COHOMOLOGY OF BURNSIDE RINGS

BENEN HARRINGTON

Department of Mathematics, University of York, York YO10 5DD, UK

Abstract.
Let G be a finite group and $A(G)$ its Burnside ring. For $H \subset G$ let \mathbb{Z}_H denote the $A(G)$-module corresponding to the mark homomorphism associated to H. When the order of G is square-free we give a complete description of the $A(G)$-modules $\text{Ext}^l_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J)$ and $\text{Tor}^l_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J)$ for any $H, J \subset G$ and $l \geq 0$. We show that if the order of G is not square-free then there exist $H, J \subset G$ such that $\text{Ext}^l_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J)$ and $\text{Tor}^l_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J)$ have unbounded rank as finite groups.

Preliminaries.
Let G be a finite group. The isomorphism classes of finite G-sets form a commutative semi-ring where addition is given by disjoint union and multiplication is given by cartesian product. The Burnside ring $A(G)$ is the Grothendieck ring associated to this semi-ring. For a finite G-set X, we write $[X]$ for the corresponding isomorphism class in $A(G)$. We first recall some facts about the Burnside ring, see [6] (Chapter 1) for proofs and further details.

Given a subgroup $H \subset G$, the set of left cosets G/H has the natural structure of a G-set, where for $g, g' \in G$ and $gH \in G/H$, we have $g \cdot g'H = gg'H$. Given $J \subset G$, the G-sets G/H and G/J are isomorphic if and only if H is conjugate to J in G. Each transitive G-set X is isomorphic to G/H for some $H \subset G$, and the Burnside ring is free on the set of isomorphism classes of transitive G-sets. Write $\text{ccs}(G)$ for the set of conjugacy classes of subgroups of G. For $H \subset G$, write (H) for the conjugacy class of subgroups to which H belongs.

For a subgroup $H \subset G$ and finite G-set X, let X^H denote the subset of X of points fixed by H. The mark homomorphism $\pi_H : A(G) \to \mathbb{Z}$ associated to H is defined by putting $\pi_H([X]) = |X^H|$ for each finite G-set X and extending to $A(G)$. Write \mathbb{Z}_H for the left $A(G)$-module structure on \mathbb{Z} defined by $a \cdot n = \pi_H(a)n$ for $a \in A(G)$ and $n \in \mathbb{Z}$.

Lemma 1. Let H, J be subgroups of G.

1. $\pi_H([G/H]) = [N_G H : H]$.
2. $\pi_J([G/H]) \neq 0$ if and only if J is conjugate to a subgroup of H.
3. $\pi_H = \pi_J$ if and only if $(H) = (J)$.

For each $(H) \in \text{ccs}(G)$ we then have a well-defined homomorphism $\pi(H) = \pi_H$. We have a homomorphism of rings

$$
\pi : A(G) \to \prod_{(H) \in \text{ccs}(G)} \mathbb{Z}
$$

E-mail address: bh885@york.ac.uk
where for $a \in A(G)$,
\[a \mapsto (\pi_H(a))_{(H) \in \ccs(G)}. \]
This is an embedding of rings. The ring $\prod_{(H) \in \ccs(G)} \mathbb{Z}$ is called the ghost ring of G.
Most of our results on the Burnside ring hold more generally for arbitrary subrings of the ghost ring, and in the next section we introduce the notion of a B-ring in order to provide the appropriate setting for stating these results.

Let R be a commutative ring. Let Ab be the category of abelian groups and R-Mod the category of left R-modules. For R-modules M, N, the functors $\text{Hom}_R(M, -) : R$-$\text{Mod} \to \text{Ab}$ and $\text{Hom}_R(-, N) : R$-$\text{Mod} \to \text{Ab}$ are left exact. For l a non-negative integer, we write $\text{Ext}^l_R(M, N)$ for the lth right derived functor of $\text{Hom}_R(M, -)$ applied to the module N, or equivalently for the lth right derived functor of $\text{Hom}_R(-, N)$ applied to the module M. The functor $- \otimes_R N : R$-$\text{Mod} \to \text{Ab}$ is right-exact, and we write $\text{Tor}^l_R(M, N)$ for the lth left derived functor of $- \otimes_R N$ applied to the module M. Since R is a commutative ring, each $\text{Ext}^l_R(M, N)$ and $\text{Tor}^l_R(M, N)$ is naturally endowed with the structure of a left R-module. In what follows all modules over a commutative ring are left modules.

B-rings.

For I a finite set, define $\text{Gh}(I) = \prod_{i \in I} \mathbb{Z}$. Let R be a subring of $\text{Gh}(I)$ and for each $i \in I$ let π_i be the corresponding projection $R \to \mathbb{Z}$. For $r \in R$, write $r(i)$ for $\pi_i(r)$.

Definition 2. Say that $R \subset \text{Gh}(I)$ is a B-ring if for each distinct pair $i, j \in I$ there exists an $r \in R$ with $r(i) \neq 0$ and $r(j) = 0$.

If some subring $R \subset \text{Gh}(I)$ is not a B-ring, with $i, j \in I$ a pair for which the above condition fails, then it is clear that $r(i) = r(j)$ for all $r \in R$. Then R is isomorphic to the ring $S \subset \text{Gh}(I - \{j\})$ obtained by omitting the factor corresponding to j. Repeating this process if necessary we obtain a subset $I' \subset I$ and a B-ring $R' \subset \text{Gh}(I')$ with R isomorphic to R'.

