Arabidopsis redox status in response to caterpillar herbivory

Jamuna Paudel1, Tanya Copley1, Alexandre Amirizian, Alberto Prado and Jacqueline C. Bede*

Department of Plant Science, McGill University, Sainte-Anne-de-Beaupré, QC, Canada

*Correspondence: Jacqueline C. Bede, Department of Plant Science, McGill University, 21, 11 Lakeshore, Sainte-Anne-de-Beaupré, QC, Canada H9X 3V9. e-mail: jacqueline.bede@mcgill.ca

† Jamuna Paudel and Tanya Copley have contributed equally to this research.

INTRODUCTION

As plants interact with multiple organisms, they need to prioritize their actions to respond appropriately. Plants manage this through synergistic or antagonistic interactions mediated through growth and defense hormones: a process known as cross-talk (Spéiot and Dong, 2008, Robert-Selainianzt et al., 2011). In plant–pathogen interactions, activation of the systemic acquired resistance (SAR) pathway by biotrophic pathogens may render the plant more susceptible to necrotrophic pathogens that elicit jasmonate (JA)- and ethylene (ET)-mediated responses (Glazebrook, 2005). Insect herbivores also exploit this plant hormone cross-talk to prevent the induction of defensive pathways (Felton and Korth, 2000); however, the mechanisms underlying this subversion are unknown. Since noctuid caterpillar herbivory can trigger immune responses that promote plant defense responses, some species have evolved strategies to manipulate this system by inducing specific pathways that suppress plant defense responses. Effectors in the labial saliva (LS) secretions of Spodoptera exigua caterpillars are believed to induce the salicylic acid (SA) pathway to interfere with the jasmonic acid (JA) defense pathway; however, the mechanism underlying this subversion is unknown. Since noctuid caterpillar LS contains enzymes that may affect cellular redox balance, this study investigated rapid changes in cellular redox metabolites within 45 min after herbivory. Caterpillar LS is involved in suppressing the increase in oxidative stress that was observed in plants fed upon by caterpillars with impaired LS secretions. To further understand the link between cellular redox balance and plant defense responses, marker genes of SA, JA and ethylene (ET) pathways were compared in wildtype, the glutathione-compromised pad2-1 mutant and the tga2/5/6 triple mutant plants. AIPR1 and AIPDF1.2 showed LS-dependent expression that was alleviated in the pad2-1 and tga2/5/6 triple mutants. In comparison, the ET-dependent genes ERF1 expression showed LS-associated changes in both wildtype and pad2-1 mutant plants and the ORA 59 marker ATH1L had increased expression in response to herbivory, but a LS-dependent difference was not noted. These data support the model that there are SA/NPR1-, glutathione-dependent and ET, glutathione-independent mechanisms leading to LS-associated suppression of plant induced defenses.

Keywords: Arabidopsis thaliana, caterpillar herbivory, cross-talk, induced defenses, signaling pathways, Spodoptera exigua

Plant responses to insect herbivory are regulated through complex, hormone-mediated interactions. Some caterpillar species have evolved strategies to manipulate this system by inducing specific pathways that suppress plant defense responses. Effectors in the labial saliva (LS) secretions of Spodoptera exigua caterpillars are believed to induce the salicylic acid (SA) pathway to interfere with the jasmonic acid (JA) defense pathway; however, the mechanism underlying this subversion is unknown. Since noctuid caterpillar LS contains enzymes that may affect cellular redox balance, this study investigated rapid changes in cellular redox metabolites within 45 min after herbivory. Caterpillar LS is involved in suppressing the increase in oxidative stress that was observed in plants fed upon by caterpillars with impaired LS secretions. To further understand the link between cellular redox balance and plant defense responses, marker genes of SA, JA and ethylene (ET) pathways were compared in wildtype, the glutathione-compromised pad2-1 mutant and the tga2/5/6 triple mutant plants. AIPR1 and AIPDF1.2 showed LS-dependent expression that was alleviated in the pad2-1 and tga2/5/6 triple mutants. In comparison, the ET-dependent genes ERF1 expression showed LS-associated changes in both wildtype and pad2-1 mutant plants and the ORA 59 marker ATH1L had increased expression in response to herbivory, but a LS-dependent difference was not noted. These data support the model that there are SA/NPR1-, glutathione-dependent and ET, glutathione-independent mechanisms leading to LS-associated suppression of plant induced defenses.

Keywords: Arabidopsis thaliana, caterpillar herbivory, cross-talk, induced defenses, signaling pathways, Spodoptera exigua

INTRODUCTION

As plants interact with multiple organisms, they need to prioritize their actions to respond appropriately. Plants manage this through synergistic or antagonistic interactions mediated through growth and defense hormones: a process known as cross-talk (Spéiot and Dong, 2008, Robert-Selainianzt et al., 2011). In plant–pathogen interactions, activation of the systemic acquired resistance (SAR) pathway by biotrophic pathogens may render the plant more susceptible to necrotrophic pathogens that elicit jasmonate (JA)- and ethylene (ET)-mediated responses (Glazebrook, 2005). Insect herbivores also exploit this plant hormone cross-talk to prevent the induction of defensive pathways (Felton and Korth, 2000); however, the mechanisms underlying this subversion are not fully understood.

When tissues are damaged during caterpillar feeding, rapid changes in calcium signatures and the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H_2O_2), leads to the induction of the JA pathway and plant defense responses (Lou and Baldwin, 2006, Arimura et al., 2011). At low, regulated concentrations, H_2O_2 is an important signaling molecule, however, uncontrolled levels are destructive as H_2O_2 readily reacts with cellular components (Schröder and Eaton, 2008, Forman et al., 2010). ROS is generated by mechanical damage but also by enzymes, such as glucose oxidase (GOX), present in the caterpillar’s labial saliva (LS; Eichenseer et al., 2010). In lima bean, the zone of H_2O_2 accumulation around the site of leaf damage is widened by $∼500 \text{ μm}$ by Spodoptera littoralis caterpillar herbivory compared to mechanical wounding (Mallet et al., 2006). This caterpillar LS-associated production of H_2O_2 is proposed to be a stratagem of some insect species to interfere with induced plant defenses (Mussier et al., 2002, Bede et al., 2006).

