Pastorello, A, Wang, X-F, Ciabattari, F, Bersier, D, Mazzali, PA, Gao, X, Xu, Z, Zhang, J-J, Tokuoka, S, Benetti, S, Cappellaro, E, Elias-Rosa, N, Harutyunyan, A, Huang, F, Miluzio, M, Mo, J, Ochner, P, Tartaglia, L, Terreran, G, Tomasella, L and Turatto, M

Massive stars exploding in a He-rich circumstellar medium - IX. SN 2014av, and characterization of Type Ibn SNe

http://researchonline.ljmu.ac.uk/id/eprint/2872/
Massive stars exploding in a He-rich circumstellar medium - IX. SN 2014av, and characterization of Type Ibn SNe

A. Pastorello,1* X.-F. Wang,2 F. Ciabattari,3 D. Bersier,4 P. A. Mazzali,4 X. Gao,5 Z. Xu,6 J.-J. Zhang,7,8 S. Tokuoka,9 S. Benetti,1 E. Cappellaro,1 N. Elias-Rosa,1 A. Harutyunyan,10 F. Huang,2,11 M. Miluzio,1,12 J. Mo,2 P. Ochner,1 L. Tartaglia,1,13 G. Terreran,1,14 L. Tomasella,1 M. Turatto1

1 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy
2 Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing, 100084, China
3 Osservatorio Astronomico di Monte Agliale, Via Cune Matrone, 55023 Borgo a Mozzano, Lucca, Italy
4 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
5 Urumqi No.1 Senior High School, Urumqi, 830002, China
6 Nanjing Putian Telecommunications Co., Nanjing, 210012, China
7 Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650011, China
8 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China
9 private address, 5-1-14 Tonda, Takatsuki, Osaka, 5690814, Japan
10 Fundación Galileo Galilei-INAF, Telescopio Nazionale Galileo, Rambla José Ana Fernández Pérez 7, 38712 Breña Baja, TF, Spain
11 Astronomical Department, Beijing Normal University, Beijing, 100875, China
12 Instituto de Astrofísica de Canarias, C/ Va Láctea, s/n, E-38205 La Laguna, Santa Cruz de Tenerife, Spain
13 Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 5, Padova I-35122, Italy
14 Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

Accepted YYYY Month XX. Received YYYY Month XX; in original form YYYY Month XX

ABSTRACT

We present spectroscopic and photometric data of the Type Ibn supernova (SN) 2014av, discovered by the Xingming Observatory Sky Survey. Stringent pre-discovery detection limits indicate that the object was detected for the first time about 4 days after the explosion. A prompt follow-up campaign arranged by amateur astronomers allowed us to monitor the rising phase (lasting 10.6 days) and to accurately estimate the epoch of the maximum light, on 2014 April 23 (JD = 2456771.1 ± 1.2). The absolute magnitude of the SN at the maximum light is $M_R = -19.76 ± 0.16$. The post-peak light curve shows an initial fast decline lasting about 3 weeks, and is followed by a slower decline in all bands until the end of the monitoring campaign.

The spectra are initially characterized by a hot continuum. Later on, the temperature declines and a number of lines become prominent mostly in emission. In particular, later spectra are dominated by strong and narrow emission features of He I typical of Type Ibn supernovae (SNe), although there is a clear signature of lines from heavier elements (in particular O I, Mg II and Ca II). A forest of relatively narrow Fe II lines is also detected showing P-Cygni profiles, with the absorption component blue-shifted by about 1200 km s$^{-1}$. Another spectral feature often observed in interacting SNe, a strong blue pseudo-continuum, is seen in our latest spectra of SN 2014av. We discuss in this paper the physical parameters of SN 2014av in the context of the Type Ibn supernova variety.

Key words: supernovae: general - supernovae: individual: SN 2014av - supernovae: individual: SN 2006jc - supernovae: individual: SN 2014bk - stars: Wolf-Rayet - stars: mass-loss

1 INTRODUCTION

Type Ibn SNe are a rare class of stripped-envelope events whose spectra usually show relatively narrow lines of He I
along with broader lines of α-elements similar to those observed in canonical Type Ib/c SNe (Pastorello et al. 2008a). The progenitors of SNe Ibn are thought to be hydrogen-poor Wolf-Rayet stars that have experienced major mass loss events shortly before the terminal SN explosions. A pre-SN outburst was directly observed in the case of the prototypical SN 2006jc (Pastorello et al. 2007; Foley et al. 2007). The variety of observed properties characterizing this SN family has been discussed by Turatto & Pastorello (2014) and several publications have already devoted to this subject. However, although the number of Type Ibn SN discoveries is growing, very few objects boast well-sampled data sets, and only occasionally they were observed at early stages.

A rare opportunity to study a SN Ibn at very early phases has been provided with the discovery of a transient in the spiral galaxy UGC 4713, originally labelled as PSN J09002002+5229280, and later named with the IAU designation SN 2014av (Xu & Gao 2014). The new SN was discovered on 2014 April 19.72 UT (hereafter UT will be used along this paper), in the course of the Xingming Observatory Sky Survey (XOSS); at a magnitude of about 16.2 (Xu & Gao 2014). The earliest pre-discovery detection of the transient was registered on April 16.84 UT on images of the Italian Supernovae Search Project (ISSP). Negative detections of the SN on images of UGC 4713 have been reported by the XOSS on March 26, 2014 and by the ISSP on April 6, 2014. These amateur observations allowed us to constrain the explosion epoch with a very little uncertainty to April 13, 2014 (see Section 2). The new SN exploded about 2°.7 West and 11°.2 South of the core of the host galaxy (see Figure 1), which is classified as Sb Type galaxy (from Hyperleda; Paturel et al. 2003). UGC 4713 has a recessional velocity corrected for Local Group infall into Virgo $v_{\text{Vir}} = 9225 \pm 12$ km s$^{-1}$ (Mould et al. 2000, from the NASA/IPAC Extragalactic Database; NED). Adopting a value for the Hubble Constant $H_0 = 73$ km s$^{-1}$ Mpc$^{-1}$ and a standard cosmology ($\Omega_M = 0.27$ and $\Omega_\Lambda = 0.73$), we obtain a luminosity distance $d = 129 \pm 9$ Mpc (hence, a distance modulus $m - M = 35.56 \pm 0.15$ mag). The Galactic extinction due to interstellar dust in the direction of SN 2014av is $A_B = 0.062$ mag (Schlafly & Finkbeiner 2011), and there are no spectroscopic signatures of additional reddening contribution in the host galaxy (cfr. Section 3).

Zhang & Wang (2014), on the basis of the blue spectral continuum and a presence of relatively narrow He I lines, classified SN 2014av as a young Type Ibn SN similar to SN 2006jc. The young age of the SN and the rarity of Type Ibn events ($\lesssim 2$ per cent of core-collapse SNe, Pastorello et al. 2015a) motivated our team to initiate a monitoring campaign of this new member of the family. Photometric and spectroscopic observations of SN 2014av are presented in Sections 2 and 3 respectively; a bolometric light curve and an estimate of the explosion parameters are given in Section 4. An extensive characterization of spectral properties of SNe Ibn is provided in Section 5. The properties of the progenitors of SNe Ibn are illustrated in Section 6 and a summary follows in Section 7.

2 PHOTOMETRIC OBSERVATIONS

Our multi-band (Johnson-Cousins $UBVRi$ and Sloan $griz$) photometric follow-up campaign started when the object had already reached the maximum light, and continued up to phase ~ 70 days after discovery, until the object became unobservable because it was in solar conjunction. The instruments used in our photometric campaign are the 3.58-m Telescopio Nazionale Galileo (TNG) equipped with Dolores, the 2.56-m Nordic Optical Telescope (NOT) with ALFOSC and the 2.0-m Liverpool Telescope with IO:O, all located at Roque de los Muchachos Observatory, La Palma, Canary Islands (Spain); the 1.82-m Copernico Telescope of Mt. Ekar, Asiago (Italy) equipped with AFOSC. In order to sample the early-time SN evolution, we included in our dataset unfiltered observations from amateur astronomers. The instruments used are listed as a footnote in the SN photometry tables. These additional data, essential to constrain the rising branch of the light curve and the peak luminosity, were scaled to V- or R-band (and similarly to Sloan g or r-band) photometry, depending on the approximate wavelength of the peak of the quantum efficiency curves of the CCDs used in the observations.

1. A comprehensive list of publications on Type Ibn SNe includes Matheson et al. (2006), Matilla et al. (2008), Smith et al. (2008), Immler et al. (2008), Di Carlo et al. (2008), Nugawa et al. (2008), Tominaga et al. (2008), Antoniucci et al. (2009), Sales et al. (2009), Chugai (2009), Smith et al. (2012), Sanders et al. (2013), Tominaga et al. (2008), Anupama et al. (2009), Sakon et al. (2010).

