The Origin of Time Asymmetry

†S.W.Hawking*, †‡R.Laflamme** & †G.W. Lyons***

†Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Silver Street, Cambridge
U.K., CB3 9EW

&

‡Theoretical Astrophysics, T-6, MSB288
Los Alamos National Laboratory
Los Alamos, NM 87545
USA

Abstract

It is argued that the observed Thermodynamic Arrow of Time must arise from the boundary conditions of the universe. We analyse the consequences of the no boundary proposal, the only reasonably complete set of boundary conditions that has been put forward. We study perturbations of a Friedmann model containing a massive scalar field but our results should be independent of the details of the matter content. We find that gravitational wave perturbations have an amplitude that remains in the linear regime at all times and is roughly time symmetric about the time of maximum expansion. Thus gravitational wave perturbations do not give rise to an Arrow of Time. However density

* Email: swh1@phx.cam.ac.uk.
** Email: rl104@phx.cam.ac.uk.
*** Email: gwl10@phx.cam.ac.uk.
perturbations behave very differently. They are small at one end of the universe’s history, but grow larger and become non-linear as the universe gets larger. Contrary to an earlier claim, the density perturbations do not get small again at the other end of the universe’s history. They therefore give rise to a Thermodynamic Arrow of Time that points in a constant direction while the universe expands and contracts again. The Arrow of Time does not reverse at the point of maximum expansion. One has to appeal to the Weak Anthropic Principle to explain why we observe the Thermodynamic Arrow to agree with the Cosmological Arrow, the direction of time in which the universe is expanding.
1) **Introduction.**

The laws of physics do not distinguish the future from the past direction of time. More precisely, the famous CPT theorem\(^1\) says that the laws are invariant under the combination of charge conjugation, space inversion and time reversal. In fact effects that are not invariant under the combination CP are very weak, so to a good approximation, the laws are invariant under the time reversal operation \(T\) alone. Despite this, there is a very obvious difference between the future and past directions of time in the universe we live in. One only has to see a film run backward to be aware of this.

There are are several expressions of this difference. One is the so-called psychological arrow, our subjective sense of time, the fact that we remember events in one direction of time but not the other. Another is the electromagnetic arrow, the fact that the universe is described by retarded solutions of Maxwell’s equations and not advanced ones. Both of these arrows can be shown to be consequences of the thermodynamic arrow, which says that entropy is increasing in one direction of time. It is a non trivial feature of our universe that it should have a well defined thermodynamic arrow which seems to point in the same direction everywhere we can observe. Whether the direction of the thermodynamic arrow is also constant in time is something we shall discuss shortly.

There have been a number of attempts to explain why the universe should have a thermodynamic arrow of time at all. Why shouldn’t the universe be in a state of maximum entropy at all times? And why should the direction of the thermodynamic arrow agree with that of the cosmological arrow, the direction in which the universe is expanding? Would the thermodynamic arrow reverse, if the universe reached a maximum radius and began to contract?
Some authors have tried to account for the arrow of time on the basis of dynamic laws. The discovery that CP invariance is violated in the decay of the K^0 meson\(^2\), inspired a number of such attempts but it is now generally recognized that CP violation can explain why the universe contains baryons rather than anti baryons, but it can not explain the arrow of time. Other authors\(^3\) have questioned whether quantum gravity might not violate CPT, but no mechanism has been suggested. One would not be satisfied with an ad hoc CPT violation that was put in by hand.

The lack of a dynamical explanation for the arrow of time suggests that it arises from boundary conditions. The view has been expressed that the boundary conditions for the universe are not a question for Science, but for Metaphysics or Religion. However that objection does not apply if there is a sense in which the universe has no boundary. We shall therefore investigate the origin of the arrow of time in the context of the no boundary proposal of Hartle & Hawking\(^4\). This was formulated in terms of Einsteinian gravity which may be only a low energy effective theory arising from some more fundamental theory such as superstrings. Presumably it should be possible to express a no boundary condition in purely string theory terms but we do not yet know how to do this. However the recent COBE observations\(^5\) indicate that the perturbations that lead to the arrow of time arise at a time during inflation when the energy density is about 10^{-12} of the Planck density. In this regime, Einstein gravity should be a good approximation.

In most currently accepted models of the early universe there is some scalar field ϕ whose potential energy causes the universe to expand in an exponential manner for a time. At the end of this inflationary period, the scalar field starts to oscillate and its energy is supposed to heat the universe and to be transformed into thermal quanta of other fields.
However this thermalisation process involves an implicit assumption of the thermodynamic arrow of time. In order to avoid this we shall consider a universe in which the only matter field is a massive scalar field. This will not be a completely realistic model of the universe we live in because it will be effectively pressure free after the inflationary period rather than radiation dominated. However it has the great advantage of being a well defined model without hidden assumptions about the arrow of time. One would expect that the existence and direction of the arrow of time should not depend on the precise matter content of the universe. We shall therefore consider a model in which the action is given by the Einstein-Hilbert action

\[I_g = \frac{1}{16\pi G} \int_{\mathcal{M}} d^4 x (-g)^{1/2} R + \frac{1}{8\pi G} \int_{\partial\mathcal{M}} d^3 x (h)^{1/2} K \]

(1.1)

plus the massive scalar field action

\[I_\Phi = -\frac{1}{2} \int_{\mathcal{M}} d^4 x (-g)^{1/2} (g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + m^2 \phi^2). \]

(1.2)

In accordance with the no boundary proposal, we shall take the quantum state of the universe to be defined by a path integral over all compact metrics with this action. This means that the wave function \(\Psi[h_{ij}, \phi_0] \) for finding a three metric \(h_{ij} \) and scalar field \(\phi_0 \) on a spacelike surface \(S \) is given by

\[\Psi(h_{ij}, \phi_0) = \int_{C} d[g_{\mu\nu}] d[\phi] e^{-I_c[g_{\mu\nu}, \phi]} \]

(1.3)

where the path integral is taken over all metrics and scalar fields on compact manifolds \(M \) with boundary \(S \) that induce the given values on the boundary. In general the metrics in the path integral will be complex rather than purely Lorentzian or purely Euclidean.
There are a number of problems in defining a path integral over all metrics, two of which are:

(1) The path integral is not perturbatively renormalisable.

(2) The Einstein Hilbert action is not bounded below.

These difficulties may indicate that Einstein gravity is only an effective theory. Nevertheless, for the reasons given above we feel the saddle point approximation to the path integral should give reasonable results. We shall therefore endeavour to evaluate the path integral at stationary points of the action, that is at solutions of the Einstein equations. These solutions will be complex in general.

The behaviour of perturbations of a Friedmann model according to the no boundary proposal was first investigated by Halliwell & Hawking\(^6\) and we shall adopt their notation. The perturbations are expanded in hyperspherical harmonics. There are three kinds of harmonics.

(1) Two degrees of freedom in tensor harmonics. These are gauge invariant and correspond to gravitational waves.

(2) Two degrees of freedom in vector harmonics. In the model in question they are pure gauge.

(3) Three degrees of freedom in scalar harmonics. Two of them correspond to gauge degrees of freedom and one to a physical density perturbation.

One can estimate the wave functions for the perturbation modes by considering complex metrics and scalar fields that are solutions of the Einstein equations whose only boundary is the surface \(S\). When \(S\) is a small three sphere, the complex metric can be close to that of part of a Euclidean four sphere. In this case the wave functions for the
tensor and scalar modes correspond to them being in their ground state. As the three
sphere S becomes larger, these complex metrics change continuously to become almost
Lorentzian. They represent universes with an initial period of inflation driven by the po-
tential energy of the scalar field. During the inflationary phase the perturbation modes
remain in their ground states until their wave lengths become longer than the horizon size.
The wave function of the perturbations then remains frozen until the horizon size increases
to be more than the wave length again during the matter dominated era of expansion that
follows the inflation. After the wave lengths of the perturbations come back within the
horizon, they can be treated classically.

This behaviour of the perturbations can explain the existence and direction of the
thermodynamic arrow of time. The density perturbations when they come within the
horizon are not in a general state but in a very special state with a small amplitude that
is determined by the parameters of the inflationary model, in this case, the mass of the
scalar field. The recent observations by COBE indicate this amplitude is about 10^{-5}. After
the density perturbations come within the horizon, they will grow until they cause
some regions to collapse as proto-galaxies and clusters. The dynamics will become highly
non linear and chaotic and the coarse grained entropy will increase. There will be a well
defined thermodynamic arrow of time that points in the same direction everywhere in the
universe and agrees with the direction of time in which the universe is expanding, at least
during this phase.

The question then arises: If and when the universe reaches and maximum size, will the
thermodynamic arrow reverse? Will entropy decrease and the universe become smoother
and more homogeneous during the contracting phase? In reference [7] it was claimed that
the no boundary proposal implied that the thermodynamic arrow would reverse during
the contraction. This is now recognized to be incorrect but it is instructive to consider the
arguments that led to the mistake and see why they do not apply. The anatomy of error
is not ruled by logic but there were three arguments which together seemed to point to
reversal:

(1) The no boundary proposal implied that the wave function of the universe was invariant
under CPT.

