CASE SERIES

Meningioma-associated abscess: an unusual case report and review of the literature

Sami Rashed1,*, Anna Vassiliou2, Rosalie Ogborne1 and Gráinne McKenna1
1Neurosurgical Department, Royal London Hospital, London, UK and 2Barts and the London School of Medicine, London, UK

*Correspondence address. Neurosurgical Department, Royal London Hospital, Whitechapel Road, London, UK. E-mail: s.rashed@nhs.net

Abstract

Central nervous system (CNS) infection and neoplasm occur most often independently. Their concomitant presentation has been noted across different CNS tumours but is considered a rare entity. The phenomenon is mostly seen in relation to direct seeding of infection via frontal air sinuses. Here, we present an unusual case of an occipital meningioma associated with intraparenchymal paratumoural abscess formation. It is also the second documented to culture methicillin-susceptible Staphylococcus aureus. We then review and surmise the relevant literature of meningioma-associated abscess. We discuss the clinical presentations, aetiology, suspected pathogenesis, management and outcomes reported.

INTRODUCTION

Central nervous system (CNS) infection and neoplasm occur most often independently, but their concomitant presentation has also been reported across the literature. A variety of neoplasms have been linked with tumoural abscess formation including glioblastoma, high-grade and low-grade astrocytoma, ependymoma and metastatic lesions. However, a majority of these lesions described intrasellar or parasellar tumours where infection has spread directly from the prenasal cavity, and on the whole, it is considered a rare entity [1]. This case report presents the clinical course and management of a meningioma with related intraparenchymal paratumoral abscesses. We then discuss this in the context of the wider literature as the second case to isolate methicillin sensitive staphylococcus aureus (MSSA) within a meningioma.

CASE REPORT

A 52-year-old female presented with headache and visual disturbance. She had no significant past medical history. On examination, a left homonymous inferior quadrantopia was noted. CT and then MRI imaging revealed a solitary 3-cm right parieto-occipital extra-axial lesion with associated dural tail and surrounding oedema (Fig. 1). Her headaches improved with a short course of steroids and the neuro-oncology MDT recommendation was for surgical excision of the suspected meningioma.

Two weeks later, whilst awaiting surgery, she attended the Emergency Department with a fever of 38.6°C and mildly raised inflammatory markers (WCC 10.4, Neut 8.4). Urine dip and CXR were unremarkable. The source of the infection was not isolated and the emergency medicine physicians discharged her with a course of empirical oral antibiotics. The neurosurgical team were not made aware of this attendance. Twelve days
later, she underwent a planned neuronavigation-planning MRI scan as an outpatient. This was arranged one week prior to the scheduled surgery, in line with our departmental protocol. The MRI was reviewed and two new rim-enhancing collections superior and inferior to the tumour were noted, associated with extensive perilesional oedema (Fig. 2A and B). The patient was then immediately contacted via telephone and reported new worsening of headaches and new right sided weakness. She was admitted to hospital directly for assessment and emergency treatment. Her inflammatory markers on admission had risen to a WCC of 19.5, Neut 16.6, but CRP was <1. She was started on an emergency steroid treatment and subsequently underwent craniotomy, total resection of the meningioma and drainage of the intraparenchymal paratumoural abscesses. Intra-operatively the brain was swollen; pus collections were encountered in abscess cavities superior and inferior to the solid tumour, which had a necrotic core.