We give an intrinsic definition of these rings as follows.

Proposition 3. A ring S is isomorphic to a B-ring $R \subset \text{Gh}(I)$ for some finite set I if and only if S is a commutative ring which is of finite rank and torsion-free as a \mathbb{Z}-module, with $\mathbb{Q} \otimes \mathbb{Z} R$ a product of $|I|$ copies of \mathbb{Q}.

Proof. If $R \subset \text{Gh}(I)$ is a B-ring then it is certainly commutative and torsion-free, since $\text{Gh}(I)$ is. As a \mathbb{Z}-module $\text{Gh}(I)$ is finitely generated, so R is of finite rank. For each pair i, j of distinct elements of I, let $r_{i,j}$ be an element of R satisfying $r(i) \neq 0$ and $r(j) = 0$. Then putting $s_i = \prod_{j \neq i} r_{i,j}$ for each $i \in I$, we have $s_i(j) \neq 0$ if and only if $i = j$. Let $N = \prod_{i \in I} s_i(i)$ and $N_i = N / s_i(i)$. For $i \in I$ write e_i for the corresponding primitive idempotent of $\text{Gh}(I)$. Then
\[N \cdot e_i = N_i s_i \in R, \]
and so $N \cdot \text{Gh}(I) \subset R \subset \text{Gh}(I)$. Hence
\[\mathbb{Q} \otimes \mathbb{Z} R \simeq \mathbb{Q} \otimes \mathbb{Z} \text{Gh}(I) \simeq \prod_{i \in I} \mathbb{Q}, \]
i.e. $\mathbb{Q} \otimes R$ is isomorphic to a product of $|I|$ copies of \mathbb{Q}.
Suppose S is a commutative ring which is of finite rank and torsion-free as a \mathbb{Z}-module, with $\mathbb{Q} \otimes \mathbb{Z} S$ a product of finitely copies of \mathbb{Q}. Then we have an isomorphism

$$\theta : \mathbb{Q} \otimes S \to \prod_{\ell \in I'} \mathbb{Q}$$

for some finite indexing set I'.

Since S is torsion-free, $\mathbb{Q} \otimes S$ contains a copy of S as the subring $1 \otimes S \subset \mathbb{Q} \otimes S$. Denote the image $\theta(1 \otimes S)$ by $S' \subset \prod_{\ell \in I'} \mathbb{Q}$, and for each $i \in I'$ let $\hat{\pi}_i$ denote the projection map $\prod_{\ell \in I'} \mathbb{Q} \to \mathbb{Q}$ onto the ith factor. Write π_i for the restriction of $\hat{\pi}_i$ to S'. Since S' is of finite rank as a \mathbb{Z}-module we must have that $\pi_i(S) \subset \mathbb{Z} \subset \mathbb{Q}$ for each $i \in I'$. We can then regard S' as sitting inside $\text{Gh}(I') = \prod_{\ell \in I'} \mathbb{Z} \subset \prod_{\ell \in I'} \mathbb{Q}$. We claim that this embedding defines a B-ring. For $s \in S$, write s' for the element $\theta(1 \otimes s)$ of S'. It remains to show that for each distinct pair $i, j \in I'$ we can find an element $s \in S$ such that $\pi_i(s') \neq 0$ and $\pi_j(s') = 0$.

Let f_1, \ldots, f_n be the primitive idempotents of $\text{Gh}(I')$, and note that $\hat{\pi}_j(f_i) = 1$ if $j = i$ and $\hat{\pi}_j(f_i) = 0$ otherwise. For each $i \in I$, we have $f_i = \theta(q_i \otimes t_i)$ for some $q_i \in \mathbb{Q}$ and $t_i \in S$. Then $t'_i = \theta(1 \otimes t_i) = (1/q_i) \cdot \theta(q_i \otimes t_i) = (1/q_i)f_i$, and so $\pi_i(t'_i) = 1/q_i \neq 0$ and $\pi_j(t'_i) = 0$ for each $j \neq i$. Thus t'_i satisfies the condition of Definition 2 for any $j \neq i$, and the embedding $S' \subset \text{Gh}(I')$ defines a B-ring.

Let $R \subset \text{Gh}(I)$ be a B-ring. For each $i \in I$ we have an R-module \mathbb{Z}_i defined by letting R act on the set \mathbb{Z} by $r \cdot n = r(i)n$ for $r \in R$ and $n \in \mathbb{Z}$.

Lemma 4. The R-modules $\text{Ext}_R^l(\mathbb{Z}_i, \mathbb{Z}_j)$ and $\text{Tor}_R^l(\mathbb{Z}_i, \mathbb{Z}_j)$ are finite for any $l \geq 1$ and $i, j \in I$.