(2) The analogy between spacetime and the surface of the Earth suggested that if the
North Pole were regarded as the beginning of the universe, the South Pole should be
its end. One would expect conditions to be similar near the North and South Poles.
Thus if the amplitude of perturbations was small at early times in the expansion, it
should also be small at late times in the contraction. The universe would have to get
smoother and more homogeneous as it contracted.

(3) In studies of the Wheeler Dewitt equation on minisuperspace models it was thought
that the no boundary condition implied that $\Psi(a) \to 1$ as the radius $a \to 0$. In
the case of a Friedmann model with a massive scalar field, this seemed to imply
that the classical solutions that corresponded to the wave function through the WKB
approximation would bounce and be quasi-periodic. This could be true only if the
solutions were restricted to those in which the perturbations became small again as
the universe contracted.

Page pointed out that the first argument about the CPT invariance of the wave
function didn’t imply that the individual histories had to be CPT symmetric, just that
if the quantum state contained a particular history, then it must also contain the CPT
image of that history with the same probability. Thus this argument didn’t necessarily imply that the thermodynamic arrow reversed in the contracting phase. It would be equally consistent with CPT invariance for there to be histories in which the thermodynamic arrow to pointed forward during both the expansion and contraction, and for there to be other histories with equal probability in which the arrow was backward. With a relabelling of time and space directions and of particles and antiparticles, these two classes of histories would be physically identical. Both would correspond to a steady increase in entropy from one end of time, which can be labelled the Big Bang, to the other end, which can be labelled the Big Crunch.

The second argument, about the north and south poles being similar, is really a confusion between real and imaginary time. It is true that there is no distinction between the positive and negative directions of time. In the Euclidean regime, the imaginary time direction is on the same footing as spatial dimensions. So one can reverse the direction of imaginary time by a rotation. Indeed, this is the basis of the proof that the no boundary quantum state is CPT invariant. But as noted above, this does not imply that the individual histories are symmetric in real time or that the Big Crunch need be similar to the Big Bang.

The third argument, that the boundary condition for the Wheeler Dewitt equation should be $\Psi \rightarrow 1$ for small three spheres S in a homogeneous isotropic mini superspace model, was the one that really led to the error of suggesting that the arrow of time reversed. The motivation behind the adoption of this boundary condition was the idea that the dominant saddle point in the path integral for a very small three sphere would be a small part of a Euclidean four sphere. The action for this would be small. Thus the wave
function would be about one irrespective of the value of the value of the scalar field. With this boundary condition, the mini superspace Wheeler Dewitt equation gave a wave function that was constant or exponential for small radius, and which oscillated rapidly for larger radius. From the WKB approximation one could interpret the oscillations as corresponding to Lorentzian geometries. That fact that the oscillating region didn’t extend to very small radius was taken to indicate that these Lorentzian geometries wouldn’t collapse to zero radius but would bounce. Thus they would correspond to quasi-periodic oscillating universes. In such universes, the perturbations would have to obey a quasi-periodic boundary condition and be small whenever the radius of the universe was small. Otherwise the universe would not bounce. This would mean that the thermodynamic arrow would have to reverse during the contraction phase so that the perturbations were small again at the next bounce.

This boundary condition on the wave function became suspect when Laflamme10,11 found other minisuperspace models in which a bounce was not possible. Then Page9 pointed out that for small three surfaces S, there was another saddle point that could make a significant contribution to the wave function. This was a complex metric that started almost like half of a Euclidean four sphere and was followed by an almost Lorentzian metric that expanded to a maximum radius, and then collapsed to the small three surface S. The long Lorentzian period would give the action of these metrics a large imaginary part. This would lead to a contribution to the wave function that oscillated very rapidly as a function of the radius of the three surface S and the value of the scalar field on it. Thus the boundary condition of the Wheeler Dewitt equation wouldn’t be exactly $\Psi \to 1$ as the radius tends to zero. There would also be a rapidly oscillating component of the
wave function.

As before, the wave functions for perturbations about the Euclidean saddle point metric would be in their ground states. But there is no reason for this to be true for perturbations about the saddle point metric with a long Lorentzian period that expanded to a large radius and then contracted again.

To find out what the wave functions for perturbations in the contracting phase are, one has to solve the relevant Schroedinger equation during the expansion and contraction. This we do in sections (3.1) and (3.2). We find that the tensor modes have wave functions that correspond to gravitational waves that oscillate with an adiabatically varying amplitude. This amplitude will depend on the radius of universe. It will be the same at the same radius in the expanding and contracting phases and it will be small compared to one whenever the wave length is less than the horizon size. Thus these gravitational wave modes will not become non linear and will not give rise to a thermo dynamic arrow of time.

By contrast, scalar modes between the Compton wave length of the scalar field and the horizon size won’t oscillate but will have power law behaviour. There are two independent solutions of the perturbation equations, one which grows and one which decreases with time. The boundary condition provided by the no boundary proposal picks out the solution that is a small perturbation about the Euclidean saddle point for small three spheres. It does not require that the perturbation about the saddle point with a long Lorentzian period remains small. So the no boundary proposal picks out the solution of the density perturbation equation that starts small but grows during the expansion and continues to grow during the contraction. At some point during the expansion, the amplitude will grow so large that the linearized treatment will break down. This however does not prevent one
using linear perturbation theory to draw conclusions about the thermodynamic arrow of time. The arrow of time is determined by when the evolution becomes non-linear. The linear treatment and the no boundary proposal enable one to say that this will happen during the expansion. After that the evolution will become chaotic and the coarse grained entropy will increase. It will continue to increase in the contracting phase because there is no requirement that the perturbations become small again as the universe shrinks. Thus the thermodynamic arrow will not reverse. It will point the same way while the universe expands and contracts.

The thermodynamic arrow will agree with the cosmological arrow for half the history of the universe, but not for the other half. So why is it that we observe them to agree? Why is it that entropy increases in the direction that the universe is expanding? This is really a situation in which one can legitimately invoke the weak anthropic principle because it is a question of where in the history of the universe conditions are suitable for intelligent life. The inflation in the early universe implies that the universe will expand for a very long time before it contracts again. In fact, it is so long that the stars will have all burnt out and the baryons will have all decayed. All that will be left in the contracting phase will be a mixture of electrons, positrons, neutrinos and gravitons. This is not a suitable basis for intelligent life.

The conclusion of this paper is that the no boundary proposal can explain the existence of a well defined thermodynamic arrow of time. This arrow always points in the same direction. The reason we observe it to point in the same direction as the cosmological arrow is that conditions are suitable for intelligent life only at the low entropy end of the universe’s history.
2) The Homogeneous Model.

In this section we review the homogeneous model with metric

\[ds^2 = \sigma^2(-N(t)^2 dt^2 + a(t)^2 d\Omega_3^2) \] (2.1)

where \(\sigma^2 = \frac{2}{3\pi m_p^2} \), \(N \) is the lapse function, \(a \) is the scale factor and \(d\Omega_3^2 \) is the standard 3-sphere metric. Expressing the scalar field as \(\sqrt{2\pi}\sigma\phi \) with the quadratic potential \(2\pi^2\sigma^2m^2\phi^2 \), the Lorentzian action is

\[I = -\frac{1}{2} \int dt N a^3[-\frac{\dot{a}^2}{N^2 a^2} - \frac{1}{a^2} - \frac{\dot{\phi}^2}{N^2} + m^2\phi^2] \] (2.2)

where the dot denotes derivative with respect to Lorentzian FRW time (if not explicitly stated throughout the paper time derivative are Lorentzian). There are no time derivatives of the lapse function \(N \) in this action; it is a lagrange multiplier. Varying the action with respect to \(N \) leads to the constraint

\[H = \frac{N}{2a^3}[-a^2\pi_a^2 + \pi_\phi^2 - a^4(1 - a^2m^2\phi^2)] = 0 \] (2.3)

where the momenta \(\pi_a \) and \(\pi_\phi \) are defined as

\[\pi_a = -\frac{a}{N}\dot{a} \quad \text{and} \quad \pi_\phi = \frac{a^3}{N}\dot{\phi} \] (2.4)

and \(H \) is the Hamiltonian. This constraint is a consequence of the invariance under time reparametrization. Varying the action with respect to the field \(\phi \) we obtain the reduced Klein-Gordon equation

\[N \frac{d}{dt}(\frac{\dot{\phi}}{N}) + 3\frac{\dot{a}}{a}\dot{\phi} + N^2m^2\phi^2 = 0, \] (2.5)

This latter equation together with the Hamiltonian constraint \(H = 0 \), is sufficient to describe the classical dynamics. The second order equation for \(a \) can be derived from
these equations. In the inhomogeneous model there are also momentum constraints, but these are trivially satisfied in the homogeneous background.

