Micromelanconis kaihuiae gen. et sp. nov., a new diaporthalean fungus from Chinese chestnut branches in southern China

Ning Jiang¹, Qin Yang², Xin-Lei Fan¹, Cheng-Ming Tian¹

¹ The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China ² Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China

Corresponding author: Cheng-Ming Tian (chengmt@bjfu.edu.cn)

Abstract
Melanconis-like fungi are distributed in several families of Diaporthales, mainly Juglanconidaceae, Melanconidaceae, Melanconiellaceae and Pseudomelanconidaceae. A new Melanconis-like genus of Pseudomelanconidaceae was discovered on branches of Chinese chestnut (Castanea mollissima) in southern China, which was confirmed by both morphology and phylogenetic analysis of combined ITS, LSU, tef1a and rpb2 sequences. The new genus Micromelanconis is characterized by two types of conidia from natural substrate and manual media of PDA, respectively. Conidia from Chinese chestnut branches are pale brown, ellipsoid, multiguttulate, aseptate with hyaline sheath. While conidia from PDA plates are pale brown, long dumbbell-shaped, narrow at the middle and wide at both ends, multiguttulate, aseptate, and also with hyaline sheath. All Pseudomelanconidaceae species were only reported on tree branches in China until now. More interesting taxa may be discovered if detailed surveys on tree-inhabiting fungi are carried out in East Asia in the future.

Keywords
Castanea mollissima, Diaporthales, DNA phylogeny, Melanconis, systematics
Introduction

Diaporthales, a species-rich order within Sordariomycetes of Ascomycota, is characterized by perithecia with elongate beaks, often forming within stromatic tissues, deliquescent paraphyses, and asci that have a refractive apical annulus (Barr 1978; Rossman et al. 2007; Senanayake et al. 2017, 2018; Fan et al. 2018a; Jiang et al. 2020a). Species of this order inhabit a variety of substrates, including plants, soil, even living animal tissues (Barr 1978; Castlebury et al. 2002; Sogonov et al. 2008; Yang et al. 2020). Most of them are pathogens associated with plant diseases, and the rest are endophytes in healthy plants or saprobes on dead tissues (Crous et al. 2012a; Chen et al. 2016; Norphanphoun et al. 2018; Jiang et al. 2019d; Xavier et al. 2019; Zhu et al. 2020; Yang et al. 2021). Some diaporthalean fungi cause severe forest diseases, so gained attention in forest pathological studies in recent years. For example, *Cryphonectria parasitica* (Cryphonectriaceae) causes chestnut blight worldwide (Rigling and Prospero 2018; Jiang et al. 2019b); *Cytospora chrysosperma* (Cytosporaceae) causes common polar and willow cankers in China (Fan et al. 2020); *Gnomoniopsis smithogilvyi* (Gnomoniaceae) results in European chestnut fruit rot and branch canker (Shuttleworth et al. 2016; Shuttleworth and Guest 2017; Jiang and Tian 2019; Jiang et al. 2020b).

Diaporthales is well classified into families based on morphological and phylogenetic studies (Voglmayr and Jaklitsch 2014; Norphanphoun et al. 2016; Voglmayr et al. 2017; Fan et al. 2018a; Senanayake et al. 2018; Yang et al. 2018a), and up to 32 families were accepted in the order Diaporthales (Jiang et al. 2021). Specimens can be identified to specific level by morphological characters, such as transversely distoseptate brown conidia of *Coryneum* (Jiang et al. 2018b, 2019c; Senwanna et al. 2018); allantoid ascospores and conidia of *Cytospora* (Fan et al. 2020); two-guttulate fusiform conidia of *Diaporthe*-like taxa (Fan et al. 2018a; Yang et al. 2018a, b); stromatic tissues turning to purple in 3% KOH of Cryphonectriaceae species (Chen et al. 2013, 2018); dark acervular conidiomata with conspicuous central column of *Melanconis*-like taxa (Fan et al. 2016; Jaklitsch and Voglmayr 2020).

Melanconis-like taxa are distributed in several families of Diaporthales, mainly Juglanconidaceae, Melanconidaceae, Melanconiellaceae and Pseudomelanconidaceae, which are four morphologically similar clades in distinct phylogenetic clades within this order (Fan et al. 2018b). Species of these four families are usually discovered on branches of Betulaceae, Juglandaceae and Fagaceae, but they are not strong pathogens (Wehmeyer 1937; Du et al. 2017; Voglmayr et al. 2019).

