AN ANTHOLOGY OF THE DISTINGUISHED ACHIEVEMENTS IN SCIENCE AND TECHNIQUE. PART 36: NOBEL PRIZE LAUREATES IN PHYSICS FOR 1995-1999

Introduction. The Nobel Prize has been more than a century one of the most prestigious international awards in the world. It is awarded by the Nobel Committee of the Royal Swedish Academy of Sciences for outstanding scientific research, revolutionary invention, a major contribution to culture and the development of human society [1]. Nobel Prize in physics, chemistry, physiology, medicine, literature and peace were established in accordance with the will-known Swedish engineer and inventor of dynamite Alfred Nobel (1833-1896) according to which for these purposes, and the financial support of Nobel laureates was created fund Nobel. They are handed to 1901 in the capital of Sweden – Stockholm (except for the Nobel Peace Prize award ceremony which takes place in the capital of Norway – Oslo). Traditionally, the annual awards ceremony for the winners of this prestigious award is held on the day of the death of A. Nobel – December 10th. Note that in 1968 by the Bank of Sweden Prize in Economics in memory of A. Nobel (Nobel Prize in Economics) was established [1]. The size of remuneration of the Nobel Prize, for example, in 2012, amounted to 8 million SEK (1.2 million USD). Until 2012, this amount was considered the award of 10 million SEK. The Board of Directors of the Nobel Foundation in the summer of 2012 was forced to take a decision on the «cuts» monetary reward laureates for 20 % due to the need to «preserve the fund's capital in the long term» [1].

1. The discovery of the tau-lepton. According to the classification adopted in the physics of elementary particles tau-leptons are the third generation of microparticles [1, 2]. American experimental physicist Martin Lewis Perl (Fig. 1) working at Stanford heavy duty linear electron accelerator at energies up to 21 GeV with the length of the accelerator «tube» in 3200 m (USA) [3] in 1975 opened a new elementary particle tau-lepton (in other words, a «heavy» electron) [4]. This is an important discovery in high-energy physics and elementary particles confirmed the theory of «Big Bang» in the creation of the Universe [1, 5].

Fig. 1. Prominent American experimental physicist
Martin Lewis Perl (1927-2014), Nobel Prize Laureate in physics for 1995
For this fundamental scientific result M. Pearl in 1995 was awarded the Nobel Prize in Physics [4, 5]. This award he shared with other prominent American physicist Frederick Reines (Fig. 2) who discovered the neutrino [4, 6].

2. The discovery of the neutrino. In 1930, an outstanding Austrian theoretical physicist Wolfgang Pauli (1900-1958) advanced the hypothesis of the existence of such «light» of elementary particles like the electron neutrino ν_e according to the relevant [2] to the absolutely stable particles with no charge and rest mass [4 6]. Working in creative tandem with the renowned American experimental physicist at Los Alamos National Laboratory (New Mexico, United States) Clyde Cowan (1919-1974), F. Reines in 1956 to reverse the radioactive beta decay of atomic nuclei (β^+ – decay) on the experimental nuclear reactor found in the decay products of the electron neutrino ν_e [6]. By the time of the award of F. Reines said Prize for 1995 K. Cowan was no longer alive. Therefore his name was not on the list of Nobel Prize winners (according to the current position of this award is only awarded to applicants living this prestigious award).

