RESEARCH ARTICLE

Molecular detection of Bartonella spp. and Rickettsia spp. in bat ectoparasites in Brazil

Renan Bressianini do Amaral¹,², Elizabete Captivo Lourenço³, Kátia Maria Famas³, Amanda Barbosa Garcia¹,², Rosangela Zacarias Machado¹,², Marcos Rogério André¹,²*

¹ Laboratory of Immunoparasitology, Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil, ² Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil, ³ Laboratory of Parasite Arthropods, Department of Animal Parasitology, Institute of Veterinary, Universidade Federal Rural do Rio de Janeiro–UFRRJ, Seropédica, RJ, Brazil

* marcos_andre@fcav.unesp.br

Abstract

The family Streblidae comprises a monophyletic group of Hippoboscoidea, hematophagous dipterans that parasitize bats. Bartonella spp. and Rickettsia spp. have been reported in bats sampled in Europe, Africa, Asia, North, Central and South America. However, there are few reports on the Bartonella and Rickettsia bacteria infecting Hippoboscoidea flies and mites. While Spinturnicidae mites are ectoparasites found only in bats, those belonging to the family Macronyssidae comprise mites that also parasitize other mammal species. This study investigates the occurrence and assesses the phylogenetic positioning of Bartonella spp. and Rickettsia spp. found in Streblidae flies and Spinturnicidae and Macronyssidae mites collected from bats captured in Brazil. From May 2011 to April 2012 and September 2013 to December 2014, 400 Streblidae flies, 100 Macronyssidae, and 100 Spinturnicidae mites were collected from bats captured in two sites in northeastern Nova Iguaçu, Rio de Janeiro, southeastern Brazil. Forty (19.8%) out of 202 Streblidae flies were positive for Bartonella spp. in qPCR assays based on the nuoG gene. Among the flies positive for the bacterium, six (18%) were Paratrichobius longicrus, seven (29%) Strebla guajiro, two (40%) Aspidoptera phyllostomatis, five (11%) Aspidoptera falcata, one (10%) Trichobius anducei, one (25%) Megistopoda aranea, and 18 (32%) Trichobius joblingi, and collected from bats of the following species: Artibeus lituratus, Carollia perspicillata, Artibeus planirostris, Sturnira lilium, and Artibeus obscurus. Six sequences were obtained for Bartonella (nuoG [n = 2], gltA [n = 2], rpoB [n = 1], ribC = 1]). The phylogenetic analysis based on gltA (750pb) gene showed that the Bartonella sequences clustered with Bartonella genotypes detected in bats and ectoparasites previously sampled in Latin America, including Brazil. Only one sample (0.49%) of the species Trichobius joblingi collected from a specimen of Carollia perspicillata was positive for Rickettsia sp. in cPCR based on the gltA gene (401bp). This sequence was clustered with a ‘Candidatus Rickettsia andaenae’ genotype detected in an Amblyomma parvum tick collected from a rodent in the southern region of Brazilian Pantanal. The sampled Macronyssidae and Spinturnicidae mites were negative for Bartonella spp. and Rickettsia spp. This study demonstrated the first occurrence of Bartonella spp. and Rickettsia spp. DNA in Streblidae flies collected from bats in Brazil.
Introduction

The order Chiroptera is the second largest group of mammals in the world, comprising approximately 20% of mammals and more than 1200 species present in all continents, except Antarctica [1]. In Brazil, about 47% of species diversity is found in urban areas [2].

Among all the ectoparasites of bats, Streblidae flies are the ones most frequently reported in the Neotropics. These ectoparasites are often found associated with bat species of the Phyllostomidae and Noctilionidae families [3,4,5]. The family Streblidae comprises a monophyletic group of Hippoboscoidea dipterans [6,7,8], characterized by adenotrophic viviparity, consisting of not only winged but also brachypterous and apterous species that are obligate hematophagous ectoparasites of bats [5,9].

The mites of the Suborder Mesostigmata belong to four families: Macronyssidae, Laelapidae, Spelaeorhynchidae, and Spinturnicidae. The species belonging to the families Macronyssidae and Laelapidae can parasitize several mammals species, including bats, whereas those of the families Spelaeorhynchidae and Spinturnicidae are known to parasitize Chiroptera exclusively [10,11].

Bartonella species includes Gram-negative facultative intracellular alpha-proteobacteria belonging to the order Rhizobiales [12]. These reemerging agents parasitize the erythrocytes and endothelial cells of mammals, being associated with diseases in humans and animals [13,14]. *Bartonella* ssp. has been reported in Hippoboscoidea flies collected from bats sampled in the United Kingdom [15], Kenya [16], Taiwan [17], Peru [18], Nigeria [19], Puerto Rico [20], Finland [21], Madagascar [22], Costa Rica [23], Guatemala [24,25], French Guiana [26], Gana [27], Algeria [28], South Africa [29], and more recently, in Brazil [30] and México [31]. For instance, *Bartonella* sp. has been detected in Nycteribiidae flies in Ghana and Slovenia [10], Nigeria [18], Madagascar [22], Costa Rica [23] and Algeria [28]. On the other hand, bartonellae have been detected in Streblidae flies in the USA [32], Puerto Rico, Panama, China, Philippines, Dominican Republic, French Guiana, Mexico, Peru [12], Costa Rica [23], South Africa and Swaziland [29]. Additionally, the role of bats as carriers of *Bartonella* species and genotypes with zoonotic potential has been investigated. For instance, "*Candidatus* Bartonella mayotimonensis", an agent associated with cases of endocarditis in humans in Iowa, USA [33], has been detected in bats in Finland [34], France, Spain [35], USA [36], and in ectoparasites (flies and fleas) in Finland [33].

The genus *Rickettsia* includes obligatory intracellular Gram-negative bacteria belonging to the Phylum Proteobacteria, Class Alphaproteobacteria, Order Rickettsiales and Family Rickettsiaceae. The pathogenic *Rickettsia* species, which causes the group of diseases known as rickettsioses, are divided into two groups: Typhus, which comprises species mainly transmitted by fleas, and the Spotted Fever, that include *Rickettsia* species transmitted mostly by ticks [37]. *Rickettsia* ssp. has been already detected in bats sampled in the United States [38], Saint Kitts islands, Galapagos [39], South Africa, Swaziland [29], and Argentina [40]. In Brazil, serological evidence of exposure to *Rickettsia* ssp. (9.5% to *R. rickettsii*, 9.5% to *R. parkeri*, 7.8% to *R. amblyommi*, and 1.1% to *R. rhipicephali*) has been reported among bats sampled in São Paulo state [41].

Although *Bartonella* ssp. and *Rickettsia* ssp. have not been detected in Macronyssidae and Spinturnicidae mites parasitizing bats so far, these agents were detected in *Ornithonyssus bacoti*, a Macronyssidae mite species found parasitizing rodents in Egypt [42].

Furthermore, *Rickettsia* ssp. has been molecularly detected in ticks collected from bats in the United States [38,43], France [44], French Guiana [45], and Poland [46]. Additionally, *Rickettsia* sp. of the Spotted Fever Group was detected in flies collected from bats sampled in the USA [47] and Malaysia [48].
The present study used molecular techniques to detect and characterize the occurrence of *Bartonella* spp. and *Rickettsia* spp. in flies of the family Streblidae collected from bats sampled in Rio de Janeiro state, Brazil.

Material and methods

Study area, sampled animals, and ectoparasites

The bat ectoparasites were collected under license from SISBIO/ICMBio (Sistema de Autorização e Informação em Biodiversidade/Instituto Chico Mendes de Conservação da Biodiversidade), protocol number #28064–2.

The bats were captured during 36 nights from May 2011 to April 2012 and from September 2013 to December 2014 using mist nets (12 × 3 m and 20 mm mesh). The sampling sites were the Tingua Biological Reserve (22˚34’57.4”S; 043˚26’15.9”W) and two surrounding areas (22˚35’16.53”S; 043˚24’13.86”W and 22˚36’50.69”S; 043˚24’47.17”W) in northeastern Nova Iguaçu, Rio de Janeiro, Brazil. The bats were identified based on Gardner and Dias [49] and Peracchi [50]. Four hundred flies, plus 100 Spinturnicidae and 100 Macronyssidae mites were removed from the bats using forceps and stored in microtubes containing 100% ethanol. The bat flies were identified using a stereoscopic microscope, dichotomous keys and descriptions [51–57]. The nomenclature followed Dick and Graciolli [58] for Streblidae and Gardner [49] for bats, except for *Dermanura*, which has been elevated to generic status [59,60]. The mites were identified in a light microscope, using previously described identification keys [61–63]. The bats were released after sampling.

In total, 400 Streblidae flies were collected: *Paratrichobius longicrus* (n = 49), *Megistopoda aranea* (n = 4), *Aspidoptera phyllostomatis* (n = 8), *Trichobius joblingi* (n = 110), *Trichobius anducei* (n = 10), *Strebla guajiro* (n = 29), *Megistopoda proxima* (n = 77), *Aspidoptera falcata* (n = 107), *Trichobius furmani* (n = 4), and *Strebla wiedemannii* (n = 2). Additionally, 100 Macronyssidae mites of the species *Chiroptonyssus haematophagus*, 100 Spinturnicidae mites of the species *Periglischrus ojasti* (n = 50) and *Periglischrus iheringi* (n = 50) were also collected from bats.