Castanea, commonly known as chestnut trees, is a worldwide genus containing several economic species. Chinese chestnut (*C. mollissima*), is widely cultivated in most of the provinces in China. Previous studies have revealed that seven families (Coryneaceae, Cryphonectriaceae, Cytosporaceae, Diaporthaceae, Erythrogloeaceae, Gnomoniaceae and Pseudomelanconidaceae) of Diaporthales have been reported on branches of *Castanea*. *Coryneum castaneicola*, *C. gigasporum* and *C. suttonii* of Coryneaceae were reported on dead and diseased *Castanea mollissima* branches (Jiang et al. 2018b). *Aurantiosacculus castaneae*, *Cryphonectria neoparasitica*, *C. parasitica* and
Endothia chinensis of Cryphonectriaceae were confirmed to be Castanea mollissima canker pathogens (Jiang et al. 2019b). Cytospora ceratospermopsis, C. kuanchengensis, C. leucostoma, C. myrtagena, C. schulzeri and C. xinglongensis of Cytosporaceae were reported to be associated with Castanea mollissima branch cankers (Jiang et al. 2020c). Diaporthe eres of Diaporthaceae was discovered on dead branches of Castanea mollissima in Beijing (Yang 2018). Dendrostoma aurorae, D. castaneae, D. castaneicola, D. chinense, D. parasiticum, D. shaanxiense and D. shandongense of Erythrogloeaceae were associated with Castanea mollissima stem, branch and twig cankers (Jiang et al. 2019a). Gnomoniopsis chinensis of Gnomoniaceae caused severe stem and branch cankers only in Hebei Province (Jiang and Tian 2019; Jiang et al. 2020b). Neopseudomelanconis castaneae of Pseudomelanconidaceae was discovered on Castanea mollissima branches in Shaanxi Province (Jiang et al. 2018a).

In the present study, investigations were conducted in Castanea mollissima plantations in Hunan Province of south China. Two Melanconis-like specimens were collected on a cultivated chestnut tree. The aim of the present study was to identify the fresh collections and confirm their phylogenetic positions.

Materials and methods

Collection, examination and isolation

The fresh specimens of diseased and dead chestnut branches were collected in a Castanea mollissima plantation in Hunan Province of south China. Morphological characteristics of the conidiomata were determined under a Nikon AZ100 dissecting stereomicroscope. More than 20 fruiting bodies were sectioned, and 50 conidia were selected randomly for measurement using a Leica compound microscope (LM, DM 2500). Isolates were obtained by removing a mucoid conidial mass from conidiomata, spreading the suspension onto the surface of 1.8% potato dextrose agar (PDA), and incubated at 25 °C for up to 24 h. Single germinating conidium was removed and plated onto fresh PDA plates. Cultural characteristics of isolates incubated on PDA in the dark at 25 °C were recorded, including the colony color and conidiomata structures. Specimens were deposited in the Museum of the Beijing Forestry University (BJFC). Axenic cultures were maintained in the China Forestry Culture Collection Centre (CFCC).

DNA extraction, PCR amplification and phylogenetic analyses

Genomic DNA was extracted from colonies grown on cellophane-covered PDA, using a cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle 1990). DNA was estimated by electrophoresis in 1% agarose gel and the quality was measured using the NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA). Four partial loci, including the 5.8S nuclear ribosomal DNA gene with the two flanking internally tran-
scribed spacer (ITS) regions, the large subunit of the nrDNA (LSU), and the translation elongation factor 1-alpha (*tef1a*) and DNA-directed RNA polymerase II second largest subunit (*rpb2*) genes, were amplified by the following primer pairs: ITS1 and ITS4 for ITS (White et al. 1990), LR0R and LR5 for LSU (Vilgalys and Hester 1990), EF1-728F and EF2 for *tef1a* (O’Donnell et al. 1998; Carbone and Kohn 1999), and RPB2-5F and fRPB2-7cR for *rpb2* (Liu et al. 1999). The polymerase chain reaction (PCR) conditions were as follows: an initial denaturation step of 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 50 s at 48 °C (ITS, LSU) or 54 °C (*tef1a*) or 55 °C (*rpb2*), and 1 min at 72 °C, and a final elongation step of 7 min at 72 °C. PCR products were assayed via electrophoresis in 2% agarose gels. DNA sequencing was performed using an ABI PRISM 3730XL DNA Analyser with a BigDye Terminator Kit v.3.1 (Invitrogen, USA) at the Shanghai Invitrogen Biological Technology Company Limited (Beijing, China).

For phylogenetic reconstruction, newly-generated sequences of ITS, LSU, *tef1a* and *rpb2* were initially subjected to BLAST search (BLASTn) in NCBI website (https://www.ncbi.nlm.nih.gov). Then species and their sequences from recently published articles were selected and listed in Table 1 (Crous et al. 2012b; Alvarez et al. 2016; Senanayake et al. 2017; Braun et al. 2018; Fan et al. 2018a; Jiang et al. 2020a; Wang et al. 2020). The sequence alignments of the four individual loci (ITS, LSU, *tef1a* and *rpb2*) were conducted using MAFFT 7 (http://mafft.cbrc.jp/alignment/server/index.html), manually edited in MEGA 7.0.21, and then assembled as a dataset of ITS-LSU-*tef1a-*rpb2* to infer the phylogenetic placement of our new isolates.

ML and Bayesian analysis were implemented on the CIPRES Science Gateway portal (https://www.phylo.org) using RAxML-HPC BlackBox 8.2.10 (Stamatakis 2014) and MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003), respectively. For ML analyses, a GTR+GAMMA substitution model with 1000 bootstrap iterations was set. MrModeltest 2.3 was used to estimate the best nucleotide substitution model settings for each gene. Bayesian inference (BI) was performed based on the DNA data set from the results of the MrModeltest, using a Markov chain Monte Carlo (MCMC) algorithm in MrBayes 3.1.2. Two MCMC chains were run from random trees for 1000 million generations and stopped when the average standard deviation of split frequencies fell below 0.01. Trees were saved each 1000 generations. The first 25% of trees were discarded as the burn-in phase of each analysis, and the Bayesian posterior probabilities (BPPs) were calculated from the remaining trees. Phylogenetic trees were viewed with FigTree v.1.3.1 and processed by Adobe Illustrator CS5. The nucleotide sequence data of the new taxon have been deposited in GenBank (Table 1).