3. The discovery of superfluidity of liquid helium-3. In 1972, American physicist David Morris Lee (Fig. 3), working in the US as Professor at Cornell University, in collaboration with another Professor of this University Robert Coleman Richardson (Fig. 4) and graduate student Douglas Dean Osheroff (Fig. 5) have published research results opening at a temperature of about 0.001 K of superfluidity in the isotope helium 3He – liquid helium-II [10]. For the «basic inventions and discoveries in the field of low-temperatures» Academician of the Academy of Sciences of the USSR P.L. Kapitsa was awarded the Nobel Prize in physics for 1978 [4, 10]. Taking into account the fundamental nature of obtained by D.M. Li, R.C. Richardson, and D.D. Osheroff scientific results, in 1996 they were awarded the Nobel Prize in physics [4, 7-9]. The discovery of superfluidity of liquid helium-3 promoted promising fundamental and applied research in many fields of physics [4, 7].
4. Creation of methods to cool and «capture» of matter atoms. American Research Center of Bell Laboratories in the number of Nobel Prize winners take on today's leading position in the world [11]. In this well-known scientific centers in 1983 as head of the Department of quantum electronics future Nobel Laureate Steven Chu worked (Fig. 6). While addressing the supercooling and the «capture» of atoms using laser technology, in 1985. S. Chu and his colleagues William Daniel Phillips (Fig. 7), and Claude Cohen-Tannoudji (Fig. 8) achieved great success [11-15].

It is well known that in the microcosm of the atom of matter the temperature measure (molecules) or particles their kinetic energy [2, 11]. A great contribution to this energy and, respectively, in the temperature gives the translational velocity of said microscopic objects. A smaller contribution of this indicator makes the frequency of natural oscillations [2, 11]. Therefore, the faster moving and more micro-object vary, so it will be «hot». By physicists it was found that at «minus» 270 °C (about 3 K) translational velocity substance atom is about 100 m/s [11]. T the ambient temperature («plus» 20 °C) atoms, this velocity value is close to 1000 m/s [2, 10, 16]. If we reduce the speed of 0.01 m/s, then the atom is
virtually «frozen». This can be done by various physical methods. Studies conducted in the United States by S. Chu, W. Phillips, and C. Cohen-Tannoudji showed that the most convenient for this method is the method of laser cooling of atoms [11-15]. This group of physicists in the study using a laser beam of atomic processes have achieved the absolute temperature of the substance of the neutral atoms of the order of 10^{-6} K [11]. It is for this phenomenal achievement S. Chu, W.D. Phillips and C. Cohen-Tannoudji were awarded the Nobel Prize in physics for 1997 [4, 11-15]. Developed laser method of supercooling and the «capture» of the atoms in this way is currently used in the design of high-precision atomic clocks, as well as precise positioning and satellite navigation [13]. An important fact characterizing S. Chu like an unusual and talented person, is that S. Chu during the 2004-2008 biennium was the director of the world-famous Ernest Lawrence National Laboratory Lawrence (if the state is 4 thousand employees and an annual budget of 650 million US dollars) and is actively involved in alternative sources of energy (in particular biofuels, artificial photosynthesis and methods of generating electricity from solar radiation), and in the period 2009-2013 – Minister of Energy of the United States [12, 13].

5. Discovery of a new form of quantum fluid with fractional excitations of electric charge. The physical concept of «quantum fluid» was introduced in the period 1937-1941 by outstanding Soviet theoretical physicist Lev Davidovich Landau (1908-1968) is being developed at that time in the IPhP of the Academy of Sciences of the USSR (at the Academician of the Academy of Sciences of the USSR P.L. Kapitsa then worked fruitfully in the field of low-temperature physics and discovered experimentally in 1937 the phenomenon of superfluidity of liquid helium-II) the quantum theory of superfluidity of liquid helium-II [10, 17]. For a quantum fluid characteristic it is that it decisive role in the behavior of its microcomponent (constituent elements) are beginning to play the quantum effects. In this liquid, quantum uncertainty traces its origin (e.g., atoms) according to the Heisenberg uncertainty relation [2, 17] are starting to significantly exceed the current mutual distances between them. Therefore, the physical properties of these liquids will be determined solely by stochastic laws of quantum physics. In the period 1981-1982 research groups of Horst Ludwig Störmer (Fig. 9) and Daniel C. Tsui (Fig. 10) who studied «the integer quantum Hall effect» opened in 1980 by Klaus von Klitzing (born in 1943) at «helium» temperatures (till 1 K) and strong static magnetic fields (at magnetic flux density till 30 T) in the silicon field effect transistor and the award of the Nobel Prize in physics for 1985 [4, 18], using a two-dimensional ultra-pure gallium arsenide films at lower temperatures (below 1 K) and stronger permanent magnetic fields (for the magnetic flux density over 30 T) opened new «fractional quantum Hall effects» [18-20].

