OPERATORS WHOSE CONJUGATION ORBITS SATISFY POLYNOMIAL GROWTH CONDITIONS

HEYBETKULU MUSTAFAYEV

Abstract. Let A be a bounded linear operator on a complex Banach space X. For a given $\alpha \geq 0$, we consider the class $D^\alpha_A(\mathbb{R})$ of all bounded linear operators T on X for which there exists a constant $C_T > 0$, such that
$$\left\| e^{\alpha A} T e^{-\alpha A} \right\| \leq C_T (1 + |t|)^\alpha, \quad \forall t \in \mathbb{R}.$$ We present complete description of the class $D^\alpha_A(\mathbb{R})$ in the case when the spectrum of A consists of one point. These results are linked to the decomposability of A. Some estimates for the norm of the commutator $AT - TA$ are obtained in the case $0 \leq \alpha < 1$.

1. Introduction

Let H be an infinite dimensional separable Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on H. A family $\{E\}$ of subspaces of H is called a nest if it is totally ordered by inclusion. Given a nest $\{E\}$, Ringrose [10] introduced the concept of the associated nest algebra $\text{Alg}\{E\}$ defined by
$$\text{Alg}\{E\} = \{T \in B(H) : TE \subseteq E, \forall E \in \{E\}\}.$$ In [10], Leobl and Muhly show that every nest algebra is the algebra of all analytic operators with respect to the one-parameter representation $T \rightarrow e^{-itA}T e^{itA}$ of inner $*$-automorphisms of $B(H)$, where A is a self-adjoint operator on H.

For an invertible operator A on H, Deddens [4] introduced the set
$$D_A := \left\{ T \in B(H) : \sup_{n \geq 0} \left\| A^nTA^{-n} \right\| < \infty \right\}.$$ Notice that D_A is a normed (not necessarily closed) algebra with identity and contains the commutant $\{A\}'$ of A. In the same paper, Deddens shows that if $A \geq 0$, then D_A coincides with the nest algebra associated with the nest of spectral subspaces of A. This gives a new and convenient characterization of nest algebras. In [4], Deddens conjectured that the equality $D_A = \{A\}'$ holds if the spectrum of A is reduced to $\{1\}$. In [17], Roth gave a negative answer to Deddens conjecture. He shows existence of a quasinilpotent operator A for which $D_{I+A} \neq \{I+A\}'$.

Let X be a complex Banach space and let $B(X)$ be the algebra of all bounded linear operators on X. In [13], Williams proved that if the spectrum of an invertible operator $A \in B(X)$ is reduced to $\{1\}$ and $\sup_{n \in \mathbb{Z}} \left\| A^nTA^{-n} \right\| < \infty$, then $AT = TA$.

2010 Mathematics Subject Classification. 47A10, 47A11, 30D20.

Key words and phrases. Operator, growth condition, (local) spectrum, Beurling algebra, decomposability.
For a fixed $A \in B(\mathcal{X})$ and $\alpha \geq 0$, we define the class $\mathcal{D}_A^\alpha(\mathbb{R})$ of all operators $T \in B(\mathcal{X})$ for which the growth of the function
\[t \mapsto \|e^{tA}Te^{-tA}\| \]
is at most polynomial in $t \in \mathbb{R}$, explicitly, there exists a constant $C_T > 0$ such that
\[\|e^{tA}Te^{-tA}\| \leq C_T (1 + |t|)^\alpha, \quad \forall t \in \mathbb{R}. \]

Notice that $\mathcal{D}_A^\alpha(\mathbb{R})$ is a linear (not necessarily closed) subspace of $B(\mathcal{X})$ and contains the commutant of A. In the case $\alpha = 0$, instead of $\mathcal{D}_A^\alpha(\mathbb{R})$ we will use the notation $\mathcal{D}_A(\mathbb{R})$. Notice also that $\mathcal{D}_A(\mathbb{R})$ is a normed (not necessarily closed) algebra with identity.

In Section 2, we give complete characterization of the class $\mathcal{D}_A^\alpha(\mathbb{R})$ in the case when the spectrum of A consists of one point. Section 3 contains results related to the decomposability of A. In the case $0 \leq \alpha < 1$, some estimates for the norm of the commutator $AT - TA$ are obtained in Section 4, where $T \in \mathcal{D}_A^\alpha(\mathbb{R})$.

2. The class $\mathcal{D}_A^\alpha(\mathbb{R})$

In this section, we give complete characterization of the class $\mathcal{D}_A^\alpha(\mathbb{R})$ in the case when the spectrum of A consists of one point. As usual, $\sigma(T)$ will denote the spectrum of the operator $T \in B(\mathcal{X})$. Throughout, $[\alpha]$ denotes the integer part of $\alpha \in \mathbb{R}$.

Let $A \in B(\mathcal{X})$ and Δ_A be the inner derivation on $B(\mathcal{X})$:
\[\Delta_A : T \mapsto AT - TA, \quad T \in B(\mathcal{X}). \]

Then, we can write
\[\Delta_A^\alpha(T) = \sum_{k=0}^n (-1)^k \binom{n}{k} A^{n-k} T A^k \quad (n \in \mathbb{N}). \]

We have the following:

Theorem 2.1. If the spectrum of the operator $A \in B(\mathcal{X})$ consists of one point, then
\[\mathcal{D}_A^\alpha(\mathbb{R}) = \ker \Delta_A^{[\alpha]+1}. \]
In particular, if $0 \leq \alpha < 1$, then $\mathcal{D}_A^\alpha(\mathbb{R}) = \{A\}'$.

Before to prove this theorem, we first prove the following:

Theorem 2.2. If the spectrum of the operator $A \in B(\mathcal{X})$ lies on the real line, then
\[\mathcal{D}_A^\alpha(\mathbb{R}) = \ker \Delta_A^{[\alpha]+1}. \]
In particular, if $0 \leq \alpha < 1$, then $\mathcal{D}_A^\alpha(\mathbb{R}) = \{A\}'$.

For related results see also, [1] [13]. For the proof of Theorem 2.2, we need some preliminary results.

For an arbitrary $T \in B(\mathcal{X})$ and $x \in \mathcal{X}$, we define $\rho_T(x)$ to be the set of all $\lambda \in \mathbb{C}$ for which there exists a neighborhood U_λ of λ with $u(z)$ analytic on U_λ having values in \mathcal{X} such that $(zI - T)u(z) = x$ for all $z \in U_\lambda$. This set is open and contains the resolvent set $\rho(T)$ of T. By definition, the local spectrum of T at $x \in \mathcal{X}$, denoted by $\sigma_T(x)$ is the complement of $\rho_T(x)$, so it is a compact subset of $\sigma(T)$. This object is most tractable if the operator T has the single-valued extension property (SVEP), i.e. for every open set U in \mathbb{C}, the only analytic function $u : U \rightarrow \mathcal{X}$ for
which the equation \((zI - T)u(z) = 0\) holds is the constant function \(u \equiv 0\). If \(T\) has SVEP, then \(\sigma_T(x) \neq \emptyset\), whenever \(x \in X \setminus \{0\}\) \([9\) Proposition 1.2.16\]. It can be seen that an operator \(T \in B(X)\) having spectrum without interior points has the SVEP. Ample information about local spectra can be found in \([2, 3, 5, 9]\).