Proof. Note that $R_{\mathbb{Q}} := \mathbb{Q} \otimes Z R$ is semisimple. Then

$$\text{Ext}_{R_{\mathbb{Q}}}^l(\mathbb{Q} \otimes \mathbb{Z}_i, \mathbb{Q} \otimes \mathbb{Z}_j) = 0$$

for any $l \geq 1$ and $i, j \in I$. But

$$\mathbb{Q} \otimes \mathbb{Z} \text{Ext}_R^l(\mathbb{Z}_i, \mathbb{Z}_j) \simeq \text{Ext}_{R_{\mathbb{Q}}}^l(\mathbb{Q} \otimes \mathbb{Z}_i, \mathbb{Q} \otimes \mathbb{Z}_j)$$

(see e.g. [7] Proposition 3.3.10) and so $\text{Ext}_R^l(\mathbb{Z}_i, \mathbb{Z}_j)$ is torsion for any $l \geq 1$ and $i, j \in I$. Since it is also finitely generated, it is finite. The result for $\text{Tor}_R^l(\mathbb{Z}_i, \mathbb{Z}_j)$ follows similarly.

Let $R \subset \text{Gh}(I)$ be a B-ring and M a finitely generated R-module. Let \mathcal{F}_i be a free R-module resolution of M, where $\mathcal{F}_i = R^{\oplus m_i}$ for $l \geq 0$. Applying $\text{Hom}_R(\cdot, \mathbb{Z}_j)$ for some $j \in I$ gives a chain complex where each term is of the form $\text{Hom}_R(R^{\oplus m_i}, \mathbb{Z}_j) \simeq \mathbb{Z}_j^{\oplus m_i}$. Applying $- \otimes_R \mathbb{Z}_j$ gives a chain complex where each term is of the form $R^{\oplus m_i} \otimes \mathbb{Z}_j \simeq \mathbb{Z}_j^{\oplus m_i}$. $\text{Ext}_R^l(M, \mathbb{Z}_j)$ and $\text{Tor}_R^l(M, \mathbb{Z}_j)$ are then isomorphic to subquotients of $\mathbb{Z}_j^{\oplus m_i}$, and it follows that the R-module structure of each $\text{Ext}_R^l(M, \mathbb{Z}_j)$ and $\text{Tor}_R^l(M, \mathbb{Z}_j)$ is given by $r \in R$ acting by $r(j)$. It follows that for $i, j \in I$ and $l \geq 0$, any direct sum decomposition of $\text{Ext}_R^l(\mathbb{Z}_i, \mathbb{Z}_j)$ or $\text{Tor}_R^l(\mathbb{Z}_i, \mathbb{Z}_j)$ as an abelian group is automatically a decomposition as an R-module.

By instead considering the functor $\mathbb{Z}_i \otimes_R -$ for $i \in I$, we note that for any R-module N, the R-module structure of $\text{Tor}_R^l(\mathbb{Z}_i, N)$ for each $l \geq 0$ is given by r acting by $r(i)$. Similarly, by considering an injective resolution of N, we have that the R-module structure of each $\text{Ext}_R^l(\mathbb{Z}_i, N)$ is given by $r \in R$ acting by $r(i)$.

Definition 5. For distinct $i, j \in I$, define $d(i, j)$ to be the greatest positive integer such that $r(i) \equiv r(j) \mod d(i, j)$ for each $r \in R$.

Since the R-module structure of each $\text{Ext}^l_R(M_i, Z_j)$ and $\text{Tor}^l_R(M_i, Z_j)$ is given by both r acting by $r(i)$ and r acting by $r(j)$, it follows that each indecomposable R-module summand of $\text{Ext}^l_R(M_i, Z_j)$ and $\text{Tor}^l_R(M_i, Z_j)$ must be of the form $Z_i/mZ_i \cong Z_j/mZ_j$ for some $m | d(i, j)$.

Fix some rational prime p and put $k = \mathbb{F}_p$. For a commutative ring S write \overline{S} for the quotient ring $S/pS \cong S \otimes \mathbb{Z} k$. For an S-module M, write \overline{M} for the \overline{S}-module M/pM. If M is annihilated by p, we will also denote the associated \overline{S}-module by M.

Lemma 6. Let S be a commutative ring which is free as a \mathbb{Z}-module. Let M be a torsion-free S-module and N an S-module annihilated by pS. Then

$$\text{Ext}^l_S(M, N) \cong \text{Ext}^l_{\overline{S}}(\overline{M}, N)$$

and

$$\text{Tor}^l_S(M, N) \cong \text{Tor}^l_{\overline{S}}(\overline{M}, N)$$

for each $l \geq 0$.

Proof. For any S-module X, any homomorphism of S-modules $\phi : X \to N$ must vanish on pX, and so we have an induced homomorphism $\overline{\phi} : \overline{X} \to N$. Similarly, any homomorphism of \overline{S}-modules $\psi : \overline{X} \to N$ lifts to a homomorphism of S-modules $X \to N$. It follows that

$$\text{Hom}_S(X, N) \cong \text{Hom}_{\overline{S}}(\overline{X}, N).$$

Let $(\mathcal{F}_\bullet, \partial_\bullet)$ be a free S-module resolution of M. In particular \mathcal{F}_\bullet is a free \mathbb{Z}-module resolution of the \mathbb{Z}-module M, so applying $- \otimes \mathbb{Z} k$ gives a chain complex over \overline{M} with homology groups $\text{Tor}^l_S(M, k)$. But M is torsion-free so the homology groups vanish and the chain complex is exact. Since \mathcal{F}_\bullet is a free S-module resolution, $\mathcal{F}_\bullet \otimes \mathbb{Z} k$ is a free \overline{S}-module resolution.