The operation was successful with a post-operative MRI within 48 h demonstrating complete resection of the tumour and resolution of the cystic lesions, but persisting intraparenchymal oedema (Fig. 3). The patient had an uncomplicated two-day stay in a neurosurgery high dependency unit postoperatively before being stepped down to the general neurosurgery ward. She was reviewed by the microbiology team and worked up for the source of infection. Blood cultures, urine cultures, CXR and transthoracic echocardiography were all negative for a source of infection. Intra-operative pus cultures isolated MSSA. The histopathology of the tumour was Meningioma WHO Grade 1 with large areas of necrosis and secondary abscess formation. She was discharged feeling well 5 days later after a satisfactory biochemical and clinical response. She was given a weaning course of steroids and a 6-week course of intravenous ceftriaxone via a PICC line as an outpatient as per microbiology advice. Ophthalmology assessment 3 months after discharge confirmed a left inferior quadrantanopia and preserved visual acuity. Repeat MRI and clinic review 8 weeks later showed no radiological residual tumour or oedema (Fig. 4), and the patient’s limb function recovered completely but had ongoing visual symptoms.
Case	Patient	Clinical features	Organism	Meningioma location	Relationship of abscess to meningioma	Histological finding	Grade WHO (2016)	Source of infection	Favourable outcome
Shimomura et al. 1994 [2]	64/F	Drowsiness and fever	Bacteroides oralis	Right frontal	Intratumoral	Transitional meningioma	1	10 days postgynaecologic surgery	+
Nassar et al. 1997 [3]	78/F	Left hemiparesis	Escherichia coli	Right occipital	Intratumoral	'Benign meningioma’	1	Urinary tract infection	+
Eisenberg et al. 1998 [4]	78/F	Focal seizure	Proteus mirabilis	Left frontal	Intratumoral	Transitional meningioma	1	Urinary tract infection	-
Onopchenko et al. 1999 [5]	63/F	N/A	Staphylococcus aureus	Left convexity	Peritumoral	N/A	N/A	Recent nephrectomy for abscessed pyelonephritis and drainage of gluteal abscess	+
Yeates et al. 2003 [6]	38/F	Seizures, fever, chills and night sweats	Bacteroides fragilis	Left frontal	Intratumoral	Meningothelial meningioma	1	3 weeks postvaginal hysterectomy	+
Lind et al. 2005 [7]	78/F	Confusion and personality change	Citrobacter koseri	Right frontal	Peritumoral	N/A	N/A	Unknown	+
Young et al. 2005 [8]	38/M	Headache and fever	Group B streptococcus, Peptostreptococcus E. coli	Right temporal	Intra and peritumoral	Meningothelial meningioma	1	Dental work	+
Lo et al. 2014 [9]	70/F	Left hemiparesis	E. coli	Right parietal and left frontal	Intratumoral	Transitional/fibrous meningioma	1	6 days postureteroscopy and lithotripsy	+
Krishnan et al. 2014 [10]	55/F	Status epilepticus	E. coli	Left frontal convexty	Intratumoral	Psammomatous meningioma	1	Recent urinary stent insertion	+
Möller et al. 2015 [11]	65/F	Headache	Norcardia novia	Left occipital	Intratumoral	Meningothelial meningioma	1	Unknown	+
Rao Patibandla et al. 2017 [12]	35/M	Headache and vomiting	Proteus Mirabilis	Right lateral ventricle	Intratumoral	Transitional type Psammomatous meningioma	N/A	Urinary tract infection	+
Sannaredddy et al. 2018 [13]	56/M	Headache and vomiting	E. coli	Left occipital	Intratumoral	Psammomatous meningioma	I	Unknown	+
Sosa-Najera et al. 2018 [14]	42/F	Left hemiparesis, focal left seizures and headache	N/A	Right parietal	Intratumoral	Atypical meningioma	II	Unknown	+

