15. IFI1 protein lacks final 153 amino acids, including the C-terminal regulatory domain (CTD), essential for viral dsRNA binding. Minor allele G causes skipping of exon 8, removing 39 amino acids at the end of the helicase 1 domain and in the linker part between helicase 1 and helicase 2. Severe disruption of IFI1 signalling function, enzymatic activity, and protein stability in vitro demonstrated for both IFI1-Δ8 and IFI1-Δ14.	
	rs35337543 C > G (IFIH1-Δ8)		

Transcription factors

IRF7	Two compound heterozygous IRF7 mutations—p.Phe410Val (F410V) and p.Gln421X (Q421X)	F410V: missense substitution predicted to be damaging Q421X: nonsense mutation predicted to generate a premature stop codon Both alleles–lack of IRF7-dependent amplification of type I and III IFN post-influenza exposure	↓Influenza¹⁵³ Production of cytokines and chemokines Enhancement of cytokines and ISG induction by recruited cells
IRF9	991 G > A	Mutation in final nucleotide of exon 7 disrupts the essential splice site at the boundary of exon 7 and intron 7, resulting in mRNAs lacking exon 7 and an IRF9 protein probably lacking the IRF association domain (IAD), where STAT proteins bind. Cells with this mutation are impaired in ISG induction	↓Influenza¹⁵⁴ IFN response and ISG induction Enhancement of cytokines and ISG induction by recruited cells
JUN	rs11688 G > A	Unknown; synonymous variant	↓RSV¹⁵ Production of cytokines and chemokines
VDR	rs10735810 (also rs2228570) C > T Thr1Met	Initiator codon variant, located at first start codon in exon 2, changes the translation initiation site, resulting in a truncated protein. Truncated protein may have higher activity than the wild type protein	↓RSV¹⁵ Enhancement of cytokines and ISG induction by recruited cells
IFITM3	rs12252 T > C	Unknown; synonymous variant	↓Influenza^{162,163,166} SARS-CoV-2¹⁶³ ↓Influenza¹⁴¹ IFN response and ISG induction
	rs34481144 C > T	Located in the promoter region of IFITM3, repression of IFITM3 expression with A allele, possibly through enhanced CTCF binding to IFITM3 promoter	Enhancement of cytokines and ISG induction by recruited cells