Applying $\text{Hom}_{\overline{S}}(-, N)$ to $\mathcal{F}_\bullet \otimes \mathbb{Z} k$ and computing cohomology then computes the groups $\text{Ext}^l_S(M, N)$. But $\text{Hom}_{\overline{S}}(\overline{S}, N) \cong \text{Hom}_S(S, M)$, so this is the same as applying $\text{Hom}_S(-, N)$ to \mathcal{F}_\bullet and taking cohomology, i.e. computing the groups $\text{Ext}^l_S(M, N)$. The proof for $\text{Tor}^l_S(M, N)$ is analogous. \hfill \Box

For a B-ring $R \subset \text{Gl}(I)$ and $i \in I$, write k_i for the R-module where $r \in R$ acts on the field k by $r(i)$. Put $\overline{R} = R \otimes \mathbb{Z} k$.

For each $j \in I$ we have a short exact sequence of R-modules

$$(\dag) \quad 0 \to Z_j \xrightarrow{p_i} Z_j \to k_j \to 0,$$

where the map $Z_j \to Z_j$ is given by multiplication by p. Applying $\text{Hom}_R(Z_i, -)$ gives a long exact sequence beginning with

$$0 \to \text{Hom}_R(Z_i, Z_j) \xrightarrow{p} \text{Hom}_R(Z_i, Z_j) \to \text{Hom}_R(k_i, k_j)$$

$$\xrightarrow{\text{Ext}^1_R(Z_i, Z_j)} \text{Ext}^1_R(Z_i, Z_j) \to \text{Ext}^1_R(k_i, k_j)$$

$$\xrightarrow{\text{Ext}^2_R(Z_i, Z_j)} \text{Ext}^2_R(Z_i, Z_j) \to \text{Ext}^2_R(k_i, k_j) \to \cdots$$
where we make use of the additivity of Ext$^l_R (\mathbb{Z}_l, -)$ for each $l \geq 1$ to identify each map Ext$^l_R (\mathbb{Z}_l, \mathbb{Z}_j) \to$ Ext$^l_R (\mathbb{Z}_i, \mathbb{Z}_j)$ as multiplication by p, and make use of Lemma 6 above to replace each Ext$^l_R (\mathbb{Z}_i, k_j)$ with Ext$^l_{\mathbb{Z}_l} (k_i, k_j)$.

For each $l \geq 1$ and each rational prime q, let $M_{l,q}$ be the submodule of Ext$^l_R (\mathbb{Z}_i, \mathbb{Z}_j)$ annihilated by some power of q. Since Ext$^l_R (\mathbb{Z}_i, \mathbb{Z}_j)$ is finite, it follows that we have a decomposition of R-modules

$$\text{Ext}^l_R (\mathbb{Z}_i, \mathbb{Z}_j) \simeq \bigoplus_q M_{l,q}$$

where the sum is over all rational primes q.

For $l \geq 1$, let a_l be the rank of $M_{l,p}$, and let b_l be the k-dimension of Ext$^l_{\mathbb{Z}_l} (k_i, k_j)$. Note that a_l is equal to the number of summands appearing in a decomposition of $M_{l,p}$ as a sum of indecomposable R-modules. For a non-zero indecomposable summand $\mathbb{Z}/p^a\mathbb{Z}$ of $M_{l,p}$, the map $\mathbb{Z}/p^a\mathbb{Z} \xrightarrow{p} \mathbb{Z}/p^a\mathbb{Z}$ has kernel $p^{a-1}\mathbb{Z}/p^a\mathbb{Z} \simeq \mathbb{Z}/p\mathbb{Z}$. So for $l \geq 1$, the kernel of the map $\left(\text{Ext}^l_R (\mathbb{Z}_i, \mathbb{Z}_j) \xrightarrow{p} \text{Ext}^l_R (\mathbb{Z}_i, \mathbb{Z}_j) \right)$ is a k-vector space with dimension a_l. Similarly, the cokernel of this map is a k-vector space of dimension b_l, and so the image of the connecting homomorphism Ext$^l_{\mathbb{Z}_l} (k_i, k_j) \to$ Ext$^{l+1}_R (\mathbb{Z}_i, \mathbb{Z}_j)$ has dimension $b_l - a_l$. Hence

$$a_{l+1} = \dim_k \ker \left(\text{Ext}^{l+1}_R (\mathbb{Z}_i, \mathbb{Z}_j) \xrightarrow{p} \text{Ext}^{l+1}_R (\mathbb{Z}_i, \mathbb{Z}_j) \right)$$

$$= \dim_k \text{im} \left(\text{Ext}^l_{\mathbb{Z}_l} (k_i, k_j) \to \text{Ext}^{l+1}_R (\mathbb{Z}_i, \mathbb{Z}_j) \right)$$

$$= b_l - a_l$$

for $l \geq 1$. In order to determine the sequence a_l, it is then sufficient to compute the sequence b_l.