DNA extraction and quality assessment

DNA was extracted individually from each fly specimen and from pools comprising 10 mites of the Spintunicidae and Macronyssidae specimens, grouped according the species and host from where they were collected, using the Illustra Tissue and Cells Genomic Prep Mini Spin Kit (GE Healthcare Life Sciences), following manufacturer’s instructions. Purified DNA samples were eluted in 100μL. The DNA quality was evaluated by concentration and 260/280 and 260/230 nm absorbance ratios using a spectrophotometer (Nanodrop, Thermo Scientific, USA). Also, a conventional PCR (cPCR) assay, based on a 710-bp fragment of *cox-1* gene [64], was performed to evaluate the absence of inhibitors in DNA samples and the positive samples were submitted to additional *Bartonella* spp. and *Rickettsia* spp. PCR assays. Conventional cPCR assays were performed in a T100™ Thermal Cycler (BioRad™, CA, USA).

Bartonella detection and characterization

A previously described quantitative PCR (qPCR) protocol based on *nuoG* gene [65] was used to detect and quantify *Bartonella* spp. DNA copies (number of copies/μL) in bat biological samples. The qPCR assays were performed in 10 μL final volume reaction mixtures, containing 1 μL of DNA sample, 1.2 μM of each primer F-Bart (5 ’-CAATCTTCTTTTGCTTCACC-3 ’), R-Bart (5 ’-TCAGGGCTTTATGTGAATAC-3 ’) and hydrolysis probe TexasRed-5 ’-TTYGTCAATTGAAACACG-3 ’ [BHQ2a-Q]-3’, Master Mix 2x buffer (GoTaq™ Probe qPCR Master
Mix, Promega Corporation, Madison, USA) and ultra-pure sterilized water (Nuclease-Free Water, Promega Corporation, Madison, USA) q.s.p. 10 μL. The amplification conditions were 95°C for 3 minutes followed by 40 cycles at 95°C for 10 seconds and 52.8°C for 30 seconds [65]. PCR amplifications were conducted in low-profile multiplate unskirted PCR plates (BioRad™, CA, USA), using a CFX96 Thermal Cycler (BioRad™, CA, USA). Standard curves were constructed with serial dilutions of plasmid DNA (pIDTSMART—Integrated DNA Technologies) (1.0x10^7 to 1.0x10^0 copies/μL), which encoded an 83bp Bartonella henselae-nuoG gene fragment. The number of plasmid copies was determined by (Xg/μL DNA/ [plasmid length in bp x 660]) x 6.022 x10^23 x plasmid copies/μL.

All DNA samples were initially tested in duplicates. All duplicates whose Cq difference was higher than 0.5 were re-tested in triplicate. Amplification efficiency (E) was calculated from the slope of the standard curve in each run using the following formula (E = 10^-1/slope). The standard curves generated by 10-fold dilutions were used to determine the amount of DNA that could be detected with 95% of sensitivity [66].

To perform the molecular characterization of Bartonella spp., the qPCR-positive samples were submitted to previously described cPCR assays targeting eight different genic regions, namely nuoG (400bp) [67], ribC (420bp) [68], gltA (750bp) [69], rpoB (800bp) [70], the intergenic spacer region 16S-23SrRNA ITS (453-717bp) [71], groEL (752bp) [71,72], fstZ (600bp) [71], and pap-31 (564bp) [73]. Bartonella sp. previously detected in a specimen of Sturnira lilium bat sampled in southern Brazil [30] and sterilized ultrapure water (Nuclease-Free Water, Promega™, Madison, Wisconsin, USA) were used as positive and negative controls, respectively.

Rickettsia detection and characterization

All DNA samples were submitted to a cPCR assay targeting citrate synthase protein-coding gene (gltA) (401 bp) to detect and characterize Rickettsia spp. [74]. All the positive samples were submitted to cPCR assays targeting the ompA (530bp) [75], ompB (862 bp) [76] and htrA 17-kDa (440bp) [77] genes. The mixture contained 10X PCR buffer (Life Technologies®, Carlsbad, CA, USA), 1.0 mM MgCl₂ (Life Technologies®, Carlsbad, CA, USA), 0.2 mM deoxynucleotide triphosphate (dNTPs) mixture (Life Technologies®, Carlsbad, CA, USA), 1.5 U Taq DNA Polymerase (Life Technologies®, Carlsbad, CA, USA), and 0.5 μM of each primer (Integrated DNA Technologies®, Coralville, IA, USA). Rickettsia rickettsii DNA, kindly provided by Fundação Oswaldo Cruz (Fiocruz, Rio de Janeiro, Brazil), and ultra-pure sterile water (Life Technologies®, Carlsbad, CA, USA) were used as positive and negative controls, respectively.

The products of all cPCR assays were separated by electrophoresis on a 1% agarose gel stained with ethidium bromide (Life Technologies™, Carlsbad, CA, USA) under 100V/150mA for 50 minutes. The gels were imaged under ultraviolet light (ChemiDoc MP Imaging System, Bio Rad™) using the Image Lab Software Version 4.1.

Sequencing and phylogenetic analyses

Amplified products were purified using the Silica Bead DNA gel extraction kit (Thermo Fisher Scientific™, Waltham, MA, USA) and sequenced using the BigDye™ Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific™, Waltham, MA, USA) and the ABI PRISM 310DNA Analyzer (Applied Biosystems™, Foster City, CA, USA) [78]. The primers used in the sequencing reactions have been previously described in PCR assays for Bartonella spp.

The sequences obtained from positive samples were first submitted to a screening test using Phred-Phrap software version 23 [79,80] to evaluate the electropherogram quality and to obtain consensus sequences from the alignment of the sense and antisense sequences. The BLAST
program [81] was used to analyze the sequences of nucleotides (BLASTn), to browse and compare with sequences from an international database (GenBank) [82]. The consensus sequences obtained in this study and those retrieved from GenBank were aligned using the Clustal/W software [83] via Bioedit v. 7.0.5.3 [84]. Phylogenetic inference was based on Bayesian Inference (BI) and Maximum Likelihood (ML) methods. The Bayesian inference (BI) analysis was performed with MrBayes 3.1.2 [85] via CIPRES Science Gateway [86]. Markov Chain Monte Carlo (MCMC) simulations were run for 10^6 generations with a sampling frequency of every 100 generations and a burn-in of 25%. The Maximum-likelihood (ML) analysis was inferred with the W-IQ-Tree tool available online (http://iqtree.cibiv.univie.ac.at/) [87,88] using 1000 bootstrapping replicates. The best evolution model was selected by the program jModelTest2 (version 2.1.6) on XSEDE [89], under the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) [90]. All trees were examined in Treegraph 2.0.56–381 beta [91].

Results

Bartonella and Rickettsia prevalence in ectoparasites

All mite pools and 202 out of 400 of the Streblidae flies were positive in cPCR assays targeting cox-1 invertebrate endogenous gene. Forty (19.8%) out of 202 Streblidae flies were positive for Bartonella spp. in qPCR assays based on the nuoG gene. Among the positive flies, 18% (6/32) were Paratrichobius longicrus, 29% (7/24) Strebla guajiro, 40% (2/5) Aspidoptera phyllostomatis, 11% (5/43) Aspidoptera falcata, 10% (1/10) Trichobius anducei, 25% (1/4) Megistopoda aranea, 32% (18/55) Trichobius joblingi and 0% (0/29) Megistopoda proxima. The positive flies were collected from bats of the following species: two Artibeus fimbriatus, six Artibeus lituratus, 26 Carollia perspicillata, five Sturnira lilium, one Artibeus obscurus and one Artibeus planirostris.

The efficiency, R^2, slope, and Y-intercept of qPCR assays ranged from 90.5% to 104.7% (mean = 96.32%), 0.987 to 0.998 (mean = 0.986), -3.577 to -3.215 (mean = -3.422), and 36.506 to 39.454 (mean = 38.218), respectively. The quantification of nuoG Bartonella spp. ranged from 5.05×10^{-1} to 6.08×10^4 copies/μL (Table 1).

Ten (25%) out of 40 positive samples in the qPCR were also positive for at least one target gene in cPCR assays for Bartonella spp., including 6 (15%) for the nuoG gene, 2 (5%) for the gltA gene, 4 (10%) for the ribC gene, 3 (7.5%) for the groEL gene, 1 (5%) for the ftsZ gene, and 1(2.5%) for the rpoB gene. None was positive for pap-31 and for the intergenic spacer 16S-23S rRNA (ITS) (Table 2). Only six Bartonella spp. sequences were obtained (nuoG [n = 2], gltA [n = 2], rpoB [n = 1], ribC [n = 1]) due to low intensity of some amplified products, which precluded high quality sequencing. The sequences obtained were deposited to the GenBank under accession numbers MG551538, MG654770-MG654774 (Table 3).

In PCR assays, one (0.49%) out of 202 flies samples was positive for Rickettsia spp. based on the gltA gene, being identified as ‘Candidatus Rickettsia andeanae’ after sequencing (Table 3). However, because this positive sample had low amount of rickettsial DNA, the subsequent PCR assays based on the ompA, ompB and htrA 17-kDa genes were negative, precluding additional phylogenetic inferences.