2. http://www.xjltp.com/xo/index-en.htm

3. Hereafter, UT times will be used throughout the paper.

4. http://italiansupernovae.org/

5. http://leda.univ-lyon1.fr/

6. https://ned.ipac.caltech.edu/
Table 1. Landolt-calibrated magnitudes of the reference stars in the field of UGC 4713, and associated errors.

Star ID	R.A.	Dec.	U	B	V	R	I	
1	9:00:10.434	52:31:20.56	16.430	0.026	16.483	0.050	15.796	0.042
2	8:59:54.384	52:32:30.42	17.332	0.028	16.902	0.054	16.066	0.043
3	8:59:49.679	52:33:51.07	15.385	0.026	15.536	0.047	14.985	0.041
4	9:00:22.854	52:34:28.95	16.052	0.019	16.164	0.038	15.583	0.028
5	9:00:30.755	52:33:33.87	14.516	0.018	14.339	0.040	13.695	0.027
6	9:00:20.061	52:32:15.37	16.441	0.020	16.419	0.041	15.742	0.028
7	9:00:44.747	52:32:53.21	17.259	0.022	16.961	0.046	16.117	0.030
8	9:00:41.823	52:30:28.80	15.266	0.029	15.037	0.040	14.386	0.033
9	9:00:47.372	52:29:59.52	14.555	0.028	14.222	0.040	13.695	0.032
10	9:00:49.557	52:26:17.28	17.943	0.033	16.941	0.059	15.805	0.038
11	9:00:47.894	52:23:44.54	16.140	0.029	16.051	0.041	15.465	0.032
12	9:00:31.525	52:25:17.66	13.652	0.028	12.916	0.032	12.578	0.025
13	9:00:34.258	52:24:22.86	17.542	0.031	16.393	0.066	15.092	0.041
14	9:00:21.035	52:23:42.40	15.557	0.029	15.328	0.044	14.614	0.033

Figure 2. UBVRI (left) and griz (right) light curves of SN 2014av. The closest pre-discovery limits are also shown. Data from unfiltered images are rescaled to Johnson-Cousins V or R (vegamag), and Sloan g or r (ABmag), depending on the wavelength of the peak of the quantum efficiency curves of the CCDs used for the observations, as specified in the text.

All frames were pre-processed using standard procedures in IRAF. We corrected the frames for bias, overscan and flat-fielding, and they were finally astrometrically calibrated. For photometric measurements, we used the dedicated pipeline SNOoPY (Cappellari 2014). This pipeline consists of a collection of PYTHON scripts calling standard IRAF tasks, and other data analysis tools such as SEXTRACTOR for source extraction and classification, DAOPHOT for point spread function (PSF) fitting, and HOTPANTS\(^7\) for PSF matching and image subtraction. PSF-fitting photometry provided reliable results in the high-quality, high signal-to-noise (S/N) filtered images from professional telescopes, whilst this measurement method provided inaccurate results in lower S/N unfiltered images from amateur astronomers. For the latter epochs, we employed the template subtraction method to remove the contaminating flux from the host galaxy background. Good-quality pre-explosion images of UGC 4713 were used as templates. These images were available after the routine monitoring observations of UGC 4713 obtained in the course of the XOSS and ISSP SN searches.

Once instrumental magnitudes of the SN and a number of stellar sources in the SN vicinity were obtained, we accurately calibrated the Johnson-Cousins magnitudes of a sequence of local standards in the field. To this aim, we selected observations obtained during a few photometric nights in which standard photometric fields from the cat-

\(^7\) http://www.astro.washington.edu/users/becker/v2.0/hotpants.html
Table 2. Johnson-Cousins magnitudes of SN 2014av, and associated errors.

Obs. date	Average JD	U	B	V	R	I	Instrument	
2010/03/14	2455270.39	–	–	–	>19.26	–	1	
2011/03/09	2456530.37	–	–	–	>19.27	–	1	
2013/12/03	2456630.49	–	–	>18.93	–	–	1	
2013/12/10	2456637.58	–	–	>19.19	–	–	1	
2013/12/19	2456645.55	–	–	>19.17	–	–	1	
2014/01/06	2456664.49	–	–	>18.52	–	–	1	
2014/03/11	2456728.33	–	–	>19.03	–	–	1	
2014/03/18	2456735.29	–	–	>18.87	–	–	1	
2014/03/22	2456739.32	–	–	>18.97	–	–	2	
2014/03/26	2456743.23	–	–	>18.87	–	–	2	
2014/04/06	2456754.31	–	–	>19.17	–	–	1	
2014/04/16	2456764.34	–	–	17.592	0.185	–	1	
2014/04/17	2456765.32	–	–	17.100	0.229	–	1	
2014/04/19	2456767.22	–	–	16.150	0.098	–	2	
2014/04/19	2456767.27	–	–	16.130	0.079	–	2	
2014/04/22	2456768.36	–	–	16.379	0.080	15.983	0.067	
2014/04/23	2456769.14	–	–	16.512	0.114	–	1	
2014/04/24	2456770.17	–	–	16.507	0.143	–	1	
2014/04/27	2456770.17	–	–	16.720	0.320	–	5	
2014/04/27	2456770.17	–	–	17.383	0.260	–	5	
2014/05/02	2456780.16	–	–	17.182	0.087	–	2	
2014/05/03	2456780.63	–	–	17.254	0.139	–	7	
2014/05/03	2456781.14	–	–	17.311	0.086	–	2	
2014/05/03	2456781.41	17.263	0.087	17.800	0.090	17.592	0.063	
2014/05/04	2456782.13	–	–	17.320	0.126	–	2	
2014/05/04	2456782.42	–	–	17.549	0.140	–	9	
2014/05/05	2456783.14	–	–	17.676	0.153	–	2	
2014/05/06	2456784.03	–	–	17.720	0.204	–	2	
2014/05/06	2456784.15	–	18.031	0.191	–	5		
2014/05/08	2456786.40	–	–	18.101	0.125	–	1	
2014/05/09	2456787.16	–	–	18.191	0.307	–	2	
2014/05/10	2456788.02	–	–	18.491	0.309	–	5	
2014/05/10	2456788.45	18.928	0.097	19.125	0.030	18.566	0.031	
2014/05/13	2456791.10	–	–	18.841	0.354	–	5	
2014/05/14	2456792.36	–	–	18.794	0.397	–	1	
2014/05/14	2456792.39	19.215	0.109	19.515	0.047	18.856	0.043	
2014/05/19	2456797.16	–	–	19.012	0.507	–	2	
2014/05/19	2456797.41	19.641	0.067	19.877	0.078	19.263	0.081	
2014/05/27	2456808.50	19.924	0.059	20.177	0.066	19.518	0.056	
2014/06/03	2456814.39	20.296	0.145	20.492	0.101	19.857	0.056	
2014/06/26	2456835.39	–	20.715	0.116	20.043	0.065	19.869	0.076

1 = 0.50-m Newton telescope (Lotti) + FLI Proline 4710 CCD (ISSP collaboration, Osservatorio Astronomico di Monte Agliate, Bergamo, Italy); 2 = 0.36-m Celestron C14 telescope + QHY9 + KAF8300 CCD (Obs. Z. Xu & X. Gao, Xingming Observatory, Xiaofeng, Gangou, China); 3 = 0.36-m Celestron C14 telescope + DSI Pro-DSII CCD (Obs. W. S. Wiethoff; SOLO Observatory, Port Wing, Wisconsin, USA); 4 = 0.43-m PlaneWave Corrected Dall-Kirkham Astrograph + Paramount ME + SBIG STL-6303E CCD (Obs. G. Masi, The Virtual Telescope Project 2.0, Bellatrix Astronomical Observatory, Ceccano, Frosinone, Italy); 5 = 0.25-m Whitey Dob telescope + Starlight Xpress SXVR-H694 CCD (Obs. S. Tokunaga, Takatsuki, Osaka, Japan); 6 = 0.25-m Meade SC telescope + Atik 314L+ Sony ICX-284AL CCD (Obs. G. Locatelli; Maritime Alps Observatory MPC K32, Cuneo, Italy); 7 = 0.28-m Celestron C11 telescope + Orion StarShoot DSMII CCD (Obs. S. Howerton; Arkansas City, Kansas, USA); 8 = 3.58-m TNG + Dolores (Roque de los Muchachos, La Palma, Canary Islands, Spain); 9 = 0.28-m Celestron C11 telescope + SBIG STT-1603 ME camera (Obs. J.-M. Lapasset; Perpignan Observatory, France); 10 = 2.56-m NOT + ALFOSC (Roque de los Muchachos, La Palma, Canary Islands, Spain).
Table 3. Sloan magnitudes of SN 2014av, and associated errors.