Applying $\mathbb{Z}_i \otimes_R - \to (\dag)$ gives a long exact sequence ending with

$$\ldots \longrightarrow \text{Tor}^R_2 (\mathbb{Z}_i, \mathbb{Z}_j) \longrightarrow \text{Tor}^{\mathbb{Z}_l}_2 (k_i, k_j) \longrightarrow \text{Tor}^R_1 (\mathbb{Z}_i, \mathbb{Z}_j) \longrightarrow \text{Tor}^{\mathbb{Z}_l}_1 (k_i, k_j) \longrightarrow \mathbb{Z}_i \otimes \mathbb{Z}_j \longrightarrow \mathbb{Z}_i \otimes \mathbb{Z}_j \longrightarrow k_i \otimes \mathbb{Z}_j \longrightarrow 0.$$

Write z_l for the p-rank of $\text{Tor}^R_l (\mathbb{Z}_i, \mathbb{Z}_j)$ and y_l for the dimension $\text{Tor}^{\mathbb{Z}_l}_l (k_i, k_j)$. Then repeating the same argument as above gives

$$z_l = y_{l+1} - z_{l+1}$$

for $l \geq 1$.

B-rings modulo a prime.

Since a B-ring $R \subset \text{Gh}(I)$ is of finite rank as a \mathbb{Z}_i-module, \overline{R} is a finite-dimensional k-algebra, and we have an \overline{R}-module decomposition of \overline{R} as a direct sum of finitely many indecomposable projective \overline{R}-modules. Since \overline{R} is commutative, this is a decomposition of commutative local k-algebras. By the usual block theory considerations (see e.g. II Chapter II.5), studying the cohomology of \overline{R} reduces to studying the cohomology of these indecomposable summands.
Define a relation \sim_p' on I by putting $i \sim_p' j$ if and only if $p \mid d(i, j)$ for $i \neq j$. Note that by the definition of $d(i, j)$ this relation is symmetric and transitive, and we write \sim_p for the equivalence relation defined by taking its reflexive closure. Let E denote the set of equivalence classes of I with respect to \sim_p. For an equivalence class $E \in E$, write k_E for the (well-defined) R-module which is k as an abelian group and where $r \cdot m = r(i)m$ for $m \in k$ and where i is any element of E.

Lemma 7. For each $E \in E$ there exists an $r \in R$ such that $r(i) \equiv 1 \mod p$ for each $i \in E$ and $r(j) \equiv 0 \mod p$ for each $j \notin E$.

Proof. For each equivalence class E' distinct from E, we have an $r_{E'} \in R$ with $r_{E'}(i) \neq r_{E'}(j) \mod p$ for $i \in E$ and $j \in E'$. Subtracting $r_{E'}(j)$ if required, we can assume $r_{E'}(j) = 0$, and hence $p \mid r_{E'}(i)$. Replacing $r_{E'}$ by $r_{E'}^{-1}$ if required, we can assume $r_{E'}(i) \equiv 1 \mod p$. Then putting $r = \prod_{E', E} r_{E'}$ it is clear that r has the claimed properties. \hfill \square

Proposition 8. We have a surjective homomorphism of k-algebras

$$\theta : \overline{R} \to \prod_{E \in E} k_E$$

with kernel the radical of \overline{R}.

Proof. We have a homomorphism of rings

$$R \to \prod_{E \in E} k_E$$

given by

$$r \mapsto (r(i) \mod p)_{E \in E}$$

where $i \in E$. By Lemma 7 this homomorphism is surjective. The kernel of this map contains pR, and we let θ be the induced surjective homomorphism of k-algebras. Since $\prod_{E \in E} k_E$ is semisimple, the kernel of θ certainly contains the radical of \overline{R}. It remains to show the reverse inclusion.

As in the proof of Proposition 3 choose for each $i \in I$ an element $s_i \in R$ such that $s_i(j) \neq 0$ if and only if $j = i$. Let $s_i(i) = p^t n_i$ where n_i is coprime to p; put $t = \max_i t_i$ and put $N = \prod_{i \in I} n_i$. Let $r \in R$ be such that $r(i) \equiv 0 \mod p$ for each $i \in I$. Putting $q = N^t r^{t+1}$, we have that $ps_i(i) \mid q(i)$ for each $i \in I$, and so we can define integers $m_i \in \mathbb{Z}$ by requiring $q(i) = pm_i s_i(i)$. It follows that

$$q = p \cdot \sum_{i \in I} m_i s_i$$

and so $q \in pR$. Then the image of q in \overline{R} is zero, and hence the image of r^{t+1} in \overline{R} is zero, since N is coprime with p.

It follows that the kernel of θ is nilpotent, and hence equal to the radical of \overline{R}. \hfill \square

Corollary 9. i. \overline{R} is the direct sum of $|E|$ indecomposable k-algebras;

ii. the set $\{k_E\}_{E \in E}$ is a complete irredundant set of irreducible modules for \overline{R};

iii. the dimension of the indecomposable summand corresponding to k_i is $|E|$, the cardinality of the \sim_p-equivalence class of $i \in I$. The maximal ideal of each indecomposable summand has codimension 1.
Proof. The only part that does not follow immediately is iii. For an equivalence class E, let R' be the B-ring $R' \subset \prod_{i \in E} \mathbb{Z}$ induced by R, and $\pi_E : R \to R'$ the corresponding homomorphism. Then π_E descends to a map $R \to \overline{R}'$ and this is a surjection of k-algebras. Applying part i to \overline{R}', the k-algebra \overline{R} is indecomposable of dimension $|E|$, and so the indecomposable summand of \overline{R} corresponding to E has dimension $\geq |E|$. Since we can do this for each equivalence class in \mathcal{E}, the summand must have dimension $|E|$. Since the radical of \overline{R} has dimension $\dim R - |\mathcal{E}|$, the radical of the summand corresponding to E must have dimension $|E| - 1$. □

It follows that each indecomposable summand of \overline{R} is a commutative local finite-dimensional k-algebra S with maximal ideal \mathcal{M} satisfying $S/\mathcal{M} \simeq k$. There is a unique S-module structure on k where $\mathcal{M} \cdot k = 0$, and we denote this S-module by k.