Results

The ITS, LSU, *tef1a* and *rpb2*, and combined data matrices contained 624, 867, 513, 865, and 2869 characters with gaps, respectively. The alignment comprised 92 strains, with *Nakataea oryzae* (CBS 243.76) and *Pyricularia grisea* (Ina168) from Magna-
Table 1. Details of the isolates included for molecular study used in this study.

Species	Isolates	GenBank accession numbers			
		ITS	LSU	tef1a	rpb2
Apiognomonia errabunda	AR 2813	DQ313525	NG027592	DQ313565	DQ862014
Apiosporopsis carpincola	CBS 771.79	NA	AF277130	NA	NA
Apoharknessia insueta	CBS 111377*	JQ700683	AY20814	MN271820	NA
	CBS 114575	MN172402	MN172370	MN271821	NA
Asteroxporum asterothoerum	MFLU 15-3555	NA	MF190062	NA	NA
Asteriopycnidiella tristaniopsis	CBS 132180*	JQ65516	JQ65522	MN271825	NA
	CPC 16371	MN172405	MN172374	MN271826	NA
Aurifilum marmelostoma	CBS 129428*	FJ80945	MH874934	MN271827	MN271788
Celoporthe eucalypti	CBS 127190*	HQ30837	HQ30863	HQ30850	MN271790
Celoporthe woodiana	CBS 118785*	DQ267131	MN172375	JQ824071	MN271791
Chiangraomyces baunii	MFLUCC 17-1669	MF190119	MF190064	MF377598	MF377603
Coniella africana	CBS 114133*	AY339344	AY339293	KX833600	KX833421
Coniella eucalyptorum	CBS 112640*	AY339338	AY339290	KX833637	KX833452
Coniella fusiformis	CBS 141596*	KX833576	KX833397	KX833674	KX833481
Coniella javanica	CBS 455.68*	KX833583	KX833403	KX833483	KX833489
Coryneum gigasporum	MFLU 15-3555	NA	MF377591	MF377605	NA
Coryneum umbonatum	D201	MH674329	MH674337	MH674337	MH674333
Cryptocentria decipiens	CBS 129353	EU42655	MN172386	MN271845	MN271797
Cryptomicrotia australiensis	CBS 124007*	GQ369457	MN172387	MN271851	MN271798
Cytospora chrysosperma	CFCC 89982	KF281261	KP30880	KU710952	KU710956
Cytospora elaeagni	CFCC 89633	KF765677	KF765693	KU710919	KU710956
Dendrostoma aurorae	CFCC 52753*	MH542498	MH542646	MH545447	MH545405
Dendrostoma castaneae	CFCC 52745*	MH542488	MH542644	MH545437	MH545395
Dendrostoma chinense	CFCC 52755*	MH542500	MH542648	MH545449	MH545407
Dendrostoma dispersum	CFCC 52730*	MH542467	MH542629	MH545416	MH545374
Dendrostoma melii	CFCC 52102*	MG682072	MG682012	MG682052	MG682032
Dendrostoma noui	CFCC 52106*	MG682073	MG682013	MG682053	MG682032
Dendrostoma parasiticum	CFCC 52762*	MH542482	MH542638	MH545431	MH545389
Dendrostoma quingense	CFCC 52732*	MH542471	MH542633	MH545420	MH545378
Dendrostoma quercinum	CFCC 52103*	MG682077	MG682017	MG682057	MG682037
Dendrostoma quercus	CFCC 52739*	MH542476	MH542635	MH545425	MH545383
Dendrostoma thamnoseptum	CFCC 52741*	MH542486	MH542642	MH545435	MH545393
Dendrostoma thamnoseptum	CFCC 52759*	MH542504	MH542652	MH545453	MH545411
Diasporoporella cereciola	CFCC 51994*	KY82492	KY82515	MN271855	NA
Diasporoporella machili	CFCC 52100*	MG682080	MG682020	MG682060	MG682040
Foscariella violacea	CFCC 52101*	MG682081	MG682021	MG682061	MG682041
Fuscovascularia nigromosae	CBS 143163*	MK510676	MK510686	NA	MK510692
Holocryphia eucalypti	CBS 124779*	GQ303276	GQ303307	MN271861	MN271802
Holocryphia eucalyptorum	CBS 142536*	KY979772	KY979827	MN271862	MN271803
Holocryphia eucalyptorum	CBS 121083	DQ491518	AF408361	EU221885	EU219295
Harknessia aurea	CBS 132119*	JQ700685	JQ706211	MN271863	NA
Harknessia capensis	CBS 111829*	AY720719	AY720816	MN271864	NA
Harknessia ellipsoidea	CBS 132121*	JQ700687	JQ706213	MN271865	NA
Harknessia eucalyptorum	CBS 342.97	AY720745	AF408363	MN271866	NA
Harknessia eucalyptorum	CBS 115842*	MN172411	MN172391	MN271882	MN271804
Harknessia eucalyptorum	CBS 132862*	JQ862765	JQ862755	MN271886	MN271805
Hypoplectorus kozakoviae	CBS 121083	KY427148	KY427148	KY427217	KY427198
Hypoplectorus oblonga	MAFF 410216	KY427153	KY427153	KY427222	KY427203
Hypoplectorus pterocaryae	MAFF 410079	KY427155	KY427155	KY427224	KY427205
Lamproconium desmazieri	MFLUCC 15-0870	KX430134	KX430135	MF377591	MF377605
Macrobiotum eucalypti	CPC 10945	KR873244	KR873275	NA	MN271810
Mastigospora anisophylleae	CBS 136421*	KF779492	KF777221	MN271892	NA
Ning Jiang et al. / MycoKeys 79: 1–16 (2021)

