A Trotter Type Approach to Infinite Rate Mutually Catalytic Branching

Achim Klenke∗ Mario Oeler
Johannes Gutenberg-Universität Mainz
Institut für Mathematik
Staudingerweg 9
55099 Mainz
Germany
math@aklenke.de Mario.Oeler@web.de

Abstract

Dawson and Perkins [4] constructed a stochastic model of an interacting two-type population indexed by a countable site space which locally undergoes a mutually catalytic branching mechanism. In [9] it is shown that as the branching rate approaches infinity the process converges to a process that is called the infinite rate mutually catalytic branching process. It is most conveniently characterised as the solution to a certain martingale problem. While in [9] a noise equation approach is used in order to construct a solution to this martingale problem, the aim of this paper is to provide a Trotter type construction.

This paper is partly based on the PhD thesis [12] where the Trotter approach was performed first.

AMS Subject Classification 60K35, 60K37, 60J80, 60J65, 60J35.
Keywords: mutually catalytic branching, martingale problem, stochastic differential equations, population dynamics, Trotter formula.

1 Introduction and main results

1.1 Background and Motivation

In [4] Dawson and Perkins studied a stochastic model of mutually catalytic (continuous state) branching. Two populations live on a countable site space $S$ and the amount of population of type $i = 1, 2$ at time $t$ at site $k \in S$ is denoted by $Y_{i,t}(k) \in [0, \infty)$. The populations migrate according to a deterministic heat flow like dynamic that is characterised by the (symmetric) $q$-matrix $A$ of a Markov chain on $S$. Locally, the populations undergo critical continuous state branching with a rate that is proportional to the size of the other type at the same place. Formally, this model can be described by a system of stochastic differential equations:

$$Y_{i,t}(k) = Y_{i,0}(k) + \int_0^t \sum_{l \in S} A(k,l) Y_{i,s}(l) \, ds + \int_0^t (\gamma Y_{1,s}(k) Y_{2,s}(k))^{1/2} \, dW_{i,s}(k), \quad t \geq 0, k \in S, i = 1, 2. \quad (1.1)$$

Here $(W_i(k), \ k \in S, \ i = 1, 2)$ is an independent family of one-dimensional Brownian motions and $Y_{i,0}$ is chosen from a suitable subspace of $([0, \infty)^2)^S$. The parameter $\gamma \geq 0$ can be thought of as being the branching rate for

∗corresponding author

1This work is partly funded by the German Israeli Foundation with grant number G-807-227.6/2003
this model. Dawson and Perkins showed that there is a unique weak solution of (1.1) and studied the longtime behaviour of this model. They also constructed the analogous model in the continuous setting on $\mathbb{R}$ instead of $S$.

For the model with $S = \mathbb{Z}$ and $\mathcal{A}$ the $q$-matrix of symmetric nearest neighbour random walk, the model tends to a state with spatially segregated types. In an approach to describe quantitatively the cluster growth, a space and time rescaling argument suggests that it is useful to study the limit as $\gamma \to \infty$ first. Studying this limit requires a formal description of the limit process $X$, construction of the limit process and establishing convergence of $Y$ as $\gamma \to \infty$.

This programme is carried out for a process with $S$ a singleton in $\mathbb{R}$ and for a countable site space $S$ in [9]. Furthermore, in [10] the longtime behaviour is studied which shows a dichotomy between coexistence and segregation of types depending on the potential properties of the matrix $\mathcal{A}$.

In [9] the process $X$ is characterised both via a martingale problem and as the solution of a system of stochastic differential equations of jump type. While the construction of $X$ was performed via constructing approximate solutions of the stochastic differential equations, here the aim is to present a different approach via a Trotter approximation scheme.

The main idea is described via the following heuristics. Denote by $a_t$ the matrix of time $t$ transition probabilities of the continuous time Markov chain with $q$-matrix $\mathcal{A}$. Furthermore, let $Q_t(y, dy')$ denote the transition kernel for equation (1.1) with $\mathcal{A} = 0$. It is not hard to see that $Q_t$ converges as $t \to \infty$ to some kernel $Q$. In fact, if $\mathcal{A} = 0$, then all colonies evolve independently, and each colony is a time transformed planar Brownian motion in $(0, \infty)^2$ stopped when it hits the boundary. Hence $Q$ is the product of the harmonic measures of planar Brownian motions in the upper right quadrant. Now let $\varepsilon > 0$ and define $X^\varepsilon_0 = Y_0$ and inductively let $X^\varepsilon_{k+1}$ be distributed, given $X^\varepsilon_k$, like $Q(a, X^\varepsilon_k, dy')$. This amounts to an interlaced dynamics where deterministic heat flow and random infinite rate branching alternate. The main result of this paper is that in fact the processes $X^\varepsilon$ converge as $\varepsilon \to 0$ to the infinite rate mutually catalytic branching process $X$ constructed in [9]. In Section 1.2 and 1.3 we give a formal description of this $X$.

The idea of using a Trotter type approach for the construction of the infinite rate mutually catalytic branching process is taken from the PhD thesis [12] and parts of the strategy of proof are based on that thesis.

1.2 The infinite rate branching process

We start with a definition of the state spaces of our processes. Define $E := [0, \infty)^2 \setminus (0, \infty)^2$. Let $S$ be a countable set. For $u, v \in [0, \infty)^S$ define

$$\langle u, v \rangle = \sum_{k \in S} u(k)v(k) \in [0, \infty].$$

Similarly, for $x \in ([0, \infty)^2)^S$ and $\zeta \in [0, \infty)^S$ define

$$\langle x, \zeta \rangle = \sum_{k \in S} x(k)\zeta(k) \in [0, \infty]^2.$$

We can weaken the requirement that $\mathcal{A}$ be a $q$-matrix: Let $\mathcal{A} = (\mathcal{A}(k, l))_{k, l \in S}$ be a matrix indexed by the countable set $S$ satisfying

$$\mathcal{A}(k, l) \geq 0 \quad \text{for} \quad k \neq l \quad \text{(1.2)}$$

and

$$||\mathcal{A}|| := \sup_{k \in S} \sum_{l \in S} |\mathcal{A}(k, l)| + |\mathcal{A}(l, k)| < \infty. \quad \text{(1.3)}$$

By Lemma IX.1.6 of [11], there exists a $\beta \in (0, \infty)^S$ and an $M \geq 1$ such that $\sum_{k \in S} \beta(k) < \infty$, and

$$\sum_{l \in S} \beta(l)(|\mathcal{A}(k, l)| + |\mathcal{A}(l, k)|) \leq M \beta(k) \quad \text{for all} \quad k \in S. \quad \text{(1.4)}$$
We fix this $\beta$ for the rest of this paper.