The following result is standard (see [4] Chapter 2, §3).

Lemma 10. Let S be as above. Then $\operatorname{Tor}^S_l(k,k) \simeq \operatorname{Ext}^l_S(k,k)$ as S-modules for each $l \geq 0$.

Corollary 11. For $i,j \in I$, write a_l for the p-rank of $\operatorname{Ext}^l_R(\mathbb{Z}_i,\mathbb{Z}_j)$ and z_l for the p-rank of $\operatorname{Tor}^l_R(\mathbb{Z}_i,\mathbb{Z}_j)$. Then $z_l = a_{l+1}$ for all $l \geq 1$.

Proof. We have recurrence relations

$$a_{l+1} = b_l - a_l$$

and

$$z_l = y_{l+1} - z_{l+1}$$

for $l \geq 1$, where b_l and y_l are the dimensions of the k-vector spaces $\operatorname{Ext}^l_R(k_i,k_j)$ and $\operatorname{Tor}^l_R(k_i,k_j)$ respectively. If $i \neq j$ then $\operatorname{Ext}^l_R(k_i,k_j) = \operatorname{Tor}^l_R(k_i,k_j) = 0$ for each l and the result is trivially true. Otherwise, by Lemma 10 we have $b_l = y_l$.

Suppose $i = j$. It is clear that $\operatorname{Hom}_R(\mathbb{Z}_i,\mathbb{Z}_i) \simeq \mathbb{Z}_i$ and $\operatorname{Hom}_R(\mathbb{Z}_i,\mathbb{k}_i) \simeq \mathbb{k}_i$ so the long exact sequence associated to (†) begins with the short exact sequence

$$0 \to \operatorname{Hom}_R(\mathbb{Z}_i,\mathbb{Z}_i) \to \operatorname{Hom}_R(\mathbb{Z}_i,\mathbb{k}_i) \to \operatorname{Hom}_R(\mathbb{k}_i,\mathbb{k}_i) \to 0.$$

It follows that the map $\operatorname{Ext}^1_R(\mathbb{Z}_i,\mathbb{Z}_i) \to \operatorname{Ext}^1_R(\mathbb{Z}_i,\mathbb{k}_i)$ is injective and hence $\operatorname{Ext}^1_R(\mathbb{Z}_i,\mathbb{Z}_i)$ has zero p-part and $a_1 = 0$. Similarly, $z_1 = b_1$, and the recurrence gives $z_l = a_{l+1}$ for all $l \geq 1$ as claimed.

Suppose $i \neq j$ with $i \sim_p j$. It is clear that $\operatorname{Hom}_R(\mathbb{Z}_i,\mathbb{Z}_j) = 0$ and $\operatorname{Hom}_R(\mathbb{Z}_i,\mathbb{k}_j) \simeq k_j$, so by inspection of the long exact sequence associated to (†) we have $a_1 = 1$. Similarly we have $\mathbb{Z}_i \otimes \mathbb{Z}_j \simeq \mathbb{Z}_j/d(i,j)\mathbb{Z}_j$ and $\mathbb{Z}_i \otimes k_j \simeq k_j$ from which we obtain $z_1 = b_1 - 1$, and once more we have $z_l = a_{l+1}$ for each $l \geq 1$. □

Corollary 12. Suppose $p \nmid d(i,j)$ for all distinct $i,j \in I$. Then \overline{R} is semisimple.

Proof. Since $p \nmid d(i,j)$ for all distinct $i,j \in I$, we have $|\mathcal{E}| = |I|$ and the homomorphism θ of Proposition 8 is an isomorphism. □

Corollary 13. Let $i,j \in I$ be distinct with $d(i,j) = 1$. Then

$$\operatorname{Ext}^l_R(\mathbb{Z}_i,\mathbb{Z}_j) = 0$$

for all $l \geq 0$.
\textbf{Corollary 14.} Suppose that distinct elements \(i, j\) of \(I\) are such that \(\{i, j\}\) is an equivalence class for the relation \(\sim_p\) on \(I\). Write \(a_l\) and \(a'_l\) for the \(p\)-ranks of \(\Ext^l_R(\mathbb{Z}_i, \mathbb{Z}_i)\) and \(\Ext^l_R(\mathbb{Z}_i, \mathbb{Z}_j)\) respectively. Then

\[
\begin{align*}
a_l &= \begin{cases}
0 & \text{if } l \text{ odd} \\
1 & \text{if } l \text{ even}
\end{cases} \\
a'_l &= \begin{cases}
1 & \text{if } l \text{ odd} \\
0 & \text{if } l \text{ even}
\end{cases}
\end{align*}
\]

for all \(l \geq 1\).