The ML analysis yielded a tree with a ln likelihood value of -45806.26677 and the following model parameters: alpha = 0.298226, Π(A) = 0.241173, Π(C) = 0.258552, Π(G) = 0.275145, and Π(T) = 0.225130. For BI analyses, the general time reversible model, additionally assuming a proportion of invariant sites with gamma-distributed substitution rates of the remaining sites (GTR+I+G), was determined to be the best for the ITS, LSU, and tef1a loci by MrModeltest, whereas the most appropriate model for the rpb2 locus was the Tamura-Nei model, additionally assuming a proportion of invariant sites with gamma-distributed substitution rates of the remaining sites (TrN+I+G). The phylogeny resulting from the RAxML maximum likelihood analysis of the combined gene sequence data is shown in Fig. 1. Overall, the topologies obtained from the different phylogenetic analyses were similar, and the best scoring RAxML tree is illustrated here. The bootstrap support values above 50% of maximum likelihood analysis (ML) and Bayesian posterior probability scores (≥0.90) are noted at the nodes.

The Diaporthales separates into 32 clades, representing 32 families, and the new isolates were clustered with a well-supported clade (ML/BI = 100/1) in Pseudomelanconidaceae. The two new isolates were different from any known genera in Pseudomelanconidaceae, and represented a new genus (Fig. 1).

Species	Isolates	GenBank accession numbers			
		ITS	LSU	tef1a	rpb2
Mastigosporella pigmentata	COAD 2370*	MG587929	MG587928	NA	NA
Melanconiella elissi	BPI 878343	JQ926271	JQ926271	JQ926406	JQ926339
Melanconiella stipulata	MSH	JQ926298	JQ926298	JQ926431	JQ926364
Melanconis betulae	CFCC 50471	KT732952	KT732971	KT733001	KT732984
Melanconis itoana	CFCC 50474	KT732955	KT732974	KT733004	KT732987
Melanconis stibostoma	CFCC 50475	KT732956	KT732975	KT733005	KT732988
Micromelanconis kahuluiae	CFCC 54572*	MW414473	MW414373	MW419880	MW419878
	KHS-4	MW414474	MW414374	MW419881	MW419879
Nakataea oryae	CBS 243.76	KM484861	DQ341498	NA	NA
Neopseudomelanconis castaneae	CFCC 52787*	MH469162	MH469164	NA	NA
Phaeoappendicospora thailandensis	MFLU 12-2131	MF190157	MF190102	NA	NA
Prosopidicola altaiziae	CPC 27478	KX228274	KX228325	NA	NA
Prosopidicola mexicana	CBS 113529	AY720709	NA	NA	NA
Pseudomelanconis coryae	CFCC 52110*	MG682082	MG682022	MG682062	MG682042
Pseudoplagiostoma corybiæ	CPC 14161	GU973510	GU973604	GU973540	NA
Pseudoplagiostoma oldii	CBS 115722	GU973535	GU973610	GU973565	NA
Pseudoplagiostoma variable	CBS 113067	GU973536	GU973611	GU973566	NA
Pyricularia grisea	ima168	NA	ABO26819	NA	NA
Pyripora castaneae	CFCC 53434	MW208108	MW208105	MW227340	MW218535
	CFCC 53451	MW208110	MW208107	MW227342	MW218537
Sillia karstii	MFLU 16-2864	KY523482	KY523500	NA	KYS01636
Sirococcus trugae	CBS 119626	EU199203	EU199136	EF512534	EU199159
Stephagonosporium acrophilum	CBS 117025	EU039982	EU039993	EU040027	KFS70173
Stilbopora longicornuata	CBS 122529*	KFS70164	KFS70164	KFS70232	KFS70194
Synnemaporella aculeana	CFCC 52094	MG682086	MG682026	MG682066	MG682046
Synnemaporella toxicodendri	CFCC 52097*	MG682089	MG682029	MG682069	MG682049
Thaiuldomycetes bistulosus	BCC 00018	NA	EF622230	NA	NA
Tiritorella beccariana	BCC 38312	NA	JQ655449	NA	NA
Tubakia seoraksanensis	CBS 127490*	MG591907	KP260499	MG592094	NA
Tubakia invernisi	CBS 129012*	MG591879	MG591971	MG592064	NA
Ursicollum fallax	CBS 118663*	DQ368755	EF392860	MN271897	MN271816

Ex-type strains are marked by an asterisk (*) and the strains from this study are in bold.
Figure 1. Phylogram of Diaporthales from a maximum likelihood analysis based on combined ITS, LSU, tef1a and rpb2. Values above the branches indicate maximum likelihood bootstrap (left, ML BP ≥ 50%) and Bayesian probabilities (right, BI PP ≥ 0.90). The tree is rooted with *Nakataea oryzae* (CBS 243.76) and *Pyricularia grisea* (Ina168). New species proposed in the current study is in blue and the ex-type strains are marked with *.
Figure 111. Continued.