To avoid the detrimental effects of ROS, antioxidant proteins, such as superoxide dismutase, catalase, peroxidase, and the Halliwell–Asada (ascorbate/glutathione) cycle are activated to maintain cellular redox homeostasis (Nocot et al., 2012). The Halliwell–Asada cycle lowers cellular H_2O_2 levels through a series of redox reactions involving ascorbate and glutathione. Therefore, in response to stress, plants often alter the total glutathione pool or the ratio between oxidized to reduced glutathione (GSSG/GSH) to maintain low H_2O_2 levels. Recognition of biotrophic pathogen attack or salicylic acid (SA) mimic treatment may result in an increase in total glutathione levels (Fedor et al., 1997, Mou et al., 2003, Mateo et al., 2006, Muir et al., 2006). Infiltration of SA into Arabidopsis leaves initiates a transient oxidation of the glutathione
pool 6 h after the time of injection (Mou et al., 2003; Mateo et al., 2006). In response to mechanical damage, the ratio of GSSG/total glutathione increases, reflecting an oxidized cellular environment, with oxidized glutathione (GSSG) positively linked to JA signaling (Mhamdi et al., 2010; Gfeller et al., 2011). Arabidopsis glutathione mutants are more susceptible to microorganism and insect attack (Ball et al., 2004; Parisy et al., 2007; Schlaeppe et al., 2008). Arabidopsis pad2-1 mutant lacks γ-glutamylcysteine synthetase that catalyzes the first step in glutathione biosynthesis (Parisy et al., 2007); therefore, glutathione levels are approximately one-fifth wildtype levels. This line is more vulnerable to S. lit- et al., 2008). Weech et al. (2008) used Arabidopsis mutants to show that caterpillar LS interference of JA-dependent plant defenses by activation of the SAR pathway requires an active NPR1. In addition, Dziezel et al. (2009) showed that damage of wild tobacco by caterpillars of the tobacco hornworm, Manduca sexta, result in an ET burst that attenuates the SA-mediated suppression of plant defense responses. Therefore, in plant–caterpillar interactions, there appears to be extensive interplay between JA, SA, and ET pathways.

The present research is designed to understand the potential role of cellular redox balance in the ability of caterpillar LS to interfere with host plant defense responses. Since caterpillar LS contains redox enzymes, such as GOX that generate H2O2, caterpillar saliva should perturb the redox state or balance even more than more wounding (Sichenseer et al., 2010; Noctor et al., 2012). By using normal caterpillars with intact LS secretions or insects where LS secretions have been impaired by cationization of the spinneret, one can tease out the effect of LS on the modulation of plant responses. Therefore, in response to herbivory by caterpillars with intact or impaired LS secretions, the redox metabolites glutathione and ascorbate were measured to identify the impact of LS on cellular redox balance. As well, transcript responses of JA-, ET-, and SA-dependent marker genes were compared in wildtype plants and two mutant lines, pad2-1, compromised in glutathione biosynthesis, and a pad2/5/6 triple mutant that is deficient in the basic leucine zipper TGA transcription factors that interact with NPR1 (Zhang et al., 2003; Parisy et al., 2007).

MATERIALS AND METHODS

PLANTS

Arabidopsis seeds ecotype Col-0 (TAIR CS3749) and the pad2-1 mutant (TAIR CS3804) were obtained from the Arabidopsis Biological Resource Centre (Ohio State University). Seeds of the *Arabidopsis* 2ga2/5/6 triple mutant were a generous gift from Dr. Li (University of British Columbia).

For redox metabolite experiments, wildtype plants seeds were surface-sterilized by soaking them for 2 min in 70% ethanol, fol- lowed by 5 min in 50% bleach. Seeds were rinsed three times in sterile distilled water and sown in Premier Promix BS (Pre- mier Horticulture Inc.). After cold treatment at 4°C for 3 days, seeds were transferred into a growth cabinet (light intensity 140 μmol m−2 s−1, 12:12 light:dark at 22°C). Plants were bottom- watered as needed, about three times per week with dilute 0.15 g/L N−P−K fertilizer.

For gene expression experiments, seeds were surface-sterilized as described above and germinated on half-strength Murashige and Skoog (MS) media with 1% agar. After cold treatment for 3 days at 4°C, seeds were placed in the growth cabinet

* Frontiers in Plant Science | Plant-Microbe Interaction | May 2013 | Volume 4 | Article 113 | 2

"tls-04-00113" — 2013/5/2 — 21:57 — page 2 — #2
and transferred to Agro-Mix at germination. At 5 weeks post-germination, one plant from each genotype (Col-0, pad4-1 and pad4-2/5/6) were transplanted into a 12.5 cm × 12 cm pot.

Approximately 6- to 7-week old plants in the late vegetative growth stage, between growth stages 3.7 and 3.9 according to Boyes et al. (2001), were used in redox metabolite or gene expression experiments.

CATERPILLARS

Beet armyworm, Spodoptera exigua (Hubner; Lepidoptera: Noctuidae), insects were reared for multiple generations from eggs purchased from Bio-Serv (Frenchtown, NJ, USA). Insects were reared under defined conditions in a growth cabinet (16:8 light:dark, RH 28-40%, temperature 25 ± 5°C) and fed a wheat germ-based artificial diet (Bio-Serv). Adult moths were allowed to mate and the eggs collected to maintain the colony.

IMPAIRMENT OF CATERPILLAR LS SECRECTIONS

Caterpillar LS is secreted through a specialized organ, the spinneret (Muser et al., 2002). To impair LS secretions, this spinneret was cauterized as previously described (Muser et al., 2002; Bede et al., 2006). Prior to the experiment, caterpillars were allowed to feed >12 h on Arabidopsis plants to allow the insects to adjust to the plant diet.

MEASUREMENT OF REDOX METABOLITES

Leaf H2O2 levels were not measured directly due to the high variability associated with the instable nature of this compound and confounding effects by high leaf phenolic content and ascorbate (Queval et al., 2008). Therefore, other metabolites associated with the ascorbate/glutathione cycle were measured since they closely correlate with H2O2 levels (Ng et al., 2007). Six-week-old Arabidopsis plants were subject to one of three treatments: untouched (control) or subject to herbivory by 3rd instar S. exigua caterpillars with intact or impaired salivary secretions. As S. exigua caterpillars feed most actively at night, experiments were performed during the dark to more accurately simulate an ecological scenario. Rosette leaves showing signs of herbivory were harvested at 5, 15, 25, 35, and 45 min and immediately frozen in N2. The experiment was repeated thrice.

At each time point, ascorbate and glutathione were measured in three to four independent samples. Plant samples were finely ground in liquid nitrogen and extracted in 0.2 N HCl at a ratio of 100 mg leaf/mL acid. This was followed by neutralization with NaOH as described in Queval and Noctor (2007). Chemicals used in redox metabolite assays were purchased from Sigma Chemical Company.