Continued
Case	Patient	Clinical features	Organism	Meningioma location	Relationship of abscess to meningioma	Histological finding	Grade WHO (2016)	Source of infection	Favourable outcome
Chandra et al. 2018 [15]	70/M	Right hemimotor and sensory disturbance	Streptococcus constellatus, Fusobacterium, Prevotella dentalis and Parvimonas micra	Left posterior frontal/parietal lobe	Intra- and peritumoral	Meningothelial meningioma	1	Unknown	+
Ponce-Ayala et al. 2020 [16]	63/M	Confusion, aphasia and right hemiparesis	N/A	Left hemispheric	Intratumoral	Anaplastic meningioma	III	N/A	–
Fabbri et al. 2020 [17]	76/M	Left sided hearing loss	N/A - 'sterile'	Right convexity	Intratumoral	Meningothelial	I	N/A	+
Cristopher et al. 2020 [18]	75/F	Focal seizures developing to status epilepticus	E. coli	Known left frontal and parietal meningiomas	Intratumoral	N/A	I	Uninary tract infection	+
Our Case	52/F	Left Inferior quadrantopia, headache and confusion	Staphylococcus aureus (MSSA)	Right occipital	Peritumoral	N/A	I	Unknown	+

WHO = World Health Organisation, M = Male, F = Female, N/A = Not Applicable.
DISCUSSION

Upon review of the literature with respect to meningiomas associated with tumoral abscess specifically, we identified eighteen cases including our own (Table 1). The most common presenting symptom seen was headache, which was present in six cases including our own [8, 11–14]. Hemiparesis and seizures were also common and seen in four patients [3, 4, 6, 9, 14, 16, 18]. An infective source was identified in a total of ten cases. Six patients had operative interventions, either gynaecological, urological or dental, in the recent period prior to presentation and cultured corresponding organisms [2, 5, 6, 8–10]. The remaining four cases had associated urinary tract infections identified through urine cultures [3, 4, 12, 18]. Despite investigation, eight remaining cases including our own had no clear infective source. One of these cases described a ‘sterile’ abscess formation thought related to androgen treatment in the context of prostate carcinoma [17]. The immunocompromised nature of the patient, recent steroid treatment and presumed urinary/dental infections were cited as potential sources/contributing factors to the remaining cases without a clear cause [7, 11, 13–16].

The organisms cultured were also consistent with a majority abdominopelvic origin. Of the fifteen cases with a confirmed context of prostate carcinoma [17]. The immunocompromised nature of the patient, recent steroid treatment and presumed urinary/dental infections were cited as potential sources/contributing factors to the remaining cases without a clear cause [7, 11, 13–16]. The clinical/biochemical inflammatory response seen to infection demonstrated a variable level of severity, from asymptomatic to occult sepsis and also a varied temporal relationship between infection and tumour identification.

As given above, haematogenous spread has been postulated as the most likely pathogenesis of abscess formation in meningiomas. Especially as destruction to the blood brain barrier through open epithelial junctions, gaps between epithelial cells and capillary fenestrations have been demonstrated in meningiomas [9]. The rich vascular supply of tumours, their vascular branching patterns, compression of nearby venous structures resulting in stasis and the nutrient-rich environment have also been cited as potentially contributory [10]. Intratumoral cultures showing very similar sensitivities to those cultured peripherally and our case being one of few describing a lesion remote from the frontal sinuses also strengthens the case [18].

The most common location for abscess formation was within the tumour alone, which was seen in fourteen cases. A peritumoral abscess was seen in two cases and a further two demonstrated the presence of both peritumoral and intratumoral abscesses [5, 7, 8, 15]. One case demonstrated intratumoral abscess formation solely within one of two meningiomas present raising the possibility of preferential seeding of infections depending on vascular supply [18]. The immunocompetent nature and occult source of infection of our case make an interesting point of discussion with the majority of cases occurring with a known infective source, causative procedure or immunocompromised status. As with our case and sixteen of the eight cases in the literature, a favourable outcome was achieved. This was defined as complete recovery in nine cases and persistent mild neurological deficit in six cases. All cases required surgical intervention to achieve this and most utilized prolonged antibiotic therapy. Those cases, which mention antibiotic, produce a mean therapeutic duration of 6.7 weeks (range 10 days–12 weeks). Most describe resolution on follow-up imaging with one case requiring repeat surgical intervention in the acute post-operative period due to imaging findings.