The local spectral radius of \(T \in B(X)\) at \(x \in X\) is defined by

\[r_T(x) = \sup \{|\lambda| : \lambda \in \sigma_T(x)\}. \]

If \(T\) has SVEP, then

\[r_T(x) = \lim_{n \to \infty} \|T^n x\|^\frac{1}{n} \quad \text{\cite{9} Proposition 3.3.13}. \]

Recall that a weight function (shortly a weight) \(\omega\) is a continuous function on \(\mathbb{R}\) such that \(\omega(t) \geq 1\) and \(\omega(t+s) \leq \omega(t) \omega(s)\) for all \(t, s \in \mathbb{R}\). For a weight function \(\omega\), by \(L^1_\omega(\mathbb{R})\) we will denote the Banach space of the functions \(f \in L^1(\mathbb{R})\) with the norm

\[\|f\|_{1, \omega} = \int_{\mathbb{R}} |f(t)| \omega(t) \, dt < \infty. \]

The space \(L^1_\omega(\mathbb{R})\) with convolution product and the norm \(\|\cdot\|_{1, \omega}\) is a commutative Banach algebra and is called Beurling algebra. The dual space of \(L^1_\omega(\mathbb{R})\), denoted by \(L^\infty_\omega(\mathbb{R})\), is the space of all measurable functions \(g\) on \(\mathbb{R}\) such that

\[\|g\|_{\infty, \omega} := \text{ess sup}_{t \in \mathbb{R}} \frac{|g(t)|}{\omega(t)} < \infty. \]

The duality being implemented by the formula

\[\langle g, f \rangle = \int_{\mathbb{R}} g(-t) f(t) \, dt, \forall f \in L^1_\omega(\mathbb{R}), \forall g \in L^\infty_\omega(\mathbb{R}). \]

We say that the weight \(\omega\) is regular if

\[\int_{\mathbb{R}} \frac{\log \omega(t)}{1 + t^2} \, dt < \infty. \]

For example, \(\omega(t) = (1 + |t|)^\alpha (\alpha \geq 0)\) is a regular weight and is called polynomial weight. If \(\omega\) is a regular weight, then

\[\lim_{t \to +\infty} \frac{\log \omega(t)}{t} = \lim_{t \to +\infty} \frac{\log \omega(-t)}{t} = 0. \tag{2.1} \]

Consequently, the maximal ideal space of the algebra \(L^1_\omega(\mathbb{R})\) can be identified with \(\mathbb{R}\) (for instance, see \([6, 11, 14]\)). The Gelfand transform of \(f \in L^1_\omega(\mathbb{R})\) is just the Fourier transform of \(f\). Moreover, the algebra \(L^1_\omega(\mathbb{R})\) is regular in the Shilov sense \([6\) Ch.VI\]. Notice also that \(L^1_\omega(\mathbb{R})\) is Tauberian, that is, the set \(\{f \in L^1_\omega(\mathbb{R}) : \text{supp} \hat{f} \text{ is compact}\}\) is dense in \(L^1_\omega(\mathbb{R})\) \([11\) Ch.5\]. Below, we will assume that \(\omega\) is a regular weight.

Denote by \(M_\omega(\mathbb{R})\) the Banach algebra (with respect to convolution product) of all complex regular Borel measures on \(\mathbb{R}\) such that

\[\|\mu\|_{1, \omega} := \int_{\mathbb{R}} \omega(t) \, d|\mu|(t) < \infty. \]

The algebra \(L^1_\omega(\mathbb{R})\) is naturally identifiable with a closed ideal of \(M_\omega(\mathbb{R})\). By \(\hat{f}\) and \(\hat{\mu}\), we will denote the Fourier and the Fourier-Stieltjes transform of \(f \in L^1_\omega(\mathbb{R})\) and \(\mu \in M_\omega(\mathbb{R})\), respectively.
As usual, to any closed subset S of \mathbb{R}, the following two closed ideals of $L^1_\omega(\mathbb{R})$ associated:

$$I_\omega (S) := \left\{ f \in L^1_\omega(\mathbb{R}) : \hat{f}(S) = \{0\} \right\}$$

and

$$J_\omega (S) := \left\{ f \in L^1_\omega(\mathbb{R}) : \text{supp} \hat{f} \text{ is compact and supp} \hat{f} \cap S = \emptyset \right\}.$$

The ideals $J_\omega (S)$ and $I_\omega (S)$ are respectively, the smallest and the largest closed ideals in $L^1_\omega(\mathbb{R})$ with hull S. When these two ideals coincide, the set S is said to be a set of synthesis for $L^1_\omega(\mathbb{R})$ (for instance, see [3, Sect. 8.3]).

Notice that $I_\omega (\{\infty\}) = L^1_\omega(\mathbb{R})$ and

$$J_\omega (\{\infty\}) = \left\{ f \in L^1_\omega(\mathbb{R}) : \text{supp} \hat{f} \text{ is compact} \right\}.$$

Since the algebra $L^1_\omega(\mathbb{R})$ is Tauberian, we have $I_\omega (\{\infty\}) = J_\omega (\{\infty\})$. Hence, $\{\infty\}$ is a set of synthesis for $L^1_\omega(\mathbb{R})$. Notice also that if $\omega(t) = (1 + |t|)^\alpha$ ($0 \leq \alpha < 1$), then each point of \mathbb{R} is a set of synthesis for $L^1_\omega(\mathbb{R})$ [15, Ch.6].

Let M be a non-void subset of $L^\infty_\omega(\mathbb{R})$. A point $\lambda \in \mathbb{R}$ is said to be Beurling spectrum of M if the character $e^{-i\lambda t}$ belongs to the weak*-closed translation invariant subspace of $L^\infty_\omega(\mathbb{R})$ generated by M. By $\sp_B \{M\}$, we will denote the set of all Beurling spectrum of M. It is easy to verify that

$$\sp_B \{M\} = \text{hull} \left(\mathcal{I}(M)\right),$$

where

$$\mathcal{I}(M) = \left\{ f \in L^1_\omega(\mathbb{R}) : f * g = 0, \; \forall g \in M \right\}$$

is a closed ideal of $L^1_\omega(\mathbb{R})$. Notice also that

$$\sp_B \{M\} = \bigcup_{g \in M} \sp_B \{g\}.$$

For $g \in L^\infty_\omega(\mathbb{R})$, we put $g^\vee(t) := g(-t)$. Clearly,

$$\sp_B \{g^\vee\} = \{-\lambda : \lambda \in \sp_B \{g\}\}.$$

Recall that the Carleman transform of $g \in L^\infty_\omega(\mathbb{R})$ is defined as the analytic function $G(z)$ on $\mathbb{C} \setminus i\mathbb{R}$, given by

$$G(z) = \begin{cases} \int_0^\infty e^{-zt}g(t)\; dt, & \text{Re} \; z > 0; \\ -\int_{-\infty}^0 e^{-zt}g(t)\; dt, & \text{Re} \; z < 0. \end{cases}$$

It is known [7] that $\lambda \in \sp_B \{g\}$ if and only if the Carleman transform $G(z)$ of g has no analytic extension to a neighborhood of $i\lambda$.