Ascorbate

Total, oxidized and reduced ascorbate from the leaf extract supernatant were determined by measuring reduced ascorbate levels spectrophotometrically at A265 using an Infinite M200 Pro microplate reader (Tecan) according to Queval and Noctor (2007). Total, oxidized and reduced ascorbate from the leaf extract supernatant was calculated by subtracting 2-thio-2-nitrobenzoic acid (TNB) forming 5-thio-2-nitrobenzoic acid (TNB) that can be measured spectrophotometrically at A412. Total glutathione was measured by incubating leaf supernatant in 0.6 mM DTNB and glutathione reductase (0.015 U) in 0.1 M sodium phosphate (NaH2PO4) buffer, pH 7.5. After the addition of 0.5 mM β-NADPH, the TNB chromophore was monitored at A412 at 5 s intervals for the first 2 min. Total glutathione concentration was calculated based on triplicate eight-point standard curve (100 nM to 60 μM). Oxidized glutathione (GSSG) was measured by removing any reduced GSH from the sample by precipitation with 2-vinylpyridine followed by conversion of GSSG to GSH and measurement using the glutathione reductase/β-NADPH/DTNB method as described above (Griffith, 1980; Rahman et al., 2006; Queval and Noctor, 2007). Briefly, leaf supernatant was incubated with 1 μl 2-vinylpyridine (approximately 10-fold above GSH levels) for 30 min at room temperature. After centrifugation at 13,000 rpm for 5 min to remove excess 2-vinylpyridine, samples were diluted in 0.1 M sodium phosphate buffer, pH 7.5 and assayed in triplicate. GSSG levels were determined from a triplicate eight-point GSSG standard curve ranging from 100 nM to 3.2 μM. Reduced GSH was calculated by subtracting 2 x GSSG from total glutathione.

GENE EXPRESSION

Three days before the herbivory experiment, clear plastic bottles were placed around the plants with mesh covering the tops. Arabidopsis plants were subject to one of three treatments: untouched (control) or subject to herbivory by 3rd instar S. exigua caterpillars with intact or impaired salivary secretions. The experiment was repeated twice, at each time point, two independent samples were taken for gene expression analysis (total n = 3–4).

RNA extraction, cDNA synthesis, and quantitative real-time polymerase chain reaction

Plants were finely ground in liquid nitrogen and total RNA was extracted using the RNeasy Mini Kit (Qiagen) following the manufacturer’s protocols. After DNase treatment (Wqexot, Quantitect Reverse Transcription kit, Qiagen), the absence of genomic contamination was confirmed using 5′-ATG GGT CCT CAT CAGATT CAC AGC ACA TTA-3′ and 3′- CAT ATA ACG GGT TGT TTA GAG ACA ATA AT-3′ primers which span an intron (Weech et al., 2008). One microgram of RNA was converted to...
cDNA using a QuantiTect Reverse Transcription Kit following the manufacturer’s instructions.

Gene-specific primers were identified from the literature or designed using Primer3 (Table A1 in Appendix). Transcript expression was analyzed in duplicate using the Brilliant One-Step quantitative RT-PCR kit (Stratagene), according to the manufacturer’s protocol, in a MX3000p thermocycler (Stratagene). Gene amplicon products were verified by sequencing. Each 96-well plate, contained a standard curve of the gene-of-interest, a non-template control and each sample in duplicate. Each reaction contained 1× SYBR green I, 0.375 nM ROX, 100 nM of the forward and reverse primer, mastermix that contained dNTPs, MgSO4 and Taq polymerase, and either water (non-template control), serial dilutions of PCR amplicon (standard curve) or 85 ng cDNA sample. Standard curves ensured an efficiency of between 90 and 110%. Thermocycler conditions are as follows: 95°C for 10 min; 40 cycles of denaturation at 95°C for 1 min, and elongation at 70°C for 45 s. The annealing temperature was dependent on the primers used (Table A1 in Appendix). Dissociation curves were performed to ensure amplicon purity. Two technical plate replicates were performed.

From the standard curve, gene copy numbers were estimated and normalized against the constitutive reference gene AtACT2 (At3g18780). Arabidopsis AtACT2 expression was not affected by osmotic stress or when plants were treated with viral pathogens or stress-related hormones, such as methyl JA or SA, or caterpillar herbivory (Sorz et al., 2003; Woomers et al., 2008; Weer et al., 2008). In the current study, AtACT2 was stably expressed within a genotype and not affected by treatment (+/+: F2,19 = 0.26, p = 0.77; pad2-1: F2,19 = 1.10, p = 0.37; tag2/5/6: F2,19 = 0.42, p = 0.68; Brunner et al., 2004).

STATISTICAL ANALYSIS

For the redox experiment (repeated independently three times, n = 5–10), statistical differences (p ≤ 0.05) in metabolite levels were determined using a two-way analysis of variance (ANOVA) using SPSS version 20 (SPSS Inc.). If a significant time x treatment effect was observed, a one-way ANOVA followed by a Tukey HSD (honestly significant difference) post hoc test was conducted to identify the significant difference. The gene expression experiment was repeated twice with two independent biological samples analyzed at each time (total n = 3–4). Within each genotype, transcript expression was analyzed by a one-way ANOVA. Statistical differences (p < 0.05) were determined using a Tukey HSD post hoc test (Rice and Powers, 2019). Alternatively, because of the variation inherent with insect feeding studies, a greater than five-fold change in gene expression with respect to control plants was also considered significantly different. Results from statistical analyses are shown in Table A2 in Appendix.

RESULTS AND DISCUSSION

ASCORBATE–GLUTATHIONE CYCLE

The ascorbate–glutathione cycle is critical to enable the plant to maintain cellular redox status during stresses, such as insect herbivory (Noctor et al., 2012). Oxidative stress, such as increased H2O2 levels, may result in either an increase in the levels of total glutathione (glutathione pool) or increased levels of GSSG relative to GSH (redox balance;Noctor et al., 2012). Total ascorbate levels were within the reported physiological range and did not change over the 45 min time course and was independent of treatment (Figure 1A, Table A2 in Appendix; Queval and Noctor, 2007). Oxidized and reduced ascorbate levels and the ratio of oxidized ascorbate (DHA)/reduced ascorbate (ASC) did not change in response to caterpillar herbivory. Total glutathione levels were within the expected physiological range and affected by treatment (Figure 1B, Table A2 in Appendix; Queval and Noctor, 2007). Caterpillar herbivory did not affect the oxidized GSSG/reduced GSH ratio but total glutathione levels are lower in plants infested with caterpillars with impaired salivary secretions compared to the control. This likely reflects the reduced glutathione levels found in this treatment. Caterpillar herbivory also had significantly lower oxidized GSSG levels at 35 min post-herbivory; this effect was not salivary-dependent.

Cellular glutathione–ascorbate metabolites levels and/or redox balance are involved in plant defense against pathogens or herbivores (Mou et al., 2003; Ball et al., 2004; Parisy et al., 2007; Schlaeppi et al., 2008; Wünsche et al., 2011; Espunya et al., 2012). The majority of experiments investigating changes in redox metabolites in response to stress (wound, herbivory, pathogens) characterize long-term changes in the cellular oxidative status (Fodor et al., 1997; Mou et al., 2003; Ball et al., 2004; Mateo et al., 2006; Schlaeppi et al., 2008; Gfeller et al., 2011). In this study, we are interested in early changes in cellular antioxidant levels or redox balance (ratio) to caterpillar herbivory that may lead to changes in gene expression. The difficulty in this short-term experiment is to synchronize the initiation and intensity of insect herbivory. Lou and Baldwin (2006) and this study monitored redox metabolites within the first 45 min after the initiation or simulation of herbivory. Lou and Baldwin (2006) noted an increase in H2O2 levels 30 min after wounding and application of Manduca sexta caterpillar regurgitant on Nicotiana attenuata leaves. In response to biotrophic pathogens, an increase in total or reduced glutathione levels leads to reduction and activation of NPR1 (Fodor et al., 1997; Mou et al., 2003; Bornet and Després, 2005; Mateo et al., 2006); even though SA injection into leaves shows a transient oxidation of the glutathione pool. In comparison, after wounding, the GSSG:total glutathione ratio increased leading to an activation of the JA pathway (Mhamdi et al., 2010; Gfeller et al., 2011).