1↑ = increased disease susceptibility/increased severity of symptoms; ↓ = decreased disease susceptibility/decreased severity of symptoms
III IFN production and increased viral replication.153 Polymorphisms in IRF7 have also been shown to alter the ability of plasmacytoid DCs to produce IFN-α in response to H1N1, so it is not unreasonable to suggest these polymorphisms may also alter IFN responses to respiratory viral infections and associated pathogenesis. IRF7 is a key component of the ISG factor 3 trimmer. In a child homozygous for a loss-of-function mutation IRF7 allele hospitalised for severe pulmonary influenza, the child’s cells were shown to be unable to respond fully or effectively to type I IFN, leading to a loss of viral control through the lack of ISG activation.154 AP-1 combines with other TFs to activate transcription of cytokines and type I IFN. The rs11688 SNP in JUN, which encodes part of the AP-1 TF, associates with severe RSV-bronchiolitis.155 In human populations, there are allelic variants in MX1, and MXA, the GTPase encoded by MX1, has been demonstrated to restrict IAV.156 However, none of these variants have been linked to influenza susceptibility currently.157 There is increasing evidence that some viral restriction factors can also play additional, multifaceted roles, for example, acting as innate sensors and triggering innate immune responses.158 One important viral restriction factor is the IFN-induced transmembrane protein 3 (IFITM3), which restricts cell entry of mainly enveloped RNA viruses including SARS-CoV and IAV.159,160 Several SNPs have been identified in IFITM3, including rs34481144 within the promoter of IFITM3, with the minor allele (A) of this SNP associated with severity of IAV infection. The A allele of this SNP represses IFITM3 expression, possibly through enhanced binding of CTCF to the IFITM3 promoter in this genotype.161 The CC genotype of the rs12252 SNP, located in exon 1 of IFITM3, has been associated with severity of IAV infections by several groups.162,163 This association was not observed in similar studies in European populations where the frequency of the CC genotype is very low.164,165 However, a recent meta-analysis confirmed the association between influenza susceptibility and rs12252.166 As is likely the case with other risk alleles, cumulative effects have been observed for TLR3 and IFITM3 risk genotypes, suggesting a combination of genetic factors may influence host outcome post-infection influenza.167 Additionally, the rs12252 CC genotype has been shown to be associated with more severe outcomes in SARS-CoV-2-infected Chinese patients, in an age-dependent manner.168 The specific mechanism behind associations with the rs12252 SNP is currently unknown; initial predictions that the CC genotype would result in a truncated form of IFITM3 through alternative splicing have not been confirmed in subsequent studies.169 More recently, IFITM3 has been shown to play roles aside from direct viral restriction. In a murine cytomegalovirus (MCMV) infection model, Iftim3 acts to limit MCMV-related pathogenesis, independently of viral replication, by limiting the production of pro-inflammatory cytokines, particularly IL-6.170 In humans, severe IAV disease in individuals with the CC genotype of the rs12252 SNP is associated with high CCL2 levels that drive pathogenic monocyte responses.169,163 and hypercytokinemia characterised by elevated levels of cytokines including IL-6 is associated with fatal H7N9 infection in individuals with the rs12252 CC genotype.170 Viral restriction factors Antiviral restriction factors constitute a first line of defence against viral entry to cells, blocking viral replication and propagation. Mx1 is an ISG and encodes a potent viral restriction factor Mx1 in mice. Many inbred laboratory mice lack expression of a functional Mx1 protein, which explains enhanced susceptibility to influenza infection.171,172 In human populations, there are allelic variants in MX1, and MXA, the GTPase encoded by MX1, has been demonstrated to restrict IAV.156 However, none of these variants have been linked to influenza susceptibility currently.157 There is increasing evidence that some viral restriction factors can also play additional, multifaceted roles, for example, acting as innate sensors and triggering innate immune responses.158 One important viral restriction factor is the IFN-induced transmembrane protein 3 (IFITM3), which restricts cell entry of mainly enveloped RNA viruses including SARS-CoV and IAV.159,160 Several SNPs have been identified in IFITM3, including rs34481144 within the promoter of IFITM3, with the minor allele (A) of this SNP associated with severity of IAV infection. The A allele of this SNP represses IFITM3 expression, possibly through enhanced binding of CTCF to the IFITM3 promoter in this genotype.161 The CC genotype of the rs12252 SNP, located in exon 1 of IFITM3, has been associated with severity of IAV infections by several groups.162,163 This association was not observed in similar studies in European populations where the frequency of the CC genotype is very low.164,165 However, a recent meta-analysis confirmed the association between influenza susceptibility and rs12252.166 As is likely the case with other risk alleles, cumulative effects have been observed for TLR3 and IFITM3 risk genotypes, suggesting a combination of genetic factors may influence host outcome post-infection influenza.167 Additionally, the rs12252 CC genotype has been shown to be associated with more severe outcomes in SARS-CoV-2-infected Chinese patients, in an age-dependent manner.168 The specific mechanism behind associations with the rs12252 SNP is currently unknown; initial predictions that the CC genotype would result in a truncated form of IFITM3 through alternative splicing have not been confirmed in subsequent studies.169 More recently, IFITM3 has been shown to play roles aside from direct viral restriction. In a murine cytomegalovirus (MCMV) infection model, Iftim3 acts to limit MCMV-related pathogenesis, independently of viral replication, by limiting the production of pro-inflammatory cytokines, particularly IL-6.170 In humans, severe IAV disease in individuals with the CC genotype of the rs12252 SNP is associated with high CCL2 levels that drive pathogenic monocyte responses.169,163 and hypercytokinemia characterised by elevated levels of cytokines including IL-6 is associated with fatal H7N9 infection in individuals with the rs12252 CC genotype.170
determine novel gene associations that will advance the understanding of the molecular pathways involved in pathogenesis of specific viral diseases. Furthermore, in the last decade GWAS identified multiple genetic variants that contribute to various phenotypes; iPSCs are ideally placed to dissect how these variants contribute to the phenotypes described. With recently developed technologies such as CRISPR/Cas9, which allow for precision gene editing to generate, for example, isogenic control lines differing in just one SNP location, the mechanistic implications of allelic variation in genes of interest can really begin to be probed. Furthermore, the development of large iPSC banks means that in the future experiments can be conducted on a population level scale. iPSC technology opens up essential new avenues for exploring the contribution of genetics to infectious disease susceptibility, and may allow for better preparation in the future for emerging viral threats.