The quantum theory is obtained by replacing the different variables by operators. We will follow the Dirac method and impose the classical constraints as quantum operators. The Hamiltonian constraint thus becomes

\[[a^2 \frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial \phi^2} - a^4(1 - a^2 m^2 \phi^2)] \Psi_0(a, \phi) = 0 \]

(2.6)

and is called the Wheeler-DeWitt equation. The solution of this equation \(\Psi_0(a, \phi) \) is the wave function of the universe. There is a factor ordering ambiguity, but it is not important for the conclusions of our paper which rely on the classical limit.

In this paper we investigate the predictions of the no-boundary proposal in a model where small inhomogeneities are taken into account. In order to impose this proposal we return to a path integral formulation of the wavefunction. It is very hard to calculate this path integral exactly. However we can have a good idea of the resulting wave function by using a saddlepoint approximation

\[\Psi(h_{ij}, \phi) \approx C e^{-I_{sp}^E [g_{\mu\nu} \Phi]} \]

(2.7)

where \(C \) is a prefactor and \(I_{sp}^E \) is the Euclidean saddle-point action. In this approximation it is clear how to impose the proposal of Hartle and Hawking. The regularity condition is imposed on the (complex) saddlepoints of the path integral. The semiclassical approximation to the path integral can then be used to estimate the wavefunction.

One of the problems in using the semiclassical approximation in this model is that we cannot simply deform the complex metric into purely real Euclidean and real Lorentzian sections, for real arguments of the wavefunction. This could only be achieved in this
model if the time derivatives of both a and ϕ vanish simultaneously on the Euclidean axis,12 which is not possible as ϕ increases monotonically if the no boundary condition is imposed. Therefore we must solve the background equations of motion for complex values of time and physical variables, obtaining complex solutions which satisfy the no boundary proposal and have the given a and ϕ on the final hypersurface. The no boundary proposal imposes the boundary conditions at one end of the four geometry

$$a = 0 \quad \frac{da}{d\tau} = 1 \quad \frac{d\phi}{d\tau} = 0 \quad \phi = \phi_0$$

(2.8)

thus we only have the freedom to choose the (complex) value of ϕ at the origin of complex time τ.

Lyons13 found that there were many contours in the complex time plane which induced real endpoints a and ϕ. Some possibilities are obtained by choosing the initial value of ϕ to have an imaginary part much smaller than the real part such that $\phi_0^{Im} \approx -(1 + 2n)\pi/6\phi_0^{Re}$ (for integer n). In this paper we will only investigate the case $n = 0$.

For small a the complex metric can effectively be considered as a small real Euclidean section, with ϕ_0 approximately real, described by

$$\phi \approx \phi_0 \quad \text{and} \quad a \approx \frac{1}{m\phi_0} \sin m\phi_0 \tau \quad (2.9)$$

where τ is the Euclidean time. When we consider gravitons below, it is a good approximation to assume the following behaviour for the radius a when $\phi_0 > 1$. For small a ($< m\phi_0$) the background is part of an Euclidean 4-sphere

$$a \approx \frac{1}{m\phi_0 \cosh \eta_E} \quad -\infty < \eta_E < 0. \quad (2.10)$$

The Euclidean conformal time is given by $\eta_E = \int d\tau/a$. Although η_E has semi-infinite range notice that the proper distance is finite. The radius a starts at zero and increases
to a maximum value of $1/m\phi_0$, the equator of the 4-sphere. For larger a, the saddle point is well approximated by de Sitter space

$$a \approx \frac{1}{m\phi_0 \cos \eta} \quad 0 < \eta < \frac{\pi}{2} - \delta_e$$

(2.11)

where η is the analytic continuation of $\eta_e = i\eta$. The universe is then in an inflationary era. In terms of comoving time:

$$\phi \approx \phi_0 - \frac{mt}{3} \quad \text{and} \quad a \approx \frac{1}{m\phi_0} e^{m\phi_0 t - \frac{1}{3}m^2 t^2}$$

(2.12)

where t is the analytic continuation of τ in the Lorentzian region.

The action is given by

$$I_e \approx -\frac{1}{3m^2\phi_0^2}\left(1 - (1 - m^2\phi^2_0a^2)^{3/2}\right).$$

(2.13)

For large a ($\gg 1/m\phi_0$), the saddle point will have a large imaginary part. The wave function will therefore be of WKB type. After a suitable coarse graining,14 we can associate the phase of the wave function to the Hamilton-Jacobi function of general relativity. When this is possible we will assume that the universe behaves essentially classically. The wave function will be associated to the family of classical Lorentzian trajectories described by the Hamilton-Jacobi function.

Meanwhile the scalar field is decreasing and inflation will end at $\eta = \pi/2 - \delta_e$ when the scalar field reaches a value around unity, at which point the value of a will be $a_e \approx (1/m\phi_0) \exp(3\phi^2_0/2)$. δ_e is given by the implicit relation $\delta_e \approx \exp(-3(\phi_0)^2/2)$. For $\phi_0 > 1$, we have $\delta_e \ll 1$. When $\eta > \pi/2 - \delta_e$, the scalar field oscillates and behaves essentially as a pressureless fluid (i.e. dust):

$$\phi \approx \frac{1}{m}\left(\frac{a_{\text{max}}}{a^3}\right)^{1/2} \cos(mt).$$

(2.14)
The scale factor of the universe is then well described by

\[a \approx a_m \sin^2 \left(\frac{\pi/2 - 3\delta_e - \eta}{2} \right) \quad \frac{\pi}{2} - \delta_e < \eta \] (2.15)

where the constants have been chosen to ensure a smooth transition between the inflationary and dust era. The universe will therefore expand to a maximum radius \(a_m \approx m^2 a_e^3 \approx \exp(9(\phi_0)^2/2)/m(\phi_0)^3 \) and recollapse. It will be convenient later on to redefine the origin of conformal time during the dust-like era by setting \(\eta_d = \eta - \pi/2 + 3\delta_e \). The scale factor will then evolve as

\[a \approx a_{\text{max}} \sin^2 \frac{\eta_d}{2} \quad 0 < \eta_d < 2\pi \] (2.16)

Figure 1 depicts a typical classical trajectory corresponding to the no-boundary proposal.

3) Inhomogeneous Perturbations.

Let us now consider the behaviour of small perturbations around the the homogeneous model described in the previous section. We write the metric as

\[g_{\mu\nu}(t, \mathbf{x}) = g_{\mu\nu}(t) + \delta g_{\mu\nu}(t, \mathbf{x}). \] (3.1)

The background part \(g_{\mu\nu}(t) \) was described in the previous section by the line element (2.1).

One can decompose a general perturbation \(\delta g_{\mu\nu} \) of a Robertson-Walker background metric into scalar \((O^n_{lm}) \), vector \(((P_i)^n_{lm}, (S^{i,e}_{lm})^n_{lm}) \) and tensor \(((P_{ij})^n_{lm}, (S^{i,e}_{ij})^n_{lm}, (G^{i,e}_{ij})^n_{lm}) \) harmonics. This classification originates from the way they transform under rotations of the 3-sphere. These harmonics are constructed from the scalar, vector and tensor eigenfunctions of the Laplacian on the 3-sphere, viz. \(O^n_{lm}, (S^{i,e}_{i})^n_{lm} \) and \((G^{i,e}_{ij})^n_{lm} \). More details and properties of these harmonics are given in refs. [15,16].
We can expand the inhomogeneous perturbations of the metric in terms of these
harmonics (where the index \(n\) should be thought of as a shorthand for \(nlm\) and \(o,e\)). The
tensor perturbations are:

\[
\delta g^{(t)}_{\mu\nu} = \sum_n a_n^2 \begin{pmatrix}
0 & 0 \\
0 & 2d_nG^n_{ij}
\end{pmatrix}
\tag{3.2}
\]

\(G^n_{ij}\) are the transverse traceless tensor harmonics. The vector perturbations are:

\[
\delta g^{(v)}_{\mu\nu} = \sum_n a_n^2 \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & j_nS^n_i \\
j_nS^n_i & 2c_nS^n_{ij}
\end{pmatrix}
\tag{3.3}
\]

where the \(S^n_{ij} = S^n_{ij} + S^n_{ji}\) are obtained from the transverse vector harmonics \(S^n_i\). The scalar perturbations of the

\[
\delta g^{(s)}_{\mu\nu} = \sum_n \frac{a_n^2}{\sqrt{6}} \begin{pmatrix}
-2N_0g_nQ^n_{ij} & k_nP^n_{ij} \\
k_nP^n_{ij} & 2a_n\Omega_{ij}Q^n + 6b_nP^n_{ij}
\end{pmatrix}
\tag{3.4}
\]

where the \(P^n_i = Q^n_{ij}/(n^2 - 1)\) and \(P^n_{ij} = \Omega_{ij}Q^n/3 + Q^n_{iij}/(n^2 - 1)\) are obtained from the scalar harmonics \(Q^n\). We must also take into account the scalar perturbations of the scalar field:

\[
\delta \phi = \sum_n \frac{1}{\sqrt{6}} f_nQ^n.
\tag{3.5}
\]

This expansion is in effect a Fourier transform adapted to the symmetry of the FRW background. The coefficients \(a_n, b_n, c_n, d_n, f_n, g_n, j_n\) and \(k_n\) are functions of time, but not of the spatial coordinates of the three-sphere hypersurfaces. Spatial information is encoded in the harmonics.