Cellular redox changes occur in response to mechanical damage during insect feeding. However, noxidated caterpillar L3, that has been implicated as a strategem to delay the induction of plant defenses, contains numerous enzymes that may affect cellular redox balance, most notably the H2O2-producing enzyme GOX (Mousseau et al., 2002; Weer et al., 2008; Eichenseer et al., 2010). Compared to controls, herbivory by caterpillars with intact salivary secretions did not affect cellular redox balance except for a transient decrease in oxidized GSSG at 35 min (Figure 1B). In comparison, reduced glutathione levels were lower in leaves subjected to herbivory by caterpillars with impaired salivary secretion compared to controls, indicating oxidative stress. This suggests that the production of H2O2 by enzymes in the caterpillar L3 may act to maintain cellular GSH levels so glutathione does not act further as a signaling molecule (Szalai et al., 2009).
FIGURE 1 | Time course of redox metabolites in Arabidopsis plants subject to caterpillar herbivory. (A) Ascorbate levels. Foliar ascorbate levels in Arabidopsis plants subject to herbivory by caterpillars with normal (caterpillar) or impaired salivary secretions (cauterized) compared to control plants. Solid bars represent reduced ascorbate (ASC) levels. Open bars represent oxidized ascorbate (dehydroascorbate, DHA) levels. Values are given in μmol/g frozen weight (FW) and represent means ± SE of three to four independent biological replications. Significant differences in ascorbate were not observed in response to caterpillar herbivory. (B) Glutathione levels. Foliar glutathione levels in Arabidopsis plants subject to herbivory by caterpillars with normal (caterpillar) or impaired salivary secretions (cauterized) compared to control plants. Solid bars represent reduced glutathione (GSH) levels. Open bars represent oxidized glutathione (GSSG) levels. Values are given in nmol/g FW and represent means ± SE of three to four independent biological replications. Significant differences were determined by two-way ANOVA (Table A2 in Appendix). At 35 min post-herbivory, a significant reduction in GSSG levels are observed in plants infested by caterpillars, both with normal or impaired salivary secretions, compared to controls. Total and reduced glutathione levels are significantly reduced in caterpillar with impaired salivary secretions compared to control levels.

TRANSCRIPT EXPRESSION IN RESPONSE TO CATERPILLAR HERBIVORY
To explore the link between cellular redox balance and plant responses to caterpillar LS, expression of JA-, ET-, and SA-dependent gene markers were analyzed in wildtype, pad2-1 mutants, that contain only about 20% of normal glutathione levels, and the gpa2/5/6 triple mutant (Zhang et al., 2003; Parisy et al., 2007). Together with NPR1, TGA transcription factors are activated by a change in redox balance and responsible for SA-dependent gene expression (Després et al., 2003; Mou et al., 2003; Lindermayr et al., 2010). It must, however, be noted that the TGA transcription factors have also been shown to regulate a subset of oxylipin-dependent defensive gene expression (Mueller et al., 2008; Zander et al., 2010).

Jasmonate, SA, and ET play central roles in mediating the plant’s response to caterpillar herbivory (Figure 3; Weech et al., 2008; Drezel et al., 2009; Onohokosugi et al., 2010). Pré et al. (2008) recently suggested that the transcription factors ORA59 and ERF1 act in parallel pathways to integrate these JA/ET responses.
How caterpillar LS manages to manipulate these JA/ET pathways is unknown, but Weech et al. (2008) proposed that caterpillar LS requires an active SA/NPR1 pathway for this strategem. To further complicate issues, recent evidence suggests that ET potentiates SA antagonism with JA and renders it NPR1-independent (Leon-Reyes et al., 2009).

Pathogenesis-related 1 (AtPR1, At2g14610) is a SA-responsive, NPR1-dependent gene marker induced in response to biotrophic pathogen attack and aphid feeding (Glazebrook, 2005; Mur et al., 2006; Kusnierczyk et al., 2007; Walling, 2008; Zhang et al., 1999). In our study, AtPR1 gene expression was greater than fivefold higher in plants infested by caterpillars with intact LS secretions compared to caterpillars with cauterized spinnerets and control plants, indicating that caterpillar LS secretions result in the activation of SA/NPR1-dependent gene expression (Figure 2A; Table A2 in Appendix). Through activation of the SA pathway by effectors in their LS secretions, S. exigua caterpillars are believed to impair the plant’s ability to fully mount a JA-dependent defense response (Weec et al., 2008). Mewis et al. (2006) also observed AtPR1 expression in Arabidopsis response to herbivory by caterpillars of P. rapa and S. exigua, both these caterpillar LS glands contain redox enzymes, such as GOX (Eichenseer et al., 2010). The increase in AtPR1 expression was alleviated in pad2-1 and tga2/5/6 mutant plants, in line with previous studies showing that glutathione and the TGA transcription factors are upstream signals in AtPR1 expression (Després et al., 2003; Mou et al., 2003; Lindermayr et al., 2010).

Expression of the gene encoding plant defense, AtPDF1.2b (At2g26020), is induced by treatment of plants with JA and ET working synergistically through ORA59 (Penninckx et al., 1998; Pré et al., 2008); however, antagonism between MYC2 and ERF1 regulation of AtPDF1.2 is proposed to reflect MYC2 regulation of ERF1 expression (Dombrecht et al., 2007). As well, SA-dependent suppression of AtPDF1.2 expression

![Figure 2](image-url)
requires active NPR1 and TGA transcription factors (Spoel et al., 2003; Ndamukong et al., 2007; Koornneef et al., 2008). ET modulates this SA-JA antagonism; NPR1-dependent antagonism of the expression of JA-dependent genes, such as *AtPDF1.2*, becomes NPR1-independent in the presence of ET (Leon-Reyes et al., 2009).