Taxonomy

Micromelanconis C.M. Tian & N. Jiang, gen. nov.

MycoBank No: 838927

Etymology. Name derived from micro- and the genus name *Melanconis*.

Type species. *Micromelanconis kaibuiae* C.M. Tian & N. Jiang.

Description. Sexual morph: not observed. Asexual morph: Conidiomata acervular, conspicuous, immersed in host bark to erumpent, covered by brown to blackish exuding conidial masses at maturity. Central column beneath the disc more or less conical. Conidiophores unbranched, aseptate, cylindrical, pale brown, smooth-walled. Conidiogenous cells annellidic, occasionally with distinct annellations and collarettes.
Conidia hyaline when immature, becoming pale brown, ellipsoid, multiguttulate, aseptate, with hyaline sheath. Conidiomata formed on PDA after three weeks, randomly distributed, and black. Conidiophores unbranched, septate, cylindrical, pale brown, smooth-walled. Conidiogenous cells annellidic. Conidia pale brown, long dumbbell-shaped, narrow at the middle and wide at both ends, multiguttulate, aseptate, with hyaline sheath.

Notes. *Micromelanconis* is the third genus after *Neopseudomelanconis* and *Pseudomelanconis* in the family *Pseudomelanconidaceae* (Fig. 1). *Micromelanconis* is united in this family based on the *Melanconis*-like conidiomata, and pale brown conidia with conspicuous hyaline sheath. *Micromelanconis* produces two types of conidia from natural branches and manual media respectively, which differs from *Neopseudomelanconis* and *Pseudomelanconis* (Fan et al. 2018a; Jiang et al. 2018a). Additionally, *Neopseudomelanconis* is characterized by its septate conidia (Jiang et al. 2018a).

Micromelanconis kaihuiae C.M. Tian & N. Jiang, sp. nov.

MycoBank No: 838928

Figures 2, 3

Etymology. Named after Kaihui Yang, a Chinese heroine; Kaihui is also the name of the town where holotype was collected.

Description. **Sexual morph:** not observed. **Asexual morph:** Conidiomata acervular, 350–800 μm diam., conspicuous, immersed in host bark to erumpent, covered by brown to blackish exuding conidial masses at maturity. Central column beneath the disc more or less conical. Conidiophores unbranched, aseptate, cylindrical, pale brown, smooth-walled. Conidiogenous cells annellidic, occasionally with distinct annellations and collarettes, 12.4–47.1 × 1.2–3.8 μm. Conidia hyaline when immature, becoming pale brown, ellipsoid, multiguttulate, aseptate, 7.6–10.3 × 3.1–4.1 μm, L/W = 2–3.2, with hyaline sheath, 1 μm.

Culture characters. Colony on PDA at 25 °C irregular, grey olivaceous, margin becoming diffuse, aerial hyphae short, dense, surface becoming imbricate, growth limited and ceasing after two weeks. Conidiomata formed after three weeks, randomly distributed, black. Conidiophores unbranched, septate, cylindrical, pale brown, smooth-walled. Conidiogenous cells annellidic, 9.1–18.5 × 2.5–5.3 μm. Conidia pale brown, long dumbbell-shaped, narrow at the middle and wide at both ends, multiguttulate, aseptate, 10.4–13.5 × 4–5 μm, L/W = 2.3–3.3, with hyaline sheath, 1.5 μm.

Specimens examined. China, Hunan Province, Changsha City, Changsha County, Kaihui Town, chestnut plantation, 40°24’32.16”N, 117°28’56.24”E, 262 m asl, on stems and branches of *Castanea mollissima*, Tian Chengming and Ning Jiang, 10 November 2020 (BJFC-S1831, holotype; ex-type culture, CFCC 54572 = KH5-3). *Ibid.* (BJFC-S1832, KH5-4).

Notes. *Micromelanconis kaihuiae* on *Castanea mollissima* (Fagaceae, Fagales) is phylogenetically close to *Neopseudomelanconis castaneae* on *Castanea mollissima* and
Figure 2. Morphology of *Micromelanconis kaihuiae* on branches of *Castanea mollissima* (BJFC-S1831)
A, B habit of conidiomata on a branch C transverse section of conidiomata D longitudinal section through conidiomata E conidiogenous cells attached with conidia F, G conidia. Scale bars: 100 μm (C, D); 10 μm (E–G).

Pseudomelanconis caryae on *Carya cathayensis* (Juglandaceae, Juglandales) (Fig. 1). All these three species are discovered on tree branches in China, and share similar morphological characters in having pale brown conidia with conspicuous hyaline sheath. *Micromelanconis kaihuiae* and *Neopseudomelanconis castaneae* even share the same host. However, they can be easily distinguished based on conidia shape, color and overall size of conidia (*M. kaihuiae*, pale brown, ellipsoid and aseptate conidia, 7.6–10.3 × 3.1–4.1 μm; pale brown, long dumbbell-shaped and aseptate conidia, 10.4–13.5 × 4–5 μm *vs.* *N. castaneae*, brown, ellipsoid to oblong and septate conidia, 18–21.5 × 4.8–7 μm *vs.* *P. caryae*, pale brown, ellipsoid to oblong and aseptate conidia, 12.5–16 × 4–5 μm) (Fan et al. 2018a; Jiang et al. 2018a). Furthermore, *M. kaihuiae* is separated
Micromelanconis kaihuiae gen. et sp. nov.