In [6] the action (1.3) and (1.4) was expanded to second order around the homogeneous model. In appendix A, we have reproduced it with the equations of motion for the various Fourier coefficients. After examining the perturbed Lagrangians (A.2) and (A.3) we find that the different types of harmonics decouple from each other. Their wave functions will
therefore separate so we can write

$$\Psi_n(a, \phi, a_n, b_n, c_n, d_n, f_n) = \psi_n^s(a, \phi, a_n, b_n) \psi_n^v(a, \phi, c_n) \psi_n^t(a, \phi, d_n) \quad (3.6)$$

It is thus possible to investigate them separately. We will study the tensor and scalar modes in the next two subsections. For the vector modes there are only two variables c_n and j_n. The latter one however is a Lagrange multiplier and thus induces a constraint for the only variable left. Thus we find that the vector degrees of freedom are pure gauge and will only contribute to the phase of the total wave function.

3.1) Linear Gravitons.

Linear gravitons are the transverse and traceless part of the 3-metric and are described by the variables d_n in the above notation. Using the background equation of motion we can derive the equation

$$d_n'' + 2\mathcal{H}d_n' + (n^2 - 1)d_n = 0. \quad (3.7)$$

for the modes d_n. Here the derivatives are with respect to Lorentzian conformal time and $\mathcal{H} = a'/a$. The gravitons are decoupled from the scalar and vector-derived tensor harmonics and depend only on the behaviour of the background.

We will calculate the wave function for the graviton modes using a saddle-point approximation, assuming the background wave function (2.7) and saddle-point action (2.13). The tensor part of the wave function (see 3.6) can be written as

$$\psi_n^t(a, \phi_0, d_n) = \int [dd_n] e^{-(I_E)} \approx Ce^{-(I_E^{xt})} \quad (3.8)$$

where $C = (\delta^2(I_E^{xt})/\delta d_n^i \delta d_n^j)^{1/2}$ is the prefactor assuming the flat spacetime measure.
The Euclidean action for a mode d_n calculated along an extremising path is given by the boundary term

$$I^{\text{ext}}_E = \left(\frac{a^2 d_n d'_n}{2} + 2aa'd^2_n \right) \bigg|_{\eta'_E}^{\eta'_E}$$

(3.9)

where η_E is the Euclidean time, a function of the background variables a and φ_0 as described in [18]. It is possible to rewrite this action in terms of values of the field on the boundary d'^i_n, d'^f_n and solutions of the classical equation p_n

$$\frac{d}{d\eta_E} a^2 \frac{d}{d\eta_E} p_n - (n^2 - 1)a^2 p_n = 0$$

(3.10)

evaluated on the boundary. The regularity condition for the no-boundary proposal implies that d_n must vanish when the 3-geometry shrinks to zero and this implies that the action will have the form

$$I^{\text{ext}}_E = A d^2_n = \frac{a^2}{2} \left(\frac{p'_n}{p_n} + 4\frac{a'}{a} \right) d^2_n.$$

(3.11)

In regions of configuration space where the universe is Lorentzian, the appropriate analytic continuation of (3.11) should be taken.

It is possible to find a good analytical approximation for p_n and thus of the wave function using (3.8) and (3.11) and assuming that the background is described by equations (2.10), (2.11) and (2.15). The p_n are approximately

$$p_n \propto \left(\cosh \eta_E - \frac{\sinh \eta_E}{n} \right) e^{n \eta_E}, \quad -\infty < \eta_E < 0, \quad \text{in the Euclidean region;}$$

$$\propto \left(\cos \eta + i \frac{\sin \eta}{n} \right) e^{-in\eta}, \quad 0 < \eta < \frac{\pi}{2} - \delta_e, \quad \text{in the inflationary era;}$$

$$\propto \left(\cos [n(\eta - 3\pi/2 + 3\delta_e)] - \frac{\sin[(\eta - 3\pi/2 + 3\delta_e)/2] \sin[n(\eta - 3\pi/2 + 3\delta_e)]}{2n \cos^3[(\eta - 3\pi/2 + 3\delta_e)/2]} \right)$$

$$\frac{\pi}{2} - \delta_e < \eta, \quad \text{in the dust-like phase.}$$

(3.12)
Modes with $n\delta_e \ll 1$ are those with wavelengths much larger than the Hubble radius at the end of inflation. At the onset of inflation they are in their ground state and thus oscillate adiabatically. These modes will no longer oscillate adiabatically when they leave the Hubble radius during inflation. However all modes will re-enter the Hubble radius during the dust era when $n \approx \tan[(\eta - \pi/2 + 3\delta_e)/2]$ and start oscillating adiabatically again. Modes with $n\delta_e \gg 1$ oscillate adiabatically throughout the evolution. All the modes oscillate around the time of maximum expansion, and even if some do not have a phase which is exactly time symmetric, their amplitudes are.

The variance squared of the field and its momenta for modes with $n\delta_e \ll 1$ around the time of maximum expansion are given by

$$
\langle d_n^2 \rangle = \frac{1}{2(A^* + A)} \approx \frac{(1 + 2\gamma \cos(2n\eta) + \gamma^2)}{2na^2(1 - \gamma^2)} \quad (3.13)
$$

$$
\langle \pi_{d_n}^2 \rangle = \frac{A^* A}{2(A^* + A)} \approx n a^2 \frac{(1 - \gamma^2)^2 + 4\gamma^2 \sin^2(2n\eta)}{2(1 + 2\gamma \cos(2n\eta) + \gamma^2)(1 - \gamma^2)} \quad (3.14)
$$

and

$$
\langle d_\pi \pi_{d_n} + \pi_{d_n} d_\pi \rangle = \frac{i(A - A^*)}{(A + A^*)} \approx \frac{4\gamma \sin(2n\eta)}{(1 - \gamma^2)} \quad (3.15)
$$

where $\gamma = 1 - n^2\delta_e^2/2$. The expectation value of the Hamiltonian

$$
H_n = \frac{1}{2a^3} \left[\pi_{d_n}^2 + 4(d_n \pi_{d_n} + \pi_{d_n} d_n)a\pi_a + d_n^2[10a^2\pi_a^2 + 6\pi_a^2 - 6a^6 m^2 \phi^2 + (n^2 + 1)a^4] \right] \quad (3.16)
$$

is

$$
\langle H_n \rangle \approx \frac{n}{a} \quad \text{at the onset of inflation}
$$

$$
\approx \frac{n}{an^2\delta_e^2} \quad \text{near the maximum expansion.} \quad (3.17)
$$

This shows that modes start in their ground state before the onset of inflation and get excited during inflation and the dust phase.
A useful way to gain information about this state is to investigate the Wigner function

$$\mathcal{F}(\bar{d}_n, \bar{\pi}_n) = \frac{1}{2\pi} \int d\Delta e^{-2i\bar{\pi}\Delta} \psi^*(\bar{d}_n - \Delta)\psi(\bar{d}_n + \Delta). \quad (3.18)$$

The Wigner function gives an idea of the phase space probability distribution of possible classical perturbations (once decoherence has occurred). For the wave function (3.8) with action (3.11), it is given by

$$\mathcal{F}(\bar{d}_n, \bar{\pi}_n) = \frac{A + A^*}{2\pi} \exp(-\frac{4AA^*}{A + A^*}d_n^2 + \frac{1}{A + A^*}\bar{\pi}^2 - 2i\frac{A - A^*}{A + A^*}\bar{d}_n\bar{\pi}_n). \quad (3.19)$$

At the onset of inflation the Wigner function is a round Gaussian (factoring out the mode number and the radius of the universe). A mode with \(n < \tan(\pi/2 - \delta_e) \) will go outside the Hubble radius and have frozen amplitude and the Wigner function will then become an ellipse elongated in the momentum direction. When the mode comes back within the Hubble radius it starts rotating with period \(2\pi/n \) in phase space. This behaviour lasts until \(n \approx \tan \eta \) in the recontracting phase. The parameter characterizing the eccentricity of this ellipse is called the squeezing and has been studied by Grishchuk & Sidorov\(^{19}\).