In wildtype plants, an 18-fold increase in *AtPDF1.2* transcript expression is observed in response to herbivory by caterpillars with impaired salivary secretions compared to normal caterpillars or control plants, in agreement with previous studies that caterpillar LS suppresses JA-dependent plant defenses (Figure 2B, Table A2 in Appendix; Musser et al., 2002; Weech et al., 2008). In *pad2-1* and *tg25/6* mutants, LS-mediated restraint of *AtPDF1.2* expression is not observed, indicating that glutathione and TGA transcription factors are required for the suppression of plant induced defenses by caterpillar herbivory. In *pad2-1* mutants, a 12.5-fold increase in *AtPDF1.2* levels is seen in plants infested by caterpillars compared to controls. The lower glutathione levels in the *pad2-1* mutant may impair the activation of a pathway, such as the reduction of NPR1 and/or TGA transcription factors, which are needed for the LS-mediated suppression of plant defenses (Mou et al., 2003; Hobert and Després, 2005). A fivefold increase in *AtPDF1.2* expression is seen in plants fed upon by caterpillars compared to controls in the *tg25/6* mutant plants. However, it must be noted that TGA transcription factors also regulate the late expression (>48 h) of a subset of JA-dependent genes, such as *AtPDF1.2* (Zander et al., 2010). Though regulated by MYC2, the strong upregulation of this early gene occurs before SA/NPR1-mediated gene expression (Thivierge et al., 2010). Therefore, *ERF1* expression was measured to determine if it was mirrored by *AtPDF1.2* expression. As seen with *AtPDF1.2*, a significant increase in *Arabidopsis* *ERF1* transcript expression is observed in response to herbivory by caterpillars with impaired LS secretions compared to normal caterpillars or control plants (Figures 2A, Table A2 in Appendix); however, this LS-mediated suppression of *ERF1* is also observed in the *pad2-1* mutants. The distinct patterns between *AtPDF1.2* and *ERF1* expression suggest LS-mediated regulation is likely not reflective of MYC2 antagonism of *ERF1*; however, they suggest that there may be LS-linked, an ET, glutathione-independent mechanism of suppression. LS-suppression of *ERF1* is alleviated in the *tg25/6* triple mutant. Zander et al. (2010) found that TGA transcription factors may suppress *ERF1* expression.

Hevein-like (AHDEL, PR4, At304720) gene expression is a marker of the ORAS9 branch of the IA/ET signaling pathways (Potier et al., 1993; Dombrecht et al., 2007; Pré et al., 2008; Vérhage et al., 2011; Zarei et al., 2011). In comparison to *AtPDF1.2*, suppression of JA-linked *AHDEL* expression by the SA pathway is NPR1-independent (Ndamukong et al., 2007). In wildtype and *pad2-1* mutant plants, over a fivefold increase in gene expression is observed in plants infested by caterpillars compared with controls (Figure 2D); however, a LS effect is not observed (Table A2 in Appendix). These results support the argument that caterpillar LS-mediated suppression of induced plant defenses is glutathione- and NPR1-dependent. Unexpectedly, this caterpillar-mediated *AHDEL* expression was at basal levels in the *tg25/6* triple mutant plants, suggesting that these transcription factors may be involved in regulation of *AHDEL* expression.

The gene encoding lipoxigenase2 (AtLLOX2, At3g54140) is an early expression marker of the JA-responsive MYC2 branch (Bell et al., 1995; Dombrecht et al., 2007). As has been observed previously, AtLLOX2 levels are induced sevenfold in response to insect herbivory and a LS gland-specific difference in gene expression is not observed (Figure 2E, Table A2 in Appendix; Weech et al., 2008). This same pattern was observed in *pad2-1* and *tg25/6* mutant plants. Though regulated by MYC2, the strong upregulation of this early gene occurs before SA/NPR1-mediated cross-talk (Mou et al., 2003; Spoel et al., 2003; Ndamukong et al., 2007; Koornneef and Pieterse, 2008; Spoel and Dong, 2008; Tada et al., 2008; Leon-Reyes et al., 2010). As well, LS-associated post-transcriptional modifications of LLOX2 may regulate activity rather than gene expression (Thivierge et al., 2010).

The stress-associated *AtSAP6* (At3g23240) gene was induced in plants fed upon by caterpillars with impaired LS secretions compared to controls (Figure 2F, Table A2 in Appendix). This difference was alleviated in the *pad2-1* and the *tg25/6* triple mutants indicating the possible involvement of glutathione and TGA transcription factors in the regulation of expression of this gene. *AtSAP6* is strongly induced in response to numerous stresses, such as wounding and herbivory by caterpillars of the specialist *P. rapae* (Reymond et al., 2004; Striher et al., 2009); however, in response to herbivory, this transcript was induced in both the wildtype and the JA-perception impaired coi1-1* gl1* mutant implying that JA signaling is not required for the expression of this gene.

www.frontiersin.org
CONCLUSION

Plant responses to insect herbivory are mediated through carefully regulated, complex hormone-mediated interactions. Herbivory by *S. exigua* caterpillars attenuate these JA-dependent plant defense responses; a mechanism believed to be related to LS-associated secretions (Musser et al., 2002; Weech et al., 2008). Given the presence of Gox in the LS of this caterpillar, the relationship between LS secretions and changes in cellular redox potential was investigated. Changes in cellular oxidative stress and, in particular, the GSSG/total glutathione ratio are signals for the induction of JA-dependent defenses (Stalai et al., 2009; Gfeller et al., 2011). Herbivory by caterpillars with intact salivary secretions did not affect cellular redox balance, except for a transient decrease in oxidized GSSG at 35 min (Figure 3). In comparison, herbivory by caterpillars with impaired salivary secretions resulted in an increase in cellular oxidative status through a decrease in reduced glutathione levels. In support of this, genes, such as *AtPR1* and *AtPDF1.2*, showed LS-dependent transcript expression that was alleviated in the *pad2-1* and *tga2/5/6* triple mutant (Figures 2A, B and 3).

Increased expression of *AtPR1* by herbivory using caterpillars with intact salivary secretions support the notion that LS-mediated attenuation of JA responses acts through cross-talk with the SA/NPR1 pathway (Figure 3). As well, even though *AtPDF1.2* is a JA/ET marker, recent studies have shown that mid- to late-gene expression is regulated by TGA transcription factors (Zander et al., 2011). Therefore, suppression of *AtPDF1.2* gene expression by caterpillar LS may also reflect cross-talk between JA- and SA/NPR1 pathways. The LS-associated modulation of ET-dependent genes, *ERF1* and *AHEL*, show disparate regulation since *ERF1* expression shows glutathione-independent, LS-associated suppression whereas a LS-dependent difference in *AHEL* is not observed (Figures 2C, D). This may support recent evidence that the ET pathway is mediated through two distinct branches regulated by...
Caterpillar saliva affects redox status

ORAF9 or ERF1 transcription factors (Pré et al., 2008). In fact, *P. napi* caterpillar oral secretions, which are a mixture of gut-derived regurgitant, secretions from the ventral eversible gland and salivary secretions from the mandibular and labial glands, specifically activate the ORAF9 branch of the JA/ET pathway leading to the suppression of MYC2-dependent defenses (Felton, 2008; Hogenaar and Bos, 2011; Verhaeghen et al, 2011; Zehbela and Maffei, 2012). These caterpillars also show a feeding preference for plants that overexpress ORAF9.