11

from *N. castaneae* by 51/490 bp (10.4%) differences in ITS and 12/563 bp (2.1%) differences in LSU, and from *P. caryae* by 56/490 bp (11.4%) differences in ITS and 6/563 bp (1.1%) differences in LSU.

Key to Pseudomelanconidaceae genera and species

1. On *Carya* of Juglandaceae, conidia ellipsoid to oblong and aseptate.

 .. *Micromelanconis kaihuiae*

2. On *Castanea* of Fagaceae. ..

 – Conidia aseptate .. *Pseudomelanconis castaneae*

 – Conidia septate ... *Neopseudomelanconis castaneae*

Discussion

Diaporthales is a well-studied order based on integrated approaches of morphology and phylogeny in recent years (Castlebury et al. 2002; Rossman et al. 2007; Voglmayr and Jaklitsch 2014; Alvarez et al. 2016; Senanayake et al. 2017, 2018; Voglmayr et al. 2017; Braun et al. 2018; Fan et al. 2018a; Jiang et al. 2020a). Thirty-two accepted families are monophyletic and supported by morphological characters; four of them
contain *Melanconis*-like fungi, namely Juglanconidaceae, Melanconidaeae, Melanconiellaceae and Pseudomelancnoidaceae (Fan et al. 2018a). The *Melanconis*-like fungi were similar in their asexual morph, but well-separated in the phylogeny and their hosts (Voglmayr et al. 2012, 2017, 2019; Fan et al. 2018a, b; Jaklitsch and Voglmayr 2020). In the present study, a new genus and species were clustered in the family Pseudomelancnoidaceae (Fig. 1), and differed from the other *Melanconis*-like genera by its long dumbbell-shaped conidia formed on PDA plates.

Hosts are useful taxonomic information in some families of Diaporthales, such as Coryneaceae, Cryphonectriaceae, Erythrogloeaceae and Gnomoniaceae (Voglmayr et al. 2012; Jaklitsch and Voglmayr 2019; Roux et al. 2020; Wang et al. 2020; Yang et al. 2020). Hosts are important to separate *Melanconis*-like genera. *Juglanconis* inhabit *Juglans* and *Pterocarya* of Juglandaceae, *Melanconiella* and *Melanconis* occur only on the plant family Betulaceae (Voglmayr et al. 2012, 2017, 2019; Fan et al. 2018b; Jaklitsch and Voglmayr 2020). *Melanconis* species are discovered only on *Alnus* and *Betula*, while *Melanconiella* occurs in the subfamily Coryloideae with the exception of *M. betulae* and *M. decorahensis* on *Betula* (Voglmayr et al. 2012; Du et al. 2017; Fan et al. 2018a). Species of Pseudomelancnoidaceae inhabit *Carya* of Juglandaceae, and *Castanea* of Fagaceae (Fan et al. 2018a; Jiang et al. 2021). More interesting *Melanconis*-like may be revealed by more detailed surveys on tree-inhabiting fungi in the future.

Acknowledgements

This study is financed by the National Natural Science Foundation of China (Project No.: 31670647). We are grateful to Chungen Piao and Minwei Guo (China Forestry Culture Collection Center, Chinese Academy of Forestry, Beijing) for support of strain preservation during this study.

References

Alvarez LV, Groenewald JZ, Crous PW (2016) Revising the Schizoparmaceae: *Coniella* and its synonyms *Pilidiella* and *Schizoparme*. Studies in Mycology 85: 1–34. https://doi.org/10.1016/j.simyco.2016.09.001

Barr ME (1978) The Diaporthales in North America with emphasis on *Gnomonia* and its segregates. Mycologia Memoir 7: 1–232.

Braun U, Nakashima C, Crous PW, Groenewald JZ, Moreno-Rico O, Rooney-Latham S, Blomquist CL, Haas J, Marmolejo J (2018) Phylogeny and taxonomy of the genus *Tubakia* s. lat. Fungal Systematics and Evolution 1: 41–99. https://doi.org/10.3114/fusc.2018.01.04

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051
Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94: 1017–1031. https://doi.org/10.1080/15572536.2003.11833157

Chen SF, Liu QL, Li GQ, Wingfield MJ, Roux J (2018) A new genus of Cryphonectriaceae isolated from Lagerstroemia speciosa in southern China. Plant Pathology 67: 107–123. https://doi.org/10.1111/pps.12723

Chen SF, Wingfield MJ, Li GQ, Liu FF (2016) Corticimorbus sinomyrti gen. et sp. nov. (Cryphonectriaceae) pathogenic to native Rhodomyrtus tomentosa (Myrtaceae) in South China. Plant Pathology 65: 1254–1266. https://doi.org/10.1111/ppa.12507

Chen SF, Wingfield MJ, Roets F, Roux J (2013) A serious canker disease caused by Imper-siopotho knoxdaviesiana gen. et sp. nov. (Cryphonectriaceae) on native Rapanea melanophleos in South Africa. Plant Pathology 62: 667–678. https://doi.org/10.1111/j.1365-3059.2012.02671.x

Crous PW, Summerell BA, Alfenas AC, Edwards J, Pascoe IG, Porter IJ, Groenewald JZ (2012a) Genera of diaporthalean coelomycetes associated with leaf spots of tree hosts. Persoonia 28: 66–75. https://doi.org/10.3767/003158512X642030

Crous PW, Summerell BA, Shivis RG, Carnegie AJ, Groenewald JZ (2012b) A re-appraisal of Harknessia (Diaporthales), and the introduction of Harknessiaceae fam. nov. Persoonia 28: 49–65. https://doi.org/10.3767/003158512X639791

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 39–40.