Typical classical perturbations \(d_{n}^{cl} \) resulting from the above Wigner function are small at the onset of inflation. Their amplitudes get frozen when they leave the Hubble radius. During this stage their energies increase. The perturbations will start oscillating again with amplitude proportional to \(a^{-1} \) when they come back within the Hubble radius in the dust phase. They behave like

$$d_{n}^{cl} \approx \frac{\sin(n\eta + \epsilon)}{an^{3/2}\delta_e} \quad (3.20)$$

where \(\epsilon \) is an unimportant phase depending on the details of the matching of the \(p_n \) functions in (3.12). Around the time of maximum expansion the amplitude of the graviton
modes is symmetric and thus their arrow of time agrees with the cosmological one. Figure 2 depicts a typical classical evolution of a linear graviton.

3.2) Linear Scalar Perturbations.

(a) Quantum Mechanics of the Physical Degree of Freedom

We have seen that gravitons are adiabatic near the time of maximum expansion so that their amplitude is time symmetric with respect to that point. This is not special to gravitons as the electromagnetic field, massless or conformally coupled scalar fields will also be adiabatic. In this section we will show however that perturbations of massive scalar field will not behave adiabatically at the time of maximum expansion.

From the expansion (3.4) and (3.5) we see that there are five scalar degrees of freedom described by the time-dependent coefficients a_n, b_n, f_n, k_n and g_n. However the latter two appear as Lagrange multipliers in the Lagrangians (A.2), (A.3) and induce two constraints so overall there is only one true scalar degree of freedom. Without the presence of the scalar field the scalar degrees of freedom would also be pure gauge. Care should be taken in the treatment of the scalar perturbations in order to avoid gauge dependent results. Let us first find the real degree of freedom.

Variations of the action with respect to the Lagrange multipliers N, g_n and k_n result in the Hamiltonian, linear Hamiltonian and momentum constraints. In Dirac quantization, which we follow here, these constraints are imposed as constraints on the quantum state. The wave function therefore depends only on a linear combination of the coefficients a_n, b_n.
and f_n. The momentum constraints ensure that the wavefunction is invariant under
diffeomorphisms of the spatial three-surfaces. The Hamiltonian and linear Hamiltonian
constraints ensure time reparametrization invariance of the wave function.

Shirai and Wada20 give an explicit form for the wave function which automatically
satisfies the momentum constraints. These are solved by making the judicious change of
variables
\begin{align}
\tilde{\alpha} &= \alpha + \frac{1}{2} \sum_n a_n^2 - 2 \sum_n \frac{(n^2 - 4)}{(n^2 - 1)} b_n^2 \\
\tilde{\phi} &= \phi - 3 \sum_n b_n f_n.
\end{align}

(3.21)

where $\alpha = \ln a$. Once this transformation has been performed, the momentum constraints
imply that the wave function is independent of the linear combination $a_n - b_n$. In terms
of the two degrees of freedom left, the linear Hamiltonian constraint becomes
\begin{equation}
\pi_\phi \pi f_n - \pi_\alpha \pi s_n + e^{6\alpha} m^2 \phi f_n + K_n s_n = 0
\end{equation}

(3.22)

where $s_n = a_n + b_n$ and $K_n = \frac{1}{3} [(n^2 - 4) \pi_\alpha^2 - (n^2 + 5) \pi_\phi^2 - (n^2 - 4) e^{6\alpha} m^2 \phi^2]$. The remaining
gauge degree of freedom can be eliminated by solving the linear Hamiltonian constraint
using the canonical transformation
\begin{align}
\begin{pmatrix} y_n \\ z_n \end{pmatrix} &= \begin{pmatrix} K_n & e^{6\alpha} m^2 \phi \\ \pi_\phi & \pi_\alpha \end{pmatrix} \begin{pmatrix} s_n \\ f_n \end{pmatrix} \\
\begin{pmatrix} \pi s_n \\ \pi f_n \end{pmatrix} &= \begin{pmatrix} K_n & \pi_\phi \\ e^{6\alpha} m^2 \phi & \pi_\alpha \end{pmatrix} \begin{pmatrix} \pi y_n - \frac{y_n}{\Sigma} \\ \pi z_n \end{pmatrix}
\end{align}

(3.23)

where $\Sigma = -K_n \pi_\alpha + e^{6\alpha} m^2 \phi \pi_\phi$. The linear Hamiltonian constraint then implies that,
imposed as a quantum constraint,
\begin{equation}
\pi_{y_n} \Psi(y_n, z_n) = 0
\end{equation}

(3.24)
and so Ψ is independent of y_n. Therefore the true degree of freedom has been isolated - the wave function is found to depend only on the single physical variable

$$z_n = \pi_\phi s_n + \pi_\alpha f_n = a^2(\phi' s_n - \mathcal{H} f_n)$$

and on the background variables \tilde{a} and $\tilde{\phi}$ (in the rest of the paper we will drop the tilde on a and ϕ). The expression for the Hamiltonian for the modes z_n is rather complicated and is shown only in Appendix A.

We can find the the wave function for the scalar perturbations in terms of the real degree of freedom by using the semiclassical approximation to the path integral expression for the wave function as in the graviton case

$$\psi^s(a, \phi, z_n) \sim C(a, \phi) \exp(-I_{cl}^E)$$

The Euclidean action of the saddlepoint contribution to the path integral is a boundary term (since the action is quadratic) given by

$$I_{cl}^E = (M z_n z'_n - N z_n^2)|_{n_E}$$

for

$$M = \frac{(n^2 - 4)}{2[(n^2 - 4)a'^2 + 3a^2\phi'^2]}$$

$$N = \frac{1}{4MUa^3} \left[K_n(2a^4 - 3a^6 m^2 \phi^2 + 3\frac{(n^2 - 1)}{(n^2 - 4)}a^4 \phi'^2) + a^{12} m^4 \phi^2 + 3a^9 \phi \phi' a' \right]$$

$$U = K_n a a' + a^8 m^2 \phi \phi'$$

and the derivatives here are with respect to Euclidean conformal time.

It is difficult to find solutions of the equation for z_n. It is easier to return to the original variables and pick a particular gauge. In order to study the scalar perturbations
we shall choose the gauge \(b_n = k_n = 0 \), which is known as the longitudinal gauge. Once the result has been obtained in this gauge it will be easy to recast it in terms of the true degree of freedom \(z_n \) and therefore in a gauge invariant way. Alternatively, we could use the gauge invariant variables of Bardeen.\(^{21}\) Their relationship with the formalism used here is described in appendix B.

In the \(b_n = k_n = 0 \) gauge we have the equations of motion (in Lorentzian time)

\[
a''_n + 3H a'_n + (3m^2\phi^2a^2 - 2)a_n = 3(m^2\phi a^2 f_n - \phi' f'_n) \tag{3.28}
\]

\[
f''_n + 2H f'_n + (n^2 - 1 + m^2a^2)f_n = 2m^2\phi a^2 a_n - 4\phi'a'_n \tag{3.29}
\]

and the constraints

\[
a'_n + H a_n = -3\phi' f_n \tag{3.30}
\]

\[
a_n(n^2 - 4 - 3\phi^2) = 3\phi' f'_n + 3m^2\phi a^2 f_n + 9H\phi' f_n. \tag{3.31}
\]

Equations (3.28-30) are just (A.7), (A.11), (A.8), noting that \(g_n = -a_n \) in this gauge. The last equation follows from (A.14), (3.30) and the background constraint. These equations are not independent, the first one can be obtained by taking a derivative of the first constraint and using the second equation and the background equation of motion. Equations (3.28), (3.30) and (3.31) can be combined to give the decoupled equation of motion for \(a_n \):

\[
a''_n + 2(H - \frac{\phi''}{\phi'})a'_n + (2H' - 2H\frac{\phi''}{\phi'}) + n^2 + 3)a_n = 0 \tag{3.32}
\]

This equation is useful in the inflationary era where \(\phi' \neq 0 \). It is also useful in the limit where the curvature of the 3-space can be neglected as we can solve it explicitly in either the adiabatic or non-adiabatic regime (see [22]). Once we have a solution for \(a_n \), we can also find \(f_n \) using the constraint equations (3.30) or (3.31), and therefore the real degree of
freedom z_{n}. In the region near the maximum expansion it is much harder to solve (3.32) and we return to (3.28-3.31).

