Hyperendemicity in Urban Centers of Brazil

Detection of Four Dengue Serotypes Suggests Rise in Hyperendemicity in Urban Centers of Brazil

Christian Julián Villabona-Arenas1, Jessica Luana de Oliveira1, Carla de Sousa Capra2, Karime Balarini3, Mauricio Loureiro4, Celso Ricardo Theoto P. Fonseca5, Saulo Duarte Passos6, Paolo Marinho de Andrade Zanotto1*

1 Laboratório de Evolução Molecular e Bioinformática, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil, 2 Laboratório de Saúde Pública, Secretaria da Saúde, Prefeitura Municipal de Guarujá, Guarujá, São Paulo, Brazil, 3 Itapema Laboratório de Análises Clínicas, Guarujá, São Paulo, Brazil, 4 Laboratório de Infectologia Pediátrica, Faculdade de Medicina de Jundiaí, Jundiaí, São Paulo, Brazil

Dengue fever is the most common infectious disease transmitted by a mosquito and a major economic and disease burden in endemic countries. The reported number of dengue cases in 2013 evidences the disease’s disturbing impact on human health in Brazil: 950,193 clinical cases, 3,749 with severe manifestations, and 201 deaths (data up to July 13, 2013 by the Pan American Health Organization); any of the four serotypes was the etiologic agent in these outbreaks. The first autochthonous cases of dengue in the southern hemisphere were reported in Venezuela in 1982 in a focal epidemic in the northwest of the country, we determined whether one serotype or multiple ones caused the 2013 epidemic in some critical localities in the state of São Paulo. In collaboration with our public health authorities, we collected acute-phase sera from suspected dengue patients from the cities of Guarujá (located in the coastal region with 290,752 inhabitants and 2,035 inhabitants/km²) and Jundiaí (located in the mountain range with 370,126 inhabitants and 856 inhabitants/km²) from December 20, 2012 to May 2013 (summer months). Jundiaí in the west and Guarujá in the east (seaside) are adjacent to, and tightly interconnected with, the densely populated municipality

Citation: Villabona-Arenas CJ, de Oliveira JL, Capra CDS, Balarini K, Loureiro M, et al. (2014) Detection of Four Dengue Serotypes Suggests Rise in Hyperendemicity in Urban Centers of Brazil. PLoS Negl Trop Dis 8(2): e2620. doi:10.1371/journal.pntd.0002620

Editor: Rebeca Rico-Hesse, Baylor College of Medicine, United States of America

Published February 27, 2014

Copyright: © 2014 Villabona-Arenas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) grant 2010/19059-7. CJVA and JLD hold the FAPESP scholarships 2011/17071-2 and 2013/10382-8 respectively; PMdAZ holds a CNPq - PQ scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pzanotto@usp.br
of São Paulo. We expected that this approach would inform on the cocirculation of viruses in the entire metropolitan area. Viral RNA was extracted from sera of 24 positive samples selected at random (20 from Guaruja and the only four samples that tested positive from Jundiaí), and we amplified and sequenced the capsid/premembrane junction that was proposed by Lanciotti et al. [10] for typing DENV. All sequences determined in this study were deposited in GenBank (427 bp; accession KF286626-KF286649). To help in classifying our sequences, a small time-stamped dataset comprising 35 sequences that were representative of both serotypes and genotypes was retrieved from GenBank and aligned with our sequences. A phylogenetic tree (Figure 1) was built using a Bayesian approach, and our evolutionary estimates matched those of Twiddy et al. [11], which validated our analysis. Sequences from both cities belonged to different serotypes. Remarkably, samples from Guaruja clustered within the four serotypes, while samples from Jundiaí grouped with either DENV-1 or DENV-4. We will argue that these findings corroborate a change in epidemiological pattern accompanying a rise in Brazilian urban hyperendemicity that constitutes a greater challenge for surveillance and control. Crucially, the presence of two serotypes in the same outbreak may be considered as an important warning for high levels of transmission, since Jundiaí has no significant historic record of epidemics.