The 100 Macronyssidae (Chiroptonyssus hematophagous collected from Molossus molossus and Molossus rufus) and 100 Spinturnicidae (Periglischrus iheringi [n = 50] collected from Artibeus lituratus and Periglischrus ojasti [n = 50] collected from Sturnira lilium) mites were all negative for both Bartonella spp. and Rickettsia spp.

BLAST analysis and phylogenetic inference

Based on BLAST analysis, while one Bartonella nuoG sequence (GenBank accession number MG65471) was 93% identical to Bartonella sp. WD16.2 previously isolated from a deer.
Table 1. The parameters obtained for Streblidae flies positive for *Bartonella* spp. in qPCR assays based on nuoG gene, in Rio de Janeiro state.

Streblidae species	Host	Mean quantification (copies/μL)	E	R²	Slope	y-intercept
Aspidoptera phylostomatis	Artibeus fimbriatus	4.19 X 10⁰	93.4%	0.984	-3.492	37.176
Aspidoptera phylostomatis	Artibeus fimbriatus	6.00 X 10⁰	93.4%	0.984	-3.492	37.176
Aspidoptera falcata	Sturnira lilium	4.01 X 10¹	99.4%	0.953	-3.335	39.454
Aspidoptera falcata	Sturnira lilium	1.00 X 10⁻¹	104.8%	0.983	-3.211	35.813
Aspidoptera falcata	Sturnira lilium	1.93 X 10²	95%	0.992	-3.423	37.662
Aspidoptera falcata	Sturnira lilium	3.871 X 10¹; 8.223 X 10¹	101.6%	0.997	-3.284	35.821
Aspidoptera falcata	Sturnira lilium	1.571 X 10¹; 3.445 X 10¹	95%	0.992	-3.423	37.662
Megistopoda aranea	Artibeus obscurus	6.27 X 10¹	99.4%	0.953	-3.335	39.454
Paratrichobius longicrus	Artibeus lituratus	3.58 X 10⁰	93.4%	0.984	-3.492	37.176
Paratrichobius longicrus	Artibeus lituratus	9.23 X 10⁰	90.7%	0.998	-3.566	38.552
Paratrichobius longicrus	Artibeus lituratus	4.81 X 10¹	90.7%	0.998	-3.566	38.552
Paratrichobius longicrus	Artibeus lituratus	6.21 X 10⁻¹	104.8%	0.983	-3.211	35.813
Paratrichobius longicrus	Artibeus lituratus	2.833 X 10¹; 1.268 X 10¹	93.4%	0.984	-3.492	37.176
Paratrichobius longicrus	Artibeus lituratus	3.58 X 10⁰	93.4%	0.984	-3.492	37.176
Strebla guajiro	Carollia perspicillata	1.72 X 10¹	99.4%	0.953	-3.335	39.454
Strebla guaijro	Carollia perspicillata	7.97 X 10³	99.4%	0.953	-3.335	39.454
Strebla guaijro	Carollia perspicillata	2.27 X 10⁰	101.6%	0.997	-3.284	35.821
Strebla guaijro	Carollia perspicillata	1.34 X 10¹	101.6%	0.997	-3.284	35.821
Strebla guaijro	Carollia perspicillata	8.71 X 10¹	95%	0.992	-3.423	37.662
Strebla guaijro	Carollia perspicillata	4.94 X 10¹	90.7%	0.998	-3.566	38.552
Strebla guaijro	Carollia perspicillata	7.535 X 10¹; 2.923 X 10⁰	99.4%	0.953	-3.335	39.454
Trichobius joblingi	Carollia perspicillata	2.26 X 10¹	93.4%	0.984	-3.492	37.176
Trichobius joblingi	Carollia perspicillata	6.47 X 10⁰	104.8%	0.983	-3.211	35.813
Trichobius joblingi	Carollia perspicillata	1.05 X 10⁻¹	104.8%	0.983	-3.211	35.813
Trichobius joblingi	Carollia perspicillata	2.23 X 10¹	101.6%	0.997	-3.284	35.821
Trichobius joblingi	Carollia perspicillata	5.62 X 10⁰	95%	0.992	-3.423	37.662
Trichobius joblingi	Carollia perspicillata	2.80 X 10⁰	90.7%	0.998	-3.566	38.552
Trichobius joblingi	Carollia perspicillata	6.06 X 10⁰	90.7%	0.998	-3.566	38.552
Trichobius joblingi	Carollia perspicillata	9.56 X 10⁰	90.7%	0.998	-3.566	38.552
Trichobius joblingi	Carollia perspicillata	2.46 X 10⁰	90.7%	0.998	-3.566	38.552
Trichobius joblingi	Carollia perspicillata	1.703 X 10⁰; 2.383 X 10⁰	93.4%	0.984	-3.492	37.176
Trichobius joblingi	Carollia perspicillata	3.45 X 10⁻¹; 1.58 X 10⁰	104.8%	0.983	-3.211	35.813
Trichobius joblingi	Carollia perspicillata	5.073 X 10⁻¹; 1.753 X 10⁰	104.8%	0.983	-3.211	35.813
Trichobius joblingi	Carollia perspicillata	3.355 X 10⁻¹; 6.424 X 10⁻¹	104.8%	0.983	-3.211	35.813
Trichobius joblingi	Carollia perspicillata	5.25 X 10⁰	99.4%	0.953	-3.335	39.454
Trichobius joblingi	Carollia perspicillata	2.141 X 10⁻¹; 7.950 X 10⁻¹	101.6%	0.997	-3.284	35.821
Trichobius joblingi	Carollia perspicillata	6.50 X 10⁰	90.7%	0.998	-3.566	38.552
Trichobius joblingi	Carollia perspicillata	1.148 X 10⁰; 1.987 X 10⁰	95%	0.992	-3.423	37.662
Trichobius anducei	Carollia perspicillata	2.922 X 10⁰; 6.016 X 10⁰	101.6%	0.997	-3.284	35.821

E = Efficiency of qPCR assays; R² = determination coefficient

Samples marked with "" show the result for each replicate rather than the parameter average. This is due to the low DNA concentrations in these samples, which generated differences in Cq values of the replicates higher than 0.5 (Monte Carlo effect – [66]).

https://doi.org/10.1371/journal.pone.0198629.t001

Bartonella and Rickettsia in bat ectoparasites in Brazil

sampled in Japan (GenBank accession number CP019781), the other GenBank accession number MG65472) was 84% identical to *B. alsatica* (GenBank accession number EF659935). Two *Bartonella* gltA sequences GenBank accession numbers MG551538) were 93–98% identical to
Bartonella sp. detected in bats sampled in Costa Rica (KJ816665 and KJ816687). One Bartonella rpoB sequence (GenBank accession number MG65474) was 89% identical to Bartonella sp. Khabarovsk detected in Asian mammals (AB779537). Finally, one Bartonella ribC sequence (GenBank accession number MG65473) was 84% identical to B. washoensis (AB292599). The query coverage ranged from 96% to 100% in all BLAST analyses carried out for the Bartonella sequences (Table 3).

The only detected gltA-Rickettsia sp. was 100% identical to ‘Candidatus Rickettsia andeanae’ (GenBank accession number MG65475), previously described in a tick sample of the species Amblyomma parvum, collected from a rodent found in the Pantanal Sul-Matogrossense, Brazil, with query coverage of 100% (Table 3).

The phylogenetic tree inferred by Bayesian analysis based on sequences of the Bartonella gltA gene formed two distinct clusters. The Bartonella sequence (GenBank accession number MG551538) detected in a Strebla guajiro specimen collected from Carollia perspicillata in Rio de Janeiro state was positioned alone in a branch but closely related to Bartonella genotypes previously detected in bats from South America, one genotype detected in a bat (Sturnira lilium) in Paraná state, Brazil (KY356753), and other genotypes detected in bats from Guatemala, Mexico, and Costa Rica, with 100% branch support. Additionally, such sequences were positioned in a larger clade related to Bartonella sequences detected in rodents sampled in Brazil and U.S.A., together with a Bartonella genotype detected in a Polygenis gwyni flea collected from a Sigmodon hispidus rodent in the U.S.A., with clade support value of 83% in BI analysis.

Table 2. Streblida flies positive for Bartonella spp. in both qPCR and cPCR assays targeting different genes.