Let ω be a weight function, $T \in B(X)$ and let

$$E_T^\omega := \left\{ x \in X : \exists C > 0, \; \|e^{tT}x\| \leq C\omega(t), \; \forall t \in \mathbb{R} \right\}.$$

Then, E_T^ω is a linear (non-closed, in general) subspace of X. If $x \in E_T^\omega$, then for an arbitrary $\mu \in M_\omega(\mathbb{R})$, we can define $x_\mu \in X$ by

$$x_\mu = \int_{\mathbb{R}} e^{tT}xd\mu(t).$$

Clearly, $\mu \mapsto x_\mu$ is a bounded linear map from $M_\omega(\mathbb{R})$ into X;

$$\|x_\mu\| \leq C \|\mu\|_{1,\omega}, \; \forall \mu \in M_\omega(\mathbb{R}).$$
Further, from the identity
\[e^{tT}x_\mu = \int e^{(t+s)T} x d\mu(s) , \]
we can write
\[
\|e^{tT}x_\mu\| \leq \int \|e^{(t+s)T}x\|d|\mu|(s) \\
\leq C \int \omega(t+s)d|\mu|(s) \\
\leq C \int \omega(t)\omega(s)d|\mu|(s) \\
= C \|\mu\|_{1,\omega}(t), \ \forall t \in \mathbb{R}.
\]
This shows that \(x_\mu \in E_\omega^T \) for every \(\mu \in M_\omega(\mathbb{R}) \). It is easy to check that
\[
(x_\mu)_\nu = x_{\mu*\nu}, \ \forall \mu, \nu \in M_\omega(\mathbb{R}).
\]
It follows that if \(x \in E_\omega^T \), then
\[
I_x := \left\{ f \in L_\omega^1(\mathbb{R}) : x_f = 0 \right\}
\]
is a closed ideal of \(L_\omega^1(\mathbb{R}) \), where
\[
x_f = \int f(t)e^{tT}x dt.
\]
For a given \(x \in E_\omega^T \), consider the function
\[
(2.2) \quad u(z) := \begin{cases}
\int_0^\infty e^{-zt}e^{tT}x dt, & \text{Re } z > 0; \\
0 & \text{Re } z = 0; \\
-\int_{-\infty}^0 e^{-zt}e^{tT}x dt, & \text{Re } z < 0.
\end{cases}
\]
It follows from (2.1) that \(u(z) \) is a function analytic on \(\mathbb{C} \setminus \mathbb{i}\mathbb{R} \). Let \(a := \text{Re } z > 0 \).

Then, for an arbitrary \(s > 0 \), we can write
\[
(zI-T)^s \int_0^se^{-zt}e^{tT}x dt = -\int_0^s \frac{d}{dt} e^{(T-zI)t}x dt + e^{s(T-zI)}x.
\]
Since
\[
\|e^{s(T-zI)}x\| = e^{-as}\|e^{sT}x\| \leq Ce^{-as}\omega(s)
\]
and
\[
\lim_{s \to +\infty} e^{-as}\omega(s) = 0,
\]
we have
\[
(zI-T)u(z) = x, \ \forall z \in \mathbb{C} \text{ with } \text{Re } z > 0.
\]
Similarly,
\[
(zI-T)u(z) = x, \ \forall z \in \mathbb{C} \text{ with } \text{Re } z < 0.
\]
Hence
\[
(2.3) \quad (zI-T)u(z) = x, \ \forall z \in \mathbb{C} \setminus i\mathbb{R}.
\]
This clearly implies that \(\sigma_T(x) \subset i\mathbb{R} \).

Thus we have the following:
Proposition 2.3. Let \(\omega \) be a regular weight. Assume that \(T \in B(X) \) and \(x \in X \) satisfy the condition \(\| e^{tT}x \| \leq C \omega(t) \) for all \(t \in \mathbb{R} \) and for some \(C > 0 \). Then, \(\sigma_T(x) \subset i\mathbb{R} \).

Now, assume that \(T \) has SVEP. We claim that \(\sigma_T(x) \) consists of all \(\lambda \in i\mathbb{R} \) for which the function \(u(z) \) has no analytic extension to a neighborhood of \(\lambda \). To see this, let \(v(z) \) be the analytic extension of \(u(z) \) to a neighborhood \(U_\lambda \) of \(\lambda \in i\mathbb{R} \). It follows from the identity (2.3) that the function
\[
 w(z) := (zI - T)v(z) - x
\]
vanishes on \(U_\lambda^+ := \{ z \in U_\lambda : \text{Re} z > 0 \} \) and on \(U_\lambda^- := \{ z \in U_\lambda : \text{Re} z < 0 \} \). By uniqueness theorem, \(w(z) = 0 \) for all \(z \in U_\lambda \). So we have
\[
(zI - T)v(z) = x, \quad \forall z \in U_\lambda.
\]
This shows that \(\lambda \in \rho_T(x) \). If \(\lambda \in \rho_T(x) \cap i\mathbb{R} \), then there exists a neighborhood \(U_\lambda \) of \(\lambda \) with \(v(z) \) analytic on \(U_\lambda \) having values in \(X \) such that
\[
(zI - T)v(z) = x, \quad \forall z \in U_\lambda.
\]
By (2.3),
\[
(zI - T)(u(z) - v(z)) = 0, \quad \forall z \in U_\lambda^+, \quad \forall z \in U_\lambda^-.
\]
Since \(T \) has SVEP, we have
\[
u(z) = \nu(z), \quad \forall z \in U_\lambda^+, \quad \forall z \in U_\lambda^-.
\]
This shows that \(u(z) \) can be analytically extended to a neighborhood of \(\lambda \).

Let \(x \in E_T^\sigma \). For a given \(\varphi \in X^* \), define a function \(\varphi_x \) on \(\mathbb{R} \) by
\[
\varphi_x(t) = \langle \varphi, e^{tT}x \rangle.
\]
Then, \(\varphi_x \) is continuous and
\[
|\varphi_x(t)| \leq C \|\varphi\| \omega(t), \quad \forall t \in \mathbb{R}.
\]
Consequently, \(\varphi_x \in L^\infty_\omega(\mathbb{R}) \). Taking into account the identity (2.2), we have
\[
\langle \varphi, u(z) \rangle = \begin{cases}
\int_0^\infty e^{-zt} \varphi_x(t) \, dt, & \text{Re } z > 0; \\
- \int_{-\infty}^0 e^{-zt} \varphi_x(t) \, dt, & \text{Re } z < 0.
\end{cases}
\]
This shows that the function \(z \to \langle \varphi, u(z) \rangle \) is the Carleman transform of \(\varphi_x \). It follows that
\[
isp_B \{ \varphi_x \} \subseteq \sigma_T(x), \quad \forall \varphi \in X^*,
\]
and so
\[
\bigcup_{\varphi \in X^*} \sp_B \{ \varphi_x \} \subseteq -i\sigma_T(x).
\]
To show the reverse inclusion, assume that \(\lambda_0 \in \mathbb{R} \) and
\[
\lambda_0 \notin \bigcup_{\varphi \in X^*} \sp_B \{ \varphi_x \}.
\]
Then, there exist a neighborhood \(U \) of \(\bigcup_{\varphi \in X^*} \sp_B \{ \varphi_x \} \) and \(\varepsilon > 0 \) such that
\[
(\lambda_0 - \varepsilon, \lambda_0 + \varepsilon) \cap U = \emptyset.
\]
Since the algebra \(L^1_\omega(\mathbb{R}) \) is regular, there exists a function \(f \in L^1_\omega(\mathbb{R}) \) such that \(\tilde{f} = 1 \) on \([\lambda_0 - \varepsilon/2, \lambda_0 + \varepsilon/2] \) and \(\tilde{f} = 0 \) on \(\overline{U} \). Notice that
\(\hat{f} \) vanishes in a neighborhood of \(\text{sp}_B \{ \varphi_x \} \) and \(\text{supp} \hat{f} \subseteq [\lambda_0 - \varepsilon, \lambda_0 + \varepsilon] \). Consequently, \(f \) belongs to the smallest ideal of \(L^1_\omega (\mathbb{R}) \) whose hull is \(\text{sp}_B \{ \varphi_x \} \). Since

\[
\text{sp}_B \{ \varphi_x \} = \text{hull} \{ f \in L^1_\omega (\mathbb{R}) : f \ast \varphi_x = 0 \},
\]

we have \((\lambda_0 - \varepsilon/2, \lambda_0 + \varepsilon/2) \subseteq \mathbb{R} \setminus \text{sp}_B \{ \varphi_x \} \) for every \(\varphi \in X^* \). It follows that the function \(z \to \langle \varphi, u(z) \rangle \) can be analytically extended to \(i(\lambda_0 - \varepsilon/2, \lambda_0 + \varepsilon/2) \) for every \(\varphi \in X^* \). Hence, \(u(z) \) can be analytically extended to \(i(\lambda_0 - \varepsilon/2, \lambda_0 + \varepsilon/2) \) and therefore, \(i\lambda_0 \notin \sigma_T(x) \) or \(\lambda_0 \notin -i\sigma_T(x) \). Thus we have

\[
\bigcup_{\varphi \in X^*} \text{sp}_B \{ \varphi_x \} = -i\sigma_T(x).
\]