(b) No Boundary Proposal Mode Function

Let us now construct the solutions of (3.28-3.32) selected by the no boundary proposal. We focus only on modes which go outside the Hubble radius during inflation. These are the ones which get excited by the varying gravitational field. The very high frequency modes remain adiabatic throughout the history of the universe, so their arrows of time will agree with the cosmological one. As in the graviton case we divide the background saddle-point 4-geometry into an approximately Euclidean section, followed by an inflationary one which finally turns into dust. We have however to take into account the detailed behaviour of the background scalar field ϕ as it couples directly to the perturbations. We first find the regular Euclidean solutions and match them up to the ones in the inflationary phase. This can be done by analytic continuation. In the inflationary era the modes oscillate for a while until they leave the Hubble radius. At that point we match them to nonadiabatic solutions. Finally, the inflationary era comes to an end when ϕ becomes small and starts oscillating, behaving like a dust background. At this point we match on the solutions for the dustlike phase. It turns out that for the Euclidean and inflationary solutions the right hand terms in (3.29) are negligible. We can solve for the scalar field modes f_{n} and calculate a_{n} from an integral version of the constraint (3.30) and check that this agrees with the approximate solutions of (3.32). If these terms were negligible during the whole of the dust era the modes would oscilllate adiabatically around the maximum expansion as in the graviton case. However we show that these terms do contribute to a monotonically
increasing amplitude of the scalar field perturbations around maximum expansion.

The no boundary proposal requires that the matter fields in the path integral be regular, so in the semiclassical approximation we look for solutions to the Euclidean perturbation equations which are regular as $\tau \to 0$. The regularity condition requires that f_n and a_n vanish as $\tau \to 0$. For $n \gg 1$, the dominant terms of equation (3.32) are the second derivative of a_n and $-n^2$ times a_n and one can construct a WKB solution. The approximate Euclidean solution selected by the no boundary proposal is

$$a_n \approx A\frac{\phi'}{a} e^{n\eta_E}, \quad f_n \approx -\frac{An}{3} e^{n\eta_E}$$

(3.33)

for some complex constant A. Here, the conformal time $\eta_E = 0$ corresponds to the juncture of Euclidean and Lorentzian spacetimes. Continuing the regular Euclidean solution into the Lorentzian section, taking $\eta_E \to i\eta$, gives

$$a_n \approx \frac{1}{3} im Ae^{in\eta} \quad f_n \approx -\frac{An}{3} e^{in\eta}$$

(3.34)

where we have used $\phi'/a = im/3$ during inflation (dash now denotes Lorentzian time derivative). The analytical continuation holds into the inflationary era as long as the wavelength is smaller than the Hubble radius, i.e. $n \gg H$. By this time inflation has begun and we can match onto the inflationary solutions. When the modes move outside the Hubble radius the modes a_n and f_n stop oscillating. They both have decaying and growing modes (the latter would be constant in the limit of exact de Sitter space). As the universe inflates only the slowly growing mode remains so that

$$a_n \approx \frac{D}{\phi^2} \quad f_n \approx \frac{D}{\phi^2}$$

(3.35)

where $D = \frac{1}{3} miAe^{i\eta_H}(\phi_H^2 + \frac{i\phi_H}{m_{\phi H}})$ is a constant depending on the detailed matching of the modes when they cross the Hubble radius at the time η_H. This solution is valid until
the background scalar field decrease to $\phi \sim 1$. Figure 3 depicts the behaviour of a_n during inflation and the beginning of the dust phase.

Eventually inflation ends and the background scalar field begins to oscillate. We expect that the background will behave effectively as a dust-filled universe (see equation (2.16)) for perturbation modes with physical wavelengths much larger than the scalar field Compton wavelength ($n \ll ma$) since the pressure of the oscillating scalar field averages to zero over that wavelength scale. Therefore the metric perturbations will behave like those of a pure dust universe (see, e.g. [22]). This is indeed what is found below.

During inflation the Hubble radius H^{-1} is roughly constant but as the universe evolves in the dust era the Hubble radius starts growing. When it becomes larger than the Compton wavelength $1/ma$, the dominant term in (3.29) is m^2a^2. The perturbation of the scalar field will start oscillating again. In this early stage of the dust era when the curvature of the 3-surface is negligible it can be shown that the f_n oscillate exactly in phase with ϕ' as follows:

$$f_n \approx -\frac{\phi'}{a} \int d\eta a n. \quad (3.36)$$

This will remain true in later stages of the dust era as long as $n < ma_e$. This condition ensures that the phase of f_n obtained by integrating (3.29) does not differ appreciably from that of ϕ'. Using (3.36) together with (3.30) we can establish that the metric perturbation a_n, time averaged over one oscillation period of π/m, is growing. The small oscillations around this average arise because the background energy momentum tensor is not exactly that of dust but that of an oscillating scalar field. The averaged gravitational perturbation a^A_n can be calculated by taking the derivative of the averaged version of (3.30) to obtain
the differential equation
\[a_n^{\prime\prime} + 3\mathcal{H}a_n^{\prime} - 2a_n^A = 0. \] (3.37)

The general solution is a linear combination of the solutions

\[a_n^{\text{anti}} \approx \frac{\sin \eta_d}{(1 - \cos \eta_d)^3} \] (3.38)

and

\[a_n^{\text{sym}} \approx \frac{2\sin^2 \eta_d - 6(\eta_d - \pi)\sin \eta_d - 8\eta_d + 8}{(1 - \cos \eta_d)^3}. \] (3.39)

The conformal time is defined with the new origin at the beginning of the dust phase \((\eta_d \approx 0)\). These solutions are antisymmetric and symmetric with respect to the maximum of expansion \((\eta_d = \pi)\) and are the same solutions found for perturbations in a pressureless perfect fluid universe, as expected. Both solutions diverge like \(\eta_d^{-5}\) in the beginning of the dust era as \(\eta_d \to 0\). There is however a regular solution, given by \(a_n^{\text{reg}} := a_n^{\text{sym}} - 6\pi a_n^{\text{anti}}\), which approaches a constant in this limit. At the end of inflation the \(a_n\) picked out by the no boundary proposal are small as seen from (3.35). Therefore the regular solution is the one selected by the no boundary proposal and this is asymmetric in the dust era: the perturbation amplitude steadily increases with time. Matching the solutions for the dust era to (3.35) shows that during the dust era

\[a_n \approx Da_n^{\text{reg}} \] (3.40)

We can now use (3.36) to see that \(f_n\) is oscillating with monotonically increasing amplitude throughout the dust era:

\[f_n \approx -\frac{D\phi'}{(1 - \cos \eta_d)^2}(4\eta_d - 6\sin \eta_d + 2\eta_d \cos \eta_d) \] (3.41)
With these solutions we can construct the wave function (3.26). When the background saddle-point is approximatively Lorentzian, the no-boundary wave function for the scalar perturbation is

$$\psi_s(z_n) \sim C(a, \phi) \exp -i \left(M\left(\frac{\mu'_n}{\mu_n} \right) + N(a, \phi) \right) z_n^2. \quad (3.42)$$

where M is given in (3.27) and μ_n is the modefunction for z_n. It is a solution of the equation of motion for z_n picked out by the no-boundary proposal. It is explicitly given by the function a_n and f_n using (3.25) with z_n replaced by μ_n. From the solution of a_n and f_n we can see that it is clearly asymmetric about the time of maximum expansion.

Considering points placed symmetrically about the maximum of expansion, the background will be the same at both points so that the asymmetry in the modefunction manifests itself as an asymmetry in the wavefunction. The variance of z_n is proportional to the modulus of μ_n and is therefore asymmetric with respect to the time of maximum expansion. We therefore conclude that the wavefunction predicts the continuing growth of low frequency scalar perturbations even when the universe begins to recollapse.

This result alone provides a time asymmetry so long as the modes stay in a regime where they can be treated in a linear approximation. However, most modes will also enter a nonlinear regime well before the maximum expansion occurs. When this occurs the interaction terms in the Hamiltonian will become important and hence the coarse-grained entropy will increase throughout the evolution.

Considering the stress tensor in the gauge-invariant formalism (see e.g. [22]), we can show that the density contrast is

$$\frac{\delta \rho}{\rho} \approx \frac{2a}{3a_m} \left[(n^2 - 4)a_n - 9\mathcal{H} \phi' f_n \right]. \quad (3.43)$$
Modes will cross the horizon (\(\mathcal{H} \sim n \)) when \(\eta_d \sim 1/n \), and the recent COBE results\(^5\) indicate that the density contrast at this time is of order \(10^{-5} \). Using equations (3.40) and (3.41) in (3.43), we find that the constant \(D \) is of order \(10^{-5} \). At later times, only the first term in (3.43) is important and we find that the density contrast behaves like

\[
\frac{\delta \rho}{\rho} \approx 10^{-7} n^2 \eta_d^2
\]

Consequently, when the density contrast is of order unity we expect nonlinearity to be the dominant feature and this occurs for \(\eta_d^2 \geq 10^7/n^2 \). Modes with \(n \geq 1000 \) will therefore enter a nonlinear phase before they reach the maximum and the coarse-grained entropy for these modes will grow.

4) Conclusion.

In this paper we have investigated the consequences of the no-boundary proposal for the arrow of time. In particular we have investigated the behaviour of small metric and matter perturbations around a homogeneous isotropic background. The no-boundary proposal predicts classical evolution with an inflationary era followed by a dustlike era. We found that perturbation modes are in their ground state at the beginning of the inflationary era. This can be interpreted as a statement that the universe is born in a low entropy state. Modes which leave the Hubble radius during inflation become excited then subsequently evolve in various ways in the dustlike era.