Define the spaces

\[
\mathbb{L}^\beta = \{ u \in [0, \infty)^S : \langle u, \beta \rangle < \infty \},
\]

\[
\mathbb{L}^{\beta,2} = \{ x \in ([0, \infty)^2)^S : \langle x, \beta \rangle \in [0, \infty)^2 \},
\]

\[
\mathbb{L}^{f,2} = \{ y \in ([0, \infty)^2)^S : y(k) \neq 0 \text{ for only finitely many } k \in S \},
\]
as well as

\[
\mathbb{L}^{\beta,E} = \mathbb{L}^{\beta,2} \cap E^S \quad \text{and} \quad \mathbb{L}^{f,E} = \mathbb{L}^{f,2} \cap E^S.
\]

Finally, define the spaces

\[
\mathbb{L}^\beta_\infty = \{ f \in [0, \infty)^S : \langle f, g \rangle < \infty \text{ for all } g \in \mathbb{L}^\beta \}
\]

\[
= \left\{ f \in \mathbb{L}^\beta : \sup_{k \in S} f(k)/\beta(k) < \infty \right\}
\]

and

\[
\mathbb{L}^{\beta,E}_\infty = \{ \eta = (\eta_1, \eta_2) \in E^S : \eta_1, \eta_2 \in \mathbb{L}^\beta_\infty \}.
\]

Let $\mathcal{A}f(k) = \sum_{l \in S} \mathcal{A}(k, l)f(l)$ if the sum is well-defined. Let $\mathcal{A}^n$ denote the $n$th matrix power of $\mathcal{A}$ (note that this is well-defined and finite by (1.3)) and define

\[
a_t(k, l) := e^{t\mathcal{A}}(k, l) := \sum_{n=0}^{\infty} \frac{t^n \mathcal{A}^n(k, l)}{n!}.
\]

Let $\mathcal{S}$ denote the (not necessarily Markov) semigroup generated by $\mathcal{A}$, that is

\[
\mathcal{S}_t f(k) = \sum_{l \in S} a_t(k, l)f(l) \quad \text{for } t \geq 0.
\]

We will use the notation $\mathcal{A}f$, $\mathcal{S}_t f$ and so on also for $[0, \infty)^2$ valued functions $f$ with the obvious coordinate-wise meaning.

For $u \in \mathbb{R}^S$ define

\[
\|u\|_\beta = \sum_{k \in S} |u(k)|\beta(k).
\]

Note that for $f \in \mathbb{L}^\beta$, the expressions $\mathcal{A}f$ and $\mathcal{S}_t f$ are well-defined and that (recall $M$ from (1.4))

\[
\|\mathcal{A}f\|_\beta \leq M\|f\|_\beta \quad \text{and} \quad \|\mathcal{S}_t f\|_\beta \leq e^{Mt}\|f\|_\beta.
\]

That is, the spaces $\mathbb{L}^\beta$ and $\mathbb{L}^{\beta,2}$ are preserved under the dynamics of $(\mathcal{S}_t)$.

Let $D([0, \infty); \mathbb{L}^{\beta,E})$ be the Skorohod space of càdlàg $\mathbb{L}^{\beta,E}$-valued functions.

We will employ a martingale problem in order to characterise the infinite rate mutually catalytic branching process $X \in D([0, \infty); \mathbb{L}^{\beta,E})$. In order to formulate this martingale problem for $X$ conveniently, for $x = (x_1, x_2) \in \mathbb{R}^2$ and $y = (y_1, y_2) \in \mathbb{R}^2$ we introduce the \textit{lozenge product}

\[
x \diamond y := -(x_1 + x_2)(y_1 + y_2) + i(x_1 - x_2)(y_1 - y_2)
\]

(with $i = \sqrt{-1}$) and define

\[
F(x, y) = \exp(x \diamond y).
\]

Note that $x \diamond y = y \diamond x$, hence $F$ is symmetric. For $x, y \in (\mathbb{R}^2)^S$ we write

\[
\langle x, y \rangle = \sum_{k \in S} x(k) \diamond y(k)
\]
whenever the infinite sum is well-defined and let

\[ H(x, y) = \exp(\langle x, y \rangle). \]  

(1.11)

Note that the function \( H(x, y) \) is well-defined if either \( x \in (\mathbb{R}^2)^S \) and \( y \in L^1,E \) or \( x \in L^\beta,E \) and \( y \in L^\beta,E \).

It is shown in [8, Corollary 2.4] that the vector space of finite linear combinations \( \sum_{i=1}^n \alpha_i F(\cdot, y_i), n \in \mathbb{N}, \alpha_i \in \mathbb{C}, y_i \in E, \) is dense in the space \( C_t(E; \mathbb{C}) \) of bounded continuous complex valued functions on \( E \) with a limit at infinity. Hence the family \( H(\cdot, y), y \in L^1,E \), is measure determining for probability measures on \( L^\beta,E \) (but not on \( L^\beta,2 \)).

In [9] the following theorem was established:

**Theorem 0**

(a) For all \( x \in L^\beta,E \), there exists a unique solution \( X \in D([0, \infty); L^\beta,E) \) of the following martingale problem: For each \( y \in L^1,E \), the process \( M_x^x,y \) defined by

\[ M_t^x,y := H(X_t, y) - H(x, y) - \int_0^t \langle AX_s, y \rangle H(X_s, y) \, ds \]  

(MP)

is a martingale with \( M_0^x,y = 0 \).

(b) For any \( x \in L^\beta,E \) and \( y \in L^\beta,E \), the process \( M_x^x,y \) is well-defined and is a martingale.

(c) Denote by \( P_x \) the distribution of \( X \) with \( X_0 = x \). Then \( (P_x)_{x \in L^\beta,E} \) is a strong Markov family.

Note that for the uniqueness it is crucial that the single coordinates take values in \( E \). If we would require only values in \([0, \infty)^2\), then also the finite rate mutually catalytic branching process \( Y \) is a solution of the martingale problem for any \( \gamma \geq 0 \). In Proposition [11], we will see that also our approximate process \( X^\varepsilon \) is a solution to \( \text{(MP)} \) with the larger state space \( L^\beta,2 \).

In [10] Theorem 1.3] it was shown that the processes \( Y \) defined in [11] converge to \( X \) as \( \gamma \to \infty \) in the Meyer-Zheng topology. Hence the name \textit{infinite rate mutually catalytic branching process} for \( X \) is justified.

### 1.3 The main result

We now define the approximating process \( X^\varepsilon \) in detail. In order to do so we introduce the harmonic measure \( Q \) of planar Brownian motion \( B \) on \( (0, \infty)^2 \). That is, if \( B = (B_t, B_2) \) is a Brownian motion in \( \mathbb{R}^2 \) started at \( x \in [0, \infty)^2 \) and \( \tau = \inf\{t > 0 \mid B_t \notin (0, \infty)^2\} \), then we define

\[ Q_x = P_x[B_\tau \in \cdot]. \]  

(1.12)

Now for fixed \( \varepsilon > 0 \), consider the stochastic process \( X^\varepsilon \) with values in \( L^\beta,2 \) with the following dynamics:

(i) Within each time interval \([n\varepsilon, (n+1)\varepsilon)\), \( n \in \mathbb{N} \), \( X^\varepsilon \) is the solution of \( \text{(1.1)} \) with \( \gamma = 0 \); that is, for \( k \in S \),

\[ dX^\varepsilon_{i,t}(k) = (AX^\varepsilon_{i,t})(k) \, dt \quad \text{for} \quad t \in [n\varepsilon, (n+1)\varepsilon). \]