In conclusion, we describe the presentation and successful treatment of a rare meningioma and associated intraparenchymal paratumoural abscesses. A phenomenon noted within the literature with evidence suggesting its association to haematogenous spread of classically abdominopelvic organisms. Occult infection, as in our case, is also seen but despite this patients usually have uncomplicated recoveries following surgical intervention and a prolonged antibiotic course.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Campenni A, Caruso G, Barresi V, Pino M, Cucinotta M, Baldari S, et al. Gliomas with intratumoral abscess formation: description of new cases, review of the literature, and the role of 99mTc-Leukoscan. Kaohsiung J Med Sci 2015;31:377–83.

2. Shimomura T, Hori S, Kasai N, Tsuruta K, Okada H. Meningioma associated with intratumoral abscess formation: a case report. Neurol Med Chir (Tokyo) 1994;34:440–3.

3. Nassar S, Haddad F, Hanball F, Kanaan NV. Abscess superimposed on brain tumor: two case reports and review of the literature. Surg Neurol 1997;47:484–8.

4. Eisenberg M, Lopez R, Stanek A. Abscess formation within a parasagittal meningioma. Case report. J Neurosurg 1998;88:895–7.

5. Onopchenko EV, Grigorian IA. Meningiomas with peritumoral abscesses. Zh Vopr Neirokhir Im N N Burdenko 1999;1:28–30 Russian.

6. Yeates K, Halliday W, Miyasaki J, Vellend H, Straus S. A case of ‘circling seizures’ and an intratumoral abscess. Clin Neurol Neurosurg 2003;105:128–31.

7. Lind C, Muthiah K, Bok A. Peritumoral Citrobacter koseri abscess associated with parasagittal meningioma. Neurosurg 2005;57:E814.

8. Young J, Young P. Meningioma associated with abscess formation: a case report. Surg Neurolog 2005;63:584–5.

9. Lo WB, Cahill J, Carey M, Mehta H, Shad A. Infected intracranial meningiomas. World Neurosurg 2014;81:651.e9–13.

10. Krishnan S, Panigrahi M, Pattanagare S, Varma R, Rao S. Abscess within a meningioma: pathogenesis and rare case report. Neurol India 2014;62:196–8.

11. Molière S, Krémer S. When meningioma becomes an emergency: nocardial brain abscesses superimposed on meningioma. J Neuroradiol 2015;42:249–51.

12. Patibandla M, Addagada D, Addagada C. Meningioma with intratumoral abscess: review of literature. J Surg 2017;5.

13. Sannareddy R, Lath R, Padua R, Ranjan A. Meningioma with intra- and peritumoral abscesses. Indian J Neurosurg 2018;7:220–2.

14. Chandra V, Agarwal N, Zenonos G, Zhang X, Hamilton R, Gardner P. Concomitant parasagittal meningioma and adjacent intracranial abscess of occult etiology. J Clin Neurosci 2020;72:474–80.

15. Ponce-Ayala A, Carriozas-Rodríguez J, Ramírez-Loera C, Rocha-Abrica J, Mendizábal-Guerra R. Anaplastic meningioma with intratumoral abscess; case report and literature review. Interdiscip Neurosurg 2021;23:101007.
16. Sosa-Najera A, Solorio-Pineda S, Tafur-Grandett A, Ruiz-Flores M, Tevera-Ovando C. Atypical abscessed parasagittal meningioma Archivos de Neurociencias (Mex). INNN 2018;23:35–41.

17. Fabbri V, Asioli S, Palandri G. An unusual case of “sterile” abscess within low-grade meningioma during antiandrogenic therapy and LH-releasing hormone agonist treatment for prostate cancer. Clin Neurol Neurosurg 2020;196:105993.

18. Christopher E, Moreton FC, Torgersen A, Foley P. Seeding of infection in previously asymptomatic meningioma. Pract Neurol 2020;20:247–8. 10.1136/pract-neurol-2019-002418 Epub 2020 Jan 20. PMID: 31959614.