Obs. date	Average JD
2010/03/14	55270.390
2011/03/09	55630.374
2013/12/03	56630.490
2013/12/10	56637.581
2013/12/19	56645.553
2014/01/06	56664.491
2014/03/11	56728.331
2014/03/18	56735.287
2014/03/22	56739.318
2014/03/26	56743.226
2014/04/06	56754.333
2014/04/16	56764.341
2014/04/17	56765.316
2014/04/19	56767.217
2014/04/19	56767.267
2014/04/21	56768.632
2014/04/23	56771.030
2014/04/23	56771.381
2014/04/24	56772.138
2014/04/25	56773.089
2014/04/26	56774.042
2014/04/26	56774.413
2014/04/27	56775.024
2014/05/02	56780.099
2014/05/02	56780.158
2014/05/03	56780.632
2014/05/03	56781.136
2014/05/04	56782.131
2014/05/04	56782.417
2014/05/05	56783.143
2014/05/06	56784.031
2014/05/06	56784.153
2014/05/08	56786.385
2014/05/08	56786.404
2014/05/09	56787.158
2014/05/09	56787.407
2014/05/10	56788.023
2014/05/12	56790.370
2014/05/13	56791.096
2014/05/14	56792.361
2014/05/14	56792.370
2014/05/16	56794.370
2014/05/18	56796.385
2014/05/19	56797.159
2014/05/20	56798.380
2014/05/22	56800.375
2014/05/24	56802.380
2014/05/26	56804.380
2014/05/28	56806.395
2014/05/30	56808.385
2014/06/01	56810.385
2014/06/03	56812.390
2014/06/05	56814.385
2014/06/07	56816.385
2014/06/09	56818.390
2014/06/11	56820.395
2014/06/13	56822.390

1 = 0.51-m Lotti telescope + FLI Proline 4710 CCD (SSSP collaboration, Osservatorio di Monte Agliate, Boro a Mozzano, Lucca, Italy); 2 = 0.36-m Celestron C14 telescope + QHY9 + KAF8300 CCD (Obs. Z. Xu & X. Gao, Xingming Observatory; Xiaogeng, Guangzhou, China); 3 = 0.36-m Celestron C14 telescope + DSI Pro-DSI II CCD (Obs. W. S. Wisoff; SOLO Observatory, Port Wing, Wisconsin, USA); 4 = 0.43-m PlaneWave Corrected Dall-Kirkham Astrophot + Paramount ME + SBIG STL-6303E CCD (Obs. G. Masi, The Virtual Telescope Project 2.0, Bellatrix Astronomical Observatory, Cecconi, Frosinone, Italy); 5 = 0.25-m Whitey Dob telescope + Starlight Xpress SXVR-H694 CCD (Obs. S. Tokouka, Takatsuki, Osaka, Japan); 6 = 0.25-m Meade SC telescope + Atik 383LP (G. Locatelli, Maritime Alps Observatory MPC K32, Cuneo, Italy); 7 = 0.28-m Celestron C11 telescope + Orion StarShoot DSIII CCD (Obs. S. Howerton; Arkansas City, Kansas, USA); 8 = 0.28-m Celestron C11 telescope + SBIG STT-1603 ME camera (Obs. J.-M. Llapasset; Perpignan Observatory, France); 9 = 2.0-m Liverpool Telescope + IO:O camera (Based in the UK, B. Possenti, Ulotto, Sicily); 10 = 1.0-m GoTel Telescope (Mt. Etna, Catania, Italy).
those expected from the decay of 56Fe. However, as we will discuss later in this paper, other indicators suggest that during the entire monitoring period, the radioactive decays are not the major powering source for the light curve of SN 2014av (see Section 3).

Additional near-infrared (NIR) photometry was obtained on 2014 May 16 (i.e. one month after the SN discovery) at the TNG, equipped with NICS. The images were reduced following standard prescriptions, including flat-field correction and sky subtraction; individual dithered images for each band were then combined to obtain a single, higher S/N frame. The observations, calibrated using the 2MASS catalogue (Skrutskie et al. 2006), provided the following photometric measurements: $J = 18.33 \pm 0.06$, $J - H = 0.29 \pm 0.07$ and $J - K = 0.74 \pm 0.13$. We can note that, at this epoch, there is no signature of a significant NIR flux excess.

2.1 Absolute light curve

SN 2014av was discovered soon after the explosion and a few days before maximum. Adopting the distance and reddening values reported in Section 1, SN 2014av reached an absolute magnitude of -19.76 ± 0.16 in the R band, then it experienced a fast decline of ≈ 3 magnitudes. After about 25 days post-maximum, the light curve declined with a slower rate in all bands, as mentioned in Section 2 (see Table 4). A flattening of the optical light curve is unusual, but not unique in late Type Ibn SNe, viz. in OGLE-2012-SN-006 (Pastorello et al. 2015c). In order to better determine the photometric properties of SN 2014av in the context of SNe Ibn, we measured the main parameters of the R-band light curves for a wide sample of objects. In particular, we estimated (when possible) the absolute peak magnitudes, the duration of the rise phase to maximum, and the post-peak declines at three temporal windows: between maximum and +25 days (γ^R_{25-60}), from +25 days and +2 months (γ^R_{60-150}), and at later phases ($\gamma^R_{150-\infty}$). The results are reported in Table 5. When R-band observations were incomplete to estimate the above parameters, we included measures obtained in other bands, as specified in the footnote. From a rapid inspection of the table, we note that SNe Ibn are quite luminous, most of them having absolute R-band magnitudes close to -19, or exceeding that value. Only one object, the transitional Type Ibn/IIn SN 2005ia (Pastorello et al. 2008b), appears to be significantly fainter than other SNe Ibn, although for other objects we have incomplete information to derive firm conclusions on their peak luminosity. However, despite most SNe Ibn are very luminous at maximum, the light curve shapes are widely heterogeneous.

This can be best highlighted in Figure 3, where the absolute R-band light curve of SN 2014av is compared with those of a wide sample of SNe Ibn. We also show unpublished data of the recent SN Ibn 2014bk (Morokuma et al. 2014), which is a relatively fast-evolving SN Ibn. Photometric data for this object are listed in Appendix A. The comparison shows that the light curves are significantly different among the objects of this family. The absolute magnitudes at peak of these SNe mainly range from -18 (iPTF13bwo, Gorbikov et al. 2014) to -20 (SN 1999eq, Matheson et al. 2000). Some objects (e.g. SN 2010al and OGLE-2012-SN-006) show a slow rise to maximum (up to 16 days), but other SNe Ibn experience a very fast rise to the peak (≤ 6 days). SN 2014av has an intermediate rise time of about 10 days. The post-peak decline is even more heterogeneous, with one object having a very fast-declining light curve after maximum (LSQ13ccw, Pastorello et al. 2015a), many with almost linear post-peak optical drops and a few

Table 4. Main light curve parameters for SN 2014av.

Filter	peak magnitude	γ^{U}_{0-25}	γ^{R}_{25-60}
U	$-\quad$	18.47 ± 0.24	3.86 ± 0.17
B	$-\quad$	16.00 ± 2.32	2.12 ± 0.49
V	16.24 ± 0.07	13.40 ± 0.26	2.00 ± 0.50
R	15.85 ± 0.05	12.73 ± 0.55	1.87 ± 0.36
g	$-\quad$	12.69 ± 1.22	1.98 ± 0.17
r	16.52 ± 0.04	13.11 ± 0.46	2.63 ± 0.21
i	16.07 ± 0.05	12.98 ± 0.46	3.07 ± 0.12
z	$-\quad$	11.85 ± 0.95	2.84 ± 0.17

γ^{R}_{25-60} units

In SN 2006jc the increased late-time optical slope was inter-
The Type Ibn SN 2014av

7

Figure 3. R-band absolute light curves of SN 2014av and a wide sample of SNe Ibn (for the sources of the data, see notes underneath Table 5). The most significant pre-discovery limits are also shown. For OGLE-2012-SN-006, along with the poorly sampled R-band light curve, the I-band light curve is also shown for completeness, scaled by +0.7 mag to approximately match the R-band points. For LSQ13ccw, we showed the best sampled V-band light curve. SN 2014bk, whose data are shown here for the first time, is poorly sampled in the R band. For this reason, we also report the closest detection limit of SN 2014bk and the g-band discovery magnitude announced in Morokuma et al. (2014).

others showing double-phase light curve declines. The latter objects experience an initially fast decline, which is followed by a clear flattening at later stages. SN 2014av belong to this group, although the most extreme case is OGLE-2012-SN-006 (Pastorello et al. 2015c), with an early decline of about 5 mag/100d, followed by a very long phase with a very flat light curve (0.4 mag/100d from 25 and 60 days, and 1 mag/100d later on). As a comparison, the R-band decline rate of SN 2010al at phases > 1 month after maximum is about 3 mag/100d, which is a factor 3 higher than the decline rate expected in a 56Co-powered event. Finally, three objects (SN 2005la, SN 2011hw and iPTF13beo) showed a non-linear light curve decline after the first maximum, with at least one secondary luminosity peak (Pastorello et al. 2008b; Smith et al. 2012; Gorbikov et al. 2014; Pastorello et al. 2015d).