Clearly, the explicit solution is

\[ X^\varepsilon_{i,t}(k) = (S_{t-n\varepsilon}X^\varepsilon_{i,n\varepsilon})(k) \quad \text{for} \quad t \in [n\varepsilon, (n+1)\varepsilon). \]

(ii) At time \( n\varepsilon \), \( X^\varepsilon \) has a discontinuity. Independently, each coordinate \( X^\varepsilon_{n\varepsilon-,k} \) is replaced by a random element of \( E \) drawn according to the distribution \( Q_{X^\varepsilon_{n\varepsilon-,k}} \).
If, for \( x \in E^\mathbb{Z} \), we denote by \( Q(x, \cdot) = \bigotimes_{k \in S} Q_{x(k)} \) the Markov kernel of independent displacements, then \((X^\varepsilon_{n\varepsilon})_{n \in \mathbb{N}_0}\) is a Markov chain on \(L^{\beta,E}\) with transition kernel \(Q^\varepsilon(x, \cdot) := Q(S, x, \cdot)\). Note that \(X^\varepsilon\) is a càdlàg process with values in \(L^{\beta,2}\) (but not in \(L^{\beta,1}\)) and that, for any \( y \in L^{f,E}\),

\[
H(X_t^\varepsilon) - \int_0^t \langle AX_t^\varepsilon, y \rangle \, ds,
\]

\( t \in [n\varepsilon, (n+1)\varepsilon) \),

is a martingale. Furthermore, as we will show in Lemma \(2\), we have \(\int H(x', y) Q(x, dx') = H(x, y)\) for all \( y \in L^{f,E}\) and \( x \in L^{\beta,2}\). As an immediate consequence, we get the following proposition.

**Proposition 1.1** For all \( x \in L^{\beta,E} \) and \( y \in L^{f,E} \), and for \( X^\varepsilon \) defined as above with \( X_0 = x \), we have that

\[
M_{t,x,y}^\varepsilon := H(X_t^\varepsilon, y) - H(X_0^\varepsilon, y) - \int_0^t \langle AX_s^\varepsilon, y \rangle \, ds,
\]

\( t \geq 0 \), is a martingale.

(1.13)

We will show that \(X^\varepsilon\) converges to a process that takes values in \(L^{\beta,E}\) while preserving this martingale property. The main theorem of this paper is the following.

**Theorem 1** For any \( x \in L^{\beta,E} \), as \( \varepsilon \to 0 \), the processes \(X^\varepsilon\) converge in distribution in the Skorohod spaces \(D([0,\infty); L^{\beta,2})\) to the unique solution \(X\) of the martingale problem \([MP]\).

With a little bit of good will, this construction can be interpreted as a Trotter product approach. Recall that (under suitable assumptions on the spaces and cores of the involved operators) the Trotter product formula states the following (see, e.g., \([6, \text{Corollary 6.7}]\)):

If \((S_t)_{t \geq 0}, (T_t)_{t \geq 0}\) and \((U_t)_{t \geq 0}\) are strongly continuous contraction semigroups with generators \(A, B\) and \(C = A + B\), respectively, then

\[
\lim_{\varepsilon \to 0} (T_{\varepsilon} S_{\varepsilon}|[0,\varepsilon]) = U_t \quad \text{pointwise.}
\]

In our setting \( T_t = Q \) for all \( t > 0 \) and \( T_0 = \text{id} \), hence \((T_t)\) is by no means strongly continuous. Nevertheless, Theorem \([\square]\) shows that the limit exists.

A nice spin off from this construction is the following statement about the distribution of \(X_t\) for fixed \( t \).

**Theorem 2** For all \( t \geq 0 \), \( x \in L^{\beta,E} \) and \( y \in L^{\beta}\), we have \(E_x[Q(x,y)] = Q(S, x, y)\). In particular, for all \( k \in S\), we have

\[
P_x[X_t(k) \in \cdot] = Q(S, x, k).
\]

As an application of Theorem \([\square]\), we consider the interface problem in dimension \(d = 1\). Assume that \( S = \mathbb{Z} \) and that \( Af(k) = \frac{1}{2} f(k+1) + \frac{1}{2} f(k-1) - f(k) \) is the \(q\)-matrix of symmetric simple random walk on \(\mathbb{Z}\). Hence \( a_t \) is the time \( t \) transition kernel of continuous time rate 1 symmetric simple random walk. Let \( u, v > 0 \) and assume that \( x(k) = (u,0) \) for \( k < 0 \) and \( x(k) = (0,v) \) for \( k \geq 0 \). Let \( X \) be the infinite rate mutually catalytic branching process on \(\mathbb{Z}\) with \( X_0 = x \). Define

\[
b_{t,1} := \sup\{k \in \mathbb{Z} : X_{1,t}(k-1) > 0\}
\]

and

\[
b_{t,2} := \inf\{k \in \mathbb{Z} : X_{2,t}(k) > 0\}.
\]

We conjecture that \(b_{t,1} = b_{t,2}\) almost surely. In this case, the position \( b_t := b_{t,1} \) could be considered as the interface between the type 1 population (left) and the type 2 population (right). It is a challenging task to find out what the dynamics of \((b_t)_{t \geq 0}\) is. By work on the finite branching rate process of \([\mathcal{O}]\) and \([\mathcal{D}]\), we should have \(\limsup_{t \to \infty} b_t = \infty\) and \(\liminf_{t \to \infty} b_t = -\infty\). That is, the type at any given site changes again and again infinitely late.

Theorem \([\mathcal{O}]\) gives an indication what the distribution of \(b_t\) is for fixed \( t \).
Corollary 1.2 If \( b_{t,1} = b_{t,2} \) almost surely, then
\[
P[b_t \leq k] = \frac{1}{2} + \frac{1}{\pi} \arctan \left( \frac{v_t(k)^2 - u_t(k)^2}{2u_t(k)v_t(k)} \right),
\]
(1.14)
where
\[
u_t(k) := u \sum_{l=-k}^{k} a_t(0,l) \quad \text{and} \quad v_t(k) := v \sum_{l=-k}^{k} a_t(0,l).
\]
In particular, \( \text{median}(b_t) \sim \alpha \sqrt{t} \) as \( t \to \infty \), where \( \alpha = \Phi^{-1}(u_u + v_v) \) and \( \Phi \) is the distribution function of the standard normal distribution, and
\[
\lim_{t \to \infty} P[b_t \leq 0] = \frac{1}{2} + \frac{1}{\pi} \arctan\left( \frac{v_v^2 - u_u^2}{2uv} \right).
\]

Proof. By Theorem 1, we have
\[
P[b_t \leq k] = P[X_{2,t}(k) > 0] = Q_{S_{x,t}(k)}(\{0\} \times (0, \infty)).
\]
By an explicit calculation using the density of \( Q \) (see Lemma 2.1), we get (1.14). The other two statements follow from the central limit theorem for \( a_t \).