\textit{Proof.} The algebra \(\overline{R}\) has an indecomposable 2-dimensional \(k\)-algebra summand corresponding to the pair \(\{i, j\}\). Any indecomposable local \(k\)-algebra of dimension 2 with maximal ideal of codimension 1 is isomorphic to \(A = k[x]/(x^2)\). We have a free \(A\)-module resolution of \(k\) given by

\[
\ldots \to A \to \ldots \to A \to A \to k \to 0
\]

where each map \(A \to A\) is given by \(1_A \mapsto x\), and so \(\Ext^l_A(k, k) \simeq k\) for all \(l \geq 0\), i.e. in the notation of our recurrence relations we have \(b_l = 1\) for all \(l \geq 1\). Now \(a_{l+1} = b_l - a_l\) and \(a'_{l+1} = b_l - a'_l\), where \(a_1 = 0\) and \(a'_1 = 1\), from which the corollary follows immediately. \(\square\)

The Burnside ring as \(B\)-ring.

\textbf{Proposition 15.} The embedding \(\pi : A(G) \to \Gh(\text{ccs}(G))\) defines a \(B\)-ring.

\textit{Proof.} We need to show that for non-conjugate subgroups \(H, J \subset G\) we can find an \(a \in A(G)\) with \(\pi_H(a) \neq 0\) and \(\pi_J(a) = 0\). Now if \(J\) is not conjugate to a subgroup of \(H\), then \(a = [G/J] \text{ suffices. Otherwise, if } J \text{ is conjugate to a subgroup of } H \text{ then } H \text{ is not conjugate to a subgroup of } J\), and putting \(a = [N_J : J][G/J] - [G/J]\) we have \(\pi_J(a) = 0\) and \(\pi_H(a) = [N_GJ : J] \neq 0\). \(\square\)

For \(H \subset G\) and \(p\) a prime, let \(O^p(H)\) denote the smallest normal subgroup \(K \triangleleft H\) such that \(H/K\) is a \(p\)-group. We recall the following result due to Dress (Proposition 1).

\textbf{Proposition 16.} Let \(H, J\) be subgroups of \(G\). Then \(\pi_H(a) \equiv \pi_J(a) \mod p\) for each \(a \in A(G)\) if and only if \(O^p(H)\) is conjugate to \(O^p(J)\).

Since \(A(G)\) is a \(B\)-ring, we have integers \(d((H), (J))\) defined for each distinct pair \((H), (J)\) \(\in \text{ccs}(G)\). For \(H, J \subset G\) non-conjugate subgroups, we write \(d(H, J)\) for \(d((H), (J))\). It follows immediately from Proposition 16 that \(p \mid d(H, J)\) if and only if \(O^p(J)\) is conjugate to \(O^p(H)\).
Lemma 18. For all d the relation \sim group of H_2. For l even, it remains to show that each $G \cap N$ in p whenever l conjugacy classes of subgroups G.

Proof. Suppose we can construct an s power summand only when l is odd since πd is clear since $\pi 2$. Since πd has cardinality πd if and only if πd is zero for some l. If $(H) \in E_i$ for some i then $M_{H,l}$ is non-zero whenever l is even, and if $\{(H),(J)\} = E_i$ for some i then $M_{H,l}$ is non-zero whenever l is odd. Otherwise $(H) \notin E_i$ for each i, in which case by part i $\{(H)\}$ is an equivalence class in E and so the block corresponding to H is 1-dimensional and $M_{H,l} = 0$ for all $l \geq 1$.

For l and l', we know by Corollary 14 that if $(H) \in E_i$ for some i then $M_{H,l}$ is non-zero whenever l is even, and if $\{(H),(J)\} = E_i$ for some i then $N_{H,l,l}$ is non-zero whenever l is odd. Otherwise $(H) \notin E_i$ for each i, in which case by part i $\{(H)\}$ is an equivalence class in E and so the block corresponding to H is 1-dimensional and $M_{H,l} = 0$ for all $l \geq 1$. Similarly, if $\{(H),(J)\} \neq E_i$ for each i, then (H) and (J) belong to distinct equivalence classes and $N_{H,l,l} = 0$ for all $l \geq 0$.

Suppose $\{(H),(J)\}$ is an equivalence class in E. By Corollary 14, $M_{H,l}$ has a p-power summand only when l is even, and $N_{H,l,l}$ has a p-power summand only when l is odd. It remains to show that each p-power summand is in fact Z/pZ. For $N_{H,l,l}$ this is clear since $d(H,J)$ annihilates $N_{H,l,l}$ and $p^2 \nmid d(H,J)$ by Lemma 18. For $M_{H,l}$ note that by dimension shifting this is the p-part of $\text{Ext}^{l-1}_{A(G)}(K_H,Z_H)$ where $K_H = \ker \pi_H$. Since $p^2 \nmid d(H,J')$ for any $J' \subset G$, and since $p \nmid d(H,J')$ if and only if $(J') = (J)$, we can construct an $s_H \in A(G)$ such that $\pi_{J'}(s_H) \neq 0$ if and only if $(H) = (J')$, and such that $p^2 \nmid \pi_H(s_H)$. Now s_H annihilates K_H, so it follows that s_H annihilates $\text{Ext}^l_{A(G)}(Z_H,Z_H)$, and so a fortiori s_H annihilates $M_{H,l}$. So any p-power summand of $M_{H,l}$ must be of the form Z/pZ. □
Theorem 20. Suppose $|G|$ is square-free. Then for all $H, J \subset G$ and $l \geq 1$, we have an isomorphism of $A(G)$-modules $\text{Ext}^l_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J) \simeq \text{Ext}^{l+2}_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J)$.