For a better understanding of a difficult material should be noted that even in 1879 young American physicist Edwin Herbert Hall (1855-1938) exploring the flow of direct current strength along the I_H thin gold plate placed perpendicular to the lines of induction B_H external constant magnetic field discovered the phenomenon arises between the «free» edges of the plate electric potential difference or voltage U_H («Hall effect») [16]. As is known the cause of the rejection of U_H is drifting plates of electrons from the main direction of their drift to its «free» edges of the corresponding action on them in a magnetic field Lorentz force [2]. The value of U_H was directly proportional to the current I_H and B_H induction. In addition, the «Hall» R_H resistance equal to the ratio U_H/I_H.
described by the relation of the form [18]:

\[R_H = B_H / (n_e e_0) \]

where \(n_e \) is the average density of free electrons with the electric unit charge \(e_0 = 1.602 \times 10^{-19} \) C in the material of the flat-plate conductor. That is why the Hall effect could be used for measuring the magnetic field, and determining the concentration of charge carriers (positive «holes») in conductors and semiconductors. E.H. Hall performed his experiments at room temperature (about 293 K) and the levels of magnetic induction \(B_H \) less than 1 T [18]. In the early 1980s by K. von Klitzing at the above-mentioned extreme conditions it was found that the «Hall» conductor resistance \(R_H \) (semiconductor) with increasing levels of exposure to it the magnetic induction \(B_H \) does not change continuously, but jumps, taking discrete (quantized) values \(R_H = h / (i e_0^2) \), where \(i = 1, 2, 3, ... \) are the integer quantum numbers \(i \); \(h = 6.626 \times 10^{-34} \) Js is the Planck constant [2]. Note that in this case the value of \(h/e_0^2 \) is approximately 26 \(\Omega \). According to the eminent German physicist Carl von Klitzing turned out that the «Halls» \(R_H \) resistance, regardless of the type of material under the action it ultralow temperatures and strong magnetic field is quantized. The experimentally discovered by K. von Klitzing «integer quantum Hall effect» was explained sequential filling of Landau levels (discrete energy levels of electrons in a magnetic field) with increasing magnetic induction level. In these experiments by H.L. Störmer and D.C. Tsui scientists have discovered new quantum leaps for the «Hall» resistance \(R_H = h / (k e_0^2) \), which is three times higher than the largest \(R_H \) in earlier experiments by K. von Klitzing. The fundamental difference in this case was the fact that the value of \(k \) is the fractional value (1/3, etc.). In 1983, the American theoretical physicist Robert Betts Laughlin (Fig. 11) proposed a theoretical justification of this effect.