Further, it is easy to check that

\[
I_x = \bigcap_{\varphi \in X^*} \mathcal{I}_{(\varphi_x^\gamma)},
\]

where

\[
\mathcal{I}_{(\varphi_x^\gamma)} := \{ f \in L^1_\omega (\mathbb{R}) : f \ast \varphi_x^\gamma = 0 \}.
\]

Taking into account that

\[
\text{sp}_B \{ \varphi_x^\gamma \} = \{-\lambda : \lambda \in \text{sp}_B \{ \varphi_x \} \},
\]

we can write

\[
\text{hull} \left(I_x \right) = \bigcup_{\varphi \in X^*} \text{hull} \left(\mathcal{I}_{(\varphi_x^\gamma)} \right) = \bigcup_{\varphi \in X^*} \text{sp}_B \{ \varphi_x^\gamma \} = i\sigma_T(x).
\]

Thus we have the following:

Proposition 2.4. Let \(\omega \) be a regular weight. Assume that \(T \in B(X) \) has SVEP and \(x \in X \) satisfies the condition \(\| e^{iT}x \| \leq C_\omega(t) \) for all \(t \in \mathbb{R} \) and for some \(C > 0 \). Then,

\[
i\sigma_T(x) = \text{hull} \left(I_x \right).
\]

For \(f \in L^1_\omega(\mathbb{R}) \) and \(s \in \mathbb{R} \), let \(f_s(t) := f(t - s) \). Let \(e_n := 2n \chi\left[-1/n, 1/n \right] \) \((n \in \mathbb{N}) \), where \(\chi\left[-1/n, 1/n \right] \) is the characteristic function of the interval \([-1/n, 1/n]\). If \(K := \sup_{t \in [-1, 1]} \omega(t) \), then \(\| e_n \|_{\omega} \leq K \) for all \(n \in \mathbb{N} \). On the other hand, by continuity of the mapping \(s \mapsto f_s \), we have

\[
\lim_{n \to \infty} \| f \ast e_n - f \|_{1,\omega} = 0.
\]

Consequently, \(\{ e_n \} \) is a bounded approximate identity (b.a.i.) for \(L^1_\omega(\mathbb{R}) \). If \(x \in E^\omega_T \), then from the identity

\[
x_{e_n} - x = \int_{-1/n}^{1/n} e_n(t) (e^{iT}x - x) \, dt,
\]

it follows that \(x_{e_n} \to x \). Similarly, \(x_{f_{e_n}} \to x_f \) for all \(f \in L^1_\omega(\mathbb{R}) \).

Proposition 2.5. Let \(\omega \) be a regular weight and \(x \in X \). Assume that \(T \in B(X) \) has SVEP and \(\| e^{iT}x \| \leq C_\omega(t) \) for all \(t \in \mathbb{R} \) and for some \(C > 0 \). For an arbitrary \(f \in L^1_\omega(\mathbb{R}) \), the following assertions hold:

a) If \(x_f = 0 \), then \(\hat{f} \) vanishes on \(i\sigma_T(x) \).

b) If \(\hat{f} \) vanishes in a neighborhood of \(i\sigma_T(x) \), then \(x_f = 0 \).

c) If \(\hat{f} = 1 \) in a neighborhood of \(i\sigma_T(x) \), then \(x_f = x \).
Proof. a) By Proposition 2.4, \(i\sigma_T(x) = \text{hull}(I_x)\) and therefore \(I_x \subseteq L_\omega(i\sigma_T(x))\). This clearly implies a).

b) Let \(g \in L^1_\omega(\mathbb{R})\) be such that \(\text{supp}\hat{g}\) is compact. Then, \(f \ast g \in J_\omega(i\sigma_T(x))\) and therefore, \(f \ast g \in I_x\). So we have \(x_{f \ast g} = 0\). Since the algebra \(L^1_\omega(\mathbb{R})\) is Tauberian, \(x_{f \ast g} = 0\) for all \(g \in L^1_\omega(\mathbb{R})\). It follows that \(x_{f \ast e_n} = 0\) for all \(n\), where \(\{e_n\}\) be a b.a.i. for \(L^1_\omega(\mathbb{R})\). As \(n \to \infty\), we have \(x_f = 0\).

c) Since the Fourier transform of \(f \ast e_n - e_n\) vanishes in a neighborhood of \(i\sigma_T(x)\), by b), \(x_{f \ast e_n} = x_{e_n}\). As \(n \to \infty\), we have \(x_f = x\). \(\square\)

By \(S(\mathbb{R})\), we denote the set of all rapidly decreasing functions on \(\mathbb{R}\), i.e. the set of all infinitely differentiable functions \(\phi\) on \(\mathbb{R}\) such that

\[
\lim_{|t| \to \infty} |t^n\phi^{(k)}(t)| = 0, \forall n, k = 0, 1, 2, \ldots
\]

(in this definition, \(n\) can be replaced by any \(\alpha \geq 0\)). It can be seen that if \(\omega\) is a polynomial weight, then \(S(\mathbb{R}) \subseteq L^1_\omega(\mathbb{R})\).

Lemma 2.6. Assume that \(T \in B(X)\) and \(x \in X\) satisfy the condition \(\|e^{tX}x\| \leq C (1 + |t|)^\alpha (\alpha \geq 0)\) for all \(t \in \mathbb{R}\) and for some \(C > 0\). Then, for an arbitrary \(\phi \in S(\mathbb{R})\), we have

\[
x_{\phi^{(k)}} = (-1)^k T^k x_{\phi}, \forall k \in \mathbb{N}.
\]

Proof. For an arbitrary \(a, b \in \mathbb{R} (a < b)\), we can write

\[
\int_a^b \phi'(t) e^{tX}x dt = \phi(b) e^{bX}x - \phi(a) e^{aX}x - T \int_a^b \phi(t) e^{tX}x dt.
\]

On the other hand,

\[
\|\phi(b) e^{bX}x - \phi(a) e^{aX}x\| \leq C |\phi(b)| (1 + |b|)^\alpha + C |\phi(a)| (1 + |a|)^\alpha \\
\leq 2^\alpha C (|\phi(b)| + |\phi(b)| |b|^\alpha + |\phi(a)| + |\phi(a)| |a|^\alpha).
\]

Since \(\phi \in S(\mathbb{R})\), it follows that

\[
\lim_{b \to +\infty} \lim_{a \to -\infty} \|\phi(b) e^{bX}x - \phi(a) e^{aX}x\| = 0.
\]

Hence \(x_{\phi'} = -Tx_{\phi}\). By induction we obtain our result. \(\square\)

Next, we have the following:

Proposition 2.7. Let \(\omega(t) = (1 + |t|)^\alpha (\alpha \geq 0)\). Assume that \(T \in B(X)\) has SVEP and \(x \in X\) satisfies the condition \(\|e^{tX}x\| \leq C \omega(t)\) for all \(t \in \mathbb{R}\) and for some \(C > 0\). If \(\sigma_T(x) = \{0\}\), then for an arbitrary \(f \in L^1_\omega(\mathbb{R})\), we have

\[
x_f = \hat{f}(0) x + \frac{\hat{f}(0)}{1!} (iT) x + \ldots + \frac{\hat{f}(k)(0)}{k!} (iT)^k x,
\]

where \(k = [\alpha]\). In particular, we have \(T^{k+1} x = 0\).