CONCLUSIONS

It is clear that inflammation plays a role in the pathology of various respiratory diseases. Modulating this inflammation as a therapeutic strategy remains challenging, as a delicate balance between protective immunity and excessive inflammation is a key. However, therapies targeting the host immune system are being trialled for different viral infections, and are attractive therapeutic prospects due to issues with increasing viral resistance to traditional antiviral therapies and the constant pressures on vaccine development due to emergence of novel viral strains in human populations. Furthermore, due to cross-over between the host pathways for viral-induced cytokine regulation for different viral pathogens, it is possible that host immunomodulatory therapies could be rapidly re-purposed in the advent of a pandemic. Therefore, enhanced understanding of these pathways, and how over-activation post-infection affects host survival, may be crucial.

Understanding the underlying genetics of specific individuals, which may alter that individual’s propensity to experience overexuberant inflammatory responses after viral infection, could be very important for helping to design better immune modulators. Critically, such insight may be used to potentially contribute to the writing of this review.

J.L.F. and I.R.H. contributed equally to the writing of this review.

ACKNOWLEDGEMENTS

J.L.F. and I.R.H. are supported by a Wellcome Trust Senior Research Fellowship awarded to I.R.H. (207503/Z/17/Z). I.R.H. is also supported by a Wellcome Trust Collaborative Award in Science (209213/Z/17/Z).

AUTHOR CONTRIBUTIONS

J.L.F. and I.R.H. contributed equally to the writing of this review.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. O’Dwyer, D. N., Dickson, R. P. & Moore, B. B. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J. Immunol. https://doi.org/10.4049/jimmunol.1600279 (2016).
2. Makris, S., Paulsen, M. & Johansson, C. Type I interferons as regulators of lung inflammation. Front. Immunol. 8, 259 (2017).
3. Karli, A. C. & Thomas, P. G. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care 23, 258 (2019).
4. Braciale, T. J., Sun, J. & Kim, T. S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 12, 295–305 (2012).
5. Iwasaki, A. & Pillai, P. S. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14, 315–328 (2014).
6. Asgarl, S. et al. Severe viral respiratory infections in children with IFH1 loss-of-function mutations. Proc. Natl Acad. Sci. 114, 8342–8347 (2017).
7. Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y. & Yuen, K. Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20, 660–694 (2007).
8. Kaiser, L., Regamey, N., Roila, H., Deffner, C. & Frey, U. Human coronavirus NL63 associated with lower respiratory tract symptoms in early life. Pediatr. Infect. Dis. J. 24, 1015–1017 (2005).
9. Gerna, G. et al. Genetic variability of human coronavirus OC43, 229E, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J. Med. Virol. 78, 938–949 (2006).
10. Forum of International Respiratory Societies. The Global Impact of Respiratory Disease 2nd ed (European Respiratory Society, 2017).
11. Paules, C. & Subbarao, K. Influenza. Lancet 390, 697–708 (2017).
12. Fukuyama, S. & Kawaoika, Y. The pathogenesis of influenza virus infections: the contributions of virus and host factors. Curr. Opin. Immunol. 23, 481–486 (2011).
13. Beigel, J. H. et al. Avian influenza A (H5N1) infection in humans. N. Engl. J. Med. 353, 1374–1385 (2005).
14. Ramos, I. & Fernandez-Sesma, A. Modulating the innate immune response to influenza a virus: potential therapeutic use of anti-inflammatory drugs. Front. Immunol. 6, 361 (2015).
15. Estella, A. Cytokine levels in bronchoalveolar lavage and serum in 3 patients with 2009 Influenza A(H1N1)1v severe pneumonia. J. Infect. Dev. Ctries 5, 540–543 (2011).
16. Meduri, G. U. et al. Inflammatoty cytokines in the BAL of patients with ARDS. Chest 108, 1303–1314 (1995).
17. Paquette, S. G. et al. Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection. PLoS ONE 7, e38214 (2012).
18. Gao, R. et al. Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1). Am. J. Pathol. 183, 1258–1268 (2013).
19. de Jong, M. D. et al. Fataloutcome of human influenza A (H5N1) is associated with high viral load and histocytokineinoma. Nat. Med. 12, 1203–1207 (2006).
20. Cole, S. L. et al. M1-like monocyties are a major immunological determinant of severity in previously healthy adults with life-threatening influenza. JCI Insight 2, e91868 (2017).
21. Tumpey, T. M. et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 79, 14933–14944 (2005).
22. Bourrier, N. M. & Lowen, A. C. Animal models for influenza virus pathogenesis and transmission. Virology 2, 1530–1563 (2010).
23. Kohlmieier, J. E. & Woodland, D. L. Immunity to respiratory viruses. Annu. Rev. Immunol. 27, 61–82 (2009).
24. Long, J. S., Mistry, B., Haslam, S. M. & Barclay, W. S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 17, 67–81 (2019).
25. Davidson, S., Cottra, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon q in acute influenza infection. Nat. Commun. 5, 3864 (2014).
26. Högner, K. et al. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog. 9, e1003188 (2013).
27. Baskin, C. R. et al. Early and sustained innate immune response defines patholgy and death in nonhuman primates infected by highly pathogenic influenza virus. Proc. Natl Acad. Sci. 106, 3455–3460 (2009).
28. Cilloniz, C. et al. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathog. 5, e1000604 (2009).
29. Klinkhammer, J. et al. IFN-A prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife 7, e33254 (2018).
30. Jewell, N. A. et al. Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J. Virol. 84, 11515–11522 (2010).
31. Salomon, R., Hoffmann, E. & Webster, R. G. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc. Natl Acad. Sci. 104, 12479–12481 (2007).