According to the theoretical substantiation by R.B. Laughlin of the open empirically by H.L. Störmer and D.C. Tsui «fractional quantum Hall effect» at the sufficiently low temperature and very strong magnetic field, a two-dimensional «electron gas» conductor (semiconductor) of the Fermi liquid becomes a kind of a new type of quantum fluid [18, 21]. Electrons with half-integer values of their spin are part of this «Laughlin» quantum fluid, and occurring in her excitement starting to behave like quasi-particles with integer spin (as bosons) [18-21]. «Laughlin» quantum liquid became a Bose liquid, for which it is possible Bose condensation, and hence the phenomenon of superfluidity and superconductivity. The latter phenomenon was made possible when driving in this particular quantum fluid is electrically charged. R.B. Laughlin in the proposed theory suggests that these quasi-particles in the quantum liquid are collective entities whose existence is ensured by long-range interaction between electrons and a strong magnetic field. According to R.B. Laughlin a composite quasi-particle (boson) in the «Laughlin» quantum liquid is a combination of an electron and three magnetic flux quanta [18, 21]. New «Laughlin» quantum liquid characterized by unusual physical properties added to the electron is so energetically unfavorable for it, that it be born excitation with a fractional electric charge \(e_0 / 3 \) [18]. R.B. Laughlin first theoretically demonstrated that quasiparticles in condensed state of matter can have fractional electric charges. This theoretical approach by R.B. Laughlin allows individuals to explain the «fractional quantum Hall effect» previously set by H.L. Störmer and D.C. Tsui. For the fundamentality and «discovery of a new form of quantum fluid with fractional electric charge excitations» H.L. Störmer, D.C. Tsui, and R.B. Laughlin was awarded Nobel Prize in physics for 1998 [4, 18-21]. It should be noted that despite the fact that fractional electric charge quasiparticles participating in the course of events «the fractional quantum Hall effect» in a kind of Bose condensate set and measured now, thanks to the outstanding achievements in electronics and metrology reliably talk about the direct supervision of the microparticles with charge is premature. However, the research results of the new Nobel Laureates allow us to state that there was an important event in the scientific world, which forces scientists to reconsider many of the provisions in our current understanding of the world around us.

6. Clarification of the quantum structure of electroweak interactions of elementary particles. In the 1960s, by prominent American Sheldon Lee Glashow (born 1932), Steven Weinberg (1933-1996) and Pakistani Abdus Salam (1926-1996) theoretical physicists, quantum theory of weak and electromagnetic interactions in microcosm has been developed using the principle of gauge invariance [22]. This theory was based on the fact that in the microcosm the weak and electromagnetic interactions are manifestations of a single electroweak interaction. The practical application of this theory to calculate the physical properties of elementary particles which it should predict had no good results [23]. In the 1970s to address the problem in the field of elementary particle physics actively involved physicists of the University of Utrecht (Netherlands), Martinus Veltman (Fig. 12) and Gerard Hooft (Fig. 13). They do a mathematical formulation of gauge theories and
renormalization theory of so-called non-Abelian gauge theories which are the foundation of all modern physics of elementary particles [24]. Developed by these theoretical physicists mathematical apparatus and, based on a computer program showed that many of the most problematic aspects of a non-Abelian gauge theories – the theory of electroweak interactions in the process of mathematical calculations are compensated [22-24]. This program became the foundation for the difficult work of scientists to verify the different approaches to the renormalization theory, which would allow to obtain a reasonable prediction of particle physics.

Developed by G. Hooft and M. Veltman new mathematical methods of renormalization of Yang-Mills fields as massless, and the weight was due to spontaneous symmetry violation in the microcosm of the laws, allowed to predict some effects of electroweak interactions of elementary particles [22-24]. So, in 1977, it based on these methods and theoretical approaches failed to predict the mass of the top quark, experimentally discovered in 1995 at the Enrico Fermi National Laboratory of Nuclear Research (USA) [22]. In addition, by using the proposed by G. Hooft and M. Veltman quantum theory of electroweak interactions were predicted mass of the intermediate vector bosons W^\pm and Z^0 – two new elementary particles discovered thereafter experimentally at the Large Hadron Collider [3] at the European Center for Nuclear Research (CERN, Switzerland) [22, 24]. One of the Nobel Prize Laureates in physics in 1979, Sh.L. Glashow (the Prize «for his fundamental contribution to the theory unifying weak and electromagnetic interactions» in the field of elementary particle physics, he shared with his fellow physicists and collaborators S. Weinberg and A. Salam [4, 25]) on the scientific achievement of M. Veltman and G. Hooft said the following [24]: «... the theory of electroweak interactions cannot be engaged in earnest without computing innovations introduced by Veltman and Hooft». In 1999 «for clearing the quantum structure of electroweak interactions» M. Veltman and G. Hooft were awarded [4, 22-25] Nobel Prize in physics. In subsequent years, M. Veltman and G. Hooft in the field of elementary particle theory fruitfully engaged in so-called «Higgs» problem associated with superheavy Higgs boson H^* which field is, according to physicists, generates mass of all existing in the microcosm particles [24].