Proof. We know (for instance, see [8, Ch.VI, §41] and [13, Theorem 3.2]) that if \(f \in L^1_\omega(\mathbb{R})\), then the first \(k\) derivatives of the Fourier transform of \(f\) exist and

\[
J_\omega(\{0\}) = \left\{ f \in L^1_\omega(\mathbb{R}) : \hat{f}(0) = \hat{f}'(0) = \ldots = \hat{f}^{(k)}(0) = 0 \right\},
\]

where \(k = [\alpha]\). Recall that \(J_\omega(\{0\})\) is the smallest closed ideal of \(L^1_\omega(\mathbb{R})\) whose hull is \(\{0\}\). On the other hand, by Proposition 2.4, \(\text{hull}(I_x) = \{0\}\). Hence we have \(J_\omega(\{0\}) \subseteq I_x\).
Let $\phi \in S(\mathbb{R})$ be such that $\hat{\phi}(\lambda) = 1$ in a neighborhood of 0. For a given $f \in L^1_\omega(\mathbb{R})$, consider the function
\[
g := f - \hat{f}(0) \phi - \frac{\hat{f}'(0)}{1!} (i\lambda)^1 \phi - \ldots - \frac{\hat{f}^{(k)}(0)}{k!} (i\lambda)^k \phi.
\]
As
\[
\hat{\phi}^{(k)}(\lambda) = (i\lambda)^k \hat{\phi}(\lambda),
\]
we have
\[
\hat{g}(\lambda) = \hat{f}(\lambda) - \left[\hat{f}(0) + \frac{\hat{f}'(0)}{1!} \lambda + \ldots + \frac{\hat{f}^{(k)}(0)}{k!} \lambda^k \right] \hat{\phi}(\lambda).
\]
It can be seen that the first k derivatives of \hat{g} at 0 are zero and therefore $g \in J_\omega(\{0\})$. Consequently, $g \in I_x$ and so $x_g = 0$. On the other hand, by Lemma 2.6 and Proposition 2.5,
\[
x_{\phi^{(k)}} = (-1)^k T^k x
\]
which implies
\[
x_g = x_f - \hat{f}(0) x - \frac{\hat{f}'(0)}{1!} (iT)x - \ldots - \frac{\hat{f}^{(k)}(0)}{k!} (iT)^k x.
\]
Hence,
\[
x_f = \hat{f}(0) x + \frac{\hat{f}'(0)}{1!} (iT)x + \ldots + \frac{\hat{f}^{(k)}(0)}{k!} (iT)^k x.
\]
If $f := \phi^{(k+1)}$, then as
\[
\hat{f}(0) = \hat{f}'(0) = \ldots = \hat{f}^{(k)}(0) = 0,
\]
we get
\[
0 = x_f = (-1)^{k+1} T^{k+1} x.
\]

Now, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. If $T \in D_\alpha(A)(\mathbb{R})$, then as
\[
e^{tA} T e^{-tA} = e^{t\Delta_A}(T),
\]
we have
\[
\|e^{t\Delta_A}(T)\| \leq C_T (1 + |t|)^\alpha, \quad \forall t \in \mathbb{R}.
\]
By Proposition 2.3, $\sigma_{\Delta_A}(T) \subset i\mathbb{R}$. Further, since
\[
\sigma(\Delta_A) = \{\lambda - \mu : \lambda, \mu \in \sigma(A)\}
\]
[9 Theorem 3.5.1] and $\sigma(A) \subset \mathbb{R}$, we have $\sigma(\Delta_A) \subset \mathbb{R}$. Therefore, Δ_A has SVEP. On the other hand, as
\[
\sigma_{\Delta_A}(T) \subset \sigma(\Delta_A) \subset \mathbb{R},
\]
we obtain that
\[
\sigma_{\Delta_A}(T) \subset \mathbb{R} \cap i\mathbb{R} = \{0\}.
\]
Since Δ_A has SVEP, $\sigma_{\Delta_A}(T) \neq \emptyset$, so that $\sigma_{\Delta_A}(T) = \{0\}$. Applying now Proposition 2.7 to the operator Δ_A on the space $B(X)$, we get
\[
\Delta_A^{[\alpha]+1}(T) = 0.
\]
For the reverse inclusion, assume that \(T \in B (X) \) satisfies the equation \(\Delta_A^n (T) = 0 \) for some \(n \in \mathbb{N} \). Then, we can write
\[
\| e^{tA} T e^{-tA} \| = \| e^{tA} (T) \| = \| I + t \Delta_A (T) + \frac{t^2}{2} \frac{\Delta_A (T)}{1} + \cdots + \frac{t^n}{n!} \Delta_A^n (T) \| = O (1 + |t|)^{n-1} .
\]
This shows that \(T \in \mathcal{D}_A^{-1} (\mathbb{R}) \). The proof is complete. \(\square \)

Next, we will prove Theorem 2.1.

Proof of Theorem 2.1. Assume that \(\sigma (A) = \{ \lambda \} \). If \(T \in \mathcal{D}_A (\mathbb{R}) \), then \(T \in \mathcal{D}_B (\mathbb{R}) \), where \(B = A - \lambda I \). Since \(\sigma (B) = \{ 0 \} \) and \(\Delta_B^n (T) = \Delta_A^n (T) (\forall n \in \mathbb{N}) \), by Theorem 2.2 we obtain our result. \(\square \)

Note that if \(\alpha \geq 1 \), then \(\mathcal{D}_A (\mathbb{R}) \neq \{ A \}' \), in general. To see this, let \(A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \) and \(T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) be two \(2 \times 2 \) matrices on \(2 \)-dimensional Hilbert space. As \(A^2 = 0 \), we have \(\sigma (A) = \{ 0 \} \) and
\[
eq e^{tA} T e^{-tA} = (I + tA) T (I - tA) = \begin{pmatrix} 1 & 0 \\ t & 0 \end{pmatrix} , \forall t \in \mathbb{R} .
\]
Since
\[
\| e^{tA} T e^{-tA} \| = \left(1 + |t|^2 \right)^{\frac{1}{2} ,}
\]
we have \(T \in \mathcal{D}_A (\mathbb{R}) \), but \(AT \neq TA \).