3 SPECTROSCOPIC OBSERVATIONS

The spectroscopic monitoring campaign of SN 2014av started ~4 days after the SN discovery, and continued for about one month. Spectra have been collected using the Lijiang 2.4m telescope of the Yunnan Astronomical Observatory (YNAO) of the Chinese Academy of Sciences (equipped with YFOSC), the 3.58-m TNG with Dolores and the 2.56-m NOT with ALFOSC. Information on the spectroscopic observations is given in Table 6, the sequence of spectra available for SN 2014av is shown in Figure 4.

The earliest spectrum, obtained at maximum light (i.e. 10.6 days after the explosion), has poor S/N and modest resolution (see Table 6). It is characterised by a blue continuum, with superposed narrow and weak lines of He I, the most prominent being the λ5876 transition. Such line has a P-Cygni profile, whose minimum is blue-shifted by about 2100 ± 800 km s$^{-1}$. A relatively strong feature detected at about 4700 Å (rest frame) is tentatively identified as He II λ4686. Another very prominent feature is detected at about...
Table 5. Main light-curve parameters for our sample of Type Ibn SNe, including absolute peak magnitudes (column 5), rise-time to the R-band maximum (column 6), and decline rates at three different time intervals (columns 7 to 9). Information on the reddening is provided in the reference papers; when not available, the Milky Way component is taken from Schlafly & Finkbeiner (2011), while the host galaxy component is obtained by measuring the equivalent width of the interstellar Na I doublet from the low resolution spectra available to us, adopting the low-reddening empirical relation from Furfaro et al. (2003). The slopes are measured in units of mag 100d$^{-1}$.

SN	Type	μ	$(E(B-V))_{out}$	$M_{R,peak}$	Rise time (d)	R_{70-25}	R_{25-60}	R_{60-150}	Sources
SN 1999eq	Ibn	35.27	0.15	<−19.87	<4	15.5±1.9	-	-	1
SN 2000er	Ibn	35.52	0.11	<−19.49	-	8.9±0.6	-	-	2
SN 2002ao	Ibn	31.73	0.25	<−17.41	-	12.6±2.5	9.8±0.3	-	2
SN 2005ga	Ibn/In	34.49	0.01	<−17.19	-	non-monotonic	7.5±0.6	-	3
SN 2006gc	Ibn	32.01	0.04	<−18.61$^+$	<10	8.6±0.7	7.7±0.3	7.9±0.2	3.4, 5
SN 2010al	Ibn	34.27	0.06	<−18.86	16	9.4±0.6	12.6±0.2	-	8
SN 2011hw	Ibn/In	34.92	0.10	<−18.54	-	non-monotonic	5.5±0.1	-	8
PS1-12k		36.84	0.03	<−19.21	<23	10.8±0.9	-	-	9
OGLE-006*	Ibn	36.94	0.07	<−19.65	15.6	4.8±0.1	0.42±0.1	1.0±0.1	10
LSQ12tw		36.97	0.14	<−19.14	<4	7.3±0.4	5.8±0.7	-	11
iPTF13beo	Ibn-pec	38.01	0.04	<−18.39	-	non-monotonic	12.8±3.5	-	12
LSQ13ccw$^+$	Ibn-pec	37.07	0.04	<−18.36	<6	12.6±0.2	~15.5	-	11
CSS140421$^+$	Ibn	37.41	0.03:	<−19.4:	-	-	-	-	13
ASASSN-14dd$^+$	Ibn	34.23	0.15:	<−19.1:	-	-	-	-	14
SN 2014av*	Ibn	35.56	0.02	<−19.75	10.6	12.1±0.7$^+$	3.0±0.2$^+$	-	15
SN 2014bk	Ibn	37.40	0.05	<−19.47	-	13.1±1.1	-	-	15
ASASSN-15ed	Ibn/In	36.59	0.14	<−20.19	-	11.4±0.2	7.7±0.3	26.3±2.5	16
PSN J07285387+3349106	Ibn	33.85	1.02	<−19.95$^+$	>8.7	19.7±1.6	-	-	17
SN 2015G		31.80	0.33	<−17.1	-	-	-	-	18

* OGLE-006 = OGLE-2012-SN-006 (I-band light curve data). $^+$ CSS140421 = CSS140421:142042+031602. $^+$ From unpublished data kindly provided by K. Itagaki. $^+$ For LSQ13ccw, we considered the V-band light curve information; for ASASSN-14dd, we considered the V-band discovery magnitude. $^+$ Average between the R- and r-band slopes. $^+$ The uncertainty in the line-of-sight reddening to PSN J07285387+3349106 is extremely large, giving an error in the R-band absolute magnitude of ±1.13 mag.

Table 6. Log of spectroscopic observations of SN 2014av.

Obs. date	Average JD (+2400000)	Days (after maximum)	Instrumental configuration	Exposure time (s)	Range (Å)	Resolution (Å)
2014/04/23	56771.14	7.9	Lijiang 2.4m telescope + YFOSC + gm10	600	3560–9160	45
2014/05/01	56799.04	9.0	Lijiang 2.4m telescope + YFOSC + gm10	1200	3460–9250	45
2014/05/03	56811.37	10.3	3.58m TNG + Dolores + LRB + LRR	2400+1200	3250–10000	11.10
2014/05/04	56812.11	11.0	Lijiang 2.4m telescope + YFOSC + gm10	1238	4040–9270	45
2014/05/10	56888.49	17.4	2.56m NOT + ALFOSC + gm4	2×2700	3400–9090	18
2014/05/19	56797.46	26.4	3.58m TNG + Dolores + LRR	2700	5020–9740	14
2014/05/27	56805.44	34.3	3.58m TNG + Dolores + LRB	3600	3400–8060	11

3950 Å, and is tentatively identified as a blend of He I and Ca II λ3933, 3968 (Ca II H&K).

Subsequent spectra (at phases 7.9 day to 11 day after maximum) show a remarkable evolution. A blue pseudo-continuum typical of Type Ibn SNe and other interacting events is now visible. He I lines with low-contrast P-Cygni profiles are clearly detected: A3889, λ4026, λ4472, λ4713, λ4922, λ5016 and λ5048. The He II λ4686 feature has now disappeared. Broader absorptions are attributed to blends of Fe II (see also Figure 5).

At redder wavelengths, very prominent He I lines are detected, with the emission component which dominates over the P-Cygni absorption: λ5876 (possibly blended with the Na I doublet), λ6678, λ7065 and λ7281. The position of the deep minimum of the He I λ6678 feature indicates a velocity of the He-rich wind of 940 ± 110 km s$^{-1}$. However, the most prominent He I lines show a clear double-component profile. From deblending the λ7065 line with 2 Gaussian components, we infer a broader component with full width at half maximum (FWHM) velocity $v_{FWHM} \approx 4500$ km s$^{-1}$.
(marginally evolving with time), with superimposed a narrow line with $v_{\text{FWHM}} \approx 1000$ km s$^{-1}$ (not resolved in the YFOSC spectra). Numerous additional bumps and individual lines are detected between 5500 and 7000 Å, mostly due to Fe II lines. From these spectra there is marginal evidence for the presence of a weak Hα.

At the reddest edge of the optical spectral domain, we notice a broad emission at about 7890 Å, with $v_{\text{FWHM}} \approx 4700$ km s$^{-1}$. This is likely due to Mg II $\lambda\lambda 7877$ and 7896. Another shallow bump peaks at about 8200 Å, which we identify as Mg II $\lambda 8214$ and 8235. The wide red tail of this feature is possibly due to other Mg II lines ($\lambda\lambda 8735, 8746, 8824$ and 8835), although we cannot rule out a contribution from Ca II $\lambda\lambda 8498, 8542, 8662$ (hereafter the NIR Ca II triplet). A further feature at about 9200 Å can be due to Mg II $\lambda 9218$ and Mg II $\lambda 9244$.