SPRINGER NATURE

SOCIETY FOR MUCOSAL IMMUNOLOGY

Mucosal Immunology (2021) 14:14 – 25

22
32. Ni, Y.-N., Chen, G., Sun, J., Liang, B.-M. & Liang, Z.-A. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit. Care 23, 99 (2019).
33. Corneli, H. M. et al. A multicenter, randomized, controlled trial of dexamethasone for bronchiolitis. N. Engl. J. Med. 357, 331–339 (2007).
34. Dienz, O. et al. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol. 5, 258–266 (2012).
35. Lauder, S. N. et al. Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology. Eur. J. Immunol. 43, 2613–2625 (2013).
36. Matikainen, S. et al. Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J. Virol. 80, 3515–3522 (2006).
37. Seo, S. H. & Webster, R. G. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J. Virol. 76, 1071–1076 (2002).
38. Russell, C. D., Unger, S. A., Walton, M. & Schwarze, J. The human immune response to respiratory syncytial virus infection in mice. J. Virol. 87, 10946–10954 (2013).
39. McNamara, P. S., Flanagan, B. F., Hart, C. A. & Smyth, R. L. Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis. J. Infect. Dis. https://doi.org/10.1086/428855 (2005).
40. Miller, A. L., Bowlin, T. L. & Lukacs, N. W. Respiratory viral disease–induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. J. Infect. Dis. 189, 1419–1430 (2004).
41. Johnson, J. E., Gonzales, R. A., Olson, S. J., Wright, P. F. & Graham, B. S. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod. Pathol. 20, 108–119 (2007).
42. Miller, C. T. et al. The role of IFN-α/β in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 138–143 (2004).
43. Harker, J. A., Yamaguchi, Y., Culley, F. J., Tregoning, J. S. & Openshaw, P. J. M. Delayed sequelae of neonatal respiratory syncytial virus infection are dependent on cells of the innate immune system. J. Virol. 88, 604–611 (2014).
44. Sheeran, P. et al. Elevated cytokine concentrations in the nasopharyngeal and tracheal secretions of children with respiratory syncytial virus disease. Pediatr. Infect. Dis. J. 18, 115–122 (1999).
45. McNamara, P. S., Flanagan, B. F., Hart, C. A. & Smyth, R. L. Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis. J. Infect. Dis. https://doi.org/10.1086/428855 (2005).
46. Miller, A. L., Bowlin, T. L. & Lukacs, N. W. Respiratory viral disease–induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. J. Infect. Dis. 189, 1419–1430 (2004).
47. Johnson, J. E., Gonzales, R. A., Olson, S. J., Wright, P. F. & Graham, B. S. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod. Pathol. 20, 108–119 (2007).
48. Milenopoulou, T. C. et al. The role of IFN-α/β in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 138–143 (2004).
49. Durant, L. R. et al. Regulatory T cells prevent Th2 immune responses and pulmonary eosinophilia during respiratory syncytial virus infection in mice. J. Virol. 87, 10946–10954 (2013).
50. Loebemann, J. et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE 7, e23271 (2012).
51. McNamara, P. S., Flanagan, B. F., Hart, C. A. & Smyth, R. L. Pro- and anti-inflammatory responses in respiratory syncytial virus bronchiolitis. Eur. Respir. J. 23, 106–112 (2004).
52. Harker, J. A., Yamaguchi, Y., Culley, F. J., Tregoning, J. S. & Openshaw, P. J. M. Delayed sequelae of neonatal respiratory syncytial virus infection are dependent on cells of the innate immune system. J. Virol. 88, 604–611 (2014).
53. McNamara, P. S., Flanagan, B. F., Hart, C. A. & Smyth, R. L. Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis. J. Infect. Dis. https://doi.org/10.1086/428855 (2005).
54. Miller, A. L., Bowlin, T. L. & Lukacs, N. W. Respiratory viral disease–induced chemokine production: linking viral replication to chemokine production in vitro and in vivo. J. Infect. Dis. 189, 1419–1430 (2004).
55. Johnson, J. E., Gonzales, R. A., Olson, S. J., Wright, P. F. & Graham, B. S. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod. Pathol. 20, 108–119 (2007).
56. Milenopoulou, T. C. et al. The role of IFN-α/β in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 138–143 (2004).
57. Durant, L. R. et al. Regulatory T cells prevent Th2 immune responses and pulmonary eosinophilia during respiratory syncytial virus infection in mice. J. Virol. 87, 10946–10954 (2013).
58. Loebemann, J. et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE 7, e23271 (2012).
59. McNamara, P. S., Flanagan, B. F., Hart, C. A. & Smyth, R. L. Pro- and anti-inflammatory responses in respiratory syncytial virus bronchiolitis. Eur. Respir. J. 23, 106–112 (2004).
60. Harker, J. A., Yamaguchi, Y., Culley, F. J., Tregoning, J. S. & Openshaw, P. J. M. Delayed sequelae of neonatal respiratory syncytial virus infection are dependent on cells of the innate immune system. J. Virol. 88, 604–611 (2014).
103. Albright, F. S., Orlando, P., Pavia, A. T., Jackson, G. G. & Cannon Albright, L. A.