Streblidae species	Host	qPCR Mean quantification (nuoG copies/μL)	cPCR	gltA	rpoB	nuoG	groEL	ribC	ftsZ	pap-31	ITS
Strebla guajiro	Carollia perspicillata	7.97 X 10^3	Seq	Seq	Seq	NS	Seq	NS	_	_	_
Paratrichobius longicrus	Artibeus lituratus	3.58 X 10^4	_	_	NS	_	_	_	_	_	_
Paratrichobius longicrus	Artibeus lituratus	4.81 X 10^4	_	_	NS	_	_	_	_	_	_
Megistopoda aranea	Artibeus obscursus	6.27 X 10^4	_	_	Seq	_	_	_	_	_	_
Aspidoptera falcata	Sturnira lilium	4.01 X 10^4	_	_	NS	_	_	_	_	_	_
Trichobius joblingi	Carollia perspicillata	2.23 X 10^4	_	_	NS	_	_	_	_	_	_
Aspidoptera falcata	Sturnira lilium	1.93 X 10^4	_	_	NS	NS	_	_	_	_	_
Aspidoptera phyllostomatus	Artibeus fimbriatus	6.00 X 10^4	_	_	NS	_	_	_	_	_	_
Trichobius joblingi	Carollia perspicillata	2.26 X 10^4	_	_	NS	_	_	_	_	_	_
Strebla guajiro	Carollia perspicillata	1.72 X 10^4	Seq	_	_	_	_	_	_	_	_

ITS = intergenic transcriber spacer; NS = positive sample in cPCR but not sequenced due to the low intensity of amplified products; Seq = Sequences obtained and deposited in the GenBank database.

https://doi.org/10.1371/journal.pone.0198629.t002

Table 3. Maximum identity by Blast analysis of Bartonella and Rickettsia sequences detected in Streblidae flies collected from bats sampled in Rio de Janeiro state, Brazil.

GenBank accession number	Bat fly species	Host	Target gene	Query coverage	Closest GenBank Match
MG551538	Strebla guajiro	Carollia perspicillata	gltA	99%	98% Uncultured Bartonella sp. clone SJ112 (KJ816687)
MG65470	Strebla guajiro	Carollia perspicillata	gltA	88%	93% Uncultured Bartonella sp. clone SJ118 (KJ816665)
MG65471	Strebla guajiro	Carollia perspicillata	nuoG	100%	93% Bartonella alsatica (EF659935)
MG65472	Megistopoda aranea	Artibeus obscursus	nuoG	100%	93% Bartonella sp. WD16.2 (CP019781)
MG65473	Strebla guajiro	Carollia perspicillata	ribC	98%	84% Bartonella washoensis (AB292599)
MG65474	Strebla guajiro	Carollia perspicillata	rpoB	100%	89% Bartonella sp. Khabarovsk-17 (AB779537)
MG65475	Trichobius joblingi	Carollia perspicillata	gltA	100%	100% 'Candidatus Rickettsia andeanae' (KT153033)

https://doi.org/10.1371/journal.pone.0198629.t003
In another cluster, the **Bartonella** sequence (GenBank accession number MG65470) obtained in a *Strebla guajiro* specimen collected from *Carollia perspicillata* sampled in Rio de Janeiro state was closely positioned to a genotype previously detected in a specimen of *Trichobius* sp. fly collected in the Dominican Republic (JX416249), together with genotypes detected in bats in Mexico (MF467776) and Costa Rica (KJ816683; KJ816678; KJ816672), with branch support value of 86% probability in BI analysis. In addition, a larger clade grouped a *Bartonella* genotype (KY356754) detected in a specimen of *Glossophaga soricina* sampled in Parana, Brazil, and sequences previously detected in cervids and bovines, such as *B. capreoli* (AF293392), *B. schoenbuchii* (AJ278181) and *B. chomelii* (AY254308), with 55% clade support in the BI analysis (Fig 1).

The **Bartonella rpoB** sequence (GenBank accession number MG65474) obtained from a *M. aranea* specimen collected from *C. perspicillata* sampled in Rio de Janeiro state was closely related to a genotype detected in a bat (*S. lillium*) previously sampled in Paraná state, southern Brazil, with 100% of branch support. These two sequences were positioned in the same cluster formed by *Bartonella taylorii* (AF165995) and *Bartonella* genotypes detected in rodents (AB290276) and in a bat (*Myodes rufocanus*) (AB779537) from Asia, with a branch support of 93% of probability BI analysis (Fig 2).

The **Bartonella ribC** sequence (GenBank accession number MG65473) obtained from a *M. arennea* specimen collected from *C. perspicillata* sampled in Rio de Janeiro state was positioned alone in a branch by BI analysis, but closely related (74% of branch support) to *Bartonella triboorum* (AB292600), *Bartonella elizabethae* (AF548030), *Bartonella grahamii* (DQ334264), *Bartonella fuyuanensis* (KJ361648), and *Bartonella rattimassiliensis* (AY515137) (Fig 3).

The **Bartonella nuoG** sequences (GenBank accession numbers MG65471; MG65472) obtained from *Strebla guajiro* and *Megistopoda aranea* specimens collected from bats of the species *Carollia perspicillata* and *Artibeus obscurus*, respectively, in Rio de Janeiro state, were positioned in a single clade separated from the others described, with 92% clade support in BI analysis (Fig 4).

The **Rickettsia gltA** sequence obtained in a specimen of *Trichobius joblingi* collected from *C. perspicillata* sampled in Rio de Janeiro was closely related to a ‘*Candidatus Rickettsia andeanae*’ previously detected in *A. parvum* tick collected from a rodent in the wetlands of Pantanal, Brazil, with 99% with branch support of in ML analysis (Fig 5).

Discussion

Studies on bats and diseases caused by bacteria have increased worldwide due to the role of this mammal group as reservoirs, hosts, and sources of infection of several pathogens [92]. The present work reports the occurrence and molecular characterization of *Bartonella* spp. and *Rickettsia* spp. in Streblidae flies parasites of bats in two localities in Rio de Janeiro state, southeastern Brazil. Streblidae flies are strictly hematophagous ectoparasites of bats, with usually high specificity for hosts. The Streblidae fly species usually parasites a single bat species or some closely related species [3,93,94], such parasitism pattern was also observed in the present study, in which a certain Streblidae species was found parasitizing no more than two different bat species belonging to the same genus or family.

Furthermore, *Bartonella* occurrence was lower in Streblidae flies (19.8% [41/202]) compared to the 66.4% (91/137) in Nycteribiidae flies collected from bats in Ghana [94], 41.7% (10/24) in Nigeria [18], and 72.7% (8/11) in Algeria [27]. Additionally, the prevalence of Streblidae flies collected from bats in this study was lower than that found in Costa Rica 51.8% (29/55) [22] but similar to that found in Nycteribiidae flies in Malaysia 26% (12/42) [48].
In this study, the occurrence of *Rickettsia* spp. was lower in Streblidae flies (0.49%) compared to *Trichobius major* flies collected in bats in the USA (1.16%) [47], and *Eucampsipoda madagascarensis* (5.5%) and *Penicillidia leptothrinax* (15.3%) sampled in Malaysia [48]. In South Africa and Swaziland, all 5 Nycteribiidae flies of the genus *Eucampsipoda* sampled were negative for *Rickettsia* spp. [28]. Nycteribiidae flies sampled in Algeria [27] and Streblidae flies in the islands of Saint Kitts, Galapagos, were negative for *Rickettsia* spp. [40].

Although the real role of Streblidae flies in the transmission of *Bartonella* spp. has not yet been confirmed, previous studies suggest that these dipterans may play an important role as invertebrate hosts for this group of pathogens, harboring a large diversity of *Bartonella* genotypes [11]. In the present study, two different *Bartonella* genotypes were observed in two *Strebla guajiro* specimens of the same Streblidae species, both collected from bats of the species *Carollia perspicillata*, which were placed in different clades in the phylogeny based on the *gltA* gene.

The *Bartonella* spp. was observed especially in Streblidae flies collected from bats of the species *Carollia perspicillata* and *Sturnira lilium*, which have been previously recognized as hosts of the new *Bartonella* genotypes in Brazil [30]. However, a previous study with bats in Brazil reported the occurrence of *Bartonella* spp. (5.28%) lower than that found in this study (19.8%). This result corroborates the hypothesis that hemoconcentration occurs in the digestive tract of arthropods, which could improve the molecular diagnosis sensitivity of *Bartonella*. Thus, molecular assays performed on arthropods collected from hosts could reflect a more sensitive epidemiological model [95].

Recent studies with species of Nycteribiidae flies collected from bats in Madagascar aimed to relate bacterial ecology, transmission routes and host-vector specificity [48]. According to Wilkinson et al. [48], certain *Bartonella* genotypes and Nycteribiidae fly species may form mutualistic interactions, which may lead to host specificity. In the aforementioned study, although the found *Bartonella* genotypes were allocated in five different groups, an interchange of *Bartonella* genotypes was observed between *Cyclopodia dubia* and *Basilia* sp., Nycteribiidae flies that did not share the same bat species as hosts. The authors have suggested the existence of direct or indirect mechanisms among the vertebrate hosts that could lead to the intra-specific diversity of *Bartonella* observed in this family of ectoparasites [48]. Similarly, in this study, the phylogeny based on *gltA* gene showed that the *Bartonella* genotype detected in the *Strebla guajiro* specimen collected from *Carollia perspicillata* was closely related to a *Bartonella* genotype detected in a specimen of *Trichobius* sp. collected from *Phyllonycteris poeyi*, a bat species restrictedly distributed in Central America [96]. Therefore, Streblidae flies could act as interchangers of different *Bartonella* genotypes among their vertebrate hosts, leading to intra-specific diversity.

