“Countersinking” of reservoir in an irradiated patients can decrease tension on scalp closure

Mansher Singh, Arturo J. Rios Diaz¹, Alexandra J. Golby², Edward J. Caterson

Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, ¹Department of Surgery, Center for Surgery and Public Health, Brigham and Women’s Hospital, ²Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA

E-mail: Mansher Singh - msingh8@partners.org; Arturo J. Rios Diaz - arios-diaz@partners.org; Alexandra J. Golby - agolby@partners.org; *Edward J. Caterson - ecaterson@partners.org
*Corresponding author

Received: 04 March 15 Accepted: 07 May 15 Published: 23 July 15

INTRODUCTION

Subcutaneous reservoirs such as ommaya reservoir are used to administer intraventricular antibiotics for chronic meningitis, intrathecal chemotherapy for central nervous system lymphoma, and aspirate fluids from cystic tumors.¹²⁻⁵,¹⁰⁻¹³,¹⁴ However, their use is associated with complications such as hemorrhage, malfunction, and malpositioning. In an irradiated field with thin skin, use of reservoir can result in wound dehiscence, wound infection, and device extrusion.

We propose a “countersinking” technique of reservoir placement which creates a tailored bony recess to accommodate the reservoir [Figure 1].

CASE REPORT

The patient was a 46-year-old woman who underwent right frontal craniotomy in 1998 for tumor resection. Pathology was consistent with astrocytoma requiring adjuvant chemoradiation therapy. Her follow-up
Placement of a reservoir in an intracranial cavity can have far reaching consequences. Any technical modification to the CSF and intracranial cavity resulting in serious dehiscence, a superficial wound infection can easily track wound dehiscence and device extrusion. With wound irradiated wound with thin skin increases the risk of being life threatening. and infectious complications leading to meningitis can be life threatening. However, technical complications in the form of malpositioning and infectious complications leading to meningitis can be life threatening. Placement of a reservoir in an irradiated wound with thin skin increases the risk of wound dehiscence and device extrusion. With wound dehiscence, a superficial wound infection can easily track to the CSF and intracranial cavity resulting in serious intracranial complications. Any technical modification toward preventing such potential complications would have far reaching consequences.

CONCLUSION

Subcutaneous reservoirs provide an effective way of establishing external access to cerebrospinal fluid (CSF) and other intracranial fluid spaces. However, technical complications in the form of malpositioning and infectious complications leading to meningitis can be life threatening. Placement of a reservoir in an irradiated wound with thin skin increases the risk of wound dehiscence and device extrusion. With wound dehiscence, a superficial wound infection can easily track to the CSF and intracranial cavity resulting in serious intracranial complications. Any technical modification toward preventing such potential complications would have far reaching consequences.

In our patient, there was a high risk of wound dehiscence and reservoir extrusion given the thin irradiated skin. Countersinking of the reservoir into the bone decreases the protrubance and by doing so, minimizes the stretching of the overlying skin [Figure 2]. This simple modification decreases the risk of wound dehiscence and device extrusion. It also results in effective “soft tissue lengthening” and allows a tension free closure. We used an oblique trajectory, facilitated by neuronavigation and a tracked stylet for catheter placement, to ensure that the incision is outside the boundaries of previous radiation and the reservoir is not directly underneath the incision.

Since a large number of brain tumor patients require chemoradiation and these patients often have significant other co-morbidities resulting in poor wound healing, the “countersinking” of the reservoir can potentially prevent the risk wound dehiscence and device extrusion in these patients and enable tension free intra-operative closure of the wound.

REFERENCES

1. Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, et al. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nat Rev Cancer 2009;9:134-42.
2. Bernardi RJ, Bomgaars L, Fox E, Balis FM, Egborin MJ, Lagattuta TF, et al. Phase I clinical trial of intrathecal gemcitabine in patients with neoplastic meningitis. Cancer Chemother Pharmacol 2006;62:355-61.
3. Dinndorf PA, Bleyer WA. Management of infectious complications of intraventricular reservoirs in cancer patients: Low incidence and successful treatment without reservoir removal. Cancer Drug Deliv 1987;4:105-17.
4. Hom DB, Adams GL, Monyak D. Irradiated soft tissue and its management. Otolaryngol Clin North Am 1995;28:1003-19.
5. Jiang PF, Yu HM, Zhou BL, Gao F, Shen SX, Xia ZZ, et al. The role of an Ommaya reservoir in the management of children with cryptococcal meningitis. Clin Neurol Neurosurg 2010;112:157-9.
6. Kulkarni S, Ghosh SP, Hauer-Jensen M, Kumar KS. Hematological targets of radiation damage. Curr Drug Targets 2010;11:1375-85.
7. Lishner M, Perrin RG, Feld R, Messner HA, Tuffnall PG, Elhakim T, et al. Complications associated with Ommaya reservoirs in patients with cancer. The Princess Margaret Hospital experience and a review of the literature. Arch Intern Med 1990;150:173-6.
8. Obbens EA, Leavens ME, Beal JW, Lee YY. Ommaya reservoirs in 387 cancer patients: A 15-year experience. Neurology 1985;35:1274-8.
9. Ratcheson RA; Ommaya AK. Experience with the subcutaneous reservoir approach.
cerebrospinal-fluid reservoir. Preliminary report of 60 cases. N Engl J Med 1968;279:1025-31.

10. Rubenstein JL, Fridlyand J, Abrey L, Shen A, Karch J, Wang E, et al. Phase I study of intraventricular administration of rituximab in patients with recurrent CNS and intraocular lymphoma. J Clin Oncol 2007;25:1350-6.

11. Sandberg DI, Bilsky MH, Souweidane MM, Bzdil J, Gutin PH. Ommaya reservoirs for the treatment of leptomeningeal metastases. Neurosurgery 2000;47:49-54.

12. Shapiro WR, Posner JB, Ushio Y, Chemik NL, Young DF. Treatment of meningeal neoplasms. Cancer Treat Rep 1977;61:733-43.

13. Witorsch P, Williams TW Jr, Ommaya AK, Utz JP. Intraventricular administration of amphotericin B. Use of subcutaneous reservoir in four patients with mycotic meningitis. JAMA 1965;194:699-702.

14. Yang S, Dai J, Zhang X, Jin Y. Intracerebral arachnoid cyst treated with Ommaya reservoir implantation in a patient younger than two years. J Craniofac Surg 2014;25:e378-80.