1.4 Outline

The rest of the paper is organised as follows. In Section 2, we collect some basic facts about the harmonic measure \( Q \) and prove Proposition 1.1. In Section 3, we derive a submartingale related with \( X^\varepsilon \) and show that the two types of \( X^\varepsilon \) are non-positively correlated. In Section 4, we show relative compactness of the family \( (X^\varepsilon, \varepsilon > 0) \). Finally, in Section 5, we finish the proofs of Theorem 1 and 2.

2 The Harmonic Measure \( Q \)

2.1 Harmonic Measure and Duality

Recall that \( Q_x \) is the harmonic measure for planar Brownian motion in the upper right quadrant started at \( x = (0, \infty)^2 \) and stopped upon leaving \( (0, \infty)^2 \). If \( x = (u, v) \in (0, \infty)^2 \), then the harmonic measure \( Q_x \) has a one-dimensional Lebesgue density on \( E \) that can be computed explicitly
\[
Q_{(u,v)}(d(\bar{u}, \bar{v})) = \begin{cases} 
\frac{4}{\pi} \frac{uv \bar{u}}{4u^2v^2 + (\bar{u}^2 + v^2 - u^2)^2} \, d\bar{u}, & \text{if } \bar{v} = 0, \\
\frac{4}{\pi} \frac{uv \bar{v}}{4u^2v^2 + (\bar{v}^2 + u^2 - v^2)^2} \, d\bar{v}, & \text{if } \bar{u} = 0.
\end{cases}
\]
(2.1)
Furthermore, trivially we have \( Q_x = \delta_x \) if \( x \in E \). Clearly,
\[
x \mapsto Q_x \text{ is continuous.}
\]
(2.2)

Lemma 2.1 For all \( u, v > 0 \) and \( c \geq 0 \), we have
\[
Q_{(u,v)}(\{0\} \times (c, \infty)) = \frac{1}{2} + \frac{1}{\pi} \arctan \left( \frac{u^2 - v^2 - c^2}{2uv} \right).
\]
Proof. This follows from explicitly computing the integral \( \int_c^\infty Q_{(u,v)}(d(0, \bar{v})) \) in (2.1). 

Recall \( F \) from (1.9). Explicitly computing the Laplacian with respect to the first coordinate gives
\[
\left( \frac{\partial^2}{(\partial x_1)^2} + \frac{\partial^2}{(\partial x_2)^2} \right) F(x, y) = 8y_1y_2 F(x, y).
\]
Hence for \( y \in E \), the function \( F(\cdot, y) \) is harmonic for planar Brownian motion \( B \) and hence \( (F(B_t, y))_{t \geq 0} \) is a bounded martingale. If \( \tau \) denotes the first exit time of \( B \) from \((0, \infty)^2\), we infer
\[
\int F(z, y) Q_x(dz) = E_x[F(B_\tau, y)] = E_x[F(B_0, y)] = F(x, y) \quad \text{for } x \in [0, \infty)^2, y \in E,
\]
and similarly (see \cite[Corollary 2.3]{[8]}),
\[
\int F(z, y) Q_x(dz) = \int F(x, z) Q_y(dz) \quad \text{for } x, y \in [0, \infty)^2.
\]
Similarly, since linear functions are harmonic for Brownian motion and using that \( p \)-th moments of \((B_t)_{t \leq \tau}\) are bounded for \( p < 2 \) (see Lemma \ref{lem:2.2}), we can derive
\[
\int z_i Q_x(dz) = x_i \quad \text{for all } x \in [0, \infty)^2, i = 1, 2.
\]
Note that \((2.5)\) could also be computed explicitly using Lemma \ref{lem:2.3}.

Recall that \( Q(x, \cdot) = \bigotimes_{k \in S} Q_{x(k)} \) for \( x \in ([0, \infty)^2)^S \). From \((2.3)\) we get immediately the following lemma.

**Lemma 2.2** For all \( x \in \mathbb{L}^{\beta, E} \) and \( y \in \mathbb{L}^{\alpha, E} \) we have
\[
\int H(z, y) Q(x, dz) = H(x, y).
\]

**Proof of Proposition \ref{prop:1.1}** Note that due to the definition of \( X^\varepsilon \) and the chain rule of calculus, we have
\[
M_t^{x^\varepsilon, y} - M_s^{x^\varepsilon, y} = 0 \quad \text{for } s, t \in [n \varepsilon, (n + 1) \varepsilon), n \in \mathbb{N}_0.
\]
Hence, the statement of Proposition \ref{prop:1.1} is an immediate consequence of Lemma \ref{lem:2.2}. \( \square \)

### 2.2 Moments of the Harmonic Measure

Since the harmonic measure \( Q \) does not possess a second moment, our proofs will rely on \( p \)-th moment estimates for \( p \in (1, 2) \). Here we collect some of these estimates. Define \( \text{arctan}^1 \) as the inverse of the tangent function \( \tan : [0, \pi] \to \mathbb{R} \). That is,
\[
\text{arctan}^1(x) = \text{arctan}(x) + \pi \mathbb{I}_{\{x < 0\}}.
\]
Note that \( \mathbb{R} \setminus \{0\} \to [0, \pi], x \mapsto \text{arctan}^1(1/x) \) can be extended continuously to \( x = 0 \) with the convention \( \text{arctan}^1(1/0) = \text{arctan}^1(-1/0) = \pi/2 \).

**Lemma 2.3** For all \( u, v > 0 \), we have \( \int_E x_1^2 Q(u,v)(dx) = \infty \) and for \( p \in (0, 2) \),
\[
\int_E x_1^p Q(u,v)(dx) = \frac{(u^2 + v^2)^{p/2} \sin \left( \frac{\pi}{2} \text{arctan}^1 \left( \frac{2uv}{u^2 - v^2} \right) \right)}{\sin((\pi/2)p)}.
\]

**Proof.** This follows from explicitly computing the integral using \((2.1)\). \( \square \)

**Lemma 2.4** Let \( B = (B_1, B_2) \) be a planar Brownian motion started in \( B_0 = (u, v) \in [0, \infty)^2 \) and let \( \tau = \inf \{ t > 0 : B_t \not\in (0, \infty)^2 \} \).

Then for any \( p \in (0, 2) \), we have
\[
E[\tau^{p/2}] \leq \frac{4}{(2 - p)\pi} (uv)^{p/2} < \infty. \tag{2.7}
\]
Furthermore, for any \( p \in (1, 2) \), we have
\[
E[\tau^{p/2}] \leq \frac{2}{\pi} \frac{p}{(p - 1)(2 - p)} \min(u^{p-1}, v^{p-1}). \tag{2.8}
\]
Proof. By the reflection principle and independence of $B_1$ and $B_2$, we get
\[ P[\tau > t] = 4N_{0,t}(0,u)N_{0,t}(0,v), \]
where $N_{0,t}(a,b) = (2\pi t)^{-1/2} \int_a^b e^{-r^2/2t} dr$ is the centred normal distribution with variance $t$. Hence for any $p \in (0,2)$,
\[ E[\tau^{p/2}] = \int_0^\infty P[\tau > t^{2/p}] dt \leq 4 \int_0^\infty (1 \wedge u(2\pi t)^{-1/p})(1 \wedge v(2\pi t)^{-1/p}) dt. \tag{2.9} \]
We can continue this inequality by
\[ \leq \frac{2}{\pi}(uv)^{p/2} + \frac{4uv}{(2\pi)^{2/p}} \int_{uv}^\infty t^{-2/p} dt = \frac{4}{(2-p)\pi}(uv)^{p/2}. \]
This gives (2.7). For $p \in (1,2)$, we can continue (2.9) by
\[ \leq 4u(2\pi)^{-1/p} \int_0^{p/2\pi} t^{-1/p} dt + \frac{4uv}{(2\pi)^{2/p}} \int_0^\infty t^{-2/p} dt = \frac{2}{\pi} \frac{p}{(p-1)(2-p)} uv^{p-1}. \tag{2.10} \]
Interchanging the roles of $u$ and $v$ in (2.10) gives (2.8). \hfill \qed