We find that gravitons oscillate adiabatically for most of the dustlike era and consequently the amplitude of their oscillations is time symmetric with respect to the point of maximum scale factor. However, looking at the physical scalar degrees of freedom we find that those which have been excited by superadiabatic amplification during inflation have
a time asymmetric evolution with respect to the maximum. In particular, the variance of
the scalar modes predicted by the wavefunction is different at the same value of the scale
factor before and after the maximum.

Thus we find that the wavefunction of the universe distinguishes between symmetrically
placed points on either side of maximum volume. The expanding phase has a
smaller amplitude of the variance in the low frequency scalar modes than does the cor-
responding point during the collapsing phase. In other words, the thermodynamic arrow
coincides with the cosmological arrow before the maximum, but points in the opposite
direction after the maximum. This is true for all the lowest frequency modes, so that they
induce a well-defined thermodynamic arrow of time. Amongst the modes which display
this nonadiabatic behaviour, higher frequency modes will enter a nonlinear regime dur-
ing the expansion and consequently produce a growing coarse-grained entropy throughout expansion and recontraction, and hence also create a thermodynamic arrow of time.

Acknowledgments.

We would like to thank Nathalie Deruelle and Carsten Gundlach for useful conversa-
tions. R.L. acknowledges Peterhouse, Cambridge, for financial support. G.W.L. acknowl-
edges the Science and Engineering Research Council for supporting this work.

Appendix A) Action and field equations.

In this appendix we reproduce the action and field equations of the perturbed FRW
model driven by a massive minimally coupled scalar field from ref.[6]. The homogeneous
part of the Einstein-Hilbert Lagrangian is

$$L_0 = -\frac{1}{2} N_0 a^3 \left[\frac{\dot{a}^2}{N^2 a^2} - \frac{1}{a^2} - \frac{\dot{\phi}^2}{N^2} + m^2 \phi^2 \right]$$ \hspace{1cm} (A.1)
The second order perturbation of the Einstein Hilbert Lagrangian is

\[L^n_g = \frac{1}{2} a N_0 \left\{ \frac{1}{3} \left(n^2 - \frac{5}{2} \right) a_n^2 + \frac{1}{3} \left(n^2 - 7 \right) \frac{n^2 - 4}{n^2 - 1} b_n^2 - 2(n^2 - 4)c_n^2 - (n^2 + 1)d_n^2 + \frac{2}{3} (n^2 - 4) a_n b_n \right. \]

\[+ \frac{2}{3} g_n[(n^2 - 4) b_n + (n^2 + 1/2) a_n] + \frac{1}{N_0^2} \left[- \frac{1}{3(n^2 - 1)} k_n^2 + (n^2 - 4) j_n^2 \right] \}

\[+ 1/2 a_n^2 \left\{ - \dot{a}_n^2 + \frac{(n^2 - 4)}{(n^2 - 1)} b_n^2 + (n^2 - 4) \dot{c}_n^2 - \dot{d}_n^2 + g_n[2 \frac{\dot{a}_n}{a} + \frac{\dot{a}^2}{a^2}(3a_n - g_n)] \right. \]

\[+ \frac{\dot{a}}{a} \left[- 2a_n \dot{a}_n + 8 \frac{(n^2 - 4)}{(n^2 - 1)} b_n \dot{b}_n + 8(n^2 - 4)c_n \dot{c}_n + 8d_n \dot{d}_n \right] \]

\[+ \frac{\dot{a}^2}{a^2} \left[- \frac{3}{2} a_n^2 + 6 \frac{(n^2 - 4)}{(n^2 - 1)} b_n^2 + 6(n^2 - 4)c_n^2 + 6d_n^2 \right] \]

\[+ \frac{1}{a} \frac{2}{3} k_n \left\{ - \dot{a}_n - \frac{(n^2 - 4)}{(n^2 - 1)} \dot{b}_n + \frac{\dot{a}}{a} g_n \right\} - 2(n^2 - 4) \dot{c}_n j_n \right\} \quad (A.2) \]

The perturbation of the matter Lagrangian gives:

\[L^n_m = 1/2 N_0 a^3 \left\{ \frac{1}{N_0^2} \left(j_n^2 + 6a_n \dot{f}_n \dot{\phi} \right) - m^2 (f_n^2 + 6a_n f_n \dot{\phi}) - \frac{1}{a^2} (n^2 - 1) f_n^2 + \frac{\dot{\phi}^2}{N_0^2} g_n^2 \right. \]

\[+ 3 \left[\frac{\dot{\phi}^2}{N_0^2} - m^2 \dot{\phi}^2 \right] \left[a_n^2 - 4 \frac{(n^2 - 4)}{(n^2 - 1)} b_n^2 - 4(n^2 - 4)c_n^2 - 4d_n^2 \right] \]

\[- g_n \left[2m^2 f_n \dot{\phi} + 3m^2 a_n \dot{\phi}^2 + 2 \frac{\dot{f}_n \dot{\phi}}{N_0^2} + 3 \frac{a_n \dot{\phi}^2}{N_0^2} \right] - 2 \frac{1}{a N_0^2} k_n f_n \dot{\phi} \right\}. \quad (A.3) \]

The field equations necessary to calculate the saddle point approximation are given below. From (A.1) we find the equations obeyed by the homogeneous background fields.

The homogeneous scalar field \(\varphi_0 \) obeys

\[N_0 \frac{d}{dt} \left[\frac{1}{N_0} \frac{d \varphi_0}{dt} \right] + 3 \frac{da}{dt} \frac{d \varphi_0}{dt} + N_0 m^2 \varphi_0 = \text{quadratic terms}, \quad (A.4) \]
and the scale factor a obeys

$$N_0 \frac{d}{dt} \left[\frac{1}{N_0 a} \frac{da}{dt} \right] + 3 \dot{\varphi}_0^2 - \frac{N_0^2}{a^2} - \frac{3}{2} \left(- \dot{a}^2 + \dot{\varphi}_0^2 - \frac{N_0^2}{a^2} + N_0^2 m^2 \varphi^2 \right) = \text{quadratic terms}, \tag{A.5}$$

The background variables a, φ_0 and their momenta are subject to the constraint

$$- \frac{\dot{a}^2}{a^2 N_0^2} + \frac{\dot{\varphi}_0}{N_0^2} - \frac{1}{a^2} + m^2 \varphi_0^2 = \text{quadratic terms}. \tag{A.6}$$

Let us now turn to the equation of motion of the small inhomogeneities. Variations with respect to a_n, b_n, c_n, d_n and f_n give the following second order field equations:

$$N_0 \frac{d}{dt} \left[\frac{a^3}{N_0} \frac{da_n}{dt} \right] + \frac{1}{3} (n^2 - 4) N_0^2 a(a_n + b_n) + 3a^3 (\dot{\varphi}_0 f_n - N_0^2 m^2 \varphi_0 f_n)$$

$$= N_0^2 (3a^3 m^2 \varphi_0^2 - \frac{1}{3} (n^2 + 2)a) g_n + a^2 \dot{a} g_n - \frac{1}{3} N_0 \frac{d}{dt} \left[\frac{a^2 k_n}{N_0} \right], \tag{A.7}$$

$$N_0 \frac{d}{dt} \left[\frac{a^3}{N_0} \frac{db_n}{dt} \right] - \frac{1}{3} (n^2 - 1) N_0^2 a(a_n + b_n) = \frac{1}{3} N_0^2 (n^2 - 1) a g_n + \frac{1}{3} N_0 \frac{d}{dt} \left[\frac{a^2 k_n}{N_0} \right], \tag{A.8}$$

$$N_0 \frac{d}{dt} \left[\frac{a^3}{N_0} \frac{dc_n}{dt} \right] = \frac{d}{dt} \left[\frac{a^2 j_n}{N_0} \right], \tag{A.9}$$

$$N_0 \frac{d}{dt} \left[\frac{a^3}{N_0} \frac{dd_n}{dt} \right] + (n^2 - 1) N_0^2 a d_n = 0, \tag{A.10}$$

and

$$N_0 \frac{d}{dt} \left[\frac{a^3}{N_0} \frac{df_n}{dt} \right] + 3a^3 \dot{\varphi}_0 a_n + N_0^2 [m^2 a^3 + (n^2 - 1) a] f_n$$

$$= a^3 (-2 N_0^2 m^2 \varphi_0 g_n + \dot{\varphi}_0 \dot{g}_n - \frac{\varphi_0 k_n}{a}). \tag{A.11}$$