Our DENV-1 samples grouped within genotype V, and our DENV-4 samples grouped within genotype II, as they did for strains from those serotypes reported elsewhere in Brazil. Besides, our tree showed closely related viral lineages in both municipalities, which implied viral movement across the metropolitan area. Moreover, DENV-1 samples from Jundiaí fell within divergent clades, suggesting that
there are two different lineages in the city. We consider these results important, since multiple viral lineages cocirculating in densely populated places acted as major dengue transmission hubs as noted in Raghwani et al. [12]. On the other hand, DENV-3 samples grouped with genotype V. DENV-3 genotype III has been the most prevalent genotype in the country, but genotypes I and V have also been associated with Brazilian outbreaks [13]. In this respect, our findings raise the intriguing question of whether our DENV-3 samples represent in situ evolution and dissemination from Brazilian regions, or if they are due to a novel introduction from Asia. Most significantly, we consider these results important, since there are two different lineages in the city. Recurring dengue epidemics in that country resulted in the establishment of hyperendemic areas, typically in large, densely populated cities, where most DENV serotypes circulate in a sustained fashion [15]. Roughly two years after the report on the presence of DENV-4 in Manaus (Amazon), we now find the four serotypes cocirculating in the south of the country in the outskirts of the municipality of São Paulo. Therefore, a continued advocacy of long-term prevention and control is imperative. Our concern is that if we ignore the urban hyperendemicity, children will be at greater risk for severe disease [5].

Ethics Statement

Both the Human Research Ethics Committee from the Biomedical Sciences Institute of University of São Paulo and the Research Ethics Committee from the Faculty of Medicine of Junedi approved the study; a written informed consent was obtained from all patients.

References

1. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480–496.
2. Nogueira RM, de Araújo JM, Schatzmayr HG (2007) Dengue viruses in Brazil, 1986–2006. Rev Panam Salud Publica 22: 356–63.
3. Nunes MR, Faria NR, Vasconcellos HB, Medeiros DB, Silva de Lima CP, et al. (2012) Phylogeography of dengue virus serotype 4. Brazil, 2010–2011. Emerg Infect Dis 18: 1858–1864.
4. Bastos Mde S, Figueiredo RM, Schatzmayr HG, Itapirema E, Gimaque JB, et al. (2012) Simultaneous circulation of all four dengue serotypes in Manaus, State of Amazonas, Brazil in 2011. Rev Soc Bras Med Trop 45: 393–394.
5. Innis BL (1995) Dengue and dengue hemorrhagic fever. In: Porterfield JS, editor. Exotic viral infections. London: Chapman and Hall. pp. 103–140.
6. Teixeira MG, Costa MCN, Coelho G, Barreto LM (2006) Recent shifts in age pattern of Dengue Hemorrhagic fever. Brazil. Emerg Infect Dis 14: 1663.
7. Rodriguez-Barrasquer I, Cordiéro MT, Braga C, Souza WV, Marques ET, et al. (2011) From Re-emergence to Hyperendemicity: The Natural History of the Dengue Epidemic in Brazil. PLOS Negl Trop Dis 5: e935. doi:10.1371/journal.pntd.0000935
8. Halstead SB (2006) Dengue in the Americas and Southeast Asia: do they differ? Rev Panam Salud Publica 20: 407–15.
9. Halstead SB (1988) Pathogenesis of dengue: challenges to molecular biology. Science 239: 476–481.
10. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vornadam AV (1992) Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30: 545–551.
11. Twiddy SS, Holmes EC, Rambaut A (2003) Inferring the rate and time-scale of dengue virus evolution. Mol Biol Evol 20: 122–129.
12. Raghvani J, Rambaut A, Holmes EC, Hang VT, Hien TT, et al. (2011) Endemic dengue associated with the cocirculation of multiple viral lineages and localized density-dependent transmission. PLOS Pathog 7: e1002064. 10.1371/journal.ppat.1002064
13. Aquino VH, Amarilla AA, Alfonso HA, Batista WC, Figueiredo LT (2009) New genotype of dengue type 3 virus circulating in Brazil and Colombia showed a close relationship to old Asian viruses. PLOS One 4: e7299. doi:10.1371/journal.pone.0007299
14. Cologna R, Armstrong PM, Rizzo-Hesse R (2005) Selection for virulent dengue viruses occurs in humans and mosquitoes. J Virol 79: 853–859.
15. Chakravarti A, Arora R, Luxemburger C (2012) Fifty years of dengue in India. Trans R Soc Trop Med Hyg 106: 273–272.

PLOS Neglected Tropical Diseases | www.plosntds.org 3 February 2014 | Volume 8 | Issue 2 | e2620