At later epochs, the emissions become stronger, and allow us to perform a more robust line identification. Using our latest TNG spectra (phases 26.4 days and 34.3 days after maximum) we accurately identify the most prominent spectral features in Figure 5. We still see the prominent He I lines, whose broad and narrow components have now $v_{\text{FWHM}} \approx 2800$ km s$^{-1}$ and $v_{\text{FWHM}} \approx 1200$-1300 km s$^{-1}$, respectively. Now Ca II H&K and the NIR triplet are clearly discernible, with velocity of 1580 ± 230 km s$^{-1}$ (as measured from the positions of the minimum of the two Ca II H&K lines). Mg II lines are still quite prominent, but at these phases, also O I features are identified: $\lambda\lambda\lambda 7772, 7774, 7775, 8222, 8446$ (partially blended with Ca II NIR). Fe II lines with P-Cygni profiles are still detected, with average velocities of 1230 ± 120 km s$^{-1}$. From these later-epoch spectra, we also note the presence of Sc II lines. Again, we tentatively identify a weak Hα emission, though alternative identifications cannot be ruled out (see also Section 5.2). In particular, assuming that it is Hα, its FWHM would be 820 km s$^{-1}$, which is consistent with the velocity inferred for the Fe II lines, although marginally slower.

3.1 Comparison with other Type Ibn SNe

The spectra of Type Ibn SNe are characterised by the presence of prominent and relatively narrow He I features. The heterogeneity of the photometric properties of SNe Ibn has been remarked in Section 2.1. In Figure 6 we compare a collection of spectra of SNe Ibn whose phases are approximately...
known, including an unpublished spectrum of SN 2014bk7. The comparison in the figure highlights the existence of some heterogeneity among SNe Ibn also in their spectral observables. First of all, the velocities of the most prominent line components range from about 700 km s\(^{-1}\) to a few thousands km s\(^{-1}\) (and these velocities may be significantly phase-dependent). The wide velocity range probably depends on the gas regions where these lines originate, e.g., in the unperturbed CSM, in a shocked shell, in the shocked or unshocked SN ejecta or a combination of different emitting regions. We will further discuss the nature of the different components of the He I lines in Section 5.1. In addition, there are clear differences in the strengths of the broad \(\alpha\)-element lines, which are occasionally prominent (e.g., in SN 2006jc, \cite{Pastorello2007}; \cite{Foley2007}), and sometimes almost undetectable, like in the case of the Type Ibn/IIn SN 2005la \cite{Pastorello2005b}; \cite{Modjaz2014}, see

\footnote{In analogy with other Type Ibn SNe, this spectrum is dominated by He I lines mostly in emission, showing two components with different widths: a narrow component with a P-Cygni profile blue-shifted by 840 ± 140 km s\(^{-1}\) is superposed on a much broader component with \(v_{FWHM} = 7860 ± 320\) km s\(^{-1}\).}

\textit{Figure 5.} Identification of the most prominent lines in the late-time TNG spectra of SN 2014av. Dot-dashed vertical lines mark the rest wavelength positions of the strongest He I features.
Section 5.3). In a few cases, narrow coronal lines were also detected in SNe Ibn (for example in SN 2011hw, Smith et al. 2012; Pastorello et al. 2015b). Finally, there is heterogeneity in the spectroscopic evolution time scales among the objects of the sample, which probably depends on the geometry and the distribution of the CSM with which the SN ejecta are interacting.

4 QUASI-BOLOMETRIC LIGHT CURVE AND PHYSICAL PARAMETERS

In order to constrain some basic physical parameters for SN 2014av, we computed its pseudo-bolometric light curve by integrating the flux contribution of individual optical bands. For each band, we derived the flux at the effective wavelength, considering only epochs with Sloan r-band observations being available. When individual photometric points at given epochs were not available, their contribution was computed using the magnitude information in adjacent epochs. Since early-time photometry (during the rising branch and around the light curve peak) was not available in most photometric bands, the early flux contribution in the missing bands was obtained assuming an early colour evolution of SN 2014av similar to that of the Type Ibn SN 2010al (Pastorello et al. 2015b).

![Figure 6](image_url) Collection of spectra of Type Ibn SNe obtained at phases between 11 and 26 days: SNe 2014av and 2014bk (this paper), SNe 2010al and 2011hw (Pastorello et al. 2015b), LSQ12btw and LSQ13ccw (Pastorello et al. 2015a), SNe 2000er ans 2002ao (Pastorello et al. 2008a), iPTF13beo (Gorbikov et al. 2014), PS1-12sk (Sanders et al. 2013), SN 2006jc (Pastorello et al. 2007) and SN 1999cq (Matheson et al. 2000). Phases reported in brackets are days from the presumed explosion epochs.

![Figure 7](image_url) SED of SN 2014av computed on May 16, 2014, i.e. about 34 days after the explosion.
its high peak luminosity ($\sim 1.8 \times 10^{43}$ erg s$^{-1}$) and its late-time light curve evolution would be indicative of a moderate ejected 56Ni mass. As there is a decent match with the light curve of SN 2006jc, we would obtain for SN 2014av an amount of 56Ni similar to the value inferred for SN 2006jc (0.2-0.3 M$_{\odot}$; Pastorello et al. 2008a, Tominaga et al. 2008). This value for the 56Ni mass is relatively high for a core-collapse SN, although it has already been observed in some stripped-envelope SNe which ejected several solar masses of material (e.g., the “hypernovae”, Nomoto et al. 2006; Mazzali et al. 2013). On the other hand, it is very unlikely that SN 2014av ejected a few solar masses of material. In fact, it is well known that the evolutionary time-scale of the light curve in a non-interacting SN depends on the ejected mass to kinetic energy ratio (e.g. Arnett 1982). As a consequence, a narrow (i.e. fast-evolving) light curve peak would probably be indicative of modest ejected masses, with a significant fraction of this material being composed by radioactive isotopes.

We note, however, that large $M(^{56}\text{Ni}) / M_{\odot}$ ratios are typical of thermonuclear explosion rather than canonical core-collapse events, and a thermonuclear explosion scenario is contradicted by other observables, including the preferential location of SNe Ibn in star-forming galaxies (e.g., Pastorello et al. 2015a), the strengths of α-element spectral features and the detection of a pre-SN eruption in SN 2006jc, which is supportive of a massive progenitor. For all this, Type Ibn SNe are most likely core-collapse events. However, since the energy released in the radioactive decays alone cannot comfortably explain their observed evolution, alternative/additional powering mechanisms (including CSM-ejecta interaction) may provide more plausible explanations for the properties of SN 2014av and other Type Ibn SNe, as proposed by Chugai (2009).

5 SPECTRAL CHARACTERIZATION OF TYPE IBN SUPERNOVAE

5.1 He I line velocity evolution

As discussed above and in other recent papers in the literature, SNe Ibn display a very wide range of observed properties. This is not in contrast with expectations, as wide heterogeneity in the observable is also observed - for example - in Type Ibn SNe. The physical parameters of SNe Ibn strongly depend on the geometry, the composition, and the density profile of the CSM, along with the mass and the composition of the residual stellar envelope at the time of the terminal SN explosion.

A method to constrain the properties of the stellar wind and the nature of the line emitting regions is studying the evolution of the velocity of the spectral lines. Spectra of SNe interacting with a CSM (such as Type Ibn and Type Ibn events) show lines with multiple-width components. These are thought to be produced in different gas regions (Chevalier & Fransson 1983, 1994; Chugai & Dzianigrodskyi 1994; Chugai 1997). Multiple components in the spectral lines, in fact, indicate that the emitting materials move at different velocities. Narrow lines (with velocities from a few hundreds to $\lesssim 2000$ km s$^{-1}$) likely generate in slowly expanding, photo-ionized material. Very likely, this gas is un-
shocked CSM produced by the progenitor star before exploding as a SN. More controversial is the location of intermediate to broad components (from a few thousands to \(10^4\) km s\(^{-1}\)): they can either be produced in a gas interface between two shock fronts (forward and reverse shocks), or in the freely expanding SN ejecta.

In SNe Ibn, hence, the study of the line profiles provides insights on the velocity of the emitting material, and gives key information on the mass-loss history of the SN progenitors. When a clear P-Cygni profile is identified, the velocity of the He-rich expanding material is obtained by measuring the position of the core of the blue-shifted absorption. When this component is not detected, the velocity is estimated through the FWHM of the strongest He I emission lines, obtained after deblending the full line profile with Gaussian fits.

The evolution of the narrow components of the He I lines for the entire SN sample is shown in Figure 9 that of the intermediate-width components is shown in Figure 10. As velocities are measured from spectra available in the literature, in some cases only modest S/N spectra are available. This explains the large error bars occasionally shown in the figures. The velocities of the narrow He I component in SN 2011hw spectra are measured from the spectra published in Pastorello et al. (2015b), with the exception of two points in Figure 9 where we report measurements performed by Smith et al. (2012) on moderate resolution spectra. For SN 2006jc, the spectra are taken from Pastorello et al. (2005, 2005a) and Anupama et al. (2004). A summary with the main outcomes from our inspection of the above SN spectra is reported in Table 7.