108. Carneiro-Sampaio, M. & Coutinho, A. Immunity to microbes: lessons from pri-

106. Casanova, J.-L. Severe infectious diseases of childhood as monogenic inborn

107. Bous

109. Hoyos-Bachiloglu, R. et al. A digenic human immunode

112. Dorman, S. E. et al. Viral infections in interferon-

96. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

95. Qin, C. et al. Dysregulation of immune response in patients with coronavirus

97. Israelow, B. et al. Mouse model of SARS-CoV-2 reveals innate immunity genes

92. Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations

89. RECOVERY Collaborative Group et al. Dexamethasone in hospitalized patients

93. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives devel-

94. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

98. Burgner, D., Jamieson, S. E. & Blackwell, J. M. Genetic susceptibility to infectious

91. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

90. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

88. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

87. Bastard, P. et al. Auto-antibodies against type I IFNs in patients with life-

86. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

85. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

84. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

83. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

82. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

81. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

80. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

79. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

78. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

77. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

76. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

75. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

74. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

73. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

72. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

71. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

70. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

69. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

68. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

67. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

66. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

65. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

64. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

63. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

62. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

61. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

60. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

59. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

58. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

57. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

56. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

55. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

54. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

53. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

52. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

51. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

50. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

49. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

48. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

47. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

46. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

45. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

44. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

43. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

42. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

41. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

40. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

39. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

38. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

37. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

36. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

35. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

34. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

33. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

32. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

31. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

30. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

29. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

28. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

27. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

26. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

25. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

24. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

23. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

22. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

21. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

20. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

19. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

18. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

17. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

16. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

15. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

14. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

13. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

12. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

11. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

10. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

9. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

8. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

7. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

6. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

5. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

4. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

3. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

2. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

1. Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of

Mucosal Immunology (2021) 14:14 – 25

Genetic influences on viral-induced cytokine responses in the lung
JL Forbester and IR Humphreys

147. Menendez, D. et al. p53-responsive TLR8 SNP enhances human innate immune response to respiratory syncytial virus. J. Clin. Investig. 129, 4875–4884 (2019).

148. Awomoyi, A. A. et al. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J. Immunol. 179, 3171–3177 (2007).

149. Alvarez, A. E. et al. Association between single nucleotide polymorphisms in TLR4, TLR2, TLR9, VDR, NOS2 and CCL5 genes with acute viral bronchiolitis. Gene 645, 7–17 (2018).

150. Forbester, J. L. et al. IRF5 promotes influenza virus-induced inflammatory responses in human induced pluripotent stem-derived myeloid cells and murine models. J. Virol. 94, e00121–20 (2020).

