Thermal expansion of vanadium in the temperature range of 98–2400 K

Yu M Kozlovskii and S V Stankus
Kutateladze Institute of Thermophysics SB RAS, 630090 Novosibirsk, Russia
E-mail: kozlovskii.yuri@gmail.com

Abstract. The experimental results of a study of the thermal expansion of polycrystalline vanadium in the temperature range of 98–1723 K are presented. The correlation of the dilatometric data and γ-ray attenuation technique was established. The temperature dependence of thermal properties up to 2400 K was obtained and reference table of recommended values was calculated.

1. Introduction
An analysis of experimental data on the thermal expansion of vanadium, performed in major reviews [1, 2] shows a significant discrepancy between the existing results. For this reason, the estimated error of the data recommended in [1] for the relative expansion of vanadium above 298 K is 5%, and below it is 10%. Therefore, the data require verification and refinement using modern experimental equipment.

The purpose of this work is to measure the linear thermal expansion coefficient (LTEC) of polycrystalline vanadium in a wide range of solid-state temperatures and to obtain the recommended values of thermal properties up to 2400 K, taking into account the data performed by γ-ray attenuation technique [3].

2. Method and experimental equipment
LTEC measurements were carried out by dilatometric method on the DIL-402C (NETZSCH, Germany) setup using fused silica and corundum holders. The sample expansion was recorded with an inductive displacement transducer (LVDT) with a resolution of up to 0.125 nm, and the temperature was measured with thermocouples (S or E type depending on the temperature range). The heating–cooling rate of the furnace was 2 K/min. Measurements were carried out in a helium atmosphere (99.995 vol.%).

The experimental technique is described in detail in [4]. The setup is tested under identical conditions on samples of aluminium (99.99 wt. %) and platinum (99.93 wt. %). The analysis shows that the difference between the obtained and reference data [5, 6] is within 3%.

3. Results and Discussion
The experiments were performed on a cylindrical sample of vanadium (VNM-1). The sample was obtained by machining initial material with a purity of 99.3 mass. %.
Thermal expansion was measured in seven heating–cooling cycles in the temperature range of 98–1723 K. Results showed good reproducibility, which allowed combining data from different cycles. The generalized temperature dependence of the LTEC is shown in figure 1. To obtain smoothed curves, initial data were fitted by the least squares method using Shomate equation [7]:

$$\alpha(T) = 10.255 + 2.277 \times 10^{-3} T - 2.551 \times 10^{-6} T^2 + 1.646 \times 10^{-9} T^3 - 612.9 T^{-1}$$

(1)

where T is the temperature in K, and the dimension α is 10^{-6} K$^{-1}$. The random approximation error (95% confidence probability) of the LTEC didn’t exceed 0.5%, and the total is 2–4%. The smoothed values of the thermal coefficients of linear and volume expansion (β), relative expansion (ε) and density (ρ) are presented in table 1. Density at room temperature is taken from [3].

![Figure 1. Initial data of the vanadium LTEC.](image)

T (K)	α (10^{-6} K$^{-1}$)	β (10^{-5} K$^{-1}$)	ε (10^{-6})	ρ (kg m$^{-3}$)
100	4.33	1.30	-1390	6099
120	5.39	1.62	-1293	6098
140	6.15	1.85	-1177	6096
160	6.73	2.02	-1048	6093
180	7.19	2.16	-908	6091
190	7.38	2.22	-836	6089
200	7.56	2.27	-761	6088
250	8.24	2.47	-365	6081
273.15	8.48	2.54	-171	6077
293.15	8.65	2.60	0	6074
300	8.71	2.61	59	6073
350	9.06	2.72	504	6065
400	9.33	2.80	964	6057
500	9.74	2.91	1919	6039
600	10.04	3.00	2908	6021
700	10.29	3.07	3924	6003
800	10.52	3.14	4965	5984
900	10.76	3.21	6028	5966
1000	11.01	3.28	7117	5946
1100	11.31	3.36	8232	5926
1200	11.65	3.46	9380	5906
1300	12.05	3.58	10564	5886
Table 1. Smoothed values of linear and volume thermal expansion coefficients, relative expansion and density of vanadium.

T (K)	α (10^{-6} K$^{-1}$)	β (10^{-5} K$^{-1}$)	ε (10^{-6})	ρ (kg m$^{-3}$)
1400	12.52	3.71	11792	5864
1500	13.08	3.87	13071	5842
1600	13.73	4.06	14410	5819
1700	14.48	4.28	15820	5795
17231	14.67	4.33	16155	5789
1800	–	4.53	17310	5769
1900	–	4.81	18893	5742
2000	–	5.13	20583	5714
2100	–	5.50	22392	5684
21722	–	5.79	23777	5661
21722	–	8.27	–	5453
2200	–	8.29	–	5441
2300	–	8.36	–	5396
2400	–	8.43	–	5351

1 values above 1723 K were obtained using data [3];

2 T_f is melting temperature.

Figure 2. Comparison of our results with the data of other authors.
1 — [1]; 2 — [2]; 3 — [3]; 4 — the results of this work; 5 — extrapolation using equation (1).
A comparison of our data with recommendations [1, 2] and γ-ray experiment data [3] is shown in figure 2. Our data are between the recommended values from [1] and [2] below 600 K, and above they are lower by 4–8%. It should be noted that the results of our work coincide with the data of [3] within the error of the latter. A noticeable deviation of the LTEC at the room temperature region is obviously related to the «high» lower measurement boundary in [3], which did not allow taking into account the drop of the LTEC below the Debye temperature. At the same time, in the rest of the temperature range, the difference between the data does not exceed the LTEC error [3], including the extrapolation of our data to the melting point ($T_f = 2172$ K). The difference in the relative density change calculated by the equation 1 and γ-ray experimental data from 293 K to T_f does not exceed 0.1%. This provides a basis to construct a vanadium density polytherm in the temperature range of 100–2400 K, for which the data of the LTEC and density in the solid state, as well as of the density in the solid and liquid phases with the measured density change on melting are consistent [3].

Conclusion

New experimental data on the linear thermal expansion coefficient of polycrystalline vanadium have been obtained. The correlation of the data performed by dilatometric method and γ-ray attenuation technique has been established. Tables of recommended values of the volumetric properties have been developed.

Acknowledgement

This work was carried out under state contract with IT SB RAS (AAAA-A17-117022850029-9).

References

[1] Touloukian Y S 1975 Thermophys. Prop. Matter. N.Y., Washington: IFI / Plenum 12 1348
[2] Novikova S I 1974 Moscow: Science 294
[3] Stankus S V 1993 High Temp. 31 514
[4] Kozlovskii Yu M and Stankus S V 2015 Thermophys. and Aeromech. 22 501
[5] Kroeger F R and Swenson C A 1977 J. Appl. Phys. 48 853
[6] Kirby R K 1991 Int. J. Thermophys. 12 679
[7] Shomate C H 1954 J. Phys. Chem. 58 368