For a given \(\alpha \geq 0 \), we define the class \(\mathcal{D}^\alpha_A (\mathbb{Z}) \) of all operators \(T \in B (X) \) for which there exists a constant \(C_T > 0 \) such that
\[
\| e^{nA} T e^{-nA} \| \leq C_T (1 + |n|)^\alpha , \forall n \in \mathbb{Z} .
\]
Clearly, \(\mathcal{D}_A^0 (\mathbb{R}) \subseteq \mathcal{D}_A^\alpha (\mathbb{Z}) \). We claim that \(\mathcal{D}_A^\alpha (\mathbb{R}) = \mathcal{D}_A^\alpha (\mathbb{Z}) \). Indeed, if \(T \in \mathcal{D}_A^\alpha (\mathbb{Z}) \) and \(t \in \mathbb{R} \), then \(t = n + r \), where \(n \in \mathbb{Z} \), \(|r| < 1 \) and \(|n| \leq |t| \). Consequently, we can write
\[
\| e^{tA} x \| = \| e^{tA} e_n A x \| \leq e^{\| T \|} \| e^{nA} x \| \leq C_T e^{\| T \|} (1 + |n|)^\alpha \leq C_T e^{\| T \|} (1 + |t|)^\alpha .
\]
Therefore, in Theorems 2.1 and 2.2, the class \(\mathcal{D}_A^\alpha (\mathbb{R}) \) can be replaced by \(\mathcal{D}_A^\alpha (\mathbb{Z}) \).

As a consequence of Proposition 2.7, we will need the following:

Corollary 2.8. Assume that \(T \in B (X) \) has SVEP and \(x \in X \) satisfies the condition
\[
\| e^{nT} x \| \leq C (1 + |n|)^\alpha , \forall n \in \mathbb{Z} , \alpha \geq 0 ,
\]
for all \(n \in \mathbb{Z} \) and for some \(C > 0 \). If \(\sigma_T (x) = \{ 0 \} \), then \(T^{[\alpha]+1} x = 0 \).

By \(K (X) \) we will denote the space of compact operators on a Banach space \(X \). Next, we have the following:
Proposition 2.9. Assume that the spectrum of the operator \(A \in B(X) \) consists of one point. If \(K(X) \subset \mathcal{D}_A^3(\mathbb{R}) \), then
\[
\mathcal{D}_A^{2[\alpha]}(\mathbb{R}) = B(X).
\]

Proof. We have
\[
\|e^{n\Delta A}(T)\| = \|e^{nA}Te^{-nA}\| \leq C_\|T\| (1 + n)^\alpha, \quad \forall T \in K(X), \; \forall n \in \mathbb{N}.
\]
Applying uniform boundedness principle to the sequence of operators
\[
\left\{ \frac{1}{(1+n)}e^{n\Delta A} \right\}_{n \in \mathbb{N}},
\]
we obtain existence of a constant \(C > 0 \) such that
\[
\|e^{nA}Te^{-nA}\| \leq C (1 + n)^\alpha \|T\|, \quad \forall T \in K(X), \; \forall n \in \mathbb{N}.
\]
Consequently, we have
\[
\|e^{nA}Te^{-nA}\| \leq C (1 + |n|)^\alpha \|T\|, \quad \forall T \in K(X), \; \forall n \in \mathbb{Z}.
\]
For a given \(x \in X \) and \(\varphi \in X^* \), let \(x \otimes \varphi \) be the one dimensional operator on \(X \);
\[
x \otimes \varphi : y \mapsto \varphi(y) x, \quad y \in X.
\]
By taking \(T = x \otimes \varphi \) in the preceding inequality, we can write
\[
\|e^{nA}x\| \|e^{-nA}\varphi\| \leq C (1 + |n|)^\alpha \|x\| \|\varphi\|, \quad \forall x \in X, \; \forall \varphi \in X^*,
\]
which implies
\[
\|e^{nA}\| \|e^{-nA}\| \leq C (1 + |n|)^\alpha, \quad \forall n \in \mathbb{Z}.
\]
Now, assume that \(\sigma(A) = \{\lambda\} \). Then as \(\sigma(e^{n(A-I)}) = \{1\} \), we have
\[
\|e^{n(A-I)}\| \geq 1, \quad \forall n \in \mathbb{Z},
\]
so that
\[
\|e^{n(A-I)}\| \leq \|e^{n(A-I)}\| \|e^{-n(A-I)}\| = \|e^{nA}\| \|e^{-nA}\| \leq C (1 + |n|)^\alpha, \quad \forall n \in \mathbb{Z}.
\]
Thus, we obtain that
\[
\|e^{n(A-I)}\| \leq C (1 + |n|)^\alpha, \quad \forall n \in \mathbb{Z}.
\]
By Corollary 2.8, \((A - \lambda I)^{k+1} = 0 \), where \(k = [\alpha] \). If \(N := A - \lambda I \), then \(A = \lambda I + N \), where \(N \) is a nilpotent of degree \(\leq k + 1 \). Further, for an arbitrary \(T \in B(X) \) and \(t \in \mathbb{R} \), from the identity
\[
e^{tA}Te^{-tA} = e^{t(\lambda I + N)}Te^{-t(\lambda I + N)} = \left(I + \frac{tN}{1!} + \ldots + \frac{t^kN^k}{k!} \right)\left(I - \frac{tN}{1!} + \ldots + (-1)^k \frac{t^kN^k}{k!} \right),
\]
we can write
\[
e^{tA}Te^{-tA} = T + tf_1(N,T) + \ldots + t^{2k}f_{2k}(N,T),
\]
where the functions \(f_1, \ldots, f_{2k} \) do not depend from \(t \). It follows that
\[
\|e^{tA}Te^{-tA}\| = O \left((1 + |t|)^{2k} \right)
\]
and so $T \in \mathcal{D}^{2k}_{A}(\mathbb{R})$. Thus we have $\mathcal{D}^{2k}_{A}(\mathbb{R}) = B(X)$. □

As a consequence of Proposition 2.9, we have the following.

Corollary 2.10. Assume that Δ_A is a quasinilpotent for some $A \in B(X)$. If $K(X) \subset \mathcal{D}^{\alpha}_{A}(\mathbb{R})$, then Δ_A is a nilpotent of degree $\leq 2[\alpha] + 1$.

Proof. It follows from the identity

$$\sigma(\Delta_A) = \{\lambda - \mu : \lambda, \mu \in \sigma(A)\} = \{0\}$$

that $\sigma(A)$ consists of one point. By Proposition 2.9, $\mathcal{D}^{2[\alpha]}_{A}(\mathbb{R}) = B(X)$. On the other hand, by Theorem 2.1,

$$\ker \Delta^{2[\alpha]+1}_{A} = \mathcal{D}^{2[\alpha]}_{A}(\mathbb{R}) = B(X).$$

□

We conclude this section with the following result:

Proposition 2.11. The following assertions hold:

a) For an arbitrary $T \in \mathcal{D}_A(\mathbb{R})$,

$$\text{dist}(T, \{A\}^t) = \sup_{t \in \mathbb{R}} \|T - e^{tA}Te^{-tA}\|.$$

b) If $\mathcal{D}_A(\mathbb{R})$ is closed, then there exists a constant $C > 0$ such that

$$\sup_{t \in \mathbb{R}} \|T - e^{tA}Te^{-tA}\| \leq C \text{dist}(T, \{A\}^t), \forall T \in \mathcal{D}_A(\mathbb{R}).$$