151. Eames, H. L., Corbin, A. L. & Udalova, I. A. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease. Transl. Res. 167, 167–182 (2016).

152. Almuttaqi, H. & Udalova, I. A. Advances and challenges in targeting IRF5, a key regulator of inflammation. FEBS J. 286, 1624–1637 (2019).

153. Ciancanelli, M. J. et al. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015).

154. Hernandez, N. et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215, 2567–2585 (2018).

155. Haller, O., Amherdt, H., Pavlovic, J. & Staeheli, P. The discovery of the antiviral resistance gene Mx: a story of great ideas, great failures, and some success. Annu. Rev. Virol. 5, 33–51 (2018).

156. Götz, V. et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci. Rep. 6, 23138 (2016).

157. Haller, O. & Kochs, G. Mx genes: host determinants controlling innate antiviral immunity to SARS-CoV-2 infection. Cell 181, 1194–1199 (2020).

158. Colomer-Lluch, M., Ruiz, A., Moris, A. & Prado, J. G. Restriction factors: from molecular mechanisms to human disease. Annu. Rev. Med. 70, 35–47 (2019).

159. Ferris, M. T. et al. Modeling host genetic regulation of influenza susceptibility and severity: a meta-analysis. PLoS Med. 17, e1003196 (2020).

160. Elbahsh, H. & Schughart, K. Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature. Sci. Rep. 6, 26437 (2016).

161. Verhein, K. C., Vellers, H. L. & Kleeberger, S. R. Inter-individual variation in health and disease associated with pulmonary infectious agents. Mammm. Genome 29, 38–47 (2018).

162. Casanova, J.-L. et al. A global effort to de-illuminate the human genetics of protective immunity to SARS-CoV-2 infection. Cell 181, 1194–1199 (2020).

163. Zhang, Y.-H. et al. Interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc. Natl. Acad. Sci. 111, 769–774 (2014).

164. Randolph, A. G. et al. Evaluation of IFITM3 rs12252 association with severe respiratory syncytial virus infection in high-risk infants and young children. J. Infect. Dis. 217, 257–262 (2018).

165. Stacey, M. A. et al. The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis. J. Clin. Investig. https://doi.org/10.1172/JCI84889 (2017).

166. Wang, Z. et al. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc. Natl. Acad. Sci. 111, 769–774 (2014).

167. Sanjurjo-Soriano, C. et al. Genome editing in patient iPSCs corrects the most common genetic defects associated with α1-antitrypsin deficiency. J. Clin. Investig. 119, 2348–2357 (2007).

168. Liu, X. et al. Human genetic polymorphisms in the human host response to respiratory syncytial virus. J. Infect. Dis. 219, 1294–1307 (2017).

169. Stacey, M. A. et al. The antiviral restriction factor IFN-induced transmembrane protein 3 prevents cytokine-driven CMV pathogenesis. J. Clin. Investig. https://doi.org/10.1172/JCI84889 (2017).

170. Wang, Z. et al. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc. Natl. Acad. Sci. 111, 769–774 (2014).

171. Ferris, M. T. et al. Modeling host genetic regulation of influenza pathogenesis in the collaborative cross. PLoS Pathog. 9, e1003196 (2013).

172. Elbahsh, H. & Schughart, K. Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature. Sci. Rep. 6, 26437 (2016).

173. Verhein, K. C., Vellers, H. L. & Kleeberger, S. R. Inter-individual variation in health and disease associated with pulmonary infectious agents. Mammm. Genome 29, 38–47 (2018).

174. Casanova, J.-L. et al. A global effort to de-illuminate the human genetics of protective immunity to SARS-CoV-2 infection. Cell 181, 1194–1199 (2020).

175. Kamal, R. P., Katz, J. M. & York, I. A. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol. 385, 243–274 (2014). https://doi.org/10.1007/82_2014_388.

176. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

177. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

178. Warrer, C. R. & Cowan, C. A. Humanity in a dish: population genetics with iPSCs. Trends Cell Biol. 28, 46–57 (2018).

179. Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012).

180. Yus, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

181. Kang, H. et al. CRISPR disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol. Ther. 4, e268 (2015).

182. Sanjurjo-Soriano, C. et al. Genome editing in patient iPSCs corrects the most prevalent αS1A2 mutations and reveals intriguing mutant mRNA expression profiles. Mol. Ther. 17, 156–173 (2020).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020