In the remainder we establish the converse, by showing that if $|G|$ is not square-free then there exists $H, J \subset G$ such that the rank of $\text{Ext}^l_{p^2}(\mathbb{Z}_H, \mathbb{Z}_J)$ is unbounded as $l \to \infty$. This is an easy consequence of the following two results. Recall that for a field F, a commutative F-algebra S is said to be symmetric if there exists an F-linear map $\lambda : S \to F$ such that $\ker \lambda$ contains no non-zero ideals of S.

Theorem 21 (Gustafson [5]). If $p^2 \mid |G|$ and F is a field of characteristic p then the F-algebra $A(G) \otimes_\mathbb{Z} F$ is not symmetric.

Theorem 22 (Gulliksen [3]). Let S be a commutative noetherian local ring with maximal ideal \mathcal{M} and with residue field $F = S/\mathcal{M}$. Then the sequence $(\dim \text{Tor}_i^S(F, F))_{i \in \mathbb{N}}$ is bounded if and only if
\[
d(S) \geq \dim \mathcal{M}/\mathcal{M}^2 - 1,
\]
where $d(S)$ denotes the Krull dimension of S.

Theorem 23. If $|G|$ is not square-free then there exist subgroups $H, J \subset G$ such that the groups $\text{Ext}^l_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J)$ have unbounded rank.

Proof. Let p be a prime with $p^2 \mid |G|$ and put $k = F_p$. The algebra $\overline{A(G)} = A(G) \otimes_\mathbb{Z} k$ is not symmetric by Theorem 21 so it has an indecomposable k-algebra summand S which is not symmetric. Now S is finite-dimensional so the maximal ideal \mathcal{M} of S is nilpotent. Then \mathcal{M} is the only prime of S and $d(S) = 0$. It follows by Theorem 22 that the sequence $(\dim \text{Tor}_i^S(k, k))_{i \in \mathbb{N}}$ is unbounded if and only if $\dim \mathcal{M}/\mathcal{M}^2 > 1$.

If $\dim \mathcal{M}/\mathcal{M}^2 = 0$ then $S = k$ is clearly symmetric. Suppose $\dim \mathcal{M}/\mathcal{M}^2 = 1$. Let $t \in S$ generate \mathcal{M} and note that $\{1_t, t, \ldots, t^q\}$ is a vector space basis for S for some $q \geq 1$. Define $\lambda : S \to k$ by putting
\[
\lambda \left(\sum_{i=0}^q a_i t^i \right) = a_q.
\]
Now if $J \subset S$ is a non-zero ideal then we can choose some non-zero element $s = \sum_{i=0}^q b_i t^i$ in J, and choose m to be minimal such that $b_m \neq 0$. Then $t^{q-m} s = b_m t^q \in J$ is not in $\ker \lambda$, so $\ker \lambda$ contains no non-zero ideals and S is symmetric, a contradiction. It follows that $\dim \mathcal{M}/\mathcal{M}^2 > 1$ and the sequence $(\dim \text{Tor}_i^S(k, k))_{i \in \mathbb{N}} = (\dim \text{Ext}_i^S(k, k))_{i \in \mathbb{N}}$ is unbounded.

By Corollary 8 the summand S corresponds to some equivalence class $E \in \mathcal{E}$, and we have
\[
\dim \text{Ext}_i^S(k, k) = \dim \text{Ext}_i^S(k_E, k_E).
\]
Let H, J be subgroups of G with $(H), (J) \in \mathcal{E}$, let α_l be the p-rank of $\text{Ext}^l_{A(G)}(\mathbb{Z}_H, \mathbb{Z}_J)$, and let β_l be the dimension of $\text{Ext}^l_{A(G)}(k_E, k_E)$. We have a recurrence
\[
\alpha_{l+1} = \beta_l - \alpha_l
\]
for $l \geq 1$. Since β_l is unbounded, it follows immediately that α_l is unbounded, and hence the groups $\text{Ext}_l^G(\mathbb{Z}_H, \mathbb{Z}_J)$ have unbounded rank. \qed
References

[1] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge University Press, 1997.
[2] A. W. M. Dress, A characterisation of solvable groups, Math. Z., 110:213-217, 1969.
[3] T. H. Gulliksen, A note on the homology of local rings, Math. Scand. 21 (1967) 296–300.
[4] T. H. Gulliksen, G. Levin, Homology of local rings, Queen’s papers in pure and applied mathematics no. 20, 1969.
[5] W. H. Gustafson, Burnside rings which are Gorenstein, Comm. Algebra 5 (1977) 1–15.
[6] T. tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Math., vol. 766, Springer, Berlin, 1979.
[7] C. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.