Proof. a) Let $T \in \mathcal{D}_A(\mathbb{R})$ and $\delta := \sup_{t \in \mathbb{R}} \|T - e^{tA}Te^{-tA}\|$. Define a mapping $\pi : \mathcal{D}_A(\mathbb{R}) \to B(X)$ by

$$\langle \pi(T)x, \varphi \rangle = \Phi_t(e^{tA}Te^{-tA}x, \varphi) \quad (x \in X, \varphi \in X^*),$$

where Φ is a fixed invariant mean on \mathbb{Z}. We claim that $\pi(T) \in \{A\}^t$. Indeed, for an arbitrary $s \in \mathbb{R}$, from the identities

$$\langle e^{sA} \pi(T) e^{-sA}x, \varphi \rangle = \langle \pi(T) e^{-sA}x, e^{sA} \varphi \rangle = \Phi_t(e^{tA}Te^{-tA}e^{-sA}x, e^{sA} \varphi) = \Phi_t(e^{(t+s)A}Te^{-(t+s)A}x, \varphi) = \Phi_t(e^{tA}Te^{-tA}x, \varphi) = \langle \pi(T)x, \varphi \rangle,$$

we have $e^{sA} \pi(T) = \pi(T) e^{sA}$. This clearly implies $A \pi(T) = \pi(T) A$. Notice that $\langle \pi(T)x, \varphi \rangle$ belongs to the closure of convex combination of the set

$$\{\langle e^{tA}Te^{-tA}x, \varphi \rangle : t \in \mathbb{R}\}.$$

Now, from the inequality

$$|\langle Tx, \varphi \rangle - \langle e^{tA}Te^{-tA}x, \varphi \rangle| \leq \delta \|x\| \|\varphi\|,$$

we have

$$|\langle Tx, \varphi \rangle - \langle \pi(T)x, \varphi \rangle| \leq \delta \|x\| \|\varphi\|, \forall x \in X, \forall \varphi \in X^*.$$

Hence $\|T - \pi(T)\| \leq \delta$. Since $\pi(T) \in \{A\}^t$, the result follows.

b) Applying uniform boundedness principle to the family of the operators

$$f_t : \mathcal{D}_A(\mathbb{R}) \to B(X); \ f_t(T) = e^{tA}Te^{-tA} \quad (t \in \mathbb{R}),$$
Proposition 3.1. Assume that $A \in B(X)$ is decomposable and $T \in B(X)$ satisfies the condition
\[
\|e^{nA} T e^{-nA}\| \leq C_T (1 + |n|)^\alpha, \quad (\alpha \geq 0),
\]
for all $n \in \mathbb{Z}$ and for some $C_T > 0$. Then the following conditions are equivalent:
(a) $T X_A (F) \subseteq X_A (F)$ for every closed set $F \subset \mathbb{C}$.
(b) $\Delta_{[\alpha]+1}^{\alpha} (T) = 0$.
In particular, if $0 \leq \alpha < 1$, then $AT = TA$ if and only if $T X_A (F) \subseteq X_A (F)$, for every closed set $F \subset \mathbb{C}$.

Proof. (a)⇒(b) We have
\[
\|e^{nA} (T)\| = \|e^{nA} T e^{-nA}\| \leq C_T (1 + |n|)^\alpha, \quad \forall n \in \mathbb{Z}.
\]
Since A is decomposable, Δ_A has SVEP [9] Proposition 3.4.6] and therefore,
\[
r_{\Delta_A} (T) = \lim_{n \to \infty} \|\Delta_A^n (T)\|^{\frac{1}{n}}.
\]
On the other hand, $T X_A (F) \subseteq X_A (F)$ for every closed set $F \subset \mathbb{C}$ if and only if
\[
\lim_{n \to \infty} \|\Delta_A^n (T)\|^{\frac{1}{n}} = 0
\]
[9] Corollary 3.4.5. Now, since $\sigma_{\Delta_A} (T) = \{0\}$, by Corollary 2.8, $\Delta_{[\alpha]+1}^{\alpha} (T) = 0$.
In fact, (b)⇒(a) follows from [9] Proposition 3.4.2. Here, we present more simple proof. Now, it suffices to show that $\sigma_A (T x) \subseteq \sigma_A (x)$ for every $x \in X$. If $x \in X$
and $\lambda \in \rho_A (x)$, then there is a neighborhood U_λ of λ with $u (z)$ analytic on U_λ having values in X, such that

$$(zI - A) u (z) = x, \ \forall z \in U_\lambda.$$

Using this identity, it is easy to check that the function

$$v (z) := Tu (z) - \Delta_A (T) u' (z) + \ldots + (-1)^k \Delta^k (T) u^{(k)} (z) \ (k = [\alpha]),$$

satisfies the equation

$$(zI - A) v (z) = Tx, \ \forall z \in U_\lambda.$$

This shows that $\lambda \in \rho_A (Tx)$.

Next, we have the following:

Proposition 3.2. Assume that the operators $A, T \in B (X)$ satisfy the following conditions:

1. A is decomposable and $\sigma (A) \subset \{ z \in \mathbb{C} : \text{Re} \ z > 0 \}$;
2. $\| A^n T A^{-n} \| \leq C_T (1 + |n|)^\alpha$ ($0 \leq \alpha < 1$) for all $n \in \mathbb{Z}$ and for some $C_T > 0$.

Then, $AT = TA$ if and only if $TX_A (F) \subseteq X_A (F)$ for every closed set $F \subseteq \mathbb{C}$.

Proof. Assume that $TX_A (F) \subseteq X_A (F)$ for every closed set $F \subseteq \mathbb{C}$. We can write $A = e^B$, where $B = \log A$. Then, B is decomposable [3, Theorem 3.3.6] and

$$\| e^{nB} Te^{-nB} \| \leq C_T (1 + |n|^\alpha), \ \forall n \in \mathbb{Z}.$$

Moreover, for every closed set $F \subseteq \mathbb{C}$,

$$TX_B (F) = TX_A (f^{-1} (F)) \subseteq X_A (f^{-1} (F)) = X_B (F),$$

where $f (z) = \log z$. By Proposition 3.1, $BT = TB$ which implies $e^B T = T e^B$. Hence $AT = TA$.

Assume that $AT = TA$. It suffices to show that $\sigma_A (Tx) \subseteq \sigma_A (x)$ for every $x \in X$. If $x \in X$ and $\lambda \in \rho_A (x)$, then there is a neighborhood U_λ of λ with $u (z)$ analytic on U_λ having values in X, such that

$$(zI - A) u (z) = x, \ \forall z \in U_\lambda.$$

It follows that

$$(zI - A) Tu (z) = Tx, \ \forall z \in U_\lambda.$$

This shows that $\lambda \in \rho_A (Tx)$.

4. The Norm of the Commutator $AT - TA$

In this section, we give some estimates for the norm of the commutator $AT - TA$, where $T \in D_A^\alpha (\mathbb{R}) \ (0 \leq \alpha < 1)$.

Lemma 4.1. Let $\mu \in M_\omega (\mathbb{R})$, where $\omega (t) = (1 + |t|)^\alpha$ ($\alpha \geq 0$). Assume that $T \in B (X)$ and $x \in X$ satisfy the following conditions:

1. $\| e^{iT} x \| \leq C \omega (t)$ for all $t \in \mathbb{R}$ and for some $C > 0$;
2. T has SVEP.

If $\mu (\lambda) = \lambda$ in a neighborhood of $i \sigma_T (x)$, then

$$x_\mu = iTx.$$
Proof. Let \(g \in S(\mathbb{R}) \) be such that \(\hat{g}(\lambda) = 1 \) in a neighborhood of \(i\sigma_T(x) \). By Proposition 2.5, \(xg = x \). On the other hand, by Lemma 2.6,

\[
xg' = -Tx.
\]

Since

\[
\hat{g'}(\lambda) = i\lambda \hat{g}(\lambda),
\]

the Fourier transform of the function \(-ig' - \mu * g\) vanishes in a neighborhood of \(i\sigma_T(x) \). By Proposition 2.5,

\[
-ixg' = x\mu * g = (xg)\mu = x\mu.
\]

Hence \(x\mu = iTx \). \(\square \)

Note that in the preceding lemma, the weight function \(\omega (t) = (1 + |t|^\alpha) \) \((\alpha \geq 0)\) can be replaced by the weight \(\omega (t) = 1 + |t|^{\alpha} \).