In conclusion, the phylogenetic inference based on *gltA* sequences also demonstrated that one of the *Bartonella* genotypes detected in a *S. guajiro* specimen collected from *C. perspicillata* was closely related to *Bartonella* genotypes previously detected in bats from Latin America. Additionally, this same *Bartonella* genotype also clustered with sequences previously detected in rodents sampled in the USA [97] and Brazil [98]. Similarly, the phylogenetic inference based on *rpoB* sequences also demonstrated that one *Bartonella* genotype detected in a *S. guajiro* specimen collected from *C. perspicillata* was closely related to *Bartonella* genotypes previously detected in bats from Brazil and Japan, and to *Bartonella* sp. detected in rodents from...
Fig 2. Phylogenetic analysis of Bartonella rpoB sequences (800 pb) based on the Bayesian Inference method (BI) with the TPM2u+I+G4 model. The numbers at the nodes correspond to bootstrap values with 1,000 replicates. Brucella abortus and Ochrobactrum anthropi were used as outgroups.

https://doi.org/10.1371/journal.pone.0198629.g002
Japan. From an evolutionary point of view, this phylogenetic positioning may suggest an association between \textit{Bartonella} genotypes that circulate in rodents and bats, although there are no reports of parasitism by Streblidae flies in rodents \cite{12}. Dietrich et al. \cite{28} reports that
Bartonella genotypes found in bats in South Africa and Swaziland also clustered with those detected in rodents sampled in Africa, with a low clade support.

The phylogenetic inference based on the gltA gene also showed a relationship between Bartonella genotypes detected in Strebidae and bats in Latin America with Bartonella species found in ruminants. Previously, a Bartonella genotype detected in a Carollia perspicilata specimen was closely related to a clade containing sequences of B. chomelli and B. schoenbuchensis, also isolated from ruminants, in a phylogenetic analysis based on the ftsZ gene [30].

Although with low clade support, Rickettsia genotypes detected in bats in South Africa and Swaziland were previously grouped with Rickettsia conorii [28], the causative agent of Mediterranean spotted fever [99] that has recently been detected in Rhipicephalus sanguineus ticks collected from rodents in Nigeria [100]. Similarly, the Rickettsia genotype detected in a Trichobius joblingi specimen collected from C. perspicillata in this study was phylogenetically related to the 'Candidatus Rickettsia andenae' detected in a Amblyomma parvum tick found parasitizing a rodent trapped in the Brazilian Pantanal [101]. A. parvum is a tick species that parasitizes several
mammal species during its life cycle while the adult tick parasitizes mainly medium and large mammals (ruminants, equids, and carnivores), the larva and nymph are frequently found in small animals [102]. ‘Candidatus Rickettsia andeanae’, whose zoonotic potential remains unknown [103], has been reported infecting ticks in Peru (Amblyomma maculatum and Ixodes bolivensis), Argentina (A. parvum) [104], and Paraguay (A. parvum) [105]. This agent was also detected in A. parvum collected from horses in the Pantanal biome in Brazil [103], in A. parvum and Amblyomma auricularium collected from horses and Turdas amaurochalinus in Northeast Brazil [103], and in Amblyomma sculptum collected from a wild animal in Mato Grosso, in central-western Brazil [106; 107]. More recently, ‘Candidatus Rickettsia andeanae’ was detected in A. parvum ticks collected from rodents in the wetlands of Pantanal, Brazil [101].

Although the occurrence of Bartonella and Rickettsia has not been previously reported in mites of the family Spinturnicidae, Bartonella spp. and Rickettsia have been molecularly detected in Macronyssidae mites collected from rodents in Egypt [42]. In the aforementioned study, BLAST analysis showed 81% identity with Bartonella sp. SE-BartB detected in a flea in Egypt. Regarding Rickettsia, the genotypes obtained in the study showed 100% identity with those previously detected in fleas in the U.S. and Egypt [108; 109]. However, the possible role of Macronyssidae and Spinturnicidae mites acting as reservoirs and vectors of Bartonella spp. and Rickettsia spp. among bats is still unknown.

Even though bat ectoparasites (flies, fleas, and mites) have not been found parasitizing rodents so far, the hypothesis of ticks parasitizing both mammal groups due to their low specificity in relation to their hosts, cannot be ruled out considering the high specificity between these arthropods and bats [3; 4; 93]. Ornithodoros mimon, an Argasid tick species described parasitizing bats in South America [110; 111; 112], has already been found in rodents in Brazil [113]. Landulfo et al. [114] simulated the life cycle of this tick species in laboratory conditions, using rabbits and rodents as hosts. The authors found a feeding pattern of O. mimon larval stage similar to that found in bats, demonstrating that this tick species can parasitize both rodents and bats. In addition, the occurrence of rodent ectoparasites in bats cannot be ruled out. This fact could explain the phylogenetic association between Bartonella and Rickettsia genotypes found in bats and rodents. The parasitism of bats by immature stages of A. parvum infected with ‘Candidatus Rickettsia andeanae’, for example, could explain the occurrence of this Rickettsia species in Streblidae flies. Mutual association between bats and rodents in the same habitat, such as caves, could provide ecological opportunities for exposure and sharing various ectoparasites and pathogens [48].

Finally, it is highlighted that the Bartonella genotypes detected in bat ectoparasites in this study were closely related to those previously detected in rodents and bats in Brazil [29; 96]; additionally, the detected Rickettsia genotype was shown to be closely related to ‘Candidatus Rickettsia andeanae’ detected in a tick collected from a rodent in Brazil. In addition, further studies on the vector capacity of Streblidae dipterans in the transmission of Bartonella and Rickettsia among bats are needed, since 75% of emerging infectious diseases comprises zoonosis, and most of them are transmitted by arthropod vectors [115]. The increase of ecotourism in caves in Brazil associated with the fact that 47% of bat species diversity is found in urban areas [2] emphasize the need of further studies on bacterial zoonotic agents circulating in bats and ectoparasites.

Finally, the results of this study raise an interesting question about the phylogenetic relationship between the Bartonella spp. genotypes found in Streblidae flies according to the

Fig 5. Phylogenetic analysis of Rickettsia gltA sequences (401 bp) based on the Maximum Likelihood (ML) method with the TIM+I+G4 model. The numbers at the nodes correspond to bootstrap values accessed with 1,000 replicates. Rickettsia prowazekii were used as outgroups.

https://doi.org/10.1371/journal.pone.0198629.g005
criteria defining a cut-off point for the Bartonella species based on the sequence identity of five gene regions (16S rRNA, gltA, groEL, rpoB, ftsZ, ribC) and of 16S-23S Intergenic spacer (ITS) previously established by La Scola et al. [116]. The low identity of the sequences with others previously described in GenBank allows suggesting that the genotypes found belong to a new Bartonella species circulating in bat ectoparasites, but phylogenetically close to those found in bats, rodents and ruminants.

To the best of authors’ knowledge, the present work presents the first evidence of Bartonella and Rickettsia DNA in Streblidae flies collected from bats in Brazil. Future studies to evaluate the role of Streblidae flies as vectors for bacterial zoonotic agents in bats are desirable.

Author Contributions
Conceptualization: Renan Bressianini do Amaral, Marcos Rogério André.

Data curation: Renan Bressianini do Amaral.

Formal analysis: Renan Bressianini do Amaral.

Funding acquisition: Marcos Rogério André.

Investigation: Renan Bressianini do Amaral, Marcos Rogério André.

Methodology: Renan Bressianini do Amaral, Elizabete Captivo Lourenço, Kátia Maria Famadas, Amanda Barbosa Garcia.

Project administration: Marcos Rogério André.

Supervision: Marcos Rogério André.

Writing – original draft: Renan Bressianini do Amaral, Marcos Rogério André.

Writing – review & editing: Kátia Maria Famadas, Rosangela Zacarias Machado, Marcos Rogério André.

References
1. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V et al. The Status of the World’s Land and Marine Mammals: Diversity, Threat, and Knowledge. Science. 2008; 322: 255–230. https://doi.org/10.1126/science.1159973
2. Nunes H, Rocha FL, Estrela P. Bats in urban areas of Brazil: food resources and parasites in disturbed environment. Urb Ecosys. 2017: 20(4):953–969. https://doi.org/10.1007/s11252-016-0832-3
3. Wenzel RL The Streblid bat flies of Venezuela (Diptera: Streblidae). Brigham Young Univ sci bull. 1976; 20: 1–177.
4. Dick CW, Gettinger D. A faunal survey of Streblid flies (Diptera: Streblidae) associated with bats in Paraguay. J Parasitol. 2005, 91: 1015–1024. https://doi.org/10.1645/GE-536R.1 PMID: 16419742
5. Dick C. W. & Miller J. Streblidae (bat flies), p. 1249–1260. In: Brown B. V.; Borkent A; Cumming J. M.; Wood D. M., Woodley N. E.& Zumbado M. A. (eds.). Manual of Central American Diptera, Vol 2. Ottawa, NRC Research Press, 2010. xi+1442 p.
6. Petersen FT, Meier R, Kutty SN, Wiegmann BM. The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Molecular Phylogenetics and Evolution. Mol Phylogenet Evol. 2007; 45(1):111–22. https://doi.org/10.1016/j.ympev.2007.04.023 PMID: 17583536
7. Kutty SN, Pape T. Wiegmann BM; Meier R. Molecular phylogeny of the calypratae (Diptera: Cyclorrhapha) with an emphasis on the superfamily oestroidea and the position of mystacinoebiidae and mcalpinia-ne’s flies. Sist entomol. 2010; 35:614–635. https://doi.org/10.1111/j.1365-3113.2010.00936.x
8. Dittmar K, Morse S, Dick C, Patterson B. Bat fly evolution from the Eocene to the Present (Hippoboscoidea,Streblidae and Nycetobiidae). Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics 2015. 246–264. https://doi.org/10.1017/CBO9781139794749.017
9. Lord CC, Tabachnick WJ. Influence of nonsystemic transmission on the epidemiology of insect borne arboviruses: a case study of vesicular stomatitis epidemiology in the western United States. J Med Entomol. 2002; 39(3):176–26. PMID: 12061433