The mechanism behind this LS-mediated cross-talk may be explained by the model recently proposed by Van der Does et al. (2013). In an elegant set of experiments, these authors systematically demonstrated that expression of the JA-induced pathway by the SA/NPR1 pathway occurs downstream of SCFCOI1, mediating protein degradation. Instead, the SA/NPR1 pathway negatively regulates the expression of AP2DF1.2 by affecting the accumulation of the ORAF9 transcription factor. Our data from this and previous studies also show that caterpillar LS-mediated suppression of AP2DF1.2 is SA/NPR1 pathway mediated and does not appear to involve cross-talk between the ET pathway (Wrech et al., 2008); therefore, further studies investigating ORAF9 protein levels in this plant–insect system needs to be investigated.

ACKNOWLEDGMENTS

We are grateful to Drs Guillaume Queval, Graham Noctor, and Christine Foyer for valuable discussions and advice with the optimization of experimental techniques to analyze redox metabolites. We thank two reviewers for their constructive improvements to an earlier version of this manuscript. This research was supported by operating grants from the Natural Sciences and Engineering Research Council to Jacqueline C. Bede.

REFERENCES

Arimura, G., Ozawa, R., and Maffei, M. E. (2011) Recent advances in plant early signaling in response to herbivory. *J. Exp. Bot.* 62, 3723–3730.

Bale, E., Creelman, R. A., and Mullet, J. E. (2006). Caterpillar herbivory and salivary enzymes decrease transcript levels of *Medicago truncatula* genes encoding NADPH oxidases in *Arabidopsis* symbiont. *Plant Mol. Biol.* 60, 519–531.

Bodenhausen, N., and Reymond, P. (2010). Signaling pathways controlling induced resistance to insect herbivores in *Arabidopsis*. *Annu. Rev. Plant Biol.* 61, 867–889.

Boisenmann, N., and Reynold, P. (2007). Signaling pathways controlling induced resistance to insect herbivores in *Arabidopsis*. *Annu. Rev. Plant Biol.* 61, 1405–1420.

Beggs, D. C., Zapal, M. A., Ascenzi, R., McCarthy, A. J., Hoffman, N. E., Davies, K. R., et al. (2011). Growth-stage-based phenotypic analysis of *Arabidopsis*; a model for high throughput functional genomics in plants. *Plant Cell Physiol.* 52, 1499–1510.

Benedict, A. M., Yoderker, I. A., and Strauss, S. H. (2004). Nodulating internal controls for quantitative plant gene expression studies. *Plant Physiol.* 135, 1471–1479.

Bennetzen, J. L. (2002). Constuting salicylic acid-dependent signaling in *cyt1* and *cyt2* mutants requires PAD4. *Plant Cell Physiol.* 43, 1169–1177.

Barna, B., Komives, T., and Kiraly, Z. (1995). A chloroplast lipoygenase is required for wound-induced jasmonic acid accumulation in *Arabidopsis*. *Proc. Natl. Acad. Sci. U.S.A.* 92, 8767–8770.

Bell, E., Creelman, R. A., and Mullet, J. E. (2006). Caterpillar herbivory and salivary enzymes decrease transcript levels of *Medicago truncatula* genes encoding NADPH oxidases in *Arabidopsis* symbiont. *Plant Mol. Biol.* 60, 519–531.

Benoist-Carne, C., Vincour, I., Marty, L., Branciard, L., Fruttiger, P., Wendumacher, D., et al. (2011). Glutathione deficiency of the *Arabidopsis* mutant pdr1-2 affects ontogenic stress-related events, defense gene expression, and the hypersensitive response. *Plant Physiol.* 157, 2000–2010.

Beltran, P. J., Uhalajos, E., Forinet, M.-C., and Maurel, C. (2008). Arabidopsis flavane class II poly(A)-binding proteins are required for efficient multiplication of turnip mosaic virus. *J. Gen. Virol.* 90, 2393–2398.

Bennetzen, J. L. (2002). Constuting salicylic acid-dependent signaling in *cyt1* and *cyt2* mutants requires PAD4. *Plant Cell Physiol.* 43, 1169–1177.

Barna, B., Komives, T., and Kiraly, Z. (1995). A chloroplast lipoygenase is required for wound-induced jasmonic acid accumulation in *Arabidopsis*. *Proc. Natl. Acad. Sci. U.S.A.* 92, 8767–8770.

Boisenmann, N., and Reynold, P. (2007). Signaling pathways controlling induced resistance to insect herbivores in *Arabidopsis*. *Annu. Rev. Plant Mol. Biol.* 58, 369–387.

Benoist-Carne, C., Vincour, I., Marty, L., Branciard, L., Fruttiger, P., Wendumacher, D., et al. (2011). Glutathione deficiency of the *Arabidopsis* mutant pdr1-2 affects ontogenic stress-related events, defense gene expression, and the hypersensitive response. *Plant Physiol.* 157, 2000–2010.

Beltran, P. J., Uhalajos, E., Forinet, M.-C., and Maurel, C. (2008). Arabidopsis flavane class II poly(A)-binding proteins are required for efficient multiplication of turnip mosaic virus. *J. Gen. Virol.* 90, 2393–2398.

Bennetzen, J. L. (2002). Constuting salicylic acid-dependent signaling in *cyt1* and *cyt2* mutants requires PAD4. *Plant Cell Physiol.* 43, 1169–1177.

Barna, B., Komives, T., and Kiraly, Z. (1995). A chloroplast lipoygenase is required for wound-induced jasmonic acid accumulation in *Arabidopsis*. *Proc. Natl. Acad. Sci. U.S.A.* 92, 8767–8770.

Boisenmann, N., and Reynold, P. (2007). Signaling pathways controlling induced resistance to insect herbivores in *Arabidopsis*. *Annu. Rev. Plant Mol. Biol.* 58, 369–387.
after attack by phytophage Myzus persicae and olethroglyphus Brevicoloera brassicae. J Exp Bot. 54, 2597–2552.

Liao-Rayes, A., Spyd, S. H., De Lang, E. S., Abe, H., Kohayashi, M., Tsuda, S., et al. (2009). Ethylene modifies the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES in cross talk between salicylate and jasmonate signaling. Plant Physiol. 149, 1797–1809.

Liao-Rayes, A., Van de Does, D. De Lang, E. S., Dolk, C., Winter- mark, C. V., Van Wees, S. C. M., et al. (2010). Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonic acid biosynthesis pathway. PLoS 22, 1423–1432.

Lindermayr, C., Sell, S., Muller, B., Leit- der, D., and Darrat, J. (2010). Redox regulation of the NPR1 signaling system of Arabidopsis thaliana by mitro- xonic. Plant Cell 22, 2841–2907.

Lorenz, O., Chao, J. M., Sanchez-Sor- mano, J. I., and Solano, R. (2004). JASMONATE-SENSITIVE encodes a MYC transcription factor essential to discriminate between dif- ferent jasmonate-regulated defense responses in Arabidopsis. Plant Cell 15, 1146–1156.