5.1.1 Narrow He I line components

The width of the narrow line components provides key information on the velocity of the unshocked He-rich CSM, and hence allows us to directly probe the pre-SN stellar wind. The temporal evolution of the velocity of the narrow He I line components is shown in Figure 9. When narrow components are not resolved in the spectra, we report in the figure only the resolution limits. First of all, for most objects we note a very modest, if any, evolution with time. This is what only the resolution limits. First of all, for most objects we note a very modest, if any, evolution with time. This is what

![Figure 9. Evolution of the velocity of the narrow He I line components for our SN sample. The reported velocities are computed as the weighted average of the values inferred for the individual He I lines. The errors are computed as the standard deviation of individual He I line velocities. In early spectra of Type Ibn SNe, the velocities for the narrow He I lines were preferentially estimated from the position of the absorption minimum. At later epochs, when narrow absorptions were no longer visible, we estimated their velocities from the FWHM of the emission component.](image)

Figure 9. Evolution of the velocity of the narrow He I line components for our SN sample. The reported velocities are computed as the weighted average of the values inferred for the individual He I lines. The errors are computed as the standard deviation of individual He I line velocities. In early spectra of Type Ibn SNe, the velocities for the narrow He I lines were preferentially estimated from the position of the absorption minimum. At later epochs, when narrow absorptions were no longer visible, we estimated their velocities from the FWHM of the emission component.

In SNe Ibn, the time of explosion is inferred from the peak brightness in the optical and near-infrared spectral domain. This is because the light curves of Type Ibn SNe are generally characterized by a long tail, with a time scale of several years. However, there are some exceptions, such as SN 2011hw, which is a short-tailed Type Ibn SN with a duration of only a few months. In most cases (including SN 2014av), the narrow He I component for our spectral sample have velocities around 800-1000 s\(^{-1}\), while in three cases they widely exceed that value. In fact, SN 1999eq, iPTF13bneo and LSQ13ccc show narrow components with P-Cygni profiles with \(v_{\text{FWHM}}\) \(\sim\) 1900-2300 km s\(^{-1}\). It is worth noting that two of these three objects have unusual properties, with iPTF13bneo showing a double-peaked light curve (Gorbikov et al. 2014), whilst LSQ13ccc has an extremely fast evolving light curve and some unique spectral features (see discussion in Pastorello et al. 2015d), with some similarity with the peculiar Type Ib SN 2002bj (Poznanski et al. 2014). Type Ibn SNe, whose spectra show weak or no trace of H lines, and velocities inferred for the narrow He I lines near or above 1000 km s\(^{-1}\), most likely should be linked to more evolved Wolf-Rayet progenitors.

5.1.2 Intermediate/broad He I line components

Figure 10 shows the evolution of the expansion velocities as measured for the intermediate/broad components of the He I lines in our SN sample. The range of velocities for these components is reported in Table 7. They have velocities which are a factor 4-6 higher than those measured for the narrow components.

In contrast with the narrow features, the broader components of the He I lines are found to evolve significantly with time. In fact, the evolution of these components depends on the velocity of the ejecta and the density of the
which may result from an increased density profile of the shocked gas region. This peculiar evolution can be ascribed to a complex density profile of the shocked gas region.

5.2 Detection of Hα

The detection of Hα (and, eventually, other Balmer lines) is crucial to accurately classify interacting transients. Other ingredients for the classification are the detection of He I lines, and the relative strengths between H and He I features. Although narrow He I emission lines are frequently detected in the spectra of Type Ibn SNe, the relative strengths between Hα and the most prominent optical He I lines (in particular λ5876 and λ7065) determine the classification of the transient as a Type Ibn, a Type Ibn or even a transitional object between these two SN types. Balmer Hα lines are clearly detected in the two transitional Type Ibn/IIn SNe 2005la and 2011bw (Pastorello et al. 2008a, 2015a; Smith et al. 2012). In the spectra of these objects, the strength of Hα is comparable with those of the most prominent He I lines. The velocity

interacting material. Their velocities may provide clues for the gas interface between two shock fronts, which also depends on the speed of the expanding SN ejecta.

In particular, it is interesting to inspect the evolution of the spectral lines of SN 2010al: at phases around the light curve peak, the velocity inferred from the minimum of the He I lines is ∼ 1000 km s$^{-1}$ (Table 7), consistent with that expected for the unshocked CSM. Thereafter, He I lines become broader with time, increasing to ∼ 4700 km s$^{-1}$ at about 4 weeks after the light curve peak, and reaching 5800 km s$^{-1}$ at 1.5 months post-maximum. Broad He I features with P-Cygni profile have been detected in ASASSN-15ed, with velocities of 6000–7000 km s$^{-1}$ (as inferred from the position of the core of the P-Cygni absorptions). As the SN is a transitional event from Type Ib to Type Ibn, these broad features are likely indicative of the speed of the expanding SN ejecta (Pastorello et al. 2015d). An increasing velocity of the intermediate/broad He I components is observed in the Type Ibn/IIn SN 2005la, with the gas velocity rising from about 2000 km s$^{-1}$ soon after discovery to ∼ 4200 km s$^{-1}$ about 3 weeks later.

However, in some cases, the He I lines become narrower with time (e.g., in SN 2002ao the He I intermediate component decreases its width by a factor 2 in 3 weeks). This is also observed in SN 2014av, although its intermediate-velocity component has a more modest velocity evolution, spanning from 5000 to 4300 km s$^{-1}$ in about 4 weeks. A similar moderate evolution of the He I intermediate components towards lower velocity values has been observed in SN 2006jc (from 3100 to 1700 km s$^{-1}$ in about 4 months). All of this suggests a decline in the velocity of the shocked gas regions, which may result from an increased density profile of the CSM gas. More complex is the evolution of the intermediate-component velocity of SN 2011bw. It grows from 1900 to 2500 km s$^{-1}$ during the first month, but then it declines to about 1300 km s$^{-1}$ at 70 days from the discovery. Again, this peculiar evolution can be ascribed to a complex density profile of the shocked gas region.

Table 7. Main properties of the spectra for the Type Ibn SN sample.

SN	Type	$v_{\text{narrow (HeI)}}$ (km s$^{-1}$)	$v_{\text{broad (HeI)}}$ (range; km s$^{-1}$)	Hα detection	source
SN 1999eq	Ibn	1900	6150	no	1
SN 2000er	Ibn	1000	3950-4300	no	2
SN 2002ao	Ibn	940	3500-6050	weak	2
SN 2005la	Ibn/IIn	500	2000-4200	strong	3,a
SN 2006jc	Ibn	760	1700-3100	weak	3,4,5
SN 2010al	Ibn	1000-1250	2550-3800	weak	8
SN 2011bw	Ibn/IIn	210-250	1350-2350	moderate	8
PS1-12ak	Ibn	130	3100-3300	weak	9
OGLE-006	Ibn	800-1000	2400-3250	weak	10
LSQ12bvw	Ibn	970	3200-5250	no	11
iPTF13deo	Ibn-pec	2070	4970	no	12
LSQ13ccw	Ibn-pec	2300	6750	uncertain	11
CSS140421	Ibn	unknown	unknown	unknown	13
ASASSN-14dd	Ibn	unknown	unknown	unknown	14
SN 2014av	Ibn	840-1240	3450-5000	weak	15
SN 2014bk	Ibn	1100	5950	uncertain	15
ASASSN-15ed	Ibn/Ib	1200-1500	6000-7000	no	16
PSN J07285387+3349106	Ibn	1000-1400	3000-3450	no	17
SN 2015G	Ibn/Ib	∼1300	∼5500	no	18,19

1 = Matheson et al. (2000); 2 = Pastorello et al. (2008a); 3 = Pastorello et al. (2008b); a = Modjaz et al. (2014); 4 = Pastorello et al. (2007); 5 = Anupama et al. (2009); 8 = Pastorello et al. (2015a); 9 = Sanders et al. (2013); 10 = Pastorello et al. (2015c); 11 = Pastorello et al. (2015d); 12 = Gorbikov et al. (2014); 13 = Pozzato et al. (2014); 14 = Prieto et al. (2014); 15 = this paper; 16 = Pastorello et al. (2015d); 17 = Pastorello et al. (2015d); 18 = Avani (2014); 19 = Folev et al. (2013).
The Type Ibn SN 2014av

5.3 Detection of α-element features

The robust detection of lines from heavier elements, in particular α-elements such as O I, Mg II, Ca II and occasionally even Si II, has been confirmed for a number of Type Ibn SNe. In most cases, features from these ions have been observed in emission, with FWHM velocities higher or similar to those of the intermediate-width components of the He I lines (in the range between 2000 and 6000 km s\(^{-1}\), depending on the SN and its phase).