Variations with respect to k_n, j_n and g_n lead to the constraints

$$\dot{a}_n + \frac{(n^2 - 4)}{(n^2 - 1)} b_n + 3 f_n \dot{\varphi}_0 = \frac{\dot{a} g_n}{a} - \frac{k_n}{a(n^2 - 1)}, \tag{A.12}$$

$$35$$
\[
\dot{c}_n = \frac{j_n}{a}
\]
(A.13)

and

\[
3a_n(\dot{\varphi}_0^2 - \dot{a}^2a^2) + 2(\dot{\varphi}_0\dot{f}_n - \frac{\ddot{a}\dot{a}_n}{a}) + N_0^2m^2(2f_n\varphi_0 + 3a_n\varphi_0^2) - \frac{2N_0^2}{3a^2}[(n^2 - 4)b_n + (n^2 + \frac{1}{2})a_n]
\]

\[
= \frac{2\dot{a}k_n}{3a^2} + 2g_n(\dot{\varphi}_0^2 - \frac{\dot{a}^2}{a^2}).
\]
(A.14)

We also give the perturbation Hamiltonian in terms of the real degrees of freedom:

\[
H_n^2(z_n, \pi_{z_n}) = A\pi_{z_n}^2 + Bz_n\pi_{z_n} + Cz_n^2
\]

with

\[
A = \frac{1}{2}(aa^2 + \frac{3a^3\dot{\varphi}^2}{(n^2 - 4)})
\]

\[
B = -\frac{1}{2U}\left[K(2a - 3a^3m^2\dot{\varphi}^2 - 3\frac{(n^2 - 1)a^3\dot{\varphi}^2}{(n^2 - 4)}) + a^9m^4\dot{\varphi}^2 - 3a^8m^2\phi\dot{a}\pi\right]
\]

\[
C = -\frac{1}{2U}\left[-\frac{3(n^2 - 1)K^3}{(n^2 - 4)a^3} + a^3m^2K^2 - 5a^9m^4\dot{\varphi}^2K + 12a^{15}m^4\dot{\varphi}^2\dot{\varphi}^2\right]
\]
(A.15)

\[
K = -3a^6\phi^2 - \frac{(n^2 - 4)}{3}a^4, \quad U = -K\dot{a}^2 - a^9m^2\phi\dot{\phi}
\]

Appendix B: Relation to the gauge invariant formalism.

There has recently been much interest in the gauge invariant formalism21,22 which cast the variables of the theory (the scalar perturbations of the gravitational and scalar fields) into ones which are invariant under infinitesimal gauge transformations. In this appendix we relate the different harmonics in equations (3.4) and (3.5) to the gauge invariant variables (in particular we shall follow the approach of [22]).
Mukhanov et al. define the time and space dependent scalar metric perturbations as

\[ds^2 = a^2(\eta) \left\{ (1 + 2\phi)d\eta^2 - 2B_{ij}dx^id\eta + [(1 - 2\psi)\gamma_{ij} + 2E_{[ij]}]dx^idx^j \right\} \]

(B.1)

and the scalar field perturbations

\[\varphi(\vec{x}, t) = \varphi_o(t) + \delta\varphi(\vec{x}, t) \]

(B.2)

The above variables are related to the modes perturbations used in this paper in the following way

\[\phi = \sum_n \frac{g_n Q^n}{\sqrt{6}} \]

\[\psi = \sum_n \frac{-(a_n + b_n)Q^n}{\sqrt{6}} \]

\[B = \sum_n \frac{k_n Q^n}{(n^2 - 1)\sqrt{6}} \]

\[E = \sum_n \frac{3b_n Q^n}{(n^2 - 1)\sqrt{6}} \]

(B.3)

where we have suppressed in the sum the indices \(lm \) corresponding to the angular momentum.

Under a general linear gauge transformation of the form

\[\eta \to \tilde{\eta} = \eta + \xi^0(\eta, \vec{x}) \]

\[x^i \to \tilde{x}^i = x^i + \gamma^{ij} \xi_{ij}(\eta, \vec{x}) \]

(B.4)
the scalar perturbations transform as

\[\tilde{\phi} = \phi - \frac{a'}{a} \xi^0 - \xi' \]
\[\tilde{\psi} = \psi + \frac{a'}{a} \xi^0 \]
\[\tilde{B} = B + \xi^0 - \xi' \]

(B.5)
\[\tilde{E} = E - \xi \]
\[\tilde{\delta}\phi = \delta\phi - \varphi_o \xi^0 \]

The idea of the gauge invariant formalism is to make a linear combination of the different scalar perturbations such that the resulting variables are independent of the gauge. A possible choice is

\[\Phi = \phi + \frac{1}{a}[(B - E')a]' \]
\[\Psi = \psi - \frac{a'}{a}(B - E') \]

(B.6)
\[\delta\varphi^{(g)} = \delta\varphi + \varphi_o(B - E') \]

These gauge invariant quantities obey the following equations:

\[\nabla^2 \Phi - 3\mathcal{H}\Phi' - (\mathcal{H}' + 2\mathcal{H}^2 - 4K)\Phi = \frac{3f^2}{2} (\varphi' \delta\varphi^{(g)} + V_{,\varphi}a^2 \delta^{(g)}) \]

(B.7)
\[\Phi' + \mathcal{H}\Phi = \frac{3f^2}{2} \varphi' \delta\varphi^{(g)} \]

(B.8)
\[\Phi'' + 3\mathcal{H}\Phi' + (\mathcal{H}' + 2\mathcal{H}^2)\Phi = \frac{3f^2}{2} (\varphi' \delta\varphi^{(g)} - V_{,\varphi}a^2 \delta\varphi^{(g)}) \]

(B.9)

which are the gauge invariant versions of the $\delta G_0^0 = 8\pi G\delta T_0^0$, $\delta G_i^0 = 8\pi G\delta T_i^0$ and $\delta G_j^i = \ldots$
$8\pi G \delta T^i_j$ equations and

$$\delta \varphi^{(gi)''} + 2\mathcal{H} \delta \varphi^{(gi)'} - \nabla^2 \delta \varphi^{(gi)} + V_{,\varphi,\varphi} a^2 \delta \varphi^{(gi)} - 4\varphi_o' \Phi' + 2V_{,\varphi} a^2 \Phi = 0.$$ \hspace{1cm} (B.10)

is the gauge invariant version of the scalar field equation.

In the longitudinal gauge ($B = k_n = 0$ and $E = b_n = 0$) used in this paper the gauge variables reduce to $\Phi = \phi$, $\Psi = \psi$ and $\delta \varphi^{(gi)} = \delta \varphi$ and if we expand them in harmonics on the 3-sphere $\Phi_n = g_n/\sqrt{6}$, $\Psi_n = -a_n/\sqrt{6}$ and $\delta \varphi^{(gi)} = f_n/\sqrt{6}$. Indeed it is easy to see that equations (B.9) and (B.10) are equivalent to (3.31) and (3.32) respectively, and that the constraint (B.8) is equivalent to (3.33).

References.

[1] R. F. Streater and A. S. Wightman, PCT, Spin Statistics and All That, Benjamin, New York (1964).

[2] J. H. Christenson, J. W. Cronin, V. L. Fitch & R. Turley, Phys. Rev. Lett. 13, 138 (1964).

[3] T. Banks, Nuc. Phys. B249, 332 (1985).

[4] J. B. Hartle & S. W. Hawking, Phys. Rev. D28 2960 (1983).

[5] G. Smoot et al., Astrophys. J. 396, L1 (1992).

[7] S.W. Hawking, Phys. Rev. D32, 2489 (1985).
[8] S.W. Hawking & Z.C. Wu Phys. Lett. B107, 15 (1985).

[9] D. Page, Phys. Rev. D32, 2496 (1985).

[10] R. Laflamme, Time and Quantum Cosmology, Ph.D. thesis, Cambridge University (1988).

[11] R. Laflamme & E.P.S. Shellard, Phys. Rev. D35, 2315 (1987).

[12] J.J. Halliwell & J.B. Hartle Phys. Rev. D41, 1815 (1990).

[13] G. Lyons, Phys. Rev. D46, 1546 (1992).

[14] S. Habib & R. Laflamme, Phys.Rev. D42, 4056 (1990).

[15] E.M. Lifschitz & I.M. Khalatnikov, Adv.Phys. 12, 185 (1963).

[16] U.H. Gerlach & U.K. Sengupta, Phys.Rev. D18, 1773 (1978).

[6] J.J. Halliwell & S.W. Hawking, Phys.Rev. D31, 1777 (1985).

[17] L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974).

[18] R. Laflamme & J. Louko, Phys. Rev. D43, 2730 (1991).

[19] L. P. Grishchuk and Yu.V. Sidorov; Class. & Quant.Grav. 6, L161 (1989).

[20] I. Shirai & S. Wada, Nuc.Phys. B303, 728 (1988).

[21] J. Bardeen, Physical Review D 22, 1882 (1980).

[22] V.F. Mukhanov, H.A. Feldman & R.H. Brandenberger, Theory of cosmological per-
turbations, Brown University report, Brown-HET-796 (1991).