REFERENCES

1. Available at: http://news.21.by/other-news/2012/10/09/635932.html (accessed 09 October 2012).
2. Kuz'michev V.E. Zakony i formuly fiziki [Laws and formulas of physics]. Kiev, Naukova Dumka Publ., 1989. 864 p. (Rus).
3. Baranov M.I. Antologia vydaiushchikhsia dostizhenii v naute i tekhnike: Monografiia v 2-kh tomakh. Tom 1. [An anthology of outstanding achievements in science and technology: Monographs in 2 vols. Vol.1]. Kharkov, NTMT Publ., 2011. 311 p. (Rus).
4. Khramov Yu.A. Istoriia fiziki [History of Physics]. Kiev, Feniks Publ., 2006. 1176 p. (Rus).
5. Available at: http://www.peoples.ru/science/physics/martin_lewis_perl (accessed 11 April 2012). (Rus).
6. Available at: https://en.wikipedia.org/wiki/Frederick_Reines (accessed 15 August 2012).
7. Available at: https://en.wikipedia.org/wiki/David_Lee_(physicist) (accessed 25 September 2013).
8. Available at: https://en.wikipedia.org/wiki/Robert_Coleman_Richardson (accessed 22 May 2012).
9. Available at: https://en.wikipedia.org/wiki/Douglas_Osheroff (accessed 21 February 2012).
10. Baranov M.I. Izbrannye voprosy elektrofiziki: Monografija v 2-kh tomah. Tom 1: Elektrofizika i vydaiushchie se fiziki mira [Selected topics electrophysics: Monographs in 2 vols. Vol.1:
Available at: http://prerobichka.ru/ru/0200/978185075 (accessed 21 May 2012). (Rus).
22. Available at: http://www.nkj.ru/archive/articles/8176 (accessed 23 July 2013). (Rus).
23. Available at: http://lenta.ru/lib/14194434 (accessed 19 April 2012).
24. Available at: https://en.wikipedia.org/wiki/Robert_B._Laughlin (accessed 06 December 2013).
25. Available at: http://vivovoco.astronet.ru/VV/NEWS/PRIRODA/1999/NB_PHYS.HTM (accessed 10 April 2014). (Rus).
26. Available at: https://en.wikipedia.org/wiki/Steven_Chu (accessed 10 July 2011).
27. Available at: https://en.wikipedia.org/wiki/William_Daniel_Phillips (accessed 23 March 2012).
28. Available at: https://en.wikipedia.org/wiki/Claude_Cohen-Tannoudji (accessed 03 May 2012).
29. Available at: http://gruzdoff.ru/wiki/%D0%98_%D0%BD_%D0%BE_%D0%B1_%D1%80%D0%B5%D1%82%D0%B9 (accessed 21 May 2012). (Rus).
30. Available at: http://velchel.ru/index.php?cnt=9&nbio=704&nubslib=0&sub=0 (accessed 11 April 2013). (Rus).
31. Available at: http://encyclopaedia.biga.ru/enc/science_and_technology/VELT_MAN_MARTIN.html (accessed 18 September 2013). (Rus).
32. Available at: http://nobelprize.org/nobel_prizes/physics (accessed 02 June 2015).

Received 29.12.2015

M.I. Baranov, Doctor of Technical Science, Chief Researcher, Scientific-&-Research Planning-&-Design Institute «Molniya» National Technical University «Kharkiv Polytechnic Institute», 47, Shevchenko Str., Kharkiv, 61013, Ukraine, phone +38 057 7076841, e-mail: eft@kpi.kharkov.ua

How to cite this article:
Baranov M.I. An anthology of the distinguished achievements in science and technique. Part 36: Nobel Prize Laureates in Physics for 1995-1999. Electrical engineering & electromechanics, 2017, no.1, pp. 3-9. doi: 10.20998/2074-272X.2017.1.01.