Du Z, Fan XL, Yang Q, Tian CM (2017) Host and geographic range extensions of Melanconia, with a new species M. cornuta in China. Phytotaxa 327: 252–260. https://doi.org/10.11646/phytotaxa.327.3.4

Fan XL, Bezerra JDP, Tian CM, Crous PW (2018a) Families and genera of diaporthalean fungi associated with canker and dieback of tree hosts. Persoonia 40: 119–134. https://doi.org/10.3767/persoonia.2018.40.05

Fan XL, Bezerra JDP, Tian CM, Crous PW (2020) Cytospora (Diaporthales) in China. Persoonia 45: 1–45. https://doi.org/10.3767/persoonia.2020.45.01

Fan XL, Du Z, Bezerra JDP, Tian CM (2018b) Taxonomic circumscription of melanconis-like fungi causing canker disease in China. MycoKeys 42: 89–124. https://doi.org/10.3897/mycokeys.42.29634

Fan XL, Du Z, Liang YM, Tian CM (2016) Melanconis (Melanconidaceae) associated with Betula spp. in China. Mycological Progress 15: 1–40. https://doi.org/10.1007/s11557-016-1163-2

Jaklitsch WM, Voglmayr H (2019) European species of Dendrostoma (Diaporthales). MycoKeys 59: 1–26. https://doi.org/10.3897/mycokeys.59.37966

Jaklitsch WM, Voglmayr H (2020) The genus Melanconis (Diaporthales). MycoKeys 63: 69–117. https://doi.org/10.3897/mycokeys.63.49054

Jiang N, Fan XL, Crous PW, Tian CM (2019a) Species of Dendrostoma (Erythrogloeaceae, Diaporthales) associated with chestnut and oak canker diseases in China. MycoKeys 48: 67–96. https://doi.org/10.3897/mycokeys.48.31715

Jiang N, Fan XL, Tian CM (2019b) Identification and pathogenicity of Cryphonectriaceae species associated with chestnut canker in China. Plant Pathology 68: 1132–1145. https://doi.org/10.1111/ppa.13033
Jiang N, Fan XL, Tian CM (2021) Identification and characterization of leaf-inhabiting fungi from *Castanea* plantations in China. Journal of Fungi 7: e64. https://doi.org/10.3390/jof71010064

Jiang N, Fan XL, Tian CM, Crous PW (2020a) Reevaluating Cryphonectriaceae and allied families in Diaporthales. Mycologia 112: 267–292. https://doi.org/10.1080/00275514.2019.1698925

Jiang N, Li J, Piao CG, Guo MW, Tian CM (2018a) Identification and characterization of chestnut branch-inhabiting melanocratic fungi in China. Mycosphere 9: 1268–1289. https://doi.org/10.5943/mycosphere/9/6/14

Jiang N, Liang LY, Tian CM (2020b) *Gnomoniopsis chinensis* (Gnomoniaceae, Diaporthales), a new fungus causing canker of Chinese chestnut in Hebei Province, China. MycoKeys 67: 19–32. https://doi.org/10.3897/mycokeys.67.51133

Jiang N, Tian CM (2019) An emerging pathogen from rotted chestnut in China: *Gnomoniopsis daitii* sp. nov. Forests 10: e1016. https://doi.org/10.3390/f10111016

Jiang N, Voglmayr H, Tian CM (2018b) New species and records of *Coryneum* from China. Mycologia 110: 1172–1188. https://doi.org/10.1080/00275514.2018.1516969

Jiang N, Voglmayr H, Tian CM (2019c) Morphology and phylogeny reveal two novel *Coryneum* species from China. MycoKeys 56: 67–80. https://doi.org/10.3897/mycokeys.56.35554

Jiang N, Yang Q, Fan XL, Tian CM (2020c) Identification of six *Cytospora* species on Chinese chestnut in China. MycoKeys 62: 1–25. https://doi.org/10.3897/mycokeys.62.47425

Jiang N, Yang Q, Liang YM, Tian CM (2019d) Taxonomy of two synnematal fungal species from *Rhus chinensis*, with *Flavignomonia* gen. nov. described. MycoKeys 60: 17–29. https://doi.org/10.3897/mycokeys.60.46395

Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/bioinformatics/btq224

Norphanphoun C, Hongsanan S, Doilom M, Bhat DJ, Wen T-C, Senanayake IC, Bulgakov TS, Hyde KD (2016) Lamproconiaceae fam. nov. to accommodate *Lamproconium desmaziere*. Phytotaxa 270: 89–102. https://doi.org/10.11646/phytotaxa.270.2.2