**Lemma 2.5** For $p \in (1,2)$, there exists a constant $C_p < \infty$ such that for every $x \in E$ and $i = 1, 2$, we have
\[ \int_E y_i^p Q_x(dy) \geq x_i^p \tag{2.11} \]
and
\[ \int_E |y_i - x_i|^p Q_x(dy) \leq C_p \min(x_1^{p-1}x_2, x_1x_2^{p-1}) \leq C_p (x_1x_2)^{p/2}. \tag{2.12} \]

**Proof.** By the Burkholder-Davis-Gundy inequality (see, e.g., [5 Theorem VII.92]) and Lemma 2.4 $(B_{i,t})_{t \leq \tau}$ is a uniformly integrable martingale. Hence, by Jensen’s inequality,
\[ x_i^p = E_x[B_{i,t}]^p \leq E_x[B_{i,t}^p] = \int_E y_i^p Q_x(dy). \]
The claim (2.12) could be checked either by a direct computation using Lemma 2.3 or by proceeding as follows: Let $B$ and $\tau$ be as in Lemma 2.4. Using the Burkholder-Davis-Gundy inequality and then Lemma 2.4 we get
\[ \int_E |y_i - x_i|^p Q_x(dy) = E_x[|B_{i,\tau} - x_i|^p] \leq (4p)^p E_x[\tau^{p/2}] \leq \frac{2^{2p+1}p^{p+1}}{(p-1)(2-p)\pi} \min(x_1^{p-1}x_2, x_1x_2^{p-1}). \] \hfill \qed

## 3 The Approximating Process $X^\varepsilon$

### 3.1 Martingale property of $X^\varepsilon$

**Proposition 3.1** Let $x \in L^{p,E}$ and $k \in S$. Define the process $N^\varepsilon,x$ for $i = 1, 2$, $k \in S$ and $t \geq 0$ by
\[ N_{i,t}^\varepsilon(k) := X_{i,t}(k) - X_{i,0}(k) - \int_0^t (AX_{i,s}^\varepsilon)(k) ds. \]
Proof. (i) This is an immediate consequence of the definition of $X^\varepsilon$ and (3.2).

(ii) Since $\mathcal{A}(k,l) \geq 0$ for all $k \neq l$, we have

$$\frac{d}{dt} Z_{i,k}^\varepsilon(k) = \sum_{l \neq k} \mathcal{A}(k,l) Z_{i,l}^\varepsilon(k) \geq 0 \quad \text{for } t \in (n\varepsilon, (n+1)\varepsilon).$$

Together with (2.5) this shows that $Z_{i,k}^\varepsilon$ is a submartingale. As a sum of submartingales, also $\bar{Z}_{i,k}^\varepsilon$ is a submartingale.

Corollary 3.2 For every $K,T > 0$ and any set $G \subset S$, we have

$$\mathbf{P}_x \left[ \sup_{t \in [0,T]} \|(X_{i,k}^\varepsilon + X_{2,k}^\varepsilon) \bar{1}_G\|_\beta \geq K \right] \leq K^{-1}e^{\lambda T} \|(S_T(x_1 + x_2)) \bar{1}_G\|_\beta. \quad \text{(3.2)}$$

In particular,

$$\mathbf{P}_x \left[ \sup_{t \in [0,T]} \|(X_{i,k}^\varepsilon + X_{2,k}^\varepsilon)\|_\beta \geq K \right] \leq K^{-1}e^{(\lambda + M)T} \|x_1 + x_2\|_\beta. \quad \text{(3.3)}$$

Proof. This is an immediate consequence of Proposition 3.1 and Doob’s inequality.

3.2 The one-dimensional distributions

Lemma 3.3 Let $a(1), a(2), \ldots$ be nonnegative numbers and let $x(1), x(2), \ldots \in [0, \infty)^2$ be such that

$$\bar{x} := \langle a, x \rangle = \sum_{k=1}^\infty a(k)x(k) \in [0, \infty)^2.$$

Let $\xi(1), \xi(2), \ldots$ be independent random variables with $\mathbf{P}[\xi(k) \in \cdot] = Q_{x(k)}$. Define $\bar{\xi} := \langle a, \xi \rangle = \sum_{k=1}^\infty a(k)\xi(k)$ and assume that $X$ is an $E$-valued random variable such that $\mathbf{P}[X \in \cdot | \bar{\xi}] = Q_{\bar{x}}$. Then $\mathbf{P}[X \in \cdot] = Q_{\bar{x}}$. In other words, $\mathbf{E}[Q_{\bar{x}}] = Q_{\bar{x}}$.

Proof. First note that $\mathbf{E}[\xi_i(k)] = x_i(k)$ and hence $\bar{\xi} \in [0, \infty)^2$ almost surely. Recall $F$ from (1.9). By (2.3), for all $y \in E$, we have

$$\mathbf{E}[F(X,y)] = \mathbf{E}[F(\bar{\xi}, y)] = \prod_{k=1}^\infty \mathbf{E}[F(\xi(k), a(k)y)] = \prod_{k=1}^\infty F(x(k), a(k)y) = F(\bar{x}, y) = \int_E F(z, y) Q_{\bar{x}}(dz).$$

Since $F(\cdot, y), y \in E$, is measure determining (see [8 Corollary 2.4]), this yields the claim.
Corollary 3.4  For any $\varepsilon > 0$, $n \in \mathbb{N}_0$ and $k \in S$, we have
\[
P[X^n_{\varepsilon}(k) \in \cdot] = Q_{S_n x(k)}.
\]

Proof.  Fix $n \in \mathbb{N}$. We show by induction on $m$ that
\[
P[X^n_{\varepsilon}(k) \in \cdot | X^*_{m-\varepsilon}] = Q_{S_{(n-m)}x_m}(k) \quad \text{for all } m = 0, \ldots, n.
\]
For the induction base $m = n$, this is true by definition of $X^\varepsilon$. Now assume that we have shown the statement for some $m \geq 1$. Using the induction hypothesis in the first line and Lemma 3.3 in the second line, we get
\[
P[X^n_{\varepsilon}(k) \in \cdot | X^*_{m-\varepsilon}] = E[Q_{S_{(n-m)}x_m}(k) | X^*_{m-\varepsilon}] = Q_{S_{(n-m)}x_m}(k).
\]
Note that we have used that $X^*_{m-\varepsilon} = X^*_{m-\varepsilon}$ in the last line.