Relatively broad O I and Mg II lines are frequently detected as strong emission features in the spectra of SNe Ibn. In particular, in SNe 1999cq and 2006jc, O I and Mg II lines are very prominent and with velocities \(v_{\text{FWHM}} \approx 5000-9000\) km s\(^{-1}\) (see, e.g., Matheson et al. 2006; Pastorello et al. 2007). These lines are clearly detected also in SN 2014av, though they are narrower than in other SNe Ibn, and with Mg II lines being stronger than O I features. A high relative strength of Mg II vs. O I lines has also been observed in the reddened PSN J07285387+3349106 (Pastorello et al. 2015d). We note, however, that O I and Mg II lines are weak in other SNe Ibn, including SN 2011bw, PS1-12sk, LSQ13ccw and LSQ12btw. Finally, in a few cases (e.g. in SNe 2000er and 2005ia), the non-detection of these lines is ascribed to the early phases of the available spectra.

Also, the detection of the Ca II NIR feature is likely phase dependent, since this triplet is normally observed in spectra obtained a few weeks after the explosion. For this reason, the Ca II NIR remains undetected (or is very weak) in several objects, including SN 2000er, iPTF13beo, LSQ12btw, LSQ13ccw and PS1-12sk.

Less ubiquitous is the identification of Si II in the spectra of Type Ibn SNe. While Si II lines are clearly detected in a few objects (e.g. SNe 1999cq, 2000er, 2006jc LSQ12btw, iPTF13beo), these are not detected in other SNe of this class, including PS1-12sk, LSQ13ccw, SN 2005la and OGLE-2012-SN-006.

6 ABOUT THE ENVIRONMENTS AND TYPE IBN SN PROGENITORS

Pastorello et al. (2015a) made a preliminary attempt to characterise the host galaxies of the sample of SNe Ibn considered in this paper. All SNe Ibn have been discovered in spiral galaxies, with the remarkable exception of PS1-12sk, which exploded in the outskirts of an elliptical galaxy (Sanders et al. 2013). Accounting for the great predominance of spiral galaxies among the hosts of SNe Ibn, it is natural to associate this SN type with massive stellar population.

SN 2014av exploded in a spiral (Sb-type) galaxy, the most luminous one ever observed hosting a SN Ibn (\(M_B\) = 11Although this locations would favour the association of PS1-12sk with old stellar population, we cannot rule out the association with a very low surface luminosity dwarf galaxy companion.
Wolf-Rayet with a residual LBV-like behaviour. Although of the SN with an erupting massive Wolf-Rayet star. In was one of the arguments used to support the association of SN 2006jc (Pastorello et al. 2007; Foley et al. 2007) plays a marginal role in producing SNe Ibn.

The detection of a major outburst soon before the explosion of SN 2006jc (Pastorello et al. 2007; Foley et al. 2007) was one of the arguments used to support the association of the SN with an erupting massive Wolf-Rayet star. In other words, the precursor of SN 2006jc was very likely a Wolf-Rayet with a residual LBV-like behaviour. Although direct evidence of similar pre-SN eruptions is still missing in other Type Ibn SNe, the study of the properties of the He-rich CSM presented in this paper (including the constraints on the line velocities and the secure identification of α-elements) supports massive progenitors for most SNe Ibn. However, the observed differences in their photometric and spectroscopic behaviour suggest some heterogeneity in the properties of the progenitor stars. In particular, the evidence of variable signatures of H in the CSM, the fact that the CSM velocities inferred from the narrow He I lines span one order of magnitude (from 200 to 2000 km s\(^{-1}\)), see Figure 2] and the variable amount of He still present in the stellar envelope at the moment of the SN explosion indicate that a wide range of sub-types of Wolf-Rayet stars, spanning from the transitional Ope/WN9 stars to more stripped WC/O types (see Smith et al. 2012, and references therein), can very likely produce Type SNe Ibn SNe. In this context, observations of the transitional WN to WC-type Wolf-Rayet star NaSt1 (also known as Wolf-Rayet 122, Mauerhan et al. 2014) suggest that the binary interaction may favour the transition among Wolf-Rayet sub-types via pre-SN bursts, favouring the heterogeneity in the final Wolf-Rayet properties soon before their core-collapse. Finally, the similarity of - at least - SN Ibn LSQ13ccw with the peculiar SN Ib 2002bj (for which a helium detonation on a white dwarf scenario has been proposed by Poznanski et al. 2010) has been mentioned in Pastorello et al. (2015a).

7 SUMMARY AND FINAL REMARKS

We have presented optical spectroscopic and photometric data of the recent, well-monitored Type Ibn SN 2014av. The object was discovered a few days before the light-curve maximum, and monitored for 2 months after the peak. Deep pre-explosion non-detection limits, along with a few photometric points obtained during the rising phase to the maximum light, allowed us to estimate the explosion epoch with a very small uncertainty to be JD = 2456760.5.

SN 2014av is one of the most luminous SNe Ibn in our sample, reaching an absolute magnitude \(M_R = -19.78\) and a bolometric luminosity of about \(1.8 \times 10^{43} \text{ erg s}^{-1}\). Despite the remarkable intrinsic luminosity, it is a relatively fast-evolving transient. In fact, although the rise time to maximum is not extremely short (10.6 days), the post-peak decline is very fast (see Tables 4 and 5). The spectra of SN 2014av evolve from showing an almost featureless continuum at early phases, to being dominated by intermediate-velocity He I lines, with relatively broad features from α-elements. These later spectra are characterized by the unusual presence of a multiplicity of Fe II lines showing P-Cygni profiles.

SN 2014av has been compared with other objects classified as Type Ibn events, and - not unexpectedly - we have observed that a large heterogeneity exists among the objects of this class (in analogy with that observed in Type IIn SNe). In particular,

- although most SNe Ibn are luminous \((M_R < -18)\), there are rare exceptions of significantly weaker events (such as SN 2005la);
- differences are observed in the photometric evolutionary time-scales, with objects showing extremely fast-evolving light curves (such as that of LSQ13ccw; Pastorello et al. 2015a) and others with very slow-evolving light curves resembling those of SNe II (e.g., OGLE-2012-SN-006; Pastorello et al. 2015a):
 - light curves of SNe Ibn may show non-monotonic post-peak declines (see, e.g., the double-peaked light curve of iPTF13bec; Gorbikov et al. 2014).
- a range of FWHM velocities is observed for the narrow He I line components of SNe Ibn, indicating intrinsic differences in the progenitor wind velocities;
- relatively broad He I components can be detected in Type Ibn SN spectra, suggesting the presence of residual He in the envelope of their progenitor stars;
- in a few cases, SNe Ibn spectra have circumstellar Balmer lines, suggesting the presence of a small and variable fraction of H in the composition of their CSM (Smith et al. 2008; Pastorello et al. 2008; 2015a).

The heterogeneous observed parameters of Type Ibn SNe likely depend on the different pre-explosion configuration and chemical composition of their progenitor systems.

The host of SN 2014av is a luminous \((M_B = -21.8)\) Sb-type galaxy. In most cases, the galaxies hosting SNe Ibn are spirals, hence environments with active star formation, with the remarkable exception of PS1-12sk (Sanders et al. 2014) that exploded in the outskirts of an elliptical galaxy. For this reason, we favour the association of SN 2014av and other Type Ibn SNe with a massive stellar population. Thus, Wolf-Rayet stars of different sub-types are natural candidates to be the precursors of Type Ibn SNe. As discussed in Pastorello et al. (2015a), the oxygen abundance at the SN position is super-solar, being about 9.2, the highest in the Type Ibn SN sample. Since most Type Ibn SNe had exploded in environments showing a broad metallicity range \((7.8 < 12 + \log(O/H) < 9.2)\), metallicity has very likely a marginal role in producing SNe Ibn.

ACKNOWLEDGEMENTS

We acknowledge Gianpiero Locatelli, Stan Howerton, William Wiethoff, Jean-Marie Llapasset...
(http://www.astrosurf.com/jmillapasset/index.html). Gianluca Masi, Francesca Nocentini and Patrick Schmeer (Virtual Telescope Project facility, at the Bellatrix Astronomical Observatory, see websites at http://www.virtualtelescope.eu/ and http://www.bellatrixobservatory.org/) for kindly providing us their observations of SN 2014av. We also thank Mr. Toru Yusa for his help in collecting amateur astronomer images.