Maffei, M. E., Mithöfer, A., Arimura, Mateo, A., Funck, D., Mühlenbock, Lorenzo, O., and Solano, R. (2005). Gális, I. (2010). The role of jas- monic acid and ethylene crosstalk in direct defense of Nicotiana attenuate plants against chewing herbivores. Plant Signal. Behav. 5, 1003–1013.

Mewis, I., Tokuhisa, J. G., Schultz, J. (2004). Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the impor- tance of glutathione in disease resis- tance of Arabidopsis. Plant J. 40, 159–172.

Mire, M., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 975–984.

Muller, S., Hibbert, B., Ducruetshoff, K., Rothen, T., Krivonos, M., Muelle, M. J., et al. (2008). General denitri- fication and stress responses are medi- ated by cytosolic thiols through TGA transcription factors in Arabidopsis. Plant Cell 20, 768–780.

Mun, L. A. J., Koston, P., Atomics, R., Mursch, O., and Winter- mark, C. (2006). The outcomes of concentration-specific interac- tions between salicylate and jas- monate signaling include synergy, antagonism, and oxidative stress leading to cell death. Frontiers in Plant Science 454–484.

Mur, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 975–984.

Munoz, R. O., Hum-Munson, S. M., Eichenhoer, H., Peiffer, M., Eriton, G., Murphy, J. B., et al. (2002). Caterpillar saliva beans plant defense: a new weapon emerges in the coevolutionary race between plants and herbivores. Nature 416, 509–510.

Näzelis, L., Abdallah, A. A., Thuroer, C., Ford, B., Zambon, M., Wingel, R., et al. (2011). Arabidopsis sulfuric arsino- systen interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 50, 128–139.

Ng, C., Frick, K. F., Bartos, R. G., and Rodgers, V. G. J. (2007). The rate of cellular hydro- gen peroxide removal depends upon GSH-mathematical insight into GSH and GSSG concentra- tions. Free Radic. Res. 41, 1211–1211.

Necter, G., Mhamdi, A., Choe, H., Chan, I., Nekoomans, J., Marquar- ton, G., et al. (2012). Gluta- thione in plastic is an integrated enzyme. Plant Cell Environ. 35, 454–484.

Onokioung, N., Baldwin, I. T., and Galis, I. (2010). The role of jas- monic acid and ethylene crosstalk in direct defense of Nicotiana attenuate plants against chewing herbivores. Plant Signal. Behav. 5, 1003–1007.

Paix, V., Fones, R., Owoanwui, L., Buchala, A., Glazebrook, J., and Mau, C. (2007). The outcomes of concentration-specific interac- tions between salicylate and jas- monate signaling include synergy, antagonism, and oxidative stress leading to cell death. Frontiers in Plant Science 454–484.

Pottier, S., Ueki, S., Lowenstein, K., Winter- mark, C., Muhlendere, A., Champion, A., De Voo, M., Pistone, C. M. J., and Memelink, J. (2000). The AP2/ERF domain transcription factor ORA9 integrates jasmonate and ethylene signals in plant defense. Plant Physiol. 127, 1347–1357.

Queval, G., Hager, J., Gaikie, B., and Necter, G. (2008). Why are literature data for H2O2 contents in Arabidopsis? A discussion of potential difficulties in the quantitative assay of cell extracts. J. Exp. Bot. 59, 135–146.

Queval, G., and Necter, G. (2007). A plate reader method for the measure- ment of NAD, NADH thiolascines, and ascorbate in tissue extracts application to redox profiling dur- ing Arabidopsis route development. Anal. Biochem. 363, 58–89.

Rahman, R., Kohl, A., and Bonor, S. K. (2006). Assay for quantita- tive determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3139–3165.

Rau, M. V., Patihriti, G., Omotes, D. P., Murr, D. P., and Wutik, C. R. (1997). Influence of salicylic acid on H2O2 production, oxidative stress and glutathione disulfide. Plant Physiol. 115, 137–149.

Rieck, C., Kürp, G., and Baldwin, I. T. (2007). Increased SA in NPR1- insensitive plants extends the induced plant defense response against chewing insects. Cytokine signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not dia- mondback moth. Plant Physiol. 124, 1077–1088.

Rotheer, F., Wang, Y.-J., Bohle, N., Klein, J. H., Heimann, M., and Dietz, K.-J. (2009). Redox-dependent regulation of the stress- induced zinc-finger protein SAP22 in Arabidopsis thaliana. Mol. Plant 2, 357–367.
Caterpillar saliva affects redox status

Van der Does, D., Leon-Reyes, A., Tada, Y., Spoel, S. H., Pajerowska-Szalai, G., Kellös, T., Galiba, G., and May 2013 | Volume 4 | Article 113 | www.frontiersin.org

Paudel et al. Caterpillar saliva affects redox status

Thivierge, K., Prado, A., Driscoll, J., Wang, C., et al. (2008). Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thiodisulfides. Science 321, 952–956.

Kocsy, G. (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul. 28, 66–80.

Koorneef, A., van Verk, M. C., Verhage, A., Vlaardingerbroek, I., Raaymakers, C., Van Dam, N., Deeks, M., Van Wees, S. C. M., et al. (2011). Reversing of the jasmonic signaling pathway in Arabidopsis during insect herbivory. Front. Plant Sci. 2:47. doi: 10.3389/fpls.2011.00047

Walling, L. L. (2008). Avoiding effective defense: strategies employed by phloem-feeding insects. Plant Physiol. 146, 859–866.

Weich, M.-H., Chapleur, M., Pan, L., Ido, C., and Bede, J. C. (2008). Caterpillar saliva interferes with reduced Arabidopsis thaliana defense responses via the systemic acquired resistance pathway. J. Exp. Bot. 59, 2437–2448.

Wünsche, H., Baldwin, I. T., and Wu, J. (2011). S-nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene in Arabidopsis thaliana. J. Exp. Bot. 62, 4607–4618.

Zhang, Y., Fan, W., Kikkema, M., Li, X., and Dong, X. (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. U.S.A. 96, 6525–6528.

Zhang, Y., Tessaro, M. J., Lauter, M., and Li, X. (2003). Knockout analysis of Arabidopsis transcription factors TGA2, TGA5 and TGA6 reveals their redundant and essential roles in Systemic Acquired Resistance. Plant Cell 15, 2647–2653.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 07 December 2012; accepted: 31 April 2013; published online: 06 May 2013.

This article was submitted to Frontiers in Plant-Microbe Interaction, a specialty of Frontiers in Plant Science.

Copyright © 2013 Paudel, Copley, Amirizian, Prado and Bede. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics.
APPENDIX

Table A1 | Quantitative real-time polymerase chain reaction primers.