Corollary 3.5  Let $y \in \mathbb{L}^\beta$. Then $E_x[Q_{\langle X^\varepsilon, y \rangle}] = Q_{S_{t x}(k), y}$.

Proof.  The proof is similar to the proof of Corollary 3.4 (Note that $\langle X^\varepsilon, y \rangle \in [0, \infty]^2$ almost surely, since $X^\varepsilon \in \mathbb{L}^{\beta, E}$ almost surely.)

3.3 Correlations

Lemma 3.6  Let $Y$ and $Z$ be non-positively correlated non-negative random variables and assume that $h : [0, \infty) \rightarrow [0, \infty]$ is concave and monotone increasing. Then $E[Y h(Z)] \leq E[Y] h(E[Z])$.

Proof.  If $E[Z] = 0$, then we even have equality. Now assume $E[Z] > 0$. By concavity of $h$, there exists a $b \in \mathbb{R}$ such that for all $z \geq 0$,
\[
h(z) \leq h(E[Z]) + (z - E[Z]) b.
\]
Since $h$ is nondecreasing, we have $b \geq 0$ and thus
\[
E[Y h(Z)] \leq E[Y( h(E[Z]) + (Z - E[Z]) b)] \leq E[Y] h(E[Z]).
\]

Lemma 3.7  For any $\varepsilon > 0$, $n \in \mathbb{N}_0$ and $k \in S$, the random variables $X^\varepsilon_{1, n\varepsilon}(k)$ and $X^\varepsilon_{2, n\varepsilon}(k)$ are non-positively correlated in the sense that
\[
E_x[X^\varepsilon_{1, n\varepsilon}(k) X^\varepsilon_{2, n\varepsilon}(k)] \leq E_x[X^\varepsilon_{1, n\varepsilon}(k)] E_x[X^\varepsilon_{2, n\varepsilon}(k)] = (S_{n\varepsilon} x_1(k))(S_{n\varepsilon} x_2(k)).
\]

Proof.  Let $t \geq 0$. Recall that $\mathcal{F}$ is the natural filtration of $X^\varepsilon$. Then
\[
E_x[S_t X^\varepsilon_{1, n\varepsilon}(k) S_t X^\varepsilon_{2, n\varepsilon}(k) | \mathcal{F}_{(n-1)\varepsilon}] = \sum_{l_1 \neq l_2} a_t(k, l_1) a_t(k, l_2) E_x[X^\varepsilon_{1, n\varepsilon}(l_1) X^\varepsilon_{2, n\varepsilon}(l_2) | \mathcal{F}_{(n-1)\varepsilon}]
\]
\[
= \sum_{l_1 \neq l_2} a_t(k, l_1) a_t(k, l_2) (S_{t+\varepsilon} X^\varepsilon_{1, (n-1)\varepsilon}(l_1))(S_{t+\varepsilon} X^\varepsilon_{2, (n-1)\varepsilon})(l_2)
\]
\[
\leq \sum_{l_1 \neq l_2} a_t(k, l_1)(S_{t+\varepsilon} X^\varepsilon_{1, (n-1)\varepsilon})(l_1) a_t(k, l_2)(S_{t+\varepsilon} X^\varepsilon_{2, (n-1)\varepsilon})(l_2)
\]
\[
= E_x[S_t X^\varepsilon_{1, (n-1)\varepsilon}(k) S_{t+\varepsilon} X^\varepsilon_{2, (n-1)\varepsilon}(k)].
\]
Inductively, we get
\[
E_x[S_t X^\varepsilon_{1, n\varepsilon}(k) S_t X^\varepsilon_{2, n\varepsilon}(k)] \leq S_{t+n\varepsilon} x_1(k) S_{t+n\varepsilon} x_2(k).
\]
Applying this with $t = 0$ yields the claim.
4 Tightness

The goal of this section is to show the following proposition.

**Proposition 4.1** The family of processes $(X^\varepsilon)_{\varepsilon>0}$ is relatively compact in the Skorohod spaces of càdlåg functions $D([0, \infty); \mathbb{L}^{\beta,2})$.

By Prohorov’s theorem, in order to show relative compactness of $(X^\varepsilon)$, it is enough to show tightness of $(X^\varepsilon)$. The strategy of proof is to check the compact containment condition for $X^\varepsilon$ (Lemma 4.4) and then use Aldous’s tightness criterion for functions $h(X^\varepsilon_t)$, where $h : \mathbb{L}^{\beta,2} \to \mathbb{R}$ is Lipschitz continuous and depends on only finitely many coordinates.

We start by collecting some basic facts about compact sets and separating function spaces. The proofs of the following statements are standard and are therefore omitted here.

**Lemma 4.2** A set $C \subset \mathbb{L}^{\beta,2}$ is relatively compact if and only if (i) and (ii) hold:

(i) $B_C := \sup_{x \in C} \|x_1 + x_2\|_\beta < \infty$.

(ii) For any $\eta > 0$, there exists a finite subset $S_\eta \subset S$ such that $\|(x_1 + x_2) 1_{S \setminus S_n}\|_\beta < \eta$.

**Lemma 4.3** Let $C_b(\mathbb{L}^{\beta,2}; \mathbb{R})$ be the space of real-valued bounded continuous functions $\mathbb{L}^{\beta,2} \to \mathbb{R}$ with the topology of uniform convergence on compact sets. Denote by $\text{Lip}_f(\mathbb{L}^{\beta,2}; \mathbb{R})$ the space of Lipschitz continuous bounded functions $\mathbb{L}^{\beta,2} \to \mathbb{R}$ that depend on only finitely many coordinates. Then $\text{Lip}_f(\mathbb{L}^{\beta,2}; \mathbb{R}) \subset C_b(\mathbb{L}^{\beta,2}; \mathbb{R})$ is dense.

**Lemma 4.4** (compact containment condition) Fix $x \in \mathbb{L}^{\beta,2}$. For any $\eta > 0$ and $T > 0$, there exists a compact set $\Gamma \subset \mathbb{L}^{\beta,2}$ such that

$$P_x[X^\varepsilon_t \in \Gamma \text{ for all } t \in [0, T)] \geq 1 - \eta \quad \text{for all } \varepsilon > 0. \quad (4.1)$$

**Proof.** Let $T > 0$ and $\eta > 0$. Recall $M$ from (1.4) and $\lambda$ from Proposition 3.1(ii). Choose a $K > \frac{n}{\eta} e^{(\lambda + M)T} \|x_1 + x_2\|_\beta$ and let $A_K := \{y \in \mathbb{L}^{\beta,2} : \|y_1 + y_2\|_\beta < K\}$. According to Corollary 3.2, we have

$$P_x[X^\varepsilon_t \in A_K \text{ for all } t \in [0, T)] \geq 1 - \frac{\eta}{2}.$$ 

Now for any $n \in \mathbb{N}$, choose a finite $S_n \subset S$ such that

$$n e^{\lambda T} \|S_T(x_1 + x_2) 1_{S \setminus S_n}\|_\beta < 2^{-n-1} \eta$$

and define

$$B_n := \{y \in \mathbb{L}^{\beta,2} : \|(y_1 + y_2) 1_{S \setminus S_n}\|_\beta < 1/n\}.$$ 