10. Barker EW. & Wharton G.W. An Introduction to Acarology. The Macmillan Company, New York. 1952.

11. Radovsky RJ. Revision of the macronyssid and laelapid mites of bats: outline of classification with descriptions of new genera and new type species. J Med Entomol. 1966 Apr 3(1):93–9. PMID: 5941572

12. Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol. 2012; 12: 1717–1723. https://doi.org/10.1016/j.meegid.2012.06.009 PMID: 22771358

13. Chomel BB, Boulouis HJ, Breitschwerdt EB, Kasten RW, Vayssier-Taussat M, Birtles RJ, et al. Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res. 2009; 40(2):29. https://doi.org/10.1051/vetres/2009011 PMID: 19284965

14. Harms A, Dehio C. Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin Microbiol Rev. 2012 Jan; 25(1):42–78. https://doi.org/10.1128/CMR.05009-11 PMID: 22232371

15. Concannon R, Wynn-Owen K, Simpson VR, Birtles RJ Molecular characterisation of haemoparasites infecting bats (Microchiroptera) in Cornwall, UK. Parasitology 2005; 131:489–496. https://doi.org/10.1017/S0031182005008097 PMID: 16174413

16. Kosoy M, Bai Y, Lynch T, Kuzmin IV, Niezgoda M, Franka R, et al. Bartonella spp. in bats, Kenya. Emerg Infect Dis. 2010; 16: 1875–1881. https://doi.org/10.3201/eid1612.100601 PMID: 21122216

17. Lin JW, Hsu YM, Chomel BB, Lin LK, Pei JC, Wu SH, et al. Identification of novel Bartonella spp. in bats and evidence of Asian gray shrew as a new potential reservoir of Bartonella. Vet Microbiol. 2012; 156:119–126. https://doi.org/10.1016/j.vetmic.2011.09.031 PMID: 22050177

18. Bai Y, Recuenco S, Gilbert AT, Osikowicz LM, Gómez J, Rupprecht C, et al. Prevalence and diversity of Bartonella spp. in bats in Peru. Am J Trop Med Hyg. 2012; 87:518–523. https://doi.org/10.4269/ajtmh.2012.12-0097 PMID: 22826480

19. Kamani J, Baneth G, Mitchell M, Mumcuoglu KY, Gutiérrrez R, Harrus S. Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West Africa. Vector Borne Zoonotic Dis. 2014; 14:625–32. https://doi.org/10.1089/vbz.2013.1541 PMID: 25229701

20. Olival KJ, Dittmar K, Bai Y, Rostal MK, Lei BR, Daszak P, Kosoy M. Bartonella spp. in a Puerto Rican bat community. J Wildl Dis. 2015; 51: 274–278. https://doi.org/10.7589/2014-04-113 PMID: 25380361

21. Lilley TM, Veikkoilainen V, Puliliainen AT. Molecular detection of ‘Candidatus Bartonella hensudentensis’ in bats. Vector-borne and Zoonotic Dis. 2015; 15:706–708. https://doi.org/10.1089/vbz.2015.1783 PMID: 26501463

22. Brook CE, Bai Y, Dobson AP, Osikowicz LM, Ranaivoson HC, Zhu Q, et al. Bartonella spp. in fruit bats and blood-feeding ectoparasites in Madagascar. PLoS Negl Trop Dis. 2015; 23; 9(2):e0003532. https://doi.org/10.1371/journal.pntd.0003532 PMID: 25706653

23. Judson SD, Frank HK, Hadly EA. Bartonelae are Prevalent and Diverse in Costa Rican Bats and Bat Flies. Zoonoses Public Health 2015; 62:609–617. https://doi.org/10.1111/zph.12188 PMID: 25810119

24. Bai Y, Kosoy M, Recuenco S, Alvarez D, Moran D, Turmelle A, et al. Bartonella spp. in bats, Guatemala. Emerg Infect Dis. 2011; 17(7):1269–72. https://doi.org/10.3201/eid1707.101867 PMID: 21762584

25. Wray AK, Olival KJ, Morán D, Lopez MR, Alvarez D, Navarrete-Macias I, et al. Viral Diversity, Prey Preference, and Bartonella Prevalence in Desmodus rotundus in Guatemala. EcoHealth. 2016; 13 (4):761–774. https://doi.org/10.1007/s10393-016-1183-z PMID: 27660213

26. Davoust B, Marié JL, Dahmani M, Berenger JM, Bompar JM, Blanchet D, et al. Evidence of Bartonella spp. in blood and ticks (Omphilodorus hasel) of Bats, in French Guiana. Vector-Borne and Zoonotic Dis. 2016; 16:516–519. https://doi.org/10.1089/vbz.2015

27. Mannerings AO, Osikowicz LM, Restif O, Nyarko E, Suu-Irê R, Cunningham AA, et al. Exposure to bat-associated Bartonella spp. among humans and other animals, Ghana. Emerg Infect Dis. 2016; 22:922–924. https://doi.org/10.3201/eid2205.151908 PMID: 27688812

28. Leulmi H, Aouadi A, Bitam I, Bessas A, Benakhla A, Raoult D, et al. Detection of Bartonella tannae, Coxielia burnetii and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria. Parasit Vectors. 2016; 20; 9:27. https://doi.org/10.1186/s13071-016-1316-9 PMID: 26791781

29. Dietrich M, Tjale MA, Weyer J, Kearney T, Seamark EC, Nel LH, et al. Diversity of Bartonella and Rickettsia spp. in bats and their blood-feeding ectoparasites from South Africa and Swaziland. PLoS One. 2016; 21; 11(3):e0152077. https://doi.org/10.1371/journal.pone.0152077 PMID: 26999518
30. Ikeda P, Seki MC, Carrasco AOT, Rudiak LV, Miranda JMD, Gonçalves SMM, et al. Evidence and molecular characterization of *Bartonella* spp. and hemoplasmas in neotropical bats in Brazil. Epidemiol Infect. 2017; 145(10):2038–2052. https://doi.org/10.1017/S0950268817000966 PMID: 28502279

31. Stuckey MJ, Chomel BB, Galvez-Romero G, Olave-Leyva JI, Obregón-Morales C, Moreno-Sandoval H, et al. *Bartonella* infection in hematophagous, insectivorous, and phytaphagous bat populations of Central Mexico and the Yucatan Peninsula. Am J Trop Med Hyg. 2017b. 97(2):413–422. https://doi.org/10.4269/ajtmh.16-0680 PMID: 28722567

32. Reeves WK, Loftis AD, Gore JA, Dasch GA. Molecular evidence for novel *Bartonella* species in *Trichobius major* (Diptera: Streblidae) and *Cimex adjunctus* (Hemiptera: Cimicidae) from two southeastern bat caves, U.S.A. J Vector Ecol. 2005; 30(2):339–41. PMID: 16599175

33. Lin EY, Tsigreli C, Baddour LM, Lepidi H, Rolain JM, Patel R, et al. "*Candidatus* Bartonella mayotimonensis" and endocarditis. Emerg Infect Dis. 2010. 16(3):500–3. https://doi.org/10.3201/eid1603.081673 PMID: 20202430

34. Veikolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT. Bats as reservoir hosts of human bacterial pathogen, *Bartonella mayotimonensis*. Emerg Infect Dis. 2014. 20(6):960–7. https://doi.org/10.3201/eid2006.130956 PMID: 24856523

35. Stuckey MJ, Boulouis HJ, Cliquet F, Picard-Meyer E, Servat A, Aréchiga-Cevallos N, et al. Potentially Zoonotic *Bartonella* in Bats from France and Spain. Emerg Infect Dis. 2017a; 23(3):539–541. https://doi.org/10.3201/eid2303.160934 PMID: 28221109

36. Lilley TM, Wilson CA, Bernard RF, Willcox EV, Vesterinen EJ, Webber QM, et al. Molecular Detection of *Candidatus* Bartonella mayotimonensis from bats in North American Bats. Vector Borne Zoonotic Dis. 2017. 17(4):243–246. https://doi.org/10.1089/vbz.2016.2080 PMID: 28169295

37. Leulmi H, Aouadi A, Bitam I, Bessas A, Benakhla A, Raoult D, Parola P. Detection of *Bartonella tamiae*, *Coxiella burnetii* and rickettsiae in arthropods and tissues from wild and domestic animals in northeastern Algeria. Parasit Vectors. 2016 Jan 20; 9:27. https://doi.org/10.1186/s13071-016-1316-9 PMID: 26791781