Gene	Accession number	Annealing temperature (°C)	Forward (5′–3′)	Reverse (5′–3′)	Reference
ERF1	At3g23240	62	GAC GGA SAA TGA CCA ATA AGA AG	CCC AAAT CCTCA AAG ACA ACT AC	Swarup et al. (2007)
AhCEL	At3g4720	57	CAA GTG TTT AAA GGT GAA GA	CGG TGT GTA TTT GTT GAT GTA AC	Conn et al. (2008)
AtLox2	At3g45410	57	GTC CTA CTT GCC TTC CCA AAC	ATT GTC AGA GTC ACC AAT ATC	Weech et al. (2008)
AIPDF1.2b	At3g48020	59	CGG CAA TGG TGG AAG CA	CAT GCA TTA TGT TTT CGG CAA	Jirage et al. (2001)
AtPR1	At3g45410	62	CAC TAC ACT CAA GTT GTT TGG A	CAT GCA TTA TGT TTT CCA AAA	Primer3
AtSAP6	At3g52800	63	TCA ACG CAT CGA ACG GCT CTG A	GCC AAA GCC AAT CGG TGG TGT AAA	Primer3
AtACT2	At3g18780	59	ACC AGC TCT TCC ATC GAA AA	GAA CCA CGG ATC AAG CT	Dufresne et al. (2008)

Table A2 | Statistical results of plant–insect experiments.

Ascorbate	Total	Range: 2.69–3.98 μmol/g	Effect of treatment, $F_{(2,103)} = 1.33$, $p = 0.27$; effect of time, $F_{(4,103)} = 0.16$, $p = 0.96$; interaction, $F_{(8,103)} = 0.66$, $p = 0.73$
Oxidized (DHA)	Range: 1.22–1.83 μmol/g	Effect of treatment, $F_{(2,100)} = 0.41$, $p = 0.66$; effect of time, $F_{(4,100)} = 0.16$, $p = 0.96$; interaction, $F_{(8,100)} = 0.43$, $p = 0.90$	
Reduced (Asc)	Range: 1.23–2.81 μmol/g	Effect of treatment, $F_{(2,105)} = 2.50$, $p = 0.09$; effect of time, $F_{(4,105)} = 0.58$, $p = 0.68$; interaction, $F_{(8,105)} = 0.97$, $p = 0.90$	
Oxidized/reduced (DHA/Asc)	Range: 1.62	Effect of treatment, $F_{(2,100)} = 1.62$, $p = 0.21$; effect of time, $F_{(4,100)} = 0.130$, $p = 0.26$; interaction, $F_{(8,100)} = 1.11$, $p = 0.30$	

Glutathione	Total	Range: 151–226 nmol/g	Effect of treatment, $F_{(2,109)} = 3.35$, $p = 0.04$; effect of time, $F_{(4,109)} = 0.32$, $p = 0.86$; interaction, $F_{(8,109)} = 0.16$, $p = 0.09$; Figure 2A
Oxidized (GSSG)	Range: 9.9–42.6 nmol/g	Effect of treatment, $F_{(2,89)} = 3.31$, $p = 0.04$; effect of time, $F_{(4,89)} = 2.10$, $p = 0.09$; interaction, $F_{(8,89)} = 2.24$, $p = 0.03$. Since interaction was significant, this was followed by a one-way ANOVA to determine the time point where there was a significant difference: 5 min: $F_{(2,19)} = 2.69$, $p = 0.09$; 15 min: $F_{(2,19)} = 1.91$, $p = 0.18$; 25 min: $F_{(2,19)} = 2.64$, $p = 0.10$; 35 min: $F_{(2,19)} = 3.76$, $p = 0.04$; 45 min: $F_{(2,19)} = 0.53$, $p = 0.60$	
Reduced (GSH)	Range: 93.2–227 nmol/g	Effect of treatment, $F_{(2,87)} = 3.42$, $p = 0.04$; effect of time, $F_{(4,87)} = 0.67$, $p = 0.62$; interaction, $F_{(8,87)} = 0.56$, $p = 0.81$	
Oxidized/reduced (GSSG/GSH)	Effect of treatment, $F_{(2,87)} = 0.99$, $p = 0.37$; effect of time, $F_{(4,87)} = 2.18$, $p = 0.08$; interaction, $F_{(8,87)} = 1.02$, $p = 0.39$		

(Continued)
Table A2	Continued
Gene expression	**Genotype**
AtPR1	**Wildtype**
	$F_{(2,8)} = 4.44$, $p = 0.05$; fivefold increase in gene expression in plants attacked by caterpillars with intact labial salivary secretions compared to control plants or between control plants or plants infested by caterpillars with impaired salivary secretions
pwd1	$F_{(2,8)} = 1.23$, $p = 0.32$
gau2/5/8	$F_{(2,8)} = 0.35$, $p = 0.72$
AtPDF1.2	**Wildtype**
	$F_{(2,8)} = 6.00$, $p = 0.03$; 18-fold increase in gene expression in response to herbivory by caterpillars with impaired salivary secretions compared to normal caterpillars or controls
pwd1	$F_{(2,8)} = 1.50$, $p = 0.28$; 12.5-fold increase in gene expression is seeen between plants infested by caterpillars compared to controls
gau2/5/8	$F_{(2,8)} = 3.31$, $p = 0.10$; fivefold increase in gene expression is seen in plants fed upon by caterpillars compared to controls
ERF1	**Wildtype**
	$F_{(2,8)} = 5.47$, $p = 0.04$; 10-fold increase in gene expression seen in plants fed upon by caterpillars with impaired salivary secretions compared to control plants
pwd1	$F_{(2,9)} = 12.83$, $p = 0.002$; 20-fold increase in gene expression seen in plants fed upon by caterpillars with impaired salivary secretions compared to control plants or plants attacked by caterpillars with labial salivary secretions
gau2/5/8	$F_{(2,8)} = 0.61$, $p = 0.57$
AHP1	**Wildtype**
	$F_{(2,8)} = 5.09$, $p = 0.14$; fivefold increase in gene expression is observed in plants infested by caterpillars compared to control plants
pwd1	$F_{(2,9)} = 2.22$, $p = 0.17$; 10-fold increase in gene expression is observed in plants infested by caterpillars compared to controls
gau2/5/8	$F_{(2,8)} = 3.31$, $p = 0.10$
AtLOX2	**Wildtype**
	$F_{(2,7)} = 1.48$, $p = 0.29$; sevenfold increase in gene expression is observed in plants infested by caterpillars compared to controls
pwd1	$F_{(2,9)} = 3.68$, $p = 0.07$; sevenfold increase in gene expression is observed in plants infested by caterpillars compared to controls
gau2/5/8	$F_{(2,7)} = 0.14$, $p = 0.87$
AtSAP6	**Wildtype**
	$F_{(2,8)} = 5.02$, $p = 0.04$
pwd1	$F_{(2,9)} = 0.85$, $p = 0.46$
gau2/5/8	$F_{(2,8)} = 0.14$, $p = 0.87$

A two-way ANOVA followed by a Tukey HSD was used to evaluate redox metabolite levels over a 45 min time course. A one-way ANOVA was used to evaluate differences in gene expression within each genotype. A fivefold or higher difference in gene expression is also indicated.

Table A2 Continued