According to Corollary 3.2, we have

$$P_x[X^\varepsilon_t \in B_n \text{ for all } t \in [0, T)] \geq 1 - 2^{-n-1} \eta.$$ 

Now let $\Gamma$ by the closure of $A_K \cap \bigcap_{n=1}^\infty B_n$. Then

$$P_x[X^\varepsilon_t \in \Gamma \text{ for all } t \in [0, T)] \geq 1 - \eta$$

and by Lemma 4.2, $\Gamma$ is compact. \hfill \Box

**Lemma 4.5** Fix $h \in \text{Lip}_f(\mathbb{L}^{\beta,2}; \mathbb{R})$. For $\varepsilon > 0$, define the process $Y^\varepsilon$ by

$$Y^\varepsilon_t := h(X^\varepsilon_t), \quad t \geq 0.$$ 

Then $(Y^\varepsilon)_{\varepsilon>0}$ is tight in the Skorohod space $D([0, \infty); \mathbb{R})$ of càdlåg functions $[0, \infty) \to \mathbb{R}$.
Proof. The idea is to use Aldous’ criterion for tightness in $D([0, \infty); \mathbb{R})$. As $h$ is bounded, $(Y^\varepsilon_t)_{t \geq 0}$ is tight for each $t \geq 0$. Hence by Aldous’ criterion (see, e.g., [1] Eq. (13)) or [7] Section VI.4a), we need to show the following: For any $\eta > 0$ and $T > 0$, there exist $\delta > 0$ and $\varepsilon_0 > 0$ such that for any stopping time $\tau \leq T$, we have
\begin{equation}
\sup_{\delta' \in [0, \delta]} \sup_{\varepsilon \in (0, \varepsilon_0]} P_x \left[ |Y^\varepsilon_{\tau + \delta'} - Y^\varepsilon_{\tau}| > \eta \right] \leq \eta. \tag{4.2}
\end{equation}
Since $h$ is Lipschitz continuous and depends on only finitely many coordinates, it is enough to consider the case, where $h(x) = x_i(k)$ for some $k \in S$ and $i = 1, 2$. Using Markov’s inequality, it is enough to show that for any $\eta > 0$ and $T > 0$ there exist $\delta > 0$ and $\varepsilon_0 > 0$ such that for any stopping time $\tau \leq T$, we have
\begin{equation}
\sup_{\delta' \in [0, \delta]} \sup_{\varepsilon \in (0, \varepsilon_0]} E_x \left[ |X^\varepsilon_{\tau + \delta'}(k) - X^\varepsilon_{\tau}(k)| \right] \leq \eta. \tag{4.3}
\end{equation}
Define
$$N := \lfloor \tau / \varepsilon \rfloor \quad \text{and} \quad N' := \lfloor (\tau + \delta') / \varepsilon \rfloor.$$ Then
$$E_x \left[ |X^\varepsilon_{\tau + \delta'}(k) - X^\varepsilon_{\tau}(k)| \right] \leq E_1 + E_2 + E_3 + E_4,$$ where
\begin{align*}
E_1 &:= E_x \left[ |X^\varepsilon_{\tau}(k) - X^\varepsilon_{\tau,N\varepsilon}(k)| \right], \\
E_2 &:= E_x \left[ |X^\varepsilon_{\tau + \delta'}(k) - X^\varepsilon_{\tau,N\varepsilon}(k)| \right], \\
E_3 &:= E_x \left[ |X^\varepsilon_{\tau,N\varepsilon}(k) - X^\varepsilon_{\tau}(k)| \right].
\end{align*}
Now, by (1.7), we get
\begin{align*}
E_1 &= E_x \left[ |S_{\tau - N\varepsilon}X^\varepsilon_{\tau,N\varepsilon}(k) - X^\varepsilon_{\tau,N\varepsilon}(k)| \right] \\
&\leq E_x \left[ \int_0^{\tau - N\varepsilon} |A\beta X_{\tau,N\varepsilon}(k)| ds \right] \\
&\leq M e^{h(k)} \beta(k) E_x \left[ \|X^\varepsilon_{\tau,N\varepsilon}\|_{\beta} \right] \leq \frac{M e^{(T+2h)M}}{\beta(k)} \|x_i\|_{\beta} \delta.
\end{align*}
Similarly, we get
$$E_2 \leq \frac{M e^{(T+2h)M}}{\beta(k)} \|x_i\|_{\beta} \delta.$$ Note that $N' - N$ takes only the values $\lfloor \delta' / \varepsilon \rfloor$ and $\lfloor \delta' / \varepsilon \rfloor$. Hence $E_3 \leq E_3' + E_3''$, where
$$E_3' := E_x \left[ |X^\varepsilon_{\tau,N+\lfloor \delta' / \varepsilon \rfloor\varepsilon}(k) - X^\varepsilon_{\tau,N\varepsilon}(k)| \right]$$
and
$$E_3'' := E_x \left[ |X^\varepsilon_{\tau,N+\lfloor \delta' / \varepsilon \rfloor\varepsilon}(k) - X^\varepsilon_{\tau,N\varepsilon}(k)| \right].$$
Fix a $p \in (1, 2)$. Using the Markov property of $X^\varepsilon$ and conditioning on $X^\varepsilon_{\tau,N\varepsilon}$, by Corollary 5.4 and Jensen’s inequality, we get
\begin{align*}
E_3'' &= E_x \left[ \int_E |y_i - X^\varepsilon_{\tau,N\varepsilon}(k)| Q_{S_{\tau,N+\lfloor \delta' / \varepsilon \rfloor\varepsilon}(k)}(dy) \right] \\
&\leq \left( E_x \left[ \int_E |y_i - X^\varepsilon_{\tau,N\varepsilon}(k)|^p Q_{S_{\tau,N+\lfloor \delta' / \varepsilon \rfloor\varepsilon}(k)}(dy) \right] \right)^{1/p}
\end{align*}
Applying Lemma 2.5 there exists a constant $C = C_p < \infty$ such that
\begin{align*}
(E_3'')^p &\leq C E_x \left[ \left( \sup_{\tau,N\varepsilon}X^\varepsilon_{\tau,N\varepsilon}(k) \right)^{p-1} S_{\tau,N\varepsilon}(k) X^\varepsilon_{\tau,N\varepsilon}(k) \right] \\
&+ C E_x \left[ \left( \sup_{\tau,N\varepsilon}X^\varepsilon_{\tau,N\varepsilon}(k) \right)^{p-1} S_{\tau,N\varepsilon}(k) X^\varepsilon_{\tau,N\varepsilon}(k) \right].
\end{align*}
By symmetry, it is enough to consider the first summand. Since the first and the second type are non-positively correlated (Lemma 3.7), by Lemma 3.6 (with \( h(z) = z^{p-1} \)), the first summand can be estimated by

\[
E_x \left[ \left( \mathcal{S}(\beta,\varepsilon)xX_{1,N\varepsilon}(k) \right)^{p-1} e^{\beta x^2} \right] \leq E_x \left[ \left( \mathcal{S}(\beta,\varepsilon)xX_{1,N\varepsilon}(k) \right)^{p-1} e^{\beta x^2} \right] \leq \left( e^{\beta x^2} \right)^{p-1} E_x \left[ \left( \mathcal{S}(\beta,\varepsilon)xX_{1,N\varepsilon}(k) \right)^{p-1} e^{\beta x^2} \right].
\]

The estimate for \( E_j \) is analogous. Summing up, by choosing \( \delta \) sufficiently small (independent of \( \varepsilon \leq \varepsilon_0 \)), we can get \( E_j < \eta/3 \), \( j = 1, 2, 3 \) and hence (1.3).