38. Reeves WK, Streicker DG, Loftis AD, Dasch GA. Serologic survey of *Eptesicus fuscus* from Georgia, U.S.A. for *Rickettsia* and *Borrelia* and laboratory transmission of a *Rickettsia* by bat ticks. J Vector Ecol. 2006; 31(2):386–9. PMID: 17249357

39. Reeves WK, Beck J, Orlova MV, Daly JL, Pippin K, Revan F, Loftis AD. Ecology of Bats, Their Ectoparasites, and Associated Pathogens on Saint Kitts Island. J Med Entomol. 2016; pii: tjw078. https://doi.org/10.4269/ajtmh.16-0680 PMID: 28722567

40. Bartonella and Rickettsia in bat ectoparasites in Brazil

40. Lack JB, Nichols RD, Wilson GM, Van Den Bussche RA. J Hered. Genetic signature of reproductive manipulation in the phylogeography of the bat fly, *Trichobius major*: 2011. 102(6):705–18. https://doi.org/10.1093/hered/esr090 PMID: 21896840

41. Wilkinson DA, Duron O, Cordon C, Gomard Y, Ramasindrazana B, Mavingui P, et al. The bacteriome of Bat Flies (Nycteribiidae) from the Malagasy region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Appl Environ Microbiol. 2016; 8; 82(6):1778–88. https://doi.org/10.1128/AEM.03505-15 PMID: 26746715
49. Gardner AL. Order Chiroptera Blumenbach, 1779. In: GARDNER A.L (eds) Mammals of South America, vol. 1: marsupials, xenarthrans, shrews, and bats. Chicago: The University of Chicago press; 2007. pp. 187–484.

50. DIAS D.; PERACCHI A.L. Quirópteros da Reserva Biológica do Tinguá, Estado do Rio de Janeiro, sudeste do Brasil (Mammalia: Chiroptera). Revista Brasileira de Zoologia. 2008; 25(2): 333–369.

51. Wenzel RL, Tipton VJ, Kiewicz A. The streblid batflies of Panama (Diptera: Calyptrera: Streblidae). In: Wenzel RL, Tipton VJ. Ectoparasites of Natural History. Chicago: Field Museum of Natural History; 1966; pp. 405–675.

52. Guerrero R. Catálogo de los Streblidae (Diptera: Pupípara) parasitos de murciélagos (Mammalia: Chiroptera) del nuevo mundo II. Los grupos: palillus, caecus, major, uniformis y longipes del género Trichobius Gervais, 1844. Acta Biologica Venezuelica, 1994; 15:1–18.

53. Guerrero R. Catálogo de los Streblidae (Diptera: Pupípara) parasitos de murciélagos (Mammalia: Chiroptera) del nuevo mundo VI. Streblinae. Acta Biologica Venezuelica. 1995; 15:1–27.

54. Redondo RAF, Brina LPS, Silva RF, Ditchfield AD, Santos FR. Molecular systematics of the genus Artibeus (Chiroptera: Phyllostomidae). Mol Phylogenet Evol. 2008; 49(1):44–58. https://doi.org/10.1016/j.ympev.2008.07.001 PMID: 18662791

55. Miller J, tschapka M. The bat flies of La Selva (Diptera : Nycteribiidae, Streblidae). Washington: Systematic Entomology Lab, 2001. Available from: http://www.biologie.uni-ulm.de/bio3/Battlefly/about.html.

56. Graciolli G, Carvalho CJB. Moscas ectoparasitas (Diptera: Hippoboscoidae) de morcegos (Mammalia: Chiroptera) do estado do Paraná. II. Streblidae. Chave pictórica para géneros e espécies. Revista Brasileira de Zoologia. 2001; 1(3):907–960.

57. Millar J, tschapka M. The bat flies of La Selva (Diptera : Nycteribiidae, Streblidae). Washington: Systematic Entomology Lab, 2001. Available from: http://www.biologie.uni-ulm.de/bio3/Battlefly/about.html.

58. Dick CW, Graciolli G. Checklist of world Streblidae (Diptera: Hippoboscoidae). Nation Science Foundation, 7p, 2006. Available from: http://fm1.fieldmuseum.org/aa/Files/Streblidae_Checklist_1Jul08.pdf;Graciolli.

59. Redondo RAF, Brina LPS, Silva RF, Ditchfield AD, Santos FR. Molecular systematics of the genus Artibeus (Chiroptera: Phyllostomidae). Mol Phylogenet Evol. 2008; 49(1):44–58. https://doi.org/10.1016/j.ympev.2008.07.001 PMID: 18662791

60. Solarz S, Hooper SR, Larsen PA, Brown AD, Bull RJ, Guerrero JA, et al. Operational criteria for genetically defined species: analysis of the diversification of the small fruit-eating bats, Dermanura (Phyllostomidae: Stenodermatinae). Acta Chiropterologica. 2009; 11(2): 279–288.

61. Machado-allison CE. Las especies venezolanas del género Periglisc herus Kolenati 1857 (Acarina: Mesostigmata, Spinturnicidae). Acta Biologica Venezuelica. 1965 4: 259–348.

62. Furman O, Black M, Hoeh W, Lutz R, Vrijenhoeck R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3(5):294–9. PMID: 7881515

63. Colborn JM, Kosoy MY, Motin VL, Telepnev MV, Valbuena G, Myint KS, et al. Improved detection of Bartonella DNA in mammalian hosts and arthropod vectors by real-time PCR using the NADH dehydrogenase gamma subunit (nuoG) for Bartonella species in domiciled and stray cats in Brazil. J Feline Med Surg. 2015; 18:783–790. https://doi.org/10.1177/1098612115593787 PMID: 26138812

64. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55(4):611–22. https://doi.org/10.1373/clinchem.2008.112797 PMID: 19246619

65. Colborn JM, Kosoy MY, Motin VL, Telepnev MV, Valbuena G, Myint KS, et al. Improved detection of Bartonella DNA in mammalian hosts and arthropod vectors by real-time PCR using the NADH dehydrogenase gamma subunit (nuoG). J Clin Microbiol. 2010; 48:4630–4633. https://doi.org/10.1128/JCM.00470-10 PMID: 20926707

66. Johnson G, Ayers M, McClure SC, Richardson SE, Tellier R. Detection and identification of Bartonella species pathogenic for humans by PCR amplification targeting the riboflavin synthase gene (ribC). J Clin Microbiol. 2003; 41:1069–1072. https://doi.org/10.1128/JCM.41.3.1069-1072.2003 PMID: 12624031

67. Norman AF, Regnery R, Jameson P, Greene C, Krause DC. Differentiation of Bartonella-like isolates at the species level by PCR restriction fragment length polymorphism in the citrate synthase gene. J Clin Microbiol. 1995; 33:1797–1803. PMID: 7545181
70. Paziewska A, Harris PD, Zwolinska L, Bajer A, Sinski E. Recombination within and between species of the alpha proteobacterium *Bartonella* infecting rodents. Microb Ecol. 2011; 61:134–145. https://doi.org/10.1007/s00248-010-9738-1 PMID: 20740281

71. Maggi RG, Breitschwerdt EB. Potential limitations of the 16S-23S rRNA intergenic region for molecular detection of *Bartonella* species. J Clin Microbiol. 2005; 43:1171–1176. https://doi.org/10.1128/JCM.43.3.1171-1176.2005 PMID: 15750079

72. Zeaiter Z, Fournier PE, Ogata H, Raoult D. Phylogenetic classification of *Bartonella* species by comparing groEL sequences. Int J Syst Evol Microbiol. 2002; 52:165–171. https://doi.org/10.1099/00207713-52-1-165 PMID: 11837299

73. Maggi RG, Breitschwerdt EB. Isolation of bacteriophages from *Bartonella vinsonii* subsp. *berkhoffii* and the characterization of *pap*-31 gene sequences from bacterial and phage DNA. J Mol Microbiol Biotechnol. 2005; 9:44–51. https://doi.org/10.1159/000088145 PMID: 16254445

74. Labruna MB, McBride JW, Bouyer DH, Camargo LM, Camargo EP, Walker DH. Molecular evidence for a spotted fever group *Rickettsia* species in the tick *Amblyomma longirostre* in Brazil. J Med Entomol. 2004; 41(3):533–7. PMID: 15185961

75. Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of Intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991; 173(5):1576–89. PMID: 1671856

76. Roux V, Raoult D. Phylogenetic analysis of members of the genus *Rickettsia* using the gene encoding the outer-membrane protein rOmpB (*ompB*). Int J Syst Evol Microbiol. 2000. 50 Pt 4:1449–55. https://doi.org/10.1603/ME14042

77. Labruna MB, Whitworth T, Bouyer DH, McBride J, Camargo LM, Camargo EP, et al. *Rickettsia bellii* and *Rickettsia amblyommii* in *Amblyomma* ticks from the state of Rondônia, Western Amazon, Brazil. J Med Entomol. 2004. 41(6):1073–81. PMID: 15605647

78. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci U S A. 1977; 74(12):5463–7. PMID: 271968

79. Ewing GB, Green P. Base calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998; 8:186–194. https://doi.org/10.1101/gr.8.3.186 PMID: 9521922

80. Ewing B, Hillier L, Wendel M, Green P. Base calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 1998; 8:175–185. https://doi.org/10.1101/gr.8.3.175 PMID: 9521921

81. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

82. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman D, Ostell J et al. GenBank. Nucleic Acids Research 1996; 24:20–26. https://doi.org/10.1093/nar/24.1.20

83. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

84. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenies. Proceedings of the Gateway Computing Environments Workshop (GCE). 2010. pp. 01–08.

85. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180 PMID: 12912839

86. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). 2010. pp. 01–08.

87. Trifinopoulos J, Nguyen LT, Von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016; 8; 44(W1):W232–5. https://doi.org/10.1093/nar/gkw256 PMID: 27084950

88. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015; 32(1):266–74. https://doi.org/10.1093/molbev/msu300 PMID: 25371430

89. Darriba D, Taboada GL, Doallo R, Posada D. ModelTest 2: more models, new heuristics and parallel computing. Nature Methods 2012; 9:772. https://doi.org/10.1038/nmeth.2109 PMID: 22947109

90. Posada D, Buckley TR. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests. Syst Biol. 2004; 53:793–808. https://doi.org/10.1080/1063515049022304 PMID: 15545256

91. Stover BC, Muller KP. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 2010; 11:01–09. https://doi.org/10.1186/1471-2105-11-7 PMID: 20561128
92. Mühldorfer K. Bats and bacterial pathogens: a review. Zoonoses Public Health. 2013; 60(1):93–103. https://doi.org/10.1111/1863-2378.2012.01536.x PMID: 22862791

93. Dick CW, Patterson BD. Bat flies: Obligate ectoparasites of bats. In: Micromammals and Macroparasites: from evolutionary ecology to management. Springer-Verlag Publishing. 2006. pp. 647.

94. Billetter SA, Hayman DT, Peel AJ, Baker K, Wood JL, Cunningham A, et al. Bartonella species in bat flies (Diptera: Nycteribiidae) from western Africa Parasitology. 2012; 139(3):324–9. https://doi.org/10.1017/S0031182011002113 PMID: 22309510

95. de Sousa KCM, do Amaral RB, Herrera HM, Santos FM, Macedo GC, de Andrade PCE, Barroso-Battesti DM, Machado RZ, André MR. Genetic Diversity of Bartonella spp. in wild mammals and ectoparasites in Brazilian Pantanal. Microb Ecol. 2018 Jan 8. https://doi.org/10.1007/s00248-017-1138-0 PMID: 29313064

96. Mancina CA. “Phyllonycteris poeyi (Chiroptera: Phyllostomidae)”. Mammalian Species. 2010; 42 (852):41–48.

97. Ellis BA, Regnery RL, Beati L, Bacellar F, Rood M, Glass GG, et al. Rats of the genus Rattus are reservoir hosts for pathogenic Bartonella species: an Old World origin for a New World disease? J Infect Dis. 1999; 180(1):220–4. https://doi.org/10.1086/314824 PMID: 10353885

98. Gonçalves LR, Favacho AR, Roque AL, Mendes NS, Fidelis Junior OL, Benevenute JL, et al. Association of Bartonella Species with Wild and Synanthropic Rodents in Different Brazilian Biomes. Appl Environ Microbiol. 2016; 82(24):7154–7164. https://doi.org/10.1128/AEM.02447-16 PMID: 27736785

99. Harrus S, Lior Y, Ephros M, Grisaru-Soen G, Keysary A, Strenger C, et al. Rickettsia conorii in humans and dogs: a seroepidemiologic survey of two rural villages in Israel. Am J Trop Med Hyg. 2007; 77 (1):133–5. PMID: 17620644

100. Kamani J, Baneth G, Gutiérrez R, Nachum-Biala Y, Mumcuoglu KY, Harrus S. Coxiella burnetii and Rickettsia conorii: Two zoonotic pathogens in peridomestic rodents and their ectoparasites in Nigeria. Ticks Tick Borne Dis. 2017; 9(1):86–92. https://doi.org/10.1016/j.ttbdis.2017.04.004 PMID: 29042240

101. de Sousa KCM, Herrera HM, Rocha FL, Costa FB, Martins TF, Labruna MB, et al. Rickettsia spp. among wild mammals and their respective ectoparasites in Pantanal wetland, Brazil. Ticks Tick Borne Dis. 2018; 9(1):10–17. https://doi.org/10.1016/j.ttbdis.2017.10.015 PMID: 29111373

102. Nieri-Bastos FA, Lopes MG, Cançado PH, Rossa GA, Facchin JL, Gennari SM, et al. ‘Candidatus Rickettsia andei’, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes. Mem Inst Oswaldo Cruz. 2014; 109(2):259–61. https://doi.org/10.1590/0074-027620130283 PMID: 24714968

103. Ferrari FA, Goddard J, Moraru GM, Smith WE, Varela-Stokes AS. Isolation of ‘Candidatus Rickettsia andei’ (Rickettsiaceae: Rickettsiaceae) inembryonic cells of naturally infected Amblyomma maculatum (Ixodida: Ixodidae). J. Med. Entomol. 2013; 50(5):1118–1125. https://doi.org/10.1603/ME13010 PMID: 24180118

104. Pacheco RC, Moraes-Filho J, Nava S, Brandão PE, Richtzenhain LJ, Labruna MB. Detection of a novel spotted fever group rickettsia in Amblyomma parvum ticks (Acari: Ixodidae) from Argentina. Exp Appl Acarol. 2007; 43(1):63–71. https://doi.org/10.1007/s10493-007-9099-5 PMID: 17768597

105. Ogrezewalska M, Literak I, Martins TF, Labruna MB. Rickettsial infections in ticks from wild birds in Paraguay. Ticks Tick Borne Dis. 2014; 5(2):83–9. https://doi.org/10.1016/j.ttbdis.2013.08.004 PMID: 24231270

106. Lugarini C, Martins TF, Ogrezewalska M, de Vasconcelos NC, Ellis VA, de Oliveira JB, et al. Rickettsial agents in avian ixodid ticks in northeast Brazil. Ticks Tick Borne Dis. 2015. 6(3):364–75. https://doi.org/10.3109/21691401.2015.1021119 PMID: 25800099

107. Witter R, Martins TF, Campos AK, Melo AL, Correa SH, Morgado TO, et al. Rickettsial infection in ticks (Acari: Ixodidae) of wild animals in midwestern Brazil. Ticks Tick Borne Dis. 2016. 7(3):415–23. https://doi.org/10.1016/j.ttbdis.2015.12.019 PMID: 26775021

108. Reeves WK, Nelder MP, Korecky J. Bartonella and Rickettsia in fleas and lice from mammals in South Carolina, USA. J Vector Ecol. 2005 30:310–315. PMID: 16599169

109. Loftis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM, Moriarity JR, Dasch GA. Surveillance of Egyptian fleas for agents of public health significance: Anaplasma, Bartonella, Coxiella, Ehrlichia, Rickettsia, and Yersinia pestis. Am J Trop Med Hyg. 2006 75:41–48. PMID: 16837707

110. Kohls GM, Clifford CM, Jones EK. The systematics of the subfamily Ornithodorinae (Acarina: Argasidae). IV. Eight new species of Ornithodoros from the Western Hemisphere. Ann Entomol Soc Am. 1969 62:1035–1043.

111. Venzal JM, Autino AG, Nava S, Guglielmone AA. Ornithodoros mimon Kohls, Clifford & Jones, 1969 (Acari: Argasidae) on Argentinean bats, and new records from Uruguay. Syst Appl Acarol. 2004 9:37–39.
112. Gracioli G, Azevedo AA, Arzua M, Barros-Bat testi DM, Linardi PM. Artrópodes ectoparasitos de morcegos no Brasil. In: Pacheco SM, Marques RV, Esbérard CEL, editors, Morcegos no Brasil: biologia sistemática, ecologia e conservação. Porto Alegre: Armazém Digital. 2008 pp.123–138.

113. Pereira JS, Martins TF, Muñoz-Leal S, Lopes MG, Labruna MB, Paiva KAR, et al. Infestação por carrapatos Argasidae e Ixodidae em pequenos mamíferos silvestres da Estação Experimental Rafael Fernandes, Mossoró. Pesq Vet Bras. 2017 37(7):741–748 https://doi.org/10.1590/S0100-736X2017000700015

114. Landulfo GA, Pevidor LV, Dos Santos Sampai o J, Luz HR, Onofrio VC, Faccini JL, Barros-Batte sti DM. Life cycle of Ornithodoros mimon (Acari: Argasidae) under laboratory conditions. Exp Appl Acarol. 2012 Sep; 58(1):69–80. https://doi.org/10.1007/s10493-012-9567-4 PMID: 22570058

115. Breitschwerdt EB. Bartonellosis: One Health perspective for an emerging infectious disease. ILAR J. 2014; 55(1):46–58. https://doi.org/10.1093/ilar/illu015 PMID: 24936029

116. La Scola B, Zeaiter Z, Khamis A, Raoult D. Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. Trends Microbiol. 2003 Jul; 11(7):318–21. PMID: 12875815