AP, SB, NER, AH, LT, GT, and MT are partially supported by the PRIN-INAF 2014 with the project Transient Universe: unveiling new types of stellar explosions with PESSTO. XW is supported by the Major State Basic Research Development Program (2013CB834903), the National Natural Science Foundation of China (NSFC grants 11073013, 11178003, 11325313), and the Foundation of Tsinghua University (2011Z02170). NER acknowledges the support of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 267251 “Astronomy Fellowships in Italy” (AstroFI). JJZ is supported by the National Natural Science Foundation of China (NSFC, grant 11403096).

This paper is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica). It is also based on observations made with the Nordic Optical Telescope (NOT), operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias; the 1.82m Copernicus Telescope of INAF-Asiago Observatory; and on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the Island of La Palma. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias with financial support from the UK Science and Technology Facilities Council. We acknowledge the support of the staff of the Li-Jiang 2.4-m telescope (LJT). Funding for the LJT has been provided by Chinese academy and the People’s Government of Yunnan Province.

We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

REFERENCES

Anupama, G. C., Sahu, D. K., Gurugubelli, U. K., Prabhu, T. P., Tominaga, N., Tanaka, M., Nomoto, K. 2009, MNRAS, 392, 894
Arnett, W. D. 1982, ApJ, 253, 785
Ayani, K. 2015, CBET, 4087, 2
Bianco, F. B., et al. 2014, ApJS, 213, 19
Cappellaro, E. 2014. “SNOoPY: a package for SN photometry”; [http://sngroup.oapd.inaf.it/snoopy.html]
Chassagne, R. 2000, IAU Circ. 7528, 1
Chevalier R. A., Fransson C. 1985, in Supernova interaction with circumstellar wind and the distance to SN 1979C in N. Bartel ed., Supernovae as distance indicators, Springer: Berlin, p. 123
Chevalier, R. A., Fransson, C. 1994, ApJ, 420, 268
Chugai N. N., Danziger J. J. 1994, MNRAS, 268, 173
Chugai, N. N. 1997, Ap&SS, 252, 225
Chugai et al. 2004, MNRAS, 352, 1213
Chugai, N. N. 2009, MNRAS, 400, 866
Corsi, A. et al. 2014, ApJ, 782, 42
Di Carlo, E. et al. 2008, ApJ, 684, 471
Dilday, B. et al. 2012, Science, 337, 97
Fassia, A. et al. 2001, MNRAS, 325, 907
Foley, R. J., Smith, N., Ganeshalingam, M., Li, W., Chornock, R., Filippenko, A. V. 2007, ApJ, 657, L105
Foley, R. J., Zheng, W., Filippenko, A. V., Van Dyk, S. D. 2015, Astron. Tel. 7298
Fransson, C. et al. 2002, ApJ, 572, 350
Gorbikov, E. et al. 2014, MNRAS, 443, 671
Immler, S., et al. 2008, ApJ, 674, L85
Kankare, E. et al. 2012, MNRAS, 424, 855
Landolt A. U. 1992, AJ, 104, 340
Matheson, T. et al. 2000, AJ, 119, 2303
Mattila, S. et al. 2008, MNRAS, 389, 141
Mazzali, P. A., Walker, E. S., Pian, E., Tanaka, M., Corsi, A., Hattori, T., Gal-Yam, A. 2013, MNRAS, 432, 2463
Mauerhan, J. C. et al. 2015, MNRAS, 450, 2551
Modjaz, M. et al. 2014, AJ, 147, 99
Mould, J. R. et al. 2000, ApJ, 529, 786
Morokuma, T. et al. 2014, CBET 3894
Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., Maeda, K. 2006, NuPhA, 777, 424
Nozawa, T., et al. 2008, ApJ, 684, 1343
Pastorello, A. et al. 2002, MNRAS, 333, 27
Pastorello, A. et al. 2007, Nature, 447, 829
Pastorello, A. et al. 2008a, MNRAS, 289, 113
Pastorello, A. et al. 2008b, MNRAS, 289, 131
Pastorello, A. et al. 2015a, MNRAS, 449, 1921
Pastorello, A. et al. 2015b, MNRAS, 449, 1941
Pastorello, A. et al. 2015c, MNRAS, 449, 1954
Pastorello, A. et al. 2015d, MNRAS, 453, 3649
Pastorello, A. et al. 2015e, MNRAS, 454, 4293
Paturel, G., Petit, C., Prugniel, Ph., Theureau, G., Rousseau, J., Brouty, M., Dubois, P., Cambresy, L. 2003, A&A, 412, 45
Pettini, M., Pagel, B. E. J. 2004, MNRAS, 348, L59
Polshaw, J. et al. 2014, Astron. Tel. 6091
Poznanski, D. et al. 2010, Science, 327, 56
Prieto, J. L. et al. 2014, Astron. Tel. 6293
Sakon, I., et al. 2009, ApJ, 692, 546
Sanders, N. E. et al. 2013, ApJ, 769, 39
Skrutskie, M. F. et al. 2006, AJ, 131, 1163
Smith, N., Foley, R. J., Filippenko, A. V. 2008, ApJ, 680, 568
Smith, N. et al. 2009, ApJ, 695, 1334
Smith, N. et al. 2012, MNRAS, 426, 1905
Stanek, K. Z. et al. 2014, Astron. Tel. 6269
Stritzinger et al. 2014, ApJ, 756, 173

© YYYYY RAS, MNRAS 000,111
APPENDIX A: OPTICAL PHOTOMETRY OF SN 2014BK

In Table A1 we report sparse photometry available for the Type Ibn SN 2014bk, included in the SN sample discussed in this paper. These data have been reduced following standard prescriptions, as described in Section 2.

APPENDIX B: SPECTRUM OF THE GALAXY HOSTING SN 2014BK

A late-time spectrum of the comparison Type Ibn SN 2014bk was obtained at the 10.4-m Gran Telescopio Canarias (GTC) of the Observatorio del Roque de los Muchachos in La Palma (Canary Islands). The spectrum (shown in Figure B1) was obtained on 2014 August 15 (JD = 2456885.39) using OSIRIS and the R300B grism (resolution 17 Å); it shows no signature of the SN, but is useful to constrain the oxygen abundance at the SN location. The host galaxy, SDSS J135402.41+200024.0, has an estimated redshift $z = 0.0697$ (Morokuma et al. 2014).

In the spectrum, we securely identified several emission lines, the strongest being [O II] λ3927, [O III] λ5007 and Hα. Line fluxes for the strongest lines are reported in Table B1. In order to estimate the oxygen abundance, we measured the fluxes of a few relevant lines (including Hα, Hβ [O III] λ5007 and [N II] λ6584), and applied the N2 and O3N2 methods described in Pettini & Pagel (2004). The two indicators provide very consistent estimates, resulting in an average abundance $< 12 + \log (O/H) > = 8.11$ dex, which is largely sub-solar.
Table A1. Optical Johnson-Cousins magnitudes of SN 2014bk, and associated errors.

Obs. date	Average JD	U	B	V	R	I	Instrument
2014/06/05	2456813.55	–	–	–	17.976 (0.236)	–	1
2014/06/08	2456816.54	18.021 (0.076)	18.782 (0.054)	18.635 (0.047)	18.631 (0.077)	18.274 (0.071)	1
2014/06/20	2456829.43	19.591 (0.087)	20.096 (0.130)	19.729 (0.075)	19.898 (0.203)	19.685 (0.234)	1
2014/07/02	2456840.55	21.240 (0.185)	21.485 (0.144)	21.226 (0.126)	21.649 (0.282)	20.381 (0.268)	1
2014/08/15	2456885.37	–	–	>22.22	–	–	2

1 = 2.56-m NOT + ALFOSC (La Palma, Canary Islands, Spain); 2 = 10.4-m GTC + OSIRIS (Sloan r-band observation transformed into Johnson-Cousins data; La Palma, Canary Islands, Spain).

Figure B1. GTC (Osiris) spectrum of the galaxy hosting SN 2014bk, centered at the location of the SN.
Table B1. Observed fluxes for the strongest emission lines in the GTC + Osiris spectrum of SDSS J135402.41+200024.0.

Line	λ (Å)	Flux (10^{-16} erg s$^{-1}$ cm$^{-1}$)
[O II]	3727	18.56 ± 0.54
[Ne III]	3868	2.41 ± 0.34
Hγ	4340	1.70 ± 0.23
Hβ	4861	5.01 ± 0.26
[O III]	4959	6.55 ± 0.42
[O III]	5007	17.89 ± 0.57
Hα	6563	16.37 ± 0.90
[N II]	6584	0.69 ± 0.32
[S II]	6717,6731	4.26 ± 0.31
[O II]	8320,8330	0.78 ± 0.25