Theorem 4.2. Assume that \(T \in B(X) \) has SVEP and \(x \in X \) satisfies the condition

\[
\|e^{\lambda T} x\| \leq C (1 + |t|^\alpha) \quad (0 \leq \alpha < 1),
\]

for all \(t \in \mathbb{R} \) and for some \(C > 0 \). Then we have

\[
\|Tx\| \leq C \left[r_T(x) + C (\alpha) r_T(x)^{1-\alpha} \right],
\]

where

\[
C(\alpha) = \left(\frac{2}{\pi} \right)^{2-\alpha} \sum_{k \in \mathbb{Z}} \frac{1}{|2k+1|^{2-\alpha}}.
\]

Proof. We basically follow the proof of Lemma 3.4 in [12]. Let an arbitrary \(a > r_T(x) \) be fixed. Consider the function \(f \), defined by \(f(\lambda) = \lambda \) for \(-a \leq \lambda \leq a \) and \(f(\lambda) = 2a - \lambda \) for \(a \leq \lambda \leq 3a \). We extend this function periodically to the real line by putting \(f(\lambda + 4a) = f(\lambda) \) \((\lambda \in \mathbb{R})\). A few lines of computation show that the Fourier coefficients of \(f \) are given by the equalities:

\[
c_{2k}(f) = 0, \quad c_{2k+1}(f) = \frac{1}{i \pi^2} \left(-1 \right)^k \frac{1}{(2k+1)^2} \quad (k \in \mathbb{Z}).
\]

Let \(\mu \) be a discrete measure on \(\mathbb{R} \) concentrated at the points

\[
\lambda_k := -\frac{1}{a} \left(2k + 1 \right) \frac{\pi}{2} \quad (k \in \mathbb{Z}),
\]

with the corresponding weights

\[
c_k := \frac{1}{i \pi^2} \left(-1 \right)^k \frac{1}{(2k+1)^2} \quad (k \in \mathbb{Z}).
\]

Since

\[
\sum_{k \in \mathbb{Z}} |c_k| < \infty,
\]

it follows from the uniqueness theorem that

\[
\hat{\mu}(\lambda) = f(\lambda) = \frac{1}{i \pi^2} \sum_{k \in \mathbb{Z}} (-1)^k \frac{1}{(2k+1)^2} \exp \left[\frac{1}{a} (2k+1) \frac{\pi}{2} \lambda \right].
\]
Now, if \(\omega(t) := 1 + |t|^\alpha \) \((0 \leq \alpha < 1)\), then as
\[
\sum_{k \in \mathbb{Z}} \frac{1}{(2k + 1)^2} = \frac{\pi^2}{4},
\]
we can write
\[
\|\mu\|_\omega = \int \frac{(1 + |t|)^\alpha}{|\tau_\mu (t)|} \, dt = \sum_{k \in \mathbb{Z}} |c_k| (1 + |\lambda_k|^\alpha)
\]
\[
= \frac{4a}{\pi^2} \sum_{k \in \mathbb{Z}} \frac{1 + \frac{1}{|k|} |2k + 1|^\alpha}{(2k + 1)^2}
\]
\[
= a + C(\alpha) a^{1-\alpha},
\]
where
\[
C(\alpha) = \left(\frac{2}{\pi} \right)^{2-\alpha} \frac{1}{2^{2-\alpha}}.
\]
Since \(\hat{\mu}(\lambda) = \lambda \) in a neighborhood of \(i\sigma_T(x) \), by Lemma 4.1, \(x_\mu = iTx \). Therefore, we get
\[
\|Tx\| = \|x_\mu\| \leq C \|\mu\|_\omega \leq C \left[a + C(\alpha) a^{1-\alpha} \right].
\]
Since \(a > r_T(x) \) is arbitrary, we obtain our result.
\[\square \]

As an application of Theorem 4.2, we have the following quantitative version of Theorem 2.1 in the case \(0 \leq \alpha < 1 \).

Corollary 4.3. Let \(A \in B(X) \) and assume that \(\Delta_A \) has SVEP. If \(T \in B(X) \) satisfies the condition
\[
\|e^{tA}T e^{-tA}\| \leq C_T (1 + |t|^{\alpha}) \quad (0 \leq \alpha < 1),
\]
for all \(t \in \mathbb{R} \) and for some \(C_T > 0 \), then
\[
\|AT - TA\| \leq C_T \left[r_{\Delta_A}(T) + C(\alpha) r_{\Delta_A}(T)^{1-\alpha} \right],
\]
where \(C(\alpha) \) is defined by (4.1).

Proof. Noting that
\[
\|e^{t\Delta_A}(T)\| = \|e^{tA}T e^{-tA}\| \leq C_T (1 + |t|^{\alpha}) \quad (\forall t \in \mathbb{R}),
\]
by Theorem 4.2,
\[
\|AT - TA\| \leq C_T \left[r_{\Delta_A}(T) + C(\alpha) r_{\Delta_A}(T) \right].
\]
\[\square \]

References

[1] B.A. Barnes, Operators which satisfy polynomial growth conditions, Pacific J. Math. 138(1989), 209-219.

[2] C.J.K. Batty, J.M.A.M. van Neerven, and F. Rabiger, Local spectra and individual stability of uniformly bounded \(C_0 \)-semigroups, Trans. Amer. Math. Soc. 350(1998), 2087-2103.

[3] I. Colojoară and C. Foiaș, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.

[4] J.A. Deddens, Another description of nest algebras in Hilbert spaces operators, Lecture Notes in Math. 693(1978), 77-86.

[5] N. Dunford and J.T. Schwartz, Linear Operators III, New York, Wiley-Interscience, 1971.
[6] I. Gelfand, D. Raikov and G. Shilov, Commutative Normed Rings, Chelsea Publ. Company, New York, 1964.
[7] V.P. Gurarii, Harmonic analysis in spaces with weight, Trans. Moscow Math. Soc. 35(1979), 21-75.
[8] R. Larsen, Banach Algebras, Marcel Dekker, New York, 1973.
[9] K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Oxford, Clarendon Press, 2000.
[10] R.I. Loebl and P.S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29(1978), 214-252.
[11] Yu.I. Lyubich, Introduction to the Theory of Banach Representation of Groups, Oper. Theory, Adv. Appl. vol.30, Birkhäuser, 1988.
[12] H. Mustafayev, Dissipative operators on Banach spaces, J. Funct. Anal. 248(2007), 428-447.
[13] H. Mustafayev, Growth conditions for operators with smallest spectrum, Glasg. Math. J. 57(2015), 665-680.
[14] J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory Adv. Appl. vol.88, Birkhäuser, 1996.
[15] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Univ. Press, 1968.
[16] J. Ringrose, On some algebras of operators, Proc. London Math. Soc. 15(1965), 61-83
[17] P.G. Roth, Bounded orbits of conjugation, analytic theory, Indiana Univ. Math. J. 32(1983), 491-509.
[18] J.P. Williams, On a boundedness condition for operators with a singleton spectrum, Proc. Amer. Math. Soc. 78(1980), 30-32.
[19] M. Zarrabi, Spectral synthesis and applications to C_0–groups, J. Austral. Math. Soc. (Series A), 60(1996), 128-142.

Van Yuzuncu Yil University, Faculty of Science, Department of Mathematics, VAN-TURKEY

E-mail address: hsmustafayev@yahoo.com