**Proof of Proposition 4.1** The space \( \mathbb{L}^{\beta,2} \) is Polish and hence so is the Skorohod space \( D([0,\infty);\mathbb{L}^{\beta,2}) \) of càdlàg paths \([0,\infty) \rightarrow \mathbb{L}^{\beta,2}(see [6] Chapter III.5). Hence by Prohorov’s theorem, it is enough to show tightness of \((X^\varepsilon)_{\varepsilon>0} \in D([0,\infty);\mathbb{L}^{\beta,2})\). By [6] Theorem III.9.1, it is enough to check two conditions:

(i) The compact containment condition; this is done in Lemma 4.4.

(ii) There is a dense (in the topology of uniform convergence on compacts) space \( H \subset C_b(\mathbb{L}^{\beta,2},\mathbb{R}) \) such that for every \( h \in H \), the family \( h(X^\varepsilon), \varepsilon > 0 \), is tight in \( D([0,\infty);\mathbb{R}) \). We have checked this for \( H = Lip_f(\mathbb{L}^{\beta,2};\mathbb{R}) \) in Lemma 4.3 and Lemma 4.4.

\[ \text{(5.1)} \]

**5 The Martingale Problem**

In this section we complete the proofs of Theorem \[ \text{(1)} \] and \[ \text{(2)} \].

**5.1 Proof of Theorem \[ \text{(1)} \]**

From Proposition \[ \text{(5.1)} \] we know that \( X^\varepsilon, \varepsilon > 0 \), is weakly relatively compact. From Theorem \[ \text{(1)} \], we know that the martingale problem \( \text{(MP)} \) has a unique solution. Hence it remains to show that any weak limit point of \( X^\varepsilon, \varepsilon > 0 \), is a solution of \( \text{(MP)} \). Let \( x \in \mathbb{L}^{\beta,E} \). Fix a sequence \( \varepsilon_n \downarrow 0 \) such that \( X^{\varepsilon_n} \) converges and denote the limit by \( X \). Without loss of generality, we may assume that the processes are defined on one probability space such that \( X^{\varepsilon_n} \overset{\text{a.s.}}{\rightarrow} X \) almost surely. Let \( y \in \mathbb{L}^{1,E} \) and define \( M^{x,y} \) as in \( \text{(MP)} \) and \( M^{x,y} \) as in (1.13). We know from Proposition \[ \text{(1.1)} \] that \( M^{x,y} \) is a martingale. Hence, it is enough to show that

\[ M_t^{x,y} \overset{n \to \infty}{\longrightarrow} M_t^{x,y} \text{ in } L^1 \text{ for all } t \geq 0. \]  

Note that the integrand in (1.13) converges pointwise to the integrand in \( \text{(MP)} \). Since \( H \) is bounded, in order to show (5.1), it is enough to show that \( \langle AX^{\varepsilon_n},y \rangle \) is uniformly integrable (with respect to Lebesgue measure on \([0,t] \) and \( P_x \)). Let \( p \in (1,2) \). Since \( y(k) \neq 0 \) only for finitely many \( k \in S \), it is enough to show that for \( i = 1, 2, t > 0 \), we have

\[ \sup_{\varepsilon>0} \sup_{x \in [0,t]} E \left[ |AX^{\varepsilon_n}(x)|^p \right] < \infty. \]  

Recall that \( |AX^{\varepsilon_n}(x)| \leq M \|X^{\varepsilon_n}\|_{\beta}/\beta(k) \). Let \( Z \) be an \( E \)-valued random variable such that \( P[Z \in \cdot \] \( |X^\varepsilon| = Q[|X^\varepsilon|] \) \( \beta \). Then \( E[Z^p] \geq E[|X^\varepsilon|^p] \) by Lemma 2.5. However, by Corollary 3.5, we have \( P_x[Z \in \cdot] = Q[|S_{x,t}|_{\beta}] \). Hence, again by Lemma 2.5,

\[ E[|X^\varepsilon|^p] \leq C_p e^{P M}(\|x_1\|_{\beta}\|x_2\|_{\beta})^{p/2}. \]

This shows (5.2) and completes the proof of Theorem \[ \text{(1)} \].
5.2 Proof of Theorem 2.

Theorem 2 is a direct consequence of Theorem 1, Corollary 3.5 and (2.2).

References

[1] David Aldous. Stopping times and tightness. *Ann. Probability*, 6(2):335–340, 1978.

[2] J. Theodore Cox and Achim Klenke. Recurrence and ergodicity of interacting particle systems. *Probability Theory and Related Fields*, 116(2):239–255, 2000.

[3] J. Theodore Cox, Achim Klenke, and Edwin A. Perkins. Convergence to equilibrium and linear systems duality. In Luis B. Gorostiza and B. Gail Ivanoff, editors, *Stochastic Models, A Conference in Honour of Professor Don Dawson*, volume 26 of *Conference Proceedings*, pages 41–66. Canadian Mathematical Society, Amer. Math. Soc., Providence, 2000.

[4] Donald A. Dawson and Edwin A. Perkins. Long-time behavior and coexistence in a mutually catalytic branching model. *Ann. Probab.*, 26(3):1088–1138, 1998.

[5] C. Dellacherie and P.-A. Meyer. *Probabilités et potentiel: Chapitres V à VIII Théorie des martingales*. Hermann, Paris, 1983.

[6] Stewart N. Ethier and Thomas G. Kurtz. *Markov processes*. John Wiley & Sons Inc., New York, 1986. Characterization and convergence.

[7] J. Jacod and A.N. Shiryaev. *Limit Theorems for Stochastic Processes*. Springer-Verlag, Berlin, 1987.

[8] Achim Klenke and Leonid Mytnik. Infinite rate mutually catalytic branching. *Preprint*, [arXiv:0809.4554 [math.PR]], 2008.

[9] Achim Klenke and Leonid Mytnik. Infinite rate mutually catalytic branching in infinitely many colonies. Construction, characterization and convergence. *Preprint*, [arXiv:0901.0623 [math.PR]], 2008.

[10] Achim Klenke and Leonid Mytnik. Infinite rate mutually catalytic branching in infinitely many colonies. The longtime behaviour. *Preprint*, 2008.

[11] Thomas M. Liggett. *Interacting particle systems*. Springer-Verlag, New York, 1985.

[12] Mario Oeler. *Mutually Catalytic Branching at Infinite Rate*. PhD thesis, Universität Mainz, 2008.