Norphanphoun C, Raspé O, Jeewon R, Wen TC, Hyde KD (2018) Morphological and phylogenetic characterisation of novel *Cytospora* species associated with mangroves. MycoKeys 38: 93–120. https://doi.org/10.3897/mycokeys.38.28011

O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing *Panama* disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences 95: 2044–2049. https://doi.org/10.1073/pnas.95.5.2044

Rigling D, Prospero S (2018) *Cryphonectria parasitica*, the causal agent of chestnut blight: invasion history, population biology and disease control. Molecular Plant Pathology 19: 7–20. https://doi.org/10.1111/mpp.12542

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Rossman AY, Farr DF, Castlebury LA (2007) A review of the phylogeny and biology of the Diaporthales. Mycoscience 48: 135–144. https://doi.org/10.1007/S10267-007-0347-7
Roux J, Nkuekam GK, Marincowitz S, van der Merwe NA, Uchida J, Wingfield MJ, Chen SF (2020) Cryphonectriaceae associated with rust-infected Syzygium jambos in Hawaii. MycoKeys 76: 49–79. https://doi.org/10.3897/mycokeys.76.58406

Senanayake IC, Crous PW, Groenewald JZ, Maharachchikumbura SSN, Jeewon R, Phillips AJL, Bhat JD, Perera RH, Li QR, Li WJ, Tangthirasunun N, Norphanphoun C, Karunarathna SC, Camporesi E, Manawasighe IS, Al-Sadi AM, Hyde KD (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology 86: 217–296. https://doi.org/10.1016/j.simyco.2017.07.003

Senanayake IC, Jeewon R, Chomnunti P, Wanasinghe DN, Norphanphoun C, Karunarathna A, Pem D, Perera RH, Camporesi E, McKenzie EHC, Hyde KD, Karunarathna SC (2018) Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Diversity 93: 241–443. https://doi.org/10.10107/s13225-018-0410-z

Senwanna C, Hyde KD, Phookamsak R, Jones EG, Cheewangkoon R (2018) Coryneum heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of Para rubber in Thailand. MycoKeys 43: 75–90. https://doi.org/10.3897/mycokeys.43.29365

Shuttleworth LA, Guest DI (2017) The infection process of chestnut rot, an important disease caused by Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) in Oceania and Europe. Australasian Plant Pathology 46: 397–405. https://doi.org/10.10107/s13313-017-0502-3

Shuttleworth LA, Walker DM, Guest DI (2016) The chestnut pathogen Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) and its synonyms. Mycotaxon 130: 929–940. https://doi.org/10.5248/130.929

Sogonov MV, Castlebury LA, RossmanAY, Mejía LC, White JF (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Studies in Mycology 62: 1–77. https://doi.org/10.3114/sim.2008.62.01

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990

Voglmayr H, Castlebury LA, Jaklitsch WM (2017) Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales). Persoonia 38: 136–155. https://doi.org/10.3767/003158517X694768

Voglmayr H, Jaklitsch WM (2014) Stilbosporaceae resurrected: generic reclassification and speciation. Persoonia 33: 61–82. https://doi.org/10.3767/003158514X684212

Voglmayr H, Jaklitsch WM, Mohammadi H, Chakusary MK (2019) The genus Juglanconis (Diaporthales) on Pterocarya. Mycological Progress 18: 425–437. https://doi.org/10.1007/s11557-018-01464-0

Wang W, Li GQ, Liu QL, Chen SF (2020) Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity. Persoonia 45: 101–131. https://doi.org/10.3767/persoonia.2020.45.04
Wehmeyer LE (1937) Studies of certain species of Melanconis on Carpinus, Ostrya and Corylus. Mycologia 29: 599–617. https://doi.org/10.2307/3754513

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Xavier KV, Kc AN, Crous PW, Groenewald JZ, Vallad GE (2019) Dwiroopa punicae sp. nov. (Dwiroopaceae fam. nov., Diaporthales), associated with leaf spot and fruit rot of pomegranate (Punica granatum). Fungal Systematics and Evolution 4: 33–41. https://doi.org/10.3114/fuse.2019.04.04

Yang Q (2018) Taxonomy and phylogeny of Diaporthe in China. Doctor, Beijing Forestry University.

Yang Q, Fan XL, Du Z, Tian CM (2018a) Diaporthosporellaceae, a novel family of Diaporthales (Sordariomycetes, Ascomycota). Mycoscience 59: 229–235. https://doi.org/10.1016/j.myc.2017.11.005

Yang Q, Fan XL, Guaraccia V, Tian CM (2018b) High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 39: 97–149. https://doi.org/10.3897/mycokeys.39.26914

Yang Q, Jiang N, Tian CM (2020) Tree inhabiting gnomoniacous species from China, with Crypogonomonia gen. nov. proposed. MycoKeys 69: 71–89. https://doi.org/10.3897/mycokeys.69.54012

Yang Q, Jiang N, Tian CM (2021) New species and records of Diaporthe from Jiangxi Province, China. MycoKeys 77: 41–64. https://doi.org/10.3897/mycokeys.77.59999

Zhu HY, Pan M, Bezerra JDP, Tian CM, Fan XL (2020) Discovery of Cytospora species associated with canker disease of tree hosts from Mount Dongling of China. MycoKeys 62: 97–121. https://doi.org/10.3897/mycokeys.62.47854